UNICAMP FACULDADE DE ENGENHARIA QUÍMICA

Tese de doutorado

MODELAGEM FLUIDODINÂMICA E REACIONAL COM AVALIAÇÃO AMBIENTAL DO PROCESSO DE HIDROCONVERSÃO DE RESÍDUOS DE PETRÓLEO

Autora: Montserrat Motas Carbonell

Orientador: Prof. Dr. Reginaldo Guirardello

Campinas - SP Dezembro / 2003

UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE ENGENHARIA QUÍMICA ÁREA DE CONCENTRAÇÃO DESENVOLVIMENTO DE PROCESSOS QUÍMICOS

MODELAGEM FLUIDODINÂMICA E REACIONAL COM AVALIAÇÃO AMBIENTAL DO PROCESSO DE HIDROCONVERSÃO DE RESÍDUOS DE PETRÓLEO

Autora: Montserrat Motas Carbonell Orientador: Prof. Dr. Reginaldo Guirardello

Tese de doutorado apresentada à Faculdade de Engenharia Química como parte dos requisitos exigidos para a obtenção do título de Doutor em Engenharia Química.

Campinas – São Paulo Dezembro / 2003

FICHA CATALOGRÁFICA ELABORADA PELA BIBLIOTECA DA ÁREA DE ENGENHARIA - BAE - UNICAMP

	Carbonell, Montserrat Motas
C177m	Modelagem fluidodinâmica e reacional com avaliação ambiental do processo de hidroconversão de resíduos de petróleo / Montserrat Motas CarbonellCampinas, SP: [s.n.], 2003.
	Orientador: Reginaldo Guirardello.
	Campinas, Faculdade de Engenharia Química.
	1. Petróleo Refinação. 2. Impacto ambiental. 3. Reatores fluidizados. 4. Craqueamento. I. Guirardello,
	Reginaldo. II. Universidade Estadual de Campinas. Faculdade de Engenharia Ouímica, III. Título.

Tese de Doutorado defendida por Montserrat Motas Carbonell e aprovada em 17 de dezembro de 2003 pela banca examinadora constituída pelos doutores:

Prof. Dr. Reginaldo Guirardello

Prof. Dr. Asher Kiperstok

Dr. Waldir Martignoni

Prof. Dr. Antonio Carlos Luz Lisbôa

Prof. Dr. Edson Tomaz

Esta versão corresponde à redação final da Tese de Doutorado em Engenharia Química, defendida por Montserrat Motas Carbonell e aprovada pela Comissão Julgadora em 17 de dezembro de 2003.

Prof. Dr. Reginaldo Guirardello Orientador

À minha querida família

Agradecimentos

Ao meu orientador, Reginaldo Guirardello pela amizade e orientação.

À CAPES e ao CNPq pelo apoio financeiro.

A Petrobras e aos meus gerentes Vicente Gullo e Ary Rubinstein pelo apoio. De modo especial, a Ary por toda confiança e incentivo na fase final da tese, sem os quais não teria sido possível concluir o trabalho. Ao programa de "Pós-graduação no país da Petrobras" pelo apoio financeiro em 2003.

A natureza tão linda e diversa, que nos alegra e inspira. A meus pais Rosendo e Maria e irmãs Nuria e Ana, sempre presentes e na torcida, com muito carinho, mesmo a alguns quilômetros de distância... Ao Daniel que está sempre ao meu lado, participando de todos os momentos com muito carinho e alegria. Em especial na tese agradeço o incentivo, a compreensão e o apoio na fase final da tese.

A todos os professores que contribuíram para minha formação.

A Edson Tomaz, Lisboa e Rachel Cavalcanti pela amizade e troca de idéias durante o desenvolvimento da tese.

A CPG / FEQ pela atenção e confiança. Em especial, aos coordenadores da CPG nesse período professores Maria Helena, Sérgio, Ana Frattini e Telma. Aos meus queridos colegas de trabalho na Petrobras e na Faculdade de engenharia química da Unicamp pela amizade e apoio. A Simone pela amizade e convivência na fase inicial dos trabalhos. Ao Rafael, sempre disposto a esclarecer alguma dúvida das cinéticas de hidroconversão. A Monica pelo apoio na impressão final da tese. A Lurdinha, Marlus, Marco e Emerson com quem aprendi, durante a organização do I EPFEQ, que trabalhar em equipe é muito produtivo e divertido também. Valeu !!! Tem sempre presente, a pele que se enruga, o cabelo que se torna branco, os dias que se convertem em anos, mas o mais importante não muda !

Tua força interior e tuas convicções não têm idade. Teu espírito é o espanador de qualquer teia de aranha.

Atrás de cada linha de chegada, há uma de partida. Atrás de cada trunfo, há outro desafio.

Enquanto estiveres vivo, sente-te vivo. Se sentes saudades do que fazias, torna a fazê-lo. Não vivas de fotografias amareladas. Continua, apesar de todos esperarem que abandones. Não deixes que se enferruje o ferro que há em você. Faz com que em lugar de pena, te respeitem.

Quando pelos anos não consigas correr, trota. Quando não possas trotar, caminha. Quando não possas caminhar, usa bengala. Mas nunca te detenhas !!!

Madre Tereza de Calcutá

RESUMO

CARBONELL, MONTSERRAT MOTAS. *Modelagem fluidodinâmica e reacional com avaliação ambiental do processo de hidroconversão de resíduos de petróleo*. Campinas: Faculdade de Engenharia Química, UNICAMP, 2003. 352p. Tese (Doutorado).

Esta tese apresenta desenvolvimentos nas áreas de modelagem matemática, simulação e avaliação ambiental de processos químicos, aplicados à hidroconversão de resíduos de petróleo. Na hidroconversão ocorrem reações de craqueamento e remoção de heteroátomos (S, N e metais) do resíduo, em presença de catalisador e hidrogênio, gerando destilados de maior valor agregado.

A modelagem é desenvolvida para o reator de hidroconversão, que opera em leito fluidizado trifásico (gás-líquido-sólido) tipo *slurry bubble column*, considerando fenômenos fluidodinâmicos e reacionais. O equacionamento é realizado a partir das equações de conservação da massa e quantidade de movimento médias no tempo, equações constitutivas e cinéticas de craqueamento. Para simulação do reator em escala piloto é proposto o "modelo fluidodinâmico base" e o "modelo fluidodinâmico com dispersão radial". A simulação fornece os perfis radiais de fração volumétrica, viscosidade efetiva e velocidades das fases gás e lama (pseudo-homogênea), assim como a conversão de resíduo, os perfis de concentração no reator e a distribuição de produtos (gás, nafta, diesel e gasóleo). Os resultados são comparados com o comportamento físico esperado, dados da literatura e modelos ideais de reatores, mostrando comportamento consistente.

A avaliação ambiental é realizada com o método de Heinzle et al. (1998) modificado, por meio do cálculo de indicadores que permitem destacar os compostos, processos ou situações com maior potencial de gerar problemas ambientais e selecionar os processos mais eficientes. São considerados os aspectos ambientais decorrentes do fornecimento de matérias-primas e insumos e os impactos potenciais dos compostos gerados. O método é aplicado à região de reação do processo de hidroconversão, com o cálculo dos indicadores de massa e ambiental, a discussão da contribuição das frações de petróleo nos indicadores (destacando os resultados de conversão e seletividade) e a avaliação do maior problema ambiental da hidroconversão: o consumo e descarte de catalisador.

Palavras chave: reator em coluna de bolhas, *slurry bubble column*, fluidodinâmica, CFD, modelagem, indicador ambiental, avaliação ambiental, tecnologia limpa, *design for the environment*, craqueamento, hidroconversão, resíduo de vácuo, refino de petróleo.

ABSTRACT

CARBONELL, MONTSERRAT MOTAS. *Modelagem fluidodinâmica e reacional com avaliação ambiental do processo de hidroconversão de resíduos de petróleo*. Campinas: Faculdade de Engenharia Química, UNICAMP, 2003. 352p. Tese (Doutorado).

This work contributes to the development of process modeling, simulation and environmental evaluation applied to the hydroconversion of petroleum residues. The hydroconversion of residues in the presence of hydrogen and catalyst, under severe temperature and pressure conditions, produces lighter and more valuable products, such as naphtha, diesel and gasoil.

The modeling of the hydroconversion reactor, which operates in a slurry bubble column mode, is developed considering both fluid dynamics and residue cracking reactions. The model is based on mass and momentum balance time-averaged equations, constitutive equations and kinetic models for the cracking reactions, leading to the development of two models: the "base fluid dynamic model" and the "radial dispersion fluid dynamic model". The simulation of the reactor, in pilot scale, gives the radial distribution of gas and slurry (pseudo-homogeneous phase) for the holdup, effective viscosity (dispersion) and velocity, as long as, the residue conversion, the concentration profiles and the distribution of products. The results show good agreement to the expected physical behavior and to the experimental data obtained in literature.

The method of Heinzle et al. (1998) is selected for the environmental assessment of processes. It consists on the determination of indices based on mass balances and a classification approach that accounts for the environmental aspects of raw materials synthesis and the release of effluents (products, used materials, etc) to the environment. These indices help in the identification of major environmental problems and in the selection of more environmentally friendly process alternatives. Some modifications are proposed and implemented in the selected method. The Heinzle et al. modified method is then applied for the environmental evaluation of the reaction region of the hydroconversion process, showing the great influence of petroleum fractions in the indices (highlighting the results of conversion and selectivity) and showing the most important environmental problem in the hydroconversion process: the consumption and disposal of catalyst.

Keywords: slurry bubble column reactor, fluid dynamics, CFD, modeling, environmental index, environmental evaluation, design for the environment, cracking, hydroconversion, vacuum residue, petroleum refining.

SUMÁRIO

Lista de	e Figuras	i
Lista de	e Tabelas	iv
Lista de	e Siglas	vi
Nomeno	clatura v	iii
1	INTRODUÇÃO	1
1.1	Objetivo	3
1.2	Histórico do desenvolvimento da tese	4
1.3	Apresentação da tese	4
2	REVISÃO DA LITERATURA	7
2.1	Introdução	7
2.2	Engenharia química e a sustentabilidade ambiental	9
2.3	Métodos e indicadores para avaliação ambiental de processos	15
2.3.1	Introdução e breve histórico	15
2.3.2	Etapas de desenvolvimento de um estudo de engenharia e ACV	19
2.3.3	Geração de alternativas de processo e cálculos	21
2.3	.3.1 Geração de alternativas	22
2.3	.3.2 Cálculos	23
2.3.4	Indicadores para avaliações ambientais	26
2.3	.4.1 SPI - Sustainable process index	27
2.3	.4.2 MEIM - Methodology for environmental impact minimization	28
2.3	.4.3 Impact index	30
2.3	.4.4 WAR - Waste reduction algorithm e PEI - Potential environmental impact	31
2.3	.4.5 MLI - Mass loss index, EI - Environmental index e CI - Economic index	34
2.3	.4.6 Comparação entre outros métodos / indicadores	36
2.3	.4.7 Considerações gerais e desenvolvimentos na área	39
2.3	.4.8 Aplicações da avaliação ambiental em processos industriais	42
2.3.5	Selecionando um indicador / método para avaliação ambiental	44
2.3.6	Considerações finais	47

2.4	Grau de periculosidade das substâncias	47
2.4.1	Legislação ambiental considerada	48
2.4.2	Registro de novas substâncias	51
2.4.3	Fatores que conferem periculosidade às substâncias	52
2.4.4	Poluentes do ar	54
2.4	4.4.1 Aspectos gerais da poluição do ar	54
2.4	4.4.2 Legislação federal brasileira para o controle da poluição do ar	55
2.4	1.4.3 Periculosidade das substâncias nocivas ao ar em legislação estrangeira	57
2.4.5	Poluentes da água	59
2.4	4.5.1 Aspectos da poluição das águas	59
2.4	1.5.2 Legislação federal brasileira para o controle da poluição das águas	62
2.4	4.5.3 Periculosidade das substâncias nocivas à água em legislação estrangeira	64
2.4.6	Poluentes do solo	66
2.4	4.6.1 Aspectos gerais da degradação do solo	66
2.4	4.6.2 Legislação federal brasileira para o controle da degradação do solo	67
2.4	4.6.3 Periculosidade de um resíduo industrial – normas brasileiras	69
2.4.7	O controle do descarte de substâncias perigosas no Brasil	70
2.4.8	Considerações finais	72
2.5	Processos de hidroconversão de resíduos	73
2.5.1	Reações, catalisadores e variáveis operacionais	76
2.5.2	Hidroconversão em leito expandido – HCLE	81
2.5.2 2.5.3	Hidroconversão em leito expandido – HCLE Hidroconversão com arraste de sólidos (<i>slurry bubble column</i>)	81 86
2.5.2 2.5.3 2.5.4	 Hidroconversão em leito expandido – HCLE Hidroconversão com arraste de sólidos (<i>slurry bubble column</i>) Fluidodinâmica dos reatores de hidroconversão tipo <i>slurry bubble column</i> 	81 86 91
2.5.2 2.5.3 2.5.4 2.5	Hidroconversão em leito expandido – HCLE. Hidroconversão com arraste de sólidos (<i>slurry bubble column</i>) Fluidodinâmica dos reatores de hidroconversão tipo <i>slurry bubble column</i> . 5.4.1 Regime de bolhas.	81 86 91 92
2.5.2 2.5.3 2.5.4 2.5 2.5	 Hidroconversão em leito expandido – HCLE Hidroconversão com arraste de sólidos (<i>slurry bubble column</i>) Fluidodinâmica dos reatores de hidroconversão tipo <i>slurry bubble column</i> 5.4.1 Regime de bolhas 5.4.2 Estrutura do escoamento 	 81 86 91 92 93
2.5.2 2.5.3 2.5.4 2.5 2.5 2.5	 Hidroconversão em leito expandido – HCLE Hidroconversão com arraste de sólidos (<i>slurry bubble column</i>) Fluidodinâmica dos reatores de hidroconversão tipo <i>slurry bubble column</i> 5.4.1 Regime de bolhas 5.4.2 Estrutura do escoamento 5.4.3 Condições operacionais de colunas de bolhas – escalas piloto e demonstração 	 81 86 91 92 93 96
2.5.2 2.5.3 2.5.4 2.5 2.5 2.5 2.5.5	 Hidroconversão em leito expandido – HCLE Hidroconversão com arraste de sólidos (<i>slurry bubble column</i>) Fluidodinâmica dos reatores de hidroconversão tipo <i>slurry bubble column</i> 5.4.1 Regime de bolhas 5.4.2 Estrutura do escoamento 5.4.3 Condições operacionais de colunas de bolhas – escalas piloto e demonstração Aspectos ambientais da hidroconversão 	 81 86 91 92 93 96 102
2.5.2 2.5.3 2.5.4 2.5 2.5 2.5 3	 Hidroconversão em leito expandido – HCLE Hidroconversão com arraste de sólidos (<i>slurry bubble column</i>) Fluidodinâmica dos reatores de hidroconversão tipo <i>slurry bubble column</i> 5.4.1 Regime de bolhas 5.4.2 Estrutura do escoamento 5.4.3 Condições operacionais de colunas de bolhas – escalas piloto e demonstração Aspectos ambientais da hidroconversão 	 81 86 91 92 93 96 102 107
2.5.2 2.5.3 2.5.4 2.5 2.5 2.5 3 3.1	 Hidroconversão em leito expandido – HCLE Hidroconversão com arraste de sólidos (<i>slurry bubble column</i>) Fluidodinâmica dos reatores de hidroconversão tipo <i>slurry bubble column</i> 5.4.1 Regime de bolhas 5.4.2 Estrutura do escoamento 5.4.3 Condições operacionais de colunas de bolhas – escalas piloto e demonstração 5.4.3 Aspectos ambientais da hidroconversão METODOLOGIA PARA AVALIAÇÃO AMBIENTAL DE PROCESSOS IM – Indicador de massa 	 81 86 91 92 93 96 102 107 109
2.5.2 2.5.3 2.5.4 2.5 2.5 2.5 3 3.1 3.1.1	 Hidroconversão em leito expandido – HCLE Hidroconversão com arraste de sólidos (<i>slurry bubble column</i>) Fluidodinâmica dos reatores de hidroconversão tipo <i>slurry bubble column</i> 5.4.1 Regime de bolhas 5.4.2 Estrutura do escoamento 5.4.3 Condições operacionais de colunas de bolhas – escalas piloto e demonstração 5.4.3 Condições operacionais de colunas de bolhas – escalas piloto e demonstração 5.4.4 METODOLOGIA PARA AVALIAÇÃO AMBIENTAL DE PROCESSOS IM – Indicador de massa	 81 86 91 92 93 96 102 107 109 110
2.5.2 2.5.3 2.5.4 2.5 2.5 2.5 3 3.1 3.1.1 3.1.2	 Hidroconversão em leito expandido – HCLE. Hidroconversão com arraste de sólidos (<i>slurry bubble column</i>) Fluidodinâmica dos reatores de hidroconversão tipo <i>slurry bubble column</i>. 54.1 Regime de bolhas. 54.2 Estrutura do escoamento. 54.3 Condições operacionais de colunas de bolhas – escalas piloto e demonstração. Aspectos ambientais da hidroconversão METODOLOGIA PARA AVALIAÇÃO AMBIENTAL DE PROCESSOS. IM – Indicador de massa. Região 1 – Reação – IM1. Região 2 – Separação e reciclo – IM2. 	 81 86 91 92 93 96 102 107 109 110 113
2.5.2 2.5.3 2.5.4 2.5 2.5 2.5 3 3.1 3.1.1 3.1.2 3.1.3	 Hidroconversão em leito expandido – HCLE	 81 86 91 92 93 96 102 107 107 109 110 113 115

4.4	Resumo esquemático	181
4.3.4	Considerações finais e programa RHA 2.1	180
4.3	.3.2 Resolução das equações	176
4.3	.3.1 Modelo cinético de craqueamento para petróleo Marlim (Almeida, 2000)	172
4.3.3	Implementação da cinética de craqueamento para petróleo Marlim	172
4.3.2	Considerações gerais e programa RHA 2.0	171
4.3	.1.3 Integração na direção axial por procedimento analítico (e cinética de Mosby)	161
4.3	.1.2 Integração na direção axial – Métodos adotados e dificuldades	155
4.3.1	1 1 Discretização na direção radial por colocação ortogonal	140 147
H.J	Pasalução das aguaçãos do modelo	1 40
13	Madala fluidadinâmica com disnarsão radial	1/6
4.2.3	Considerações gerais e modelo RHA 1.1	145
4.2.2	Simulação do modelo fluidodinâmico base	143
4.2.1	Implementação do modelo cinético de craqueamento de Mosby et al (1986)	141
4.2	Modelo fluidodinâmico base	139
4.1	Fluidodinâmica do reator	136
4	MODELAGEM E SIMULAÇÃO DO REATOR DE HIDROCONVERSÃO	135
3.4	Considerações finais	133
3.3	Diferenças entre método apresentado e referência	132
3.2.4	IA1 – Indicador ambiental na região de reação	130
3.2.3	Determinação do FA – Fator ambiental	129
3.2.2	Fator ambiental dos materiais gerados ou usados no processo	126
3.2.1	Fator ambiental dos insumos e matérias-primas	123
3.2	IA – Indicador ambiental	122
3.1.7	Região 7 – Todo o processo – IM7	120
3.1.6	Região 6 – Tratamento dos rejeitos – IM6	119
3.1.5	Região 5 – Reação, separação e pré-tratamento de rejeitos – IM5	118

5		RESULTADOS E AVALIAÇÃO DOS MODELOS DO REATOR DE HIDROCONVERSÃO	183
5	.1	Condições operacionais e propriedades	184
5	.2	Resultados da simulação da fluidodinâmica	187
	5.2.1	Fração volumétrica do gás e da lama, $\epsilon_{\rm g}~e~\epsilon_{\rm sl}$	188
	5.2.2	Viscosidade efetiva da lama, μ_{sl}^{eff}	189
	5.2.3	Velocidade axial da lama, do líquido e do sólido, V_{sl} , V_L , V_s	189
	5.2.4	Velocidade axial do gás, V _g	190
	5.2.5	Análise Paramétrica	190
5	.3	Resultados do modelo fluidodinâmico base e cinética de Mosby	191
	5.3.1	Conversão e distribuição de produtos	192
	5.3.2	Perfil de concentrações, Ci (r,z)	194
	5.3.3	Influência da temperatura nas reações de craqueamento	196
	5.3.4	Análise paramétrica	196
5	.4	Comparação entre arranjos de reatores CSTR e PFR e modelo fluidodinâmico base	197
5	.5	Resultados do modelo fluidodinâmico com dispersão radial e cinética de Mosby	203
	5.5.1	Conversão e distribuição de produtos	203
	5.5.2	Perfil de concentrações, Ci (r,z)	205
	5.5.3	Influência da temperatura nas reações de craqueamento	205
	5.5.4	Análise paramétrica	206
5	.6	Comparação entre os modelos fluidodinâmicos base e com dispersão radial	207
5	.7	Resultados do modelo fluidodinâmico com dispersão radial e cinética de Almeida	212
	5.7.1	Comparação dos resultados de um PFR e dados experimentais de Almeida	212
	5.7.2	Comparação dos modelos nas condições das corridas experimentais de Almeida	214
6		AVALIAÇÃO AMBIENTAL DA HIDROCONVERSÃO DE RESÍDUOS	217
6	.1	Avaliação do reator de hidroconversão – cálculo dos indicadores IM1 e IA1	217

6.2	Avaliação de aspectos da hidroconversão em leito de arraste e em leito expandido	224
6.3	Considerações sobre a avaliação ambiental da hidroconversão com o método WAR / PEI	230
6.4	Considerações finais - avaliação ambiental de processos de refino de petróleo	232
7	CONCLUSÕES	233
7.1	Sugestões para futuros trabalhos	244
8	REFERÊNCIAS BIBLIOGRÁFICAS	245
8.1	Lista de referências na internet	253
9	ANEXOS	255
9.1	Artigo: Chemical Engineering for a sustainable environment – XIII COBEQ, 2000	255
9.2	Artigo: Modelling of a slurry bubble reactor applied to the hydroconversion of heavy oils – CES, 1997. Erratum – CES, 1998	269
9.3	Artigo: Simulação da hidroconversão de resíduos de petróleo. Uma análise paramétrica – XXVI ENEMP, 1998	279
9.4	Artigo: Modelling a hydroconversion reactor based on a computational fluid dynamics appproach - HDT/HCC Symposium, 1999	289
9.5	Programa RHA 2.1	299
9.5.1	Estrutura do programa RHA 2.1	300
9.5.2	Considerações gerais	304
9.5	.2.1 Modificações no programa	305
9.5	.2.2 Execução do programa – Entrada de dados e saída de resultados	305
9.5.3	Arquivo de entrada de dados	307
9.6	Listas de classificação das substâncias perigosas	309

LISTA DE FIGURAS

Figura 2.1	 Apresentação do artigo "Chemical Enginering for a sustainable environment" (Carbonell et al., 2000) - Telas selecionadas: A) Definição de desenvolvimento sustentável; B)Sustentabilidade Ambiental; C) Hierarquia no gerenciamento ambiental; D) Prevenção à poluição; E)Tecnologias e equipamentos; F) Reciclos; G) Ecologia Industrial; H) Conclusões. As referências são indicadas no artigo apresentado no item 9.1 	12
Figura 2.2	Evolução das fronteiras de estudo no projeto de processos químicos. Esquema proposto por Cano-Ruiz e McRae (1998)	16
Figura 2.3	Etapas de desenvolvimento de um estudo (tipicamente iterativo). Esquema baseado em Cano-Ruiz e McRae (1998)	20
Figura 2.4	Aspectos considerados para avaliação ambiental de processos	27
Figura 2.5	Quadro resumo das características do indicador ambiental SPI (indicador de sustentabilidade dos processos), apresentado em Narodoslawsky e Krotscheck (2000)	28
Figura 2.6	Quadro resumo das características do indicador ambiental MEIM (metodologia para minimização de impacto ambiental) proposta por Stefanis et al. (1995)	29
Figura 2.7	Quadro resumo das características do indicador ambiental <i>Impact index</i> proposto por Elliott et al. (1996)	30
Figura 2.8	Quadro resumo das características do <i>Waste reduction algorithm</i> WAR. O artigo de Young e Cabezas (1999), versão mais atual do método, é o artigo de referência	32
Figura 2.9	Quadro resumo das características dos indicadores <i>mass loss index</i> (MLI), <i>environmental index</i> (EI) e <i>economic index</i> (CI), proposto por Heinzle et al. (1998)	35
Figura 2.10) Aspectos da poluição do ar	54
Figura 2.11	Diversidade de usos da água e os resíduos gerados (poluição da água)	60
Figura 2.12	2 Esquema de possíveis etapas na conversão do resíduo. Os valores entre parênteses foram medidos para betume Athabasca (proposto por Sanford em 1993 e apresentado em Gray (1994))	78
Figura 2.13	³ Esquema da relação entre as variáveis operacionais (temperatura, pressão de hidrogênio e atividade de catalisador) e as reações no reator de hidroconversão (Gray, 1994)	80
Figura 2.14	Fluxograma de uma unidade de hidroconversão LC-Fining (Reynolds et al., 2002)	81
Figura 2.15	5 Fluxograma de uma unidade de hidroconversão Veba-Combi-Cracking (Niemann e Wenzel, 1993)	86
Figura 2.16	5 Linhas de fluxo de líquido em colunas de bolhas com regime de bolhas homogêneo (a) com $U_g = 0,02$ m/s e heterogêneo (b) com $U_g = 0,184$ m/s (Dudukovic e Devanathan, 1993)	1 95
Figura 2.17	7 Representação esquemática de múltiplas células de recirculação propostas por Joshi et al.em 1979 (Figura A) e 1980 (Figura B). (Joshi et al., 2002)	96
Figura 3.1	Regiões de avaliação, adaptado de Heinzle et al.(1998). Os rejeitos industriais que não forem recuperados ou reciclados saem com as emissões, os efluentes e os resíduos	07
Figura 3.2	Esquema para balanço na região de reação (estado estacionário, sem reciclo de materiais). 1	10
Figura 3.3	Esquema para balanço na região 3, que envolve as etapas de reação e separação (estado estacionário, considerando reciclo, consumo de energia e utilidades) 1	16
Figura 3.4	Esquema para balanço de massa em todas as regiões de processo (estado estacionário e considerando reciclo entre as regiões 1 e 2)	21
Figura 4.1	Etapas do desenvolvimento de modelos para simulação de processos 1	35

Figura 4.2	Esquema da fluidodinâmica do reator de hidroconversão modelado, tipo <i>slurry bubble column</i> (SBC), ou seja, reator de lama com borbulhamento	137
Figura 4.3	Desenho esquemático do reator (sem escala) mostrando as três regiões do reator e a nomenclatura usada para as concentrações. O reator tem simetria em relação ao eixo central. A linha tracejada indica o ponto de inversão de fluxo ($r = r^*$, $VL = 0$) e a linha dupla mostra a distribuição dos 10 pontos de colocação ortogonal	144
Figura 4.4	Etapas de cálculo das concentrações no reator, com o algoritmo do acoplamento reação- recirculação (ver Carbonell (1996) para fluxograma detalhado)	144
Figura 4.5	Diagrama esquemático de metade do reator (sem escala) mostrando os pontos de colocação ortogonal e as condições de contorno radiais nas regiões de fluxo ascendente e descendente	, 150
Figura 4.6	Matriz cinética de craqueamento de Almeida (2000) com 5 pseudocomponentes i. As setas indicam as 13 reações: as tracejadas (azuis) mostram reações de craqueamento catalítico (efeito do catalisador) e as contínuas (vermelhas) de craqueamento térmico	173
Figura 4.7	Variação das constantes das taxas das reações do modelo cinético de Almeida (2000) com a temperatura. Nas reações catalíticas é indicado o valor de [kr.rcat / k1]	179
Figura 4.8	Resumo esquemático dos modelos apresentados nesse capítulo e implementados no programa RHA 2.1 (versão final cuja estrutura e listagens são apresentadas no item 9.5)	181
Figura 5.1	Perfil radial da fração volumétrica do gás e da lama no reator	188
Figura 5.2	Concentração de resíduo em fração mássica, na entrada (z = 0) e saída (z = Lc) da região de escoamento desenvolvido, com modelo fluidodinâmico base. A linha pontilhada indica o ponto onde ocorre a inversão do fluxo no reator ($V_L = 0 \text{ em r/Rc} = 0,67$)	195
Figura 5.3	Desenho esquemático de metade do reator mostrando as regiões de fluxo ascendente "A" e descendente "D" da região de escoamento desenvolvido	198
Figura 5.4	Desenho esquemático da conversão de resíduo calculada com modelos de reatores ideais CSTR e PFR e esquemas (não está em escala). A conversão com o Esquema PFR tem valores na faixa indicada	200
Figura 5.5	Resultados da análise paramétrica usando o modelo fluidodinâmico com dispersão radial e os dados da coluna 6 da Tabela 5.1 (T = 430 °C, Nreator=1)	206
Figura 5.6	Desenho esquemático da conversão de resíduo calculada com a simulação do reator de hidroconversão usando diferentes modelos (não está em escala). A conversão calculada usando o modelo fluidodinâmico com dispersão radial tem valores na faixa indicada	209
Figura 5.7	Variação da conversão de resíduo "difícil de craquear" X1 com acréscimo de 20% nos parâmetros, obtida com diversos modelos e os dados da coluna 6 da Tabela 5.1 (T = 430° C)	210
Figura 5.8	Rendimentos de diesel e resíduo calculados com modelos fluidodinâmico (FD), CSTR e PFR e resultado experimental (exp) de Almeida (2000), obtidos a Tref e óleo/cat = 10	215
Figura 5.9	Rendimentos de diesel e resíduo calculados com modelos fluidodinâmico (FD), CSTR e PFR e resultado experimental (exp) de Almeida (2000), obtidos a τ_L = 1h e óleo/cat = 10	215
Figura 5.10) Rendimentos de diesel e resíduo calculados com modelos fluidodinâmico (FD), CSTR e PFR e resultado experimental (exp) de Almeida (2000), obtidos a τ_L = 2h e Tref	216
Figura 5.1	1 Rendimentos de resíduo RCM calculados com modelos fluidodinâmico (FD), CSTR e PFR e resultado experimental (exp) de Almeida (2000), obtidos com óleo/cat = 10 a Tref e Tref+15	216
Figura 6.1	Esquema da região de reação do processo de hidroconversão	217
Figura 6.2	Avaliação ambiental de matérias-primas, insumos, materiais gerados e usados no processo de hidroconversão	221

Figura 6.3	Indicadores calculados por composto na região 1 do processo de hidroconversão. As vazõe de H2S e NH3 não foram calculadas, de forma que $FM1 = IA1 = 0$ para esses compostos	es 222
Figura 6.4	Indicadores FM1 e IA1 para reator de hidroconversão operando entre 425 e 445 °C, com reciclo de hidrogênio, sem considerar as vazões de H ₂ S, NH ₃ e H ₂ O	226
Figura 6.5	Indicadores FM1 e IA1 para o hidrogênio e o catalisador, com reciclo de hidrogênio	227
Figura 6.6	Indicadores FM1 e IA1 para o hidrogênio e o catalisador, sem reciclo de hidrogênio	227
Figura 6.7	Descarte diário de catalisador em unidade de hidroconversão de 6400 m³/d, com indicação das faixas típicas de reposição de catalisador nos processos de hidroconversão em leito expandido (H-Oil e LC-Fining) e em leito de arraste (VCC, Canmet e HDH)	228
Figura 9.1	Modelos usados nas sub-rotinas que simulam as reações de craqueamento. Os modelos são apresentados no Capítulo 4 (resumo esquemático na Figura 4.8)	300
Figura 9.2	Estrutura do programa RHA 2.1 com a sequência de chamada das sub-rotinas. Sub-rotinas com * utilizam rotinas das bibliotecas IMSL (versão instalada em software Microsoft®, 1994-95)	301

LISTA DE TABELAS

Tabela 2.1	Comparação entre métodos / indicadores ambientais. Informações resumidas de Hertwich et al. 1997)	38
Tabela 2.2	Aplicações da avaliação ambiental em processos industriais	43
Tabela 2.3	Comparação entre métodos / indicadores ambientais selecionados	46
Tabela 2.4	Características do resíduo de vácuo (Capitani, 1996)	. 73
Tabela 2.5	Unidades de hidroconversão LC-Fining (Reynolds et al., 2002; Mosby et al., 1986)	82
Tabela 2.6	Unidades de hidroconversão H-Oil (Colyar, 1997; Lepage, 2002)	83
Tabela 2.7	Condições operacionais e desempenho da unidades comerciais H-Oil e LC-Fining	84
Tabela 2.8	Condições operacionais e desempenho das unidades HDH, CANMET e VCC	88
Tabela 2.9	Condições operacionais e parâmetros de colunas de bolhas (com e sem sólidos) experimentais em escala piloto e demonstração	98
Tabela 2.1	0 Consumo médio de energia em refinarias dos Estados Unidos (Energetics, 1998)	106
Tabela 3.1	Classificação ABC para avaliação ambiental de matérias-primas e insumos baseada em Heinzle et al. (1998)	124
Tabela 3.2	Índice de reservas estáticas (Cavalcanti, 1996). Dados atualizados em 1995	125
Tabela 3.3	Classificação ABC para avaliação ambiental de materiais gerados ou usados no processo baseada em Heinzle et al. (1998). As listas de classificação das substâncias são apresentadas no item 9.6	126
Tabela 3.4	Tendências previstas para o teor máximo de enxofre permitido na gasolina brasileira	128
Tabela 3.5	Tendências previstas para o teor máximo de enxofre permitido no diesel brasileiro	128
Tabela 3.6	Relação entre o FA e a presença de compostos potencialmente nocivos ao meio ambiente (indicado por classe, conforme Tabela 3.1 e Tabela 3.3)	130
Tabela 3.7	Tabela resumo dos fatores (FM e FA) e indicadores (IM e IA)	134
Tabela 4.1	Valores de α_i e $\beta_{m,i}$ obtidos na matriz reacional de Mosby et al. (1986)	142
Tabela 4.2	Posição adimensional dos pontos de colocação ortogonal e função peso (fluxo ascendente)	151
Tabela 4.3	Posição adimensional dos pontos de colocação ortogonal e função peso (fluxo descendente)	151
Tabela 4.4	Métodos utilizados para implementação do modelo com dispersão radial	156
Tabela 4.5	Autovalores do sistema de EDO's do modelo com fração da dispersão radial total (mLeff) e cinética de Mosby et al. (1986), obtidos no programa ateste15	159
Tabela 4.6	Distribuição dos produtos na saída do reator de hidroconversão (ver Nota 1). Resultados obtidos com os diferentes programas desenvolvidos e dispersão radial total (T = 425°C). (Csi em fração mássica)	160
Tabela 4.7	Autovalores do sistema de EDOs dividido em 7 sub-sistemas (programa ateste15)	164
Tabela 4.8	Resultados da simulação de $C1(r,z)$ e $C2(r,z)$ com a solução completa (Equação 4-38) e considerando apenas os dois termos mais significativos (programa ateste15)	166
Tabela 4.9	Valores das constantes de integração ai_{ℓ} obtidas na simulação da Tabela 4.8 (programa ateste15)	166
Tabela 4.1	0 Parâmetros da cinética R de Almeida (2000)	175

v

Tabela 4.11 Autovalores do sistema de EDOs do modelo e cinética de Almeida (2000), obtidos no programa RHA 2.1	. 177
Tabela 4.12 Valores de $kk_{m,i}$ obtidos na matriz reacional de Almeida (2000). Em negrito as constantes da taxa referentes à conversão do componente i. (ver nota 3)	s . 179
Tabela 5.1 Condições operacionais e características do reator de hidroconversão simulado (nota 1)	. 185
Tabela 5.2 Propriedades do hidrogênio obtidas no simulador comercial Hysim	186
Tabela 5.3 Propriedades do resíduo, gasóleo, diesel nas condições operacionais da hidroconversão, obtidas em simulador comercial (Hysim)	. 187
Tabela 5.4 Conversão e distribuição dos produtos na saída do reator. Simulação realizada com o programa RHA 2.1 e modelo fluidodinâmico base, usando dados da Tabela 5.1 (coluna 3) a 425°C, τ _L =17 min e Nreator=1	. 193
Tabela 5.5 Conversão de resíduo a 425 °C e Nreator = 3 (obtido com RHA 2.1, nota 1)	. 194
Tabela 5.6 Equações para simulação do reator com modelos ideais CSTR e PFR e esquemas de reatores ideais conforme mostrado na Figura 5.3 (nota 1)	. 199
Tabela 5.7 Variáveis fluidodinâmicas calculadas em cada região do reator (nota 1)	. 201
Tabela 5.8 Conversão de resíduo "fácil de craquear" obtida com diversos modelos (nota 1)	201
Tabela 5.9 Conversão e distribuição dos produtos na saída do reator. Simulação realizada com o programa RHA 2.1 e modelo fluidodinâmico com dispersão radial, usando dados da Tabela 5.1 (coluna 3) a 425 °C, τ _I =17 min e Nreator=1	. 204
Tabela 5.10 Conversão de resíduo a 425 °C e Nreator = 3 (obtido com RHA 2.1, nota 1)	204
Tabela 5.11 Resultados da análise paramétrica usando os dados da coluna 6 da Tabela 5.1	. 208
Tabela 5.12 Resultados de Csi obtidos na simulação com o modelo PFR nas condições dos experimentos realizados por Almeida (2000) (notas 1, 2 e 3)	. 213
Tabela 5.13 Comparação da simulação do PFR com os dados experimentais de Almeida (2000)	. 213
Tabela 6.1 Avaliação da região de reação da hidroconversão com a classificação ABC de Heinzle et al. (1998) modificada (ver Tabela 3.1 e Tabela 3.3)	218
Tabela 6.2 Indicadores calculados por composto na região 1 do processo de hidroconversão	222
Tabela 6.3 Indicadores calculados por grupos na região 1 do processo de hidroconversão	224
Tabela 6.4 Indicadores IM1 e IA1 calculados para o processo de hidroconversão (nota 1)	224
Tabela 9.1 Sub-rotinas do Microsoft Fortran Power Station® usadas em RHA 2.1	303
Tabela 9.2 Sub-rotinas da biblioteca IMSL* usadas em RHA 2.1	304
Tabela 9.3 Lista de arquivos de saída de resultados de RHA 2.1	306
Tabela 9.4 Substâncias controladas que destroem a camada de ozônio listadas na Resolução CONAMA 267 / 2000 (ver observação 2 acima)	310
Tabela 9.5 NR-15 - Atividades e operações insalubres. Anexo 11. Agentes Químicos cujainsalubridade é caracterizada por limite de tolerância e inspeção no local de trabalho.Quadro 1 - Tabela dos limites de tolerância	. 313
Tabela 9.6 Clean air act Sec.112HAP - hazardous air pollutants Código dos Estados Unidos.Título 42, Capítulo 85, Artigo 7401 et seq., 1970 (revisado em 1990)	. 317
Tabela 9.7 Diretiva 2000/60/CE Política da água da Comunidade Européia. Anexo X - Lista de substâncias prioritárias.	. 321
Tabela 9.8 VwVwS - Administrative regulation on the classification of substances hazardous to waters into Water Hazard Classes (WGK). Legislação Ambiental Alemã de 17 de	
maio de 1999	323

LISTA DE SIGLAS

ABNT	Associação brasileira de normas técnicas
ACV	Análise de ciclo de vida (LCA em inglês)
CAA	Clean air act
CANMET	Processo de hidroconversão com arraste de sólidos (tipo SBC) desenvolvido no Canadá
CAS	<i>Chemical Abstract Service</i> . O registro CAS é uma referência amplamente utilizada para a identificação de substâncias químicas, pois cada número é bastante específico e designa apenas uma substância.
CETESB	Órgão de controle ambiental de São Paulo
CSTR	Reator ideal de mistura completa (complete stirred tank reactor)
CWA	Clean water act
EDOs	Equações diferenciais ordinárias (no singular, EDO)
EDS	Processo Exxon Donor Solvent para liquefação de carvão
EI	Environmental index (Heinzle et al., 1998)
EPCRA	The emergency planning and community right-to-know act
ETDI	Estação de tratamento de despejos industriais
FCC	Craqueamento catalítico fluido
HAP	Hazardous air pollutants
HCC	Hidroconversão do resíduo da destilação do petróleo
HCLE	Hidrocraqueamento ou hidroconversão em leito expandido
HDM	Hidrodesmetalização
HDN	Hidrodesnitrogenação
HDS	Hidrodessulfurização
HDT	Hidrotratamento
IFP	Instituto francês de petróleo
ISO	International organization for standardisation
LCA	análise do ciclo de vida, ACV (life cycle assessment)
MEIM	Methodology for environmental impact minimization (Stefanis et al., 1995)
MLI	Mass loss index (Heinzle et al., 1998)
OD	Óleo decantado
ONG	Organização não governamental
OSHA	Occupational safety and health administration
P&D	Pesquisa e desenvolvimento
PFR	Reator ideal de fluxo pistonado (plug flow reactor)
PRONAR	Programa Nacional de qualidade do ar
RCM	Resíduo carbono micro
RCRA	Resource conservation and recovery act
RV	Resíduo da destilação a vácuo do petróleo (produto de fundo).

SBC	<i>Slurry bubble column</i> (coluna de lama com borbulhamento ou coluna de bolhas com sólidos)
SETAC	Society for environmental toxicology and chemistry
SPI	Sustainable process index (Krotscheck e Narodoslawsky, 1996).
TRI	Toxic release inventory
US DOE	Departamento de energia americano
US EPA	Agência de proteção ambiental americana (Environmental protection agency)
VCC	Processo de hidroconversão Veba Combi Cracking desenvolvido na Alemanha
VOC	Compostos orgânicos voláteis
VwVwS	Regulamentação alemã que classifica as substâncias perigosas à água
WAR	Waste reduction algorithm (Young e Cabezas, 1999)
WGK	Classes de periculosidade das substâncias à água pela legislação alemã (VwVwS)

NOMENCLATURA

a	constantes d	constantes de integração por autovalores/autovetores da solução homogênea					
ai	constantes d	constantes de integração do subsistema para o componente i					
$A^{A}_{j,k}$	derivada primeira do polinômio de Lagrange em relação a r (domínio de fluxo ascendente)						
$A^{\boldsymbol{D}}_{\ j,k}$	derivada primeira do polinômio de Lagrange em relação a r (domínio de fluxo descendente)						
$B^{\mathbf{A}}_{\ j,k}$	derivada segunda do polinômio de Lagrange em relação a r (domínio de fluxo ascendente)						
$B^{\boldsymbol{D}}_{\ j,k}$	derivada segunda do polinômio de Lagrange em relação a r (domínio de fluxo descendente)						
bi1, bi2, bi3, bi4 coeficientes da solução particular de Ci em relação à C1, C2, C3 e C4							
Cbi	concentração de i em z = 0 na região de fluxo ascendente, fração mássica*						
Cbi ⁺	refere-se a C	refere-se a Cbi calculado na iteração indicada, fração mássica*					
Cei	concentração de i em $z = 0$ na região de fluxo descendente, fração mássica*						
Cfi	concentração de i em z = Lc na região de fluxo ascendente, fração mássica*						
Ci	concentração do pseudocomponente i, em fração mássica*						
		Modelo de Mosby et al. (1986)	Modelo de Almeida (2000)				
	C1	Resíduo difícil de craquear	Resíduo de vácuo – fração RCM				
	C2	Resíduo fácil de craquear	Resíduo de vácuo - fração não RCM				
	C3	Gasóleo alimentado ao reator	Gasóleo				
	C4	Gasóleo gerado na reação	Diesel				
	C5	Diesel	Nafta + gases				
	C6	Nafta	-				
	C7	Gases	-				
Coi	concentração	concentração de i na entrada do reator, fração mássica*					
Csi	concentração	concentração de i em z = Lc (fluxo descendente) e na saída do reator, fração mássica*					
d1Ci ^A	∂Ci/∂r discretizado por colocação ortogonal, domínio de fluxo ascendente						
d1Ci ^D	∂Ci/∂r discretizado por colocação ortogonal, domínio de fluxo descendente						
d2Ci ^A	$\partial^2 \text{Ci}/\partial r^2$ discretizado por colocação ortogonal, domínio de fluxo ascendente						
d2Ci ^D	$\partial^2 \text{Ci}/\partial r^2$ discretizado por colocação ortogonal, domínio de fluxo descendente						
D	coeficiente de dispersão, m ² .s ⁻¹						
Dc	diâmetro do reator, m						
dp	diâmetro da partícula, μm ou mm						
Dr	coeficiente de dispersão radial, m ² .s ⁻¹						
Dz	coeficiente de dispersão axial, m ² .s ⁻¹						
E	energia de ativação da reação, J.mol ⁻¹						
f1Dr	variável auxiliar definida para o modelo fluidodinâmico com dispersão radial						
f2Dr	variável auxiliar definida para o modelo fluidodinâmico com dispersão radial						

^{*} fração mássica significa massa do pseudocomponente i pela massa total dos pseudocomponentes (igual a massa de líquido), kg de i / kg de líquido

FA	fator ambiental, FA1 a FA7 indicam a região de cálculo de FA (veja Figura 3.1)		
FM	fator de massa, FM1 a FM7 indicam a região de cálculo de FM (veja Figura 3.1)		
gr	funções auxiliares com variação ao longo do raio		
Ι	matriz identidade		
IA	indicador ambiental, IA1 a IA7 indicam a região de cálculo de IA (veja Figura 3.1)		
Id	índice de desempenho no cálculo dos autovalores e autovetores		
IM	indicador de massa, IM1 a IM7 indicam a região de cálculo de FA (veja Figura 3.1)		
J	refere-se à iteração J do cálculo iterativo da concentração		
k	constante da taxa de reação, s ⁻¹		
kk _{m,i}	constante da taxa de reação, s ⁻¹		
ko	fator pré-exponencial da constante da taxa, s ⁻¹ ou (kg carga).(kg catalisador) ⁻¹ . s ⁻¹		
kr	constante da taxa das reações da cinética de Almeida (2000), s ⁻¹		
Lc	altura da coluna ou reator, m		
LHSV	velocidade espacial do líquido (W_L/ms), h^{-1}		
$L_{\rm k}$	polinômio interpolador de Lagrange		
MA	matriz de coeficientes constantes do modelo fluidodinâmico com dispersão radial		
MA4	matriz de coeficientes constantes para o componente $\mathbf{i} = 4$		
MOL	massa molecular, g/gmol		
n	número de pontos de colocação ortogonal		
nc	número total de componentes do modelo cinético		
Nreator	número de reatores de hidroconversão em série		
nz	número de pontos na direção axial		
Р	pressão, Pa		
Q	vazão volumétrica, m ³ .h ⁻¹		
r	posição radial no reator, m		
r [*]	posição radial no reator onde ocorre inversão de fluxo ($V_L = 0$), m		
R	constante dos gases perfeitos [R=8.314 N.m/(K.mol)]		
Rc	raio do reator, m		
rcat	relação de massa de catalisador por massa de óleo no reator, kg catalisador / kg óleo		
rHO	relação vazão de hidrogênio nas CNTP por vazão de óleo, Nm ³ .m ⁻³		
$\mathbf{r}_{j}, \mathbf{r}_{k}, \mathbf{r}_{m}$	posição radial (nos pontos de colocação ortogonal), m		
t	tempo, s		
Т	temperatura, em Kelvin nas equações do modelo e °C nos gráficos e tabelas		
Tref	temperatura de referência usado no modelo cinético de Almeida, em Kelvin nas equações do modelo e °C nos gráficos e tabelas		
TF	termo fonte do balanço de massa, kg do componente i .s ⁻¹ .(m ³) ⁻¹		
U	velocidade superficial, m.s ⁻¹		
ū	vetor da velocidade, m.s ⁻¹		
V	velocidade local axial, m.s ⁻¹		
W	valor da função peso		

- w^A valor da função peso, domínio de fluxo ascendente
- w^D valor da função peso, domínio de fluxo descendente
- W vazão mássica, kg.h⁻¹
- wi variável auxiliar para apresentação da solução Ci(r,z)
- X conversão, adimensional
- Y vetor de concentrações Ci(rj,z), fração mássica*
- z posição axial no reator, m

LETRAS GREGAS

- α_i constante de proporcionalidade das taxas de reação, referente à conversão do componente **i**
- $\beta_{m,i} \qquad \qquad \text{constante de proporcionalidade das taxas de reação, referente à formação do componente i a partir do componente m }$
- Δr intervalo entre os pontos de cálculo na direção radial (na colocação ortogonal é variável),m
- Δz intervalo entre os pontos de cálculo na direção axial, m
- ε fração volumétrica local (retenção, "holdup")
- λ autovalores do sistema de EDOs do subsistema
- λi autovalores do sistema de EDOs do subsistema para o componente i
- μ viscosidade laminar, Pa.s
- μ^{eff} viscosidade efetiva, Pa.s
- θ_r parâmetros da equação da taxa da cinética de Almeida (2000)
- ρ massa específica, kg.m⁻³
- σ tensão superficial, N/m
- τ tempo de residência, s
- ξ autovetores correspondentes aos autovalores λ do sistema de EDOs
- ξi autovetores correspondentes aos autovalores λi do subsistema para o componente i

SOBRESCRITOS

- A região de fluxo ascendente
- D região de fluxo descendente

SUBSCRITOS

En	energia
Em _G	emissões gasosas
Ef _L	efluentes líquidos

^{*} fração mássica significa massa do pseudocomponente i pela massa total dos pseudocomponentes (igual a massa de líquido), kg de i / kg de líquido

fase gás, líquida ou lama
gasoso
gás combustível
refere-se ao pseudocomponente i (veja definição de Ci) ou ao componente i de matérias- primas, insumos, subprodutos, rejeitos, etc.
insumos (catalisador, solvente, etc)
insumos utilizados (catalisador desativado, solvente usado, etc)
indica cálculo da variável no ponto de colocação ortogonal (direção radial)
indica cálculo da variável no ponto de colocação ortogonal (direção radial)
líquido
refere-se ao pseudocomponente m (veja definição de Ci)
associado a r (ou seja, r _m) indica posição radial (nos pontos de colocação ortogonal)
valor médio no leito
matérias-primas
matérias-primas que não reagiram
óleo decantado de FCC
produtos
direção radial
rejeitos gasosos
rejeitos líquidos
rejeitos sólidos
resíduos sólidos
reciclo
resíduo de vácuo
sólido
lama
subprodutos
utilidades (água, vapor, ar comprimido)
direção axial

xii

1 Introdução

Contexto

O desenvolvimento deste trabalho ocorre em época em que existe grande destaque e preocupação com as questões ambientais, estando em voga a busca pelo desenvolvimento sustentável. A sociedade percebeu, ainda em boa hora, que é necessário promover o crescimento das cidades, da indústria, do comércio e de todas as atividades humanas com responsabilidade ambiental, econômica e social.

A busca pelo desenvolvimento sustentável não pode, contudo, ser tratada como um modismo. Os modismos, por definição, aparecem muito rapidamente para desaparecer tão rapidamente quanto surgiram. Para que as condições de vida permaneçam favoráveis às gerações futuras, é necessário que a busca pelo desenvolvimento sustentável seja permanente. Para a sorte do planeta, tudo indica que as empresas, o governo e mesmo os indivíduos vêm incorporando cada vez mais diretrizes e ações que mostram a sua responsabilidade social e a preocupação em preservar o meio ambiente. A tendência é de que todas as decisões de investimentos, antes ditadas essencialmente pelas variáveis econômicas deverão, em futuro próximo, passar também pela avaliação das variáveis ambientais.

As universidades também vêm incorporando esses conceitos aos seus cursos e, cada vez mais, vêm formando profissionais mais conscientes e qualificados. Os trabalhos de P&D refletem esse amadurecimento e têm trazido grande contribuição ao desenvolvimento sustentável. Restam, porém, inúmeros desafios e problemas não resolvidos em todos os campos de atuação.

Nesse amplo contexto se insere essa tese, que estuda o desenvolvimento de processos químicos com preocupação quanto ao desempenho técnico-econômico (busca do processo mais eficiente) e ambiental (uso eficiente de recursos, menor impacto ambiental, menor geração de rejeitos). Espera-se, assim, contribuir para o desenvolvimento de métodos que considerem a sustentabilidade ambiental dos processos.

É uma abordagem atual, já configurada como uma linha de pesquisa internacional, que vem ganhando força desde os anos 90 e é identificada por termos como *design for the*

environment, environmentally conscious process, eco-efficiency, pollution prevention. No Brasil, pesquisadores da área de engenharia química têm apresentado bons trabalhos resultando em catalisadores, solventes, processos e produtos mais eficientes.

E a hidroconversão de resíduos ?

O cenário da produção de petróleo no Brasil e no mundo indica uma crescente necessidade de aproveitamento do petróleo com máximos rendimentos para suprir o aumento da demanda por produtos finais de alta qualidade (combustíveis, matérias-primas para petroquímica, etc). Ao mesmo tempo, o mercado de óleos combustíveis vem se reduzindo cada vez mais.

No Brasil, observa-se ainda uma tendência para o aumento da participação no refino de um petróleo com maior teor de frações pesadas e heteroátomos (fundo de barril). Esse é o caso do petróleo do campo de Marlim, na bacia de Campos, onde se estima a presença de 10 bilhões de barris de óleo *in-place* (Anderson, 1998). O petróleo Marlim tem 19,6° API. O petróleo de novas e significativas descobertas da Petrobras varia entre 14° e 17° API, como é o caso do petróleo do campo de Jubarte na bacia de Campos (estado do Espírito Santo) com 17° API (Oddone e Pinto, 2002).

Essa perspectiva levou à busca de rotas alternativas para o refino e, mais especificamente, para o processamento de óleos pesados e resíduos, que vêm sendo avaliadas na Petrobras através do PROTER – Programa de Tecnologias Estratégicas de Refino (Chang, 1999). A hidroconversão de resíduos é uma das rotas consideradas promissoras.

O estudo da modelagem e simulação desse processo na UNICAMP/FEQ iniciou em 1995 através de um convênio entre a PETROBRAS/CENPES e o Laboratório de Simulação e Otimização de Processos Químicos – LSOPQ. Esse convênio resultou no desenvolvimento dos trabalhos de mestrado: modelagem das reações de craqueamento e hidrodesmetalização em reator de leito expandido (Abreu, 1995); modelagem das reações de craqueamento em leito de lama com abordagem fluidodinâmica (Carbonell, 1996); estudo dos mecanismos e modelagem da formação de coque no reator (Mendonça Filho, 1998); modelagem das reações de remoção de heteroátomos (Matos, 1997). O laboratório seguiu produzindo pesquisas nessa área e, recentemente, foram concluídas as teses de doutorado de Almeida (2000) que propôs modelos cinéticos para hidroconversão de resíduo de vácuo Marlim e Santos Junior (2002) que desenvolveu a modelagem do reator de hidroconversão por princípios variacionais, assim como a

dissertação de mestrado de Detoni (2003) que abordou a otimização da dessulfurização de RV Marlim. Atualmente, há outras duas teses em andamento.

O processo de hidroconversão promove a quebra das cadeias de hidrocarbonetos com elevado peso molecular (reações de craqueamento) em condições de alta temperatura e pressão de hidrogênio, garantindo a hidrogenação dos produtos formados. Simultaneamente a essas, ocorrem reações que retiram os contaminantes da carga (metais, nitrogênio, enxofre), que formam compostos potencialmente poluidores na queima posterior do óleo em motores de veículos, caldeiras e queimadores em geral. O produto assim obtido é mais leve, de boa qualidade e interesse comercial como o óleo diesel.

1.1 OBJETIVO

A tese tem por objetivo contribuir com o desenvolvimento de duas áreas distintas da engenharia química, porém bastante relacionadas:

- A avaliação de processos químicos com consideração do desempenho técnico e ambiental, desde a fase inicial de desenvolvimento dos processos (*design for the environment*);
- A pesquisa do processo de hidroconversão para conversão das frações pesadas da destilação do petróleo (resíduo de vácuo), através da modelagem e simulação do reator de hidroconversão em leito de lama com borbulhamento (*slurry bubble column*).

Para atingir esses objetivos foram formuladas as seguintes metas de trabalho:

- A realização de um estudo comparativo entre os indicadores ambientais e métodos para avaliação ambiental de processos, visando selecionar um método consistente e viável;
- A proposição e teste de modificações no método de avaliação ambiental selecionado, para facilitar sua aplicação, tornar mais completa a análise e permitir a obtenção de resultados que levem a um melhor desempenho ambiental dos processos químicos;
- ➡ O desenvolvimento da modelagem e simulação do reator de hidroconversão de resíduo de vácuo tipo *slurry bubble column*, considerando aspectos fluidodinâmicos e reacionais de craqueamento, implementando a cinética de craqueamento de Mosby et al. (1986);

- A simulação da hidroconversão de resíduo de vácuo de petróleo Marlim, com o uso do modelo cinético de craqueamento proposto por Almeida (2000);
- ⇒ O levantamento dos principais aspectos ambientais dos processos de conversão de resíduos;
- A avaliação da hidroconversão de resíduos (processo em fase de desenvolvimento) com considerações técnicas e ambientais, visando a identificação dos maiores problemas ambientais e a seleção de alternativas que resultem em melhor desempenho, demonstrando assim a aplicabilidade do método de avaliação ambiental.

1.2 HISTÓRICO DO DESENVOLVIMENTO DA TESE

Esta tese é o resultado de um trabalho iniciado muito antes da matrícula no "Doutorado em Engenharia Química" da UNICAMP/FEQ e que passou por diversos momentos, recebendo a contribuição das experiências de cada fase: a fase acadêmica de dedicação exclusiva (mestrado e parte do doutorado), a fase de especialização em refino de petróleo e, finalmente, a fase em que foi necessário conciliar a tese com obrigações profissionais do dia a dia, decorrentes das atividades realizadas na engenharia de abastecimento da Petrobras.

No início do curso de doutorado surgiu a idéia e a vontade de conciliar o desenvolvimento da modelagem do processo de hidroconversão, que já estava em andamento, com uma contribuição na área ambiental. A idéia foi proposta inicialmente com base em informações obtidas nos cursos abaixo e depois foi tomando forma mais clara durante o desenvolvimento dos trabalhos de pesquisa.

- Waste Minimization and Clean Technologies, em 1997, na UFPR, ministrado pelo Dr.
 Barry Crittenden da University of Bath Inglaterra;
- Desenvolvimento, Meio Ambiente e Recursos Naturais, em 1999, na pós-graduação do IG / UNICAMP sob responsabilidade da Dra. Rachel Cavalcanti.

1.3 APRESENTAÇÃO DA TESE

A tese está organizada em nove capítulos descritos brevemente a seguir. Durante o desenvolvimento da tese, quatro trabalhos foram apresentados em congressos nacionais e

internacionais e os artigos estão publicados. Esses artigos são parte integrante da tese e encontram-se no Capítulo 9 (anexos).

Capítulo 2 - Revisão da literatura

Apresenta e discute a revisão da literatura sobre os assuntos da tese:

- Uma visão geral do papel dos engenheiros químicos para viabilizar a sustentabilidade ambiental da indústria química;
- Os métodos e indicadores ambientais propostos na literatura para o desenvolvimento e/ou projeto de processos com melhor desempenho. Esses métodos são comparados e avaliados, levando à seleção de um método;
- Os resultados da pesquisa para identificação do grau de periculosidade das substâncias, realizada com base em legislação ambiental nacional, estrangeira e internacional.
- As principais características dos processos de hidroconversão de resíduos de petróleo, tecnologias comerciais e em desenvolvimento, aspectos da fluidodinâmica de *slurry bubble columns* e aspectos ambientais da hidroconversão.

<u>Capítulo 3</u> – Metodologia para avaliação ambiental de processos

Apresenta o método selecionado para avaliação ambiental de processos (Heinzle et al., 1998) aplicado ao refino de petróleo e com as modificações implementadas.

<u>Capítulo 4</u> – Modelagem e simulação do reator de hidroconversão

Traz os modelos fluidodinâmicos propostos para simulação do reator de hidroconversão classificado como leito de lama borbulhante (*slurry bubble column*), com suas principais considerações e características. Apresenta a implementação das cinéticas de craqueamento propostas por Mosby et al. (1986) e Almeida (2000). Mostra, de forma resumida, a aplicação dos procedimentos e métodos matemáticos utilizados na resolução das equações. Descreve as principais dificuldades encontradas na simulação e as estratégias adotadas para resolvê-las.

<u>Capítulo 5</u> – Resultados e avaliação dos modelos do reator de hidroconversão

Traz resultados da simulação das reações de craqueamento no reator de hidroconversão com os modelos propostos: "modelo fluidodinâmico base" e "fluidodinâmico com dispersão radial". Apresenta um estudo de análise paramétrica do modelo fluidodinâmico base e a comparação com reatores ideais (PFR, CSTR e arranjos de reatores ideais). Mostra uma comparação dos perfis de concentração obtidos com os modelos. Apresenta a comparação das simulações com dados experimentais de Almeida (2000) obtidos em um reator batelada de mistura (escala de bancada).

Capítulo 6 – Avaliação ambiental da hidroconversão de resíduos

Apresenta o desenvolvimento da avaliação ambiental do processo de hidroconversão e a discussão dos resultados, destacando as questões com maior potencial de causar problemas ambientais na implementação de uma unidade industrial.

Capítulo 7 – Conclusões

Apresenta um resumo do trabalho desenvolvido, com os principais resultados e as contribuições da tese. Mostra propostas para desenvolvimento de futuros trabalhos.

Capítulo 8 – Referências bibliográficas

Lista as referências bibliográficas e consultadas na internet que foram citadas no corpo da tese. As referências específicas citadas nos artigos do Capítulo 9 (anexos) são indicadas ao final de cada artigo.

Capítulo 9 - Anexos

Reproduz os artigos apresentados em congressos nacionais e internacionais e publicados durante o doutorado: Carbonell et al. (2000), Carbonell e Guirardello (1997, 1998b, 1998a e 1999).

Apresenta a estrutura e as principais características do programa RHA 2.1 (**R**eator de **H**idroconversão em leito de **A**rraste), com a listagem do arquivo de entrada de dados.

Apresenta documentos da legislação ambiental nacional, estrangeira e internacional que trazem indicação ou classificação das substâncias quanto à periculosidade. São documentos de referência para o cálculo do indicador ambiental dos processos.

2 Revisão da literatura

2.1 INTRODUÇÃO

Este capítulo de revisão da literatura tem por objetivo situar o trabalho no contexto internacional das pesquisas realizadas na área, apresentando os estudos de referência para o trabalho e discutindo métodos, tecnologias e tendências.

Inicialmente são abordados os trabalhos que vêm sendo realizados no âmbito da engenharia química para a sustentabilidade ambiental dos processos químicos. A seguir são apresentados métodos para a avaliação integrada dos aspectos técnicos, ambientais e econômicos de processos químicos em fase de pesquisa, projeto e ampliação. Depois são apresentados os fatores que conferem periculosidade às substâncias, os principais poluentes e as referências para avaliação dos danos ambientais potenciais dos processos químicos com base na legislação ambiental. Finalmente, são apresentados os processos de refino para conversão de frações pesadas de petróleo, com os aspectos técnicos e ambientais envolvidos.

Os documentos de referência citados próximo à pontuação final de um texto são referência ao conteúdo de todo o parágrafo quando citados após a pontuação final. Um exemplo é o primeiro parágrafo da página 14: "população. (Batterham, 2003)". Caso contrário, se a citação estiver antes da pontuação final da frase, o documento é referência somente para o conteúdo da frase. Há um exemplo no 3° parágrafo da página 14: "até os anos 80 (Batterham, 2003).".

Na revisão bibliográfica foram consultadas as seguintes fontes:

- Compendex base de dados informatizada que traz os artigos indexados pelo *Engineering Index* de 1994 a 2002.
- *ISI Institute for Scientific Information* de 2000 a 2002.
- Petroleum Abstracts de 1992 a 2002;
- Legislações ambientais brasileira e estrangeira (americana, alemã, suíça e européia) na internet, especialmente nas páginas da CETESB, da US EPA, da Comunidade Européia e da agência ambiental alemã (em 2002).
- Dissertação de mestrado (Carbonell, 1996);

- Congressos com participação recente (a partir de 1999):
 - □ I EPFEQ Encontro de Pesquisa da FEQ/UNICAMP, Campinas, out/99
 - 13º Congresso Brasileiro de Engenharia Química e XIX Interamerican Congress of Chemical Engineering, Águas de São Pedro, set/2000;
 - □ *Rio Oil and Gas Expo and Conference*, Rio de Janeiro, out/2000;
 - 21° Congresso Brasileiro de Engenharia Sanitária e Ambiental, João Pessoa, set/2001;
 - CHISA 2002 International Congress of Chemical and Process Engineering, Praga (República Tcheca), ago/2002;
 - 5° PRESS Conference on Process Integration, Modelling and Optimization for Energy Saving and Pollution Reduction (que fazia parte da estrutura do CHISA 2002), Praga (República Tcheca), ago/2002;
 - Detrobras International Seminar of Heavy Crude Oil Processing, RJ, nov/2002.
- Anais de outros Congressos recentes:
 - 2nd International Symposium / 7th European Workshop on Hydrotreatment and Hydrocracking of Heavy Oils, Bélgica, nov/99
 - □ 14º Congresso Brasileiro de Engenharia Química COBEQ 2002, Natal, ago/2002.
- Periódicos relacionados com o escopo da tese, com acompanhamento mensal contínuo:
 - Computers and Chemical Engineering (publica também artigos selecionados dos congressos internacionais: PRESS Conference on Process Integration, Modeling and Optimization for Energy Saving and pollution Reduction e ESCAPE European Symposium on Computer Aided Process Engineering) (a partir de 2001);
 - □ Industrial and Engineering Chemistry Research (a partir de jan/2002);
 - □ *Chemical Engineering Science* (a partir de 2001);
 - □ *Oil and Gas Journal* (a partir de 2002, com algumas interrupções);
 - □ *Hydrocarbon Processing* (a partir de 2002, com algumas interrupções).

Em todas as áreas da engenharia química observa-se uma crescente preocupação com as questões ambientais, promovendo o desenvolvimento de tecnologias que visam proporcionar a sustentabilidade ambiental da indústria química.

- Congressos internacionalmente reconhecidos tem dedicado seções específicas em que são apresentados trabalhos nesta área, como por exemplo (entre outros): a seção environmental design (projetos com melhor desempenho ambiental) no 5th Internacional Conference on Computer-aided Process Design da AIChE em 2000 e os simpósios especializados Environmental Engineering and Management e Chemical Technology for Sustainable Future do congresso CHISA 2002 International Congress of Chemical Engineering. Além disso, diversos trabalhos com foco em melhorias ambientais têm sido apresentados nas seções tradicionais (reação, separação, otimização, etc) dos congressos.
- Em 1998 foi realizada a primeira conferência PRESS Process Integration, Modeling and Optimization for Energy Saving and Pollution Reduction, que tem se repetido anualmente, sempre em conjunto com um grande congresso internacional.
- O 17º Congresso Mundial de Petróleo (WPC World Petroleum Congress), alinhado com essas tendências, teve como tema em 2002 a responsabilidade social da indústria de petróleo (que inclui e vai além da preocupação com a sustentabilidade ambiental).

2.2 ENGENHARIA QUÍMICA E A SUSTENTABILIDADE AMBIENTAL

Desenvolvimento sustentável é aquele que atende "as necessidades do presente sem comprometer a possibilidade de gerações futuras atenderem suas próprias necessidades", como definido pela Comissão Mundial sobre o Meio Ambiente e Desenvolvimento (1991). A sustentabilidade depende de uma série de fatores fortemente relacionados que englobam as questões ambientais, econômicas e sociais.

Este item apresenta uma revisão dos esforços na área de engenharia química para o desenvolvimento, projeto, operação e gerenciamento de processos químicos ambientalmente sustentáveis. O ponto de partida é a definição de sustentabilidade e a evolução das relações do homem com a natureza. Logo em seguida desenvolve-se o assunto, apresentando desde simples práticas industriais até tecnologias inovadoras que resultam no uso mais eficiente dos recursos naturais, na redução da geração de rejeitos, no melhor aproveitamento da energia e na redução do risco ambiental.
O item 9.1 contém um trabalho de revisão e discussão que, inicialmente, foi elaborado para um congresso e resultou na publicação de um artigo. O trabalho foi apresentado no XIX *Interamerican Congress of Chemical Engineering* realizado em conjunto com o XIII Congresso Brasileiro de Engenharia Química, em Águas de São Pedro – SP em setembro de 2000. A seguir, na Figura 2.1, são mostrados alguns itens selecionados da apresentação.

Desenvolvimento Sustentável

Tecnologias / Equipamentos

Processos e produtos para melhor desempenho e redução de resíduos.

• Reciclagem efluentes galvânicos

tratados (redução consumo água).

com óleo neutro (redução resíduo).

• Reuso do auxiliar filtrante, após diluição

Reciclos

Alternativa interessante p/ reduzir resíduos Exemplos: e aumentar eficiência global dos processos. • Reutilização de água de resfriamento.

- Pode ser dentro ou fora da indústria.
- ➡ Depende da <u>facilidade</u> de separação dos materiais e da possibilidade do uso como substituto.

(F)

Exemplos (CETESB, 1999):

- Desenvolvimento de processo ٠ substitutivo ao cianeto (+ seguro).
- Alteração do processo de moagem ٠ via seco por via úmida em moinhos de bola (redução poeira, reaproveitamento total de raspas e água).
- ٠ Instalação de recuperadores de calor e sistema de abatimento de material particulado, c/ reciclo ao processo produtivo.
- Automação Industrial.
- Gerenciamento de válculas e ٠ purgadores através de sistema de detecção de ruído (redução ruído, T ambiente, corrosão)

Ecologia Industrial

- Ferramentas para Prevenção a LCA - Análise do Ciclo de Vida Poluição. Visa identificar os impactos ambientais Consideram a unidade produtiva envolvidos em todo o ciclo produtivo. (G) em conjunto com as vizinhanças e O ciclo completo envolve: não isolada dela. Extração Disposição Objetivos: Produto usado matéria-prima Obter máximo uso dos recursos Ferramenta para tomada de decisão. Redução de riscos e danos É complexa, envolve tempo e custos. ambientais. "Decommissioning" Planejamento da desativação de unidades industriais p/ evitar passivos ambientais e riscos. Conclusões Observa-se uma mudança sólida e gradual nas relações do homem com o meio ambiente, mas ainda há muito trabalho ... Comunidade Governo Pesquisadore Sustentabilidade (H) Educadores Indústria Ambiental Organizações
 - Considerando algumas tendências para o futuro (próximo)...
 - Maior conscientização para as questões ambientais.
 - Implantação de medidas, tecnologias e equipamentos visando produção mais "limpa", segura e eficiente.
 - Ampliação dos programas de prevenção a poluição nas indústrias.
- Ensino de Engenharia Química com vistas a sustentabilidade ambiental.
 Implantação de Sistemas de Gestão
- Ambiental.
 Ampliação das ações integradas para avaliação e solução dos problemas ambientais.

Figura 2.1 Apresentação do artigo "Chemical Enginering for a sustainable environment"
(Carbonell et al., 2000) - Telas selecionadas: A) Definição de desenvolvimento sustentável;
B)Sustentabilidade Ambiental; C) Hierarquia no gerenciamento ambiental; D) Prevenção à
poluição; E)Tecnologias e equipamentos; F) Reciclos; G) Ecologia Industrial; H) Conclusões.
As referências são indicadas no artigo apresentado no item 9.1.

Uma discussão interessante sobre a evolução da engenharia química e os desafios trazidos pela busca da sustentabilidade é apresentada por Batterham (2003), em seu artigo "*Ten years of sustainability: where do we go from here*", publicado na *Chemical Engineering Science*. Um resumo dessa discussão é apresentado a seguir.

A necessidade de promover o desenvolvimento sustentável é amplamente aceita em nível mundial desde a Conferência das Nações Unidas sobre Meio Ambiente e Desenvolvimento CNUMAD realizada no Rio de Janeiro em 1992 (Rio 92). Entretanto, a questão é a seguinte: 10 anos após a Rio 92, avançamos efetivamente na solução dos problemas que ameaçam a sustentabilidade ? A percepção geral é que não houve significativos avanços apesar de alguns casos de sucesso, pois temos notícias de que as agressões ambientais continuam e, em muitas localidades, problemas como barulhos, odores, etc, seguem incomodando a população local. Na prática, após o alerta da Rio 92 as pessoas estão mais atentas para os problemas ambientais e as situações de alarme sempre se destacam mais do que as "boas notícias" (Batterham, 2003). A revisão dos últimos 10 anos apresentada por Batterham (2003) mostra avanços em algumas questões e agravamento em outras:

- Reduziu-se o consumo de energia nas indústrias dos países desenvolvidos;
- Reduziu-se drasticamente a produção e uso de compostos que degradam a camada de ozônio nos países desenvolvidos. Nos países em desenvolvimento (ex. China e Índia) ocorreu um aumento dessa produção nos últimos anos.
- A energia de fonte renovável (exceto hidrelétrica) ainda é insignificante na matriz energética, mas tem aumentado bastante;
- A emissão de CO₂ continua aumentando, assim como sua concentração na atmosfera;
- A emissão de SO₂ inicialmente foi reduzida e atingiu um patamar (onde permanece constante) nos países industrializados, mas vem aumentando nos países em desenvolvimento;
- Melhorou-se a distribuição de água e a produtividade da agricultura (exceto na África);
- O uso de fertilizantes tem provocado aumento da poluição da água por nutrientes, causando eutrofização;
- Aumentaram as fontes renováveis de substâncias químicas através da biotecnologia;
- O consumo *per capita* de papel aumentou, enquanto que a reciclagem atingiu um patamar e se mantém estável (podemos reciclar mais);
- A reciclagem de alguns metais, como o alumínio, é um sucesso.

Forças de mercado e a competição favoreceram a economia de energia, enquanto o número limitado de fornecedores e o conhecimento de alternativas viabilizaram a substituição dos compostos que degradam a camada de ozônio. Não há nenhuma dessas forças contribuindo para a redução das emissões de CO₂, para o que é necessário desenvolver outros mecanismos. A experiência nesses 10 últimos anos tem mostrado que a regulamentação (através de leis) deve ser usada como último recurso e não como primeiro. A melhor abordagem é a da discussão entre as várias partes envolvidas levando em conta o interesse comum e uma abordagem global (sem esquecer das questões locais) em vez de interesses próprios, seja de corporações, governos ou mesmo da população. (Batterham, 2003)

Para Batterham (2003) ainda são grandes desafios: a redução nas emissões de CO_2 , o combate à eutrofização dos rios, a garantia da qualidade do ar e da água nos grandes centros urbanos e a reciclagem efetiva dos materiais.

O engenheiro químico tem muito a contribuir na solução desses problemas usando seu conhecimento especializado, ao qual deve se somar uma visão ampla das questões e a habilidade de lidar com diversos cenários e diversas instituições (mercados, governos, corporações multinacionais, população, ONGs). Esta é a visão do engenheiro "pós-industrial", ou seja, dos que trabalham em países desenvolvidos, cuja industrialização ocorreu até os anos 80 (Batterham, 2003). Esta deve ser também a visão dos engenheiros atuando em países em desenvolvimento, que devem contribuir para o crescimento industrial utilizando tecnologias mais limpas, mais eficientes e que respeitem a capacidade suporte do meio e os interesses coletivos.

A formação de engenheiros químicos com o perfil requerido para essa atuação é mais um dos desafios atuais. O profissional deve estar preparado para:

- Utilizar a ciência e a tecnologia como ferramentas a serviço do conhecimento, predição e controle visando atingir a sustentabilidade;
- □ Atuar com ênfase em "construtivismo e colaboração" em vez de simplesmente "construção";
- Usar bases de informações globais e interligadas;
- □ Propor ou viabilizar ações inovadoras, locais, atendendo aos interesses coletivos;
- □ Ser tolerante com mudanças de cenários e ambiguidades;
- □ Atuar no sentido de promover redes de ação para encontrar soluções de modo mais rápido.

Estes itens foram propostos por Batterham (2003) como uma abordagem de atuação e desenvolvimento da engenharia química para promover o desenvolvimento sustentável.

2.3 MÉTODOS E INDICADORES PARA AVALIAÇÃO AMBIENTAL DE PROCESSOS

Este item tem por objetivo apresentar e discutir os métodos e indicadores propostos na literatura para o desenvolvimento e/ou projeto de processos químicos com considerações ambientais (uso eficiente dos recursos, menor impacto ambiental, menor geração de rejeitos, uso otimizado de energia, etc), alinhados com os princípios do desenvolvimento sustentável.

2.3.1 INTRODUÇÃO E BREVE HISTÓRICO

A evolução da abordagem das questões ambientais na síntese de processos químicos nos últimos 40 anos é ilustrada pelo esquema da Figura 2.2, proposto por Cano-Ruiz e McRae (1998). Nos anos 60, somente eram consideradas as questões centrais relativas aos processos de reação e separação. A partir da crise de energia dos anos 70, as fronteiras de projeto se ampliaram e incluiram as interações com a área de utilidades, com grande desenvolvimento na área de integração energética e resultando em significativa redução no consumo de energia. Atualmente, a grande maioria dos livros de projeto de processos químicos já apresenta métodos para integração energética e esses cálculos têm sido incorporados nos projetos. (Cano-Ruiz e McRae, 1998)

A crescente demanda por processos ambientalmente sustentáveis, mais seguros e de menor custo está promovendo a ampliação das fronteiras de estudo e aumentando a integração (energética e mássica) dos processos. A Figura 2.2 ilustra essa tendência de evolução no século XXI, com a consideração das variáveis ambientais (uso de recursos naturais, geração e descarte de rejeitos, impactos ambientais) ao longo de toda a cadeia de produção.

Figura 2.2 Evolução das fronteiras de estudo no projeto de processos químicos. Esquema proposto por Cano-Ruiz e McRae (1998).

Nessa figura podem ser observadas as tendências para o século XXI (Cano-Ruiz e McRae, 1998):

- A inclusão da unidade de tratamento de rejeitos (efluentes, emissões, resíduos) nas fronteiras de estudo, considerando o tratamento dos rejeitos para reciclo;
- A integração de massa e energia, visando o melhor aproveitamento dos recursos naturais;
- Análise de ciclo de vida (ACV), que implica na análise de toda a cadeia de produção desde a extração e preparação das matérias-primas, processamento, reciclagem, transporte, distribuição, uso e disposição final de todos os materiais envolvidos (inclusive produtos, subprodutos e rejeitos);
- Mudança de foco no controle ambiental de "concentrações de efluentes" para "impactos ambientais". E esse novo critério é influenciado pela capacidade suporte do meio, que é uma variável local. Cita-se em Cano-Ruiz e McRae (1998) um exemplo em que uma empresa usou o fator de exposição de benzeno nas redondezas de uma refinaria de petróleo como um critério para priorizar ações de prevenção à poluição.

Na indústria e nas firmas projetistas essas mudanças estão ocorrendo de forma bastante lenta e muitas vezes ainda hoje os rejeitos do processo são ignorados na formulação dos problemas de engenharia química (para projeto ou otimização dos processos). Os rejeitos somente são considerados quando as questões de processo já estão definidas, restando apenas a seleção de tratamento ("end-of-pipe") e disposição adequada dos rejeitos para atender os requisitos legais.

Cano-Ruiz e McRae (1998) apresentaram um levantamento realizado em 14 livros de referência para projetos de processos químicos, 10 deles publicados a partir de 1990, onde verificaram que na maioria dos livros há pouca ou nenhuma informação sobre as questões ambientais e a tomada de decisões envolvendo questões conflitantes (típicas quando há considerações ambientais envolvidas). Apenas 2 dos livros abordam de uma forma mais ampla as questões ambientais, mas ainda assim faltam exemplos práticos e metodologias para avaliação ambiental. Os simuladores de processo comerciais também não incorporaram ainda ferramentas para avaliação ambiental dos processos.

É na literatura científica que se observa mais claramente a evolução de uma abordagem ampla e aplicada das questões ambientais na síntese de processos. Nos anos 80 foram publicados os primeiros artigos abordando os aspectos ambientais na síntese de processos. Nos anos 90 o número de artigos aumentou bastante, assim como a diversidade e aplicação dos métodos propostos e sempre aparecem novos trabalhos. As palavras chave que surgiram, como por exemplo green design, design for the environment, environmentally concious process, ecoefficiency e outras não tão novas como pollution prevention, clean technology e waste minimization já fazem parte do vocabulário corriqueiro dos artigos e congressos científicos. As informações sobre o assunto (métodos, aplicações, indicadores ambientais, problemas e soluções propostas) ainda se encontram bastante dispersas em diversos artigos. Entretanto, já surgiram algumas referências interessantes que reúnem e organizam as informações formando uma base para o estudo e aplicação das técnicas desenvolvidas.

- Cano-Ruiz e McRae (1998) apresentaram uma ótima revisão (abrangente, com 187 referências) organizando as informações de acordo com as etapas de desenvolvimento de um projeto. Essas etapas são mostradas na Figura 2.3 e, assim como as informações revisadas no artigo, se aplicam ao desenvolvimento de qualquer estudo de engenharia.
- Azapagic (1999) aborda o desenvolvimento da análise de ciclo de vida (ACV) e apresenta alguns exemplos de aplicação dessa técnica para seleção, projeto e otimização de processos. Esta revisão apresenta o assunto de forma simples, clara e consistente (até didática), mas não traz uma extensa (e densa) revisão do assunto (cita 140 referências).

Também no ensino de engenharia química podem-se observar esforços no sentido de desenvolver habilidades nos futuros profissionais para implementação de tecnologias visando a prevenção à poluição. Brennecke e Stadtherr (2002) apresentam uma disciplina eletiva interessante para o curso de engenharia química, que tem por objetivo ensinar: a aplicar tecnologias que minimizam o impacto ambiental dos processos, a avaliar e selecionar tecnologias limpas alternativas, a compreender todos os custos envolvidos na operação de uma planta poluidora e a treinar tomada de decisões em situações de conflito de interesses. Como referência principal desse curso é utilizado o livro: *Pollution prevention for chemical processes,* de Allen e Rosselot, publicado pela John Wiley & Sons em 1997. Outros livros recentes nessa área são:

- Pollution prevention through process integration systematic design tools, de El-Halwagi, publicado pela Academic Press em 1997.
- □ *Green Engineering: Environmentally conscious design of chemical processes*, de Allen e Shonnard, publicado pela Prentice-Hall Inc em 2002.

2.3.2 ETAPAS DE DESENVOLVIMENTO DE UM ESTUDO DE ENGENHARIA E ACV

As etapas de desenvolvimento de um estudo de engenharia são mostradas na Figura 2.3. Esse esquema se aplica à pesquisa de um processo novo, ao projeto ou seleção de um processo, à determinação de condições operacionais otimizadas, à programação de produção, etc. Essa sequência de trabalho é bem conhecida por engenheiros e pesquisadores e, muitas vezes, aplicada intuitivamente.

O esquema mostrado na Figura 2.3 é interessante porque resume e interliga as etapas de trabalho de forma bastante didática e foi a sequência adotada por Cano-Ruiz e McRae (1998) para apresentar uma revisão de abordagens para o projeto de processos químicos com consideração de aspectos ambientais. A sequência de apresentação dos assuntos nesse capítulo da tese é inspirada neste artigo.

A etapa inicial de um estudo consiste na <u>definição do escopo e fronteiras</u> de trabalho. Como já citado, pode-se aplicar o conceito de análise de ciclo de vida (ACV) abordando o problema de forma ampla, que é especialmente interessante quando se busca melhor resultado ambiental. As questões de delimitação do problema acompanham todas as etapas do estudo pois envolvem também questões de precisão, nível de detalhe, funções objetivos e restrições e critérios de avaliação e metas. Na etapa de <u>geração de alternativas</u> é gerado um ou mais esquemas de processo para avaliação. Os <u>cálculos</u> envolvem normalmente balanços de massa, energia, simulações e otimizações, gerando uma série de resultados como, por exemplo, desempenho, rendimentos, condições operacionais (temperaturas, pressões, etc), fluxos de materiais e consumo de energia. Na etapa de <u>avaliação das alternativas</u>, os resultados são resumidos em indicadores de desempenho para comparação das alternativas, o que usualmente inclui um balanço econômico (com levantamento de custos, preços, etc) e deve também incluir avaliações ambientais (como será detalhado mais adiante). Na <u>análise de resultados</u> são identificadas oportunidades de melhoria. Todo o procedimento é iterativo, conforme mostrado na Figura 2.3. (Cano Ruiz e McRae, 1998)

Figura 2.3 Etapas de desenvolvimento de um estudo (tipicamente iterativo). Esquema baseado em Cano-Ruiz e McRae (1998)

A análise de ciclo de vida (*life cycle assessment*) baseia-se no princípio de considerar toda a cadeia de produção, desde a extração da matéria-prima até a disposição final dos rejeitos e produtos, identificando os aspectos ambientais e permitindo a seleção da melhor alternativa ambiental. Dessa forma, evita-se o risco de reduzir o impacto ambiental em uma parte da cadeia de produção, transferindo-o para outro ponto do processo produtivo.

Historicamente o conceito de ACV tem sido aplicado para o desenvolvimento de produtos. Mas o conceito se mostrou tão interessante e promissor para análise de processos químicos, que a SETAC (*Society for environmental toxicology and chemistry*) iniciou em 1990 o desenvolvimento de uma metodologia para estudos de ACV (Fava et al., 1991). Logo em seguida a ISO (*International organization for standardization*) iniciou, de forma independente, estudos semelhantes. Atualmente a metodologia apresentada pela SETAC está consolidada entre os que usam o conceito de ACV, enquanto que a da ISO ainda está em desenvolvimento (ISO/DIS-14040 *Environmental management – Life cycle assessment*). A estrutura das duas metodologias é muito semelhante e consta de 4 etapas: (Azapagic, 1999)

- 1. Definição de objetivos e escopo;
- Inventário: levantamento de dados de processo, emissões, efluentes, resíduos e uso de recursos;

- 3. Determinação de impactos ambientais;
- 4. Análise e identificação de oportunidades de melhoria.

Essa estrutura é ainda muito semelhante à apresentada na Figura 2.3. A ISO e a SETAC detalham cada uma dessas etapas em suas metodologias, mas ainda não há um método definido para a quantificação e agregação dos impactos ambientais. A ACV tornou-se uma ferramenta de gerenciamento ambiental para a quantificação do impacto ambiental de um produto, processo ou atividade. (Azapagic, 1999)

2.3.3 GERAÇÃO DE ALTERNATIVAS DE PROCESSO E CÁLCULOS

Diversos métodos podem ser utilizados para geração de alternativas e cálculos visando definir o fluxograma do processo com os melhores resultados de desempenho, tanto em termos de rendimento em produtos quanto em questões ambientais. Esses métodos não são novos, como se pode ver pela lista a seguir. Ao contrário, são métodos tradicionais da síntese de processos mas que devem ser aplicados com vistas à obtenção de melhores resultados ambientais.

- □ Similaridade com outros processos e boas práticas operacionais;
- Procedimentos estruturados em sequência (hierárquicos) automatizados ou não;
- □ Modelagem e simulação (balanços de massa, energia, exergia);
- □ Integração de massa e energia (*pinch analysis* e outros);
- Otimização global;
- □ Sistemas inteligentes.

Uma revisão extensiva da literatura sobre todos esses métodos não é escopo deste trabalho. Para uma introdução e revisão do tema é interessante consultar o artigo de Cano-Ruiz e McRae (1998), onde são citadas diversas referências. Para revisão da aplicação da análise de ciclo de vida na seleção, projeto e otimização de processos consultar também Azapagic (1999). Os métodos são brevemente comentados a seguir, com destaque para alguns trabalhos interessantes.

2.3.3.1 Geração de alternativas

O método mais imediato para geração de alternativas com vistas à prevenção da poluição é o uso de idéias e experiências publicadas na literatura (em revistas científicas e tecnológicas) para processos similares. As informações disponibilizadas na literatura variam desde recomendações simples (de boas práticas operacionais ou alterações simples nos processos) até soluções mais sofisticadas que envolvem substituição de solventes, mudança de rota cinética e uso de equipamentos mais eficientes. As agências ambientais compilam e divulgam esse tipo de informação, como por exemplo a CETESB e a US EPA.

A CETESB compilou 15 casos de sucesso de prevenção à poluição em 1998 (em tecelagens, fundições, laboratórios, cerâmicas, indústrias de tintas e aditivos, fábrica de motores, etc) que foram divulgados na Conferência das Américas para Produção Mais Limpa. Atualmente a CETESB está compilando outros casos para nova publicação, dos quais já estão divulgados 19 casos que envolvem, entre outros: o reuso de efluentes e materiais, a redução no consumo de água e a substituição de combustíveis por gás natural (CETESB, 2002a). Mello e Pawlowsky (2001) apresentaram um trabalho interessante de aplicação de metodologia de minimização de resíduos em indústrias cervejeiras no Paraná, identificando propostas viáveis (ambiental e economicamente) para destinação de parte dos resíduos.

A US EPA disponibiliza na internet, em uma página chamada *Envirosense - Common* sense solutions to environmental problems, uma base de dados sobre prevenção a poluição e informações para auxiliar no atendimento à legislação ambiental para diversos setores da indústria (US EPA, 2002a). Nessa página há uma chamada para a página do *EPA sector Notebook*, que fornece acesso para relatórios do perfil de 32 setores da indústria americana. Esses relatórios apresentam um panorama ambiental do setor industrial, técnicas de prevenção à poluição, dados de emissões, efluentes e resíduos, dados de processo, exigências legais, etc. Esse trabalho iniciou com o objetivo de fornecer informações resumidas sobre 18 setores industriais, cujos relatórios foram publicados em 1995. Devido ao interesse nos relatórios o projeto foi ampliado e, posteriormente, foram elaborados relatórios de outros setores. O *Profile of the Oil and Gas Extraction Industry* é de 1999, *Petroleum Refining Industry* de 1995 e *Fossil Fuel Electric Power Generation Industry* de 1997. O *Profile of the Pulp and Paper Industry* (1995) e *Organic Chemical Industry* (1995) estão sendo revisados. Os relatórios mais recentes são o *Profile of the Agricultural Chemical, Pesticide and Fertilizer Industry* (2000), *Agricultural Crop Production Industry* (2000) e *Agricultural Livestock Production Industry* (2000). Outro método para geração de alternativas é o uso de procedimentos estruturados em sequência (hierárquicos). Esses procedimentos consistem em desenvolver os processos nas etapas sequenciais propostas (a partir dos estágios iniciais do projeto) e de forma sistemática para identificar possíveis fontes de poluição (ou problemas ambientais) e propor as modificações necessárias. O artigo de Douglas (1992) é o mais citado nessa linha de trabalho. Ele apresenta uma abordagem bastante teórica e pouco prática, fornecendo resultados muito genéricos como: "substituir o solvente", "trocar a cinética", "trocar o equipamento", etc.

Halim e Srinivasan (2002a e 2002b) apresentaram um método interessante para minimização de resíduos durante o projeto de processos, aplicável desde o projeto conceitual até reforma de unidades existentes. O método se baseia na técnica ENVOP (*environmental optimization*) e foi automatizado através do desenvolvimento de um sistema inteligente. Os dados de entrada para a análise são o fluxograma do processo, a química do processo e informações sobre os materiais, enquanto que como resultado o programa fornece uma lista de alternativas de processo para minimizar cada rejeito identificado. Dessa forma, os autores alegam que não é necessário reunir uma equipe de especialistas para geração de alternativas. Entretanto, acredito que continua sendo necessário que um especialista analise as alternativas geradas para tomada de decisão. Estes autores citam outros sistemas inteligentes que foram propostos para essa finalidade.

2.3.3.2 Cálculos

Os cálculos de processo visam a determinação das condições operacionais, rendimentos, composições das correntes, consumo de energia, etc. Esses cálculos envolvem balanços de massa, energia e exergia (relacionada com a qualidade da energia), com considerações cinéticas, termodinâmicas, restrições a transferências de massa e calor, etc. Todas essas questões são típicas das atividades da engenharia química, que utiliza diversas ferramentas para resolvê-las e chegar aos melhores resultados: simulação (em simuladores comerciais ou desenvolvidos pelo usuário), integração mássica e/ou energética dos processos (*pinch analysis*) e otimização de superestruturas. As etapas de geração de alternativas e cálculos estão fortemente ligadas uma vez que as ferramentas de cálculo muitas vezes apresentam ou definem esquemas de processo otimizados.

A modelagem e simulação de processos têm grande potencial para auxiliar no desenvolvimento de processos que causem menor impacto ambiental, pois permitem uma melhor compreensão dos fenômenos, da relação entre as variáveis, das condições operacionais e do desempenho dos equipamentos como mostrado, por exemplo, no trabalho de Young e Cabezas (1999). Essas ferramentas são amplamente utilizadas no desenvolvimento e projeto de processos químicos.

O artigo de Young e Cabezas (1999) é especialmente interessante porque consolida um trabalho iniciado em 1994, que tem por objetivo o desenvolvimento de um método com indicador para avaliação ambiental para implementação em simuladores comerciais. Os autores implementaram o método no CHEMCAD III (da Chemstations) para testes e já houve negociações para o Aspen Plus (da Aspen Technology). Apesar da questão já ter sido levantada há alguns anos e do desenvolvimento recente, ainda não há simuladores comerciais com indicadores para avaliações ambientais disponíveis no mercado. E assim, fica mais difícil incorporar a prática das avaliações ambientais no dia-a-dia dos engenheiros químicos.

Bauer e Maciel Filho (2002) propõem a avaliação ambiental com simulação dinâmica dos processos, de forma a prever além dos rejeitos rotineiros as emissões não rotineiras resultantes, por exemplo, de instabilidades operacionais, partidas e paradas. Os autores ilustram a metodologia através da análise da produção de propileno glicol. O processo foi simulado no Hysys (da Hyprotech), onde também foi implementado (através de planilha de cálculo auxiliar) um indicador para avaliação ambiental.

A otimização de processos é a técnica mais utilizada na literatura recente para avaliação de processos em busca da melhor alternativa ambiental. O procedimento de otimização é similar ao tradicional e as questões ambientais são consideradas como restrições em otimização econômica ou como objetivos da otimização.

Na otimização econômica as questões ambientais são consideradas (Cano-Ruiz e McRae, 1998):

- ✓ através da inclusão dos custos de tratamento e disposição de rejeitos na superestrutura e na função objetivo. Esse procedimento não traz a melhor solução ambiental pois não busca minimizar a geração de rejeitos na fonte (é a típica abordagem *end-of-pipe*).
- ✓ através do uso de restrições ambientais para garantir o atendimento à legislação quanto aos limites de lançamento ou qualidade ambiental do receptor. Essa abordagem também não

garante a melhor alternativa ambiental. Quando é considerada a qualidade ambiental como critério, surgem ainda problemas para definir a capacidade suporte do meio, a contribuição de outras fontes, etc. O item 2.3.4.7 traz uma reflexão sobre essas questões.

 ✓ através do uso de procedimentos hierárquicos visando a minimização de resíduos na geração de alternativas para formulação da superestrutura a ser otimizada, como por exemplo em Dantus e High (1996).

Diversos trabalhos usam o custo como função objetivo, desconsiderando os valores de produtos, sub-produtos e materiais recuperados no processo. Mais interessante para otimização econômica é a consideração de funções como o valor presente líquido e a taxa de retorno. Também não têm sido considerados nessas avaliações os custos de desativação dos processos no final da vida útil. (Cano-Ruiz e McRae, 1998)

Na otimização que adota questões ambientais como função objetivo é necessário utilizar métodos / indicadores para reunir informações sobre os diversos aspectos e impactos ambientais envolvidos. A otimização deve ainda considerar as questões econômicas e buscar a melhor alternativa econômica juntamente com a melhor alternativa ambiental. Essa abordagem normalmente gera conflitos pois a redução de um impacto ambiental pode levar ao aumento de outro, ou ainda, porque o melhor resultado ambiental não é necessariamente o de menor custo. Esses objetivos conflitantes devem ser balanceados para a obtenção do resultado otimizado. Isso pode ser feito de dois modos:

- ⇒ estabelecendo prioridades para os diversos termos (ambientais e econômicos), para escrever a função objetivo com pesos que representem essas prioridades e otimizar o valor da função;
- ⇒ resolvendo a otimização com múltiplos objetivos.

A otimização com múltiplos objetivos é abordagem mais atual e interessante, pois permite a busca da melhor solução de compromisso de uma forma explícita e clara. A otimização resulta em um conjunto de pontos ótimos, chamado conjunto de alternativas pareto não inferiores. Quando há dois objetivos, a otimização resulta em uma curva de pontos ótimos (curva pareto). Se forem três objetivos o resultado é uma superfície pareto e quando há mais objetivos são usadas outras formas de visualização dos resultados. Alguns bons trabalhos foram apresentados recentemente nessa área: Azapagic e Clift (1999) na avaliação da produção de produtos de boro; Stefanis et al. (1997a) na programação de produção de queijo (em batelada); Stefanis e Pistikopoulos (1997b) na avaliação do processo de cloração de metano; Steffens et al. (1999) na produção de penicilina; Dantus e High (1999) na produção de cloreto de metila e Song et al. (2002) na programação de produção para o refino de petróleo.

O uso da análise do ciclo de vida (ACV) na formulação da superestrutura para otimização também tem sido bastante explorada recentemente. Por ser ampla, essa abordagem implica no levantamento de muitas informações para o equacionamento do problema, mas tem a vantagem de otimizar todo o ciclo de produção, evitando que um impacto ambiental seja transferido de uma parte da cadeia de produção para outra. Alguns trabalhos nessa área foram apresentados por Stefanis et al. (1995) aplicado à produção de cloreto de vinila; Stefanis et al. (1997a) na programação de produção de queijo (em batelada); Azapagic e Clift (1999) na avaliação da produção de produção de Song et al. (2002) na programação de produção para o refino de petróleo.

2.3.4 INDICADORES PARA AVALIAÇÕES AMBIENTAIS

Há diversos tipos de indicadores ambientais, que são propostos para avaliar desde o desenvolvimento de novos processos (pesquisa), elaboração de projetos, seleção de processos concorrentes, definição de condições operacionais e programação de produção até o acompanhamento do desempenho ambiental de unidades industriais em operação, de sistemas de gestão ambiental e de empresas. Algumas empresas publicam anualmente seu balanço ambiental, com dados comparativos de desempenho em relação a anos anteriores e a produção.

A forma e os aspectos considerados no cálculo do indicador dependem principalmente do tipo de indicador (objetivo) e das informações disponíveis. É bastante usual considerar um ou mais dos aspectos indicados na Figura 2.4.

São apresentados a seguir alguns indicadores e métodos ambientais propostos na literatura para análise de processos em fase inicial de desenvolvimento, para simulação / otimização de processos e/ou para projetos. Esses métodos foram selecionados a partir de uma extensa revisão de literatura e são provenientes de artigos que se mostraram consistentes tanto na proposta de cálculo quanto nos exemplos de aplicação considerados.

Fluxo de efluentes, emissões gasosas e resíduos sólidos	Quantidade de material reciclado e reaproveitado	Impactos locais gerados: toxidade humana, ecotoxidade, geração de oxidantes fotoquímicos,		Impactos globais gerados: Aquecimento global, destruição da camada
		eutrofização, acid	lificação	de ozônio, uso de
Qualidade dos	Disso das ono			recursos naturais
lançados ao ambiente	rações, limites			·
(concentração dos	de exposição a	Atendimento à	Custos:	tratamento, remediação,
contaminantes)	substâncias	legislação	acidente	es, multas, passivos

Figura 2.4 Aspectos considerados para avaliação ambiental de processos.

2.3.4.1 SPI - Sustainable process index

O método SPI, resumido na Figura 2.5, leva à determinação da área requerida para a operação sustentável de um processo, ou seja, para transformar a exergia solar (energia solar útil) nos insumos e outros requisitos necessários para operação do processo. Por exemplo, consideremos a produção de etanol citada em Hertwich et al. (1997): A_R é a área necessária para cultivar a cana-de-açúcar; A_E é a área para gerar energia (com valores diferentes se for energia solar, biomassa, combustíveis fósseis, etc.); A_S é a área estimada para vestir, alimentar e abrigar os funcionários; A_P a área para dispor o efluente e o produto com elevada DQO (ou seja, diluir no ambiente sem causar impactos). Nesse exemplo A_P representou 62 % da área total, que foi calculada em 15,5 m².ano para produção de 1 kg de etanol.

A área do processo pode ser comparada com a área disponível para uma pessoa viver em uma região e com áreas requeridas para fornecimento de outros serviços e produtos (alimentos, etc), permitindo o planejamento sustentável de uma região (Krotscheck e Narodoslawsky, 1996). Essa é uma característica muito interessante do método, além da simplicidade dos cálculos. Entretanto, para o cálculo do SPI de um processo é necessário usar uma série de fatores e considerações simplificadoras que podem comprometer a consistência dos resultados. Exemplo típico é a A_R dos recursos não renováveis, como combustíveis fósseis e minerais, que seria enorme em comparação com outras áreas e foi estabelecida de forma diversa do conceito do método.

SPI	Características:	
Sustainable process index	Avalia a sustentabilidade dos processos calculando a área requerida para sua operação.	Aplicações nos artigos: Processo contínuo para produção de
Sobre o método:	A área total A _T é a soma das áreas requeridas para: geração dos	etanol, citado em Hertwich et al. (1997)
 * Trabalho realizado na Graz University of Technology, Áustria. * Artigos publicados entre 1993 e 2000. * Foi aplicado por outro grupo de pesquisadores. * O artigo de referência para aplicação do método é de 	recursos naturais A_R , geração de energia A_E , instalações A_I , funcionários A_S e para acomodar produtos, sub-produtos e rejeitos A_P . $A_T = A_R + A_E + A_I + A_S + A_P$ Reúne as informações ambientais em um único indicador e pode ser aplicado para diversas atividades (ex. agricultura, indústria).	 Utilizado por Steffens et al. (1999) para o processo de produção de penicilina (apresentado com detalhe no artigo)
Krotscheck e Narodoslawsky (1996).	O SPI baseia-se no conceito de ciclo de vida do processo (tipo ACV).	ļ — M

Figura 2.5 Quadro resumo das características do indicador ambiental SPI (indicador de sustentabilidade dos processos), apresentado em Narodoslawsky e Krotscheck (2000).

O método pode ser aplicado em simulações de processo ou otimizações (por exemplo em Steffens et al., 1999) ou ainda como indicador de desempenho ambiental de um sistema de gestão ambiental. Segundo Krotscheck e Narodoslawsky (1996), que apresentam diversos parâmetros para os cálculos das áreas, os dados disponíveis para o cálculo do SPI estão disponíveis nos estágios iniciais de desenvolvimento dos processos.

2.3.4.2 MEIM - Methodology for environmental impact minimization

O método proposto por Stefanis et al. (1995), resumido na Figura 2.6, foi bem explorado em diferentes aplicações e tem uma estrutura consistente. Entretanto, apesar dos autores definirem que o "impacto ambiental" é quantificado, verifica-se que o método considera basicamente os descartes de rejeitos e os agrupa de acordo com o tipo de impacto ambiental que podem gerar (mais correto seria falar de "impacto ambiental potencial").

MEIM	Características:	Aplicações nos artigos:
Methodology for environmental impact minimization	Os trabalhos iniciaram com a aplicação em processo contínuo (em 1994) e evoluíram para aplicação em processo em batelada e avaliação de emissões não rotineiras (em 1997).	 Processo contínuo para produção de C₂H₃CL cloreto de vinila (Stefanis et al.,1995) Otimização de processo
Sobre o método: * Trabalho realizado no <i>Imperial College</i> , UK. * Artigos publicados entre 1994 e 1997 com desenvolvimento e aplicações. * É bastante citado em artigos recentes. * Foi aplicado por outro grupo de pesquisadores.	 A avaliação ambiental considera: poluição do ar e da água; massa de resíduos sólidos; aquecimento global; oxidação fotoquímica; destruição da camada de ozônio. Essas informações ambientais são agrupadas em um vetor. O conceito de ACV foi utilizado na definição das fronteiras amplas de estudo e os processos foram otimizados com funções objetivo econômicas e/ou ambientais. 	 em batelada para produção de queijo (Stefanis et al., 1997a) Estudo de emissões não rotineiras na cloração de metano (Stefanis e Pistikopoulos, 1997b) Utilizado por Steffens et al. (1999) para analisar o processo da penicilina.

Figura 2.6 Quadro resumo das características do indicador ambiental MEIM (metodologia para minimização de impacto ambiental) proposta por Stefanis et al. (1995).

O vetor de impacto ambiental (EI) para cada poluente w no método proposto por Stefanis et al. (1995) é:

$$EI_{w} = \begin{bmatrix} CTAM & CTMW & SMD & GWI & POI & SODI \end{bmatrix}^{T} (2-1)$$
$$EI_{w} = \begin{bmatrix} \frac{kg w}{h} & \frac{kg w}{h} & \frac{kg w}{h} & \frac{kg w}{h} & \frac{kg solidos}{h} & \frac{kg CO_{2}}{h} & \frac{kg etileno}{h} & \frac{kg CFC11}{h} \end{bmatrix}^{T}$$

(2-2)

O "impacto ambiental" (conforme definido por Stefanis et al., 1995) de todos os poluentes é a somatória dos EI_{w} , onde:

- CTAM e CTMW são as massas críticas de poluentes no ar e na água;
- SMD é a vazão de resíduos;
- GWI considera o aquecimento global;
- POI representa a oxidação fotoquímica e SODI representa a destruição da camada de ozônio.
 Essas definições só são usadas nesse ponto e não constam da nomenclatura da tese.

Nas aplicações do MEIM e otimizações dos processos foram testadas diversas funções objetivo ambientais e econômica e verificou-se que levam a resultados diferentes, ou seja, o melhor resultado ambiental normalmente não coincide com o melhor resultado econômico. O método também pode ser utilizado em modelagem e simulação de processos.

2.3.4.3 Impact index

Impact index	Características: O indicador se baseia na quantidade e características do poluente emitido	Aplicação no artigo:
Sobre o método: * Trabalho realizado na <i>University of Bath,</i> UK. * Somente um artigo publicado. * É citado em artigos recentes mas não foi aplicado por outro	 e considera os efeitos de curto e de longo prazo no ambiente. O impacto ambiental calculado considera: dano potencial; persistência; capacidade de causar alterações 	 Análise de uma planta para produção de formaldeído (Elliott et al., 1996)
grupo de pesquisa.	no meio.	l D

Figura 2.7 Quadro resumo das características do indicador ambiental *Impact index* proposto por Elliott et al. (1996).

O método de Elliott et al. (1996), resumido na Figura 2.7, calcula o *Impact index* de um processo a partir das quantidades descartadas de poluentes. O indicador é estruturado em sete níveis de informação em forma de árvore, onde cada nível se desdobra nos próximos:

- 1. o próprio Impact index;
- 2. divisão em impactos de curta e longa duração;
- 3. impacto de cada substância;

- 4. impacto da substância em cada meio;
- impactos de dano potencial, persistência e possibilidade de modificações no ambiente para cada meio e substância;
- 6. impactos que caracterizam cada um dos itens da etapa 5 (toxidade, risco, dispersão, etc);
- 7. dados para cálculo dos itens da etapa 6 (limite de exposição ocupacional, meia-vida, etc).

O cálculo da distribuição do poluente em cada meio é feito a partir do coeficiente de partição ar-água e adsorção no solo para substâncias orgânicas e da solubilidade para substâncias inorgânicas.

O método é interessante, pois para cada cálculo de impacto ambiental são utilizados diversos tipos de informações resultando numa análise abrangente de cada poluente. Entretanto, esse é o principal problema do método pois requer muitos dados para aplicação. O método foi implementado em ambiente computacional (Elliott et al., 1996) e o usuário pode fornecer os dados necessários. Esta abordagem é interessante mas pouco prática, em função da grande dificuldade de encontrar todos esses dados. O artigo tem sido citado na literatura recente, na parte de revisão da literatura, porém não foi publicado nenhum artigo que aplique o método para avaliação ambiental de um processo.

2.3.4.4 WAR - Waste reduction algorithm e PEI - Potential environmental impact

O algoritmo para minimização de resíduos WAR foi proposto em 1994 e os autores logo apresentaram melhorias ao método em Hilaly e Sikdar (1995). Mallick et al. (1996) incluíram a avaliação de impacto ambiental potencial testando três esquemas de indicadores. O método foi consolidado por Cabezas et al. (1999) adotando a classificação de impacto ambiental apresentada por Heijungs em 1992 (trabalho que não foi localizado). Logo em seguida Young e Cabezas (1999) revisaram o método, fazendo pequenas modificações, e passaram a considerar os impactos potenciais da energia consumida no processo. Em 2000, Young et al. apresentaram uma aplicação do WAR incluindo avaliação econômica das alternativas. Young e Cabezas (1999) informaram que o WAR seria implementado no simulador comercial ChemCad versão 1999, acrescentando informações para o cálculo de impacto ambiental ao banco de dados do simulador (que tem ~ 1600 substâncias).

WAR e PEI	Características:	Ap	licações nos artigos:
Waste reduction algorithm e	Desenvolvimento do método foi voltado para implementação em simulador comercial visando a		Produção de penicilina (bioprocesso) em Hilaly e Sikdar (1995)
Potential environmental impat	minimização de resíduos em uma planta industrial. O ChemCad da Chemstations versão		Produção de MEK (metil etil cetona) em Mallick et al. (1996) e Cabezas et al.
Sobre o método:	1999 terá o método implementado. Não utiliza o conceito de ACV.		(1999) Produção de amônia em Mallick et al. (1996) e
* Trabalho realizado	O método se baseia em um balanço		Cabezas et al. (1999)
na US EPA, US. * Artigos publicados entre 1994 e 2000 com desenvolvimen- to, teste de diferentes	de impacto ambiental potencial (PEI), onde se calcula o PEI gerado e o PEI de saída. Estes indicadores são usados na avaliação dos processos. Para cada substância determina-se o		Produção de ácido acrílico em Young e Cabezas (1999) Produção de cloreto de alila em Young et al. (2000)
indicadores de impacto ambiental e diversas aplicações.	 aquecimento global; oxidação fotoquímica; 		Mora (2000) na avaliação do processo de ácido nítrico
* É bastante citado em artigos recentes.	 destruição da camada de ozônio; chuva ácida; toxidada humana por ingastão; 		Utilizado por Mata et al. (2002) na avaliação de
* Foi usado por outros grupos de pesquisadores.	 toxidade humana por ingestao, toxidade humana por inalação e por exposição; ecotoxidade aquática; ecotoxidade terrestre. 		ladas, craqueadas para a gasolina.

Recentemente, o método foi utilizado por outros grupos de pesquisa. Castillo e Mora (2000) propõem uma avaliação ambiental abrangente para o setor industrial da Colômbia. Essa avaliação se baseia no algoritmo WAR para os efeitos ambientais de poluição e considera ainda os efeitos de perturbação no ambiente (uso de recursos naturais, uso da terra, redução do oxigênio disponível na água, acúmulo de resíduos). Mata et al. (2002) realizaram um estudo interessante para avaliar a contribuição da nafta alquilada, reformada e craqueada no impacto ambiental potencial da gasolina usando o WAR. Nesse estudo foi considerada a maior parte do ciclo de vida da gasolina, desde o processamento das naftas, passando pelo transporte até a adição no tanque dos automóveis. Halim e Srinivasan (2002a) informaram que estão estudando a implementação

do método WAR no sistema inteligente que estão desenvolvendo para geração e avaliação de alternativas de processo visando a minimização de rejeitos.

O método WAR se baseia no balanço de impacto ambiental potencial (PEI) em um processo químico conforme indicado a seguir:

$$\frac{dI}{dt} = I_{ENTRA} - I_{SAI} + I_{GERADO}$$
(2-3)
$$I = \sum_{j} I_{j} = \sum_{j} M_{j} \sum_{K} x_{K,j} \cdot \Psi_{K}$$
(2-4) tanto para as correntes de entrada como de saída.

onde I é a taxa de impacto potencial de todas as correntes de entrada I_{ENTRA} ou saída I_{SAI} (que representa o impacto potencial do descarte de toda a corrente no ambiente)
 I_j é a taxa de impacto potencial da corrente j (unidades de PEI/h)
 M_j é a vazão mássica da corrente j (kg/h)
 x_{K,j} é a fração mássica do poluente K em j

 ψ_{K} é o impacto potencial do poluente K (unidades de PEI/ kg de K), calculado por:

$$\Psi_{\rm K} = \sum_{\rm L} \alpha_{\rm L} \cdot \Psi_{\rm K,L} \qquad (2-5)$$

onde L são as oito categorias de impacto ambiental potencial citadas na Figura 2.8 α são pesos para cada categoria, visando levar em conta e destacar as questões locais $\psi_{K,L}$ é o impacto potencial do poluente K na categoria L (unidades de PEI / kg K).

O impacto potencial do poluente K estimado para cada categoria de impacto potencial resulta nos valores de $\psi_{K,L}$ e permite o cálculo de ψ_{K} . Young e Cabezas (1999) apresentam as referências, dados de origem e a forma de normalização dos valores para determinação dos $\psi_{K,L}$.

A nomenclatura usada nas equações acima somente é utilizada nesse ponto da tese e por isso não consta na lista de nomenclatura da tese.

O balanço de PEI apresentado em Young e Cabezas (1999) contém termos adicionais para considerar os impactos da energia consumida. Entretanto, após análise das equações e do processo de produção de energia por queima de carvão, concluiu-se que o único termo significativo é o das emissões gasosas pela chaminé e que pode ser embutido no I_{SAI} da equação acima.

Nos exemplos de aplicação do WAR, foram utilizados os indicadores ambientais I_{SAI} e I_{GERADO} para comparação de processos (ambos em unidades de PEI/tempo e PEI/kg de produtos). O I_{SAI} está ligado à eficiência externa e mostra o impacto ambiental potencial do processo. Para que a instalação da unidade seja viável em uma localidade, o I_{SAI} deve estar condizente com a capacidade suporte do meio (local). I_{GERADO} está relacionado com a eficiência interna do processo, ou seja, com a habilidade de fazer um produto com geração mínima de impacto ambiental (Young e Cabezas, 1999). O uso de I_{GERADO} como indicador não parece muito adequado, porque a utilização de uma matéria-prima ou insumo (solvente, catalisador, aditivo, etc) com elevado ψ_{K} pode não evidenciar um processo com significativo impacto ambiental potencial. Portanto, o I_{GERADO} não deveria ser utilizado para comparar processos diferentes (apesar de Young e Cabezas (1999) recomendarem o uso de I_{GERADO} para esse fim).

O algoritmo WAR é muito consistente e atende ao que se propõe, ou seja, a ser um método simples de avaliação ambiental para implementação em simuladores comerciais. Pontos fracos relevantes desse método são: não há nenhum impacto potencial associado ao uso de recursos não-renováveis e também não há valorização adequada para o uso de matérias-primas e insumos cuja geração resulte em menor impacto ambiental potencial que outros.

2.3.4.5 MLI - Mass loss index, EI - Environmental index e CI - Economic index

O método de Heinzle et al. (1998), resumido na Figura 2.9, foi proposto visando a avaliação de processos em desenvolvimento desde o estágio inicial, como por exemplo na determinação de rotas cinéticas em laboratório, até as fases mais adiantadas. O método se baseia nos balanços de massa detalhados, que permitem a identificação da origem dos problemas. São definidas regiões de balanço, que vão se expandindo à medida que novas informações sobre o processo vão sendo obtidas e o estudo evolui. A região 1 é de reação; região 2 de recuperação de produtos, purificação e reciclo; a região 3 engloba as duas primeiras; a região 4 é de prétratamento de rejeitos; a região 5 engloba as quatro primeiras; a região 6 de tratamento de rejeitos e a 7 envolve todo o processo (da reação ao tratamento).

MLI, EI e CI	Características:	
Mass loss index, Environmental index, Economic index	Desenvolvido visando minimizar perdas e impactos ambientais de processos em fase inicial de desenvolvimento. Baseado em balanços de massa com pe-	Aplicações no artigo de Koller et al. (1998)
	sos para funções ambientais e econô- micas gerando EL e CL	Produção de 4- (2-metóxi-etil)
 Sobre o método: * Trabalho realizado no Swiss Federal Institute of Technology, Suíça. * Artigos publicados em 1998. * É citado em artigos recentes. * Proposto para aplicação em processos de química fina. 	Avaliação ambiental baseada em legisla- ção, considera: disponibilidade de recur- sos naturais; poluição na geração de matérias-primas e insumos; poluição do ar e da água; problemas especiais de disposição ou tratamento. Considera in- formações do ciclo de vida do processo (tipo ACV simplificado).	 fenol (insumo para indústria farmacêutica) Produção de um antioxi-dante.

Figura 2.9. Quadro resumo das características dos indicadores *mass loss index* (MLI), environmental index (EI) e economic index (CI), proposto por Heinzle et al. (1998).

Os balanços de massa permitem o cálculo dos fatores de massa MLI (mass loss indices) definidos como a vazão mássica de cada subproduto, insumo, matéria-prima, rejeito, etc, dividido pela massa de produto. Esses indicadores são multiplicados por fatores ambientais e econômicos, resultando em indicadores ambientais EI e econômicos CI. Não há um fator específico para indicar o consumo de energia no processo.

O fator ambiental é obtido considerando-se aspectos ambientais dos componentes que são fornecidos ao processo (processamento, disponibilidade, etc, das matérias-primas e insumos) e dos rejeitos (aspectos de poluição, disposição, etc), conforme citado na Figura 2.9. Dessa forma, o ciclo de vida do processo (ACV) é considerado de forma implícita e simplificada. A avaliação permite que componentes com maior dano ambiental potencial sejam identificados, mas não indica claramente qual o dano potencial. Isso porque a avaliação não está dividida em "toxidade humana", "toxidade aquática", "potencial de formar chuva ácida", etc (como outros métodos), e sim em categorias menos definidas como "poluição das águas", "poluição do ar", etc. Os critérios para cada categoria são determinados a partir da legislação ambiental.

O método é baseado em um sistema de indicadores para acompanhamento e análise detalhada do processo em desenvolvimento, atendendo bem aos objetivos que se propõe. Pode ser usado ainda para simulação e otimização de processos. O método evoluiu (Koller et al., 2000) para uma estrutura que considera aspectos de saúde, ambientais e de segurança na avaliação de processos em fase inicial de desenvolvimento.

2.3.4.6 Comparação entre outros métodos / indicadores

Hertwich et al. (1997) realizaram uma comparação muito detalhada e interessante entre seis diferentes métodos de avaliação ambiental, mostrando as diferenças com relação aos objetivos, efeitos considerados na avaliação, profundidade da análise e modo que os valores influenciam o indicador final. Alguns métodos são simples demais para fornecer um resultado adequado, podendo inclusive não levar à seleção da melhor alternativa ambiental, outros métodos requerem uma base de dados muito extensa e têm baixa tolerância à falta de dados. Os métodos considerados, em ordem crescente de complexidade, foram (Hertwich et al.,1997):

- HHS *health hazard scoring*, que considera efeitos tóxicos de exposição e risco (toxidade oral e por inalação, irritação nos olhos e pele, potencial de causar câncer, reatividade e inflamabilidade), ou seja, considera apenas efeitos locais. A análise é simples e baseia-se em dados disponíveis e um fator de peso (definido por especialistas) para cada item.
- MIPS material input per service unit, que considera a massa de matérias-primas e insumos usada para gerar um produto ou serviço, levando em conta o ciclo de vida. É interessante para fins didáticos pois mostra as quantidades de materiais envolvidas na geração de um produto, mas não é recomendável usá-lo visando obter melhores resultados ambientais. Isso porque não há diferenciação entre os componentes mais ou menos nocivos ao ambiente, podendo levar a resultados muito inadequados (menor massa mas maior impacto ambiental);
- SEP swiss eco-point, usado na análise de ciclo de vida, relacionando cada poluente com o limite permitido de descarte e a quantidade total existente no ambiente (visando não ultrapassar a capacidade suporte do meio). O método não diferencia os efeitos causados pelos poluentes.
- SPI *sustainable process index*, definido no item 2.3.4.1;
- SETAC Society for environmental toxicology and chemistry. A SETAC propôs um método para ACV onde está incluída a avaliação ambiental dos processos. O método para análise de

impactos já foi bastante discutido, mas ainda não está pronto. É um método rigoroso, que separa claramente critérios técnicos de preferências (valores) pessoais e considera uso de recursos naturais, toxidade humana e ambiental, tempo de vida das substâncias, funções de partição e principais reações atmosféricas. A avaliação é tão ampla que não há risco de trocar um impacto por outro que não esteja sendo considerado. O método requer muitos dados e não há procedimentos para cobrir lacunas. É considerado como a tentativa mais rigorosa de levar em conta todos os impactos ambientais, mas muitas questões têm que ser resolvidas antes que possa ser amplamente aplicado.

EPS – environmental priority system, também realiza a análise do ciclo de vida, estendendo a avaliação para calcular o valor monetário do dano ambiental (baseado em conceitos de economia ambiental). O método considera e pretende preservar: a saúde humana, diversidade biológica, viabilidade de produção, recursos e valores estéticos. A avaliação não é baseada em informações locais mas procura levar em conta danos reais (e não potenciais). É uma análise rigorosa, que requer muitos dados. Entretanto, é criticada por se basear em informações de mercado (preços) e preferências que caracterizam um modo de vida que não é sustentável. Também é questionável a abordagem da tomada de decisões com base na valoração monetária dos bens e do ambiente. A busca de melhores soluções ambientais deve passar pela consideração de valores sociais, culturais, econômicos e de equilíbrio ambiental.

Para evitar que a análise ambiental leve a um resultado inadequado, ou seja, que indique uma solução que não é a melhor alternativa ambiental, Hertwich et al. (1997) recomendam que:

- a avaliação seja explícita e chame a atenção para os conflitos;
- seja realizada uma análise de incertezas explícita nos dados mostrando resultados em distribuições de probabilidades e preenchendo lacunas nos dados;
- a avaliação dos impactos ambientais seja mais profunda (permite melhor julgamento e evita erros na interpretação dos dados e importância dos impactos);
- tenha-se em mente a filosofia de análise do ciclo de vida e seja aplicada uma avaliação mais abrangente sempre que necessário.

A avaliação ambiental pode ser paralisada por falta de dados se for profunda demais, ampla demais, inflexível demais, ou uma combinação desses fatores. Os bancos de dados comerciais

mostram que há conflito entre amplitude e profundidade. (Hertwich et al., 1997) Por isso, deve-se evitar detalhes desnecessários e inflexibilidade na análise.

Tabela 2.1. Comparação entre métodos / indicadores ambientais. Informações resumidas de Hertwich et al. (1997)

	HHS	MIPS	SEP	SPI	SETAC	EPS
Objetivo	Reduzir riscos ocupacionais	Redução de fluxo de massa	Redução de carga ambiental	Sustentabi- lidade	Redução de impactos ambientais	Melhoria de bem-estar
Base da avaliação	Efeitos potenciais	Fluxo de massa	Carga ambiental relativa	Carga ambiental e uso recursos	Efeitos potenciais	Efeitos ou riscos reais
Tipo de avaliação	Decisão mista	Implícita (ou ausente)	Implícita, com base em padrões de qualidade ambiental	Implícita e baseada em conceito de sustentabilidade	Decisão explícita	Avaliação econômica explícita
Profundida- de da análise	Média - superficial	Muito superficial	Média	Média	Profunda	Muito profunda
Unidade de medida	Qualitativa	Quantitativa (kg)	Quantitativa (eco- pontos)	Quantitativa (m ²)	Qualitativa	Quantitativa
Considera situações locais	Sim	Não	Sim	Sim	Não, essa questão está em discussão	Não e sim
Tolerância para falta de dados	Média	Alta	Média	Média	Muito pequena	Pequena
Potencial de levar a resultado inadequado	Moderado, pois só considera impactos locais	Alto, pois pode causar redução de massa mas aumento de impacto ambiental	Moderado, não diferencia entre os impactos; alto se usar a mesma avaliação em diferentes locais	Moderado, não diferencia entre os impactos	Desconhe- cido (potencial- mente baixo)	Desconhe- cido (potencial- mente baixo)

2.3.4.7 Considerações gerais e desenvolvimentos na área

Atuação da SETAC:

A SETAC (*Society for environmental toxicology and chemistry*) tem fomentado desenvolvimentos na área de aplicação da análise do ciclo de vida e quantificação de impactos ambientais, através de seminários técnicos que focam em temas ambientais de relevância e reúnem cientistas e engenheiros da indústria, governo, universidades e organizações não governamentais. Os anais desses seminários apresentam o estado da arte no assunto e servem de base para futuros desenvolvimentos. Por exemplo, na aplicação da metodologia de ACV são documentos de referência (inclusive em artigos recentes):

- Technical framework for life-cycle assessment (Fava et al., 1991) que trata da metodologia de análise de ciclo de vida, abordando principalmente conceitos e procedimentos para a fase de inventário (dados de processo, emissões, efluentes, resíduos e uso de recursos);
- Conceptual framework for life-cycle Impact Assessment (Fava et al., 1993), que consolidou a metodologia de ACV e analisou a etapa de determinação de impactos ambientais, definindo categorias e revisando métodos para quantificação dos impactos.

É visível o avanço nessa área nos últimos anos, com o aumento de aplicações da metodologia de análise de ciclo de vida e o desenvolvimento de bases de dados e métodos para quantificação dos impactos ambientais.

A SETAC também promove conferências e publica um periódico científico mensal (*Environmental toxicology and chemistry*) e um jornal bimestral (*SETAC News*).

Manual alemão da ISO para ACV - desenvolvimento de avaliação de impactos

Heijungs et al. publicaram em 1992 o *Life cycle assessment of products: Background and guide*, que se tornou o manual alemão de análise do ciclo de vida. O trabalho foi publicado após o seminário técnico da SETAC-Europe realizado em Leiden em dezembro de 1991. Este seminário forneceu subsídios para o seminário técnico da SETAC em 1992, cujos anais foram publicados por Fava et al. (1993). Por isso, pode-se esperar que as publicações de Heijungs et al.

(1992) e Fava et al. (1993) tenham diversos conceitos e métodos comuns com relação à avaliação de impactos ambientais.

Os métodos e categorias de impactos propostos por Heijungs et al. (1992) têm sido bastante citados e usados para avaliação de impactos ambientais como, por exemplo, nos trabalhos de Young e Cabezas (1999) e Azapagic e Clift (1999), entre outros.

Entre 1997 e 2001 as informações foram atualizadas em um trabalho coordenado por Guinée, resultando na publicação do novo *Dutch Handbook on life cycle assessment – operational guide to the ISO Standards* (Leiden University - CML, 2002).

Consideração de questões locais na avaliação ambiental:

É polêmica a consideração de questões locais, como a capacidade suporte do meio ou ainda preferências locais, na determinação de impactos ambientais.

- A consideração da capacidade suporte parece bastante adequada na análise da instalação de um processo em local específico, pois permite priorizar os investimentos para minimizar impactos relevantes e evita o desperdício de recursos com tratamentos desnecessários (que podem até inviabilizar economicamente uma nova instalação industrial). Quanto menores os limites de emissão, mais difícil e maior é o custo para atingi-los.
- Entretanto, alguns autores (entre eles, Hertwich et al., 1997) alegam que a consideração da capacidade suporte é um modo mais sofisticado de usar o "princípio da diluição" e que pode levar a resultados indesejados (ou seja, a seleção de um processo que não seja a melhor alternativa ambiental). Realmente, a consideração da capacidade suporte é complicada pois inclui a contribuição de outros consumidores dos recursos e outras fontes de poluição (indústrias, residências, veículos de transporte, geradores de energia elétrica, etc) e também parâmetros de qualidade ambiental e características locais (clima, relevo, etc). Por isso, a instalação de novas unidades industriais pode vir a alterar os limites de emissão aceitos para as outras unidades. Ou, ainda, o crescimento urbano pode comprometer a quantidade de água disponível para as indústrias. Outra fonte de problemas é o risco do uso indevido da avaliação ambiental na análise de viabilidade de uma unidade industrial em localidade diversa daquela para qual o estudo foi realizado.

Considerando que o objetivo da avaliação ambiental dos processos é contribuir para o desenvolvimento sustentável de uma região, é necessário que questões locais sejam consideradas. Entretanto, isso deve ser feito de forma criteriosa e explícita, separando claramente os aspectos locais dos globais, definindo quais os aspectos ambientais determinantes na região e deixando claro que o estudo vale somente para aquela região. Esse comentário também é pertinente para o uso de critérios de preferências (pessoais, sociais, culturais) na avaliação ambiental.

Consideração de situações não-rotineiras na avaliação ambiental

A operação de uma planta industrial em estado estacionário leva ao lançamento contínuo de rejeitos (emissões, efluentes e resíduos) para o ambiente, que são normalmente considerados nas avaliações ambientais. Esses lançamentos são muito frequentes mas trazem pequeno dano ambiental. A planta industrial também está sujeita a situações operacionais não rotineiras e acidentes. Os acidentes são muito pouco frequentes e normalmente trazem sérias consequências ambientais. As situações não rotineiras, bem mais frequentes que os acidentes, representam risco ambiental significativo e estão ligadas a (Stefanis e Pistikopoulos, 1997b):

- ⇒ Falhas de equipamentos, vazamentos, erros humanos;
- ⇒ Emissões fugitivas de bombas e flanges (situação normalmente tolerada pela indústria);
- ➡ Operação em estado transiente durante paradas, partidas, procedimentos de manutenção, alteração de condições operacionais (em função de troca de carga, mudança na especificação de produtos, etc);
- ⇒ Ocorrências em função de mudanças climáticas bruscas ou outras ocorrências.

Stefanis e Pistikopoulos (1997b) apresentaram um método sistemático para considerar situações rotineiras e não-rotineiras na avaliação ambiental de processos. O método considera a probabilidade de ocorrência de uma falha (erro humano, vazamentos, etc) e a confiabilidade dos equipamentos para gerar os possíveis cenários de operação. Com a utilização do indicador ambiental MEIM (definido no item 2.3.4.2) são determinados os lançamentos para o ambiente e os impactos ambientais decorrentes destas situações. O risco ambiental está diretamente relacionado com a probabilidade de ocorrência da falha e a severidade do dano ambiental gerado. Os autores exploraram os conflitos entre as funções objetivos ambientais e de custo, otimizaram a

operação em cada situação não rotineira e mostraram como a análise pode ser usada para programação de manutenção preventiva.

Bauer e Maciel Filho (2002) mostraram que estão iniciando trabalhos nessa área, com a implementação de um indicador para avaliação ambiental no simulador comercial Hysys (da Hyprotech) onde serão realizadas simulações dinâmicas de processos para analisar, por exemplo, situações de paradas e partidas.

2.3.4.8 Aplicações da avaliação ambiental em processos industriais

A literatura apresenta aplicações da avaliação ambiental nos mais diversos setores da indústria: alimentícia, farmacêutica, química, petroquímica e petróleo. A Tabela 2.2 resume aplicações encontradas em diversas referências. Algumas dessas aplicações são apenas ilustrativas, com abordagem superficial para mostrar como seria aplicado o método proposto. Em outros artigos, a aplicação do método é bem explorada e os autores realizam uma análise detalhada e consistente dos processos.

As aplicações na indústria de petróleo têm algumas particularidades interessantes:

- ⇒ Song et al. (2002) realizaram a programação de produção do refino do petróleo desde os campos produtores, passando por navios petroleiros, tanques de armazenamento, tanques de mistura, unidades de destilação e chegando aos tanques de produtos. A otimização considerou a avaliação de impactos ambientais em quatro unidades de destilação de uma refinaria com capacidade para 100.000 m³/dia (maior que as refinarias brasileiras). As condições operacionais e o consumo de utilidades de cada unidade de destilação variaram com a carga processada, as características da unidade (eficiência, emissões) e o perfil de produtos previsto.
- Mata et al. (2002) avaliaram a contribuição da nafta alquilada, reformada e craqueada no impacto ambiental potencial da gasolina. No estudo foram consideradas as emissões decorrentes da maior parte do ciclo de vida da gasolina: o processamento das naftas; o carregamento em caminhões tanque e transporte; o carregamento em navios e transporte; o carregamento dos tanques de postos de gasolina; as perdas por evaporação nos postos; as perdas em terminais de combustíveis (em válvulas, selos de bombas, etc); e, finalmente, as perdas no enchimento do tanque dos automóveis e uso do veículo.

Indús- tria	Aplicação	Método / indicador	Observação	Usa ACV ?	Referência
Alimentos	Produção de queijo	MEIM	Bioprocesso, batelada, análise detalhada	Sim	Stefanis et al., 1997a
tica 1	Produção de penicilina	WAR	Bioprocesso, análise detalhada	Não	Hilaly e Sikdar, 1995
macêu	Produção de penicilina	SPI, parte do MEIM	Bioprocesso	Sim, implícito	Steffens et al., 1999
Far	Produção de 4-(2-metóxi etil) fenol	MLI, EI	Processo em início de desenvolvimento	Sim, implícito	Koller et al., 1998
	Produção de antioxidante	MLI, EI	Processo em início de desenvolvimento	Sim, implícito	Koller et al., 1998
	Produção de cloreto de vinila	MEIM	-	Sim	Stefanis et al., 1995
	Processo de cloração do metano	MEIM	Emissões rotineiras e não rotineiras	Sim	Stefanis e Pistikopoulos, 1997b
	Produção de cloreto de metila	outro *	-	Não	Dantus e High, 1999
	Geração de produtos de boro	outro**	Análise detalhada	Sim	Azapagic e Clift, 1999
nica	Produção de propileno glicol	outro *	Emissões não roti- neiras, exemplo ilustrativo	Não	Bauer e Maciel Filho, 2002
roquín	Produção de etanol	SPI	Exemplo ilustrativo	Sim, implícito	Hertwich et al. 1997
e pet	Produção de MEK (metil etil cetona)	WAR	-	Não	Mallick et al., 1996 e Cabezas et al., 1999
uímica	Produção de amônia	WAR	-	Não	Mallick et al., 1996 e Cabezas et al., 1999
Ō	Produção de ácido acrílico	WAR	-	Não	Young e Cabezas,1999
	Produção de cloreto de alila	WAR	-	Não	Young et al., 2000
	Avaliação do processo de ácido nítrico	WAR modificado	-	Sim	Castillo e Mora, 2000
	Recuperação / reciclo de VOCs	outro *	-	Não	Chen et al., 2002
	Análise de uma planta para produção de formaldeído	Impact index	Exemplo ilustrativo	Não	Elliott et al., 1996
leo	Programação de produção em refinarias em escala industrial	outro *	Análise detalhada	Sim	Song et al., 2002
Petró	Avaliação da mistura de naf- tas reformadas, alquiladas e craqueadas para a gasolina	WAR	Análise detalhada	Sim	Mata et al., 2002

T 1 1 0 0 4	1. ~	1 1 ~	1 • 7 1	• • • •
Tabela 2.2 A	nlicacoes	da avaliacao	ambiental em	processos industriais
1 u001u 2.2 1 1	pheuçoes	uu uvunuçuo	uniorentar em	processos maasinais

* o indicador para avaliação ambiental não foi apresentado nessa revisão de literatura.

** utiliza o método / indicador de Heijungs et al. (1992) para avaliação ambiental.

2.3.5 SELECIONANDO UM INDICADOR / MÉTODO PARA AVALIAÇÃO AMBIENTAL

A análise dos indicadores / métodos apresentados e as tendências atuais de desenvolvimento levaram à identificação de características importantes, citadas a seguir, para obtenção de resultados consistentes e claros na avaliação ambiental dos processos.

- ✓ O indicador ambiental deve agrupar informações de diversos componentes e impactos ambientais potenciais em valores intermediários para facilitar a avaliação dos mesmos;
- ✓ Deve facilitar o acesso aos diversos impactos potenciais e componentes em separado, permitindo identificar a origem dos problemas e a análise de resultados conflitantes. Isto é, se o resultado da análise for um único indicador é necessário que haja acesso aos diversos fatores que levaram àquele valor e que cada um desses fatores tenha significado independente e represente um aspecto ambiental ou um componente;
- Parece mais robusta e consistente a estrutura de indicadores que agrupa os impactos ambientais por categorias do tipo: aquecimento global, toxidade aquática, toxidade humana, etc. Entretanto, esse tipo de avaliação pode requerer extensa base de dados;
- ✓ Deve haver separação clara entre os critérios de avaliação de base científica e os valores pessoais (que envolvem ética, cultura, etc);
- ✓ Deve usar dados científicos consolidados e apresentados por instituições reconhecidas;
- É interessante considerar a capacidade de suporte do meio e outras questões locais, desde que isso seja realizado de forma explícita (através de pesos claramente definidos) e com o cuidado de revisar a avaliação ambiental caso o local de instalação prevista para o processo seja alterado;
- É desejável a consideração do ciclo de vida do produto na análise do processo, ainda que de forma simplificada ou implícita (considerando uso de recursos naturais, impactos ambientais dos processos associados e disposição de todos os rejeitos);
- É fundamental que a base de dados para avaliação dos impactos ambientais esteja acessível e que exista um procedimento para preencher lacunas ou contornar a falta de dados;

Para finalizar, é indispensável uma análise crítica de todas as considerações, esquemas de processo e resultados, se possível por uma equipe multidisciplinar, antes de se definir pelo processo mais adequado e pela implantação da planta industrial. As ferramentas de cálculo,

métodos e indicadores auxiliam nesse trabalho, mas a análise de consistência no final do trabalho é importante para garantir que se obtenham os resultados esperados na operação da unidade industrial.

O ideal seria que um método com as características descritas acima estivesse implementado e disponível em um simulador ou banco de dados comercial, mas isso ainda não ocorreu. Por isso, devem ser selecionados os métodos / indicadores que mais se aproximem dessas condições. A seguir, na Tabela 2.3 é realizada uma análise dos indicadores que se mostraram mais consistentes.

- O <u>algoritmo WAR</u>, apresentado por Young e Cabezas (1999), tem boa parte das características necessárias a um bom método e está próximo de ser implementado em simuladores comerciais. Usa informações comuns com o método SETAC. Mas ainda não está disponível e apresenta necessidade de melhoria em alguns aspectos, como por exemplo, a consideração do uso de recursos naturais e análise do ciclo de vida (nem que seja simplificada).
- O método da SETAC, apresentado em Hertwich et al. (1997), se mostra consistente e abrangente, com foco no uso de dados científicos consolidados e separados de valores pessoais. Entretanto, a SETAC é tão rigorosa que não considera o método pronto e entende que há necessidade de estudos adicionais. Vários métodos usam informações de encontros técnicos (workshops) organizados pela SETAC. O principal problema para uso do método da SETAC é a necessidade de uma grande quantidade de dados que não estão disponíveis e acessíveis.
- O método de Heinzle et al. (1998) é consistente, tem uma estrutura simplificada (com ACV implícito) e se baseia em informações de legislação e livros que são acessíveis e razoavelmente consolidadas. Entretanto, o método não faz distinção clara entre informações científicas e valores pessoais, já que as legislações sofrem influências políticas e podem apresentar tendências. Também não há separação por categorias de impactos claramente definidos e sim por aspectos ambientais (por exemplo, poluição do ar) que podem envolver vários impactos e tornar a análise implícita. Ainda assim, o método atende ao que se propõe, que é identificar as fontes de problemas ambientais nos estágios iniciais de desenvolvimento dos processos e viabilizar a proposta de um esquema de processo com menor potencial de impacto.
| Questões | | MLI, EI | | WAR / PEI | | SETAC |
|---|-------------------------|--|--------------|---|--------------|--|
| Referência | | Heinzle et al. (1998) | | Young e Cabezas (1999) | | Hertwich et al. (1997) |
| Objetivo | V | Minimização de dano
ambiental potencial | V | Minimização de impactos
ambientais potenciais | V | Redução de impactos
ambientais |
| Aplicação | | Estágios iniciais de
desenvolvimento de
processos | | Processos (uso em simuladores comerciais) | | Processos |
| Agrupa dados
ambientais | $\overline{\mathbf{N}}$ | Por tipo de impacto,
ex. poluição da água,
uso de recursos, etc | | Por categorias de impac-
to: toxidade humana,
aquecimento global, etc | V | Por categorias de
impacto: uso de recursos,
toxidade humana, etc |
| Acesso a impactos
intermediários | \checkmark | Sim | \checkmark | Sim | \checkmark | Sim |
| Usa critérios pes-
soais de avaliação | \boxtimes | Sim, misturados a
critérios científicos
nas legislações | | Sim, de forma clara e
separada dos critérios
científicos | V | Não, procura separar bem
critérios científicos e
pessoais |
| Considera
situações locais | V | Sim | V | Sim, através de pesos | | Não, essa questão está em
discussão |
| Considera impactos globais | V | Sim | V | Sim | V | Sim |
| Profundidade da análise | | Média | | Média | | Profunda |
| Usa análise do ciclo de vida | V | Sim, de forma simplificada | \times | Não | V | Sim |
| Disponibilidade
de dados para
aplicação | V | Dados de fácil acesso
em livros e legislação
ambiental | \boxtimes | Dados disponíveis em
simuladores comerciais
que adotem o método | \boxtimes | Requer muitos dados,
parte destes não
disponíveis |
| Tolerância para
falta de dados | V | Alta | V | Média | \times | Muito pequena |
| Potencial de levar
a resultado
inadequado | \mathbf{V} | Baixo. O uso de parâ-
metros de legislação
pode resultar em
tendências. | \mathbf{V} | Baixo. Falta considerar
ciclo de vida, análise do
I _{GERADO} não é adequada. | | Desconhecido
(potencialmente muito
baixo) |

Tabela 2.3. Comparação entre métodos / indicadores ambientais selecionados.

Obs. \square indica uma característica positiva; \square uma deficiência; \square uma característica com alguns pontos positivos e outros negativos; \square quando não se define se a característica é positiva ou negativa.

2.3.6 CONSIDERAÇÕES finais

Entre os métodos apresentados e discutidos nesse capítulo foi selecionado, para aplicação no processo de hidroconversão de resíduos, o método proposto por Heinzle et al. (1998). Esse método é consistente, tem uma estrutura simplificada (com ACV implícito) e se baseia em informações de legislação e livros que são acessíveis e razoavelmente consolidadas. O método será usado de forma criteriosa para contornar os pontos deficientes e gerar resultados que levem efetivamente à minimização dos danos ambientais potenciais de processos em desenvolvimento. O método é resumido na Figura 2.9 e comparado com outros no item 2.3.5.

2.4 GRAU DE PERICULOSIDADE DAS SUBSTÂNCIAS

O desenvolvimento da metodologia de avaliação ambiental mostrou a necessidade de se definir fontes de referência, que indiquem o grau de dano ambiental que pode ser causado por uma substância, ou seja, o grau de periculosidade das substâncias. Dentre as fontes de informações disponíveis, optou-se pelo uso da legislação ambiental porque traz os parâmetros utilizados no controle e monitoramento dos descartes industriais e na garantia da qualidade do meio ambiente.

As informações apresentadas na legislação ambiental são interessantes pois refletem o conhecimento técnico consolidado e, de certa forma, a viabilidade do controle de determinadas substâncias a determinados níveis de concentração. Entretanto, a consideração da legislação de um único país pode levar a distorções no tratamento das questões ambientais, visto que a legislação também pode refletir os interesses comerciais e políticos da região onde tem efeito, além de tender a enfatizar os problemas locais. Para evitar essas distorções na metodologia apresentada e visando um tratamento abrangente e atual da questão é interessante considerar mais de uma referência de legislação ambiental.

Inicialmente foi considerada a legislação ambiental federal brasileira. Para complementar e consolidar o estudo do tema foram considerados ainda alguns documentos legais: da legislação ambiental federal americana e da legislação ambiental européia. Não foi realizado levantamento de legislações regionais (estaduais, municipais, etc) de nenhum país. O

levantamento extensivo e detalhado da legislação ambiental estrangeira não foi realizado pois foge ao escopo desse trabalho.

As leis e normas consideradas no desenvolvimento da metodologia de avaliação ambiental são apresentadas neste capítulo. O levantamento dessas informações foi realizado de dezembro de 2001 a maio de 2002. A legislação e as normas ambientais são muito dinâmicas, sendo frequentemente revisadas ou substituídas. Neste trabalho, considera-se que as informações disponibilizadas pelos órgãos ambientais federais na internet encontram-se atualizadas no momento da consulta. Algumas páginas da internet indicam a data da última atualização, informação que está sendo considerada tanto na elaboração deste texto quanto na aplicação da metodologia.

2.4.1 LEGISLAÇÃO AMBIENTAL CONSIDERADA

Foi realizado levantamento extensivo da legislação ambiental federal brasileira aplicável à proteção do ar, da água e o solo. Milaré (2000) apresenta e comenta a legislação ambiental brasileira, mostrando o desenvolvimento da nossa legislação sob uma perspectiva histórica, os marcos e a aplicação das leis (prática e jurisprudência), com informações atualizadas até 06.01.2000.

A legislação ambiental brasileira está fragmentada em Leis, decretos, portarias e resoluções de épocas diferentes, tendo textos bastante avançados, como o da Constituição de 1988, convivendo com clareiras normativas - "verdadeiros buracos negros ambientais" (Milaré, 2000). O levantamento realizado em busca de documentos legais que controlem o descarte de substâncias perigosas pela indústria mostrou que nossa legislação está bastante incompleta neste assunto. A convivência de documentos de épocas diferentes também causa conflitos, em função do tipo de abordagem da questão ambiental. Como exemplo, pode-se citar que até bem recentemente, a hoje denominada Lei de Proteção à Fauna era chamada de Código de Caça, buscando a proteção da fauna apenas para uma atividade – a caça. Há o Anteprojeto da Lei de Consolidação da Legislação Ambiental Brasileira na Câmara dos Deputados, que busca consolidar e eliminar as superposições, inconsistências e contradições existentes entre os diferentes diplomas legais. Entretanto, o ideal seria criar o Código Ambiental Brasileiro onde, além da consolidação das leis, haveria espaço para as inovações necessárias. (Milaré, 2000)

A CETESB (2002) disponibiliza na internet documentos selecionados da legislação ambiental brasileira e paulista com acesso ao texto completo dos documentos citados (www.cetesb.sp.gov.br). As resoluções Conama são disponibilizadas pelo Ministério do Meio Ambiente - MMA (www.mma.gov.br) na internet .

A legislação ambiental federal americana foi analisada com foco no tratamento dado às substâncias perigosas, desde sua identificação até o controle realizado sobre as indústrias que utilizam ou produzem essas substâncias. A legislação ambiental pode ser encontrada nas páginas da internet da US EPA, Agência de proteção ambiental americana (www.epa.gov), que apresenta as principais leis, fornecendo acesso aos textos completos dessas leis e também a diversos manuais e relatórios que explicam a aplicação das leis. Aproximadamente 18 leis ou estatutos formam a base legal para atuação da US EPA. Destes, os mais relevantes no controle do descarte de substâncias tóxicas pela indústria são (US EPA, 2001; Energetics, 1998):

- Clean air act (CAA) lei de 1970, com abordagem bastante abrangente e completa dos aspectos envolvidos no controle ambiental do ar (última revisão em 1990);
- Clean water act (CWA) lei de 1977 para o controle ambiental da água (última revisão em 1987).
- The emergency planning and community right-to-know act (EPCRA) lei de 1986 que trata dos planos de emergência em caso de acidentes e do fornecimento de informações para a comunidade sobre o uso, produção ou transporte de substâncias perigosas.
- The toxic substances control act (TSCA) lei de 1976 que trata da identificação e divulgação de características perigosas das substâncias químicas. As informações obtidas subsidiam outras leis como o CAA e o EPCRA.
- Resource Conservation and recovery act (RCRA) lei de 1976 que trata do manuseio e disposição de resíduos sólidos e resíduos perigosos.

O programa ambiental desenvolvido pela US EPA é muito abrangente e suas páginas da internet são ricas nos mais diversos tipos de informações ambientais: pesquisas, documentos legais, textos de educação ambiental, manuais para controle ambiental, dados para acompanhamento da qualidade ambiental de uma região, acesso a outras páginas de interesse, etc.

O inventário de substâncias tóxicas descartadas pela indústria (TRI - Toxic release inventory) é realizado anualmente e os resultados são disponibilizados para a população pela US

EPA. O TRI foi previsto no EPCRA em 1986 com o objetivo de fornecer informações para a comunidade sobre a quantidade e o tipo de substâncias perigosas presentes em uma região, visando a preparação para situações de emergência. Posteriormente, em 1990, dados de gerenciamento de resíduos e redução de poluentes na fonte também passaram a fazer parte do TRI. Atualmente (fevereiro de 2002), a lista contém 582 compostos e 30 categorias de compostos químicos (podendo sofrer alterações) e é utilizada pela comunidade para exigir o adequado gerenciamento dos produtos químicos. Os dados do TRI também são um indicativo do desempenho ambiental da indústria americana ao longo do tempo. (US EPA, 2002)

Na avaliação da legislação americana foi considerado ainda o relatório do perfil ambiental do refino americano preparado para o Departamento de Energia Americano - US DOE (Energetics, 1998) e outras referências da literatura.

A ação ambiental na Europa tem uma estrutura complexa formada pelas diretrizes e tratados da Comunidade Econômica Européia que são assinados pelos países e depois implementados nas legislações de cada país. Segundo Hammerton (1995), desde 1973 a comunidade vem implementando, a cada 4 ou 5 anos, programas de ação na área ambiental abordando: poluição do ar e da água, compostos químicos, vida selvagem, barulho, avaliação ambiental, informação, finanças e convenções internacionais.

O 1° programa de ação (1973) deu ênfase na necessidade de estabelecer objetivos de qualidade ambiental uniforme nos estados membros. O 5° programa de ação (previsto para o período 1993-2000) teve por objetivo reforçar e revisar os controles existentes (onde necessário) e aumentar a cooperação entre a indústria e setores públicos visando a adoção de medidas voluntárias (Hammerton, 1995). O 6° programa de ação ambiental coloca em destaque até 2010: alterações climáticas; natureza e biodiversidade; ambiente e saúde; gestão de recursos naturais e resíduos, propondo como linha de ação a melhoria da aplicação da legislação ambiental e trabalho em parceria com o mercado e os cidadãos. Uma das inovações propõe o desenvolvimento de um mercado de produtos que respeitem o ambiente em todo seu ciclo de vida. (União Européia, 2002)

Os instrumentos ambientais utilizados incluem a legislação ambiental (diretivas, regulamentos e decisões), taxas ambientais, rótulo ambiental, inspeções, incentivos, etc, observando-se a tendência por uma maior diversificação dos instrumentos ambientais. Em 1995 foi instituída a Agência Européia do Ambiente, cujas principais funções são levantar dados de

qualidade ambiental e promover sua divulgação, além de realizar a comparação destes dados a nível europeu. Apesar da agência ter competência somente consultiva, seu trabalho é importante na adoção de novas medidas e também na avaliação das medidas adotadas. A agência encontra-se aberta aos países que não são membros da comunidade. (União Européia, 2002)

A legislação européia é disponibilizada em 11 idiomas na internet (europa.eu.int/eurlex), incluindo os tratados, o Jornal Oficial da Comunidade Européia, questões encaminhadas pelo Parlamento e as legislações em vigor e em tramitação. A forma e rapidez da implementação das diretrizes da comunidade européia dependem da habilidade da estrutura administrativa de cada país de absorver e implementar as modificações propostas. Considerando a legislação com atuação no controle de substâncias perigosas para o meio aquático destacam-se:

- A Diretiva 76/464/CEE relativa à poluição causada por substância perigosas no meio aquático, que até o início dos anos 90 gerou outras dez diretivas para o controle ambiental de 13 substâncias através da adoção de valores limite de emissão (Hammerton, 1995).
- O Regulamento de avaliação e controle de substâncias existentes (nº 793/93, CEE) que lista as substâncias produzidas e vendidas em grande volume na Europa.
- A Diretiva 2000/60/CE, que estabelece um quadro de ação comunitária no domínio da política da água, apresentando uma abordagem mais global da gestão das águas. Quando as disposições desta diretiva tiverem sido executadas a Diretiva 76/464/CEE será revogada.

A legislação ambiental européia é bastante dinâmica. As diretivas sofrem diversas emendas ao longo do tempo e dão origem a outras diretivas mais específicas. É trabalhoso e um pouco complicado reunir as informações atualizadas e completas de um determinado assunto (como por exemplo, a legislação sobre descarte de substâncias perigosas).

2.4.2 REGISTRO DE NOVAS SUBSTÂNCIAS

O Chemical Abstracts Service (CAS) é uma divisão da American Chemical Society, instituição reconhecida internacionalmente que indexa informações científicas (patentes, revistas científicas, anais de congressos, etc) e cadastra substâncias químicas. Levantamento realizado em abril de 2002 na internet (www.cas.org) mostrou que já foram registradas mais de 37 milhões de

"substâncias" e que atualmente esse número tem sido crescente, com o cadastro de uma média de 11 mil "substâncias" ao dia.

Os registros do CAS foram acompanhados diariamente no período de 8.04.02 a 12.04.02 e observou-se um acréscimo de em média 13,7 mil "substâncias" ao dia. O conceito de "substância" utilizado pelo CAS é muito abrangente e inclui: substâncias orgânicas e inorgânicas, metais, ligas, minerais, organometálicos, elementos, isótopos, partículas nucleares, ácidos nucléicos, proteínas, polímeros e materiais não estruturados (ACS, 2002). O registro CAS é uma referência amplamente utilizada para a identificação de substâncias químicas pois cada número é específico e designa apenas uma "substância".

Esses dados mostram a grande quantidade de substâncias com que convivemos e que juntamente com os benefícios trazidos, podem causar danos à nossa saúde ou ao meio ambiente.

2.4.3 FATORES QUE CONFEREM PERICULOSIDADE ÀS SUBSTÂNCIAS

Uma substância perigosa é aquela que apresenta risco de dano à saúde das pessoas ou ao meio ambiente, em função de suas características físicas, químicas ou biológicas. As características que conferem periculosidade às substâncias são (ABNT, 1987; Estados Unidos, 1990):

- □ patogenicidade □ reatividade (incompatibilidade, explosividade);
- □ corrosividade; □ toxidade aguda ou crônica;
- inflamabilidade;
 possibilidade de bioacumulação ou alteração significativa das características químicas e físicas do ambiente (formação de névoa e acidificação, por exemplo).

Substâncias tóxicas são aquelas que causam danos agudos ou crônicos à saúde, dependendo das condições da exposição (concentração, quantidade, tempo, forma de contato, efeito sinérgico com outros contaminantes, etc), podendo apresentar um ou mais dos seguintes efeitos (Goes, 1991):

- Comportamentais: instabilidade emocional, irritabilidade, nervosismo, distúrbios psicomotores e de memória;
- Cancerígenos: pulmões, medula óssea, pele e outros órgãos;
- Pulmonares: bronquite, enfisema pulmonar;

- No sistema nervoso: degeneração dos neurônios;
- De reprodução: abortos, mortalidade de bebês, malformações cardiovasculares, anomalias congênitas e alterações nos genes;
- Outros: fadiga, náuseas, dor de cabeça, tontura, dermatites, etc;

Diversas são as instituições em todo o mundo que trabalham na obtenção de dados para caracterização da periculosidade das substâncias, determinação do grau do risco envolvido em sua utilização, regras para proteção pessoal e determinação de procedimentos de contenção e atendimento em casos de emergência (inclusive os primeiros socorros).

O conjunto de medidas e conhecimento envolvidos no manuseio seguro de substâncias perigosas requer a atuação de profissionais das áreas de saúde e tecnologia (médicos, biólogos, engenheiros de segurança e outras especialidades). É importante notar que todas essas questões estão fortemente relacionadas com a engenharia ambiental e que a tendência é de uma atuação cada vez mais integrada entre as áreas de meio ambiente, saúde e segurança.

A avaliação dos dados de periculosidade das substâncias gera uma série de padrões e recomendações adotados internacionalmente pelas mais diversas instituições (agências governamentais, indústrias, organizações de classe, etc). A intensidade e o tipo de dano causado pelas substâncias químicas permite que elas sejam classificadas de acordo com sua periculosidade e que sejam definidas as quantidades aceitáveis em que as substâncias podem ser descartadas para o ambiente sem causar danos. Esses dados são fontes de referência para elaboração da legislação ambiental e legislação relativa à segurança no trabalho. Como por exemplo, pode-se citar a norma brasileira regulamentadora de segurança e medicina no trabalho (NR-15), que recepcionou os limites de tolerância definidos pelo ACGIH (American Conference of Governamental Industrial Hygienists). Esses limites de tolerância também foram adotados por legislações de outros países (Sax e Lewis, 1988).

Dentre as diversas fontes de referência com dados de substâncias perigosas destaca-se o livro de Sax e Lewis (1988) que apresenta informações de mais de 20 mil substâncias, incluindo códigos de identificação (CAS e outros), sinônimos, propriedades físicas, dados de toxidade, resumos de informações, padrões, recomendações e uma indicação das substâncias citadas nas listas de controle da US EPA. Há ainda bancos de dados informatizados (com dados em CD ou

via internet) que fornecem rapidamente dados de uma grande variedade de substâncias. Também são importantes as referências setoriais e de linguagem mais acessível (menos técnica), como por exemplo o manual elaborado por Goes (1991), que apresenta uma relação de substâncias presentes na indústria do petróleo, com dados de suas propriedades, grau de insalubridade, limites de tolerância, potenciais danos à saúde e tratamento indicado

A seguir são apresentados aspectos da poluição do ar, água e solo sob a perspectiva da legislação ambiental vigente, com destaque para os documentos que listam os poluentes mais perigosos e permitem um controle mais efetivo dessas substâncias.

2.4.4 POLUENTES DO AR

2.4.4.1 Aspectos gerais da poluição do ar

Considera-se nesse item uma breve introdução aos principais aspectos relacionados com a poluição do ar. Os efeitos da poluição atmosférica dependem de diversos fatores, conforme apresentado na Figura 2.10:

- Condições favoráveis ou não para a dispersão dos poluentes, que dependem da topografia, do clima, da altitude, das condições metereológicas, etc;
- Tipo, característica e quantidade das substâncias nas emissões, bem como do efeito sinérgico entre os poluentes e as reações fotoquímicas que ocorrem na atmosfera.

Figura 2.10 Aspectos da poluição do ar.

As fontes de poluição do ar dividem-se em quatro grandes grupos:

- □ as fontes móveis (automóveis, ônibus, etc), mais críticas nos grandes centros urbanos;
- as fontes fixas de combustão (caldeiras, fornos, etc), mais críticas na presença de parques industriais;
- emissões gerais provenientes de: tanques de armazenamento de produtos voláteis, produtos em uso (solventes, tintas, combustíveis), estações de tratamento de efluentes, má vedação de *vents*, drenos, válvulas, torres de resfriamento, etc;
- emissões naturais: como as emissões vulcânicas (cinzas e gases), os processos microbiológicos, pólen, poeira, radioatividade natural, etc.

Os problemas decorrentes da poluição do ar podem ter escala global como: o efeito estufa (causado principalmente pelas emissões de CO_2 e metano) resultando em mudanças climáticas; a destruição da camada de ozônio pelos clorofluorcarbonos (CFCs) com maior efeito sobre a Antártida; chuva ou deposição ácida (pH inferior a 5,6) com efeitos na fauna e na vegetação principalmente dos países mais industrializados (Lora, 2000). A poluição de grandes cidades, decorrente principalmente da queima de combustíveis, pode causar diversos problemas de saúde (ligados principalmente ao sistema respiratório), formação de névoa (com redução da visibilidade), etc. Problemas locais típicos resultantes da poluição do ar vão desde desconforto e irritação à intoxicação, sendo causados por odores, material particulado em suspensão, substâncias químicas tóxicas liberadas pelas indústrias ou resultantes de combustão, ou ainda de reações fotoquímicas na atmosfera. Outros efeitos locais importantes são danos a fauna, a flora e ao patrimônio físico e cultural (de valor histórico, artístico, arquitetônico, urbanístico, ecológico, turístico, científico, etc).

2.4.4.2 Legislação federal brasileira para o controle da poluição do ar

No controle da poluição do ar, a legislação ambiental brasileira abrange os seguintes aspectos (Milaré, 2000):

- Controle das fontes móveis de poluição através da especificação dos combustíveis e melhoria dos motores;
- Identificação e adoção de medidas para evitar episódios agudos de poluição do ar (Resolução Conama 03/90).;

- □ Zoneamento urbano e industrial;
- Controle da qualidade do ar através da determinação de padrões primários e secundários de qualidade (Resolução Conama 03/90) para: partículas totais, partículas inaláveis (menores que 10μm), dióxido de enxofre (SO₂), dióxido de nitrogênio (NO₂), monóxido de carbono (CO), ozônio (O₃) e fumaça.
- □ Licenciamento ambiental;
- □ Limites de emissão em fontes fixas de poluição do ar para partículas totais, dióxido de enxofre (SO₂) e fumaça (Resolução Conama 08/90);
- Restrição ao uso e comercialização de CFCs (clorofluorcarbonos). Cadastramento e inventário quantitativo anual da compra e utilização dos CFCs (Resolução Conama 267/2000);
- □ Controle da poluição por tabagismo;
- □ Uso de fogo na agricultura;
- Crime de poluição atmosférica e infração administrativa

Há dois programas nacionais específicos para o controle de qualidade do ar, lançados por resoluções Conama: o PROCONVE, de 1986, que visa reduzir a poluição do ar por veículos automotores (Resolução Conama 18/86) e o PRONAR, de 1989, que estabeleceu o Programa Nacional de Qualidade do Ar (Resolução Conama 05/89). São instrumentos do PRONAR: os padrões de qualidade do ar, os limites de emissão, o PROCONVE, o PRONACOP (Programa Nacional de Controle da Poluição Industrial) e os programas estaduais. (Milaré, 2000) O PRONAR define, entre outras ações, que em médio prazo deve ser implantada a rede nacional de monitoramento do ar e deve ser criado o inventário nacional de fontes e emissões.

Analisando a abrangência e aplicação da legislação ambiental brasileira para o controle da poluição atmosférica e ainda comparando com algumas legislações estrangeiras, verifica-se que há bastante trabalho a ser feito para que tenhamos um conjunto de regras consolidadas e abrangentes. De modo geral, identifica-se facilmente a falta de um programa de redução progressiva da emissão de poluentes atmosféricos industriais e de um programa para o registro e controle de emissões de produtos tóxicos. O monitoramento da qualidade do ar e o levantamento de fontes e emissões já estão previstos na legislação, mas ainda são poucas as informações disponíveis. Milaré (2000) cita a falta de estudos e disponibilidade de dados de custos decorrentes da poluição do ar.

Nas normas regulamentadoras do Ministério do Trabalho é que encontramos, dentro dos documentos legais brasileiros, uma lista mais abrangente com restrições para emissão de produtos perigosos pela indústria. A NR-15, que trata de "Atividades e operações insalubres", apresenta em seu anexo 11 os limites de tolerância para uma série de substâncias químicas. Considera-se que a exposição de um trabalhador a concentrações maiores do que as estabelecidas (por período definido de tempo) caracteriza uma situação de dano à saúde e, portanto, insalubridade. A concentração e o tempo de exposição permitido para uma substância dependem de suas características tóxicas, de suas propriedades físico-químicas e outras características que determinem o risco potencial à saúde das pessoas. Dependendo desse risco é determinado o "grau de insalubridade" que apresenta 3 níveis: mínimo, médio e máximo. Esse grau é relacionado com o adicional a ser pago ao salário do funcionário que trabalha nestas condições. As informações do anexo 11 da NR-15 permitem ainda determinar as situações de risco grave ou iminente. Apesar da NR-15 não citar a poluição atmosférica, os dados apresentados no anexo 11 estão diretamente ligados à poluição local do ar e riscos de dano à saúde das pessoas. Na NR-15 o risco ao meio ambiente não é considerado, mas em muitos casos uma substância que apresenta riscos à saúde também apresenta riscos ao meio ambiente e vice-versa.

2.4.4.3 Periculosidade das substâncias nocivas ao ar em legislação estrangeira

Na busca de uma referência consistente, reconhecida e atual para indicação do grau de periculosidade das substâncias nocivas ao ar foram consultadas: a legislação federal americana (mais especificamente o *Clean Air Act*) que é uma referência internacionalmente reconhecida e a legislação para o controle da poluição do ar na Suíça, utilizada por Heinzle et al.(1998).

O *Clean Air Act* (CAA) é a lei federal americana que trata de todos os aspectos relativos ao controle da qualidade do ar e regulamentação de emissões de fontes móveis e estacionárias. A lei é de 1970, tendo sido revisada em 1977 e 1990. A lei de 1970 estabeleceu, entre outros aspectos, os padrões nacionais de qualidade do ar e especificação para os combustíveis com relação a teores de enxofre e chumbo. A emenda de 1990 regulamentou as questões relativas a: chuva ácida, ozônio troposférico, destruição da camada de ozônio e emissões tóxicas para a atmosfera. Nessa época também foram revisados os padrões de qualidade do ar e as especificações dos combustíveis. (Energetics, 1998; US EPA, 2001a)

O *Clean Air Act* apresenta uma lista inicial de 188 substâncias químicas, classificadas como *hazardous air pollutants* (HAP), ou seja, poluentes gasosos perigosos. Os compostos que fazem parte dessa lista têm grande potencial de causar danos à saúde das pessoas ou ao ambiente, pois são substâncias carcinogênicas, mutagênicas, teratogênicas, neurotóxicas ou capazes de causar intoxicação aguda ou crônica. A lista dos HAP pode ser revisada para inclusão de outras substâncias comprovadamente perigosas a saúde, ou até mesmo a retirada de substâncias que já fazem parte da lista.

As emissões dos HAP devem ser informadas anualmente pelas indústrias americanas à agência ambiental federal americana (US EPA). A US EPA está desenvolvendo padrões nacionais de emissão para os HAP, com base em estudos que avaliam as melhores tecnologias disponíveis para o controle desses poluentes (MACT – *maximum achievable control technology*). Está previsto que, com a determinação desses padrões, as refinarias americanas deverão instalar equipamentos de controle e realizar manutenção nas unidades de modo a reduzir as emissões de HAP em 98 %. O impacto econômico da implantação dessas medidas deve ser significativo e envolve também terminais de petróleo e outros ramos da indústria. (Energetics, 1998)

Substâncias classificadas pelo CAA como poluentes comuns (*criteria air pollutants*, que são: NO₂, SO₂, O₃, CO, chumbo e materiais particulados), não fazem parte da lista dos HAP. Esses poluentes e os VOC (compostos orgânicos voláteis) devem atender padrões específicos de qualidade do ar estabelecidos pelo CAA. Os VOC são controlados pois são precursores da formação de ozônio troposférico.

A Lei de Controle da poluição do ar da Suíça (LRV) regula as emissões preventivas das fontes poluentes (móveis, estacionárias, incineradores) e trata do licenciamento ambiental, da especificação de combustíveis e dos padrões de qualidade do ar, determinando também as medidas para evitar episódios agudos de poluição. Todas essas informações estão reunidas em uma única Lei de 1985, que foi revisada em 1991 e 1997. A Lei Suíça é abrangente e rica em detalhes e especificações técnicas.

É interessante observar que apesar da Suíça ser um país pequeno, a abordagem da Lei com relação a emissões de poluentes atmosféricos é muito completa. Talvez isso ocorra porque a Suíça é um país muito industrializado localizado no centro da Europa, cercado de países também industrializados e com condições não muito favoráveis para dispersão de poluentes. Segundo o World Factbook (CIA, 2001), a Suíça tem problemas de poluição atmosférica causados por chuva ácida, emissões de veículos e incineração.

Os limites de emissão de substâncias químicas são apresentados em 3 anexos da Lei de Controle da poluição do ar da Suíça. No anexo 1 são abordados limites gerais de emissão, o anexo 2 trata de limites de emissão adicionais ou específicos dependendo do tipo de indústria (minerais não metálicos, química, petróleo, metalurgia, alimentação e agricultura, tintas) ou outras instalações (como por exemplo, incineradores) e o anexo 3 traz os limites adicionais ou especiais relativos à queima de combustíveis (gás, óleo combustível, carvão, madeira). Os limites de emissão apresentados no anexo 1 tem por objetivo o controle preventivo das emissões de fontes estacionárias. Neste anexo são apresentados limites para:

- □ Material particulado;
- Substâncias inorgânicas presentes em material particulado (19 substâncias e seus compostos, divididos em 3 classes);
- □ Substâncias inorgânicas voláteis ou gases (13 substâncias divididas em 4 classes);
- Substâncias orgânicas voláteis (VOC), gasosas ou particuladas (105 substâncias divididas em 3 classes);
- □ Substâncias carcinogênicas (34 substâncias divididas em 3 classes).

Os limites para as substâncias acima citadas são estabelecidos com a consideração da vazão da emissão e do grau de periculosidade da substância descartada. As substâncias foram divididas em classes, conforme indicado na lista acima, e para classe é definido um limite específico de emissão.

2.4.5 POLUENTES DA ÁGUA

2.4.5.1 Aspectos da poluição das águas

Considera-se neste item uma breve introdução aos principais aspectos relacionados com a poluição da água. Embora a água seja um recurso abundante na terra, apenas 2,6 % de toda a água disponível é doce e grande parte dela está em geleiras ou em reservatórios subterrâneos.

Estima-se que da água doce: 0,4 % se encontra na atmosfera ou em águas superficiais continentais e 22,4 % são águas subterrâneas (Milaré, 2000). Verifica-se então que, apesar da grande quantidade de água existente e da sua importância para a vida, a percentagem disponível para consumo é pequena e está distribuída de forma desigual pelos continentes.

No Brasil, país com grande abundância de água, pode-se identificar dois tipos de problemas: regiões carentes de água, como o Nordeste do país, em função das características geográficas da região; problemas de abastecimento em grandes núcleos populacionais, como por exemplo, a cidade de São Paulo, resultado da má gestão e falta de preservação dos recursos hídricos disponíveis. (Milaré, 2000)

A Figura 2.11 mostra a diversidade de usos para a água e os resíduos que são gerados a partir desses usos. A falta de preservação das características naturais do meio (como matas ciliares e das cabeceiras dos rios, percurso dos rios, profundidade e cristalinidade da água, prevenção à erosão, etc) e o lançamento de substâncias químicas e dejetos orgânicos geram o desequilíbrio ambiental e a deterioração da qualidade da água, limitando a possibilidade de uso da água para fins mais nobres (consumo humano, manutenção do equilíbrio ecológico, etc) trazendo uma série de problemas.

Usos da água

Figura 2.11 Diversidade de usos da água e os resíduos gerados (poluição da água).

O lançamento de rejeitos e a falta de cuidado com a preservação das características naturais do meio causam diversos problemas ambientais. A seguir são citadas algumas características típicas de rejeitos descartados e também os efeitos da poluição gerada (Lora, 2000):

- Nutrientes (principalmente fósforo e nitrogênio) que são indispensáveis para o crescimento dos microorganismos e da vegetação, mas que em excesso causam a eutrofização de rios (lagos, etc), levando ao crescimento descontrolado de algas e outros organismos que consomem o oxigênio disponível;
- Matéria orgânica biodegradável (carboidratos, proteínas, gorduras, etc), proveniente principalmente de esgotos domésticos, que levam ao consumo do oxigênio dissolvido na água para sua degradação;
- Óleos, que formam uma camada fina sobre a água prejudicando as trocas gasosas entre o ar e a água (e, portanto, a oxigenação da água);
- Sólidos em suspensão, que provocam a deposição de lodo e podem levar a condições anaeróbias;
- De Microorganismos patogênicos, que podem causar diversas doenças contagiosas;
- Sais, detergentes, desinfetantes, água quente e outras substâncias que alteram as características físico-químicas dos corpos hídricos (pH, temperatura, salinidade, espuma, cor, odor, etc) causando desequilíbrios ecológicos localizados;
- Substâncias químicas tóxicas ou cancerígenas (provenientes da indústria, da agricultura ou do descarte indevido de embalagens e produtos químicos) que causam uma série de problemas à saúde das pessoas e a fauna e flora em geral;
- Metais pesados, que além de tóxicos e carcinogênicos, acumulam-se nos organismos em concentrações maiores à medida que se avança na pirâmide alimentar;

Nos itens citados verifica-se que diversos poluentes podem levar ao consumo do oxigênio dissolvido na água e causar a morte de peixes, plantas aquáticas, e outros organismos aeróbios. Essa situação pode ainda gerar condições anaeróbias com consequente formação de odores.

A poluição das águas tanto pode ser causada por fontes pontuais (lançamento de efluentes de cidades e indústrias) como também por fontes dispersas e de menor vazão porém considerável risco ambiental. São exemplos de fontes dispersas as contaminações causadas por pesticidas e adubos usados na agricultura e os efluentes originados em aterros de resíduos que chegam a permear pelo solo atingindo um aquífero. Outra fonte dispersa que pode ter contribuição importante são as águas com característica de chuva ácida. (Hammerton, 1995)

Segundo Milaré (2000), as patologias que estão relacionadas com a água representam cerca de 80 % das doenças humanas. São as doenças chamadas "de veiculação hídrica", ocasionadas não só pela ingestão de águas poluídas mas também por vetores, mosquitos ou transmissores que se desenvolvem na água em algum período de sua vida.

2.4.5.2 Legislação federal brasileira para o controle da poluição das águas

A legislação brasileira protege o recurso água, o que inclui a água dos rios, lagos, mares, águas subterrâneas e todo o ecossistema aquático formado pelos seres vivos e não vivos que habitam essas águas. Dependendo da localização e do percurso percorrido, as águas são de domínio federal ou estadual. Pela Constituição de 1988, são de domínio federal os rios que percorrem mais de um estado e fazem fronteira ou percorrem países vizinhos, assim como a plataforma continental e o mar territorial brasileiro. Os municípios não têm domínio sobre as águas, mas podem contribuir para proteção das águas já que têm competência para legislar sobre a proteção da fauna, da flora e do meio ambiente.

No controle da poluição das águas a legislação brasileira trata dos seguintes aspectos (Milaré, 2000):

- Proibição de construções capazes de poluir ou inutilizar as águas de poços e nascentes (Código das Águas de 1934);
- □ Preservação de vegetação ao longo de rios, lagos, etc;
- Classificação das águas em doces, salobras e salinas com padrões de qualidade definidos em função do uso previsto (Resolução Conama 20/86);
- Padrões de lançamento de substâncias tóxicas, sais, nutrientes, carga orgânica, óleos, turbidez, pH, temperatura e outros parâmetros (Resolução Conama 20/86);
- □ Licenciamento ambiental;
- Localização de indústrias potencialmente poluidoras;

- Comercialização e uso de dispersantes químicos nas ações de combate ao derramamento de óleo; proibição do uso de detergentes não biodegradáveis;
- □ Gestão dos recursos hídricos por bacias hidrográficas (Lei 9433 de 1997);
- Proibição de embarcações de lançarem óleos ou detritos em águas brasileiras (interiores ou litorâneas);
- Prevenção à poluição causada por navios;
- Proibição da pesca de cetáceos em águas brasileiras;
- Crime de poluição hídrica e infração administrativa.

A Resolução Conama 20/86 estabelece os padrões de qualidade da água em função do uso pretendido (abastecimento doméstico, preservação do equilíbrio natural, recreação, irrigação, criação de animais, navegação e outros) definindo nove classes para as águas. Dependendo da salinidade, as águas são divididas em águas doces (classe especial e classes 1 a 4), salinas (classes 5 e 6) ou salobras (classes 7 e 8). A resolução também determina os padrões aceitáveis para lançamento de efluentes (pH, temperatura, materiais sedimentáveis, valores máximos admissíveis de contaminantes, etc), desde que esse lançamento não altere a qualidade de água do corpo receptor conforme definido pela sua classificação. Não é permitido o lançamento de efluentes nos mananciais sub-superficiais.

Para os padrões de lançamento deve-se ainda considerar a legislação local, visto que os órgãos de controle ambiental podem estabelecer parâmetros mais restritivos (ou até menos restritivos) conforme as condições locais. Von Sperling e Nascimento (1999) realizaram estudo comparativo de 14 legislações ambientais estaduais, em que se verifica que 4 adotaram a resolução Conama 20/86 enquanto que os outros 10 estados implementaram legislação local com parâmetros iguais (na maioria) ou mais restritivos que a resolução Conama 20/86. O estudo mostrou ainda que a legislação do Rio Grande do Sul inova ao estabelecer valores inferiores de DBO, DQO e sólidos em suspensão para efluentes com maior vazão (princípio de lançamento por carga poluidora).

A Lei 9433 de 1997 trouxe avanços significativos para a preservação e uso sustentado das águas ao instituir a Política Nacional de Recursos Hídricos com os seguintes instrumentos: outorga (para captação, lançamento, etc) e cobrança pelo uso da água, enquadramento dos corpos d'água, planejamento de uso dos recursos e sistemas de informações. Essa lei também criou o

Sistema Nacional de Recursos Hídricos que conta com a participação do Ministério do Meio Ambiente e os conselhos, comitês de bacia, agências de águas e órgãos do governo com atuação tanto a nível federal quanto estadual, estabelecendo um sistema de gestão descentralizada e participativa. Os comitês de bacia estabelecem prioridades, critérios de outorga e custos definindo a gestão da água em toda a bacia (rio principal e afluentes). Como esses rios muitas vezes atravessam diversos municípios e estados, as decisões do Comitê da Bacia podem ter influência em nível municipal, estadual e federal. É uma nova maneira de "organização e decisão", com participação da sociedade (representantes das indústrias, ONGs, governo...). Nas bacias em que os rios estejam comprometidos deve ser elaborado pelo Comitê um "pacto para redução da poluição" com metas e prazos pré-estabelecidos.

2.4.5.3 Periculosidade das substâncias nocivas à água em legislação estrangeira

Na busca de uma referência consistente, reconhecida e atual para indicação do grau de periculosidade das substâncias nocivas à água foram consultadas: a legislação federal americana (mais especificamente o *Clean Water Act*) que é uma referência internacionalmente reconhecida, a regulamentação para classificação de substâncias perigosas para a água na Alemanha (utilizada por Heinzle et al., 1998) e a legislação européia para ação comunitária no domínio da água.

O *Clean Water Act* é a legislação federal americana que trata dos aspectos relativos ao controle de qualidade da água. A lei é de 1977, tendo sido revisada em 1977 e 1987 com foco nos poluentes tóxicos. A lei estabeleceu, entre outros aspectos, os limites de descartes de substâncias nos efluentes, padrões de qualidade da água e tratamentos requeridos para substâncias tóxicas. (US EPA, 2001b)

A VwVwS é a regulamentação administrativa da Alemanha sob o WHG – *Federal Water Act* que classifica as substâncias perigosas à água em classes de periculosidade (*water hazard classes* – WGK). São consideradas substâncias perigosas aquelas que possam deteriorar de modo persistente as propriedades físicas, químicas ou biológicas da água. A VwVwS foi publicada e entrou em vigor em 1999, em substituição à regulamentação anterior (de 1996) que já permitia a classificação de 60 % das substâncias listadas na diretiva européia de controle de substâncias (793/93/CEE).

A VwVwS vigente permite o aumento do número de substâncias classificadas e simplifica a comunicação com a legislação européia facilitando o comércio internacional. É previsto também um procedimento baseado na legislação européia de substâncias perigosas que permite ao mercado (produtores, distribuidores, etc) obter a classificação WGK para as substâncias comercializadas, aumentando sua independência e responsabilidade. A substância classificada deste modo deve ser informada ao órgão competente para registro e publicação (Agência Ambiental Alemã, 2002).

O anexo 1 da VwVws traz a lista de substâncias que não são perigosas à água. O anexo 2 traz uma lista de substâncias perigosas para as águas classificadas em 3 níveis:

WGK 1: substâncias pouco perigosas,

WGK 2: substâncias perigosas,

WGK 3: substâncias muito perigosas.

As listas dos anexos 1 e 2 para 1914 substâncias foram obtidas na internet em março de 2002. Conforme indicação na página consultada, essas informações foram atualizadas em 28 de novembro de 2000 (http://www.umweltbundesamt.de/wgs-e/wgs-index.htm).

As substâncias não listadas nos anexos 1 e 2 devem ser classificadas de acordo com o procedimento baseado na legislação européia (Anexo 1 da Diretiva 67/548/CEE) que é apresentado no anexo 3 da VwVwS. O procedimento utiliza dados básicos de toxidade, potencial de bioacumulação e biodegradabilidade que são comparados com uma série de critérios e resultam na pontuação da substância e sua classificação WGK. O anexo 4 apresenta o método para classificação de misturas.

A Diretiva 2000/60/CE estabelece um quadro para ações da comunidade européia no domínio da política da água. O anexo X dessa diretiva apresenta uma lista de substâncias prioritárias para as quais devem ser previstas ações que resultem na redução gradual de descartes, emissões e perdas. As substâncias prioritárias são aquelas que apresentam um risco significativo para o ambiente aquático. Na lista do anexo X são identificadas ainda as substâncias perigosas prioritárias, para as quais devem ser previstas ações que resultem na cassação ou eliminação gradual de descartes, emissões e perdas decorrentes das atividades humanas num prazo de 20 anos.

A primeira lista de substâncias prioritárias, contendo 33 substâncias ou grupos, foi publicada na Decisão 2455/2001/CE do parlamento europeu e do conselho alterando a Diretiva 2000/60/CE. Essa lista foi definida com base no procedimento apresentado na diretiva, que considera dados de toxidade, monitoramento de situações de contaminação ambiental (em grandes acidentes) e elementos que indiquem a possibilidade de significativo dano ambiental (como por exemplo, volume de produção e utilização da substância). A lista também considera a legislação da comunidade européia sobre substâncias perigosas e os acordos internacionais.

2.4.6 POLUENTES DO SOLO

2.4.6.1 Aspectos gerais da degradação do solo

Considera-se nesse item uma breve introdução aos principais aspectos relacionados com a degradação (contaminação, destruição, perda de fertilidade, etc) do solo. O solo tem diferentes significados conforme seu emprego na ecologia (como habitat da fauna e da flora), geologia (recursos minerais, etc), agricultura e pecuária, física e geografia (Milaré, 2000).

O planejamento do uso e conservação do solo é um fator importante para o desenvolvimento do país, devido à sua relação com as atividades produtivas, econômicas, sociais e também com a preservação da qualidade do ambiente e da biodiversidade. Deve-se enfatizar a importância das bacias hidrográficas como unidades que permitem o planejamento regional (estabelecimento de atividades produtivas e uso de recursos naturais) em harmonia com o entorno, as características dos núcleos populacionais e a vocação geoeconômica da região (Milaré, 2000).

O planejamento do uso do solo deve considerar que o solo é um recurso natural, espaço social e receptor de resíduos. O solo como recurso natural é o suporte da fauna e da flora (ecossistemas), fonte de minérios e suporte para produção de alimentos, extração de madeira, criação de animais, etc. O aspecto do solo como espaço social está ligado à ocupação do solo com cidades, indústrias, áreas rurais, estradas, hidrelétricas e também com áreas de preservação ambiental. O solo também é o receptor de resíduos domésticos, industriais, hospitalares, da agricultura e da pecuária, além dos resíduos radioativos. A falta de um planejamento adequado do uso do solo e gestão dos resíduos gerados por essas atividades pode causar diversos danos ambientais:

- contaminação do solo com pesticidas, adubos, produtos químicos ou radioativos ou microorganismos patológicos;
- contaminação das águas subterrâneas;
- devastação de grandes áreas com queimadas;
- desequilíbrio ecológico com dano à fauna e à flora e qualidade de vida e saúde das pessoas;
- exaustão de nutrientes e microorganismos que degradam a matéria orgânica, alterando as características físico-químicas do solo e causando a perda de fertilidade, seca e outros desequilíbrios.
- erosão, assoreamento de rios, inundações, redução da disponibilidade de água (principalmente se forem afetadas regiões de mananciais e as margens dos rios).

Entre os problemas atuais relacionados com a poluição do solo destaca-se a disposição inadequada de diversos resíduos industriais ao longo de anos de atividade produtiva, gerando grandes passivos ambientais. Esses resíduos devem ser removidos, tratados e adequadamente dispostos, o que normalmente implica em custos elevados. Deve-se verificar ainda se o solo não foi contaminado com substâncias que percolaram do depósito. Caso afirmativo, deve-se proceder a remediação da área com cuidado especial para a proteção dos aquíferos.

2.4.6.2 Legislação federal brasileira para o controle da degradação do solo

Na organização do uso e controle da degradação do solo a legislação brasileira trata dos seguintes aspectos (Milaré, 2000; Lora, 2000):

- □ Criação de áreas de preservação pelo poder público (Constituição de 1988);
- Proteção da vegetação ao longo de rios em mananciais e das propriedades físicas do solo sobre morros, serras, montanhas, encostas e chapadas (Código Florestal de 1965);
- Zoneamento agroecológico para ordenar ocupação pelas atividades produtivas. A Política agrícola (Lei 8171 de 1991) estabelece que as bacias hidrográficas constituem-se em

unidades básicas de planejamento do uso, conservação e recuperação de recursos naturais, o que inclui o solo.

- Proibição do uso de fogo em florestas e demais formas de vegetação, com exceção de casos em práticas agropastoris ou florestais autorizados excepcionalmente pelo poder público (Código Florestal de 1965);
- □ Recuperação de áreas em processo de desertificação (Código Florestal de 1965);
- Regulamentação das atividades de mineração (Código de Mineração de 1967) e regulamentação da extração, industrialização, transporte e utilização de asbesto (Lei 9055 de 1995);
- Obrigação das empresas recuperarem as áreas degradadas para a exploração de minérios (Constituição de 1988 e Decreto 97632 de 1989);
- Licenciamento ambiental de indústrias, hidrelétricas, depósito de resíduos, atividades de mineração;
- Princípios gerais de uso e ocupação do solo. A construção em área urbana deve atender o plano diretor do município, leis de zoneamento e códigos de obras e edificações definidas a nível municipal.
- Classificação de resíduos em perigosos, não inertes, inertes e outros resíduos (Resolução Conama 23/96);
- Destinação de resíduos domésticos, industriais, dos serviços de saúde, portos, aeroportos e outros terminais. Destinação de cargas deterioradas ou abandonadas.
- □ Re-refino de óleos lubrificantes usados ou contaminados (Resolução Conama 09/93);
- □ Condições de manuseio e transporte de PCBs bifenilas policloradas;
- Recolhimento, pelos fabricantes e importadores, de pilhas e baterias utilizadas que contenham chumbo, cádmio, mercúrio e seus compostos para reciclagem, tratamento ou disposição final adequada (Resolução Conama 257/99);
- Controle de importação e exportação de resíduos sólidos, proibindo a importação de resíduos perigosos e de pneus pelo Brasil. Resíduos não inertes só podem ser importados após autorização do Ibama (Resolução Conama 23/96);
- □ Crime de degradação (contaminação, destruição,etc) do solo e infração administrativa.

2.4.6.3 Periculosidade de um resíduo industrial – normas brasileiras

Para padronizar a classificação de resíduos conforme sua periculosidade, a ABNT elaborou um conjunto de normas bastante abrangente. Essas normas são reconhecidas e amplamente usadas pela indústria e pelos órgãos de controle ambiental brasileiros. Por isso, não foi realizada pesquisa da legislação ambiental estrangeira visando a classificação e controle de resíduos industriais, uma vez que as normas da ABNT atendem os objetivos de identificar os descartes de resíduos com maior potencial de dano ambiental.

A NBR-10004 define resíduos como sendo os "resíduos nos estados sólido e semisólido, que resultam de atividades da comunidade de origem: industrial, doméstica, hospitalar, comercial, agrícola, de serviços e de varrição". A definição inclui ainda os lodos provenientes de tratamentos de água e efluentes e os "líquidos cujas particularidades tornem inviável o seu lançamento na rede pública de esgotos ou corpos d´água, ou exijam para isso soluções técnica e economicamente inviáveis em face à melhor tecnologia disponível". Os resíduos radioativos não são objeto desta norma, sendo competência exclusiva da Comissão Nacional de Energia Nuclear.

As normas ABNT para classificação de resíduos são listadas a seguir. Todas as normas são de 1987. Atualmente há projeto de norma para revisão da NBR-10004.

- NBR-10004, Resíduos sólidos Classificação;
- NBR-10005, Lixiviação de resíduos Procedimento;
- NBR-10006, Solubilização de resíduos Procedimento;
- NBR-10007, Amostragem de resíduos Procedimento;

A classificação dos resíduos consiste basicamente em identificar as substâncias com potencial perigoso com análise de sua origem e quantidade, visando identificar o dano que pode ser causado à saúde das pessoas e ao meio ambiente. Desta forma, os resíduos são classificados pela NBR-10004 em resíduos perigosos (classe I), não inertes (classe II) e inertes (classe III).

Os resíduos perigosos (classe I) são aqueles que apresentam periculosidade ou características de inflamabilidade, corrosividade, reatividade, toxidade ou patogenicidade conforme os critérios apresentados na NBR-10004. Os resíduos reconhecidamente perigosos constam das listas 1 e 2 da NBR-1004 e os constituintes perigosos identificados nestes resíduos são apresentados na lista 3. A lista 4 apresenta substâncias que conferem periculosidade aos resíduos, a lista 5 substâncias agudamente tóxicas e a lista 6 substâncias tóxicas. As listas 7 e 9

trazem, respectivamente, as concentrações máximas que podem ser obtidas no teste de lixiviação e na massa bruta do resíduo. Caso sejam ultrapassadas essas concentrações o resíduo é caracterizado como perigoso. Se houver compostos voláteis na amostra também deve ser usada a lista 10 para caracterizar sua periculosidade. (Todas as listas citadas acima são da NBR-10004).

Verifica-se portanto, que a classificação de um resíduo novo é trabalhosa e envolve a realização de diversos testes de laboratório. Visando tornar mais dinâmica a consulta às listas da NBR-10004 e fornecer informações adicionais sobre propriedades físico-químicas dos resíduos, compatibilidade entre resíduos e sugestões de métodos para tratamento foi desenvolvido na Universidade de Campinas o sistema informatizado "Resíduos", trabalho iniciado por Ceragioli (1998) e ampliado por Lima Jr (2001).

Os resíduos não inertes (classe II) são aqueles que não se enquadram nem na classe I (perigosos), nem na classe III (inertes), podendo apresentar propriedades de combustibilidade, biodegradabilidade ou solubilidade em água.

Os resíduos inertes (classe III) são aqueles que quando analisados pelo teste de solubilização (NBR-10006) não tem nenhum dos seus constituintes solubilizados a concentrações superiores aos padrões de potabilidade da água, conforme a lista 8 da NBR-10004 (que são valores da organização mundial de saúde), excetuando-se os aspectos de cor, turbidez e sabor.

Outras normas da ABNT tratam de aspectos relacionados com o transporte, tratamento, disposição e monitoramento de resíduos, abordando (Lora, 2000):

- Projetos de aterros sanitários e industriais;
- □ Padrões e desempenho na incineração de resíduos sólidos perigosos;
- □ Armazenamento e transporte de líquidos inflamáveis e combustíveis;
- □ Transporte de cargas perigosas;
- □ Amostragem de efluentes líquidos em corpos receptores.

2.4.7 O CONTROLE DO DESCARTE DE SUBSTÂNCIAS PERIGOSAS NO BRASIL

O panorama geral da legislação ambiental brasileira e os aspectos relevantes da legislação estrangeira consultada (visando o controle do descarte de substâncias perigosas) foram apresentados ao longo deste capítulo.

Observam-se claramente avanços nos textos e na aplicação da legislação brasileira. Se forem bem implementados mostram-se promissores para o controle mais efetivo do descarte de poluentes e preservação da qualidade do meio ambiente: o PRONAR e seus instrumentos, a política nacional de recursos hídricos com a gestão da água por bacias hidrográficas e a lei de crimes ambientais. É interessante citar ainda o programa de prevenção à poluição, que está sendo implementado em São Paulo através de acordos voluntários entre as indústrias e o órgão de controle ambiental (CETESB, 2002).

A Resolução Conama 20/86 determina que as indústrias informem ao órgão ambiental o volume e tipo de efluentes, equipamentos de tratamento e planos de emergência. O PRONAR prevê, em médio prazo, a criação de um inventário nacional de fontes e emissões. Entretanto, verifica-se que no Brasil ainda não há um inventário nacional consolidado que indique as substâncias perigosas utilizadas ou geradas pelas indústrias, as quantidades envolvidas e os descartes efetivos dessas substâncias para o ambiente. Também faltam estudos para determinação da capacidade suporte do meio e monitoramento da qualidade do ar e dos recursos hídricos. Todas essas informações, com consistente base científica, são importantes para controle da qualidade ambiental com a atual distribuição de indústrias, termelétricas, núcleos populacionais, etc). Um inventário de descartes (emissões, efluentes, resíduos) também permite o acompanhamento efetivo da atividade industrial e o planejamento, quando necessário, de programas de reduções de descartes ou minimização do uso de substâncias identificadas como potencialmente muito nocivas.

Avaliando-se a legislação ambiental brasileira com vistas ao controle de substâncias perigosas verifica-se ainda a falta de limites de lançamento para uma lista mais abrangente de substâncias e o destaque na legislação para os procedimentos a serem adotados com relação a substâncias muito perigosas utilizadas pela indústria. A legislação ambiental estrangeira consultada mostrou-se mais completa e mais preocupada com esses aspectos.

Para completar essa rápida análise e tomando por base as conclusões de Hammerton (1995) pode-se concluir que resultados bem sucedidos para o controle ambiental dependem basicamente de alguns fatores bem conhecidos como: a elaboração e aplicação efetiva de legislação ambiental coerente e fundamentada em uma base de dados consistente. Também é

importante a participação da população e a parceria dos órgãos de controle ambiental com o mercado na busca de soluções para as questões ambientais.

2.4.8 CONSIDERAÇÕES FINAIS

Neste item foram apresentadas as fontes de referência para indicar o grau de dano ambiental que pode ser causado por uma substância, ou seja, o grau de periculosidade das substâncias. Com base nas informações obtidas e analisadas, foram selecionadas as seguintes referências, cujas listagens são apresentadas no Capítulo 9.6 (com exceção da NBR-10004):

□ Substâncias nocivas ao ar:

- A lista das substâncias muito perigosas ao ar (HAP Hazardous air pollutants) apresentada no US Clean Air Act.
- A lista de substâncias com seus limites de tolerância e caracterização de insalubridade apresentada no anexo 11 da NR-15, norma brasileira do Ministério do Trabalho.
- A lista de substâncias que destroem a camada de ozônio e são controladas por legislação brasileira, apresentada nos anexos da resolução Conama 267/2000.
- □ Substâncias nocivas à água:
 - A classificação das substâncias em classes de periculosidade (WGK) da legislação ambiental alemã, constantes nos anexos 1 e 2 da VwVwS (regulamentação que classifica as de substâncias perigosas à água).
 - A lista de substâncias prioritárias que representam risco significativo para o ambiente aquático (anexo X da Diretiva 2000/60/CE da legislação ambiental européia). A primeira lista foi publicada na Decisão 2455/2001/CE do parlamento europeu e do conselho.
- Periculosidade dos resíduos industriais:
 - A classificação apresentada na norma brasileira NBR-10004.

2.5 PROCESSOS DE HIDROCONVERSÃO DE RESÍDUOS

A hidroconversão é um processo em que o resíduo da destilação de petróleo à vácuo é colocado em presença de catalisador ou aditivo, em condições de alta temperatura (entre 410 e 480 °C) e elevada pressão de hidrogênio (entre 100 e 250 bar), para promover reações de quebra das cadeias de hidrocarbonetos (craqueamento), de hidrogenação e de remoção de heteroátomos presentes na carga (S, N, O, metais Ni e V).

A hidroconversão tem por objetivo produzir destilados médios (faixa do diesel), aumentar a relação molar H/C (hidrogênio/carbono) de 1,5 na carga para 1,8 nos produtos e reduzir os teores de heteroátomos para níveis aceitáveis. A elevada relação H/C é uma propriedade desejável no diesel e no querosene de aviação pois melhora a ignição e reduz a emissão de fumaça desses motores. (Gray, 1994)

O resíduo de vácuo (RV) é a fração mais pesada da destilação do petróleo, obtida no fundo da destilação a vácuo (normalmente com ponto de ebulição acima de 500 °C). O RV é formado por longas cadeias de hidrocarbonetos, com estruturas aromáticas, grupos multifuncionais e elevados teores de heteroátomos. Essa fração normalmente representa de 10 a 30 % dos petróleos, sendo que pode chegar a 40 % ou mais dos petróleos pesados. Gray (1994) apresenta informações sobre a composição de resíduos de diversos petróleos e suas propriedades. As características do RV dos petróleos Marlim, Árabe leve / pesado são mostradas na Tabela 2.4.

RV petróleo \rightarrow	RV Árabe leve, 535 °C ⁺	RV Árabe pesado, 525 °C+	Marlim, 535 °C ⁺
Rendimento no petróleo, % v	19,1		32,6
Densidade 15 °C	1,026	1,049	1,019
Enxofre, % p	4,30	5,45	0,90
Nitrogênio total / básico, % p	0,30	0,47	0,81 / 0,35
Teores Ni / V / Ni+V, ppm	26 / 95 / 121	50 / 180 / 230	52 / 71 / 123
Resíduo Carbono*, % p	20,5 (Conradson)	26,5 (Conradson)	20,0 (Ramsbotton)
Asfaltenos em C7, % v	5,9	13,5	8,0

Tabela 2.4 Características do resíduo de vácuo (Capitani, 1996).

* O resíduo carbono indica a tendência a formação de coque do RV (ver item 2.5.1).

As alternativas para processamento de resíduos são divididas em processos de rejeição de carbono e adição de hidrogênio. Desasfaltação, coqueamento, FCC para resíduo são exemplos de processos de rejeição de carbono, caracterizados por formar subprodutos de menor valor e alta concentração de carbono (coque, por exemplo) e destilados. A hidroconversão é um processo que adiciona hidrogênio à carga resultando em maior rendimento de destilados, porém a um custo mais elevado. Dessa forma, são aspectos econômicos que favorecem um tipo ou outro de processo. O preço elevado do petróleo ou uma grande diferença entre o preço do resíduo e destilados favorecem processos de adição de hidrogênio. (Fan, 1989)

A viabilidade dos processos de conversão de resíduos depende principalmente dos seguintes aspectos (Gray, 1994):

- Formação de coque (subproduto de baixo valor e que pode trazer problemas operacionais);
- Grau de conversão de resíduo a destilados;
- Formação de hidrocarbonetos gasosos (faixa do metano ao pentano);
- Pressão e consumo de hidrogênio (insumo de valor elevado). Quanto maior a pressão de hidrogênio, maior o custo. O consumo de hidrogênio não é considerado como "perda", a menos que o hidrogênio seja adicionado ao resíduo não convertido ou ao coque;
- Consumo de catalisador ou aditivo (insumos de custo significativo). Quanto maior a atividade, maior o preço do catalisador.

Os processos são divididos com relação a forma de contato entre as fases gás (hidrogênio e gases da reação), líquido (óleo) e sólido (catalisador ou aditivo) no reator em: leito fixo (gotejante ou móvel), leito expandido (fluidizado com o sólido confinado) e fluidizado com arraste de sólido (tipo *slurry bubble column*, ou seja, coluna de lama com borbulhamento).

Os reatores em leito fixo têm a vantagem de ter a tecnologia mais bem estabelecida, com maior facilidade para ampliação de escala e operação. Entretanto, esses reatores não toleram a presença de sólidos na carga (causam entupimento do leito), podem ter problemas de formação de canais preferenciais ou aumento de perda de carga no leito e não têm facilidade de reposição de catalisador. Normalmente estes reatores operam no modo *trickle-bed*, com fluxo descendente de líquido e gás no leito de catalisador de Co/Mo ou Ni/Mo (Gray, 1994). A principal aplicação do leito fixo é para remoção de metais e enxofre da carga, o que o caracteriza essencialmente como um processo de hidrotratamento (HDT). O tempo de operação dos reatores entre paradas depende

basicamente do teor de metais na carga e da capacidade de acúmulo de metais no catalisador. Diversos licenciadores (como IFP, Shell, ExxonMobil, ChevronTexaco, ConocoPhillips) possuem tecnologia de HDT em leito fixo (Almeida, 2000). A Shell e a ChevronTexaco desenvolveram também tecnologias de reator em leito móvel, com o objetivo de facilitar a troca do leito catalítico durante operação.

O escoamento em leito fluidizado promove intensa mistura entre as fases em contato no leito, possuindo algumas vantagens:

- grandes taxas de transferência de calor (evitando pontos quentes no reator e facilitando o controle de temperatura). Essa é uma vantagem importante, pois as reações de hidrogenação são fortemente exotérmicas (Gray, 1994);
- tolerância à presença de sólidos;
- facilidade de reposição do catalisador durante a operação (resultando em maior tempo de operação entre paradas e maior flexibilidade operacional).

As principais desvantagens são a dificuldade de ampliação de escala desses reatores e a menor conversão de resíduo devido ao alto grau de mistura no leito.

Os processos de hidroconversão em leito expandido (com o sólido confinado) são tecnologias comerciais. O processo H-Oil é licenciado pela Axens (do IFP *Group Technologies*) e o processo LC-Fining é licenciado pela Chevron Lummus Global LLC. Em 2002, havia 12 unidades instaladas de hidroconversão em leito expandido operando em refinarias (nenhuma no Brasil) (Lepage, 2002; Reynolds et al., 2002).

Os processos em leito fluidizado com arraste de sólidos (*slurry bubble columns*) ainda não são tecnologias comerciais (ou seja, não há nenhuma unidade industrial em operação) mas estão disponíveis para aplicação industrial. O processo VCC (*Veba Combi Cracking*) da Veba-Oel operou em escala de demonstração processando 3500 bpd de 1988 a 1993 (Niemann e Wenzel, 1993). O processo Canmet foi demonstrado em escala semicomercial processando 5000 bpd em unidade licenciada para Petro-Canada (Fan, 1989). O processo HDH da Intevep foi desenvolvido e operado até escala de 150 bpd (Drago et al., 1990).

As principais diferenças entre os reatores em leito expandido e com arraste estão no catalisador (tipo, granulometria e função) e na severidade do processo. Consequentemente, a distribuição e qualidade dos produtos também são diferentes. No reator com arraste, os sólidos

têm menor granulometria, sendo adicionados e removidos do reator junto com o líquido. Esses sólidos geralmente consistem de um aditivo com baixa atividade catalítica (baixo custo) e o reator opera em condições mais severas de temperatura e pressão. Os reatores em leito expandido utilizam catalisador comercial (Ni/Mo ou Co/Mo em alumina) e operam em condições mais brandas de temperatura e pressão, gerando produtos de melhor qualidade.

Este item apresenta as principais características dos processos de hidroconversão. Inicialmente, é realizado um breve resumo sobre as reações que ocorrem na hidroconversão e sua relação com as variáveis operacionais. Na sequência, são apresentadas informações sobre os processos em leito expandido e com arraste de sólidos. Depois, são discutidos os principais aspectos da fluidodinâmica dos reatores com arraste, que operam no modo *slurry bubble column*, modelados no Capítulo 4. Finalizando, são apresentados os aspectos ambientais do processo de hidroconversão.

É importante destacar que a modelagem do reator de hidroconversão com arraste (Capítulo 4) considera o uso de catalisador comercial moído, e não de aditivo, como é típico do reator de hidroconversão com arraste. Por isso, o reator modelado tem a fluidodinâmica da hidroconversão em leito de arraste e as condições operacionais e conversões típicas dos processos em leito expandido (como H-Oil e LC-Fining).

2.5.1 REAÇÕES, CATALISADORES E VARIÁVEIS OPERACIONAIS

Um esquema complexo de reações catalíticas e térmicas ocorre no reator de hidroconversão promovendo craqueamento, hidrodessulfurização (HDS), hidrodesnitrogenação (HDN), hidrodesmetalização (HDM), hidrodesoxigenação (HDO), hidrogenação e formação de coque.

As reações de HDS e HDN podem ser representadas de forma esquemática e simplificada (onde estão ocultos os mecanismos e etapas das reações) pelas expressões a seguir onde "R" representa o radical orgânico. As reações de HDM levam à deposição de níquel e vanádio (presentes na carga) sobre o catalisador.

 $\begin{array}{l} \text{R-S} + \text{H}_2 \rightarrow \text{R-H} + \text{H}_2\text{S} \\ \\ \text{R-N} + \text{H}_2 \rightarrow \text{R-H} + \text{NH}_3 \end{array}$

O principal objetivo dos processos de conversão é a quebra de ligações C-C dos hidrocarbonetos, que ocorre espontaneamente via mecanismo de formação de radicais livres em temperaturas superiores a 420 °C. As ligações C-C dos anéis aromáticos são as mais difíceis de quebrar em função da estabilização de ressonância do anel, requerendo temperaturas superiores a 600 °C. Nas condições da hidroconversão, o craqueamento dessas moléculas só é possível após a hidrogenação do anel aromático (etapa catalítica). Numa mistura de hidrocarbonetos, as parafinas são os mais fáceis de craquear seguidas pelas olefinas lineares, naftalenos, olefinas cíclicas e compostos aromáticos. (Gray, 1994)

Outro mecanismo importante de craqueamento térmico é a quebra das ligações C-S de mercaptanas (R-SH), tióis e sulfetos (R-S-R), que são responsáveis por grande parte da conversão. Gray (1994) afirma que esse mecanismo é o que tem maior contribuição na conversão do betume (óleo pesado com API < 10 e viscosidade > 10^5 cP) podendo resultar em 30 a 50 % de conversão sem presença de catalisador. Já os compostos nitrogenados praticamente não sofrem degradação por reações térmicas. (Gray, 1994)

Portanto, o mecanismo de craqueamento do resíduo é predominantemente térmico. A principal função do catalisador é favorecer as reações de hidrogenação e suprimir reações de condensação e formação de coque.

Diversos metais de transição (como ferro, níquel, cobalto, molibdênio, tungstênio) favorecem as reações de hidrogenação. Esses metais são ativos quando estão na forma de óxido ou na forma sulfetada, sendo esta mais comum na hidroconversão em função da elevada concentração de enxofre da carga. Os catalisadores comerciais mais ativos contêm Co e Mo ou Ni e Mo suportados em alumina. Alguns processos utilizam aditivos a base de ferro, que promovem a hidrogenação com custo bastante inferior ao dos catalisadores comerciais. A desativação dos catalisadores ocorre por deposição de sulfetos de níquel e vanádio presentes na carga (reações de HDM) ou por formação de coque. Dessa forma, a porosidade (tamanho e distribuição dos poros) é uma característica muito importante dos catalisadores, que devem manter a atividade ao mesmo tempo em que recebem os depósitos de metais. (Gray, 1994)

A hidrogenação dos aromáticos é catalítica, sendo mais favorável termodinamicamente quanto maior for o número de anéis aromáticos (benzeno é o menos reativo). A hidrogenação é reversível, sendo que maiores pressões favorecem a hidrogenação e desfavorecem a desidrogenação. (Gray, 1994)

A conversão de tiofenos, compostos com enxofre em cadeias mais complexas e muitas vezes com anéis aromáticos, é catalítica. A conversão dos compostos nitrogenados também é catalítica mas bastante lenta, o que causa um aumento de concentração de compostos nitrogenados no resíduo não-convertido. Os compostos nitrogenados podem causar desativação do catalisador ao se adsorver em sítios ativos de hidrogenação. (Gray, 1994)

O esquema proposto por Sanford em 1993 (Gray, 1994) para conversão das moléculas de resíduo, mostrado na Figura 2.12, ilustra a complexidade das reações que ocorrem na hidroconversão. Para as reações são propostas as seguintes etapas (Gray, 1994):

- Inicialmente ocorre o craqueamento térmico das cadeias laterais do hidrocarboneto resultando em um núcleo aromático. Essa etapa representa entre 56 e 67 % da conversão do resíduo;
- Em presença de hidrogênio (à esquerda do esquema) ocorrem reações de quebra das ligações C-heteroátomos e de hidrogenação levando à formação de destilados e gases.
- Na ausência de hidrogênio (à direita do esquema), predominam reações de condensação com formação de coque.

Figura 2.12 Esquema de possíveis etapas na conversão do resíduo. Os valores entre parênteses foram medidos para betume Athabasca (proposto por Sanford em 1993 e apresentado em Gray (1994)). A formação de coque no reator pode ocorrer na falta de hidrogênio pelo favorecimento das reações de condensação ou por insolubilização de asfaltenos no meio reacional em condições de elevada conversão. Os asfaltenos (moléculas de maior peso molecular no resíduo) são solúveis nas resinas e moléculas aromáticas, mas insolúveis no óleo. Com o aumento da conversão do resíduo a destilados, a quantidade de resinas no meio reacional se reduz (já que estas reagem mais facilmente que os asfaltenos) fazendo com que os asfaltenos se aglutinem e tendam a precipitar (Mendonça Filho, 1998). Para evitar essa precipitação pode-se trabalhar com conversões moderadas, fazer reciclo de resíduo não-convertido ou adicionar uma fração aromática à carga (óleo decantado de FCC, por exemplo) que solubilize os asfaltenos. Mendonça Filho (1998) estudou os mecanismos de formação de coque e desenvolveu modelos para deposição de coque na mistura e no catalisador.

A avaliação do resíduo carbono do RV é uma medida importante que indica a tendência a formação de coque. O RCR (resíduo carbono Ramsbottom) é a quantidade de sólidos que sobra após a destilação destrutiva do material (procedimento ASTM D 189-91). Outra medida semelhante é o RCM (resíduo carbono micro – ASTM D 4530-85), mais comum atualmente, pois fornece resultados equivalentes com maior reprodutibilidade e repetibilidade. (Almeida, 2000) A Tabela 2.4 apresenta o resíduo carbono do RV de petróleo Marlim e Árabe leve / pesado.

Para uma revisão mais completa e detalhada dos mecanismos das reações e cinéticas de conversão e hidroprocessamento, recomenda-se revisão bibliográfica de Almeida (2000) e o livro de Gray (1994) que traz dois capítulos sobre o assunto.

Na modelagem das reações de craqueamento no reator de hidroconversão (Capítulo 4) foi implementada a cinética de craqueamento térmico proposta por Mosby et al (1986) e a cinética proposta por Almeida (2000) que considerou a contribuição de reações térmicas e catalíticas no craqueamento.

A Figura 2.13, apresentada em Gray (1994), mostra de forma qualitativa a relação entre as principais variáveis operacionais (temperatura, pressão de hidrogênio e atividade do catalisador) e as reações que ocorrem no reator de hidroconversão. Em baixas temperaturas praticamente não ocorrem reações. O aumento de temperatura promove as reações de craqueamento (favorecendo a conversão) mas pode levar à intensiva formação de coque, que é suprimida pelo aumento da pressão de hidrogênio e atividade do catalisador. Esse esquema é válido genericamente para qualquer resíduo.

Figura 2.13 Esquema da relação entre as variáveis operacionais (temperatura, pressão de hidrogênio e atividade de catalisador) e as reações no reator de hidroconversão (Gray, 1994).

Esse breve resumo das principais reações que ocorrem no reator de hidroconversão e sua relação com as variáveis operacionais mostra que a otimização e operação desse processo não são tarefas simples. A princípio, parece mais interessante maximizar a conversão do resíduo para gerar mais destilados. Entretanto, conversões mais elevadas requerem condições operacionais mais severas (ou seja, maiores: temperatura, tempo de residência do líquido, atividade do catalisador e pressão de hidrogênio), resultam em maior consumo de hidrogênio (custo elevado), podem levar à precipitação de coque por insolubilização, levam a maior produção de gases (em prejuízo ao rendimento em destilados médios) e maior descarte de catalisador desativado. Na prática, verifica-se que as unidades comerciais de hidroconversão operam em condições de baixa ou moderada conversão como mostrado na Tabela 2.5 e Tabela 2.6 no item a seguir.

2.5.2 HIDROCONVERSÃO EM LEITO EXPANDIDO – HCLE

Os processos de hidroconversão em leito expandido já têm aplicações comerciais. Dois processos com tecnologias semelhantes foram desenvolvidos: o H-Oil e o LC-Fining. Segundo Gray (1994) as diferenças entre essas tecnologias estão em detalhes do projeto dos equipamentos. A Figura 2.14 apresenta um fluxograma típico de uma unidade de hidroconversão, que conta com seções de preparação da carga e hidrogênio (aquecimento), reação, separação da fase gasosa e óleo, reciclo de hidrogênio e separação dos produtos e resíduo.

Figura 2.14 Fluxograma de uma unidade de hidroconversão LC-Fining (Reynolds et al., 2002).

No reator de hidroconversão, o líquido e o gás são alimentados pelo fundo do reator e passam pelo distribuidor de gás e líquido (linha tracejada no reator da Figura 2.14). O catalisador é adicionado de forma independente, sendo alimentado na parte superior do leito e retirado na parte inferior, próximo ao distribuidor. O reator em leito expandido tem um reciclo interno que fornece a energia para fluidização do catalisador. Líquido e gás são recolhidos na parte superior do reator (pela expansão), descem por uma tubulação central (ver esquema do reator na Figura 2.14) e o líquido é bombeado, entrando pelo fundo do reator. A vazão de reciclo é de 5 a 10 vezes a da carga (Gray, 1994). Segundo Fan (1989), como a razão entre os diâmetros do tubo interno e
do reator é pequena nas unidades comerciais e a fração volumétrica de gás é elevada (com bolhas pequenas e dispersas), esse tubo interno tem influência mínima na fluidodinâmica dos reatores. Nas condições de hidroconversão o comportamento da fase gás no reator em leito expandido e no modo *slurry bubble column* é similar e, por isso, espera-se certa similaridade na fluidodinâmica destes reatores.

Em 2002 estavam instaladas e em operação 12 unidades de hidroconversão em leito expandido: 7 unidades H-Oil e 5 unidades LC-Fining. A primeira unidade comercial construída e em operação até hoje é a unidade H-Oil em Shuaiba, operando desde 1968. Duas unidades LC-Fining estavam em projeto em 2002. A Tabela 2.6 e a Tabela 2.5 trazem informações sobre o início de operação, capacidade, carga e conversão dessas unidades. No processo LC-Fining, as unidades que operam com conversão entre 60 e 65 % não têm reator em série e são unidades de menor custo. Conversões mais elevadas, entre 65 e 85 %, são obtidas com 2 ou 3 reatores em série e geram produtos de alta qualidade. A operação do reator com conversões altíssimas, entre 85 e 92%, requer cuidados especiais para evitar excessiva formação e deposição de coque. A unidade BP's Texas City já operou nessa condição (Reynolds et al. 2002).

Unidade →	BP's Texas City (era da Amoco)	Syncrude	Agip Petroli	Slovnaft	Shell Canada	Petro Canada	Fortun
Início de operação	1984				Prevista para 2003	Em projeto	Em projeto
Reatores em paralelo / série	3/3	/ 1	/2 ou 3	/ 2 ou 3	/ 2 ou 3	/ 2 ou 3	/2 ou 3
Carga	RV	Athabasca Bitumen	Heavy Middle East	RV russo	Athabasca Bitumen	Athabasca Bitumen	RV Ural
Capacidade, m³/d	9500	6400	3200	3700	12700	6400	6800
Conversão, %vol	65 - 85*	60 - 65	65 - 85	65 - 85	65 - 85	65 - 85	65 - 85

Tabela 2.5 Unidades de hidroconversão LC-Fining (Reynolds et al., 2002; Mosby et al., 1986)

Notas: * Já operou com conversão ultra-elevada, na faixa de 85 - 92 %.

** As células indicadas com --- indicam falta de informações disponíveis.

A Tabela 2.6 destaca qual o catalisador usado nas unidades H-Oil, se de 1^a ou 2^a geração. O catalisador de 2^a geração resulta em maior eficiência no processo e melhor qualidade dos produtos (ver também Tabela 2.7). Um catalisador de 2^a geração para altas conversões (acima de 80 %) também foi desenvolvido (Colyar, 1997).

Unidade →	KNPC Shuaiba (Kuwait)	PEMEX Salamanca	Star Enterprise Convent	Husky BPU Lloyd- minster	Tonen Kawasaki	PEMEX Tula	Petro- chemia (Poland)
Início de operação	1968	1972	1984	1992	1997	1997	1999
Reatores em paralelo / série	2/1	2/1	2/2	2/1	1/2	2/2	1/2
Carga	RV Kuwait	RV Maya / Isthmus	RV árabe médio / pesado	RAT [*] Cold Lake / Lloyd	RV Middle East	RV Maya / Isthmus	RV Ural
Capacidade, m³/d	~ 8000	~ 3200	~ 8000	~ 5700	~ 4000	~ 8000	~ 5400
Catalisador	1 ^ª geração	1 ^ª geração / testes	2 ^a geração	1 ^ª geração / testes	2 ^a geração	2 ^a geração	2 ^ª geração
Conversão, %vol	50 - 60	40 - 50	65 - 75	65	65 - 75	52	52 - 66
HDS, % p	50 - 60	60 - 65	75 - 82	70 - 75	82 - 86	87	

Tabela 2.6 Unidades de hidroconversão H-Oil (Colyar, 1997; Lepage, 2002)

* RAT – resíduo de petróleo obtido no fundo da destilação atmosférica.

Nota: As células indicadas com --- indicam falta de informações disponíveis.

A Tabela 2.7 apresenta condições operacionais, características de processo e desempenho (conversão e remoção de heteroátomos) dos processos LC-Fining e H-Oil. Os dados mostram uma ampla faixa de valores, uma vez que as condições operacionais e os produtos formados dependem do projeto da unidade (conversão desejada), do catalisador utilizado e das características da carga. A literatura apresenta informações específicas de condições operacionais, desempenho (conversão e remoção de heteroátomos) e produtos (distribuição e qualidade) obtidos em unidades de hidroconversão em operação, como por exemplo: a unidade LC-Fining em Texas City (Beaton e Bertolacini, 1991); a unidade LC-Fining *Syncrude* em Alberta (Gray, 1994) e a unidade H-Oil *Bi-ProvincialUpgrader* no Canadá (McQuitty, 1997).

McQuitty (1997) apresentam o histórico operacional da unidade H-Oil *Bi-ProvincialUpgrader* no Canadá, relatando os incidentes operacionais e tempo de paradas. O maior problema operacional é o controle da formação de depósitos (por insolubilização) nos equipamentos a jusante do reator. Falhas na instrumentação também causaram paradas na unidade com duração entre 10 e 30 dias. Almeida (2000) cita diversos problemas operacionais encontrados na unidade H-Oil de Shuaiba (que iniciou operação em 1968), mostrando que a deposição de coque é um problema antigo e difícil de eliminar.

	LC-Fining 3ª geração	Valores típicos de leito	H-OIL
	Faixa típica de operação	expandido	Faixa típica de operação
Referência	Reynolds et al. (2002)	Gray (1994)	Colyar (1997)
T, °C	400 - 450	420 - 450	415 - 440
P, bar	100 - 200	> 70 a 100	170 - 210
P H ₂ , bar	70 - 170		
Consumo H ₂ , Nm³/m³	120 - 340		130 – 300 (Nota 2) típico 200
Reciclo H ₂		3 a 4 vezes o consumo para garantir excesso.	
Conversão, % vol	40 – 92 % 525 °C+ moderada: 60 - 65 ,		Típico comercial: 50 - 75
	alta: 65 - 85 altíssima: 85 - 92		45 – 90 / 45 – 85 (Nota 2)
HDS, % p	60 - 95		55 - 80 / 75 - 92 (Nota 2)
HDN, % p			25 - 35 / $30 - 50$ (Nota 2)
Redução CCR, % p	40 - 75		45 - 65 / 65 - 75 (Nota 2)
HDM, % p	70 - 98		65 – 90 (Nota 2)
N° de reatores em	conversão média: 1 reator		Até 2 em série
paralelo / série	alta conversão: 2 - 3 em série		Atualmente processa até 5400 m³/d em 1 reator
LHSV, h ⁻¹	~ 0,4 (estimado, Nota 1)	0,1 – 1,5	0,4 – 1,3
(velocidade espacial)			
Tipo de catalisador		Equivalente ao do HDM em leito fixo. Co/Mo e Ni/Mo em γ alumina.	Ni/Mo ou Co/Mo 1ª geração e 2ª geração
Taxa de reposição de catalisador		~ 1 % do inventário de catalisador no reator por dia. Ex. 0,3 – 1,5 kg / m ³ carga	0,3 – 2,0 kg / ton carga típico 1 kg / ton carga (1 - 3 % do inventário no reator)
Diâmetro catalisador		< 1 mm	0,8 mm
τ_L , h	$\tau_{\rm L}$ = 1,5 h (estimado, Nota 1)		
Reciclo de resíduo não convertido ao reator	Indica que há ganho com reciclo de resíduo (não mostra % reciclada).		Cita possibilidade de alterar seletividade dos produtos alterando a taxa e composição do reciclo.

Tabela 2.7 Condições operacionais e desempenho da unidades comerciais H-Oil e LC-Fining.

Notas:

1. Esses dados foram estimados com base nas dimensões da unidade LC-Fining de Texas City (Fan, 1989) e informações típicas de hidroconversão em leito expandido apresentadas em Gray (1994) e em Eccles (1993). Os resultados têm valores nas faixas esperadas.

2. Dados obtidos com catalisador de 1^ª geração / 2^ª geração em unidade H-Oil com 2 reatores em série, operando com LHSV típico e reposição de catalisador típica.

3. As células indicadas com --- indicam falta de informações disponíveis.

Na Tabela 2.7 há indicação de que o reciclo de "resíduo não convertido" ao reator (ou simplesmente resíduo) foi realizado tanto em unidades H-Oil quanto em LC-Fining. Segundo Reynolds et al. (2002), o reciclo de resíduo traz vantagens como: o aumento da conversão em 3 a 4 %, a redução da geração de gás e do consumo de hidrogênio e o aumento do rendimento de gasóleo em 3 a 4 %, mantendo a quantidade de sedimentos formados e a estabilidade dos produtos. Segundo Gray (1994), o reciclo de resíduo implica no uso de um reator maior para mesma capacidade de carga, já que o resíduo é menos reativo que a carga. O reciclo pode ser usado quando se quer obter conversão muita elevada (de até 95 %), sendo necessário tratar a corrente de reciclo visando remover os precursores de coque. Isso pode ser feito passando o resíduo num leito de coque, que adsorve as moléculas mais pesadas (Gray, 1994). Outra maneira de controlar a formação de sólidos é adicionar uma corrente aromática na carga (Beaton e Bertolacini, 1991).

O processo LC-Fining 3^a geração inclui melhorias na seção do reator (sistema de medição e controle de temperatura, projeto de internos do reator, bombas de reciclo e sistema de adição e retirada de catalisador), prevê a instalação de um reator de hidrotratamento dos produtos integrado ao processo e resulta em maiores conversões. O processo LC-Fining com essa configuração foi implementado nas refinarias da Shell Canada e Fortum (em projeto). (Reynolds et al., 2002)

O processo H-Oil apresenta melhorias no catalisador (tendo sido desenvolvido catalisador de 2^a geração para alta conversão), nos internos do reator (que permite o processamento de até 5400 m³/d em 1 reator) e na estabilidade dos produtos. Outro importante desenvolvimento é o sistema de rejuvenescimento (remoção de metais) e regeneração (remoção de coque) que permite o reciclo do catalisador. A unidade Petrochemia (na Polônia) é a primeira a implantar esse sistema de rejuvenescimento de catalisador. (Colyar, 1997)

A avaliação econômica do processo de hidroconversão H-Oil comparado ao tradicional processo de coqueamento retardado é apresentada por Wisdom et al. (1998). O artigo mostra que quando o hidrotratamento dos produtos do coqueamento retardado é considerado na avaliação econômica, o processo de hidroconversão tem menor investimento e maior taxa de retorno. Das duas condições de hidroconversão avaliadas, a de conversão moderada (65 %) apresentou melhores resultados econômicos que a de alta conversão (85%).

2.5.3 HIDROCONVERSÃO COM ARRASTE DE SÓLIDOS (SLURRY BUBBLE COLUMN)

Os processos de hidroconversão com arraste de sólidos utilizam catalisador finamente dividido que forma uma lama com o óleo e é adicionado e retirado do reator misturado ao óleo. Esse tipo de reator é classificado como *slurry bubble column* (coluna de bolhas com sólidos).

Os processos de hidroconversão com arraste de sólidos Canmet, VCC (Veba-Combi-Cracking) e HDH estão disponíveis para comercialização, mas ainda não há nenhuma unidade industrial instalada.

Esses processos se caracterizam por usar catalisadores de baixa atividade (denominados de aditivos) e trabalhar em condições mais severas de temperatura e pressão para maximizar a conversão de resíduo (ver Tabela 2.8). Não há preocupação com a remoção de heteroátomos do óleo (S, N, metais) no reator de hidroconversão. O hidrotratamento é realizado para os destilados produzidos em etapa posterior, usado reator específico e catalisador mais nobre.

A Figura 2.15 mostra o fluxograma da unidade Veba-Combi-Cracking, que conta com as seções de: preparação da carga e hidrogênio (aquecimento), hidroconversão (no reator LPH), separação da fração pesada (resíduo com aditivo), hidrotratamento dos destilados (no reator GPH), separação dos gases (com reciclo de hidrogênio) e separação dos destilados e resíduos (Niemann e Wenzel, 1993). Os processos Canmet e HDH têm fluxogramas semelhantes, mas nem sempre mostram o hidrotratamento dos destilados (Drago et al., 1990; Gray, 1994).

Figura 2.15 Fluxograma de uma unidade de hidroconversão Veba-Combi-Cracking (Niemann e Wenzel, 1993)

Nos reatores de hidroconversão em leito de arraste o hidrogênio, o óleo e o aditivo são misturados a montante do reator e alimentados em uma corrente única pelo fundo do reator, sendo retirados pelo topo, como mostrado no reator LPH da Figura 2.15. Os reatores não têm dispositivos internos (como chicanas ou distribuidores de óleo e gás) nem reciclo forçado, já que o fluxo ascendente de óleo e hidrogênio é suficiente para fluidizar e arrastar o aditivo. Após o reator de hidroconversão, o resíduo não convertido é separado dos destilados. Nos processos Canmet e VCC o resíduo da hidroconversão contém o aditivo e o coque formado no reator de hidroconversão (Gray, 1994). No processo HDH o aditivo é separado do resíduo.

A Tabela 2.8 apresenta um resumo das condições operacionais, características de processo e desempenho (conversão e HDM) dos processos HDH, Canmet e VCC.

A planta de demonstração Bottrop do processo VCC tem capacidade para processar 560 m^3/d (3500 bpd) de resíduo. Inicialmente a unidade foi utilizada para liquefação de carvão. Em 1987 a unidade foi adaptada e passou a processar resíduo de vácuo misturado a vários outros resíduos industriais, tais como: óleos lubrificantes usados, de corte e de transformadores, lamas de pintura, resíduos de plantas de desengraxamento e plásticos. Niemann e Wenzel (1993) descrevem a experiência de processamento desses resíduos de 1988 a 1993, mostrando que as tecnologias de hidroconversão são um excelente meio para processar os resíduos industriais transformando-os em produtos de maior valor agregado.

O processo Canmet foi demonstrado através da operação por 3 anos de uma unidade semicomercial (1/4 a 1/5 da capacidade industrial) com capacidade para 800 m³/d (5000 bpd) de resíduo. Após esse período de demonstração foi iniciado o desenvolvimento da integração do reator de hidroconversão com reatores para o hidrotratamento dos destilados (Skripek et al.).

Drago et al. (1990) apresentam com detalhes cada etapa de desenvolvimento do processo HDH durante dez anos de pesquisa, desde as unidades de bancada (0,2 bpd e 2,0 bpd) até a operação da unidade piloto de 24 m³/d (150 bpd) e estudos de projeto básico de uma unidade industrial de 7200 m³/d (45000 bpd) em 3 ramais de reatores em paralelo. Os testes na unidade piloto foram realizados entre 1986 e 1988. Nesse período foram desenvolvidas as seções de hidroconversão e separação do catalisador do resíduo não convertido, possibilitando estudos de reciclo do resíduo ao reator e avaliação do tratamento e descarte do catalisador. Guitián et al. (1991) apresentam os estudos para instalação de uma unidade HDH em escala industrial, com capacidade de 2400 m³/d, em uma refinaria da Venezuela.

	HDH	VCC	VCC	CANMET	CANMET
Referências	Drago et al., 1990 (nota 2)	Niemann e Wenzel (1993)	Gray (1994) ou outra se indicado	Skripek et al.	Fan (1989) Gray (1994)
T, °C	(nota 9)	440 - 485	440 - 490		
P, bar		até 250	150 - 250		
$P H_2$, bar	95 / 130 (nota 8)				
Consumo H _{2,} Nm ³ / t (nota 7)	233 / 258 (nota 8)	360 Nm ³ / t (nota 4)	305 m³/t		
Conversão, %	88 / 92 (nota 8) típico nessa unidade entre 85 % e 97 %	> 95 %	94 %	até 90 % e com reciclo até 95% (nota 6)	Até 90 %
HDM, % p	Vanádio: ~ 99 Níquel: 92 / 97 (nota 8)				
Carga	RV Morichal, RV de outros petróleos	óleos pesados e resíduos industriais	Cold Lake heavy oil	Fração 1000°F ⁺ de betume ou óleo pesado	Resíduo de vácuo
capacidade da planta, m³/d	24 m³/d (escala piloto)	560 m ³ /d (escala demonstração)		800 m³/d (escala demonstração)	800 m ³ /d (escala de- monstração)
N° reatores em paralelo / série	3 reatores em série de hidroconversão	Hidroconver- são seguida de HDT (nota 5)		Hidroconversão seguida de HDT (nota 5)	Hidrocon- versão (nota 5)
LHSV, ton/(m ³ h)	0,6 h ⁻¹ com reciclo de óleo				
Aditivo (catalisador de baixa atividade)	Sólido de ocorrência natural em diversos países	catalisador gasto de HDT e carvão ativado gasto	coque lignítico ou subproduto da indústria de alumínio (Mo- hanty et al.,1990)	Sulfato de ferro mono-hidratado	Sulfato de ferro
Taxa de reposição do aditivo	 > 1 % peso da carga 3 % peso da lama, (nota 10) 	2,4 % p na lama (nota 2)			1 - 2 % p na lama
Separação do aditivo usado	É separado do resíduo	Não separa, fica misturado ao resíduo.	Não separa, fica misturado ao resíduo.		Não separa fica misturado ao resíduo
Reciclo de resíduo	Testes com e sem reciclo	Sem reciclo ao reator	Sem reciclo ao reator	Pode ser reci- clado (nota 6)	
Reciclo de aditivo	Mais usual sem reciclo. Testes com reciclo após regeneração.	Sem reciclo ao reator	Sem reciclo ao reator	Pode ser reci- clado (nota 6)	

Tabela 2.8 Condições operacionais e desempenho das unidades HDH, CANMET e VCC.

Notas da Tabela 2.8:

- 1. As células indicadas com --- indicam falta de informações disponíveis.
- 2. Dado estimado a partir de informações fornecidas no artigo.
- 3. A unidade 1 bpd (barril por dia) é equivalente 0,159 m³/d.
- 4. Para conversão de 95 % da carga resíduo de fundo da desasfaltação. Provavelmente inclui o hidrotratamento no reator GPH.
- 5. Não indica nº de reatores de hidroconversão e/ou hidrotratamento.
- 6. O reciclo do resíduo não convertido (com o aditivo) aumenta a conversão mas requer cuidados para evitar excessiva formação e deposição de coque (Skripek et al.).
- 7. No processo VCC o consumo de hidrogênio provavelmente inclui as etapas de hidroconversão e hidrotratamento. Nos processos Canmet e HDH esse consumo inclui somente a hidroconversão.
- Testes conduzidos em duas condições de pressão de hidrogênio: 95 bar / 130 bar (Drago et al, 1990). Tipicamente a conversão sem reciclo de resíduo é de 85 a 92 % e com reciclo chega até 97 % (Guitián et al., 1991).
- 9. Em catálogo fornecido pela Intevep, além das informações apresentadas em Drago et al. (1990), é indicada a utilização de temperaturas <u>inferiores a 475 °C</u> no reator de hidroconversão.
- 10. Dado do projeto de engenharia básica da unidade industrial para processar 45000 bpd.

Todos os processos utilizam catalisadores não convencionais (aditivos), com menor atividade porém de menor preço. Esses catalisadores têm por objetivo inibir a formação de coque e servir de suporte para deposição de metais e coque. No processo VCC foram utilizados catalisador gasto de hidrotratamento (Ni/Mo ou Co/Mo) e carvão ativado gasto (Niemann e Wenzel, 1993). Segundo Mohanty et al (1990), o processo VCC utiliza como aditivo coque lignítico ou um subproduto da indústria de alumínio denominado massa de Bayer. O aditivo utilizado no processo Canmet é o sulfato de ferro em pó (Gray, 1989). Segundo Skrippek et al., o aditivo que mostrou maior eficiência no processo Canmet foi o sulfato de ferro mono-hidratado, um material de baixo custo e de fácil preparação e uso. Skripek et al. também citam a utilização de antiespumante principalmente no topo do reator para reduzir a espuma e a fração volumétrica de gás, melhorando o desempenho da hidroconversão. No processo HDH é usado um sólido de ocorrência natural como catalisador. As referências disponíveis não indicam os componentes deste aditivo, mas afirmam que é de fácil preparação e pode ser encontrado em diversos lugares do mundo (Guitián et al., 1991).

A hidroconversão com arraste é tipicamente um processo onde o aditivo passa pelo reator uma única vez, já que tem baixo custo e não é viável recuperá-lo. Nos processos VCC e Canmet o aditivo fica misturado ao resíduo não convertido, formando uma mistura residual que contém todos os metais da carga e o coque formado na hidroconversão (Skripek et al.; Gray,

1994). Skripek et al. apresentam as propriedades da mistura residual do processo Canmet: poder calorífico comparável ao coque obtido por coqueamento fluido e 10 % em peso de cinzas. Entre as alternativas testadas pela Canmet para destino da mistura residual destacam-se: a queima em leito fluidizado (com adição de cal para evitar emissões com enxofre); o uso em fornos de cimento com geração de clinquer de boa qualidade e o reciclo dessa corrente ao reator (Skripek et al). Niemann e Wenzel (1993) indicam que o resíduo da hidroconversão do processo VCC pode seguir para combustão, gaseificação ou coqueamento, sendo que a alternativa recomendada é o envio para indústria de cimento. Na planta de demonstração, esse resíduo é enviado para forno de coque trazendo melhoria na qualidade no coque produzido.

No processo HDH foi realizado desenvolvimento de uma unidade para separar os sólidos do resíduo não convertido. Dos equipamentos avaliados (ciclones, filtros rotativos, filtros a pressão e centrífugas) a centrífuga de baixa rotação foi o que obteve melhor eficiência e estabilidade durante operação. A unidade CSS (*catalyst separation stage*) foi testada junto à unidade piloto HDH, apresentando uma eficiência de separação de sólidos superior a 99% e recuperação de 90 % do óleo (Drago et al. 1990).

A operação da unidade de separação de catalisador do processo HDH permite a obtenção de um resíduo estável e de catalisador. Os testes na unidade piloto mostraram a viabilidade de reciclo do resíduo ao reator, possibilitando a conversão de 97 % da carga e um acréscimo na produção de destilados de 6 %. O resíduo sem catalisador pode ser ainda usado como óleo combustível (Drago et al., 1990) ou enviado para unidade de coqueamento (Flores et al., 2002). Para o catalisador foram avaliadas as alternativas de regeneração e descarte. A regeneração em condições brandas, com reciclo do catalisador recuperado ao reator mostrou-se viável. Entretanto, a melhor alternativa é a incineração e envio à indústria metalúrgica, onde o catalisador incinerado é utilizado como aditivo de alto valor agregado. Na incineração do catalisador, é necessário remover os óxidos de enxofre dos gases de combustão. (Drago et al., 1990)

A fluidodinâmica dos reatores de hidroconversão com arraste (que operam no modo *slurry bubble column*) é apresentada e discutida no item a seguir.

2.5.4 FLUIDODINÂMICA DOS REATORES DE HIDROCONVERSÃO TIPO SLURRY BUBBLE COLUMN

Slurry bubble columns (SBC) são definidas como um tipo de leito fluidizado gáslíquido-sólido onde as partículas sólidas (de reduzido tamanho ou baixa densidade) possuem velocidade terminal em fase líquida entre 0,0003 e 0,07 m/s (Fan, 1989). A definição de SBC é abrangente e inclui processos que operaram com as fases líquida e/ou sólida em batelada. O fluxo é concorrente e ascendente, o líquido é a fase contínua e o gás escoa na forma de pequenas bolhas dispersas no leito. *Slurry bubble columns* podem ser traduzidas como "colunas de bolhas com sólidos" ou "colunas de lama com borbulhamento". Os reatores de hidroconversão em leito fluidizado que operam com arraste de sólidos são *slurry bubble columns*.

O estudo da fluidodinâmica de reatores de hidroconversão operando no modo classificado como *slurry bubble column* foi realizado por Carbonell (1996) em dissertação de mestrado. Esse estudo levou ao desenvolvimento de um modelo para representar a fluidodinâmica desses reatores em escala piloto.

O modelo fluidodinâmico proposto por Carbonell (1996) é utilizado nesse trabalho sem modificações e é apresentado de forma resumida no item 4.1 e no artigo do item 9.2. A implementação das cinéticas das reações de craqueamento no modelo fluidodinâmico resulta nos modelos propostos para o reator de hidroconversão, que são apresentados no Capítulo 4.

Este item tem por objetivo apresentar, de forma resumida, os principais aspectos da fluidodinâmica dos reatores que operam no modo classificado como SBC, mostrando e discutindo algumas informações selecionadas da literatura. Não foi realizada extensa atualização da revisão de literatura sobre o assunto, mas são incluídas informações obtidas recentemente que contribuem para a compreensão do assunto.

A descrição do escoamento em leitos multifásicos é complexa e envolve: a determinação das frações volumétricas de cada fase e sua distribuição no leito; a compreensão das forças de interação e transferência de massa entre as fases; o conhecimento da mistura (dispersão) local e a influência das propriedades e condições operacionais nos aspectos citados.

A literatura vem apresentando nos últimos 25 anos diversos trabalhos que procuram descrever a estrutura do escoamento em colunas de bolhas (com ou sem sólidos) através de medições experimentais ou do uso de técnicas da fluidodinâmica computacional (modelos

bifásicos, transientes, etc). Esses trabalhos geralmente consideram sistemas "ideais", ou seja, colunas operando com ar, água e esferas de vidro em condições de temperatura e pressão ambiente (unidades a frio). Essas colunas podem ser cilíndricas ou retangulares. Joshi et al. (2002) apresentam uma revisão das estruturas de escoamento em colunas de bolhas, resumindo e discutindo os trabalhos experimentais e computacionais nos últimos 10 anos.

A ampliação de escala de coluna de bolhas para reatores industriais é complexa, mas torna-se mais simples e consistente com uso de dados obtidos em unidades piloto "a quente", ou seja, em condições operacionais similares às industriais (Fan, 1989). Entretanto, poucas são as informações da fluidodinâmica obtidas em condições similares às da hidroconversão (alta temperatura e pressão, com óleo, hidrogênio e sólidos) porque são de obtenção mais difícil. Experimentos em colunas pilotos de bolhas a frio, em pressões elevadas mostram que a compatibilidade da fluidodinâmica de unidades a frio e a quente aproxima-se com o aumento de pressão (Tarmy, 1984; Fan, 1989).

Na literatura, destaca-se o trabalho de Tarmy et al. (1984) que apresentam resultados de estudos em unidades piloto a frio e a quente visando ampliação de escala do processo de liquefação de carvão Exxon Donor Solvent (EDS). O processo EDS opera em condições similares à hidroconversão. Também se destaca o trabalho de Bruijn et al. (1988), que estudaram a variação da fração volumétrica de gás (ε_{gM}) com a velocidade superficial do gás e o aumento da pressão, obtendo resultados em condições próximas às da hidroconversão (alta pressão e temperatura, porém na ausência de sólidos). Dados desses trabalhos são apresentados na Tabela 2.9.

2.5.4.1 Regime de bolhas

No leito fluidizado trifásico (gás-líquido-sólido) são identificados diferentes regimes de bolhas dependendo do comportamento e estabilidade das bolhas. O regime homogêneo é caracterizado pelo escoamento de bolhas pequenas e que não coalescem. No regime heterogêneo (turbulento ou *churn turbulent flow*) ocorre intensa coalescência das bolhas, resultando em um sistema com maior distribuição no tamanho de bolhas e ocorrência de bolhas grandes. No regime de transição ocorre pouca coalescência. Nas colunas de pequeno diâmetro (inferior a 10 cm) podem ocorrer bolhas do tamanho da seção transversal da coluna, caracterizando o regime *slug flow*. O regime de bolhas é influenciado pela presença do distribuidor de gás, dimensões da

coluna, propriedades do gás e do líquido e condições operacionais. (Dudukovic e Devanathan, 1993). Saxena e Chen (1994) apresentam uma descrição detalhada das características das bolhas em cada regime e a influência das condições operacionais na mudança de um regime para outro. De modo geral, pode-se dizer que o aumento da velocidade do gás e temperatura favorecem a coalescência das bolhas, enquanto que o aumento de pressão e um líquido com baixa tensão superficial aumentam a estabilidade das bolhas (desfavorecendo a coalescência).

As condições de operação dos reatores de hidroconversão (alta pressão, líquido com baixa tensão superficial (óleo) e velocidades superficiais do gás baixas ou moderadas) favorecem a estabilidade das bolhas. Os resultados obtidos por Tarmy et al. (1984) e Bruijn et al. (1988) confirmam esse comportamento e indicam que o reator de hidroconversão opera em regime homogêneo de bolhas. A fração volumétrica de gás aumenta com o aumento da velocidade superficial do gás e com a pressão do sistema.

2.5.4.2 Estrutura do escoamento

A estrutura do escoamento nas colunas de bolhas é um assunto que vem sendo bastante investigado e publicado na literatura. Dentre os trabalhos pioneiros na área, são frequentemente citadas as medidas experimentais dos perfis de velocidade axial do líquido e fração volumétrica de gás realizadas por Hills em 1974 em colunas de bolhas (citado em Dudukovic e Devanathan, 1993). A partir de meados dos anos 90 a pesquisa ganhou força com as ferramentas de fluidodinâmica computacional. Entretanto, ainda não é possível descrever a fluidodinâmica somente a partir de seus princípios físicos, sem o uso de expressões empíricas para fechamento dos modelos. (Joshi et al., 2002)

Estrutura média de recirculação

O escoamento das bolhas provoca a formação de regiões com diferentes densidades e velocidades, formando as linhas de fluxo na coluna. Uma estrutura média de recirculação com o fluxo ascendente na região central e descendente próximo às paredes é encontrada nas colunas de bolhas. Esse padrão de escoamento é mostrado nos experimentos de Dudukovic e Devanathan (1993) ocorrendo nos regimes homogêneo e heterogêneo de bolhas, sendo mais definido no regime heterogêneo, como mostrado na Figura 2.16. Condições operacionais e parâmetros destes experimentos são apresentadas na Tabela 2.9. A inversão do fluxo na coluna ocorre

aproximadamente a 0,7 do raio adimensional, o que também foi observado nos experimentos de Hills em 1974 (Dudukovic e Devanathan, 1993) e Forret (2003). Os experimentos de Dudukovic e Devanathan (1993) foram realizados em uma coluna de bolhas com ar e líquido acompanhando o deslocamento de uma partícula radioativa com densidade igual à do líquido.

A região central da coluna de bolhas, onde ocorre a grande célula de recirculação (ver Figura 2.16) é chamada de região de escoamento desenvolvido. Nessa região, as velocidades radiais médias são muito pequenas e podem ser consideradas nulas. Dessa forma, um modelo simplificado unidimensional do perfil de recirculação do líquido é aplicável para a maior parte da coluna (Dudukovic e Devanathan, 1993). Modelos unidimensionais foram desenvolvidos por Gasche et al. (1990) em colunas de bolhas, por Chen et al. (1995) em leito fluidizado trifásico com o sólido confinado e por Carbonell (1996) em *slurry bubble columns*.

Outras duas regiões são identificadas na coluna de bolhas: as regiões de entrada (que pode ter distribuidor para o gás e/ou líquido) e saída dos fluidos. As regiões de entrada e saída possuem um comportamento mais complexo de fluxo, com a existência de perfis radiais e efeitos de parede.

Dudukovic e Devanathan (1993) observaram que a célula de recirculação se forma a partir de uma altura (z) com relação ao diâmetro da coluna (Dc): z/Dc = 1 a 1,5. Segundo Gasche et al. (1990), escoamento desenvolvido é esperado após uma relação $z/Dc \ge 3$. Em geral, como mostrado na Tabela 2.9, as colunas de bolhas tem Lc/Dc > 5 (onde Lc/Dc é a relação comprimento / diâmetro da coluna).

A estrutura de recirculação encontrada em colunas de bolhas sem sólidos também foi observada nos dados experimentais e modelagem de *slurry bubble columns* sem reação realizadas por Torvik e Svendsen (1990) e Hillmer et al. (1994), que propuseram modelos bidimensionais para representar a fluidodinâmica. Quando ocorre reação no leito com intensa absorção de gases, como por exemplo no escoamento de CO_2 em solução de NaOH, a estrutura do escoamento se modifica (Hillmer et al., 1994).

Figura 2.16 Linhas de fluxo de líquido em colunas de bolhas com regime de bolhas homogêneo (a) com $U_g = 0.02$ m/s e heterogêneo (b) com $U_g = 0.184$ m/s (Dudukovic e Devanathan, 1993).

Estrutura instantânea do escoamento - variações no espaço e no tempo

A estrutura de recirculação mostrada na Figura 2.16 é o resultado da média das velocidades durante um longo intervalo de tempo. A literatura recente mostra que o padrão de escoamento varia no tempo e no espaço, com o aparecimento de turbilhões que se deslocam ao longo da coluna causando turbulência e promovendo a recirculação interna.

Joshi et al. (2002) apresentam as estruturas de escoamento em colunas de bolhas propostas por Joshi et al. em 1979 e 1980, que indicavam a existência de diversas células de recirculação, como mostrado na Figura 2.17. Esses modelos foram bastante questionados pois Dudukovic e Devanathan (1993) afirmaram, com base em dados experimentais, que essas estruturas de fluxo não existem. Em contrapartida, Joshi et al. (2002) alegaram que as estruturas propostas (Figura 2.17) são instantâneas e não permanecem estacionárias no tempo e no espaço, sendo que a estrutura média é o padrão de recirculação já discutido e apresentado na Figura 2.16.

Figura 2.17 Representação esquemática de múltiplas células de recirculação propostas por Joshi et al.em 1979 (Figura A) e 1980 (Figura B). (Joshi et al., 2002).

Uma discussão mais completa desse assunto não é objetivo desse capítulo. A modelagem fluidodinâmica apresentada no Capítulo 4 considera a existência do padrão médio de recirculação na região de escoamento desenvolvido. Para uma visão geral e atualizada dos trabalhos apresentados na literatura recomenda-se a revisão apresentada por Joshi et al. (2002).

2.5.4.3 Condições operacionais de colunas de bolhas – escalas piloto e demonstração

Um resumo das condições operacionais e parâmetros fluidodinâmicos de alguns artigos selecionados são apresentados na Tabela 2.9. Há informações obtidas em escala piloto e demonstração, reatores com e sem sólidos, unidades a frio e operando em condições similares à hidroconversão. Apesar das unidades a frio não representarem bem alguns parâmetros do escoamento (fração volumétrica do gás, área interfacial e coeficientes de dispersão), experimentos nessas unidades são importantes porque são mais acessíveis e contribuem para o entendimento dos fenômenos que influenciam a fluidodinâmica (Tarmy et al., 1984).

Nas duas primeiras colunas da Tabela 2.9 são apresentados dados das unidades demonstração de hidroconversão dos processos VCC (Veba Combi Cracking) e CANMET. As unidades demonstração têm 1/4 a 1/5 da capacidade de uma unidade industrial. As duas unidades

apresentam relação comprimento por diâmetro (Lc/Dc) em torno de 10 e valores da mesma ordem de magnitude nos parâmetros: velocidades superficiais de gás (U_g ~ 3 a 8 cm/s) e líquido (U_L ~ 0,3 a 0,5 cm/s) e massa de sólidos por massa de carga na entrada do reator (~ 0,01 a 0,024). Os dados de Niemann e Wenzel (1993) permitiram estimar o tempo de residência do líquido (τ_L) e do sólido (τ_S), mostrando que $\tau_S >> \tau_L$.

As colunas 4, 5 e 6 da Tabela 2.9 trazem dados de unidades piloto operando em condições próximas às da hidroconversão, porém com algumas diferenças: os experimentos de Bruijn et al. (1988) foram realizados sem fase sólida e sem ocorrência de reação; a fase gás dos reatores piloto do processo EDS é mais densa do que a fase gás da hidroconversão que é composta principalmente por hidrogênio (Tarmy et al., 1984). Nos dois trabalhos foram realizadas medições de fração volumétrica de gás (ε_g) com variação da pressão (P), mostrando que o acréscimo da pressão leva a um aumento de ε_g . Como os experimentos de Bruijn et al. (1988) foram realizados na ausência de sólidos, espera-se que ε_g do sistema de hidroconversão tenha valores inferiores aos destes experimentos. A expressão para o cálculo de ε_{gM} , proposta por Tarmy et al. (1984) foi utilizada no modelo fluidodinâmico apresentado no Capítulo 4.

Tarmy et al. (1984) desenvolveram estudos em 3 unidades piloto a quente (RCLU com Dc = 0,024 m; CLPP com Dc = 0,066 m; ECLP com Dc = 0,61 m) e duas unidades a frio com diâmetros de 0,15 e 0,61 m. Os dados de três dessas unidades são apresentados nas colunas 5, 6 e 7 da Tabela 2.9. A relação Lc/Dc das unidades a quente (Lc/Dc ~ 50; 111; 30) é muito mais elevada do que das unidades a frio (Lc/Dc ~ 17; 14), provavelmente para garantir o tempo de residência do líquido requerido para as reações. A operação das unidades piloto a quente de maior capacidade levou à utilização de maiores velocidades superficiais do líquido (U_L ~ 0,15 – 0,2; 0,4 - 0,6; 1,6 – 1,7 cm/s) e do gás (U_g ~ 0,9 – 2,3; 1,8 – 4,0; 4,6 – 6,5 cm/s). Em todos os casos U_g > U_L, mas não necessariamente U_g > 10.U_L, que é uma condição típica de colunas de bolhas. Os valores de fração volumétrica média de sólidos no reator (ε_{SM}) foram menores na menor unidade ($\varepsilon_{SM} \sim 0,10$) e variaram nas outras unidades chegando até a $\varepsilon_{SM} = 0,27$ em uma corrida experimental. Tarmy et al. (1984) também mediram os coeficientes de dispersão na fase líquida.

1 Processo / origem	2 VCC / Alemanha	3 Canmet / Canadá	4 Canmet / Canadá	5 EDS / EUA	6 EDS / EUA	7 Estudo coluna de	8 Estudo coluna de	9 Estudo coluna de	10 Típico de coluna de	11 Estudo fluidização
ou estudo \rightarrow	7 Hemanna	Canada	Canada	LON	LON	bolhas	bolhas	bolhas	bolhas	trifásica
Referências	Niemann e Wenzel (1993)	Fan (1989) Skripek et al. Gray (1994)	Bruijn et al. (1988)	Tarmy et al. (1984)	Tarmy et al. (1984)	Tarmy et al. (1984)	Forret et al. (2003)	Dudukovic e Devana- than (1993)	Dudukovic e Devana- than (1993) Fan (1989)	Chen et al. (1995)
Escala	Demons- tração	Demons- tração	Piloto	Piloto, (CLPP)	Piloto, (ECLP)	Piloto, uni- dade a frio	Piloto	Piloto		Piloto
Condições	Hidrocon- versão	Hidrocon- versão	Hidrocon- versão sem sólidos	Similar a hidrocon- versão	Similar a hidrocon- versão	Nitrogênio, heptano e carvão	Ar e água.	Ar e água.	Ar, água, com ou sem sólido.	Ar, água, esferas de vidro.
Regime de bolhas	homogêneo	homogêneo	Homogêneo	Homogêneo	Homogêneo	Varia com U _g e P	Heterogê- neo	Todos, Nota 9	todos	todos
Capacidade	560 m³/d	800 m³/d								
P (bar)	150 - 250		50 - 140	170	170	1,4 – 5,0	Ambiente	Ambiente	Ambiente	Ambiente
T (°C)	440 - 485		300	450	450	25	Ambiente	Ambiente	Ambiente	Ambiente
Lc (m)	10, Nota 2	22	2,4	7,3	18	2,5		0,85 Nota 6		4,1
Dc (m)	1 , Nota 2	2	0,0508	0,066	0,61	0,15	0,15; 0,4; 1,0 Nota 7	0,114; 0,19; 0,292		0,285
Lc / Dc	10, Nota 2	11	47	111	30	17	> 4	7,5 Nota 6	> 5	14
Nreator			1	3	4	1	1	1		1
U _L (cm/s)	0,5 Nota 2	0,3	0,04 - 0,1	0,4-0,6	1,6 – 1,7	0,45 - 1,15	0,14 - 9,4	0 batelada	0,0 - 2,0 máx 10,0	0,44 - 8,70
U _g (cm/s)	5,0 Nota 2	3,0 - 8,0	0,7 - 2,0	1,8-4,0	4,6-6,5	4,5 - 20,0	0,05 - 0,20	2,0 - 18,4	1,0 - 30,0 U _g >10 U _L	0,9 - 13,8

Tabela 2.9 Condições operacionais e parâmetros de colunas de bolhas (com e sem sólidos) experimentais em escala piloto e demonstração.

1	2	3	4	5	6	7	8	9	10	11
Processo / origem	VCC /	Canmet /	Canmet /	EDS /	EDS /	Estudo	Estudo	Estudo	Típico de	Estudo
ou estudo \rightarrow	Alemanha	Canadá	Canadá	EUA	EUA	coluna de	coluna de	coluna de	coluna de	fluidização
						bolhas	bolhas	bolhas	bolhas	trifásica
ϵ_{gM}			0,05 – 0,30 a 110 bar Nota 3	0,15 – 0,30 Fornece equação.	0,25 – 0,49 Fornece equação.	Nota 4	~ 0,24			Fornece equação.
Massa [sólidos / carga] (entrada)	0,024, Nota 2	0,01 – 0,02 Gray (1994)	0				0	0		
$\epsilon_{\rm SM}$			0	0,11 – 0,27	0,06 – 0,21		0	0	< 0,4 Nota10	0,01 - 0,15
dp (mm)				0,24 média	0,70 média	0,60 média 0,12 média			0,01 a 0,30	0,53 – 1,8
ρ_{s} (kg/m ³)				2600	2200	1270			1000 -3000	2292 - 2386
carga	RV, outros resíduos	RV	RV d _{15°C} =1,022	Hidrocar- bonetos	Hidrocar- bonetos	Heptano	Água	Água		Água
ρ_L (kg/m ³), Nota 1			852	850	810	685	1000, Nota 5	1000, Nota 5		1000 Nota 5
τ_L (min), Nota 11	32, Nota 2	1,5 h Nota 8		11 - 18	8 - 10					
μ_L (mPa.s), Nota 1				0,4	0,3	0,4	0,9 Nota 5	0,9 Nota 5		0,9 Nota 5
gás	H ₂ + gases formados	H ₂ + gases formados	H_2	H_2 + gases formados	H ₂ + gases formados	Nitrogênio	Ar comprimido	Ar comprimido		Ar comprimido
ρ_{g} (kg/m ³), Nota 1			4,49 a 110 bar	70	75	1,6	1,2 Nota 5	1,2 Nota 5		1,2 Nota 5
Foi verificado padrão médio de recirculação ?							SIM	SIM (Regimes homogêneo		SIM
Outras informações	$U_{L} = 100 U_{S}$ $\tau_{S} \sim 13 h$ nota 2		ρ _L 782 kg/m ³ a 400 °C	Processo de liquefação do carvão	Processo de liquefação do carvão			e hetero- gêneo de bolhas)	Nota 13	

Notas da Tabela 2.9:

- 1. As propriedades do líquido e do gás são fornecidas nas condições operacionais (temperatura e pressão) dos testes experimentais. Bruijn et al. (1988) observaram que a massa específica do resíduo de vácuo diminui linearmente com o aumento de temperatura.
- 2. Estimado a partir de informações nas Figuras 10 e 13 do artigo apresentado por Niemann e Wenzel (1993).
- Apresenta gráfico mostrando variação da fração volumétrica de gás (ε_{gM}) com a velocidade superficial do gás e pressão do sistema.
- 4. Observou-se que ε_{gM} aumenta com a pressão e que com o aumento da pressão do sistema a transição do regime homogêneo de bolhas para o regime heterogêneo ocorre a velocidades superficiais do gás mais elevadas. Nas condições de operação do processo de liquefação de carvão os reatores operam em regime homogêneo de bolhas.
- 5. Propriedades estimada para água na temperatura ambiente.
- 6. Lc e Lc/Dc na coluna de menor diâmetro (0,114 m).
- 7. Reatores comerciais podem chegar a 10 m de diâmetro e 40 m de altura.
- 8. Estimado considerando $\varepsilon_{LM} = 0,7$.
- 9. Nas colunas de bolhas operando com ar e água em condições ambiente, o regime homogêneo de bolhas ocorre com $U_g < 5$ cm/s (Dudukovic e Devanathan, 1993).
- 10. Condição esperada considerando informações da literatura.
- 11. Indica o tempo de residência do líquido (τ_L) em um reator, calculado com a expressão:

$$\tau_{\rm L} = \frac{\varepsilon_{\rm LM} \cdot {\rm Lc}}{{\rm U}_{\rm L}} \tag{2-6}$$

- --- indica que o dado não está disponível no artigo ou que a informação não é pertinente na célula (como por exemplo, a capacidade na coluna 10).
- 13. O leito fixo de esferas tem ε_{SM} máximo = 0,58 (esferas bem distribuídas no leito).

As colunas da direita na Tabela 2.9 (colunas 8 a 11) apresentam trabalhos realizados em sistemas com ar e água em condições ambientes. Forret et al. (2003) (coluna 8 da tabela), estudaram a influência da ampliação de escala na fluidodinâmica realizando experimentos em colunas operando no regime heterogêneo de bolhas com 0,15 m, 0,4 m e 1,0 m de diâmetro. Os experimentos realizados com $U_g = 0,15$ m/s mostraram o aumento da velocidade axial local do líquido no centro da coluna (V_L (0)) com o aumento do diâmetro da coluna, V_L (0) = 0,45; 0,75; 1,0 m/s, respectivamente. Nesses experimentos também foi observado que o perfil radial normalizado da velocidade V_L (r)/ V_L (0) independe do diâmetro da coluna.

Os dados do trabalho realizado por Dudukovic e Devanathan (1993), já discutido no item 2.5.4.2, são apresentados na coluna 9 da Tabela 2.9. A seguir (coluna 10 da tabela) são apresentadas condições operacionais típicas de colunas de bolhas, onde se destaca que Lc/Dc > 5

e $U_g > 10.U_L$. A fração volumétrica de sólidos em *slurry bubble columns* pode ser bastante elevada, chegando a $\varepsilon_{SM} = 0,40$. Como referência, um leito fixo de esferas de vidro tem ε_{SM} máximo = 0,58. Nos processos de hidroconversão em *slurry bubble columns* a reposição de sólidos é pequena (1 a 2 % peso da carga) se comparada à concentração de sólidos dentro do reator (ε_{SM}), o que resulta num elevado tempo de residência da fase sólida, como no processo VCC (coluna 2, Tabela 2.9).

Chen et al. (1995) realizaram medições de perfis de fração volumétrica de gás (ε_g) e velocidade axial local do líquido ($V_L(r)$) e propuseram um modelo unidimensional para representar a fluidodinâmica em leitos fluidizados trifásicos operando com ar-água-esferas de vidro em condições ambiente. Os dados desse trabalho são apresentados na coluna 11 da Tabela 2.9. Os experimentos foram realizados nos regimes de bolhas homogêneos, de transição e heterogêneos para os quais foram correlacionadas expressões de $\varepsilon_g(r)$. As expressões apresentadas por Chen et al. (1995) para o cálculo da viscosidade turbulenta na fase líquida e o perfil radial parabólico de fração volumétrica do gás foram utilizadas no modelo fluidodinâmico apresentado no Capítulo 4. O ideal seria utilizar uma expressão para a viscosidade turbulenta da fase líquida em condições similares à hidroconversão, mas até o momento não foram encontrados trabalhos experimentais com resultados de velocidade axial local e viscosidade turbulenta obtidas nestas condições.

As condições operacionais e parâmetros apresentados na Tabela 2.9 orientaram a definição das condições operacionais do reator de hidroconversão em escala piloto simulado com os modelos propostos no Capítulo 4. Os resultados dessas simulações são apresentadas nos Capítulos 5 e 6. Para simulação das reações de craqueamento é importante considerar ainda: a temperatura do reator (T), o tempo de residência do líquido (τ_L), a relação hidrogênio / óleo, a relação massa catalisador / massa carga (rcat) e a composição da carga. Esses parâmetros foram definidos considerando-se condições operacionais típicas de processos de hidroconversão em *slurry bubble column* e os trabalhos de Mosby et al. (1986) e Almeida (2000).

Na definição dos dados para simulação da hidroconversão em escala piloto surgiu a dificuldade de conciliar os dados de velocidade superficial do líquido (U_L) e tempo de residência do líquido (τ_L) com a relação Lc/Dc, mantendo o diâmetro na faixa das unidades piloto. Verificase que as unidades a frio, que têm por objetivo estudar a fluidodinâmica, operam com Lc/Dc entre 4 e 14, o que é consistente com as unidades demonstração e industriais que têm Lc/Dc variando entre 4 e 11. Entretanto, as unidades piloto a quente têm por objetivo estudar as reações e precisam garantir um tempo de residência do líquido (τ_L) suficiente para atingir as conversões esperadas. Dessa forma, Lc/Dc dessas unidades é excessivamente alto se U_L for mantida na faixa típica de *slurry bubble column*. Isso pode ser observado nas unidades piloto de Tarmy et al. (1984) que tem Lc/Dc = 111 e 30, respectivamente nas unidades CLPP e ELCP (ver Tabela 2.9). Não se espera que estas unidades piloto reproduzam a estrutura de fluxo encontrada nos reatores industriais. Provavelmente, as unidades com elevado Lc/Dc apresentam menor mistura no leito e também maiores conversões. Tarmy et al. (1984) mostram um gráfico onde a conversão diminui com a ampliação de escala do processo EDS. Para analisar esses resultados deve-se levar em conta o Lc/Dc e o número de reatores em série de cada unidade, já que a conversão aumenta com o acréscimo do número de reatores em série.

2.5.5 ASPECTOS AMBIENTAIS DA HIDROCONVERSÃO

A avaliação dos aspectos ambientais do processamento de resíduos de petróleo considerados sob a ampla perspectiva da análise do ciclo de vida, envolve as etapas de extração e preparo das matérias-primas, processamento do resíduo e uso dos produtos, incluindo ainda o transporte dos materiais. Em cada etapa há consumo de recursos naturais e de energia, assim como geração de rejeitos descartados no ambiente.

Gray (1994) apresenta as propriedades ambientais dos óleos pesados (resíduos do petróleo e betume) e os aspectos ambientais dos processos de conversão de resíduos: hidroconversão, processos térmicos (como coqueamento retardado) e craqueamento catalítico fluido de resíduos (FCC de resíduos).

O processo de hidroconversão processa resíduo de vácuo de petróleo, com hidrogênio e catalisador, consumindo energia e gerando destilados, resíduo não convertido, H_2S , NH_3 , água, catalisador desativado e gases de combustão (dos fornos). Nos processos de separação e tratamento das correntes efluentes do reator podem ser ainda usados outros insumos cujo descarte deve ser previsto.

O controle da fluidização do leito e da temperatura no reator de hidroconversão é essencial para garantir a estabilidade e segurança do processo, uma vez que o reator opera com elevadas pressões e temperaturas e as reações são muito exotérmicas. Também é importante

suprimir a formação de coque tanto no reator como nos equipamentos posteriores ao reator, para garantir a operação estável e segura, aumentando o fator de utilização da unidade (ou seja, minimizando as paradas).

Aspectos ambientais do H₂S e NH₃

 $O H_2S$ é uma substância perigosa agudamente tóxica para pessoas e animais. A amônia também é uma substância perigosa. Entretanto, essas duas substâncias não são descartadas para o ambiente, sendo removidas da corrente de gás e tratadas dentro do processo em unidades específicas.

Aspectos ambientais do resíduo de petróleo e frações geradas na hidroconversão

A toxidade dos óleos está relacionada com a solubilidade dos compostos na água e a presença de compostos aromáticos. A toxidade aguda, no caso de derramamento no mar ou no solo, é maior na presença de compostos solúveis na água como os fenóis, ácidos naftênicos e os compostos aromáticos de menor peso molecular conhecidos por BTX (benzeno, tolueno, xilenos). Como os óleos pesados e resíduos de petróleo têm baixa solubilidade na água, sua toxidade aguda é muito baixa e o risco de ingestão por aves e mamíferos aquáticos também é muito baixo. (Gray, 1994)

Óleos pesados e resíduos contém compostos aromáticos, como o benzo(a)pireno, com conhecida atividade mutagênica e cancerígena. Entretanto, testes com frações de petróleo indicaram que a atividade mutagênica e cancerígena é muito baixa no resíduo de petróleo. Esse comportamento é atribuído ao tipo de compostos aromáticos presentes nessas frações, que têm muitas substituições alquilas. As frações de óleo produzidas pelo processo de liquefação de carvão, que têm outra distribuição de compostos aromáticos, mostraram potencial cancerígeno significativo. Os maiores riscos na saúde das pessoas ligados ao contato com óleos pesados e resíduos de petróleo são queimaduras e inalação crônica dos vapores. (Gray, 1994)

Os maiores problemas em caso de derramamento de óleos pesados e resíduos de petróleo estão relacionados com a deposição sobre o solo e fundo de rios e mares, interferindo na atividade biológica local. Os efeitos no solo dependem da penetração do óleo na região das raízes das plantas e a consequente perda da estrutura e umidade do solo. (Gray, 1994)

Segundo Gray (1994), há poucas informações disponíveis sobre a toxidade das frações geradas na hidroconversão (destilados e resíduo não convertido). Entretanto, como a hidroconversão não tem a tendência de produzir substâncias aromáticas, pela sua estrutura química espera-se que os destilados sejam medianamente cancerígenos e mutagênicos, de maneira equivalente às frações do petróleo cru. Em função da média toxidade crônica, deve-se evitar o contato com a pele e inalação dessas frações. (Gray, 1994)

Também não há muitas informações sobre a toxidade do resíduo não convertido. Como a hidroconversão não tem a tendência de produzir substâncias aromáticas, espera-se que o resíduo não convertido tenha propriedades ambientais semelhantes ao do resíduo de vácuo obtido diretamente da destilação do petróleo cru, ou seja, baixa toxidade. (Gray, 1994).

Os impactos potenciais do uso (queima) dos destilados estão diretamente relacionados com os teores de enxofre e nitrogênio nessas frações, especificados por legislação ambiental. Os processos de hidroconversão em leito expandido são os que produzem destilados de melhor qualidade, mas dependendo das especificações pode ser necessário hidrotratamento adicional. Na hidroconversão com arraste é sempre necessário fazer o hidrotratamento dos destilados.

O resíduo não convertido, que contém metais, enxofre e nitrogênio, tem várias possibilidades de destino: unidade de coqueamento, forno de cimento (quando misturado com aditivo), combustão (na refinaria ou venda como óleo combustível). Não há referência na literatura consultada sobre problemas ambientais decorrentes das emissões de SO_2 e NO_2 na queima desse resíduo, mas é certo que também devem atender à legislação ambiental.

Aspectos ambientais do catalisador usado – maior preocupação ambiental

A maior preocupação ambiental é o destino do catalisador desativado. Segundo Gray (1994), o reciclo e o descarte do catalisador desativado devem ser considerados na avaliação de viabilidade e seleção do processo de hidroconversão. Segundo Skripek et al., o uso ou disposição do resíduo da hidroconversão (com aditivo) era uma das dificuldades técnicas que prejudicava a comercialização do processo Canmet, mesmo sendo atrativo do ponto de vista econômico. Esses autores consideram que o problema está resolvido.

O catalisador pode ser regenerado e retornar ao processo, como já citado na descrição dos processos H-Oil e HDH, ou pode ser descartado de forma segura. O catalisador usado é um

material perigoso, com depósitos de coque, metais e enxofre, que pode entrar em ignição ou, se previamente incinerado, contaminar os recursos hídricos (Drago et al., 1990).

Na prática, os catalisadores dos processos em leito expandido (H-Oil e LC-Fining) são os catalisadores mais ativos e de maior valor agregado e, por isso, os mais viáveis de regenerar. A regeneração desses catalisadores não é simples e envolve etapas de calcinação para remoção de coque e lixiviação ácida para remoção dos metais (Ni e V) depositados nas reações de HDM. As condições da lixiviação devem ser controladas para evitar a remoção dos metais responsáveis pela atividade do catalisador (Co/Mo ou Ni/Mo). Outra possibilidade é uma lixiviação severa com a separação dos metais recuperados e preparação do catalisador. Nenhuma dessas alternativas é utilizada em grande escala (Gray, 1994).

Não foram encontradas informações sobre o destino dos catalisadores dos processos em leito expandido H-Oil e LC-Fining na literatura consultada. O rejuvenescimento do catalisador no processo H-Oil parece ser mais motivado pela redução nos custos operacionais de reposição de catalisador do que pela redução na quantidade de catalisador descartado (conforme apresentado em Colyar, 1997).

Nos processos com arraste VCC e Canmet os aditivos não são separados do resíduo, que é enviado para unidades de coqueamento retardado, combustão em leito fluidizado ou indústria de cimento. Não há informações na literatura consultada sobre as emissões de SO₂ e NO₂ nos gases de combustão desse resíduo. No processo HDH o aditivo é separado do resíduo não convertido. Esse aditivo pode ser reciclado ao processo ou incinerado e enviado para a indústria metalúrgica, sendo esta indicada como a alternativa mais interessante por Drago et al (1990). Os autores mostram que para atender a legislação ambiental é necessário remover o SO₂ dos gases gerados na incineração, tendo sido selecionada uma tecnologia que aproveita o SO₂ para produção de uma solução aquosa de tiosulfato de amônia (usado como fertilizante).

Drago et al. (1990) apresentam o processo HDH como um processo "amigável ao meioambiente", pois não deixa resíduos que precisem ser dispostos em aterros. Niemann e Wenzel (1993) também apresentam o processo VCC como um processo "amigável ao meio-ambiente", pois foi demonstrado que diversos resíduos industriais contaminados podem ser processados no reator de hidroconversão, gerando produtos de alto valor agregado.

Consumo de energia

Não foi realizado um extenso levantamento sobre o consumo de energia nos processos de hidroconversão. Como referência, são apresentados na Tabela 2.10 os valores de consumo médio de energia em processos de refino, onde verifica-se que a hidroconversão tem consumo significativo. Esse levantamento foi realizado em refinarias dos Estados Unidos e não inclui o consumo de energia em processos auxiliares como geração de hidrogênio, recuperação de enxofre, resfriamento de água e tratamento de efluentes (Energetics, 1998).

Tabela 2.10 Consumo	médio de e	energia em	refinarias	dos Estados	Unidos	(Energetics,	1998)
		0					

Unidades do refino	Consumo médio de energia, Btu/barril de óleo processado
Destilação atmosférica	113,8
Coqueamento retardado	166
Craqueamento catalítico fluido (FCC)	100
Hidrotratamento (HDT)	120
Hidroconversão	240
Reforma Catalítica	284
Alquilação com ácido sulfúrico	335

3 Metodologia para avaliação ambiental de processos

Para avaliação de aspectos técnicos e ambientais de processos em fase de desenvolvimento foi selecionado o método proposto por Heinzle et al. (1998), descrito de forma resumida e comparado a outros métodos no item 2.3 (itens 2.3.4.5 e 2.3.5). O método foi proposto para avaliação mássica, ambeintal e econômica de processos em fase inicial de desenvolvimento, sendo aplicado a casos da indústria farmacêutica por Koller et al. (1998).

Este capítulo apresenta o método de Heinzle et al. (1998) com mais detalhes, equacionamentos e com a implementação de algumas modificações (discriminadas no item 3.3). A nomenclatura foi completamente adaptada.

O método de Heinzle et al. (1998) se baseia em balanços de massa detalhados, que permitem a identificação da origem dos problemas. São definidas regiões de balanço, mostradas na Figura 3.1, que vão se expandindo à medida que novas informações vão sendo obtidas e o estudo evolui. Nessas regiões são determinados e analisados os indicadores:

- Indicador de massa IM
- Indicador ambiental IA

Figura 3.1 Regiões de avaliação, adaptado de Heinzle et al.(1998). Os rejeitos industriais que não forem recuperados ou reciclados saem com as emissões, os efluentes e os resíduos.

O método de Heinzle et al. (1998) considera a sequência natural de desenvolvimento de um processo, que normalmente se inicia com o levantamento dos parâmetros de reação, seguido pelas demais operações à medida que se obtém informações adicionais para análise. As regiões não são estanques, de forma que os dados podem ser incorporados à análise logo que disponíveis (ainda que nem todas as informações de uma região estejam sendo consideradas), conforme mostrado nos casos estudados por Koller et al. (1998).

Os aspectos considerados na determinação dos indicadores são apresentados a seguir. No item que trata do indicador de massa (IM) é apresentada a descrição das regiões de balanço da Figura 3.1, as equações para cálculo do IM e aspectos da aplicação do método nos processos de refino de petróleo e na hidroconversão de resíduos. O indicador ambiental (IA) é apresentado na sequência, com a indicação das referências para avaliação ambiental dos compostos e o equacionamento na região de reação.

A aplicação desse método ao processo de hidroconversão de resíduo de vácuo (RV) é realizada no Capítulo 6, com a apresentação dos indicadores e discussão dos resultados.

Definição das correntes que atravessam as regiões de balanço (Figura 3.1 e Figura 3.4)

As matérias-primas (MP) são recursos consumidos nas reações, enquanto que os insumos (Ins) são materiais auxiliares como catalisadores, solventes, aditivos e outros. Energia (En) e utilidades (Util) são fornecidas ao processo. Produtos (P) e subprodutos (SP) são gerados nas reações, mas somente os produtos são objetivos do processo (apesar dos subprodutos poderem ter valor econômico). Heinzle et al. (1998) fazem uma distinção entre dois tipos de subprodutos: os *couple products* gerados na reação principal junto com o produto e os *byproducts* que são resultantes de reações secundárias. Essa distinção não foi usada neste trabalho, pois só é possível quando os mecanismos de reação são bem conhecidos e definidos, o que não ocorre no refino de petróleo.

Rejeito (Rej) é tudo que é gerado no processo e atualmente não tem valor comercial ou possibilidade de reaproveitamento, sendo descartado após tratamento. Emissões (Em_G), efluentes (Ef_L) e resíduos (Res_S) são definidos, respectivamente, como rejeitos gasosos, líquidos e sólidos tratados que são descartados de forma segura para o ambiente. É importante destacar que "resíduo para descarte" difere de hidroconversão de "resíduo" ou "resíduo de vácuo (RV)", onde o termo resíduo se refere à fração mais pesada obtida no refino de petróleo que é aproveitada para queima ou reprocessamento.

3.1 IM – INDICADOR DE MASSA

Os indicadores de massa são calculados a partir dos resultados dos balanços de massa nas regiões consideradas. Os balanços de massa dependem de diversas informações (cinética, seletividade, rendimento, eficiência de separação, etc) e devem ser calculados em simuladores comerciais ou em programas específicos desenvolvidos para o processo em questão, ou ainda obtidos a partir de dados experimentais, informações da literatura ou dados industriais.

Fazendo o balanço de massa no estado estacionário: W entra = W sai (3-1)

e IM é definido conforme Heinzle et al.(1998):

$$IM = \frac{W \text{ entra}}{W_{P}} = \frac{W \text{ sai}}{W_{P}} = \frac{kg \text{ material}}{kg \text{ produto}}$$
(3-2)

na qual W é vazão mássica e W_P vazão mássica de produto.

Para a operação em estado estacionário, IM pode ser calculado tanto com os dados de entrada como de saída da região. Entretanto, nesses dois cálculos o indicador é formado por compostos distintos e isso é considerado na determinação do indicador ambiental (IA).

Num processo ideal onde toda matéria-prima foi convertida a produtos sem perdas (não há subprodutos, nem sobra de matéria-prima) e sem consumo de insumos encontra-se IM = 1. Na prática IM > 1 e procura-se desenvolver processos que tenham menor IM possível.

A determinação do indicador de massa (IM) para o processo de hidroconversão de RV levou a uma proposta de divisão dos processos de refino de petróleo (para estudo) nas regiões da Figura 3.1, que é apresentada a seguir junto com o desenvolvimento dos indicadores de massa de cada região.

Os balanços de massa são desenvolvidos a seguir, definindo as variáveis para o cálculo dos indicadores de massa num processo genérico. Na região de reação (região 1), os indicadores são determinados para o processo de hidroconversão.

3.1.1 REGIÃO 1 – REAÇÃO – IM1

A região de reação, mostrada na Figura 3.2, consiste basicamente no reator com condições operacionais definidas: pressão, temperatura, modo de operação (batelada, contínuo, leito de arraste, leito fluidizado, etc), vazões, tipo e quantidade de insumos, relações entre os reagentes, etc.

No balanço do reator não é considerado <u>nenhum tipo de reciclo</u>. Por isso, as correntes de saída da região de reação são: insumos, matérias-primas que não reagiram, etc. e podem futuramente ser reciclados ao processo. O reciclo é considerado da região 2 em diante (definida na Figura 3.1).

Figura 3.2 Esquema para balanço na região de reação (estado estacionário, sem reciclo de materiais).

Balanço de massa na região de reação:

$$W entra = W_{MP} + W_{Ins}$$
(3-3)

$$W sai = W_P + W_{SP} + W_{MPS} + W_{InsU}$$
(3-4)

No estado estacionário: W entra = W sai e IM1 é definido conforme a Equação 3-2:

$$IM1 = \frac{W \text{ entra}}{W_{P}} = \frac{W \text{ sai}}{W_{P}}$$
(3-5)

Então, fazendo o balanço de massa na entrada da região de reação temos:

$$IM1 = \frac{W \text{ entra}}{W_{P}} = \frac{W_{MP}}{W_{P}} + \frac{W_{Ins}}{W_{P}} = FM1_{MP} + FM1_{Ins}$$
(3-6)

onde $FM1_{MP}$ e $FM1_{Ins}$ são os fatores de massa e W_{MP} e W_{Ins} representam a somatória das vazões mássicas, respectivamente, das matérias-primas e insumos. Dessa forma:

$$FM1_{MP} = \sum_{i} FM1_{MP,i} = \sum_{i} \frac{W_{MP,i}}{W_{P}}$$
(3-7)

$$FM1_{Ins} = \sum_{i} FM1_{Ins,i} = \sum_{i} \frac{W_{Ins,i}}{W_{P}}$$
(3-8)

Fazendo o balanço de massa na saída da região de reação:

$$IM1 = \frac{W \, sai}{W_{P}} = \frac{W_{P}}{W_{P}} + \frac{W_{SP}}{W_{P}} + \frac{W_{InsU}}{W_{P}} + \frac{W_{MPS}}{W_{P}} = 1 + FM1_{SP} + FM1_{InsU} + FM1_{MPS}$$
(3-9)

Considerando vários subprodutos, insumos e matérias-primas que não reagiram temos:

$$FM1_{SP} = \sum_{i} FM1_{SP,i} = \sum_{i} \frac{W_{SP,i}}{W_{P}}$$
(3-10)

$$FM1_{InsU} = \sum_{i} FM1_{InsU,i} = \sum_{i} \frac{W_{InsU,i}}{W_{P}}$$
(3-11)

$$FM1_{MPS} = \sum_{i} FM1_{MPS,i} = \sum_{i} \frac{W_{MPS,i}}{W_{P}}$$
(3-12)

Como já comentado, IM pode ser calculado tanto com os dados de entrada como de saída do reator, em caso de operação em estado estacionário. Mas IA (indicador ambiental) é calculado independentemente na entrada e saída das regiões de balanço e requer dados de FM.

A análise dos fatores e do indicador de massa da região de reação é interessante para avaliar os rendimentos e seletividades das reações, considerando ainda a quantidade de insumos necessários para obtenção dos produtos. Alguns processos envolvem várias etapas de reação em equipamentos distintos e, dependendo dos objetivos do estudo, são propostas diferentes estratégias:

- ⇒ análise de todo o conjunto de reações para comparação de rotas de reação alternativas, como aplicado no estudo de caso 1 de Koller et al. (1998) para análise de um processo em estágio inicial de pesquisa;
- ⇒ estudo de cada reator em separado (conforme a ordem das reações) seguido de uma avaliação de toda a região de reação, para avaliação de alternativas dentro de um mesmo processo.

Nos processos de refino de petróleo, a região 1 envolve os equipamentos principais de reação como, por exemplo:

- O conjunto do riser, reator e regenerador do processo de FCC (craqueamento catalítico);
- O forno de reforma com vapor e conversores do processo de geração de hidrogênio por reforma de nafta ou gás natural com vapor;
- Os reatores de hidrotratamento nos processos de HDT (hidrotratamento) dos derivados;
- O vaso de coqueamento nos processos de coqueamento retardado;
- O reator de hidroconversão no processo de hidroconversão.

Aplicação ao Processo de Hidroconversão:

No reator de hidroconversão ocorrem reações de craqueamento e remoção de heteroátomos (HDS, HDN, HDM). As reações são definidas em termos de pseudocomponentes com a qualidade estimada (teores de S, N, presença de compostos nocivos) e não por substâncias puras (como no trabalho de Heinzle et al.,1998).

No balanço da região de reação temos:

- Matérias-primas (MP): resíduo de vácuo (RV) e hidrogênio;
- Insumos (Ins): catalisador ou aditivo, designado genericamente de "cat";

- Produtos (P): diesel;
- Subprodutos (SP): gás combustível (GC); nafta; gasóleo; H₂S, amônia e água;
- Matérias-primas que não reagiram (MPS): resíduo não convertido e hidrogênio;
- Insumos utilizados (InsU): catalisador desativado ou aditivo usado.

Os indicadores de massa IM1 são calculados pelo balanço de massa na entrada ou na saída da região de reação, apresentados nas Equações 3-6 e 3-9, onde:

$$FM1_{MP} = \sum_{i} FM1_{MP,i} = FM1_{MP,RV} + FM1_{MP,H_2}$$
(3-13)

$$FM1_{Ins} = \sum_{i} FM1_{Ins,i} = FM1_{Ins,cat}$$
(3-14)

$$FM1_{SP} = \sum_{i} FM1_{SP,i} = FM1_{SP,GC} + FM1_{SP,NAFTA} + FM1_{SP,GASOLEO} + FM1_{SP,H_2S} + FM1_{SP,NH_3} + FM1_{SP,H_2O}$$
(3-15)

$$FM1_{MPS} = \sum_{i} FM1_{MPS,i} = FM1_{MPS,RV} + FM1_{MPS,H_2}$$
(3-16)

$$FM1_{InsU} = \sum_{i} FM1_{InsU,i} = FM1_{InsU,cat}$$
(3-17)

A completa caracterização do processo de hidroconversão na região de reação requer o conhecimento das reações de craqueamento, remoção de heteroátomos, desativação do catalisador, balanço de hidrogênio e formação de coque em função das características da carga e severidade do processo.

3.1.2 REGIÃO 2 – SEPARAÇÃO E RECICLO – IM2

A região de separação (região 2), esquematizada na Figura 3.3, consiste nas etapas de separação e purificação dos produtos e subprodutos obtidos na reação, visando especificar o produto e reciclar os materiais aproveitáveis.

A análise dessa região visa a seleção de processos mais eficientes, que promovam boa recuperação, atendam as especificações do produto e permitam o reciclo dos materiais. Os fatores e o indicador de massa auxiliam na comparação do desempenho dos processos. Entretanto, algumas vezes o fator determinante na seleção do processo de separação são os aspectos ambientais dos insumos (por exemplo, dos solventes), considerados através do indicador ambiental, ou o consumo de energia.

O balanço de massa da região 2 da Figura 3.3, considerando estado estacionário e reciclo, determina o indicador de massa IM2 com as equações:

$$IM2 = \frac{W \text{ entra}}{W_{P}} = FM2_{Ins} + FM2_{P0} + FM2_{SP0} + FM2_{MPS} + FM2_{InsU}$$
(3-18)

$$IM2 = \frac{W \, sai}{W_{P}} = 1 + FM2_{SP} + FM2_{Rej_{L}} + FM2_{Rej_{G}} + FM2_{Rej_{S}} + FM2_{RR}$$
(3-19)

com
$$FM_* = \sum_i FM_{*,i} = \sum_i \frac{W_{*,i}}{W_P}$$
 (3-20)

nas quais P0 e SP0 referem-se às correntes de produto e subproduto que estão entrando na região 2 (diferenciando das correntes de P e SP que deixam a região); RR é a corrente de reciclo de materiais para a região de reação (substituindo parte dos insumos ou matérias-primas); FM* e W* representam genericamente qualquer corrente do balanço na região.

A região 2 normalmente envolve várias "etapas de separação", ou seja, vários processos com características específicas, que podem ser analisados separadamente (com cálculo dos indicadores) dentro da região de separação.

Nos processos de refino de petróleo, a região 2 consiste tipicamente em uma série de colunas de destilação para fracionamento e retificação dos derivados (utilizadas nas unidades de destilação de petróleo, FCC, HDT, desasfaltação, coqueamento retardado e hidroconversão). Outros tipos de separadores também são empregados, como por exemplo:

 Ciclones e precipitadores eletrostáticos na separação de catalisador de FCC dos gases provenientes do regenerador;

- Absorvedoras de CO₂ com monoetalnolamina (MEA), para remover o CO₂ da corrente de hidrogênio, no processo de geração de hidrogênio;
- Absorvedoras de H₂S com dietanolamina (DEA) das correntes de gás combustível ou GLP;
- Filtros ou centrífugas para separação de partículas pequenas;
- Processos de adsorção do tipo *pressure swing adsorption* (PSA) ou processos com membranas para separação do hidrogênio de outros gases.

A região de separação no processo de hidroconversão:

No processo de hidroconversão, a etapa de separação envolve: a separação das frações mais leves em vasos de alta e baixa pressão, o fracionamento dos produtos e subprodutos em colunas de destilação, a separação do catalisador (ou aditivo) e a recuperação do hidrogênio para reciclo ao reator. O catalisador e o resíduo podem ainda ser reciclados ao reator de forma parcial.

O modo de separação do catalisador utilizado depende de algumas características de processo. Nos reatores em leito expandido é utilizado catalisador em forma de *pellets* (pequenos cilindros) que são removidos independentemente da corrente de óleo efluente do reator. Nos reatores em leito de lama usa-se aditivo finamente dividido, que sai do reator com o líquido e pode ser separado do óleo com centrífugas.

Portanto, há diversas questões que devem ser avaliadas no desenvolvimento do processo de hidroconversão relacionadas com a região de separação e algumas delas dependem da tecnologia selecionada para o reator.

3.1.3 REGIÃO 3 – REAÇÃO E SEPARAÇÃO – IM3

O balanço na região 3 engloba as etapas de reação e separação, mostrando com maior definição as matérias-primas e insumos envolvidos em todo o processo, assim como produtos, subprodutos e rejeitos do processo. O balanço é apresentado de forma genérica na Figura 3.3. Os rejeitos são formados por insumos utilizados, matérias-primas que não reagiram, subprodutos sem valor comercial e outros materiais que não são reciclados ao processo de maneira viável.

A avaliação da região 3 é normalmente realizada num estágio mais avançado de desenvolvimento do processo, onde diversas informações são conhecidas. Nessa etapa podem ser realizadas as estimativas iniciais de consumo de utilidades (água de resfriamento, vapor, etc.) e

energia nos equipamentos principais (trocadores de calor, bombas, etc). Os gases de combustão decorrentes da geração de energia são computados com os rejeitos gasosos (Rej _G).

O balanço de massa da região 3 da Figura 3.3, considerando estado estacionário, determina o indicador de massa IM3 com as equações:

$$IM3 = \frac{W \text{ entra}}{W_{P}} = FM3_{MP} + FM3_{Ins} + FM3_{En} + FM3_{Util}$$
(3-21)

$$IM3 = \frac{W \, sai}{W_{P}} = 1 + FM3_{SP} + FM3_{Rej_{L}} + FM3_{Rej_{G}} + FM3_{Rej_{S}}$$
(3-22)

$$\operatorname{com} \quad \operatorname{FM3}_{\operatorname{En}} = \frac{W_{\operatorname{En}}}{W_{\operatorname{P}}} \tag{3-23}$$

FM é calculado pela Equação 3-20 onde FM* e W* representam genericamente qualquer corrente do balanço na região; W_{En} é a vazão mássica de combustível requerida para produzir a energia necessária ao processo; W util é a vazão mássica das utilidades (água de resfriamento, vapor, etc) fornecidas ao processo.

Região 3 (estado estacionário, considera reciclo):

Figura 3.3 Esquema para balanço na região 3, que envolve as etapas de reação e separação (estado estacionário, considerando reciclo, consumo de energia e utilidades).

Nos processos de refino, a região 3 engloba os equipamentos já incluídos nas regiões de reação e separação e outros equipamentos adicionais como, por exemplo:

- Fornos, baterias de trocadores de calor, refervedores, condensadores;
- Compressores, sopradores, bombas, sistemas de vácuo.

No processo de hidroconversão, a viabilidade do reciclo de catalisador e do reciclo de resíduo para o reator, por exemplo, são questões a serem analisadas na região 3. O hidrogênio excedente deve ser reciclado ao reator após purificação. A definição da tecnologia do reator (leito expandido ou leito de lama) tem consequências nas etapas de separação e no consumo de energia, podendo ser mais bem avaliada nesta região.

3.1.4 REGIÃO 4 – PRÉ-TRATAMENTO DOS REJEITOS – IM4

A região 4 consiste das etapas de pré-tratamento dos rejeitos do processo visando adequar essas correntes para reciclo ao processo ou para tratamento. Produtos e subprodutos também podem sofrer tratamento adicional (polimento) para ajuste de especificação, seguindo para estocagem ou processamento posterior.

O balanço de massa da região 4 da Figura 3.4, considerando estado estacionário e ausência de reciclo, determina o indicador de massa IM4 com as equações:

$$IM4 = \frac{W \text{ entra}}{W_{P}} = FM4_{Ins} + FM4_{P0} + FM4_{SP0} + FM4_{Rej_{L0}} + FM4_{Rej_{G0}} + FM4_{Rej_{S0}}$$
 (3-24)

$$IM4 = \frac{W \, sai}{W_{P}} = 1 + FM4_{SP} + FM4_{Re\,jL} + FM4_{Re\,jG} + FM4_{Re\,jS}$$
(3-25)

FM é calculado pela Equação 3-20 onde FM* e W* representam genericamente qualquer corrente do balanço na região; P0, SP0, Rej_{G0} , Rej_{L0} , Rej_{S0} , referem-se às correntes de produto, subproduto e rejeitos que estão entrando na região 4 (diferenciando das correntes de P, SP e Rej que deixam a região).
Essa região normalmente envolve vários processos específicos para os tratamentos previstos. Caso necessário, a análise da região pode ser dividida em etapas, com a avaliação individual das alternativas para cada um dos processos.

No refino de petróleo, a região 4 consiste de uma série de processos que visam adequar os efluentes líquidos para tratamento na estação de tratamento de efluentes industriais, remover compostos de enxofre (H_2S e mercaptanas) de produtos e subprodutos, etc. Alguns exemplos típicos desses processos são:

- Retificadoras de águas ácidas para remoção de H₂S e NH₃;
- Unidade Merox de GLP, nafta e diesel para remoção de mercaptanas;
- Absorvedoras de H₂S de gás combustível e GLP com DEA (dietanolamina);
- Unidade de recuperação de enxofre (URE) para transformar o H₂S em enxofre elementar.

Nas refinarias é usual que um processo de tratamento receba correntes de mais de uma unidade. Por exemplo, a retificadora de águas ácidas pode receber água das unidades de destilação, FCC e coqueamento retardado.

No processo de hidroconversão, produtos e subprodutos têm boa qualidade (baixos teores de enxofre, nitrogênio) podendo seguir para armazenagem ou para processamento adicional em outras unidades (depende das especificações para os derivados e do esquema de refino). A análise da região 4 consiste, basicamente, da avaliação de absorvedoras de H₂S das correntes gasosas, com posterior geração de enxofre, e na especificação da retificadora de água ácida. Esses tratamentos são realizados com o uso de processos comerciais bem estabelecidos.

3.1.5 REGIÃO 5 – REAÇÃO, SEPARAÇÃO E PRÉ-TRATAMENTO DE REJEITOS – IM5

A região 5 engloba as etapas de reação e separação e a etapa de pré-tratamento de rejeitos. Desta forma, ficam mais definidos os materiais que participam de todo o processo, rendimento e qualidade do produto, subprodutos gerados e rejeitos. Os rejeitos do processo podem seguir para tratamento final (e descarte no ambiente) ou para reciclo fora do processo (ou até em outra unidade industrial).

A avaliação da região 5 é realizada num estágio bem mais avançado de desenvolvimento do processo, onde diversas informações são conhecidas. Nessa etapa podem ser realizadas estimativas de consumo de utilidades e energia nos equipamentos principais.

O balanço de massa da região 5 da Figura 3.4, considerando estado estacionário, determina o indicador de massa IM5 com as equações:

$$IM5 = \frac{W \text{ entra}}{W_{P}} = FM5_{MP} + FM5_{Ins} + FM5_{En} + FM5_{Util}$$
(3-26)

$$IM5 = \frac{W \, sai}{W_{P}} = 1 + FM5_{SP} + FM5_{Rej_{L}} + FM5_{Rej_{G}} + FM5_{Rej_{S}}$$
(3-27)

FM é calculado pela Equação 3-20 na qual FM $_*$ e W $_*$ representam genericamente qualquer corrente do balanço na região; W_{En} é a vazão mássica de combustível requerida para produzir a energia necessária ao processo.

3.1.6 REGIÃO 6 – TRATAMENTO DOS REJEITOS – IM6

A região 6 envolve o tratamento final dos rejeitos do processo para descarte de modo seguro, atendendo a legislação vigente. Na análise dessa região é que ficam definidas as emissões, efluentes e resíduos do processo com as quantidades e os componentes que serão descartados para o ambiente.

O balanço de massa da região 6 da Figura 3.4, considerando estado estacionário, determina o indicador de massa IM6 com as equações:

$$IM6 = \frac{W \text{ entra}}{W_{P}} = FM6_{Ins} + FM6_{Rej_{L}} + FM6_{Rej_{G}} + FM6_{Rej_{S}}$$
(3-28)

$$IM6 = \frac{W \, sai}{W_{P}} = FM6_{Em_{G}} + FM6_{Ef_{L}} + FM6_{Res_{S}}$$
(3-29)

FM é calculado pela Equação 3-20 na qual FM* e W* representam genericamente qualquer corrente do balanço na região.

O tratamento de rejeitos líquidos normalmente consta de apenas uma unidade para um complexo industrial, que recebe efluentes de diversos processos. No caso de uma refinaria, todas as unidades encaminham os efluentes oleosos e contaminados para a estação de tratamento de despejos industriais (ETDI), onde são tratados. Na indústria petroquímica também é comum a instalação de uma unidade para tratamento do despejo de diversos processos.

A tendência atual de projeto de ETDIs prevê a segregação de correntes de efluente que requerem tratamento específico ou simplificado e a adequação do efluente tratado para reuso. No caso de instalação de um processo novo numa refinaria deve ser verificado se a ETDI tem capacidade para tratar o efluente adicional gerado ou se é necessária ampliação. Atenção especial deve ser dada aos contaminantes que serão enviados com concentração mais elevada e aqueles que não fazem parte do efluente que chega a ETDI, pois podem requerer instalações especiais para tratamento.

O descarte de gases de combustão e outras correntes gasosas para a atmosfera podem requerer a instalação de equipamentos para especificação das emissões gasosas, como por exemplo: lavadores de gases, incineradores de amônia, equipamento para coleta de material particulado, etc.

Os resíduos do refino de petróleo têm diversas destinações dependendo de suas características, como por exemplo: a disposição de resíduos oleosos e lodo biológico em *landfarming*, o envio de catalisador desativado de FCC para indústria de cimento e a disposição de lodo de tratamento de água em aterros.

3.1.7 REGIÃO 7 – TODO O PROCESSO – IM7

A região 7 engloba todas as etapas do processo desde o preparo das matérias-primas para reação (aquecimento, mistura, etc) até a especificação do produto e o descarte final dos rejeitos de modo seguro para o ambiente, permitindo uma avaliação geral do processo. Nessa etapa devem ser realizadas estimativas de consumo de utilidades e energia nos equipamentos principais. Um esquema geral de todas as regiões é mostrado na Figura 3.4.

Figura 3.4 Esquema para balanço de massa em todas as regiões de processo (estado estacionário e considerando reciclo entre as regiões 1 e 2).

O balanço de massa da região 7 da Figura 3.4, considerando estado estacionário, determina o indicador de massa de todo o processo IM7 com as equações:

$$IM7 = \frac{W \text{ entra}}{W_{P}} = FM7_{MP} + FM7_{Ins} + FM7_{En} + FM7_{Util}$$
(3-30)

$$IM7 = \frac{W \, sai}{W_{P}} = 1 + FM7_{SP} + FM7_{Em_{G}} + FM7_{Ef_{L}} + FM7_{Res_{S}}$$
(3-31)

FM é calculado pela Equação 3-20 na qual FM* e W* representam genericamente qualquer corrente do balanço na região.

3.2 IA – INDICADOR AMBIENTAL

O indicador ambiental combina os efeitos dos fluxos de massa e dos aspectos ambientais dos compostos gerados ou utilizados no processo, destacando aqueles que têm maior potencial de causar dano à saúde das pessoas ou à natureza, conforme a expressão a seguir:

$$IA = FA \cdot FM \tag{3-32}$$

na qual: FA é o fator que considera os aspectos ambientais

FM é o fator calculado na determinação do indicador de massa (kg material / kg produto).

FA é um fator ambiental qualitativo, adimensional, que combina vários aspectos ambientais para cada composto. Para cada aspecto ambiental avaliado são considerados três níveis de prejuízo potencial ao meio ambiente, níveis A, B e C. A cada um desses níveis foram dados pesos distintos:

A – peso 4,0 B – peso 1,3 C – peso 1,0

Os pesos foram definidos por Heinzle et al.(1998) de forma que o FA permita a identificação dos compostos e problemas mais críticos no processo. A classe "A" caracteriza os problemas críticos, que podem vir a interromper a construção e operação do processo ou resultar em custos elevados adicionais para tratamento e disposição de rejeitos. A classe "C" indica que não há problemas ambientais potencialmente críticos. E a classe "B" mostra uma situação intermediária. (Heinzle et al., 1998)

Num processo em que os materiais e condições utilizados não tragam problemas ambientais potencialmente críticos FA = 1 de todos os componentes e IA = FM. Na prática, normalmente FA > 1 e procuram-se processos que tenham o menor FA e o menor FM possíveis (resultando em menor IA).

Neste trabalho, o FA é calculado de forma diferenciada para os componentes presentes nas correntes de entrada e saída do processo:

- Para as matérias-primas e insumos FA é calculado considerando aspectos ambientais decorrentes do fornecimento desses materiais: disponibilidade do recurso natural, uso de materiais críticos, uso de energia, geração e descarte de poluentes.
- Para as correntes geradas no processo (produtos, insumos utilizados, rejeitos, etc) FA é calculado considerando os impactos ambientais potenciais desses materiais no ambiente (poluição hídrica, da atmosfera ou do solo e problemas locais de disposição).

A seguir são apresentados os critérios para avaliação dos componentes segundo os aspectos ambientais definidos para as matérias-primas e insumos (item 3.2.1) e para os componentes gerados ou utilizados no processo (item 3.2.2). O fator ambiental FA de cada componente é calculado multiplicando-se os pesos obtidos em cada um dos três aspectos ambientais avaliados, conforme descrito no item 3.2.3.

3.2.1 FATOR AMBIENTAL DOS INSUMOS E MATÉRIAS-PRIMAS

Os compostos fornecidos ao processo, ou seja, matérias-primas e insumos (solventes, catalisadores, etc) são avaliados qualitativamente quanto à disponibilidade dos recursos naturais necessários para sua obtenção e os impactos ambientais potenciais decorrentes de seu processamento. Essa é uma forma simplificada de considerar uma análise do ciclo de vida envolvendo as etapas de preparação de matéria-prima, ou seja, os processos que antecedem o processo que está sendo analisado. A tabela a seguir, baseada no trabalho de Heinzle et al.(1998), mostra a classificação adotada.

A identificação de compostos críticos presentes nos processos químicos é realizada através das referências da classe A da Tabela 3.3, para poluição do ar e da água. Heinzle et al. (1998) definiram que na falta de informações sobre a presença de compostos críticos considera-se classe C para essa questão, uma vez que a maioria dos aspectos ambientais mais críticos já foi identificada na literatura.

Heinzle et al.(1998) consideraram que o número de etapas de síntese de um composto está relacionado com a complexidade do processo (consumo de energia, recursos, etc) e, portanto, com o grau de poluição que pode ser gerado em sua operação.

Tabela 3.1 Classificação ABC para avaliação ambiental de matérias-primas e insumos basea	ada
em Heinzle et al. (1998)	

Item	Questão	Classe A	Classe B	Classe C
1	<u>Complexidade</u> de síntese das matérias-primas e insumos	≥ 10 etapas de reação para síntese	3 ≤ etapas de reação < 10 para síntese	< 3 etapas de reação para síntese
2	<u>Materiais críticos</u> usados no processo de síntese das matérias-primas e insumos	Compostos críticos ¹ usados em quantidade estequiométrica.	Compostos críticos ¹ em quantidade menor que a estequiométrica; materiais indesejáveis ² em quantidade estequiométrica.	Não há compostos críticos envolvidos.
3	Disponibilidade de recursos naturais ³ .	Não sustentáveis com exaustão prevista em menos de 30 anos. Por ex. Cd, Hg e Zn.	Não sustentáveis com depósitos suficientes para durar entre 30 e 100 anos. Por ex. petróleo e gás natural.	Sustentáveis ou com garantia de duração dos depósitos por mais de 100 anos.
Peso	-	4,0	1,3	1,0

Notas da Tabela 3.1:

- 1. Compostos críticos são os relacionados nos itens 1 e 2, classe A, da Tabela 3.3.
- 2. Compostos indesejáveis são os relacionados nos itens 1 e 2, classe B, da Tabela 3.3.
- Com base no índice de reservas estáticas, publicadas anualmente pelo World resources do World Resources Institute (por exemplo: World Resources Institute, 1992), que compila as informações do US Bureau of Mines e World Bureau of Metal Statistics (Inglaterra). A Tabela 3.2 apresenta o índice de reservas estáticas apresentado em Cavalcanti (1996).

Os recursos são classificados como sustentáveis e não-sustentáveis, definição mais atual que substitui a classificação tradicional de recursos renováveis ou não renováveis. Essa classificação considera que todos os recursos são renováveis em uma ampla escala de tempo. Recursos sustentáveis são "aqueles cujas taxas de reposição ou recomposição são iguais ou maiores que as taxas de uso, não se tornando mais caros, mesmo quando não ocorrem mudanças tecnológicas redutoras de custos; somente o uso excessivo pode levá-los à exaustão, pois com gerenciamento competente, a taxa de uso pode ser equilibrada com a taxa de reposição"

(Cavalcanti, 1996). Já os recursos não-sustentáveis "são aqueles cujas taxas de retirada e uso excedem muito a taxa de reposição". Exemplos de recursos sustentáveis são a água, o solo, o ar, enquanto que não-sustentáveis são os depósitos minerais como petróleo, cobre, níquel, etc. (Cavalcanti, 1996)

O índice de reservas estáticas, calculado pelo *US Bureau of Mines*, é a razão das reservas identificadas de um minério pelos dados da produção global no último ano disponível. Esse índice informa por quanto tempo haverá disponibilidade daquele recurso se a produção se mantiver constante e não houver alteração nos fatores que interferem sobre a oferta e demanda (novas descobertas, substituição do minério, desenvolvimento de tecnologias de extração e recuperação, etc). A Tabela 3.2 apresenta o índice de reservas estáticas de 1995 apresentados em Cavalcanti (1996).

Minério / Metal	anos	Minério / Metal	anos	Minério / Metal	anos
Bauxita	216	Grafita	23	Potássio	387
Antimônio	56	Diamante industrial	18	Terras raras	Muito grande
Arsênico	22	Iodo	375	Silício	Muito grande
Asbestos	33	Ferro	128	Prata	20
Barita	31	Caolim	Muito grande	Enxofre	27
Berílio	Muito grande	Chumbo	21	Talco	57
Bismuto	32	Lítio	Muito grande	Tântalo	82
Boro	161	Magnésio	Muito grande	Estanho	42
Cádmio	27	Manganês (não marinho)	120	Titânio	78
Cromo	128	Mercúrio	28	Tungstênio	83
Cobalto (não marinho)	181	Molibdênio	49	Urânio	58
Cobre (não marinho)	28	Níquel (não marinho)	53	Vanádio	Muito grande
Fluorita	54	Nióbio	231	Vermiculita	105
Germânio	Grande	Fosfato	87	Zinco	20
Ouro	19	Grupo da platina	201	Zircônio	60

Tabela 3.2 Índice de reservas estáticas (Cavalcanti, 1996). Dados atualizados em 1995.

3.2.2 FATOR AMBIENTAL DOS MATERIAIS GERADOS OU USADOS NO PROCESSO

Os compostos gerados no processo são avaliados qualitativamente quanto ao potencial de causar poluição no ar, na água, problemas especiais de disposição, danos à saúde ou ao bemestar das pessoas. Heinzle et al.(1998) se basearam nas classificações da legislação suíça e alemã, documentos que trazem informações consolidadas e reconhecidas pela comunidade científica e pela população (Heinzle, 2002).

A aplicação do método neste trabalho considera o estudo apresentado no item 2.4, resultado da análise de documentos da legislação ambiental brasileira, européia e americana. As considerações finais do estudo são apresentadas no item 2.4.8 e na Tabela 3.3. De modo geral, as listas indicam classificações de risco semelhantes para uma mesma substância, mas há algumas divergências. Se uma substância for identificada em mais de uma classe (por referências diferentes) é adotada a mais crítica.

Tabela 3.3 Classificação ABC para avaliação ambiental de materiais gerados ou usados no processo baseada em Heinzle et al. (1998). As listas de classificação das substâncias são apresentadas no item 9.6 (ver notas da tabela para referências).

Item	Questão	Classe A	Classe B	Classe C
		Lista de <u>substâncias</u> que <u>destroem a camada de ozônio</u> ¹	<u>Material</u> particulado	
1	<u>Poluição do ar</u>	<u>Anexo 11 da NR-15</u> ² : grau máximo de insalubridade	Anexo 11 da <u>NR-15</u> ² : grau	Anexo 11 da <u>NR-15</u> ² : grau
		Lista das substâncias perigosas para o ar - <u>HAP</u> ³	insalubridade	insalubridade e asfixiante simples.
	Poluição da água $\frac{VwVwS}{VWWK}^4$, classes (WGK) 2 e 3		<u>VwVwS</u> ⁴ , classe (WGK) 1	$\frac{\text{VwVwS}}{\text{anexo }1}^4,$
2	<u> </u>	<u>Substâncias prioritárias</u> da <u>UE</u> ⁵ Microorganismos patogênicos		Carga orgânica, salinidade, óleos
	Problemas Especiais	<u>NBR-10004</u> ⁶ , classe I	<u>NBR-10004</u> ⁶ ,	<u>NBR-10004</u> ⁶ ,
3	(questões locais, com- plexidade de tratamen- to, dificuldade de dis- posição no ambiente)	Materiais não aceitáveis na região, processamento posterior complexo e não confiável, aterro classe I	classe II Presença de mate- riais críticos mas podem ser dispos- tos em aterros não inertes.	classe III Sem problemas especiais.
Peso		4,0	1,3	1,0

Notas da Tabela 3.3:

- 1. A lista de substâncias controladas pela legislação brasileira é apresentada na Resolução Conama 267/2000.
- A NR-15 é a norma regulamentadora do Ministério do Trabalho sobre "Atividades e operações insalubres". O anexo 11 traz a lista de agentes químicos cuja insalubridade é caracterizada por limite de tolerância e inspeção no local de trabalho. (Brasil, 1978).
- A lista dos HAP (hazardous air pollutants) faz parte do US Clean Air Act (Estados Unidos, 1990). Na lista dos HAP são discriminados 16 hidrocarbonetos aromáticos policíclicos (PAHs).
- 4. WGK são as classes de periculosidade da água pela legislação ambiental alemã (VwVwS). Substâncias na lista WGK 2 e 3 são tóxicas, persistentes, acumulativas, enquanto que as WGK 1 são pouco perigosas. O anexo 1 da VwVwS lista os compostos não perigosos.
- 5. Lista de substâncias que apresentam risco significativo ao ambiente aquático (anexo X da Diretiva 2000/60/CE da legislação ambiental européia).
- 6. Norma brasileira que classifica os resíduos conforme sua periculosidade.

As planilhas com as classificações das substâncias, conforme definido na Tabela 3.3, são apresentadas no item 9.6. As substâncias podem ser localizadas nestas planilhas pelo número de registro CAS (opção disponível para maior parte dos compostos) ou pelo nome (viável nas listas mais curtas). O CAS é definido no item 2.4.2.

É importante observar que as regiões de balanço 1, 2, 3, 4 e 5 (Figura 3.1) são <u>internas</u> <u>ao processo</u>. Os produtos, subprodutos, "matérias-primas que não reagiram" e "insumos utilizados" que saem destas regiões não são necessariamente rejeitos do processo. É possível que, devido a emissões fugitivas, desativação ou mesmo por impossibilidade de aproveitamento, alguns desses compostos sejam descartados para o ambiente, mas muito provavelmente não na vazão de saída destas regiões de balanço. A determinação do fator ambiental nestas regiões tem apenas o objetivo de identificar e destacar os compostos com potencial de causar maior dano ambiental e viabilizar as modificações necessárias no processo. Para definir as emissões, efluentes e resíduos descartados do processo (ou seja, vazões, concentrações e distribuição dos poluentes nos meios gasoso, líquido e sólido) devem ser consideradas as regiões de reação, separação e tratamento de efluentes, ou seja, todo o processo (região 7 do balanço).

Aplicação ao refino

No refino de petróleo, as frações de interesse (produtos e subprodutos das reações) são caracterizadas como pseudocomponentes com teores de contaminantes médios (enxofre, nitrogênio, metais, etc). Esses contaminantes estão diretamente relacionados com a qualidade dos produtos, pois são os responsáveis pela liberação de poluentes como SOx e NOx na queima do óleo (ou seja, na utilização do produto). A seleção de diferentes processos ou diferentes condições operacionais leva a produtos com qualidades distintas. Por isso, é importante a avaliação do indicador ambiental de produtos e subprodutos neste trabalho.

É certo que os produtos têm que atender à especificação de qualidade exigida pela legislação. Dessa forma, um processo que gere um produto fora de especificação requer que o produto tenha tratamentos adicionais (hidrotratamento, por exemplo), o que envolve custos e potenciais danos ambientais. A seleção, se possível durante a fase de pesquisa, de processos que gerem produtos de melhor qualidade é um ganho importante.

A especificação dos teores de enxofre na gasolina e no diesel vem se tornando mais rígida ao longo dos últimos anos. O teor de enxofre permitido na gasolina brasileira foi reduzido de 0,25 %p para 0,15 %p e posteriormente 0,10 %p (Farah, 2004). O teor de enxofre permitido no diesel brasileiro foi reduzido de 1,0 %p (no extinto diesel tipo "A"), para 0,2 %p no diesel metropolitano e 0,5 %p no diesel interior (Farah, 2004). A Tabela 3.4 e a Tabela 3.5 mostram as especificações brasileiras atuais e as tendências futuras para os teores máximos de enxofre. Essa é uma tendência mundial, sendo que os teores permitidos nos combustíveis automotivos da Europa e Estados Unidos são ainda menores.

T 1 1 1 1 1 T	1 1 1	•	/ ' 1	C • / • 1	1. 1 .1 .
10halo 4/11	and anoing nra	avietee nore o toor i	$m_0 v_1 m_0 d_0 \Delta m v_0$	tra narmitida na	ancoling brocilairo
1 a D C a D H	CHUCHCIAS DI	∇v istas Dara U tour 1	π	ne deminudo na	2asonna Diashena.
					0

	2002 (especificação atual)		2006		2009	
Teor de enxofre, % peso	Comum	Premium	Comum	Premium	Comum	Premium
(Oddone e Pinto, 2002)	0,10	0,10	0,04	0,008	0,008	0,008

Tabela 3.5 Ten	dências prevista	s para o teor ma	áximo de enxof	fre permitido	o no diesel	brasileiro.

	2002 (especit	ficação atual)	2005	2009	
Teor de enxofre, % peso	Interior	Metropolitano	Interior	Metropolitano	Metropolitano
(Oddone e Pinto, 2002)	0,35	0,2	0,2	0,05	0,005

Propõe-se classificar como classe C, quanto aos aspectos de poluição do ar (Tabela 3.3), a fração de petróleo que esteja especificada quanto aos teores de enxofre e nitrogênio de acordo com a legislação brasileira, não precisando de processamento posterior. Caso contrário, será ao menos classe B com relação a esse aspecto. Se a fração tiver outros componentes que possam trazer risco ambiental (por exemplo, hidrocarbonetos aromáticos voláteis) estes também deverão ser considerados na avaliação (podendo receber classificação A).

Petróleo, frações de petróleo e frações provenientes da hidroconversão serão classificadas como classe B com relação ao aspecto de poluição da água, pois contém substâncias classificadas como "classe 1" pela VwVwS. Frações de petróleo provenientes de processos que favorecem a formação de compostos aromáticos (e, portanto, mais perigosos) deverão ser avaliadas e poderão ser classificadas como classe A.

3.2.3 DETERMINAÇÃO DO FA – FATOR AMBIENTAL

O fator ambiental é calculado multiplicando-se os pesos obtidos para as questões avaliadas na Tabela 3.1 e na Tabela 3.3 dependendo da corrente que está sendo avaliada.

$$FA = Peso (questão 1) \cdot Peso (questão 2) \cdot Peso (questão 3)$$
 (3-33)

Por exemplo:

- uma matéria-prima obtida num processo de 5 estágios, sem o uso de produtos críticos e com uso de petróleo tem FA = 1,3 . 1,0 . 1,3 = 1,7 (ver Tabela 3.1).
- um subproduto orgânico crítico na fase gasosa, mas que não apresenta problema potencial na água e não tem problemas especiais de disposição tem FA = 4,0.1,0.1,0 = 4,0 (ver Tabela 3.3)

Desta forma, são avaliados com os aspectos relativos ao fornecimento de materiais, segundo os critérios da Tabela 3.1, somente matérias-primas e insumos "frescos" de qualquer região de balanço. Insumos "frescos" são aqueles que estão sendo adicionados a qualquer equipamento do processo e ainda não foram utilizados. Os materiais gerados ou utilizados no processo são avaliados com os critérios da Tabela 3.3.

O FA tem valores que variam entre 1 e 64, conforme mostrado na primeira linha da Tabela 3.6. Considerando a determinação do FA para um composto (multiplicação de três pesos) verifica-se que o FA de um composto potencialmente não nocivo resulta em um pequeno valor. Este é o caso, por exemplo, da segunda coluna da Tabela 3.6 onde o composto tem FA = 1,0.1,0. 1,0 = 1,0 (ou seja, recebe classificação C para os três itens avaliados). Se o composto recebe classificação B com relação a algum item avaliado, o FA tende a aumentar (como se observa entre a terceira e quinta coluna da Tabela 3.6). E os compostos que são classificados como críticos (classe A) com relação a algum item se destacam dos demais, sendo facilmente identificados na análise dos indicadores (como pode ser observado a partir da sexta coluna da Tabela 3.6).

Tabela 3.6 Relação entre o FA e a presença de compostos potencialmente nocivos ao meio ambiente (indicado por classe, conforme Tabela 3.1 e Tabela 3.3)

FA	1,0	1,3	1,7	2,2	4,0	5,2	6,7	16	20,8	64
N° de itens classe A	-	-	-	-	1	1	1	2	2	3
N° de itens classe B	-	1	2	3	-	1	2	-	1	-
N° de itens classe C	3	2	1	-	2	1	-	1	-	-
Total de itens avaliados	3	3	3	3	3	3	3	3	3	3

O método pode ser usado de forma simplificada para destacar os compostos que têm alguma pontuação classe A, visando a identificação e solução dos problemas ambientais potencialmente críticos. Heinzle et al.(1998) citam o uso dessa forma de avaliação, onde as pesquisas para o desenvolvimento de um processo somente prosseguem quando os compostos que tenham sido avaliados com classe A em algum aspecto sejam substituídos ou devidamente justificados.

3.2.4 IA1 – INDICADOR AMBIENTAL NA REGIÃO DE REAÇÃO

O IA1 (indicador ambiental da região de reação) resulta do balanço de massa no reator sem reciclo (através do FM1) e do fator ambiental dos compostos (através do FA1), combinando os efeitos de fluxo de massa e aspectos ambientais. A avaliação do indicador ambiental nas regiões 1 e 3 (Figura 3.1) pode levar a resultados sem significado se os compostos com maior risco de dano ambiental forem removidos ou tratados de forma simples nas etapas de separação e tratamento, regiões 2 e 4 (Heinzle et al., 1998). Informações preliminares sobre estas regiões contribuem para tornar a avaliação mais consistente.

Para as correntes de entrada da região de reação, que são matérias-primas (MP) e insumos (Ins) conforme a Figura 3.2, temos:

$$IA1_{MP} = \sum_{i} FA1_{MP,i} \cdot FM1_{MP,i} = \sum_{i} FA1_{MP,i} \cdot \frac{W_{MP,i}}{W_{P}}$$
(3-34)

$$IA1_{Ins} = \sum_{i} FA1_{Ins,i} \cdot FM1_{Ins,i} = \sum_{i} FA1_{Ins,i} \cdot \frac{W_{Ins,i}}{W_{P}}$$
(3-35)

onde FA1_{MP,i} e FA1_{Ins,i} são obtidos com os critérios definidos na Tabela 3.1.

As correntes de saída, conforme a Figura 3.2, são produtos (P), subprodutos (SP), matérias-primas que não reagiram (MPS) e insumos utilizados (InsU) para os quais o indicador ambiental será calculado com as expressões a seguir:

$$IA1_{SP} = \sum_{i} FA1_{SP,i} \cdot FM1_{SP,i} = \sum_{i} FA1_{SP,i} \cdot \frac{W_{SP,i}}{W_{P}}$$
(3-36)

$$IA1_{InsU} = \sum_{i} FA1_{InsU,i} \cdot FM1_{InsU,i} = \sum_{i} FA1_{InsU,i} \cdot \frac{W_{InsU,i}}{W_{P}}$$
(3-37)

$$IA1_{MPS} = \sum_{i} FA1_{MPS,i} \cdot FM1_{MPS,i} = \sum_{i} FA1_{MPS,i} \cdot \frac{W_{MPS,i}}{W_{P}}$$
(3-38)

onde FA1_{SP,i}, FA1_{InsU,i} e FA1_{MPS,i} são obtidos com os critérios definidos na Tabela 3.3.

Normalmente há somente um produto de interesse e outros materiais gerados no processo, mesmo aqueles com interesse comercial, são classificados como subprodutos. Por isso,

o indicador ambiental do produto é o próprio fator ambiental: $IA1_P = FA1_{P}$, onde FA_P é determinado com os critérios definidos na Tabela 3.3.

Se for necessário identificar mais de um material como "produto" o IAP é calculado:

$$IA1_{P} = \sum_{i} FA1_{P,i} \cdot FM1_{P,i} = \sum_{i} FA1_{P,i} \cdot \frac{W_{P,i}}{W_{P}}$$
(3-39)

onde W_P é a somatória das vazões de todos os produtos e FA1_{P,i} é obtido com os critérios da Tabela 3.3.

3.3 DIFERENÇAS ENTRE MÉTODO APRESENTADO E REFERÊNCIA

O método apresentado neste capítulo foi baseado no método proposto por Heinzle et al. (1998), ao qual foram implementadas as modificações discriminadas a seguir:

- Adaptação da nomenclatura dos indicadores e das correntes (matérias-primas, insumos, produto, rejeitos, etc.). A Tabela 3.7 apresenta a nomenclatura utilizada por Heinzle et al. (1998) para os indicadores;
- Subprodutos são compostos formados na reação principal juntamente com o produto e nas reações paralelas. Não está sendo considerada distinção entre *byproducts* e *couple products*;
- Proposta de aplicação ao refino de petróleo, com a determinação das etapas envolvidas em cada região de balanço e o cálculo dos indicadores para pseudocomponentes (frações de petróleo) com qualidade estimada;
- Cálculo de uma estimativa de consumo de energia e utilidades nas regiões 3, 5 e 7. Heinzle et al. (1998) propõem estimativa de consumo de energia já na região 1 de avaliação;
- Cálculo do fator ambiental das correntes que deixam o processo (Tabela 3.3) com informações obtidas em documentos das legislações federais ambientais brasileira, americana, alemã e também a legislação ambiental da comunidade européia. Heinzle et al. (1998) usam a legislação suíça para a classificação de poluição do ar e legislação alemã (VwVwS) para poluição das águas.

- No cálculo do fator ambiental das correntes que entram no processo (Tabela 3.1) foram definidos os compostos "críticos" e "indesejáveis" com base nas referências da Tabela 3.3 e recursos naturais foram classificados como sustentáveis e não-sustentáveis (em vez de renováveis e não-renováveis);
- O FA de matérias-primas e insumos é determinado com os critérios da Tabela 3.1, enquanto que o FA de materiais gerados ou utilizados no processo é avaliado com os critérios da Tabela 3.3. Essa premissa é válida para o balanço em qualquer região e significa que se a análise for feita na região 2 somente será verificado o "IA entrada" da corrente de insumos "frescos", pois todos os outros materiais vêm da região de reação. Koller et al.(1998) utilizaram os critérios da Tabela 3.1 para caracterizar também produtos e subprodutos, o que não parece razoável já que eles estão sendo gerados no processo.
- O indicador ambiental do <u>produto</u> é determinado em função de sua qualidade. Nos artigos de referência não é considerado nenhum impacto de dano ambiental potencial para o produto;
- O método apresentado será aplicado ao refino de petróleo, processo de hidroconversão de RV. O método proposto por Heinzle et al. (1998) foi aplicado a processos de química fina (indústria farmacêutica) em fase inicial de desenvolvimento.

3.4 CONSIDERAÇÕES FINAIS

O procedimento apresentado para avaliação ambiental de processos tem base qualitativa, apesar de gerar indicadores numéricos, pois é baseado em classes de risco ambiental potencial. Com a aplicação do método obtém-se uma classificação de ordenamento não quantitativa. Isso significa que, considerando dois compostos X e Y, se IA $_{\rm X}$ = 4 IA $_{\rm Y}$, por exemplo, é possível concluir que o composto X é potencialmente mais perigoso para o ambiente que o composto Y, mas não necessariamente quatro vezes mais perigoso.

A avaliação ambiental apresentada tem por objetivo destacar os compostos, processos e situações que apresentem maior potencial de causar problemas ambientais para que sejam propostas e avaliadas outras alternativas, levando ao desenvolvimento de processos viáveis e ambientalmente sustentáveis.

Os indicadores de massa IM e ambiental IA, assim como os fatores FM e FA, são resumidos na Tabela 3.7. Na avaliação de um processo, as alternativas mais interessantes serão as que apresentam indicadores de menor valor (conforme mostrado na Tabela 3.7).

Indicadores ou Fatores	Definição	Aplicação para cada	Ideal	Nomenclatura em Heinzle et al. (1998)
FM (fator de massa)	$FM = W/W_P$	 Componente i. Correntes: MP, Ins, P, SP, Rej, etc. 	FM mínimo	MLI (mass loss index)
IM (indicador de massa)	IM = ∑ FM na entrada ou saída da região de cálculo	 Região de cálculo. 	IM = 1	MI (mass index)
FA (fator ambiental)	FA = [peso1.peso2.peso3] (nota 1)	• Componente i.	FA = 1	EF (environmental factor)
IA (indicador ambiental)	IA = FA . FM	 Componente i. Correntes: MP, Ins, P, SP, Rej, etc. Região de cálculo. 	IA mínimo	IE (environmental index)

Tabela 3 7 Tabela resumo do	s fatores ()	$FM \in F\Delta$	e indicadores ($\mathbf{M} \in \mathbf{I} \Delta$
Tabela 5.7 Tabela resulto uo	s ratures (1	$\Gamma W \in \Gamma A$	e mulcauores ($INI \cup IA$

Notas da Tabela 3.7:

1. Peso1 é o peso para questão ambiental 1 (idem para peso2 e peso3). Para avaliação ambiental de matérias-primas e insumos consultar a Tabela 3.1 e para materiais gerados ou usados no processo consultar a Tabela 3.3.

O método pode ser aplicado para análise de ciclo de vida dos processos (LCA – Life cycle assessment) considerando as etapas que antecedem o processo em questão (etapas de extração ou processamento de matérias-primas) ou o uso do produto e consequente geração de rejeitos (incluindo o descarte final do produto usado). No caso do processamento de petróleo podem ser considerados os outros processos com os quais a nova unidade será integrada, de forma a calcular indicadores mais representativos da situação real.

4 Modelagem e simulação do reator de hidroconversão

Este capítulo apresenta os modelos propostos para simular o comportamento fluidodinâmico e as reações de craqueamento no reator de hidroconversão em leito fluidizado com arraste de catalisador, classificado como *slurry bubble column* (coluna de lama com borbulhamento). São apresentados os métodos matemáticos usados na resolução das equações e resultados comparativos gerados durante o desenvolvimento das soluções (etapas mostradas na Figura 4.1). Resultados das simulações e estudos realizados com os modelos são discutidos no Capítulo 5.

Definição / dedução das equações do modelo (conceitos, balanços, considerações simplificadoras) Resolução das equações do modelo (aplicação métodos matemáticos, algoritmos, programação)

Verificação dos resultados

(consistência numérica, comparações, etc)

Figura 4.1 Etapas do desenvolvimento de modelos para simulação de processos.

O capítulo é composto de duas partes: o texto apresentado no corpo da tese e artigos publicados e apresentados em congressos. Para evitar quebra de continuidade na escrita e formatação da tese, os artigos foram organizados no Capítulo 9 (anexos) da seguinte forma:

Os artigos são parte integrante da tese e sua leitura é indispensável para estudo ou avaliação da modelagem e simulação propostas, uma vez que parte das informações contida nos artigos não é repetida no corpo da tese.

Os modelos propostos para o reator de hidroconversão têm uma abordagem fluidodinâmica e são formados pelas equações da continuidade e conservação da quantidade de movimento médias no tempo, equações constitutivas e modelos cinéticos das reações.

Para modelagem das reações de craqueamento em reator de hidroconversão com arraste utilizando catalisador comercial (Ni/Mo ou Co/Mo em alumina) são propostos e apresentados dois modelos:

- ✓ Modelo fluidodinâmico que considera apenas o fenômeno do fluxo convectivo axial no reator, denominado modelo fluidodinâmico base. Nesse modelo foi utilizada a cinética de craqueamento térmico de Mosby et al. (1986). Ver itens 4.1 e 4.2 e itens 9.2 e 9.3 (anexos).
- Modelo fluidodinâmico que considera os fenômenos de convecção axial e dispersão radial no reator, denominado <u>modelo fluidodinâmico com dispersão radial</u> (ver itens 4.1 e 4.3). Nesse modelo foram utilizadas as cinéticas de craqueamento térmico de Mosby et al. (1986) (ver artigo no item 9.4) e cinética de craqueamento térmico e catalítico para petróleo Marlim proposta por Almeida (2000).

Para melhor entendimento, a Figura 4.8 no final deste capítulo mostra um resumo esquemático dos fenômenos considerados na modelagem e indica os itens que descrevem os modelos neste capítulo e no Capítulo 9 (anexos).

4.1 FLUIDODINÂMICA DO REATOR

A modelagem fluidodinâmica descreve o escoamento fluidizado concorrente e ascendente de gás, líquido e sólido, com arraste de sólidos, classificado como *slurry bubble column*, discutido no item 2.5.4 e mostrado na Figura 4.2.

Como a fração de gases gerada nas reações é pequena e o reator opera em altas pressões com grande excesso de hidrogênio para evitar a formação de coque, considera-se que a fase gás é formada somente por hidrogênio. As altas pressões do sistema e baixa velocidade do gás não favorecem a coalescência das bolhas, de modo que se pode considerar que o sistema opera em regime homogêneo de bolhas (pequenas bolhas que não coalescem).

A fase líquida é formada pelo resíduo e produtos gerados na reação, enquanto que a fase sólida é formada por catalisadores. As fases líquida e sólida formam uma fase pseudo-homogênea (lama) na qual considera-se que o sólido finamente dividido está distribuído de forma homogênea.

Figura 4.2 Esquema da fluidodinâmica do reator de hidroconversão modelado, tipo *slurry bubble column* (SBC), ou seja, reator de lama com borbulhamento.

O modelo é formado pelas equações fundamentais da conservação da massa e quantidade de movimento médias no tempo, a partir de um enfoque Euleriano, no qual é utilizado um modelo turbulento de ordem zero para descrever a dispersão do líquido. Para fechamento do modelo são utilizadas equações constitutivas (de base empírica) visando a determinação da força de interação entre as fases gás e lama, das frações volumétricas de cada fase e propriedades médias da lama e do leito.

A principal consideração é de escoamento turbulento perfeitamente desenvolvido na direção axial com axissimetria (em torno do eixo z) na maior parte do reator (região central). As regiões de entrada e saída do reator são consideradas regiões de comportamento complexo e intensa mistura, nas quais o modelo fluidodinâmico não é válido. Essas regiões são pequenas em comparação com a região de escoamento desenvolvido. Considera-se ainda que o reator é isotérmico e opera em regime estacionário.

Dessa forma, obtém-se um modelo unidimensional e pseudobifásico (fases gás e lama), cujas equações são apresentadas no artigo do item 9.2. As equações diferenciais que compõe o modelo foram adimensionalizadas e discretizadas por volumes finitos. O sistema de equações algébricas resultantes foi resolvido pelo algoritmo TDMA (algoritmo da matriz tri-diagonal). Foi utilizado o algoritmo do acoplamento pressão-velocidade, apresentado por Carbonell (1996), para cálculo dos perfis de velocidade de cada fase e da queda de pressão no leito a partir das equações do modelo e da conservação de massa para o líquido.

A simulação fluidodinâmica fornece os seguintes resultados para cada fase:

- Perfis de velocidade axial local: $V_{sl}(r) \in V_g(r)$, sendo que $V_{sl}(r) = V_L(r) = V_s(r)$;
- Perfis de viscosidade efetiva (dispersão): $\mu_{sl}^{eff}(r)$, $\mu_{g}^{eff}(r) e \mu_{L}^{eff}(r)$;
- Perfis de frações volumétricas: $\varepsilon_g(r)$, $\varepsilon_{sl}(r)$, $\varepsilon_L(r)$, $\varepsilon_s(r)$.

onde: sl - fase lama, g - fase gás, L - fase líquida, s - sólidos.

O perfil de velocidades do líquido mostra o padrão de recirculação no reator (na região de escoamento desenvolvido) com fluxo de lama ascendente no centro e descendente próximo às paredes. A recirculação do líquido é causada pela diferença de densidade entre as fases e aparece devido aos perfis radiais não uniformes das frações volumétricas, conforme discutido no item 2.5.4.

O artigo do item 9.2 apresenta resumidamente a modelagem e simulação da fluidodinâmica do reator, com alguns resultados (Figuras 4, 5 e 6 do artigo). A descrição detalhada, com equacionamento completo, simulação e análise dos resultados é apresentada em Carbonell (1996). O artigo do item 9.3 apresenta os resultados e discussão do estudo de análise paramétrica.

Foi considerado que as reações não interferem significativamente na fluidodinâmica, de forma que o reator pode ser simulado em duas etapas: inicialmente são calculadas as variáveis fluidodinâmicas e depois são simuladas as reações (com determinação dos perfis de concentração ao longo do reator). Essa consideração é justificada pela intensa mistura que ocorre na fase líquida do reator e pela estabilidade das características da fase gasosa.

A intensa mistura da fase líquida não permite que se forme um gradiente significativo de produtos (e variação nas propriedades da lama) ao longo do reator. Verificou-se ainda que as variáveis fluidodinâmicas obtidas por esse modelo nas condições de operação do reator de hidroconversão (temperaturas superiores a 400 °C e pressão da ordem de 110 kgf/cm²) são pouco influenciadas pelas propriedades (massa específica e viscosidade) do líquido na faixa diesel até resíduo. Os perfis de velocidade da lama simulados apresentados na Figura 6 do item 9.2, mostram esse comportamento.

✓ A formação de gases nas reações é pequena e as condições operacionais não favorecem a coalescência das bolhas, de forma que não se espera influência significativa das reações no comportamento da fase gás.

4.2 MODELO FLUIDODINÂMICO BASE

A modelagem das reações de hidroconversão envolve o desenvolvimento do balanço de massa por componente no reator fluidizado trifásico com turbulência, de acordo com o modelo cinético selecionado.

O balanço de massa para o componente i na fase k (gás, líquida ou lama) em fluxo multifásico e turbulento leva à seguinte expressão geral:

$$\frac{\partial}{\partial t} (\varepsilon_{f} \cdot \rho_{f} \cdot Ci) = -\nabla \cdot (\varepsilon_{f} \cdot \rho_{f} \cdot u_{f} \cdot Ci) + \nabla \cdot (\varepsilon_{f} \cdot \rho_{f} \cdot D_{f} \cdot \nabla (Ci)) + TF$$
(4-1)

variação local termo convectivo termo dispersivo termo fonte

- onde: u_{f} vetor da velocidade da fase f ;
 - $\epsilon_{\rm f}$ fração volumétrica da fase f;
 - ρ_f massa específica da fase f;
 - Ci fração mássica local do componente i;
 - t tempo;
 - D_f coeficiente de dispersão da fase f;

TF - representa os termos de reação e transferência de massa entre as fases.

Ao modelo reacional são aplicadas todas as considerações do modelo fluidodinâmico, ou seja, escoamento turbulento perfeitamente desenvolvido na direção axial, com simetria em relação ao eixo do reator cilíndrico, regime permanente, propriedades dos fluidos (massa específica) constantes ao longo do reator e reator isotérmico (não é necessário equacionar o balanço de energia). Na região de escoamento desenvolvido as variáveis fluidodinâmicas (velocidade axial local, fração volumétrica e viscosidade efetiva) variam somente na direção radial, não ocorrendo variação em z dessas variáveis. A transferência de massa entre as fases pode ser desprezada, já que a formação da fração gás é pequena e se considera que todo hidrogênio necessário para as reações já se encontra solubilizado no óleo.

Escrevendo o balanço para as reações de craqueamento térmico, reações homogêneas que ocorrem na fase líquida, e aplicando as considerações citadas obtém-se:

$$\varepsilon_{L} \rho_{L} V_{L} \frac{\partial Ci}{\partial z} - \frac{\rho_{L}}{r} \frac{\partial}{\partial r} \left(r.Dr.\varepsilon_{L} \frac{\partial Ci}{\partial r} \right) - Dz.\varepsilon_{L} \rho_{L} \frac{\partial^{2}Ci}{\partial z^{2}} + TF = 0 \qquad (4-2)$$

dispersão axial

reação

convecção dispersão radial

onde: Dz e Dr - coeficientes de dispersão axial e radial do líquido;

V_L - velocidade axial local da fase líquida;

z, r - direção axial e radial;

Obs1. Para simplificar a notação, adota-se a partir deste ponto que o termo <u>velocidade</u> (V) referese sempre à velocidade axial local.

Obs2. As variáveis fluidodinâmicas são obtidas com a simulação do modelo fluidodinâmico descrito no item 4.1.

A análise da ordem de magnitude dos termos da Equação 4-2 mostra que o fenômeno da convecção é dominante na direção axial, enquanto que a dispersão é significativa na direção radial, de forma que a dispersão axial pode ser desprezada.

O <u>modelo fluidodinâmico base</u>, primeiro modelo proposto para o reator de hidroconversão, é uma simplificação da Equação 4-2, onde apenas o fenômeno da convecção axial é considerado. Reescrevendo então essa equação e considerando a reação homogênea em fase líquida para o componente **i**, que pode ser formado ou consumido na geração dos produtos, obtém-se a equação do modelo:

$$\varepsilon_{L} \cdot \rho_{L} \cdot V_{L} \cdot \frac{d \operatorname{Ci}}{dz} = -\varepsilon_{L} \cdot \rho_{L} \cdot \alpha_{i} \cdot k \cdot \operatorname{Ci} + \varepsilon_{L} \cdot \rho_{L} \cdot k \cdot \sum_{m=1}^{n_{c}} \beta_{m,i} \cdot \operatorname{Cm}$$
(4-3)

convecção consumo de i formação de i a partir de m

onde: (α_i,k) constante da taxa de reação referente à conversão do componente i;

 $(\beta_{m,i},k)$ constante da taxa de reação referente à formação de **i** a partir do componente **m**.

nc número total de componentes do modelo cinético

Com a condição de contorno: Ci = Coi na entrada do reator.

A equação do modelo apresentada em Carbonell (1996) e Carbonell e Guirardello (1997), item 9.2, teve que ser corrigida para incluir a fração volumétrica do líquido no termo de reação. Essa correção gerou uma *Erratum* publicada posteriormente (Carbonell e Guirardello, 1998b). A *Erratum* é apresentada no item 9.2, logo após o artigo. Mesmo na *Erratum* um pequeno engano não foi corrigido: no segundo termo do lado direito da equação deve aparecer a variável Cm (e não Ci, como está no artigo). Essas correções não alteraram os resultados apresentados, já que o programa foi implementado corretamente e/ou a correção não alterou significativamente os cálculos. Somente a comparação com a conversão do modelo ideal CSTR ficou prejudicada, como é abordado no Capítulo 5. A Equação 4-3 é a forma final correta do modelo.

4.2.1 IMPLEMENTAÇÃO DO MODELO CINÉTICO DE CRAQUEAMENTO DE MOSBY ET AL (1986)

O modelo de craqueamento térmico proposto por Mosby et al. (1986) foi ajustado a partir de dados experimentais obtidos em unidades piloto, durante o desenvolvimento do processo LC-Fining pela Amoco Oil Company. Os autores propuseram uma matriz de craqueamento formada por reações térmicas, irreversíveis e de primeira ordem, onde o resíduo e os produtos são divididos em pseudocomponentes em função da reatividade e/ou faixa do ponto de ebulição de cada fração. Cada pseudocomponente é considerado como uma espécie química com uma taxa de reação própria, representada por (α_{i} .k) ou ($\beta_{m,i}$.k). A matriz cinética é apresentada na Figura 2 do item 9.2, onde a carga e produtos do reator foram divididos em sete pseudocomponentes:

- Resíduo, fração 538 °C+, dividida em "resíduo difícil de craquear" (i = 1) e "resíduo fácil de craquear" (i = 2), de acordo com a reatividade. A razão entre os dois resíduos é uma constante que foi obtida no ajuste do modelo cinético. Posteriormente, com o uso do modelo associamos o "resíduo difícil de craquear" à fração de asfaltenos e resinas da carga e o "resíduo fácil de craquear" à fração óleo da carga.
- Gasóleo, fração 343 538 °C, dividida em "gasóleo alimentado" (i = 3) e "gasóleo formado no reator" (i = 4). O gasóleo sofre craqueamento nas condições de hidroconversão gerando produtos mais leves.
- Diesel (i = 5), produto com ponto de ebulição na faixa de 182 343 °C;
- Nafta (i = 6), produto formado por compostos com mais de 5 átomos de carbono e ponto de ebulição inferior a 182°C;
- Gases (i = 7), fração de hidrocarbonetos com a 1 a 4 átomos de carbono.

i	1	2	3	4	5	6	7
α _i	2,08	38,23	1,76	0,52	0	0	0
$\beta_{m,i}$	0	0	0	1,0	0,69	0,21	0,18
	0	0	0	20,6	13,4	3,4	0,83
	0	0	0	0	1,27	0,44	0,05
	0	0	0	0	0,24	0,24	0,04
	0	0	0	0	0	0	0
	0	0	0	0	0	0	0
	0	0	0	0	0	0	0

Tabela 4.1 Valores de α_i e $\beta_{m,i}$ obtidos na matriz reacional de Mosby et al. (1986)

A constante da taxa da reação foi ajustada ao modelo de Arrhenius por Abreu (1995), através da simulação das reações de craqueamento térmico em reator de leito fluidizado confinado. Abreu utilizou informações do volume dos reatores de hidroconversão da unidade da Amoco, vazão de óleo e conversões de resíduo obtidas por Mosby et al. (1986). O fator préexponencial da constante da taxa foi corrigido na *Erratum* (ver item 9.2) para o valor indicado a seguir.

$$k = ko \cdot EXP\left(\frac{-E}{R \cdot T}\right)$$
(4-4)

onde: $ko = 9,0907 .10^{13} s^{-1}$, fator pré-exponencial da constante da taxa; $E = 2,4282 .10^5 J/mol$, energia de ativação da reação; R = 8,314 J/(K.mol), constante dos gases perfeitos; T = temperatura (K).

Implementando o modelo cinético de Mosby et al. (1986) na equação do modelo do reator (4-3), obtém-se sete equações diferenciais ordinárias que são resolvidas analiticamente. As equações integradas são apresentadas no artigo do item 9.2, onde deve ser feita a correção da Equação 15 indicada na *Erratum* (item 9.2). O equacionamento detalhado e a resolução das equações são apresentados em Carbonell (1996), mas essas equações devem ser corrigidas conforme já comentado.

4.2.2 SIMULAÇÃO DO MODELO FLUIDODINÂMICO BASE

Com as equações do modelo integradas é possível simular as reações de craqueamento térmico no reator de hidroconversão, obtendo conversão, perfis de concentração e distribuição de produtos. Entretanto, a simulação desse modelo fluidodinâmico apresenta algumas dificuldades uma vez que o perfil de velocidade e a fração volumétrica do líquido somente são conhecidos na região de escoamento desenvolvido, para a qual não se conhece a concentração inicial dos componentes.

Esses problemas foram solucionados com o desenvolvimento do algoritmo do acoplamento reação-recirculação que consta de duas partes: determinação das expressões que relacionam os dados da alimentação e saída do reator com a região de escoamento desenvolvido e definição do método iterativo de cálculo dos perfis de concentração.

O reator fluidizado com arraste (tipo *slurry bubble column*) é dividido em três regiões distintas, como mostrado na Figura 4.3: a região de entrada, saída e de escoamento perfeitamente desenvolvido (central, onde ocorre a recirculação e o modelo fluidodinâmico é válido).

Figura 4.3 Desenho esquemático do reator (sem escala) mostrando as três regiões do reator e a nomenclatura usada para as concentrações. O reator tem simetria em relação ao eixo central. A linha tracejada indica o ponto de inversão de fluxo ($r = r^*$, $V_L = 0$) e a linha dupla mostra a distribuição dos 10 pontos de colocação ortogonal.

- 1. Estimativa de Cbi;
- Cálculo de Cfi(r) com as equações do <u>modelo fluido-</u> <u>dinâmico base</u> no domínio de fluxo ascendente;
- Cálculo de Csi com a equação de balanço de massa na região de saída do reator;
- Cálculo de Cei(r) com as equações do <u>modelo fluido-</u> <u>dinâmico base</u> no domínio de fluxo descendente;
- Cálculo de Cbi⁺ com a equação de balanço de massa na região de entrada do reator;
- 6. Se |Cbi-Cbi⁺| > tolerância, Cbi = Cbi⁺, volta ao passo 2;
- 7. Se |Cbi-Cbi⁺| < tolerância, obteve-se convergência; Fim.

Figura 4.4 Etapas de cálculo das concentrações no reator, com o algoritmo do acoplamento reação-recirculação (ver Carbonell (1996) para fluxograma detalhado).

O balanço de massa nas regiões de entrada e saída (consideradas como regiões de mistura perfeita sem reação) fornece as expressões que relacionam a concentração dos componentes na alimentação e saída do reator com a concentração calculada na região de escoamento desenvolvido.

$$Cbi = \frac{U_{L} \cdot Coi \cdot Rc^{2} - 2 \cdot \int_{r}^{Rc} V_{L}(r) \cdot \varepsilon_{L}(r) \cdot Cei(r) \cdot r \cdot dr}{2 \cdot \int_{0}^{r^{*}} V_{L}(r) \cdot \varepsilon_{L}(r) \cdot r \cdot dr}$$
(4-5)

$$Csi = \frac{2 \cdot \int_{0}^{\infty} V_{L}(r) \cdot \varepsilon_{L}(r) \cdot Cfi(r) \cdot r \cdot dr}{U_{L} \cdot Rc^{2} - 2 \cdot \int_{r^{*}}^{Rc} V_{L}(r) \cdot \varepsilon_{L}(r) \cdot r \cdot dr}$$
(4-6)

onde U_L é a velocidade superficial do líquido (vazão de líquido pela área do reator)

As Equações 4-5 e 4-6 foram integradas usando quadratura Gaussiana com 10 pontos de colocação ortogonal. O desenvolvimento das equações, os pontos de colocação e os valores das funções peso são apresentados em Carbonell (1996). Diferentes funções foram ajustadas nas regiões de fluxo ascendente e descendente para determinação dos pontos de colocação, visando obter boa precisão nos cálculos das integrais.

O cálculo das concentrações é iterativo e se inicia com uma estimativa de Cbi. O procedimento de cálculo envolve a determinação simultânea da concentração dos sete componentes na sequência apresentada no quadro da Figura 4.4.

4.2.3 CONSIDERAÇÕES GERAIS E MODELO RHA 1.1

A simulação do craqueamento térmico no reator de hidroconversão com o modelo fluidodinâmico base foi implementada em linguagem Fortran 90 no programa RHA 1.0 (RHA – Reator de Hidroconversão com Arraste). Após as correções indicadas na *Erratum* o programa foi atualizado gerando a versão RHA 1.1. Como resultados das simulações do modelo fluidodinâmico base com cinética de craqueamento de Mosby et al. (1986) são fornecidos pelo programa:

- A fluidodinâmica no reator através dos perfis radiais de velocidade, fração volumétrica e dispersão nas fases gás e lama na região de escoamento desenvolvido
- Os perfis de concentração axial e radial para todos os pseudocomponentes no reator;
- A conversão de resíduo e a distribuição de produtos na saída do reator.

4.3 MODELO FLUIDODINÂMICO COM DISPERSÃO RADIAL

O <u>modelo fluidodinâmico com dispersão radial</u> é obtido através do balanço de massa para o componente **i** em fase líquida para um reator de fluxo multifásico e turbulento com as considerações já descritas (Equação 4-2), desprezando-se o termo da dispersão axial (não significativo frente à convecção axial) e substituindo o termo de reação:

$$\varepsilon_{L} \cdot \rho_{L} \cdot V_{L} \cdot \frac{\partial Ci}{\partial z} - \frac{\rho_{L}}{r} \frac{\partial}{\partial r} \left(r.Dr.\varepsilon_{L} \cdot \frac{\partial Ci}{\partial r} \right) = -\varepsilon_{L} \cdot \rho_{L} \cdot \alpha_{i} \cdot k.Ci + \varepsilon_{L} \cdot \rho_{L} \cdot k.\sum_{m=1}^{n} \beta_{m,i} \cdot Cm \quad (4-7)$$

convecção dispersão radial consumo de i formação de i a partir de m

Com as condições de contorno: Ci = Coi na entrada do reator $\frac{\partial Ci}{\partial r} = 0 \qquad \text{em } r = 0 \text{ e em } r = \text{Rc}$

onde: Dr – coeficiente de dispersão radial do líquido: $Dr = \mu_L^{eff} / \rho_L$;

 $\mu_{\rm L}^{\rm eff}$ – viscosidade efetiva da fase líquida (dispersão);

Rc – raio do reator

As variáveis fluidodinâmicas ($\epsilon_L(r)$, $\mu_L^{eff}(r)$, $V_L(r)$) são obtidas com a simulação do modelo fluidodinâmico descrito no item 4.1. O modelo cinético de craqueamento térmico de Mosby et al. (1986), apresentado no item 4.2.1, pode ser implementado na equação do balanço de massa acima (onde nc = 7), gerando sete equações diferenciais parciais de segunda ordem (uma para cada pseudocomponente **i**).

4.3.1 RESOLUÇÃO DAS EQUAÇÕES DO MODELO

A simulação do reator tem o objetivo de determinar Ci (r,z). As equações diferenciais parciais do modelo fluidodinâmico com dispersão radial são parabólicas. A concentração na direção axial (z) tem caráter evolutivo em cada uma das regiões de escoamento, ou seja, Ci (r_j ,z) depende do valor de Ci (r_j ,z-1) e independe do valor de Ci (r_j ,z+1) (também chamada variável *one*- *way*). Na direção radial a variável é classificada como *two-way*, ou seja, Ci (r_j,z) depende dos valores de Ci (r_{j+1},z) e Ci (r_{j-1},z) .

As equações parabólicas foram resolvidas pelo método das linhas através da discretização das equações na direção radial. Desta forma, obteve-se um sistema de equações diferenciais ordinárias de primeira ordem com condição inicial conhecida (em z = 0) para serem integradas na direção axial.

4.3.1.1 Discretização na direção radial por colocação ortogonal

Para discretização das equações diferenciais no volume de controle podem ser utilizados os métodos das diferenças finitas, volumes finitos, elementos finitos e colocação ortogonal.

Inicialmente foi realizada a discretização das equações do modelo por diferenças finitas. Entretanto, esse procedimento levou à obtenção de valores de Ci com grande oscilação e comportamento divergente, de forma que a solução não pôde ser obtida. Uma análise da rigidez das equações mostrou que a rigidez na direção axial está relacionada com o intervalo entre os pontos de cálculo na direção radial (Δr): quanto menor Δr maior deve ser o número de pontos na direção axial para obtenção de uma solução estável e convergente. Foi utilizado então o método da colocação ortogonal, que leva a resultados precisos com pequeno número de pontos de discretização.

No método da colocação ortogonal a solução das equações é aproximada por uma função tentativa expandida em polinômios (polinômio interpolador) e as funções são avaliadas nos pontos determinados pelas raízes do polinômio ortogonal de grau **n**. Esse procedimento faz com que se obtenha um erro mínimo de aproximação (resíduo) na região de cálculo e um resíduo nulo nos pontos de colocação, resultando numa solução aproximada bastante precisa mesmo com pequeno **n**. O ajuste do polinômio interpolador e a determinação dos pontos de colocação foram realizados de modo a garantir boa aproximação no cálculo da integral de f(r) por quadratura gaussiana:

$$\int_{0}^{R_{c}} f(\mathbf{r}) \cdot d\mathbf{r} = \int_{0}^{R_{c}} \varepsilon_{L}(\mathbf{r}) \cdot \mathbf{V}_{L}(\mathbf{r}) \cdot \mathbf{r} \cdot d\mathbf{r} = \sum_{j=1}^{n} w_{j} \cdot \varepsilon_{L}(\mathbf{r}_{j}) \cdot \mathbf{V}_{L}(\mathbf{r}_{j})$$
(4-8)

onde: w_i é o valor da função peso no ponto j de colocação ortogonal.

Os pontos de colocação e os valores das funções peso w_j são apresentados na Tabela 4.2 e na Tabela 4.3. Diferentes funções foram ajustadas nas regiões de fluxo ascendente e descendente para determinação dos pontos de colocação, visando obter boa precisão no cálculo da integral.

A aplicação do método de colocação ortogonal não é recomendada quando a solução tem gradientes elevados, mas esse não é o caso dos perfis de concentração no reator de hidroconversão uma vez que há uma intensa mistura no reator, típica de leitos fluidizados.

A função tentativa utilizada aproxima a solução por uma função de r^2 para atender automaticamente a condição de contorno de simetria no centro do reator e é apresentada a seguir com o uso do polinômio interpolador de Lagrange $L_k(r^2)$:

$$\operatorname{Ci} = \sum_{k=1}^{n+1} L_k \left(r^2 \right) \cdot \operatorname{Ci}(r_k, z)$$
(4-9)

$$L_k(\mathbf{r}^2) = \prod_{\substack{m=1\\m\neq k}}^{n+1} \frac{\mathbf{r}^2 - \mathbf{r}_m^2}{\mathbf{r}_k^2 - \mathbf{r}_m^2} \quad \text{de forma que } L_k(\mathbf{r}_k^2) = 1 \quad \text{e} \quad L_k(\mathbf{r}_m^2) = 0 \quad (4-10)$$

onde: r_k e r_m representam os pontos de colocação

n+1 refere-se a n pontos de colocação internos somados ao ponto de colocação na condição de contorno (no final do intervalo de cálculo).

Derivando a função tentativa em relação à posição radial:

$$\frac{\partial \mathrm{Ci}}{\partial \mathrm{r}} = \sum_{k=1}^{n+1} \frac{\mathrm{d}L_k(\mathrm{r}^2)}{\mathrm{d}\mathrm{r}} \cdot \mathrm{Ci}(\mathrm{r}_k, \mathrm{z})$$
(4-11)

$$\frac{\partial^2 \text{Ci}}{\partial r^2} = \sum_{k=1}^{n+1} \frac{\mathrm{d}^2 L_k(r^2)}{\mathrm{d}r^2} \cdot \text{Ci}(r_k, z)$$
(4-12)

Reescrevendo a Equação 4-7:

$$\varepsilon_{L} \cdot V_{L} \cdot \frac{\partial Ci}{\partial z} = -\varepsilon_{L} \cdot \alpha_{i} \cdot k \cdot Ci + \varepsilon_{L} \cdot k \cdot \sum_{m=1}^{n_{c}} \beta_{m,i} \cdot Cm + f 2Dr \cdot \frac{\partial^{2}Ci}{\partial r^{2}} + f 1Dr \cdot \frac{\partial Ci}{\partial r} \quad (4-13)$$

com:
$$f 1Dr = \frac{1}{r} \frac{d}{dr} \left(\frac{r \cdot \mu_L^{eff} \cdot \varepsilon_L}{\rho_L} \right)$$
 (4-14)

$$f 2Dr = \left(\frac{\mu_{\rm L}^{\rm eff} \cdot \varepsilon_{\rm L}}{\rho_{\rm L}}\right) \tag{4-15}$$

onde f1Dr e f2Dr são funções apenas da posição radial (não variam com z e não sofrem influência da reação). f1Dr é calculada através da derivada analítica da função com as expressões para $\mu_L^{eff}(r)$ e $\varepsilon_L(r)$ do modelo fluidodinâmico (ver item 9.2 ou Carbonell (1996) para essas expressões).

Discretizando a Equação 4-13 e substituindo Ci pela função aproximada encontra-se a equação do modelo discretizada na direção radial:

$$\epsilon_{L}(\mathbf{r}_{j}) \cdot \mathbf{V}_{L}(\mathbf{r}_{j}) \cdot \frac{\mathrm{dCi}(\mathbf{r}_{j}, z)}{\mathrm{d}z} = -\epsilon_{L}(\mathbf{r}_{j}) \cdot \alpha_{i} \cdot \mathbf{k} \cdot \mathrm{Ci}(\mathbf{r}_{j}, z) + \epsilon_{L}(\mathbf{r}_{j}) \cdot \mathbf{k} \cdot \sum_{m=1}^{nc} \beta_{m,i} \cdot \mathrm{Cm}(\mathbf{r}_{j}, z) + f 2\mathrm{Dr}(\mathbf{r}_{j}) \cdot \sum_{k=1}^{n+1} \mathbf{B}_{j,k} \cdot \mathrm{Ci}(\mathbf{r}_{k}, z) + f 1\mathrm{Dr}(\mathbf{r}_{j}) \cdot \sum_{k=1}^{n+1} \mathbf{A}_{j,k} \cdot \mathrm{Ci}(\mathbf{r}_{k}, z)$$
(4-16)

onde:

$$A_{j,k} = \frac{dL_k \left(r^2\right)}{dr} \bigg|_{r_j}$$
(4-17)

$$B_{j,k} = \frac{d^2 L_k (r^2)}{dr^2} \Big|_{r_j}$$
(4-18)

O modelo representado pela Equação 4-16 é válido para a região de escoamento desenvolvido, onde são conhecidos os perfis radiais de velocidade, fração volumétrica e viscosidade efetiva do líquido. Entretanto, as concentrações iniciais dos componentes (condição de contorno) não são conhecidas no início desta região. Por isso, para simular o modelo também é utilizado o algoritmo do acoplamento reação-recirculação apresentado no item 4.2.2. As concentrações dos componentes na alimentação e na saída do reator são relacionadas com as concentrações da região de escoamento desenvolvido através das Equações 4-5 e 4-6. O cálculo dos perfis de concentração na região de escoamento desenvolvido é divido em duas partes:

Domínio de fluxo ascendente: $0 < r < r^*$, onde r^* é o ponto de inversão de fluxo ($V_L(r^*) = 0$);

Domínio de fluxo descendente: $r^* < r < Rc$.

Foram utilizados 10 pontos de colocação ortogonal, 5 no domínio de fluxo ascendente e 6 no domínio de fluxo descendente, como esquematizado na Figura 4.5. Em cada região foi realizado um ajuste específico de modo a garantir boa precisão na integração da Equação 4-8. A integração por Quadratura Gaussiana com 10 pontos de colocação apresentou resultados excelentes quando comparado ao método de Simpson com 1000 pontos.

No centro do reator a condição de contorno de simetria é automaticamente satisfeita com o ajuste de uma função de r^2 e por isso não é necessário um ponto de colocação nesta posição. No ponto de inversão de fluxo (ponto 5) a velocidade do líquido é nula e a transferência de massa ocorre através da difusão dos componentes na direção radial. Esse é um ponto de fronteira entre os dois domínios, calculado tanto no domínio de fluxo ascendente quanto no domínio de fluxo descendente de modo que a transferência de massa entre eles seja igual nos dois sentidos. Na parede do reator, através da qual não há transferência de massa, há um ponto de colocação de contorno (ponto 10).

Figura 4.5 Diagrama esquemático de metade do reator (sem escala) mostrando os pontos de colocação ortogonal e as condições de contorno radiais nas regiões de fluxo ascendente e descendente.

Os pontos de cálculo determinados por colocação ortogonal e as funções peso para o cálculo das integrais na região de escoamento desenvolvido, obtidos no trabalho de Carbonell (1996), são apresentados nas tabelas a seguir.

Tabela 4.2 Posição adimensional dos pontos de colocação ortogonal e função peso(fluxo ascendente).

ponto j	1	2	3	4	5
r _j / Rc	0,15942516	0,35102629	0,50965577	0,61877493	0,66714903
w_j^A	0,14371356	0,28135602	0,31182652	0,22310390	
Obs					ponto de inversão de fluxo
					V _L =0

Onde w_i da Equação 4-8 é calculado no domínio de fluxo ascendente por:

$$w_{j} = \frac{r^{*2}}{2} \cdot w_{j}^{A}$$
 (4-19)

 Tabela 4.3 Posição adimensional dos pontos de colocação ortogonal e função peso
 (fluxo descendente).

Ponto j	5	6	7	8	9	10
r _j / Rc	0,66714903	0,71827401	0,81147958	0,90703394	0,97542823	1,00000000
w_j^{D}		0,02441044	0,08859856	0,10785950	0,04579817	
obs	ponto de inversão de fluxo, V _L =0					parede do reator, V _L =0

Onde w_i da Equação 4-8 é calculado no domínio de fluxo descendente por:

$$w_{j} = \frac{\left(Rc^{2} - r^{*2}\right)^{5/2}}{2} \cdot \frac{w_{j}^{D}}{\left(r_{j}^{2} - r^{*2}\right) \cdot \sqrt{Rc^{2} - r_{j}^{2}}}$$
(4-20)

Reescrevendo a equação do modelo (4-16) na forma $\frac{dCi}{dz} = f(Ci(r, z))$:

$$\frac{d\mathrm{Ci}(\mathbf{r}_{j},z)}{dz} = \frac{-\alpha_{i}\cdot\mathbf{k}\cdot\mathrm{Ci}(\mathbf{r}_{j},z)}{V_{L}(\mathbf{r}_{j})} + \frac{\mathbf{k}\cdot\sum_{m=1}^{nc}\beta_{m,i}\cdot\mathrm{Cm}(\mathbf{r}_{j},z)}{V_{L}(\mathbf{r}_{j})} + \frac{f\,2\mathrm{Dr}(\mathbf{r}_{j})\cdot\mathrm{d}2\mathrm{Ci}(\mathbf{r}_{j},z)}{\varepsilon_{L}(\mathbf{r}_{j})\cdot\mathrm{V}_{L}(\mathbf{r}_{j})} + \frac{f\,1\mathrm{Dr}(\mathbf{r}_{j})\cdot\mathrm{d}1\mathrm{Ci}(\mathbf{r}_{j},z)}{\varepsilon_{L}(\mathbf{r}_{j})\cdot\mathrm{V}_{L}(\mathbf{r}_{j})}$$

$$(4-21)$$

onde:
$$d1Ci(r_j, z) = \sum_{k=1}^{n+1} A_{j,k} \cdot Ci(r_k, z) \cong \frac{\partial Ci(r, z)}{\partial r}\Big|_{r=r_j}$$
 (4-21A)

$$d2Ci(r_{j}, z) = \sum_{k=1}^{n+1} B_{j,k} \cdot Ci(r_{k}, z) \cong \frac{\partial^{2}Ci(r, z)}{\partial r^{2}} \bigg|_{r=r_{j}}$$
(4-21B)

Desenvolvendo essa equação discretizada nas regiões de cálculo define-se o sistema de equações a ser integrado na direção axial para o cálculo dos perfis de concentração Ci(r,z).

No <u>domínio de fluxo ascendente</u> os 4 pontos internos de colocação (k = 1,...,4) são calculados com a Equação 4-21 e as derivadas da concentração em relação à posição radial são definidas pelas expressões a seguir: (a letra A indica que o cálculo é realizado no domínio de fluxo ascendente)

d1Ci^A(
$$\mathbf{r}_{j}, z$$
) = $\sum_{k=1}^{5} A_{j,k}^{A} \cdot Ci(\mathbf{r}_{k}, z)$ (4-22)

$$d2Ci^{A}(r_{j}, z) = \sum_{k=1}^{5} B_{j,k}^{A} \cdot Ci(r_{k}, z)$$
(4-23)

□ No ponto 5, ponto de inversão de fluxo, aplica-se a condição de contorno:

$$\sum_{k=1}^{5} \mathbf{A}_{5,k}^{\mathbf{A}} \cdot \mathrm{Ci}(\mathbf{r}_{k}, \mathbf{z}) = \sum_{k=5}^{10} \mathbf{A}_{5,k}^{\mathbf{D}} \cdot \mathrm{Ci}(\mathbf{r}_{k}, \mathbf{z})$$
(4-24)

de onde se obtém uma expressão algébrica para Ci (r₅,z) usando as Equações 4-24 e 4-29:

$$\begin{split} \operatorname{Ci}(\mathbf{r}_{5}, \mathbf{z}) &= - \left(A_{5,5}^{\mathbf{A}} \cdot A_{10,10}^{\mathbf{D}} - A_{5,5}^{\mathbf{D}} \cdot A_{10,10}^{\mathbf{D}} + A_{5,10}^{\mathbf{D}} \cdot A_{10,5}^{\mathbf{D}} \right)^{-1} \cdot \left\{ A_{10,10}^{\mathbf{D}} \cdot \right. \\ & \left. \cdot \left[A_{5,1}^{\mathbf{A}} \cdot \operatorname{Ci}(\mathbf{r}_{1}, \mathbf{z}) + A_{5,2}^{\mathbf{A}} \cdot \operatorname{Ci}(\mathbf{r}_{2}, \mathbf{z}) + A_{5,3}^{\mathbf{A}} \cdot \operatorname{Ci}(\mathbf{r}_{3}, \mathbf{z}) + A_{5,4}^{\mathbf{A}} \cdot \operatorname{Ci}(\mathbf{r}_{4}, \mathbf{z}) \right] + \\ & \left. + \left(A_{5,10}^{\mathbf{D}} \cdot A_{10,6}^{\mathbf{D}} - A_{5,6}^{\mathbf{D}} \cdot A_{10,10}^{\mathbf{D}} \right) \cdot \operatorname{Ci}(\mathbf{r}_{6}, \mathbf{z}) + \\ & \left. + \left(A_{5,10}^{\mathbf{D}} \cdot A_{10,7}^{\mathbf{D}} - A_{5,7}^{\mathbf{D}} \cdot A_{10,10}^{\mathbf{D}} \right) \cdot \operatorname{Ci}(\mathbf{r}_{7}, \mathbf{z}) + \\ & \left. + \left(A_{5,10}^{\mathbf{D}} \cdot A_{10,8}^{\mathbf{D}} - A_{5,8}^{\mathbf{D}} \cdot A_{10,10}^{\mathbf{D}} \right) \cdot \operatorname{Ci}(\mathbf{r}_{8}, \mathbf{z}) + \\ & \left. + \left(A_{5,10}^{\mathbf{D}} \cdot A_{10,8}^{\mathbf{D}} - A_{5,8}^{\mathbf{D}} \cdot A_{10,10}^{\mathbf{D}} \right) \cdot \operatorname{Ci}(\mathbf{r}_{9}, \mathbf{z}) \right\} \end{split}$$

$$(4-25)$$

No domínio de fluxo descendente os 4 pontos internos de colocação (k = 6,...,9) são calculados com a Equação 4-21 e as derivadas da concentração em relação à posição radial são definidas pelas expressões a seguir: (a letra D indica que o cálculo é realizado no domínio de fluxo descendente)

$$dlCi^{\mathbf{D}}(\mathbf{r}_{j}, z) = \sum_{k=5}^{10} \mathbf{A}_{j,k}^{\mathbf{D}} \cdot Ci(\mathbf{r}_{k}, z)$$
(4-26)

$$d2\mathrm{Ci}^{\mathbf{D}}(\mathbf{r}_{j}, \mathbf{z}) = \sum_{k=5}^{10} \mathbf{B}_{j,k}^{\mathbf{D}} \cdot \mathrm{Ci}(\mathbf{r}_{k}, \mathbf{z})$$
(4-27)
□ No ponto 10, <u>parede do reator</u>, aplica-se a <u>condição de contorno</u>:

$$\sum_{k=5}^{10} \mathbf{A}_{10,k}^{\mathbf{D}} \cdot \mathrm{Ci}(\mathbf{r}_{k}, \mathbf{z}) = 0$$
(4-28)

de onde se obtém uma expressão algébrica para $Ci(r_{10},z)$:

$$Ci(r_{10}, z) = \frac{-1}{A_{10,10}^{\mathbf{D}}} \cdot \left[A_{10,5}^{\mathbf{D}} \cdot Ci(r_{5}, z) + A_{10,6}^{\mathbf{D}} \cdot Ci(r_{6}, z) + A_{10,7}^{\mathbf{D}} \cdot Ci(r_{7}, z) + A_{10,8}^{\mathbf{D}} \cdot Ci(r_{8}, z) + A_{10,9}^{\mathbf{D}} \cdot Ci(r_{9}, z) \right]$$

$$(4-29)$$

 $A^{A}_{j,k} \neq A^{D}_{j,k} \in B^{A}_{j,k} \neq B^{D}_{j,k}$ pois número e localização dos pontos são diferentes nos domínios.

Substituindo a Equação 4-25 em 4-29 obtém-se uma expressão para Ci(r_5 ,z) dependente somente das concentrações nos pontos internos de colocação. Substituindo Ci(r_5 ,z) e Ci(r_{10} ,z) nas expressões 4-22 e 4-23 para os pontos do domínio de fluxo ascendente (k = 1,...,4) ou nas expressões 4-26 e 4-27 para os pontos do domínio de fluxo descendente (k = 6,...,9) e depois na equação do modelo (4-21), obtém-se as equações do modelo fluidodinâmico com dispersão radial discretizadas. A seguir é apresentada a equação final do modelo de forma esquemática:

$$\begin{aligned} \frac{d\mathrm{Ci}(\mathbf{r}_{j},z)}{dz} &= \frac{1}{\mathrm{V}_{\mathrm{L}}(\mathbf{r}_{j})} \Big[gr_{j,1} \cdot \mathrm{Ci}(\mathbf{r}_{1},z) + gr_{j,2} \cdot \mathrm{Ci}(\mathbf{r}_{2},z) + gr_{j,3} \cdot \mathrm{Ci}(\mathbf{r}_{3},z) + gr_{j,4} \cdot \mathrm{Ci}(\mathbf{r}_{4},z) + gr_{j,6} \cdot \mathrm{Ci}(\mathbf{r}_{6},z) + gr_{j,7} \cdot \mathrm{Ci}(\mathbf{r}_{7},z) + gr_{j,8} \cdot \mathrm{Ci}(\mathbf{r}_{8},z) + gr_{j,9} \cdot \mathrm{Ci}(\mathbf{r}_{9},z) + \\ &- \alpha_{i} \cdot \mathbf{k} \cdot \mathrm{Ci}(\mathbf{r}_{j},z) + \mathbf{k} \cdot \sum_{m=1}^{nc} \beta_{m,i} \cdot \mathrm{Cm}(\mathbf{r}_{j},z) \Big] \end{aligned}$$
(4-30)

que tem a condição de contorno: Ci = Coi na entrada do reator

onde: j = 1, 2, 3, 4, 6, 7, 8, 9 (pontos internos de colocação ortogonal);

 $gr_{j,k}$ são funções radiais formadas por $f1Dr(r_j)$, $f2Dr(r_j)$, $\epsilon_L(r_j)$, $A^{\mathbf{A}}_{j,k}$, $A^{\mathbf{D}}_{j,k}$, $B^{\mathbf{A}}_{j,k}$ e $B^{\mathbf{D}}_{j,k}$.

As variáveis fluidodinâmicas f1Dr(r_j), f2Dr(r_j), $\varepsilon_L(r_j)$ e V_L(r_j) dependem somente da posição radial de cálculo. A^A_{j,k}, A^D_{j,k}, B^A_{j,k} e B^D_{j,k} são variáveis resultantes da discretização por colocação ortogonal e dependem do polinômio interpolador e dos pontos de colocação ortogonal. Portanto, as variáveis citadas neste parágrafo dependem da fluidodinâmica e independem dos componentes da reação. Neste modelo somente as concentrações variam com a posição axial.

O modelo de reator representado pela Equação 4-30 pode ser utilizado para simular o reator de hidroconversão classificado como *slurry bubble column*, nas considerações adotadas, com qualquer modelo cinético de reações homogêneas em fase líquida ou reações que não sejam limitadas por resistência à transferência de massa entre as fases.

A discretização por colocação ortogonal aqui apresentada reduziu a complexidade do sistema transformando uma equação parcial diferencial de segunda ordem em oito equações diferenciais ordinárias (EDO) de primeira ordem a serem integradas na direção axial. Aplicando o modelo cinético de Mosby et al. (1986) que tem 7 pseudocomponentes, o modelo resulta em um sistema formado por 56 EDOs de primeira ordem.

4.3.1.2 Integração na direção axial – Métodos adotados e dificuldades

A integração na direção axial das equações do modelo fluidodinâmico com dispersão radial discretizadas em r, usando modelo cinético de Mosby et al. (1986), apresentou dificuldades. Diversos métodos foram testados, como mostrado na Tabela 4.4.

Inicialmente foi implementada a integração em z com o método de Runge Kutta Fehlberg (explícito de 5^a ordem) e o procedimento iterativo proposto no desenvolvimento do algoritmo reação-recirculação (Figura 4.5). Na primeira abordagem foi realizada a discretização das equações com o método das diferenças finitas e depois com colocação ortogonal. A redução do número de pontos na direção radial favoreceu a convergência, mas o tempo computacional da simulação (programa <u>ateste10</u>) foi excessivamente alto (9 dias em PC Pentium 133 MHz com 16 MB de memória RAM).

Pasta de	Ν	Aétodos Mate	emáticos	Problemas e resultados
trabalho do programa	Integração direção axial	Discretiza- ção, direção radial	Algoritmo Reação – Recirculação	
ateste 9	RKF^*	diferenças finitas	Iterações Sucessivas Cbi(J+1) = Cbi(J) (Figura 4.5)	Oscilações e divergência. Não se obteve resultado.
ateste 10	RKF*	Colocação Ortogonal	Iterações Sucessivas Cbi(J+1) = Cbi(J) (Figura 4.5)	A solução obtida com nz = 20000 e 20000 iterações após 9 dias de cálculo ainda não é independente das estimativas iniciais, mas apresenta tendência coerente.
ateste 11	RKF*	Colocação Ortogonal	Newton Raphson	Divergência dos valores logo no início do reator, não se obteve resultado.
ateste 13	Gear BDF**	Colocação Ortogonal	Newton Raphson	Divergência dos valores logo no início do reator, não se obteve resultado.
ateste	Gear BDF ^{**}	Colocação Ortogonal	Iterações Sucessivas Cbi(J+1) = Cbi(J) (Figura 4.5)	Solução convergiu com nz = 20000 e 27677 iterações em aproxima- damente 4 dias de cálculo.
ateste15	analítica via autovalores / autovetores	Colocação Ortogonal	Analítico. Solução simultânea das equações.	Obtenção de resultados com rapidez (~20 segundos) e precisão. Método selecionado.

Tabela 4.4 Métodos utilizados para implementação do modelo com dispersão radial.

* RKF – Método de Runge Kutta Fehlberg.

** Gear BDF – refere-se ao método de Gear que usa um procedimento implícito (*backward differention formulas*, BDF) para resolver sistemas rígidos de equações diferenciais.

Visando agilizar a obtenção de resultados foi implementado o método de Newton Raphson no algoritmo do acoplamento reação-recirculação conforme descrito a seguir (ver Figura

4.5 para nomenclatura das concentrações):

- ⇒ O cálculo inicia com a estimativa das concentrações no início da região de fluxo descendente (Cei (rj) com j = 6, 7, 8, 9 no total de 28 variáveis).
- A seguir são calculadas as concentrações Cbi (início da região de fluxo ascendente) com a condição de contorno (Equação 4-5).
- ⇒ Depois todas as equações do modelo na região de fluxo desenvolvido são integradas simultaneamente (método numérico) até z = Lc, gerando Ci (rj,Lc) com j = 1 a 4, 6 a 9.
- ⇒ Csi é calculado com a condição de contorno na saída do reator (Equação 4-6).

⇒ Finalmente, o algoritmo de Newton Raphson [x1 - xo = -Yo / Y'(xo)] é aplicado para determinação da nova estimativa de Cei (rj), através da resolução de um sistema com 28 equações com a forma apresentada em 4-31. A convergência é obtida quando a diferença de Cei (rj) em duas iterações é inferior à tolerância.

$$\operatorname{Cei}(rj)^{J+1} - \operatorname{Cei}(rj)^{J} = \frac{-(\operatorname{Ci}(rj, \operatorname{Lc}) - \operatorname{Csi})}{\frac{\operatorname{d}(\operatorname{Ci}(rj, \operatorname{Lc}) - \operatorname{Csi})}{\operatorname{d}\operatorname{Cei}}}$$
(4-31)

onde: J é o número da iteração do laço iterativo;

j é o ponto de colocação ortogonal variando entre 6 e 9;

O método de Newton Raphson permitiu a obtenção de resultados com maior rapidez, mas apresentou maior rigidez numérica inviabilizando a obtenção de resultados (programas <u>ateste11</u> e <u>ateste13</u>). No método das iterações sucessivas (Figura 4.5), o cálculo é realizado separadamente nas regiões de fluxo ascendente e descendente. Isso amortece as variações na concentração, principalmente em torno do ponto de inversão de fluxo onde o gradiente é mais acentuado, permitindo a obtenção dos resultados mas com um elevado custo de tempo computacional.

Os resultados obtidos com os diferentes métodos numéricos para integração das equações são bastante coerentes uma vez que o método de Gear BDF, implícito e indicado para sistemas rígidos, foi mais eficiente que o método de Runge Kutta Fehlberg (explícito). A implementação do método de Gear BDF foi realizada através da utilização da sub-rotina DIVPAG das bibliotecas IMSL (versão instalada em *software* Microsoft[®], 1994-95).

Entretanto, o método de Gear BDF não teve o desempenho esperado uma vez que as concentrações Ci(r,z) do programa <u>ateste13</u> (com Newton Raphson) divergiram logo no início do reator. Algumas tentativas de mudança de parâmetros, tolerância e número de pontos na direção axial mostraram que não é possível resolver as equações desse modelo com a combinação de métodos proposta. Por isso, voltou-se a utilizar o método das iterações sucessivas, com a integração das equações por Gear BDF (programa <u>ateste</u>). O programa funcionou, reduzindo o tempo computacional pela metade (em comparação com <u>ateste10</u>), mas ainda não foi suficientemente eficiente, uma vez que 4 dias de cálculo (em PC Pentium 133 MHz com 16 MB de RAM) é um tempo excessivamente alto.

Durante a implementação e teste dos programas, algumas simulações foram realizadas com frações do coeficiente de dispersão radial (viscosidade efetiva do líquido). Dessa forma, pôde-se corrigir os eventuais erros de programação e estudar o desempenho dos diversos métodos utilizados. Esse estudo permitiu concluir, por exemplo, que o programa <u>ateste13</u> é rápido e preciso com 0,2% da dispersão total, mas as equações são muito rígidas e sensíveis às estimativas iniciais nos cálculos com 100 % da dispersão.

As dificuldades encontradas no desenvolvimento desse trabalho devem-se, principalmente, à grande rigidez numérica das equações do modelo. A rigidez numérica é bastante comum em modelos de reatores e está associada à ocorrência de um autovalor grande e negativo (Kahaner et al., 1989), que indica a ocorrência de fenômenos com ordens de magnitude muito diferentes. No reator de hidroconversão, o fenômeno da dispersão tem ordem de magnitude muito inferior à convecção, exceto próximo ao ponto de inversão de fluxo. A Tabela 4.5 traz os autovalores das equações, calculados com uma fração da dispersão radial (μ_L^{eff}) no programa <u>ateste15</u>, que mostram como o valor de alguns autovalores aumenta com a dispersão causando um incremento significativo na rigidez numérica.

A rigidez numérica das equações do modelo foi sendo reduzida e/ou contornada ao longo dos trabalhos através da redução do número de pontos de cálculo na direção radial (com o método da colocação ortogonal), da integração numérica com método implícito (Gear BDF) e da utilização de um método iterativo que resultasse em gradientes de concentração mais suaves ao longo do reator (iterações sucessivas). Entretanto, esses procedimentos não foram suficientes para garantir a simulação do reator com a rapidez e precisão necessárias.

A princípio, a rigidez numérica não seria um problema se um método adequado (implícito) fosse utilizado na integração das equações. Entretanto, nem a aplicação do método de Gear BDF (implícito) foi suficiente para resolver adequadamente o sistema. Os métodos implícitos têm bom desempenho quando a rigidez é caracterizada por variação em apenas uma direção como, por exemplo, em regimes transientes com integração ao longo do tempo. Entretanto, na região de escoamento desenvolvido do reator de hidroconversão há fluxo em dois sentidos (ascendente e descendente) gerando autovalores positivos e negativos com grande diferença de ordem de magnitude (ver Tabela 4.5). Esse tipo de rigidez não é resolvido somente com a utilização de um método implícito.

	<u> </u>	. . ~					<0. er	100 8
Dispersão	0,1 %	0,2 %	1%	2 %	10 %	20 %	60 %	100 %
radial								
Id	0,0180	0,0172	0,0175	0,0263	0,0177	0,0171	0,0261	0,0197
1	3,7127	7,3512	36,4716	72,9052	365,7005	734,9781	2247,5585	3814,6591
2	3,6421	7,2804	36,4007	72,8343	365,6298	734,9075	2247,4886	3814,5897
3	3,6414	7,2798	36,4001	72,8337	365,6291	734,9069	2247,4880	3814,5891
4	3,6390	7,2774	36,3976	72,8313	365,6267	734,9045	2247,4856	3814,5867
5	3,6380	7,2764	36,3966	72,8303	365,6257	734,9035	2247,4846	3814,5857
6	3,6380	7,2764	36,3966	72,8303	365,6257	734,9035	2247,4846	3814,5857
7	3,6380	7,2764	36,3966	72,8303	365,6257	734,9035	2247,4846	3814,5857
8	-3,5223	-6,9618	-34,4665	-68,8226	-342,6775	-682,4904	-2013,0789	-3295,5735
9	-3,4441	-6,8834	-34,3880	-68,7439	-342,5988	-682,4116	-2012,9997	-3295,4938
10	-3,4434	-6,8827	-34,3873	-68,7433	-342,5981	-682,4109	-2012,9990	-3295,4931
11	-3,4407	-6,8800	-34,3846	-68,7406	-342,5954	-682,4082	-2012,9963	-3295,4904
12	-3,4396	-6,8789	-34,3834	-68,7394	-342,5942	-682,4071	-2012,9952	-3295,4893
13	-3,4396	-6,8789	-34,3834	-68,7394	-342,5942	-682,4071	-2012,9952	-3295,4893
14	-3,4396	-6,8789	-34,3834	-68,7394	-342,5942	-682,4071	-2012,9952	-3295,4893
15	1,5017	2,9815	14,8154	29,5958	147,3734	293,4692	866,5645	1424,3430
16	1,4811	2,9610	14,7948	29,5752	147,3526	293,4482	866,5427	1424,3207
17	1,4810	2,9608	14,7946	29,5750	147,3524	293,4481	866,5426	1424,3205
18	1,4802	2,9601	14,7939	29,5743	147,3517	293,4473	866,5418	1424,3198
19	1,4800	2,9598	14,7936	29,5740	147,3514	293,4470	866,5415	1424,3195
20	1,4800	2,9598	14,7936	29,5740	147.3514	293,4470	866.5415	1424.3195
21	1,4800	2.9598	14,7936	29,5740	147.3514	293,4470	866.5415	1424.3195
22	-0.5732	-1.1206	-5.5031	-10.9916	-55.3310	-111.8543	-350.9392	-612.9789
23	-0.5486	-1.0958	-5.4782	-10.9667	-55,3063	-111.8297	-350.9154	-612,9560
24	-0.5484	-1.0956	-5.4779	-10.9665	-55,3061	-111.8295	-350.9152	-612,9558
25	-0.5475	-1.0948	-5.4771	-10.9657	-55,3052	-111.8287	-350,9144	-612,9550
26	-0.5471	-1.0944	-5.4767	-10.9653	-55,3049	-111.8283	-350.9140	-612.9547
27	-0.5471	-1.0944	-5.4767	-10.9653	-55,3049	-111.8283	-350.9140	-612.9547
28	-0.5471	-1.0944	-5.4767	-10.9653	-55,3049	-111.8283	-350.9140	-612.9547
29	0.4350	0.8449	4.1215	8.2156	40.9067	81.6206	242.9412	402.1639
30	0.4111	0.8207	4.0972	8,1913	40.8823	81.5961	242,9166	402,1393
31	0 4108	0.8205	4 0970	8 1910	40 8821	81 5959	242,9164	402,1390
32	0 4100	0.8196	4 0961	8 1902	40 8813	81 5951	242,9156	402,1382
33	0.4097	0.8193	4.0958	8,1899	40.8809	81.5947	242.9152	402,1378
34	0.4097	0.8193	4.0958	8,1899	40.8809	81,5947	242.9152	402,1378
35	0 4097	0.8193	4 0958	8 1899	40 8809	81 5947	242,9152	402,1378
36	-0.1036	-0.1902	-0.8815	-1.7502	-8.9041	-18.3661	-62,1788	-115.8921
37	-0.0871	-0 1731	-0.8639	-1 7325	-8 8865	-18 3486	-62,1619	-115 8757
38	-0.0869	-0.1730	-0.8638	-1.7324	-8.8863	-18.3485	-62,1617	-115.8755
39	-0.0863	-0.1724	-0.8632	-1.7317	-8.8857	-18.3479	-62,1611	-115.8750
40	-0.0860	-0.1721	-0.8629	-1 7315	-8,8855	-18 3476	-62,1609	-115 8747
41	-0.0860	-0 1721	-0.8629	-1 7315	-8 8855	-18 3476	-62 1609	-115 8747
42	-0.0860	-0 1721	-0.8629	-1 7315	-8 8855	-18 3476	-62 1609	-115 8747
43	0.0481	0.0732	0,0029	0 4761	2 0894	3 7499	6 2601	1 8726
44	0.0243	0.0467	0.2246	0.4434	2.0534	3.7102	6.1897	1,4770
45	0.0240	0.0464	0.2243	0.4431	2.0531	3,7098	6,1891	1.4726
46	0,0240	0.0453	0,22+3 0,2231	0 4419	2,0518	3 7084	6 1866	1 4553
40 47	0,0229 0,0224	0.0448	0,2231	0.4414	2,0510	3 7070	6 1856	1 4470
48	0,0224 0,0224	0.0448	0 2226	0,4414	2,0513	3 7079	6 1856	1 4479
40 40	0.0224	0.0448	0 2226	0.4414	2,0513	3 7070	6 1856	1 4470
50	-0.0136	-0.0158	-0.0202	-0.0215	-0.0252	-0.0293	-0.0629	-0 4142
51	-0.0011	-0.0012	-0.0012	-0.0012	-0.0014	-0.0016	-0.0035	-0.0286
51	0,0011	0,0012	0,0012	0,0012	0,0017	0,0010	0,0055	0,0200

Tabela 4.5 Autovalores do sistema de EDO's do modelo com fração da dispersão radial total (μ_L^{eff}) e cinética de Mosby et al. (1986), obtidos no programa <u>ateste15</u>.

Dispersão radial	0,1 %	0,2 %	1 %	2 %	10 %	20 %	60 %	100 %
52	-0,0010	-0,0010	-0,0010	-0,0010	-0,0012	-0,0014	-0,0029	-0,0242
53	-0,0003	-0,0003	-0,0003	-0,0003	-0,0003	-0,0004	-0,0009	-0,0072
54	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
55	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
56	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000

Continuação da Tabela 4.5:

Uma solução adequada foi obtida com o desenvolvido de um procedimento analítico, baseado na determinação dos autovalores e autovetores do sistema, com a solução simultânea de todas as equações seguida do cálculo das constantes de integração com as condições de contorno. O procedimento analítico, descrito a seguir, apresentou excelentes resultados permitindo o cálculo de Ci (r,z) de forma rápida e precisa. A Tabela 4.6 mostra os resultados obtidos com diferentes procedimentos.

Tabela 4.6 Distribuição dos produtos na saída do reator de hidroconversão (ver Nota 1). Resultados obtidos com os diferentes programas desenvolvidos e dispersão radial total (T = 425°C). (Csi em fração mássica).

Programa →	ateste 10	ateste10	ateste	ateste	ateste	ateste 15
iterações	J = 20000	J = 20000	J = 30000	J = 27677	J = 29039	Analítico
nz	20000	20000	20000 (nota 4)	20000 (nota 4)	30000 (nota 4)	
Resultado final ?	não (nota 3)	não (nota 3)	não (nota 3)	sim	sim	sim
tempo compu-	~ 9 dias	~ 9 dias	~ 8 dias	~ 4 dias	5 < t < 12 dias	19 s
tacional (PC Pentium)	(133 MHz 16 MB RAM)	(133 MHz 16 MB RAM)	(133 MHz 16 MB RAM)	(133 MHz 16 MB RAM)	(133 MHz 16 MB RAM)	(550 MHz 64 MB RAM)
Cs1	0,730398	0,725552	0,727993	0,728430	0,728374	0,728438
Cs2	0,050250	0,049991	0,049506	0,049825	0,049889	0,050339
Cs3	0,000000	0,000000	0,000000	0,000000	0,000000	0,000000
Cs4	0,112294	0,114354	0,113699	0,113340	0,113325	0,113035
Cs5	0,076437	0,078323	0,077567	0,077298	0,077297	0,077125
Cs6	0,021204	0,021905	0,021585	0,021500	0,021503	0,021464
Cs7	0,009418	0,009874	0,009653	0,009607	0,009611	0,009597
X1	0,087003	0,093060		0,089463	0,089532	0,089452
X2	0,748750	0,750045		0,750873	0,750555	0,748305
obs.	estimativa inicial Cbi = Coi	estimativa inicial Cbi = Nota 2	alguns Ci(5,z) estimados	Δz máximo = 0,00015	Δz máximo = 0,00010	-

Notas da Tabela 4.6:

1. Tolerância do laço iterativo no algoritmo reação-recirculação de 10⁻⁶ e na integração numérica de 10⁻⁸.

2. Valor de Cbi obtido desprezando-se somente a dispersão radial no ponto de inversão de fluxo.

- 3. Programa interrompido antes de convergir com a tolerância definida, mas bem próximo do resultado.
- 4. nz do laço externo de cálculo para chamada da sub-rotina DIVPAG, visando chamar a rotina para cálculo da integração numérica em intervalos pequenos de z.

4.3.1.3 Integração na direção axial por procedimento analítico (e cinética de Mosby)

O modelo fluidodinâmico com dispersão radial discretizado na direção radial por colocação ortogonal (Equação 4-30) é formado por um sistema de equações diferenciais ordinárias (EDOs) de primeira ordem, homogêneas e com coeficientes constantes representado por:

$$\mathbf{Y}' = \frac{\mathbf{d}\mathbf{Y}}{\mathbf{d}z} = \mathbf{M}\mathbf{A} \cdot \mathbf{Y} \tag{4-32}$$

onde: Y é o vetor de concentrações Ci(rj,z)

MA é a matriz de coeficientes constantes formada por f1Dr(r_j), f2Dr(r_j), $\epsilon_L(r_j)$, $V_L(r_j)$, α_i , $\beta_{m,i}$, k, $A^{\mathbf{A}}_{j,k}$, $A^{\mathbf{D}}_{j,k}$, $B^{\mathbf{A}}_{j,k}$ e $B^{\mathbf{D}}_{j,k}$.

Se todos os autovalores do sistema forem reais e distintos, o sistema tem solução da forma:

$$\mathbf{Y} = \sum_{\ell} \mathbf{a}_{\ell} \cdot \boldsymbol{\xi}_{\ell} \cdot \mathbf{e}^{\lambda_{\ell} \cdot \mathbf{z}} \tag{4-33}$$

de forma que: $(\mathbf{MA} - \lambda \cdot \mathbf{I}) \cdot \boldsymbol{\xi} = 0$

onde: a_{ℓ} são as constantes de integração da solução homogênea;

- λ_{ℓ} são os autovalores;
- $\boldsymbol{\xi}_{\ell}$ é o vetor de autovetores correspondente ao autovalor λ_{ℓ}
- I é a matriz identidade.

O determinante de (MA- λ .I) deve ser igual a zero para que a Equação 4-34 tenha soluções não nulas. Resolvendo o polinômio gerado no cálculo do determinante encontram-se as raízes de λ , ou seja, os autovalores do sistema. Resolvendo, então, o sistema de equações algébricas (4-34) para cada autovalor (λ_{ℓ}) determina-se o autovetor correspondente (ξ_{ℓ}).

(4-34)

Na simulação do modelo com dispersão radial os autovalores e autovetores foram calculados com o uso da sub-rotina DEVCRG das bibliotecas IMSL (versão instalada em *software* Microsoft[®], 1994-95) e o índice de desempenho (Id) desse cálculo determinado com a sub-rotina DEPIRG da mesma biblioteca. Nos cálculos acompanhados, obteve-se Id < 0,045 (ver Tabela 4.5 e Tabela 4.7), o que é considerado excelente (excelente: Id < 1; bom: 1 < Id < 100).

A solução do problema fica completamente definida substituindo as condições de contorno (Ci = Cio em z = 0) na Equação 4-33 e resolvendo o sistema de equações algébricas resultante para determinar as constantes de integração (a_i) .

O procedimento de solução proposto é analítico, mas métodos numéricos foram usados para resolver as equações. Desta forma, a solução obtida não é analítica e exata porém tem boa aproximação numérica.

A solução do sistema de equações do modelo fluidodinâmico com dispersão radial e cinética de Mosby não pôde ser implementada da maneira direta mostrada acima, pois:

- ⇒ É necessário utilizar o algoritmo reação-recirculação de forma adaptada para relacionar as concentrações na alimentação e saída do reator com a região de escoamento desenvolvido;
- ⇒ Os autovalores do sistema de 56 EDOs do modelo são reais mas há valores repetidos, como pode ser observado na Tabela 4.5 (ver coluna com 100 % de dispersão radial). Eventualmente, durante as simulações surgiram autovalores complexos conjugados com a parte imaginária apresentando valores inferiores a 10⁻¹². Verificou-se que se tratava de erro numérico do cálculo já que esses autovalores conjugados complexos sempre substituíam dois autovalores iguais.

Em função destas dificuldades foi desenvolvida uma solução específica para esse conjunto de equações que é apresentado a seguir.

Modelo fluidodinâmico com dispersão radial e cinética de Mosby et al. (1986):

Implementando a cinética de Mosby et al. (1986) no modelo fluidodinâmico com dispersão radial (Equação 4-30) obtém-se o conjunto de equações a ser resolvido:

Para os pseudocomponentes i = 1, 2, 3 que somente reagem:

,

$$\frac{d\mathrm{Ci}(\mathbf{r}_{j}, z)}{dz} = \frac{1}{\mathrm{V}_{\mathrm{L}}(\mathbf{r}_{j})} \Big[g\mathbf{r}_{j,1} \cdot \mathrm{Ci}(\mathbf{r}_{1}, z) + g\mathbf{r}_{j,2} \cdot \mathrm{Ci}(\mathbf{r}_{2}, z) + g\mathbf{r}_{j,3} \cdot \mathrm{Ci}(\mathbf{r}_{3}, z) + g\mathbf{r}_{j,4} \cdot \mathrm{Ci}(\mathbf{r}_{4}, z) + g\mathbf{r}_{j,6} \cdot \mathrm{Ci}(\mathbf{r}_{6}, z) + g\mathbf{r}_{j,7} \cdot \mathrm{Ci}(\mathbf{r}_{7}, z) + g\mathbf{r}_{j,8} \cdot \mathrm{Ci}(\mathbf{r}_{8}, z) + g\mathbf{r}_{j,9} \cdot \mathrm{Ci}(\mathbf{r}_{9}, z) + -\alpha_{i} \cdot \mathbf{k} \cdot \mathrm{Ci}(\mathbf{r}_{j}, z) \Big]$$

$$(4-35)$$

Para o pseudocomponente i = 4, que reage e é produzido:

$$\frac{dC4(r_{j},z)}{dz} = \frac{1}{V_{L}(r_{j})} \Big[gr_{j,1} \cdot C4(r_{1},z) + gr_{j,2} \cdot C4(r_{2},z) + gr_{j,3} \cdot C4(r_{3},z) + gr_{j,4} \cdot C4(r_{4},z) + gr_{j,6} \cdot C4(r_{6},z) + gr_{j,7} \cdot C4(r_{7},z) + gr_{j,8} \cdot C4(r_{8},z) + gr_{j,9} \cdot C4(r_{9},z) + -\alpha_{4} \cdot k \cdot C4(r_{j},z) + k \cdot \beta_{1,4} \cdot C1(r_{j},z) + k \cdot \beta_{2,4} \cdot C2(r_{j},z) \Big]$$
(4-36)

Para os pseudocomponentes i = 5, 6, 7 que somente são produzidos:

$$\begin{aligned} \frac{d\mathrm{Ci}(\mathbf{r}_{j},z)}{dz} &= \frac{1}{\mathrm{V}_{\mathrm{L}}(\mathbf{r}_{j})} \Big[gr_{j,1} \cdot \mathrm{Ci}(\mathbf{r}_{1},z) + gr_{j,2} \cdot \mathrm{Ci}(\mathbf{r}_{2},z) + gr_{j,3} \cdot \mathrm{Ci}(\mathbf{r}_{3},z) + gr_{j,4} \cdot \mathrm{Ci}(\mathbf{r}_{4},z) + gr_{j,6} \cdot \mathrm{Ci}(\mathbf{r}_{6},z) + gr_{j,7} \cdot \mathrm{Ci}(\mathbf{r}_{7},z) + gr_{j,8} \cdot \mathrm{Ci}(\mathbf{r}_{8},z) + gr_{j,9} \cdot \mathrm{Ci}(\mathbf{r}_{9},z) + \\ &+ k \cdot \beta_{1,i} \cdot \mathrm{Cl}(\mathbf{r}_{j},z) + k \cdot \beta_{2,i} \cdot \mathrm{C2}(\mathbf{r}_{j},z) + k \cdot \beta_{3,i} \cdot \mathrm{C3}(\mathbf{r}_{j},z) + k \cdot \beta_{4,i} \cdot \mathrm{C4}(\mathbf{r}_{j},z) \Big] \end{aligned}$$

$$(4-37)$$

A análise da matriz de incidência de **MA** mostra que o sistema de 56 EDOs formado pelas Equações 4-35, 4-36 e 4-37 pode ser dividido em 7 subsistemas (um para cada pseudocomponente **i**) com 8 EDOs cada (uma para cada ponto de colocação ortogonal interno). Nos subsistemas, os autovalores λ são números reais e distintos como mostrado na Tabela 4.7.

Os 3 subsistemas dos componentes que somente reagem (i = 1, 2, 3) são formados por EDOs homogêneas e os outros 4 subsistemas por EDOs não homogêneas. Os 7 subsistemas são resolvidos de forma independente na seguinte ordem:

 Determinação de C1(rj,z), C2(rj,z) e C3(rj,z) através do cálculo da solução homogênea de cada um dos subsistemas 1, 2 e 3.

- II. Determinação de C4(rj,z) através do cálculo da solução homogênea e particular do subsistema 4.
- III. Determinação de C5(rj,z), C6(rj,z) e C7(rj,z) através do cálculo da solução homogênea e particular de cada um dos subsistemas 5, 6 e 7.

Subsistema	i = 1	i = 2	i = 3	i = 4	i = 5	i = 6	i = 7
Componente	C1	C2	C3	C4	C5	C6	C7
λi_1	3814,5897	3814,6591	3814,5891	3814,5867	3814,5857	3814,5857	3814,5857
λi_2	- 3295,4938	- 3295,5735	- 3295,4931	- 3295,4904	- 3295,4893	- 3295,4893	- 3295,4893
λi_3	1424,3207	1424,3430	1424,3205	1424,3198	1424,3195	1424,3195	1424,3195
λi_4	- 612,9560	- 612,9789	- 612,9558	- 612,9550	- 612,9547	- 612,9547	- 612,9547
λi_5	402,1393	402,1639	402,1390	402,1382	402,1378	402,1378	402,1378
λi_6	- 115,8757	- 115,8921	- 115,8755	- 115,8750	- 115,8747	- 115,8747	- 115,8747
λi_7	1,4770	1,8726	1,4726	1,4553	1,4479	1,4479	1,4479
λi_8	- 0,0286	- 0,4142	- 0,0242	- 0,0072	0,0000	0,0000	0,0000
Id	0,0234	0,0127	0,0436	0,0333	0,0314	0,0314	0,0314

Tabela 4.7 Autovalores do sistema de EDOs dividido em 7 sub-sistemas (programa ateste15).

I. Cálculo de C1(r,z), C2(r,z) e C3 (r,z) – Solução homogênea:

A solução de C1(r,z), C2(r,z) e C3 (r,z) é encontrada resolvendo o subsistema formado pela Equação 4-35 aplicada aos oito pontos de colocação ortogonal internos (j = 1, 2, 3, 4, 6, 7, 8, 9). Esse subsistema pode ser representado de forma genérica pela Equação 4-32 e tem a solução na forma da Equação 4-33, que expandida em 8 termos resulta em:

$$Ci(rj, z) = \xi i_{j,1} \cdot w i_1 + \xi i_{j,2} \cdot w i_2 + \xi i_{j,3} \cdot w i_3 + \xi i_{j,4} \cdot w i_4 + \xi i_{j,5} \cdot w i_5 + \xi i_{j,6} \cdot w i_6 + \xi i_{j,7} \cdot w i_7 + \xi i_{j,8} \cdot w i_8$$
(4-38)

$$wi_{\ell} = ai_{\ell} \cdot e^{\lambda i_{\ell} \cdot z}$$
(4-39)

onde os autovalores e autovetores são determinados resolvendo a Equação 4-34.

Alguns autovalores do sistema são positivos e de alto valor, podendo causar erro de *overflow* (número muito grande) durante as simulações. Para evitar esse problema foi estabelecida a seguinte estratégia:

• Para
$$\lambda i_{\ell} < 0$$
: wi _{ℓ} = ai^o _{ℓ} · e ^{$\lambda i_{\ell} \cdot z$} (4-40)

• Para
$$\lambda i_{\ell} > 0$$
: wi _{ℓ} = ai^{Lc} _{ℓ} · e ^{$\lambda i_{\ell} \cdot (z-Lc)$} (4-41)

Dessa forma, dependendo do valor de λ (positivo ou negativo) é calculada a constante de integração ai ^o ou ai ^{Lc}, onde z = Lc é o topo do reator.

Como as concentrações dos componentes não são conhecidas no início da região de escoamento desenvolvido, o cálculo das constantes de integração envolveu a aplicação adaptada do algoritmo reação-recirculação. O procedimento consiste em construir e resolver um sistema de equações algébricas formado pelas:

- Soluções de Ci(r,z) no início da região de escoamento desenvolvido (Equação 4-38 em z = 0), gerando 8 equações;
- Soluções de Ci(r,z) no topo da região de escoamento desenvolvido (Equação 4-38 em z = Lc), gerando 8 equações;
- Condições de contorno na região de entrada do reator (Equação 4-5), substituindo as integrais pelas expressões de cálculo por quadratura gaussiana, gerando assim 4 equações;
- Condições de contorno na região de saída do reator (Equação 4-6), substituindo as integrais pelas expressões de cálculo por quadratura gaussiana, gerando assim 4 equações;

A solução desse sistema de equações fornece as concentrações Ci(rj,0) e Ci(rj,Lc) e as oito constantes de integração (ai_{ℓ}^o ou ai_{ℓ}^{Lc} dependendo de λ_{ℓ}).

A análise de ordem de magnitude da solução (Equação 4-38) mostrou que dos oito termos da equação apenas dois são significativos. Os termos que podem ser desprezados são os de λ_{ℓ} elevado, onde e $^{-\lambda_{\ell}}$ tende a zero.

As simulações mostraram que o cálculo das concentrações de C1(r,z), C2(r,z) e C3 (r,z) com apenas dois termos (os de menor λ_{ℓ}) é suficiente para a obtenção de uma solução precisa (como ilustra a Tabela 4.8). Essa aproximação não é válida se for considerada uma parcela da dispersão inferior a 30 % da dispersão total. A simplificação facilita o cálculo das soluções particulares dos outros pseudocomponentes (i = 4, 5, 6, 7).

		Resultados de C1(r,z)			Resultados de C2(r,z)		
		Solução	Solução com	Erro %	Solução	Solução com	Erro %
	Ci (rj,z)	completa	$\lambda 1_7 e \lambda 1_8$		completa	$\lambda 1_7 e \lambda 1_8$	
	Cbi	0,779132	0,779406	0,035	0,143951	0,144691	0,514
0 =	Cbi	0,779132	0,779068	- 0,008	0,143951	0,143777	- 0,121
z	Cbi	0,779132	0,778718	- 0,053	0,143951	0,142834	- 0,776
em	Cbi	0,779132	0,778483	- 0,083	0,143951	0,142203	- 1,214
z) (Cei(6)	0,778598	0,778287	- 0,040	0,142516	0,141678	- 0,588
(ij,	Cei(7)	0,778245	0,778126	- 0,015	0,141568	0,141246	- 0,227
C	Cei(8)	0,778047	0,777988	- 0,008	0,141038	0,140878	- 0,114
	Cei(9)	0,777957	0,777916	- 0,005	0,140797	0,140685	- 0,079
0	Cfi(1)	0,728446	0,728446	0,000	0,050348	0,050348	0,000
L(Cfi(2)	0,728437	0,728437	0,000	0,050337	0,050336	- 0,001
	Cfi(3)	0,728433	0,728432	0,000	0,050331	0,050330	- 0,001
m Z	Cfi(4)	0,728434	0,728432	0,000	0,050333	0,050330	- 0,006
) eı	Csi	0,728438	0,728433	- 0,001	0,050339	0,050332	- 0,014
ij,z	Csi	0,728438	0,728436	0,000	0,050339	0,050335	- 0,008
Ci(I	Csi	0,728438	0,728439	0,000	0,050339	0,050339	0,000
	Csi	0,728438	0,728441	0,000	0,050339	0,050341	0,005

Tabela 4.8 Resultados da simulação de C1(r,z) e C2(r,z) com a solução completa (Equação 4-38) e considerando apenas os dois termos mais significativos (programa ateste15).

Erro = [Solução simplificada / Solução completa] * 100 – 100

Tabela 4.9 Valores das constantes de integração ai, obtidas na simulação da Tabela 4.8

(programa	ateste15)	•
-----------	-----------	---

ai_ℓ	Resultados de C1(r,z)	Resultados de C2(r,z)
ai_1 ^{Lc}	0,000002	0,000003
ai_2^{o}	0,000342	0,000921
ai ₃ ^{Lc}	0,000002	0,000002
ai_4 °	0,000296	0,000797
ai ₅ ^{Lc}	- 0,000005	- 0,000006
ai_6^{o}	- 0,000502	- 0,001356
ai7 Lc	0,039711	0,026311
ai ₈ °	2,201456	0,402263

II. Determinação de C4(r,z) - Solução homogênea e particular:

O subsistema de equações do componente $\mathbf{i} = 4$ consta de 8 EDOs não homogêneas (Equação 4-36 para cada ponto de colocação ortogonal), que pode ser representado de forma genérica pela equação:

$$\mathbf{Y}' = \frac{\mathbf{d}\mathbf{Y}}{\mathbf{d}z} = \mathbf{M}\mathbf{A} \cdot \mathbf{Y} + \mathbf{g}\mathbf{z} \tag{4-42}$$

onde gz é a função formada por [$k \cdot \beta_{1,4} \cdot Cl(r_j, z) + k \cdot \beta_{2,4} \cdot C2(r_j, z)$]

e a solução é composta de duas partes:

$\mathbf{Y} = \mathbf{Y}_{HOMOG\hat{E}NEA} + \mathbf{Y}_{PARTICULAR}$

O procedimento de solução aplica o "método dos coeficientes a determinar" e consiste em:

- ⇒ Encontrar os autovalores e autovetores da solução homogênea resolvendo a Equação 4-34 para esse subsistema (considerando somente a parte homogênea da equação).
- ⇒ Propor uma solução particular com base na forma de gz;
- \Rightarrow Verificar se $\mathbf{Y}_{\text{PARTICULAR}}$ é linearmente independente de $\mathbf{Y}_{\text{HOMOGÊNEA}}$. As soluções serão independentes se os autovalores dos termos nas duas soluções tiverem valores distintos;
- \Rightarrow Calcular os coeficientes da solução particular (bi1_{j,k} e bi2_{j,k});
- ⇒ Calcular as constantes de integração da solução homogênea (ai_{ℓ}) aplicando as condições de contorno e o algoritmo reação-recirculação.

As soluções para C1(r,z) e C2(r,z) são conhecidas nesse estágio do desenvolvimento das soluções. Adotando-se a forma simplificada dessas soluções (considerando apenas os dois termos significativos) temos:

$$C1(rj, z) = \xi 1_{j,7} \cdot w 1_7 + \xi 1_{j,8} \cdot w 1_8$$
(4-43)

$$C2(rj, z) = \xi 2_{j,7} \cdot w 2_7 + \xi 2_{j,8} \cdot w 2_8$$
(4-44)

Deste modo:

$$gz = k \cdot \beta_{1,4} \cdot \left(\xi 1_{j,7} \cdot w 1_7 + \xi 1_{j,8} \cdot w 1_8\right) + k \cdot \beta_{2,4} \cdot \left(\xi 2_{j,7} \cdot w 2_7 + \xi 2_{j,8} \cdot w 2_8\right)$$
(4-45)

com wi_{ℓ} definido pelas Equações 4-40 e 4-41, dependendo do valor de λi_{ℓ} .

Propõe-se, então, que a solução particular para i = 4 tenha a forma:

$$Y_{PARTICULAR} = bi1_{j,7} \cdot w1_7 + bi1_{j,8} \cdot w1_8 + bi2_{j,7} \cdot w2_7 + bi2_{j,8} \cdot w2_8$$
(4-46)

onde: $bi1_{j,\ell}$ e $bi2_{j,\ell}$ são os coeficientes da solução particular para i = 4.

$$Y'_{PARTICULAR} = bi1_{j,7} \cdot w1_7 \cdot \lambda 1_7 + bi1_{j,8} \cdot w1_8 \cdot \lambda 1_8 + bi2_{j,7} \cdot w2_7 \cdot \lambda 2_7 + bi2_{j,8} \cdot w2_8 \cdot \lambda 2_8$$
(4-47)

Substituindo as Equações 4-46 e 4-47 da solução particular e 4-43 e 4-44 para formar o termo de gz na equação do modelo 4-36, obtêm-se os 4 sistemas de equações algébricas que devem ser resolvidos para a determinação dos coeficientes da solução particular:

$$(\lambda 1_7 - MA4) \cdot bi1_{j,7} = \xi 1_{j,7} \cdot k \cdot \beta_{1,4}$$
 (4-48)

$$(\lambda 1_8 - MA4) \cdot bi1_{j,8} = \xi 1_{j,8} \cdot k \cdot \beta_{1,4}$$
 (4-49)

$$(\lambda 2_7 - MA4) \cdot bi2_{j,7} = \xi 2_{j,7} \cdot k \cdot \beta_{2,4}$$
 (4-50)

$$(\lambda 2_8 - MA4) \cdot bi2_{j,8} = \xi 2_{j,8} \cdot k \cdot \beta_{2,4}$$
 (4-51)

E a solução final tem a forma:

$$C4(rj, z) = \xi4_{j,1} \cdot w4_1 + \xi4_{j,2} \cdot w4_2 + \xi4_{j,3} \cdot w4_3 + \xi4_{j,4} \cdot w4_4 + \xi4_{j,5} \cdot w4_5 + \xi4_{j,6} \cdot w4_6 + \xi4_{j,7} \cdot w4_7 + \xi4_{j,8} \cdot w4_8 + b41_{j,7} \cdot w1_7 + b41_{j,8} \cdot w1_8 + b42_{j,7} \cdot w2_7 + b42_{j,8} \cdot w2_8 \quad (4-52)$$

onde wi $_{\ell}$ é definido pelas Equações 4-40 e 4-41, dependendo do valor de λi_{ℓ} .

As constantes de integração ai_{ℓ} são calculadas do mesmo modo descrito para o cálculo das constantes de integração das soluções de C1(r,z), C2(r,z) e C3(r,z). O procedimento consiste em construir um sistema de equações algébricas formado pela solução C4(r,z) (Equação 4-52) em z = 0 e em z = Lc e as equações de balanço de massa nas regiões de entrada e saída do reator (total de 24 equações algébricas). A solução desse sistema de equações fornece as concentrações C4(rj,0) e C4(rj,Lc) e as oito constantes de integração ($a4_{\ell}^{o}$ ou $a4_{\ell}^{Lc}$ dependendo de cada λ_{ℓ}).

III. Determinação de C5(r,z), C6(r,z) e C7(r,z) - Solução homogênea e particular:

O subsistema de equações de cada um dos componentes i = 5, 6, 7 consta de 8 EDOs não homogêneas (Equação 4-37 para cada ponto de colocação ortogonal), que pode ser representado de forma genérica pela equação:

$$\mathbf{Y}' = \frac{\mathbf{d}\mathbf{Y}}{\mathbf{d}z} = \mathbf{M}\mathbf{A} \cdot \mathbf{Y} + \mathbf{g}\mathbf{z} \tag{4-53}$$

onde gz é formada por: $[k \cdot (\beta_{1,i} \cdot Cl(r_j, z) + \beta_{2,i} \cdot C2(r_j, z) + \beta_{3,i} \cdot C3(r_j, z) + \beta_{4,i} \cdot C4(r_j, z))]$ e a solução é composta de duas partes: $\mathbf{Y} = \mathbf{Y}_{HOMOGÊNEA} + \mathbf{Y}_{PARTICULAR}$

O procedimento de solução das equações é o mesmo apresentado para a determinação de C4(rj,z), mas agora gz tem dois termos adicionais o que levará à determinação de um número maior de coeficientes da solução particular.

Nesse estágio de desenvolvimento da solução, já são conhecidas as soluções simplificadas de C1(rj,z) (Equação 4-43), C2(rj,z) (Equação 4-44), C3(rj,z) e C4(rj,z):

$$C3(rj, z) = \xi 3_{j,7} \cdot w 3_7 + \xi 3_{j,8} \cdot w 3_8$$

$$C4(rj, z) = \xi 4_{j,7} \cdot w 4_7 + \xi 4_{j,8} \cdot w 4_8 + b 4 1_{j,7} \cdot w 1_7 + b 4 1_{j,8} \cdot w 1_8 + b 4 2_{j,7} \cdot w 2_7 + b 4 2_{j,8} \cdot w 2_8$$

$$(4-54)$$

$$(4-55)$$

De forma que:

$$gz = k \cdot \beta_{1,i} \cdot (\xi 1_{j,7} \cdot w 1_7 + \xi 1_{j,8} \cdot w 1_8) + k \cdot \beta_{2,i} \cdot (\xi 2_{j,7} \cdot w 2_7 + \xi 2_{j,8} \cdot w 2_8) + k \cdot \beta_{3,i} \cdot (\xi 3_{j,7} \cdot w 3_7 + \xi 3_{j,8} \cdot w 3_8) + k \cdot \beta_{4,i} \cdot (\xi 4_{j,7} \cdot w 4_7 + \xi 4_{j,8} \cdot w 4_8 + b 4 1_{j,7} \cdot w 1_7 + b 4 1_{j,8} \cdot w 1_8 + b 4 2_{j,7} \cdot w 2_7 + b 4 2_{j,8} \cdot w 2_8)$$

$$(4-56)$$

com wi $_{\ell}$ definido pelas Equações 4-40 e 4-41, dependendo do valor de λi_{ℓ} .

Propõe-se, então, que a solução particular para i = 5, 6, 7 tenha a forma:

$$Y_{\text{PARTICULAR}} = bi1_{j,7} \cdot w1_7 + bi1_{j,8} \cdot w1_8 + bi2_{j,7} \cdot w2_7 + bi2_{j,8} \cdot w2_8 + bi3_{j,7} \cdot w3_7 + bi3_{j,8} \cdot w3_8 + bi4_{j,7} \cdot w4_7 + bi4_{j,8} \cdot w4_8$$
(4-57)

onde: $bi1_{j,\ell}$, $bi2_{j,\ell}$, $bi3_{j,\ell}$ e $bi4_{j,\ell}$ são os coeficientes da solução particular, calculados com o mesmo procedimento descrito na determinação de C4(rj,z): as expressões de Y_{PARTICULAR} e Y'_{PARTICULAR} são substituídas na solução geral (Equação 4-37) e obtêm-se nesse caso 8 sistemas de equações algébricas a serem resolvidos.

E a solução final tem a forma:

$$Ci(rj, z) = \xi i_{j,1} \cdot w i_1 + \xi i_{j,2} \cdot w i_2 + \xi i_{j,3} \cdot w i_3 + \xi i_{j,4} \cdot w i_4 + \xi i_{j,5} \cdot w i_5 + \xi i_{j,6} \cdot w i_6 + \xi i_{j,7} \cdot w i_7 + \xi i_{j,8} \cdot w i_8 + b i 1_{j,7} \cdot w 1_7 + b i 1_{j,8} \cdot w 1_8 + b i 2_{j,7} \cdot w 2_7 + b i 2_{j,8} \cdot w 2_8 + b i 3_{j,7} \cdot w 3_7 + b i 3_{j,8} \cdot w 3_8 + b i 4_{j,7} \cdot w 4_7 + b i 4_{j,8} \cdot w 4_8$$

$$(4-58)$$

onde wi_{ℓ} é definido pelas Equações 4-40 e 4-41, dependendo do valor de λi_{ℓ} .

É interessante observar que os autovalores e autovetores são os mesmos para os componentes i = 5, 6, 7 (ver Tabela 4.7). Isso ocorre porque esses componentes não reagem para formar produtos e a matriz MA é formada apenas por variáveis fluidodinâmicas e termos resultantes da discretização na direção radial.

As constantes de integração ai_{ℓ} são calculadas do modo já descrito para o cálculo das soluções dos outros subsistemas. O procedimento consiste em construir um sistema de equações algébricas formado pela solução Ci(rj,z) (Equação 4-58) em z = 0 e em z = Lc e as equações de balanço de massa nas regiões de entrada e saída do reator (total de 24 equações algébricas). A solução desse sistema de equações fornece as concentrações Ci(rj,0) e Ci(rj,Lc) e as oito constantes de integração (ai_{ℓ}^{0} ou ai_{ℓ}^{Lc} dependendo de λ_{ℓ}).

4.3.2 CONSIDERAÇÕES GERAIS E PROGRAMA RHA 2.0

A simulação do reator de hidroconversão com o modelo fluidodinâmico com dispersão radial e cinética de Mosby et al. (1986) foi implementada, a partir do programa em desenvolvimento ateste15, no programa RHA 1.1 (usando a linguagem Fortran 90). Dessa forma, todas as correções necessárias ao modelo base já foram consideradas. A nova versão consolidada do programa foi chamada de RHA 2.0 (RHA – Reator de Hidroconversão com Arraste). Como resultados das simulações são fornecidos para os modelos fluidodinâmicos (base e com dispersão radial):

- A fluidodinâmica no reator através dos perfis radiais de velocidade, fração volumétrica e dispersão nas fases gás e lama na região de escoamento desenvolvido
- Os perfis de concentração axial e radial para todos os pseudocomponentes no reator;
- A conversão de resíduo e a distribuição de produtos na saída do reator.

A modelagem e simulação do modelo fluidodinâmico com dispersão radial e cinética de Mosby et al. (1986) é apresentada no artigo do item 9.4.

As equações do modelo fluidodinâmico com dispersão radial discretizadas por colocação ortogonal resultaram em equações genéricas, às quais pode ser implementado qualquer modelo cinético de reações homogêneas em fase líquida ou reações que não sejam limitadas por resistência à transferência de massa entre as fases. Entretanto, o procedimento analítico baseado na determinação dos autovalores e autovetores dos sete subsistemas foi implementado de forma específica para a cinética de Mosby et al. (1986). Por isso, a implementação no programa de outra matriz cinética com estrutura diferente do modelo de Mosby requer o desenvolvimento da integração em z e a programação de todas as sub-rotinas envolvidas nesse cálculo.

4.3.3 IMPLEMENTAÇÃO DA CINÉTICA DE CRAQUEAMENTO PARA PETRÓLEO MARLIM

A cinética de craqueamento para petróleo Marlim foi proposta por Almeida (2000). Almeida realizou o ajuste do modelo cinético de craqueamento a partir do levantamento de dados experimentais. Dos diversos modelos cinéticos testados por Almeida, o modelo R (que apresentou melhor ajuste) foi selecionado e implementado no modelo fluidodinâmico com dispersão radial.

A seguir é apresentado um breve resumo do trabalho de Almeida, com as condições das corridas experimentais e principais características do modelo cinético R. Na sequência são apresentadas as equações do modelo fluidodinâmico com dispersão radial e a estratégia de resolução desse sistema de equações.

4.3.3.1 Modelo cinético de craqueamento para petróleo Marlim (Almeida, 2000)

As corridas experimentais foram realizadas por Almeida (2000) em reator batelada PARR, escala de bancada e capacidade de um litro.

Os testes foram realizados para uma carga composta por 80 % de resíduo de vácuo Marlim e 20 % de óleo decantado de FCC, com a utilização de catalisador comercial de NiMo em γ -Al₂O₃ (típico para hidrodesmetalização de resíduo). As corridas experimentais tiveram o objetivo de verificar os efeitos da temperatura, do tempo de residência e da relação catalisadoróleo (efeito catalítico) nas reações de hidroconversão, para os quais foram definidas as condições operacionais (Almeida, 2000):

- ⇒ Temperatura: Tref-15; Tref; Tref+15; Tref+30 (onde Tref é a temperatura de referência);
- \Rightarrow Relação de massa de óleo por massa de catalisador no reator: 5; 10; 20.
- ⇒ Tempo de residência da reação no patamar superior de temperatura: 0; 0,5; 1; 2; 4 horas.

Todos os testes foram realizados a 110 bar de pressão, sob agitação e com vazão constante de hidrogênio (2 Nl/min) em excesso estequiométrico. O catalisador foi preparado com granulometria de 42-100 mesh. O produto da reação foi analisado quanto aos teores de resíduo carbono micro (RCM), enxofre e vanádio e sofreu destilação para quantificação dos derivados formados. (Almeida, 2000)

Almeida (2000) ajustou diversos modelos para cinética de craqueamento, visando testar modelos propostos na literatura e procurando incluir as informações conhecidas sobre os mecanismos das reações. Os mecanismos ainda não estão bem elucidados. Entretanto, os trabalhos da literatura apresentados na revisão de literatura de Almeida (2000) evidenciam uma etapa inicial de craqueamento térmico do resíduo que, em presença de hidrogênio e catalisador adequado, seria seguida de hidrogenação e hidrogenólise dos radicais formados, gerando derivados e suprimindo a formação de coque.

O modelo cinético *R*, apresentado na Figura 4.6, foi o que apresentou melhor ajuste dos doze modelos cinéticos de craqueamento avaliados por Almeida (2000). Os componentes da matriz cinética são cortes de interesse comercial. O pseudocomponente "nafta+gás" foi ajustado de forma a fechar o balanço de massa, que apresentou pequenas diferenças devido às perdas por evaporação. As diferentes reatividades dos constituintes do resíduo foram consideradas ao dividir o resíduo em duas frações: RCM (resíduo carbono micro) e "não-RCM". O "resíduo não-RCM" é a fração de resíduo de vácuo menos o teor RCM total, o que é consistente já que os compostos precursores de coque (que geram o RCM) se concentram na fração residual.

Figura 4.6 Matriz cinética de craqueamento de Almeida (2000) com 5 pseudocomponentes i. As setas indicam as 13 reações: as tracejadas (azuis) mostram reações de craqueamento catalítico (efeito do catalisador) e as contínuas (vermelhas) de craqueamento térmico.

A cinética \mathbf{R} é formada por 13 reações de 1^a ordem, térmicas e catalíticas, ou seja, reações com "coeficientes das taxas relacionados apenas à massa de reagente ou relacionado à massa de catalisador presente" (Almeida, 2000). O modelo considera a reversibilidade da transformação de resíduo RCM em não-RCM e a possibilidade de converter o resíduo RCM a produtos. O gasóleo pode sofrer craqueamento e gerar produtos mais leves.

As constantes da taxa das 13 reações seguem a expressão de Arrhenius escrita de forma a evitar correlação entre os parâmetros e facilitar o ajuste:

$$kr = \frac{1}{60} \exp\left[\theta_r - \theta_{r+13} \cdot 10^4 \cdot \left(\frac{1}{T} - \frac{1}{Tref}\right)\right]$$
(4-59)

onde kr é a constante da taxa de cada reação (k1 a k13), em s⁻¹ para as reações térmicas ou em [kg carga / kg catalisador.s⁻¹] para as reações catalíticas; $\theta_r \in \theta_{r+13}$ são os parâmetros da equação e estão relacionados, respectivamente, ao fator pré-exponencial e energia de ativação da expressão de Arrhenius.

Os parâmetros θ foram ajustados por Almeida (2000) usando o critério dos mínimos quadrados e considerando o perfil de temperatura ao longo da corrida experimental (etapas de aquecimento e patamar de temperatura constante). Os resultados são apresentados na Tabela 4.10. Nesse modelo considerou-se que as energias de ativação das reações térmicas e catalíticas são as mesmas, resultando em 20 parâmetros ajustados. Verifica-se que as reações mais significativas são *r*1, *r*2, *r*4, *r*5 e *r*6 (não necessariamente nessa ordem) e sob temperaturas mais elevadas também *r*10, *r*11 e *r*9 (como mostrado na Figura 4.7).

No cálculo da taxa de reação, as constantes da taxa de reações catalíticas devem ser multiplicadas pela relação entre a massa de catalisador e carga, denominada rcat.

Tabela 4.10 Parâmetros da cinética **R** de Almeida (2000).

<u>Reaç</u>ão Parâmetros Parâmetros 1 θ_1 -5,6540 θ_{14} 1,1439 2 θ_2 -6,6008 θ_{15} 3,4269 3 -10,990 θ_{16} θ_3 5,6135 4 -7,2361 0,3805 θ_4 θ_{17} 5 -6,9977 θ_5 0,3759 θ_{18} 6 -6,0889 1,1762 θ_6 θ_{19} 7 -6,0410 θ_{20} $= \theta_{19}$ θ_7 8 -8,4719 θ_8 θ_{21} $= \theta_{14}$ 9 θ_9 -9,8186 θ_{22} 4,7179 10 -5,6081 θ_{23} $= \theta_{15}$ θ_{10} 11 -7,0947 θ_{11} θ_{24} $= \theta_{16}$ 12 -6,1725 θ_{12} θ_{25} $= \theta_{17}$ 13 -9,5203 θ_{13} $= \theta_{22}$ θ_{26}

Tabela 4.11 Autovalores do sistema de EDOs do modelo e cinética de Almeida (2000),

obtidos no programa RHA 2.1.

Sistema completo	Subsistema para C1, C2, C3 e C4
(40 EDOs)	(32 EDOs)
(40 EDOs) 3771,631751 3771,626502 3771,625698 3771,623955 3771,623955 -3255,581655 -3255,575882 -3255,575882 -3255,573080 -3255,573080 1405,383305 1405,381508	(32 EDOs) 3771,631751 3771,626502 3771,625698 3771,623955 -3255,575882 -3255,575882 -3255,574998 -3255,573080 1405,383305 1405,381508 1405,381233 1405,380637
$\begin{array}{c} 1405,381508\\ 1405,381233\\ 1405,380637\\ 1405,380637\\ 1405,380637\\ -605,295995\\ -605,294410\\ -605,293640\\ -605,293640\\ -605,293640\\ -395,815159\\ 395,815159\\ 395,812215\\ -395,812215\\ -395,812215\\ -395,812215\\ -114,466543\\ -114,465424\\ -114,465253\\ -114,464881\\ -114,464881\\ -114,464881\\ -144,4655\\ 1,405497\\ 1,209479\end{array}$	$\begin{array}{c} 1405,380637\\ -605,295995\\ -605,29410\\ -605,294167\\ -605,293640\\ 395,815159\\ 395,81215\\ -395,812215\\ -395,812215\\ -114,466543\\ -114,465424\\ -114,465253\\ -114,465253\\ -114,465424\\ -114,465253\\ -114,465424\\ -114,465253\\ -114,465424\\ -114,465253\\ -114,465424\\ -114,465253\\ -114,465424\\ -114,465253\\ -114,465424\\ -114,465253\\ -0,018772\\ -0,012904\\ 0,000000\\ \end{array}$
1,386246 1,386246 -0,055945 -0,018772 -0,012904 0,000000 0.000000	

4.3.3.2 Resolução das equações

O modelo fluidodinâmico com dispersão radial é representado pela Equação 4-7, que ao ser discretizada por colocação ortogonal (na direção radial) com aplicação das condições de contorno leva à Equação 4-30. Reescrevendo, então, o termo de reação da Equação 4-30, para simplificar a apresentação da cinética de Almeida obtém-se:

$$\frac{d\mathrm{Ci}(\mathbf{r}_{j},z)}{dz} = \frac{1}{\mathrm{V}_{\mathrm{L}}(\mathbf{r}_{j})} \Big[gr_{j,1} \cdot \mathrm{Ci}(\mathbf{r}_{1},z) + gr_{j,2} \cdot \mathrm{Ci}(\mathbf{r}_{2},z) + gr_{j,3} \cdot \mathrm{Ci}(\mathbf{r}_{3},z) + gr_{j,4} \cdot \mathrm{Ci}(\mathbf{r}_{4},z) + gr_{j,6} \cdot \mathrm{Ci}(\mathbf{r}_{6},z) + gr_{j,7} \cdot \mathrm{Ci}(\mathbf{r}_{7},z) + gr_{j,8} \cdot \mathrm{Ci}(\mathbf{r}_{8},z) + gr_{j,9} \cdot \mathrm{Ci}(\mathbf{r}_{9},z) + \Re i \Big]$$

$$(4-60)$$

com:
$$\Re i = \sum_{m=1}^{nc} kk_{m,i} \cdot Cm(r_j, z)$$
 (4-61)

e a condição de contorno: Ci = Coi na entrada do reator

onde: Ri é o termo de reação para o componente i; kk_{m,i} é a constante da taxa de reação.

Para:

- m = i; kk_{m,i} é a constante da taxa de reação referente à conversão de i (valor negativo);
- $\mathbf{m} \neq \mathbf{i}$; $kk_{m,i}$ é a constante da taxa de reação referente à formação de \mathbf{i} a partir de \mathbf{m} ;

ou seja, $kk_{m,i}$ é equivalente a (- α_i .k) ou ($\beta_{m,i}$.k) da Equação 4-30 quando (m = i) ou (m \neq i).

Escrevendo o termo de reação Ri para os 5 componentes da matriz reacional de Almeida (2000) apresentada na Figura 4.6 obtém-se o conjunto de equações do modelo cinético, com as constantes da taxa apresentadas na Tabela 4.12.

RCM	i = 1	$\Re 1 = \mathrm{kk}_{1,1} \cdot \mathrm{C1}$	$(\mathbf{r}_{j}, \mathbf{z}) + \mathbf{k}\mathbf{k}_{2}$	$_{1} \cdot C2(r_j, z)$) (4-62)
-----	-------	---	---	-------------------------	---------	---

RV não-RCM
$$i = 2$$
 $\Re 2 = kk_{1,2} \cdot Cl(r_j, z) + kk_{2,2} \cdot C2(r_j, z)$ (4-63)

Gasóleo	i = 3	$\Re 3 = \mathrm{kk}_{2,3} \cdot \mathrm{C2}(\mathbf{r}_{j}, \mathbf{z}) + \mathrm{kk}_{3,3} \cdot \mathrm{C3}(\mathbf{r}_{j}, \mathbf{z})$	(4-64)
D ! 1		α	

Diesel
$$i = 4$$
 $\Re 4 = kk_{2,4} \cdot C2(r_j, z) + kk_{3,4} \cdot C3(r_j, z)$ (4-65)

Nafta+gás
$$i = 5$$
 $\Re 5 = kk_{2,5} \cdot C2(r_j, z) + kk_{3,5} \cdot C3(r_j, z)$ (4-66)

Tabela 4.12 Valores de $kk_{m,i}$ obtidos na matriz reacional de Almeida (2000). Em negrito as constantes da taxa referentes à conversão do componente **i**. (ver nota 3)

	i = 1	i = 2	i = 3	i = 4	i = 5
m = 1	- (k6 + k7.rcat)	k6 + k7.rcat	0	0	0
m = 2	k9 + k13.rcat	Nota 1	k1 + k8.rcat	k2 + k10.rcat	k3 + k11.rcat
m = 3	0	0	- $(k4 + k5 + k12.rcat)$	k4 + k12.rcat	k5
m = 4	0	0	0	0	0
m = 5	0	0	0	0	0

Nota 1: $kk_{2,2} = -(k1 + k8.rcat + k2 + k10.rcat + k3 + k11.rcat + k9 + k13.rcat)$

Nota 2: k1 a k13 são obtidos para cada reação da Figura 4.6 com a Equação 4-59;

Nota 3: rcat em leito fluidizado multifásico é calculado por:

$$\operatorname{rcat} = \frac{\varepsilon_{\mathrm{sM}} \cdot \rho_{\mathrm{s}}}{\varepsilon_{\mathrm{LM}} \cdot \rho_{\mathrm{L}}}$$
(4-67)

onde $\epsilon_{sM} e \epsilon_{LM}$ são as frações volumétricas médias no leito das fases sólida e líquida.

O modelo fluidodinâmico com dispersão radial e cinética de Almeida (2000) é, então, representado pela Equação 4-60 e Equações 4-62 a 4-66 que devem ser integradas na direção axial. A integração em z foi realizada com o procedimento analítico apresentado no item 4.3.1.3 com algumas adaptações, conforme descrito a seguir.

O modelo pode ser representado de forma genérica pela Equação 4-32, para a qual determinam-se os autovalores e autovetores do sistema resolvendo a Equação 4-34. Os

autovalores do sistema completo de equações são reais (às vezes, ocorrem complexos conjugados com parte imaginária inferior a 10⁻¹²) podendo haver valores repetidos (ver Tabela 4.11). Entretanto, os autovalores do sistema formado pelas equações para C1, C2, C3 e C4 são reais e distintos (ver Tabela 4.11). Dessa forma, o sistema de equações pode ser resolvido de forma mais simples:

- Inicialmente é calculada a solução homogênea de C1(rj,z), C2(rj,z), C3(rj,z) e C4(rj,z) resolvendo o sistema de 32 EDOs homogêneas com coeficientes constantes;
- Depois se calcula: C5(rj,z) = 1.0 [C1(rj,z) + C2(rj,z) + C3(rj,z) + C4(rj,z)].

O procedimento para a determinação da solução homogênea é o mesmo descrito no item "Cálculo de C1(r,z), C2(r,z) e C3 (r,z) – Solução homogênea:" do item 4.3.1.3, mas agora com 32 equações (ao invés de 8). A solução homogênea para C1, C2, C3 e C4 tem a forma:

$$Ci(rj, z) = \sum_{\ell=1}^{32} \xi_{\ell} \cdot w_{\ell}$$
 (4-68)

com w_{ℓ} = a_{ℓ} · e^{λ_{ℓ} ·z}, definido de acordo com a estratégia das Equações 4-40 e 4-41.

As constantes de integração a_{ℓ} são calculadas do modo já descrito no item 4.3.1.3, com base no algoritmo reação-recirculação. O procedimento consiste em construir um sistema de equações algébricas formado pelas equações de:

- Solução de Ci(rj,z) no início da região de escoamento desenvolvido (Equação 4-68 em z = 0), gerando 32 equações;
- Solução de Ci(rj,z) no topo da região de escoamento desenvolvido (Equação 4-68 em z = Lc), gerando 32 equações;
- Condições de contorno na região de entrada do reator (Equação 4-5), substituindo as integrais pelas expressões de cálculo por quadratura gaussiana para C1, C2, C3 e C4, gerando assim 16 equações;
- Condições de contorno na região de saída do reator (Equação 4-6), substituindo as integrais pelas expressões de cálculo por quadratura gaussiana para C1, C2, C3 e C4, gerando assim 16 equações;

A solução desse sistema de 96 equações algébricas fornece as concentrações Ci(rj,0) e Ci(rj,Lc) para i = 1, 2, 3, 4 e as 32 constantes de integração $(a_{\ell}^{o} \text{ ou } a_{\ell}^{Lc}$ dependendo do sinal de λ_{ℓ}). Na implementação desse modelo cinético todas as concentrações são calculadas com os 32 termos, sem desprezar os termos de menor valor.

Para aferição dos resultados do programa foram realizadas comparações dos resultados de C1, C2, C3 e C4 obtidos com o modelo de Mosby et al. (1986) usando dois procedimentos:

- determinação da solução homogênea dos subsistemas para C1, C2 e C3 seguida do cálculo das soluções particular e homogênea para C4;
- cálculo da solução homogênea de C1, C2, C3 e C4 simultaneamente.

Também foram comparados os valores das taxas de reação (Figura 4.7) com resultados da Figura 6-56 de Almeida (2000). As outras comparações realizadas são apresentadas no Capítulo 5.

Figura 4.7 Variação das constantes das taxas das reações do modelo cinético de Almeida (2000) com a temperatura. Nas reações catalíticas é indicado o valor de [kr.rcat / k1].

4.3.4 CONSIDERAÇÕES FINAIS E PROGRAMA RHA 2.1

A simulação do reator de hidroconversão com o modelo fluidodinâmico com dispersão radial e cinética de Almeida (2000) foi implementada a partir do programa RHA 2.0 (onde RHA – Reator de Hidroconversão com Arraste).

RHA 2.1 é a versão final consolidada do programa, apresentada no item 9.5 (estrutura e listagens das sub-rotinas). Na programação foi utilizada a linguagem Fortran 90. O tempo de execução do programa é da ordem de 20 s em PC-Pentium 550 MHz com 64 MB de memória RAM.

Como resultados das simulações do programa RHA 2.1 são fornecidos, para os modelos fluidodinâmicos (base e com dispersão radial) com a cinética de Mosby et al (1986) e para o modelo fluidodinâmico com dispersão radial e cinética de Almeida (2000):

- A fluidodinâmica no reator através dos perfis radiais de velocidade, fração volumétrica e dispersão nas fases gás e lama na região de escoamento desenvolvido
- Os perfis de concentração axial e radial de todos os pseudocomponentes no reator;
- A conversão de resíduo e a distribuição de produtos na saída do reator.

A implementação da cinética de Almeida (2000) no programa não foi realizada de forma particular (diferente da cinética de Mosby et al., 1986). Por isso, é possível implementar facilmente outra cinética no programa que tenha 4 ou 5 pseudocomponentes reagindo entre si com reações de 1^a ordem, formando um sistema de EDOs com coeficientes constantes, desde que os autovalores desse sistema sejam reais e distintos. Como no caso do modelo de Almeida, é suficiente que as equações de 4 componentes tenham autovalores distintos. Isso ocorrerá se ao menos 3 pseudocomponentes **i** (i = 1, 2, 3) da matriz cinética forem reagentes.

4.4 RESUMO ESQUEMÁTICO

Para melhor entendimento, a Figura 4.8 mostra um resumo dos modelos apresentados, indicando os fenômenos considerados e os itens do capítulo onde é descrito cada modelo. Também é mostrada a versão do programa RHA em que foram implementados os modelos. O desenvolvimento do programa RHA foi realizado de forma a incluir novos modelos sem excluir os que já estavam implementados. Dessa forma, o programa RHA 2.1 (última versão) permite a simulação do reator com todos os modelos apresentados nesse capítulo. A Figura 4.8 indica também os artigos publicados com essa modelagem e que são apresentados no Capítulo 9 (anexos).

Figura 4.8 Resumo esquemático dos modelos apresentados nesse capítulo e implementados no programa RHA 2.1 (versão final cuja estrutura e listagens são apresentadas no item 9.5)

5 Resultados e avaliação dos modelos do reator de hidroconversão

Esse capítulo apresenta os resultados obtidos com a simulação das reações de craqueamento no reator de hidroconversão em leito fluidizado com arraste, em escala piloto, utilizando os modelos desenvolvidos e descritos no Capítulo 4: o "modelo fluidodinâmico base" e o "modelo fluidodinâmico com dispersão radial".

A simulação da fluidodinâmica fornece os perfis radiais de fração volumétrica, viscosidade efetiva e velocidade das fases gás e lama. Essas informações descrevem o comportamento do fluxo e determinam a dispersão (mistura) no reator. Com a simulação das reações de craqueamento são determinados os perfis de concentração (radial e axial) de cada componente no reator, a conversão do resíduo e a distribuição de produtos na saída do reator.

Assim como no Capítulo 4, há informações que já foram apresentadas nos artigos publicados no transcorrer do trabalho. Estes artigos são apresentados nos itens 9.2, 9.3 e 9.4 (ver Figura 4.8 para um resumo esquemático dos modelos e artigos relacionados). As informações contidas nos artigos não são necessariamente repetidas no corpo da tese, por isso é recomendável a leitura destes artigos para maior entendimento dos resultados e comparação com dados experimentais de literatura .

A modelagem do reator de hidroconversão é baseada nas equações da continuidade e conservação da quantidade de movimento médias no tempo. Essas equações são aplicáveis ao reator de hidroconversão de qualquer escala desde que as considerações adotadas sejam válidas (estado estacionário, fluxo pseudobifásico, escoamento desenvolvido, isotérmico, axissimetria, etc). O modelo também é formado pelo modelo turbulento de ordem zero e por equações constitutivas para a determinação da fração volumétrica da fase gasosa, da força de interação entre o gás e a lama e das propriedades médias do leito. Essas equações têm base empírica e foram propostas com base em dados obtidos em escala piloto, com exceção da expressão para a fração volumétrica do gás de Tarmy et al. (1984). Por isso, o modelo proposto está voltado para a simulação de reatores de hidroconversão em escala piloto.

Os reatores de hidroconversão com arraste normalmente operam com catalisadores de menor atividade e baixo custo, chamados de aditivos, conforme apresentado no item 2.5.3. Entretanto, as cinéticas de craqueamento adotadas nessa modelagem, propostas por Mosby et al. (1986) e Almeida (2000), foram obtidas empregando catalisador comercial de Ni/Mo ou Co/Mo em alumina. Portanto, neste capítulo são simulados os reatores de hidroconversão com arraste de sólidos, utilizando catalisador comercial finamente dividido. Este é um processo de hidroconversão não convencional, com fluidodinâmica típica dos leitos de arraste (tipo *slurry bubble column*) e cinética típica dos leitos expandidos (que usam catalisador comercial).

Este capítulo tem por objetivo apresentar e discutir os resultados obtidos com a simulação dos modelos propostos para o reator de hidroconversão. Inicialmente são apresentadas as condições operacionais adotadas nas simulações. Os resultados da simulação são comparados com o comportamento físico esperado e dados da literatura. São realizados testes de análise paramétrica com variáveis fluidodinâmicas e cinéticas e com as condições operacionais para determinar os parâmetros mais significativos nos resultados. Também é realizada uma comparação entre os resultados obtidos com os dois modelos fluidodinâmicos e com modelos ideais de escoamento CSTR (mistura completa) e PFR (fluxo pistonado).

5.1 CONDIÇÕES OPERACIONAIS E PROPRIEDADES

As características e condições operacionais para as simulações foram definidas a partir de dados típicos de reatores de hidroconversão (Tabela 2.7 e Tabela 2.8) e de *slurry bubble columns* (Tabela 2.9), apresentados no item 2.5.

A Tabela 2.7 e a Tabela 2.8 apresentam as condições operacionais, características de processo e desempenho (conversão e remoção de heteroátomos) dos processos de hidroconversão em leito expandido (LC-Fining e H-Oil) e com arraste (HDH, Canmet e VCC). A Tabela 2.9 apresenta um resumo das condições operacionais e parâmetros fluidodinâmicos de *slurry bubble columns*, mostrando dados obtidos em escala piloto e demonstração, reatores com e sem sólidos, unidades a frio e operando em condições similares a hidroconversão.

Os dados de entrada usados nas simulações são apresentados na Tabela 5.1. O item 9.5 mostra a listagem do arquivo com os dados de entrada do programa RHA 2.1.

1	2	3	4	5	6	7	8
	Carbonell	Item 9.2	Item 9.3	Item 9.4	Item 5.5.4	Item 5.7	Capítulo 6
	(1996)					(compara	-
	(dissertação de mestrado)	(Artigo na CES)	(artigo no ENEMP)	(artigo no HDT/HCC)	(análise pa- ramétrica)	com dados de Almeida)	
Programa	Pré RHA 1.0	RHA 1.0	RHA 1.1	RHA 2.0	RHA 2.1	RHA 2.1	RHA 2.1
Cinética	Mosby et al. (1986)	Mosby et al. (1986)	Mosby et al. (1986)	Mosby et al. (1986)	Mosby et al. (1986)	Almeida (2000)	Almeida (2000)
Lc (m)	3	3	3	3	1,7	3 a 6	3,4
Dc (m)	0,057	0,057	0,057	0,057	0,12	0,24	0,24
Lc / Dc	52,6	52,6	52,6	52,6	14,2	12,5 a 25	14,2
Nreator	1 a 4	1 a 4	1	(nota 5)	1	1	3
T (°C)	315 a 482	315 a 482	450	410 a 455	430	(nota 8)	425
P (bar)	110	110	110	110	~ 110	~ 110	~ 110
τι	0,25 a 1,5 h	0,25 a 2,0 h	~ 17 min	7 a 34 min	29,5 min	0,5 a 4 h	1,6 h
U_L (m/s)	0,002	0,002	0,002	0,002	0,00065	0,00033 a 0.0013	0,0012
U_g (m/s)	0,02	0,02	0,02	0,02	0,02	0,02	0,02
catalisador	HDM comer- cial (Mosby)	HDM comer- cial (Mosby)	HDM comer- cial (Mosby)	HDM comer- cial (Mosby)	HDM comer- cial (Mosby)	Ni/Mo em alumina	Ni/Mo em alumina
dp (µm)	100	100	100	100	100	100	100
E _{cM}	0,15	0,15	0,15	0,15	0,15	0.013 a 0.05	0,15
$0 \in (kg/m^3)$	2340	2340	2340	2340	2340	2340	2340
$\mathbf{U}_{\mathrm{L}}(\mathrm{m/s})$	0.000023	0.000023	0.000023	0.000023	0.000023	0.000023	0.000023
Carga	Resíduo	Resíduo	Resíduo	Resíduo	Resíduo	RV + OD	RV + OD
(lra/m^3)	Tabala 5.2	Tabala 5.2	6/1 03	6/1 03	662	770	770
$p_L(kg/m)$ (nota 2)			041,05	041,05	002	110	770
μ_L (Pa.s) (nota 2)	Tabela 5.3	Tabela 5.3	0,318 10 ⁻³	0,318 10 ⁻³	0,375 10 ⁻³	0,375 10 ⁻³	0,375 10 ⁻³
Co1	0,8	0,8	0,8	0,8	0,8	0,167	0,192
Co2	0,2	0,2	0,2	0,2	0,2	0,499	0,594
Co3	0,0	0,0	0,0	0,0	0,0	0,207	0,123
Co4	0,0	0,0	0,0	0,0	0,0	0,117	0,091
Co5	0,0	0,0	0,0	0,0	0,0	0,010	0,000
	0,0	0,0	0,0	0,0	0,0		
(note 6)	0,0	0,0	0,0	0,0	0,0	 (note 4)	(nota 3)
	(11018 /)	(11018 7)	(100a /)	(11018 7)	(100a /)		(11018 5)
UDS.			v ariação de		v ariação de	Oleo /cat	
			+/- 20%		+/- 20%	chuc J c 20	

Tabela 5.1 Condições operacionais e características do reator de hidroconversão simulado (nota 1)

Notas da Tabela 5.1:

1. Reator fluidizado trifásico com arraste, tipo *slurry bubble column*, em regime homogêneo de bolhas.

2. $\rho_L e \mu_L$ são as propriedades do líquido nas condições de hidroconversão (T e P) (ver Tabela 5.3).

- 4. Composição do líquido no tempo zero de reação, que considera uma parte do craqueamento ocorrida na etapa de pré-aquecimento até 415 °C (Almeida, 2000). Assim, os resultados da simulação no patamar de temperatura da reação podem ser comparados aos resultados experimentais de Almeida.
- 5. Resultados com τ_L ~17 min foram obtidos com a simulação de 1 reator.
- 6. Concentração de cada pseudocomponente na entrada do reator. A cinética de Mosby et al. (1986) considera o óleo dividido em 7 pseudocomponentes (ver item 4.2.1) e a cinética de Almeida (2000) em 5 pseudocomponentes (ver item 4.3.3.1).
- 7. Considera-se que o resíduo alimentado ao reator é composto de 80 % de resíduo "difícil de craquear" (Co1) e 20 % de resíduo "fácil de craquear" (Co2), baseado em dados de Beaton e Bertolacini (1991).
- 8. Faixa de temperatura em torno da temperatura de referência Tref: de Tref-15 a Tref+30.

As simulações consideraram um reator cilíndrico em escala piloto, operando com severidade típica do processo de leito expandido (P ~110 bar, T ~ 410 a 450 °C, catalisador comercial típico para HDM em leito fixo) e variáveis fluidodinâmicas típicas de *slurry bubble columns* (U_L, U_g, dp, ε_{sM} , U_s). Para simulação das reações de craqueamento foram considerados dois modelos cinéticos: de Mosby et al. (1986) e de Almeida (2000).

As simulações e estudos foram realizados à medida que os modelos foram sendo implementados e, por isso, os artigos apresentam resultados obtidos com diferentes versões do programa (como indicado na Tabela 5.1). A última versão, RHA 2.1 apresentada no item 9.5, possibilita a simulação com todos os modelos desenvolvidos.

As propriedades do líquido e do gás nas condições de operação foram obtidas com o uso do simulador comercial Hysim[®]. Considera-se a fase gás formada somente por hidrogênio, hipótese justificada pelo grande excesso de H₂ e pequena quantidade de hidrocarbonetos gasosos formados nas reações. As propriedades do hidrogênio nas condições de hidroconversão e nas CNTP são mostradas na Tabela 5.2.

Tabela 5.2 Propriedades do hidrogênio obtidas no simulador comercial Hysim[®].

	T, °C	P, bar	ρ, kg/m ³	μ, kg/m.s
H ₂ nas	400	110	3,91	0,0171 10 ⁻³
condições da	425	110	3,78	0,0175 10 ⁻³
hidroconversão	450	110	3,65	0,0179 10 ⁻³
H ₂ nas CNTP	0	1	0,09	0,0081 10 ⁻³

A fase líquida é formada pela carga (resíduo de vácuo) e produtos das reações, que foram divididos em pseudocomponentes de acordo com a reatividade e/ou ponto de ebulição das frações (conforme definido pelo modelo cinético usado). As propriedades dos pseudocomponentes nas condições operacionais foram obtidas usando o simulador de óleos do Hysim[®], a partir das curvas de destilação ASTM de cada fração, e são apresentadas na Tabela 5.3.

Fração	T. °C	P. bar	σ. N/m	o. kg/m^3	u, kg/m.s
	-, -	_ , =	0,10,11	P , n ₈ , m	H ,
Resíduo	400	110	10,38 10-3	682,35	0,450 10-3
	425	110	9,16 10 ⁻³	662,00	0,375 10 ⁻³
	450	110	8,00 10 ⁻³	641,03	0,318 10 ⁻³
Gasóleo	425	110	8,87 10-3	636,16	0,060 10 ⁻³
Diesel	425	110	2,58 10-3	575,10	0,050 10-3

Tabela 5.3 Propriedades do resíduo, gasóleo, diesel nas condições operacionais da hidroconversão, obtidas em simulador comercial (Hysim[®]).

5.2 RESULTADOS DA SIMULAÇÃO DA FLUIDODINÂMICA

A simulação da fluidodinâmica fornece os perfis radiais de fração volumétrica [ϵ_g (r) e ϵ_{sl} (r)], viscosidade efetiva [μ_g^{eff} (r) e μ_{sl}^{eff} (r)] e velocidade axial local [V_g (r) e V_{sl} (r)] das fases gás e lama. Essas informações descrevem o comportamento do fluxo e determinam a dispersão (mistura) no reator de hidroconversão com arraste (*slurry bubble column*).

Os resultados da simulação da fluidodinâmica do reator são apresentados e discutidos por Carbonell (1996). Os resultados mais importantes são mostrados no artigo do item 9.2 (Carbonell e Guirardello, 1997). Esses resultados foram obtidos com os dados apresentados, respectivamente, nas colunas 2 e 3 da Tabela 5.1.

Na literatura consultada não foram encontrados dados experimentais das variáveis fluidodinâmicas $V_L(r)$, $V_g(r)$, $\mu_L^T(r)$ e $\varepsilon_g(r)$ obtidos nas condições de hidroconversão que permitissem a validação do modelo fluidodinâmico proposto. Os resultados das simulações foram

então comparados a dados de literatura para o sistema ar-água, onde foi verificado se as variáveis apresentam o comportamento físico esperado.

Foi realizada uma análise paramétrica visando avaliar a influência de parâmetros fluidodinâmicos e cinéticos, condições operacionais, dimensões do reator e propriedades das fases óleo e gás nos resultados da simulação do reator. Para estudo do comportamento da fluidodinâmica do reator foi selecionada a variável V_L (r = 0), velocidade axial do líquido no centro do reator (valor máximo dessa variável). Esse estudo é apresentado no artigo do item 9.3.

A seguir é apresentado um resumo dos principais resultados da simulação da fluidodinâmica. Não são reapresentados todos os resultados discutidos em Carbonell (1996) e nos artigos dos itens 9.2 e 9.3.

5.2.1 Fração volumétrica do gás e da lama, ϵ_{g} e ϵ_{sl}

Nas simulações realizadas para o artigo do item 9.2 foram obtidos $\varepsilon_{gM} = 0,17$ e $\varepsilon_{sIM} = 0,83$ (fração volumétrica média de cada fase no reator). O valor de $\varepsilon_{sM} = 0,15$ foi fornecido como dado de entrada, sendo que $\varepsilon_{LM} = 0,68$. Como é considerada uma distribuição parabólica da fração volumétrica de gás, ε_g (r) resulta em uma concentração maior de gás no centro do reator e menor próximo às paredes, como mostrado na Figura 5.1.

Figura 5.1 Perfil radial da fração volumétrica do gás e da lama no reator.

5.2.2 VISCOSIDADE EFETIVA DA LAMA, μ_{sl}^{eff}

A viscosidade efetiva da lama é a soma de sua viscosidade laminar μ_{sl} com a viscosidade turbulenta do líquido μ_{sl}^{T} (calculada com o modelo turbulento):

$$\mu_{\rm sl}^{\rm eff} = \mu_{\rm sl} + \mu_{\rm L}^{\rm T} \tag{5-1}$$

O perfil radial de viscosidade efetiva da lama, apresentado na Figura 5 do item 9.2, mostra um valor máximo próximo a r/Rc ~ 0,7 e a partir desse ponto um perfil decrescente até a parede do reator. Próximo à parede há uma fina camada de fluxo laminar. Desta forma, quando $r \rightarrow Rc$; $\mu_L^T \rightarrow 0$ e $\mu_{sl}^{eff} \rightarrow \mu_{sl}$.

O coeficiente de dispersão radial do líquido Dr é obtido pela expressão: Dr = $\mu_L^{eff} / \rho_L e$ apresenta a forma do perfil radial de μ_{sl}^{eff} mostrado na Figura 5 do item 9.2.

No item 5.5.4 é analisada a influência das condições operacionais, das dimensões do reator e da massa específica do líquido em μ_{sl}^{eff} .

5.2.3 VELOCIDADE AXIAL DA LAMA, DO LÍQUIDO E DO SÓLIDO, V_{SL} , V_L , V_s

O perfil radial de velocidade axial da lama $V_{sl}(r)$ é apresentado na Figura 4 do item 9.2 e mostra a estrutura de recirculação encontrada nas colunas de bolhas. O fluxo de lama é ascendente na região central e descendente próximo às paredes do reator.

A lama é uma fase pseudo-homogênea formada pelo óleo e catalisador. Por isso, a velocidade axial calculada para a lama é igual a do líquido e do sólido, que circulam juntos no reator: $V_{sl} = V_L = V_s$.

A estrutura de recirculação (discutida no item 2.5.4.2) é causada pelo escoamento das bolhas, que provoca a formação de regiões com diferentes densidades e velocidades. O ponto onde a velocidade axial é nula, mostrado pela linha pontilhada em r/Rc ~ 0,66, é chamado de ponto de inversão de fluxo. As medições experimentais pioneiras de Hills em 1974 mostram o ponto de inversão de fluxo em r/Rc ~ 0,7 (Dudukovic e Devanathan, 1993).

A Figura 6 do item 9.2 apresenta o perfil de velocidade axial da lama V_{sl} (r) simulando a fluidodinâmica com as propriedades do resíduo, do gasóleo ou do diesel para a fase líquida. Observa-se que essa diferença nas propriedades do líquido não causa variação significativa na fluidodinâmica do reator simulado. Esse resultado e a pequena formação de gás nas reações
mostram que é consistente a premissa adotada (ver item 4.1) de realizar as simulações em duas etapas, iniciando pelo cálculo das variáveis fluidodinâmicas e depois simulando as reações de craqueamento.

Carbonell (1996) apresenta uma comparação dos resultados simulados para ar e água em condições ambiente, mostrando boa concordância com os dados experimentais de velocidade axial do líquido V_L (r) de Chen et al. (1995).

5.2.4 VELOCIDADE AXIAL DO GÁS, Vg

A fase gás não é bem representada pelo modelo fluidodinâmico, pois o perfil calculado de velocidade axial da fase gás V_g (r) não satisfaz o balanço de massa da fase gás. Carbonell (1996) justificou esse resultado em função das expressões de base empírica empregadas para o cálculo da fração volumétrica de gás, da força de arraste gás-líquido e das viscosidades turbulentas do gás e do líquido. Como o perfil de velocidade do gás não participa da formulação da modelagem das reações de craqueamento no reator e não influencia significativamente o perfil de velocidades da fase líquida optou-se por não interferir no modelo da fase gás. Essa questão deverá ser revista em trabalhos futuros, quando estejam disponíveis dados experimentais que permitam o teste e ajuste das correlações utilizadas.

5.2.5 ANÁLISE PARAMÉTRICA

A análise paramétrica consistiu na variação dos valores dos parâmetros selecionados em mais e menos 20 %, individualmente, e a verificação dos resultados de V_L (r=0) obtidos. Foram considerados quatro grupos de parâmetros:

- Parâmetros fluidodinâmicos e cinéticos das equações do modelo: ε_g (r=0), μ_L^T (r=0), Cw, μ_g^T (r=0), E e ko. Cw é a constante da expressão para cálculo da força de arraste entre o gás e o líquido. E e ko são as constantes da taxa de reação da cinética de Mosby et al. (1986);
- 2. Condições operacionais: U_g , U_L , T, P, ε_{sM} , U_s ;
- 3. Dimensões do reator (com geometria cilíndrica): Dc, Lc;
- 4. Propriedades das fases óleo e gás: Co1/Co2, ρ_L , μ_L , ρ_g , μ_g .

Os gráficos com os resultados das simulações e a discussão são apresentados no artigo do item 9.3. Nessas simulações foram utilizados dados da coluna 4 da Tabela 5.1. Resumindo o estudo pode-se concluir que (ver Figura 2 do item 9.3):

- Os parâmetros de maior influência na fluidodinâmica do reator são a fração volumétrica do gás (ε_g) e a viscosidade turbulenta do líquido (μ_L^T). Essas variáveis devem ser calculadas com equações que representem bem o escoamento nas condições de hidroconversão para que o modelo seja consistente. ε_{gM} é calculado com a expressão de Tarmy et al. (1984) e está bem representado. O perfil parabólico de ε_g e a expressão para determinação de μ_L^T foram propostas com dados para o sistema ar água em condições ambiente e precisam ser validadas (ou ajustadas) para as condições de hidroconversão.
- As variáveis de processo mais significativas na fluidodinâmica são: o diâmetro do reator (Dc) e a velocidade superficial de gás (Ug). O aumento de uma dessas variáveis leva ao aumento de V_L (r=0), tendência que está consistente com os trabalhos experimentais publicados na literatura. Entretanto, a variação de V_L com Dc nas simulações é mais intensa do que mostrado na literatura para o sistema ar-água. Esse comportamento é atribuído à utilização de um modelo turbulento de ordem zero para determinação da viscosidade turbulenta do líquido (μ_L^T) . Segundo Kumar et al. (1994), que estudaram a influência da ampliação de escala na recirculação, a maioria dos modelos turbulentos de 1^a ordem não deve ser usado para *scale-up* de colunas de bolhas. Portanto, o modelo fluidodinâmico precisa ser revisto antes que possa ser utilizado na ampliação de escala do reator de hidroconversão.

5.3 RESULTADOS DO MODELO FLUIDODINÂMICO BASE E CINÉTICA DE MOSBY

O "modelo fluidodinâmico base" é formado pelas equações que representam a fluidodinâmica do leito (cujos resultados foram apresentado no item 5.2), pelas equações de balanço de massa no reator considerando o fenômeno da convecção na direção axial e pela cinética de craqueamento (ver Figura 4.8 para um resumo esquemático dos modelos).

Neste item serão consideradas as simulações utilizando a cinética de Mosby et al. (1986), que é formada por 7 pseudocomponentes: resíduo "difícil de craquear" (i = 1) e "fácil de

craquear" (i=2), gasóleo alimentação (i=3), gasóleo formado na reação (i=4), diesel (i=5), nafta (i=6) e gás (i=7).

A simulação das reações de craqueamento com o modelo fluidodinâmico base fornece os perfis de concentração (radial e axial) de cada pseudocomponente no reator [Ci (r,z)], a conversão do resíduo [Xi e X resíduo] e a distribuição de produtos na saída do reator [Csi]. X resíduo é a conversão de resíduo definida pela Equação 5-3 para o modelo cinético de Mosby et al. (1986) (ver Tabela 5.4).

Os resultados da simulação com o modelo fluidodinâmico base foram apresentados inicialmente em Carbonell (1996). Os principais resultados são mostrados no artigo do item 9.2 (Carbonell e Guirardello, 1997). Após a publicação desse artigo foi identificado um pequeno erro nas equações do modelo que resultou na publicação da *Erratum*, também apresentada no item 9.2 (Carbonell e Guirardello, 1998b). Essa correção alterou pouco os resultados das simulações. Somente ficou prejudicada a comparação dos resultados deste modelo com o modelo ideal CSTR, questão que é discutida no item 5.4.

No artigo do item 9.3 (Carbonell e Guirardello, 1998a) também é apresentada a análise paramétrica da simulação das reações de craqueamento no reator, utilizando o modelo fluidodinâmico base.

Esse item traz um resumo dos principais resultados da simulação com o modelo fluidodinâmico base. Não são reapresentados todos os resultados discutidos em Carbonell (1996) e nos artigos dos itens 9.2 e 9.3.

5.3.1 CONVERSÃO E DISTRIBUIÇÃO DE PRODUTOS

A Tabela 5.4 mostra as concentrações de cada pseudocomponente na entrada (Coi) e na saída (Csi) do reator de hidroconversão simulado com os dados listados na Tabela 5.1 (coluna 3), a 425 °C. Verifica-se que os 22,69 % de resíduo convertido nessas condições produzem 11,35% de gasóleo, 7,95 % de diesel, 2,29 % de nafta e 1,09 % de gases. Os resultados foram obtidos com o modelo fluidodinâmico base simulado no programa RHA 2.1. Essa conversão é bastante inferior à dos processos de hidroconversão discutidos no item 2.5, porque foi simulada com um tempo de residência bastante baixo, de aproximadamente 17 min, em somente 1 reator.

Tabela 5.4 Conversão e distribuição dos produtos na saída do reator. Simulação realizada com o programa RHA 2.1 e modelo fluidodinâmico base, usando dados da Tabela 5.1 (coluna 3) a 425 °C, τ_L=17 min e Nreator=1.

i	pseudocomponente	Coi	Csi	Xi
		fração mássica	fração mássica	% peso
1	resíduo "difícil de craquear"	0,8	0,7114	11,08 (nota 1)
2	resíduo "fácil de craquear"	0,2	0,0617	69,15 (nota 1)
3	gasóleo alimentação	0,0	0,0000	0,00 (nota 1)
4	gasóleo produzido na reação	0,0	0,1135	
5	diesel	0,0	0,0795	
6	nafta	0,0	0,0229	
7	gases	0,0	0,0109	
$\Sigma \mathrm{Ci}$		1,0	1,0000	X resíduo $= 22,69$
				(nota 2)

Notas da Tabela 5.4:

1. A conversão de cada reagente é calculada por:
$$Xi = \frac{Coi - Csi}{Coi}$$
 (5-2)

2. A conversão do resíduo com a cinética de Mosby et al. (1986) é calculada por:

$$Xresíduo = \frac{Col - Csl + Co2 - Cs2 + Co3 - Cs3}{Col + Co2 + Co3}$$
(5-3)

A unidade de hidroconversão LC-Fining em Texas City processa 60000 bpd em 3 ramais de 3 reatores em série, onde cada reator tem 3,9 m de diâmetro (Dc) e aproximadamente 25 m (Lc) de altura (Fan, 1989). O tempo de residência médio em cada reator foi estimado em ~1,5 h adotando-se as seguintes considerações:

- Fração volumétrica de líquido no reator ε_{LM} ~ 0,7;
- Volume interno do reator calculado com as dimensões Lc e Dc indicadas, sem considerar a
 presença do tubo central interno de recirculação (pode ser desprezado frente ao volume do
 reator) e a região do distribuidor no fundo do reator;
- As reações ocorrem em todo o volume do reator, não diferenciando a região sem catalisador entre o nível superior do leito expandido e a saída de líquido e gás pelo topo do reator.

Para verificar as conversões obtidas por simulação em condições mais próximas às de uma unidade industrial, foi realizada uma simulação nas condições típicas de temperatura, com tempo de residência de líquido de 1,5 h (por reator) e com o número de reatores em série (Nreator=3) da unidade LC-Fining. A entrada de dados para a simulação é mostrada na coluna 3 da Tabela 5.1 com as seguintes alterações: T = 425 °C; Nreator = 3; $U_L = 0,00065$ m/s; Lc = 5,2 m e Dc = 0,12 m. O diâmetro do reator simulado foi alterado para evitar que a relação Lc/Dc fique excessivamente elevada. Os resultados foram obtidos com o modelo fluidodinâmico base, simulado no programa RHA 2.1, e são apresentados na Tabela 5.5.

Tabela 5.5 Conversão de resíduo a 425 °C e Nreator = 3 (obtido com RHA 2.1, nota 1)

	Saída do 1° reator	Saída do 2° reator	Saída do 3° reator
X resíduo acumulado	50,3 % p	70,9 % p	82,6 % p (nota 2)
τ_L acumulado	1,5 h	3,0 h	4,5 h

Notas:

- 1. Simulação realizada com modelo fluidodinâmico base e dados de entrada: coluna 3 da Tabela 5.1 com T = 425 °C; Nreator = 3; $U_L = 0,00065$ m/s; Lc = 5,2 m e Dc = 0,12 m.
- 2. Os 82,6 % de resíduo convertido geram em torno de 28,1 % de gasóleo, 33,7 % de diesel, 14,0 % de nafta e 6,8 % de gases.

A comparação dos resultados da Tabela 5.5 com os dados típicos de conversão de unidades comerciais de hidroconversão em leito expandido, apresentados na Tabela 2.7, mostra que a simulação fornece resultados da ordem de magnitude esperada. O processo LC-Fining apresenta conversões na faixa de 40 a 92 %, sendo que com um reator de hidroconversão pode-se atingir conversões de até 65 %. Para conversões de 65 a 85 % são necessários 2 ou 3 reatores em série (Reynolds et al., 2002).

5.3.2 PERFIL DE CONCENTRAÇÕES, CI (r,z)

O perfil das concentrações de resíduo na entrada (z = 0) e na saída (z = Lc) da região de escoamento desenvolvido é mostrado na Figura 5.2. Esses resultados foram obtidos com a simulação do modelo fluidodinâmico base e as condições operacionais indicadas na coluna 2 da Tabela 5.1. C1+C2 é a soma das concentrações do resíduo "difícil de craquear" e resíduo "fácil de craquear", conforme definido na cinética de Mosby et al. (1986). Os símbolos mostram os pontos calculados e as linhas indicam a tendência dos perfis, visando facilitar a visualização. A linha pontilhada mostra o ponto de inversão de fluxo, onde $V_L = 0$. Como esse modelo somente considera o fenômeno da convecção axial, o ponto de inversão de fluxo se comporta como uma

"parede" que não permite a transferência de massa entre as regiões de fluxo ascendente e descendente.

Para melhor compreensão dos perfis mostrados na Figura 5.2 recomenda-se consultar a Figura 4.3 que apresenta o desenho esquemático do reator com a nomenclatura das concentrações e a Figura 4.4 que mostra as etapas de cálculo do algoritmo reação-recirculação.

A carga do reator é composta somente por resíduo, de forma que Co1 + Co2 = 1,0. A concentração de resíduo no início da região fluxo ascendente (z = 0) é igual a Cb1 + Cb2 (ver Figura 5.2). O resíduo reage ao longo do reator e apresenta o perfil de concentrações igual a Cf1 + Cf2 no topo da região de escoamento desenvolvido (z = Lc). A conversão é pequena nesse trecho, mostrando-se mais acentuada próximo à região de inversão de fluxo. No ponto de inversão de fluxo, V_L = 0 e o tempo de residência tende para infinito, de modo que nesse ponto todo o resíduo tende a ser convertido.

Figura 5.2 Concentração de resíduo em fração mássica, na entrada (z = 0) e saída (z = Lc) da região de escoamento desenvolvido (ver Figura 4.3), com modelo fluidodinâmico base. A linha pontilhada indica o ponto onde ocorre a inversão do fluxo no reator ($V_L = 0$ em r/Rc = 0,67).

Na região de fluxo descendente a concentração inicial (z = Lc) é igual a Cs1 + Cs2 (ver Figura 5.2), enquanto que o perfil de concentrações final é igual a Ce1 + Ce2 (z = 0). Nesta

região o perfil de concentrações é mais acentuado próximo ao ponto de inversão de fluxo e também próximo à parede, pois a condição de contorno é de $V_L = 0$ na parede.

O perfil de concentração de um dos produtos, o diesel, é apresentado em Carbonell (1996) e mostra comportamento compatível com o da Figura 5.2. Como o diesel é formado ao longo do reator, sua concentração tende a um valor máximo no ponto de inversão de fluxo e próximo à parede do reator (onde $V_L = 0$). Esse comportamento também é observado para a nafta e o gás. O gasóleo apresenta perfis distintos, pois é produzido no reator mas também sofre craqueamento gerando produtos mais leves. Dessa forma, quando $V_L \rightarrow 0$ o gasóleo tende a ser completamente convertido.

5.3.3 INFLUÊNCIA DA TEMPERATURA NAS REAÇÕES DE CRAQUEAMENTO

A Figura 7 do item 9.2 mostra as concentrações dos pseudocomponentes na saída do reator (Csi) em função da temperatura de reação. Esses resultados foram obtidos com o modelo fluidodinâmico base, usando os dados de entrada da coluna 3 da Tabela 5.1 e Nreator = 4 ($\tau_L = 17$ min em cada reator). O aumento da temperatura leva a um acréscimo na conversão de resíduo e geração de diesel, nafta e gás. O gasóleo apresenta comportamento distinto. As simulações não avaliaram a formação de coque no reator. Considera-se que a pressão parcial de hidrogênio é suficiente para suprimir a formação de coque em todas as condições simuladas nesta figura.

Esse gráfico apresenta comportamento similar ao dos resultados de Mosby et al. (1986) na simulação dos reatores em leito expandido da unidade LC-Fining de Texas City. Essas simulações foram realizadas com o mesmo modelo cinético (de Mosby et al.) e mesma faixa de temperatura, porém com diferentes tempos de residência do líquido, características do reator e condições operacionais.

5.3.4 ANÁLISE PARAMÉTRICA

Conforme já resumido no item 5.2, a análise paramétrica consistiu na variação individual em +/- 20 % de dezenove parâmetros selecionados. Estes foram divididos em quatro grupos: parâmetros fluidodinâmicos e cinéticos das equações do modelo; condições operacionais; dimensões do reator (com geometria cilíndrica) e propriedades das fases óleo e gás. As simulações foram realizadas com os dados da coluna 4 da Tabela 5.1.

Para avaliar a influência desses parâmetros na simulação das reações de craqueamento foi selecionada a conversão de resíduo "Xresíduo" (considerando o resíduo "difícil de craquear" e o "fácil de craquear"). Visando identificar os parâmetros que têm influência na extensão das reações influenciando diretamente a mistura no reator ou através da variação no tempo de residência do líquido (τ_L), também foram acompanhadas as variações de τ_L . O estudo completo, com gráfico dos resultados e discussões, é apresentado no artigo do item 9.3. Resumindo esse estudo pode-se concluir que (ver Figura 2 do item 9.3):

- Os parâmetros das equações com maior influência são as constantes da taxa de reação ko e E;
- Quanto às variáveis de processo, têm influência mais significativa: a temperatura (variável mais sensível) e o tempo de residência do líquido. A variação da conversão e distribuição de produtos com o tempo de residência do líquido é mostrado na Figura 8 do item 9.2. A velocidade superficial do líquido (UL) e a altura do reator (Lc) influenciam significativamente as reações pela modificação do tempo de residência do líquido no reator.
- A relação Co1/Co2, razão entre as frações de resíduo "difícil" e "fácil de craquear", também tem influência significativa na conversão, porém com menor intensidade. Essa relação é um parâmetro que foi ajustado no modelo cinético de Mosby et al. (1986) e que, posteriormente, durante as simulações do programa RHA foi associada à relação [asfaltenos e resinas] / [óleo] na carga do reator. A analogia tem significado físico já que asfaltenos e resinas são a fração mais refratária da carga, mas não se pode afirmar que Co1 seja a fração de asfaltenos e resinas da carga. De qualquer forma, aumentando a fração de resíduo "difícil de craquear" observa-se uma redução na conversão e um acréscimo na produção de frações mais leves (principalmente gás), como mostrado na Figura 5 do item 9.3.

5.4 COMPARAÇÃO ENTRE ARRANJOS DE REATORES CSTR E PFR E MODELO FLUIDODINÂMICO BASE

Nos reatores de hidroconversão em leito fluidizado ocorre intensa mistura resultante do escoamento das bolhas e do líquido e da interação entre as fases. Dessa forma, com a simulação do reator espera-se obter conversões de resíduo típicas de reatores com elevado grau de mistura, ou seja, próximas e um pouco superiores às do reator de mistura perfeita CSTR. Após a

implementação da correção no modelo fluidodinâmico base (ver itens 4.2 e 9.2) verificou-se que as conversões de resíduo obtidas por simulação sempre resultavam em valores um pouco inferiores aos obtidos com o modelo CSTR. Para avaliar o modelo fluidodinâmico base e identificar a razão desses resultados foi realizado um estudo comparativo com esquemas de reatores ideais.

No modelo fluidodinâmico base, os efeitos de dispersão e de convecção na direção radial são desconsiderados. Dessa forma, no ponto de inversão de fluxo (onde $V_L = 0$) há uma descontinuidade, que se comporta como uma "parede" impedindo a transferência de massa entre as regiões de fluxo ascendente e descendente. Assim, o reator pode ser representado pelo esquema da Figura 5.3 (mostra metade do reator).

Na simulação das reações de craqueamento com o modelo fluidodinâmico base, as equações do modelo são resolvidas nas regiões de fluxo ascendente e descendente, após o cálculo das variáveis fluidodinâmicas, com o uso do algoritmo reação-recirculação descrito no item 4.2.2.

O estudo consistiu em utilizar os modelos ideais CSTR e PFR para o cálculo das reações de craqueamento nas regiões de fluxo ascendente e descendente do reator, como mostrado na Figura 5.3, comparando os resultados obtidos com os do modelo fluidodinâmico base. Integrando os perfis calculados com a modelagem da fluidodinâmica são obtidas as variáveis em cada uma das regiões: velocidade superficial de líquido $(U_L^A e U_L^D)$, fração volumétrica média de líquido $(\epsilon_{LM}^A e \epsilon_{LM}^D)$, tempo de residência do líquido $(\tau_L^A e \tau_L^D)$ e vazão de líquido $(Q_L^A e Q_L^D)$.

Figura 5.3 Desenho esquemático de metade do reator mostrando as regiões de fluxo ascendente "A" e descendente "D" da região de escoamento desenvolvido.

O equacionamento dos modelos ideais considerando o esquema da Figura 5.3 levou às equações apresentadas na Tabela 5.6.

Tabela 5.6 Equações para simulação do reator com modelos ideais CSTR e PFR e esquemas de reatores ideais conforme mostrado na Figura 5.3 (nota 1).

	1 reator ideal	Esquema de reatores ideais	
		representados na Figura 5.3	
CSTR	$Csi = \frac{Coi}{1 + k \cdot \tau_L} $ (5-4) $Csi = \frac{Coi \cdot Q_L}{(5-5)}$	$Csi = \frac{Coi \cdot Q_{L}}{Q_{L}^{A} \cdot \left(l + k \cdot \tau_{L}^{A}\right) - \frac{Q_{L}^{D}}{\left(l + k \cdot \tau_{L}^{D}\right)}} (5-6)$	
	$Q_{L} + k \cdot \left(Q_{L}^{A} \cdot \tau_{L}^{A} + Q_{L}^{D} \cdot \tau_{L}^{D}\right)$	"Esquema CSTR": considera-se que há un reator CSTR em cada uma das regiões d fluxo (ascendente e descendente).	
PFR	$Csi = Coi \cdot e^{-k \cdot \tau_L} $ (5-7)	$Csi = \frac{Coi \cdot Q_L}{O^A \cdot q^{k \cdot \tau_L^A} \cdot O^D \cdot q^{-k \cdot \tau_L^D}} (5-9)$	
	$Csi = Coi \cdot exp\left(\frac{-k \cdot \left(Q_{L}^{A} \cdot \tau_{L}^{A} + Q_{L}^{D} \cdot \tau_{L}^{D}\right)}{Q_{L}}\right)$ (5-8)	"Esquema PFR": considera-se que há um reator PFR em cada uma das regiões de fluxo (ascendente e descendente).	
PFR com	$Csi = \frac{Coi \cdot Q_{L}}{Q_{L} + k \cdot (Q_{L}^{A} \cdot \tau_{L}^{A} + Q_{L}^{D} \cdot \tau_{L}^{D}) + \phi 1}$	$Csi = \frac{Coi \cdot Q_{L}}{Q_{L} + k \cdot (Q_{L}^{A} \cdot \tau_{L}^{A} + Q_{L}^{D} \cdot \tau_{L}^{D}) + \phi 2}$	
aproxi- mação (nota 2)	$\phi 1 = \frac{k^2}{2} \frac{\left(Q_L^A \cdot \tau_L^A + Q_L^D \cdot \tau_L^D \right)^2}{Q_L} (5-10)$	$\phi 2 = \frac{k^2}{2} \left(Q_L^A \cdot (\tau_L^A)^2 - Q_L^D \cdot (\tau_L^D)^2 \right) (5-11)$	

Notas da Tabela 5.6:

1. Nessas equações:
$$Q_L = Q_L^A - Q_L^D$$
 (5-12)

$$\tau_{\rm L}^{\rm A} = \frac{\varepsilon_{\rm LM}^{\rm A} \cdot \rm Volume^{\rm A}}{Q_{\rm L}^{\rm A}} \quad e \qquad \tau_{\rm L}^{\rm D} = \frac{\varepsilon_{\rm LM}^{\rm D} \cdot \rm Volume^{\rm D}}{Q_{\rm L}^{\rm D}} \tag{5-13}$$

2. Para valores de k. $\tau_L \le 0,1$ são válidas as aproximações: e^{k. τ_L} = 1 + k · τ_L + $\frac{k^2 \cdot \tau_L^2}{2}$ (5-14)

$$e^{-k.\tau_L} = 1 - k \cdot \tau_L + \frac{k^2 \cdot \tau_L^2}{2}$$
 (5-15)

As equações para o modelo PFR com aproximação não foram utilizadas nos cálculos.

Comparando analiticamente as equações dos modelos apresentados na Tabela 5.6 verifica-se que a conversão obtida com um reator:

- PFR será sempre maior do que com um reator CSTR: X PFR > X CSTR;
- CSTR será sempre maior do que com o esquema de reatores CSTR: X CSTR > X Esquema CSTR;
- PFR será sempre maior do que com o esquema de reatores PFR: X PFR > X Esquema PFR;
- CSTR pode ser maior ou menor do que com um esquema de reatores PFR:
 - $\Rightarrow Se [Q_L^A.(\tau_L^A)^2] > [Q_L^D.(\tau_L^D)^2] então X_{Esquema PFR} > X_{CSTR}$
 - \Rightarrow Caso contrário: X _{CSTR} > X _{Esquema PFR}.

A Figura 5.4 mostra essas conclusões de forma esquemática.

A comparação numérica dos resultados do modelo fluidodinâmico base, modelos ideais CSTR e PFR e esquemas de reatores ideais foi realizada utilizando os dados da coluna 4 da Tabela 5.1, com temperaturas de 400°C e 425°C e as propriedades dos fluidos fornecidas pela Tabela 5.2 e Tabela 5.3. Nesses cálculos foi utilizada a cinética de Mosby et al. (1986) com o fator pré-exponencial da taxa ko = $6,1817.10^{13}$ s⁻¹. As variáveis fluidodinâmicas calculadas com a simulação do reator e integração dos perfis radiais de velocidade e fração volumétrica do líquido nas regiões de fluxo ascendente e descendente são apresentadas na Tabela 5.7. A posição radial que divide as duas regiões (ponto de inversão de fluxo) é em r/Rc = 0,666. As conversões de resíduo "fácil de craquear" obtidas com a simulação do programa RHA 2.1 e com as equações apresentadas na Tabela 5.6 para os modelos avaliados são mostradas na Tabela 5.8.

Regiões do reator	ɛ LM	$\mathbf{U}_{\mathbf{L}}$	área	\mathbf{Q}_{L}	$ au_{ m L}$
		m/s	m²	m³/s	S
Fluxo ascendente	0,6009	0,1042	1,132E-03	1,18E-04	17,3
Fluxo descendente (nota 2)	0,7396	0,0794	1,420E-03	1,13E-04	27,9
Toda a região de escoamento desenvolvido	0,6781	0,0020	2,552E-03	5,10E-06	1017

Tabela 5.7 Variáveis fluidodinâmicas calculadas em cada região do reator (nota 1).

Notas:

- 1. Calculadas com os dados da coluna 4 da Tabela 5.1, a 400°C e propriedades dos fluidos fornecidas pela Tabela 5.2 e Tabela 5.3.
- 2. Nesta região U_L e Q_L têm sinal negativo.

O tempo de residência do líquido mostrado na Tabela 5.7 é mais elevado próximo às paredes do reator (região de fluxo descendente). Esse resultado é esperado uma vez que as bolhas se concentram na região central do reator resultando em maior fração volumétrica de gás e maiores velocidades axiais de líquido e, consequentemente, em menor tempo de residência do líquido nessa região.

Tabela 5.8 Conversão de resíduo "fácil de craquear" obtida com diversos modelos (nota 1).

Т	Modelos de reator	Simulação com programa RHA 2.1	1 reator ideal		Esquema de reatores ideais	
	CSTR	25,71	25,66	(Equação 5-5)	25,55	(Equação 5-6)
400 °C	PFR	29,25	29,19	(Equação 5-8)	25,63	(Equação 5-9)
	Fluidodinâmico base	24,73				
	CSTR	62,06	62,01	(Equação 5-5)	61,38	(Equação 5-6)
425 °C	PFR	80,53	80,45	(Equação 5-8)	61,82	(Equação 5-9)
	Fluidodinâmico base	60,55				

Nota 1. Os resultados apresentados nessa tabela foram calculados com os dados da coluna 4 da Tabela 5.1 e as propriedades dos fluidos da Tabela 5.2 e Tabela 5.3. Foi utilizada a cinética de Mosby et al. (1986) com o fator pré-exponencial da taxa ko = $6,1817.10^{13}$ s⁻¹.

Analisando os resultados apresentados na Tabela 5.8 observa-se que:

- Há uma pequena diferença entre os valores das conversões de um reator CSTR e PFR quando calculadas no programa RHA 2.1 ou com as Equações 5-5 e 5-8. Essa diferença foi atribuída a aproximações numéricas.
- Como esperado, o modelo PFR é o que apresenta a maior conversão.
- As conversões obtidas com os esquemas de reatores ideais resultaram em valores próximos, porém inferiores aos de um reator CSTR. Esses resultados mostram que a descontinuidade no ponto de inversão de fluxo (a "parede") causa uma não idealidade no escoamento, que resulta em valores baixos de conversão (inclusive menores que do CSTR).
- Os valores de velocidade superficial do líquido (U_L) na Tabela 5.7 mostram que o modelo fluidodinâmico prevê uma intensa recirculação entre as regiões de fluxo ascendente e descendente (escoamento desenvolvido). Nas regiões de entrada e saída do reator é realizado um balanço de massa considerando mistura perfeita sem reação (conforme definido no algoritmo reação-recirculação descrito no item 4.2.2). Por isso, a intensa recirculação representa elevado grau de mistura no reator. Esse comportamento justifica os valores de conversão bastante próximos encontrados para os esquemas de reatores ideais CSTR e PFR.
- O modelo fluidodinâmico base fornece conversões ainda um pouco inferiores às dos esquemas de reatores PFR e CSTR. A não idealidade do escoamento causada pelo ponto de inversão de fluxo foi considerada nos esquemas de reatores ideais. Entretanto, regiões de baixa velocidade em torno desse ponto, que podem ser chamadas de "volumes mortos", não foram consideradas e podem justificar a conversão mais baixa obtida com modelo fluidodinâmico base.

Esse estudo mostra a importância de compreender e modelar de forma consistente os fenômenos que dominam a fluidodinâmica no reator de hidroconversão para que a simulação forneça resultados representativos de uma unidade real e seja sensível a mudanças nas variáveis de processo. Os modelos fluidodinâmicos desenvolvidos e apresentados nessa tese ainda não consideram todos os fenômenos físicos e reacionais relevantes e também não foram extensivamente comparados a dados experimentais, mas são uma contribuição para o desenvolvimento de modelos mais representativos.

5.5 RESULTADOS DO MODELO FLUIDODINÂMICO COM DISPERSÃO RADIAL E CINÉTICA DE MOSBY

O "modelo fluidodinâmico com dispersão radial" é formado pelas equações que representam a fluidodinâmica do leito (cujos resultados foram apresentado no item 5.2), pelas equações de balanço de massa no reator considerando os fenômenos da convecção na direção axial e dispersão na direção radial e pela cinética de craqueamento (ver Figura 4.8 para um resumo esquemático dos modelos). Nesse item serão consideradas as simulações utilizando a cinética de Mosby et al. (1986) e no item 5.7 as simulações com a cinética de Almeida (2000).

A simulação das reações de craqueamento com o modelo fluidodinâmico com dispersão radial fornece os perfis de concentração (radial e axial) de cada pseudocomponente no reator [Ci (r,z)], a conversão do resíduo [Xi e X resíduo] e a distribuição de produtos na saída do reator [Csi].

O artigo do item 9.4 (Carbonell e Guirardello, 1999) mostra resultados obtidos com o modelo e a cinética de Mosby et al. (1986). Este item apresenta um resumo desses resultados e a discussão do estudo de análise paramétrica realizada com o modelo fluidodinâmico com dispersão radial.

5.5.1 CONVERSÃO E DISTRIBUIÇÃO DE PRODUTOS

A Tabela 5.9 mostra as concentrações de cada pseudocomponente na entrada (Coi) e na saída (Csi) do reator de hidroconversão simulado com os dados listados na Tabela 5.1 (coluna 3), a 425 °C. Verifica-se que os 22,74 % de resíduo convertido nessas condições produzem 11,60% de gasóleo, 7,93 % de diesel, 2,22 % de nafta e 1,00 % de gases. Os resultados foram obtidos com o modelo fluidodinâmico com dispersão radial e cinética de Mosby et al. (1986), simulado no programa RHA 2.1.

Tabela 5.9 Conversão e distribuição dos produtos na saída do reator. Simulação realizada com o programa RHA 2.1 e modelo fluidodinâmico com dispersão radial, usando dados da Tabela 5.1 (coluna 3) a 425 °C, τ_L=17 min e Nreator=1.

i	pseudocomponente	Coi	Csi	Xi (Nota 1)
		Fração mássica	fração mássica	% peso
1	resíduo "difícil de craquear"	0,8	0,7247	9,42
2	resíduo "fácil de craquear"	0,2	0,0479	76,06
3	gasóleo alimentação	0,0	0,0000	0,00
4	gasóleo produzido na reação	0,0	0,1160	
5	diesel	0,0	0,0793	
6	nafta	0,0	0,0222	
7	gases	0,0	0,0100	
ΣCi		1,0	1,0000	X resíduo = $22,74$

Nota 1. Cálculo da conversão Xi com a Equação 5-2 e X resíduo com a Equação 5-3.

Para verificar as conversões obtidas por simulação em condições mais próximas às de uma unidade industrial, foi realizada uma simulação similar a apresentada no item 5.3.1. Os resultados foram obtidos usando o modelo fluidodinâmico com dispersão radial, simulado no programa RHA 2.1 e são apresentados na Tabela 5.10. Assim como na simulação do modelo fluidodinâmico base, a comparação destes resultados com os dados típicos de conversão de unidades comerciais de hidroconversão em leito expandido, apresentados na Tabela 2.7, mostra que a simulação fornece resultados da ordem de magnitude esperada.

Tabela 5.10 Conversão de resíduo a 425 °C e Nreator = 3 (obtido com RHA 2.1, nota 1)

	Saída do 1° reator	Saída do 2° reator	Saída do 3º reator
X resíduo acumulado	48,8 % p	68,9 % p	80,7 % p (nota 2)
τ_L acumulado	1,5 h	3,0 h	4,5 h

Notas:

- 1. Simulação realizada com modelo fluidodinâmico com dispersão radial e dados de entrada, coluna 3 da Tabela 5.1 com as seguintes alterações: T = 425 °C; Nreator = 3; $U_L = 0,00065$ m/s; Lc = 5,2 m e Dc = 0,12 m.
- 2. Os 80,7 % de resíduo convertido geram em torno de 28,5 % de gasóleo, 32,5 % de diesel, 13,2 % de nafta e 6,6 % de gases.

5.5.2 PERFIL DE CONCENTRAÇÕES, CI (r,z)

Os perfis de concentração obtidos para o resíduo "difícil de craquear" (C1) e o diesel (C5) são apresentados na Figura 2 e na Figura 3 do item 9.4. Os perfis dos outros reagentes e produtos são semelhantes a esses. Os resultados foram obtidos usando o modelo fluidodinâmico com dispersão radial e cinética de Mosby et al. (1986) e os dados indicados na coluna 5 da Tabela 5.1, com $\tau_L = 17 \text{ min}$ (Nreator = 1).

A Figura 2 do item 9.4 mostra os perfis radiais de concentração em 7 posições axiais da região de escoamento desenvolvido, região central do reator onde o modelo fluidodinâmico é válido (ver Figura 4.3). Na parte central do reator o fluxo de lama é ascendente e próximo às paredes do reator é descendente. A linha pontilhada indica o ponto de inversão de fluxo, onde $V_L = 0$ e a transferência de massa entre as regiões de fluxo ascendente e descendente ocorre somente por dispersão. Os perfis radiais são mostrados ao longo do reator com escala constante de Δ Ci. Desta forma, pode-se observar perfis mais inclinados na base do reator e praticamente planos no topo do reator. Perfis mais inclinados próximo à base reator são esperados em função dos efeitos da entrada de carga (que tem composição diferente do óleo no reator). O perfil plano em z = 0 na região de fluxo ascendente é uma aproximação imposta pelo procedimento de resolução das equações, porém não tem influência significativa nos resultados. Conforme esperado, C1 (reagente) diminui ao longo do reator e C5 (produto) aumenta.

A Figura 3 do item 9.4 mostra os perfis axiais de concentração de C1 e C5 em r/Rc = 0,62. Conforme esperado a variação de concentração é mais intensa na direção axial do que na direção radial.

5.5.3 INFLUÊNCIA DA TEMPERATURA NAS REAÇÕES DE CRAQUEAMENTO

A Figura 4 do item 9.3 mostra a conversão de resíduo em função da temperatura, na faixa de 410 a 455 °C, e do tempo de residência do líquido τ_L , entre 7 e 34 min. A temperatura é a condição operacional de maior influência nas reações.

A Figura 5 do item 9.3 apresenta a distribuição de produtos na saída do reator em função da temperatura com $\tau_L = 17$ min. Nessas condições simuladas, o aumento de temperatura leva a um aumento de todos os pseudocomponentes produzidos: gasóleo, diesel, nafta e gás.

5.5.4 ANÁLISE PARAMÉTRICA

A análise paramétrica consistiu na variação dos valores dos parâmetros selecionados em mais e menos 20 %, individualmente, e a verificação dos resultados obtidos. Os parâmetros avaliados foram: as velocidades superficiais do gás (Ug) e do líquido (UL), a fração volumétrica média de sólidos (ϵ_{sM}), o diâmetro (Dc) e a altura (Lc) do reator e a massa específica do líquido (ρ_L). A Figura 5.5 mostra os resultados da variação de + 20 % dos parâmetros nas variáveis fluidodinâmicas e na conversão do reator simulado usando o modelo fluidodinâmico com dispersão radial e cinética de Mosby et al. (1986). São apresentados os resultados: velocidade do líquido no centro do reator V_L (r=0); tempo de residência do líquido τ_L ; viscosidade efetiva da lama no centro do reator μ_{sl}^{eff} (r = 0) e conversão de resíduo "difícil de craquear" X1. Os resultados da variação de - 20 % nos parâmetros não são mostrados pois têm comportamento equivalente aos resultados da Figura 5.5, ou seja, valores de mesma ordem de magnitude e sentido contrário.

Figura 5.5 Resultados da análise paramétrica usando o modelo fluidodinâmico com dispersão radial e os dados da coluna 6 da Tabela 5.1 (T = 430 °C, Nreator=1).

A análise do efeito da variação de parâmetros nas variáveis fluidodinâmicas V_L (r=0) e τ_L é apresentada no artigo do item 9.3 e resumida no item 5.2.5.

A viscosidade efetiva da lama, calculada pela Equação 5-1, tem valor aproximadamente igual ao da viscosidade turbulenta do líquido μ_L^T na região escoamento desenvolvido (exceto bem próximo à parede). Essa variável representa a turbulência no leito decorrente do movimento das bolhas e interação entre as fases gás e lama. μ_L^T participa diretamente da formulação do modelo fluidodinâmico com dispersão radial, pois $Dr = \mu_L^T / \rho_L$ (onde Dr é o coeficiente de dispersão radial).

A Figura 5.5 mostra que μ_{sl}^{eff} simulado é mais sensível à variação de Dc e ρ_L , sendo também sensível, porém com menor intensidade, à modificações em U_g, ϵ_{sM} e U_L. Analisando esses resultados observa-se que:

- o aumento do diâmetro do reator em + 20 % causa grande variação em µ_{sl}^{eff} e V_L (r=0), influenciando na conversão de resíduo X1 (sem modificar o tempo de residência do líquido no reator);
- o aumento da massa específica do líquido $\rho_L \text{ em} + 20 \%$ também causa aumento significativo em μ_{sl}^{eff} (+ 15 %), porém sem influência na conversão. A justificativa encontrada para este resultado é que o coeficiente de dispersão radial Dr praticamente não se altera com o acréscimo em ρ_L , pois Dr = μ_L^T / ρ_L e as duas variáveis aumentam em proporção semelhante.

Foram realizadas simulações, com os dados da coluna 6 da Tabela 5.1, variando somente o parâmetro $\mu_L^T em + 20 \%$. Os resultados são mostrados na Tabela 5.11, onde podem ser comparados aos resultados da variação de + 20 % em Dc. Analisando somente as variações em μ_{sl}^{eff} e X1 os resultados não parecem consistentes. Porém, verifica-se que nos dois casos o perfil de velocidade do líquido também sofre alteração significativa, mas em sentido contrário. Portanto, conclui-se que não é possível associar diretamente os efeitos de variação na viscosidade turbulenta do líquido à conversão obtida nas simulações. Esse resultado é consistente com o comportamento físico esperado pois a conversão é inversamente proporcional ao grau de mistura no reator, sendo que o grau de mistura é resultado da composição dos efeitos de dispersão e recirculação do líquido.

		Variação % nos resultados da simulação com RHA 2.1 (nota 1)					
		V_{L} (r=0)	τL	$\mu_{sl}^{\text{eff}} \left(r = 0 \right)$	X1 (modelo fluidodinâmico com dispersão radial)		
Parâmetro do modelo	μ_L^{T} + 20 %	- 16,4 %	0	+ 20,0 %	- 1,6 %		
Dimensão do reator	Dc + 20 %	+ 23,8 %	0	+ 16,6 %	+ 1,2 %		

Tabela 5.11 Resultados da análise paramétrica usando os dados da coluna 6 da Tabela 5.1.

Nota 1. A redução de μ_L^T e Dc em 20 % mostra comportamento equivalente, resultados de mesma ordem de magnitude em sentido contrário.

Analisando diretamente os resultados da conversão de resíduo "difícil de craquear" na Figura 5.5 observa-se que os parâmetros de maior influência são Lc e U_L e, em menor intensidade, U_g, ε_{sM} e Dc. Todos esses parâmetros, com exceção de Dc, alteram o tempo de residência do líquido influenciando diretamente as reações, uma vez que o aumento de τ_L leva a um acréscimo na conversão de resíduo.

5.6 COMPARAÇÃO ENTRE OS MODELOS FLUIDODINÂMICOS BASE E COM DISPERSÃO RADIAL

Este item compara os modelos desenvolvidos para simulação das reações de craqueamento no reator de hidroconversão em escala piloto: o "modelo fluidodinâmico base" e o "modelo fluidodinâmico com dispersão radial". Os resultados das simulações com esses modelos e a cinética de craqueamento de Mosby et al. (1986) foram apresentados nos itens 5.3 e 5.5, respectivamente. Para um resumo esquemático dos modelos ver Figura 4.8. Os dois modelos consideram o fenômeno da convecção axial no reator. A diferença na formulação dos modelos é que somente o segundo considera o fenômeno da dispersão radial no reator.

Os dois modelos estão implementados no programa RHA 2.1 e são simulados em aproximadamente 19 s em computador Pentium 550 MHz com 64 Mb de RAM. Apesar do modelo fluidodinâmico base ter uma formulação mais simples, os métodos matemáticos implementados para solução das equações dos dois modelos são robustos e calculam com rapidez

os resultados. Dessa forma, não há diferença significativa no tempo computacional gasto na simulação de cada um dos modelos.

Foram realizadas diversas simulações com os modelos desenvolvidos usando a cinética de craqueamento de Mosby et al. (1986). Comparando as conversões obtidas com os dois modelos, observou-se que não há uma tendência definida de qual deles fornece resultados de maior valor. Em alguns casos, a conversão é mais elevada quando calculada com o modelo fluidodinâmico base e, em outros, com o modelo fluidodinâmico com dispersão radial. De qualquer forma, as conversões calculadas com estes modelos têm valores próximos e da ordem de magnitude das conversões obtidas em um reator de mistura perfeita (CSTR). Conforme apresentado no item 5.4, o modelo fluidodinâmico base sempre fornece conversões um pouco inferiores às do CSTR devido às características de não idealidade do escoamento. Entretanto, comportamento diferente é observado nos resultados do modelo fluidodinâmico com dispersão radial: enquanto algumas simulações geram conversões inferiores às do modelo fluidodinâmico base, outras chegam a fornecer conversões um pouco superiores às do modelo CSTR, como esquematizado na Figura 5.6. Não foi possível reduzir o modelo fluidodinâmico com dispersão radial a esquemas de reatores ideais para identificar o fator determinante desse comportamento.

Figura 5.6 Desenho esquemático da conversão de resíduo calculada com a simulação do reator de hidroconversão usando diferentes modelos (não está em escala). A conversão calculada usando o modelo fluidodinâmico com dispersão radial tem valores na faixa indicada.

Em qualquer modelo do reator, a temperatura é a condição operacional com maior influência nos resultados. O tempo de residência do líquido e o grau de mistura no reator também são importantes. Outras variáveis relevantes para as reações como o gradiente de temperatura no reator, a resistência à transferência de massa e a desativação do catalisador não são considerados na análise dos resultados das simulações. Isso ocorre porque os modelos foram desenvolvidos para sistema isotérmico e sem resistência à transferência de massa. A desativação do catalisador também não foi modelada.

Nos modelos CSTR e PFR o grau de mistura está definido e somente variáveis ou condições operacionais que tenham influência no tempo de residência do líquido são significativas para as reações. A aplicação destes modelos para o reator de hidroconversão considera o cálculo da fração volumétrica média do líquido ε_{LM} no reator. Dessa forma, qualquer variável que interfira no cálculo de ε_{LM} tem influência nos resultados.

Nos modelos fluidodinâmicos são calculadas as variáveis fluidodinâmicas que determinam, além do tempo de residência do líquido, o grau de mistura (recirculação e dispersão) no reator. A análise apresentada no item 5.4 mostrou que, nas condições simuladas, o modelo fluidodinâmico base apresenta resultados de um sistema dividido em duas partes, onde ocorre intensa recirculação e, consequentemente, intensa mistura. Nessa situação, pequenas variações nos perfis de velocidade não influenciam significativamente o grau de mistura e o avanço das reações. Quando se considera o fenômeno da dispersão radial na modelagem do reator, o grau de mistura é mais sensível a variações na fluidodinâmica.

A Figura 5.7 mostra a conversão de resíduo "difícil de craquear" X1 obtida com diversos modelos para o reator e a cinética de Mosby et al. (1986). As simulações foram realizadas com os dados da coluna 6 da Tabela 5.1, variando alguns parâmetros em + 20 %.

Figura 5.7 Variação da conversão de resíduo "difícil de craquear" X1 com acréscimo de 20 % nos parâmetros, obtida com diversos modelos e os dados da coluna 6 da Tabela 5.1 (T = 430 °C).

Na Figura 5.7 observa-se que as variáveis com maior influência no tempo de residência do líquido, U_L e Lc, são as que têm maior influência na conversão. Conforme discutido no item 5.5.4, o acréscimo de 20 % no diâmetro do reator Dc interfere no grau de mistura (dispersão e recirculação), variando V_L (r) e μ_L^T (r), mas não altera o tempo de residência do líquido. Somente a conversão calculada usando o modelo fluidodinâmico com dispersão radial é influenciada por essa variável. Verifica-se, então, que este modelo se mostra mais representativo para indicar a influência da ampliação de escala do reator. Entretanto, como apresentado no item 5.2.5 é necessário maior desenvolvimento ou ajuste das correlações constitutivas antes que o modelo possa ser efetivamente usado para essa finalidade.

A maior diferença nos resultados obtidos com a simulação dos modelos fluidodinâmicos é nos perfis de concentração axial e radial Ci (r,z). Os perfis de concentração de resíduo calculados com os modelos fluidodinâmicos são mostrados na Figura 5.2 (do modelo base) e na Figura 2 do item 9.4 (do modelo com dispersão radial). Esses gráficos podem ser comparados em relação à forma dos perfis porém não se deve comparar os valores de concentração, uma vez que foram obtidos em diferentes simulações e com dados distintos. A forma dos perfis Ci (r,z) são bastante diferentes nas duas figuras porque quando se considera o fenômeno da dispersão radial não há descontinuidade no ponto de inversão de fluxo (posição radial onde $V_L = 0$), ocorrendo transferência de massa por dispersão entre as regiões de fluxo ascendente e descendente do reator. Dessa forma, verifica-se que:

- Os perfis de concentração são mais suaves e os resultados mais consistentes com o comportamento físico esperado quando se considera a dispersão radial no reator. Nesse caso, a concentração calculada para os reagentes é decrescente ao longo do reator, ocorrendo o oposto para os produtos. Esses perfis também são apresentados na Figura 3 do item 9.4.
- No modelo fluidodinâmico base, a "parede" no ponto de inversão de fluxo faz com que na região de fluxo descendente (mais próximo às paredes do reator) a concentração calculada para os reagentes seja maior no topo do que no fundo do reator (ver Figura 5.2). Perfil equivalente é obtido para os produtos, ou seja, Ci (r,z=Lc) < Ci (r,z=0).</p>

A avaliação e a comparação dos resultados obtidos com a simulação dos modelos fluidodinâmicos mostram que o modelo fluidodinâmico com dispersão radial é mais sensível às variações na fluidodinâmica e apresenta resultados mais consistentes com o comportamento físico esperado.

5.7 RESULTADOS DO MODELO FLUIDODINÂMICO COM DISPERSÃO RADIAL E CINÉTICA DE ALMEIDA

Neste item são apresentados os resultados das simulações usando o modelo fluidodinâmico com dispersão radial e a cinética de craqueamento de Almeida (2000). Também são apresentadas comparações com os resultados obtidos com os modelos CSTR e PFR. As simulações foram realizadas nas condições das corridas experimentais de Almeida (2000), com os dados apresentados na coluna 7 da Tabela 5.1, onde Tref é a temperatura de referência nos experimentos.

A cinética de craqueamento de Almeida (2000) considera efeitos térmicos e catalíticos e consiste de uma matriz com cinco pseudocomponentes que reagem entre si com reações de 1^a ordem. O resíduo é dividido em duas frações: RCM (resíduo carbono micro) e não-RCM. Os outros pseudocomponentes são cortes de interesse comercial: gasóleo, diesel e nafta+gás. O modelo é apresentado no item 4.3.3.

5.7.1 COMPARAÇÃO DOS RESULTADOS DE UM PFR E DADOS EXPERIMENTAIS DE ALMEIDA

Os resultados experimentais de Almeida (2000) foram obtidos em um reator de mistura em batelada que tem comportamento similar ao reator contínuo PFR, onde o tempo da batelada é representado pelo comprimento do reator. Entretanto, os dois resultados não devem ser iguais uma vez que o perfil de temperatura experimental não é simulado no modelo PFR isotérmico.

Na corrida experimental há etapas de pré-aquecimento da mistura reacional, tempo de residência no patamar de temperatura e resfriamento. Para minimizar as diferenças entre o resultado experimental e o calculado, as simulações foram realizadas considerando que a carga tem a composição obtida na corrida 1, onde foram realizados os procedimentos de pré-aquecimento da mistura reacional até a temperatura de referência, seguida de resfriamento.

A Tabela 5.12 apresenta os resultados da simulação com o modelo PFR e as condições operacionais dos experimentos realizados por Almeida (2000) e das simulações (em complemento aos dados da coluna 7 na Tabela 5.1). A Tabela 5.13 apresenta a soma e a média dos desvios entre os resultados experimentais e simulados.

Condições dos experimentos			Condições da simulação		Resultados da simulação com modelo PFR						
Corrida	T-Tref	$\tau_{\rm L}$	Óleo /	U_L	$\epsilon_{\rm sM}$	Lc	Nafta	Diesel	Gasóleo	Resíduo	Resíduo
	°C	h	Catali-	m/s		m	+ gás			ñ RCM	RCM
			sador				Cs5	Cs4	Cs3	Cs2	Cs1
Carga							0,000	0,091	0,123	0,635	0,151
1 (nota 2)	0	0	10				0,010	0,117	0,207	0,499	0,167
2	0	0,5	10	0,0013	0,0257	3	0,018	0,147	0,244	0,436	0,156
3	0	1	10	0,0013	0,0257	6	0,026	0,176	0,272	0,381	0,145
4	0	2	10	0,00065	0,0257	6	0,044	0,226	0,311	0,293	0,126
5	0	2	5	0,00065	0,0500	6	0,046	0,245	0,301	0,284	0,124
6	15	2	10	0,00065	0,0257	6	0,065	0,332	0,318	0,169	0,116
7	0	4	10	0,00033	0,0257	6	0,081	0,308	0,335	0,180	0,096
8	0	2	20	0,00065	0,0130	6	0,043	0,217	0,316	0,298	0,128
9	-15	2	10	0,00065	0,0257	6	0,035	0,171	0,284	0,373	0,137
10	-15	1	10	0,0013	0,0257	6	0,022	0,144	0,252	0,431	0,151
11	15	1	10	0,0013	0,0257	6	0,039	0,247	0,290	0,285	0,140
14	30	1	10	0,0013	0,0257	6	0,078	0,362	0,287	0,136	0,138

Tabela 5.12 Resultados de Csi obtidos na simulação com o modelo PFR nas condições dos experimentos realizados por Almeida (2000) (notas 1, 2 e 3).

Notas:

- 1. A carga do reator para os experimentos é composta por 80 % de resíduo de vácuo Marlim e 20 % de óleo decantado de FCC, com a composição indicada na linha indicada pela "carga".
- 2. A corrida 1 consistiu no pré-aquecimento da mistura reacional a 425 °C seguida de resfriamento. Observa-se que já ocorre conversão nessa etapa de pré-aquecimento. A composição do óleo obtida nessa corrida é a composição do resíduo alimentado ao reator nas simulações.
- 3. As condições operacionais das simulações são apresentadas na coluna 7 da Tabela 5.1.

Tabela 5.13 Comparação da simulação do PFR com os dados experimentais de Almeida (2000)

Análise dos resultados obtidos em todas as corridas								
	Nafta + gás	Diesel	Gasóleo	Resíduo RCM	Resíduo não-RCM			
Média dos desvios % absolutos	20,25	5,49	7,97	10,73	4,82			
Soma dos desvios %	46,57	5,18	61,31	-5,02	-17,19			

Desvio % = (Csi PFR – Csi experimental) / Csi experimental * 100

Como a corrida 1 é a composição da carga alimentada ao reator nas simulações e essa composição foi obtida com o pré-aquecimento do reator a Tref, espera-se que:

- A conversão calculada com o modelo PFR seja superior ao valor experimental nas corridas com T < Tref (corridas 9 e 10);
- O valor experimental de conversão seja superior ao calculado com o modelo PFR nas corridas com T > Tref (corridas 6, 11 e 14).

Esses dois fatos foram efetivamente observados na comparação dos resultados, mas não são explicitados na Tabela 5.12 e na Tabela 5.13.

As médias dos desvios absolutos de todas as corridas mostradas na Tabela 5.13 apresentam resultados próximos aos obtidos por Almeida (2000) no ajuste do modelo cinético. Entretanto, a soma dos desvios resultou em valores significativamente diferentes para duas frações: a fração nafta+gás, com valor mais elevado no cálculo de Almeida, e a fração gasóleo, com valor mais elevado na Tabela 5.13. Essa diferença provavelmente se deve à utilização dos resultados da corrida 1 como carga para o reator nas simulações do PFR, porque Almeida também considerou a corrida 1 no ajuste da cinética, encontrando maiores desvios para as correntes nafta+gás (de \sim + 23%) e gasóleo (de \sim - 10%).

A comparação realizada mostra que os resultados da simulação estão consistentes com os resultados experimentais de Almeida (2000) e que o modelo cinético foi corretamente implementado no programa RHA 2.1.

5.7.2 Comparação dos modelos nas condições das corridas experimentais de Almeida

Foram realizadas simulações usando o modelo fluidodinâmico com dispersão radial e os modelos de reatores ideais CSTR e PFR nas condições das corridas experimentais de Almeida (2000). As condições operacionais das simulações são apresentadas na coluna 7 da Tabela 5.1 e na Tabela 5.12 e os resultados obtidos na Figura 5.8, Figura 5.9, Figura 5.10 e Figura 5.11. Essas figuras também apresentam os resultados experimentais de Almeida, cujos valores somente podem ser comparados aos do modelo PFR que tem comportamento similar ao reator experimental. Todos os modelos apresentam o comportamento físico esperado com a variação na temperatura, tempo de residência do líquido e relação óleo / catalisador.

Corridas a T ref e óleo/cat = 10

Corridas com tempo de residência do líquido = 1h e óleo/cat = 10

Figura 5.9 Rendimentos de diesel e resíduo calculados com modelos fluidodinâmico (FD), CSTR e PFR e resultado experimental (exp) de Almeida (2000), obtidos a τ_L = 1h e óleo/cat = 10.

Corridas com tempo de residência do líquido = 2h e T ref

Figura 5.10 Rendimentos de diesel e resíduo calculados com modelos fluidodinâmico (FD), CSTR e PFR e resultado experimental (exp) de Almeida (2000), obtidos a τ_L = 2h e Tref.

Corridas com relação óleo/cat = 10 a T ref e T ref+15

Figura 5.11 Rendimentos de resíduo RCM calculados com modelos fluidodinâmico (FD), CSTR e PFR e resultado experimental (exp) de Almeida (2000), obtidos com óleo/cat = 10 a Tref e

6 Avaliação ambiental da hidroconversão de resíduos

Neste capítulo, a avaliação ambiental do processo de hidroconversão de resíduos é realizada com a aplicação do método de Heinzle et al. (1998) modificado, apresentado no Capítulo 3. O processo é analisado na região 1 da Figura 3.1, região de reação. A conversão de resíduo e a distribuição de produtos na saída do reator são obtidas usando o modelo fluidodinâmico com dispersão radial e a cinética de craqueamento de Almeida (2000).

6.1 AVALIAÇÃO DO REATOR DE HIDROCONVERSÃO – CÁLCULO DOS INDICADORES IM1 E IA1

A Figura 6.1 mostra um desenho esquemático da região de reação do processo de hidroconversão com arraste do catalisador. Nessa etapa não é considerado nenhum reciclo.

A simulação do reator foi realizada com os dados apresentados na coluna 8 da Tabela 5.1, considerando uma reposição de catalisador de 1 kg por tonelada de carga e consumo de hidrogênio de 200 Nm³ por m³ de carga (valores típicos de leito expandido indicados na Tabela 2.7). O processo de hidroconversão simulado tem condições reacionais típicas de processos que usam catalisador comercial (leito expandido) e fluidodinâmica do reator em leito de arraste.

Figura 6.1 Esquema da região de reação do processo de hidroconversão.

A Tabela 6.1 mostra a avaliação ambiental das matérias-primas "MP" e insumos "Ins" usando os critérios da Tabela 3.1 e para os produtos "P", subprodutos "SP", insumos utilizados "InsU" e matérias-primas que não reagiram "MPS" usando os critérios da Tabela 3.3.

	Componentes	Classificação ABC para avaliação ambiental				
		Questão 1	Questão 2	Questão 3		
	Correntes que entram na região de reação.	Complexidade na fabricação	Uso de materiais críticos	Disponibilidade de recursos		
MP	Resíduo de vácuo	С	С	С		
	Óleo decantado de FCC	С	С	С		
	Hidrogênio	В	С	В		
Ins	Catalisador	С	В	В		
	Correntes que saem da região de reação.	Poluição do ar	Poluição da água	Problemas de disposição		
Р	Diesel	С	В	С		
SP	Gás + Nafta	С	В	С		
	Gasóleo	С	В	С		
	H_2S	Α	С	С		
	NH ₃	В	Α	С		
	H ₂ O	С	С	С		
MPS	Hidrogênio (excesso)	С	С	С		
	Resíduo não convertido	С	С	С		
InsU	Catalisador desativado	С	В	Α		

Tabela 6.1 Avaliação da região de reação da hidroconversão com a classificação ABC de Heinzle et al. (1998) modificada (ver Tabela 3.1 e Tabela 3.3)

O resíduo de vácuo e o óleo decantado de FCC são frações residuais do refino de petróleo que, passando pelo processo de hidroconversão, geram combustíveis de boa qualidade. Portanto, não há um processo visando a fabricação dessas matérias-primas, que são classificadas com classe C quanto aos três aspectos analisados. O processamento dessas frações é um ganho econômico e ambiental pois envolve o máximo aproveitamento de um recurso não sustentável (o petróleo) para gerar energia, que é um bem necessário. A tendência de aumento no processamento de óleos pesados implica no aumento de geração dessas frações residuais e, dessa forma, da disponibilidade desse recurso para reprocessamento (com a hidroconversão, por exemplo) e geração de energia.

O hidrogênio é uma matéria-prima produzida nas refinarias usualmente a partir de nafta ou gás natural (recursos não sustentáveis) por reforma com vapor, processo que conta com quatro etapas de reação. Dessa forma, o hidrogênio recebe classificação B nos itens de complexidade e disponibilidade. No processo com reforma a vapor não foi identificado o uso de compostos críticos. Outra alternativa para produção de hidrogênio é através da eletrólise da água, processo com alto consumo de energia que não está sendo considerado nessa avaliação.

A fabricação de catalisador envolve etapas de preparação do suporte sólido e impregnação da solução com os metais que ficam retidos na matriz do catalisador. Não foi possível identificar especificamente o processo de preparação do catalisador de Ni/Mo em alumina, por isso considerou-se um processo típico com menos de 3 etapas de reação (classe C). Níquel e Molibdênio são compostos não sustentáveis com índice de reservas estáticas (ver Tabela 3.2) para 53 e 49 anos respectivamente, resultando em classificação B para o catalisador quanto ao aspecto de disponibilidade do recurso. O níquel consta da lista dos *hazardous air polutants* (HAP) e das substâncias prioritárias sob controle na Comunidade Européia (ver item 9.6). Como o níquel é usado em quantidade estequiométrica, o catalisador recebe classificação B quanto ao uso de materiais críticos. Os aditivos à base de ferro usados nos processos de hidroconversão em leito de arraste recebem classificação C com relação aos três aspectos analisados, considerando que o preparo do aditivo não é um processo complexo.

Os aspectos ambientais dos destilados produzidos na hidroconversão e do resíduo não convertido são apresentados no item 2.5.5. As frações gás+nafta, diesel e gasóleo são consideradas classe B quanto ao aspecto de poluição da água, pois contém substâncias classe 1 da VwVwS (ver item 9.6). Segundo Gray (1994), há poucas informações sobre a toxidade dessas frações mas como a hidroconversão não tem a tendência de produzir aromáticos espera-se que essas frações tenham média toxidade crônica, assim como os destilados do petróleo.

As frações de petróleo nafta, diesel e gasóleo são classe C quanto aos aspectos de poluição do ar quando atendem às especificações de enxofre e nitrogênio, conforme definido no item 3.2.2. No entanto, as reações de HDS e HDN não foram modeladas nesse trabalho, não sendo possível avaliar esta questão com precisão. Considerando que o processo de hidroconversão remove heteroátomos da carga, gerando destilados com baixos teores de contaminantes, adotou-se a classificação C para as frações geradas nesse processo quanto ao item de poluição do ar. Essa consideração não é válida para os processos em leito de arraste sem etapa de hidrotratamento dos destilados.

A fração gás é formada por hidrocarbonetos na faixa do C1 a C5 que não fazem parte da lista dos HAP. Na lista da NR-15 o metano, o etano e o propano são caracterizados como "asfixiantes simples" e o butano é caracterizado com grau de insalubridade médio. A fração gás é considerada como classe C quanto à poluição do ar.

Segundo Gray (1994) há poucas informações sobre a toxidade do resíduo não convertido, mas pelas reações que ocorrem na hidroconversão espera-se que esse resíduo tenha propriedades ambientais semelhantes ao resíduo de vácuo da destilação, ou seja, baixa toxidade e baixa solubilidade na água. Dessa forma, o resíduo não convertido é classe C quanto aos aspectos de poluição da água.

As frações de óleo e gás geradas na hidroconversão e o resíduo não convertido são combustíveis, não havendo problemas de disposição (classe C quanto a esse aspecto).

O H₂S e a NH₃ são compostos reconhecidamente perigosos. O H₂S é citado na lista dos *hazardous air polutants* e é classificado com grau de insalubridade máxima na NR-15, recebendo classificação A com relação aos aspectos de poluição do ar. A NH₃ é classificada com grau de insalubridade médio na NR-15 e classe 2 na VwVwS, recebendo classificação classe B e classe A quanto aos aspectos de poluição do ar e poluição da água, respectivamente.

O catalisador desativado contém depósitos de coque, metais e enxofre, sendo classificado como resíduo perigoso pela NBR-2004. Dessa forma, o catalisador desativado é considerado classe A na Tabela 6.1 quanto a problemas especiais de disposição e classe B quanto a poluição da água (pois considera-se que os contaminantes podem lixiviar para a água). Não há emissão significativa de voláteis e material particulado no manuseio do catalisador descartado, que fica impregnado com óleo pesado e recebe classificação classe C quanto aos aspectos de poluição do ar.

A Figura 6.2 apresenta os dados da Tabela 6.1, considerando os pesos estabelecidos por Heinzle et al (1998): classe A com peso 4, classe B com peso 1,3 e classe C com peso 1. Dessa forma, destacam-se claramente os componentes com maior potencial de causar problemas ambientais: a liberação de amônia e gás sulfídrico para o ambiente e o descarte de catalisador.

 $O H_2S e NH_3$ são gerados nas reações de HDS e HDN, que também contribuem para a conversão do resíduo. Apesar de serem perigosos, esses compostos não trazem problemas ambientais adicionais às refinarias pois também estão presentes em correntes gasosas de outras unidades de processo que são tratadas com o uso de tecnologias bem estabelecidas. Não há

interesse em minimizar a geração desses compostos no processo, ao contrário, há interesse de remover o máximo de enxofre e nitrogênio dos destilados, gerando produtos de boa qualidade e que não precisem de reprocessamento.

Figura 6.2 Avaliação ambiental de matérias-primas, insumos, materiais gerados e usados no processo de hidroconversão.

O descarte de catalisador desativado é uma questão mais complicada e, segundo Gray (1994), a maior preocupação ambiental do processo de hidroconversão. Skripek et al. também citou que o uso ou disposição do resíduo não convertido misturado ao aditivo é uma das dificuldades técnicas para comercialização do processo Canmet. A análise dessa questão envolve vários aspectos, uma vez que os processos em leito expandido e leito de arraste diferem quanto ao tipo, quantidade e forma de descarte do catalisador utilizado.

A Tabela 6.2 e a Figura 6.3 apresentam o fator de massa "FM1", fator ambiental "FA1" e indicador ambiental "IA1" de cada componente. Como as reações de HDS e HDN não foram modeladas, não é possível estimar as vazões de H₂S e NH₃ geradas no processo, de forma que o FM1 e o IA1 desses componentes são nulos nessa avaliação. O FM1 e IA1 do catalisador não são nulos mas têm valor próximo de zero em função da baixa reposição de catalisador considerada.

		FM1	FA1	IA1
MP	Resíduo de vácuo	2,19	1,0	2,19
	Óleo decantado de FCC	0,55	1,0	0,55
	Hidrogênio	0,22	1,7	0,38
Ins	Catalisador	0,00	1,7	0,00
Р	Diesel	1,00	1,3	1,30
SP	Gás + nafta	0,20	1,3	0,26
	Gasóleo	0,56	1,3	0,72
	H_2S	0,00 (não calculado)	4,0	0,00
	NH ₃	0,00 (não calculado)	5,2	0,00
	H_2O	0,00 (não calculado)	1,0	0,00
MPS	Hidrogênio (excesso)	0,16	1,0	0,16
	Resíduo não convertido	0,98	1,0	0,98
InsU	Catalisador desativado	0,00	5,2	0,01

Tabela 6.2 Indicadores calculados por composto na região 1 do processo de hidroconversão.

Figura 6.3 Indicadores calculados por composto na região 1 do processo de hidroconversão. As vazões de H_2S e NH_3 não foram calculadas, de forma que FM1 = IA1 = 0 para esses compostos.

O fator de massa "FM" é a relação entre as vazões mássicas dos compostos e a vazão do produto de interesse, o diesel. O indicador ambiental "IA" é a multiplicação do fator de massa com o ambiental. Dessa forma, quanto menores os indicadores FM, FA e IA mais favorável o processo, ou seja, mais eficiente e com menor possibilidade de trazer problemas ambientais.

Analisando os fatores de massa apresentados na Tabela 6.2 para o processo de hidroconversão simulado verifica-se que:

- a quantidade de insumos (catalisador) usados no processo é muito pequena frente às vazões de resíduo processado e de destilados produzidos. Foi considerada uma reposição de catalisador típica da hidroconversão em leito expandido (1 kg de catalisador por tonelada de carga) que resultou em FM1 de catalisador praticamente nulo;
- os indicadores FM1 do hidrogênio alimentado ao reator e do efluente do reator têm a mesma ordem de magnitude, mostrando o grande excesso de hidrogênio usado no processo. A viabilidade do processo certamente passa pelo reciclo de hidrogênio, como já implementado nos processos comerciais em leito expandido e nos processos em leito de arraste (escala demonstração);
- Os indicadores ambientais "IA1" são dominados pelo efeito das grandes vazões das correntes de resíduo e destilados, frente às pequenas vazões de catalisador e hidrogênio. Desta forma, o fator ambiental "FA1" tem pequena influência nos resultados obtidos nesse estudo, diferentemente dos resultados apresentados por Koller et al. (1998) na aplicação do método para processos das indústrias química e farmacêutica. Na comparação entre alternativas de processos de refino, que tipicamente envolvem grandes vazões e uso de pequenas quantidades de insumos, o efeito do "FA1" deve se tornar mais evidente nos indicadores ambientais "IA1";
- Apesar do FM1 do diesel ser superior ao dos subprodutos, nas condições simuladas o processo não é seletivo para o diesel. É interessante otimizar o processo considerando também as variáveis econômicas, para definir as condições operacionais que levem à distribuição ótima de produtos;
- Os indicadores ambientais calculados são decrescentes na ordem: IA1_{MP} > IA1_P > IA1_P > IA1_{MPS} > IA1_{SP}, informações evidenciadas na Tabela 6.3. O IA1_P é um dado útil para comparação de alternativas de processo ou diferentes processos que levem à geração de produtos com

diferentes qualidades. A obtenção de menores valores de $IA1_{MP}$ e $IA1_{MPS}$ dependem do aumento da conversão de resíduo e, de certa forma, também do aumento da seletividade.

	FM1	IA1
MP (matérias-primas)	2,96	3,11
Ins (insumos)	0,00	0,00
P (produtos)	1,00	1,30
SP (subprodutos, nota 1)	0,76	0,98
MPS (matérias-primas que não reagiram)	1,14	1,14
InsU (insumos utilizados)	0,00	0,01

Tabela 6.3 Indicadores calculados por grupos na região 1 do processo de hidroconversão.

Nota 1. Não estão sendo consideradas as vazões de H₂S, NH₃ e H₂O.

A Tabela 6.4 apresenta os indicadores de massa "IM1" e ambiental "IA1" calculados para a região de reação do processo de hidroconversão simulado. A pequena diferença entre IM1 na entrada e saída se deve ao consumo de hidrogênio no processo, que não é considerado na modelagem do reator e, portanto, não é contabilizado nas frações de destilados produzidas.

Tabela 6.4 Indicadores IM1 e IA1 calculados para o processo de hidroconversão (nota 1).

	IM1	IA1	Cálculo
Correntes de entrada	2,96	3,11	MP + Ins
Correntes de saída	2,89	3,43	P + SP + MPS + InsU

Nota 1. Não estão sendo consideradas as vazões de H₂S, NH₃ e H₂O.

6.2 AVALIAÇÃO DE ASPECTOS DA HIDROCONVERSÃO EM LEITO DE ARRASTE E EM LEITO EXPANDIDO

A comparação completa e efetiva dos processos de hidroconversão em leito de arraste e leito expandido não é possível com as informações disponíveis nesse trabalho, visto que são diversas e complexas as diferenças entre os dois processos: severidade (temperatura e pressão de hidrogênio), tipo, tamanho e função do catalisador e, consequentemente, conversão de resíduo, consumo de hidrogênio, catalisador e energia, formação de coque e distribuição de produtos.

Entretanto, com a modelagem desenvolvida para o reator piloto de hidroconversão processando resíduo de vácuo Marlim e os dados típicos do processo apresentados no item 2.5, foram realizados estudos variando a temperatura e as condições operacionais no reator que demonstram a aplicação do método e discutem algumas questões ambientais da hidroconversão.

A Figura 6.4 apresenta os indicadores calculados para o reator de hidroconversão na faixa de temperatura de 425 °C a 445 °C, com reciclo de hidrogênio, reposição de 1 kg de catalisador por tonelada de carga e consumo de hidrogênio de 200 Nm³ por m³ de carga, dados típicos dos processos em leito expandido. O cálculo dos indicadores considerou, de forma simplificada, que o consumo de catalisador e hidrogênio não se alteram com o aumento da temperatura e, consequentemente, da conversão. Os indicadores mostram resultados mais favoráveis com o aumento da temperatura, que causa um aumento na conversão de resíduo e na produção de diesel. Um ganho maior é observado entre as simulações realizadas a 425 e 435 °C do que na faixa 435 a 445 °C, pois com o aumento da temperatura (na faixa 435 – 445 °C) diminui a seletividade para o diesel e FM1 dos subprodutos aumenta.

A Figura 6.4 mostra também a avaliação do processo de hidroconversão operando a 445°C e em condições típicas do leito de arraste: adição de catalisador igual a 2 % da carga e consumo de hidrogênio de 300 Nm³ por m³ de carga. Essa condição de temperatura está na faixa da validade do modelo cinético de Almeida (2000) e na faixa dos processos em leito de arraste (que operam entre 440 e 490 °C). Considera-se, de modo simplificado, que apesar dos processos em leito de arraste usarem catalisador de menor atividade, a distribuição de produtos na saída do reator a essa temperatura possa ser representada pela cinética de Almeida. Essa simplificação é justificada pelo mecanismo de craqueamento do resíduo, que é predominantemente térmico. Na conversão do resíduo, o catalisador tem a função de favorecer as reações de hidrogenação, que é atendida tanto pelos catalisadores comerciais de HDM (Ni/Mo em alumina, por exemplo) quanto pelos aditivos típicos dos processos em leito de arraste.

Figura 6.4 Indicadores FM1 e IA1 para reator de hidroconversão operando entre 425 e 445 °C, com reciclo de hidrogênio, sem considerar as vazões de H₂S, NH₃ e H₂O.

Comparando os indicadores mostrados na Figura 6.4, nas condições de hidroconversão em leito expandido e leito de arraste a 445 °C, verifica-se resultados um pouco mais favoráveis para o processo em leito expandido. Apesar da avaliação ambiental do processo em condições de leito de arraste ter resultado em menor FA1 para o catalisador (pois recebe classificação C nos três aspectos ambientais considerados), a maior reposição de catalisador e maior consumo de hidrogênio resultam em maiores valores de FM1 e IA1 para: o hidrogênio de reposição (MP), o catalisador (Ins) e o catalisador descartado (InsU). Essa questão é evidenciada na Figura 6.5, que apresenta os indicadores para os compostos da região de reação, sem mostrar as frações de petróleo (que têm valores dominantes mas iguais nas duas condições) e o H₂S, NH₃ e H₂O (cujas vazões não foram calculadas).

Esse estudo de caso destaca diferenças mas não compara de forma ampla os processos em leito de arraste e expandido, já que as condições de severidade em temperatura e conversão de resíduo, que são determinantes nessa comparação, não foram consideradas. O valor de 445°C é uma condição de baixa temperatura para os processos em leito de arraste.

Figura 6.5 Indicadores FM1 e IA1 para o hidrogênio e o catalisador, com reciclo de hidrogênio.

Figura 6.6 Indicadores FM1 e IA1 para o hidrogênio e o catalisador, sem reciclo de hidrogênio.

A Figura 6.6 mostra os indicadores calculados nas mesmas condições da Figura 6.5, porém sem reciclo de hidrogênio. Comparando-se os dois gráficos, verifica-se uma redução significativa no valor dos indicadores quando se considera o reciclo de hidrogênio. Entretanto, ao considerar os indicadores das frações de petróleo, essa diferença seria pouco evidente. Esse exemplo mostra que, ao analisar processos em que grandes vazões estão envolvidas, como no refino de petróleo, é necessário realizar estudos em separado com os compostos que tenham pequenas vazões porém com significativo potencial de trazer problemas ambientais (ou seja, que tenham recebido alguma classificação A ou B na avaliação ambiental).

Para avaliar o problema ambiental com relação ao descarte de catalisador é interessante calcular o rejeito gerado por uma unidade industrial. A Figura 6.7 mostra o descarte diário de catalisador em uma unidade de hidroconversão industrial com capacidade de 6400 m³/d, considerando que o descarte é igual à reposição de catalisador (desprezando o coque formado). A reposição nos processos em leito expandido varia entre 0,3 e 2,0 kg/t carga (ver Tabela 2.7) e nos processos em leito de arraste varia entre 1 e 3 % peso da carga (ver Tabela 2.8).

Figura 6.7 Descarte diário de catalisador em unidade de hidroconversão de 6400 m³/d, com indicação das faixas típicas de reposição de catalisador nos processos de hidroconversão em leito expandido (H-Oil e LC-Fining) e em leito de arraste (VCC, Canmet e HDH)

A Figura 6.7 mostra que na operação de uma unidade de hidroconversão em leito expandido é necessário dispor entre 2 e 13 t/d de catalisador desativado e nas unidades em leito

de arraste entre 65 e 196 t/d de catalisador. Para efeitos de comparação e avaliação da ordem de magnitude desses números no refino nacional é analisado o descarte de catalisador desativado de FCC pelas refinarias nacionais.

Segundo Chang (1999), a Petrobras tem nas refinarias brasileiras: 11 unidades de FCC instaladas, com capacidade de 66700 m³/d (considerando as ampliações até 1998) e 3 unidades de FCC para processamento de resíduo (RFCC), iniciando operação em 1999 e 2002 com capacidade de 20000 m³/d.

Segundo Schlosser et al. (2000), a geração de catalisador desativado na Petrobras é da ordem de 1000 t/mês (~ 33 t/d), sendo que todo esse catalisador é enviado para a indústria de cimento. Nesse valor provavelmente não estão incluídas as unidades recentes de RFCC, que têm maior reposição e descarte de catalisador do que as FCC, uma vez que processam cargas mais pesadas. Considerando, de modo simplificado, que as unidades RFCC têm o dobro da reposição de catalisador (em comparação com as FCC) e que as capacidades das unidades indicadas por Chang (1999) estão atualizadas até 2002, é estimado um descarte de catalisador da ordem de 53 t/d.

Comparando, então, os valores do descarte de catalisador pela Petrobras com o das unidades de hidroconversão verifica-se que uma unidade em leito de arraste com capacidade de 6400 m³/d descarta uma quantidade de catalisador da ordem de magnitude ou até bastante superior a todas as unidades de FCC e RFCC instaladas da Petrobras. Na seleção e estudo de viabilidade de uma tecnologia de hidroconversão essa questão precisa ser considerada.

No estágio atual de desenvolvimento da hidroconversão, com 12 unidades industriais em leito expandido instaladas e processo em leito de arraste comprovado em unidade demonstração, diversas alternativas já foram exploradas para destinação do catalisador desativado. Entre as alternativas apresentadas na literatura e discutidas no item 2.5.5 destacam-se:

- o rejuvenescimento e reutilização do catalisador no processo H-Oil (Colyar, 1997). A primeira unidade foi implementada no processo H-Oil da refinaria Petrochemia da Polônia, que iniciou operação em 1999;
- o envio do catalisador desativado misturado ao resíduo não convertido, dos processos Canmet e VCC, para unidades de coqueamento retardado, combustão em leito fluidizado ou indústria de cimento;

 o envio do catalisador previamente incinerado para a indústria metalúrgica. Essa é a opção recomendada no processo HDH.

A literatura consultada não informa o destino do catalisador desativado dos processos comerciais de hidroconversão H-Oil e LC-Fining.

6.3 CONSIDERAÇÕES SOBRE A AVALIAÇÃO AMBIENTAL DA HIDROCONVERSÃO COM O MÉTODO WAR / PEI

O método WAR se baseia no balanço de impacto ambiental potencial (PEI) das correntes que entram e saem de um processo, onde o impacto potencial de cada composto é calculado considerando oito categorias: aquecimento global, oxidação fotoquímica, destruição da camada de ozônio, chuva ácida, toxidade humana por ingestão e por inalação (ou exposição) e ecotoxidade aquática e terrestre. O método é apresentado no item 2.3.4.4 e comparado a outros métodos de avaliação ambiental no item 2.3.5.

A avaliação ambiental das frações de petróleo com base em critérios de periculosidade de cada substância é uma tarefa complexa, pois cada fração tem um número muito grande de compostos cuja identificação e quantificação são complicadas. Os simuladores comerciais de processos Hysys[®] e Aspen[®] realizam a simulação de óleos através da divisão da fração em pseudocomponentes teóricos, não permitindo identificar um conjunto de substâncias que caracterizam a fração de petróleo.

Essa dificuldade inviabilizou, nesse trabalho, que a avaliação ambiental do processo de hidroconversão também fosse realizada com o método WAR / PEI apresentado em Young e Cabezas (1999), apesar do programa WAR GUI versão 1.0 (EPA, 2002) ter sido fornecido pelos autores em 2003.

O WAR GUI - *Waste reduction algorithm Graphical user interface* calcula o balanço de impacto ambiental a partir da especificação das correntes de entrada e saída do processo. Os dados de entrada fornecidos ao programa são a lista de compostos químicos processados, com as respectivas vazões mássicas. Os impactos ambientais potenciais são então calculados para cada composto em cada uma das oito categorias de impacto a partir do banco de dados implementado no programa com informações sobre 1700 produtos químicos.

Dos compostos envolvidos na região de reação da hidroconversão (ver Figura 6.1), somente há informações para o cálculo do impacto ambiental potencial pelo método WAR / PEI para o H₂S e a NH₃:

- A NH₃ contribui com cinco categorias de impacto ambiental: toxidade humana por ingestão (LD₅₀ = 350 mg/kg) e por inalação ou exposição (OSHA TWA PEL = 35 mg/m³), potencial de acidificação, ecotoxidade aquática (LC₅₀ = 7 mg/l) e terrestre (LD₅₀ = 350 mg/kg);
- O H₂S apresenta contribuição em duas categorias: toxidade humana por inalação ou exposição (OSHA TWA PEL = 28 mg/m^3) e ecotoxidade aquática (LC₅₀ = $5,7 \text{ 10}^{-2} \text{ mg/l}$).

 LD_{50} e LC_{50} são medidas de toxidade que representam a morte de 50 % das espécies envolvidas no teste, quanto menor o valor maior a periculosidade do composto. O valor TWA PEL da OSHA (*Occupational safety and health administration*) é o limite de exposição a que um trabalhador pode ser exposto e quanto menor o valor mais perigoso o composto.

É interessante notar a contribuição para o H_2S na toxidade aquática por esses critérios, uma vez que nos critérios usados para avaliação ambiental com o método de Heinzle et al. (1998) modificado não há indicação de poluição na água, tanto na lista da Comunidade Européia como na VwVwS.

O WAR / PEI é um método interessante, apresentando diversas das características necessárias a um bom método de avaliação ambiental (conforme discutido no item 2.3.5): realiza a avaliação ambiental por categorias de impactos bem definidas, usa dados científicos consolidados e apresentados por instituições reconhecidas, permite acesso a valores intermediários de impactos, usa critérios pessoais ou culturais de forma clara e separada dos critérios científicos, considera situações locais através de pesos e está em fase adiantada de desenvolvimento para aplicação em simuladores comerciais de processo.

Entretanto, nesse momento, o método ainda não está preparado para ser aplicado de forma prática a processos de refino de petróleo devido à dificuldade de identificar as substâncias que compõe as frações de petróleo e, consequentemente, realizar a avaliação do impacto potencial das correntes de petróleo e derivados. Isso não significa que a avaliação de frações de petróleo com o método WAR/PEI não possa ser realizada. Essa avaliação é possível e já foi apresentada por Mata et al. (2002) no estudo da contribuição de diferentes naftas no impacto ambiental da gasolina. Mas, para que um método seja amplamente utilizado em simuladores de

processo (como é o objetivo deste método), seria importante desenvolver uma forma de avaliar as frações de petróleo de forma mais simples e direta.

6.4 CONSIDERAÇÕES FINAIS - AVALIAÇÃO AMBIENTAL DE PROCESSOS DE REFINO DE PETRÓLEO

Os métodos e indicadores para avaliação ambiental de processo apresentados no item 2.3 foram desenvolvidos e aplicados principalmente a processos da indústria química e farmacêutica, que comparadas à indústria do refino de petróleo se caracterizam por: processar menores vazões, com menores rendimentos, maior complexidade de processos (maior o número de etapas de reação) e uso de maior quantidade de insumos e matérias-primas (solventes, catalisadores, intermediários das reações). Segundo Heinzle et al. (1998), a razão entre a quantidade de materiais (insumos, subprodutos, rejeitos, etc) e de produto gerados em um processo varia de valores na ordem de 0,1 no refino de petróleo para mais de 100 na indústria farmacêutica.

A avaliação ambiental do processo de hidroconversão com o método de Heinzle et al. (1998) modificado mostra que para viabilizar a aplicação do método a processos de refino de petróleo e obter resultados consistentes é necessário:

- Estabelecer critérios que permitam avaliar as frações de petróleo de acordo com a classificação ABC apresentada na Tabela 3.1 e na Tabela 3.3, como efetuado no item 6.1;
- Realizar estudos em separado com os compostos que tenham pequenas vazões (em comparação com as vazões de petróleo) porém com potencial de trazer problemas ambientais (ou seja, que tenham recebido classificação A ou B na avaliação ambiental), como mostrado no item 6.2 para o catalisador e o hidrogênio.
- Calcular as vazões em escala industrial dos compostos com potencial de trazer problemas ambientais e avaliar as questões ambientais considerando essa perspectiva, como realizado para o descarte de catalisador no item 6.2.

A avaliação ambiental apresentada vem complementar as variáveis tradicionalmente utilizadas na comparação de processos (para análise de aspectos técnicos e econômicos), visando contribuir para o desenvolvimento e a seleção de processos mais eficientes e com melhor desempenho ambiental.

7 Conclusões

Este trabalho apresentou a modelagem e a simulação desenvolvidas para o reator tipo *slurry bubble column*, considerando a fluidodinâmica e reações de craqueamento, e a avaliação ambiental de processos através do cálculo de indicadores que permitem destacar os compostos, processos ou situações com maior potencial de ocasionar problemas ambientais (na linha de *design for the environment*). Neste capítulo apresenta-se um resumo estendido do trabalho desenvolvido e destacam-se suas principais contribuições.

A modelagem e a avaliação ambiental foram aplicadas ao processo de hidroconversão. Na hidroconversão ocorrem reações de craqueamento do resíduo de petróleo e remoção de heteroátomos (enxofre, nitrogênio e metais), em presença de hidrogênio, catalisador e condições de elevadas temperatura e pressão, gerando frações mais leves como gasóleo, diesel, nafta e gás.

Os processos de hidroconversão são divididos de acordo com a fluidodinâmica do reator em processos de leito fluidizado expandido (sólido confinado no reator) e com arraste de sólidos. Esses dois tipos de processos operam com catalisador e condições operacionais (severidade) distintos. A tecnologia em leito expandido é comercial, tendo 12 unidades industriais até 2002.

O reator de hidroconversão modelado opera em leito fluidizado com arraste de sólidos, tipo *slurry bubble column*, em que o catalisador e o óleo formam uma lama (fase pseudohomogênea) onde se considera que o catalisador está uniformemente distribuído. Nas condições da hidroconversão pode-se considerar que a fase gás é composta apenas por hidrogênio (presente em grande excesso) escoando em regime homogêneo de bolhas.

A literatura recente apresenta aplicações da avaliação ambiental nos mais diversos setores da indústria: alimentícia, farmacêutica, química, petroquímica e petróleo.

O método para avaliação ambiental foi selecionado a partir da análise comparativa dos indicadores ambientais apresentados na literatura. Para obtenção de resultados consistentes na avaliação ambiental é necessário que o indicador agrupe informações de compostos e impactos ambientais por categorias de impacto, usando bases de informações consolidadas, reconhecidas e acessíveis. O indicador deve permitir a identificação da origem dos problemas e separar de forma clara os critérios científicos das questões locais ou dos valores sociais e culturais.

Os métodos que se mostraram mais consistentes para avaliação ambiental de processos foram: o algoritmo WAR / PEI, o método da SETAC e o método de Heinzle et al. (1998). Dentre esses, foi selecionado o método de Heinzle et al. para aplicação na hidroconversão por apresentar uma estrutura consistente e simplificada (com análise do ciclo de vida implícita). O cálculo do indicador ambiental de Heinzle et al. baseia-se em informações da legislação ambiental e literatura, apresentando as vantagens de ser acessíveis e razoavelmente consolidadas. Entretanto, deve-se observar que legislações sofrem influências políticas, podendo apresentar tendências e misturar informações de origem científica com valores e questões locais.

O método de Heinzle et al. baseia-se na determinação dos indicadores de massa (IM, FM) e ambiental (IA) para os compostos, correntes e região em que o processo está sendo avaliado. IA é calculado considerando os aspectos ambientais decorrentes do fornecimento das matérias-primas e insumos (uso de recursos naturais e poluição na fabricação) e os impactos potenciais dos compostos gerados no processo (poluição do ar, da água e problemas de disposição). Os indicadores têm base qualitativa, sendo seu principal objetivo destacar problemas ambientais potenciais para que sejam propostas e avaliadas outras alternativas. Na avaliação de um processo, as alternativas mais interessantes são as que têm indicadores de menor valor.

A aplicação do método de Heinzle et al. ao processo de hidroconversão foi realizada implementando-se algumas modificações: a nomenclatura de indicadores e correntes foi totalmente redefinida; o conceito de recurso renovável foi substituído por sustentável; a avaliação dos aspectos ambientais foi realizada com base em documentos de normas e legislação ambiental brasileira, americana, alemã e européia; a avaliação das correntes que entram e saem do processo foi realizada considerando aspectos distintos. Outras modificações possibilitaram a aplicação do método ao refino de petróleo, onde as correntes são caracterizadas por cortes comerciais ou pseudocomponentes, diferentemente dos processos de química fina para qual o método foi desenvolvido. No refino de petróleo, propõe-se que o indicador ambiental seja calculado a partir da qualidade das correntes de destilado. Na avaliação da hidroconversão, a qualidade foi representada pelos teores de enxofre e nitrogênio presentes no óleo, que implicam na necessidade de reprocessamento dos derivados para venda.

Para simulação do reator de hidroconversão foram apresentados dois modelos: o "modelo fluidodinâmico base" e o "modelo fluidodinâmico com dispersão radial".

Esses modelos foram obtidos considerando escoamento turbulento perfeitamente desenvolvido na direção axial, com axissimetria, na maior parte do reator (região central). Considerou-se ainda que o sistema é isotérmico, opera em estado estacionário e não há variação significativa das propriedades dos fluidos ao longo do reator.

A fluidodinâmica no reator foi modelada a partir das equações da conservação da massa e quantidade de movimento médias no tempo, para as fases gás e lama, com um modelo turbulento de ordem zero e equações constitutivas. Obteve-se assim um modelo pseudobifásico e unidimensional, resolvido através da discretização das equações por volumes finitos e aplicação do algoritmo do acoplamento pressão-velocidade, conforme apresentado em Carbonell (1996).

As reações de craqueamento no reator foram modeladas a partir das equações de conservação da massa médias no tempo, na fase líquida, para cada pseudocomponente dos modelos cinéticos de reação. Os modelos obtidos consideram os fenômenos de reação e convecção na direção do escoamento (axial). O "modelo fluidodinâmico com dispersão radial" considera também o fenômeno de dispersão dos componentes na direção radial.

A literatura mostra que as reações de craqueamento ocorrem na fase líquida, podendo sofrer influência de etapas catalíticas como, por exemplo, a hidrogenação de aromáticos e a quebra de alguns tipos de ligações C–S e C–N (hidrogenólise). Para representar as reações de craqueamento foram implementados os modelos cinéticos de Mosby et al. (1986) e de Almeida (2000), formados por uma matriz de pseudocomponentes que reagem entre si com reações de primeira ordem. O modelo de Almeida considera efeitos térmicos e catalíticos nas reações e foi desenvolvido para petróleo Marlim.

Considerou-se que, nas condições da hidroconversão, as reações de craqueamento não interferem significativamente na fluidodinâmica do reator. Desta forma, a simulação das reações de craqueamento pôde ser realizada em duas etapas sucessivas:

- Inicialmente foram resolvidas as equações que representam a fluidodinâmica no reator, obtendo-se os perfis radiais de fração volumétrica, viscosidade efetiva e velocidade das fases gás e lama. Essas informações descrevem o comportamento do fluxo, mostrando o padrão de recirculação, e determinam a dispersão (mistura) no reator.
- A seguir foram resolvidas as equações que representam as reações de craqueamento, determinando-se os perfis de concentração (radial e axial) de cada componente no reator, a conversão do resíduo e a distribuição de produtos na saída do reator.

A resolução das equações dos modelos contou com a aplicação de método matemáticos e o desenvolvimento do algoritmo do acoplamento reação-recirculação. Este algoritmo permitiu a simulação das reações a partir dos dados de concentração dos pseudocomponentes na entrada do reator (condição de contorno) e das variáveis fluidodinâmicas calculadas na região de escoamento desenvolvido (região central do reator).

O "modelo fluidodinâmico base" é formado por um sistema de equações diferenciais ordinárias que foram integradas analiticamente e resolvidas iterativamente.

O "modelo fluidodinâmico com dispersão radial" é formado por um sistema de equações diferenciais parciais, com caráter evolutivo na direção axial, que apresentaram elevada rigidez numérica. Para contornar esse problema foi implementado um procedimento que envolveu a discretização das equações por colocação ortogonal, a integração das equações discretizadas por meio do cálculo dos autovalores e autovetores do sistema e a aplicação dos conceitos do algoritmo do acoplamento reação-recirculação. O método se mostrou robusto e preciso, fornecendo resultados com baixo tempo computacional.

A simulação dos modelos foi implementada em linguagem Fortran 90, no programa RHA – Reator de Hidroconversão com Arraste. RHA 2.1 é a versão final consolidada do programa, em que estão implementados todos os modelos, com tempo de execução da ordem de 20 s em PC-Pentium 550 MHz com 64 MB de memória RAM.

Os parâmetros e condições operacionais para as simulações do reator de hidroconversão foram definidos com base em dados típicos de reatores de hidroconversão e colunas de bolhas em escala piloto e demonstração. O reator simulado opera em escala piloto, com fluidodinâmica típica da hidroconversão em leito de arraste (*slurry bubble column*) e severidade típica de leito expandido (P ~ 110 bar, T ~ 410 - 450 °C e catalisador comercial de Ni/Mo ou Co/Mo em alumina). As propriedades do óleo e do hidrogênio nas condições de operação foram obtidas com o uso de simulador comercial.

Os resultados da simulação e análise paramétrica foram comparados a dados de literatura e ao comportamento físico esperado para as variáveis, o que permitiu avaliar a validade e as limitações da modelagem desenvolvida. A maior parte das informações publicadas na literatura sobre a fluidodinâmica foi obtida em colunas de bolhas a frio, operando com ar e água (com ou sem sólidos). Apesar dessas unidades a frio não representarem bem alguns parâmetros do reator, como a fração volumétrica de gás, esses dados são importantes pois são mais acessíveis

e contribuem para o entendimento de fenômenos que determinam a fluidodinâmica (Tarmy et al., 1984).

A simulação da fluidodinâmica do reator mostra o perfil de recirculação médio encontrado em colunas de bolhas, com fluxo de lama ascendente na região central do reator e descendente próximo às paredes. A posição radial em que a velocidade da lama é nula denominase ponto de inversão de fluxo.

O estudo de análise paramétrica da simulação da fluidodinâmica considerou a influência de 19 variáveis no perfil de velocidade de líquido (onde $V_L(r) = V_{sl}(r) = V_s(r)$), mostrando que:

- Os parâmetros das equações com maior influência são a fração volumétrica de gás (ε_g) e a viscosidade turbulenta do líquido. A variável ε_{gM} (ε_g média) está bem representada no modelo.
- As variáveis com maior influência são o diâmetro do reator e a velocidade superficial de gás. Ambas mostraram a tendência esperada, porém a influência do diâmetro do reator parece ser excessiva. Este comportamento foi atribuído à utilização de um modelo turbulento de ordem zero, que deve ser revisto antes que o modelo possa ser utilizado para ampliação de escala. Outros detalhes e limitações do modelo fluidodinâmico são discutidos em Carbonell (1996).

As simulações das reações de craqueamento da hidroconversão com o "modelo fluidodinâmico base" e o "modelo fluidodinâmico com dispersão radial" forneceram conversões de resíduo típicas de reatores com elevado grau de mistura, conforme esperado para reatores fluidizados. Foram realizadas simulações usando a cinética de Mosby et al. (1986) e em condições de temperatura, tempo de residência e número de reatores típicos aos de uma unidade industrial (T ~ 425 °C, τ_L ~ 1,5 h por reator, até 3 reatores em série), que apresentaram resultados da ordem de magnitude esperada.

Os perfis de concentração no reator, Ci (r,z), obtidos com os modelos fluidodinâmicos "base" e "com dispersão radial" são bastante diferentes. No modelo "com dispersão radial" os perfis são suaves, sendo mais acentuados ao longo do reator (direção axial) do que na direção radial. Os perfis radiais são mais inclinados próximo ao fundo do reator, comportamento justificado pelos efeitos de entrada da carga. A concentração dos reagentes diminui e a dos produtos aumenta ao longo do reator. Esses perfis são consistentes com o comportamento físico esperado no reator. No "modelo fluidodinâmico base" ocorre uma descontinuidade dos perfis radiais de concentração no ponto de inversão de fluxo (onde $V_L = 0$). Nesse modelo, somente é considerada a transferência de massa por convecção na direção axial. O ponto de inversão de fluxo se comporta como uma "parede", impedindo a transferência de massa entre as regiões de fluxo ascendente e descendente do reator. Neste ponto, o tempo de residência tende para infinito e todo o resíduo tende a ser convertido em frações mais leves, gerando uma declividade acentuada nos perfis radiais de concentração. Na região de fluxo ascendente, conforme esperado, a concentração dos reagentes diminui e a dos produtos aumenta ao longo do reator. Na região de fluxo descendente ocorre o oposto. Dessa forma, verifica-se que o modelo "base" não representa bem o comportamento dos perfis de concentração no reator.

As conversões de resíduo calculadas com os modelos fluidodinâmicos "base" e "com dispersão radial", em diversas condições operacionais, foram comparadas às dos modelos de escoamento ideal CSTR (mistura perfeita) e PFR (fluxo pistonado). Esperava-se obter resultados inferiores aos do PFR e um pouco superiores aos do CSTR, em função do elevado grau de mistura no reator de hidroconversão.

Entretanto, verificou-se que as conversões calculadas com o modelo "base" sempre resultavam em valores um pouco inferiores aos do CSTR. Para avaliar o modelo "base" e compreender esses resultados foi realizado um estudo com arranjos de reatores ideais (CSTR e PFR), operando nas condições calculadas para as regiões de fluxo ascendente e descendente do reator de hidroconversão. O estudo mostrou que a descontinuidade no ponto de inversão de fluxo causa uma não idealidade no escoamento e leva à obtenção de conversões um pouco inferiores às do CSTR, tanto no modelo "base" como nos arranjos CSTR e PFR calculados. Adicionalmente, o modelo "base" possui regiões de baixa velocidade em torno da inversão de fluxo, que se comportam como "volumes mortos" e podem justificar conversões ainda mais baixas.

As conversões calculadas com os modelos fluidodinâmicos "base" e "com dispersão radial" usando a cinética de Mosby et al. (1986) resultaram em valores próximos, sem mostrar uma tendência definida de qual modelo fornece conversões mais elevadas. As conversões calculadas usando o modelo "com dispersão radial", em diversas condições operacionais, apresentaram valores inferiores aos do modelo "base" em algumas simulações e valores um pouco superiores aos do CSTR em outras. No modelo "com dispersão radial" ocorre transferência de massa por dispersão no ponto de inversão de fluxo, comportamento mais complexo que não foi possível estudar com arranjos de reatores ideais.

Os estudos de análise paramétrica mostraram que, em qualquer modelo do reator, a temperatura é a condição operacional com maior influência nos resultados da simulação, seguida pelo tempo de residência do líquido e o grau de mistura.

O aumento da temperatura leva a uma maior conversão de resíduo e maior tendência à formação de coque. O gasóleo produzido sofre craqueamento a temperaturas mais elevadas, formando produtos mais leves. Dessa forma, a operação em temperaturas mais elevadas tende a gerar frações mais leves e requer maior pressão de hidrogênio para suprimir a formação de coque. Como a formação de coque não foi simulada, considerou-se que havia pressão parcial de hidrogênio suficiente em todas as condições simuladas.

Nos modelos fluidodinâmicos "base" e "com dispersão radial", o tempo de residência do líquido e o grau de mistura (dispersão e circulação) no reator são determinados a partir das variáveis fluidodinâmicas. O tempo de residência do líquido é determinado pela velocidade superficial de líquido, fração volumétrica de cada fase e altura do reator. As elevadas velocidades locais de líquido nas regiões de fluxo ascendente e descendente mostram que o modelo fluidodinâmico prevê uma intensa recirculação no reator, de forma que variações nessas velocidades não chegam a influenciar as reações. Ainda assim, o "modelo fluidodinâmico com dispersão radial" sofre influência significativa do grau de mistura no reator através de variações no coeficiente de dispersão radial do líquido.

O estudo da influência de diversos parâmetros e não-idealidades do fluxo nas simulações mostrou que, para a obtenção de um modelo representativo do reator de hidroconversão, é importante a compreensão e a modelagem dos fenômenos que dominam a fluidodinâmica no reator. Os modelos apresentados na literatura não apresentam uma abordagem fluidodinâmica. Nestes trabalhos, o escoamento do líquido e do gás no reator é aproximado por modelos ideais (CSTR, PFR ou PFR com dispersão axial) com o cálculo de algumas variáveis fluidodinâmicas como a fração volumétrica de gás e do líquido. Os modelos fluidodinâmicos "base" e "com dispersão radial" apresentados nesse trabalho ainda não consideram todos os fenômenos físicos e reacionais relevantes e também não foram extensivamente comparados a dados experimentais, mas contribuem para o desenvolvimento de modelos mais representativos.

A avaliação e a comparação dos resultados obtidos com a simulação dos dois modelos desenvolvidos mostraram que o "modelo fluidodinâmico com dispersão radial" é mais sensível à

fluidodinâmica do reator e apresenta resultados mais consistentes com o comportamento físico esperado. O tempo computacional é semelhante para os dois modelos.

As simulações realizadas usando o "modelo fluidodinâmico com dispersão radial" e a cinética de Almeida (2000), obtida para petróleo Marlim, foram comparadas com as tendências experimentais observadas variando a temperatura, o tempo de residência do líquido e a relação óleo/catalisador. As concentrações obtidas na simulação apresentaram o comportamento físico esperado, com valores próximos aos de um reator ideal CSTR.

A avaliação ambiental do processo hidroconversão na região de reação foi realizada aplicando o método de Heinzle et al. (1998) modificado. A conversão de resíduo e a distribuição de produtos na saída do reator foram calculadas através da simulação do "modelo fluidodinâmico com dispersão radial" e cinética de Almeida (2000). O diesel foi considerado como produto de interesse, sendo todos os outros derivados definidos como subprodutos. O levantamento dos aspectos ambientais foi efetuado com base nos critérios definidos no método, porém adaptados para aplicação ao refino de petróleo.

Para a região de reação foram determinados os indicadores de massa e ambiental, com a estrutura de pesos definida por Heinzle et al., permitindo destacar os maiores problemas ambientais potenciais da hidroconversão: a geração de H_2S e NH_3 e o descarte de catalisador. No refino de petróleo, a presença de H_2S e NH_3 é comum nas correntes de gás, que são tratadas com tecnologias bem estabelecidas, não representando problema adicional. A geração desses compostos na hidroconversão resulta das reações de HDS e HDN que removem heteroátomos do óleo e, portanto, são benéficas nesse processo.

A questão do descarte de catalisador é mais complexa uma vez que os processos de hidroconversão em leito expandido e de arraste operam em diferentes severidades e com distintos tipo, função e reposição de catalisador. Os processos em leito expandido utilizam catalisador mais ativo (que têm materiais críticos para o ambiente em sua formulação) e de maior custo, mas necessitam de uma reposição muito inferior à dos processos em leito de arraste.

Comparando os valores de descarte de catalisador nas refinarias brasileiras com o das unidades de hidroconversão, verifica-se que uma unidade industrial em leito de arraste com capacidade de 6400 m³/d descarta uma quantidade de catalisador da mesma ordem de magnitude ou até bastante superior a todas as unidades de FCC e RFCC instaladas na Petrobras até o ano de 2002. Por isso, na seleção e estudo de viabilidade de uma tecnologia de hidroconversão a questão

do catalisador precisa ser bem avaliada. Diversas alternativas já foram exploradas para destino do catalisador usado e são apresentadas na literatura. Uma opção que se mostra interessante é o reciclo do catalisador rejuvenescido para o reator.

A avaliação dos indicadores de massa e ambiental também mostrou que é importante o reciclo do excesso de hidrogênio para o reator, prática já usual nas unidades industriais de hidroconversão.

A comparação efetiva dos processos de hidroconversão em leito de arraste e leito expandido não foi possível com as informações e modelos disponíveis nesse trabalho, visto que são diversas e complexas as diferenças entre os processos resultando em diferentes conversões de resíduo, consumo de hidrogênio, catalisador e energia, formação de coque e distribuição de produtos. Entretanto, alguns estudos variando a temperatura e condições operacionais demonstraram a aplicação do método e permitiram discutir questões ambientais relevantes.

Os indicadores da avaliação ambiental mostraram que, na aplicação do método para processos de refino de petróleo, a contribuição das frações de petróleo nos valores dos indicadores é muito mais significativa que a dos outros compostos, destacando os resultados de conversão e seletividade das reações. Isso ocorre em função das grandes vazões das correntes de petróleo em comparação às dos outros componentes (Q frações de petróleo >> Q outras correntes). Dessa forma, para viabilizar a aplicação do método ao refino de petróleo e obter resultados consistentes é necessário realizar estudos em separado com os compostos que tenham pequenas vazões porém significativo potencial de trazer problemas ambientais (como foi realizado para o hidrogênio e catalisador). Também é importante calcular as vazões destes compostos na operação de uma unidade industrial e avaliar as questões ambientais sob esta perspectiva (como foi analisado para o descarte de catalisador).

Procurou-se testar também o método WAR / PEI para avaliação ambiental do processo de hidroconversão. O método está sendo desenvolvido para uso em simuladores comerciais, visando tornar a avaliação ambiental uma prática usual dos engenheiros químicos em suas atividades de desenvolvimento, projeto e otimização de processos. Entretanto, o método não pôde ser aplicado nesse trabalho porque necessita que as substâncias presentes em cada corrente de processo sejam identificadas e quantificadas. Essas informações são complicadas de obter para correntes de petróleo e derivados. Dessa forma, para que o método WAR / PEI possa ser amplamente usado no refino de petróleo é necessário desenvolver um procedimento alternativo

que permita realizar a avaliação ambiental das frações de petróleo considerando suas principais características (como os teores de heteroátomos presentes no óleo, grupos funcionais dominantes, volatilidade, etc).

A avaliação ambiental apresentada complementa a análise de viabilidade de processos, que já considera aspectos técnicos e econômicos, visando contribuir para o desenvolvimento e instalação de unidades industriais viáveis e ambientalmente sustentáveis.

Durante o desenvolvimento desse trabalho foram apresentados e publicados os seguintes artigos, que estão reproduzidos nos itens 9.1 a 9.4:

- "Chemical engineering for a sustainable environment", apresentado no XIX Interamerican Congress of Chemical Engineering e XIII Congresso Brasileiro de Engenharia Química em 2000 (Carbonell et al., 2000)
- "Modelling a hydroconversion reactor based on a computational fluid dynamics approach", apresentado no 2nd International Symposium / 7th European Workshop of Hydrotreatment and Hydrocracking of Oil Fraction, realizado em Antwerpen, Bélgica, em 1999 e publicado no livro "Hydrotreatment and Hydrocracking of oil fractions" da editora Elsevier contendo os anais do congresso (Carbonell e Guirardello, 1999).
- "Modelling of a slurry bubble column reactor applied to the hydroconversion of heavy oils" apresentado na Third International Conference on Gas-Liquid-Solid Reactor Engineering, GLS'97, realizada no Japão, em 1997, e publicado na revista Chemical Engineering Science da editora Elsevier (Carbonell e Guirardello, 1997).
- "Simulação da hidroconversão de resíduos de petróleo uma análise paramétrica", apresentado no XXVI Congresso brasileiro de sistemas particulados (XXVI ENEMP), realizado em Teresópolis – RJ e publicado nos anais do congresso (Carbonell e Guirardello, 1998a).

Concluindo, verifica-se que os objetivos do trabalho foram atendidos trazendo contribuições para a modelagem e simulação de reatores de hidroconversão em escala piloto e para o desenvolvimento de processos com melhor desempenho ambiental. Destacam-se como contribuições desse trabalho:

- A definição de critérios que permitem selecionar métodos e indicadores para avaliação ambiental de processos químicos na linha de *design for the environment*;
- A implementação de modificações no método de Heinzle et al. (1998) para viabilizar sua aplicação em processos de refino de petróleo;
- A inclusão de documentos de norma e legislação ambiental brasileira, americana e européia como fontes de referência para indicar a periculosidade das substâncias na avaliação ambiental proposta por Heinzle et al.;
- A definição de características e parâmetros representativos das dimensões e condições operacionais do reator de hidroconversão simulado, através do levantamento comparativo de unidades operando em condições similares e em diversas escalas (piloto, demonstração e comercial);
- O desenvolvimento do "modelo fluidodinâmico com dispersão radial" para simulação do reator de hidroconversão tipo *slurry bubble column*, em escala piloto, considerando a fluidodinâmica e reações de craqueamento. Esse modelo é bastante representativo e tem abordagem distinta dos modelos apresentados na literatura, que aproximam o escoamento do líquido e do gás no reator por modelos ideais (CSTR, PFR ou PFR com dispersão axial);
- A implementação de um procedimento matemático robusto e eficiente para a solução das equações do modelo fluidodinâmico com dispersão radial, contornando a rigidez das equações com baixo tempo computacional;
- A implementação da cinética de craqueamento de Almeida no modelo fluidodinâmico com dispersão radial, permitindo a simulação do reator em escala piloto para processamento de petróleo Marlim;
- A avaliação da influência de diversos parâmetros e não-idealidades do fluxo nos modelos propostos, mostrando que a fluidodinâmica interfere significativamente nas reações através da estrutura de escoamento no reator e dispersão dos componentes. O desenvolvimento de um modelo representativo para o reator de hidroconversão, que permita ampliação de escala, requer a compreensão e modelagem dos principais fenômenos fluidodinâmicos;
- A avaliação ambiental do processo de hidroconversão na região de reação, com abordagem na linha de *design for the environment*, destacando a maior preocupação ambiental do processo de hidroconversão como sendo o consumo e destino de catalisador;

- A constatação de que na avaliação ambiental de processos de refino, os indicadores são dominados pelas grandes vazões das correntes de petróleo, sendo necessário realizar estudos em separado e sob perspectiva industrial dos compostos que tenham pequenas vazões porém significativo potencial de trazer problemas ambientais;
- A proposta de avaliação ambiental das frações de petróleo a partir da qualidade ambiental dessas frações, indicada pelos teores de heteroátomos (enxofre, nitrogênio) presentes no óleo e pela necessidade de reprocessamento.

7.1 SUGESTÕES PARA FUTUROS TRABALHOS

Com base nos trabalhos desenvolvidos e nas dificuldades e perspectivas observadas são apresentadas a seguir algumas propostas para futuros trabalhos:

- O aprimoramento do modelo fluidodinâmico para o reator de hidroconversão visando sua aplicação em estudos de ampliação de escala, através da revisão do modelo turbulento e da implementação de correlações obtidas para sistemas operando com elevadas pressões;
- A validação e ajuste dos modelos através da comparação das simulações com dados experimentais de sistemas operando em condições similares às de hidroconversão;
- A modelagem da formação de coque e das reações de hidrodesmetalização (HDM) para simulação da reposição de catalisador no reator de hidroconversão;
- A modelagem das reações de hidrodessulfurização (HDS) e hidrodesnitrogenação (HDN) para simular a remoção de heteroátomos (de S e N) na hidroconversão;
- O desenvolvimento de critérios para avaliação ambiental das frações de petróleo que viabilizem a utilização do método WAR / PEI de forma prática e representativa para processos de refino;
- Ampla avaliação ambiental dos processos de hidroconversão, comparando processos em leito expandido e leito de lama, avaliando a viabilidade do reciclo de resíduo não convertido ao reator e avaliando o rejuvenescimento e reciclo do catalisador usado ao reator.
- A avaliação ambiental comparativa das tecnologias para processamento de resíduo de vácuo, em especial o processo de hidroconversão e o processo de coqueamento retardado.

8. Referências bibliográficas

Artigos publicados durante o desenvolvimento da tese de doutorado apresentam listas específicas de referências bibliográficas. Estas referências não são necessariamente repetidas a seguir, mas podem ser consultadas nos artigos (veja itens 9.1 a 9.4).

ABNT - ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS, Rio de Janeiro. NBR-10004; Resíduos sólidos. Rio de Janeiro, 1987. 48 p. (citado no texto: ABNT, 1987)

ABREU, J. C. Modelagem e simulação de reator de leito expandido aplicado ao hidroprocessamento de óleos pesados e resíduos de destilação. Campinas: Faculdade de Engenharia Química, UNICAMP, 1995. Dissertação (Mestrado)

ACS – American Chemical Society. CAS – Chemical Abstract Service. Consultado em www.cas.org em 08.04.2002.

AGÊNCIA AMBIENTAL ALEMÃ. Classification of substances and mixtures into water hazard classes according to the administrative regulation on the classifications of substances hazardous to waters – guidelines for self classification. Consultado na página de downloads em <u>http://www.umweltbundesamt.de/wgs-e/wgs-index.htm</u> em 03.2002. (citado no texto: Agência Ambiental alemã, 2002)

ALEMANHA. Regulamentação VwVwS, de 17 de maio de 1999. Regulamentação geral administrativa sob a Lei Federal de gerenciamento de águas (WHG) que classifica as substâncias tóxicas para a água em classes de periculosidade (WGK). Consultada em (<u>http://www.umweltbundesamt.de/wgs-e/wgs-index.htm</u>, página da Agência ambiental alemã.

ALMEIDA, RAFAEL MENEGASSI DE. *Cinética das reações de hidroconversão de resíduo de vácuo do petróleo Marlim.* Campinas: Faculdade de Engenharia Química, UNICAMP, 2000. 317 p. Tese (Doutorado).

ANDERSON. R. N. Oil Production in the 21th Centuty. *Scientific American*, vol.278, n.3, p.68-73, 1998.

AZAPAGIC, A., CLIFT, R. The application of life cycle assessment to process optimization, *Computers and Chemical Engineering*, v.23, p.1509-1526, 1999.

AZAPAGIC, ADISA. Life cycle assessment and its application to process selection, design and optimization, *Chemical engineering journal*, v.73, p.1-21, 1999.

BATTERHAM, R.J. Ten years of sustainability: where do we go from here. *Chemical Engineering Science*, v.58, p.2167-2179, 2003.

BAUER, P. E., MACIEL FILHO, R. Incorporação de critérios de impacto ambiental no projeto e na operação de processos químicos, In 14° CONGRESSO BRASILEIRO DE ENGENHARIA QUÍMICA, 2002, Natal – Brasil. Natal: ABEQ, 2002, em CD.

246

BEATON, W. I., BERTOLACINI, R. J. Resid hydroprocessing at Amoco. Catal. Rev. - Sci. Eng., vol.33, n. 3-4, p.281-317, 1991.

BRASIL Ministério do Trabalho. Portaria n. 3214, de 08 de junho de 1978. Aprova as normas regulamentadoras – NR-1 a NR-28. A NR-15 trata de atividades e operações insalubres. Segurança e Medicina do Trabalho, 25 ed., São Paulo: Atlas, 1994, p.114-198. (Manuais de Legislação Atlas). (citado como Brasil, 1978)

BRASIL. Constituição (1988). Constituição da República Federativa do Brasil: promulgada em 5 de outubro de 1988. Organização do texto: B. Calheiros Bomfim. 4. ed. Rio de Janeiro: Editora Destaque. 278 p.

BRASIL. Lei n. 9433, de 8 de janeiro de 1997. Institui a Política nacional de recursos hídricos e cria o Sistema nacional de gerenciamento de recursos hídricos.

BRENNECKE, J. F., STADTHERR, M. A. A course in environmentally conscious chemical process engineering, Computers and Chemical Engineering, v.26, p.307-318, 2002.

BRUIJN, T.J.W. de, CHASE, J.D., DAWSON, W.H. Gas holdup in a two-phase vertical tubular reactor at high pressure. *The Canadian Journal of Chemical Engineering*, v.66, p.330-333, 1988.

CABEZAS, H., BARE, J. C., MALLICK, S. K. Pollution prevention with chemical process simulators: the generalized waste reduction (WAR) algorithm – full version, *Computers and Chemical Engineering*, v.23, p.623-634, 1999.

CANO-RUIZ, J. A., McRAE, G. J. Environmentally conscious chemical process design, *Annual review of energy and the environment*, v.23, p.499-536, 1998.

CAPITANI, M.F. A hidroconversão de resíduo de vácuo Marlim. In CONEXPO ARPEL'96, 1996, Brasil. Trabalho TT-024, 11 p.

CARBONELL, M.M., CAVALCANTI, R.N., GUIRARDELLO, R. Chemical engineering for a sustainable environment. In XIX INTERAMERICAN CONGRESS OF CHEMICAL ENGINEERING E XIII CONGRESSO BRASILEIRO DE ENGENHARIA QUÍMICA, 2000, Águas de São Pedro – Brasil. São Paulo: COBEQ, 2000, trabalho 590 do CD.

CARBONELL, M.M., GUIRARDELLO, R. Erratum. *Chemical Engineering Science*, v.53, n.13, p.2479-2479, 1998b.

CARBONELL, M.M., GUIRARDELLO, R. Modelling a hydroconversion reactor based on a computational fluid dynamics approach. In DELMON, B., FROMENT, G.F., GRANGE, P. Studies in Surface Science and Catalysis, v.127, Hydrotreatment and Hydrocracking of Oil Fractions – 2^{nd} International Symposium / 7^{th} European Workshop. Holanda: Elsevier, 1999, p.289-296.

CARBONELL, M.M., GUIRARDELLO, R. Modelling of a slurry bubble column reactor applied to the hydroconversion of heavy oils. *Chemical Engineering Science*, v.52, n.21/22, p. 4179-4185, 1997.

CARBONELL, M.M., GUIRARDELLO, R. Simulação da hidroconversão de resíduos de petróleo – uma análise paramétrica. In XXVI CONGRESSO BRASILEIRO DE SISTEMAS PARTICULADOS (XXVI ENEMP), 1998a, Teresópolis – Brasil, p.517-524.

CARBONELL, MONTSERRAT MOTAS. *Modelagem e Simulação de reator fluidizado trifásico aplicado ao processo de hidroconversão de óleos pesados*. Campinas: Faculdade de Engenharia Química, UNICAMP, 1996. 174 p. Dissertação (Mestrado).

CASTILLO, E.F., MORA, M. Mathematical modelling as a tool for environmental evaluation of industrial sectors in Colombia. *Waste Management*, v.20, p.617-623, 2000

CAVALCANTI, R.N. *Mineração e desenvolvimento sustentável: casos da Companhia Vale do Rio Doce*. São Paulo: Escola Politécnica, USP, 1996. p.189-228. Tese (Doutorado)

CERAGIOLI, HELDER Desenvolvimento de software / banco de dados de resíduos sólidos industriais. Campinas: Faculdade de Engenharia Química, UNICAMP, 1998. Dissertação (Mestrado).

CETESB. *Prevenção à poluição – Ações da CETESB*. Consultado em <u>www.cetesb.sp.gov.br</u>, em 20.05.2002. (citado no texto: CETESB, 2002)

CETESB. *Prevenção à poluição – Casos de Sucesso*. Consultado em <u>www.cetesb.sp.gov.br</u>, em 1999. (citado no texto: CETESB, 1999)

CETESB. *Prevenção à poluição – Casos de Sucesso*. Consultado em <u>www.cetesb.sp.gov.br</u>/ambiente/prevencao_poluicao/casos.htm, em 19.10.2002a. (citado no texto: CETESB, 2002a)

CHANG, T. Petrobras implements \$29 million refining-technology program. *Oil and Gas Journal*. Edição especial, mar. 22, p.63-70, 1999.

CHEN, H., WEN, Y., WATERS, M. D., SHONNARD, D. R. Design guidance for chemical processes using environmental and economic assessment, *Industrial and Engineering Chemistry Research*, v.41, n.18, p.4503-4513, 2002.

CHEN, Z.; ZHENG, C.; FENG, Y.; HOFMANN, H. Modelling of three-phase fluidized beds based on local bubble characteristics measurements. *Chemical Engineering Science*, v.50, n.2, p.231-236, 1995

CIA – Central Intelligence Agency. *World Factbook*. US: CIA, 2001. Consultado em www.cia.gov/cia/publications/factbook/fbhome.html em 18.04.2002.

COLYAR, J. J. Ebullated-bed reactor technology. In *Upgrading heavy ends with IFP*. França: Instituto francês do petróleo (IFP), 1997, p.41-49.

COMISSÃO MUNDIAL SOBRE O MEIO AMBIENTE E DESENVOLVIMENTO. *Nosso Futuro Comum.* 2.ed. Rio de Janeiro: Editora da Fundação Getúlio Vargas, 1991, 430 p.

COMUNIDADE EUROPÉIA Diretiva 2000/60/CE, de 23 de outubro de 2000. Estabelece um quadro de ação comunitária no domínio da política da água. Consultada em europa.eu.int/eur-lex.

CONAMA. Estabelece a classificação das águas doces, salobras e salinas do Território Nacional. Resolução n.20, de 18 de junho de 1986. Consultada em <u>www.mma.gov.br</u>.

CONAMA. Estabelece sobre os prazos, limites e restrições de uso a substâncias que destroem a camada de ozônio. Resolução n.267, de 14 de setembro de 2000. Consultada em <u>www.mma.gov.br</u>.

CONAMA. Institui o programa nacional de controle da qualidade do ar – PRONAR. Resolução n.05, de 15 de junho de 1989. Consultada em <u>www.mma.gov.br</u>.

DANTUS, M. M., HIGH, K. A. Economic evaluation for the retrofit of chemical processes through waste minimization and process integration, *Industrial and Engineering Chemistry Research*, v.35, n.12, p.4566-4578, 1996.

DANTUS, M. M., HIGH, K. A. Evaluation of waste minimization alternatives under uncertainty: a multiobjetive optimization approach, *Computers and Chemical Engineering*, v.23, p.1493-1508, 1999.

DOUGLAS, J. M. Process synthesis for waste minimization. *Industrial and Engineering Chemistry Research*, v.31, n.1, p.238-243, 1992.

DRAGO, G.; GUITIÁN, J.; KRASUK, J.; LARRAURI, J.; et al. Development of the HDH TM Process. *Revista Técnica Intevep*, v.10, n.1, p.15-36, 1990.

DUDUKOVIC, M.P., DEVANATHAN, N. Bubble column reactors : some recent developments. In LASA, H.I., DOGU, G., RAVELLA, A. *Chemical Reactor Technology for Environmentally Safe Reactors and Products*. Holanda: Kluwer Academic Publishers, 1993, p.353-377.

ECCLES, R.M. Residue hydroprocessing using ebullated-bed reactors. *Fuel Processing Technology*, v. 35, n.1/2, p.21-38, 1993.

ELLIOTT, A. D., SOWERBY, B., CRITTENDEN, B. D. Quantitative environmental impact analysis for clean design, *Computers and Chemical Engineering*, v.20, Supplement, p.S1377-S1382, 1996.

ENERGETICS. Report on *Energy and environmental profile of the U.S. petroleum refining industry*.US: US Department of Energy, 1998, 121 p.

EPA. Waste reduction Algorithm Graphical use interface, version 1.0.14. EPA / ORD, 2002

ESTADOS UNIDOS. USC – Código dos Estados Unidos. Título 42, Capítulo 85, Artigo 7401 et seq., 1970 (revisado em 1990). Air Pollution Prevention and Control. (denominado CAA – Clean air act). Consultado em www.epa.gov/epahome/laws.htm, em 3.12.2001. (citado no texto: Estados Unidos, 1990)

FAN, L. S. Gas-liquid-solid fluidization engineering. Boston: Butterworths Publishers, 1989, 763p.

FARAH, M.A. Comunicação pessoal, 2004.

FAVA, J. A., CONSOLI, F., DENISON, R., DICKSON, K., et al. *A conceptual framework for life-cycle - Impact assessment*. Pensacola: SETAC e SETAC Foundation for environmental education, 1993, 160 p.

FAVA, J. A., DENISON, R., JONES, B., CURRAN, M. A., et al. *A technical framework for life-cycle assessment*. Pensacola: SETAC e SETAC Foundation for environmental education, 1991, 134 p.

FLORES, C. ZBINDEN, H. ZACARIAS, L., SOLARI, B. PEREIRA, P. PDVSA strategic technologies for upgrading Venezualan heavy crude oils. In PETROBRAS INTERNATIONAL SEMINAR OF HEAVY CRUDE OIL PROCESSING, 2002, Rio de Janeiro – Brasil. Rio de Janeiro: Petrobras, 2002, em CD.

FORRET, A., SCHWEITZER, J-M., GAUTHIER, T., KRISHNA, R., SCHWEICH, D. Influence of scale on the hydrodynamics of bubble column reactors: an experimental study in columns of 0.1, 0.4 and 1 m diameters. *Chemical Engineering Science*, v.58, p.719-724, 2003.

GASCHE, H.E., EDINGER, C., KOMPEL, H., HOFMANN, H. A fluid dynamically based model of bubble column reactors. *Chemical Engineering Technology*, v.13, p.341-349, 1990.

GOES, ROBERTO C. DA S. Manual de toxicologia do refino de petróleo. Petrobras, 1991, 90 p.

GRAY, M. R. Upgrading petroleum residues and heavy oils. Estados Unidos: Marcel Dekker Inc, 1994, 348 p.

GUITIÁN, J.; SOLARI, R.B.; GÓMEZ, O.; TELLEZ, E. Increase refinery flexibility by using a new resid hydrocracking process, HDHTM. *Revista técnica Intevep*. v.11, n.1, p.63-72. jan-jun 1991

HALIM, I., SRINIVASAN, R. Systematic waste minimization in chemical processes. 1. Methodology. *Industrial and Engineering Chemistry Research*, v.41, n.2, p.196-207, 2002a.

HALIM, I., SRINIVASAN, R. Systematic waste minimization in chemical processes. 1. Intelligent decision support system. *Industrial and Engineering Chemistry Research*, v.41, n.2, p.208-219, 2002b.

HAMMERTON, D. Water Pollution. In: KIRKWOOD, R. C., LONGLEY, A. J. *Clean technology and the environment*. Inglaterra: Blackie Academic & professional, 1995, p.87-119.

HEIJUNGS, R., HUPPES, G., LANKREIJER, R. M. UDO DE HAYES, H. A., WEGE-NERSLEESWIJK, A. *Environmental life cycle assessment of products: backgrounds and guide.* Leiden: Centre of environmental science, 1992.

HEINZLE, E. Comunicação eletrônica enviada em 09.01.2002 do e-mail <u>e.heinzle@mx.uni-saarland.de</u> (citado como Heinzle, 2002)

HEINZLE, E., WEIRICH, D., BROGLI, F., HOFFMANN, V. H. et al. Ecological and economic objective functions for screening in the integrated development of fine chemical processes. 1. Flexible and expandable framework using indices, *Industrial and Engineering Chemistry Research*, v.37, n.8, p.3395-3407, 1998.

HERTWICH, E. G., PEASE, W. S., KOSHLAND, C. P. Evaluating the environmental impact of products and production processes: a comparison of six methods, *The science of the total environment*, v.126, p.13-29, 1997.

HILALY, A. K., SIKDAR, S. K. Pollution balance method and the demonstration of its application to minimizing waste in a biochemical process. *Industrial and Engineering Chemistry Research*, v.34, n.6, p.2051-2059, 1995.

HILLMER, G., WEISMANTEL, L., HOFMANN, H. Investigations and modelling of slurry bubble columns. *Chemical Engineering Science*, v.49, n.6, p.837-843, 1994.

HYSIM. Hysim: Users guide. Hyprotech Ltda. Canada, 1994.

JOSHI, J.B., VITANKAR, V.S., KULKARNI, A.A., DHOTRE, M.T., EKAMBARA, K. Coherent flow structures in bubble column reactors. *Chemical Engineering Science*, v.57, p.3157-3183, 2002.

250

KAHANER, D., MOLER, C., NASH, S. *Numerical methods and software*. Prentice-Hall International, 1989. Cap.8: Ordinary differential equations, p.272-346.

KOLLER, G., FISCHER, U., HUNGERBÜHLER, K. Assessing safety, health and environmental impact early during process development, *Industrial and Engineering Chemistry Research*, v.39, n.4, p.960-972, 2000.

KOLLER, G., WEIRICH, D., BROGLI, F., HEINZLE, E. et al. Ecological and economic objective functions for screening in the integrated development of fine chemical processes. 2. Stream allocation and case studies, *Industrial and Engineering Chemistry Research*, v.37, n.8, p.3408-3413, 1998.

KROTSCHECK, C., NARODOSLAWSKY, M. The sustainable process index – a new dimension in ecological evaluation. *Ecological Engineering*, v.6, n.4, p.241-258, 1996.

KUMAR, S. B.; DEVANATHAN, N.; MOSLEMIAN, D.; DUDUKOVIC, M. P. Effect of scale on liquid recirculation in bubble columns. *Chemical Engineering Science*, v.49, n.24B, p.5637-5652, 1994.

LEIDEN UNIVERSITY – CML (Centre of Environmental Science). *Staff and Publications pages*. Consultado em www.leidenuniv.nl/interfac/cml/ssp/, em 10.12.2002. (citado no texto: Leiden University - CML, 2002)

LEPAGE, J. P. H-Oil / HYVAHL Technologies applied to heavy oils. In PETROBRAS INTERNATIONAL SEMINAR OF HEAVY CRUDE OIL PROCESSING, 2002, Rio de Janeiro – Brasil. Rio de Janeiro: Petrobras, 2002, em CD.

LIMA JR, RONALDO MENDONÇA. *Desenvolvimento de um sistema com banco de dados para a classificação e caracterização de resíduos e gases industriais*. Campinas: Faculdade de Engenharia Química, UNICAMP, 2001. Dissertação (Mestrado).

LORA, ELECTO E. S. Prevenção e Controle da poluição nos Setores Energético, industrial e de Transporte. Brasília: ANEEL, 2000. 503 p.

MALLICK, S. K., CABEZAS, H., BARE, J. C., SIKDAR, S. K. A pollution reduction methodology for chemical process simulators. *Industrial and Engineering Chemistry Research*, v.35, n.11, p.4128-4138, 1996.

MATA, T. M., SMITH, R. L., YOUNG, D. M., COSTA, C. A. Environmental analysis of gasoline blending components through their life cycle. In CHISA 2002 – 15th INTERNATIONAL CONGRESS OF CHEMICAL AND PROCESS ENGINEERING, 2002, Praga – República Checa. Praga: CSCHI, 2002, em CD.

MATOS, E. M. Modelagem e simulação da cinética química do tratamento das frações pesadas de petróleo. Campinas: Faculdade de Engenharia Química, UNICAMP, 1997. Dissertação (Mestrado)

McQUITTY, W. D. The bi-provincial upgrader H-Oil[®] operation and performance. In *Upgrading heavy ends with IFP*. França: Instituto francês do petróleo (IFP), 1997, p.51-61.

MELLO, E. T., PAWLOWSKY, U. Minimização de resíduos em uma indústria de bebidas, In 21º CONGRESSO BRASILEIRO DE ENGENHARIA SANITÁRIA E AMBIENTAL, 2001, João Pessoa – Brasil. João Pessoa: ABES, 2001, trabalho VI-024 do CD.

MENDONÇA FILHO, LETIVAN G. Modelagem e Simulação de reator trifásico aplicado a óleos pesados com reações de hidrocraqueamento térmico e catalítico, desmetalização e deposição de coque na mistura e no catalisador. Campinas: Faculdade de Engenharia Química, UNICAMP, 1998. Dissertação (Mestrado).

MICROSOFT[®]. *Microsoft IMSL libraries*. Microsoft[®] Corporation: 1994-95.

MILARÉ, ÉDIS. Direito do Ambiente. São Paulo: Editora Revista dos Tribunais, 2000, 687 p.

MOHANTY, S.; KUNZRU, D.; SARAF, D. N. Hydrocracking : a review. *Fuel*, v.69, Dez., p.1467-1473, 1990.

MOSBY, J.F.; BUTTKE, R.D.; COX, J.A.; NIKOLAIDES, C. Process characterization of expanded-bed reactors in series. Chemical Engineering Science, v.41, n.4, p.989-995, 1986.

NARODOSLAWSKY, M., KROTSCHECK, C. Integrated ecological optimization of processes with the sustainable process index. *Waste Management*, v.20, p.599-603, 2000.

NIEMANN, K., WENZEL, F. The Veba-Combi-Cracking Technology : an update. *Fuel Processing Technology*, v.35, p.1-20, 1993.

ODDONE, R., PINTO, A. C. Perspectives of crude oil production and quality. In PETROBRAS INTERNATIONAL SEMINAR OF HEAVY CRUDE OIL PROCESSING, 2002, Rio de Janeiro – Brasil. Rio de Janeiro: Petrobras, 2002, em CD.

REYNOLDS, B. BRUYN, L. de, GUPTA, A., BALDASSARI, M., MUKHERJEE, U. 3rd Generation LC-Fining. In PETROBRAS INTERNATIONAL SEMINAR OF HEAVY CRUDE OIL PROCESSING, 2002, Rio de Janeiro – Brasil. Rio de Janeiro: Petrobras, 2002, em CD.

SANTOS JUNIOR, I. *Modelagem e simulação de um reator de leito fluidizado trifásico por meio de uma abordagem variacional*. Campinas: Faculdade de Engenharia Química, UNICAMP, 2002. Tese (Doutorado)

SAX, N. IRVING, LEWIS, SR. RICHARD J. *Dangerous Properties of Industrial Materials*. 7 ed. New York: Van Nostrand Reinhold, 1988, Vol. I a III.

SAXENA, S.C., CHEN, Z.D. Hydrodynamics and heat transfer of baffled and unbaffled slurry bubble columns. *Reviews in Chemical Engineering*, v.10, n.3-4, p.193-400, 1994.

SCHLOSSER, C., ANDRADE, H., CASTILLERO, J. Meio ambiente e tecnologia: Desafios e conquistas na área de craqueamento catalítico da Petrobras. In RIO OIL & GAS EXPO AND CONFERENCE, 2000, Rio de Janeiro – Brasil. Trabalho em CD IBP36700.

SKRIPEK, M.; ROBINSON, P.; PRUDEN, B.; MUIR, G. The U-CAN resideracking process.

SONG, J., PARK, H., LEE, D. Y., PARK, S. Scheduling of actual size refinery processes considering environmental impacts with multiobjetive optimization, *Industrial and Engineering Chemistry Research*, v.41, n.19, p.4794-4806, 2002.

STEFANIS, S. K., LIVINGSTON, A. G., PISTIKOPOULOS, E. N. Environmental impact considerations in the optimal design and scheduling of batch processes, *Computers and Chemical Engineering*, v.21, n.10, p.1073-1094, 1997a.

STEFANIS, S. K., LIVINGSTON, A. G., PISTIKOPOULOS, E. N. Minimizing the environmental impact of process plants: a process systems methodology, *Computers and Chemical Engineering*, v.19, Supplement, p.S39-S44, 1995.

STEFANIS, S. K., PISTIKOPOULOS, E. N. Methodology for environmental risk assessment of industrial nonroutine releases, *Industrial and Engineering Chemistry Research*, v.36, n.9, p.3694-3707, 1997b.

STEFFENS, M. A., FRAGA, E. S., BOGLE, I. D. L. Multicriteria process synthesis for generating sustainable and economic bioprocesses. *Computers and Chemical Engineering*, v.23, p.1455-1467, 1999.

SUIÇA. Lei, de 16 de dezembro de 1985. Lei de Controle da poluição do ar da Suíça (LRV). Consultada em <u>www.buwal.ch/~cgiluft/get.pl?d+v0.htm+v0</u> no link Ordinance on air pollution control (OAPC)

TARMY, B.L., CHANG, M., COULALOGLOU, C.A., PONZI, P.R. The three phase hydrodynamic characteristics of the EDS coal liquefaction reactors: Their development and use in reactor scaleup. *I. Chem. E. Symposium Series*, n.87. 8th International Symposium on Chemical Reaction Engineering. Edinburg, 1984, p.303-317.

TORVIK, R., SVENDSEN, H.F. Modelling of slurry reactors. A fundamental approach. *Chemical Engineering Science*, v.45, n.8, p.2325-2332, 1990.

UNIÃO EUROPÉIA. *Ambiente – Visão Global*. Consultado em europa.eu.int/pol/env/index_pt.htm em 08.04.2002. (citado no texto: União Européia, 2002)

US EPA. *Envirosense – Common sense solutions to environmental problems*. Consultado em es.epa.gov/describe.html em 08.11.2002a. (citado no texto: US EPA, 2002a)

US EPA. *Laws and Regulations – Major environmental laws*. Consultado em www.epa.gov/epahome/laws.htm, em 3.12.2001. (citado no texto: US EPA, 2001)

US EPA. *Major environmental laws – Clean Air Act.* Consultado em www.epa.gov/region5/defs/html/caa.htm, em 3.12.2001a. (citado no texto: US EPA, 2001a)

US EPA. *Major environmental laws – Clean Water Act.*. Consultado em www.epa.gov/region5/defs/html/cwa.htm, em 3.12.2001b.(citado no texto:US EPA, 2001b)

US EPA. *TRI – Home page*. Consultado em <u>www.epa.gov/tri/</u>, em 8.04.2002. (citado no texto: US EPA, 2002)

VON SPERLING, M., NASCIMENTO, L. V. DO, A resolução Conama 20/86 e as legislações estaduais de classificação das águas e lançamento de efluentes, In 20° Congresso Brasileiro de Engenharia Sanitária e Ambiental, 1999, RJ: ABES, 1999.

WISDOM, L., PEER, E., BONNIFAY, P. Resid hydrocracking better than delayed coking in case studies. *Oil and gas journal*. Feb. 16, p.53-60, 1998.

WORLD RESOURCES INSTITUTE. World resources 1992-93. USA: Oxford University Press, 1992, p.320-325.

YOUNG, D. M., CABEZAS, H. Designing sustainable processes with simulation: the waste reduction (WAR) algorithm. *Computers and Chemical Engineering*, v.23, p.1477-1491, 1999.

252

YOUNG, D., SCHARP, R., CABEZAS, H. The waste reduction (WAR) algorithm: environmental impacts, energy consumption and engineering economics. *Waste Management*, v.20, p.605-615, 2000.

8.1 LISTA DE REFERÊNCIAS NA INTERNET

CETESB. Informações referentes a legislação ambiental brasileira e paulista e ao Programa de prevenção à poluição (produção mais limpa P+L) (www.cetesb.sp.gov.br)

Ministério do Meio Ambiente (MMA). Acesso às Resoluções Conama (www.mma.gov.br)

US EPA – Agência de proteção ambiental americana. Legislação ambiental americana (www.epa.gov/epahome/laws.htm),

US EPA. Informações sobre o TRI – Toxic release inventrory. (www.epa.gov/tri/)

US EPA. Informações sobre o Clean Air Act (www.epa.gov/region5/defs/html/caa.htm)

US EPA. Informações sobre o Clean Water Act (www.epa.gov/region5/defs/html/cwa.htm)

UNIÃO EUROPÉIA Informações da comunidade européia. (europa.eu.int)

UNIÃO EUROPÉIA. Legislação européia (europa.eu.int/eur-lex)

UNIÃO EUROPÉIA. Visão global sobre o controle ambiental na Europa. (europa.eu.int/pol/env/index_pt.htm)

CAS – Chemical Abstract Service. Divisão da American Chemical Society que indexa informações científicas e cadastra substâncias. (www.cas.org)

CIA – Central Intelligence Agency. *World Factbook – publicação que traz informações bastante completas sobre os países* (www.cia.gov/cia/publications/factbook/fbhome.html)

Lei suíça de controle da poluição do ar - LRV (www.buwal.ch/~cgiluft/get.pl?d+v0.htm+v0)

AGÊNCIA AMBIENTAL ALEMÃ. Página de downloads da VwVwS (classificação das substâncias com relação à periculosidade – regulamentação, anexos e textos explicativos (http://www.umweltbundesamt.de/wgs-e/wgs-index.htm)

9 Anexos

Esse capítulo reproduz os artigos apresentados e publicados durante o desenvolvimento do doutorado, a estrutura e listagens do programa RHA 2.1 e as listas para avaliação ambiental de processos através de indicadores. Todas essas informações são parte integrante da tese e estão apresentadas em separado para não quebrar a continuidade do texto.

9.1 ARTIGO: CHEMICAL ENGINEERING FOR A SUSTAINABLE ENVIRONMENT – XIII COBEQ, 2000

Esse artigo compõe o item 2.2 da tese abordando as contribuições na área de engenharia química para o desenvolvimento, projeto, operação e gerenciamento de processos químicos ambientalmente sustentáveis.

O trabalho foi apresentado no XIX *Interamerican Congress of Chemical Engineering* realizado em conjunto com o XIII Congresso Brasileiro de Engenharia Química, em Águas de São Pedro – SP em setembro de 2000.

O artigo apresentado neste anexo é a versão completa (com 12 páginas) do artigo de Carbonell et al. (2000) publicado nos anais do congresso (em CD), que foi reduzido no congresso para se adequar aos padrões de publicação.

Referências bibliográficas do artigo apresentado no congresso (com 10 páginas):

CARBONELL, M.M., CAVALCANTI, R.N., GUIRARDELLO, R. Chemical engineering for a sustainable environment. In XIX INTERAMERICAN CONGRESS OF CHEMICAL ENGINEERING E XIII CONGRESSO BRASILEIRO DE ENGENHARIA QUÍMICA, 2000, Águas de São Pedro – Brasil. São Paulo: COBEQ, 2000, trabalho 590 do CD.

CHEMICAL ENGINEERING FOR A SUSTAINABLE ENVIRONMENT

Montserrat M. Carbonell^{1*}, Rachel N. Cavalcanti² and Reginaldo Guirardello¹ ¹ UNICAMP / FEQ CP.6066 13083-970 Campinas (SP), Brazil montse@feq.unicamp.br; guira@feq.unicamp.br ²UNICAMP / IG CP. 6152 13083-970 Campinas (SP), Brazil rachel@ige.unicamp.br

Abstract. Sustainability consists of a way of living that maintains or improves human welfare continuously during our lives and the life of future generations. The environmental sustainability concerns the preservation of ecosystem integrity and the natural resources, caring not to exceed the carrying capacity of the planet. These objectives can be attained by the reduction / prevention of pollution and the controlled / efficient use of natural resources and energy. This paper details, in historical perspective, the efforts of researchers and industry in order to develop, design, operate and manage chemical processes for a sustainable environment. Some selected examples are presented and future trends in this field are outlined.

Keywords: Sustainability, Chemical processes and industries, Environmental impact

1. INTRODUCTION

Sustainable Development as defined by Bruntland (1988) is "development that meets the needs of the present without compromising the ability of future generations to meet their own needs". Therefore, this definition includes the notion of natural resources limitations, that are currently being threatened by human activities resultant from the high rates of production and consumption of goods. Sustainability involves a set of elements which are strongly related to each other, such as natural resources (renewable and non-renewable), human resources (work, knowledge, abilities), social and institutional resources (organizations, regulations, culture). The first step for a continuous process towards sustainable development is the understanding of the causes and potential effects of current global problems and the proposal of solutions based on ethics, wisdom and concern for human welfare (Cavalcanti, 1996).

Environmental sustainability regards the preservation of natural resources (water, biodiversity, raw materials, energy, etc), that should be regarded not only as a source of raw materials but also as a source of environmental services and the place that receives wastes from production. So far, the environmental equilibrium is a key aspect to boost the other elements of human activities towards sustainable development. Therefore, it is necessary to use efficiently natural resources and to reduce the pollution generated by our activities, while promoting welfare for all people. Most of the tools available for the development and implementation of technological solutions related with these issues are very much related to the work and knowledge of chemical engineers, which play an important role in this scenario.

This paper presents, in historical perspective, a review of the technologies and tools proposed in order to develop, design, operate and manage sustainable chemical industries. It deals not only with waste treatment, remediation and recycling, but also technologies and approaches for preventing or minimizing the generation of pollutants at source. More efficient use of energy and water, as well as the improvement in process efficiency, are also presented as important contributions for the achievement of these goals. Some selected examples are presented, aiming to clarify the ideas and techniques described and to provide some records of the improvements observed in Brazil towards the environmental sustainability.

Figure 1. Typical flow scheme of a chemical industry.

2. EVOLUTION OF THE RELATIONSHIP BETWEEN NATURE AND HUMAN ACTIVITIES

The increasing number and the scale of environmental and health problems due to pollution and accidents lead to a gradual and solid change in both people perception and concern for the environment.

The turning point for this situation was the Stockholm UN Conference on the Human Environment held in 1972, with the participation of representatives from 113 countries, to discuss how mankind could integrate the environmental management with economic and social development (Colby, 1990). This discussion is still a current subject, although there have been a lot of development in this area. Important international conferences, extensive reports and well-discussed documents have been prepared, published and signed. An important example is the elaboration and publication of the Bruntland Report, *Our Common Future*, describing proposals and recommendations for a sustainable development (Bruntland, 1988). The Rio 92 Conference was also a very important moment resulting in the approval of *Agenda 21*, which is a plan of actions and strategies to be taken worldwide for the implementation of the Bruntland Report (CNUMAD, 1992).

The efforts for the understanding of the environmental problems showed that they are strongly related to the relationship between nature and human activities, regarding both the quality and intensity of these relations. These relationships have evolved along the years, where five distinct viewpoints, shown in Fig. 2, were identified.

Figure 2. Evolutionary diagram (adapted from Colby, 1990).

The viewpoints vary greatly from an almost complete disregard with the environment (*Frontier Economics*) to a way of living in complete harmony with nature (*Deep Ecology*). Between these two opposite ideas is the *Environmental Protection* view characterized by actions for the treatment and

remediation of pollution and the creation of governmental agencies; then comes the *Resource management* view (our current system) and finally the *Eco-Development* which is a proposal for the future. Table 1 summarizes the main aspects and distinctions among these viewpoints. Although the viewpoints are different they have some similarities, which is typical from evolving systems where the new ones keep some aspects of the older ones (Cavalcanti, 1996; Colby, 1990).

Aspects	Frontier	Environmenta	Resource	Eco-	Deep
	Economics	l protection	Management	development	Ecology
Time it prevailed	until 1960's	1970's	1980's ; 1990's	(perhaps in the future)	"Eco- topia"
Dominant Imperative	Progress is seen as infinite economic growth	Recognize tradeoffs between ecology and economic growth	Search for sustainability, "Green growth" Global common laws for envir. conservation	Co-developing humans and nature (synthesis of all the 5 views)	Human activity constrained to harmony with nature; anti- economic growth
Main Themes	Infinite natural resources must be exploited	Remediation of pollution; "Legalize Ecology"	Economize ecology, improve global efficiency	Ecologize economy and social systems	Back to small communities and a natural way of living
Dominant threats due to human activity	Poverty, Diseases, Pollution	Health impacts of pollution	Natural resources degradation / depletion	Ecological uncertainty	"Unnatural" Disasters
Who pays for pollution problems ?	Property owners (society)	Taxpayers (society)	Producers and consumers (polluter pays)	Costs in the prevention of pollution	Avoid costs by foregoing development
Environmenta l Management Technologies and Strategies	High inputs of energy, biocide and water; Unregulated waste disposal; Dilution of pollution practice	End-of-pipe technologies; Environmental regulations; Envir. impact assessment EIA after design; Envir. agencies	Impact / risk Assessment and management; Pollution reduction; Increasing efficiency in energy and resources use	Industrial ecology / Eco- Techniques: renewable energy, water and resources cycling between envir. and economy	Low technology; Recycle; Simple material needs; Reduced scale of the market
Fragility	Vulnerability and big ecological damages	Increasing costs of production and increasing ecological damages	Use of market power for efficient management	May generate false security	Not feasible to come back to a lifestyle opposed to the current one.

Table 1. Basic characteristics of distinct moments in the evolution of the relations between nature and human activity (adapted from Colby, 1990).

* Envir. means environment.

The evolution of this perception resulted in the organization of society sectors that began to exert pressure over government and organizations, determining the actions to be taken by these groups. The pressure varied accordingly to the level of development of a country and so the quality of the measures that were implemented. Government regulates pollution control through laws and regulations, that result in environmental policies ruled by economic instruments (such as taxes, incentives, subsidies) or regulation instruments (such as licenses, discharge limits, legislation) (Cavalcanti, 1996). Companies promote pollution control by the development and application of appropriate technologies and management tools. Nowadays, the environmental issue is part of the everyday agenda of government, commercial, industrial and scientific organizations. However, there is still a lot of work to be done in order to effectively put in practice all these policies and tools. Conflicting economic and political interests sometimes make it difficult to follow the proposed schedule and take the necessary actions (CNUMAD, 1992).

3. TECHNOLOGIES FOR SUSTAINABLE CHEMICAL INDUSTRIES

Industry plays an important role in modern economies and societies. Sustainable development requires that industrial activities change in terms of quality and a set of strategies have been proposed and recommended. Some of these proposals, related to the everyday work of chemical engineers in the research, design and operation of chemical processes, are summarized as follows (Bruntland, 1988; CNUMAD, 1992):

- prevention and minimization of pollution; recycling; reuse; reduction of environmental risk;
- development of practices to preserve and increase basis of natural resources;
- use of renewable sources of energy and raw materials;
- improve chemical industries efficiency;
- increasing control over hazardous chemical residues disposal;
- involvement of all sectors for a better environmental performance;
- evaluate and audit environmental impacts of products, technologies, policies and programs;
- planning of the location of industries in view of environmental issues;
- provide employees from the industry with a plan and training for emergency situations;
- development of means to include environmental costs in the price of products and services.

Most of the proposals mentioned above are currently being implemented by industry or studied by research centers and universities. So far, the search for environmental sustainability is not only a subject of theoretical studies, but also a current concern in our society that is resulting in practical actions. Next sections will address technologies under development or implementation by industry, with some selected examples.

A hierarchy of waste management options generally accepted nowadays is shown if Fig. 3. Although the best option is the complete elimination of pollution, this is not possible in practice. So, priority is given to the prevention of pollution, followed by recycling, then treatment and finally disposal of residuals. This hierarchy reflects the best options to reduce pollution with lower costs and improve the efficient use of resources (Crittenden, 1995).

Figure 3. Hierarchy of waste management options.

3.1 Pollution Prevention

Pollution prevention is related to the reduction in the generation of pollutants at the source. It is concerned with both the development of new technologies, usually called *clean technologies*, and modifications in existing industries (retrofitting) towards the increase in overall performance and the generation of less waste. The retrofitting of a chemical process may consider minor modifications in the operating conditions, redefinition in the use or modifications of present equipment and the inclusion of new equipment. The increase in complexity and number of changes usually implies increasing costs (Dantus and High, 1996).

Control of pollution at source may be accomplished through changes in operating practices, modifications in the material used in the process, changes in equipment or process and application of techniques of industrial ecology, as presented in Fig. 4.

Pollution prevention programs have been implemented successfully by Brazilian industries. The environmental agency of São Paulo State organized a report describing briefly the environmental problems observed, actions taken and the positive results obtained by 15 companies located in São Paulo State (CETESB, 1999). Future targets have already been defined by the companies to further extend the results of the program, showing that pollution prevention is technically and economically feasible.

Figure 4. Some techniques for control and reduction of pollution at the source.

Good operating practices. Involves operational improvements, regular preventive maintenance or administrative changes that can usually be implemented quickly, with relatively small investment and quick payback (may be as short as a few days). A list of examples is found in Crittenden (1995); some are presented below:

- clear specification of material handling procedures and operating practices;
- segregation of waste streams to avoid the mixture of hazardous and non-hazardous materials and to increase recoverability;
- elimination of poor storage conditions and overfilling of tanks;
- rescheduling of production to reduce frequency and number of equipment cleaning operations, reducing the flow rate of waste streams;
- eliminating or minimizing spills, leaks and contamination in equipment of the process, valves, pumps, pipes and tanks for the storage of raw material, products and wastes.

Material change. The objective of this approach is to develop substances and processes that are safer and environmentally friendly. So far, it involves the design of materials and processes that either do not use toxic solvents, reactants and feedstock or reduce the quantity and toxicity of byproducts and co-products. Preference is given to the use of renewable materials. Areas of research include (EPA, 1999):
- <u>Chemical synthesis, catalyses and reaction mechanisms</u>. Development of new synthetic methods, catalysts or biocatalysts that give better selectivity and conversion; give less toxic intermediate species, byproducts and co-products and reduce the number of process stages. Use of photochemical, electrochemical or other starting materials more innocuous or renewable. Discovery or redesign of auxiliary materials such as catalysts, solvents and reactants so that they are less toxic to health and the environment or safer.
- <u>Separation processes</u>. Use of solvents that are more environmentally friendly. Development of processes that recuperate feedstock for improved efficiency or auxiliary materials and substances for recycling.

Technological changes. This approach involves equipment and process modifications in order to improve process performance and minimize waste. Moreover, it addresses the use of computational tools such as modeling, control, process integration and optimization. Areas of research include (EPA, 1999):

- <u>Bioengineering</u>. Development of bioprocessing technologies for pollution prevention such as the conversion of biomass into useful products and genetic engineering to produce specific biocatalysts.
- <u>Fluid and thermal systems</u>. Improve thermal efficiency of equipment and engines. Use of renewable sources of energy. Development of novel thermal and fluid (including multiphase) systems resulting in lower hazardous effluent production. Examples: novel refrigeration cycles and improved automobile combustion process.
- <u>Reaction engineering</u>. Improve reactor design in order to increase product yield, improve selectivity and reduce co-products and byproducts. Development of integrated separation / reaction process to allow separation during reaction and improve selectivity and conversion, such as reactive distillation. Integrated chemical process design and operation.
- <u>Separations</u>. Novel, cost-effective methods for high efficient process separations, as for example membrane systems. Improve efficiency of conventional separation methods and reduce quantity or toxicity of foreigner materials used, such as solvents for example.
- <u>Equipment modifications</u>. New or improved manufacturing process and equipment that reduce the generation of wastes, as for example, machines that do not use cutting fluids and new bulk materials and coatings with higher durability.
- <u>Quantitative environmental impact and safety</u>. New methodologies to compare different process alternatives in relation to their environmental impact and potential risk. Development of representative indices for the evaluation of environmental impact and algorithms to incorporate pollution prevention analysis in process design and retrofit design. Improvement of indices for the determination of the environmental and safety performance of industries.
- <u>Modeling, Simulation and Control</u>. More representative models for reactors, separation systems or other equipment using, for example, techniques of computational fluid dynamics (CFD), molecular modeling and more precise expressions for kinetics, heat and mass transfer phenomena. Use of stochastic models to deal with uncertainty in simulations. Detailed models should be used for design, while simplified (but representative) models should be used for control, aiming at real time in-process control, for the operation of more efficient, safe and environmental friendly processes. Advanced sensors, analytical analysis and mathematical algorithms are also necessary. Environmental impact indices should be included in commercial simulators, as being researched by Cabezas et al. (1999).
- <u>Process integration and Optimization</u>. Application of pinch technologies and mathematical programming tools to improve processes efficiency and to reduce the use of energy, water and

resources. The consideration of process phenomena (kinetics, thermodynamic and fluid dynamic) together with economic and environmental aspects allows the identification of the best process configuration towards minimum waste generation, during the design of new process or the retrofit design of existing ones.

Industrial Ecology. Industrial ecology requires that an industrial system is considered together with its surroundings, not isolated from them. So far, it is a system global view aiming to optimize the total materials cycle in order to obtain the maximum use of resources (raw materials and energy), while reducing pollution discharges and environmental risk. The techniques of industrial ecology are an important decision support tool. Some of these techniques are briefly described as follows:

• LCA – Life Cycle Assessment.

LCA aims to quantify the environmental impact of a product considering all processing steps from raw materials, to manufactured materials, to products, to wastes, to obsolete product and to final disposal, considering all inputs and outputs from the system as well as recycle and re-use of materials, as show in Fig.5. So far, the method is popularly known as "cradle to grave" analysis (Crittenden, 1995). Sometimes, the environmental impacts of energy generation and transportation are also considered in the analysis. LCA is a powerful tool to evaluate the environmental impact of products and processes, giving support to decisions among different processing alternatives. It is not worth, for example, to change a material reducing the environmental impact in one step of the process while increasing the overall impact by consuming more energy in future separations. For this reason, this analysis is of fundamental importance for the development of robust design for the environment. However, its complexity, cost and time requirements have limited its practical implementation and wide use in the process industries to date (Sarigiannis, 1996). The principles of LCA are being implemented in the development of simulation methodologies for pollution prevention as, for example, in the work of Stefanis et al (1997) where a method for the optimal design and scheduling of batch processes with environmental considerations was proposed. Other groups are using the principles of LCA in a simplified way, such as Heinzle et al (1998) who presented a general procedure for ecological and economic assessment during design, proposing an ABC environmental classification for the input streams of the product manufacture process.

Figure 5. General LCA flowchart for products (adapted from Crittenden, 1995)

• <u>Decommissioning</u>. Industrial plants also have a life cycle. So far, the closure and relocation of industries should be planned in order to avoid environmental liabilities and allow the safe use of the area for new activities. This process is called decommissioning and should be planned carefully and implemented following a rigorous schedule, as it is done when the process industry is designed and built. A scheme to direct industry decommissioning is presented by Sánchez

(1998). Decommissioning of industrial plants without planning, often leaves huge environmental liabilities that constitute a hazard to environment and public health. In fact, project design should change so that the full process life cycle is considered from the beginning, taking closure also into account. This is a new frontier in the work of engineers (Sánchez, 1998).

• <u>Materials cycle simulation</u>. It involves the modeling of the cycle of materials worldwide in order to use them as the basis of a decision support tool. This concept is well-known in metallurgical process industry, where much work was done in Zn, Cu, Al, Si, Mn and Mg production and their interconnected materials cycle. The modeling of materials cycle is complex and involves many stakeholders as industrial companies, government, non-governmental associations and public bodies (Dijkema and Reuter, 1999).

3.2 Reuse and Recycling

Recycling of used products, sub-products, solvents, catalyst or other materials may provide a cost-effective alternative to waste treatment or improve the overall efficiency of the process. It is the second best option for waste management, since it usually requires additional equipment and use of energy, adding some operating costs to the process. The implementation of recycling in the process requires it to be at the same time cost-effective and environmentally friendly. The LCA analysis is an important tool to evaluate recycling viability and performance.

The success of recycling materials inside the process depends on the ability to separate recoverable materials from waste or process streams and the possibility to use these materials as substitutes for feedstock or auxiliary materials. Sometimes, there is no interest or any adequate equipment for recycling inside the plant but it may be feasible to recycle the material at other place (off-site recycling). Materials usually reprocessed off-site include oils, solvents, lead-acid batteries, electroplating wastes, food processing waste and plastic waste (Crittenden, 1995). An interesting example is the recycling of used catalyst from Brazilian petroleum refineries in the cement industry. Each refinery turns out an average of 5 tons of used catalyst per day that, in the past, were sent to dumpsites. Now it is incorporated in cement, improving its characteristics for situations that present constant contact with water (Koeler, 1999).

Nowadays, there is a special concern in the preservation of water, one of the most important natural resources. So far, freshwater consumption must be reduced, while discharge regulations are increasingly stricter. Therefore, the recycling of water is a priority in many industries. Water is used by the process and/or the utility system and reused directly when following operations are not affected by water previous contamination, or can be recycled after treatment when the removal of some contaminant is necessary. Simulation and process integration tools are being used for the optimization of water use and recycle in industries, such as in the work of Wang and Smith (1994), with very good savings in water consumption.

Products can be recycled at different levels, as shown in Fig.5. Product reuse is the best option once it requires less re-processing steps and costs. A typical example is the collection and reuse of glass bottles. The second level, labeled product re-manufacture, requires some processing for the material of the product, as for example, the recycling of bottles and pieces of glass that need to be melted again to produce bottles. Finally, materials recycle involves the product that can be used to replace raw materials. One example is the recycle of plastics which are converted into hydrocarbons to be used either as raw materials or fuels (Crittenden, 1995).

3.3 Waste Treatment and Disposal

Waste treatment is the last step of process plants, where pollution should be removed from waste streams before they are released in the environment. It is usually called "end of pipe treatment" and consists of the separation of contaminants in order to dispose them safely, avoiding environmental harm. These operations usually involve additional costs due to the need of extra equipment and consumption of energy, water and auxiliary materials. So far, the current trend of increasing pollution control costs and increasingly stricter environmental regulations makes it be no longer feasible or recommended. However, as pollution prevention and recycling techniques have shown to be effective to reduce waste streams flow rates but not to completely eliminate them, waste treatment is still important nowadays.

The main contaminants in atmospheric emissions, liquid wastes and solid residuals are presented in Table 2. The equipment and processes for the treatment and disposal of this wastes are the subject of environmental engineering textbooks (Davis and Cornwell, 1991; Peavy et al., 1985) and research papers. It involves the application of physical, chemical and biological principles, in order to degrade or remove these contaminants from waste streams and dispose them safely. Some examples of these processes are: separation systems such as grids, filters, absorbers and adsorbers; reaction and biological systems such as neutralization and activated sludge.

Some non-conventional processes are being developed and tested for further contaminants removal, such as the removal of heavy metals (Zn, Cu and Ni) by biosorption (Bakkaloglu et al, 1998). Other interesting example is the processing of used tires together with shale rocks for the removal of the organic part of the tire. Some successful tests were performed recently, showing that this alternative may be commercially feasible with minor modification in the shale oil extraction. Main problems encountered are related to costs involved in tire gathering, chopping and transportation to the shale rock processing unit. In fact, this alternative is a combination of recycling and final disposal once the organic part of the tire is converted into oil, while the residue is sent to landfill (Koeler, 1999).

Atmospheric emissions	Liquid wastes	Solid residuals
carbon compounds (CO, CO ₂)	suspended solids	halogenated organic compounds
particulate material	biodegradable organics	aromatic organic compounds
volatile organic compounds	nitrogen / phosphorus	heavy metals
nitric compounds (NOx)	soluble salts	pathogens
sulfur compounds (SOx)	refractory organics	
heavy metals	heavy	
	metals/pathogens	

 Table 2. Important contaminants in
 atmospheric emissions, liquid wastes and solid residuals

3.4 Remediation

Remediation consists of repairing the damage caused by past human activities such as the contamination of soil and groundwater aquifers by hazardous solid residue disposed in inadequate conditions. Procedures for remediation of contaminated sites are the subject of environmental engineering textbooks (Davis and Cornwell, 1991) and environmental agency manuals. It requires the evaluation of the contamination and its possible future impacts, followed by the proposal of solutions and cost calculations. Solution for each problem varies a lot depending on the geologic and hydrologic conditions of the site, as well as the quantity and potential risks of contaminants. Cleanup

of aquifers is possible but is often troublesome, time-consuming and costly. The remediation methods range from the treatment of the contamination in its original position to the treatment of the contaminated groundwater before using it or even to the removal and treatment of the contaminated soil. Examples of remedial methods include: installing pumping wells, building trenches and barriers and promoting biodegradation (Davis and Cornwell, 1991). Each situation should be carefully evaluated for the determination of a reasonable and economical feasible solution. Lupo and Brown (1996) proposed a procedure for ranking remediation projects in order to reduce environmental liability producing long-term results. The methodology proposed is based on a cost benefit analysis that considers the risk of potential contamination, the cost for remediation and risk reduction after remediation.

4. ENVIRONMENTAL MANAGEMENT SYSTEMS - EMS

Environmental management systems (EMS) consist on a set of technical operations and management actions that help companies to minimize waste generation and comply with environmental regulations, while attending to other market requirements (such as cost control, core competence and customer relationship) in order to be more competitive. Instruments for environmental management include:

- Environmental impact evaluation (EIA), which is a legal exigency for the installation of new enterprises (such as industrial plants) or the revamp of existing ones;
- Environmental audit and monitoring;
- Risk analysis and planning for emergency situations;
- Due diligence and programs for the remediation of degraded areas;
- Environmental education and training programs.

In view of organizing these tools for a planned and organized action towards the improvement of the environmental and economic performance of companies, the family of standards ISO 14000 are being developed and implemented. From these, the ISO 14001 standard presents a system approach to environmental management, establishing policy and procedures for the implementation of an EMS aiming at the continuous improvement in the environmental performance of a company (ABNT, 1996).

5. PARTICIPATIVE ENVIRONMENTAL MANAGEMENT

The proposal and implementation of directions for a sustainable environment presents better results when planned by all stakeholders involved, such as industrial companies, government, universities and community. This idea has begun to be implemented in Brazil to deal with environmental issues. Two selected examples are presented as follows:

• <u>Case 1: Petrochemical pole viability evaluation – São Paulo State</u>

The determination of how much waste can be assimilated by the natural environment, and consequently the definition of the discharge limits allowed, depends on a global assessment of both the natural environment characteristics (such as geology, weather, biodiversity, availability of resources) and the pollutants released by industries located in a region.

The implementation of a new industrial pole and gas thermal power plant is being planned in the region of Piracicaba Basin, in São Paulo State. Investors, government (through the environmental agency), universities (UNICAMP) and local community are involved in discussing and evaluating

the positive and negative impacts of the project in order to determine its viability based on the global assessment mentioned above. It has already been identified that this region is short of water so that alternatives, such as the storage of water in reservoirs, would need to be implemented (Pereira, 1999). The region has already a considerable concentration of industries, but no data of air quality is available. A research group of the university (Tomaz, 1999) is working on a project for the monitoring of air quality, in order to support the development of a plan for air pollution monitoring and control. This work is based on data given by the industries of the region, data obtained by a mobile laboratory unit and simulations of pollution dispersion on atmosphere.

• Case 2: Pollution prevention program – Bahia State

The success for the implementation of a pollution prevention program in a chemical process industry depends on both the scope of the technical changes proposed and the training and education of the industrial community towards the new environmental approach. Such a program was proposed and implemented in Camaçari, a Brazilian industrial pole in Bahia State, through the cooperation of government, industries (currently in the number of 52) and the company responsible for the industrial waste treatment and disposal. The program resulted in significant wastewater reduction, and then it was extended to consider solid waste reduction and prevention of soil contamination. Next step will consider the inclusion of gas emissions control by industries (Freire, 1999).

6. CONCLUSION

The evolution of the relationship between nature and human activities shows a solid and gradual change in people perception and concern for the environment. There is a clear improvement in this relationship, but there is still a lot of work to be done by researchers, industries, government, organizations and community towards the environmental sustainability. Each of these groups plays an important role for both the determination of feasible solutions and their successful implementation. These solutions should be based on a combination of scientific knowledge, ethics, wisdom and concern for human welfare.

This paper presents an overview of the technologies and tools that are being developed to improve the environmental performance of industrial plants. Moreover, the design of industrial processes based on the minimization of risk for the overall technique-economic and ecological system is addressed. So far, the development and further implementation of these technologies and tools will lead to more efficient use of natural resources and reduction of both pollution released and environmental harm. These issues are very much related to the work and knowledge of chemical engineers, which play an important role in this scenario. Some future trends in this field could be identified throughout this review and are presented as follows:

- ✓ enlargement of people perception and concern for the environment;
- development and improvement of the technologies available, allowing the design of cleaner, safer and more efficient industrial plants, while showing a reduction in the consumption of water and energy; more spread use of life cycle analysis;
- ✓ evaluation of environmental impacts in everyday operations of industries;
- ✓ enlargement of pollution prevention programs in industries;
- ✓ widespread implementation of environmental management systems in companies;
- ✓ increasing in the number of organized and integrated actions, involving all stakeholders for the planning and implementation of solutions for environmental problems;

✓ improvement in the use and recycling of materials through the development of data banks with information regarding the sources and characteristics of materials discarded by industrial plants and the materials needed for other companies.

ACKNOWLEDGMENTS

The authors acknowledge the financial support of CNPq / Conselho Nacional de Desenvolvimento Científico e Tecnológico (Brazil). We also thank Dr. Edson Tomaz for fruitful discussions about this work.

REFERENCES

ABNT, NBR ISO 14001 Sistemas de gestão ambiental. Especificação e diretrizes para uso. ABNT (1996).

- Bakkaloglu, I., Butter, T.J., Evison, L.M. Holland, F.S. et al. Screening of various types biomass for removal and recovery of heavy metals (Zn, Cu, Ni) by biosorption, sedimentation and desorption, Water Science and Technology, 38, No.6, 269-277 (1998).
- Bruntland, Gro Harlem, Nosso Futuro Comum. Fundação Getúlio Vargas, RJ-Brasil (1988).
- Cabezas, H., Bare, J.C. and Mallick, S.K., Pollution prevention with Chemical Process Simulators: The Generalized Waste Reduction (WAR) Algorithm Full Version, Computers and Chemical Engineering, 23, 623-634, (1999).
- Cavalcanti, Rachel N., A Mineração e o Desenvolvimento Sustentável: Casos da Companhia Vale do Rio Doce. PhD Dissertation, Universidade de São Paulo, Brasil (1996).
- CETESB Companhia de Tecnologia e Saneamento Ambiental, Casos de Sucesso: Prevenção a Poluição, Home Page http://www.cetesb.br/index.htm., Governo de São Paulo (1999)
- Colby, M.E., Environmental Management in Development: The Evolution of Paradigms. World Bank Discussion Papers, No. 80 (1990).
- CNUMAD Conferência das Nações Unidas sobre Meio Ambiente e Desenvolvimento: Agenda 21. Secretaria do Meio Ambiente de São Paulo, SP-Brasil (1992).
- Crittenden, B. and Kolaczkowski, S., Waste Minimization: a Practical Guide. Institution of Chemical Engineers, United Kingdom (1995).
- Dantus, M.M. and High, K.A., Economic Evaluation for the Retrofit of Chemical Processes through Waste Minimization and Process Integration, Industrial and Engineering Chemistry Research, 35, No.12, 4566-4578 (1996).
- Davis, M.L. and Cornwell, D.A., Introduction to Environmental Engineering. 2 ed. McGraw-Hill Inc (1991).
- Dijkema, G.P.J. and Reuter, M.A., Dealing with Complexity in Material Cycle Simulation and Design, Computers and Chemical Engineering, 23, Supplement, S795-S798 (1999).
- EPA Environmental Protection Agency, Home page, http://www.epa.gov (1999)
- Freire, P.A., Programa de Controle na Fonte da CETREL S.A.: A Experiência do Projeto no Pólo Petroquímico de Camaçari. Anais do 20° Congresso Brasileiro de Engenharia Sanitária. ABES. Rio de Janeiro 2671-2680 (1999)
- Heinzle, E., Weirich, D., Brogli, F., Hoffmann, V.H. et al., Ecological and Economic Objective Functions for Screening in the Integrated Development of Fine Chemical Processes. 1. Flexible and Expandable Framework Using Indices, Ind. Eng. Chem. Res., 37, No.8, 3395-3407 (1998).
- Koeler, G.L.P. In the era of Transformations, Petrobras Magazine, 7, No.26, 16-19 (1999).
- Lupo, M.J. and Brown, K.W. Ranking Environmental Liabilities in the Petroleum Industry, Int. Conference on Health, Safety and Environment. New Orleans, USA, SPE 35929, 361-369 (1996).
- Peavy, H.S., Rowe, D.R. and Tchobanoglous, G., Environmental Engineering. McGraw-Hill Inc (1985).
- Pereira, N.M., O Complexo Petroquímico do Planalto e seus Impactos Sócio-Econômicos e sobre os Recursos Hídricos, Seminar organized by UNICAMP / IG, Campinas (1999).
- Sánchez, L.E., A desativação de empreendimentos industriais: Um estudo sobre o passivo ambiental. Tese de Livredocência, Universidade de São Paulo, Brasil (1998).
- Sarigiannis, D.A., Computer-Aided Design for Environment in the Process Industries, Computers and Chemical Engineering, 20, Supplement, S1407-S1412 (1996).
- Stefanis, S.K., Livingston, A.G. and Pistikopoulos, E.N., Environmental Impact Considerations in the Optimal Design and Scheduling of Batch Processes, Computers and Chemical Engineering, 21, No.10, 1073-1094 (1997).
- Tomaz, E. Private Comunication. UNICAMP, Departament of Chemical Engineering (1999).
- Wang, Y.P. and Smith, R., Wastewater Minimisation, Chemical Engineering Science, 49, No.7, 981-1006 (1994).

9.2 ARTIGO: MODELLING OF A SLURRY BUBBLE REACTOR APPLIED TO THE HYDROCONVERSION OF HEAVY OILS – CES, 1997. ERRATUM – CES, 1998

Esse anexo é parte integrante dos itens 4.1 e 4.2 e Capítulo 5 da tese e traz o artigo de Carbonell e Guirardello (1997) apresentado na conferência internacional *Third International Conference on Gas-Liquid-Solid Reactor Engineering*, GLS'97, realizada no Japão em 1997. O artigo foi publicado na revista *Chemical Engineering Science* da editora Elsevier.

Posteriormente, foi enviada à revista uma *Erratum* para corrigir algumas equações. A *Erratum* foi publicada na *Chemical Engineering Science* em 1998 e é apresentada no final deste anexo (Carbonell e Guirardello, 1998b).

Mesmo na *Erratum* um pequeno engano não foi corrigido: no segundo termo do lado direito da Equação 11 deve aparecer a variável Cm (e não Ci, como está no artigo). Essas correções não alteraram os resultados apresentados, já que o programa foi implementado corretamente e/ou a correção não alterou significativamente os cálculos. Somente a comparação com a conversão do modelo ideal CSTR ficou prejudicada e não deve ser considerada. Essa comparação é abordada no Capítulo 5 da tese.

O artigo apresenta o <u>modelo fluidodinâmico base</u>, ou seja, o modelo fluidodinâmico para o reator considerando apenas o fenômeno da convecção axial. Foi implementado o modelo cinético de craqueamento térmico proposto por Mosby et al. (1986). Os resultados foram obtidos usando o programa RHA versão 1.0.

<u>Nota.</u> Os artigos indicam separação da casa decimal por ponto, diferentemente da tese que usa vírgula.

Referências bibliográficas:

CARBONELL, M.M., GUIRARDELLO, R. Modelling of a slurry bubble column reactor applied to the hydroconversion of heavy oils. *Chemical Engineering Science*, v.52, n.21/22, p. 4179-4185, 1997.

CARBONELL, M.M., GUIRARDELLO, R. Erratum. *Chemical Engineering Science*, v.53, n.13, p.2479-2479, 1998b.

Modelling of a slurry bubble column reactor applied to the hydroconversion of heavy oils

Montserrat Motas Carbonell and Reginaldo Guirardello* Department of Chemical Engineering, State University of Campinas - UNICAMP, Brazil

(Accepted 1 July 1997)

Abstract—This work uses a computational fluid dynamics approach for the simulation of a slurry bubble column reactor, applied in the hydroconversion of heavy oils under severe temperature and pressure operating conditions. Simulations are carried out in two steps: first, the fluid dynamics is determined by the calculation of the pressure drop in the bed and the radial distribution of gas and slurry for the holdup, effective viscosity (dispersion) and velocity. Then a thermal cracking reaction is simulated and the oil conversion to lighter fractions such as gasoil, diesel, naphtha and gases is obtained. Results show the recirculation pattern in the reactor which leads to a high degree of backmixing in the slurry phase. Temperature and liquid residence time are found to have a great influence in the oil cracking conversion. © 1997 Elsevier Science Ltd

Keywords: Bubble column; slurry reactor; hydroconversion process; resid upgrading; computational fluid dynamics; thermal cracking simulation.

INTRODUCTION

Hydroconversion processes are being developed in order to upgrade heavy oils and petroleum resids. These fractions contain compounds with high molecular weights, metals (Ni, V) and multifunctional groups. The oil inside the reactor is submitted to severe temperature $(350-500^{\circ}C)$ and pressure (7-25 MPa) operating conditions in the presence of hydrogen, which leads to the cracking and hydrogenation of heavy hydrocarbon molecules and the removal of heteroatom compounds (metals, nitrogen, sulphur, oxygen). A product with lighter oil fractions and a lower level of contaminants, which has an increased commercial value and causes less pollution when burned, is obtained.

Among the technologies available, two basic reactor types are used for the hydroconversion process: the ebullated bed and the slurry bubble column.

In this study we have concentrated our attention on simulating a slurry bubble column reactor where all three phases enter together at the bottom of the reactor and flow upwards, leaving the reactor at the top, as shown in Fig. 1. It is assumed that there is no external recycling and that only thermal cracking reactions take place in the reactor. As hydrogen is present in great excess in order to avoid coke formation and the fraction of gases produced is low, it is assumed that the gas phase is composed of pure hydrogen. The high pressure of the system and low gas velocities prevent bubble coalescence so it is assumed that a homogeneous flow regime is found in the reactor.

The aim of this paper is to present the modelling and simulation of the system described above. A fluid dynamic approach is used because we believe that models which consider the flow pattern inside the reactor are able to give more accurate results and improve the design and scaleup of slurry bubble column reactors.

Simulations are carried out in two steps: first the fluid dynamic variables (velocities, holdup and effective viscosity profiles) are obtained and then the oil cracking conversion is determined.

FLUID DYNAMIC MODEL

The fluid dynamic model is based on the continuity and momentum balance time-averaged equations using an Eulerian approach. A zero-order turbulence model takes into account the mixing in the bed.

A two-fluid model with gas and slurry (pseudohomogeneous phase) is considered, with the solid particles uniformly distributed in the slurry.

The main assumption is a fully developed turbulent axial flow with azimuthal symmetry. Experimental

^{*}Correspondence address: Cidade Universitaria, UNI-CAMP, CP 6066, 13083-970 Sao Paulo, Campinas, Brazil. Tel.: 00 55 19 2398534; fax: 00 55 19 2394717; e-mail: guira@feq.unicamp.br.

4180

M. M. Carbonell and R. Guirardello

Fig. Hydroconversion reactor simulated.

data obtained by Dudukovick and Devanathan show the formation of a large liquid recirculation cell which occupies most of the bubble column length with the liquid flowing upwards at the column center and downwards near the wall. They also observed that throughout this cell the average radial velocities are very small and can be considered equal to zero. These facts imply that a simplified one-dimensional model can be applied to most of the column (Dudukovick and Devanathan, 1993). One-dimensional models have been used in the simulation of three-phase fluidized beds (Chen *et al.*, 1995) and bubble column reactors (Gasche *et al.*, 1990).

The reactor under consideration is isothermal and operates under steady-state conditions. It is assumed that thermal cracking reactions do not interfere in the dynamics of the bed due to the high backmixing of the liquid phase and the low gas absorption rate. Besides, the formation of gas compounds is low and is not considered.

The equations of the model, written in cylindrical coordinates, are presented as follows:

For the slurry phase:

$$\frac{1}{r}\frac{\mathrm{d}}{\mathrm{d}r}\left(\varepsilon_{\mathrm{sl}}r\,\mu_{\mathrm{sl}}^{\mathrm{eff}}\,\frac{\mathrm{d}V_{\mathrm{sl}}}{\mathrm{d}r}\right) - \varepsilon_{\mathrm{sl}}\,\frac{\mathrm{d}P}{\mathrm{d}z} - g\rho_{\mathrm{sl}} + F = 0 \quad (1)$$

For the gas phase:

$$\frac{1}{r}\frac{\mathrm{d}}{\mathrm{d}r}\left(\varepsilon_{g}r\,\mu_{g}^{\mathrm{eff}}\,\frac{\mathrm{d}V_{g}}{\mathrm{d}r}\right)-\varepsilon_{g}\,\frac{\mathrm{d}P}{\mathrm{d}z}-g\varepsilon_{g}(\rho_{g}-\rho_{\mathrm{sl}})-F=0$$
(2)

and the boundary conditions are given by:

$$V_{s1} = 0$$
 and $V_{g} = 0$ at $r = \text{Rc}$
 $\frac{dV_{s1}}{dr} = 0$ and $\frac{dV_{g}}{dr} = 0$ at $r = 0$

The effective viscosity (μ^{eff}) of each phase is defined below:

$$\mu^{\text{eff}} = \mu + \mu^T. \tag{3}$$

The liquid turbulent viscosity is calculated according to the expression developed for single-phase pipe flow (Reichardt, 1951) and extended to the modelling of bubble column reactors (Menzel *et al.*, 1990) and three-phase fluidized beds (Chen et al., 1995).

$$\mu_L^T = \frac{k_1 \rho_L \operatorname{Rc} \left(\frac{\operatorname{Pw}}{\rho_m}\right)^{1/2}}{6} \left(+ 2 \left(\frac{r}{\operatorname{Rc}}\right)^2 \right) \left(1 - \left(\frac{r}{\operatorname{Rc}}\right)^2 \right)$$
(4)

where $k_1 = 0.1$ in the homogeneous bubble flow regime.

Gas turbulent viscosity is determined using the equation below, where Rp is the ratio of gas-phase and liquid-phase fluctuation velocity and ranges between 1 and 2 for systems with low gas velocities (Grienberger and Hofmann, 1992). In the model presented here, it was considered that Rp = 1.

$$\mu_{g}^{T} = \mu_{L}^{T} \frac{\rho_{g}}{\rho_{L}} \operatorname{Rp}^{2}.$$
 (5)

The drift flux model, which was used successfully in describing gas holdup of coal liquefaction reactors with different scales (Tarmy *et al.*, 1984), is employed in the determination of the average gas holdup. Model parameters obtained by Tarmy *et al.* are used as a first approach, so Ub = 0.09 m/s, C0 = 1 and m = 0.65. This procedure is a good approximation since operating conditions and fluid dynamic behavior of coal liquefaction and hydroconversion reactors are similar.

$$\frac{U_g}{\varepsilon_{gM}} = C0 \frac{(U_g + U_L)}{(\varepsilon_{gM} + \varepsilon_{LM})} + Ub \frac{(\varepsilon_{LM})^m}{(\varepsilon_{gM} + \varepsilon_{LM})^{1+m}}.$$
 (6)

A parabolic radial distribution for gas holdup, as observed in three-phase fluidized beds, is assumed (Chen et al., 1995).

$$\varepsilon_{g} = \varepsilon_{gc} \left(1 - \left(\frac{r}{Rc} \right)^{2} \right).$$
 (7)

The interfacial drag force (F) takes into account the momentum transference from the gas phase to the slurry phase resulting from phase interactions and is calculated with the expression used by Torvik and Svendsen in the modelling of slurry reactors. The constant corresponds to a slip velocity between the gas phase and the slurry phase of 0.2 m/s (Torvik and Svendsen, 1990).

$$F = \varepsilon_{g} (\varepsilon_{L} + \varepsilon_{s}) (V_{g} - V_{s}) 50,000.$$
(8)

REACTION MODEL

Two important reactions go on in a hydroconversion reactor: thermal cracking and catalytic removal of contaminants. Experimental evidence has shown that these reactions are largely independent so that each of them can be modelled separately (Mosby *et al.*, 1986).

This paper takes into account the thermal cracking reactions of feed to lighter products. Thermal cracking is the decomposition of organic molecules that occurs at high temperatures (above 350°C) in the

Fig. 2. Lumped parameter reaction scheme. Numbers in the arrows are the first-order rate constants relative to that for hard resid cracking to product gasoil (from Mosby *et al.*, 1986). The number *i* is used to identify each lump in model equations.

liquid phase (homogeneous reactions) by the formation of active free radicals. As the radicals formed are quickly saturated with hydrogen, the reactions may be considered irreversible (Beanton and Bertolacini, 1991).

The kinetic model used was developed by Mosby et al. based on experimental evidence. Feed and products are divided into several boiling range lumps, where each lump is considered a single chemical species with a single cracking rate constant. A matrix was proposed for first-order, irreversible reactions, as shown in Fig. 2, where the boiling range of each lump and the interrelationships among feed and product fractions are indicated for the cracking reactions (Mosby et al., 1986).

Due to the nonuniformity in reactivity, feed resid was divided into hard to react and easy to react lumps, where the former represents resins and asphaltenes while the latter represents oil content. It was considered that hard to react resid accounts for 80% of feed resid.

The reaction rate constant of hard resid cracking to gasoil used for modelling was (Abreu, 1995):

$$k = 6.1817 \, 10^{13} \exp\left(\frac{-2.4282 \, 10^5}{8.314 \, T}\right). \tag{9}$$

Model equations are obtained with the mass balance of each reaction lump applying the same assumptions made in the fluid dynamic model. As the reactor is isothermal, energy balance is not considered in model formulation.

As discussed previously, it can be assumed that the reaction does not interfere with the fluid dynamic behavior so that the radial profile for the velocity, holdup and effective viscosity do not depend on the axial position. The mass balance equation written in cylindrical coordinates for a generic lump i leads to:

$$\varepsilon_L \rho_L V_L \frac{\partial \mathrm{Ci}}{\partial z} - \frac{1}{r} \frac{\partial}{\partial r} \left(r \mu_L^{\mathrm{eff}} \varepsilon_L \frac{\partial \mathrm{Ci}}{\partial r} \right) - \mathrm{Dz} \, \varepsilon_L \rho_L \frac{\partial^2 \mathrm{Ci}}{\partial z^2} = \mathrm{Rr}$$
(10)

where Rr accounts for the reaction term.

The analysis of the order of magnitude has shown that the convection term is dominant in the axial direction, while dispersion is dominant in the radial direction. As a first approximation only convection phenomena are considered, however, it is intended for future work to consider also the radial dispersion phenomena. Final model equations obtained for the generic lump i are presented below:

$$\varepsilon_L \rho_L V_L \frac{\mathrm{dCi}}{\mathrm{dz}} = -\alpha_i k \rho_L \mathrm{Ci} + \sum_{m=1}^7 \beta_{m,i} k \rho_L \mathrm{Ci} \quad (11)$$

with the boundary condition: $Ci = Ci^*$ at z = 0.

In this equation α_i and $\beta_{m,i}$ are constants obtained in the reaction matrix (see Fig. 2) relative to the rate constant of hard resid cracking to product gasoil. The former refers to the consumption of component *i* while the latter accounts for the cracking of component *m* to component *i*.

The analytical integration of model equations for each component i leads to the system of seven algebraic equations presented below:

• For easy to react and hard to react resid and feed gasoil (*i* = 1, *i* = 2, *i* = 3):

$$\operatorname{Ci}(r, z) = \operatorname{Ci}^* \operatorname{Fe}(\alpha_i)$$
 (12)

For product gasoil:

$$C4(r, z) = (cte14 + cte24 + C4^*) Fe(\alpha_4)$$

$$-\operatorname{cte14}\operatorname{Fe}(\alpha_1)-\operatorname{cte24}\operatorname{Fe}(\alpha_2) \qquad (13)$$

• For distillate, naphtha and gases (i = 5, i = 6, i = 7):

$$Ci(r, z) = Ci^* + (\beta_{1,i}C1^* - \beta_{4,i}cte14)(1 - Fe(\alpha_1))/\alpha_1 + (\beta_{2,i}C2^* - \beta_{4,i}cte24)(1 - Fe(\alpha_2))/\alpha_2 + \beta_{3,i}C3^*(1 - Fe(\alpha_3))/\alpha_3 + \beta_{4,i}(cte14 + cte24 + C4^*)(1 - Fe(\alpha_4))/\alpha_4$$
(14)

where $Fe(\alpha_i)$, cte14 and cte24 are auxiliary functions defined as follows:

$$Fe(\alpha_i) = \exp\left(-k\,\alpha_i\,z/(\varepsilon_L V_L)\right) \tag{15}$$

cte14 =
$$\frac{\beta_{1,4}C1^*}{\alpha_1 - \alpha_4}$$
 (16); cte24 = $\frac{\beta_{2,4}C2^*}{\alpha_2 - \alpha_4}$ (17)

SIMULATION

Simulations are carried out in two steps: first the fluid dynamic model equations are solved and the radial profiles of the axial velocity, holdup and effective viscosity are obtained for both the gas phase and the slurry phase. Then thermal cracking reactions are simulated and the radial and axial concentration profiles in the reactor, resid conversion and product distribution in the stream that leaves the reactor are determined.

Fluid dynamic simulation

The equations of the fluid dynamic model have been adimensionalized in order to have all terms of the same order of magnitude. The adimensional equations have been discretized using the volume finite method (Patankar, 1980) and the algebraic equations obtained have been solved with the tri-diagonal matrix algorithm (TDMA).

An iterative procedure was established since both velocity profiles $(V_g(r) \text{ and } V_{si}(r))$ and the pressure drop in the reactor need to be calculated and only two equations are available. The numerical procedure used requires an initial guess for $V_g(r)$, $V_{si}(r)$ and for the pressure drop. Convergence is achieved when the radial profile of liquid velocity satisfies the continuity equation.

It was verified that simulation results do not depend on the initial guess for $V_g(r)$, $V_{sl}(r)$ and the pressure drop.

Reaction simulation

Simulation of the reaction model requires a previous knowledge of the fluid dynamic variables $(V_L \text{ and } \varepsilon_L)$. Since these variables are calculated for the fully developed region, a problem arises in modelling the reactor inlet and outlet regions. So an algorithm was developed in order to correlate the concentration of each lump at the inlet (Coi) and outlet regions (Csi) with the concentration at the developed flow region and to define an iterative procedure to calculate concentration profiles (Carbonell, 1996). The most important points of the algorithm are presented below.

The reactor is divided into three regions, as shown in Fig. 3: the entrance, the fully developed flow and the outlet. There is a large recirculation cell in the developed flow region with the liquid flowing upwards in the center of the reactor and downwards near the wall. This cell occupies almost the entire length of the reactor.

Entrance and outlet regions are much smaller so that as approximation cracking reactions in these regions can be neglected. Besides, it is assumed that complete mixture occurs in these regions.

Mass balances for a generic lump *i* in the entrance and outlet regions lead to the expressions which correlate Coi and Csi with the concentration in the developed flow regions.

$$Cbi = \frac{U_L Coi Rc^2 - 2 \int_{r^*}^{Rc} V_L(r) \varepsilon_L(r) r Cei(r) dr}{2 \int_{0}^{r^*} V_L(r) \varepsilon_L(r) r dr}$$
(18)

$$Csi = \frac{2\int_0^{r^*} V_L(r)\varepsilon_L(r)r \operatorname{Cfi}(r) dr}{U_L \operatorname{Rc}^2 - 2\int_{r^*}^{\operatorname{Rc}} V_L(r)\varepsilon_L(r)r dr}.$$
(19)

The Gaussian quadrature method is used to integrate numerically the integrals in the equations above.

Fig. 3. Reactor diagram (half reactor, not in scale).

An accurate result is obtained with 10 radial calculation points.

The iterative calculation procedure for the concentration profiles initiates with a guess for Cbi. Then the concentration of all seven lumps are calculated simultaneously, following the sequence described below:

- Cfi(r) calculation with reaction model equations in the upward flow region;
- (2) Csi calculation with the equation above;
- (3) Cei(r) calculation with reaction model equations in the downward flow region;
- (4) Cbi⁺ calculation with the equation above;
- (5) If |Cbi Cbi⁺| > error, Cbi = Cbi⁺, go to step (1);
- (6) If |Cbi Cbi⁺| < error, convergence was obtained.

It was verified that simulation results do not depend on the initial guess for Cbi as long as the mass balance equation is satisfied:

$$\sum_{i=1}^{7} \text{Cbi} = 1.$$
 (20)

The program is implemented in Fortran language (Fortran 77). Each simulation takes about 90 s running in a PC-486-DX2-66 with 8 Mb of RAM memory.

RESULTS

A hydroconversion reactor is simulated at pilot plant scale, fed with petroleum resid (80% hard to react) and operated at 1.1 MPa and at a temperature ranging from 315 to 482°C. The gas phase is composed of pure hydrogen flowing in a homogeneous regime. The average holdup of the solid phase (dp = 100 μ m) is equal to 0.15. The liquid phase is composed of a mixture of the oil lumps presented in

4182

Fig. 4. Slurry velocity profile.

Fig. 5. Slurry effective viscosity profile.

Fig. 2. The properties of each lump at reactor operating conditions are obtained in a commercial simulator provided that an oil fraction distillation curve is given.

Figure 4 shows the radial profile of the slurry velocity which indicates clearly the recirculation pattern, with an upward flow in the center of the reactor and downward flow near the wall. As the slurry is a pseudo-homogeneous phase (liquid + solid), the results obtained show the recirculation of the solid and liquid phases together in the reactor, with the same local velocity. The dashed line indicates the flow inversion point where slurry velocity is equal to zero.

The radial profile of slurry effective viscosity is presented in Fig. 5. It shows a maximum value near the flow inversion point where turbulence is more intense and a decreasing value near the wall.

Average phase holdups are indicated in Fig. 4. A parabolic radial profile of gas holdup was assumed in the model with the gas bubbles concentrated in the center of the reactor.

Even though it is assumed that liquid properties do not vary significantly throughout the reactor due to liquid backmixing, whether the different properties of each oil lump (at 425°C and 1.1 MPa) would lead to a different flow behavior was investigated. As shown in Fig. 6, the velocity profile obtained in the simulation is almost the same regardless of whether the liquid phase is composed of resid or gasoil or distillate.

Fig. 6. Slurry velocity profile.

Fig. 7. Product distribution as a function of temperature $(\tau_L = 68 \text{ min}).$

Thermal cracking simulations carried out at 425°C and 1.1 MPa lead to the conversion of 10.4% of hard to react resid (x_1) and 67.8% of easy to react resid (x_2) , resulting in a resid total conversion of 21.9%. Reaction simulation in a CSTR at the same operating conditions lead to $x_1 = 8.2\%$, $x_2 = 62.1\%$ and a resid total conversion of 19%. The comparison between these values indicates that the model presented in this paper accounts for an intensive but incomplete mixture in the reactor, as found in fluidized beds.

Figure 7 shows the influence of temperature on resid conversion and product distribution. Gases, naphtha and distillate production increase with an increase in temperature while the gasoil formed undergoes secondary reactions and produces lighter fractions.

The major influence of temperature on oil cracking conversion is in agreement with the data in the literature. According to Trambouze, at normal operating conditions a 15°C increase in temperature almost doubles the reaction rate constant (Trambouze, 1993).

The simulation results presented in Fig. 7 indicate that an optimum temperature value can be determined in order to maximize either the oil cracking conversion or the production of a specific oil fraction. Such an analysis should also take into account coke formation which is not considered in this model. Higher temperatures tend to accelerate the formation of coke that agglomerates inside the reactor causing serious operational problems, such as the

Fig. 8. Product distribution as a function of liquid residence time $(T = 450^{\circ}C)$.

plugging of the reactor or downstream equipment and pipes.

Liquid residence time also has a significant influence on product distribution and on overall resid conversion, as seen in Fig. 8.

CONCLUSIONS

A computational fluid dynamics approach is presented for the modelling of a hydroconversion reactor.

Since it is assumed reaction does not interfere in fluid dynamic behavior, simulations can be carried out in two steps: first fluid dynamic variables are determined and then oil cracking conversion is calculated.

A pseudo two-phase, one-dimensional two-fluid model (gas and slurry) based on the continuity and momentum balance equations is used in the simulation of reactor fluid dynamics behavior. The slurry velocity profile obtained shows the recirculation pattern inside the reactor.

Thermal cracking simulations show a strong influence of temperature and liquid residence time on resid conversion and product distribution. A high degree of mixture in the reactor is found for the model presented, which is typical of fluidized beds.

Even though the model is quite simple and straightforward, results show good agreement with phenomena behavior. Indeed, further checking against experimental data is needed to validate the model in order to use it for reactor design.

Future work should also consider refinements in the model. The correlations used have been presented in literature for pilot plant reactors, so it is required to extend their range of application before the model can be used for scaling up. Besides, it may be necessary to extend the fluid dynamic model to two or three dimensions.

Acknowledgements

The authors gratefully acknowledge the financial support of CNPq—Conselho Nacional de Desenvolvimento Científico e Tecnológico (Brazil)—and PETROBRAS (Petróleo Brasileiro S/A).

NOTATION

	NOTATION
C0	distribution parameter
Cbi	conc. of lump <i>i</i> at $z = 0$ in the upward
	flow region (see Fig. 3), mass fraction
Cei	conc. of lump <i>i</i> at $z = 0$ in the downward
	flow region (see Fig. 3), mass fraction
Cfi	conc. of lump <i>i</i> at $z = Lc$ in the upward
	flow region (see Fig. 3), mass fraction
Ci	conc. of lump i (see Fig. 2), mass fraction
Ci*	conc. of lump i at the boundary condition
	(z = 0), mass fraction
Coi	conc. of lump i at reactor entrance, mass
	fraction
Csi	conc. of lump i at $z = Lc$ in the downward
	flow region (see Fig. 3) and at the reactor
	outlet stream, mass fraction
cte14	auxiliary function as defined in the text
cte24	auxiliary function as defined in the text
dp	particle diameter, μm
Dz	axial dispersion coefficient, m ² /s
F	interfacial drag force (N/m ³ reactor)
Fe(ai)	auxiliary function as defined in the text
g	gravitational acceleration, m/s ²
k	rate constant, 1/s
k,	parameter that varies with flow regime.
•	dimensionless
Lc	reactor height, m
m	parameter of the equation, dimensionless
Р	pressure, Pa
Pw	RMS of pressure fluctuation at reactor
	wall, Pa
r	radial position, m
r*	radial position where $V_r = 0$, m
Rc	radius of the reactor, m
Rp	ratio of velocity fluctuations of gas and
F	liquid phases, dimensionless
Rr	reaction term in mass balance equation
Т	temperature, K
U	superficial velocity, m/s
UЪ	isolated bubble rise velocity. m/s
V	axial velocity, m/s
x_1	conversion of hard to react resid. dimension-
•	less
x2	conversion of easy to react resid, dimension-
-	less
Z	axial position, m
	L
Greek let	ters
αί	relative rate constant which refers to the

consumption of component i (see Fig. 2),

relative rate constant which refers to the

cracking of component i to component

m (see Fig. 2), dimensionless holdup, dimensionless

laminar viscosity, Pas

effective viscosity, Pas

density, kg/m³

turbulent viscosity, Pas

holdup at the center of the reactor

dimensionless

 $\beta_{m,i}$

3

Egc

μ μ^{eff}

 μ^T

ρ

4184

- ρ_m apparent density of slurry-gas mixture, kg/m³
- τ residence time, s

Subscripts

- g gas phase
- i lump i (see Fig. 2)
- L liquid phase
- M average value
- s solid phase
- sl slurry phase

REFERENCES

- Abreu, J. C. (1995) Modelagem e simulação de reator de leito expandido aplicado ao hidroprocessamento de óleos pesados e resíduos de destilação. M.Sc. dissertation, UNICAMP, Brazil.
- Beanton, W. I. and Bertolacini, R. J. (1991) Resid Hydroprocessing at Amoco. Catal. Rev. Sci. Engng 33, 281-317.
- Carbonell, M. M. (1996) Modelagem e simulação de reator fluidizado trifásico aplicado ao processo de hidroconversão de óleos pesados. M.Sc. dissertation, UNICAMP, Brazil.
- Chen, Z., Zheng, C., Feng, Y. and Hofmann, H. (1995) Modelling of three-phase fluidized beds based on local bubble characteristics measurements. *Chem. Engng Sci.* 50, 231-236.
- Dudukovic, M. P. and Devanathan, N. (1993) Bubble column reactors: some recent developments. In: Chemical Reactor Technology for Environmentally Safe Reactors and Products, eds. H. I. Lasa, G. Dogu and A. Ravella, pp. 353-377. Kluwer Academic Publishers, Dordrecht.
- Fan, L. S. (1989) Gas-Liquid-Solid Fluidization Engineering. Butterworths, London.

- HYSIM® (1994) Hyprotech Ltda. Canada.
- Gasche, H. E., Edinger, C., Kompel, H. and Hofmann, H. (1990) A fluid dynamically based model of bubble column reactors. *Chem. Engng Technol.* 13, 341-349.
- Grienberger, J. and Hofmann, H. (1992) Investigations and modelling of bubble columns. Chem. Engng Sci. 47, 2215-2220.
- Menzel, T., Weide, T., Staudacher, O., Wein, O. and Onken, U. (1990) Reynolds shear stress for modeling of bubble column reactors. Ind. Engng Chem. Res. 29, 988-994.
- Mosby, J. F., Buttke, R. D., Cox, J. A. and Nikolaides, C. (1986) Process characterization of expandedbed reactors in series. *Chem. Engng Sci.* 41, 989-995.
- Patankar, S. V. (1980) Numerical Heat Transfer and Fluid Flow. Hemisphere, Washington, DC.
- Reichardt, H. (1951) Z. Angew. Math. Mech. 31, 208.
- Tarmy, B. L., Chang, M., Coulaloglou, C. A. and Ponzi, P. R. (1984) The Three Phase Hydrodynamic Characteristics of the EDS Coal Liquefaction Reactors: Their Development and Use in Reactor Scaleup. Institution of Chemical Engineers Symposium Series, Vol. 87, 8th International Symposium on Chemical Reaction Engineering, Edinburg, 10-13 September.
- Torvik, R. and Svendsen, H. F. (1990) Modelling of slurry reactors. A fundamental approach. Chem. Engng Sci. 45, 2325-2332.
- Trambouze P. (1993) Engineering of hydrotreating process. In: Chemical Reactor Technology for Environmentally Safe Reactors and Products, eds. H. I. Lasa, G. Dogu and A. Ravella, pp. 409-424. Kluwer Academic Publishers, Dordrecht.

ERRATUM

Carbonell, M. M. and Guirardello, R. (1997) Modelling of a slurry bubble column reactor applied to the hydroconversion of heavy oils. *Chem. Engng Sci.* 52, 4179-4185.

The authors would like to make some corrections to the paper on page 4181 for the model equations. The results presented are correct since they were obtained with the proper expressions.

• The frequency factor of the reaction rate constant should be 9.0907 10¹³ instead of 6.1817 10¹³, so the correct form of eq. 9 is:

$$\mathbf{k} = 9.0907 \ 10^{13} \cdot \exp\left(\frac{-2.4282 \ 10^5}{8.314 \cdot T}\right) \tag{9}$$

• Equation (11) should include ε_L in the terms of the right side of the equation, so the correct eq. (11) is:

$$\varepsilon_L \cdot \rho_L \cdot V_L \cdot \frac{\mathrm{d}Ci}{\mathrm{d}z} = -\alpha_i \cdot k \cdot \varepsilon_L \cdot \rho_L \cdot Ci + \sum_{m=1}^7 \beta_{m,i} \cdot k \cdot \varepsilon_L \cdot \rho_L \cdot Ci \qquad (15)$$

and the correct Equation (15) is:

$$Fe(\alpha_i) = \exp(-k \cdot \alpha_i \cdot z/V_L).$$

9.3 ARTIGO: SIMULAÇÃO DA HIDROCONVERSÃO DE RESÍDUOS DE PETRÓLEO. UMA ANÁLISE PARAMÉTRICA – XXVI ENEMP, 1998

Esse anexo é parte integrante dos itens 4.1 e 4.2 e Capítulo 5 da tese e traz o artigo de Carbonell e Guirardello (1998a) apresentado no XXVI Congresso brasileiro de sistemas particulados (XXVI ENEMP), realizado em Teresópolis - RJ. O artigo foi publicado nos anais do congresso.

O artigo apresenta um estudo da influência das condições operacionais, dimensões do reator e propriedades dos fluidos nos resultados da simulação da fluidodinâmica do reator e conversão da carga. Também é avaliada a sensibilidade dos resultados da simulação frente à variação de parâmetros fluidodinâmicos e cinéticos do modelo.

O estudo de análise paramétrica foi desenvolvido usando o modelo fluidodinâmico base e cinética de Mosby et al. (1986). Para as simulações foi utilizado o programa RHA 1.1, que tem a versão atualizada do modelo fluidodinâmico base.

Referência bibliográfica:

CARBONELL, M.M., GUIRARDELLO, R. Simulação da hidroconversão de resíduos de petróleo – uma análise paramétrica. In XXVI CONGRESSO BRASILEIRO DE SISTEMAS PARTICULADOS (XXVI ENEMP), outubro 1998a, Teresópolis – Brasil, p.517-524.

Montserrat Motas Carbonell e Reginaldo Guirardello

UNICAMP / FEQ / DPQ, CP.6066, CEP.13083-970. Campinas - SP. e-mail: guira@feq.unicamp.br; montse@feq.unicamp.br

<u>RESUMO</u>: No contexto da produção e refino de petróleo, a hidroconversão de óleos pesados e resíduos da destilação é uma alternativa interessante quem vem sendo pesquisada. O processo permite a obtenção de maiores rendimentos de produtos com melhor qualidade quando comparado às tecnologias comerciais disponíveis. Esse artigo tem o objetivo de explorar o modelo matemático desenvolvido para o reator de hidroconversão em escala piloto. Para isso é investigada a influência das condições operacionais, dimensões do reator e propriedades dos fluidos na fluidodinâmica e na conversão de óleo, bem como a sensibilidade dos resultados frente à variação de parâmetros fluidodinâmicos e cinéticos do modelo. Os resultados obtidos são analisados e comparados com as informações disponíveis na literatura, mostrando boa concordância com o comportamento esperado. O trabalho apresenta ainda algumas estratégias numéricas adotadas na simulação e indica os aspectos que requerem aprofundamento nas pesquisas para que se desenvolvam modelos representativos que permitam o *scale-up* e projetos de reatores de hidroconversão.

INTRODUÇÃO

O cenário da produção de petróleo no Brasil e no mundo indica uma crescente necessidade de aproveitamento do petróleo com máximos rendimentos para suprir o aumento da demanda por produtos finais (combustíveis, lubrificantes, matérias-primas para petroquímica) de alta qualidade. Essa qualidade se traduz em especificações cada vez mais rígidas com relação ao desempenho e emissão de poluentes.

Alguns estudos recentes apontam para o fim do "petróleo barato" em 10 ou 20 anos (Campbell e Laherrére, 1998; Kerr, 1998), com uma queda na produção mundial de petróleo e consequente elevação dos preços. No Brasil observa-se uma tendência para o aumento da participação de um óleo com maior teor de frações pesadas e heteroátomos. Esse é o caso do petróleo do campo de Marlim, na bacia de Campos, grande produtor nacional.

Nesse contexto é cada vez mais importante desenvolver tecnologias para o processamento das frações pesadas de petróleo (fundo do barril) com eficiência e rentabilidade. Os processos comerciais e em desenvolvimento podem ser divididos em dois grupos em função de suas características (Fan, 1989):

- Rejeitam C; como por ex. coqueamento retardado, desasfaltação, "visbreaking" e RFCC (craqueamento catalítico de resíduos);
- Adicionam H; hidrocraqueamento e hidroconversão.

Os processos do primeiro grupo têm a tecnologia mais estabelecida, envolvem menores investimentos e já são utilizados nas refinarias nacionais. Os processos de hidroconversão são menos conhecidos e mais "caros", mas permitem a obtenção de maiores rendimentos e produtos com melhor qualidade.

Os de hidroconversão processos caracterizam-se por promover a quebra das grandes cadeias de hidrocarbonetos e a remoção de heteroátomos (S, N, O, Ni, V) em condições severas de temperatura (400-500°C) e pressão (10-25MPa). Os reatores operam em leito fluidizado trifásico gás-líquido-sólido (H2-óleo-catalisador). Esses processos vem sendo pesquisados em busca de métodos para scale-up e dimensionamento de unidades industriais que permitam sua operação estável com obtenção de altas conversões. Entre os aspectos relevantes que devem ser estudados para o seu desenvolvimento estão: o levantamento de dados cinéticos, teste de catalisadores, obtenção de fluido-dinâmicos. modelagem e parâmetros simulação.

Esse artigo aborda a simulação dos reatores de hidroconversão em escala piloto e investiga a influência de parâmetros operacionais e de projeto na fluidodinâmica e na conversão obtida.

MODELO DO REATOR

Com o grande desenvolvimento recente da fluidodinâmica computacional, modelos cada vez completos e detalhados tem sido mais apresentados para descrever o escoamento de colunas de bolhas bifásicas e trifásicas. Por exemplo, pode-se citar os trabalhos de Torvik e Svendsen (1990), Sokolichin e Eigenberger (1994), Hillmer et. al. (1994) e Delnoij et al (1997). Esses modelos variam, entre outros aspectos, quanto ao enfoque euleriano 1 lagrangiano, modelo turbulento implementado e consideração da dinâmica das bolhas.

Entretanto, muitos fenômenos ainda não são bem compreendidos e modelados, principalmente nas operações com fluidos diferentes do sistema ideal ar-água e em condições de alta temperatura e pressão, como é o caso dos reatores de hidroconversão. Mosby et al. (1986) e Abreu (1995) utilizaram modelos de CSTR em série e PFR com dispersão axial para o reator de hidroconversão.

O modelo utilizado nesse trabalho tem um enfoque fluidodinâmico e foi desenvolvido para simular as reações de craqueamento térmico num reator de hidroconversão operando no modo classificado como "slurry bubble column". A seguir são brevemente apresentadas as principais equações e considerações do modelo. Informações mais detalhadas são encontradas em Carbonell (1996) e Carbonell e Guirardello (1997 e 1998).

A principal consideração é a de um escoamento axi-simétrico completamente desenvolvido na direção axial, o que leva à obtenção de um modelo fluidodinâmico unidimensional. Assume-se que o gás escoa em regime homogêneo de bolhas e que o líquido e o sólido (óleo e catalisador) formam uma fase pseudo-homogênea (lama) onde o sólido está uniformemente distribuído ($V_L=V_s=V_{sl}$). O reator é isotérmico e opera em regime estacionário.

O modelo fluidodinâmico é baseado nas equações de conservação de massa e momento, com enfoque euleriano (Equações 1, 2 e 3). A turbulência é considerada através de um modelo turbulento de ordem zero. A fração volumétrica de gás e força de interação entre as fases são calculadas a partir de expressões empíricas. A simulação fornece os perfis radiais de fração volumétrica (ε), velocidade (V), e dispersão (viscosidade efetiva, μ^{eff}) das fases gás e lama. O perfil de velocidade do líquido mostra o padrão de recirculação encontrado em colunas de bolhas, com fluxo ascendente no centro e descendente próximo às paredes.

As reações de craqueamento térmico ocorrem via formação de radicais livres que são rapidamente saturados com hidrogênio, de forma que as reações podem ser consideradas irreversíveis (Beanton e Bertolacini, 1991).

O modelo reacional de craqueamento térmico é obtido através do balanço de massa (Equação 4) para cada um dos sete pseudocomponentes i em que o óleo foi dividido, com a utilização da matriz cinética proposta por Mosby et al. (1986). A simulação fornece a conversão das frações pesadas e a distribuição de produtos na saída do reator.

SIMULAÇÃO

A simulação do reator é realizada em duas etapas distintas e consecutivas: inicialmente simula-se a fluidodinâmica e a seguir as reações de craqueamento térmico. Assume-se que as reações não interferem significativamente na fluidodinâmica, de forma que sua variação ao longo do reator pode ser desconsiderada (Carbonell, 1996).

Tabela 1: Equações constitutivas do mode 🤉 (principais) -	Condições de contorno	
$\frac{1}{r} \cdot \frac{d}{dr} \left(\varepsilon_{sl} \cdot \mathbf{r} \cdot \mu_{sl}^{eff} \cdot \frac{d\mathbf{V}_{sl}}{dr} \right) - \varepsilon_{sl} \cdot \frac{d\mathbf{P}}{dz} - g \cdot \rho_{sl} + C\mathbf{w} \cdot \varepsilon_{g} \cdot \varepsilon_{sl} \cdot (\mathbf{V}_{g} - \mathbf{V}_{sl}) = 0 (1)$ $\frac{1}{r} \cdot \frac{d}{dr} \left(\varepsilon_{g} \cdot \mathbf{r} \cdot \mu_{g}^{eff} \cdot \frac{d\mathbf{V}_{g}}{dr} \right) - \varepsilon_{g} \cdot \frac{d\mathbf{P}}{dz} - g \cdot \varepsilon_{g} \cdot \left(\rho_{g} - \rho_{sl} \right) - C\mathbf{w} \cdot \varepsilon_{g} \cdot \varepsilon_{sl} \cdot (\mathbf{V}_{g} - \mathbf{V}_{sl}) = 0 (2)$	 V_{sl} = 0 e V_g = 0 em r = Rc dV_{sl} / dr = 0 e dV_g / dr = 0 	
$U_{L} \cdot \pi \cdot Rc^{2} \cdot \rho_{L} = 2 \cdot \pi \cdot \rho_{L} \cdot \int_{0}^{Rc} \varepsilon_{L} \cdot V_{L} \cdot r \cdot dr $ $\varepsilon_{L} \cdot \rho_{L} \cdot V_{L} \cdot \frac{dC_{i}}{dz} = -\alpha_{i} \cdot k \cdot \varepsilon_{L} \cdot \rho_{L} \cdot C_{i} + \sum_{m=1}^{7} \beta_{m,i} \cdot k \cdot \varepsilon_{L} \cdot \rho_{L} \cdot C_{m} $ (3) (4)	em $r = 0$ • $C_i = Coi$ em $z = 0$ e $0 \le r \le Rc$	

As equações do modelo fluidodinâmico (Equações 1 e 2) foram adimensionalizadas e discretizadas através do método de volumes finitos utilizando-se 1000 intervalos de cálculo. A solução das equações envolveu a aplicação do acoplamento pressão-velocidade, algoritmo que permitiu o cálculo dos perfis radiais de V_g e V_{si} e da queda de pressão no leito. Para isso foi utilizada a Equação 3, integrada numericamente pelo método de Simpson.

As equações do modelo reacional foram resolvidas pelo método das linhas, com integração analítica das equações ao longo do reator. Nas regiões de entrada e saída do reator os perfis radiais foram integrados com a aplicação do método de Quadratura Gaussiana. A implementação dos cálculos envolveu o uso do algoritmo do acoplamento recirculação-reação, procedimento iterativo apresentado em Carbonell (1996).

O programa foi implementado em Fortran 77, com tempo de execução da ordem de 20 s em um microcomputador Pentium 133.

Considerações Numéricas

O método da Quadratura Gaussiana foi selecionado com o objetivo de reduzir o número de equações integradas ao longo do reator (Equações 4 do modelo reacional) e consequentemente o esforço computacional. Para isso foram usados 10 pontos de quadratura, sendo 2 em condições de contorno. Considerando um total de 7 equações por ponto (uma para cada pseudo-componente), o modelo reacional resultou em 56 equações diferenciais ordinárias. O método de Simpson também foi testado, mas exigia em torno de 100 pontos radiais para que se obtivesse uma solução precisa, o que aumentou muito o número de equações (686 EDO's).

Entretanto, a utilização da Quadratura pequeno de Gaussiana trouxe um erro aproximação no valor da integração numérica calculada em cada uma das regiões do reator (fluxo ascendente / descendente). Esse pequeno erro torna-se grande quando os valores das duas regiões são somados, pois eles são muito próximos em módulo mas com os sinais contrários. O problema é ilustrado na Figura 1 para a simulação nas condições padrão de operação. Observa-se que no cálculo de U_L com a Equação 3, um erro de 0,36 % na integração numérica da região de fluxo descendente causa um erro de 7,90 % no valor final de U₁. Esse fato traz erros significativos para o modelo reacional, detectados quando se verifica que a somatória de Ci na saída do reator é diferente de 1, além de levar a uma alteração no

tempo de residência do líquido que conduz a variações irreais na conversão.

O problema foi resolvido através da adoção de um índice de correção para a velocidade em cada região de cálculo conforme se define a seguir:

$$\omega \mathbf{a} = \frac{A1 \operatorname{Simpson}}{A1 \operatorname{Quad.}} \quad (5) \quad \omega \mathbf{d} = \frac{A2 \operatorname{Simpson}}{A2 \operatorname{Quad.}} \quad (6)$$

e

$$U_{L} = 2 \cdot (\omega a \cdot A1 \operatorname{Quad} + \omega d \cdot A2 \operatorname{Quad})$$
(7)

No caso da Figura 1: $\omega a = 1,000000 e$ $\omega d = 1,003595$. Para um caso simulado onde V_L tem valores bem mais elevados (dc = 480mm): $\omega a=1,000000 e \omega d=1,006186$. Os valores de $\omega a e$ ωd são pequenos, mas a correção é importante para que o erro não se propague no modelo reacional, mantendo $\Sigma Ci=1$ em todos os pontos de cálculo e o tempo de residência do líquido estipulado em função das condições operacionais do reator.

Figura 1: Integração numérica para UL

ANÁLISE PARAMÉTRICA

O estudo de análise paramétrica do modelo envolveu a avaliação de fatores de projeto e condições operacionais, bem como parâmetros do modelo. Todas as análises foram comparadas a uma simulação padrão cujos valores são apresentados na Tabela 2. Estes dados estão de acordo com os valores típicos encontrados em "slurry bubble columns".

Os parâmetros investigados foram divididos de acordo com suas características em quatro grupos principais:

- 1. Parâmetros fluidodinâmicos e cinéticos do modelo desenvolvido;
- 2. Condições Operacionais;
- 3. Dimensões do Reator (geometria cilíndrica);
- 4. Propriedades do óleo e gás.

Os parâmetros do grupo 1 não estão sujeitos a um controle direto, eles são uma consequência do projeto do reator e condições operacionais. Entretanto, esses parâmetros são determinados através de correlações, sendo importante verificar a sua influência nas simulações em função das incertezas a que estão sujeitos. A força de interação entre as fases é diretamente proporcional a Cw, que corresponde a uma velocidade de deslizamento ("slip velocity") gás-lama de 0,2m/s (Torvik e Svendsen, 1990).

Tabela 2: Listagem dos parâmetros analisados, com indicação do valor padrão usado e resultados.

Grupo	Parâmetros	Valor	Obs
	$\epsilon_g em r = 0$	0,3406	ε _g máximo Eg [*] (r=0)
	$\mu_{L}^{T} em r = 0$	287,34 mPa.s	vitl [*] (r=0)
1	Cw	50000 kg/(m ³ .s)	
	$\mu_g^T \text{ em } r = 0$	1,106 mPa.s	vitg [*] (r=0)
	E	242820 J/mol	cinética
	ko	9,0907 10 ¹³ s ⁻¹	cinética
	Ug	0,02 m/s	
	UL	0,002 m/s	
2	Т	450 °C	
	Р	11 MPa	
	ε _{sM}	0,15	EsM
	Us	0,000023 m/s	
3	Dc	57 mm	Dc = 2.Rc
	Lc	3 m	
	C_{o1}/C_{o2}	4	$C_{ol} = 0.8$
	ρι	641,03 kg/m³	pl
4	μι	0,32 mPa.s	vil [*]
	ρ _g	3,65 kg/m ³	pg
	μ_{g}	0,0179 mPa.s	vig
Resul-	$V_L em r = 0$	0,4230 m/s	VL
			máxima
tados	Х	45,59 %	
	τι	16,99 min	

As propriedades ($\rho \in \mu$) do gás e do óleo foram determinadas em um simulador comercial (Hysim) nas condições operacionais do reator. Para isso foram fornecidas as curvas de destilação fracionada do óleo.

A proporção C_{o1}/C_{o2} indica a razão entre asfaltenos e resinas (C_{o1}) e óleos (C_{o2}) no resíduo alimentado ao reator. No caso padrão foi considerado $C_{o1}/C_{o2}=4$ conforme apresentado por Beanton e Bertolacini (1991) para o RV (resíduo da destilação à vácuo). Os asfaltenos e resinas são mais difíceis de craquear mas estão presentes em maior quantidade no RV, que é a carga do reator de hidroconversão.

Para análise do comportamento do reator foram selecionados dois resultados:

- V_L (r = 0); variável que representa a fluidodinâmica do líquido, resultante dos efeitos de turbulência no leito induzidos, principalmente, pela dinâmica das bolhas de gás.
- X, mostra quanto de resíduo alimentado ao reator foi efetivamente convertido a frações mais leves: gasóleo, diesel, nafta e gases.

Para complementar a análise é considerado também o tempo de residência do líquido (τ_L), calculado com a expressão:

$$\tau_{L} = \frac{\text{Volume}_{L}}{\text{Vazão}_{L}} = \frac{\varepsilon_{LM}.Lc}{U_{L}}$$
(8)

O tempo de residência normalmente tem influência significativa na extensão de reações químicas, sendo utilizado como critério no projeto de reatores. No caso de reatores fluidizados multifásicos, τ_L é influenciado pela fluidodinâmica do leito, principalmente em função da distribuição das frações volumétricas das fases.

Análise global

Inicialmente foram realizadas simulações variando-se individualmente cada um dos parâmetros da Tabela 2 em \pm 20 %. Os resultados estão apresentados na Figura 2.

A análise da Figura 2 mostra que os parâmetros de processo mais significativos são:

- na fluidodinâmica: Dc, U_g , ε_{sM} , ρ_L
- na extensão do craqueamento térmico seguido de hidrogenação: T, U_L, Lc, C₀₁/C₀₂.

A Figura 2a mostra que a viscosidade turbulenta do líquido $(\mu^{T}{}_{L})$ e fração volumétrica de gás (ϵ_{g}) tem efeito significativo e devem ser determinadas com correlações adequadas para que o modelo represente bem a dinâmica da fase líquida no reator. Nesse modelo, ϵ_{g} foi calculada com a expressão obtida por Tarmy et al. (1984) para o processo de liquefação de carvão, que opera em condições similares às da hidroconversão. Já $\mu^{T}{}_{L}$ foi obtida com a correlação utilizada por Chen et al (1995) para um leito fluidizado trifásico em condições ideais (ar-água-esferas de vidro; T e P ambientes).

Ainda são poucos os trabalhos experimentais publicados na literatura que exploram a influência de altas pressões e temperaturas na fluidodinâmica. Recentemente, Luo et al. (1997) observaram que com o aumento

da pressão, bolhas grandes quebram em bolhas menores resultando numa redução do tamanho e velocidade de ascensão das bolhas. Esse fenômeno implica num aumento da fração volumétrica de gás com a pressão, o que já havia sido observado por Tarmy et al. (1984). Dessa forma a transição do regime homogêneo de bolhas para o heterogêneo ocorre em velocidades de gás mais elevadas, o que é consistente com as observações de Tarmy et al. e com a consideração de ocorrência de regime homogêneo de bolhas no reator de hidroconversão.

Portanto, ainda que a expressão para o cálculo de ɛ não considere explicitamente a pressão, é fundamental que ela tenha sido obtida em condições de pressão elevada. Com relação à viscosidade turbulenta do líquido, ainda não foram encontrados trabalhos que verifiquem a influência da pressão em sua intensidade.

Conforme esperado, o aumento de ε_g leva a um aumento em V_L uma vez que a circulação de líquido é induzida, principalmente, pelas bolhas de gás. O aumento em μ_{L}^{T} representa um aumento na turbulência, o que leva à obtenção de um perfil de V_L mais achatado e portanto menor V_L (r = 0).

As constantes cinéticas, funções das características do óleo processado, têm um efeito muito pronunciado na conversão (vide Figura 2c). Portanto, para desenvolvimento de um modelo representativo é importante que a cinética tenha sido determinada especificamente para a carga que será processada.

É interessante observar que os parâmetros que interferem na fluidodinâmica causam uma variação no tempo de residência do líquido, que por sua vez se reflete na conversão de resíduo. As análises a seguir e a Tabela 3 mostram que o modelo apresenta as tendências esperadas e que nesse modelo a maior influência da fluidodinâmica na reação é via alteração no tempo de residência do líquido (τ_L). Talvez, com a consideração de dispersão radial no reator, seja possível estudar a influência da turbulência na conversão.

A Figura 2a mostra que Lc não interfere em V_L de modo que toda influência de Lc em X pode ser atribuída à variação de t_L. Comportamento semelhante é observado com relação a UL, que pouco influencia V_L mas é relativamente importante em τ_L e X. A situação é diferente no caso de Ug, uma vez que este parâmetro interfere simultaneamente em V_L, τ_L e X. Simulações realizadas com variação de Ug mantendo TL constante (compensado através de UL) mostraram que o efeito de ɛ em X é devido exclusivamente à variação de $\tau_{\rm L}$

Se	então	e τ _L	Portanto X
		τ _L ↓	x↓
ε _g ↑	ε _L ↓	τ _L ↓	x↓
U _g ↑	$\varepsilon_{g}\uparrow;\varepsilon_{L}\downarrow$	$\tau_L \downarrow$	x↓
UL↑		$\tau_L \downarrow$	x↓
ε _{sM} ↑	ε _L ↓	τ _L ↓	x↓
Lc 1	1919 1916 #	τι↑	X↑

Tabela 3: Análise esquemática da influência dos parâmetros em τ_L e na conversão (X). Obs. Os símbolos ↑ e↓ denotam, respectivamente, que o valor do parâmetro aumenta e diminui.

A seguir são analisadas com maior detalhe as variáveis U_g , Dc, T e C_{o1}/C_{o2} , que causaram efeito mais significativo nos resultados.

Análise de Ug

A velocidade superficial de gás (U_g) é uma variável muito importante na fluidodinâmica em leitos fluidizados e colunas de bolhas. U_g tem grande influência na dinâmica das bolhas (coalescência/ruptura, velocidade de ascensão, tamanho), sendo em grande parte responsável pelo regime de bolhas que se estabelece na coluna. O movimento das bolhas induz a turbulência e a circulação do líquido influenciando bastante a dispersão no leito.

Pela Figura 3 observa-se que, conforme já discutido, o aumento de U_g causa um aumento de ε_g bastante significativo, que resulta no comportamento de V_L observado. A μ^T_L também aumenta com U_g mas com menor intensidade.

Essas tendências estão de acordo com os trabalhos experimentais publicados na literatura. Dudukovic e Devanathan (1993) realizaram medições com partículas radioativas e apresentaram, entre outros dados, que a variação de U_g de 0,02 m/s para 0,06 m/s resultou em uma

Figura 3: Efeito da velocidade superficial de gás (Ug) na fluidodinâmica.

variação de V_L no centro da coluna de 0,1 m/s para 0.2 m/s. Esses resultados foram obtidos para coluna de bolhas ar-água com água em batelada. Menzel et al (1990) trabalharam com dois sistemas (ar-água e ar-solução de isopropanol) mostrando que nos dois casos a influência de Ug em VL é grande. A comparação desses resultados com os da simulação do reator de hidroconversão exige cautela, pois esses sistemas são bastante distintos. Em condições ambientes, a transição de regime homogêneo de bolhas para heterogêneo ocorre em U_g mais baixas e influencia muito fluidodinâmica. Entretanto, como no momento não há dados disponíveis da hidroconversão, essa comparação visa somente mostrar que as tendências dos resultados simulados são consistentes, sem a intenção de quantificar com exatidão esses efeitos.

Análise de Dc e Lc

Um modelo para scale-up de reatores fluidizados deve representar adequadamente os efeitos de variações das dimensões do reator (diâmetro e altura) na fluidodinâmica. Isso implica em representar tanto a dinâmica das bolhas, quanto a homogeneidade da distribuição das fases, os efeitos de parede e o padrão de circulação do líquido.

Na Figura 2a verifica-se que V_L (r = 0) aumenta com Dc, o que é observado na literatura para sistemas ideais, porém não com intensidade tão elevada. Kumar et al. (1994) realizaram um estudo para avaliar o efeito da escala na recirculação de colunas de bolhas. Eles mostraram que a maioria dos modelos turbulentos de primeira ordem, inclusive o adotado nesse trabalho, não deve ser usado para *scale-up* de colunas de bolhas. Portanto, esse aspecto do modelo deve ser melhor entendido para que ele proporcione uma melhor representação da turbulência do líquido em reatores de maior diâmetro.

O parâmetro Lc também é importante pois o modelo se fundamenta na hipótese de ocorrência de escoamento totalmente desenvolvido na maior parte do reator. Segundo Gasche et al (1990), o escoamento desenvolvido em colunas de bolhas é encontrado para Lc/Dc \geq 3. Dudukovic e Devanathan (1993) utilizaram colunas de bolhas com Lc/Dc = 5,5 e 7,3 em seus experimentos. Tarmy et al (1984), no scale-up do processo EDS para liquefação de carvão, utilizaram reatores com Lc/Dc = 13,9 ; 16,7 ; 29,5 ; 50,0 e 110,6. Entretanto, na maioria dos trabalhos experimentais Lc/Dc \approx 15 e nas condições padrão aqui adotadas Lc/Dc = 52,6.

Análise da Temperatura e Pressão de H2

A Figura 4 mostra o efeito da temperatura na extensão das reações de craqueamento. Com o aumento de T o gasóleo produzido sofre reações secundárias de craqueamento e a produção de frações mais leves aumenta.

Figura 4: Efeito da temperatura nas reações

A temperatura é uma variável fundamental na otimização do processo uma vez que determina a conversão total de resíduo, bem como a proporção entre os produtos formados. Entretanto, essa análise não é simples e envolve a consideração da formação de coque que aumenta com a temperatura, podendo atingir níveis críticos e causar sérios problemas operacionais (como por exemplo o entupimento das tubulações de saída do reator). A elevada pressão parcial de hidrogênio (componente da fase gás em maior quantidade) em que operam os reatores de hidroconversão inibe a formação de coque. Dessa forma, a operação em temperaturas mais elevadas implica em pressões mais elevadas, como é o caso do processo de hidroconversão VCC - Veba Combi Cracking (Niemann e Wenzel, 1993). Portanto, na otimização do processo deve-se considerar esses aspectos técnicos bem como os de custos de investimento e operação dos reatores em diferentes pressões.

Análise de C_{o1}/C_{o2}

A proporção entre C_{o1} (asfaltenos e resinas) e C_{o2} (óleos) na corrente alimentada ao reator também tem influência significativa na conversão. A Figura 5 mostra a distribuição de produtos na saída do reator em função da composição do óleo alimentado, onde observa-se que:

- a relação entre as concentrações de entrada e saída do reator é linear;
- aumentando-se a fração de C₀₁ na corrente de entrada do reator, a fração mássica dos gases produzidos aumenta, enquanto que as dos outros pseudo-componentes é reduzida;

 a conversão do óleo varia entre 34 e 90 % quando a composição do óleo é modificada de 0 para 100% de óleos na corrente de entrada do reator.

A proporção entre asfaltenos, resinas e óleos na entrada do reator depende tanto do tipo de petróleo processado (parafinico, naftênico ou aromático) quanto das características da corrente alimentada ao reator. Usualmente a corrente de alimentação do processo de hidroconversão é o RV podendo ser uma mistura desta com o RAT (resíduo da destilação atmosférica) e incluir ainda o óleo desasfaltado, decantado ou outras frações.

Figura 5: Efeito da composição do resíduo alimentado ao reator na conversão e na distribuição de produtos.

CONCLUSÕES

Esse artigo aborda a simulação dos reatores de hidroconversão em escala piloto, investigando e discutindo o efeito das condições operacionais e parâmetros de projeto e do modelo na fluidodinâmica e na conversão obtida.

Os parâmetros do modelo mais relevantes são a fração volumétrica de gás (ε_g), a viscosidade turbulenta de líquido (μ^T_L) e as constantes cinéticas da reação. Portanto, para obtenção de um modelo representativo esses parâmetros devem ser determinados com correlações adequadas.

Os parâmetros de processo mais significativos na fluidodinâmica são: o diâmetro da coluna (Dc) e a velocidade superficial de gás (U_g) ; e na conversão são: a temperatura (T), a velocidade superficial de líquido (U_L) , a altura do reator (Lc) e a composição do óleo (C_{01}/C_{02}) .

A fluidodinâmica influencia a conversão em função da variação no tempo de residência do líquido causada, entre outros, pela alteração da fração volumétrica das fases. O modelo apresentou resultados consistentes com os fenômenos físicos e com os dados disponíveis na literatura. Atualmente ainda são poucos os estudos experimentais realizados nas condições severas de temperatura e pressão, típicas do processo de hidroconversão, o que limita o desenvolvimento de modelos mais representativos para seu projeto e scale-up.

NOMENCLATURA

- Ci concentração do componente i, fração mássica
- Coi concentração de i na entrada, fração mássica
- Csi concentração de i na saída, fração mássica
- Cw constante da força de interação gás-lama,
- Dc diâmetro interno do reator, mm
- E energia de ativação das reações, J/mol
- g aceleração gravitacional, m/s²
- k constante cinética, l/s
- ko fator de frequência, 1/s
- Lc altura do reator, m
- P pressão, MPa
- r posição radial no reator, m
- Rc raio do reator, m
- T temperatura, °C
- U velocidade superficial, m/s
- V velocidade axial local, m/s
- X conversão, % mássica
- z posição axial na coluna, m

Letra gregas

- $\alpha_i \cdot k$ taxa de craqueamento de i, l/s
- $\beta_{m,i}$ k taxa de formação de i a partir de m, 1/s
- ε fração volumétrica ("hold-up")
- μ viscosidade laminar, mPa.s
- μ_{-}^{eff} viscosidade efetiva, mPa.s ($\mu^{\text{eff}} = \mu^{T} + \mu$)
- μ^{T} viscosidade turbulenta, mPa s
- ρ massa específica, kg/m³
- τ tempo de residência, min
- ωa fator de correção, região fluxo ascendente
- ωd fator de correção, região fluxo descendente

Subscritos

g	- gás	L - líquido	Μ	- média
sl	- lama	s - sólido		

REFERÊNCIAS

- ABREU, J.C. (1995), Modelagem e Simulação de Reator de Leito Expandido Aplicado ao Hidroprocessamento de Óleos Pesados e Resíduos de Destilação. Dis. de Mestrado, UNICAMP, Campinas – SP, 85 p.
- BEANTON, W.I.; BERTOLACINI, R.J. (1991) "Resid Hydroprocessing at Amoco". Catal. Rev. Sci. Engng. Vol 33, p.281-317.
- CAMPBELL, C. J.; LAHERRERE, J. H. (1998) The End of Cheap Oil. Scientific American, Vol 278, p.60-65.
- CARBONELL, M.M.; GUIRARDELLO, R. (1998) "Erratum". Chem. Eng. Sci., Vol.53, p.2479-2479.
- CARBONELL, M.M.; GUIRARDELLO, R. (1997) "Modelling of a Slurry Bubble Column Reactor Applied to the Hydroconversion of Heavy Oils". Chem. Eng. Sci., Vol 52, p. 4179-4185.

- CARBONELL, M.M. (1996) Modelagem e Simulação de Reator Fluidizado Trifásico Aplicado ao Processo de Hidroconversão de Óleos Pesados. Dissertação de Mestrado, UNICAMP, Campinas – SP, 174 p.
- CHEN, Z.; ZHENG, C.; FENG, Y.; HOFMANN, H. (1995) "Modelling of Three-phase Fluidized Beds Based on Local Bubble Characteristics Measurements". Chem. Eng. Sci., Vol 50, p.231-236.
- DELNOIJ, E.; KUIPERS, J. A M.; VAN SWAAIJ, W. P. M.; (1997) "Computational Fluid Dynamics Applied to Gas-Liquid Contactors". Chem. Eng. Sci., Vol 52, p.3623-3638.
- DUDUKOVIC, M.P.; DEVANATHAN, N.(1993) "Bubble Column Reactors: Some Recent Developments". In: Lasa, H.I.; Dogu, G.; Ravella, A. Chemical Reactor Technology for Environmentally Safe Reactors and Products, p.353-377. Kluwer Academic Publishers.
- FAN, L.S. (1989) Gas Liquid Solid Fluidization Engineering. Butterworths Publishers.
- GASCHE, H.E.; EDINGER,C.; KOMPEL, H.; HOFMANN, H. (1990) "A Fluid Dynamically Based Model of Bubble Column Reactors". Chem. Eng. Tech., Vol 13, p.341-349.
- HILLMER, G. WEISMANTEL, L.; HOFMANN, H. (1994) "Investigations and Modelling of Slurry Bubble Columns". Chem. Eng. Sci., Vol 49, p. 837-843.
- HYSIM[®] (1994) Hyprotech Ltda. Canada.
- KERR, R. A (1998) "The Next Oil Crisis Looms Large and Perhaps Close". Science, Vol 281, p.1128-1131.
- KUMAR, S. B.; DEVANATHAN, N.; MOSLEMIAN, D.; DUDUKOVIC, M. P. (1994) "Effect of Scale on Liquid Recirculation in Bubble Columns". Chem. Eng. Sci., Vol 49, p. 5637-5652.
- LUO, X.; ZHANG, J.; TSUCHIYA, K.; FAN, L. S. (1997) "On the Rize Velocity of Bubbles in Liquid-Solid Suspensions at Elevated Pressure and Temperature". Chem. Eng. Sci., Vol 52, p.3693-3699.
- MENZEL, T.; et al (1990) "Reynolds Shear Stress for Modeling of Bubble Column Reactors". Ind. Eng. Chemistry Research, Vol 29, p.988-994
- MOSBY, J.F.; BUTTKE, R.D.; COX, J.A.; NIKOLAIDES,C. (1986) "Process Characterization of Expanded-bed Reactors in Series". Chem. Eng. Sci., Vol 41, p.989-995.
- NIEMANN, K.; WENZEL, F. (1993) "The Veba-Combi-Cracking Technology : an update". Fuel Processing Technology, Amsterdam, Vol 35, p.1-20,.
- SOKOLICHIN, A; EIGENBERGER, G. (1994) Gas-Liquid Flow in Bubble Columns and Loop Reactors: Part I. Detailed Modelling and Numerical Simulation. Chem. Eng. Sci., Vol 49, p.5735-5746.
- TARMY, B.L.; CHANG, M.; COULALOGLOU, C.A.; PONZI,P.R.(1984) "The Three Phase Hydrodynamic Characteristics of the EDS Coal Liquefaction Reactors: Their Development and Use in Reactor Scaleup". I. Chem. E. Symposium Series No 87. 8th Int. Symp. on Chem. Reaction Engineering, Edinburg, Sept., 10-13
- TORVIK, R.; SVENDSEN, H.F. (1990) "Modelling of Slurry Reactors. A Fundamental Approach". Chem. Eng. Sci. Vol 45, p.2325-2332.

9.4 ARTIGO: MODELLING A HYDROCONVERSION REACTOR BASED ON A COMPUTATIONAL FLUID DYNAMICS APPPROACH -HDT/HCC SYMPOSIUM, 1999

Esse anexo é parte integrante dos itens 4.1 e 4.3 e Capítulo 5 da tese e traz o artigo de Carbonell e Guirardello (1999) apresentado no 2nd International Symposium / 7th European Workshop of Hydrotreatment and Hydrocracking of Oil Fraction, realizado em Antwerpen – Bélgica em novembro de 1999. O artigo foi publicado no livro "Hydrotreatment and Hydrocracking of oil fractions" da editora Elsevier contendo os anais do congresso.

O artigo apresenta o modelo fluidodinâmico com dispersão radial e cinética de Mosby et al. (1986), trazendo as equações do modelo, o resumo dos procedimentos de solução e resultados de perfis de concentração, distribuição de produtos e conversão da carga. Para as simulações foi utilizado o programa RHA versão 2.0.

Nota. O artigo indica separação da casa decimal por ponto, diferentemente da tese que usa vírgula.

Referência bibliográfica:

CARBONELL, M.M., GUIRARDELLO, R. Modelling a hydroconversion reactor based on a computational fluid dynamics approach. In DELMON, B., FROMENT, G.F., GRANGE, P. Studies in Surface Science and Catalysis, v.127, Hydrotreatment and Hydrocracking of Oil Fractions – 2^{nd} International Symposium / 7^{th} European Workshop. Holanda: Elsevier, 1999, p.289-296.

Modelling a Hydroconversion Reactor Based on a Computational Fluid Dynamics Approach

Montserrat Motas Carbonell ^a and Reginaldo Guirardello ^b

Department of Chemical Engineering, State University of Campinas – UNICAMP. CP.6066, CEP 13083-970. Sao Paulo, Campinas, Brazil. *montse@feq.unicamp.br bguira@feq.unicamp.br

Abstract

This paper deals with the modelling of a hydroconversion reactor, operating in a slurry bubble column mode, for the upgrade of distillation residues to lighter products. The model is based on the mass and momentum balance time-averaged equations, considering the radial dispersion of components. Simulations are carried out in two steps: first fluid dynamic variables (velocities, hold-ups and pressure drop) are obtained and then the oil cracking conversion is determined showing the distribution of products and the concentration profiles in the reactor. Results show good agreement with physical behaviour.

Keywords: Bubble column; slurry reactor; hydroconversion process; residue upgrading.

1. INTRODUCTION

The scenario of the oil market shows an increasing need for refining petroleum with maximum yields in high-quality light products (especially naphtha and middle distillates). The level of heteroatom content is an important factor to indicate the quality of products. Recently, the stringent environmental regulations have forced the levels of contaminants allowed in the products to be reduced. In this context, the upgrading of heavy oil fractions efficiently is a major goal and the hydroconversion process is an interesting alternative to accomplish this goal (Trambouze, 1991; Eccles, 1993).

In the hydroconversion reactor, the heavy oil is submitted to severe temperature (400-500 °C) and pressure (10-25 MPa) operating conditions in the presence of hydrogen and catalyst (or additive). The product obtained is composed of lighter oil fractions, with increased hydrogen content and lower level of contaminants (sulphur, nitrogen and metals).

The hydroconversion technologies may be divided, according to the reactoroperating mode, in two main groups: the ebullated-bed and the slurry bubble column (Fan, 1989). The particles are fluidised in the reactor by the upward flow of oil (continuous phase) and gas (mainly hydrogen, dispersed as small bubbles). In the slurry systems, the particles are introduced and removed from the reactor mixed with the liquid (as slurry). The ebullated bed reactor operates with relatively larger particles that are charged and discharged independently of the liquid flow. The former reactors usually have no internals, while the latter reactors are provided with an internal recycle tube. This paper considers the modelling of a slurry bubble column reactor for the hydroconversion of distillation residues. The model is based on a fluid dynamics approach and accounts for the thermal cracking reactions in the reactor. The simulations are carried out in two steps: first the fluid dynamic variabels are determined and then the oil cracking conversion is calculated.

2. MODELLING

According to Tarmy and Coulaloglou (1992), "gas-liquid-solid reactors may be the most difficult of all reacting systems to commercialise". This is due to the complexity involved in the description of their behaviour that involves virtually all facets of reaction engineering, where a major difficulty is the understanding of the fluid dynamics phenomena.

Indeed, recently a significant progress has been observed in the modelling of the fluid dynamics for bubble columns. Delnoij et al. (1997) briefly reviews these advances and presents a "hierarchy of models" concept that consists in employing the most appropriate CFD model for the problem at hand. The problem is characterised by the size of the column, the length scale of the phenomena of interest and the prevailing flow regime. The CFD model may be the Eulerian-Eulerian two-fluid model, the Eulerian-Lagrangian discrete bubble model and the Volume Tracking or the Marker Particle model. These models can describe the complex, time-dependent, flow structures observed in bubble columns.

However, most of those work was developed under "ideal conditions", that is, in systems using air and water, at ambient temperature and pressure. Although these information do provide bases for assessing the fluid dynamics in the severe hydroconversion operating conditions, other factors, such as the effect of pressure, have to be considered. Recent reports (Luo et al., 1997) have shown that increasing pressure decreases bubble size and bubble rise velocity, leading to an increase in gas hold up. This effect of pressure on gas hold up was earlier observed by Tarmy et al. (1984) during the development and scale-up of a slurry bubble column reactor for the coal liquefaction process. According to Fan (1989), under the operating conditions of the hydroconversion and coal liquefaction process, the gas phase behaviour in these reactors bear certain similarities. Therefore, the transport properties that were reported by Tarmy et al. (1984) might provide invaluable information to the development and scale-up of hydroconversion reactors.

Most of the models reported for the hydroconversion reactor are still quite simple and consider the liquid phase completely back-mixed (Mosby et al., 1986; Eccles, 1993; Abreu, 1997) or an axial dispersion in the liquid phase (Abreu, 1997). Kam et al. (1995) presented a model based on artificial neural networks as an alternative to deal with the complex behaviour of ebullated-bed. That model was trained with plant operation and laboratory research data in order to be used as an operational support tool for the process.

The model developed and presented in this paper uses a fluid dynamic approach and takes into account the thermal cracking reactions of the oil in the reactor. These reactions are followed by hydrogenation of the cracked compounds. The oil and particles are treated as one pseudo-homogeneous phase (slurry) in which the solids are uniformly distributed. This is in agreement with the recirculation pattern observed in bubble columns, with an upward flow of liquid in the center and downward flow near the wall. It is considered that the gas is composed of hydrogen that flows in a homogeneous bubble regime. This assumption is in agreement with the observations of Tarmy et al. (1984) and Luo et al. (1997) regarding the behaviour of the bubbles in high pressure systems.

The model is based on the mass and momentum time averaged balance equations using an Eulerian approach. The main assumption is a fully developed turbulent axial flow with azimuthal symmetry. It is also considered that the reactor is isothermal and operates under steady state conditions.

The thermal cracking reactions are modelled using the lumped kinetic scheme proposed by Mosby et al. (1986), which divides the oil into lumps according to the reactivity and/or boiling point range of components. Therefore, the feed is divided in residue ("hard" and "easy" to react) and gasoil, while the products are divided into gasoil, distillate, naphtha and gases. The model equations are obtained through the mass balance, for each reaction lump, considering both the convection and the radial dispersion phenomena. The axial dispersion phenomenon was not considered since the analysis of magnitude order showed that convection is the dominant equation term in the axial direction.

The model equations written in cylindrical coordinates are presented as follows: Momentum Balance for slurry and gas:

$$\frac{1}{r} \cdot \frac{d}{dr} \left(\varepsilon_{sl} \cdot r \cdot \mu_{sl}^{eff} \cdot \frac{dV_{sl}}{dr} \right) - \varepsilon_{sl} \cdot \frac{dP}{dz} - g \cdot \rho_{sl} + 50000 \cdot \varepsilon_g \cdot \varepsilon_{sl} \cdot (V_g - V_{sl}) = 0$$
(1)

$$\frac{1}{r} \cdot \frac{d}{dr} \left(\varepsilon_{g} \cdot r \cdot \mu_{g}^{eff} \cdot \frac{dV_{g}}{dr} \right) - \varepsilon_{g} \cdot \frac{dP}{dz} - g \cdot \varepsilon_{g} \cdot \left(\rho_{g} - \rho_{sl} \right) - 50000 \cdot \varepsilon_{g} \cdot \varepsilon_{sl} \cdot \left(V_{g} - V_{sl} \right) = 0$$

Liquid continuity equation: $U_L \cdot \pi \cdot Rc^2 \cdot \rho_L = 2 \cdot \pi \cdot \rho_L \int_{0}^{Rc} v_L \cdot r \cdot dr$ (3)

Mass Balance equations for each lump *i*:

$$\varepsilon_{L} \cdot \rho_{L} \cdot V_{L} \cdot \frac{\partial Ci}{\partial z} - \frac{1}{r} \frac{\partial}{\partial r} \left(r \cdot \mu_{L}^{\text{eff}} \cdot \varepsilon_{L} \cdot \frac{\partial Ci}{\partial r} \right) = -\alpha_{i} \cdot k \cdot \varepsilon_{L} \cdot \rho_{L} \cdot Ci + \sum_{m=1}^{7} \beta_{m,i} \cdot k \cdot \varepsilon_{L} \cdot \rho_{L} \cdot C_{m}$$
(4)

$$k = 9.0907 \ 10^{13} \cdot \exp\left(\frac{-2.428210^5}{8.314 \cdot T}\right)$$

where α_i and $\beta_{m,i}$ are constants obtained from the kinetic scheme of Mosby et al. (1986). The boundary conditions for the equations are presented in Fig. 1.

The solution of the equations requires the input of the radial distribution for the hold up (ϵ) and effective viscosity (μ^{eff}) of gas and slurry, calculated with the aid of constitutive equations. The mean gas hold up is determined with the expression proposed by Tarmy et al. (1984), while the liquid turbulent viscosity is calculated with a zero order turbulence model (Chen et al., 1985). These equations are detailed in Carbonell and Guirardello (1997) where a preliminary version of this model is presented. The main improvement in the model presented here is the consideration of the radial dispersion of components, which leads to more realistic behaviour regarding the distribution of components in the reactor, as shown in the results.

291

292

3. SIMULATION

It is assumed that thermal cracking reactions do not interfere in the fluid dynamics due to the high back mixing of the liquid phase and the low gas absorption and formation rate. This assumption was numerically tested considering the individual properties of residue and distillate (Carbonell and Guirardello, 1997).

Therefore, simulations may be divided in two consecutive steps. First, the fluid dynamic behaviour is determined giving the pressure drop in the bed (dP/dz) and the radial distribution of gas and slurry for the hold up, effective viscosity (dispersion) and velocity (V_{sl} , which is equal to V_L). Then, the thermal cracking reactions are simulated leading to the determination of the oil conversion (X) and the radial and axial distribution for the concentration of each lump (Ci).

3.1 Solution of the equations of the model

The numerical procedure used to solve Eq. 1, 2 and 3 that represent the fluid dynamic behaviour is discussed by Carbonell and Guirardello (1997).

The reaction model (Eq. 4) is a system of seven partial parabolic differential equations (one for each lump) that was solved using the method of lines. The equations were discretized in the radial direction using the orthogonal collocation method with 10 collocation points (see Fig. 1). The system was then reduced to fifty six ordinary differential equations to be integrated in the axial direction.

The first approach to integrate these equations considered the use of numerical methods. However, due to the high numerical stiffness of the system of differential equations, either the results diverged or the computational time was too long. Then, an analytical approach based on the determination of eigenvalues and eingenvectors was proposed and successfully implemented. The main aspects of this procedure are briefly discussed here.

The model equations were divided in 7 sub-systems (one for each lump, each composed of 8 equations) that were solved independently in consecutive steps. First, the three reactant systems were solved. The analysis of the magnitude order showed that only the two last terms of the solution are significant, so that the others might be neglected. Then, the other four product systems were solved with the use of the method of undetermined coefficients for the particular solution. The equations obtained are presented as follows:

• For "hard" and "easy" to react residue and gasoil in the feed (i = 1; i = 2; i = 3):

$$\operatorname{Ci}(r_j, z) = \sum_{k=7}^{8} \xi i_{j,k} \cdot w i_k$$

For products gasoil, distillate, naphtha and gases (i = 4; i = 5; i = 6; i = 7):

$$\operatorname{Ci}(\mathbf{r}_{j}, \mathbf{z}) = \sum_{k=7}^{8} \left(\xi \mathbf{i}_{j,k} \cdot \mathbf{w} \mathbf{i}_{k} + b \mathbf{i}_{j,k} \cdot \mathbf{w} \mathbf{i}_{k} + b \mathbf{i}_{2,k} \cdot \mathbf{w} \mathbf{2}_{k} + b \mathbf{i}_{3,k} \cdot \mathbf{w} \mathbf{3}_{k} + b \mathbf{i}_{4,k} \cdot \mathbf{w} \mathbf{4}_{k} \right)$$

$$(7)$$
and
$$\mathbf{w} \mathbf{i}_{k} = a \mathbf{i}_{k} \cdot e^{\lambda \mathbf{i}_{k} \cdot \mathbf{z}}$$

where: λi_k are the eingenvalues for lump i; $\xi i_{j,k}$ are the eigenvectors for λi_k ; bi1, bi2, bi3 and bi4 are the constants of the particular solution, where b43=0 and b44=0; and ai are the constants determined using the boundary conditions.

3.2 Reaction-Recirculation Algorithm

Simulation of the reactions requires the previous knowledge of the fluid dynamic variables (velocity, hold up and effective viscosity) used in the determination of the eigenvalues and eigenvectors. These variables are calculated in the region of fully developed flow. Therefore, it was necessary to develop a procedure to correlate these information and the concentration of lumps in this region with the entrance and outlet streams of the reactor.

The reactor is divided in three regions (see Fig 1.): the entrance, the outlet and the fully developed flow. Since entrance and outlet regions are much smaller, the mass balance due to reactions can be neglected and a complete back-mixed behaviour is assumed for the liquid phase in these regions. Mass balance for each lump i lead to the equations that correlate Coi and Csi with the concentration in the developed flow region (Carbonell and Guirardello, 1997).

It was observed the occurrence of high eingenvalues for all lumps. In order to avoid overflow during simulations due to the exponential in wi, the following strategy was implemented:

- $wi_k = ai_k^o \cdot e^{\lambda i_k \cdot z}$ (9) for $\lambda_{i,k} < 0$, wi is written as:
- for $\lambda_{i,k} > 0$, wi is written as:

wi_k =
$$ai_k^{Lc} \cdot e^{\lambda i_k \cdot (z-Lc)}$$

e determined with the application of

the boundary Finally, the constants ai are conditions in z direction. This calculation is accomplished by writing the model equations (Eq. 6 and 7) for both limits of the developed flow region (at z = 0 and at z = Lc). The linear system in ai obtained is then solved together with the mass balance equations for the entrance and outlet regions, leading to the determination of ai, Ci(r_j,z=0) and Ci(r_j,z=Lc).

The program was implemented in Fortran language (Fortran 90) and the computational time for each simulation is approximately 18 s running in a PC-Pentium-133 Mhz.

Developed Flow

Figure 1. Reactor diagram (half reactor, not in scale) indicating the regions of the reactor, the points and the collocation boundary conditions of the model (inside the boxes). The radial position defined by r* is the point where $V_L=0$.

4. RESULTS

Simulations of the reactor in pilot plant scale were carried out in typical operating conditions for the hydroconversion process. The reactor is fed with a vacuum distillation residue composed of 80 % "hard" to react (mainly asphaltenes and resins) to 20% "easy" to react residue (oils). Liquid phase properties were obtained in a commercial simulator.

The simulation of the fluid dynamics with the one-dimensional two-fluid model gives the pressure drop in the bed (dP/dz) and the radial distribution for the velocities, hold ups and effective viscosities. The slurry velocity profile shows the expected recirculation behaviour with the upward flow in the centre and downward flow of slurry near the walls. According to Sokolichin and Eigenberger (1994), this well known behaviour is the result of a long-time averaging of the dynamic picture with rising vortices that are generated sequentially at the entrance region of the bubble columns. The average gas hold ups obtained with the model are in agreement with the data used by Eccles (1993) in the modelling of residue hydroprocessing using ebullated bed reactors.

The simulation of the thermal cracking reactions gives the residue conversion and the radial and axial distribution for the concentration of each lump i. Fig 2 and Fig 3 show the concentration profiles for "hard" to react residue (C1) and distillate (C5), which represent the typical results obtained for reactants and products. The reactants have a decreasing concentration along the reactor while the products show the opposite trend. The concentration profiles vary more intensely in the axial than in the radial direction, as expected. Due to the effect of the entrance stream, the radial distribution of compounds is more pronounced at the bottom and flatter at the top of the reactor (Fig. 2 uses a constant ΔCi scale for all axial positions).

Figure 2. Reactor diagram showing the radial concentration profiles at specified axial positions (T=450°C, τ_L =17 min). Symbols indicate the calculated values.

294

The results obtained with this model for a wide range of operating conditions were compared to the results given with a model that neglects the radial dispersion phenomenon (Carbonell and Guirardello, 1997). It was noticed that the conversion values obtained with both models are similar, showing an average difference of 5 % and a maximum difference of 10 % at simulated conditions. However. it was observed that the consideration of the radial dispersion phenomenon

in the model is important to give a realistic physical behaviour for the concentration profiles in the reactor. Otherwise, the point where $V_L=0$ (r=r*) represents a physical barrier that prevents the interchange of mass between the upward and downward flow in the fully developed flow region. Consequently, there is a discontinuity in r* for the concentration profiles in the model without dispersion and the whole pattern of the simulated distribution of compounds in the reactor is affected.

A parametric sensitivity analysis was performed for the determination of operating condition effects on the thermal cracking reactions. The variables with greater effects are the temperature and liquid residence time, respectively in this order. Residue conversion increases with the increase of both variables, as shown in Fig 4. The distribution of lumps at the reactor outlet stream is shown in Fig 5.

Figure 4. Residue conversion as function of temperature and liquid residence time.

Figure 5. Distribution of products at the reactor outlet stream as function of temperature. (τ_L =17 min)

5. CONCLUSION

A two-fluid model, based on a fluid dynamics approach is presented for a hydroconversion reactor operating in the slurry bubble column mode. This model accounts for the thermal cracking conditions in the reactor considering both the convection and the radial dispersion phenomena.
296

This model represents an additional improvement in obtaining an insight on how the fluid dynamics of the bed influences the reactions in a hydroconversion reactor. However, more testing and comparison with pilot plant and industrial data must be performed before it can be used for reactor design and scale up.

6. NOTATION

- Ci conc. of lump i, mass fraction
- Coi conc. of lump i at reactor entrance, mass fraction
- Csi conc. of lump i at the reactor outlet stream, mass fraction
- g gravitational acceleration, m/s²
- k rate constant, 1/s
- Lc reactor height, m
- P pressure, Pa
- r radial position, m
- r* radial position where VL=0, m
- Rc radius of the reactor, m
- T temperature, K
- U superficial velocity, m/s
- V axial velocity, m/s
- X conversion of residue, mass %
- z axial position, m

Greek letters

 α_i constant of the kinetic rate constant

- $\beta_{m,i}$ constant of the kinetic rate constant
- ε holdup, dimensionless
- $\lambda_{i_{j,k}}$ eigenvalues for lump i
- µeff effective viscosity, Pa.s
- ρ density, kg/m³
- τ residence time, s
- $\xi_{i,k}$ eigenvectors of $\lambda_{i,k}$

Subscripts

- g gas phase
- i lumpi
- j indicates radial position
- k indicates eigenvalue
- L liquid phase
- sl slurry phase

7. REFERENCES

Abreu, J.C N.; Guirardello, R.; Medeiros, J. C. American Chemical Society, 213th National Meeting, San Francisco, USA (1997) 364.

Carbonell, M. M.; Guirardello, R. Chem. Engng Sci., 52 (1997) 4179.

Carbonell, M.M.; Guirardello, R. Chem. Engng Sci., 53 (1998) 2479.

- Chen, Z.; Zheng, C.; Feng, Y.; Hofmann, H., Chem. Engng Sci., 50 (1995) 231.
- Delnoij, E.; Kuipers, J.A.M.; van Swaaij, W.P.M. Chem. Engng Sci., 52 (1997) 3623.
- Eccles, R. M. Fuel Processing Technology, 35 (1993) 21.
- Fan, L. S. Gas Liquid Solid Fluidization Engineering, Butterworths, 1989.
- Kam, E. K.T.; Al-Mashan, M.M.; Dashti, H. In: Catalysis in petroleum Refining and petrochemical Industries, eds. M. Absi-Halabi et al., Elsevier (1996) 283.
- Luo, X.; Zhang, J.; Tsuchiya, K.; Fan, L.S. Chem. Engng Sci., 52 (1997) 3693.
- Mosby, J.F.; Buttke, R.D.; Cox, J.A.; Nikolaides, C. Chem. Engng Sci., 41 (1986) 989.
- Sokolichin, A. Eigenberger, G. Chem. Engng Sci., 49 (1994) 5735.
- Tarmy, B.L.; Chang, M.; Coulaloglou, C.A.; Ponzi, P.R. I. Chem. E. Symposium Series No 87, Edinburg, Scotland (1984) 303.
- Tarmy, B.L.; Coulaloglou, C.A. Chem. Engng Sci., 47 (1992) 3231.
- Trambouze P. In: Chemical Reactor Technology for Environmentally Safe Reactors and Products, eds. H.I Lasa, G. Dogu, A. Ravella, Kluwer (1991) 409.

ACKNOWLEDGEMENTS

The authors acknowledge the financial support of CNPq – Conselho Nacional de Desenvolvimento Científico e Tecnológico (Brazil) – and PETROBRAS.

9.5 PROGRAMA RHA 2.1

O programa **RHA**, realiza a simulação do **R**eator de **H**idroconversão em leito de **A**rraste considerando efeitos fluidodinâmicos e reações de craqueamento. Com a simulação do programa RHA 2.1 são obtidas informações sobre:

- ✓ a fluidodinâmica no reator através dos perfis radiais de velocidade, fração volumétrica e dispersão das fases gás e lama na região de escoamento desenvolvido;
- ✓ o resultado das reações de craqueamento através dos perfis de concentração dos pseudocomponentes ao longo do reator, a conversão de resíduo e distribuição de produtos (gasóleo, diesel, nafta e gases) na saída do reator.

O programa RHA teve seu desenvolvimento iniciado em 1995 em função de um convênio realizado entre o Laboratório de simulação e otimização de processos químicos (LSOPQ) da UNICAMP/FEQ e a PETROBRAS/CENPES. Nesse trabalho foi gerada a primeira versão do programa, RHA 1.0, por Carbonell (1996). Outros desenvolvimentos foram realizados por Mendonça Filho (1998) que estudou a formação de coque durante o processo de hidroconversão, implementando no programa RHA 1.0 os modelos de insolubilização do coque no meio reacional e deposição de coque no catalisador. Posteriormente, foi retomado o desenvolvimento dos modelos para o reator e reações de craqueamento gerando, a partir de RHA 1.0, as novas versões RHA 1.1, 2.0 e 2.1 (versão final).

A versão RHA 2.1 simula as reações de craqueamento em reatores de lama com bolhas (SBC – "slurry bubble columns"), na região de escoamento desenvolvido, com os modelos fluidodinâmicos apresentados no Capítulo 4 (a Figura 4.8 apresenta um resumo esquemático do capítulo). O programa também simula as reações em reatores ideais tipo CSTR (mistura perfeita) e PFR (fluxo pistonado).

Para simulação das reações de craqueamento pode ser selecionado: o modelo cinético de craqueamento térmico de Mosby et al. (1986) ou o modelo de craqueamento térmico e catalítico de Almeida (2000).

Pode-se simular o comportamento de reatores instalados em série, desde que esses reatores apresentem as mesmas características e condições operacionais. Para simplificar considera-se que propriedades dos fluidos e partículas não se alteram de um reator a outro. A composição de óleo na entrada de um reator é igual à composição de saída do reator anterior.

O código computacional foi implementado em linguagem Fortran (Fortran 90) utilizando-se o software Fortran Power Station 4.0[®] da Microsoft[®]. O tempo de execução é da ordem de 20 segundos em microcomputador PC Pentium. O programa executável (RHA2_1.exe) pode ser usado em qualquer microcomputador, pois independe da presença do compilador Fortran e das sub-rotinas da biblioteca IMSL (versão instalada em *software* Microsoft[®], 1994-95) que foram utilizadas.

9.5.1 ESTRUTURA DO PROGRAMA RHA 2.1

O programa é composto de uma rotina principal e dezesseis sub-rotinas. A estrutura do programa é ilustrada na Figura 9.2, que apresenta esquematicamente a sequência de chamada das sub-rotinas, iniciando pela rotina principal (PROG) e seguindo pelas setas, de forma que é sempre executada primeiro a sub-rotina que é indicada em posição superior à outra na figura. Algumas rotinas são acessadas várias vezes durante a execução do programa.

A sub-rotina FLUIDYNAMIC gerencia todos os cálculos fluidodinâmicos e as sub-rotinas HCRACK_1, HCRACK_2 e PFR_CSTR gerenciam os cálculos da simulação do reator com diferentes modelos conforme mostrado no esquema a seguir.

HCRACK_1	HCRACK_2	PFR_CSTR
Modelo fluidodinâmico base com cinética de Mosby et al. (1986).	Modelo fluidodinâmico com dispersão radial e cinética de Mosby et al. (1986) ou de Almeida (2000).	Modelos ideais CSTR e PFR, com cinética de Mosby et al. (1986) ou de Almeida(2000).

Figura 9.1 Modelos usados nas sub-rotinas que simulam as reações de craqueamento. Os modelos são apresentados no Capítulo 4 (resumo esquemático na Figura 4.8).

Figura 9.2 Estrutura do programa RHA 2.1 com a sequência de chamada das sub-rotinas. Subrotinas com * utilizam rotinas das bibliotecas IMSL (versão instalada em *software* Microsoft[®], 1994-95).

Na sequência de cálculo cada rotina possui as funções e tarefas específicas descritas a seguir:

PROGRAM - Rotina principal. Gerencia a entrada de dados via arquivos e a chamada para a simulação da fluidodinâmica e das reações de craqueamento com os diversos modelos. Calcula o tempo total de execução do programa através uso das sub-rotinas do Microsoft Fortran Power Station[®] indicadas na Tabela 9.1.

- FLUIDYNAMIC Sub-rotina que gerencia o cálculo de todas as variáveis fluidodinâmicas. Calcula o perfil radial das frações volumétricas nas condições de hidroconversão e as viscosidades efetivas de cada fase. Determina as propriedades médias da lama e a velocidade terminal do sólido em meio líquido e meio gás-líquido (Ut e Ut').
- HOLDUP Calcula o perfil de fração volumétrica do gás em um sistema ideal (ar-águapartículas em condições ambiente) em função do regime de bolhas. Determina também o diâmetro Sauter, a frequência e velocidade das bolhas no centro da coluna.
- INTEGRA Calcula numericamente integrais através do método de Simpson.
- VELOC Estima a queda de pressão no leito e verifica se a equação da continuidade da fase líquida é respeitada com o perfil de velocidade calculado, conforme o algoritmo do acoplamento pressão-velocidade (laço iterativo externo) apresentado por Carbonell (1996).
- VKA Calcula os perfis radiais de velocidades adimensionais do gás e do líquido com o método TDMA (algoritmo da matriz tri-diagonal), para uma determinada queda de pressão no leito (laço iterativo interno do algoritmo pressão-velocidade).
- HCRACK_1 Sub-rotina que gerencia a simulação da reação de craqueamento com o modelo <u>fluidodinâmico base</u> e cinética de Mosby et al. (1986). Recebe os perfis radiais de fração volumétrica, viscosidade efetiva e velocidade da fase líquida determinados na simulação fluidodinâmica. Calcula os perfis de concentração dos pseudocomponentes no reator e a conversão atingida na saída do reator de hidroconversão.
- COLORT Determina as constantes necessárias para o cálculo das integrais do balanço de massa por quadratura gaussiana e as constantes resultantes da discretização do termo de dispersão radial por colocação ortogonal.
- BMHCRACK Calcula os balanços de massa nas regiões de entrada e saída do reator, determinando a concentração de saída dessas pequenas regiões de mistura ideal, onde não ocorre reação. Utiliza quadratura gaussiana para a determinação das integrais.
- HCRACK_2 Sub-rotina que gerencia a simulação da reação de craqueamento com modelo fluidodinâmico com dispersão radial e as cinéticas de Mosby et al. (1986) ou de Almeida (2000). Recebe os perfis radiais de fração volumétrica, viscosidade efetiva e velocidade da

fase líquida determinados na simulação fluidodinâmica. Calcula os perfis de concentração dos pseudocomponentes no reator e a conversão atingida na saída do reator de hidroconversão.

- CINETICA1 Calcula as taxas de reação de craqueamento térmico com a matriz cinética de 7 pseudocomponentes proposta por Mosby et al. (1986).
- CINETICA2 Calcula as taxas de reação de craqueamento térmico e catalítico com a matriz cinética de 5 pseudocomponentes proposta por Almeida (2000).
- AUTOVs Calcula os autovalores e autovetores do sistema completo de equações diferenciais, discretizadas por colocação ortogonal, e também da parte homogênea dos subsistemas gerados para solução das equações.
- HOMOGENEA2 Calcula as constantes de integração da solução homogênea e o perfil radial de concentração nos extremos da região de escoamento desenvolvido para o subsistema gerado na solução das equações com cinética de Almeida (2000).
- HOMOGENEA1 Calcula as constantes de integração da solução homogênea e o perfil radial de concentração nos extremos da região de escoamento desenvolvido para os cinco subsistemas gerados na solução das equações com cinética de Mosby et al. (1986).
- PARTICUL1 Calcula os coeficientes da solução particular dos quatro subsistemas formados por EDO's não homogêneas geradas na solução das equações com cinética de Mosby et al. (1986).
- CSTR_PFR Calcula a conversão de resíduo e distribuição de produtos na saída do reator em reator ideal de mistura (CSTR) e em reator ideal de fluxo pistonado (PFR) e as cinéticas de Mosby et al. (1986) ou de Almeida (2000).

Tabela 9.1 Sub-rotinas do Microsoft Fortran Power Station [®] usadas em RHA 2.1
--

Rotinas RHA 2.1	Sub-rotinas	Função das sub-rotinas do Fortran Power Station [®]
PROGRAM	GETDAT	Retorna ano, mês e dia
	GETTIM	Retorna hora, minuto, segundo

Sub-rotinas RHA 2.1	Sub-rotinas IMSL	Função das sub-rotinas IMSL
HCRACK_2	UMACH	Determina unidade de saída para arquivos
	DWRRRL	Imprime uma matriz quadrada
AUTOVs	DEVCRG	Calcula os autovalores e autovetores da matriz
	DEPIRG	Determina o índice de desempenho dos autovalores e autovetores calculados
HOMOGENEA2	DLSARG	Resolve sistema de equações lineares
HOMOGENEA1	DLSARG	Resolve sistema de equações lineares
PARTICUL1	DLSARG	Resolve sistema de equações lineares
PFR_CSTR	DEVCRG	Calcula os autovalores e autovetores da matriz
	DEPIRG	Determina o índice de desempenho dos autovalores e autovetores calculados
	DLSARG	Resolve sistema de equações lineares

Tabela 9.2 Sub-rotinas da biblioteca IMSL* usadas em RHA 2.1.

* Versão instalada em software Microsoft[®], 1994-95.

9.5.2 CONSIDERAÇÕES GERAIS

A definição das variáveis utilizadas no programa encontra-se no início das listagens das sub-rotinas (em linhas de comentários). Nos casos onde foi possível a nomenclatura coincide com a da tese.

O programa realiza os cálculos com os dados no sistema internacional de unidades. Para simplificar a interface com o usuário utilizam-se unidades usuais nos arquivos de entrada e saída de dados. A transformação das unidades é realizada logo após os comandos de leitura e junto aos comandos de escrita dos dados e tem somente essa função.

Parte dos problemas comuns que podem ocorrer durante a simulação são identificados pelo programa. No caso de ocorrência de um erro, um número é atribuído à variável ERRO e uma mensagem na tela indica qual o problema. Por exemplo, a utilização de um dado de entrada significativamente fora da faixa testada no desenvolvimento do programa é identificada e nesse caso o usuário tem a opção de continuar ou não a simulação.

9.5.2.1 Modificações no programa

A implementação de modificações no programa RHA 2.1 requer alguns cuidados, indicados a seguir:

- Para alterar as expressões de cálculo da fração volumétrica de gás ("holdup" do gas) e do
 perfil de viscosidade efetiva turbulenta do líquido é necessário que a expressão de f1Dr seja
 deduzida novamente e implementada na sub-rotina AUTOs. A equação de f1Dr somente é
 válida para expressões de Chen et al. (1995).
- A cinética de Almeida (2000), implementada no modelo fluidodinâmico com dispersão radial, pode ser substituída por outra cinética de 4 ou 5 pseudocomponentes se ao menos 3 deles forem reagentes. Para isso devem ser fornecidas as constantes das taxas das reações na subrotina CINETICA2. Todos os outros cálculos serão realizados normalmente. Como C5 é calculado através do balanço de massa (C5 = 1 [C1+C2+C3+C4]), no caso de uma cinética com 4 componentes C5 = 0.
- A cinética de Mosby et al. (1986) foi implementada de forma específica, de acordo com as características do conjunto de equações (tem soluções homogêneas e particulares). A cinética pode ser substituída, mas é trabalhosa e requer alterações em diversas sub-rotinas (CINETICA1, AUTOVs, HOMOGENEA1, PARTICUL1 e HCRACK_2).
- Todas as variáveis reais foram definidas com dupla precisão, portanto para evitar problemas recomenda-se que novas variáveis introduzidas no programa tenham dupla precisão.

9.5.2.2 Execução do programa – Entrada de dados e saída de resultados

O arquivo de entrada de dados para a simulação deve conter informações sobre as dimensões do reator, condições operacionais, características do catalisador, propriedades do líquido e do gás nas condições de operação e composição do óleo na entrada do reator. Um arquivo de dados de exemplo é apresentado no item 9.5.3. Os dados devem ser fornecidos nas unidades indicadas, respeitando a formatação do arquivo. Conforme indicado, alguns dados são opcionais.

Os arquivos com os resultados da simulação são armazenados na "pasta de trabalho" indicada durante a execução do programa. Essa pasta é criada como uma ramificação da pasta onde o programa está sendo executado. A saída de resultados é dividida em oito arquivos, indicados na Tabela 9.3.

Arquivo	Informações	Sub-rotina
!Result.dat	Apresenta os dados de entrada e resultados gerais das simulações.	PROGRAM
Fluid_r.dat	Fluid_r.dat Perfis radiais de velocidade, fração volumétrica e dispersão de gás e lama	
Craquea1.dat	Craquea1.dat Conversão e distribuição de produtos no reator obtidos com o modelo fluidodinâmico base *.	
Varc.dat	Perfil radial das variáveis fluidodinâmicas nos pontos de colocação ortogonal.	HCRACK_1
Craquea2.dat	Conversão e distribuição de produtos no reator	HCRACK_2
	obtidos com o modelo fluidodinâmico com dispersão radial.	
Perfil_Ci.dat	Perfis de concentração de Ci(r,z) obtidos com o modelo fluidodinâmico com dispersão radial.	HCRACK_2
Cstr.dat	Conversão e distribuição de produtos no reator	PFR_CSTR
	calculados com modelo de mistura perfeita (CSTR)	
Pfr.dat Conversão e distribuição de produtos no reator		PFR_CSTR
	calculados com modelo ideal de fluxo pistonado (PFR)	

Tabela 9.3 Lista de arquivos de saída de resultados de RHA 2.1.

* somente para cinética de craqueamento térmico de Mosby et al. (1986).

9.5.3 ARQUIVO DE ENTRADA DE DADOS

ARQUI VO DE ENTRADA DE DADOS

Nome do arquivo: cp425.dat Fração : Resíduo			
DIMENSÕES DO REATOR Comprimento do reator (m) Diâmetro interno do reator (mm)	Lc Dc	=	3. 0 57. 0
CONDIÇÕES OPERACIONAIS: Temperatura (oC) Pressão (kgf/cm2) velocidade espacial(kg L/(kg S.h)) relação H2/óleo (Nm3/m3) sistema (reator hidroconversão = 5) (ar/água/sól., T e P ambiente = 1)	T P LHSV r HO SI STEMA	= = = =	425.0 112.164 0.0 0.0 5
**Dado OPCIONAL, somente deve ser fornecido quando LHSV=0.0 e QI=0.0 : velocidade superficial de líquido (m/s	s) UI	=	0.002
**Dado OPCIONAL, somente deve ser fornecido quando LHSV=0.0 e UI=0.0 : vazão mássica de líquido (kg/h)	a	=	0.0
**Dado OPCIONAL, somente deve ser fornecido quando rHO=0.0 : velocidade superficial do gás (m/s)	Ug	=	0. 02
CARACTERÍSTICAS DO CATALISADOR diâmetro médio (microm) fração volumétrica média no reator massa específica (kg/m3) velocidade superficial (m/s)	dp EsM ps Us	= = = =	100. 0 0. 15 2340. 0. 000023
** Dado OPCIONAL, somente deve ser fornecido quando Us=0.0 : tempo de residência (h)	t s	=	0.0
PROPRIEDADES DO LÍQUIDO NAS CONDIÇÕES DE (massa específica (kg/m3) viscosidade laminar (cp) tensão superficial (N/m)	OPERAÇÃO pl vi l TSI	C = = =	662.00 0.3750 9.16e-3
PROPRIEDADES DO GÁS NAS CONDIÇÕES DE OPERA massa específica (kg/m3) viscosidade laminar (cp) massa molecular do gás	AÇÃO pg vig molg	= = =	3. 78 0. 0175 2. 0
Regime de bolhas: homogêneo = 1, de transição = 2, turbulento = 3 Simulando reator de hidroconversão recomenda-se regime homogêneo.	regi me	=	1

CI NÉTI CA DE CRAQUEAMENTO Model o de craqueament o térmico, Cinetica = 1 Mosby et. al. (1986) - opção 1 Model o de craqueament o térmico e catalítico, Almeida (2000) - opção 2 COMPOSI CÃO DE ÓLEO NA ENTRADA DO REATOR fração mássica (adimensional) Pseudocomponent es das cinéticas de: Mosby et.al (1986) Al mei da (2000) Resíduo "difícil" Resíduo "fácil" RCM Co1 = 0.81 2 RV não RCM Co2 = 0.2Gasól eo 3 Gasóleo alimentação Co3 = 0.0Gasóleo produzido Co4 = 0.04 Diesel 5 Nafta + gas Co5 = 0.0Diesel 6 Nafta ----Co6 = 0.0- - - - -Gases $C_{07} = 0.0$ OBSERVAÇÕES MUI TO I MPORTANTES: 1 - As variáveis devem ser fornecidas nas unidades indicadas entre parênteses ao lado da descrição da variável. 2 - NÃO deixar entrada de variáveis EM BRANCO_nem_com valores errados, no local designado a dados que NÃO SÃO FORNECIDOS na simulação digitar 0.0. 3 - No caso de dados opcionais fornecer valor diferente de zero SOMENTE a UMA das opções, ou seja, fornecer Us ou ts, fornecer UI ou QI ou LHSV e fornecer Ug ou rHO. Obs. O programa procura as variáveis NA OŘDEM em que elas são citadas na frase anterior e assim que encontra uma variável com valor diferente de zero CALCULA as outras. 4 - As propriedades do gás e do líquido DEVEM ser fornecidas nas CONDIÇÕES OPERACIONAIS (T E P). 5 - Com exceção das variáveis [regime], [cinetica] e [sistema] todas as outras são variáveis REAIS e devem possuir casa decimal. Por exemplo: escrever Lc = 3.0 e NÃO Lc = 3, caso contrário o programa pode ler o número ERRADO. 6 – Escrever o número na coluna 57 da linha e NÃO escrever nada depois. O programa identifica 15 dígitos a partir dessa posição para o número. Não usar tabulação nesse arquivo, pois interfere na localização das variáveis. 7 - Se houver PROBLEMA NA ENTRADA DE DADOS verifique se esse arquivo não foi alterado. Total de variáveis de entrada nesse arquivo: 30. Todos os dados são lidos em uma posição definida (linha e coluna), se essa posição for alterada o dado não é acessado ou é lido com VALOR ERRADO pelo programa.

9.6 LISTAS DE CLASSIFICAÇÃO DAS SUBSTÂNCIAS PERIGOSAS

Esse anexo é parte integrante do Capítulo 3 e traz as listas de classificação das substâncias perigosas para a determinação do indicador ambiental, na avaliação técnica e ambiental de processos.

As listas foram elaboradas com informações obtidas em documentos da legislação ambiental brasileira e estrangeira (européia e americana). No início de cada uma das planilhas são apresentadas as fontes das informações e algumas observações.

As substâncias podem ser localizadas nas listas pelo número de identificação CAS ou pelo nome (viável nas listas mais curtas). O CAS não foi identificado para 3 substâncias do Anexo 11 da NR-15, para 18 itens dos HAP e para algumas substâncias controladas da Resolução Conama 267/2000. A busca pelo CAS é interessante na lista da VwVwS que é longa e apresenta os nomes das substâncias em alemão.

- I. Lista de substâncias controladas especificadas nos Anexos A e B do Protocolo de Montreal sobre substâncias que destroem a camada de ozônio, indicadas no anexo da Resolução Conama 267/2000.
- II. NR-15 Norma regulamentadora do Ministério do Trabalho sobre "Atividades e operações insalubres". Anexo 11 da NR-15 apresenta os agentes químicos cuja insalubridade é caracterizada por limite de tolerância e inspeção no local de trabalho. (Brasil, 1978).
- III. Lista dos HAP (*hazardous air pollutants*) que faz parte do US Clean Air Act (Estados Unidos, 1990). Nessa lista estão sendo discriminados 16 hidrocarbonetos aromáticos policíclicos (PAHs).
- IV. Lista de substâncias que apresentam risco significativo ao ambiente aquático (Anexo X da Diretiva 2000/60/CE da legislação ambiental européia).
- V. Classificação de substâncias de acordo com as classes de periculosidade para a água (WGK) pela legislação ambiental alemã (VwVwS). Substâncias na lista WGK 2 e 3 são tóxicas, persistentes, acumulativas, enquanto que as WGK 1 são pouco perigosas. O Anexo 1 da VwVwS traz os compostos não perigosos.

RESOLUÇÃO CONAMA 267 / 2000

Resolução de 14 de setembro de 2000. Estabelece sobre is os prazos, limites e restrições de uso a substâncias que destroem a camada de ozônio. Consultada em www.mma.gov.br.

Anexo: Lista de substâncias controladas que destroem a camada de ozônio.

Observações:

- No documento da Resolução Conama 267/2000 são indicadas as substâncias e seu nome comercial. As informações do número de identificação CAS e "outros nomes" foram introduzidas nas listagens a seguir, mas não fazem parte da resolução.
- "As Substâncias Controladas listadas como Anexo I são as mesmas integrantes daquelas apresentadas nos Anexos A e B do Protocolo de Montreal sobre Substâncias que Destroem a Camada de Ozônio, conforme ratificado pelo Governo brasileiro (Decreto nº 99.280, de 07 de junho de 1990)".

Tabela 9.4 Substâncias controladas que destroem a camada de ozônio listadas na ResoluçãoCONAMA 267 / 2000 (ver observação 2 acima)

ANEXO A

CAS	Substância	Nome Comercial	Outros nomes
75694	CFCl3	CFC-11	Freon 11, triclorofluormetano
75718	CF2Cl2	CFC-12	Freon 12, diclorodifluormetano
76131	C2F3Cl3	CFC-113	Freon 113
76142	C2F4Cl2	CFC-114	Freon 114
76153	C2F5Cl	CFC-115	

Grupo I

CAS	Substância	Nome Comercial	Outros nomes
	CF2BrCl	Halon - 1211	bromoclorodifluormetano
75638	CF3Br	Halon – 1301	bromotrifluormetano
	C2F4Br2	Halon - 2402	dibromotetrafluoretano

Grupo II

-

ANEXO B

Grupo II

CAS	Substância	Nome Comercial	Outros nomes
	CF3Cl	CFC - 13	
	C2FC15	CFC - 111	
	C2F2 Cl4	CFC - 112	
	C3FC17	CFC - 211	
	C3F2 C16	CFC - 212	
	C3F3 C15	CFC - 213	
	C3F4 Cl4	CFC - 214	
	C3F5 Cl3	CFC - 215	
	C3F6 Cl2	CFC - 216	
	C3F7 Cl	CFC - 217	

Grupo II

CAS	Substância	Nome Comercial	Outros nomes
56235	CC14	CTC - tetracloreto de carbono	

Grupo III

CAS	Substância	Nome Comercial	Outros nomes
	C2H3Cl3 (esta fórmula não se refere ao 1,1,2- tricloroetano)	1,1,1 – tricloroetano (metilclorofórmio)	

NR-15 - ATIVIDADES E OPERAÇÕES INSALUBRES

Norma regulamentadora brasileira em vigor desde 08.07.1978.

Anexo 11. Agentes Químicos cuja insalubridade é caracterizada por limite de tolerância e inspeção no local de trabalho. Quadro 1 - Tabela dos limites de tolerância

Referência: Informações obtidas na internet: "www.toxikon.com.br/legisla.html - inicio", em mar/2002 Nesta página não há indicação da data da última atualização.

Observações que não fazem parte do documento original

1) A tabela de limites de tolerância está ampliada com o número do CAS - Chemical abstract service e com alguns sinônimos.

Tabela 9.5 NR-15 - Atividades e operações insalubres. Anexo 11. Agentes Químicos cuja insalubridade é caracterizada por limite de tolerância e inspeção no local de trabalho. Quadro 1 - Tabela dos limites de tolerância

							Grau de
CAS	AGENTES QUÍMICOS	VIDE SINONIMO	valor	Absorçao	A	te 48	Insalubridade
ODS.1			teto	tambem	noras	s/semana	a ser conside-
				p/ pele			rado no caso
						/ 0**	de sua carac-
75070					ppm [^]	mg/m3**	terizaçao
75070			•	•	78	140	maximo
115159	Acetato de cellosolve		•	+	78	420	medio
	Acetato de eter monoetilico de	aaatata da aallaaabua					
-		acetato de cellosolve	•		-	-	-
141786	Acetato de etila	aaatata da aallaaabu	•		310	1090	ominim
-		acetato de cellosolve	•		- A - 61 - 1 - 1	-	-
74862	Acetieno		•		ASTIXIA	nte simples	-
67641	Acetonia		•		780	1870	minimo
75058	Acetonitriia		•		30	55	maximo
64197			•		8	20	medio
74908			•	+	8	9	maximo
7647010			+		4	5,5	maximo
7738945	Acido cromico (nevoa)		•		-	0,04	maximo
-	Acido etanoico	acido acetico	•		-	-	-
7664393			•		2.5	1,5	maximo
64186		falala ffinala a	•		4	7	medio
-	Acido metanoico	acido formico	•		-	-	-
96333	Acrilato de metila		•	+	8	27	maximo
107131	Acriionitriia		•	+	16	35	maximo
123513			·	•	/8	280	minimo
71363			+	+	40	115	maximo
78831		0 hutanal	•		40	115	medio
78922		2-butanoi	•		115	350	medio
75650			•		78	235	medio
64175			·	•	/80	1480	minimo
98000		an ait is a breath a sub-in a t	•	+	4	15,5	medio
-		metil isobutil carbinol	•		-	-	-
6/561			•	+	150	200	maximo
71238			•	+	010	390	medio
67630		a a a ta l d a í d a	•	+	310	765	medio
-			· ·		-	-	-
-		Iormaideido	•		-	-	۔ بی او ک
7664417		di Avrida da anovatur	•		20	14	medio
-	Aniando sulluroso	dioxido de enxoire	•	•	-	-	-
62533	Annina		•	+	4	15	maximo
7440371	Argonio		•	•	ASIIXIA		- mávima
7784421	Arsina (arsenamina)		•		0,04	0,16	maximo
74964	Brometo de etila		•	•	100	695	maximo
74839	Brometo de metila		•	+	12	47	maximo
9726956	Bromostere	huamata da atila	•		0,08	0,6	maximo
-	Bromotórmio		·	•	-	-	- mádia
75252	Bromomotono	bromoto do motilo	•	+	0,4	4	medio
106000			· ·	•	-	-	- média
106070	n Rutano		· ·	•	100	1000	médio
1009/8	n Putanol	álogol a butíliog	· ·	•	4/0	1090	medio
-	n-butanol		· ·	•	-	-	-
-	Putanona	motil otil octore	· ·	•	-	-	-
-	Dutanona	Ineui eui cetona	·	•	-	-	-

CAS	AGENTES QUIMICOS	VIDE SINONIMO	Valor	Absorção	A	té 48	Grau de insalubridade
005.1			leto	p/ pele	noras	semana	rado no caso
							de sua carac-
	1 Destauration	la still an energia atta a e			ppm*	mg/m3**	terização
-	1-Butanotiol	butil mercaptana	•	•	-	- 12	- máximo
111762	Butil cellosolve	EGBE	- -	+	39	190	médio
109795	n-Butil mercaptana			•	0,4	1,2	médio
-	2-Butóxi etanol	butil cellosolve			-	-	-
-	Cellosolve	2-etóxi etano			-	-	-
7439921	Ciumbo Cianeto de metila	acetonitrila	•	•	-	0,1	maximo
-	Cianeto de vinila	acrilonitrila	•		-	-	-
460195	Cianogênic				8	16	máximo
110827	Ciclohexanc				235	820	médio
108930	Ciclohexano		•	•	40	160	máximo
108918	Ciclohexilamina	faanênia	•	+	8	32	máximo
- 75003	Cloreto de carbonila	losgenic	•	•	- 780	2030	- médio
-	Cloreto de fenila	cloro benzenc	·	•	-	-	-
74873	Cloreto de metila				78	165	máximo
75092	Cloreto de metilenc				156	560	máximo
75014	Cloreto de vinila		+		156	398	máximo
75354	Cloreto de vinilidenc		•	•	8	31	máximo
100447	Clorobonzonc		•	•	8 59	2,3	maximo
74975	Clorobromometanc		•	•	156	820	máximo
-	Cloroetano	cloreto de etila			-	-	-
-	Cloroetileno	cloreto de vinila			-	-	-
75456	Clorodifluormetano	Freon 22			780	2730	mínimo
67663	Clorofórmio				20	94	máximo
600259	1-Cloro 1-nitropropanc				16 20	/8 70	maximo
98828	Cumeno		•	+	39	190	máximo
17702419	Decaboranc			+	0.04	0.25	máximo
8065483	Demeton			+	0,008	0,08	máximo
-	Diamina	hidrazina			-	-	-
19287457	Diboranc				0,08	0,08	máximo
106934	1,2-Dibromoetanc		•	+	16 20	110	medio
95501 75718	Diclorodifluormetano	Freon 12 CEC-12	+	•	780	3860	mínimo
75343	1,1 Dicloroetanc				156	640	médio
107062	1,2 Dicloroetanc				39	156	máximo
-	1,1 Dicloroetileno	cloreto de vinilidenc			-	-	-
540590	1,2 Dicloroetilenc	alamata da mattiana	•	•	155	615	médio
-	Diciorometano	cioreto de metilenc	÷	•	- 8	-	- máximo
78875	1.2 Dicloropropanc		+	•	59	275	máximo
76142	Diclorotetrafluoretano	Freon 114			780	5460	mínimo
109897	Dietil amina				20	59	médio
-	Dietil éter	éter etílico			-	-	-
100100	2,4 Diisocianato de tolueno	TDI	+		0,016	0,11	máximo
108189	Dinsopropliamina		•	+	4	28	maximo
124403	Dimetilamina			+	8	14	médio
68122	Dimetilformamida				8	24	médio
57147	1,1 Dimetil hidrazina			+	0,4	0,8	máximo
124389	Dióxido de carbonc		•	•	3900	7020	mínimo
10049044	Dióxido de clorc		•	•	0,08	0,25	máximo
10102440	Dióxido de nitrogênic		+	•	4	7	máximo
75150	Dissulfeto de carbono			+	16	47	máximo
		Antimônio			-		_
7803523	Estibina	hidrogenado SbH₃	.		0,08	0,4	máximo
100425	Estireno		.		78	328	médio
	Etanal	acetaldeídc	.	•	-	-	-
74840	Etano		•	•	Asfixiar	nte simples	-
-	Etanotiol	aicoui etilico etil mercantana	·	•	-	-	-
111444	Éter dicloroetílico	et moroupiunio	.	+	4	24	máximo

CAS	AGENTES QUIMICOS	VIDE SINONIMO	Valor	Absorção	Até	48	Grau de insalubridade
obs.1			teto	também	horas/s	emana	a ser conside-
				p/ pele			rado no caso
					nnm*	ma/m2**	de sua carac-
60297	Éter etílico				310	940	médio
-	Éter monobutílico do etileno alicol	butil cellosolve			-	-	-
-	Éter monoetílico do etileno glicol	cellosolve			-	-	-
-	Éter monometílico do etileno glicol	metil cellosolve			-	-	-
75047	Etilamina		•	•	8	14	máximo
100414	Etilbenzeno		•	•	78	340	médio
/4851	Etileno		•	•	Astixiante	e simples	- máximo
75081	Etil mercantana		•	+	0,4	0,8	médio
100743	n-Etil morfolina			+	16	74	médio
110805	2-Etoxietano	EGEE		+	78	290	médio
108952	Fenol			+	4	15	máximo
75694	Fluortriclorometanc	Freon 11			780	4370	médio
50000	Formaldeído	Formol	+	•	1,6	2,3	máximo
7803512	Fosfina	Fosfamina			0,23	0,3	máximo
/5445		flu a stuiol a sa sa ata sa a	•	-	0,08	0,3	maximo
-	Freen 12	diclorodifluormetanc	•	•	-	-	-
-	Freon 22	clorodifluormetanc			-	-	-
		1,1,2 tricloro-1,2,2-	-	•			
-	Freon 113	trifluoretano		•	-	-	-
-	Freon 114	diclorotetrafluoretanc		•	-	-	-
-	Gás amoníaco	amônia			-	-	-
-	Gás carbônico	dióxido de carbonc		•	-	-	-
-	Gas clanidrico	ácido cianidrico	•	•	-	-	-
-	Gas ciononco	acido cioridrico	•	•	- Q	- 12	- máximo
7763064	Hélio		•	•	o Asfixiant	simples	-
302012	Hidrazina			+	0.08	0.08	máximo
-	Hidreto de antimônio	Estibina			-	-	-
1333740	Hidrogênic		-	•	Asfixiante	e simples	-
-	Isobutanol	álcool Isobutílico	•	•	-	-	-
75310	Isopropilamina		•	•	4	9,5	médio
-	Isopropioidenzeno	cumeno	•	•	-	-	-
7/39976	orgânicas)				_	0.04	máximo
80626	Metacrilato de metila				78	320	mínimo
74828	Metanc				Asfixiante	e simples	-
-	Metanol	álcool metílico		•	-	-	-
74895	Metilamina				8	9,5	máximo
		EGME, 2-metóxi					<i>.</i> .
109864	Metil cellosolve	etanol	•	+	20	60	maximo
25369423	Metil cicionexano		•	•	39	1490	medio
8022002	Metil demeton		•	_	- 275	0.4	máximo
78933	Metil etil cetona				155	460	médio
108112	Metil isobutilcarbino			+	20	78	máximo
74931	Metil mercaptana	metanotiol			0,4	0,8	médio
-	2-Metóxil etanol	metil cellosolve			-	-	-
60344	Monometil hidrazina		+	+	0,16	0,27	máximo
630080	Monoxido de carbonc				39	43	maximo
7//0019	Neônio		•		- Astiviant	3,5 a cimplae	-
13463393	Níguel carbonila	níquel tetracarbonila			0.04	0.28	máximo
627134	Nitrato de n-propila	inquoi tottaoa.oomie			20	85	máximo
79243	Nitroetanc				78	245	médio
75525	Nitrometano				78	195	máximo
108032	1-Nitropropanc				20	70	médio
79469	2-Nitropropanc		•		20	70	médio
75218	Oxido de etilenc	NO	•	•	39	/0	maximo
10102439	Óxido nitroso	N2O	·	•	∠U Astiviant	23 a simplos	maximo
10024312	Ozona			•	0.08	0,16	máximo
19624227	Pentaboranc		:		0,004	0,008	máximo
109660	n-Pentano		.	+	470	1400	mínimo

CAS obs.1	AGENTES QUIMICOS	VIDE SINONIMO	Valor teto	Absorção também p/ pele	Até 48 horas/semana		Grau de insalubridade a ser conside- rado no caso de sua carac-
	-				ppm*	mg/m3**	terização
127184	Percloroetilenc		•	•	/8	525	médio
110861	Piridina		•	•	4	12	medio
74986	n-Propano				Asfixia	nte simples	-
-	n-Propanol	álcool n-propilico			-	-	-
-	iso-Propanol	alcool isopropilicc			-	-	-
-	Propanona	acetona			-	-	-
115071	Propilenc				Asfixia	nte simples	-
75558	Propileno imina			+	1,6	4	máximo
77781	Sulfato de dimetila		+	+	0,08	0,4	máximo
-	Sulfeto de hidrogênio	gás sulfidrico			-	-	-
-	Systox	demeton			-	-	-
	1,1,2,2, Tetrabromoetanc		•		0,8	11	médio
56235	Tetracloreto de carbonc		•	+	8	50	máximo
79345	Tetracloroetanc			+	4	27	máximo
127184	Tetracloroetileno	percloroetilenc		•	-	-	-
109999	Tetrahidrofuranc			•	156	460	máximo
108883	Tolueno	toluol		+	78	290	médio
		TDI diisocianato de					
-	Tolueno -2,4 - diisocianato	tolueno		•	-	-	-
-	Tribromoetano	bromofórmio			-	-	-
-	Tricloreto de vinila	1,1,2 tricloroetanc			-	-	-
-	1,1,1 Tricloroetano	metil clorofórmio			-	-	-
79005	1,1,2 Tricloroetanc			+	8	35	médio
79016	Tricloroetilenc			•	78	420	máximo
-	Triclorometano	clorofórmio			-	-	-
96184	1,2,3 Tricloropropanc				40	235	máximo
76131	1,1,2 Tricloro - 1,2,2 trifluoretano	Freon 113			780	5930	médio
121448	Trietilamina				20	78	máximo
75638	Trifluormonobromometanc				780	4760	médio
-	Vinilbenzeno	estireno			-	-	-
1330207	Xileno	xilol	•	+	78	340	médio

* ppm = partes de vapor ou gás por milhão de partes de ar contaminado

** mg/m³ = miligramas por metro cúbico de ar

Obs.: O benzeno foi retirado desta tabela conforme a Portaria nº 3, de 10/03/1994 $_{\text{(DOU, 16/03/1994)}}$

Página inicial Início desta página Legislação brasileira

© 1998 / 2002 - TOXIKÓN S/C Ltda.

CLEAN AIR ACT Sec.112 HAP - HAZARDOUS AIR POLLUTANTS

Código dos Estados Unidos. Título 42, Capítulo 85, Artigo 7401 et seq., 1970 (revisado em 1990)

Referência: Informações obtidas na internet: www.epa.gov, em 3.12.200 Nesta página não há indicação da data da última atualizaçã

Observações:

- 1. Essa lista foi obtida na página da US EPA e tem 190 compostos. Outras páginas do EPA indicam que a lista dos HAP é formada por 188 substâncias e não apresentam o hydrogen sulfide e outra substância.
- 2. As substâncias genéricas com um componente principal (por exemplo, antimony compounds) não podem ser identificadas pelo CAS (nessa lista tem indicação "0" na coluna do CAS). Essas substâncias são apresentadas na coluna "key compounds".

Tabela 9.6 Clean air act Sec.112HAP - hazardous air pollutants Código dos Estados Unidos.Título 42, Capítulo 85, Artigo 7401 et seq., 1970 (revisado em 1990)

		Kev compounds	
CAS	Chemical name	(veja observação 2)	Synonim
75070	Acetaldehyde		
60355	Acetamide		
75058	Acetonitrile		
98862	Acetophenone		
53963	2-Acetylaminofluorene		
107028	Acrolein		
79061	Acrylamide		
79107	Acrylic acid		
107131	Acrylonitrile		
107051	Allyl chloride		
92671	4-Aminobiphenyl		
62533	Aniline		
90040	o-Anisidine		
1332214	Asbestos		
71432	Benzene (including Benzene from gasoline)		
92875	Benzidine		
98077	Benzotrichloride		
100447	Benzyl chloride		
92524	Biphenyl		
117817	Bis(2-ethylhexyl)phthalate		DEHP
542881	Bis(chloromethyl)ether		
75252	Bromoform		
106990	1,3-Butadiene		
156627	Calcium cyanamide		
105602	Caprolactam		
133062	Captan		
63252	Carbaryl		
75150	Carbon disulfide		
56235	Carbon tetrachloride		
463581	Carbonyl sulfide		
120809	Catechol		
133904	Chloramben		
57749	Chlordane		
7782505	Chlorine		
79118	Chloroacetic acid		
532274	2-Chloroacetophenone		
108907	Chlorobenzene		
510156	Chlorobenzilate		
67663	Chloroform		
107302	Chloromethyl methyl ether		
126998	Chloroprene		
1319773	Cresols/Cresylic acid (isomers and mixture)		
95487	o-Cresol		

		Key compounds	
CAS	Chemical name	(veja observação 2)	Synonim
108394	m-Cresol		
106445	p-Cresol		
98828	Cumene		
94757	2,4-D, saits and esters		
334883	Diazomethane		
132649	Dibenzofurans		
96128	1,2-Dibromo-3-chloropropane		
84742	Dibutylphthalate		
106467	1,4-Dichlorobenzene(p)		
91941	3,3-Dichlorobenzidene		
111444	Dichloroethyl ether		Bis(2-chloroethyl)ether
542756	1,3-Dichloropropene		
62/3/	Dichlorvos Dichloradorador		
111422	Diethanolamine		N N Dimothylapiling
64675	Diethyl sulfate		N,N-Dimethylaninne
119904	3.3-Dimethoxybenzidine		
60117	Dimethyl aminoazobenzene		
119937	3,3¬-Dimethyl benzidine		
79447	Dimethyl carbamoyl chloride		
68122	Dimethyl formamide		
57147	1,1-Dimethyl hydrazine		
131113	Dimethyl phthalate		
77781	Dimethyl sulfate		
534521	4,6-Dinitro-o-cresol, and salts		
51285	2,4-Dinitrophenoi		
121142			1 4-Diethyleneoxide
122667	1.2-Diphenylhydrazine		
106898	Epichlorohydrin		I-Chloro-2.3-epoxypropane
106887	1,2-Epoxybutane		
140885	Ethyl acrylate		
100414	Ethyl benzene		
51796	Ethyl carbamate		Urethane
75003	Ethyl chloride		Chloroethane
106934	Ethylene dibromide		Dibromoethane
107062	Ethylene divol		1,2-Dichloroethane
151564	Ethylene imine		Aziridine
75218	Ethylene oxide		Azindine
96457	Ethylene thiourea		
75343	Ethylidene dichloride		1,1-Dichloroethane
50000	Formaldehyde		
76448	Heptachlor		
118741	Hexachlorobenzene		
87683	Hexachlorobutadiene		
67721	Hexachlorocyclopentadiene		
822060	Hexamethylene-1 6-diisocyanate		
680319	Hexamethylphosphoramide		
110543	Hexane		
302012	Hydrazine		
7647010	Hydrochloric acid		
7664393	Hydrogen fluoride		Hydrofluoric acid
7783064	Hydrogen sulfide		
123319	Hydroquinone		
/8591	lisophorone		
108316	Maleic anhydride		
67561	Methanol		
72435	Methoxychlor		
74839	Methyl bromide		Bromomethane
74873	Methyl chloride		Chloromethane

CAS Chemical name (veja observação 2) Synonim 71556 Muthy ichizorom 1,1,1-Tichizorothane 2.Butonce			Key compounds	
71556 Methyl chlyktoroform 1,1,1-Trichforosthane 7833 Methyl ethyl atone 2-Butanore 60344 Methyl atone 2-Butanore 60344 Methyl atone 2-Butanore 78486 Methyl atone 1060methane 78487 Methyl atone 1050methane 80626 Methyl actone 1060methane 80626 Methyl actone 1060methane 80626 Methyl enbig2-chloraniline) 101144 101144 4.4-Methylene bis[2-chloraniline] 101179 101179 4.4-Methylene bis[2-chloraniline] 101179 91203 Naphthalene MDI 92933 Nitroso-methylurea Cuintobenzene 62759 N-Nitrosodimethylamine Ouintobenzene 63828 Partachirornitobenzene Quintobenzene 778459 Phospino Phospino 778450 Phospino 1,2-Dichloropropane 78457 Phospino 1,2-Dichloropropane 78558 1.2-Propylene autone 2-Methyl azindine 7944	CAS	Chemical name	(veja observação 2)	Synonim
78933 Methyl kethyl kelone 2-Butanone 60344 Methyl kylorizarie Iodomethane 7484 Methyl sobulyl kelone Hexone 624433 Methyl sobulyl kelone Hexone 624433 Methyl sobulyl kelone Hexone 62453 Methyl and tarylata Hexone 1631044 Methyl endiphonyl dilocyanate MDI 17114 4.4-Methylene biglenyl dilocyanate MDI 170177 4.4-Methylene biglenyl MDI 1700727 4.1/Nirosohenelylamine MDI 1700727 4.1/Nirosohenelylamine MDI 170178 4.7/Nirosohenelylamine Quintobenzene 82888 Pentachiroonitrobenzene Quintobenzene 82768 Pentachiroonitrobenzene Quintobenzene 83858 Pentachiroonitrobenzene Quintobenzene 83858 Pentachiroonitrobenzene 1,2-Dichioropropane 1233058 Pohogylene ax	71556	Methyl chloroform		1,1,1-Trichloroethane
B0344 Methyl idold Iodomethane 108101 Methyl isocynate Iodomethane 80626 Methyl isocynate Iodomethane 80626 Methyl enbigl ether Iodomethane 101144 4.4-Methylene bis/2-chioranilino Dichloromethane 70502 Methylene bis/2-chioranilino Dichloromethane 101174 4.4-Methylenechiolaniline MDI 101273 Naphthalene MDI 101273 Naphthalene MDI 101274 A-Methylenechioniline MDI 91203 Naphthalene MDI 101274 A-Methylenechioniline MDI 101274 A-Methylenechioniline MDI 91203 Naphthalene MDI 101274 A-Methylenechioniline MDI 102027 -Nitrosomorpholine Sassa 52759 Nitrosomorpholine Sassa 52822 Nitrosomorpholine Dichloromethane 62759 Nitrosomorpholine Sassa 728440 Phonsphorus Phonsphorus 728451 Phosphorus Phonsphorus 728451 Phosphorus 1.2-Dichloropropane 75585 Distarbioride 1.2-Dichloropropane 75585	78933	Methyl ethyl ketone		2-Butanone
Arabea Methyl Isobulyl ketone Icoornelnane 108101 Methyl Isobulyl ketone Hexone 824439 Methyl Isobulyl ketone Hexone 108101 Methyl Isobulyl ketone Hexone 108404 Methyl methorylate Dichloromethane 108404 Methylene diphenyl dilsocyanate MDI 10177 4.4-Methylene diphenyl dilsocyanate MDI 100727 4.Nirobhenyl Altrophenol 20233 Altrobhenol MDI 100027 4.Nirosomorpholine Galintobenzene 68433 N.Nirosomorpholine Galintobenzene 68458 Pentachlorophenol Quintobenzene 78454 Phosphonus Hexone 78454 Phosphonus Altrophenol 78454 Phosphonus Altrophenol 78454 Phosphonus Altrophylen dithyle	60344	Methyl hydrazine		
10101 metry isocyanize 26489 Metry methacrylate 80626 Metry includy ether 101144 4.4-Metrylene biol(2-chiconilline) 101144 4.4-Metrylene biol(2-chiconilline) 101144 4.4-Metrylene biol(2-chiconilline) 101179 4.4-Metrylene biol(2-chiconilline) 11111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 11111 1111 11111 1111 111111 1111 <t< td=""><td>74884</td><td>Methyl Iodide Methyl isobutyl kotopo</td><td></td><td>lodomethane</td></t<>	74884	Methyl Iodide Methyl isobutyl kotopo		lodomethane
B0228 Methyl methacrylate 163444 Methyl methacrylate 163444 Methylene diheral size chioroaniline) Dichioromethane 75092 Methylene diheral size chioroaniline) MDI 101144 4.4-Methylene bize chioroaniline) MDI 101779 4.4Methylene bize chioroaniline) MDI 101779 4.4Methylene bize chioroaniline) MDI 101779 4.4Methylene dianiline MDI 101779 4.4Methylene bize chioroaniline) MDI 100227 4-Nitrobphenol MDI 100227 4-Nitrobphenol Cuintobenzene 684935 N-Nitrosomorphulma Size 85838 Pentachlorophenol Cuintobenzene 87685 Pentachlorophenol Cuintobenzene 108522 Phenol Phenol 108523 Phenol Phenol 108525 Phenol Cuintobenzene 108525 Phenol Phenol 108525 Phosphonus Propional dichorophenol 1120714 1.3-Propare suitone	624839	Methyl isocyanate		Tlexone
1632044 Methylene turyle ether 101144 4.4 Methylene diphenyl dilsocyanate Dichloromethane 101898 Methylene diphenyl dilsocyanate MDI 101779 4.4Methylenedianiline MDI 91203 Naphthalene MDI 91203 Naphthalene MDI 92033 4-Nitrobphenyl All 92033 9-Nitrosonompholine Quintobenzene 92033 9-Phenylenedianine All 75445 Phosphine Quintobenzene 75737 bata-Propiolacitone 1,2-Dichloropropane 7558 1,3-Popare sutone 1,2-Dichloropropane 75558 1,3-Propavenin	80626	Methyl methacrylate		
101144 4.4-Methylene bis(2-chrosaniline) 75092 Methylene diphorpyl discoyanate 101688 Methylene diphorpyl discoyanate 101779 4.4-Methylenedianiline 91203 Naphthalane 98833 Nitrobenzene 92833 A-Nitrobiphenyl 100027 4.Nitrobenzene 92833 Nitrobenzene 92833 Nitrobenzene 92833 Nitrobenzene 92833 Nitrobenzene 92833 Nitrosodimethylamine 78469 2.Nitrosodimethylamine 78469 Phatschirornitrobenzene 92852 Phendlenconitrobenzene 92852 Phendlenconitrobenzene 92853 Phenglenediamine 72844 Phospinne 7783512 Phospinne 7783512 Phospinne 7783512 Phospinne 778354 Phospinous 85449 Phthalic anhydride 112014 1.3-Propare suitone 91255 Outnoine 112014 1.3-Propare dichloride 112014 1.2-Dichloropropane 75558 1.2-Proplane dichloride 112426 Propozur (Baygon) 78857 Propylene oxide <	1634044	Methyl tert butyl ether		
75002 Methylene dihorde Dichloromethane 10178 Methylene dihorden dinine MDI 10177 4.4Methylenedianiline MDI 91203 Naphthalene MDI 92833 A-Nitrosoftherylene Guintobenzene 62759 N-Nitrosooftherylene Quintobenzene 62759 N-Nitrosooftholene Quintobenzene 63828 Partachloronitrobenzene Quintobenzene 87865 Pentachloronitrobenzene Quintobenzene 87868 Pentachloronitrobenzene Quintobenzene 87869 Propylene dichloride 1,2-Dichloropropane 7723140 Phosphorus Phosphorus 1120714 1,2-Popaveutote 2-Methyl azindine	101144	4,4-Methylene bis(2-chloroaniline)		
101688 Methylene diphenyl discovanate MDI 91203 Naphthalene MDI 91203 Naphthalene MDI 92333 4-Nitrobiphenyl MDI 100027 4-Nitrobiphenyl MDI 100027 4-Nitrobiphenyl MDI 100027 4-Nitrobiphenyl MDI 100027 4-Nitrobiphenol MDI 27469 2-Nitrosomorpholine MDI 58322 Parathion Quintobenzene 82688 Pentachlorophenol Quintobenzene 87865 Pentachlorophenol Quintobenzene 87865 Phenol Phenol 108952 Phenol Quintobenzene 87865 Pentachlorophenol Quintobenzene 87865 Pentachlorophenol Quintobenzene 87865 Phospine Propison 7723140 Phosphorus Phosphorus 87449 Phthalic anhydride Phosphorus 87578 bela-Propolacitone Quinolne 1132074 1.3-Propyleninine 2-Methyl azindine 97558 I.2-Propyleninine 2-Methyl azindine 96033 Styrene oxide 1,2-Dichloroptropane 97558 Styrene oxide 2.4-Toluen	75092	Methylene chloride		Dichloromethane
101779 4.4Methylenedianiline 12123 Maphthalene 12123 Maphthalene 12123 Maphthalene 12125 Maphthalene 12125 Mitroberzene 12125 Mitroberzene 12125 Mitroberzene 12155 N-Nitroso-N-methylurea 12256 Pentachloronitrobenzene 12256 Pentachloronitrobenzene 12256 Pentachloronitrobenzene 12257 Phenol 122574 Pheosgene 12256 Phenol 122574 Pheosgene 12256 Pheosgene 12257 Pheos	101688	Methylene diphenyl diisocyanate		MDI
91213 Naphthalene 92933 Nitroberzene 92933 4-Nitroblenzyn 94953 Nitroberzene 92933 4-Nitroberzene 92933 4-Nitroberzene 9204 92052 Phenol 92052 Pretachlorophenol 92052 Phenol 92052 Phenol	101779	4,4Methylenedianiline		
99933 Nittoblevelue 100027 4-Nitrobphenol 74669 2-Nitropropane 684305 N-Nitroscomethylamine 63232 Partathion 63233 N-Nitroscomethylamine 63332 Partathion 63332 Partathion 63332 Partathion 63332 Partathionolitobenzene 783512 Phosphenol 106503 p-Phenylenediamine 75445 Phosgene 773140 Phosphorus 85449 Phinalic anlydride 1120714 13-Propane sultone 57578 beta-Propiolactone 112386 Propovur (Baygon) 78578 Propylene dichloride 112476 Propovur (Baygon) 78558 1.2-Propylenimine 91225 Oumoline 100425 Styrene oxide 1746016 2.3.7.8-Tetrachlorodibenzo-p-dioxin 1746016 2.3.7.8-Tetrachlorodibenzo-p-dioxin 1748016 2.4-Toluene diamine 1247144 Tetrachlorodethylene 790551 1.1.2-Tirichlorop	91203	Naphthalene		
0.1.200 Finite Option Provide 79469 2-Nitrophenol 78469 2-Nitrophenol 62759 N-Nitroscolmethylamine 53828 Partachloronitrobenzene Quintobenzene 63838 Partachloronitrobenzene Quintobenzene 63838 Partachloronitrobenzene Quintobenzene 63838 Partachlorophenol Partachlorophenol 108852 Phenol Phenol 76445 Phosphine Phosphine 773140 Phosphrus Phosphine 773140 Phosphrus Partachlorophenol 1120714 1.3-Propane sultone 1.2-Dichlorophonal 1132774 1.3-Propane sultone 2.Methyl aziridine 113286 Propionaldehyde 1.2-Dichlorophopane 75558 1.2-Propylenimine 2.Methyl aziridine 910425 Styrene oxide 1.2-Dichlorophopane 1746016 2.3.7.8-Tetrachlorodhenzo-p-dioxin 1.4-Dichlorophylene 1746016 2.3.7.8-Tetrachlorodhenzo-p-dioxin 1.2-Tetrachlorothylene 1745017 Tetrachlorothylene Perchloroethylene 95534 <	90903			
79469 2-Nitropropane 684335 N-Nitroson-N-methylurea 62759 N-Nitrosomorpholine 58822 Parathion 82688 Pentachloronitrobenzene Quintobenzene 87865 Phosphine Phosphine 772140 Phosphine Phosphine 78757 Beta-Propiolactone 120714 1120714 136363 Polychloride 1.2-Dichloropropane 75578 beta-Propiolactone 2.Methyl aziridine 1122714 Ouinolne 2.Methyl aziridine 1122714 Quinolne 2.Methyl aziridine 1122714 Quinolne Propylene oxide 2.Methyl aziridine 1128 <t< td=""><td>100027</td><td>4-Nitrophenol</td><td></td><td></td></t<>	100027	4-Nitrophenol		
684395 N-Nitroso-N-methylurea 62759 N-Nitrosondimethylamine 539892 N-Nitrosondimethylamine 53892 Parathion 62688 Pentachlorophone 82688 Pentachlorophenol 108952 Phenol 1080503 p-Phenylenediamine 745445 Phosphine 7723140 Phosphorus 85449 Phthalic anhydride 133638 Polychlorinated biphenyls (Aroclors) 1120714 1,3-Propane sultone 25757 beta-Propiolactone 133638 Propylene oxide 114261 Propoxur (Baygon) 78875 Propylene oxide 122750 Quinolne 100425 Styrene 90033 Styrene oxide 112274 1,2-Propyleminine 2-Methyl aziridine Perchloroethylene 75558 1,2-Propyleminine 910425 Styrene 96033 Styrene oxide 1127184 Tetrachloroethane 755450 Titanium tetrachloride 95534 2,4-Toluene diamine<	79469	2-Nitropropane		
62759 N-Nitrosodimethylamine 59892 N-Nitrosodimethylamine 59892 Partathioronitrobenzene Quintobenzene 82688 Pentachlorophenol Quintobenzene 108952 Phenol Quintobenzene 75445 Phosphonol Quintobenzene 7723140 Phosphonus Phosphonus 85449 Phitalic anhydride 1336335 1323633 Polychoinated biphenyls (Arcolors) 1120714 1323635 Propionaldehyde 1.2-Dichloropropane 75578 beta-Propiolactone 2-Methyl aziridine 114261 Propylene oxide 1.2-Dichloropropane 75558 1.2-Propylenimine 2-Methyl aziridine 91225 Quinoline 2-Methyl aziridine 106514 Quinoline 2-Methyl aziridine 104265 Styrene oxide Perchloroethylene 755450 1.2-Z-Tetrachloroditenzo-p-dioxin 755456 114261 Propylene diadine Perchloroethylene 755545 1.2-Z-Tetrachloroditenzo-p-dioxin 755456 114261 Cuinoline Perchloroethylene	684935	N-Nitroso-N-methylurea		
59892 N-Nitrosomorpholine 56382 Parathion 6388 Pentachloronitrobenzene Quintobenzene 87865 Pentachlorophenol Quintobenzene 108503 p-Phenylenediamine Phosphine 76445 Phosphorus Phosphorus 7723140 Phosphorus Phosphorus 85449 Phithalic anhydride 138363 138363 Polychorinated biphenyls (Aroclors) 1120714 13.Propane sultone 57578 beta-Propiolactone 75785 beta-Propiolactone 1,2-Dichloropropane 75586 Propylene dichloride 1,2-Dichloropropane 75585 Propylene oxide 1,2-Dichloropropane 96093 Styrene oxide 2-Methyl aziridine 910425 Styrene 2-Methyl aziridine 96093 Styrene oxide 1,1,2,2-Dichloropthene 1127184 Tetrachloroethane Perchloroethylene 78585 Propylene diamine 2-Methyl aziridine 96093 Styrene oxide 1,1,2,2-Tetrachloroethane 100425 Styrene 960444 95847	62759	N-Nitrosodimethylamine		
56382 Parathion Quintobenzene 82688 Pentachloronitrobenzene Quintobenzene 82688 Pentachloronitrobenzene Quintobenzene 87865 Pentachloronitrobenzene Quintobenzene 108932 Phenol Phosphine 7723140 Phosphine Phosphine 77373 Beta-Propiolactone Projonaldehyde 114261 Propoylen oxide 1,2-Dichloropropane 75568 Propylene oxide 1,2-Dichloropropane 75558 1,2-Propylenimine 2-Methyl aziridine 90693 Styrene oxide 2-Methyl aziridine 106514 Quinone 2-Methyl aziridine 1174016 2,3,7,8-Tetrachlorodthenzo-p-dioxin 73945 112,2-Dichloropthane Perchloroethylene 75564 1,1,2,2-Tetrachloroethane Perchloroethylene 174016 2,3,7,8-Tetrachloroethane Perchloroethylene 75555 1,2,4-Trichlorobenzene Perchloroethylene 95534 2,4-Toluene diamine Stategree 95544	59892	N-Nitrosomorpholine		
82888 Pentachloronitrobenzene Quintobenzene 87865 Pentachlorophenol Quintobenzene 108952 Phenol Phenol 108503 p-Phenylenediamine Phospine 75445 Phosphorus Phosphorus 85449 Phthalic anhydride 133363 133363 Polychlorinated biphenyls (Aroclors) 1120714 1120714 1.3-Propane sultone 2 75757 beta-Propiolactone 1.2-Dichloropropane 75558 1.2-Propylene dichloride 1.2-Dichloropropane 75558 1.2-Propylenimine 2-Methyl aziridine 91225 Quinoline 2-Methyl aziridine 100614 Quinone 2-Methyl aziridine 11748016 2.3.7.8-Tetrachlorodibenzo-p-dioxin 7 79345 Tha.2.2-Tetrachlorodibenzo-p-dioxin 7 79345 Tha.2.2-Tetrachlorodibenzo-p-dioxin 9 127184 Tetrachloroethylene Perchloroethylene 75558 2.4-Toluene diamine 6 95807 2.4-Toluene diamine 6 95834 2.4-Toluene diamine 6 95842 2.4-Toluene diamine 6 95842 2.4-Toluene diamine 6 95845 2.4-Tichloroph	56382	Parathion		
874805 Penachlorophenol 108952 Phenol 108952 Phosgene 75445 Phosgene 7723140 Phosphrus 85449 Phhalic anhydride 1336363 Polychlorinated biphenyls (Aroclors) 1120714 1,3-Propane sultone 57878 beta-Propiolatedhyde 114261 Propoxur (Baygon) 78875 Propylene dichloride 12255 Quinoline 91225 Quinoline 106614 Quinone 96093 Styrene oxide 12174601 2,3,7,8-Tetrachlorodibenzo-p-dioxin 773455 Styrene oxide 96093 Styrene oxide 9790401 2,4-Toluene diamine 121714 Tetrachloroethylene 755585 Toluene 95637 2,4-Toluene diamine 958449 2,4-Toluene diamine 95854 o-Toluidine 12282 Tokaphene 95534 o-Toluidine 8001352 Toxaphene 128208 Trifluralin 1582098	82688	Pentachloronitrobenzene		Quintobenzene
100502 10503Principienediamine Phosphene75445Phosphine7723140Phosphorus85449Phthalic anhydride1338636Polychlorinated biphenyls (Aroclors)11207141,3-Propane sultone57578beta-Propiolactone778375Propionaldehyde114261Propoxur (Baygon)78875Propylene dichloride755881,2-Propylene mine2-Methyl aziridine91225Quinoline106514Quinoline10425Styrene96093Styrene oxide1146162,3,7,8-Tetrachlorodibenzo-p-dioxin793451,1,2-Z-Tetrachlorodibenzo-p-dioxin793451,2,2-Tetrachlorodibenzo-p-dioxin793451,2,2-Tetrachlorodibenzo-p-dioxin793451,2,2-Tetrachlorodibenzo-p-dioxin793451,2,2-Tetrachlorodibenzo-p-dioxin793451,2,2-Tetrachlorodibenzo-p-dioxin793451,2,2-Tetrachlorodibenzo-p-dioxin793451,2,4-Trichlorodentane127184Tetrachlorodentane1208211,2,4-Trichlorodentane900351,1,2-Trichlorodenzene790161,1,2-Trichlorophenol880622,4,6-Trichlorophenol806622,4,6-Trichlorophenol806621,1,1-Dichloroethylene7550450Vinyl acetate550360Vinyl tormide1120441,1-Dichloroethylene75504Vinyl choride75044Vinyl choride75044Vinyl choride75045<	87865	Pentachiorophenol		
Totological programme 75445 Phosgene 7223140 Phosphrus 85449 Phthalic anhydride 1336363 Polychlorinated biphenyls (Aroclors) 1120714 1120714 113261 113261 113261 113261 113261 113261 113261 113261 113261 113261 113261 113261 113261 113261 113261 113261 113261 11327 11328 11328 11329 11329 11329 11329 11329 11329 11329 11329 11329 11321 11321 11321 11321 11321 11321 11321 11321 113	106503	n-Phenylenediamine		
7803512 Phosphine 7723140 Phosphorus 85449 Phthalic anhydride 1336363 Polychlorinated biphenyls (Aroclors) 1120714 1.3-Propane sultone 57578 beta-Propiolactone 123366 Propionaldehyde 114261 Propovar (Baygon) 78875 Propylene oxide 75558 1.2-Propylenimine 91225 Ouinoline 006514 Ouinone 100425 Styrene 96093 Styrene oxide 1746016 2.3.7.8-Tetrachlorodibenzo-p-dioxin 73945 1.1.2.2-Tetrachlorodibenzo-p-dioxin 73945 1.1.2.2-Tetrachlorodibenzo-p-dioxin 73945 1.2.2-Tetrachlorodibenzo-p-dioxin 73945 1.2.2-Tetrachlorodibenzo-p-dioxin 73945 1.2.2-Tetrachlorodibenzo-p-dioxin 79354 Toluene 95807 2.4-Toluene diamine 95807 2.4-Toluene diamine 95834 Oroluidine 8001352 Toxaphene 1.1.2-Trichlorobenzene chlorinated camphene 120821 1.2.4-	75445	Phosaene		
7723140 Phosphorus 85449 Phthalic anhydride 1336363 Polychlorinated biphenyls (Arcolors) 1120714 1.3-Propane sultone 57578 beta-Propiolactone 723368 Propionaldehyde 114261 Propovar (Baygon) 78875 Propylene dichloride 114261 Propovar (Baygon) 78875 Propylene oxide 75558 1.2-Propylenimine 21225 Quinolne 100425 Styrene oxide 96093 Styrene oxide 1746016 2,3,7,8-Tetrachloroethane 127124 Tetrachloroethane 127124 Tetrachloroethane 127124 Tetrachloroethane 127124 Perchloroethylene 95535 0Toluidine 8001352 Toxaphene 1,1,2-Trichlorobenzene chlorinated camphene 120211 1,2,4-Trichlorobenzene 79005 1,1,2-Trichlorophenol 128021 2,4,6-Trichlorophenol 139554 2,4,6-Trichlorophenol 1280203 2,4,6-Trichlorophenol <t< td=""><td>7803512</td><td>Phosphine</td><td></td><td></td></t<>	7803512	Phosphine		
85449 Phthalic anhydride 1336363 Polychlorinated biphenyls (Aroclors) 1120714 1,3-Propane sultone 85778 beta-Propiolactone 123386 Propour (Baygon) 78875 Propylene dichloride 75558 1,2-Propylenimine 91225 Quinoline 100425 Styrene 96093 Styrene oxide 1740016 2,3,7,8-Tetrachlorodibenzo-p-dioxin 1748016 2,3,7,8-Tetrachlorodibenzo-p-dioxin 1748016 2,3,7,8-Tetrachlorodibenzo-p-dioxin 1748016 2,3,7,8-Tetrachlorodibenzo-p-dioxin 1748016 2,3,7,8-Tetrachloroethane 127184 Tetrachloroethylene 12853 Toluene diamine 95807 2,4-Toluene diamine 95838 Toluene diamine 95840 1,1.2-Tothoroethane 79005 1,1.2-Tothorobenzene 102821 1,2-A-Trichorobenzene 1129714 Trichloroethylene 129854 2,4.5-Trichlorophenol 121448 Triethylamine 1582098 Trifluralin 1582098	7723140	Phosphorus		
1336363Polychlorinated biphenyls (Aroclors)11207141,3-Propane sultone57578beta-Propiolactone123386Propionaldehyde114261Propovur (Baygon)78875Propylene oxide75569Propylene oxide755581,2-Propylenimine2000Quinone106514Quinone100425Styrene96093Styrene oxide127184Tetrachlorodibenzo-p-dioxin7550450Titanium tetrachloride108883Toluene958072,4-Toluene disocyanate95534o-Toluidine2005511,2-Trichlorobenzene790051,1,2-Trichlorobenane128054Z,4,5-Trichlorobenane128054Z,4,5-Trichlorobenane1280542,4,6-Trichlorobenane1280542,4,6-Trichlorobenane1280542,4,6-Trichlorobenane1280542,4,6-Trichlorobenane1280552,4,6-Trichlorobenane128056Trifluralin128098Trifluralin128098Trifluralin128098Trifluralin128098Trifluralin128098Trifluralin128098Trifluralin128098Yinyl bornide138052Vinyl bornide138054Vinyl bornide1198054Vinyl bornide1198054Vinyl bornide1198054Vinyl bornide1198054Vinyl bornide1198054Vinyl bornide1198054Vinyl bornide	85449	Phthalic anhydride		
1120714 1,3-Propane sultone 57578 beta-Propiolactone 12336 Propionaldehyde 114261 Propoxur (Baygon) 78875 Propylene dichloride 75558 1,2-Propylene oxide 75558 1,2-Propylenimine 91225 Quinoline 100614 Quinone 100425 Styrene oxide 1746016 2,3,7,8-Tetrachlorodibenzo-p-dioxin 739345 1,1,2,2-Tetrachlorodibenzo-p-dioxin 108883 Toluene 98007 2,4-Toluene diascyanate 95534 0-Toluidine 8001352 Toxaphene 120821 1,2,4-Trichlorophenol 121448 Triethylamine 1582098 Trifluralin	1336363	Polychlorinated biphenyls (Aroclors)		
57:78 beta-Propiolactone 123386 Propionaldehyde 114261 Propoxur (Baygon) 78875 Propylene dichloride 75556 Propylene dichloride 75557 Propylene dichloride 75558 Propylene dichloride 75559 Propylene oxide 91225 Quinoline 100425 Styrene 96093 Styrene oxide 1746016 2.3, 7.8-Tetrachlorodibenzo-p-dioxin 17345 1,1,2,2-Tetrachloroethane 127184 Tetrachloroethylene 7550450 Titanium tetrachloride 108823 Toluene 98807 2,4-Toluene diamine 584849 2,4-Toluene diisocyanate 95534 o-Toluidine 108823 Toluene 108032 1,2-Arichlorobenzene 79005 1,1,2-Tichlorobenzene 79005 1,1,2-Tichlorophenol 1280298 Triflurain 540841 2,2,4-Timethylpentane 108054 Vinyl acetate 540861 2,4-Trimethylpentane 108054	1120714	1,3-Propane sultone		
114261Propour (Baygon)78875Propylene dichloride78875Propylene oxide755581,2-Propylenimine91225Quinoline106514Quinone100425Styrene oxide17460162,3,7,8-Tetrachlorodibenzo-p-dioxin793451,1,2,2-Tetrachlorodibenzo-p-dioxin793451,1,2,2-Tetrachlorodibenzo-p-dioxin793451,1,2,2-Tetrachlorodibenzo-p-dioxin793451,1,2,2-Tetrachlorodibenzo-p-dioxin793451,1,2,2-Tetrachlorodibenzo-p-dioxin793451,1,2,2-Tetrachlorodibenzo-p-dioxin793451,1,2,2-Tetrachlorodibenzo-p-dioxin793451,1,2,2-Tetrachlorodibenzo-p-dioxin793451,1,2,2-Tetrachlorodibenzo-p-dioxin793451,1,2,2-Tetrachlorodibenzo-p-dioxin793451,1,2,2-Tetrachlorodibenzo-p-dioxin793451,1,2,2-Tetrachlorodibenzo-p-dioxin793451,1,2,2-Tetrachlorodibenzo-p-dioxin793552,4-Toluene diamine5840492,4-Toluene diascoxanate955342,4,5-Trichlorophenzene790151,1,2-Trichlorobenzene79016Trichlorophenol121448Triethylamine1582098Trifluralin593602Vinyl acetate593602Vinyl choride75014Vinyl choride75034Vinyl choride75354Vinylidene chloride1330207Xylenes (isomers and mixture)954760-Xylenes	5/5/8	beta-Propiolactone Propionaldehyde		
11201Propylene dichloride1,2-Dichloropropane78875Propylene dichloride2-Methyl aziridine91225Quinoline2-Methyl aziridine910425Styrene oxide2-Methyl aziridine106514Quinone2,3,7,8-Tetrachlorodibenzo-p-dioxin10425Styrene oxidePerchlorodibenzo-p-dioxin17460162,3,7,8-Tetrachlorodibenzo-p-dioxinPerchloroethylene17460162,3,7,8-Tetrachlorodibenzo-p-dioxinPerchloroethylene1747617Titanium tetrachloridePerchloroethylene108833Toluene958072,4-Toluene diamine9584072,4-Toluene diamine95534o-Toluidine8001352Toxaphenechlorinated camphene1208211,2,4-Trichlorobenzenechlorinated camphene1208211,2,4-Trichlorophenol1,1,2-Trichlorophenol121448TriethylamineTrifluralin1582098Trifluralin54084112,2,4-Trichlorophenol1,1-Dichloroethylene1582098Yinyl acetate593602108054Vinyl acetate593602Vinyl choride75354Vinyl choride75354Vinyl choride75354Vinylidene chloride1330207Xylenes (isomers and mixture)954760-Xylenes	123300	Propovur (Baygon)		
Table 1The Definition of population75569Propylene oxide755581,2-Propylenimine91225Quinoline106514Quinone100425Styrene96093Styrene oxide17460162,3,7,8-Tetrachlorodibenzo-p-dioxin793451,1,2,2-Tetrachlorodibenzo-p-dioxin793451,1,2,2-Tetrachloroethylene7550450Titanium tetrachlorode108883Toluene958072,4-Toluene diaine5848492,4-Toluene diaisocyanate95534o-Toluidine8001352Toxaphene1,1,2-Trichloroethylene79016Trichloroethylene79016Trichloroethane79016Trichloroethane79016Trichloroethane79016Trichlorophenol80622,4,6-Trichlorophenol80622,4,6-Trichlorophenol121448Triethylamine1582098Trifluralin5408412,2,4-Trimethylpentane108054Vinyl acetate593602Vinyl choride75014Vinyl choride75354Vinylidene chloride75354Vinylidene chloride75354Vinylidene chloride75354Vinylidene sol1,1-Dichloroethylene954760-Xylenes	78875	Propylene dichloride		1.2-Dichloropropane
755581,2-Propylenimine2-Methyl aziridine91225Quinoline01066514Quinone1100425Styrene196093Styrene oxide117460162,3,7,8-Tetrachlorodibenzo-p-dioxin117480162,3,7,8-Tetrachlorodibenzo-p-dioxin1127184TetrachloroethylenePerchloroethylene7550450Titanium tetrachloridePerchloroethylene7550450Titanium tetrachloridePerchloroethylene108883Toluene2,4-Toluene diasocyanate958072,4-Toluene diasocyanate553495534o-Toluidinechlorinated camphene1202211,2,4-Trichlorobenzenechlorinated camphene1202111,2,4-Trichlorophenol2,4,5-Trichlorophenol806222,4,6-Trichlorophenol1,1/2-Trichlorophenol121448Triethylamine11582098Trifluralin5408412,2,4-Trimethylpentane108054Vinyl acetate593602Vinyl chloride75014Vinyl chloride75354Vinylidene chloride75354Vinylidene chloride130207Xylenes (isomers and mixture)954760-Xylenes	75569	Propylene oxide		, <u></u>
91225Quinoline106514Quinone100425Styrene oxide96093Styrene oxide17460162,3,7,8-Tetrachlorodibenzo-p-dioxin793451,1,2,2-Tetrachloroethane127184TetrachloroethylenePerchloroethylenePerchloroethylene7550450Titanium tetrachloride108883Toluene958072,4-Toluene diamine5848492,4-Toluene diamine5848492,4-Toluene disocyanate95534o-Toluidine8001352Toxaphene790051,1,2-Trichloroethane790051,1,2-Trichloroethane79016Trichloroethylene880622,4,6-Trichlorophenol880622,4,6-Trichlorophenal128208Trifuralin5408412,2,4-Trimethylpentane108054Vinyl acetate593602Vinyl bromide75014Vinyl choride75014Vinyl choride75354Vinylidone chloride75354Vinylenes (isomers and mixture)95479547695471,1-Dichloroethylene	75558	1,2-Propylenimine		2-Methyl aziridine
106514Quinone100425Styrene96093Styrene oxide17460162,3,7.8-Tetrachlorodibenzo-p-dioxin17480162,3,7.8-Tetrachlorodibenzo-p-dioxin127184Tetrachloroethylene127184Tetrachloroethylene7550450Titanium tetrachloride108883Toluene958072,4-Toluene diamine5848492,4-Toluene diamine5848492,4-Toluene disocyanate95534o-Toluidine8001352Toxaphene1208211,2.4-Trichloroethane1208211,2.4-Trichloroethane790051,1,2-Trichloroethane79016Trichloroethylene959542,4,5-Trichlorophenol880622,4,6-Trichlorophenol121448Triethylamine1582098Trifluralin5408412,2,4-Trimethylpentane108054Vinyl acetate593602Vinyl bromide75014Vinyl chloride75014Vinyl chloride75014Vinyl chloride75014Vinyl chloride75014Vinyl exertate593602Vinyl komers and mixture)95476o-Xlvienes	91225	Quinoline		
100425Styrene96093Styrene oxide17460162,3,7,8-Tetrachlorodibenzo-p-dioxin793451,1,2,2-Tetrachloroethane127184Tetrachloroethylene7550450Titanium tetrachloride108883Toluene958072,4-Toluene diamine5848492,4-Toluene diamine5848492,4-Toluene diaisocyanate95534o-Toluidine8001352Toxaphene1208211,2,4-Trichloroethane790051,1,2-Trichloroethane79016Trichloroethylene959542,4,5-Trichlorophenol880622,4,6-Trichlorophenol121448Triethylamine1582098Trifluralin5408412,2,4-Trimethylpentane108054Vinyl acetate593602Vinyl bromide75014Vinyl chloride75014Vinyl chloride75014Vinyl chloride75014Vinyl chloride750162,5/Prienes and mixture)954760-Xlylenes	106514	Quinone		
96093Styrene oxide17460162,3,7,8-Tetrachlorodibenzo-p-dioxin793451,1,2,2-Tetrachloroethane127184Tetrachloroethylene7550450Titanium tetrachloride108883Toluene958072,4-Toluene diamine5848492,4-Toluene diisocyanate95534o-Toluidine8001352Toxaphene1202211,2,4-Trichlorobenzene790051,1,2-Trichlorobenzene79016Trichloroethylene955542,4,5-Trichlorophenol880622,4,6-Trichlorophenol1212448Triethylamine1582098Trifluralin5408412,2,4-Trimethylpentane108054Vinyl acetate593602Vinyl chloride75014Vinyl chloride75354Vinyl chloride75354Vinylichnoride75354Vinyl chloride75354Vinyl chloride7	100425	Styrene		
17400162,3,7,6-1effactilofodiber/20-p-dioxin793451,1,2,2-Tetrachloroethane127184Tetrachloroethylene7550450Titanium tetrachloride108883Toluene958072,4-Toluene diamine5848492,4-Toluene disocyanate0 <toxaphene< td="">chlorinated camphene8001352Toxaphene10,2211,2,4-Trichlorobenzene790051,1,2-Trichloroethane79016Trichloroethylene955542,4,5-Trichlorophenol880622,4,6-Trichlorophenol121448Triethylamine1582098Trifluralin5408412,2,4-Trimethylpentane108054Vinyl acetate593602Vinyl bromide75014Vinyl chloride75354Vinyl chloride75354Vinyl chloride75354Vinyl chloride75014Vinyl chloride75354Vinyl chloride</toxaphene<>	96093	Styrene oxide		
13040Tetrachloroethalie127184Tetrachloroethylene7550450Titanium tetrachloride108883Toluene958072,4-Toluene diamine5848492,4-Toluene diasocyanate95534o-Toluidine8001352Toxaphene1208211,2,4-Trichlorobenzene790051,1,2-Trichloroethane79016Trichloroethylene955542,4,5-Trichlorophenol880622,4,6-Trichlorophenol880622,4,6-Trichlorophenol121448Triethylamine1582098Trifluralin5408412,2,4-Trimethylpentane108054Vinyl acetate593602Vinyl bromide75314Vinyl chloride75354Vinyl didne chloride1330207Xylenes (isomers and mixture)954760-Xylenes	70245	2,3,7,8-1 etrachiorodibenzo-p-dioxin		
TitleFunction for the formation of the formation	127184	Tetrachloroethylene		Perchloroethylene
108883Toluene958072,4-Toluene diamine5848492,4-Toluene diisocyanate95534o-Toluidine8001352Toxaphene1208211,2,4-Trichlorobenzene790051,1,2-Trichloroethane79016Trichloroethylene959542,4,5-Trichlorophenol880622,4,6-Trichlorophenol121448Triethylamine1582098Trifluralin5408412,2,4-Trimethylpentane108054Vinyl acetate593602Vinyl bromide75014Vinyl chloride75354Vinylidene chloride1330207Xylenes (isomers and mixture)95476o-Xylenes	7550450	Titanium tetrachloride		i elemene en ylene
958072,4-Toluene diamine5848492,4-Toluene diisocyanate95534o-Toluidine8001352Toxaphene1208211,2,4-Trichlorobenzene790051,1,2-Trichloroethane79016Trichloroethylene959542,4,5-Trichlorophenol880622,4,6-Trichlorophenol121448Triethylamine1582098Trifluralin5408412,2,4-Trimethylpentane108054Vinyl acetate593602Vinyl bromide75014Vinyl chloride75354Vinyl chloride75354Vinyl chloride1330207Xylenes (isomers and mixture)95476o-Xylenes	108883	Toluene		
5848492,4-Toluene diisocyanate o-Toluidinechlorinated camphene95534o-Toluidinechlorinated camphene8001352Toxaphenechlorinated camphene1208211,2,4-Trichlorobenzenechlorinated camphene790051,1,2-Trichloroethanechlorinated camphene79016Trichloroethylenechlorinated camphenol880622,4,5-Trichlorophenolchlorinated camphene121448Triethylaminechlorinated camphene1582098Trifluralinchlorinated camphene593602Vinyl acetatechlorinated camphene593602Vinyl bromidechlorinated camphene75014Vinyl chloride1,1-Dichloroethylene1330207Xylenes (isomers and mixture)o-Xylenes	95807	2,4-Toluene diamine		
95534o-Toluidine8001352Toxaphenechlorinated camphene1208211,2,4-Trichlorobenzenechlorinated camphene790051,1,2-Trichloroethanechlorinated camphene79016Trichloroethylenechlorinated camphene959542,4,5-Trichlorophenolchlorinated camphene880622,4,6-Trichlorophenolchlorinated camphene121448Triethylaminechlorinated camphene1582098Trifluralinchlorinated camphene593602Vinyl acetatechlorinated camphene593602Vinyl bromidechlorinated camphene75014Vinyl chloride1,1-Dichloroethylene1330207Xylenes (isomers and mixture)o-Xylenes	584849	2,4-Toluene diisocyanate		
8001352Foxaphenechlorinated camphene1208211,2,4-Trichlorobenzenechlorinated camphene790051,1,2-Trichloroethanechlorinated camphene79016Trichloroethylenechlorinated camphene959542,4,5-Trichlorophenolchlorinated camphene880622,4,6-Trichlorophenolchlorinated camphene121448Triethylaminechlorinated camphene1582098Trifluralinchlorinated camphene5408412,2,4-Trimethylpentanechlorinated camphene108054Vinyl acetatechlorinated camphene593602Vinyl bromidechlorinated camphene75014Vinyl chloride1,1-Dichloroethylene1330207Xylenes (isomers and mixture)chlorinated camphene95476o-Xyleneschlorinated camphene	95534	o-Toluidine		
1208211,2,4-11/chlorodenzene790051,1,2-Trichloroethane79016Trichloroethylene959542,4,5-Trichlorophenol880622,4,6-Trichlorophenol121448Triethylamine1582098Trifluralin5408412,2,4-Trimethylpentane108054Vinyl acetate593602Vinyl bromide75014Vinyl chloride75354Vinylidene chloride1330207Xylenes (isomers and mixture)954760-Xylenes	8001352			chlorinated camphene
79005 1,1,2-Thchoroethaline 79016 Trichloroethylene 95954 2,4,5-Trichlorophenol 88062 2,4,6-Trichlorophenol 121448 Triethylamine 1582098 Trifluralin 540841 2,2,4-Trimethylpentane 108054 Vinyl acetate 593602 Vinyl bromide 75014 Vinyl chloride 75354 Vinylidene chloride 1330207 Xylenes (isomers and mixture) 95476 0-Xylenes	120821	1,2,4-Irichlorobenzene		
95954 2,4,5-Trichlorophenol 88062 2,4,6-Trichlorophenol 121448 Triethylamine 1582098 Trifluralin 540841 2,2,4-Trimethylpentane 108054 Vinyl acetate 593602 Vinyl bromide 75014 Vinyl chloride 75354 Vinylidene chloride 1330207 Xylenes (isomers and mixture) 95476 0-Xylenes	79005	Trichloroethylene		
88062 2,4,6-Trichlorophenol 121448 Triethylamine 1582098 Trifluralin 540841 2,2,4-Trimethylpentane 108054 Vinyl acetate 593602 Vinyl bromide 75014 Vinyl chloride 75354 Vinylidene chloride 1330207 Xylenes (isomers and mixture) 95476 0-Xylenes	95954	2.4.5-Trichlorophenol		
121448Triethylamine1582098Trifluralin5408412,2,4-Trimethylpentane108054Vinyl acetate593602Vinyl bromide75014Vinyl chloride75354Vinylidene chloride1330207Xylenes (isomers and mixture)954760-Xylenes	88062	2,4,6-Trichlorophenol		
1582098Trifluralin5408412,2,4-Trimethylpentane108054Vinyl acetate593602Vinyl bromide75014Vinyl chloride75354Vinylidene chloride1330207Xylenes (isomers and mixture)954760-Xylenes	121448	Triethylamine		
540841 2,2,4-Trimethylpentane 108054 Vinyl acetate 593602 Vinyl bromide 75014 Vinyl chloride 75354 Vinylidene chloride 1330207 Xylenes (isomers and mixture) 95476 o-Xylenes	1582098	Trifluralin		
108054Vinyl acetate593602Vinyl bromide75014Vinyl chloride75354Vinylidene chloride1330207Xylenes (isomers and mixture)95476o-Xylenes	540841	2,2,4-Trimethylpentane		
593602 Vinyl bromide 75014 Vinyl chloride 75354 Vinylidene chloride 1330207 Xylenes (isomers and mixture) 95476 o-Xylenes	108054	Vinyl acetate		
75014 Vinyl chloride 75354 Vinylidene chloride 1330207 Xylenes (isomers and mixture) 95476 o-Xylenes	593602	Vinyl bromide		
1330207 Xylenes (isomers and mixture) 95476 o-Xylenes	/5014 75054	Vinyi Chioride		1 1 Dishlaraathulana
95476 o-Xvlenes	1330207	Xylenes (isomers and mixture)		r, r-Dichloroethylene
	95476	o-Xylenes		

		Key compounds	
CAS	Chemical name	(veja observação 2)	Synonim
108383	m-Xylenes		
106423	p-Xylenes		
0		Antimony	
0		Arsenic	
0		Arsine	
0		Beryllium	
0		Cadmium	
0		Chromium	
0		Cobalt	
0		Coke Oven Emissions	
0		Cyanide Compounds - Nota 1	
0		Glycol ethers - Nota 2	
0		Lead	
0		Manganese	
0		Mercury	
0		Fine mineral fibers - Nota 3	
0		Nickel	
0		PAH - Nota 4	
		Radionuclides (including	
0		radon) - Nota 5	
0		Selenium	
83329	acenaphthene	PAH - Nota 4	
208968	acenaphthylene	PAH - Nota 4	
120127	anthracene	PAH - Nota 4	
56553	benz(a)anthracene	PAH - Nota 4	
50328	benzo(a)pyrene	PAH - Nota 4	
203338	benzo(a)fluoranthene	PAH - Nota 4	
191242	benzo(ghi)perylene	PAH - Nota 4	
207089	benzo(k)fluoranthene	PAH - Nota 4	
218019	chrysene	PAH - Nota 4	
53703	dibenz(a,h)anthracene	PAH - Nota 4	
206440	fluoranthene	PAH - Nota 4	
86737	fluorene	PAH - Nota 4	
193395	indeno(1,2,3-cd)pyrene	PAH - Nota 4	
85018	phenanthrene	PAH - Nota 4	
129000	pyrene	PAH - Nota 4	

Notas da Seção 112.b do CAA:

Nota geral: Em todos os itens listados que contém a palavra "compounds" (ou seja, compostos) e glycol éteres, a menos que especificado em contrário, estão incluídas todas as substâncias químicas que contém o elemento citado (por exemplo: antimônio, arsênio, etc) como parte de sua estrutura química.

- 1 X'CN onde X' = H ou qualquer outro grupo onde pode ocorrer a dissociação do CN-. Por exemplo: KCN ou Ca(CN)2
- Inclui mono e di-éteres de etileno glicol, dietileno glicol e trietileno glicol R-(OCH2CH2)N-OR' onde: n = 1, 2 ou 3; R = grupos alquil ou aril; R' = R, H ou grupos que, quando removidos, formam glicol eteres com a estrutura R-(OCH2CH)N-OH. Polimeros não são estão incluídos nesta categoria.
- 3 Inclui emissões de fibras minerais resultantes da produção de vidro, rochas ou outras fibras minerais com diâmetro médio igual ou inferior a 1 micrometro.
- 4 Inclui compostos com mais de um anel benzênico, com ponto de ebulição maior ou igual a 100 °C, chamados PAHs Polycylic Organic Matter. (observação: já incluí os principais PAHs na lista dos HAPs acima)
- 5 Compostos radioativos que espontaneamente sofrem decaimento radioativo.

Diretiva 2000/60/CE Política da água da Comunidade Européia Anexo X - Lista de substâncias prioritárias

Referência: Informações obtidas na internet: europa.eu.int/eur-lex, em 05.2002 A lista pode ser revisada, com adição ou retirada de substâncias, através de publicação no Jornal Oficial da Comunidade Européia.

Essa lista foi publicada na DECISÃO No 2455/2001/CE DO PARLAMENTO EUROPEU E DO CONSELHO de 20 de Novembro de 2001 que estabelece a lista das substâncias prioritárias no domínio da política da água e altera a Diretiva 2000/60/CE. (Texto relevante para efeitos do EEE)

Observações:

- 1. A Decisão No 2455/2001/CE foi obtida em português de Portugal, por isso o nome das substâncias segue regras portuguesas.
- Para as substâncias prioritárias devem ser previstas ações na CE (Comunidade Européia) que resultem na redução gradual de descartes, emissões e perdas, pois apresentam risco significativo para o ambiente aquático.
- Para as substâncias perigosas prioritárias devem ser previstas ações que resultem na cassação ou eliminação gradual de descartes, emissões e perdas decorrentes das atividades humanas num prazo de 20 anos.

Tabela 9.7 Diretiva 2000/60/CE Política da água da Comunidade Européia. Anexo X - Lista de substâncias prioritárias

Anexo X - LISTA DAS SUBSTÂNCIAS PRIORITÁRIAS NO DOMÍNIO DA POLÍTICA DA ÁGUA (*)

	Número CAS (1)	Número UE (2)	Designação da substância prioritária	Identificada como substância perigosa prioritária
1	15972608	240-110-8	Alachloro	
2	120127	204-371-1	Antraceno	(X)(***)
3	1912249	217-617-8	Atrazina	(X)(***)
4	71432	200-753-7	Benzeno	
5	não aplicável	não aplicável	Éteres difenílicos bromados (**)	X (****)
6	7440439	231-152-8	Cádmio e compostos de cádmio	X
7	85535848	287-476-5	C 10-13 -cloroalquenos (**)	Х
8	470906	207-432-0	Clorfenvinfos	
9	2921882	220-864-4	Clorpirifos	(X)(***)
10	107062	203-458-1	1.2-Dicloroetano	
11	75092	200-838-9	Diclorometano	
12	117817	204-211-0	Di(2-etilhexil)ftalato (DEHP)	(X)(***)
13	330541	206-354-4	Diuron	(X)(***)
14	115297	204-079-4	Endosulfan	(X)(***)
	959988	não aplicável	(alfa-endossulfano)	
15	206440	205-912-4	(Fluoranteno)(*****)	
16	118741	204-273-9	Hexaclorbenzeno	Х
17	87683	201-765-5	Hexaclorbutadieno	Х
18	608731	210-158-9	Hexaclorciclohexano	Х
	58899	200-401-2	(isómero gama,Lindano)	
19	34123596	251-835-4	Isoproturon	(X)(***)
20	7439921	231-100-4	Chumbo e composto de chumbo	(X)(***)
21	7439976	231-106-7	Mercúrio e composto de mercúrio	X
22	91203	202-049-5	Naftaleno	(X)(***)
23	7440020	231-111-4	Níquel e composto de níquel	
24	25154523	246-672-0	Nonilfenóis	Х
	104405	203-199-4	(4-(para)-nonilfenol)	
25	1806264	217-302-5	Octilfenóis	(X)(***)
	140669	não aplicável	(para-tert-octilfenol)	
26	608935	210-172-5	Pentaclorbenzeno	Х
27	87865	201-778-6	Pentaclorfenol	(X)(***)
28	não aplicável	não aplicável	Hidrocarbonetos poliaromáticos	Х
	50328	200-028-5	(Benzo(a)pireno)	
	205992	205-911-9	(Benzo(b)fluoranteno)	
	191242	205-883-8	(Benzo(g,h,i)perileno)	

	Número CAS (1)	Número UE (2)	Designação da substância prioritária	ldentificada como substância perigosa prioritária
	207089	205-916-6	(Benzo(k)fluoranteno)	
	193395	205-893-2	(Indeno(1,2,3-cd)pireno)	
29	122349	204-535-2	Simazina	(X)(***)
30	688733	211-704-4	Composto de tributilteno	Х
	36643284	não aplicável	(catião-tributilteno)	
31	12002481	234-413-4	Triclorbenzenos	(X)(***)
	120821	204-428-0	(1,2,4-Triclorobenzeno)	
32	67663	200-663-8	Triclorometano (Clorofórmio)	
33	1582098	216-428-8	Trifluralina	(X)(***)

(*) Nos casos em que foram seleccionados grupos de substâncias, mencionam-se entre parênteses representantes típicos individuais, como parâmetros indicativos (entre parênteses e sem número).O estabelecimento de medidas de controle será feito em função destas substâncias, sem prejuízo da eventual inclusão de outros representantes individuais, se for caso disso.

(**) Estes grupos de substâncias incluem em geral um grande número de compostos individuais. Não é atualmente possível apontar parâmetros indicativos adequados.

(***) Esta substância prioritária está sujeita a um exame para identificação como eventual "substância perigosa prioritária ". A Comissão apresentará ao Parlamento Europeu e ao Conselho uma proposta para a sua classificação final num prazo não superior a 12 meses após a aprovação desta lista. Esta revisão não afetará o calendário estabelecido no artigo 16.0 da Directiva 2000/60/CE para as propostas de controles da Comissão.

(****) Apenas éter pentabromodifenílico (número CAS 32534-81-9).

(*****) O fluoranteno figura na lista como indicador de outros hidrocarbonetos mais perigosos.

(1) CAS:Chemical Abstract Services.

(2) Número UE: Inventário Europeu das substâncias químicas notificadas (ELINCS).

VwVwS - Administrative regulation on the classification of substances hazardous to waters into Water Hazard Classes (WGK)

Legislação Ambiental Alemã de 17 de maio de 1999.

Lista de substâncias dos anexos 1 e 2 da VwVwS.

Anexo 1: Substâncias que não apresentam periculosidade para a água. Anexo 2: Substâncias pouco periculosas WGK=1 até substâncias muito periculosas para a água WGK=3.

Referência: Informações obtidas na internet: http://www.umweltbundesamt.de/wgs-e/wgs-index.htm em mar/2002. Nesta página há indicação que a última atualização do conteúdo foi em 28 de novembro de 2000. Essas listas são periodicamente atualizadas pela agência ambiental federal alemã.

Observações:

1. As substâncias do anexo 2 - estão classificadas de acordo com a periculosidade em WGK de 1 a 3.

2. As substâncias do anexo 1 (substâncias não perigosas) estão indicadas com a sigla "nwg" na classificação WGK.

3. As notas indicadas na tabela estão em alemão no documento original e não foram traduzidas nem incluídas nessa planilha.

Tabela 9.8 VwVwS - Administrative regulation on the classification of substances hazardous to waters into Water Hazard Classes (WGK). Legislação Ambiental Alemã de 17 de maio de 1999.

		Index					Data da
CAS	CAS	number	Substâncias (em alemão)	WGK		Notas	classificação
75-07-0	75070	1	Acetaldehyd	1	W		03.03.1997
60-35-5	60355	2	Acetamid	1	W		30.07.1997
108-24-7	108247	3	Acetanhydrid	1	W		08.10.1987
141-97-9	141979	4	Acetessigsäureethylester	1	W		08.10.1987
105-45-3	105453	5	Acetessigsäuremethylester	1	W		03.07.1997
67-64-1	67641	6	Aceton	1	W	14	10.05.1999
75-86-5	75865	7	Acetoncyanhydrin	3	W		05.10.1987
75-05-8	75058	8	Acetonitril	2	W		14.11.1994
107-02-8	107028	9	Acrolein	3	W		14.11.1994
107-13-1	107131	10	AcryInitril	3	W		05.10.1987
79-10-7	79107	11	Acrylsäure	1	W		07.11.1994
141-32-2	141322	12	Acrylsäure-n-butylester	1	W		07.11.1994
103-11-7	103117	13	Acrylsäure-2-ethylhexylester	1	W		01.12.1997
107-11-9	107119	14	Allylamin	2	W		24.10.1994
107-05-1	107051	15	Allylchlorid	2	W		24.10.1994
109-57-9	109579	16	N-Allylthioharnstoff	2	W		20.09.1994
628-63-7	628637	17	Essigsäure-n-amylester	1	W		07.11.1994
71-41-0	71410	18	n-Amylalkohol	1	W		09.11.1994
75-85-4	75854	19	tert.Amylalkohol	1	W		09.11.1994
62-53-3	62533	20	Anilin	2	W		03.03.1997
100-66-3	100663	21	Anisol	2	W		05.10.1987
1333-78-4	1333784	22	Kaliumantimonat (V)	3	W		09.10.1987
7631-89-2	7631892	23	Natriumarsenat	3	W		05.10.1987
1912-24-9	1912249	24	Atrazin	2	W		06.08.1997
10361-37-2	10361372	25	Bariumchlorid	1	W		15.12.1987
100-52-7	100527	26	Benzaldehyd	2	W		14.10.1998
		27	Kohlenwasserstoff-Lösemittel: <5% Aromaten, nicht	1	W		14.05.1997
#N/D	#N/D		als krebserzeugend (R45) gekennzeichnet				
115-96-8	115968	28	Phosphorsäuretris-(2-chlorethyl)-ester	2	W		26.10.1994
71-43-2	71432	29	Benzol	3	W		09.11.1994
65-85-0	65850	30	Benzoesäure	1	W		07.11.1994
100-47-0	100470	31	Benzonitril	2	W		14.11.1994
98-07-7	98077	32	Benzotrichlorid	3	W		13.11.1997
100-44-7	100447	33	Benzylchlorid	3	W		16.05.1995
13597-99-4	13597994	34	Berylliumnitrat	2	W		05.10.1987
78-00-2	78002	35	Bleitetraethyl	3	W		05.10.1987
301-04-2	301042	36	Blei(II)-acetat	2	W		05.10.1987
1303-96-4	1303964	37	Natriumtetraborat	1	W		09.10.1987
7647-15-6	7647156	38	Natriumbromid	1	W		09.10.1987
71-36-3	71363	39	n-Butanol	1	W		09.11.1994
78-92-2	78922	40	sek.Butanol	1	W		09.11.1994
107-92-6	107926	41	n-Buttersäure	1	W		07.11.1994
123-86-4	123864	42	Essigsäure-n-butylester	1	W		07.11.1994
540-88-5	540885	43	Essigsäure-tertbutylester	1	W		07.11.1994
109-73-9	109739	44	n-Butylamin	1	W	1	30.07.1997
98-06-6	98066	45	tertButylbenzol	1	W		09.11.1994
112-34-5	112345	46	Diethylenglycolmono-n-butylether	1	W		26.10.1994
111-76-2	111762	47	Ethylenglycolmono-n-butylether	1	W		26.10.1994
123-72-8	123728	48	n-Butylaldehyd	1	W		14.11.1994

		Index					Data da
CAS	CAS	number	Substâncias (em alemão)	WGK		Notas	classificação
10325-94-7	10325947	49	Cadmiumnitrat	3	W		05.10.1987
63-25-2	63252	50	Carbaryl	3	VV		14.11.1994
302-17-0	302170	51	Chiorainydrat	3	VV		22.10.1998
698078	698078	52	Kallumenlorat	2	VV		05.10.1987
108-90-7	108907	53	Chloroferra	2	VV		18.01.1995
67-66-3	67663	54	Chlorolofin 2. Chloroluci	3	VV W/		24.10.1994
95-49-8	95498	56	Natriumdichromat	2	W/		07 11 1994
10588-01-9	10588019	57	Citropopoäuro	1	VV \\/	14	10.05.1994
98-82-8	98828	58	Cumol	1	Ŵ	14	09.11.1994
80-15-9	80159	59	Cumolhydroperoxid	2	W		14.11.1994
143-33-9	143339	60	Natriumcyanid	3	W		26.09.1988
291-64-5	291645	61	Cycloheptan	1	W		09.11.1994
628-92-2	628922	62	Cyclohepten	1	W		09.11.1994
110-82-7	110827	63	Cyclohexan	1	W		09.11.1994
108-94-1	108941	64	Cyclohexanon	1	W		14.11.1994
110-83-8	110838	65	Cyclohexen	1	W		14.05.1997
622-45-7	622457	66	Essigsäurecyclohexylester	1	W		07.11.1994
108-91-8	108918	67	Cyclohexylamin	1	W		25.07.1997
96-41-3	96413	68	Cyclopentanol	1	W		09.11.1994
120-92-3	120923	69	Cyclopentanon	1	W		14.11.1994
50-29-3	<u>5029</u> 3	70	p,p'-DDT	3	W		05.10.1987
112-30-1	112301	71	n-Decanol	1	W		27.08.1997
123-42-2	123422	72	Diacetonalkohol	1	W		14.11.1994
142-96-1	142961	73	Di-n-butylether	2	W		14.11.1994
95-50-1	95501	74	1,2-Dichlorbenzol	2	W		26.10.1994
576-24-9	576249	75	2,3-Dichlorphenol	3	W		09.11.1994
68334-30-5	68334305	76	Dieselkraftstoff	2	W		09.11.1994
111-42-2	111422	77	Diethanolamin	1	W		24.10.1994
135-01-3	135013	78	1,2-Diethylbenzol	2	W		09.11.1994
111-46-6	111466	79	Diethylenglycol	1	W		26.10.1994
60-29-7	60297	80	Diethylether	1	W		08.10.1987
95-92-1	95921	81	Oxalsäurediethylester	1	W		07.11.1994
95-68-1	95681	82	2,4-Dimethylanilin	2	W		31.10.1994
68-12-2	68122	83	Dimethylformamid	1	W		14.11.1994
25154-54-5	25154545	84	I,3-DINITrobenzoi	3	VV		07.11.1994
88-85-7	88857	85		2	VV		09.11.1994
123-91-1	123911	86	I,4-DIOXAN	2	VV		04.07.1997
138-86-3	138863	07	Diplement	2	VV \\/		14 11 1004
101-84-8	101848	80	Diphenylethan	2	W/		30.07.1997
101-81-5	101815	90		1	W		09 11 1994
74.94.0	74940	91	Fthan	nwa	W		23.06.1998
106.90.9	106909	92	Enichlorhydrin	.3	W		05 10 1987
64 19 7	64107	93	Essigsäure (>25%)	1	w		07 11 1994
1/1-/3-5	1/1/35	94	Ethanolamin	1	W		03 03 1997
141-78-6	141786	95	Essigsäureethylester	1	W		07.11.1994
64-17-5	64175	96	Ethanol	1	W	10,14	10.05.1999
75-04-7	75047	97	Ethylamin	1	W		24.10.1994
10 <mark>6-68-3</mark>	106683	98	Ethyl-n-amylketon	1	W		14.11.1994
100-41-4	100414	99	Ethylbenzol	1	W		09.11.1994
105-54-4	105544	100	n-Buttersäureethylester	1	W		07.11.1994
111-90-0	111900	101	Diethylenglycolmonoethylether	1	W		10.12.1987
107-06-2	107062	102	1,2-Dichlorethan	3	W		24.10.1994
107-15-3	107153	103	Ethylendiamin	2	W		08.09.1997
		104	Ethylendiamintetraessigsäure mit Natrium- und	2	W		17.02.1998
139-33-3	139333	105	Kaliumsalzen	4	14/	11 14	10.05.1000
111.15.0	111150	105	Euryrengrycor Essigsäure-2-ethoxyethylester	1	W	11,14	08 10 1987
100-06 /	100064	107	Ethylenglycolmonomethylether	1	W		26 10 1994
103-00-4	151564	108	Ethylenimin	3	W		05 10 1987
101-00-4	101756	109	2-Ethylhexylamin-1	2	W		24.10 1994
104-70-0	104730	110	Propionsäureethylester	1	W		07.11.1994
7681-49-4	7681494	111	Natriumfluorid	1	W		09.10.1987
50-00-0	50000	112	Formaldehyd	2	W		03.07.1997
98-01-1	98011	113	Furfural	2	W		14.11.1994
98-00-0	98000	114	Furfurylalkohol	1	W		09.11.1994
117-81-7	117817	115	Phthalsäuredi-(2-ethylhexyl)ester	1	W		06.01.1995
56-81-5	56815	116	Glycerin	1	W	14	10 05 1999

		Index					Data da
CAS	CAS	number	Substâncias (em alemão)	WGK		Notas	classificação
7397-62-8	7397628	117	Glycolsäure-n-butylester	1	W		18.12.1987
57-13-6	57136	118	Harnstoff	1	W		14.11.1994
#N/D	#N/D	119		2	W		09.11.1994
142-82-5	142825	120	n-Heptan	1	W		09.11.1994
111-70-6	111706	121	n-Heptanol-1	1	W		09.11.1994
592-76-7	592767	122	n-Hepten-1	1	W		09.11.1994
87-68-3	87683	123	Hexachlorbutadien	3	VV		26.10.1994
110-54-3	110543	124	n-Hexan	1	VV		09.11.1994
111-27-3	111273	125	n-Hexanol-I	1	VV		09.11.1994
626-93-7	626937	120		1	VV W/		09.11.1994
623-37-0	623370	127	Hydrochinon	2	VV \\/		09.11.1994
123-31-9	123319	120	Hydrochinon	2	W/		09.11.1994
150-76-5	150765	120	Hydrozin	3	W/		18 01 1995
302-01-2	302012	130		1	W/		00 11 100/
78-83-1	78831	132	Isobuttersäurenitril	2	W		05.10.1987
78-82-0	78820	132	Fesiasäureisobutvlester	1	W		07 11 1994
110-19-0	10190	13/	2-Ethylbevapol-1	2	W/		0/ 12 1998
104-76-7	104767	135		1	W/		09.11.1990
67-63-0	6/630	136	Essigsäureisopropylester	1	W		07 11 1994
108-21-4	108214	137	Methylisobutylketon	1	W		14 11 1994
108-10-1	100101	132	Natriumiodid	1	W/		19.11.1994
/ 001-02-5	/081825	130	Turbinenkraftstoffe nicht als krebserzeugend (P.45)	2	VV \//		15 09 1007
#N/D	#N/D	109	gekennzeichnet	۷	vv		13.03.1337
108-39-4	108394	140	m-Kresol	2	W		09.11.1994
7758-98-7	7758987	141	Kupfer(II)-sulfat	2	W		05.10.1987
1310-73-2	1310732	142	Natriumhydroxid	1	W	8	27.03.1997
58-89-9	58899	143	Lindan	3	W		26.10.1994
75-08-1	75081	144	Mercaptane (außer tert. Dodecanthiol)	3	W		28.09.1994
67-56-1	67561	145	Methanol	1	W		09.11.1994
79-20-9	79209	146	Essigsäuremethylester	1	W		18.12.1987
96-33-3	96333	147	Acrylsäuremethylester	2	W		07.11.1994
583-60-8	583608	148	2-Methylcyclohexanon	1	W		14.11.1994
75-09-2	75092	149	Dichlormethan	2	W		24.10.1994
78-93-3	78933	150	Methylethylketon	1	W		14.11.1994
534-22-5	534225	151	2-Methylfuran	1	W		14.11.1994
110-12-3	110123	152	Methylisoamylketon	1	W		14.11.1994
554-12-1	554121	153	Propionsäuremethylester	1	W		07.11.1994
80-62-6	80626	154	Methacrylsäuremethylester	1	W		09.10.1987
63449-39-8	63449398	155	Chloralkane C >17 (fest)	1	W		20.03.1997
144-49-0	144490	156	Fluoressigsäure	3	W		07.11.1994
1746-81-2	1746812	157	Monolinuron	3	W		14.11.1994
110-91-8	110918	158	Morpholin	2	W		24.10.1994
7718-54-9	7718549	159	Nickel(II)-chlorid	2	W		15.12.1987
		160	Nitrilotriessigsäure mit Natrium- und Kaliumsalzen	2	W		17.02.1998
10042-84-9	10042849						
7632-00-0	7632000	161	Natriumnitrit	2	W		05.10.1987
100-01-6	100016	162	4-Nitroanilin	2	W		28.05.1996
98-95-3	98953	163	Nitrobenzol	2	W		04.05.1999
88-72-2	88722	164		3	W		16.05.1995
111-87-5	111875	165		1	W		09.11.1994
144-62-7	144627	166	Uxalsaure	1	W		07.11.1994
56-38-2	56382	167	Parathionethyl	3	W		26.10.1994
123-54-6	123546	168	2,4-Pentandion	1	W		14.11.1994
7778-74-7	7778747	169	Kallumperchlorat	1	W		09.10.1987
108-95-2	108952	170	Phenol	2	W		09.11.1994
122-79-2	122792	1/1	Essigsaurephenylester	2	W		07.11.1994
7601-54-9	7601549	1/2	I rinatriumpnosphat	1	W		09.10.1987
131-17-9	131179	1/3	Pritralsaurediallylester	2	W		12.06.1997
84-66-2	84662	174	Phthalsaurediethylester	2	W		12.06.1997
88-89-1	88891	1/5	Pikrinsaure	2	W		07.11.1994
71-23-8	71238	176	n-Propanol	1	W		09.11.1994
107-19-7	107197	177	Propargylalkohol	2	W		09.11.1994
109-60-4	109604	178	Essigsäure-n-propylester	1	W		07.11.1994
110-86-1	110861	179	Pyridin	2	W		05.10.1987
7487-94-7	7487947	180	Quecksilber(II)-chlorid	3	W		05.10.1987
90-02-8	90028	181	Salicylaidehyd	2	W		14.11.1994
/664-93-9	/664939	182	Scriwefelsaure	1	W	8	27.03.1997
/5-15-0	/5150	103	Scriwereikonnenston	2	٧V		03.10.1987

		Index					Data da
CAS	CAS	number	Substâncias (em alemão)	WGK		Notas	classificação
10102-18-8	10102188	184	Natriumselenit	2	W		05.10.1987
7761-88-8	7761888	185	Silbernitrat	3	W	8	27.03.1997
84-74-2	84742	186	Phthalsäuredi-n-butylester	2	W		07.11.1994
100-42-5	100425	187	Styrol	2	W		09.11.1994
1313-82-2	1313822	188	Natriumsulfid	2	W	8	27.03.1997
56-23-5	56235	189	Tetrachlorkohlenstoff	3	W		24.10.1994
109-99-9	109999	190	Tetrahydrofuran	1	W		14.11.1994
95-93-2	95932	191	1,2,4,5-Tetramethylbenzol	1	W		09.11.1994
10102-45-1	10102451	192	Thallium(I)-nitrat	2	W		05.10.1987
7783-18-8	7783188	193	Ammoniumthiosulfat	1	W		05.01.1988
108-88-3	108883	194	Toluol	2	W		09.11.1994
95-53-4	95534	195	2-Methylanilin	3	W		31.10.1994
126-73-8	126738	196	Phosphorsäuretri-n-butylester	2	W		26.10.1994
76-03-9	76039	197	Trichloressigsäure	2	W		09.10.1987
71-55-6	71556	198	1.1.1-Trichlorethan	3	W		24.10.1994
79-01-6	79016	199	Trichlorethen	3	W		24 10 1994
79-01-0	79010	200		3	W		07 11 1994
93-76-5	93765	200	Triethanolamin	1	W		12 03 1995
102-71-6	102716	201		1	VV \\/		26 10 1004
112-27-6	112276	202		1 0	VV \\/		20.10.1994
108-05-4	108054	203	Essigsaureviriylester	2	VV		07.11.1994
106602 90 6	106602906	204	Oliokralistotte, als kredserzeugend (H45)	3	vv		09.11.1994
121 11 0	1010002000	205	Phthalsäuredimethylester	1	W/		07 11 100/
100 40 0	100400	203	Xulol (alle Isomere)	2	W/		09 11 100/
106-42-3	106423	200	Zinkohlorid		VV \//		09.11.1994
/646-85-/	/64685/	207		1	VV VV		09.10.1967
140-88-5	140885	208	Acryisaureeinyiester	2	VV		05.10.1987
111-69-3	111693	209		1	VV		14.11.1994
64-18-6	64186	210	Ameisensaure	1	VV		07.11.1994
1336-21-6	1336216	211	Ammoniak	2	W		24.10.1994
6484-52-2	6484522	212	Ammoniumnitrat	1	W		08.10.1987
12125-02-9	12125029	213	Ammoniumchlorid	1	W		24.10.1994
7784-42-1	7784421	214	Arsenwasserstoff	3	W		05.10.1987
98-09-9	98099	215	Benzolsulfonylchlorid	1	W		08.10.1987
100-51-6	100516	216	Benzylalkohol	1	W		09.11.1994
10035-10-6	10035106	217	Bromwasserstoff	1	W		08.10.1987
106-99-0	106990	218	1,3-Butadien	2	W		08.10.1987
75-65-0	75650	219	tert.Butanol	1	W		09.11.1994
10043-52-4	10043524	220	Calciumchlorid	1	W	14	10.05.1999
105-60-2	105602	221	epsilon-Caprolactam	1	W		14.11.1994
497-19-8	497198	222	Natriumcarbonat	1	W	8	27.03.1997
7782-50-5	7782505	223	Chlor	2	W	8	27.03.1997
106-47-8	106478	224	4-Chloranilin	3	W		31.10.1994
118-91-2	118912	225	2-Chlorbenzoesäure	2	W		07.11.1994
74-11-3	74113	226	4-Chlorbenzoesäure	2	W		07.11.1994
79-11-8	79118	227	Chloressigsäure	2	W		07.11.1994
96-34-4	96344	228	Chloressigsäuremethylester	2	W		07.11.1994
107-07-3	107073	229	2-Chlorethanol	3	W		09.11.1994
7447-40-7	7447407	230	Kaliumchlorid	1	W		02.09.1987
59-50-7	59507	231	4-Chlor-3-methylphenol	2	W		09.11.1994
90-13-1	90131	232	1-Chlornaphthalin	2	W		26.10.1994
100-00-5	100005	233	4-Chlornitrobenzol	2	w		07.11.1994
95_57_8	95578	234	2-Chlorphenol	2	W		09.11.1994
107-04 9	107049	235	3-Chlorpropionsäure	1	W		07.11 1994
7700 04 5	7700045	236	Chlorsulfonsäure	2	w		23 11 1994
7790-94-5	7790945	200	4 Chlortalual	2	\\/		26 10 1004
7647.01.0	106434	207			VV \//	9	04 08 1007
109790	100700	230	Crotonaldehvd	3	W	0	14 11 1997
100.00.0	123/39	200	Cyclobeyanol	1	\\/		09 11 1004
108-93-0	108930	240	1 2 Dibromothon	۱ ۵	VV \\/		24 10 1004
106-93-4	106934	241		3 0	VV \\/		24.10.1994
96-13-9	96139	242	2,3-Diolompiopanoi-1	∠ 4	VV VV		07.11.1994
79-43-6	79436	243		1	VV		07.11.1994
120-83-2	120832	244	2,4-Dichlorphenol	3	W		26.09.1988
542-75-6	542756	245	1,3-Dichlorpropen (cis u. trans)	3	W		26.10.1994
78-88-6	78886	246	2,3-Dichlorpropen	3	W		26.10.1994
461-58-5	461585	247	Dicyandiamid	1	W		08.10.1987
109-89-7	109897	248	Diethylamin	1	W		24.10.1994
60-51-5	60515	249	Dimethoat	3	W		31.10.1994
124-40-3	124403	250	Dimethylamin	2	W		24.10.1994
121-14-2	121142	251	2,4-Dinitrotoluol	3	W		07.11.1994

		Index					Data da
CAS	CAS	number	Substâncias (em alemão)	WGK		Notas	classificação
103-69-5	103695	252	N-Ethylanilin	1	W		31.10.1994
75-21-8	75218	253	Ethylenoxid	2	VV		14.11.1994
7664-39-3	7664393	254	Fluorwasserstott	1	VV W		08.10.1987
7778-80-5	7778805	200	Kallumsullat	1	VV W/		02.09.1987
124-38-9	124389	200	Kohlenstoffmanavid	nwg 1	VV W/	14	10.05.1000
220 55 2	220552	258		3	W	14	14 11 1994
7786-30-3	7786303	259	Magnesiumchlorid	1	W	14	10.05.1999
110-16-7	110167	260	Maleinsäure	1	W		07.11.1994
108-31-6	108316	261	Maleinsäureanhydrid	1	W		25.09.1995
141-79-7	141797	262	Mesityloxid	1	W		14.11.1994
74-89-5	74895	263	Methylamin	2	W		24.10.1994
74-83-9	74839	264	Methylbromid	3	W		20.09.1994
74-87-3	74873	265	Methylchlorid	2	W		24.10.1994
556-61-6	556616	266	Methylisothiocyanat	3	W		05.10.1987
74-93-1	74931	267	Methylmercaptan	3	W		05.10.1987
63231-60-7	63231607	268	Paraffine (Wachse)	nwg	W		09.10.1987
91-20-3	91203	269	Naphthalin	2	W		17.01.1995
7647-14-5	7647145	270	Natriumchlorid	1	W	14	10.05.1999
2696-92-6	2696926	2/1	Nitrosylchlorid	2	VV		05.10.1987
11066-49-2	11066492	272		<u>ა</u>	VV \\/		09.11.1994
1113-02-6	1113026	2/3	Onemotive	<u></u> ৩	VV \\/		31.10.1994
298-00-0	298000	274 075	Pentachlornhenol	ა ი	VV \\/		00 11 1004
87-86-5	8/865	210		3 1	VV \\/		26 10 1004
115-77-5	115775	270	Phoenborwassarstoff	1	VV \\/		26.10.1994
/803-51-2	7803512	277	Phthaleäurabenzul-n-butuleeter	2	W/		12 06 1997
25322-68-3	25322683	270	Polyethylenglycol	1	W	11	04 08 1997
57-55-6	57556	280	1.2-Propylenglycol	1	Ŵ	14	10.05.1999
69-72-7	69727	281	Salicylsäure	1	W		07.11.1994
7757-83-7	7757837	282	Natriumsulfit	1	W	8	04.08.1997
2148878	2148878	283	Schwefelwasserstoff	2	W		05.10.1987
2148909	2148909	284	Selenwasserstoff	3	W		05.10.1987
10102-43-9	10102439	285	Stickoxide	1	W		10.11.1994
7757-82-6	7757826	286	Natriumsulfat	1	W	14	10.05.1999
127-18-4	127184	287	I etrachiorethen	3	VV W	14	24.10.1994
7722-84-1	7722841	288	wassersionperoxid	I	vv	14	10.05.1999
13462-93-6	13462936	289	Ammoniumarsenat	3	W		05.10.1987
2151163	2151163	290	Ammoniumdichromat	3	W		05.10.1987
12125-01-8	12125018	291	Ammoniumfluorid	1	W		08.10.1987
1341-49-7	1341497	292	Ammoniumhydrogenfluorid	1	W		08.10.1987
7803-63-6	7803636	293	Ammoniumhydrogensulfat	1	W		08.10.1987
7790-98-9	7790989	294	Ammoniumperchlorat	1	W		08.10.1987
131-74-8	131748	295	Ammoniumpikrat	2	W		05.10.1987
7783-20-2	7783202	296	Ammoniumsulfat	1	W		08.10.1987
12135-76-1	12135761	297	Ammoniumsulfid	2	W		23.11.1994
142-04-1	142041	298	Anilinhydrochlorid	2	W		05.10.1987
1327-53-3	1327533	299	Arsen(III)-oxid	3	W		05.10.1987
1303-28-2	1303282	300	Arsen(V)-oxid	3	W		05.10.1987
7778-39-4	7778394	301	Arsensäure	3	W		05.10.1987
13477-00-4	13477004	302	Bariumchlorat	2	W		05.10.1987
542-62-1	542621	303	Bariumcyanid	3	W		05.10.1987
10022-31-8	10022318	304	Bariumnitrat	1	W		08.10.1987
1304-28-5	1304285	305	Bariumoxid	1	W		08.10.1987
13465-95-7	13465957	306	Bariumperchlorat	1	W		08.10.1987
1304-29-6	1304296	307	Bariumperoxid	1	W		08.10.1987
7727-43-7	7727437	308	Bariumsulfat	nwg	W		09.10.1987
74-90-8	74908	309	Blausaure	3	W		05.10.1987
3687-31-8	3687318	310	Diei(II)-arsenat	3	VV		05.10.1987
10031-13-7	10031137	311		3	VV N/		05.10.1987
592-05-2	592052	312		3	VV M/		05.10.1987
10099-74-8	10099748	313	Diei(II)-IIIIIal	2	VV \\/		05.10.1987
13637-76-8	13637768	314 21F	Boreäure	∠ 1	VV \\/		03.10.1987
10043-35-3	10043353	010	Calciumarconit	۱ ٥	VV \\/		05.10.1987
2/152-5/-4	2/1525/4	310	Calciumcarbonat	nwa	W W/		23 11 100/
10107 74 0	10107740	318	Calciumchlorat	2	W W/		05 10 1087
502.01.0	500010	319	Calciumcvanid	3	W		05 10 1987
1305-62-0	1305620	320	Calciumbydroxid	1	W	8	04 08 1997

		Index					Data da
CAS	CAS	number	Substâncias (em alemão)	WGK		Notas	classificação
10124-37-5	10124375	321	Calciumnitrat	1	W		08.10.1987
1305-78-8	1305788	322		1	W		23.11.1994
13477-36-6	13477366	323		1	VV W		08.10.1987
1305-79-9	1305799	324		1	VV W	14	23.11.1994
7778-18-9	7778189	325	Bitumen	nwa	W	14	10.05.1999
8052-42-4	65070711	327	Chromschwefelsäure	.3	Ŵ		05.10.1987
1222 92 0	122220	328	Chromtrioxid (Chromsäure)	3	Ŵ		05 10 1987
14077 61 9	14077619	329	Chromylchlorid	3	w		05 10 1987
10029 24 7	10029247	330	Dinatriumhydrogenphosphat	1	w		08 10 1987
8014-95-7	801/057	331	Dischwefelsäure (Oleum)	2	Ŵ		23.11.1994
10034-85-2	10034852	332	Jodwasserstoff	1	W		09.10.1987
64742-25-2	64742252	333	Säureteer	3	W		05.10.1987
28300-74-5	28300745	334	Kaliumantimonyltartrat	3	W		05.10.1987
7784-41-0	7784410	335	Kaliumarsenat	3	W		05.10.1987
10124-50-2	10124502	336	Kaliumarsenit	3	W		05.10.1987
584-08-7	584087	337	Kaliumcarbonat	1	W		23.11.1994
151-50-8	151508	338	Kaliumcyanid	3	W		26.09.1988
7778-50-9	7778509	339	Kaliumdichromat	3	W		09.12.1987
23745-86-0	23745860	340	Kaliumfluoracetat	3	W		05.10.1987
7789-23-3	7789233	341	Kaliumfluorid	1	W		09.10.1987
7789-29-9	7789299	342	Kaliumhydrogenfluorid	1	W		09.10.1987
7646-93-7	7646937	343	Kaliumhydrogensulfat	1	W		23.11.1994
1310-61-8	1310618	344	Kaliumhydrogensulfid	2	W		23.11.1994
1310-58-3	1310583	345	Kaliumhydroxid	1	W		23.11.1994
7757-79-1	7757791	346	Kaliumnitrat	1	W		26.09.1988
7758-09-0	7758090	347	Kaliumnitrit	2	W		05.10.1987
12136-45-7	12136457	348	Kaliumoxid	1	W		23.11.1994
17014-71-0	17014710	349	Kaliumperoxid	1	W		23.11.1994
1312-73-8	1312738	350	Kaliumsulfid	2	W		23.11.1994
591-89-9	591899	351	Kaliumtetracyanomercurat (II)	3	W		05.10.1987
7783-33-7	7783337	352	Kaliumtetrajodomercurat (II)	3	W		05.10.1987
8007-56-5	8007565	353	Königswasser	2	W		23.11.1994
463-79-6	463796	354	Kohlensäure	nwg	W		18.10.1988
10290-12-7	10290127	355	Kupfer(II)-arsenit	3	W		05.10.1987
12002-03-8	12002038	356	Kupfer(II)-arsenitacetat	3	W		05.10.1987
14721-21-2	14721212	357	Kupfer(II)-chlorat	2	W		05.10.1987
7758-89-6	7758896	358	Kupfer(I)-chlorid	2	W		05.10.1987
7447-39-4	7447394	359	Kupter(II)-chlorid	2	VV		05.10.1987
7778-44-1	7778441	360	Calciumarsenat	3	VV W		05.10.1987
10103-50-1	10103501	301	Magnesiumatsenat	3	VV W		05.10.1987
10326-21-3	10326213	362	Magnesiumeitret	2	VV W/		00.10.1987
10377-60-3	10377603	303	Magnesiumpereblerat	1	VV \\/		09.10.1987
10034-81-8	10034818	365	Magnesiumperovid	1	W/	14	10.05.1997
10034-99-8	10034998	366	Magnesiumsulfat	1	W	14	10.05.1999
127-09-3	127093	367	Natriumacetat	1	Ŵ	14	10.05.1999
7784-46-5	7784465	368	Natriumarsenit	3	W		05.10.1987
3926-62-3	3926623	369	Natriumchloracetat	2	W		05.10.1987
2146053	2146053	370	Natriumchlorat	2	W		05.10.1987
13472-35-0	13472350	371	Natriumdihydrogenphosphat	1	W		09.10.1987
62-74-8	62748	372	Natriumfluoracetat	3	W		05.10.1987
141-53-7	141537	373	Natriumformiat	1	W		09.10.1987
144-55-8	144558	374	Natriumhydrogencarbonat	1	W	14	10.05.1999
1333-83-1	1333831	3/5	Inatriumnyarogentiuoria	1	VV		09.10.1987
7681-38-1	7681381	3/6	Inatriumnyorogensulfat	1	W		23.11.1994
16721-80-5	16721805	3//	Natriumnityorogensullio	4	VV \\/		23.11.1994
7631-99-4	7631994	3/8	Natriumovalat	1	VV \\/		20.09.1988
62-76-0	62760	319	Natiumovid	1	VV \\/		09.10.1987
1313-59-3	1313593	380	Natriumpentachlorphonolot	۱ ۵	VV \\/		23.11.1994
131-52-2	131522	301 200	Natriumperchlorat	3	VV \\/		00.10.198/
/601-89-0	/601890	302 282	Natriumperovid	1	VV \\/		23 11 1004
1313-60-6	1313606	303	Natriumphenolat	0	۷۷ ۱۸/		05 10 1097
139-02-6	139026	304	Natriumselenat	2	VV \\/		05.10.1987
10112-94-4	10112944	285	Natriumthiosulfat	1	۷۷ ۱۸/	1/	10.05.1000
13138-45-0	13138/50	387	Nickel(II)-nitrat	2	W	14	05.10.1987
17861-62-0	17861620	388	Nickel(II)-nitrit	2	W		05.10.1987
51602-38-1	51602381	389	Nitriersäure	2	Ŵ		23.11.1994

Index Dat								
CAS	CAS	number	Substâncias (em alemão)	WGK		Notas	classificação	
7601-90-3	7601903	390	Perchlorsäure	1	W		09.10.1987	
1314-56-3	1314563	391	Phosphorpentoxid	1	W		23.11.1994	
7664-38-2	7664382	392	Phosphorsaure	1	W		23.11.1994	
7439-97-6	7439976	393		3	VV		05.10.1987	
1600-27-7	1600277	394	Quecksilber(II)-acetat	3	VV		05.10.1987	
13437-80-4	13437804	395	Quecksilber(II)-arsenat	3	VV W		05.10.1987	
583-15-3	583153	207	Quecksilber(II)-berizoat	3	VV \\/		20.00.1004	
15385-58-7	15385587	308		3	 \//		05 10 1987	
7789-47-1	7789471	390		3	W		05.10.1907	
502.04.1	592041	400	Quecksilber(II)-cvanid	3	w		05 10 1987	
1/376-09-1	1/376091	401	Quecksilber(II)-diamminchlorid	3	Ŵ		05.10.1987	
#N/D	#N/D	402	Quecksilber(II)-disulfat	3	Ŵ		05.10.1987	
63937-14-4	63937144	403	Quecksilber(II)-gluconat	3	W		05.10.1987	
7774-29-0	7774290	404	Quecksilber(II)-jodid	3	W		05.10.1987	
10415-75-5	10415755	405	Quecksilber(I)-nitrat	3	W		05.10.1987	
10045-94-0	10045940	406	Quecksilber(II)-nitrat	3	W		05.10.1987	
1191-80-6	1191806	407	Quecksilber(II)-oleat	3	W		05.10.1987	
21908-53-2	21908532	408	Quecksilber(II)-oxid	3	W		05.10.1987	
1335-31-5	1335315	409	Quecksilber(II)-oxidcyanid	3	W		05.10.1987	
5970-32-1	5970321	410	Quecksilber(II)-salicylat	3	W		05.10.1987	
7783-36-0	7783360	411	Quecksilber(I)-sulfat	3	W		05.10.1987	
7783-35-9	7783359	412	Quecksilber(II)-sulfat	3	W		05.10.1987	
592-85-8	592858	413	Quecksilber(II)-thiocyanat	3	W		05.10.1987	
7697-37-2	7697372	414	Salpetersäure (außer rauchende)	1	W		23.11.1994	
#N/D	#N/D	415	Salpetersäure (rauchende)	2	W		23.11.1994	
2025884	2025884	416	Schwefeldioxid	1	W	8	04.08.1997	
2025949	2025949	417	Schwefeltrioxid	2	W		23.11.1994	
7782-99-2	7782992	418	Schweflige Saure	1	W		23.11.1994	
2025852	2025852	419	Selendioxid	2	W		05.10.1987	
2148941	2148941	420	Selensaure	2	VV		05.10.1987	
2149310	2149310	421	Sliberarsenit	3	VV		05.10.1987	
13453-30-0	13453300	422	Thallium(II) pitrot	2	VV \\\/		05.10.1967	
13746-98-0	13746980	423	Thamurn(III)-hitrat	2	VV W/		05.10.1987	
122/3-/2-2	122/3/22	424	Zinkarsenat	3	 \//		09.10.1987	
13464-33-0	13464330	425	Zinkarsenit	3	W		05.10.1987	
28837-97-0	28837970	420	Zinkalsenit	2	W		05.10.1987	
10361-95-2 557 01 1	EE7011	428	Zinkeyanid	3	W		05.10.1987	
10106 19 6	10106196	429	Zinkoyania Zinkojania	1	Ŵ		09 10 1987	
1314-22-3	131/223	430	Zinkperoxid	1	Ŵ		09.10.1987	
1314-22-3	1314223	431	Zinkphosphid	2	Ŵ		05.10.1987	
7733-02-0	7733020	432	Zinksulfat	1	W		09.10.1987	
64741-79-3	64741793	433	Petrolkoks	nwg	W		15.12.1987	
8042-47-5	8042475	434	Weißöle nach DAB	1	W		28.09.1994	
0012 11 0	0012110	435	Schmieröle auf Mineralölbasis (Grundöle, unlegierte,	1	W		23.12.1998	
			außer dunkle Prozeßöle; obere Siedegrenze >400					
#N/D	#N/D	400	Grad C)	0	147	10	00.10.1000	
		436	Schmerole aut Mineraloidasis (legierte, emulgierbare und nicht emulgierbare obere Siedegrenze >400	2	VV	19	23.12.1998	
#N/D	#N/D		Grad C)					
70514-12-4	70514124	438	Altöle	3	W	9	27.01.1997	
		439	Rohöle (zähflüssige und feste, kin. Visk. bei 20 Grad	1	W		16.03.1998	
#N/D	#N/D	440	C >=30 cST) Dahäla (lajahtflüggigg, kin Viels, hei 000-red 0, co	0	147		11.00.1007	
#N/D	#N/D	440	Ronole (leichttiussige, kin. visk. bei 20Grad C <30	2	vv		11.09.1997	
#N/D	#N/D	441	Mineralöl-Halbfertigprodukte, flüssige, als	3	W		23.11.1994	
#N/D	#N/D		krebserzeugend (R45) gekennzeichnet	-				
		442	Mineralöl-Halbfertigprodukte, flüssige, > 5%	2	W		23.11.1994	
			Aromaten, nicht als krebserzeugend (R45)					
#N/D	#N/D	443	gekennzeichnet Heizöl schwer	1	W/		09 11 100/	
92045-14-2	92045142	444	Allylalkohol	2	W		03 09 1997	
10/-18-6 79.97 5	10/186	446	1 2-Dichlorpropan	3	W		24 10 1994	
660-69 4	660694	447	Diethylammoniumchlorid	1	W		24.10 1994	
75-60 /	75604	448	Trichlorfluormethan	2	W		05.01 1988	
1886-81-3	1886813	449	Alkylbenzolsulfonate (C10-C14), linear	2	Ŵ		12.02.1997	
78-10-4	78104	450	Tetraethylsilikat	1	W		05.01.1988	
13121-70-5	13121705	451	Cyhexatin	3	W		31.10.1994	
109-66-0	109660	452	n-Pentan	1	W		09.11.1994	
108-44-1	108441	453	3-Methylanilin	2	W		28.04.1999	

		Index					Data da
CAS	CAS	number	Substâncias (em alemão)	WGK		Notas	classificação
120-82-1	120821	454	1,2,4-Trichlorbenzol	3	W		26.10.1994
95-95-4	95954	455	2,4,5-1 richlorphenol	3	VV		09.11.1994
78-40-0	78400	456	Phosphorsauretrietnylester	1	VV W		26.10.1994
506-59-2	506592	457		1	VV \\/		24.10.1994
/6-13-1	76131	450	1,1,2-11Chlorthhuorethan Methylammoniumchlorid	2	W		24.10.1994
593-51-1	593511	459	Trimethylamin	2	W		05.01.1988
75-50-3	/5503	461	Trimethylammoniumchlorid	1	W		05.01.1988
75.01.4	75014	462	Vinvlchlorid	2	W		04.09.1997
463-82-1	463821	463	2 2-Dimethylpropan	1	W	14	10.05.1999
309-00-2	309002	464	Aldrin	3	Ŵ		26.10.1994
72-54-8	72548	465	p,p'-DDD	3	W		26.10.1994
72-55-9	72559	466	p,p'-DDE	3	W		22.12.1987
60-57-1	60571	467	Dieldrin	3	W		26.10.1994
115-29-7	115297	468	alpha,beta-Endosulfan	3	W		26.10.1994
72-20-8	72208	469	Endrin	3	W		26.10.1994
118-74-1	118741	470	Hexachlorbenzol	3	W		26.10.1994
1336-36-3	1336363	471	Polychlorierte Biphenyle und Terphenyle	3	W	34	20.08.1998
637-39-8	637398	473	Triethanolammoniumchlorid	1	W		24.10.1994
124-04-9	124049	4/4	Adipinsaure	1	W	14	10.05.1999
110-15-6	110156	475	Bernsteinsäure	1	W	14	10.05.1999
150-90-3	150903	477	Natriumsuccinat	1	W	14	10.05.1999
287-92-3	287923	478	Cyclopentan	1	W		09.11.1994
111-65-9	111659	479	n-Octan	1	W		09.11.1994
111-66-0	111660	480	n-Octen-1	1	W		05.01.1988
88-99-3	88993	481	Phthalsäure	1	W	14	10.05.1999
10197-71-4	10197714	482	Natriumphthalat	1	W	14	10.05.1999
/9-09-4	/9094	483	Propionsaure	1	VV W/		07.11.1994
137-40-6	13/406	404	Thiodheologuro	1	VV \\/		05.01.1988
68-11-1 10043-01-3	68111 10043013	403		1	W	8	04.08.1997
7758-19-2	7758192	487	Natriumchlorit	2	Ŵ	8	04.08.1997
11099-06-2	11099062	488	Ethylpolysilikat	1	W		05.01.1988
13943-58-3	13943583	489	Kaliumhexacyanoferrat (II)	2	W		28.09.1999
13746-66-2	13746662	490	Kaliumhexacyanoferrat (III)	2	W		18.02.1998
16961-83-4	16961834	491	Hexafluorkieselsäure	2	W		05.01.1988
7553-56-2	7553562	492	Jod	1	W		05.01.1988
7646-79-9	7646799	493	Kobalt(II)-chlorid	2	W		05.01.1988
2145076	2145076	494	Mangan(II)-chlorid	1	W		05.01.1988
7772-99-8	7772998	495	Zinn(II)-chlorid	1	W		31.10.1994
101316-83-0	101316830	496	Braunkohlenteer	3	W		09.11.1994
8002-26-4	8002264	497		2	W		05.01.1988
1461-25-2	1461252	498	Tetrabutylzinn	3	VV		31.10.1994
56-36-0	56360	500	I ributyizinnacetat	3	VV W		31.10.1994
1461-22-9	1461229	501		3	VV \\/		21 10 1004
56-35-9	56359	502		3	W		31 10 1994
300-32-8 630 50 7	900908 620507	504	Triphenylzinnchlorid	3	W		31 10 1994
370-52 2	370500	505	Triphenvlzinnfluorid	3	W		22.12.1987
76-87-9	76879	506	Triphenylzinnhydroxid	3	W		31.10.1994
7446-70-0	7446700	507	Aluminiumchlorid	1	W	8	04.08.1997
1327-41-9	1327419	508	Aluminiumhydroxychlorid	1	W	8	04.08.1997
13473-90-0	13473900	509	Aluminiumnitrat	1	W	8	04.08.1997
10043-67-1	10043671	510	kallumalaun	1	W		23.11.1994
584-84-9	584849	511	2,4-1 oluylendiisocyanat	2	VV		05.01.1988
91-08-7	91087	512	2,0-1 oluyienaiisoocyanat	2	VV \\/		05.01.1988
10045-89-3	10045893	513 E14	Annoniumeisen(ii)-Sullat	4	VV \\/	0	04.09.1007
7705-08-0	7705080	514	Eisen(III)-chlorid	1	W	8	04.08.1997
10421-48-4	10421484	516	Eisen(III)-nitrat	1	W	8	04.08.1997
16871-90-2	16871902	517	Kaliumhexafluorsilikat	2	W		05.01.1988
16949-65-8	16949658	518	Magnesiumhexafluorsilikat	2	W		05.01.1988
16893-85-9	16893859	519	Natriumhexafluorsilikat	2	W		05.01.1988
10141-05-6	10141056	520	Kobalt(II)-nitrat	2	W		05.01.1988
10124-43-3	10124433	521	Kobalt(II)-sulfat	2	W		05.01.1988
7785-87-7	7785877	522	Mangan(II)-sulfat	1	W		05.01.1988
70776-03-3	70776033	523	Polychlorierte Naphthaline	3	W		22.12.1987
7758-94-3	7758943	524		1	W		05.01.1988
10017-11-5	10017115	525	Allylammoniumchlorid	2	W	1	24.10.1994

		Index					Data da
CAS	CAS	number	Substâncias (em alemão)	WGK		Notas	classificação
3858-78-4	3858784	527	n-Butylammoniumchlorid	1	W		24.10.1994
4998-76-9	4998769	529	Cyclohexylammoniumchlorid	1	W		17.07.1997
14426-21-2	14426212	531	Diethanolammoniumchlorid	1	W		24.10.1994
13356-08-6	13356086	532	Fenbutatinoxid	3	W		31.10.1994
2002-24-6	2002246	533	Ethanolammoniumchlorid	1	W		24.10.1994
41083-11-8	41083118	534	Azocyclotin	3	W		22.12.1987
333-18-6	333186	535	Ethylendiamin-Hydrochlorid	2	W		04.07.1997
120-80-9	120809	536	Brenzcatechin	2	W		09.11.1994
26392-49-4	26392494	537	2-Ethylhexylammoniumchlorid	2	W		23.11.1994
75-74-1	75741	538	Bleitetramethyl	3	W		22.12.1987
1929-82-4	1929824	539	2-Chlor-6-trichlormethylpyridin	2	W		22.12.1987
638-16-4	638164	540	2.4.6-Trimercaptotriazin	2	W	8	04.08.1997
17766-26-6	17766266	541	2.4.6-Trimercaptotriazin, Trinatriumsalz	2	Ŵ	8	04.08.1997
107-46-0	107460	542	Silicone A	1	W	13	04.06.1998
68937-54-2	68937542	543	Silicone B	1	W	13	04.06.1998
16919-19-0	16919190	544	Ammoniumhexafluorsilikat	2	W		22.12.1987
30593	30593	545	Tributylzinnfluorid	3	W		31.10.1994
4342-36-3	4342363	546	Tributylzinnbenzoat	3	W		31.10.1994
13435-05-7	13435057	547	Tributylzinnphosphat	3	W		22.12.1987
36631-23-9	36631239	548	Tributylzinnaphthenat	3	W		31.10.1994
24124-25-2	24124252	549	Tributylzinnlinoleat	3	W		22.12.1987
3090-35-5	3090355	550	Tributylzinnoleat	3	W		06.08.1997
20859-73-8	20859738	551	Aluminiumphosphid	2	W		06.08.1997
12057 74 9	12057749	552	Magnesiumphosphid	2	W		06 08 1997
505 00 4	505004	553	Tetraphenylzinn	3	W		21 11 1997
2500.94.0	2500940	554	Tetraoctylzinn	2	W		31 10 1994
3390-64-9	3590649	555	Thallium(I)-sulfat	2	w		05.01.1988
/440-18-0	7440180	555		1	W/		24 10 1004
121-44-8	121448	550	Chloroilono	1	VV \\\/	10	24.10.1994
10023-76-2	T0025762	558	Ethylammoniumchlorid	1	W	13	24 10 1996
557-66-4	55/664	550	Triothylammoniumohlarid	1	W/		24.10.1004
554-68-7	554687	559	Propan	I DWG	VV \\/		24.10.1994
74-98-6	74986	560		nwg	VV W		20.08.1997
106-97-8	106978	501	n-Bulan	nwg	VV VV		19.08.1997
75-28-5	75285	562		nwg	VV		05.01.1988
0028.05.2	0028052	563	Butoxypolyethylen-/propylenglycol (Mittl. MW > 500)	1	vv	11	04.08.1997
10104.06.4	10104264	564	Cadmiumsulfat	3	W		12 09 1988
21420.96.1	21420961	565	Bis-(tributy/zinn)-tetrachlorobthalat	3	w		22 12 1987
31430-86-1 #N/D	31430861 #N/D	566	Silane (feste und flüssige)	1	W	13	04.06.1998
#N/D	#N/D	567	Silane (gasförmige)	1	Ŵ	13.14	10.05.1999
#N/D	#N/D	568	Silanole	1	Ŵ	13	04.06.1998
3542-36-7	3542367	569	Dioctylzinndichlorid	2	W		31.10.1994
870-08-6	870086	570	Dioctylzinnoxid	2	W		23.09.1988
15571-58-1	15571581	571	Dioctylzinnbis-(thioglycolsäureisooctylester)	2	W		23.09.1988
5827-58-7	5827587	572	Didodecylzinndichlorid	1	W		31.10.1994
2273-48-5	2273485	573	Didodecylzinnoxid	1	W		23.09.1988
84030-61-5	84030615	574	Didodecylzinnbis-(thioglycolsäureisooctylester)	1	W		23.09.1988
26636-01-1	26636011	575	Dimethylzinnbis-(thioglycolsäureisooctvlester)	2	W		31.10.1994
		576	Monomethylzinntris-(thioglycolsäureisooctylester)	2	W		31.10.1994
54849-38-6	54849386		, , , , , , , , , , , , , , , , , , , ,				
2273-43-0	2273430	577	Butylstannonsäure	1	W		23.09.1988
26410-42-4	26410424	578	Butylthiostannonsäure	1	W		23.09.1988
1118-46-3	1118463	579	Monobutylzinntrichlorid	1	W		23.09.1988
25852-70-4	25852704	580	Monobutylzinntris-(thioglycolsäureisooctylester)	1	W		23.09.1988
13356-20-2	13356202	581	Octylstannonsäure	1	W		23.09.1988
3091-25-6	3091256	582	Monooctylzinntrichlorid	1	W		31.10.1994
26401 26 5	26/01250	583	Monooctylzinntris-(thiodlycolsäureisooctylester)	1	W		23.09 1988
20401-00-0	20401000	584	Dodecylstannonsäure	1	w		23 09 1988
23134-09-0	23134098	585	Monododecylzinntrichlorid	1	\\/		31 10 1004
513/5-45-2	513/5452	505	Monododeoylzinntria (thioglycolaëuroicocotuloctor)	1	۷۷ ۱۸/		22 00 1000
67649-65-4	67649654	000	wonododecylzinnuns-(thiogiycoisaureisooctylester)	1	vv		23.03.1300
63397-60-4	63397604	587	Esterzinn	2	W		31,10,1994
70.04.0	70242	588	Nitroethan	2	W		22.09 1988
75 50 5	75505	589	Nitromethan	2	w		22 09 1988
107.07.0	107070	590	Methylpropylketon	1	w		14 11 1994
107-87-9	10/8/9	500	Discoutulkoton		10/		02 11 1004
108-83-8	108838	591			VV \\/		20.11.1994
112-07-2	112072	592		- 1	VV \\\/		20.10.1994
111-92-2	111922	593		1	VV		24.10.1994
102-82-9	102829	594		2	VV		24.10.1994
95-64-7	95647	595	3,4-Dimethylanilin	2	W		31.10.1994

		Index					Data da
CAS	CAS	number	Substâncias (em alemão)	WGK		Notas	classificação
87-59-2	87592	596	2,3-Dimethylanilin	2	W		31.10.1994
123-51-3	123513	597	Isoamylalkohol	1	W		09.11.1994
108-20-3	108203	598	Disopropylether	1	W		14.11.1994
122 19 0	100100	599	Alkyl(C8-C18)-benzyldimethylammoniumchlorid und-	3	vv		15.12.1994
122-10-9	122109	600	Alkyl(C12-C16)-trimethylammoniumchlorid und-	3	w		15.12.1994
112-02-7	112027	000	bromid	Ũ	••		1011211001
104-74-5	104745	601	Alkyl(C12-C16)-pyridiniumchlorid und -bisulfat	3	W		15.12.1994
55-56-1	55561	602	Chlorhexidin	3	W		26.09.1988
122-34-9	122349	603	Simazin	2	W		31.10.1994
5915-41-3	5915413	604	Terbutylazin	2	W		31.10.1994
819-79-4	819794	605	Diisopropylammoniumchlorid	2	W		23.11.1994
26761-40-0	26761400	606	Phthalsäurediisodecylester	1	W		07.11.1994
17040-19-6	17040196	607	Demeton-S-methylsulphon	2	W		31.10.1994
301-12-2	301122	608	Oxidemeton-methyl	3	W		31.10.1994
333-41-5	333415	609	Diazinon	3	W		26.10.1994
6287-40-7	6287407	610	Di-n-butylammoniumchlorid	1	W		24.10.1994
6309-30-4	6309304	611	Tri-n-butylammoniumchlorid	2	W		24.10.1994
886-50-0	886500	612	Terbutryn	2	W		31.10.1994
1610-18-0	1610180	613	Prometon	2	W		31.10.1994
108-18-9	108189	614	Diisopropylamin	2	W		24.10.1994
121-75-5	121755	615	Malathion	3	W		31.10.1994
55-38-9	55389	616	Fenthion	3	W		26.10.1994
2104-96-3	2104963	617	Bromophos	3	W		26.10.1994
4824-78-6	4824786	618	Bromophos-ethyl	3	W		26.10.1994
21923-23-9	21923239	619	Chlorthiophos	3	W		26.10.1994
298-04-4	298044	620	Disulfoton	3	W		31.10.1994
13071-79-9	13071799	621	l erbutos	3	W		23.12.1996
2921-88-2	2921882	622		3	VV W		26.09.1988
38260-54-7	38260547	623	Etrimpnos	3	VV		26.10.1994
13457-18-6	13457186	624	Pyrazophos	3	VV W		26.10.1994
24017-47-8	24017478	625	I riazopnos	3	VV W		26.10.1994
103-23-1	103231	620		1	VV \\/		07.11.1994
2642-71-9	2642719	628	Azinphos-methyl	3	 \//		31.10.1994
86-50-0	86500	620	Dialifoe	3	W/		26.09.1988
10311-84-9	10311849	630	Phosalon	3	W		31 10 1994
2310-17-0	2310170	631	Chlorfenvinnhos	3	W		26.09.1988
470-90-0	62727	632	Dichlorvos	3	w		26 10 1994
26718-65-0	26718650	633	Mevinphos	3	W		26 10 1994
52-68-6	52686	634	Trichlorfon	3	Ŵ		31.10.1994
101-68-8	101688	635	Diphenvlmethandiisocyanat	1	Ŵ		23.09.1988
26628-22-8	26628228	636	Natriumazid	2	W		26.09.1988
13106-76-8	13106768	637	Ammoniummolvbdat	1	W		26.09.1988
7631-95-0	7631950	638	Natriummolybdat	1	W		26.09.1988
1001000	1001000	639	Polyaldehydocarbonsäuren und Natriumsalze (Mittl.	1	W	8	17.03.1998
64476-57-9	64476579		MW 5000 - 10000)				
127-65-1	127651	640	Chloramin T	2	W		26.09.1988
541-73-1	541731	641	1,3-Dichlorbenzol	2	W		26.10.1994
106-46-7	106467	642	1,4-Dicnlorbenzol	2	W		26.10.1994
99-08-1	99081	643	3-Nitrotoluol	2	W		07.11.1994
99-99-0	99990	644		2	W		03.03.1997
619-15-8	619158	645	2,5-Dinitrotoluol	3	W		26.09.1988
606-20-2	606202	040		3	VV W		07.11.1994
91-23-6	91236	647		3	VV W		07.11.1994
/8-78-4	/8784	040 640	Chloralkana (C10 C12)	۱ ۵	VV \//		20.03.1900
85535-84-8	85535848	650	Ethoprophos	ა ი	VV \\/		20.03.1997
13194-48-4	13194484	651	Hentenonhos	3 2	۷۷ ۱۸/		26 10 1004
23560-59-0	23560590	652	Phoenhamidon	3	۷۷ ۱۸/		26 10 100/
131/1-21-6	131/1216	652	Methidathion	ა ი	VV \\/		20.10.1994
950-37-8	950378	654	Vanadiumpentovid	3 2	VV \\/		23.11.1900
1314-62-1	1314621	655	Demeton-S-methyl		W		31 10 1994
919-90-9	919868	656	Fettalkohole gesättigt mit - geradzabliger C-Ketto	nwa	W/	11	03 02 1008
112-72-1	112721	000	und -C-Zahl >= 14 und -einer endständigen OH- Gruppe	nwy	vv		00.02.1990
		657	Fettsäuren, gesättigt, unverzweigt mit -C-Zahl >= 8 -	1	W	11	04.08.1997
124-07-2	124072		<= 12 und einer -endständigen Carboxylgruppe				

		Index					Data da
CAS	CAS	number	Substâncias (em alemão)	WGK		Notas	classificação
		658	Fettalkohole, ungesättigt mit - geradzahliger,	nwg	W	11	04.08.1997
95270 70 0	05270700		unverzweigter C-Kette und - C-Zahl von 16 - 18 und -				
90070-70-0	95370700	659	Fettsäuren ungesättigt unverzweigt mit -	1	W	11	04 08 1997
		000	geradzahliger C-Kette und - C-Zahl 16 - 18 und -		••		04.00.1007
112-79-8	112798		einer endständigen Carboxylgruppe				
		660	Fettalkohol-/Fettsäureester, gesättigt und ungesättigt	nwg	W	11	12.05.1999
			mit -geradzahliger, unverzweigter C-Kette und -C-Zahl				
			des Alkohol- und Fettsäurerestes jeweils >=12 und -				
			endständiger Carboxyl- bzw. OH-Gruppe von				
17071 07 1	47074074		Fettsäure- und Alkoholrest				
1/6/1-2/-1	1/6/12/1	661	Fottsäuron, gosättigt, upvorzwoigt mit, gorodzabliger	DWG	۱۸/	11	04 09 1007
		001	C-Kette und - C-Zahl >= 14 und - einer	nwy	vv		04.00.1997
#N/D	#N/D		endständigen Carboxylgruppe				
#N/D	#N/D	662	Polymerdispersionen	1	W	12	03 07 1998
85711-69-9	85711699	663	sek.Alkan(C13-C17)-sulfonate	2	W		19.03.1997
1072-15-7	1072157	664	Natriumalkvl(C8-C20)-sulfate	2	W		23.01.1996
10/2 10 /	1072107	665	Alkoholethersulfate C12-C18 und 2-3 mol EO. Na-	2	W		23.01.1996
3088-31-1	3088311		Salze	_			
#N/D	#N/D	666	alpha-Olefinsulfonate C14-C18	2	W		19.03.1997
55184-72-0	55184720	667	Sulfobernsteinsäureester, Na-Salze	2	W		19.03.1997
85409-01-4	85409014	668	alpha-Methylestersulfonate C12-C18. Na-Salze	2	W		24.03.1997
00 100 01-4	00100014	669	Fettsäuren, Natrium- und Kaliumsalze (Fettsäuren -	1	W		02.06.1997
			gesättigt und ungesättigt -mit geradzahliger				
			unverzweigter C-Kette -und C-Zahl >=12)				
10124-65-9	10124659		-				
103819-01-8	103819018	670	Alkoholethoxylate	2	W		15.12.1994
9016-45-9	9016459	671	Nonylphenolethoxylate	2	W		31.10.1994
37311-02-7	37311027	672	Fettalkohol-EO/PO-Addukte	2	W		31.10.1994
111-57-9	111579	673	Alkylolamide	2	W		15.12.1994
107-64-2	107642	674	Dialkyl(C16-C18)-dimethylammoniumchlorid	2	W		15.12.1994
#N/D	#N/D	675	Imidazoliniumsalz	2	W		31.10.1994
20222 02 7	20222027	676	Pirimiphos-methyl	3	W		26 10 1994
29232-93-7	29232937	677	Acenhat	2	W		31 10 1994
30560-19-1	30560191	679	Cyfluthrin	2	W/	-	20.00.1004
68359-37-5	68359375	670	Cynormathrin	3	VV \\\/		20.09.1994
52315-07-8	52315078	679	Deltemethrin	3	VV		20.09.1994
52918-63-5	52918635	680		3	VV		20.09.1994
39515-41-8	39515418	681	Fenpropathrin	3	VV		20.09.1994
51630-58-1	51630581	682	Fenvalerat	3	W		20.09.1994
52645-53-1	52645531	683	Permethrin	3	W		31.10.1994
25311-71-1	25311711	684	Isofenphos	3	W		20.09.1994
57018-04-9	57018049	685	Tolclofos-methyl	3	W		26.10.1994
14816-18-3	14816183	686	Phoxim	3	W		20.09.1994
3689-24-5	3689245	687	Sulfotepp	3	W		20.09.1994
10265-92-6	10265926	688	Methamidophos	3	W		20.09.1994
16672-87-0	16672870	689	Ethephon	2	W		31.10.1994
		690	Glycerinmonoester (Fettsäurerest unverzweigt mit C-	1	W	11,14	10.05.1999
			Zahl >= 8 und endständiger Carboxylgruppe)				
111-03-5	111035						
		691	Glycerindiester (Fettsäurerest unverzweigt mit C-Zahl	1	W	11,14	10.05.1999
100684-28-4	100684284	000	>= 8 und endständiger Carboxylgruppe)	0	14/		01 10 1001
61790-12-3	61790123	692		2	VV	<u> </u>	31.10.1994
106-49-0	106490	693	4-metnylanilin	2	W		03.03.1997
95-51-2	95512	694		2	W		31.10.1994
108-42-9	108429	695	3-Chioranilin	2	W		31.10.1994
608-27-5	608275	696	2,3-Dichloranilin	3	W		20.09.1994
554-00-7	554007	697	2,4-Dichloranilin	3	W		20.09.1994
95-82-9	95829	698	2,5-Dichloranilin	3	W		20.09.1994
608-31-1	608311	699	2,6-Dichloranilin	3	W		20.09.1994
95-76-1	95761	700	3,4-Dichloranilin	3	W		12.06.1997
634-93-5	634935	701	2,4,6-Trichloranilin	3	W		02.11.1994
88-74-4	88744	702	2-Nitroanilin	2	W		02.11.1994
99-09-2	99092	703	3-Nitroanilin	2	W		20.09.1994
97_02_0	97020	704	2.4-Dinitroanilin	2	W		02.11.1994
00 50 F	00525	705	2-Methyl-4-nitroanilin	2	W		20 09 1994
90.00.4	99020	706	4-Chlor-2-nitroanilin	2	W		02 11 1994
09-03-4	09034	700	1 4-Dinitrobenzol	2	١٨/		20 00 1004
100-25-4	100254	707		3	VV \\/		20.03.1334
528-29-0	528290	700		3	VV		20.09.1994
121-73-3	121733	709		2	VV	<u> </u>	20.09.1994
88-73-3	88733	/10		2	W		07.11.1994
25057-89-0	25057890	711	Bentazon	2	W		20.09.1994
		Index					Data da
------------	----------	--------	---	-----	----------	-------	---------------
CAS	CAS	number	Substâncias (em alemão)	WGK	144	Notas	classificação
111-30-8	111308	/12	Glutardialdehyd	2	W		14.11.1994
148-79-8	148798	/13	I hiabendazol	2	W		20.09.1994
115-10-6	115106	714	Dimetnyletner	1	VV		18.02.1998
108-70-3	108703	715	1,3,5-Trichlorbenzoi	3	VV M		26.10.1994
79-06-1	79061	715	Acrylamid	3	VV	0	14.11.1994
		/1/	% und einem Bestmonomergehalt < 0.1 %	2	vv	8	04.08.1997
25568-39-2	25568392						
111-44-4	111444	718	Bis-(2-chlorethyl)ether	2	W		14.11.1994
95-74-9	95749	719	3-Chlor-4-methylanilin	2	W		02.11.1994
28299-41-4	28299414	720	Ditolylether	2	W		14.11.1994
12410-14-9	12410149	721	Eisen(III)-chloridsulfat	1	W	8	04.08.1997
85-41-6	85416	722	Phthalimid	1	W		14.11.1994
120-61-6	120616	723	Terephthalsäuredimethylester	1	W		16.03.1998
128-37-0	128370	724	2,6-Di-tert.butyl-4-methylphenol	1	W		23.12.1996
100-17-4	100174	725	4-Nitroanisol	1	W		07.11.1994
122-39-4	122394	726	Diphenylamin	3	W		07.11.1994
38640-62-9	38640629	727	Diisopropylnaphthalin (DIPN)	1	W		08.04.1999
79-08-3	79083	728	Bromessigsäure	2	W		07.11.1994
76-05-1	76051	729	Trifluoressigsäure	2	W		07.11.1994
650-51-1	650511	730	Natriumtrichloracetat	2	W		07.11.1994
75-99-0	75990	731	2,2-Dichlorpropionsäure, Na-Salz	1	W		07.11.1994
85-44-9	85449	732	Phthalsäureanhydrid	1	W	14	10.05.1999
107-31-3	107313	733	Ameisensauremethylester	1	W		07.11.1994
77-78-1	77781	734	Dimethylsulfat	2	W		20.09.1994
98-86-2	98862	/35	Acetophenon	1	W		14.11.1994
709-98-8	709988	736	N-(3,4-Dichlorphenyl)-propionamid	3	W		14.11.1994
50-81-7	50817	737	L(+)-Ascorbinsäure	1	W	14	10.05.1999
108-01-0	108010	730		1	VV		24.10.1994
2498-25-1	2498251	739	N,N-Dimethylethanolammoniumchiond	1	VV W/		23.11.1994
		740	einem Anteil an kurzkettigen, flüssigen Chloralkanen	2	vv		12.09.1997
85535-86-0	85535860		(C 10-13) <3%				
1333-74-0	1333740	741	Wasserstoff	nwg	W		20.09.1994
74-85-1	74851	742	Ethen	nwg	W		20.09.1994
7782-44-7	7782447	743	Sauerstoff	nwg	W		10.11.1994
126-30-7	126307	744	2,2-Dimethylpropan-1,3-diol	1	W		26.10.1994
89-72-5	89725	745	2-sek.Butylphenol	2	W		09.11.1994
111-77-3	111773	746	Diethylenglycolmonomethylether	1	W		26.10.1994
96-22-0	96220	747	Diethylketon	1	W		20.09.1994
7439-89-6	7439896	748	Eisen	nwg	W		20.09.1994
3209-22-1	3209221	749	1,2-Dichlor-3-nitrobenzol	3	W		07.11.1994
1332-37-2	1332372	750	Eisen(II)-oxid	nwg	W		20.09.1994
12227-89-3	12227893	751	Eisen(II,III)-oxid	nwg	W		20.09.1994
20344-49-4	20344494	752	Eisen(III)-hydroxidoxid	nwg	W		20.09.1994
7704-34-9	7704349	753	Schwefel, kolloidal	1	W		06.12.1994
2246493	2246493	754	Kolophonium	1	W		20.09.1994
999-81-5	999815	755	Chlormequat-chlorid	2	W		20.09.1994
1561-92-8	1561928	756	Natriummethylallylsulfonat	1	W		20.09.1994
127-08-2	127082	757	Kaliumacetat	1	W		23.11.1994
27697-50-3	27697503	758	N-Cyclonexyldiazeniumdioxy-Kalium	2	W		01.12.1998
15627-09-5	15627095	759	(Bis-(N-Cyclohexyldiazeniumdioxy))-Kupter	3	W		12.09.1997
		760	Triglyceride (technisch unbehandelt oder hydriert;	nwg	W	11	04.08.1997
			eusaurerest - gesattigt und ungesättigt - mit geradzahliger, unverzweigter C-Kette - und C-Zahl <-				
#N/D	#N/D		8)				
		761	Triglyceride (techn. unbehandelt, Carbonsäure	1	W	11	04.08.1997
			gesättigt - mit geradzahliger, unverzweigter C-Kette -				
102-76-1	102761	700	und C-Zahl <= 6)		14/	11	04.00 1007
		/02	ngiyoende (epoxidieri, retisaureresi - mit geradzabliger unverzweigter C-Kette - und C.Zablis -	nwg	٧V		04.08.1997
2232918	2232918		12)				
109-02-4	109024	763	N-Methylmorpholin	1	W		24.10.1994
70187-32-5	70187325	764	N-Methylmorpholin-N-oxid	1	W	İ	20.09.1994
		765	Naturstoffe wie Mineralien, Sand, Holz, Kohle, Zellstof	nwg	W		10.05.1999
			sowie Gläser und keramische Materialien, soweit sie				
#N1/D	#N1/D		test, nicht dispergiert, wasserunlöslich und indifferent				
#N/U	#IN/D	766	siiiu Kunststoffe z.B. Granulate Formteile Fasern Folion	nwa	w		01 09 1997
		, 00	Kunststoffharze, soweit sie fest, nicht dispergiert.		••		01.00.1007
25852-37-3	25852373		wasserunlöslich und indifferent sind				
10024-97-2	10024972	767	Lachgas	1	W	14	10.05.1999

		Index					Data da
CAS	CAS	number	Substâncias (em alemão)	WGK		Notas	classificação
#N/D	#N/D	768	Triglyceride (geblasen oder thermisch behandelt)	1	W	11	17.03.1998
70729-68-9	70729689	769	l etraetnylengiykoldineptanoat	I	VV		10.05.1000
68987-94-0	68987940	770	Minoraläl Halbfortignrodukto flüggige -5% Aromaton	1 IIW	VV \\/		22 11 1004
		//1	nicht als krebserzeugend (R45) gekennzeichnet	1	vv		23.11.1994
#N/D	#N/D						
7440-23-5	7440235	772	Natrium	2	W		23.11.1994
143-22-6	143226	773	Triethylenglykolmonobutylether	1	W		08.12.1994
7789-21-1	7789211	774	Fluorsulfonsäure	1	W		23.11.1994
		775	Kohlenwasserstoff-Lösemittel: >5% Aromaten, nicht	2	W		09.11.1994
#N/D	#N/D	776	als krebserzeugend (R45) gekennzeichnet	2	14/		00 11 1004
116-02-9	116029	770		2	W		10.05.1994
294-62-2	294622	770	Hexabramevaladadagan 1.2.5.6.0.10	1	VV \\/		26 10 1994
25637-99-4	25637994	779		1	W		26 10 1994
24800-44-0	24800440	780	2 4 4-Trimethylpenten	2	W		09 11 1994
512 77 0	512770	781	Bariumcarbonat	nwa	w		23 11 1994
75-63-8	75638	782	Bromtrifluormethan	1	W	14	10.05.1999
118-48-9	118489	783	Isatosäureanhydrid	1	Ŵ		20.09.1994
75-36-5	75365	784	Acetylchlorid	1	W		23.11.1994
91-76-9	91769	785	Benzoguanamin	2	W		31.10.1994
62-56-6	62566	786	Thioharnstoff	2	W		14.11.1994
506-93-4	506934	787	Guanidinnitrat	1	W		14.11.1994
50-01-1	50011	788	Guanidinhydrochlorid	1	W		23.11.1994
420-04-2	420042	789	Cyanamid	2	W		14.11.1994
156-62-7	156627	790	Calciumcyanamid	2	W		23.11.1994
75-20-7	75207	791	Calciumcarbid	1	W		23.11.1994
106-98-9	106989	792	n-Buten-1	nwg	W		20.09.1994
75-00-3	75003	793	Chlorethan	2	W		20.09.1994
75-35-4	75354	794	1,1-Dichlorethen	3	W		24.10.1994
156-59-2	156592	795	1,2-Dichlorethen (cis und trans)	2	W		24.10.1994
79-00-5	79005	796	1,1,2-Trichlorethan	3	W		24.10.1994
79-34-5	79345	797	1,1,2,2-Tetrachlorethan	3	W		24.10.1994
67-72-1	67721	798	Hexachlorethan	3	W		24.10.1994
77-47-4	77474	799	Hexachlorcyclopentadien	3	W		26.10.1994
1309-37-1	1309371	800	Lisen(III)-oxid	nwg	W		20.09.1994
16291-96-6	16291966	801	Konlenstoff	nwg	VV		20.09.1994
#N/D	#N/D	802	Isolierole auf Mineralolbasis nach DIN 5/3/0 Teil 1	1	vv		20.09.1994
1633-05-2	1633052	803	Strontiumcarbonat	nwg	W		23.11.1994
7789-75-5	7789755	804	Calciumfluorid	nwg	W		23.11.1994
12003-51-9	12003519	805	Kieselsäure, Aluminium-Natriumsalz	1	W		14.11.1994
1308-38-9	1308389	806	Chrom(III)-oxid	nwg	W		20.09.1994
10060-12-5	10060125	807	Chrom(III)-chlorid, Hexahydrat	2	W		07.11.1994
10141-00-1	10141001	808	Chrom(III)-kaliumsulfat, Dodecahydrat	2	W		07.11.1994
12336-95-7	12336957	809	Chrom(III)-sulfat, basisch	2	W		20.09.1994
2150954	2150954	810	Chrom(III)-nitrat, Nonahydrat	2	W		20.09.1994
52255-49-9	52255499	811	Polycarboxilat	1	W	8	04.08.1997
		812	Polyacrylamide, kationisch mit Kationenstärke > 15 %	3	W	8	04.08.1997
25568-39-2	25568392	010	Polyconylamida, night ionisch und onionisch mit	2	14/	0	04.09.1007
12624-24-7	12624247	013	einem Restmonomergehalt < 0.1 %	۷	vv	Ŭ	U7.U0.133/
136570-84-8	136570848	814	Benzyldiphenylmethan (mit 0-3 Methylgruppen)	2	W		12.06.1997
7681-52-9	7681529	815	Natriumhypochlorit	2	W	8	04.08.1997
115-07-1	115071	816	Propen	nwg	W		20.09.1994
762-04-9	762049	817	Phosphonsäurediethylester	1	W		31.10.1994
482-89-3	482893	818	Indigo	1	W		20.09.1994
91082-17-6	91082176	819	Alkan(C10-21)sulfonsäurephenylester	1	W		20.09.1994
		820	Ottokraftstoffe, nicht als krebserzeugend (R45)	2	W		23.11.1994
#N/D	#N/D	001	gekennzeichnet				00.11.100.1
95-54-5	95545	821		3	VV		07.11.1994
134-32-7	134327	822		2	VV		07.11.1994
2869-34-3	2869343	823	Trimetylanin	3	VV \\/		24.10.1994
25620-58-0	25620580	024 805		∠ ۱	VV \\/		24.10.1994
/8-90-0	/8900	020 806	1,2-FT0pytenutarititi	1	VV \\/		24.10.1994
68928-99-4	68928994	020 807	n,z-r ropylenularinnonlumchionu Diisopropanolamin	1	VV \\/		24.10.1994
110-9/-4	1109/4	828	Diisopropanolammoniumehlorid	1	W W/		24.10.1394
58901-13-6	58901136	820		1	۷۷ ۱۸/		27.10.1334
9004-32-4	9004324	830	Methyldieteanylamin	1 2	۷۷ ۱۸/		14 05 1007
4008-22-6	4088226	000	leenenenel	2	10/		01 10 1009

		Index					Data da
CAS	CAS	number	Substâncias (em alemão)	WGK		Notas	classificação
592-41-6	592416	832	1-Hexen	1	W		20.09.1994
118-33-2	118332	833	2-Naphthylamin-5,7-disulfonsäure	2	W		20.09.1994
		834	Fettsäuremethylester (Fettsäurerest gesättigt oder	1	W	11	04.08.1997
100 70 7	100707		ungesättigt - mit geradzahliger unverzweigter C-Kette				
106-70-7	106707	925	und C-Zani >= 6) Motamitron	2	\A/		21 10 1004
41394-05-2	41394052	000			VV \\\/		14 11 1004
//2/-54-0	//2/540	030		1	VV W/		10.11.1994
106-75-2	106752	037	Eatteäureethylbevyleeter (Eatteäurerest angättigt	2	VV W/	11	04.09.1007
		030	ungesättigt oder epoxidiert - mit geradzabliger	1	vv	11	04.00.1997
			unverzweigter C-Kette - und C-Zahl >= 12				
135800-37-2	135800372		5				
		839	3-Chlor-2-hydroxypropyl-N,N,N-	2	W		15.09.1997
3327-22-8	3327228		trimethylammoniumchlorid				
		840	Chloralkane (C 14-17), flussig, organozinnfrei, mit	2	W		16.09.1997
85535-85-0	85535850		(C 10-13) <3%				
10101-53-8	10101538	841	Chrom(III)-sulfat wasserfrei	1	w		23 11 1994
7704 24 9	7704249	842	Schwefel stückig	nwa	w		20.09.1994
10025 70 4	10025704	843	Strontiumchlorid Hexabydrat	1	w		20.09.1994
10025-70-4	10025704	844	Chrom(III)-chlorid, viasserfrei	1	w		23 11 1994
10025-73-7	10025737	845	3 4-Dichlor-1-pitrobenzol	3	Ŵ		07 11 1004
99-54-7	99547	846	Schwefelbevafluorid	nwa	Ŵ		20.09.1994
2551-62-4	2551624	847	Natriummetasilikat	1	Ŵ		1/ 11 100/
6834-92-0	6834920	04/ 8/0		1	VV \//		03 12 1007
613-42-3	613423	040		1	VV W		03.12.1997
112926-00-8	112926008	849		nwg	VV		02.09.1997
#N/D	#N/D	000	Acroleincyannydnin-O-acetat	3	VV		20.09.1994
543-90-8	543908	851	Cadmiumacetat	3	VV		20.09.1994
18472-51-0	18472510	852		3	VV		25.08.1997
13705-05-0	13705050	853	2-Metnyitnio-4,6-dicnioro-1,3,5-triazin	3	VV		20.09.1994
6208-26-0	6208260	854	I ri-tert.butylzinnoxid	3	VV		20.09.1994
57-15-8	57158	855	1,1,1-1 richlor-2-methyl-2-propanol	3	VV		20.09.1994
#N/D	#N/D	856	Vanadin(IV)-oxidsulfat	3	W		20.09.1994
632-99-5	632995	857	Fuchsin	3	W		20.09.1994
135-20-6	135206	858	Kupferron	3	W		20.09.1994
50-07-7	50077	859	Mitomycin C	3	W		20.09.1994
50-18-0	50180	860	Cyclophosphamid	3	W		20.09.1994
50-44-2	50442	861	6-Mercaptopurin	3	W		20.09.1994
1420-04-8	1420048	862	Clonitralid	3	W		20.09.1994
50-76-0	50760	863	Actinomycin C-1	3	W		20.09.1994
51-34-3	51343	864	(-)-Scopolamin	3	W		20.09.1994
51-42-3	51423	865	Epinephrinhydrogentartrat	3	W		20.09.1994
51-43-4	51434	866	(-)-Epinephrin	3	W		20.09.1994
51-55-8	51558	867	Atropin	3	W		20.09.1994
51-56-9	51569	868	Homatropinhydrobromid	3	W		20.09.1994
52-88-0	52880	869	Atropinmethonitrat	3	W		20.09.1994
53-86-1	53861	870	Indomethacin	3	W		20.09.1994
54-62-6	54626	871	Aminopterin	3	W		20.09.1994
54-64-8	54648	872	Merthiolat	3	W		20.09.1994
54-71-7	54717	873	Pilocarpinhydrochlorid	3	W		20.09.1994
55-16-3	55163	874	(-)-Scopolaminhydrochlorid	3	W		20.09.1994
55-31-2	55312	875	(-)-Epinephrinhydrochlorid	3	W		20.09.1994
55-48-1	55481	876	Atropinsulfat	3	W		20.09.1994
55-98-1	55981	877	Busulfan	3	W		20.09.1994
57-33-0	57330	878	Natriumpentobarbital	3	W		20.09.1994
57-47-6	57476	879	Physostigmin	3	W		20.09.1994
57-64-7	57647	880	Physostigminsalicylat	3	W		20.09.1994
58-90-2	58902	881	2,3,4,6-Tetrachlorphenol	3	W		20.09.1994
59-52-9	59529	882	2,3-Mercaptopropanol-1	3	W		20.09.1994
59-88-1	59881	883	Phenylhydrazinhydrochlorid	3	W		20.09.1994
60-24-2	60242	884	2-Mercaptoethanol	3	W		18.02.1998
62-38-4	62384	885	Phenylquecksilberacetat	3	W		20.09.1994
64-20-0	64200	886	Tetramethylammoniumbromid	3	W		20.09.1994
64-47-1	64471	887	Physostigminsulfat	3	W		20.09.1994
64-86-8	64868	888	Colchicin	3	W		20.09.1994
66-28-4	66284	889	Strophanthidin	3	W		20.09.1994
66-81-9	66819	890	Cycloheximid	3	W		20.09.1994
569-61-9	569619	891	Parafuchsin	3	W		20.09.1994
71-63-6	71636	892	Digitoxin	3	W		20.09.1994
71-91-0	71910	893	Tetraethylammoniumbromid	3	W		20.09.1994

		Index					Data da
CAS	CAS	number	Substâncias (em alemão)	WGK		Notas	classificação
75-33-2	75332	894	Propanthiol-2	3	W		20.09.1994
75-34-3	75343	895	1,1-Dichlorethan	3	W		20.09.1994
75-55-8	75558	896	Propylenimin	3	W		20.09.1994
75-60-5	75605	897	Cacodylsäure, Natriumsalz	3	W		20.09.1994
79-19-6	79196	898	Thiosemicarbazid	3	W		20.09.1994
80-49-9	80499	899	Homatropinmethylbromid	3	W		20.09.1994
80-50-2	80502	900	Anisotropinmethylbromid	3	W		20.09.1994
87-00-3	87003	901	Homatropin	3	W		20.09.1994
87-61-6	87616	902	1,2,3-Trichlorbenzol	3	W		20.09.1994
91-94-1	91941	903	3.3'-Dichlorbenzidin	3	W		20.09.1994
92-13-7	92137	904	Pilocarpin	3	W		20.09.1994
02-87-5	92875	905	Benzidin	3	W		20.09.1994
92-07-3	92075	906	o-Eluortoluol	3	W		20 09 1994
95-52-5	95525	907	3 4-Dichlorobenol	3	W		20.09.1994
95-77-2	95772	908		3	W/		20.09.1994
95-80-7	95807	000	Monothioglycorol	2	VV \\/		20.09.1994
96-27-5	96275	909	Rionoliniogiycerol	3	VV \\/		20.09.1994
98-05-5	98055	910	Anitania	3	VV		20.09.1994
101-05-3	101053	911	Aniiazin	3	VV		20.09.1994
101-31-5	101315	912	(-)-Hyoscyamin	3	W		20.09.1994
101-77-9	101779	913	4,4'-Diaminodiphenylmethan	3	W		20.09.1994
102-98-7	102987	914	Phenylmercuriborat	3	W		20.09.1994
105-55-5	105555	915	Diethylthioharnstoff	2	W		10.03.1995
106-54-7	106547	916	4-Chlorthiophenol	3	W		20.09.1994
106-96-7	106967	917	Propargylbromid	3	W		20.09.1994
107-96-0	107960	918	3-Mercaptopropionsäure	3	W		20.09.1994
108-98-5	108985	919	Thiophenol	3	W		20.09.1994
109-70-6	109706	920	1-Brom-3-chlorpropan	3	W		20.09.1994
110-02-1	110021	921	Thiophen	3	W		20.09.1994
114-26-1	114261	922	Propoxur	3	W		20.09.1994
114-49-8	114498	923	(-)-Scopolaminhydrobromid	3	W		20.09.1994
115-90-2	115902	924	Fensulfothion	3	W		20.09.1994
120-29-6	120296	925	Tropin	3	W		20.09.1994
120-23-0	120230	926	Fenitrothion	3	W		20.09.1994
122-14-5	128530	927	N-Ethylmaleinimid	3	W		20 09 1994
120-33-0	120330	928	Dinikrylamin	3	W		20.09.1994
100.65.9	131737	929	(+)-Noreninenhrin	3	W		20.09.1994
138-65-8	138658	930	Fenaminosulf	3	W		20.09.1994
140-56-7	140567	930	Digitovigenin	3	W		20.09.1994
143-62-4	143624	931	Digitoxigenin	3	VV \\/		20.09.1994
148-72-1	148721	932	() Coopelamin a butultramid	3	VV VV		20.09.1994
149-64-4	149644	933	(-)-Scopolamin-n-butylbromid	3	VV		20.09.1994
150-05-0	150050	934		3	VV		20.09.1994
155-41-9	155419	935	(-)-Scopolaminmethylbromid	3	VV		20.09.1994
306-03-6	306036	936	(-)-Hyoscyaminhydrobromid	3	W		20.09.1994
316-42-7	316427	937	Emetin-Dihydrochlorid	3	W		20.09.1994
329-63-5	329635	938	(+)-Epinephrinhydrochlorid	3	W		20.09.1994
342-69-8	342698	939	6-Methylmercaptopurinribosid	3	W		20.09.1994
352-32-9	352329	940	p-Fluortoluol	3	W		20.09.1994
357-57-3	357573	941	Brucin	3	W		20.09.1994
465-84-9	465849	942	Cymarol	3	W		20.09.1994
466-07-9	466079	943	Neriifolin	3	W		20.09.1994
477-30-5	477305	944	Colcemid	3	W		20.09.1994
487-27-4	487274	945	Scopolin	3	W		20.09.1994
506-61-6	506616	946	Kaliumdicyanoargentat	3	W		20.09.1994
506-68-3	506683	947	Bromcyan	3	W		20.09.1994
506-77-4	506774	948	Chlorcyan	3	W		20.09.1994
507-09-5	507095	949	Thioessigsäure	3	W		20.09.1994
508-77 0	508770	950	Cymarin	3	W		20.09.1994
500-77-0	500000	951	Evomonosid	3	w		20.09.1994
500-93-0	506930	052	Gitalovicenin	2	\\/		20.00.1004
514-21-6	514216	952		3	10/		20.03.1334
532-24-1	532241	900 0E4	Nortropin	় ১	VV \\\/		20.03.1334
538-09-0	538090	904	2 Promothonal	3	VV \\\/		20.09.1994
540-51-2	540512	905		<u></u> ৩	VV		20.09.1994
542-88-1	542881	956	BIS-(CHIORMETNYI)ETNER	3	VV		20.09.1994
545-26-6	545266	957	Gitoxigenin	3	W		20.09.1994
555-60-2	555602	958	Carbonylcyanid-m-chlorphenylhydrazon	3	W		20.09.1994
560-54-3	560543	959	Strophanthidol	3	W		20.09.1994
574-25-4	574254	960	6-Thioinosin	3	W		20.09.1994
584-04-3	584043	961	1,3-Dimercaptopropanol-2	3	W		20.09.1994

		Index					Data da
CAS	CAS	number	Substâncias (em alemão)	WGK		Notas	classificação
595-21-1	595211	962	Stropesid	3	W		20.09.1994
615-05-4	615054	963	2,4-Diaminoanisol	3	W		20.09.1994
620-61-1	620611	964	Hyoscyaminsultat	3	VV W		20.09.1994
627-42-9	627429	965	2-Methoxyethylchlorid	3	VV W		20.09.1994
630-60-4	630604	966	Stropnantnin-G	3	VV W		20.09.1994
630-64-8	630648	967	Helveticosia	3	VV W		20.09.1994
637-21-8	63/218	900		3	VV \\/		20.09.1994
663-95-6	663956	909	Methanthiophosphonsäurediablerid	3	VV \\/		20.09.1994
701.07.1	0/0982	971	Tolvlfluanid	3	W		20.09.1994
762.40.2	762402	972	1-Brom-2-fluorethan	3	W		20.09.1994
762-49-2	762492	973	1 4-Dichlor-2-buten	3	W		20.09.1994
1095 09 0	1095090	974	Dichlofluanid	3	w		20.09.1994
1102-88-1	1102881	975	Diaitoxiaenon	3	W		20.09.1994
1111-39-3	1111393	976	alpha-Acetyldigitoxin	3	W		20.09.1994
1120-71-4	1120714	977	1.3-Propansulton	3	W		15.07.1995
1124-33-0	1124330	978	4-Nitropyridin-N-oxid	3	W		20.09.1994
1309-64-4	1309644	979	Antimon(III)-oxid	2	W		20.09.1994
1391-75-9	1391759	980	Gitalin	3	W		20.09.1994
1397-89-3	1397893	981	Amphotericin B	3	W		20.09.1994
1397-94-0	1397940	982	Antimycin A	3	W		20.09.1994
1404-19-9	1404199	983	Oligomycin	3	W		20.09.1994
1563-66-2	1563662	984	Carbofuran	3	W	1	20.09.1994
1643-19-2	1643192	985	Tetrabutylammoniumbromid	3	W		20.09.1994
1672-46-4	1672464	986	Digoxigenin	3	W		20.09.1994
1866-15-5	1866155	987	Acetylthiocholinjodid	3	W		20.09.1994
1941-30-6	1941306	988	Tetrapropylammoniumbromid	3	W		20.09.1994
2001-95-8	2001958	989	Valinomycin	3	W		20.09.1994
2014-83-7	2014837	990	2,6-Dichlorbenzylchlorid	3	W		20.09.1994
2032-65-7	2032657	991	Mercaptodimethur	3	W		20.09.1994
2227-64-7	2227647	992	3-Nitrophenacylbromid	3	W		20.09.1994
196869	196869	993	Chinomethionat	3	W		20.09.1994
2451-62-9	2451629	994	Triglycidylisocyanurat	3	W		01.10.1997
2631-37-0	2631370	995	Promecarb	3	W		20.09.1994
2674-91-1	2674911	996	Oxideprofos	3	W		20.09.1994
2763-96-4	2763964	997	Muscimol	3	W		20.09.1994
2870-71-5	2870715	998	Atropinmethylbromid	3	W		20.09.1994
2917-26-2	2917262	999	Hexadecylmercaptan	3	W		20.09.1994
3114-70-3	3114703	1000	1,4-Diaminocyclohexan	3	W		20.05.1998
3261-53-8	3261538	1001	Gitaloxin Teteres attendence size a dividuit	3	W		20.09.1994
3333-52-6	3333526	1002		3	W		20.09.1994
3423-25-4	3423254	1003	N-Isopropyinortropin	3	VV		20.09.1994
3786-76-3	3786763	1004		3	VV W		20.09.1994
4205-91-8	4205918	1005	Triphonyloulfoniumphorid	3	VV \\\\		20.09.1994
4270-70-6	42/0/06	1000		3	VV \\/		20.09.1994
4368-28-9	4368289	1007	Dibydro-Diaitovigenin	ა ი	۷۷ ۱۸/		20.03.1334
4427-85-4	442/854	1008	Dihydro-Digitoxigenin Dihydro-Digovigenin	े २	VV \\/		20.09.1994
4442-12-0	4442120	1010	Dehydrodiaoxiaenin-3	3	W		20.09.1994
4442-17-5 1560 26 1	44421/5	1011	Gitoxin	3	W		20.09 1994
4002-00-1	4002001	1012	Norscopolamin	3	W		20.09 1994
12/0852	12/09/200	1013	Diaoxigenin-Bisdigitoxosid	3	w		20.09.1994
1240000	1240000	1014	Dihydro-Digoxin	3	W		20.09.1994
5355-48-6	5355486	1015	beta-Acetyldigoxin	3	W		20.09.1994
5511-98-8	5511988	1016	alpha-Acetyldigoxin	3	W		20.09.1994
5836-29-3	5836293	1017	Cumatetralyl	3	W		20.09.1994
5843-82-3	5843823	1018	Proscalun	3	W		20.09.1994
5934-50-9	5934509	1019	(-)-Hyoscyaminhydrochlorid	3	W		20.09.1994
5989-77-5	5989775	1020	Dihydroergotamintartrat	3	W		20.09.1994
6106-46-3	6106463	1021	(-)-Scopolaminmethylnitrat	3	W		20.09.1994
6106-81-6	6106816	1022	(-)-Scopolamin-N-oxidhydrobromid	3	W		20.09.1994
6159-44-0	6159440	1023	Uranylacetatdihydrat	3	W		20.09.1994
6980-15-0	6980150	1024	Acetylstrophanthidin-3	3	W		20.09.1994
6989-98-6	6989986	1025	Tubocurarin-dichloride, Pentahydrat	3	W		20.09.1994
7051-34-5	7051345	1026	Cyclopropylmethylbromid	3	W		20.09.1994
7059-24-7	7059247	1027	Chromomycin A	3	W		20.09.1994
7082-34-0	7082340	1028	Erysimosid	3	W		20.09.1994
1951225	1951225	1029	Pentaacetylgitoxin	3	W		20.09.1994

		Index					Data da
CAS	CAS	number	Substâncias (em alemão)	WGK		Notas	classificação
1951309	1951309	1030	Acetylgitoxin-16	3	W		20.09.1994
7440-22-4	7440224	1031	Silber, kolloidal	3	W		20.09.1994
2146108	2146108	1032	Natriummonochromat	3	W		20.09.1994
7788-98-9	7788989	1033	Ammoniummonochromat	3	W		20.09.1994
7790-80-9	7790809	1034	Cadmiumjodid	3	W		20.09.1994
121-21-1	121211	1035	Pyrethrin	3	W		20.09.1994
9001-00-7	9001007	1036	Bromelain	3	VV W		20.09.1994
10405-02-4	10405024	1037		3	VV		20.09.1994
11005-63-3	11005633	1038	Stropnantnin-K	3	VV W		20.09.1994
11006-14-7	11006147	1039	Erysimosol	3	VV \\\\		20.09.1994
11024-24-1	11024241	1040	alaha Ruggaratayin	3	VV \\/		20.09.1994
11032-79-4	11032794	1041		3	VV \\/		20.09.1994
11089-65-9	11089659	1042	hoto Bungaratavin	3	VV \\/		20.09.1994
12778-32-4	12//8324	1043		3	W		20.09.1994
13360-57-1	13360571	1044	Dibydrazingulfat	3	W		20.09.1994
13464-80-7	13464807	1045		3	W		20.09.1994
13593-03-8	13593038	1040	Digitovigonin Ricdigitovosid	3	VV \\/		20.09.1994
16479-50-8	164/9508	1047	Edifenshos	3	W		20.09.1994
17109-49-8	17109498	1040	Phalloidin	3	W/		20.09.1994
17575.00.1	17466454	1043		3	W		20.09.1994
17575-20-1	17575000	1051	Lanatosid C	2	W/		20.03.1334
17505-22-3	17500054	1057		3 2	W W/		20.03.1994
1/598-65-1	1/598651	1052	3-Dinhenvlmethovy-8-isonropyl-8-azoniahiovolo	3 2	W W/		20.09.1994
17616-19-2	17616192	1000	[3.2.1]octanmethansulfonat	5	vv		20.03.1334
17651-61-5	17651615	1054	Adonitoxin	3	W		20.09.1994
18067-13-5	18067135	1055	(-)-Methylscopolaminmethylsulfat	3	W		20.09.1994
18404-43-8	18404438	1056	Digitoxigenin-Monodigitoxosid	3	W		20.09.1994
		1057	N,N,N-Trimethyl-N-(4-dodecylbenzyl)-	3	W		20.09.1994
19014-05-2	19014052		ammoniumchlorid				
19379-90-9	19379909	1058	Benzoxoniumchlorid	3	W		20.09.1994
20830-75-5	20830755	1059	Digoxin	3	W		20.09.1994
20991-71-3	20991713	1060	Acetyldigoxin-12	3	W		20.09.1994
21757-82-4	21757824	1061	Plifenate	3	W		20.09.1994
22224-92-6	22224926	1062	Fenamiphos	3	W		20.09.1994
22254-24-6	22254246	1063	Ipratropiumbromid	3	W		20.09.1994
23109-05-9	23109059	1064	alpha-Amanitin	3	W		20.09.1994
22259-30-9	22259309	1065	Formetanat	3	W		20.09.1994
23422-53-9	23422539	1066	Formetanat-hydrochlorid	3	W		20.09.1994
25103-58-6	25103586	1067	tert.Dodecanthiol	2	W		20.09.1994
26001-38-7	26001387	1068	8-Mercapto-7,8-dihydroguanosin	3	W		20.09.1994
28553-21-1	28553211	1069	Digoxigenin-Monodigitoxosid	3	W		20.09.1994
30286-75-0	30286750	1070	Oxitropiumbromid	3	W		20.09.1994
30685-43-9	30685439	1071	Methyldigoxin	3	W		20.09.1994
31668-45-8	31668458	1072	alpha,beta-Diacetyldigoxin	3	W		20.09.1994
33279-57-1	33279571	1073	Strophanthosid-K	3	W		20.09.1994
34643-46-4	34643464	10/4	Protniotos	3	W		20.09.1994
35400-43-2	35400432	10/5	Suprotos	3	W		20.09.1994
37597-55-0	37597550	10/6	gamma-Strophanthol-K	3	W		28.09.1994
37893-02-0	37893020	1077		3	VV		20.09.1994
38083-17-9	38083179	1078		3	VV VV		23.12.1996
40950-57-0	40950570	10/9		3	VV VV		20.09.1994
51598-60-8	51598608	1080	Ometropiumoromia	3	VV VV		20.09.1994
51/40-69-3	51740693	1001	Acceptoria	3	VV \\/		20.09.1994
53164-05-9	53164059	1002	Nuclification	ა ი	VV \\/		20.09.1994
53626-67-8	53626678	1003	1 Ethinul 2 mothylpont 2 onylohnyconthemet	ა ი	VV \\/		20.09.1994
54406-48-3	54406483	1084	Noodigovin	3	VV \//		20.09.1994
555/6-67-5	555/6675	1000	Neouguxiii Bie-2-hydroxyethyl-kokocalkylhanzylammaniumahlarid	ა ი	VV \//		20.09.1994
60227-27-2	60227272	1000	Dis-z-riyuroxyetriyi-kokosalkyiberizyiammoniumCNi0/i0	3	vv		20.09.1994
61791-15-9	61791159	1087	Kokosamin-10EO-acetat	3	W		20.09.1994
63516-07-4	63516074	1088	Flutropiumbromid	3	W		20.09.1994
68308-64-5	68308645	1089	Dimethylethylkokosalkylammoniummethosulfat	3	W		20.09.1994
68440-29-9	68440299	1090	Talgfettsäuremethylester, chloriert, (30% Chlor)	3	W		20.09.1994
		1091	N-Alkyl(C12/18)-oxi-2-hydroxypropyldimethyl-	3	W		20.09.1994
68603-27-0	68603270		cyclohexylammoniumchlorid				
68989-36-6	68989366	1092	Alkyl(C10-18)-chlorid	3	W		20.09.1994
73536-95-5	73536955	1093	Adenosin-5'-O-(thiodiphosphat), Trilithiumsalz	3	W		20.09.1994
76706-55-3	76706553	1094	Myxothiazol	3	W	7	20.09.1994

		Index					Data da
CAS	CAS	number	Substâncias (em alemão)	WGK		Notas	classificação
78375-48-1	78375481	1095	Morpholinyl-4-ethylisocyanid-2	3	W		20.09.1994
		1096	Dimethyl-N-(2-hydroxyethyl)-N-(2-hydroxyhexadecyl) -	3	W		20.09.1994
84643-53-8	84643538	1007	ammoniumchlorid	0			00.00.100.1
26172-55-4	26172554	1097	5-Chlor-2-methyl-4-isothiazolin-3-on	3	W		20.09.1994
26762-93-6	26762936	1098	1,3-Diisopropylbenzolhydroperoxid	2	W		18.02.1998
94-36-0	94360	1100	Dibenzoylperoxid	1	W		20.09.1994
105-74-8	105748	1101	Dilauroylperoxid	1	W		14.11.1994
80-43-3	80433	1102	Dicumylperoxid	2	W		23.11.1994
110-05-4	110054	1103	Di-tert. Butylperoxid	1	W		14.11.1994
3006-82-4	3006824	1104	tertButyl-2-ethylperoxyhexanoat	2	W		23.12.1996
614-45-9	614459	1105	tertButylperbenzoat	2	W		23.12.1996
75-91-2	75912	1106	tertButylhydroperoxid	3	W		14.11.1994
53220-22-7	53220227	1107	Dimyristylperoxydicarbonat	1	W		02.04.1997
1338-23-4	1338234	1108	Methylethylketonperoxid	1	W	17	18.02.1998
78-18-2	78182	1109	1-Hydroxy-1-hydroxyperoxy-dicyclohexylperoxid	1	W		14.11.1994
133-14-2	133142	1110	Bis-(2,4-dichlorbenzoyl)peroxid	2	W		20.09.1994
		1111	[Phenylenbis(1-methylethyliden)]-bis(1,1-	1	W		20.09.1994
25155-25-3	25155253		dimethylethyl)peroxid				
98-56-6	98566	1112	p-Chlorbenzotrifluorid	2	W		26.10.1994
60-80-0	60800	1113	Phenazon	1	W		20.09.1994
76-14-2	76142	1114	1,1,2,2-Tetrafluor-1,2-dichlorethan	1	W		20.09.1994
76-15-3	76153	1115	Chlorpentafluorethan	1	W		23.11.1994
21368-68-3	21368683	1116	Kampfer	1	W		20.09.1994
79-36-7	79367	1117	Dichloracetylchlorid	1	W		23.11.1994
90-04-0	90040	1118	2-Anisidin	3	W		02.11.1994
94-09-7	94097	1119	4-Aminobenzoesäureethylester	2	W		20.09.1994
97-00-7	97007	1120	1-Chlor-2.4-dinitrobenzol	2	W		07.11.1994
97-36-9	97369	1121	2',4'-Dimethylacetoacetanilid	1	W		20.09.1994
98-08-8	98088	1122	Trifluormethylbenzol	1	W		26.10.1994
30 00 0	30000	1123	3-Trifluormethylanilin	2	W		31,10,1994
98-16-8	98168			_			
100-02-7	100027	1124	4-Nitrophenol	2	W		07.11.1994
102-01-2	102012	1125	Acetoacetanilid	1	W		20.09.1994
		1126	3,4-Dichlorphenylisocyanat	2	W		20.09.1994
102-36-3	102363						
104-15-4	104154	1127	4-Toluolsulfonsäure	1	W		20.09.1994
104-94-9	104949	1128	4-Anisidin	2	W		02.11.1994
105-39-5	105395	1129	Chloressigsäureethylester	2	W		07.11.1994
107-22-2	107222	1130	Glyoxal	1	W		14.11.1994
110-44-1	110441	1131	Sorbinsäure	1	W	14	10.05.1999
58-95-7	58957	1132	D,L-alpha-Tocopherolacetat	1	W	14	10.05.1999
60-12-8	60128	1133	Phenylethanol	1	W		20.09.1994
67-48-1	67481	1134	Cholinchlorid	1	W		20.09.1994
78-70-6	78706	1135	Linalool	1	W		09.11.1994
78-84-2	78842	1136	Isobutyraldehyd	1	W		14.11.1994
78-96-6	78966	1137	Isopropanolamin	1	W		24.10.1994
79-22-1	79221	1138	Chlorameisensäuremethylester	2	W		20.09.1994
79-31-2	79312	1139	Isobuttersäure	1	W		07.11.1994
87-56-9	87569	1140	Mucochlorsäure	2	W		07.11.1994
88-12-0	88120	1141	Vinylpyrrolidon	3	W		16.05.1995
96-31-1	96311	1142	N,N'-Dimethylharnstoff	1	W		14.11.1994
98-40-8	98408	1143	3-Ethylamino-p-toluolsulfonsäure	1	W		20.09.1994
98-94-2	98942	1144	N.N-Dimethylcyclohexylamin	1	W		24.10.1994
107-86-8	107868	1145	3-Methyl-2-butenal	2	W		14.11.1994
109-53-5	109535	1146	Vinvlisobutvlether	1	W		14.11.1994
110.40.6	110496	1147	Ethylenglycolmonomethyletheracetat	1	W		06.08.1997
110 64 5	110430	1148	1 4-Butendiol	1	w		26 10 1994
110-64-5	110645	1140	1 4-Butindiol	2	W		26 10 1994
110-65-6	110656	1150	2 Mothyl 2 buton 2 ol	1	VV \\/		00 11 1004
115-18-4	115184	1150	2-Methyl-3-buten-2-01	1	VV \\\/		09.11.1994
115-19-5	115195	1151			VV		09.11.1994
121-69-7	121697	1152		2	VV		31.10.1994
123-05-7	123057	1153			VV		14.11.1994
122-20-3	122203	1154		1	VV		24.10.1994
124-41-4	124414	1155	INatriummethylat	1	W		23.11.1994
127-68-4	127684	1156	3-Nitrobenzolsulfonsäure, Natriumsalz	1	W		07.11.1994
140-01-2	140012	1157	Diethylentriaminpentaessigsäure, Natriumsalz	2	W		14.11.1994
556-82-1	556821	1158	3-Methyl-2-buten-1-ol	1	W		09.11.1994
700-13-0	700130	1159	2,3,6-Trimethylhydrochinon	2	W		09.11.1994
760-67-8	760678	1160	2-Ethylhexansäurechlorid	1	W		20.09.1994
763-32-6	763326	1161	3-Methyl-3-buten-1-ol	1	W		09.11.1994

		Index					Data da
CAS	CAS	number	Substâncias (em alemão)	WGK		Notas	classificação
928-68-7	928687	1162	6-Methyl-2-heptanon	1	W		14.11.1994
1115-20-4	1115204	1163	Hydroxypivalinsäureneopentylglycolester	1	W		07.11.1994
1570-64-5	1570645	1164	4-Chlor-2-methylphenol	2	W		09.11.1994
1698-53-9	1698539	1165	4,5-Dichlor-2-phenyl-3(2H)pyridazinon	2	W		20.09.1994
		1166	4,5-Dihydroxy-1,3-bis-(hydroxymethyl)-2-	1	W		20.09.1994
1854-26-8	1854268	1107	imidazolidinon	4	14/		00.00.100.1
2186-92-7	2186927	1167	Anisaidenyddimetnylacetai	1	VV		20.09.1994
6104-30-9	6104309	1168	Isobutylidendinarnstoff	1	W		14.11.1994
7631-90-5	7631905	1169	Natriumdisulfit	1	W		20.09.1994
7775-14-6	7775146	11/0	Natriumdithionit	1	W		20.09.1994
13952-84-6	13952846	11/1	2-Aminobutan	2	W		24.10.1994
27458-92-0	27458920	1172	Isotridecanol	2	W		09.11.1994
5392-40-5	5392405	1173	Citral	1	W		14.11.1994
18479-49-7	18479497	1174	6,7-Dihydrolinalool	1	W		09.11.1994
29171-20-8	29171208	1175	2-Dehydrolinalool	1	W		09.11.1994
94-74-6	94746	1176	2-Methyl-4-chlorphenoxyessigsäure	2	W		07.11.1994
94-75-7	94757	1177	2,4-Dichlorphenoxyessigsäure	2	W		07.11.1994
120-36-5	120365	1178	2-(2,4-Dichlorphenoxy)-propionsäure	2	W		07.11.1994
149-57-5	149575	1179	2-Ethylhexansäure	1	W		20.09.1994
533-74-4	533744	1180	Dazomet	3	W		20.09.1994
872-50-4	872504	1181	N-Methylpyrrolidon	1	W		20.09.1994
74-86-2	74862	1182	Acetylen	nwg	W		20.09.1994
78-59-1	78591	1183	Isophoron	2	W		18.02.1999
84-69-5	84695	1184	Phthalsäurediisobutylester	2	W		07.11.1994
98-51-1	98511	1185	4-tert.Butyltoluol	2	W		20.09.1994
98-52-2	98522	1186	4-tert.Butylcyclohexanol	1	W		20.09.1994
98-54-4	98544	1187	4-tert.Butylphenol	2	W		09.11.1994
105-53-3	105533	1188	Malonsäurediethylester	1	W		20.09.1994
105-76-0	105760	1189	Maleinsäuredi-n-butylester	1	W		07.11.1994
109-69-3	109693	1190	1-Chlorbutan	2	W		20.09.1994
110-17-8	110178	1191	Fumarsäure	1	W		07.11.1994
111-85-3	111853	1192	1-Chloroctan	2	W		20.09.1994
115-11-7	115117	1193	2-Methyl-1-propen	nwg	W		20.09.1994
119-64-2	119642	1194	Tetrahydronaphthalin	2	W		09.11.1994
122-51-0	122510	1195	ortho-Ameisensäuretriethylester	1	W		20.09.1994
563-47-3	563473	1196	Methallylchlorid	2	W		26.10.1994
693-23-2	693232	1197	1,12-Dodecandisäure	nwg	W		07.11.1994
830-13-7	830137	1198	Cyclododecanon	1	W		14.11.1994
947-04-6	947046	1199	Laurinlactam	1	W		14.11.1994
1634-04-4	1634044	1200	Methyl-tert.butylether	1	W		14.11.1994
1724-39-6	1724396	1201	Cyclododecanol	1	W		02.04.1997
2855-13-2	2855132	1202	Isophorondiamin	1	W		24.10.1994
4098-71-9	4098719	1203	Isophorondiisocyanat	2	W		20.09.1994
27070-59-3	27070593	1204	1,5,9-Cyclododecatrien	2	W		09.11.1994
11081-15-5	11081155	1205	Isooctylphenol	2	W		09.11.1994
96-10-6	96106	1206	Aluminiumdiethylmonochlorid	1	W		23.11.1994
12075-68-2	12075682	1207	Aluminiumethylsesquichlorid	1	W		23.11.1994
103-90-2	103902	1208	Paracetamol	1	W		14.11.1994
7758-29-4	7758294	1209	Pentanatriumtriphosphat	1	W		20.09.1994
61-82-5	61825	1210	Amitrol	2	W		20.09.1994
77-99-6	77996	1211	Trimethylolpropan	1	W		26.10.1994
78-42-2	78422	1212	Phosphorsäuretris-(2-ethylhexyl)-ester	2	W		20.09.1994
81-11-8	81118	1213	4,4'-Diaminostilben-2,2'-disulfonsäure	1	W		20.09.1994
81-16-3	81163	1214	2-Naphthylamin-1-sulfonsäure	1	W		20.09.1994
82-45-1	82451	1215	1-Aminoanthrachinon	1	W		20.09.1994
83-56-7	83567	1216	1,5-Naphthalindiol	2	W		20.09.1994
84-65-1	84651	1217	Anthrachinon	1	W		20.09.1994
86-57-7	86577	1218	1-Nitronaphthalin	2	W		20.09.1994
87-02-5	87025	1219	7-Amino-4-hydroxy-2-naphthalinsulfonsäure	1	W		20.09.1994
89-83-8	89838	1220	Thymol	2	W		09.11.1994
90-51-7	90517	1221	6-Amino-4-hydroxy-2-naphthalinsulfonsäure	1	W		20.09.1994
92-88-6	92886	1222	4.4'-Dihydroxybiphenvl	2	W		28.10.1998
95-48-7	95487	1223	o-Kresol	2	W		09.11.1994
95_72_8	95728	1224	2.4-Dichlortoluol	2	W		20.09.1994
98_87_9	98873	1225	Benzalchlorid	3	W		04.12.1994
101-82-7	101837	1226	Dicyclohexylamin	2	W		20.09 1994
102-00 0	102000	1227	Diphenvlcarbonat	1	W		20.09.1994
103-70-8	102030	1228	N-Phenylformamid	2	W		20.09.1994

		Index					Data da
CAS	CAS	number	Substâncias (em alemão)	WGK		Notas	classificação
106-31-0	106310	1229	n-Buttersäureanhydrid	1	W		23.11.1994
107-66-4	107664	1230	Phosphorsäuredi-n-butylester	1	W		20.09.1994
111-40-0	111400	1231	Diethylentriamin	2	W		24.10.1994
115-86-6	115866	1232	Phosphorsäuretriphenylester	2	W		26.10.1994
118-69-4	118694	1233	2,6-Dichlortoluol	2	W		20.09.1994
121-45-9	121459	1234	Phosphorigsäuretrimethylester	1	W		31.10.1994
123-62-6	123626	1235	Propionsäureanhydrid	1	W		23.11.1994
298-07-7	298077	1236	Phosphorsäurebis-(2-ethylhexyl)-ester	1	W		26.10.1994
544-17-2	544172	1237	Calciumformiat	1	W		23.11.1994
011112	011112	1238	7-Hvdroxy-1.3-naphthalindisulfonsäure. Dikaliumsalz	1	W		20.09.1994
842-18-2	842182		, , , , , , , , , , , , , , , , , , , 				
1241-94-7	1241947	1239	Phosphorsäure-2-ethylhexyldiphenylester	2	W		26.10.1994
1330-78-5	1330785	1240	Phosphorsäuretrikresylester	2	W		26.10.1994
3982-91-0	3982910	1241	Thiophosphorylchlorid	2	W		23.11.1994
0002 01 0	0002010	1242	4-Amino-5-hvdroxv-2.7-naphthalindisulfonsäure.	1	W		20.09.1994
1300511	1300511		Mononatriumsalz	-			
		1243	4,4'-Diaminostilben-2,2'-disulfonsäure, Dinatriumsalz	1	W		20.09.1994
7336-20-1	7336201						
2125597	2125597	1244	Thionylchlorid	1	W		23.11.1994
2125683	2125683	1245	Phosphortrichlorid	1	W		23.11.1994
15206-55-0	15206550	1246	alpha-Oxophenylessigsäuremethylester	1	W		07.11.1994
24549-06-2	24549062	1247	2-Ethyl-6-methylanilin	2	W		20.09.1994
26444 40 5	26444405	1248	Phosphorsäurediphenvlkresvlester	2	W		26 10 1994
20744-49-0	20444490	1249	4 4'-Dinitrostilbene-2 2'-disulfonsäure Dikaliumsalz	1	W		20 09 1994
78447-91-3	78447913	1273	., . Emiliouno E, E ulgunonsaure, Dikanumsaiz		••		20.00.1004
91082-29-0	91082290	1250	n-Alkansulfochloride (C10-21)	1	W		20.09.1994
70.20.0	702230	1251	Methacrylamid	1	W		20 09 1994
79-39-0	79390	1252	Methacrylsäure	1	W		07 11 1994
79-41-4	79414	1252	Methaerylsäureisebutylester	1	W/		20.00.1004
97-86-9	97869	1255	Methoende europe en butdeeter	1	VV \\\/		20.09.1994
97-88-1	97881	1254	Methacryisaure-n-butylester	1	VV		20.09.1994
868-77-9	868779	1255	Methacrylsaure-2-hydroxyethylester	1	VV		20.09.1994
27813-02-1	27813021	1256	Methacrylsäurehydroxypropylester	1	W		20.09.1994
2867-47-2	2867472	1257	Methacrylsäure-2-(dimethylamino)ethylester	1	W		20.09.1994
111-96-6	111966	1258	Bis-(2-methoxyethyl)ether	1	W		14.11.1994
112-18-5	112185	1259	Dodecyldimethylamin	2	W		20.09.1994
121-86-8	121868	1260	2-Chlor-4-nitrotoluol	2	W		07.11.1994
121-87-9	121879	1261	2-Chlor-4-nitroanilin	2	W		02.11.1994
124-17-4	124174	1262	2-(2-Butoxyethoxy)ethylacetat	1	W		21.10.1997
135-19-3	135193	1263	2-Naphthol	2	W		09.11.1994
100-19-0	100100	1264	4 4'-Methylenbis-(methylimino)-bis-(1 2-dihydro-1 5-	1	W		20 09 1994
810-16-2	810162		dimethyl-2-phenyl)-3H-pyrazol-3-on	•			2010011001
5216-25-1	5216251	1265	p-Chlorbenzotrichlorid	3	W		17.09.1998
5329-14-6	5329146	1266	Sulfamidsäure	1	W		20.09.1994
7646-78-8	7646788	1267	Zinntetrachlorid	1	W		25 08 1997
10540 57.4	10540700	1268	N N'-Ethylenbis-(N-acetylacetamid)	1	W		14 11 1994
10543-57-4	10543574	1260	Phoephoneäuro	1	\v/		20.00.1004
13598-36-2	13598362	1203		1	10/		20.09.1994
2/3/5-52-6	2/3/5526	1270		1	VV \\\/		20.09.1994
31027-31-3	3102/313	1070	p-isopropyiphenyiisocyanat	0	VV \\/		20.09.1994
124-30-1	124301	12/2		2	VV		20.09.1994
125-12-2	125122	12/3	Essigsaureisobornyiester		VV		20.09.1994
611-06-3	611063	12/4	I,3-UICRIOT-4-NITODENZOI	3	VV		07.11.1994
2720-73-2	2720732	1275	Kallum-O-pentyldithiocarbonat	3	W		31.05.1994
5567-15-7	5567157	1276	Pigmentgelb 83	1	W	16	01.08.1997
26896-18-4	26896184	1277	Isononansäure	1	W		02.11.1999
61790-28-1	61790281	1278	Talgnitril	2	W		23.11.1994
3039-83-6	3039836	1279	Natriumethylensulfonat	1	W	15	21.04.1999
7782-92-5	7782925	1280	Natriumamid	2	W		23.11.1994
868-85-9	868859	1281	Phosphonsäuredimethylester	1	W		26.10.1994
18691-97-9	18691979	1282	Methabenzthiazuron	2	W		20.09.1994
2243-62-1	2243621	1283	1,5-Naphthylendiamin	2	W		20.09.1994
532-32-1	532321	1284	Natriumbenzoat	1	W		20.09.1994
78-79-5	78795	1285	2-Methyl-1,3-butadien	1	W		09.11.1994
96-18 0	96/80	1286	gamma-Butyrolacton	1	W		28,09,1994
674 00 0	674000	1287	Diketen	1	w		20.09.1001
0/4-02-0	0/4828	1207	Diethylethanolamin	1	10/		24 10 1004
100-37-8	100378	1200			VV \A/		24.10.1994
127-19-5	127195	1289			VV		14.11.1994
616-45-5	616455	1290	2-Pyrrolldon	1	VV		20.09.1994
25339-17-7	25339177	1291	Isodecanol	1	W		09.11.1994
108-22-5	108225	1292	Essigsäureisopropenylester	1	W		20.09.1994
13601-19-9	13601199	1293	Natriumhexacyanoferrat (II)	2	W		27.10.1998

		Index					Data da
CAS	CAS	number	Substâncias (em alemão)	WGK		Notas	classificação
330-54-1	330541	1294	Diuron	3	W		15.10.1998
28553-12-0	28553120	1295	Phthalsäurediisononylester	1	W		02.08.2000
110-94-1	110941	1296	Glutarsäure	1	W		20.09.1994
112-24-3	112243	1297	Triethylentetramin	2	W		24.10.1994
12071-83-9	12071839	1298	Propineb	2	W		20.09.1994
91-22-5	91225	1299	Chinolin	2	W		20.09.1994
16872-11-0	16872110	1300	Tetrafluoroborsäure	1	W		20.09.1994
133-49-3	133493	1301	Pentachlorthiophenol	3	W		20.09.1994
103-71-9	103719	1302	Phenylisocyanat	2	W		20.09.1994
99-96-7	99967	1303	4-Hydroxybenzoesäure	1	W		07.11.1994
75-44-5	75445	1304	Phosgen	2	W		23.11.1994
43121-43-3	43121433	1305	Triadimeton	2	W		20.09.1994
37971-36-1	37971361	1306	2-Phosphonobutan-1,2,4-tricarbonsaure	1	W		31.10.1994
55219-65-3	55219653	1307		2	W		20.09.1994
80-05-7	80057	1308	Diphenylolpropan	2	W		24.11.1999
92-52-4	92524	1309	Diphenyl	2	W		09.11.1994
90-43-7	90437	1310	2-Phenylphenol	2	W		09.11.1994
95-94-3	95943	1311	1,2,4,5-Tetrachlorbenzol	3	W		26.10.1994
108-45-2	108452	1312	m-Phenylendiamin	2	W		02.11.1994
07001 04 0	07001040	1313	Fettsäuren, C8-10, Trimethylolpropan-	1	W		20.09.1994
9/281-24-8	97281248	121/	Neopentylgiykolester	1	\M/		05 08 1998
1040.00.0	1040003	1315	Kieselsäure, Marinum-Salz	nwa	W		23 11 1994
1343-88-0	1343880	1316	Kieselsäure, Kalium-Salz	1	W		23.11.1994
1312-76-1	1312/61	1317		2	W		23.11.1994
139-96-8	139968	1318	2.2.4-Trimethyl-1.2-dibydrochinolin_polymer	2	W		20.00.100/
26780-96-1	26780961	1319	Essigsäure-2-ethylbevylester	2	W		20.09.1994
103-09-3	103093	1320	Ligningulfonsäure Natrium-Salz	1	W		20.09.1994
4070.00.0	4070000	1321	Benzothiazyl-2-dicyclobeyylsulfenamid	2	Ŵ		20.09.1994
4979-32-2	4979322	1322	Dibenzothiazyl-2-disulfid	2	W		20.09.1994
120-78-5	120785	1322	n-Phonetidin	1	W		20.09.1994
156-43-4	156434	1324	6-Aminopenicillansäure	2	W		20.09.1994
001 49 6	551166	1325	Maleinsäuredimethylester	1	Ŵ		20.09.1994
1055 00 4	1055004	1326	Nanhthalin-1 5-disulfonsäure Dinatriumsalz	1	W		20.09.1994
68187-82-6	68187826	1327	Fischöl bisulfitiert	1	W	11	04 08 1997
1591885	1591885	1328	Bromaminsäure, Natriumsalz	1	Ŵ		20.09.1994
13775-53-6	13775536	1329	Kryolith	1	W		20.09.1994
123-39-7	123397	1330	N-Methylformamid	1	W		14.11.1994
1604-26-8	1604268	1331	Hydrodehydrolinalool	2	W		09.11.1994
10058-23-8	10058238	1332	Kaliumperoxomonosulfat	1	W		23.11.1994
10332-33-9	10332339	1333	Natriumperborat	1	W		20.09.1994
27176-87-0	27176870	1334	Alkyl(C10-16)-benzolsulfonsäure, linear	2	W		23.11.1994
6864-37-5	6864375	1335	Dimethyldicycan	3	W		24.10.1994
101-72-4	101724	1336	N-Phenyl-N'-isopropyl-1,4-phenylendiamin	3	W		20.09.1994
102-06-7	102067	1337	N,N'-Diphenylguanidin	2	W		14.11.1994
110-63-4	110634	1338	1,4-Butandiol	1	W	14	10.05.1999
147-14-8	147148	1339	Kupferphthalocyanin	nwg	W		20.09.1994
91-66-7	91667	1340	N,N-Diethylanilin	2	W		31.10.1994
288-88-0	288880	1341	1,2,4- Triazol	2	W		20.09.1994
3323-53-3	3323533	1342	Adıpınsäure-Hexamethylendiaminsalz	1	W		20.09.1994
74-82-8	74828	1343	Methan	nwg	W		20.09.1994
1302-42-7	1302427	1344	Natriumaluminat	1	W		23.11.1994
1317-70-0	1317700	1345	Titandioxid	nwg	W		20.09.1994
1344-28-1	1344281	1346	Aluminiumoxid	nwg	W		23.11.1994
3251-23-8	3251238	1347	Nupler(II)-nitrat	2	VV		23.11.1994
7440-37-1	7440371	1348	Argon	nwg	VV		20.09.1994
7440-66-6	7440666	1349		nwg	VV		20.09.1994
7727-21-1	7727211	1350	Naliumperoxoolsullat	1	VV M/		23.11.1994
//27-37-9	//27379	1351	Silonsion Natriumperevediculfet	⊓wg ⊣	VV \\/		20.09.1994
///5-27-1	///5271	1002	Nathaniperoxouisuliat	1	VV \\/	14	10.05.1000
100 77 0	100770	1354	1.1'-Azobiscarbamid	1	W	14	20.09 1994
120-17-0	12/10/	1355	Hexamethylendiamin	1	W		20.09.1994
590-26-2	590262	1356	Isovaleraldehvd	1	W		14.11.1994
917_61_2	917612	1357	Natriumcvanat	1	W		20.09.1994
1738-25-6	1738256	1358	3-Dimethylaminopropionsäurenitril	1	W		14.11.1994
68515-43-5	68515435	1359	Phthalsäure-(C9/11)-dialkylester	1	Ŵ		23.11.1994
353-59-3	353593	1360	Bromchlordifluormethan	nwg	W		20.09.1994
90193-76-3	90193763	1361	Phthalsäuredi-(C16/18)-alkylester	1	w	14	10.05.1999

		Index					Data da
CAS	CAS	number	Substâncias (em alemão)	WGK		Notas	classificação
84649-84-3	84649843	1362	N,N-Dimethyl-C12/14-alkylamin	2	W		20.09.1994
104074 10 0	104074400	1363	Alkylpolyglycoside (mit 1-2 Glucoseeinheiten;	1	W		10.03.1995
104074-19-3	104074193	1264	Alkylrest: C8-C16)	1	۱۸/		22 11 100/
15630-89-4	15630894	1365	2.3-Epoxypropyl-N N N-trimethylammoniumchlorid	3	W/		07 07 1994
3033-77-0	3033770	1000		5	**		07.07.1333
28348-53-0	28348530	1366	Natriumcumolsulfonat	1	W		03.12.1997
108-68-9	108689	1367	3,5-Dimethylphenol	2	W		09.11.1994
59-67-6	59676	1368	Nicotinsäure	1	W		03.12.1997
74-94-2	74942	1369	Dimethylaminoboran	2	W		28.05.1996
78-27-3	78273	1370	1-Ethin-1-cyclohexanol	1	W		03.12.1997
79-21-0	79210	1371	Peroxyessigsäure	2	W		17.09.1998
83-67-0	83670	1372	Theobromin	1	W		03.12.1997
84-51-5	84515	1373	2-Ethylanthrachinon	1	W		03.09.1997
85-43-8	85438	1374	Tetrahydrophthalsäureanhydrid	1	W		03.12.1997
89-50-9	89509	1375	2-Ethylaminobenzoesäure	1	W		03.12.1997
95-16-9	95169	1376	Benzothiazol	2	W		30.06.1997
104-12-1	104121	1377	4-Chlorphenylisocyanat	3	W		18.02.1999
106-92-3	106923	1378	Allyl-2,3-epoxypropylether	3	W		16.05.1995
109-83-1	109831	1379	2-Methylaminoethanol	1	W		16.05.1995
109-87-5	109875	1380	Dimethoxymethan	1	W		17.07.1997
115-95-7	115957	1381	Linalylacetat	1	W		30.08.1995
118-12-7	118127	1382	1,3,3-Trimethyl-2-methylenindol	2	W		30.06.1997
118-82-1	118821	1383	4, 4'-Methylen-bis(2,6-di-tertbutylphenol)	1	W		14.05.1997
119-40-4	119404	1384	7-Anilino-4-hydroxynaphthalin-2-sulfonsäure	2	W		30.10.1996
120-07-0	120070	1385	N,N-Di(2-hydroxyethyl)anilin	2	W		16.05.1995
121-72-2	121722	1386	N,N-Dimethyl-m-toluidin	2	W		30.06.1997
137-08-6	137086	1387	Calcium-D-pantothenat	1	W	14	10.05.1999
141-98-0	141980	1388	Ethylthiocarbaminsäure-O-isopropylester	2	W		18.02.1999
320-60-5	320605	1389	2,4-Dichlorbenzotrifluorid	2	W		30.08.1995
402-42-6	402426	1390	p-Fluorbenzotrichlorid	2	W		11.11.1997
599-04-2	599042	1391	Pantolacton	1	W		03.12.1997
613-93-4	613934	1392	N-Methylbenzamid	1	W		03.12.1997
629-11-8	629118	1394	I,6-Hexandioi	1	W	14	10.05.1999
629-40-3	629403	1395		1	W/		30.08.1995
6520 57 7	6520577	1397	D I -4-(2-Amino-1-hydroxy-propyl)-1 2-benzoldiol	2	Ŵ		18 09 1998
836-30-6	836306	1398	4-Nitro-N-phenylanilin	3	Ŵ		02.07.1997
1079-66-9	1079669	1399	Diphenylphosphinchlorid	2	W		15.05.1995
1116-76-3	1116763	1400	Trioctylamin	2	W		30.06.1997
1317-38-0	1317380	1401	Kupfer(II)-oxid	1	W		30.06.1997
100-09-4	100094	1402	p-Anissäure	1	W		30.10.1996
1640-39-7	1640397	1403	2,3,3-Trimethylindol	1	W		09.06.1997
1668-54-8	1668548	1404	2-Amino-4-methoxy-6-methyl-s-triazin	1	W		30.06.1997
140102	140102	1405	2-Hydroxy-1-naphthoesäure	2	W		30.06.1997
		1406	4-Aminoazobenzol-3,4'-disulfonsäure, Dinatriumsalz	1	W		10.07.1997
2706-28-7	2706287		· · · · · · · · · · · · · · · · · · ·				
0001 00 0	0001000	1407	N,N-Dimethyl-n-octadecyl-(2-hydroxy-3-chlorpropyl)-	3	W		21.08.1997
3069 00 6	3069006	1408	1.2.4-Butantriol	1	W		15.05 1995
3060 42 0	3060420	1409	Octadecyltrimethoxysilan	1	w		04.12.1997
2706 70 1	2706701	1410	Geranylaceton	2	W		06.02.1997
3825-26 1	3825261	1411	Perfluoroctansäure, Ammoniumsalz	2	W		26.06.1997
4162 60 4	4162604	1412	Beta-D-Galactosepentaacetat	1	Ŵ		06.02.1997
932952	932952	1413	2-Methoxy-2.3-dihydro-4H-pyran	1	Ŵ		18.03.1996
5246-57-1	5246571	1414	3-Aminophenylhydroxyethylsulfon	2	W		30.08.1995
1667401	1667401	1415	N-(4-Aminophenyl)-carbaminsäuremethylester	2	W		30.08.1995
7235-40-7	7235407	1416	ß-Carotin	1	W	14	10.05.1999
13821-08-4	13821084	1417	Calciumhexacyanoferrat (II)	2	W		04.12.1995
		1418	4-Ethyl-3-(2-methoxy-5-chlorbenzamido)-	1	W		28.05.1996
16673-34-0	16673340	1 1 1 0	benzolsulfonamid				04.40.4005
25062-49-1	25062491	1419	reusauren CT6/T8-Triethylengiykoldiester	nwg	VV		04.12.1995
25618-55-7	25618557	1420		1	VV		21.11.1997
30525-89-4	30525894	1422	Paraiorinaldenyd	2	VV W		10.00.1007
2724-58-5	2724585	1423	ISUSICATITISAUTE	riwg	VV \\/		12.02.1997
41859-67-0	41859670	1424	Dezaliural	1	VV M/		17.00.1000
54384-48-4	54384484	1425		4	VV \\/	14	10.05.1998
5/400-3/-0	0/4003/0	1420	N.N'-Bis(2,2,6,6-tetramethyl-4-nineridinyl)-1 6-	2	W	14	14.03 1999
61260-55-7	61260557		hexandiamin	-			11.00.1007

		Index					Data da
CAS	CAS	number	Substâncias (em alemão)	WGK		Notas	classificação
63589-25-3	63589253	1428	6-Nitro-1-diazo-2-naphthol-4-sulfonsäure	2	W		04.12.1995
		1429	Siliciumdioxid, mit Hexamethyldisilazan	nwg	W		21.07.1997
68909-20-6	68909206		oberflächenbehandelt, hydrophob				
68910-45-2	68910452	1430	Chloralkansulfonsäure, Na-Salz	3	W		25.07.1997
69430-36-0	69430360	1431	Proteinhydrolysat	1	W		18.02.1999
84087-01-4	84087014	1432	3,7-Dichlorchinolin-8-carbonsäure	2	W		30.06.1997
84753-04-8	84753048	1433	9,10-Dihydroxystearinsäure, Ammoniumsalz	1	W		12.02.1997
84901-27-9	84901279	1434	3-Triethoxysilylpropyl-trimethylammoniumchlorid	1	W		04.12.1997
		1435	Fettsäuren, C16-18 und C18 ungesättigt,	nwg	W		15.07.1997
84988-79-4	84988794		Isobutylester				
85006-31-1	85006311	1436	3-Amino-2-carbomethoxy-4-methylthiophen	2	W		21.08.1997
86329-79-5	86329795	1437	Cefodizim-Dinatriumsalz	2	W		22.10.1997
2582-30-1	2582301	1440	Aminoguanidinbicarbonat	2	W		17.11.1994
540-72-7	540727	1441	Natriumthiocyanat	1	W		10.11.1997
1762-95-4	1762954	1442	Ammoniumthiocyanat	1	W		10.11.1997
		1443	Metalle, soweit sie fest sind, nicht in kolloidaler	nwg	W		12.05.1999
			Lösung vorliegen und nicht mit Wasser oder	Ŭ			
7429-90-5	7429905		Luftsauerstoff reagieren				
24650-42-8	24650428	1444	Benzildimethylketal	2	W		22.09.1995
4559-70-0	4559700	1445	Diphenylphosphinoxid	2	W		15.05.1995
#N/D	#N/D	1447	Orinoco-Naturbitumen (emulgiert)	1	W		22.08.1997
288-32-4	288324	1448	1H-Imidazol	1	W		28.05.1996
29385-43-1	29385431	1449	Methyl-1H-benzotriazol	2	W		18.03.1996
3034-79-5	3034795	1450	Di-(2-methylbenzoyl)-peroxid	1	w		18.09.1998
0004-79-0	0004790	1451	Didecanovlperoxid	. 1	w		08 08 2000
U 700.40.0	0	1/50	Dioctanovlperoxid	1	\w/		04 12 1007
/62-16-3	/62163	1402		1	VV	01	04.12.1997
3851-87-4	3851874	1453	1.4 Di (tort, butylnorovy/conropyl) bonzol	1	VV \\\/	21	21.09.1998
2/81-00-2	2/81002	1404	1,4-DI-(left:-butyiperoxyisopropyi)-berizor		VV		10,00,1000
3457-61-2	3457612	1455	tertButyicumyiperoxid	2	VV		18.09.1998
78-63-7	78637	1456	2,5-DI-(tertbutylperoxy)-2,5-dimethylhexan	1	VV		04.12.1997
10050 00 0	10050000	1458	2,5-Di-(2-ethylhexanoyl-peroxy)-2,5-dimethylhexan	2	W	21	11.06.1997
13052-09-0	13052090	1450	taut. Dutula avagu da akutuwat	0	14/	01	11.00 1007
109-13-7	109137	1459	tertButylperoxylsobutyrat	2	VV W	21	11.06.1997
26/48-41-4	26/48414	1460		2	VV	01	23.09.1996
107-71-1	107711	1461	tertButylperoxyacetat	2	VV W	21	11.06.1997
13122-18-4	13122184	1403	tert. Butyleeroxy-3,3,5,-timethymexanoat	2	VV	01	23.09.1996
927-07-1	927071	1464	tertButylperoxypivalat	2	VV W	21	23.09.1998
29240-17-3	202/0173	1465	tert - Amylperoxynivalat	2	 /	21	23.09.1990
696 21 7	696217	1467	tert -Amylperoxy-2-ethylhexanoat	2	Ŵ	21	11 04 1997
000-31-7	000317	1/68	4-Hydroxy-2-methyl-pentyl-(2)-peroxypeodecanoat	2	W	21	24.00.1008
95718-78-8	95718788	1400		-		21	24.00.1000
51240-95-0	51240950	1469	2.4.4-Trimethylpentyl-2-peroxyneodecanoat	2	W	21	24.09.1998
26748-47-0	26748470	1470	Cumylperoxyneodecanoat	2	W	21	11.06.1997
4511-39-1	4511391	1472	tertAmylperbenzoat	2	W		11.04.1997
22313-62-8	22313628	1473	tertButylperoxy-2-methylbenzoat	2	W	21	24.09.1998
26322-14-5	26322145	1476	Dicetylperoxydicarbonat	1	W		02.10.1998
16111-62-9	16111629	1477	Di-(2-ethylhexyl)-peroxydicarbonat	2	W		18.09.1998
29730-06-1	29730061	1478	Methylcyclohexanonperoxid	1	W	23	25.09.1998
94-17-7	94177	1479	Di-(p-chlorbenzoyl)-peroxid	2	W		01.10.1998
461-96-1	461961	1480	1-Brom-3,5-difluorbenzol	2	W		02.04.1997
		1481	Phosphonsäuredialkylester (9-octadecenyl,	1	W		26.04.1996
64051-29-2	64051292		hexadecanyl)				
112-53-8	112538	1482	1-Dodecanol	1	W		25.05.1998
64787-97-9	64787979	1483	Melaminharz, sulfitmodifiziert	1	W		02.04.1997
156-54-7	156547	1485	Natriumbutyrat	1	W		18.03.1997
822-36-6	822366	1486	4-Methylimidazol	2	W		01.07.1997
#N/D	#N/D	1487	Diethylaminoethylcellulose	nwa	W		29.01.1997
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		1488	1-Methylethylbenzol, oxidiert. Polyphenylrückstände	1	w	14	10.05.1999
68333-89-1	68333891						
102-54-5	102545	1489	Ferrocen	2	W		18.02.1999
	1	1490	Paraffingatsche, hydriert, flüssig, nicht als	1	W		20.05.1998
92062-09-4	92062094		krebserzeugend (R45) gekennzeichnet				
37187-22-7	37187227	1491	Acetylacetonperoxid	1	W	26	18.09.1998
#N/D	#N/D	1492	Farbmittelzubereitungen, organische	2	W	25	24.04.1997
15520-11-3	15520113	1493	Di-(4-tertbutylcyclohexyl)-peroxydicarbonat	1	W		04.12.1997
105-64-6	105646	1494	Diisopropylperoxydicarbonat	1	W		04.12.1997
37206-20-5	37206205	1495	Methylisobutylketonperoxid	1	W	21	18.09.1998
		1500	2-Ethyl-4-methyl-1,3-dioxolan (cis/trans-Gemisch)	1	W	7	05.03.1997
1568-99-6	1568996	4551			,. <i>.</i>		01.01.1000
50-54-4	50544	1501	Chiniqinsulfat	1	W		21.04.1998
51-66-1	51661	1502	Acet-p-anisidin	1	W		21.04.1998
56-18-8	56188	1503	Dipropylentriamin	2	W		18.02.1998

		Index					Data da
CAS	CAS	number	Substâncias (em alemão)	WGK		Notas	classificação
59-30-3	59303	1504	Folsäure	1	W		07.04.1998
62-23-7	62237	1505	4-Nitrobenzoesäure	1	W		21.04.1998
64-04-0	64040	1506	2-Phenylethylamin	1	W		07.04.1998
66-25-1	66251	1507	Capronaldehyd	1	W		21.04.1998
70-55-3	70553	1508	p-Toluolsulfonamid	1	W		18.02.1998
75-12-7	75127	1509		1	W		18.02.1998
75-64-9	75649	1510	tertButylamin	1	W		18.02.1998
75-84-3	75843	1511		1	W		18.02.1998
75-98-9	75989	1512	Pivalinsaure	1	VV W		21.04.1998
76-37-9	76379	1513	2,2,3,3-Tetralluorpropariol-T	1	VV \\\\		19.02.1998
77-73-6	77736	1514	2 Methyl 1 poptin 2 ol	3	VV \\\\		20.02.1998
77-75-8	77758	1515	2.6 Dimethyl 6 estabol	1	VV \\/		19.02.1990
78-69-3	78693	1510	Chlorapotomid	2	VV \\/		19.02.1998
79-07-2	79072	1518	Nanhthalin-1 8-dicarbonsäureimid	1	W W		20.02.1990
81-83-4	81834	1510	heta-Nanhthochinaldin	2	W		19 02 1998
85-06-3	85063	1520	Hexabydrophthalsäureanbydrid	1	W		19.02.1998
80-42-7	80427	1520	2 6-Dimethylanilin	2	W		19.02.1998
87-62-7	87627	1522	2-Ethylbuttersäure	1	W		20.02.1998
00-09-5 99 17 5	99175	1523	2-Amino-1-trifluormethylbenzol	1	w		20.02.1998
88-18-6	88186	1524	2-tertButylphenol	2	Ŵ		20.02.1998
88-19-7	88107	1525	o-Toluolsulfonamid	2	W		26.02.1998
88-23-3	88233	1526	2-Amino-4-chlorphenol-6-sulfonsäure	2	W		23.02.1998
88-45-9	88459	1527	2.5-Diaminobenzolsulfonsäure	2	W		23.02.1998
88-52-8	88528	1528	2.4-Diamino-5-methylbenzolsulfonsäure	1	W		23.02.1998
88-53-9	88539	1529	1-Methyl-2-chlor-5-amino-4-benzolsulfonsäure	2	W		23.02.1998
88-60-8	88608	1530	2-tertButyl-5-methylphenol	2	W		23.02.1998
88-63-1	88631	1531	1,3-Phenylendiamin-4-sulfonsäure	2	W		23.02.1998
88-64-2	88642	1532	3-Aminoacetanilid-4-sulfonsäure	2	W		23.02.1998
88-66-4	88664	1533	1-Chlor-2-(dichlormethyl)-benzol	2	W		23.02.1998
88-68-6	88686	1534	2-Aminobenzamid	1	W		23.02.1998
89-56-5	89565	1535	2-Hydroxy-5-methyl-benzoesäure	1	W		23.02.1998
89-57-6	89576	1536	5-Aminosalicylsäure	2	W		31.10.1997
89-62-3	89623	1537	5-Nitro-4-amino-1-methylbenzol	2	W		23.02.1998
89-86-1	89861	1538	2,4-Dihydroxybenzoesäure	1	W		24.02.1998
90-93-7	90937	1539	4,4'-Bis-(diethylamino)-benzophenon	2	W		24.02.1998
91-68-9	91689	1540	3-Diethylaminophenol	2	W		24.02.1998
92-49-9	92499	1541	N-Chlorethyl-N-ethylanilin	2	W		23.02.1998
92-50-2	92502	1542	N-Hydroxyethyl-N-ethylanilin	2	W		23.02.1998
92-53-5	92535	1543	N-Phenylmorpholin	2	W		23.02.1998
92-59-1	92591	1544	N-Ethyl-N-benzylanilin	2	W		23.02.1998
93-00-5	93005	1545	2-Aminonaphthalin-6-sulfonsäure	1	W		23.02.1998
93-53-8	93538	1546	2-Phenylpropanal	1	W		23.02.1998
93-58-3	93583	1547	Benzoesauremethylester	1	W		23.02.1998
93-67-4	93674	1548	4-Chlor-2-aminodiphenylether	2	W		23.02.1998
93-90-3	93903	1549	IN-myaroxyetnyi-in-metnyianilin	2	VV		23.02.1998
94-60-0	94600	1050	I,4-Dimetriyinexariyoroterephthalat	1	VV \//		23.02.1998
94-68-8	94688	1551	2-Amino-1-ethovybenzol	ו ס	VV \\/		23 02 1000
94-70-2	94702	1552	2 4-Dichlorbenzylchlorid	2 2	W W		23.02.1330
94-99-5 OF 55 0	94995	1554	2-Aminophenol	2	W		24 02 1008
90-00-b	90000	1555	2-Methylbydrochinon	2	W		24 02 1990
90-/1-6	95/16	1556	3 4-Dichlortoluol	2	W		24 02 1990
95-75-0	90/00	1557	2-Amino-4-methylphenol	2	W		23.02.1998
96-20 7	95041	1558	Methylethylketoxim	1	W		23.02 1998
30-23-1 96-67 2	JULJ/ 06672	1559	2-Amino-4-nitrophenol-6-sulfonsäure	2	W		23.02 1998
96-78-6	96786	1560	4-Aminoacetanilid-3-sulfonsäure	1	W		23.02.1998
96-80-0	96800	1561	Diisopropylethanolamin	2	W		23.02.1998
97-20-1	97201	1562	Diethylmetanilsäure	1	W		23.02.1998
100-36-7	100367	1563	2-Diethylaminoethylamin	1	W		24.02.1998
100-49-2	100492	1564	Cyclohexylmethanol	1	W		24.02.1998
100-60-7	100607	1565	N-Methylcyclohexylamin	1	W		24.02.1998
100-64-1	100641	1566	Cyclohexanonoxim	1	W		24.02.1998
100-74-3	100743	1567	N-Ethylmorpholin	1	W		24.02.1998
100-97-0	100970	1568	Hexamethylentetramin	1	W	1	24.02.1998
101-37-1	101371	1569	Triallylcyanurat	2	W	1	24.02.1998
102-52-3	102523	1570	1,1,3,3-Tetramethoxypropan	2	W		24.02.1998
102-69-2	102692	1571	Tri-n-propylamin	2	W		24.02.1998

		Index					Data da
CAS	CAS	number	Substâncias (em alemão)	WGK		Notas	classificação
102-79-4	102794	15/2	Butylalethanolamin	1	W		24.02.1998
102-81-8	102818	15/3	Dibutylethanolamin	1			24.02.1998
103-28-6	103286	15/4	Benzylisobutyrat	1	<u></u>		24.02.1998
103-45-7	103457	15/5	2-Phenylethylacetat	1	<u>vv</u>		24.02.1998
103-67-3	103673	15/6	N-Methylbenzylamin	1	<u></u>		24.02.1998
103-83-3	103833	1577	N,N-Dimethylbenzylamin	2			24.02.1998
103-92-4	103924	15/8	I-Oxalyi-I,4-pnenyiendiamin	2			24.02.1998
104-38-1	104381	1579	Hydrocninon-bis(2-nydroxyetnyi)etner	1	<u></u>		24.02.1998
104-78-9	104789	1580	N-(3-Diethylaminopropyl)amin	1	<u></u>		24.02.1998
104-82-5	104825	1581	4-Metnyi-i-chiormetnyibenzoi	1	<u>vv</u>		25.02.1998
104-87-0	104870	1582	p-iolylaidenyd	1			25.02.1998
104-88-1	104881	1583	4-Chiorbenzaidenyd	2	<u></u>		25.02.1998
104-91-6	104916	1584	4-Nitrosophenoi	2	<u>vv</u>		25.02.1998
104-93-8	104938	1585	4-Methoxytoluol	1	VV		25.02.1998
105-13-5	105135	1580	4-Metroxybenzylakonol	1	VV		25.02.1998
105-38-4	105384	1587	Vinyipropional	1			25.02.1998
105-59-9	105599	1588		1			25.02.1998
106-20-7	106207	1589	Di-(2-ethylnexyl)amin	2	<u>vv</u>		25.02.1998
106-22-9	106229	1590	Citronelloi	1	<u>vv</u>		25.02.1998
106-23-0	106230	1591		1	VV		25.02.1998
106-44-5	106445	1592		2	VV		25.02.1998
106-48-9	106489	1593	4-Uniorphenol	2	VV		25.02.1998
106-50-3	106503	1594	p-rnenylendiamin	3	W		25.02.1998
106-63-8	106638	1595	Isobutylacrylat	2	W		25.02.1998
107-12-0	107120	1596	Propionitrii	1	W		25.02.1998
107-98-2	107982	1597	Methylproxitol	1	W		25.02.1998
108-16-7	108167	1598	N,N-Dimethylamino-2-propanol	1	W		25.02.1998
108-46-3	108463	1599	Resorcin	1	W		26.02.1998
108-77-0	108770	1600	Cyanurchlorid	1	W		26.02.1998
108-99-6	108996	1601	3-Methylpyridin	1	W		27.02.1998
109-01-3	109013	1602	N-Methylpiperazin	2	W		27.02.1998
109-06-8	109068	1603	2-Methylpyridin	1	W		27.02.1998
109-55-7	109557	1604	N,N-Dimethylpropylendiamin	2	W		27.02.1998
109-76-2	109762	1605	1,3-Diaminopropan	2	W		27.02.1998
109-92-2	109922	1606	Vinylethylether	1	W		27.02.1998
109-94-4	109944	1607	Ethylformiat	1	W		27.02.1998
110-27-0	110270	1608	Isopropylmyristat	nwg	W		27.02.1998
110-58-7	110587	1609	Pentylamin	1	W		02.03.1998
110-73-6	110736	1610	Monoethylethanolamin	1	W		02.03.1998
110-77-0	110770	1611	2-Ethylthioethanol	2			02.03.1998
110-78-1	110781	1612	n-Propylisocyanat	1	VV		02.03.1998
110-93-0	110930	1613	2-Methylhepten-2-on-6	1	VV		02.03.1998
110-95-2	110952	1614	I etramethylpropylendiamin	2	W		08.04.1998
111-26-2	111262	1615	n-Hexylamin	1	W		02.03.1998
111-29-5	111295	1616	1,5-Pentandiol	1			02.03.1998
111-41-1	111411	1617	Aminoethylethanolamin	1	VV		02.03.1998
111-75-1	111751	1618	Butyimonoethanolamin	1	W		02.03.1998
111-86-4	111864	1619		2	VV		02.03.1998
112-15-2	112152	1620		1	VV		02.03.1998
112-57-2	112572	1621	i etraetnylenpentamin	2	VV		02.03.1998
112-75-4	112754	1622		3	VV		02.03.1998
116-09-6	116096	1623	nyuruxyaceton	1	VV		02.03.1998
116-37-0	116370	1624	DISPITENCI-A-PROPOXYIAI	1	VV		02.03.1998
116-82-5	116825	1625		1	VV		02.03.1998
117-10-2	117102	1626	ו,א-טוחעמרסxyantnrachinon	1	VV		02.03.1998
118-36-5	118365	1627	2-riyuroxy-albenzoiuran-3-carbonsaure	2	VV		02.03.1998
118-41-2	118412	1628	3,4,5- I IIMEINOXYDENZOESAUI'E	1	VV		02.03.1998
118-44-5	118445	1629	IN-Etriyi-alpha-haphthylamin	2	VV		02.03.1998
118-46-7	118467	1630	I-Amino-7-naphthol	2	VV		02.03.1998
110-10-7	110107	1631	4-Hydroxy-6-(pnenylamino)-naphthalin-2-sulfonsäure	2	VV		02.03.1998
110-00 0	110000	1632	2-Ethylamino-5-sulfobenzoesäure	2	W		02 03 1998
110.00.0	110000	1633	8-Amino-naphthalin-2-sulfonsäure	2	W		02 03 1998
110-22 /	110204	1634	3-Nitro-4-toluidin	- 1	W		19.06.1998
110-32-4	110225	1635	4-Methyl-2-nitrophenol	2	W		02.03.1998
110-10 6	110/06	1636	2-Cvclohexvlphenol	- 3	W		02.03 1998
110-42-0	110621	1637	N-Acetyl-N-methyl-p-phenylendiamin	1	W		02.03.1998
113-03-1	119031	1638	7-[(4-Amino)benzamido]-4-hvdroxvnaphthalin-2-	1	W		02.03 1998
119-77-7	119777		sulfonsäure				52.55.1555

		Index					Data da
CAS	CAS	number	Substâncias (em alemão)	WGK		Notas	classificação
119-79-9	119799	1639	5-Amino-naphthalin-2-sulfonsäure	1	W		02.03.1998
119-94-8	119948	1640	N-Ethyl-N-benzyl-m-toluidin	2	W		02.03.1998
120-00-3	120003	1641	2-Amino-5-benzoylaminohydrochinondiethylether	2	W		02.03.1998
120-21-8	120218	1642	p-Diethylaminobenzaldehyd	2	W		02.03.1998
120-32-1	120321	1643	2-Benzyl-4-chlorphenol	2	W		02.03.1998
120-37-6	120376	1644	3-Ethylamino-4-kresol	2	W		02.03.1998
120-45-6	120456	1645	Methylbenzylpropionat	1	VV		02.03.1998
120-93-4	120934	1646	Ethylenharnstoff	1	VV		02.03.1998
121-47-1	121471	1647	Metanilsaure	1	W		02.03.1998
121-88-0	121880	1648	2-Amino-5-nitrophenol	2	W		02.03.1998
122-80-5	122805	1649	p-Aminoacetanilid	1	W		02.03.1998
122-99-6	122996	1650	2-Phenoxyethanol	1	W		02.03.1998
123-00-2	123002	1651	4-(3-Aminopropyl)-morpholin	2	W		02.03.1998
123-38-6	123386	1652	Propionaldehyd	1	W		02.03.1998
123-92-2	123922	1653	Essigsäureisopentylester	1	W		02.03.1998
124-22-1	124221	1654	1-Dodecylamin	2	W		02.03.1998
124-63-0	124630	1655	Methansulfonylchlorid	2	W		02.03.1998
126-33-0	126330	1656	Tetrahydrothiophen-1,1-dioxid	1	W		02.03.1998
128-91-6	128916	1657	1,5-Dihydroxy-4,8-dinitroanthrachinon	1	W		02.03.1998
130-89-2	130892	1658	Chininhydrochlorid	1	W		02.03.1998
131-09-9	131099	1659	2-Chloranthrachinon	1	W		02.03.1998
133-08-4	133084	1660	n-Butylmalonsäurediethylester	1	W		03.03.1998
134-20-3	134203	1661	2-Aminobenzoesäuremethylester	1	W		03.03.1998
140-31-8	140318	1662	Aminoethylpiperazin	2	W		03.03.1998
140-66-9	140669	1663	4-(1,1,3,3-Tetramethylbutyl)phenol	2	W		03.03.1998
140-80-7	140807	1664	2-Amino-5-diethylaminopentan	1	W		03.03.1998
140-90-9	140909	1665	Dithiokohlensäure-O-ethylester, Na-Salz	2	W		03.03.1998
141-92-4	141924	1666	Hydroxycitronellaldimethylacetal	2	W		03.03.1998
142-62-1	142621	1667	Capronsäure	1	W		03.03.1998
142-84-7	142847	1668	Di-n-propylamin	1	W		15.05.1998
142-91-6	142916	1669	Palmitinsäureisopropylester	nwg	W		03.03.1998
143-16-8	143168	1670	Di-n-hexylamin	2	W		15.05.1998
144-19-4	144194	1671	2,2,4-Trimethylpentandiol	1	W		03.03.1998
156-87-6	156876	1672	3-Aminopropan-1-ol	1	W		03.03.1998
329-01-1	329011	1673	3-Trifluormethyl-phenylisocyanat	2	W		03.03.1998
332-77-4	332774	1674	2,5-Dimethoxy-2,5-dihydrofuran	1	W		03.03.1998
352-11-4	352114	1675	p-Fluorbenzylchlorid	2	W		03.03.1998
373-44-4	373444	1676	1,8-Oktandiamin	2	W		03.03.1998
504-63-2	504632	1677	1,3-Propandiol	1	W		15.04.1998
505-65-7	505657	1678	Butandiolformal	1	W		03.03.1998
513-86-0	513860	1679	3-Hydroxy-2-butanon	1	W		03.03.1998
514-78-3	514783	1680	Canthaxanthin	nwg	W		03.03.1998
6152-33-6	6152336	1681	Natrium-2-phenylphenolat, Tetrahydrat	1	W		01.09.1997
542-02-9	542029	1682	6-Methyl-1,3,5-triazin-2,4-diyldiamin	2	W		03.03.1998
550-44-7	550447	1683	N-Methylphthalimid	1	W		03.03.1998
552-45-4	552454	1684	o-Methylbenzylchlorid	2	W		03.03.1998
556-52-5	556525	1685	2,3-Epoxypropan-1-ol	3	W		03.03.1998
563-80-4	563804	1686	3-Methyl-2-butanon	1	W		03.03.1998
575-38-2	575382	1687	1,7-Dihydroxynaphthalin	2	W		03.03.1998
575-44-0	575440	1688	1,6-Dihydroxynaphthalin	2	W		03.03.1998
576-26-1	576261	1689	2,6-Dimethylphenol	2	W		03.03.1998
579-66-8	579668	1690	2,6-Diethylanilin	2	W		03.03.1998
581-43-1	581431	1691	2,6-Dihydroxynaphthalin	2	W		04.03.1998
582-17-2	582172	1692	2,7-Dihydroxynaphthalin	2	W		04.03.1998
587-48-4	587484	1693	Acetyl-m-aminobenzoesäure	1	W		04.03.1998
598-78-7	598787	1694	2-Chlorpropionsäure	1	W		04.03.1998
600-14-6	600146	1695	2,3-Pentandion	1	W		04.03.1998
603-35-0	603350	1696	Triphenylphosphin	1	W		04.03.1998
609-65-4	609654	1697	o-Chlorbenzoylchlorid	1	W		04.03.1998
609-72-3	609723	1698	N,N-Dimethyl-o-toluidin	1	W		04.03.1998
610-67-3	610673	1699	2-Ethoxynitrobenzol	1	W		04.03.1998
611-92-7	611927	1700	N,N'-Dimethyl-N,N'-diphenylharnstoff	2	W		04.03.1998
612-12-4	612124	1701	1,2-Bis-(chlormethyl)-benzol	2	W		04.03.1998
613-29-6	613296	1702	N,N-Dibutylanilin	2	W		04.03.1998
613-90-1	613901	1703	Benzoylcyanid	3	W		04.03.1998
614-30-2	614302	1704	N-Methyl-N-benzylanilin	2	W		04.03.1998
614-68-6	614686	1705	2-Methylphenylisocyanat	3	W		04.03.1998
616-79-5	616795	1706	2-Amino-5-nitrobenzoesäure	2	W		04.03.1998

		Index					Data da
CAS	CAS	number	Substâncias (em alemão)	WGK		Notas	classificação
617-84-5	617845	1707	N,N-Diethylformamid	1	W		04.03.1998
618-46-2	618462	1708	3-Chlorbenzoylchlorid	1	W		04.03.1998
620-19-9	620199	1709	m-Methylbenzylchlorid	2	W		04.03.1998
621-29-4	621294	1/10	3-Methylphenylisocyanat	2	W		04.03.1998
621-35-2	621352	1/11	m-Aminoacetanilid, Hydrochlorid	2	W		04.03.1998
622-40-2	622402	1/12	4-(2-Hydroxyetnyl)-morpholin	1	VV		04.03.1998
623-03-0	623030	1714	p-Chlorbenzonitrii	2	VV W		04.03.1998
623-36-9	623369	1714	2-Metry-2-penten-1-a	-	VV M		04.03.1998
624-65-7	624657	1716	3-Chlor-1-propin	2	VV W/		04.03.1998
627-93-0	627930	1717	Dimetryiadipat	1	VV \\/		04.03.1996
696-29-7	696297	1718	2.5-Dimethosytetrahydrofuran	1	W/		04.03.1998
696-59-3	696593	1710	Bolitetracyclin	1	W		04.03.1998
751-97-3	751973	1710	Methylphosphonsäuredimethylester	2	W		04.03.1998
751.65.0	750790	1720	N N-Dibutylformamid	1	W		04.03 1998
761-03-9	761639	1722	N-Ethylpiperidin	1	w		04.03.1998
700-09-0	700090	1723	4-Phenyl-1.3-dioxan	1	W		04.03.1998
818-61-1	818611	1724	2-Hydroxyethylacrylat	2	W		04.03.1998
825-52-5	825525	1725	alpha-Oximinophenylessigsäurenitril	2	W		04.03.1998
826-36-8	826368	1726	Triacetonamin	1	W		04.03.1998
873-32-5	873325	1727	o-Chlorbenzonitril	2	W		04.03.1998
874-86-2	874862	1728	p-Cyanobenzylchlorid	2	W		18.09.1998
901-44-0	901440	1729	2,2-bis-(p-Hydroxyethoxphenyl)propan	1	W		04.03.1998
919-30-2	919302	1730	3-Aminopropyltriethoxysilan	1	W		04.03.1998
929-06-6	929066	1731	2-2'-Aminoethoxyethanol	1	W		04.03.1998
939-97-9	939979	1732	p-tert.Butylbenzaldehyd	2	W		05.03.1998
940-31-8	940318	1733	2-Phenoxypropionsäure	1	W		05.03.1998
996-35-0	996350	1734	N,N-Dimethylisopropylamin	2	W		05.03.1998
456-19-9	456199	1735	p-Fluorbenzalchlorid	1	W		05.03.1998
1067-25-0	1067250	1736	Trimethoxypropylsilan	1	W		05.03.1998
1076-22-8	1076228	1737	3-Methylxanthin	1	W		15.04.1998
1117-52-8	1117528	1738	Farnesylaceton	1	W		05.03.1998
1119-87-5	1119875	1739	1,2-Dodecandiol	1	W		05.03.1998
1306-23-6	1306236	1740	Cadmiumsulfid	3	W		15.04.1998
1331-22-2	1331222	1741	Methylcyclohexanon, Isomerengemisch	1	W		15.05.1998
1000 06 4	1000004	1742	Ruß, technisch, soweit keine Kennzeichnung mit R45	nwg	W		12.05.1999
1400.04.6	1400046	1743	5-Methyl-2-(1-methylethyl)cyclobexanol	1	W		05 03 1998
1490-04-0	1490046	1744	2-Hydroxyethansulfonsäure Na-Salz	1	w		05.03.1998
1579-40-4	1579404	1745	4.4'-Dimethyldiphenylether	2	W		15.04.1998
1589-47-5	1589475	1746	2-Methoxypropanol-1	1	W		05.03.1998
1696-20-4	1696204	1747	4-Acetyl-morpholin	1	W		05.03.1998
1698-60-8	1698608	1748	Chloridazon	2	W		05.03.1998
1711-06-4	1711064	1749	3-Methylbenzoylchlorid	1	W		05.03.1998
1728-46-7	1728467	1750	2-(1,1-Dimethylethyl)-cyclohexanon	1	W		05.03.1998
1758-73-2	1758732	1751	Aminoiminomethansulfinsäure	1	W		15.04.1998
1795-48-8	1795488	1752	Isopropylisocyanat	1	W		05.03.1998
1806-29-7	1806297	1753	2,2'-Dihydroxybiphenyl	2	W		28.10.1998
1939-36-2	1939362	1754	1,3-Propylendiamintetraessigsäure	2	W		05.03.1998
50465	50465	1755	2-(4-Morpholinyl)ethylamin	2	W		06.03.1998
2182-55-0	2182550	1756	Vinylcyclohexylether	1	W		06.03.1998
2217-82-5	2217825	1757	Diphenyl-4-sulfonsäure, Natriumsalz	2	W		06.03.1998
2416-94-6	2416946	1758	2,3,6-Trimethylphenol	1	W		06.03.1998
2426-54-2	2426542	1759	Diethylaminoethylacrylat	2	W		06.03.1998
2439-35-2	2439352	1760	Dimethylaminoethylacrylat	2	W		06.03.1998
2491-71-6	2491716	1761	4-Aminoazobenzol-4'-sulfonsäure, Natriumsalz	1	W		06.03.1998
2516-96-3	2516963	1/62	2-Chior-5-nitrobenzoesaure	1	W		06.03.1998
2530-87-2	2530872	1/63	3-Chiorpropyltrimethoxysilan	1	W		06.03.1998
2568-90-3	2568903	1/64		1	W		17.06.1998
2581-34-2	2581342	1/65	p-initro-m-kresol	3	W		06.03.1998
2591-76-6	2591766	1707	Diisopulyiformamia	2	VV		06.03.1998
2621-78-5	2621785	1/6/	IN-IVIEUTIYI-IN-pnenyi-carbaminsaure-ethylester	2	VV		06.03.1998
2726-73-0	2726730	1760	1,12-Octadecaridioi	riwg 1	VV \A/		06.03.1998
31/069	31/069	1709		1	VV \//		06.03.1998
322089	322089	1770	hvdroxvethvl)aminomethvlphosphonat	'	vv		00.00.1990
2807-30-9	2807309	1771	n-Propylglykol	1	W		06.03.1998
2809-21-4	2809214	1772	1-Hydroxyethan-1,1-diphosphonsäure	2	W		06.03.1998
2832-30-6	2832306	1773	1,4-Dichlor-5,8-dihydroxyanthrachinon	1	W		06.03.1998

		Index					Data da
CAS	CAS	number	Substâncias (em alemão)	WGK	•	Notas	classificação
2842-38-8	2842388	1774	2-Cyclohexylaminoethanol	1	W		06.03.1998
2855-19-8	2855198	1775	Decyloxiran	1	W		06.03.1998
2855-27-8	2855278	1776	1,2,4-Trivinylcyclohexan	2	W		06.03.1998
367778	367778	1777	3-Isopropoxypropylamin	1	W		06.03.1998
2943-75-1	2943751	1778	Triethoxyoctadecylsilan	1	W		06.03.1998
3030-47-5	3030475	1779	1,1,4,7,7-Pentamethyldiethylentriamin	2	W		06.03.1998
3031-66-1	3031661	1780	3-Hexin-2,5-diol	2	W		09.03.1998
3069-40-7	3069407	1781	Trimethoxyoctylsilan	1	W		09.03.1998
3179-63-3	3179633	1782	3-Dimethylaminopropanol	1	W		09.03.1998
3195-78-6	3195786	1783	N-Vinyl-N-methylacetamid	1	W		09.03.1998
3234-28-4	3234284	1784	Dodecyloxiran	1	W		09.03.1998
3268-49-3	3268493	1785	3-(Methylthio)propanal	3	W		15.04.1998
3282-30-2	3282302	1786	Pivaloylchlorid	1	W		09.03.1998
3724-65-0	3724650	1787	Crotonsäure	1	W		09.03.1998
4297-95-4	4297954	1788	Natriumbenzolphosphinat	1	W		09.03.1998
4402-30-6	4402306	1789	Methyldiisopropanolamin	1	W		15.04.1998
4437-51-8	4437518	1790	3,4-Hexandion	1	W		09.03.1998
4463-59-6	4463596	1791	1-(2-Bromethoxy)-2-methoxy-benzol	3	W		13.10.1997
4521-61-3	4521613	1792	3,4,5-Trimethoxybenzoylchlorid	1	W		09.03.1998
		1793	4-Benzamido-5-hydroxynaphthalin-2,7-disulfonsäure,	2	W		09.03.1998
5045-22-7	5045227	170.4	Dinatriumsalz	0			00.00.1000
5131-58-8	5131588	1/94	4-Nitro-1,3-phenylendiamin	2	W		09.03.1998
5307-14-2	5307142	1795	2-Nitro-1,4-phenylendiamin	2	W		09.03.1998
5314-37-4	5314374	1796	4,4'-Diphenyldisulfonsäure	1	W		11.09.1997
5000 44 0	5000440	1797	2-Naphthylamin-3,6-disulfonsäure Mononatriumsalz	1	W		09.03.1998
5332-41-2	5332412	1708	2-Methoxypropylamin	1	\M/		15 04 1998
5332-73-0	5332730	1790	1 2-Pentandial	1	W/	1/	10.05.1990
5545-92-0	5545920	1800	8-Amino-naphthalin-1 3 6-trisulfonsäure	1	W	14	15 05 1998
5398-34-5	5398345		Dinatriumsalz		••		10.00010000
5419-77-2	5419772	1801	1-Naphthol-5-sulfonsäure, Natriumsalz	1	W		09.03.1998
5471-76-1	5471761	1802	2-Amino-4-chlorphenol Hydrochlorid	2	W		09.03.1998
		1803	2-(4-Amino-3-sulfophenyl)-6-methylbenzothiazol-7-	2	W		09.03.1998
5855-98-1	5855981		sulfonsäure				
5857-94-3	5857943	1804	3-Amino-5-chlor-4-hydroxybenzolsulfonsäure	2	W		09.03.1998
5959-39-7	5959397	1805	2-Amino-4,6-dichlorphenol, Hydrochlorid	2	W		09.03.1998
6201-80-5	6201805	1806	3-(4'-Aminobenzoylamino)-5-sulfosalicylsäure	1	W		09.03.1998
6201-86-1	6201861	1807	3-Amino-2-hydroxy-5-sulfobenzoesäure	1	W		15.04.1998
6283-25-6	6283256	1808	2-Chlor-5-nitroanilin	2	W		30.03.1998
6285-57-0	6285570	1809	2-Amino-6-nitrobenzothiazol	2	W		30.03.1998
6291-85-6	6291856	1810	3-Ethoxypropylamin	1	W		30.03.1998
6331-68-6	6331686	1811	3-Amino-4,N',N'-trimethylbenzolsulfonamid	2	W		15.06.1999
6331-70-0	6331700	1812	2-Ethoxy-5-methyl-anilin	2	W		15.04.1998
6334-18-5	6334185	1813	2,3-Dichlorbenzaldehyd	2	W		31.03.1998
67815-68-3	67815683	1814	4-Chlor-6-nitro-2-aminophenol, Hydrochlorid	2	W		31.03.1998
1629839	1629839	1815	1-Naphthylamin-3,/-disulfonsaure	2	W		15.04.1998
6375-17-3	6375173	1816	2-Acetylamino-4-methylphenol	1	W		31.03.1998
6375-46-8	6375468	181/	3-Dietnylaminoacetanilid	1	W		31.03.1998
6375-47-9	6375479	1818	3-Amino-4-methoxyacetanilid	1	W		31.03.1998
6404-76-8	6404768	1819	I-IN-BUTYI-4-Nydroxy-2-chinolon	2	W		31.03.1998
6406-74-2	6406742	1820	Aminobenzyidimethylamin (Isomerengemisch)	2	W		31.03.1998
6419-19-8	6419198	1821	Aminotrimethylenphosphonsaure	1	W		31.03.1998
6421 94 7	6401947	1822	2 - Amino-3-carboxy-4-hydroxy-4'-sulfodiphenylsulfon	2	W		31.03.1998
6421-04-7	6421047	1823	1-Acetamino-7-hydroxynaphthalin	1	W		31 03 1998
6470-10-4	6470164	1824	cis-2 6-Dimethylmorpholin	2	W		01.04.1998
0403-33-0	6465556	1825		1	W		12 05 1999
7005 10 0	7005100	1826	Mecoprop	2	W		01 04 1998
7085-19-0	7085190	1827	N N'-Dimethylpropylenbarnstoff	2	W		01.04.1998
7560 00 0	7560000	1828	N-Methyldicyclohegylamin	2	w		01 04 1008
	7000000	1829	Trimethylsilylcvanid	3	W		01 04 1998
7797 41 0	707/249	1830	Bariumselenat	2	W		01 04 1998
1/0/-41-9	//8/419	1821	Pankreatin	- 1	W/		01.04.1000
8049-47-6	8049476	1822	Polyacrylcäure, schwach verpetzt	1	۷۷ ۱۸/		12 05 1000
2594322	2594322	1002	Polyethylenglycol-Scrittenmonoleurot	1	۷۷ ۱۸/		12.00.1333
9005-56-5	9005565	1000	Glibenclamid	ו ס	VV \\/		12.00.1999
10238-21-8	10238218	1925		ے ۱	VV \\/		02.04.1330
105/5-26-5	105/5265	1000	Tetrabenzylthiuramdiculfid	ו ס	VV \\/		02.04.1330
10591-85-2	10591852	100/	Tinkeelenit	2	VV \\/		02.04.1000
13597-46-1	1359/461	1039	Linkodellil Tric(1.3-dichloricopropyl)phoenhot	2	VV \\/		02.04.1330
136/4-8/-8	136/48/8	1040	ι ποι τ,σ-αισπιστιουρισμημησοριταί	4	**		02.04.1330

		Index					Data da
CAS	CAS	number	Substâncias (em alemão)	WGK		Notas	classificação
13718-59-7	13718597	1841	Bariumselenit	2	W		02.04.1998
13940-94-8	13940948	1842	1-Chlor-4-(dichlormethyl)-benzol	2	W		02.04.1998
14038-43-8	14038438	1843	Vossenblau	1	W		02.04.1998
15159-40-7	15159407	1844	Morpholincarbonylchlorid	3	W		02.04.1998
15625-89-5	15625895	1845	Trimethylolpropantriacrylat	1	W		02.04.1998
15687-14-6	15687146	1846	Embutramid	2	W		12.05.1999
16415-12-6	16415126	1847	I rimethoxyhexadecylsilan	1	W		02.04.1998
17639-93-9	17639939	1848	2-Chlorpropionsauremethylester	1	W		02.04.1998
18395-30-7	18395307	1849	Isobutyltrimethoxysilan	1	W		02.04.1998
18765-38-3	18765383	1850	I etrakis(2-butoxyethoxy)silan	1	VV		02.04.1998
19438-60-9	19438609	1851	4-Methylhexanydrophthalsaureanhydrid	1	VV		02.04.1998
20030-30-2	20030302	1852	2,3,6-1 rimethylcyclonexen-1-on	1	VV		02.04.1998
22374-89-6	22374896	1853	1-metryi-3-prienyipropyiamin	2	VV		02.04.1998
24468-13-1	24468131	1854	2-Etnyinexyichiorrormiat	2	VV W		02.04.1998
24544-08-9	24544089	1055	2,6-Dietryl-4-metrylaniin	2	VV W/		02.04.1998
25639-42-3	25639423	1050	2 Ethylboxonol	1	VV W/		15.04.1998
26266-68-2	26266682	1007		1	VV		15.04.1998
26896-20-8	26896208	1050	Neodecarisaure	2	VV W/		15.04.1998
2/98/-25-3	2/98/253	1960	Antrachingen 1 sulfansäure. Kaliumsalz	1	VV \\/		15.04.1998
30845-78-4	30845784	1961	Diaminamositylongulfangäuro	2	VV \\/		15 04 1009
32432-55-6	32432556	1001		2	VV \\\/		15.04.1998
34/08-08-2	34/08082	1002	3- I filocyanatopropylitiethoxysilari	2	VV W		06.04.1998
40372-72-3	40372723	1863	Bis(3-trietnoxysiiyipropyi)-tetrasuitan	1	VV		06.04.1998
40716-66-3	40716663	1864	trans-Nerolidol	1	VV		06.04.1998
41295-98-1	41295981	1865	2,5-Dichloranilin-4-sulfonsaure, Natriumsaiz	2	VV		06.04.1998
41863-30-3	41863303	1866	DL-Methionin, Na-Salz	1	W		06.04.1998
41892-01-7	41892017	1867	Quab 342	2	W		06.04.1998
42978-66-5	42978665	1868	Tripropylenglykoldiacrylat	2	W		06.04.1998
50780-99-9	50780999	1869	Malonsäurediisobutylester	1	W		06.04.1998
51123-09-2	51123092	1870	4-Aminotoluol-2-sulfethylanilid	2	W		15.04.1998
51000 07 0	54000070	1871	2-(4-(2',4'-Dichlorphenoxy)phenoxy)-	2	W		06.04.1998
51338-27-3	51338273	1970	propionsauremetnylester	2	۱۸/		15.04.1009
52044-08-3	52044083	1072	2 Amino 5 aminomothylapathtalia 1 cultonsäuro	2	VV \\/		15.04.1998
52084-84-1	52084841	1073		2	VV \\\/		06.04.1998
52328-05-9	52328059	1074	4 Amino 5 nanhthol 1 2 diculfonsäuro	2	VV \\/		06.04.1998
52789-62-5	52789625	1075	Mononatriumsalz	2	vv		00.04.1990
53760-27-3	53760273	1876	4.4'-Diaminodiphenylaminsulfat	2	W		06.04.1998
00100 11 0	00/002/0	1877	3-Amino-5-naphthol-2,7-disulfonsäure,	1	W		15.05.1998
53891-22-8	53891228		Mononatriumsalz				
55067-10-2	55067102	1878	2-Cyaniminobarbitursäure	1	W		06.04.1998
56288-95-0	56288950	1879	N-Ethyl-p-nitro-o-toluidin	2	W		07.04.1998
57077-36-8	57077368	1880	Isononansäurechlorid	1	W		07.04.1998
57472-68-1	57472681	1881	Dipropylenglykoldiacrylat	2	W		07.04.1998
58306-86-8	58306868	1882	6-Aminonaphthalin-2-sulfonsäure, Natrium-Salz	2	W		07.04.1998
		1883	2-Methoxy-4-nitroanilin-5-sulfonsäure, Natrium-Salz	2	W		07.04.1998
59312-73-1	59312731						
59690-88-9	59690889	1884	m-Aminophenyinarnstoff, Hydrochlorid	2	W		07.04.1998
61788-46-3	61788463	1885	Kokosaikylamin	2	W		07.04.1998
61996 33 7	61006007	1886	3-Amino-4-hydroxybenzolsulfonamid, Hydrochlorid	2	W		12.05.1999
62476 62 4	62/7660/	1888	2-Chlor-6-fluorbenzalchlorid	2	W		07.04 1998
60605 14 0	024/0024	1889	6-Chlor-4-nitro-2-aminophenol Hydrochlorid	2	W		07.04.1998
62625-14-3	62625143	1900		2	VV \\/		07.04.1990
63216-86-4	63216864	1901	N_(2-Acetoyyethyl)-1.2.3.4-tetrahydro.2.2.4	2	۷۷ ۱۸/		07.04.1990
63817-40-3	63817403	1031	trimethylchinolin	-	vv		07.04.1330
64501-85-5	64501855	1892	2,4-Xylidin-6-sulfonsäure, Natriumsalz	2	W		07.04.1998
	2.20.000	1893	Bis-(2-Aminobenzolsulfonsäure)-diphenylpropanester	2	W		07.04.1998
68015-60-1	68015601						
		1894	Talg, hydriert, Reaktionsprodukt mit 2-((2-	1	W		07.04.1998
68308-55-4	68308554	1005	Aminoethyl)amino)ethanol		147		07.04.4000
68466-09-1	68466091	1895	Aninin-2,4-disuitonsaure, Mononatriumsalz	2	W		07.04.1998
68479-98-1	68479981	1896		2	VV		07.04.1998
69515 47 0	69515470	1897	Pritnaisaure, di-C11-14-verzweigte Alkylester, C13-	1	W		07.04.1998
69500 50 1	000104/9	1898	Talofettsäureisobutylester	nwa	W		07 04 1998
00020-00-1	00020001	1899	Sojasterin raffiniert	nwa	W		07 04 1998
	68000170	1000	Fattalkohola C16-18 Destillationsrückstände	1	١٨/		07 04 1000
00000-00-0	00000000	1001	1-Nanhthylamin-3.7-disulfonsäuro. Dinatriumaala	2	<u>۷۷</u>		07.04.1000
68636-00-0	68636000	1000	Sonnenblumenölfettsäure konjugiort	1	۷۷ ۱۸/		12 05 1000
68953-27-5	68953275	1302	oonnonblumenonettaaure, Nonjugiert		**	1	12.00.1999

		Index					Data da
CAS	CAS	number	Substâncias (em alemão)	WGK		Notas	classificação
69966-61-6	69966616	1903	1-Naphthylamin-3,6-disulfonsäure, Mononatriumsalz	2	W		07.04.1998
71411-96-6	71411966	1904	Brom-N-ethyl-naphtholactam-1,8	2	W		07.04.1998
		1905	Poly(oxy-1,2-ethandiyl), alpha-hydro-omega-hydroxy-,	1	W	14	10.05.1999
			Ether mit Oxybis(propandiol) (4:1), Octadecanoat				
72828-11-6	72828116						
78336-31-9	78336319	1906	Polyethylenglykoldi(polydodecylenglykol)ether	1	W		07.04.1998
81989-40-4	81989404	1907	Koratin MAT	1	W		04.08.1997
85586-35-2	85586352	1909	Trihydroxymethoxystearin	1	W		07.04.1998
85631-49-8	85631498	1910	Alkyl-(C16-18)asparaginsäure-di-natriumsalz	1	W		07.04.1998
90717-03-6	90717036	1911	7-Chlor-3-methyl-8-chinolincarbonsäure	2	W		16.02.1998
91031-31-1	91031311	1912	Fettsäuren, C16-18, Ester mit Ethylenglykol	1	W		07.04.1998
01001011	01001011	1913	Butylnaphthalinsulfonsäure, verzweigt oder linear,	2	W		07.04.1998
91078-64-7	91078647		Natriumsalz				
		1914	Reaktionsprodukt aus Naphthalinsulfonsäure,	1	W		07.04.1998
94094-87-8	94094878		Formaldehyd und Bisphenolsulfonsäure				
101227-09-2	101227092	1915	Fettsäuren, C16-18, 2-Hexyldecyl-ester	nwg	W		15.04.1998
		1916	1-Alkene(C14-16)dibutyImaleat(oder	1	W		12.05.1999
128218-63-3	128218633	(fumarat)copolymer				10.00.1000
		1930	Guanidin, cyano-, Polymer mit Ammoniumchlorid, 1,2-	3	W	8	18.02.1999
000 7	05545007		Ethandiamin und Formaldenyd				
60040-83-7	65545837	1021	(1-)-(B* B* und B* S*)-6-Eluoro-3.4-dibydro-2-	2	W/		10 11 1000
0	0	1301	oxiranyl-2H-1-benzonyran	2	**		10.11.1355
66108-95-0	66108950	1932	Iohexol	1	w		03.06.1998
80707 00 2	80707002	1933	lopentol	1	W		03 06 1998
00000 11 0	02220112	1934	Iodixanol	1	W		03.06.1998
92339-11-2	92339112	1935	Vaseline (bydriert)	nwa	W		18 12 1997
92045-77-7	92045777	1026	Vaseinie (nyunen)	2	W W		27.00.1000
//22-64-/	//2264/	1007	Rahumpermanganat	2	VV \\\/		27.09.1999
#N/D	#N/D	1937	Noticie (leichtitussige, kin. visk. bei 2001au $C < 30$	3	vv		11.09.1997
#IN/D	#IN/D	1938	Turbinenkraftstoffe als krebserzeugend (B 45)	3	W		11 09 1997
#N/D	#N/D	1000	gekennzeichnet	0			11.00.1007
56309-94-5	56309945	1939	4-(1,4-Dioxaspiro(4,5)-decan-8-yl)-cyclohexanon	1	W		20.05.1998
62-54-4	62544	1943	Calciumacetat	1	W	14	10.05.1999
#N/D	#N/D	1944	Magnesiumacetat	1	W	14	10.05.1999
		1945	Alkyl (C15 - C30)-benzolsulfonate, verzweigt, Calcium	2	W	35	18.12.1997
#N/D	#N/D		und Magnesiumsalze				
		1946	Alkyl (C >13)-salicylate, verzweigt, Calcium- und	2	W	35	22.12.1999
#N/D	#N/D	1047	Magnesiumsalze	0	14/		00 10 1000
27247-96-7	27247967	1947		2	VV	05	22.12.1999
#N/D	#N/D	1948	Zink-dialkyl(C3 - C10)-dithiophosphat	2	VV W	35	22.12.1999
#IN/D #N/D	#IN/D #N/D	1949	ZINK-di(alkyi(G7 - G12)-phenyi)-dithiophosphat	2	W	35	22.12.1999
#N/D	#N/D	1950	Proteinschaummittel	1	W	37	12 02 1998
#N/D	#N/D	1954	Mehrbereichsschaummittel	2	Ŵ	38	12.02.1998
2580-78-1	2580781	5003	Remazol-Brillantblau R spez.	1	Ŵ		24.02.1998
110-80-5	110805	5058	Ethylenalykolmonoethylether	1	w	1	18.08.2000
625-45-6	625456	5060	Methoxyessigsäure	1	Ŵ	1	24.02.1998
020-40-0	020400	5106	1-Hydroxy-4-methyl-6-(2 4 4-trimethylpentyl)pyridin-	2	Ŵ		15.04.1998
			2(1H)-on. Verbindung mit 2-Aminoethanol (1:1)	-			
68890-66-4	68890664		(, , , , , , , , , , , , , , , , , , ,				
527-07-1	527071	5223	Natriumgluconat	1	W	1	20.05.1998