

UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE ENGENHARIA QUÍMICA ÁREA DE CONCENTRAÇÃO: ENGENHARIA DE PROCESSOS

ESTUDO DAS TRANSIÇÕES DE FASES DA POLPA DE CAMU-CAMU (Myrciaria dubia (H.B.K.) Mc Vaugh)

Autora: Mariana Altenhofen da Silva Orientador: Prof. Dr. Theo Guenter Kieckbusch Co-orientador: Prof. Dr. Paulo José do Amaral Sobral

Dissertação de Mestrado apresentada à Faculdade de Engenharia Química como parte dos requisitos exigidos para a obtenção do título de Mestre em Engenharia Química

> Campinas - São Paulo Março/2004

UNICAMP BIBLIOTECA CENTRAL SEÇÃO CIRCULANTE

UNIDADE Nº CHAMADA TOMBO ,B PROC. 2 PRECO DATA (Nº CPD

CMOO198300-6 Bibid:317479

FICHA CATALOGRÁFICA ELABORADA PELA BIBLIOTECA DA ÁREA DE ENGENHARIA - BAE - UNICAMP

Silva, Mariana Altenhofen da
Si38e Estudo das transições de fases da polpa de camu-camu (Myrciaria dubia (H.B.K.) Mc Vaugh) / Mariana Altenhofen da Silva. --Campinas, SP: [s.n.], 2004.
Orientadores: Theo Guenter Kieckbusch e Paulo José do Amaral Sobral.
Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Química.
1. Polpa de frutas. 2. Transições de fase. 3.
Calorimetria. 4. Frutas tropicais. 5. Vitamina C. 6.
Alimentos Conservação. I. Kieckbusch, Theo Guenter. II.
Sobral, Paulo José do Amaral. III. Universidade Estadual de Campinas. Faculdade de Engenharia Química. IV. Título.

Dissertação de Mestrado defendida por Mariana Altenhofen da Silva e aprovada em 26 de março de 2004 pela banca examinadora constituída pelos doutores:

Prof. Dr. Theo Guenter Kieckbusch - Orientador (DTF/FEQ/UNICAMP)

PAJohal

Prof. Dr. Paulo José do Amaral Sobral – Co-orientador (FZEA/USP)

Profa. Dra. Vânia Regina Nicoletti Telis (Titular) (DETA/IBILCE/UNESP)

LLHo

Profa. Dra. Flávia Maria Netto (Titular) (DEPAN/FEA/UNICAMP)

UNICAMP BIBLIOTECA CENTRAL SEÇÃO CIRCULANTE Este exemplar corresponde à versão final da Dissertação de Mestrado em Engenharia Química, defendida por Mariana Altenhofen da Silva e aprovada pela comissão julgadora em 26 de março de 2004.

She K

Prof. Dr. Theo Guenter Kieckbusch (Orientador)

"Ninguém é tão grande que não possa aprender, nem tão pequeno que não possa ensinar." (Albino Teixeira)

AGRADECIMENTOS

Ao Prof. Dr. Theo Guenter Kieckbusch, agradeço pela orientação, pelos ensinamentos transmitidos de forma clara e objetiva em todas as etapas deste trabalho e pela sua amizade, trangüilidade e franqueza.

Ao Prof. Dr. Paulo José do Amaral Sobral, meu co-orientador, pela dedicação, amizade e indispensável contribuição para a realização deste trabalho.

À CAPES, pela bolsa de mestrado concedida.

À FAEP pelo apoio financeiro.

À Universidade Estadual de Campinas, em especial aos colegas e professores da Faculdade de Engenharia Química.

Ao Laboratório de Tecnologia de Alimentos (LTA) da Faculdade de Zootecnia e Engenharia de Alimentos da Universidade de São Paulo (FZEA/USP) pela disponibilidade dos equipamentos.

À funcionária Ana Mônica Quinta Barbosa Habitante, do LTA/FZEA/USP, pelo auxílio indispensável na realização das análises no DSC e pela sua amizade e pronta disposição em ajudar. (Também à pequena Lívea que com sua trangüilidade permitiu que as análises fossem realizadas).

Ao Prof. Dr. Antônio José de Almeida Meirelles, do departamento de Engenharia de Alimentos da FEA/UNICAMP, por disponibilizar o liofilizador e em especial ao seu aluno de doutorado Elias pela grande ajuda na utilização do equipamento.

Aos colegas de Laboratório (LEPP): Pierre, Érica, Rosalinda, Marcelle, Nirse, Cibele, Uiram, Álvaro, Ronaldo, Rafaela e Tashima, pelos bons momentos.

Aos colegas do Laboratório de Tecnologia de Alimentos da FZEA/USP, de Pirassununga: Rose, Fernanda, Ednelí, Angélica, Rodolfo, Alessandra, Gustavo, Gisele e Maíra pela receptividade e agradável convivência.

iv

À todos os meus amigos, de perto e de longe, que contribuíram das formas mais variadas.

À minha família pelo amor e incentivo constante em todos os passos da minha vida.

Ao Reinaldo, pelo amor, carinho, companheirismo e por ter me encontrado nessa vida.

Ao meu anjo da guarda pela incansável proteção.

À DEUS, responsável por tudo, muito obrigado.

RESUMO

O Camu-camu (Myrciaria dubia (HBK) Mc Vaugh) é uma fruta nativa da Amazônia, tendo seu cultivo sido recentemente introduzido no Estado de São Paulo. Esta fruta é caracterizada pelo seu alto teor de vitamina C (3000mg/100g polpa). Atualmente a sua utilização está limitada à comercialização de polpa congelada para exportação. A crescente demanda comercial inferida pelas excelentes características nutricionais e sensoriais desta fruta requer avanços na aplicação da ciência e tecnologia para outras formas de processamento da mesma. Nesse contexto, o presente trabalho objetivou estudar as transições de fases e propriedades térmicas associadas, da polpa de camu-camu, utilizando calorimetria diferencial de varredura (DSC). Avaliou-se a influência da adição de crioestabilizantes em diferentes proporções na temperatura de transição vítrea da matriz maximamente congelada (Tg') da polpa. Um aumento de aproximadamente 18°C em T_g' foi observado na formulação contendo 30% (p/p) de maltodextrina DE 20. Construiu-se também o diagrama de estado completo para esta formulação assim como para a polpa natural (sem aditivos). Na região de baixa umidade $(a_w < 0.90)$ o modelo de Gordon-Taylor se ajustou bem aos pontos experimentais, evidenciando o efeito plastificante da água. Em conteúdos de umidade mais elevados ($a_w > 0,90$) a T_g tendeu a um valor aproximadamente constante, correspondendo a T_a' (-58,8°C e -40,1°C para a polpa de camu-camu liofilizada natural e para a formulação contendo 30% (w/w) de maltodextrina DE 20, respectivamente). As isotermas de adsorção de umidade, ajustadas pelo modelo de GAB, forneceram uma umidade da monocamada de 0,158 e 0,064 gH₂O/ g massa seca para a polpa de camu-camu natural e para a polpa de camu-camu com 30% de maltodextrina DE 20, respectivamente. O conjunto dessas informações deverá fornecer subsídios para uma melhor compreensão e definição das condições de processamento e armazenamento do camu-camu.

Palavras-chave: transição vítrea, calorimetria diferencial de varredura, fusão, diagrama de estado, camu-camu

ABSTRACT

Camu-camu (Myrciaria dubia (HBK) Mc Vaugh) is a native fruit from the Amazon Region, which has been recently cultivated in São Paulo State. The major appeal of this fruit is related with its high ascorbic acid content (up to 3000 mg/100g). The commercialization of camu-camu is limited to frozen pulp for exportation. The increasing commercial demand for this fruit, due to its excellent sensorial and nutritional characteristics, requires advances in food science and technology in order to improve its processing and uses. The objective of the present work was to study the phase transitions and associated thermophysical properties of frozen and freeze-dried camu-camu pulp, using differential scanning calorimetry (DSC). The influence of cryostabilizers addition at different proportions (w/w) on the glass transition temperature of the maximally concentrated phase (Tg') of camu-camu frozen pulp was evaluated. An increase of approximately 18°C on T_a' was observed for a formulation containing 30% (w/w) maltodextrin DE 20. The complete state diagram was composed for this formulation and for natural (without additives) freeze-dried pulp. At the low moisture content range ($a_w < 0.90$) Gordon-Taylor Equation adequately adjusted the experimental points, showing the plasticizing effect of water. In higher moisture contents ($a_w > 0.90$), the value of T_g remained practically constant around T_g ' (-58.8°C and -40.1°C for natural freeze-dried pulp and for the formulation containing 30% (w/w) maltodextrin DE 20, respectively). The adsorption isotherms followed GAB model and the monolayer moisture content was 0.158 e 0.064 gH₂O/ g (d.b.) for natural freeze-dried pulp and for the formulation containing 30% (w/w) maltodextrin DE 20, respectively. These results should provide useful information for a better understanding and definition of the processing and storage conditions for camu-camu pulp.

Keywords: glass transition, differential scanning calorimetry, melting, state diagram, camu-camu

SUMÁRIO

	PÁGINA
INDICE DE FIGURAS	XIII
ÍNDICE DE TABELAS	XVI
NOMENCLATURA	XVII
1. INTRODUÇÃO	1
2. REVISÃO BIBLIOGRÁFICA	3
2.1 Camu-camu	3
2.1.1 Dados botânicos e regiões de ocorrência	3
2.1.2 O camu-camu no Brasil	5
2.1.3 Usos e comercialização do camu-camu	5
2.1.4 Caracterização química	7
2.2 Atividade de água	10
2.2.1 Isotermas de sorção de vapor de água	
2.2.3 Modelos para o ajuste de isotermas de sorção	
2.3 Transições de fases	15
2.3.1 Determinação das transições de fases em alimentos	
2.3.1.1 Calorimetria diferencial de varredura (DSC)	19
2.4 Transição vítrea	21
2.4.1 Similaridade com a ciência dos materiais poliméricos sintéticos	; 21
2.4.2 Estado vítreo e transição vítrea	
2.4.3 Diagramas de Estado	23
2.4.4 Efeito plastificante da água	25
2.4.5 Estimativa do valor de T _g	
2.4.6 Efeito da composição na T _g	27
2.4.7 Efeito do peso molecular na Tg	
2.4.8 Importância do estado vítreo no armazenamento de produtos	
desidratados	29
2.4.9 Importância do estado vítreo para a estabilidade de alimentos	
congelados	
2.5 Tecnologia de criostabilização	

2.5.1 Crioestabilizantes e crioprotetores em alimentos	. 33
2.6 Interpretação dos eventos térmicos no DSC: Identificação de Tg'	. 37
3. MATERIAIS E MÉTODOS	. 39
3.1 Matéria-prima	. 39
3.2 Processamento	. 39
3.2.1 Seleção e limpeza	. 39
3.2.2 Branqueamento	.40
3.2.3 Obtenção da polpa	. 40
3.3 Análises químicas, físicas e físico-químicas	.41
3.3.1 Conteúdo de ácido ascórbico	.42
3.3.2 Conteúdo de umidade	. 42
3.3.3 Acidez titulável total	. 42
3.3.4 Açúcares redutores e não-redutores totais	. 42
3.3.5 Pectina	. 42
3.3.6 Sólidos solúveis totais	. 43
3.3.7 pH	. 43
3.3.8 Atividade de água	. 43
3.4 Preparo das amostras para a análise térmica	. 43
3.4.1 Preparo das formulações com aditivos	. 43
3.4.2 Amostras para a construção dos Diagramas de Estado	. 44
3.4.2.1 Liofilização	. 44
3.4.2.2 Isotermas de adsorção de vapor de água	. 44
3.4.2.3 Pontos da região de alta umidade	. 46
3.5 Análise térmica - Calorimetria diferencial de varredura (DSC)	. 46
3.6 Cálculo da fração de água não-congelável para a polpa de camu-camu	
natural e as formulações contendo aditivos	. 47
3.7 Relação entre T _g e isotermas de adsorção de vapor de água	. 48
3.8 Análises estatísticas	. 49
4. RESULTADOS E DISCUSSÕES	. 51
4.1 Caracterização da matéria-prima	.51
4.1.1 Caracterização do camu-camu em diferentes estádios de maturação	. 51
4.1.2 Caracterização do camu-camu maduro	. 54
4.2 Processamento da polpa de camu-camu	. 5 6

4.2.1 Processo de extração da polpa	. 56
4.2.2 Caracterização da polpa de camu-camu	. 56
4.3 Determinação das transições de fases para a polpa congelada de camu-	
camu e formulações contendo aditivos	. 59
4.4 Construção dos diagramas de estado	. 67
4.4.1 Liofilização da polpa de camu-camu	. 67
4.4.2 Isotermas de sorção de vapor de água	. 69
4.4.3 Transições de fases da polpa de camu-camu liofilizada natural e da	
polpa liofilizada com 30% de maltodextrina DE 20	.71
4.4.4 Diagrama de estado da polpa de camu-camu liofilizada natural e com	ł
30% de maltodextrina DE 20	. 78
4.4.5 Relação entre T_g e Isotermas de sorção de vapor de água	. 84
5. CONCLUSÕES E SUGESTÕES PARA PESQUISAS FUTURAS	. 87
6. REFERÊNCIAS BIBLIOGRÁFICAS	. 89
ANEXO A	101
ANEXO B	105
ANEXO C	107

.-

ÍNDICE DE FIGURAS

PÁGINA
Figura 2.1: a)Camu-camu; b)aspecto interno do fruto
Figura 2.2: Isoterma de sorção de vapor de água típica de um alimento 12
Figura 2.3: Tipos I, II, e III de isotermas de sorção de vapor de água 13
Figura 2.4: Mudanças nas propriedades termodinâmicas na transição de primeira ordem
Figura 2.5: Mudanças nas propriedades termodinâmicas na transição de segunda ordem
Figura 2.6: Representação esquemática do sistema de análise do DSC 20
Figura 2.7: Termograma esquemático do DSC 20
Figura 2.8: Diagrama de estado típico de sólidos alimentícios
Figura 2.9: Diagrama de estado de abacaxi liofilizado: T _g (\Box) e T _m (x) 24
Figura 2.10: Efeito da adição de maltodextrina na temperatura de transição vítrea (Tg) da sacarose
Figura 2.11: Variação da temperatura de transição vítrea T _g ', para soluções 20% (p/p) maximamente congeladas em relação a W _g ', para diversos carboidratos, ilustrando espectro de crioestabilizantes e crioprotetores. (Compostos localizados fora da área marcada exibem propriedades tanto de crioproteção como de crioestabilização)
Figura 2.12: Variação da temperatura de transição vítrea T _g ', para soluções 20% (p/p) maximamente congeladas em relação a \overline{M}_w (expresso como função de DE) para hidrolizados de amido comerciais
Figura 2.13: Termograma do DSC típico para uma solução de sacarose (20%), ilustrando os eventos térmicos entre -60 e 0°C
Figura 3.1: Centrífuga utilizada para a extração da polpa de camu-camu 40
Figura 3.2: Polpa de camu-camu congelada acondicionada em saco de polietileno
Figura 3.3: DSC TA 2010 47

Figura 4.1: Polpa de camu-camu extraída sem a casca (direita) e com a casca (esquerda)
Figura 4.2: Curvas do DSC para polpa de camu-camu natural e formulações 60
Figura 4.3: Visão ampliada (zoom) de T _g ' para polpa de camu-camu natural e formulações
Figura 4.4: Influência das concentrações de sacarose e maltodextrina DE 20 na T _g das formulações
Figura 4.5: Entalpia de fusão de gelo em função do conteúdo de umidade das amostras
Figura 4.6: Polpa de camu-camu liofilizada natural (sem aditivos) e com 30% de maltodextrina DE 20
Figura 4.7: Isoterma de adsorção de vapor de água a 25°C: (△) polpa de camu- camu natural, (◆) polpa de camu-camu liofilizada com 30% (p/p) de maltodextrina DE 20
Figura 4.8: Curvas do DSC da polpa de camu-camu natural liofilizada na região de baixa <i>a</i> _w
Figura 4.9: Curvas do DSC da polpa de camu-camu liofilizada com 30% (p/p) de maltodextrina DE 20 na região de baixa a _w
Figura 4.10: Curvas do DSC da polpa de camu-camu natural liofilizada na região de aw intermediária
Figura 4.11: Curvas do DSC da polpa de camu-camu liofilizada com 30% (p/p) de maltodextrina DE 20: (a) $a_w = 0,903$ e $X_w = 0,300$
Figura 4.12: Curvas do DSC da polpa de camu-camu natural liofilizada na região de alta a _w
Figura 4.13: Curvas do DSC da polpa de camu-camu liofilizada com 30% (p/p) de maltodextrina DE 20 na região de alta <i>a</i> _w
Figura 4.14: Diagrama de estado para a polpa de camu-camu natural liofilizada 78
Figura 4.15: Diagrama de estado para a polpa de camu-camu liofilizada com 30% (p/p) de maltodextrina DE 20
Figura 4.16: Entalpia de fusão de gelo em função do conteúdo de umidade (polpa de camu-camu liofilizada natural)
Figura 4.17: Entalpia de fusão de gelo em função do conteúdo de umidade (polpa de camu-camu liofilizada com 30% (p/p) de maltodextrina DE 20)

Figura A.1: Termogramas representativos do DSC para as soluções 10% (p/p) de: (a) ácido ascórbico, (b) ácido cítrico, (C) ácido ascórbico:ácido cítrico (1:1,33). 102

Figura B.1: Termogramas das amostras de maltodextrina DE 20..... 106

ÍNDICE DE TABELAS

PÁGI	NA
------	----

Tabela 2.1: Concentração de ácido ascórbico em acerola e camu-camu
Tabela 2.2: Composição química da polpa de camu-camu9
Tabela 2.3: Valores de T _g ' para substâncias puras e produtos alimentícios 32
Tabela 3.1: Atividades de água das soluções saturadas de sais a 25ºC 45
Tabela 4.1: Caracterização do camu-camu inteiro em três estágios de maturação
Tabela 4.2: Acidez titulável total, sólidos solúveis totais (SST), pH e relação brix/acidez em três estágios de maturação do camu-camu
Tabela 4.3: Conteúdos de umidade e ácido ascórbico de diferentes partes do camu-camu maduro
Tabela 4.4: Resultados da caracterização da polpa de camu-camu
Tabela 4.5: Atividade de água (<i>a_w</i>), conteúdo de umidade (X _w), sólidos solúveis totais, acidez titulável total e conteúdo de ácido ascórbico da polpa de camu-camu e formulações
Tabela 4.6: Valores de T _g ', T _m , Δ H _m e Wg' para a polpa de camu-camu natural e formulações contendo aditivos
Tabela 4.7: Balanço de massa de sólidos totais e ácido ascórbico na liofilização da polpa de camu-camu natural e com 30% de maltodextrina DE 20
Tabela 4.8: Parâmetros estimados pelo modelo de GAB para a polpa de camu- camu liofilizada natural (sem aditivos) e com 30% (p/p) de maltodextrina DE 20 71
Tabela 4.9: Propriedades de fases antes e após a operação de annealing 76
Tabela 4.10: Parâmetros de ajuste da Equação de Gordon-Taylor 80
Tabela A.1: Valores de X _w , T _g ', T _m , Δ H _m e W _g ' para soluções 10% (p/p) de ácido ascórbico (AA), ácido cítrico (AC) e um mistura dos dois ácidos (AA:AC) na proporção de 1:1,33
Tabela B.1: Valores de X _w , T _g , T _m , Δ H _m e W _g ' para amostras de maltodextrina DE 20 em vários conteúdos de umidade

NOMENCLATURA

a_w	Atividade de água	***
۸Ċ'n	Variação da capacidade calorífica	J/gK
ΔH	Variação da entalpia	J/g
ΔΥ	Variação no fluxo de calor	mŴ
AA	Ácido ascórbico	
AC	Ácido cítrico	*****
CGAB	constante na equação de GAB	
Cn	Capacidade calorífica	J/gK
G	Energia livre de Gibbs	J/g
Н	Entalpia	J/g
k	Constante na Equação de Gordon-Taylor	
kg	Constante na Equação de Fox & Flory	
KGAB	Constante na equação de GAB	
М	Peso molecular	g/mol
\overline{M}_{w}	Peso molecular médio	g/mol
m	Massa	g
n ₁	Número de moles do soluto	mol
n ₂	Número de moles do solvente	mol
Р	Pressão	Pa
р	Nível de probabilidade	%
Pfruta	Peso de fruta	g
P°w	Pressão de vapor de saturação da água pura	Pa
P _{polpa}	Peso da polpa obtida	g
Pw	Pressão de vapor da água no produto	Pa
q	Constante na Equação de Kwei	
R	Constante dos gases	J/molK
r ²	Coeficiente de correlação	
r _{sc}	Taxa de variação da temperatura	K/s
S	Entropia	J/g
Т	Temperatura	K ou °C
T _{g∞}	Temperatura de transição vítrea para peso molecular	K ou °C
	infinito	
T _g '	Temperatura de transição vítrea da matriz maximamente	K ou °C
	congelada	
URE	Umidade relativa de equilíbrio	%
V		m
₩ _g ´	Fração mássica de agua não-congelavel nos solidos	g/g
X	Fração mássica	g/g
Xg	rração mássica de agua não-congelavel na matriz	g/g
	maximamente congelada Erooão molor do soluto	
Xw	Fração moiar do soluto	

Letras gregas

α	Coeficiente de expansão térmica	
β	Coeficiente de compressibilidade	
η	Viscosidade	Pa.s

Subscritos

(c	Crítica
	d	Devitrificação
(e	Equilíbrio
1	fw	Água Congelável
1	g	Transição Vítrea
ļ	m	Fusão Material Monocamada Mistura
	-	Fotodo Dodrão Rofosância
	0	estado Fadrao, Reierencia
	S	Solidos
	ufw	Agua Não-Congelável
-	w	Água

CAPÍTULO 1

INTRODUÇÃO

O camu-camu (*Myrciaria dubia* (H.B.K.) Mc Vaugh) é uma fruta silvestre nativa da bacia amazônica, cuja importância está relacionada ao seu elevado teor de ácido ascórbico, podendo chegar a 3000mg/100g, sendo esta a maior fonte de vitamina C natural conhecida atualmente (Andrade, 1991).

Devido ao grande potencial econômico, esta fruta vem despertando interesse de pesquisadores e agricultores. As pesquisas abrangem aspectos agronômicos, biológicos e tecnológicos da fruta. Atualmente o camu-camu está sendo cultivado no interior de São Paulo, na Região do Vale do Ribeira e na Região de Mirandópolis. O seu plantio em terra firme tem se mostrado promissor e economicamente viável.

Sua comercialização atual está limitada à forma de polpa congelada. A crescente demanda comercial por esta fruta faz necessário o melhoramento do aproveitamento tecnológico da mesma. O estudo das transições de fase será de grande utilidade para se estabelecer e monitorar os parâmetros de processamento e da estabilidade no armazenamento da polpa de camu-camu congelada e desidratada.

Um aspecto fundamental no desenvolvimento de novos produtos é o conhecimento de parâmetros que definem a estabilidade (vida de prateleira) dos mesmos. O conceito da atividade de água, amplamente utilizado para estabelecer esses limites, vem sendo complementado a partir da década de 90, pelo da transição vítrea, promovendo assim uma abordagem integrada do papel da água, em especial em estados de não-equilíbrio de alimentos desidratados e congelados (Slade & Levine, 1991a). Em tais alimentos, as mudanças dinâmicas podem ser influenciadas por propriedades cinéticas e podem ser melhor

explicadas através da transição vítrea do que somente pela atividade de água.

A temperatura de transição vítrea é considerada um parâmetro limite importante na estabilidade de armazenamento e qualidade de produtos alimentícios, pois diversas transformações estruturais dependentes do tempo, como colapso, pegajosidade e aglomeração em produtos desidratados, bem como o aumento das taxas das reações controladas por difusão, podem ocorrer acima da T_a (Roos, 1995b).

Neste sentido a presente pesquisa teve como objetivo avaliar a influência da adição de maltodextrina DE 20 e sacarose na temperatura de transição vítrea e propriedades termofísicas associadas a ela, da polpa de camu-camu congelada, bem como determinar o diagrama de estado completo para a polpa de camu-camu liofilizada com e sem aditivos.

Na revisão bibliográfica (Capítulo 2) são abordadas as principais características do camu-camu, sua utilização e composição química. Posteriormente, são considerados os conceitos de atividade de água e aspectos envolvidos nas transições de fases em alimentos, em especial na transição vítrea. A importância da transição vítrea para alimentos desidratados e congelados bem como os princípios da tecnologia de crioestabilização também são ressaltados neste capítulo.

No Capítulo 3 estão descritas, primeiramente, as metodologias utilizadas na caracterização da matéria-prima, no processo de obtenção da polpa de camucamu congelada e liofilizada, e na preparação das amostras para as análises térmicas por calorimetria diferencial de varredura (DSC). Em seguida, descreve-se o procedimento operacional da análise no DSC.

No Capítulo 4 são apresentados e discutidos os resultados experimentais deste trabalho. Finalizando, no Capítulo 5 estão listadas as conclusões obtidas.

CAPÍTULO 2

REVISÃO BIBLIOGRÁFICA

2.1 Camu-camu

2.1.1 Dados botânicos e regiões de ocorrência

O camu-camu (*Myrciaria dubia (H.B.K)* Mc Vaugh) pertence à família das Myrtaceae e ao gênero Myrciaria, sendo esta uma espécie silvestre nativa da bacia amazônica, cuja domesticação está em andamento (Dib Taxi, 2001).

O camu-camu cresce de forma natural às margens de rios e lagos da Amazônia Brasileira e Peruana, porém a maior concentração natural encontra-se na Amazônia Peruana, ao longo dos rios Ucayali e Amazonas e seus afluentes. Sua área de distribuição no Brasil estende-se desde a região central do Estado de Pará, nos rios Tocantins e Trombetas; no Estado do Amazonas, em Manaus, Manacapuru e nos rios Javari, Madeira e Negro; no Estado de Rondônia, em Araquimes e Ji-Paraná, nos rios Maçangana e Urupê, respectivamente; em Roraima, nas margens de lagos naturais junto ao rio Cauamê e no Maranhão, na região Pré-Amazônica Tocantiniana (Andrade, 1991; Chavez, 1993; Villachica, 1997; Fieam, 2002).

A denominação camu-camu é usada no Peru. Em Manaus, Amazônia Ocidental e Amazônia Central, também é conhecido por caçari; em Rondônia recebe o nome de araçá-d'água, e no Maranhão, de crista de galo.

Existem dois tipos de camu-camu: o arbustivo e o arbóreo. O arbustivo é o mais difundido na região amazônica, crescendo nas margens de rios e lagos de águas escuras com parte do seu tronco submerso até uma altura de 30 a 40% de sua estatura total, podendo permanecer submerso em água por até cinco meses

(Andrade, 1991). Segundo Villachica (1997), a espécie arbórea (*Myrciaria Sp*) apresenta um conteúdo de vitamina C inferior ao da arbustiva (*Myrciaria dubia*), além de outras características como cor do fruto mais intensa (roxo-marrom) e tamanho maior dos frutos.

O camu-camu é uma planta perene. Sua produção se inicia no terceiro ou quarto ano após o plantio definitivo, e varia entre 10 a15 t/ha/ano se corretamente manejada (Chavez Flores, 1988). Em plantações realizadas em terra firme de boa drenagem, longe da influência de inundações, a safra principal ocorre nos meses de dezembro a março, com uma safra secundária nos meses de maio a julho, dependendo da localização geográfica da planta (Villachica, 1997; Andrade, 1991). Chavez Flores (1988) afirma que janeiro e fevereiro são os meses de maior produção. No estado silvestre, o camu-camu tem apenas um período de safra, que vai de dezembro a março.

O camu-camu é um arbusto com altura média de 3m podendo alcançar até 8m (Andrade, 1991; Dib Táxi, 2001). O fruto é uma baga globosa (Figura 2.1a), de diâmetro situado entre 10 e 32 mm e casca de coloração variando de vermelha até violeta. A polpa é amarelada (Figura 2.1b) envolvendo de 1 a 4 sementes de 8 a 15 mm de largura, aplanadas e cobertas por uma lâmina de fibrilas brancas (Ruiz,1994).

Figura 2.1: a)Camu-camu; b)aspecto interno do fruto (BRASIL, 2003)

2.1.2 O camu-camu no Brasil

O camu-camu, embora ainda pouco conhecido e difundido entre a população brasileira, vem sendo estudado desde 1980 por pesquisadores do Instituto Nacional de Pesquisas da Amazônia (Inpa), com o objetivo de viabilizar comercialmente seu cultivo. As pesquisas abrangem aspectos agronômicos, biológicos e tecnológicos da fruta (Yuyama, 2003). Da mesma forma, o camu-camu começou a ser plantado há aproximadamente uma década, pela Estação Experimental de Citricultura do Instituto Agronômico de São Paulo.

O plantio do camu-camu em terra firme, em solos adubados com boa drenagem tem se mostrado promissor e economicamente viável. Esse conjunto de fatores possibilita também a colheita do fruto o ano inteiro e ainda promove a adaptação do camu-camu para as regiões Sul, Sudeste e Centro-Oeste (BRASIL, 2002).

São Paulo parece ser o único estado brasileiro que já demonstrou sensibilidade para o grande potencial de consumo dessa fruta. O camu-camu já está sendo comercializado na CEAGESP de São Paulo, sendo os frutos provenientes da região do Vale do Ribeira e de Mirandópolis.

No Vale do Ribeira, o plantio de camu-camu tem se mostrado promissor em cultivo fora das várzeas. Por se tratar de uma região de mangues, com clima quente e úmido, semelhante ao da Amazônia, observa-se uma ótima adaptação da planta, embora algumas pesquisas demonstraram que os frutos apresentam um teor de ácido ascórbico inferior ao da planta nativa e que são susceptíveis a pragas (Yuyama, 2003).

No município de Registro/SP, o cultivo já alcançou um estágio semicomercial, destacando-se uma plantação superior a 4000 pés. Outras microregiões, como Biguá e Iguape, também cultivam o camu-camu.

2.1.3 Usos e comercialização do camu-camu

Na Amazônia brasileira o camu-camu é utilizado pelos índios principalmente como isca para pesca e como indicador de fartura localizada de

peixes na época de queda dos frutos, sendo estes os principais dispersores das sementes (Andrade, 1991).

Na Amazônia peruana, o camu-camu é utilizado no preparo de refrescos, sorvetes, picolés, sucos, geléias, doces, licores ou como ingrediente para conferir sabor a tortas e sobremesas. Segundo Villachica (1997), tem havido uma demanda crescente por polpa de camu-camu para a produção de bebidas denominadas "bebidas saudáveis", em lanchonetes e grandes centros comerciais do Brasil.

Para o processamento da fruta deve-se utilizar, além da polpa, também a casca, pois esta contém as antocianinas, pigmentos que conferem uma atraente coloração púrpura característica ao suco e contribui também, para elevar o teor de vitamina C, que é cerca de 2 a 2,5 vezes maior do que o teor encontrado na polpa (Ruiz,1994). Deve-se ter cuidado para não danificar a semente durante o processamento, podendo resultar em uma polpa de sabor amargo (Dib Taxi, 2001).

A fruta é processada e transportada em forma de polpa congelada, porque quando madura é muito perecível *in natura*, podendo fermentar rapidamente.

As excelentes características sensoriais e nutricionais atribuídas ao camucamu, demonstram o grande potencial econômico desta fruta (Villachica, 1997; Justi *et al.*, 2000). O camu-camu é de interesse tanto para a indústria alimentícia para a fabricação de polpas, sorvetes, geléias etc, como para a industria farmacêutica – para o uso em produtos cosméticos como xampus e cremes hidratantes, e sobretudo como antioxidante (Yuyama, 2003).

Mercados internacionais como Japão, Estados Unidos e Europa já importam a fruta na forma de polpa congelada, sendo o Japão o principal importador. Nos Estados Unidos, o camu-camu é utilizado principalmente na fabricação de cápsulas de vitamina C, para atender o mercado de produtos naturais (Dib Taxi, 2001; BRASIL, 2003).

Atualmente, a demanda internacional de polpa congelada chega a 20.000 t métricas/ano, sendo o Peru o principal país exportador (Yuyama, 2003). No entanto, a demanda nacional e internacional da fruta já é maior do que a

oferta, ressaltando a necessidade de expansão do cultivo do camu-camu em terra firme.

Processos de concentração ou desidratação da polpa de camu-camu, visando a manutenção dos seus atributos nutricionais e sensoriais, podem representar alternativas tecnológicas para o melhor aproveitamento desta fruta. Uma pesquisa realizada na Faculdade de Engenharia de Alimentos da Unicamp, viabilizou a produção de suco de camu-camu desidratado por atomização. O processo utilizou maltodextrina e goma arábica como agentes encapsulantes (Dib Táxi, 2001). Arévalo (2002) estudou o armazenamento de polpa de camu-camu liofilizada. Em outro trabalho, Rodrigues *et al.* (2004) produziram suco de camu-camu concentrado (60°Brix) por osmose inversa o qual apresentou características sensoriais e nutricionais muito semelhantes às da polpa original.

2.1.4 Caracterização química

A importância nutricional do camu-camu está relacionada principalmente ao seu elevado teor de ácido ascórbico, superior, até ao da acerola, conhecida por apresentar teores dessa vitamina superiores ao apresentado por grande parte das frutas conhecidas (Andrade, 1991; Aragão *et al.*,1996).

Diversos estudos foram realizados para se determinar a composição química do camu-camu, porém os resultados apresentam muita divergência entre si, principalmente no que diz respeito ao conteúdo de ácido ascórbico. Essas diferenças podem ser resultantes do tipo de metodologia empregada ou, mais provavelmente, do tempo e dos processos pós-colheita aos quais a fruta foi submetida, até o momento da determinação. Outros fatores como condições climáticas, tipo de solo e estágio de maturação também podem afetar o conteúdo de vitamina C da fruta (Andrade, 1991).

Pela Tabela 2.1 pode-se observar que cada 100g de camu-camu (frutos inteiros) contém 1100 mg de ácido ascórbico, contra 1040 mg na acerola. Na polpa de camu-camu encontra-se 1890 mg/100g de polpa (Aragão *et al.*, 1996). Os frutos utilizados eram provenientes do INPA de Manaus.

Andrade (1991), determinou a variação do conteúdo de ácido ascórbico durante o amadurecimento de camu-camu procedente de plantas em adaptação às condições de terra firme cultivadas na Estação Experimental de Fruticultura Tropical do INPA (Manaus, AM) e constatou que este variava entre 2490mg/100g e 3133mg/100g de polpa, durante a maturação.

Tapela Z. F. Concentração de ácido ascorpico em aceroia e camu-ca

Fruta	Total de suco	Total de ácido ascórbico (g)		
France	obtido	polpa	rejeitos	fruta
Acerola (1Kg)	480 mL ou 495 g	7,80 ± 0,39	2,60 ± 0,21	10,40
Camu-camu (1Kg)	455 mL ou 467.3 g	8,85 ± 0,29	$\textbf{2,15} \pm \textbf{0,20}$	11,00

(Aragão et al., 1996)

Em outro trabalho, Zapata & Dufour (1993), apresentaram um estudo detalhado sobre a composição química do camu-camu em três estágios de maturação. A fruta utilizada era proveniente de Iquitos/Peru e os valores encontrados para ácido ascórbico foram baixos, correspondendo a 845, 939 e 939 mg/100g de polpa para a fruta verde, semi-madura e madura respectivamente.

Em estudo recente, Arévalo (2002) obteve uma concentração de ácido ascórbico de 1490 mg/100g de polpa, para camu-camu proveniente do município de Registro/SP, o qual foi semelhante ao valor encontrado por Dib Taxi (2001), (1430 mg/100g de polpa) em frutos provenientes de Manaus. Ambos utilizaram a mesma metodologia de análise.

A Tabela 2.2 apresenta a composição química da polpa fresca de camucamu (Andrade, 1991). Pode-se verificar que o camu-camu apresenta um alto teor de ácido cítrico (2,84%), porém contribui discretamente com proteínas e carboidratos.

O elevado valor de acidez titulável, caracteriza o camu-camu como uma fruta de sabor ácido, sendo esta similar à acidez encontrada em pomelo (2,2%) e inferior à acidez do limão (5,0%) (Biale, 1960). A elevada acidez, o baixo valor da relação brix/acidez e pH limitam o consumo do camu-camu na forma *in natura*,

porém estas características são desejáveis no processamento de polpa e sucos (Villachica, 1997; Franco & Shibamoto, 2000).

Os principais pigmentos presentes no camu-camu são as antocianinas, responsáveis pela coloração vermelho-púrpura do fruto maduro (Andrade, 1991). A maior concentração de pigmentos localiza-se na casca, difundindo-se para a polpa por ruptura celular decorrente de processos de congelamento-descongelamento ou dilaceração mecânica, propiciando a obtenção de uma polpa com coloração vermelho-púrpura, atraente e característica desta fruta.

Componente	Resultado
Umidade (g H ₂ O/100g polpa)	91,81
рН	3,00
Acidez titulável (g ácido cítrico/100g polpa)	2,83
Sólidos solúveis (^o Brix)	7,00
Relação brix/acidez	2,47
Ácido ascórbico (mg AA/100g polpa)	2768,17
Açúcares redutores totais (g glicose/100g polpa)	3,02
Açúcares não-redutores (g sacarose/100g polpa)	ND
Pectina total (g/100g polpa)	0,23
Proteína (g/100g polpa)	0,52
Carotenóides totais (mg/100g polpa)	0,160
Antocianinas (Abs. 535 nm/g polpa)	0,362
Potássio (mg/100g polpa)	78,62
Cálcio (mg/100g polpa)	4,37
Fósforo (mg/100g polpa)	9,01
Magnésio (mg/100g polpa)	3,28

Tabela 2.2: Composição química da polpa de camu-camu

(Andrade, 1991)

Vários fatores influenciam a estabilidade das antocianinas incluindo pH, temperatura, bem como a presença de acido ascórbico, açúcares, íons metálicos e co-pigmentos (Jackman *et al.*, 1987). As antocianinas têm grande estabilidade sob condições ácidas, porém degradam-se através de uma série de mecanismos formando primeiramente um produto descolorido seguido de compostos insolúveis de coloração castanho.

2.2 Atividade de água

A água está presente nos alimentos como parte de sua constituição ou pode ser adicionada durante o processamento, podendo influenciar as características físicas e de textura do produto bem como a sua estabilidade química (Chirife & Buera, 1995; Labuza & Hyman 1998).

O controle da água nos alimentos é de importância primordial para o entendimento das relações físico-químicas da água com os vários componentes dos alimentos.

No entanto, foi observado que vários tipos de alimentos com o mesmo conteúdo de umidade diferem significativamente na sua perecibilidade (Fennema, 1996; Rahman & Labuza, 1999). Sendo assim, o conteúdo de umidade isoladamente não é capaz de descrever completamente a cinética das mudanças dinâmicas que ocorrem em sistemas alimentícios.

O conceito de atividade de água, a_w , uma propriedade termodinâmica dependente da temperatura, introduzido por W.J. Scott em 1953 (Troller, 1989; Troller, 1991), relaciona a maneira como a água se encontra ligada ao alimento e não somente a quantidade de água contida no mesmo (Barbosa-Canovas & Vega-Mercado, 1996; Maltini *et al.*, 2003). Desde então a atividade de água vem sendo utilizada como uns dos principais fatores para a quantificação da qualidade, funcionalidade e textura dos alimentos (Lilley & Sutton, 1991).

A partir dos anos 70, a atividade de água passou a ser considerada como uma ferramenta fundamental no controle da estabilidade de alimentos desidratados e de umidade intermediária (Bell & Labuza, 1991). Evidenciou-se que as principais reações deteriorativas que ocorrem em sistemas alimentícios, como modificações físico-químicas, o crescimento de microrganismos e reações

químicas e enzimáticas são influenciadas pela disponibilidade termodinâmica da água (ou "atividade de água") (Labuza, 1975; Hossain *et al.*, 2001).

A nível termodinâmico, a atividade de água se enquadra no conceito de atividade química e segundo G. Lewis é uma razão de fugacidades. Nas condições práticas do processamento de alimentos, o indicador do grau de disponibilidade da água que envolve um alimento pode ser calculado pela relação entre a pressão de vapor de água (P_w) no produto e a pressão de vapor de saturação da água livre (P^o_w) na mesma temperatura (Troller, 1989; Aguirre & Filho, 1999). De acordo com a Lei de Raoult, o abaixamento da pressão de vapor de um sistema ideal é igual à fração molar do soluto (x_w), como conseqüência, a atividade de água também é dependente do número de moles do soluto (n₁) e do solvente (n₂) como mostra a Equação 2.1. Para sistemas não-ideais, a atividade de água é igual a γ_w . x_w, sendo γ_w o coeficiente de atividade.

$$a_{w} = \frac{P_{w}}{P_{w}^{o}} = \frac{n_{1}}{n_{1} + n_{2}} = x_{w}$$
(2.1)

Quando o alimento está em equilíbrio com o ambiente que o cerca, a a_w pode ser relacionada com a umidade relativa de equilíbrio (URE) do ambiente (Equação 2.2) (Troller, 1989).

$$a_{w} = \frac{URE(\%)}{100}$$
 (2.2)

Essa relação permite prever como os alimentos irão ganhar ou perder água quando forem expostos a diferentes umidades relativas.

2.2.1 Isotermas de sorção de vapor de água

Para se estudar o comportamento de um produto alimentício em uma ampla faixa de umidades relativas, é necessário a determinação da sua isoterma de sorção (Mathlouthi, 2001). Estas isotermas fornecem informações sobre os mecanismos de sorção e a interação dos biopolímeros com a água, sendo, portanto, amplamente utilizadas na literatura, assim como nas aplicações práticas para a caracterização do material (Van den Berg, 1984, Alhamdan & Hassan, 1999).

A isoterma de sorção de vapor de água (Figura 2.2) consiste na representação gráfica da relação entre o conteúdo de umidade (X_w) de um alimento e a atividade de água (a_w) do mesmo, em uma dada temperatura, estabelecendo-se assim a interação entre esses dois parâmetros (Rahman & Labuza, 1999; Prothon & Ahrné, 2004).

Figura 2.2: Isoterma de sorção de vapor de água típica de um alimento (Aguirre & Filho, 1999)

As isotermas de sorção são normalmente divididas em três regiões distintas I, II e III, representando as diferentes formas de ligação da água no alimento. A Região I ($0 < a_w < 0.25$) corresponde à umidade da monocamada, onde as moléculas de água estão ligadas ao produto por fortes pontes de hidrogênio; esta água não congela e dificilmente é eliminada em processos de secagem. Na Região II ($0.25 < a_w < 0.6$), a água encontra-se mais fracamente ligada, estando adsorvida por capilaridade em camadas adicionais acima da monocamada. Na Região III ($a_w > 0.6$), a água está presente em grandes capilares e encontra-se disponível para reações químicas e crescimento microbiano sendo conhecida como água livre ou água de solvatação (Labuza, 1968; Mathlouthi, 2001).

As isotermas de adsorção e desorção (Figura 2.2) de alimentos

geralmente não se sobrepõem, e o fenômeno, representado pela diferença entre as duas curvas é conhecido como histerese (Fennema, 1996; Mathlouthi, 2001; Prothon & Ahrné, 2004).

A forma da isoterma de sorção pode variar de acordo com o tipo de produto e a sua afinidade com a água. Brunauer *et al.* (1938) descreveram cinco tipos de isotermas de sorção de umidade. Os Tipos I, II e III (Figura 2.3) são os mais comuns em alimentos.

(Roos, 1995b)

O Tipo I é típico para sólidos capilares e agentes *anticaking*, resultando na retenção de grandes quantidades de água em baixa atividade de água. O Tipo II, possui um formato sigmoidal e é característico de sistemas heterogêneos complexos, como por exemplo, alimentos fibrosos. A curva sigmoidal é resultante da combinação dos efeitos coligativos, efeitos capilares e interações da água superficial (Rahman & Labuza, 1999). O Tipo III é típico de substâncias pouco higroscópicas ou cristalinas puras (ex. sacarose) e indica pouco ganho de umidade até que a atividade de água alcance a situação na qual a água começa a dissolver os cristais na superfície do material (Bell & Labuza, 1991; Roos, 1993b).

2.2.3 Modelos para o ajuste de isotermas de sorção

Devido a grande utilidade das isotermas de sorção na prevenção e controle da estabilidade de alimentos (Sá *et al.*, 1999), mais de 200 equações empíricas e semi-empíricas têm sido propostas para o ajuste de isotermas de produtos alimentícios (Chirife & Iglesias, 1978; Boquet *et al.*, 1979; Van den Berg & Bruin, 1981; Prothon & Ahrné, 2004).

A equação de Guggenheim–Anderson–de Boer (GAB) tem sido aplicada com sucesso para uma grande variedade de alimentos (Van den Berg, 1984), sendo recomendada pelo projeto europeu *COST 90 on Physical Properties of Foods* (Van den Berg & Bruin, 1981; Alhamdan & Hassan, 1999; Al-Muhtaseb *et al.*, 2004). Este modelo, baseado na teoria de Brunauer-Emmett-Teller (BET), é considerado o mais versátil dos modelos físicos disponíveis na literatura pois tem a capacidade de descrever satisfatoriamente a isoterma de sorção de materiais biológicos em uma ampla faixa de atividade de água (0,1 – 0,9) (Maroulis *et al.*, 1988; Chirife & Iglesias, 1995).

O modelo de GAB (Equação 2.3) tem três constantes com significado físico, sendo duas delas funções da temperatura.

$$X_{w} = \frac{C_{GAB} \ k_{GAB} \ X_{m} \ a_{w}}{(1 - k_{GAB} \ a_{w})(1 - k_{GAB} \ a_{w} + C_{GAB} \ k_{GAB} \ a_{w})}$$
(2.3)

onde: X_w é o conteúdo de umidade do material em base seca (g H₂O/g sólido seco), a_w é a atividade de água, X_m é o conteúdo de umidade (base seca) da monocamada, C_{GAB} (Equação 2.4) e k_{GAB} (Equação 2.5) são constantes relacionadas ao calor de sorção da monocamada e multicamada, respectivamente.

$$C_{GAB} = C_o \exp\left(\Delta H_1 / RT\right) \tag{2.4}$$

$$k_{GAB} = k_o \exp\left(\Delta H_2 / RT\right) \tag{2.5}$$

sendo: T a temperatura absoluta (K), R a constante dos gases (R= 8.31 kJKmol⁻¹K⁻¹), e Δ H₁ (Equação 2.6), Δ H₂ (Equação 2.7) funções do calor de sorção da água:

$$\Delta H_1 = H_m - H_n \tag{2.6}$$

$$\Delta H_2 = H_l - H_n \tag{2.7}$$

Nas Equações 2.6 e 2.7, H_m e H_n são os calores de sorção da monocamada e das multicamadas de água, respectivamente, e H_I é o calor de condensação do vapor de água em uma dada temperatura (kJ kmol⁻¹). C_o e k_o são constantes ajustadas para o efeito da temperatura (Maroulis *et al.*, 1988).

2.3 Transições de fases

Alimentos são sistemas complexos que podem sofrer várias mudanças de fase e de estado. Normalmente essas transições são o resultado de mudanças na composição ou na temperatura durante o processamento ou armazenamento (Roos, 1995b).

A definição termodinâmica de transição de fase baseia-se em mudanças observadas na energia livre de Gibbs (G) e suas funções derivadas na temperatura de transição (Wunderlich, 1981). Segundo Ehrenfest (1933) as transições de fases podem ser classificadas em transições de primeira ordem, de segunda ordem e ordens maiores (Roos, 1998). A ordem da transição se refere à ordem da menor derivada da energia livre de Gibbs na qual uma descontinuidade no ponto de transição é observada (Craig *et al.*, 1999).

Transições de primeira ordem são aquelas em que as primeiras derivadas da energia livre de Gibbs, definidas pelas Equações 2.8, 2.9 e 2.10, apresentam descontinuidade com a variação da temperatura.

$$\left[\frac{\partial (G/T)}{\partial (1/T)}\right]_{P} = H$$
(2.8)

$$\left[\frac{\partial G}{\partial T}\right]_{P} = -S \tag{2.9}$$

$$\left[\frac{\partial G}{\partial P}\right]_{T} = \overline{V}$$
(2.10)

Onde G é a energia livre de Gibbs, T temperatura, H entalpia, S entropia, V volume específico e P pressão.

Conseqüentemente observa-se uma mudança brusca na entalpia, entropia e volume específico no entorno da temperatura de transição (Figura 2.4), e a capacidade calorífica (C_p ou C_v) apresenta um valor infinito (Roos,1995b). As transições que envolvem mudanças de fase entre os três estados físicos básicos, ou seja, sólido-líquido-gás, são transições de primeira ordem. Em alimentos, além da fusão, vaporização, condensação e sublimação da água, podem ocorrer também a cristalização de açúcares, fusão de lipídeos, gelatinização do amido e desnaturação protéica entre outros exemplos (Roos,1995b, Roos,1998).

As transições de fase de primeira ordem são fenômenos que envolvem calor latente. Praticamente, todas as transições de primeira ordem em alimentos são fenômenos endotérmicos, com exceção da cristalização, que é exotérmica.

Figura 2.4: Mudanças nas propriedades termodinâmicas na transição de primeira ordem (Roos, 1995b)

Transições de segunda ordem são termodinamicamente definidas como aquelas em que as segundas derivadas da energia livre de Gibbs, definidas pelas Equações 2.11, 2.12 e 2.13, exibem descontinuidade na temperatura de transição. Na transição de segunda ordem a entalpia, a entropia e o volume das duas fases são os mesmos na temperatura de transição (Figura 2.5). Conseqüentemente, uma transição de segunda ordem não envolve calor latente de mudança de fase.

$$\left(\frac{\partial^2 G}{\partial T^2}\right) = \frac{-C_p}{T}$$
(2.11)

$$\left(\frac{\partial^2 G}{\partial p \partial T}\right) = V\alpha \tag{2.12}$$

$$\left(\frac{\partial^2 G}{\partial p^2}\right) = -V\beta \tag{2.13}$$

Onde α é o coeficiente de expansão térmica e β o coeficiente de compressibilidade. Assim, determinações experimentais de capacidade calorífica e da expansão térmica podem ser utilizadas para localizar temperaturas de transições de segunda ordem (Roos, 1995b; Roos, 1998).

Figura 2.5: Mudanças nas propriedades termodinâmicas na transição de segunda ordem (Roos, 1995b)

Reações de terceira ordem ou ordens maiores não são encontradas em alimentos (Roos, 1995b).

A transição vítrea é geralmente considerada uma transição de fase de segunda ordem, embora haja controvérsias (Wunderlich, 1981). Vários autores

Capítulo 2 - Revisão Bibliográfica

consideram que a transição vítrea é uma pseudo-transição de segunda ordem porque na prática, ela depende da taxa de aquecimento (ou resfriamento) do material, isto é, pode apresentar caráter cinético; pela observação de histerese quando a temperatura de transição vítrea (T_g) é determinada por aquecimento ou resfriamento; e pela determinação de diferentes valores de T_g segundo os diferentes métodos utilizados (White & Cakebread, 1966; Wunderlich, 1981; Bhandari & Howes, 1999; Roos, 1995b).

2.3.1 Determinação das transições de fases em alimentos

As transições mais importantes relacionadas à qualidade e estabilidade de alimentos ocorrem entre os estados sólido e liquido. Estas transições incluem tanto transições de primeira ordem, tais como cristalização e fusão, como transições de segunda ordem, como a transição vítrea (Craig *et al.*, 1999).

Desta forma, as transições de fase em sistemas alimentícios podem ser determinadas por uma série de métodos baseados nas alterações que ocorrem nas propriedades dielétricas, mecânicas, térmicas e volumétricas do material durante essas transições (White & Cakebread, 1966; Bhandari & Howes, 1999; Champion *et al.*, 2000, Collares *et al.*, 2002).

Existem diversas técnicas experimentais que podem ser utilizadas para a determinação das transições de fases em sistemas alimentícios. Entre elas, a calorimetria diferencial de varredura (DSC) é provavelmente a técnica mais amplamente utilizada (Roos, 1987; Roos & Karel, 1991a; Karel *et al.*, 1994; Goff & Sahagian, 1996). Esta técnica detecta mudanças no fluxo de calor em função da temperatura. As aplicações mais comuns do DSC incluem a determinação da temperatura de transição vítrea, cristalização, fusão, desnaturação protéica, gelatinização, medidas de capacidade calorífica, entre outras (Roos *et al.*, 1996).

Outros métodos muito úteis e algumas vezes mais sensíveis incluem a análise térmica diferencial (DTA), a análise termomecânica (TMA), a análise mecânica dinâmica (DMA) e análise termomecânica dinâmica (DMTA) (Slade & Levine, 1995; Roos *et al.*, 1996). Métodos ainda menos comuns são a análise térmica dielétrica (DEA) e a reometria dinâmica (Bhandari & Howes, 1999).
Métodos espectroscópicos sofisticados que envolvem o estudo da mobilidade molecular e difusão como ressonância magnética nuclear (NMR), espectroscopia de ressonância eletrônica (ESR) e espectroscopia de fluorescência também podem ser usados (Cornillon, 2000; Le Dean *et al.*, 2001).

A calorimetria diferencial de varredura modulada (MDSC), desenvolvida mais recentemente, é um tipo de DSC o qual permite que um programa de temperatura cíclico seja imposto sobre o programa de aquecimento linear. Os benefícios desse método são medidas mais exatas da capacidade calorífica, a separação de eventos sobrepostos e uma melhor identificação dos processos térmicos (Goff & Sahagian, 1996; Baroni *et al.*, 2003).

2.3.1.1 Calorimetria diferencial de varredura (DSC)

A calorimetria diferencial de varredura (DSC) tem sido amplamente utilizada no monitoramento das transições de fases em alimentos, devido à facilidade de operação e disponibilidade (Goff & Sahagian, 1996).

A técnica consiste em medir a potência necessária para que a temperatura da cápsula contendo a amostra seja mantida na mesma temperatura de uma referência enquanto ambas são aquecidas ou resfriadas a uma taxa programada pré-estabelecida (Kerr & Reid, 1994). A referência é normalmente uma cápsula vazia. A Figura 2.6 mostra a representação esquemática do sistema de análise do DSC.

As temperaturas da amostra e da referência são controladas independentemente utilizando-se termopares e aquecedores individuais e idênticos. A diferença de temperatura entre a amostra e a referência é compensada pela variação da potência requerida pelos dois aquecedores. Esta energia é uma medida da variação da entalpia ou capacidade calorífica da amostra (em relação à referência) (Ma *et al.*, 1990).

As amostras são normalmente colocadas em recipientes selados hermeticamente. Conseqüentemente, o método pode ser utilizado para observar transições de fases e temperaturas de transição sem que ocorram mudanças no conteúdo de umidade. Um conteúdo de água constante é extremamente

importante na determinação de fases de materiais alimentícios (Lund, 1983).

Aquecedores individuais

Figura 2.6: Representação esquemática do sistema de análise do DSC (Lund, 1983)

Os termogramas obtidos no DSC normalmente mostram o fluxo de energia em função da temperatura e os dados podem ser utilizados para calcular mudanças na entalpia e na capacidade calorífica da amostra.

Transições de primeira ordem produzem picos e uma mudança brusca no fluxo de energia ocorre em transições de segunda ordem (Roos, 1998). Na Figura 2.7 está representado um termograma esquemático típico de DSC mostrando as principais transições detectadas por este método.

Figura 2.7: Termograma esquemático do DSC (Roos, 1995b)

A variação da capacidade calorífica pode ser determinada pelos valores de mudança no fluxo de calor, ΔY , da taxa de aumento da temperatura (*scanning rate*) e peso da amostra, de acordo com a Equação 2.14 (Ma *et al.*, 1990).

$$\Delta C_p = \frac{\Delta Y}{m_m \times r_{sc}}$$

(2.14)

onde : ΔC_p é a capacidade calorífica (J/ g °C); ΔY é a variação do fluxo de calor (mW); m_m é a massa de material (g); r_{sc} é a taxa de variação da temperatura (°C /s).

Diversos trabalhos que utilizam o DSC para se determinar as transições de fases de substâncias puras e produtos alimentícios complexos (frutas) podem ser encontrados na literatura, como por exemplo, caqui liofilizado (Sobral *et al.*, 2001), abacaxi liofilizado (Telis & Sobral, 2001), maçãs (Aguilera *et al.*, 1998; Bai *et al.*, 2001; Sá et al., 1999; Del Valle *et al.*, 1998), ameixas (Sobral *et al.*, 2002), tomate desidratado (Telis & Sobral, 2002; Baroni *et al.*, 2003),morango congelado e liofilizado (Roos, 1987; Moraga *et al.*, 2004), damascos desidratados osmoticamente (Forni *et al.*, 1997) e cebola, uva e morango (Sá & Sereno, 1994).

2.4 Transição vítrea

2.4.1 Similaridade com a ciência dos materiais poliméricos sintéticos

Os primeiros relatos do conceito de transição vítrea, na ciência e tecnologia de alimentos, estão descritos no trabalho de White & Cakebread (1966). Neste trabalho os autores descrevem defeitos físicos em alimentos congelados e desidratados, armazenados acima da temperatura de transição vítrea (T_g).

No entanto foi a partir dos anos 80 que a aplicação ou adaptação de conhecimentos desenvolvidos na ciência dos polímeros sintéticos alterou drasticamente conceitos clássicos da Ciência de Alimentos (Levine & Slade, 1986; Slade & Levine, 1991a; Slade & Levine, 1991b; Levine & Slade, 1992). A ciência dos polímeros alimentícios, denominação criada nesse período, enfatiza as similaridades fundamentais entre os polímeros sintéticos e as biomoléculas. Pelo uso das relações desenvolvidas na ciência dos polímeros sintéticos, propriedades funcionais de sistemas alimentícios amorfos ou parcialmente cristalizados durante processamento e armazenamento puderam ser previstas e explicadas.

Na ciência dos polímeros alimentícios, uma das propriedades mais importantes utilizada para caracterizar o estado físico é a transição vítrea, a qual envolve a transição de um sólido vítreo para um líquido "borrachudo" (Sobral *et al.*, 2001).

O principal foco dessa abordagem é que o comportamento de sistemas alimentícios é governado por modelos dinâmicos (mobilidade, difusão, cinética) ao invés de modelos energéticos de equilíbrio (termodinâmicos) (Goff & Sahagian, 1996).

2.4.2 Estado vítreo e transição vítrea

Em sistemas alimentícios, os sólidos normalmente se encontram no estado amorfo, um estado de equilíbrio metaestável com propriedades dependentes do tempo, temperatura e composição (White & Cakebread, 1966; Levine & Slade, 1990; Roos & Karel, 1991a; Slade & Levine, 1994; Roos, 1995a; Rahman, 1999; Moraga *et al.*, 2003).

Os sólidos amorfos, ao contrário dos sólidos cristalinos, apresentam estrutura molecular desordenada (Bai *et al.*, 2001). Estruturas metaestáveis amorfas ou parcialmente amorfas podem ser formadas em processos em que a temperatura é resfriada rapidamente abaixo do ponto de fusão dos componentes, ou quando a água é removida por evaporação ou formação de gelo (White & Cakebread, 1966; Bellows & King, 1973; Roos & Karel, 1991a), a taxas suficientemente altas de forma que as moléculas não têm tempo para se realinhar e cristalizar (Roos *et al.*, 1996; Sá *et al.*, 1999; Bhandari & Howes, 2000; Lievonen & Roos, 2003).

Um material no estado vítreo é descrito como um líquido super-resfriado de alta viscosidade ($10^{12} - 10^{14}$ Pa s) (Ferry, 1980; Bell & Hageman,1994). Esta definição é condizente com o significado do termo "vidro", visto que um líquido com tal viscosidade é capaz de suportar o seu próprio peso em oposição à deformação devido à força da gravidade (White & Cakebread, 1966).

A estrutura molecular de um vidro é idêntica à de um líquido, porém, neste estado a sua mobilidade molecular é altamente limitada. Por esta razão um sólido

amorfo no estado vítreo é normalmente referido como uma "solução sólida" ou também "sólido vitrificado" (Roos, 1995b; Bhandari & Howes, 2000).

A principal mudança característica de materiais amorfos é uma transição de estado, chamada transição vítrea, na qual a estrutura sólida vítrea começa a se transformar em um estado "gomoso" ou "borrachudo", ocorrendo um aumento na mobilidade molecular e uma mudança brusca na viscosidade, sendo esta reduzida a 10⁶-10⁸ Pa.s (Bhandari & Howes, 2000).

A transição vítrea, ocorre dentro de uma faixa de temperatura característica para cada material, e a temperatura de transição vítrea (T_g) é definida como o ponto médio de tal mudança (Goff *et al.*, 1993; Goff & Sahagian, 1996; Sá *et al.*, 1999; Telis & Sobral, 2002). Em sistemas alimentícios, a temperatura de transição vítrea é principalmente função do conteúdo de umidade do produto, do peso molecular dos componentes e da natureza da matéria seca em um determinado alimento, bem como a presença de cristalinidade parcial (Roos, 1995b; Bai *et al.*, 2001; Goff, 1994).

O conhecimento da temperatura de transição vítrea é útil no entendimento e estimativa do comportamento de alimentos, os quais são considerados estáveis no estado vítreo (Schenz, 1995; Levine & Slade, 1986; Khalloufi *et al.*, 2000). A transição vítrea, controla o estado físico e muitas características físicas de sistemas alimentícios (Roos *et al.*, 1996; Lievonen & Roos, 2003) e devido ao aumento na mobilidade molecular que ocorre acima da T_g, esta temperatura é hipotetizada como um parâmetro importante para a estabilidade e qualidade no armazenamento de alimentos desidratados e congelados (Roos & Karel, 1992; Sobral *et al.*, 2001; Collares *et al.*, 2002).

2.4.3 Diagramas de Estado

As transições de fase são importantes para caracterizar a qualidade do alimento (Bai *et al.*, 2001). De acordo com Roos (1998), o conteúdo de umidade e a composição do alimento podem ser manipulados para ajustar as temperaturas de transição de fases e propriedades do alimento, permitindo assim uma otimização no controle de processo e estabilização da vida de prateleira.

Os estados físicos de um material podem ser descritos em um diagrama de estado que apresenta relações entre temperatura, concentração e tempo. A forma usual, entretanto, é mais simplificada, relacionando apenas temperatura *vs.* concentração de sólidos ou simplesmente umidade do material como representado nas Figuras 2.8 e 2.9.

Figura 2.8: Diagrama de estado típico de sólidos alimentícios (Roos, 1995b)

Figura 2.9: Diagrama de estado de abacaxi liofilizado: T_g (\Box) e T_m (x). (Telis & Sobral, 2001)

Diagramas de estado para soluções aquosas de componentes puros, tais como açúcares, amidos hidrolisados e proteínas são facilmente encontrados na literatura. Para alimentos naturais, no entanto, eles são mais escassos (Telis & Sobral, 2001).

2.4.4 Efeito plastificante da água

Na ciência dos polímeros sintéticos, um plastificante é definido como "uma substância incorporada a um polímero capaz de aumentar a processabilidade, flexibilidade e extensibilidade do mesmo" (Ferry, 1980; Slade & Levine, 1991b). Com o aumento da concentração do plastificante, a T_g do sistema diminui devido ao abaixamento do peso molecular médio da mistura polímero/plastificante.

A adição do plastificante, a nível molecular, provoca um aumento no espaço intramolecular ou volume livre (volume da mistura que não é ocupado por moléculas), diminuindo a viscosidade local e aumentando a mobilidade molecular (Slade & Levine, 1991b; Roos, 1995b).

A água é um dos plastificantes com menor peso molecular, apresentando um valor de T_g extremamente baixo (-135°C) (Roos, 1995a). Desta forma, a água é considerada um forte agente plastificante, sendo a principal responsável pela diminuição de T_g em sistemas alimentícios (Levine & Slade, 1986; Bhandari & Howes, 1999). A ação plastificante da água afeta a T_g de polímeros completamente amorfos e T_g e T_m de polímeros parcialmente cristalinos. Diversos autores (White & Cakebread, 1966; Levine & Slade, 1992; Roos, 1995b; Bhandari, 1999) relatam que a água afeta a transição vítrea de muitos biopolímeros (particularmente em baixos conteúdos de umidade), e que a depressão na T_g pode ser tanto desejável quanto indesejável para as propriedades, processamento e estabilidade de tais materiais.

A água, agindo como um plastificante, diminui a Tg do biopolímero. Se esta temperatura for mais baixa do que a temperatura de processamento ou armazenamento, fenômenos como cristalização, aglomeração, colapso estrutural e perda de voláteis poderão ocorrer. Estes processos começam assim que a mobilidade molecular dos constituintes do sistema metaestável seja suficiente $(T > T_g)$ (Biliaderis, 1990; Del Valle *et al.*, 1998, Collares *et al.*, 2004).

O efeito plastificante da água pode ser analisado através de diagramas de estado. Em tais diagramas, exemplificados nas Figuras 2.8 e 2.9, a curva contínua de transição vítrea de T_g em função da concentração de sólidos demonstra o efeito da água na T_g, especialmente a baixos conteúdos de umidade.

2.4.5 Estimativa do valor de Tg

Os valores de T_g em alimentos variam desde o da água (-135°C) até o dos polímeros de alto peso molecular, como amido, presentes no alimento (Roos, 1995b).

A temperatura de transição vítrea de uma mistura de vários componentes compatíveis (incluindo a água) é uma função não-linear da temperatura de transição vítrea dos componentes individuais.

A Equação de Gordon-Taylor (Gordon & Taylor, 1952) (Equação 2.15) é amplamente aplicada para prever a influência do conteúdo de umidade em alimentos, incluindo carboidratos e proteínas (Roos & Karel, 1991a; Kalichevsky *et al.*, 1993) assim como em materiais farmacêuticos (Hancock & Zografi, 1994).

$$T_{g_m} = \frac{X_s T_{gs} + k X_w T_{gw}}{X_s + k X_w}$$
(2.15)

onde, T_{gm} temperatura de transição vítrea da mistura, X_s fração mássica do componente sólido, X_w fração mássica de água, T_{gs} temperatura de transição vítrea do componente sólido, T_{gw} temperatura de transição vítrea da água pura e k constante (derivada experimentalmente) (Bhandari & Howes, 2000).

O efeito plastificante da água também pode ser modelado através da equação de Couchman-Karasz (Equação 2.16) (Couchman & Karasz, 1978).

$$T_{gm} = \frac{X_s \Delta C_{ps} T_{gs} + X_w \Delta C_{pw} T_{gw}}{X_s \Delta C_{ps} + X_w \Delta C_{pw}}$$
(2.16)

A Equação 2.16 é uma forma termodinâmica da Equação de Gordon-Taylor onde $\Delta C_{ps} e \Delta C_{pw}$ é a variação da capacidade calorífica do componente sólido e da água, respectivamente, sendo que $k = \frac{\Delta C_{pw}}{\Delta C_{ps}}$. O valor de $\Delta C_{pw} = 1.94 Jg^{-1} \ ^{o}C$ é normalmente utilizado para a água pura, resultando em melhores ajustes comparado com outros valores (Kalichevsky & Blanshard, 1993).

Para um sistema com "n" componentes a Equação 2.16 pode ser expandida na forma da Equação 2.17.

$$T_{gm} = \frac{\sum_{i=l}^{n} X_i \Delta C p_i T_{gi}}{\sum_{i=l}^{n} X_i \Delta C p_i}$$
(2.17)

Devido a dificuldade em se determinar experimentalmente valores exatos de ΔCp , o valor de k é determinado por ajuste de valores experimentais de T_g em diversos conteúdos de umidade.

A Equação de Gordon-Taylor é relativamente simples e de fácil aplicação. No entanto, o uso desta equação é limitado a misturas binárias de sólidos e água. A adição do termo $q X_s X_w$, onde q é uma outra constante, na equação de Gordon-Taylor dá origem a equação de Kwei (Equação 2.18) (Roos, 1995b), que pode ser utilizada para prever o efeito de misturas multicomponentes.

$$T_{g_m} = \frac{X_s T_{gs} + k X_w T_{gw}}{X_s + k X_w} + q X_s X_w$$
(2.18)

A equação de Kwei tem sido utilizada para ajustar os valores de T_g de produtos alimentícios complexos, incluindo frutas (Sobral *et al.*, 2001; Telis & Sobral, 2001), representando bem a curva prática de transição vítrea atribuída a presença de macromoléculas naturais que se comportam com uma fase separada.

2.4.6 Efeito da composição na T_g

O estado físico de sólidos alimentícios é afetado significativamente pela composição do sistema (Roos & Karel, 1991c). A avaliação dos efeitos da composição do sistema na temperatura de transição vítrea é útil na formulação de alimentos, para que se atinja condições de processamento e armazenamento adequadas.

Uma importante aplicação de maltodextrinas é o seu uso como agentes de secagem. As maltodextrinas são capazes de diminuir a pegajosidade em pós alimentícios, devido à sua habilidade de aumentar a T_g dos sólidos. Roos e Karel (1991d) estudaram o efeito da adição de maltodextrinas com diferentes valores de dextrose equivalente (DE) na T_g da sacarose. Observa-se, através da Figura 2.10, que a T_g da mistura aumentou com o aumento do peso molecular do aditivo e conseqüentemente com a diminuição de DE.

Figura 2.10: Efeito da adição de maltodextrina na temperatura de transição vítrea (T_g) da sacarose (Roos & Karel, 1991d)

No entanto, observa-se também que a adição de maltodextrinas até uma concentração de 50% (p/p) ocasionou apenas pequeno aumento na T_g da sacarose e que esse aumento era praticamente independente do peso molecular. Assim, conclui-se que em aplicações práticas, como por exemplo na secagem de sucos de frutas, são necessárias altas concentrações de maltodextrina.

2.4.7 Efeito do peso molecular na Tg

Um dos principais fatores com efeito sobre as temperaturas de transição vítrea de componentes alimentícios, tais como açúcares e biopolímeros, é o peso molecular (Roos 1995a). Moléculas de baixo peso molecular, como por exemplo a

sacarose, e monômeros, tais como frutose e glicose, apresentam na sua forma pura baixos valores de T_g , enquanto que moléculas de cadeias moleculares mais longas apresentam T_g mais elevadas.

A T_g de polímeros amorfos de glicose tendem a aumentar com o aumento do peso molecular. Em famílias de polímeros alimentícios homólogos, tais como maltodextrinas com diferentes pesos moleculares médios, a relação de Fox e Flory (Equação 2.19) tem sido utilizada para se determinar o efeito do peso molecular de um polímero na T_g (Roos & Karel, 1991c; Slade & Levine, 1994; Roos, 1995b; Bhandari & Howes, 1999).

$$T_{g} = T_{g\infty} - k_{g} M^{-1}$$
 (2.19)

onde T_g é a temperatura de transição vítrea do derivado de amido, k_g é uma constante (-25000K), T_{g ∞} limite de peso molecular infinito (amido) e M é o peso molecular.

2.4.8 Importância do estado vítreo no armazenamento de produtos desidratados

Para manter a qualidade do produto durante o armazenamento, em princípio esse deve permanecer no estado vítreo pelo maior tempo possível. Qualquer mudança no seu estado, não somente irá afetar os atributos físicos e sensoriais, mas pode também ter outras conseqüências, tais como o aumento da taxa das reações bioquímicas e danos estruturais (Bhandari & Howes, 2000; Collares *et al.*, 2002).

Quando a temperatura do produto desidratado está acima da T_g , a viscosidade do material pode não ser suficiente para suportar o próprio peso da matriz sólida ocorrendo então o "colapso" ou "encolhimento" (Roos, 1998). O "colapso" é minimizado quando a temperatura da matriz sólida está abaixo da temperatura de colapso, a qual está relacionada, com a temperatura de transição vítrea, e normalmente tem valores ligeiramente superiores a T_g (Aguilera *et al.*, 1998). Este fenômeno resulta em uma secagem não uniforme, perdas na capacidade de retenção de aromas e perdas nas características de reidratação

(Bhandari & Howes, 1999).

Na liofilização, durante a evaporação da água, o produto torna-se poroso e a matriz sólida deve ser capaz de sustentar esta estrutura para que não ocorra o "colapso". Durante a liofilização, a temperatura de colapso pode variar, para muitos alimentos líquidos, entre -5°C e -60°C, dependendo da sua composição (To & Flink, 1978).

Tanto a pegajosidade, como a compactação e a cristalização estão relacionadas ao fenômeno do colapso. A compactação é observada quando ocorre um endurecimento e uma redução no escoamento das partículas (Bhandari & Howes, 2000). Durante o colapso, a umidade é liberada das regiões cristalinas para as amorfas o que leva à redução da viscosidade local, aumentando assim a taxa de cristalização dos carboidratos amorfos presentes (Peleg & Hollenbach, 1984).

O fenômeno de pegajosidade ocorre freqüentemente durante a produção e armazenamento de pós desidratados, como conseqüência do aumento no conteúdo de umidade ou pelo aquecimento acima da sua temperatura de transição vítrea. Na desidratação de produtos ricos em açúcares por *spray dryer* o problema pode ocorrer quando as partículas não foram suficientemente secas e colidem umas com as outras (coesão) ou grudam (adesão) na parede da câmara de secagem e sistema de transporte. Isto pode levar a baixos rendimentos e problemas operacionais. A maneira mais comum para evitar esse tipo de problema tem sido pela adição de materiais de alto peso molecular. Maltodextrinas com baixas dextrose equivalente (DE) são comumente usadas na desidratação de sucos de frutas (Collares *et al.*, 2004).

Alternativamente, a propriedade de pegajosidade de um produto na temperatura de transição vítrea ou acima dela, pode ser aproveitada em alguns processos de instânteinização e aglomeração de pós (Roos, 1995b).

2.4.9 Importância do estado vítreo para a estabilidade de alimentos congelados

Alterações na qualidade de alimentos congelados são normalmente determinadas através de técnicas sensoriais ou análise química de compostos específicos tal como o ácido ascórbico (Roos, 1995b). Estudos mostram que a qualidade do produto decresce exponencialmente com o aumento na temperatura de armazenamento.

Sabe-se que nem toda a água se encontra no estado cristalizado em alimentos congelados. Até mesmo em alimentos maximamente congelados, a fase congelada se encontra em equilíbrio com a fase não congelada, a qual é normalmente composta de solutos como enzimas, açúcares, sais, etc. Esta porção não congelada assume a forma de um vidro amorfo altamente viscoso quando armazenada abaixo da temperatura de transição vítrea. (Bhandari & Howes, 2000).

No caso de alimentos congelados, existe uma transição específica importante, chamada temperatura de transição vítrea da matriz maximamente congelada (Tg'). O conteúdo mínimo de umidade onde $T_{g'}$ é detectável corresponde ao conteúdo de água não congelável (X_g'), conforme indicado no diagrama de estado (Figura 2.8) (Goff & Sahagian, 1996).

Conceitualmente, T_g' e X_g' têm um valor único para cada produto congelado, independente do conteúdo global inicial de umidade, porém dependem da composição da fase não congelável. A Tabela 2.3 apresenta alguns valores típicos de T_g' de substâncias puras e produtos alimentícios.

De acordo com a interpretação cinética baseada no conceito de transição vítrea, a estabilidade físico-química de um sistema alimentício congelado depende da viscosidade e da mobilidade molecular da fase não congelável, a qual pode ser relacionada com a temperatura de transição vítrea. Vegetais e frutas congeladas apresentam escurecimento enzimático se estocados acima da temperatura de transição vítrea da fase não congelada (T_g') (Levine & Slade, 1986, Camacho *et al.*, 2001).

Tem sido considerado que a crioestabilização de alimentos congelados

Capítulo 2 - Revisão Bibliográfica

depende da habilidade de se estocar o alimento em temperaturas mais baixas que T_g' . Se a T_g' do alimento não é alcançável em termos práticos, por limitações das câmaras de congelamento ou por questões de custo, uma alternativa seria a modificação da formulação do alimento para se aumentar a T_g' até uma temperatura de armazenamento comercial (Torreggiani *et al.*, 1999; Rizzolo *et al.*, 2003).

Composto ou produto	T _g ' (°C)	Referência
Ácido cítrico	-53	Lu & Zografi (1997)
Ácido ascórbico	-54	Andersen & Skibsted (1998)
Sacarose	-52	Roos & Karel (1991b)
Sacarose	-40	Ablet <i>et al.</i> (1992)
Sacarose	-32	Slade & Levine (1991a)
Glicose	-53	Roos (1995b)
Glicose	-43	Slade & Levine (1991a)
Frutose	-53	Roos (1995b)
Frutose	-42	Slade & Levine (1991a)
Polpa de caqui	-56,6	Sobral <i>et al</i> . (2001)
Polpa de abacaxi	-51,6	Telis & Sobral (2001)
Polpa de maçã	-57,8	Bai <i>et al.</i> (2001)
Polpa de morango	-51,3	Moraga <i>et al.</i> (2003)
Sorvete	-34,5	Bhandari & Howes (2000)

Tabela 2.3: Valores de T_g' para substâncias puras e produtos alimentícios

2.5 Tecnologia de crioestabilização

A tecnologia de crioestabilização representa uma nova abordagem prática para a análise da estabilização durante o processamento e armazenamento de produtos congelados e liofilizados (Slade & Levine, 1991a). A crioestabilização oferece meios de se definir condições de preservação de produtos alimentícios armazenados por períodos longos em temperaturas normais de armazenamento (T = -18° C), contra mudanças deteriorativas de textura ("arenosidade", cristalização de solutos), estruturais (colapso, encolhimento), e de características químicas (ação enzimática, reações oxidativas tais como, rancidez e degradação de vitaminas e cor). A base fundamental deste conceito está relacionada ao controle das propriedades físico-químicas e termofísicas da matriz amorfa que envolve os cristais de gelo no sistema congelado, de forma a garantir que a mesma seja mantida no estado vítreo. Assim, os processos controlados por difusão, que normalmente resultam em perda de qualidade e estabilidade, podem ser prevenidos ou pelo menos inibidos (Ferry, 1980, Levine & Slade, 1990, Goff & Sahagian, 1996).

A temperatura de armazenamento ótima, ou a composição ótima de um alimento congelado, é ditada pela T_g ' específica do soluto (s) e pela quantidade de água não-congelável (W_g '), expressa em g de água não-congelável/g se sólidos. T_g ' é normalmente governado pelo peso molecular médio (\overline{M}_w) da combinação de compostos compatíveis com a água em um sistema complexo (Levine & Slade, 1986).

2.5.1 Crioestabilizantes e crioprotetores em alimentos

As determinações de T_g' e W_g' de uma ampla faixa de ingredientes alimentícios permitiu a definição de um espectro do comportamento térmico de sistemas aquosos congelados (Figura 2.11).

As informações extraídas deste espectro levaram a identificação de compostos conhecidos como "crioestabilizantes poliméricos", que apresentam uma combinação característica de altos valores de T_g ' e baixos valores de W_g ' (Levine & Slade, 1990). São compostos que se identificam como ingredientes alimentícios comuns, com muita compatibilidade com água, incluindo hidrolisados de amido de baixa dextrose equivalente (DE) e proteínas. A função estabilizante destes "crioestabilizantes" é derivada do seu alto peso molecular e o seu potencial para elevar a T_g ' de um sistema congelado complexo. O aumento na T_g ' resulta numa diminuição da diferença T- T_g ', contribuindo conseqüentemente para a redução das taxas das transformações durante o armazenamento. Outro aspecto benéfico da adição de crioestabilizantes é o estreitamento da faixa de temperatura

na qual o produto congelado vítreo (estável) de textura dura, passe para o estado parcialmente derretido, de textura suave (com a qualidade desejável para ser consumido) em T < T_m (Levine & Slade, 1990).

Figura 2.11: Variação da temperatura de transição vítrea T_g', para soluções 20% (p/p) maximamente congeladas em relação a W_g', para diversos carboidratos, ilustrando espectro de crioestabilizantes e crioprotetores. (Compostos localizados fora da área marcada exibem propriedades tanto de crioproteção como de crioestabilização) (Slade & Levine, 1991a)

Em contraste com os crioestabilizantes, solutos de baixo peso molecular, como por exemplo, açúcares, polióis, glicosídeos, ácidos e aminoácidos, com uma combinação característica de baixos valores de T_g' e altos valores de $W_{g'}$, tem demonstrado utilidade como "crioprotetores monoméricos" em produtos alimentícios. O termo "protetor" origina do fato destes aditivos diminuírem a quantidade de gelo formado, quando incorporados ao tecido vegetal, evitando o rompimento da membrana celular pelos cristais de gelo e a conseqüente exsudação.

A área médica se beneficia da baixa quantidade de gelo formada para criopreservar espécies e órgãos (vitrificação). A menor quantidade de gelo formado e o aumento da diferença T-T_g' (que se reflete em um amolecimento

(baixa viscosidade) da porção não-congelável do sistema), permite conferir uma textura cremosa à produtos industrializados. O produto final, entretanto tem menor estabilidade devido ao abaixamento de T_g ' do sistema. Para sua crioestabilização, como é o caso de embriões, é necessário usar temperaturas muito baixas (criogênicas) (Slade & Levine, 1991a).

As propriedades funcionais de uma série homóloga de hidrolisados de amido, amplamente utilizados como ingredientes alimentícios, podem ser ilustradas através do mapa preditivo mostrado na Figura 2.12 que relaciona o valor de T_g' com o peso molecular do composto. Observa-se que existe uma correlação linear entre T_g' e 1/M_w (expresso como função de DE).

Figura 2.12: Variação da temperatura de transição vítrea T_g' , para soluções 20% (p/p) maximamente congeladas em relação a \overline{M}_w (expresso como função de DE) para hidrolisados de amido comerciais (Levine & Slade, 1991)

As propriedades funcionais estão indicadas acima da curva. Por exemplo, maltodextrinas de baixa dextrose equivalente e outros sólidos poliméricos de alto

Capítulo 2 – Revisão Bibliográfica

peso molecular são comumente utilizados como coadjuvantes de secagem em processos de desidratação. Estes compostos elevam a T_g' do sistema e reduzem a fração de água não-congelável (no caso da liofilização) ou aumentam a pressão de vapor relativa (para outros processos de desidratação). Esta estabilização do estado vítreo facilita a secagem sem que ocorra colapso ou aglomeração, devido a diminuição da higroscopicidade inerente aos sólidos (Slade & Levine, 1991a; Roos, 1995b).

Provavelmente o processamento mais conhecido onde se aplicam crioestabilizantes e crioprotetores está relacionado à produção de sorvetes. Estudos com sorvetes têm demonstrado que estabilizantes exercem um efeito crioprotetor principalmente devido a inibição do crescimento de cristais de gelo durante a etapa de congelamento e também por inibir a recristalização de gelo durante a estocagem (Goff *et al.*, 1993; Camacho *et al.*, 2001). Por exemplo, a adição de dextrana efetivamente aumentou a T_g' do sorvete, o que indica seu potencial como crioestabilizante (McCurdy *et al.*, 1994).

A incorporação por impregnação de soluções de diferentes açúcares em pedaços de kiwifruit modificou suas temperaturas de transição de fases e aumentou significantemente a estabilidade de clorofila e vitamina C durante a estocagem por congelamento a -10° C. As frutas tratadas com maltose, e portanto com a T_g, mais alta, mostraram a maior retenção de clorofila e vitamina C (Torreggiani *et al.*, 2001).

Pesquisas com suco de morango tratado com diferentes açúcares, entretanto, não se mostraram tão convincentes. Os sucos que continham sorbitol, e portanto com a T_g' mais baixa, exibiram a mesma retenção de antocianinas que os sucos tratados com maltose e sacarose. Outros fatores tais como pH da fase não congelável e a natureza química específica do sorbitol podem ter influenciado no mecanismo de degradação da antocianina (Torreggiani *et al.*, 1999).

Forni *et al.* (1997) mostraram que a modificação na composição de açúcares em cubos de damasco melhorou a estabilidade de vitamina C e da cor durante a estocagem dessa fruta congelada e após desidratação por ar. O efeito protetor da vitamina C aumentou com o aumento da concentração de açúcar antes

da secagem a 65^oC, sendo a maltose o carboidrato mais efetivo. A menor degradação do ácido ascórbico em frutas tratadas com maltose e sacarose pode ser relacionada ao fato delas apresentarem uma T_g' mais alta que aquelas sem adição de carboidratos, e portanto a diferença entre $T - T_g'$ é mais baixa. Como conseqüência disto, elas provavelmente apresentam menor colapso estrutural durante a desidratação (Roos & Karel, 1992; Levi & Karel, 1995), o que pode também afetar a difusão controlando reações deteriorativas como o escurecimento enzimático, atividade da fenolase e desta maneira a taxa de degradação do ácido ascórbico.

A adição de substâncias crioprotetoras, como sorbitol, sacarose, polifosfatos e glutamato monossódico, a massa de pescado também é utilizada no processo de fabricação do surimi, para minimizar os efeitos deletérios do frio sobre a estrutura protéica. O surimi, mesmo preservado a -20°C, sem a adição de crioprotetores, resulta em uma estrutura esponjosa, perdendo a capacidade de se tornar elástica (Yoon & Lee, 1990).

2.6 Interpretação dos eventos térmicos no DSC: Identificação de Tg'

A importância prática de $T_{g'}$ de um ponto de vista teórico é bem estabelecida e entendida por diversos autores da área. No entanto, existe uma grande variação nos valores de $T_{g'}$ publicados na literatura, principalmente devido a diferentes interpretações das mesmas transições obtidas em termogramas do DSC de muitos compostos de baixo peso molecular (Goff & Sahagian, 1996). Baseada na descrição original de $T_{g'}$, consistente com o diagrama de estado, o relaxamento vítreo e a fusão de gelo devem coincidir dentro do tempo do experimento. No entanto, em parte devido à possibilidade de uma parcial concentração máxima de gelo, um comportamento bifásico é comumente observado com um pico de devitrificação entre as transições quando o sistema adquire mobilidade suficiente (Figura 2.13).

Figura 2.13: Termograma do DSC típico para uma solução de sacarose (20%), ilustrando os eventos térmicos entre –60 e 0°C (Goff, 1994)

Até o presente momento, existem três interpretações principais, que dizem respeito a origem de cada transição e a localização de T_g²: (1) a T_g² é representada pela transição de maior temperatura (T_{r2}), enquanto que a transição mais baixa (vidro parcial) é normalmente ignorada (Franks, 1991; Slade & Levine, 1991a;); (2) a T_g² ocorre na transição mais baixa (T_{r1}), enquanto a transição na temperatura mais alta não é uma transição vítrea mas o início da fusão de gelo iniciada logo após T_g² (Ablet *et al.*, 1992; Roos, 1995b; Goff, 2003); e (3) T_g² fica próxima de T_{r2} ou em algum lugar próximo as duas transições e o comportamento complexo é parcialmente o resultado do processo de relaxamento manifestado por um excesso de entalpia (*overshoot*) próximo a T_g² (Simatos & Blond, 1991; Champion *et al.*, 2000).

Essas diferenças nos valores de T_g' publicados, observados na tabela 2.3, dificultam o tratamento quantitativo de previsões do comportamento de alimentos congelados.

CAPÍTULO 3

MATERIAIS E MÉTODOS

3.1 Matéria-prima

O camu-camu (*Myrciaria dubia* (HBK) Mc Vaugh) utilizado neste trabalho foi adquirido no CEAGESP (São Paulo, SP) sendo proveniente de Iguape na região do Vale do Ribeira. As frutas foram adquiridas um dia após a colheita e mantidas sob refrigeração até o processamento. Todas as frutas utilizadas neste trabalho foram provenientes da safra de maio/julho de 2003.

3.2 Processamento

3.2.1 Seleção e limpeza

No laboratório, as frutas foram submetidas a uma inspeção visual avaliando-se a cor, tamanho e presença de danos físicos a fim de se padronizar o lote. Pela coloração da casca definiu-se o grau de maturação dos frutos (Zapata & Dufour, 1993), sendo estes classificados em três sub-lotes: maduros (coloração violeta escura), semi-maduros (coloração vermelho amarelado) e verdes (coloração verde). - 199

Somente as frutas maduras, foram usadas no processamento da polpa. As frutas semi-maduras e verdes foram utilizadas apenas para a caracterização da matéria-prima. Frutas muito pequenas e com indicação de danos físicos foram descartadas.

As frutas foram lavadas por imersão em solução de hipoclorito de sódio (10 ppm) por 15 minutos e em seguida enxaguadas em água potável.

Após a seleção e lavagem, os três sub-lotes (classificados pelo grau de maturação) foram caracterizados segundo o conteúdo de umidade, conteúdo de

ácido ascórbico, pH, acidez titulável total, sólidos solúveis totais, seguindo-se as metodologias descritas no Item 3.3.

Determinou-se também o conteúdo de umidade e de ácido ascórbico dos constituintes da fruta madura separadamente, ou seja, casca, semente e polpa.

3.2.2 Branqueamento

A operação de branqueamento foi realizada nas frutas maduras e inteiras. Os frutos foram acondicionados em uma cesta perfurada de aço inoxidável e em seguida mergulhados em um recipiente contendo água fervente (98,5°C) por 2 minutos. Os frutos foram então imediatamente transferidos para um banho de gelo até atingir a temperatura ambiente (aproximadamente 1 minuto).

3.2.3 Obtenção da polpa

Após o branqueamento, as frutas foram secionadas ao meio e as sementes retiradas manualmente. A polpa foi obtida através de uma centrífuga doméstica (marca Walita) (Figura 3.1) com abertura de malha média de 1mm, separando-se a polpa da casca.

Figura 3.1: Centrífuga utilizada para a extração da polpa de camu-camu

A Equação 3.1 foi utilizada para calcular o rendimento do processo de extração da polpa.

% ren dim ento =
$$\frac{P_{polpa}}{P_{fruta}} \times 100$$
 (3.1)

onde: P_{polpa} é o peso de polpa obtida (g) e P_{fruta} é o peso da fruta inteira utilizada no processo (g).

A polpa foi acondicionada em sacos de polietileno de 500g, selados e moldados na forma de uma placa plana (Figura 3.2), e imediatamente congelada a temperatura de –18°C em um freezer vertical (Marca Brastemp).

A polpa de camu-camu natural (sem aditivos) foi analisada para a determinação do conteúdo de umidade, conteúdo de ácido ascórbico, pH, sólidos solúveis totais, pectina, açúcares redutores e não redutores, acidez total titulável e relação Brix/acidez, seguindo-se as metodologias descritas no Item 3.3.

3.3 Análises químicas, físicas e físico-químicas

As metodologias analíticas descritas a seguir foram utilizadas para caracterizar a matéria-prima, a polpa de camu-camu natural, as formulações contendo maltodextrina DE 20 e/ou sacarose e os produtos liofilizados.

3.3.1 Conteúdo de ácido ascórbico

O conteúdo de ácido ascórbico foi determinado por Iodimetria ou titulação iodométrica direta, segundo metodologia descrita pelo INSTITUTO ADOLFO LUTZ (1985). O método baseia-se na capacidade do iodo (agente oxidante) em oxidar quantitativamente o ácido ascórbico, utilizando uma solução de amido como indicador. Os resultados foram expressos em mg AA/100g amostra.

3.3.2 Conteúdo de umidade

O conteúdo de umidade foi determinado em estufa à vácuo (marca FANEM, modelo 099EV) a temperatura de 95°C por 48 horas.

3.3.3 Acidez titulável total

A acidez titulável total foi determinada por titulação com solução de NaOH 0,1N, conforme metodologia descrita pela A.O.A.C. (1995). Os resultados foram expressos em g ácido cítrico/100g amostra.

3.3.4 Açúcares redutores e não-redutores totais

O conteúdo de açúcares redutores e não-redutores totais foram determinados pelo método de Fehling segundo metodologia descrita pela A.O.A.C. (1995). Os resultados foram expressos em g glicose/100g amostra e g sacarose/100g amostra, respectivamente.

3.3.5 Pectina

A concentração de pectina foi determinada pelo método de Carré e Haynes (Pearson, 1970). Os resultados foram expressos em g pectato de cálcio/100g amostra.

3.3.6 Sólidos solúveis totais

O teor de sólidos solúveis totais foi determinado por leitura direta em um refratômetro ABBE de precisão (ATAGO, modelo 3T), com correção de temperatura. Os resultados foram expressos em ^oBrix.

3.3.7 pH

O pH foi determinado por leitura direta em pHmetro digital (WTW, modelo pH320).

3.3.8 Atividade de água

A atividade de água foi determinada a 25°C utilizando um Aqualab CX2 (Decagon Devices, Inc.)

3.4 Preparo das amostras para a análise térmica

3.4.1 Preparo das formulações com aditivos

Foram preparadas nove formulações contendo maltodextrina DE 20 (Corn Products, Brasil), sacarose (açúcar comercial) ou uma mistura dos dois aditivos.

A polpa de camu-camu, foi descongelada naturalmente e os aditivos foram misturados sob agitação leve e constante.

A maltodextrina DE 20 foi adicionada à polpa de camu-camu nas proporções de 5, 10, 15, 20 e 30% (p/p) e sacarose nas proporções de 10 e 20% (p/p). As formulações contendo os dois aditivos foram denominadas MIX1 e MIX2, com 10:20% e 20:20% (p/p) (sacarose: maltodextrina DE 20) respectivamente. A polpa de camu-camu natural (sem aditivos) também foi analisada como referência.

As formulações foram acondicionadas em frascos de vidro com tampa rosqueável e equilibradas a uma temperatura de 4°C por 24 horas antes da análise no DSC. Alíquotas foram separadas para o DSC e o restante do material foi utilizado para a determinação da umidade, atividade de água a 25°C, conteúdo

de ácido ascórbico, sólidos solúveis totais e acidez total titulável segundo as metodologias descritas no Item 3.3.

3.4.2 Amostras para a construção dos Diagramas de Estado

Após análise dos resultados obtidos para os valores de T_g das formulações contendo maltodextrina DE 20 e sacarose, optou-se por fazer a determinação do diagrama de estado completo para a polpa de camu-camu natural (sem aditivos) e para a formulação contendo maltodextrina na proporção de 30% (p/p). Esta escolha representa um compromisso entre a capacidade demonstrada por esse aditivo de elevar a T_g e limites práticos industriais de proporção de maltodextrina adicionada a sucos de fruta.

3.4.2.1 Liofilização

A polpa de camu-camu natural (sem aditivos) e a formulação contendo 30% (p/p) de maltodextrina DE 20 foram colocadas em placas de acrílico com tampa (diâmetro de 10 cm), com altura da camada de líquido de aproximadamente 5 mm. As placas foram congeladas a –18°C por 24 horas e liofilizadas em um liofilizador de bancada (EZ-DRY, FTS Systems, New York, USA) a uma temperatura de –50°C e pressão de 100 mTorr por 48 horas. O produto liofilizado foi armazenado em embalagens de polietileno seladas e coberto com papel alumínio e mantidas em dessecador com sílica.

Os conteúdos de umidade e de ácido ascórbico (segundo as metodologias descritas no Item 3.3) foram determinados antes e depois do processo de liofilização para o cálculo do balanço de massa do processo e as possíveis perdas de ácido ascórbico.

3.4.2.2 Isotermas de adsorção de vapor de água

Para o estudo das transições de fases na faixa higroscópica desejada, amostras do produto liofilizado (1 – 1,5 g), foram equilibradas a 25°C utilizando

soluções saturadas de sais (Tabela 3.1) de maneira a manter a atividade de água entre 0,11 e 0,90, de acordo com metodologia descrita por Spiess & Wolf (1983).

Cada solução saturada de sal foi disposta no fundo de um recipiente de vidro de maneira a formar uma camada com altura de aproximadamente 1,5 cm. As amostras, pesadas em pesa-filtros, em triplicata, foram suspensas sobre a solução do sal através de um suporte de vidro. Os recipientes de vidro possuíam um sistema de fechamento hermético e uma válvula localizada na tampa, através da qual o sistema foi evacuado com o uso de uma bomba de vácuo. Estes foram então colocados em uma estufa (BOD, Tecnal 39) para manter a temperatura constante em $25^{\circ}C (\pm 0, 1^{\circ}C)$.

Sais	<i>a</i> _w a 25°C
LiCl	0,113
MgCl ₂	0,328
K ₂ CO ₃	0,432
Mg(NO ₃) ₂	0,529
NaNO ₂	0,645
NaCl	0,753
(NH ₄) ₂ SO ₄	0,803
KCI	0,843
BaCl ₂	0,903

(Spiess & Wolf, 1983)

As amostras foram submetidas a pesagens em intervalos de 7 dias até o equilíbrio. O tempo de equilíbrio foi de aproximadamente 3 semanas, quando as amostras apresentaram uma variação de peso menor que 0,1% (0,001 g/g massa seca) em balança analítica de precisão ($\pm 0,0001$ g) (Scientech, SA 210).

Após atingido o equilíbrio, amostras foram separadas para a análise no DSC. O restante do material foi utilizado para determinação do conteúdo de umidade de equilíbrio (segundo metodologia descrita no item 3.3). Os pontos

Capítulo 3 – Materiais e Métodos

experimentais obtidos foram ajustados pelo modelo de Gugenheim-Anderson-DeBoer (GAB) (Equação 2.3), obtendo-se assim o valor de umidade da monocamada e das constantes C_{GAB} e k_{GAB}, bem como os parâmetros estatísticos da precisão do ajuste.

3.4.2.3 Pontos da região de alta umidade

Pontos com atividades de água superiores a 0,90, foram obtidos por adição direta de água destilada no produto liofilizado, conforme proposto por Telis & Sobral (2001).

Quantidades pré-determinadas de amostra e água destilada foram pesadas, em triplicata, e homogeneizadas em um frasco de vidro com tampa rosqueável. Estas amostras foram equilibradas a temperatura de 4°C por 24 horas antes da análise no DSC. Após a análise no DSC, o restante do material foi utilizado para a determinação da umidade e da atividade de água a 25 °C (segundo metodologias descritas no Item 3.3).

3.5 Análise térmica - Calorimetria diferencial de varredura (DSC)

As transições de fase foram determinadas por calorimetria diferencial de varredura, utilizando-se um DSC TA2010 controlado por um módulo TA5000 (TA Instruments, Newcastle, DE, USA) (Figura 3.3). Estas análises foram realizadas no Laboratório de Tecnologia de Alimentos (LTA) da Faculdade de Zootecnia e Engenharia de Alimentos, FZEA/USP (Pirassununga, SP). As amostras analisadas no DSC foram obtidas conforme descrito no Item 3.4.

Para a análise no DSC, amostras equilibradas (\cong 10 mg), pesadas em balança de analítica de precisão (\pm 0,01 mg) (OHAUS Analytical Plus), foram acondicionadas em cápsulas de alumínio TA fechadas hermeticamente e aquecidas entre –120 e 120°C a uma taxa de aquecimento de 10°Cmin⁻¹ em atmosfera inerte (45 mL min⁻¹ of N₂). Uma cápsula de alumínio vazia foi utilizada como referência. Nitrogênio líquido foi utilizado para o resfriamento das amostras antes da análise.

As amostras que apresentaram pico de devitrificação na primeira corrida, foram submetidas a um período de *annealing* na temperatura de devitrificação (T_d) por 30 minutos para eliminação desse pico. Após o *annealing*, a amostra era novamente resfriada a –120°C e aquecida até 120°C.

Figura 3.3: DSC TA 2010

A temperatura de transição vítrea (T_g), temperatura de devitrificação (T_d), a temperatura do início da fusão do gelo (T_m) e as entalpias de fusão do gelo (Δ H_m) e devitrificação (Δ H_d) foram determinadas através dos termogramas obtidos no DSC utilizando-se o software *Universal Analysis* V1.7F (TA Instruments). Os resultados apresentados são as médias de três determinações independentes no DSC. Exemplos de termogramas apresentando estas determinações encontramse em anexo (Anexo C).

A equação de Gordon-Taylor (Equação 2.15) foi utilizada para correlacionar os valores de T_g em função do conteúdo de umidade.

3.6 Cálculo da fração de água não-congelável para a polpa de camu-camu natural e as formulações contendo aditivos

A fração de água não-congelável da polpa de camu-camu natural e das

Capítulo 3 - Materiais e Métodos

formulações contendo maltodextrina DE 20 e/ou sacarose foram determinadas segundo o método proposto por Duckworth, (1971). Este método baseia-se na determinação da área abaixo do pico de fusão do gelo (ΔH_m), para uma única amostra maximamente congelada.

A fração mássica da água congelável, (X_{fw}), foi calculada, através da Equação 3.2:

$$X_{fw} = \frac{\Delta H_m}{\Delta H_w}$$
(3.2)

onde, ΔH_m é a entalpia de fusão de gelo na amostra em J/g, calculada através dos termogramas do DSC, e ΔH_w (334 J/g) é o calor latente de fusão da água.

Então, a fração mássica da água não-congelável (X_{ufw}) foi calculada pela diferença entre a fração mássica de água congelável e o conteúdo total de umidade na amostra, segundo a Equação 3.3:

$$X_{ufw} = X_{w} - X_{fw} \tag{3.3}$$

onde X_W é o conteúdo de umidade na amostra em base úmida.

A fração de água não-congelável ligada aos sólidos (W_g ') foi calculada através da Equação 3.4:

$$W_g' = \frac{X_{ufw}}{X_s}$$
(3.4)

sendo X_s , a concentração de sólidos na amostra.

3.7 Relação entre T_g e isotermas de adsorção de vapor de água

O modelo de GAB (Equação 2.3) e o modelo de Gordon-Taylor (Equação 2.15) foram combinados a fim de se ajustar a T_g em função da atividade de água, resultando na Equação 3.5, proposta por Khalloufi *et al.* (2000):

$$T_{g} = \left(\frac{-A.a_{w}^{2} + B.a_{w} + C}{\alpha.a_{w}^{2} + \beta.a_{w} + 1}\right)$$
(3.5)

Onde:

$$A = T_{gs} k_{GAB}^{2} (I - C_{GAB})$$

$$B = k_{GAB} \left[T_{gs} (C_{GAB} - 2) + C_{GAB} X_{m} T_{gw} k \right]$$

$$C = T_{gs}$$

$$\alpha = k_{GAB}^{2} (I - C_{GAB})$$

$$\beta = k_{GAB} \left[(C_{GAB} - 2) + C_{GAB} X_{m} k \right]$$

O conteúdo de umidade crítica (X_{wc}) e a atividade de água crítica (a_{wc}), ou seja, onde $T_g = 25^{\circ}$ C, para a polpa de camu-camu liofilizada natural e com 30% de maltodextrina DE 20, foram calculados através do gráfico combinado da isoterma de adsorção ajustado pelo modelo de GAB (Equação 2.3) e da curva de T_g ajustado pelo modelo proposto por Khalloufi *et al.* (2000) (Equação 3.5).

3.8 Análises estatísticas

Todas as regressões foram realizadas com o uso do Software Statistica V.1.1.5 usando o método de Quasi-Newton.

A análise de variância e o teste de Tukey foram utilizados para determinar diferenças significativas a um nível de probabilidade de 5% (p < 0,05) entre as médias, utilizando o Software Statistica V.1.1.5.

CAPÍTULO 4

RESULTADOS E DISCUSSÕES

Este capítulo foi dividido em quatro seções, nas quais estão apresentados e discutidos os resultados experimentais do trabalho. Na Seção 4.1, apresentamse os resultados da caracterização da matéria-prima, ou seja, camu-camu (*Myrciaria dubia* (HBK) Mc Vaugh) adquiridas no CEAGESP (São Paulo, SP) sendo provenientes de Iguape na região do Vale do Ribeira. Foram caracterizados frutos inteiros em três estádios de maturação, com maior ênfase no fruto maduro. Na Seção 4.2, apresenta-se o processo de extração da polpa, enfocando a operação de branqueamento, rendimento do processo e características da polpa obtida. A partir da Seção 4.3 estão apresentados os resultados das transições de fases da polpa de camu-camu determinadas através de calorimetria diferencial de varredura (DSC), avaliando-se o efeito da adição de sacarose e maltodextrina DE 20 na temperatura de transição vítrea da matriz maximamente congelada (Tg') da polpa de camu-camu. E por fim, na Seção 4.4, apresentam-se os diagramas de estado para a polpa de camu-camu liofilizada natural (sem aditivos) e com 30% de maltodextrina DE 20.

4.1 Caracterização da matéria-prima

4.1.1 Caracterização do camu-camu em diferentes estádios de maturação

Na Tabela 4.1 apresentam-se os resultados do conteúdo de umidade e conteúdo de ácido ascórbico para três estágios de maturação (verde, semimaduro e maduro) do camu-camu, definidos de acordo com a coloração da casca, conforme descrito no Item 3.1 (Zapata & Dufour, 1993). A coloração da casca é comumente utilizada como indicativo do grau de maturação dos frutos, sendo um sinal de transformação dos pigmentos na superfície externa. Além disso, a coloração da casca está relacionada com as modificações bioquímicas que ocorrem durante o amadurecimento dos mesmos, tais como a hidrólise das pectinas da parede celular afetando a consistência do fruto (Kramer, 1973).

Grau de maturação	Descrição da coloração da casca	Consistência do fruto	Umidade** (g H₂O/100g)	Ácido ascórbico** (mg AA/100g)
Verde	Verde-	Rígida	92,37 ± 0,54 ^a *	1785,45 ± 45,26°
Semi-	Vermelho-			
maduro	amarelado	Firme	$92,57\pm0,24^{a}$	1864,09 ± 67,48 ^b
Moduro	Vermelho-	Frégil	04 42 ± 0.20^3	1000 00 1 07 073
waduro	Púrpura	Fragil	91,42 ± 0,20°	1902,30 ± 27,27

Tabela 4.1: Caracterizad	:ão do car	nu-camu inteiro er	n três estád	aios de maturação

*Média ± desvio padrão de três determinações experimentais, ** base úmida

Médias seguidas da mesma letra não diferiram significativamente ao nível de probabilidade de 5%

O conteúdo de umidade foi determinado em frutos inteiros (excluindo-se as sementes), conforme descrito no Item 3.3.2, não sendo observadas diferenças significativas (p < 0,05) entre os três estágios de maturação. Os valores encontrados foram semelhantes aos encontrados por Andrade (1991), em camu-camu plantado em terra firme no INPA (Manaus, AM), os quais variaram de 89% a 92% durante o amadurecimento. Zapata & Dufour (1993) também observaram um alto conteúdo de umidade para três estágios de maturação de camu-camu provenientes de Iquitos, Peru.

A concentração de ácido ascórbico aumentou significativamente com o grau de maturação do camu-camu, variando de 1785,45 para 1962,36 mgAA/100g de fruta. O mesmo foi observado por Andrade (1991), variando de 2489,33 mgAA/100g no camu-camu verde para 3133,06 mgAA/100g no camu-camu completamente maduro. No entanto, Del Campillo & Asejo (1957), citado por Andrade (1991), observaram que, para acerola, a maior concentração de ácido ascórbico se deu no fruto meio verde, com cerca de 70% do fruto no estado maduro.

Os resultados de acidez titulável total, sólidos solúveis, pH e relação brix/acidez para os três estágios de maturação do camu-camu estão apresentados na Tabela 4.2.

A acidez titulável total do camu-camu, expressa em percentagem de ácido cítrico, decresceu com o amadurecimento dos frutos. Os ácidos orgânicos geralmente acumulam-se durante o crescimento do fruto e decrescem com o amadurecimento, devido a sua utilização na cadeia respiratória ou conversão em açúcares (Chitarra & Chitarra, 1990). Zapata & Dufour (1993) determinaram valores de 3,55, 3,07 e 3,08 g ácido cítrico/100g de fruta para a acidez de camu-camu verde, meio maduro e maduro, respectivamente. Este comportamento também foi observado em morangos (Sturm *et al.*, 2003).

Tabela 4.2: Acidez titulável total, sólidos solúveis totais (SST), pH e relação brix/acidez em três estágios de maturação do camu-camu

A	Acidez titulável total**	CCT (⁰ Driv)	~	Relação
Amostra	(g ácido cítrico/ 100g)	551 (DHX)	μη	Brix/acidez
Verde	3,02 ± 0,10 ^a *	$5,2\pm0,1^{\circ}$	$2,88\pm0,02^{\text{a}}$	1,72°
Semi-maduro	$2,\!45\pm0,\!14^{b}$	$5{,}7\pm0{,}2^{\texttt{b}}$	$2{,}92\pm0{,}01^{a}$	2,33 ^b
Maduro	$2,31\pm0,03^{\texttt{b}}$	$6,5\pm0,1^{\text{a}}$	$2,95\pm0,01^{\text{a}}$	2,81 ^a

*Média ± desvio padrão de três repetições, **base úmida

Médias seguidas da mesma letra não diferiram significativamente ao nível de probabilidade de 5%

Em função da alta acidez residual do camu-camu (2,31%), mesmo após o amadurecimento do fruto, pode-se considerar que esta fruta é predominantemente ácida, se comparada à acerola (1,40%) (Bueno *et al.*, 2002), damasco (1,18%) (Forni *et al.*, 1997), cupuaçú (1,90%) (Bueno *et al.*, 2002) e abacaxi (0,97%) (Bartolomé *et al.*, 1996).

Apesar das variações na acidez, o pH do camu-camu permaneceu praticamente constante durante o amadurecimento, tendo variado de 2,88 no fruto verde a 2,95 no fruto maduro. Os ácidos orgânicos, acumulados nos vacúolos têm função tamponante e, portanto, mantêm o nível de pH das células independentemente de variações da acidez (Holcroft & Kader, 1999). O ácido

Capítulo 4 - Resultados e discussões

cítrico e málico e suas respectivas formas, combinadas como sais, formam o principal sistema tamponante nos frutos cítricos (Biale, 1960).

O teor de sólidos solúveis aumentou de 5,1°Brix na fruta verde para 6,5°Brix na fruta madura. O acréscimo dos sólidos solúveis em decorrência do avanço da maturação e do amadurecimento, ocasionado principalmente pela hidrólise do amido em açúcares, é um comportamento observado para a maioria das frutas. A magnitude desse acréscimo, porém, depende da espécie, cultivar e condições ambientais (Chitarra & Chitarra, 1990).

A relação Brix/acidez, que normalmente é utilizada como indicativo do grau de maturidade e aceitação sensorial de frutas é baixa, ressaltando a alta acidez do camu-camu, limitando o seu uso *in natura*.

4.1.2 Caracterização do camu-camu maduro

Para o camu-camu maduro (coloração da casca vermelho-púrpura) avaliou-se também o conteúdo de umidade e de ácido ascórbico para os diferentes componentes do fruto, ou seja, a casca, a semente e a polpa e também a fruta inteira com e sem sementes. Os resultados dessas análises estão apresentados na Tabela 4.3.

Amootro	Umidade**	Ácido ascórbico**
Aniostra	(g H ₂ O/100g)	(mg AA/100g)
Polpa (sem a casca)	93,7 ± 0,3*	1734,03 ± 74,72
Casca	$\textbf{86,4} \pm \textbf{0,8}$	$3085,90 \pm 17,41$
Semente	NC	$97,09\pm4,41$
Fruta inteira com semente	88,2 ± 0,1	NC***
Fruta inteira sem semente	91,4 ± 0,2	1962,36±27,27

Tabela 4.3: Conteúdos de umidade e ácido ascórbico de diferentes partes do camu-camu maduro

* Média ± desvio padrão de três determinações experimentais

Base úmida, *não calculado
Pode-se observar que a casca do camu-camu apresentou um conteúdo de ácido ascórbico de 3085,90 mgAA/100g, ou seja, aproximadamente 1,8 vezes maior que a concentração de ácido ascórbico encontrado na polpa. Outros autores também observaram teores de vitamina C mais elevados na casca de frutos (Ruiz, 1994; Dib Táxi, 2001). A maior concentração de ácido ascórbico na casca é justificada pela maior exposição aos raios solares, visto que a síntese do mesmo depende do suprimento de açúcares e da atividade fotossintética, induzida pela intensidade luminosa à qual a planta é submetida (Andrade, 1991).

Diversos trabalhos apresentam determinações da concentração de ácido ascórbico do camu-camu, com resultados muitos diferentes entre si. Clement & Filho (1994) e Andrade (1991) encontraram concentrações mais elevadas de ácido ascórbico em camu-camu nativo da Amazônia peruana (fruto inteiro sem semente) (2994 mgAA/100g), e em camu-camu cultivado no INPA (Manaus, AM) (3033 mgAA/100g), respectivamente. No entanto, Zapata & Dufour (1993), observaram concentrações mais baixas para camu-camu cultivado em Iquitos (Peru) (930 mgAA/100g). Arévalo (2002) encontrou um valor de 1490 mgAA/100g para camu-camu cultivado em Registro, SP, no Vale do Ribeira.

Como previamente descrito no Item 2.1.4, provavelmente essas variações estejam relacionadas com fatores ambientais, cultivares e também com os tratamentos que a fruta é submetida até o momento da análise.

A concentração de ácido ascórbico encontrada na semente (97 mgAA/100g) foi relativamente alta para este tipo de tecido vegetal. Este valor, entretanto, pode ter sido influenciado por resíduos de polpa que ficaram aderidos à semente.

A umidade variou de acordo com a parte da fruta analisada. Estudando a composição de camu-camu proveniente de Registro (SP), Arévalo (2002) encontrou teores de umidade em base úmida de 87,59% para a casca, 92,05% para a polpa (sem casca) e 82,77% para a fruta inteira com semente, valores bastante semelhantes aos encontrados no presente trabalho.

4.2 Processamento da polpa de camu-camu

4.2.1 Processo de extração da polpa

O rendimento obtido no processo de extração da polpa de camu-camu, calculado através da Equação 3.1, foi de 52,4%. Em despolpadeira industrial, Villachica (1997) registrou um rendimento de polpa 50 a 55%. Utilizando uma despolpadeira de escovas semi-industrial, dotado de peneira com aberturas de diâmetro médio de 1mm, Dib Taxi (2001) obteve um rendimento de polpa de 50%. Com esse mesmo equipamento, Arévalo (2002) obteve 45% de rendimento.

No processamento da fruta, a casca deve ser tratada juntamente com a polpa para que se obtenha uma coloração vermelho/púrpura intensa, característica desta fruta. A Figura 4.1 mostra a polpa de camu-camu extraída com casca (direita) e sem casca (esquerda). Além de melhorar as características sensoriais da polpa, a casca apresenta uma concentração de ácido ascórbico maior do que a encontrada na polpa (Tabela 4.3), elevando assim o seu valor nutricional.

Figura 4.1: Polpa de camu-camu extraída sem a casca (direita) e com a casca (esquerda)

4.2.2 Caracterização da polpa de camu-camu

A polpa de camu-camu utilizada neste trabalho foi obtida a partir de frutos

inteiros (sem semente), recém colhidos (um a dois dias), submetidos a um branqueamento com água fervente (98,5°C) durante 2 minutos, conforme descrito no Item 3.2. Os resultados da caracterização química da polpa de camu-camu estão apresentados na Tabela 4.4.

A concentração de ácido ascórbico da polpa obtida na despolpadeira (1721,65 mg AA/100 g) foi inferior à da fruta inteira madura (1962,36 mg AA/100g), mesmo sendo ambas provenientes da mesma safra e do mesmo local de cultivo. Esta diferença, de 12%, pode estar relacionada às perdas durante o processamento da polpa, sobretudo no branqueamento e, principalmente, durante a turbulenta exposição da polpa com o oxigênio do ar durante a operação de trituração/centrifugação. É importante salientar também, que mesmo dentro da mesma safra ou lote, podem ocorrer diferenças na composição de frutas e vegetais (Slade & Levine, 1991a).

Resultado **
93,35±0,04*
$6,0 \pm 0,1$
$3,25 \pm 0,03$
ND ***
$\textbf{2,30} \pm \textbf{0,03}$
0,68 ± 0,07
$2{,}63\pm0{,}02$
1721,65 ± 15,93
2,60

Tabela 4.4: Resultados da caracterização da polpa de camu-camu

*Média ± desvio padrão de três determinações experimentais, ** base úmida, *** não detectável

Como observado, o camu-camu apresentou uma concentração de açúcares redutores totais inferior à maioria das frutas, ou seja, 3,25g glicose/100g de polpa. Não foi detectada a presença de açúcares não-redutores, em acordo com Zapata & Dufour (1993). Andrade (1991) determinou traços de sacarose em camu-camu maduro e a concentração de açúcares redutores foi de 3,02 g

Capítulo 4 – Resultados e discussões

glicose/100g de polpa. Justi *et al.* (2000) encontraram uma concentração de carboidratos na polpa de camu-camu igual a 3,5 g/100g polpa, porém não foi especificada a natureza do carboidrato. Em geral, os frutos ricos em vitamina C apresentam quantidades mínimas de sacarose, em decorrência do desvio de seu precursor para a síntese do ácido ascórbico (Andrade, 1991).

Trevisan *et al* (1972) detectaram a presença de glicose e frutose, e apenas pequenas quantidades de sacarose em jaboticaba, fruto também pertencente à família das *Myrtaceae*. Vendramini & Trugo (2000), estudando a composição química da polpa de acerola, determinaram uma concentração de açúcares redutores de 4,40 g de glicose/100g de polpa, e também não detectaram quantidades mensuráveis de açúcares não-redutores, comprovando o que foi observado por Santini (1953), citado por Andrade (1991). A ausência de sacarose também foi observada em cerejas por Wills *et al.* (1983).

Por outro lado, no abacaxi, também considerada uma fruta ácida, Bartolomé *et al.* (1996) determinaram 8,15% de açúcares totais, sendo 4,5% glicose e 1,45% sacarose. Torreggiani *et al.* (1999) determinaram uma concentração de açúcares totais de 5,38%, sendo 0,41% sacarose, 2,64% glicose e 2,33% frutose em morangos.

Os sólidos solúveis totais são constituídos por compostos solúveis em água, tais como: açúcares, ácidos, aminoácidos e algumas proteínas (Kramer, 1973). Nas frutas, os açúcares são, quantitativamente, os principais contribuintes dos sólidos solúveis totais. Desta forma, uma concentração de sólidos solúveis totais muito superior à de açúcares totais indica a presença de outros compostos solúveis. Em morangos, por exemplo, os açúcares correspondem a aproximadamente 80% dos sólidos solúveis totais (Torreggiani *et al.*,1999). No camu-camu, os açúcares contribuíram apenas com 54% dos sólidos solúveis totais.

No entanto, a acidez titulável, expressa em g de ácido cítrico por 100g de polpa, atingiu aproximadamente 38,3% dos sólidos solúveis totais, sendo este valor similar ao encontrado por Andrade (1991).

4.3 Determinação das transições de fases para a polpa congelada de camucamu e formulações contendo aditivos

As formulações da polpa de camu-camu contendo sacarose e/ou maltodextrina DE 20, em diferentes proporções, foram preparadas seguindo-se metodologia descrita no Item 3.4.1. A composição de cada formulação é apresentada na Tabela 4.5.

Conforme esperado, observou-se um aumento no teor de sólidos solúveis totais e a diminuição no conteúdo de umidade, atividade de água, acidez titulável total e concentração de ácido ascórbico, com o aumento da concentração dos aditivos. O efeito da concentração de sacarose na diminuição da atividade de água foi mais intenso do que com a maltodextrina. Esse maior efeito coligativo do açúcar é devido ao seu menor peso molecular.

		¥147**	ест	Acidez	Ácido
Formulação	a_w		(^o Driv)	titulável total**	ascórbico**
		(gn ₂ 0/100g)	(DIX)	(g AC/100g)	(mg AA/100g)
Polpa natural	1,000	$93,78\pm0,04^{\star}$	6,0	2,30 ± 0,03	1721,65 ± 15,93
10% sacarose	0,992	85,05 ± 0,04	15,6	$2,17\pm0,02$	$1584,\!40 \pm 12,\!26$
20% sacarose	0,982	$75{,}70\pm0{,}19$	22,7	$\textbf{1,98} \pm \textbf{0,01}$	1428,07 ± 21,08
5% Malto.	0,999	$89,04\pm0,07$	10,9	$2,\!24\pm0,\!04$	$1624{,}62\pm 6{,}81$
10% Malto.	0,995	$84,\!40\pm0,\!02$	15,1	$\textbf{2,16} \pm \textbf{0,01}$	$1559,59 \pm 19,10$
15% Malto.	0,993	$79,88 \pm 0,05$	19,4	$\textbf{2,08} \pm \textbf{0,01}$	$1519, 19 \pm 25, 50$
20% Malto.	0,993	$75{,}33\pm0{,}03$	22,2	$1,\!98\pm0,\!01$	1417,59 ± 11,11
30% Malto.	0,982	$66,\!58\pm0,\!10$	33,2	$1,85\pm0,02$	$1325,24 \pm 20,01$
MIX 1	0,988	66,08 ± 0,03	32,6	$1,83\pm0,01$	$1356,52 \pm 14,12$
MIX 2	0,975	$56{,}81\pm0{,}03$	43,4	$1,\!68\pm0,\!03$	1239,98 ± 18,28

Tabela 4.5: Atividade de água (a_w) , conteúdo de umidade (X_w) , sólidos solúveis totais, acidez titulável total e conteúdo de ácido ascórbico da polpa de camu-camu e formulações

* Média ± desvio padrão de três determinações experimentais, ** base úmida

Capítulo 4 - Resultados e discussões

Na Figura 4.2 estão apresentados os termogramas representativos, obtidos no DSC, para a polpa de camu-camu natural (sem aditivos) e para as formulações contendo os crioprotetores e crioestabilizantes. Observou-se que o evento mais visível, em todas as curvas, foi o pico endotérmico de fusão do gelo (Figura 4.2). A T_a apareceu discretamente, visto que o calor envolvido na transição vítrea é quase desprezível em relação ao calor latente de fusão do gelo (Biliaderis, 1999; Cornillon, 2000; Sobral et al., 2001). Todas as amostras apresentaram uma transição vítrea típica, representada por um desvio na linha de base antes da fusão de gelo. Sendo esta bem visível na visão ampliada da região da T_a, apresentada na Figura 4.3. O formato dos termogramas determinados para o camu-camu é característico de materiais alimentícios com alto conteúdo de umidade $(a_w > 0.90)$ (Roos, 1987) e tem sido observado por diversos autores como por exemplo, Roos & Karel (1991b) com soluções diluídas de sacarose, Sobral et al. (2001) com caqui, Roos (1987) e Moraga et al. (2003) com morangos, Telis & Sobral (2002) com tomate e Sá & Sereno (1994) com cebola, uva e morango.

Figura 4.2: Curvas do DSC para polpa de camu-camu natural e formulações: (a) MIX1; (b) MIX2; (c) 30% maltodextrina (DE 20), (d) 20% maltodextrina (DE 20); (e) 15% maltodextrina (DE 20); (f) 10% maltodextrina (DE 20); (g) 5% maltodextrina; (h) 20% sacarose; (i) 10% sacarose; (j) polpa natural

Figura 4.3: Visão ampliada (zoom) de T_g' para polpa de camu-camu natural e formulações: (a) MIX1; (b) MIX2; (c) 30% maltodextrina (DE 20), (d) 20% maltodextrina (DE 20); (e) 15% maltodextrina (DE 20); (f) 10% maltodextrina (DE 20); (g) 5% maltodextrina; (h) 20% sacarose; (i) 10% sacarose; (j) polpa natural

Em produtos com alto conteúdo de umidade, o processo de formação de gelo se inicia quando a temperatura atinge T_m, induzindo assim a concentração da fase não-congelável. A formação de gelo continua até que uma concentração crítica (X_g'), dependente dos solutos, é atingida. Neste ponto a viscosidade da matriz não-congelável é tão alta (estado vítreo) que o processo de formação de gelo é interrompido por restrições cinéticas (Sahagian & Goff, 1996). Assim, uma vez que há formação de gelo em um produto, a T_g' específica do sistema se torna a única temperatura de transição vítrea que controla o comportamento do produto durante o seu armazenamento congelado em qualquer temperatura de armazenamento, acima de T_m ou ainda acima ou abaixo de T_g' (Slade & Levine, 1991a).

Desta forma, a T_g de amostras com alto conteúdo de umidade ($a_w > 0,90$) representa, na verdade, a temperatura de transição vítrea da matriz maximamente congelada (solutos/água não-congelável), ou seja T_g', cujo valor é característico de cada material e independente do conteúdo de umidade (Goff, 1994; Telis & Sobral, 2001).

Não foram detectados picos exotérmicos de devitrificação entre Tg e Tm,

Capítulo 4 - Resultados e discussões

indicativo da formação (recristalização) de gelo durante o reaquecimento de amostras resfriadas a uma taxa muito alta (Roos & Karel, 1991a). A inexistência deste pico se deve, possivelmente à baixa concentração de solutos que não foi suficiente para exercer o efeito de retardamento da formação de gelo no resfriamento das amostras (Roos, 1995b).

Na Tabela 4.6 estão apresentados os valores da temperatura de transição vítrea da matriz maximamente congelada (T_g'), temperatura de início de fusão de gelo (T_m) e entalpia de fusão de gelo (ΔH_m) calculados a partir dos termogramas obtidos no DSC e os valores da fração de água não-congelável (Wg') calculados através das Equações 3.2, 3.3 e 3.4 para a polpa de camu-camu natural e as formulações.

Formulação				W _g '
FUIMulação		im(•)	Ariii (Jig)	(g UFW/g s.)
Polpa natural	-58,3 ± 1,2 ^e *	-3,8 ± 0,1 ª	288,4 ± 3,32 ^a	$1,20 \pm 0,15$ ^a
10% sacarose	-52,6 ± 1,3 ^{c,d}	-5,6±0,1 ^e	$\textbf{235,4} \pm \textbf{3,20}^{\text{ d}}$	$0,98\pm0,07~^{b}$
20% sacarose	$-51,8 \pm 0,6$ ^{b,c,d}	-7,6 ± 0,1 ^g	193,0 ± 4,19 ^g	$0,74 \pm 0,05$ ^{c,d}
5% Malto.	-55,8 ± 1,2 ^{d,e}	-4,2 \pm 0,1 ^{a,b}	269,6 \pm 1,19 ^b	0,76 \pm 0,04 $^{\circ}$
10% Malto.	-52,4 \pm 1,7 ^{c,d}	$-4,4\pm0,1$ ^{b,c}	251,1 \pm 4,24 $^{\circ}$	$0,57 \pm 0,08 \ ^{d,e}$
15% Malto.	-53,6 ± 2,2 ^d	$-4,6\pm0,1^{c,d}$	$224,8 \pm 2,47$ ^e	$0,62 \pm 0,03 \ ^{c,d,e}$
20% Malto.	-47,4 \pm 0,9 ^b	-4,9 \pm 0,3 ^d	$204,5 \pm 2,40$ ^f	$0,57 \pm 0,03$ ^{d,e}
30% Malto.	-39,6 \pm 2,9 a	-6,5 \pm 0,2 ^f	171,0 \pm 3,40 ^h	$0,46 \pm 0,02$ ^e
MIX 1	-48,4 \pm 0,9 ^{b,c}	-7,5 \pm 0,2 g	157,2 \pm 3,30 $^{\mathrm{i}}$	$0,56 \pm 0,03$ ^{d,e}
MIX 2	-47,5 \pm 1,0 ^b	-10,8 \pm 0,1 ^h	118,5 \pm 0,93 $^{\mathrm{j}}$	$0,49\pm0,01^{e}$

Tabela 4.6: Valores de T_g', T_m, Δ H_m e Wg' para a polpa de camu-camu natural e formulações contendo aditivos.

* Média ± desvio padrão de três determinações experimentais,

Médias seguidas da mesma letra não diferiram significativamente ao nível de probabilidade de 5%

O valor de T_g' encontrado para a polpa de camu-camu natural foi muito baixo (-58,3°C), mas comparável com a T_g' de polpas de frutas mais ricas em açúcares, como por exemplo, abacaxi (T_g' = -51,6°C) (Telis & Sobral, 2001) e caqui (T_g' = -56.6°C) (Sobral *et al.*, 2001). Os valores de T_g' encontrados para

soluções de ácido ascórbico ($T_g' = -56,8^{\circ}C$), ácido cítrico ($T_g' = -66,4^{\circ}C$) e de uma mistura contendo os dois ácidos na proporção de 1:1,33 ($T_g' = -62,9^{\circ}C$) obtidos neste trabalho (ver Anexo A) podem sugerir que a T_g' da polpa de camu-camu natural foi principalmente influenciada pela presença desses dois ácidos e não somente pelos açúcares.

Segundo Slade & Levine (1991a) a T_g' de frutas e vegetais pode ser prevista pela composição média dos seus solutos compatíveis com a água, que no caso das frutas são predominantemente açúcares de baixo peso molecular, como glicose, frutose e sacarose. No entanto, em algumas frutas (como limão) este valor também é afetado pela composição de ácidos presente na mesma.

Observa-se, na Figura 4.4, que o valor de T_g' aumentou com o aumento da concentração dos aditivos, com exceção da formulação com 5% de maltodextrina que não apresentou diferença significativa em relação à polpa natural (p < 0,05). Provavelmente a concentração foi muito baixa para alterar a composição e peso molecular médio da matriz amorfa. Contrariamente, entretanto, esta concentração de maltodextrina DE 20 (5%) afetou a fração de água não-congelável (W_g' = 0,76), diferenciando-se significativamente (p < 0,05) do valor de W_g' calculado para a polpa natural (W_g' = 1,20).

As formulações contendo somente maltodextrina DE 20 como aditivo, apresentaram um aumento linear de T_g' com o aumento da concentração do aditivo ($r^2 = 0,996$). Estatisticamente, não foram detectadas diferenças significativas a um nível de probabilidade de 5%, entre os valores de T_g' das formulações contendo 5, 10 e 15% deste aditivo. Diferenças significativas foram observadas entre as formulações contendo 20 e 30% e essas em relação às formulações contendo 5, 10 e 15% de maltodextrina DE 20.

Slade & Levine (1991a) demonstraram que, em um sistema congelado complexo, o valor característico da T_g' de uma mistura de solutos amorfos e sua fração de água não-congelável é governado pelo peso molecular médio (\overline{M}_w) da combinação dos compostos solúveis em água presentes no sistema. Este tendência ilustra o principio de "crioestabilização polimérica", onde a influência na estabilização do estado estrutural de uma matriz amorfa complexa é derivada do

alto peso molecular do crioestabilizante polimérico (no caso a maltodextrina DE 20) e o seu efeito resultante na elevação da T_g' do alimento (Levine & Slade, 1990).

Figura 4.4: Influência das concentrações de sacarose e maltodextrina DE 20 na Tg' das formulações

O valor de T_g' determinado para uma solução aquosa de maltodextrina DE 20 (ver Anexo B) foi de -37,8°C, sendo este próximo do valor de T_g' obtido para a formulação com 30% de maltodextrina DE 20 (-39,6°C), indicando que com o aumento da concentração do aditivo na formulação, o valor de T_g' tende ao valor de T_g' do aditivo puro. Roos & Karel (1991c), estudando as transições de fases de soluções de diferentes carboidratos, determinaram um valor semelhante ao encontrado no presente estudo para uma solução aquosa de maltodextrina DE 20. No entanto, Slade & Levine (1991a) determinaram valores mais altos para a T_g' da mesma maltodextrina (-15,5°C). É importante salientar que estes autores adotam outra forma de interpretação dos eventos térmicos em soluções congeladas, resultando na listagem de diferentes valores de T_g', conforme comentado previamente no Item 2.6.

As T_g' das formulações que continham uma mistura de maltodextrina DE 20 e sacarose (MIX 1 e MIX 2), não apresentaram diferenças significativas (p < 0,05) entre si e em comparação com mistura que continha apenas maltodextrina DE (20%) Isto pode ser observado através da Figura 4.4 (pontos verdes), indicando que a sacarose, na presença maltodextrina DE 20 não influencia a elevação de T_g'.

A T_g' das formulações contendo sacarose (10 e 20%) mostraram um aumento significativo no valor de T_g', em relação à polpa natural, e tenderam para o valor de T_g' de soluções de sacarose/água, em torno de -52°C, (Roos, 1991b). Sá *et al.* (1999) observaram comportamento semelhante em maçãs tratadas osmoticamente com soluções de sacarose. A mesma tendência foi observada por Baroni *et al.* (2003) com polpa de tomate tratada osmoticamente com soluções de sacarose. No entanto quando cloreto de sódio (menor peso molecular que a sacarose) foi adicionado à solução, observou-se um efeito depressor no valor de T_g'. Esta mesma redução de T_g' foi observada por Telis & Sobral (2002) com tomates tratados com soluções de sacarose e NaCI.

A T_g' da formulação contendo 30% de maltodextrina DE 20 foi a maior em relação a todas as outras formulações, representando um expressivo aumento de 18,6°C em relação a T_g' da polpa natural. Desta forma, e respeitando limitações tecnológicas a respeito da adição de maiores concentrações deste aditivo, escolheu-se esta formulação para a determinação do diagrama de estado completo.

As entalpias de fusão de gelo, determinadas através da integração dos picos endotérmicos de fusão de gelo obtidos no DSC, para a polpa natural e para as formulações, em função do conteúdo de umidade, estão apresentadas na Figura 4.5. Como esperado, para as formulações contendo os mesmos constituintes, a entalpia de fusão de gelo diminuiu com a diminuição do conteúdo de umidade.

No entanto, as amostras com o mesmo conteúdo de umidade mas solutos diferentes apresentaram diferentes entalpias de fusão de gelo, a um nível de significância de 5%. Isto indica que houve diferença na maneira como o gelo foi

formado nos sistemas congelados. Este fato é refletido na fração de água nãocongelável (W_g') das amostras. Por exemplo, comparando-se as formulações com 20% de maltodextrina DE 20 (X_w = 75,8%) e com 20% de sacarose (X_w = 75,3%) as entalpias de fusão de gelo apresentaram diferenças significativas a um nível de probabilidade de 5%, sendo que o menor valor de Δ H_m foi observado para a formulação com sacarose. Isto indica que na formulação com 20% de sacarose houve uma menor quantidade de gelo formado, sendo confirmado pelo maior valor de W_g' (0,976) significativamente diferente (p < 0,05) do valor de W_g' da formulação com 20% de maltodextrina DE 20 (0,618). O mesmo ocorreu com as amostras que continham 30% de maltodextrina DE 20 (X_w = 66,6%) e 10% sacarose e 20% de maltodextrina DE 20 (X_w = 66,1%). Esse comportamento também foi observado por Slade & Levine (1991a), que determinaram que a área abaixo do pico de fusão de gelo para uma solução de glicose foi significativamente menor (ou seja, W_g' maior) do que para uma solução de maltodextrina DE 10, ambas com X_w = 90%.

Figura 4.5: Entalpia de fusão de gelo em função do conteúdo de umidade das amostras

Analisando os valores de W_g' (Tabela 4.6) também se confirma que os aditivos afetaram a forma com que ocorre a formação de gelo. O valor de W_g' da polpa natural foi significativamente mais alto que os valores encontrados para as demais formulações.

A fração mássica de água não-congelável em alimentos (X_g'), varia de acordo com o conteúdo de umidade do mesmo, porém a quantidade de água nãocongelável ligada aos sólidos (W_g'), expressa em g de água não-congelável/g sólidos deve ser constante e independente do conteúdo de água presente na amostra. Portanto pode-se dizer que este valor é característico somente dos componentes sólidos do sistema (Roos, 1987).

Os valores na Tabela 4.6 também confirmam que a temperatura de início de fusão de gelo (T_m) diminuiu com o aumento da concentração dos solutos, porém a sacarose exerce um efeito depressor mais acentuado do que a maltodextrina devido a maior ação coligativa, também expressa nos resultados de atividade de água.

4.4 Construção dos diagramas de estado

4.4.1 Liofilização da polpa de camu-camu

Para a construção do diagrama de estado foi necessário trabalhar com o produto desidratado, com diferentes teores de umidade.

Como a liofilização mantém as características do produto mais próximas possíveis do produto fresco original, optou-se por liofilizar a polpa de camu-camu para a determinação das transições de fases. O produto em pó permite a reumidificação das amostras e garante um bom contato térmico entre a amostra e a superfície da célula de aquecimento do DSC (Duckworth, 1971).

A fim de se obter o material liofilizado para as análises no DSC, a polpa de camu-camu (natural e com 30% (p/p) de maltodextrina DE 20) foi liofilizada conforme descrito no Item 3.4.2.1. Os balanços de massa de sólidos totais e ácido ascórbico na liofilização da polpa de camu-camu natural e com 30% (p/p) de maltodextrina DE 20, estão apresentados na Tabela 4.7.

Capítulo 4 - Resultados e discussões

Tabela 4.7: Balanço de massa de sólidos totais e ácido ascórbico na liofilização da polpa de camu-camu natural e com 30% de maltodextrina DE 20

Polpa de camu-camu	Sólidos Totais Volpa de (g sólidos/g polpa)		Ácido Aso (mg AA/g	%perda de AA	
	(antes)	(após)	(antes)	(após)	
Natural	0,665±0,031*	0,890 ± 0,002	$258,32 \pm 0,98$	$253,07 \pm 0,50$	2,03
Com 30%	0 334 ± 0 001	0 003 + 0 002	36 16 ± 0 12	25 77 ± 0 25	1 07
de malto.	0,004 ± 0,001	0,325 ± 0,002	50, 10 ± 0, 12	33, <i>11</i> ± 0,33	1,07

*Média ± desvio padrão de três determinações experimentais, ** Base seca

Observa-se que as perdas de ácido ascórbico no processo de liofilização foram baixas. Na polpa de camu-camu natural foi de aproximadamente 2%, enquanto que para a polpa com 30% (p/p) de maltodextrina DE 20 foi de apenas 1%. Inúmeros trabalhos ressaltam que a liofilização apresenta as melhores eficiências na retenção das características nutricionais e sensoriais do produto fresco original, comparado a outros métodos de desidratação, devido a baixa temperatura utilizada no processo e a remoção direta da água por sublimação (Tsami *et al.*, 1999; Matteo *et al.*, 2003). Leme *et al.*, 1973, constataram perdas de aproximadamente 5% de ácido ascórbico no processo de liofilização e secagem por convecção de ar aquecido, observou uma degradação mínima na coloração de morangos liofilizados, mas descoloração e escurecimento durante a desidratação de morangos com ar aquecido.

Devido à remoção da água diretamente dos cristais de gelo, o produto liofilizado apresenta uma estrutura porosa de fácil reidratação (Bellows & King, 1973). As polpas de camu-camu liofilizadas (natural e com 30% (p/p) de maltodextrina DE 20) não apresentaram sinais evidentes de colapso estrutural ou encolhimento, mantendo a estrutura porosa do material. Observou-se que as mesmas eram facilmente reidratadas por adição de água fria.

A polpa de camu-camu natural liofilizada (Figura 4.6, esquerda) apresentou uma coloração vermelho/púrpura intensa, muito semelhante à cor da polpa de camu-camu natural original (Figura 4.1). Porém, a polpa de camu-camu

liofilizada com 30% (p/p) de maltodextrina DE 20 (Figura 4.6, direita) apresentou uma coloração mais clara (rosa claro), pois a maltodextrina é originalmente um pó fino de cor branca.

Figura 4.6: Polpa de camu-camu liofilizada natural (sem aditivos) e com 30% de maltodextrina DE 20

O conteúdo de umidade da polpa de camu-camu natural obtida no fim do processo de liofilização foi de aproximadamente 11 gH₂O/100g (base úmida), enquanto que para a polpa de camu-camu com 30% (p/p) de maltodextrina DE 20 este valor foi de 7,7 gH₂O/100g (base úmida).

Além do menor conteúdo de umidade residual e menor perda de ácido ascórbico, o produto liofilizado com maltodextrina apresentou menor higroscopicidade e maior estabilidade à temperatura ambiente.

4.4.2 Isotermas de sorção de vapor de água

As isotermas de adsorção de umidade a 25°C da polpa de camu-camu natural e com 30% (p/p) de maltodextrina DE 20, determinadas segundo a metodologia descrita no Item 3.4.2.2, estão apresentadas na Figura 4.7.

As amostras correspondentes à umidades relativas mais altas (75,3% -90,3%) atingiram o equilíbrio em 10-12 dias, sem que fosse notada a formação de fungos e bolores. Para as demais amostras o tempo de equilíbrio foi de aproximadamente 21 dias. Períodos semelhantes de equilíbrio foram encontrados por Labuza (1975) para frutas e vegetais.

O modelo de GAB (Equação 2.3) foi utilizado para ajustar os pontos experimentais de ambas isotermas e a Tabela 4.8 apresenta os parâmetros de ajuste do modelo.

As duas curvas mostraram a mesma tendência, ou seja, um aumento no conteúdo de umidade de equilíbrio com o aumento da atividade de água. Este comportamento é manifestado pelo formato sigmoidal das curvas, classificadas como isotermas do Tipo II, segundo a classificação de Brunauer. Este formato de isoterma é tipicamente encontrado para alimentos e materiais biológicos (Roos, 1995b).

Figura 4.7: Isoterma de adsorção de vapor de água a 25°C: (△) polpa de camucamu natural, (◆) polpa de camu-camu liofilizada com 30% (p/p) de maltodextrina DE 20

Observa-se que a polpa de camu-camu natural absorveu mais água que a polpa de camu-camu com 30% (p/p) de maltodextrina DE 20, na mesma atividade de água, confirmando a maior higroscopicidade da mesma.

	Parâmetro					
Polpa de camu-camu liofilizada	X _m (gH₂O/g sólido)	C _{GAB}	k GAB	r²		
natural (sem aditivos)	0,158	27,364	0,924	0,996		
com 30% (p/p) de maltodextrina DE 20	0,064	10,163	0,948	0,992		

Tabela 4.8: Parâmetros estimados pelo modelo de GAB para a polpa de camucamu liofilizada natural (sem aditivos) e com 30% (p/p) de maltodextrina DE 20

Para a polpa de camu-camu natural liofilizada, o conteúdo de água da monocamada, X_m , ajustada pelo modelo de GAB, foi de 0,158 g de água/ g de sólido seco, sendo este superior ao encontrado por Arévalo (2002) também para polpa de camu-camu liofilizada. Este valor pode ser comparado aos determinados para outras frutas liofilizadas a 25°C, tais como, abacaxi ($X_m = 0,072$ g/g sólidos) (Telis & Sobral, 2001), Caqui ($X_m = 0,131$ g/g sólidos) (Sobral *et al.*, 2001), tomate ($X_m = 0,073$ g/g sólidos) (Baroni *et al.*, 2003), maçã ($X_m = 0,112$ g/g sólidos) (Sá *et al.*, 1999) a 25°C, uva-passa, figo e damasco ($X_m = 0,125$; 0,117 e 0,151 g/g sólidos) (Maroulis *et al.*, 1988).

Dib Taxi (2001) obteve um valor de $X_m = 0,14$ g/g sólidos para o suco de camu-camu liofilizado, $X_m = 0,08$ g/g sólidos para o suco de camu-camu desidratado com maltodextrina DE10 e $X_m = 0,063$ g/g sólidos para suco de camu-camu desidratado com goma arábica, a 25°C.

A umidade da monocamada determinada para polpa de camu-camu liofilizada com 30% (p/p) de maltodextrina DE 20 ($X_m = 0,064$ g/g sólidos) foi similar à encontrada para maltodextrina DE 20 ($X_m = 0,048$ g/g sólidos) (Roos, 1993b).

Os altos coeficientes de correlação obtidos (Tabela 4.8) demonstram que o modelo de GAB foi adequado para o ajuste dos dados experimentais em toda a faixa de atividade de água.

4.4.3 Transições de fases da polpa de camu-camu liofilizada natural e da polpa liofilizada com 30% de maltodextrina DE 20

Os resultados das análises no DSC permitiram a observação de diferentes

comportamentos das amostras nas diferentes faixas de conteúdo de umidade estudadas.

Nas Figuras 4.8 a 4.13 estão apresentados exemplos de termogramas, obtidos no DSC, utilizados para o cálculo das propriedades de fases das amostras.

Para a polpa de camu-camu natural, no domínio higroscópico compreendido entre $0,113 \le a_w \le 0,753$, as amostras apresentaram apenas uma transição vítrea bem definida, representada por um desvio endotérmico da linha de base (Figura 4.8). No entanto, para a polpa de camu-camu com 30% de maltodextrina DE 20 este comportamento foi observado num domínio mais amplo compreendido entre $0,113 \le a_w \le 0,843$ (Figura 4.9).

Figura 4.8: Curvas do DSC da polpa de camu-camu natural liofilizada na região de baixa *a_w* (*a_w*, X_w): (a)0,113, 0,128; (b) 0,328, 0,166; (C) 0,432, 0,189; (d) 0,529, 0,217; (e) 0,645, 0,276; (f) 0,753, 0,334

Observou-se, em todas as amostras, que a transição vítrea tendeu a se deslocar para a esquerda, ou seja, para temperaturas mais baixas, com o aumento do conteúdo de umidade, devido ao efeito plastificante da água. Este comportamento é típico de materiais amorfos de baixa umidade. Essa tendência foi observada por diversos autores trabalhando com frutas liofilizadas (Roos, 1987;

Sá & Sereno, 1994; Khalloufi *et al.*, 2000; Sobral *et al.*, 2001; Telis & Sobral, 2001; Moraga *et al.*, 2003). No entanto, alguns autores constataram a existência de duas transições vítreas nessa faixa de umidade devido à separação de fases, ambas plastificadas pelo aumento da umidade. A primeira transição vítrea (de temperatura mais baixa) é normalmente atribuída à matriz formada por água e açúcares e a segunda (de temperatura mais alta) às macromoléculas do material (ex.: pectina) agindo como uma fase separada (Sobral *et al.*, 2001, Telis & Sobral 2002).

Figura 4.9: Curvas do DSC da polpa de camu-camu liofilizada com 30% (p/p) de maltodextrina DE 20 na região de baixa a_w (a_w , X_w): (a)0,113, 0,051; (b) 0,328, 0,069; (C) 0,432, 0,072; (d) 0,529, 0,094; (e) 0,645, 0,130; (f) 0,753, 0,177; (g) 0,803; 0,215; (h) 0,843, 0,241

Observa-se na Figura 4.9, que as amostras com atividade de água de 0,113, 0,328 e 0,432, da polpa de camu-camu com 30% de maltodextrina DE 20, apresentaram um pico endotérmico em temperaturas acima da transição vítrea, muito provavelmente devido à presença de uma porção cristalina. Na ciência dos polímeros, este fenômeno é explicado pela fusão da região cristalina do material (provavelmente açúcares, ácidos, ou mesmo a maltodextrina, visto que a polpa natural não apresentou este comportamento) formada durante a secagem (Slade & Levine, 1991a; Roos, 1993b). Para atividades de água mais altas este pico não foi observado. Telis & Sobral (2002), observaram pequenos picos endotérmicos

Capítulo 4 – Resultados e discussões

entre 50 e 100°C em tomates tratados osmoticamente com atividades de água 0,33, 0,43 e 0,53. Em abacaxi este comportamento foi observado somente nas amostras acondicionadas em sílica gel e em 0,11 de atividade de água (Telis & Sobral, 2001).

A polpa de camu-camu natural liofilizada apresentou fusão de gelo nas amostras equilibradas em atividades de água a partir de 0,803. Entretanto, para a polpa de camu-camu com 30% de maltodextrina DE 20 este limite de aparecimento da fusão de gelo foi observado a partir da amostra com atividade de água de 0,903.

Além disso, as amostras de polpa de camu-camu natural e polpa de camucamu com 30% de maltodextrina DE 20, equilibradas em atividade de água 0,803 e 0,843, e 0,903, respectivamente, exibiram um pico de devitrificação após a transição vítrea. Isto ocorre quando nem toda a água-congelável do sistema é transformada em gelo durante o resfriamento da amostra, ocasionando uma concentração parcial da matriz vítrea. Desta forma, quando a amostra é reaquecida acima de T_g e o sistema adquire mobilidade suficiente, devido à diminuição da viscosidade, esta porção de que não foi congelada tende a cristalizar (devitrificação) (Levine & Slade, 1986; Biliaderis, 1990; Roos, 1995b).

Para se obter a condição de máxima formação de gelo, e conseqüentemente eliminar os picos de devitrificação, uma operação de *annealing* isotérmico na temperatura em que o pico de devitrificação ocorreu (T_d) foi realizada por um período de 30 minutos. Essa operação de *annealing* consiste em aquecer o material até a temperatura onde a devitrificação foi observada, mantê-lo nesta temperatura por um período de tempo e em seguida resfriá-lo novamente (Roos, 1995b).

A dependência do tempo no processo de formação de gelo é observada para a maioria das soluções binárias de açúcares (Levine & Slade, 1990; Roos & Karel, 1991b). A formação de gelo em concentrações muito baixas de sólidos não é significantemente retardada. Porém um aumento na concentração de solutos para mais que 50% é normalmente suficiente para atrasar e reduzir a formação de gelo durante o resfriamento em taxas muito altas.

As Figuras 4.10 e 4.11 apresentam as curvas do DSC para amostras sem e com *annealing*, nas atividades de água de 0,803 e 0,843 e na atividade de água de 0,903, para a polpa de camu-camu natural e com 30% de maltodextrina DE 20, respectivamente.

Figura 4.10: Curvas do DSC da polpa de camu-camu natural liofilizada na região de *a_w* intermediária (*a_w*, X_w) : (a) 0,803, 0,388; (b) 0,843, 0,418; (----) sem *annealing* e (-----) com *annealing*, por 30 minutos em T_d

Figura 4.11: Curvas do DSC da polpa de camu-camu liofilizada com 30% (p/p) de maltodextrina DE 20: (a) $a_w = 0,903$ e X_w = 0,300; (----) sem *annealing* e (----) com *annealing*, por 30 minutos em T_d

Neste estudo, um annealing de 30 minutos em T_d, foi suficiente para eliminar o pico de devitrificação e garantir a máxima formação de gelo. Sobral *et al.* (2001) estudando as transições de fases de caqui liofilizado, observaram que 30 minutos de *annealing* em T_d foi suficiente para eliminar o pico de devitrificação de amostras equilibradas em $a_w = 0,80 e 0,84$, porém para amostras com $a_w =$ 0,90 foram necessários 60 minutos. Similarmente, Telis & Sobral, (2001) observaram que para amostras de abacaxí liofilizado com $a_w = 0,87 e 0,88$ submetidas a 60 minutos de *annealing* em T_d ainda apresentavam devitrificação.

As propriedades dos eventos térmicos, determinadas através dos termogramas do DSC, antes e após o *annealing* estão apresentados na Tabela 4.9. Devido à maior fração de gelo formado e conseqüentemente maior concentração da matriz amorfa, a T_g das amostras após a operação de *annealing* foi mais alta em comparação com a T_g obtida sem *annealing*. Sá & Sereno (1994) observaram a mesma tendência com amostras de uva, cebola e morango, equilibradas em a 0,85.

Polpa de camu-	~	Ante	Após annealing		
camu liofilizada	a_w	T _g (°C)	∆H _m (J/g)	T _d (°C)	T _g (°C)
	0,803	-74,8 ± 0,3*	8,5 ± 2,9	-33,2 ± 2,0	-62,7 ± 2,2
naturai	0,843	-80,3 ± 1,2	31,0 ± 1,0	-52,2 ± 3,9	-47,5 ± 3,4
30% malto. DE 20	0,903	-57,3 ± 0,2	8,6 ± 2,2	-31,6 ± 1,6	-41,4 ± 3,5

Tabela 4.9: Propriedades de fases antes e após a operação de annealing

* Média ± desvio padrão de três determinações experimentais

Na região de alto conteúdo de umidade ($a_w > 0,90$), ou seja, nas amostras obtidas por adição direta de água conforme descrito no Item 3.4.2.3, os termogramas do DSC apresentaram dois eventos térmicos entre -120 e 120°C (Figuras 4.12 e 4.13). Primeiramente, a transição vítrea (T_g), representada por um desvio da linha de base antes da endoterma de fusão do gelo, apareceu discretamente em todas as amostras. E a fusão do gelo, representada pelo pico endotérmico, foi o evento mais visível.

Figura 4.12: Curvas do DSC da polpa de camu-camu natural liofilizada na região de alta a_w (a_w , X_w): (a)0,911, 0,538; (b) 0,932, 0,586; (C) 0,946, 0,638; (d) 0,959, 0,693; (e) 0,978, 0,791

Figura 4.13: Curvas do DSC da polpa de camu-camu liofilizada com 30% (p/p) de maltodextrina DE 20 na região de alta *a_w* (*a_w*, X_w): (a) 0,964, 0,496; (b) 0,973, 0,543; (C) 0,979, 0,604; (d) 0,985, 0,672; (e) 0,993, 0,775

Observa-se que nesta região de alto conteúdo de umidade, os valores de T_g permaneceram praticamente constantes e conforme previamente discutido no Item 4.3, esta T_g é na verdade a temperatura de transição vítrea da matriz maximamente congelada (T_g '). Resultados similares foram observados por Sá *et*

al. (1999) com maçã liofilizada e osmoticamente desidratada, Roos & Karel (1991b) com soluções de sacarose, Telis & Sobral (2001) com abacaxi liofilizado, Sá & Sereno (1994) com frutas e vegetais desidratados e Moraga *et al.* (2003) com morangos.

4.4.4 Diagrama de estado da polpa de camu-camu liofilizada natural e com 30% de maltodextrina DE 20

Os diagramas de estado traçados com os dados levantados para a polpa de camu-camu natural liofilizada e para a polpa de camu-camu liofilizada com 30% de maltodextrina DE 20, estão apresentados nas Figuras 4.14 e 4.15, respectivamente.

Observa-se que a polpa de camu-camu liofilizada com 30% de maltodextrina DE 20 apresentou valores de T_g mais altos comparado com a polpa de camu-camu liofilizada natural. Mesmo na atividade de água mais baixa estudada ($a_w = 0,113$), a T_g da polpa natural apresentou valores abaixo de zero (-3,2°C), enquanto que para a polpa com 30% de maltodextrina DE 20, na mesma

atividade de água, a T_g foi igual a 62,7°C. Isto indica que a maltodextrina T_g além de agir como "crioestabilizante polimérico" no sistema congelado, elevando T_g' e reduzindo W_g' (Item 4.3), também elevou o valor de T_g, melhorando assim as características de estabilidade do produto desidratado.

No domínio de $a_w < 0,90$, o efeito plastificante da água na transição vítrea foi evidente, como observado (Figuras 4.14 e 4.15). As curvas formadas pelos dados experimentais constituem as curvas de transição vítrea, onde se observa grande redução na temperatura com o aumento da concentração de umidade. Nessa faixa, a Equação de Gordon-Taylor (Equação 2.15) se mostrou adequada para o ajuste dos pontos experimentais. Os parâmetros de ajuste deste modelo, calculados por regressão não-linear, bem como os respectivos coeficientes de correlação obtidos para a polpa de camu-camu liofilizada natural e com 30% de maltodextrina estão apresentados na Tabela 4.10.

Tabela 4.10: Parâmetros de ajuste da Equação de Gordon-Taylor					
Poloa de camu-camu liofilizada		Parâmetro			
	T _{gs} (°C)	k	r ²		
Natural	74,59	3,92	0,995		
Com 30% de maltodextrina DE 20	120,45	5,52	0,997		

Capítulo 4 - Resultados e discussões

Para diversas frutas liofilizadas os valores de k, reportados na literatura, estão próximos ao encontrado para polpa de camu-camu liofilizada natural, variando de 3,30 a 4,77 (Sá & Sereno, 1994; Sá *et al.*, 1999; Khalloufi *et al.*, 2000; Sobral *et al.*, 2001; Bai *et al.*, 2001; Telis & Sobral 2001; Moraga *et al.*, 2003).

Roos & Karel (1991c), estudando as transições de fases em maltodextrinas, determinaram um valor de k = 6,5 e de T_{gs} = 141°C para a maltodextrina DE 20 pura.

Os resultados obtidos na faixa de altos conteúdos de umidade são de grande importância, pois demonstraram que a Equação de Gordon-Taylor (Equação 2.15) não pode ser utilizada para descrever a curva completa de T_g. Para as amostras com $a_w > 0,90$, a curva de transição vítrea exibiu uma descontinuidade, com um aumento repentino na temperatura de transição vítrea e este valor tendeu ao valor constante que representa a T_g'.

Calculando-se a média dos valores de T_g' obtidos para as amostras com $a_w > 0,90$, obteve-se um valor de T_g' = -58,8°C e T_g' = -40,1°C, para a polpa de camu-camu liofilizada natural e com 30% de maltodextrina DE 20, respectivamente, representados pelas linhas horizontais nas Figuras 4.14 e 4.15.

O valor de T_g' da polpa de camu-camu natural liofilizada está de acordo com o obtido previamente no Item 4.3 (-58,3°C). A comparação desses valores com a T_g' (-62,9 °C) da mistura de ácido cítrico:ácido ascórbico (1:1,33) (ver Anexo A), que representa a proporção aproximada desses ácidos na polpa de camucamu, corrobora com a observação de que a T_g' da polpa de camu-camu é principalmente influenciada pela alta concentração desses ácidos na fruta, levando-se em consideração que esta fruta apresenta uma baixa concentração de acúcares. Por outro lado, para a polpa de camu-camu liofilizada com 30% de maltodextrina DE 20, o valor de T_g' (-40,1°C) foi próximo ao encontrado para a formulação contendo 30% de maltodextrina (-39,6°C) determinado no Item 4.3. Neste caso observa-se que a T_g' tendeu ao valor da T_g' de uma solução aquosa de maltodextrina DE 20 (-37,8°C) (ver Anexo B).

As temperaturas de início da fusão de gelo para as amostras que sofreram formação de gelo também estão apresentadas nos diagramas de estado das Figuras 4.14 e 4.15. Como esperado, a temperatura de fusão do gelo (T_m) diminui com a diminuição do conteúdo de umidade da amostra.

Os pontos experimentais de T_m foram ajustados por um modelo polinomial, representado pelas Equações 4.1 ($r^2 = 0,995$) e 4.2 ($r^2 = 0,993$) para a polpa de camu-camu liofilizada natural e com 30% de maltodextrina DE 20, respectivamente.

$$T_{\rm m} = 186,54 + 162,58 X_{\rm w} - 79,35 X_{\rm w}^2$$
(4.1)

$$T_{\rm m} = 246,10 + 39,60 X_{\rm w} - 13,58 X_{\rm w}^2$$
(4.2)

Amostras com uma concentração inicial de solutos menor que a concentração de solutos da matriz maximamente congelada (X_g') devem apresentar formação de gelo (Roos, 1995). Desta forma, a intersecção das curvas de T_m e T_g, devem teoricamente ocorrer em T_g' (Levine & Slade, 1990; Sá & Sereno, 1994; Roos, 1995a; Telis & Sobral, 2001). Igualando as Equações 4.1 e 4.2 com a Equação de Gordon-Taylor (Equação 2.15), ou seja, fazendo T_m = T_g, pode-se calcular a fração de água não-congelável (X_g'). Para a polpa de camucamu natural liofilizada esta intersecção ocorreu em T_g = -49,2°C correspondendo a uma fração de água de aproximadamente 0,27 g H₂O/ g amostra (ou seja, W_g' = 0,36 g H₂O/g sólidos). Para a polpa de camu-camu liofilizada com 30% de maltodextrina DE 20 a intersecção das curvas de T_m e T_g se deu na temperatura de T_g' = -20,15°C com uma fração de água não-congelável de 0,19 g H₂O/ g amostra (ou seja, W_g' = 0,23 g H₂O/g sólidos). Em ambos os casos o valor de T_g' estimado por este método foi maior do que o determinado pela média dos pontos

de T_g na região de alta umidade ($a_w > 0,90$) representada pelas linhas horizontais nas Figuras 4.14 e 4.15.

A entalpia de fusão de gelo variou linearmente com o conteúdo de umidade da amostra, como se pode observar nas Figuras 4.16 e 4.17 para a polpa de camu-camu liofilizada natural e com 30% de maltodextrina DE 20, respectivamente. As retas traçadas nessas Figuras foram obtidas por regressão linear: Equação 4.3 ($r^2 = 0.994$) e Equação 4.4 ($r^2 = 0.998$).

Figura 4.16: Entalpia de fusão de gelo em função do conteúdo de umidade (polpa de camu-camu liofilizada natural)

Figura 4.17: Entalpia de fusão de gelo em função do conteúdo de umidade (polpa de camu-camu liofilizada com 30% (p/p) de maltodextrina DE 20)

Uma outra maneira de se determinar a X_g ' e conseqüentemente T_g ', é dada pela intersecção da reta entalpia *versus* conteúdo de umidade com o eixo das abcissas, ou seja quando ΔH_m for igual a zero. Este ponto representa o conteúdo de umidade mínimo em que a formação de gelo é observada ou seja, X_g ' (Levine & Slade, 1991; Roos, 1987).

$$\Delta H_{m} = 430,47 X_{w} - 149,76 \tag{4.3}$$

$$\Delta H_{\rm m} = 405,60 \, \rm X_w - 98,43 \tag{4.4}$$

Extrapolando-se as Equações 4.3 e 4.4 para $\Delta H_m=0$, determinou-se o valor de X_g' = 0,35 g H₂O/g amostra (ou seja, W_g' = 0,53 g H₂O/g sólidos) para a polpa de camu-camu liofilizada natural e 0,24 g H₂O/g amostra (ou seja, W_g' = 0,32 g H₂O/g sólidos) para a polpa de camu-camu liofilizada com 30% de maltodextrina DE 20.

Substituindo-se os valores de X_g ' encontrados na Equação de Gordon-Taylor (Equação 2.15), tem-se que T_g ' = -67,3°C e T_g ' = -41,1°C para a polpa de camu-camu liofilizada natural e com 30% de maltodextrina DE 20, respectivamente.

Os valores de W_g' calculados pelo método descrito no Item 3.6, para a polpa de camu-camu natural e as formulações contendo os aditivos, foram superiores aos valores calculados. Resultados similares foram observados por Le Dean *et al.*,(2001). Similarmente, Roos (1987), estudando as transições de fases de morangos, determinou valores de W_g' de 1,05 e 0,27 g de água não-congelável/g sólidos determinados pela entalpia de fusão de gelo de uma amostra com alto conteúdo de umidade (Item 3.6) e pela extrapolação do gráfico de ΔH em função do conteúdo de umidade, respectivamente.

Franks (1991) observa que o método descrito no Item 3.6 apresenta limitações devido as aproximações realizadas: (i) o calor de fusão da água pura não é constante com a temperatura, (ii) a endoterma não é completamente igual ao calor latente de fusão porque inclui o calor de diluição da fase maximamente concentrada pelo gelo já derretido, (iii) a área real da endoterma é, na maioria dos

casos, calculada incorretamente, especialmente quando inclui desvios na capacidade calorífica (devido a transição vítrea).

4.4.5 Relação entre T_g e Isotermas de sorção de vapor de água

A estimativa do estado físico de materiais alimentícios é normalmente baseada na modelagem do efeito plastificante da água, ou seja, da depressão do valor de T_g com o aumento do conteúdo de umidade. Roos (1993b) demonstrou a diminuição do valor de T_g com o aumento da a_w e definiu o conteúdo de umidade e de atividade de água críticos, X_{wc} e a_{wc} , respectivamente, como aqueles em que a T_g do sistema fosse igual a 25°C (temperatura ambiente) (Roos, 1995b; Roos *et al.*, 1996).

Visto que a atividade de água está relacionada com a umidade relativa de equilíbrio (URE) (Equação 2.2), e ambos $T_g e a_w$ são funções do conteúdo de umidade (X_w), as interelações entre a_w, X_w, URE e Tg são importantes no controle da processabilidade e da vida de prateleira de produtos alimentícios (Slade & Levine, 1991a).

O uso combinado da Equação de Gordon-Taylor e da isoterma de adsorção permite a avaliação da estabilidade do alimento (baseada na premissa de que o produto é estável acima de T_g) em várias condições de processamento e armazenamento. Nas Figuras 4.18 e 4.19 estão apresentadas as relações entre atividade de água, temperatura de transição vítrea e conteúdo de umidade para a polpa de camu-camu liofilizada natural e com 30% de maltodextrina DE 20, respectivamente, conforme descrito no Item 3.7. Os valores de atividade de água

Figura 4.18: Relação entre atividade de água, temperatura de transição vítrea e conteúdo de umidade para a polpa de camu-camu natural liofilizada: (♦) isoterma de adsorção, ajustada pelo modelo de GAB, (Δ) temperatura de transição vítrea ajustada pela Equação 3.5.

Figura 4.19: Relação entre atividade de água, temperatura de transição vítrea e conteúdo de umidade para a polpa de camu-camu liofilizada com 30% (p/p) de maltodextrina DE 20: (♦) isoterma de adsorção, ajustada pelo modelo de GAB, (Δ) temperatura de transição vítrea ajustada pela Equação 3.5

Para a polpa de camu-camu com 30% de maltodextrina DE 20, o conteúdo de umidade da monocamada ($X_m = 0,064 \text{ g} \text{ H}_2\text{O}$ /g sólidos) foi menor do que o conteúdo de umidade crítico ($X_{wc} = 0,11 \text{ g} \text{ H}_2\text{O}$ /g sólidos). Porém, para a polpa de camu-camu liofilizada natural, o conteúdo de umidade da monocamada ($X_m = 0,158 \text{ H}_2\text{O}$ /g sólidos). foi maior do que o conteúdo de umidade crítico ($X_{wc} = 0,08 \text{ g} \text{ H}_2\text{O}$ /g sólidos). Roos (1993b) observou esta mesma tendência para a maltodextrinas de diferentes DE e para morango e rabanete.

Roos (1993b) determinou valores de atividade de água e conteúdo de umidade críticos de a_{wc} = 0,55 e X_{wc} = 0,09 g H₂O /g sólidos para maltodextrina DE 20, e a_{wc} = 0,07 e X_{wc} = 0,01 g H₂O /g sólidos para morango.

A atividade de água crítica para a polpa de camu-camu natural ($a_{wc} = 0,04$) foi menor do que a da polpa de camu-camu com 30% de maltodextrina DE 20 ($a_{wc} = 0,52$). Este fato evidencia a maior estabilidade da polpa liofilizada com maltodextrina. Quando os dois produtos eram expostos ao ambiente no laboratório (aproximadamente 25°C e 50% de umidade relativa) a polpa de camu-camu liofilizada natural apresentava imediatamente sinais de pegajosidade e compactação, enquanto que, a polpa de camu-camu liofilizada com 30% de maltodextrina DE 20 se mantinha estável, como um pó solto e escoável.

Estas informações podem ser úteis no desenvolvimento de produtos desidratados, de maneira a se estabelecer limites de umidade relativa para o armazenamento de alimentos amorfos de baixa umidade.

CAPÍTULO 5

CONCLUSÕES E SUGESTÕES PARA PESQUISAS FUTURAS

5.1 Conclusões

As principais conclusões obtidas neste trabalho são apresentadas a seguir:

Sobre a matéria-prima:

- Com o amadurecimento do fruto a concentração de ácido ascórbico e os sólidos solúveis totais aumentaram, a acidez titulável total diminuiu e, o pH e a umidade permaneceram constantes;
- A concentração de ácido ascórbico na casca é aproximadamente 1,8 vezes maior que a concentração encontrada na polpa;
- O camu-camu proveniente de Iguape, na região do Vale do Ribeira apresentou concentração de ácido ascórbico inferior ao camu-camu da região amazônica;
- O rendimento do processo de extração da polpa em centrífuga doméstica foi de 54%.

Sobre as transições de fase da polpa de camu-camu congelada:

- O baixo valor de Tg' encontrado para a polpa de camu-camu natural (-58,25°C), é influenciado principalmente pelas altas concentrações de ácido ascórbico e ácido cítrico presentes na fruta;
- Tanto a sacarose quanto a maltodextrina DE 20 agiram como crioestabilizantes na polpa de camu-camu, aumentando a T_g' e diminuindo a W_g' do sistema.
- A formulação contendo 30 % (w/w) de maltodextrina DE 20, apresentou o maior aumento na T_g' (aproximadamente 19°C) em relação à polpa natural de camu-camu.

Sobre os diagramas de estado:

- O processo de liofilização ocasionou pequenas perdas no conteúdo de ácido ascórbico, cerca de 2% para a polpa de camu-camu natural e 1% para a polpa com 30% (w/w) de maltodextrina DE 20 (1%);
- As isotermas de adsorção de umidade a 25°C foram ajustadas pelo modelo de GAB, resultando em conteúdos de umidade da monocamada de 0,158 e 0,064 g H₂O/g massa seca para a polpa natural e para a polpa com 30% de maltodextrina DE 20;
- A Equação de Gordon-Taylor se ajustou bem aos pontos experimentais na região de 0,11 > a_w > 0,90, evidenciando o efeito plastificante da água. As T_g da polpa contendo 30% de maltodextrina DE 20 nesta região foram superiores as T_g da polpa natural. Na região de alta umidade (a_w > 0,90) a T_g tendeu a um valor constante correspondente a T_g';
- A interação da isoterma de adsorção de umidade a 25°C com a curva de T_g ajustada pela Equação de Gordon-Taylor, permitiu o cálculo dos valores de umidade e atividade de água críticas, condições para T_g = 25°C. Para a polpa com 30% de maltodextrina DE 20, a *a_w* crítica foi bem maior comparada a da polpa natural, comprovando o efeito estabilizante deste aditivo.

5.2 Sugestões para pesquisas futuras

- Estudar o efeito dos crioestabilizantes nas taxas das reações químicas e alterações do estado físico da polpa de camu-camu congelada e desidratada;
- Propor outros tipos de aditivos (crioestabilizantes) ou mistura de aditivos;
- Estudar o complexo enzimático do camu-camu a fim de entender melhor a cinética de degradação do ácido ascórbico e das antocianinas.

CAPÍTULO 6

REFERÊNCIAS BIBLIOGRÁFICAS

ABLETT, S., IZZARD, M. J., LILLFORD, P. J. Differential scanning calorimetric study of frozen sucrose and glycerol solutions. *Journal of the Chemical Society of Faraday Transactions*, v.88, p.789-794, 1992.

AGUILERA, J. M.; CUADROS, T. R.; DEL VALLE, J. M. Differential scanning calorimetry of low-moisture apple products. *Carbohydrate Polymers*, v.37, p.79-86, 1998.

AGUIRRE, J. M.; FILHO, J. G. Desidratação de frutas e hortaliças. Campinas: Instituto de Tecnologia de Alimentos / Centro de Tecnologia de Hortifrutícolas, 1999.

ALHAMDAN, A. M., HASSAN, B. H. Water sorption isotherms of date pastes as influenced by date cultivar and storage temperature. *Journal of Food Engineering*, v. 39, p. 301-306, 1999.

AL-MUHTASEB, A. H., McMINN, W. A. M., MAGEE, T. R. A. Water sorption of starch powders Part 1: mathematical description of experimental data. *Journal of Food Engineering*, v.61, 297-307, 2004.

ANDERSEN, A. B., SKIBSTED, L. H. Glass transition of freeze-concentrated aqueous solution of ascorbic acid as studied by alternating differential scanning calorimetry. *Lebensmittel Wissenschaft und Technologie*, v.31, p.69-73, 1998.

ANDRADE, J. S. Curvas de maturação e características nutricionais do camucamu (Myrciaria dubia (H.B.K)Mc Vaugh) cultivado em terra firme na Amazônia Central Brasileira. Campinas: Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas, 1991. 127p. Tese (doutorado)

ARAGÃO, C.; IKEGAKI, M.; SATO, H.; OLIVEIRA, I. M.; PARK, Y. K. Determination of ascorbic acid concentration in acerola and camu-camu fruit by ascorbate oxidase method. *Ciência e Tecnologia de Alimentos*, v.16, n.2, p.175-176, 1996.

ARÉVALO, R.P. Manutenção dos atributos de qualidades do camu-camu (Myrciaria dubia (HBK) Mc Vaugh) desidratado, durante armazenamento. Campinas: Faculdade de Engenharia Química, Universidade Estadual de Campinas, 2002. 116p. Tese (mestrado)

ASSOCIATION OF OFFICIAL ANALYTICAL CHEMISTRY (A.O.A.C.). Official Methods of Analysis. Washington: 1995.1141p.

BAI, Y.; RAHMAN, M. S.; PERERA, C. O.; SMITH, B.; MELTON, L. D. State diagram of apple slices: glass transition and freezing curves. *Food Research International*, v.34, p.89-95, 2001.

BARBOSA-CANOVAS, G. V.; VEJA-MERCADO, H. Dehydration of Food, USA: Chapman & Hall, 1996, 330p.

BARONI, A. F., SERENO, A. M., HUBINGER, M. D. Thermal transitions of osmotically dehydrated tomato by modulated temperature differential scanning calorimetry. *Thermochimica Acta*, v.395, p.237-249, 2003.

BARTOLOMÉ, A. P., RUPKEZ, P., FÜSTER, C. Changes in soluble sugars of two pineapple fruit cultivars during frozen storage. *Food Chemistry*, v.56, n.2, p.163-166, 1996.

BELL, L. N., HAGEMAN, M. J. Differentiating between the effects of water activity and glass transition dependent mobility on a solid state chemical reaction: Aspartame degradation. *Journal of Agriculture and Food Chemistry*, v.42, p.2398-2401, 1994.

BELL, L.N., LABUZA, T.P. Aspartame degradation as a function of water activity In: LEVINE, H., SLADE, L. Water Relationships in Foods. Advances in the 1980's and Trends for the 1990's. London: Plenum Press, 1991. p.337-404

BELLOWS, R. J., KING, C. J. Product collapse during freeze-drying of liquid foods. *AIChe Symposium Series*, v.69, p.33-41, 1973.

BHANDARI, B. R.; HOWES, T. Implication of glass transition for the drying and stability of dried foods. *Journal of Food Engineering*, v.40, p.71-79, 1999.

BHANDARI, B. R.; HOWES, T. Glass transition in processing and stability of food. *Food Australia*, v.52, n.12, p.579-585, 2000.

BIALE, J. B. The postharvest biochemistry of tropical and subtropical fruits. *Advances in Food Research*, v.10, p.293-354, 1960.

BILIADERIS, C. G. Thermal Analysis of Food Carbohydrates. In: HALWALKAR, V. R., MA, C. -Y. *Thermal Analysis of Foods*. 1 ed. New York: Elsevier Applied Science, 1990. p.169-220

BILIADERIS, C. G., SWAN, R. S., ARVANITOYANNIS, I. Physicochemical properties of commercial starch hydrolysates in the frozen state. *Food Chemistry*, v.64, p.537-546, 1999.
BOQUET, R., CHIRIFE, J., IGLESIAS, H. A. Equations for fitting water sorption isotherms of foods. Part 3: Evaluation of various three-parameters models. *Journal of Food Technology*, v.14, p.527-532, 1979.

BRASIL, Ministério da Ciência e Tecnologia, Instituto Nacional de Pesquisas da Amazônia (INPA) - Coordenação de Pesquisas em Ciências Agronômicas (CPCA), Camu-camu, <u>http://www.inpa.gov.br/cpca/areas/camu-camu.html</u>, 2003.

BRASIL, Ministério das Comunicações, Radiobras, Ciência e Tecnologia, Plantio do camu-camu começa a se expandir pelo país, <u>http://www.radiobras.gov.br/ct/2002/materia 251002_4.htm</u>, 2002.

BRUNAUER, S., EMMETT, P. H., TELLER, E. Adsorption of gases in multimolecular layers. *Journal of American Chem. Society*, v.60, p.309-319, 1938.

BUENO, S. M., LOPES, M. R., GRACIANO, R. A., FERNANDES, E. C., GARCIA-CRUZ, C. H. Avaliação da qualidade de Polpas de Frutas Congeladas. *Rev. Instituto Adolfo Lutz*, v.62, n.2, p.121-126, 2002.

CAMACHO, M. M.; MARTÍNEZ-NAVARRETE, N.; CHIRALT, A. Stability of whipped dairy creams containing locustbeangum/λ-carrageenan mixtures during freezing-thawing processes. *Food Research International*, v.34, p.887-894, 2001.

CHAMPION, D., LE MESTE, M., SIMATOS, D. Towards an improved understanding of glass transition and relaxations in foods: molecular mobility in the glass transition range. *Trends in Food Science & Technology*, v.11, p.41-55, 2000.

CHAVES FLORES, W. B. A importância econômica do camu-camu. *Toda Fruta*, v.3, n.27, p.36-37, 1988.

CHÁVEZ, W. Camu-camu. In: CLAY, C.W.; CLEMENT, C.R. Selected Species and Strategies to Enhance Income Generation from Amazonian Forest. FO: Misc./93/6, FAO, p. 139-146, 1993.

CHIRIFE, J., BUERA, M. P. A critical review of some non-equilibrium situations and glass transitions on water activity values of foods in the microbiological growth range. *Journal of Food Engineering*, v.25, p.531-552, 1995.

CHIRIFE, J.; IGLESIAS, H. Equations for fitting water sorption isotherms of foods: Part I – A review. *Journal of Food Technology*, v.13, p.159-174, 1978.

CHIRIFE, J., IGLESIAS, H. A. An alternative to Guggenheim, Anderson and De Boer model for the mathematical description of moisture sorption isotherms of foods. *Food Research International*, v.28, n.3, p. 317-321, 1995.

CHITARRA, M. I., CHITARRA, A. B. Pós-colheita de frutos e hortaliças: fisiologia e manuseio. Lavras: Esal/Faepe, 1990, 320p

CLEMENT, C. R., FILHO, D. F. S. Amazonian small fruits with commercial potential. *Fruits Varieties Journal*, v.48, n. 3, p.152-158, 1994.

COLLARES, F. P., KIECKBUSCH, T. G., FINZER, J. R. D., Revisão: A transição vítrea em produtos alimentícios. *Brazilian Journal of Food Technology*, v.5, p.117-130, 2002.

COLLARES, F. P., FINZER, J. R. D., KIECKBUSCH, T. G. Glass transition control of the detachment of food pastes dried over glass plates. *Journal of Food Engineering*, v.61, p.262-267, 2004.

CORNILLON, P. Characterization of osmotic dehydrated apple by NMR and DSC. *Lebensmittel Wisenschaft und Technologie*, v.33, p.261-267, 2000.

COUCHMAN, P. R., KARASZ, F. E. A classical thermodynamic discussion of the effect of composition on glass transition temperatures. *Macromolecules*, v.11, n.1, p.117-119, 1978.

CRAIG, D. Q. M., ROYALL, P. G., KETT, V. L., HOPTON, M. The relevance of the amorphous state to pharmaceutical dosage forms: glassy drugs and freeze dried systems. *International Journal of Pharmaceutics*, v.179, p.179-207, 1999.

DEL VALLE, J. M.; CUADROS, T. R. M.; AGUILERA, J. M. Glass transitions and shrinkage during drying and storage of osmosed apple pieces. *Food Research International*, v.31, n.3. p.191-204, 1998.

DIB TAXI, C.M.A. Suco de camu-camu (Myrciaria dubia) microencapsulado obtido através de secagem por atomização. Campinas: Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas, 2001. 166p. Tese (Doutorado)

DUCKWORTH, R. B. Differential thermal analysis of frozen food systems. I the determination of unfreezable water. *Journal of Food Technology*, v.6, p.317-327, 1971.

FENNEMA, O. R. Water in ice. In: O.R. Fennema (ed.) *Food Chemistry*. New York: Marcel Dekker, 1996. p.17-94

FERRY, J.D. Viscoelastic Properties of Polymers. New York: John Wiley & Sons, 1980. 264p

FIEAM - Federação das Indústrias do Estado do Amazonas. Camu-camu, http://www.fieam.org.br/invest/camu-camu.htm, 2002.

FORNI, E.; SORMANI, A., SCALISE, S., TORREGGIANI, D. The influence of sugar composition on the colour stability of osmodehydrofrozen intermediate moisture apricots. *Food Research International*, v. 30, p. 87-94, 1997.

FRANCO, M. R. B., SHIBAMOTO, T. Volatile composition of some brazilian fruits: umbu-caja (*Spondias citherea*), camu-camu (*Myrciaria dubia*), araça-boi (*Eugenia stipitata*) and cupuaçú (*Theobroma grandiflorum*). Journal of Agricultural and Food Chemistry, v.48, p.1263-1265, 2000.

FRANKS, F. Hydration Phenomena: An Update and Implications for the Food Processing Industry. In: LEVINE, H., SLADE, L. *Water Relationships in Foods. Advances in the 1980's and Trends for the 1990's*. London: Plenum Press, 1991. p.1-19

GOFF, H. D.; CALDWELL, K. B.; STANLEY, D. W., MAURICE, T. J. The influence of polysaccharides on the glass transition in frozen sucrose solutions and ice cream. *Journal of Dairy Science*, v. 76, p. 1268-1277, 1993.

GOOF, H. D. Measuring and interpreting the glass transition in frozen foods and model systems. *Food Research International*, v.27, p.187-189, 1994.

GOFF, H. D.; SAHAGIAN, M. E. Glass transitions in aqueous carbohydrate solutions and their relevance to frozen food stability. *Thermochimica Acta*, v.280/281, p.449-464, 1996.

GOFF, H. D., VERESPEJ, E., JERMANN, D. Glass transitions in frozen sucrose solutions are influenced by solute inclusions within ice crystals. *Thermochimica Acta*, v.399, n.1-2, p.43-55, 2003.

GORDON, M., TAYLOR, J.S. I Non-crystalline copolymers. *Journal of Applied Chemistry*, v.2, p.493-500, 1952.

HANCOCK, B. C., ZOGRAFI, G. The relationship between the glass transition temperature and the water content of amorphous pharmaceutical solids. *Pharmaceutical Research*, v.11, p.471-477, 1994.

HOLCROFT, D.M., KADER, A.A. Controlled atmosphere-induced changes in pH and organic acid metabolism may affect color of stored strawberry fruit. *Postharvest Biology and Technology*, v.17, p.19-32, 1999.

HOSSAIN, M.D., BALA, B.K., HOSSAIN, M.A., MONDOL, M.R.A. Sorption isotherms and heat of sorption of pineapple. *Journal of Food Engineering*, v.48, 103-107, 2001.

INSTITUTO ADOLFO LUTZ, Normas Analíticas do Instituto Adolfo Lutz. vol. I: métodos químicos e físicos para análises de alimentos. 3 ed. São Paulo: Instituto Adolfo Lutz, 1985.

JACKMAN, R. L., YADA, R. Y., TUNG, M. A. A review: separation and chemical proprieties of anthocyanins used for their qualitative and quantitative analysis. *Journal of Food Biochemistry*, v.11, n.4, p.279-308, 1987.

JUSTI, K.C., VISENTAINER, J. V., SOUZA, N. E., MATSUSHITA, M. Nutritional composition and vitamin C stability in stored camu-camu (*Myrciairia dubia*) pulp. *Archivos Latinoamericanos de Nutricion*, v.50, n.4, 405-408, 2000.

KALICHEVSKY, M. T., BLANSHARD, J. M. V. The effect of fructose and water on the glass transition of amylopectin. *Carbohydrate Polymers*, v.20, p.107-113, 1993.

KALICHEVSKY, M. T., BLANSHARD, J. M. V., TOKARCZUK, P. F. Effect of water content and sugars on the glass transition of casein and sodium caseinate. *International Journal of Food Science and Technology*, v.28, p.139-151, 1993.

KAREL, M., BUERA, P., KARMAS, R., LEVI, G., ROOS, Y. Stability-related transitions of amorphous foods, *Thermochimica Acta*, v. 246, n.2, p.249-269, 1994.

KERR, W. L.; REID, D. S. The use of stepwise differential scanning calorimetry for thermal analysis of foods. *Thermochimica Acta*, v.246, p.299-308, 1994.

KHALLOUFI, S.; EL MASLOHI, Y.; RATTI, C. Mathematical model for prediction of glass transition temperature of fruit powders. *Journal of Food Science*, v.65, n.5, p.842-848, 2000.

KRAMER, A. Fruits and vegetables. In KRAMER, A. & TWIGG, B. A. Quality control for the food industry, Westport: AVI, 1973. v.2, p. 157-228.

LABUZA, T. P. Sorption phenomena in foods. *Food Technology*, v.22, p.263-272, 1968.

LABUZA, T. Interpretation of Sorption Data in Relation to the State of Constituent Water. In: DUCKWORTH, R. B. (ed.) *Water Relations of Foods*. London: Academic Press, 1975, p.155-172.

LABUZA, T. P., HYMAN, C. R. Moisture migration and control in multi-domain foods. *Trends in Food Science & Technology*, v.9, p.47-55, 1998.

LE DEAN, A., MARIETTE, F., LUCAS, T., MARIN, M. Assessment of the State of Water in Reconstituted Milk Protein Dispersions by Nuclear Magnetic Resonance (NMR) and Differential Scanning Calorimetry (DSC). *Lebensmittel-Wissenschaft und-Technologie*, v.34, n.5, p.299-305, 2001.

LEME, J. J., FONSECA, H., NOGUEIRA, J. N. Variação do teor de ácido ascórbico e beta caroteno em cerejas das antilhas (*Malpighia punicifolia* L.) liofilizada. *Archivos Latinoamericanos de Nutricion*, v.23, n.2, p.207-215, 1973.

LEVI, G.; KAREL, M. Volumetric shrinkage in freeze-dried carbohydrates above their glass transition temperature. *Food Research International*, v. 28, p. 145-151, 1995.

LEVINE, H.; SLADE, L. A polymer physico-chemical approach to the study of commercial starch hydrolysis products (SHPs). *Carbohydrate Polymers*, v.6, p.213-244, 1986.

LEVINE, H., SLADE, L. Cryostabilization Technology: Thermoanalytical Evaluation of Food Ingredients and Systems. In: HALWALKAR, V. R., MA, C. -Y. *Thermal Analysis of Foods*. 1 ed. New York: Elsevier Applied Science, 1990. p.221-305

LEVINE, H.; SLADE, L. Glass transition in foods. In: SWARTZBERG, H. G.; HARTEL, R. W. *Physical Chemistry of Foods*, 1 ed., New York: Marcel Dekker, 1992. p.83-221

LIEVONEN, S. M., ROOS, Y. H. Comparison of dielectric properties and nonenzymatic browning kinetics around glass transition. *Innovative Food Science and Emerging Technologies*, v.4, p.297-305, 2003.

LILLEY, T.H., SUTTON, R.L. The prediction of water activities in multicomponent systems. In: LEVINE, H., SLADE, L. *Water Relationships in Foods. Advances in the 1980's and Trends for the 1990's.* London: Plenum Press, 1991. p.291-304

LU, Q., ZOGRAFI, G. Properties of citric acid at the glass transition. *Journal of Pharmaceutical Sciences*, v.86, n.12, p.1374-1378, 1997.

LUND, D. B. Applications of Differential Scanning Calorimetry in Foods. In: PELEG, M., BAGLEY, E. B. *Physical Properties of Foods*. 1 ed. Westport: The AVI Publishing Company, 1983. p.125-143.

MA, C. -Y., HARWALKAR, V. R., MAURICE, T. J. Instrumentation and Techniques of Thermal Analysis in Food Research. In: HALWALKAR, V. R., MA, C. -Y. *Thermal Analysis of Foods*. 1 ed. New York: Elsevier Applied Science, 1990. p.1-15

MALTINI, E., TORREGGIANI, D., VENIR, E., BERTOLO, G. Water activity and the preservation of plant foods. *Food Chemistry*, v.82, 79-86, 2003.

MAROULIS, Z. B., TSAMI, E., MARINOS-KOURIS, D., SARAVACOS, G. D. Application of the GAB model to the moisture sorption isotherms for dried fruits. *Journal of Food Engineering*, v.7, p.63-78, 1988.

MATHLOUTHI, M. Water content, water activity, water structure and the stability of foodstuffs. *Food Control*, v.12, 409-417, 2001.

MATTEO, P.D., DONSI, G., FERRARI, G. The role of heat and mass transfer phenomena in atmospheric freeze-drying of foods in a fluidized bed. *Journal of Food Engineering*, v.59, n. 2-3, p. 267-275, 2003.

McCURDY, R. D.; GOFF, H. D.; STANLEY, D. W. Properties of dextran as a cryoprotectant in ice cream. *Food Hydrocolloids*, v. 8, p. 625-633, 1994.

MORAGA, G., MARTÍNEZ-NAVARRETE, N., CHIRALT, A. Water sorption isotherms and glass transition in strawberries: influence of pretreatment. *Journal of Food Engineering*, 2003. *in press*.

PEARSON, D. The Chemical Analysis of Foods. London: J. & A. Churchill, 6 ed., 1970.

PELEG, M.; HOLLENBACH, A. M. Flow conditioners and anticaking agents. *Food Technology*, v. 38, p.93-99, 1984.

PROTHON, F., AHRNÉ, L. M. Application of the Guggenheim, Anderson, and De Boer model to correlate water activity and moisture content during osmotic dehydration of apples. *Journal of Food Engineering*, v.61, 467-470, 2004.

RAHMAN, M. S., LABUZA, T, P. Water activity and food preservation. In Rahman, M. S. (ed.), *Handbook of Food Preservation*. New York: Marcel Dekker, 1999. p. 339-382

RATTI, C. Hot air and freeze-drying of high-value foods: a review. *Journal of Food Engineering*, v.49, n.4, p.311-319, 2001.

RIZZOLO, A., NANI, R. C., VISCARDI, D., BERTOLO, G., TORREGGIANI, D. Modification of glass transition temperature through carbohydrates addition and anthocyanin and soluble phenol stability of frozen blueberry juices. *Journal of Food Engineering*, v.56, p.229-231, 2003.

RODRIGUES, R. B., MENEZES, H. C., CABRAL, L.M.C., DONIER, M., RIOS, G.M., REYNES, M. Evaluation of reverse osmosis and osmotic evaporation to concentrate camu-camu juice (*Myrciaria dubia*). *Journal of Food Engineering*, v.63, p. 97-102, 2004.

ROOS, Y. H. Effect of moisture on the thermal behavior of strawberries studied using differential scanning calorimetry. *Journal of Food Science*, v.52, n.1, p.146-149, 1987.

ROOS, Y. H. Melting and transitions of low molecular weight carbohydrates. *Carbohydrate Research*, v.238, p.39-48, 1993a.

ROOS, Y.H. Water activity and physical state effects on amorphous food stability. *Journal of Food Processing and Preservation*, v.16, p.433-447, 1993b.

ROOS, Y. H. Characterization of food polymers using state diagrams. *Journal of Food Engineering*, v.24, n.3, p.339-360, 1995a.

ROOS, Y. H. *Phase Transitions in Foods.* 1ed. California: Academic Press, Inc., 1995b. 360p.

ROOS, Y. H. Role of Water in Phase-Transitions Phenomena in Foods. In: RAO, M. A. & HARTEL, R. W. *Phase/State Transitions in Foods*, New York: Marcel Dekker, 1998. p.57-86

ROOS, Y., KAREL, M. Applying state diagrams to food processing and development. *Food Technology*, v.45, n.12, p.66-71, 1991a.

ROOS, Y., KAREL, M. Phase transitions of amorphous sucrose and frozen sucrose solutions. *Journal of Food Science*, v. 56, n.1, p.266-267, 1991b.

ROOS, Y., KAREL, M. Water and molecular weight effects on glass transitions in amorphous carbohydrates and carbohydrate solutions. *Journal of Food Science*, v. 56, n.6, p.1676-1681, 1991c.

ROOS, Y., KAREL, M. Phase transitions of mixtures of amorphous polysaccharides and sugars. *Biotech. Progress*, v.7, p.49-53, 1991d.

ROOS, Y.; KAREL, M. Crystallization of lactose. *Journal of Food Science*, v. 57, p. 775-777, 1992.

ROOS, Y. H., KAREL, M., KOKINI, J. L. Glass transitions in low moisture and frozen foods: effects on shelf life and quality. *Food Technology*, v.50, n.11, 95-108, 1996.

RUIZ, R. R. *Cultivo del camu-camu en Pucallpa*. Pucallpa: Instituto Nacional de Investigación Agraria, 1994. 24p

SÁ, M. M.; SERENO, A. M. Glass transitions and state diagrams for typical natural fruits and vegetables. *Thermochimi*ca Acta, v.246, p.285-297, 1994.

SÁ, M. M.; FIGUEREDO, A. M.; SERENO, A. M. Glass transitions and state diagrams for fresh and processed apple. *Thermochimica Acta*, v.329, p.31-38, 1999.

SCHALAEV, E. Y., FRANKS, F. Structural glass transitions and thermophysical processes in amorphous carbohydrates and their supersaturated solutions. *Journal of the Chemical Society of Faraday Transactions*, v.91, p.1511-1517, 1995.

SCHENZ, T. W. Glass transitions and product stability – an overview. *Food Hydrocolloids*, v.9, n.4, p.307-315, 1995.

SIMATOS, D., BLOND, G. DSC Studies and Stability of Frozen Foods. In: LEVINE, H., SLADE, L. Water Relationships in Foods. Advances in the 1980's and Trends for the 1990's. London: Plenum Press, 1991. p.139-155

SLADE, L., LEVINE, H. Beyond water activity: recent advances based on an alternative approach to the assessment of food quality and safety. *Critical Reviews in Food Science and Nutrition*, v.30, n.2-3, p.115-360, 1991a.

SLADE, L., LEVINE, H. A Food Polymer Science Approach to Structure-property relationships in Aqueous Food Systems: Non-Equilibrium Behavior of Carbohydrate-Water Systems. In: LEVINE, H., SLADE, L. *Water Relationships in Foods. Advances in the 1980's and Trends for the 1990's*. London: Plenum Press, 1991b. p.29-101

SLADE, L., LEVINE, H. Polymer science approach to water relationship in foods. Journal of Food Engineering, v.22, p.143-189, 1994.

SLADE, L., LEVINE, H. Glass transition and water-food structure interactions. Advances in Food Research, v. 38, p.103-269, 1995.

SOBRAL, P.J.A.; TELIS, V.R.N.; HABITANTE, A.M.Q.B.; SERENO, A. Phase diagram for freeze-dried persimmon. *Thermochimica Acta*, v.376, p.83-89, 2001.

SOBRAL, P.J.A.; HABITANTE, A.M.Q.B. Phase transitions of pigskin gelatin. Food Hydrocolloids, v.15, n.4-5, p.377-382, 2001.

SOBRAL, P. J. A.; TELIS-ROMERO, J.; TELIS, V. R. N.; Phase diagram of plum. In: III Congresso Brasileiro de Análise Térmica e Calorimetria (Livro de Resumos). Poços de Caldas: 2002. p.17

SPIESS, W. E. L., WOLF, W. R. The results of the COST 90 project on water activity. In: Escher, F., Hallstrom, B., Meffert, H. S., Spiess, W. E. L., Voss, G. (Eds.), *Physical Properties of Foods*, New York: Applied Science Publishers, 1983. p.65-87.

STURM, K., KORON, D., STAMPAR, F. The composition of fruit of different strawberry varieties depending on maturity stage. *Food Chemistry*, v.83, n.3, p. 417-422, 2003.

TELIS, V. R. N.; SOBRAL, P. J. A. Glass transitions and state diagram for freezedried pineapple. *Lebensmittel Wissenschaft und Technologie*, v.34, p.199-205, 2001.

TELIS, V. R. N., SOBRAL, P. J. A. Glass transitions for freeze-dried and air-dried tomato. *Food Research International*, v.35, n.5, p. 435-443, 2002.

TO, E. C.; FLINK, J. M. 'Collapse', a structural transition in freeze dried carbohydrates II. Effect of solute composition. *Journal of Food Technology*, v.13, p.567-581, 1978.

TORREGGIANI, D.; FORNI, E.; GUERCILENA, I.; MAESTRELLI, A.; BERTOLO, G.; ARCHER, G. P.; KENNEDY, C. J.; BONE, S.; BLOND, G.; CONTRERAS-LOPEZ, E.; CHAMPION, D. Modification of glass transition temperature through carbohydrates additions: effect upon colour and anthocyanin pigment stability in frozen strawberry juices. *Food Research International*, v.32, p.441-446, 1999.

TORREGGIANI, D.; BERTOLO, G. Osmotic pre-treatments in fruit processing: chemical, physical and structural effects. *Journal of Food Engineering*, v.49, p. 247-253, 2001.

TREVISAN, L. M., BOBBIO, F. O., BOBBIO, P. A. Carbohydrates, organic acids and anthocyanins of Myrciaria jaboticaba, Berg. *Journal of Food Science*, v.37, n.6, 818-819, 1972.

TROLLER, J. A. Water activity and food quality In: HARDMAN, T. M. Water and Food Quality. London: Elsevier Science Ltd, 1989. p.1-32

TROLLER, J.A. Trends in research related to the influence of water activity on microorganisms in food In: LEVINE, H., SLADE, L. *Water Relationships in Foods. Advances in the 1980's and Trends for the 1990's*. London: Plenum Press, 1991. p.305-336

TSAMI, E., KROKIDA, M. K., DROUZAS, A. E. Effect of Drying Method on the Sorption Characteristics of Model Fruit Powders. *Journal of Food Engineering*, v.38 p. 281-302, 1999.

VAN DEN BERG, C., & BRUIN, S. Water activity and its estimation in food systems theorical aspects. In Rockland, L. B., Stewart, G. E. *Water activity influences on food quality.* New York: Academic Press, 1981. p. 147-177

VAN DEN BERG, C. Description of water activity of foods for engineering purposes by jeans of the GAB model of sorption. In: McKenna, B. M. (ed.), *Engineering and Food*, v.1. London: Elsevier Applied Science, 1984. p.311-321

VENDRAMINI, A. L., TRUGO, L. C. Chemical composition of acerola fruit (*Malpighia punicifolia* L.) at three stages of maturity. *Food Chemistry*, v.71, p.195-198, 2000.

VILLACHICA, L. H. El cultivo del camu-camu (Myrciaria dubia H.B.K. Mc Vaugh) en la Amazonia Peruana, Lima: Tratado de Cooperacion Amazonica, 1997. 95p

WHITE, G. W., CAKEBREAD, S. H. The glassy state in certain sugar-containing food products. *Journal of Food Technology*, v.1, p.73-82, 1966

WILLS, R. B. H., SCRIVEN, F. M., GREENFIELD, H. Nutrient composition of stone fruit (*Purnus spp.*) cultivars: apricot, cherry, nectarine, peach and plum. *Journal of the Science of Food and Agriculture*, v.34, n.12, p.1383-1389, 1983.

WUNDERLICH, B. The basis of thermal analysis. In, TURI, E. A. (ed.) *Thermal Characterization of Polymeric Materials.* New York: Academic Press, 1981. 380p

YOON. K. S.; LEE, C. M. Cryoprotectant effect in surimi and surimi/mince-based extruded products. *Journal of Food Science*, v. 55, p. 1210-1216, 1990.

Capítulo 6 – Referências Bibliográficas

YUYAMA, K. Inpa faz a domesticação do camu-camu. Ciência Aplicada. Jornal O Estado de São Paulo,

http://www.estadao.com.br/ciencia/aplicada/2003/fev/14/14.htm, 2003.

ZAPATA, S. M.; DUFOUR, J. P. Camu-camu (*Myrciaria dubia* (HBK) Mc Vaugh):chemical composition of fruit. *Journal of the Science of Food and Agriculture*, v.61, p.349-351, 1993.

ANEXO A

Transições de fase para soluções de ácido cítrico e ácido ascórbico e uma mistura dos dois ácidos

A fim de se confirmar a influência do ácido cítrico e ácido ascórbico como principais depressores da Tg' da polpa de camu-camu, determinou-se as transições de fases de soluções 10% (p/p) desses ácidos e para uma mistura dos dois ácidos na proporção próxima a encontrada no camu-camu (1:1,33) (Tabela A.1).

Tabela A.1: Valores de X_w, T_g', T_m, Δ H_m e W_g' para soluções 10% (p/p) de ácido ascórbico (AA), ácido cítrico (AC) e um mistura dos dois ácidos (AA:AC) na proporção de 1:1,33

Solução	X _w ** (gH ₂ O/g)	Т _{g1} ' (°С)	Т _{g2} ' (°С)	T _m (°C)	∆Hm (W/g)	W _g '
AA	0,906 ± 0,001*	-56,83 ± 0,67	-44,34 ± 0,24	-4,98 ± 0,08	281,07 ± 2,27	0,72
AC	0,900 ± 0,009	-66,41 ± 0,34	-53,15 ± 0,52	-4,68 ± 0,30	278,70 ± 2,60	0,69
(AA:AC) (1:1,33)	0,911 ± 0,003	-62,91 ± 0,75	-48,56 ± 0,25	-4,89 ± 0,12	279,17 ± 4,21	0,87

* Média ± desvio padrão de três determinações experimentais, ** base úmida

Para as três soluções analisadas, foram observados dois eventos térmicos, indicando descontinuidade no fluxo de calor do DSC, os quais foram denominados T_{g1} ' e T_{g2} ' (Figura A.1), além do pico endotérmico de fusão do gelo. A temperatura de transição vítrea da matriz maximamente congelada ($T_{g'}$) foi considerada como T_{g1} ', ou seja, -56,83, -66,41 e 62,91°C para o ácido ascórbico, ácido cítrico e mistura dos dois ácidos (1:1,33), respectivamente, de acordo com a interpretação dos eventos térmicos em sistemas congelados adotada por Roos & Karel (1991), Roos (1995b), Goff & Sahagian (1996), Goff *et al.* (2003) previamente mencionada no Item 2.6.

Pode-se supor que, de acordo com os conceitos da tecnologia de crioestabilização (Levine & Slade, 1991), esses ácidos quando presentes ou adicionados a sistemas alimentícios, como ingredientes ou conservantes, tendem a atuar como "crioprotetores monoméricos", induzindo um efeito depressor na T_g ' do sistema e conseqüentemente uma elevação de W_q '.

Lu & Zografi (1997), analisando soluções de ácido cítrico e água em DSC com uma taxa de aquecimento de 10°C/minuto, também observaram duas regiões transições vítreas, a primeira em –69,2 e – 66,1°C e a segunda em –53,4 e – 53,8°C para uma solução 10% e 4% (p/v), respectivamente. Estes autores relataram que operações de *annealing* e diferentes taxas de aquecimento não alteraram este resultado. A ocorrência desses dois eventos térmicos em soluções congeladas também foi observada para outros sistemas (Simatos & Blond, 1991; Shalaev & Franks, 1995).

Da mesma forma, Andersen & Skibsted (1998), estudando soluções de ácido ascórbico e água 30% (p/p), observaram um desvio na linha de base (indicado como sendo T_g') seguido de um *overshoot* endotérmico, devido ao relaxamento das moléculas que formam a estrutura vítrea. O termo *overshoot* é normalmente utilizado para indicar que um excesso de calor é requerido para esse relaxamento. No entanto, conforme esperado, este evento foi seguido de um processo exotérmico (devitrificação), assim que a água super-resfriada ganha

102

mobilidade suficiente para se cristalizar. Essa liberação de calor é rapidamente seguida de um processo endotérmico que antecede o pico de fusão do gelo. Este processo é normalmente associado com a dissolução de pequenos cristais de gelo na solução maximamente congelada ou ainda com uma segunda transição vítrea devido a mudanças na ordem de hidratação dos solutos. Estes autores testaram várias temperaturas de *annealing* na tentativa de eliminar esses efeitos, embora a eliminação completa não tenha sido atingida. Eles argumentam que uma temperatura de *annealing* que apresente um *overshoot* igual a zero, corresponde a matriz maximamente congelada e consequentemente a estimativa mais correta da T_g². Neste trabalho, a menor entalpia de *overshoot* foi obtida com *annealing* a 50°C, correspondendo a uma T_g² de -54° C. Esse valor foi próximo ao encontrado no presente estudo (-56,8°C) sem a realização da operação de *annealing*.

ANEXO B

Transições de fase da maltodextrina DE 20

A fim de se comparar os resultados obtidos para a polpa de camu-camu com 30% de maltodextrina DE 20, as transições de fase da maltodextrina DE 20 (Morrex 20) utilizada no trabalho foram determinadas em três condições de conteúdo de umidade: (1) sem acondicionamento prévio, (2) acondicionado em URE = 43,2% e (3) solução aquosa com alta atividade de água ($a_w = 0,990$). As transições de fases dessas amostras estão apresentados na Tabela B.1.

Amostra	X _{**} **	T _g (°C)	T _m (°C)	∆H _m (W/g)	W _g '
	(gH₂O/g)				
1	0,039 ± 0,003*	93,20 ± 2,58			
2	0,063 ± 0,001	62,70 ± 0,66	and all the part of	nga nga mata ang	
3	0,644 ± 0,002	-37,83 ± 1,29	-5,94 ± 0,13	164,10 ± 1,68	0,43

Tabela B.1: Valores de X_w, T_g, T_m, Δ H_m e W_g' para amostras de maltodextrina DE 20 em vários conteúdos de umidade

* Média ± desvio padrão de três determinações experimentais, ** base úmida

As amostras sem acondicionamento prévio e equilibrada em URE = 43,2%apresentaram, no primeiro aquecimento, um pico endotérmico entre 50 e 150° C, que foi completamente eliminado na segunda corrida no DSC, ou seja, após recongelamento com N₂ líquido até -100°C. Na segunda corrida, os termogramas apresentaram apenas uma transição vítrea bem definida (Figura B.1), o que permite sugerir que o observado na primeira corrida foi produto de fusão de uma fração cristalina da maltodextrina DE 20. Esse comportamento é típico de biopolímeros que apresentam transições de primeira ordem, também observado em gelatina por Sobral & Habitante (2001). A solução aquosa de alta atividade de água apresentou transições típicas de amostras com alto conteúdo de umidade, uma transição vítrea discreta, seguida de um pico endotérmico de fusão de gelo (Roos,1995, Sobral *et al.,* 2001).

Figura B.1: Termogramas das amostras de maltodextrina DE 20: (a) sem acondicionamento, (b) URE = 43,2%, (----) primeira corrida, (----) segunda corrida

ANEXO C

Exemplos de termogramas obtidos no DSC

· ...

File: C:...V20%Sacarose-1.001 Operator: Ana Monica Run Date: 5-Aug-03 11 45

108

Anexo C

Anexo C

Sample: Isoterma de Camucamu Liofilizado Size: 10.9600 mg Method: Rampa10 Comment: Isoterma MgCl2 (UR=32,8%) usando disco de teflon File: C:...\Camucamu\Ur33-4.001 Operator: Ana Monica Run Date: 15-Sep-2003 08:16

DSC

DSC

File: C:...\Camucamu\Ur75-16.001 Operator: Ana Monica Run Date: 20-Aug-2003 08:14

Universal V2.5H TA Instruments

File: C:...\Camucamu\Ubu60-1.001

Temperature (°C)

DSC

Sample: Camucamu Liofilizado - Alta Ubu Size: 12.5600 mg Method: Rampa10 Comment: Camucamu liofilizado 60% Ubu usando disco de teflon

112

Exo Up

Anexo C

Sample: Isoterma da Mistura Liofilizada Size: 16.5200 mg Method: Rampa10 Comment: P.Pura + 30%Maltodext NaCI (UR=75,3%) usando disco de Teflon

-0.1 -0.2 ---36.20°C Heat Flow (W/g) -0.3 ---18.03°C(I) -6.28°C -0.4 -0.5 --0.6 --50 100 -50 Ó 150 -100 -150 Universal V2.5H TA Instruments Temperature (°C) Exo Up

File; C:...\Ur75-17.001

Operator: Ana Monica Run Date: 3-Oct-2003 10:42

Sample: Acido Ascorbico - Alta Ubu Size: 13.8200 mg Method: Rampa10 Comment: Acido Ascorbico 10% em agua usando disco de teflon

File: ... VAcAscorbico10% - 3.001

Operator: Ana Monica Run Date: 25-Nov-2003 15:12 Sample: Acido Citrico - Alta Ubu Size: 14.9300 mg Method: Rampa10 Comment: Acido Citrico 10% em agua usando disco de teflon

DSC

File: C:...VAcCitrico10% - 3.001

Run Date: 25-Nov-2003 10:39

Operator: Ana Monica

117

-0.2 --67.78°C -63.53°C(I) -60.15°C -51,42°C Heat Flow (W/g) -0.4 --48.98°C(I) -45.36°C -5.01°C 283.5J/g -0.6 --0.8 1.43°C -1.0 --100 -50 50 ό -150 100 Universal V2.5H TA Instruments Exo Up Temperature (°C)

Sample: Isoterma da Maltodextrina Size: 12.3100 mg Method: Rampa10 Comment: Maltodextrina K2CO3 (UR=43,2%) usando disco de tefion

File: C:...\Ur43-2.002 Operator: Ana Monica Run Date: 14-Oct-2003 08:48