Método Spline Modificado: Acoplamento do Método da Máxima Verossimilhança ao Método Spline.

01/90

Janeiro 90 Campinas - SP - Brasil Los de La John Los Jo

Método Spline Modificado: Acoplamento do Método da Máxima Verossimilhança ao Método Spline.

Autor: José Roberto Nunhez

Tese submetida à Comissão de Pós - Graduação da Faculdade de Engenharia de Campinas-UNICAMP como parte dos requisitos necessários para a obtenção do grau de Mestre em Engenharia Química.

Aprovada por:

Orientador: Prof. Dr. Milton Mori

Prof. Dr. Saul Gonçalves d'Ávila

Prof. Dr. José Antonio Dermengi Rios

Campinas - SP - Brasil 16 de janeiro de 1990

UNICAMP BIBLIOTECA CENTRAL

Dedico este trabalho de tese a minha amada esposa Silmara, minha amiga e companheira.

Agradecimentos

Agradeço a Deus, que é a razão da existência, inclusive deste trabalho.

Ao meu orientador, o professor Milton Mori, que partilhou comigo os seus conhecimentos, tornando possível este trabalho, sobretudo com sua amizade.

Ao amigo Reginaldo Guirardello, pelas importantes discussões e sugestões .

Aos amigos Clayton Tadeu Motta Damasceno e Martin Aurel Forgacci, que elaboraram juntamente com o autor e seu orientador o software DamFor †, que é o Método Spline Modificado na linguagem Pascal.

Ao professor Saul Gonçalves d'Ávila, pelas sugestões apresentadas.

Ao meu tio Cris in memoriun.

A minha esposa Silmara, pela leitura e correção ortográfica.

Aos meus pais Leonardo e Maria e meus irmãos Luciano, Débora e Rodolfo que sempre me apoiaram.

Aos meus colegas do DPQ Carlos, Henry e Mines.

A todos que contribuíram de alguma forma para o meu trabalho.

[†]O software DamFor foi o 2ºcolocado no 1ºconcurso interno de software da UNICAMP, e seus autores ganharam um microcomputador PC-XT.

Conteúdo

T	Inti	rodução	16			
2	Revisão bibliográfica dos métodos de ajuste de dados experimentais					
	2.1	Conceitos fundamentais [6]	18			
	2.2	Princípio dos métodos de ajuste de dados experimentais [6]	22			
	2.3	Método dos Mínimos Quadrados [6]	23			
		2.3.1 Definição	23			
		2.3.2 Determinação das estimativas dos parâmetros	23			
	2.4	Método dos Mínimos Quadrados Ponderado [6]	25			
		2.4.1 Definição	25			
		2.4.2 Determinação das estimativas dos parâmetros	25			
	2.5	Método da Máxima Verossimilhança [6]	26			
		2.5.1 Definição	26			
		2.5.2 Determinação das estimativas dos parâmetros	29			
	2.6	Método Spline	32			
		2.6.1 Definição	33			
		2.6.2 Determinação dos parâmetros das splines lineares	33			
		2.6.3 Determinação dos parâmetros das splines cúbicas	34			
3	Mét	todo Spline Modificado	37			
	3.1	Introdução	37			
	3.2	Definição	37			
	3.3	Cálculo das estimativas dos parâmetros	39			
	3.4	Desenvolvimento Numérico	45			
	3.5	Método Spline Estendido	49			
	3.6	Desenvolvimento Computacional	50			
	3.7	Diagrama de blocos	51			

	4	Aplicações do Método Spline Modificado	53
		4.1 Introdução	53
,		4.2 Aplicações do Método Spline Modificado	53
		4.3 Critérios utilizados para a escolha do melhor ajuste pelo Método Spline	
		Modificado	54
		4.4 Metodologia utilizada para o estudo de cada caso	54
		4.5 Resultados numéricos de aplicações a dados termodinâmicos	55
		4.5.1 Dados de Pressão de Vapor	5 5
		4.5.2 Dados de equilíbrio líquido - vapor (Diagrama x versus y)	60
		4.5.3 Diagrama de temperatura de ebulição em função da concentração	
		de uma mistura binária	67
		4.5.4 Calor de mistura de uma solução binária	70
		4.6 Conclusão	7 8
	5	Conclusão	79

Lista de Tabelas

4.1	Pressão de vapor versus composição da fase líquida da mistura etanol -	
	n-heptano a $30^{\circ}C$. Método Spline Modificado.	56
4.2	Pressão de vapor versus composição da fase líquida da mistura etanol -	
	n-heptano a 30°C. Método Spline Estendido	57
4.3	Comparação entre as funções de minimização para os dados de pressão	
	de vapor da mistura etanol – n-heptano	58
4.4	Teste de convergência do Método Spline Modificado	59
4.5	Teste para chegar ao Método Spline puro.	59
4.6	Ajuste pelo Método Spline puro	60
4.7	Diagrama $x-y$ da mistura acetonitrila- água. Método Spline Modificado.	63
4.8	Diagrama x-y da mistura acetonitrila - água. Método Spline Estendido.	63
4.9	Comparação entre as funções de minimização para o diagrama x versus y	
	da mistura acetonitrila-água.	64
4.10	Diagrama $x-y$ da mistura 2-propanol – água. Método Spline Modificado.	65
4.11	Diagrama $x-y$ da mistura 2-propanol- água. Método Spline Estendido	66
4.12	Comparação entre as funções de minimização para o diagrama x versus y	
	da mistura 2-propanol – água.	66
4.13	Diagrama Tversusz da mistura acetonitrila - água. Método Spline Mo-	
	dificado	68
4.14	Diagrama T versus x da mistura acetonitrila - água. Método Spline	
	Estendido	68
4.15	Comparação entre as funções de minimização para o diagrama $T\ versus\ x$	
	da mistura acetonitrila – água.	69
4.16	Diagrama Tversus x da mistura 2-propanol - água. Método Spline Mo-	
	dificado	70
4.17	Diagrama T versus x da mistura 2-propanol- água. Método Spline Es-	
	tendido	71

4.18	Comparação entre as funções de minimização para o diagrama T versus x	
	da mistura 2-propanol – água.	71
4.19	Calor de mistura do sistema metanol-água. Método Spline Modificado	73
	Calor de mistura do sistema metanol - água. Método Spline Estendido.	74
4.21	Comparação entre as funções de minimização para o calor de mistura do	
	sistema metanol – água	74
4.22	Calor de mistura do sistema etanol - água. Método Spline Modificado	7 5
4.23	Calor de mistura do sistema etanol - água. Método Spline Estendido	76
4.24	Comparação entre as funções de minimização do calor de mistura do	
	sistema etanol - água	77

.

. .. _____

Lista de Figuras

2.1	Representação gráfica de um ajuste por Mínimos Quadrados	24
2.2	Representação gráfica de um ajuste por Máxima Verossimilhança	30
2.3	Representação gráfica de um ajuste pelo Método Spline linear	34
4.1	Pressão de vapor da mistura etanol - n-heptano	61
4.2	Desvio absoluto da pressão de vapor da mistura etanol - n-heptano	61
4.3	Desvio absoluto da fração molar da mistura etanol - n-heptano	62
4.4	Primeira derivada para a curva de pressão de vapor da mistura etanol - n-heptano	62
4.5	Diagrama x versus y da mistura acetonitrila-água	65
4.6	Diagrama x versus y da mistura 2-propanol - água	67
4.7	Diagrama T versus x da mistura acetonitrila - água	69
4.8	Diagrama Tversus x da mistura 2-propanol - água	72
4.9	Calor de mistura do sistema metanol - água	73
4 10	Calor de mistura do sistema etanol - água	77

Resumo

Nunhez, José Roberto. Método Spline Modificado: Acoplamento do Método da Máxima Verossimilhança ao Método Spline. Sob a orientação do prof. Dr. Milton Mori.

O Método Spline Modificado foi desenvolvido para o alisamento de dados experimentais com incertezas em todas as variáveis medidas. Este método é uma extensão do Método Spline Estendido e é baseado no acoplamento do Método Spline ao Método da Máxima Verossimilhança. O Método Spline Estendido acopla o Método Spline cúbico ao Método dos Mínimos Quadrados. Este método foi desenvolvido anteriormente por Klaus Van-Ness[7]. São apresentadas diversas aplicações a dados Termodinâmicos como dados de equilíbrio líquido—vapor (diagrama XversusY), temperatura de ebulição como função da concentração de um sistema binário (diagrama TversusX) e calor de mistura de certos sistemas com álcoois ($\Delta H/X_1X_2versusX_1$). Em todos os casos o Método Spline Modificado mostra melhores resultados do que o Método Spline Estendido.

Programas computacionais foram desenvolvidos nas linguagens BASIC e PAS-CAL incluindo o Método Spline cúbico e o Método Spline Estendido como casos particulares do Método Spline Modificado.

Abstract

Nunhez, José Roberto. Modified Spline fit Technique: Coupling of the Maximum Likelihood Principle to the Spline fit Technique, under the direction of Milton Mori.

The Modified Spline fit Technique has been developed for the smoothing of experimental data with uncertanties in all measured variables. This method is a new fit technique and is an extension of the Extended Spline fit Technique and it is based on the coupling of the Maximun Likelihood Principle to the Spline fit Technique. The Extended Spline fit Technique couples the cubic Spline fit Technique to the Least Square Method. It was developed before by Klaus Van-Ness [7]. Several applications to thermodynamic data such as vapor-liquid equilibrium of a binary system (XversusY diagram), boiling temperature as a function of the concentration of a binary system (TversusX diagram) and heat of mixing data of certain alcohol systems ($\triangle H/X_1X_2versusX_1$) are presented, and the Modified Spline Method shows better results over the Extended Spline fit Technique.

A computer program, in Basic and Pascal languages, has been developed and includes both the Spline fit Technique and the Extended Spline fit Technique as particular cases of the Modified Spline fit Technique.

Nomenclatura

 $F_A = \text{matriz derivada de } F \text{ em relação a } A.$

a = parâmetro. $\hat{a} = \text{matriz}$ estimativa dos parâmetros a. a_i = valor do parâmetro a no ponto j. A_k = parâmetro da função de interpolação da spline cúbica. A =vetor estimativa dos parâmetros A_k . $A = \text{vetor dos parâmetros } A_k$. $B_i = \text{matriz}$ definida para resolução do sistema linear por mínimos quadrados. C_k = parâmetro da função de interpolação da spline cúbica. \hat{C} = vetor estimativa dos parâmetros C_k . e = função exponencial.E(x) = média da variável contínua x.E = função objetiva do Método dos Mínimos Quadrados e Método dos Mínimos Quadrados Ponderado. f(x) = função densidade de probabilidade; função explícita de uma variável dependente. $f_k(x) = \text{função spline cúbica.}$ $f'_{\mathbf{k}}(x) = \text{primeira derivada da função spline cúbica.}$ $f_k(x) = \text{segunda derivada da função spline cúbica.}$ F = modelo matemático ou função; vetor força definido para a determinação dos parâmetros das funções spline cúbicas; conjunto de restrições F_i . F_i = modelo matemático ou função do ponto i; restrição de convergência do ponto i. F_{X_i} = derivada de F em relação a x no ponto i. F_{Y_i} = derivada de F em relação a y no ponto i. F_X = matriz derivada de F em relação a x. $F_Y = \text{matriz derivada de } F \text{ em relação a } y.$ $F_X^t = \text{matriz derivada transposta de } F \text{ em relação a } x.$ F_{V}^{t} = matriz derivada transposta de F em relação a y. $F_a = \text{matriz derivada de } F \text{ em relação a } a.$

 $F_C = \text{matriz derivada de } F \text{ em relação a } C.$

 $F_A^t = \text{matriz derivada transposta de } F \text{ em relação a } A.$

 $F_C^t = \text{matriz derivada transposta de } F \text{ em relação a } C.$

 F_{XX} = matriz derivada de F em relação a x duas vezes.

 $F_{YY} = \text{matriz derivada de } F \text{ em relação a } y \text{ duas vezes.}$

 F_{XY} = matriz derivada de F em relação a x e a y.

 F_{Xa} = matriz derivada de F em relação a x e a a.

 $F_{Ya} = \text{matriz derivada de } F \text{ em relação a } y \text{ e a } a.$

 F_{aa} = matriz derivada de F em relação a a duas vezes.

 F_{XA} = matriz derivada de F em relação a x e a A.

 F_{XC} = matriz derivada de F em relação a x e a C.

 $F_{XA}^t = \text{matriz derivada transposta de } F \text{ em relação a } x \text{ e a } A.$

 $F_{XC}^t = ext{matriz derivada transposta de } F ext{ em relação a } x ext{ e a } C.$

g= vetor definido para resolução dos Métodos Spline Estendido e Modificado; matriz definida para a resolução do Método da Máxima Verossimilhança.

 $g_k = \text{função spline linear do intervalo } k$.

 $g_{ij} = \text{funções independentes entre si.}$

H = entalpia de mistura.

i = contador.

I = matriz identidade.

j = contador.

k = contador.

K = número de intervalos.

l = contador.

 L_k = intervalo da função $f_k(x_i)$.

 $L(X, \theta) = \text{função de verossimilhança da variável } x \text{ e do parâmetro } \theta.$

 $M = \text{número de funções } F_i$.

N = número de pontos experimentais.

 $N(\mu, \sigma^2) = \text{distribuição Normal com média } \mu \text{ e desvio padrão } \sigma.$

n = grau do polinômio.

p(a < x < b) =probabilidade da variável x estar entre a e b.

P = número de parâmetros.

Q = número de variáveis contínuas distintas.

 $R=\max_{i=1}^{n}$ resolução do Método Spline Estendido; jacobiano para resolução do Método Spline Modificado.

 $R^{-1} = \text{matriz inversa de } R.$

R = conjunto dos números reais.

S = função objetiva do princípio da máxima verossimilhança.

T = temperatura.

V(x) = variança da variável x.

X =variável aleatória contínua.

 X_i = valor experimental da variável aleatória no ponto i.

x = variável contínua.

 x_i = valor da variável x no ponto i.

y = variável contínua.

 y_i = valor da variável y no ponto i.

 W_{X_i} = inverso da variança de x no ponto i.

 W_{Y_i} = inverso da variança de y no ponto i.

Letras gregas.

 α_i = multiplicadores de Lagrange.

 α = vetor dos multiplicadores de Lagrange α_i .

 ϵ_i = desvio absoluto no ponto i.

 ϵ_{X_i} = desvio absoluto da variável x no ponto i.

 ϵ_{Y_i} = desvio absoluto da variável y no ponto i.

 $\varepsilon = \text{valor bem pequeno.}$

 $\zeta = \text{qualquer variável.}$

 $\hat{\zeta}$ = vetor definido para a resolução dos sistemas do Método Spline Estendido e Método Spline Modificado.

 $\theta = \text{parâmetro}.$

 $\hat{\theta} = \text{estimador do parâmetro } \theta$.

 λ_i = multiplicador de Lagrange no ponto i.

 λ = vetor dos multiplicadores de Lagrange λ_i .

 $\mu = \text{média de uma variável}.$

 $\pi = 3.1415926...$

 $\Pi = \text{produtório.}$

 $\sigma = desvio-padrão$.

 $\sigma_i = \text{desvio-padrão no ponto } i$.

 σ_{X_i} = desvio-padrão da variável x no ponto i.

 $\sigma_{Y_i} = \text{desvio-padrão da variável } y \text{ no ponto } i$.

 $\Sigma = \text{somatório}.$

 Σ_X = matriz somatório dos desvios-padrão da variável x.

 Σ_Y = matriz somatório dos desvios-padrão da variável y.

 ϕ_k = restrição de alisamento do Método Spline no intervalo k.

 $\Phi_k = \text{conjunto das restrições } \phi_k$.

 $\Phi_A=$ matriz derivada de Φ em relação a A.

 $\Phi_C = \text{matriz derivada de } \Phi \text{ em relação a } C.$

 $\Phi_A^t = \text{matriz derivada transposta de } \Phi \text{ em relação a } A.$ $\Phi_C^t = \text{matriz derivada transposta de } \Phi \text{ em relação a } C.$

Capítulo 1

Introdução

O Método Spline Modificado é um novo método de ajuste de curvas que pode ser aplicado a qualquer tipo de curva de duas variáveis. Ele foi concebido com a finalidade de tentar ajustar certos tipos de curvas termodinâmicas onde as correlações conhecidas nem sempre proporcionam um ajuste satisfatório.

O Método Spline Modificado leva em conta os erros experimentais tanto da variável dependente como da independente, associando um desvio-padrão a cada medida experimental. Os parâmetros das funções splines cúbicas são obtidos pelo Método da Máxima Verossimilhança.

Com este novo tratamento o ajuste torna-se muito mais potente, pois ocorre uma minimização em relação aos parâmetros das splines cúbicas e em relação as variáveis.

Como no Método Spline Puro e na extensão de Klaus - Van Ness [7], o Método Modificado permite realizar interpolações e calcular valores da primeira e da segunda derivada em qualquer ponto do conjunto de dados.

O Método Spline Modificado foi aplicado a diversos conjuntos de dados termodinâmicos e mostrou-se adequado para ajustar estatisticamente dados de equilíbrio líquido-vapor e de entalpias de mistura de líquidos dentre outros. O Método Modificado apresentou melhor desempenho que a extensão de Klaus – Van Ness no ajuste de vários conjuntos de dados termodinâmicos da literatura. Este melhor desempenho foi evidenciado por fornecer, em todos os casos, desvios absolutos entre os valores experimentais e os valores calculados em média menores que o Método Estendido.

O Método Spline Estendido, que é o Método Spline acoplado ao Método dos Mínimos Quadrados, é um caso particular do Método Spline Modificado e foi anteriormente desenvolvido por Klaus - Van Ness [7]. A formulação desenvolvida por Klaus - Van Ness difere da formulação aqui desenvolvida que insere mais um conjunto de

restrições. Tais restrições resultam numa formulação matemática mais simples e introduzem uma importante condição de estabilidade para a resolução do sistema não-linear do Método Spline Modificado.

No capítulo 2 é feita uma revisão sobre os principais métodos de ajuste de curvas utilizados atualmente. No capítulo 3 é desenvolvido o algoritmo Spline Modificado. No capítulo 4 são mostradas diversas aplicações do Método Modificado a diversos conjuntos de dados termodinâmicos, sendo feita uma análise do desempenho do Método em cada caso. No capítulo 5 é apresentada a conclusão do trabalho. O apêndice 1 traz o programa na linguagem Basic desenvolvido para o Mainframe Vax, o apêndice 2 traz o programa em Quick Basic para micros PC – XT e, finalmente, o apêndice 3 traz detalhes do algoritmo Spline Estendido desenvolvido por Klaus – Van Ness. Nas duas versões foram incluídos o Método Spline e o Método Spline Estendido como casos particulares do Método Spline Modificado. Acompanha também um disquete do software DamFor – o programa na linguagem Pascal – que foi o software premiado com um microcomputador PC-XT no 1ºconcurso interno de software da UNICAMP.

Capítulo 2

Revisão bibliográfica dos métodos de ajuste de dados experimentais

Os métodos de ajuste de curvas são aplicados à análise de dados experimentais para a verificação da validade de um modelo matemático e. também, para a determinação de seus parâmetros.

Serão analisados quatro métodos: Mínimos Quadrados, Mínimos Quadrados Ponderado. Máxima Verossimilhança e Método Spline.

2.1 Conceitos fundamentais [6]

Os métodos de ajuste de curvas são todos analisados estatisticamente, de forma que alguns conceitos básicos serão introduzidos a seguir:

• Função densidade de probabilidade

A função densidade de probabilidade ou, abreviadamente, função de densidade de uma variável aleatória contínua X é uma função f(x) qualquer que satisfaz as seguintes condições:

$$f(x) \ge 0, \qquad \forall x \in \Re.$$
 (2.1)

$$\int_{-\infty}^{+\infty} f(x)dx = 1. \tag{2.2}$$

A probabilidade de uma variável aleatória contínua X estar dentro de um intervalo (a,b) é dada por:

$$p(a < x < b) = \int_a^b f(x)dx.$$
 (2.3)

Quando a função densidade de uma variável aleatória X é dada por:

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \qquad -\infty < x < +\infty$$
 (2.4)

onde $-\infty < \mu < +\infty$ e $\sigma > 0$,

diz-se que esta variável tem distribuição Normal. A distribuição Normal tem média igual a μ e desvio padrão igual a σ . Quando uma variável aleatória X tem distribuição Normal utiliza-se a notação $X:N(\mu;\sigma^2)$.

· Média de uma variável aleatória.

A média, ou valor médio, ou esperança matemática é um valor representativo de um conjunto de dados que tende se localizar em um ponto central da distribuição. Denomina-se como a média de uma variável aleatória X o número:

$$\mu = E(x) = \int_{-\infty}^{+\infty} x f(x) dx. \tag{2.5}$$

• Variança

O grau ao qual os dados numéricos tendem a se dispersar em torno de um valor médio chama-se variança, varianção ou dispersão de dados, sendo que o termo mais empregado é variança. Denomina-se variança de uma variável aleatória X o número:

$$\sigma^2 = V(x) = E[(x - E(x))^2] = \int_{-\infty}^{+\infty} (x - \mu)^2 f(x) dx.$$
 (2.6)

Desvio-padrão

O valor positivo da raiz quadrada da variança de uma variável aleatória X é o seu desvio-padrão.

Amostragem

Para se fazer o estudo das características de uma determinada população é necessário se observar toda a população. Como nem sempre isso é possível, procurase observar apenas uma parte que seja representativa desta população, ou seja, uma amostra.

Estimador

É uma função das variáveis aleatórias que será utilizada para estimar algum parâmetro desconhecido.

Um estimador $\hat{\theta}$ de um parâmetro θ é não viciado para θ quando $E(\hat{\theta}) = \theta$. Definese o vício de $\hat{\theta}$ por $E(\hat{\theta} - \theta)$.

O melhor estimador de um parâmetro θ é aquele que é não viciado para θ e possui a menor variança dentre todos os valores (estimativas) não-viciados de θ .

Função de Verossimilhança

Seja X_1, \ldots, X_N uma amostra aleatória da variável aleatória X e $f(X_1; \theta), \ldots, f(X_N; \theta)$ as funções distribuição de probabilidade destas variáveis. Define-se a função de verossimilhança da amostra e de θ a função:

$$L(X_1,\ldots,X_N;\theta)=f(X_1;\theta)\ldots f(X_N;\theta)=\prod_{i=1}^N f(X_i;\theta).$$
 (2.7)

Considerando-se que a distribuição de probabilidades de X_i é uma distribuição Normal, $X_i: N(\mu_i; \sigma_i^2)$, então a função de verossimilhança será:

$$L(X_i, \dots, X_N; \theta) = \left(\frac{1}{\sqrt{2\pi}}\right)^N \cdot \frac{1}{\prod_{i=1}^N \sigma_i} \cdot e^{-\frac{1}{2} \sum_{i=1}^N \frac{(X_i - \mu_i)^2}{\sigma_i^2}}.$$
 (2.8)

O estimador $\hat{\theta}$ é um estimador de Máxima Verossimilhança de θ se:

$$L(X_1,\ldots,X_N;\hat{\theta})=\max[L(X_1,\ldots,X_N;\theta)], \qquad \forall \theta.$$
 (2.9)

Para uma dada amostra, trata-se de determinar o máximo de uma função de θ , que é equivalente a obter o valor de θ que maximiza a probabilidade de se obter a amostra observada.

• Dados Experimentais

Em uma análise de dados experimentais (amostragem), onde são obtidos N pontos, cada um composto por Q variáveis $(X_i^{(1)}, \ldots, X_i^{(Q)})$, $i = 1, \ldots, N$; normalmente admite-se que estas variáveis estão sujeitas a erros experimentais que seguem uma distribuição gaussiana (Normal).

Chamando-se $x_i^{(l)}$ os valores médios ajustados nestas distribuições e definindo-se os desvios $\epsilon_i^{(l)} = X_i^{(l)} - x_i^{(l)}$, tem-se as distribuições Normais: $X_i^{(l)} : N(x_i^{(l)}; \sigma_i^{(l)^2}) - e - \epsilon_i^{(l)} : N(0; \sigma_i^{(l)^2})$.

Modelos Matemáticos

O estudo de um problema físico geralmente envolve a formulação de um modelo matemático que supõe-se representar este fenômeno.

O modelo matemático consiste de uma ou mais funções entre duas ou mais variáveis e um ou mais parâmetros. Supondo que se tenha M funções F_i com Q variáveis $x^{(l)}$ e P parâmetros a_j associados a essas funções, onde Q > M, na sua forma geral, o modelo matemático será dado por:

$$F_k(x^{(1)},\ldots,x^{(Q)};a_1,\ldots,a_P)=0$$
 $k=1,\ldots,M.$ (2.10)

Algumas vezes, M dessas variáveis, chamadas dependentes, podem ser colocadas como funções das demais variáveis, tomando a seguinte forma:

$$x^{(k)} = f(x^{(M+k)}, \dots, x^{(Q)}; a_1, \dots, a_P) \qquad k = 1, \dots, M.$$
 (2.11)

Quando as funções são expressas como em (2.10), o modelo é implícito. Se elas são expressas como em (2.11), o modelo é chamado explícito.

Se o modelo for explícito e puder tomar a forma:

$$x^{(k)} = \sum_{j=1}^{P} g_{ij}(x^{(M+k)}, \dots, x^{(k)}) \qquad k = 1, \dots, M.$$
 (2.12)

onde g_{ij} são independentes entre si das variáveis $x^{(M+k)}, \ldots, x^{(Q)}$, diz-se que o modelo é linear em relação aos parâmetros. Caso contrário, o modelo será não-linear em relação aos parâmetros.

2.2 Princípio dos métodos de ajuste de dados experimentais [6]

O objetivo de um método de ajuste, quando aplicado a um modelo matemático, é encontrar as estimativas dos parâmetros a_j e dos valores médios das variáveis $x_i^{(l)}$, minimizando os desvios $\epsilon_i^{(l)}$.

Os métodos mais utilizados atualmente - o Método da Máxima Verossimilhança e o Método dos Mínimos Quadrados - que se supõe seguirem uma distribuição Normal, utilizam como critério para a minimização dos desvios $\epsilon_i^{(l)}$, a maximização da função de Verossimilhança , equação (2.8), sendo que para o Método dos Mínimos Quadrados seguem algumas considerações.

Para simplificação, nos métodos de ajuste que serão apresentados, será considerado um modelo matemático sujeito a uma restrição (M=1), envolvendo duas variáveis, $x^{(1)}=x$ e $x^{(2)}=y$ (Q=2). Entretanto, o princípio é válido para o caso geral. Excetua-se o Método Spline que é somente para duas variáveis.

O Método da Máxima Verossimilhança supõe que os desvios-padrão das variáveis X e Y são diferentes de zero e diferentes entre si, ou seja, $\epsilon_{x_i}:N(0;\sigma_{x_i}^2)=\epsilon-\epsilon_{y_i}:N(0;\sigma_{x_i}^2)$.

O Método dos Mínimos Quadrados Ponderado, que é um caso particular do Método da Máxima Verossimilhança, assume que os desvios-padrão da variável dependente X são nulos, ou seja, $\epsilon_{x_i}: N(0;0)$, enquanto que os desvios-padrão de Y são diferentes de zero e diferentes entre si, ou seja, $\epsilon_{y_i}: N(0;\sigma_{y_i}^2)$.

O Método dos Mínimos Quadrados é um caso particular do Método dos Mínimos Quadrados Ponderado, onde supoe-se que os desvios-padrão da variável dependente Y_i são diferentes de zero e iguais entre si, ou seja, $\epsilon_{y_i}:N(0;\sigma^2)$. E como no caso anterior $\epsilon_{z_i}:N(0;0)$. Com esta restrição, diminui-se um grau de liberdade do sistema, o que na prática significa que o Método dos Mínimos Quadrados independe dos desvios-padrão da variável dependente, apesar de associar todo o erro experimental à mesma. Uma apresentação mais detalhada do Método dos Mínimos Quadrados, dos Mínimos Quadrados Ponderado e do Método da Máxima Verossimilhança é encontrada na referência [6].

2.3 Método dos Mínimos Quadrados [6]

2.3.1 Definição

Dado um conjunto de N pontos experimentais (X_i, Y_i) , que se supõe ser representado por um modelo de tipo $y = f(x; a_1, \ldots, a_P)$, o objetivo é a determinação dos parâmetros a_j do modelo. Assume-se que a variável independente X é isenta de erros e todo o erro experimental é associado a variável Y.

A maximização da equação (2.8) aplicada a uma variável, considerando seus desvios-padrão constantes em todos os pontos experimentais, fornece a função objetiva E que deve ser minimizada.

$$E = \sum_{i=1}^{N} \epsilon_{y_i}^2 = \sum_{i=1}^{N} (Y_i - y_i)^2 = \text{mínimo},$$
 (2.13)

onde:

$$y_i = f(x_i; a_1, \ldots, a_P)$$
 , $i = 1, \ldots, N$. (2.14)

$$x_i = X_i$$
 , $i = 1, ..., N$. (2.15)

O ajuste é feito minimizando-se (2.13) em relação aos parâmetros a_i .

$$\frac{\partial E}{\partial a_j} = -2\sum_{i=1}^N (Y_i - y_i) \cdot \frac{\partial f_i}{\partial a_j} = 0 \qquad j = 1, \dots, P,$$
 (2.16)

onde N > P.

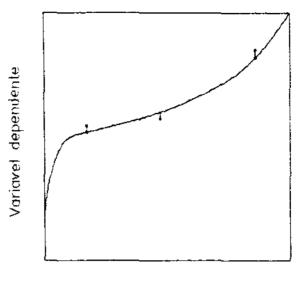
Uma interpretação gráfica do ajuste é dada na figura 2.1.

2.3.2 Determinação das estimativas dos parâmetros

A solução da equação (2.16) é a estimativa $\hat{a_j}$ dos parâmetros a_j do modelo. Se a restrição for um modelo linear em relação aos parâmetros como na equação (2.12), o sistema das equações (2.16) toma a forma:

$$\sum_{i=1}^{N} [Y_i - \sum_{k=1}^{P} \hat{a_k}.g_k.(X_i)].g_j(X_i) = 0, \qquad j = 1, \ldots, P, \qquad (2.17)$$

onde N > P.



Variavel independente

Figura 2.1: Representação gráfica de um ajuste por Mínimos Quadrados.

Definindo-se matricialmente:

$$R_{jk} = \sum_{i=1}^{N} g_j(X_i) \cdot g_k(X_i). \tag{2.18}$$

$$\hat{A}_k = \hat{a_k}.\tag{2.19}$$

$$B_{j} = \sum_{i=1}^{N} Y_{i}.g_{j}(X_{i}). \tag{2.20}$$

Chegamos que:

$$\mathbf{R} \cdot \hat{\mathbf{A}} = \mathbf{B}. \tag{2.21}$$

As estimativas serão dadas por:

$$\hat{\mathbf{A}} = \mathbf{R}^{-1} \cdot \mathbf{B}. \tag{2.22}$$

Neste caso, onde o modelo é linear em relação aos parâmetros, o estimador \hat{A} dado por (2.22) é um estimador não viciado dos parâmetros A.

2.4 Método dos Mínimos Quadrados Ponderado [6]

2.4.1 Definição

Dado um conjunto de N pontos experimentais (X_i, Y_i) , que se supõe ser representado por um modelo do tipo $y = f(x, a_1, \ldots, a_P)$, o objetivo é a determinação dos parâmetros a_j do modelo. Assume-se que a variável independente X é isenta de erros e todo o erro experimental está na variável Y, sendo atribuído a cada ponto experimental um desviopadrão σ_{y_i} . A maximização da equação (2.8) fornece a função objetiva E que deve ser minimizada ao máximo:

$$E = \sum_{i=1}^{N} W_{y_i} \epsilon_{y_i}^2 = \sum_{i=1}^{N} W_{y_i} (Y_i - y_i)^2 = \text{mínimo} \quad onde;$$
 (2.23)

$$W_{y_i} = \frac{1}{\sigma_{y_i}^2}, \qquad i = 1, \dots, N.$$
 (2.24)

$$y_i = f(x_i; a_1, \dots, a_P)$$
 $i = 1, \dots, N.$ (2.25)

$$x_i = X_i, \qquad i = 1, \dots, N. \tag{2.26}$$

O ajuste é feito minimizando a equação (2.23) em relação aos parâmetros a_i :

$$\frac{\partial E}{\partial a_i} = -2\sum_{i=1}^N W_{y_i}(Y_i - y_i) \left(\frac{\partial f_i}{\partial a_i}\right) = 0, \qquad j = 1, \dots, P.$$
 (2.27)

onde N > P.

O Método dos Mínimos Quadrados Ponderado é uma generalização do Método dos Mínimos Quadrados. A dedução é encontrada na referência [4], na página 108.

2.4.2 Determinação das estimativas dos parâmetros

A solução das equações (2.27) é a estimativa $\hat{a_j}$ dos parâmetros a_j do modelo. Se a restrição for um modelo linear em relação aos parâmetros como na equação (2.12), o sistema das equações (2.27) toma a forma:

$$\sum_{i=1}^{N} W_{y_i} \left[Y_i - \sum_{k=1}^{P} \hat{a_k} g_k(X_i) \right] g_j(X_i) = 0, \qquad j = 1, \dots, P.$$
 (2.28)

Definindo-se matricialmente:

$$\mathbf{R_{jk}} = \sum_{i=1}^{N} W_{y_i}.g_j(X_i).g_k(X_i). \tag{2.29}$$

$$\hat{\mathbf{A}_{\mathbf{k}}} = \hat{\mathbf{a}_{\mathbf{k}}}.\tag{2.30}$$

$$\mathbf{B_{j}} = \sum_{i=1}^{N} W_{y_{i}}.Y_{i}.g_{j}(X_{i}). \tag{2.31}$$

Chegamos que:

$$\mathbf{R} \cdot \hat{\mathbf{A}} = \mathbf{B}.\tag{2.32}$$

As estimativas serão dadas por:

$$\hat{\mathbf{A}} = \mathbf{R}^{-1}$$
. B. (2.33)

Neste caso, onde o modelo é linear em relação aos parâmetros, o estimador \hat{A} dado pela equação (2.33) é um estimador não viciado dos parâmetros A.

2.5 Método da Máxima Verossimilhança [6]

2.5.1 Definição

Dado um conjunto de N pontos experimentais (X_i, Y_i) , que se supõe ser representado por um modelo do tipo $F(x, y; a_1, \ldots, a_P) = 0$, o objetivo do método é a determinação dos parâmetros a_j do modelo. Assume-se que tanto a variável dependente como a independente estão sujeitas a erros experimentais, com erros sujeitos a distribuições Normais com desvio-padrão $(\sigma_{x_i}, \sigma_{y_i})$.

O ajuste é feito pela maximização da equação (2.8) aplicada a duas variáveis em relação aos parâmetros a_j e aos valores médios x_i e y_i , que corresponde a minimização da função S [1,4] dada por:

$$S = \frac{1}{2} \sum_{i=1}^{N} \left[W_{x_i} \epsilon_{x_i}^2 + W_{y_i} \epsilon_{y_i}^2 \right] = \frac{1}{2} \sum_{i=1}^{N} \left[W_{x_i} (X_i - x_i)^2 + W_{y_i} (Y_i - y_i)^2 \right] = \text{mínimo}, \quad (2.34)$$

$$W_{y_i} = \frac{1}{\sigma_{y_i}^2}$$
 $i = 1, ..., N.$ (2.35)

$$W_{x_i} = \frac{1}{\sigma_{x_i}^2}$$
 $i = 1, ..., N.$ (2.36)

$$F(x_i, y_i; a_1, \dots, a_P) = 0$$
 $i = 1, \dots, N.$ (2.37)

Como a minimização da função S é sujeita a N restrições F=0, é interessante o uso de multiplicadores de Lagrange λ_i [3].

$$\left(\frac{\partial S}{\partial a_j}\right) + \sum_{i=1}^N \lambda_i \cdot \left(\frac{\partial F_i}{\partial a_j}\right) = 0 \qquad j = 1, \dots, P.$$
 (2.38)

$$F(x_i, y_i; a_1, \dots, a_P) = 0$$
 $i = 1, \dots, N.$ (2.39)

$$\left(\frac{\partial S}{\partial y_i}\right) + \lambda_i \cdot \left(\frac{\partial F_i}{\partial y_i}\right) = 0 \qquad i = 1, \dots, N.$$
 (2.40)

$$\left(\frac{\partial S}{\partial x_i}\right) + \lambda_i \cdot \left(\frac{\partial F_i}{\partial x_i}\right) = 0 \qquad i = 1, \dots, N.$$
 (2.41)

Considerando S independente (explicitamente) aos parâmetros a_j : $\left(\left(\frac{\partial S}{\partial a_j}\right) = 0\right)$ e considerando que cada ponto (x_i, y_i) é independente dos demais $\left(\left(\frac{\partial F_i}{\partial x_j}\right) = 0 - e - \left(\frac{\partial F_i}{\partial y_j}\right) = 0$ para $i \neq j$, o sistema de equações (2.38 – 2.41) toma a forma:

$$\sum_{i=1}^{N} \lambda_{i} \cdot \left(\frac{\partial F_{i}}{\partial a_{j}} \right) = 0 \qquad j = 1, \dots, P.$$
 (2.42)

$$F(x_i, y_i; a_1, \dots, a_P) = 0$$
 $i = 1, \dots, N.$ (2.43)

$$-W_{y_i}(Y_i-y_i)+\lambda_i\cdot\left(\frac{\partial F_i}{\partial y_i}\right)=0 \qquad i=1,\ldots,N.$$
 (2.44)

$$-W_{y_i}(X_i-x_i)+\lambda_i\left(\frac{\partial F_i}{\partial x_i}\right)=0 \qquad i=1,\ldots,N.$$
 (2.45)

O sistema de equações (2.42 - 2.45) pode ser colocado na forma matricial compacta, definindo-se as seguintes matrizes:

$$\Sigma_{Y} = \begin{bmatrix} \sigma_{y_{1}}^{2} & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \sigma_{y_{N}}^{2} \end{bmatrix} \qquad \qquad \Sigma_{X} = \begin{bmatrix} \sigma_{x_{1}}^{2} & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \sigma_{x_{N}}^{2} \end{bmatrix} \quad (2.46)$$

$$\epsilon_{\mathbf{X}} = \begin{bmatrix} X_1 - x_1 \\ \vdots \\ X_N - x_N \end{bmatrix} \qquad \epsilon_{\mathbf{y}} = \begin{bmatrix} Y_1 - y_1 \\ \vdots \\ Y_N - y_N \end{bmatrix} \qquad \mathbf{F} = \begin{bmatrix} F_1 \\ \vdots \\ F_N \end{bmatrix} \qquad \lambda = \begin{bmatrix} \lambda_1 \\ \vdots \\ \lambda_N \end{bmatrix} \quad (2.47)$$

$$\mathbf{F}_{\mathbf{x}} = \begin{bmatrix} \begin{pmatrix} \frac{\partial F_1}{\partial x_1} \end{pmatrix} & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \begin{pmatrix} \frac{\partial F_N}{\partial x_N} \end{pmatrix} \end{bmatrix}$$

$$\mathbf{F}_{\mathbf{y}} = \begin{bmatrix} \begin{pmatrix} \frac{\partial F_1}{\partial y_1} \end{pmatrix} & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \begin{pmatrix} \frac{\partial F_N}{\partial y_N} \end{pmatrix} \end{bmatrix} (2.48)$$

$$\mathbf{F_a} = \begin{bmatrix} \begin{pmatrix} \frac{\partial F_1}{\partial a_1} \end{pmatrix} & \dots & \begin{pmatrix} \frac{\partial F_1}{\partial a_r} \end{pmatrix} \\ \vdots & \ddots & \vdots \\ \begin{pmatrix} \frac{\partial F_N}{\partial a_1} \end{pmatrix} & \dots & \begin{pmatrix} \frac{\partial F_N}{\partial a_r} \end{pmatrix} \end{bmatrix}. \tag{2.49}$$

Obtém-se:1

$$F_a^{\ t} \ , \ \lambda = 0. \tag{2.50}$$

$$F=0. (2.51)$$

$$\Sigma_Y^{-1} \cdot \epsilon_y + F_Y^t \cdot \lambda = 0. \tag{2.52}$$

$$\Sigma_X^{-1} \cdot \epsilon_x + F_X^{\ t} \cdot \lambda = 0. \tag{2.53}$$

 $^{^{-1}}$ obs: $\Sigma_{Y}^{t} = \Sigma_{Y}$; $\Sigma_{X}^{t} = \Sigma_{X}$; $F_{X}^{t} = F_{X}$ $F_{Y}^{t} = F_{Y}$

O problema consiste na determinação de N valores médios da variável X, N valores médios da variável Y, N valores dos multiplicadores de Lagrange λ e P valores dos parâmetros a.

No caso do modelo poder ser colocado na forma explícita, $F(x, y; a_1, ..., a_P) = y - f(x; a_1, ..., a_P) = 0$, as equações (2.42 - 2.45)são reescritas:

$$-\sum_{i=1}^{N} \lambda_i \left(\frac{\partial f_i}{\partial a_j} \right) = 0 \qquad j = 1, \dots, P.$$
 (2.54)

$$y_i - f(x_i; a_1, \dots, a_P) = 0$$
 $i = 1, \dots, N.$ (2.55)

$$-W_{y_i}.\epsilon_{y_i}+\lambda_i=0 \qquad i=1,\ldots,N.$$
 (2.56)

$$W_{x_i} \cdot \epsilon_{x_i} + \lambda_i \left(\frac{\partial f_i}{\partial x_i} \right) = 0 \qquad i = 1, \dots, N.$$
 (2.57)

Que pode ser rearranjado para:

$$-\sum_{i=1}^{N} W_{y_i} \cdot \epsilon_{y_i} \cdot \left(\frac{\partial f_i}{\partial a_j}\right) = 0 \qquad j = 1, \dots, P.$$
 (2.58)

$$y_i - f(x_i; a_1, \dots, a_P) = 0$$
 $i = 1, \dots, N.$ (2.59)

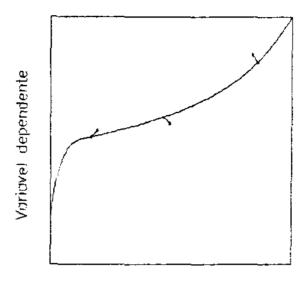
$$\lambda_i - W_{y_i} \cdot \epsilon_{y_i} = 0 \qquad i = 1, \dots, N. \tag{2.60}$$

$$W_{x_i} \cdot \epsilon_{x_i} + W_{y_i} \epsilon_{y_i} \cdot \left(\frac{\partial f_i}{\partial x_i}\right) = 0$$
 $i = 1, \dots, N.$ (2.61)

Uma interpretação gráfica do ajuste é dada na figura 2.2.

2.5.2 Determinação das estimativas dos parâmetros

A determinação dos parâmetros a_j e dos valores médios de x_i e y_i pelo Método da Máxima Verossimilhança é sempre não linear, independente do modelo matemático ser explícito, ou não, em relação aos parâmetros. Supondo um modelo simples como y = ax, tem-se:



Variavel independente

Figura 2.2: Representação gráfica de um ajuste por Máxima Verossimilhança.

$$x_i = \frac{W_{x_i} X_i + a W_{y_i} Y_i}{W_{x_i} + a^2 W_{y_i}} \qquad i = 1, \dots, N.$$
 (2.62)

$$y_i = \frac{aW_{x_i}X_i + a^2W_{y_i}Y_i}{W_{x_i} + a^2W_{y_i}} \qquad i = 1, \dots, N.$$
 (2.63)

O cálculo das estimativas dos parâmetros é dado pelo sistema não linear:

$$-\sum_{i=1}^{N} \frac{W_{y_i} W_{x_i} (aX_i - Y_i) (W_{x_i} X_i + aW_{y_i} Y_i)}{(W_{x_i} + a^2 W_{y_i})^2} = 0.$$
 (2.64)

Vemos, então, que para qualquer tipo de modelo matemático, a determinação das estimativas dos parâmetros envolve um método iterativo. Utilizando-se o Método de Newton Raphson Estendido, a solução das equações (2.50 - 2.53) será dada por:

$$g = \begin{bmatrix} F_{a}^{t} \cdot \lambda \\ F \\ -\Sigma_{Y}^{-1} \cdot \epsilon_{y} + F_{Y}^{t} \cdot \lambda \\ -\Sigma_{X}^{-1} \cdot \epsilon_{x} + F_{X}^{t} \cdot \lambda \end{bmatrix} \triangle \zeta = \begin{bmatrix} \triangle a \\ \triangle \lambda \\ \triangle y \\ \triangle x \end{bmatrix}$$
 (2.65)

$$R = \begin{bmatrix} \lambda F_{aa} & F_a^t & \lambda F_{ay}^t & \lambda F_{aX}^t \\ F_a & 0 & F_Y & F_X \\ \lambda F_{Ya} & F_Y^t & \Sigma_Y^{-1} + \lambda F_{YY} & \lambda F_{XY} \\ \lambda F_{Xa} & F_X^t & \lambda F_{XY} & \Sigma_X^{-1} + \lambda F_{XX} \end{bmatrix}$$
(2.66)

$$R^{(n)}$$
. $\triangle \zeta^{(n)} = -g^{(n)}$, (2.67)

$$\hat{\zeta}^{(n+1)} = \hat{\zeta}^{(n)} + \triangle \zeta^{(n)}, \qquad (2.68)$$

onde:

$$\triangle \mathbf{x} = \begin{bmatrix} \triangle x_1 \\ \vdots \\ \triangle x_N \end{bmatrix} \triangle \mathbf{y} = \begin{bmatrix} \triangle y_1 \\ \vdots \\ \triangle y_N \end{bmatrix} \triangle \lambda = \begin{bmatrix} \triangle \lambda_1 \\ \vdots \\ \triangle \lambda_N \end{bmatrix} \triangle \mathbf{a} = \begin{bmatrix} \triangle a_1 \\ \vdots \\ \triangle a_N \end{bmatrix}$$
(2.69)

$$\lambda \mathbf{F}_{\mathbf{x}\mathbf{x}} = \begin{bmatrix} \lambda_1 \left(\frac{\partial^2 F_1}{\partial x_1^2} \right) & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \lambda_N \left(\frac{\partial^2 F_N}{\partial x_N^2} \right) \end{bmatrix}$$
 (2.70)

$$\lambda \mathbf{F}_{yy} = \begin{bmatrix} \lambda_{1} \left(\frac{\partial^{2} F_{1}}{\partial y_{1}^{2}} \right) & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \lambda_{N} \left(\frac{\partial^{2} F_{N}}{\partial y_{N}^{2}} \right) \end{bmatrix}$$
(2.71)

$$\lambda \mathbf{F}_{\mathbf{x}\mathbf{y}} = \begin{bmatrix} \lambda_1 \left(\frac{\partial^2 F_1}{\partial x_1 \partial y_1} \right) & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \lambda_N \left(\frac{\partial^2 F_N}{\partial x_N \partial y_N} \right) \end{bmatrix}$$
(2.72)

$$\lambda \mathbf{F}_{\mathbf{x}\mathbf{a}} = \begin{bmatrix} \lambda_1 \left(\frac{\partial^2 F_1}{\partial x_1 \partial a_1} \right) & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \lambda_N \left(\frac{\partial^2 F_N}{\partial x_N \partial a_N} \right) \end{bmatrix}$$
(2.73)

$$\lambda \mathbf{F}_{\mathbf{ya}} = \begin{bmatrix} \lambda_1 \left(\frac{\partial^2 F_1}{\partial y_1 \partial a_1} \right) & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \lambda_N \left(\frac{\partial^2 F_N}{\partial y_N \partial a_N} \right) \end{bmatrix}$$
(2.74)

$$\lambda \mathbf{F_{aa}} = \begin{bmatrix} \lambda_1 \left(\frac{\partial^2 F_1}{\partial a_1^2} \right) & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \lambda_N \left(\frac{\partial^2 F_N}{\partial a_N^2} \right) \end{bmatrix}$$
(2.75)

O método converge quando $\left| \triangle \zeta^{(n)} \right| < \varepsilon$.

A vantagem de se determinar as estimativas dos parâmetros a_j e dos valores médios de x_i e y_i de uma forma simultânea é a necessidade de poucas iterações para convergência [12,6]. Em contrapartida, é requerido o uso de matrizes de grandes dimensões. No caso aqui estudado, a dimensão da matriz é de (3N+P) x (3N+P).

As referências [15.14] mostram uma outra forma de resolução, que não é simultânea, onde λ_i . x_i , e y_i para cada ponto i são resolvidos separadamente em cada iteração do conjunto de valores de a_j . Esse método, além de fornecer um número de iterações muito maior, apresenta problemas de convergência a medida em que o desviopadrão da variável dependente tende a zero $(\sigma_{Y_i} \rightarrow 0)$ [6].

Devido a não linearidade do sistema, o estimador de Máxima Verossimilhança é sempre um estimador viciado [2,6] e o vício será sempre menor quanto maior for N. Se o modelo matemático ajustar bem os dados experimentais, as varianças dos parâmetros serão pequenas e, consequentemente, o vício diminuirá.

O vício sempre existirá quando o modelo for não linear, mesmo para o caso do Método dos Mínimos Quadrados e dos Mínimos Quadrados Ponderado [2].

2.6 Método Spline

Pode-se pensar que a qualidade de uma interpolação polinomial aumenta com o incremento do grau n do polinômio. Entretanto, para várias funções, as correspondentes

interpolações polinomiais tendem a oscilar próximas a pontos pivotais à medida que se aumenta o grau n do polinômio. Um exemplo conhecido é a função $f(x) = \frac{1}{1+X^2}$ no intervalo [-5, 5], na qual para |x| > 3.64, o erro máximo tende para infinito quando $n \to \infty$ [8]. O Método Spline, que é apresentado a seguir, evita estes inconvenientes.

O Método de Splines foi iniciado em 1946 por I. J. Schoenberg [13] e, desde então, tem-se encontrado diversas formas de aplicação do mesmo.

2.6.1 Definição

Em desenho, um spline é uma régua flexível utilizada para desenhar uma curva através de um conjunto de pontos. Matematicamente, spline é um conjunto de funções dependentes entre si, onde cada função é definida entre pontos nodais consecutivos. Essa dependência das funções spline é expressa pela igualdade das derivadas em ambos os lados dos pontos nodais, exceto no primeiro e último. As funções passam pelos pontos experimentais que as definem. Com estas restrições, uma curva lisa é obtida. Assume-se que existe um número suficiente de pontos experimentais para representar adequadamente o fenômeno.

As funções spline cúbicas são as mais utilizadas. Elas fornecem bons resultados e são facilmente manipuladas matematicamente. Landis e Nielsen [10] e Klaus Van Ness [7] discutem o método.

2.6.2 Determinação dos parâmetros das splines lineares

Chamando $g_k(x)$ a função spline linear que se refere ao elemento $x_k \leq x \leq x_{k+1}$, $k = 1, \ldots, N-1$, temos dos critérios da definição que:

$$g_k(x_k) = Y_k e g_k(x_{k+1}) = Y_{k+1},$$
 (2.76)

$$k=1,\ldots,N-1.$$

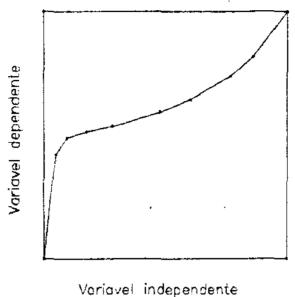
Discretizando a função $g_k(x)$, ela toma a forma:

$$g_k(x) = a_k \left(\frac{x_{k+1} - x}{L_{k+1}}\right) + a_{k+1} \left(\frac{x - x_k}{L_{k+1}}\right), \quad onde:$$
 (2.77)

$$L_{k+1} = x_{k+1} - x_k x_k \le x \le x_{k+1}. (2.78)$$

Logo a estimativa $\hat{a_k}$ dos parâmetos a_k é dada por:

$$\hat{a_k} = Y_k \qquad k = 1, \dots, N. \tag{2.79}$$



·

Figura 2.3: Representação gráfica de um ajuste pelo Método Spline linear.

A figura 2.3 traz um exemplo do Método Spline linear.

A estimativa $\hat{a_k}$ dada por (2.79) é um estimador não viciado dos parâmetros a.

2.6.3 Determinação dos parâmetros das splines cúbicas

Chamando $f_k(x)$ a função cúbica que se refere ao elemento $x_k \le x \le x_{k+1}$ $k = 1, \ldots N-1$, temos dos critérios da definição que:

• As funções splines devem passar pelos pontos experimentais que as definem.

$$f_k(x_k) = Y_k \quad e \quad f_k(x_{k+1}) = Y_{k+1}$$
 (2.80)

$$k=1,\ldots,N-1.$$

 A primeira e a segunda derivada das funções devem ser iguais em ambos os lados dos pontos nodais, exceto no primeiro e no último.

$$f'_{k-1}(x_k) = f'_k(x_k) \tag{2.81}$$

$$k=2,\ldots,N-1.$$

$$f_{k-1}(x_k) = f_k(x_k) \tag{2.82}$$

$$k=2,\ldots,N-1.$$

Como as funções de interpolação são cúbicas, a segunda derivada da função é linear, logo:

$$f_{k}(x) = C_{k}\left(\frac{x_{k+1}-x}{L_{k+1}}\right) + C_{k+1}\left(\frac{x-x_{k}}{L_{k+1}}\right), \quad onde:$$
 (2.83)

$$L_{k+1} = x_{k+1} - x_k x_k \le x \le x_{k+1}. (2.84)$$

$$C_k = f_k^*(x_k)$$
 $k = 1, ..., N-1.$ (2.85)

Integrando-se duas vezes e fazendo $A_k = Y_k = f_k(x_k)$, obtém-se:

$$f_k(x) = \frac{C_{k+1}}{6L_{k+1}} \{x_{k+1} - x\}^3 + \frac{C_{k+1}}{6L_{k+1}} (x - x_k)^3 + \left[\frac{A_{k+1}}{L_{k+1}} - \frac{C_{k+1}L_{k+1}}{6} \right] (x - x_k) \left[\frac{A_k}{L_{k+1}} - \frac{C_kL_{k+1}}{6} \right] (x_{k+1} - x).$$
(2.86)

Rearranjando:

$$f_k(x) = \left(\frac{C_{k+1} - C_k}{6L_{k+1}}\right) (x - x_k)^3 + \frac{C_k}{2} (x - x_k)^2 + \left[\left(\frac{A_{k+1} + A_k}{L_{k+1}}\right) - \left(\frac{C_{k+1} + 2C_k}{6}\right) L_{k+1}\right] (x - x_k) + A_k.$$
(2.87)

A primeira derivada é:

$$f_k'(x) = \left(\frac{C_{k+1} - C_k}{2L_{k+1}}\right)(x - x_k)^2 + C_k(x - x_k) + \left(\frac{A_{k+1} - A_k}{L_{k+1}}\right) - \left(\frac{C_{k+1} + 2C_k}{6}\right)L_{k+1}.$$
(2.88)

Da igualdade da primeira derivada nos pontos nodais, exceto no primeiro e no último, chega-se ao conjunto de restrições:

$$\phi_{k} = \frac{L_{k}}{6}C_{k-1} + \left(\frac{L_{k} + L_{k+1}}{3}\right)C_{k} + \frac{L_{k+1}C_{k+1}}{6} - \frac{A_{k-1}}{L_{k}} + \left(\frac{1}{L_{k}} + \frac{1}{L_{k+1}}\right)A_{k} - \frac{A_{k+1}}{L_{k+1}} = 0$$

$$(2.89)$$

$$k = 2, \dots, N - 1.$$

Neste caso, tem-se N parâmetros C_k a determinar e N-2 restrições ϕ_k , de forma que o sistema linear apresenta dois graus de liberdade.

Estes dois graus de liberdade podem ser eliminados se for definido o comportamento da primeira ou da segunda derivada nos pontos nodais extremos. Normalmente não há informação do comportamento das derivadas nos pontos extremos, de forma que são criadas condições de contorno para estes pontos.

Se se assumir que nos pontos nodais extremos a segunda derivada é nula, tem-se o Método Spline cúbico natural.

Se se considerar que no primeiro e no último elemento as funções spline são preferencialmente parabólicas, chega-se facilmente que $C_1 = C_2$ e $C_{N-1} = C_N$.

Definindo a matriz tridiagonal Φ_C e os vetores \hat{C} e F:

$$\Phi_{\mathbf{C}} = \begin{bmatrix}
\frac{\partial \phi_1}{\partial C_1} & \cdots & \frac{\partial \phi_1}{\partial C_N} \\
\vdots & \ddots & \vdots \\
\frac{\partial \phi_N}{\partial C_1} & \cdots & \frac{\partial \phi_N}{\partial C_N}
\end{bmatrix} = \begin{bmatrix}
1 & -1 & \cdots & \cdots & 0 \\
\frac{L_2}{6} & \left(\frac{L_2 + L_3}{3}\right) & \frac{L_2}{6} & & \vdots \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
\vdots & & \frac{L_{N-1}}{6} & \left(\frac{L_{N-1} + L_N}{3}\right) & \frac{L_N}{6} \\
0 & \cdots & \cdots & 1 & -1
\end{bmatrix} (2.90)$$

$$\hat{\mathbf{C}} = \begin{bmatrix} C_1 \\ \vdots \\ C_N \end{bmatrix} \qquad \qquad \mathbf{F} = \begin{bmatrix} \frac{Y_1}{L_2} - \left(\frac{1}{L_2} + \frac{1}{L_3}\right) Y_2 + \frac{Y_2}{L_2} \\ \vdots \\ \frac{Y_{N-2}}{L_{N-1}} - \left(\frac{1}{L_{N-1}} + \frac{1}{L_N}\right) Y_{N-1} + \frac{Y_N}{L_N} \end{bmatrix}$$
(2.91)

Temos que:

$$\Phi_C \cdot \hat{C} = F. \tag{2.92}$$

$$\hat{C} = \Phi_C^{-1} \cdot F. \tag{2.93}$$

Neste caso, onde o modelo é linear em relação aos parâmetros , o estimador $\hat{\mathbf{C}}$ dado por (2.93) é um estimador não viciado dos parâmetros $\hat{\mathbf{C}}$.

Capítulo 3

Método Spline Modificado

3.1 Introdução

Devida a inclusão do Método da Máxima Verossimilhança, o Método Spline Modificado leva em conta os erros experimentais tanto da variável dependente como da independente, associando um desvio-padrão a cada medida experimental.

Além das restrições de alisamento do Método Spline, foi inserido mais um conjunto de restrições, as funções de convergência $F_i = 0$, que além de proporcionar estabilidade na resolução do sistema não-linear do Método Spline Modificado, simplifica o desenvolvimento matemático do algoritmo.

Foram desenvolvidos três programas a partir do algoritmo, sendo dois na linguagem BASIC e o outro na linguagem PASCAL.

3.2 Definição

Dado um conjunto de N pontos experimentais com erros sujeitos a distribuições Normais com desvios-padrão $(\sigma_{X_i}, \sigma_{Y_i})$, constroem-se intervalos com três ou mais pontos ¹ aplicando-se o Método Spline acoplado ao Método da Máxima Verossimilhança, que corresponde a minimização da função objetiva S [1,4], equação 2.34, aplicada a todos os pontos experimentais:

Ao se trabalhar com dois pontos por intervalo, existirá somente uma curva spline cúbica, de forma que neste caso não são levados em consideração os desvios-padrão das medidas neste intervalo.

$$S = \frac{1}{2} \sum_{i=1}^{N} \left[W_{X_i} (X_i - x_i)^2 + W_{Y_i} (Y_i - y_i)^2 \right]$$
 (3.1)

onde.

$$W_{Y_i} = \frac{1}{\sigma_{Y_i}^2}$$
 $W_{X_i} = \frac{1}{\sigma_{X_i}^2}$ $i = 1, ..., N.$ (3.2)

 $(X_i, Y_i) = \text{pontos experimentais.}$

 $(x_i, y_i) = \text{pontos ajustados}.$

Definem-se as restrições de convergência abaixo aplicadas a todos os pontos experimentais:

$$F_i = y_i - f_k(x_i) = 0 (3.3)$$

 $i=1,\ldots,N$.

 $k=1,\ldots,K.$

 $x_{(k)} \leq x_i \leq x_{(k+1)},$

onde $f_k(x_i)$ é a função spline cúbica, equação (2.87), e (x_i, y_i) são os valores médios das variáveis dependente e independente ajustados no ponto i. As funções spline cúbicas são reescritas:

$$f_k(x_i) = \left(\frac{C_{k+1} - C_k}{6L_{k+1}}\right) (x_i - x_{(k)})^3 + \frac{C_k}{2} (x_i - x_{(k)})^2 + \left[\left(\frac{A_{k+1} - A_k}{L_{k+1}}\right) - \left(\frac{C_{k+1} + 2C_k}{6}\right) L_{k+1}\right] (x_i - x_{(k)}) + A_k.$$
(3.4)

$$A_k = f_k(x_{(k)})$$
 $C_k = f_k''(x_{(k)})$ $x_{(k)} \le x_i \le x_{(k+1)}.$ $i = 1, ..., N$ $k = 1, ..., K.$

Os valores $x_{(k)}$ são escolhidos como sendo fronteiras dos intervalos conforme esquema abaixo:

O conjunto de equações de alisamento do Método Spline, equações (2.89), continua válido e é reescrito:

$$\phi_{k} = \frac{L_{k}}{6}C_{k-1} + \left(\frac{L_{k} + L_{k+1}}{3}\right)C_{k} + \frac{L_{k+1}C_{k+1}}{6} - \frac{A_{k-1}}{L_{k}} + \left(\frac{1}{L_{k}} + \frac{1}{L_{k+1}}\right)A_{k} - \frac{A_{k+1}}{L_{k+1}} = 0 \quad (3.5)$$

$$k = 2, \dots, K.$$

O ajuste é feito pela minimização de (3.1) com as restrições (3.3) e (3.5) em relação aos parâmetros A e C e aos valores médios de (x_i, y_i) . Estas minimizações podem ser feitas utilizando-se multiplicadores de Lagrange [3].

3.3 Cálculo das estimativas dos parâmetros

O Método Spline Modificado é um método de ajuste de curvas que envolve duas variáveis $x^{(1)} = x$ e $x^{(2)} = y$ (Q = 2), sujeitas a duas restrições ou funções (M = 2). Ele é representado por um modelo matemático composto por K funções $f_k(x)$ relacionadas entre si.

De (3.3) nota-se que as restrições $F_i = 0$ são definidas utilizando-se as funções spline cúbicas $f_k(x)$. Devido a isto, temos que nos pontos nodais, exceto o primeiro e o último, são duas funções que definem este ponto, ou seja:

Para
$$x = x_{(k)}$$
:

$$y(x_{(k)}) = f_{k-1}(x_{(k)}) = f_k(x_{(k)}). \tag{3.6}$$

Isto equivale a se acrescentar mais uma restrição nestes pontos nodais, pois as restrições F_i , neste caso, podem ser definidas de duas maneiras.

Para
$$x = x_{(k)}$$
:

$$F_i = y_i - f_{k-1}(x_{(k)}) = 0 (3.7)$$

ou

$$F_i = y_i - f_k(x_{(k)}) = 0. (3.8)$$

O problema é simplificado aplicando-se a condição abaixo a estes pontos:

$$f(x_{(k)}) = f_{k-1}(x_{(k)}) = f_k(x_{(k)}) = \frac{1}{2} \left[f_{k-1}(x_{(k)}) + f_k(x_{(k)}) \right]$$

$$k = 2, \dots, K,$$
(3.9)

Desta forma, as funções de convergência $F_i = 0$ são definidas agora por apenas uma função spline cúbica $f_k(x)$, independente do ponto ser, ou não, extremo de intervalo.

• Minimização em relação aos parâmetros A:

$$\frac{\partial S}{\partial A_j} + \sum_{i=1}^{N} \alpha_i \frac{\partial F_i}{\partial A_j} + \sum_{k=2}^{K} \lambda_k \frac{\partial \phi_k}{\partial A_j} = 0$$
 (3.10)

 $j=1,\ldots,K+1.$

onde α_i, λ_k são multiplicadores de Lagrange.

Como S = S(x, y):

$$\sum_{i=1}^{N} \alpha_{i} \frac{\partial F_{i}}{\partial A_{j}} + \sum_{k=2}^{K} \lambda_{k} \frac{\partial \phi_{k}}{\partial A_{j}} = 0$$
(3.11)

 $j=1,\ldots,K+1.$

Como $F_t = y_i - f_k(x_i)$, tem-se que:

$$\frac{\partial F_i}{\partial A_j} = -\frac{\partial f_k(x_i)}{\partial A_j}. (3.12)$$

- Para
$$j=k-1$$
:
$$\frac{\partial \phi_k}{\partial A_i} = -\frac{1}{L_k}. \tag{3.13}$$

- Para
$$j=k$$
:
$$\frac{\partial F_i}{\partial A_j} = \frac{\left(x_i - x_{(k)}\right)}{L_{k+1}} - 1. \tag{3.14}$$

$$\frac{\partial \phi_k}{\partial A_j} = \frac{1}{L_k} + \frac{1}{L_{k+1}}. (3.15)$$

Para
$$j=k+1$$
:
$$\frac{\partial F_i}{\partial A_i} = -\frac{(x_i - x_{(k)})}{L_{k+1}}. \tag{3.16}$$

$$\frac{\partial \phi_k}{\partial A_j} = -\frac{1}{L_{k+1}}. (3.17)$$

- Para
$$j \neq k, k+1$$
:
$$\frac{\partial F_i}{\partial A_j} = 0. \tag{3.18}$$

- Para
$$j \neq k-1, k, k+1$$
:
$$\frac{\partial \phi_k}{\partial A_i} = 0. \tag{3.19}$$

 Minimização em relação aos parâmetros C: Analogamente aos parâmetros A:

$$\sum_{i=1}^{N} \alpha_{i} \frac{\partial F_{i}}{\partial C_{j}} + \sum_{k=2}^{K} \lambda_{k} \frac{\partial \phi_{k}}{\partial C_{j}} = 0$$
 (3.20)

 $j=1,\ldots,K+1.$

Como $F_i = y_i - f_k(x_i)$, tem-se que:

$$\frac{\partial F_i}{\partial C_j} = -\frac{\partial f_k(x_i)}{\partial C_j}. (3.21)$$

- Para
$$j=k-1$$
:
$$\frac{\partial \phi_k}{\partial C_j} = \frac{L_k}{6}. \tag{3.22}$$

- Para j = k:

$$\frac{\partial F_i}{\partial C_j} = \frac{(x_i - x_{(k)})^3}{6L_{k+1}} - \left(\frac{x_i - x_{(k)}}{2}\right) + \frac{L_{k+1}}{3}(x_i - x_{(k)}). \tag{3.23}$$

$$\frac{\partial \phi_k}{\partial C_j} = \frac{L_k + L_{k+1}}{3}. (3.24)$$

- Para j = k + 1:

$$\frac{\partial F_i}{\partial C_j} = -\frac{(x_i - x_{(k)})^3}{6L_{k+1}} + \frac{L_{k+1}(x_i - x_{(k)})}{6}.$$
 (3.25)

$$\frac{\partial \phi_k}{\partial C_j} = \frac{L_{k+1}}{6}. (3.26)$$

- Para
$$j \neq k, k+1$$
:
$$\frac{\partial F_i}{\partial C_j} = 0. \tag{3.27}$$

- Para
$$j \neq k-1, k, k+1$$
 :
$$\frac{\partial \phi_k}{\partial C_j} = 0. \tag{3.28}$$

• Minimização em relação a xi:

$$\frac{\partial S}{\partial x_j} + \sum_{i=1}^{N} \alpha_i \frac{\partial F_i}{\partial x_j} + \sum_{k=2}^{K} \lambda_k \frac{\partial \phi_k}{\partial x_j} = 0.$$
 (3.29)

 $j=1,\ldots,N$.

Como $\Phi = \Phi(A, C)$,

$$\frac{\partial S}{\partial x_j} + \sum_{i=1}^N \alpha_i \frac{\partial F_i}{\partial x_j} = 0. \tag{3.30}$$

 $j=1,\ldots,N$.

- Para
$$j = i$$
:

$$\frac{\partial S}{\partial x_i} = -W_{X_i}(X_i - x_i). \tag{3.31}$$

$$\alpha_i \frac{\partial F_i}{\partial x_i} = \alpha_i F_{X_i}. \tag{3.32}$$

onde:

$$F_{X_i} = \frac{\partial (y_i - f_k(x_i))}{\partial x_i} = -\frac{\partial f_k(x_i)}{\partial x_i}.$$
 (3.33)

- Para
$$j \neq i$$
:

$$\frac{\partial S}{\partial x_j} = \alpha_i \frac{\partial F_i}{\partial x_j} = 0. \tag{3.34}$$

logo:

$$-W_{X_i}(X_i-x_i)+\alpha_i F_{x_i}=0. (3.35)$$

 $i=1,\ldots,N.$

Temos que:

$$F_{X_i} = -\left(\frac{C_{k+1} - C_k}{2L_{k+1}}\right) \left(x_i - x_{(k)}\right)^2 - C_k \left(x_i - x_{(k)}\right) - \left(\frac{A_{k+1} - A_k}{L_{k+1}}\right) + \left(\frac{C_{k+1} + 2C_k}{6}\right) L_{k+1}. \tag{3.36}$$

• Minimização em relação a y_i :

Analogamente a x_i :

$$W_{Y_i}(Y_i - y_i) + \alpha_i F_{y_i} = 0. (3.37)$$

 $i=1,\ldots,N,$

onde:

$$F_{y_i} = \frac{\partial (y_i - f_k(x_i))}{\partial y_i} = 1, \qquad (3.38)$$

logo:

$$-W_{Y_i}(Y_i - y_i) + \alpha_i = 0. (3.39)$$

i=1,...,N.

O sistema de equações formado por (3.3), (3.5), (3.11), (3.20), (3.35) e (3.39) pode ser colocado na forma matricial compacta através da definição das seguintes matrizes:

$$\sum_{Y} = \begin{bmatrix} \sigma_{Y_{1}}^{2} & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \sigma_{Y_{N}^{2}} \end{bmatrix} \qquad \qquad \sum_{X} = \begin{bmatrix} \sigma_{X_{1}}^{2} & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \sigma_{X_{K}^{2}} \end{bmatrix} (3.40)$$

$$\mathbf{A} = \begin{bmatrix} A_1 \\ \vdots \\ A_{K+1} \end{bmatrix} \qquad \mathbf{C} = \begin{bmatrix} C_1 \\ \vdots \\ C_{K+1} \end{bmatrix} \qquad \alpha = \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_N \end{bmatrix} \qquad \lambda = \begin{bmatrix} \lambda_2 \\ \vdots \\ \lambda_K \end{bmatrix} (3.41)$$

$$\epsilon_{\mathbf{x}} = \begin{bmatrix} X_{1} - x_{1} \\ \vdots \\ X_{N} - x_{N} \end{bmatrix} \qquad \mathbf{y} = \begin{bmatrix} y_{1} \\ \vdots \\ y_{N} \end{bmatrix} \qquad \epsilon_{\mathbf{y}} = \begin{bmatrix} Y_{1} - y_{1} \\ \vdots \\ Y_{N} - y_{N} \end{bmatrix}$$
(3.42)

$$\mathbf{F_{A}} = \begin{bmatrix} \frac{\partial F_{1}}{\partial A_{1}} & \cdots & \frac{\partial F_{1}}{\partial A_{K+1}} \\ \vdots & \ddots & \vdots \\ \frac{\partial F_{N}}{\partial A_{1}} & \cdots & \frac{\partial F_{N}}{\partial A_{K+1}} \end{bmatrix} \mathbf{F_{C}} = \begin{bmatrix} \frac{\partial F_{1}}{\partial C_{1}} & \cdots & \frac{\partial F_{1}}{\partial C_{K+1}} \\ \vdots & \ddots & \vdots \\ \frac{\partial F_{N}}{\partial C_{1}} & \cdots & \frac{\partial F_{N}}{\partial C_{K+1}} \end{bmatrix}$$
(3.43)

$$\mathbf{\Phi}_{\mathbf{A}} = \begin{bmatrix} \frac{\partial \phi_2}{\partial A_1} & \cdots & \frac{\partial \phi_2}{\partial A_{K+1}} \\ \vdots & \ddots & \vdots \\ \frac{\partial \phi_K}{\partial A_1} & \cdots & \frac{\partial \phi_{K+1}}{\partial A_{K+1}} \end{bmatrix} \mathbf{\Phi}_{\mathbf{C}} = \begin{bmatrix} \frac{\partial \phi_2}{\partial C_1} & \cdots & \frac{\partial \phi_2}{\partial C_{K+1}} \\ \vdots & \ddots & \vdots \\ \frac{\partial \phi_K}{\partial C_1} & \cdots & \frac{\partial \phi_K}{\partial C_{K+1}} \end{bmatrix}$$
(3.44)

Na forma matricial as equações (3.3) são reescritas:

$$\mathbf{F} = \mathbf{y} + \mathbf{F}_{\mathbf{A}} \cdot \mathbf{A} + \mathbf{F}_{\mathbf{C}} \cdot \mathbf{C} = \mathbf{0}. \tag{3.45}$$

De (3.5)

$$\mathbf{\Phi} = \mathbf{\Phi}_{\mathbf{A}}.\mathbf{A} + \mathbf{\Phi}_{\mathbf{C}}.\mathbf{C} = \mathbf{0}. \tag{3.46}$$

_____1

De (3.11):

$$\mathbf{F}_{\mathbf{A}}^{\mathbf{t}}.\alpha + \mathbf{\Phi}_{\mathbf{A}}^{\mathbf{t}}.\lambda = \mathbf{0}. \tag{3.47}$$

De (3.20):

$$\mathbf{F}_{\mathbf{C}}^{\mathbf{t}}.\alpha + \mathbf{\Phi}_{\mathbf{C}}^{\mathbf{t}}.\lambda = \mathbf{0}. \tag{3.48}$$

De (3.39):

$$\epsilon_{\mathbf{y}} - \sum_{\mathbf{y}} \alpha = \mathbf{0}. \tag{3.49}$$

De (3.35): 2

$$\epsilon_{\mathbf{x}} - \sum_{\lambda} \mathbf{F}_{\mathbf{x}} \cdot \mathbf{\alpha} = \mathbf{0}. \tag{3.50}$$

As estimativas \hat{A} , \hat{C} , \hat{x} e \hat{y} dadas pelo conjunto de equações (3.45 – 3.50) dos parâmetros A e C e dos valores médios de x e y serão sempre estimativas viciadas devido a não linearidade do sistema.

3.4 Desenvolvimento Numérico

A determinação dos parâmetros A e C e dos valores médios das variáveis x e y compreende a resolução do sistema não linear das equações (3.45 - 3.50). Com os parâmetros A e C e os valores médios de x_i , obtém-se qualquer valor para x ou y no intervalo $[x_1, \ldots, x_N]$ com as equações (3.4).

2
obs: $\sum_{Y}^{t} = \sum_{Y}$; $\sum_{X}^{t} = \sum_{X}$; $F_{X}^{t} = F_{X}$

Utilizando-se o Método de Newton Raphson Estendido, a resolução das equações (3.45-3.50) será dada por:

$$\mathbf{g} = \begin{bmatrix} F_A^t \cdot \alpha + \Phi_A^t \cdot \lambda \\ F_C^t \cdot \alpha + \Phi_C^t \cdot \lambda \\ y + F_A \cdot A + F_C \cdot C \\ \Phi_A \cdot A + \Phi_C \cdot C \\ \epsilon_y - \sum_Y \cdot \alpha \\ \epsilon_x - \sum_X \cdot F_X \cdot \alpha \end{bmatrix} \qquad \triangle \zeta = \begin{bmatrix} \triangle A \\ \triangle C \\ \triangle \alpha \\ \triangle \lambda \\ \triangle Y \\ \triangle X \end{bmatrix}$$
(3.51)

$$R = \begin{bmatrix} 0 & 0 & F_A^t & \Phi_A^t & 0 & F_{XA}^t \cdot \alpha \\ 0 & 0 & F_C^t & \Phi_C^t & 0 & F_{XC}^t \cdot \alpha \\ F_A & F_C & 0 & 0 & I & F_X \\ \Phi_A & \Phi_C & 0 & 0 & 0 & 0 \\ 0 & 0 & \Sigma_Y & 0 & I & 0 \\ \Sigma_X F_{XA} \cdot \alpha & \Sigma_X F_{XC} \cdot \alpha & \Sigma_X \cdot F_X & 0 & 0 & I + \Sigma_X \cdot F_{XX} \cdot \alpha \end{bmatrix}$$
(3.52)

$$R^{(n)}$$
. $\triangle \zeta^{(n)} = -g^{(n)}$. (3.53)

$$\hat{\zeta}^{(n+1)} = \hat{\zeta}^{(n)} + \triangle \zeta^{(n)}, \tag{3.54}$$

onde:

$$\triangle \mathbf{x} = \begin{bmatrix} \triangle x_1 \\ \vdots \\ \triangle x_N \end{bmatrix} \qquad \triangle \mathbf{y} = \begin{bmatrix} \triangle y_1 \\ \vdots \\ \triangle y_N \end{bmatrix} \qquad \triangle \lambda = \begin{bmatrix} \triangle \lambda_2 \\ \vdots \\ \triangle \lambda_K \end{bmatrix}$$
(3.55)

$$\triangle \alpha = \begin{bmatrix} \triangle \alpha_1 \\ \vdots \\ \triangle \alpha_N \end{bmatrix} \qquad \triangle \mathbf{A} = \begin{bmatrix} \triangle A_1 \\ \vdots \\ \triangle A_{K+1} \end{bmatrix} \qquad \triangle \mathbf{C} = \begin{bmatrix} \triangle C_1 \\ \vdots \\ \triangle C_{K+1} \end{bmatrix}$$
(3.56)

$$\Sigma_{\mathbf{X}} \mathbf{F}_{\mathbf{X}} = \begin{bmatrix} \sigma_{x_1} \left(\frac{\partial F_1}{\partial x_1} \right) & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \sigma_{x_N} \left(\frac{\partial F_N}{\partial x_N} \right) \end{bmatrix}$$
(3.57)

$$\mathbf{I} + \mathbf{\Sigma}_{\mathbf{X}} \mathbf{F}_{\mathbf{x}\mathbf{x}} \boldsymbol{\alpha} = \begin{bmatrix} 1 + \sigma_{\mathbf{z}_1} \left(\frac{\partial^2 F_1}{\partial \mathbf{z}_1^2} \right) \alpha_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 1 + \sigma_{\mathbf{z}_N} \left(\frac{\partial^2 F_N}{\partial \mathbf{z}_N^2} \right) \alpha_N \end{bmatrix}$$
(3.58)

$$\Sigma_{\mathbf{X}}\mathbf{F}_{\mathbf{x}\mathbf{A}}\alpha = \begin{bmatrix} \sigma_{x_1} \left(\frac{\partial^2 F_1}{\partial x_1 \partial A_1} \right) \alpha_1 & \dots & \sigma_{x_1} \left(\frac{\partial^2 F_1}{\partial x_1 \partial A_{K+1}} \right) \alpha_1 \\ \vdots & \ddots & \vdots \\ \sigma_{x_N} \left(\frac{\partial^2 F_N}{\partial x_N \partial A_1} \right) \alpha_N & \dots & \sigma_{x_N} \left(\frac{\partial^2 F_N}{\partial x_N \partial A_{K+1}} \right) \alpha_N \end{bmatrix}$$
(3.59)

$$\Sigma_{\mathbf{X}}\mathbf{F}_{\mathbf{x}\mathbf{C}}\alpha = \begin{bmatrix} \sigma_{x_{1}} \left(\frac{\partial^{2}F_{1}}{\partial x_{1}\partial C_{1}}\right) \alpha_{1} & \dots & \sigma_{x_{1}} \left(\frac{\partial^{2}F_{1}}{\partial x_{1}\partial C_{K+1}}\right) \alpha_{1} \\ \vdots & \ddots & \vdots \\ \sigma_{x_{N}} \left(\frac{\partial^{2}F_{N}}{\partial x_{N}\partial C_{N}}\right) \alpha_{N} & \dots & \sigma_{x_{N}} \left(\frac{\partial^{2}F_{N}}{\partial x_{N}\partial C_{K+1}}\right) \alpha_{N} \end{bmatrix}$$

$$(3.60)$$

onde:

$$\Sigma_{\mathbf{X}} \mathbf{F}_{\mathbf{X}\mathbf{A}} \alpha = \sum_{i=1}^{N} \alpha_{i} \sigma_{\mathbf{z}_{i}} \frac{\partial F_{\mathbf{z}_{i}}}{\partial A_{j}} = -\sum_{i=1}^{N} \alpha_{i} \sigma_{\mathbf{z}_{i}} \frac{\partial^{2} f_{k}(\mathbf{z}_{i})}{\partial \mathbf{z}_{i} \partial A_{j}}$$

$$j = 1, \dots, K + 1.$$

$$k = 1, \dots, K.$$
(3.61)

$$\sum_{\mathbf{X}} \mathbf{F}_{\mathbf{XC}} \alpha = \sum_{i=1}^{N} \alpha_{i} \ \sigma_{x_{i}} \frac{\partial F_{x_{i}}}{\partial C_{j}} = -\sum_{i=1}^{N} \alpha_{i} \ \sigma_{x_{i}} \frac{\partial^{2} f_{k}(x_{i})}{\partial x_{i} \partial C_{j}}$$

$$j = 1, \dots, K+1.$$

$$k = 1, \dots, K.$$

• Para
$$j = k$$
:
$$\alpha_i \ \sigma_{x_i} \ \frac{\partial^2 f_k(x_i)}{\partial x_i \partial A_j} = \frac{\alpha_i \ \sigma_{x_i}}{L_{K+1}}. \tag{3.63}$$

$$\alpha_i \ \sigma_{\mathbf{z}_i} \ \frac{\partial^2 f_k(\mathbf{x}_i)}{\partial x_i \partial C_j} = \left[\frac{1}{2} \frac{(\mathbf{x}_i - \mathbf{x}_{(k)})^2}{L_{k+1}} - (\mathbf{x}_i - \mathbf{x}_{(k)}) + \frac{L_{K+1}}{3} \right] \alpha_i \sigma_{\mathbf{x}_i}. \tag{3.64}$$

• Para
$$j=k+1$$
:
$$\alpha_i \ \sigma_{x_i} \frac{\partial^2 f_k(x_i)}{\partial x_i \partial A_i} = -\frac{1}{L_{K+1}}. \tag{3.65}$$

$$\alpha_i \ \sigma_{x_i} \ \frac{\partial^2 f_k(x_i)}{\partial x_i \partial C_j} = \left[-\frac{1}{2} \frac{(x_i - x_{(k)})^2}{L_{k+1}} + \frac{L_{K+1}}{6} \right] \alpha_i \sigma_{x_i}. \tag{3.66}$$

$$\mathbf{I} + \mathbf{\Sigma_{X}} \mathbf{F_{XX}} \alpha = \sum_{i=1}^{N} 1 - \sigma_{x_i} \frac{\partial^2 f_k(x_i)}{\partial x_i^2} \alpha_i$$
 (3.67)

$$j=1,\ldots,N.$$
 $k=1,\ldots,K.$

• Para i = j:

$$1 - \alpha_i \, \sigma_{x_i} \, \frac{\partial^2 f_k(x_i)}{\partial x_i^2} = 1 + \alpha_i \sigma_{x_i} \left[\frac{(C_k - C_{k+1})(x_i - x_{\{k\}})}{L_{k+1}} - C_k \right]. \tag{3.68}$$

O método converge quando $\left| \triangle \zeta^{(n)} \right| < \varepsilon$.

Neste caso, a dimensão da matriz R é 3. (N + K + 1) - 2.

3.5 Método Spline Estendido

Da mesma forma que o Método dos Mínimos Quadrados Ponderado e o Método dos Mínimos Quadrados são casos particulares do Método da Máxima Verossimilhança, o Método Spline acoplado ao Método dos Mínimos Quadrados Ponderado e o Método Spline Estendido são casos particulares do Método Spline Modificado.

As minimizações para os parâmetros $A \in C$ e para os valores médios de e y_i continuam válidas e considera-se $\epsilon_X = 0$. Para o Método Spline Estendido segue que $\sigma_{y_i} = 1$.

Desta forma, monta-se um sistema linear com as equações (3.45 - 3.49). A resolução deste sistema será dado por:

$$R = \begin{bmatrix} 0 & 0 & F_A^t & \Phi_A^t & 0 \\ 0 & 0 & F_C^t & \Phi_C^t & 0 \\ F_A & F_C & 0 & 0 & I \\ \Phi_A & \Phi_C & 0 & 0 & 0 \\ 0 & 0 & \Sigma_Y & 0 & I \end{bmatrix}$$
(3.69)

$$\mathbf{g} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ Y \end{bmatrix} \qquad \qquad \hat{\varsigma} = \begin{bmatrix} A \\ C \\ \alpha \\ A \\ Y \end{bmatrix} \qquad (3.70)$$

$$R \cdot \hat{\varsigma} = g. \tag{3.71}$$

O estimador $\hat{\zeta}$ é um estimador não viciado dos parâmetros A e C e dos valores médios de y_i . Se $\Sigma_Y = I$, tem-se o Método dos Mínimos Quadrados Estendido, que é o Método Spline acoplado ao Método dos Mínimos Quadrados. O Método Spline Estendido foi anteriormente desenvolvido por Klaus – Van Ness [7] e difere da formulação aqui aplicada que inclui as restrições de convergência $F_i = 0$. Os valores obtidos pela formulação aqui aplicada são ligeiramente diferentes dos obtidos por Klaus – Van Ness devido a uma inconsistência na aplicação das equações (18) e (19) de seu artigo [7]. O apêndice 3 traz maiores detalhes sobre o desenvolvimento teórico do Método Spline Estendido por Klaus – Van Ness.

3.6 Desenvolvimento Computacional

Foram desenvolvidos três programas computacionais, sendo um na linguagem BASIC – PLUS – 2 para o computador Mainframe Vax, outro na linguagem Quick Basic da Microsoft para IBM PC e compatíveis e, finalmente, o terceiro programa em Pascal † que foi desenvolvido em um trabalho de iniciação científica [18].

O critério de convergência usado no método iterativo foi $\left| \triangle \zeta^{(n)} \right| < \epsilon$, onde:

[†]Este software foi premiado com um microcomputador PC XT no 1ºconcurso interno de software da UNICAMP

$$\epsilon = |\varsigma| \cdot \delta \quad para \quad |\varsigma| > \nu$$
 (3.72)

ou

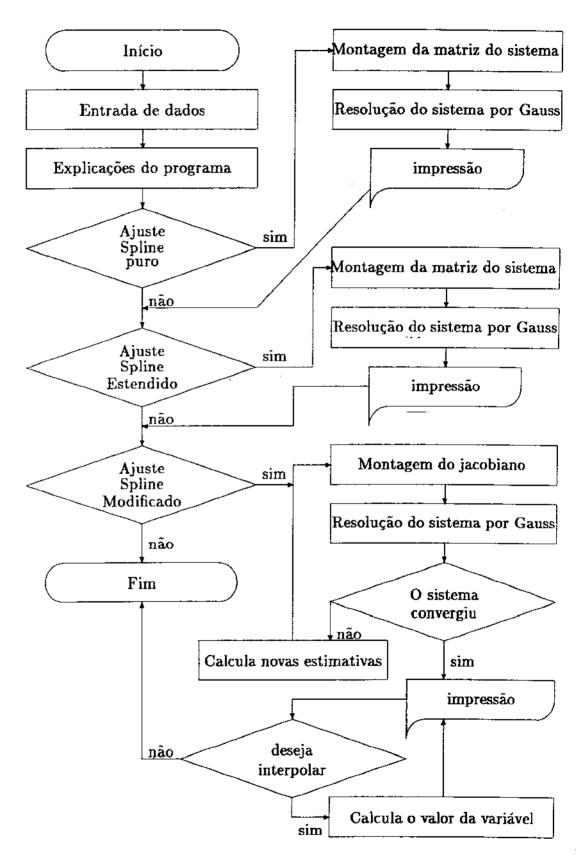
$$\epsilon = \varsigma^2 \quad para \quad |\varsigma| \leq \nu , \qquad (3.73)$$

onde ς é qualquer uma das variáveis $x_i,\,y_i,\,\lambda_k,\,\alpha_i,\,A_k$ e $C_k,\,{\rm sendo}\,\,\nu=10^{-10}$ e $\delta=10^{-3}.$

Nos programas em BASIC do Vax e em Quick Basic para microcomputador foi utilizada dupla precisão (16 dígitos). O programa em Pascal utilizou variáveis single.

3.7 Diagrama de blocos

O diagrama de blocos dos programas em BASIC do Método Spline Modificado é apresentado a seguir.



Capítulo 4

Aplicações do Método Spline Modificado

4.1 Introdução

O Método Spline Modificado leva em conta os erros experimentais tanto da variável dependente como da variável independente, associando um desvio-padrão a cada medida experimental. Os parâmetros das funções spline são obtidos pelo Método da Máxima Verossimilhança.

Como no Método Spline puro e na extensão de Klaus – Van Ness [5], o Método Modificado permite realizar interpolações e calcular valores da primeira e da segunda derivada em qualquer ponto do conjunto de dados.

A modificação proposta mostra-se adequada para ajustar estatisticamente dados termodinâmicos de equilíbrio líquido – vapor e de entalpias de mistura de líquidos. O Método Modificado apresentou melhor desempenho do que a extensão de Klaus – Van Ness no ajuste de vários conjuntos de dados termodinâmicos experimentais da literatura. Este melhor desempenho foi evidenciado por fornecer desvios absolutos, em média, menores que o Método Estendido.

4.2 Aplicações do Método Spline Modificado

O Método Spline Modificado é um novo método de ajuste de curvas de aplicação geral, podendo ser aplicado a qualquer tipo de curva de duas variáveis.

O Método Spline Modificado foi particularmente aplicado ao ajuste de dados

termodinâmicos como curvas ele equilíbrio líquido-vapor e de entalpias de mistura de líquidos. Foram escolhidos cosjuntos de dados difíceis de serem ajustados.

Os resultados foram comparados com os obtidos pelo Método Spline Estendido.

4.3 Critérios utilizados para a escolha do melhor ajuste pelo Método Spline Modificado

A partir de uma tabela de dados (X,Y), com N pontos experimentais, com desviospadrão σ_{x_i} e σ_{y_i} respectivamente, constroem-se intervalos com três ou mais pontos para o ajuste pelo Método Spline Modificado.

Dependendo da escolha dos extremos de intervalos, obtém-se ajustes com resultados diferentes. O principal critério para se analisar o melhor ajuste foi inicialmente observar se o comportamento das curvas ajustadas era coerente com o fenômeno físico estudado, neste caso, a inexistência de inflexões que não representassem a tendência dos pontos experimentais. Uma vez satisfeita esta condição, escolheu-se dentre estes o melhor ajuste estatístico, que corresponde ao que apresentou o menor valor de S da equação (3.1).

Para o Método Spline Estendido, o critério de escolha foi o mesmo, sendo que o melhor ajuste estatístico corresponde ao ajuste que apresentou o menor valor de E na equação (2.13).

O Método Spline Modificado e o Método Spline Estendido trazem, no mínimo, três pontos por intervalo porque ao se trabalhar com dois pontos por intervalo não se leva em consideração a minimização das funções objetivas S e E. Para intervalos com dois pontos chega-se ao Método Spline puro.

4.4 Metodologia utilizada para o estudo de cada caso

De todos os conjuntos de dados analisados, os melhores ajustes foram a combinação de intervalos com no mínimo três pontos e, no máximo, quatro. Este fato já era esperado pela teoria, visto que o Método Spline ajusta os intervalos por funções cúbicas de forma que a aproximação será tanto mais válida quanto menor for o intervalo considerado.

Devido a esta particularidade, o estudo de cada caso fica bem mais fácil, porque somente se justifica um maior número de pontos por intervalo quando os ajustes que

utilizam três ou quatro pontos por intervalo não são coerentes com o fenômeno físico estudado.

Apesar de não servir como regra, na maioria dos casos estudados, o melhor ajuste pelo Método Spline Modificado apresentou os mesmos extremos de intervalos do melhor ajuste pelo Método Estendido.

Para cada ajuste foram tabelados os valores experimentais das variáveis, os desvios-padrão das medidas, os valores ajustados, os desvios absolutos entre os valores experimentais e os ajustados, além da primeira e segunda derivada da função.

Na conclusão deste capítulo, secção 4.6, são indicadas algumas regras práticas de como proceder no estudo de cada caso.

4.5 Resultados numéricos de aplicações a dados termodinâmicos

O Método Spline Modificado foi aplicado a diversos tipos de dados termodinâmicos da literatura como dados de equilibrio líquido-vapor (sistema binário XversusY), temperatura de ebulição de um sistema binário em função da concentração (diagrama TversusX) e dados de pressão de vapor de um sistema binário em função da concentração (diagrama PversusX), além de dados de entalpia de mistura de líquidos de um sistema binário.

Os diferentes conjuntos de dados foram analisados e são descritos a seguir:

4.5.1 Dados de Pressão de Vapor

O Método Spline Modificado foi primeiramente aplicado aos dados de pressão de vapor da mistura etanol – n-heptano a 30° C obtidos por Van Ness et all [17]. Estes dados são de particular interesse pois foram utilizados por Klaus – Van Ness em seu artigo onde é introduzido o Método Spline Estendido [7]. Como observado por Klaus – Van Ness, a curva de pressão de vapor é utilizada para o cálculo da composição da fase vapor, tornando evidente que estes resultados dependem muito da acuracidade do ajuste.

Dentre os diversos arranjos estudados, a Tabela 4.1 apresenta o melhor ajuste obtido pelo Método Spline Modificado para estes pontos. A composição dos extremos - primeiro e último ponto experimental - foi fixada como sendo a composição dos componentes puros. Para se fixar qualquer ponto experimental basta atribuir-lhe um desvio-padrão igual a zero, o que equivale dizer que não há erro na determinação deste ponto.

Da equação (3.39):

$$Y_i - y_i + \sigma_{y_i} \cdot \alpha_i = 0$$

Se
$$\sigma_{y_i=0} \longrightarrow Y_i = y_i$$

Tabela 4.1: Pressão de vapor versus composição da fase líquida da mistura etanol - n-heptano a 30°C. Método Spline Modificado.

Ponto	Fração	Desvio-	Fração	Desvio	Pressão	Desvio-	Pressão	Desvio	Primeira	Segunda
experi-	molar	padrão	molar	absoluto	vapor	padrão	ajustada	absoluto	derivada	derivada
mental			ajustada		mm Hg		mm Hg	mm Hg		
· 1	0.0000	0.0000	0.0000	0.0000	58.7000	0.01000	58.7000	0.0000	4750.1	-401605.6
2	0.0156	0.0010	0.0136	0.0020	94.2000	0.01000	94.2002	-0.0002	1056.7	-140997.4
. 3	0.0187	0.0010	0.0194	-0.0007	98.6000	0.01000	98.5999	1000.0	559.9	-29286 .0
4	0.0216	0.0010	0.0243	-0.0027	101.0000	0.01000	100,9994	0.0006	433.9	-22600.3
- 5	0.0388	0.0010	0.0380	8000.0	105.4000	0.01000	105,4003	-0.0003	253.7	-3804.3
6	0.0518	0.0010	0.0510	8,000	108.4000	0.01000	108.4004	-0.0004	206.8	-3372.7
7	0.8953	0.0010	0.09 3 9	0.0014	114.6000	0.01000	114.6015	-0.0015	92.6	-1955.4
۸ ٠	0.1464	0.0010	0.1473	-0.0009	117.6000	0.01000	117,5973	0.0027	35.3	-188.5
9	0.3095	0.0010	0.3093	0.0002	121.2000	0.01000	121,2015	-0.0015	11.5	-105.0
-10	0.5260	0.0010	0.5260	0.0000	122.1000	0.01000	122,1000	0.0000	8.0	6.7
11	0.6542	0.0010	0,6540	0.0002	121.9000	0.01000	121,8971	0.0029	-6.8	-126.7
12	0.7203	0.0010	0.7209	-0.0006	121.1000	0.01000	121,1034	-0.0034	-17.7	-196.4
13	0.7662	0.0010	0.7664	-0.0002	120.1000	0.01000	120.1007	-0.0007	-26.3	-185.1
-14	0.8072	0.0010	0.8065	0.0007	118.9000	0.01000	118,8979	0.0021	-33.6	-175.2
15	0.8710	0,0010	0.8713	-0.0003	115.4000	0.01000	115.4003	-0.0003	-89.1	-1538.3
-16	0.9265	0.0010	0.9272	-0.0007	107.4000	0.01000	107.4004	-0.0004	-208.0	-2714.4
17	0.9303	0.0010	0.9301	0.0002	106.8000	0.01000	106,7999	0.0001	-215.8	-2814.6
-18	0.9630	0.0010	0.9622	0.0008	98.2000	0.01000	98.1998	0.0002	-324.7	-3952.6
19	0.9860	0.0010	0.9865	-0.0005	88.0000	0.01000	88,0001	-0.0001	-562.8	-15661.0
- 20	1.0000	0.0000	1.0000	0.0000	78.8000	0.01000	78.8000	0.0000	-817.6	-22157.6

O asterisco (*) indica que o ponto é extremo de intervalo.

Conforme mostrado na Tabela 4.1, todos os valores calculados da pressão de vapor apresentam seus desvios absolutos menores do que 0.01, indicando que todos estão dentro da faixa de desvio-padrão da variável. Para a variável independente (fração molar), três valores fogem da faixa de desvio-padrão das medidas.

Para comparação, a Tabela 4.2 apresenta o melhor conjunto ajustado pelo Método Spline Estendido. Esta combinação de intervalos não coincide com a escolhida por Klaus – Van Ness em seu artigo. Neste trabalho os pontos foram melhor

Todos os valores, com exceção das derivadas, são apresentados com quatro algarismos significativos após a vírgula. Apesar de na maioria dos casos não ter nenhum significado físico, procurou-se desta forma mostrar o desempenho computacional.

ajustados, apresentando resultados superiores sob o ponto de vista estatístico. Além disso, mesmo escolhendo-se os mesmos extremos de intervalo, os resultados obtidos são ligeiramente diferentes dos obtidos por Klaus - Van Ness devido a uma pequena inconsistência teórica na aplicação das equações (18) e (19) do seu artigo [7], conforme mostrado no apêndice 3. Pelo Método Spline Estendido, 18 valores fogem bastante da faixa de desvio-padrão das medidas.

Tabela 4.2: Pressão de vapor versus composição da fase líquida da mistura etanol - n-heptano a 30°C. Método Spline Estendido.

Ponto	Fração	Pressão	Pressão	Desvio	Primeira	'Segunda
experi-	molar	vapor	ajustada	absoluto	derivada	derivada
mental		mm Hg	mm Hg	mm Hg		
* 1	0.0000	58.7000	58.6962	0.0038	4101.5	-292007.9
2	0.0156	94.2000	95.0363	-0.8363	1063.1	-97536.2
* 3	0.0187	98.6000	97.9251	0.6749	820.6	-58891.2
4	0.0216	101.0000	100.0686	0.9314	661.6	-50774.7
* 5	0.0388	105.4000	106.3112	-0.9112	202.3	-2635.5
6	0.0518	108.4000	108.7261	-0.3261	169.9	-23 51.8
7	0.0953	114.6000	114.1893	0.4107	88.2	-1402.4
* 8	0.1464	117.6000	117.3510	0.2490	45.0	-287.1
9	0.3095	121.2000	121.5240	-0.3240	10.1	-141.3
*10	0.5260	122.1000	121.9090	0.1910	0.4	52.2
11	0.6542	121.9000	121.8813	0.0187	-4 .9	-135.2
*12	0.7203	121.1000	121.1931	-0.0931	-17.0	-231.8
13	0.7662	120.1000	120.1709	-0.0709	-27.5	-224.3
*14	0.8072	118.9000	118.8578	0.0422	-36.5	-217.5
15	0.8710	115.4000	115.2629	0.1371	-89.0	-1428.4
*16	0.9265	107.4000	107.5807	-0.1807	-197.5	-2481.8
17	0.9303	106.8000	106.8113	-0.0113	-207.6	-2789.6
*18	0.9630	98.2000	98.0606	0.1394	-342.1	-5438.2
19	0.9860	88.0000	88.0588	-0.0588	-557.9	-13325.6
*20	1.0000	78.8000	78.7859	0.0141	-778.0	-18126.6

O asterisco (*) indica que o ponto é extremo de intervalo.

Se o Método Spline Estendido fosse o Método Spline acoplado ao Método dos Mínimos Quadrados Ponderado, notar-se-ia que para o mesmo arranjo da Tabela 4.2.

Tabela 4.3: Comparação entre as funções de minimização para os dados de pressão de vapor da mistura etanol - n-heptano.

Método	Função objetiva de minimização para a mistura etanol - n-heptano.
Método Spline Modificado (Tabela 4.1)	S = 9.44209
Método Spline Estendido (Tabela 4.2)	E = 17108.1

os valores ajustados seriam idênticos, visto que todos os pontos experimentais possuem o mesmo desvio-padrão. Assim, é possível fazer uma comparação quantitativa sob o ponto de vista estatístico. A Tabela 4.3 mostra esta comparação.

O valor da função objetiva de minimização do Método Spline Estendido foi 1812 vezes maior que a do Método Modificado.

O Método Spline Modificado foi testado em condições severas de convergência. A condição limite para o teste de convergência é aplicar desvios-padrão nulos para a variável dependente. Para a condição limite $\sigma_{y_t} = 0$ e utilizando $\sigma_{x_t} = 0.001$ o método convergiu. A Tabela 4.4 traz estes valores.

Apesar de a literatura ainda não ressaltar a grande superioridade do método implícito em relação ao explícito quanto a covergência na determinação de ajustes não lineares, esta superioridade existe e foi observada por Guirardelo em sua tese de Mestrado [6].

O Método Spline Estendido nesta formulação não traz como caso particular o Método Spline puro, visto serem utilizadas apenas K-1 restrições ϕ_k , de forma que para N pontos, o número máximo de intervalos é N-3, enquanto que o Método Spline puro utiliza N-1 intervalos.

A Tabela 4.5 traz o ajuste utilizando o maior número possível de intervalos (17 intervalos) para os dados de pressão de vapor da mistura etanol – n-heptano. Os valores da pressão de vapor são idênticos aos obtidos pelo Método Spline puro (Tabela 4.6).

A Figura 4.1 mostra os dados de pressão de vapor versus composição da mistura etanol – n-heptano ajustados pelo Método Spline Modificado. As Figuras 4.2 e 4.3 apresentam respectivamente os desvios absolutos das variáveis dependente e independente, mostrando a boa qualidade do ajuste. Na Figura 4.4 é mostrado o comportamento da primeira derivada da função, mostrando a coerência dos resultados com o fenômeno

LUL I

Tabela 4.4: Teste de convergência do Método Spline Modificado.

		C10 4.4.			genera de					
Ponto	Fração	Desvio-	Fração	Desvio	Pressão	Desvio-	Pressão	Desvio	Primeira	Segunda
experi-	molar	padrão	molar	absoluto	vapor	padrão	ajustada	absoluto	derivada	derivada
mental	metanol		ajustada		mmHg		mmHg	mmHg		
.]	0.0000	0.0010	0.0003	-0.0003	58.7000	0.00000	58.7000	0.0000	4854.6	-419579.9
2	0.0156	0.0010	0.0136	0.0020	94.2000	0.00000	94.2000	0.0000	1070.2	-147511.7
. 3	0.0187	0.0010	0.0194	-0.0007	98.6000	0.00000	98.6000	0.0000	556.9	-28868.6
4	0.0216	0.0010	0.0243	-0.0027	101.0000	0.00000	101.0000	0.0000	432.1	-22275.1
- 5	0.0388	0.0010	0.0380	8000.0	105,4000	0.00000	105.4000	0.0000	253.8	-3808.0
6	0.0518	0.0010	0.0510	8000.0	108.4000	0.00000	108.4000	0.0000	206.9	-3376.2
7	0.0953	0.0010	0.0938	0.0015	114.6000	0.00000	114.6000	0.0000	92.7	-1959.0
- 8	0.1464	0.0010	0.1474	-0.0010	117.6000	0.00000	117.6000	0.0000	35.2	-188.4
9	0.3095	0.0010	0.3093	0.0002	121.2000	0.00000	121.2000	0.0000	11.5	-104.9
-10	0.5260	0.0010	0.5260	0.0000	122,1000	0.00000	122.1000	0.0000	0.9	6.8
11	0.6542	0.0010	0.6539	0.0003	121.9000	0.00000	121.9000	0.0000	-6.8	-127.3
-12	0.7203	0.0010	0.7211	-0.0008	121.1000	0.00000	121,1000	0.0000	-17.8	-197.7
13	0.7662	0.0010	0.7663	-0.0001	120.1000	0.00000	120.1000	0.0000	-26.4	-182.8
- 14	0.8072	0.0010	0.8064	8000.0	118.9000	0.00000	118.9000	0.0000	-33.4	-169.6
15	0.8710	0.0010	0.8714	-0.0004	115,4000	0.00000	115,4000	0.0000	-89.2	-1546.2
- 16	0.9265	0.0010	0.9272	-0.0007	107.4000	0.00000	107.4000	0.0000	-208.5	-2728.4
17	0.9303	0.0010	0.9300	0.0003	106.8000	0.00000	106.8000	0.0000	-216.3	-2814.3
-18	0.9630	0.0010	0.9623	0.0007	98.2000	0.00000	98.2000	0.0000	-322.8	-3794.2
19	0.9860	0.0010	0.9865	-0.0005	0000.88	0.00000	88.0000	0.0000	-569.2	-16512.4
20	1.0000	0.0010	8666.0	0.0002	78.8000	0.00000	7 8.8000	0.0000	-834.1	-23459.0

O asterisco (") indica que o ponto é extremo de intervalo.

Tabela 4.5: Teste para chegar ao Método Spline puro.

Segunda	Primeira	Desvio	Pressão	Desvio-	Pressão	Desvio	Fração	Desvio	Fração	Ponto
derivada	derivada	absoluto	ajustada	padrão	vapor	absoluto	molar	padrão	molar	experi-
		mmHg	mmHg		mmHg	<u></u>	ajustada		metanol	menta!
130286.0	2046.5	0.0000	58.7000	1.00000	58.7000	0.0000	0.0000	1.0000	0.0000	- 1
-172436.9	1717.7	0.0000	94.2000	1.00000	94.2000	0.0000	0.0156	1.0000	0.0156	2
-232593.4	1089.9	0.0000	98.6000	1.00000	98,6000	0.0000	0.0187	1.0000	0.0187	· 3
-77564.6	640.2	0.0000	101.0000	1.00000	101.0000	0.0000	0.0216	1.0000	0.0216	- 4
21045.5	154.1	0.0000	105.4000	1.00000	105.4000	0.0000	0.0388	1.0000	0.0388	- 5
-6716.0	247.3	0.0000	108,4000	1.00000	108.4000	0.0000	0.0518	1.0000	0.0518	· 6
-1014.3	79.1	0.0000	114.6000	1.00000	114.6000	0.0000	0.0953	1.0000	0.0953	- 7
-369.1	43.8	0.0000	117,6000	1.00000	117.6000	0.0000	0.1464	00000	0.1464	~ 8
-60.5	8.8	0.0000	121.2000	1.00000	121.2000	0.0000	0.3095	0000.	0.3095	- 9
-G. 4	1.5	0.0000	122.1000	1.00000	122.1000	0.0000	0.5260	1.0000	0.5260	- 10
-130.8	-7.3	0.0000	121.9000	1.00000	121,9000	0.0000	0.6542	1.0000	0.6542	- 11
-175.3	-17.4	0.0000	121.1000	1.00000	121.1000	0.0000	0.7203	1.0000	0.7203	-12
-222.0	-26.5	0.0000	120.1000	1.00000	120,1000	0.0000	0.7662	1.0000	0.7662	-13
42.4	-30.2	0.0000	118.9000	1.00000	118,9000	0.0000	0.8072	1.0000	0.8072	~14
-2403.3	-105.5	0.0000	115,4000	1.00000	115,4000	0.0000	0.8710	1.0000	0.8710	- 15
630.9	-154.7	0.0000	107.4000	1.00000	107.4000	0.0000	0.9265	1.0000	0.9265	-16
-6300.4	-165.5	0.0000	106,8000	1.00000	106.8000	0.0000	0.9303	1.0000	0.9303	-17
-5293.0	-355.0	0.0000	98.2000	1.00000	98.2000	0.0000	0.9630	1.0000	0.9630	- 18
-12487.9	-559.5	0.0000	88.0000	1.00000	88,0000	0.0000	0.9860	1.0000	0.9860	19
-16867.4	- 7 65.0	0.0000	78.8000	1.00000	78.8000	0.0000	1.0000	1.0000	1.0000	· 2 0

O asterisco (`) indica que o ponto é extremo de intervalo.

ATS 1 1	4 0		1	3 4 7 / 1	CT 1:	
'l'ahola	4 6	Ameta	nela	Método	Spline	TOTAL
1 71175.101	T.V.	AIUDIA	DCIO	111000000	DULLIG	1311117

			<u> </u>				<u> </u>			
Ponto	Fração	Desvio-	Fração	Desvio	Pressão	Desvio-	Pressão	Desvio	Primeira	Segunda
experi-	molar	padrão	molar	absoluto	vapor	padrão	ajustada	absoluto	derivada	derivada
mental	metanol		ajustada		mmHg		mmHg	mmHg	_	
<u> </u>	0.0000	1.0000	0.0000	0.0000	58.7000	1.00000	58.7000	0.0000	2914.8	-81938.3
. 2	0.0156	1.0000	0.0156	0.0000	94.2000	1.00000	94.2000	0.0000	1636.5	-81938.3
٠ 3	0.0187	1,0000	0.0187	0.0000	98.6000	1.00000	98.6000	0.0000	1112.0	-256447.6
- 4	0.0216	1.0000	0.0216	0.0000	101.0000	1.00000	101.0000	0.0000	630.6	-75597.3
. 5	0.0388	1.0000	0.0388	0.0000	105.4000	1.00000	105.4000	0.0000	156.5	20469.6
- 6	0.0518	1.0000	0.0518	0.0000	108.4000	1.00000	108.4000	0.0000	246.3	-6643.1
- 7	0.0953	1.0000	0.0953	0.0000	114.6000	1.00000	114.6000	0.0000	79.4	-1031.7
- 8	0.1464	1.0000	0.1464	0.0000	117.6000	1.00000	117.6000	0.0000	43.7	-366.8
- 9	0.3095	1.0000	0.3095	0.0000	121.2000	1.00000	121.2000	0.0000	8.8	-61.0
-10	0.5260	1.0000	0.5260	0.0000	122.1000	1.00000	122,1000	0.0000	1.5	-6.3
-11	0.6542	1.0000	0.6542	0.0000	121.9000	1.00000	121.9000	0.0000	-7.3	-13 0.9
~12	0.7203	1.0000	0.7203	0.0000	121.1000	1.00000	121.1000	0.0000	-17.4	-175.2
-13	0.7662	1.0000	0.7662	0.0000	120.1000	1.00000	120.1000	0.0000	-26.5	-222.1
~14	0.8072	1.0000	0.8072	0.0000	118.9000	1.00000	118.9000	0.0000	-30.2	42.6
~1 5	0.8710	1.0000	0.8710	0.0000	115.4000	1.00000	115.4000	0.0000	-105.5	-2404.0
~16	0.9265	1.0000	0.9265	0.0000	107.4000	1.00000	107.4006	0.0000	-154.7	633.8
~17	0.9303	1,0000	0.9303	0.0000	106.8000	1.00000	106.8000	0.0000	-165.6	-6379.7
- 18	0.9630	1.0000	0.9630	0.0000	98.2000	1.00000	98.2000	0.0000	-353.5	-5116.4
×19	0.9860	1.0000	0.9860	0.0000	86.0000	1.00000	88.0000	0.0000	-564.5	-13230.8
- 2 0	1.0000	1.0000	1.0000	0.0000	78.8000	1.00000	78.8000	0.0000	-749.8	-13230.8
			O actorisco	(c) indian	ue o Bonto	6 aut-ama	do intornale			

O asterisco (*) indica que o ponto é extremo de intervalo.

físico estudado.

4.5.2 Dados de equilíbrio líquido – vapor (Diagrama $x \ versus \ y$)

Para o estudo deste tipo de curva, foram analisados dois conjuntos de dados: equilíbrio líquido-vapor das misturas acetonitrila-água e 2-propanol-água. Ambas as curvas apresentam um ponto de azeotropia e representam um conjunto de curvas muito utilizado na termodinâmica.

A Tabela 4.7 apresenta o melhor ajuste pelo Método Spline Modificado para a composição da fase gasosa em função da composição da fase líquida da mistura acetonitrila-água. Os dados foram extraídos da referência [5].

Os dados foram muito bem ajustados pelo Método Spline Modificado com sete valores fugindo da faixa de desvio-padrão das medidas experimentais.

Comparando estes valores com os obtidos pelo Método Spline Estendido (Tabela 4.8), nota-se novamente a superioridade do Método Spline Modificado que apresenta desvios absolutos bem menores que o Método Spline Estendido.

A Tabela 4.9 compara os valores obtidos para as funções de minimização de ambos os métodos, fazendo-se as mesmas considerações como na Tabela 4.3. A função

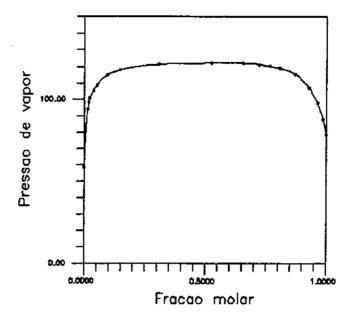


Figura 4.1: Pressão de vapor da mistura etanol - n-heptano.

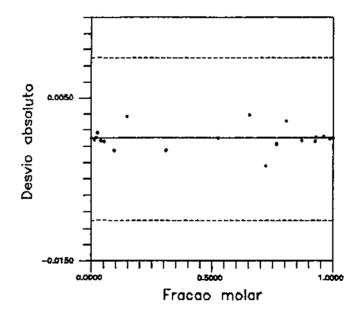


Figura 4.2: Desvio absoluto da pressão de vapor da mistura etanol - n-heptano.

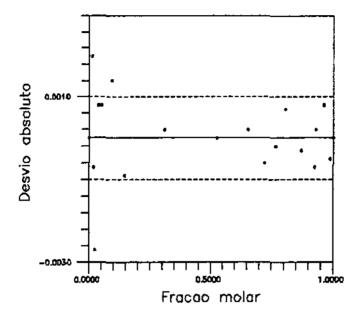


Figura 4.3: Desvio absoluto da fração molar da mistura etanol - n-heptano.

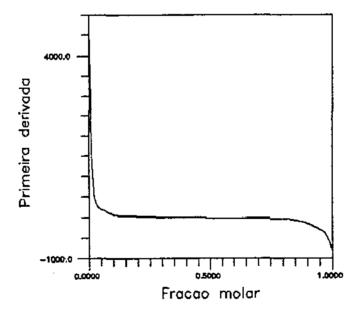


Figura 4.4: Primeira derivada para a curva de pressão de vapor da mistura etanol - n-heptano.

Tabela 4.7: Diagrama x-y da mistura acetonitrila- água. Método Spline Modificado.

Ponto experi-	Fr. molar líquida	Desvio- padrão	Fração ajus-	Desvio absoluto	Fr. molar gasosa	Desvio- padrão	Fração ajus-	Desvio absoluto	Primeira derivada	Segunda derivada
mental	aceton.	<u></u>	tada		aceton.		tada			
·]	0.0000	0.000	0.0000	0.0000	0,0000	0.00000	0.0000	0.0000	16.6	-377 6
2	0.0270	0.0010	0.0254	0.0016	0.3130	0.00100	0.3132	-0.0002	8.5	-259.4
. 3	0.0780	0.0010	0.0783	-0.0003	0.5160	0.00100	0.5158	0.0002	1.3	-18.6
4	0.1380	0.0010	0.1381	-0.0001	0.5730	0.00100	0.5728	0.0002	0.6	-8.7
- 5	0.2320	0.0010	0.2318	0.0002	0.6050	0.00100	0.6059	-0.0009	0.2	-1.1
6	0.3620	0.0010	0.3621	-0.0001	0.6250	0.00100	0.6237	0.0013	0.1	0.0
7	0.4540	0.0010	0.4539	0.0001	0.6340	0.00100	0.6350	+0.0010	0.1	0.7
. 8	0.4790	0.0010	0.4790	0.0000	0.6390	0.00100	0.6388	0.0002	0.2	0.9
9	0.6090	0.0010	0.6090	0.0000	0.6670	0.00100	0.6669	0.0001	0.3	0.7
-10	0.6900	0.0010	0.6899	0.0001	0.6900	0.00100	0.6903	-0.0003	0.3	0.5
11	0.8230	0.0010	0.8240	-0.0010	0.7530	0.00100	0.7516	0.0014	0.7	5.4
- 12	0.89 ± 0	0.0010	0.8876	0.0024	0.8070	0.00100	0.8091	-0.0021	1.1	7.7
13	0.9260	0.0010	0.9276	-0.0016	0.8620	0.00100	0.8609	0.0011	1.5	10.4
- 14	1.0000	000000	0000.1	0.0000	1.0000	0.00000	1.0000	0.0000	2.4	15.4

O asterisco (*) indica que o ponto é extremo de intervalo.

Tabela 4.8: Diagrama x-y da mistura acetonitrila - água. Método Spline Estendido.

		T3 ~ 1			D	C 1
Ponto	Fração molar	Fração molar	fração	Desvio	Primeira	Segunda
experi-	líquida	gasosa	molar	absoluto	derivada	derivada
mental	acetonitrila	acetonitrila	ajustada			
* 1	0.0000	0.0000	0.0000	0.0000	15.9	-350.7
2	0.0270	0.3130	0.3157	-0.0027	8.0	-235.5
* 3	0.0780	0.5160	0.5116	0.0044	1.5	-17.8
4	0.1380	0.5730	0.5757	-0.0027	0.7	-11.0
* 5	0.2320	0.6050	0.6059	-0.0009	0.1	-0.4
6	0.3620	0.6250	0.6223	0.0027	0.1	0.2
7	0.4540	0.6340	0.6352	-0.0012	0.2	0.6
* 8	0.4790	0.6390	0.6393	-0.0003	0.2	0.7
9	0.6090	0.6670	0.6674	-0.0004	0.3	0.6
*10	0.6900	0.6900	0.6901	-0.0001	0.3	0.6
11	0.8230	0.7530	0.7502	0.0028	0.7	5.5
*12	0.8900	0.8070	0.8119	-0.0049	1.2	8.0
13	0.9260	0.8620	0.8593	0.0027	1.5	9.9
*14	1.0000	1.0000	1.0000	0.0000	2.4	13.9

O asterisco(*) indica que o ponto é extremo de intervalo.

Tabela 4.9: Comparação entre as funções de minimização para o diagrama x versus y da mistura acetonitrila-água.

Método	Função objetiva de minimização para o
	diagrama x versus y da mistura acetonitrila-água.
Método Spline Modificado (Tabela 4.7)	S = 11.5479
Método Spline Estendido (Tabela 4.8)	E = 41.7508

de minimização do Método Spline Estendido foi 3,6 vezes maior do que a do Método Modificado.

Foi feita uma subrotina para a determinação do ponto de azeotropia. A concentração do ponto de azeotropia obtida foi $x_{aze} = y_{aze} = 0.6905$, praticamente igual ao ponto experimental por arredondamento.

A Figura 4.5 mostra o diagrama x versus y da mistura acetonitrila água ajustado pelo Método Spline Modificado.

A Tabela 4.10 traz o melhor ajuste pelo Método Spline Modificado para a composição da fase gasosa em função da fase líquida da mistura 2-propanol - água. Os dados foram extraídos da referência [5].

Os dados foram muito bem ajustados pelo Método Spline Modificado, com sete valores fugindo da faixa de desvio-padrão das medidas experimentais. Comparando estes valores com os obtidos pelo Método Spline Estendido, apresentados na Tabela 4.11, notase que, apesar de haver apenas cinco valores que fogem da faixa de desvio-padrão das medidas experimentais pelo Método Spline Estendido, estes valores apresentam desvios absolutos bem maiores que os apresentados pelo Método Spline Modificado.

A Tabela 4.12 compara os valores obtidos para as funções de minimização dos ajustes de ambos os métodos fazendo-se as mesmas considerações das Tabelas 4.3 e 4.9. A função objetiva de minimização do Método Spline Estendidido foi 3,3 vezes maior que a do Método Modificado.

A concentração do ponto de azeotropia foi $x_{aze} = y_{aze} = 0.6913$.

A Figura 4.6 mostra o diagrama x versusy da mistura 2-propanol - água.

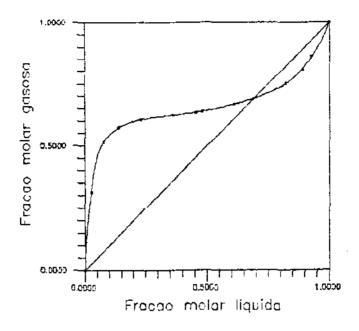


Figura 4.5: Diagrama x versus y da mistura acetonitrila-água.

Tabela 4.10: Diagrama x-y da mistura 2-propanol - água. Método Spline Modificado.

Ponto experi- mental	Fr. molar líquida 2-prop.	Desvio- padrão	Fr. molar ajus- tada	Desvio absoluto	Fração gasosa 2-prop.	Desvio- padrão	Fração ajue- tada	Desvio absoluto	Primeira derivada	Segunda derivada
· 1	0.0000	0.0000	0.0000	0.0000	0.0000	0.00000	0.0000	0.0000	14.7	-300.9
2	0.0460	0.0010	0.0491	-0.0031	0.4210	0.00100	0.4202	8000.6	3.7	-145.5
- 3	0.6950	0.0010	0.0945	0.0005	0.4870	0.00100	0.4884	-0.0014	0.4	-1.8
4	0.1750	0.0010	0.1751	-0.0001	0.5140	0.00100	0.5136	0.0004	0.3	-0.9
. 5	0.2810	0.0010	0.2812	-0.0002	0.5400	0.00100	0.5392	0.0008	0.2	0.4
6	0.4770	0.0010	0.4764	0.0006	0.5940	0.00100	0.5957	-0.0017	0.3	0.7
- 7	0.6040	0.0010	0.6047	-0.0007	0.6480	0.00100	0.6465	0.0015	0.4	0.9
8	0.7700	0.0010	0.7696	0.0004	0.7400	0.00100	0.7405	-0.0005	0.7	2.6
9	0.8600	0.0010	0.8601	-0.0001	0.8190	0.00100	0.8189	0.0001	1.0	3.5
- 10	1.0000	_ 0.0000_	1.0000	0.0000	1.0000	0.00000	1.0000	υ.0000	1.6	5.0

O asterisco (*) indica que o ponto é extremo de intervalo.

Tabela 4.11: Diagrama x-y da mistura 2-propanol- água. Método Spline Estendido.

Ponto experi- mental	Fração molar líquida 2-propanol	Fração molar gasosa 2-propanol	Fração molar ajustada	Desvio absoluto	Primeira derivada	Segunda derivada
* 1	0.0000	0.0000	0.0000	0.0000	15.2	-316.1
2	0.0460	0.4210	0.4179	0.0031	4.2	-162.6
* 3	0.0950	0.4870	0.4923	-0.0053	0.2	0.8
4	0.1750	0.5140	0.5108	0.0032	0.3	0.5
* 5	0.2810	0.5400	0.5395	0.0005	0.3	0.0
6	0.4770	0.5940	0.5970	-0.0030	0.3	0.6
* 7	0.6040	0.6480	0.6455	0.0025	0.4	1.1
8	0.7700	0.7400	0.7404	-0.0004	0.7	2.6
9	0.8600	0.8190	0.8193	-0.0003	1.0	3.5
*10	1.0000	1.0000	1.0000	0.0000	1.6	4.8

O asterisco(*) indica que o ponto é extremo de intervalo.

Tabela 4.12: Comparação entre as funções de minimização para o diagrama x versus y da mistura 2-propanol – água.

Método	Função objetiva de minimização para
	o diagrama x versus y da mistura 2-propanol – água.
Método Spline Modificado (Tabela 4.10)	S~=~9.6855
Método Spline Estendido (Tabela 4.11)	E = 31.6567

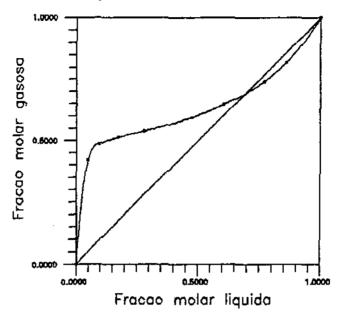


Figura 4.6: Diagrama x versus y da mistura 2-propanol - água.

4.5.3 Diagrama de temperatura de ebulição em função da concentração de uma mistura binária

Para o estudo deste tipo de curvas foram analisados os mesmos dados que os da secção 4.5.2, as misturas acetonitrila – água e 2-propanol – água [5]. Estas curvas são muito utilizadas para cálculos de equilíbrio em projetos e processos químicos.

A Tabela 4.13 apresenta os valores obtidos pelo Método Spline Modificado para a mistura acetonitrila-água. Os dados foram extraídos da referência [5]. Os valores dos extremos (componentes puros) foram obtidos pela correlação de Antoine [5].

Os dados foram razoavelmente ajustados pelo Método Modificado, com sete valores fugindo da faixa de desvio-padrão das medidas experimentais. Comparando-os com os obtidos pelo Método Estendido (Tabela 4.14), nota-se que o Método Modificado foi levemente superior, pois forneceu desvios absolutos, em média, menores.

A Tabela 4.15 traz os valores das funções de minimização referente aos ajustes das Tabelas 4.13 e 4.14, confirmando que o Método Modificado foi levemente superior.

A Figura 4.7 mostra o diagrama T versusx da mistura acetonitrila - água.

Os valores ajustados para a mistura 2-propanol – água são mostrados na tabela 4.16, referência [5].

Os dados foram bem ajustados pelo Método Modificado com apenas seis valores fugindo da faixa de desvio-padrão das medidas experimentais. Comparando-se estes

. . __**___**__.

Tabela 4.13: Diagrama Tversusx da mistura acetonitrila - água. Método Spline Modi-

Cado. Funto superi- pensal	Fração molar	Desvio- padrão	Fração molar ajustada	Desvio absoluto	Tempera- tura "C	Desvio- padrão	Temperatura ajustada "C	Desvio absolute "C	Primeira derivada	Segunda derivada
<u> </u>	0.0000	0.0000	0.0000	0.0000	100,0000	0.10000	100.0007	-0.0007	-396.1	6928.3
2	0.0270	0.0010	0.0269	0.0001	91.6000	0.10000	91.5976	0.0024	-236.8	4893.1
. 3	0.0780	0.0010	0.0780	0.0000	84.2000	0.10000	84.2041	-0.0041	-85.4	1033.5
4	0.1380	0.0010	0.1380	0.0000	80.7000	0.10000	80.6971	0.0029	-35.6	629.6
. 5	0.2320	0.0010	0.2320	0.0000	79.2 000	0.10000	79.2011	-0.0011	-6.2	-3.7
6	0.3620	0.0010	0.3620	0.0000	78.4000	0.10000	78.3919	1800.0	-6.1	4.6
7	0.4540	0.0010	0.4539	0.0001	78.0000	0.10000	77.8579	0.1421	-5.4	10.4
- 8	0.4790	0.0010	0.4791	-0.0001	77.5000	0.10000	77.7248	-0. 224 8	-5.1	12.0
9	0.6090	0.(c)10	0.6090	0.0000	77.4000	0.10000	77.2324	0.1676	-1.9	38.2
10	0.6900	0.0010	0.6900	0.0000	77.1000	0.10000	77.2232	-0.1232	1.9	54.5
-11	0.8230	0.0010	0.8232	-6.0002	78,2000	0.10000	78.0364	0.1636	10.9	81.4
12	0.8900	0.0010	0.8893	0.0007	78.6000	0.10000	78.9886	-0.3886	18.7	153.0
13	0.9260	0.0010	0.9267	-0.0007	80.1000	0.10000	79.8052	0.2948	25.2	193.5
14	1.0000	0.0000	1.0000	0.0000	82.2000	0.10000	82.2389	-0.0389	42.2	272.8

Tabela 4.14: Diagrama T versus x da mistura acetonitrila - água. Método Spline Estendido.

. <u>.=⊺endido.</u>			·			
Ponto	Fração molar	Temperatura	Temperatura	Desvio	Primeira	Segunda
experi-	molar	${}^{o}C$	ajustada	absoluto	derivada	derivada
mental	acetonitrila		°C			
* 1	0.0000	100.0000	100.0017	-0.0017	-395.5	6904.6
2	0.0270	91.6000	91.5939	0.0061	-236.5	4873.9
* 3	0.0780	84.2000	84.2101	-0.0101	-85.7	1038.2
4	0.1380	80.7000	80.6929	0.0071	-35.6	631.9
* 5	0.2320	79.2000	79.2011	-0.0011	-6.1	-4.5
6	0.3620	78.40 00	78.3936	0.0064	-6.1	4.3
7	0.4540	78.0000	77.8574	0.1426	-5.4	10.5
* 8	0.4790	77.5000	77.7249	-0.2249	-5.2	12.2
9	0.6090	77.4000	77.2316	0.1684	-1.9	38.3
10	0.6900	77.1000	77.2236	-0.1236	1.9	54.6
*11	0.8230	78.2000	78.0364	0.1636	10.9	81.2
12	0.8900	78.6000	79.0046	-0.4046	18.8	153.5
13	0.9260	80.1000	79.7888	0.3112	25.0	192.4
*14	1.0000	82.2000	82.2394	-0.0394	42.2	272.2

C Esterisco(*) indica que o ponto é extremo de intervalo.

·_.. _____.

Tabela 4.15: Comparação entre as funções de minimização para o diagrama T versus x da mistura acetonitrila - água.

Método	Função objetiva de minimização para
	o diagrama T versus x da mistura acetonitrila - água.
Método Spline Modificado (Tabela 4.13)	S = 19.5868
Método Spline Estendido (Tabela 4.14)	E = 20.1822

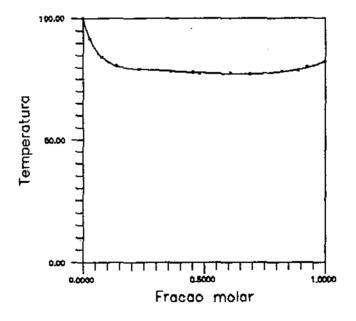


Figura 4.7: Diagrama T versus x da mistura acetonitrila - água.

. ______

Tabela 4.16: Diagrama Tversus x da mistura 2-propanol – água. Método Spline Modi-

ficado. Ponto experi- mental	Fração molar	Desvio- padrão	Fração molar ajustada	Desvio absoluto	Tempera- tura "('	Desvic- padrão	Temperatura ajustada "('	Desvio absoluto "C	Primeira derivada	Segunda derivada
· 1	0.0000	0.0000	0.0000	0.0000	100.0000	0.01000	99.9996	0.0004	-487.6	9990.9
2	0.0460	0.0010	0.0504	-0.0044	85 .8600	0.01000	85.8637	-0.0037	-118.0	4676.5
⊳ 3	0.0950	0.0010	0.0942	0.0008	83.710ü	0.01000	83.7047	0.0053	-14.3	53.2
4	0.1750	0.0010	0.1751	-0.0001	82.7100	0.01000	82.7108	-0.0008	-10.5	41.3
5	0.2810	0.0010	0.2812	-0.0002	81,8000	0.01000	81.8033	-0.0033	-6.9	25.7
~ 6	0.4770	0.0010	0.4770	0.0000	80.7600	0.01000	80.7592	0.0008	-4.7	-3.1
7	0.6040	0.0010	0.6035	0.0005	80.2200	0.01000	80.2058	0.0142	-3.5	21.8
8	0.7700	0.0010	0.7689	0.0011	80.0300	0.01000	80.0712	-0.0412	2.8	54.5
9	0.8600	0.0010	0.8632	-0.0032	80.6400	0.01000	80.6041	0.0359	8.8	73.1
-10	1.0000	0.0000	1.0000	0.0000	82,5700	0.01000	82.5775	-0.0075	20.7	100.1

O asterisco (*) indica que o ponto é extremo de intervalo.

valores com os ajustados pelo Método Estendido (Tabela 4.17), nota-se novamente a superioridade do Método Modificado. O Método Estendido apresentou nove valores fugindo da faixa de desvio-padrão das medidas experimentais além dos desvios absolutos serem, em média, maiores.

A Tabela 4.18 compara os valores obtidos para as funções de minimização de ambos os métodos. A função objetiva de minimização do Método Estendido foi 21,3 vezes maior que a do Método Modificado.

A figura 4.8 mostra o diagrama T versus x para a mistura 2-propanol - água.

4.5.4 Calor de mistura de uma solução binária

A Tabela 4.19 traz o melhor ajuste pelo Método Spline Modificado para os dados de calor de mistura da solução metanol – água. Os dados foram extraídos da referência [9].

Foi feita uma extrapolação para se obter o calor de mistura dos componentes puros. Os valores obtidos foram água = 1681,1 cal/gmol e Metanol = 674,9 cal/gmol. Para casos como este, onde não existem os valores extremos e o intervalo para a extrapolação é pequeno, a mesma pode ser empregada, mostrando outra vantagem do método.

O ajuste foi comparado com o melhor ajuste obtido pelo Método Spline Estendido (Tabela 4.20). Ambos os métodos ajustaram bem os valores, mas o Método Modificado foi levemente superior.

A Tabela 4.21 compara os valores obtidos para as funções de minimização de

... ... **....**

Tabela 4.17: Diagrama T versus x da mistura 2-propanol- água. Método Spline Estendido.

Ponto	Fração molar	Temperatura	Temperatura	Desvio	Primeira	Segunda
experi-	2-propanol -	^{o}C	ajustada	absoluto	derivada	derivada
mental	água		°C			
* 1	0.0000	100.0000	99.9715	0.0285	-501.9	10345.8
2	0.0460	85.8600	86.0677	-0.2077	-141.0	5344.6
* 3	0.0950	83.7100	83.4436	0.2664	-9.6	17.2
4	0.1750	82.7100	82.7258	-0.0158	-8.4	14.7
ភ	0.2810	81.8000	81.9171	-0.1171	-7.0	11.5
* 6	0.4770	80.7600	80.7341	0.0259	-5.3	5.5
7	0.6040	80.2200	80.1598	0.0602	-3.3	26.0
8	0.7700	80.0300	80.0932	-0.0632	3.2	52.9
9	0.8600	80.6400	80.6194	0.0206	8.7	67.5
*10	1.0000	82.5700	82.5678	0.0022	19.7	90.2

O asterisco(*) indica que o ponto é extremo de intervalo.

Tabela 4.18: Comparação entre as funções de minimização para o diagrama T versus x da mistura 2-propanol – água.

Método	Função objetiva de minimização para
	o diagrama T versus x da mistura 2-propanol – água.
Método Spline Modificado (Tabela 4.16)	S = 32.3225
Método Spline Estendido (Tabela 4.17)	E = 688.192

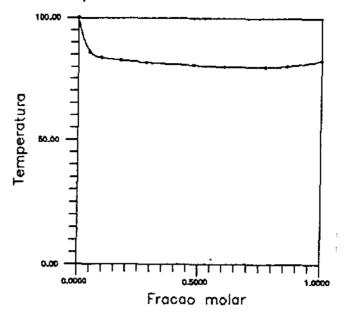


Figura 4.8: Diagrama Tversus x da mistura 2-propanol - água.

ambos os métodos. A função objetiva de minimização do Método Modificado foi levemente inferior a do Método Estendido.

A figura 4.9 mostra os dados de calor de mistura do sistema metanol - água.

A tabela 4.22 apresenta o melhor ajuste pelo Método Modificado para os dados de calor de mistura do sistema etanol - água. Os dados foram extraídos da referência [9].

Foi feita uma extrapolação para se obter o calor de mistura dos componentes puros. Os valores obtidos foram água = 2270.9cal/gmol e etanol = 379.7cal/gmol

Os resultados do ajuste foram comparados o melhor ajuste obtido pelo Método Estendido (Tabela 4.23). Ambos os métodos ajustaram bem os valores, mas o Método Modificado foi levemente superior.

...**.........**....

Tabela 4.19: Calor de :	mistura do sistem	a metanol-água.	Método	Spline	Modificado
-------------------------	-------------------	-----------------	--------	--------	------------

Ponto	Fração	Desvio-	Fração	Desvio	Calor de	Desvic-	Calor de	Desvio	Primeira	Segunda
experi-	molar	padrão	nolar	absoluto	mistura	padrā ₀	mistura	absoluto	derivada	derivada
mental	metanol		ajustada		cal /gmol		ajustado	cal /gmol		
· 1	0.0287	0.0001	0.0287	0.0000	1650.2000	12.21148	1661.9208	-11.7208	-1373.8	-43765.9
2	0.0492	0.0001	0.0492	0.0000	1641.8000	12.14932	1625.3838	16.4162	-2151.8	-32148.7
3	0.0495	0.0001	0.0495	0.0000	1642.9000	12.15746	1624.7374	18.1626	-2161.4	-31978.8
4	0.0674	0.0001	0.0674	0.0000	1560.7000	11.54918	1581.4497	-20.7497	-2643.1	-21829 4
5	0.0973	0.0001	0.0973	0.0000	1486,9000	11.00306	1495.1936	-8.2936	-3042.5	-4883.5
× 6	0.1253	0.0001	0.1253	0.0000	1417.0000	10.48580	1410.1757	6.8243	-2957.1	10984.4
7	0.1468	0.0001	0.1468	0.0000	1352.5000	10.00850	1348.8185	3.6815	-2765.1	6871.8
√ 8	0.1903	0.0001	0.1903	0.0000	1230.5000	9.10570	1232.4099	-1.9099	-2647.1	-1448.9
Q	0.2041	0.0001	0.2041	0.0000	1192.4000	8.8237G	1195.5456	-3.4456	-2644.2	1881.4
- 10	0.2463	0.0001	0.2463	0.0000	1093.0000	8.08820	1088.9658	4.0342	-2349.9	12064.1
11	0.3562	0.0001	0.3562	0.0000	888.3000	6.57342	891.5980	-3.2980	-1350.6	6121.6
.12	0.3955	1000.0	0.3955	0.0000	844.5000	6.24930	842,7013	1.7987	-1151.8	3996.7
13	0.4689	0.0001	0.4689	0.0000	769.0000	5.69060	768.9902	0.0098	-855.8	4068.7
- 14	0.5568	0.0001	0.5568	0.0000	710.8000	5.25992	709.5960	1.2040	-494.4	4155.1
15	0.6598	0.0001	0.6598	0.0000	675,4000	4.99796	677.3927	-1.9927	-163.2	2274.3
- 16	0.7823	0.0001	0.7823	0.0000	673.5000	4.98390	668.8664	4.6336	-21.6	37.6
17	0.7990	0.0001	0.7990	0.0000	665.0000	4.92100	668.5148	-3.5148	-20.2	133.4
-18	0.9348	0.0001	0.9348	0.0000	669.4000	4.95356	069.3953	0.0047	50.8	912.5

O asterisco (1) indica que o ponto é extremo de intervalo.

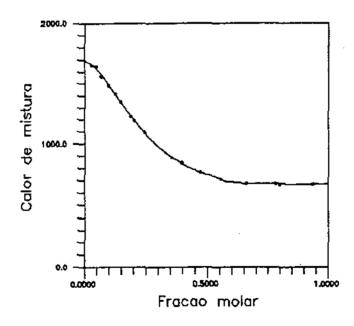


Figura 4.9: Calor de mistura do sistema metanol - água.

Tabela 4.20:	Calor	de mistura	do si	istema	metanol	- ล์ตบล.	Método	Spline '	Estendido
140614 3,20.	Caioi	ac mooura	uv v	10 ocitie	IIIC (WIIC)	an au.	11100000	Chimic .	Liouciiuiuu,

 1 3.20.	aloi de in	ibedia do si	Beeling Incee	mor agaa.	1110000	Shuir Trac
Ponto	Fração	Calor de	Calor de	Desvio	Primeira	Segunda
experi-	molar	mistura	mistura	absoluto	derivada	derivada
mental	metanol	cal /gmol	ajustado	cal /gmol		
* 1	0.0287	1650.2000	1660.9887	-10.7887	-1219.6	-49842.4
2	0.0492	1641.8000	1626.4558	15.3442	-2103.6	-36404 .8
3	0.0495	1642.9000	1625.8231	17.0769	-2114.5	-36208.2
4	0.0674	1560.7000	1582.7996	-22.0996	-2657.6	-24474.9
5	0.0973	1486.9000	1495.3174	-8.4174	-3096.4	-4875.7
* 6	0.1253	1417.0000	1409.1054	7.8946	-2976.0	13478.1
7	0.1468	1352.5000	1347.8262	4.6738	-2743.6	8140.4
* 8	0.1903	1230.5000	1232.7775	-2.2775	-2624.3	-26 58.9
9	0.2041	1192.4000	1196.4242	-4.0242	-2635.9	984.9
*10	0.2463	1093.0000	1089.3740	3.6260	-2359.2	12127.6
11	0.3562	888.3000	891.3919	-3.0919	-1352.4	6194.4
*12	0.3955	844.5000	842.4793	2.0207	-1150.7	4072.6
13	0.4689	769.0000	768.9884	0.0116	-851.8	4069.8
¥14	0.5568	710.8000	709.8292	0.9708	-494.3	4066.3
15	0.6598	675.4000	677.3535	-1.9535	-166.8	2292.6
*16	0.7823	673.5000	668.8485	4.6515	-15.1	183.1
17	0.7990	665.0000	668.6220	-3.6220	-11.9	203.6
*18	0.9348	669.4000	669.3952	0.0048	27.1	370.9

O asterisco(*) indica que o ponto é extremo de intervalo.

Tabela 4.21: Comparação entre as funções de minimização para o calor de mistura do sistema metanol – água.

Método	Função objetiva de minimização para
	o calor de mistura para o sistema metanol - água.
Método Spline Modificado (Tabela 4.19)	S = 5.852
Método Spline Estendido (Tabela 4.20)	E = 5.888

.. , . _________

Tabela 4.22: Calor de mistura do sistema etanol - água. Método Spline Modificado.

	4.4.2.				Col	<u> </u>	Calor de			
Ponto	Fração	Desvio-	Fração	Desvio	Calor de	Desvio-		Desvio	Primeira	Segunda
exper-	molar	padrão	molar	absoluto	mistura	padrāo	mistura	absoluto	derivada	derivada
mental	etanol		ajustada		cal_/gmol	. <u></u> -	ajustado	cal /gmol		
• 1	0.0132	0.0010	0.0132	0.0000	2264.7000	36.23520	2273.2927	-8.5927	-123 9.9	-127594.3
2	0.0172	0.0010	0.0172	0.0600	2271.6000	36.34560	2267.3493	4.2507	-1738.8	-122671.6
3	0.0367	0.0010	0.0367	0.0000	222 0.5000	35.52800	2211.7304	8.7696	- 3 893.9	-98617.0
4	0.0772	0.0010	0.0772	0.0000	1984,8000	31.75680	1986.55 2 0	-1.7520	-6877.0	-48554.4
. 5	0.1442	0.0010	0.1443	-0.0001	1474.0000	23,58400	1478.3760	-4.3760	-7356.8	34242.4
6	0.2288	0.0010	0.2288	0.0000	974.8000	15,59680	973,6619	1.1381	-4648.0	29856.3
. 7	0.2861	0.0010	0.2859	0.0002	763,3000	12,21280	755.1526	8.1474	-3026.3	26890.2
8	0.3366	0.0010	0.3368	-0.0002	619.3000	9.90880	629.1775	-9.8775	-2060.3	11086.2
. 9	0.3468	0.0010	0.3468	0.0000	610,1000	9.76160	609.1306	0.9694	-1965.2	7988.1
10	0.4018	0400.0	0.4018	0.0000	514.2000	8.22720	512.6820	1.5180	-1551.5	7059.2
-11	0.6008	0.0010	0.6007	0.0001	324.4000	5.19040	321.5289	2.8711	-481.3	3697.6
12	0.7180	0.0010	0.7180	0.0000	294.4000	4.71040	291.9585	2.4415	-10.8	4327.8
13	0.7314	0.0010	0.7314	0.0000	283.0000	4.52800	292.2036	-9. 203 6	47.6	4399.7
- 14	0.8070	0.0010	0.8071	-0.0001	318,5000	5.09600	308.8284	9.6716	396.4	4807.0
15	0.8684	0.0010	0.8683	0.0001	336,0000	5.37600	339.0549	-3.0549	542.0	-49.1
16	0.8774	0.0010	0.8776	-0.0002	353.3000	5.65280	344.0358	9.2642	538.1	-780.3
17	0.8807	0.0010	0.8805	0.0002	336.9000	5.39040	345.6372	-8.7372	53 5.5	-1017,0
18	0.9487	0.0010	0.9487	0.0000	371.9000	5.95040	375.5758	-3.6758	282.0	-6423.6
-19	0.9596	0.0010	0.9596	0.0000	381.8000	6.10880	378.2609	3.5391	206.9	-7292,4

O asterisco (`) indica que o ponto é extremo de intervalo.

Tabela 4.23: Calor de mistura do sistema etanol - água. Método Spline Estendido.

a	Dela 4.20.	Calor de mis	agua. n	newood sp	mie Estendi		
	Ponto	Fração molar	Calor de	Calor de	Desvio	Primeira	Segunda
	experi-	molar	mistura	mistura	absoluto	derivada	derivada
	mental	etanol		ajustado			
	* 1	0.0132	2264.7000	2271.5026	-6.8026	-905.5	-138229.6
	2	0.0172	2271.6000	2266.7892	4.8108	-1447.6	-132822.1
	3	0.0367	2220.5000	2214.9791	5.5209	-3780.6	-106460.8
	4	0.0772	1984.8000	1989.5212	-4.7212	-6983.6	-51710.3
	* 5	0.1442	1474.0000	1473.3240	0.6760	-7413.9	38864.7
	6	0.2288	974.8000	973.8267	0.9733	-4528.9	29339.1
	* 7	0.2861	763.3000	758.9563	4.3437	-3032.6	22887.4
	8	0.3366	619.3000	630.2061	-10.9061	-2161.3	11619.8
	* 9	0.3468	610.1000	608.7261	1.3739	-2054.4	9343.9
	10	0.4018	514.2000	509.1998	5.0002	-1576.9	8.016.6
	*11	0.6008	324.4000	322.4246	1.9754	-459.5	3214.3
	12	0.7180	294.4000	293.0073	1.3927	-22.4	4243.9
	13	0.7314	283.0000	293.0914	-10.0914	35.2	4361.6
	*14	0.8070	318.5000	308.8521	9.6479	390.1	5025.8
	15	0.8684	336.0000	339.1185	-3.1185	544.4	-0.4
	16	0.8774	353.3000	344.0078	9.2922	541.0	-737.2
	17	0.8807	336.9000	345.7887	-8.8887	538.2	-1007.3
	18	0.9487	371.9000	375.7651	-3.8651	280.4	-6573.8
	*19	0.9596	381.8000	378.4133	3.3867	203.9	-7466.0
				-			

O asterisco(*) indica que o ponto é extremo de intervalo.

A Tabela 4.24 compara os valores obtidos para as funções de minimização de ambos os métodos. Como já comentado, o Método Modificado foi apenas levemente superior.

A Figura 4.10 mostra os dados do calor de mistura do sistema etanol - água.

.. <u>— 111</u>12 1 ...

Tabela 4.24: Comparação entre as funções de minimização do calor de mistura do sistema etanol - água.

Método	Função objetiva de minimização para
	do calor de mistura do sistema etanol - água.
Método Spline Modificado (Tabela 4.22)	S = 8.23699
Método Spline Estendido (Tabela 4.23)	E = 8.55

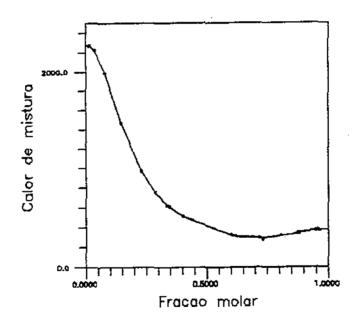


Figura 4.10: Calor de mistura do sistema etanol - água.

4.6 Conclusão

O Método Spline Modificado mostrou ser um excelente método de ajuste de curvas quando aplicado aos dados termodinâmicos estudados neste trabalho. Ele mostrou-se adequado em todos os casos.

Como esperado pela teoria, o Método Modificado foi superior ao Método Estendido em todas as situações, sendo que para diversos conjuntos de dados a sua superioridade foi marcante, apresentando resultados condizentes com os de equações que representam fielmente o fenômeno estudado, e não com um método de interpolação, como é o Método Spline.

Notou-se que para três conjuntos de dados: o diagrama T versus x da mistura acetonitrila – água e o calor de mistura dos sistemas etanol – água e metanol – água o desempenho do Método Modificado foi apenas levemente superior.

Foi possível, a partir destes estudos, criar algumas regras práticas que facilitam bastante o estudo de cada caso. Os passos a serem tomados devem ser os seguintes:

- Plotar inicialmente os pontos utilizando o Método Spline puro e observar onde ocorrem os eventuais pontos de inflexões e localizar os pontos experimentais próximos.
- Estudar arranjos utilizando o menor número possível de pontos por intervalo (três pontos, no máximo, quatro).
- Caso persistam pontos de inflexão, deve-se analisar no gráfico do Método Spline puro quais pontos que causam singularidade como, por exemplo, pontos experimentais próximos e pontos que fogem da tendência da curva formada pelos pontos experimentais. Normalmente, colocando-se estes pontos experimentais como pontos internos do intervalo, as inflexões desaparecem.
- Escolher dentre os arranjos que ajustam coerentemente o fenômeno estudado qual representa o melhor ajuste estatístico (menor valor de S da equação (3.1)).

Capítulo 5

Conclusão

O Método Spline Modificado mostrou-se adequado quando aplicado ao ajuste de dados termodinámicos, proporcionando ótimos ajustes em todos os casos estudados.

Como esperado, o desempenho do Método Modificado foi superior ao Método Spline Estendido. Devido ao Método Modificado levar em consideração os erros experimentais das variáveis envolvidas, o estudo do problema fica muito mais próximo da realidade. Em três casos os dois métodos forneceram resultados próximos sob o ponto de vista estatístico, mas sempre com um melhor desempenho do Método Spline Modificado.

Com este novo tratamento, o ajuste pelo Método Spline a dados termodinâmicos representou muito mais do que um simples método de interpolação, pois mostrou resultados condizentes com os de equações que representam fielmente o fenômeno estudado. Os conjuntos de dados escolhidos são difíceis de serem ajustados, mostrando o grande potencial de aplicação do Método Modificado.

Os autores esperam que o método seja aplicado a diversos tipos de curvas de duas variáveis, pois eles têm a expectativa de que o desempenho do método seja adequado a um grande número de fenômenos físicos que envolvem duas variáveis. Com o Método Modificado é possível, além de realizar interpolações, calcular valores da primeira e segunda derivada da função em qualquer ponto do conjunto de dados.

A escolha dos intervalos, que é arbitrária, segue algumas regras práticas como mostrado na seção 4.6, facilitando assim o trabalho inicial de utilização do método.

Como o desempenho do Método Modificado é diretamente ligado a acuracidade da determinação dos pontos experimentais, ressente-se em alguns casos de algum critério estatístico eficiente que descarte com segurança pontos mal obtidos experimentalmente. Isto seria aplicado não somente ao Método Modificado, mas a todos os métodos de

Conclusão 80

ajuste de curvas.

Uma sugestão que teria grande utilidade para o meio científico seria uma extensão deste trabalho para o ajuste de curvas envolvendo uma variável independente e duas variáveis dependentes. Neste caso acrescentar-se-ia mais um conjunto de restrições de alisamento e outro de restrições de convergência para a nova variável dependente, o que aumentaria a dimensão da matriz de resolução do sistema não linear do Método Spline Modificado para 5N + 6K + 1.

Apêndice 1

5 MARGIN 132

Neste apêndice é apresentado o programa em BASIC - PLUS - II feito para o computador Mainframe Vax.

```
10 REM - Programa de ajuste de curvas pelo metodo Spline -
15 OPTION TYPE=REAL, SIZE=REAL DOUBLE
16 DECLARE STRING INICIO, ES1, ES2, ES3, CURVA, ABSC, ORDE, ES4, ES5, ES6, ES7, ES8
20 REM - MAXPLIN1
21 REM - ENTRADA DE DADOS -
22 PRINT "Este programa pode ajustar dados experimentais por 3 metodos:"
23 PRINT\PRINT\PRINT "Metodo spline;"
24 PRINT "Metodo spline acoplado ao metodo dos minimos quadrados;"
25 PRINT "Metodo spline acoplado ao metodo da maxima verossimilhanca."\PRINT\PRINT\PRINT
26 INPUT "Voce deseja ajustar seus dados por algum(s) dos metodos acima?";inicio$
40 INPUT "Qual o numero de pontos a serem ajustados"; N
50 INPUT "Qual o numero de pontos extremos de intervalos"; LL
51 INPUT "Qual e a curva que esta sendo ajustada?";curva$
52 INPUT "O que temos na abscissa?";absc$
53 INPUT "O que temos na ordenada?"; orde$
60 Z=3*(LL+N)-2\Z1=Z+1
70 DIM X(N), Y(N), L(N), P(LL), F(Z), ALF(N), DPX(N), DPY(N), DX(N), FEE$(N), DPXX(N), CSP(N), CMQ(LL), CMV(L
90 DIM A(Z,Z1),P1(N),C1(N),A1(N),PDF(N),SDF(N),DY(N),X1(N),Y1(N),LAMB(N),DPYY(N),ASP(N),ANQ(LL),
100 REM - Entrada dos pontos a serem ajustados
110 REM
120 FOR I=1 TO N
130 INPUT X(I), Y(I)
140 X1(I)=X(I)\setminus Y1(I)=Y(I)
150 NEXT I
160 REM - Entrada dos extremos de intervalos -
170 FOR I=1 TO LL
```

```
82
180 INPUT P(I)
190 NEXT I
200 REM
210 INPUT "Voce deseja ajustar seus pontos pelo metodo spline (sim ou nao )?"; ES1$
250 INPUT "Voce deseja ajustar seus pontos pelo metodo spline acoplado ao metodo
dos minimos quadrados ( sim ou nao )?"; ES2$
260 INPUT "Voce deseja ajustar seus pontos pelo metodo spline acoplado ao metodo
da maxima verossimilhanca? (sim ou nao)"; ES3$
262 PRINT "Os dados da curva ";curva$\PRINT "serao ajustados pelos seguintes metodos:"\print\pri
263 LLL=LL-1\IF ES1$="SIM" THEN PRINT "Metodo spline."
264 IF ES2$="SIM" THEN PRINT "Metodo spline acoplado ao metodo dos minimos quadrados."
265 IF ES3$="SIM" THEN PRINT "Metodo spline acoplado ao metodo da maxima verossimilhanca."\PRINT
266 PRINT\PRINT\PRINT\PRINT "Numero de pontos experimentais= ":N:\PRINT\PRINT
267 IF ES1$="SIM" THEN NS=N-1
                       PRINT "Numero de intervalos para o metodo spline= ";NS
                       PRINT\PRINT
    END IF
268 IF ES2$="SIM" OR ES3$="SIM" THEN PRINT "Numero de intervalos para o metodo spline
acoplado ao metodo ";
269 IF ES2$="SIM" THEN PRINT "dos minimos quadrados"; \IF ES3$="SIM" THEN PRINT "
270 IF ES3$="SIM" THEN PRINT "metodo da maxima verossimilhanca";
271 PRINT " =";LLL\PRINT
272 PRINT "Na abscissa (x) temos a variavel ";absc$\PRINT
273 PRINT "Na ordenada (y) temos a variavel ";orde$\PRINT\PRINT\PRINT\PRINT
274 PRINT "Na tabela de respostas X(I) e Y(I) representam os pontos experimentais."
275 PRINT "XC(I) e YC(I) representam os pontos calculados."
276 PRINT "DX e DY sao os desvios absolutos das variaveis x e y entre o valor cal-
culado e o experimental."
```

277 PRINT "PDF(I) e SDF(I) sao respectivamente a primeira e a segunda derivada da

278 PRINT "S2 e a função de verossimilhanca, Sx2 e Sy2 são as contribuições das variaveis x e v"

279 PRINT "Rg e o coeficiente de correlacao global da curva. Rx e Ry sao os coeficientes de correlacao das variaveis x e y"\PRINT

280 IF ES1\$="SIM" THEN GOSUB 1500

GOSUB 10000

END IF

565 INPUT DPX(I)

. . _____..

```
282 FOR I=1 TO N
285 CSP(I)=F(I)\setminus ASP(I)=Y(I)
287 NEXT 1
290 GDSUB 9000
296 REM - Entrada dos valores de desvio padrao de Y
297 FOR I=1 TO N
298 INPUT DPY(I)
299 DPY(I)=DPY(I)*DPY(I)
300 NEXT I
310 IF ES2$="NAO" GOTO 510
330 N1=3*LL+2*N-2
345 GOSUB 2000
360 GOSUB 10000
370 FOR I=1 TO LL-2
380 LAMB(I+1)=F(2*LL+N+I)
390 NEXT I
450 FOR I=1 TO LL
460 A1(I)=F(I)\setminus C1(I)=F(LL+I)\setminus AMQ(I)=A1(I)\setminus CMQ(I)=C1(I)
470 NEXT I
472 FOR I=1 TO N
475 ALF(I)=F(2*LL+I)
476 \text{ Y1}(I)=F(3*LL+N+I-2)
478 NEXT I
479 GOSUB 6000
480 GOSUB 7000
490 GOSUB 9000
500 REM
510 IF ES3$="NAO" GOTO 689
520 IF ES2$="SIM" GOTO 555
525 GOSUB 1000
530 N1=LL
540 GOSUB 10000
542 FOR I=1 TO LL
544 \text{ C1(I)}=F(I)\setminus A1(I)=Y1(P(I))
548 NEXT I
550 GOSUB 9000
553 REM - Entrada dos valores de desvio padrao de X
555 FOR I=1 TO N
```

```
566 DPX(I)=DPX(1)*DPX(I)
567 NEXT I
570 FOR 1=1 TO N
571 ALF(I)=0\LAMB(I)=1
572 NEXT I
573 N1=3*(LL+N)-2
575 GOSUB 2000
580 GOSUB 3000
600 GDSUB 10000
610 GOSUB 4000
630 ITER=ITER+1
640 IF ITER>20 THEN PRINT "O PROGRAMA NAO CONVERGIU EM 20 ITERACOES"
                    GOSUB 6000
                    GOSUB 7000
                    GDTO 11000
    END IF
650 IF CONVER=O THEN GOSUB 6000
                     GDSUB 7000
                     FOR I=1 TO LL
                     CMV(I)=C1(I)\setminus AMV(I)=A1(I)
                     NEXT I
                     PRINT\PRINT\PRINT "D programa convergiu em";iter;"iteracoes"
                     PRINT\PRINT\PRINT
    END IF
660 IF CONVER=1 THEN GOSUB 9000
                     GOTO 575
   END IF
661 INPUT "A funcao que voce esta calculando e um diagrama Y x X de uma mistura aze-
otropica (sim ou nao)"; ES4$
662 IF ES4$="SIM" THEN GOSUB 5000
                       PRINT "D ponto de azeotropia ocorre quando x= "; XA\PRINT\PRINT
    end if
665 PRINT "Voce deseja interpolar algum valor para a variavel x ou y por algum dos
metodos calculados (sim ou nao)";
666 INPUT ES5$
667 IF ES5$="NAO" GOTO 689
668 IF ES5$="SIM" THEN PRINT "Qual e o metodo que voce deseja utilizar para interpolar:"
                       PRINT "spline puro=sp"
```

PRINT "spline com minimos quadrados=sm"

```
PRINT "spline com maxima verossimilhanca=sy"
                        INPUT ES6$
    END IF
670 PRINT "Se voce deseja algum valor para x digite x. Para y digite y";\INPUT ES7$
673 IF ES7$="X" THEN INPUT "Qual e o valor de x"; VARX
                      GDSUB 8000
                      PRINT "para x= "; VARX; \PRINT " f(x)= "; SOLY
                      PRINT
                      PRINT
    END IF
674 IF ES7$="Y" THEN INPUT "Qual e o valor de Y"; VARY
                     GOSUB 8000
                     PRINT "para y= "; VARY; \PRINT " x= "; XA
                     PRINT
                     PRINT
    END IF
675 INPUT "Voce deseja interpolar mais algum valor (sim ou nao)"; ES8$
676 IF ES8$="SIM" COTO 668
689 IF ES2$="SIM" GOTO 11000
690 PRINT "Os pontos nao foram ajustados. Execute o programa novamente e siga cor-
retamente as instrucoes."\G0T0 11000
1000 REM - subroutine para a estimativa de C(I) pelo metodo spline
1010 REM - estimativa de C
1020 FOR I=2 TO LL
1030 L(I)=X(P(I))-X(P(I-1))
1040 NEXT I
1080 U=LL+1
1090 FOR I=2 TO LL-1
1100 A(I,I-1)=L(I)/6
1110 A(I,I)=(L(I)+L(I+1))/3
1120 A(I,I+1)=L(I+1)/6
1130 A(I,U)=(Y(P(I+1))-Y(P(I)))/L(I+1)-(Y(P(I))-Y(P(I-1)))/L(I)
1150 A(1,1)=1\setminus A(1,2)=-1\setminus A(I+1,I)=1\setminus A(I+1,I+1)=-1
1500 REM - Subroutine para ajuste pelo metodo spline
1510 FOR I=2 TO N
1520 L(I)=X(I)-X(I-I)
1530 NEXT I
```

. . . _____

```
1540 N1=N\U=N+1
1550 FOR I=2 TO N-1
1560 A(I,I-1)=L(I)/6
1570 A(I,I)=(L(I)+L(I+1))/3
1580 A(I,I+1)=L(I+1)/6
1590 A(I,U)=(Y(I+1)-Y(I))/L(I+1)-(Y(I)-Y(I-1))/L(I)
1610 A(1,1)=1\setminus A(1,2)=-1\setminus A(N,N-1)=1\setminus A(N,N)=-1
1620 RETURN
2000 REM Subroutine para o calculo dos parametros ajustando-se com minimos quadrados
2001 VARIMP=1
2002 REM - Calculo dos intervalos
2004 FOR I=2 TO LL
2006 L(I)=X1(P(I))-X1(P(I-1))
2008 NEXT I
2010 REM Matriz Fa e Fat
2020 FOR I=1 TO LL-1
2030 FOR K=P(I) TO P(I+1)-1
2040 V=2*LL+K
2050 A(I,V)=(X1(K)-X1(P(I)))/L(I+1)-1
2062 A(V,I+1)=-(X1(K)-X1(P(I)))/L(I+1)
2070 A(V,I)=A(I,V)\setminus A(I+1,V)=A(V,I+1)
2075 NEXT K
2080 NEXT I
2085 A(2*LL+N,LL)=-1\A(LL,2*LL+N)=-1
2090 REM Matriz Fc e Fct
2100 FOR I=1 TO LL-1
2110 FOR K=P(I) TO P(I+1)-1
2120 V=2*LL+K\W=LL+I
2130 \text{ A(W,V)} = (X1(K)-X1(P(I)))**3/(6*L(I+1))-(X1(K)-X1(P(I)))**2/2+L(I+1)*(X1(K)-X1(P(I)))/3
2152 \text{ A(V,W+1)} = -(X1(K)-X1(P(I)))**3/(6*L(I+1))+L(I+1)*(X1(K)-X1(P(I)))/6
2160 A(V,W)=A(W,V)\setminus A(W+1,V)=A(V,W+1)
2170 NEXT K
2180 NEXT I
2220 REM - Matriz das restricoes devido a continuidade
2230 REM - Derivadas em relacao a A
2240 FOR I=2 TO LL-1
2250 V=2*LL+N+I-1
2270 A(V,I-1)=-1/L(I)\setminus A(I-1,V)=A(V,I-1)
```

```
2280 A(V,I)=1/L(I)+1/L(I+1)\setminus A(I,V)=A(V,I)
2290 A(V,I+1)=-1/L(I+1)\setminus A(I+1,V)=A(V,I+1)
2300 NEXT I
2400 REM - Derivadas em relacao a C
2410 FOR I=2 TO LL-1
2420 V=2*LL+N+I-1\W=LL+I
2440 A(V,W-1)=L(I)/6\A(W-1,V)=A(V,W-1)
2450 A(V,W)=(L(I)+L(I+1))/3(W,V)=A(V,W)
2460 A(V,W+1)=L(I+1)/6\A(W+1,V)=A(V,W+1)
2470 NEXT I
2500 REM - Montagem da matrizes identidade, DPY e vetor forca
2510 FOR I=1 TO N
2520 W=3*LL+N+I-2\U=2*LL+I
2530 A(W,W)=1\A(U,W)=1
2540 A(W,U)=1\setminus IF DPY(I)=0 THEN A(W,U)=0
2545 \text{ A(W.N1+1)=Y(I)}
2550 NEXT I
2700 RETURN
3000 REM - Subroutine que contem os parametros da maxima verossimilhanca
3001 VARIMP=2
3002 FOR I=1 TO N1
3005 A(I,N1+1)=0
3007 NEXT I
3010 REM - Montagem da matriz @Fax*alfa
3020 FOR I=1 TO LL-1
3030 FOR K=P(I) TO P(I+1)-1
3040 V=3*LL+2*N+K-2
3050 A(I,V)=1/L(I+1)*ALF(K)\setminus A(V,I)=A(I,V)*DPX(K)
3060 A(I+1,V)=-1/L(I+1)*ALF(K)\setminus A(V,I+1)=A(I+1,V)*DPX(K)
3070 NEXT K
3080 NEXT I
3083 A(I,V+1)=1/L(LL)*ALF(N)A(V+1,I)=A(I,V+1)*DPX(N)
3087 A(I+1,V+1)=-1/L(LL)*ALF(N)\setminus A(V+1,I+1)=A(I+1,V+1)*DPX(N)
3090 REM - Montagem da matriz @Fcx*alfa
3100 FOR I=1 TO LL-1
3110 FOR K=P(I) TO P(I+1)-1
3120 V=3*LL+2*N+K-2\W=LL+I
3130 A(W,V)=(1/2*(X1(K)-X1(P(I)))**2/L(I+1)-(X1(K)-X1(P(I)))+L(I+1)/3)*ALF(K)
3140 A(V,W)=A(W,V)*DPX(K)
```

```
3150 A(W+1,V)=(-1/2*(X1(K)-X1(P(I)))**2/L(I+1)+L(I+1)/6)*ALF(K)
3160 A(V,W+1)=A(W+1,V)*DPX(K)
3170 NEXT K
3180 NEXT I
3183 A(W,V+1)=-L(LL)*ALF(N)/6(A(V+1,W)=A(W,V+1)*DPX(N)
3187 A(W+1.V+1) = -L(LL)*ALF(N)/3A(V+1.W+1) = A(W+1.V+1)*DPX(N)
3190 REM - Montagem das matrizes somatorias xFx e Fx
3200 FOR I=1 TD LL-1
3210 FOR K=P(I) TO P(I+1)-1
3220 W=2*LL+K\U=3*LL+2*N+K-2
3230 \ A(W,U) = -(C1(I+1)-C1(I))*(X1(K)-X1(P(I)))**2/(2*L(I+1))-C1(I)*(X1(K)-X1(P(I)))-C1(I)*(X1(K)-X1(P(I)))-C1(I)*(X1(K)-X1(P(I)))-C1(I)*(X1(K)-X1(P(I)))-C1(I)*(X1(K)-X1(P(I)))-C1(I)*(X1(K)-X1(P(I)))-C1(I)*(X1(K)-X1(P(I)))-C1(I)*(X1(K)-X1(P(I)))-C1(I)*(X1(K)-X1(P(I)))-C1(I)*(X1(K)-X1(P(I)))-C1(I)*(X1(K)-X1(P(I)))-C1(I)*(X1(K)-X1(P(I)))-C1(I)*(X1(K)-X1(P(I)))-C1(I)*(X1(K)-X1(P(I)))-C1(I)*(X1(K)-X1(P(I)))-C1(I)*(X1(K)-X1(P(I)))-C1(I)*(X1(K)-X1(P(I)))-C1(I)*(X1(K)-X1(P(I)))-C1(I)*(X1(K)-X1(P(I)))-C1(I)*(X1(K)-X1(P(I)))-C1(I)*(X1(K)-X1(P(I)))-C1(I)*(X1(K)-X1(P(I)))-C1(I)*(X1(K)-X1(P(I)))-C1(I)*(X1(K)-X1(P(I)))-C1(I)*(X1(K)-X1(P(I)))-C1(I)*(X1(K)-X1(P(I)))-C1(I)*(X1(K)-X1(P(I)))-C1(I)*(X1(K)-X1(P(I)))-C1(I)*(X1(K)-X1(P(I)))-C1(I)*(X1(K)-X1(P(I)))-C1(I)*(X1(K)-X1(P(I)))-C1(I)*(X1(K)-X1(P(I)))-C1(I)*(X1(K)-X1(P(I)))-C1(I)*(X1(K)-X1(P(I)))-C1(I)*(X1(K)-X1(P(I)))-C1(I)*(X1(K)-X1(P(I)))-C1(I)*(X1(K)-X1(P(I)))-C1(I)*(X1(K)-X1(P(I)))-C1(I)*(X1(K)-X1(P(I)))-C1(I)*(X1(K)-X1(P(I)))-C1(I)*(X1(K)-X1(P(I)))-C1(I)*(X1(K)-X1(P(I)))-C1(I)*(X1(K)-X1(P(I)))-C1(I)*(X1(K)-X1(P(I)))-C1(I)*(X1(K)-X1(P(I)))-C1(I)*(X1(K)-X1(P(I)))-(X1(K)-X1(P(I)))-(X1(K)-X1(P(I)))-(X1(K)-X1(P(I)))-(X1(K)-X1(P(I)))-(X1(K)-X1(P(I)))-(X1(K)-X1(P(I)))-(X1(K)-X1(P(I)))-(X1(K)-X1(P(I)))-(X1(K)-X1(P(I)))-(X1(K)-X1(P(I)))-(X1(K)-X1(P(I)))-(X1(K)-X1(P(I)))-(X1(K)-X1(P(I)))-(X1(K)-X1(P(I)))-(X1(K)-X1(P(I)))-(X1(K)-X1(P(I)))-(X1(K)-X1(P(I)))-(X1(K)-X1(P(I)))-(X1(K)-X1(P(I)))-(X1(K)-X1(P(I)))-(X1(K)-X1(P(I)))-(X1(K)-X1(F(I)))-(X1(K)-X1(F(I)))-(X1(K)-X1(F(I)))-(X1(K)-X1(F(I)))-(X1(K)-X1(F(I)))-(X1(K)-X1(F(I)))-(X1(K)-X1(F(I)))-(X1(K)-X1(F(I)))-(X1(K)-X1(F(I)))-(X1(K)-X1(F(I)))-(X1(K)-X1(F(I)))-(X1(K)-X1(F(I)))-(X1(K)-X1(F(I)))-(X1(K)-X1(F(I)))-(X1(K)-X1(F(I)))-(X1(K)-X1(F(I)))-(X1(K)-X1(F(I)))-(X1(K)-X1(F(I)))-(X1(K)-X1(F(I)))-(X1(K)-X1(F(I)))-(X1(K)-X1(F(I)))-(X1(K)-X1(F(I)))-(X1(K)-X1(F(I)))-(X1(K)-X1(F(I)))-(X1(K)-X1(F(I)))-(X1(K)-X1(F(I)))-(X1(K)-X1(F(I)))-(X1(K)-X1(F(I))-(X1(K)-X1(F(I)))-(X1(K)-X1(F(I)))-(X1(F(I))-(X1(F(I)))-(X1(F(I))-(X1(F(I)))-(X1(F(I))-(X1(
(A1(I+1)-A1(I))/L(I+1)+(C1(I+1)+2*C1(I))*L(I+1)/6
3240 A(U,W)=A(W,U)*DPX(K)
3250 NEXT K
3260 NEXT I
3264 \text{ A(W+1,U+1)} = -L(LL)*(C1(I)/6+C1(I+1)/3)-(A1(I+1)-A1(I))/L(LL)
3267 A(U+1,W+1)=A(W+1,U+1)*DPX(N)
3270 REM - Montagem da matriz derivada da somatoria xFx*alfa
3280 FOR I=1 TO LL-1
3290 FOR K=P(I) TO P(I+1)-1
3300 V=3*LL+2*N+K-2
3310 A(V,V)=1+DPX(K)*ALF(K)*(-(C1(I+1)-C1(I))*(X1(K)-X1(P(I)))/L(I+1)-C1(I))
3320 NEXT K
3340 NEXT I
3345 A(V+1,V+1)=1-ALF(N)*DPX(N)*C1(I+1)
3346 FOR I=1 TO N
3347 W=3*LL+N+I-2\U=2*LL+I
3348 A(W.U)=DPY(I)
3349 NEXT I
3350 REM - Vetor forca
3360 FOR I=1 TO LL
3370 FOR J=1 TO N
3380 V=2*LL+J\W=LL+I
3390 A(I,N1+1)=A(I,N1+1)+A(I,V)*ALF(J)
3400 A(W,N1+1)=A(W,N1+1)+A(W,V)*ALF(J)
3410 NEXT J
3420 FOR J=1 TO LL-2
3430 V=2*LL+N+J\W=LL+I
3440 A(I,N1+1)=A(I,N1+1)+A(I,V)*LAMB(J+1)
```

```
3450 A(W,N1+1)=A(W,N1+1)+A(W,V)*LAMB(J+1)
3460 NEXT J
3470 NEXT I
3480 REM
3490 FOR I=1 TO N
3500 FOR J=1 TO LL
3510 V=2*LL+I\W=LL+J
3520 A(V,N1+1)=A(V,N1+1)+A(V,J)*A1(J)+A(V,W)*C1(J)
3530 NEXT J
3540 A(V,N1+1)=A(V,N1+1)+Y1(I)
3550 NEXT I
3560 REM
3570 FOR I=1 TO LL-2
3580 FOR J=1 TO LL
3590 V=2*LL+N+I\W=LL+J
3600 A(V,N1+1)=A(V,N1+1)+A(V,J)*A1(J)+A(V,W)*C1(J)
3620 NEXT I
3630 REM
3640 FOR I=1 TO LL-1
3645 FOR K=P(I) TO P(I+1)
3650 V=3*LL+N+K-2\W=V+N
3660 A(W,N1+1)=A(W,2*LL+K)*ALF(K)+X1(K)-X(K)
3670 A(V,N1+1)=Y1(K)-Y(K)+ALF(K)*DPY(K)
3675 NEXT K
3680 NEXT I
3685 FOR I=1 TO N1
3690 A(I,N1+1)=-A(I,N1+1)
3695 NEXT I
3700 RETURN
4000 REM - Subroutine para a convergencia do metodo maxpline
4010 ET=10*>-3\CONVER=0
4050 FOR I=1 TO LL
4055 IF A1(I)=0 THEN CONVER=1 UNLESS ABS(F(I))<ET*ET
                ELSE CONVER=1 UNLESS ABS(F(I)) <ET*ABS(A1(I))
     END IF
4060 A1(I)=F(I)+A1(I)\IF ABS(A1(I))<10**-8 THEN A1(I)=0
4065 IF C1(I)=0 THEN CONVER=1 UNLESS ABS(F(LL+I))<ET*ET
                ELSE CONVER=1 UNLESS ABS(F(LL+I))<ET*ABS(C1(I))
```

Avêndice 1

5090 IF ABS((XN-XA)/XA)>10E-6 GOTO 5020

```
END IF
  4070 C1(I)=F(LL+I)+C1(I)\IF ABS(C1(I))<10**-8 THEN C1(I)=0
  4080 NEXT I
  4100 FOR I=1 TO LL-2
  4110 V=2*LL+N+I
  4115 IF LAMB(I+1)=0 THEN CONVER=1 UNLESS ABS(F(V))<ET*ET
                                                                                 ELSE CONVER=1 UNLESS ABS(F(V)) < ET * ABS(LAMB(I+1))
                    END IF
 4120 LAMB(I+1)=F(V)+LAMB(I+1)\IF ABS(LAMB(I+1))<10**-8 THEN LAMB(I+1)=0
 4130 NEXT I
 4140 FOR I=1 TO N
 4150 V=2*LL+I\W=3*LL+N+I-2\U=W+N
 4155 IF ALF(I)=0 THEN CONVER=1 UNLESS ABS(F(V))<ET*ET
                                                                     ELSE CONVER=1 UNLESS ABS(F(V)) < ET * ABS(ALF(I))
                    END IF
 4160 ALF(I)=F(V)+ALF(I)\setminus IF ABS(ALF(I))<10**-8 THEN ALF(I)=0
 4165 IF Y1(I)=0 THEN CONVER=1 UNLESS ABS(F(W)) < ET * ET
                                                                 ELSE CONVER=1 UNLESS ABS(F(W)) < ET * ABS(Y1(I))
                    END IF
 4170 \text{ Y1}(I)=F(W)+Y1(I)\setminus IF ABS(Y1(I))<10**-8 THEN Y1(I)=0
 4175 IF X1(I)=0 THEN CONVER=1 UNLESS ABS(F(U))<ET*ET
                                                                ELSE CONVER=1 UNLESS ABS(F(U)) < ET * ABS(X1(I))
                    END IF
4180 X1(I)=F(U)+X1(I)\setminus IF ABS(X1(I))<10**-8 THEN X1(I)=0
 4185 \text{ XMV}(I) = X1(I)
 4190 NEXT I
4200 RETURN
5000 REM Subroutine para determinar o ponto de azeotropia
5010 XA = .7 \ K = 1
5020 FOR I=2 TO LL-1
5030 IF X(P(I)) < XA THEN K=I
5040 NEXT I
5050 FA=XA+(C1(K)-C1(K+1))*(XA-X1(P(K)))**3/(6*L(K+1))-C1(K)*(XA-X1(P(K)))**2/2+((A1(K)-C1(K)))**2/2+((A1(K)-C1(K)))**2/2+((A1(K)-C1(K)))**2/2+((A1(K)-C1(K)))**2/2+((A1(K)-C1(K)))**2/2+((A1(K)-C1(K)))**2/2+((A1(K)-C1(K)))**2/2+((A1(K)-C1(K)))**2/2+((A1(K)-C1(K)))**2/2+((A1(K)-C1(K)))**2/2+((A1(K)-C1(K)))**2/2+((A1(K)-C1(K)))**2/2+((A1(K)-C1(K)))**2/2+((A1(K)-C1(K)))**2/2+((A1(K)-C1(K)))**2/2+((A1(K)-C1(K)))**2/2+((A1(K)-C1(K)))**2/2+((A1(K)-C1(K)))**2/2+((A1(K)-C1(K)))**2/2+((A1(K)-C1(K)))**2/2+((A1(K)-C1(K)))**2/2+((A1(K)-C1(K)))**2/2+((A1(K)-C1(K)))**2/2+((A1(K)-C1(K)))**2/2+((A1(K)-C1(K)))**2/2+((A1(K)-C1(K)))**2/2+((A1(K)-C1(K)))**2/2+((A1(K)-C1(K)))**2/2+((A1(K)-C1(K)))**2/2+((A1(K)-C1(K)))**2/2+((A1(K)-C1(K)))**2/2+((A1(K)-C1(K)))**2/2+((A1(K)-C1(K)))**2/2+((A1(K)-C1(K)))**2/2+((A1(K)-C1(K)))**2/2+((A1(K)-C1(K)))**2/2+((A1(K)-C1(K)))**2/2+((A1(K)-C1(K)))**2/2+((A1(K)-C1(K)))**2/2+((A1(K)-C1(K)))**2/2+((A1(K)-C1(K)))**2/2+((A1(K)-C1(K)))**2/2+((A1(K)-C1(K)))**2/2+((A1(K)-C1(K)))**2/2+((A1(K)-C1(K)))**2/2+((A1(K)-C1(K)))**2/2+((A1(K)-C1(K)))**2/2+((A1(K)-C1(K)))**2/2+((A1(K)-C1(K)))**2/2+((A1(K)-C1(K)))**2/2+((A1(K)-C1(K)))**2/2+((A1(K)-C1(K)))**2/2+((A1(K)-C1(K)))**2/2+((A1(K)-C1(K)))**2/2+((A1(K)-C1(K)))**2/2+((A1(K)-C1(K)))**2/2+((A1(K)-C1(K)))**2/2+((A1(K)-C1(K)))**2/2+((A1(K)-C1(K)))**2/2+((A1(K)-C1(K)))**2/2+((A1(K)-C1(K)))**2/2+((A1(K)-C1(K)))**2/2+((A1(K)-C1(K)))**2/2+((A1(K)-C1(K)))**2/2+((A1(K)-C1(K)))**2/2+((A1(K)-C1(K)))**2/2+((A1(K)-C1(K)))**2/2+((A1(K)-C1(K)))**2/2+((A1(K)-C1(K)))**2/2+((A1(K)-C1(K)))**2/2+((A1(K)-C1(K)))**2/2+((A1(K)-C1(K)))**2/2+((A1(K)-C1(K)))**2/2+((A1(K)-C1(K)))**2/2+((A1(K)-C1(K)))**2/2+((A1(K)-C1(K)))**2/2+((A1(K)-C1(K)))**2/2+((A1(K)-C1(K)))**2/2+((A1(K)-C1(K)))**2/2+((A1(K)-C1(K)))**2/2+((A1(K)-C1(K)))**2/2+((A1(K)-C1(K)))**2/2+((A1(K)-C1(K)))**2/2+((A1(K)-C1(K)))**2/2+((A1(K)-C1(K)))**2/2+((A1(K)-C1(K)))**2/2+((A1(K)-C1(K)))**2/2+((A1(K)-C1(K)))**2/2+((A1(K)-C1(K)))**2/2+((A1(K)-C1(K)))**2/2+((A1(K)-C1(K)))**2/2+((A1(K)-C1(K)))**2/2+((A1(K)-C1(K)))**2/2+((A1(K)-C1(
A1(K+1))/L(K+1)+(C1(K+1)+2*C1(K))*L(K+1)/6)*(XA-X1(P(K)))-A1(K)
5060 FAD=1+(C1(K)-C1(K+1))*(XA-X1(P(K)))**2/(2*L(K+1))-C1(K)*(XA-X1(P(K)))+((A1(K)-K))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K)))*(XA-X1(P(K))
A1(K+1)/L(K+1)+(C1(K+1)+2*C1(K))*L(K+1)/6)
5070 XN=XA
5080 XA=XA-FA/FAD
```

```
5100 RETURN
 6000 REM - Subroutine para o calculo das funcoes estatisticas
 6010 XM=0\YM=0\RXM=0\RYM=0\RT=0\SX=0\SY=0\RXD=0\RYD=0\RX=0\RY=0\STOTAL=0
 6035 FOR I=1 TO N
 6036 DPXX(I) = (DPX(I) **0.5) \setminus DPYY(I) = (DPY(I) **0.5)
 6037 NEXT I
 6040 FOR I=2 TO LL
 6050 FDR K=P(I-1) TO P(I)
 6060 DX(K)=X(K)-X1(K)
 6070 DY(K)=Y(K)-Y1(K)
 6080 PDF(K)=-C1(I-1)/(2*L(I))*((X1(P(I))-X1(K))**2)+C1(I)/(2*L(I))*((X1(K)-X1(P(I-1))-X1(K)))*((X1(K)-X1(P(I-1))-X1(K)))*((X1(K)-X1(P(I-1))-X1(K)))*((X1(K)-X1(K))-X1(K)))*((X1(K)-X1(K))-X1(K)))*((X1(K)-X1(K))-X1(K))*((X1(K)-X1(K))-X1(K)))*((X1(K)-X1(K))-X1(K)))*((X1(K)-X1(K))-X1(K)))*((X1(K)-X1(K))-X1(K)))*((X1(K)-X1(K))-X1(K)))*((X1(K)-X1(K))-X1(K)))*((X1(K)-X1(K))-X1(K)))*((X1(K)-X1(K))-X1(K)))*((X1(K)-X1(K))-X1(K)))*((X1(K)-X1(K))-X1(K)))*((X1(K)-X1(K))-X1(K)))*((X1(K)-X1(K))-X1(K)))*((X1(K)-X1(K))-X1(K)))*((X1(K)-X1(K))-X1(K)))*((X1(K)-X1(K))-X1(K)))*((X1(K)-X1(K))-X1(K)))*((X1(K)-X1(K))-X1(K)))*((X1(K)-X1(K))-X1(K)))*((X1(K)-X1(K))-X1(K)))*((X1(K)-X1(K))-X1(K)))*((X1(K)-X1(K))-X1(K)))*((X1(K)-X1(K))-X1(K)))*((X1(K)-X1(K))-X1(K)))*((X1(K)-X1(K))-X1(K)))*((X1(K)-X1(K))-X1(K)))*((X1(K)-X1(K))-X1(K)))*((X1(K)-X1(K))-X1(K)))*((X1(K)-X1(K))-X1(K)))*((X1(K)-X1(K))-X1(K)))*((X1(K)-X1(K))-X1(K)))*((X1(K)-X1(K))-X1(K)))*((X1(K)-X1(K))-X1(K)))*((X1(K)-X1(K))-X1(K)))*((X1(K)-X1(K))-(X1(K)-X1(K)))*((X1(K)-X1(K))-(X1(K)-X1(K)))*((X1(K)-X1(K))-(X1(K)-X1(K)))*((X1(K)-X1(K))-(X1(K)-X1(K)))*((X1(K)-X1(K))-(X1(K)-X1(K)))*((X1(K)-X1(K))-(X1(K)-X1(K)))*((X1(K)-X1(K))-(X1(K)-X1(K)))*((X1(K)-X1(K))-(X1(K)-X1(K)))*((X1(K)-X1(K))-(X1(K)-X1(K)))*((X1(K)-X1(K))-(X1(K)-X1(K)))*((X1(K)-X1(K))-(X1(K)-X1(K)))*((X1(K)-X1(K))-(X1(K)-X1(K)))*((X1(K)-X1(K))-(X1(K)-X1(K)))*((X1(K)-X1(K)-X1(K)))*((X1(K)-X1(K)-X1(K)))*((X1(K)-X1(K)-X1(K)))*((X1(K)-X1(K)-X1(K)))*((X1(K)-X1(K)-X1(K)))*((X1(K)-X1(K)-X1(K)))*((X1(K)-X1(K)-X1(K)))*((X1(K)-X1(K)-X1(K)))*((X1(K)-X1(K)-X1(K)))*((X1(K)-X1(K)-X1(K)))*((X1(K)-X1(K)-X1(K)))*((X1(K)-X1(K)-X1(K)))*((X1(K)-X1(K)-X1(K)))*((X1(K)-X1(K)-X1(K)))*((X1(K)-X1(K)-X1(K)))*((X1(K)-X1(K)-X1(K)))*((X1(K)-X1(K)-X1(K)))*((X1(K)-X1(K)-X1(K)))*((X1(K)-X1(K)-X1(K)))*((X1(K)-X1(K)-X1(K)))*((X1(K)-X1(K)-X1(K)))*((X1(K)-X1(K)-X1(K)-X1(K)))*((X1(K)-X1(K)-X1(K)-X1(K)))*((X1(K)-X1(K)-X1(K)-X1(K)))*((X1(K)-X1(K)-X1(K)-X1(K)))*((X1(K)-X1(K)-X1(K)-X1(K)))*((X1(K)-X1(K)-X1(K)-X1(K)))*((X1(K)-X1(K)-X1(K)))*((X1(K)-X1(K)-X1(K)))*((X1(
 1)))**2)+(C1(I-1)-C1(I))/6*L(I)+(A1(I)-A1(I-1))/L(I)
6090 \text{ SDF(K)} = C1(I-1)*(X1(P(I))-X1(K))/L(I)+C1(I)*(X1(K)-X1(P(I-1)))/L(I)
6100 NEXT K\NEXT I
6170 FOR I=1 TO N
6175 XM=XM+X(I)\YM=YM+Y(I)
6180 IF DPX(I)>0 THEN SX=SX+(X(I)-X1(I))**2/DPX(I)/2
6185 IF VARIMP=2 THEN SY=SY+(Y(I)-Y1(I))**2/(2*DPY(I)) UNLESS DPY(I)=0
                                              ELSE SY=SY+(Y(I)-Y1(I))**2/2
             END IF
6187 STOTAL=SX+SY
6190 NEXT I
6191 XM=XM/N\YM=YM/N
6192 FOR I=1 TO N
6193 SYC=SYC+(Y(I)-Y1(I))**2/(2*DPY(I)) UNLESS DPY(I)=0
6194 NEXT I
6200 FOR I=1 TO N
6205 IF VARIMP=1 THEN RXM=RXM+(X1(I)-XM)**2
                                                           RXD=RXD+(X(I)-XM)**2
6210 IF VARIMP=2 THEN RXM=RXM+X1(I)**2
                                                           RXD=RXD+X(I)**2
             END IF
6220 IF VARIMP=1 THEN RYM=RYM+(Y1(I)-YM)**2
                                                           RYD=RYD+(Y(I)-YM)**2
6222 IF VARIMP=2 THEN RYM=RYM+Y1(I)*Y1(I)
                                                           RYD=RYD+Y(I)*Y(I)
             END IF
6230 NEXT I
```

```
6232 IF RYD>O THEN RY=RYM/RYD
6237 IF RXD>O THEN RX=RXM/RXD
6240 RT=RX*RY
6250 RX=RX**.5\RY=RY**.5\RT=RT**.5
6300 RETURN
7000 REM - Subroutine para a impressao dos resultados.
7005 FOR I=1 TO N
7010 FEE$(I)=" "
7015 NEXT I
7020 FOR I=1 TO LL
7025 FEE$(P(I))="*"
7030 NEXT I
7031 PRINT\PRINT\PRINT "As respostas pelo metodo spline ";
7032 IF VARIMP=1 THEN PRINT "acoplado ao metodo dos minimos quadrados";
7033 IF VARIMP=2 THEN PRINT "acoplado ao metodo da maxima verossimilhanca";
7034 PRINT " fornece os seguintes"\PRINT "valores para a ";curva$\PRINT\PRINT
7130 PRINT " I ";" X(I) ";\IF VARIMP=2 THEN PRINT " DPX(I) ";" XC(I)
      DΧ
                          ":\IF VARIMP=2 THEN PRINT " DPY(I) ":
7132 PRINT "
                   Y(I)
7133 PRINT " YC(I) ";"
                            DY ":"
                                         PDF
                                                      # : H
                                                               SDF "\PRINT
7140 FOR I=1 TO N
7150 PRINT FEE$(I);\PRINT USING "##";I;\PRINT USING " #.###";X(I);\IF VA-
RIMP=2 THEN PRINT USING" ####.####";DPXX(I);
7152 IF VARIMP=2 THEN PRINT USING" #.###";X1(I);\IF VARIMP=2 THEN PRINT USING
    ###, ####" (DX(I);
7155 PRINT USING " ###### #### ";Y(I);\IF VARIMP=2 THEN PRINT USING" ####,####";DPYY(I);
7156 PRINT USING " #########"; Y1(I); \PRINT USING " ###.####"; DY(I);
\PRINT USING "######### "; PDF(I); \PRINT USING "#########; SDF(I)
7160 NEXT I
7192 PRINT\PRINT "O asterisco (*) indica que o ponto e extremo de intervalo."\PRINT\PRINT
7200 PRINT "A funcao de minimizacao S2 =";\IF VARIMP=2 THEN PRINT "Sx2 +";
7205 PRINT " Sy2 fornece o seguinte resultado :"\PRINT
7210 PRINT "S2 =";\IF VARIMP=2 THEN PRINT SX;"+";
7220 PRINT SY;\IF VARIMP=2 THEN PRINT " = ";STOTAL
7225 IF VARIMP=1 THEN PRINT "
                                            S comp =";SYC
7230 FOR I=1 TO N
7240 PRINT DPY(I)
7250 NEXT I
7370 RETURN
```

END IF

```
8000 REM Subroutine para interpolação
8010 IF ES6$="SP" THEN FOR I=1 TO N
                       X1(I)=X(I)
                       A1(I)=ASP(I)
                     , C1(I)=CSP(I)
                       P1(I)=I
                       L(I)=X(P1(I))-X(P1(I-1)) UNLESS I=1
                       NEXT I
                       PRINT "Pelo metodo spline puro,";
                       NL=N
     END IF
8020 IF ES6$="SM" THEN FOR I=1 TO LL
                       X1(P(I))=X(P(I))
                       A1(I)=AMQ(I)
                       C1(I) = CMQ(I)
                       P1(I)=P(I)
                       L(I)=X(P1(I))-X(P1(I-1)) UNLESS I=1
                       NEXT I
                       NL=LL
                       PRINT "Pelo metodo spline + min quadrados,";
     END IF
8030 IF ES6$="SV" THEN FOR I=1 TO LL
                       X1(P(I))=XMV(P(I))
                       A1(I)=AMV(I)
                       C1(I)=CMV(I)
                       P1(I)=P(I)
                       L(I)=X1(P1(I))-X1(P1(I-1)) UNLESS I=1
                       NEXT I
                       NL=LL
                       PRINT "Pelo metodo spline + max verossimilhanca.";
     END IF
8040 IF ES7$="X" GOTO 8070
8050 IF ES7$="Y" G0T0 8140
8060 REM Calculo para interpolação em x
8070 IF VARX<X(1) OR VARX>X(N) THEN PRINT "O seu ponto esta fora do intervalo de
ajuste"
                                    PRINT "O metodo spline nao e aconselhavel para
extrapolacoes"
```

```
8080 K=1
 8090 FOR I=2 TO NL-1
 8100 IF X(P1(I)) < VARX THEN K=I
 8110 NEXT I
 8120 SOLY=(-C1(K)+C1(K+1))*(VARX-X1(P1(K)))**3/(6*L(K+1))+C1(K)*(VARX-X1(P1(K)))**2/2-
 ((A1(K)-A1(K+1))/L(K+1)+(C1(K+1)+2*C1(K))*L(K+1)/6)*(VARX-X1(P1(K)))+A1(K)
 8125 GDTO 8280
 8130 REM Calculo para interpolação em y
 8140 YMIN=Y(1)\YMAX=Y(1)
 8150 FOR I=2 TO N
 8160 IF Y(I)<YMIN THEN YMIN=Y(I)
 8170 IF Y(I)>YMAX THEN YMAX=Y(I)
 8180 NEXT I
 8190 IF VARY<YMIN OR VARY>YMAX THEN PRINT "Nao e possivel interpolar pois este va-
 lor nao pertence a imagem da funcao"
8195 FOR I=1 TO NL-1
 8196 FOR J=P1(I) TO P1(I+1)-1
8197 \ FUNC = (-C1(I) + C1(I+1)) * (X1(J) - X1(P1(I))) * *3/(6*L(I+1)) + C1(I) * (X1(J) - X1(P1(I))) * *2/2 - (-C1(I) + C1(I+1)) * (X1(J) - X1(P1(I))) * *2/2 - (-C1(I) + C1(I+1)) * (X1(J) - X1(P1(I))) * *2/2 - (-C1(I) + C1(I+1)) * (X1(J) - X1(P1(I))) * *2/2 - (-C1(I) + C1(I+1)) * (X1(J) - X1(P1(I))) * *2/2 - (-C1(I) + C1(I+1)) * (X1(J) - X1(P1(I))) * *2/2 - (-C1(I) + C1(I+1)) * (X1(J) - X1(P1(I))) * *2/2 - (-C1(I) + C1(I+1)) * (X1(I) - X1(P1(I))) * *2/2 - (-C1(I) + C1(I+1)) * (X1(I) - X1(P1(I))) * *2/2 - (-C1(I) + C1(I+1)) * (X1(I) - X1(P1(I))) * *2/2 - (-C1(I) + C1(I+1)) * (X1(I) - X1(P1(I))) * *2/2 - (-C1(I) + C1(I+1)) * (X1(I) - X1(P1(I))) * *2/2 - (-C1(I) + C1(I+1)) * (X1(I) - X1(P1(I))) * *2/2 - (-C1(I) + C1(I+1)) * (X1(I) - X1(P1(I))) * *2/2 - (-C1(I) + C1(I+1)) * (X1(I) - X1(P1(I))) * *2/2 - (-C1(I) + C1(I+1)) * (X1(I) - X1(P1(I))) * *2/2 - (-C1(I) + C1(I+1)) * (X1(I) - X1(P1(I))) * *2/2 - (-C1(I) + C1(I+1)) * (X1(I) - X1(P1(I))) * *2/2 - (-C1(I) + C1(I+1)) * (X1(I) - X1(I+1)) * (X1
 ((A_1(I)-A_1(I+1))/L(I+1)+(C_1(I+1)+2*C_1(I))*L(I+1)/6)*(X_1(J)-X_1(P_1(I)))+A_1(I)
8200 IF (VARY-FUNC)>O THEN K=I
8203 NEXT J
8205 NEXT I
8208 XA=X(P1(K))\XN=XA
8240 FA=VARY+(C1(K)-C1(K+1))*(XA-X1(P1(K)))**3/(6*L(K+1))-C1(K)*(XA-X1(P1(K)))**2/2+((A1(K)-
A1(K+1)/L(K+1)+(C1(K+1)+2*C1(K))*L(K+1)/6)*(XA-X1(P1(K)))-A1(K)
8250 FAD=(C1(K)-C1(K+1))*(XA-X1(P1(K)))**2/(2*L(K+1))-C1(K)*(XA-X1(P1(K)))+((A1(K)-K))*(XA-X1(P1(K)))*(XA-X1(P1(K)))*(XA-X1(P1(K)))*(XA-X1(P1(K)))*(XA-X1(P1(K)))*(XA-X1(P1(K)))*(XA-X1(P1(K)))*(XA-X1(P1(K)))*(XA-X1(P1(K)))*(XA-X1(P1(K)))*(XA-X1(P1(K)))*(XA-X1(P1(K)))*(XA-X1(P1(K)))*(XA-X1(P1(K)))*(XA-X1(P1(K)))*(XA-X1(P1(K)))*(XA-X1(P1(K)))*(XA-X1(P1(K)))*(XA-X1(P1(K)))*(XA-X1(P1(K)))*(XA-X1(P1(K)))*(XA-X1(P1(K)))*(XA-X1(P1(K)))*(XA-X1(P1(K)))*(XA-X1(P1(K)))*(XA-X1(P1(K)))*(XA-X1(P1(K)))*(XA-X1(P1(K)))*(XA-X1(P1(K)))*(XA-X1(P1(K)))*(XA-X1(P1(K)))*(XA-X1(P1(K)))*(XA-X1(P1(K)))*(XA-X1(P1(K)))*(XA-X1(P1(K)))*(XA-X1(P1(K)))*(XA-X1(P1(K)))*(XA-X1(P1(K)))*(XA-X1(P1(K)))*(XA-X1(P1(K)))*(XA-X1(P1(K)))*(XA-X1(P1(K)))*(XA-X1(P1(K)))*(XA-X1(P1(K)))*(XA-X1(P1(K)))*(XA-X1(P1(K)))*(XA-X1(P1(K)))*(XA-X1(P1(K)))*(XA-X1(P1(K)))*(XA-X1(P1(K)))*(XA-X1(P1(K)))*(XA-X1(P1(K)))*(XA-X1(P1(K)))*(XA-X1(P1(K)))*(XA-X1(P1(K)))*(XA-X1(P1(K)))*(XA-X1(P1(K)))*(XA-X1(P1(K)))*(XA-X1(P1(K)))*(XA-X1(P1(K)))*(XA-X1(P1(K)))*(XA-X1(P1(K)))*(XA-X1(P1(K)))*(XA-X1(P1(K)))*(XA-X1(P1(K)))*(XA-X1(P1(K)))*(XA-X1(P1(K)))*(XA-X1(P1(K)))*(XA-X1(P1(K)))*(XA-X1(P1(K)))*(XA-X1(P1(K)))*(XA-X1(P1(K)))*(XA-X1(P1(K)))*(XA-X1(P1(K)))*(XA-X1(P1(K)))*(XA-X1(P1(K)))*(XA-X1(P1(K)))*(XA-X1(P1(K)))*(XA-X1(P1(K)))*(XA-X1(P1(K)))*(XA-X1(P1(K)))*(XA-X1(P1(K)))*(XA-X1(P1(K)))*(XA-X1(P1(K)))*(XA-X1(P1(K)))*(XA-X1(P1(K)))*(XA-X1(P1(K)))*(XA-X1(P1(K)))*(XA-X1(P1(K)))*(XA-X1(P1(K)))*(XA-X1(P1(K)))*(XA-X1(P1(K)))*(XA-X1(P1(K)))*(XA-X1(P1(K)))*(XA-X1(P1(K)))*(XA-X1(P1(K)))*(XA-X1(P1(K)))*(XA-X1(P1(K)))*(XA-X1(P1(K)))*(XA-X1(P1(K)))*(XA-X1(P1(K)))*(XA-X1(P1(K)))*(XA-X1(P1(K)))*(XA-X1(P1(K)))*(XA-X1(P1(K)))*(XA-X1(P1(K)))*(XA-X1(P1(K)))*(XA-X1(P1(K)))*(XA-X1(P1(K)))*(XA-X1(P1(K)))*(XA-X1(P1(K)))*(XA-X1(P1(K)))*(XA-X1(P1(K)))*(XA-X1(P1(K)))*(XA-X1(P1(K)))*(XA-X1(P1(K)))*(XA-X1(P1(K)))*(XA-X1(P1(K)))*(XA-X1(P1(K)))*(XA-X1(P1(K)))*(XA-X1(P1(K)))*(XA-X1(P1(K)))*(XA-X1(P1(K)))*(XA-X1(P1(K)))*(XA-X1(P1(K)))*(XA-X1(E(K)))*(XA-X1(E(K)))*(XA-X1(E(K)))*(XA-X1(E(K)))*(XA-X1(E(K)))*(XA-X1(E(K))
A1(K+1))/L(K+1)+(C1(K+1)+2*C1(K))*L(K+1)/6)
8260 XN=XA\XA=XA-FA/FAD
8270 IF ABS(XN-XA)>10**-6 THEN GOTO 8240
8280 RETURN
9000 REM - Subroutine para zerar a matriz
9010 FOR I=1 TO N1
9020 FOR J=1 TO N1+1
9030 A(I,J)=0
9040 NEXT J
9050 NEXT I
9060 RETURN
10000 REM - SUBROUTINE PARA ELIMINACAO POR GAUSS
10010 FOR K=1 TO N1-1
```

. . __WL_...

11000 END

```
10020 A$="NAO"
10030 PIVOT=A(K,K)
10040 FOR I=K TO N1
10050 IF ABS(A(I,K))>ABS(PIVOT) THEN
            PIVOT=A(I,K)
            A$="SIM"
            LINHA=I
     END IF
10070 NEXT I
10080 IF A$="SIM" THEN AUX2=A(LINHA,N1+1)
                       A(LINHA,N1+1)=A(K,N1+1)
                       A(K,N1+1)=AUX2
                  FOR I=1 TO N1
                  AUX1=A(LINHA.I)
                  A(LINHA.I) = A(K.I)
                  A(K,I)=AUX1
                  NEXT 1
     END IF
10170 IF PIVOT=0 THEN PRINT "DETERMINANTE=0 NA LINHA ":K
10180 FOR L=K+1 TO N1
10190 FATOR=-A(L,K)/PIVOT
10200 FOR C=K TO N1
10210 A(L,C)=A(L,C)+A(K,C)*FATOR
10220 NEXT C
10230 A(L,N1+1)=A(L,N1+1)+A(K,N1+1)*FATOR
10240 NEXT L
10250 NEXT K
10260 F(N1)=A(N1,N1+1)/A(N1,N1)
10270 FOR L=N1-1 TO 1 STEP -1
10280 SOMA=0
10290 FOR C=N1 TO L+1 STEP -1
10300 SOMA=SOMA+A(L,C)*F(C)
10310 NEXT C
10320 F(L) = (A(L,N1+1)-SOMA)/A(L,L)
10330 NEXT L
10370 RETURN
```

Apêndice 2

__ШL]

Este apéndice traz o programa em BASIC para microcomputadores da linha IBM PC e compatíveis.

```
REM - Programa de ajuste de curvas pelo metodo Spline -
REM - MAXPLIN1
REM - ENTRADA DE DADOS -
PRINT "Este programa pode ajustar dados experimentais por 3 metodos: "
PRINT:PRINT:PRINT "Metodo spline;"
PRINT "Metodo spline acoplado ao metodo dos minimos quadrados:"
PRINT "Metodo spline acoplado ao metodo da maxima verossimilhanca.":PRINT:PRINT:PRINT
INPUT "Voce deseja ajustar seus dados por algum(s) dos metodos acima?";inicio$
INPUT "Qual o numero de pontos a serem ajustados"; N
INPUT "Qual o numero de pontos extremos de intervalos"; LL
INPUT "Qual e a curva que esta sendo ajustada?";curva$
INPUT "O que temos na abscissa?";absc$
INPUT "O que temos na ordenada?"; orde$
Z=3*(LL+N)-2:Z1=Z+1
DIM X(N), Y(N), L(N), P(LL), F(Z), ALF(N), DPX(N), DPY(N), DX(N), FEE$(N), DPXX(N), CSP(N), CMQ(LL),
DIM A(Z,Z1),P1(N),C1(N),A1(N),PDF(N),SDF(N),DY(N),X1(N),Y1(N),LAMB(LL),DPYY(N),ASP(N),AM
REM - Entrada dos pontos a serem ajustados
REM
        FOR I=1 TO N
        PRINT "X(";I;") , Y(";I;")"
        INPUT X(I), Y(I)
        X1(I)=X(I):Y1(I)=Y(I)
        NEXT I
REM - Entrada dos extremos de intervalos -
        FOR I=1 TO LL
        PRINT "Qual e o extremo de intervalo numero ":I
```

INPUT P(I)
NEXT I

REM

INPUT "Voce deseja ajustar seus pontos pelo metodo spline (sim ou nao)?"; ES1\$
INPUT "Voce deseja ajustar seus pontos pelo metodo spline acoplado ao metodo dos minimos quadrados (sim ou nao)?"; ES2\$

INPUT "Voce deseja ajustar seus pontos pelo metodo spline acoplado ao metodo da maxima verossimilhanca? (sim ou nao)"; ES3\$

REN

WIDTH LPRINT 132

LPRINT "Os dados da curva ";curva\$;

LPRINT "serao ajustados pelos seguintes metodos: ":lprint:lprint

LLL=LL-1

IF ES1\$="SIM" THEN LPRINT "Metodo spline."

IF ES2\$="SIM" THEN LPRINT "Metodo spline acoplado ao metodo dos minimos quadrados."

IF ES3\$="SIM" THEN LPRINT "Metodo spline acoplado ao metodo da maxima verossimilhanca.":

LPRINT:LPRINT:LPRINT:LPRINT "Numero de pontos experimentais= ";N;:LPRINT:LPRINT

IF ES1\$="SIM" THEN

NS=N-1

LPRINT "Numero de intervalos para o metodo spline= ";NS LPRINT:LPRINT

END IF

IF ES2\$="SIM" OR ES3\$="SIM" THEN LPRINT "Numero de intervalos para o metodo spline acoplado ao metodo ";

IF ES2\$="SIM" THEN LPRINT "dos minimos quadrados";

IF ES3\$="SIM" AND ES2\$="SIM" THEN LPRINT " ou ao ";

IF ES3\$="SIM" THEN LPRINT "metodo da maxima verossimilhanca";

LPRINT " ="; LLL: LPRINT

LPRINT "Na abscissa (x) temos a variavel ";absc\$:LPRINT

LPRINT "Na ordenada (y) temos a variavel ";orde\$:LPRINT:LPRINT:LPRINT:LPRINT

LPRINT "Na tabela de respostas X(I) e Y(I) representam os pontos experimentais."

LPRINT "XC(I) e YC(I) representam os pontos calculados."

LPRINT "DX e DY sao os desvios absolutos das variaveis x e y entre o valor calculado e o experimental."

LPRINT "PDF(I) e SDF(I) sao respectivamente a primeira e a segunda derívada da funcao no ponto."

LPRINT "S2 e a funcao de verossimilhanca, Sx2 e Sy2 sao as contribuicoes das variaveis x e y"

1 IF ES3\$="NAO" GOTO 4

```
LPRINT "Rg e o coeficiente de correlacao global da curva. Rx e Ry sao os
coeficientes de correlacao das variaveis x e y":LPRINT
        IF ES1$="SIM" THEN
                        CALC=1
                        GOSUB 20
                        GOSUB 110
        END IF
        FOR I=1 TO N
        CSP(I)=F(I):ASP(I)=Y(I)
        NEXT I
        GOSUB 100
        CALC=1
        REM - Entrada dos valores de desvio padrao de Y
        CLS:PRINT "De os valores de desvio padrao para a variavel Y"
                FOR I=1 TO N
                PRINT "DPY(";I;")"
                INPUT DPy(I)
                DPY(I)=DPY(I)*DPY(I)
                NEXT I
       IF ES2$="NAO" GDTO 1
       CALC=1
       N1=3*LL+2*N-2
       GOSUB 30
       GOSUB 110
               FOR I=1 TO LL-2
               LAMB(I+1)=F(2*LL+N+I)
               NEXT I
                        FOR I=1 TO LL
                        A1(I)=F(I):C1(I)=F(LL+I):AMQ(I)=A1(I):CMQ(I)=C1(I)
                        NEXT I
               FOR I=1 TO N
                ALF(I)=F(2*LL+I)
               Y1(I) = F(3*LL+N+I-2)
               NEXT I
       GOSUB 70
       GOSUB 80
       GOSUB 100
       REM
```

```
IF ES2$="SIM" GOTO 2
  GDSUB 10
  N1=LL
  GOSUB 110
          FOR I=1 TO LL
          C1(I)=F(I):A1(I)=Y1(P(I))
          NEXT I
  GOSUB 100
  REM - Entrada dos valores de desvio padrao de X
2 CLS: PRINT "Quais sao os valores de desvio padrao da variavel X"
          FOR I=1 TO N
          PRINT "DPX(";I;")"
          INPUT DPX(I)
          DPX(I) = DPX(I) * DPX(I)
          NEXT I
                  FOR I=1 TO N
                  ALF(I)=0
                  NEXT I
  N1=3*(LL+N)-2:CALC=1
3 GDSUB 30
  GOSUB 40
  GOSUB 110
  GOSUB 50
  ITER=ITER+1
  GOSUB 70
 LPRINT "ITERACAO NUMERO "; ITER
 LPRINT "A funcao de minimizacao S2=";
  IF VARIMP=2 THEN LPRINT "Sx2 +";
 LPRINT "Sy2 fornece o seguinte resultado : ":LPRINT
 LPRINT "S2=";
 IF VARIMP=2 THEN LPRINT SX;"+";
 LPRINT SY;
 IF VARIMP=2 THEN LPRINT " = "; STOTAL
  IF ITER>20 THEN
                  LPRINT "O PROGRAMA NAO CONVERGIU EM 20 ITERACOES"
                  GOSUB 70
                  GOSUB 80
                  GDTO 120
 END IF
```

```
IF CONVER=O THEN
                         GOSUB 70
                         GDSUB 80
                     FOR I=1 TO LL
                     CMV(I)=C1(I):AMV(I)=A1(I)
                         LPRINT:LPRINT:LPRINT "O programa convergiu em";iter;"iteracoes"
                         LPRINT: LPRINT: LPRINT
        END IF
        IF CONVER=1 THEN
                         GOSUB 100
                         GOTO 3
        END IF
      4 IF CALC=O THEN
                       CLS
                       LPRINT "Os pontos nao foram ajustados. Execute o programa
novamente e siga corretamente as instucoes"
                       GOTO 120
        END IF
        CLS
        INPUT "A funcao que voce esta calculando e um diagrama T x X de uma mis-
tura azeotropica (sim ou nao)"; ES4$
        IF ES4$="SIM" THEN
                           GOSUB 60
                           LPRINT "O ponto de azeotropia ocorre quando x= ";XA:LPRINT;LPRINT
        END IF
        PRINT "Voce deseja interpolar algum valor para a variavel x ou y por al-
gum dos metodos calculados (sim ou nao)";
        INPUT ES5$
        IF ES5$="NAO" GOTO 5
      5 IF ESS$="SIM" THEN
                           PRINT "Qual e o metodo que voce deseja utilizar para interpolar:"
                           PRINT "spline puro=sp"
                           PRINT "spline com minimos quadrados=sm"
                           PRINT "spline com maxima verossimilhanca=sv"
                           INPUT ES6$
```

END IF

ELSE GOTO 120

```
PRINT "Se voce deseja algum valor para x digite x. Para y digite y"::INPUT
ES7$
        IF ES7$="X" THEN
                          INPUT "Qual e o valor de x"; VARX
                         GOSUB 90
                         LPRINT "para x= "; VARX; :LPRINT " f(x)= "; SOLY
                         LPRINT
        END IF
        IF ES7$="Y" THEN
                         INPUT "Qual e o valor de Y"; VARY
                         GOSUB 90
                         LPRINT "para y= "; VARY; :LPRINT " x= "; XA
                         LPRINT
                         LPRINT
        END IF
        INPUT "Voce deseja interpolar mais algum valor (sim ou nao)": ES8$
        IF ES8$="SIM" GOTO 5
        GOTO 120
    10 REM - subroutine para a estimativa de C(I) pelo metodo spline
       REM - estimativa de C
                FOR I=2 TO LL
                L(I)=X(P(I))-X(P(I-1))
                NEXT I
       U=LL+1
                FOR I=2 TO LL-1
                A(1,I-1)=L(1)/6
                A(I,I)=(L(I)+L(I+1))/3
                A(I,I+1)=L(I+1)/6
                A(I,U)=(Y(P(I+1))-Y(P(I)))/L(I+1)-(Y(P(I))-Y(P(I-1)))/L(I)
                NEXT I
                A(1,1)=1:A(1,2)=-1:A(1+1,1)=1:A(1+1,1+1)=-1
       RETURN
    20 REM - Subroutine para ajuste pelo metodo spline
                FOR I=2 TO N
               L(I)=X(I)-X(I-I)
               NEXT I
               N1 = N : U = N + 1
                        FOR I=2 TO N-1
```

```
A(I,I-1)=L(I)/6
                                                                       A(I,I)=(L(I)+L(I+1))/3
                                                                       A(I,I+1)=L(I+1)/6
                                                                       A(I,U)=(Y(I+1)-Y(I))/L(I+1)-(Y(I)-Y(I-1))/L(I)
                                                                       NEXT I
                                                                       A(1,1)=1:A(1,2)=-1:A(N,N-1)=1:A(N,N)=-1
                       RETURN
              30 REM Subroutine para o calculo dos parametros ajustando-se com minimos quadrados
                       VARIMP=1
                       REM - Calculo dos intervalos
                                               FOR I=2 TO LL
                                               L(I)=X1(P(I))-X1(P(I-1))
                                               NEXT I
                       REM Matriz Fa e Fat
                                               FOR I=1 TO LL-1
                                                  FOR K=P(I) TO P(I+1)-1
                                                  V=2*LL+K
                                                  A(I,V)=(X1(K)-X1(P(I)))/L(I+1)-1
                                                  A(V.I+1)=-(X1(K)-X1(P(I)))/L(I+1)
                                                  A(V,I)=A(I,V):A(I+1,V)=A(V,I+1)
                                                  NEXT K
                                               NEXT I
                                               A(2*LL+N,LL)=-1:A(LL,2*LL+N)=-1
                       REM Matriz Fc e Fct
                                               FOR I=1 TO LL-1
                                                  FOR K=P(I) TO P(I+1)-1
                                                  V=2*LL+K:W=LL+I
                                                  A(W,V)=(X1(K)-X1(P(I)))^3/(6*L(I+1))-(X1(K)-X1(P(I)))^2/2+L(I+1)*(X1(K)-X1(P(I)))^2/2+L(I+1)*(X1(K)-X1(P(I)))^2/2+L(I+1)*(X1(K)-X1(P(I)))^2/2+L(I+1)*(X1(K)-X1(P(I)))^2/2+L(I+1)*(X1(K)-X1(P(I)))^2/2+L(I+1)*(X1(K)-X1(P(I)))^2/2+L(I+1)*(X1(K)-X1(P(I)))^2/2+L(I+1)*(X1(K)-X1(P(I)))^2/2+L(I+1)*(X1(K)-X1(P(I)))^2/2+L(I+1)*(X1(K)-X1(P(I)))^2/2+L(I+1)*(X1(K)-X1(P(I)))^2/2+L(I+1)*(X1(K)-X1(P(I)))^2/2+L(I+1)*(X1(K)-X1(P(I)))^2/2+L(I+1)*(X1(K)-X1(P(I)))^2/2+L(I+1)*(X1(K)-X1(P(I)))^2/2+L(I+1)*(X1(K)-X1(P(I)))^2/2+L(I+1)*(X1(K)-X1(P(I)))^2/2+L(I+1)*(X1(K)-X1(P(I)))^2/2+L(I+1)*(X1(K)-X1(P(I)))^2/2+L(X1(K)-X1(K)-X1(P(I)))^2/2+L(X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1(K)-X1
X1(P(I)))/3
                                                  A(V,W+1)=-(X1(K)-X1(P(I)))^3/(6*L(I+1))+L(I+1)*(X1(K)-X1(P(I)))/6
                                                  A(V,W)=A(W,V):A(W+1,V)=A(V,W+1)
                                                  NEXT K
                                               NEXT I
                       REM - Matriz das restricoes devido a continuidade
                       REM - Derivadas em relacao a A
                       FOR I=2 TO LL-1
                       V=2*LL+N+I-1
                       A(V,I-1)=-1/L(I):A(I-1,V)=A(V,I-1)
                       A(V,I)=1/L(I)+1/L(I+1):A(I,V)=A(V,I)
```

```
A(V,I+1)=-1/L(I+1):A(I+1,V)=A(V,I+1)
   NEXT I
   REM - Derivadas em relacao a C
          FOR I=2 TO LL-1
           V=2*LL+N+I-1:W=LL+I
           A(V,W-1)=L(I)/6:A(W-1,V)=A(V,W-1)
           A(V,W)=(L(I)+L(I+1))/3:A(W,V)=A(V,W)
           A(V,W+1)=L(I+1)/6:A(W+1,V)=A(V,W+1)
          NEXT I
   REM - Montagem da matrizes identidade, DPY e vetor forca
           FOR I=1 TO N
           W=3*LL+N+1-2:U=2*LL+1
           A(W,W)=1:A(U,W)=1
           A(W,U)=1:IF DPY(I)=0 THEN A(W,U)=0
           A(W,N1+1)=Y(I)
          NEXT I
  RETURN
40 REM - Subroutine que contem os parametros da maxima verossimilhanca
  VARIMP=2
  FOR I=1 TO N1
  A(I,N1+1)=0
  NEXT I
  REM - Montagem da matriz @Fax*alfa
          FOR I=1 TO LL-1
           FOR K=P(I) TO P(I+1)-1
           V=3*LL+2*N+K-2
            A(I,V)=1/L(I+1)*ALF(K):A(V,I)=A(I,V)*DPX(K)
            A(I+1,V)=-1/L(I+1)*ALF(K):A(V,I+1)=A(I+1,V)*DPX(K)
           NEXT K
          NEXT I
          A(I,V+1)=1/L(LL)*ALF(N):A(V+1,I)=A(I,V+1)*DPX(N)
          A(I+1,V+1)=-1/L(LL)*ALF(N):A(V+1,I+1)=A(I+1,V+1)*DPX(N)
  REM - Montagem da matriz @Fcx*alfa
          FOR I=1 TO LL-1
           FOR K=P(I) TO P(I+1)-1
           V=3*LL+2*N+K-2:W=LL+I
           A(W,V)=(1/2*(X1(K)-X1(P(I)))^2/L(I+1)-(X1(K)-X1(P(I)))+L(I+1)/3)*ALF(K)
           A(V,W)=A(W,V)*DPX(K)
           A(W+1,V)=(-1/2*(X1(K)-X1(P(I)))^2/L(I+1)+L(I+1)/6)*ALF(K)
```

.....

```
A(V,W+1)=A(W+1,V)*DPX(K)
                                                  NEXT K
                                                NEXT I
                                                A(W,V+1) = -L(LL) * ALF(N)/6 : A(V+1,W) = A(W,V+1) * DPX(N)
                                                A(W+1,V+1)=-L(LL)*ALF(N)/3:A(V+1,W+1)=A(W+1,V+1)*DPX(N)
                       REM - Montagem das matrizes somatorias xFx e Fx
                                               FOR I=1 TO LL-1
                                                  FOR K=P(I) TO P(I+1)-1
                                                   W=2*LL+K:U=3*LL+2*N+K-2
                                                   A(W,U)=-(C1(I+1)-C1(I))*(X1(K)-X1(P(I)))^2/(2*L(I+1))-C1(I)*(X1(K)-X1(P(I)))^2/(2*L(I+1))-C1(I)*(X1(K)-X1(P(I)))^2/(2*L(I+1))-C1(I)*(X1(K)-X1(P(I)))^2/(2*L(I+1))-C1(I)*(X1(K)-X1(P(I)))^2/(2*L(I+1))-C1(I)*(X1(K)-X1(P(I)))^2/(2*L(I+1))-C1(I)*(X1(K)-X1(P(I)))^2/(2*L(I+1))-C1(I)*(X1(K)-X1(P(I)))^2/(2*L(I+1))-C1(I)*(X1(K)-X1(P(I)))^2/(2*L(I+1))-C1(I)*(X1(K)-X1(P(I)))^2/(2*L(I+1))-C1(I)*(X1(K)-X1(P(I)))^2/(2*L(I+1))-C1(I)*(X1(K)-X1(P(I)))^2/(2*L(I+1))-C1(I)*(X1(K)-X1(P(I)))^2/(2*L(I+1))-C1(I)*(X1(K)-X1(P(I)))^2/(2*L(I+1))-C1(I)*(X1(K)-X1(P(I)))^2/(2*L(I+1))-C1(I)*(X1(K)-X1(P(I)))^2/(2*L(I+1))-C1(I)*(X1(K)-X1(P(I)))^2/(2*L(I+1))-C1(I)*(X1(K)-X1(P(I)))^2/(2*L(I+1))-C1(I)*(X1(K)-X1(P(I)))^2/(2*L(I+1))-C1(I)*(X1(K)-X1(P(I)))^2/(2*L(I+1))-C1(I)*(X1(K)-X1(P(I)))^2/(2*L(I+1))-C1(I)*(X1(K)-X1(P(I)))^2/(2*L(I+1))-C1(I)*(X1(K)-X1(P(I)))^2/(2*L(I+1))-C1(I)*(X1(K)-X1(P(I)))^2/(2*L(I+1))-C1(I)*(X1(K)-X1(P(I)))^2/(2*L(I+1))-C1(I)*(X1(K)-X1(P(I)))^2/(2*L(I+1))-C1(I)*(X1(K)-X1(P(I)))^2/(2*L(I+1))-C1(I)*(X1(K)-X1(P(I)))^2/(2*L(I+1))-C1(I)*(X1(K)-X1(P(I)))^2/(2*L(I+1))-C1(I)*(X1(K)-X1(P(I)))^2/(2*L(I+1))-C1(I)*(X1(K)-X1(P(I)))^2/(2*L(I+1))-C1(I)*(X1(K)-X1(P(I)))^2/(2*L(I+1))-C1(I)*(X1(K)-X1(P(I)))^2/(2*L(I+1))-C1(I)*(X1(K)-X1(P(I)))^2/(2*L(I+1))-C1(I)*(X1(K)-X1(P(I)))^2/(2*L(I+1))-C1(I)*(X1(K)-X1(P(I)))^2/(2*L(I+1))-C1(I)*(X1(K)-X1(P(I)))^2/(2*L(I+1))-C1(I)*(X1(K)-X1(P(I)))^2/(2*L(I+1))-(2*L(I+1))-(2*L(I+1))-(2*L(I+1))-(2*L(I+1))-(2*L(I+1))-(2*L(I+1))-(2*L(I+1))-(2*L(I+1))-(2*L(I+1))-(2*L(I+1))-(2*L(I+1))-(2*L(I+1))-(2*L(I+1))-(2*L(I+1))-(2*L(I+1))-(2*L(I+1))-(2*L(I+1))-(2*L(I+1))-(2*L(I+1))-(2*L(I+1))-(2*L(I+1))-(2*L(I+1))-(2*L(I+1))-(2*L(I+1))-(2*L(I+1))-(2*L(I+1))-(2*L(I+1))-(2*L(I+1))-(2*L(I+1))-(2*L(I+1))-(2*L(I+1))-(2*L(I+1))-(2*L(I+1))-(2*L(I+1))-(2*L(I+1))-(2*L(I+1))-(2*L(I+1))-(2*L(I+1))-(2*L(I+1))-(2*L(I+1))-(2*L(I+1))-(2*L(I+1))-(2*L(I+1))-(2*L(I+1))-(2*L(I+1))-(2*L(I+1))-(2*L(I+1))-(2*L(I+1))-(2*L(I+1))-(2*L(I+1))-(2*L(I+1))-(2*L(I+1))-(2*L(I+1))-(2*L(I+1))-(2*L(I+1))-(2*L(I+1))-(2*L(I+1))-(2*L(I+1))-(2*L(I+1))-(2*L(I+1)
X1(P(I)))-(A1(I+1)-A1(I))/L(I+1)+(C1(I+1)+2*C1(I))*L(I+1)/6
                                                   A(U,W)=A(W,U)*DPX(K)
                                                   NEXT K
                                                NEXT I
                                                A(W+1,U+1)=-L(LL)*(C1(I)/6+C1(I+1)/3)-(A1(I+1)-A1(I))/L(LL)
                                                A(U+1,W+1)=A(W+1,U+1)*DPX(N)
                        REM - Montagem da matriz derivada da somatoria xFx*alfa
                                                FOR I=1 TO LL-1
                                                  FOR K=P(I) TO P(I+1)-1
                                                   V=3*LL+2*N+K-2
                                                   A(V,V)=1+DPX(K)*ALF(K)*(-(C1(I+1)-C1(I))*(X1(K)-X1(P(I)))/L(I+1)-
C1(I))
                                                  NEXT K
                                                NEXT I
                                                A(V+1,V+1)=1-ALF(N)*DPX(N)*C1(I+1)
                                                                       FOR I=1 TO N
                                                                        W=3*LL+N+I-2:U=2*LL+I
                                                                        A(W,U) =DPY(I)
                                                                       NEXT I
                        REM - Vetor forca
                                               FOR I=1 TO LL
                                                  FOR J=1 TO N
                                                   V=2*LL+J:W=LL+I
                                                   A(I,N1+1)=A(I,N1+1)+A(I,V)*ALF(J)
                                                   A(W,N1+1)=A(W,N1+1)+A(W,V)*ALF(J)
                                                     FOR J=1 TO LL-2
                                                     V=2*LL+N+J:W=LL+I
                                                      A(I,N1+1)=A(I,N1+1)+A(I,V)*LAMB(J+1)
```

.____.

```
A(W,N1+1)=A(W,N1+1)+A(W,V)*LAMB(J+1)
             NEXT J
           NEXT I
   REM
           FOR I=1 TO N
            FOR J=1 TO LL
            V=2*LL+I: W=LL+J
            A(V,N1+1)=A(V,N1+1)+A(V,J)*A1(J)+A(V,W)*C1(J)
            A(V,N1+1)=A(V,N1+1)+Y1(I)
           NEXT I
   REM
           FOR I=1 TO LL-2
            FOR J=1 TO LL
            V=2*LL+N+I:W=LL+J
            A(V,N1+1)=A(V,N1+1)+A(V,J)*A1(J)+A(V,W)*C1(J)
            NEXT J
           NEXT I
   REM
           FOR I=1 TO LL-1
           FOR K=P(I) TO P(I+1)
            V=3*LL+N+K-2:W=V+N
            A(W,N1+1)=A(W,2*LL+K)*ALF(K)+X1(K)-X(K)
            A(V,N1+1)=Y1(K)-Y(K)+ALF(K)*DPY(K)
            NEXT K
           NEXT I
                   FOR I=1 TO N1
                   A(I,N1+1) = -A(I,N1+1)
                   NEXT I
   RETURN
50 REM - Subroutine para a convergencia do metodo maxpline
   4010 ET=10 -3: CONVER=0
           FOR I=1 TO LL
           IF A1(I)=O AND ABS(F(I))>ET*ET THEN CONVER=1:LPRINT I
           IF A1(I)<>O AND ABS(F(I))>ET*ABS(A1(I)) THEN CONVER=1:LPRINT I
   A1(I)=F(I)+A1(I)
   IF ABS(A1(I))<10^-10 THEN A1(I)=0
   IF C1(I)=O AND ABS(F(LL+I))>ET*ET THEN CONVER=1:LPRINT LL+I
   IF A1(I) AND ABS(F(LL+I))>ET*ABS(C1(I)) THEN CONVER=1:LPRINT LL+I
```

```
C1(I)=F(LL+I)+C1(I)
                                  IF ABS(C1(I))<10~-10 THEN C1(I)=0
                                  NEXT I
                                                                    FOR I=1 TO LL-2
                                                                    V=2*LL+N+I
                                                                    IF LAMB(I+1)=O AND ABS(F(V))>ET*ET THEN CONVER=1:LPRINT V
                                                                    IF LAMB(I+1)<>O AND ABS(F(V))>ET*ABS(LAMB(I+1)) THEN CONVER=1:LPRINT
 ٧
                                                                    LAMB(I+1)=F(V)+LAMB(I+1)
                                                                    IF ABS(LAMB(I+1))<10^-10 THEN LAMB(I+1)=0
                                                                   NEXT I
                                                                                                     FOR I=1 TO N
                                                                                                     V=2*LL+1:W=3*LL+N+1-2:U=W+N
                                                                                                     IF ALF(I)=O AND ABS(F(V))>ET*ET THEN CONVER=1:LPRINT V
                                                                                                      IF ALF(I) <> O AND ABS(F(V))>ET*ABS(ALF(I)) THEN CONVER=1:LPRINT
V
                                                                    ALF(I)=F(V)+ALF(I)
                                                                    IF ABS(ALF(I))<10~-10 THEN ALF(I)=0
                                                                    IF Y1(I)=O AND ABS(F(W))>ET*ET THEN CONVER=1:LPRINT W
                                                                    IF Y1(I)<>O AND ABS(F(W))>ET*ABS(Y1(I)) THEN CONVER=1:LPRINT W
                                                                   Y1(I)=F(W)+Y1(I)
                                                                    IF ABS(Y1(I))<10^-10 THEN Y1(I)=0
                                                                    IF X1(I)=0 AND ABS(F(U))>ET*ET THEN CONVER=1:LPRINT U
                                                                    IF X1(I)<>O AND ABS(F(U))>ET*ABS(X1(I)) THEN CONVER=1:LPRINT U
                                                                   X1(I)=F(U)+X1(I)
                                                                   IF ABS(X1(I))<10--20 THEN X1(I)=0
                                                                   XMV(I)=X1(I)
                                                                   NEXT I
                                RETURN
                     60 REM Subroutine para determinar o ponto de azeotropia
                                                                  FOR I=2 TO LL
                    61
                                                                   IF X(P(I)) < XA THEN K=I
                                                                  NEXT I
                                FA = XA + (C1(K) - C1(K+1)) * (XA - X1(P(K)))^3/(6*L(K+1)) - C1(K) * (XA - X1(P(K)))^2/2 + ((A1(K) - C1(K) + C1(K)))^2/2 + ((A1(K) - C1(K))^2 + ((A1(K) - C1(K))^2 + ((A1(K) - C1(K))^2 + ((A1(K) - 
A1(K+1))/L(K+1)+(C1(K+1)+2*C1(K))*L(K+1)/6)*(XA-X1(P(K)))-A1(K)
                                FAD=1+(C1(K)-C1(K+1))*(XA-X1(P(K)))^2/(2*L(K+1))-C1(K)*(XA-X1(P(K)))+((A1(K)-K))^2/(2*L(K+1))+((K+1))^2/(2*L(K+1))+(K+1))+(K+1)^2/(2*L(K+1))+(K+1)^2/(2*L(K+1))+(K+1)^2/(2*L(K+1))+(K+1)^2/(2*L(K+1))+(K+1)^2/(2*L(K+1))+(K+1)^2/(2*L(K+1))+(K+1)^2/(2*L(K+1))+(K+1)^2/(2*L(K+1))+(K+1)^2/(2*L(K+1))+(K+1)^2/(2*L(K+1))+(K+1)^2/(2*L(K+1))+(K+1)^2/(2*L(K+1))+(K+1)^2/(2*L(K+1))+(K+1)^2/(2*L(K+1))+(K+1)^2/(2*L(K+1))+(K+1)^2/(2*L(K+1))+(K+1)^2/(2*L(K+1))+(K+1)^2/(2*L(K+1))+(K+1)^2/(2*L(K+1))+(K+1)^2/(2*L(K+1))+(K+1)^2/(2*L(K+1))+(K+1)^2/(2*L(K+1))+(K+1)^2/(2*L(K+1))+(K+1)^2/(2*L(K+1))+(K+1)^2/(2*L(K+1))+(K+1)^2/(2*L(K+1))+(K+1)^2/(2*L(K+1))+(K+1)^2/(2*L(K+1))+(K+1)^2/(2*L(K+1))+(K+1)^2/(2*L(K+1))+(K+1)^2/(2*L(K+1))+(K+1)^2/(2*L(K+1))+(K+1)^2/(2*L(K+1))+(K+1)^2/(2*L(K+1))+(K+1)^2/(2*L(K+1))+(K+1)^2/(2*L(K+1))+(K+1)^2/(2*L(K+1))+(K+1)^2/(2*L(K+1))+(K+1)^2/(2*L(K+1))+(K+1)^2/(2*L(K+1))+(K+1)^2/(2*L(K+1))+(K+1)^2/(2*L(K+1))+(K+1)^2/(2*L(K+1))+(K+1)^2/(2*L(K+1))+(K+1)^2/(2*L(K+1))+(K+1)^2/(2*L(K+1))+(K+1)^2/(2*L(K+1))+(K+1)^2/(2*L(K+1))+(K+1)^2/(2*L(K+1))+(K+1)^2/(2*L(K+1))+(K+1)^2/(2*L(K+1))+(K+1)^2/(2*L(K+1))+(K+1)^2/(2*L(K+1))+(K+1)^2/(2*L(K+1))+(K+1)^2/(2*L(K+1))+(K+1)^2/(2*L(K+1))+(K+1)^2/(2*L(K+1))+(K+1)^2/(2*L(K+1))+(K+1)^2/(2*L(K+1))+(K+1)^2/(2*L(K+1))+(K+1)^2/(2*L(K+1))+(K+1)^2/(2*L(K+1))+(K+1)^2/(2*L(K+1))+(K+1)^2/(2*L(K+1))+(K+1)^2/(2*L(K+1))+(K+1)^2/(2*L(K+1))+(K+1)^2/(2*L(K+1))+(K+1)^2/(2*L(K+1))+(K+1)^2/(2*L(K+1))+(K+1)^2/(2*L(K+1))+(K+1)^2/(2*L(K+1))+(K+1)^2/(2*L(K+1))+(K+1)^2/(2*L(K+1))+(K+1)^2/(2*L(K+1))+(K+1)^2/(2*L(K+1)^2/(2*L(K+1)^2/(2*L(K+1)^2/(2*L(K+1)^2/(2*L(K+1)^2/(2*L(K+1)^2/(2*L(K+1)^2/(2*L(K+1)^2/(2*L(K+1)^2/(2*L(K+1)^2/(2*L(K+1)^2/(2*L(K+1)^2/(2*L(K+1)^2/(2*L(K+1)^2/(2*L(K+1)^2/(2*L(K+1)^2/(2*L(K+1)^2/(2*L(K+1)^2/(2*L(K+1)^2/(2*L(K+1)^2/(2*L(K+1)^2/(2*L(K+1)^2/(2*L(K+1)^2/(2*L(K+1)^2/(2*L(K+1)^2/(2*L(K+1)^2/(2*L(K+1)^2/(2*L(K+1)^2/(2*L(K+1)^2/(2*L(K+1)^2/(2*L(K+1)^2/(2*L(K+1)^2/(2*L(K+1)^2/(2*L(K+1)^2/(2*L(K+1)^2/(2*L(K+1)^2/(2*L(K+1)^2/(2*L(K+1)^2/(2*L(K+1)^2/(2*L(K+1)^2/(2*L(K+1)^2/(2*L(K+1)^2/(2*L
A1(K+1)/L(K+1)+(C1(K+1)+2*C1(K))*L(K+1)/6
                                XN=XA
```

```
XA=XA-FA/FAD
                                         IF ABS(XN-XA)>10E-6 GOTO 61
                                         RETURN
                          70 REM - Subroutine para o calculo das funcoes estatisticas
                                         XM=0:YM=0:RXM=0;RYM=0:RT=0:SX=0:SY=0:RXD=0:RYD=0:RX=0:RY=0:STOTAL=0
                                                                                   FOR I=1 TO N
                                                                                   DPXX(I) = (DPX(I) \cap O.5) : DPYY(I) = (DPY(I) \cap O.5)
                                                                                   NEXT I
                                                                                                                             FOR I=2 TO LL
                                                                                                                                  FOR K=P(I-1) TO P(I)
                                                                                                                                 DX(K)=X(K)-X1(K)
                                                                                                                                 DY(K)=Y(K)-Y1(K)
                                                                                                                                  PDF(K) = -C1(I-1)/(2*L(I))*((X1(P(I))-X1(K))^2)+C1(I)/(2*L(I))*((X1(K)-1)^2)+C1(I)/(2*L(I))*((X1(K)-1)^2)+C1(I)/(2*L(I))*((X1(K)-1)^2)+C1(I)/(2*L(I))*((X1(K)-1)^2)+C1(I)/(2*L(I))*((X1(K)-1)^2)+C1(I)/(2*L(I))*((X1(K)-1)^2)+C1(I)/(2*L(I))*((X1(K)-1)^2)+C1(I)/(2*L(I))*((X1(K)-1)^2)+C1(I)/(2*L(I))*((X1(K)-1)^2)+C1(I)/(2*L(I))*((X1(K)-1)^2)+C1(I)/(2*L(I))*((X1(K)-1)^2)+C1(I)/(2*L(I))*((X1(K)-1)^2)+C1(I)/(2*L(I))*((X1(K)-1)^2)+C1(I)/(2*L(I))*((X1(K)-1)^2)+C1(I)/(2*L(I))*((X1(K)-1)^2)+C1(I)/(2*L(I))*((X1(K)-1)^2)+C1(I)/(2*L(I))*((X1(K)-1)^2)+C1(I)/(2*L(I))*((X1(K)-1)^2)+C1(I)/(2*L(I))*((X1(K)-1)^2)+C1(I)/(2*L(I))*((X1(K)-1)^2)+C1(I)/(2*L(I))*((X1(K)-1)^2)+C1(I)/(2*L(I))*((X1(K)-1)^2)+C1(I)/(2*L(I))*((X1(K)-1)^2)+C1(I)/(2*L(I))*((X1(K)-1)^2)+C1(I)/(2*L(I))*((X1(K)-1)^2)+C1(I)/(2*L(I))*((X1(K)-1)^2)+C1(I)/(2*L(I))*((X1(K)-1)^2)+C1(I)/(2*L(I))*((X1(K)-1)^2)+C1(I)/(2*L(I))*((X1(K)-1)^2)+C1(I)/(2*L(I))*((X1(K)-1)^2)+C1(I)/(2*L(I))*((X1(K)-1)^2)+C1(I)/(2*L(I))*((X1(K)-1)^2)+C1(I)/(2*L(I))*((X1(K)-1)^2)+C1(I)/(2*L(I))*((X1(K)-1)^2)+C1(I)/(2*L(I))*((X1(K)-1)^2)+C1(I)/(2*L(I))*((X1(K)-1)^2)+C1(I)/(2*L(I))*((X1(K)-1)^2)+C1(I)/(2*L(I))*((X1(K)-1)^2)+C1(I)/(2*L(I))*((X1(K)-1)^2)+C1(I)/(2*L(I))*((X1(K)-1)^2)+C1(I)/(2*L(I))*((X1(K)-1)^2)+C1(I)/(2*L(I))*((X1(K)-1)^2)+C1(I)/(2*L(I))*((X1(K)-1)^2)+C1(I)/(2*L(I))*((X1(K)-1)^2)+C1(I)/(2*L(I))*((X1(K)-1)^2)+C1(I)/(2*L(I))*((X1(K)-1)^2)+C1(I)/(2*L(I))*((X1(K)-1)^2)+C1(I)/(2*L(I))*((X1(K)-1)^2)+C1(I)/(2*L(I))*((X1(K)-1)^2)+C1(I)/(2*L(I))*((X1(K)-1)^2)+C1(I)/(2*L(I))*((X1(K)-1)^2)+C1(I)/(2*L(I))*((X1(K)-1)^2)+C1(I)/(2*L(I))*((X1(K)-1)^2)+C1(I)/(2*L(I))*((X1(K)-1)^2)+C1(I)/(2*L(I))*((X1(K)-1)^2)+C1(I)/(2*L(I))*((X1(K)-1)^2)+C1(I)/(2*L(I))*((X1(K)-1)^2)+C1(I)/(2*L(I))*((X1(K)-1)^2)+C1(I)/(2*L(I))*((X1(K)-1)^2)+C1(I)/(2*L(I))*((X1(K)-1)^2)+C1(I)/(2*L(I))*((X1(K)-1)^2)+C1(I)/(2*L(I)^2)+C1(I)/(2*L(I)^2)+C1(I)/(2*L(I)^2)+C1(I)/(2*L(I)^2)+C1(I)/(2*L(I)^2)+C1(I)/(2*L(I)^2)+C1(I)/(2*L(I)^2)+C1(I)/(2*L(I)^2)+C1(I)/(2*L(I)^2)+C1(I)/(2*L(I)^2)+C1(I)/(2*L(I)^2)+C1(I)/(2*L(I)^2)+C1(I)/(2*L(I)^2)+C1(I)/
X1(P(I-1))^2+(C1(I-1)-C1(I))/6*L(I)+(A1(I)-A1(I-1))/L(I)
                                                                                                                                  SDF(K)=C1(I-1)*(X1(P(I))-X1(K))/L(I)+C1(I)*(X1(K)-X1(P(I-I))+C1(I)*(X1(K)-X1(P(I-I))+C1(I))*(X1(K)-X1(P(I-I))+C1(I))*(X1(K)-X1(P(I-I))+C1(I))*(X1(K)-X1(P(I-I))+C1(I))*(X1(K)-X1(P(I-I))+C1(I))*(X1(K)-X1(P(I-I))+C1(I))*(X1(K)-X1(P(I-I))+C1(I))*(X1(K)-X1(P(I-I))+C1(I))*(X1(K)-X1(P(I-I))+C1(I))*(X1(K)-X1(P(I-I))+C1(I))*(X1(K)-X1(P(I-I))+C1(I))*(X1(K)-X1(P(I-I))+C1(I))*(X1(K)-X1(P(I-I))+C1(I))*(X1(K)-X1(P(I-I))+C1(I))*(X1(K)-X1(P(I-I))+C1(I))*(X1(K)-X1(P(I-I))+C1(I))*(X1(K)-X1(P(I-I))+C1(I))*(X1(K)-X1(P(I-I))+C1(I))*(X1(K)-X1(P(I-I))+C1(I))*(X1(K)-X1(P(I-I))+C1(I))*(X1(K)-X1(P(I-I))+C1(I))*(X1(K)-X1(P(I-I))+C1(I))*(X1(K)-X1(P(I-I))+C1(I))*(X1(K)-X1(P(I-I))+C1(I))*(X1(K)-X1(P(I-I))+C1(I))*(X1(K)-X1(I-I))*(X1(K)-X1(I-I))*(X1(K)-X1(I-I))*(X1(K)-X1(I-I))*(X1(K)-X1(I-I))*(X1(K)-X1(I-I))*(X1(K)-X1(I-I))*(X1(K)-X1(I-I))*(X1(K)-X1(I-I))*(X1(K)-X1(I-I))*(X1(K)-X1(I-I))*(X1(K)-X1(I-I))*(X1(K)-X1(I-I))*(X1(K)-X1(I-I))*(X1(K)-X1(I-I))*(X1(K)-X1(I-I))*(X1(K)-X1(I-I))*(X1(K)-X1(I-I))*(X1(K)-X1(I-I))*(X1(K)-X1(I-I))*(X1(K)-X1(I-I))*(X1(K)-X1(I-I))*(X1(K)-X1(I-I))*(X1(K)-X1(I-I))*(X1(K)-X1(I-I))*(X1(K)-X1(I-I))*(X1(K)-X1(I-I))*(X1(K)-X1(I-I))*(X1(K)-X1(I-I))*(X1(K)-X1(I-I))*(X1(K)-X1(I-I))*(X1(K)-X1(I-I))*(X1(K)-X1(I-I))*(X1(K)-X1(I-I))*(X1(K)-X1(I-I))*(X1(K)-X1(I-I))*(X1(K)-X1(I-I))*(X1(K)-X1(I-I))*(X1(K)-X1(I-I))*(X1(K)-X1(I-I))*(X1(K)-X1(I-I))*(X1(K)-X1(I-I))*(X1(K)-X1(I-I))*(X1(K)-X1(I-I))*(X1(K)-X1(I-I))*(X1(K)-X1(I-I))*(X1(K)-X1(I-I))*(X1(K)-X1(I-I))*(X1(K)-X1(I-I))*(X1(K)-X1(I-I))*(X1(K)-X1(I-I))*(X1(K)-X1(I-I))*(X1(K)-X1(I-I))*(X1(K)-X1(I-I))*(X1(K)-X1(I-I))*(X1(K)-X1(I-I))*(X1(K)-X1(I-I))*(X1(K)-X1(I-I))*(X1(K)-X1(I-I))*(X1(K)-X1(I-I))*(X1(K)-X1(I-I))*(X1(K)-X1(I-I))*(X1(K)-X1(I-I))*(X1(K)-X1(I-I))*(X1(K)-X1(I-I))*(X1(K)-X1(I-I))*(X1(K)-X1(I-I))*(X1(K)-X1(I-I))*(X1(K)-X1(I-I))*(X1(K)-X1(I-I))*(X1(K)-X1(I-I))*(X1(K)-X1(I-I))*(X1(K)-X1(I-I))*(X1(K)-X1(I-I))*(X1(K)-X1(I-I))*(X1(K)-X1(I-I))*(X1(K)-X1(I-I))*(X1(K)-X1(I-I))*(X1(K)-X1(I-I))*(X1(K)-X1(I-I))*(X1(K)-X1(I-I))*(X1(K)-X1(I-I))*(X1(K)-X1(I-I))*(X1(K)-X1(I-I))*(X1(K)-X
1)))/L(I)
                                                                                                                                 NEXT K
                                                                                                                            NEXT I
                                                                                   FOR I=1 TO N
                                                                                  XM=XM+X(I):YM=YM+Y(I)
                                                                                  NEXT I
                                                                                   XM=XM/N:YM=YM/I
                                                                                                                           FOR I=1 TO N
                                                                                                                             IF VARIMP=1 THEN
                                                                                                                                                                                                                RXM=RXM+(X1(I)-XM)^2
                                                                                                                                                                                                               RXD=RXD+(X(I)-XM)^2
                                                                                                                                                                                                               RYM=RYM+(Y1(I)-YM)^2
                                                                                                                                                                                                               RYD=RYD+(Y(I)-YM)^2
                                                                                                                                                                                                               SY=SY+(Y(I)-Y1(I))^2/2
                                                                                                                                                                                                                IF DPY(I)>0 THEN SYC=SYC+(Y(I)-Y1(I))^2/(2*DPY(I))
                                                                                                                           END IF
                                                                                                                            IF VARIMP=2 THEN
                                                                                                                                                      RXM=RXM+X1(I)^2
                                                                                                                                                     RXD=RXD+X(1)^2
                                                                                                                                                     RYM=RYM+Y1(I)^2
                                                                                                                                                      RYD=RYD+Y(I)^2
                                                                                                                                                      IF DPX(1)>0 THEN SX=SX+(X(I)-X1(I))^2/(2*DPX(I))
                                                                                                                                                      IF DPY(I)>0 THEN SY=SY+(Y(I)-Y1(I))^2/(2*DPY(I))
                                                                                                                           END IF
```

```
NEXT I
  IF RYD>O THEN RY=RYM/RYD
  IF RXD>O THEN RX=RXM/RXD
  RT=RX*RY:STOTAL=SX+SY
  RX=RX^{\circ}.5:RY=RY^{\circ}.5:RT=RT^{\circ}.5
80 REM - Subroutine para a impressao dos resultados.
  WIDTH LPRINT 134
  FOR I=1 TO N
  FEE$(I)=" "
  NEXT I
          FOR I=1 TO LL
          FEE$(P(I))="*"
          NEXT I
  LPRINT:LPRINT:LPRINT "As respostas pelo metodo spline ";
  IF VARIMP=1 THEN LPRINT "acoplado ao metodo dos minimos quadrados";
  IF VARIMP=2 THEN LPRINT "acoplado ao metodo da maxima verossimilhanca";
  LPRINT " fornece os seguintes";
  LPRINT "valores para a "; curva$:LPRINT:LPRINT
                 ";" X(I)
  LPRINT " I
                              H ;
  IF VARIMP=2 THEN LPRINT "
                              DPX(I) ";" XC(I) ";" DX
                                                                    и;
                  Y(I)
  IF VARIMP=2 THEN LPRINT "
                               DPY(I) ":
  LPRINT "
              YC(I) ";"
                               DY ":"
                                            PDF
                                                       ";" SDF ":LPRINT
          FOR I=1 TO N
          LPRINT FEE$(I)::LPRINT USING "##":I::LPRINT USING "
                                                                   #.####";X(I);
          IF VARIMP=2 THEN LPRINT USING" ####.###";DPXX(I);
          IF VARIMP=2 THEN LPRINT USING"
                                            #.####";X1(I);
          IF VARIMP=2 THEN LPRINT USING "
                                             ###, ####"; DX(1);
                            ######.#### ";Y(I);
          LPRINT USING "
          IF VARIMP=2 THEN LPRINT USING" ####.####";DPYY(I);
          LPRINT USING " ##########";Y1(I);:LPRINT USING " ###.####";DY(I);
          LPRINT USING "########## "; PDF(1);:LPRINT USING "#########, #"; SDF(1)
          NEXT I
  LPRINT:LPRINT "O asterisco (*) indica que o ponto e extremo de intervalo, ":LPRINT:LPRINT
  LPRINT "A funcao de minimização S2 =";
  IF VARIMP=2 THEN LPRINT "Sx2 +";
  LPRINT " Sy2 fornece o seguinte resultado : ":LPRINT
  LPRINT "S2 =":
```

```
IF VARIMP=2 THEN LPRINT SX;"+";
        LPRINT SY:
        IF VARIMP=2 THEN LPRINT " = ";STOTAL
        IF VARIMP=1 THEN LPRINT "
                                                  S comp =";SYC
        LPRINT: LPRINT: LPRINT "O coeficiente de correlação da variavel x Rx e: "; RX: LPRINT
        LPRINT "O coeficiente de correlacao da variavel y Ry e: ";RY:LPRINT:LPRINT
        LPRINT "O coeficiente global de correlacao Rg e: ";RT:LPRINT:LPRINT:LPRINT
        RETURN
     90 REM Subroutine para interpolação
        IF ES6$="SP" THEN
                        FOR I=1 TO N
                        X1(I)=X(I)
                        A1(I)=ASP(I)
                        C1(I)=CSP(I)
                        P1(I)=I
                        IF I>1 THEN L(I)=X(P1(I))-X(P1(I-1))
                        LPRINT "A variavel sera interpolada pelo metodo spline puro"
                        NL=N
        END IF
        IF ES6$="SM" THEN
                        FOR I=1 TO LL
                        X1(P(I))=X(P(I))
                        A1(I)=AMQ(I)
                        C1(I)=CMQ(I)
                        P1(I)=P(I)
                        IF I>1 THEN L(I)=X(P1(I))-X(P1(I-1))
                        NEXT I
                        NL=LL
                        LPRINT "A variavel sera interpolada pelo metodo spline -
minimos quadrados"
       END IF
        IF ES6$="SV" THEN
                        FOR I=1 TO LL
                        X1(P(I))=XMV(P(I))
                        A1(I)=AMV(I)
                        C1(I)=CMV(I)
                        P1(I)=P(I)
                        IF I>1 THEN L(I)=X1(P1(I))-X1(P1(I-1))
```

```
NEXT I
                                                                                                                     NL=LL
                                                                                                                     LPRINT "A variavel sera interpolada pelo metodo spline
 - max verossimilhanca,";
                                   END IF
                                   IF ES7$="X" GOTO 91
                                   1F ES7$="Y" GDT0 92
                                   REM Calculo para interpolação em x
                      91 IF VARX<X(1) OR VARX>X(N) THEN
                                                                                                                                                     PRINT "O seu ponto esta fora do intervalo de ajuste"
                                                                                                                                                     PRINT "O metodo spline nao e aconselhavel para
extrapolações"
                                   END IF
                                   K = 1
                                                                     FOR I=2 TO NL-1
                                                                     IF X(P1(I)) < VARX THEN K=I
                                   SOLY = (-C1(K) + C1(K+1)) * (VARX-X1(P1(K)))^3/(6*L(K+1)) + C1(K) * (VARX-X1(P1(K)))^2/2-
 ((A1(K)-A1(K+1))/L(K+1)+(C1(K+1)+2*C1(K))*L(K+1)/6)*(VARX-X1(P1(K)))+A1(K)
                                   REM Calculo para interpolação em y
                      92 YMIN=Y(1):YMAX=Y(1)
                                                                     FOR I=2 TO N
                                                                     IF Y(I)<YMIN THEN YMIN=Y(I)
                                                                      IF Y(I)>YMAX THEN YMAX=Y(I)
                                                                     NEXT I
                                   IF VARY<YMIN OR VARY>YMAX THEN PRINT "Nao e possivel interpolar pois este
valor nao pertence a imagem da funcao"
                                                                     FOR I=1 TO NL-1
                                                                          FOR J=P1(I) TO P1(I+1)-1
                                                                          FUNC = (-C1(I) + C1(I+1)) * (X1(J) - X1(P1(I)))^3/(6*L(I+1)) + C1(I) * (X1(I) - X1(I)) + C1(I) * (X1(I) - X1
x_1(P_1(I)))^2/2-((A_1(I)-A_1(I+1))/L(I+1)+(C_1(I+1)+2*C_1(I))*L(I+1)/6)*(x_1(J)-x_1(P_1(I)))+A_1(I)
                                                                          IF (VARY-FUNC)>O THEN K=I
                                                                          NEXT J
                                                                     NEXT I
                                   XA = X(P1(K)): XN = XA
                      94 FA=VARY+(C1(K)-C1(K+1))*(XA-X1(P1(K)))^3/(6*L(K+1))-C1(K)*(XA-X1(P1(K)))^2/2+((A1(K)-C1(K+1)))^2/2+((A1(K)-C1(K+1)))^2/2+((A1(K)-C1(K+1)))^2/2+((A1(K)-C1(K+1)))^2/2+((A1(K)-C1(K+1)))^2/2+((A1(K)-C1(K+1)))^2/2+((A1(K)-C1(K+1)))^2/2+((A1(K)-C1(K+1)))^2/2+((A1(K)-C1(K+1)))^2/2+((A1(K)-C1(K+1)))^2/2+((A1(K)-C1(K)))^2/2+((A1(K)-C1(K)))^2/2+((A1(K)-C1(K)))^2/2+((A1(K)-C1(K)))^2/2+((A1(K)-C1(K)))^2/2+((A1(K)-C1(K)))^2/2+((A1(K)-C1(K)))^2/2+((A1(K)-C1(K)))^2/2+((A1(K)-C1(K)))^2/2+((A1(K)-C1(K)))^2/2+((A1(K)-C1(K)))^2/2+((A1(K)-C1(K)))^2/2+((A1(K)-C1(K)))^2/2+((A1(K)-C1(K)))^2/2+((A1(K)-C1(K)))^2/2+((A1(K)-C1(K)))^2/2+((A1(K)-C1(K)))^2/2+((A1(K)-C1(K)))^2/2+((A1(K)-C1(K)))^2/2+((A1(K)-C1(K)))^2/2+((A1(K)-C1(K)))^2/2+((A1(K)-C1(K)))^2/2+((A1(K)-C1(K)))^2/2+((A1(K)-C1(K)))^2/2+((A1(K)-C1(K)))^2/2+((A1(K)-C1(K)))^2/2+((A1(K)-C1(K)))^2/2+((A1(K)-C1(K)))^2/2+((A1(K)-C1(K)))^2/2+((A1(K)-C1(K)))^2/2+((A1(K)-C1(K)))^2/2+((A1(K)-C1(K)))^2/2+((A1(K)-C1(K)))^2/2+((A1(K)-C1(K)))^2/2+((A1(K)-C1(K)))^2/2+((A1(K)-C1(K)))^2/2+((A1(K)-C1(K)))^2/2+((A1(K)-C1(K)))^2/2+((A1(K)-C1(K)))^2/2+((A1(K)-C1(K)))^2/2+((A1(K)-C1(K)))^2/2+((A1(K)-C1(K)))^2/2+((A1(K)-C1(K)))^2/2+((A1(K)-C1(K)))^2/2+((A1(K)-C1(K)))^2/2+((A1(K)-C1(K)))^2/2+((A1(K)-C1(K)))^2/2+((A1(K)-C1(K)))^2/2+((A1(K)-C1(K)))^2/2+((A1(K)-C1(K)))^2/2+((A1(K)-C1(K)))^2/2+((A1(K)-C1(K)))^2/2+((A1(K)-C1(K)))^2/2+((A1(K)-C1(K)))^2/2+((A1(K)-C1(K)))^2/2+((A1(K)-C1(K)))^2/2+((A1(K)-C1(K)))^2/2+((A1(K)-C1(K)))^2/2+((A1(K)-C1(K)))^2/2+((A1(K)-C1(K)))^2/2+((A1(K)-C1(K)))^2/2+((A1(K)-C1(K)))^2/2+((A1(K)-C1(K)))^2/2+((A1(K)-C1(K)))^2/2+((A1(K)-C1(K)))^2/2+((A1(K)-C1(K)))^2/2+((A1(K)-C1(K)))^2/2+((A1(K)-C1(K)))^2/2+((A1(K)-C1(K)))^2/2+((A1(K)-C1(K)))^2/2+((A1(K)-C1(K)))^2/2+((A1(K)-C1(K)))^2/2+((A1(K)-C1(K)))^2/2+((A1(K)-C1(K)))^2/2+((A1(K)-C1(K)))^2/2+((A1(K)-C1(K)))^2/2+((A1(K)-C1(K)))^2/2+((A1(K)-C1(K)))^2/2+((A1(K)-C1(K)))^2/2+((A1(K)-C1(K)))^2/2+((A1(K)-C1(K)))^2/2+((A1(K)-C1(K)))^2/2+((A1(K)-C1(K)))^2/2+((A1(K)-C1(K)))^2/2+((A1(K)-C1(K)))^2/2+((A1(K)-C1(K)))^2/2+((A1(K)-C1(K)))^2/2+((A1
 A1(K+1)/L(K+1)+(C1(K+1)+2*C1(K))*L(K+1)/6)*(XA-X1(P1(K)))-A1(K)
```

Apéndice 2 111

...... _ ..**.......**

```
FAD = (C1(K) - C1(K+1)) * (XA - X1(P1(K)))^2/(2*L(K+1)) - C1(K) * (XA - X1(P1(K))) + ((A1(K) - (A1(K)))) + (
A1(K+1))/L(K+1)+(C1(K+1)+2*C1(K))*L(K+1)/6)
                             XN=XA:XA=XA-FA/FAD
                              IF ABS(XN-XA)>10^-6 THEN GOTO 94
                  93 RETURN
               100 REM - Subroutine para zerar a matriz
                                                           FOR I=1 TO N1
                                                              FOR J=1 TO N1+1
                                                               A(I,J)=0
                                                              NEXT J
                                                           NEXT I
                             RETURN
              110 REM - SUBROUTINE PARA ELIMINACAO POR GAUSS
                                                           FOR K=1 TO N1-1
                                                           A$="NAO"
                                                           PIVOT=A(K,K)
                                                                                        FOR I=K TO N1
                                                                                         IF ABS(A(I,K))>ABS(PIVOT) THEN
                                                                                        PIVOT=A(I,K)
                                                                                        A$="SIM"
                                                                                        LINHA=I
                                                                                        END IF
                                                                                        NEXT I
                                                           IF A$="SIM" THEN
                                                           AUX2=A(LINHA,N1+1)
                                                           A(LINHA,N1+1)=A(K,N1+1)
                                                           A(K,N1+1)=AUX2
                                                                                       FOR I=1 TO N1
                                                                                        AUX1=A(LINHA,I)
                                                                                        A(LINHA,I)=A(K,I)
                                                                                        A(K,I)=AUX1
                                                                                        NEXT I
                                                           END IF
                                                           IF PIVOT=O THEN PRINT "DETERMINANTE=O NA LINHA "; K
                                                                                        FOR L=K+1 TO N1
                                                                                        FATOR=-A(L,K)/PIVOT
                                                                                                                     FOR C=K TO N1
                                                                                                                     A(L,C)=A(L,C)+A(K,C)*FATOR
                                                                                                                     NEXT C
```

120 END

```
A(L,N1+1 =A(L,N1+1)+A(K,N1+1)*FATOR
NEXT L

NEXT

F(N1)=A(N1,N1+1)/A(N1,N1)

FOR L=N1-1 TO 1 STEP -1

SOMA=O

FOR C=N1 TO L+1 STEP -1

SOMA=SOMA+A(L,C)*F(C)

NEXT C

F(L)=(A(L,N1+1)-SOMA)/A(L,L)

NEXT L

RETURN
```

Apêndice 3

Este apêndice traz o desenvolvimento do Método Spline Estendido por Klaus - Van Ness [7].

Na seção 2.6 é desenvolvido o Método Spline cúbico.

As restrições de convergência continuam válidas.

A função objetiva de minimização é escrita de outra forma:

$$E = \sum_{k=1}^{K-1} \sum_{i=1}^{n_k} \epsilon_{k_i} [Y_{k_i} - f_k(x_{k_i})] = \text{mínimo}, \quad onde$$
 (.1)

 $n_k = \text{número de pontos no intervalo } k$.

 Y_{k_1} = ponto experimental.

K = número de intervalos.

 $\epsilon_{k_{i}}=2$ para o primeiro e último ponto nodal e pontos internosw aos intervalos.

 $\epsilon_{k_i} = 1$ para os outros pontos.

 $f_k(x_{k_i}) = \text{função spline cúbica no ponto } x_{k_i}.$

Minimização em relação a A.

$$\frac{\partial E}{\partial A_m} + \sum_{k=2}^{K-1} \lambda_j \frac{\partial \phi_j}{\partial A_m} = 0, \tag{.2}$$

$$m=1,\ldots,K+1$$

Substituindo:

$$-2\sum_{i=1}^{n(j-1)} \epsilon_{(j-1)i} \left[y(x_{(j-1)i}) - f_{j-1}(x_{(j-1)i}) \right] \left[\frac{x_{(j-1)i} - x_{j-1}}{L_j} \right] - 2\sum_{i=1}^{nj} \epsilon_{ji} \left[y(x_{ji}) - f_{j-1}(x_{ji}) \right]$$

$$\left[1 - \frac{x_{ji} - x_j}{L_{j+1}} \right] - \frac{\lambda_{j-1}}{L_j} + \lambda_j \left(\frac{1}{L_{j+1}} + \frac{1}{L_j} \right) = 0.$$
(.3)

Desenvolvendo e substituindo:

$$s_{j+1}^{(k)} = \sum_{i=1}^{n_j} \epsilon_{ji} (x_{ji} - x_j)^k \qquad e \tag{.4}$$

$$t_{j+1}^{(k)} = \sum_{i=1}^{n_j} \epsilon_{ji} y(x_{ji}) (x_{ji} - x_j)^k.$$
 (.5)

Chegamos que:

$$2\frac{A_{j-1}}{L_{j}}\left[s_{j}^{(1)} - \frac{s_{j}^{(2)}}{L_{j}}\right] + 2C_{j-1}\left[\frac{s_{j}^{(2)}}{3} + \frac{s_{j}^{(3)}}{2L_{j}} - \frac{s_{j}^{(4)}}{6L_{j}^{2}}\right] - \frac{\lambda_{j-1}}{L_{j}} + 2A_{j}\left[s_{j+1}^{(0)} + \frac{s_{j}^{(2)}}{L_{j}^{2}} - 2\frac{s_{j+1}^{(1)}}{L_{j+1}} + \frac{s_{j+1}^{(2)}}{L_{j+1}^{2}}\right] + 2\frac{C_{j}}{3}\left[\frac{s_{j}^{(4)}}{L_{j}^{2}} - s_{j}^{(2)} - 2s_{j-1}^{(1)}L_{j+1} + 5s_{j+1}^{(2)} - \frac{4s_{j+1}^{(3)}}{L_{j+1}} + \frac{s_{j+1}^{(4)}}{L_{j+1}^{2}}\right] + \lambda_{j}\left(\frac{1}{L_{j}} + \frac{1}{L_{j+1}}\right) + \lambda_{j}\left(\frac{1}{L_{j}} + \frac{1}{L_{j+1}}\right) + \frac{C_{j+1}}{2}\left[\frac{s_{j+1}^{(3)}}{L_{j+1}} - s_{j+1}^{(1)}L_{j+1} - \frac{s_{j+1}^{(4)}}{L_{j+1}^{2}} + s_{j+1}^{(2)}\right] + 2A_{j+1}\left[\frac{s_{j+1}^{(1)}}{L_{j+1}} - \frac{s_{j+1}^{(2)}}{L_{j+1}^{2}}\right] - \frac{\lambda_{j+1}}{L_{j+1}} = 2\left[t_{j+1}^{(0)} + \frac{t_{j+1}^{(1)}}{L_{j}} + \frac{t_{j+1}}{L_{j+1}}\right]$$

$$(.6)$$

Minimização em relação a C.

Analogamente aos parâmetros A.

$$\begin{split} A_{j-1} \left[-s_{j}^{(2)} - \frac{s_{j}^{(3)}}{L_{j}} - L_{j}s_{j}^{(1)} - \frac{s_{j}^{(4)}}{L_{j}^{2}} \right] + C_{j-1} \left[\frac{s_{j}^{(6)}}{6L_{j}^{2}} + \frac{s_{j}^{(5)}}{2L_{j}} - \frac{s_{j}^{(4)}}{6} - \frac{s_{j}^{(3)}L_{j}}{2} + \frac{s_{j}^{(2)}L_{j}^{2}}{3} \right] - \frac{\lambda_{j-1}L_{j}}{6} \\ + A_{j} \left[5s_{j+1}^{(2)} - s_{j}^{(2)} + \frac{s_{j}^{(4)}}{L_{j}^{2}} - 2s_{j+1}^{(1)}L_{j+1} - 4\frac{s_{j+1}^{(3)}}{L_{j+1}} + \frac{s_{j+1}^{(4)}}{L_{j+1}^{2}} \right] + \frac{\lambda_{j}}{3} (L_{j} + L_{j+1}) \\ + C_{j} \left[\frac{s_{j}^{(6)}}{6L_{j}^{2}} + \frac{13}{6}s_{j+1}^{(2)} - 2s_{j+1}^{(3)}L_{j+1} - \frac{s_{j}^{(4)}}{3} - \frac{s_{j}^{(2)}L_{j}^{2}}{6} + \frac{2}{3}s_{j+1}^{(2)}L_{j+1}^{2} + \frac{s_{j+1}^{(6)}}{6L_{j+1}^{2}} - \frac{s_{j+1}^{(5)}}{L_{j+1}} \right] \\ + C_{j+1} \left[\frac{s_{j+1}^{(6)}}{2L_{j+1}} + \frac{s_{j+1}^{(2)}L_{j+1}^{2}}{3} - \frac{s_{j+1}^{(6)}}{6L_{j+1}^{2}} - \frac{s_{j+1}^{(4)}L_{j+1}}{6} - \frac{s_{j+1}^{(3)}L_{j+1}}{2} \right] A_{j+1} \left[\frac{s_{j+1}^{(4)}}{L_{j+1}^{2}} - \frac{3s_{j+1}^{(3)}}{L_{j+1}} - 2s_{j+1}^{(2)} \right] \end{split}$$

$$-\frac{\lambda_{j+1}L_{j+1}}{6} = t_{j+1}^{(2)} + \frac{t_{j}^{(3)}}{3L_{j}} + \frac{t_{j+1}^{(3)}}{3L_{j+1}} - \frac{t_{j}^{(1)}L_{j}}{3} - \frac{2}{3}t_{j+1}^{(1)}L_{j+1}$$
 (.7)

Para se ancorar o primeiro e o último ponto são colocadas mais duas restrições:

$$\phi_1 = A_1 - 58, 7 = 0$$
 (tabela1, referência[7]) (.8)

$$\phi_N = A_N - 78, 8 = 0 \qquad (tabela1, referência [7]) \tag{.9}$$

As derivadas serão:

$$\frac{\partial \phi_1}{\partial A_1} = 1 \quad e \quad \frac{\partial \phi_1}{\partial A_j} = 0 \quad paraj \neq 1 \tag{.10}$$

$$\frac{\partial \phi_N}{\partial A_N} = 1 \quad e \quad \frac{\partial \phi_N}{\partial A_j} = 0 \quad paraj \neq N \tag{.11}$$

$$\frac{\partial \phi_1}{\partial C_j} = 0 \quad e \quad \frac{\partial \phi_N}{\partial C_j} = 0 \quad j = 1, \dots, N$$
 (.12)

 L_1 e L_{K+2} não existem.

Para j=1 os três primeiros termos não existem. Para j=K+1 os três últimos termos não existem.

O erro teórico no trabalho de Klaus foi não colocar corretamente as derivadas (.8)-(.12) nas equações (.6) e (.7).

Bibliografia

- [1] Anderson, T. F.; Abrams, D. S.; Grens II, E. A. -Evaluation of Parameters for Nonlinear, Thermodynamic Models, AIChE Journal, Vol. 24, nº1, p.20, 1978.
- [2] Box, M. J. Bias in Nonlinear Estimation, Journal Roy. Stat. Soc., Series B, 33, 171 190, 1971.
- [3] Britt, H. I. and Luecke, R. H. The Estimation of Parameters in Nonlinear, Implicit Models, Technometrics, Vol. 15, nº2, p.233, 1973.
- [4] Draper, N. R. and Smith, H. -Applied Regression Analysis, 2nd Edition, John Willey & Sons Inc., 1981.
- [5] Gmehling, J., Onken, U. and Arlt, W. Vapor-liquid Equilibrium Data Collection, Dechema, Aq. Sup., pg. 70, 1981.
- [6] Guirardelo, R. Tese de Mestrado: Diagramas de fases de Temperaturas e Otimização de Reatores Catalíticos - Trocadores de Calor por simulação Numérica - Unicamp, Jan. 1989.
- [7] Klaus, R. L. and Van Ness, H. C. -An Extension of The Spline fit Technique and Applications to Thermodynamic Data, AIChE Journal, Vol. 13, nº6, p. 1132, 1967.
- [8] Kreyszig, Erwin Advanced Engineering Mathematics, fifth edition, John Wiley & Sons, p. 781, 785.
- [9] Lama, R. F. and Lu Benjamin, C. Y. -Excess Thermodynamic Properties of Aqueous Alcohols Solutions, J. Chem. Eng. Data, Vol. 10, nº3, p.216, 1965.
- [10] Landis, F. and Nielsen, E. N. -Progress in International Research on Thermodynamic and Transport Properties, p.218, Academic Press, N. Y. (1962).

BIBLIOGRAFIA 117

[11] Nunhez, J. R. Mori, M. e d'Ávila, S. G. - Método Spline Modificado aplicado ao ajuste de dados Termodinâmicos II Simposio Latino Americano de Equilíbrio de Fases, Salvador Ba, Setembro 1989.

- [12] Powell, D. R. and Macdonald, J. R. A Rapidly Convergent Iterative Method for the Solution of the Generalised Nonlinear Least Square Problem, The Computer Journal, 15, nº2, p.148 – 155, 1972.
- [13] Schoenberg, I. J. -Contribution to the problem of aproximation of equidistant data by analitic functions., Quarterly of Appl. Math. 4, p. 45-99,112-141.
- [14] Southwell, W. H. Fitting Data to Nonlinear Functions with Uncertanties in all Measurement Variables, The Computer Journal, 1, p. 69 73, 1976.
- [15] Southwell, W. H. Fitting Experimental Data. Journal of Computational Physics, 4, p. 465 474, 1969.
- [16] Tao, Bernard Y. Using Splines, Chemical Engineering, october 26, 1987, p.109.
- [17] Van Ness, H. C., Soczek, C. A. and Kochar, N. Thermodynamic Excess Properties for Ethanol n-heptane, J. Chem. Eng. Data, Vol. 12, nº3, p.346, 1967.
- [18] VII Congresso de Iniciação Científica e Tecnologia em Engenharia. São Carlos
 São Paulo, dezembro/88.