Ste etemplan coursende à redacet final de tel définide par Mines Minions Fusionand « aprovade pele Counsiser julgedance en 02 de outplus de 1989. meight way

Simulação de Modelos Bidimensionais de Reatores Catalíticos em Leito Fixo por Elementos Finitos

10/89

02 de outubro de 1989 Campinas – SP – Brasil

Universidade Estadual de Campinas Faculdade de Engenharia de Campinas Engenharia Química

Simulação de Modelos Bidimensionais de Reatores Catalíticos em Leito Fixo por Elementos Finitos

Autor: Mines Minoro Fujiwara

Tese submetida à Comissão de Pós - Graduação da Faculdade de Engenharia de Campinas-UNICAMP como parte dos requisitos necessários para a obtenção do grau de Mestre em Engenharia Química.

Aprovada por:

Orientador: Prof. Dr. Milton Mori

Prof. Dr. José Claúdio Moura

Profa Dra Maria Helena A. Santana

Campinas – SP – Brasil 02 de outubro de 1989

Agradecimentos

Devo meus agradecimentos:

Ao Prof. Dr. Milton Mori, pela orientação durante todo o trabalho e principalmente pelo estímulo e compreensão.

Ao Prof. Dr. José Cláudio Moura, pelo fornecimento das amostras do catalisador Fe-Mo.

Ao pessoal do Laboratório de Modelagem e Simulação de Processos Químicos.

Ao pessoal do Laboratório de Efeito Fotoácustico do IFGW-UNICAMP pela estimativa da difusividade térmica do catalisador Fe-Mo.

Ao DPQ pelo uso de suas instalações e tempo ilimitado de computação.

Àqueles que contribuíram direta ou indiretamente para esse trabalho.

Ao CNPq e Capes pela bolsa de estudo.

À minha Família, pelo apoio.

Resumo

Apresentam-se neste trabalho a modelagem e simulação de modelos bidimensionais de reatores catalíticos em leito fixo em estado estacionário, não-adiabático, não isotérmico e com resfriamento contra corrente para a produção de acetaldeído, via oxidação do etanol sobre catalisador Fe-Mo (poroso), utilizando para isso os dados e a equação da taxa de reação apresentada na Tese de Mestrado de Maciel Filho [25].

Os modelos considerados neste trabalho são o modelo pseudo-homogêneo (modelo I) e o modelo heterogêneo (modelo II). No modelo heterogêneo os processos de transferência envolvidos são:

- transferência intrareator entre os espaços vazios do leito fixo
- transferência intrapartícula dentro da partícula de catalisador
- transferência interfases entre o seio do fluido e a superfície do catalisador.

O sistema de equações diferenciais não-lineares dos dois modelos são resolvidos pelos métodos dos elementos finitos e das diferenças finitas.

São feitas comparações da performance dos dois modelos e a influência dos parámetros mais importantes são escolhidos, tornando-se possível escolher as melhores condições de operação do projeto. A otimização foi feita com o objetivo de obter a melhor produtividade.

Abstract

This work presents the modelling and simulation of the steady state two-dimensional model of packed-bed, non-adiabatic and non-isothermics countercurrent cooled reactors for the production of acetaldehyde, via the oxidation of ethanol over ironmolibdenium oxide catalyst, using the data and the rate equation presented in Maciel Filho's MsC Thesis [25].

The reactor model considered in this work consist of pseudo-homogeneous model (model 1) and heterogeneous model (model 11). In the heterogeneous model the transport process involved are:

- intrareactor transport through the voids betwen in the fixed beds
- intraparticle transport within the catalyst pellet
- interphase transport between the mainstream of fluid and the surface of the catalyst pellet.

The systems of non-linear differential equations of the two models have been solved by finite element method and finite differences method.

The performance of pseudo-homogeneous model has been compared to the heterogeneous model. The influence of the most important parameters has been elected wich enable us to choose the project's best operating conditions. An otimization has been carried out to the best productivity.

Conteúdo

,

1	Inti	roduçã	0	1	
2	Rev	visão E	Bibliográfica	3	
	2 .1	O Pr	oblema da Transferência de Calor	3	
	2.2	Mode	lagem Matemática	$\overline{5}$	
	2.3	Sensit	ividade Paramétrica	$\overline{7}$	
	2.4	Méto	dos Numéricos	9	
3	Cinética de Oxidação de Etanol a Acetaldeído sobre Catalisador				
	de	Óxido	de Ferro - Molibdênio	10	
	3.1	Mode	lo Cinético	-10	
		3.1.1	Equações das Taxas de Reação	12	
4	Modelagem Matemática, Propriedades Físicas e Correlações de				
	Transferência			19	
	4.1	Carac	terísticas do Reator	20	
	4.2	2 Modelos de Reatores Bidimensionais		21	
		4.2.1	Suposições dos Modelos	21	
		4.2.2	Modelo Pseudo-Homogêneo Bidimensional de Reator Catalítico		
			em Leito Fixo (Modelo I)	22	
		4.2.3	Modelo Heterogêneo Bidimensional de Reator Catalítico em		
			Leito Fixo (Modelo II)	25	
	4.3	Mode	lo para Partícula Porosa de Catalisador	31	
		4.3.1	Suposições do Modelo	31	
		4.3.2	Modelo de Partícula Porosa Esférica Simples de Catalisador .	31	
		4.3.3	Fator de Efetividade	33	
	4.4	Equaç	ao da Taxa e Entalpia de Reação	34	

		4.4.]	Equação da Taxa de Reação	34		
		4.4.2	Entalpia de Reação	35		
	4.5	Propri	iedades Físicas	36		
		4.5.1	Propriedades Físicas dos Reagentes-Produtos	36		
		4.5.2	Propriedades Físicas do Catalisador	40		
		4.5.3	Propriedades Físicas do Fluido de Troca Térmica [18]	45		
	4.6	Correl	lações de Transferência:	48		
		4.6.1	Correlações para Estimativa dos Parâmetros de Transferência			
			de Calor e Massa Intrareator	49		
		4.6.2	Correlações para Estimativa dos Parâmetros de Transferência			
			de Calor e Massa Intrapartícula	52		
		4.6.3	Correlações para Estimativa dos Parâmetros de Transferência			
			de Calor e Massa Interfase	54		
		4.6.4	Correlações para o Cálculo do Coeficiente Global de Troca			
			Térmica U	55		
5	Métodos Numéricos para Resolução de Sistema de Equações Di-					
	fere	nciais	Parciais 5	8		
	5.1	Métod	lo dos Elementos Finitos	59		
		5.1.1	Análise em Elementos Finitos para o Modelo 1 6	52		
		5.1.2	Análise em Elementos Finitos para o Modelo II	1		
		5.1.3	Análise em Elementos Finitos para o Modelo de Partícula			
			Esférica Simples e Porosa de Catalisador	34		
	5.2	Métod	lo das Diferenças Finitas	39		
		5.2.1	Análise em Diferenças Finitas para o Modelo II: 9	0		
		5.2.2	Análise em Diferenças Finitas para o Modelo de Partícula			
			Esférica Simples e Porosa de Catalisador 9	3		
	5.3	Método de Newton-Raphson:		14		
	5.4	Ргодта	ama para Cálculo Numérico:	5		
6	Res	ultado	s Numéricos 9	8		
	6.1	Otimi	zação com os Modelos I e 11	8		
		6.1.1	Parâmetros que podem ser estudados na otimização 10	0		
		6.1.2	Parámetros estudados na otimização	0		
		6.1.3	Parâmetros que sofreram restrições na otimização	2		
	6.2	Comp	aração dos Modelos I e II	4		

		6.2.1	Simulação com o Modelo I	104
		6.2.2	Simulação com o Modelo II	105
	6.3	Result	ados Numéricos dos Modelos I e II	106
		6.3.1	Influência dos parâmetros mais importantes	106
		6.3.2	Comparação dos métodos numéricos	118
		6.3.3	Estabilidade do método dos elementos finitos	123
7	Con	clusões	s e Sugestões 1	26
	7.1	Conclu	isões	126
	7.2	Sugest	ões	127
Α	Programa de Simulação de Reatores - Modelo II por Elementos			
	Fini	tos.	1	29
в	Programa de Simulação de Reatores - Modelo I por Elementos			
	Fini	tos.	1	55
C Programa de Simulação de Reatores - Modelo II por Dife		de Simulação de Reatores - Modelo II por Diferenças		
	Fini	tas.	1	64

÷

Lista de Figuras

.

3.1	Diagrama de blocos da instalação experimental para coleta de dados cinéticos
4.1 4.2	Diagrama esquemático de um reator/trocador de calor simplificado. 20 Diagrama de blocos para medida da difusividade térmica por efeito
	fotoacústico
5.1	Funções de interpolações lineares no elemento
5.2	Funções moldadas nos pontos nodais
5.3	Diagrama de blocos dos métodos numéricos
6.1	Influência de D no perfil da temperatura
6.2	Influência de D no perfil da concentração
6.3	Influência de R_m no perfil da temperatura
6.4	Influência de R_m no perfil da concentração
6.5	Influência de T_0 no perfil da temperatura
6.6	Influência de T_0 no perfil da concentração
6.7	Comparação dos perfis de temperaturas dos modelos I e II 115
6.8	Comparação dos perfis de concentrações dos modelos I e II 115
6.9	Perfil radial de temperatura
6.10	Perfil radial de concentração
6.11	Perfil para o coeficiente de efetividade – η
6.12	Perfil para o coeficiente de efetividade – η

Lista de Tabelas

2.1	Modelos de reatores catalíticos
4.1	Variáveis adimensionais
4.2	Constantes da modelagem matemática
4.3	Constantes das propriedade físicas
6.1	Dimensões do reator l
6.2	Dimensões do reator II
6.3	Dimensões do reator III
6.4	Resultados numéricos para o reator I
6.5	Resultados numéricos para o reator II
6.6	Resultados numéricos para o reator III
6.7	Resultados numéricos para reator l: $G_f=4000 \frac{kg}{hm^2}$, $R_m=19$
6.8	Resultados numéricos para reator I: $G_f = 4000 \frac{kg}{hm^2}$, $R_m = 9$
6.9	Resultados numéricos para reator l: $G_f = 3400 \frac{kg}{km^2}, R_m = 9 \dots 121$
6.10	Resultados numéricos para reator l: $G_1 = 4000 \frac{kg}{km^2}$, $R_m = 9$
6.11	Reator III, $G_f = 4000 \frac{k_T}{h m^2}$, $R_m = 19$, $\Delta \bar{z} = 0.01$, por elementos finitos. 124
6.12	Reator III. G_f 4000 $\frac{kg}{hm^2}$. $R_m=19$, $\Delta \bar{z}=0.002$. por elementos finitos. 125

1

Nomenclatura

 a_p – Área superficial do catalisador por unidade de volume

 a_{vi} - Área superficial do material inerte por unidade de volume

 a_v - Área superficial do catalisador por unidade de volume de reator

 $a_1, a_2, a_3, a_4, a_6, a_7$ - Constantes do modelo II

 $A_{pj}^{(e)}$, $A_{j}^{(ie)}$ - Componentes da matriz coeficiente elemento para o modelo de partícula e para o modelo de reator, multiplicadas pela constante j

 $A_1, A^{(e)}, A_2^{(e)}, A_3$ - Componentes da matriz coeficiente global resultante do balanço de massa do modelo II

 $B_{pj}^{(\epsilon)}, B_j^{i(\epsilon)}$ Componentes da matriz coeficiente elemento para o modelo de partícula e para o modelo de reator, multiplicadas pela constante j

Bi - Número de Biot

 Bi_f - Número de Biot para a fase fluida

 Bi_s Número de Biot para a fase sólida

 B_1 , $B_2^{(e)}$, $B_2^{(e)}$, B_3 – Componentes da matriz coeficiente global resultante do balanço de energia do modelo II

c - Concentração de etanol intrapartícula

 \bar{c} – Concentração de etanol intrapartícula adimensionalizada

cp. - Capacidade calorífica molar do fluido de troca térmica

cp_f - Capacidade calorífica molar do reagentes-produtos

cp_s - Capacidade calorífica molar do catalisador

 cp_i - Capacidade calorífica molar do reagente i

 c_T - Custo total por unidade de massa de matéria-prima

 C_o, C, C_s - Concentração molar de reagente limite (etanol) inicial, na fase fluida e na superfície do sólido

 d_{ν} – Diâmetro equivalente das partículas

 D_c – Diâmetro da carcaça do reator/trocador de calor

 D_c^e - Diâmetro equivalente da carcaça do reator/trocador de calor

D Diámetro interno dos tubos do reator/trocador de calor

 $D_{pj}^{(c)}, D_j^{i(c)}$ Componentes da matriz coeficiente elemento para o modelo de partícula e para o modelo de reator i, multiplicadas pela constante j

 D_0 – Diâmetro externo dos tubos do reator/trocador de calor

 D_{er} – Difusividade efetiva radial no leito fixo de partículas

 \mathcal{D}_{eff} - Difusividade efetiva no catalisador

 $\mathcal{D}_{i,f}$ – Difusividade molecular

 \mathcal{D}_k - Difusividade Knudsen

 \mathcal{D}_c – Difusividade combinada

 E_i - Energia de ativação da reação j

 $\mathcal{E}_1, \mathcal{E}^{(e)}, \mathcal{E}_2^{(e)}, \mathcal{E}_3$ – Componentes da matriz coeficiente global resultante do balanço de energia na fase sólida do modelo II

e – Desvio relativo das temperaturas máximas previstas pelos modelos I e Il $\{\underline{FM}\}, \{\underline{FT}\}, \{\underline{FTS}\}, \{\underline{f}\}, \{\underline{F}\}, \{\underline{g}\}, \{\underline{G}\}$ - Vetores colunas globais das variáveis dependentes

 F^{o} - Quantidade de mistura reacional (ar + etanol) que entra no reator

Ge - Velocidade mássica superficial do fluido de troca térmica

 G_I – Velocidade mássica superficial dos reagentes-produtos

h_a - Coeficiente de transferência de calor do lado da carcaça

h_f - Coeficiente de transferência de calor entre fluido e partícula

j - Ponto nodal radial

 j_d - Fator de Colburn para transferência de massa

 j_h - Fator de Colburn para transferência de calor

 j_h^v - Fator de Colburn para transferência de calor sem correção da viscosidade na parede (Sieder-Tate)

 $\mathcal{H}^{\{c\}}$ – Componente da matriz coeficiente global resultante do modelo de partícula de catalisador

k - Ponto nodal axial

 k_{er} – Condutividade térmica efetiva radial para o modelo contínuo bidimensional de uma fase, a um parámetro

 k_i – Constante de arrhenius associada à etapa i

 k_{io} - Fator pré-exponencial da constante de arrhenius associada à etapa i

 k_g - Coeficiente de transferência de massa entre o fluido e partícula (baseado na diferença de frações molares)

 K_3 - Constante de equilíbrio associada à etapa 3

 $|K_i^{i(e)}|$ - Matriz coeficiente elemento, multiplicada pela constante j do modelo de

reator i

 $|K_1^{(c)}|$ Matriz coeficiente elemento do modelo de reator

 $[KC^{(i)}]$ - Matriz coeficiente elemento do modelo de partícula

[K], [KX] – Matrizes coeficientes globais para o modelo de partícula de catalisador

|KC| - Matriz coeficiente global para o balanço de massa do modelo I

KT – Matriz coeficiente global para o balanço de energia do modelo I

[KM] - Matriz coeficiente global para o balanço de massa do modelo II

[KT] - Matriz coeficiente global para o balanço de energia na fase fluida do modelo II

[KTS] – Matriz coeficiente global para o balanço de energia na fase sólida do modelo H

L - Comprimento do leito fixo de partículas

 MM_i - Massa molecular do composto i

M – Número de elementos

 M_1 , $M_2^{(e)}$, $M_2^{(e)}$, M_3 - Componentes da matriz coeficiente global resultante do balanço de massa na fase fluida do modelo I

N – Número de pontos nodais

 N_{iv} – Número de moles iniciais da espécie j

 N_i – Número de moles da espécie j

 N_i - Função moldada no ponto nodal i

 N_t – Número de tubos do reator/trocador de calor

 $N^{(i)}$ – Rota de reação i

 $N_1^{(\epsilon)}, N_2^{(\epsilon)}$ – Funções moldadas no método dos elementos finitos –

 $|N^{(\epsilon)}|$ Vetor coluna das funções moldadas

Nu - Número de Nusselt

P - Pressão total

 P_i - Pressão parcial do composto j

 Pe_m - Número de Peclet para dispersão efetiva radial de massa

 Pe_h - Número de Peclet para dispersão efetiva radial de calor

Pr - Número de Prandtl

 r_A – Taxa de reação por unidade de massa de catalisador ou por unidade de massa de catalisador e inerte

 r_i – Taxa de reação por unidade de volume de reator

 r_i - Taxa de reação para o composto j (por unidade de massa de catalisador)

- $r_{(j)}$ Taxa de reação para a etapa j (por unidade de massa de catalisador)
- $r^{(i)}$ Taxa de reação para a etapa i (por unidade de massa de catalisador)

r_e Raio da partícula

 r_k - Raio médio do poro

 R_A - Taxa de reação por unidade de volume de catalisador

 R_g - Constante universal dos gases

Re - Número de Reynolds

 R_m - Razão molar ar-etanol à entrada

R - Raio interno dos tubos do reator/trocador de calor

r - Coordenada radíal no leito fixo de partículas

 r_p - Coordenada radial na partícula

 r, r_i, r_j - Coordenada radial adimensionalizada, no ponto nodal i e no ponto nodal j

 S_g – Superfície interna do catalisador

 S_t – Sinal fotoacústico traseiro

Sc - Número de Schmidt

Sh - Número de Sherwood

 $T, T_s, T_s^s, T_p, T_i \in T_i^s$ - Temperatura no seio da fase fluida, no interior do sólido. na superfície do sólido, na parede interna dos tubos do reator/trocador de calor, no interior do material inerte e na superfície do material inerte

 $T_{m}^{(i)}$ – Temperatura máxima prevista pelo modelo i

 T_o - Temperatura de entrada dos reagentes

 $\overline{T}, \overline{T}_s, \overline{T}_s^s, \overline{T}_s, \overline{T}_s^s$ e $\overline{t}c$ - Temperaturas adimensionalizadas

 $t_c, t_0, t_1 \in t_p$ - Temperatura do fluido refrigerante, na entrada, na saída do reator e na parede externa dos tubos do reator/trocador de calor

 T^* – Temperatura adimensionalizada (Potencial Lennard-Jones)

u - Variável dependente generalizada

u_s - Velocidade de fluido na direção axial

V - Volume do sistema reagente

 V_o - Volume do sistema reagente no início

 V_q – Volume total de poros

 $\tilde{W_{c}}$ – Velocidade mássica de fluido de troca térmica

 $W_{pj}^{(v)}, W_j^{i(v)}$ – Componentes da matriz coeficiente elemento para o modelo de partícula e para o modelo de reator i, multiplicadas pela constante j

X, X_s , X_f - Conversão no seio do fluido, na superfície do catalisador, na saída do reator (média aritmética radial)

x - Variável radial na partícula adimensionalizada

 y_i - Fração molar do componente i

- z Coordenada axial
- z Coordenada axial adimensionalizada
- z_m Posição axial do maior aumento de temperatura no reator
- Z Sítio ativo na superfície do catalisador
- Z Sítio ativo desocupado
- Z.O Sítio ativo ocupado pelo composto O

Letras gregas

 $\alpha_i,\,\beta_i,\,\alpha_i^\prime,\,\beta_i^\prime$ – Constantes do modelo i

 β'' - Constante do modelo II -

 α – Difusividade térmica

 $\alpha_{p}, \alpha_{p}^{f}, \alpha_{r}^{s}$ Coeficiente de transferência de calor na parede

para o modelo I. para a fase fluida e para a fase sólida

 δ – Parâmetro para o potencial de Stockmayer

 ϵ_l - Porosidade do leito fixo de partículas

 ϵ_n - Porosidade da partícula

 ε - Resíduo da solução aproximada

 ε_A – Fração de conversão volumétrica do sistema
sistema reagente entre o início e a conversão completa

 $\left(\frac{\omega}{\kappa}\right)$ - Parâmetro energético do potencial Lennard-Jones

 ϵ_i – Constante de energia potencial

 κ – Constante de Boltzmann

 μ_c, μ_i, μ_f - Viscosidade do fluido de troca térmica, do composto i, dos reagentes-produtos

 μ_p - Momento dipolar

 ν_i – Coeficiente estequiométrico para o composto i na reação global de oxidação de etanol à acetal
deído

 $\nu_i^{(i)}$ - Coeficiente est
cquiométrico do composto j
 na reação i

 $\pi = 3.141592$

 $\rho_c, \rho_p, \rho_l, \rho_f$ - Massa específica do fluido de troca térmica, do catalisador

(aparente). do leito catalítico (aparente) e dos reagentes-produtos

- σ Diâmetro característico do potencial de Lennard-Jones
- Φ Rendimento fracionário global em acetaldeído
- Ψ Função objetiva decorrente da otimização da variável custo unitário do produto
- Ω_v, Ω_D Integral de colisão para o potencial de Lennard-Jones para

viscosidade, para difusividade

- Símbolo que denota situações de "burn-out" ou "runaway"

 η – Fator de efetividade do catalisador

 $\lambda_{cr}, \lambda_{er}^{f}, \lambda_{er}^{s}$ - Condutividade térmica efetiva radial global, na fase fluida e na fase sólida do leito fixo de partículas

 λ_i , λ_f , λ_s - Condutividade térmica do composto i, dos reagentes-produto e na parte sólida do catalisador

 λ_{eff} , λ_t , λ_e – Condutividade térmica efetiva do catalisador, dos tubos do reator/trocador de calor e do fluido de troca térmica

 ϕ_t Fração de sítios ativos

- ϕ_s Fator de forma
- ϕ_F Sinal fotoacústico dianteiro

 $\Delta \overline{z}$ – Incremento axial

 ΔH_r - Variação da entalpia de reação, por mol de etanol

 $\Delta H_{\rm p}$ – Variação da entalpia dos produtos da reação do estado padrão a 298 K para temperatura desejada T

 ΔH_R – Variação da entalpia no resfriamento da massa reagente da temperatura desejada T para uma temperatura de referência padrão a 298 K

 ΔH^o_{298} - Variação da entalpia de reação a 298 K

Subscritos

- 0 Condições na entrada
- c Fluido de troca térmica
- f Reagentes-produtos
- i Inertes
- i Ponto nodal
- p Partícula
- p Parede
- s Fase sólida
- I Relativo ao modelo I
- II Relativo ao modelo II

Sobrescritos

(e) - Número do elemento

s Superfície

.

-

Capítulo 1

Introdução

O catalisador de óxido de ferro-molibdênio utilizado no processo de obtenção do acetaldeído, via oxidação do etanol, opera na faixa de temperatura inferior a $300^{\circ}C$, com rendimento em acetaldeído superior a 95% e conversão total dos reagentes, apresentando níveis muito superiores aos processos com que o acetaldeído é produzido atualmente. Nesse sentido o objetivo do presente trabalho é contribuir para o desenvolvimento e aperfeiçoamento de um novo processo mais ativo, estável e seletivo.

O trabalho é apresentado da seguinte forma:

No capítulo dois, apresentam-se a revisão bibliográfica sobre a modelagem matemática, a sensitividade paramétrica e as soluções numéricas com relação aos reatores catalíticos em leito fixo.

No capítulo três, apresentam-se o modelo cinético e a dedução da equação da taxa de reação de etanol à acetaldeído sobre catalisador poroso de óxido de ferromolibdênio por um mecanismo do tipo Tenkim, proposta por Maciel Filho [25] em sua tese de mestrado.

No capítulo quatro, apresentam-se os dois conjuntos de equações diferenciais parciais da modelagem – um para o reator e um para a partícula de catalisador. Para o reator foram considerados dois casos: o modelo pseudo-homogêneo bidimensional de reator catalítico em leito fixo, em estado estacionário, não isotérmico, não adiabático e com resfriamento contra-corrente (modelo I) e o modelo heterogêneo bidimensional de reator catalítico em leito fixo, em estado estacionário, não isotérmico, não adiabático e com resfriamento contra-corrente (modelo II). Para o catalisador foi adotado o modelo de partícula esférica porosa simples com o objetivo de evitar complicações geométricas. Apresentam-se ainda neste capítulo, as correlações de transferência de calor e massa intrareator, intrapartícula e interfases bem como as propriedades físicas dos reagentes-produtos, do catalisador e do fluido de troca térmica, recomendadas pela literatura.

No capítulo cinco, apresentam-se os métodos numéricos utilizados para resolver as equações diferenciais parciais em duas variáveis espaciais não-lineares do modelo de reator e as equações diferenciais parciais elípticas não-lineares que surgem do modelo de partícula de catalisador. Utiliza-se o método dos elementos finitos para resolver as equações diferenciais dos modelos I e II. O método das diferenças finitas é utilizado para o modelo II, supondo partícula isotérmica.

No capítulo seis, apresentam-se os resultados da simulação e otimização com ambos os modelos de reatores, onde um desvio relativo foi definido, comparando-se as temperaturas máximas previstas pelos modelos l e II. A otimização foi feita, avaliando-se o comportamento do reator com relação à sensitividade paramétrica às variações de parâmetros tais como: razão molar dos reagentes, diâmetro interno dos tubos, vazão mássica dos reagentes e temperatura de entrada dos reagentes, com o objetivo de escolher o melhor conjunto desses parâmetros de modo a oferecer a melhor produtividade. São feitas análises com relação à estabilidade do método dos elementos finitos e uma comparação dos métodos numéricos utilizados.

Finalmente, no capítulo sete, apresentam-se as conclusões do trabalho, baseandose em critérios definidos no capítulo anterior e sugestões para novos estudos.

Capítulo 2

Revisão Bibliográfica

Neste capítulo apresenta-se a revisão bibliográfica com relação aos modelos para estimativas dos parâmetros de transferência de calor, abordados na literatura e suas consequências na modelagem matemática de reatores catalíticos em leito fixo. É feita ainda uma sinopse da modelagem e da sensitividade paramétrica de reatores catalíticos em leito fixo.

2.1 O Problema da Transferência de Calor

As dificuldades encontradas com os modelos heterogêneos surgem da transferência de calor, que em contraste com a transferência de massa, ocorre em ambas as fases sólida e fluida do leito fixo de partículas.

Singer e Wilhelm (1950) publicaram um trabalho pioneiro, agrupando as contribuições para a transferência de calor das fases sólida e fluida. Coberley e Marshall (1951) identificaram uma resistência adicional, chamando-a de coeficiente de transferência de calor na parede.

Yagi e Kunii (1959) e Kunii e Smith (1960) apresentaram o modelo teórico mais preciso (e elaborado) para condutividade térmica efetiva radial. O modelo considera o fluxo de calor por condução efetiva como a resultante de duas contribuições: uma é estática e a outra é dinâmica. A contribuição estática é uma combinação da condução e radiação entre o fluido e o sólido. Efeitos dinâmicos incluem convecção. A equação proposta é resultante da combinação das contribuições anteriores em um arranjo apropriado, através de fórmulas básicas de transferência de calor, dependendo se operam em série ou paralelo.

O mecanismo de transferência de calor na direção radial pode ser interpretado pelos seguintes modelos:

- modelo de uma fase para ocorrer por "condução efetiva", ou seja, o empacotamento e o fluido são tomados como pseudo-homogêneo, sendo que na verdade contêm contribuições de condução no fluido e no sólido, convecção na direção radial e radiação em ambas as fases. Duas alternativas são possíveis:
 - modelo contínuo unidimensional, pelo coeficiente global de transferência de calor, U;
 - modelo contínuo bidimensional, podendo ser:
 - * a um parâmetro, pela condutividade térmica efetiva, k_{er} ;
 - * a dois parâmetros, pela condutividade térmica efetiva, λ_{cr} e o coeficiente de transferência de calor na parede, α_p , considerando que quando a condutividade efetiva é calculada em vários pontos da seção perpendicular ao fluxo verifica-se que seu valor diminui gradualmente na região próxima à parede.
- modelo de duas fases, que é mais realista, podendo trocar energia entre si, havendo uma equação de energia para cada fase vinculada através do coeficiente troca térmica entre as fases.

De Wash e Froment (1972) correlacionaram os resultados experimantais para U, k_{er} , $\lambda_{er} \in \alpha_p^{-1}$ como funções do número de Reynolds, empacotamento e diâmetro dos tubos. As correlações² com relação ao número de Reynolds, levam à linhas retas que interseccionam o eixo do coeficiente de transferência de calor, indicando que há uma contribuição estática e uma contribuição dinâmica. A contribuição estática é independente do comprimento do leito e do número de Reynolds, exceto para leitos pequenos, mas claramente dependentes da condutividade da partícula. A contribuição dinâmica é uma função linear do número de Reynolds. As correlações

⁴Esses coeficientes não são constantes, em geral, seus valores diminuem com o aumento do comprimento do leito

²Correlações baseadas de dados obtidos de reatores experimentais, sem reação química, onde a relação $\frac{L}{D}$ é relativamente pequena.

para α_p estavam numa forma inteiramente diferente das apresentadas até então, mas confirmaram seu ajuste com as predições teóricas de Yagi e Kunii|48].

C. H. Li e B. A. Finlayson (1977), baseando-se em dados da literatura, fixaram valores assintóticos independentes do comprimentos do leito para o projeto de reatores, apresentando as melhores correlações assintóticas de h_w e U para empacotamento esférico e cilíndrico, fixando ainda um número de Biot.

Dixon e Cresswell (1979) baseando-se em um modelo de dúas fases relacionaram os parâmetros de transferência de calor efetivos com parâmetros que poderiam ser calculados independentemente, sem envolver constantes empíricas ou ajustáveis. A relação entre os parâmetros é feita pela equivalência entre os modelos de uma e de duas fases.

2.2 Modelagem Matemática

Somente a partir da década de sessenta começaram a surgir os modelos pseudohomogêneos bidimensionais de reatores catalíticos em leito fixo. Anteriormente o fenômeno de aquecimento ou resfriamento de um fluido em leito fixo, isto é, a troca de calor com a parede era explicado por um modelo contínuo unidimensional que considerava temperatura do fluido, uniforme na secção transversal perpendicular ao fluxo. A condição de uniformidade radial não é frequentemente encontrada, ou seja, as predições da temperatura média através do modelo unidimensional difere significativamente da média radial verdadeira, como consequência da sensitividade da taxa de reação com a temperatura e da diferença entre a temperatura no reator e a temperatura do fluido refrigerante. Essa aproximação mais detalhada é importante quando for necessário verificar se a temperatura no eixo não excede um certo valor que tornaria o reator supersensível.

Wilhelm (1962) interpretou a performance do modelo bidimensional de reator, quase contínuo de reator, envolvendo variação radial e axial de temperatura e composição. baseando-se em trabalhos anteriores com relação aos fenômenos de transferência.

Carberry e Wendel (1963) utilizaram o modelo pseudo-homogêneo bidimensional sem dispersão axial efetivamente. Apesar desse modelo englobar muitas propriedades importantes de reatores em leito fixo, o ajuste quantitativo das predições da performance do modelo são através de ajustes em parâmetros, tais como, energia de ativação, fator pré-exponencial, condutividade térmica efetiva radial ou coeficientes de transferência. A princípio a cinética e os parâmetros de transferência deveriam ser tomados independentemente, resultando em uma predição bem sucedida das observações experimentais.

McGreavy e Cresswell (1969) apresentaram o modelo pseudo-homogêneo em que o calor é transferido considerando-se a fase fluida apenas.

Carberry e White (1969) apresentaram um modelo heterogêneo, mas supondo a transferência de calor apenas na fase fluida e utilizando-se de parâmetros térmicos efetivos globais, estando portanto conceitualmente errada.

De Wash e Froment (1970) apresentaram o modelo heterogêneo em que são feitas distinções entre as temperaturas e pressões parciais das fases sólidas e fluidas, sem as restrições dos modelos anteriores, ou seja, considera separadamente a transferência de calor na parte sólida e fluida por meio de parâmetros de transferência de calor efetivos para cada fase.

Patterson e Carberry (1982) atribuíram a discrepância das predições dos pontos quentes pelo modelo pseudo-homogêneo devido às imprecisões dos valores dos parâmetros de transferência de calor utilizados, por dois motivos:

• Primeiro, porque o parâmetro chave de transfência de calor λ_{er} diminui de valor com o aumento do comprimento do leito. A introdução de um termo de dispersão axial no modelo de transferência de calor, sem reação química, remove a anomalia da dependência do comprimento e ajusta melhor os resultados experimentais estatisticamente. Em experimentos de transferência de calor, o gradiente de temperatura axial cai monotonicamente com o aumento do comprimento do leito, a análise de resultados desprezando o termo de dispersão axial leva erroneamente a baixos valores de λ_{er} e α_p para uso no modelo pseudo-homogêneo e consequentemente em superpredições do "ponto quente", indicando que o modelo subestima a taxa de remoção de calor do leito. Portanto, a inclusão do termo de dispersão axial no modelo pode também diminuir a predição de temperatura para o ponto quente:

modelo pseudo-homogêneo	modelo heterogêneo
$T = T_s$; $C = C_s$	$T eq T_s \; ; \; C eq \widetilde{C}_s$
Unidimensional	Unidimensional
A.Básico ou ideal	D. Gradiente interfacial
B. Mistura axial	E. Gradiente interfacial e intrapartícula
<u>Bidimensional</u>	<u>Bidimensional</u>
C. Mistura radial	F.Mistura radial

Tabela 2.1: Modelos de reatores catalíticos

• Segundo, para baixos valores de $\frac{D}{d_p}$, utilizados para reações com grandes efeitos térmicos, verificam-se altas taxas de transferência radial de calor com relação aos leitos de grande diâmetros utilizados em muitos experimentos de transfêrencia de calor. Este fenômeno pode ser relacionado à região de baixos gradientes de temperaturas observados em medidas do perfil de temperatura radial (altos valores de λ_{er}). Esta região tem um tamanho característico, relacionado ao diâmetro de empacotamento, e então ocupa uma grande região do diâmetro do leito para baixos valores de $\frac{D}{d_p}$, que possivelmente explica altos valores para λ_{er} . Portanto, a transferência de calor radial é função não apenas de Re_p , mas também da razão $\frac{D}{d_e}$.

O procedimento geral para o projeto de reatores catalíticos requer considerações de gradientes de concentração e temperatura intrapartícula, interfases e intrareator. Froment e Bishoff (1979) apresentaram um revisão dos modelos e discutiram sua aplicação, incluindo os parâmetros associados com os três tipos de processos de transferência, sumarizados na tabela 2.1 numa forma simplificada do arranjo geométrico, complexo e aleatório do leito fixo.

2.3 Sensitividade Paramétrica

No projeto e operação de reatores químicos para reações fortemente exotérmicas, um dos maiores problemas enfrentados é o aparecimento de "pontos quentes". Por razões de segurança, atividade do catalisador e seletividade do processo, a temperatura do ponto quente deve ser mantido dentro de certos limites. Ainda, em muitos casos a temperatura do ponto quente é muito sensível a relativamente pequenas mudanças nas variáveis do processo. Uma leve mudança na temperatura de entrada dos reagentes pode resultar em uma grande mudança na temperatura do ponto quente com subseqüente "runaway".

Muitos estudos foram feitos para predizer este fenômeno, chamado sensitividade paramétrica, e estabelecer critérios de "runaway". Eles tem sido revisados por Hlavacek (1970) e mais recentemente por Froment (1984). Bilous e Amundson (1956) foram os primeiros a referirem a esse estado como "sensitividade paramétrica" e estudaram por uma aproximação em estado transiente, considerando o efeito de uma pertubação senoidal. Então, Barkelew (1959) integrou as equações de continuidade e energia para um grande número de casos, utilizando o modelo unidimensional em estado estacionário de reator tubular em leito fixo. Destes resultados ele obteve diagramas em que para um determinado diâmetro de tubo D, a combinação requerida de C_0 e t_c que poderiam ser obtidas para evitar "runaway" ou vice versa. Agnew e Potter (1966) estenderam o trabalho de Barkelew para situações onde os gradientes de temperatura e concentração radiais são levados em consideração e também apresentaram diagramas para previnir "runaway", incluindo a relação $\frac{D}{d_c}$.

Van Walsenaere e Froment (1970) seguiram diferentes aproximações para obter condições levando à operação "runaway" (primeiro e segundo critério). Eles utilizaram a ocorrência de pontos críticos nas trajetórias na temperatura do reator T vs conversão relativa X para definir critérios intrínsicos. Chambré, semelhantemente Oroscar e Stern (1982), e mais recentemente Morbidelli e Varma (1982), derivaram o método para reações de ordem simples baseadas nas isoclinas no plano (T, P). Rajadhyaksha e outros (1975) e McGreavy e Adderly (1973) consideraram situações em que ocorrem gradientes de temperatura interfacial e gradientes de concentração intrapartícula e indicaram que o modelo pseudo-homogêneo são apenas boas aproximações quando a etapa controladora da taxa é a reação química.

Todos os estudos acima foram restritos à cinética de primeira ordem e também a temperatura do fluido refrigerante foi considerada constante.

Akella e Lee (1983) apresentaram um projeto aproximado para reator/trocador de calor contra-corrente para reações altamente exotérmicas com a inerente sensitividade paramétrica, através de diagramas de fases, definindo as regiões de operação, segundo um plano temperatura de entrada dos reagentes e fluido de troca térmica. Guirardello (1988), utilizando um procedimento análogo, definiu diagramas de fases para a reação de etanol à acetaldeído sobre catalisador de cobre oxidado.

2.4 Métodos Numéricos

A solução numérica da modelagem matemática de reatores catalíticos em leito fixo em estado estacionário, não adiabático e não-isotérmico tem recebido considerável atenção nos últimos tempos.

Finlayson (1971) resolveu as equações diferenciais que governam o reator catalítico com gradientes radiais de temperatura e concentração pelo método da colocação ortogonal e utilizando o método desenvolvido por Villadsen e Stewart (1967), mostraram que o método é mais rápido e preciso que o método das diferenças finitas.

Hlavacek e outros (1971) publicaram uma série de trabalhos utilizando diferentes técnicas para resolver o problema. Atkas e Stter (1977) classificaram as técnicas que podiam ser utilizadas e verificaram que o método das diferenças finitas apresentava problemas de estabilidade. Varma e outros (1976) verificaram que a solução apresentava problema de rigidez para uma certa faixa de parâmetros do reator.

Villadsen e Michelsen (1978) apresentaram o método da colocação ortogonal para resolver numericamente as equações diferenciais parciais e elípticas do balanço de massa e energia na partícula de catalisador e verificaram que o método é mais rápido e preciso que o método das diferenças finitas.

Rao e outros (1981) utilizaram o método da colocação ortogonal em elementos finitos com funções de interpolações Hermite e B-Spline, sendo resolvido sem dificuldades para uma grande faixa de parâmetros do reator.

Capítulo 3

Cinética de Oxidação de Etanol a Acetaldeído sobre Catalisador de Óxido de Ferro - Molibdênio

Neste capítulo apresentam-se a equação da taxa intrínsica de reação para a oxidação de etanol a acetaldeído sobre catalisador de óxido de Fe-Mo (poroso), proposta por Maciel Filho [25], que utilizou um modelo para a adsorção e reação química na superfície de catalisador do tipo Tenkim e as equações das taxas para os compostos que participam dessas reações na interpretação dos dados cinéticos que foram coletados obedecendo aos critérios de um modelo de reator PFR, operado de modo integral e praticamente isotérmico, permitindo ajuste pelo método dos mínimos quadrados. No método de Tenkim as etapas não precisam estar em equilíbrio químico, mas em regime permanente e utiliza-se do conceito de rotas de reação.

3.1 Modelo Cinético

Foram propostas duas rotas de reação:

$$N^{(1)}: CH_3CH_2OH + \frac{1}{2}O_2 \to CH_3CHO + H_2O$$

 $N^{(2)}: \quad CH_3CH_2OH + \frac{1}{2}O_2 \rightarrow CH_3CHO + H_2O \rightarrow CH_3CH_2OH + \frac{1}{2}O_2$

As duas rotas acima são combinações lineares das seguintes etapas:

 $N^{(1)}$ $N^{(2)}$ (1) $CH_3CH_2OH + ZO_2 \xrightarrow{k_1} CH_3CHO + H_2O + ZO$ 1 1 <u>*</u> $+ O_{2}$ (2)Z $Z.O_2$ 12 0 $2 Z.O \rightarrow$ $\frac{1}{2}$ (2')Z $+ Z.O_{2}$ 1 $CH_3CHO + Z \xrightarrow{K_3} Z.CH_3CHO$ (3) 0 1 $Z.CH_3CHO + H_2O \xrightarrow{k_4} CH_3CH_2OH + Z.O$ (4)0 1

Etapa 2' é muito rápida.

Etapa 3 é de equilíbrio.

O modelo proposto supõe a adsorção do oxigênio molecular, sem dissociação em um único sítio ativo Z do catalisador.

Admite-se que moléculas de etanol da fase vapor chocam-se com moléculas do oxigênio adsorvidas formando acetaldeído, água e oxigênio atômico adsorvido, conforme é mostrado na etapa 1.

Considera-se que a ocupação de sítios ativos com oxigênio atômico é acompanhada de reação rápida entre átomos adsorvidos, regenerando um sítio ativo e formando oxigênio molecular adsorvido no outro. A etapa 2' representa essa consideração. Devido a rapidez dessa reação, a fração de sítios ativos coberta por oxigênio atômico é praticamente desprezível.

A etapa 3 do mecanismo admite que parte do acetaldeído formado é adsorvido no sítio ativo, ficando em equilíbrio com o acetaldeído presente na fase gasosa. A obtenção do etanol a partir da reação do acetaldeído adsorvido com a água é mostrada na etapa 4. Essa reação não é termodinamicamente favorável, pois a variação da energia livre de Gibbs é positiva.

3.1.1 Equações das Taxas de Reação

A taxa global de reação de um composto que participa de uma ou mais reações é dada por:

$$r_j = \sum_{i=1}^4 \nu_j^{(i)} . r_{\cdot}^{(i)}$$
(3.1)

onde:

 r_j =Taxa de reação do composto j por unidade massa de catalisador $r^{(i)}$ =Taxa de reação global i por unidade de massa de catalisador $\nu_j^{(i)}$ =Coeficiente estequiométrico do composto j na reação global i.

Assim em regime permanente a reação global conduz a:

$$r_{CH_3CH_2OH} = -r^{(1)} \tag{3.2}$$

$$r_{O_2} = -\frac{1}{2}r^{(1)} \tag{3.3}$$

$$\tau_{CH_3CHO} = r^{(1)} \tag{3.4}$$

$$\tau_{H_2O} = \tau^{(1)} \tag{3.5}$$

ou eliminando $r^{(1)}$ nas equações acima, teremos:

$$\tau_{CH_0CH_0OH} = -\tau_{CH_0CHO} \tag{3.6}$$

$$\tau_{O_2} = -\frac{1}{2} \tau_{CH_2 CHO} \tag{3.7}$$

$$\tau_{H_2O} = \tau_{CH_0CHO}. \tag{3.8}$$

Utilizando o mecanismo proposto 1, 2, 2', 3 e 4 as taxas de reação para cada composto são:

$$r_{CH_2CH_2OH} = -r_1 + r_4 \tag{3.9}$$

$$r_{O_2} = -r_2 \tag{3.10}$$

$$r_{CH_3CHO} = r_1 - r_3 \tag{3.11}$$

$$r_{H_2O} = r_1 + r_4 \tag{3.12}$$

onde $r_{(j)}$ é a taxa da etapa j do mecanismo por unidade de massa de catalisador.

As taxas de cada etapa do mecanismo são dadas por:

$$r_1 = k_1 \cdot P_{CH_2 CH_2 OH} \cdot \theta_{O_2} \tag{3.13}$$

$$r_2 = k_2 . P_{O_2} . \theta_{\nu} \tag{3.14}$$

$$r_4 = k_4 \cdot P_{H_2O} \cdot \theta_{CH_2CHO} \tag{3.15}$$

onde θ_v é a fração de sítios ativos desocupada.

As constantes da equação da taxa seguem a lei de Arrhenius:

$$k_i = k_{io} imes \exp\left(-rac{E_i}{R_g imes T}
ight)$$
 $i = 1, 2, 4$ (3.16)

A etapa 3 do mecanismo, em equilíbrio, fornece:

$$K_3 = \frac{\theta_{CH_0CHO}}{\theta_v \cdot P_{CH_0CHO}}$$
(3.17)

A constante de equilíbrio K_3 segue uma relação com temperatura dada por:

$$K_3 = K_{30} \times \exp(-\frac{\Delta H_3}{R_g \times T})$$
(3.18)

onde E_i é a energia de ativação da etapa de reação i e ΔH_3 é a entalpia de adsorção do acetaldeído (etapa 3).

Do balanço de sítios ativos, ocupados e desocupados temos:

$$\theta_v + \theta_{O_2} + \theta_{CH_3CHO} = 1 \tag{3.19}$$

As equações da taxa de cada composto devem ser colocadas em função de variáveis facilmente mensuráveis, no caso, a pressão parcial de cada composto.

Combinando as equações 3.6, 3.7, 3.9, 3.10, 3.13 e 3.15, temos:

$$2.k_2.P_{O_2}.\theta_{\nu} = k_1.P_{CH_3CH_2OH}.\theta_{O_2} - k_4.P_{H_2O}.\theta_{CH_3CHO}$$
(3.20)

Resolvendo o sistema de equações 3.20, 3.17 e 3.19, chega-se às expressões para θ_{ν} , θ_{O_2} e θ_{CH_3CHO} :

$$\theta_v = \frac{k_1 \cdot P_A}{(1 + K_3 \cdot P_D) \cdot k_1 \cdot P_A + 2 \cdot k_2 \cdot P_B + K_3 \cdot k_4 \cdot P_F \cdot P_D}$$
(3.21)

$$\theta_B = \frac{2.k_2.P_B + k_3.k_4.P_F.P_D}{(1 + K_3.P_D).k_1.P_A + 2.k_2.P_B + K_3.k_4.P_F.P_D}$$
(3.22)

$$\theta_D = \frac{K_3.k_1.P_D.P_A}{(1+K_3.P_D).k_1.P_A + 2.k_2.P_B + K_3.k_4.P_F.P_D}$$
(3.23)

onde:

$$A = CH_3CH_2OH \quad D = CH_3CHO$$
$$B = O_2 \qquad F = H_2O$$
$$C = N_2$$

Utilizando as equações 3.2, 3.22, 3.23, 3.13, 3.15 e 3.9 obtemos:

$$r_A = \frac{2.k_1.k_2.P_A.P_B}{(1+K_3.P_D).k_1.P_A + 2.k_2.P_B + K_3.k_4.P_F.P_D}$$
(3.24)

onde

$$k_1 = 3.41492 imes 10^6 imes \exp{(-rac{15746}{R_g imes T})}$$
 (3.25)

$$k_2 = 2.34757 \times 10^6 \times \exp\left(-\frac{21793}{R_g \times T}\right)$$
 (3.26)

$$k_4 = 1.78585 imes 10^7 imes \exp{\left(-rac{13674}{R_g imes T}
ight)}$$
 (3.27)

$$K_3 = 1.19281 \times 10^6 \exp\left(-\frac{9347}{R_g \times T}\right)$$
 (3.28)

nas unidades:

$$egin{aligned} |k_1| &= [k_2] = [k_4] = rac{Nl \ etanol}{min imes g \ catalisador imes atm} \ |K_3| &= atm^{-1} \ |r_A| &= rac{mol \ etanol}{min imes g \ catalisador} \ |T] &= K \end{aligned}$$

com $R_g = 1.987 \frac{cal}{mol \times K}$, foram obtidas mediante o método dos mínimos quadrados dos dados experimentais, coletados por Maciel Filho [25] entre 180°C a 240°C, em uma instalação experimental para coleta de dados cinéticos esquematicamente construída, conforme figura 3.1.

Supondo comportamento de gás ideal, lembrando que:

$$N_j = N_{jo} + \sum_{i=1}^{4} \nu_j^{(i)} \xi_i$$
(3.29)

onde

 $N_{j0}=n0$ de moles iniciais da espécie j

 $N_j = n_0$ de moles da espécie j após a reação $\xi_i = \text{grau}$ de conversão da reação i.

Obteremos:

$$P_A = \frac{(1-X)}{\gamma}P \tag{3.30}$$

$$P_B = \frac{(0.21 \times R_m - 0.5 \times X)}{\gamma} P \tag{3.31}$$

$$P_{C} = \frac{0.79 \times R_m}{\gamma} P \tag{3.32}$$

$$P_D = \frac{X}{\gamma}P \tag{3.33}$$

$$P_F = \frac{X}{\gamma}P \tag{3.34}$$

onde:

$$\gamma = 1 + 0.5 imes X - R_m$$

 P_j = pressão parcial da substância j e onde conversão foi definido por:

$$X = \frac{N_{A0} - N_A}{N_{A0}} \tag{3.35}$$

e rendimento fracionário global em acetaldeído por:

$$\Phi = \frac{N_D}{N_{A^0} - N_A}.$$
 (3.36)

Figura 3.1: Diagrama de blocos da instalação experimental para coleta de dados cinéticos.

Substituindo as equações anteriores em 3.24, teremos a taxa global de reação em função da conversão e da pressão total no reator.

Na figura 3.1: CSG – Coluna com sílica gel. R'_1 – Rotâmetro para N_2 ou H_2 . R'_2 . R'_3 – Rotâmetros para ar. ST – Saturador. BTA – Banho termostático com água como fluido. AE – Dispositivo para alimentação de etanol. SPA – Serpentina de pré-aquecimento. BTO – Banho termostático com fluido Mobil Oil. CTBTO – Controlador de temperatura do BTO. CTBTA – Controlador de temperatura do BTA. RT – Reator tubular. CCT – Cromatógrafo de condutividade. IT – Integrador eletrônico. RG – Registrador. RB – Rotâmetro de bolha. BG – Banho de gêlo.

Capítulo 4

Modelagem Matemática, Propriedades Físicas e Correlações de Transferência

Neste capítulo apresentam-se o modo de operação, os modelos pseudo-homogêneo e heterogêneo bidimensionais de reator catalítico em leito fixo, não-isotérmico, não adiabático e com resfriamento contra-corrente que foram utilizados na simulação, denominando-os de Modelo I e Modelo II, respectivamente, bem como as equações que representam o modelo de partícula esférica e porosa de catalisador.

Esses modelos matemáticos não são necessariamente utilizados apenas à reação em estudo, que é a oxidação de etanol a acetaldeído sobre catalisador poroso de óxidos de ferro-molibdênio, podendo ser facilmente estendida para outras reações.

Apresentam-se também as correlações para a estimativa dos parâmetros de transferência de calor e massa interfase, intrareator e intrapartícula e das propriedades físicas dos reagentes e produtos bem como as equações da taxa de reação, entalpia de reação e propriedades físicas do catalisador e do fluido de troca térmica que são necessários na utilização desses modelos de reatores.

Figura 4.1: Diagrama esquemático de um reator/trocador de calor simplificado.

4.1 Características do Reator

A reação de oxidação de etanol à acetaldeído sobre catalisadores à base de óxido de ferro-molibdênio são altamente exotérmicas, portanto supõe-se neste estudo um reator multitubular, preenchido com partículas de catalisadores Fe-Mo finamente divididos $(d_p = 0.1 \ cm)$ e inertes com o mesmo diâmetro equivalente, a fim de diminuir a taxa de reação por unidade de volume de reator, formando um leito fixo de partículas.

Devido à necessidade de remover ou adicionar calor, não é possível utilizar-se um único tubo de grande diâmetro preenchido com catalisador, justificando o uso de milhares de tubos com pequenos diâmetros, garantindo uma melhor transferência de calor e um melhor controle de temperatura. Os tubos são envolvidos por uma camisa anular na qual flui um óleo de troca térmica em contra-corrente, promovendo a transferência de calor externa. Como fluido de troca térmica considerou-se o SYLTHERM-800 [18], utilizado industrialmente na faixa de operação de -40 a $400^{\circ}C$ sob forma líquida.

O feixe de tubos são distribuídos num passo triangular e construídos assim como sua carcaça em aço inox 304. O comprimento dos tubos utilizados foram de 200*cm* e um estudo do diâmetro do tubo foi realizado numa forma de verificar sua influência na performance do sistema. O sistema é representado esquematicamente na figura 4.1.

4.2 Modelos de Reatores Bidimensionais

4.2.1 Suposições dos Modelos

Em todos os modelos bidimensionais de reatores catalíticos em leito fixo, foram feitas as seguintes considerações:

- Sistema bidimensional, considerando perfis radiais;
- Estado estacionário;
- Modelo de fluxo empistonado;
- Efeitos desprezíveis de dispersão axial de calor e massa com relação aos gradientes radiais e pelo fato da razão ^L/_D > 100 ser obedecida nas simulações;
- A velocidade mássica superficial G_f e número de Peclet radial para transfêrencia de calor e massa foram considerados constantes numa determinada secção transversal do diâmetro de tubo;
- Perda de carga $\left(\frac{dP}{dz}\right)$ desprezível em comparação à pressão de operação do reator (P) no caso dos gases, estimada a partir da equação do balanço de quantidade de movimento da pag. 36 da ref. [25];
- O balanço de massa foi feito em função apenas do reagente-limite (no caso o etanol), devido as interrelações de estequiometria das substâncias que compõem o meio reacional: etanol, oxigênio, nitrogênio, acetaldeído e água;
- Ausência de mudança de fase do fluido refrigerante e/ou dos reagentes-produtos (evaporação ou condensação);
- Volume V¹ do sistema reagente constante, supondo o meio reacional composto com ar em sua maior parte e baixa concentração de reagente limite (etanol).

 $^{{}^{1}}V = V_{0} \cdot (1 + \varepsilon_{A} \cdot X)$, onde $\varepsilon_{A} (\approx 0)$ é a fração de conversão volumétrica do sistema entre o início e a conversão completa.

As equações básicas para o modelos bidimensionais de reatores catalíticos em leito fixo são através de:

- Balanço de massa dos reagentes e produtos;
- Balanço de energia dos reagentes e produtos;
- Balanço de energia na fase sólida do reator;
- Balanço de energia no fluido refrigerante.

Dentro do procedimento geral para o projeto de reatores catalíticos em leito fixo que também requer considerações de gradientes de temperatura e concentração intrapartícula. interfase e intrareator, e dependendo de como essas considerações são levadas em conta na interpretação do balanço de massa e energia podem resultar nos seguintes modelos:

4.2.2 Modelo Pseudo-Homogêneo Bidimensional de Reator Catalítico em Leito Fixo (Modelo I)

A característica básica desse modelo é que considera idênticas as condições das fases sólida e fluida, supondo que a etapa controladora da taxa é a reação química.

Portanto temos:

Para o balanço de massa:

$$u_s \cdot \frac{\partial C}{\partial z} = \epsilon_l \cdot \mathcal{D}_{er} \cdot \left(\frac{\partial^2 C}{\partial r^2} + \frac{1}{r} \cdot \frac{\partial C}{\partial \tau}\right) - r_v.$$
(4.1)

Para o balanço de energia dos reagentes-produtos:

$$u_{s}.\rho_{f}.cp_{f}.\frac{\partial T}{\partial z} = \lambda_{sr}.\left(\frac{\partial^{2}T}{\partial r^{2}} + \frac{1}{r}.\frac{\partial T}{\partial r}\right) + (-\Delta H_{r}).r_{v}.$$
(4.2)

Para o balanço de energia do fluido de troca térmica:

$$-W_c.cp_c.\frac{dtc}{dz} = \pi.D_0.N_t.U.(T-tc). \qquad (4.3)$$

Condições de contorno:

Para z = 0

$$C = C_o, \tag{4.4}$$

$$T = T_{\rm e}.\tag{4.5}$$

Para r = 0

$$\frac{\partial C}{\partial r} = 0, \tag{4.6}$$

$$\frac{\partial T}{\partial r} = 0. \tag{4.7}$$

Para r = R

$$\frac{\partial C}{\partial r} = 0, \tag{4.8}$$

$$-\lambda_{er} \cdot \frac{\partial T}{\partial r} = \alpha_p \cdot (T - T_p). \tag{4.9}$$

Onde:

cp_f=capacidade calorífica molar dos reagentes-produtos

cpe=capacidade calorífica por unidade de massa de fluido de troca térmica

C=concentração de etanol na fase fluida

 C_0 =concentração inicial de etanol na entrada do reator/trocador de calor

 \mathcal{D}_{cr} difusidade efetiva radial

 D_0 =diâmetro externo dos tubos

 N_t =número de tubos

 u_r = velocidade espacial

R=raio interno dos tubos do reator/trocador de calor

 r_v =taxa de reação por unidade de volume do reator

tc=temperatura do fluido de troca térmica

T=temperatura no seio da fase fluida

 T_v temperatura na parede interna dos tubos

U=coeficiente global de troca térmica

 W_c =velocidade mássica de fluido de troca térmica

 α_p =coeficiente de película na parede interna dos tubos

 ρ_f =massa específica dos reagentes-produtos

 λ_{er} =condutividade térmica efetiva radial

 $\epsilon_l =$ porosidade do leito

 η =fator de efetividade

 $(-\Delta H_r)$ =variação da entalpia de reação, por mol de etanol.

4.2.3 Modelo Heterogêneo Bidimensional de Reator Catalítico em Leito Fixo (Modelo II)

Esse modelo supõe gradientes interfase e intrapartícula, ou seja, leva em conta as limitações da transferência de calor e massa sobre a taxa global de reação e considera separadamente a transferência de calor por condução efetiva na direção radial nas fases sólida e fluida do leito fixo do reator.

Portanto temos:

Para o balanço de massa:

$$u_s.\frac{\partial C}{\partial z} = \epsilon_l.\mathcal{D}_{er}.(\frac{\partial^2 C}{\partial r^2} + \frac{1}{r}.\frac{\partial C}{\partial r}) - k_g.a_v.(C - C_s), \qquad (4.10)$$

$$k_{g.}a_{v.}(C-C_{s}) = \eta.r_{v.}$$
(4.11)

Para o balanço de energia na fase fluida:

$$u_{s}.\rho_{f}.cp_{f}.\frac{\partial T}{\partial z} = \lambda_{er}^{f}.\left(\frac{\partial^{2}T}{\partial r^{2}} + \frac{1}{r}.\frac{\partial T}{\partial r}\right) + h_{f}.a_{v}.(T_{s}^{s} - T) + h_{f}.a_{vi}.(T_{i}^{s} - T), \quad (4.12)$$

Para o balanço de energia na fase sólida:

$$h_f.a_v.(T_s^s - T) = \lambda_{er}^s.(\frac{\partial^2 T_s}{\partial \tau^2} + \frac{1}{\tau}.\frac{\partial T_s}{\partial \tau}) + (-\Delta H_r).\eta.r_v - h_p.a_v.(T_s^s - T_i^s), \quad (4.13)$$

$$h_f.a_{vi}.(T_i^s - T) = h_p.a_{v}.(T_s^s - T_i^s).$$
 (4.14)

Para o balanço de energia no fluido de troca térmica:

$$-W_{c}.cp_{c}.\frac{dtc}{dz} = \pi.D_{0}.N_{t}.U.(T-tc).$$
(4.15)

Condições de contorno:

Para z = 0:

$$C = C_s = C_o, \tag{4.16}$$

$$T = T_s = T_o. \tag{4.17}$$

Para r = 0:

$$\frac{\partial C}{\partial r} = \frac{\partial C_s}{\partial \tau} = 0, \qquad (4.18)$$

$$\frac{\partial T}{\partial r} = \frac{\partial T_s}{\partial r} = 0. \tag{4.19}$$

Para r = R:

$$\frac{\partial C}{\partial r} = \frac{\partial C_s}{\partial r} = 0, \qquad (4.20)$$

$$-\lambda_{er}^{f}.\frac{\partial T}{\partial r}=\alpha_{r}^{f}.(T-T_{\nu}), \qquad (4.21)$$

$$-\lambda_{er}^{s} \cdot \frac{\partial T_{s}}{\partial r} = \alpha_{p}^{s} \cdot (T_{s} - T_{p}). \qquad (4.22)$$

Onde:

 a_v =área superficial da partícula de catalisador por unidade de volume do reator a_{vi} =área superficial da partícula de inerte por unidade de volume do reator C_s =concentração de etanol na superfície da partícula de catalisador h_f -coeficiente de transferência de calor interfase h_p =coeficiente de transferência de calor na película adjacente entre as partículas k_g =coeficiente de transferência de massa interfase T_i =temperatura no interior da partícula de inerte T_i^r =temperatura na superfície da partícula de inerte T_s =temperatura no interior da partícula de catalisador T_s^r =temperatura na superfície da partícula de catalisador α_p^r =coeficiente de película na parede interna do tubo para fase sólida α_p^f =coeficiente de película na parede interna do tubo para fase fluida λ_{er}^f =condutividade térmica efetiva radial na fase fluida do leito λ_{er}^s =condutividade térmica efetiva radial na fase sólida do leito.

O segundo e o terceiro termos na equação 4.12 indicam a troca de calor entre a mistura gasosa e a fase sólida do leito diluído de partículas, enquanto que o último termo das equações 4.13 e 4.14 refere-se à troca de calor por condução entre as partículas sólidas do leito.

Adimensionalizando as equações acima de acordo com a tabelas 4.1 e 4.2, temos:

Modelo I:

$$\frac{\partial X}{\partial \overline{z}} = \alpha_I \cdot \left(\frac{\partial^2 X}{\partial \overline{r}^2} + \frac{1}{\overline{r}} \cdot \frac{\partial X}{\partial \overline{r}}\right) - \beta_I \cdot r_v, \qquad (4.23)$$

$$\frac{\partial \overline{T}}{\partial \overline{z}} = \alpha_I' \cdot \left(\frac{\partial^2 \overline{T}}{\partial \overline{\tau}^2} + \frac{1}{\overline{\tau}} \cdot \frac{\partial \overline{T}}{\partial \overline{\tau}}\right) - \beta_I' \cdot r_v.$$
(4.24)

$$\overline{tc}_{i+1} - \overline{tc}_i = -\vartheta \cdot (\overline{T}_{i+1} - \overline{tc}_{i+1}).$$
(4.25)

Condições de contorno do modelo l:

•••	. 1 1		31 1/	•	**	-	•
۰L	aheta.	4 1 .	Varia	VOIC	adim	າກຮາດກ	219
1	abcia		• a 1 1 a	Y CIG	aum	chaion	un.

.

$X = \frac{C_0 - C}{C_0}$	$\overline{T} = rac{T}{T_0}$
$X_{\varepsilon} = \frac{C_0 - C_{\varepsilon}}{C_0}$	$\overline{T}_s = rac{T_s}{T_u}$
$\overline{T}^s_s=rac{T_s^s}{T_0}$	$\overline{T}_i = rac{T_i}{T_0}$
$\bar{c} = \frac{C_0 - c}{C_0}$	$\bar{t} = \frac{t}{\bar{T}_0}$
$\overline{tc} = rac{tc}{T_0}$	$\overline{z} = \frac{z}{L}$
$ar{r}=rac{r}{R}$	$x=rac{r_p}{r_0}$

Para $\vec{z} = 0$:

$$X = 0, \qquad (4.26)$$

$$\overline{T} = 1. \tag{4.27}$$

Para $\bar{r} = 0$:

$$\frac{\partial X}{\partial \bar{r}} = 0, \tag{4.28}$$

$$\frac{\partial \overline{T}}{\partial \overline{r}} = 0. \tag{4.29}$$

Para $\bar{\tau} = 1$:

$$\frac{\partial X}{\partial \overline{r}} = 0, \qquad (4.30)$$

$$-\frac{\partial \overline{T}}{\partial \overline{r}} = Bi.(\overline{T} - \overline{T}_p). \tag{4.31}$$

Constantes do Modelo I:	
Lud.	o och
$\alpha_I = \frac{2\epsilon_I \alpha_I}{R^2 P \epsilon_m}$	$\beta_I = \frac{d_I - c_0}{G \cdot C_0}$
$lpha_I'=rac{L_{el}d_P}{R_{el}Pe_h}$	$eta_I' = rac{L\left(-\Delta H_r ight)}{G_{f,cp_f}}$
$Pe_m = rac{G_f.d_p}{p_f.\mathcal{D}_r}$	$Bi = \frac{\alpha_1 \cdot R}{\lambda \cdot r}$
Constantes do Modelo II:	
11	- arta
$\alpha_{II} = \frac{\mu_{e_{I},a_{P}}}{R^{2}.Pe_{m}}$	$\beta_{II} = \frac{p_{II} \cdot \mu_{AI}}{G_f}$
$L.d_p$	$a_{l} = L.h_{f.a_{n}}$
$\alpha_{II} = \frac{1}{R^2 \cdot P e_h}$	$p_{II} = \frac{1}{G_f \cdot c_{Pf}}$
$eta^{u} = rac{L.h_{f}.a_{vi}}{G_{f}.cp_{f}}$	$Pe_h = rac{G_f.d_{p.}c_{p_f}}{\rho_f.\lambda_{r_f}^f}$
$a_1 = C_0.k_g.a_v$	$a_2 = h_f.a_v$
$a_3 = h_p.a_v$	$a_4 = h_f.a_{vi}$
$a_7 = \frac{(-\Delta H_r)}{T_0}$	$a_{0}=rac{\lambda_{cr}^{r}}{R^{2}}$
$Pe_m=rac{G_{f}.d_r}{ ho_{f}.\mathcal{D}.r}$	$artheta=rac{\pi_{*}D_{0},N_{t},U,L,\Deltaar{z}}{W_{v},cp_{v}}$
$Bi_f = rac{lpha_p^f.m{R}}{\lambda_{rr}^f}$	$Bi_s = rac{lpha_p^r R}{\lambda_{rr}^r}$

Tabela 4.2: Constantes da modelagem matemática. Constantes do Modelo I:

Modelo II:

$$\frac{\partial X}{\partial \bar{z}} = \alpha_{II} \cdot \left(\frac{\partial^2 X}{\partial \bar{\tau}^2} + \frac{1}{\bar{\tau}} \cdot \frac{\partial X}{\partial \bar{\tau}} \right) + \beta_{II} \cdot (X_s - X).$$
(4.32)

$$a_{1}(X - X_{s}) = -\eta r_{v}, \qquad (4.33)$$

$$\frac{\partial \overline{T}}{\partial \overline{z}} = \alpha'_{II} \cdot \left(\frac{\partial^2 \overline{T}}{\partial \overline{\tau}^2} + \frac{1}{\overline{\tau}} \cdot \frac{\partial \overline{T}}{\partial \overline{\tau}} \right) + \beta'_{II} \cdot \left(\overline{T}_s^s - \overline{T} \right) + \beta'' \cdot \left(\overline{T}_i^s - \overline{T} \right), \tag{4.34}$$

$$a_{2}.(\overline{T}_{s}-\overline{T})=a_{6}.(\frac{\partial^{2}\overline{T}_{s}}{\partial\overline{r}^{2}}+\frac{1}{\overline{r}}.\frac{\partial\overline{T}_{s}}{\partial\overline{r}})+a_{7}.\eta.r_{v}-a_{3}.(\overline{T}_{s}^{s}-\overline{T}_{i}^{s}), \qquad (4.35)$$

$$a_{4}.(\overline{T}_{i}-\overline{T})=a_{3}.(\overline{T}_{s}^{s}-\overline{T}_{i}^{s}).$$

$$(4.36)$$

$$\overline{tc}_{i+1} - \overline{tc}_i = -\vartheta \cdot (\overline{T}_{i+1} - \overline{tc}_{i+1}).$$
(4.37)

Condições de contorno do modelo II:

Para $\overline{z} = 0$:

$$X = X_s = 0, \tag{4.38}$$

$$\overline{T} = \overline{T}_s = 1. \tag{4.39}$$

Para $\bar{\tau} = 0$:

$$\frac{\partial X}{\partial \bar{r}} = \frac{\partial X_{\star}}{\partial \bar{\tau}} = 0, \qquad (4.40)$$

$$\frac{\partial \overline{T}}{\partial \overline{r}} = \frac{\partial \overline{T}_s}{\partial \overline{r}} = 0. \tag{4.41}$$

Para $\bar{r} = 1$:

$$\frac{\partial X}{\partial \tilde{r}} = \frac{\partial X_s}{\partial \tilde{r}} = 0, \qquad (4.42)$$

$$-\frac{\partial \overline{T}}{\partial \overline{\tau}} = Bi_f (\overline{T} - \overline{T}_p), \qquad (4.43)$$

$$-\frac{\partial T_s}{\partial \bar{r}} = Bi_s.(\overline{T}_s - \overline{T}_p). \tag{4.44}$$

4.3 Modelo para Partícula Porosa de Catalisador

4.3.1 Suposições do Modelo

- Estado estacionário;
- Partícula de forma esférica;
- Sistema reagente à volume constante, supondo o meio reacional composto de ar em sua maior parte e baixa concentração de reagente limite (etanol).

4.3.2 Modelo de Partícula Porosa Esférica Simples de Catalisador

Fazendo-se os balanços de massa e energia e supondo-se o modelo de partícula esférica simples de catalisador com as hipóteses simplificadoras acima, obtém-se o seguinte sistema de equações diferenciais não-lineares e acopladas, que governa os mecanismos de transferência de calor por condução e difusão de massa na partícula:

$$\frac{\mathcal{D}_{eff}}{\tau_p^2} \cdot \left[\frac{d}{d\tau_p} \left(\tau_p^2 \frac{dc}{d\tau_p}\right)\right] = R_A, \tag{4.45}$$

$$-\frac{\lambda_{eff}}{r_p^{2+}} \left[\frac{d}{dr_p} \left(r_p^2 \frac{dt}{dr_p}\right)\right] = (-\Delta H_r) \cdot R_A.$$
(4.46)

Condições de contorno:

Para $\tau_p = 0$:

$$\frac{dc}{d\tau_p} = 0, \qquad (4.47)$$

$$\frac{dt}{dr_{\nu}} = 0. \tag{4.48}$$

Para $r_p = r_0$:

$$\mathcal{D}_{eff}.\frac{dc}{dr_{p}} = k_{g}.(C - C_{s}), \qquad (4.49)$$

$$\lambda_{eff} \cdot \frac{dt}{dr_v} = h_f \cdot (T - T_s^s). \tag{4.50}$$

Onde:

 $\lambda_{eff}\!=\!\mathrm{condutividade}$ térmica efetiva na partícula

 \mathcal{D}_{eff} =difusidade efetiva na partícula

 R_A = taxa de reação por unidade de volume de partícula

c=concentração de etanol na partícula

ro=raio da partícula

t=temperatura de reagentes-produtos na partícula.

Adimensionalizando as equações acima de acordo com as tabelas 4.1 e 4.2, temos:

$$\frac{1}{x^2} \left[\frac{d}{dx} \left(x^2 \frac{d\overline{c}}{dx} \right) \right] = -\frac{r_0^2}{\mathcal{D}_{eff} \cdot C_0} \cdot R_A.$$
(4.51)

$$\frac{1}{x^2} \cdot \left[\frac{d}{dx} \left(x^2 \frac{d\bar{t}}{dx} \right) \right] = - \frac{(-\Delta H_r) \cdot r_0^2}{\lambda_{eff} \cdot T_0} \cdot R_A.$$
(4.52)

Condições de contorno:

Para x = 0:

$$\frac{d\bar{c}}{dx}=0, \qquad (4.53)$$

$$\frac{d\bar{t}}{dx}=0. \tag{4.54}$$

Para x = 1:

$$\frac{d\bar{c}}{dx} = \frac{k_g.r_0}{\mathcal{D}_{eff}}.(X_s - X), \qquad (4.55)$$

$$\frac{dt}{dx} = \frac{h_f \cdot r_0}{\lambda_{eff}} \cdot (\overline{T}_s^s - \overline{T}).$$
(4.56)

4.3.3 Fator de Efetividade

Com o objetivo de medir a eficiência com que a superfície interna de catalisador é utilizada, define-se o fator de efetividade η para o modelo II, a razão entre a taxa global de reação e aquela que seria observada se toda a superfície interna do catalisador estivesse disponível aos reagentes nas condições de temperatura e concentração da superfície externa do catalisador.

Portanto,

$$\eta = \frac{a_p D_{eff} \left(\frac{dc}{dr_p}\right)_{r_p = r_0}}{r_A(C_s, T_s^s)}$$
(4.57)

Adimensionalizando, ternos

$$\eta = -\frac{\varphi \cdot \left(\frac{d\varepsilon}{dx}\right)_{x=1}}{r_A(X_s, \overline{T}_s^s)},\tag{4.58}$$

onde

$$\varphi = \frac{6}{d_p} \cdot D_{eff} \cdot C_o \cdot \frac{\rho_l}{\rho_p} \cdot \chi \cdot \frac{1}{r_0}$$
(4.59)

$$\left(\frac{d\bar{c}}{dx}\right)_{x=3} = \frac{3\bar{c}_{i-4} - 16\bar{c}_{i-3} + 36\bar{c}_{i-2} - 48\bar{c}_{i-1} + 25\bar{c}_i}{12.\Delta x}, \qquad (4.60)$$

 χ =fator de diluição

1

 a_n =área superficial da partícula por unidade de volume.

A equação 4.60 foi extraída das equações propostas por Guirardello [14] em sua tese de mestrado, onde os termos do numerador são valores obtidos numericamente.

4.4 Equação da Taxa e Entalpia de Reação

4.4.1 Equação da Taxa de Reação

A equação da taxa de reação utilizada nos modelos acima é a mesma proposta por Maciel Filho [25] para a oxidação de etanol à acetaldeído sobre catalisador de óxidos de ferro e molibdênio (ver secção 3.1.1).

A expressão da taxa de reação baseda no volume de reator é obtido pelo produto da expressão da taxa de reação por unidade de massa de catalisador e inerte (aço inox) e a densidade aparente do leito catalítico obtido experimentalmente no trabalho de Maciel Filho [25], ou seja:

$$\tau_v = \rho_l . r_A \tag{4.61}$$

A expressão da taxa de reação baseda no volume de partícula é obtido pelo produto da expressão da taxa de reação por unidade de massa de catalisador e inerte (aço inox) e a densidade da partícula, ou seja:

$$R_A = \rho_p r_A \tag{4.62}$$

4.4.2 Entalpia de Reação

A variação da entalpia de reação em função da temperatura é dada por um processo em três etapas:

ou seja,

- ΔH_R : Variação de entalpia no resfriamento da massa reagente da temperatura desejada T para uma temperatura de referência padrão (298 K),
- ΔH_{298}^o : Variação da entalpia de reação a 298 K,
- ΔH_P : Variação da entalpia no aquecimento dos produtos da reação do estado padrão a 298 K para a temperatura desejada T.

E como entalpia é uma função de estado:

$$\Delta H_r = \Delta H_R + \Delta H_{298}^o + \Delta H_P \tag{4.63}$$

$$\Delta H_r = \sum_{i=1}^2 \int_T^{298} \nu_i . cp_i . dT + \Delta H_{298}^{\phi} + \sum_{i=3}^4 \int_{298}^T \nu_i . cp_i . dT$$
(4.64)

$$\Delta H_r = \Delta H_{298}^{\nu} + \int_{298}^T \Delta c p. dT \qquad (4.65)$$

onde:

$$\Delta cp = \sum_{i=3}^{4} \nu_i . cp_i - \sum_{i=1}^{2} \nu_i . cp_i$$
(4.66)

nas unidades:

$$[\Delta H_r] = [\Delta H_R] = [\Delta H_{298}^o] = [\Delta H_P] = \frac{kcal}{kmol\ de\ etanol}$$
$$[cp] = \frac{kcal}{kmol\ K}$$

As expressões para cp_i são dadas na tabela 4.3.

i	N_2	O_2	H_2O	CH_3CH_2OH	CH_3CHO
$cp_i^{(1)}$	7.440	6.713	7.701	2.153	1.843
$cp_i^{(2)} imes 10^6$	-3240.	-0.879	459.5	51130.	43530.
$cp_i^{(3)} imes 10^6$	6.4	4.170	2.521	-20.04	-24.04
$cp_i^{(4)} imes 10^9$	-2.79	-2.544	-0.859	0.328	5.685
σ_i (Å)	3.798	3.467	2.52	4.31	3.728
(ϵ_i/κ)	71.4	106.7	775.0	431.0	592.3
$T_{bi}(K)$	77.4	90.2	373.2	351.5	293.6
MM_i	28.013	31.999	18.015	46.069	44.054
δ_i	0.0	0.0	1.0	0.3	0.74
μ_p (debyes)	0.0	0.0	1.85	1.69	2.5

Tabela 4.3: Constantes das propriedade físicas

4.5 Propriedades Físicas

Nesta secção são apresentadas as correlações da literatura [18, 31], utilizadas na estimativa das propriedades físicas dos reagentes-produtos, do catalisador e do fluido de troca térmica².

4.5.1 Propriedades Físicas dos Reagentes-Produtos

Massa molecular da mistura reagentes-produtos

$$MM_f = \sum_{i=1}^5 y_i . MM_i$$
 (4.67)

onde MM_i é peso molecular e y_i a fração molar de cada composto, nas unidades:

 $[MM_f] = g/gmol.$

Massa específica

²Neste trabalho "." foi utilizado para indicar a parte decimal dos números.

Para uma mistura:

$$\rho_f = \frac{P \times MM_f}{R_g \times T} \tag{4.68}$$

nas unidades:

$$[T] = K$$

 $[P] = atm$
 $[MM_f] = g/gmol$
 $[\rho_f] - g/cm^3$
 $R_g] = 82.05 atm.cm^3/gmol.K.$

Capacidade calorífica

Para uma mistura multicomponente:

Į

$$cp_f = \sum_{i=1}^{5} y_i . cp_i$$
 (4.69)

onde:

$$cp_i = cp_i^{(1)} + cp_i^{(2)} \times T + cp_i^{(3)} \times T^2 + cp_i^{(4)} \times T^3$$
 (4.70)

e os coeficientes $cp_i^{(1)}$, $cp_i^{(2)}$, $cp_i^{(3)}$, $cp_i^{(4)}$ para cada composto são dados na tabela 4.3, nas unidades:

$$[cp_f] = cal/gmol.K$$

 $[T] = K.$

Difusividade

Para mistura gasosa multicomponente, a difusividade de um composto j na mistura é dado por:

$$\mathcal{D}_{j,f} = \frac{1 - y_j \cdot \sum_{k=1}^{5} \frac{N_k}{N_j}}{\sum_{k=1}^{5} \frac{1}{D_{jk}} \cdot (y_k - y_j \cdot \frac{N_k}{N_j})}.$$
(4.71)

Para uma mistura binária o coeficiente de difusão de um composto i em j é dado por:

$$\mathcal{D}_{ij} = \mathcal{D}_{ji} = 1.8586 \times 10^{-3} \{ |T^3(\frac{1}{M_i} + \frac{1}{M_j})|^{1/2} / (P.\sigma_{ij}^2.\Omega_D) \}.$$
(4.72)

$$\Omega_D(Lennard \& Jones) = \frac{A}{T^{B}} + \frac{C}{e^{D.T^*}} + \frac{E}{e^{F.T^*}} + \frac{G}{e^{H.T^*}}$$
(4.73)

onde:

$$T^{*} = \frac{T}{\left(\frac{\epsilon_{ij}}{\kappa}\right)} \tag{4.74}$$

$$\epsilon_{ij} = (\epsilon_i, \epsilon_j)^{1/2} \tag{4.75}$$

$$\sigma i j = \frac{1}{2} (\sigma_i + \sigma_j) \tag{4.76}$$

$$\delta_{ij} = (\delta_i \cdot \delta_j)^{1/2}; \qquad (4.77)$$

para gases polares:

$$\Omega_D(Stockmayer) = \Omega_D(Lennard \& Jones) + 0.19 \frac{\delta_{ij}^2}{T}$$
(4.78)

onde:

$$\begin{array}{ll} A = 1.06036 & E = 1.03587 \\ B = 0.15610 & F = 1.52996 \\ C = 0.19300 & G = 1.76474 \\ D = 0.47635 & H = 3.8941, \end{array}$$

_ _ _ + _

nas unidades:

$$|T| = K$$

 $[D_{ij}] = cm^2/s$
 $|P| = atm$

 $|MM_i| = g/gmol.$

E os parâmetros $\left(\frac{\epsilon_i}{\kappa}\right)$, σ_i e δ_i são dados 4.3.

Viscosidade

Para mistura gasosa multicomponente:

$$\mu_f = \sum_{i=1}^{5} \frac{y_i . \mu_i}{\sum_{j=1}^{5} y_j . \phi_{ij}}, \qquad (4.79)$$

onde:

$$\phi_{ij} = \frac{[1 + (\mu_i/\mu_j)^{1/2} \cdot (M_i/M_j)^{1/4}]^2}{[8 \cdot (1 + M_i/M_j)]^{1/2}}$$
(4.80)

$$\phi_{ji} = \phi_{ij} \tag{4.81}$$

$$\mu_{i} = 26.69 \frac{(M_{i}.T)^{1/2}}{\sigma^{2}.\Omega_{v}}$$
(4.82)

$$\Omega_v(Lennard \& Jones) = \frac{A}{T^{\cdot B}} + \frac{C}{e^{D \cdot T^{\cdot}}} + \frac{E}{e^{F \cdot T^{\cdot}}}; \qquad (4.83)$$

para gases polares:

$$\Omega_v(Stockmayer) = \Omega(Lennard \& Jones) + 0.2 rac{\delta^2}{T},$$
 (4.84)

onde:

$$\begin{array}{ll} A = 1.16145 & D = 0.77320 \\ B = 0.14874 & E = 2.16178 \\ C = 0.52478 & F = 2.43787, \end{array}$$

nas unidades:

$$[T]=K$$

 $[\mu_i]=10^{-6}g/cm.s$

$$[MM_i] = g/gmol.$$

Condutividade térmica

Para uma mistura multicomponente:

$$\lambda_f = \sum_{i=1}^{5} \frac{y_i . \lambda_i}{\sum_{i=1}^{5} y_j . \phi_{ij}}$$
(4.85)

onde ϕ_{ij} é estimada pela equação 4.80.

Para componente simples utilizou-se a correlação de Eucken:

. . .

$$\frac{\lambda_i \cdot M M_i}{\mu_i} = c p_i + \frac{5}{4} \cdot R_g \tag{4.86}$$

nas unidades:

$$|\lambda_i| = cal/cm.s$$

 $|\mu_i| = g/cm.s$
 $|c_p| = cal/gmol.K$

. .

com $R_g = 1.987 \ cal/gmol.K$.

4.5.2 Propriedades Físicas do Catalisador

As seguintes propriedades físicas do catalisador são os mesmos valores propostos por Maciel Filho [25]:

- Área superficial do catalisador;
- Volume total de poros;
- Densidade aparente do catalisador.

E através desses parâmetros foram calculados:

- O raio médio de poro;
- A porosidade da partícula.

Algumas propriedades foram calculadas experimentalmente, tais como

- A difusividade térmica que foi estimada по Laboratório de Efeito Fotoacústico do IFGW-UNICAMP [3];
- A composição do catalisador (% mássica) foi estimada experimentalmente por difração em raio X [2].

Através desses parâmetros foi estimada a condutividade térmica da parte sólida do catalisador Fe-Mo.

Raio médio de poro

$$r_k = 2 \cdot \frac{V_g}{S_g}.\tag{4.87}$$

Porosidade da partícula

$$\epsilon_p = \rho_p V_g. \tag{4.88}$$

Foram utilizados os seguintes valores para:

• O volume total de poros

$$V_{g} = 0.547 \ cm^{3}/g. \tag{4.89}$$

A superfície total do catalisador

$$S_g = 21.6 \ m^2/g. \tag{4.90}$$

• A densidade aparente do catalisador

$$\rho_{\rm p} = 0.654 \ g/cm^3. \tag{4.91}$$

Área superficial da partícula por unidade de volume

$$a_p = \frac{6}{\phi_s.d_p}.\tag{4.92}$$

Área superficial da partícula por unidade de volume de reator

$$a_v = \frac{6.(1-\epsilon_l)}{\phi_s.d_p} \tag{4.93}$$

onde:

$$\phi_s = \left(\frac{\text{superfície da esfera}}{\text{superfície da partícula}}\right)_{\text{ambos de mesmo volume}}$$

$$= 0.54. \tag{4.94}$$

Condutividade térmica da parte sólida do catalisador

A condutividade térmica da parte sólida de catalisador foi obtida a partir da relação:

$$\lambda_s = \alpha \times \rho_s \times cp_s \tag{4.95}$$

onde:

 $cp_s = capacidade calorífica do catalisador$

 α = difusividade térmica

 ρ_s = densidade de empacotamento da pastilha de catalisador.

A capacidade calorífica do catalisador cp_s , foi calculada da seguinte forma:

$$cp_s = x^{Fe_2O_2} \times cp_s^{Fe_2O_2} + x^{MoO_3} \times cp_s^{MoO_2}$$

$$(4.96)$$

onde:

 $cp_s^{Fe_2O_3}$, $cp_s^{MoO_3}$ = capacidades caloríficas por unidade de massa, a 25°C, do óxido de ferro e óxido de molibdênio obtidos da literatura [37]

 $x^{Fe_2O_3}$ e x^{MoO_3} = frações mássicas dos mesmos e foram obtidos experimentalmente por difração em RX [2]. Foram os seguintes valores utilizados:

$$cp_s^{Fe_2O_0} = 1.22cal/g.K$$
 (4.97)

$$cp_s^{MoO_3} = 1.50 cal/g.K$$
 (4.98)

$$x^{Fe_2O_0} = 12.89\% \tag{4.99}$$

$$x^{MoO_{\odot}} = 86.51\%. \tag{4.100}$$

Na estimativa da difusividade térmica da parte sólida do catalisador α , utilizouse do experimento do Laboratório de Efeito Fotoacústico do IFGW-UNICAMP, onde os aparelhos utilizados são todos conhecidos e podem ser encontrados nos laboratórios mais simples, conforme figura 4.2.

O efeito fotoacústico consiste, basicamente, na expansão e contração do gás em contato com a amostra, quando esta absorve luz modulada. Esse efeito baseia-se no fato que todo calor gerado na amostra, seja transferido para o gás. Somente uma pequena camada responde termicamente às variações de temperatura na superfície do material. A expansão e contração do gás gera uma variação de pressão na célula fotoacústica, que é percebido facilmente mediante o uso de microfone sensível.

A quantidade de calor depositada no material é proporcional à variação de pressão na célula. Isto implica em dizer que a intensidade do sinal acústico, detectado por essa alteração de pressão, está diretamente relacionada com a quantidade de luz absorvida pela amostra, ou seja o sinal acústico é gerado como consequência da oscilação térmica na superfície do material.

Portanto conhecendo-se a absorção ótica da amostra, pode-se determinar a difusidade térmica.

A teoria do efeito fotoacústico prediz que para baixas freqüências de modulação - f - a amplitude do sinal traseiro tem o seguinte comportamento:

$$S_t \approx \frac{e^{-b\sqrt{f}}}{f} \tag{4.101}$$

Figura 4.2: Diagrama de blocos para medida da difusividade térmica por efeito fotoacústico.

onde:

$$b = \sqrt{\frac{\pi . l^2}{\alpha_s}}.$$
 (4.102)

E para altas frequências de modulação (f > 35llz) que a fase frontal varia segundo as expressões:

$$\phi_F = A(2) + a\tau ctg[\frac{1}{z-1}]$$
(4.103)

onde:

$$z = A(1).\sqrt{f} \tag{4.104}$$

$$A(1) = \sqrt{\frac{\pi l^2}{\alpha_s}}.\tag{4.105}$$

Portanto com o ajuste numérico do sinal traseiro e da fase frontal em função da frequência de modulação estima-se a difusidade térmica α .

Foram obtidos os seguintes valores em função da densidade de empacotamento da pastilha de catalisador ρ_s , que foi prensada uniaxialmente:

$ ho_s \left(g/cm^3 ight)$	α para baixas f (m/s^2)	α para altas f (m/s ²)	$\overline{lpha}(m/s^2)$
2.412	0.0015	0.00161	0.00156
2.430	0.0020	0.00197	0.00199

A reprodução dos resultados para altas e baixas frequências de modulação garantem o sucesso do método na estimativa da difusividade térmica do catalisador de óxido de Fe-Mo.

4.5.3 Propriedades Físicas do Fluido de Troca Térmica [18]

Massa específica

$$\rho_c = A + B.T \tag{4.106}$$

onde:

$$A = 957.29$$

 $B = -0.90194$
 $[a_{4}] = ka/m^{3}$

nas unidades:

$$[
ho_f] = kg/m^3$$

 $[T] = ^{o} C$

válida para:

$$0 \leq T \leq 400 \leq^{o} C.$$

Capacidade calorífica

ī

$$cp_c = A + B.T \tag{4.107}$$

onde:

$$A = 1607.4$$

 $B = 1.5184$

nas unidades:

$$[cp_c] = J/kg.^{\circ}C$$

 $[T] =^{\circ}C$

válida para:

 $0^{\circ}C \leq T \leq 400^{\circ}C.$

Viscosidade

$$\ln \mu_{\rm c} = A + \frac{B}{T} + \frac{C}{T^2} - \frac{D}{T^3}$$
(4.108)

onde:

$$A = -6.59078$$
 $B = 4.7696 \times 10^3$ $C = -9.96854 \times 10^5$ $D = 1.07523 \times 10^8$

nas unidades:

 $[\mu_f] = cp$

|T| = K

válida para:

$$-45^{\circ}C \leq T \leq 375^{\circ}C.$$

Condutividade térmica

:

$$\lambda_c = A + B.T \tag{4.109}$$

onde:

$$A = 0.13943$$
$$B = -1.5666 \times 10^{-4}$$

nas unidades:

 $|\lambda_c| = W/m^o C$

válida na faixa:

 $0^{\circ}C \leq T \leq 400^{\circ}C.$

Condutividade Térmica dos Tubos do Reator 29

A condutividade térmica dos tubos do reator, considerados como de aço inox 304, é dada por:

$$\lambda_t = a.T^m \tag{4.110}$$

onde:

$$a = 1.4031$$

 $m = 0.410266$

nas unidades:

$$egin{aligned} & [\lambda_t] = W/m.K \ & [T] = K \end{aligned}$$

válida para

 $0^{\circ}C \leq T \leq 500^{\circ}C.$

4.6 Correlações de Transferência:

Os parâmetros de transferência de calor e massa dos modelos foram estimados das correlações semi-empíricas existentes na literatura [12, 25, 27] e utilizam os seguintes grupos adimensionais:

Reynolds	$Re = \frac{G_{f,d}}{\mu_f}$
Prandtl	$Pr = rac{cp_f.\mu_f}{\lambda_f}$
Schmidt	$Sc = rac{\mu_f}{ ho. \mathcal{D}_{j,f}}$
Nusselt	$Nu = rac{h_{f,d}}{\lambda_{eff}}$
Sherwood	$Sh=rac{\lambda_{r,d}}{ extsf{D}_{j,f}}$
Peclet	$Pe_m = rac{G_{f,d}}{\epsilon_{f},\rho_{f},D_{er}}.$

Nos grupos adimensionais o comprimento característico – d – é escolhido de acordo com a geometria do sistema sendo que para a partícula não esférica de catalisador, d é o diâmetro equivalente de uma esfera de mesmo volume que a partícula.

Para o espaço entre a carcaça e os tubos, onde escoa o fluido de troca térmica, d é o diâmetro equivalente para transfência de calor definido por:

$$D_{c}^{e} = \frac{\text{Area de escoamento}}{\text{Perímetro molhado}}$$
$$= \frac{D_{c}^{2} - N_{t}.D_{0}^{2}}{N_{t}.D_{0}}$$
(4.111)

onde:

 $D_c = \text{Diâmetro}$ da carcaça do reator/trocador de calor,

 $D_0 = \text{Diâmetro externo dos tubos reator/trocador de calor.}$

4.6.1 Correlações para Estimativa dos Parâmetros de Transferência de Calor e Massa Intrareator

Os parâmetros de transferência de massa como \mathcal{D}_{er} e de calor tais como λ_{er}^s , λ_{er}^f , α_p^f , α_p^s , λ_{er} e α_p nas fases sólida e/ou fluida são dadas a seguir:

Difusividade efetiva radial \mathcal{D}_{er} -

É dada pela correlação proposta por Dorrweiler e Fahien [22]:

$$Pe_m = 9.[1 + 19.4(\frac{d_p}{D})^2]$$
(4.112)

onde:

$$Pe_m = \frac{G_f.d_p}{\epsilon_l.\rho_f.D_{er}},\tag{4.113}$$

$$G_f = \frac{4.M_r}{N_t.\pi.D^2}$$
(4.114)

c onde:

D=diâmetro interno dos tubos do reator-trocador

 d_p =diâmetro equivalente da partícula

 \dot{M}_r = velocidade mássica dos reagentes-produtos

 $\epsilon_l = \text{porosidade do leito fixo (do reator)}$

 ρ_f =massa específica dos reagentes-produtos.

Condutividade térmica efetiva radial da fase sólida λ_{er}^{s} –

Foi calculada da correlação proposta por Yagi e Kunii [48] e Kunii e Smith [20], supondo que as contribuições de radiação são desprezíveis por que na simulação a temperatura no reator não excedeu a $400^{\circ}C$ e considerou-se o leito do reator composto de partículas com diâmetros equivalentes menores que 0.6 cm [16].

Foi utilizado também o método de Singer e Wilhelm [34] que distingue as contribuições para a condutividade efetiva para a fase sólida, λ_{er}^s , e para fase fluido, λ_{er}^f .

$$\frac{\lambda_{er}^{s}}{\lambda_{f}} = \frac{\beta(1-\epsilon)}{\phi + \gamma \frac{\lambda_{f}}{\lambda_{eff}}}$$
(4.115)

onde:

 $\gamma = rac{2}{3}$

 β =coeficiente que depende da geometria da partícula e da densidade do empacotamento, entre 0.9 e 1.0

 ϕ =fator que depende da densidade de empacotamento dado por:

$$\phi = \phi_2 + (\phi_1 - \phi_2) \frac{\epsilon_l - 0.260}{0.216}$$
 $0.260 \le \epsilon_l \le 0.476$ (4.116)

$$= \phi_1 \qquad \qquad \epsilon_l \ge 0.476 \qquad , \qquad (4.117)$$

$$= \phi_2 \qquad \epsilon_l \leq 0.260 \qquad (4.118)$$

onde ϕ_1 e ϕ_2 são obtidos através de gráficos desenvolvidos por Kunii e Smith [20].

O modelo de Yagi e Kunii [48] e Kunii e Smith [20] considera o fluxo de calor radial por condução efetiva decorrentes de duas contribuições: uma é estática e a outra dinâmica.

A contribuição estática supõe ausência de fluxo de fluido e considera os seguintes mecanismos para a condução efetiva:

- 1. Transferência de calor através do fluido nos espaços vazios do leito;
 - (a) Por condução;
 - (b) Por radiação.

- 2. Transferência de calor onde a fase sólida do leito está envolvida;
 - (a) Por condução através da superfície de contato entre as partículas;
 - (b) Por condução através da película estagnante na vizinhança da superfície de contato;
 - (c) radiação entre as partículas;
 - (d) condução através das partículas.

A contribuição dinâmica supõe fluxo de fluido e corresponde ao fluxo de calor devido à mistura turbulenta de porções do fluido, descrita pela difusividade efetiva radial.

Condutividade efetiva radial da fase fluida λ_{er}^{f} –

De acordo com o modelo de Yagi e Kunii [48], Kunii e Smith [20] e Singer e Wilhelm [34]. Foi estimada por:

$$\lambda_{er}^{f} = \epsilon_{l.} \left(\lambda_{f} + \frac{d_{p.}cp_{f.}G}{Pe_{m.}\epsilon_{l}}\right)$$
(4.119)

– Coeficiente de transferência de calor na parede para fase fluida $lpha_p^f$ –

Foi calculada da correlação de Yagi e Wakao 12:

$$\frac{\alpha_p^f.d_p}{\lambda_f} = \begin{cases} 0.6.Pr^{1/3}.Re^{1/2}, & \text{para} \quad 1 < Re \le 40; \\ 0.2.Pr^{1/3}.Re^{0.8}, & \text{para} \quad 40 \le Re < 2000 \end{cases}$$
(4.120)

onde:

$$Re = \frac{G_f \cdot d_p}{\mu_f} \tag{4.121}$$

$$Pr = \frac{cp_f.\mu_f}{\lambda_f} \tag{4.122}$$

e onde:

 $\mu_f =$ viscosidade dos reagentes-produtos

 cp_f = capacidade calorífica dos reagentes-produtos

 λ_f =condutividade térmica dos reagentes-produtos.

Coeficiente de transferência de calor na parede para fase sólida α_p^s – Foi utilizada a correlação proposta por Olbrich [12]

$$\alpha_p^s = 2.12 \frac{\lambda_{er}^s}{d_p} \tag{4.123}$$

Condutividade térmica efetiva radial global para o modelo I λ_{er} –

Foram calculados somando-se os parâmetros efetivos e individuais de cada fase:

$$\lambda_{er} = \lambda_{er}^s + \lambda_{er}^f \tag{4.124}$$

Coeficiente de transferência de calor na parede para o modelo I α_p –

Foram calculados somando-se os parâmetros efetivos e individuais de cada fase:

$$\alpha_p = \alpha_p^s + \alpha_p^f \tag{4.125}$$

4.6.2 Correlações para Estimativa dos Parâmetros de Transferência de Calor e Massa Intrapartícula

A difusividade combinada intrapartícula, Knudsen e molecular, bem como os parâmetros efetivos de transferência de calor λ_{eff} , e de massa \mathcal{D}_{eff} são dados por:

Difusividade Knudsen $\hat{\mathcal{D}}_k$ –

$$\mathcal{D}_{k} = 9.7 \times 10^{-3} \times r_{k} \times \sqrt{\frac{T}{MM_{A}}}$$
(4.126)

nas unidades:

$$[\mathcal{D}_k] = cm^2/s$$

$$|r_k| = A$$
$$|T| = K$$

onde:

 r_k = raio médio do poro,

 MM_A = peso molecular do etanol.

Difusividade combinada na partícula porosa de catalisador \mathcal{D}_c -

$$\frac{1}{D_c} = \frac{1}{D_k} + \frac{1}{D_{j,f}}$$
(4.127)

onde:

 $\mathcal{D}_{j,f}$ = difusividade molecular dada na equação 4.72

 \mathcal{D}_k = difusividade Knudsen definida no item anterior, nas unidades:

$$[\mathcal{D}_c] = [\mathcal{D}_k] = [\mathcal{D}_{j,f}] = cm^2/s.$$

Difusividade efetiva na partícula porosa de catalisador \mathcal{D}_{eff} -

É calculada pelo modelo de poro aleatório de Wakao e Smith [42], ou seja:

$$\mathcal{D}_{eff} = \epsilon_p^2 . \mathcal{D}_c \tag{4.128}$$

onde:

 D_c = difusividade combinada dada pela equação 4.72.

 ϵ_p = porosidade da partícula dada pela equação 4.88.

Condutividade térmica efetiva na partícula λ_{eff} -

Dada pela correlação proposta por Woodside e Messmer [47]:

$$\lambda_{eff} = \lambda_s^{1-\epsilon_p} \cdot \lambda_f^{\epsilon_p} \tag{4.129}$$

onde:

 $\lambda_f =$ condutividade térmica dos reagentes-produtos,

 $\lambda_s =$ condutividade térmica da parte sólida de catalisador.

A condutividade térmica efetiva do catalisador a $25^{\circ}C$, λ_{eff} , obtida a partir das equações 4.85 e 4.95 está dentro da limitada faixa em que se encontra a maioria dos catalisadores porosos utilizados na indústria química, ou seja, entre 0.1 a 0.4 $Btu/h.ft.^{\circ}F$ [16].

4.6.3 Correlações para Estimativa dos Parâmetros de Transferência de Calor e Massa Interfase

Os coeficientes de transferência de calor h_c , e de massa k_g , entre as duas fases do modelo heterogêneo são dadas pelas correlações abaixo:

Coeficiente de transferência de calor fluido-partícula h_f -

Foi utilizada a correlação de Petrovic e Thodos [16]:

$$\epsilon_l.j_h = rac{0.357}{Re^{0.359}}, \quad 3 < Re < 2000, \quad (4.130)$$

$$Nu = j_h.Re.Pr^{1/3} (4.131)$$

onde:

$$Sc = \frac{\mu_f}{\rho_f.\mathcal{D}_{i,f}} \tag{4.132}$$

$$Nu = \frac{h_f \cdot d_r}{\lambda_f},\tag{4.133}$$

e onde:

 $\mathcal{D}_{i,f}$ =difusividade molecular de etanol na mistura.

Coeficiente de transferência de massa fluido-partícula k_g -

Foi utilizada a analogia Chilton-Colburn:

$$j_d = j_h \tag{4.134}$$

$$Sh = j_d.Re.Sc^{1/3},$$
 (4.135)

onde:

$$Sh = \frac{k_g.d_p}{\mathcal{D}_{i,f}}.$$
(4.136)

Coeficiente de transferência de calor por condução na película estagnante entre partículas adjacentes h_r [35] -

$$h_p = \left(\frac{2.\lambda_{eff} + h_f}{d_p . \lambda_{eff}}\right) . \lambda_p \tag{4.137}$$

onde:

$$\log \lambda_p = -1.76 + 0.0129 rac{\lambda_{eff}}{\epsilon_l}$$

4.6.4 Correlações para o Cálculo do Coeficiente Global de Troca Térmica U

O coeficiente global de troca térmica na parede do reator, baseado na área externa de tubo é dado por:

$$\frac{1}{U} = \frac{1}{h_{io}} + \frac{1}{h_i} + \frac{1}{h_o}$$
(4.138)

Com as seguintes correlações para o cálculo dos coeficientes de transferência h_{io} , h_p e h_o :
Coeficiente de película do lado da carcaça h_o

$$Nu = j_h.Re.Pr^{1/3}$$
 (4.139)

onde:

$$j_h = j_h^o \left(\frac{\mu}{\mu_p}\right)^{0.14} \tag{4.140}$$

$$j_{h}^{\nu} = \{Re^{-0.36} + [\frac{Re^{1.6}}{7.831 \times 10^{-14}} + (\frac{1.969 \times 10^{6}}{Re})^{8}]^{-\frac{3}{2}}\}^{\frac{1}{12}}, \quad \frac{L}{D_{c}^{\epsilon}} > 60 \quad (4.141)$$

$$\mu = \mu_c(t_c) \tag{4.142}$$

$$\mu_p = \mu_c(t_p) \tag{4.143}$$

$$D_{c}^{s} = \frac{D_{c}^{2} - N_{t}.D_{o}^{2}}{N_{t}.D_{0}}$$
(4.144)

$$Re = \frac{G_c \cdot D_c^z}{\mu_c} \tag{4.145}$$

$$Pr = \frac{cp_c.\mu_c}{\lambda_c} \tag{4.146}$$

$$Nu = \frac{h_o.D_c^e}{\lambda_c} \tag{4.147}$$

e onde:

 cp_c =capacidade calorífica por unidade de massa do fluido de troca térmica G_c =velocidade mássica superficial do fluido de troca térmica λ_c =condutividade térmica do fluido de troca térmica

 μ_c =viscosidade do fluido de troca térmica.

Coeficiente de película h_{io} -

É dado pela multiplicação do valor obtido da equação 4.125 e a razão $\frac{D}{D_0}$ por que U é baseado na área externa de tubo, ou seja:

$$h_{io} = \alpha_p \cdot \frac{D}{D_0}. \tag{4.148}$$

Coeficiente de transferência de calor na parede do tubo h_i –

$$h_{i} = \begin{cases} \frac{2}{D \cdot ln(\frac{D_{i}}{D})} \cdot \frac{a \cdot (T_{p}^{m+1} - t_{p}^{m+1})}{(m+1) \cdot (T_{p} - t_{p})} & , \text{ para } T_{p} \neq t_{p} \\ \frac{2 \cdot \lambda_{t}}{D \cdot ln(\frac{D_{i}}{D})} & , \text{ para } T_{p} = t_{p} \end{cases}$$

$$(4.149)$$

onde:

$$\lambda_t(T) = a.T^m \tag{4.150}$$

$$t_p = t + \frac{U}{h_o}(T - tc)$$
 (4.151)

$$T_{p} = t_{p} + \frac{U}{h_{t}}(T - tc)$$
(4.152)

onde:

 $\lambda_t(T)$ é a condutividade térmica dos tubos do reator/trocador de calor,

 T_p e t_p são as temperaturas na parede interna e externa nos tubos do reator/trocador de calor, respectivamente.

O sistema acima é resolvido pelo método das substituições sucessivas, obtendose h_{e} e h_{t} simultaneamente para o cálculo de U e supondo como estimativa inicial $T_{p} = T$ e $t_{p} = tc$.

Capítulo 5

Métodos Numéricos para Resolução de Sistema de Equações Diferenciais Parciais

Neste capítulo são apresentados:

- o método dos elementos finitos, aplicado à resolução do sistema de equações diferenciais do modelo pseudo-homogêneo bidimensional de reator catalítico em leito fixo, não isotérmico, não adiabático e com resfriamento contra-corrente (modelo I). Neste modelo não foi considerado gradientes de temperatura e/ou concentração intrapartícula;
- o método dos elementos finitos, aplicado à resolução do sistema de equações diferenciais do modelo heterogêneo bidimensional de reator catalítico em leito fixo, não isotérmico, não adiabático e com resfriamento contra-corrente (modelo II). Neste modelo considera-se gradientes de temperatura e concentração intrapartícula, onde o método dos elementos finitos é aplicado à resolução do sistema de equações diferenciais do modelo de partícula, obtendo-se então um fator de efetividade η, não isotérmico;
- o método das diferenças finitas, aplicado à resolução do sistema de equações diferenciais do modelo II. Neste caso considera-se o modelo de partícula isotérmica, onde o método das diferenças finitas é utilizado para resolver a equação da difusão de massa na partícula porosa de catalisador, obtendo-se um fator de efetividade η , isotérmico.

5.1 Método dos Elementos Finitos

Na formulação de Galerkin na técnica dos elementos finitos [33], as equações diferenciais dos modelos de reator ou partícula esférica de catalisador que em uma forma genérica podem ser escritas por:

$$\mathcal{L}.\boldsymbol{u} - \boldsymbol{f} = \boldsymbol{0} \tag{5.1}$$

onde $\mathcal{L} = \frac{1}{\bar{r}} \frac{\partial}{\partial \bar{r}} (\bar{r} \frac{\partial}{\partial \bar{r}}) e/ou \mathcal{L} = \frac{1}{\bar{r}^2} \frac{\partial}{\partial \bar{r}} (\bar{r}^2 \frac{\partial}{\partial \bar{r}})$ são operadores diferenciais dos modelos. E depois da discretização em elementos conforme a figura 5.1, aproxima a solução da equação anterior pela seguinte relação:

$$\overline{u} = \sum_{\epsilon=1}^{M} \overline{u}^{(\epsilon)}$$
(5.2)

onde M é o número de elementos.

Na discretização das equações diferenciais, utiliza-se elementos com funções de interpolações lineares.

Para um elemento simples definido no intervalo fechado $|\bar{r}_i | \bar{r}_j|$, temos que

$$\overline{u}^{(e)} = [N^{(e)}].\{\overline{u}\}$$
(5.3)

onde

$$|N^{(e)}| = [N_1^{(e)} \ N_2^{(e)}], \tag{5.4}$$

$$\{\overline{u}\} = \begin{bmatrix} \overline{u}_i \\ \overline{u}_j \end{bmatrix}.$$
 (5.5)

Onde das figuras 5.1 e 5.2 as funções moldadas são definidas por:

$$N_{1}^{(e)} = \frac{\bar{r}_{j}^{(e)} - \bar{r}}{\bar{\tau}_{j}^{(e)} - \bar{r}_{i}^{(e)}},$$
(5.6)

$$N_2^{(e)} = \frac{\bar{r} - \bar{r}_i^{(e)}}{\bar{r}_j^{(e)} - \bar{r}_i^{(e)}}.$$
(5.7)

Figura 5.1: Funções de interpolações lineares no elemento.

Então a solução aproximada pode ser colocada na seguinte forma:

$$\overline{u} = \sum_{i=0}^{N} N_i . \overline{u}_i, \qquad (5.8)$$

onde:

• para o ponto nodal i = 0:

$$N_0 = 1 \tag{5.9}$$

• para o ponto nodal 1 $\leq i \leq N-1$:

$$N_i = N_1^{(e+1)} + N_2^{(e)}$$
(5.10)

• para o ponto nodal i = N:

$$N_N = 1 \tag{5.11}$$

onde

N é o número de pontos nodais.

E supõe-se que o desvio ou resíduo resultante entre a solução aproximada e verdadeira, dada por:

$$\varepsilon = (\mathcal{L}.\overline{u} - f) - (\mathcal{L}.u - f),$$
 (5.12)

ou seja, que

$$\boldsymbol{\epsilon} = \mathcal{L}.\overline{\boldsymbol{u}} - \boldsymbol{f} \tag{5.13}$$

seja minimizado, através da condição de ortogonalidade entre esse resíduo e as funções de interpolações utilizadas na aproximação numa determinada região de integração \mathcal{R} :

$$\int_{\mathcal{R}} [N] . \varepsilon . d\mathcal{R} = 0, \qquad (5.14)$$

onde R, a região de integração, é o volume do reator.

A aplicação da formulação de Galerkin resulta em um sistema de equações algébricas não-lineares, que é resolvido pelo método iterativo de Newton-Raphson.

5.1.1 Análise em Elementos Finitos para o Modelo I

O método exige que coloquemos as equações do modelo 1 em sua forma implícita [26]:

$$\frac{X^{k+1} - X^k}{\Delta \overline{z}} = \frac{\alpha_I}{\overline{r}} \frac{\partial}{\partial \overline{r}} (\overline{r} \frac{\partial X^{k+1}}{\partial \overline{r}}) + \beta_I . r_v$$
(5.15)

$$\frac{\overline{T}^{k+1} - \overline{T}^{k}}{\Delta \overline{z}} = \frac{\alpha'_{I}}{\overline{r}} \frac{\partial}{\partial \overline{r}} (\overline{r} \frac{\partial \overline{T}^{k+1}}{\partial \overline{r}}) + \beta'_{I} r_{v}.$$
(5.16)

Resultando em um caso unidimensional da forma da equação 5.1, cuja solução é dada pela formulação de Galerkin.

Portanto para o nosso caso teremos:

• para o balanço de massa:

$$\int_{\bar{\tau}_{i}}^{\bar{\tau}_{j}} \left[N^{(e)} \right]^{T} \left[\frac{\alpha_{I} \cdot \Delta \bar{z}}{\bar{r}} \cdot \frac{\partial}{\partial \bar{r}} (\bar{r} \frac{\partial X^{k+1}}{\partial \bar{r}}) + \Delta \bar{z} \cdot \beta_{I} \cdot r_{v} - X^{k+1} + X^{k} \right] \cdot \bar{\tau} \cdot d\bar{\tau} = 0.$$
(5.17)

• para o balanço de energia:

$$\int_{\bar{\tau}_{t}}^{\bar{\tau}_{f}} \left[N^{(e)} \right]^{T} \left[\frac{\alpha_{f}' \cdot \Delta \bar{z}}{\bar{\tau}} \cdot \frac{\partial}{\partial \bar{\tau}} (\bar{\tau} \frac{\partial \overline{T}^{k+1}}{\partial \bar{\tau}}) + \Delta \bar{z} \cdot \beta_{f}' \cdot r_{t} - \overline{T}^{k+1} + \overline{T}^{k} \right] \cdot \bar{\tau} \cdot d\bar{\tau} = 0, \quad (5.18)$$

ou seja,

• para o balanço de massa:

$$\int_{\bar{r}_{1}}^{\bar{r}_{1}} \left[N^{(\epsilon)} \right]^{T} \left[\alpha_{I} \Delta \bar{z} . \frac{\partial}{\partial \bar{r}} (\bar{r} \frac{\partial X^{k+1}}{\partial \bar{r}}) + \Delta \bar{z} . \bar{r} . \beta_{I} . r_{v} - \bar{r} . X^{k+1} + \bar{r} . X^{k} \right] . d\bar{r} = 0 (5.19)$$

• para o balanço de energia:

$$\int_{\bar{r}_{i}}^{\bar{\tau}_{j}} \left[N^{(e)} \right]^{T} \left[\alpha_{j}^{\prime} . \Delta \bar{z} . \frac{\partial}{\partial \bar{\tau}} (\bar{\tau} \frac{\partial \overline{T}^{k+1}}{\partial \bar{\tau}}) + \Delta \bar{z} . \bar{\tau} . \beta_{j}^{\prime} . r_{v} - \bar{\tau} . \tilde{T}^{k+1} + \bar{\tau} . \overline{T}^{k} \right] . d\bar{\tau} = 0.(5.20)$$

Integrando por partes e incorporando as condições de contorno teremos:

• para o balanço de massa:

$$\Delta \bar{z}.\left(\alpha_{I}.\left[N^{(e)}\right].\bar{r}.\frac{dX}{d\bar{\tau}}\Big|_{\bar{r}_{i}}^{\bar{r}_{j}} - \int_{\bar{r}_{i}}^{\bar{r}_{j}} \alpha_{I}.\frac{d\left[N^{(e)}\right]^{T}}{d\bar{\tau}}.\frac{dX}{d\bar{\tau}}.\bar{r}d\bar{\tau}\right) + \Delta \bar{z}.\int_{\bar{r}_{i}}^{\bar{r}_{j}} \left[N^{(e)}\right]^{T}.F^{k+1}.\bar{r}.d\bar{\tau} - \int_{\bar{r}_{i}}^{\bar{r}_{j}} \left[N^{(e)}\right]^{T}.X^{k+1}.\bar{r}.d\bar{\tau} + \int_{\bar{r}_{i}}^{\bar{r}_{j}} \left[N^{(e)}\right]^{T}.X^{k}.\bar{r}.d\bar{\tau} = 0.$$

$$(5.21)$$

• para o balanço de energia:

$$\Delta \overline{z}.\left(\alpha_{j}^{\prime}.\left[N^{\left(e\right)}\right].\overline{r}.\frac{d\overline{T}}{d\overline{r}}\Big|_{\overline{r}_{j}}^{\overline{r}_{j}}-\int_{\overline{r}_{i}}^{\overline{r}_{j}}\alpha_{j}^{\prime}.\frac{d\left[N^{\left(e\right)}\right]^{T}}{d\overline{r}}.\frac{d\overline{T}}{d\overline{r}}.\overline{r}.d\overline{r}\right)+\Delta \overline{z}.\int_{\overline{r}_{i}}^{\overline{r}_{j}}\left[N^{\left(e\right)}\right]^{T}.G^{k+1}.\overline{r}.d\overline{r}$$
$$-\int_{\overline{r}_{i}}^{\overline{r}_{j}}\left[N^{\left(e\right)}\right]^{T}.\overline{T}^{k+1}.\overline{r}.d\overline{r}+\int_{\overline{r}_{i}}^{\overline{r}_{j}}\left[N^{\left(e\right)}\right]^{T}.\overline{T}^{k}.\overline{r}.d\overline{r}=0,$$

$$(5.22)$$

onde $F = \beta_I . r_v \in G = \beta'_I . r_v$.

Substituindo as seguintes equações que representam as interpolações lineares de todas as funções que aparecem nas equações anteriores, ou seja:

$$X^{(e)} = N_1^{(e)} \cdot X_1 + N_2^{(e)} \cdot X_2$$
(5.23)

$$\overline{T}^{(\epsilon)} = N_1^{(\epsilon)} \cdot \overline{T}_1 + N_{2}^{(\epsilon)} \cdot \overline{T}_2$$
(5.24)

$$F^{(e)} = N_1^{(e)} \cdot F_1 + N_2^{(e)} \cdot F_2$$
(5.25)

$$G^{(e)} = N_1^{(e)}.G_1 + N_2^{(e)}.G_1.$$
 (5.26)

onde $N_1^{(e)}$ e $N_2^{(e)}$ foram definidas pelas equações 5.6 e 5.7.

Teremos

$$\Delta \bar{z}.\{K_{c}\} - \Delta \bar{z}.[K_{\alpha}^{I(e)}].\{X\}^{k+1} + \Delta \bar{z}.[K_{1}^{(e)}].\{F\}^{k+1} - [K_{1}^{(e)}].\{X\}^{k+1} + [K_{2}^{(e)}].\{X\}^{k} = 0$$
(5.27)

$$\Delta \overline{z}.\{K_{t}\} - \Delta \overline{z}.[K_{\alpha^{t}}^{I(e)}].\{T\}^{k+1} + \Delta \overline{z}.[K_{1}^{(e)}].\{G\}^{k+1} - [K_{1}^{(e)}].\{T\}^{k+1} + [K_{2}^{(e)}].\{T\}^{k} = 0.$$
(5.28)

Nas equações

$$[K_{\alpha}^{I(\epsilon)}] = \int_{\bar{\tau}_{\epsilon}}^{\bar{\tau}_{\epsilon}} \alpha_{I} \frac{d\left[N^{(\epsilon)}\right]}{d\bar{\tau}}^{T} \cdot \frac{d\left[N^{(\epsilon)}\right]}{d\bar{\tau}} \cdot \bar{\tau} \cdot d\bar{\tau}$$
(5.29)

$$[K_{\alpha'}^{I(\epsilon)}] = \int_{\bar{r}_i}^{\bar{r}_j} \alpha'_j \cdot \frac{d\left[N^{(\epsilon)}\right]}{d\bar{r}}^T \cdot \frac{d\left[N^{(\epsilon)}\right]}{d\bar{r}} \cdot \bar{r} \cdot d\bar{r}$$
(5.30)

$$[K_1^{(\epsilon)}] = \int_{\bar{r}_i}^{\bar{r}_j} \left[N^{(\epsilon)} \right]^T \cdot \left[N^{(\epsilon)} \right] .\bar{r} . d\bar{r}, \qquad (5.31)$$

onde $\{X\}^{k+1}$, $\{\overline{T}\}^{k+1}$ são vetores colunas da conversão e temperatura no fluido, respectivamente nos pontos nodais de um elemento; $[N^{\{e\}}]^T$ é a transposta de $[N^{\{e\}}]$. O vetor coluna $\{K_t\}$ é diferente de zero apenas no último elemento e $\{K_c\}$ é nulo para todos os elementos. Fazendo-se os cálculos nas equações anteriores, as matrizes são dadas por:

$$[K_{\alpha}^{I(e)}] = \frac{\alpha_{I} \cdot (\bar{\tau}_{j} + \bar{\tau}_{i})}{2 \cdot (\bar{\tau}_{j} - \bar{\tau}_{i})} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} D_{\alpha}^{I(e)} & -D_{\alpha}^{I(e)} \\ -D_{\alpha}^{I(e)} & D_{\alpha}^{I(e)} \end{bmatrix}.$$
(5.32)

$$|K_{\alpha'}^{I(e)}| = \frac{\alpha'_{I} \cdot (\bar{r}_{j} + \bar{\tau}_{i})}{2 \cdot (\bar{r}_{j} - \bar{\tau}_{i})} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} D_{\alpha'}^{I(e)} & -D_{\alpha'}^{I(e)} \\ -D_{\alpha'}^{I(e)} & D_{\alpha'}^{I(e)} \end{bmatrix}, \qquad (5.33)$$

. . . _____.

$$|K_{1}^{(e)}| = \begin{bmatrix} \frac{\bar{r}_{j}^{2} \cdot \left(\frac{\bar{r}_{j}^{2} - \bar{r}_{i}^{2}}{2}\right) - 2 \cdot \left(\frac{\bar{r}_{j}^{3} - \bar{r}_{i}^{3}}{2}\right) \cdot \bar{r}_{j} + \left(\frac{\bar{r}_{j}^{4} - \bar{r}_{i}^{4}}{4}\right)}{(\bar{r}_{j} + \bar{r}_{i})^{2}} & \frac{-\bar{r}_{j} \cdot \bar{r}_{i} \cdot \left(\frac{\bar{r}_{j}^{2} - \bar{r}_{i}^{3}}{2}\right) - \left(\frac{\bar{r}_{j}^{4} - \bar{r}_{i}^{4}}{4}\right)}{(\bar{r}_{j} + \bar{r}_{i})^{2}} \\ \frac{-\bar{r}_{j} \bar{r}_{i} \cdot \left(\frac{\bar{r}_{j}^{2} - \bar{r}_{i}^{2}}{2}\right) + (\bar{r}_{j} + \bar{r}_{i}) \cdot \left(\frac{\bar{r}_{j}^{3} - \bar{r}_{i}^{3}}{3}\right) - \left(\frac{\bar{r}_{j}^{4} - \bar{r}_{i}^{4}}{4}\right)}{(\bar{r}_{j} + \bar{r}_{i})^{2}} & \frac{\bar{r}_{i}^{2} \cdot \left(\frac{\bar{r}_{j}^{2} - \bar{r}_{i}^{2}}{2}\right) + (\bar{r}_{i} + \bar{r}_{i})^{2}}{(\bar{r}_{j} + \bar{r}_{i})^{2}} \end{bmatrix} \\ = \begin{bmatrix} A^{(e)} - B^{(e)} \\ -B^{(e)} - W^{(e)} \end{bmatrix} = [K_{2}^{(e)}]$$

$$(5.34)$$

e

•

$$\{K_{t}^{(\epsilon)}\} = \begin{cases} \alpha' \left(\frac{d\overline{T}}{d\overline{r}}\right)_{\overline{r}=1} \cdot \begin{bmatrix} 0\\1 \end{bmatrix} & \text{, para o último elemento,} \\ & & \\ &$$

Onde das condições de contorno temos:

$$\left(\frac{d\overline{T}}{d\overline{r}}\right)_{\overline{r}=1} = -Bi.(\overline{T}-\overline{T}_p)$$
(5.36)

$$Bi = \frac{\alpha_p \cdot R}{\lambda_{er}},\tag{5.37}$$

e onde:

 α_p =coeficiente de película do lado interno dos tubos

R=raio interno dos tubos

 λ_{rr} = condutividade térmica efetiva radial do leito.

Depois de algumas manipulações algébricas teremos as seguintes equações em elementos finitos em forma matricial para um único elemento:

$$\Delta \overline{z}.\{K_c\} - [S_c^{(e)}].\{X\}^{k+1} + \Delta \overline{z}.[K_1^{(e)}].\{F\}^{k+1} + [K_2^{(e)}].\{X\}^k = 0$$
(5.38)

$$\Delta \overline{z}.\{K_t\} - [S_t^{(e)}].\{T\}^{k+1} + \Delta \overline{z}.[K_1^{(e)}].\{G\}^{k+1} + [K_2^{(e)}].\{T\}^k = 0.$$
(5.39)

Por sua vez as matrizes elementos podem ser combinadas montando-se o sistema para cada equação:

$$\Delta \overline{z}.\{\underline{K}_{c}\} - [S_{c}].\{\underline{X}\}^{k+1} + \Delta \overline{z}.[K_{1}].\{\underline{F}\}^{k+1} + [K_{2}].\{\underline{X}\} = 0$$
(5.40)

$$\Delta \overline{z}.\{\underline{K}_t\} - [S_t].\{\underline{T}\}^{k+1} + \Delta \overline{z}.[K_1].\{\underline{G}\}^{k+1} + [K_2].\{\underline{T}\} = 0.$$
(5.41)

Desenvolvendo o sistema matricial acima chegaremos num sistema acoplado da seguinte forma:

$$[KC].\{\underline{X}\}^{k+1} = \{\underline{f}\}$$
(5.42)

$$[KT].\{\underline{T}\}^{k+1} = \{\underline{g}\},\tag{5.43}$$

onde:

.

$$[KC] = \begin{bmatrix} \mathcal{M}_{1} & \mathcal{M}^{(1)} & 0 & 0 & 0 & 0 & 0 & \cdots & 0 \\ \mathcal{M}^{(1)} & \mathcal{M}^{(2)}_{2} & \mathcal{M}^{(2)} & 0 & \vdots & 0 & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \ddots & 0 & 0 & 0 & \vdots & 0 & \vdots \\ \vdots & 0 & \ddots & \ddots & \ddots & 0 & \vdots & 0 & \vdots \\ 0 & \cdots & 0 & \mathcal{M}^{(e+1)} & \mathcal{M}^{(e)}_{2} & \mathcal{M}^{(e)} & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & 0 & \ddots & \ddots & \ddots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & 0 & \vdots & \vdots & 0 & \mathcal{M}^{(M-1)} & \mathcal{M}^{(M)}_{2} & \mathcal{M}^{(M)} \\ 0 & \cdots & 0 & 0 & 0 & 0 & \mathcal{M}^{(M)} & \mathcal{M}_{3} \end{bmatrix},$$

onde:

$$\begin{split} \mathcal{M}_1 &= \Delta \bar{z} . D_{\alpha}^{I(1)} + A^{(1)} \\ \mathcal{M}^{(e)} &= -\Delta \bar{z} . D_{\alpha}^{I(e)} + B^{(e)} \\ \mathcal{M}_2^{(e)} &= \Delta \bar{z} . (D_{\alpha}^{I(e-1)} + D_{\alpha}^{I(e)}) + (W^{(e-1)} + A^{(e)}) \\ \mathcal{M}_3 &= \Delta \bar{z} . D_{\alpha}^{I(M)} + W^{(M)}. \end{split}$$

.

.

.

-

Similarmente,

$$[KT] = \begin{bmatrix} \mathcal{T}_{1} & \mathcal{T}^{(1)} & 0 & 0 & 0 & 0 & 0 & \cdots & 0 \\ \mathcal{T}^{(1)} & \mathcal{T}_{2}^{(2)} & \mathcal{T}^{(2)} & 0 & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \ddots & \ddots & 0 & 0 & \vdots & 0 & \vdots & 0 \\ \vdots & 0 & \ddots & \ddots & 0 & \vdots & 0 & \vdots & 0 \\ 0 & \cdots & 0 & \mathcal{T}^{(e-1)} & \mathcal{T}_{2}^{(e)} & \mathcal{T}^{(e)} & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & 0 & \ddots & \ddots & 0 & 0 \\ \vdots & \vdots & \vdots & 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & 0 & \vdots & \vdots & \vdots & 0 & \mathcal{T}^{(M-1)} & \mathcal{T}_{2}^{(M)} & \mathcal{T}^{(M)} \\ 0 & \cdots & 0 & 0 & 0 & 0 & 0 & \mathcal{T}^{(M)} & (\mathcal{T}_{3} + \alpha' . \Delta \overline{z} . Bi) \end{bmatrix},$$

para $e = 2, \ldots, M - 1$, onde:

$$\begin{split} \mathcal{T}_1 &= \Delta \overline{z} . D_{\alpha'}^{I(1)} + A^{(1)} \\ \mathcal{T}^{(e)} &= -\Delta \overline{z} . D_{\alpha'}^{I(e)} + B^{(e)} \\ \mathcal{T}_2^{(e)} &= \Delta \overline{z} . (D_{\alpha'}^{I(e-1)} + D_{\alpha'}^{I(e)}) + (W^{(e-1)} + A^{(e)}) \\ \mathcal{T}_3 &= \Delta \overline{z} . D_{\alpha'}^{I(M)} + W^{(M)}. \end{split}$$

$$\{\underline{f}\} = \begin{cases} \Delta \overline{z}. (A^{(1)}.F_{0}^{k+1} + B^{(1)}.F_{1}^{k+1}) + A^{(1)}.X_{0}^{k} + B^{(1)}.X_{1}^{k} \\ \vdots \\ \Delta \overline{z}. \{B^{(\epsilon-1)}.F_{i-1}^{k+1} + (W^{(\epsilon-1)} + A^{(\epsilon)}).F_{i}^{k+1} + B^{(\epsilon)}.F_{i+1}^{k+1}\} \\ + B^{(\epsilon-1)}.X_{i-1}^{k} + (W^{(\epsilon-1)} + A^{(\epsilon)}).X_{i}^{k} + B^{(\epsilon)}.X_{i+1} \\ \vdots \\ \vdots \\ \Delta \overline{z}. (B^{(M)}.F_{N-1}^{k+1} + W^{(M)}.F_{N}^{k+1}) + B^{(M)}.X_{N-1}^{k} - W^{(M)}.X_{N}^{k} \end{cases} \end{cases},$$

para i = 2, ..., N - 1.

$$\{\underline{g}\} = \begin{cases} \Delta \overline{z}. (A^{(1)}.G_{0}^{k+1} + B^{(1)}.G_{1}^{k+1}) + A^{(1)}.\overline{T}_{0}^{k} + B^{(1)}.\overline{T}_{1}^{k} \\ \vdots \\ \Delta \overline{z}. \{B^{(\epsilon-1)}.G_{i-1}^{k+1} + (W^{(\epsilon-1)} + A^{(\epsilon)}).G_{i}^{k+1} + B^{(\epsilon)}.G_{i+1}^{k+1}\} \\ + B^{(\epsilon-1)}.\overline{T}_{i-1}^{k} + (W^{(\epsilon-1)} + A^{(\epsilon)}).\overline{T}_{i}^{k} + B^{(\epsilon)}.\overline{T}_{i+1} \\ \vdots \\ \Delta \overline{z}. (B^{(M)}.G_{N-1}^{k+1} + W^{(M)}.G_{N}^{k+1}) + B^{(M)}.\overline{T}_{N-1}^{k} + W^{(M)}.\overline{T}_{N}^{k} \\ + \Delta \overline{z}.\alpha'.Bi.\overline{T}_{p}^{k+1} \end{cases} \end{cases}$$

٦

7

para $i=2,\ldots,N-1.$

Portanto para o nosso caso ficaremos com um sistema de $2 \times (N+1)$ equações não-lineares:

• Para o ponto nodal i = 0:

$$\mathcal{M}_{1}.X_{0} + \mathcal{M}^{(1)}.X_{1} - \Delta \overline{z}.(A^{(1)}.F_{0}^{k+1} + B^{(1)}.F_{1}^{k+1}) - A^{(1)}.X_{0}^{k} - B^{(1)}.X_{1}^{k} = 0$$
(5.44)

$$\mathcal{T}_{1}.\overline{T}_{0} + \mathcal{T}^{(1)}.\overline{T}_{1} - \Delta \overline{z}.(A^{(1)}.G^{k+1}_{0} + B^{(1)}.G^{k+1}_{1}) - A^{(1)}.\overline{T}^{k}_{0} - B^{(1)}.\overline{T}^{k}_{1} = 0$$
(5.45)

• Para o ponto nodal $1 \leq i \leq N-1$:

$$\mathcal{M}^{(e-1)}.X_{i-1} + \mathcal{M}_{2}^{(e)}.X_{i} + \mathcal{M}^{(e)}.X_{i+1} - \Delta \overline{z}.[B^{(e-1)}.F_{i-1}^{k+1} + (W^{(e-1)} + W^{(e-1)})]$$

$$A^{(e)}(F_{i}^{k+1} + B^{(e)}, F_{i+1}^{k+1}] - B^{(e-1)} \cdot X_{i-1}^{k} - (W^{(e-1)} + A^{(e)}) \cdot X_{i}^{k} - B^{(e)} \cdot X_{i+1}^{k} = 0$$
(5.46)

$$\mathcal{T}^{(e-1)}.\overline{T}_{i-1} + \mathcal{T}_{2}^{(e)}.\overline{T}_{i} + \mathcal{T}^{(e)}.\overline{T}_{i+1} - \Delta \overline{z}.[B^{(e-1)}.G^{k+1}_{i-1} + (W^{(e-1)} + A^{(e)}).G^{k+1}_{i} + B^{(e)}.G^{k+1}_{i+1}] - B^{(e-1)}.\overline{T}^{k}_{i-1} - (W^{(e-1)} + A^{(e)}).\overline{T}^{k}_{i} - B^{(e)}.\overline{T}^{k}_{i+1} = 0$$

$$(5.47)$$

• Para o ponto nodal i = N:

$$\mathcal{M}^{(M)}.X_{N-1} + \mathcal{M}_3.X_N - \Delta \overline{z}.(B^{(M)}.F_{N-1}^{k+1} + W^{(M)}.F_N^{k+1}) - B^{(M)}.X_{N-1}^k$$

$$-W^{(M)}.X_N^k = 0$$
 (5.48)

$$\overline{\tau}^{(M)}.\overline{T}_{N-1} + (\overline{\tau}_3 + \Delta \overline{z}.\alpha'.Bi).\overline{T}_N - \Delta \overline{z}.(B^{(M)}.G^{k+1}_{N-1} + W^{(M)}.G^{k+1}_N) - B^{(M)}.\overline{T}^k_{N-1} - W^{(M)}.\overline{T}^k_N - \Delta \overline{z}.\alpha'.Bi.\overline{T}^{k+1}_p = 0, \quad (5.49)$$

onde \overline{T}_{p}^{k+1} é obtido das equações 4.37, 4.151 e 4.152.

5.1.2 Análise em Elementos Finitos para o Modelo II

A formulação fraca das equações diferenciais do modelo II, resultante da aplicação da formulação de Galerkin na técnica de elementos finitos tem um procedimento análogo, descrito anteriormente, obtêm-se as seguintes equações não-lineares resumidas abaixo.

As equações diferenciais do modelo II (ver secção 4.2) são colocadas em sua forma implícita:

$$\frac{X^{k+1} - X^{k}}{\Delta \overline{z}} = \frac{\alpha_{II}}{\overline{r}} \cdot \frac{\partial}{\partial \overline{r}} (\overline{r} \frac{\partial X^{k+1}}{\partial \overline{r}}) + \beta_{II} \cdot (X_{s}^{k+1} - X^{k+1})$$
(5.50)

$$\frac{\overline{T}^{k+1} - \overline{T}^{k}}{\Delta \overline{z}} = \frac{\alpha'_{II}}{\overline{\tau}} \cdot \frac{\partial}{\partial \overline{\tau}} (\overline{\tau} \frac{\partial \overline{T}^{k+1}}{\partial \overline{\tau}}) + \beta'_{II} \cdot (\overline{T}^{k+1}_{s} - \overline{T}^{k+1}) + \beta'' \cdot (\overline{T}^{k+1}_{i} - \overline{T}^{k+1}) \quad (5.51)$$

$$a_2.(\overline{T}_s^{k+1} - \overline{T}^{k+1}) = \frac{a_6}{\overline{r}}.\frac{\partial}{\partial \overline{r}}(\overline{r}\frac{\partial \overline{T}_s^{k+1}}{\partial \overline{r}}) + a_7.\eta.r_v - a_3.(\overline{T}_s^{k+1} - \overline{T}_i^{k+1}).$$
(5.52)

A formulação fraca resultante das equações diferenciais parciais é formada multiplicandose as equações por funções testes definidas nas equações 5.6 e 5.7.

$$\int_{\bar{r}_{i}}^{\bar{r}_{j}} \left[N^{(e)} \right]^{T} \left[\alpha_{II} \cdot \Delta \bar{z} \cdot \frac{\partial}{\partial \bar{r}} (\bar{r} \frac{\partial X^{k+1}}{\partial \bar{r}}) + \Delta \bar{z} \cdot \bar{r} \cdot \beta_{II} \cdot (X^{k+1}_{s} - X^{k+1}) - \bar{r} \cdot X^{k+1} + \bar{r} \cdot X^{k} \right] \cdot d\bar{r} = 0$$

$$(5.53)$$

$$\int_{\bar{r}_{i}}^{\bar{r}_{j}} \left[N^{(e)} \right]^{T} \left[\alpha'_{II} \cdot \Delta \bar{z} \cdot \frac{\partial}{\partial \bar{r}} (\bar{r} \frac{\partial \overline{T}^{k+1}}{\partial \bar{r}}) + \Delta \bar{z} \cdot \bar{r} \cdot \beta'_{II} \cdot (\overline{T}_{s}^{k+1} - \overline{T}^{k+1}) \right. \\ \left. + \Delta \bar{z} \cdot \bar{r} \cdot \beta'' \cdot (\overline{T}_{i}^{k+1} - \overline{T}^{k+1}) - \bar{r} \cdot \overline{T}^{k+1} + \bar{r} \cdot \overline{T}^{k} \right] \cdot d\bar{r} = 0$$

$$(5.54)$$

$$\int_{\bar{\tau}_{i}}^{\bar{\tau}_{j}} \left[N^{(e)} \right]^{T} \left[a_{5} \cdot \frac{\partial}{\partial \bar{\tau}} (\bar{\tau} \frac{\partial \overline{T}_{s}^{k+1}}{\partial \bar{\tau}}) + a_{7} \cdot \bar{\tau} \cdot \eta \cdot r_{v} - a_{3} \cdot \bar{\tau} \overline{T}_{s}^{k+1} \right. \\ \left. + a_{3} \cdot \bar{\tau} \cdot \overline{T}_{i}^{k+1} - a_{2} \cdot \bar{\tau} \cdot \overline{T}_{s}^{k+1} + a_{2} \cdot \bar{\tau} \cdot \overline{T}_{s}^{k} \right] \cdot d\bar{\tau} = 0.$$

$$(5.55)$$

Integrando por partes os primeiros termos das equações 5.53 a 5.55, resultam nas seguintes equações em elementos finitos para um único elemento em sua forma matricial:

$$\Delta \bar{z}.\{K_{e}\} - \Delta \bar{z}.[K_{\alpha}^{II(e)}].\{X\}^{k+1} + \Delta \bar{z}.[K_{\beta}^{II(e)}].\{X_{s}\}^{k+1} - \Delta \bar{z}.[K_{\beta}^{II(e)}].\{X\}^{k+1} - [K_{1}^{(e)}].\{X\}^{k+1} + [K_{2}^{(e)}].\{X\}^{k} = 0$$

$$\Delta z.\{K_{q1}\} - \Delta z.[K_{\alpha'}^{II(e)}].\{T\}^{k+1} + \Delta \bar{z}.[K_{\beta'}^{II(e)}].\{T_{s}\}^{k+1} - \Delta z.[K_{\beta'}^{II(e)}].\{T\}^{k+1} + \Delta \bar{z}.[K_{\beta''}^{(e)}].\{T_{s}\}^{k+1} - \Delta \bar{z}.[K_{\beta''}^{(e)}].\{T\}^{k+1} + [K_{2}^{(e)}].\{T\}^{k} = 0$$

$$+\Delta \bar{z}.[K_{\beta''}^{(e)}].\{T_{i}\}^{k+1} - \Delta \bar{z}.[K_{\beta''}^{(e)}].\{T_{i}\}^{k+1} - [K_{1}^{(e)}].\{T\}^{k+1} + [K_{2}^{(e)}].\{T\}^{k} = 0$$

$$(5.56)$$

$$\{K_{q2}\} - [K_{a6}^{(e)}] \cdot \{T_s\}^{k+1} - [K_{a2}^{(e)}] \cdot \{T_s\}^{k+1} + [K_{a2}^{(e)}] \cdot \{T\}^{k+1} + [K_{a7}^{(e)}] \cdot \{RR\}^{k+1} - [K_{a3}^{(e)}] \cdot \{T_s\}^{k+1} + [K_{a3}^{(e)}] \cdot \{T_i\}^{k+1} = 0, (5.58)$$

onde $RR = \eta . r_v$.

Depois de algumas manipulações algébricas nas equações anteriores, temos:

$$[KM^{(e)}].\{X\}^{k+1} = \{FM\}$$
(5.59)

$$[KT^{(e)}].{T}^{k+1} = {FT}$$
(5.60)

$$[KTS^{(e)}].\{T_s\}^{k+1} = \{FTS\},$$
(5.61)

onde:

$$[KM^{(e)}] = \Delta \overline{z} \cdot [K^{II(e)}_{\alpha}] + \Delta \overline{z} \cdot [K^{II(e)}_{\beta}] + [K^{(e)}_{1}]$$
(5.62)

.

$$\{FM\} = \Delta \overline{z}.\{K_c\} + \Delta \overline{z}.[K_{\beta}^{H(\ell)}].\{X_s\}^{k+1} + [K_2^{(\ell)}].\{X\}^k$$
(5.63)

$$[KT^{(\epsilon)}] = \Delta \overline{z} \cdot [K^{H(\epsilon)}_{\alpha'}] + \Delta \overline{z} \cdot [K^{H(\epsilon)}_{\beta'}] + [K^{(\epsilon)}_1]$$
(5.64)

$$\{FT\} = \Delta \overline{z}.\{K_{q1}\} + \Delta \overline{z}.[K_{\beta'}^{II(e)}].\{T_s\}^{k+1} + \Delta \overline{z}.[K_{\beta''}^{(e)}].\{T_i\}^{k+1} + [K_2^{(e)}].\{T\}^k (5.65)$$

$$|KTS^{(e)}| = |K_{a0}^{H(e)}| + |K_{a2}^{(e)}| + |K_{a3}^{(e)}|$$
(5.66)

$$\{FTS\} = \{K_{q2}^{(e)}\} + [K_{a2}^{(e)}] \cdot \{T\}^{k+1} + [K_{a7}^{(e)}] \cdot \{RR\}^{k+1} + [K_{a3}^{(e)}] \cdot \{T_i\}^{k+1}, \quad (5.67)$$

onde:

$$[K_{\alpha}^{II(e)}] = \int_{\bar{r}_{i}}^{\bar{r}_{j}} \alpha_{II} \cdot \frac{d\left[N^{(e)}\right]}{d\bar{r}}^{T} \cdot \frac{d\left[N^{(e)}\right]}{d\bar{r}} \cdot \bar{r} \cdot d\bar{r}$$
(5.68)

$$[K_{\alpha'}^{II(e)}] = \int_{\bar{\tau}_i}^{\bar{\tau}_j} \alpha'_{II} \cdot \frac{d\left[N^{(e)}\right]^T}{d\bar{\tau}} \cdot \frac{d\left[N^{(e)}\right]}{d\bar{\tau}} \cdot \bar{\tau} \cdot d\bar{\tau}$$
(5.69)

$$[K_{a6}^{II(e)}] = \int_{\bar{r}_{i}}^{\bar{r}_{j}} a_{6} \cdot \frac{d\left[N^{(e)}\right]}{d\bar{r}}^{T} \cdot \frac{d\left[N^{(e)}\right]}{d\bar{r}} \cdot \bar{r} \cdot d\bar{r}$$

$$(5.70)$$

$$[K_{\beta}^{II(\epsilon)}] = \int_{\bar{r}_{i}}^{\bar{r}_{j}} \beta_{II} \cdot \left[N^{(\epsilon)}\right]^{T} \cdot \left[N^{(\epsilon)}\right] \cdot \bar{r} \cdot d\bar{r}$$
(5.71)

$$[K_{\beta'}^{II(e)}] = \int_{\bar{r}_i}^{\bar{\tau}_j} \beta'_{II} \cdot \left[N^{(e)}\right]^T \cdot \left[N^{(e)}\right] \cdot \bar{r} \cdot d\bar{\tau}$$
(5.72)

$$\left[K_{\beta''}^{II(\epsilon)}\right] = \int_{\bar{\tau}_{i}}^{\bar{\tau}_{j}} \beta'' \cdot \left[N^{(\epsilon)}\right]^{T} \cdot \left[N^{(\epsilon)}\right] \cdot \bar{\tau} \cdot d\bar{\tau}, \qquad (5.73)$$

onde $\{X\}^{k+1}$, $\{X_s\}^{k+1}$, $\{T\}^{k+1}$, $\{T_s\}^{k+1}$ são vetores colunas da conversão e temperatura no fluido e superfície do catalisador, respectivamente nos pontos nodais de um único elemento; $[N^{(e)}]^T$ é a transposta de $[N^{(e)}]$. Os vetores colunas $\{K_{q1}\}$ e

 $\{K_{q2}\}$ são diferentes de zero apenas no último elemento e o vetor $\{K_c\}$ é nulo para todos os elementos.

Fazendo-se os cálculos, nas equações anteriores, as matrizes são dadas por:

$$\begin{bmatrix} K_{\alpha}^{II(e)} \end{bmatrix} = \frac{\alpha_{II} \cdot (\overline{r}_{j} + \overline{r}_{i})}{2 \cdot (\overline{r}_{j} - \overline{r}_{i})} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} D_{\alpha}^{II(e)} & -D_{\alpha}^{II(e)} \\ -D_{\alpha}^{II(e)} & D_{\alpha}^{II(e)} \end{bmatrix}, \qquad (5.74)$$

$$\begin{bmatrix} K_{\alpha'}^{II(e)} \end{bmatrix} = \frac{\alpha'_{II} \cdot (\overline{r}_j + \overline{r}_i)}{2 \cdot (\overline{r}_j - \overline{r}_i)} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} D_{\alpha'}^{II(e)} & -D_{\alpha'}^{II(e)} \\ -D_{\alpha'}^{II(e)} & D_{\alpha'}^{II(e)} \end{bmatrix}, \qquad (5.75)$$

$$[K_{a6}^{II(e)}] = \frac{a_{6} \cdot (\bar{r}_{j} + \bar{r}_{i})}{2 \cdot (\bar{r}_{j} - \bar{r}_{i})} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} D_{a6}^{II(e)} & -D_{a6}^{II(e)} \\ -D_{a6}^{II(e)} & D_{a6}^{II(e)} \end{bmatrix}, \qquad (5.76)$$

$$\begin{bmatrix} K_{1}^{(e)} \end{bmatrix} = \begin{bmatrix} \frac{\bar{r}_{j}^{2} \cdot \left(\frac{\bar{r}_{j}^{2} - \bar{r}_{i}^{2}}{2}\right) - 2 \cdot \left(\frac{\bar{r}_{j}^{3} - \bar{r}_{i}^{3}}{3}\right) \cdot \bar{r}_{j} + \left(\frac{\bar{r}_{j}^{4} - \bar{r}_{i}^{4}}{4}\right)}{(\bar{r}_{j} + \bar{r}_{i})^{2}} & \frac{-\bar{r}_{j} \cdot \bar{r}_{i} \cdot \left(\frac{\bar{r}_{j}^{2} - \bar{r}_{i}^{2}}{2}\right) + (\bar{r}_{j} + \bar{r}_{i}) \cdot \left(\frac{\bar{r}_{j}^{3} - \bar{r}_{i}^{3}}{3}\right) - \left(\frac{\bar{r}_{j}^{4} - \bar{r}_{i}^{4}}{4}\right)}{(\bar{r}_{j} + \bar{r}_{i})^{2}} & \frac{-\bar{r}_{j} \cdot \bar{r}_{i} \cdot \left(\frac{\bar{r}_{j}^{2} - \bar{r}_{i}^{2}}{2}\right) + (\bar{r}_{j} + \bar{r}_{i})^{2}}{(\bar{r}_{j} + \bar{r}_{i})^{2}} \\ & \frac{-\bar{r}_{j} \bar{r}_{i} \cdot \left(\frac{\bar{r}_{j}^{2} - \bar{r}_{i}^{2}}{2}\right) + (\bar{r}_{j} + \bar{r}_{i}) \cdot \left(\frac{\bar{r}_{j}^{3} - \bar{r}_{i}^{3}}{3}\right) - \left(\frac{\bar{r}_{j}^{4} - \bar{r}_{i}^{4}}{4}\right)}{(\bar{r}_{j} + \bar{r}_{i})^{2}} & \frac{\bar{r}_{i}^{2} \cdot \left(\frac{\bar{r}_{j}^{2} - \bar{r}_{i}^{2}}{2}\right) - 2 \cdot \left(\frac{\bar{r}_{j}^{3} - \bar{r}_{i}^{3}}{3}\right) \cdot \bar{r}_{i} + \left(\frac{\bar{r}_{j}^{4} - \bar{r}_{i}^{4}}{4}\right)}{(\bar{r}_{j} + \bar{r}_{i})^{2}} \\ & = \begin{bmatrix} A^{(e)} & -B^{(e)} \\ -B^{(e)} & W^{(e)} \end{bmatrix} = [K_{2}^{(e)}], \quad (5.77)$$

$$\begin{bmatrix} K_{\beta}^{II(e)} \end{bmatrix} = \beta_{II} \cdot \begin{bmatrix} A^{(e)} & -B^{(e)} \\ -B^{(e)} & W^{(e)} \end{bmatrix}$$
$$= \begin{bmatrix} A_{\beta}^{II(e)} & -B_{\beta}^{II(e)} \\ -B_{\beta}^{II(e)} & W_{\beta}^{II(e)} \end{bmatrix}, \qquad (5.78)$$

$$\begin{bmatrix} K_{\beta^{\prime\prime\prime}}^{(e)} \end{bmatrix} = \beta^{\prime\prime} \cdot \begin{bmatrix} A^{(e)} & B^{(e)} \\ -B^{(e)} & W^{(e)} \end{bmatrix}$$
$$= \begin{bmatrix} A_{\beta^{\prime\prime}}^{(e)} & -B_{\beta^{\prime\prime}}^{(e)} \\ -B_{\beta^{\prime\prime\prime}}^{(e)} & W_{\beta^{\prime\prime}}^{(e)} \end{bmatrix}, \qquad (5.80)$$

$$[K_{a_{2}}^{(e)}] = a_{2} \cdot \begin{bmatrix} A^{(e)} & -B^{(e)} \\ -B^{(e)} & W^{(e)} \end{bmatrix}$$
$$= \begin{bmatrix} A_{a_{2}}^{(e)} & -B_{a_{2}}^{(e)} \\ -B_{a_{2}}^{(e)} & W_{a_{2}}^{(e)} \end{bmatrix}, \qquad (5.81)$$

$$[K_{a_{3}}^{(e)}] = a_{3} \cdot \begin{bmatrix} A^{(e)} & -B^{(e)} \\ -B^{(e)} & W^{(e)} \end{bmatrix}$$
$$= \begin{bmatrix} A_{a_{3}}^{(e)} & -B_{a_{3}}^{(e)} \\ -B_{a_{3}}^{(e)} & W_{a_{3}}^{(e)} \end{bmatrix}, \qquad (5.82)$$

$$[K_{a7}^{(e)}] = a_{7} \cdot \begin{bmatrix} A^{(e)} & -B^{(e)} \\ -B^{(e)} & W^{(e)} \end{bmatrix}$$
$$= \begin{bmatrix} A_{a7}^{(e)} & -B_{a7}^{(e)} \\ -B_{a7}^{(e)} & W_{a7}^{(e)} \end{bmatrix},$$
(5.83)

$$\{K_{q1}^{(e)}\} = \begin{cases} \alpha' \left(\frac{d\overline{T}}{d\overline{r}}\right)_{\overline{r}=1} \cdot \begin{bmatrix} 0\\1 \end{bmatrix} , \text{ para o último elemento} \\ \begin{bmatrix} 0\\0 \end{bmatrix} , \text{ para os outros elementos} \end{cases}$$
(5.84)

$$\{K_{q2}^{(c)}\} = \begin{cases} \alpha' \left(\frac{dT}{dt}\right)_{r=1}, \begin{bmatrix} 0\\1 \end{bmatrix}, \text{ para o último elemento} \\ \begin{bmatrix} 0\\0 \end{bmatrix}, \text{ para os outros elementos.} \end{cases}$$
(5.85)

onde das condições de contorno temos:

$$\left(\frac{d\overline{T}}{d\overline{r}}\right)_{\overline{r}=1} = -Bi_f \cdot (\overline{T} - \overline{T}_p), \qquad (5.86)$$

$$\left(\frac{d\bar{T}_s}{d\bar{\tau}}\right)_{\bar{\tau}=1} = -Bi_s \cdot (\bar{T}_s - \bar{T}_p)$$
(5.87)

6

e

$$Bi_f = \frac{\alpha_p^f \cdot R}{\lambda_{er}^f} \tag{5.88}$$

$$Bi_s = \frac{\alpha_p^s.R}{\lambda_{er}^s},\tag{5.89}$$

onde:

 $\alpha_p^s = ext{coeficiente} \text{ de transferência de calor na parede para fase sólida}$ $\alpha_p^f = ext{coeficiente} \text{ de transferência de calor na parede para fase fluida}$ $\lambda_{er}^s = ext{condutividade térmica efetiva radial na fase sólida do leito fixo}$ $\lambda_{er}^f = ext{condutividade térmica efetiva radial na fase fluida do leito fixo}$.

Depois de combinadas as matrizes elementos, o sistema global de matrizes acopladas não-lineares resultante pode ser escrita como:

$$|KM|.\{\underline{X}\}^{k+1} = \{\underline{FM}\}$$
(5.90)

$$[KT].{T}^{k+1} = {\underline{FT}}$$
(5.91)

$$[KTS].\{\underline{T}_s\}^{k+1} = \{\underline{FTS}\}$$
(5.92)

onde:

$$[KM] = \begin{bmatrix} A_1 & A^{(1)} & 0 & 0 & 0 & 0 & 0 & \cdots & 0 \\ A^{(1)} & A_2^{(2)} & A^{(2)} & 0 & \vdots & \vdots & \vdots & 0 & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 & \vdots & \vdots & \vdots & \vdots \\ \vdots & 0 & \ddots & \ddots & \ddots & 0 & \vdots & 0 & \vdots \\ 0 & \cdots & 0 & A^{(e-1)} & A_2^{(e)} & A^{(e)} & 0 & \cdots & 0 \\ \vdots & 0 & \vdots & 0 & \ddots & \ddots & \ddots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & 0 & \vdots & \vdots & \vdots & 0 & A^{(M-1)} & A_2^{(M)} & A^{(M)} \\ 0 & \cdots & 0 & 0 & 0 & 0 & 0 & A^{(M)} & A_3 \end{bmatrix},$$

para $e = 2, \ldots, M - 1$, onde:

$$\begin{split} \mathcal{A}_{1} &= \Delta \overline{z}.D_{\alpha}^{II(1)} + \Delta \overline{z}.A_{\beta}^{II(1)} + A^{(1)} \\ \mathcal{A}^{(e)} &= -\Delta \overline{z}.D_{\alpha}^{II(e)} + \Delta \overline{z}.B_{\beta}^{II(e)} + B^{(e)} \\ \mathcal{A}_{2}^{(e)} &= \Delta \overline{z}.(D_{\alpha}^{II(e-1)} + D_{\alpha}^{II(e)}) + \Delta \overline{z}.(W_{\beta}^{II(e-1)} + A_{\beta}^{II(e)}) + W^{(c)} + A^{(e)} \\ \mathcal{A}_{3} &= \Delta \overline{z}.D_{\alpha}^{II(M)} + \Delta \overline{z}.W_{\beta}^{II(M)} + W^{(M)}. \end{split}$$

Similarmente,

•....

$$[KT] = \begin{bmatrix} B_1 & B^{(1)} & 0 & 0 & 0 & 0 & 0 & \cdots & 0 \\ B^{(1)} & B_2^{(2)} & B^{(2)} & 0 & \vdots & \vdots & \vdots & 0 & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 & \vdots & 0 & \vdots & \vdots \\ \vdots & 0 & \ddots & \ddots & \ddots & 0 & \vdots & 0 & \vdots \\ 0 & \cdots & 0 & B^{(e-1)} & B_2^{(e)} & B^{(e)} & 0 & \cdots & 0 \\ \vdots & 0 & \vdots & 0 & \ddots & \ddots & \ddots & 0 & 0 \\ \vdots & 0 & \vdots & 0 & \ddots & \ddots & \ddots & 0 & 0 \\ \vdots & 0 & \vdots & \vdots & \vdots & 0 & B^{(M-1)} & B_2^{(M)} & B^{(M)} \\ 0 & \cdots & 0 & 0 & 0 & 0 & 0 & B^{(M)} & (B_3 + \Delta \bar{z}.\alpha'.Bi_f) \end{bmatrix},$$

para e = 2, ..., M - 1, onde:

$$\begin{aligned} \mathcal{B}_{1} &= \Delta \overline{z} . D_{\alpha'}^{II(1)} + \Delta \overline{z} . (A_{\beta'}^{II'1)} + A_{\beta''}^{(1)}) + A^{(1)} \\ \mathcal{B}^{(e)} &= -\Delta \overline{z} . D_{\alpha'}^{II(e)} + \Delta \overline{z} . (B_{\beta'}^{II(e)} + B_{\beta''}^{(e)}) + B^{(e)} \\ \mathcal{B}_{2}^{(e)} &= \Delta \overline{z} . (D_{\alpha'}^{II(e-1)} + D_{\alpha'}^{II(e)}) + \Delta \overline{z} . [(W_{\beta'}^{II(e-1)} + A_{\beta'}^{II(e)}) + (W_{\beta''}^{(e-1)} + A_{\beta''}^{(e)})] + W^{(e-1)} + A^{(e)} \\ A^{(e)} \end{aligned}$$

$$\mathcal{B}_3=\Delta\overline{z}.D^{II(M)}_{lpha'}+\Delta\overline{z}.(W^{II(M)}_{eta'}+A^{(M)}_{eta''})+W^{(M)}.$$

$$[KTS] = \begin{bmatrix} \mathcal{E}_{1} & \mathcal{E}^{(1)} & 0 & 0 & 0 & 0 & 0 & \cdots & 0 \\ \mathcal{E}^{(1)} & \mathcal{E}^{(2)}_{2} & \mathcal{E}^{(2)} & 0 & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 & \vdots & \vdots & \vdots & \vdots & \vdots \\ \vdots & 0 & \ddots & \ddots & \ddots & 0 & \vdots & 0 & \vdots \\ 0 & \cdots & 0 & \mathcal{E}^{(e-1)} & \mathcal{E}^{(e)}_{2} & \mathcal{E}^{(e)} & 0 & \cdots & 0 \\ \vdots & 0 & \vdots & 0 & \ddots & \ddots & \ddots & 0 & 0 \\ \vdots & 0 & \vdots & \vdots & \vdots & 0 & \mathcal{E}^{(M-1)} & \mathcal{E}^{(M)}_{2} & \mathcal{E}^{(M)} \\ 0 & \cdots & 0 & 0 & 0 & 0 & 0 & \mathcal{E}^{(M)} & (\mathcal{E}_{3} + \frac{\alpha_{1}^{*}}{R}) \end{bmatrix}$$

,

para e = 2, ..., M - 1, onde:

$$\begin{split} \mathcal{E}_{1} &= D_{a7}^{(1)} + A_{a2}^{(1)} + A_{a3}^{(1)} \\ \mathcal{E}_{1}^{(e)} &= -D_{a7}^{(e)} + B_{a2}^{(e)} + B_{a3}^{(e)} \\ \mathcal{E}_{2}^{(e)} &= D_{a7}^{(e-1)} + D_{a7}^{(e)} + W_{a2}^{(e-1)} + W_{a3}^{(e-1)} + A_{a2}^{(e)} + A_{a3}^{(e)} \\ \mathcal{E}_{3} &= D_{a7}^{(M)} + W_{a2}^{(M)} + W_{a3}^{(M)} . \end{split}$$

$$\{\underline{FM}\} = \begin{cases} \Delta \overline{z}. (A_{\beta}^{II\{1\}}.Xs_{0}^{k+1} + B_{\beta}^{II(1)}.Xs_{1}^{k+1}) + A^{(1)}.X_{0}^{k} + B^{(1)}.X_{1}^{k} \\ \vdots \\ \vdots \\ \Delta \overline{z}. \{B_{\beta}^{II(\epsilon-1)}.Xs_{i-1}^{k+1} + (W_{\beta}^{II(\epsilon-1)} + A_{\beta}^{II(\epsilon)}).Xs_{i}^{k+1} + B_{\beta}^{II(\epsilon)}.Xs_{i+1}^{k+1} \\ + B^{(\epsilon-1)}.X_{i-1}^{k} + (W^{(\epsilon-1)} + A^{(\epsilon)}).X_{i}^{k} + B^{\epsilon}.X_{i+1} \\ \vdots \\ \vdots \\ \Delta \overline{z}. (B_{\beta}^{II(M)}.Xs_{N-1}^{k+1} + W_{\beta}^{II(M)}.Xs_{N}^{k+1}) + B^{(M)}.X_{N-1}^{k} + W^{(M)}.X_{N}^{k} \end{cases}$$

٠

,

para i = 1, ..., N - 1.

. .

$$\{\underline{FT}\} = \begin{cases} \Delta \overline{z}. (A_{\beta''}^{II(1)}.\overline{T}s_{0}{}^{k+1} + B_{\beta'}^{II(1)}.\overline{T}s_{1}{}^{k+1}) + \Delta \overline{z}. (A_{\beta''}^{(1)}.\overline{T}i_{0}{}^{k+1} \\ + B_{\beta''}^{(1)}.\overline{T}i_{1}{}^{k+1}) + A^{(1)}.\overline{T}_{0}{}^{k} + B^{(1)}.\overline{T}_{1}{}^{k} \\ \vdots \\ \Delta \overline{z}. \{B_{\beta''}^{II(e-1)}.\overline{T}s_{i-1}^{k+1} + (W_{\beta''}^{II(e-1)} + A_{\beta''}^{II(e)}).\overline{T}s_{i}{}^{k+1} + B_{\beta''}^{II(e)}.\overline{T}s_{i+1}{}^{k+1}\} \\ + \Delta \overline{z}. \{B_{\beta''}^{(e)}.\overline{T}i_{i-1}^{k+1} + (W_{\beta''}^{(e-1)} + A_{\beta''}^{(e)}).\overline{T}i_{i}{}^{k+1} + B_{\beta''}{}^{(e)}.\overline{T}i_{i+1}{}^{k+1}\} \\ + B^{(e-1)}.\overline{T}_{i-1}^{k} + (W^{(e-1)} + A^{(e)}).\overline{T}_{i}{}^{k} + B^{(e)}.\overline{T}_{i+1}{}^{k} \\ \vdots \\ \Delta \overline{z}. (B_{\beta''}^{II(M)}.\overline{T}s_{N-1}^{k+1} + W_{\beta''}^{II(M)}.\overline{T}s_{N}{}^{k+1}) + \Delta \overline{z}. (B_{\beta''}^{(M)}.\overline{T}i_{N-1}^{k+1} + W_{\beta''}^{(M)}.\overline{T}i_{N}{}^{k+1}) \\ + B^{(M)}.\overline{T}_{N-1}^{k} + W^{(M)}.\overline{T}_{N-1}^{k} - \Delta \overline{z}.\alpha'.Bi_{f}.\overline{T}_{p}{}^{k+1} \end{cases}$$

para i = 1, ..., N - 1.

$$\{\underline{FTS}\} = \begin{cases} (A_{a2}^{(1)}.\overline{T}_{1}^{k+1} + B_{a2}^{(1)}.\overline{T}_{2}^{k+1}) + (A_{a7}^{(1)}.RR_{1}^{k+1} + B_{a7}^{(1)}.RR_{2}) \\ + A_{a3}^{(1)}.\overline{T}_{1}^{k+1} + B_{a3}^{(1)}.\overline{T}_{1}^{k+1} \\ \vdots \\ \vdots \\ B_{a2}^{(r-1)}.\overline{T}_{i-1}^{k+1} + (W_{a2}^{(r-1)} + A_{a2}^{c}).\overline{T}_{i}^{k+1} + B_{a2}^{(c)}.\overline{T}_{i+1}^{k+1} \\ + B_{a7}^{(e-1)}.RR_{i-1}^{k+1} + (W_{a7}^{(e-1)} + A_{a7}^{(e)}).RR_{i}^{k+1} - B_{a7}^{(c)}.RR_{i+1}^{k+1} \\ + B_{a3}^{(e-1)}.\overline{T}_{i-1}^{k+1} + (W_{a3}^{(e-1)} + A_{a3}^{(e)}).\overline{T}_{i}^{k+1} + B_{a3}^{(e)}.\overline{T}_{i+1}^{k+1} \\ \vdots \\ B_{a2}^{(M)}.\overline{T}_{N-1}^{k+1} + W_{a2}^{(M)}.\overline{T}_{N}^{k+1} \\ + B_{a3}^{(m)}.RR_{i+1}^{k+1} + W_{a7}^{(M)}.RR_{N}^{k+1} + B_{a3}^{(m)}.\overline{T}_{i}^{k+1} + W_{a3}^{(M)}.\overline{T}_{i}^{k+1} \\ + B_{a7}^{(M)}.RR_{N-1}^{k+1} + W_{a7}^{(M)}.RR_{N}^{k+1} + B_{a3}^{(M)}.\overline{T}_{i}^{k+1} + W_{a3}^{(M)}.\overline{T}_{i}^{k+1} \\ + \frac{\alpha'_{e}}{R}.\overline{T}_{p}^{k+1} \end{cases} \right\}$$

para i = 1, ..., N - 1.

Portanto para o nosso caso teremos um sistema acoplado de 5×(N+1) equações não-lineares

• para o ponto nodal i = 0:

$$\mathcal{A}_{1}.X_{0}^{k+1} + \mathcal{A}^{(1)}.X_{1}^{k+1} - \Delta \overline{z}.(A_{\beta}^{II(1)}.Xs_{0}^{k+1} + B_{\beta}^{II(1)}.Xs_{1}^{k+1}) - A^{(1)}.X_{0}^{k} - B^{(1)}.X_{1}^{k} = 0$$
(5.93)

$$\mathcal{B}_{1}.\overline{T}_{0}^{k+1} + \mathcal{B}^{(1)}.\overline{T}_{1}^{k+1} - \Delta \overline{z}.(A_{\beta'}^{II(1)}.\overline{T}s_{0}^{k+1} + B_{\beta'}^{II(1)}.\overline{T}s_{1}^{k+1}) - A^{(1)}.\overline{T}_{0}^{k} - B^{(1)}.\overline{T}_{1}^{k} + \Delta \overline{z}.(A_{\beta''}^{(1)}.\overline{T}i_{0}^{k+1} + B_{\beta''}^{(1)}.\overline{T}i_{1}^{k+1}) = 0$$

$$(5.94)$$

$$a_{1}(X_{0}^{k+1} - Xs_{0}^{k+1}) + RR_{0}^{k+1} = 0$$

$$(5.95)$$

$$\mathcal{E}_{1}.\overline{T}s_{0}^{k+1} + \mathcal{E}^{(1)}.\overline{T}s_{1}^{k+1} - (A_{a2}^{(1)}.\overline{T}_{0}^{k+1} + B_{a2}^{(1)}.\overline{T}_{1}^{k+1}) - A_{a7}^{(1)}.RR_{0}^{k+1}$$

$$-B_{a7}^{(1)}.RR_{1}^{k+1} - (A_{a3}^{(1)}.\overline{T}i_{0}^{k+1} + B_{a3}^{(1)}.\overline{T}i_{1}^{k+1}) = 0$$

$$(5.96)$$

$$(a_4 + a_3)\overline{T}i_0^{k+1} - a_4.\overline{T}_0^{k+1} - a_3.\overline{T}_0^{k+1} = 0.$$
 (5.97)

• para o ponto nodal $1 \le i \le N-1$:

$$\mathcal{A}^{(e-1)}.X_{i-1} + \mathcal{A}_{2}^{(e)}.X_{i} + \mathcal{A}^{(e)}.X_{i+1} - \Delta \overline{z}.[B_{\beta}^{II(e-1)}.Xs_{i-1}^{k+1} + (W_{\beta}^{II(e-1)} + A_{\beta}^{II(e)}).Xs_{i}^{k+1} + B_{\beta}^{II(e)}.Xs_{i+1}^{k+1}] - B^{(e-1)}.X_{i-1}^{k} - (W^{(e-1)} + A^{(e)}).X_{i}^{k} - B^{(e)}.X_{i+1}^{k} = 0$$
(5.98)

$$\mathcal{B}^{(\epsilon-1)}.\overline{T}_{i-1}^{k+1} + \mathcal{B}_{2}^{(\epsilon)}.\overline{T}_{i}^{k+1} + \mathcal{B}^{(\epsilon)}.\overline{T}_{i+1}^{k+1} - \Delta \overline{z}.[B_{\beta'}^{II(\epsilon-1)}.\overline{T}s_{i-1}^{k+1} + (W_{\beta'}^{II(\epsilon-1)} + A_{\beta'}^{(\epsilon-1)}).\overline{T}s_{i}^{k+1} + B_{\beta'}^{II(\epsilon)}.\overline{T}s_{i+1}^{k+1}] - \Delta \overline{z}.[B_{\beta''}^{(\epsilon-1)}.\overline{T}s_{i-1}^{k+1} + (W_{\beta''}^{(\epsilon-1)} + A_{\beta''}^{(\epsilon)}).\overline{T}s_{i}^{k+1} + B_{\beta''}^{(\epsilon)}.\overline{T}s_{i+1}^{k+1}] - [B^{(\epsilon-1)}.\overline{T}_{i-1}^{k+1} + (W^{(\epsilon-1)} + A^{(\epsilon)}).\overline{T}_{i}^{k+1} + B^{(\epsilon)}.\overline{T}_{i+1}^{k+1} = 0$$

$$(5.99)$$

$$a_{1} \cdot (X_{i}^{k+1} - X s_{i}^{k+1}) + R R_{i}^{k+1} = 0$$
(5.100)

$$\mathcal{E}^{(e-1)}.\overline{T}s_{i-1} + \mathcal{E}_{2}^{(e)}.\overline{T}s_{i} + \mathcal{E}^{(e)}.\overline{T}s_{i+1} - [B_{a2}^{(e-1)}.T_{i-1}^{k+1} + (W_{a2}^{(e-1)} + A_{a2}^{(e)}).\overline{T}_{i}^{k+1} + B_{a2}^{(e)}.\overline{T}_{i+1}^{k+1}] - [B_{a7}^{(e-1)}.RR_{i-1}^{k+1} + (W_{a7}^{(e-1)} + A_{a7}^{(e)}).RR_{i}^{k+1} + B_{a7}^{(e)}.RR_{i+1}^{k+1}] - [B_{a3}^{(e-1)}.\overline{T}i_{i-1}^{k+1} + (W_{a3}^{(e-1)} \div A_{a3}^{(e)}).\overline{T}i_{i}^{k+1} + B_{a3}^{(e)}.\overline{T}i_{i+1}^{k+1}] = 0$$

$$(5.101)$$

$$(a_4 + a_3).\overline{T}i_i^{k+1} - a_4.\overline{T}_i^{k+1} - a_3.\overline{T}_i^{k+1} = 0.$$
 (5.102)

• para o ponto nodal
$$i = N$$
:

$$\mathcal{A}^{(M)}.X_{N-1}^{k+1} + \mathcal{A}_{3}.X_{N}^{k+1} - \Delta \overline{z}.(B_{\beta}^{II(M)}.Xs_{N-1}^{k+1} + W_{\beta}^{II(M)}.Xs_{N}^{k+1})$$

$$-B^{(M)}.X_{N-1}^{k} - W^{(M)}.X_{N}^{k} = 0 \quad (5.103)$$

$$\mathcal{B}^{(M)}.T_{N-1}^{k+1} + (\mathcal{B}_{3} + \alpha'.\Delta \overline{z}.Bi_{f}).T_{N}^{k+1} - \Delta \overline{z}.(B_{\beta'}^{II(M)}.Ts_{N-1}^{k+1})$$

$$+W_{\beta'}^{II(M)}.\overline{T}s_{N}^{k+1}) - \Delta \overline{z}.(B_{\beta''}^{(M)}.\overline{T}i_{N-1}^{k+1} + W_{\beta''}^{(M)}.\overline{T}i_{N}^{k+1}) - B^{(M)}.\overline{T}_{N-1}^{k}$$

$$-W^{(M)}.\overline{T}_{N}^{k+1} - \alpha'.\Delta \overline{z}.Bi_{f}.\overline{T}_{p}^{k+1} = 0 \quad (5.104)$$

$$a_{1}.(X_{N}^{k+1} - Xs_{N}^{k+1}) + RR_{N}^{k+1} = 0 \quad (5.105)$$

$$\mathcal{E}^{(M)}.\overline{T}s_{N-1} + (\mathcal{E}_{3}^{(M)} + \frac{\alpha_{p}}{R}).\overline{T}s_{N} - |B_{a2}^{(M)}.\overline{T}_{N-1}^{k+1} + W_{a2}^{(M)}.\overline{T}_{N}^{k+1}|]$$

$$- \left| B_{a7}^{(M)} \cdot RR_{N-1}^{k+1} + W_{a7}^{(M)} \cdot RR_{N}^{k+1} \right| - \left| B_{a3}^{(M)} \cdot \overline{T} i_{N-1}^{k+1} + W_{a3}^{(M)} \cdot \overline{T} i_{N}^{k+1} \right| - \frac{\alpha_{p}^{s}}{R} \cdot \overline{T}_{p}^{k+1} = 0 \quad (5.106)$$

$$(a_4 + a_3)\overline{T}i_N^{k+1} - a_4.\overline{T}_N^{k+1} - a_3.\overline{T}_N^{k+1} = 0, \qquad (5.107)$$

onde \overline{T}_{p}^{k+1} é obtido das equações 4.37, 4.151 e 4.152.

5.1.3 Análise em Elementos Finitos para o Modelo de Partícula Esférica Simples e Porosa de Catalisador

O sistema de equações diferenciais não lineares que governa os mecanismos de transferência de calor por condução e difusão de massa para o modelo de partícula esférica simples e porosa de catalisador (ver secção 4.3.2), em forma adimensional, é o seguinte:

$$\frac{1}{x^2} \cdot \left| \frac{d}{dx} (x^2 \frac{d\bar{c}}{dx}) \right| = -\frac{r_0^2}{D_{eff} \cdot C_0} \cdot R_A$$

= $f_p(\bar{c}, \bar{t}, x)$ (5.108)

$$\frac{1}{x^2} \cdot \left[\frac{d}{dx} \left(x^2 \frac{d\bar{t}}{dx} \right) \right] = -\frac{\left(-\Delta H_r \right) \cdot r_0^2}{\lambda_{\epsilon ff} \cdot T_0} \cdot R_A$$
$$= g_p(\bar{c}, \bar{t}, x), \qquad (5.109)$$

com as seguintes condições de contorno: para x = 0:

$$\frac{d\bar{c}}{dx} = 0 \tag{5.110}$$

$$\frac{dt}{dx} = 0, \tag{5.111}$$

para x = 1:

$$\frac{d\hat{c}}{dx} = \frac{k_g.r_0}{\mathcal{D}_{eff}}.(Xs - X)$$
(5.112)

$$\frac{dt}{dx} = \frac{h_f \cdot r_0}{\lambda_{eff}} \cdot (\overline{T}s - \overline{T}).$$
(5.113)

A formulação fraca resultante das equações diferenciais acima é formada, multiplicandose as equações 5.108 e 5.109 pelas funções moldadas lineares similares às equações 5.6 c 5.7:

$$\int_{x_i}^{x_j} \left[N^{(c)} \right] . \left\{ \frac{1}{x^2} \cdot \left[\frac{d}{dx} (x^2 \frac{d\overline{c}}{dx}) \right] + f_p \right\} . x^2 . dx = 0$$
(5.114)

$$\int_{x_i}^{x_j} \left[N^{(e)} \right] . \left\{ \frac{1}{x^2} . \left[\frac{d}{dx} (x^2 \frac{d\bar{t}}{dx}) \right] + g_p \right\} . x^2 . dx = 0.$$
 (5.115)

Integrando-as por partes e depois substituindo as condições de contorno no sistema resultante. Isso fornece as seguintes equações:

$$\left[N^{(e)}\right] \cdot x^{2} \cdot \frac{d\bar{c}}{dx}\Big|_{x_{i}}^{x_{j}} - \int_{x_{i}}^{x_{j}} \frac{d\left[N^{(e)}\right]}{dx}^{T} \cdot \frac{d\bar{c}}{dx} \cdot x^{2} \cdot dx + \int_{x_{i}}^{x_{j}} \left[N^{(e)}\right]^{T} \cdot f_{p} \cdot x^{2} \cdot dx = 0 \quad (5.116)$$

$$\left[N^{(e)}\right] \cdot x^{2} \cdot \frac{d\bar{t}}{dx}\Big|_{x_{i}}^{x_{j}} - \int_{x_{i}}^{x_{j}} \frac{d\left[N^{(e)}\right]^{T}}{dx} \cdot \frac{d\bar{t}}{dx} \cdot x^{2} \cdot dx + \int_{x_{i}}^{x_{j}} \left[N^{(e)}\right]^{T} \cdot g_{p} \cdot x^{2} \cdot dx = 0. \quad (5.117)$$

As equações 5.108 e 5.109 são discretizadas usando as seguintes equações que representam as interpolações lineares de todas as funções:

_

$$\overline{c}^{(e)} = \overline{c}_1 \cdot N_1^{(e)} + \overline{c}_2 \cdot N_2^{(e)}$$
(5.118)

$$\bar{t}^{(e)} = \bar{t}_1 N_1^{(e)} + \bar{t}_2 N_2^{(e)}$$
 (5.119)

$$f_{p}^{(e)} = f_{p1} N_{1}^{(e)} + f_{p2} N_{2}^{(e)}$$
(5.120)

$$g_p^{(e)} = g_{p1} N_1^{(e)} + g_{p2} N_2^{(e)},$$
 (5.121)

onde

$$N_{1}^{(e)} = \frac{x_{j}^{(e)} - x}{x_{j}^{(e)} - x_{i}^{(e)}}$$
(5.122)

$$N_2^{(e)} = \frac{x - x_i^{(e)}}{x_j^{(e)} - x_i^{(e)}}.$$
 (5.123)

Quando as equações anteriores são substituídas em (5.116) e (5.117) as integrais da forma $\int_{x_i}^{x_j} \frac{d[N^{(e)}]}{dx}^T \frac{d[N^{(e)}]}{dx} x^2 dx$ e $\int_{x_i}^{x_j} [N^{(e)}]^T [N^{(e)}] x^2 dx$ são obtidas. Assim o sistema de equações algébricas tridiagonais abaixo, em forma matricial, é obtido.

$$[KC^{(c)}].\{\bar{c}\} = \{F\}$$
(5.124)

$$[KC^{(\iota)}].\{\bar{t}\} = \{G\},\tag{5.125}$$

onde:

$$\{F\} = [K^{(e)}]\{f\} + \{d\}$$
(5.126)

$$\{G\} = [K^{(\epsilon)}]\{g\} + \{q\},$$
(5.127)

onde:

$$[K^{(e)}] = \int_{x_i}^{x_j} \left[N^{(e)} \right]^T \cdot \left[N^{(e)} \right] . x^2 . dx$$
(5.128)

$$[KC^{(e)}] = \int_{x_i}^{x_j} \frac{d\left[N^{(e)}\right]}{dx}^T \cdot \frac{d\left[N^{(e)}\right]}{dx} \cdot x^2 \cdot dx.$$
(5.129)

Onde $\{\bar{c}\}, \{\bar{t}\}, \{f\} \in \{g\}$ são vetores colunas das conversões, temperaturas e funções das equações diferenciais nos pontos nodais de cada elemento. Fazendo-se os cálculos nas equações anteriores as matrizes são dadas por:

$$[K^{(e)}] = \begin{bmatrix} \frac{x_j^2 x_j \left(\frac{x_j^4 - x_i^4}{4}\right) + \left(\frac{x_j^5 - x_i^5}{5}\right)}{(x_j + x_i)^2} & \frac{-x_j x_i \left(\frac{x_j^3 - x_i^3}{5}\right) + (x_j + x_i) \left(\frac{x_j^4 - x_i^4}{4}\right) - \left(\frac{x_j^5 - x_i^5}{5}\right)}{(x_j + x_i)^2} & \frac{-x_j x_i \left(\frac{x_j^4 - x_i^4}{4}\right) - \left(\frac{x_j^5 - x_i^5}{5}\right)}{(x_j + x_i)^2} \\ = \begin{bmatrix} A_p^{(e)} & -B_p^{(e)} \\ -B_p^{(e)} & W_p^{(e)} \end{bmatrix},$$

$$\begin{split} [KC^{(e)}] &= \frac{(x_j + x_i)}{3.(x_j - x_i)^2} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \\ &= \begin{bmatrix} D_p^{(e)} & -D_p^{(e)} \\ -D_p^{(e)} & D_p^{(e)} \end{bmatrix} \end{split}$$

e

$$\{d\} = \begin{cases} \left(\frac{di}{dx}\right)_{x=1} \cdot \begin{bmatrix} 0\\1 \end{bmatrix} &, \text{ para o último elemento} \\ & \begin{bmatrix} 0\\0 \end{bmatrix} &, \text{ para os outros elementos;} \\ \\ \{q\} = \begin{cases} \left(\frac{di}{dx}\right)_{x=1} \cdot \begin{bmatrix} 0\\1 \end{bmatrix} &, \text{ para o último elemento} \\ & \begin{bmatrix} 0\\0 \end{bmatrix} &, \text{ para os outros elementos;} \end{cases}$$

onde $\left(\frac{d\bar{a}}{dx}\right)_{x=1}$ e $\left(\frac{d\bar{t}}{dx}\right)_{x=1}$ são termos das condições de contorno e foram definidas na seção 4.3.2.

Por sua vez, as matrizes elementos são combinadas, assim o sistema acoplado de equações algébricas e tridiagonais, em forma matricial, é formado por

$$[KX].\{\tilde{c}\} = \{\underline{F}\}\tag{5.130}$$

$$[KX].\{\hat{t}\} = \{\underline{G}\},\tag{5.131}$$

onde:

$$\{\underline{F}\} = [K]\{f\} + \{d\}$$
(5.132)

$$\{\underline{G}\} = [K]\{g\} + \{q\}.$$
(5.133)

Na matriz coeficiente [KX], a linha onde é dada a condição de contorno, é substituída pelos valores obtidos das equações de conservação de massa e energia intrareator, teremos:

$$[KX] = \begin{bmatrix} D_p^{(1)} & D_p^{(1)} & 0 & 0 & 0 & 0 & 0 & \cdots & 0 \\ -D_p^{(1)} & p^{(2)} & -D_p^{(2)} & 0 & \vdots & \vdots & \vdots & 0 & \vdots \\ 0 & \ddots & \ddots & 0 & \vdots & \vdots & \vdots & \vdots & \vdots \\ \vdots & 0 & \ddots & \ddots & 0 & \vdots & 0 & \vdots & 0 & \vdots \\ 0 & \cdots & 0 & -D_p^{(e-1)} & p^{(e)} & -D_p^{(e)} & 0 & \cdots & 0 \\ \vdots & 0 & \vdots & 0 & \ddots & \ddots & 0 & 0 \\ \vdots & 0 & \vdots & 0 & \ddots & \ddots & 0 & 0 \\ \vdots & 0 & \vdots & \vdots & 0 & -D_p^{(M-1)} & p^{(M)} & -D_p^{(M)} \\ 0 & \cdots & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix},$$

para $e = 2, \dots, M - 1$, onde $\mathcal{P}^{(e)} = D_p^{(e-1)} + D_p^{(e)}$.

[$A_{r}^{(1)}$	$A_p^{(1)}$	0	0	0	0	0		0]
	$-B_{\rm p}^{(1)}$	Ж ⁽²⁾	$-B_{p}^{(2)}$	0	:	÷	:	0	:	
	0	۰.		۰.	0	÷	:	÷	÷	
	:	0	·	·	•••	0	Ē	0	÷	
[K] =	0		0	$-B_p^{(e-1)}$	¥(e)	$-B_p^{(e)}$	0		0	,
	:	0	:	0	••.	· • .	•	0	0	
	:	÷	÷	:	0	•••	•••	٠.	0	1
	:	0		÷	÷	0	$-B_p^{(M-1)}$	$\mathcal{X}^{(M)}$	$-B_p^{(M)}$	
	0		0	0	0	0	0	0	1	J
	-									

para $e = 2, \dots, M - 1$, onde $\mathcal{H}^{(e)} = W_p^{(e-1)} + A_p^{(e)}$.

Portanto, o método de elementos finitos conduz a um sistema de $2 \times (N+1)$ equações não-lineares e acopladas.

• para o ponto nodal i = 0:

$$D_{p}^{(1)}.\bar{c}_{0} + D_{p}^{(1)}.\bar{c}_{1} - \left(A_{p}^{(1)}.f_{p0} + B_{p}^{(1)}.f_{p1}\right) = 0$$
(5.134)

$$D_{p}^{(1)}.\bar{t}_{0} + D_{p}^{(1)}.\bar{t}_{1} - \left(A_{p}^{(1)}.g_{p0} + B_{p}^{(1)}.g_{p1}\right) = 0$$
(5.135)

• para o ponto nodal $1 \le i \le N-1$:

$$D_{p}^{(e-1)}.\bar{c}_{i-1} + \mathcal{P}^{(e)}.\bar{c}_{i} - D_{p}^{(e)}.\bar{c}_{i+1} - B_{p}^{(e-1)}.f_{pi-1} - \mathcal{H}^{(e)}.f_{pi} - B_{p}^{(e)}.f_{pi+1} = 0$$
(5.136)

$$D_{p}^{(e-1)}.\bar{t}_{i-1} + \mathcal{P}^{(e)}.\bar{t}_{i} - D_{p}^{(e)}.\bar{t}_{i+1} - B_{p}^{(e-1)}.g_{pi-1} - \mathcal{H}^{(e)}.g_{pi} - B_{p}^{(e)}.g_{pi+1} = 0$$
(5.137)

• para o ponto nodal i = N:

$$\bar{c}_N - X_s = 0 \tag{5.138}$$

$$\bar{t}_N - \bar{T}_s = 0. \tag{5.139}$$

5.2 Método das Diferenças Finitas

Para discretizar as equações diferenciais do modelo II (ver secção 4.2) e do modelo de partícula esférica de catalisador, aplicando o método das diferenças finitas, utilizamos as seguintes aproximações:

$$\frac{\partial \overline{u}}{\partial \overline{r}} = \frac{\Delta \overline{u}}{\Delta \overline{r}} = \frac{\overline{u}_{m+1}^l - \overline{u}_m^l}{\Delta \overline{r}}$$
(5.140)

$$\frac{\partial \overline{u}}{\partial \overline{z}} = \frac{\Delta \overline{u}}{\Delta \overline{z}} = \frac{\overline{u}_m^{l+1} - \overline{u}_m^l}{\Delta \overline{z}}$$
(5.141)

$$\frac{\partial^2 \overline{u}}{\partial \overline{r}^2} = \frac{\Delta^2 \overline{u}}{\Delta \overline{r}^2} = \frac{(\overline{u}_{m+1}^l - \overline{u}_m^l) - (\overline{u}_m^l - \overline{u}_{m-1}^l)}{\Delta \overline{r}^2}$$
(5.142)

5.2.1 Análise em Diferenças Finitas para o Modelo II:

As equações diferenciais do modelo II tornam-se:

• para o ponto nodal m = 0:

$$X_{0}^{l+1} = X_{0}^{l} + \frac{4 \cdot \Delta \overline{z} \cdot \alpha_{H}}{\Delta \overline{\tau}^{2}} \cdot (X_{1}^{l+1} - X_{0}^{l+1}) + \Delta \overline{z} \cdot \beta_{H} \cdot (X s_{0}^{l+1} - X_{0}^{l+1}) \quad (5.143)$$

$$\overline{T}_{0}^{l+1} - \overline{T}_{0}^{l} + \frac{4 \cdot \Delta \overline{z} \cdot \alpha'_{H}}{\Delta \overline{\tau}^{2}} \cdot (\overline{T}_{1}^{l+1} - \overline{T}_{0}^{l+1}) + \beta'_{H} \cdot \Delta \overline{z} \cdot (\overline{T} s_{0}^{l+1} - \overline{T}_{0}^{l+1}) + \beta'_{H} \cdot \Delta \overline{z} \cdot (\overline{T} s_{0}^{l+1} - \overline{T}_{0}^{l+1}) + \beta'_{H} \cdot \Delta \overline{z} \cdot (\overline{T} s_{0}^{l+1} - \overline{T}_{0}^{l+1}) \quad (5.144)$$

$$a_{2}.(\overline{T}s_{0}^{l+1}-\overline{T}_{0}^{l+1}) = \frac{4.a_{6}}{\Delta\overline{r}^{2}}.(\overline{T}s_{0}^{l+1}-\overline{T}s_{0}^{l+1}) + a_{7}.RR_{0} - a_{3}.(\overline{T}s_{0}^{l+1}-\overline{T}i_{0}^{l+1}).$$
(5.145)

• para o ponto nodal $1 \le m \le N-1$:

$$X_{m}^{l+1} = X_{m}^{l} + \frac{\Delta \overline{z}.\alpha_{II}}{\Delta \overline{r}^{2}} \cdot \left[\frac{1}{m} \cdot \left(X_{m+1}^{l+1} - X_{m}^{l+1}\right) + X_{m+1}^{l+1} - 2.X_{m}^{l+1} + X_{m-1}^{l+1}\right] + \Delta \overline{z}.\beta_{II} \cdot \left(Xs_{m}^{l+1} - X_{m}^{l+1}\right)$$
(5.146)

$$\overline{T}_{m}^{l+1} = \overline{T}_{m}^{l} + \frac{\Delta \overline{z} . \alpha'_{II}}{\Delta \overline{\tau}^{2}} . [\frac{1}{m} . (\overline{T}_{m+1}^{l+1} - \overline{T}_{m}^{l+1}) + \overline{T}_{m+1}^{l+1} - 2 . \overline{T}_{m}^{l+1} + \overline{T}_{m-1}^{l+1}] + \beta'_{II} . \Delta \overline{z} . (\overline{T} s_{m}^{l+1} - \overline{T}_{m}^{l+1}) + \beta'' . \Delta \overline{z} . (\overline{T} i_{m}^{l+1} - \overline{T}_{m}^{l+1})$$
(5.147)

$$a_{2}.(\overline{T}s_{m}^{l+1}-\overline{T}_{m}^{l}) = \frac{a_{6}}{\Delta \overline{r}^{2}}.[\frac{1}{m}.(\overline{T}s_{m+1}^{l+1}-\overline{T}s_{m}^{l+1})+\overline{T}s_{m+1}^{l+1} - 2.\overline{T}s_{m}^{l+1}+\overline{T}s_{m-1}^{l+1}] + a_{7}.RR_{m} - a_{3}.(\overline{T}s_{m}-\overline{T}i_{m}).$$
(5.148)

• para o ponto nodal m = N :

utilizamos as substituições decorrentes das condições de contorno:

$$X_{N+1}^{l+1} = X_{N-1}^{l+1} (5.149)$$

$$\overline{T}_{N+1}^{l+1} = \overline{T}_{N-1}^{l+1} + 2.\Delta \overline{r}.Bi_f.(\overline{T}_p^{l+1} - \overline{T}_{N-1}^{l+1})$$
(5.150)

$$\overline{T}s_{N+1}^{l+1} = \overline{T}s_{N-1}^{l+1} + 2.\Delta\overline{\tau}.Bi_{s}.(\overline{T}_{p}^{l+1} - \overline{T}s_{N-1}^{l+1})$$
(5.151)

Portanto, para o nosso caso, ficamos com o seguinte sistema de 5 \times (N + 1) equações algébricas não-lineares e acopladas:

• para o ponto nodal m = 0:

$$\mathcal{F}_{1} X_{0}^{l+1} - 4 \mathcal{F}_{4} X_{1}^{l+1} - \Delta \overline{z} \mathcal{A}_{II} X s_{0}^{l+1} - X_{0}^{l} = 0$$
 (5.152)

$$\mathcal{G}_{1}.\overline{T}_{0}^{l+1} - 4.\mathcal{G}_{4}.\overline{T}_{1}^{l+1} - \Delta \overline{z}.\beta'_{II}.\overline{T}s_{0}^{l+1} - \Delta \overline{z}.\beta''.\overline{T}i_{0}^{l+1} - \overline{T}_{0}^{l} = 0 \quad (5.153)$$

$$a_1 (X_0 - X s_0) + R R_0 = 0 (5.154)$$

$$\mathcal{K}_{1}.\overline{T}s_{0}^{l+1} - 4.\mathcal{K}_{4}.\overline{T}s_{1}^{l+1} - a_{7}.RR_{0} - a_{3}.\overline{T}i_{0}^{l+1} - a_{2}.\overline{T}_{0}^{l+1} = 0 \qquad (5.155)$$

$$(a_4 + a_3)\overline{T}i_0^{l+1} - a_4.\overline{T}_0^{l+1} - a_5.\overline{T}_0^{l+1} = 0.$$
 (5.156)

• para o ponto nodal $1 \leq m \leq N-1$:

.

$$-\mathcal{F}_{4}X_{m-1}^{l+1} + \mathcal{F}_{2m}X_{m}^{l+1} - \mathcal{F}_{m}X_{m+1}^{l+1} - \Delta \overline{z}\mathcal{A}_{ll}Xs_{m}^{l+1} - X_{m}^{l} = 0 \qquad (5.157)$$

$$-\mathcal{G}_{4}.\overline{T}_{m-1}^{l+1} + \mathcal{G}_{2m}.\overline{T}_{m}^{l+1} - \mathcal{G}_{m}\overline{T}_{m+1}^{l+1} - \Delta \overline{z}.\beta'_{II}.\overline{T}s_{m}^{l+1} - \Delta \overline{z}.\beta''.\overline{T}i_{m}^{l+1} - \overline{T}_{m}^{l} = 0$$
(5.158)

$$a_1 (X_m - X s_m) + R R_m = 0 (5.159)$$

$$\mathcal{K}_{4}.\overline{T}s_{m-1}^{l+1} - \mathcal{K}_{2m}.\overline{T}s_{m}^{l+1} + \mathcal{K}_{m}.\overline{T}s_{m+1}^{l+1} + a_{7}.RR_{m} + a_{3}.\overline{T}i_{m}^{l+1} + a_{2}.\overline{T}_{m}^{l-1} = 0$$
(5.160)

$$(a_4 + a_3)\overline{T}i_m^{l+1} - a_4.\overline{T}_m^{l+1} - a_3.\overline{T}_m^{l+1} = 0.$$
 (5.161)
• para o ponto nodal m = N :

$$-\mathcal{F}_{4}.(2+\frac{1}{N}).X_{N-1}^{l+1}+\mathcal{F}_{3}.X_{N}^{l+1}-\Delta\bar{z}.\beta_{II}.(Xs_{N}^{l+1}-X_{N}^{l})=0 \qquad (5.162)$$

$$-\mathcal{G}_{4}.(2+\frac{1}{N})\overline{T}_{N-1}^{l+1} + \mathcal{G}_{3}.\overline{T}_{N}^{l+1} - \Delta \overline{z}.\beta_{H}^{l}.\overline{T}s_{N}^{l+1} + \mathcal{K}_{4}.(1+\frac{1}{N}).2.\Delta \overline{r}.Bi_{f}.\overline{T}_{p}^{l+1} - \Delta \overline{z}.\beta^{H}.\overline{T}i_{N}^{l+1} - \overline{T}_{N}^{l} = 0$$
(5.163)

$$a_1.(X_N - Xs_N) - RR_N = 0 \tag{5.164}$$

$$\mathcal{K}_{4} \cdot \left(2 + \frac{1}{N}\right) \cdot \overline{T} s_{N-1}^{l+1} - \mathcal{K}_{3} \cdot \overline{T} s_{N}^{l+1} + \mathcal{K}_{4} \cdot \left(1 + \frac{1}{N}\right) \cdot 2 \cdot \Delta \overline{\tau} \cdot B i_{s} \cdot \overline{T}_{p}^{l+1} + a_{7} \cdot R R_{N} + a_{3} \cdot \overline{T} i_{N}^{l+1} + a_{2} \cdot \overline{T}_{N}^{l+1} = 0 \qquad (5.165)$$

$$(a_4 + a_3)\overline{T}i_N^{l+1} - a_4.\overline{T}_N^{l+1} - a_3.\overline{T}_N^{l+1} = 0.$$
 (5.166)

Onde:

$$egin{aligned} \widehat{\mathcal{F}}_1 &= 1 + rac{4.\Delta \overline{z}.lpha_{II}}{\Delta \overline{ au}^2} + \Delta \overline{z}.eta_{II}, \ &\mathcal{G}_1 &= 1 + rac{4.\Delta \overline{z}.lpha'_{II}}{\Delta \overline{ au}^2} + \Delta \overline{z}.(eta'_{II} + a_4), \ &\mathcal{K}_1 &= (a_2 + a_3) + rac{4.a_6}{\Delta \overline{ au}^2}, \ &\mathcal{F}_m &= rac{\Delta \overline{z}.lpha_{II}}{\Delta \overline{ au}^2}.(1 + rac{1}{m}), \ &\mathcal{G}_m &= rac{\Delta \overline{z}.lpha'_{II}}{\Delta \overline{ au}^2}.(1 + rac{1}{m}), \ &\mathcal{K}_m &= rac{a_6}{\Delta \overline{ au}^2}.(1 + rac{1}{m}), \ &\mathcal{F}_{2m} &= 1 + rac{\Delta \overline{z}.lpha_{II}}{\Delta \overline{ au}^2}.(2 + rac{1}{m}). + \Delta \overline{z}.eta_{II}. \end{aligned}$$

$$\begin{split} \mathcal{G}_{2m} &= 1 + \frac{\Delta \overline{z} . \alpha'_{II}}{\Delta \overline{r}^2} . (2 + \frac{1}{m}) + \Delta \overline{z} . (\beta'_{II} + \beta''), \\ \mathcal{K}_{2m} &= (a_2 + a_3) + \frac{a_6}{\Delta \overline{\tau}^2} . (2 + \frac{1}{m}), \\ \mathcal{F}_3 &= 1 + \frac{\Delta \overline{z} . \alpha_{II}}{\Delta \overline{\tau}^2} . (2 + \frac{1}{N}) + \Delta \overline{z} . \beta_{II}, \\ \mathcal{G}_3 &= 1 + \Delta \overline{z} . (\beta'_{II} + \beta'') + \frac{\Delta \overline{z} . \alpha'_{II}}{\Delta \overline{r}^2} . [(1 + \frac{1}{N}) . 2 . \Delta \overline{r} . Bi_f + (2 + \frac{1}{N})], \\ \mathcal{K}_3 &= a_2 + a_3 + \frac{a_6}{\Delta \overline{\tau}^2} . [(1 + \frac{1}{N}) . 2 . \Delta \overline{r} . Bi_f + (2 + \frac{1}{N})], \\ \mathcal{F}_4 &= \frac{\Delta \overline{z} . \alpha_{II}}{\Delta \overline{\tau}^2}, \\ \mathcal{G}_4 &= \frac{\Delta \overline{z} . \alpha'_{II}}{\Delta \overline{\tau}^2}, \\ \mathcal{K}_4 &= \frac{a_6}{\Delta \overline{z}^2}. \end{split}$$

E onde \overline{T}_{p}^{l+1} é obtido das equações 4.37, 4.151 e 4.152.

5.2.2 Análise em Diferenças Finitas para o Modelo de Partícula Esférica Simples e Porosa de Catalisador

Para discretizar a equação diferencial 5.108, aplicando o método das diferenças finitas utilizamos as aproximações da forma das equações 5.140 e 5.142, considerando o modelo isotérmico de partícula esférica simples de catalisador, que é razoável para o nosso caso onde temos uma reação exotérmica [36].

Portanto ficaremos com o seguinte sistema de equações algébricas e tridiagonais:

• para o ponto nodal i = 0:

$$2.\bar{c}_1 - 2.\bar{c}_0 + \frac{\Delta r_p^2}{3} f_p(\bar{c}_0) = 0$$
(5.167)

• para o ponto nodal $1 \le i \le N-1$:

$$(1+\frac{1}{i+1}).\overline{c}_{i+1}-2.\overline{c}_i+(1-\frac{1}{i+1}).\overline{c}_{i-1}+\Delta r_p^2.f_p(\overline{c}_i)=0$$
 (5.168)

• para o ponto nodal i = N:

$$\bar{c}_N - X_s = 0.$$
 (5.169)

5.3 Método de Newton-Raphson:

Para resolver os sistema de equações não-lineares acima foi utilizado o método iterativo de Newton-Raphson.

O método diz que tendo-se um sistema de K equações quaisquer

$$F_K(x_1, x_2, \ldots, x_j, \ldots, x_{N-1}, x_N) = 0 \quad K = 1, 2, \ldots, K.$$
 (5.170)

A solução será dada pelo seguinte conjunto de equações:

$$\Gamma_F^{(n)} \Delta x^{(n+1)} = -F^{(n)} \tag{5.171}$$

$$x^{(n+1)} = x^{(n)} + \Delta x^{(n+1)}, \qquad (5.172)$$

onde:

$$F = \begin{bmatrix} F_1 \\ \vdots \\ F_K \end{bmatrix}$$
(5.173)

$$\Gamma_F = \begin{bmatrix} \frac{\partial F_1}{\partial x_1} & \cdots & \frac{\partial F_1}{\partial x_N} \\ \vdots & \ddots & \vdots \\ \frac{\partial F_K}{\partial x_1} & \cdots & \frac{\partial F_K}{\partial x_N} \end{bmatrix}.$$
(5.174)

O método converge quando

$$|\Delta x^{(n+1)}| < \delta, \tag{5.175}$$

onde δ é um número infinitesimal.

5.4 Programa para Cálculo Numérico:

Para a resolução das equações diferenciais dessa modelagem, o método dos elementos finitos foi escolhido pelo fato de apresentar qualidades superiores em termos de precisão e tempo de computação como demonstrados em trabalhos anteriores [14,26].

No programa foi adaptado o método da falsa posição por se tratar da simulação de um reator-trocador de calor em contra-corrente, onde as condições de entrada do fluido de troca térmica é dado na saída do reator. Os programas foram executados no computador VAX da UNICAMP.

Foram utilizados 3, 4 e 6 elementos radiais para os reatores I, II e III, respectivamente, e foi verificado que um aumento no número de elementos radiais não compromete os resultados. Um passo de integração axial suficientemente pequeno foi utilizado e os resultados mostraram boa estabilidade com relação ao tamanho do passo axial.

Os programas foram divididos da seguinte:

- Programa Principal.
 - Executa a leitura de dados.
 - Calcula os gradientes de temperatura e concentração intrapartícula em função dos perfis intrareator e interfases em cada ponto do reator.
 - Executa a montagem do sistema matricial para o modelo de partícula de catalisador e para o reator.
 - Executa o cálculo iterativo pelo método de Newton-Raphson e o teste de convergência para os dois conjuntos de equações: do modelo de partícula de catalisador e do reator.
 - Executa a impressão dos resultados.

As seguintes subrotinas auxiliam o programa principal:

- Subrotina que resolve o sistema matricial.
 - O sistema matricial resultante é resolvido por eliminação gaussiana.

Figura 5.3: Diagrama de blocos dos métodos numéricos.

- Subrotina que calcula a taxa de reação, as derivadas da taxa de reação e as propriedades físicas.
 - Para um dado conjunto de valores de temperatura e concentração de reagentes num determinado ponto do reator são calculados: a taxa de reação, as derivadas da taxa de reação,os coeficientes de transferência intrapartícula, intrareator e interfase, as propriedades lísicas dos reagentes e dos produtos, do catalisador e do fluido de troca térmica.

Organizados de acordo com o fluxograma da figura 5.3.

- Métodos numéricos utilizados:
 - Método dos elementos finitos. Os dois conjuntos de equações diferenciais
 do modelo de reator e do modelo de partícula foram integradas pelo método dos elementos finitos. O programa para o modelo I encontra-se no apêndice A e para o modelo II no apêndice B.
 - Método das diferenças finitas. As equações diferenciais do modelo II e do modelo de partícula de catalisador,considerando apenas a equação 5.108, foram integradas pelo método das diferenças finitas. O programa encontra-se no apêndice C.

Capítulo 6

Resultados Numéricos

Este capítulo apresenta os resultados numéricos do modelo heterogêneo bidimensional de reator catalítico em leito fixo em estado estacionário, não isotérmico, não adiabático e com resfriamento contra-corrente (Modelo II). Apresenta-se também as comparações com o modelo pseudo-homogêneo bidimensional de reator catalítico em leito fixo em estado estacionário, não isotérmico, não adiabático e com resfriamento contra-corrente (Modelo I), através de um desvio relativo entre as predições para as temperaturas máximas de ambos os modelos. Utilizou-se o método dos elementos finitos para integrar as equações diferenciais do modelo II. O método das diferencas finitas foi utilizado para o modelo II, supondo modelo de partícula isotérmica. Apresenta-se ainda a otimização com o modelos I e II para um mesmo sistema de reação, avaliando-se a performance do reator com relação à sensitividade paramétrica de incrementos em parâmetros negociáveis do processo, tais como: diâmetro dos tubos, razão molar ar-etanol à entrada, vazão de reagentes e temperatura de entrada dos reagentes, outros parâmetros, de projeto ou operação. susceptíveis de estudo, sofreram restrições. Finalmente, após essas considerações foi possível escolher o melhor sistema de reação de modo a obter o melhor desempenho do reator.

6.1 Otimização com os Modelos I e II

A otimização foi dirigida com o objetivo de escolher o melhor conjunto de parâmetros, de forma a obter rendimento e seletividade satisfatórios. evitando também as situações de "burn-out" e/ou "runaway" ¹, fenômenos que acarretam a perda do catalisador e reações paralelas indesejáveis, podendo danificar até mesmo o reator. A função objetiva utilizada foi obtida da otimização da variável custo unitário que relaciona o custo total e a quantidade de produto final (acetaldeído) produzida.

Onde o custo total é dado por:

$$C_T \approx c_T \times F^{\circ} \tag{6.1}$$

e onde:

 $c_T = o$ custo total por unidade de massa de matéria-prima.

 F° = a quantidade de mistura reacional (ar + etanol) que entra no reator.

E a quantidade de produto final produzida é dada por:

$$F_D = F^o \times y^o_A \times \Phi \times X_f. \tag{6.2}$$

Portanto, o custo unitário será da seguinte forma:

$$c_{unit} = \frac{C_T}{F_D} = \frac{c_T}{y_A^o \times \Phi \times X_f}$$
(6.3)

A minimização do custo unitário é equivalente à maximização da função dada por:

$$\Psi = y_A^o \times \Phi \times X_f \tag{6.4}$$

onde $y_A^a = \frac{1}{1+R_m}$, ou seja,

$$\Psi = \frac{\Phi \times X_f}{1 + R_m}.\tag{6.5}$$

A maximização da função objetiva, dada pela equação 6.5, indicará o melhor sistema de reação.

¹Sensitividade paramétrica excessiva.

6.1.1 Parâmetros que podem ser estudados na otimização

Os parâmetros que podem ser estudados na otimização são:

- Parâmetros geométricos:
 - Diâmetro interno dos tubos do reator/trocador de calor (D);
 - Diâmetro externo dos tubos do reator/trocador de calor (D_o) ;
 - Números de tubos do reator/trocador de calor (N_t) ;
 - Diâmetro interno da carcaça do reator/trocador de calor (D_c) ;
 - Comprimento do leito fixo de partículas (L);
 - Diâmetro da partícula do catalisador (d_{μ}) ;
 - Massa específica das partículas do catalisador (ρ_p) ;
 - Porosidade do leito fixo de partículas (ϵ_l).
- Parâmetros de operação:
 - Pressão (P);
 - Vazão mássica superficial de reagentes (G_f) ;
 - Velocidade mássica do fluido de troca térmica (W_c) ;
 - Razão molar ar-etanol à entrada (R_m) ;
 - Temperatura de entrada dos reagentes (T_o) ;
 - Temperatura de entrada do fluido de troca térmica (t_1) .

Na otimização estudou-se a influência dos parâmetros mais importantes e utilizandose das respostas dos modelos I e II.

6.1.2 Parâmetros estudados na otimização

Os parâmetros estudados na otimização foram:

• Diâmetro interno dos tubos do reator/trocador de calor (D)

Tabela	<u> 6.1: </u> .	Din	nens	soes_	<u>do</u> _	<u>reat</u>	OL	1	
Diametro	nomina	1 de	1 .						

Diâmetro externo dos tubos Diâmetro interno dos tubos	=	1.0287 cm 0.6800 cm
Diâmetro interno da carcaça	=	67.8000 cm
Número de tubos	=	3000

Τa	ibela	6.2:	D	im	<u>ensões</u>	<u>do</u>	reat <u>or</u>	<u>II</u>	_
T 1	a .		•	1	1				Ł

Diâmetro nominal de $\frac{4}{4}$ " : Diâmetro externo dos tubos Diâmetro interno dos tubos	=	1.3716 cm 0.9240 cm
Diâmetro interno da carcaça	#	67.8000 cm
Número de tubos	=	1673

Tabela 6.3: Dimensões do reator III

Diâmetro externo dos tubos Diâmetro interno dos tubos	1	1.7145 cm 1.2500 cm
Diâmetro interno da carcaça	÷	63,9000 cm
Número de tubos		906

Foram escolhidos três tipos padronizados de tubos com diâmetros nominais de $\frac{1}{8}^{n}$, $\frac{1}{4}^{n}$ e $\frac{3}{8}^{n}$, schedule 40, e que apresentam os diâmetros reais dados nas tabelas 6.1, 6.2 e 6.3.

- Razão molar ar-etanol à entrada (R_m)
 - As razões molares ar-etanol à entrada foram três: 19. 9 e 4 que correspondem a frações molares y_A^o de 5%, 10% e 20%, respectivamente.
- Vazão mássica superficial dos reagentes (G_f)
 - As vazões volumétricas dos reagentes escolhidas foram quatro: 280, 334, 417 e 500 $\frac{Nm^3}{h}$ e que correspondem a vazões molares de 12.67, 14.90, 18.63 e 22.35 $\frac{kgmol}{h}$. Foi escolhida uma área de escoamento transversal de 0.112 m^2 , de tal forma que, considerando as diversas razões molares, as velocidades mássicas superficiais estão na faixa entre 3400 a 6000 $\frac{kg}{h.m^2}$, valores adotados por Maciel Filho [25] em sua simulação.
- Temperatura de entrada dos reagentes (T_0)
 - As temperaturas de entrada do fluido reagente foram quatro: 180°C, 200°C, 220°C e 240°C por estarem na faixa de temperatura na qual os parâmetros do modelo cinético foram obtidos, evitando assim a formação de CO₂.

6.1.3 Parâmetros que sofreram restrições na otimização

Os parâmetros que sofreram restrições na otimização foram:

- Comprimento do leito fixo de partículas (L)
 - O comprimento de reator foi escolhido como sendo de 2 metros para garantir a relação $\frac{L}{D} > 60$ para todos os reatores utilizados na simulação (evitando os efeitos de turbulência de entrada).
- Diâmetro da partícula do catalisador (d_p)
 - Utilizou-se o diâmetro equivalente de partícula de 0.1 cm, pelo fato do modelo cinético ter sido baseado neste diâmetro de partícula, respeitandose as hipóteses do modelo cinético.

- Número de tubos do reator/trocador de calor (N_t)
 - Foi estabelecido o critério de manter uma área de escoamento de 0.112 m^2 para a massa reacional em todos os reatores simulados.
- Diâmetro da carcaça do reator/trocador de calor (D_c)
 - O diâmetro da carcaça foi escolhido de modo que a área de escoamento do fluido de troca térmica fosse a mesma que a utilizada para o escoamento de reagentes-produtos.
- Massa específica do catalisador (ρ_p) e porosidade do leito fixo (ϵ_l)
 - A massa específica do catalisador, bem como a densidade aparente do leito catalítico foram tomadas como sendo os mesmos valores adotados por Maciel Filho [25]:

$$ho_p = 0.654 \ g/cm^3$$

ho_b = 2.314 \ g/cm^3.

A porosidade do leito catalítico foi calculada a partir da seguinte expressão:

$$1 - \epsilon_l = \frac{\rho_b}{\rho_{LE}} \tag{6.6}$$

onde

 ρ_{LE} = a densidade verdadeira do leito catalítico

 $\rho_b = a \text{ densidade aparente do leito catalítico foi determinada experimen$ talmente por Maciel Filho [25]. Supôs-se o leito catalítico preenchidocom partículas de catalisadores Fe-Mo (14.67% em massa) e partículasinertes de aço inox (85.36% em massa) como diluente e considerandoempacotamento normal.

- Temperatura de entrada do fluido de troca térmica (t_1)
 - As temperaturas de entrada do fluido de troca térmica foram escolhidas como sendo iguais à temperatura de entrada dos reagentes.

- Velocidade mássica do fluido de troca térmica (W_c)
 - A velocidade mássica do fluido de troca térmica foi escolhida como sendo metade da velocidade mássica dos reagentes.
- Pressão (P)
 - A pressão de operação utilizada em todos os reatores foi de 1 atm.

6.2 Comparação dos Modelos I e II

Com o objetivo de comparar a performance dos modelos I e II foi definido um desvio relativo, comparando-se as temperaturas máximas de ambos os modelos, da seguinte forma:

$$e = \frac{T_m^{(I)} - T_m^{(II)}}{T_m^{(II)}}$$
(6.7)

onde

 $T_m^{(I)} =$ temperatura máxima prevista pelo modelo I

 $T_m^{(II)} =$ temperatura máxima prevista pelo modelo II.

O desvio relativo, dado pela equação 6.7, é calculado na posição axial correspondente à T_m , uma vez que essa posição são próximas em ambos os modelos.

6.2.1 Simulação com o Modelo I

Neste modelo foi considerado $\eta = 1$, supondo que a superfície interna do catalisador é utilizada efetivamente pelo reagentes, ou seja, a reação química é a etapa controladora da taxa.

O perfil de temperatura desse modelo apresenta valores maiores que o heterogêneo, pelo fato de não considerar transferência de calor na parte sólida do leito. Este modelo foi utilizado para mapear e buscar as respostas dentro de um plano pré-estabelecido. Uma vez definidos tais pontos, o modelo II foi utilizado, nos mesmos sistemas de reação, permitindo assim verificar o desvio entre os mesmos.

6.2.2 Simulação com o Modelo II

Justifica-se o uso do modelo heterogêneo, quando os gradientes interfaciais são importantes, sendo considerado um dos mais adequados para simulação porque leva em conta os mecanismos essenciais de transferência.

O desvio desse modelo com o modelo I é devido principalmente ao fato da taxa de reação não ser calculada em termos das condições no seio do fluido. O desvio dependerá da diferença dos valores encontrados na concentração e na temperatura entre a superfície da partícula e o seio do fluido, e também da sensibilidade da taxa de reação a essas variáveis. Portanto tais desvios podem ser explicados em termos das condições experimentais ou valores de grupos adimensionais como o número de Reynolds:

- para números de Reynolds elevados, os coeficientes de transferência de calor e matéria são altos e consequentemente o modelo II apresentará gradientes de temperaturas interfases pequenos,
- para números de Reynolds baixos, o coeficiente de transferência são baixos, sendo possível existirem gradientes de temperaturas interfases; mesmo quando o gradientes de concentração externos, assim como gradientes intrapartícula são desprezíveis - η ≈ 1 -. Neste caso a camada limite laminar, adjacente à partícula sólida fornece a maior resistência à transferência de calor ao invés da partícula.

Portanto, se utilizarmos velocidades mássicas superficiais altas – Re altos – e diâmetros de partículas pequenos, minimizaremos as limitações dos mecanismos de transferência externos sobre a taxa de reação, diminuindo os desvios entre os modelos.

6.3 Resultados Numéricos dos Modelos I e II

As características geométricas dos três reatores são dadas nas tabelas 6.1 a 6.3. Foram utilizados programas com elementos sem refinamento.

No total foram feitas $2 \times 3 \times 3 \times 4 \times 4 = 288$ simulações correspondentes às quatro variáveis estudadas, cujos resultados são apresentados ao longo das tabelas 6.4 a 6.6 e das figuras 6.1 a 6.12.

6.3.1 Influência dos parâmetros mais importantes

- Influência da temperatura de entrada dos reagentes (T_0)
 - Nas tabelas 6.4 a 6.6, fixando-se valores para diâmetro interno dos tubos, razão molar de reagentes à entrada e vazão mássica superficial temos que o aumento da temperatura de entrada dos reagentes provocou um aumento na conversão de saída e na temperatura máxima do reator T_m e, portanto, maiores valores de ΔT^2 . Sendo que a temperatura máxima permissível de entrada de fluido reagente é uma função de variáveis como vazão de fluido reagente, razão molar ar-etanol à entrada e diâmetro dos tubos. Na figura 6.5, para valores de $D=\frac{1}{8}^n$, $R_m = 9$ e $G_f=4000 \frac{kg}{h.m^2}$, podemos verificar isso graficamente. Nas figuras 6.11 e 6.12 podemos observar que para altos valores de T_0 temos valores de η bem abaixo da unidade, decorrente de situações de operação severas onde a reação química na superfície do catalisador é uma etapa rápida, portanto para essas situações teremos limitações à transferência de massa, não sendo aconselhável o uso do modelo pseudo-homogêneo (Modelo I).
- Influência da vazão mássica superficial dos reagentes (G_f)
 - Nas tabelas 6.4 a 6.6, fixando-se valores para diâmetro interno dos tubos, razão molar de reagentes à entrada e temperatura de entrada dos reagentes temos que o aumento da vazão de fluido reagente diminui a conversão de saída, mas essa perda é compensada com um aumento nos limites da

 $^{^{2}\}Delta T$ = diferença entre a temperatura máxima no reator e a temperatura na parede do tubo.

faixa de operação segura do reator com relação à T_0 , ou seja, permitindo uma faixa de temperatura de entrada de fluido reagente maior. Podemos também constatar que G_f não é um parâmetro adequado para o controle de temperatura no reator pois teremos pequenas mudanças em T_m para grandes variações em G_f , comprometendo assim outras unidades ligadas ao reator.

• Influência da razão molar ar-etanol à entrada (R_m)

Nas tabelas 6.4 a 6.6, fixando-se valores para diâmetro interno dos tubos, vazão mássica superficial e temperatura de entrada dos reagentes temos que o aumento da razão molar ar-etanol tem como consequência um aumento da conversão de saída e diminuição de ΔT e também menores T_m . Na figura 6.3 para $D=\frac{1}{8}^n$, $G_f=4000 \frac{kg}{hm^2}$ e $T_0=200^\circ C$, podemos ver isso graficamente e também constatar que R_m é um parâmetro adequado para o controle de temperatura no reator, pois teremos maiores variações em T_m , com relação ao item anterior, para pequenas variações em G_f .

- Influência do diâmetro interno dos tubos (D)
 - Nas tabelas 6.4 a 6.6, fixando-se valores para temperatura de entrada dos reagentes, razão molar de reagentes à entrada e vazão mássica superficial, temos que o aumento do diâmetro de tubos provocou um aumento na conversão de saída e um aumento na temperatura máxima do reator T_m , diminuindo a faixa de operação segura do reator. À medida que se aumenta o diâmetro de tubos maior é a posição axial de T_m . Na figura 6.1 para $R_m=9$, $G_f=4000~\frac{kg}{hm^2}$ e $T_0=200^\circ C$, podemos ver isso graficamente. Nas tabelas 6.4 a 6.6 fixando-se valores para razão molar de reagentes à entrada e vazão mássica superficial verifica-se que o "burnout" nos reatores de maiores diâmetros ocorrem em temperaturas mais baixas, justificando-se pelo fato que à medida em que se aumenta D não teremos $\frac{d_P}{D} \approx 0.15$, onde α_P é máximo e utilizando-se de baixos valores de λ_{er} .

As tabelas 6.4 a 6.6 3 foram construídas, observando-se as respostas das seguintes variáveis:

- X_f=conversão média radial final;
- T_m=temperatura máxima no reator;
- Φ=rendimento global em acetaldeído;
- e= desvio relativo entre os modelos, definido pela equação 6.7;
- Ψ- função objetiva.

Das figuras 6.1 a 6.12, típicos de comportamentos padrões de reatores adiabáticos com resfriamento contra-corrente, podemos verificar que a posição de T_m está em torno de 10% do comprimento adimensional. Para dada secção transversal o aumento máximo na temperatura será na linha central com resfriamento contracorrente (figuras 6.9 e 6.10). Por razões de segurança (atividade e seletividade no processo), manteve-se T_m dentro de certos limites. Nas tabelas 6.4 a 6.6 para o sistema de reação onde a magnitude de T_m foi maior que o mínimo permissível, ou seja, $\Delta T > 50^{\circ}C$ e/ou apresentou situações de "burn-out" e/ou "runaway" e/ou verificou-se a não-convergência do programa, denotou-se pelo símbolo "#".

Das tabelas 6.4 a 6.6 concluímos que o melhor conjunto de parâmetros indicado pela otimização é o seguinte:

$$T_0 = 220^{\circ}C$$

$$G_f = 6000 \frac{kg}{h.m^2}$$

$$R_m = 4$$

$$D = \frac{1}{8}$$
 (diâmetro nominal)

$$\Psi = 16.12$$

³Nas tabelas 6.4 a 6.6 os valores inferiores correspondem às respostas do modelo II e os superiores ao modelo I para um mesmo sistema de reação.

			R	nn = 4			R	m =9		[R,	<u>n =10</u>	
<i>G</i> [$T_{(1)}$	Xf	Τ,,,	e (%)	Ψ×10 ²	x_{f}	T_m	e (%)	$\Psi \times 10^2$	x_{f}	T_m	e(%)	$\Psi \times 10^2$
34(H)	180	0.185	185.90		3.0	0.334	182.96		3.15	0.490	182.40		2.39
3400	180	0.339	182.16	2.94	6.16	0.591	182.12	11.46	5.62	0.780	181.69	0.39	3.80
3400	200	0.480	209.54		6.73	U.74G	208.40		7.10	0.867	205.85		4.23
3400	200	0.730	206.14	1.64	13.27	0.958	205.51	1.40	9.12	11.984	203.91	0.95	4.80
3400	220	#	#	#	#	1.988	246.09		9,40	0.993	233.60		4.84
3460	220	#	Ħ.	#	#	0.998	233.16	5.50	9.50	0.998	227.90	2.50	4.87
3400	240	#	#	#	ŧ	#	#	#	#	#	#	#	#
34(H)	240	#		#	#	#	#	#	<u></u>	#	#	<u>, #</u>	
4(00)	180	0.160	182,20	<u>_</u>	2.91	0.287	182.74		2.73	0.430	182.20		2.10
4000	180	0.290	182.06	0.42	5.27	0.510	182.00	0.41	4.80	0.715	181.62	0.32	3.49
4000	200	0.420	208,70		7.63	9.669	207.80		6.20	0.804	205.30		3.92
4000	200	0.660	205,80	1.49	12.01	0.920	205.30	1.20	8.76	0.968	203.70	0.86	4.72
4000	220	#	#	#	#	0.947	243.80		0.02	0.984	232.86		4.80
4000	220	#	#	#	#	0.998	232.53	4.80	9,50	0.008	227.60	2.30	4.80
4(00)	240	#	#	Ħ	#	#	#	Ħ	#	#	#	#	#
4000	240	<u> </u>				#	#	#	#	# 	#	<u>f</u> f	#
5000	180	0.128	182.51		2.33	0.233	152.40		2-21	0.354	181.90		1.72
5090	1811	0.242	182,90	11.33	4.30	0,430	181.80	0.33	4-09	0.615	161.50	0.27	3,00
5000	200	0.345	207,60	r	6.27	0.566	206.90		5.37	U.716	205.01	r	3.49
5000	200	0,566	205.34	1.10	10.28	0.843	204.85	0.98	5.02	0.930	203.52	0.73	4.53
5000	220	#	#	#	#	0.937	240.75		8.92	0.996	231.80	r	4.69
5000	220	#	#	#	#	11.003	231.20	3.96	9.45	0.006	227.20	2.02	4.85
Sono	240	#	T	1 7	n	77	17	π	11	0.006	267.70		4.85
5000	240	#	<u>#</u>	_ <u>#</u>	#	#	#	# 	#	0.098	253.40	6.06	4.80
6600	180	0.107	182,30	<u>`</u>	1.94	0.105	182.24		1.85	0.299	181.82		1.4G I
6000	180	0.204	181.76	0.30	3.71	0.367	181.70	11.28	3.49	0.540	181.40	0.23	2.63
6000	200	0.292	206,87		5.31	486	205.31		4.62	0.637	204.60		3.10
60.00	200	0.492	204.95	0.94	8.94	0.764	204.55	0.80	7.27	0.881	203.31	0.63	4.27
6000	220	0.693	245.57	<u> </u>	12.59	0.886	238.50		8.44	11.929	230.86		4.53
GROOF	220	0.887	233.58	<u></u>	16.12	0.082	230.87	3.30	0.25	0.000	226.87	1.78	4.63
6000	240	#	野	#	#	#	#	#	#	0.996	265.33		4.85
6000	240	#	#	#	#	#	#		#	0.998	251.86	5.34	4.60

N

Tabela 6.4: Resultados numéricos para o reator I

		· <u> </u>	<u> </u>	ζ _{τη} = 4			R	, == 0		Ľ	$R_{m} = 19$			
G_	T_0	Xj	Tm	e(%)	$\Psi \times 10^2$	x _f	Tm	-4%)	Ψ10 ²	X_f	Tm	*(*X-)	Ψ_{10}^2	
3400	181	0.196	185.00		3.56	1.350	184.60		3.33	0.507	183.82		2.47	
3400	180	0.351	183.60	9,76	¢.38	11.443	163.07	0.098	4.22	11.796	182.80	0.56	3.88	
3400	200	0.550	219.70		10.00	0.801	216.17		7.63	11.88	220.98		4.29	
3400	200	0.774	211.30	3.97	14.07	0.966	200.00	2.99	0.22	0.987	206.3	2.27	4.83	
34(6)	220	#	Ħ	#	#	Í #	#	#	#	0.995	247.90		4.85	
3400	220	#	#	#	#	#	#	#	#	0.990	233.pu	5.9	4.67	
3400	249	#	#	#	#	#	ŧ.	#	#	#	#	÷	#	
3400	240	#	<u> </u>	#	#	#	_#		<u> </u>	<u> #</u>	<u>+</u>	<u>#</u>	#	
4000	180	0.167	184.GH		3.03	0.300	154.48		2.80	0.443	183.55		2.10	
4000	180	0.305	183.40	u. c 5	5.54	0.530	163.34	10.0G2	5.05	0.726	182.65	0.49	3.54	
4000	200	0.482	217.30		8.76	0,726	214.67		10.D	11.83C	210.24		4.07	
4000	209	0.701	210.55	3.20	12.74	0.936	2119.34	2.55	8.91	0.074	206.39	1.8G	4.75	
4000	220	#	#	#	ŧ.	#	#	#	#	0.987	245.80		4.82	
4000	220	#	ji	#	#	#	#	#	ii	U.987	233.40	5.3	4.87	
4000	240	÷	ŧ.	#	#	#	ŧ	ŧ.	Ħ	#	÷	#	#	
4000	240	. <u>+</u>	#	#	#	<u>#</u>	<u>#</u>	<u> </u>	#	#	_#	<u></u>	#	
5000	180	0.134	164.10		2.44	ü.243	184.00		2.31	0.364	183.20		1.77	
5000	180	U.249	182.12	0.55	4.53	0.443	183.00	0.055	4.22	0.62¢	182.45	0.41	3.95	
\$000	200	u.3o3	214.60		7.14	0.617	212.76		5.86	0.748	209.20		3-65	
SOHO	200	0.602	209.50	2.43	10,94	41.867	2118.55	2.02	8.26	0.939	205.90	1.60	4.58	
5000	220	#	#	æ	#	#	#	#	#	0.972	242.87		4.74	
5000	220	#	#	#	#	#	#	#	#	0.097	202.56	4.44	4.86	
5000	240	#	#	#	#	#	#	#	#	#	#	*	ŧ,	
<u></u>	240	1	<u></u>	<u> </u>		<u> </u>	7			7		7	#	
61800	160	0.110	183.70		2.00	11,2113	100.00	Line and Line	1.93	1,3115	162.92		1.50	
6000	180	0.210	182.80	0.49	3.81	0,377	182.84	0.041	3.39	10.547	152.62	0.05	2.67	
6000	200	0.330	212.72		0.40	0.530	211.30		μ.u.υ ο το	11.668	208-38		3.26	
6000	200	0.520	208,70	1.93	ນ.4 ລ #	0.200	207.89	1.64	4.62	0.644	205.54	, 1.34	4.37	
GUUN	220	#	#	1 7	7	1 T	Ŧ	.	77	0.946	240.49		4.01	
6000	220	#	#	# 	#	#	#	#	#	0.990	231.70	13.5	4.8c	
6000	240	(1	# 	7	17 	1 17	17 	7 #	#	# #	,*	# 	#	
	24	1.7.	<u> </u>	<u></u>	<u> </u>	<u> </u>	<u> </u>	n	π		77	T		

Tabela 6.5: Resultados numéricos para o reator II

#	 +	ŧ	#	#	#	#		#	*	,	ŧ.	340	0009
#	4	#	#	#	#	#	ŧ.	÷,	*	÷.	#	240	0009
#	#	*	÷	t de terreterreterreterreterreterreterre	Ŧ	#	Ť.	#	#	#	#	1122	0009
((<u>*</u>			#*	∓ 	# 		лт 	1000	11003
	12.2	¥1, 604	61040	00.8	9 4 8	215 36	114.3.11	/		TT III	π .		
27.8		09.912	212-0	61.5		51.722	0.53.0	*		*	# 	1112	00419
546	112.0	06.531	238.0	37.5	28.0	40°¥ST	765.0	20° P	12.0	20.231	522.0	081	0000
38.1		001781	0.224	3(1)2		180.48	01210	2.22		00.081	0.122	081	0003
#	÷	÷.	ŧ,	#	÷	÷.	#	#	÷	÷	#	540	20101
<u></u>	*	#- 	# 	#	#	# #	#	1 *	#	*	#	077	0005
<u> </u>	7		# #			<u> </u>	17 4	1 1	π #	~	#	OZZ	2009
00.1	(US'7)		900'U	10.0		ייי תויודל	1170°.11	- -	a. 4			ouz	2000
0010		42.010				10.000			." -1				name
91.6	[nco]	01 016 01 016	0102.0	12 2		73 255	621 11		T1	TC:001	C0710		0000
	<u> </u>	06731	389.0	P • •	20 0	016 231				63.361			
<u>ra</u> [09.781	486.0	10.2		167.20	0.264	2.67		07-281	<u>1110</u>	i nar	00095
÷,	#	÷	#	#	#	#	#	- 	÷.	*	*	(1†Z	000
1 #	*	,	*	(#	#	#	#	#	÷	# _	# 4	5411	11507
		*	#	#	#	# 	₩ : 		#	<u> </u>	#	066	0.007
0,1	Lec:el	90.112			#	म म							0.00
	33.4	85 (16	080 0					[4		
06 •		02.912	P29.0	#	#	*	#	*			#	1002	111111
3.63	18.0	02.481	347.0	5.33	91.1	06.381	092.0	08.3	1.23	01.281	₽ 25.0	1 1191	nan t
3.28		166.20	834.0	3.14		111,38[085.0	3.36		07.331	084.0	081	101101
#	#	#	₩	#	#	#	#	#	*	*	*	340	34110
#	#	÷	#	#	#	#	#	#	÷	*	- 	540	34cm
H #	#	#	11	#	*	#	#	#	*		#	1122	3400
#	—	*	*	#	#	#	<i>1</i>	#	#	#	#	520	0095
58.4	811.1	212.40	0.090.0	#	#	¥	#	#	Ŧ	#	#	200	10070
****		201122	0.910	#	#	#	ť.	#		÷	#	21113	001 9 8
3.95	60.0	38.\$8t	018.0	80.3	1.31	35.381	860.0	C.B.0	2.1	180124	¥10.0	1181	0015
2.63		07.081	01210	10.5		06.881	08010	80.0		\$5.081	0.210	181	0010
501 × 10	(%)2	ш.	J_X	501 × 103	(Y,)>	Tm,	I_X	201×4	<u>%</u> ,]≥	'**L	X	¹⁰ L	Γ_{ij}
	61 = ⁿ	<u>י</u> ע –	· · · · · ·		6 = 14	21			•=	177		<u>;</u>	
· · · · · · · · · · · · · · · · · · ·				·····		· · · · · · ·				-			

III rotes o sus esultados numéricos para o reator III

N

Figura 6.2: Influência de D no perfil da concentração.

Figura 6.3: Influência de R_m no perfil da temperatura.

Figura 6.4: Influência de R_m no perfil da concentração.

Figura 6.5: Influência de T_0 no perfil da temperatura.

Figura 6.8: Comparação dos perfis de concentrações dos modelos I e Il

Figura 6.9: Perfil radial de temperatura.

Figura 6.10: Perfil radial de concentração.

Figura 6.11: Perfil para o coeficiente de efetividade $-\eta$.

Figura 6.12: Perfil para o coeficiente de efetividade – η .

6.3.2 Comparação dos métodos numéricos

Nas tabelas 6.7 e 6.10 são comparados os resultados pelo método dos elementos finitos e das diferenças finitas. São apresentadas as respostas de ambos os métodos para quatro sistemas de reações diferentes e escolhidos aleatóriamente das tabelas 6.4 a 6.6. Não sendo encontrados erros significativos.

<u> </u>		Elementos Finito	5		Diferenças Finita	
ž	<u> </u>	X, X.	T., T,	T, T,	X, X,	$\overline{T_{c}}$, T_{c}
	("C)		$(^{\circ}C)$	_ ("C)		("C)
0	0.20000D+03	0.00000 ± 00	$0.20015D \pm 03$	0.20000D+03	$0.0000D \pm 00$	0.20006D+03
0	$0.20000 D \rightarrow 03$	0.00000 ± 00	$0.20000D \pm 03$	0.200000 ± 03	0.00000 D + 00	0.20000 ± 03
0.1	0.20361D + 03	0.22856D+00	$0.20012D\pm03$	$0.20308 \mathrm{D} \pm 03$	$0.23195D \pm 0.0$	$0.20005D \pm 0.3$
0.1	$0.20365 D \pm 03$	0.22939D+00	0.2036210 ± 03	$0.20315D \pm 0.3$	$0.23366D \pm 00$	$0.20311D \pm 03$
0.2	$0.20296D \pm 03$	0.41861D+00	$0.20009D \pm 03$	$0.20254D \pm 03$	$0.42520D \pm 00$	$0.20004D \pm 03$
0.2	0.20299D + 03	0.41930D + 00	$0.20297D \pm 03$	$0.20259D\pm03$	$0.42660D \pm 00$	$0.20256D \pm 0.03$
0.3	0.20235D+03	$0.57135D \pm 00$	$0.20007 D \pm 03$	$0.20202D \pm 03$	$0.58060 D \pm 00$	0.20003D + 03
0.3	(0.202371) + 03	0.57190D+00	$0.20236D \pm 03$	$0.20207 D \pm 03$	0.58172 D + 00	$0.20204D \pm 0.03$
Ú 4	U.20181D+03	0.69074D + 00	$0.20005 D \pm 03$	$0.20156D \pm 03$	$0.70172D \pm 00$	0.20002D + 03
0.4	$0.20183D \pm 03$	0.69116D + 00	$0.20182D \pm 03$	$0.20159D \pm 03$	$0.70259D \div 00$	0.20157D + 03
0.5	$0.20136D \pm 03$	$0.78131D \pm 00$	$0.20003D \pm 03$	0.20116D+03	$0.79292D \pm 00$	0.20001D + 03
(1,5)	0.20137 D + 03	0.78163D+00	$0.20136D \pm 03$	$0.20119D \pm 03$	$0.79356D \pm 00$	0.20117D + 03
0.6	$0.20099D \pm 03$	$0.84804D \pm 00$	0.20002D + 03	$0.20084 D \pm 03$	$0.85922D \pm 00$	0.20001D + 0.3
0.6	$0.20100D \pm 03$	0.84827D + 00	$0.20099D \pm 03$	$0.20085D \pm 03$	$0.85969D \pm 00$	0.20084D+03
0.7	$0.20070D \pm 03$	0.89591D+00	0.20001D+03	$0.20058D \pm 03$	$0.90593D \pm 00$	0.20000D + 03
0.7	0.20071D + 03	0.89607D+00	0.20070D + 03	0.20060D + 03	0.90625D + 00	$0.20059D \pm 03$
0.8	$0.20049D \pm 03$	0.92948D+00	$0.20001D \pm 03$	$0.20040 D \pm 03$	0.93796D+00	$0.20000D \pm 03$
0.8	$0.20049D \pm 03$	0.9 2960D +00	$0.20049D \pm 03$	$0.20040 \mathrm{D} \div 03$	$0.93818D \pm 00$	$0.20040D \pm 03$
0.9	0.20033D + 03	0.95262D + 00	0.20000D+03	0.20026D + 03	0.95947D+00	0.20000D + 03
0.9	0.20033D + 03	0.95270D+00	0.20033D + 03	0.20027D + 03	$0.95962D \pm 00$	0.20027D + 03
1.0	0.20022D + 03	0.96835D + 00	0.20000D + 03	0.20017D + 03	0.9 7370D+ 00	0.20000D + 03
1.0	0.20022D+03	0.96840D+00	0.20022D+03	0.20018D+03	0.97380D+00	0.20018D+03
i	<u>T</u>	<u> </u>	<i>T</i> ,	<u> </u>	<i>T_</i>	<u> </u>
z =0.2						
1	$0.20296D \pm 03$	0.20299D+03	0.20297D + 03	0.20253660 ± 03	0.2025896D+03	0.2025583D+03
2	0.20268D + 03	0.20271D + 03	0.20269D + 03	0.2023227D + 03	0.2023763D+03	0.2023447D+03
3	0.20203D +03	$0.20207D \pm 03$	$0.20204D \pm 03$	$0.2017862D \pm 03$	0.2018372D+03	0.20180710 ± 03
4	0.20103D + 03	$0.20102D \pm 0.3$	0.20102D + 03	0.2008876D+03	$0.2008989D \pm 03$	$0.2008923D \pm 03$
z = 0.4	0.001010.00	0.0010201.02	0.901090 002	0.201561270 102	0 2015021D + 02	0 20157720 . 62
1 I	0.201610 ± 03	$0.20165D \pm 03$	0.201620 403	0.20130130 + 03	$0.2013931D \pm 03$	0.20137430 ± 03
2	0.2010417 ± 0.5 0.00195D ± 02	0.20100D + 03 0.20107D ± 03	0.201000 - 03	0.2014309D+03	$0.2014033D \pm 03$ 0.2011297D ± 03	0.201444217403
3	0.20123D + 03 0.20063D + 03	$0.20127D\pm03$ 0.20069D±03	$0.20120D \pm 03$ 0.20062D \pm 03	0.20110101703	$0.2011527D \pm 03$ 0.2005541D ± 02	0.20111430 +03
0.6	0,2000007400	0,200010100	0,2000219 + 0A)	0.20014090 (03	0.200004110403	0.2003455D+03
2=0.0	$0.20099D \pm 03$	$0.20100D \pm 03$	$0.20099D \pm 03$	0 2008368D+03	0 2008534D+03	0.2008436D±03
,	(12000) D + 03	$0.20090D \pm 03$	$0.20090D \pm 03$	0.2007674D - 03	$0.2007845D \pm 03$	0.2007744D+03
 Q	$0.20068D \pm 03$	0.20069D+03	$0.20068D \pm 03$	$0.2005911D \pm 03$	0.2006077D+03	0.2005144D+03
4	0.200340 ± 03	0.20034D + 03	0.20034D + 03	0.2002932D+03	0.2002971D + 03	0 2002948D+03
$\bar{z}=0.8$	0.2000.20 , 000					0.20025102 (05
1	0.20049D+03	0.20049D + 03	$0.20049D \pm 03$	0.2003971D+03	0.2004048D+03	0.2004002D + 03
2	0.20044D+03	0.20044D+03	0.20044D+03	0.2003643D+03	0.2003723D+03	0.2003675D+03
- 3	0.20033D + 03	0.20034D+03	0.20033D+03	0.2002805D+03	0.2002883D+03	0.2002837D+03
4	0.20016D + 03	$0.20016D \pm 03$	$0.20016D \pm 03$	0.2001387D+03	0.2001406D+03	0.2001395D+03
$z_m = 0.06$	<u> </u>	Т. — — — — — — — — — — — — — — — — — — —	η		T_	Τ,
1	0.20376D+03	0.20380D+03	0.95910D+00	0.2032239D+03	0.203296410+03	0.2032536D+03
2	$0.20341D \pm 0.3$	0.20344D+03	$0.95910D \pm 00$	$0.2029507D \pm 03$	$0.2030233 \mathrm{D}{+}03$	0.2029805D+03
3	$0.20258D \pm 03$	0.20263D+03	$0.95910D\pm00$	$0.2022669D \pm 03$	0.202335210 ± 03	0.2022949D+03
4	0.20130D + 03	0.20130D+03	0.95910D - 00	$0.2011226D \pm 03$	$0.2011380 D \pm 03$	0.2011289D+03

Tabela 6.7: Resultados numéricos para reator I: $G_f=4000 \frac{kg}{h.m^2}$, $R_m=19$

		Elementos Finito			Diferenças Finitas	
z	T, T.	X, X,	T_{c}, T_{1}	T, T,	X, X,	T., T.
	(^^C)		<u>(°C)</u>	(°C)		<u> </u>
ti -	0.18000D+03	0.00000 ± 00	$0.18017D \pm 0.03$	$0.18000D \pm 03$	0.00000D + 00	$0.18007D \pm 0.03$
0	$0.18000 D \pm 03$	$0.00000D \pm 00$	$0.18000\mathrm{D}\pm03$	$0.18000D \pm 03$	0.00000 ± 0.00000	$0.18000D \pm 03$
0.1	$0.18201D \pm 03$	0.61272D-01	$0.18015D \pm 03$	$0.18163D \pm 03$	0.60876D-01	$0.18006D \pm 0.03$
0.1	$0.18203D \pm 03$	0.61501D-01	$0.18202D \pm 03$	0.18166D+03	0.61337D-01	$0.18164D \pm 03$
0.2	0.18194D+03	$0.12066D \pm 00$	0.18013D+03	$0.18157D{+}03$	0.11986D - 00	$0.18005D \pm 03$
0.2	0.18196D+03	$0.12088D \pm 00$	0.18194D + 03	$0.18161D \pm 03$	0.12030D+00	$0.18158D \pm 03$
0.3	$0.18186D \pm 03$	0.17784D+00	$0.18011D \pm 0.03$	$0.18151D \pm 03$	$0.37671D \pm 0.0$	$0.18004D \pm 03$
0.3	0.18188D+03	$0.17805D \pm 00$	$0.18186D \pm 03$	$0.18155D \pm 0.03$	0. 17714D - 00	0.18153D+03
0.4	0.18178D+03	$0.23286D \pm 00$	0.18009D + 03	0.18145D+03	0.23148D+00	$0.18004D \pm 03$
0.4	$0.18179D \pm 0.03$	0.23306D + 00	0.18178D + 03	0.18149D+03	0. 23190D+ 00	0.18147D+03
U.5	$0.18170D \pm 03$	0.28576D + 00	0.18008D + 03	0.18140D+03	0.28421D + 00	0.18003D + 03
0.5	0.18172D+03	0.28597D + 00	0.18170D + 03	$0.18143D \pm 03$	0.28462D+00	0.18141D+03
0.6	0.18162D+03	0.33660D + 00	0.18006D + 03	0.18134D+03	0.33494D + 00	0.18002D+03
0.6	0.18164D+03	0.33680D+00	$0.18162D \pm 03$	0.18137D + 03	0.33533D+00	0.18135D+03
0.7	0.18154D+03	0.38540D+00	0.18004D + 03	0.18129D + 03	0.38368D+00	0.18002D + 03
0.7	0.18156D + 03	0.38559D+00	0.18155D + 03	0.18132D + 03	0.38406D+00	$0.18130D \pm 03$
0.8	$0.18147D \pm 03$	$0.43219D \pm 00$	0.18003D+03	0.18123D+03	$0.43047D \div 00$	$0.18001D \pm 0.3$
0.8	0.18148D + 03	0.43237D + 00	$0.18147D \pm 03$	0.18126D+03	0.43084D+00	0.18124D + 03
0.9	0.18139D + 03	(1.47698D+00	$0.18001D \pm 03$	0.18118D+03	0.47532D+00	0.180010 ± 03
0.9	0.181410+03	0.47715D+00	0.18140D+03	0.1812017+03	0.47567D+00	0.18119D+03
1.0	0.181320 ± 03	0.519790 +00	0.180000 ± 03	0.181120+03	$0.51823D \pm 00$	0.180000+03
	<u>0.18134D+03</u>	<u>0.31990D+00</u>	$\frac{0.161320 \pm 0.0}{T_{\odot}}$	<u>- 0.161130</u> +03	$\frac{0.51657D+00}{T}$	<u>- 0.18115D+03</u>
			<u></u>			I i
2=0.2	0.18194D+03	0 18196D+03	0.18194D+03	$0.1815703D \pm 03$	0 1816055D+03	0 1815849Ð4 03
2	$0.18176D \pm 03$	$0.18178D \pm 03$	0.18177D + 03	$0.1814394D \pm 03$	$0.1814745D \pm 03$	0.1814540D+03
3	0.18136D + 03	0.18138D + 03	0.18136D+03	0.1811138D+03	0.1811472D + 03	0.1811277D + 03
4	0.18072D+03	0.18072D + 03	0.18072D+03	$0.1805671D \pm 03$	0.1805742D + 03	0.1805700D+03
$\overline{z} = 0.4$						
1	$0.18178D \pm 03$	0.18179D+03	0.18178D + 03	0.1814543D + 03	0.1814871D+03	$0.1814679D \pm 03$
2	0.18161D+03	$0.18163D \pm 03$	$0.18162 D \pm 03$	0.1813323D + 03	0.1813650D+03	$0.1813458D \pm 03$
3	0.18123D+03	0.18126D + 03	0.18124D + 03	$0.1810287D \pm 03$	0.1810598D+03	$0.1810416D \pm 03$
4	$0.18064D \pm 03$	0.18064D+03	0.18064D+03	$0.1805183D \pm 03$	0.1805252D+03	0.1805212D+03
$\overline{z} = -0.6$						
1	0.18162D + 03	0.18164D+03	0.18162D + 03	0.1813416D+03	$0.1813721D \pm 03$	0.1813542D+03
2	0.18147D + 03	0.18149D + 03	0.18147D + 03	0.1812283D + 03	$0.1812586D \pm 03$	0.1812409D+03
3	0.18112D + 03	0.18114D + 03	0.18312D + 03	0.1809461D + 03	0.1809751D + 03	0.1809581D + 03
4	$0.18057D \pm 0.03$	0.18057D + 03	$0.18057D \pm 03$	0.1804714D + 03	0.1804779D+03	0.1804741D + 03
$\bar{z} = 0.8$	· · · · · · · · · · · · · · · · · · ·	6 . (a) (a) (a)	0.101.00	0.10100100.00	0 1010500D . of	0 1010 102D - Do
1	0.18147D + 03	0.18148D + 03	0.18147D + 03	0.18123120 ± 03	0.181259317403	0.1812428D+03
2	$0.18133D \pm 03$	0.18134D+03	0.161330+03	0.1011404D+03	0.1811044D + 03	0.18113800+03
3	0.181010 ± 03	0.18103D + 03 0.18050D + 03	0.180500 ± 03	0.160803412+03	0.10009410+03	0.18087030+03
4	0.18050D+05	$\frac{0.16050D+05}{T}$	0.160300 + 03	T	T	$\frac{0.1804284D+03}{T}$
$\frac{z_m - 0.00}{1}$	0 182010 + 02	$(118204D \pm 0.3)$	$\frac{7}{0.99387D+00}$	0.1816283D+03	0 1816651D + 02	0_1816435D±02
1 ?	0.16201D+03 0.18184D±04	0.18185D±03	$0.99387D \pm 00$	$0.1814931D \pm 03$	(11815297D±03	0 1815083D±03
3	$0.18142D \pm 03$	0.18144D + 03	0.99387D + 00	0.1811567D+03	$0.1811915D \pm 02$	$0.1811711D \pm 0.9$
4	0.18076D + 03	0.18075D + 03	0.99387D+00	0.1805917D+03	0.1805991D+03	0.1805948D + 03

Tabela 6.8: Resultados numéricos para reator I: $G_f=4000 \frac{kg}{h_m^2}$, $R_m=9$

		Plumenter Finite	<u> </u>	~	Diferences Finites	· · · · · · · · · · · · · · · · · · ·
	<u> </u>	V Y	т <u>т</u>		Y V	
2	1, 1, (A, A,	("C)	1, 1,	A, A,	10, 14
		0.000000 ± 00	$\frac{1}{10} \frac{1}{20028} \overline{D} \pm 03$	$\frac{1}{100000} \pm 03$	0.000000 ± 00	0.200120 ± 02
0	0.200001) + 03	0.000000 ± 00	0.2000000+03	0.20000D+03 0.20000D+03	0.00000 ± 00	$(1.200)(21) \pm (1.3)$
0.1	$0.20000D \pm 03$ 0.20535D \pm 03	0.00000D+00 0.18072D±00	0.2000000 + 00	0.20000D+03	0.0000000+00 0.185860+00	$(120010D \pm 03)$
0.1	0.205500 ± 03	0.10036D - 00	0.20020D + 03	$0.20452D \pm 0.3$	0.19012D+00	0.2001017 + 03
(1.2)	0.2033117403	0.35545D+00	$0.20018D \pm 03$	$0.20385D \pm 0.3$	$0.35445D \pm 00$	0.209470 ± 03 0.200080 ± 03
(1.2) (1.2)	0.20402D + 03 0.20466D + 03	$0.35601D \pm 00$	$0.20010D \pm 00$	0.20303D+03	0.35555D+00	0.20388D+03
0.2	$0.20303D\pm03$	0.49710D + 0.0	$0.20014D \pm 03$	0.20030D + 03 0.20331D+03	0.49680D+00	(1.2000.61) + 0.3
0.3	0.2039500 ± 03 0.203970 ± 03	0.49759D+00	0.20394D+03	$0.20337D \pm 03$	0.49776D+00	$0.20334D \pm 03$
0.4	0.20329D+03	$0.61660D \pm 00$	0.200310 + 03	0.20279D+03	0.61748D+00	0.20004D + 0.3
0.4	0.20323D + 03 0.20332D + 03	0.01000D + 00 0.61701D + 00	$0.20330D \pm 03$	0.20285D+03	0.61830D+00	(1.20281D+03)
0.5	0.20269D+02	0.71540D+00	$0.20007D \pm 03$	$0.20230D \pm 03$	$0.71764D \pm 00$	0.202030+00
0.5	0.20205D+03 0.20271D+03	0.71574D + 00	0.20001D + 03	$0.20235D \pm 03$	$0.71831D \pm 00$	0.2000007 ± 03
0.6	0.20213D + 03	$0.79483D \pm 00$	0.20205D + 03	$0.20183D \pm 03$	0.79834D+00	0.20002D+03
0.6	$0.20215D \pm 0.03$	$0.79510D \pm 00$	0.20213D+03	$0.20187D \pm 03$	0.798880+00	0.20185D+03
0.2	0.20162D+03	0.85647D+00	0.20003D + 03	0.20140D + 03	0.860900 ± 00	0 20001D+03
0.7	0.20164D + 0.3	0.85668D+00	$0.20163D \pm 03$	0.20143D + 03	$0.86131D \pm 00$	$(1.20141D \pm 0.3)$
0.5	$0.20119D \pm 03$	0.90245D+00	0.20002D+03	$0.20102D \pm 03$	$0.90725D \pm 00$	0.20001D + 0.3
0.8	$0.20120D \pm 03$	$0.90260D \pm 00$	$0.20119D \pm 03$	$0.20104D \pm 03$	$0.90755D \pm 00$	$0.20103D \pm 03$
9.0	$0.20083D \pm 03$	0.93535D+00	0.20001D+03	$0.20071D \pm 0.03$	$0.93998D \pm 00$	0.2000000 ± 03
0.0	0.20084D403	0.935460+00	0.20083D+03	$0.20072D \pm 03$	0.94019D+00	0.20072D+03
1.0	0.20056D+03	$0.95802D \pm 00$	0.20000D + 03	0 20047D+03	$0.96210D \pm 00$	0.2000D+03
1.0	$0.20057D \pm 03$	0.95809D+00	0.20056D+03	$0.20048D \pm 0.03$	$0.96224D \pm 00$	0.20048D+03
					T	
	1	T.	1	1	1.	<i>T</i> .
$\frac{J}{\bar{z}=0.2}$	T	Τ,	1;	<u>_</u>	I	T
$\frac{J}{\bar{z}=0.2}$	0.20462D+03	0.20466D+03	1; 0.20463D+03	0.2038498D+03	1_{μ} 0.2039307D+03	T_1 0.2038841D+03
$\frac{1}{\bar{z}=0.2}$ I 2	0.20462D+03 0.20418D+03	$\begin{array}{c} 1, \\ 0.2046610 + 03 \\ 0.20422D + 03 \end{array}$	1; 0.20463D+03 0.20419D+03	1 0.2038498D+03 0.2035183D+03	1_{μ} 0.2039307D+03 0.2035989D+03	$\begin{array}{c} T_1 \\ 0.2038841D + 03 \\ 0.2035525D + 03 \end{array}$
$\frac{J}{\bar{z}=0.2}$ 1 2 3	0.20462D+03 0.20418D+03 0.20316D+03	$\begin{array}{c} 7.\\ 0.2046610 + 03\\ 0.20422D + 03\\ 0.20322D + 03 \end{array}$	1; 0.20463D+03 0.20419D+03 0.20317D+03	1 0.2038498D+03 0.2035183D+03 0.2026935D+03	1, 0.2039307D+03 0.2035989D+03 0.2027690D+03	$\begin{array}{c} T_{1} \\ 0.2038841D + 03 \\ 0.2035525D + 03 \\ 0.2027256D + 03 \end{array}$
	T 0.20462D+03 0.20418D+03 0.20316D+03 0.20160D+03	7, 0.20466l)+03 0.20422D+03 0.20322D+03 0.20158D+03	1; 0.20463D+03 0.20419D+03 0.20317D+03 0.20159D+03	$1 \\0.2038498D + 03 \\0.2035183D + 03 \\0.2026935D + 03 \\0.2013258D + 03 \\0.20132580 + 03 \\0$	1, 0.2039307D+03 0.2035989D+03 0.2027690D+03 0.2013378D+03	T, 0.2038841D+03 0.2035525D+03 0.2027256D+03 0.2013309D+03
	T 0.20462D+03 0.20418D+03 0.20316D+03 0.20160D+03	7, 0.20466l)+03 0.20422D+03 0.20322D+03 0.20158D+03	1; 0.20463D+03 0.20419D+03 0.20317D+03 0.20159D+03	1 0.2038498D+03 0.2035183D+03 0.2026935D+03 0.2013258D+03	1, 0.2039307D+03 0.2035989D+03 0.2027690D+03 0.2013378D+03	T, 0.2038841D+03 0.2035525D+03 0.2027256D+03 0.2013309D+03
$ \frac{J}{\bar{z}=0.2} 1 2 3 4 \bar{z}=0.4 1 $	$\begin{array}{c} 1\\ 0.20462D+03\\ 0.20418D+03\\ 0.20316D+03\\ 0.20160D+03\\ 0.20329D+03\\ \end{array}$	$\begin{array}{c} & T_{2} \\ 0.204661) \pm 03 \\ 0.20422D \pm 03 \\ 0.20322D \pm 03 \\ 0.20158D \pm 03 \\ 0.20332D \pm 03 \end{array}$	1; 0.20463D+03 0.20419D+03 0.20317D+03 0.20159D+03 0.20330D+03	1 0.2038498D+03 0.2035183D+03 0.2026935D+03 0.2013258D+03 0.2013258D+03 0.2027902D+03	1, 0.2039307D+03 0.2035989D+03 0.2027690D+03 0.2013378D+03 0.2028478D+03	$\begin{array}{c} T_1 \\ 0.2038841D + 03 \\ 0.2035525D + 03 \\ 0.2027256D + 03 \\ 0.2013309D + 03 \\ 0.2028146D + 03 \end{array}$
	$\begin{array}{c} 1\\ 0.20462D+03\\ 0.20418D+03\\ 0.20316D+03\\ 0.20160D+03\\ 0.20329D+03\\ 0.20298D+03\\ \end{array}$	$\begin{array}{c} 1,\\ 0.20466D+03\\ 0.20422D+03\\ 0.20322D+03\\ 0.20158D+03\\ 0.20332D+03\\ 0.20300D+03\\ \end{array}$	$\begin{array}{c} 1;\\ 0.20463D+03\\ 0.20419D+03\\ 0.20317D+03\\ 0.20159D+03\\ 0.20330D+03\\ 0.20298D+03\\ \end{array}$	1 0.2038498D+03 0.2035183D+03 0.2026935D+03 0.2013258D+03 0.2027902D+03 0.2025517D+03	$\begin{array}{c} 1,\\ 0.2039307D+03\\ 0.2035989D+03\\ 0.2027690D+03\\ 0.2013378D+03\\ 0.2028478D+03\\ 0.2026095D+03\\ \end{array}$	$\begin{array}{c} T_1 \\ 0.2038841D + 03 \\ 0.2035525D + 03 \\ 0.2027256D + 03 \\ 0.2013309D + 03 \\ \hline 0.2028146D + 03 \\ 0.2025762D + 03 \\ \hline \end{array}$
	$\begin{array}{c} 1\\ 0.20462D+03\\ 0.20418D+03\\ 0.20316D+03\\ 0.20166D+03\\ 0.20329D+03\\ 0.20298D+03\\ 0.20225D+03\\ \end{array}$	$\begin{array}{c} 1,\\ 0.20466D+03\\ 0.20422D+03\\ 0.20322D+03\\ 0.20158D+03\\ 0.20332D+03\\ 0.20300D+03\\ 0.20229D+03\\ \end{array}$	$\begin{array}{c} 1;\\ 0.20463D+03\\ 0.20419D+03\\ 0.20317D+03\\ 0.20159D+03\\ 0.20330D+03\\ 0.20298D+03\\ 0.20226D+03\\ 0.20226D+03\\ \end{array}$	1 0.2038498D+03 0.2035183D+03 0.2026935D+03 0.2013258D+03 0.2027902D+03 0.2025517D+03 0.2019549D+03	1, 0.2039307D+03 0.2035989D+03 0.2027690D+03 0.2013378D+03 0.2028478D+03 0.2026095D+03 0.2020097D+03	$\begin{array}{c} T_1 \\ 0.2038841D + 03 \\ 0.2035525D + 03 \\ 0.2027256D + 03 \\ 0.2013309D + 03 \\ 0.2028146D + 03 \\ 0.2025762D + 03 \\ 0.2019781D + 03 \\ \end{array}$
	$\begin{array}{c} 1\\ 0.20462D+03\\ 0.20418D+03\\ 0.20316D+03\\ 0.20166D+03\\ 0.20329D+03\\ 0.20298D+03\\ 0.20225D+03\\ 0.20225D+03\\ 0.20112D+03\\ \end{array}$	$\begin{array}{c} 1,\\ 0.20466D+03\\ 0.20422D+03\\ 0.20322D+03\\ 0.20158D+03\\ 0.20332D+03\\ 0.20300D+03\\ 0.20229D+03\\ 0.20112D+03\\ \end{array}$	$\begin{array}{c} 1;\\ 0.20463D+03\\ 0.20419D+03\\ 0.20317D+03\\ 0.20159D+03\\ 0.20230D+03\\ 0.20298D+03\\ 0.20226D+03\\ 0.20226D+03\\ 0.20112D+03\\ \end{array}$	1 0.2038498D+03 0.2035183D+03 0.2026935D+03 0.2013258D+03 0.2027902D+03 0.2025517D+03 0.2019549D+03 0.2009583D+03	$\begin{array}{c} 1,\\ 0.2039307D+03\\ 0.2035989D+03\\ 0.2027690D+03\\ 0.2013378D+03\\ 0.2028478D+03\\ 0.2026095D+03\\ 0.2020097D+03\\ 0.202009683D+03\\ \end{array}$	$\begin{array}{c} T_{1} \\ 0.2038841D + 03 \\ 0.2035525D + 03 \\ 0.2027256D + 03 \\ 0.2013309D + 03 \\ 0.2028146D + 03 \\ 0.2025762D + 03 \\ 0.2019781D + 03 \\ 0.2009626D + 03 \\ \end{array}$
	$\begin{array}{c} 1\\ 0.20462D+03\\ 0.20418D+03\\ 0.20316D+03\\ 0.20160D+03\\ 0.20298D+03\\ 0.20298D+03\\ 0.20225D+03\\ 0.20225D+03\\ 0.20112D+03\\ \end{array}$	$\begin{array}{c} 1.2 \\ 0.204661) + 0.3 \\ 0.20422D + 0.3 \\ 0.20322D + 0.3 \\ 0.20158D + 0.3 \\ 0.20332D + 0.3 \\ 0.20300D + 0.3 \\ 0.20229D + 0.3 \\ 0.20112D + 0.3 \\ 0.2012D + 0.3 \\ 0.2$	1; 0.20463D+03 0.20419D+03 0.20317D+03 0.20159D+03 0.20230D+03 0.20298D+03 0.20226D+03 0.20226D+03 0.20112D+03	1 0.2038498D + 03 0.2035183D + 03 0.2026935D + 03 0.2013258D + 03 0.2013258D + 03 0.2025517D + 03 0.2019549D + 03 0.2009583D + 03 0.2009583D + 03	$\begin{array}{c} 1,\\ 0.2039307D+03\\ 0.2035989D+03\\ 0.2027690D+03\\ 0.2013378D+03\\ 0.2028478D+03\\ 0.2026095D+03\\ 0.2026095D+03\\ 0.2020097D+03\\ 0.2009683D+03\\ \end{array}$	$\begin{array}{c} T_1 \\ 0.2038841D + 03 \\ 0.2035525D + 03 \\ 0.2027256D + 03 \\ 0.2013309D + 03 \\ 0.2028146D + 03 \\ 0.2025762D + 03 \\ 0.2019781D + 03 \\ 0.2009626D + 03 \\ 0.2019781D + 03 \\$
	$\begin{array}{c} 1\\ 0.20462D+03\\ 0.20418D+03\\ 0.20316D+03\\ 0.20160D+03\\ 0.20298D+03\\ 0.20225D+03\\ 0.20225D+03\\ 0.20112D+03\\ 0.20213D+03\\ 0.20225D+03\\ 0.202213D+03\\ 0.20223D+03\\ 0.20222D+03\\ 0.20223D+03\\ 0.20222D+03\\ 0.2022D+03\\ 0.202D+03\\ 0.202D+03\\ 0.202D+03\\ 0.202D+03\\ 0.2020$	$\begin{array}{c} 1.2 \\ \hline 0.204661) + 03 \\ \hline 0.20422D + 03 \\ \hline 0.20322D + 03 \\ \hline 0.20158D + 03 \\ \hline 0.20332D + 03 \\ \hline 0.20300D + 03 \\ \hline 0.20229D + 03 \\ \hline 0.20112D + 03 \\ \hline 0.20215D + 03 $	1; 0.20463D+03 0.20419D+03 0.20317D+03 0.20159D+03 0.20230D+03 0.20298D+03 0.20226D+03 0.20226D+03 0.20112D+03 0.20213D+03 0.20213D+03	1 0.2038498D + 03 0.2035183D + 03 0.2026935D + 03 0.2013258D + 03 0.2013258D + 03 0.2025517D + 03 0.2019549D + 03 0.2009583D + 03 0.2009583D + 03 0.2018333D + 03 0.2018333D + 03	$\begin{array}{c} 1,\\ 0.2039307D+03\\ 0.2035989D+03\\ 0.2027690D+03\\ 0.2013378D+03\\ 0.2028478D+03\\ 0.2026095D+03\\ 0.2020097D+03\\ 0.2020097D+03\\ 0.2009683D+03\\ 0.20018701D+03\\ 0.2018701D+03\\ 0.2018700000000000000000000000000000000000$	T_{1} 0.2038841D + 03 0.2035525D + 03 0.2027256D + 03 0.2013309D + 03 0.2028146D + 03 0.2025762D + 03 0.2019781D + 03 0.2009626D + 03 0.2018489D + 02
$ \begin{array}{r} \mathbf{J} \\ \overline{z} = 0.2 \\ \mathbf{I} \\ 2 \\ 3 \\ $	$\begin{array}{c} 1\\ 0.20462D+03\\ 0.20418D+03\\ 0.20316D+03\\ 0.20160D+03\\ 0.20298D+03\\ 0.20225D+03\\ 0.20225D+03\\ 0.20112D+03\\ 0.20213D+03\\ 0.20193D+03\\ 0.20190000000000000000000000000000000000$	$\begin{array}{c} 1.2 \\ \hline 0.204661) + 0.3 \\ \hline 0.20422D + 0.3 \\ \hline 0.20322D + 0.3 \\ \hline 0.20158D + 0.3 \\ \hline 0.20332D + 0.3 \\ \hline 0.20300D + 0.3 \\ \hline 0.20229D + 0.3 \\ \hline 0.20112D + 0.3 \\ \hline 0.20215D + 0.3 \\ \hline 0.20194D + 0.3 \\$	1; 0.20463D+03 0.20419D+03 0.20317D+03 0.20159D+03 0.20298D+03 0.20298D+03 0.20226D+03 0.20213D+03 0.20112D+03 0.20193D+03 0.20193D+03 0.20193D+03	1 0.2038498D + 03 0.2035183D + 03 0.2026935D + 03 0.2013258D + 03 0.2013258D + 03 0.2025517D + 03 0.2019549D + 03 0.2009583D + 03 0.2018333D + 03 0.2018333D + 03 0.2016779D + 03	$\begin{array}{c} 1,\\ 0.2039307D+03\\ 0.2035989D+03\\ 0.2027690D+03\\ 0.2013378D+03\\ 0.2028478D+03\\ 0.2026095D+03\\ 0.2026095D+03\\ 0.2020097D+03\\ 0.2009683D+03\\ 0.2018701D+03\\ 0.2018701D+03\\ 0.2017152D+03\\ 0.20171520+03\\ 0.20171520+03\\ 0.20171520+03\\ 0.20171520+03\\ 0.2017520+03\\ 0.2017520+03\\ 0.2017520+03\\ 0.2017520+03\\ 0.2017520+03\\ 0.2017520+03\\ 0.2017520+03\\ 0.2017520+03\\ 0.2017520+03\\ 0.2017520+03\\ 0.2017520+03\\ 0.2017520+03\\ 0.2017520+03\\ 0.2017520+03\\ 0.2017520+03\\ 0.2017520+03\\ 0.2017520+03\\ 0.201750+00\\ 0.201750+00\\ 0.201750+00\\ 0.201750+00\\ 0.201750+00\\ 0.20175$	T_{1} 0.2038841D + 03 0.2035525D + 03 0.2027256D + 03 0.2013309D + 03 0.2028146D + 03 0.2025762D + 03 0.2019781D + 03 0.2009626D + 03 0.2018489D + 02 0.2018489D + 03 0.2018489D + 03
$ \begin{array}{r} 1 \\ \overline{z} = 0.2 \\ 1 \\ 2 \\ 3 \\ 4 \\ \overline{z} = 0.4 \\ 1 \\ 2 \\ 3 \\ 4 \\ \overline{z} = 0.6 \\ 1 \\ 2 \\ 3 \\ 4 \end{array} $	$\begin{array}{c} 1\\ 0.20462D+03\\ 0.20418D+03\\ 0.20316D+03\\ 0.20160D+03\\ 0.20129D+03\\ 0.20229D+03\\ 0.20225D+03\\ 0.20225D+03\\ 0.20112D+03\\ 0.20112D+03\\ 0.20193D+03\\ 0.20145D+03\\ 0.201400+03\\ 0.201400+03\\ 0.201400+03\\ 0.201400+03\\ 0.20140$	$\begin{array}{c} 1.2 \\ \hline 0.20466l) + 0.3 \\ \hline 0.20422D + 0.3 \\ \hline 0.20322D + 0.3 \\ \hline 0.20158D + 0.3 \\ \hline 0.20332D + 0.3 \\ \hline 0.20300D + 0.3 \\ \hline 0.20229D + 0.3 \\ \hline 0.201229D + 0.3 \\ \hline 0.20112D + 0.3 \\ \hline 0.2014D + 0.3 \\ \hline 0.20$	1; 0.20463D+03 0.20419D+03 0.20317D+03 0.20159D+03 0.20298D+03 0.20298D+03 0.20226D+03 0.20213D+03 0.20112D+03 0.20193D+03 0.20146D+03 0.20272D+03	1 0.2038498D + 03 0.2035183D + 03 0.2026935D + 03 0.2013258D + 03 0.2013258D + 03 0.2025517D + 03 0.2019549D + 03 0.2009583D + 03 0.2018333D + 03 0.2016779D + 03 0.2012862D + 03 0.2012862D + 03	$\begin{array}{c} 1,\\ 0.2039307D+03\\ 0.2035989D+03\\ 0.2027690D+03\\ 0.2013378D+03\\ 0.2013378D+03\\ 0.2026095D+03\\ 0.2020097D+03\\ 0.202009683D+03\\ 0.2016701D+03\\ 0.2015701D+03\\ 0.2013220D+03\\ 0.2013200D+03\\ 0.2010000000000000000000000000000000000$	T_{1} 0.2038841D + 03 0.2035525D + 03 0.2027256D + 03 0.2013309D + 03 0.2028146D + 03 0.2025762D + 03 0.2019781D + 03 0.2009626D + 03 0.2018489D + 02 0.2018489D + 03 0.2013014D + 03 0.2013014D + 03
$ \begin{array}{r} 1 \\ \overline{z} = 0.2 \\ 1 \\ 2 \\ 3 \\ 4 \\ \overline{z} = 0.4 \\ 1 \\ 2 \\ 3 \\ 4 \\ \overline{z} \pm 0.6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \pm 0.6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \pm 0.6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \pm 0.6 \\ 1 \\ 2 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5$	$\begin{array}{c} 1\\ 0.20462D+03\\ 0.20418D+03\\ 0.20316D+03\\ 0.20160D+03\\ 0.20129D+03\\ 0.20229D+03\\ 0.20225D+03\\ 0.20225D+03\\ 0.20112D+03\\ 0.20193D+03\\ 0.20193D+03\\ 0.20145D+03\\ 0.20072D+03\\ \end{array}$	$\begin{array}{c} 1.2\\ 0.20466l) \pm 0.3\\ 0.20422D \pm 0.3\\ 0.20322D \pm 0.3\\ 0.20158D \pm 0.3\\ 0.20332D \pm 0.3\\ 0.20300D \pm 0.3\\ 0.20229D \pm 0.3\\ 0.20215D \pm 0.3\\ 0.20112D \pm 0.3\\ 0.20194D \pm 0.3\\ 0.20148D \pm 0.3\\ 0.20071D \pm 0.3\\ \end{array}$	$\begin{array}{c} 1;\\ 0.20463D+03\\ 0.20419D+03\\ 0.20317D+03\\ 0.20159D+03\\ 0.20298D+03\\ 0.20298D+03\\ 0.20226D+03\\ 0.20226D+03\\ 0.20112D+03\\ 0.20193D+03\\ 0.20193D+03\\ 0.20146D+03\\ 0.20072D+03\\ \end{array}$	1 0.2038498D +03 0.2035183D +03 0.2026935D +03 0.2013258D +03 0.2013258D +03 0.2025517D +03 0.2019549D +03 0.2019543D +03 0.2016779D +03 0.2012862D +03 0.2012862D +03 0.2006283D +03	$\begin{array}{c} 1,\\ 0.2039307D+03\\ 0.2035989D+03\\ 0.2027690D+03\\ 0.2013378D+03\\ 0.2028478D+03\\ 0.2026095D+03\\ 0.2020097D+03\\ 0.202009683D+03\\ 0.2016701D+03\\ 0.201520D+03\\ 0.2013220D+03\\ 0.2006353D+03\\ \end{array}$	$\begin{array}{c} T_1 \\ 0.2038841D \pm 0.3 \\ 0.2035525D \pm 0.3 \\ 0.2035525D \pm 0.3 \\ 0.2027256D \pm 0.3 \\ 0.2013309D \pm 0.3 \\ 0.2028146D \pm 0.3 \\ 0.2025762D \pm 0.3 \\ 0.2019781D \pm 0.3 \\ 0.2019781D \pm 0.3 \\ 0.2019626D \pm 0.3 \\ 0.2016937D \pm 0.3 \\ 0.2013014D \pm 0.3 \\ 0.2006313D \pm 0.3 \\ 0.2006313D \pm 0.3 \\ \end{array}$
$ \begin{array}{r} \mathbf{j} \\ \overline{z} = 0.2 \\ \mathbf{i} \\ \mathbf{j} \\ \mathbf{k} \\ \overline{z} = 0.4 \\ \mathbf{i} \\ \overline{z} = 0.4 \\ \mathbf{i} \\ \mathbf{k} \\ \overline{z} = 0.6 \\ \mathbf{i} \\ \mathbf{k} \\ \overline{z} = 0.8 \\ \mathbf{k} \\ $	$\begin{array}{c} 1\\ 0.20462D+03\\ 0.20418D+03\\ 0.20316D+03\\ 0.20160D+03\\ 0.20129D+03\\ 0.20229D+03\\ 0.20225D+03\\ 0.20225D+03\\ 0.20112D+03\\ 0.2013D+03\\ 0.20193D+03\\ 0.20145D+03\\ 0.20072D+03\\ 0.20072D+03\\ 0.200140D+03\\ 0.2001000000000000000000000000000000000$	$\begin{array}{c} 1.2\\ 0.204661) + 0.3\\ 0.20422D + 0.3\\ 0.20322D + 0.3\\ 0.20158D + 0.3\\ 0.20332D + 0.3\\ 0.20300D + 0.3\\ 0.20229D + 0.3\\ 0.20112D + 0.3\\ 0.20112D + 0.3\\ 0.20194D + 0.3\\ 0.20148D + 0.3\\ 0.20071D + 0.3\\ 0.20120D + 0.3\\ 0$	1; 0.20463D+03 0.20419D+03 0.20317D+03 0.20159D+03 0.20298D+03 0.20298D+03 0.20226D+03 0.20213D+03 0.20112D+03 0.20193D+03 0.20146D+03 0.20072D+03	1 0.2038498D +03 0.2035183D +03 0.2026935D +03 0.2013258D +03 0.2013258D +03 0.2025517D +03 0.2019549D +03 0.2019543D +03 0.2019583D +03 0.2016779D +03 0.2012862D +03 0.200283D +03 0.2006283D +03 0.2006280D +03 0.20062800000000000000000000000000000000	$\begin{array}{c} 1,\\ 0.2039307D+03\\ 0.2035989D+03\\ 0.2027690D+03\\ 0.2013378D+03\\ 0.2028478D+03\\ 0.2028095D+03\\ 0.2020097D+03\\ 0.2020097D+03\\ 0.2019683D+03\\ 0.2016701D+03\\ 0.2013220D+03\\ 0.2006353D+03\\ 0.2006353D+03\\ 0.2006425D+03\\ 0.2006455D+03\\ 0.20064550+03\\ 0.2006450+03\\ 0.2006450+03\\ 0.2006450+03\\ 0.2006450+03\\ 0.2006450+03\\ 0.2006450+03\\ 0.2006450+03\\ 0.2006450+03\\ 0.2006450+03\\ 0.2006450+03\\ 0.2006450+00\\ 0.2006450+00\\ 0.2006450+00\\ 0.2006450+00\\ 0.2006450+00\\ 0.2006450+$	$\begin{array}{c} T_{1} \\ 0.2038841D + 0.3 \\ 0.2035525D + 0.3 \\ 0.2035525D + 0.3 \\ 0.2027256D + 0.3 \\ 0.2013309D + 0.3 \\ 0.2025762D + 0.3 \\ 0.2025762D + 0.3 \\ 0.2019781D + 0.3 \\ 0.2019781D + 0.3 \\ 0.2019626D + 0.3 \\ 0.2016937D + 0.3 \\ 0.20103014D + 0.3 \\ 0.2006313D + 0.3 \\ 0.2010202D + 0.2 \\ 0.20102D + 0.2 \\ 0.20102D$
$ \begin{array}{r} 1 \\ \overline{z} = 0.2 \\ 1 \\ 2 \\ 3 \\ 4 \\ \overline{z} = 0.4 \\ 1 \\ 2 \\ 3 \\ 4 \\ \overline{z} \pm 0.6 \\ 1 \\ 2 \\ 3 \\ 4 \\ \overline{z} \pm 0.6 \\ 1 \\ 2 \\ 3 \\ 4 \\ \overline{z} \pm 0.8 \\ 1 \\ 2 \end{array} $	$\begin{array}{c} 1\\ 0.20462D+03\\ 0.20418D+03\\ 0.20316D+03\\ 0.20160D+03\\ 0.20160D+03\\ 0.20298D+03\\ 0.20225D+03\\ 0.20225D+03\\ 0.20112D+03\\ 0.20193D+03\\ 0.20193D+03\\ 0.20145D+03\\ 0.20072D+03\\ 0.20119D+03\\ 0.20119D+03\\ 0.20107D+03\\ 0.201070$	$\begin{array}{c} 1.2\\ 0.20466l) + 0.3\\ 0.20422D + 0.3\\ 0.20322D + 0.3\\ 0.20158D + 0.3\\ 0.20332D + 0.3\\ 0.20300D + 0.3\\ 0.20229D + 0.3\\ 0.20112D + 0.3\\ 0.20112D + 0.3\\ 0.20194D + 0.3\\ 0.20148D + 0.3\\ 0.20071D + 0.3\\ 0.20120D + 0.3\\ 0.20120D + 0.3\\ 0.20102D + 0.3\\ 0$	1; 0.20463D+03 0.20419D+03 0.20317D+03 0.20159D+03 0.20298D+03 0.20298D+03 0.20226D+03 0.20213D+03 0.20193D+03 0.20193D+03 0.20146D+03 0.20072D+03 0.20119D+03 0.20102D+02	1 0.2038498D +03 0.2035183D +03 0.2026935D +03 0.2013258D +03 0.2013258D +03 0.2025902D +03 0.2025517D +03 0.2019549D +03 0.2019543D +03 0.2016779D +03 0.2016779D +03 0.2012862D +03 0.2006283D +03 0.2010225D +03 0.20102 0.20102 0.20102 0.20102 0.20102 0.20102 0.20102 0.2010 0.201 0.2010 0.201	1_{+} 0.2039307D + 03 0.2035989D + 03 0.2027690D + 03 0.2013378D + 03 0.2028478D + 03 0.2028478D + 03 0.2028095D + 03 0.2020097D + 03 0.2019683D + 03 0.2013220D + 03 0.2013220D + 03 0.2006353D + 03 0.2010423D + 03 0.2010423D + 03 0.2010423D + 03	$\begin{array}{c} T_{1} \\ 0.2038841D + 03 \\ 0.2035525D + 03 \\ 0.2035525D + 03 \\ 0.2027256D + 03 \\ 0.2013309D + 03 \\ 0.2025762D + 03 \\ 0.2025762D + 03 \\ 0.2019781D + 03 \\ 0.2019781D + 03 \\ 0.2018489D + 03 \\ 0.2016937D + 03 \\ 0.2016937D + 03 \\ 0.2010309D + 03 \\ 0.2010309D + 03 \\ 0.2000451D + 07 \\ 0.2000451D + 07$
$ \begin{array}{r} 1 \\ \overline{z} = 0.2 \\ 1 \\ 2 \\ 3 \\ 4 \\ \overline{z} = 0.4 \\ 1 \\ 2 \\ 3 \\ 4 \\ \overline{z} \pm 0.6 \\ 1 \\ 2 \\ 3 \\ 4 \\ \overline{z} \pm 0.8 \\ 1 \\ 2 \\ 2 \\ 2 \end{array} $	$\begin{array}{c} 1\\ 0.20462D+03\\ 0.20418D+03\\ 0.20316D+03\\ 0.20160D+03\\ 0.20160D+03\\ 0.20298D+03\\ 0.20225D+03\\ 0.20225D+03\\ 0.20112D+03\\ 0.20193D+03\\ 0.20193D+03\\ 0.20145D+03\\ 0.20072D+03\\ 0.20119D+03\\ 0.20107D+03\\ 0.20107D+03\\ 0.20107D+03\\ 0.20031D+03\\ 0.20107D+03\\ 0.20107D+03\\ 0.20031D+03\\ 0.2003000000000000000000000000000000000$	$\begin{array}{c} 1.2\\ 0.20466l) + 0.3\\ 0.20422D + 0.3\\ 0.20322D + 0.3\\ 0.20158D + 0.3\\ 0.20332D + 0.3\\ 0.20300D + 0.3\\ 0.20229D + 0.3\\ 0.20112D + 0.3\\ 0.20112D + 0.3\\ 0.20194D + 0.3\\ 0.20194D + 0.3\\ 0.20120D + 0.3\\ 0.20108D + 0.3\\ 0$	$\begin{array}{c} 1;\\ 0.20463D+03\\ 0.20419D+03\\ 0.20317D+03\\ 0.20159D+03\\ 0.20159D+03\\ 0.20298D+03\\ 0.20298D+03\\ 0.20226D+03\\ 0.20226D+03\\ 0.20112D+03\\ 0.20193D+03\\ 0.20193D+03\\ 0.20072D+03\\ 0.20108D+03\\ 0.200108D+03\\ 0.20008D+03\\ 0.20008D+03\\ 0.20008D+03\\ 0.20008D+03\\ 0.2008D+03$	1 0.2038498D +03 0.2035183D +03 0.2035183D +03 0.2026935D +03 0.2013258D +03 0.2013258D +03 0.2019549D +03 0.2019549D +03 0.2019583D +03 0.2016779D +03 0.2016779D +03 0.2012862D +03 0.2010225D +03 0.2010225D +03 0.2010225D +03 0.2010225D +03 0.2010225D +03 0.2010225D +03 0.2009365D +03	$\begin{array}{c} 1,\\ 0.2039307D+03\\ 0.2035989D+03\\ 0.2035989D+03\\ 0.2027690D+03\\ 0.2013378D+03\\ 0.2028478D+03\\ 0.2026095D+03\\ 0.2020097D+03\\ 0.2009683D+03\\ 0.2016701D+03\\ 0.2016701D+03\\ 0.2013220D+03\\ 0.2006353D+03\\ 0.2009563D+03\\ 0.2009569D+03\\ 0.2009569D+03\\ 0.20097273D+02\\ 0.200972720D+02\\ 0.20097200000000000000000000000000000000$	$\begin{array}{c} T_{1} \\ 0.2038841D + 03 \\ 0.2035525D + 03 \\ 0.2035525D + 03 \\ 0.2027256D + 03 \\ 0.2013309D + 03 \\ 0.2025762D + 03 \\ 0.2019781D + 03 \\ 0.2019781D + 03 \\ 0.2019626D + 03 \\ 0.2016937D + 03 \\ 0.2016937D + 03 \\ 0.20103014D + 03 \\ 0.2010309D + 03 \\ 0.2010309D + 03 \\ 0.2009451D + 0$
$ \begin{array}{r} 1 \\ \overline{z} = 0.2 \\ 1 \\ 2 \\ 3 \\ 4 \\ \overline{z} = 0.4 \\ 1 \\ 2 \\ 3 \\ 4 \\ \overline{z} \pm 0.6 \\ 1 \\ 2 \\ 3 \\ 4 \\ \overline{z} \pm 0.8 \\ 1 \\ 2 \\ 3 \\ 4 \\ 1 \\ 2 \\ 3 \\ 4 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	$\begin{array}{c} 1\\ 0.20462D+03\\ 0.20418D+03\\ 0.20316D+03\\ 0.20160D+03\\ 0.20160D+03\\ 0.20298D+03\\ 0.20225D+03\\ 0.20225D+03\\ 0.20112D+03\\ 0.20193D+03\\ 0.20193D+03\\ 0.20145D+03\\ 0.20072D+03\\ 0.20107D+03\\ 0.20107D+03\\ 0.20081D+03\\ 0.2008D+03\\ 0.2008D+00\\ 0.20$	$\begin{array}{c} 1.2\\ 0.20466l) \pm 0.3\\ 0.20422D \pm 0.3\\ 0.20322D \pm 0.3\\ 0.20322D \pm 0.3\\ 0.20158D \pm 0.3\\ 0.20332D \pm 0.3\\ 0.20300D \pm 0.3\\ 0.20229D \pm 0.3\\ 0.20112D \pm 0.3\\ 0.20112D \pm 0.3\\ 0.20194D \pm 0.3\\ 0.20194D \pm 0.3\\ 0.20120D \pm 0.3\\ 0.20108D \pm 0.3\\ 0.20082D \pm 0.3\\ 0$	$\begin{array}{c} 1;\\ 0.20463D+03\\ 0.20419D+03\\ 0.20317D+03\\ 0.20317D+03\\ 0.20159D+03\\ 0.20298D+03\\ 0.20298D+03\\ 0.20226D+03\\ 0.20226D+03\\ 0.20112D+03\\ 0.20193D+03\\ 0.20193D+03\\ 0.20103D+03\\ 0.20109D+03\\ 0.20081D+03\\ 0.20081000000000000000000000000000000000$	1 0.2038498D +03 0.2035183D +03 0.2035183D +03 0.2026935D +03 0.2013258D +03 0.2013258D +03 0.2019549D +03 0.2019549D +03 0.2019583D +03 0.2016779D +03 0.2016779D +03 0.2010225D +03 0.2000283D +03 0.2010225D +03 0.2000365D +03 0.2000365D +03 0.20003405D +03 0.2007180D +03 0.20071800 +03 0.20071800 +03 0.20071800 +03 0.20071800 +03 0.20071800 +03 0.20071800 +03 0.20071800 +03 0.20071800 +03 0.20071800 +03 0.20071800 +03 0.20071800 +03 0.20071800 +03 0.20071800 +03 0.20071800 +03 0.20071800 +0 000 0000 +000 0000 0000 +0000 +0000 0000 0000 +0000 0000 0000 0000 0000 0000 0000 0000 0000	$\begin{array}{c} 1,\\ 0.2039307D+03\\ 0.2035989D+03\\ 0.2035989D+03\\ 0.2027690D+03\\ 0.2013378D+03\\ 0.2026095D+03\\ 0.2026095D+03\\ 0.2020097D+03\\ 0.2009683D+03\\ 0.2016701D+03\\ 0.2016701D+03\\ 0.2013220D+03\\ 0.2013220D+03\\ 0.2006353D+03\\ 0.2000553D+03\\ 0.2009569D+03\\ 0.2007378D+03\\ 0.2007378D+00\\ 0.2007378D+00\\ 0.2007378D+00\\ 0.2007378D+00\\ 0.2007378D$	$\begin{array}{c} T_{1} \\ 0.2038841D + 03 \\ 0.2035525D + 03 \\ 0.2035525D + 03 \\ 0.2027256D + 03 \\ 0.2013309D + 03 \\ 0.2025762D + 03 \\ 0.2019781D + 03 \\ 0.2019781D + 03 \\ 0.2019626D + 03 \\ 0.2016937D + 03 \\ 0.2016937D + 03 \\ 0.20103014D + 03 \\ 0.2010309D + 03 \\ 0.2010309D + 03 \\ 0.2009451D + 03 \\ 0.2007264D + 0$
$ \begin{array}{r} 1 \\ \overline{z} = 0.2 \\ 1 \\ 2 \\ 3 \\ 4 \\ \overline{z} = 0.4 \\ 1 \\ 2 \\ 3 \\ 4 \\ \overline{z} = 0.6 \\ 1 \\ 2 \\ 3 \\ 4 \\ \overline{z} = 0.8 \\ 1 \\ 2 \\ 3 \\ 4 \\ \overline{z} = 0.8 \\ 1 \\ 2 \\ 3 \\ 4 \\ \overline{z} = 0.6 \\ 1 \\ \overline{z} = 0.6 $	$\begin{array}{c} 1\\ 0.20462D+03\\ 0.20418D+03\\ 0.20316D+03\\ 0.20160D+03\\ 0.20160D+03\\ 0.20298D+03\\ 0.20225D+03\\ 0.20225D+03\\ 0.20112D+03\\ 0.20193D+03\\ 0.20193D+03\\ 0.20145D+03\\ 0.20072D+03\\ 0.20107D+03\\ 0.20081D+03\\ 0.20081D+03\\ 0.20083D+03\\ 0.20083D+03\\ 0.20093D+03\\ 0.2009000000000000000000000000000000000$	$\begin{array}{c} T_{-} \\ \hline 0.20466l) + 0.3 \\ 0.20422D + 0.3 \\ 0.20322D + 0.3 \\ 0.20158D + 0.3 \\ \hline 0.20332D + 0.3 \\ 0.20300D + 0.3 \\ 0.20229D + 0.3 \\ 0.20112D + 0.3 \\ 0.20112D + 0.3 \\ 0.20194D + 0.3 \\ 0.20194D + 0.3 \\ 0.20171D + 0.3 \\ 0.20108D + 0.3 \\ 0.20108D + 0.3 \\ 0.20082D + 0.3 \\ 0.20039D + 0.3 \\ \hline \end{array}$	$\begin{array}{c} 1;\\ 0.20463D+03\\ 0.20419D+03\\ 0.20317D+03\\ 0.20317D+03\\ 0.20159D+03\\ 0.20298D+03\\ 0.20298D+03\\ 0.20226D+03\\ 0.20226D+03\\ 0.20112D+03\\ 0.20193D+03\\ 0.20193D+03\\ 0.20072D+03\\ 0.20072D+03\\ 0.20019D+03\\ 0.20081D+03\\ 0.20081D+03\\ 0.20081D+03\\ 0.20089D+03\\ 0.2009D+03\\ $	1 0.2038498D +03 0.2035183D +03 0.2035183D +03 0.2026935D +03 0.2013258D +03 0.2013258D +03 0.2019549D +03 0.2019549D +03 0.2019583D +03 0.2016779D +03 0.2016283D +03 0.2010225D +03 0.20002683D +03 0.2009365D +03 0.2009365D +03 0.2007180D +03 0.2007180D +03 0.2003495D +03	$\begin{array}{c} 1,\\ 0.2039307D+03\\ 0.2035989D+03\\ 0.2035989D+03\\ 0.2027690D+03\\ 0.2013378D+03\\ 0.2028478D+03\\ 0.2026095D+03\\ 0.2020097D+03\\ 0.2009683D+03\\ 0.2016701D+03\\ 0.2016701D+03\\ 0.2013220D+03\\ 0.2006353D+03\\ 0.20005635D+03\\ 0.2007378D+03\\ 0.2003535D+03\\ 0.2003535D+03\\ \end{array}$	T_{1} 0.2038841D + 03 0.2035525D + 03 0.2035525D + 03 0.2027256D + 03 0.2013309D + 03 0.2025762D + 03 0.2019781D + 03 0.2019781D + 03 0.2016937D + 03 0.2016937D + 03 0.2010309D + 03 0.2010309D + 03 0.2007264D + 03 0.2007264D + 03 0.2003512D + 03 0.2003512D + 03
$ \begin{array}{r} 1 \\ \overline{z} = 0.2 \\ 1 \\ 2 \\ 3 \\ 4 \\ \overline{z} = 0.4 \\ 1 \\ 2 \\ 3 \\ 4 \\ \overline{z} = 0.6 \\ 1 \\ 2 \\ 3 \\ 4 \\ \overline{z} = 0.8 \\ 1 \\ 2 \\ 3 \\ 4 \\ \overline{z} = 0.06 \end{array} $	$\begin{array}{c} T\\ 0.20462D+03\\ 0.20418D+03\\ 0.20316D+03\\ 0.20160D+03\\ 0.20160D+03\\ 0.20298D+03\\ 0.20225D+03\\ 0.20225D+03\\ 0.20112D+03\\ 0.20193D+03\\ 0.20145D+03\\ 0.20072D+03\\ 0.20107D+03\\ 0.20107D+03\\ 0.20081D+03\\ 0.20081D+03\\ 0.20039D+03\\ T\\ T\\ 0.2051D+03\\ 0.20039D+03\\ 0.2$	$\begin{array}{c} T_{-} \\ \hline 0.20466l) + 0.3 \\ 0.20422D + 0.3 \\ 0.20322D + 0.3 \\ 0.20158D + 0.3 \\ \hline 0.20332D + 0.3 \\ 0.20300D + 0.3 \\ 0.20229D + 0.3 \\ 0.20215D + 0.3 \\ 0.20112D + 0.3 \\ 0.20194D + 0.3 \\ 0.20194D + 0.3 \\ 0.2017D + 0.3 \\ 0.20108D + 0.3 \\ 0.20108D + 0.3 \\ 0.20082D + 0.3 \\ 0.20039D + 0.3 \\ \hline T_{-} \\ \hline 0.20557D + 0.2 \\ \hline \end{array}$	$\begin{array}{c} 1;\\ 0.20463D+03\\ 0.20419D+03\\ 0.20317D+03\\ 0.20317D+03\\ 0.20159D+03\\ 0.20298D+03\\ 0.20298D+03\\ 0.20226D+03\\ 0.20226D+03\\ 0.20112D+03\\ 0.20193D+03\\ 0.20193D+03\\ 0.20103D+03\\ 0.20072D+03\\ 0.20081D+03\\ 0.20081D+03\\ 0.20081D+03\\ 0.20081D+03\\ 0.20039D+03\\ 0.20039$	$\frac{1}{0.2038498D + 03}$ $0.2035183D + 03$ $0.2035183D + 03$ $0.2026935D + 03$ $0.2013258D + 03$ $0.2013258D + 03$ $0.2019549D + 03$ $0.2019549D + 03$ $0.2019543D + 03$ $0.2016779D + 03$ $0.2012862D + 03$ $0.2010225D + 03$ $0.2009365D + 03$ $0.2009365D + 03$ $0.2007180D + 03$ $0.2003495D + 03$ $0.2003495D + 03$	$\begin{array}{c} 1,\\ 0.2039307D+03\\ 0.2035989D+03\\ 0.2035989D+03\\ 0.2027690D+03\\ 0.2013378D+03\\ 0.2026095D+03\\ 0.2026095D+03\\ 0.2020097D+03\\ 0.2009683D+03\\ 0.2018701D+03\\ 0.2018701D+03\\ 0.2013220D+03\\ 0.2013220D+03\\ 0.2006353D+03\\ 0.2009569D+03\\ 0.2007378D+03\\ 0.2003535D+03\\ 0.200355D+03\\ 0.20035500000000000000000000000000000000$	T_{1} 0.2038841D + 03 0.2035525D + 03 0.2035525D + 03 0.2013309D + 03 0.2013309D + 03 0.2013309D + 03 0.2019781D + 03 0.2019781D + 03 0.2019626D + 03 0.2016937D + 03 0.2016937D + 03 0.2010309D + 03 0.2010309D + 03 0.2007264D + 03 0.2007264D + 03 0.2003512D + 03 0.200625D + 03 0.200625D + 03
$ \begin{array}{r} 1 \\ \overline{z} = 0.2 \\ 1 \\ 2 \\ 3 \\ 4 \\ \overline{z} = 0.4 \\ 1 \\ 2 \\ 3 \\ 4 \\ \overline{z} = 0.6 \\ 1 \\ 2 \\ 3 \\ 4 \\ \overline{z} = 0.8 \\ 1 \\ 2 \\ 3 \\ 4 \\ 2 \\ m = 0.06 \\ 1 \\ 2 \end{array} $	$\begin{array}{c} 1\\ 0.20462D+03\\ 0.20418D+03\\ 0.20316D+03\\ 0.20316D+03\\ 0.20160D+03\\ 0.201292D+03\\ 0.20225D+03\\ 0.20225D+03\\ 0.20112D+03\\ 0.20193D+03\\ 0.20193D+03\\ 0.20145D+03\\ 0.20072D+03\\ 0.20107D+03\\ 0.20081D+03\\ 0.20081D+03\\ 0.20081D+03\\ 0.20039D+02\\ \hline T\\ 0.20551D+03\\ 0.2049D+02\\ \hline \end{array}$	$\begin{array}{c} 1.2 \\ 0.20466l) + 0.3 \\ 0.20422D + 0.3 \\ 0.20322D + 0.3 \\ 0.20158D + 0.3 \\ 0.20332D + 0.3 \\ 0.20300D + 0.3 \\ 0.20229D + 0.3 \\ 0.20215D + 0.3 \\ 0.20112D + 0.3 \\ 0.20194D + 0.3 \\ 0.20194D + 0.3 \\ 0.2017D + 0.3 \\ 0.20108D + 0.3 \\ 0.20082D + 0.3 \\ 0.20082D + 0.3 \\ 0.20039D + 0.3 \\ 0.20557D + 0.3 \\ 0.20594D +$	$\frac{1}{7}$ 0.20463D +03 0.20419D +03 0.20317D +03 0.20317D +03 0.20159D +03 0.20298D +03 0.20298D +03 0.20226D +03 0.20213D +03 0.20193D +03 0.20193D +03 0.20119D +03 0.20108D +03 0.2003D +03 0.2003D +03 0.2003D +00 0.97633D +00	$\frac{1}{0.2038498D + 03}$ $0.2035183D + 03$ $0.2026935D + 03$ $0.2013258D + 03$ $0.2013258D + 03$ $0.2013258D + 03$ $0.2019549D + 03$ $0.2019549D + 03$ $0.2019533D + 03$ $0.2016779D + 03$ $0.2016283D + 03$ $0.2010225D + 03$ $0.2009365D + 03$ $0.2009365D + 03$ $0.2007180D + 03$ $0.2007180D + 03$ $0.2003495D + 03$ $0.20045650D + 03$ $0.2045650D + 03$ $0.2045650D + 03$	$\begin{array}{c} 1_{+} \\ 0.2039307D + 03 \\ 0.2035989D + 03 \\ 0.2035989D + 03 \\ 0.2027690D + 03 \\ 0.2013378D + 03 \\ 0.2028478D + 03 \\ 0.2026095D + 03 \\ 0.2020097D + 03 \\ 0.20209683D + 03 \\ 0.2016701D + 03 \\ 0.2016701D + 03 \\ 0.2013220D + 03 \\ 0.2013220D + 03 \\ 0.2006353D + 03 \\ 0.2009569D + 03 \\ 0.2009569D + 03 \\ 0.2007378D + 03 \\ 0.2003535D + 03 \\ 0.2003535D + 03 \\ 0.2004666D + 03 \\ 0.204666B + 03 \\ 0.204714D + 02 \\ 0.20$	T_{1} 0.2038841D + 03 0.2035525D + 03 0.2027256D + 03 0.2013309D + 03 0.2013309D + 03 0.2013309D + 03 0.2025762D + 03 0.2019781D + 03 0.2019626D + 03 0.2016937D + 03 0.2016937D + 03 0.2010309D + 03 0.2010309D + 03 0.2007264D + 03 0.2003512D + 03 0.2046082D + 03 0.2046082D + 03
$ \begin{array}{r} 1 \\ \bar{z} = 0.2 \\ 1 \\ 2 \\ $	$\begin{array}{c} 1\\ 0.20462D+03\\ 0.20418D+03\\ 0.20316D+03\\ 0.20316D+03\\ 0.20160D+03\\ 0.201292D+03\\ 0.20225D+03\\ 0.20225D+03\\ 0.20112D+03\\ 0.20193D+03\\ 0.20193D+03\\ 0.20145D+03\\ 0.20072D+03\\ 0.20081D+03\\ 0.20081D+03\\ 0.20081D+03\\ 0.200551D+03\\ 0.20499D+03\\ 0.20499D+03\\ 0.20499D+03\\ 0.20377D+03\\ 0.20372D+03\\ 0.20372000000000000000000000000000000000$	$\begin{array}{c} 1.2\\ 0.20466l) + 0.3\\ 0.20422D + 0.3\\ 0.20322D + 0.3\\ 0.20158D + 0.3\\ 0.20158D + 0.3\\ 0.20300D + 0.3\\ 0.20229D + 0.3\\ 0.20229D + 0.3\\ 0.20112D + 0.3\\ 0.20112D + 0.3\\ 0.20194D + 0.3\\ 0.20194D + 0.3\\ 0.20171D + 0.3\\ 0.20071D + 0.3\\ 0.20071D + 0.3\\ 0.20082D + 0.3\\ 0.20082D + 0.3\\ 0.20059D + 0.3\\ 0.20557D + 0.3\\ 0.20594D + 0.3\\ 0.20594D + 0.3\\ 0.20384D + 0.3\\ 0$	$\begin{array}{c} 1;\\ 0.20463D+03\\ 0.20419D+03\\ 0.20317D+03\\ 0.20317D+03\\ 0.20159D+03\\ 0.20159D+03\\ 0.20298D+03\\ 0.20298D+03\\ 0.20226D+03\\ 0.20226D+03\\ 0.20112D+03\\ 0.20193D+03\\ 0.20193D+03\\ 0.20108D+03\\ 0.20072D+03\\ 0.20081D+03\\ 0.20081D+03\\ 0.20039D+03\\ 0.20039D+03\\ 0.20039D+00\\ 0.97633D+00\\ 0.97632D+00\\ 0.97642000000000000000000000000000000000000$	$\frac{1}{0.2038498D + 03}$ $0.2035183D + 03$ $0.2035183D + 03$ $0.2026935D + 03$ $0.2013258D + 03$ $0.2013258D + 03$ $0.2019549D + 03$ $0.2019549D + 03$ $0.2019543D + 03$ $0.2016779D + 03$ $0.2016779D + 03$ $0.2012862D + 03$ $0.2010225D + 03$ $0.2009365D + 03$ $0.2009365D + 03$ $0.2007180D + 03$ $0.2003495D + 03$ $0.2003495D + 03$ $0.2044706D + 03$ $0.2031908D + 03$	$\begin{array}{c} 1,\\ 0.2039307D+03\\ 0.2035989D+03\\ 0.2035989D+03\\ 0.2027690D+03\\ 0.2013378D+03\\ 0.2026095D+03\\ 0.2026095D+03\\ 0.2020097D+03\\ 0.20209683D+03\\ 0.2009683D+03\\ 0.2017152D+03\\ 0.2013220D+03\\ 0.2006353D+03\\ 0.2009569D+03\\ 0.2007378D+03\\ 0.2003535D+03\\ \hline T_{c}\\ 0.2046668D+03\\ 0.2042714D+03\\ $	T_{1} 0.2038841D + 03 0.2035525D + 03 0.2035525D + 03 0.2013309D + 03 0.2013309D + 03 0.2013309D + 03 0.2025762D + 03 0.2019781D + 03 0.2019626D + 03 0.2016937D + 03 0.2016937D + 03 0.2010309D + 03 0.2010309D + 03 0.2007264D + 03 0.2003512D + 03 0.2046082D + 03 0.2046082D + 03 0.2042134D + 03 0.2032303D + 03
$ \begin{array}{r} 1 \\ \overline{z} = 0.2 \\ 1 \\ 2 \\ 3 \\ 4 \\ \overline{z} = 0.4 \\ 1 \\ 2 \\ 3 \\ 4 \\ \overline{z} = 0.6 \\ 1 \\ 2 \\ 3 \\ 4 \\ \overline{z} = 0.06 \\ 1 \\ 2 \\ 3 \\ 4 \end{array} $	$\begin{array}{c} 1\\ 0.20462D+03\\ 0.20418D+03\\ 0.20316D+03\\ 0.20160D+03\\ 0.20160D+03\\ 0.20298D+03\\ 0.20225D+03\\ 0.20225D+03\\ 0.20112D+03\\ 0.20112D+03\\ 0.20193D+03\\ 0.20145D+03\\ 0.20072D+03\\ 0.20072D+03\\ 0.20081D+03\\ 0.20081D+03\\ 0.20039D+03\\ 0.2039D+03\\ 0.20377D+03\\ 0.20377D+03\\ 0.20191D+03\\ 0.201910+03\\ 0.20190+03\\ 0.$	$\begin{array}{c} 1.2\\ 0.20466l) + 0.3\\ 0.20422D + 0.3\\ 0.20322D + 0.3\\ 0.20158D + 0.3\\ 0.20158D + 0.3\\ 0.20300D + 0.3\\ 0.20229D + 0.3\\ 0.20229D + 0.3\\ 0.20112D + 0.3\\ 0.20112D + 0.3\\ 0.20194D + 0.3\\ 0.20194D + 0.3\\ 0.20108D + 0.3\\ 0.20071D + 0.3\\ 0.20082D + 0.3\\ 0.20082D + 0.3\\ 0.20082D + 0.3\\ 0.20557D + 0.3\\ 0.20557D + 0.3\\ 0.20590D + 0.3\\ 0.20190D + 0.3\\ 0.201900 + 0.3\\ 0$	$\frac{1}{7}$ 0.20463D +03 0.20419D +03 0.20317D +03 0.20317D +03 0.20159D +03 0.20298D +03 0.20298D +03 0.20226D +03 0.20226D +03 0.20112D +03 0.20193D +03 0.20103D +03 0.20072D +03 0.20081D +03 0.20081D +03 0.20081D +03 0.20081D +03 0.20081D +03 0.20081D +00 0.97633D +00 0.97633D +00	$\frac{1}{0.2038498D + 03}$ $0.2035183D + 03$ $0.2035183D + 03$ $0.2026935D + 03$ $0.2013258D + 03$ $0.2013258D + 03$ $0.2025517D + 03$ $0.2019549D + 03$ $0.2019543D + 03$ $0.2016779D + 03$ $0.2016779D + 03$ $0.2012862D + 03$ $0.2006283D + 03$ $0.2009365D + 03$ $0.2007180D + 03$ $0.2007180D + 03$ $0.2003495D + 03$ $0.20044706D + 03$ $0.2031908D + 03$ $0.201569D + 03$ $0.2031908D + 03$ $0.201569D + 03$	$\begin{array}{c} 1,\\ 0.2039307D+03\\ 0.2035989D+03\\ 0.2035989D+03\\ 0.2027690D+03\\ 0.2013378D+03\\ 0.2026095D+03\\ 0.2026095D+03\\ 0.2020097D+03\\ 0.2020097D+03\\ 0.2009683D+03\\ 0.2018701D+03\\ 0.2013220D+03\\ 0.2013220D+03\\ 0.2006353D+03\\ 0.2003535D+03\\ 0.2003535D+03\\ 0.2042668D+03\\ 0.2042714D+03\\ 0.2032839D+03\\ 0.2015836D+03\\ 0.20158560000000000000000000000000000000000$	T_{1} 0.2038841D + 03 0.2035525D + 03 0.2027256D + 03 0.2013309D + 03 0.2013309D + 03 0.2013309D + 03 0.2019781D + 03 0.2019781D + 03 0.2019626D + 03 0.2016937D + 03 0.2016937D + 03 0.2010309D + 03 0.2007264D + 03 0.2007264D + 03 0.2003512D + 03 0.2046082D + 03 0.2046082D + 03 0.2042134D + 03 0.2032303D + 03 0.2032303D + 03 0.2032303D + 03 0.2032303D + 03

Tabela 6.9: Resultados numéricos para reator l: $G_f=3400 \frac{k_g}{h.m^2}$, $R_m=9$

- ..

		Elementos Finito			Diferenças Finitas	5 5
ž	T, T.	X, X,	T., T,	T, T.	X, X.	T., T.
	$(^{\circ}C)$		$(^{\circ}C)$	(°C)		("C)
<u>-</u>	$0.20000D \pm 03$	0.00000D+00	0.20030D+03	0.20000D-03	0.00000D ± 00	0.20012D+03
f i	$0.20000D \pm 03$	$0.00000D \pm 00$	$0.20000D \pm 03$	$0.20000D \pm 03$	0.00000 + 00	0.20000D + 03
0.1	$0.20517D \pm 0.3$	0.16194D+00	$0.20025 D \pm 03$	0.20427D+03	$0.16126D \pm 00$	0.20010D+03
0.1	$0.20523D \pm 03$	$0.16253D \pm 00$	$0.20519D \pm 03$	0.20436D+03	0.16244D+00	0.20431D+03
0.2	$0.20459D \pm 03$	$0.30715D \pm 00$	$0.20020D \pm 0.03$	$0.20381D \pm 0.3$	0.20617D+00	$0.20008D \pm 03$
0.2	$0.20463D\pm03$	0.30768D + 00	0.20460D + 03	$0.20389D \pm 03$	$0.30723D \pm 0.000$	0.20384D+03
0.3	$0.20401D\pm03$	0.43469D + 00	$0.20016 D \pm 0.3$	0.2033611 ± 03	$0.43409D \pm 00$	Ú.20007D+03
0.3	$0.20406D \pm 03$	$0.43516D \pm 00$	$0.20402D\pm03$	$0.20343D \pm 03$	$0.43504D \pm 00$	0.20339D+03
0.4	$0.20348 D \pm 03$	$0.54586D \pm 00$	$0.20012D \pm 03$	0.20294D+03	$0.54610D \pm 00$	0.20005D + 03
0,4	$0.20352D \pm 03$	$0.54627D \pm 00$	$0.20349D \pm 03$	0.20300D + 03	$0.54693D \pm 0.0$	$0.20296D \pm 03$
0.5	$0.20297\mathrm{D}\pm03$	0.64162D + 00	0.20009D + 03	0.20253D+03	$0.64292D \pm 00$	0.20004D + 03
0.5	0.203010 ± 03	0.64197D+00	$0.20298D \div 03$	$0.20258D \pm 03$	$0.64365D \pm 00$	0.20255D + 0.03
0.6	$0.20249D \pm 03$	0.72276D+00	$0.20007 D \pm 03$	0.202141) + 03	$0.72522D \pm 00$	0.20003D + 03
0.6	$0.20252D \pm 03$	$0.72306D \pm 00$	$0.20250D \pm 03$	$0.20218D \pm 0.03$	$0.72584D\pm00$	$0.20215D \pm 0.03$
0.7	$0.20204 D \pm 0.03$	$0.79007 D \pm 00$	0.20004D + 03	0.20176D+03	$0.79361D \pm 0.00$	0.20002D + 03
0.7	$0.20207 D \pm 03$	$0.79032 D \pm 00$	0.20205D + 03	$0.20180D \pm 0.03$	0.79412D + 00	$0.20178D \pm 0.03$
0.8	$0.20163D \pm 03$	$0.84449D \pm 00$	$0.20003D \pm 03$	$0.20141D \pm 0.03$	0.84886D+00	$0.20001D \pm 03$
0.8	$0.20165D\pm03$	0.84469D+00	0.20163D + 03	$0.20144D \pm 0.03$	0.84927D+00	0.20142D + 03
Ð. ý	$0.20126D \pm 03$	0.88725D+00	0.20001 D + 03	$0.20109D \pm 03$	$0.89206D \pm 00$	0.20000D + 03
0.9	$0.20127D \pm 03$	0.88740D+00	$0.20126D \pm 0.03$	$0.20111D \pm 03$	$0.89237D \pm 00$	$0.20110D \pm 0.03$
1.0	0.20094D+03	0.91983D + 00	0.20000D+03	0.20081D+03	0.92468D + 00	0.20000D+03
1.0	$0.20095D\pm03$	$0.91995D \pm 00$	0.20094D + 03	0.20083D+03	0.92492D+00	$0.20082D \pm 03$
j	T	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<i>T</i> ,
$\bar{z} = 0.2$					_	
1	$0.20459D \pm 03$	0.20463D + 03	0.20460D + 03	0.2038061D+03	0.2038904D +03	0.2038404D + 03
2	$0.20416D \pm 03$	0.20420D+03	0.20417D+03	0.2034838D+03	0.2035678D+03	$0.2035180D \pm 03$
3	$0.20317D \pm 03$	$0.20322D \pm 03$	0.203180 +03	0.20268310 ± 03	0.2027618D+03	0.2027151D + 03
4	0.20164104.03	$0.20163D \pm 03$	0.20164D + 03	$0.2013537D \pm 03$	0.2013689D+03	$0.2013599D \pm 03$
2=11.4	0.909480 1.02	0.9025.9D ± 02	0.2024013 + 02	0.20203610.02	0.90200020 - 02	0.90000000.000
1	0.203460403	0.20332D+03	$0.20349D \pm 03$	0.20203010+03	0.2030003D+03	$0.2029022D \pm 0.3$ 0.9097147D ± 0.9
2	0.20310D ± 03	0.2031917 ± 03	0.203100+03	0.20208000 ± 03 0.2020710D ± 03	$0.2027529D \pm 0.3$ 0.2027529D ± 0.3	$0.2027147D \pm 03$ 0.2020058D ± 03
3	0.20240D+03	0.20244D+03	0.202410 ± 03 0.20123D ±03	0.20207100+03	0.2021519D+05	0.2020536D+05
7-06	0.201200 +00	0.201220-00	0.201200-00	0.201040012403	0.201032519405	0.40104350705
2=0.0	0.20249D+03	0 20252D+03	$0.20250D \pm 0.3$	$0.2021361D \pm 03$	0 2021871D±03	$0.2021548D \pm 03$
2	$0.20226D \pm 0.3$	0.20228D+03	0.20227D+03	0.20195690 ± 03	0.20210210 ± 03 $0.2020032D \pm 03$	0.2010757D+03
2	0.20172D+03	0.20175D+03	0.20172D+03	0.2015075D+03	0.2015517D+03	$0.2015255D \pm 03$
4	$0.20087D \pm 03$	0.20086D + 03	0.20087D + 03	0.2007534D + 03	0.2007634D + 03	$0.2007575D \pm 03$
2:0.8	0.2000.00 100	0.2000100		************		0.10070702 100
1	$0.20163D \pm 03$	$0.20165 D \pm 03$	$0.20163D \pm 03$	$0.2014076D \pm 03$	$0.2014373D \pm 03$	$0.2014197D \pm 03$
2	0.20148D+03	0.20149D+03	0.20148D+03	0.2012900D+03	0.2013202D+03	0.2013023D+03
3	$0.20112D \pm 0.03$	0.20114D+03	0.20112D+03	0.2009935D+03	0.2010225D+03	0.2010053D+03
4	0.20056D+03	$0.20055D \pm 03$	$0.20056D \pm 03$	0.2004939D + 03	$0.2005007D \pm 03$	0.2004967D+03
$z_{m} = 0.07$	Т		7)	<u> </u>	T,	T
1	0.20526D+03	0.20532D + 03	0.97660D+00	0.2043451D+03	$0.2044455D \div 03$	0.2043860D+03
2 _	$0.20477D \pm 03$	0.20482D + 03	$0.97660D\pm00$	0.2039765D+03	$0.2040760 D \pm 03$	0.2040170D+03
3	$0.20363D \pm 03$	$0.20370D \pm 03$	$0.97660D \pm 00$	$0.2030615D\pm03$	$0.2031540 D\pm 03$	$0.2030992D \pm 03$
4	$0.20189D \pm 03$	$0.20188D \pm 03$	0.97660D+00	$0.2015448D \pm 03$	0.2015625D 4 03	0.2015520D+03

Tabela 6.10: Resultados numéricos para reator I: $G_f=4000 \frac{kg}{h.m^2}, R_m=9$

6.3.3 Estabilidade do método dos elementos finitos

Nas tabelas 6.11 e 6.12 são comparadas para diferentes passos de integração axial as respostas típicas apresentadas pelo método dos elementos finitos. Não sendo encontrados erros significativos.

1.5

Tabela 6.11: Reator III, $G_f = 4000 \frac{kg}{h.m^2}$, $R_m = 19$, $\Delta z = 0.01$, por elementos finitos.

	T T"C	X X.	T. T.	ē. 1("(')
-	(°°C)	<i>X Y Y Y</i>	("C)	$e_{\rm m} r_{\rm s} = 0 e_{\rm j} = 3$
	0.18000D+03	0.0000000+00	0.18012D+03	0.000000000
0	0.18000 ± 03	0.00000 + 00	0.18000D + 03	$0.18000D \pm 03$
0.1	$0.18265 \mathrm{D} \pm 03$	0.98878D-01	$0.18011D \pm 03$	$0.14852D \pm 0.0$
0.1	$0.18267D \pm 03$	0.99264D-01	$0.18266D \pm 03$	0.182540 ± 03
0.2	0.18253D + 03	0.19272D+00	0.18009D + 03	0.23937D+00
0.2	$0.18255D \pm 03$	0.19308D+00	$0.18254D \pm 03$	$0.18242D \pm 03$
0.3	0.18236D+03	0.28037D+00	$0.18008D\pm03$	0.32386D+00
0.3	$0.18237D \pm 0.3$	0.28072D+00	$0.18236D \pm 03$	$0.18225D \pm 03$
0.4	$0.18218D \pm 0.3$	0.36190D+00	$0.18006D \div 03$	$0.40224D \pm 0.0$
0.4	$0.18220D \pm 03$	$0.36222D \pm 00$	$0.18219 D \pm 03$	0.18208D+03
0.5	$0.18201D \pm 03$	0.43734D+00	0.18005 D + 03	$0.47455D \pm 0.0$
0.5	0.18202D + 03	0.43763D+00	0.18201D + 03	0.18192D+03
0.6	0.18184D + 03	0.50676D+00	$0.18004D \pm 03$	0.54087D+00
0.6	0.18185D+03	0.50703D+00	0.18184D+03	0.18176D + 03
07	0.18167D+03	0.57023D+00	0.18003D + 03	0.60128D+00
0.7	0.18168D + 03	0.57047D+00	0.18168D + 03	0.18160D + 03
0.8	0.18151D+03	0.62785D+00	$0.18002D \pm 03$	0.65590D + 00
0.8	0.18152D+03	0.62808D+00	$0.18151D \pm 03$	0.18144D+03
0.9	0.18135D 03	0.67978D+00	$0.18001D \pm 03$	$0.70492D \pm 00$
0.9	0.18136D+03	0.67998D+00	$0.18135D \pm 0.03$	$0.18129D \pm 03$
1.0	0.18120D+03	0.72620D+00	0.18000D + 03	0.74854D + 00
1.0	0.18120D+03	0.72638D+00	0.18120D + 03	0.18114D + 03
j	Т	Τ.	T_i	η
z =0.4		······		
1	0.18218D + 03	0.18220D + 03	$0.18219D \pm 0.03$	$0.98799D \pm 00$
2	$0.18206D \pm 03$	$0.18207 D \pm 03$	0.18206D + 03	0.98799D + 00
3	0.18177D+03	0.18179D+03	0.18178D+03	0.98799D+00
4	0.18131D+03	0.18133D + 03	0.18131D+03	$0.98799D \pm 00$
5	0.18069D+03	$0.18068 D \pm 03$	0.18069D + 03	0.98799D + 00
$\mathbf{\hat{z}} = 0.6$				
1	0.18184D+03	$0.18185D \pm 03$	0.18184D+03	0.98 541D +00
2	0.18174D+03	0.18175D+03	0.18174D+03	0.98541D+00
3	0.18149D + 03	0.18150D+03	0.18150D + 03	$0.98541D \pm 00$
4	$0.18110D \pm 03$	0.18111D + 03	0.18110D + 0.03	0.98541D + 00
5	0.18057D+03	$0.18056D \pm 03$	$0.18057D \pm 03$	$0.98541D \pm 00$
$\bar{z}=0.8$		C	0.101510.00	0.000000.00
1	$0.18151D \pm 03$	0.1815211+03	0.181510+03	0.982320 ± 00
2	$0.18142D \pm 03$	$0.18143D \pm 03$	U. 18143D±V3 0.18199D±02	0.9823217+00
3	0.18122D + 03	0.18123D + 03	0.18122D + 03	0.98232D+00
4	0.180900 ± 03	0.180910+03	0.160900 ± 03 0.18046D±03	0.96232D+00 0.98323D+00
5	0.18046D+03	0-190420+03	0.10040D+00	0.002020 + 00
$z_m = 0.31$	0 1900FD + 09	0 10007D 100		0.000840.2.00
1	$0.18205D \pm 03$	0.182070+03		$0.99064D \pm 00$
2	0.182900 +03	0.162020+00		0.00084D+00
3	0.18210D+03	0.1021017+03		0.99004D+00 0.99084D+00
4	0.101000 100	0.101020700		0.000840 ± 00
5	0.18085D+03	0.16064.0+03	<u></u>	0.990040400

.

Z	T, T,	$\mathbf{X}, \mathbf{X}_{r}$	$T_{ij}T_i(C)$	$e_{i}(\mathbf{U};\mathbf{C})$
	(*e)		("C)	$\operatorname{em} r_{t} = 0 \operatorname{e} \mathbf{j} = 3$
0	0.18000D+03	0.00000D+00	0.18012D+03	0.00000D+.00
0	$0.18000D \pm 03$	0.000000 ± 00	$0.18000D \pm 03$	$0.18000D \pm 03$
0.2	$0.18253D\pm03$	$0.19319D \pm 00$	$0.18009D \pm 03$	$0.23982 D \pm 00$
0.2	0.18254D+03	0.19355D+00	$0.18253D \pm 0.3$	$0.18241D \pm 0.3$
0.4	0.18218D+03	$0.36269D \pm 00$	$0.18006D \pm 03$	$0.40300D\pm00$
0.4	$0.18219D\pm03$	$0.36301D \pm 00$	$0.18218D \pm 0.03$	$6.18208D \pm 63$
0.6	0.18183D+03	$0.50782D \pm 00$	0.18004D+03	0.54188D±00
0.6	$0.18185 D \pm 03$	$0.50809D \pm 00$	0.18184D+03	0.18175D+03
0.8	$0.18150D \pm 0.03$	$0.62911D \pm 00$	$0.18002D \pm 03$	$0.65709 D \pm 00$
0.8	0.18151D+03	0.62934D + 00	0.18151D+03	$0.18143D \pm 03$
1.0	0.18119D + 03	0.72757D+00	0.18000D+03	0.74981D+00
1.0	0.18120D + 03	0.72774D+00	0.18119D + 03	0.18114D+03
j	Т		<i>T</i>	<u></u>
<u>z</u> _0.4				
1	$0.18218D \pm 03$	$0.18219D \pm 0.03$	0.18218D+03	0.98798D+00
2	$0.18205D \pm 03$	0.18207 D + 03	0.18206D + 03	0.98798D+00
3	0.18177D + 03	0.18178D + 03	0.18177D+03	0.98 7 98D+00
4	0.18130D + 03	0.18132D + 03	0.18131D+03	0.98798D+00
5	0.18068D+03	0.18067D+03	0.18068D+03	0.98798D+00
$\overline{z} = 0.6$				
1	0.18183D+03	0.18185D + 03	0.18184D + 03	$0.98539D \pm 00$
2	0.18173D+03	0.18174D + 03	$0.18173D \pm 03$	0.98539D+00
3	0.18149D+03	0.18150D + 03	0.18149D + 03	$0.98539D \pm 60$
4	0.18109D+03	0.18111D+03	0.18110D + 03	$0.98539D \pm 0.0$
5	$0.18057D \pm 0.03$	$0.18056D \pm 03$	$0.18056D \pm 03$	$0.98539D \pm 00$
$\bar{z} = 0.8$				
1	0.18150D + 03	0.18151D + 03	0.18151D + 03	0.98228D+00
2	$0.18142D \pm 03$	0.18143D + 03	$0.18142D \pm 0.03$	$0.98228D \pm 0.0$
3	0.18122D + 03	0.18122D + 03	0.18122D + 03	0.98228D+60
4	$0.18089D \pm 03$	$0.18090D \pm 03$	$0.18089D \pm 03$	$0.98228D \pm 0.0$
5	0.18045D+03	0.18045D+03	$0.18045 D \pm 03$	$0.98228D \pm 00$
$z_m = 0.09$				
1	$0.18269D \pm 0.03$	0.18271D + 03		$0.99101D \pm 00$
2	0.18254D + 03	$0.18256D \pm 03$		0.9910104-00
3	0.18219D + 03	0.18221D + 03		$0.9910 \text{ID} \pm 00$
4	0.18162D + 03	$0.18165D \pm 03$		0.99101D+00
5	$0.18087D \pm 03$	0.18086D+03		$0.99101D \pm 0.00$

Tabela 6.12: Reator III, $G_f = 4000 \frac{kg}{h_m^2}$, $R_m = 19$, $\Delta \bar{z} = 0.002$, por elementos finitos.

Capítulo 7

Conclusões e Sugestões

Neste capítulo apresentam-se as conclusões do trabalho e sugestões para estudos posteriores.

7.1 Conclusões

As conclusões obtidas foram:

- O modelo I ajustou-se ao modelo II, na faixa de variação dos parâmetros de reatores estudados neste trabalho, por dois motivos:
 - primeiro, devido ao fato de se observar pequenos gradientes de temperaturas entre o sólido e o fluido (tabelas 6.7 a 6.12), levando a pequenos erros - e - entre as predições dos modelos I e Il para "pontos quentes", principalmente para altos valores de G_f (tabelas 6.4 a 6.6);
 - segundo, devido ao fato de se observar fator de efetividade η próximos da unidade para situações mais brandas, indicando que a etapa controladora da taxa é a reação química na superfície do catalisador (figuras 6.11 e 6.12), onde o modelo pseudo-homogêneo de reator catalítico em leito fixo é uma boa aproximação.
- O modelo de partícula isotérmica, utilizando o critério de Weisz e Hicks [45], ajustou-se ao modelo completo, ou seja, não foram verificados grandes desvios nas respostas do modelo II quando os dois conjuntos de equações – do reator e da partícula · foram calculados pelo método dos elementos finitos e quando

estimados numericamente por diferenças finitas, supondo modelo de partícula isotérmica (tabelas 6.7 a 6.10).

- O método dos elementos finitos não apresentou problemas de estabilidade ou rigidez na faixa de variação dos parâmetros de reatores aqui estudados (tabelas 6.11 e 6.12).
- Verificou-se a conversão total de etanol com rendimento satisfatório em acetaldeído, comprovando o bom desempenho do catalisador de óxido de ferromolibdênio (tabelas 6.4 a 6.6).

7.2 Sugestões

Para dar continuidade às investigações do catalisador de óxido de ferro-molibdênio e aperfeiçoar o projeto de reatores catalíticos em leito fixo (PFR), as sugestões de novos estudos são com relação aos seguintes itens:

- O problema da transferência de calor
 - Estudo da influência do termo de dispersão axial nos modelos;
- A modelagem matemática
 - Projeto de um reator autotérmico com a finalidade de aproveitar o calor liberado pela reação de oxidação de etanol à acetaldeído sobre catalisador de óxido de ferro-molibdênio;
- A sensitividade paramétrica
 - Estudo da sensitividade dos resultados às variações nos parâmetros de transferência de calor que são caracterizados por grandes incertezas,
 - Estudo da influência da velocidade mássica e da temperatura de entrada do fluido de troca térmica;
- Os métodos numéricos
 - Utilizar nas simulações elementos com refinamento naquelas regiões dos perfis radiais caracterizados por gradientes elevados,
Utilizar outro método numérico para integrar as equações diferenciais dos modelos l e II, como por exemplo, o método da colocação ortogonal em elementos finitos.

Apêndice A

Programa de Simulação de Reatores – Modelo II por Elementos Finitos.

07 ¥ C# ESTE PROGRAMM INTEGRA AS ESUACOES DIFERENCIALS DO MODELO 11. UTI-CA ZANDO A FORMULACAD DE CALERXIN DA TECNICA DOS ELEMENTOS FINITOS. C% D PROGRAMA CHREA AS SUBECTIONS I THE E GUORDAN. Ż. C: ÷ AV = ARER SUPERFICIEL DO CRITELISADOR POR UNIDADE DE VOLUME ¥. <u>0</u>4 DO RERTOR ġ C# AV) = AREA SUPERFICIAL DO MATERIAL INERTE POR UNIDADE DE VOLUME Ľ. Сx RESTOR 重 Ω¥. DPT = DIRECTRO EQUIVALENTE DES PERVICULES X 8 DIS = DIRMETRO INTERNO DOS TUDOS ¥ C¥. DES = DIAKETRO EXTERNO DOS TUBOS Ē¥ DC = DIMETRO INTERNO DA CARCACA Č∦. XL = COMPRIMENTA DO LEITA Êx H = NUMERO DE ELEMENTOS NO HEF PARA O REATOR 7-9-1-4-MP = NUMERO DE ELEMENTOS NO REF PARA PARTICULA Ĉ‡ POR = POROSIDADE DO LETTO Câ PRCC= POROSIDADE DO CRIALISADOR Ēž. TN = NUMERO DE TUBOS DO REBTOR Ûŧ N = NUMERO DE PONTOS NODAIS NA POSICAD AXIAL C¥. XXP = CONDUTIVIDADE TERMICA DO CATALISADOR Ē¥. RTT = RAZAD MOLAR AR-ETANOL Ē. SGP = SUPERFICIE INTERNA DO CATALISADOR ţ, ŪŻ. TOI = TEMPERATURE DE ENTRADE DOS REAGENTES. Ēŝ VI = VELOCIDADE MASSICA SUPERFICIAL €£. AS MATRIZES NOS SISTEMAS PARA O MODELO DE PARTICULA E DO REATOR Ē. ¥, Ĉ\$ SHO ARMAZENADAS EN AP1 E AL RESPECTIVAMENTE. Ŷ. Ū∦ X £¥. SISTEMB DE UNIDADES: MXS Ľ. OPTIONS /G_FLOATING IMPLICIT REAL#8(8-H.O-Z) IMPLICIT INTEGER#2(1.J.K.L.K.N) REAL*8 TO.Z.DZ.DR.RAZAO.T.C.CS.TS.A REAL*8 RE, RE1, RE2, RE3, F, G, H, E, DFDC, C1, T1, C15, T15 REALX8 DFDCS.DGDT.DGDT5.DHDC.DHDCS.DHDTS.DEDC.ROL REPL*8 DHDT,FX,RX,DRDC, RLFA, ALFA1, BEYA, BETA1, RV1 REAL*8 DROT.XKG.HF.AM.AMJ.AM2.AM3.AT.AT1.AT2.AT3.AV,CO.DEDT REAL*8 DEDCS, DEDTS, XKS, D15, DP INTEGER*2 K.MN.N.I.J.KI.KX.KY.IX.IM.IK DIMENSION A1(35,36),TC(0:500),FX(35),F(7),G(7),TX(7,0:500),TSX(7 \$,0:500),DFDC(7,7),DFDT(7,7),DGDC(7,7),ETAM(0:500),CPC(0:500),TP #C(0:500),DGDT(7,7),DFDCS(7,7),DFDTS(7,7),DGDCS(7,7),DGDTS(7,7)

% (1) (2)(7) (DECC)(7,7) (DHOTS(7,7) (DHOCS(7,7) (DEDT(7,7) (DEDCS(7))) #(2), DED18(7,7), T(10,0:500), C(10,0:500), Th(0:500), CH(0:500), %THS(0:500),CHS(0:500),X(10),TS(10,0:500),CS(10,0:500),PX(10). #CREC(10), DRD1(10), ETA(7, 0:500), CP(10, 0:500), TP(10, 0:500), CRD \$EP(10)_DEDTP(10)_EXP(10)_FP(10)_EP(10)_DFPDC(10,10)_DFPDT(10,10) *,DGPDC(10,10),DGPD1(10,10),FXP(35),R(6),B(6),U(6),54(6),852(6),A) ¥(6), BT2(6), BE(6), BE2(6), R1(6), RJ(6), D(6), RIP(9), RJE(9), EP(9), #8P(9), NP(9), AP1(35,36), DP(9), E11(7), T51(10,0:500), D60151(7, >7),DEDTSI(7,7),CEIIDTSI(7,7),DEIIDTS(7,7),DEIIDT(7, #7), RE1(6), RE12(6), 151X(7,0:500), TFX(10,0:500), CPX(10,0:500), FC(3) %.TPR(0:500).TWE(0:500).T01(3).VI(4).RII(3).TCXX(0:500).TC0(3) 087A DE5, D15, TN, DC, N, H/.010287, .0068, 3000., .678, 500, 3/ DATE DP1 MP XXP XL/.001.9, 4.2./ DETE AV1, AV, AV2, PDR, PRCC/2013.72, 5755, 5, 5755, 5, 382, .358/ DRTR T01(1)_T01(2)_T01(3)/453.15_473.15_493.15/ DATA R11(1), R11(2), R11(3)/4, 9., 19./ DETR V1(1)_V1(2)_V1(3)_V1(4)/3400__4000__5000__6000./ C Ũ DEFINICRO DAS VARIAVEIS DE ENTRADA. С D0 19028 H1=1,3 R=RII(I)D0 20028 12=1.4 V=VI(12) DD 30028 17=1,2 10=101(17)TEO(1)=1. TCO(2)=1.002 34104 CONTINUE £ Ū ESTIMATIVA INICIAL PARA TEMPERATURA DE SAIDA DO FLUIDO DE TROCA Ũ TERMICA NO HETCOD OR FALSA POSICAS HODIFICADO. Ū D0 24309 1J=1,3 IF(1J-3)13078,13079,13078 13099 TEO(3)=TEO(1)-((FE(1)/(FE(2)-FE(1)))*(TEO(2)-TEO(1))) 13098 (TC(0)=TC0(IJ) 7=0. **¥**=0 R0=D15/2. FAT=D15/DP1 〒\$(〒1) C0=1./(.082*(R+1.)*T0)DZ=1./DFLORT(N)

```
OR=1./DFLOAT(M)
```

```
-20 9 (Fi_%+)
     C(1,0)=0.
     Ţ([_0)=].
     CE(1.0)=0.
     TS(1,0)=1.
     lSI(1,0)=].
     TPC(0)=1.
     CPC(0)=0.
   9 CONTINUE
Ē
Û
      INCREMENTO NA POSICAG AXIAL.
Ē
1001 K=K+1
     2=2+02
Ū
Ū
      ESTIMATIVAS INICIAIS DO METODO DE N-R PERR O RERTOR.
Ĉ
     00 11 (=1,H+1
      T(1,K)=T(1,K-1)
     C(1,K)=C(1,K-1)
     CS(1,K)=CS(1,K-1)
     TS(1,K)=15(1,K-1)
     TSI(1,K)=TSI(1,K-1)
  11 CONTINUE
 1002 CONTINUE
Ĉ
Ū
     MEF PARA O MODELO DE PARTICULA.
Ē.
      DO 14 IR=1,H+i
      MNP=2#(MP+1)
      DX=1./DFLOAT(MP)
      RP=0P1/2.
Ĉ
C
      ESTIMATIVAS INICIAIS DO METODO DE N-R PARA PARTICULA.
Ū
      DO 1112 1=1,MP+1
     TP(I,K)=TS(IR,K)
     CP(1,K)=CS(1R,K)
 1112 CONTINUE
1102 CONTINUE
C
С
      DEFINICRO DE COEFICIENTES E COORDENADAS DO MEF.
£
      D0 7293 1=1,MF
      RIP(1)=DFLOAT(1-1)#DX
```

```
132
```

```
DP(1)=((RUP(1)**3)-(R1P(1)**3))/3.
      REP=((新訳(1)#約)-(R1P(1)#約))/5。
      AP(1)=(R.P(1)**2)*DP(1)~2.*RJP(1)*船4P+85P
      BP(1)=-RTP(1)$RUP(1)$D2(1)+D2P$$R4P-852 🝃
     NP(1)=(QIP(1)xx2)x5P(1)-2,xQIP(1)x64P+95P
 7293 CONTINUE
 1003 CONTINUE
C
C
     CHAMADA DA SUBROTINA PROP.
C
     CALL PROP(K.R.TO, EP, TP, C, T, RXP, DRDCP, DRDTP, MP, XKS, DH, D1, XKP, XKS, HF
    *, HF2_BIF_BIS_PEN, ALFA, BETA, ALFA1, BETA1, BETA11, AU, AUS, TC, CPCC, TPR,
    #TWC_CTE_XL_V_DP1_D15_DE5_POR_TN_RV_RV1_DC_DZ_PRCC,12)
      CTE1=(6./DP1)*(2314./654.)*.1464*D1*CO/(DX*RP)
     CTEM=RP*RP*654./(23)4.*.1464*D1*C0)
      CTET=RP*RP*(-DH)*654./(2314.*.1464*XKP*T0)
     FP(1)=DP(1)*(CP(1,K)-CP(2,K))-CTEM*(AP(1)*RXP(1)+BP(1)*RXP(2))
      GP(1)=DP(1)*(TP(1,X)-TP(2,K))-CTET*(AP(1)*RXP(1)+BP(1)*RXP(2))
     FP(MP+1)=CP(MP+1_K)-CS(1R_K)
      GP(MP+1)=TP(MP+1,K)-TS(IR,K)
     DO 1300 H=2.MP
     FP(1) = -DP(1-1) * CP(1-1,K) + (DP(1-1)+DP(1)) * CP(1,K) - CP(1) * CP(1+1,K) - C
     #TEM#(8P(1-1)#RXP(1-1)+(WP(1-1)+8P(1))#RXP(1)+8P(1)#RXP(1+1))
     GP(I)=-DP(I-1)*TP(1-1,K)+(DP(I-1)+DP(1))*TP(1,K)-DP(1)*TP(I+1,K)-C
     *TET*(BP([-])*RXP([-])+(UP([-])+AP(I))*RXP([)+BP(I)*RXP([+]))
 1300 CONTINUE
Ê
C
      MONTAGEN DA MATRIZ JACOBIANA PARA O MODELO DE PARTICULA.
C
      DFPDC(1,1)=DP(1)-CTEM%HP(1)*DRDCP(1)
      DFPOT(1,1)=-CTEM#AP(1)#DRDTP(1)
      DFPDC(1,2)=-DP(1)-CTEM*BP(1)*DRDCP(2)
      DFPDT(1.2)=-CTEM*8P(1)*DRDTP(2)
      DGPDT(1,1)=DP(1)-CTET*AP(1)*DRDTP(1)
      DGPDC(1,1)=-CTET*AP(1)*DRDCP(1)
      DGPDT(1,2)=-DP(1)-CTET*BP(1)*DRDTP(2)
      DGPDC(1.2)=-CTET*BP(1)*DRDCP(2)
      DFPDC(YP+1,MP+1)=1.
      DGPDT(MP+1.MF+1)=1.
      DO 301 1=2,MP
     DFPD(((1,1-))=-DP(1-1)-CTEM*8P(1-1)*DRDCP(1-))
```

见近(1)=(5:16計(1)和X

-R2P=((&JP(1)\$\$2)-(&IP(1)\$\$2))/2.

```
DEMART, F-N=-DEDARD-D-D-DDFF(1-D-
    也存配(1_1)=酸(1-1)=2(1-(1-(1-1)+m(1)))
    DFPDT(1,1)==CTER*(MP(1-3)+RP(1))*DPDT(1)
    DFPDD(1_[+1)=-DP(1)-CTE://PP(1)%DADCP(1+1)
    DFPOT(1,1+1)==CTEM*B*(1)*OROTP(1+1)
    DGPDD(1,1+1)=+GTET#3P(1-1)*0PD(0(1-1))
     DEPOT([_I-])=-DP([-])-CTET#DP([-])#DEDTP([-])
    DGPDC(1,1)==CTETs(UP(1-))+CP(1))*CEDCP(1)
    DSPDT(1,1)=DP(1-))+DP(1)-(CTET1(UP(1-))+AP(1))*DRDTF(1))
    DGPOC(1,1+1)=-CTET#SP(1)#DRDCP(1+1)
    DGPOT(1,1+1)=-DP(1)-CTET#89(1)#08DTP(1+1)
301 CONTINUÉ
    DO 2168 1=1.MMP
    DD 2167 J=1, MMP+1
    RP1(I,J)=0.
2167 CONTINUE
2169 CONTINUE
    RP1(1,1)=DFPDC(1,1)
    BP1(1,2)=DFPDT(1,1)
    RP1(1,3)=DFPDC(1,2)
    AP1(1,4)=DFPOT(1,2)
    fP1(2.1)=DGPDC(1.1)
    8P1(2,2)=DGPOT(1,1)
    AP1(2,3)=DGPDC(1,2)
    RF1(2,4)=DGPDT(1,2)
    AP1(HXP, MXP)=DGPDT(HP+1, MP+1)
    FP1(MNP-1,MNP-1)=DFPDC(MP+1,HP+1)
    £1=0
    DB 5100 I=2, MNP-4,2
    AP1(1+1,1-1)=DFPDC(1-K1,1-K1-1)
    OP1(1+1,1)=DFPDT(1-K1,1-K1-1)
    RP1([+]_I+1)=DFPDC(1-K1,I-K1)
    AP3(1+1,1+2)=DFPDT(1-K1,1-K1)
    RP1(1+)_1+3)=DFPDC(1-K1,1-K1+1)
    AP1(I+1,I+4)=DFPDT(I-K1,I-K1+1)
    APl(I+2,I-1)=DGPDC(1-KI,I-KI-1)
    AP1(1+2,1)=DGPDT(1-K1,1-K1-1)
    RP1(1+2_1+1)=DGPDC(1-K1,1-K1)
    AP1(1+2,1+2)=DGPDT(1-K1,1-K1)
    AP1(1+2,1+3)=DGPDC(1-K1,1-K1+1)
    AP1(1+2.1+4)=DGPDT(1-K1.1-K1+1)
    K[=K[+]
5100 CONTINUE
    IX=0
    DO 1130 I=1.MP+1
```

```
船10+球船約10+座(1)
      GP1(1+1+)※, MMP+1)=-GP(1)
      18=18+1
 1130 COL-11NUE
      CONTR=0.
C
Ū
      CHREADE DE SUBROTINE GJORLEN.
Ū
      CALL GUORDBN(HNP, RP1, FYP)
Ć
Ē
      TESTE DE CONVERGENCIA DO HETODO DE N-R.
Ĉ
      DO 651 I=1,MMP
      IF(RBS(FXP(1))-.00001)651,651,2424
 2424 CONTR=CONTR+1
  651 CONTINUE
      IF(CONTP)11113,11003,11113
11113 KK=0
      D0 27 1=1,80+1
      CP(1,K)=CP(1,K)+FXP(1+KK)
      TP(I,K)=TP(I,K)+FXP(I+KK+1)
      KX=KK+}
   27 CONTINUE
      G8 10 1102
11003 CONTINUE
      00 8 409 I=1.MP+1
      WRITE(7,1665)CP(1,K),TP(1,K)
 1665 FORMAT(1X,'CP=',D20.7,2X,'TP=',D20.7)
81409 CONTINUE
      DRVD2=(3, *CP(MP-3,K)-16,*CP(MP-2,K)+36,*CP(MP-1,K)-48,*CP(MP,K)+25
     *.*CP(MP+1,K))/12.
      IF(IR-1)104,105,104
  105 CPC(K)=CP(1R,K)
      TPC(K)=TP(IR,K)#T0-273.15
      DO 10560 1=1,HP+1
      CPX(I,K)=CP(I,K)
      TPX(1,K)=TP(1,K)*T0-273.15
10560 CONTINUE
С
ε
      FATOR DE EFETIVIDADE.
C
  104 ETR(IR,K)=-CTE1*DRVD2/RXP(MP+1)
   14 CONTINUE
C
C
      CHRMADA DA SUBROTINA PROF.
```

ĺ,

Ũ C

C

```
CHEL PROFYN, RUIGLUS, 19, JUL, ANDELLO, ORDTUM, XKS, DHUDD, XNP, XKG, HF, NFZ
     *, BIF, BIS, PER, REFR, BETN, ALTAY, BITAY, BETTI, RV, RUS, TC, CPCC, TTA, TWC, CT
     XE,XL,V,DP1,D15,DE5,PDR,TH,RV,RV1,DC,DZ,PRCC,TG)
     WER PRAR O RODELO DE REATOR.
     08 54232 I=1.h
      RI(I)=DFLORT(I-1) #DR
     RJ(1)=DFLOAT(1)#DR
      D(1)=R_1(1)+R_1(1)
     ff2=((RJ(])##2)-(R1(1)##2))/2.
      A3=((RJ(I)**3)-(RI(I)**3))/3.
     H4=((R.)())xx4)-(R1(1)xx4))/4.
      R(1)=82%(RJ(1)%%2)-2.%83%RJ(1)+84
     B(1) = -62 \pm (R!(1) \pm RJ(1)) \pm D(1) \pm R4
     4(1)=82#(R1(1)##2)-2.#83#R1(1)+84
     AM(1)=-(ALFA*DZ*D(1)/(2.*DA))+(BETA*DZ*B(1)/(DR*DR))+(B(1)/(DR*DR)
     淮)
     AN2(1)=(ALFA*DZ/(2,*DR))*(D(1-1)+D(1))+(BEYA*DZ/(DR*DR))*(U(1-1)+A
     (1))+((U(1-1)+R(1))/(DR + DR))
     AT(1)=-(ALFA1*DZ*D(1)/(2.*DR))+((BETR1+BETA1))*DZ*B(1)/(DR*DR))+(B
     $\[)/(DR*DR))
     AT2(1)=(ALFR1*DZ/(2.*DR))*(D(1-1)+D(1))+((BETA1+BETR11)*DZ/(DR*DR)
     AF(1)=(((HF#AV)+(HF2#AV2))#B(1)/(DR#DR))-(XKS#D())/(2.#R0#R0#DR))
     AE2(1)=((HF%8V)+(HF2%AV2))*(U(1-1)+A(1))/(DR%OR)+(XKS*(D(1-1)+D(1)
    %)/(2.*R0*R0*OR))
54232 CONTINUE
     HM)=(ALFA*DZ*D(1)/(2.*DR))+(BETA*DZ*A(1)/(DR*DR))+(A(1)/(DR*DR))
     AT1=(ALFA1*DZ*B(1)/(2.*DR))+((BETA1+BETA11)*DZ*B(1)/(DR*DR))+(B(1)
    */(DR*DR))
     RH3=(RLFAx02x0(A)/(2,x0R))+(BETAx02xU(A)/(DRx0R))+(U(A)/(DRx0R))
     HT3=(A)FA1*02*0(A)/(2_*0R))+((BETA1+BETA11)*0Z*W(A)/(DR*DR))+(W(A)
    \frac{1}{2}
     AE1=(((BFxRV)+(BF2%RV2))#A(1)/(DR%DR))+(XKS%D(1)/(2.%RO%RO%DR))
     HE3=(((HF*AV)+(HF2*AV2))*U(H)/(DR*DR))+(XKS*D(H)/(2.*RO*RO*DR))
     HEI3=(HF # HV1)+(HF2 # HV2)
     B1=ALFA1*DZ*BIF
     B2=BUS/RO
     CC=HF#RV/(DF#DR)
     CC1=HF2#AV2/(DR#DR)
     CT=DH/(DR*DR*T0)
     CTC=DZ*BETH/(DR*DR)
      CTT=DZ#BETR1/(DF#DR)
```

```
NERTHORAGE THE TABLE AND
      TUTHCORK/GARVI
      CCL+HF2%GV2/(DR#DR)
C
C
      EDUNDOES DO WER COM & APLICACAU DAS C.C..
£
      F(1)+RM140(1,K)+R.(1)&E(2,K)+CTC&(R(1)&CS(1,K)+B(1)&CS(2,K).-(1./(
     | 和訳物語 = ) # (含くて) #2(1 ) #2(1 ) #2(2 | 利用))
      B(1)=5;;;;;((1,K)+BT(1)*T(2,K)+CTT*(B(1)*TS(1,K)+B(1)#TS(2,K))+CTT1*
     *(A(1)*TST(1,K)+B(1)*TST(2,K))-(1,/(DR*DR))*(A(1)*T(1,K+1)+B(1)*T(2
     Z,K-1))
      H(1)=TCY*(C(),K)=CS(1,K))+ETH(1,V)&RX(1)
      E(1)=SE1xTS(1,K)+SE(1)%TS(2,K)=CC*(B(1)*T(1,K)+B(1)*T(2,K))=CCk*(R
     #(1)#191(1_K)+E(1)#791(E_K))+C7#(A(1)#ETA(1_K)#RX(1)+B(1)#ETA(2_K)#
     #RX(2))
      E11(1)=5213#TS1(1,E)=HE(EV1#T(1,E)-HE2#RV2#TS(1,E)
      F(H+1)=Ah(H)*C(M,K)+AH3*C(H+1,K)+CTC*(B(N)*CS(M,K)+Q(H)*CS(H
     *+1_K))-(1,/(DR*DR))*(B(M)*C(M,K-1)+U(M)*C(M+1,K-1))
      G(H+1)=AT(H)*T(H_X)+(AT3+B1)*T(H+1,K)+CTT*(B(H)*TS(H_K)+U(H)*TS(K+
     %1,K))-CTY1=(E(H)*TS1(H,K)+U(H)*TS1(H+1,K))-(1./(DR*DR))*(E(H)*T(H)
     *K-1)+V(E)*T(H+1,K-1))-B1*TPR(K)
      H(M+1)=TCT*(C(M+1,K)-CS(M+1,K))+ETH(H+1,K)*RX(H+1)
      E(M+1)=RE(H)#TS(H,K)+(RE3+82)#TS(H+1,K)-CC#(R(K)#T(N,K)+W(H)#T(M+1
     *,K))+CT$(B(M)*ETA(M,K)*RX(M)+U(M)*ETA(M+1,k)*RX(M+1))-B2*TPR(K)-CC
     *X*(B(M)*TSI(M,K)+W(M)*TSI(M+1,K))
     E1)(H+1)=RE13#T51(H+1,K)-HF#RV1#T(H+1,K)-HF2#AV2#T5(b+1,K)
C
C
      EQUADOES DO HEF PARA OS OUTROS CASOS.
C
      D0 100 1=2.5
     F(1)=Ad(1-1)*C(1-1,K)+Ad(2(1)*C(1,K)+Ad(1)*C(1+1,K)+CTC*(B(1-1)*CS(
     x1-1_K)+(U(1-1)+R(1))#CS(1_K)+B(1)#CS(1+1_K))-(1_/(DR#CR))#(8(1-1)#
     xC(1-1,K-1)*(U(1-1)*B(1))*C(1,K-1)*B(1)*C(1+1,K-1))
Ē
      B(1)=AT(1-1)#T(1-1,K)+AT2(1)#T(1,K)+AT(1)#T(1+1,K)+CTT#(B(1-1)#T5(
     $I=1_K)+(U(I=1)+A(I))$IS(I_K)+B(I)$TS(I+1_K))=(1,/(DR$DR))$(B(I=1)$
     *T(1-1,K-1)+(U(1-1)+A(1))*T(1,K-1)+B(1)*T(1+1,K-1))-CTT1*(B(1-1)*TS
     #I(I-1,K)+(W(I-1)+R(I))#TSI(I,K)+B(I)#TSI(I+1,K))
C
      H(1)=TCT*(C(1,K)-CS(1,K))+ETA(1,K)*RX(1)
£
      E(1)=RE(1-1)*TS(1-1,K)+RE2(1)*TS(1,K)+RE(1)*TS(1+1,K)-CC*(B(1-1)*T
     $\I_]_K)+(W(I_])+A(I))$T(I_K)+B(I)$T(I+1_K))+CT$(B(I-1)$ETA(I-1_K)$
     $RX(1-1)+(U(1-1)+A(1))$ETA(1,K)$RX(1)+B(1)$ETA(1+1,K)$RX(1+1))-CCK$
     *(B(1-1)*TS1(I-1,K)+(U(1-1)+A(1))*TS1(1,K)+B(1)*TS)((+1,K))
```

```
137
```

```
Ell(1/+6ElGelSil)(1/Little Counting of HE2XRV2X15(1,0)
  100 6AW1184E
i,
Ũ
     Regiment of states and less.
Ē
     0.FDC((1,1)=0.5)
     DF005(1,1)=-CT0%8(1)
     0FDC(1,2)=Sn(3)
      DFDCS(1,2)=-CTC*B(1)
     566Y(1,1)=871
      DGDTS(1,1)=-CTT#8(1)
     D507S1(1,)/=-CTN1#8(1)
      DSDT(1,2)=87(1)
     DEDIS(',2)=-CITXB(1)
      090781(1,2)= CTT128(1)
     DHDE(1,1)=TCT
     DHDCS(1,1)=-YCT+DRDC(1)#ETA(1,K)
      OHDTS(1,1)=DRDT(1)#ETA(1,K)
     DEDT(1,1)=-CC#A(1)
      DEBCS(1,1)=CT#R(1)#ETB(1,K)#DRDC(1)
     DEDTS(1,1)=RE1+CT%R(1)$ETR(1,K)$DRDT(1)
      DEDTSI(1,1) = -CCK * A(1)
     DEDT(1,2) = -CC * B(1)
      DEDCS(1,2)=CT#8(1)#ETA(2,K)#DRDC(2)
      DEDTS(1,2)=AE(1)+CT#B(1)#ETA(2,K)#DRDT(2)
      DEDTS1(1,2)=-CCK*B(1)
     DE1107(1,1)=-HF#AVI
      DE11DTS(1,1)=-HF2%8V2
      DE11DTS1(1,1)=RE13
      DFDC(K+1,K)=AM(6)
     DFDCS(M+1,H)=-CTC#B(H)
      DFDC(N+), N+))=8M3
      DFDCS(M+1,M+1)=-CTCXU(M)
      DGDT(h+1,H)=AT(H)
      DGDTS(H+1,H)=-CTT#B(M)
      DGDTSI(H+1,H)=-CTT1#D(H)
     DGDT(H+1,H+1)=AT3+B1
      DGDTS(M+1,K+1)=+CTTXU(K)
      DGDT51(M+1,H+1)=-CTT1*W(H)
      DHDC(H+1.H+1)=TCT
      DHDCS(M+1,M+1)==YCT+ETH(M+1,K)&DRDC(M+1)
      DHDTS(M+1,M+1)=ETR(M+1,K)*DRDT(M+1)
      DEDT(N+1,H) = -CC \pm B(H)
      DEDCS(N+1,M)=CT#8(M)#ETR(N,K)#DRDC(M)
      DEDTS(H+1,H)=AE(H)+CT*B(H)*ETA(H,K)*DRDT(H)
```

```
DED(SI(d+1,d)=-CCEXB(伯)
DED1(n+1_f+1)=-00x0(n)
DEDOS(H+1,H+1)=CT48(H)4ETR(H+1,K)4060C(H+1)
DESTS(N+T_X+T)=RES+S2+S1*U(H)*ETR(N+T_X)#SRDT(N+T)
DEDTSI(H+1,H+1)=+CCK%U(H)
DENDDI(M+1_M+1)=-KEKAV1
0E11075(b+1,M+1)=-HF2#AV2
CENIOTSI(H+),M+1)=SE13
00 30 l=2.M
DF00(1,1-1)=8h(1-1)
DFDCS((,1-1)=-CTC#B(1-1))
DF60(1,1)=AM2(1)
DFDCS(1,1)=-CTC#(W(1-1)+A(1))
DFDC(1,1+1)=RM(1)
DF0CS(1,1+))=-CTC#8(1)
DGDT(1,1-1)=RT(1-1)
DGDTS(1,1-1)=-CTT#8(1-1)
DGDTS1(1,1-1)=-CTT1$B(1-1)
DGDT(1,1)=RT2(1)
DGDTS(1,1)=-CTT*(W(1-1)+R(1))
DGDTS1(1,1)=-CTY1±(U(1-1)+A(1))
DGDT(1,1+1)=RT(1)
D6DTS(1,1+1):-CTT$8(1)
DGDTS1(1,1+1)=-CTT1#B(1)
DHDC(1,1)=TCT
DHDCS(1,1)=-TCT+ETB(1,K)*DRDC(1)
DHDTS(I,I)=ETA(I,K)¥DRDT(I)
DEDT(1,1-1)=+CC*B(1-1)
DEDCS(1.1-1)=CT#B(1-1)#ETH(1-1,K)#DRDC(1-1)
DEDTS(I,I-1)=AE(I-1)+CT#B(1-1)#ETA(1-1,K)#DRDT(1-1)
DEDTSI(I,I-1)=-CCK#B(I-1)
DEDT(1,1)=+CC*(U(1-1)+R(1))
DEDCS(1_1)=CT*(U(1-1)+R(1))*ETH(1,K)*DFDC(1)
DEDTS(1,1)=RE2(1)+ET*(Q(I+1)+A(1))*EYR(1,K)*DRDT(1)
DEDISI(1,1)=-CCK*(U(1-1)+A(1))
DEDT(1, 1+1) = -CC * B(1)
DEDCS(1,1+1)=CTxB(1)*ETR(1+1,K)*DRDC(1+1)
DEDTS(1,1+1)=AE(1)+CT*ETA(1+1,K)*D(1/*DRDT(1+1)
DEDTSI(I,I+1)=-CCK*B(1)
DE110T(1,I-I)=0.
DE11DTS(1,1-1)=0.
DE11DTS((1,1-1)=0.
DE110T(1,1)=-HF#HV1
DE11DTS(1,1)=-HF2#RV2
DETIDISI(1,1)=AEI3
```

```
3V CONTINUE
      00 1000 I=1,nk
      D0 10002 J=1,KN+1
      (1, J)=0.
10002 CONTINUE
1000 CONTINUE
C
      A1(1,1)=DFDC(1,1)
      N1(1,3)=DFDCS(1,1)
      R1(1,6)=DFDC(1,2)
      A)(1,8)=DFDCS(1,2)
ſ,
      R'(2,2)=DEDT(1,1)
      R1(2,4)=D6DTS(1,1)
      A1(2,5)=DGDTS1(1,))
      R1(2.7)=D6DT(1.2)
      Al(2,9)=DGDTS(1,2)
      R1(2,10)=DGDTS1(1,2)
£
      A1(3,1)=DHDC(1,1)
      A1(3,3)=DHDC5(1,1)
      A1(3,4)=DHDTS(1,1)
C
      81(4,2)=DEDT(1,))
      R1(4,3) = DEDCS(1,1)
      H1(4,4)=DEDTS(1,1)
      R1(4,5)=DEDTSI(1,1)
      B)(4,7)=DEDT(1,2)
      81(4,8)=DEDCS(1,2)
      A1(4,9)=DEDTS(1,2)
      R1(4,10)=DEDTSI(1,2)
Ū
      R1(5,2)=DE11DT(1,1)
      Al(5,4)=DE11DTS(1,1)
      Bl(5,5)=DEl1DTS1(),1)
      A1(5,7)=DE11DT(1,2)
      A1(5,9)=DE11DTS(1,2)
      R1(5,10)=DE110T51(1,2)
Ĉ
      A1(MN_MN-8)=DE11DT(M+1,M)
      A1(MN, HN-6)=DE11DTS(H+1, H)
      A1(MN, MN-5)=DE11DTS1(M+1, M)
      A1(MN, MN-3)=DE11DT(N+1, M+1)
      A1(MN, MN-1)=DE11DTS(M+1, M+1)
```

A](MN,MN)=DE110TS1(H+1,M+1)

C

A1(Hk-1, MN)=DEDTS1(M+1, H+1) A1(Hk-1, MN-1)=DEDTS1(M+1, H+1) A1(Hk-1, MN-2)=DEDCS(H+1, M+1) A1(Hk-1, Hk-3)=DEDTS1(H+1, H+1) A1(Hk-1, Hk-5)=DEDTS1(H+1, H+1) A1(Hk-1, Hk-6)=DEDTS(H+1, H+1) A1(Hk-1, Hk-8)=DEDTS(H+1, H+1) A1(Hk-1, Hk-8)=DEDT(H+1, H+1)

Ū

A)(MN-2,MN-1)=DHOTS(K+1,K+1) A1(MM-2,MN-2)=DHDCS(M+1,K+1) R)(HN-2,HN-4)=DHDC(M+1,K+1)

C

A1(ML-3,MM)=DGDTSI(M+1,H+1)
A1(MN-3,MN-1)=DGDTS(M+1,H+1)
A1(MN-3,MN-3)=DGDT(M+1,M+1)
R1(MN-3,MN-5)=DGDTS1(M+1,M)
R1(MN-3,MN-6)=DGDTS(M+1,M)
R1(MN-3,MN-8)=DGDT(M+1,M)

C

A1(HN-4, MN-2)=DFDCS(H+1, H+1) A1(HN-4, HN-4)=DFDC(H+1, H+1) A1(HN-4, HN-7)=DFDCS(H+1, H) A1(HN-4, HN-7)=DFDC(H+1, H) K1=0 DD 500 I=5, MN-9, 5

C

A)(1+1,1-4)=DFDC(1-3-4*K1,1-4-4*K1) A)(1+1,1-2)=DFDCS(1-3-4*K1,1-4-4*K1) A1(1+1,1+1)=DFDC(1-3-4*K1,1-3-4*K1) A1(1+1,1+3)=DFDCS(1-3-4*K1,1-3-4*K1) A1(1+1,1+6)=DFDC(1-3-4*K1,1-2-4*K1) A1(1+1,1+8)=DFDCS(1-3-4*K1,1-2-4*K1)

С

A'(I+2,I-3)=DGDT(I-3-4*KI,I-4-4*KI)
Pl(I+2,I-1)=DGDTS(I-3-4*KI,I-4-4*KI)
Al(I+2,I)=DGDTSI(I-3-4*KI,I-4-4*KI)
Al(I+2,I+2)=DGDT(I-3-4*KI,I-3-4*KI)
Bl(I+2,I+4)=DGDTSI(I-3-4*KI,I-3-4*KI)
Al(I+2,I+5)=DGDTSI(I-3-4*KI,I-3-4*KI)
Al(I+2,I+7)=DGDT(I-3-4*KI,I-2-4*KI)
Al(I+2,I+7)=DGDTSI(I-3-4*KI,I-2-4*KI)
Bl(I+2,I+7)=DGDTSI(I-3-4*KI,I-2-4*KI)
Bl(I+2,I+10)=DGDTSI(I-3-4*KI,I-2-4*KI)

С

```
B1(I+4,I-1)=DEDTS(I-S-4*KI,I-4-4*K1)
      名1(1+4,1)=DEDTS1(1-3-4株1,1-4-4総1)
      RT(1+4,1+2)=DEDT(1-3-4#K1,1-3-4#K1)
      A) (1+4,1+3)=DEDCS(1-3-44K1,1-3-44K1)
      fil(1+4_1+4)=DEDTS(1-3-4¥K1,1-3-4¥K1)
      A1(1+4,1+5)=DEDTS1(1-3-4誌1,1-3-4誌1)
      R1(1+4,1+7)=DEDT(1-3-4*K1,1-2-4*K1)
      61(1+4_1+8)=DEDCS(1-3-4#K1,1-2-4#K1)
      A1(1+4,1+9)=DEDTS(1-3-4株1,1-2-4株1)
      A1(1+4,1+10)=DEDTS1(1+3-4#81,1+2-4#81)
C
      R1(1+5, 1-3)=DE11DT(1-3-4xX1, 1-4-4xX1)
      用(1+5,1-1)=0E110TS(1-3-4#K1,1-4-4$K1)
      fil(1+5_1)=DE11DTS1(1-3-4#K1_1-4-4#K1)
      A1(1+5, [+2)=DE11DT(1+3+4*K1, [-3+4*K1)
      A1(1+5,1+4)=DE1(DTS(1-3-4*K1,1-3-4*K1))
      R1(1+5,1+5)=DE11DTS1(1-3-4*K1,1-3-4*K1)
      A1(1+5,1+7)=DE11DT(1-3-4*K1,1-2-4*K1)
      81(1+5,1+9)=DE110TS(1-3-4*K1,1-2-4*K1)
      B1(1+5,1+10)=DE11DTS1(1-3-4*K1,1-2-4*K1)
      XI=KI+)
  500 CONTINUE
      18=0
      DD 113 [=1,M+1
      A1(1+4#1K,M#+1)=−F(1)
      (1+1+4#1K_K(*1)=+G())
      B1(I+2+4#1K, 揃+1)=-比(1)
      A1(1+3+4*1K,MN+1)=-E(1)
      A1(I+4+4#IK_MN+1)=-E11(I)
      IK=IK+1
  113 CONTINUE
      CONT=0.
Ĉ
Ū
      CHAMADA DA SUBROTINA GJORDAN.
C
      CALL GJORDAN(MN, B', FX)
      DO 9087 I=1,MN
      D0 9187 J=1,MN+1
```

Al([_J)=0.

R (1+4,1+3)=DEDT(1+3+4#X1,\+4+4#X1) R1(1+4,1+2)=DEDCS(1+3+4#X1,\+4+4#X1)

142

Ū

```
9187 CONTIGUE
 9087 CONTINUE
£
4
      YESTE DE CONVERGENCIA NO KETODO DE N-R.
C
      DO 61 1=1.MM
      IF(RBS(FX(1))-,0001)61,61,2524
 2524 CONT=CONT+1.
   61 CONTINUE
      IF(CONT)1113,12003,1113
 1113 KK=0
      DO 271 1=1,N+1
      C(1,K)=C(1,K)+FX(1+4%KX)
      T(1,K)=T(1,K)+FX(1+4#KK+))
      CS(1,K)=CS(1,K)+FX(1+4%K(+2)
      TS(1,K)=]S(1,K)+FX(1+4#KK+3)
      TSI(I_K)=TSI(I_K)+FX(I+4#Kk+4)
      KK=KK+1
  271 CONTINUE
      GO TO 1002
Ē
Ĉ
      CRITERIO DE FINAL DE REATOR.
Ũ
12003 IF(Z-1.)1001,5000,5000
 5000 CONTINUE
С
      CRITERIO DE CONVERGENCIA DO KEYODO DA FALSA POSICAD MODIFICADO.
C,
ç
      FC(IJ)=TC(N)-1.
24309 CONTINUE
      IF(RBS(FC(3))-.0001)15001,15001,23100
23100 TCO(1)=TCO(3)
      FC(1)=FC(3)
      IF(FC(1)*FC(3))14009,14010,14010
14010 TCO(2)=TCO(2)
      FC(2)=0.5%FC(2)
      GO TO 34104
14009 TCO(2)=TCO(1)
      FC(2)=FC(1)
      GO TO 34104
15001 CONTINUE
      WRITE(7,90875)TN, TO, V, XL, DI5, R
90875 FORHAT(//,1X, 'TN(NTUBOS)=',014.6,/,1X, 'TO(K)=',014.6,/,1X,'G(Kg/
     *(h*m2)=',D14.6,/,1X,'L(m)=',D14.6,/,1X,'D1(m)=',D14.6,/,1X,'R=',D1
     $4.6)
```

sRITE(7,6577) 6077 FORMATION, '####00EL0 11-T T#######',/,3X, '###ELEMENTOS F101TOS##',/ *,34,191,65,17 TS oC1,13X,1X/XS 1,11X,1 TC/TS11,12X,1CPC/TPC 1) 00 752 J=0.N Ci≏0. C1S=0. TI≂0, TIS=0. ETR1=0. DO 751 1=1,X+1 (L.1)2+10=10 CIS=CIS+CS(I,J) T[=T]+T(I,J) TIS=TIS+TS(1,J) ETRI=ETRI+ETR(1,J) TX(1,J)=T(1,J)*T0-273.15 TSX(I,J)=TS(I,J)*T0-273.15 TSIX(1,J)=TSI(1,J)*T0-273.15 751 CONTINUE CM(J) = C1/DFLORT(M+1)CMS(J)=CIS/DFLOAT(M+1) ETAH(J)=ETAI/DFLOAT(M+1) TCXX(J)=TC(J)*T0-273.15 752 CONTINUE 68MA=1.+.5#CH(R)+R RC=CM(N)/GRMS ET=(1.-CK(N))/GRMA SEL=RC/((1./(1.+R))-ET) XMR1=TX(1,0) KZ=0. DD 7552 J=1,N IF(XMAI-YX(1,J))2188,7552,7552 2188 XMAI=TX(1,J) KZ=.J 7552 CONTINUE D0 7152 J=0 N,100 WRITE(7,453) J,TX(1,J),CM(J),TCXX(J),CPC(J),J,TSX(1,J),CMS(J),TS1X(*1.J).TPC(J) 453 FORMAT(1X,14,2X,015.5,3X,015.5,3X,015.5,3X,015.5,/,1X,14,2X,015.5, **X**3X,D15.5,3X,D15.5,3X,D15.5) 7152 CONTINUE WRITE(7,6578) 6570 FORMAT(3x,'J ',6x,'TFLU',15x,'TSOL ',15X,'T1N',14X,'ETR') D0 55075 I=200,400,100 WRITE(7,3072)I

```
17 3072 FORMET(1X,11=1,13)
       D0 3456 J=1,M+1
       WRITH(7,5412)J,TX(J,1),TSX(J,1),TS1X(J,1),ETR(J,1)
  5612 FORMAT(1X,14,2%,015,5,3X,015,5,3X,015,5,3X,015,5)
  3456 CONTINUE
  55075 CONTINUE
       URITE(7,1010)XABI_KZ_CN(N),SEL
  1010 FORMAT(1X,') T',D15.5,/,1X,'PO51CRO=',15,/,1X,'XF1NAL=',D15.5,/,1X
       % 'SELETIVIDADE='.015.5)
       WRITE(7,80231)KZ
 8023) FORMAT()X, ' PERFIL NO FONTO QUENTE= ,15)
       00 85432 J=1,8+1
       #RITE(7,56112)J,TX(J,KZ),TSX(J,KZ),ETA(J,KZ)
 56112 FORHAT(1X,13,2X,D20.5,3X,D20.5,2X,D20.5)
 85432 CONTINUE
       WRITE(7,90734)
 90734 FORMAT(1X, ' RF ',9X, ' TP(oC) ',15X, ' CP(oC)')
       00 90651 I=1 KP+1
       WRITE(7,90421)1,TPX(1,KZ),CPX(1,KZ)
 90421 FORMAT(1X,16,2X,D20.5,3X,D20.5)
 90651 CONTINUE
       URITE(7,91734)40
 91734 FORMAT(3%, 'J=',13)
       D0 91651 [=1, MP+1
       URITE(7,92421)I,TPX(1,40),CPX(1,40)
 92421 FORMAT(1X,16,2X,015.5,3X,015.5)
 91651 CONTINUE
 30059 CONTINUE
 2002B CONTINUE
 19028 CONTINUE
       END
```

```
⋰⋻⋺⋺⋑⋺⋺⋼⋺⋼⋼⋎⋼⋼⋼⋼⋼⋳⋐⋐⋧⋹⋛⋵⋵⋐⋧⋠⋇⋵⋬⋳⋇⋇⋨⋬⋵⋇⋦⋇⋇⋇⋇⋇⋇⋇⋇⋇∊⋏⋪⋇⋇⋇⋹⋵⋵⋐⋇⋇⋇⋧⋧⋟⋇⋇⋨⋇⋇⋇⋇⋇⋇⋇⋇⋇⋇⋇⋇
:,±
                                                                           訁
Đż.
      SUDROTINA GUORDAN QUE RESOLVE SISTEMA DE EQUACOES LINEARES
                                                                           ÷
Ê¥.
      POR ELIMINACIO GAUSSIANA.
                                                                           Ľ
Ĺ.Z
                                                                           ¥.
5.±
      B KATRIZ DO SISTEMR E RAMAZENADA EN A E O VETOR SOLUCAD EN X.
                                                                           ż
21 L
494
                                                                           Ē
【王某完成这些关键》,我们的这些人,我们的这些正式的,我们的这些人,我们的这些人,我们的这些人,我们的这些人,我们的这些人,我们就是我们的,我们就是我们的,我们就
      OPTIONS /G_FLORTING
      SUBROUTINE GUORDAN(N.A.X)
      THPLICIT REAL#8(A-H,O-Z)
      IMPLICIT INTEGER#2(1, J, K, L, H)
      REAL$8 A,X,FRCTOR,SUM,TEMP
      INTEGER#2 NH1,K,KP1,N,L,1,J,NP1,IP1
     DIMENSION R(35,36),X(35)
      NPi=N+1
     NH1=N-1
     DO 600 K=1,NM1
     KP1=K+1
     L=K
     D0 400 I=KP1.N
 400 IF (RBS(R(1,K)) .GT. ABS(A(L,K))) L=1
     IF (L .EC. K) 60 TO 500
     00 410 J=K_NP1
     TEMP=R(K,J)
     A(K,J)=A(L,J)
 410 R(L, J)=TEMP
 500 DD 600 I=KP1.N
     FRCTOR=A(I,K)/A(K,K)
     DD 600 J=KP1,NP1
 600 A(1,J)=A(1,J)-FRCTOR*B(K,J)
     X(N) = B(N, NP1)/B(N, N)
     [=制約]
 710 IF1=1+1
     SUM=0.0
     DO 700 J≑IP1,N
 700 SUM=SUM+A(1,J)*X(J)
     X(I)=(A(I,NP1)-SUK)/A(I,I)
     1=1-1
     IF (1.GE. 1) GO TO 710
     RETURN
     END
```

Ū\$ SUBRUTINA QUE CRUCHLO G TAXA INTRINSICA DE REACAD PARA OXIDACAD 🔹 64 de etanol a acetaldetido sobre catalisador de oxidos de ferro e Û. Ŷ MOLIBDENIO, AS PROPRIEDADES FISICAS E PARAMETROS DE TRANSFEREN-Ĉ¥. ł CIR DE CALOR E MASSR. €# Ý CX. Ŷ Cx. XH(1) = MASSA MOLECULAR DO COMPONENTE I ¥ Ĉ∦ F11,F12 = VALORES TABELADOS PARA O CALCULO DA CONDUTIVIDADE 0.8 ¥ EFETIVA RADIAL AD, BD, CDD, DD, ED, FD, GD, HD = CONSTRNIES PARA 0 CRLCULO DOS Ū¥. ţ C# CDEFICIENTES DE DIFUSIVIDADE š C# RV_BV_CVV_DV_EV_FV = COMSTRATES DO POTENCIAL DE LENNARD-JONES Ż Ė C¥ CD(),CV(),CTE CTEV() = CONSTRNTES OR DIFUSIVIDROE £₿ CPR()CPS()CPC()CPD() = CONSTRUTES DE CP İ CX. XKO() = FATOR PRE-EXPONENCIAL ORS CONSTANTES DA TAXA DE REACAO 붋 C¥. EN KKOL/HAKG(CRIALISPDOR+INERTE)ANAATM ŧ, ¥ €≵ ROL = DENSIDADE APARENTE DO LEITO FIXO Ũ# SGP = AREA SUPERFICIAL DO CATALISADOR ż C¥ VGP = VOLUME TOTAL DE PORGS ŧ £% COM A SEGUINTE RELACAD: Ţ X CX. 1-N2, 2-02, 3-H20, 4- ETRNOL, 5-ACETALDEIDO <u>[</u>]# OPTIONS /G_FLOATING SUBROUTINE PROP(K,R,TO,CS,TS,C,T,RX,DRDC,DRDT,M,XKERS,DH,D1,XK32, *XX6,HF,HF2,BF,BS,PEM,ALF,BET,ALF1,BET1,BET11,AW,AWS,TC,CPCC,TP #RX_TPCX.CTTE_XL.G.DP.D15.DE5.POR.TN.ABV.ABV1.DC.DZ.PRCC.IND1C) 1MPLICIT REAL\$8(A-H,O-Z) IMPLICIT INTEGER#2(1,J.K.L.N.M) REAL#8 TO.CO.C.XT.DK.AR.BR.CTE.ER.FR.GR.RA.RB.RX.DRDC.DARDT.DBRDT. xDCTEDT.DERDT.DFRDT.DGRDT.DRDT1.DRDT2.DRDT.XK0.E REBL\$8 CTEV.CPA.CP0.CPC.CPO.RV.RV.CV.DV.EV.FV.R.G.DP.F11.F12.GRMR. *Y,T).DELT.CP.V.SK.TIV.VM.SKH.CPH.FI.D4H.DH.PEMO.RO.RE.SC.PR.XKSI.P XOR.JD.XXG.HF.PE1.PE2.PEM.PET1.FET2.PE.XXP.XXERS.HW.XXER.XXERF.HUF. *AWS,CPCC,ROC,T INTEGER#2 1,M,J,K DIMENSION XK0(4), E(4), XT(4), DK(4), T(10,0:500), C(10,0:500), RX(50 \$),DRDC(10),DRDT(10),TC(0:500),TPCX(0:500),TPRX(0:500),DELTA(5),CS(#10,0:500),TS(10,0:500),XH(5),CD(4),D(4),CTE(4),DELT(4),CPR(5),CPB(#5),CPC(5),CPD(5),CV(5),DELT1(5),CTEV(5),V(5),F1(5,5),CP(5),SK *(5).Y(5).DELLT(4) DRTA XM(1),XM(2),XM(3),XM(4),XM(5)/28.013,31.99,18.015,46.069,44.0 *****54/ DRTR F11,F12/.15,.045/

```
ULTH NO.ED., UL., LI., ED., FD., 50, ND/1.06036, .15610, .193, .47605, 1,03587,0
    +.47635,1.78474.1.29411/
     DTVE R0,8V,1 (1, EV,EV/).)6145, 14874, 52478, 7732,2.16178,2.4379
    11
     DATE CD(1), DC 1 (10(3), CD(4)/577.95, 214.45, 505.2, 175.43/
     DATA CV(1),1. 1 (1.(3),CV(4),CV(5)/71.4,108.7,775.,431.,592.3/
     DATA CTE(1), ITE 1:, CTE(3), CTE(4)/4.4276E-05, 2.8287E-05, 2.4243E-05,
    H2.7658E-15
     DRTH CTEV(00,115.02), CTEV(3), CTEV(4), CTEV(5)/9.793, 12.588, 17.839, 9
    * 752.12.7457
     DATE DELTE(11,12,174(2), DELTE(3), DELTE(4), DELTE(5)/0.,0,,1.,.3,.74/
     DRTH CPR(1), IFF E-, CPR(3), CPR(4), CPR(5)/7.440, 6.713, 7.701, 2.153, 1.
    $843/
     DATA CPE(1), IFE E., CP8(3), CPU(4), CPB(5)/-.324E-02, -.879E-06, 4, 595E
    A-04.5.113E-01.-.1598-02/
     CATR CPC(1/, CFC E1, CPC(3), CPC(4), CPC(5)/6.4E-06,4.170E-06,2.521E-0
    ¥6,-2.0042-05,-2.404E-05/
     DATA CFD(1/, 071 E), CPD(3), CPD(4), CPD(5)/-2, 79E-09, -2, 544
    $E-09,-.8592-07,.328E-09,5.685E-09/
    DATA E(2)/21775.
     DRTR VGP, SSF, FIL: .547, 21.60+04, 2314./
     THX=0.
     СМХ=0.
     D0 131 1=1.8+1
     D0 23 J=1.4
     CM=+E(J)/(1.9ETxT0#YS(1.K))
     IF(A8S(CM)+231, 2145,2145,2144
2144 IF(UM)2146.214±.2147
2146 CM=-250.
     60 10 2145
2147 CM=250.
2145 XY(J)=XKO(J)#E== Ih)
     DK(J)=-(EXP(C=)_IAKO(J)#CH/TS(1.K)
  23 CONTINUE
     RE=XT(3)#XT(4.-.5#XT(1)-.5#XT(2)-XT(3)#XT(1)
     SR=-.519#XT(1)-?#XT(1)+.21#R#XT(2)-1.019#XT(2)-R#XT(2)+XT(3)#XT(1)
   *+.0'9*XT(3)*XT(+)
     CTE1=XT(1)*(1.01F+R)+.42*R*XT(2)*(1.019+R)
     FR=XT(1)#XT(2)
    FR=-X1(1)#X1(2:7 [.+.42#R)
     GR=XT(1)#XT(2)#.42#R
     R0=ER*(CS(1,%)==2,+FR*CS(1,K)+GR
     RB=AR*(CS(1,K)**E)+BR*CS(1,K)+CTE)
```

```
Ë
```

```
EQUACAD DR TAXA DE REACRÓ (EN KNOL DE ETANOL/KG CAT+INERTEARARS).
```

U Ū

```
RX(1)=RA≭KOL/RB
```

Ŭ Ū

```
DERIVADAS DA EQUÁCAD DA TAXA DE REACAD.
```

```
Ē
     DRDE(1)=(((2,%ER#EG(1,K)+FR)%R8-RR%(2,%PR%ES(1,K)+6R))%ROL/(RB#RB)
     え)
     DeRDT=DK(4)*XT(3)+DX(3)*XT(4)-.5*DX(1)-.5*DX(2)-XT(3)*DX(1)-XT(1)*
     XDK (3)
     DBRDT=-.5)9#DK(1)-R#DK(1)+(.2)#R-1.019-R)#DK(2)+XT(1)#DK(3)+XT(3)#
     #DK(1)+DX(3)#XT(4)#.019+XT(3)#0K(4)#.019
     DETED1=().0)9+R)*(DK())+.42*R*DK(2))
      DFRDT=XT(1)$DK(2)+XT(2)$DK(1)
     DFRD1=-(1.+.42%F)*(XT(1)*D#(2)+XT(2)*D%(1))
      OGROT=.42*R#(XT(1)*DK(2)+XT(2)*DK(1))
     DRDT1=DERDT#(CS(1_K)##2)+DFRDT#CS(1,K)+DGRDT
      ORDI2=DARDI*(CS(I,K)**2)+DBRDT*CS(I,K)+DCTEDT
     DRDT(I)=(CRDT]*R8-RA*DRDT2)*ROL/(RB*R8)
      CHX=CHX+C(I,K)
     TMX=TMX+(TO#T(E_K))
```

```
131 CONTINUE
```

```
V-CMY/(BE)
```

```
X=CMX/(DFLGAT(H+1))
A=TMX/(DFLOAT(M+1))
68%A=1.+.5*X+R
RR=DP/DIS
Y(1)=.79%R/GRNA
Y(2)=(.21#R- 5#X)/GBMA
Y(3)=X/GR新用
Y(4)=(1,-X)/6RMB
Y(5)=X/6RM8
DELLT(1)=SORT(DELTA(4)*DELTA(3))
DFLLT(2)=SDRT(DELTA(4)*DELTA(2))
DELLT(3)=SORT(DELTA(4) #DELTA(5))
DELLT(4)=SORT(DELTR(4)*DELTR(1))
00 321 1=1,4
T1=A/CD(1)
C1=D0#T1
C2=FD#T1
C3=HD*T1
DELT(1)=(AD/(T1**BD))+(CDD/EXP(C1))+(ED/EXP(C2))+(GD/EXP(C3))+(.19)
**(DELLT(1)**2)/T1)
D(1)=CTE(1)*(R**(3,/2,))/DELT(1)
```

```
321 CONTINUE
```

```
V_{H}^{i}=0
      S%5≓Ú.
      CP∽=(
      PFN0=6.
      00.3150 0=0.5
      CP(1)=CPD(1)+(CPB(1)*B)+(CPC(1)*B(B)+(CPD(1)>R4B4B))
      T1V=S/CV(I)
 2174 DELT+(1)=(RV/(T)V*#8V))+(CVV/EXP(DV%T)V)+(EV/EXP(FV#T)V))+((.2*(D
     #ELTS(1)$$2))/7)♥)
      V(1)=DTEV(1)*(1.0E-06)*(8##(1./2.))/DELT1(1)
 2179 SK(I)=(CP(I)+(1.987#5./4.))*(V(I)/XM(I))
 3190 CONTINUE
      D0 90421 1:1,5
      SUNE0.
      90 30211 3=1.5
      _81=V(I)/V(J)
      52=XM(1)/XM(J)
      F1(H_J)=((1+SBRT(A))*(A2**.25))**2)/SBRT(8.*(1.+A2))
      SUM=SUM+(Y(J)*FI(1,J))
33211 CONTINUE
Ū
С
      VISCOSIDADE, EM POISE.
C
      ◎新=9新+(Y(1)素((1)/SUK)
Ũ
C
      CONDUTIVIDADE TERMICA, EN CAL/CH#S.
Ĉ
      SKH=SKH+(Y(I)$SK(I)/SUH)
C
Ē
      CRPRCIDADE CALORIFICA, EM CAL/MOL#K.
Ē
      CPM=CPM+(Y(1) \oplus CP(1))
      PEMO=PEmO+(Y(1)#XM(1))
90421 CONTINUE
0
C
      DIFUSIVIDADE MOLECULAR, EN CN2/S.
£
      D4M=(1,+(3,/2,)*Y(4))/(((Y(3)+Y(4))/D(1))+((Y(2)-Y(4))/D(2))+((Y(5))))
     *)+Y(4))/D(3))+(Y(1)/D(4)))
Ū
C
      ENTRLPIR DE REACAD, EM CAL/HOL DE ETANOL.
C
      DH=-41440.+(4.0345*(8-298.))-(3.57D-03*(8**2-(298.**2)))-(1.188D-0
     #6#((R##3)-(298.##3)))+(1.4425D-09#((R##4)-(298.##4)))
      RMP=2.XVGP/SGP
```

```
50F
```

```
D:E=9.70+03#25080(8/X6(4))
      DCC=1./(()./DKE)+(1./D4H))
ť:
Ľ,
      MASSA ESPECIFICA, EM G/CN3.
C
      R0=PEMO%.001/(.082#8)
      RE=5%0P7(VM#360.)
      50=VH/ (RO&D4M)
      PR=CP/f#VM/(SKN#PEND)
      XKS1=XKS2/1.488
      XKS3=XKS2/360.
      JD=.357/(PDR*(RE**.359))
      XKG=30#G#.001#(SC##(-2./3.))/RU
      HT=JD*(G/PEHO)*CPM*(PR**(-2./3.))
      PE1=1.5%RE#SC/POR
     PE2=11.#(1.+19.4%(RR##2))
      PEN=PE1#PE2/(PE1+PE2)
     PET1=1.5%RE%PR/POR
      PET2=9.%(1.+19.4*(RR**2))
     PE=PET1%PET2/(PET1+PET2)
C
      CONDUTIVIDADE EFETIVE RADIAL PARE FRSE FLUIDE, EM KCAL/HXMXK.
Ũ
C
      XKERF=POR*(SKM*360.+(G*CPH*DP/(POR*PEM*PEMD)))
С
      COEFICIENTE DE TRANSFERENCIA DE CALOR INTERFASE, EM KCAL/H*M2*K.
Ē.
Ũ
      XKP=10.xx(-).76+.0129*(XKS1/POR))
      HF2=4.88*2.*XKS1*XKP/(DP*3.28*(XKS1-XKP))
     F1K=(F12)+((F11-F12)*((POR-.26)/(.476-.260)))
C
ē
      CONDUTIVIDADE EFETIVA RADIAL PARA FASE SOLIDA, EK KCAL/HWMWK.
Ū
      XKERS=(1,-POR)$.95$SKM$360./(FIK+((2./3.)*(SKM/XKS3)))
      IF(RE-40.)88,88,81
C
      COEFICIENTE DE TRANSFERENCIA DE CALOR NA PAREDE DOS TUBOS
C
С
      PARA FASE FLUIDA, EN KCAL/8×M2×K.
ľ.
   8B RUF=(SKM#360,/DP)#.6#(PR##(1./3.))#(RE##(1./2.))
      GO TO 89
   81 BUF=(SKM#360./DP)#.2#(PR##(1./3.))#(RE##(.8))
   89 AUS=2.12#(XKERS/DP)
¢
```

```
C PARAMETROS GLOBAIS DE TRANSFERENCIA DE CALOR.
```

```
C
        2012-2012-404F
        XXER=XHERF+X (ERS
        R0=015/2.
  Ū
  ċ.
        CONSTRACTED DO MODELO.
  Ē
        FILF=XLXPGE&DF/(ROXE(%PEM)
        ALF1=XLXXXERFxPENO/(R0xR0xGXCPN)
        BET=XL#R0#1000.#XKG#REV/G
        BET1=XL#NF#ABV#PEMO/(G&CPH)
        RETT1=XLxHExABV1#PENO/(6#CPh)
        D1=PRCC%PRCC%DCC%.36
        BS=BUS#RO/XKERS
        BF=BWF%P0/XKERF
  £
  Ē
        CDEFICIENTE DE TRANSFERENCIA DE CALOR NU HATERIOR DOS TUBOS,
  Ē
        EK KCELZERSZEK.
  Ĉ
        IF(INDIC-12)11,2,11
     11 H10=RWF*(015/DE5)
        KK=K-)
        IF(KK)1,45321,1
  45321 TCX=TC(KK)*TO
        TPR=T(M+1,KK)*TO
        19C=1CX
    999 ITER=0
<u></u> 0
  £
        PROPRIEDADES FISICAS DO FLUIDO DE TROCA TERMICA.
  £
        CPCC=(1.5184*(TCX-273,15)+1607.4)/4184.
        ROC=-.92857*(TCX-273.15)+960.
        XKC=.13943-((1.566D-4)*(TCX-273.15))
        XKC=XKC#(3.6/4.184)
        XHC=EXP(-6.59078+(4.76969D3+(-9.9685405+(1.07523DB/TCX))/TCX)/TCX)
        XMC=_01#360_#XMC
        UC=600.*G/PEMO
        6C=WC/.112
        DEC=((DC*DC)-(TN*DE5*DE5))/(TN*DE5)
        1F(DEC-DI5)34100,34100,34110
  34100 DEC=015
  34110 REC=DEC#GC/XMC
        PRC=CPCC#XMC/XKC
        HF (REC-2000.)21098,21099,21099
```

```
21098 XNU0=(REC$*.22)*(PRC**(1./3.))
```

```
33 10 2020
21099 COMINCE
     1F (REC+20000.)22057,23079,23079
23099 X880=.023#(REC##.6)#(PRC40(1./3.))
      55 10 6920
22099 X000+REC#(PRC##(1./3.))#(((REC##(-9.36))+((REC##1.6)/(7.851D-14/+(
     第1、96906/飛行()業88)業業(-1、5))業業(1、/12、))
6920 TEE0=TPC
     TPRO-1PR
     1TER=ITER+1
      12=700
     X冊=EXP(-6.59078+(4.76969D3+(-9.9685405+().0752308/T2))/T2)/T2)
      XMP=.01#340.#XMP
     XND=XNUO$((XHE/XHP)$%.14;
£
Ē
     COEFICIENTE DE TRANSFERENCIA DE CALOR DO LADO DA CARCACA.
     EH KORL/HAMZAK.
Ū.
Ē.
     HO=XNU#XKC/DEC
      1F (TPC-TPR)4413_5432,4413
5432 XKP=(3.6/4.186)#1.4031#(TFR##.410266)
      60 TO 6990
 4410 XKP=1.4031*((TPR##1.410266)-(TPC##1.410266))/().410266#(TPR-TPC))
      XKP=(3.6/4.186)#XXP
Ũ
Ē.
      CONDUTIVIDADE TERMICA DOS 1UBCS DO REATOR, EN KORL/H#N#K.
£
6990 HP=2$XKP/(DE5$L08(DE5/DI5))
C
Ē
     COEFICIENTE GLOBAL DE TROCA TERMICA, EM KCAL/HAM24K..
ũ
     1=1 /((1 /HI0)+(1 /松)+(1 /H0))
      TPC=TCX+((T(H+1,KX)*TO-TCX)*U/HC)
     TPR=TPC+((T(M+),KK)*TO-YCX)*U/HP)
      IF(685(TPC-TPC0)-.0001)15432,15432,6720
15402 1F(R8S(TPR-TPR0)-.0001)15431,15431,6920
15431 CONTINUE
£
Ũ
     TEMPERATURAS NA PAREDE.
Ē
      TPCX(KK)=TPC/TO
      TFRX(KK)=TPR/TO
      CTTE=-UXDE5X3.141516XTNXXLXDZ/(WCXCPCC)
      1F(KK-K)1,2,2
```

```
C
```

0 TLARECATURA DO FLUIDO DE TROCA TERNICA.

ť

END

```
> TC(K)=((CTTE/(1.+CTTE))*T(M+1,K))+((1./(1.+CTTE))*TC(K-1))
TEX=\C(K)*TO
TFR=T(M+1,K)*TO
TPC=TCX
KK=K
GD T() 999
2 CONTINUE
RETURN
```

154

Apêndice B

Programa de Simulação de Reatores – Modelo I por Elementos Finitos.

```
Ŷ.
÷4.
C# ESTE PROGRAMM INTEGRA AS EQUADOES DIFERENCIAIS DO NOVELO 1. UTI-
                                                                   ¥
C# ZANDO A FORMULACAD DE GALERNIN NA TECNICA DOS ELEMENTOS FINITOS.
CX O FRAMEWA CHEMA AS SUBRATINAS PROP F GLORDAN.
                                                                   Ť.
64
     (JP) = DIAMETRO EGUIVALENTE DAS PARTICULAS
<u>0</u>4
            Ĉ¥
     D15 =
                    INTERNO DOS TUBOS
Ū¥.
     0E5 =
              ы
                   EXTERNO MOS TUBOS
ČŻ.
            41
     90 =
                    INTERNO DA CARCACA
     AL = COMPRIMENTO DO LEITO
Ūæ
ĒΪ
     H = NUMERO DE ELEMENTOS NO HEF PARA O REATOR
     MP = "
Ū$
                 DE ELEMENTOS NO MER PARA A PARTICULA
Ê.X
     器 = "
                  DE PONTOS NODRIS NE POSICEO EXIAL
                                                                   ŝ
Ū$
     FOR = POROSIDADE DO LEITO
Êż.
     PREC= "
                     DO CATALISADOR
Ēż
     R = RAZAO ANI AR AR-EVANOL
EX.
     SSP = SUPERFICIE INTERNA DO CATALISADOR
LJ
     30 = TENPERATURE DE ENTRADA DOS REAGENTES
£業
     TR = NUMERO DE TUBOS DO REATOR
ĒX
     XMP = CONDUTIVIDADE VERMICA DO CATALISADOR
Ū¥.
     ų.
         = VELOCIDADE MASSICA SUPERFICIAL
Ēż
Ũ¥.
     CONSIDERA-SE ETA=).
CX.
     A MATRIZ DO SISTEMA E ARMAZENADA EN A.
C#
     SISTEMA DE UNIDADES: MKS
OPTIONS /G_FLORTING
     IMPLICIT REAL#8(A-H.O-Z)
     IMPLICIT INTEGER#2(I,J,K,L,M,N)
     REFLIXB TC, TCO, Z, TCI, DZ, DR, RAZAO, T, C, A, TH, CH, TI, CI
     REALIS FX,RX,DROC,DGDT,ROL,TO,DRDT,RM,RT,BM,RNA,ATA,CO
     INTEGER#2 K, NN, NN, N, I, J, KI, KX, KY, IX, IM, IK
     DIMENSION A(22,23), TC(0:100), FX(22), F(11), G(11), DGROC(11), DGRDY(11)
    %),DFDC(11,11),DFDT(11,11),DGDC(11,11),DGDT(11,11),FR(11),GR(11
    x),OFRDC(11),DFRDT(11),TM(0:100),CM(0:100),DELT(0:100),OE(11),
    #21(10)_RJ(10)_AE(10)_BE(10)_WE(10)_AM(10)_AM2(10)_AT(10)_AT2(10)_T
    ¥CQ(3)
    *,FC(3),CP(11,0:100),TP(11,0:100),DRDCP(11),DRDTP(11),RXP(11),FP(11
    $).GP(11).DFPDC(11.11).DFPDT(11.11).DGPDC(11.11).DGPDT(11.11).FXP(2
    #2),RIP(9),RJP(9),RP(9),BP(9),WP(9),RP1(22,23),DP(9),T(11,0:100),C(
    #11,0:100),RX(11),DRDC(11),DRDT(11),CPC(0:100),TPC(0:100),ETR(11,0:
    #100),TX(11,0:100),TPR(0:100),TWC(0:100),TCXX(0:100),T01(4),V1(4),R
    X[[(4)]
     DATH DE5,D15,TN,DC,N,M/.010287,.0068,3000...678,100,3/
```

```
DECH 18., PCC, PPC, ANP. MP/.CO1, 382, 353, 4, 74
      GATA (01(1), (01(2), T01(3), T01(4)/453, 15, 473, 15, 473, 15, 513, 15/
      SETA VI(1), V1(2), V1(3), V1(4)/3400., 4000., 5000., 6000./
      DATA R11(1),R11(2),R11(3)/4.,9.,19./
C
Ű.
       60 19028 Hi=1,3
Ē
      R=RII(I))
      Ř=19.
      00/20028/17=1,2
      T0=T01([7)
Ū
      10=452.15
      DO 30028 18-1.3
      V=VI(18)
Ē
      V=5000.
      XL=3.
      R0=015/2.
      CO=1./((1.+R)*.082*T0)
      新報=2案(前+1)
      TEO(1)=1.
      TCO(2)=1.001
34104 CONTINUE
С
C
      ESTIMATIVA INICIAL PARA TEMPERATURA DE SAIDA DO FLUIDO DE TROCA
      TERMICA NO METODO DA FALSA POSICAD MODIFICADO.
C
Ũ
      DD 24309 1J=1,3
      IF(1J-3)13078,13077,13078
13099 TCO(3)=TCO(1)-((FC(1)/(FC(2)-FC(1)))*(TCO(2)-TCO(1)))
13098 TC(0)=TC0(IJ)
      Z=0,
      K=0
      DZ=1./DFLOAT(N)
      DR=1./DFLOAT(M)
      CR=DZ/(DR*DR)
      DO 9 [=1,M+1
      T(1,0)=1.
      0(1,0)=0.
    9 CONTINUE
C
Ū
      INCREMENTO NA POSICAO AXIAL.
Ū
 1001 K=K+1
      Z::Z+DZ
C
C
      ESTIMATIVA INICIAL NO KETODO DE N-R.
```

```
С
      00 11 (=),M+1
      T([,K)=T([,K-])
      C(),1,)=C(1,K-1)
   HI CONTINUE
 1002 CONTINUE
      00 14 IR=1,6+1
  104 ETA(IR_K)=1.
   14 CONTINUE
Ĉ
C
      CHAMADA DA SUGROTINA PROP.
£
      CALL PROPICE, R. CO., TO, C., T., RX, DRDC, DRDT, N, ALFA, BETA, ALFA1, BETA1, AV, D1
     x, XKP, XX, OH, TC, CPCC, TPR, TWC, CTE, XL, V, OP1, O15, DE5, POR, TN, DC, DZ, PRC, 1
     約)
      BI=RU#RO/XK
      8=8LF81$DZ$81
Ū
C
      COORDENADAS E CONSTRNITES DO MEF.
C
      DO 96045 I=1.M
      RI(I)=DFLORT(I-I)#DR
      RU(1)=DFLOST(1)*DR
      DE(I) = (RJ(I) + RI(I))
      A2=((RJ(I)**2)-(R1(I)**2))/2.
      R3≠((RJ(1)*#3)-(R[(1)*#3))/3.
      H4=((RJ(1)##4)-(R1(1)##4))/4.
      AE(1)=((RJ(1)$$2)$A2)-(2.$RJ(1)$A3)+84
      BE(I)=-R4+DE(I)$83-RJ(I)$81(I)$82
      WE(I)=((R1(I)**2)*82)-(2.*R1(I)*83)+84
      AM(1)=-ALFA#DZ#DE(1)/(2.#DR)+(BE(1)/(DR#DR))
      A62(1)=ALFAxDZx(DE(1+1)+DE(1))/(2,xDR)+((UE(1-1)+RE(1))/(DRXDR))
      RT(1)=-AEFA1*DZ*DE(1)/(2.*DR)+(BE(1)/(DR*DR))
      BT2(1)=BLFB1*DZ*(DE(1-1)+DE(1))/(2.*OR)+((UE(1-1)+BE(1))/(DR*DR))
98045 CONTINUE
      HH1=ALFA*D2*DE(1)/(2.*DR)+(AE(1)/(DR*DR))
      AB3=ALFA#DZ#DE(片)/(2,#DR)+(WE(F)/(以来DR))
      AT1=ALFA1#DZ#DE(1)/(2.#DR)+(AE(1)/(DR#DR))
      RT3=RLFR1*DZ*DE(M)/(2.*DR)+(WE(M)/(DR*DR))
      D0 90 I=1.M+1
      FR(1)=BETA*ETA(1_K)*RX(1)
      GR(I)=BETR1#ETR(1,K)#RX(I)
      DFRDC(1)=BETR#ETR(1,K)#DRDC(1)
      DFRDT(1)=BETR*ETR(1,K)*DRDT(1)
      DGROT(1)=BETA1%ETA(1,K)%DROT(1)
```

```
158
```

```
(1910) - 1936 (新日本)和短期(1)
   90 CONTINCE
Ū,
Û
      FRANKIGES MO HEF COM A AMLICECSA DAS C.C.,
ĉ
      〒(1)=台水)株C(1,K)+HH(1)株C(2,K)+C合業(根E(1)等F食(1)+BE(1)等FR(2))+(1./(UR株
     xng))x(RE(1)xC(1,K-1)+BE(1)xC(2,K-1))
      ⑤(1)=約:1米1(1,K)+約(1)×1(2,K)+CB米(約日(1)%20(1)+2日(1)%3F(2))+(1./(DR%))
     #DR))#(AE(1)#T(1,K-1)+BE(1)#T(2,K-1))
      F(H+1)=HM(M)*C(M,K)+HM3*C(H+1,K)-CH*(EE(M)*FR(H)+WE(M)*FR(H+1))-(1
     #./(DR#OR))#(BE(H)#C(H,K-1)+WE(H)#C(H+1,K-1))
      G(H+1)=AT(H)$T(H_K)+(AT3+B)$T(H+1,K)-CA$(BE(H)$GR(A)+4E(H)$GR(A+1)
     $)-(]./(DR$OR))$(BE(H)$T(H,K-T)+VE(H)$T(H+1,K-T))-B$TPR(K)
U
Ē
      EQUACTES DO HEF PARA OS OUTROS CASOS.
0
      DO 100 I=2.K
      F(1)=8K(1-1)$C(1-7,K)+8H2(1)$C(1,K)+6h(1)$C(1+1,K)-CA$(BE(1-1)$FR(
     $\product + (WE(((-))+AE(1))$FR(1)+BE(1)$FR(1+1))-(1./(DR$DR))$(BE(1-1)$C(
     *I-1,K-1)+(WE(I-1)+RE(I))*C(I,K-1)+8E(I)*C(I+1,K-1))
Ē
      (6(1)=AT(1-1)#T(1-1,K)+AT2(1)#T(1,K)+AT(1)#T(1+1,K)-CA#(BE(1-1)#GR(
     *I-1)+(WE(I-1)+AE(I))*GR(I)+BE(I)*GR(I+1))+(1./(DR*DR))*(BE(I-1)*T(
     #I-1,K-1)+(WE(I-1)+AE(I))#T(I,K-1)+BE(I)#T(I+1,K-1))
  100 CONTINUE
C
Ū
      NONTRNGEN DR MRTRIZ JACOBIANR.
Ē
      DFDC(1,1)=8M1-CA#AE(1)#DFRDC(1)
      OFDT(1,1)=-CA*AE(1)*DFRDT(1)
      DFDC(1,2)=RM(1)-CA*BE(1)%25%DC(2)
      OFDI(1,2)=+CR#BE(1)#OFRDI(2)
      DGDC(1,1)=-CR*AE(1)*DGRDC(1)
      DGDT(1,1)=AT1-CB#AE(1)#DGRDT(1)
      DGDC(1,2)=-CA*BE(1)*DGRDC(2)
      DGDT(1,2)=RT(1)-CR#BE(1)*DGRDT(2)
      DFDC(M+1,M)=RM(M)-CA%BE(M)%DFRDC(M)
      DFDT(M+1,M)=-CR*BE(M)*DFRDT(M)
      OFDC(M+1, M+1)=AM3-CAXWE(M)XOFRDC(M+1)
      DFDT(H+1_H+1)=-CR*UE(H)*DFRDT(H+1)
      DGDC(M+1,M)=-CR#BE(M)#DGRDC(M)
      D6DT(N+1,N)=AT(N)-CR*BE(N)*DGRDT(N)
      DGDC(H+1,H+1)=-CR*WE(M)*DGRDC(H+1)
      DGDT(H+1_H+1)=AT3+B-UE(H)#CR#DGRDT(H+1)
      D0 30 I=2,M
```

```
DFDC(1.[-))=AH(1-1)-CA48E(1-1)#DFRDC(1-1)
      DFDT(1,1-1)=-CA*BE(1-1)*0FRDT(1-1)
      DFDC(1,1)=AH2(1)-(UE(1-1)+AE(1))#CA#DFROC(1)
      DFDT(1,1)=-(WE(1-))+AE(1))*CR*DFRDT(1)
      DFDC(1_1+1)=AM(1)=CB#BE(1)#DFRDC(1+1)
      OFDT(1_1+1)==CR28E(1)*DFRDT(1+1)
      DGDC(I,I-1)=+CR*BE(I-1)*DGRDC(I-1)
      OGDT([.1-1)=AT([-1)=CR#8E(1-1)#CGRDT(1-1)
      DGDE(1,1)=-(WE(1-1)+RE(1))#CR#DBRDE(1)
      DGDT(1,1)=RT2(1)-(WE(1-1)+RE(1))#CR#DGRDT(1)
      DGDC(1,1+))=-CR#BE(1)#DGRDC(1+1)
      GGDT(1,1+1)=AT(1)-CA*BE(1)*DGRDT(1+1)
  30 CONTINUE
      D8 1000 [=].hN
      00 10002 J=1,MN+1
      <u>₿(1,J)</u>=0.
10002 CONTINUE
 1000 CONTINUE
      R(1,1) = DFDC(1,1)
      A(1,2)=DEDT(1,1)
      A(1,3)=DFDC(1,2)
      R(1,4) = DFDT(1,2)
      R(2,1) = DGDC(1,1)
      A(2,2)=DGDT(1,1)
      R(2,3)=DGDC(1,2)
      R(2,4)=DGDT(1,2)
      A(MN_MN)=DGDT(M+1_M+1)
      A(HN, HN-1)=DGDC(H+1, H+1)
      A(MN, MN-2)=DGDT(M+1,M)
      A(MN_MN-3)=D6DC(H+1,M)
      A(MN-1,MN)=DFDT(N+1,H+1)
      A(MA-1,MA-1)=OFOC(H+1,H+1)
     A(MN-1,MN-2)=DFDT(M+1,M)
      H(MN-1,MN-3)=DFDC(X+1,M)
      KI=0
      DD 500 I=2,MN-4,2
      A(I+1.I-1)=DFDC(I-KI.I-KI-1)
      A(I+1,1)=DFDT(I-K1,I-K1-))
      R([+],I+])=DFDC(I-K1,I-K1)
     A(1+1, [+2)=DFDT(1-K[, I-K])
      A(I+1,I+3)=DFDC(I-kI,I-kI+1)
     A(I+1, I+4)=DFDT(I-K1, I-KI+1)
      K1=K1+1
 500 CONTINUE
      ¥Х::0
```

٢

```
[[] 10] [=3,5%-3,2
       A(!+), I-2)=DGDD(I-1-KX, I-2-KX*
       6(I+1,I-))=DGDT(I-)-KX,I-2-KX)
       9(1+1,1)=0600(1-1-KX,1-1-KX)
       9(1+1,1+1)=DSDT(1-1-KX,1-1-KX)
       9(1+1,1+2)=DSOC(1-1-KX,1-KX)
       E(I+1,I+3)=00DT(i+1-KX,I-KX)
       KX=KX+1
   501 CONTINUE
       \Pi_{i}^{\prime} \approx 0
       DO 113 I=1,H+1
       £(1+1k,和(+1)=--?(1)
       名(1+1K+),福祉)=-5(1)
       11:=11:41
   113 COM INUE
       1067=0.
 Ĉ
 C
       CHAMADA DR SUBROTINA GUORDAN.
 Ū
       CALL GUORDAN(MN, A, FX)
       DO 9087 [=].MN
       DD 9187 J=1,開計
       A([,J)=0.
  9187 CONTINUE
  9087 CONTINUE
 Ċ
 Ũ
       CRITERIO DE CONVERGENCIA DO METODO DE N-R.
 C
       DD 61 10=1,MN
       COMP=SQRT(FX(10)*FX(10))
       1F(COMP-.0001)61,61,21424
 21424 CONT=CONT+1.
    61 CONTINUE
       IF(CONT)1 13,10103,1113
  1113 KK=0
       DD 27404 I=1,H+1
       C(I,K)=C(I,K)+FX()+KK)
       T(I,K)=T(I,K)+FX(I+KK+1)
       KK=KK+1
· 27404 CONTINUE
       GO TO 1002
 C
 С.
       CRITERIO DE FINBL DE REATOR.
 С
 10103 IF(Z-1.)1001,5000,5000
```

```
5000 CONTRACE
      FC(1J)=1C(1/-1.
24307 CONTINUE
      IF(ABS(FC(3))-.0001)15001,15001,23100
23100 TCO(1)=TCO(3)
      FC(1) = FC(3)
      IF(FC(1)#FC(3))14009,14010,14010
14010 TCO(2)=TCO(2)
      FC(2)=.5%FC(2)
      60 TO 34104
14009 TCO(2)=TCO(1)
      FC(2)=FC(1)
      IGE TO 34104
¢
C
      SAIDA DAS RESPOSTAS.
Ē
15001 CONTINUE
      WRITE(7,90875)XL,DI5,V,T0,TN.R
90875 FORMAT(1X,'L (m)=',D15.7,/,1X,'DI(m)=',D15.7,/,1X,'B(Kg/(h*m2))=',
     $D15.7,/,1X,'TO(K)=',D15.7,/,1X,'TN=',D15.7,/,1X,'R=',D15.7)
      WRITE(7,6577)
 6577 FORMAT(1X, '#####MODELO 1-T####',/,1X, '#ELEMENTOS FINITOS#',/,1X, 'H
     *',6X,'T_CENTRO',13X,'X_CENTRO',11X,'ETR ',11X,'TC')
     00 752 J=0.N
      CI=0.
      DO 751 1=1,M+1
      C1=CI+C(1.J)
      TX(I,J)=T(I,J)#T0-273.15
  751 CONTINUE
      CM(J)=C1/DFLORT(M+1)
      TCXX(J)=TC(J)*T0-273.15
  752 CONTINUE
      GHMA=).+.5*CM(N)+R
      ET=(1,-CM(N))/GRMA
      AC=CM(N)/GRMA
      SEL=AC/((1./(R+1.))-ET)
      DO 861 J=0,N,10
      URITE(7,6'577)J,TX(1,J),CM(J),ETA(1,J),TCXX(J)
61577 FORMAT(1X,13,2X,015.5,3X,015.5,3X,015.5,3X,015.5)
  B61 CONTINUE
      WRITE(7.6578)
 6570 FORMAT(1X,'J', 9X,'T oC', 15X,'X') :
      D0 55075 1=20,80,20
      WRITE(7,3072)1
 3072 FORMAT(1X,'1=',13)
```

```
10 3456 J=1,M+1
     WRITE(7,5612)J,FX(J,:),U(J,i)
5012 FORHAT(1X,13,2X,015.5,3X,015.5)
 3456 CONTINUE
55075 CONTINUE
     X66i=TX(1,0)
     112=0
     D0 7552 J=1,N
     IF(XMRI-TX(1,J))2188,7552,7552
 2188 XMR1=TX(1,J)
     KZ=J
 7552 CONTINUE
     WRITE(7,1010)XHHI,KZ,CM(N),SEL,CF
 1010 FORmAT(1X,')T=',D10.5,/,1X,'POSICRO=',13,/,1X,'XF1NAL=',D10.5,/,1X
    $; SELETIVIDADE=',D10.5,/,'TC(N)=',D10.5)
30028 CONTINUE
20028 CONTINUE
C19028 CONTINUE
     END
```
Apêndice C

Programa de Simulação de Reatores – Modelo II por Diferenças Finitas.

• · · · ·

fielté	· 王孝 2011-2019年17月1日1日王王王王王王王王王王王王王王王王王王王王王王王王王王王王王王王王王
0147 (.	●杀牛牛牛牛牛+公子牛牛牛牛牛牛牛牛牛牛牛牛++、、、、、、、、、、、、、、、、、、
0: D≇	FOYE PROGRAM INTERCE AT I UNECCES DIFFERENCIAIS NO PODELO LI 🔮
61%	HILE TREAM IN TREES OF SUBJECT OF EXEMPTION DURING BODER IN
Grant Linat	PARTICULA ISOTERKICE IN A TOPEXE CHEVE AS CHEVE AS CHEVE AS CHEVE AS TOPEXE AND A SCHEVE AS TOPEXE
ርድ በድ	
Ūž.	
С¥.	RV = ASER SUPERFICIEL DO LATRI ISROAS POR UNIDADE DE VOLSKE *
Č¥	DD RERIOR *
C‡	AVI = AREA SUPERFICIAL DO HATERIAL INERTE POR UNIDADE DE VOLUME *
C#	REATOR *
C‡	DP = DIRMETRO EQUIVELENTE DAS PARTICULAS *
C#	DIS = " INTER DIS TUBOS *
C‡	DES = " EXTERNO DOS TUBOS *
LJ	dc = " interno da carcada *
C1	XL = CONPRIMENTO DE LETTE *
Ċ¥	M = NUMERO DE PONTES NOCRIS PARA POSICRO RADIAL *
£¥	N = " DE PONTOS NOCPIS PARA POSICRO AXIAL *
ſ.‡	NP = " DE PONTUS NOC=IS PARA O NODELO DE PARTICULA *
C‡	TN = " DE TUBOS DO RESTOR
C¥	POR = POROSIDADE DO LEITU *
C#	PRC = " DE CRUHELISEDOR *
ÚŽ	XKS)= CONDUTIVIONDE (ERMICH DO CHTREISHDUR X
UX Ch	K = KHAND MULHK HETLING.
Ŭ¥ GV	IQ = (EMPERITURI DE ENTRE 14 DUS REHDENTES A
iu# Det	V = VELOUIDADE ANGELUN SUFERFICINE *
64 09	а жатыту БО СТСКО I СОЖОЛСКАЛА СК О Ф
С# С#	
CX.	SISTEMR DE UNIDADES = 際3. *
C#	<u>x</u>
Citik	⋷ <u>⋹</u> ⋧⋧⋧⋩⋩⋧⋧⋧⋧⋧⋧⋧⋧⋧⋧⋧⋧⋧⋧⋧⋧⋧⋧⋧⋧⋧⋧⋧⋧⋧⋧⋧⋧⋧⋧⋧⋧
	OPTIONS /G_FLORTING
	INPLICIT REAL\$3(A-H,C-2)
	IMPLICIT INTEGER#2(1,1,K,L,M,N)
	REALX8 TC,Z,DZ,DR,RRIFO,T,C,CS,TS,A
	RERL#8 AE,AE1,AE2,AE3,F,C,-,E,DFDC,CI,TI,CIS,TIS
	RERL#8 DFDCS, DGDT, DG0TS, DH1C, DHDCS, DHDTS, DEDC, ROL
	REAL#8 DHDT,FX,RX,DRTT,BLF7,ALFA1,BETA,BETA1,AV1
	REALX8 DRDT, XKG, HF, RM, HM), RM2, AM3, AT, AT1, AT2, AT3, AV, CO, DEDT
	REMLAR DEDUS, DEDIS, ARS, MIC, KO
	INTEDERAL A FURTURING AND A SALAS AND A
	DINERGIAN DIGJ,30, $((v + (v + / + X + G) + (v + 0), g(v + 0), g(v + 0))$ (v + (v + (v + / + X + G)) = (v + (v + (v + / + X + G)))

```
2:67, BUTT:0:6,0:67, DFDLS(0:6,0:67, DFDT5(0:6,0:67, DGDL5(0:6,0:67, L55
     #T5(0:6.0:6),H(0:6),E(0:6),DHDC(0:6,0:6),DHDT5(0:6,0:6),
     #OHDES(0:6.0:6), CEOT(0:2, 0:6), DEDES(0:6,0:6), DEDTS(0:6,0:6), T(0:20,
     40:100),C(0:20,0:100),TM(0:100),CM(0:100),TMS(0:100),C
     #m5(0:100),FC(0:20),DFDCP(0:20),CL(0:20),VX(0:20),D0(0:20),FP(0:20)
     *,B)TR(0:20),GEMA(0:20),RC(0:20),BO(0:20),TS(0:20,C:TVV),CS(0:20,C:
     $100), Rx(0:20), DRDC(0:20), ORDT(0:20), RXF(0:20), ORDCP(0:20), DROTP(0:
     #20), TPC(0:10(), CPC(0:100), ETA(0:6,0:100), F1(0:20), CP(0:20,0:100),
     #TP(0:20,0:100),EI1(0:6),HEM(0:6),TSI(0:20,0:160),DSDTSI(6:6,0:6).D
     #EDTS:(0:6,0:6),DE11DTSI(0:6,0:6),DE11DT(0:6,0:6),DE11DTS(0:6,0:6)
     *,TX(0:20,0:100),TSX(0:20,0:100),TSIX(0:20,0:100),CFX(0:20,0:100),
     *TPX(0:20,0:100),ETRH(0:100),TPR(0:100),TUC(0:100),TCXX(0:100),TC0(
     $3)_FC1(3)_V1(4)
      DATA DES_DIS_N_N_XKS1/.010287,.0068,100,3..4/
      OATA AV, TN, DP, NP, RP, AV2/5755.5, 3000.,.001, 9,.0005, 5755.5/
      DATA RV1.POR.PRC.DC/2813.72..382..358.678/
      DATE VI(1),VI(2),VI(3),VI(4)/3400,,4000,,5000.,6000./
Ē
C
      DEFINICAD DAS VARIAVEIS DE ENTRADA.
C
      R=9.
Ū
       DB 30028 1=1,4
Ē
       V=VI([)
      V=4000.
      T0=473.15
      XL=2.
      R0=015/2.
      MN=5#(M+1)
      FAT=R0/DP
Ū
Ũ
      ESTIMATIVA INICIAL PARA TEMPERATURA DE SAIDA DO FLUIDO DE TROCA
Ū
      TERMICH NO METODO DE FRESE POSICRU MODIFICADO.
Ē
      TCO(1)=1.
      TCO(2)=1.02
34104 CONTINUE
      D0 24309 [J=1.3
      IF(1J-3)13098,13099,13098
13099 TCO(3)=TCO(1)-((FC)(1)/(FC)(2)-FC1(1)))*(TEO(2)-TCO(1)))
13098 TC(0)=TC0(IJ)
      Z=0.
      K=0
      CO=1,/(.082#(R+1.)*T0)
      DZ=1./DFLOAT(N)
      DR=1./DFLOAT(M)
```

```
166
```

```
50 9 1=6.
      C(1,0/=0.
      T(1,0)=1.
      CS(1,0)=0.
      TS(1,0)=1.
      TSI(1,0)=1.
    9 CONTINUE
Ü
Û
      INCREMENTO NA POSICAC AVIAL.
Ũ
 1001 K=K+1
      Z=Z+0Z
Ū
      ESTIMATIVAS INICIAIS DO METODO DE N-R PARA O MODELO DE REATOR.
Û
Ĉ
      00 11 I=0,h
      T(1,k)=T(1,k-1)
      C(1,K)=C(1,K-1)
      CS(1,K)=CS(1,(-1))
      TS(1,K)=TS(1,K-1)
      TSI(1,K)=TSI(1,(-1)
   11 CONTINUE
      DRP=1,/DFLORT(NP)
 1002 R0=D15/2.
С
C
      NETODO DAS L'IFERENCAS FINITAS PARA O NODELO DE PARTICULA
C
      ISOTERMICH.
Ū
      DD 14 IR=0.K
C
C
      ESTIMATIVAS INICIAIS DO METODO DE N-R PARA PARTICULA.
ſ,
      DO 12 I=0.NP
      CP(1,K)=CS(18,K)
      TP([,K)=TS(IR,k)
   12 CONTINUE
      1168=0
 1000 CONTINUE
C
C
      CHAMADA DA SUBROTINA PROP.
Ū
      CALL PROP(K,R, YO, CP, TP, RXP, DRDCP, DRDTP, NP, XKERS, DH, D, XKS1, XKS, HF, H
     *F2,SIF,BIS,PEN,ALFA,BETA,ALFAI,BETAI,BETAI),AV,IC,CPCC,TPR,TWC,CTE
     *,XL,V,DP,D15,DE5,POR,TN,AV,AV1,DC,DZ,PRC,12)
     CTE1=(6./DP)#(2314./654.)#.)464#D#CO/(DRP#RP)
```

.

```
167
```

```
00 0251 040 MP
     "D(1)=RXF(1)xRP4RF#854 //DxC042314.x 1464)
      OF002(1)=DRDCP(1)%RP%RP%254.7(D&50%2314.%.(464)
 125° COMITAVE
     F1(0)=2.#CP(1,K)=2.#CP(0,K)+((DRP#DRP)%FC(0)/3.)
      FI(RP)=CP(NP,K)-CS(IR,K)
     DS 54 I=1,NP-1
     F{(1)=(1,-(1,/DFLORT(1)))#CP(I-1,K)-2,#CP(1,K)+(1,+(1,/DFLORT(1)))
     **CP(I+)_K)+(DRP*DRP)%FC(I)
   34 CHINTENSE
C
Ĉ
      ELEMENTOS DA MATRIZ TRIDIAGONAL.
Ē
      BO(0)=-2.+(DFDCP(0)*(DRPAJRP)/3.)
      CL(0)=2.
      60(RP)=0.
      80(NP)=1.
      00 24 1=1,NP-1
      file(1)=1.-(1./DFLORT(1))
      BC(1)=(-2,+(D2P#OMP)#DFDCP(1))
      CL(I)=1.+(1./DFLOAT(I))
  24 CONTINUE
      00 25 l=0,NP
      DO(1) = -FI(1)
   25 CONTINUE
      F1=0
      B1TB(F1)=B0(F1)
      GRMA(F1)=D0(F1)/01T3(F1)
      FP1=F1+1.
      00 410 1=FP1.NP
      1Y=1-1
      BITR(I)=BO(I)-((RO(I)*CL(IY))/B)TR(IF))
      GRAR(1)=(DO(1)-RO(1)*GRMA(1Y))/8)TH(1)
  410 CONTINUE
      VX(NP)=GRMA(NP)
      LAST=NP-F1
      00 412 K3=1,LEST
      1=NP-K3
      M[∷]+]
      VX(1)=GAMA(1)-((CL(1)*VX(M1))/BITA(1))
  412 CONTINUE
      CONTS=0.
Ũ
      TESTE DE CONVERGENCIA DO METODO DE N-R.
Ũ
```

Û

```
85 div 446,67
      IF(52510/2007+,00000)/870,870,2003
 2003 CON1S=CONTS+1.
 -876 (DRTEAC
      IF(CONTS)1131,1131,142
 ,142 ITER=ITER+1
      00 141 1=0,NP
      CP([_K)=CP(1,%)+VX(1)
  141 CONTINUE
      GO TO 1000
 113 CONVINCE
      DRVD2=(3.#CP(NP-4,K)-16.#CP(NP-3,K)+36.#CP(NP-2,K)-48.#CP(NP-1,K)+
     %25,%0P(NP,K))/12.
      IF(IE-1)104,105,104
  105 CPC(K)=CP(1,K)
      1PC(K)=TP(1,K)%10-273.15
      0D 76207 I=0.WP
      CPX(I,K)=CP(I,K)
      TPX(1,K)="P(1,K)%T0-273.15
76207 CONTINUE
С
C
      FATOR DE EFETIVIDADE.
Ē
  104 ETA(IR,K)=-CTE)*DRVD2/RXP(NP)
      DO 90543 IKK=0.M
      ETR(IKK_K)=ETR(IR_K)
90543 CONTINUE
   14 CONTINUE
C
Ç
      CHAMADR DR SUBROTINA PROP.
£
      CHLL PROP(K,R,TO,CS,TS,RX,DRDC,DRDT,N,XKERS,DH,D,XKS1,XKG,HF,HF2,B
     *IF, BIS, FEH, REFA, BETA, ALFAI, BETAI, BETAII, AU, TO, CPCC, TPR, TWC, CTE, XL,
     XV.DP.DIS.DES.POR.TN.AV.AVI.DC.DZ.PRC.10)
Ũ
      KETODO DAS DIFERENCAS FINITAS PARA O MODELO DE REATOR,
Ç
Ĉ
      AM=ALFAXDZ/(DRXDR)
      RT=ALFA1$DZ/(OR*DR)
      HH1=1,+4,*RH+DZ*BETA
      HM4=-RM#((1/(OFLOAT(M)))+2.)
      AM5=AM#((1/(DFLOAT(M)))+2.)+1.+DZ#BETA
      AT1=1,+(4,*AT)+(DZ*(BETA)+BETA11))
      #T4=-8T*((1/(DFL08T(M)))+2.)
      AT5=AT*((()/(OFLOAT(N)))+1.)*2.*DR*B1F+(2.+(1./OFLOAT(N)))+1.+DZ*
```

```
$(BETR1+8E3611)
      HEIS=XKERS/((ROHOR)##2)
      AE1=HF%8V+UE2*RV2+4,*AE1S
      AE2=HF*AV+HF2*AV2+AE16*(()/(DFLORT(M)))+2.+2.*((1/(DFLORT(M)))+1.)
     £%D8%815)
     CC=C0%X06%8V1
      01/30
     自己#提紧的财子(提紧的现2)。
      D0 1074 1=1,6-1
      RH2(1)=RH*((1/(DFLORT(1)))+2.)+1.+(DZ*BETH)
      AHB(1)=ABB((1/(DFLOAT(1)))+1.)
      AT2(1)=A)*((1/(DFL0AT(1)))+2.)+1.+(DZ*(BETA)+BETA)1))
      AT3(I)=AT*((1/(DFLOAT(I)))+1.)
      HE(1)=HF#RV+(HF2#RV2)+(RE1S#((1/(DFL0AT(I)))+2.))
 1074 CONTINUE
£
Ũ
      EQUADOES DO HEYODO DAS DIFERENCAS FINITAS COM A APLICACAO DAS C.C.
C
     F(0)=RK1#C(0_K)-4.#RH#C(1_K)-DZ#BETR#CS(0,K)-C(0,K-1)
      6(0)=8f1*f(0_K)-4,*8f*f(1_K)-DZ*8ET8)*f5(0,K)+f(0,k-1)-DZ*8ET811*T
     #SI(6.K)
     H(0)=CC*(C(0,K)-CS(0,K))+ETA(0,K)*RX(0)
      E(0)=HE1*TS(0,K)-4#HE1S#TS(1,K)-HF#HU#T(0,K)+ETH(0,K)#CT#RX(0)-HF2
     **#V2*TS1(0_K)
      E11(0)=A11#TS1(0,K)-HF2#AV2#TS(0,K)-HF#AV1#T(0,K)
      F(M)=AM4*C(M-1,K)+AM5*C(M,K)-DZ*BETA*CS(M,K)-C(M,K-1)
      6(M)=AT4*T(M-1,K)+AT5*T(M,K)-DZ*BETA1*TS(M,K)-T(M,K-1)-AT*((1/(DFL
     *OAT(M)))+1_)*2_*OR*BIF*TPR(K)-DZ*BETR11*TS1(8_K)
     H(H)=CC*(C(M,K)-C5(M,K))+ETH(H,K)*RX(H)
      E(M)=-(()/(DFLORT(M)))+2,)*RE1S#TS(M-1,K)+RE2#TS(M,K)-HF*RV*T(M,K)
    *+CT*ETA(M,K)#RX(M)-AEIS*((1/(DFLOAT(M)))+1,)*2.*DR*BIS*TPR(K)-HF2*
     $RV2$TS1(M_K)
     E11(H)=H)1#TSI(H,K)-HF2#AV2#TS(H,K)-HF#AV1#T(H,K)
Ū
Ū
      EQUACOES RESULTANTES DO NETODO DAS DIFERENCAS FINITAS
С
      PARA OUTROS CASOS.
Ē.
     D0 100 1=1,M-1
Ũ
      F(1)=-AM*C(1-1,K)+AM2(1)*C(1,K)-AM3(1)*C(1+1,K)-DZ*BETA*CS(1,K)-C(
     ≭[,K-1)
C
      G(1)=-AY*T(1-),K)+AY2(1)*T(1,K)-AT3(1)*T(1+1,K)-DZ*BETA1*TS(1,K)-T
     #([_K-1)-DZ#BETR11#TS1(I_K)
```

```
0
```

```
Electronic (,1)+6E((,1));#ETA(I,K)#RX(1)
ĉ
     E(1)=-AE1S$$$(1-),%;+HE(1)$15(1,%)-AE1S$*(1)/(DFLOAT(1)))+1.)$T5(1+
     #1_K)=H5%A487(1,K)+C5%LTB(1,K)%XX(1)=HF2#A42%TS1(1,K)
     E)1(1)=611x1s1(1,x)=HF2xHV2xY3(1,X)=HFxHV1xT(1,X)
  100 CONTINUE
Ē
Ĺ,
      KONTRGEN LA MATRIZ JACOBIANA.
Ē
      DFDC(0,0)=AM1
      CF0C5(0,0)=-DZ#)ETA
      DF02(0,))=-4.%3%
      96D1(0.0)=8%)
      DGD)S(0,0)=-D2#8E181
      ()GDT((),1)=-4,#AT
      DGDTSH(0,0)=-DZ%BETR11
      CHOC(0,0)=CC
      DHCCS(0,0)=-CC+DRDC(0)*ETA(0,K)
      bhots(0.0)=DRDT(0)%ETA(0.K)
      DED1(0,0)=-HF*AV
      DECCS(0,0)=CT*ETR(0,X)*DRDC(0)
      DELTS(0,0)=RE1+CTXETR(0,K)*DRDT(0)
      DEDISI(0,0)=-HF2#RV2
     DEDTS(0,1)=-4.#AE15
      DETIDT(0.0)=-UF#AV1
      DETIDIS(0,0)=-HF2#RV2
      DE1101SI(0,0)=A11
      DFDC(N,N-1)=AM4
      DFOC(M,h)=AH5
      DFDCS(M,M)=-DZ#BET0
      DGDT(M,M-1)=AT4
      DGD1(M,M)=RT5
      DGDIS(N,H)=-DZ%BETR1
      DGDTSI(M,M)=-DZ#BETR)1
      DHDC(M,M)=CC
      DHDCS(M,M)=-CC+ETH(M,K)*DRDC(M)
      DHDTS(N,M)=ETR(N,K)*DRDT(M)
      DEDTS(M,M-1)=-AE1S*(()/(DFLOAT(M)))+2.)
      DEDT(M,M)=-HF#RV
      DEDCS(M,M)=ETA(M,K)*DRDC(M)
      DEDTS(M,M)=RE2+ETA(M,K)*DRDT(M)
      DEDTSI(M,M)=-HF2*AV2
      OE11DT(M,M)=-HF#8V1
      DEIIDTS(M,H)=-HF2#RV2
      DETIDISI(M,M)=811
```

```
171
```

```
bd 30 )=1,6 }
     0700([.]-l.=...
     07820(1,1)=662(1)
      任日105(1,1)==07#開刊
     DFDC(1,1+1)=-RM3(1)
      DGDT([,1-1)=-RT
     D6DT(1,1)=8T2(1)
      060TS(1,1)=-DZ#06TA1
     DGDTSI(I,1)=-DZ%BETA11
     DGDT(1,1+1)=-RT3(1)
     DHDC(1,1)=CC
     DHDUS(1,1)=-CC+ETA(1,K)#DRDC(1)
     OHDIS(1,1)=ETR(1,K)&DRDT(1)
     DEDIS(I,I-1)=-RE1S
     DEDICE_I)=-HEARV
     DECCS(1,1)=ETA(1,k)*DRDC(1)
      DEDTS(1,1)=AE(1)+ETA(1,K)*CT*DRDT(1)
     DEDISI(1,1)=-HF2#AV2
     DEDTS(1,1+1)=-RE1S*((1/(OFLOAT(1)))+1.)
     DETIDT(1,1)=-HF#AV1
     DE)1DTS(1,1)=-HF2#RV2
     DENIDISI(1,1)=AN1
  30 CONTINUE
     DO 1100 I=1,MN
     DD 10002 J=1,XN+1
     A(1,J)=0.
10002 CONTINUE
1100 CONTINUE
     MONTAGEN DE MATRIZ JECOBIANE
     R(1,1)=DFDC(0,0)
     R(1,3)=DFDCS(0,0)
     R(1,6)=DFDC(0,1)
     R(1,8)=DFDCS(0,1)
     A(2,2)=D6DT(0,0)
     A(2,4)=DGDTS(0,0)
     A(2,5)=DGDTSI(0,0)
     R(2,7)=D6DT(0,1)
     A(2,9)=DGDTS(0,1)
     A(3,1)=DHDC(0,0)
     R(3,3)=DHDCS(0,0)
     R(3,4)=DHDTS(0,0)
     R(4,2) = DEDT(0,0)
     R(4,3)=DEDCS(0,0)
```

C Ũ

C

```
May Subary
AG4,50-02175100,00
A(4,7)-EEN(4,1)
8(4,8)=02005(0,1)
R(4,9)=0ED.E(0,1)
R(5.2)=0E11D1(0.0)
A(5,4)=CENNCYS(0,0)
R(5,5)=DEN107S1(0,0)
R(MN_AK-3)=D11151(先)と)
A(HN_HN-1)=DE11DTS(H,H)
R(出版)=DE11DTS1(例,例)
R(HN-1,HN)=DEDTS1(H,H)
舟(hì)-1, ///-1)=DEDTS(竹,首)
A(MM-1,MM-2)=DEDCS(M,M)
自(船-1,船-3)=0EDT(著,著)
A(MN+1,MM+6)=DEDTS(M,M-1)
A(MN-1, MN-7)=DEDCS(M, M-1)
A(MN-1,MN-8)=DEDT(N,M-1)
A(MH-2, MN-1)=DHDTS(M, M)
R(MN-2, HN-2)=DHDCS(M, M)
A(MN-2;MN-4)=DHDC(N,N)
A(HN-3,MN)=DGDTSI(H,M)
A(HN-3, MN-1)=DGDTS(M, M)
A(MN-3, MN-3)=DGDT(M,M)
A(NN-3,NN-6)=D6D1S(N,N-1)
R(MN-3, MN-8)=DGDT(M, N-1)
R(MN-4, MN-2)=DFDCS(M, M)
R(MN-4, HN-4)=DFDC(M, M)
A(MN-4, MN-7)=DFDCS(M, M-1)
R(MN-4,MN-9)=DFDC(M,M-1)
KI=0.
D0 500 1=5,MN-9,5
A([4],1-4)=DFDC(1-4-4xK1,1-5-4xK1)
A(1+1,1-2)=DFDCS(1-4-4*K1,1-5-4*K1)
A(I+),I+))=DFDC(I-4-4*KI,I-4-4*KI)
A(1+1,1+3)=DFDCS(1-4-4#K1,1-4-4#K1)
A(I+)_1+6)=DFDC(1-4-4#K1,1-3-4#K1)
R(I+1_I+8)=OFDCS(I-4-4*K1,I-3-4*K1)
A(1+2,1-3)=DGDT(1-4-4*K1,1-5-4*K1)
R(1+2,1-1)=DGDTS(1-4-4*K1,1-5-4*K1)
A(1+2,1+2)=D6DT(1-4-4*K1,1-4-4*K1)
```

8(1+2,1+4)=DGDTS(1-4-4*K1,1-4-4*K1) A(1+2,1+5)=DGDTS1(1-4-4*K1,1-4-4*K1) A(1+2,1+7)=DGDT(1-4-4*K1,1-3-4*K1)

```
C
```

```
173
```

```
H(1+2_1+9)=DSDTS(1-4-40K1,1-3-44K1)
C
      H(1+3,1+1)=DHDC(1-4-4%K1,1-4-4%K1)
      A(1+3,1+3)=DHDCS(1-4-4#K1,1-4-4#K1)
      R(1+3,1+4)=DHDTS(1+4-4#K1,1-4-4#K1)
C
      R(1+4_1-3)=DEDT(1-4-4#K1_1+5+4#K1)
      f(1+4_1-2)=DEDCS(1-4-4%X1,1-5-4%X1)
      A(1+4,1-1)=DEDTS(1-4-4%K1,1-5-4%K1)
      R(1+4,1+2)=DEDT(1-4-4#X1,1-4-4#X1)
      A(1+4,1+3)=DEDCS(1-4-4#K1,1-4-4#K1)
      A(1+4,1+4)=DEDTS(1-4-4#約1,1-4-4#約1)
      H(1+4,1+5)=DEDISI(1-4-4%K1,1-4-4%K1)
      A(I+4,I+7)=DEDT(I-4-4*K1,I-3-4*K1)
      Ĥ(1+4,1+8)=DEDCS(1-4-4#K1,1-3-4#K1)
      B(I+4_I+9)=DEDTS(I-4-4#K1,I-3-4#K1)
Û
      B(1+5,1+2)=DE11D1(1-4-4*K1,1-4-4*K1)
      R(1+5,1+4)=DE11DTS(1-4-4*K1,1-4-4*K1)
      A(I+5_I+5)=DE11DTSI(I-4-4xK[,I-4-4xKI)
      K]=K[+]
 500 CONTINUE
      11:0
      DO 113 I=0.M
      伯(1+1+4#1K, 約(+1)=-F(1)
      A(1+2+4米18_M8+1)=-6(1)
      A(1+3+4*1K, AN+1)=-H(1)
      A(I+4+4*1K,MN+1)=-E(1)
      日(I+5+4*IK, K級+1)=-E11(1)
      1K=1K+1
  113 CONTINUE
      CONT=0.
C
Ĉ
      CHAMBOR DA SUBROTINA GJORDAN.
C
      CALL GJORDAN(MN, A, FX)
C
      TESTE DE CONVERGENCIA DO METODO DE N-R PARA O MODELO DO REATOR.
Ū
C
      DD 61 I=1,MN
      IF(R8S(FX(1))-.0001)61,61,2424
 2424 CONT=CONT+1.
C 66 (5,65)FX(1)
   65 FORMAT(1X, 'FX=', D30.17)
С.
   61 CONTINUE
```

```
174
```

```
    G. G. R.T.) (411, 1993) 1113

 1113 11:40
      D0 27 1=0.5
      111,約4001,K24FX(14)+445 約
      で(1,K)=T(1,Y)+FX(1+2+4#KK)
      CS(1,K)=CS(1,K)+FX(1+3+4#KK)
      TS(1,K)=TS(1,E)+FX(1+4+4%EE)
      151(1,K)=TSI(1,K)+FX(1+5+4#KK)
      \{(i = i_{i_1}^{(i_1)} + )\}
   27 CONTINUE
      GG 70 1002
Ū
С
      CRETERIO DE PARADA.
C
1003 [F(Z-1.)1001,5000,5000
 5000 CONTINUE
     FC1(1J)=YC(N)-1.
24307 CONTINUE
C
C
      TESTE DE CONVERGENCIA DO HETODO DA FALSA POSICAO NODIFICADO.
£
      JF(RES(FC1(3))-.0001)15001,15001,23100
23100 TCO(1)=TCO(3)
     FC1(1)=FC1(3)
      IF(FC)(1)*FC1(3))14009,14010,14010
14010 TEO(2)=TCO(2)
      FC1(2)=.5%FC1(2)
      60 TO 34104
14009 TEO(2)=TEO(1)
      FC1(2)=FC1(1)
      60 10 34104
15001 CONTINUE
0
C
      SAIDA DAS RESPOSTAS.
C
      WRITE(7,90875)TN,V,D15,R
90875 FORMAT(1X,'TN=',D15.6,/,1X,'6(Kg/(h*m2)=',D15.6,/,1X,'D1(m)=',D15.
     $6,/,1X, 'R=',D15.6)
      WRITE(7,6577)
 6577 FORMAT(1X, '***HODELO 11-T*********, /, '***DIFERENCRS FINITAS***',
     #/,3X,'J',6X,'T TS oC',13X,'X XS',11X,'TC /TS1',12X,'CPC/TPC')
     DO 752 J=0.N
      C1=0.
      CIS=0.
      TI=0.
```

```
TIS=0.
      EIRI=0.
      DO 751 1=0.M
      CI=CI+C(I,J)
      CIS=ClS+CS(I_J)
      TI=T(+)(I,J)
      TIS=TIS+TS(I,J)
      TX(1,J)=T(1,J)&T0-273.15
      TSX(1,J)=TS(1,J)#T0-273.15
      TSIX(1,J)=TSI(1,J)#T0-273.15
      ETRI=ETRI÷ETR(I,J)
  751 CONTINUE
      GA(J)=C1/GFLOOT(A+1)
      CMS(J)=CIS/DFLORT(H+T)
      Tri(l)=TL/DELORT(H+1)
      TNS(J)=TIS/DFLORT(N+1)
      ETRM(J)=ETRI/DFLORT(N+))
      TEXX(J)=TE(J)#T0-273.15
 752 CONTINUE
      GAXA1=1.+.5#CK(N)+R
      AC=CM(N)/GBNA1
      ET=(),-CK(N))/GRMA1
      SEL=AC/((1./tR+1.))-ET)
      00 17512 J=0.N.10
     WR11E(7,453)J,TX(0,J),CH(J),TCXX(J),CPC(J),J,TSX(0,J),CHS(J),TSIX(
     $0,J),TPC(J)
  453 FORMAT(1X_13,2X,D15.5,3X,D15.5,3X,D15.5,3X,D15.5/,1X,13,2X,D15.5,3
     *X,D15.5,3X,D15.5,3X,D15.5)
17512 CONTINUE
      URITE(7,38072)
38072 FDRMAN (1X, ' J ', 10X, 'T aC ', 15X, 'TS aC', 15X, 'TS1 aC')
      00 55075 1=20,80,20
      WRITE(7,3072)1
 3072 FORMAT(1X, '1=', 14)
      DO 3456 J=0,M
      WRITE(7,5612)J,TX(J,1),TSX(J,1),TS1X(J,1)
 5612 FORMAT(1X, 13, 2X, 017.7, 3X, 017.7, 3X, 017.7)
3456 CONTINUE
55075 CONTINUE
      XMAI=TX(0,0)
      KZ=0
      DO 7552 J=1,N
      IF(XMRI-TX(0,J))2188,7552,7552
 2188 XMAI=TX(0,J)
      KZ=J
```

```
176
```

```
25日 同時日日
      CLEER (CLEWED) XEAD ACTUAL SEE
 1010 FORMAT(1X,')T=',D15.5,/,1X,'POSICAD=',15,/,1X,'XEINAL=',D15.5,/,1X
     >, TEELETIVIDADE=1,015.5)
     (a.1) (7,6578) KZ
 A578 FORM (ICLX, FERFIL NO POULD GCENTER), 14)
      DD 13456 J=0.H
      URINE(7,59612)J,TX(J,K2),TS/(J,K2),1SIX(J,KZ)
596.2 FORMATCIX, 13, 24, 017.7, 3%, 017.7, 3%, 017.7)
13456 CONTINUE
C
       Valie(7,44210)
C44210 FURNAI(1X,' R ',4X,'T PART (oC)',10X,'X PHRT ()
ť
       CO 12455 J=0,NP
       WRITE(7,60612)J,TPX(J,KZ),CPX(J,KZ)
C
C60612 FURMAT(1X, 13, 2X, 517.7, 3X, 517.7)
C12456 LOGH INDE
C
       WRITE(7,90543)40
C90543 FORMAT(1X, 'J=', 13)
       DO 1256 J=0 NP
Ũ
C
       WRITE(7,6612)J, TPX(J,40), CPX(J,40)
C 6612 FOR5AT(1X,13,2X,D17.7,3X,D17.7)
C 1256 CONTINUE
C30028 CONTINUE
      END
```

4

Bibliografia

.

- Akella, L. M.; Lee, H. H.. A Design Approach Based on Phase Plane Analysis: Countercurrent Reactor/Heat Exchanger with Parametric Sensitivity. AIChE Journal, pp 87-94, 1983.
- [2] Análise por Difração de Raios-X. Instituto Nacional de Tecnologia. Ministério da Indústria e do Comércio.
- [3] Bento, A. C.. Aplicações da Espectroscopia Fotoacústica em Materiais Transparentes. Tese de Mestrado, Instituto de Física Gleb Wataghin-UNICAMP, 1987.
- [4] Carberry, J.J.; Chemical and Catalytic Reaction Engineering. Mcgraw-Hill, New York, 1976.
- [5] Carberry, J. J.; White, D., Ind. Engng. Chem., Vol. 61, pp 27, 1969.
- [6] Carberry, J. J.; Wendel, M. M., AIChE Journal. Vol. 9, pp 129, 1963.
- [7] Coberley, C. A.; Marshall Jr, W. R., Chem. Engng. Prog., No 47, pp 141, 1951.
- [8] Chu, C.; Hougen, O. A.. Chemical Engineering Science, Vol. 17, pp 167, 1962.
- [9] De Wash, A. P.; Froment, G. F., A Two Dimensional Heterogeneous Model for Fixed Bed Catalytic Reactors. Chemical Engineering Science, Vol. 26, pp 629-634, 1971.
- [10] De Wash, A. P.; Froment, G. F.. Heat Transfer in Packed Beds. Chemical Engineering Science. Vol. 22, pp 567-576, 1972.

- [11] Dixon, A. G.; Cresswell, D. L.: Theoretical Prediction of Effective Heat Transfer Parameters in Packed Beds. AIChE Journal, Vol. 25, No 4, pp 663-676, 1979.
- [12] Dixon, A. G., Thermal Resistance Models of Packed-Bed Effective Heat Transfer Parameters. AIChE Journal, Vol. 31, No 5, pp 826-834, 1985.
- [13] Froment, G. F.; Bischoff, K. B., Chemical Reactor Analysis and Design. John Wiley & Sons Inc, 1979.
- [14] Guirardello, Reginaldo. Diagramas de Fases e Otimização de Reatores Catalíticos em Contra-Corrente. Tese de Mestrado em Engenharia Química, Faculdade de Engenharia de Campinas - UNICAMP, 1988.
- [15] Finlayson, B. A. Packed Bed Reactor Analysis by Orthogonal Collocation. Chemical Engineering Science, Vol. 26, pp 1081-1091, 1971.
- [16] Hill Jr, C. G.. An Introduction to Chemical Engineering Kinetics & Reactor Design. John Wiley & Sons Inc, 1977.
- [17] Hlavácek, V; Kubicek, M. Chemical Engineering Science, Vol. 26, pp 321, 1971.
- [18] Information about Syltherm 800 Heat Transfer Liquid. Dow Corning Corporation, 1984.
- [19] Kao, D.; Satterfield, C. N..Industries Engineering Chemicals Fundamentals. Vol. 7, pp 664, 1968.
- [20] Kunii, D.; Smith, J. M. AIChE Journal Vol. 6, pp 71, 1960.
- [21] Lee, H. H., Heterogeneous Reactor Design. Butterworth Publishers, 1985.
- [22] Levenspiel, O., Engenharia das Reações Químicas. Vol.2, Editora Edgar Bücher Ltda, 1974.
- [23] Li, C. H.; Finlayson, B. A. Heat Transfer in Packed Beds A Reevaluation. Chemical Engineering Science, Vol. 32, pp 1055-1066, 1977.
- [24] McGreavy; Cressweell. Canadian Journal Chemical Engineering 1969, pp 47,583.

- [25] Maciel Filho, R. .Oxidação Catalítica de Etanol à Acetaldeido sobre Catalisador de Óxido de Ferro-Molibdênio. Tese de Mestrado em Engenharia Química, Faculdade de Engenharia de Campinas, UNICAMP, 1985.
- [26] Mori, M.; Verghese, K.; White, R. E. Application of the Finite-Element Method a Linear Diffusion Problem with Reversible Trapping and an Eroding Boundary. Annual Nuclear Energy. Vol.10, No 11, pp 579-587, 1983.
- [27] Paterson, W. R.; Carberry, J.J. Fixed Bed Catalytic Reactor Modelling The Heat Transfer Problem. Chemical Engineering Science, Vol. 38, No 1, pp 175-180, 1983.
- [28] Pereira Duarte, S. I.; Barreto, G. F.; Lemcoff, N. O.. Comparasion of Two-Dimensional Models for Fixed Bed Catalytic Reactors. Chemical Engineering Science, Vol. 29, No 6, pp 1017-1024, 1984.
- [29] Perry, R. H.; Green, D. Perry's Chemical Engineer's Handbook. 6th Edition. Mc Graw-Hill Book Company, 1984
- [30] Rao, K. C.; Prabhu, S. S.; Mehta, S. C., Finite Element Collocation Solution of Tubular and Packed-Bed Reactor Two Point Boundary Value Problems. Chemical Engineering Science, Vol. 36, pp 987-992, 1981.
- [31] Reid, R.C.: Prausnitz, J.M.; Sherwood, T.K.. The Properties of Gases and Liquids. 3rd Edition, Mc Graw-Hill Book Company, 1977.
- [32] Roberts, G.W.; Satterfield, C. N., Industries Engineering Chemical Fundamentals 1969, Vol.7, pp 664, 1968.
- [33] Segerlind, L. J.. Applied Finite Element Analysis. John Wiley & Sons Inc, 1976.
- [34] Singer, E.; Wilhelm, R. H., Chem. Engng Prog, No 46, pp 343, 1950.
- [35] Smith, J. M. Chemical Engineering Kinetics, 2nd edition, McGraw-Hill Book Company, 1970.
- [36] Tan, C. S.; Smith, J. M. Effectiveness Factors for Endothermic Reactions in Fixed-Bed Reactors. Chemical Engineering Science, Vol. 13, No 9, pp 1329-1337, 1984.

- [37] Toulokian, Y. S.: Buyco, E.H.. Thermophysical Properties of Matter Specific Heat Nonmetallic Solids. Vol. V, pp 110-113, 163-165.
- [38] Varma, A. et al. Comp. Meth. Applied Mech. Engng, 1976, 8, 319.
- [39] Van Welsenaere, R. J.; Froment, G. F., Parametric Sensitivity and Runaway in Fixed Bed Catalytic Reactors. Chemical Engineering Science, Vol. 25, pp 1503-1516, 1970.
- [40] Villadsen, J. V.; Stewart, W.E., Solution of Boundary-Value Problems by Orthogonal Collocation. Chemical Engineering Science, Vol. 22, pp 1483-1501, 1967.
- [41] Villadsen, J. V.; Michelsen, M. L. Solution of Differential Equation Models by Polynomial Approximation. Prentice-Hall, Englewood Cliffs, New Jersey, 1978.
- [42] Wakao, N; Kaguei, S., Heat and Mass Transfer in Packed Beds. Gordon and Breach Science Publishers. NY, 1982.
- [43] Wakao, N; Smith, J. M. Diffusion in Catalyst Pellets. Chemical Engineering Science, Vol. 17, pp 825-834, 1962.
- [44] Weisz, P.B.; Hicks, J. S., Chemical Engineering Science, Vol. 17, pp. 265, 1962.
- [45] White, R.E.. An Introduction to the Finite Element Method with Applications to Nonlinear Problem. John Wiley & Sons Inc, 1985.
- [46] Wihelm, R. H., Pure Appl. Chem., 5, pp 403, 1962.
- [47] Wonchala, E. P.; Wynnyckyj, J.R.. The effective Thermal Conductivity of Solide with Complex Pores in the Transition and Knudsen Regions. The Canadian Journal of Chemical Engineering. Vol. 62, 1984.
- [48] Yagi, S.; Kunii, D. AIChE Journal. Vol. 3, pp 373, 1957.
- [49] Yagi, S.; Kunii, D., AIChE Journal. Vol. 6, pp 97, 1960.