UNICAMP - UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE ENGENHARIA QUÍMICA

AVALIAÇÃO DE MÉTODOS DE CONTRIBUIÇÃO DE GRUPOS PARA USO EM CÁLCULOS DE EQUILÍBRIO LÍQUIDO - VAPOR

AUTOR : CLAUDIO DE LIMA MIGUEL MARTINEZ ORIENTADOR : Prof. Dr. SAUL GONÇALVES d'AVILA +

Esta versão corresponde à redação final. da Tese de mestrado, defendida pelo Engo Claudio de Rima miguel martinez, e aprovada pela comis-são julgadora esp 17.01.1992 julgadora eff

Campinas - SP - Brasil 17 de Janeiro de 1992

UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE ENGENHARIA QUÍMICA ÁREA DE CONCENTRAÇÃO : DESENVOLVIMENTO DE PROCESSOS QUÍMICOS

AVALIAÇÃO DE MÉTODOS DE CONTRIBUIÇÃO DE GRUPOS PARA USO EM CÁLCULOS DE EQUILÍBRIO LÍQUIDO - VAPOR

AUTOR : CLÂUDIO DE LIMA MIGUEL MARTINEZ 3^{6}

Tese submetida à comissão de Pós-Graduação da Faculdade de Engenharia Química - UNICAMP, como parte dos requisitos necessários para a obtenção do grau de Mestre em Engenharia Química.

Aprovada por : Prof. Dr. Saul Gonçalves d'Avila Orientador Prof. Dr. Rubens Maciel Filho Prof. Dr. (José C1 Audio Moura Campinas - SP - Brasil

17 de Janeiro de 1992

	~
UNICAMP	
MBLIOTECA CENTRAL	

Esta Tese é dedicada a quem muito me ajudou a lutar nesta vida : minha querida avó Antonia.

•

įi

AGRADECIMENTOS

Meus agradecimentos,

Ao professor Dr. Saul Gonçalves d'Ávila pela compreensão, pelo incentivo, pela amizade e pelo profissionalismo que demonstrou durante a orientação de meu trabalho.

Ao meu amigo e companheiro de trabalho Gláucio pela sua colaboração nos cálculos de predição de pressão de vapor.

A prof. Dra Maria Regina Wolf Maciel pelo apoio e pelas valiosas sugestões dadas na fase final deste trabalho.

Aos amigos Rogério, Lídia e todos aqueles que, de uma forma ou de outra, contribuíram para a realização deste trabalho.

Ao CNPq, FAEP/UNICAMP e RHODIA pelo auxílio financeiro na forma de bolsa de pesquisa.

iii

RESUMO

Uma metodologia para a predição de curvas de equilibrio líquido-vapor (ELV) utilizando métodos de contribuição de grupos é proposta. A partir da fórmula estrutural do composto, são preditos valores de temperatura normal de ebulição, propriedades críticas, fator acêntrico, segundo coeficiente virial, pressão de vapor, coeficiente de atividade e volume molar de líquido, que são as propriedades demandadas em cálculos de ponto de bolha e de orvalho, isotérmico e isobárico.

A utilização dos programas de computador de cálculo de ELV escritos em linguagem C é comandada pelo programa GERENTE.C, desenvolvido de modo a interagir diretamente com o usuário, que fornece apenas as estruturas de grupos do composto no cálculo de cada propriedade.

Foram realizados 988 cálculos de equilíbrio líquido-vapor para 25 compostos diferentes, totalizando 30 sistemas binários extraídos do "VLE Standard Date Base" de Danner e Gess (1990). Foram ainda realizados 12 cálculos envolvendo sistemas binários e quaternários.

A predição dos dados de equilíbrio líquido-vapor usando métodos de contribuição de grupos de um modo geral pode ser considerada boa e adequada para uso em cálculos preliminares de processos de separação. No entanto, a qualidade da predição, expressa em termos de desvios de T, P e concentrações das fases

ív

calculadas em relação aos valores experimentais é função direta tanto dos valores preditos de pressão de saturação de componentes puros como dos valores dos coeficientes de atividade. A qualidade da predição pode ser sensilvelmente melhorada, reavaliando-se os parâmetros de grupo das propriedades em relação às quais os cálculos de ELV são mais sensíveis, a saber, pressão de saturação e coeficiente de atividade.

ABSTRACT

A methodology for predicting vapour-liquid equilibrium curves using group contribution methods is proposed. From the molecular structure of the compound, values of normal boiling temperature, critical properties, acentric factor, second virial coefficients, vapor pressure, activity coefficients and molar liquid volume are required since they are necessary in isothermic and isobaric bubble- and dew- points calculations.

The utilization of the developed C language computer programs is directed by an interactive executive program GERENTE.C which requires only the group structures of the compounds for each property calculation.

In this work, a number (988) of vapour-liquid equilibrium calculations has been obtained for 25 different compounds summing up 30 binary systems which were extracted from "VLE Standard Data Base" (Danner and Gess, 1990). Following the same procedure, 12 more calculations were made envolving ternary and quaternary systems.

In general, the prediction of vapour-liquid equilibrium data using group contribution can be considered good and suitable to be used in preliminary separation process calculations. Nevertheless, the prediction quality, expressed in terms of pressure, temperature and phase concentration deviations calculated in relation to the experimental values is a function of both predicted pure component vapor pressure and activity

vi

coefficients values. Consequently, in order to reach better accuracy in the VLE predictions, the group parameters of these properties should be re-evaluated since they have large influence in the VLE calculations.

SUMARIO

viii

Resumo	iv
ABSTRACT	vi
LISTA DE TABELAS	xii
LISTA DE FIGURAS	xvii
NOMENCLATURA	xix
CAPÍTULO 1 - INTRODUÇÃO	1
CAPITULO 2 - TERMODINAMICA DO EQUILIBRIO LIQUIDO-VAPOR	4
CAPÍTULO 3 - MÉTODOS DE PREDIÇÃO DE PROPRIEDADES TERMODINAMICAS	
3.1 - Funções Termodinâmicas no Cálculo do ELV	11
3.1.1 - Predição de Coeficientes de Fugacidade da Fase Vapor	12
3.1.1.1 - Predição de Segundos Coeficientes Viriais Puros	14
3.1.1.2 - Predição de Segundos Coeficientes Viriais Cruzados	16
3.2.2 - Predição de Coeficientes de Atividade	19
3.2.2.1 – Escolha do Método	19
3.2.2.2 - Método UNIFAC	21
3.2.3 - Predição de Pressão de Saturação	24
3.2.3.1 – Escolha do Método	24
3.2.3.2 - Método UNIFAC	25
3.2.4 - Predição de Volume Molar Líquido	27
3.3 - Propriedades de Base para o Cálculo de ELV	29
3.3.1 - Propriedades Críticas	30

•

3.3.1.1 - Escolha do Método	30
3.3.1.2 - Método Joback	38
3.3.2 - Temperatura de Ebulição	39
3.3.2.1 - Escolha do Método	39
3.3.2.2 - Método de Lai-Chen-Maddox	40
3.3.3 - Fator Acêntrico	43
3.4 - Metodologia Proposta Para Predição de Dados de Equilíbrio Líquido-Vapor	43
CAPITULO 4 - DESENVOLVIMENTO DO PROGRAMA COMPUTACIONAL	
4.1 - Introdução	47
4.2 - Programa Gerenciador - GERENTE.C (Nível 1)	52
4.3 - Programas de Cálculo de Equilíbrio Líquido - Vapor (Nível 2)	54
4.3.1 - Cálculo do Ponto de Bolha Isobárico - BOLHA_T	54
4.3.2 - Cálculo do Ponto de Orvalho Isobárico - ORVAL_T	58
4.3.3 - Cálculo do Ponto de Bolha Isotérmico - BOLHA_P	61
4.3.4 - Cálculo do Ponto de Orvalho Isotérmico - ORVAL_P	63
4.4 - Cálculo da Temperatura de Ebulição - TEMPEB.C (Nível 3)	65
4.5 - Cálculo das Propriedades Críticas - JOBACK.C (Nível 3)	67
4.6 - Cálculo do Segundo Coeficiente Virial (Nível 3)	69
4.6.1 - Programa de Seleção de Parâmetros de Cálculo do Segundo Coeficiente Virial de	
Componente Puro - GERABII.C	69

-

4.6.2 - Programa de Cálculo do Segundo Coeficiente Virial Puro - BII.C	71
4.6.3 - Programa de Cálculo do Segundo Coeficiente Virial Cruzado	73
4.7 - Programas de Cálculo de Pressão de Saturação (Nível 3)	75
4.7.1 - Programa de Seleção de Parâmetros de Cálculo de Pressão de Saturação - GERAPSAT.C	76
4.7.2 - Programa de Cálculo de Pressão de Saturação - PSAT.C	76
4.8 - Programa de Cálculo de Pressão de Saturação Normal - PSATNO () (Nível 2)	80
4.9 - Programa de Cálculo de Fator Acêntrico - FAT_ACE () (Nível 2)	80
4.10 - Programas de Cálculo do Coeficiente de Atividade (Nível 3)	83
4.10.1 - Programa de Seleção de Parâmetros de Cálculo de Coeficiente Atividade do Método - UNIFAC - GERAUNIF.C	83
4.10.2 - Programas de Cálculo do Coeficiente de Atividade - UNIFAC.C	84
4.11 - Programa de Cálculo do Volume Molar Líquido - VOL_MOL () (Nível 2)	87
4.12 - Tabela de Variáveis CAPÍTULO 5 - RESULTADOS E DISCUSSÃO	87
5.1 - Seleção dos Sistemas Binários e Multicomponentes	94
5.2 - Predição de Propriedades de Componentes Puros	101
5.3 - Sistemas Binários	112
5 3 1 - Sistemas Anolar - Anolar (APO/APO)	114

×

5.3.2 - Sistema Apolar - Fracamente Polar (APO/FRP)	117
5.3.3 - Sistemas Apolar - Fortemente Polar (APO/FOP)	119
5.3.4 - Sistemas Fracamente Polar - Fracamente Polar (FRP/FRP)	123
5.3.5 - Sistemas Fracamente Polar - Fortemente POLAR (FRP/FOP)	124
5.3.6 - Sistemas Fortemente Polar - Fortemente	
Polar (FOP/FOP)	127
5.4 - Sistemas Multicomponentes	130
5.5 - Considerações Gerais	134
5.6 - Análise de Sensibilidade	137
CAPITULO 6 - CONCLUSÕES E SUGESTÕES	152
CAPITULO 7 - BIBLIOGRAFIA	155
APÉNDICES	159
APÉNDICE A - Tabelas de Parâmetros	161
APÉNDICE B - Demonstração das Equações (3.13) e (3.14)	172
APÉNDICE C - Exemplos de Resultados de Predição de ELV)	176

-

LISTA DE TABELAS

TABELA 3.1 :	PROPRIEDADES TERMODINAMICAS PARA O	
	CALCULO DO ELV	29
TABELA 3.2 :	MÉTODOS DE PREDIÇÃO DE TEMPERATURA CRÍTICA VIA CONTRIBUIÇÃO DE GRUPOS	31
TABELA 3.3 :	MÉTODOS DE PREDIÇÃO DE PRESSÃO CRÍTICA VIA CONTRIBUIÇÃO DE GRUPOS	32
TABELA 3.4 :	MÉTODOS DE PREDIÇÃO DE VOLUME CRÍTICO VIA CONTIBUIÇÃO DE GRUPOS	33
TABELA 3.5 :	MÉTODOS DE PREDIÇÃO DE TEMPERATURA DE EBULIÇÃO VIA CONTRIBUIÇÃO DE GRUPOS	41
TABELA 4.1 :	PROGRAMAS EM LINGUAGEM C	48
TABELA 4.2 :	TEMPO DE PROCESSAMENTO DE CADA TIPO DE CALCULO DE EQUILÍBRIO EM MICROCOMPUTADOR LINHA IBM PC/AT	51
TABELA 4.3 :	VARIÁVEIS UTILIZADAS NA PROGRAMAÇÃO E FUNÇÕES	89
TABELA 5.1 :	DISPONIBILIDADE DE MÉTODOS DE PREDIÇÃO POR CONTRIBUIÇÃO DE GRUPOS. (X indica que a predição é possível)	95
TABELA 5.2 :	DISTRIBUIÇÃO DOS SISTEMAS ESCOLHIDOS POR CLASSES, CONFORME DANNER E GESS	96
TABELA 5.3 :	SISTEMAS BINÁRIOS SELECIONADOS PARA SISTEMAS APO/APO	97
TABELA 5.4 :	SISTEMAS BINÁRIOS SELECIONADOS PARA SISTEMAS APO/FRP	97
TABELA 5.5 :	SISTEMAS BINÁRIOS SELECIONADOS PARA SISTEMAS APO/FOP	98
TABELA 5.6 :	SISTEMAS BINÁRIOS SELECIONADOS PARA SISTEMAS FRP/FRP	98
TABELA 5.7 :	SISTEMAS BINARIOS SELECIONADOS PARA SISTEMAS FRP/FOP	99
TABELA 5.8 :	SISTEMAS BINARIOS SELECIONADOS PARA SISTEMAS FOP/FOP	99

٠

TABELA 5.9 :	SISTEMAS MULTICOMPONENTES EXTRAÍDOS DO	100
TABELA 5.10 :	TEMPERATURA DE EBULIÇÃO E TEMPERATURA	103
TABELA 5.11 :	PRESSÃO CRÍTICA E VOLUME CRÍTICO	104
TABELA 5.12 :	FATOR ACENTRICO	105
TABELA 5.13 :	SEGUNDO COEFICIENTE VIRIAL (T=50.00 °C)	108
TABELA 5.14 :	VOLUME MOLAR LÍQUIDO	109
TABELA 5.15 :	PRESSÃO DE SATURAÇÃO DE COMPONENTES PUROS	111
TABELA 5.16 :	RESULTADOS DA PREDIÇÃO DE SISTEMAS APO/APO PARA O CÁLCULOS DE PONTOS DE BOLHA E DE ORVALHO ISOBÁRICOS	114
TABELA 5.17 :	RESULTADOS DA PREDIÇÃO DE SISTEMAS APO/APO PARA O CÁLCULOS DE PONTOS DE BOLHA E DE ORVALHO ISOTÉRMICOS	115
TABELA 5.18 :	RESULTADOS DA PREDIÇÃO DE SISTEMAS APO/FRP PARA O CÁLCULOS DE PONTOS DE BOLHA E DE ORVALHO ISOBÁRICOS	117
TABELA 5.19 :	RESULTADOS DA PREDIÇÃO DE SISTEMAS APO/FRP PARA O CALCULOS DE PONTOS DE BOLHA E DE ORVALHO ISOTERMICOS	118
TABELA 5.20 :	RESULTADOS DA PREDIÇÃO DE SISTEMAS APO/FOP PARA O CÁLCULOS DE PONTOS DE BOLHA E DE ORVALHO ISOBÁRICOS	120
TABELA 5.21 :	RESULTADOS DA PREDIÇÃO DE SISTEMAS APO/FOP PARA O CÁLCULOS DE PONTOS DE BOLHA E DE ORVALHO I SOTERMICOS	120
TABELA 5.22 :	VALORES DE AZEOTROPIA	122
TABELA 5.23 :	RESULTADOS DA PREDIÇÃO DE SISTEMAS FRP/FRP PARA O CÁLCULOS DE PONTOS DE BOLHA E DE ORVALHO ISOBÁRICOS	123
TABELA 5.24 :	RESULTADOS DA PREDIÇÃO DE SISTEMAS FRP/FRP PARA O CÁLCULOS DE PONTOS DE BOLHA E DE ORVALHO ISOTÉRMICOS	124
TABELA 5.25 :	RESULTADOS DA PREDIÇÃO DE SISTEMAS FRP/FOP PARA O CALCULOS DE PONTOS DE BOLHA E DE ORVALHO I SOBARICOS	126

•

xiii

TABELA 5.26 :	RESULTADOS DA PREDIÇÃO DE SISTEMAS FRP/FOP PARA OS CALCULOS DE PONTOS DE BOLHA E DE ORVALHO ISOTÉRMICOS	126
TABELA 5.27 :	RESULTADOS DA PREDIÇÃO DE SISTEMAS FOP/FOP PARA O CÁLCULOS DE PONTOS DE BOLHA E DE ORVALHO ISOBÁRICOS	127
TABELA 5.28 :	RESULTADOS DA PREDIÇÃO DE SISTEMAS FOP/FOP PARA O CÁLCULOS DE PONTOS DE BOLHA E DE ORVALHO ISOTÉRMICOS	128
TABELA 5.29 :	RESULTADOS DO PROGRAMA BOLHA_P.C. SISTEMA : CICLOHEXANO/HEPTANO/TOLUENO (T = 25.00 °C)	131
TABELA 5.30 :	RESULTADOS DO PROGRAMA BOLHA_T.C. SISTEMA : BENZENO/CICLOHEXANO/2-PROPANOL (P=760.00 mmHg)	132
TABELA 5.31 :	RESULTADOS DO PROGRAMA BOLHA_T.C. SISTEMA : TOLUENO/OCTANO/ETILBENZENO (P=760.00 mmHg)	133
TABELA 5.32 :	RESULTADOS DO PROGRAMA BOLHA_P.C. SISTEMA : CICHEXANO/2-PROPANOL/BENZENO/ TOLUENO (T=45.00°C)	134
TABELA 5.33 :	DESVIOS GLOBAIS APRESENTADOS NAS PREDIÇÕES DO ELV NAS CONDIÇÕES ISOBARICAS	135
TABELA 5.34 :	DESVIOS GLOBAIS APRESENTADOS NAS PREDIÇÕES DO ELV NAS CONDIÇÕES ISOTÉRMICAS	135
TABELA 5.35 :	COMPARAÇÃO DOS MÉTODOS DE PREDIÇÃO DE PRESSÃO DE SATURAÇÃO NOS CÁLCULOS DOS PROGRAMAS BOLHA_T.C E BOLHA_P.C PARA SISTEMAS APO/APO	139
TABELA 5.36 :	COMPARAÇÃO DOS MÉTODOS DE PREDIÇÃO DE PRESSÃO DE SATURAÇÃO NOS CÁLCULOS DOS PROGRAMAS BOLHA_T.C E BOLHA_P.C PARA SISTEMAS APO/FRP	140
TABELA 5.37 :	COMPARAÇÃO DOS MÉTODOS DE PREDIÇÃO DE PRESSÃO DE SATURAÇÃO NOS CÁLCULOS DOS PROGRAMAS BOLHA_T.C E BOLHA_P.C PARA SI STEMAS APO/FOP	1 4 1

.

TABELA	5.38	COMPARAÇÃO DOS MÉTODOS DE PREDIÇÃO DE PRESSÃO DE SATURAÇÃO NOS CALCULOS DOS PROGRAMAS BOLHA_T.C E BOLHA_P.C PARA SISTEMAS FRP/FRP	1 41
TABELA	5.39	: COMPARAÇÃO DOS MÉTODOS DE PREDIÇÃO DE PRESSÃO DE SATURAÇÃO NOS CÁLCULOS DOS PROGRAMAS BOLHA_T.C E BOLHA_P.C PARA SISTEMAS FRP/FOP	142
TABELA	5.40	: COMPARAÇÃO DOS MÉTODOS DE PREDIÇÃO DE PRESSÃO DE SATURAÇÃO NOS CÁLCULOS DOS PROGRAMAS BOLHA_T.C E BOLHA_P.C PARA SISTEMAS FOP/FOP	142
TABELA	5. 41	: NOVOS PARAMETROS DE GRUPOS ACCH3 DO MÉTODO DE PREDIÇÃO DE P ^S VIA UNIFAC. (MAGNUSSON, 1991)	144
TABELA	5.42	COMPARAÇÃO DAS PREDIÇÕES DE P ^S UTILIZANDO ANTIGOS E NOVOS PARÂMETROS ACCH3 DO MÉTODO DE PREDIÇÃO DE PRESSÃO DE SATURAÇÃO VIA UNIFAC COM P ^S VIA ANTOINE	144
TABELA	5.43	: TESTE DE SENSIBILIDADE À TEMPERATURA DE EBULIÇÃO	147
TABELA	5.44 :	TESTE DE SENSIBILIDADE À TEMPERATURA CRÍTICA	148
TABELA	5.45 :	TESTE DE SENSIBILIDADE À PRESSÃO CRÍTICA	149
TABELA	5.46 :	TESTE DE SENSIBILIDADE AO VOLUME CRÍTICO	150
TABELA	5.47 :	TESTE DE SENSIBILIDADE AOS COEFICIENTES DE ATIVIDADE	151
TABELA	A.1 :	PARAMETROS DE CONTRIBUIÇÃO DE GRUPOS DO MÉTODO DE MCCANN E DANNER	161
TABELA	A.2 :	PARÂMETROS DE VOLUME E DE ÁREA DE GRUPO DO MÉTODO UNIFAC	162
TABELA	A.3 :	PARAMETROS ENERGÉTICOS DO MÉTODO UNIFAC	164
TABELA	A.4 :	PARÂMETROS DE CONTRIBUIÇÃO DE GRUPOS PARA CÁLCULO DE Ag' (cal/g-mol) - MÉTODO DE PREDIÇÃO DE ^k PRESSÃO DE SATURAÇÃO	167
TABELA	A.5 :	PARÂMETROS DE CONTRIBUIÇÃO DE GRUPOS PARA CÁLCULO DE Δg_k^* (cal/g-mol) - MÉTODO DE PREDIÇÃO DE PRESSÃO DE SATURAÇÃO	168

•

X٧

TABELA	A.6 :	PARAMETROS DE CONTRIBUIÇÃO DE GRUPOS PARA O MÉTODO JOBACK	169
TABELA	A.7 :	CONSTANTES CARACTERÍSTICAS DOS GRUPOS FUNCIONAIS - TEMPERATURA DE EBULIÇÃO	170
TABELA	A.8 :	VALORES DE PARÂMETROS DE INTERAÇÃO ENTRE DIFERENTES GRUPOS FUNCIONAIS - TEMPERATURA DE EBULIÇÃO	170

.

LISTA DE FIGURAS

FIGURA 2.1 : SISTEMA MULTICOMPONENTE EM EQUILIBRIO	
LÍQUIDO-VAPOR	4
FIGURA 3.1 : METODOLOGIA DA PREDIÇÃO DE PROPRIEDADES TERMODINÂMICAS PARA USO EM CALCULOS DE EQUILIBRIO LÍQUIDO-VAPOR	45
FIGURA 4.1 : FLUXOGRAMA DO PROGRAMA GERENTE.C	53
FIGURA 4.2 : FLUXOGRAMA DO PROGRAMA BOLHA_T.C	56
FIGURA 4.3 : FLUXOGRAMA DO PROGRAMA ORVAL_T.C	59
FIGURA 4.4 : FLUXOGRAMA DO PROGRAMA BOLHA_P.C	62
FIGURA 4.5 : FLUXOGRAMA DO PROGRAMA ORVAL_P.C	64
FIGURA 4.6 : FLUXOGRAMA DO PROGRAMA TEMPEB (maiores detalhes ver CHEN e MADDOX, 1987)	66
FIGURA 4.7 : FLUXOGRAMA DO PROGRAMA JOBACK.C	68
FIGURA 4.8 : FLUXOGRAMA DO PROGRAMA GERABII.C	70
FIGURA 4.9 : FLUXOGRAMA DO PROGRAMA BII.C	72
FIGURA 4.10 : FLUXOGRAMA DO PROGRAMA CRUZADO.C	74
FIGURA 4.11 : FLUXOGRAMA DO PROGRAMA GERAPSAT.C	77
FIGURA 4.12 : FLUXOGRAMA DO PROGRAMA PSAT.C	79
FIGURA 4.13 : FLUXOGRAMA DO PROGRAMA PSATNO ()	81
FIGURA 4.14 : FLUXOGRAMA DO PROGRAMA FAT_ACE ()	82
FIGURA 4.15 : FLUXOGRAMA DO PROGRAMA GERAUNIF.C	85
FIGURA 4.16 : FLUXOGRAMA DO PROGRAMA UNIFAC.C	86
FIGURA 4.17 : FLUXOGRAMA DO PROGRAMA VOL_MOL ()	88
FIGURA 5.1 : SISTEMA HEPTANO/ETILBENZENO (54.61 °C)	116
FIGURA 5.2 : SISTEMA 1-HEPTENO/TOLUENO (55.00 °C)	117
FIGURA 5.3 : SISTEMA BENZENO/2-BUTANONA (2310.90 mmHg)	119

.

xvii

Pág.

. .

xviii

FI GURA	5.4 : SISTEMA ACETONA/DECANO (60.00 °C)	120
- GURA	5.5 : SISTEMA BENZENO/ETANOL (399.98mmHg)	122
_ GURA	5.6 : SISTEMA BENZENO/TERT-BUTANOL (45 °C)	123
FI GURA	5.7 : SISTEMA ACETONA / ACETATO DE PROPILA (759.96 mmHg)	125
FIGURA	5.8: SISTEMA DIETIL ÉTER/ACETONA (30 °C)	126
FIGURA	5.9 : SISTEMA ACETATO DE BUTILA / 1-BUTANOL (50.00 mmHg)	127
FIGURA	5.10 : SISTEMA ETANOL/2-PROPANOL (759.96 mmHg)	129

*

NOMENCLATURA

a, b,r, b, b, r, r, r, e b, : constantes características do grupos funcionais do método de Chen e Maddox;

 $A_o, B_o, C_o, D_o \in E_o$: constantes para cálculos de B segundo DIPPR (Daubert e Danner, 1985);

a', b', c', d' e e' : parâmetros de contribuição do método McCann e Danner;

a_i e b_i : parâmetros de correção polar da espécie i;

a e b : parâmetros de correção polar de mistura da espécie i e ;

 $a_k = b_k$: parâmetros de correção polar da espécie k;

 $A_{k,j}$: parâmetros de grupo do método de predição de P_i^s UNIFAC;

a : parâmetro energético;

B : segundo coeficiente virial da mistura;

- B_{ii} : segundo coeficiente virial das espécies i e i e segundo coeficiente virial puro;
- B^s: segundo coeficiente virial do componente i puro nas condições de saturação;

B : segundo coeficiente virial das espécies i e j e segundo coeficiente virial cruzado;

B : segundo coeficiente virial da espécie de um componente k genérico;

 $f^{(0)}(T_{Rk}), f^{(1)}(T_{Rk}) \in f^{(2)}(T_{Rk})$: funções de temperatura reduzida da espécie k na equação (3.9);

 f_i : fugacidade do componente i puro;

xix

 f_i^s : fugacidade do componente i puro nas condições de saturação; \hat{f}_i : fugacidade do componente i na mistura; \hat{f}_i^l : fugacidade do componente i na mistura líquida; \hat{f}_{i}^{rl} : fugacidade de referência do componente $i\,;$ $\hat{f}_i^{\mathbf{v}}$: fugacidade do componente i na mistura vapor; g_{ν} : energia livre de Gibbs do grupo k; $g_{\nu}^{\mathbf{0}}$: energia livre de Gibbs de referência para o grupo k; i : componente genérico; j : componente genérico; k : componente genérico; l : número de tipos de grupos funcionais; m_i: número de grupos funcionais do tipo "i"; m_i: número de grupos funcionais do tipo "j"; n : número de equações de equilíbrio líquido-vapor; n : número de átomos na molécula; n : número de componentes do sistema; N : número de amostras; n: número de átomos de carbono; NC : NÚMERO de Cálculos de equilíbrio; $N^{(L)}$: número de diferentes grupos na molécula i; n : número de ocorrências do grupo no composto i; N: : número de moles do componente i; $N_{i}^{\mathbf{v}}$: número de moles do componente i na fase vapor v; \boldsymbol{N}_{j} : número de moles do componente j; $\mathbf{N}_{i}^{\mathbf{V}}$: número de moles do componente j na fase vapor; N : numero de moles do componente n; NS : número de sistemas binários por classe;

xx

N_r : número de moles totais; NTC : número total de cálculos por classe; P : pressão do sistema; PO : pressão zero; P : pressão crítica; P_: : pressão crítica da espécie i; P_{cii} : pressão crítica de mistura das espécies i e j; P : pressão crítica da espécie j; P_{ck} : pressão crítica da espécie k; P^r : pressão de referência; P_i^s : pressão de saturação do líquido puro *i* na temperatura T do sistema; P.^{s*} : pressão de saturação do componente i puro na temperatura T^{*}; P^s : pressão de saturação reduzida; P^s: : pressão de saturação reduzida do componente i; q_i : área superficial de van der Waals; Q_{L} : parâmetros de área do grupo k; r : razão de declínio; R : constante dos gases; r : volume de van der Waals; R_{t} : parâmetros de volume do grupo k; r : temperatura do sistema; T : temperatura do sistema; T^{*} : temperatura de cálculo do fator acêntrico; T⁻ : temperatura 10 K abaixo da temperatura T do sistema; T^+ : temperatura 10 K acima da temperatura T do sistema; T : temperatura crítica;

T₁ : temperatura crítica da espécie i; T_{cii} : temperatura crítica de mistura das espécies i e j; T_{ci} : temperatura crítica da espécie j; T_{eb} : ponto de ebulição normal do composto; T_{ab}: temperatura de ebulição normal reduzida; T_{Ri} : temperatura reduzida do componente *i*; T_{Rk} : temperatura reduzida do componente k; $T_{\mathbf{p}k}^{-}$: temperatura reduzida do componente k a T^{-} ; $T_{n_{k}}^{\dagger}$: temperatura reduzida do componente k a T^{\dagger} ; $T_{n;}^{s}$: temperatura de saturação reduzida do componente i; v : volume molar da mistura; V : volume da mistura; V : volume crítico; V_{ci} : volume crítico da espécie i; V_{cii} : volume crítico de mistura das espécies i e j; V : volume crítico da espécie j; v_i^l : volume de líquido molar puro i à T do sistema; \bar{v}_i^t : volume parcial molar do componente i líquido; $v_p^{(0)}$: função de temperatura da equação de Gunn-Yamada (3.33); v : parâmetro de escala da equação de Gunn-Yamada (3.33); V^{\vee} : volume da mistura vapor; x : composição molar da fase líquida; x: : fração molar na fase líquida do componente i; x_i : composição molar na fase líquida do componente i; X : propriedade termodinâmica genérica calculada; : propriedade termodinâmica genérica experimental; X X : fração de grupo;

y : composição molar da fase vapor;

y_i : composição molar na fase vapor do componente i; y_j : composição molar na fase vapor do componente j; y_i : composição molar na fase vapor do componente i; z' : número de coordenação da molécula; Z : fator de compressibilidade; Z_{ci} : fator acêntrico crítico da espécie i; Z_{cij} : fator acêntrico crítico de mistura das espécies i e j; Z_{cj} : fator acêntrico crítico da espécie j; z^{*}_{cj} : fator acêntrico crítico da espécie j;

LETRAS GREGAS :

 φ_i^s : coeficiente de fugacidade de vapor saturado *i* a T e P_i^s ; $\hat{\varphi}_i$: coeficiente de fugacidade do componente *i* na mistura; $\hat{\varphi}_i^v$: coeficiente de fugacidade do componente *i* na mistura gasosa; $\hat{\varphi}_i^l$: coeficiente de fugacidade do componente *i* na mistura líquida; $\gamma^{(PO)}$: coeficiente de atividade ajustado à pressão zero; γ_i : coeficiente de atividade do componente *i*; γ_i^c : contribuição combinatorial; $\gamma_i^{(P^r)}$: coeficiente de atividade do componente *i* a uma pressão arbitrária de referência \mathbf{p}^r ;

 $\gamma_{i}^{\mathbf{R}}$: contribuição residual;

Γ : função de temperatura da equação de Gunn-Yamada;

 componente i puro, dado pela equação 3.27i;

 μ_{i} : pontencial químico;

 μ^{l} ; pontencial químico do componente na fase líquida;

- μ^{v}_{i} : pontencial químico do componente na fase vapor;
- Δ B_i : incremento de contribuição de grupo para o cálculo do segundo coeficiente virial de componente puro;
- Δ_g : representação genérica de todos os parâmetros de energia de Gibbs do método de predição de P^s_i via UNIFAC;
- Δ G'' : termo dependente da estrutura molecular do método de predição de P^S_i via UNIFAC;
- Δg_k : diferença entre a energia de Gibbs e a energia de referência g_k^o do grupo k;
- Δg_k^{\prime} : termo depende da temperatura do método de predição de P_i^s UNIFAC;
- Δ g'' : parâmetros de estrutura molecular do método de predição de P^s_ UNIFAC;
- A : contribuição de cada grupo em relação à temperatura do sistema;

 $\Delta_{\mathbf{p}}$: contribuição de cada grupo em relação à pressão do sistema; $\Delta_{\mathbf{v}}$: contribuição de cada grupo em relação ao volume do sistema; $\Delta X (\equiv \mathbf{D} \mathbf{A})$: desvio absoluto;

 $\Delta \overline{X}$ (= DAM) : desvio absoluto médio;

 $\Delta \overline{X}_{+}$: desvio absoluto médio total;

ω : fator acêntrico;

 ω_i : fator acêntrico de um componente puro i;

 ω_{ij} : fator acéntrico de mistura das espécies i e j;

 $\boldsymbol{\omega}_{i}$: fator acêntrico de um componente puro j;

$$\begin{split} & \omega_k : \text{fator acéntrico do componente } k; \\ & \nu_k^{(i)} : \text{número de frequência do grupo } k \text{ na molécula } i; \\ & \nu_{k\,j}^{(i)} : \text{número de contribuições da estrutura do tipo } j \text{ no grupo do } \\ & \quad \text{tipo } k; \\ & \theta_m^{\#} : \text{fração de área do grupo } m; \end{split}$$

 ψ_{nm} : função de parâmetro energético dos grupos n e m;

ABREVIAÇÕES :

```
calc : calculada;
```

- exp : experimental;
- pri : primária;
- sec : secundária.

SUPERSCRITOS :

r : referência genérica;

ro : pressão zero;

- p^r : pressão de referência;
- s : saturado.

SUBSCRITOS :

A : átomo da molécula;
c : critica ou critico;
eb : ebulição normal;
i : componente i;

- ii : espécies i e i;
- ij : espécies i e j;
- k : componente genérico;
- l : fase líquida;
- R : reduzida ou reduzido;
- \mathbf{r} : total;

.

- v : fase vapor;
- v : volume do sistema.

۰

----- PAG. 1

CAPITULO 1

INTRODUÇÃO

A determinação experimental de dados de equilibrio líquido-vapor para uso em projetos de processos de separação exige instalações e equipes especializadas, e normalmente é demorada e de custo elevado.

O uso de métodos de predição de propriedades termodinânicas no equilíbrio permite diminuir o envolvimento experimental, viabilizando o tratamento de misturas multicomponentes com um mínimo de esforço e de custo. A ferramenta dos métodos de predição é o computador.

Os chamados métodos de contribuição de grupo constituem uma classe das técnicas de predição através dos quais são obtidos valores de propriedades termodinâmicas a partir de contribuições de vários grupos de átomos que constituem as moléculas. Uma mistura qualquer de várias moléculas é, então, considerada como se fosse uma mistura aparentemente mais complexa dos grupos funcionais. Na realidade, o número de grupos básicos é muito menor que o número de moléculas constituídas por eles, o que simplifica sobremaneira o cálculo de propriedades termodinâmicas das misturas multicomponentes.

Existem métodos de contribuição de grupo para predizer várias propriedades termodinâmicas, em especial aquelas de interesse em cálculos de equilíbrio líquido-vapor. As propriedades de interesse consideradas neste trabalho são : ---- CAPITULO 1 -----

——— Pāg. 🔗

- temperatura normal de ebulição;

- temperatura crítica;

- pressão crítica;

- volume crítico;

- pressão de vapor de componentes puros;

- volume molar de líquido puro;

- coeficientes viriais de vapores puros e de mistura;

- coeficientes de atividade de misturas.

Para cada uma das propriedades, existem vários métodos, com aplicabilidade variada quanto a tipos de compostos e faixas de temperatura e de pressão. Sendo métodos de predição, os valores obtidos das propriedades naturalmente apresentam um erro associado que tem efeito acumulativo nos dados de equilíbrio calculados.

A prática de cálculo normalmente consiste em se usar informações experimentais de algumas propriedades e métodos de predição , inclusive por contribuição de grupo , para obter as curvas de equilíbrio calculadas. Os métodos de predição são usados evidentemente para as propriedades para as quais não se dispõem informações experimentais.

Até o presente, no entanto, não foi proposta uma metodologia para se predizer a curva de equilíbrio totalmente a partir de métodos de contribuição de grupo. Esta metodología é particularmente interessante no desenvolvimento de processos de Química Fina, pois é indispensável o conhecimento de propriedades

——— РА́G. З

termodinâmicas dos novos compostos, cujas propriedades normalmente não foram determinadas.

O presente trabalho apresenta uma metodologia de cálculo de curvas de equilíbrio líquido-vapor usando exclusivamente métodos de contribuição de grupo. A única informação disponível são as fórmulas estruturais dos compostos que constituem a mistura. A metodologia prevé ainda a opção de se conhecer a temperatura normal de ebulição experimental, normalmente de fácil determinação.

Para a definição da metodologia, foi realizado um estudo crítico dos métodos de predição, de modo a selecionar aqueles mais adequados ao objetivo e identificar as lacunas no tratamento dos vários grupos em cada propriedade.

O software desenvolvido realiza cálculos de pontos de bolha e de orvalho, usando um programa gerenciador que integra os tipos de cálculo e as várias sub-rotinas de predição. O software é interativo, de modo a ser manipulado por usuários com um mínimo de conhecimento dos métodos utilizados.

CAPÍTULO 2

TERMODINÂMICA DO EQUILÍBRIO LÍQUIDO-VAPOR

O comportamento termodinâmico de uma mistura multicomponente no equilíbrio líquido-vapor é esquematizado na figura abaixo :

FIGURA 2.1 : SISTEMA MULTICOMPONENTE EM EQUILÍBRIO LÍQUIDO-VAPOR

O equilíbrio termodinâmico ocorre quando os potenciais químicos de cada componente nas fases líquida e vapor são íguais, ou seja :

 $\mu_{i}^{v} = \mu_{i}^{l}$ i=1,2,..., n (2.1)

onde n é o número de componentes do sistema, e v e l referem-se às fases vapor e líquida, respectivamente.

Para os propósitos de engenharia, o potencial químico não é uma variável prática (Smith e Van Ness, 1980), sendo usualmente substituído pela fugacidade. De acordo com G. N. Lewis (Prausnitz et al., 1986), a fugacidade do componente i em uma mistura, \hat{f}_i , é definida por : е

$$\mathcal{d} \mu_{i} = \mathbb{R} T \mathcal{d} \ln f_{i} \quad i=1,2,\ldots, n \quad [T] \quad (2.2)$$

$$\lim_{P \to 0} \frac{\hat{f}_i}{z_i^* P} = 1$$
 (2.3)

onde R : constante dos gases;

- \hat{f}_i : fugacidade do componente i na mistura;
- T : temperatura do sistema;
- P : pressão do sistema;
- z: fração molar do componente i.

Pode-se demonstrar, para uma mistura qualquer, que a condição de equilibrio de igualdade de potenciais químicos é equivalente à expressão análoga em termos de fugacidade (Prausnitz, 1986) :

$$\hat{f}_{i}^{1} = \hat{f}_{i}^{V}$$
 i=1,2,..., n [T] (2.4)

A fugacidade do componente i na mistura é relacionada de forma exata às variáveis mensuraveis P-T-v-composição pela equação seguinte :

$$\ln \hat{\varphi}_{i} = \ln \frac{\hat{f}_{i}}{z_{i}^{*}P} = \frac{1}{R T} \int_{V}^{\infty} \left[\left(\frac{\partial P}{\partial n_{i}} \right)_{j\neq i} \frac{R T}{V} \right] dV - \ln Z \qquad (2.5)$$

onde Z é o fator de compressibilidade, definido por

$$Z = \frac{P V}{N_{T} R T}$$
(2.6)

----- PÃG. 6

sendo \aleph_{T} , o número de moles totais e $\hat{\varphi}_{i}$ é o coeficiente de fugacidade do componente i na mistura, dado por

$$\hat{\rho}_{i} = \frac{\hat{f}_{i}}{z_{i}^{*}P}$$
(2.7)

A equação 2.5 é apropriada para uso com relações P-v-T explícitas em P, ou seja, P = f(T, v, N_1 , N_2 ,..., N_p).

Aplicando a equação 2.7 para as fases líquida e vapor, e substituindo na equação 2.4, vem :

$$\hat{\varphi}_{i}^{v} y_{i}^{v} P = \hat{\varphi}_{i}^{1} x_{i}^{v} P$$
 $i = 1, 2, ..., n$ (2.8)

A equação 2.8 relaciona as variáveis mensuráveis P,T, y, 's e x, 's nas condições de equilíbrio.

O cálculo dos coeficientes de fugacidade exige a disponibilidade de uma equação que represente bem as propriedades volumétricas de ambas as fases, na temperatura, pressão e composição de interesse. Existem na literatura várias equações que apresentam bons resultados no tratamento da fase vapor. Porém, raros são os casos de relações P-v-T que representam convenientemente o comportamento da fase líquida. Torna-se, então, necessário propor outra abordagem para tratar a fase condensada.

É prática usual definir-se a fugacidade do componente i na fase líquida por :

vana - wa a . waa.

$$\hat{\mathbf{f}}_{i}^{l} = \boldsymbol{\gamma}_{i} \mathbf{x}_{i} \hat{\mathbf{f}}_{i}^{rl}$$
(2.9)

onde $\gamma_i \notin 0$ coeficiente de atividade do componente *i*, e $\hat{f}_i^{rl} \notin a$ fugacidade de referência do componente *i*. Quando $x_i \neq 1$, $\gamma_i \neq 1$, por definição.

O coeficiente de atividade, γ_i , representa o afastamento da solução líquida das condições de idealidade, e é função da composição, da temperatura e da pressão da mistura, ou seja :

$$\gamma_{i} = f(x_{i}'s, T, P)$$
 (2.10)

O coeficiente de atividade γ_i pode ser relacionado a um outro coeficiente de atividade independente da pressão do sistema, estabelecido a uma pressão P^r de referência, usando a seguinte relação termodinâmica :

$$\left(\frac{\partial \ln \gamma_{i}}{\partial P}\right)_{T,x_{i}} = \frac{\overline{v}_{i}^{1}}{R T}$$
(2.11)

que, por integração entre P^r e P, fornece :

$$\gamma_{i} = \gamma_{i}^{(\mathbf{p}^{r})} \exp \int_{\mathbf{p}^{r}}^{\mathbf{p}} \frac{\overline{v}_{i}^{l}}{R T} dP \qquad [T, x_{i}] \qquad (2.12)$$

onde $\bar{v}_i^1 \notin o$ volume parcial molar do componente i líquido.

Na prática, nem sempre os coeficientes de atividade de cada componente na mistura líquida, obtidos experimentalmente a uma dada temperatura, estão à mesma pressão, como é o caso em misturas binárias. Assim, é conveniente a utilização da equação 2.12 para promover a correção do coeficiente de atividade, γ_i , de uma pressão total P experimental, para um coeficiente de atividade $\gamma_i^{(\mathbf{p}^r)}$, a uma pressão arbitrária de referência designada por \mathbf{P}^r . Isto é feito, isolando-se o termo $\gamma_i^{(\mathbf{p}^r)}$ da equação 2.12 da seguinte forma :

$$\gamma_{i}^{(\mathbf{p}^{r})} = \gamma_{i} \exp \int_{\mathbf{p}}^{\mathbf{p}^{r}} \frac{\overline{v}_{i}^{l}}{R T} dP \quad [T, x_{i}] \quad (2.13)$$

A escolha das condições da fugacidade de referência, \hat{f}_i^{rl} , é arbitrária. Na maioria dos casos de interesse em Engenharia Química, onde as misturas são formadas por componentes subcríticos, como é o caso neste trabalho, a fugacidade de referência é definida como a fugacidade do componente *i* puro, a uma pressão de referência e temperatura do sistema. Neste caso, é evidente, das equações 2.9 e 2.13, que $\gamma_i^{(\mathbf{p}^r)} \rightarrow 1$ quando $x_i \rightarrow 1$, a P = P^r.

A fugacidade de um líquido puro ί varia com a pressão de acordo com a expressão :

$$\left(\frac{\partial \ln f_{i}^{l}}{\partial P}\right)_{T} = \frac{v_{i}^{l}}{R T}$$
(2.14)

Integrando entre a pressão de saturação do componente ί, P^s, e a pressão de referência arbitrária, P^r, vem que : - CAPITULO 2 -

$$f_{i}^{rl} = P_{i}^{s} \varphi_{i}^{s} \exp \int_{P_{i}^{s}}^{P^{r}} \frac{v_{i}^{l}}{R T} dP$$
 [T] (2.15)

onde P_i^s : pressão de saturação do líquido puro i na temperatura T T do sistema; φ_i^s (= f_i^s / P_i^s) : coeficiente de fugacidade de vapor saturado i a T e P_i^s ; v_i^l : volume de líquido molar puro i à T do sistema.

As equações 2.12 e 2.15 substituídas na equação 2.9 fornecem a seguinte expressão termodinâmica :

$$\hat{f}_{i}^{l} = \gamma_{i}^{(\mathbf{p}^{r})} x_{i} P_{i}^{s} \varphi_{i}^{s} \exp \int \frac{\mathbf{p}^{r}}{\mathbf{p}_{i}^{s}} \frac{\mathbf{v}_{i}^{l} dP}{\mathbf{p}_{i}^{s}} \exp \int \frac{\mathbf{p}^{r}}{\mathbf{p}_{i}^{r}} \frac{\mathbf{v}_{i}^{l} dP}{\mathbf{p}_{i}^{r}} (2.16)$$

Quando a solução líquida estiver longe das condições críticas, $v_i^l = \bar{v}_i^l$ não são muito diferentes. Logo, considerando $v_i^l = \bar{v}_i^l$, a equação acima pode ser reescrita da seguinte forma :

$$\hat{f}_{i}^{l} = \gamma_{i}^{(\mathbf{P}^{r})} x_{i} P_{i}^{s} \varphi_{i}^{s} exp \int_{\mathbf{P}_{i}^{s}}^{\mathbf{P}} \frac{v_{i}^{l} dP}{R T}$$
(2.17)

A escolha da pressão de referência P^r é completamente arbitrária, e por conveniência adota-se $P^r = 0$. Assim, os coeficientes de atividades ajustados à pressão zero são denotados como γ ^(PO), onde PO significa " pressão zero".

Considerando que o volume molar do líquido não varia com a pressão, vem, finalmente que :
---- CAPÍTULO 2 -----

$$\hat{f}_{i}^{l} = \gamma_{i}^{(PO)} \times_{i} P_{i}^{s} \varphi_{i}^{s} \exp \left[\frac{v_{i}^{l} (P - P_{i}^{s})}{RT} \right] \qquad i=1,2,...n \qquad (2.18)$$

Das equações 2.4, 2.7 e 2.18, tem-se as n equações e equilíbrio líquido-vapor:

$$\hat{\varphi}_{i}^{v} y_{i}^{P} = \gamma_{i}^{(PO)} \times_{i}^{P} P_{i}^{s} \varphi_{i}^{s} \exp \left[\frac{v_{i}^{l} (P - P_{i}^{s})}{RT} \right] \qquad i=1,2,...n \qquad (2.19)$$

submetidas às seguintes restrições :

$$\sum_{i=1}^{n} x_{i} = 1$$
 (2.20)

----- PAG. 10

$$\dot{e}$$
 $\sum_{i=1}^{n} y_{i} = 1$ (2.21)

....

Portanto, existem n + 2 equações de equilíbrio termodinâmica para 2n + 2 variáveis de cálculo. Então, para o equilíbrio ser completamente definido, devem-se fixar n variáveis.

Basicamente, existem quatro tipos de problemas de equilíbrio líquido-vapor que são caracterizados pelas variáveis especificadas :

Variável Conhecida	Variável a ser determinada	Nome típico de cálculo		
P, x ,, x i n-i	T , x , y ,, y n	Temperatura de ponto de bolha (BOLHA T)		
T, x ,, x n-i	P, x, y,, y n 1 n	Pressão de ponto de bolha (BOLHA P)		
P, y,, y _{n-1}	$\mathbf{T}, \mathbf{y}, \mathbf{x}, \dots, \mathbf{x}$	Temperatura de pontode orvalho (ORVALHO T)		
T, y ₁ ,, y _{n-1}	P, y, x,, x n 1 n	Pressão de ponto de orvalho (ORVALHO P)		

---- CAPITULO 3 ----

----- PAG. 11

CAPITULO 3

MÉTODOS DE PREDIÇÃO DE PROPRIEDADES TERMODINÂMICAS

3.1 - Funções Termodinâmicas no Cálculo do ELV

Como mostra a equação 2.19, as propriedades necessárias para o cálculo de equilíbrio líquido-vapor são :

- coeficientes de fugacidade, $\hat{\varphi}_{i}^{v}$, φ_{i}^{s} ;

- coeficientes de atividade, $\gamma_i^{(PO)}$;
- pressões de vapor, P;;
- volumes molares de líquido, v_i^t .

Cada uma destas propriedades termodinâmicas pode ser predita, direta ou indiretamente, por meio de métodos de contribuição de grupos, permitindo o cálculo de curvas de equilíbrio líquido-vapor a partir do conhecimento das estruturas moleculares dos compostos presentes na mistura.

Por meio das equações termodinAmicas ou de correlações específicas, as propriedades acima são relacionadas a outras propriedades mais fundamentais, como por exemplo, as propriedades críticas, a temperatura de ebulição e os segundos coeficientes viriais, que podem ser mais facilmente preditas por contribuição de grupo, como se verá a seguir.

----- PAG. 12

3.1.1 - Predição de Coeficientes de Fugacidade da Fase Vapor

O coeficiente de fugacidade do componente i na mistura gasosa, $\hat{\varphi}_i^{\nu}$, pode ser obtido por meio da equação (2.5), que, aplicada às condições do vapor, tem a seguinte forma :

$$\ln \hat{\varphi}_{i}^{\vee} = \frac{1}{R T} \int_{\mathbf{v}^{\vee}}^{\infty} \left[\left(\frac{\partial P}{\partial N_{i}^{\vee}} \right)_{\mathbf{T}, \mathbf{v}^{\vee}, \mathbf{N}_{j}^{\vee}} - \frac{R T}{\mathbf{v}^{\vee}} \right] d \mathbf{v}^{\vee} - \ln \frac{P \cdot \mathbf{v}^{\vee}}{R T} \, i^{\neq i} \qquad (3.1)$$

Para calcular a integral da equação 3.1 necessita-se de uma relação P-v-T para a fase vapor, na forma P = P (v, T, N_i , ..., N_n).

Para densidades baixas e moderadas, a equação virial série P truncada é uma equação P-v-T que usualmente fornece uma boa representação das propriedades volumétricas de misturas de gases e vapores, polares e não polares (Prausnitz, 1986). A equação virial série P truncada é dada por :

$$P = \frac{R T}{v - B}$$
(3.2)

onde v (= V / N_{T}) : volume molar da mistura;

R : constantes dos gases ideais;

B : segundo coeficiente virial da mistura, que depende da temperatura e da composição.

Em um sistema contendo n componentes, a relação entre B e a composição é dada por (Prausnitz, 1980) : - CAPITULO 3 -

$$B = \sum_{i=1}^{n} \sum_{j=i}^{n} y_{i} * y_{j} * B_{ij}$$
(3.3)

----- PÁG. 13

onde $B_{ij} = B_{ji}$, sendo que B_{ij} depende somente da temperatura e seu valor associado à interação entre as espécies i e j a nível molecular. Quando i=j, B_{ii} (ou B_{jj}) é chamado de segundo coeficiente virial puro, e no caso de $i\neq j$, B_{ij} é conhecido como segundo coeficiente virial cruzado.

A expressão de $\hat{\varphi}_i^v$, obtida da equação 3.1, usando a equação virial truncada é :

$$\ln \hat{\varphi}_{i}^{v} = \frac{P}{R T} \left(2 \sum_{j=1}^{n} y_{j} * B_{ij} - B \right)$$
(3.4)

Nota-se pela equação 3.4 que para se determinar o coeficiente de fugacidade do componente i, $\hat{\varphi}_{i}^{\nu}$, em uma mistura de vapores de composição e temperatura conhecidas, deve-se conhecer os segundos coeficientes viriais puros e cruzados , $B_{ii} = B_{ij}$, e a pressão P do sistema.

O coeficiente de fugacidade de saturação do componente i puro, φ_i^s , é dado pela equação 3.5, obtida da equação 3.4 quando i=j, aplicadas nas condições de saturação, P_i^s e T :

$$\ln \varphi_i^s = \frac{P_i^s B_{ii}^s}{R T}$$
(3.5)

onde $B_{ii}^{s} \notin o$ segundo coeficiente virial do componente i puro nas condições de saturação.

A equação 3.5 indica que para se determinar o coeficiente de fugacidade de saturação, φ_i^s , deve-se dispor do segundo coeficiente virial do componente i puro, B_{ii}^s , à temperatura T, e de sua pressão de saturação, P_i^s , a mesma temperatura.

Portanto, os segundos coeficientes viriais devem ser calculados previamente para se determinar os coeficientes de fugacidade da fase vapor e de saturação.

3.1.1.1 - Predição de Segundos Coeficientes Viriais Puros

Na literatura, o único método de contribuição de grupo disponível para se predizer segundos coeficientes viriais puros é o método de McCann e Danner (McCann e Danner, 1984).

McCann e Danner propuseram um método de contribuição de grupo baseado em interações entre um átomo com seus vizinhos mais próximos. Neste sentido, a representação de um grupo funcional é dada por um átomo polivalente unido a outros átomos ligantes.

A contribuição de cada grupo na molécula pode ser calculada pela seguinte equação :

$$B_{ii} = \Sigma n_i \Delta B_i \qquad (3.6)$$

onde n_i é o número de ocorrências do grupo no composto i e ∆ B_i é o incremento de contribuição de grupo para o cálculo do segundo coeficiente virial de componente puro, que é dado pela seguinte equação :

$$\Delta B_{i} = a_{i}^{\prime} + \frac{b_{i}^{\prime}}{T_{Ri}} + \frac{c_{i}^{\prime}}{T_{Ri}^{3}} + \frac{d_{i}^{\prime}}{T_{Ri}^{7}} + \frac{e_{i}^{\prime}}{T_{Ri}^{8}} = 0.5 < T_{Ri}^{\prime} < 5.0 \quad (3.7)$$

onde a', b', c', d' e e' são parâmetros fornecidos em tabela no Apêndice A (Tabela A.1) e T_{Ri} (= T / T_{ci}) é a temperatura reduzida do componente i.

Algumas correções foram propostas pelos autores para melhorar a precisão do método quando estão presentes algum dos três grupos funcionais : $C-(C)_2(H)_2$, $C_B = C-(F)_2(C)_2$. Para cada um desses três grupos funcionais existem duas contribuições: a contribuição primária, que é tratada como qualquer outro grupo, dada pela equação (3.6), e a contribuição secundária, que é a equação (3.7) multiplicada por um fator de correção ($n_i - 1$)². Assim, o segundo coeficiente virial para compostos puros, exclusivamente neste caso, é determinado por :

$$B_{ii} = \sum_{pri} \Delta B_{i} + \sum_{sec} (n_{i} - 1)^{2} \Delta B_{i}$$
(3.8)

As contribuições secundárias também estão presentes na Tabela A.1 do Apéndice A.

- PÁG. 15

3.1.1.2 - Predição de Segundos Coeficientes Virial Cruzados

Não existem métodos de contribuição de grupos para predizer diretamente o segundo coeficiente virial cruzado, nem tampouco regras de misturas que permitam extender o método de McCann e Danner para calcular B_{ij}. Neste trabalho, propõe-se uma metodologia baseada na correlação de Tsonopoulos (Tsonopoulos, 1974) para se obter valores de segundos coeficientes viriais cruzados, a partir de valores de coeficientes viriais puros obtidos pelo método de McCann e Danner.

A correlação de Tsonopoulos tem a seguinte forma :

$$\frac{B_{k} P_{ck}}{R T_{ck}} = f^{(0)}(T_{Rk}) + \omega_{k} f^{(1)}(T_{Rk}) + f^{(2)}(T_{Rk})$$
(3.9)

onde $f^{(0)}(T_{Rk}) = 0.1445 - \frac{0.330}{T_{Rk}} - \frac{0.1385}{T_{Rk}^2} - \frac{0.0121}{T_{Rk}^3} - \frac{0.00067}{T_{Rk}^8}$ (3.10)

$$f^{(1)}(T_{Rk}) = 0.0637 - \frac{0.331}{T_{Rk}^2} - \frac{0.423}{T_{Rk}^3} - \frac{0.008}{T_{Rk}^8}$$
 (3.11)

$$f^{(2)}(T_{Rk}) = \frac{a_k}{T_{Rk}^{\sigma}} - \frac{b_k}{T_{Rk}^{\theta}}$$
 (3.12)

onde o subscrito k representa um componente genérico; $a_k e b_k$ são parâmetros de correção polar.

– PÁG. 16

A metodologia consiste na determinação dos dois parâmetros $a_k e b_k$, a partir de valores de B_k em duas temperaturas diferentes, T + 10 (K) e T - 10 (K), preditos pelo método de McCann e Danner. Os parâmetros $a_k e b_k$ de um componente k são calculados pelas equações (3.13) e (3.14) :

$$b_{k} = \frac{f^{(2)}[T_{Rk}^{-}] (T_{Rk}^{-})^{\sigma} - f^{(2)}[T_{Rk}^{+}] (T_{Rk}^{+})^{\sigma}}{\left[\frac{1}{(T_{Rk}^{+})^{2}} - \frac{1}{(T_{Rk}^{-})^{2}}\right]}$$
(3.13)

$$a_{k} = f^{(2)}[T_{Rk}^{+}] (T_{Rk}^{+})^{\sigma} + \frac{(T_{Rk}^{-})^{2}}{(T_{Rk}^{-})^{2} - (T_{Rk}^{+})^{2}} \begin{bmatrix} f^{(2)}[T_{Rk}^{-}] (T_{Rk}^{-})^{\sigma} - f^{(2)}[T_{Rk}^{+}] (T_{Rk}^{+})^{\sigma} \end{bmatrix}$$

$$(3.14)$$

onde

$$T^{+} = T + 10$$
 (3.15)

$$T^{-} = T - 10$$
 (3.16)

$$T_{Rk}^{+} = T^{+} / T_{ck}$$
 (3.17)

$$T_{\mathbf{R}\mathbf{k}}^{-} = T^{-} / T_{\mathbf{c}\mathbf{k}}$$
(3.18)

A dedução das equações (3.13) e (3.14) é dada no Apêndice B.

Os valores de B_{ij} à temperatura T é calculado pela equação de Tsnopoulos usando as regras de mistura usuais, mostradas a seguir :

----- PAG. 17

— CAPÍTULO 3 -

$$a_{ij} = \frac{a_i + a_j}{2}$$
 (3.19)

$$b_{ij} = \frac{b_i + b_j}{2}$$
 (3.20)

$$T_{cij} = (T_{ci} T_{cj})^{1/2}$$
 (3.21)

$$\omega_{ij} = \frac{\omega_i + \omega_j}{2} \tag{3.22}$$

$$P_{eij} = \frac{Z_{eij} R T_{eij}}{V_{eij}}$$
(3.23)

$$Z_{cij} = \frac{Z_{ci} + Z_{cj}}{2}$$
(3.24)

$$V_{cij} = \frac{(V_{ci}^{1/3} + V_{cj}^{1/3})^3}{8}$$
(3.25)

$$Z_{ci} = \frac{P_{ci} V_{ci}}{R T}$$
(3.26)

Na correlação de Tsonopoulos, os parâmetros $a_k e b_k$ são diferentes de zero apenas para os componentes polares. Neste trabalho, os parâmetros possuem valores diferentes de zero, mesmo se os componentes forem apolares.

Concluindo, para se predizer os valores de coeficientes de fugacidade ($\hat{\varphi}_i^{\vee} e \varphi_i^s$), a uma dada temperatura e pressão, devem-se conhecer, além das tabelas de parâmetros de

---- CAPITULO 3 ----

contribuição de grupo do método de McCann e Danner, também as propriedades críticas, T_c, P_c e V_c, e os fatores acêntricos de cada componente.

3.2.2 - Predição de Coeficientes de Atividade3.2.2.1 - Escolha do Método

O cálculo do coeficiente de atividade através de contribuição de grupos foi sugerido pela primeira vez em 1925 por Langmuir (Prausnitz, 1986), mas essa sugestão não mereceu muita atenção principalmente devido a falta de uma quantidade razoável de dados experimentais para se calcular as contribuições dos grupos presentes nas moléculas.

Bem mais tarde, com maior disponibilidade de dados de equilíbrio líquido-vapor, em 1962, Deal, Dear e Wilson (Prausnitz, 1986) estabeleceram o Método de Soluções Analíticas de Grupos - ASOG (Analytical Solution of Groups), que serviu de base para os métodos de predição de coeficientes de atividade hoje em uso.

Kojima e Tochigi (1979) divulgaram o método ASOG por meio de sua monografia, determinando, para 31 grupos, pares de parâmetros de grupos para a predição dos coeficientes de atividade, adequando-o para uso em predição de curvas de equilíbrio líquido-vapor de interesse industrial.

----- PĀG. 19

O método ASOG considera o cálculo de duas contribuições ao valor do coeficiente de atividade :

- a contribuição combinatorial, γ_i^c , que é responsável pelos efeitos entrópicos devido às diferenças de tamanhos e formas moleculares;

- a contribuição residual, γ_i^R , que leva em conta os efeito de interações energéticas entre os grupos presentes na mistura multicomponente.

O coeficiente de atividade, $\gamma_i^{(PO)}$, é, então, dado por :

$$\ln \gamma_i^{(PO)} = \ln \gamma_i^{C} + \ln \gamma_i^{R} \qquad (3.27)$$

Anteriormente aos trabalhos de Kojima e Tochigi, Fredenslund et al (1975), desenvolveram um método similar ao de ASOG, baseado na equação de UNIQUAC (Universal Quasi Chemical), que foi denominado como método UNIFAC (Universal Functional Activity Coeficient). Por apresentar um maior número de grupos, o método UNIFAC tornou-se mais popular que o método ASOG.

Os métodos de UNIFAC e ASOG vêm sendo usados com muito sucesso em estudos de processos de separação, onde se requer a estimativa de coeficientes de atividade em misturas multicomponentes quando há falta de dados experimentais. Ao se iniciar este trabalho, como o método UNIFAC apresentava uma disponibilidade maior de parâmetros de grupos funcionais frente ao método ASOG, ele foi escolhido para predizer os coeficientes de atividade dos componentes na mistura líquida. Entretanto, recentemente, Tochigi (1990) extendeu a aplicabilidade do método ASOG tornando-o sob todos os aspectos equivalente ao método UNIFAC para cálculos de ELV. Apesar disso, o método UNIFAC foi mantido, tendo em vista as informações da literatura de que ambos os métodos têm igual desempenho nos cálculos de equilíbrio líquido-vapor.

3.2.2.2 - Método UNIFAC

No método UNIFAC, o coeficiente de atividade combinatorial γ_i^C é calculado pela equação (Fredenslund et al., 1977) :

$$\ln \gamma_{i}^{c} = \ln \frac{\phi_{i}}{x_{i}} + \frac{z}{2} q_{i} \ln \frac{\theta_{i}}{\phi_{i}} + l_{i} - \frac{\phi_{i}}{x_{i}} \sum_{j} x_{j} l_{j} \qquad (3.27a)$$

onde,

$$l_i = \frac{z^2}{2} (r_i - q_i) - (r_i - 1)$$
 (3.27b)

$$\theta_{i} = \frac{q_{i} x_{i}}{\sum_{j} q_{j} x_{j}}$$
(3.27c)

---- CAPITULO 3 ---

$$\phi_{i} = \frac{\mathbf{r}_{i} \mathbf{x}_{i}}{\sum_{j} \mathbf{r}_{j} \mathbf{x}_{j}}$$
(3.27d)

sendo x_i , a composição do componente i na fase líquida; z(=10), o número de coordenação da molécula; q_i e r_i , área superficial de van der Waals e volume de van der Waals, respectivamente, e calculados pelas equações :

$$q_{i} = \sum_{k} \nu_{k}^{(i)} Q_{k} \qquad (3.27e)$$

$$\mathbf{e} \qquad \mathbf{r}_{i} = \sum_{\mathbf{k}} \nu_{\mathbf{k}}^{(i)} \mathbf{R}_{\mathbf{k}} \qquad (3.27f)$$

Nestas equações, $\nu_k^{(i)}$ indica o número de frequência do grupo k na molécula i, e Q_k e R_k são os parâmetros de área e de volume do grupo k, respectivamente.

O termo do coeficiente de atividade residual, responsável pelos efeitos de interação entre as moléculas na mistura, é dado pela seguinte equação :

$$\ln \gamma_{i}^{\mathbf{R}} = \sum_{\mathbf{k}} \nu_{\mathbf{k}}^{(i)} \left(\ln \Gamma_{\mathbf{k}} - \ln \Gamma_{\mathbf{k}}^{(i)} \right) \qquad (3.27g)$$

. .

onde

$$e_{\ln \Gamma_{k}} = Q_{k} (1 + \ln \sum_{m} \theta_{m}^{*} \psi_{mk} - \sum_{n} \frac{\theta_{m}^{*} \psi_{km}}{\sum_{m} \theta_{n}^{*} \psi_{nm}}) \qquad (3.27h)$$

----- PÃG. 22

e

$$\ln \Gamma_{k}^{(i)} = Q_{k} \left(1 + \ln \sum_{m} \Theta_{m}^{*(i)} \psi_{mk} - \sum_{n} \frac{\Theta_{m}^{*(i)} \psi_{km}}{\sum_{m} \Theta_{n}^{*(i)} \psi_{nm}} \right) \quad (3.27i)$$

com

$$\Theta_{m}^{*} = \frac{Q_{m} X_{m}}{\sum_{n} Q_{n} X_{n}} \qquad (3.27j)$$

$$\Theta_{m}^{*(i)} = \frac{Q_{m} \nu_{m}^{(i)}}{\sum_{n} Q_{n} \nu_{n}^{(i)}}$$

$$(3.27k)$$

$$\sum_{n}^{j} (j)$$

$$X_{m} = \frac{\sum_{k} \sum_{j} x_{j}}{\sum_{n} \sum_{j} \nu_{n}^{(j)} x_{j}}$$
(3.271)

$$\psi_{nm} = \exp\left(\frac{-a_{mn}}{T}\right) \qquad (3.27m)$$

sendo θ_m^* , a fração de área de grupo; X_m, fração de grupo; ψ_{pm} , o parâmetro energético.

As equações 3.27a à 3.27m indicam que para determinar o coeficiente de atividade, $\gamma^{(PO)}$, pelo método UNIFAC, a uma dada temperatura e composição da fase líquida, basta se conhecer a estrutura do composto que define os grupos, caracterizados pelos parámetros de grupo, Q_k , R_k e a_{mn} , que aparecem nas equações (3.27e), (3.27i) e (3.27m), respectivamente. O Apéndice A contém as Tabelas A.2 e A.3, que apresentam os parâmetros de volume e de área de cada grupo (Tabela A.3) e os parâmetros energéticos (Tabela A.4).

---- PAG. 23

- CAPITULO 3 ----

----- Pág. 24

3.2.3 - Predição de Pressão de Saturação3.2.3.1 - Escolha do Método

Para se predizer valores de pressão de saturação de compostos puros, pode-se encontrar na literatura um número grande de correlações, porém poucos são os métodos que utilizam contribuição de grupo. De acordo com Jensen et al. (1981), o método UNIFAC é o que apresenta uma aplicabilidade maior, quanto a disponibilidade de parâmetros de grupos funcionais, do que os demais. Por esta razão, o método UNIFAC foi escolhido, neste trabalho, para se predizer valores de pressão de saturação dos compostos puros. Além disso, a escolha do método UNIFAC é conveniente pois se pode utilizar os mesmos parâmetros que entram no cálculo de coeficientes de atividade.

O método de predição de pressão de saturação via método UNIFAC tem sido aplicado com sucesso a hidrocarbonetos pesados, álcoois, cetonas, ácidos orgânicos e clorados (Jensen et al., 1981). Em 1983, a aplicação do método foi extendida aos seguintes grupos funcionais : aminas, piridinas, nitrílas, éteres, ésteres e outros tipos de cetonas (Yair e Fredenslund, 1983).

Em princípio, o método pode ser extendido a todos os grupos funcionais presentes no método UNIFAC, mas, no momento, somente os grupos funcionais supracitados estão à disposição na literatura. Espera-se que a aplicabilidade deste método atinja uma amplitude maior com a publicação de novos parâmetros.

----- Pãg. 25

3.2.3.2 - Método UNIFAC

A equação base do método de predição de pressão de vapor via método UNIFAC (Yair e Fredenslund, 1983) é a seguinte:

RT ln
$$(\varphi_i^{\mathfrak{s}} P_i^{\mathfrak{s}}) = \sum_{k=1}^{N^{(1)}} \nu_k^{(i)} \Delta g_k + R T \sum_{k=1}^{N^{(1)}} \nu_k^{(i)} \ln \Gamma_k^{(i)}$$
 (3.28)

onde $\Delta g_k \in a$ diferença entre a energia livre de Gibbs, $g'_k = a$ energia livre de Gibbs de referência g_k^o do grupo k; $N^{(i)} \notin o$ número de diferentes grupos na molécula i; $\Gamma_k^{(i)} \notin o$ coeficiente de atividade de grupo residual UNIFAC na composição de grupo correspondendo a uma "solução" de componente i puro, dado pela equação 3.27i.

As funções de grupo de energia de Gibbs Ag_k são fortemente dependentes da temperatura e da estrutura molecular. O primeiro termo do lado direito da equação (3.28) pode ser desmembrado em dois termos da seguinte forma:

$$\sum_{k=i}^{N^{(i)}} \nu_{k}^{(i)} \Delta g_{k} = \sum_{k=i}^{N^{(i)}} \nu_{k}^{(i)} \Delta g_{k}^{\dagger} + \Delta G_{i}^{\dagger}$$
(3.29)

O termo $\Delta g'_k$ depende da temperatura na forma da seguinte equação :

$$\Delta g_{k}' = \frac{A_{k,i}}{T} + A_{k,2} + A_{k,3} T + A_{k,4} \ln (T)$$
 (3.30)

---- PÃG. 26

onde $A_{k,i}$ (j=1.2.3.4) são parâmetros de grupo.

O termo $\Delta G_i^{\prime\prime}$ leva em conta alguns efeitos de estrutura molecular, tais como, número de Átomos de carbono na cadeia principal da molécula, existência de diferentes grupos na molécula e localização de uma ramificação. A expressão para seu cálculo é dada por :

$$\Delta G_{i}^{\prime \prime} = \sum_{k=1}^{k} \sum_{kj=1}^{j} \nu_{kj}^{(i)} \Delta g_{kj}^{\prime \prime} \qquad (3.31)$$

sendo $\nu_{kj}^{(i)}$, o número de contribuições do tipo j no grupo do tipo k e $\Delta g_{kj}^{(i)}$, o parâmetro de contribuições da estrutura do tipo j no grupo do tipo k.

Para determinar o valor da pressão de saturação do componente i é necessário, portanto, se conhecer o valor de φ_i^{ε} , que é calculado pela equação (3.5). Substituindo, então, ln φ_i^{ε} , da equação (3.5), na expressão (3.28) e rearranjando-a, tem-se :

$$P_{i}^{s} B_{ii}^{s} + R T \ln P_{i}^{s} = \sum_{k}^{N^{(i)}} \nu_{k}^{(i)} \Delta g_{k} + R T \sum_{k}^{N^{(i)}} \ln \Gamma_{k}^{(i)}$$
(3.32)

Nota-se que a equação acima é uma equação não-linear e implicita em termos da variável P_i^s . Logo, o cálculo da pressão de saturação, P_i^s , é iterativo, podendo ser resolvido, por exemplo, pelo método de Newton.

------ Pāg. 27

Portanto, para se obter a pressão de saturação, a uma dada temperatura, é necessário se conhecer o coeficiente rial de componente puro nas condições de saturação, B^s_{ii}, os arâmetros de grupo UNIFAC e os parâmetros específicos do método, estes últimos tabelados no Apêndice A (Tabelas A.4 e A.5).

3.2.4 - Predição de Volume Molar Liquido

Os métodos de contribuição de grupo para a determinação do volume molar de líquido existentes são restritos a pequenas classes de compostos, e, em muitos casos não apresentam valores de volume molar líquido satisfatórios (Reid et al., 1977).

Existem correlações em literatura que são capazes de fornecer valores confiàveis de volumes de líquido molar, sendo que as mais precisas são a equação de Rackett e a equação de Gunn e Yamada (Reid et al., 1977). Estas equações, baseadas no Príncipio dos Estados Correspondentes, são muito simples e adequadas para uso em computador.

A equação de Gunn e Yamada foi escolhida para fornecer os valores de volumes molares líquido dos compostos orgânicos por exigir apenas o conhecimento das constantes críticas e o fator acêntrico para sua aplicação, enquanto que a equação de Rackett necessita de um parâmetro específico (Reid et al., 1987). ---- CAPÍTULO 3 ---

.

O método de Gunn-Yamada se baseia na seguinte equação empírica (Reid et al., 1977) :

$$\frac{\mathbf{v}_{i}^{l}}{\mathbf{v}_{sc}} = \mathbf{v}_{R}^{(O)} (1 - \omega \Gamma)$$
(3.33)

sendo $v_R^{(O)}$ e Γ , funções de temperatura e v_{sc} , um parâmetro de escala.

As expressões seguintes servem para calcular ${\tt V_{sc}}, {\tt V_{R}}$ e Γ :

$$v_{sc} = \frac{R T_c}{P_c} (0.2920 - 0.0967 \omega)$$
 (3.34)

 $v_{R}^{(0)} = 0.33593 - 0.33953 T_{R} + 1.51941 T_{R}^{2} - 2.02512 T_{R}^{3}$ + 1.11422 T_{R}^{4} $0.2 \le T_{R} \le 0.8$ (3.35)

$$v_{R}^{(0)} = 1.0 + 1.3(1 - T_{R})^{1/2} \log (1 - T_{R}) - 0.50879(1 - T_{R})$$

- 0.91534(1 - T_{R})^{2} 0.8 < T_{R} < 1.0 (3.36)

$$\Gamma = 0.29607 - 0.09045 T_{R} - 0.04842 T_{R}^{2} \qquad 0.2 \le T_{R} < 1.0 \qquad (3.37)$$

Portanto, para se calcular o volume molar do líquido puro, a uma dada temperatura de saturação, basta se conhecer valores de T_c, P_c e ω .

----- PAG. 28

------ Pág. 29

3.3 - Propriedades de Base para o Cálculo de ELV

A tabela 3.1 mostra as informações necessárias para cálculo das propriedades termodinâmicas que aparecem nas equações de equilíbrio.

Observa-se da tabela 3.1 que as propriedades de forma geral, com exceção do coeficiente de atividade do componente líquido i, exigem o conhecimento das constantes críticas e do fator acêntrico, aqui denominadas de propriedades de base, além das tabelas específicas.

PROPRIEDADE TERMODINÂMICA	MÊTODO	PROPRIEDADE INTERMEDIÁRIA	TABELAS Específicas	PROPRIEDADE DE BASE
۲ ^s i	UNIFAC		SIM	Tc
vi	GUNN-YAMADA		não	Τ _c , Ρ _c , εω
ç ¢ ĭ	McCANN & DANNER	B _{ii} , B _{ij}	SIM	Τ _с , Ρ _с , V _с ε ω
¢ ^S i	VIRIAL	B _{ii} , B _{ij}	SIM	Тс
$\gamma_i^{(PO)}$	UNIFAC		SIM	

TABELA 3.1 : PROPRIEDADES TERMODINÂMICAS PARA O CÁLCULO DO ELV.

Sendo de dificil determinação experimental, as constantes críticas têm sido tradicionalmente estimadas por métodos de contribuição de grupo. O fator acêntrico, por sua vez,

----- PAG. 30

pode ser calculado a partir de dados preditos de P^s, como se verá · item 3.3.3.

3.3.1 - Propriedades Críticas
3.3.1.1 - Escolha do Método

As sucessivas edições da obra de Reid et al. " The Properties of Gases and Liquids " têm avaliado os vários métodos para a determinação das propriedades críticas via contribuição de grupo desenvolvidos desde 1958 até 1987. A partir deste ano, novos métodos foram propostos na literatura.

As informações obtidas da literatura sobre os métodos de predição de propriedades críticas estudados são apresentadas nas tabelas 3.2, 3.3 e 3.4, para as seguintes propriedades : temperatura crítica, pressão crítica e volume crítico, respectivamente. Estas informações servem de base para a escolha dos métodos mais eficazes para a determinação das propriedades críticas supracitadas.

Na medida da disponibilidade de informações nas referências citadas, as tabelas 3.2, 3.3 e 3.4 apresentam dados sobre

- faixa de temperatura de aplicação do método;

- precisão do método;
- nível de complexibilidade do método;
- comparação entre os métodos.

TABELA 3.2 : MÉTODOS DE PREDIÇÃO DE TEMPERATURA CRÍTICA VIA CONTRIBUIÇÃO DE GRUPOS.

METODO	OBSERVAÇÕES	REFERÊNCIA
1	 apesar de apresentar erros inferio- res ao do método de Joback, é de uma complexibilidade maior. 	
AMEROSE	- é recomendado quando se dispõe do	REID
	ponto de ebulição normal.	1987
	- para 400 composios orgânicos, apre-	
	sentou desvio médio absoluto de 0.7.	
	- interior ao mélodo de Lydersen.	REID et at.
FISHIINE	- nao pode ser usado para isomeros aromáticos	1987; DIRER (083
3 JALOWKA	- superior ao métado de Lydersen mas	DIFFR 1983
e DAUBERT	inferior ao método de Ambrose.	
	- apresentou desvio médio global de	DAUBERT &
	1.2% em 228 composios testados contra	BARTAKOVITS
	0.75% em 223 compostos testados para o	1989
	método de Ambrose e 1.37% em 144 com-	
	postos testados pelo método Lydersen	
4	- é recomendado quando a temperatura	···
JOBACK	de ebulição nornal for conhecida.	REID et al.
	- neste trabalho, foram testados 92	1987
	compostos, com desvio médio observado	
	de D. 83%	
5	- para composios apolares de pesos mo-	
	leculares superiores a 100, usualmente	REID et al.
IVAEBGEN	apresentam erros (2 a 5%.	1977,
LIDERSEN	- recomendado guando se dispoe de pon-	0000
	adnicos : erros de 1 59% para faixa de	1083
	227. 6 a 790 K.	1700
6	- para hidrocarbonetos, apresenta re -	REID et al.
- NOKAY	suliados melhores que o de Lydersen.	1987 -
7	- é necessário o conhecimento de dois	
	valores de densidades do líquido e um	
	valor de volume crítico.	
	- prediz Tc de compostos apolares e po	VETERE
	lares, lesiado para 100 composios apre	TETERE
RACKETT	sentou imprecisão nos resultados de	1987
	pressões críticas.	
	- o melodo não deve ser empregado para	
	moleculas almerizadas, lais como SOS;	
R	- quanda usada nara compositos com alta	
SOMAYAJULU	pesos moleculares, apresenta precisão	
	maior que a do método de Ambrose.	G. RAAM
	- iestado para 574 composios (hidrocar)	SOMAYAJULU
	bonetos, D, N, S, halogênios e inorgâ-	1989
	nicos) apresentou desvios relativos	
	≤ 1.50 para 86.1%	
9 TSONO-	- próprio para alcanos com elevados	TSONOPOULOS
POULOS	pesos moleculares.	1987

n: número do méiodo.

.

TABELA 3.3 : MÉTODOS DE PREDIÇÃO DE PRESSÃO CRÍTICA VIA CONTRIBUIÇÃO DE GRUPOS.

METODO	OBSERVAÇÕES	REFERÊNCIA
AMBROSE	 apresentou desvios por volta de 4.6% quando foi testado para 390 compostos. mais complexo que o método de Joback 	REID ei al. 1987
2 FISHTINE	- requer a escolha de um material de estrutura molecular semelhante à do composto a ser predito. - precisão similar aos métodos 1,2 e 5	REID et al. 1997; DIPPR 1983
3 FORMAN & THODOS	- impróprio para compostos sulfurosos, aldeídos e álcoois secundários e ter- ciários.	TSONOPOULOS 1987
4 JALOWKA & DAUBERT	 válido para compostos contendo D,N e S. quando comparado aos métodos 1 e 2, apresentou desvio médio de 3.93% em 146 compostos contra 4.40% do método de Lydersen (140 compostos) e 4.31% do método de Ambrose com 89 compostos 	DAUBERT O Bartakovits 1989
5 JOBACK	 igual precisão ao método de Ambrose. neste trabalho, 89 compostos foram testados, encontrando-se desvio médio de 4.92%. 	REID et al. 1987
6 Lydersen	 para compostos apolares de pesos mo- leculares superiores a 100, usualmente apresentam desvio (4 a 10%. quando foi testado para 130 compos- tos apresentou desvio médio em torno de 5.6%. 	REID et al. 1977 -
7 RIEDEL	 testado para 172 composios, apresentiou erros de 3.9%. mais preciso que o método de Forman e Thodos. composios fortemente polares produziram resultados muito duvidosos. apresentou erros de 2 a 6%, quando testado para estruturas muito ramificadas e álcoois de alto peso molecular 	REID et al. 1966
8 Somayajulu	 exclusivo para compostos de altos pesos moleculares. pode ser usado para inorgânicos. para 386 compostos testados (hidro-carbonetos, D, N, S, halogênios e inorgâ-nicos) apresentou desvios relativos ≤ 10.0 em 83.7% dos casos. 	G. RAAM Somayajulu 1989

n: número do método.

-

TABELA 3.4 : MÉTODOS DE PREDIÇÃO DE VOLUME CRÍTICO VIA CONTRIBUIÇÃO DE GRUPOS.

METODO	OBSERVAÇÕES	REFERÊNCIA
1 AMBROSE	- testado para 310 compostos, o desvio médio encontrado foi de 2.8%. - apresenta precisão maior que às dos métodos de Vetere e de Fedors.	REID et al. 1987
2 COMPRESSI- BILIDADE CRÍTICA	 para 144 compostos testados apresen- tou erros de 3.6%. deve ser usado quando se dispõe de valores experimentais de temperatura e de pressão críticas. 	REID et al. 1966
3 FEDORS	 geralmente aplicável a todas as fa- milias de compostos orgânicos contendo C,H,O,S,N ou halogênios. testado para 81 compostos apresentou desvio médio de 3.62%. 	REID et al. 1987; DIPPR 1983
4 GUNN Ə Yamada	 - é um método de tentativas e erros, pois prediz tanto o volume crítico co- mo a pressão crítica. - possue precisão igual ou superior à do método de Lydersen, dependendo do composto. 	REID et al. 1977
5 Joback	 testado para 310 compostos, o desvio médio encontrado foi de 2.3%. apresenta precisão maior que as dos métodos de Vetere e de Fedors. neste trabalho, 77 compostos foram testados, o desvio encontrado foi de 2.03 % 	REID et al. 1987 -
6 LYDERDEN	- para 144 compostos testados apresen- desvio médio de 2.3%	REID et al. 1977
7 RACKETT	 necessita de valores de temperatura, volume críticos e um valor de densida- de à uma temperatura de referência. 	DIPPR 1983
8 RIEDEL	- os autores o consideram o mais pre- ciso para hidrocarbonetos. - testado para B1 componentes apresen- tou desvio médio de 4.75%.	REID et al. 1977
> VETERE	 para alguns compostos pode apresen- tar resultados confiáveis. testado para 81 componentes apresen- tou desvio médio de 2.10%. 	REID et al. 1977

n : número do método.

*

Para selecionar os métodos a serem usados neste trabalho, adotaram-se os critérios empregados por Reid e laboradores (Reid et al., 1966, 1977 e 1987) nas sucessivas lições do "The Properties of Gases and Liquids ", ou seja :

- generalidade;

- precisão;
- disponibilidade dos dados necessários de entrada.

Inicialmente, os métodos de predição de temperatura crítica são analisados, em seguida, os métodos de pressão crítica, e, por fim, os métodos de predição de volume crítico.

Nota-se da Tabela 3.2 que os métodos de predição de temperatura crítica de Nokay, de Somayajulu, de Tsonopoulos, de Fishtine e de Rackett apresentam limitações quanto a sua utilização e são restritos a poucas classes de compostos. Devido a isso, estes métodos são descartados.

O método de Jalowka e Daubert apresenta-se superior ao método de Lydersen e inferior ao método de Ambrose. Logo, pode-se concluir que o método de Ambrose é superior aos métodos de Jalowka e Daubert e de Lydersen. Desta forma, estes dois últimos são excluídos.

Finalmente, restaram os métodos de Ambrose e de Joback, que exigem o conhecimento da temperatura de ebulição normal. A complexibilidade maior do método de Ambrose é o fator determinante para a preferência pelo método de Joback, que é o escolhido para este trabalho, apesar da implicação da superioridade do método de Ambrose indicada por Reid et al. (1987). A simplicidade do método de Joback facilita a programação de computador no sentido de interação direta com o usuário, o que seria extremamente complexo com o método de Ambrose.

Neste trabalho, o método de Joback foi testado para 92 compostos orgânicos apresentando desvio médio de 0.83%, sendo que se utilizou valores experimentais publicados de temperatura de ebulição normal (Reid et al., 1987). Nota-se que será necessário se dispor de um método confiável para a determinação da temperatura de ebulição normal, afim de fornecer valores também confiáveis de temperatura crítica.

Na escolha do melhor método para predizer pressão critica, analisando a tabela 3.3, observa-se que os métodos de Forman e Thodos, de Riedel, de Somayajulu e de Jalowka e Daubert apresentam restrições quanto a suas utilizações. O primeiro não se aplica a compostos sulfurosos, aldeidos e álcoois secundários e terciários, enquanto que o segundo se destina a compostos fortemente polares. Já o terceiro, por sua vez, só é aplicável a compostos contendo oxigênio, nitrogênio e enxofre. Logo, estes métodos não foram selecionados neste trabalho.

O método de Fishtine, apesar de apresentar precisão

similar aos métodos de Lydersen e de Ambrose, necessita da escolha de um outro material de estrutura molecular semelhante àquela do composto a ser predito. Desta forma, o método está limitado a este material, podendo produzir resultados diferentes para o mesmo compostos dependendo da escolha do material. Logo, este método não se mostra adequado para fornecer valores de pressão crítica, e por isso é descartado.

Os métodos de Lydersen, Ambrose e de Joback podem ser usados para a predição da pressão crítica, proporcionando valores satisfatorios. Porém, a tabela 3.3 indica que o método de Lydersen, quando foi testado para 139 compostos, apresentou desvios maiores que os apresentados pelo método de Ambrose. A tabela 3.3 revela também que o método de Ambrose e de Joback apresentam igual precisão e, como o método de Ambrose é mais complexo que o de Joback, o método de Joback é escolhido neste trabalho.

Nota-se da tabela 3.4, onde são apresentados os melhores métodos de predição de volume crítico, que os métodos de Rackett e de Gunn-Yamada necessitam do conhecimento de outras variáveis para a sua aplicação. O primeiro precisa de valores de temperatura e volume críticos e um valor de densidade à uma temperatura de referência, o segundo requer o conhecimento da pressão crítica. É lógico que para se fornecer estas propriedades a estes métodos, os erros acumulados devido as predições preliminares aumentariam ainda mais a imprecisão da predição do

------ PÁG. 36

volume crítico. Sob este aspecto, o método de compressibilidade crítica também apresentará esta deficiência, pois ele necessita de valores de pressão crítica e de temperatura crítica. Assim, estes três métodos estão descartados nesta análise.

A tabela 3.4 indica que o método de Vetere é mais preciso que os métodos de Riedel e de Fedors, quando estes trés métodos foram submetidos a testes com 81 componentes. Porém, o método de Vetere se apresenta inferior aos métodos de Joback e de Ambrose, conforme afirmam Reid e colaboradores (Reid et al., 1977 e 1987). Portanto, por esta análise, os métodos de Fedors, de Riedel e de Vetere também são eliminados.

Analisando a tabela 3.4 para os casos dos métodos de Ambrose e de Joback, a tabela indica que o segundo é mais preciso que o primeiro, pois ambos foram testados para 310 compostos e o que apresentou maior precisão foi o método de Joback.

A tabela 3.4 indica também que o método de Lydersen pode ser empregado para a determinação do volume crítico, pois o método apresentou desvio médio de 2.3% quando foi submetido a testes para 144 compostos. Uma vez que o método de Joback foi selecionado para predizer a temperatura crítica e a pressão crítica, facilita em muito a programação em computador adotar um unico método para se predizer todas as propriedades críticas, T_c , $P_c e V_c$. Por esta razão, o método de Joback é o escolhido para predizer volume crítico.

———— PÁG. 37

---- CAPITULO 3 ---

Concluindo, o método de Joback será empregado na predição das três propriedades críticas desejadas, T_c , $P_c \in V_c$.

3.3.1.2 - Método Joback

As equações do método são :

$$T_{c} = \frac{T_{eb}}{0.584 + 0.965 \Sigma \Delta_{r} - (\Sigma \Delta_{r})^{2}}$$
(3.38)

$$F_{c} = \frac{1}{(0.113 + 0.0032 n_{A} - \Sigma \Delta_{p})^{2}}$$
(3.39)

$$V_{2} = 17.5 + \Sigma \Delta_{y}$$
 (3.40)

onde os valores Δ representam a contribuição de cada grupo em que se divide a molécula; $n_A \in o$ número de átomos na molécula; T_{eb} , ponto de ebulição normal do composto. Os valores de Δ para a três propriedades críticas atualizados e completos estão à disposição na Tabela A.6 do Apéndice A.

Portanto, para se predizer as propriedades críticas, T_c, P_ce V_c,pelo método Joback, além das tabelas específicas, deve-se conhecer a temperatura de ebulição normal, T_{eb}, que também pode ser considerada como uma propriedade de base e deve ser predita por um método de contribuição de grupo. — CAPÍTULO 3 —

----- PÃG. 39

3.3.2 - Temperatura de Ebulição3.3.2.1 - Escolha do Método

A Tabela 3.5 apresenta os métodos de contribuição de grupo para a predição de temperatura de ebulição normal, que foram considerados neste trabalho.

Os métodos de contribuição de grupo de Watson, de Lydersen-Forman-Thodos, de Ogata-Tsuchida, de Stiel-Thodos e de Kinney foram analisados por Reid e Sherwood (Reid e Sherwood, 1966). Dentre os cinco métodos, o único recomendado pelos autores é o método de Stiel-Thodos, porém a recomendação é feita só para hidrocarbonetos saturados, o que limita sua utilização. Os demais métodos não apresentam qualquer atrativo que possibilite seu emprego neste trabalho.

O método de Joback foi analisado por Reid e colaboradores (Reid et al., 1987) e se apresentou pouco confiável, como se nota, na Tabela 3.5, que o desvio médio absoluto encontrado para 438 compostos orgânicos testados foi muito alto, 17.9 K. Este método não está qualificado para ser selecionado neste trabalho.

O método de Pailhes (Pailhes, 1988), apresentado na Tabela 3.5, é um método limitado, pois necessita do conhecimento de uma temperatura de ebulição a uma pressão baixa, o que dificulta sua utilização, pois o usuário deverá dispor deste valor. Portanto, este método está descartado.

A Tabela 3.5 indica que o melhor método de predição de temperatura de ebulição é o método de Lai-Chen-Maddox. Logo, este método foi escolhido para se estimar a temperatura de ebulição dos componentes puros da mistura multicomponente.

3.3.2.2 - Método de Chen e Maddox

No artigo de Lai et al. (1987) é discutido em detalhe o método de contribuição de grupo proposto para a predição de temperaturas de ebulição. Os autores consideram que a tendência natural da contribuição de um certo grupo funcional é decair quando houverem mais grupos deste tipo no composto orgânico. Esta influência é dada por uma razão de declínio r. O modelo se baseia na seguinte equação :

$$T_{eb} = \left(a + b_{c} \frac{1 - r_{c}^{n}c}{1 - r_{c}} \right) + \sum_{i=1}^{l} \left(b_{fi} + b_{fic} \frac{1 - r_{c}^{n}c}{1 - r_{c}} \right) * \left(\frac{1 - r_{fi}^{n}i}{1 - r_{fi}} \right) + \sum_{i=1}^{j-i} \sum_{j=2}^{l} b_{fifj} \left(\frac{1 - r_{fi}^{m}i}{1 - r_{fi}} \right) \left(\frac{1 - r_{fj}^{m}j}{1 - r_{fj}} \right) \right)$$

+ Σ (correções estruturais sem ligação de hidrogênio)
 + Σ (correções estruturais com ligação de hidrogênio)
 (3.41)

Tabela	З.	5	:	METODOS	DE	PRED)IÇ2	4 0	DE	TEMPERATURA	DE	EBULIÇÃO
				VIA CONTI	RIBUI	[ÇXO	DE	GRU	POS.			

n MÉTODO	OBSERVAÇÕES	REFERÊNCIA
1 LAI-CHEN- MADDOX	 testado para 1169 compostos orgâni- cos, o desvio médio absoluto foi de 1,29%. Os autores o consideram o melhor e o mais geral método de predição de T eb 	LAI et al. 1987
2 PAELHIS	- é necessário se conhecer um valor de temperatura de ebulição a uma baixa pressão. - apresenta erros de ± 3 K.	PAELHIS 1988
JOBACK	- os resultados encontrados apresentam desvios muito grandes. - testado para 438 compostos apresen- desvios de 17.9 K.	REID et al. 1987
4 KINNEY	 válido para alifáticos, olefinas e naftalenos. testado para 762 compostos, o desvio mêdio encontrado foi de 4 K; e para 92 % dos casos testados o valor da temperatura de ebulição calculado foi ± 10 °C do valor experimental. 	REID et al. 1966
5 LYDERSEN FORMAN e THODOS	- o método é muito impreciso. - desvios esperados em torno de 5 a 10 °C	REID et al. 1966
o ogata e tsuchida	 não pode ser utilizado para compo- nentes com mais de um grupo funcional. lestado para 600 compostos apresen- Lou desvios de 5 K. 	REID et al. 1966
7 STIEL e THODOS	- recomendado por Reid e Shervood, pa- ra hidrocarbonetos alifáticos satura - dos, apresentando desvio entre 2 e 3 K	REID et al. 1966
8 WATSON	- não é recomendado por Reid e Sher - wood. - necessita de um valor de volume mo- lar líquido.	REID et al. 1966

n: número do método.

٠

onde n_c: número de átomos de carbono;

a, b_c, r_c , b_{fi} , b_{fic}, r_{fi}, r_{fj} e b_{fifj} são constantes características do grupos funcionais; — CAPITULO 3 —

---- Pág. 42

m_: numero de grupos funcionais do tipo "i";
1 : número de tipos de grupos funcionais;

As constantes e parâmetros necessários ao método estão à disposição nas Tabelas A.7 e A.8 do Apêndice A.

Para estimar a temperatura de ebulição normal de compostos que apresentam estruturas ramificadas, aliciclícas, aromáticas, não aromáticas e outros tipos de estruturas especificas (ligações duplas, triplas, cis, trans, etc.) são necessárias correções específicas. No caso de ocorrência de compostos de cadeia reta, essas correções são desnecessárias. Devido a diferenças fundamentais nas correcões estruturais, os compostos orgânicos são classificados em duas categorias : compostos sem ligações de hidrogênio e compostos com ligações de hidrogênio. Como mostra a equação 3.41, as correções estruturais para estas duas categorias podem ser consideradas no cálculo da temperatura de ebulição normal de compostos puros.

Lai, Chen e Maddox (Lai et al., 1987) desenvolveram um sistema sofisticado para esses tipos de correções, propondo variáveis estruturais que quantificam efeitos de tamanho, forma e polaridade. Os termos de correções são dados, em detalhe, na referência original e, pela sua extensão, são omitidos nesta apresentação. 3.3.3 - Fator Acêntrico

Por definição o fator acêntrico, ω_i, de um componente puro i, é dado pela seguinte equação (Reid et al., 1987) :

$$\omega_{i} = -\log P_{Ri}^{s} |_{T_{Ri}^{s}} = 0.7$$
 (3.42)

onde $P_{Ri}^{s} \in a$ pressão de saturação reduzida do componente i;

Propõe-se o seguinte procedimento de cálculo do fator acêntrico :

1[°]) Estimar $T_{ci} \in P_{ci}$ através do método Joback;

2[°]) Calcular uma temperatura T^{*} igual a T_{ci} * 0.7;

 3°) Utilizar o método de McCann e Danner para predizer B_{ii}na temperatura T^{*};

 4°_{-}) Obter P_i^{s*} através do método UNIFAC (equação 3.32 ·), na temperatura T^{*};

5°) Calcular P_{Ri}^{s} , dividindo P_{i}^{s*} por P_{ci} ; 6°) Usar P_{Ri}^{s} para calcular ω_{i} pela equação 3.42.

3.4 - Metodologia Proposta Para Predição de Dados de Equilíbrio Líquido-Vapor.

A metodologia proposta para a predição de dados de equilíbrio líquido-vapor foi elaborada tendo como base a equação (2.19) equilíbrio termodinâmico líquido-vapor, que é utilizada para os cálculos dos pontos de bolha e de orvalho, nos casos isotérmicos e isobáricos. A metodologia é apresentada no fluxograma da figura 3.1 e baseia-se na utilização dos métodos de predição por contribuição de grupos selecionados e discutidos neste capítulo.

Analisando a figura 3.1, nota-se que a metodologia de predição do equilíbrio líquido-vapor inicializa com a definição da estrutura molecular de cada composto de uma mistura multicomponente. Em seguida, a primeira propriedade de base a ser determinada é a temperatura de ebulição normal de cada componente da mistura. Caso não se disponha de seu valor experimental, a temperatura de ebulição normal deve ser predita pelo método de Lai-Chen-Maddox.

As próximas propriedades de base que devem ser conhecidas são as propriedades críticas, T_c , $P_c e V_c$. Estas propriedades são preditas pelo método de Joback caso seus valores experimentais não estejam à disposição. A partir dos valores da temperatura crítica e da pressão crítica de cada componente os valores dos fatores acéntricos, para cada componente presente na mistura, devem ser estimados pelo procedimento descrito no item 3.3.3. Neste ponto, deve ser introduzida a temperatura do sistema, cujo valor só é conhecido nos casos de cálculo de equilíbrio líquido-vapor isotérmicos, a temperatura do sistema deve ser estimada. – CAPITULO 3 –

.

FIGURA 3.1 : METODOLOGIA DA PREDIÇÃO DE PROPRIEDADES TERMODINÂMI-CAS PARA USO EM CALCULOS DE EQUILIBRIO LIQUIDO-VAPOR.
— CAPÍTULO 3 ——

O fluxograma da figura 3.1 continua com uma distinção entre as propriedades termodinâmicas dependentes e independentes da composição do sistema, sendo cada propriedade obtida pelos seus respectivos métodos de predição apresentados nas seções anteriores.

Após todas estas etapas, os cálculos dos pontos de bolha e de orvalho, isotérmico ou isobáricos, podem então ser realizados.

----- PÁG. 46

CAPITULO 4

DESENVOLVIMENTO DO PROGRAMA COMPUTACIONAL

4.1 - Introdução

Este capítulo apresenta os fluxogramas dos programas de computador de predição do equilíbrio líquido-vapor de misturas multicomponentes através de contribuição de grupo, desenvolvidos de acordo com a metodologia resumida na figura 3.1.

Foram desenvolvidos 14 programas de computador, em linguagem C, ocupando um espaço de memória total de 730 Kbytes. Para efeito de exposição, os programas são classificados em três niveis, dependendo da sua função :

- Nivel 1 : trata do gerenciamento dos diversos programas de nível 2;

 Nivel 2 : executa os cálculos de equilíbrio de ponto de bolha e de orvalho, usando programas do nivel 3 e três subrotinas específicas;

- Nível 3 : realiza cálculos de propriedades termodinâmicas por solicitação dos programas de nível 2.

Na tabela 4.1, são listados todos os programas desenvolvidos neste trabalho e, para cada um destes programas, é indicado o nível, a finalidade e em quais programas de nível superior o programa é requisitado.

•

TABELA 4.1 : PROGRAMAS EM LINGUAGEM C.

PROGRAMA	NÍVEL	FINALIDADE	USO
BII.C	Э	Calcula o segundo coeficiente vi- rial puro, armazenando os resulta- dos em arquivo com extensão : .BII	BOLHA_T.C BOLHA_P.C ORVAL_T.C ORVAL_P.C
BOLHA_P.C	2	Calcula o ponto de bolha isotérmico armazenando os resultados em arqui- com extensão : .RBP	GERENTE. C
BOLHA_T.C	2	Calcula o ponto de bolha isobárico armazenando os resultados em arqui- com extensão : .RBT	GERENTE.C
CRUZADO, C	Э	Calcula o segundo coeficiente vi- rial cruzado, armazenando os resul- tados em arquivo com extensão : .BIJ	BOLHA_T.C BOLHA_P.C ORVAL_T.C ORVAL_P.C
GERABII. C	Э	Seleciona grupos para predição de B _i e armazena os parâmetros destes ii grupos em arquivo com extensão:.GBI	BOLHA_T.C BOLHA_P.C ORVAL_T.C ORVAL_P.C
GERAPSAT.C	Э	Seleciona grupos para predição de P ⁵ e armazena os parâmetros destes grupos em arquivo com extensão:.GPS	BOLHA_T.C BOLHA_P.C ORVAL_T.C ORVAL_P.C
GERAUNIF.C	Э	Seleciona grupos para predição de (PD) – e armazena os parâmetros des- tes grupos em arquivo com extensão: .UNI	BOLHA_T.C BOLHA_P.C ORVAL_T.C ORVAL_P.C
GERENTE. C		Prepara a entrada de dados e dire- ciona o tipo de cálculo de equilí- brio a ser realizado, armazenando todas as informações em arquivo com nome : PRE.GER	
JOBACK. C	3	Calcula as propriedades críticas : temperatura, pressão e volume, para componentes puros, armazenando-os em arquivo com extensão : .CRI	BOLHA_T.C BOLHA_P.C ORVAL_T.C ORVAL_P.C

– CAPITULO 4 –

NIVEL PROORAMA FINALIDADE USO Calcula o ponto de orvalho isotér - GERENTE.C ORVAL_P. C 2 mico, armazenando os resultados em arquivo com extensão : .ROP ORVAL_T.C Calcula o ponto de orvalho isobári- GERENTE.C 2 co, armazenando os resuliados θYΛ arquivo com extensão : .ROT PSATBIJ. C Calcula a pressão de saturação de Э BOLHA_T.C compostos puros, considerando fase BOLHA P.C vapor não ideal, armazenando os re-ORVAL_T.C sultados em arquivo com extensão : ORVAL_P.C . PST Calcula o fator acêntrico de compos BOLHA_T.C tos puros, armazenando os resulta-BOLHA_P.C dos em arquivo com extensão : .ACE ORVAL T.C ORVAL_P.C TEMBEB. C з Calcula a temperatura de ebulição BOLHA_T.C normal de componentes puros e ar-BOLHA_P.C mazena seu valor em arquivo com ex-ORVAL_T.C tensão : .TEB ORVAL_P.C UNIFAC. C Calcula os coeficientes de ativida-Э BOLHA_T.C de de cada composio na misiura, ar-BOLHA_P.C mazenando os resultados em arquivo ORVAL_T.C com extensão : . CAM ORVAL_P.C

CONTINUAÇÃO DA TABELA 4.1

O programa gerenciador GERENTE.C foi criado para organizar entradas de dados e direcionar o tipo de cálculo de equilíbrio a ser efetuado. Para cada tipo de cálculo de equilíbrio foram desenvolvidos programas independentes, classificados como nível 2, que incluem chamadas de programas de nível 3 e de três subrotinas, os quais são responsáveis pelos cálculos das propriedades termodinâmicas necessária ao cálculo do equilíbrio.

A comunicação entre os programas de um nível para o outro se dá através de arquivos. O programa GERENTE.C organiza as ---- CAPITULO 4 ----

informações de entrada armazenando-as em um arquivo chamado PRE.GER, em seguida, aciona um dos programas de cálculo de equilíbrio do nível 2 que automaticamente lê o arquivo. Ôs programas de nível 2 interagem com os de nível 3 através de um arquivo PRE, o qual transmite informações básicas para os cálculos das propriedades termodinâmicas. No nível 3, em alguns casos, ocorrem interações entre programas nivel. deste mesmo Estas interações são realizadas por meio de um outro arquivo PRE. proveniente do programa solicitante, e de arquivos de resultados, oriundos dos programas requisitados. Os resultados dos cálculos das propriedades termodinâmicas retornam ao nível 2 através de arquivos com extensões específicas, esse processo sendo possível devido ao armazenamento pelo arquivo PRE da variável arg resposável pelo nome de arquivo, que, em cada programa de nível 3, lhe é atribuída uma extensão particular. Os programas de nível 2 efetuam a leitura dos arquivos de resultados do nível з. utilizando-os para cálculos de equilíbrio. Os resultados finais de 2 são registrados em arquivos cálculo de nível de nomes específicos, para cada tipo de cálculo, com extensões ".RBT", ".ROT", ".RBP" e ".ROP". Estas extensões se referem aos resultados dos cálculos de equilíbrio de ponto de bolha isobárico, de ponto de orvalho isobárico, de ponto de bolha isotérmico e de ponto de orvalho isotérmico, respectivamente. Finalmente estes arquivos de resultados serão lidos pelo programa GERENTE.C que organizará as saídas em tela do monitor de vídeo e em impressora.

– PÁG. 50

---- CAPÍTULO 4 ----

O tempo de computação varia para cada tipo de cálculo de equilíbrio. A tabela 4.2 apresenta tempos médios de computação em microcomputador PC/AT compatível com micros IBM, para os quatro tipos de cálculos de equilíbrio possíveis, excluindo a etapa de gerenciamento.

TABELA 4.2 : TEMPO DE PROCESSAMENTO DE CADA TIPO DE CALCULO DE EQUILIBRIO EM MICROCOMPUTADOR PC/AT (IBM)

TIPO DE CÁLCULO DE EQUILÍBRIO	TEMPO MÉDIO DE PROCESSAMENTO Por cálculo
Ponto de bolha isotérmico	2 ′ ′
Ponto de bolha isobárico	42 * *
Ponto de orvalho isotérmico	111011
Ponto de orvalho isobárico	2 ~ 1 1 ~ ~

Nos ítens seguintes, são apresentados os fluxogramas dos programas da tabela 4.1. Cada fluxograma é exposto na forma de figura com uma explanação resumida na seqüência. Para facilitar a compreensão dos fluxogramas, são apresentadas ao fim deste capítulo (ítem 4.12, pag. 87), na tabela 4.3, as variáveis que aparecem nos fluxogramas das figuras 4.1 a 4.17 citadas explicitamente.

Na tabela 4.3, a variável é identificada pelo seu nome e é dada sua descrição de forma suscinta, indicando-se o programa onde é utilizada e em que figura é citada.

----- PAG. 51

4.2 - Programa Gerenciador - GERENTE.C (Nivel 1)

A figura 4.1 apresenta o fluxograma do programa gerenciador : GERENTE.C. O programa GERENTE.C efetua a leitura de informações básicas para o cálculo do equilíbrio líquido-vapor de misturas multicomponentes, iniciando-se com a leitura da variável sistema que armazena os nomes dos componentes. A informação seguinte, num_componentes, refere-se a quantos componentes estão presentes na mistura. Na seqüência, uma tabela de disponibilidade de grupos funcionais é apresentada com o propósito de alertar o usuário para as classes de compostos orgânicos possíveis de serem utilizadas no "software" .Em seguida, para cada um dos componentes, as seguintes variáveis são lidas :

- nome_componente [i];

- formula [i];
- arg [i];
- num_carb [i].

A seguir, o usuário deve informar em que condições o sistema se encontra, isobárico ou isotérmico, usando a variável CONDICAO.

O próximo passo é indicar o estado físico (líquido ou vapor) da fase cuja concentração é conhecida. Assim, se a concentração se refere à fase líquida, tem-se a situação de - CAPITULO 4 -

----- PÁG. 53

FIGURA 4.1 : Fluxograma do programa GERENTE.C

FIGURA 4.1 : FLUXOGRAMA DO PROGRAMA GERENTE.C.

.

cálculo de ponto de bolha, isotérmico ou isobárico. Caso se conheça a concentração do vapor, o cálculo a ser efetuado é de ponto de orvalho, isotérmico ou isobárico.

Após a definição do estado físico da fase, o usuário deve indicar o número de cálculos de equilíbrio a serem realizados, através da variável num_calculos. Em seguida, as concentrações de cada componente devem ser introduzidas.

Por fim, o programa de cálculo de equilíbrio é acionado para o tipo de cálculo definido.

```
4.3 - Programas de Cálculo de Equilíbrio Líquido - Vapor
(Nível 2)
```

Os algoritmos de cálculo de equilíbrio são essencialmente aqueles propostos por Prausnitz et all (1980). Estes algoritmos vêm sendo rotineiramente utilizados no Laboratório de Propriedades Termodinámicas (LPT) com bons resultados, não apresentando problemas de convergência.

4.3.1 - Cálculo do Ponto de Bolha Isobárico - BOLHA_T.C

O cálculo do ponto de bolha isobárico consiste na resolução das equações de equilíbrio de fases líquido-vapor (eq. 2.19) para determinar a temperatura e a composição da fase vapor

----- PÁG. 55

no equilíbrio, sendo conhecidas a pressão e a composição da fase líquida.

O programa de computador BOLHA_T.C está esquematizado na figura 4.2.

O fluxograma da figura 4.2 inicia com a leitura de um arquivo PRE.GER, fornecido pelo programa gerenciador GERENTE.C.

O programa BOLHA_T.C possibilita a entrada de algumas propriedades termodinâmicas experimentais, tais como a temperatura de ebulição normal e as propriedades críticas, T_c , P_c e V_c . Porém, se estas propriedades não estiverem à disposição do usuário, as mesmas podem ser determinadas pelos programas de predição TEMPEB.EXE e JOBACK.EXE. O primeiro programa prediz temperatura de ebulição normal, enquanto que o segundo fornece as propriedades críticas.

O cálculo prossegue com a chamada dos programas GERAUNIF.EXE, GERAPSAT.EXE e GERABII.EXE, responsáveis pela seleção de parâmetros de contribuição de grupo para a determinação dos coeficientes de atividade, das pressões de saturação e dos segundos coeficientes viriais puros para todos os componentes da mistura, respectivamente. Cabe lembrar que cada método tem seus grupos e respectivos parâmetros característicos.

•

_____ PÁG. 57

O cálculo do equilíbrio continua com as etapas :

- cálcular o fator acêntrico através da subrotina FAT_ACE ();

- estimar um valor de temperatura;

- assumir fase vapor ideal;

 utilizar o programa PSAT.EXE para o cálculo da fugacidade de saturação e a pressão de saturação de cada componente;

- utilizar a subrotina VOL_MOL () para cálculo do volume de líquido molar de cada componente;

 utilizar o programa BII.EXE para o cálculo do coeficiente virial puro;

- utilizar o programa CRUZADO.EXE para o cálculo do coeficiente virial cruzado;

- utilizar o programa UNIFAC.EXE para o cálculo dos coeficientes de atividade para cada composto.

As composições da fase vapor são então calculadas, determinam-se os valores das fugacidades da fase vapor, e através delas, as composições da fase vapor são recalculadas. O somatório destas novas composições é analisado e se caso o somatório não for constante, as frações da fase vapor são normalizadas repetindo-se o processo de cálculo da fugacidade da fase vapor até que o somatório apresente valor constante. O próximo passo destina-se a comparar o somatório ao valor unitário. Se o valor do somatório não corresponder a este valor, uma nova estimativa da temperatura é atribuída. Esta nova estimativa da temperatura se dá pela utilização de uma subrotina RTWI, existente no LPT, a qual direciona o novo valor da estimativa da temperatura.

Todo este procedimento é repetido até que o valor do somatório das concentrações do vapor satisfaça a tolerância de 10⁻⁸. Neste ponto, os resultados do cálculo de equilíbrio são então resgistrados em arquivos com extensão ".RBT".

4.3.2 - Cálculo do Ponto de Orvalho Isobárico - ORVAL_T.C

O cálculo do ponto de orvalho isobárico consiste na resolução da equação de equilíbrio de fases líquido-vapor (eq. 2.19), para determinar a temperatura e a composição da fase líquida no equilíbrio, sendo conhecidas a pressão e composição da fase vapor.

O cálculo do ponto de orvalho isobárico está esquematizado na figura 4.3, pelo fluxograma do programa de computador ORVAL_T.C.

O fluxograma da figura 4.3 inicia com a leitura de um arquivo PRE.GER, fornecido pelo programa gerenciador GERENTE.C.

FIGURA 4.3 : FLUXOGRAMA DO PROGRAMA ORVAL_T.C.

O programa ORVAL_T.C chama os programas TEMPEB.EXE, JOBACK.EXE, GERAUNIF.EXE, GERAPSAT.EXE e GERABIJ.EXE, que executam as mesmas funções já discutidas na seção 4.3.1. O cálculo do equilíbrio prossegue com as seguintes etapas :

- cálcular o fator acéntrico através da subrotina FAT_ACE ();

- estimar um valor de temperatura;

- assumir coeficiente de atividade igual a "1";

 utilizar o programa PSAT.EXE para o cálculo da fugacidade de saturação e a pressão de saturação de cada componente;

- utilizar a subrotina VOL_MOL () para cálculo do volume de líquido molar de cada componente;

- utilizar o programa BII.EXE para o cálculo do coeficiente virial puro;

- utilizar o programa CRUZADO EXE para o cálculo do coeficiente virial cruzado;

- utilizar o programa UNIFAC.EXE para o cálculo dos coeficientes de atividade para cada compostos.

As composições da fase líquida são então calculadas e determina-se o somatório das composições líquidas. Caso o valor do somatório não se apresentar constante, calculam-se os coeficientes de atividade de cada componente, através do programa UNIFAC.EXE. As composições da fase líquida são recalculadas, conseguindo-se um novo valor para o somatório. O somatório deve permanecer constante, caso contrário novos valores de coeficientes de atividade e de composição devem ser determinados. Quando o somatório for constante, como no caso anterior, verifica-se se satisfaz a tolerância de 10^{-8} . Se a tolerância não for satisfeita um novo valor temperatura deve ser obtido pela subrotina RTWI e, conseqüentemente, novos valores de composição da fase líquida serão determinados. Obtida a convergência, os resultados do cálculo de equilíbrio são arguivados com extensão ".ROT".

4.3.3 - Cálculo do Ponto de Bolha Isotérmico - BOLHA_P.C

O cálculo do ponto de bolha isotérmico consiste na resolução das equações de equilíbrio de fases líquido-vapor (eq. 2.19), para determinar as pressões e a composição da fase vapor no equilíbrio, sendo conhecidas a temperatura e a composição da fase líquida.

O programa BOLHA_P.C está esquematizado no fluxograma da figura 4.4.

O fluxograma da figura 4.4 inicia com a leitura de um arquivo PRE.GER, fornecido pelo programa gerenciador GERENTE.C, e até a obtenção das propriedades termodinâmicas é identico ao fluxograma do cálculo do ponto de bolha isobárico (fig. 4.2), a menos de uma variável, a estimativa da pressão do sistema em vez

----- PAG. 61

— CAPÍTULO 4 —

FIGURA 4.4 : FLUXOGRAMA DO PROGRAMA BOLHA_P.C.

.

da temperatura do sistema. No restante, o fluxograma de ponto de bolha isotérmico é mais simples que aquele da figura 4.2, obtendo-se a convergência para a pressão por meio de cálculo iterativo, como pode ser compreendido diretamente do esquema. Os resultados são, então, registrados em arquivo com extensão ".RBP".

4.3.4 - Cálculo do Ponto de Orvalho Isotérmico - ORVAL_P.C

O cálculo do ponto de orvalho isotérmico consiste na resolução da equação de equilíbrio de fases líquido-vapor (eq. 2.19), para determinar as pressões e a composição da fase líquida no equilíbrio sendo conhecidas a temperatura e a composição da fase vapor.

O cálculo do ponto de bolha isotérmico está esquematizado na figura 4.5, pelo fluxograma do programa ORVAL_P.C.

O fluxograma da figura 4.5 inicia com a leitura de um arquivo PRE.GER, fornecido pelo programa gerenciador GERENTE.C. A estrutura do fluxograma da figura 4.5 é semelhante a do fluxograma do cálculo do ponto de orvalho isobárico (fig. 4.3) apresentando uma modificação : o cálculo da pressão do sistema em vez da temperatura do sistema. Os resultados são, então, registrados em arquivo com extensão ".ROP".

----- PAG. 63

FIGURA 4.5 : FLUXOGRAMA DO PROGRAMA ORVAL_P.C.

.

---- CAPITULO 4 -----

_____ Pág. 65

4.4 - Programa de Cálculo da Temperatura de Ebulição -TEMPEB.C (Nível 3)

A figura 4.6 apresenta o fluxograma do programa TEMPEB.C responsável pelo cálculo da temperatura de ebulição normal.

O fluxograma da figura 4.6 está inicializado com a leitura de arquivo PRE.

O usuário deve informar ao programa TEMPEB.C, se o composto apresenta ramificações, anéis aromáticos e anéis não aromáticos. Após estas informações, uma lista dos grupos é apresentada para que o usuário selecione os grupos que constituem o composto. Caso, algum grupo for selecionado, as informações, conforme citadas na figura 4.6, devem ser introduzidas. Dependendo da escolha do grupo, o programa distingue se o composto apresenta ou não ligações de hidrogênio, direcionando, desta forma, as entradas de informações específicas para cada caso.

As informações sobre a presença ou não de anéis aromáticos ou não aromáticos, possibilita um novo direcionamento de informações que o usuário deve fornecer ao programa, como é visto no fluxograma. Por fim, a temperatura de ebulição é calculada.

FIGURA 4.6 : Fluxograma do programa TENPER.C (malores detalhes ver : Chen e Maddox, 1987).

FIGURA 4.6 : FLUXOGRAMA DO PROGRAMA TEMPEB (maiores detalhes ver CHEN e MADDOX, 1987).

Detalhes da seqüência de opções e de cálculos podem ser encontrados na referência de Lai et al. (1987).

4.5 - Programa de Cálculo das Propriedades Críticas - JOBACK.C (Nível 3)

As propriedades críticas são calculadas pelo método de Joback. A figura 4.7 apresenta o fluxograma do programa JOBACK.C, desenvolvido para a obtenção das propriedades críticas.

O fluxograma inicializa-se com a leitura das variáveis básicas provenientes do arquivo PRE.

O processo de armazenamento de dados continua com a leitura da temperatura de ebulição normal através de um arquivo com extensão ".TEB", gerado pelo programa "TEMPEB.EXE".

Os grupos funcionais são, então selecionados e, logo em seguida, a freqüência de ocorrência desses grupos funcionais selecionados é registrada pelo usuário.

Os parâmetros de contribuição dos grupos selecionados são organizados e arquivados em arquivo com extensão ".CRI". - CAPITULO 4 -

– PAG. 68

FIGURA 4.7 : FLUXOGRAMA DO PROGRAMA JOBACK.C.

٠

4.6 - Programas de Cálculo do Segundo Coeficiente Virial (Nível 3)

Para os cálculos dos segundos coeficientes viriais foram desenvolvidos três programas de computador : GERABII.C. BII.C e CRUZADO.C. Os dois primeiros correspondem ao cálculo do segundo coeficiente virial puro, enquanto que o último determina os segundos coeficientes virais cruzados. O programa GERABII.C é responsável pela seleção de parâmetros de grupos sendo que o cálculo propriamente dito do segundo coeficiente virial puro é executado pelo programa BII.C. Como no cálculo de B а temperatura deve ser conhecida, houve a necessidade de criar dois programas separados, afim de evitar a repetição da seleção dos grupos funcionais que eventualmente ocorrería nos cálculos de temperatura de pontos de bolha e de orvalho, onde o cálculo é iterativo para a temperatura.

4.6.1 - Programa de Seleção de Parâmetros de Cálculo do Segundo Coeficiente Virial de Componente Puro -GERABII.C

O programa GERABII.C, apresentado na figura 4.8, seleciona parâmetros de contribuição de grupo para o cálculo do segundo coeficiente virial de componente puro. O programa foi baseado no método de McCann e Danner descrito na seção 3.1.1.1. — CAPITULO 4 —

*

.

FIGURA 4.8 : FLUXOGRAMA DO PROGRAMA GERABII.C.

---- CAPITULO 4 -----

O fluxograma da figura 4.8 inicializa com uma opção para explicações sobre a divisão dos grupos na molécula, uma vez que este método apresenta uma partição e definição de grupos bastante diferentes daquelas de outros métodos de contribuição de grupo utilizados neste trabalho.

Em seguida, uma leitura das variáveis básicas necessárias para o cálculo do segundo coeficiente virial de componente puro, contidas no arquivo PRE.

Os grupos funcionais são, portanto, selecionados e, logo em seguida, registra-se a sua freqüência na molécula do componente.

A próxima etapa organiza os parâmetros de contribuição dos grupos selecionados para o cálculo dos segundos coeficientes viriais, armazenando-os em arquivo com extensão ".GBI".

4.6.2 - Programa de Cálculo do Segundo Coeficiente Virial Puro - BII.C

O programa BII.C desenvolvido para a estimativa do segundo coeficiente virial de componente puro usando o método de McCann e Danner está representado no fluxograma da figura 4.9.

----- PAG. 71

FIGURA 4.9 : FLUXOGRAMA DO PROGRAMA BII.C.

.

O fluxograma do programa BII.C inicializa-se com a leitura do arquivo PRE seguido da leitura dos parâmetros gerados pelo programa GERABII.C e da temperatura crítica fornecida pelo programa JOBACK.C.

O segundo coeficiente virial de componente puro é então calculado e arquivado em um arquivo com extensão ".BII".

4.6.3 - Programa de Cálculo do Segundo Coeficiente Virial Cruzado - CRUZADO.C

O procedimento para o cálculo do segundo coeficiente virial cruzado está representado pelo fluxograma do programa CRUZADO.C dado pela figura 4.10.

O fluxograma inicializa-se com a leitura de um arquivo PRE.

A etapa seguinte constitui-se da leitura de três arquivos de propriedades termodinâmicas de componente puro.

O primeiro arquivo a ser lido contém as propriedades críticas de componente puro, T_c , P_c e V_c . O arquivo possue extensão ".CRI". O arquivo seguinte possue extensão ".ACE", ele armazena o valor do fator acéntrico de componente puro proveniente da subrotina FAT_ACE (), que será vista na seção 4.9. O último arquivo, com extensão ".BII", possue o valor do segundo

FIGURA 4.10 : FLUXOGRAMA DO PROGRAMA CRUZADO.C.

•

- CAPITULO 4 -

coeficiente virial de componente puro.

Em seguida, utilizam-se duas temperaturas, uma 10 K acima e a outra 10 K abaixo da temperatura do sistema, para os cálculos dos parâmetros a_k e b_k dados pelas equações 3.13 e 3.14 para cada componente na mistura.

Os parâmetros de mistura são então calculados pelas equações 3.19 a 3.26 e, na seqüência, os segundos coeficientes viriais cruzados são determinados, sendo portanto registrados em arquivos com extensão ".BIJ" juntos com os segundos coeficientes viriais puros.

4.7 - Programas de Cálculo de Pressão de Saturação (Nível 3)

Para o cálculo da pressão de saturação pelo método UNIFAC criaram-se dois programas de computador. Um desses programas, o programa GERAPSAT.C, é responsável pela seleção dos parâmetros de cada grupo após a seleção dos grupos funcionais de componente puro, o outro programa de computador, programa PSAT.C, executa o cálculo da pressão de saturação deste componente.

----- PĀG. 76

4.7.1 - Programa de Seleção de Parâmetros de Cálculo da Pressão de Saturação - GERAPSAT.C

O programa GERAPSAT, cujo fluxograma é dado na figura 4.11, inicia com a leitura do arquivo PRE.

Os grupos funcionais que constituem as moléculas do composto são selecionados em seguida. Segue-se então, a introdução dos números de repetições dos grupo funcionais selecionados.

A etapa seguinte é responsável pela preparação dos parâmetros (Ag e UNIFAC) dos grupos selecionados para serem arquivados. Estes parâmetros são então armazenados em arquivo com extensão ".GPS".

4.7.2 - Programa de Cálculo do Pressão de Saturação -PSAT.C

O cálculo da pressão de saturação do componente puro se dá pela resolução da equação 3.32 onde o segundo coeficiente virial puro pode ser calculado pelo método de McCann e Danner. O procedimento de resolução desta equação necessitará de um método iterativo. O método utilizado neste trabalho é o método de Newton-Raphson .

O método de Newton-Raphson exige uma estimativa inicial da váriavel psat, portanto a equação 3.28 foi utilizada

FIGURA 4.11 : FLUXOGRAMA DO PROGRAMA GERAPSAT.C.

.

para fornecer o valor inicial da pressão de saturação, considerando o coeficiente de fugacidade de saturação igual a 1.

O programa de cálculo da pressão de saturação de componente puro está representado na figura 4.12 pelo do fluxograma do programa PSAT.C.

O programa inicia com a leitura do arquivo PRE. Em seguida, o programa BIJ.EXE é executado, fornecendo o valor do segundo coeficiente virial do componente puro pelo arquivo com extensão ".BII".

O programa continua com uma estimativa da pressão de saturação. A equação 3.32 é então resolvida para o cálculo da pressão de saturação utilizando o método de Newton-Raphson. Os resultados são armazenados em um arquivo com extensão ".PST".

Cabe comentar que a variável de controle de programa cont_prog possibilita duas opções de cálculo, caso a variável for igual a 3, o fator acentrico é calculado e arquivado, e no caso da variável for igual a 2, a pressão de saturação de saturação e o coeficiente de fugacidade de saturação é arquivado.

O caso de cálculo fator acêntrico será discutido com mais detalhes na seção 4.9.

FIGURA 4.12 : FLUXOGRAMA DO PROGRAMA PSAT.C.

,

----- PÁG. 80

4.8 - Programa de Cálculo da Pressão de Saturação Normal -PSATNO () (Nível 2)

O procedimento de cálculo da pressão de saturação normal é útil para verificar a compatibilidade da predição de T_{eb} pelo método de Chen e Maddox com o método de predição pressão de saturação via método UNIFAC.

A figura 4.13 apresenta a subrotina de cálculo da pressão de saturação normal.

O fluxograma da figura 4.13 começa com a criação de um arquivo PRE, que fornece a informação de que a variável cont_prog é igual a 1. Esta informação é importante para direcionar o tipo de cálculo que será executado pelo programa PSAT.C, o qual é acionado logo em seguida.

O programa PSAT.C fornece o arquivo com extensão ".PST" para a subrotina PSATNO (). Este arquivo contém as variáveis psat_normal [i] e fisat_normal [i].

4.9 - Programa de Cálculo do Fator Acêntrico - FAT_ACE () (Nível 2)

O fluxograma da figura 4.14 representa o cálculo do fator acêntrico através da subrotina FAT_ACE (). Esta subrotina está presente nos programas de nível 2. - CAPÍTULO 4 -

----- PÃG. 81

FIGURA 4.13 : FLUXOGRAMA DO PROGRAMA PSATNO ().

.
----- PĀG. 82

FIGURA 4.14 : FLUXOGRAMA DO PROGRAMA FAT_ACE ().

.

----- PAG. 83

Nota-se, na figura 4.14, que o programa PSAT.EXE é utilizado para o cálculo do fator acêntrico, este procedimento de cálculo está explicado na seção 4.7.2, quando a variável de controle cont_prog assumir o valor 3.

O fluxograma inicializa-se com a criação de um arquivo PRE, acionando logo em seguida o programa PSAT.C. A variável cont_prog igual a 3, contida no arquivo PRE, direciona o cálculo do fator acêntrico no programa PSAT.C.

O programa PSAT.EXE gera um arquivo com extensão ".ACE", contendo o valor do fator acêntrico para um componente, e este arquivo é lido na subrotina FAT_ACE (). Este procedimento é repetido para todos os componentes da mistura.

- 4.10 Programas de Cálculo do Coeficiente de Atividade (Nível 3)
- 4.10.1 Programa de Seleção de Parâmetros de Cálculo do Coeficiente de Atividade do Método UNIFAC -GERAUNIF.C

Para o cálculo do coeficiente de atividade pelo método UNIFAC criaram-se dois programas, um deles, o programa GERAUNIF.C, é responsável pela seleção de parâmetros de contribuição de grupo e, o outro programa, UNIFAC.C, executa o cálculo do coeficiente de atividade de cada componente da mistura. A figura 4.15 mostra o fluxograma do programa GERAUNIF.C.

O programa é inicializado com a leitura do arquivo PRE.

Os grupos funcionais que constituem as moléculas presentes na mistura são selecionados. Neste ponto, o programa averigua se existem parâmetros energéticos, a_{mn}, entre os grupos selecionados. Caso não existir um dos parâmetros energéticos uma mensagem é acionada informando quais grupos estão imcompletos, possibilitando a impressão de tais grupos, sendo o programa GERAUNIF.C finalizado. Se os parâmetros de interação energética existirem, os parâmetros UNIFAC são armazenados em arquivo com extensão ".UNI".

```
4.10.2 - Programa de Cálculo do Coeficiente de Atividade -
UNIFAC.C
```

O coeficiente de atividade é calculado pelo método de UNIFAC. A figura 4.16 apresenta o fluxograma do programa UNIFAC.C desenvolvido para este cálculo.

O fluxograma do programa UNIFAC.C inicializa-se com a leitura de um arquivo PRE.

----- PÁG. 85

- CAPITULO 4 -

FIGURA 4.15 : FLUXOGRAMA DO PROGRAMA GERAUNIF.C.

.

FIGURA 4.16 : FLUXOGRAMA DO PROGRAMA UNIFAC.C.

....

------ PAG. 87

Na seqü≙ncia, o arquivo com extensão ".UNI" é lido, seguindo-se do cálculo do coeficiente de atividade. O resultado é então armazenado em arquivo com extensão ".GAM".

4.11 - Programa de Cálculo do Volume Molar Líquido -VOL_MOL () (Nível 2)

O cálculo do volume molar de líquido está representado na figura 4.17, pela subrotina VOL_MOL ().

O fluxograma da figura 4.17 é muito simples, seguindo com a resolução direta das equações 3.33 a 3.37, apresentadas na seção 3.2.4.2.

4.12 - Tabela de Variáveis

A Tabela 4.3 apresenta as variáveis que aparecem nos fluxogramas das figuras 4.1 a 4.17. Na maioria dos casos, as variáveis possuem o mesmo nome que nos programas-fonte. As modificações introduzidas têm por fim facilitar a compreensão dos algoritmos. - CAPITULO 4 -

FIGURA 4.17 : FLUXOGRAMA DO PROGRAMA VOL_MOL ().

• •

----- CAPITULO 4 ------

SIGNIFICADO FÍSICO PROGRAMA FIGURA VARIÁVEL a tij, b tij constantes de CRUZADO. C 4. 10 Tsonopoulos nome do arquivo para ara armazenar os dados e resultados dos vários subprogramas. BII.C 4.9 Extensão : .BII 4.7 . CRI JOBACK. C 4.8 . GBI GERABII. C . GPS GERAPSAT.C 4.11 . UNI GERAUNIF.C 4.15 4.0 . TEB TEMPEB. C 4.12 PSAT. C . SAT . GAM UNIFAC. C 4.10 arg [i] 4.14 nome dos arquivos do FAT_ACE () 4.13 componente i que se-PSATNO. C rão criados para ar-GERENTE. C 4.1 mazenar dados e resul CRUZADO. C 4.10 tados relativos ao componente nos vários subprogramas, com extensões Bii segundo coeficiente BII.C 4.9 virial puro CRUZADO. C 4.10 4.12 PSAT. C Bij segundo coeficiente PSAT. C 4.12 4.2 virial cruzado BOLHA_T.C BOLHA_P.C 4.4 ORVAL_T.C 4.3 ORVAL_P. C 4.5 CONDICAO determina em que con-GERENTE. C 4.1 dições o sistema se encontra : isobárico ou isotérmico variável de controle PSAT. C cont_prog 4.12 PSATNO. C 4.13 fisat coeficiente de fuga-PSAT. C 4.12 dade de saturação fisat [i] coeficiente de fuga-PSAT. C 4.12 dade de saturação do BOLHA T.C 4.2 componente i BOLHA_P.C 4.4 ORVAL_T.C 4.3 ORVAL_P.C 4.5

TABELA 4.3 : VARIAVEIS UTILIZADAS NA PROGRAMAÇÃO E SUAS FUNÇÕES.

* Programa onde ocorre a variável.

** Figura correspondente ao programa.

----- PAG. 89

---- CAPÍTULO 4 ------

------ PAG. 90

TABELA 4.3 : VARIAVEIS UTILIZADAS NA PROGRAMAÇÃO E SUAS FUNÇÕES.

.....

VARIÄVEL	SIGNIFICADO FÍSICO	PROGRAMA	FIGURA **
fisat_normal(i)	coeficiente de fuga- dade de saturação do componente i na pressão normal	PSATNO. C	4.13
formula	formula estrutural do componente	CRUZADO.C JOBACK.C GERABII.C GERAPSAT.C GERAUNIF.C TEMPEB.C	4.10 4.7 4.8 4.11 4.15 4.6
formula [i]	formula estrutural do componente i na mis- tura	GERENTE. C BOLHA_T. C BOLHA_P. C ORVAL_T. C ORVAL_P. C	4.1 4.2 4.4 4.3 4.5
nome_componente	nome do componente	JOBACK. C GERABII. C GERAPSAT. C GERAUNIF. C TEMPEB. C UNIFAC. C	4.7 4.8 4.11 4.15 4.6 4.16
nome_componente[i]	nome do componente i na mistura	GERENTE.C BOLHA_T.C BOLHA_P.C ORVAL_T.C ORVAL_P.C	4.1 4.2 4.4 4.3 4.5
num_calculos	número de cálculos de equilíbrio líquido- vapor a serem reali- zados	GERENTE. C	4.1
num_carb [i]	número de átomos de carbonos presentes no componente i da mis- tura	GERENTE.C BOLHA_T.C BOLHA_P.C ORVAL_T.C ORVAL_P.C	4.1 4.2 4.4 4.3 4.5
num_carb	número de átomos de carbono na molécula	PSAT. C	4.12
num_componentes	número total de com- ponentes da mistura	GERENTE.C GERAUNIF.C BOLHA_T.C BOLHA_P.C ORVAL_T.C ORVAL_P.C FAT_ACE () CRUZADO.C UNIFAC.C VOL_MOL ()	4.1 4.15 4.2 4.4 4.3 4.5 4.14 4.10 4.10 4.10

* Programa onde ocorre a variável.

•

** Figura correspondente ao programa.

---- CAPITULO 4 ------

_____ PAG. 91

VAR I ÁVEL	SIGNIFICADO FÍSICO	PROGRAMA *	** FIGURA
Ρ.	pressão do sistema isobárico	GERENTE. C BOLHA_T. C ORVAL_T. C	4.1 4.2 4.4
Pc	pressão crítica do componente	JOBACK. C PSAT. C	4.7 4.12
Ρς [ί]	pressão crítica do componente i na mis- tura	FAT_ACE () CRUZADO.C	4. 14 4. 10
P ſi)	pressão para cada ponto experimental em um sistema isotérmico	GERENTE.C Bolha_P.C Orval_P.C	4.1 4.3 4.5
psat [i]	pressão de saturação do componente i	BOLHA_T.C BOLHA_P.C ORVAL_T.C ORVAL_P.C	4.2 4.3 4.4 4.5
psat_ideal	estimativa inicial da pressão de saturação considerando a eq. 3.28 com $\varphi_i^{\rm S}$ unitário	PSAT. C	4.12
psat_normalfij	pressão de saturação normal do componente i	PSATNO. C	4.13
sistema	nome do sistema	GERENTE.C Geraunif.C	4.1 4.15
т	temperatura do siste- ma isotérmico	GERENTE.C BOLHA_P.C ORVAL_P.C	4.1· 4.3 4.5
Τc	temperatura crítica do componente	JOBACK.C BII.C PSAT.C	4.7 4.9 4.12
Τς [ί]	temperatura crítica do componente i na mistura	FAT_ACE () PSATNO.C CRUZADO.C BOLHA_T.C BOLHA_P.C ORVAL_T.C ORVAL_P.C VOL_MOL ()	4.14 4.13 4.10 4.2 4.4 4.3 4.5 4.17
TC mist, PC mist, VC mist e ZC mist	propriedades críticas de mistura	CRUZADO, C	4.10

TABELA 4.3 : VARIAVEIS UTILIZADAS NA PROGRAMAÇÃO E SUAS FUNÇÕES.

* Programa onde ocorre a variável.

•

** Figura correspondente ao programa.

---- CAPÍTULO 4 ------

----- PÁG. 92

VAR I ÁVEL	SIGNIFICADO FÍSICO	PROGRAMA *	FIGURA **
temp_ebul [i]	temperatura de ebuli- ção do componente i na mistura	FAT_ACE () BOLHA_T.C BOLHA_P.C ORVAL_T.C ORVAL_P.C PSATNO ()	4.14 4.2 4.4 4.3 4.5 4.13
temperatura	variável de cálculo	BII.C CRUZADO.C PSAT.C UNIFAC.C FAT_ACE ()	4.9 4.10 4.12 4.16 4.14
т (ј)	temperatura para ca- da cálculo em um sis- isobárico.	GERENTE.C BOLHA_T.C ORVAL_T.C	4.1 4.2 4.4
TIPO_FASE	determina o estado fí sico (líquido ou va- por) em que se encon- tra a fase	GERENTE.C	4.1
Vc	volume crítico do componete	JOBACK. C	4.7
νς [ί]	volume crítico do componete i	CRUZADO. C BOLHA_T. C BOLHA_P. C ORVAL_T. C ORVAL_P. C	4.10 4.2 4.4 4.3 4.5
VLP [i]	volume molar líquido do componente i puro	VLM ()	4.18
×ı	variável que corres- ponde a x [j][i]	BOLHA_T.C BOLHA_P.C ORVAL_T.C ORVAL_P.C UNIFAC.C	4.2 4.4 4.3 4.5 4.10
x fjifij	composição da fase lí quida do componente i no j-ésimo cálculo	GERENTE. C BOLHA_T. C BOLHA_P. C ORVAL_T. C ORVAL_P. C	4.1 4.2 4.4 4.3 4.5
, r	variável que corres- ponde a y [j][i]	BOLHA_T.C BOLHA_P.C ORVAL_T.C ORVAL_P.C	4.2 4.4 4.3 4.5
y tjitii	composição da fase va por do componente i no j-ésimo cálculo	GERENTE. C BOLHA_T. C BOLHA_P. C ORVAL_T. C ORVAL_P. C	4.1 4.2 4.4 4.3 4.5

TABELA 4.3 : VARIAVEIS UTILIZADAS NA PROGRAMAÇÃO E SUAS FUNÇÕES.

* Programa onde ocorre a variável.

-

** Figura correspondente ao programa.

---- CAPÍTULO 4 ----

PROGRAMA* ** FIGURA VARIÄVEL SIGNIFICADO FÍSICO coeficiente de fuga -BOLHA_T.C 4.Z FIV BOLHA_P. C 4.4 cidade do componente ORVAL_T.C 4.3 I na mistura vapor ORVAL_P. C 4.5 GAi coeficiente de ativi-4.10 UNIFAC. C dade do componente i BOLHA_T.C 4.2 4.4 BOLHA P. C ORVAL_T.C 4.3 ORVAL_P.C 4.5 OMEGA PSAT. C fator acêntrico 4.12 OMEGA (1) fator acêntrico do CRUZADO, C 4.10 4.2 BOLHA_T.C componente i 4.4 BOLHA_P.C ORVAL_T.C 4.3 ORVAL_P.C 4.5 FAT_ACE () 4.14

TABELA 4.3 : VARIÁVEIS UTILIZADAS NA PROGRAMAÇÃO E SUAS FUNÇÕES.

* Programa onde ocorre a variável.

** Figura correspondente ao programa.

– PÁG. 93

------ PÃG. 94

CAPITULO 5

RESULTADOS E DISCUSSÃO

5.1 - Seleção dos Sistemas Binários e Multicomponentes

O programa GERENTE.C foi utilizado para cálculos de ELV somente dos sistemas binários, ternários e quaternários que apresentavam grupos funcionais disponíveis em todos os métodos de predição de contribuição de grupos listados na tabela 5.1.

Os sistemas binários selecionados foram extraídos do banco de dados "Standard VLE Data Base" de Danner e Gess (1990) cujos autores recomendam como padrão para testes de novos modelos de ELV a baixa pressão. Este banco de dados engloba 104 sistemas binários divididos em grupos de acordo com a polaridade dos componentes. O conjunto de sistemas cobre uma faixa significativa de misturas não-eletrolíticas, tendo-se testada cuidadosamente a consistência termodinâmica de cada sistema. Os sistemas são então distribuidos em nove classes representativas (apolar/apolar, apolar/fracamente polar, apolar/fortemente polar, fracamente polar, fortemente polar/fortemente polar/fracamente polar, água/fortemente polar, sistemas imicíveis, sistemas com ácidos carboxílicos), as quais foram genericamente estabelecidas de forma a possibilitar a inclusão de qualquer outro sistema não selecionado em uma dessas classes.

De acordo com a disponibilidade de grupos, apenas 30 sistemas binários do banco de dados de Danner e Gess foram

TABELA	5.1	2	DISPONIBILIDA	DE	DE ME	TOD	DS DE	PR	EDIÇÃO	POR
			CONTRIBUIÇÃO	DE	GRUPOS.	. (X	indica	que	a predi	ção é
			possível)							

		PR	OPRIED	ADES T	ERMODI	NAMICA	S
BRUFUS FUNCIUNHIS	Teb	Те	Pc	۷	E	₽ °	Y
HIDROCARBONETOS	Х	X	X	X	X	х	Х
ALCOOL	Х	X	X	X	X	x	Х
ETER	Х	X	X	X	X	X	х
CETONA	Х	Х	Х	X	X	X	Х
ESTER	X	X	X	X	X	X	- X
AMINA PRIMĀRIA	×	X	X	X	x	x	X
AMINA SECUNDARIA	Х	X	Х	X	X	х	X
AMINA TERCIÁRIA	X	X	X	X	X	Х	X
PIRIDINA		X	X	X	X	х	X
ACIDO CARBOXÍLICO	x	Х	X	x		х	х
ALDEI DO	X	X	X	X	Х		X
FLUORETO	Х	X	X	X	X		X
CLORETO	X	X	X	Х	X		x
TIÓL	X	X	X	X.	x		х
SULFETO	X	X	X	X	X		
BROMETO	Х	X	X	Х			Х
IODETO	X	X	Х	X			X
NITRO	X	Х	Х	Х			X
AMIDA PRIM A RIA	х	X	Х	Х			
AMIDA SECUNDARIA	X	Х	X	X			
AMIDA TERN A RIA	Х	X	Х	X			
FENOL		Х	Х	X			х
ĀGUA							х

------ PÃG. 95

- CAPÍTULO 5 -

selecionados, distribuidos em seis classes conforme a tabela 5.2.

TABELA 5.2 : DISTRIBUIÇÃO DOS SISTEMAS ESCOLHIDOS POR CLASSES, CONFORME DANNER E GESS.

TIPO DE SISTEMA	SÍMBOLO	NÚMERO DE Sistemas
APOLAR/APOLAR	АРО/АРО	7
APOLAR/FRACAMENTE POLAR	APO/FRP	б
APOLAR/FORTEMENTE POLAR	APO/FOP	б
FRACAMENTE POLAR/FRACAMENTE POLAR	FRP/FRP	2
FRACAMENTE POLAR/FORTEMENTE POLAR	FRP/FOP	3
FORTEMENTE POLAR/FORTEMENTE POLAR	FOP/FOP	б
NÚNERO TOTAL DE SISTEMAS		30

Foram realizados 988 cálculos de equilíbrio líquido-vapor para os 30 sistemas binários, envolvendo 25 compostos diferentes. Os sistemas estão apresentados nas tabelas 5.3 a 5.8, distribuidos por cada tipo de sistema segundo a tabela 5.2.

Da coleção DECHEMA (Gmeling e Onken, 1982 e 1983) foram obtidos dados experimentais de três sistemas ternários e de um sistema quaternário, listados na tabela 5.9, para os quais foram realizados um total de 12 cálculos de equilíbrio, sendo três para cada sistema.

A análise das curvas de ELV preditas é realizada nos ítens 5.3.1 a 5.3.7.

----- PÁG. 96

F			1													
			טא ן	м	ERO	DI	t C/	1LC	ςυ	LOS	DEE	ουι	LI	BRIO	P/	LRA
NS	SISTI	EMAS	CADA SISTEMA EXECUTADO PELOS PROGRAM									MAS				
			DE CÁLCULO ELV													
}	COMPONENTE	COMPONENTE	<u> </u>				r=				I			r		
	COMPONENTE	COMPONENTE	BOL	H/	4 Т.	. C	ORY	/AI	L	т. с	BOLH	A F	•. c	ORVA	L	P.C
L	1	2	[· · · · · ·
	BENZENO	TOLUENO		4	4			4	4							
1 -]	-	-			-	-							
2	ETILBENZENO	HEPTANO									1	7		1	7	t
			<u> </u>								<u></u>			<u> </u>		
Э	OCTANO	ETILBENZENO		2	1			2	1							
I]	· · · · · · ·	
4	1-HEPTENO	TOLUENO									1	3		1	3	3
L			[
	PENZENO	CTCLOREVANO	1								.					
1	BENZENU	CICCONEXANO									1			1	1	1
	METILCICLO-											-		[
0	PENTANO	BENZENO									1	Ø		1 1	•	5
<u>}</u>														<u> </u>		
7	CICLOHEXANO	TOLUENO									1	9		1	5	3
 	······································		 											 		
N) - de cálculos	TOTAIS		q	4			4	4		7	0				、
				-	-			~	-		'	~		1 .	•	-

TABELA 5.3 : SISTEMAS BINARIOS SELECIONADOS PARA SISTEMAS APO/APO.

N - GLOBAL DE CÁLCULOS PARA ESTE TIPO DE SISTEMA : 2 O 8. NS : Número do Sistema.

TABELA 5.4 : SISTEMAS BINARIOS SELECIONADOS PARA SISTEMAS APO/FRP.

พร	SISTI	EMAS	NÚMERO DE CĂLCULOS DE EQUILÍBRIO PARA Cada sistema executado pelos programas de cálculo elv									
	COMPONENTE 1	COMPONENTE 2	BOLHA_T.C	ORVAL_T. C	BOLHA_P.C	ORVAL_P.C						
8	TOLUENO	4 - METIL-2- Pentanona			28	28						
٥	TOLUENO	2 - PENTANONA			27	27						
10	BENZENO	2-BUTANONA	٥	Q								
11	CICLOHEXANO	2 - BUTANONA	2 3	29								
12	HEPTANO	2-BUTANONA			1 9	19						
19	DECANO	ACETONA			1 4	1 4						
N	DE CALCULOS	5 TOTAIS	3 Z	<u>\$</u> 2	8 8	88						

O N- GLOBAL DE CÁLCULOS PARA ESTE TIPO DE SISTEMA : 2 4 0. NS : Número do Sistema.

------ PAG. 98

TABELA 5.5 : SISTEMAS BINARIOS SELECIONADOS PARA SISTEMAS APO/FOP.

NS	SIST	EMAS	NÚMERO DE CÁLCULOS DE EQUILI Cada sistema executado pelos de cálculo elv							PARA RAMAS
	COMPONENTE 1	COMPONENTE 2	BOLHA	а_т. с	ORVAL	,_т.с	BOLHA	А_Р. C	ORVAL	P. C
14	BENZENO	DIETILAMINA					1	5	1	5
15	BENZENO	TRIETILAMI- NA					2	2	2	2
10	HEPTANO	TRIETILAMI- NA					2	0	2	0
17	BENZENO	TERT-BUTA- Nol					1	9	1	9
19	BENZENO	ETANOL	1	2	1	2				
19	BENZENO	2-PROPANOL	3	0	9	0				
N	DE CÂLCULO	S TOTAIS	4	2	•	2	7	7	7	7

 N° global de cálculos para este tipo de sistema : 2 9 b. NS : número do sistema.

TABELA 5.4 : SISTEMAS BINARIOS SELECIONADOS PARA SISTEMAS FRP/FRP.

NS	\$ I S T	EMAS	NÚNERO DE CÁLCULOS DE EQUILÍBRIO PARA Cada sistema executado pelos programas de cálculo elv								
	COMPONENTE	COMPONENTE 2	BOLHA_T.C	ORVAL_T. C	BOLHA	_ P. C	ORVAL_P.C				
20	ACETONA	ACETATO DE Propila	1 5	1 3							
21	DIETILÉTER	ACETONA			1	9	19				
N	DE CĂLCULO	S TOTAIS	1 3	1 5	1	9	1 3				

N- GLOBAL DE CÁLCULOS PARA ESTE TIPO DE SISTEMA : 5 6. NS : Número do Sistema.

NS	SIST	EMAS	NÚMERO DE CĂLCULOS DE EQUILÍBRIO PARA Cada sistema executado pelos programas de cálculo elv								
	COMPONENTE 1	COMPONENTE 2	BOLHA_T.C	ORVAL_T. C	BOLHA_P.C	ORVAL_P.C					
22	ACETATO DE Propila	1 - P ROPANOL	1 1	1 1							
23	ACETATO DE Butila	1 - BUTANOL	1 2	12							
24	ACETATO DE Etila	2 - P ROPANOL			91	91					
N	DE CÁLCULO	S TOTAIS	2 3	2 9	91	3 1					

TABELA 5.7 : SISTEMAS BINARIOS SELECIONADOS PARA SISTEMAS FRP/FOP.

N- GLOBAL DE CÁLCULOS PARA ESTE TIPO DE SISTEMA : 1 O 8. NS : Número do Sistema.

TABELA 5.8 : SISTEMAS BINÁRIOS SELECIONADOS PARA SISTEMAS FOP/FOP.

NS	SIST	EMAS	NÚMERO DE CÁLCULOS DE EQUILÍBRIO Cada sistema executado pelos prodr										
1			DE CÁLCULO ELV										
	COMPONENTE 1	COMPONENTE 2	BOLH	A_T.C	ORVA	L_T.C	BOLH	A_ P. C	ORVA	L_ P. C			
25	ETANOL	TRIETILAMI- Na					1	2	1	2			
20	TERT-BUTA- Nol	1-BUTANOL	1	1	1	1							
27	1-PROPANOL	2-METIL-1- Propanol					1	1	1	1			
28	ETANOL	2 - PROPANOL	1	2	1	2							
29	ETANOL	2-METIL-1- Propanol					1	1	1	1			
90	DIETILAMINA	ETANOL					1	1	1	1			
N	DE CÁLCULOS	S TOTAIS	2	9	2	9	4	5	4	5			

 $\overset{O}{N^{-}}$ global de cálculos para este tipo de sistema : 1 9 6. NS : número do sistema.

----- PAG. 99

SISTEMAS TERNĀRIOS E QUATERNĀRIO	NÚMERO DI Cada Sis' De Cálcui	E CÁLCULOS Fema execu ⁴ Lo elv	DE EQUILÍ FADO PELOS	BRIO PARA Programas
	BOLHA_T.C	ORVAL_T.C	BOLHA_P.C	ORVAL_P.C
CICLOHEXANO				
HEPTANO			Э	
TOLUENO				
2-PROPANOL				
BENZENO	Э			
CICLOHEXANO				
BENZENO				
TOLUENO			Э	
2-PROPANOL				
ETANOL				
BENZENO	2			
HEXANO	3			
METILCICLOPENTANO				
N- DE CÁLCULOS TOTAIS	Ø		6	

TABELA 5.9 : SISTEMAS MULTICOMPONENTES EXTRAÍDOS DO DECHEMA.

 N^{O} global de cálculos para este tipo de sistema : 1 2.

Previamente à análise dos resultados dos cálculos das curvas de equilíbrio, são apresentados e avaliados no item 5.2 resultados das predições de propriedades de componentes puros, cujos valores são demandados pelos programas de ELV. Esta discussão preliminar irá fornecer subsídios para uma melhor avaliação dos resultados de predição dos dados de misturas.

A análise quantitativa dos resultados, no ítem 5.2 e no resto deste trabalho faz uso de valores do desvio absoluto e do desvio absoluto médio, definidos em seguida para uma propriedade qualquer, X : - CAPÍTULO 5 -

- PAG. 101

**DESVIO ABSOLUTO (DA) =
$$\Delta X = X - X$$
 (5.1)**

DESVIO ABSOLUTO MÉDIO (DAM) =
$$\Delta \overline{X} = \frac{\sum_{i=1}^{N} |\Delta X|_{i}}{N}$$
 (5.2)

onde N significa o número de amostras e os subscritos, calc e exp, referem-se aos valores calculados e experimentais, respectivamente.

Nos ítens 5.3 a 5.6, as equações (5.1) e (5.2) são aplicadas às propriedades de cálculos de equilíbrio líquido-vapor, T, P, $x_i \in y_i$, sendo que N se refere ao número de cálculos de equilíbrio. Nestes ítens, a seguinte equação foi também utilizada para as análises dos sistemas binários e multicomponentes :

$$\Delta \overline{X}_{t} = \frac{\sum_{i=1}^{NS} | N * \Delta \overline{X} |_{i}}{NTC}$$
(5.3)

onde NS é o número de sistemas por classe; NTC, o número total de cálculos por classe.O termo $\Delta \overline{X}_t$ foi convencionalmente chamado neste trabalho de desvio absoluto médio total.

5.2 - Predição de Propriedades de Componentes Puros

Os resultados dos cálculos de temperatura de ebulição normal, temperatura crítica, pressão crítica , volume crítico e fator acêntrico são apresentados nas tabelas 5.10, 5.11 ----- CAPI TULO 5 -----

e 5.12 e são comparados com os dados do banco do DIPPR (Daubert e Danner, 1985). Estas propriedades não dependem da temperatura.

Analisando a tabela 5.10, encontra-se que a maioria dos compostos que apresentam elevados desvios absolutos กล temperatura de ebulição normal também apresentam resultados preditos de temperatura crítica expressivamente afastados dos valores experimentais. Isto é previsivel, uma vez que a predição da T_ depende diretamente do valor da temperatura de ebulição normal como mostra a equação (3.38). No entanto, nota-se que esta tendência nem sempre se verifica, como é o caso dos compostos 2-butanona, 4-metil-2-pentanona, 1-butanol e dietilamina que apresentam grandes desvios em T e pequenos em T, indicando imprecisão do método Joback na predição de T_ para estas moléculas; e em outros casos, 2-propanol e tert-butanol, talvez devido à compensação de erros, os valores de T com grandes desvios geraram valores de temperaturas críticas com pequenos afastamentos em relação aos experimentais. No entanto, os desvios médios em T e T (6.49 K e 9.76 K, respectivamente) são bastante elevados.

Desvios apreciavelmente menores foram verificados na pressão crítica e no volume crítico, como revela a tabela 5.11. Os maiores desvios são observados em compostos fortemente polares, como o etanol e o tert-butanol, e nas cetonas de maior peso molecular (2-butanona, 2-pentanona e 4-metil-2-pentanona).

- PÁG. 102

---- CAP1 TULO 5 -----

٠

PÃG. 103

TABELA 5.10 : TEMPERATURA DE EBULIÇÃO E TEMPERATURA CRÍTICA

COMPONENTE	TIPO DE		т (ж өр	>		T (K	>
	COMPOSTO	PRED.	DIPPR	DA	PRED.	DIPPR	DA
BENZENO		340.70	359.24	-12.54	541.00	562.16	-20.56
CICLOHEXANO		332.78	353.87	-21.09	521.35	559.54	-32.19
DECANO		444.55	447.3	-2.75	613.23	618.45	-5.22
ETILBENZENO		400.04	409.35	-9.31	604.82	617.17	-12.35
HEPTANO	APO	363. 37	371.58	-8.42	528.05	540.26	-11. 61
1-HEPTENO		361.21	366.79	-5, 58	530.45	537.29	-6.94
METILCICLO-		335.25	345.0	-0.75	520.01	532.2	-11.70
PENTANO							
OCTANO		392.12	398.83	-6.71	559. 69	568.83	-9.14
TOLUENO		371.29	383.78	-12.49	574. 61	591.79	-17.18
ACETATO DE		403.58	399.15	4.43	580. 98	579.15	1.83
BUTILA							
ACETATO DE		352.16	350.21	1.95	528.13	529.25	4.88
ETILA		L		[[[
PROPILA		378.07	374. 65	4.02	555. 97	549.40	6. 57
ACETONA	FRP	326.23	329. 44	-3.21	506. 97	508.20	-1.23
2-BUTANONA		354. 61	352.79	1.92	546.23	535.50	10.73
DIETIL ÉTER		309. 81	907.58	2.23	471.52	400.70	4.82
4-METIL-2-		394.33	389. 65	4. 68	585.72	571.40	14.32
PENTANONA							
2-PENTANONA		381.29	375.5	5.79	566. 10	564.0	2.1
1-BUTANOL		389. 81	390. D	-1.09	553.87	562. P3	-9.00
DIETILAMINA		325.25	328. <i>0</i>	-3, 35	487. 60	496. 6	-9.0
ETANOL		339. 58	351.44	-11.90	502.43	516.25	-13.82
2-METIL-1-		379.30	390.81	-1.51	557.82	547.79	10.09
PROPANOL	FOP						
1-PROPANOL		365.20	970. 35	-5, 15	529. 49	536.71	-7.22
2 - PROPANOL		345.30	355. 41	-10.11	504.48	509.31	-3.83
TERT-BUTANOL		346.87	355. 57	-8.70	504.44	508.2	-1.76
TRIETILAMINA		359.00	362.7	- 3.70	519.08	535.0	-15.92
DESVIO ABSOLU	TO MÉDIO (DAM>		6.49			9.76

- CAPITULO 5 -

_____ **PÁG.** 104

COMPONENTE	TIPO DE	P	(AT]	ME >	v ()	cm ³ ∕g	-mol >
	COMPOSTO	PRED.	DIPPR	DA	PRED.	DIPPR	DA
BENZENO		47.07	48.34	-1.27	203.50	258.94	4.56
CICLOHEXANO		40.76	40.21	0. 55	305, 50	307.88	-2.38
DECANO		20. 80	20. 95	-0.15	305.50	308.45	-2.50
ETILBENZENO		36.03	35. 62	0.41	375.50	373.81	1. 09
HEPTANO	APO	27.63	27.00	0. 63	427. 50	432.23	-4.73
1-HEPTENO		28.90	27.93	0.97	408.50	413.00	-4.50
METILCICLO-]	22.00	37 40	0.40	343 50	240.0	- 6 50
PENTANO		37.89	37.40	0.49	312.50	319.0	-0.50
OCTANO		25.02	24.54	0.49	483.50	492.05	-8.55
TOLUENO		40. 61	40. 55	0.06	319. 50	315.79	3.71
ACETATO DE		30.84	31 10	-0.35	397.50	380.00	8, 50
BUTILA							
ACETATO DE		38.70	37.80	0.90	285.50	286.00	-0.50
ETILA							
ACETATO DE		34.43	33.20	1.29	341.50	345.00	-3.50
PROPILA			·····				
ACETONA	FRP	47.40	46.40	1.00	209, 50	209.00	0. 50
2-BUTANONA		40,43	41.00	5.43	277. 50	267.00	10. 50
DIETIL ÉTER		37.65	35. 90	1.75	277, 50	280.00	2.50
4-METIL-2-		36.63	32, 30	4. 30	383. 50	369.00	14.50
PENTANONA							
2-PENTANONA		40.97	38.45	2.47	321.50	321.5	0.0
1-BUTANOL		43.28	43.55	-0.27	278.50	274.53	3.97
DIETILAMINA		39.09	30.00	2.49	294. 50	301.0	-0.50
ETANOL		56.81	63.04	-6. 19	166. 50	166. 92	-0.42
2-METIL-1-		43.75	42.30	1.30	272.50	272.00	0.50
PROPANOL	FOP						
1-PROPANOL		49.30	51.02	-1.00	222, 50	218.53	3. 97
2 - PROPANOL		49. 92	47.02	2.90	216.50	220.01	-3.51
TERT-BUTANOL		44.39	39.20	5. 19	267.50	275.00	-7.50
TRIETILAMINA		30. 60	30.07	0.00	289. 50	390.0	-0. 50
DESVIO ABSOLU	TO MÉDIO			1.72			4.26

TABELA 5.11 : PRESSÃO CRÍTICA E VOLUME CRÍTICO

----- CAPÍTULO 5 ------

.

PÁG. 105

TABELA 5.12 : FATOR ACENTRICO

	<u>n J.16 · r</u>	MINN NO	2011/100	
COMPONENTE	TIPO DE		ω	
	COMPOSTO	PRED.	DIPPR	DA
BENZENO		0.357	0.2108	0.140
CICLOHEXANO		0. 500	0.2149	0.285
DECANO		0. 532	0. 4842	0.048
ETILBENZENO		0. 405	0.3036	0. 101
HEPTANO	АРО	0.474	0.3494	0. 125
1-HEPTENO		0. 601	0.3310	0.27
METILCICLO-	1	0.005	A 220	0
PENTANO		0.305	0.239	0.00
OCTANO		0.495	0.3962	0.099
TOLUENO		0. 428	0.2641	0.164
ACETATO DE		0 975	0 44.67	-0.043
BUTILA		0.373	0.4107	0.042
ACETATO DE		0.357	0.3611	0.004
ETILA			ļ	
ACETATO DE		0.360	0.3941	-0.034
PROPILA		<u> </u>		
ACETONA	FRP	0.425	0.3064	0.119
2-BUTANONA		0.412	0.3241	0.088
DIETIL ÉTER		0.177	0.2840	-0,108
4-METIL-2-		0 499	0 3887	0 049
PENTANONA		0.436	0.3087	0.049
2 - PENTANONA		0.420	0.340	*0.074
1-BUTANOL		0.754	0. 5945	0.159
DIETILAMINA		0.430	0.299	0.131
ETANOL		0.829	0.0371	0. 192
2-METIL-1-		0 602	0 5895	0.045
PROPANOL	FOP		5. 5003	U. UIJ
1-PROPANOL		0.780	0. 6279	0.158
2 - PROPANOL		0.748	0. 6689	0.079
TERT-BUTANOL		0.817	0. 6158	0.201
TRIETILAMINA		0.365	0. 320*	*0.045
DESVIO ABSOLU	JTO MÉDIO			0.148
VALOR EXTRAI	DO DO LIVE	O THE	PROPERT	IES OF

VALOR EXTRAIDO DO LIVRO "THE PROPERTIES O Gases and liquids" (reid et al., 1987) ----- CAPITULO 5 ------

Deve-se lembrar que os valores preditos de P_c e V_c dependem exclusivamente das contribuições dos grupos constituintes destes compostos, conforme se nota pela equação (3.39) e (3.40). Logo, os desvios apresentados são unicamente decorrentes da imprecisão do método Joback.

A tabela 5.12 apresenta o desvio médio absoluto no fator acêntrico de 0.148. Como o fator acêntrico foi calculado a partir de valores preditos de pressão de vapor conforme a equação (3.42), os desvios refletem a imprecisão de P_i^s , que será apreciada mais adiante.

Para avaliar os resultados das propriedades que dependem da temperatura, adotou-se um procedimento específico para cada caso :

a) os segundos coeficientes viriais de componentes puros preditos foram comparados com os valores calculados pela equação fornecida no DIPPR (Daubert e Danner, 1985).para uma temperatura de 50 [°]C, como segue :

$$B_{ii} = A_{o} + \frac{B_{o}}{T} + \frac{C_{o}}{T^{3}} + \frac{D_{o}}{T^{8}} + \frac{E_{o}}{T^{9}}$$
(5.4)

As constantes, A_0 , B_0 , C_0 , $D_0 \in E_0$, se encontram no DIPPR (Daubert e Danner, 1985).

b) os resultados da predição de volume molar de líquido foram

---- PAG. 106

comparados com valores de densidade de líquido a uma temperatura de referência encontrados em Reid et al. (1977).

c) os dados de pressão de saturação sempre são avaliados nas temperaturas dos sistemas isotérmicos e nas temperaturas de ebulição dos componentes nos sistemas isobáricos.

Os resultados preditos e calculados de coeficientes viriais via equação do DIPPR estão apresentados na tabela 5.13.

O desvio médio absoluto obtido do cálculo do segundo coeficiente virial, como mostra a tabela 5.13, é de 405.48 cm³/ g-mol. Apesar do aparente elevado desvio de B_{ii} , os valores preditos pelo McCann e Danner podem ser considerados muito bons, pois o grau de incerteza experimental de segundos coeficientes viriais é elevado. Além disso, os valores de $\hat{\varphi}_i$ e φ_i^s são pouco sensíveis à variação nos valores dos segundos coeficientes viriais.

Os valores obtidos para volumes molares de líquido calculados pelo método de Gunn e Yamada estão listados na tabela 5.14.

O desvio médio apresentado para o cálculo de volume molar de líquido, como lista a tabela 5.14, é de 16.21 cm³ / g-mol. Este valor pode ser considerado grande já que o método de Gunn e Yamada é conhecido pela sua precisão (Reid, 1977). Os

PAG. 107

---- CAPITULO 5 -----

•

- PÁG. 108

'ABELA 5.13 :	SEGUNDO CO	OEFICIENT:	E VIRIAL	(T=50.00
COMPONENTE	TIPO DE	B	(cm ^a ∕g·	-mol)
	COMPOSTO	PRED.	DIPPR	DA
BENZENO		-771.77	-1190.64	418.87
CICLOHEXANO		-1174.99	-1405.94	230.85
DECANO		- 6287.47	-7910.55	1023.08
ETILBENZENO		-1005.00	-2180.46	514.80
HEPTANO	АРО	-2182.33	-2344.32	101.99
1-HEPTENO		-1978.33	-2005.24	90.90
METILCICLO- Pentano		-1132.63	* -1390.92	258.29
OCTANO		-3174.45	-3349.08	174.92
TOLUENO		-2074.09	-2130.80	56.70
ACETATO DE		- 3007. 35	- 3658. 36	651.01
BUTILA				
AUEIATO DE Fitla		-1539.43	-1005.28	125.85
ACETATO DE	-	[<u> </u>	
PROPILA		-2194.98	-3166.97	971.99
ACETONA		-1362.65	-1440.31	83.00
2 - BUTANONA	FRP	-2042.53	- 1745. 38	297.15
DIETIL ÉTER		- 286. 83	-936.11	-50.73
4-METIL-2-			*	
PENTANONA		-3805.74	-2998.98	-800.70
2-PENTANONA		-2957.71	-2574.63	-383.08
1-BUTANOL		-2894.02	-3400.40	506, 44
DIETILAMINA		-1122.93	não dis- ponível	
ETANOL		-941.39	-1718.05	776.66
2-METIL-1- Propanol	FOP	-3005.78	-3122.20	116.42
1-PROPANOL	2 4 4	-1788.07	-1808.81	20.74
2 - PROPANOL		-1386.98	-1836.98	450.10
TERT-BUTANOL		-1992.40	-2493.34	499.20
TRIETILAMINA		-1557.70	não dis- ponível	
DESVIO ABSOLU	TO MÉDIO			405. 48

* não disponível em DIPPR (Daubert e Danner, 1985), calculada pela correlação de Tsonopoulos (Tsonopoulos, 1974). ---- CAPÍTULO 5 ------ PÁG. 109

COMPONENTE	TIPO DE	v _i (cm ⁹ /g-	-mol >	Т
	COMPOSTO	PRED.	DIPPR	DA	(ČC)
BENZENO		94.76	88.204	6. 50	289
CICLOHEXANO		85.24	108.038	-22.80	289
DECANO		181.39	194. 191	-12.80	293
ETILBENZENO		113.55	122.454	-8.90	293
HEPTANO	АРО	129.05	146. 498	-17.45	293
1-HEPTENO		113.54	140.874	-27.33	299
METILCICLO-		103.77	111.621	-7.85	289
PENTANO					
OCTANO		145.53	162.492	-16.96	293
TOLUENO		95.33	106. 276	~10.95	293
ACETATO DE Butila		130.85	190.078	0.772	273
ACETATO DE Etila		75.72	97.788	-22.07	293
ACETATO DE		131.44	115. 145	16.30	293
PROPILA					
ACETONA	FRP	125.19	73.519	51.67	293
2-BUTANONA		93.28	89.574	3.71	293
DIETIL ÉTER		108.00	103. 959	4.64	293
4 - METIL - 2 -		106.42	125.045	-18.63	203
PENTANONA					
2-PENTANONA		104.39	100. 800	-2.48	293
1-BUTANOL		69. 8 7	91.510	-21.04	293
DIETILAMINA		89.49	103.450	-13.90	293
ETANOL		47.12	58.389	-11.27	293
2-METIL-1-		76 19	02 423	-16 24	203
PROPANOL	FOP	/0:10		10124	
1-PROPANOL		58.27	74.746	-16.48	293
2-PROPANOL		58.40	76.458	-18.00	293
TERT-BUTANOL		61.68	94.184	-32.50	293
TRIETILAMINA		115.77	115.77	-29.23	293
DESVIO ABSOLU	TO MÉDIO			16.21	

TABELA 5.14 : VOLUME MOLAR LIQUIDO

desvios observados são devidos à propagação dos desvios em T, P $_{c}$ e ω , propriedades que aparecem nas equações 3.33 a 3.37.

A tabela 5.15 apresenta os resultados calculados nas condições de pressão e de temperatura indicadas. Para uso destes dados na discussão dos resultados binários, indica-se também na tabela o número de identificação do sistema (coluna NS) para o qual o dado de P_i^s foi usado no cálculo. Este número é aquele que aparece na primeira coluna das tabelas 5.3 a 5.8.

Provavelmente, o desempenho do método UNIFAC de predição de P_i^s vai caindo de qualidade com o aumento da temperatura. A evidência para esta afirmação se verifica observando que os desvios para os compostos benzeno, ciclohexano, heptano, tolueno, acetona, dietilamina, etanol, 2-metil-1-propanol e trietilamina crescem com o aumento da temperatura.

Devido à dependência exponencial da pressão de saturação com a temperatura, valores de P_i^s são muito sensíveis a erros em T. Assim, pequenos desvios em temperatura por exemplo, da ordem de 0.5 °C, podem resultar em desvios de P_i^s de vários mmHg, dependendo do composto. Outro fator que pode vir a influenciar P_i^s é a temperatura crítica utilizada na predição de segundos coeficientes viriais. Aparentemente, P_i^s é pouco sensível a erros em T_c, testes realizados com etanol e 2-propanol mostraram que a diferença entre valores preditos de P_i^s com dados experimentais (Standard VLE Data Base) e com dados preditos de T_c (ver Tabela

– PĀG. 110

TABELA 5.15 : PRESSÃO DE SATURAÇÃO DE COMPONENTES PUROS.

r	1	1	T	1	7	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		r	1	·····
COMPONENTE	T		т	р ⁵	P ⁵	1 4 5		Τ.,	A	
COMPONENTE		INS.	exp	өхр	cat		4 %	cai		96 T
	P P			Condita	(manig)	mong]			1
BENUTENIA	↓ ''		20.00	407.07	102 22		0. 20		[
BENZENU			40.00	182.03	102.73	-0.70	0.38	·	<u> </u>	<u> </u>
	}	1-7	45.00	779 93	224 30	-0.72	0.39		<u> </u>	
	}		55 00	977 94	224.30	-1.00	1 25			
			60 30	300 08			<u> </u>	50 09	0 32	0 53
			80.00	252.20	201 42	- 23 7	0 10			0.00
			80.10	750 06				70 14	0.06	1 20
		10	121 25	735.20	<u> </u>		<u> </u>	110 70	1 55	1 28
CICLOHEXANO		1-5	25.00	08 40	06 68	+ 77	1 75			1.20
			40.00	194 24	126.80	7 44	4 04	<u> </u>	<u></u>	
		<u> </u>	80.00	750.06	1.0.00		4.04	01 07	-1 02	1 26
DECANO		1	60.00	139.90	44.74	0.46	1 10	01.02	-1.02	1.20
DEGANO	APO	13	50.00	11.40		0.10	2.40			
ETILBENZENO			136 30	43.72	43.13	-1.41	3.23	126 62	0 52	0.99
			130.20	139.90	174 33		2 25	130.02	0.52	0.30
HEPTANO			54.01	170.41	1/4.23	~3.03	2.29			
		10	09.30	210.39	214.80	- :). 8.3	2.32	07.77		A
A-NEDTENO	ł			759.90		F 4 50		97.77	0.53	0.54
VETTL CTCLOB			33.00	200.19	151.49	54.70	20.5			
DCTAND			39.99	253.88	291.21	37.33	24.7	121 72		0.00
			25.00	29 46	24.25	4 74	4 4 9	124.70	0.92	0.73
TOLUENO			£3.00	28.40	24.23	4.21	44.0			
			55.00	¥2.22	00 03	10.85	42 4	·		
			35.00	750.05	00.03	13.00	12.1	112 62	- 2 . 0 . 6	3 77
ACET DUTILA		1	110.01	750.00				113.07	-3.00	2.11
ACET. BUTILA		23	52.00	50.00	105 F0			51.03	0.97	1.04
ACET. EITEA		2.4	00.00	420.35	425.58	-5.23	3.24			
ACEIAIO DE		22	<u>93.99</u>	599.97				92.61	1.38	1.4/
FROFILA		20	101.01	759.90				105.52	-9. VI	3.85
AGERONIA		~ 1	30.00	282.09	296.30	-19.7	4.84			
ALLIONA	FRP	20	50.10	759.96				57.00	-1.50	2.07
		13	60.00	869.86	BZZ. 11	41.75	4.83			1 66
Z "HOIANDNA		11	10.45	230.00				435.00	-9.99	47 6
DIETI ÉTEN		10	118.80	2310.9				135.00	-10.2	13.0
A-MET-2-DENT		21	50.00	70 95	50 99	- 35.0	3.41			
2-PENTANONA		-0	- 50,00	116 88	107 31	0 50	8 10			
		23	56.10	50.00				55 78	D 32	0 57
1-BUTANOL		26	69 91	00.00				60 57	0.34	0.40
		30	40.00	424 00	437 39	-12 4	2 02		<u> </u>	
DIETILAMINA			55 00	251 26	225 35	20.04	3 46			
	FOP		34 8*	102 00	03 44	9 59	8 44			
ETANOL		30	40.00	110 00	174 44	10.50	43 3			
	1	<u></u>	60.00	353 20	202 44	10,00	13.3			
		45	63 50	300 00	2 93.40	JY. 83	10.9	67 74	-5.34	8 24
			70 42	750 07				92.04	- 3. 21	5 00
		~ 0	10.40	+ JY. YO				03.00	.	2. 50

---- CAPITULO 5 ---

COMPONENTE	T I P O	NS	Т өхр (к)	P exp (mmHg)	P ^B cal (mmHg)	∆р ттН д	% P	T cal (K)	Дт (к)	%т
2-MET11-1-	[29	60.00	90.00	88,82	7.17	7.47			
PROPANOL	f	27	70.00	156.99	142.78	14.21	9.05			
1 - PROPANOL		27	70.00	247.49	220.85	26.64	10.8			
		22	91.06	500.07				PG. 7P	-5.73	6.29
2-PPOPANOL	505	24	60,00	291.21	310.91	-19.6	6.76			
Z-FROFANOL	ror	28	82.38	759.90				89.19	-0.75	0.91
ZCDE NUCANA		20	39.42	99.99				42.95	-3.53	8.95
IERT-BUTANOL		17	45.00	195. 91	111.00	23.92	17.0			1
		25	34.85	104.59	108.28	-3. 6P	3.53			
TRIETILAMINA		10	60.00	200.20	296.12	-5.83	2.01			
		15	80.00	571.97	581.45	-9.48	1.00			[

TABELA 5.15 : CONTINUAÇÃO

5.10) é muito pequena, inferior a 0.2%.

Em particular, os compostos benzeno, 1-hepteno, metilciclopentano, tolueno, dietil éter e todos os álcoois, cetonas e aminas testados apresentam grande desvios na pressão de saturação, devido à imprecisões inerentes ao método UNIFAC. Logo, deve-se antecipar que estes compostos provavelmente influenciarão negativamente os resultados dos cálculos das curvas de ELV que serão apresentados a seguir.

5.3 - Sistemas Binários

Foram realizados um total de 988 cálculos de ELV para sistemas binários, isotérmicos (612 cálculos) e isobáricos (376 cálculos).

Para facilitar a análise dos resultados de predição de curvas de equilíbrio líquido-vapor em sistemas binários, a discussão é realizada parceladamente, para cada classe de sistema, seguindo a tabela 5.2, sendo cada segmento da discussão apresentado nos ítens 5.3.1 a 5.3.6. No ítem 5.3.7, uma apreciação dos resultados de todos os sístemas binários tomados em conjunto é realizada.

Os resultados de predição de ELV são apresentados sintéticamente na forma de desvios e desvios médios, obtidos de dados de tabelas geradas pelo programa GERENTE.C que se encontram arquivadas no Laboratório de Propriedades Termodinâmicas da FEQ/UNICAMP.

O Apêndice C contém quatro exemplos de tabelas de resultados de predição de curvas de equilíbrio líquido-vapor de sistemas binários para cada tipo de cálculo de equilíbrio : orvalho T; bolha T; orvalho P e bolha P. Nas tabelas, são dados valores das seguintes propriedades preditas :

- PARA CADA COMPONENTE :

- temperatura de ebulição normal (K);
- pressão de saturação normal (atm);
- temperatura crítica (K);
- pressão crítica (atm);
- fator acêntrico;
- volume molar de líquido a 20 °C (cm^3/g -mol);
- segundo coeficiente virial de componente puro a 50 °C (cm³/g-mol);

------ PÁG. 113

— CAPÍTULO 5 —

- PARA CADA COMPOSIÇÃO :

- coeficientes de atividade;

- dados P-T-x-y preditos e experimentais.

5.3.1 - Sistemas Apolar - Apolar (APO/APO)

Os sistemas do tipo APO/APO utilizados para a predição do ELV estão listados nas tabelas 5.16 a 5.17, sendo também apresentados os desvios médios absolutos de cada propriedade calculada em relação aos valores de Danner e Gess. Calcularam-se também os desvios absolutos totais para estes sistemas.

A tabela 5.16 indica uma boa predição do equilibrio líquido-vapor para os sistemas isobáricos benzeno/tolueno e octano/etilbenzeno, uma vez que apresentam pequenos desvios em temperatura e nas composições das fases líquida e vapor.

TABELA 5.16 : RESULTADOS DA PREDIÇÃO DE SISTEMAS APO/APO PARA O
CALCULO DE PONTOS DE BOLHA E DE ORVALHO ISOBÁRICOS.

SIST	EMAS		P	FAIXA DE	۵Ŧ		ΔŦ	A ==
COMPONENTE 1	COMPONENTE 2	NC	(mmHg)	DE T(^O C)	(°c>	Ду	ິເວັ	Δx
BENZENO	TOLUENO	1 3	759.90	80.10 a 110.01	1.21	0.000	1.34	0.007
OCTANO	ETILBENZENO	21	759. 90	125.70 a 196.70	1.00	0.012	1.70	0.014
VALOR MÉDI	O TOTAL	34	-		1.49	0.010	1.50	0.011

----- PAG. 114

TABELA 5.17 : RESULTADOS DA PREDIÇÃO DE SISTEMAS APO/APO PARA O CALCULO DE PONTOS DE BOLHA E DE ORVALHO ISOTÉRMICOS

SIST	EMAS		т	FAIXA DE	ΔP	A	ΔP	A.T.
COMPONENTE 1	COMPONENTE 2	NC	്റാ	P (mmHg)	(mmHg)	Ду	(mmHg)	
HEPTANO	ETILBENZENO	17	54.01	43,72 a 170,41	1.73	0.003	2.12	0. 003
1-HEPTENO	TOLUENO	19	55.00	113.00 a 206.20	37.02	0.028	95.52	0.029
BENZENO	CICLOHEXANO	11	40,00	192.29 a 205.70	3.30	0.007	9.38	0.008
METILCICLO- Pentano	BENZENO	10	99.99	182.04 a 253.90	16.79	0.022	15.23	0. 024
CICLOHEXANO	TOLUENO	21	25.00	28.40 a \$8.41	9.91	0.010	5. 57	0.025
VALOR MEDIC	O TOTAL	78			11.51	0.014	11.48	0.018

Na predição dos cálculos de pontos de bolha de e orvalho isotérmicos (tabela 5.17), obtiveram-se resultados muito satisfatórios em alguns casos, como exemplificam os dados preditos do sistema heptano/etilbenzeno a 54.61 °C, mostrados na figura °C benzeno/ciclohexano 40.00 5.1. Os sistemas 8. e ciclohexano/tolueno a 25.00 °C também apresentam pequenos desvios. Por outro lado, os desvios dos sistemas 1-hepteno/tolueno (55.00 °C) e metilciclopentano/ benzeno (39.99 °C) evidenciam uma má predição da curva de ELV, como confirma a figura 5.2 para este primeiro sistema. Uma vez que estas misturas apresentam pequenos idealidade, os desvios são atribuídos afastamentos da principalmente à deficiência na predição de P^s de ambos 05 componentes, conforme ja foi antecipado no item 5.2.

- PAG. 115

- CAPÍTULO 5 -

Estes resultados iniciais já demonstram a importância de uma boa predição de pressão de saturação de componentes puros nos cálculos de ELV, pois esta propriedade influência de sobremaneira os valores das concentrações das fases em equilíbrio, como será confirmado por outros resultados expostos a seguir.

FIGURA 5.1 : SISTEMA HEPTANO/ETILBENZENO (54.61 °C)

- PAG. 116

- CAPITULO 5 -

- PAG. 117

FIGURA 5.2 : SISTEMA 1-HEPTENO/TOLUENO (55.00 °C)

5.3.2 - Sistemas Apolar - Fracamente Polar (APO/FRP)

As tabelas abaixo, 5.18 e 5.19, apresentam sistemas do tipo APO/FRP empregados na predição de curvas de equilíbrio líquido-vapor nas condições isobáricas e isotérmicas, respectivamente.

T - 71	ELA	5.18	:	RESULTAD	OS	DA PREI	DIÇI	AO DE	S]	ESTE	EMAS	APC)/FRP	PARA	0
				CALCULO	DE	PONTOS	DE	BOLHA	Ε	DE	ORVAL	HO	ISOBÁ	RICOS.	

SISTI	ENAS	1	P	FAIXA DE	ΔŦ		ΔΤ	
COMPONENTE 1	COMPONENTE 2	NC	(mmHg)	DE T(^O C)	(ိင)	Ду	(ິເວ	Δ×
BENZENO	2-BUTANONA	٥	2310. P	116.50 a 119.60	5.94	0. 052	6.94	0.054
CICLOHEXANO	2-BUTANONA	23	759.90	71.60 a 80.80	1.39	0.019	1.28	0.021
HEPTANO	2-BUTANONA	10	759.96	77.00 a 98.00	1,60	0.027	1.94	0.041
VALOR MEDIC	D TOTAL	51			2.27	0.028	2.52	0.034
--- CAPÍTULO 5 --

SISTEMAS			7	FAIXA DE	ΔĒ		۵Ē	
COMPONENTE	COMPONENTE 2	NC	(°c)	P (mmHg)	(mmHg)	Ду	(mmHg)	ДX
TOLUENO	4-METIL-2- PENTANONA	28	50.00	70.96 a 90.22	12.09	0.053	13.37	0.014
TOLUENO	2-PENTANONA	27	50.00	90.22 a 110.89	13.20	0.010	13.20	0.010
ACETONA	DECANO	14	Ø0.00	11.40 a 863.90	10.89	0.003	56. 52	0.218
VALOR MEDI	O TOTAL	09			19.50	0.020	22.08	0.054

TABELA 5.19 : RESULTADOS DA PREDIÇÃO DE SISTEMAS APO/FRP PARA O CÁLCULO DE PONTOS DE BOLHA E DE ORVALHO ISOTÉRMICOS.

Segundo a tabela 5.18, os resultados dos sistemas isobáricos apresentam desvios absolutos de temperatura e de composições das fases vapor e líquida relativamente pequenos para quase todos os sistemas desta tabela. Os maiores desvios deste grupo, observados no sistema benzeno/2-butanona, a 2310.90 mmHg, são atribuídos ao erro demostrado na predição de P_i^s do componente 2-butanona, conforme pode ser visto na figura 5.3.

Na tabela 5.19, todos os sistemas isotérmicos apresentam cetonas, para as quais não foi boa a predição de P_i^s (ver ítem 5.2). Assim, não é de se estranhar os grandes desvios observados nos cálculos de ELV.

Cabe ainda comentar sobre os resultados do sistema acetona/decano, a 60 9 C, que são mostrados na figura 5.4. A grande diferença de volatilidade e de estrutura faz com que a curva tenha uma forma peculiar. Os grandes desvios em x, observados no cálculo do ponto de orvalho, são devidos à incerteza nas medidas experimentais das composições da fase vapor, sempre superiores a

------ PAG. 118

- CAPÍTULO 5 ·

FIGURA 5.3 : SISTEMA BENZENO/2-BUTANONA (2310.90 mmHg).

FIGURA 5.4 : SISTEMA ACETONA/DECANO (60.00 °C)

___ CAPITULO 5 ____

_____ PAG. 120

0.98 em acetona, em uma região onde os efeitos da pressão de vapor deste componente são mais fortemente sentidos.

5.3.3 - Sistemas Apolar - Fortemente Polar (APO/FOP)

Os sistemas do tipo APO/FOP utilizados para a predição do ELV isobárico e isotérmico estão listados respectivamente nas tabelas 5.20 a 5.21. Cabe lembrar que os compostos do tipo FOP presentes nas tabelas abaixo apresentaram imprecisões nos cálculos de pressão de saturação, como já foi constatado no ítem 5.2.

TABELA 5.20 : RESULTADOS DA PREDIÇÃO DE SISTEMAS APO/FOP PARA O CÁLCULO DE PONTOS DE BOLHA E DE ORVALHO ISOBÁRICOS.

SISTEMAS			P	FAIXA DE	ΔŦ	<u>مح</u>	ΔΤ	
COMPONENTE 1	COMPONENTE 2		(mmHg)	DE T(^O C)	(ိင)		ິເລີ	
BENZENO	ETANOL	12	399.98	51.20 a 62.50	0.53	0.010	0.64	0.029
BENZENO	2 - PROPANOL	90	759.90	71.78 a 82.38	1.02	0.014	0.81	0.024
VALOR MEDI	O TOTAL	42			0.88	0.019	0.76	0.025

TABELA 5.21 : RESULTADOS DA PREDIÇÃO DE SISTEMAS APO/FOP PARA O CALCULO DE PONTOS DE BOLHA E DE ORVALHO ISOTERMICOS

SIST	SISTEMAS		т	FAIXA DE	ΔP	4.7	ΔĒ	A.T
COMPONENTE 1	COMPONENTE 2	NC	رە دە	P (mmHg)	(mmHg)	Ду	(mmHg)	20.8
BENZENO ·	DIETILAMINA	15	55.00	397.40 a 751.40	P.04	0.004	9.25	0.005
BENZENO	TRIETIL- Amina	22	80.00	752.00 a 757.80	10.70	0.011	P. 68	0.011
HEPTANO	TRIETIL- Amina	20	Ø0.00	210.40 a 290.30	7.97	0.003	7.10	0.092
BENZENO	TERT-BUTA- NOL	19	45.00	135.92 a 223.33	P. 11	0. 032	16. 11	0.055
VALOR MÉDIO TOTAL		70			P. 10	0.011	10.04	0.024

- CAPÍTULO 5 -

Os desvios médios em T e nas composições líquida e vapor, observados na tabela 5.20, são relativamente pequenos, podendo-se considerar razoáveis os resultados obtidos. Já na tabela 5.21, nota-se un expressivo desvio em P, 16.11 mmHg, no cálculo do ponto de orvalho isotérmico para 0 sistema benzeno/tert-butanol a 45 °C. Este valor é decorrente mais uma vez da imprecisão na predição da pressão de vapor, neste caso, do componente tert-butanol, que para esta temperatura apresentou UD desvio absoluto em P^s, de 23.92 mmHg, como se pode observar na Tabela 5.15.

Deve-se lembrar também que nesta classe de sistemas, a não idealidade é apreciável, traduzida em maiores coeficientes de atividade do que nos casos até agora vistos. Valores altos de gama podem inclusive provocar a ocorrência de azeótropo.

As figuras 5.5 e 5.6 ilustram a adequação da metodologia proposta para prever, pelo menos qualitativamente, a ocorrência de azeotropia nos sistemas benzeno/etanol (399.98 mmHg) e benzeno/tert-butanol (45 °C) , respectivamente. Mais uma vez, os valores das pressões de saturação do componente puro distorcem as curvas calculadas. Apesar destas distorções, os pontos de azeotropia preditos nos dois casos se aproximam bem dos valores experimentais, como se pode ver na tabela 5.22.

SISTEMA	T exp (C)	T cal	P exp mmHg	P cal mmHg	x exp	x cal
BENZENO/TERT - Butanol			257	257	0.771	0.771
BENZENO/ETANOL	51.20	52.2			0. 60 1	0. 640

TABELA 5.22 : VALORES DE AZEOTROPIA

Para isolar o efeito dos coeficientes de atividade, as curvas da figuras 5.5 e 5.6 foram refeitas com valores de P^s_i calculados pela equação de Antoine, cujas constantes são encontradas em Reid et al. (1977). As novas curvas, também mostradas nas figuras 5.5 e 5.6 e indicadas por "ANTOINE", comprovam claramente que a não-idealidade dos sistemas são também responsáveis pelos desvios ocorridos nas curvas preditas dos sistemas em questão.

FIGURA 5.5 : SISTEMA BENZENO/ETANOL (399.98mmHg)

- CAPÍTULO 5 -

FIGURA 5.6 : SISTEMA BENZENO/TERT-BUTANOL (45 °C)

5.3.4 - Sistemas Fracamente Polar - Fracamente Polar (FRP/FRP)

Apenas dois sistemas foram selecionados, acetona/acetato de propila, a 759.96 mmHg e dietil éter, a 30.00 $^{\circ}$ C, que se enquadram no tipo FRP/FRP. Os resultados das curvas de ELV são mostrados nas tabelas 5.23 e 5.24 a seguir :

TABELA	5.	23	:	RESULTAD	XOS	DA	PRED	DIÇ2	O DE	\mathbb{S}	STE	MAS	FRF	>∕FRP	PARA	0
				CALCULO	DE	PON	TOS	DE	BOLHA	Ε	DE	ORVAL	.HO	I SOBAR	₹ICOS.	

SISTEMAS			-	FAIXA DE	ΔŦ		ΔŦ	
COMPONENTE	COMPONENTE 2	NC	(mmHg)	DE T(C)	ိင္မွာ	Ду	ိင္မွာ	Δx
ACETONA	ACETATO DE Propila	13	759.90	57.70 a 99.00	2. 54	0.046	0.79	0.040
VALOR MÉDI	O TOTAL	15			2,54	0.040	0.79	0.046

- CAPITULO 5 -

TABELA 5.24 : RESULTADOS DA PREDIÇÃO DE SISTEMAS FRP/FRP PARA O CÁLCULO DE PONTOS DE BOLHA E DE ORVALHO ISOTÉRMICOS

SISTEMAS			т	FAIXA DE	ΔĒ		ΔĒ	A
COMPONENTE 1	COMPONENTE 2		(ິເວ	P (mmHg)	(mmHg)	Шу	(mmHg)	
DIETILÉTER	ACETONA	13	30.00	282.70 a 646.00	28.00	0.000	90.48	0.007
VALOR MÉDI	O TOTAL	13			28.00	0.000	30.49	0.007

Os valores encontrados para o sistema acetona/acetato de propila, a 759.96 mmHg, apresentam desvios absolutos razoáveis, conforme pode ser visto na figura 5.7 para o caso do cálculo do ponto de orvalho isobárico. Os desvios encontrados na curva Tx são decorrentes das imprecisões dos valores experimentais da fase vapor.

Por outro lado, a figura 5.8 sugere que elevados desvios são obtidos para o sistema dietil éter/acetona, a 30.00 °C, por causa da péssima predição da pressão de saturação dos componentes puros, que apresentaram, respectivamente, desvios de 35.00 mmHg e 13.70 mmHg. Os resultados poderão ser melhorados caso os parâmetros dos grupos éter e cetona forem reestimados.

5.3.5 - Sistemas Fracamente Polar - Fortemente Polar (FRP/FOP)

Os desvios calculados para os sistemas do tipo FRP/FOP são ilustrados nas Tabelas 5.25 e 5.26.

Coincidentemente, os sistemas selecionados são todos do tipo acetato/álcool. Tendo em vista o mau desempenho do método

FIGURA 5.7 : SISTEMA ACETONA/ACETATO DE PROPILA (759.96 mmHg)

FIGURA 5.8: SISTEMA DIETIL ÉTER/ACETONA (30 °C)

----- CAPITULO 5 ----

TABELA 5.25 : RESULTADOS DA PREDIÇÃO DE SISTEMAS FRP/FOP PARA O
CALCULO DE PONTOS DE BOLHA E DE ORVALHO ISOBÁRICOS.

SISTEMAS			4	FAIXA DE	ΔŦ		ΔΤ	
COMPONENTE 1	COMPONENTE 2	- NC	(mmHg)	DE T(C)	ເ [°] ດ >	Δу	ເິດ	Δ×
ACETATO DE Propila	1-PROPANOL	11	599.97	88.00 a 93.99	2.02	0.039	2.49	0.047
ACETATO DE Butila	1-BUTANOL	12	50.00	50.70 a 56.10	1.38	0.008	1.91	0.009
VALOR MÉDI	O TOTAL	23			1. OP	0. 023	1.87	0.027

TABELA 5.26 : RESULTADOS DA PREDIÇÃO DE SISTEMAS FRP/FOP PARA O CALCULO DE PONTOS DE BOLHA E DE ORVALHO ISOTÉRMICOS

S ISTI COMPONENTE	EMAS CONFONENTE 2	NC	۲ (⁰ с)	FAIXA DE TRAB. DE P (mmHg)	∆ ₽ (mmHg)	Δ y	∆P (mmHg)	Δ×
ACETATO DE Etila	2-PROPANOL	31	d0.00	312.50 a 425.00	90. 91	0.013	94.92	0.014
VALOR MEDI	D TOTAL	31			30.31	0.019	94.92	0.014

UNIFAC no cálculo de P_i^s , pode-se antecipar a ocorrência de grandes desvios no sistema isotérmico, o que é confirmado na tabela 5.26 e na figura 5.9.

Outra vez a adequação da metologia proposta é ilustrada para confirmar qualitativamente, através da figura 5.9, a predição da azeotropia, neste caso, do sistema formado por acetato de butila e 1-butanol, que, a 50.00 mmHg, apresentam pontos de ebulição muito próximos, 126.00 °C e 117.75 °C, respectivamente. Nota-se, pela figura, que as condições de azeotropia ($x_i = 0.6300$; T = 50.70 °C) se aproximam dos valores experimentais ($x_i = 0.6310$; T =49.20 °C), porém, a curva completa calculada deixa a desejar. Para situações de compostos com pontos de ebulição próximos, a predição de P_i^s é, pois, crucial, devendo-se encarar com cautela os resultados da predição.

- CAPÍTULO 5 -

FIGURA 5.9 : SISTEMA ACETATO DE BUTILA/1-BUTANOL (50.00 mmHg).

5.3.6 - Sistemas Fortemente Polar - Fortemente Polar (FOP/FOP)

As curvas de equilíbrio líquido-vapor preditas para os casos isobáricos e isotérmicos dos sistemas do tipo FOP/FOP estão apresentadas, respectivamente, pelas tabelas 5.27 e 5.28, apresentadas abaixo :

TABELA 5.27 : RESULTADOS DA PREDIÇÃO DE SISTEMAS FOP/FOP PARA O CALCULO DE PONTOS DE BOLHA DE ORVALHO ISOBÁRICOS.

SISTEMAS			P	FAIXA E	ΔΤ	A.T.	ΔŦ	A
COMPONENTE 1	COMPONENTE 2	NC	(mmHg)	DE T()	ເວີດ	Ду	ိင္ရာ	Δx .
TERT BUTA- Nol	1-BUTANOL	11	99. 99	39. 42a 69. 1	1.99	0.029	1.19	0.044
ETANOL	2-PROPANOL	12	759.90	78.40a 82.9	2.70	0. 027	2.70	0.027
VALOR MÉDI	O TOTAL	29			2.90	0.028	1.98	0.095

— CAPITULO 5 –

SIST	EMAS		T	FAIXA DE	ΔĒ	Δ _y	ΔĒ	A
COMPONENTE 1	COMPONENTE 2	NC	(ိင)	P (mmHg)	(mmHg)		(mmHg)	418
ETANOL	TRIETIL- Amina	12	34.85	102.00 a 118.80	4.35	0.019	4.05	0. 020
1-PROPANOL	2-METIL-1- Propanol	11	70.00	157.00 a 247.50	19.69	0.010	19.65	0.000
ETANOL	2-METIL-1- Propanol	11	<i>6</i> 0, 00	90,00 a 353,30	41.28	0.020	37.31	0.019
DIETILAMINA	ETANOL	11	40.00	140.00 a 425.00	23.90	0.000	21.28	0.041
VALOR MEDI	D TOTAL	45			21.90	0.027	20.21	0.021

TABELA 5.28 : RESULTADOS DA PREDIÇÃO DE SISTEMAS FOP/FOP PARA O CALCULO DE PONTOS DE BOLHA E DE ORVALHO ISOTÉRMICOS

Como no caso anterior, todos os sistemas contém álcool e não deve haver boa concordância entre as curvas calculadas e experimentais, tendo em vista a imprecisão do método UNIFAC de cálculo de pressão de saturação. No entanto, especialmente chama a atenção, o desvio em temperatura obtido para o sistema isobárico etanol/2-propanol a 759.96 mmHg. Estes desvios são decorrentes da imprecisão do cálculo da pressão de vapor do etanol, o que é bem visível na figura 5.10.

O sistema etanol-2-propanol se presta para testar severamente os métodos de predição por contribuição de grupo. A pressão de 759.96 mmHg, o etanol e o 2-propanol apresentam temperatura de ebulição bastantes próximas (78.46 °C e 82.39 °C), e diferem na estrutura por apenas um grupo -CH3, o que significa valores de γ_i próximos da unidade. Estas considerações explicam porque os valores de x e y são quase coincidentes. Tendo em vista as deficiências dos métodos de contribuição de grupo, em especial no cálculo de P_i^s e γ_i , não é de se estranhar a má qualidade da predição, onde até sugere-se a

presença de azeótropo, não confirmado pelos dados experimentais.

A tabela 5.28 apresenta os resultados dos cálculo de ponto de bolha e de orvalho isotérmicos para sistemas do tipo FOP/FOP. O sistema etanol/trietilamina apresenta os melhores resultados dentre os demais determinados neste tipo de cálculo. Os outros sistemas apresentaram grandes desvios devido a presença de álcoois nestes sistemas (ver Tabela 5.15).

FIGURA 5.10 : SISTEMA ETANOL/2-PROPANOL (759.96 mmHg).

- CAPÍTULO 5 -

- PAG. 130

5.4 - Sistemas Multicomponentes

A grande aplicação prática dos métodos de predição consiste no cálculo de ELV de misturas multicomponentes. No entanto, a verificação do desempenho da metodologia fica prejudicada, tanto pela escassez de dados experimentais multicomponentes, como pela inexistência de testes de consistência termodinâmica aplicáveis a este tipo de dados, o que impede uma avaliação de qualidade.

Para ilustrar a adequação da metodologia a misturas multicomponentes, foram realizadas predições para três sistemas ternários e um quaternário, num total de 12 cálculos de pontos de bolha. As tabelas 5.29 a 5.32 mostram os resultados obtidos. Os dados experimentais foram extraídos do DECHEMA, dentre aqueles sistemas cujos componentes constam na listagem da tabela 5.10.

Como se nota das tabelas, os desvios são semelhantes àqueles obtidos com sistemas binários, e sua ordem de grandeza pode ser correlacionada à qualidade da predição de P_i^s e de γ_i , como nos casos já analisados.

(T = 25.00 °C).												
	EXPERIMENTAL											
X1	X2	¥1	¥2	P (mmHg)								
0.1010 0.2509 0.7992	0.1001 0.4986 0.0997	0.3072 0.4492 0.8905	0.1483 0.3985 0.0589	42.61 58.88 88.99								
	n m - r missielousses	CALCULAD	0	₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩								
X1	X2	¥1	¥2	P (mmHg)								
		0.3099 0.4351 0.9048	0.1692 0.4262 0.0553	37.92 56.30 85.59								
		DESVIOS	<u></u>	**************************************								
Δ Υ :	1	Δ¥2		ΔP (mmHg)								
-0.00 0.0 -0.0)27 141 143	-0.020 -0.027 0.003	9 7 6	4.70 2.58 3.40								

TABELA 5.29 : RESULTADOS DO PROGRAMA BOLHA_P.C. SISTEMA : CICLOHEXANO/HEPTANO/TOLUENO

Referência : KATAYAMA T., SUNG E.K., LIGHTFOOT E.N., AIChE J., **11**, 924 (1985) - (in DECHEMA).

TABELA 5.30 : RESULTADOS DO PROGRAMA BOLHA_T.C. SISTEMA : BENZENO/CICLOHEXANO/2-PROPANOL (P=760.00 mmHg).

EXPERIMENTAL								
X1	X 2	Y1	Y2	Т (°С)				
0.0800 0.7900 0.1420	$0.8760 \\ 0.1280 \\ 0.4740$	0.0920 0.6600 0.1420	$0.7080 \\ 0.1400 \\ 0.4740$	73.70 73.60 69.10				
CALCULADO								
X1	X2	¥1	¥2	Т (^о С)				
		0.0983 0.7451 0.1872	0.7921 0.1509 0.6066	77.93 76.22 75.98				
		DESVIOS						
ΔΥ	1	ΔΥ2		ΔT (^O C)				
-0.00 -0.08 -0.04	063 351 452	-0.0841 -0.0109 -0.1326		-4.23 -2.62 -6.88				

Referência : NAGATA I. CAN. J., CHEM. ENG., 42, 82 (1964) (in DECHEMA).

	<u>(P=7)</u>	<u>50.00 mmHg</u>	:)					
EXPERIMENTAL								
X1	X2	¥1	¥2	т (°С)				
0.0550 0.3520 0.9710	0.0750 0.2980 0.0260	0.0940 0.5020 0.9720	0.1190 0.2770 0.0260	132.30 120.70 110.40				
CALCULADO								
X1	X2	¥1	¥2	т (°С)				
		0.0883 0.4500 0.9720	0.1135 0.3029 0.0264	131.65 120.13 112.47				
<u></u>		DESVIOS	<u></u>					
ΔΥ:	1	ΔΫ2		ΔT ([°] C)				
0.00 0.05 0.00	057 520 000	0.005 -0.025 -0.000	5 9 4	0.65 0.57 -2.07				

TABELA 5.31 : RESULTADOS DO PROGRAMA BOLHA_T.C. SISTEMA : TOLUENO/OCTANO/ETILBENZENO (P=760.00 mmHg).

Referência : BADINA N.S., SABYLIN I.I., YABLOCHKINA M.M., NIKONOVA E.K., KHARISON M.A., ZH.PRIKL.KHIM.(LENINGRAD), **50**,459(1977), (in DECHEMA).

	(1-40.00 0).								
	EXPERIMENTAL								
X1	X2	ХЗ	¥1	¥2	¥3	P (mmHg)			
0.3012 0.1960 0.4132	0.2630 0.1743 0.0014	0.3538 0.1805 0.2542	0.3546 0.2066 0.3349	0.3436 0.2648 0.5128	0.2596 0.2620 0.0014				
CALCULADO									
X1	X2	ХЗ	Y1	¥2	¥3	P (mmHg)			
			0.3310 0.2761 0.5414	0.3079 0.3727 0.0109	0.3389 0.2035 0.3268	291.49 216.58 188.05			
			DESVIOS						
Дү	71	ΔΥ?	2	аүз		ΔP (mmHg)			
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		183 107 095	$0.0157 \\ 0.0031 \\ 0.0081$						

TABELA 5.32 : RESULTADOS DO PROGRAMA BOLHA_P.C. SISTEMA : CICHEXANO/2-PROPANOL/BENZENO/TOLUENO (T=45.00°C).

Referência : VITMAN T. A., ZHAROV V. T., VEST,LENINGR.UNIV., FIZ., KHIM., 26, 83 (1971) (in DECHEMA).

5.5 - Considerações Gerais

Afim de se conseguir uma visão geral dos resultados dos sistemas binários, foram construídas as tabelas 5.33 e 5.34 onde os desvios médios globais para cada tipo de cálculo de equilíbrio isobárico e isotérmico são apresentados.

----- PAG. 134

---- CAPÍTULO 5 -----

ORVALHO T BOLHA T TIPO DE N- de N- de Δт Δy Δт Δx SISTEMA calc. calc. total total total total APO/APO 34 1.49 0.010 34 1.56 0.011 APO/FRP 51 2.27 0.028 51 2.52 0.094 0.70 0.025 APO/FOP 42 0.88 0.013 42 FRP/FRP 15 2.54 0.040 15 0.79 0.040 FRP/FOP 23 1. 09 0.023 23 1.87 0.027 FOF/FOF 23 2.30 0.023 23 1.98 0.035 TOTAL 188 1.78 0.022 1. 67 0.028 188

TABELA 5.33 : DESVIOS GLOBAIS APRESENTADOS NAS PREDIÇÕES DO ELV NAS CONDIÇÕES ISOBARICAS.

TABELA 5.34: DESVIOS GLOBAIS APRESENTADOS NAS PREDIÇÕES DO ELV NAS CONDIÇÕES ISOTÉRMICAS.

TIRO DE		BOLHA I	P	•	DRVALHO	P
	0 N- de	Δp	Δу	0 N- de	Δр	Δ×
SISTEMA	calc.	total	total	calc.	total	total
APO/APO	78	11.51	0.014	78	11.48	0.018
APO/FRP	69	13.50	0.020	65	22.08	0.054
APO/FOP	70	9. 10	0.011	70	10.04	0.024
FRP/FRP	13	28.00	0,000	13	30,48	0.007
FRF/FOP	31	26. 31	0.013	31	34.92	0.014
FOF/FOP	45	21.90	0,027	45	20.21	0.021
TOTAL	300	24.29	0.018	300	23.07	0.050

As classes dos sistemas estudados aparentemente não tendenciam a qualidade da predição conforme visivelmente se observa nas Tabelas 5.33 e 5.34. Este fato só poderá ser melhor

---- PAG. 135

verificado, repetindo-se a predição das curvas de equilíbrio com todos os valores experimentais das propriedades termodinâmicas necessárias ao cálculo de ELV. Entretanto, deve-se utilizar uma amostragem maior de sistemas para todas as classes, já que o conjunto apresentado é reduzido, o que impossibilita qualquer conclusão definitiva.

Observam-se, nestas Tabelas, desvios maiores em x do que em y em cada classe de sistema. A razão para tal ocorrência se deve ao fato das incertezas nas medidas experimentais das composições da fase vapor proporcionarem maiores desvios nos cálculos das composições da fase líquida.

Para finalizar, algumas observações de caráter geral podem ser feitas como resultado da discussão realizada neste capítulo :

- A predição da pressão de saturação mostrou ser a propriedade mais crítica na definição da qualidade dos resultados apresentados nos cálculos das curvas de ELV para todas as classes de sistemas. No entanto, os valores de $\gamma_i^{(PO)}$, em muitos casos, definem a forma da curva, como por exemplo, o caso dos sistemas APO/FOP estudados. Portanto é imprescindível boas predições de pressão de saturação de componentes puros e de coeficientes de atividade para melhorar a qualidade das curvas de equilíbrio líquido-vapor preditas;

- novas estimativas de parâmetros de grupo relativos ao método UNIFAC de predição de pressão de saturação de componente puro são necessárias, em especial para grupos cetonas, álcool e éter;

- A metodologia se mostrou adequada para predizer a ocorrência de azeotropos binários, pelo menos qualitativamente;

- O comportamento de misturas de compostos que apresentam pontos de ebulição próximos parece ser de difícil predição, exigindo um desempenho dos métodos com qualidade acima daquela que atualmente oferecem;

 os sistemas multicomponentes selecionados serviram para ilustrar a aplicação da adequação da metodologia de predição de ELV a estes sistemas.

5.6 - Análise de Sensibilidade

Apesar de a metodologia proposta dar bons resultados qualitativos na predição de curvas de ELV, na maioria dos casos os dados preditos deixam a desejar quantitativamente. Conclui-se, daí, que existe grande campo para melhoria dos métodos de predição das nove propriedades envolvidas no cálculo $(T_{eb}, T_c, P_c, V_c, \omega, B_{ii}, \gamma_i, P_i^s, v_i^b)$ de ELV. No entanto, o esforço deve ser concentrado naquelas propriedades identificadas em uma análise de sensibilidade, que mais influenciam os resultados dos cálculos de equilíbrio.

----- PÁG. 137

Dos resultados até agora obtidos, conclui-se que os cálculos de ELV são extremamente sensíveis a valores de pressão de saturação. Praticamente em todos os casos apresentados, boa parte da distorção das curvas preditas foi devida à má qualidade da predição de P_i^s .

Como uma maneira de evidenciar a sensibildade de P_i^s , foram repetidos todos os cálculos de ponto de bolha, agora usando a equação de Antoine para calcular a pressão de vapor. As constantes de Antoine foram obtidas de Reid et al. (1977), e não espelham necessariamente os mesmos dados experimentais do banco de dados de Danner e Gess. Os resultados dos novos cálculos de ponto de bolha são dados nas Tabela 5.35 a 5.40.

Observa-se, como é de se esperar, uma diminuição considerável nos desvios, uma vez que os valores de P_i^s agora se aproximam muito dos valores experimentais. Estes resultados confirmam, pois, a grande sensibilidade dos cálculos de predição em relação aos valores de P_i^s empregados.

Deve-se ainda registrar que uma tentativa de uso de correlações baseadas no Princípio dos Estados Correspondentes para o cálculo de P_i^s , o método de Thek-Stiel (Reid et al., 1977) apresentou resultados piores que o método UNIFAC. O método de Thek-Stiel se revelou muito sensível a valores das propriedades críticas, pois a propagação dos desvios em T_{eb}, T_c e P_c resultou em valores preditos de P_i^s inaceitáveis para o cálculo de ELV. Como

- PÁG. 138

- CAPÍTULO 5 -

TABELA 5.35 : COMPARAÇÃO DOS MÉTODOS DE PREDIÇÃO DE PRESSÃO DE
SATURAÇÃO NOS CALCULOS DOS PROGRAMAS BOLHA_T.C E
BOLHA_P.C PARA SISTEMAS APO/APO.

TIPO DE SISTEMA	MÉTODO DE PREDIÇÃO DE P ^S i	т (⁰ с)	P mmHg	∆ ₽ mm H g	۵ ۲ ۵, ⁰ с)	Δÿ
BENZENO/	UNIFAC				1.21	0.000
TOLUENO	ANTOINE		759.90-		0.03	0.004
HEPTANO/	UNIFAC			1.73		0.003
ETILBENZENO	ANTOINE	54.01		1.05		0.003
OCTANO/	UNIFAC			· · ·	1.00	0.200
ETILBENZENO	ANTOINE	7	759.96		2.03	0.007
1-HEPTENO/	UNIFAC			37.02		0.028
TOLUENO	ANTOINE	55.00		0.80		0.004
BENZENO/	UNIFAC			3.30		0.007
CICLOHEXANO	ANTOINE	40.00		1. 52		0.005
METILCICLO- Pentano/	UNIFAC			16.73		0.022
BENZENO	ANTOINE	39.99		1.15		0.002
CICLOHEXANO/	UNIFAC			3.91		0.014
TOLUENO	ANTOINE	25.00		1.27		0.008

----- PÁG. 139

---- CAPITULO 5 -----

TABELA 5.36 : COMPARAÇÃO DOS MÉTODOS DE PREDIÇÃO DE PRESSÃO DE SATURAÇÃO NOS CALCULOS DOS PROGRAMAS BOLHA_T.C E BOLHA_P.C PARA SISTEMAS APO/FRP.

TIPO DE SISTEMA	MÉTODO DE PREDIÇÃO DE P ^S i	т (⁰ с)	P mmHg	∆ ₽ mm H g	Δ ¯ ([°] C)	Δÿ
TOLUENO/	UNIFAC			12.09		0.053
4-METIL-2- Pentanona	ANTOINE	50.00		2.19		0.010
TOLUENO/	UNIFAC	E A AA		13.20		0.010
2 - PENTANONA	ANTOINE	50.00		2.79		0.013
BENZENO/	UNIFAC		2310.9		5.94	0.052
2-BUTANONA	ANTOINE				1.04	0.004
CICLOHEXANO/	UNIFAC				1.39	0.019
2-BUTANONA	ANTOINE		739,96		2.92	0.023
HEPTANO/	UNIFAC				1.00	0.027
2-BUTANONA	ANTOINE		759.98		1.77	0.014
ACETONA/	UNIFAC	<i>6</i> 0 00		10.88		0.003
DECANO	ANTOINE	60.00		50.29		0.003

----- PĂG. 140

---- CAPITULO 5 ------

TABELA	5.37	:	COMPARAÇÃO) DOS	MÉTODOS	DE	PREDIÇÃO	DE	PRESSÃO	DE
			SATURAÇÃO	NOS	CALCULOS	DOS	5 PROGRAM	AS	BOLHA_T.C	Ε
			BOLHA_P.C	PARA	SISTEMAS	S APC)/FOP.			

TIPO DE SISTEMA	MÉTODO DE PREDIÇÃO DE p ^S i	т (^С с)	P mmHg	∆ ₽ mm H g	۵ ۲ (°c)	Δŷ
BENZENO/	UNIFAC			9.04		0.004
DIETILMINA	ANTOINE	55.00		8.48		0.004
BENZENO/	UNIFAC	<u></u>		10.70		0.011
TRIETILAMINA	ANTOINE	80.00		16.06		0.010
HEPTANO/	UNIFAC			7.37		0.003
TRIETILAMINA	ANTOINE			3.67		0.002
BENZENO/	UNIFAC	45 00		9.11		0.032
TERT-BUTANOL	ANTOINE	45.00		6.3 7		0.010
BENZENO/	UNIFAC		200.08		0.53	0.010
ETANOL	ANTOINE		399.90		0.54	0.005
BENZENO/	UNIFAC		280.04		1.02	0.014
2-PROPANOL	ANTOINE		759.96		0.82	0.015

TABELA 5.38 : COMPARAÇÃO DOS MÉTODOS DE PREDIÇÃO DE PRESSÃO DE
SATURAÇÃO NOS CALCULOS DOS PROGRAMAS BOLHA_T.C E
BOLHA_P.C PARA SISTEMAS FRP/FRP.

TIPO DE SISTEMA	MÉTODO DE Predição de P ^S i	т (⁰ с)	P mmHg	∆ P mm Hg	∆∓ً °c>	Δÿ
ACETONA/	UNIFAC		759.90		2.54	0.040
ACETATO DE Propila	ANTOINE				1.01	0.011
DIETIL ÉTER/	UNIFAC	30.00		28.00		0.000
ACETONA	ANTOINE	30.00		16.44		0.003

PÁG. 141

---- CAPITULO 5 -

TABELA 5.39 : COMPARAÇÃO DOS MÉTODOS DE PREDIÇÃO DE PRESSÃO DE SATURAÇÃO NOS CALCULOS DOS PROGRAMAS BOLHA_T.C E BOLHA_P.C PARA SISTEMAS FRP/FOP.

TIPO DE SISTEMA	MÉTODO DE PREDIÇÃO DE P ^S i	T (°C)	P mmHg	∆ P mm H g	∆∓ ^{(°} с)	Δÿ
ACETATO DE PROPILA/	UNIFAC		500 07		2.02	0.039
1-PROPANOL	ANTOINE		599.97		1.34	0.015
ACETATO DE BUTILA/	UNIFAC		=~ ~~		1.38	0.008
1-BUTANOL	ANTOINE		50.00		0.34	0.013
ACETATO DE Etita/	UNIFAC	<u> </u>		30. 31		0.013
2 - PROPANOL	ANTOINE	55.00		26.87		0.015

TABELA 5.40 : COMPARAÇÃO DOS MÉTODOS DE PREDIÇÃO DE PRESSÃO DE SATURAÇÃO NOS CÁLCULOS DOS PROGRAMAS BOLHA_T.C E BOLHA_P.C PARA SISTEMAS FOP/FOP.

TIPO DE SISTEMA	MÉTODO DE Predição de P ^S i	т (°с)	P mmHg	∆ ₽ mm H g	Δ ¯ (⁰ с)	Δÿ
ETANOL/	UNIFAC	34.05		4.35		0.019
TRIETILMINA	ANTOINE	34.83		0. 0 3		0.022
TERT BUTANOL/	UNIFAC		00.00		1.99	0.029
1-BUTANOL	ANTOINE				0.71	0.011
1-PROPANOL/	UNIFAC	70.00		19. 69		0.010
2-METIL-1- Propanol	ANTOINE	78.00		2.67		0.007
ETANOL/	UNIFAC		750.06		2.70	0.027
2-PROPANOL	ANTOINE				0.56	0.007
ETANOL/	UNIFAC	60.00		41.28		0.020
2-METIL-1- PROPANOL	ANTOINE	30.00		12.29		0.000
DIETILAMINA/	UNIFAC	40.00		23.80		0.000
ETANOL	ANTOINE	40.00		32.95		0.060

----- PÁG. 142

se sabe, o método de Thek-Stiel em princípio é aplicável a compostos apolares e polares e apresenta bons resultados quando se usam valores experimentais de T_{eb} , T_c e P_c como dados de entrada.

A fim de demonstrar as possibilidades de melhoria no método de predição de P_i^s via UNIFAC, os parâmetros para o grupo ACCH3 foram recalculados a partir de dados de pressão de saturação de tolueno (Magnusson, 1991), englobando ampla faixa de temperatura. Os novos parâmetros, dados na Tabela 5.41, foram usados para recalcular todas as curvas dos sistemas que contém tolueno. Os novos desvios são comparados na tabela 5.42 aos antigos valores e aqueles calculados usando a equação de Antoine (Reid et al, 1977), somente para os sistemas isotérmicos. Observa-se claramente a diminuição dos desvios, aproximando-se dos valores encontrados usando a equação de Antoine.

A sensibilidade dos cálculos de ELV foi também analisada em relação às seguintes propriedades:

- temperatura de ebulição;

- temperatura crítica;
- pressão crítica;
- volume critico;
- coeficiente de atividade.

TABELA 5.41 : NOVOS PARAMETROS DE GRUPOS ACCH3 DO MÉTODO DE PREDIÇÃO DE P⁹_i VIA UNIFAC. (Magnusson, 1991).

AACCH3(, 1	А _{АССНЭ} , 2	Аасснз, з	Аасснз, 4	^{Дд} асснэ	^а асснэ , асн	⁸ ACH , ACCH3
-563.325	-6792.07	2.041380	921.916	0.00	172.1697	-149.7199

TABELA 5.42 : COMPARAÇÃO DAS PREDIÇÕES DE P^S, UTILIZANDO ANTIGOS E NOVOS PARAMETROS ACCH3 DO MÉTODO DE PREDIÇÃO DE PRESSÃO DE SATURAÇÃO VIA UNIFAC COM P^S, VIA ANTOINE.

COMPONENTE	C L S S E	ъs	T exp (K)	P ^S (mmHg) ANTOINE	P ^S cal (mmHg) ANTIGO	∆ p mmHg	P cal (mmHg) NOVO	∆ ₽ mmHg
TOLUENO	1	7	25.00	28.44	24.25	4.19	26.83	1.01
	APO	9	50.00	93.00	81.90	11.04	89. 68	3.32
		4	55.00	113.50	99.93	13.63	109.97	3.59

Foram atribuídas separadamente perturbações positivas e negativas em cada uma das propriedades supracitadas, de forma que para as quatro primeiras, cada pertubação fosse capaz de incorporar os maiores desvios relativos aos respectivos valores experimentais, dados nas Tabelas 5.10 e 5.11. Portanto para T_{ob} e T_c as pertubações envolvem uma faixa de ± 7% e para as outras duas, $P_c = V_c$, ± 10%. Ao coeficiente de atividade, em particular, foi arbitrariamente imposto desvios de ± 10%.

As demais propriedades, ω, B_{ii}, e v^l, são excluídas da análise devido ser conhecidas a pequena influência que erros destas propriedades exercem sobre os cálculos de ELV.

---- PAG. 144

- CAPITULO 5 -

PAG. 145

As tabelas 5.43 a 5.47 apresentam os resultados dos teste de sensibilidade para a temperatura de ebulição, temperatura crítica, pressão crítica, volume crítico e coeficiente de atividade realizados através dos programas BOLHA_T.C e BOLHA_P.C envolvendo seis sistemas, um de cada classe da tabela 5.2.

Da tabela 5.43, depreende-se que os cálculos de ELV parecem ser poucos sensíveis a valores preditos de temperatura de ebulição normal, notando-se uma ligeira variação em P e T, enquanto que os valores de concentração do vapor praticamente se mantém inalterados quando se varia T_{eb} na faixa de ± 7%. Na realidade, o efeito de T_{eb} faz-se sentir diretamente apenas na temperatura crítica (ver equação 3.38), que, por sua vez, influência o cálculo de outras propriedades.

A tabela 5.44 apresenta os resultados do teste de sensibilidade à temperatura crítica. Observa-se que os desvios em T, P e y pouco se alteram com variações de T_c da ordem de 7%. Pode-se inferir daí que, para efeitos práticos, os resultados usados de predição de T_c e T_{eb} são satisfatórios, havendo no entanto, ainda algum espaço para aperfeiçoamento.

Verifica-se das Tabelas 5.45 e 5.46 que os cálculos de predição de ELV são praticamente insensíveis a variações da pressão crítica e de volume crítico nas faixas consideradas, dispensando-se qualquer esforço na direção da melhoria dos métodos - CAPÍTULO⁵ -

----- PAG. 146

de predição desta variável.

Os resultados do teste de sensibilidade aos valores de coeficientes de atividade, mostrados na Tabela 5.47, revelam a grande importância da qualidade de predição desta propriedade nos cálculos de ELV, pois os desvios se alteram significativamente quando os valores de $\gamma_i^{(PO)}$ são alterados em ± 10%. Por esta razão, o método UNIFAC tem sido periodica e rotineiramente revisado pelos autores, tanto fornecendo-se parâmetros reavaliados, como introduzindo-se novos grupos às tabelas existentes.

Resumindo, deve-se esperar melhor desempenho da predição trabalhando-se com métodos preditivos de pressão de saturação e de coeficientes de atividade mais precisos. Atenção também deve ser dada a temperatura crítica e temperatura de ebulição normal, que em menor grau, também influenciam indiretamente os resultados dos cálculos de ELV. - CAPÍTULO 5 -

classific. T (K) eb т Р SISTEMA ΔĒ ΔŦ $\Delta \tilde{v}$ mmHg componente $\langle ^{\circ} c \rangle$ ‰∆ mmHg (C)Í 2 APO/APO - 7 310.85 304.49 3.91 0.007 **BENZENO**/ ο 340.70 332.78 40.00 3.30 0.007 CICLOHEXANO +7 0.007 364.55 356.07 2.97 APO/FRP - 7 337.93 329.79 2.09 0.028 HEPTANO/ 363.37 354.61 759.96 1. 00 0. 027 0 2-BUTANONA +7 388.81 379.43 1.56 0.027 APO/FOP -7 316.85 315.81 0. 52 0.010 BENZENO/ ο 340.70 339.58 399.98 0.53 0.010 ETANOL +7 304.55 303.35 0. 53 0. 010 FRF/FRP - 7 303. 39 352. 16 3.15 0.046 ACETONA/ о 326.23 378.67 759.96 2.54 0.046 ACETATO DE +7 349.07 405.18 1.77 0.045 PROPILA FRP/FOP 36. 31 - 7 338.07 321.13 0.013 ACETATO DE Ο 352.16 345.30 60.00 36.31 0.019 ETILA/ +7 376.81 369.47 30.31 2-PROPANOL 0.013 FOP/FOP - 7 315.81 329.43 4.10 0.019 ETANOL/ 0.019 Ð. 339.58 354.23 34.85 4.35 TRIETILAMINA 0.019 +7 303.35 379.03 4.95

TABELA 5.43 : TESTE DE SENSIBILIDADE À TEMPERATURA DE EBULIÇÃO.

---- PAG. 147

---- CAPÍTULO 5 ------ PÁG. 148

			5					
classific.	τ (K) c			ТР	45	۸ <u>–</u>	A	
SISTEMA		compo	nente	0	mmHg			Ду
	<i>7</i> αΔ	1	2	(C)		mmHg	(C)	
APO/APO	- 7	503.07	484.80			3.91		0.007
BENZENO/	0	541.60	521.35	40.00		3.30		0.007
CICLOHEXAND	+7	579.51	557.84			2.97		0.007
APO/FRP	-7	491.04	507.99				2.04	0.028
HEPTANO/	0	528.05	546.23		759.96		1.00	0.027
2-BUTANONA	+ 7	505.00	584.47				1.53	0.020
APO/FOP	- 7	503.07	467.26				0.70	0.010
BENZENO/	0	541.00	502.43		399, 98		0.53	0.010
LIANUL	+ 7	579.51	537.60				0.51	0.008
FRP/FRP	- 7	471.48	517.05				3.15	0.040
ACETONA/	0	506.97	555. 97		759.96		2.54	0.046
PROPILA	+7	542.40	594.89				1.75	0.045
FRP/FOP	- 7	491.10	469. 17		,	31.14		0.012
ACETATO DE Etila/	0	528.13	504.48	60,00		36.31		0.013
2-PROPANOL	+7	565.10	539. 79			44.40		0.013
FOP/FOP	- 7	467.20	482.74			4.10		0.019
ETANOL /	0	502.43	519.08	34.85		4.35		0.019
IRIEIILAMINA	+7	537.00	555. 42			4.95		0.019

TABELA 5.44 : TESTE DE SENSIBILIDADE À TEMPERATURA CRÍTICA.

---- CAPÍTULO 5 ------ PÁG. 149

classific.		P (mmHg) c			ТР	<u> </u>		
SISTEMA		compo	nente	ο	mmHq	Δp	Δτ	Δy
	Δ~	1 2		(C)		mmHg	(C)	
APO/APO	-10	42.36	3 <i>6.</i> 68			3.30		0.007
BENZENO/	0	47.07	40.76	40.00		3.30		0.007
CICLOHEXANO	+ 10	51.78	44.84			3.30		0.007
APO/FRP	- 10	24.87	41.79				1.59	0.027
HEPTANO/	ο	27.03	46.43		759. 96		1.00	0.027
2-BUTANONA	+ 10	30.39	51.07				1.60	0.027
APO/FOP	- 10	42.36	51.13				0.53	0.010
BENZENO/	ο	47.07	56.81		399. 98		0. 53	0.010
ETANOL	+ 10	51.78	62.49				0.53	0.010
FRP/FRP	-10	42.00	30.99				2.53	0.046
ACETONA/	0	47.40	34.43		759.96		2.54	0.040
PROPILA	+10	52.14	37.87				2.52	0.040
FRP/FOP	- 10	34.83	44.93			36. 31		0.013
ACETATO DE Etila/	0	38.70	49.92	60.00		30. 31		0.013
2-PROPANOL	+10	42.57	54. 91			30. 30		0.013
FOP/FOP	- i O	51.13	36.50			4.35		0.019
ETANOL/	0	56.81	40.55	34.85		4.35		0.019
IRIETILAMINA	+ 10	62.49	44.61			4.35		0.019

TABELA 5.45 : TESTE DE SENSIBILIDADE À PRESSÃO CRÍTICA.

– CAPÍTULO 5 –

V (cm3/gmol) classific. Т P SISTEMA ΔĒ ΔŦ Δÿ °c> componente mmHg %∆ mmHg (C)1 2 APO/APO -10 237.15 274.95 0.007 3.30 **BENZENO**/ 263.50 305.50 40.00 ο 3.30 0.007 CICLOHEXANO +10 289.85 336.05 3.30 0.007 APO/FRP -10 384.75 249.75 1.59 0.027 1.00 0.027 HEPTANO/ 427.50 277.50 759.90 0 2-BUTANONA +10 470.25 305.25 0.027 1.59 APO/FOP -10 237.15 149.85 0.53 0.010 BENZENO/ 203. 50 100. 50 399.98 0. 53 0. 010 0 ETANOL 289.85 183.15 0. 53 0. 010 + 10 FRP/FRP -10 188.55 307.35 2.53 0.046 ACETONA/ 0 209.50 341.50 759.90 2.54 0.040 ACETATO DE PROPILA +10 230.45 375.65 2.53 0.040 FRP/FOP -10 256. 95 194.85 36.31 0.013 ACETATO DE 285.50 216.50 60.00 36. 31 0.013 0 ETILA/ +10 314.05 238.15 2-PROPANOL 36.31 0.013 FOP/FOP -10 149.85 260.55 4.35 0.019 ETANOL/ 166.50 289.50 34.85 4.35 0.019 0 TRIETILAMINA +10 183.15 318.45 4.35 0.019

TABELA 5.46 : TESTE DE SENSIBILIDADE AO VOLUME CRÍTICO.

classific.	r	т	P	.=	<u>م</u> =	A
SISTEMA	%∆	ိင္မွာ	mmHg	ΔP mmHg	ΔT (C)	Δу
APO/APO	- 10			22.20		0.007
BENZENO/	0	40.00		3.38		0,008
CICLOREXAND	+10			17.79		0.007
APO/FRP	- 10				5.42	0. 030
HEPTANO/	0		759.96		1.94	0.041
2-BUTANONA	+ 10				1.00	0.027
APO/FOP	- 10				3.34	0.007
BENZENO/	ο		399. 98		0,53	0.010
	+10				2.09	0.013
FRP/FRP	- 10				Ø. 31	0.051
ACETONA/	0		759. 96		0.79	0.040
PROPILA	+10				2.24	0.045
FRF/FOP	- 10			8.23		0.013
ACETATO DE Etila/	o	60.00		36.31		0.013
2-PROPANOL	+10			80,73		0.013
FOP/FOP	- 10			5.88		0.020
ETANOL/	0	34.85		4.00		0.020
INTETTEARINA	+10			17.73		0.019

TABELA 5.47 : TESTE DE SENSIBILIDADE AOS COEFICIENTES DE ATIVIDADE.

PAG. 152

CAPITULO 6

CONCLUSÕES E SUGESTÕES

А metodologia de predição de equilíbrio líquido-vapor usando métodos de contribuição de grupos mostrou-se adequada para fornecer informações tanto quantitativas quanto qualitativas das condições de equilíbrio de misturas binárias e multicomponentes. Os desvios observados entre valores 05 calculados e os dados experimentais da literatura demonstram que considerável espaço para aperfeiçoamento dos métodos de há predição de algumas propriedades. No estágio atual de desenvolvimento dos métodos de predição, a metodologia proposta pode ser utilizada em cálculos preliminares de processos de separação.

Os resultados de predição de 30 sistemas binários e quatro multicomponentes, envolvendo 25 componentes dos mais variados níveis de polaridade, indicaram a inexistência de correlação entre a qualidade da predição e as classes dos sistemas analisados. No entanto, considera-se que a amostragem de sistemas utilizada é muito reduzida para se chegar a conclusões definitivas.

Particularmente, a metodologia proposta deu bons resultados qualitativos na predição de pontos de azeotropia de misturas binárias estudadas, não se obtendo, porém, a mesma qualidade de predição para a curva completa. Deve-se registrar ainda que os resultados da predição da mistura etanol/2-propanol recomendam cuidados no tratamento de sistemas contendo compostos com pontos de ebulição próximos e estruturas semelhantes, cujo tratamento exige precisão nos métodos de predição acima daquela que atualmente oferecem.

O estudo de sistemas binários e multicomponentes e a análise de sensibilidade realizados revelaram especialmente a necessidade de melhoria nos métodos de predição de pressão de vapor e de coeficentes de atividade, que são as propriedades que mais influenciam os cálculos de equilíbrio.

Como sugestões para trabalhos futuros, apresenta-se o que se segue :

(1) reavaliar os parâmetros do método UNIFAC de pressão de saturação, utilizando dados experimentais recentes em extensas faixas de temperatura, e ampliar a disponibiliade de informações tanto sobre os grupos existentes para preencher as lacunas da Tabela 5.1, como sobre novos grupos;

(2) introduzir na metodologia a nova matriz de parâmetros
UNIFAC de cálculo de coeficientes de atividade (Hansen et al.,
1991), publicada quando este trabalho estava concluído;

(3) fazer estudo comparativo do desempenho entre os métodos ASOG e UNIFAC, usando as matrizes de parAmetros
- CAPITULO 6 -

atualizadas e ampliadas;

(4) verificar a possibilidade de extensão da metodologia
 a cálculos de equilíbrio líquido-líquido -vapor.

(5) analisar com mais detalhe o desempenho de métodos de predição de P^s_i baseados no Princípio dos Estados Correspondentes validos para compostos polares, visando sua incorporação na metodologia como alternativa ao método de contribuição de grupo. - CAPÍTULO 7 -

CAPÍTULO 7 BIBLIOGRAFIA

- Danner, R. P. & Daubert, T. E.; 1983. Manual for Prediction Chemical Process Design Data. American Institute of Chemical Engineers (AIChE), New York, NY.
- Daubert, T. E. & Danner, R. P.; 1985. Data Compilation Tables of Properties of Pure Compounds. American Institute of Chemical Engineers (AIChE), New York, NY.
- Danner, R. P. & Gess, M. A.; 1990. <u>A Data Base Standard</u> for the Evaluation of Vapor-Liquid-Equilibrium Models. *Fluid Phase Equilibria*, 56, 285-301.
- Daubert, T. E. & Bartakovits, R.; 1989. Prediction of Critical Temperature and Pressure of Organic Componunds Group Contribuition. Ind. Eng. Chem. Res., 28, 638-641.
- Fredenslund; A., Jones, R. L. & Prausnitz, J. M.; 1975. <u>Group-Contribution</u> Estimation of Activity <u>Coeficients in Nonideal Liquid Mixtures</u>. AIChE J., 21, 1086.
- Fredenslund; A., Gmehling, J. & Rasmussen, P.; 1977. Vapor-Liquid Equilibria Using UNIFAC a Group-Contribution Method. Elsevier Scientific Publishing Company, Amsterdam.
- Gmehling, J., Onken, U. & Arlt, W; 1982. VAPOR-LIQUID EQUILIBRIUM DATA COLLECTION - Organic Hydroxy Compounds : Alcohols (Supplement 1), Chemical Data Series, DECHEMA, vol I, Part 2c.
- Gmehling, J., Onken, U. & Arlt, W; 1982. VAPOR-LIQUID EQUILIBRIUM DATA COLLECTION - Organic Hydroxy Compounds : Alcohols and Phenols (Supplement 11), Chemical Data Series, DECHEMA, vol I, Part 2d.

— CAPITULO 7 —

- PAG. 156
- Gmehling, J., Rasmussen, P. & Fredenslund, A.; 1982; <u>Vapor-Liquid Equilibria by UNIFAC Group</u> <u>Contribuition. Revision and Extension. 2</u>. Ind. Eng. <u>Chem. Process Des. Dev.</u>, 21, 118-127.
- Gmehling, J., Onken, U. & Arlt, W; 1983. VAPOR-LIQUID EQUILIBRIUM DATA COLLECTION - Organic Hydroxy Compounds : Aliphatic Hydrocarbons (Supplement 1), Chemical Data Series, DECHEMA, vol I, Part 6c.
- Hansen, H. K., Rasmussen, P., Fredenslund, A., Gmehling, J.; 1991. Vapor-Liquid Equilibria by UNIFAC Group Contribution. 5. Revision and Extension. Ind. Eng. Chem. Res., 30 (10), 2352-2355.
- Jensen, T., Fredenslund, A., & Rasmussen, P.; 1981. <u>Pure-Component Vapor Pressure Using UNIFAC Group</u> <u>Contribution. Ind. Eng. Chem. Fundam.</u>, 20, 239-246.
- Kojima, K. & Tochigi, K; 1979. Prediction of Vapor-Liquid equilibria by ASOG method. Kodansha LTd & Elselvier Scientific Publishing Company, Tokyo.
- Lai, W. Y, Chen D. H. & Maddox, R. N.; 1987. <u>Application</u> of a Nonlinear Group-Contribuition Model to the <u>Prediction of Physical Constant. 1. Predicting Normal</u> <u>Boiling Points with Molecular Structure</u>. *Ind. Chem.* <u>Res.</u>, 26, 1072-1079.
- Macedo, E. A., Weidlich, U., Gmeling, J. & Rasmussen, P.; 1983. Vapor-Liquid Equilibria by UNIFAC Group Contribuition. Revision and Extension. 3. Ind. Eng. Chem. Process Des. Dev., 22, 678-681.
- Magnusson, G. A.; 1991. LABORATORIO DE PROPRIEDADES TERMODINAMICAS, DPQ/FEQ/UNICAMP - comunicação pessoal.
- McCann, D. W., Danner, R. P.; 1984. Prediction of Second Virial Coefficients of Organic Compounds by a Group Contribuition Method. Ind. Eng. Chem. Process Des. Dev., 23, 529-533.

- CAPITULO 7 —

– PAG. 157

- Pailhes, F.; 1988. ESTIMATION OF BOILING TEMPERATURE AT NORMAL PRESSURE FOR ORGANIC COMPOUNDS FROM THEIR CHEMICAL FORMULA AND A KNOW BOILING TEMPERATURE AT LOW PRESSURE. Fluid Phase Equilibria, 41, 97-107.
- Prausnitz, J. M., Anderson, T. F., Grens, E. A., Eckert, C. A., Hsieh, R. & O'Conell, J. P.; 1980. Computer Calculations for Multicomponent Vapor-Liquid Equilibria. Prentice-Hall Inc., Englewood Cliffs, N. J.
- Prausnitz, J. M., Lichtentharler, R. N. & Azevedo, E. G.; 1986. Molecular Thermodinamics of Fluid-Phase Equilibria, 2nd ed., Prentice-Hall Inc., Englewood Cliffs, N. J.
- Reid, R. C., Prausnitz, J. M. & Sherwood, T. K.; 1977. *The Properties of Gases and Liquids*, 3rd ed., McGraw-Hill, New York.
- Reid, R. C., Prausnitz, J. M. & Poling, B. E.; 1987. The Properties of Gases and Liquids, 4th ed., McGraw-Hill, New York.
- Skjold-Jørgensen, S., Kolbe, B., Gmeling, J. & Rasmussen, P., Fredenslund, A.; 1979; <u>Vapor- Vapor-Liquid</u> Equilibria by UNIFAC Group Contribution. Revision and <u>Extension</u>. Ind. Eng. Chem. Process Des. Dev. 4, 714-722.
- Smith, J. M. & Ness, H. C.; 1980. Introdução a Termodinâmica da Engenharia Química , 3rd ed., Guanabara dois.
- Somayajulu, G. R.; 1989. <u>Estimation Procedures for</u> <u>Critical Constants</u>. *Americal Chemical Society*, 106-120.
- Tiegs, D., Gmehling, J., Rasmussen, P. & Fredenslund, A.; 1987. <u>Vapor-Liquid Equilibria</u> by UNIFAC Group <u>Contribuition. 4. Revision and Extension</u>. Ind. Eng. Chem. Res., 26, 159-161.

- PÁG. 158
- Tochigi, K., Tiegs, D., Gmehling, J. & Kojima, K.; 1990. <u>Determination of New ASOG Parameters</u>. Journal of <u>Chemical Engineering of Japan</u>, 23 (4), 453-463.
- Tsonopoulos, C; 1974. An Empirical Correlation of Second Virial Coefficients. AIChE Journal, 20 (2), 263-272.
- Tsonopoulos, C; 1987. <u>Critical Constants of Normal</u> <u>Alkanes from Methane to Polyethylene</u>. *AIChE* Journal, 33 (11), 2080-2083.
- Vetere, A.; 1987. Estimation of Critical Temperatures and Pressures of Organic Compounds by Using Rackett Equation. The Chemical Engineering Journal, 35, 211-214.
- Yair, O. B., Fredenslund & A., Rasmussen, P.; 1983. <u>Extension of UNIFAC Group-Contribuition Method for</u> <u>the prediction of Pure-Component Vapor Pressures</u>. *Ind. Eng. Chem. Process Des. Dev.*, 22,433-436.

APENDICES

•

APÉNDICE A

-

.

group"	e,	<u>b</u> ,	Ci	<u>4;</u>	4 1
C-(C)(H),	41.33	~103 27	- 22.80	6 0508	
C-(C),(H),	01.39	- 64 13		~1.058	
primary	31.32	2 363	-2 406	-0.296	
secondary	22.63	- 48 07	- 51 304	-1.9237	
C-(C),(B)	8.32	36.40	- 82.82	-3.9664	
C(H).	36.25	-83.11	32.55	-0.2862	
C4-(C)(H)	24 87	- 59 94	- 21.43	-0.3670	
$C_d - (C)_i$	12 44	21 60	- 50.914	-1 928	
$C_d - (C_d)(H)$	27.84	-0381	- 15.000	- 0.0506	
C-(C₄)(H),	41 33	-81 53	-45.086	-2.0561	
	24 32	-21 50	- 56.99	-2.3455	
C	14 70	- 60.47	~ 8.54	-0.0478	
C,-(H)	34.10	-72.25	31.95	-1.758	
$C_t - (C)$	19.69	- 31.143	- 24.785	-0.0201	
$C_{-}(C_{i})(H),$	41.33	- 103.27	-22.00	0 1110	
C-(C,)(C)(H),	23.06	- 35 17	- 28.896	-0.7230	
$U_{\rm B} = (R)$	15.47	19.66	-73.23	- 4 033	
CHC. WHI.	41.33	-103.27	- 22.80	0.0506	
C-(CB)(C)(H)	47.78	- 213 00	-10.71	-0 353	
C-(CB)(C),(H)	27 35	- 162.30	-46 91	~ 2.853	
CIS correction	-4.24	62.59	42.00 60.40	-2.307	
cyclopropane ring cor	- 2.10	- 28 65	96.75	9.663	
cyclobulane ring cor	2070	62 65	98 117	6.5585	
cyclopentabe ring cor	- 15.94	25 08	137.83	\$ 816	
ortho substitution	-2.73	60 30	33 23	1.975	
CO-(C).	26.85	17.60	164.70	-{-684	-5,9996
CO-(C)(H)	37.00	- 53.40	- 188 10	7.090	- 8.193
0-(C),	17.60	~ 55 10	~44.00	76.87	- 33 430
0-(C)(H)	- 87.30	208 00	-75.10	£.£06	
D - (CO)(C) + CD - (O)(C)	53.40	128.80	-116 80	- 11.964	
$C_{(CO)(C)} + CO_{(O)(D)}$	18,88	25.10	-31.734	- 4.3425	0.8928
C-ICOXCXH)	24.80	- 44.90	-52 80	1.340	
C-(CO)(H),	41.33	- 103.27	-22 80	-6.0506	71 496
C-(O)(C),	~ 96.60	532.00	- 585.70	204.10	2.4344
C-(O)(C),(H)	20 04	-2135	-48 38	2,902	
$C (O \times C \times H)$	41.33	- 103.27	-22.60	~ 0.0506	
furan ring correction	-7.03	-54.35	120.33	6.985	
C-(NKH).	41.33	-103.27	- 22.80	-0.0506	
C-(N)(C)(H),	28.63	-72 51	- 27.057	0.428	
N-(C)(H),	33.40	-79 00	~~ 04.14 	- 3.871	
N-(C),(H)	20.87	-01.70	-44.02	- 2.1184	
$N-(C)_{a}$	18 60	-135 50	9.92	2.069	
C-(CNXCXH)	310.00	-1090.0	203.0	- 139 30	
C-(F),(C)	79.837	-152 57	-58.57	-1.4518	
C-(F),(C)(H)	60.50	-129 02	-61.58	0.885	
C-(F)(C)(H),	59.97	143.24	- 34 03	0.170	
C-(F),(C),	46.69	. 4 1 95	48 975	- 0.975	
primary	40.02 A 659	3 22	-8.00	1.4034	
Economy C(FVH)	52.30	- 115.10	40.25	- 3 035	
Ca-(F).	57.31	- 125 40	- 28.90	0.1822	
C-(Ci¥C)(H).	76.91	-158.43	55 33	-0.962	
C-(CI)(C),(H)	77.90	-160 65	- 73.19	-1.4534	0.9979
C (CI)(C),	75.34	~ 252.96	- 19 775	2 443	-0.9910
·C-(CI)_(C)(H)	109.94	- 211 98	-84.03		
C-(CI),(C)	134.00	- 420.40	- 113.66	- 8.431	
	98.42	-191.27	-82.81	1.69	
C(F)					
primary	45.74	- 145 05	21 52	-0.346	
recondary	-2 23	17.870	-4.455	-0.767	
C-(S)(H),	41.33	- 103.27	- 22.80	1.917	
C-(S)(C)(H),	34.81 98 37	-64 60	-44.50	-1.994	
C-(SYCL	16 54	90 44	68.60	-4.0695	
C(S)(H)	24.87	~ 59 94	21.43	-0.367	
C4-(5)(C)	18 94	-174 80	~ 22 45	0 264	
S-(C)(H)	41.93	-10935	- 44.48	U 369 0 558	
\$-(C),	34.38		43.014	-0971	
8-(5XC)	30 4U	160.00	-16.28	6 6623	
S-(Cd), (in thiophene	31.20	- 100.00	-10.20	* ****	
nng)	_ 8 75	54 40	165.00	6.7135	
unscyclopentane					
2365 Ame					

TABELA A.1 : PARAMETROS DE CONTRIBUIÇÃO DE GRUPOS DO MÉTODO DE MCCANN E DANNER.

• Group terminology: $C_a = allenic carbon (=C-), C_b = aromatic carbon, C_d = double tonded carbon; C_t = triple bonded carbon; CIS = allenic carbon; CIS = allenic carbon; CIS = allenic carbon; CIS = allene carbon; CI$

(McCann e Danner, 1984)

TABELA A.2 : PARAMETROS DE VOLUME E DE AREA DE GRUPO DO MÉTODO UNIFAC.

group	sub group	BO .	R _k	Qk	sample group assignme	nt
1	CH,	1	0.9011	0.848	hexane:	2 CH, 4 CH,
"Сн,"	CH,	2	0.6744	0.540	2-methylpropane:	3 CH. 1 CH
-	CH	3	0.4469	0.228	2,2-dimethylpropane:	4 CH, 1 C
	С	4	0.2195	0.000		
2	CH,=CH	5	1.3454	1.176	1-hexene:	1 CH,, 3 CH,, 1 CH,=CH
"C=C"	CH=CH	6	1.1167	0.867	2-hexene:	2 CH,, 2 CH,, 1 CH=CH
	сн,=С	- 7	1.1173	0.988	2-methyl-1-butene:	2 CH,, 1 CH,, 1 CH,=C
	CH=C	8	0.8886	0.676	2-methyl-2-butene:	3 CH,, 1 CH=C
_	C=C	9	0.6605	0.485	2,3-dimethylbutene-2:	4 CH ₂ , 1 C=C
3	ACH	10	0.5313	0.400	benzene:	6 ACH
"ACH"	AC	11	0.3652	0.120	styrene:	1 CH,=CH, 5 ACH, 1 AC
4	ACCH,	12	1.2663	0.968	toluene:	5 ACH, 1 ACCH,
"ACCH,"	ACCH,	13	1,0396	0.660	ethylbenzene:	1 CH,, 5 ACH, 1 ACCH,
_	ACCH	14	0.8121	0.348	cumene:	2 CH,, 5 ACH, 1 ACCH
5	он	15	1.000	1.200	2-propanol:	2 сн., 1 сн, 1 он
OH						
	CHJOH	16	1.4811	1.432	methanoi:	1 Сн,он
-chjon-						
	H O	17	0,92	1.40	water:	1 H,O
	1001				-1 1.	5 4 GH 4 4 GOH
81001211	ACOH	18	0.8952	0.680	phenol:	5 ACH, 1 ACOH
AUOR	00 00		1 6704	1 400	hoten and to Out and a Other and	1 011 1 011 00
* ****	CH,CO	12	1.0/24	1.488	ketone group is 2nd carbon; 2-butanone:	I CH ₂ , I CH ₂ , I CH ₂ CO
-CH,00	00 00	00	3 4457	1 100	Between any is any other a barry Darate	
*0	CHO CHO	20	1,4407	1.100	ketone group is any other carbon; s-pentanone:	2 CH, 1 CH, 1 CH, CU
40UA*	CRU	41	0.5500	V.948	acetaidenyde:	1 CH ₂ , 1 CHO
11	CH COO	00	1 0091	1 700	herted	
11 "CCOO"		22	1,9031	1.728	butyl acetate:	1 CH, 3 CH, 1 CH, COU
19		23	1.0/04	1.420	outyl propanoate:	2 CH, 3 CH, 1 CH, COO
"มี่ตั้งกา"	ncoo	44	1.2420	1.100	ethyl formate:	1 ch ₂ , 1 ch ₂ , 1 H000
12	CHO	95	1 1450	1 000	dimathed athers	104 1040
10 10 10	CH O	20	0.0100	1.000	distant other	
0140	CH_O	20	0.9100	0.100	diananan i shar	
	FCU O	41	0.0508	1 1	totachudaofamat	4 CH, I CH, I CH-U
1.4	CH NH	20	1 5050	1.1	methylemine:	
"CNH."	CH NH	30	1 3699	1 996	propulamine.	$1CH_1CH_1CH_NH$
0.01,	CHNH	31	1 1417	0.004	propyramine.	2 CU 1 CUNU
15	CH NH	39	1 4 3 3 7	1 944	dimethylamine:	1 CH 1 CH NH
"CNH"	CH NH	33	1 2070	0.936	diethylamine:	2 CH 1 CH 1 CH NH
0	CHNH	34	0.9795	0.624	diisopropylamine:	A CH 1 CH 1 CHNH
16	with the	~*	0.0100	0.044	anaoptopyramme.	4 011, 1 011, 1 011111
"(C).N"	CH.N	35	1.1865	0.940	trimethylamine:	2 CH. 1 CH.N
1	CH.N	36	0.9597	0.632	triethylamine:	3 CH. 2 CH., 1 CH.N
17			••••••			;;;;;;
"ACNH."	ACNH.	37	1.0600	0.816	aniline:	5 ACH 1 ACNH.
18	C.H.N	38	2 9993	2.113	pyridine :	1 C H N
"pyridine"	C.H.N	39	2,8332	1.833	3-methylpyridine:	1 CH. 1 C.H.N
	C.H.N	40	2.667	1.653	2.3-dimethylovridine:	2 CH. 1 C.H.N
19	CH.CN	41	1.8701	1.724	acetonitrile	1 CH CN
"CCN"	CH CN	42	1 64 34	1.416	propionitrile	1 CH 1 CH CN
20	COOH	43	1.3013	1.224	acetic acid:	1 CH 1 COOH
"COOH"	HCOOH	44	1.5280	1.532	formic acid:	1 HCOOH
21	CH.CI	45	1.4654	1.264	1-chlorobutane:	1 CH., 2 CH., 1 CH.CI
<u>'C</u> a"	CHCI	46	1 2380	0.952	2-chloropropane:	2 CH 1 CHC
	CCI	47	1.0060	0.724	2-chloro-2-methylpropane:	3 CH 1 CCI
22	CH.Cl.	48	2.2564	1.988	dichloromethane:	1 CH CI
'cci."	CHCJ.	49	2 0606	1.684	1 1-dichloroethane:	1 CH 1 CHC
	CCL	50	1 8016	1 448	2.2-dichloropropage	2 CH 1 CCI
23	CHCI.	51	2 8700	2.410	chloroform:	1 CHCI
•CCI."	CCI.	52	2.6401	2.184	1 1 1-trichloroethane:	1 CH 1 CCL
24	CCI.	53	3,3900	2,910	tetrachloromethane:	1 CCL
'CCI,"	*					1 0014
25	ACCI	54	1.1562	0.844	chlorobenzene:	5 ACH 1 ACC
'ACCI"						
26	CH,NO,	55	2,0086	1.868	nitromethane:	1 CH.NO.
'CNO,"	CH NO.	56	1 7818	1.560	1-nitropropane:	1 CH., 1 CH., 1 CH.NO
•	CHNO.	57	1.5544	1.248	2-nitropropane:	2 CH., 1 CHNO.
27	ACNO,	58	1,4199	1.104	nitrobenzene:	5 ACH. 1 ACNO.
'ACNO,"	-					
28	CS,	59	2.057	1.65	carbon disulfide:	1 CS.
'CS,"	-	-		-		
29	CH,SH	60	1.8770	1.676	methanethiol:	1 CH,SH
'CH,SH"	CH,SH	61	1.6510	1.368	ethanethiol:	1 CH, 1 CH,SH
30	-					** = ****
furfural"	furfural	62	3,1680	2.481	furfural:	1 furtural

(Fredenslund et al., 1977; Skjold-J ϕ rgensen et al., 1979; Gmehling et al., 1982; Macedo et al., 1983; Tiegs et al., 1987)

TABELA A.2 : PARAMETROS DE VOLUME E DE ÁREA DE GRUPO DO MÉTODO UNIFAC (CONTINUAÇÃO).

(CH,OH),	63				
		2.4088	2.248	1,2-ethanediol:	1 (CH,OH),
í	64	1.2640	0.992	1-iodoethane:	1 CH,, 1 CH,, 1 I
Br	65	0.9492	0.832	1-bromoethane:	1 CH., 1 CH., 1 Br
CH≕C	66	1.2920	1.088	1-hexyne:	1 CH, 3 CH, 1 CH=C
C≡C	67	1.0613	0.784	2-hexyne:	2 CH, 2 CH, 1 C=C
Me,SO	68	2.8266	2.472	dimethyl sulfoxide:	1 Me,SO
•					•
ACRY	69	2.3144	2.052	acrylonitrile:	1 ACRY
Cl(C=C)	70	0.7910	0.724	trichloroethylene:	1 CH=C, 3 Cl(C=C)
ACF	71	0.6948	0.524	hexafluorobenzene:	6 ACF
DMF-1	72	3.0856	2.736	dimethylformamide:	1 DMF-1
DMF-2	73	2.6322	2.120	diethylformamide:	2 CH, 1 DMF-2
CF,	74	1.4060	1.380	perfluorohexane:	2 CF ₃ , 4 CF,
CF,	75	1.0105	0.920		-
L.F.	76	0.6150	0.460	perlluoromethylcyclonexane:	1 CH ₃ , 5 CH ₂ , 1 CF
	3r CH=C ≥C Me,SO ACRY Cl(C=C) ACF DMF-1 DMF-2 CF, CF, CF, CF, CF, CF, CF, CF,	3r 65 2H=C 66 ≥C 67 Me,SO 68 ACRY 69 Cl(C=C) 70 ACF 71 DMF-1 72 DMF-2 73 CF, 76 CF, 76	3r 65 0.9492 2H=C 66 1.2920 ≥C 67 1.0613 Me,SO 68 2.8266 ACRY 69 2.3144 Cl(C=C) 70 0.7910 ACF 71 0.6948 DMF-1 72 3.0856 DMF-2 73 2.6322 CF, 74 1.4060 CF, 76 0.6150	3r 65 0.9492 0.832 CH=C 66 1.2920 1.088 ≥C 67 1.0613 0.784 Mc,SO 68 2.8266 2.472 ACRY 69 2.3144 2.052 Cl(C=C) 70 0.7910 0.724 ACF 71 0.6948 0.524 DMF-1 72 3.0856 2.736 DMF-2 73 2.6322 2.120 CF, 74 1.4060 1.380 CF, 75 1.0105 0.920 CF 76 0.6150 0.460	Br 65 0.9492 0.832 1-bromoethane: CH-C 66 1.2920 1.088 $1-hexyne:$ Dec 67 1.0613 0.784 $2-hexyne:$ Me,SO 68 2.8266 2.472 dimethyl sulfoxide: ACRY 69 2.3144 2.052 acrylonitrile: Cl(C=C) 70 0.7910 0.724 trichloroethylene: ACF 71 0.6948 0.524 hexafluorobenzene: DMF-1 72 3.0856 2.736 dimethylformamide: DMF-2 73 2.6322 2.120 dimethylformamide: CF, 74 1.4060 1.380 perfluorohexane: CF, 74 1.4060 1.380 perfluorohexane: CF, 76 0.6150 0.460 perfluoromethylcyclohexane:

(al., 1979; Gmehling et al., 1982; Macedo et al., 1983; Tiegs et al., 1987)

....

TABELA A.3 : PARAMETROS ENERGÉTICOS DO MÉTODO UNIFAC.

	1	2	3	4	5	6	7	8
1 CH	0.0	-200 0	61 13	76.50	986.5	697 2	1318.0	1333.0
2 C=C	2520.0	0.0	340.7	4102.0	693.9	1509.0	634.2	547.4
3 ACH	-11.12	-94.78	0.0	167.0	636.1	637.8	903.8	1329.0
4 ACCH.	-69.70	-269.7	-146.8	0.0	803.2	603.2	5695.0	884.9
5 OH	156.4	8694.0	89,60	25.82	0.0	-137.1	353.5	-259.7
6 CH,OH	16.51	-52.39	-50.00	-44.50	249.1	0.0	-181.0	-101.7
7 H,Ó	300.0	692.7	362.3	377.6	-229.1	289.6	0,0	324.5
8 ACOH	275.8	1665.0	25.34	244.2	-451.6	~265.2	-601.8	0.0
9 CH,CO	26.76	-82.92	140.1	365.8	164.5	108.7	472.5	-133.1
10 CHO	505.7	n.a.	R.S .	n.a.	-404.8	-340.2	232.7	D.8.
11 CCOO	114.8	269.3	85.84	-170.0	245.4	249.6	10000. 0	-36.72
12 HCOO	90.49	91.65	D.#.	п.8.	191.2	155.7	D.a.	n.a.
13 CH,O	83.36	76.44	52.13	65.69	237.7	339.7	-314.7	п.а.
14 CNH,	-30.48	79.40	-44.85	n.a.	-164.0	-481.7	-330.4	n.a.
15 CNH	65.33	-41.32	-22.31	223.0	-150.0	-500.4	-448.2	n.a.
16 (C),N	-83,98	-188.0	-223.9	109.9	28.60	~406.8	-598.8	n.a.
IT ACNH,	5339.0	n.a.	650.4	979.8	529.0	5.182	-339.5	n.a.
18 pyridine	-101.6	n.a.	31.87	49.80	-132.5	-378.2	-332.9	-341.6
19 CUN	24.82	34.78	- 22.97	-138.4	185.4	157.8	242.8	n.a.
20 COOH	315,3	349.2	62.32	268.2	-151.0	1020.0	-00.17	n.a.
21 CCI	91.46	-24.36	4.680	122.9	562.2	529.0	698.2	n.a.
22 001,	34.01	-52.71	121.3	n.a.	747.7	669.9	708.7	n.a.
23 CG,	36.70	-185.1	288.5	33.61	742.1	649.1	826.7	B.A.
24 CCI	-78.45	-293.7	-4.700	134.7	856.3	860.1	1201.0	10000.
25 ACCI	-141.3	-203.2	-237.7	375.5	246.9	661.6	920.4	n.a.
26 CNO,	-32.69	-49.92	10.38	-97.05	341.7	252.6	417.9	降.卷.
27 ACNO,	5541.0	n.s.	1824.0	-127.8	561.6	n.a.	360.7	10. 9 _
28 CS,	-52.65	16.62	21.50	40.68	823.5	914.2	1081.0	B. a .
29 CH, SH	-7.481	n.a.	28.41	n.a.	461.6	382.8	B.8.	n.a.
30 furfural	-25.31	D. a.	157.3	404.3	521.6	n.a.	23.48	13.8.
31 DOH	140.0	n.a.	221.4	150.6	267.6	n.a.	0.0	838.4
321	128.0	D.A.	58.68	n.a.	501.3	n.a.	n.a.	n.a.
33 Br	-31.52	n.a.	155.6	291.1	721.9	n.a.	n.a. -	n.#.
34 C≡C	-72.88	-184.4	n,a.	n.a.	n.a.	П. <u>я.</u>	R.a.	n.a.
35 Me,SO	50.49	n.a.	-2.504	-143.2	-25.87	695.0	-240.0	n.a.
36 ACRY	-165.9	n,a.	n.a.	n.a.	n.a.	n.a.	386.6	n.a.
37 CICC	41.90	-3.167	-75.67	n.a.	640.9	726.7	n.a.	D.2.
38 ACF	-5.132	п.а.	-237.2	-157.3	649.7	645.9	n.a.	D.A .
39 DMF	-31.95	37.70	-133.9	-240.2	64.16	172.2	-287.1	n.a.
40 CF,	147.3	n.a.	n.a.	n.a.	B.a.	n.a.	n.a.	<u>ກ.ສ.</u>
	9	10	11	12	13	14	15	16
1 CH,	9 476.4	10 677.0	11 232.1	12 741.4	13 251.5	14 391.5	15 255.7	16 206.6
1 CH, 2 C=C	9 476.4 524.5	10 677.0 n.a.	11 232.1 71.23	12 741.4 468.7	13 251.5 289.3	14 391.5 396.0	15 255.7 273.6	16 206.6 658.8
1 CH, 2 C=C 3 ACH	9 476.4 524.5 25.77	10 677.0 n.a. n.a.	11 232.1 71.23 5.994	12 741.4 468.7 n.a.	13 251.5 289.3 32.14	14 391.5 396.0 161.7	15 255.7 273.6 122.8	16 206.6 658.8 90.49
1 CH, 2 C=C 3 ACH 4 ACCH,	9 476.4 524.5 25.77 -52.10	10 677.0 n.a. n.a. n.a.	11 232.1 71.23 5.994 5688.0	12 741.4 468.7 n.a. n.a.	13 251.5 289.3 32.14 213.1	14 391.5 396.0 161.7 n.a.	15 255.7 273.6 122.8 -49.29	16 206.6 658.8 90.49 23.50
1 CH, 2 C=C 3 ACH 4 ACCH, 5 OH	9 476.4 524.5 25.77 -52.10 84.00	10 677.0 n.a. n.a. n.a. 441.8	11 232.1 71.23 5.994 5688.0 101.1	12 741.4 468.7 n.a. n.a. 193.1	13 251.5 289.3 32.14 213.1 28.06	14 391.5 396.0 161.7 n.a. 83.02	15 255.7 273.6 122.8 -49.29 42.70	16 206.6 658.8 90.49 23.50 -323.0
1 CH, 2 C=C 3 ACH 4 ACCH, 5 OH 6 CH,OH	9 476.4 524.5 25.77 -52.10 84.00 23.39	10 677.0 n.a. n.a. n.a. 441.8 306.4	11 232.1 71.23 5.994 5688.0 101.1 -10.72	12 741.4 468.7 n.a. 193.1 193.4	13 251.5 289.3 32.14 213.1 28.06 -180.6	14 391.5 396.0 161.7 n.a. 83.02 359.3	15 255.7 273.6 122.8 -49.29 42.70 266.0	16 206.6 658.8 90.49 23.50 -323.0 53.90
1 CH, 2 C=C 3 ACH 4 ACCH, 5 OH 6 CH,OH 7 H,O	9 476.4 524.5 25.77 -52.10 84.00 23.39 -195.4	10 677.0 n.s. n.a. 10.4 441.8 306.4 -257.3	11 232.1 71.23 5.994 5688.0 101.1 -10.72 14.42	12 741.4 468.7 n.a. 193.1 193.4 n.a.	13 251.5 289.3 32.14 213.1 28.06 -180.6 540.5	14 391.5 396.0 161.7 n.a. 83.02 359.3 48.89	15 255.7 273.6 122.8 -49.29 42.70 266.0 168.0	16 206.6 658.8 90.49 23.50 -323.0 53.90 304.0
1 CH, 2 C=C 3 ACH 4 ACCH, 5 OH 6 CH,OH 7 H,O 8 ACOH	9 476.4 524.5 25.77 -52.10 84.00 23.39 -195.4 -356.1	10 677.0 n.a. n.a. n.a. 441.8 306.4 - 257.3 n.a.	11 232.1 71.23 5.994 5688.0 101.1 -10.72 14.42 -449.4	12 741.4 468.7 n.a. 193.1 193.4 n.a. n.a.	13 251.5 289.3 32.14 213.1 28.06 -180.6 540.5 n.a.	14 391.5 396.0 161.7 n.a. 83.02 359.3 48.89 n.a.	15 255.7 273.6 122.8 -49.29 42.70 266.0 168.0 n.a.	16 206.6 558.8 90.49 23.50 -323.0 53.90 304.0 n.a.
1 CH, 2 C=C 3 ACH 4 ACCH, 5 OH 6 CH,OH 7 H,O 8 ACOH 9 CH,CO	9 476.4 524.5 25.77 -52.10 84.00 23.39 -195.4 -356.1 0.0	10 677.0 n.a. n.a. 441.8 306.4 -257.3 n.a. -37.36	11 232.1 71.23 5.994 5688.0 101.1 -10.72 14.42 -449.4 -213.7	12 741.4 468.7 n.a. 193.1 193.4 n.a. n.a. n.a. n.a.	13 251.5 289.3 32.14 213.1 28.06 -180.6 540.5 n.a. 5.202	14 391.5 396.0 161.7 n.a. 83.02 359.3 48.89 n.a. n.a. n.a.	15 255.7 273.6 122.8 -49.29 42.70 266.0 168.0 n.a. n.a.	16 206.6 658.8 90.49 23.50 -323.0 53.90 304.0 n.a. n.a.
1 CH, 2 C=C 3 ACH 4 ACCH, 5 OH 6 CH,OH 7 H,O 8 ACOH 9 CH,CO 10 CHO	9 476.4 524.5 25.77 -52.10 84.60 23.39 -195.4 -356.1 0.0 128.0	10 677.0 n.a. n.a. 441.8 306.4 -257.3 n.a. -37.36 0.0	11 232.1 71.23 5.994 5688.0 101.1 -10.72 14.42 -449.4 -213.7 n.a.	12 741.4 468.7 n.a. 193.1 193.4 n.a. n.a. n.a. n.a.	13 251.5 289.3 32.14 213.1 28.06 -180.6 540.5 n.a. 5.202 304.1	14 391.5 396.0 161.7 n.a. 83.02 359.3 48.89 n.a. n.a. n.a.	15 255.7 273.6 122.8 -49.29 42.70 266.0 168.0 n.a. n.a. n.a.	16 206.6 658.8 90.49 23.50 -323.0 53.90 304.0 n.a. n.a. n.a.
1 CH, 2 C=C 3 ACH 4 ACCH, 5 OH 6 CH,OH 7 H,O 8 ACOH 9 CH,CO 10 CHO 11 CCOO	9 476.4 524.5 25.77 -52.10 84.00 23.39 -195.4 -356.1 0.0 128.0 372.2	10 677.0 n.a. n.a. 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.	11 232.1 71.23 5.994 5688.0 101.1 -10.72 14.42 -449.4 -213.7 n.a. 0.0	12 741.4 468.7 n.a. 193.1 193.4 n.a. n.a. 372.9	13 251.5 289.3 32.14 213.1 28.06 -180.6 540.5 n.a. 5.202 304.1 -235.7	14 391.5 396.0 161.7 n.a. 83.02 359.3 48.89 n.a. n.a. n.a. n.a. n.a.	15 255.7 273.6 122.8 -49.29 42.70 266.0 168.0 n.a. n.a. n.a. -73.50	16 206.6 658.8 90.49 23.50 -323.0 53.90 304.0 n.a. n.a. n.a. n.a.
1 CH, 2 C=C 3 ACH 4 ACCH, 5 OH 6 CH,OH 7 H,O 8 ACOH 9 CH,CO 10 CHO 11 CCOO 12 HCOO	9 476.4 524.5 25.77 -52.10 84.00 23.39 -195.4 -356.1 0.0 128.0 372.2 h.a.	10 677.0 n.a. n.a. 441.8 306.4 - 257.3 n.a. - 37.36 0.0 n.a. n.a.	11 232.1 71.23 5.994 5688.0 101.1 -10.72 14.42 -449.4 -213.7 n.a. 0.0 -261.1	12 741.4 468.7 n.a. 193.1 193.4 n.a. n.a. n.a. 372.9 0.0	13 251.5 289.3 32.14 213.1 28.06 -180.6 540.5 h.a. 5.202 304.1 -235.7 b.a.	14 391.5 396.0 161.7 n.a. 83.02 359.3 48.89 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a	15 255.7 273.6 122.8 -49.29 42.70 266.0 168.0 n.a. n.a. n.a. -73.50 n.a.	16 206.5 658.8 90.49 23.50 - 323.0 53.90 304.0 n.a. n.a. n.a. n.a. n.a. n.a. n.a.
1 CH, 2 C=C 3 ACH 4 ACCH, 5 OH 6 CH,OH 7 H,O 8 ACOH 9 CH,CO 10 CHO 11 CCOO 12 HCOO 13 CH,O	9 476.4 524.5 25.77 -52.10 84.00 23.39 -195.4 -356.1 0.0 128.0 372.2 n.a. 52.38	10 677.0 n.a. n.a. 441.8 306.4 -257.3 n.a. -37.36 0.0 n.a. n.a. -7.838	11 232.1 71.23 5.994 5688.0 101.1 -10.72 14.42 -449.4 -213.7 n.a. 0.0 -261.1 461.3	12 741.4 468.7 n.a. 193.1 193.4 n.a. n.a. 372.9 0.0 n.a. n.a.	13 251.5 289.3 32.14 213.1 28.06 -180.6 540.5 n.a. 5.202 304.1 -235.7 n.a. 0.0	14 391.5 396.0 161.7 n.a. 83.02 359.3 48.89 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a	15 255.7 273.6 122.8 -49.29 42.70 266.0 168.0 n.a. n.a. n.a. -73.50 0.a. 141.7	16 206.6 658.8 90.49 23.50 -323.0 53.90 304.0 n.a. n.a. n.a. n.a. n.a. n.a. n.a.
1 CH, 2 C=C 3 ACH 4 ACCH, 5 OH 6 CH,OH 7 H,O 8 ACOH 9 CH,CO 10 CHO 11 CCOO 12 HCOO 13 CH,O 13 CH,O 14 CNH,	9 476.4 524.5 25.77 -52.10 84.00 23.39 -195.4 -356.1 0.0 128.0 372.2 n.a. 52.38 n.a.	10 677.0 n.a. n.a. 441.8 306.4 -257.3 n.a. -37.36 0.0 0.0 n.a. n.a. -7.836 n.a.	11 232.1 71.23 5.994 5688.0 101.1 -10.72 14.42 -449.4 -213.7 n.a. 0.0 -261.1 461.3 n.a.	12 741.4 468.7 n.a. 193.1 193.4 n.a. n.a. 372.9 0.0 n.a. n.a. n.a.	13 251.5 289.3 32.14 213.1 28.06 -180.6 540.5 n.a. 5.202 304.1 -235.7 n.a. 0.0 n.a.	14 391.5 396.0 161.7 n.a. 83.02 359.3 48.89 n.a. n.a. n.a. n.a. n.a. n.a. n.a. 0.0	15 255.7 273.6 122.8 -49.29 42.70 266.0 168.0 n.a. n.a. -73.50 n.a. 141.7 63.72	16 206.6 658.8 90.49 23.50 -323.0 53.90 304.0 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.
1 CH, 2 C=C 3 ACH 4 ACCH, 5 OH 6 CH,OH 7 H,O 8 ACOH 9 CH,CO 10 CHO 11 CCOO 12 HCOO 13 CH,O 14 CNH, 15 CNH	9 476.4 524.5 25.77 -52.10 84.00 23.39 -195.4 -356.1 0.0 128.0 372.2 n.a. 52.38 n.a. n.a.	10 677.0 n.a. n.a. 10.2 306.4 -257.3 n.a. -37.36 0.0 n.a. n.a. n.a. -7.838 n.a. n.a. n.a.	11 232.1 71.23 5.994 5688.0 101.1 -10.72 14.42 -449.4 -213.7 n.a. 0.0 -261.1 461.3 n.a. 136.0	12 741.4 468.7 u.a. n.a. 193.1 193.4 n.a. n.a. 372.9 0.0 n.a. n.a. n.a. n.a. n.a.	13 251.5 289.3 32.14 213.1 28.06 540.5 n.a. 5.202 304.1 -235.7 n.a. 0.0 n.a. -49.30	14 391.5 396.0 161.7 n.m. 83.02 359.3 48.89 n.a. n.a. n.a. n.a. n.a. 0.0 108.8	15 265.7 273.6 122.8 -49.29 266.0 168.0 n.a. n.a. n.a. -73.50 n.a. 141.7 63.72 0.0	16 206.6 658.8 90.49 23.50 -323.0 53.90 304.0 n.a. n.a. n.a. n.a. n.a. n.a. 1.3. 1.3.
1 CH, 2 C=C 3 ACH 4 ACCH, 5 OH 6 CH,OH 7 H,O 8 ACOH 9 CH,CO 10 CHO 11 CCOO 12 HCOO 13 CH,O 13 CH,O 14 CNH, 15 CNH	9 476.4 524.5 25.77 -52.10 84.00 23.39 -195.4 -356.1 0.0 128.0 377.2 n.a. 52.38 n.a. n.a. n.a.	10 677.0 n.a. n.a. n.a. 441.8 306.4 -257.3 n.a. -37.36 0.0 n.a. n.a. n.a. n.a. n.a. n.a. n.a.	11 232.1 71.23 5.994 5688.0 101.1 -10.72 14.42 -449.4 -213.7 n.a. 0.0 -261.1 461.3 n.a. 136.0 n.a.	12 741.4 468.7 n.a. 193.1 193.1 193.4 n.a. n.a. n.a. 372.9 0.0 n.a. n.a. n.a. n.a. n.a. n.a. n.a.	13 251.5 289.3 32.14 213.1 28.06 -180.6 540.5 n.a. 5.202 304.1 -235.7 n.a. 0.0 n.a. -49.30 n.a.	14 391.5 396.0 161.7 n.a. 83.02 359.3 48.89 n.a. n.a. n.a. n.a. n.a. n.a. 0.0 108.8 38.89	15 255.7 273.6 122.8 -49.29 42.70 266.0 168.0 n.a. n.a. n.a. n.a. n.a. 141.7 63.72 0.0 865.9	16 206.6 658.8 90.49 23.50 -323.0 53.90 304.0 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.
1 CH, 2 C=C 3 ACH 4 ACCH, 5 OH 6 CH,OH 7 H,O 8 ACOH 9 CH,CO 10 CHO 11 CCOO 12 HCOO 13 CH,O 13 CH,O 14 CNH, 15 CNH 16 (C),N 17 ACNH,	9 476.4 524.5 25.77 -52.10 84.00 23.39 -195.4 -356.1 0.0 128.0 372.2 n.a. 52.38 n.a. n.a. -399.1	10 677.0 n.a. n.a. 10.4 41.8 306.4 -257.3 n.a. -37.36 0.0 n.a. n.a. -7.836 n.a. n.a. n.a. n.a. n.a. n.a.	11 232.1 71.23 5.994 5688.0 101.1 -10.72 14.42 -449.4 -213.7 n.a. 0.0 -261.1 461.3 n.a. 136.0 n.a. B.a.	12 741.4 468.7 n.a. n.a. 193.1 193.4 n.a. n.a. 372.9 0.0 n.a. n.a. n.a. n.a. n.a. n.a. n.a.	13 251.5 289.3 32.14 213.1 28.06 -180.6 540.5 m.a. 5.202 304.1 -235.7 m.a. 0.0 m.a. -49.30 m.a. m.a.	14 391.5 396.0 161.7 n.a. 83.02 359.3 48.89 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a	15 255.7 273.6 122.8 -49.29 42.70 266.0 168.0 n.a. n.a. n.a. -73.50 n.a. 141.7 63.72 0.0 865.9 n.a.	16 206.6 658.8 90.49 23.50 -323.00 53.90 304.0 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.
1 CH, 2 C=C 3 ACH 4 ACCH, 5 OH 6 CH,OH 7 H,O 8 ACOH 9 CH,CO 10 CHO 11 CCOO 12 HCOO 13 CH,O 13 CH,O 14 CNH, 15 CNH 16 (C),N 17 ACNH, 18 pyridine	9 476.4 524.5 25.77 -52.10 84.00 23.39 -195.4 -356.1 0.0 128.0 372.2 n.a. 52.38 n.a. -399.1 -51.54	10 677.0 n.a. n.a. 10.2 306.4 -257.3 n.a. -37.36 0.0 n.a. n.a. n.a. n.a. n.a. n.a. n.a.	11 232.1 71.23 5.994 5688.0 101.1 -10.72 14.42 -449.4 -213.7 n.a. 0.0 -261.1 461.3 n.a. 136.0 n.a. 136.0 n.a. n.a.	12 741.4 468.7 n.a. 193.1 193.4 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.	13 251.5 289.3 32.14 213.1 28.06 540.5 n.a. 5.202 304.1 -235.7 n.a. 0.0 n.a. 0.0 n.a. n.a. n.a. n.a. n	14 391.5 396.0 161.7 n.n. 83.02 359.3 48.89 n.a. n.a. n.a. n.a. n.a. n.a. n.a. 0.0 108.8 38.89 n.a. n.a. n.a. n.a.	15 265.7 273.6 122.8 -49.29 266.0 168.0 n.a. n.a. -73.50 n.a. 141.7 63.72 0.0 865.9 n.a. n.a. n.a.	16 206.6 658.8 90.49 23.50 - 323.0 53.90 304.0 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.
1 CH, 2 C=C 3 ACH 4 ACCH, 5 OH 6 CH,OH 7 H,O 8 ACOH 9 CH,CO 10 CHO 11 CCOO 12 HCOO 13 CH,O 13 CH,O 14 CNH, 15 CNH 16 (C),N 17 ACNH, 18 pyridiae 19 CCN	9 476.4 524.5 25.77 -52.10 84.00 23.39 -195.4 -356.1 0.0 128.0 372.2 n.a. 52.38 n.a. n.a. -399.1 -51.54 -287.5	10 677.0 n.a. n.a. n.a. -257.3 n.a. -37.36 0.0 n.a. n.a. n.a. n.a. n.a. n.a. n.a.	11 232.1 71.23 5.994 5688.0 101.1 -10.72 14.42 -449.4 -213.7 n.a. 0.0 -261.1 461.3 n.a. 136.0 n.a. b.a. n.a. -266.6	12 741.4 468.7 n.a. 193.1 193.1 193.4 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.	13 251.5 289.3 32.14 213.1 28.06 -180.6 540.5 n.a. 5.202 304.1 -235.7 n.a. 0.0 n.a. -49.30 n.a. n.a. n.a. n.a.	14 391.5 396.0 161.7 n.a. 83.02 359.3 48.89 n.a. n.a. n.a. n.a. n.a. n.a. 0.0 108.8 38.89 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a	15 255.7 273.6 122.8 -49.29 42.70 266.0 168.0 n.a. n.a. n.a. n.a. 141.7 63.72 0.0 865.9 n.a. n.a. n.a. n.a.	16 206.6 658.8 90.49 23.50 - 323.0 53.90 304.0 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.
1 CH, 2 C=C 3 ACH 4 ACCH, 5 OH 6 CH,OH 7 H,O 8 ACOH 9 CH,CO 10 CHO 11 CCOO 12 HCOO 13 CH,O 13 CH,O 14 CNH, 15 CNH 16 (C),N 17 ACNH, 18 pyridiae 19 CCN 20 COOH	9 476.4 524.5 25.77 -52.10 84.00 23.39 -195.4 -356.1 0.0 128.0 372.2 n.a. 52.38 n.a. n.a. -399.1 -287.5 -297.8	10 677.0 n.a. n.a. n.a. 441.8 306.4 -257.3 n.a. -37.36 0.0 n.a. n.a. -7.836 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a	11 232.1 71.23 5.994 5688.0 101.1 -10.72 14.42 -449.4 -213.7 n.a. 0.0 -261.1 461.3 n.a. 136.0 n.a. n.a. -266.6 -256.3	12 741.4 468.7 n.a. 193.1 193.4 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.	13 251.5 289.3 32.14 213.1 28.06 -180.6 540.5 m.a. 5.202 304.1 -235.7 m.a. 0.0 m.a. -49.30 n.a. n.a. n.a. n.a. n.a. n.a. -338.5	14 391.5 396.0 161.7 n.a. 83.02 359.3 48.89 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a	15 265.7 273.6 122.8 -49.29 42.70 266.0 168.0 n.a. n.a. n.a. -73.50 n.a. 141.7 63.72 0.0 865.9 n.a.	16 206.6 658.8 90.49 23.50 -323.0 53.90 304.0 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.
1 CH, 2 C=C 3 ACH 4 ACCH, 5 OH 6 CH,OH 7 H,O 8 ACOH 9 CH,CO 10 CHO 11 CCOO 12 HCOO 13 CH,O 13 CH,O 14 CNH, 15 CNH 16 (C),N 17 ACNH, 18 pyridine 19 CCN 20 COOH 21 CCI	9 476.4 524.5 25.77 -52.10 84.00 23.39 -195.4 -356.1 0.0 128.0 372.2 n.a. 52.38 n.a. 52.38 n.a. -399.1 -51.54 -297.8 286.3	10 677.0 n.a. n.a. 10.2 441.8 306.4 -257.3 n.a. -37.36 0.0 n.a. n.a. n.a. n.a. n.a. n.a. n.a.	11 232.1 71.23 5.994 5688.0 101.1 -10.72 14.42 -449.4 -213.7 n.a. 0.0 -261.1 461.3 n.a. 136.0 n.a. 136.0 n.a. 136.0 n.a. 136.0 n.a. 266.6 -266.3 n.a.	12 741.4 468.7 u.a. n.a. 193.1 193.4 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.	13 251.5 289.3 32.14 213.1 28.06 -180.6 540.5 n.a. 5.202 304.1 -235.7 n.a. 0.0 n.a. 0.0 n.a. n.a. n.a. -338.5 225.4	14 391.5 396.0 161.7 n.m. 83.02 359.3 48.89 n.a. n.a. n.a. n.a. n.a. n.a. 108.8 38.89 n.a. 108.8 38.89 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a	15 265.7 273.6 122.8 -49.29 266.0 168.0 n.a. n.a. n.a. -73.50 n.a. 141.7 63.72 0.0 865.9 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.	16 206.6 658.8 90.49 23.50 -323.0 53.90 304.0 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.
1 CH, 2 C=C 3 ACH 4 ACCH, 5 OH 6 CH,OH 7 H,O 8 ACOH 9 CH,CO 10 CHO 11 CCOO 12 HCOO 13 CH,O 13 CH,O 13 CH,O 13 CH,O 14 CNH, 15 CNH 16 (C),N 17 ACNH, 18 pyridine 19 CCN 20 COOH 21 CCI 22 CCI,	9 476.4 524.5 25.77 -52.10 84.00 23.39 -195.4 -356.1 0.0 128.0 372.2 n.a. 52.38 n.a. n.a. -399.1 -51.54 -287.5 -297.8 286.3 423.2	10 677.0 n.a. n.a. n.a. 441.8 306.4 -257.3 n.a. -37.36 0.0 n.a. n.a. n.a. n.a. n.a. n.a. n.a.	11 232.1 71.23 5.994 5688.0 101.1 -10.72 14.42 -449.4 -213.7 n.a. 0.0 -261.1 461.3 n.a. 136.0 n.a. b.a. n.a. -266.6 -256.3 n.a. -132.9	12 741.4 468.7 n.a. 193.1 193.1 193.4 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.	13 251.5 289.3 32.14 213.1 28.06 -180.6 540.5 n.a. 5.202 304.1 -235.7 n.a. 0.0 n.a. -49.30 n.a. n.a. n.a. n.a. -338.5 225.4 -197.7	14 391.5 396.0 161.7 n.a. 83.02 359.3 48.89 n.a. n.a. n.a. n.a. n.a. n.a. 108.8 38.89 n.a. 108.8 38.89 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a	15 255.7 273.6 122.8 -49.29 42.70 266.0 168.0 n.a. n.a. n.a. n.a. 141.7 63.72 0.0 865.9 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.	16 206.6 658.8 90.49 23.50 -323.0 53.90 304.0 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.
1 CH, 2 C=C 3 ACH 4 ACCH, 5 OH 6 CH,OH 7 H,O 8 ACOH 9 CH,CO 10 CHO 11 CCOO 12 HCOO 13 CH,O 13 CH,O 13 CH,O 14 CNH, 15 CNH 16 CC),N 17 ACNH, 18 pyridiae 19 CCN 20 COOH 21 CCI 22 CCI, 23 CCI, 23 CCI,	9 476.4 524.5 25.77 -52.10 84.00 23.39 -195.4 -356.1 0.0 372.2 n.a. 52.38 n.a. -399.1 -51.54 -287.5 -297.8 286.3 423.2 552.1	10 677.0 n.a. n.a. n.a. 441.8 306.4 -257.3 n.a. -37.36 0.0 n.a. n.a. n.a. n.a. n.a. n.a. n.a.	11 232.1 71.23 5.994 5688.0 101.1 -10.72 14.42 -449.4 -213.7 n.a. 0.0 -261.1 461.3 n.a. 136.0 n.a. 136.0 n.a. -256.6 -256.3 n.a. -132.9 176.5	12 741.4 468.7 n.a. 193.1 193.4 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.	13 251.5 289.3 32.14 213.1 28.06 540.5 n.a. 5.202 304.1 -235.7 n.a. 0.0 n.a. n.a. n.a. n.a. n.a. n.a.	14 391.5 396.0 161.7 n.a. 83.02 359.3 48.89 n.a. n.a. n.a. n.a. n.a. n.a. 0.0 108.8 38.89 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a	15 265.7 273.6 122.8 -49.29 42.70 266.0 168.0 n.a.	16 206.6 658.8 90.49 23.50 -323.0 53.90 304.0 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.
1 CH, 2 C=C 3 ACH 4 ACCH, 5 OH 6 CH,OH 7 H,O 8 ACOH 9 CH,CO 10 CHO 11 CCOO 12 HCOO 13 CH,O 13 CH,O 14 CNH, 15 CNH 16 (C),N 17 ACNH, 18 pyridine 19 CCN 20 COOH 21 CCI 22 CCI, 23 CCI, 24 CCI, 25 ACC	9 476.4 524.5 25.77 -52.10 84.00 23.39 -195.4 -356.1 0.0 128.0 372.2 n.a. 52.38 n.a. 52.38 n.a. -399.1 -51.54 -297.8 286.3 423.2 552.1 372.0 120.5 120	10 677.0 n.a. n.a. n.a. 441.8 306.4 -257.3 n.a. -37.36 0.0 n.a. n.a. n.a. n.a. n.a. n.a. n.a.	11 232.1 71.23 5.994 5688.0 101.1 -10.72 14.42 -449.4 -213.7 n.a. 0.0 -261.1 461.3 n.a. 136.0 n.a. 136.0 n.a. 136.0 n.a. 136.0 n.a. 136.0 n.a. 136.0 n.a. 136.0 n.a. 132.9 176.5 129.5 129.5	12 741.4 468.7 n.a. 193.1 193.4 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.	13 251.5 289.3 32.14 213.1 28.06 -180.6 540.5 n.a. 5.202 304.1 -235.7 n.a. 0.0 n.a. 0.0 n.a. n.a. n.a. -338.5 225.4 -197.7 -20.93 113.9	14 391.5 396.0 161.7 n.m. 83.02 359.3 48.89 n.a. n.a. n.a. n.a. n.a. n.a. 108.8 38.89 n.a. 108.8 38.89 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a	15 265.7 273.6 122.8 -49.29 42.70 266.0 168.0 n.a. n.a. n.a. -73.50 n.a. 141.7 63.72 0.0 865.9 n.a. n.a. n.a. n.a. n.a. n.a. 141.7 63.72 0.0 865.9 n.a. n.a. n.a. n.a. n.a. n.a. 141.7 1.22.8 1.23.6 1.22.8 1.23.6 1.23.8 1.24.8 1.24.8 1.24.8 1.24.8 1.25.	16 206.6 658.8 90.49 23.50 -323.0 53.90 304.0 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.
1 CH, 2 C=C 3 ACH 4 ACCH, 5 OH 6 CH,OH 7 H,O 8 ACOH 9 CH,CO 10 CHO 11 CCOO 12 HCOO 13 CH,O 13 CH,O 13 CH,O 13 CH,O 14 CNH, 15 CNH 16 (C),N 17 ACNH, 18 pyridine 19 CCN 20 COOH 21 CCI 22 CCI, 23 CCI, 24 CCI, 25 ACCI	9 476.4 524.5 25.77 -52.10 84.00 23.39 -195.4 -356.1 0.0 372.2 n.a. 52.38 n.a. 52.38 n.a. -399.1 -51.54 -287.5 -297.8 286.3 423.2 552.1 372.0 128.1	10 677.0 n.a. n.a. n.a. 441.8 306.4 -257.3 n.a. -37.36 0.0 n.a. n.a. -7.838 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a	11 232.1 71.23 5.994 5688.0 101.1 -10.72 14.42 -449.4 -213.7 n.4 -261.1 461.3 n.a 136.0 n.a 136.0 n.a -266.6 -256.6 -256.6 -35.6 -132.9 176.5 129.5 -246.3	12 741.4 468.7 n.a. 193.1 193.1 193.4 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.	13 251.5 289.3 32.14 213.1 28.06 -180.6 540.5 n.a. 5.202 304.1 -235.7 n.a. 0.0 n.a. n.a. n.a. n.a. n.a. n.a. n.a. 1.3 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	14 391.5 396.0 161.7 n.a. 83.02 359.3 48.89 n.a. n.a. n.a. n.a. n.a. n.a. 108.8 38.89 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a	15 255.7 273.6 122.8 -49.29 42.70 266.0 168.0 n.a. n.a. n.a. 141.7 63.72 0.0 865.9 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.	16 206.6 658.8 90.49 23.50 - 323.0 53.90 304.0 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.
1 CH, 2 C=C 3 ACH 4 ACCH, 5 OH 6 CH,OH 7 H,O 8 ACOH 9 CH,CO 10 CHO 11 CCOO 12 HCOO 13 CH,O 13 CH,O 14 CNH, 15 CNH 16 (C),N 17 ACNH, 18 pyridiae 19 CCN 20 COOH 21 CCI 22 CCI, 23 CCI, 24 CCI, 25 ACCI 26 CNO,	9 476.4 524.5 25.77 -52.10 84.00 23.39 -195.4 -356.1 0.0 372.2 n.a. 52.38 n.a. n.a. -399.1 -51.54 -287.5 -297.8 286.3 423.2 552.1 372.0 128.1 -142.6	10 677.0 n.a. n.a. n.a. 441.8 306.4 -257.3 n.a. -37.36 0.0 n.a. n.a. n.a. n.a. n.a. n.a. n.a.	11 232.1 71.23 5.994 5688.0 101.1 -10.72 14.42 -449.4 -213.7 n.a. 0.0 -261.1 461.3 n.a. 136.0 n.a. 5.a. n.a. -266.6 -256.3 n.a. -132.9 176.5 129.5 -246.3 n.a.	12 741.4 468.7 n.a. 193.1 193.4 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.	13 251.5 289.3 32.14 213.1 28.06 540.5 n.a. 5.202 304.1 -235.7 n.a. 0.0 n.a. n.a. n.a. n.a. n.a. n.a.	14 391.5 396.0 161.7 n.s. 83.02 359.3 48.89 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a	15 265.7 273.6 122.8 -49.29 42.70 266.0 168.0 n.a.	16 206.6 658.8 90.49 23.50 -323.0 53.90 304.0 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.
1 CH, 2 C=C 3 ACH 4 ACCH, 5 OH 6 CH,OH 7 H,O 8 ACOH 9 CH,CO 10 CHO 11 CCOO 12 HCOO 13 CH,O 13 CH,O 14 CNH, 15 CNH 16 (C),N 17 ACNH, 18 pyridine 19 CCN 20 COOH 21 CCI 22 CCI, 23 CCI, 24 CCI, 25 ACCI 26 CNO, 27 ACNO,	9 476.4 524.5 25.77 -52.10 84.00 23.39 -195.4 -356.1 0.0 128.0 372.2 h.a. 52.38 h.a. b.a. na9.1 -51.54 -287.5 286.3 423.2 552.1 372.0 128.1 -142.6 h.a. -142.6 h.a.	10 677.0 n.a. n.a. 10 677.0 n.a. -257.3 n.a. -37.36 0.0 n.a. -37.36 0.0 n.a. n.a. n.a. n.a. n.a. n.a. n.a.	11 232.1 71.23 5.994 5688.0 101.1 -10.72 14.42 -449.4 -213.7 n.a. 0.0 -261.1 461.3 n.a. 136.0 n.a. n.a. -266.6 -256.3 n.a. -132.9 176.5 129.5 -246.3 n.a. n.a. n.a. -266.3 n.a.	12 741.4 468.7 n.a. 193.1 193.1 193.4 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.	13 251.5 289.3 32.14 213.1 28.06 -180.6 540.5 n.a. 5.202 304.1 -235.7 n.a. 0.0 n.a. n.a. -49.30 n.a. n.a. n.a. -338.5 225.4 -197.7 -20.93 113.9 n.a. -94.49 n.a.	14 391.5 396.0 161.7 n.s. 83.02 359.3 48.89 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a	15 265.7 273.6 122.8 -49.29 42.70 266.0 168.0 n.a. n.a. n.a. 141.7 63.72 0.0 865.9 n.a.	16 206.6 658.8 90.49 23.50 -323.0 53.90 304.0 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.
1 CH, 2 C=C 3 ACH 4 ACCH, 5 OH 6 CH,OH 7 H,O 8 ACOH 9 CH,CO 10 CHO 11 CCOO 12 COO 13 CH,O 13 CH,O 13 CH,O 14 CNH, 15 CNH 16 (C),N 17 ACNH, 16 (C),N 17 ACNH, 18 pyridine 19 CCN 20 COOH 21 CCI 22 CCI, 23 CCI, 23 CCI, 24 CCI, 25 ACCI 26 CNO, 27 ACNO, 28 CS, 20 COO, 28 CS, 20 CO, 28 CS, 20 CO, 28 CS, 20 CCI 20 CNO, 28 CS, 20 CCI 20 CNO, 28 CS, 20 CNO, 20 CNO, 2	9 476.4 524.5 25.77 -52.10 84.00 23.39 -195.4 -356.1 0.0 128.0 377.2 n.a. 52.38 n.a. 52.38 n.a. -399.1 -51.54 -287.5 -297.8 286.3 423.2 552.1 372.0 128.1 -142.6 n.a. 303.7	10 677.0 n.a. n.a. n.a. 441.8 306.4 -257.3 n.a. -37.36 0.0 n.a. n.a. n.a. n.a. n.a. n.a. n.a.	11 232.1 71.23 5.994 5688.0 101.1 -10.72 14.42 -449.4 -213.7 n.a. 0.0 -261.1 461.3 n.a. 136.0 n.a. 136.0 n.a. -266.6 -256.3 n.a. -132.9 176.5 129.5 -246.3 n.a. n.a. 243.8	12 741.4 468.7 n.a. 193.1 193.1 193.4 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.	13 251.5 289.3 32.14 213.1 28.06 -180.6 540.5 n.a. 5.202 304.1 -235.7 n.a. -49.30 n.a. -49.30 n.a. n.a. -338.5 225.4 -197.7 -20.93 113.9 n.a. -94.49 n.a. 112.4	14 391.5 396.0 161.7 n.a. 83.02 359.3 48.89 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a	15 255.7 273.6 122.8 -49.29 42.70 266.0 168.0 n.a. n.a. n.a. n.a. 141.7 63.72 0.0 865.9 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.	16 206.6 658.8 90.49 23.50 - 323.0 53.90 304.0 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.
1 CH, 2 C=C 3 ACH 4 ACCH, 5 OH 6 CH,OH 7 H,O 8 ACOH 9 CH,CO 10 CHO 11 CCOO 12 HCOO 13 CHO 11 CCOO 12 HCOO 13 CHO 14 CNH, 15 CNH 16 CC),N 17 ACNH, 18 pyridiae 19 CCN 20 COOH 21 CCI 22 CCI, 23 CCI, 23 CCI, 24 CCI, 25 ACCI 26 CNO, 27 ACNO, 28 CS, 29 CH,SH	9 476.4 524.5 25.77 -52.10 84.00 23.39 -195.4 -356.1 0.0 372.2 n.a. 52.38 n.a. -399.1 -51.54 -287.5 -297.8 286.3 423.2 552.1 372.0 128.1 -142.6 n.a. 303.7 160.6	10 677.0 n.a. n.a. n.a. 441.8 306.4 -257.3 n.a. -37.36 0.0 n.a. n.a. n.a. n.a. n.a. n.a. n.a.	11 232.1 71.23 5.994 5688.0 101.1 -10.72 14.42 -449.4 -213.7 n.a. 0.0 -261.1 461.3 n.a. 136.0 n.a. 136.0 n.a. 136.0 n.a. -266.6 -256.3 n.a. -132.9 176.5 129.5 -246.3 n.a. n.a. 246.3 n.a. n.a. 246.3 n.a. 128.5 1	12 741.4 468.7 n.a. 193.1 193.4 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.	13 251.5 289.3 32.14 213.1 28.06 -180.6 540.5 n.a. 5.202 304.1 -235.7 n.a. 0.0 n.a. -49.30 n.a. n.a. n.a. n.a. n.a. -338.5 225.4 -197.7 -20.93 113.9 n.a. 113.9 n.a. 112.4 63.71	14 391.5 396.0 161.7 n.s. 83.02 359.3 48.89 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a	15 265.7 273.6 122.8 -49.29 42.70 266.0 168.0 n.a.	16 206.6 658.8 90.49 23.50 -323.0 53.90 304.0 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.
1 CH, 2 C=C 3 ACH 4 ACCH, 5 OH 6 CH,OH 7 H,O 8 ACOH 9 CH,CO 10 CHO 11 CCOO 12 HCOO 13 CH,O 14 CNH, 15 CNH 16 (C),N 17 ACNH, 18 pyridine 19 CCN 20 COOH 21 CCI 22 CCI, 23 CCI, 24 CCI, 25 ACCI 26 CNO, 27 ACNO, 28 CS, 29 CH,SH 30 furfural	9 476.4 524.5 25.77 -52.10 84.00 23.39 -195.4 -356.1 0.0 128.0 372.2 h.a. 52.38 h.a. 52.38 h.a. 52.38 h.a. -399.1 -51.54 -287.5 286.3 423.2 552.1 372.0 128.1 -142.6 n.a. 303.7 160.6 317.5	10 677.0 n.a. n.a. n.a. 441.8 306.4 -257.3 n.a. -37.36 0.0 n.a. n.a. -37.36 0.0 n.a. n.a. n.a. n.a. n.a. n.a. n.a.	11 232.1 71.23 5.994 5688.0 101.1 -10.72 14.42 -449.4 -213.7 n.a. 0.0 -261.1 461.3 n.a. 136.0 n.a. 136.0 n.a. 136.0 n.a. -266.6 -256.3 n.a. -132.9 176.5 129.5 -246.3 n.a. -246.3 n.a. -146.3	12 741.4 468.7 n.a. 193.1 193.1 193.1 193.1 193.1 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.	13 251.5 289.3 32.14 213.1 28.06 -180.6 540.5 n.a. 5.202 304.1 -235.7 n.a. 0.0 n.a. n.a. n.a. n.a. n.a. n.a.	14 391.5 396.0 161.7 n.m. 83.02 359.3 48.89 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a	15 255.7 273.6 122.8 -49.29 42.70 266.0 168.0 n.a. n.a. n.a. 141.7 63.72 0.0 865.9 n.a.	16 206.6 658.8 90.49 23.50 -323.0 53.90 304.0 n.a.
1 CH, 2 C=C 3 ACH 4 ACCH, 5 OH 6 CH,OH 7 H,O 8 ACOH 9 CH,CO 10 CHO 11 CCOO 12 HCOO 12 HCOO 13 CH,O 14 CNH, 15 CNH 16 (C),N 17 ACNH, 16 (C),N 17 ACNH, 18 pyridine 19 CCN 20 COOH 21 CCI 22 CCI, 23 CCI, 23 CCI, 24 CCI, 25 ACCI 26 CNO, 27 ACNO, 28 CS, 29 CH,SH 30 furfural 31 DOH	9 476.4 524.5 25.77 -52.10 84.00 23.39 -195.4 -356.1 0.0 128.0 377.2 n.a. 52.38 n.a. 52.38 n.a. 52.38 n.a. -399.1 -51.54 -287.5 -297.8 286.3 423.2 552.1 372.0 128.1 -142.6 n.a. 303.7 160.6 317.5 n.a.	10 677.0 n.a. n.a. n.a. 441.8 306.4 -257.3 n.a. -37.36 0.0 n.a. n.a. n.a. n.a. n.a. n.a. n.a.	11 232.1 71.23 5.994 5688.0 101.1 -10.72 14.42 -449.4 -213.7 n.a. 0.0 -261.1 461.3 n.a. 136.0 n.a. 136.0 n.a. -266.6 -256.3 n.a. -326.3 n.a. -132.9 176.5 129.5 -246.3 n.a. 243.8 n.a. -243.8 n.a. -243.8 n.a. -243.8 n.a. -243.8 n.a. -243.8 n.a. -243.8 n.a. -243.8 n.a. -243.8 n.a. -243.8 n.a. -243.8 n.a. -243.8 n.a. -243.8 n.a. -243.8 n.a. -243.8 n.a. -243.8 n.a. -245.3 n.a. -245.3 n.a. -245.3 n.a. -245.3 n.a. -246.4 -255.3 n.a. -246.3 n.a.	12 741.4 468.7 n.a. 193.1 193.1 193.4 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.	13 251.5 289.3 32.14 213.1 28.06 -180.6 540.5 n.a. 5.202 304.1 -235.7 n.a. -49.30 n.a. n.a. n.a. n.a. -338.5 225.4 -197.7 -20.93 113.9 n.a. -94.49 n.a. 112.4 63.71 n.a. 9.207	14 391.5 396.0 161.7 n.a. 83.02 359.3 48.89 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a	15 255.7 273.6 122.8 -49.29 42.70 266.0 168.0 n.a. n.a. n.a. n.a. 141.7 63.72 0.0 865.9 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.	16 206.6 658.8 90.49 23.50 -323.0 53.90 304.0 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.
1 CH, 2 C=C 3 ACH 4 ACCH, 5 OH 6 CH,OH 7 H,O 8 ACOH 9 CH,CO 10 CHO 11 CCOO 12 HCOO 13 CHO 11 CCOO 12 HCOO 13 CH,O 14 CNH, 15 CNH 16 (C),N 17 ACNH, 18 pyridiae 19 CCN 20 COOH 21 CCI 22 CCI, 23 CCI, 24 CCI, 23 CCI, 24 CCI, 25 ACCI 26 CNO, 27 ACNO, 28 CS, 29 CH,SH 30 furfural 31 DOH 32 I DOH	9 476.4 524.5 25.77 -52.10 84.00 23.39 -195.4 -356.1 0.0 128.0 372.2 n.a. 52.38 n.a. -399.1 -51.54 -297.8 286.3 423.2 552.1 372.0 128.1 -142.6 n.a. 303.7 160.6 317.5 n.a. 138.0	10 677.0 n.a. n.a. n.a. 441.8 306.4 -257.3 n.a. -37.36 0.0 n.a. n.a. n.a. n.a. n.a. n.a. n.a.	11 232.1 71.23 5.994 5688.0 101.1 -10.72 14.42 -449.4 -213.7 n.a. 0.0 -261.1 461.3 h.a. 136.0 n.a. 136.0 n.a. 5.a. -266.6 -256.3 n.a. -266.6 129.5 -246.3 n.a. n.a. 246.3 n.a. 132.9 176.5 129.5 -246.3 n.a. n.a. 243.8 n.a. -146.3 152.0 21.92	12 741.4 468.7 n.a. 193.1 193.1 193.4 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.	13 251.5 289.3 32.14 213.1 28.06 540.5 n.a. 5.202 304.1 -235.7 n.a. 0.0 n.a. -49.30 n.a. n.a. n.a. n.a. n.a. n.a. -338.5 225.4 -197.7 -20.93 113.9 n.a. 112.4 63.71 n.a. 9.207 476.6	14 391.5 396.0 161.7 n.s. 83.02 359.3 48.89 n.a. n.a. n.a. n.a. n.a. n.a. n.a. 108.8 38.89 n.a. n.a. 108.8 38.89 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a	15 265.7 273.6 122.8 -49.29 42.70 266.0 168.0 n.a.	16 206.6 658.8 90.49 23.50 - 323.0 53.90 304.0 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.
1 CH, 2 C=C 3 ACH 4 ACCH, 5 OH 6 CH,OH 7 H,O 8 ACOH 9 CH,CO 10 CHO 11 CCOO 12 HCOO 13 CH,O 14 CNH, 15 CNH 16 (C),N 17 ACNH, 18 pyridine 19 CCN 20 CCOH 21 CCI 22 CCI, 23 CCI, 24 CCI, 25 ACCI 26 CNO, 27 ACNO, 28 CS, 29 CH,SH 30 furfural 31 DOH 32 I 33 Br	9 476.4 524.5 25.77 -52.10 84.00 23.39 -195.4 -356.1 0.0 0.0 372.2 h.a. 52.38 h.a. 52.38 h.a. 52.38 h.a. -51.54 -287.5 -297.8 286.3 423.2 552.1 372.0 128.1 -142.6 n.a. 317.5 h.a. 138.0 -142.6	10 677.0 n.a. n.a. n.a. 441.8 306.4 -257.3 n.a. -37.36 0.0 n.a. n.a. -37.36 0.0 n.a. n.a. n.a. n.a. n.a. n.a. n.a.	11 232.1 71.23 5.994 5688.0 101.1 -10.72 14.42 -449.4 -213.7 n.a. 0.0 -261.1 461.3 n.a. 136.0 n.a. 136.0 n.a. -266.6 -256.3 n.a. -132.9 176.5 129.5 -246.3 n.a. 129.5 -246.3 n.a. -146.3 152.0 21.92 n.a.	12 741.4 468.7 n.a. 193.1 193.1 193.4 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.	13 251.5 289.3 32.14 213.1 28.06 -180.6 540.5 n.a. 5.202 304.1 -235.7 n.a. 0.0 n.a. n.a. n.a. n.a. n.a. n.a.	14 391.5 396.0 161.7 n.m. 83.02 359.3 48.89 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a	15 255.7 273.6 122.8 -49.29 42.70 266.0 168.0 n.a. n.a. n.a. 141.7 63.72 0.0 865.9 n.a.	16 206.6 658.8 90.49 23.50 -323.0 53.90 304.0 n.a.
1 CH, 2 C=C 3 ACH 4 ACCH, 5 OH 6 CH,OH 7 H,O 8 ACOH 9 CH,CO 10 CHO 11 CCOO 12 HCOO 12 HCOO 13 CH,O 14 CNH, 15 CNH 16 (C),N 17 ACNH, 18 pyridine 19 CCN 20 COOH 21 CCI 23 CCI, 23 CCI, 24 CCI, 25 ACCI 26 CNO, 27 ACNO, 28 CS, 29 CH,SH 30 Furfural 31 DOH 32 I 33 Br 34 C=C	9 476.4 524.5 25.77 -52.10 84.00 23.39 -195.4 -356.1 0.0 128.0 377.2 n.a. 52.38 n.a. 128.0 377.2 n.a. 52.38 n.a. -399.1 -51.54 -287.5 -297.8 286.3 423.2 552.1 372.0 128.1 -142.6 n.a. 138.0 -142.6 443.6	10 677.0 n.a. n.a. n.a. 441.8 306.4 -257.3 n.a. -37.36 0.0 n.a. n.a. n.a. n.a. n.a. n.a. n.a.	11 232.1 71.23 5.994 5688.0 101.1 -10.72 14.42 -449.4 -213.7 n.a. 0.0 -261.1 461.3 n.a. 136.0 n.a. 136.0 n.a. 256.3 n.a. -266.6 -256.3 n.a. -132.9 176.5 129.5 -246.3 n.a. 243.8 n.a. -146.3 152.0 21.92 n.a. -1.62 152.0 21.92 n.a. -1.62 152.0 21.92 n.a.	12 741.4 468.7 n.a. 193.1 193.1 193.4 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.	13 251.5 289.3 32.14 213.1 28.06 -180.6 540.5 n.a. 5.202 304.1 -235.7 n.a. -49.30 n.a. -49.30 n.a. n.a. -49.30 n.a. -197.7 -20.93 113.9 n.a. -94.49 n.a. -94.49 n.a. -94.49 n.a. -93.65 n.a. -97.7 -20.93 113.9 n.a. -97.7 -20.93 113.9 n.a. -97.7 -20.93 113.9 n.a. -97.7 -20.93 113.9 n.a. -97.7 -20.93 113.9 n.a. -97.49 -77.47.66 -77.49 -77.	14 391.5 396.0 161.7 n.a. 83.02 359.3 48.89 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a	15 255.7 273.6 122.8 -49.29 42.70 266.0 168.0 n.a. n.a. n.a. 141.7 63.72 0.0 865.9 n.a. 141.7 63.72 0.0 865.9 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.	16 206.6 658.8 90.49 23.50 - 323.0 53.90 304.0 n.a.

(Fredenslund et al., 1977; Skjold-J ϕ rgensen et al., 1979; Gmehling et al., 1982; Macedo et al., 1983; Tiegs et al., 1987)

TABELA

А.З	:	PARAMETROS	ENERGÉT
		(CONTINUAÇÃO)).

FICOS

.

MÉTODO

DO

UNIFAC

							*	
	9	10	11	12	13	14	15	16
36 ACRY	n.a.	n.a.	n.a.	n.a.	n.a.	D,ä.	n.a.	D.A.
37 CICC	-8.671	n.a.	-18.87	n.a.	-209.3	n.a.	n.a.	n.a.
38 AUF 39 DMP	0.8. 97 04	ກ.ສ. ກຸສ	D.8. D.8	EL.H. 22 B	- ¹⁵ .1.	n.a.	Л.Я. Л.А	11.R. 13.8
40 CF,	n.a.	n.a. n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	17	18	19	20	21	22	23	24
1 CH.	1245.0	287.7	597.0	663.5	35.93	53.76	24,90	104.3
2 C=Ć	n.a.	D.a.	405.9	730.4	99.61	337.1	4584.0	5831.0
3 ACH	668.2	-4.449	212.5	537.4	-18.81	-144.4	-231.9	3.000
4 ACCH,	764.7	52.80	6096.0 c 712	603.8 108.0	-114.1	12.8. 119.1	-12.14	-141.3
6 CH.OH	335.5	580.5	36.23	- 289.5	-38.32	-102.5	-139.4	-67.80
7 H,Ó	213.0	459.0	112.6	-14.09	325.4	370.4	353.7	497.5
8 ACOH	n.a. 027 A	-305.5	n.ä.	B.R.	n.a.	n.a. 084.0	п.а. Эсле	1827.0
10 CHO	D.A.	109.1	401./ D.X.	009.4	751.9	~ 404.U n.a.		-35.20 n.a.
11 CCOO	n.a.	D.A.	494.6	660.2	n.a.	108.9	-209.7	54.47
12 HCOO	n.a.	n.a.	n.a.	-356.3	п.а.	n.a.	-287.2	n.a.
13 CH ₂ O 14 CNH	<u>ព.a.</u> ព.ន	n.a.	n.a.	004.0 n.s	301.1	137.5 na	-104.J	-99.81
15 CNH	D.8.	n.a.	n.a.	D.8.	n.a.	n.a.	11.8.	71.23
16(C),N	n.a.	B.a.	n.a.	n.a.	п.а.	-73.85	-352.9	-8.283
17 ACNH,	0.0	n.a.	-216.8	B.8.	n.a.	n.a. 951 <i>6</i>	n.a.	8455.0
19 CCN	617.1	134 3	~109.1	10 <i>3.1</i>	n.a. n.a	201.0 na	-15.62	-54.86
20 COOH	n.a.	-313.5	n.a.	0.0	44.42	-183.4	76.75	212.7
21 CCI	11.8.	n.a.	n.a.	326.4	0.0	108.3	249.2	62.42
22 CCl,	n.a.	587.3	ກ.ສ.	1821.0	-84.53	0.0	0.0	56.33
23 CCI, 24 CCI.	1301.0	10.90	79.04 492.0	1340.0	-107.1	0.0	0.0 51.90	-30.10
25 ACCI	323.3	n.a.	356.9	n.a.	-314.9	n.a.	n.a.	-255.4
26 CNO,	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	-34.68
27 ACNO,	5250.0	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	514.6
28 CS, 29 CH, SH	10.8. 11.8	л.а. ља	335.7	П.В. В.Э	-73.09	п.а. п.а		-00.71 b a
30 furfural	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	48.48	-133.1
31 DOH	164.4	B.8_	n.a.	D.8 .	n.a.	D.a.	n,a.	D.#.
32 I 33 Br	П.А. П.Э	n.a.	n.a.	វា.ដ.	D.B. 1160 0	-40.82	21.76	48.49
34 C≡C	n.a.	n.a.	329.1	n.a.	n.a.	n.a.	n.a.	D.a.
35 Me,SO	n.a.	n.a.	n.a.	n.a.	n.a.	-215.0	-343.6	-58.43
36 ACRY	n.a.	n.a.	-42.31	n.a.	R.8.	n,a.	D.a.	D.8.
38 ACF	n.a.	n.a. n.a	250.4	2344.0	201,7	п.а. n a	89.3Z	-124.6
39 DMF	335.6	n.a.	n.a.	n.a.	8.1.	B.8.	n.a.	-186.7
40 CF,	D.8.	D.8 .	n.a.	n.a.	n.a	n.a.	n.a.	n.a.
	25	26	27	28	29	30	31	32
1 CH,	321.5	661.5	543.0	153.6	184.4	354.5	3025.0	335.8
3 ACH	538.2	168.0	194.9	52.07	-10 43	-64.69	210.4	113.3
4 ACCH,	-126.9	3629.0	4448.0	-9.451	B.4.	~20.36	4975.0	n.a.
5 OH	287.8	61.11	157.1	477.0	147.5	-120.5	-318.9	313.5
7 H.O	678.2	220.6	п.а. 399.5	~31.09	37.84 DA	n.a. 188.0	n.a. 0.0	n.a. n.s.
8 ACOH	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	-687.1	n.a.
9 CH,CO	174.5	137.5	n.a.	216.1	-46.28	-163.7	n.a.	53.59
10 CHO 11 CCOO	л.а. 629 л	13.8. 13.9	р.а. г.а	ជ.a. 183 ភ	<u>ክ.</u> ጀ.	D.A. 202 2	n.a. 101 7	n.a. 148 3
12 HCOO	n.a.	n.a.	11.8. 11.8.	n.a.	4.339	n.a.	-101.7 n.a.	n.a.
13 CH,O	n.a.	95.18	n.a.	140.9	-8.538	D.8.	-20.11	-149.5
14 CNH,	68.81 4350 0	D.a.	n.a.	n.a.	-70.14	n.a.	B.a.	n.a.
16 (C).N		n.a.	n.a.	n.a.	n.a. n.a.	n.a.	n.a. n.a.	n.a.
17 ACNH,	699.1	n.a.	-62.73	n, a,	n.a.	n.a.	125.3	D.a.
18 pyridine	n.a.	n.a.	D.8.	B.2.	n.a.	n.a.	D.a.	D.8.
19 CCN 20 COOH	52.31 D.#	n.a.	n.a.	230.9	21.37	n.a.	n.a.	R.a.
21 CCI	464.4	n.a.	n.a.	450.1	59.02	n.a.	11.年. 四.来.	n.a.
22 CCI,	n.a.	n.a.	n.a.	D.2.	D.8.	n.a.	n.a.	177.6
23 CCI, 24 CC7	n.a. 475 e	n.a. 490 0	n.s. 524 7	116.6	R.A.	-64.38	n.a.	86.40
25 ACCI	0.0	400.9 -154.5	004.1 11.8.	132.2 D.8.	印.黑. 11.里.	040.7 B.A.	以出。 11.8.	291,0 D.8.
26 CNO,	794.4	0.0	533.2	n.a.	n.a.	n.a.	139.8	304.3
27 ACNO,	n.a.	-85.12	0.0	n.a.	n.a.	B.8.	n.a.	n.a.
28 CS,	D.8.	n.a.	D.a	0.0	11. 2 .	n.a.	n.a. /	D.A

(Fredenslund et al., 1977; Skjold-J ϕ rgensen et al., 1979; Gmehling et al., 1982; Macedo et al., 1983; Tiegs et al., 1987)

.

Α.3

UNIFAC

MÉTODO

DO

TABELA	
--------	--

PARAMETROS ENERGÉTICOS : (CONTINUACÃO)

	25	26	27	.28	29	30	31	32	
29 CH,SH	n.a.	n,a.	B.#.	n.a.	0.0	n.a.	n.	n.a.	
30 furfural	n.#.	n.a.	Ŋ.A.	n.a.	n.a.	0,0	n.#.	B.8 .	
31 DOH -	n.a.	481.3	ß.a.	n.a.	D.2 .	n.s.	0.0	n.a.	
321	n.a.	64.28	R.9.	n.a.	n.s.	n.a.	n.a.	0.0	
33 Br	224.0	125.3	n.z.	n.a.	B.a.	D.R.	13. 8.	n.a.	
34 C≕C	n.a.	174.4	n.a.	n.a.	R.8.	n.a.	11,B.	n.s.	
35 Me ₂ SO	n.a.	n.a.	D.A.	n.a.	85.70	n.a.	535.8	n.a.	
36 ACRY	n.a.	n.a.	趋,朱.	D.A.	n.a.	n.a.	n.a.	л.a,	
37 CICC	ព.ដ.	313.8	n.a.	167.9	D.a .	П. А .	<u>n.</u> #,	n.a.	
38 AUF	n.a.	n.a.	n.a.	n.a.	n.a.	D.a.	n.a.	n.a.	
39 DMF	n.a.	n,a.	n,a.	n.a.	-71.00	B.R.	-191.7	n.a.	
40 CF,	n.a.	n.a.	n.a .	n.a	n.a.	n.a,	n.a.	n.a.	·
	33	34	35	36	37	38	39	40	
1 CH,	479,5	298.9	526.5	689.0	-0.505	125.8	485.3	-2.859	
2 C=C	n.a.	523.6	n.a.	n.a.	237.3	B.a.	320.4	n.a.	
3 ACH	-13.59	n.a.	169.9	n.a.	69.11	389.3	245.6	n.a.	
4 ACCH,	-171.3	n,a.	4284.0	n.a.	n.a.	101.4	5629.0	n.a.	
b OH	133.4	n.#*	-202.1	n.a.	253.9	44.78	-143.9	n.a.	1
ь сн,он	n. a.	n.a.	-399.3	n.a.	-21.22	-48.25	-172,4	n.a.	
7 H,O	n,a,	n,a.	-139.0	160.8	n,a,	n.a.	319.0	n.a.	
8 ACOH	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a,	
9 CH,CO	245.2	-246.6	-44.58	n.a.	-44.42	n.a.	-61.70	n.a.	
10 CHU	n.a.	п.а.	n,a,	n.a.	n.a.	n.s.	四.崔.	n.a.	
110000	n.s.	n,a.	52.08	D.A.	-23.30	B.8.	n <u>a</u> ,	n.a.	
12 HCOO	n.a.	n.a.	n,a,	п.а.	n.a.	n.a.	B.B.	ກ.ສ.	
13 CH U	-202.3	n.a.	172.1	n.a.	145.6	n.a.	254.8	n.a.	
14 CNH,	n.a.	n,a.	n.s.	n.a.	D.A.	ກ.ສ.	n.º.	п.а.	
15 UNH	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	
16 (C),N	n.a.	13.4.	n.a.	D.ä.	n.a.	n.a.	n.a.	n.a.	
17 AUNH,	n.a.	n.a.	n,a.	n.a.	n.a.	D. R.	-293.1	n.a.	
18 pyridine	n.a.	<u>п.а.</u>	n.a.	n.a.	n.a.	n.a.	11,8.	n.a.	
19 CCN	n.a.	~203.0	n.a.	81.57	-19.14	n.a.	n. a .	n.a.	
20 COOH	n.a.	n.a.	n.a.	n.a.	~90.87	n.a.	n. s .	n.a.	
21 CCI	-125.9	n.a.	n.a.	п.а.	-58.77	n.a.	n.a.	II.R.	
22 CCI,	n.a.	B.#.	215.0	n.a.	n.a.	n.a.	n.a.	B.S.	
23 CCI,	13.a.	n,a.	363.7	n.a.	-79.54	D.a.	D.B .	n.a.	
24 CCI,	41.94	D.A.	337.7	n.a.	-86.85	215.2	498.6	n.a.	
25 AUCI	-60.70	n.a.	n.a.	R.A.	10.a.	n.a.	R.24.	n.a.	
26 CNU,	10.17	-27.70	0.8.	n.a.	48.40	n.a.	n.a.	n.a.	
27 AUNO,	n.a.	n.a.	n.a.	11.a.	n.a.	n.a.	n.a.	n.a.	
28 CS,	n.a.	n.a.	n.a.	п.а.	-47.37	n.a.	n.a.	n.a.	
29 CH,SH	n.s.	n.a.	31.66	n.a.	D.8,	B.2.	78.92	A.8.	
30 Iuriural	D.8.	n.a.	n.a.	n.a.	B.S .	n.a.	n.a.	D.a.	
31 DOH	n.a.	Ю. в.	-417.2	D.8 .	n.a.	n. <u>e</u> .	302.2	n.a.	
321	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	D.2 .	
33 Br	0.0	n.a.	B. 8.	n.a.	12.8.	n.a.	D.A.	n.a.	
34 C=C	n.a .	0.0	n.a.	n.a.	n.a.	D.a.	119.8	D.a.	
35 Me,SO	n.a.	n.a.	0.0	n.a.	n.a.	n.a.	-97.71	D.a.	
35 ACKI	n.a.	П.А.	n.a.	0.0	n.a.	D.8.	n.a.	D.a.	
37 CICC	ព.ន.	D,2.	n.a.	n.a.	0.0	D.a.	n.a.	n.a.	
38 AUF	n.a.	D.2.	D.8.	D.a .	n,a.	0.0	n.a.	D.8.	
39 DMF	n.a.	6.699	136.6	n.a.	n.a.	D.A.	0.0	n.a.	
40 CF,	n.a.	D.8.	n.a.	n.a.	n.a.	D.2.	n.#.	0.0	
n.a. = not availabl	e		·····	~~~ .	· · · ·		• •		
			-		~	.			4
Fredens	lund	et a	al.,	1977;	: Skj	old-J	φrgen	sen	eι

(1983; Tiegs et al., 1987) TABELA A.4 :PARAMETROS DE CONTRIBUIÇÃO DE GRUPOS PARA
CÁLCULO DE $\Delta g'_k$ (cal/g-mol) - MÉTODO DE PREDIÇÃO DE
PRESSÃO DE SATURAÇÃO.

	group	A _{k,1}	A k. 2	A _{k,3}	Ak.4	
	CH,	-0.203122 × 10*	-0.849432 × 104	0.221895 × 10'	0.152689 × 104	~
	CH,	0.903611 × 10*	-0.711573 × 104	- 0.788164	0.111290 × 104	
	CH _{2(cve)}	-0.883293 × 104	0.119073 × 10 ⁴	0.279668 x 10 ¹	-0.213533 x 10 ⁴	
	CH	-0.104980 × 10*	0.481727 × 104	-0.125106 x 10 ¹	-0.109249 × 104	
	CH(eve)	0.268196 × 10'	-0.110942×10^{4}	-0.312966 x 10 ²	0.191274 × 10 ⁴	
	C	-0.870419 × 10*	0.130180 × 10 ⁴	-0.184980 × 10 ¹	-0.274945 × 10*	
	C _(crc)	0.918826 × 10*	-0.210510 × 104	-0.118919 x 10 ³	0.329737 × 10 ³	
	ACH	-0.931797 × 104	-0.398271 × 104	0.181363 × 10 ¹	0.573457 × 10°	
	ACCH,	-0.562015 × 10 ³	-0.680379 × 104	0.197934 x 10 ¹	0.917902 × 10°	
	ACCH,	-0.922395 × 104	0.247224 × 10 ¹	0.394721 × 10 ¹	-0.444217 × 104	
	ACCH	0.116462 × 10*	-0.338009 x 10 ^s	-0.127495 × 101	0.524373 × 104	
	AC	0.202922 × 10 ⁺	-0.531721×10^{3}	-0.102153 × 10 ¹	0.843247 × 104	
	CH=CH,	0.563854 × 10*	-0.149046 × 10*	-0.158269 × 10*	0.268735 × 104	
	CH,Cl	-0.593885 × 10*	0.867711 × 10'	0.502551 × 10 ¹	-0.220564 × 103	
	CH,CO	-0.237302 × 10'	0.512928 × 10 ⁴	0.159570 x 10'	-0.878324 × 10*	
ı	COOH	0.694406 × 107	-0.238682 × 10*	-0.371547 × 103	0.388440 x 10 ^s	
? ;	ОН	-0.166798 × 10'	0.141393 × 10'	0.729408 x 10 ¹	-0.229812 × 104	•
	CH,NH,	0.104766 × 107	-0.546368 x 10'	-0.592314×10^{1}	0.908672 × 104	• -
	CH,NH	0.806988 × 10*	-0.416873 x 10 ³	-0.754669 x 10 ¹	0.685048 × 104	
	CH,N	-0.354410 x 10'	0.123499 x 10°	0.355438 x 10 ³	-0.220609×10^{4}	
	CH,N	-0.158143 x 10'	0.446149 x 10 ³	0.121605 x 10 ²	-0.779660 x 104	
	CH,NH	-0.161010 x 10'	0.855340 × 10'	0.140934×10^{2}	-0.617380 × 10*	
	C,H,N	0.107789 × 10°	-0.325447 x 104	-0.533593 x 10 ³	0.526413 × 10 ³	
	C,H,N	-0.147266 x 10"	0.432234 × 10*	0.106877 x 10 ³	-0.734930 x 10*	
	C,H,N	-0.242963 x 104	-0.234952 x 10'	0.116452 × 10 ²	0.328253 × 104	
	CH,CN	-0.977179 x 104	-0.326107 x 104	0.458306 x 10'	0.425371 x 103	
	CH,O	-0.204191 × 107	0.713658 × 10 ⁴	0.243411 x 10 ³	-0.128908 x 10 ³	
	CH,O	0.533539 x 10 ³	-0.275639 × 104	-0.102255 x 10 ³	0.505727 x 10'	
	CH,CO,	0.128660 x 10 ⁷	-0.694162 x 10'	-0.975105 x 10 ¹	0.116031 x 10 ³	
	CH,CO,	-0.830264 x 10'	0.966894 x 10 ³	0.281759 x 10 ³	-0.170763 x 10'	
	CH,CO	0.120918 x 10 [*]	-0.385661 x 10*	-0.766927 x 10'	0.639894 × 10'	

(Jensen et al., 1981; Yair e Fredenslund, 1983)

— PÅG. 167

- APENDICE A

- PAG. 168

TABELA A.5 •• PARAMETROS CALCULO DE PRESSAO DE SATURAÇÃO. DE CONTRIBUIÇÃO DE Ag'(cal/g-mol) - MÉTODO GRUPOS PARA DE PREDIÇÃO DE

	group	Ak,5	Ah,6	Ak.T	Ak.8	Ak,9	A _{#,10}	An,11	Ak.12
(CH2(ore)	-0.341737 x 10*	0.216291 × 10*						
	СН	-0.878555 x 10*	-0.195243 x 10*						
	CH(ere)	0.119558 x 10 [*]	-0.260020 × 10*	-0.953289 × 10 ³	-0.489581 × 10°	0.146664 × 10 ¹	-0.928172 × 10*	-0.628916 × 10*	-0.222407 × 10 ³
	C C	-0.116835 X 10"	-0.168506 X 10	-0.697207 X 10'	0.100100.000	0.154500 101			
	1978	-0.163124 X 10"	0.16/016 X 10*	-0.740700 X 10.	0.175163 X 10 ⁴	-0.174720 X 10*			
	ACCH		-U.704310 X 1V						
	AC	-0.117303 × 10 ¹	-0.102321 x 10 ⁴	0 397002 x 10 ¹	0 164979 x 103				
	CH=CH.	0.177128 x 10 ³	-0.468728 x 10 ¹						
	CH.CO	-0.210478 × 10*	0.101043 x 10'						
	COOH	-0.177004 x 10*	0.993018 × 10 ¹	0.965897 × 10°	-0.111967 x 10 ¹				
	он	-0.334003 x 10"	-0.242788 × 10;*	0.374986 x 10 ⁹	-0.527978	0.888892 x 10 ³	0.174418 x 10*		
	CH,NH,	-0.556528 x 10*	0.151224 x 10 ⁴	-0.627769 x 10*	0.253440 x 10 ¹	50 60 C	۰.		-
	CHINH	-0.715620 x 10 ⁴	0.251008 x 10"	-0.878395 x 10'					
	CH,N	-0.129186 x 10 ⁴	0.194803 x 10'	0.360922 × 10 ³	-0.742498 x 10°				
	CH,N	-0.441480 x 10 ¹							
	CHINH	-0.148039 x 10*	0.217696 X 10	0.118201 × 10'					
		0.367985 X 10*	-0.130782 X 10						
	CH CN	0.1/0002 X 10*	-0.901089 X 10						
	CHLO	-0.0000000 X 10	0.160364 v 10	0 317000 v 104	A 909065 v 104				
	CH Ŏ	0.138187 v 104	_0.553397 x 10 ¹	_0.335588 v 10 ³	-0.303000 X 10 0.100284 x 10 ¹				
	CH.CO.	-0.678352 x 10 ³	0.155927 x 10 ¹	-0.000000 / 14	0.100204 × 10				
	CH,CO,	-0.379594 x 103	0.484397 x 10°	-0.503338 x 10 ¹	0.124660 x 10 ^{1.}				
	CH,CO	0.143959 x 10*	-0.313380 x 101	0.926968 × 10	-0.262270 × 101				

*

Jensen et

 \sim

		έ Δ	
·	T,	P _c	V,
Nonring increments:			
$-CH_3$	0.0141	-0.0012	65
$>CH_2$	0.0189	0	56
>CH-	0.0164	0.0020	41
>C<	0.0067	0.0043	27
$=CH_2$	0.0113	-0.0028	56
= CH -	0.0129	-0.0006	46
=C<	0.0117	0.0011	38
=C=	0.0026	0.0028	36
≡CH	0.0027	-0.0008	46
=C-	0.0020	0.0016	37
Ring increments:			
-CH ₂ -	0.0100	0.0025	48
>CH-	0.0122	0.0004	38
>C<	0.0042	0.0061	27
=CH-	0.0082	0.0011	41
=C<	0.0143	0.0008	32
Halogen increments:		•••••	
-F	0.0111	-0.0057	27
-Cl	0.0105	-0.0049	58
-Br	0.0133	0.0057	71
-1	0.0068	-0.0034	97
Oxygen increments:			•.
-OH (alcohol)	0.0741	0.0112	28
-OH (phenol)	0.0240	0.0184	- 25
$-\mathbf{O}-$ (nonring)	0.0168	0.0015	18
$-\mathbf{O}-(\mathbf{ring})$	0.0098	0.0048	13
>C=O (nonring)	0.0380	0.0031	62
>C=O(ring)	0.0284	0.0028	55
O = CH - (aldehvde)	0.0379	0.0020	82
-COOH (acid)	0.0791	0.0077	89
-COO- (ester)	0.0481	0.0005	82
=0 (except as above)	0.0143	0.0101	36
Nitrogen increments:			
$-NH_2$	0.0243	0.0109	38
>NH (nonring)	0.0295	0.0077	35
>NH (ring)	0.0130	0.0114	29
>N- (nonring)	0.0169	0.0074	9
$-\mathbf{N} = (\text{nonring})$	0.0255	- 0.0099	_
-N = (ring)	0.0085	0.0076	34
-CN	0.0496	-0.0101	91
NO ₂	0.0437	0.0064	91
Sulfur increments:			
-SH	0.0031	0.0084	63
-S- (nonring)	0.0119	0.0049	54
-S- (ring)	0.0019	0.0051	38

TABELA A.6 : PARAMETROS DE CONTRIBUIÇÃO DE GRUPOS PARA O MÉTODO JOBACK.

(Reid et al., 1987)

	functional		•	
series	group	bf	b _{fc}	r _f
alcohola	OH	179.75	-15.35	0.88
ethers	0	72.83	-6.98	0.93
ketones ·	C(==0)	126.16	-10.17	(0.83)
carboxylic acida	C(0)OH	235.91	-16.64	(0.84)
aldehydes	C(==0)H	119.29	9.32	(0.84)
esters	C(0)0	124.51	-10.39	(0.83)
amines				
primary	NH,	109.52	-6.81	0.94
secondary	NH	86.20	-7.27	(0.94)
tertiary	Ν	60.94	-4.51	0.55
amides				
1	$C = 0 NH_2$	361.4	-35.80	(0.76)
2	C(=0)NHR	325.41	-30.32	(0.78)
3	C(==0)NRR'	276.30	-28.91	(0.63)
nitriles	CN	171.31	-12.57	(0.77)
nitros	NO ₂	222.34	-16.08	0.70
thiols	SH	139.04	-8.73	(0.81)
sulfides	S	133.38	-7.47	(0.82)
halides				
fluorides	F	49.05	-3.42	0.83
chlorides	Cl	108.14	6.76	0.75
bromides	Br	135.23	-8.61	0.83
iodides	I	178.36	-9 .79	0.77

TABELA A.7 : CONSTANTES CARACTERÍSTICAS DOS GRUPOS FUNCIONAIS -TEMPERATURA DE EBULIÇÃO.

a = 103.59; $b_c = 44.34$; $r_c = 0.94$. Os valores de r_f dentro dos parênteses foi obtido por predição (Lai et al., 1987)

TABELA A.8 : VALORES DE PARAMETROS DE INTERAÇÃO ENTRE DIFERENTES GRUPOS FUNCIONAIS. - TEMPERATURA DE EBULIÇÃO.

				grou	ф А				
group B	OH	C(-O)OH	0	NH ₂	NH	CN	NOz	Cl	Br
OH									
C(==0)0H	(-28.53)								
0	-14.88	(-14.08)							
NH ₂	4.18	(-15.84)	(-6.02)					•	ς.
NH	-4.26	(-13.97)	(-5.20)	(-5.87)					
CN	(-21.98)	(-40.83)	(-14.37)	(-17.73)	(-15.05)				
NO ₂	(-40.27)	(-53.17)	(-18.70)	(-23.10)	(-19.60)	(-51.26)			
Cl	-30.97	-27.26	-13.16	(-16.93)	(-14.02)	9.86	-36.00		
Br	-39.75	-31.71	-16.26	(-13.37)	(-11.38)	(-27.61)	-32.58	-23.66	

Valores entre parênteses são estimados (Lai et al., 1987)

------ PÁG. 170

APENDICE B

.

---- APENDICE B ------

DEMONSTRAÇÃO DAS EQUAÇÕES (3.13) E (3.14) :

Correlação de Tsonopoulos para um componente κ genérico, equações (3.9) a (3.12) :

$$\frac{B_{k} P_{ck}}{P_{ck}} = f^{(0)}(T_{Rk}) + \omega_{k} f^{(1)}(T_{Rk}) + f^{(2)}(T_{Rk})$$
(3.9)

onde

$$f^{(0)}[T_{\mathbf{R}k}] = 0.1445 - \frac{0.330}{T_{\mathbf{R}k}} - \frac{0.1385}{T_{\mathbf{R}k}^2} - \frac{0.0121}{T_{\mathbf{R}k}^3} - \frac{0.00067}{T_{\mathbf{R}k}^3}$$
 (3.10)

$$f^{(1)}[T_{Rk}] = 0.0637 - \frac{0.331}{T_{Rk}^2} - \frac{0.423}{T_{Rk}^3} - \frac{0.008}{T_{Rk}^8}$$
(3.11)

$$f^{(2)}[T_{Rk}] = \frac{a_k}{T_{Rk}^{\sigma}} - \frac{b_k}{T_{Rk}^{B}}$$
 (3.12)

Considerando as temperaturas em Kelvin :

$$T^{+} = T + 10$$
 (B.1)
 $T^{-} = T - 10$ (B.2)

tem-se :

$$T_{Rk}^{+} = T^{+} / T_{ck}$$
 (B.3)
 $T_{Rk}^{-} = T^{-} / T_{ck}$ (B.4)

---- APENDICE B -----

------ PĂG. 173

A equação 3.12 aplicada na temperatura T⁺, resulta em :

$$f^{(2)}[T_{Rk}^{+}] = \frac{a_{k}}{(T_{Rk}^{+})^{\sigma}} - \frac{b_{k}}{(T_{Rk}^{+})^{\theta}}$$
(B.5)

Repetindo-se a aplicação anterior para a temperatura T^{-} obtem-se :

$$f^{(2)}[T_{Rk}^{-}] = \frac{a_{k}}{(T_{Rk}^{-})^{\sigma}} - \frac{b_{k}}{(T_{Rk}^{-})^{\theta}}$$
 (B.6)

Isolando-se o fator de polaridade a_k da equação (B.5), chega-se a seguinte equação :

$$a_{k} = \left[f^{(2)}[T_{Rk}^{+}] + \frac{b_{k}}{(T_{Rk}^{+})^{8}} \right] (T_{Rk}^{+})^{6}$$
(B.7)

Multiplicando-se a equação (B.6) por $(T_{Rk}^{-})^{\sigma}$ e substituindo-se a equação (B.7), a equação resultante é :

$$f^{(2)}[T_{Rk}^{-}] (T_{Rk}^{-})^{\sigma} = f^{(2)}[T_{Rk}^{+}] (T_{Rk}^{+})^{\sigma} + b_{k} \left[\frac{1}{(T_{Rk}^{+})^{2}} - \frac{1}{(T_{Rk}^{-})^{2}} \right]$$
(B.8)

Portanto :

$$b_{k} = \frac{f^{(2)}[T_{Rk}^{-}] (T_{Rk}^{-})^{\sigma} - f^{(2)}[T_{Rk}^{+}] (T_{Rk}^{+})^{\sigma}}{\left[\frac{1}{(T_{Rk}^{+})^{2}} - \frac{1}{(T_{Rk}^{-})^{2}}\right]}$$
(B.9)

Substituindo-se então a equação (B.9) em (B.7) :

$$a_{k} = f^{(2)} [T_{Rk}^{+}] (T_{Rk}^{+})^{\sigma} + \frac{f^{(2)} [T_{Rk}^{-}] (T_{Rk}^{-}]^{\sigma} - f^{(2)} [T_{Rk}^{+}] (T_{Rk}^{+})^{\sigma}}{(T_{Rk}^{+})^{2} [\frac{1}{(T_{Rk}^{+})^{2}} - \frac{1}{(T_{Rk}^{-})^{2}}]}$$
(B.10)

ou

$$a_{k} = f^{(2)}[T_{Rk}^{+}] (T_{Rk}^{+})^{\sigma} + \frac{(T_{Rk}^{-})^{2}}{(T_{Rk}^{-})^{2} - (T_{Rk}^{+})^{2}} \begin{bmatrix} f^{(2)}[T_{Rk}^{-}] (T_{Rk}^{-})^{\sigma} - f^{(2)}[T_{Rk}^{+}] (T_{Rk}^{+}]^{\sigma} \end{bmatrix}$$

$$f^{(2)}[T_{Rk}^{+}] (T_{Rk}^{+}]^{\sigma} \end{bmatrix} \qquad (B.11)$$

c.q.d.

onde o subscrito k representa um componente genérico; a e b são parâmetros de correção polar.

. . /

.

APÉNDICE С

- APENDICE C -----

,

EXEMPLOS DE RESULTADOS DE PREDIÇÃO DE ELV

UNICAMP/FEQ DEPARIAMENTO DE PROCESSOS QUIMICOS LABORATORIO DE PROPRIEDADES TERMODINAMICAS

CALCULO DE ORVALHO ISOBARICO

SISTEMA : ETANOL/2-PROPANOL COMPONENTE 1 : ETANOL COMPONENTE 2 : 2-PROPANOL

Propriedades termodinamicas de componente puro

COMPONENTES	TebN	PsatN	TC	PC	VC	W	VLM
	(K)	(atm)	(K)	(atm)	(cm3/g-mol)		(cm3/g-mol)
1	339.58	0.92	502.43	56.81	166.50	0.829	47.68
2	345.30	0.92	504,48	47.92	216.50	0.748	57.67

Segundo coeficiente virial Bij Temperatura (C) : 50.000

۶	6.11	he	1.5	s cur	a	٤.	С.	,	-	30.000
	i	1	j			1				2
-	1			- 5	41	1.3	594	17		-1150.6408
	2			-11	50).e	5 40	8		-1386.8223

Coeficiente de atividade

PONTOS	GAMA 1	GAMA 2
	1.0130	1.0000
2	1.0091	1.0004
3	1.0067	1.0013
4	1.0052	1.0022
5	1.0050	1.0023
6	1.0031	1.0042
7	1.0029	1.0044
8	1.0019	1.0061
9	1.0010	1.0082
10	1.0005	1.0101
11	1.0003	1.0115
12	1.0000	1.0159
		and they shall shap any "this diffe wat show may like

Dedos de Equilibrio Liquido-Vapor (P = 759.96 (mmHg))

Y1 е хр	X 1	Хехр	Xexp - X1	Т (>:С)	Техр (жС)	Техр — Т (жС)
0.0000	0.0000	0.0000	0.0000	83.11	82.39	-0.72
0 1935	0.1942	0.1800	-0.0142	83.02	81.50	-1.52
0.3235	0.3251	0.3020	-0.0231	82.93	81.15	-1.78
0 4140	0.4164	0.3655	-0.0509	82.88	80.88	-2.00
0 4275	0.4300	0.4010	-0.0290	82,88	80.68	-2.20
0 5600	0.5634	0.5140	-0.0494	82.85	80.27	-2.50
0.5725	0.5759	0.5410	-0.0349	82.85	80.10	-2.75
0 6620	0.6657	0.6270	-0.0367	82.86	79.90	-2.96
0.7536	0.7572	0.7182	~0.0390	82.87	79.57	-3.30
0.9250	0 9292	0.7916	-0,0366	82.91	79.03	-3.98
0.0200	0.8731	0.8606	-0.0125	82.94	78.95	-3.99
1.0000	1.0000	1.0000	0.0000	83.06	78.46	~ -4.60

Desvio absoluto medio em T (C) : 2.69

.

- APENDICE C -----

UNICAMP/FEQ DEPARTAMENTO DE PROCESSOS QUIMICOS LABORATORIO DE FROPRIEDADES TERMODINAMICAS

CALCULO DE BOLHA ISOBARICO

SISTEMA ± ET CONFONENTE J COMPONENTE 2 Proprie	nNOL /2 14 I LinNO I I 2-PRO dades tei	an And " "ANOL "modina	micas de	сотрол	ente puro		
COMPUNENTES	lebN	f'satN	IC.	FC	VC	W	VLM
	(К)	(atm)	(天)	(atm)	(cm3/g-mol)		(cm3/g-mol)
1	339.50	0.92	502.43	56.81	166.50	0.829	47.68
2	345.30	0.92	504.48	49.92	216.50	0.748	57.67
		-*****					

.

Segundo coeficiente virial Bij Temperatura (C) : 50.000

i	ز \	1	2
1		-941.3947	-1150.6408
2		-1150.6408	-1386.8223

Coeficiente de atividade

PONTOS	GAMA 1	GAMA 2
1	1.0137	1.0000
2	1.0073	1.0004
3	1.0071	1.0011
4	1.0060	1.0016
5	1.0054	1.0020
6	1.0037	1.0034
7	1.0034	1.0038
8	1.0023	1.0054
9	1.0014	1.0073
10	1.0008	1.0091
11	1.0004	1.0111
12	1.0000	1.0159

----- APÊNDICE C -----

ti

Х1 енр	¥ 1	¥елр	Ұсяр Ұ1	1 (xC)	1сяр (хС)	tt - quel (3x)
0.0000	0.0000	0.0000	0.0000	83.13	82.39	-0.74
0.1800	0.1793	0.1935	0.0142	03.01	81.50	-1.51
0.3020	0.3005	0.3235	0.0230	82.92	81.15	-1.77
0.3655	0.3635	0.4140	0.0505	82.88	80.88	-2,00
0.4010	0.3987	0.4275	0.0288	82.86	80,68	-2.18
0.5140	0.5102	0.5600	0.0491	02.05	00.27	- 2 - 56
0.5410	0.5378	0:5725	0.0347	82.85	80.10	-2.75
0.6290	0.6253	0.6620	0.0367	82.83	79,90	-2.93
0.7182	0.7145	0.7536	0.0391	82.88	79.57	-3.31
0.7916	0.7692	0.8250	0.0368	82.91	77.03	-3.88
0.8606	0.8578	0.8705	0.0127	82.96	78.95	-4.01
1.0000	1.0000	1.0000	0.0000	83.09	78.46	-4.63

Dados de Equilibrio Liquido-Vapor (P = 759.96 (mmHg))

Desvio absoluto medio em T (C) : 2.69

•

---- APENDICE C ------

UNICAMP74-F0 DEPARTAMENTO DE PROCESSOS OUTMICOS LAFORATORIO DE FROPRIEDADES (ELEMOTINAMICAS

CALCULD DE DRVALHO ISOTERALCO

SIGTEMA : HETTOHOZETTI BENZTAD LUBRUMENTE (: HETTOMO) ONFOGENTE (: ETTEBENZED) TERERATURA : (4.63 C

Proprie	dades ter	rmodinar	nicas de	сотрон	ente puro		
COMPONENTES	TepN	fsatN	1C	FC	VC	₩	VLM
	(K)	(atm)	(K)	(atm)	(cm3/q-mol)		(cm3/g-mol)
1	363.37	0.98	528.65	27.63	427.50	0.474	129.08
2	400.04	0.98	604.82	36.03	375.50	0.405	112.88

Segundo coeficiente virial Bij Temperatura (C) : 50.000

		··· ·		
i	1	Ĺ	1	2
1			-2182.3335	-2087.5517
2			-2087.5517	-1665,6637

Coeficiente de atividade

.

.

FUNIOS	GARIA J	GAHA 2
1	1.4612	1.0000
2	1.3475	1.0047
3	1.2742	1.0148
4	1,2048	1.0337
5	1.1492	1.0585
6	1.1431	1.0621
7	1.1193	1.0785
8	1.1132	1.0833
9	1.0935	1.1015
10	1.0853	1.1103
11	1.0701	1.1292
12	1.0653	1.1362
13	1.0475	1.1666
14	1.0283	1,2136
15	1.0150	1.2640
16	1.0053	1.3274
17	1.0000	1.4391

----- APENDICE C ------

- .

τι ε ε™71ş:	× I	хежр	Xump 84	r (mmHç)	P ലംഗം (നനHg)	F'earp − F (mmHg)
0.0000	0.0000	0.0000	0.0000	45 17	······································	
0.3820	0.1096	0.1050	0.0046	65.70	43.12	-1.41
0.5320	V.1948	0.1980	-0.0068	70 54	09.47	-1.24
0.6420	0.2912	0.2850	-0.0062	77•04 D7 50	78.10	-1.44
0.7180	0.3852	0.3800		105 70	91.89	-1.61
0.7260	0.3968	0.3720		100.78	103.96	-1.82
0.7570	0.4450	0.4420	-0.0030	107.22	103.57	-1.65
0.7650	0.4584	0 4510	-0.0074	113.09	111.35	-1.74
0.7910	0.5046	0.5010	-0.0074	114.68	112.61	-2.07
0.8020	0.5254	0.5200		120.08	118.02	-2.05
0.8230	0.5673	0 5450		122.46	120.34	-2.12
0.8300	0.5818	0.5010	-0.0023	127.18	124,96	-2.22
0.8570	0.6407	0.4400	~0.0008	128.80	126.81	-1.99
0.0910	0.7205	0.7910	~0.0007	135.28	132.95	-2.32
0.9210	0.7950	0.7210	0.0003	143.91	141.37	-2.54
0.9530	0.8774	0.7740	-0.0010	151.91	147.04	-2.87
1.0000	1.0000	0.8770	-0.0004	160.78	157.72	-3.06
	~ * ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	1.0000	0.0000	174.23	170.41	-3.83

DADOS DE EQUILIBRIO LIQUIDO-VAPOR (T = 54.61 (C))

Desvio absoluto medio em P (mmHg) : 2.12

•

UNICAMP/FEQ DEPARTAMENTO DE PROCESSOS GUIMICOS LABORATORIO DE PROPRIEDADES TERMODINAMICAS

CALCULO DE BOLHA ISOTERMICO

SISTENA : HEPTANOZETILBENZENO COMPONENTE 1 : HEPTANO COMPONENTE 2 : ETILBENZENO TEMPERATURO : 54.61 C

Propriedades termodinamicas de componente puro

COMPONENTES	TebN	PsatN	1 C	PC	VC	w	VLM
	(K)	(atm)	(К)	(atm)	(cm3/g-mol)		(cm3/g-mol)
1	363.37	0.98	528.65	27.63	427.50	0.474	129.08
2	400.04	0.98	604,82	36.03	375.50	0.405	112.89

Segundo coeficiente virial Bij Temperatura (C) : 50.000

					· · · · · · · · · · · · · · · · · · ·			
i	Ν	Ĵ	1					2
1		-	-2182.3	3335		-20	087	.5517
2			-2087.1	5517		-10	565	.6637

Coeficiente de atividade

PONIOS	GANA 1	GAMA 2
1	1.4612	1.0000
2	1.3519	法证的问题会
3	1.2796	1.0138
4	1,2089	1.0318
5	1.1520	1.0569
6	1.1455	1.9696
7	1.1207	1.0774
8	1.1166	1.0805
9	1.0949	1.1000
10	1.0866	1.1088
11	1.0709	1.1282
12	1.0655	1.1358
13	1.0477	1.1663
14	1.0282	1.2139
15	1.0152	1.2632
16	1,0053	1.3271
17	1.0000	1.4391

.

Х1 ехр	¥.1	Үехр	<u> Үехр - Ү</u>	r (matty)	F exp (mmHg)	Pexp-I (mmHg)
0.0000	0.0000	0.0000	0.0000	45.13	43.72	-1,41
0.1050	0.3715	0,3820	0.0105	64,90	64.47	-0.44
0.1980	0.5224	0.5320	0.0096	78.50	78.10	-0.40
0.2850	0.6361	0.6420	0.0059	92.64	91.89	-0.76
0.3800	0.7143	0.7180	0.0037	105.13	103.96	-1.17
0.3920	0.7227	0.7260	0.0033	106.63	105.57	-1.05
0.4420	0.7552	0.7570	0.0018	112.73	111.35	-1.38
0.4510	0.7606	0,7650	0.0044	113.81	112.61	-1.19
0.5010	0.7891	0.7910	0.0019	119.66	118.02	-1.64
0.5220	0,8002	0,8020	0.0018	122.07	120.34	-1.73
0.5650	0.8219	0,8230	0.0011	126.93	124.96	-1.96
0.5810	0.8296	0.8300	0.0004	128.71	126.01	-1.90
0.6400	0.8567	0,8570	0,0003	135.20	132.95	-2.25
0.7210	0.0912	0.8710	~0.0002	14.5.97	141.37	-2.59
0.794(>	0.9206	0.9210	0.0004	151.80	149.04	-2.76
0.8770>	0,9529	0,9530	0.0001	160.74	157.72	-3.02
1.000(>	1.0000	1,0000	0.0000	174.23	170.41	-3.83

DADOS DE EQUILIBRIO LIQUIDO-VAPOR (T = 54.61 (C))

Desvio absoluto medio em F (mmHq) : 1,73