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Abstract

In the industry of chemical processes, a lot of variables are manipulated
and monitored at the same time. In these cases, it start to be of extreme
importance the stages of data treatment and the development of models for
representation of the process. One of the most important goals are
detection and identification of faults in the process. Using multivariable
statistical techniques, as Principal Components Analysis {PCA} and
Fisher's Discriminant Analysis (FDAJ, is possible to take advantage of the
data multivariable nature and it is possible t{o proceed with the detection of
monitoring problems as well as diagnosing which the causes of these
behaviors.

In this work is considered as study case a hydrogenation of phenol to
cyclohexanol reactor. Historical data, with a great number of variables and
observations, were collected during the operation of the process. The
general idea of the method of PCA is to explain the covariance structure of
the data through some few lineal combinations of the original variables,
which try to reflect the dimensions truly important. The acting of the
process then can be monitored in the space of the principal components,
of smaller dimension. Using the model PCA was possible the evaluation
and identification of a group of faults in the process. On the other hand,
using a bank of faults, adequately built, FDA got to classify the
observations with a good classification tax. A reflection on the importance
of the use of these multivariable techniques for detection and fault

diagnose is presented with the evaluation of the obtained results.



Resumo

Na industria de processos gquimicos, geralmente varias variaveis sdo
manipuladas e monitoradas ac mesmo tempo. Nestes casos passam a ser
de extrema importancia as etapas de tratamenio de dados e ¢
desenvolvimento de modelos de representacio do processo para a deteccdo
¢ identificagdo de falhas no processo. Usande técnicas estatisticas
multivariadas, como Analise de Componentes Principais (PCA} e Analise
Discriminante de Fisher (FDA), tira-se proveito da natureza multivariada
dos dados e € possivel proceder com a detecgdo de problemas de
monitoramento no processo, assim como diagnosticar quais as causas
destes comportamentos.

Neste trabalho consideramos como caso estudo um reator de hidrogenacao
do fenol a ciclo-hexanol. Dados histéricos, com um grande mimerc de
variaveis e observacgétes, foram coletados durante a operacio do processo.
A idéia geral do método da PCA é explicar a estrutura de variancia e
covariancia dos dados através de umas poucas combinacdes lineares das
variaveis originais, as quais tentam refletir as dimensoées verdadeiramente
importantes. O desempenho do processo poderd entio ser monitorado no
espaco das componentes principais, dimensionalmente menor. Usando o
modelo PCA e alguns graficos auxiliares foi possivel a avaliacio e
identificacdc de um conjunto de falhas no processo. Por outro lado,
usando um banco de falhas apropriadamente construide FDA conseguiu
classificar todas as observacbes amosiradas com uma boa taxa de
classificacao. Uma reflexdo sobre a importancia do uso destas técnicas
multivariadas na detecgiio de falhas é apresentada junto a avaliacdo dos
resultados obtidos.
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Chapter 1: Introduction

1.7 Moilivation

Large amounts of data are usually available in many chemical processes.
The data can be analyzed to determine whether or not a fault has occurred
in the process. A fault is defined as abnormal process behavior whether
associated with equipment failure, equipment wear, or extreme process
disturbances. This is very important in industry for efficiency, security,
quality of products and environmental restrictions.

Techniques for analysis of complex data sets, with a great number of
measured variables, is inside the field of the multivariate statistics. There
are several techniques particularly important in industry of chemical
process: Principal Components Analysis, Discriminant Analysis, Factorial
Analysis and Cluster are some of them. Multivariate statistical methods
have became very useful for their ability to describe major trends in a data
set, specially Principal Components Analysis (PCA), which has been widely
used for this purpose {(Hiden et. al., 1999). This method in many ways
forms the basis for multivariate data analysis (Wold et al., 1987). It is
worthwhile mentioning, that PCA can alsc be used to accompany the
variations of processes (Wetherill, 1991). In this context it is possible to
consider the variability as information {(Shunta, 1995).

The general idea of the method of the PCA is to explain the covariance
structure of the data through some few lineal combinations of the original
variables. The general objectives are: reduction of the data and
interpretation (Johnson and Wichern, 1992).

In industry, a great number of variables are usually measured and stored,

as databases, in the computer, during the operation of a process. These
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variables, in general, are highly correlated and the real dimension of the
monitored process is considerably smaller than that represented by the
number of variables of the process collected. PCA reduces the
dimensionality of the process creating a new group of variables, called
principal components, which try to reflect the dimensions truly important.
Then, the performance of the process can be monitored in the PCA space,
dimensionally smaller. {Zhang, et. al, 1997].

PCA relies on the formation of a statistical model based on historical
process data to establish normal operating behavior. New data is then
compared with the normal operation model to detect a change in the
system. This model can be handled with less variables than the original
number, since an important feature of PCA is dimensionality reduction
with relatively little loss of information, or at least with a prior knowledge
about the desired information.

On the other hand, Fisher's Discriminant Analysis (FDA) is a multivariable
technigue that works with data that present a group structure, or class,
known a priori Exploratory by nature, this technique has as main
objectives to find discriminant functions, or new axes, that describe
graphically and algebraically the separation among the groups as well as
rules that allow te classify a new individual in one of the known groups,
minimizing the risk of misclassification. In this case it will be called as
group to each type of fault.

1.2 Geomelric illustration

To appreciate the behavior of these techniques in the space of the data,
some appropriate graphical representations will be used to iltustrate it.

1.2.1 Principal Components Axes

The gecmetrical representation of the principal components is illustrated

in Figure 1 for two variables.



Figure 1. Hypothetical representation of Principal Components for two variables.

1.2.2 Fisher's Discriminant Axes

Fisher's procedure is illustrated in Figure 2, schematically, for two

variables. All points in the scatterplots are projected onto a line in the

direction [, and this direction is varied until the samples are maximally

separated.
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Figure 2. A pictorial representation of Fisher's procedure for two variables and two
groups.



1.2.3 Geometric comparisen of Principal Components and Fisher’s
Discriminant Axes

To have a geometric idea of the similarities and differences between PCA

and FDA axes, it will be presented an example to proceed.

Let us consider three hypothetical groups of bivariate data whose graphic

representations are in Figure 3. The three directions, vy, w and z here

represented are the following ones:

.« When the structure of groups is unknown, and considering the
collection of data as a whole, y is the first Principal Component, which

describes the direction of maximum variability of the complete data set.

Source: KRZANOWSKE, W.J., 1988,

Figure 3. Hypothetical representation of the approximate directions for the first Principal
Component ¥, when it interests the total variability; the first Principal Component w,

when it interests the variability inside of the groups and z, the first Fisher's Discriminant
Function, when it interests the variability among the groups.

» When the interest is the variability inside the groups, that is equal for all
in this example, this can be seen in the direction of the Principal
Component w.

« Finally, when it is the separation between the groups the most

important, z, that it is the first Fisher's Discriminant Function, is
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convenient to represent the direction where it is seen the befter

separation of the groups.

1.3 Scope, Goals and Approach

In general, the goal of this research was to determine how PCA and FDA
could be used to enhance process monitoring and control. This general
goal was broken down into two areas of application: process monitoring
and process analysis. In each of these two areas there are specific
questions which were attacked. These are cutlined below:

Process monitoring: Can PCA and FDA be used as effective process
monitoring tools? Earlier studies have shown that PCA appears {o model
the “normal” process variation and have indicated that PCA may be useful
for identifying process upsets and failures. Other recent studies have
shown that while PCA development models are based on data collect for
each fault class, the FDA approach simultaneously uses all of the data to
obtain a single lower dimensional model used to diagnose faults. Can
limits be developed around the methods so that they can be used in a
straightforward fashion for fault detection? These and other issues are
considered in this work.

Process analysis: What can be learned about multivariate processes using
PCA and FDA? Often, otherwise unrecognized relationships between
variables and samples are made apparent when the data is subjected to
PCA. Also, studies from other fields have indicated that FDA is useful as a
pattern recognition technique. Does this hold in practice?

These were subjects that served as motivation for this work. It is intended
as specific objective to build an itinerary that serves as guide to the use of
PCA and FDA for detection and identification of faults in data of a
continuous process. Using for this the digital exit of the program in
Fortran, derived of the calculations, and also auxiliary graphs that are
shown very useful for interpretation ends as well as to take decisions. In

short, the objectives of this work are:



. to deepen in the use of the PCA and FDA techniques for detection and
identification of fauits,

. to implement the use of these techniques in Fortran seeking the
subsequent use of this program starting from a group of industrial data,

- to explore the presentation of the results digitally and graphically,

= to build an itinerary with necessary indications of how to use these
multivariate statistical technigues in a continuous chemical processes,
having as target the personnel of industries, as users,

. to develop a software in Fortran with the facilities required to the users
to take decisions based on the PCA and FDA methods.

1.4 Thesis Organization

The thesis is organized as follows.

First is given an introduction of the work, in Chapter 1, with an
explanation of the motivation, the geometric meaning of the techniques of
interest and the objectives of the work. Then, in Chapter 2, a recount of
the Statistical Process Control is done and some of the papers published in
this area until recent dates are commented.

A review with the theory about Principal Components Analysis and
Fisher's Discrimninant Analysis is made in Chapter 3. In Chapter 4 we talk
about the proposed procedures and the form used to validate them. It will
be explained the construction of the test data and the training data, PCA
model and the data set for performing FDA.

The results obtained are showed in Chapter 5. An analysis of the behavior
of the PCA model is made for each type of fault studied as well as the
results of the application of FDA.

In Chapter 6 we draw an itinerary that has as objectives to help as a guide
in the application of these techniques to the multivariable process control.
Discussions and conclusions are presented in  Chapter 7.
Recommendations with proposed future works and other applications are

found in Chapter 8.



Chapter 9 is dedicated to bibliographic references and Appendix 1 and
Appendix 2 present some theoretical results of interest for PCA and FDA.
The flowcharts for Fortran routines are presented in Appendix 3.



Chapter 2: History and Bibliographic Review

2.1 Recounis of the appearance of Siatistical Process Conirol

The Statistical Process Control (SPC] is an important tool in the modern
industry. SPC and related techniques of survey inspection were developed
in the last century. In May of 1824 Walter A. Shewhart of Bell Telephone
Laboratories made the first sketch of a graph of modern control. In 1831
the important paper of the new techniques was presented to the Royal
Statistical Society. SPC was used widely in the Second World War in
England and in the United States, but it lost some importance when the
industries abandoned the warlike production. The Japanese industry
applied SPC thoroughly and it proved the benefit of if. Countries as
England and the United States are being forced to introduce SPC with the
objective of competing with the Japanese (Wetherill and Brown, 1991).

SPC examines if a process is working in the due way or not, evaluating
collected data. If abnormalities are detected, the idea is to determine the
reasons for this behavior and to eliminate the causes, producing solutions
using statistical techniques {Ipek et al., 1999).

Although it usually understands both as the same thing, there exist
differences between statistical control of quality and statistical control of
processes. With the first, traditionally the product guality properties are
charted to determine if the process is in state of “statistical control”,
traditional multivariate control charts are shown to be very effective for
detecting events when the multivariate space is not too or ill-conditioned.
However, product quality data may not be available frequently, but only
every few hours. However, many process measurements such as the

temperature profile down the reactor, for instance, the coolant
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temperatures, and the solvent and imitiator flowrates are available on a
frequent basis. The signature of any special events or faults occurring in
the process that will eventually affect the product, should also appear in
the process data X. Therefore monitoring the process may be preferable.
By looking at the process as well as the quality variables, in fact statistical
process control has been considered, as opposed to statistical quality
control (SQC], as mentioned by Kourti and MacGregor, 1996.

The Multivariate Statistical Control Process, according to Saibt, et. 2],
1996, consists of two basic procedures: the control of the means and the
control of the variability of the process. SPC should be seen as a statistical
analysis of the variations of the process and their causes. The differences
among the decisions taken based on facts and those taken only using
intuition can be enormous (Wetherill and Brown, 1991).

In any production process, some variation in the quality of the products is
inevitable. The built-in theory in the graphs of control originated from the
graphs of Shewhart is that this variation can be divided in two categories:
random variations and variations due to special causes. These last ones
refer to causes on the ones which some control type is considered, for
instance, differences in the qualify of the raw material, new workers or no
specialized, among others. However, the random variations are the
variations of the quality due to many complex causes, each one influencing
the process slightly. Little can be done in this case, unless the process is
modified in its basic requirements.

In some industries, mainly of manufacture, the control graphs are one of
the most effective ways to discover when a process is "out of control” in a
cheap and safe way. When the process is working abnormally the "sign”
will appear in the graph. In the industry of processes, particularly, the
situation is more complicated because it is not always clear what to graph
or what to do in the case of signs of "out of control”. Frequently there only
exists a vague knowledge of the relationships among many of these
variables. A SPC in such cases involves much more than control graphs.

At the present time many multivariate statistical techmniques are being
9



used in the control of processes. To proceed, it is presented a summary of

the great amount of recent published papers about the use of it.

2.2 Published Papers

A paper that described quality control methods for two variables was
discuss by Jackson, 1956. The use of PCA for quality control was first
suggested in the early paper by Jackson, 1959, Here PCA is introduced
hoth as a method of characterizing a multivariate process and as a control
tool associated with control procedures. Jackson and Mudholkar, 1979,
discuss the treatment of residuals associated with PCA.

More details on the use of PCA were later provided by Jackson, 1980 and
1985. Jackson’s book, 1991, widely referenced, provides a user's guide to
principal components, with a compilation of theory and applications.

This method, PCA, has been used and extended in various applications,
some examples are:

Kaufmann, 1983, who constructs a model, using PCA, that detects
adulteration of edible oils, i.e., where high-priced commodity oils are mixed
with lower-priced substitutes. A piot of the first two principal components
showed the spread of the different authentic types of oils in the
chromatographic measurement space.

Another approach is the sensor fault identification and reconstruction
using PCA. In the paper of Dunia et al, 1998, the PCA model captures the
measurements correlations and reconstructs each variable by using
iterative substitution and optimization. The effect of different sensor faults
on model based residuals is analyzed and a new indicator called SVI is
defined to determine the status of each sensor. An example using boiler
process data demonstrates the attractive features of this indicator.

In their paper, Kosanovich et al., 1996, discuss a variant of PCA,
multiway PCA, used to analyze data taken from an industrial batch
process. They show in that work that multiway PCA can be used to identify

major sources of variability in the processing steps, improving process
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understanding.

Wise and Gallagher, 1996, reviews the chemometric approach, the
application of mathematical and statistical methods to the analysis of
chemical data, to chemical process monitoring and fault detection. They
used PCA and other multivariate statistical technigues to assist their
goals.

The paper of Martin et al., 1999, reviews the concept of process
performance monitoring through an industrial application to a fluidized
bed-reactor and a comprehensive simulation of a batch methyl
methacrylate polymerization reactor, using PCA and multiway PCA,
respectively.

Valle et al., 1999, comment on how principal component analysis has wide
applications in signal processing, chemometrics, and chemical processes
data analysis. They propose a method, the variance of the reconstruction
error criterion, with the comparison to other methods, to select the
number of principal components to be retained.

Ralston et al., 2001, use PCA for process modeling, monitoring, fault
detection and diagnosis. An enhancement is made by using confidence
limits on the residuals of each variable for fault detection. Their results
show that the time required for fault detection, using a MATLAB toolbox, is
reduced. They identified ways to more effectively monitor processes and to
more promptly detect and diagnose faults when they occur, using PCA. A
chemical process is used as case study.

FDA provides an optimal lower dimensional representation in terms of
discriminating among classes of data (Duda and Hart, 1973; Hudlet and
Johnson, 1977), where for fault diagnosis, each class corresponds to data
collected during a specific known fault,

According to Russell and Braatz, 1998, PCA has great properties in terms
of detection of faults. However they discuss the advantages, from the
theoretical point of view, of FDA on PCA, in the item of isolation of the
fault.

Chiang et al., 2000, compare the potentialities of FDA, Discriminant
ii



Parcial Least Square (PLS3) and PCA. Although FDA has been widely
studied in the pattern classification literature and is only slightly more
complex than PCA, its use for analyzing data of processes is not frequently
found described in the literature. As Chiang et al., 2000, analyzed, this is
interesting, since FDA should outperform PCA when the primary goal is to
discriminate among groups. They suspect that part of the reason that FDA
has been ignored in the chemical process control literature is that more
chemical engineers read the statistic literature (where PCA is dominant]

than the pattern classification literature {where FDA is dominant}.



Chapter 3: Theory and Basic Knowledge of
Principal Components Analysis and
Fisher’s Discriminant Analysis

3.1 Introduction

In this Chapter the theoretical base of the methods of PCA, section 3.2,
and FDA, section 3.3, is presented. First we explain the theory in the usual
form, i.e., as it is found in the statistical literature [for instance in Johnson
and Wichern, 1992). In a second moment the appreoach is presented for
their application in the detection and diagnosis of faults in continuous

Drocessces.

3.2 Principal Components Analysis

3.2.1 Theory overview of PCA

PCA is an optimal dimensionality reduction technique in terms of
capturing the variance of the data. For a given data matrix X with n rows
{cbservations} and p columns {(measurement variables} the covariance

matrix of X is defined as

XX

n-1

S=cov(X) = 3.2.1)

The X matrix will be called the original data matrix, in this work. For
practical convenience, data matrix X is an 'autoscaled’ matrix; i.e, adjusted
to a mean zero and unit variance by substracting the column averages and

dividing each column of the original process data by its standard deviation.
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For this reason the equation {3.2.1} is also the correlation matrix for X.

It is good to observe in this point that the standardization affects the size
of the coefficients and therefore the relative importance of the variables in
the hour of the interpretation; the explanatory power of each component
changes because it also changes the magnitude of the eigenvalues.
Therefore, in PCA the standardization should be treated carefully. It is
recommended in some cases, being more used in the presence of different
variables and scales of different measurement in the original variables.
Given that, in our case, it will work with a large group of industry variables
monitored, which present scales of different measurement, the
standardization is justified!.

Mathematically, PCA relies on an eigenvector decomposition of a
symmetric, non singular matrix, such as the covariance maitrix of the
process variables, S {Johnson and Wichern, 1992). It may be reduced to a
diagonal matrix A by premultiplying and posmultiplying by a particular
orthonormal matrix P, this is P'SP= A . The diagonal elements of A, A1, Az,
..., Ap, are called the characteristic roots, latent roots, or eigenvalues of S.
The columns of P, pi, p2, ..., pp. are called characteristic vectors, or
eigenvectors of 8. These characteristic roots may be obtained from the

characteristic equation

S-1=0 (3.2.2)
where [ is the identity matrix the order p. The characteristic vectors may

be obtained by solution of the equations

[5 - 21lg; =0 (3.2.3)
Independently of the length of vector g;.. For this reason, to obtain a single
solution for the problem above, it is convenient to restrict attention to
characteristic vectors of unit length, p; (Johnson and Wichern, 1992). This

normalization would be as in expression (3.2.4).

1 A wider discussion on this aspect can be seen in Consal, 2000, section 3.1,
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p; == 3.2.4
' vV 4ig; ( }

fori=1, 2, ..., p.

Geornetrically, the described PCA procedure is nothing more than an axis
rotation of the covariance matrix, and the elements of the eigenvectors are
the direction cosines of the new axes related to the old ones {Geladi and
Kowalski, 19886].

Mathematically, in PCA the eigenvectors are the coefficients of the linear

combinations of the original variables, xy,X;;...,%,, that transform p
correlated variables into p new uncorrelated variables ty,t,,...,t, using the
following transformation:

Ty = X Prop {3.2.5)
The Ppxp matrix has p columns, which are the eigenvectors, and p rows,
related to each original variable. The columns of the transformed variables

matrix T are called principal components of data matrix X. Generally in

PCA, ty,t5,...,t, are called score vectors and P1:P2s Py loading vectors.
The ith principal component would be written as

t; =Xpy (3.2.6)

where

var(t;) =piSp; and cov(t;,t, ) =p;Spy. fori=l, 2, ..., p.

Here t; and p: are nxl and pxl vectors, respectively. In detail, the

components of the ith principal component vector t; are calculated as

Iy = X Pyt X¥12P2i o Xy P

by; = Xy1Py t X2 Pai .t Xp Py (3.2.7)

Tni & Xn1P1i T Xp2P2i + oo T X Ppi
In other words, the principal components are those uncorrelated linear

combinations ty,t5,...,t, Whose variances are as large as possible. The first
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principal components in the linear combination with maximum variance.
That is, it maximizes var(t;)=p:Sp;.

The optimization criterion for PCA, before described, can be written also in
the form {(Russell and Braatz, 1898}

max 5P
=0 PP
It Can be shown that each principal component t; will have mean zero and

(3.2.8}

variance equal {o eigenvalue 3, for the result? to follow:

Result 1: Let S be the covariance matrix associated with the random vector

X=[X,, X,, ., X pj. Let S have the eigenvalue-eigenvector pairs (A;, €1},
(A2, €2}, ..., (Ap. €p). Where A1 2 A22 ...Ap 2 0. The ith principal component is
given: by

ti :Xpi :Xpli +X§)2§ +""§‘pr§, i=1,2,,,.,p

with these choices,

var(t;) =piSp; = 4;
, fori=l1, 2, ..., p.

COV(ti R tk ) zp;Spk = O
From result 1, the principal components are uncorrelated and have

variances equal to the eigenvalues of S.

3.2.1.1 Proportion of explained variance by each principal component

To calculate the variance proportion explained by each principal
component needed first to calculate the total variance. Let us see the
following result® {(Johnson and Wichern, 1992}:

Result 2: Let X:[XI, Xo ij have covariance maitrix S, with

eigenvalue-eigenvector pairs (A1.e1), (Az,e2), ..., (Ap.ep}, Where A12h22...2520.

Let t; =Xp;, t; =Xp,, ..., t, =Xp, be the principal components . Then

2 The complete result and its proof can be seen in Appendix I, sectiont Al 1.

3 The proof of Result 2 can be seen in Appendix 1. section A1.2.
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Result 2 says that Totalsample variance= » s; = > A and consequently, the
i=1 i=1

proportion of total variance due to, or explained by, the kth principal

component is:

= e k=12, p
i*ﬂ‘ (3.2.9

i=1

Proportion of total variance
L explained by kth principal components

If most of the total variance, for large p, can be attributed to the first
components, then these components can “replace” the original p variables

without much loss of information.

3.2.2 Tools to develop a PCA model

One interesting property of principal component is the fact that equation
{3.2.5) can be inverted to

X=TP (3.2.10)
due to the fact that P is orthonormal so that P =P’. Then, multiplying by
P’ in both sides of equation (3.2.5), TP'=(XP)P'=X(PP~)=X. Equation
(3.2.10j is called PCA model (Wold et al., 1987).

The p principal components reproduce the whole covariance structure of
the original data. However, using only a few principal components it is
possible to reach a high percent of explained variance that can be enough
for the purposes of fault diagnosis and to explain the dynamic behavior.

Let us suppose that it is decided to be alone with k principal cornponents,

k<p. Then an approximation of the data matrix X can be written as

X=TuPu (3.2.11)
Here the residual matrix E appears, representing the percent of variance

not explained by the PCA model. In this case, model (3.2.10) becomes:
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X mTr.xk??;p +E {8.2.12}

3.2.2.1 Reduction of dimensionality

Several methods to decide what is the appropriate number of principal
components to be chosen exist. It is possible to use the SCREE test, that is
a graphical technique widely used for this goal. It consists on plotting all of
the characteristic roots, eigenvalues, of the covariance matrix, the values
of the roots themselves being the ordipate and the eigenvalues, the
abscissa. If the graphic has one break in it, this procedure is a good and
easy way to select the principal components number to be retained. In
other cases it could be difficult to reach a conclusion and others methods
should be used (see Jackson,1991 and Valle et al., 1993). There is a
plethora of methods to calculate the number of PC, for example:
cumulative percent variance, scree test on residual percent variance,
average eigenvalue, paraliel analysis, cross validation, etc. As Valle et al.,
1999, analyze, the decision to choose the number of principal components
is very subijective. Russell, 1998, after a careful analysis, comments that
there appears to be no dominant technique. Ku et al., 1995, recommend
the parallel analysis method, because in their experience, it has performed
overall the best.

Horn, 1965, had already proposed this method (parallel analysis). He
suggested generating a random data set having the same number of
variables and observations as the set being analyzed. These variables
should be normally distributed but uncorrelated. A SCREE plot of these
eigenvalues will generally approach a straight line over the entire range.
The intersection of this line and the SCREE plot for the original data
should indicate the point separating the retained and unretained principal
components. The reason for that is that any eigenvalues for the real data,
which are above the line obtained for the random data, represent
eigenvalues that are larger than they would be by chance alone.

This procedure, comparing the singular value profile to that obtained by
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assuming independent measurement variables, will be used in this work to
choose the number of principal components to be retained in the PCA
model. The dimension is determined by the point at which the two lines
cross. This approach is particularly attractive since it is intuitive and easy
to automate {an example of this procedure will be seen in Figure 9).

Once the principal components have been obtained from matrix data X,
new data can be referenced against the model. For an entire data set X,
where X is the new data matrix that has been scaled to the mean and
standard deviation of the model data set, the residual matrix E,
representing the percent of variance not explained by the PCA model is
calculated as

E=X~-X=X-TP =X -XPP = X(1-PP) (3.2.13

where maitrix Ppa is the matrix with the k eigenvector selected.

3.2.2.2 Fault detection

For any sample, a row of the new X, x{, the sum of squared residuals is a

scalar value sometimes referred to as a lack of fit statistic, Q. For the ith

sample,

Q; =eje; = x; (I - Py P, )x; {(3.2.14)
The @ statistic provides a way to test whether the process has shifted
outside normal operation {Ralston et al., 2001). It is a measure of the
amount of variation in each sample not captured by the selected number
of principal components retained in the model. Variation of data within a
confidence limit established for @ from normal data represents process
noise. This confidence limit is calculated as

1
2
0.6 cmlzﬂzho i +62hog;o"1> "0 (3.2.15)
i i
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. ¢g is the normal deviate

c i . 29193

where 9, = » A, fori=123, and h, =1~
2
j=k+1 365

corresponding to the upper {1-¢of (Wise, 1991},

When the variation of the data is outside the defined confidence limits, the
rmodel has not captured the majority of the variance; therefore, the PCA
model does not describe the data adequately. In the latter situation, the
data are identified as faulty data (McGregor, 1995}

While the Q statistics offer a way to test if the process data has shifted
outside the normal operating space, there is a need for a statistic that
provides an indication of unusual variability within the normal subspace.
This, the normal subspace, may be provided by Hotelling's T2 statistic
(Wise, 1991: Wise and Gallagher, 1996; Jackson, 1981, 1981, 1979j.
Kourti and MacGregor, 1996, also show that normal operations can be
characterized by emploving Hotelling’s T2 statistic. For any new sample xj,

the T2 value is defined as

T =t;A"t] = x;PA"Px, (3.2.16)
where 1; in this instance refers to the ith row of Tuxx, the matrix of k scores

vectors from the PCA model. The matrix A is a diagonal matrix containing
the inverse eigenvalues associated with the k eigenvectors (principal
components) retained in the model.
Statistical confidence limits for T2 can be calculated by means of the F-
distribution (Johnson and Wichern, 1992) as follows

Tha ="
While the Q limit defines a distance off the space that is considered

unusual for normal operating conditions, T2 limit defines an ellipsoid on

g (3.2.17)

the space within which the operating point normally projects, see Figure 4.
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Figure 4. Geometric representation of @ and T2 statistics.

3.3.2.3 Fault diagnose

Q residual contribution plots provide a way to diagnose a fault. The plot
represents the Q residual versus a sample number or a grouping of sample
numbers. This gives an approximation to the time a particular fault
occurred. These plots are bar graphs of each variables § contribution. This
information is calculated by computing the means of the columns of the E,
the residual matrix. As mentioned before, the residual matrix is made up
of m samples {row) by n variables {columns). If a certain variable has
extremely large residuals for a certain time frame, this contribution plot
allows one to narrow down the fault source.

To generate a @ residual contribution plot, two cases need to be
considered. The first of which is rather simple and the second is just one
step more complicated. The first case deals with finding the Q residual
contribution plot for a single sample. To accomplish this, the values listed

in the specific sample’s row would be plotted.
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The second case deals with finding the Mean @ residual contribution plot
for a group of samples. This is a little more involved than case one. If @
residual contribution plot for samples n to n+8 is desired, rows n to n+8
are needed. For those rows, each column’s mean is calculated. The mean
of each colummn, will give the @ residual contribution for each variable over
the specified number of samples from n to n+8.

After having calculated the PCA model, the residual matrix is obtained. A
Q residual contribution plot is given showing data for each variable's
contribution over samples 26 to 31. To verify what is happening but is not
visible to the user, look at the following sample residual matrix (Table 1
below). As always, the rows represent the sample number and the columns
represent the variables. For simplicity the matrix is taken to have rows 1-8
and colummns 1-8 representing 8 samples on each of the 8 variables

respectively.

Table 1. Example of a sample residual matrix.

0.51%10.358 | 0.058 [ 0.5710.2081-0.477| 1.245 |-0.268
1.324]1.1706G.625!-4.049[-0.177|-0.030} 0.318 |-0.121
0.

0.593

3831 0.074 23011 06.408 [ -0.276] 1.114 |-0.357

0
0.400 | 0.3791~0.220|0.444 | 0.431 /-0.398] 1.090 |[-0.439
-0.166({-0.209{-0.421{0.286 {-0.033|-0.082;{-1.879,-2.021
1
0
¢

-0.0141-0.0643| 0.626 L116 | ~0.4310(-0.573i-1.876|-1.872
0.902 | 1.053 1-0.020,0.408 | 0.0800.9%2 [-3.432}-2.215
.682 {-0.277(-0.689:-1.346~1.925

0.332 | 0.15%0 |~0.04¢

To create the Q residual contribution plot for sample nmumber five (i.e. row
number five in the Table 1}, calculate the mean of each variable {(column)
and plot them. Here since only one sample is being considered the mean
will essentially be the value listed in the cell. To create the Q residual
contribution plot for samples one to eight {i.e. row nurnber one to eight in
the table above}, calculate the mean of each variable {column) and plot
them. The @ residual contribution plot for samples one to eight is shown

below with the calculated variable means.

N
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Table 2. @ residual contribution plot data for data from Table 1.

0.68501 | 0.41026 | 0.08432 |-06.03013] 0.02881 |-0.15168]-0.59570{-1.17367

G residual contribution plot

Mean Contribution

-1.5

YVariables

Figure 5. Q residual contribution plot for sample residual matrix in Table 1.

3.3 Fisher’s Discriminant Analysis

3.3.1 Theory overview of FDA

The problem of Discriminant Analysis is characterized when is considered
n individuals or observations, described by a group of p quantitative
variables, X,,X,,---.Xp, separate In s groups, defined a priori by an
indicative variable. The matrix of data can be written, proceeding the

following notation:
1)
Xin

anp = . (8.3,1}
X/
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- ay
H i

§xiﬁ !

where each X;=| : | is such that &1, 2,...., 51 j =1, 2,...., ns. The sub-
LFiip
index ¢ refers to the number of groups and ; identifies the number of

observations inside of each group. The matrix of data* can be written in
full detail as:

P e i
Xppy e Xpp,
b S : {3.3.2)
X1 e Kap
Ko o Kap

Fisher's idea [Johmnson and Wiichern, 1992) was to transform the

muiltivariate cbservations X, =1, 2,...., s j =1, 2....., ns, to univariate

G
cbservations Y in such way that the Y's derived from one population were
separated as much as possible of those derived of the other populations.
An important point is that Fisher's approach does not assume that the
pepulations are normal. It does, however, implicitly assuime the population

covariance matrices are equal®, ¥, =%,=..=2 =2y, because a pooled

estimate of the common covariance matrix, S =8y, is used as the

pooled
estimate of covariance matrix within of the populations, Xy . The

expression of this matrix can be seen to proceed:

4 I is good to emphasize here that this section wiil be developed without considering the matrix X as being
standardized. This because in the case of FDA, the existence of a closed relationship among the coefficients
ohtained starting from the standardized data and of the data without transforming has been shown (Consul,
2000, p.30}. Therefore, the development of this section will be made in the most general case.

5 In practice it is common that it doesn't come true the hypothesis 5:=5; =.... = Sw, however, the FIA s robust
and it can be applied and to work perfectly in these cases {see Gilbert, E.S., 1969).
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I (-1 j _ _
Spooled{pxp) = 2 RZ_S)SZ = _Ez(xz —xzz)(xr mxh‘)

=815 =8 jatr=1

(3.3.3)

i

5 4

E(X“;’?zXX”jfz)

b 1

3
with 4, j=12,..,p and vectores X and X, as defined in section 3.3.2, below.
The Fisher's Discriminant Analysis is a wuseful technique in practice
because it helps to visualize better the separation between populations
using some few lineal combinations of the wvariables, reducing the
dimensionality of the problem.

I others hands, FDA provide an optimal lower dimensional representation
in terms of discrimminating among classes of data {(Johnson and Wichern,
1992), where for fault diagnosis, each class corresponds to data collected

during a specific known fault.

3.3.2 Fisher’s Method for several populafions

The interest will be to show the acting of the FDA when is considered each
fault studied as a group. As usually with is accessible is a sample® of s
groups, the notation will be worked in sample level and to proceed will be
defined the expressions more used. The vector of means for the total

sample will be represented in the following way:

'.f;’
X"JE  with ¥ =3 328 (3.3.4)
p— I=i f=l n:
xp pxl
with =1, 2,..... 8 j=1, 2,...., ns. The vecter of variables and the mean by

group, respectively, as:

6 The population treatment for the FDA can be seen, for instance, in Johnson. R.A. and Wichern, D.W., 1892;
Mardia et al., J M., 1879 or Lachenbruch, P.A, 1875.
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i'X}‘} — ux-ij“i LI .
X= 1| X =] ,with¥=3"% (3.3.5)

=1 F,

F 1 x;
- pxil L7 ¥ dpxs
On the other hand equation (3.3.6] it is the sum of squares and products
crossed between the groups and SSy =(n-58 s is the sum of squares
and products crossed within the groups.
5 #
$Sp =%, -X)X, - %) (3.3.6)
i=1
Let consider the lineal combination (3.3.7)
Vi1 =Clp X o {3.3.7}

The matrix of coefiicients C can be written as;

- 4 -
€ €1z .- G £
€1 €2 ... Eyp €7
Ckx = . . ’ = ) (3.3-8)
Polen en .. g e;
p
Lek] €ra ... ekp_ _ek“

Explicitly, the lineal combinations are in the following way:

B3] xeuXE '§‘€12X2 +...+€1PXP

¥ m621X1+€32X2+'“+62}9XP (3.3.9)

ykmeklxl_é_ekzxﬁl +...+ekpo
and each one of these lineal combinations can be writien, in a more

reduced form, as:
¥ meEX [333.10}
with i=1.2,.k and where the vector of coefficients ¢! is the ith row of the

matrix in equation (3.3.8). The lineal combination, in the way seen in
equation (3.3.10) and conditioned tc the population of interest, they have
expectation equal to:
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E(y)y=ejE(X |n))=e/X, {3.3.11)

for the combination / and the group !=12...,s, and variance equal to

Var(y;)=e; Cov(X)e; =e[8 pooeqt; (3.3.12)
Spocled , as defined in the expression {3.2.3), and X and ¥ defined vectors
as in (3.3.5) and (3.3.4}.

On the other hand, the general mean for the lineal combinations y,,

M
k —
i=12,.k, is a constant value equal to y=3 7, being ¥ =, ! the vector of

}’p pxl
means for eguation {3.3.7). However, since the » observations are divided
in s groups, it will be convenient to describe this structure in the new

variables y. For this is possible to call of y; the value of y for the

observation ; in the group i, with i=12,.,5s and j=12...n;. In this way the

mean of the group ¢ will be 7 = }ij and the general mean

7 =t

_ 1
)’”—";ZE}JU Einyt'

To search if the s groups are well differentiated would have to partition the

total sum of squares 5SSy, of y;, in the sum of squares between the groups

S5g, and the sum of squared within the groups SSy .

3 A
8§y = Z 2 (yi]. - y)z =YHY =¢X'HXe=eS e {3.3.13)
i=1 j=1

In this H:E———l—ll’ is the matrix of centralization, whose help makes
H

possible to have convenient matrix representations for the sums of squares

and crossed products,

555 =3nG -5 =30 {eX, ~X)P =e'S e (3.3.14)
fef i=1

27



SQw = ZZ(YU - 37}')2 = ZEX;HiXie =e'Sye {3.3.15)
i=1

i=1 j=1

where H; =1, —wiii”, As it is known, the relationship among these
7

sums of squares is the following:

58y =855 + 5SSy (3.3.16)

The Fisher's criterion is particularly atiractive because it results of the use

of the sum of squares and products crossed between groups and the sum

of squared within of the groups. This means that the interest will be to

maximized the rate given in the expression (3.3.17}, so that the new

variable has larger variability befween groups relative to the variability
within the groups.

58 eSpe

E&im?’gjé (3.3.17)

where Sz and Sy are the covariance matrices between and within the

groups, respectively. The form of the §; matrix can be seen in (3.3.18).

B SB cas SB
i1 12 ip
B B B 5 ’
s2 .. s - —ye =
Sp=|"a Tz 7 Ty =—i~1— (%, -X)x,-X) (3.3.18)
: : .. : L
SB SB SB
| st p2 P8 | pp
A generic element of this matrix is:
I S —
sy = 2 E %) (3.3.19)
15
1 e — e Y
5% =—*2(sz —X; )(sz _xi) {8.3.20)

with i, j=12...p.
This means that the interest will be to maximize the rate given in the

expression {3.3.17], that is:.
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eSge

max

e20 €Sy e (53-3.21)

As larger is the rate (3.3.17), will be stronger the indication of larger
variability between groups of those within of the groups. One change in the

coefficients of the lineal combinations, i.e.,

e, =le, ey . ) (3.3.22)
with i=12,..k, will change the values of y; and, therefore, it will produce
different values for equation (3.3.17). To maximize the value of this rate
will allow to see, in the best possible way, the difference between the
groups, and it is for this that the problem of the FDA will be to find the
coefficients that maximize [3.3.17), which is an optimization problem,
purely mathematical. To solve it is necessary to select e in such way that
equation {3.3.17) be maximum, therefore, the idea here is to work with this

expression, presenting the optimization in the form of the eigenvectors of

SwSp.
3.3.2.1 Reduction of dimensionality

The matrix S#8; has eigenvalues different from zero, where
k =min(s—1, p) ; this constant % determines the number of discriminant

functions. Therefore, the space of the new discriminant variables has

dimension k, smaller than the space of the original variables, of dimension
B.

The associated eigenvectors, [;,{,,....];, to the ¥ eigenvalues different from
zero, standardized such that /Sy, =1, Vi=12..k , will impose a condition

that will allow to obtain an unique solution for this problem. It can be

proven analytically that the vector of coefficients that maximizes the
equation (3.3.17} it is the first eigenvector of $#'Sy. This means that the
best lineal combination y, =e¢}X of the original variables that exaits the
difference among the groups has as coefficients the eigenvectors of S;}}S B
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3.3.2.2 Simplification of the Fisher's discriminant function for the case of
twe groups

The objective of Fisher's Discriminant Analysis, namely to maximize the

separation between the groups, is reduced, in the case of two groups, to

mastimize:

_ |71 ~ 7]

Id
es pooled €

¢ (3.3.23)

The coefficients, e, of the lineal combination will be chosen so that they
maximize the reason between the square of the distance between the

means in the new variables y and the considered estimate of the

covariance matrix within of the groups. The development of the expression
(3.3.23) it is:

(o — 32 o Pas N ri— s 2

ﬁyl_-‘?z]) (exl—exz} _(f? (XE_XQ)}“

¢’ = = = (3.5.24)

e —i e 1 sy 1
e’s pocled € e’S pooied© €5 pooled €

Using the Maximization Lemma? in quadratic forms® arrived, in (3.3.24), to

re = 2
(B(X]_Xz)) = = gl = 2
max=—-71 =(X; = X208 pooieq Xy —X2)=D",
€ e Spooled €

i.e., the maximum is attained when ¢=87,,.,(% -X,). being D’ the square

of the distance between both sample means, measures in units of standard

deviation {Mahalanobis distance¥}. The Fisher's Discriminant Function is
then algebraically explained as Y=¢ X =(%, - %, ),S;Lded X, for the case of two

variables.

3.3.3 Using Fisher’s Discriminants to Classify for several groups

Fisher's discriminants were derived for the purpose of obtaining a low-
dimensional representation of the data that separates the populations as

much as possible. Although they were derived from separatory

7 See the Maximization Lenuna in Appendix 2, section AZ.1

8 The proof of Maximization Lemma of quadratic forms can be seen in Appendix 2, section A2.1.
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considerations, the discriminants also provide the basis for a classification
rule.

The Fisher's discriminant procedure can be described {(Johnson and
Wichern, 1992} as:

Allocated the new observation xo to group mif:

i(j)j - 33m;>2 = i@;(x@ “fmﬁl < i%\;(xo - X )}z L Vizm (3.3.25)
j=1 J=l

i=1
where f} is the jth eigenvector of matrix 84Sy . In other words, it means to

allocate the new observation in the group such that the distance between
the coordinates of this observation and the mean of this group be smaller

than the distance between this observation and the mean of any other

group.

Hypothetical representation of classification procedure

Let us suppose that we have three groups, s=3; identified as A, B and C;
and two discriminant axes. The averages of the groups are represented in
Figure 6. The classification procedure calculates the distance from the
observation, to be classified, to each one of the groups and it puts in the

nearest group. In this case Xo would be classified in group B.

¢ More information about Mahalanobis distance can be seen in Cénsul, 2000, pag.34.
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Axe 2

Axe?

Figure 6. Hypothetical representation of Fisher's classification procedure.

3.3.3.1 Rates of misclassification by group

A good classification procedure should result in few misclassifications. In
other words, the rates of misclassification should be small. This

misclassification rate can be calculated for group {as:

total of misclassificated observations in group i

rate{groupi) = L Vi=l2,..5 (3.3.26)

1y

and the percent of misclassification in group iis:

% rate(groupi) = rate{group{)x100% , Vi=12,....s {3.3.27}

3.3.3.2 Mean rate of misclassification

On the other hand, it is possible to calculate the rate mean of

misclassification as:

5
z rate (groupi)

= (3.3.28)
mean rate = —
A
And the mean percentage of misclassification is equal to:
% mean rate= mean rate x100% {3.3.29)



3.3.3.3 Using Fisher's Discriminants to Classify for two groups

Fisher's solution tc the separation problem can alsc be used to classify
new observations (Johnson and Wichernn, 1992}, An allocation rule based
on Fisher's Discriminant Funetion is:

Allocate %o to group 1 ift

yo=(% ~%,) S;ioiedxa 2‘%@ —%) S;iofed (%1 -%) (3.3.30)

and allocate xp to group 2 if:

vo ={F - %, )fS;ioledxo <z -% )!Sjooied (x5 - %) (3.3.30)
The rates of misclassification by group and the mean rate of
misclassification can be calculated, for two groups [s=2}, using eguation
{3.3.26) and equation (3.3.28) respectively.

3.4 Conclusions

In this chapter the necessary theoretical base {o develop PCA and FDA was
shown. In the next chapter we will make the connection between theory
and practice to take the analysis ahead with data of an industrial

continuous process.
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Chapter 4: Proposed procedures

4.7 Introduction

In this chapter we will build data sets adapted to work with PCA and FDA.
Also, the procedures necessary for to develop the techniques proposed will
be approached step the step. This chapter is explanatory, preparing the
conditions for the application of PCA and FDA. The results of the
techniques will be seen in Chapter 5.

4.2 Proposed Approach

To develop the methods proposed in the previous Chapter we need to
follow some necessary steps. First, it will be specified an appropriate data
set, this is, a data set that represents a process under normal conditions
of operation. Second, the procedure of autoscaling, before employing the
dimensionality reduction techniques. Then, the PCA model is building and
the process of generation of faults, and the results for each studied fault is
explained. Later, FDA is applied and the behavior of the data in the
discriminant space and the classification procedure is developed. Finally a

insight about comparation of PCA and FDA is given.

4.3 Validation Procedure for PCA

Historical data was collected from a hydrogenation of phenol to

cyclohexanol reactor, shown schematically in Figure 7 {Santana, 1999).
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Figure 7. A typical unit of cyclohexanol production.

Figure 7 shows a typical unit of cyclohexanol production. This is formed by
storage tanks (TQ2} and mixture of reagents and catalyst (T@3), by a tank
of separation of the products of the reaction of the catalyst (TQ1), by
several heat exchanges (TC1 to TC8) and a reactor {RX), which is formed by
eight tubular modules immersed in a boiler. The control of the tanks is
made controling the operation of the tanks TQ3 and TQ1 basically. In the
first level, the proportion of the reagents and the pressure of feeding of the
catalyst are maintained under control, while in the last the recycled
amount is controlled. There are basically two involved reagents: phenol
and hydrogen. Additionally, the reactor is fed by a stream of water and
another of recycle with catalyst. The fed water purpose is to move the
balance of undesirable reactions and also to improve the thermal change
in the reactor. The catalyst is separated from the reaction products in the

lung tank TQ1, schematized in Figure 7, and correspondent for
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regeneration, being a portion returned to the process. The regenerated
catalyst is mixed with a new feed of catalyst. The concentration of residual
phenol in tank TQI1 is measured. If this is above the operation
specification, the whole current criginating from the reactor is recycied,
being interrupted the injection of new reagents and the reactor is just used
to consume the whole phenol. If there does not exist residual phenol, the
recycle of the liquid stream is not made, and just a small portion of this,
impregnated in the catalyst, is returned to the process.

The reaction of hidrogenation of phenol is exothermic, and, depending on
the temperature of operation of the reactor and of the used catalyst,
several products can be formed as acetones or cyclic alcohols, aromatic
hydrocarbons and cyclics. The cyclohexanol reactor is constituted by =
number of tubular modules immersed in a boiler, being each one of them
formed by concentric tubes. In these, there is passage of the reactant
mixture as well as of the coolant so that the reaction temperature along
the reactor is controlled. Located temperature measurements exist in two
different points in each tubular module, and these can suffer problems of
incrustation which lead to measurement errors in a significant level. The
flow of reactant in the cyclohexanol reactor flows from one tubular module
to another, and the first six are similar to each other and they are

constituted, each one, of four concentric tubes.

4.3.1 Real Chemical Process Simulation

37 process variables were monitored, from the process described before,
with time intervals of 15 minutes for a total of 158 cbservations. When
these data were explored it was possible tc note that there was no
guarantee that the process was under statistical control. This can be a
relatively usual situation when dealing with industrial data analysis since
it may be considered that it is not possible to access a data set with a
guarantee of coming from a process under "good operating conditions”. In

this case, it was decided not to use these data directly to construct the
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PCA model.

In view of the necessity of the construction of a data set without special-
cause variability, a suitable approach was o use random generation data,
in an appropriate form, to simulate a real process. The principal problem
was the maintenance of a consistent correlation structure inside the new
data set. knowing the importance of this aspect for the application of
principal components technigue. In order to preserve correlation relations
between variables, similar to the existing in real industrial process, the
idea was to generate the same number of multinormal variables as the
monitored process variables {in this case study, 37}, using the mean vector
and the covariance matrix from the real process data, with the same
nnumber of observations {in this case, 158). This data set, X, was used to
construct the PCA model.

With the goal to study the potential of the technigue, five appropriate data
sets, with 37 variables and 100 observations each, called Xnew, were
constructed for the fault detection and diagnose step.

Other situations of interest were also simulated. They were situations with
two and three simultaneous faults and the case of constant reading inn one
of the measurement equipments was also simulated and analyzed

inserting a constant variable.

4.3.2 Construction of the PCA modelf

A calculation routine in FORTRAN was developed specifically to achieve the
goals of this PCA routine. The implementation in FORTRAN has as the
main objective to leave the routines accessible for practical applications in

industrial environment with freedom of software interface at lower costs.
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4.3.2.1 Choice of the number of principal components using the parallel
analysis method

The first SCREE plot, for the data set X, is showed in Figure 9 (with the
symbol @®]. The break point suggests that only six principal components

are enough to describe the process.
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Figure 8. SCREE plot.

At the same time a second SCREE plot for the uncorrelated random data
set was plotted, Figure 9 (with the symbol %). To make this graph, 37
independent variables with normal distribution were generated randomly,
using the mean and standard deviation of the original variables. The
eigenvalues of the covariance matrix for these uncorrelated random data
set are the values in the second graph. The intersection of this line and the
SCREE plot for the original data indicates that the point separating the
retained and deleted principal components is also in the principal

component six.
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Figure 9. SCREE plot and paraliel analysis.

The eigenvalues and percent of variance, for the first ten principal
components, are given in Table 3. It may be seen that the first six principal

components explain 77.2% of the total variability of matrix X.

Table 3. Eigenvalues and percent of explained variance for the first ten principal

components.

Principal Eigenvalue of % de variance

component s This BC cumulative
1 14,27 38,86 38,6
2 4,94 13,3 51,9
3 3,286 8,8 60,7
4 2,35 6.4 67,1
5 2,01 5.4 72,5
6 1,72 4,7 77,2
7 1,13 3,0 80,2
8 1,12 3,1 83,3
g 0,92 2.4 85,7
10 0,78 2,2 87,8

For this model, the calculated values for 0,,;, and T2, limits are 14.96 and
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13.4Z, respectively.

4.4 Validation Procedure FDA

To validate the method of FDA we will focus ourselves in 3 points that we
considered fundamental: the construction of the data for the application of
the method, the analysis of the behaviors of the data in the discriminant
space and the classification of the observations, with the calculations of
the misclassification rates.

It is good to observe that, following the pointed observations in the Note 4,

page 24, we opted to continue working with our data matrix standardized.

4.4.1 Construciing the data sef for FDA

From the five Xnew data sets used for PCA, each one containing a different
group of disturbed observations, we built a new group of data to be used in
FDA. In this matrix, that we will call Xr, the passages containing the faults
1, 2. 3, 4 and 5, were used. The data matrix Xr will be standardized for
each variable to have mean zero and variance one.

Starting from the recornmendation of Chiang et al. 2000, who said that
FDA can be used to detect faults by including the class of data collected
during normal process operation, a group without disturbances was
included in the matriz Xr as number 6.

To have a better idea we will say that the matrix Xr has this form:

XF(WP+§) =[grupo, ). C TR XS‘]] {3.2.1.1}
Being, in this case, m=117 and p+1=38. This matrix Xr can be described

more explicitly as:
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1 X1 Xip
L Fnyp
2 xn;-ﬁ-l,i xnl%—isp
XF{WP"‘}} = 2 xﬁ1+n2’1 cow Xﬁl_mz,p (3.2.}.-2}
: }Cﬁ Xz-p
& x 5 T 1
Eng-é-i,i Engﬂ,p
i=} R f=1 .
6 oz e Emp |

where r, ™, .., ns represent the number of observations, or samples, for

the groups 1, Z, up to 6, respectively.

4.5 Conclusions

The conditions for the application of the proposed technigues were created.
With the proposed tools it is possible to identify abnormal state variables
values which may happen either due to sensor faults or by undesired or

unexpected operatory conditions.
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Chapter 5: Resulis

5.1 Results for PCA

5.1.1 Disturbing the data with single faults

A data set with 37 variables and 100 samples was generated. using the

same random procedure used for generated X. After that, it was

standardized, using the same procedure applied to the X matrix. Five

variables were disturbed appropriately {(see Table 4] in order to allow the

performance test of the proposed technique. Each disturbance generates a

different Xnew matrix. Therefore, it was worked with five disturbed Xuew,

each one corresponding to a fault type.

Table 4. Single faults description.

Fault ID Description of the disturbance

The temperature in the beiler {(°C) was disturbed
1 {increase) in samples 47 to €9. (Variable #31)

The pressure in the boiler (kgf/cm®) was perturbed
2 {decrease) in samples 81 to 100. (Variable #32)

The temperature in the bottom of tube 1 (°C) was
3 perturbed {increase) in samples 1 to 15. (Variable

#5)

The temperature in the bottom of tube number 3 (°0)
4 wag disturbed {increase) in samples 20 to 42.

(Variable #13)

The temperature in the top of tube number & (O
was disturbed {increase) in samples 25 o 35.

{Variable #18}




5.1.2 Results for single faulis

The horizontal line in Q residual and T2 plots represents the 95%
confidence limit. Any point above this line is considered evidence of a

process fault. The analysis for each fault was as follows:

Fault #1: Variable number 31, it is the temperature in the boiler (¢C}. The

temperature was disturbed in samples 47 to 69.
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Figure 10. Q residual plot by sample for fault #1.

The disturbance at samples 47-69 is clearly seen in the G residual plot,
see Figure 10. There is an abnormal situation with these observations

since they shifted ouiside the normal operation space, defined by the
original X matrix.
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Figure 11. Mean contribution by variable for fault #1.

The mean contribution plot, Figure 11, helps to see who causes the faults.
In this case, variable number 31 appears with a larger contribution to the

residual matrix E. In fact, this was the perturbed variable.
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Figure 12. T? plot by sample for fauit #1.
In the T2 plot, in Figure 12, the same set of samples, 47-69, are outside
the limit that define the ellipsoid on the space in which the operating
points are normally expected to happen.
The scatter plot, Figure 13, with the scores of principal components 1 and

2, for X{O) and Xnew (4}, also shows that fault poinis have a different
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behavior.
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Figure 13. Scores for the two first principal components for fault #1.

Fault #2: Variable number 32, it is the pressure in the boiler (kgf/cm?).

The pressure was perturbed in samples 81 to 100.
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Figure 14. @ residual plot by sample for fault #2.

The disturbance in samples 81-10C is obvious in the residual Q plot,
Figure 14. There are unusual variabilities in these samples since they also
shifted outside the normal operation space, defined by the original X
matrix.

The mean contribution plot, Figure 15, is very useful to see that variable

number 32 has the largest coniribution to the residual matrix E. Also, this
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is a negative contribution since a pressure drop was applied to this

variable.
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Figure 15. Mean contribution by variable for fault #2.

In the T2 plot, Figure 16, only a few samples such as 89, 98, 99 are outside
the limit 13.42 that defines the ellipsoid on the space in which the
operating point normally is expected to happen.
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Figure 16. T? plot by sample for fault #2.

In the scatter plot with the scores, of principal components 1 and 2, for

X{0O) and Xneuw(A], the observations a little cutside the set of points are the
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ones that had large values for T2, see Figure 17.
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Figure 17. Scores for the two first principal components for fault #2.

It is interesting to point out that the analysis of the scatter plot alone may
not be so useful when compared to the Q, mean contributions and T2
plots. In fact it is proposed in this work the simultaneous use by such

statistical representations in order to have full information on the system

state.

Fault #3: Variable number 9, it is the temperature in the bottom of

tube 1 (°C). The temperature was perturbed in samples 1 to 15.
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Figure 18. Q residual plot by sample for fault #3.
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The disturbances at samples 1 to 15 are seen in the Q residual plot, Figure
18. An abnormal situation is happening with these observations, as it can
be observed in the illustration of Figure 19. This plot helps to identify

which variable is the cause of such behavior.
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Figure 19. Mean contribution by variable for fault #3.

Variable number 9, just as it was already expected, appears as the largest

mean contribution to the data variability, in Figure 19.
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Figure 20. T2 plot by sample for fauit #3.

In the graph of T?, Figure 20, there does not appear a defined pattern; only

some few observations pass the esiablished reliability limit. In this case,
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the graph of the scores for the two first principal components, Figure 21,
does not allow one to see the occurrence of the fault. This behavior was
already expected due to the low values of T2 in Figure 20.

The scores plot in the first two principal components is completely
random, without supplying any information about abnormal behaviors,
Figure 21.
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Figure 21. Scores for the two first principal components for fault #3.

Fault #4: Variable number 13, is temperature in the bottom of tube

number 3 {C). The temperature was increased in samples of 20 to 42.
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Figure 22. Q residual plot by sample for fault #4.

In the illustration of Figure 22, an abnormal behavior is observed in the
samples starting approximately from 25. In fact, the induced disturbance

in samples 20 to 25, was not so relevant, but even so it was possible to
find out the fault.
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Figure 23. Mean contribution by variable for fault #4.

Variable 13 is clearly the cause of the problem as can be observed in the

mean contributions plot, Figure 23.
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Figure 24. T2 plot by sample for fault #4.

In the graph of T2, Figure 24, there does not appear a defined pattern
either, with some few observations passing of the established limit. In this
case, in Figure 25, it is also seen the occurrence the fault. This behavior is
again related with the values of T2 in the Figure 24.

The scores plot in the first two principal components, Figure 25, is
completely random, without showing any evidence of abnormal behavior
either. The other plots show the same behavior, and they can be seen in

Appendix 1, section Al.3 (Figure 47 and Figure 48).
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Figure 25. Scores for the two first principal components for fault #4.



Fault #5: Variable number 18, it is the temperature in the top of tube

number 6 {C). The temperature was disturbed in samples 25 to 35.
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Figure 26. Q residual plot by sample for fault #3.

In this case, Figure 26, the presence of a differentiated pattern of abnormal
behavior, in samples 25 to 35, is observed in residual Q plot. When the
mean contribution is analyzed by variable for fault #5, Figure 27, it was
noted that this behavior is due precisely to the variable 18 that is the one

which causes the largest influence in the residual matrix.
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Figure 27. Mean contribution by variable for fault #5.



In the graph of T2, Figure 28, an unusual behavior can be observed as
well, similar to the one observed in the graph of Q. Then, similarly tc case
of the fault #1, it can be seen the presence of a disturbance in the process
that produces large values as much of @ as of T2. In this case of fault #5,

idem to faulf #1, this behavior can be identified in the graphs for these two

statistics.
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Figure 28. T2 plot by sample for fault #5.

When this type of fault happens, it can be seen, also in a clear way, in the
graph of the scores of the first two principal components, Figure 29. Here

it is possible to observe the samples that suffered sharp disturbance.
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Figure 29. Scores for the two first principal components for fault #5.

5.1.3 Disturbing the dota with two simultaneous fauls

The description for the simulation of two simmultaneous faults is shown in
Table 5.

Table 5. Description of the two simultaneous faulfs.

Fault ID Description of the disturbance

The temperature 1in the boiler (°C) was disturbed
(increase) in samples 47 to 65 (Variable #31) and
1e? the pressure in the boiler (kgf/em®) was perturbed

{decrease} in samples 1 to 20 {(Variable #32)

The objective here is to see if it is possible to detect this couple faults with

the use of statistics Q, T2 and the other auxiliary plots.

5.1.4 Results for two simultaneous faults

In the graph of the Q residues, Figure 30, it can be seen that both fault #1
and fault #2 cross the limit Q. indicating that approximately in samples

47 to 69 and 1 to 20 there appears a disturbance in the process.
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Figure 30. ( residual piot by sample for fault #1 and fault #2.

In the case of statistics T2, it only captures the fault #1, happening in the
samples from 47 to 69.
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Figure 31. T2 plot by sample for fault #1 and fault #2.

The mean contributions plot for this double fault is depicted in Figure 32.
It may be observed that the two variables with larger contributions are
variables 31 and 32, in the same magnitude order and direction in the

which they were simulated.
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Figure 32. Mean coniribution by variable for fault #1 and fault #2,

The behavior of the observations, in the first two principal components,
can be seen in Figure 33. In this case, the plot informs about the existence

of a strange behavior in the data.
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Figure 33. Scores for the two first principal components for fault #1 and fault #2.

5.1.5 Disturbing the dato with three simultaneous faulis

A case more elaborated, with three simuitaneous faults was buill to
analyze the potentialities of the technique of PCA.
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Table 6. Description of the three simultaneous faults.

Fault ID Description of the disturbance

The temperature in the boiler (°C}) was disturbed
{increase}! in samples 16 fo 38 (Variable #31}., the
pressure in the boiler (kgf/cm®) was perturbed

1. 72 & 3 {decrease] in samples 5% to 78 {(Variable #32} and
the temperature in the bottom of tube 1 (°C) was
perturbed (increase)} in  samples 104 to  118.
{(Varizble #9),

For this, the first three simple faults, views in the Table 410, were joined to

build a new situation. The description of this triple faults is shown in Table
.

5.1.6 Resulls for three foulls

Q residual plot against samples shows clearly the three studied faults.
Here it is possible to see the disturbances in the samples 16 to 38, 59 to
78 and 104 to 118.
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Figure 34. § residual plot by sample for fault #1, fault #2 and fault #3.

The T2 plot, Figure 35, only gets to capture the disturbances in faults 1

10 Except the fault #3, because a more intense disturbance was made in the variable 9 {in the same samples 1 o
15} to get an intermediate situation between the fault #1 and the fault #2. This to get a more interesting
situation aiming of evaluation of the technigue of PCA
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and 3. Fault #2 can not be noticed here.
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Figure 35. T% plot by sample for fault #1, fault #2 and fault #3.
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Figure 36. Mean contribution by variable for fauli #1, fault #2 and fault #3.

The magnitudes and directions of the medium contributions for the
variables 31, 32 and 9 appear as expected. The variable 31 appears with
the largest contribution, positive, followed by variable 32, with negative
contribution and last by the variable 9 with the smallest contribution
among them three, also positive. The rest of the non disturbed variables
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have smaller contributions.
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Figure 37. Scores for the first two principal components for fault #1, fault #2 and fault #3.

Given that T? detected abnormal behaviors in some samples they are

shown in the graph of the scores in the first two principal components!t,

5.1.7 Disturbing the data with a constant reading in one of the
measurement equipments

The case of constant reading in one of the measurement equipments was

analyzed, too. The intention is to simulate a situation which could occur in

practice as a result of errors in the measurement probe,

It was also simulated by the insertion of a constant variable in the data

set. To do this, variable number 31 was modified in order to represent this

kind of problem.

5.1.8 Results for the simulation of constant reading in one of the
measurement equipments

When the resulis were analyzed, it was seen that this situation is not
captured by the techmique of PCA. It can be noted in the Q and T2 plots,
the mean contributions plot and the graph of the scores of the

11 The graphs of the scores of the chservations in the principal components 3 - 4 and 5 - & can be seen in the
Appendix Al, section Al.3. {Figure 49 andFigure 50}

59



observations in the principal components, Figure 38, Figure 39, Figure 40

and Figure 41, respectively. that no useful information can be obtained.
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Figure 38. Q residual plot by sample for a constant reading fault.
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Figure 39. T2 plot by sample for a constant reading fault.

In the case of the mean contributions plot, Figure 40, it is easy to notice
that the contributions were so small that the scale had to be reduced
many times to ati least get to draw the graph.
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Figure 40. Mean contribution by variable for a constant reading fault.

The graph of the coordinates of the observations in the first two main
components shows that still in the directions of masximum variability of the
new data (A), where the equipment fault with constant reading was
included, the variabilities produced by this behavior do not cross the

normal variabilities of the process, captured in the model PCA (O).

principal component 2
oo
®

-
-8

10 15

G-

-15 -10 -5 0

ocold 4 new principal component 1

Figure 41. Scores for the first two principal components for a constant reading fault.

In the other main components this behavior is also "masked” inside the

normal behavior.
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Figure 42. Scores for the principal components 3 and 4, for a constant reading faulf.
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Figure 43. Scores for the principal components 5 and 6, for a constant reading fault.

Proposal to detect this type of situations

As it was seen, PCA is shown to be unable to identify faults of constant
reading of a measurement equipment in a group of samples. Therefore, the
detection task and identification of faults is incomplete in cases like this.
To identify this situation a good option is to build control charts for all the
variables involved in the process, before applying PCA, that is a more
refined analysis.
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Following, the Xbar chart will be shown to see the behavior of the
disturbed variable 32. An Xbar chart is a control chart of means. It is
possible to use Xbar charts to track the process level and detect the

presence of special causes.

X-bar Chart for variable 32
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Figure 44. Control chart for variable 32.

Indeed, the Xbar chart shows the constant value of 7.20 kgf/cm?2, in the
variable 32, starting from the sample 116 and going up to 150.

5.2 Results for FDA

A data set Xr with 38 variables, including the group variable that concerns
the single fault type to which belongs each cobservation, and 117 samples
was constructed. After that, it was standardized, to have mean zero and

variance one.
If one observes the eigenvalues of the matrix $3/S;. in Table 7, it is

possible to see that the first accumulates the 47.44% of the variance
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between the groups of faults, the second 24.93% and the third 14.67%.
Adding the first third, accumulate 87.04% of the variance, in other words,
almost all the variance of the data of the process can be explained by the
first three discriminant variables, In terms of the simulated industrial
process, the case study of this work, the discriminant variables will be

investigated to know the information that will carry each one.

Table 7. Eigenvalues of the matrix S;}}S B

No. Eiganvalue Propoxrtion Cumulative %

1 23.861 0.47 0.47 47 .44
2 1z.41 0.25 G.72 72.37
3 7.30 0.1% 0.87 87.04
4 3.8% .08 0.58% S4 .86
5 2.56 0.05 1.00 100.06

To see what is happening in the discriminant space, it is necessary to
build-up the graphs of the discriminant plans, which are made starting
from the coefficients, {3.3.22}), of the Fisher’s discriminant functions!?2

{3.3.9).

5.2.1 Behavior of the data in the discriminant space

Now, the graph of the observations in the discriminant plane will be
presented. In Figure 45 it is shown the individual scores, for each
observation of the matrix Xr, in the first two discriminant axes.

It is reminded that each individual's coordinates in each discriminant axis
are calculated using (3.3.9} with the values of the coefficients from Table
15 {in Appendix 2, section A2.2).

iz The values of the coefficients, in this case, are in Appendix 2, A2.3 (Table 18}
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Figure 45. Graph of the scores in the first two discriminant functions!®.

It can be observed that, in Figure 45, faults 4 and 5 are more moved away
in the direction of maximmum separation of the groups, direction of
discriminant 1. The other faults appear very close some to the other, and
close to the group 6 that indicates good operating conditions.

This can indicate that inside this bank of faults, only created above these

five simple faults, the group number 4 and 5 would be better
differentiated.

5.2.1.1 Relative positions between the means of the groups

The means of the six groups in the new discriminant axes are given for the

coordinates in Table 8:

Table 8. Group means by discriminant variables

groups Disc.l Dige.2 Disc.3 Disc.4 Disc.5
i 0.93 -2.53 -4 .78 -0.57 -0.53
2 -0.72 -2.329 3.15 -3.03 -1.01

13 The other plots for discrininant 1 and 3 and discriminant 2 and 3 can be seen in Appendix 2, section AZ.3.
{Figure 51 and Figure 52)
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groups Digo.l Dige.2 Dise.3 Disc.é Disc.B
3 -0.43 ~2.18 1.89 3.88 -2.09
4 -5.94 5.38 -0.52 -0.19 ~0.15
5 12.71 5.25 0.65 ~3.12 -3.1%
] -0.15 -1.71 G.93 0.76 2.77

This group means can be seen graphically in the discriminant planes, in

Figure 46
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Figure 46. Graph of the relative positions between the means of the groups in the first two
discriminant functions.

Indeed the averages of groups 1, 2 and 3 are in the neighborhood of the

average of group 6. To observe this behavior, in other discriminant plans,

see the plots in Figure 53 and Figure 54 {Appendix 2, section A2.3}.

The distances between the means of the groups can be seen in Table 9. As

it was seen in Figure 46, the most distant mean groups are 4 and the 5;
followed by 2 and 5, 5 and 6 and 1 and 5. On the other hand, the nearest

mean groups are 3 and 6, followed by 2 and 6, and 2 and 3.

Table 9: The distance between group means.

Groups 2 3 4 5 &
i 0.00 14.03 11.39 26.95 31.1% 10.30
2 1£.03 5.0G 7.91 21.58 32.83 6.596
3 11.39 7.91 0.00 18.71 28.85 5.90
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Groups i 2 3 4 o] &
4 26.95 21.58 18.71 0.00 47.43 20.81
5 31.15 32.93 28.85% 47 .43 0.0C 31.16
g 10.30 £.98 5.8C 20.81 31.18 G.00

5.2.2 Classification

Ignoring the group siructure, known a priori, the observations were put
back in the nearest group, following the criterion of Fisher given in
equation 3.3.25. For this if was calculated the distances initially between
each point and the average of each group, in the discriminant space,
choosing the nearest group to the point of interest.

The results of the classification analysis, with the allocated group and the
calculated minimum distances by cbservation, are in the Table 14 in
Appendix Z, section AZ.3. More details can be obtained with all the
calculated distances in the Table 13, Appendix 2, sectionn A2.3.

The Table 10 contains a summary of the classification. It is seen that all
observations are classified correctly. The exceptions are two observations

of the group 2 that were allocated in group 6.

Table 10: Classification table by groups.

groups 1 2 3 4 5 )
1 23 0 0 ] 0 0
2 0 18 0 0 0 2
3 0 0 15 g 0 0
4 0 ¢ 0 23 ¢ 0
5 G 0 0 0 11 0
€ G Z 0 0 0 25

5.2.3 Misclassification rates

The misclassification rates and the percentages by fault group are in the
Tables 11 and 12. It can be seen that the rates of misclassification are very

good.
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Tabie 11: Misclassification rates by fault groups.
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Table 12: Percentage of missclassification by fault groups, %.
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The rate average and the percentage average of misclassification are
0.0167 and 1.67% respectively.

Conciusions

In the case of the results for PCA it can be said that all the faults studied,
with the exception of the constant fault, were identified with the aid of
statistics @ and T%, diagnosing their causes with the mean contributions
for each variable. It was always possibie to see the faults with the Q
statistic, only in a few cases it was also possible with T2. When the
abnormal behavior was observed alsc with T2, it was visible in the graph of
the observations in the discriminant planes, otherwise it was not.

To detect constant faults, univariate control charts should be built in the
initial stage of the descriptive statistics analysis. This is because this type
of behavior will not come out with PCA.

FDA shows the best possible separation among groups of faults and it
made an excellent classification of the observations, resulting in very low

rates of misclassification.
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Chapter 6: Guide of application of PCA and FDA for
detection and diagnosis of faulis

6.7 Introduction

The development of the technique of principal components is not trivial,
specially when applied to the monitoring of processes. It is because the
amount of aspects to be checked to accomplish a correct analysis.
Considering this, we found necessary, and it was one of the objectives of
this work, to facilitate to the users of the industry an itinerary to develop
this technique, seeking a way of taking decisions about the behavior of the
process. On the other hand, we also developed an itinerary to help the

application of the Fisher’s discriminant analysis.

Application’s Guide of Principal Components Analysis to the
Monitoring of a Continuous Industrial Process

6.2.1 Model building

6.2.1.1 Preparing the data set

1. The first step is to collect data of the continuous process. It must be
made sure that this matrix of initial data, with n lines (observations)
and p columms (variables) represents the process under normal
conditions of operation.

2. To standardize the initial matrix X.

6.2.1.2 To choose the number of principal components to be retained

1. To calculate the covariace matrix, S. of X {see equation 3.2.1}.
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2. To calculate the eigenvalues and eigenvectors of S (see equation 3.2.2}
3. To calculate the variance percentages explained by each principal
component {see equation 3.2.9). To observe the values and to decide
until which component, k, the values of explained varianice contribute
with differentiated information of the rest, in this case tc keep only
these components {to see example of the section 4.3.2]}.
Note: This decision can be aided drawing the SCREE plot with the
eigenvalues of 5 {to see Figure 8). In case of doubt use the tool of the

parallel analysis (it Figure 9.

62.1.3 To build the residual matrix E

1. To build the Px matrix, i.e, only with the first k eigenvalues of S.
2. To calculate the residual matrix E, using the matrix expression 3.2.13.

6.2.2 Fault detection

6.2.2.1 Preparation of the data

1. To take a new reading of data (to take care so that this matrix Xnew
contains measurements of the same variables and in the same order of
the original, X, of the model PCA previcusly built). Therefore it will
have variable p and m observations {rep).

2. To standardize Xnew using the same means and the same standard
deviations of the matrix X.

6.2.2.2 To calculate the value of Q for each observation of Xnew

1. To calculate the value of Q(9, =1,2...., ¢ for each observation of Xnew,
using the matrix expression in 3.2.14.

2. To calculate the limit Q. by the equation 3.2.15.

3. Rule of decision: {1} the observation { is considered fauit suspicion if
Q{)>Qe. {2) the observation is considered a fault if there are a set of
neighboring cbservations that also present an abnormal pattern.

Note: This decision can be aided using the graph for Q (see example in
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Figure 10}

6.2.2.3 To calculate the value of T? for each observation of Xnew

1. To caleulate the value of T2{{), i =1.2...., my for each observation of Xew,

using the matrix expression in 3.2.16.

2. To calculate the limit T?, , by the equation 3.2.17.

3. Rule of decision: {1} the observation { is considered fault suspicion if
T2{)> ’E",i ne - 2} the observation {is considered a fault if there were a set

of neighboring observations that also present an abnormal pattern.
Note: This decision can be aided with the graph for T2 {see example in
Figure 12].

6.2.2.4 Scores of the observations in the principal components.

1. To calculate the coordinates of each observation in the k principal
component chosen (to see formulates in equation 3.2.7).

Note (1): If the analysis of T2, step 6.2.2.3 of this itinerary, does not
show the existence of faults, in general the individuals' coordinates will
not have any behavior abnormal te show either.
Note (2): To build the graph of the coordinates of the observations in the
principal components (see example in Figure 13); it is very useful to see
better the behavior of the data.

6.2.3 Fault Diagnosis

6.2.3.1 To calculate the contributions measured for variable Qmean

1. To identify the observations with faults resulting of the step 6.2.2.2,
item 3 above.

2. To locate the residues of those observations in the residual matrix E.

3. To calculate the mean by variable, columns of matrix E, only for the
residues of those observations with fault.

4. Rule of decision: The contribution of the variables to the fault will be
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measured by the magnitude of the average calculated in the previous
step.
Note: To create the Q mean contribution plot will help to diagnose the

variables causing the faults.

6.3 Application’s Guide of Fisher’s Discriminant Analysis to the
Monitoring of a Continuous industrial Process.

6.3.1 Classification

6.3.1.1 Construction of a Bank of Faults

1. The first step will be o group a set of observations monitored
previously where it is known {for the application of a previous PCA or
built or complemented with the people's participation with important
experience and wide knowledge of the process in study) the existence of
some specific fault types. In other words, to the set of monitored
variables it will be added a group variable, informing the fault types
that characterize each row of the matrix (to see the form of the matrix
in equation 3.3.2, or 3.2.1.2 for more details}.

Note (1): if the fault is well differentiated it will avoid confusion with the
others, minimizing like this the rate of misclassification of new
observations to be tested.

2. A group should have been included that represents the behavior of the
process under normal conditions of operation.

Note {2): it can be worked initially with few known faults but an
important point to take into consideration is that to increase the Bank of
Faults will increase the possibilities to classify new observations of the
process in the correct fault type.

Note (3): Always observe that this method may not be sensitive to faults

not contained in the training dates.
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6.3.1.2 Calculating the means by groups in the new discriminant axis

1. To evaluate the means of each group in the equation 3.3.10 to

calculate their coordinates in each discriminant axis. The result will be
a matrix with the number of rows equal to that of groups and the

number of columns equal to the number of discriminant functions.

6.3.1.3 Classification Rule

1. First calculate the distances of each observation to each group. The

result will be a matrix with the number of rows idem to the number of
cbservations and the number of columns same to the number of
discriminant functions.

Form the maitrix of distances of the previous step the distance
measured for observation (row} is chosen and that cbservation is

classified in that group. We do this for each observation.

6.3.14 Calculating the rates of misclassification by faults

1.

To calculate the rate of misclassification by group use equation 3.3.26.

2. The percentage is calculated using equation 3.3.27.

6.3.1.5 Mean rate of missclasification

1.

The average rate of misclassification is calculated using equation
3.3.28.

. The average percentage of misclassification is calculated using

equation 3.3.29.

6.3.2 Visualization and differentiation of the faulis

6.3.2.1 Calculating the scores for each observation in discriminant axes

1. To calculate the coordinates of each observation in the discriminant
axes {see equation 3.3.10). This will generate a matrix with number
of rows egual to the number of observations and, as columns, the

number of discriminant functions.
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Note {1): to build the graph of the coordinates of the cbservations in the
principal components (see example in Figure 13} it is very useful to see
better the behavior of the data.

Note {2): When the analysis of T2, step 6.2.2.3, don't show the existence
of faults, in general the individuals' coordinates will not have any

behavior abnormal to show either.
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Chapter 7: Discussions and Conclusions

7.1 Discussions

Different kinds of faults can arise in everyday industrial practice. In this
work some examples of situations that could appear were analyzed using

Principal Components Analysis and Fisher's Discriminant Analysis.

According to PCA:

» Using both @ and T2 statistics in the analysis of results from principal
components technique it was possible to detect the occurrence of faults,
for most of the simulated cases, and the @ and T2 confidence limits
proved to have a very good discriminatory feature for this detection.

« Not all of the fault types are able to be detected. Among these cases it is
worthwhile to mention the faults produced not by abrupt changes in the
variability of the process but rather by the contrary effect, variability
null or almost null. An example of this situation is the fault that
produces the freezing of the reading of one of the measurement
equipments, being in a fixed value. The results showed that PCA does
not allow one to see this pattern of behavior which is understandable if
it is thought that the method is driven precisely to the detection of large
variabilities.

Taking into consideration that these situations can appear with certain
frequency, the proposal is to build control graphs {e.g. Xbar chartj for
each variable, before entering in the application of PCA.

» The mean contribution plot behaves as a useful tool to diagnose the
cause of the problem. This graph provides information of the magnitude

of the contribution of each variable to the fotal variability of process as
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well as the direction, positive or negative, of this magnitude.

. The graph of scores for the principal components is a wuseful
discriminating tool when the fault produces large values of T?; in these
cases the abnormal samples can be seen clearly. On the other hand,
when the fault produces large values of Q. but low or non-important
values of T2, the graphic of scores alone does not help to see the fault

behavior.

According to FDA:

» The classification procedure was shown satisfactory with a percentage
average of misclassification of 1.67%.

. It is understandable that the more complete is the bank of faults the
more possibilities there will be to apply FDA to the data of a continuocus
industrial process with effective results.

. The graph of the scores of the observations/samples allow one to
visualize the behavior of the groups in the discriminant space. The
quality of the representation will depend upon the differentiation degree
between the different types of studied faults.

The implementation of a software in Fortran appears to be a useful
contribution for the application of such methods in the industrial practice,
since they are more flexible than the existing comumercial packages which,
generally, do not allow the construction of the PCA model with the

proposed procedure in a straightforward and cheaper mmanner.

7.2 C€onciusions

Many of the faults induced were accurately detected, in such a way that it
was possible to identify with exactness the samples where the faults took
place and which were the responsible variables.

A number of statistics tools were described which show a great potential

for identification of fault diagnosis and abnormal operations, using PCA.
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Some of these, such as T2, are special cases of general muitivariate control
situations and may be employed either with or without the use of principal
components. The @ statistic, on the other hand, are developed precisely to
deal with residuals related to PCA.

It was noticed the need to maintain the initial exploratory analysis making
univariate comntrol charts seeking faults of the type "constant reading” in
measurement equipments, the ones which, in general, cannot be detected
using PCA.

On the other hand, FDA allows one to classify other observations of the
process with a bank of faults built with the known faults. In the studied
cases it allowed to classify the observations with a low rate of
misclassification. FDA also allows one to have an idea of the space
distribution of the different kinds of faults.

The representation of a chemical misclassification process could be
developed with efficiency using empirical models based in historical data,
like PCA. Different modeling approaches could be established using
multivariate statistical techniques. They are very useful, allowing the
acquisition of valuable information for the purpose of efficient control of

the process.

7.3 Papers and publications developed during the elaboration of

this work

During the elaboration of this work the following papers were submitted

and/or presented in events and national and international Congresses.

» Diaz-Consul, C.M. and Maciel-Filho, R., “Multivariate Statistical
Techniques for the Monitoring of Continuous Industrial Processes”,
FOCAPO 2003, Coral Springs, Florida, January 12-15 (2003].

. Diaz-Cénsul, C.M. and Maciel-Filho, R., “Controle Estatistico
Multivariado para um Processe Continuo”, COBEQ - 2002, Natal,
August (2002).

» Diaz-Consul, C.M. and Maciel-Filho, R. “Implementation of a Software in

Fortran for Statistical Process Control of a Continuous Chemical
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Process”, SCI 2002, Orlando, Florida, July 14-18 {2002Z).

Diaz-Cénsul, C.M. and Maciel-Filho, “Multivariate Statistical Control for
a Continuous Process”, AIChE Annual Meeting 2001, Nevada {approved)
{2001}

Diaz-Cénsul, C.M. and Maciel-Filho, R. “Control of a Continuous
Process using Multivariate Statistical Methods”, EPFEQ-II, Campinas,
580 Paulo, Brazil, September {2001].

Diaz-Coénsul, CM. and Maciel-Filho, R. “Controle Estatistico
Multivariado para um Processo Continuc®, Brazilian Journal of
Chemical Engineering, (Submit for publication in December, 2001).
Diaz-Cénsul, C.M. and Maciel-Filho, R. "Control of a Continuous
Process using Multivariate Statistical Methods”, 5ist Canadian
Chemical Engineering Conference, Halifax, October (2001].

Diaz-Cénsul, CM. and Maciel-Filho, R. *“Process Control of a
Continuous Process using Multivariate Statistical Methods”, Canadian
Journal of Chemical Engineering, (Submit for publication in December,
2001).
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Chapter 8: Recommendations for Future Works

8.1 Future works

Anywhere where large amounts of monitoring data are available, specially
in the industry of chemical processes, it will be necessary the use of all the
possible tools to extract conclusions about the behavior of the process. The
application of multivariable statistical technigues is one of the ways to
increase the knowledge of the process.

In the section 8.2 it will be made a revision of the recent application of
other multivariable statistical techniques (or variations of techniques
already known) for the application of detection and diagnosis of faults.
These cases can serve as inspiration to seek other applications in industry

and to develop future works in this field.

8.2 Other multivariable methods applied to statistical process
monitoring

Below we comment on several other modern applications of PCA, found in
the literature, as well as other multivariate methods that can be worked to

study their potentialities.

8.2.1 PCA Multi-way

Martin, 1999, reviews the concepts of monitoring the acting of the process
through an industrial application in a reactor of fluidized bed and of a
simulation of a polymerization reactor (batch methyl methacrylate
polymerization reactor]. The author introduces the use of Multi-way
Principal Components Analysis for the case of the processes with batches.
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This refers to the inclusion of the fime in the analysis, so that the problem
has tc be analyzed in three directions: the different measured variables,
the lots or batches, and the different intervals of time inside which are
made the measurements.

LOUWERSE, 2000, discuss the multivariate statistical control of baich
processes (MSPC] in models three-way, with the following purposes: {1} to
show how the models of Principal Components can be used for data of
batch processes and how a new batch is projected in each model, (2} the
theory of batch graphs of MSPC is described and gotten better, and (3] a
method to treat with batches "no concluded" is introduced for the on-line
monitoring. LOUWERSE presents and compares the monitoring for three
worked models.

To monitor the acting of the process in real time, CHEN et.al, 1998b,
propose the techmique of Mulii-way Principal Components Analysis, as an
alternative cheaper than the traditional analytical instruments. The
method goes beyond the system in stationary state and it supplies the
approximate monitoring in real time for continuous processes.

This monitoring can detect faults more quickly, compared with others
approximate monitoring. Several important subjects for the proposed
approach are discussed by CHEN et.al, 1998b; some of them are: the
structure of entrance of the model, pre-treatment of the data and the reach
of the predictable horizons. An extension multi-block of the basic
methodology is also treated to facilitate the isolation of the fault. A process
of Tennessee Eastman is used to demonstrate the power of the new

approximate monitoring proposed.

Proposal of Work with Multi-way PCA

A possible research topic to be developed is to use the Multi-way PCA to
deal with time varying process, which should be coupled with the tools
developed in this work considering the system in pseudo steady-state. A
hierarchical approach could be developed with the Multi-way PCA on the

top of the sequence.
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8.2.2 No linear PCA

For processes highly not linear, the lineal monitoring form sometimes is
inefficient due to the dimensionality of the process not always represented
by a small number of lineal principal components. The variables of the
process, correlated not lineally, can be reduced to a group of principal
components no linear, with the application of a proposal of No linear
Principal Components Analysis. A more efficient moniforing of the process,
now can be implemented, in the space of No linear Principal Components
Analysis, in few dimensions (ZHANG, et. al, 1997}.

In paralle]l with the conventional multivariable graphs, ZHANG, 1997, uses
the graph of accumulated scores, which provides a significant exit in the
separation of different conditions and/or operation faulis, leading to
robust preventions, of badly potential operations of the plant. Besides,
ZHANG, et. al, 1997, demonstrate the effectiveness of the No linear
Principal Components Analysis, and the other proposals in their article, in
the monitoring conditions of a polymerization reactor.

HIDEN, et. al. (1999), review briefly the attempts to extend the lineal
Principal Component Analysis to no linear and it proposes a techmnique
"symbolic oriented” to No linear Principal Components based on genetic
programming. The applicability of this proposal is shown using two simple

systems no linear and collected data of a column of industrial distillation.

Proposal of Work with No linear PCA and comments

This technique is appearing as a new approach, therefore the theoretical
base should be revised carefully, before any application. However the
results published up to now are encouraging and this technigue could be
incorporated to the analysis of data of chemical processes industry, to test

their advantages.

8.2.3 PLS

CHEN, et.al, 1998, developed a controller using multivariable statistical
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models, presented to reach the objective of producing products of high
quality, inside a continuous process, working with the difficulty that
quality measurements many times are not available on-line or they are not
available to be produced. A model of Principal Components, which
incorporates "late” variables in the Utme, it is used and the control
objectives are expressed in the space of the scores of the Principal
Components. A controller is projected in the structure of the model of
predictive control (MPC) and it is used to control equivalent representation
of the process in the space of the scores of the Principal Components. The
predictive model, for the algorithm MPC, is built using Partial Least
Sguares (PLS). The proposed controller is tested in two cases of study,
which involve a colummn of binary distillation and a process in Tennessee

Fastman.

Proposal of Work with PLS

New controller structures or algorithms could be used to replace the PCA
approach in order to take full advantage of multivariable and non-linear

controller.

8.2.4 Discriminant PLS

On the other hand, CHIANG, et. al., 2000, propose the use of the Fisher's
Discriminant Analysis (FDA}, and Discriminant Partial Least Square
(DPLS) as an alternative for the diagnosis of faults, according to him better
than the Principal Components Analysis. It shows the use of these
techniques applied to collected data of the simulator of chemical plant

Tennessee Eastman.

Proposal of Work with Discriminant PLS

This approach could be incorporated in the developed software to increase

io robustness.



8.2.5 Online SPC

Guh, et.al. 1999, developed an intelligent tool to do an economical on-line
SPC. The article includes a detailed revision of the moderated progresses
reported in the literature in the field of the automation of SPC until the
moment of their publication. Taking this into consideration the idea is to
use the developed software tc build-up an online-SPC.

8.2.6 Dynamic PCA

Ku et al., 1995, proposed the disturbance detection and isolation for
dynamic systems using an extension of PCA to monitor dynamic chemical
process. This dynamic approach constructs a tirmne series model from the
data and is referred to as Dynamic PCA or DPCA, which could be

incorporated in the tools developed in this work.
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Appendix 1: Principal Components Analysis

A1.1 Resuit 1

Let S be the covariance matrix associated with the random vector

X= EXi, Xo, s, ij. Let S have the eigenvalue-eigenvector pairs (A1, e1l,
(A2, e2). ..., (p, &p), where A12 A2 2 ...Ap 2 0. The ith principal component is
given by

with these choices,

var(t;) =piSp; = 4;
, fori=1, 2, ... p.

cov(t;,ty ) =p;Spy =0
Proof: can be seen in Johnson and Wichern, 1992, p. 358.

A1.2 Result 2

Let Xz[Xl, X, .., X pj have covariance matrix S, with eigenvalue-

eigenvector pairs (A1, €1), (A2, €2}, ..., (Ap, €p), where A1 = Az > ... Ap = O. Let
Y, =¢X. Y, =¢;X,...,Y, =€, X be the principal components. Then

o . p
S TS Tt Sy, mZvar(X,-) =M+ ot A, =Evar(Yi)

i=} i=]

Proof: can be seen in Johnson and Wichern, 1992, p. 359.
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A1.3 Other plots of the coordinates, scores, of the observations in
the principal components
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Figure 47. Scores for principal components 3-4 for fault #4.
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Figure 48. Scores for principal components 5-6 for fault #4.
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Figure 49. Scores for the principal components 3-4 for faulf #1, fault #2 and fault #3.
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Appendix 2: Fisher Discriminant Analysis

A2.1 Maximization Lemma of quadratic forms

Maximization Lemma: Let

B, be positive definite and d, be a given

vector. Then for an arbitrary nonzero vector X,.;. max (ay

maximum attained when x , = 5{3_1 }m:a d,;, YcZo.

x=0 X'BX

Proof: can be seen in Johnson and Wichern, 1992, p. 66.

A2.2 Classification

Table 13: Distances between each observation and each single fault mean.
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Table 14: Classification table by observations, with the calculated minimum distances.

obs. G;zgup Group Caleulated minimum
original allocated distance
1 i 1 4.0
2 1 i 9.0
3 1 1 0.7
4 1 1 1.1
5 1 1 g.8
& g 1 7.2
7 1 1 3.7
2 1 1 1.0
S 1 1 4.8
10 1 1 4.9
i1 1 i 12.8
12 1 1 4.1
13 1 1 3.3
14 1 1 4.0
15 1 1 6.1
16 1 1 0.8
17 1 1 0.6
i 1 i 2.4
19 1 1 3.8
20 1 1 8.8
21 1 1 5.1
22 1 1 15.2
23 1 1 9.3
24 2 6 6.3
25 2 2 4.1
26 2 € 8.3
27 2 2 5.6
z8 2 2 5.1
29 2 2 4.5
30 2 2 2.7
31 2 2 0.2
32 2 2 1.5
33 2 2 4.1
34 2 2 2.7




Group Group Calrulated minimoem

obs. original allocated distance
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Group Group Calculated minimmm

obhs. . . .
original allocated distance
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obs. Group Group Calculated minimom
original allocated distance
105 6 6 2.8
1086 & 1.5
147 6 ) 1.8
108 6 5 1.1
109 & 6 0.8
110 & & 3.0
111 5 ) 2.0
112 ) ) 1.8
113 & & 3.5
114 6 6 4.5
115 6 5 3.1
1i6 5 G g.%6
117 & 6 0.7
Table 15, Fisher's discriminant coefficients
var Disc.1 Digc.2 Disc.3 Disc.4 Disc.5
1 0.92¢ 0.649 -0.843 0.490 0.805
2 -0.088 0.278 -0.074 -0.042 -0.054
3 1.464 ~0.662 -1.284 0.333 0.965
4 -0.310 -0.167 0.252 -{,113 0.079
5 0.558 0.367 0.414 -0.377 ~0,252
) 0.262 0.111 0.183 0.130 0.291
7 -0.110 -0.037 0.877 -0.357 0.034
8 -2.051 1.317 2.276 -1.000 -3.880
L) -0.605 -0.272 0.320 1.12% -1.247
190 1.281 -2.209 ~-0.0680 0.115 -1.243
il 1.081 -0.349% -1.508 0.786 4.290
i2 ~0.883 0.573 0.636 0.884 -0.875
13 -2.978 3.05¢ ~0.432 -3.357 -0.458
i4 -2.5946 -0.95%6 5.063 1.896 -0.819
i5 0.497 -0.284 ~0.312 ~-0.806 0.565
16 -3.268 0.519 -1.082 1.412 2.054
17 1.628 2.241 ~-2.738 -1.517 -2.3568
18 3.987 2.048 0.116 ~-0.280 -0.383
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var Dise.l Disc.2 Dige.3 Disc.4 Dize.5
19 0.737 -G.547 -0.182 ~-31.076 0.329
20 -~0.748 ~-1.607 -0.688 2.17% 1.8086
21 1.282 ~0.468 ~-0.5%2 -0.484 ~3.528
22 0.177 -0.030 -1.733 -1.0608 -1.080
23 ~1.724 0.764 3.306 -1.009 2.402
24 -0.241 0.49¢0 0.12¢6 -0.148 -0.205
25 -0.52% -0.044 §.365 0.1285 0.871
2& -0.231 0.12% 0.35%6 ~0.144G 0.528
27 0.024 0.138 -0.3456 -0.104 -0.35¢6
28 -0.274 ~0.059 -0.1490 ~0.234 2.291
29 0.588 ~0.438 -0.068 0.004 -2.359
30 0.085 ~0.284 -0.370 -0.,180 ~3.,3928
33 0.340 ~-0.386 ~2.172 ~3.586 ~3.627
32 0.3980 G.265 ~1.129 1.446 0.752
33 0.052 -0 .585 ~3.105 -0.037 -0.787
34 ~0.69% 0.063 0.300 -0.022 -0.115
35 0.075 G.687 ~0.598% ~(.164 ~0.2598
36 0.056 0.648 §.455 0.362 ~0.610
37 -0.280 0.278 0.455 0.259 G.022
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A2.3 Other plots of discriminant planes.
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Figure 51. Graph of the scores in the first and third discriminant

functions.
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Figure 52. Graph of the scores in the second and third discriminant

functions.
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Figure 53. Graph of the relative positions between the means of the groups in the first
and third discriminant functions.
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Figure 54. Graph of the relative positions between the means of the groups in the second
and third discriminant functions.
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Appendix 3: Flowchart of Fortran Programs
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