

MODELAGEM E CONTROLE DA SÍNTESE DO ÁCIDO ACRÍLICO VIA PROCESSO FERMENTATIVO

Autora: Betânia Hoss Lunelli Orientador: Prof. Dr. Rubens Maciel Filho

> Dissertação de Mestrado apresentada à Faculdade de Engenharia Química como parte dos requisitos exigidos para a obtenção do título de Mestre em Engenharia Química

Campinas – São Paulo Agosto de 2007

FICHA CATALOGRÁFICA ELABORADA PELA BIBLIOTECA DA ÁREA DE ENGENHARIA E ARQUITETURA - BAE -UNICAMP

Lunelli, Betânia Hoss

L972m Modelagem e controle da síntese do ácido acrílico via processo fermentativo / Betânia Hoss Lunelli.--Campinas, SP: [s.n.], 2007.

Orientador: Rubens Maciel Filho

Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Química.

1. Modelos matemáticos. 2. Biotecnologia. 3. Ácido acrílico. 4. Planejamento experimental. 5. Otimização. Controle de processo. I. Maciel Filho, Rubens. II. Universidade Estadual de Campinas. Faculdade de Engenharia Química. III. Título.

Título em Inglês: Modeling and control of the acrylic acid synthesis by fermentative process

Palavras-chave em Inglês: Modeling, Biotechnological processes, Acrylic acid, Optimization, Process control, Structured model

Área de concentração: Desenvolvimento de Processos Químicos Titulação: Mestre em Engenharia Química Banca examinadora: Gláucia Maria Ferreira Pinto, Gonçalo Amarante Guimarães Pereira

Data da defesa: 16/08/2007

Programa de Pós-Graduação: Engenharia Química

Dissertação de Mestrado defendida por Betânia Hoss Lunelli e aprovada em 16 de agosto de 2007 pela banca examinadora constituída pelos doutores:

Prof. Dr. Rubens Maciel Filho - Orientador

Dra. Gláucia Maria Ferreira Pinto

Prof. Dr. Gonçalo Amarante Guimarães Pereira

Este exemplar corresponde à versão final da Dissertação de Mestrado em Engenharia Química.

au

Prof. Dr. Rubens Maciel Filho - Orientador

Dedico este trabalho aos meus pais, Antônio e Iria e ao meu irmão Rodrigo.

AGRADECIMENTOS

Aos meus pais Antônio e Iria e ao meu irmão Rodrigo, por tudo que me ensinaram, sempre com muito amor e paciência e por todo apoio, incentivo e compreensão em mais essa etapa, que mesmo longe sempre estiveram presente.

À minha cunhada Valéria pela amizade.

Em especial ao Professor Rubens pela orientação, apoio, incentivo, dedicação e paciência, e também pelo seu otimismo sempre presente, os quais foram determinantes para realização deste trabalho.

À professora Maria Regina pela colaboração no trabalho e pela amizade.

À todos os colegas do LOPCA, em especial a turma da sala 3 (Lâmia, M^a Cristina, Pleyci, Agremis, Edvaldo, Igor, Jefferson, Aline e Gláucia), pela amizade e ótima convivência.

Aos colegas Delba, Edvaldo, Elmer, Gláucia e Nadson pelo esclarecimento das dúvidas que foram surgindo ao longo do desenvolvimento do trabalho.

Ao Urso por sua disponibilidade para me ajudar no esclarecimento de algumas dúvidas, em especial na parte de controle, onde sua contribuição foi fundamental.

À Universidade Estadual de Campinas, Faculdade de Engenharia Química e ao Departamento de Processos Químicos, por ter me dado à oportunidade de desenvolver o mestrado.

À FAPESP por me conceder a bolsa de mestrado, sem a qual não seria possível o desenvolvimento deste trabalho.

Enfim, gostaria de agradecer a todos aqueles que de certa forma contribuíram para que este trabalho pudesse atingir seus objetivos. MUITO OBRIGADO!

"É preciso que não tenha medo de dizer alguma coisa que possa ser considerada como erro. Porque tudo que é novo, aparece aos olhos antigos como coisa errada. É sempre nesta violação do que é considerado certo, que nasce o novo e há a criação" (Mário Schenberg).

RESUMO

A síntese de ácido acrílico via processo fermentativo é um assunto recente, com poucas informações disponíveis na literatura e, tem despertado cada vez mais interesse de pesquisadores. Através da modelagem matemática, é possível obter uma melhor compreensão de um processo em sua totalidade, através de analogias abstratas que possibilitam a predição de um fenômeno. O objetivo deste trabalho consiste no desenvolvimento de modelos determinísticos para representar o processo biotecnológico de síntese de ácido acrílico a partir de uma rota metabólica alternativa, visando estudos do comportamento estacionário/dinâmico do processo, aplicação de técnicas de planejamento experimental para identificação dos parâmetros mais relevantes e otimização dos parâmetros operacionais, com a finalidade de compreender o processo e apresentar uma metodologia alternativa para a sua produção. A partir dos modelos desenvolvidos foi possível obter perfis de concentração dos principais componentes do processo. Depois de identificadas as influências dos parâmetros operacionais, cinéticos e de projeto sobre o processo, os parâmetros operacionais de cada modelo foram otimizados através da aplicação da metodologia de superfície de resposta e do método de otimização por programação quadrática sucessiva. Com a otimização dos parâmetros foi possível encontrar condições de operação que aumentaram a concentração e o rendimento final de ácido acrílico, como também, perceber as limitações dos métodos de otimização usados. Nos modelos com cinética estruturada foram aplicadas estratégias de controle, através das quais foi possível encontrar condições ótimas, podendo com isso operar o biorreator de forma eficiente e segura, além de aumentar o rendimento final de ácido acrílico. Através da realização deste trabalho, pode-se concluir que os modelos desenvolvidos constituem um conjunto de ferramentas interessantes para predizer e investigar o comportamento do processo de síntese de ácido acrílico via processo fermentativo, uma vez que, a literatura ainda não dispõe de trabalhos de modelagem para a síntese de ácido acrílico via rotas fermentativas. Também, servir de apoio para estudos de manipulação genética visando obter microrganismos com capacidade de produzir ácido acrílico em condições economicamente competitivas.

Palavras-chave: modelagem, processos biotecnológicos, ácido acrílico, otimização, controle de processo.

ABSTRACT

The acrylic acid synthesis by fermentative process is a recent subject, with few available information in literature and it has demonstrated each time more interest of researchers. Through the mathematical modeling, it is possible to obtain a better understanding of the process behavior if mechanistic models are developed. The purpose of this work is the deterministic model development for the biotechnological process of acrylic acid synthesis through an alternative metabolic route, aiming the studies of both the steady state and dynamic behavior of the process. To investigate the parameters interactions as well as to identify the parameters with the most significant impact on the model experimental design was used and operational parameters were optimized. The purpose is to understand the process and to present an alternative methodology for its production. From of the developed models was possible to obtain the concentration profiles of the process components main. After identified the influence of the operational, kinetic and design parameters about the process, the operational parameters were optimized through the application of the response surface methodology and the successive quadratic programming optimization method. With the optimization of parameters was possible to find out the optimal operational conditions and thus to increase the yield and acrylic acid concentration as well as to perceive the limitation of optimization methods used. In the models with structured kinetic were applied control strategies, where was possible to operate the bioreactor safe and efficiently as well as to increase the acrylic acid final yield. With the realization of this work, it follows that the models developed consist of a set of interesting tools to predict and investigate the behavior of the acrylic acid synthesis by fermentative process, whereas in the literature are not yet available works about modeling of the acrylic acid synthesis from fermentative routes, as well as can to serve as support for studies of genetic manipulation aiming at to obtain microorganisms with capacity to produce acrylic acid in competitive economically conditions.

Key-words: modeling, biotechnological process, acrylic acid, optimization, process control.

SUMÁRIO

RESUMO XIII		
ABSTRACT XV		
CAPÍTI	ULO I. INTRODUÇÃO	1
1.1	Objetivos	6
1.2	Organização do trabalho	6
1.3	Lista de trabalhos apresentados em conferências e publicados	em revistas
	indexadas	7
CAPITU	ULO II. REVISÃO BIBLIOGRÁFICA	11
2.1	Cana-de-açúcar – fonte de glicose	11
2.2	Fermentação	11
2.3	Saccharomyces cerevisiae	15
2.4	Células imobilizadas	15
2.5	Ácido Acrílico	16
2.6	Modelagem e simulação de processos	21
2.6.1	Modelagem de processos biotecnológicos	
2.7	Métodos matemáticos utilizados para a resolução dos modelos	25
2.7.1	Método de colocação ortogonal	
2.7.2	Método das linhas	
2.7.3	Método de Runge-Kutta	
2.8	Planejamento experimental	
2.9	Otimização de processos	
2.9.1	Otimização evolucionária	
2.9.2	Metodologia de superfície de resposta	
2.9.3	Otimização por programação quadrática sucessiva	
2.10	Controle de processo	
2.10.1	Controle feedback	
2.10.2	DMC	
2.10.2.1	Algoritmo DMC para sistema SISO	
2.11	Conclusão	
CAPÍTU	ULO III. MODELO MATEMÁTICO NÃO ESTRUTURADO	PARA A
SÍNTES	SE DE ÁCIDO ACRÍLICO VIA PROCESSO FERMENTAT	IVO COM
CÉLUL	AS LIVRES	
3.1	Introdução	
3.2	Modelo matemático não estruturado com células livres	
3.3	Planejamento experimental	
3.4	Otimização do processo	68
3.5	Conclusão	73

CAPÍTU SÍNTES CÉLUL	ULO IV. MODELO MATEMÁTICO NÃO ESTRUTURADO P SE DE ÁCIDO ACRÍLICO VIA PROCESSO FERMENTATIVO (AS IMOBILIZADAS	PARA COM 75
4.1	Introducão	75
4.2	Modelo matemático não estruturado com células imobilizadas	75
4.3	Planejamento experimental	91
4.4	Otimização do processo	105
4.5	Conclusão	112
CAPITU ÁCIDO	JLO V. MODELO MATEMÁTICO ESTRUTURADO PARA A SÍNTES ACRÍLICO VIA PROCESSO FERMENTATIVO COM CÉLULAS LIV	E DE VRES 115
51	Introdução	115
5.2	Modelo matemático estruturado com células livres	115
5.3	Planejamento experimental	124
5.4	Otimização do processo	136
5.5	Controle do processo	138
5.6	Conclusão	141
CAPITU DE ÁC IMOBII	ULO VI. MODELO MATEMÁTICO ESTRUTURADO PARA A SINT IDO ACRÍLICO VIA PROCESSO FERMENTATIVO COM CÉLU LIZADAS	ГЕЅЕ ULAS 143
6.1	Introdução	143
6.2	Modelo matemático estruturado com células imobilizadas	143
6.3	Planejamento experimental	157
6.4	Otimização do processo	171
6.5	Controle do processo	182
6.5	Conclusão	189
CAPÍTU FUTUR	JLO VII. CONCLUSÕES FINAIS E SUGESTÕES PARA TRABAL OS	LHOS 191
REFER	ÊNCIAS BIBLIOGRÁFICAS	195
ANEXO	9S	203
ANEXO ANEXO produção	 A. Um modelo bioquímico estruturado para Saccharomyces cerevisiae B. Desenvolvimento de modelos estruturados alternativos para o proceso de etanol 	205 so de 211
APÊND	ICES	213
APÊNDI	ICE A	215
APÊNDI	ICE B	221
APÊNDI	ICE C	231
APÊNDI	ICE D	235

LISTA DE FIGURAS

Figura 1.1	Produtos de fermentação usados para síntese de produtos químicos3
Figura 1.2	Produtos químicos produzidos por fermentação de carboidratos4
Figura 1.3	Produção de novos produtos químicos a partir de biomassa5
Figura 2.1	Etapas de degradação da glicose13
Figura 2.2	Diagrama para a produção química de ácido acrílico18
Figura 2.3	Caminhos metabólicos hipotéticos para biossíntese de ácido acrílico a partir de açúcares
Figura 2.4	Classificação dos modelos matemáticos para representação da população celular
Figura 2.5	Representação da ação de um controlador
Figura 2.6	Representação de um controle <i>feedback</i>
Figura 2.7	Representação da ação de um controlador proporcional-integral42
Figura 3.1	Fluxograma para resolução do modelo não estruturado com células livres
Figura 3.2	Perfis de concentração ao longo do tempo54
Figura 3.3	Efeitos da taxa de diluição sobre as concentrações ao longo do tempo55
Figura 3.4	Efeitos da taxa de diluição sobre as concentrações no estado estacionário55
Figura 3.5	Efeito da taxa de diluição sobre a produtividade de lactato e ácido acrílico
Figura 3.6	Efeitos estimados sobre as concentrações de glicose, lactato, ácido acrílico e biomassa
Figura 3.7	Efeitos estimados sobre as concentrações de glicose, lactato, ácido acrílico e biomassa
Figura 3.8	Gráfico de Pareto dos efeitos dos parâmetros operacionais sobre o rendimento final de ácido acrílico71
Figura 3.9	Superfície de resposta do rendimento de ácido acrílico em função dos parâmetros operacionais
Figura 4.1	Transferência de massa e etapas de reação para um <i>pellet</i> catalítico
Figura 4.2	Fluxograma para resolução do modelo não estruturado
Figura 4.3	Perfis de concentração de ácido acrílico e glicose obtidos ao longo do tempo

Modelagem e Controle da Síntese do Ácido Acrílico via Processo Fermentativo

Perfis de concentração de ácido acrílico, glicose e biomassa obtidos no estado estacionário
Perfis de concentração obtidos ao longo do comprimento do biorreator em diferentes tempos de operação
Perfis de concentração no interior do <i>pellet</i> em diferentes tempos de operação
Perfis de concentração obtidos ao longo do tempo nos seis pontos de colocação
Efeitos estimados dos parâmetros operacionais sobre as concentrações de glicose, ácido acrílico e biomassa
Efeitos estimados dos parâmetros de projeto sobre as concentrações de glicose, ácido acrílico e biomassa
Efeitos estimados dos parâmetros cinéticos sobre as concentrações de glicose, ácido acrílico e biomassa
Gráfico de Pareto dos efeitos dos parâmetros operacionais sobre a concentração final de ácido acrílico
Superfície de resposta da concentração de ácido acrílico em função dos parâmetros operacionais
Gráfico de Pareto dos efeitos dos parâmetros de projeto sobre a concentração final de ácido acrílico
Superfície de resposta da concentração de ácido acrílico em função dos parâmetros de projeto
Rota metabólica representativa117
Fluxograma para resolução do modelo estruturado120
Perfis de concentração obtidos ao longo do tempo122
Quantidade de material celular ativo (X_a) e de enzima <i>lactato desidrogenase</i> (X_{ladh}) produzidos ao longo do tempo
Efeitos da taxa de diluição sobre as concentrações e sobre X _a 123
Efeitos estimados dos parâmetros operacionais sobre as concentrações de glicose, piruvato, lactato, ácido acrílico e biomassa
Fluxograma para otimização dos parâmetros operacionais137
Perfis de concentração obtidos com os valores otimizados e estimativa inicial
Estrutura de otimização em duas camadas139
Perfis de concentração de ácido acrílico140
Rota Glicolítica145
Rota metabólica representativa146
Fluxograma para resolução do modelo estruturado151

LISTA DE FIGURAS

Figura 6.4	Perfis de concentração obtidos ao longo do tempo153
Figura 6.5	Perfis de concentração obtidos no estado estacionário154
Figura 6.6	Variações de X_a e X_{Ladh} obtidas ao longo do tempo154
Figura 6.7	Perfis de concentração obtidos ao longo do tempo nos seis pontos de colocação
Figura 6.8	Efeitos estimados dos parâmetros operacionais sobre as concentrações de glicose, ácido acrílico e biomassa
Figura 6.9	Efeitos estimados dos parâmetros de projeto sobre as concentrações de glicose, ácido acrílico e biomassa
Figura 6.10	Gráfico de Pareto dos efeitos dos parâmetros operacionais173
Figura 6.11	Concentrações médias finais de ácido acrílico obtidas na 1ª fase da EVOP
Figura 6.12	Resultados obtidos na 2ª fase da EVOP174
Figura 6.13	Resultados obtidos na 3 ^ª fase da EVOP175
Figura 6.14	Resultados obtidos na 4 ^a fase da EVOP175
Figura 6.15	Resultados obtidos na 5 ^ª fase da EVOP175
Figura 6.16	Gráfico de Pareto dos efeitos dos parâmetros de projeto176
Figura 6.17	Concentrações médias finais de ácido acrílico obtidas na 1ª fase da EVOP
Figura 6.18 –	Resultados obtidos na 2ª fase da EVOP177
Figura 6.19	Resultados obtidos na 3 ^ª fase da EVOP178
Figura 6.20	Resultados obtidos na 4 ^a fase da EVOP
Figura 6.21	Resultados obtidos na 5 ^a fase da EVOP
Figura 6.22	Superfície de resposta do rendimento final de ácido acrílico em função dos parâmetros operacionais
Figura 6.23	Resposta do sistema em malha aberta sem ação de controle para perturbação na vazão de alimentação
Figura 6.24	Controle da concentração de ácido acrílico na saída do biorreator183
Figura 6.25	Resposta do sistema em malha aberta para perturbação nos parâmetros operacionais
Figura 6.26	Respostas obtidas em malha fechada alterando-se os parâmetros do controlador
Figura 6.27	Controle da concentração de ácido acrílico na saída do biorreator para uma alteração de aproximadamente (+50%) no <i>set point</i>
Figura 6.28 Figura 6.29	Controle da concentração de ácido acrílico na saída do biorreator para uma alteração de aproximadamente (+50%) no <i>set point</i> 187 Respostas obtidas com as estratégias de controle STDMC, DMC e PID

LISTA DE TABELAS

Tabela 2.1	Estatística da produção brasileira de cana-de-açúcar e álcool para 200711
Tabela 2.2	Tipos de modelos usados em processos microbianos23
Tabela 3.1	Parâmetros usados para a resolução do modelo53
Tabela 3.2	Parâmetros operacionais analisados no planejamento fatorial 2 ³ 57
Tabela 3.3	Matriz codificada dos valores dos parâmetros analisados58
Tabela 3.4	Efeitos dos parâmetros operacionais sobre as concentrações de glicose58
Tabela 3.5	Efeitos dos parâmetros operacionais sobre a concentração final de glicose.59
Tabela 3.6	Efeitos dos parâmetros operacionais sobre as concentrações de lactato59
Tabela 3.7	Efeitos dos parâmetros operacionais sobre a concentração final de lactato59
Tabela 3.8	Efeitos dos parâmetros operacionais sobre as concentrações de ácido acrílico
Tabela 3.9	Efeitos dos parâmetros operacionais sobre a concentração final de ácido acrílico
Tabela 3.10	Efeitos dos parâmetros operacionais sobre as concentrações de biomassa
Tabela 3.11	Efeitos dos parâmetros operacionais sobre a concentração final de biomassa
Tabela 3.12	Parâmetros cinéticos analisados no planejamento de Plackett- Burman
Tabela 3.13	Matriz codificada dos valores dos parâmetros analisados64
Tabela 3.14	Efeitos principais dos parâmetros cinéticos sobre as concentrações de glicose
Tabela 3.15	Efeitos principais dos parâmetros cinéticos sobre a concentração final de glicose
Tabela 3.16	Efeitos principais dos parâmetros cinéticos sobre as concentrações de lactato
Tabela 3.17	Efeitos principais dos parâmetros cinéticos sobre a concentração final de lactato
Tabela 3.18	Efeitos principais dos parâmetros cinéticos sobre as concentrações de ácido acrílico
Tabela 3.19	Efeitos principais dos parâmetros cinéticos sobre a concentração final de ácido acrílico
Tabela 3.20	Efeitos principais dos parâmetros cinéticos sobre as concentrações de biomassa

Tabela 3.21	Efeitos principais dos parâmetros cinéticos sobre a concentração final de biomassa
Tabela 3.22	Matriz codificada dos valores dos parâmetros69
Tabela 3.23	Parâmetros operacionais analisados no planejamento composto central
Tabela 3.24	ANOVA dos parâmetros operacionais sobre o rendimento final de ácido acrílico70
Tabela 3.25	Valores dos parâmetros operacionais e rendimentos de ácido acrílico
Tabela 4.1	Composição e pesos moleculares dos componentes da reação76
Tabela 4.2	Parâmetros usados para a resolução do modelo
Tabela 4.3	Variações realizadas nos parâmetros operacionais e de projeto90
Tabela 4.4	Concentrações finais obtidas ao longo do biorreator através de variações realizadas nos parâmetros operacionais e de projeto90
Tabela 4.5	Parâmetros operacionais usadas no planejamento fatorial 2 ³ 91
Tabela 4.6	Matriz codificada dos valores dos parâmetros operacionais92
Tabela 4.7	Efeitos dos parâmetros operacionais sobre as concentrações de glicose92
Tabela 4.8	Efeitos dos parâmetros operacionais sobre a concentração final de glicose.93
Tabela 4.9	Efeitos dos parâmetros operacionais sobre as concentrações de ácido acrílico
Tabela 4.10	Efeitos dos parâmetros operacionais sobre a concentração final de ácido acrílico
Tabela 4.11	Efeitos dos parâmetros operacionais sobre as concentrações de biomassa
Tabela 4.12	Efeitos dos parâmetros operacionais sobre a concentração final de biomassa
Tabela 4.13	Parâmetros de projeto usados no planejamento fatorial 2 ³ 96
Tabela 4.14	Matriz codificada dos valores dos parâmetros de projeto96
Tabela 4.15	Efeitos dos parâmetros de projeto sobre as concentrações de glicose97
Tabela 4.16	Efeitos dos parâmetros de projeto sobre a concentração final de glicose97
Tabela 4.17	Efeitos dos parâmetros de projeto sobre as concentrações de ácido acrílico97
Tabela 4.18	Efeitos dos parâmetros de projeto sobre a concentração final de ácido acrílico
Tabela 4.19	Efeitos dos parâmetros de projeto sobre as concentrações de biomassa
Tabela 4.20	Efeitos dos parâmetros de projeto sobre a concentração final de biomassa

Tabela 4.21	Parâmetros cinéticos analisados no planejamento de Plackett- Burman
Tabela 4.22	Matriz codificada dos valores dos parâmetros
Tabela 4.23	Efeitos principais dos parâmetros cinéticos sobre as concentrações de glicose102
Tabela 4.24	Efeitos principais dos parâmetros cinéticos sobre a concentração final de glicose102
Tabela 4.25	Efeitos principais dos parâmetros cinéticos sobre as concentrações de ácido acrílico103
Tabela 4.26	Efeitos principais dos parâmetros cinéticos sobre a concentração final de ácido acrílico103
Tabela 4.27	Efeitos principais dos parâmetros cinéticos sobre as concentrações de biomassa104
Tabela 4.28	Efeitos principais dos parâmetros cinéticos sobre a concentração final de biomassa
Tabela 4.29	Valores ótimos para os parâmetros analisados105
Tabela 4.30	Matriz codificada dos valores dos parâmetros106
Tabela 4.31	Parâmetros operacionais e de projeto analisados no planejamento estrela.107
Tabela 4.32	ANOVA dos parâmetros operacionais sobre a concentração final de ácido acrílico108
Tabela 4.33	Valores dos parâmetros operacionais e concentrações de ácido acrílico109
Tabela 4.34	ANOVA dos parâmetros de projeto sobre a concentração final de ácido acrílico110
Tabela 4.35	Valores dos parâmetros operacionais e de projeto e concentrações finais de ácido acrílico112
Tabela 5.1	Condições iniciais e de operação usadas no modelo120
Tabela 5.2	Parâmetros cinéticos
Tabela 5.3	Parâmetros operacionais usados no planejamento fatorial 2 ³ 125
Tabela 5.4	Matriz codificada dos valores dos parâmetros operacionais125
Tabela 5.5	Efeitos dos parâmetros operacionais sobre as concentrações de glicose126
Tabela 5.6	Efeitos dos parâmetros operacionais sobre as concentrações de piruvato126
Tabela 5.7	Efeitos dos parâmetros operacionais sobre as concentrações de lactato126
Tabela 5.8	Efeitos dos parâmetros operacionais sobre as concentrações de ácido acrílico
Tabela 5.9	Efeitos dos parâmetros operacionais sobre as concentrações de biomassa
Tabela 5.10	Parâmetros cinéticos analisados no planejamento de Plackett-Burman129

Tabela 5.11	Matriz codificada dos valores dos parâmetros cinéticos130
Tabela 5.12	Efeitos principais dos parâmetros cinéticos sobre as concentrações de glicose
Tabela 5.13	Efeitos principais dos parâmetros cinéticos sobre as concentrações de piruvato
Tabela 5.14	Efeitos principais dos parâmetros cinéticos sobre as concentrações de lactato
Tabela 5.15	Efeitos principais dos parâmetros cinéticos sobre as concentrações de ácido acrílico
Tabela 5.16	Efeitos principais dos parâmetros cinéticos sobre as concentrações de biomassa
Tabela 5.17	Estimativa inicial, valores otimizados e rendimentos obtidos137
Tabela 6.1	Condições iniciais, parâmetros operacionais e de projeto e propriedades do fluido usados no modelo
Tabela 6.2	Parâmetros cinéticos
Tabela 6.3	Parâmetros usados no planejamento fatorial 2 ³ 157
Tabela 6.4	Matriz codificada dos valores dos parâmetros operacionais158
Tabela 6.5	Efeitos dos parâmetros operacionais sobre as concentrações de glicose158
Tabela 6.6	Efeitos dos parâmetros operacionais sobre a concentração final de glicose
Tabela 6.7	Efeitos dos parâmetros operacionais sobre as concentrações de ácido acrílico
Tabela 6.8	Efeitos dos parâmetros operacionais sobre a concentração final de ácido acrílico
Tabela 6.9	Efeitos dos parâmetros operacionais sobre as concentrações de biomassa 160
Tabela 6.10	Efeitos dos parâmetros operacionais sobre a concentração final de biomassa
Tabela 6.11	Parâmetros usados no planejamento fatorial 2 ³ 162
Tabela 6.12	Matriz codificada dos valores dos parâmetros de projeto162
Tabela 6.13	Efeitos dos parâmetros de projeto sobre as concentrações de glicose 162
Tabela 6.14	Efeitos dos parâmetros de projeto sobre a concentração final de glicose 163
Tabela 6.15	Efeitos dos parâmetros de projeto sobre as concentrações de ácido acrílico
Tabela 6.16	Efeitos dos parâmetros de projeto sobre a concentração final de ácido acrílico
Tabela 6.17	Efeitos dos parâmetros de projeto sobre as concentrações de biomassa 164
Tabela 6.18	Efeitos dos parâmetros de projeto sobre a concentração final de biomassa164
Tabela 6.19	Parâmetros cinéticos analisados no planejamento de Plackett-Burman 166

Tabela 6.20	Matriz codificada dos valores dos parâmetros cinéticos167
Tabela 6.21	Efeitos principais dos parâmetros cinéticos sobre a concentração final de glicose
Tabela 6.22	Efeitos principais dos parâmetros cinéticos sobre a concentração final de ácido acrílico
Tabela 6.23	Efeitos principais dos parâmetros cinéticos sobre a concentração final de biomassa
Tabela 6.24	Matriz codificada dos parâmetros operacionais172
Tabela 6.25	Valores dos parâmetros operacionais usados na 1ª fase da EVOP172
Tabela 6.26	Valores dos parâmetros de projeto usados na 1 ^ª fase da EVOP176
Tabela 6.27	Matriz codificada dos parâmetros operacionais179
Tabela 6.28	ANOVA dos parâmetros operacionais sobre o rendimento final de ácido acrílico
Tabela 6.29	Valores otimizados dos parâmetros operacionais181
Tabela 6.30	Valores dos parâmetros usados no controle do processo182
Tabela 6.31	Condições usadas para avaliação do controlador DMC186
Tabela 6.32	Condições usadas para avaliação do controlador STDMC188
Tabela A.1	ANOVA dos parâmetros operacionais sobre as concentrações de glicose 216
Tabela A.2	ANOVA dos parâmetros operacionais sobre a concentração final de glicose
Tabela A.3	ANOVA dos parâmetros operacionais sobre as concentrações de biomassa
Tabela A.4	ANOVA dos parâmetros operacionais sobre a concentração final de biomassa
Tabela A.5	ANOVA dos parâmetros operacionais sobre as concentrações de lactato.217
Tabela A.6	ANOVA dos parâmetros operacionais sobre a concentração final de lactato
Tabela A.7	ANOVA dos parâmetros operacionais sobre as concentrações de ácido acrílico
Tabela A.8	ANOVA dos parâmetros operacionais sobre a concentração final de ácido acrílico
Tabela A.9	ANOVA dos parâmetros cinéticos sobre as concentrações de glicose218
Tabela A.10	ANOVA dos parâmetros cinéticos sobre a concentração final de glicose .219
Tabela A.11	ANOVA dos parâmetros cinéticos sobre as concentrações de biomassa219
Tabela A.12	ANOVA dos parâmetros cinéticos sobre a concentração final de biomassa
Tabela A.13	ANOVA dos parâmetros cinéticos sobre as concentrações de lactato219

Tabela A.14	ANOVA dos parâmetros cinéticos sobre a concentração final de lactato 220
Tabela A.15	ANOVA dos parâmetros cinéticos sobre as concentrações de ácido acrílico
Tabela A.16	ANOVA dos parâmetros cinéticos sobre a concentração final de ácido acrílico
Tabela B.1	ANOVA dos parâmetros operacionais sobre as concentrações de glicose 222
Tabela B.2	ANOVA dos parâmetros operacionais sobre a concentração final de glicose
Tabela B.3	ANOVA dos parâmetros operacionais sobre as concentrações de ácido acrílico
Tabela B.4	ANOVA dos parâmetros operacionais sobre a concentração final de ácido acrílico
Tabela B.5	ANOVA dos parâmetros operacionais sobre as concentrações de biomassa
Tabela B.6	ANOVA dos parâmetros operacionais sobre a concentração final de biomassa
Tabela B.7	ANOVA dos parâmetros de projeto sobre as concentrações de glicose225
Tabela B.8	ANOVA dos parâmetros de projeto sobre a concentração final de glicose 225
Tabela B.9	ANOVA dos parâmetros de projeto sobre as concentrações de ácido acrílico
Tabela B.10	ANOVA dos parâmetros de projeto sobre a concentração final de ácido acrílico
Tabela B.11	ANOVA dos parâmetros de projeto sobre as concentrações de biomassa. 226
Tabela B.12	ANOVA dos parâmetros de projeto sobre a concentração final de biomassa
Tabela B.13	ANOVA dos parâmetros cinéticos sobre as concentrações de glicose
Tabela B.14	ANOVA dos parâmetros cinéticos sobre a concentração final de glicose . 228
Tabela B.15	ANOVA dos parâmetros cinéticos sobre as concentrações de ácido acrílico
Tabela B.16	ANOVA dos parâmetros cinéticos sobre a concentração final de ácido acrílico
Tabela B.17	ANOVA dos parâmetros cinéticos sobre as concentrações de biomassa 229
Tabela B.18	ANOVA dos parâmetros cinéticos sobre a concentração final de biomassa
Tabela C.1	ANOVA dos parâmetros operacionais sobre as concentrações de glicose 232
Tabela C.2	ANOVA dos parâmetros operacionais sobre as concentrações de piruvato 232

LISTA DE TABELAS

Tabela C.3	ANOVA dos parâmetros operacionais sobre as concentrações de lactato.233
Tabela C.4	ANOVA dos parâmetros operacionais sobre as concentrações de ácido acrílico
Tabela C.5	ANOVA dos parâmetros operacionais sobre as concentrações de biomassa
Tabela C.6	ANOVA dos parâmetros cinéticos sobre as concentrações de glicose233
Tabela C.7	ANOVA dos parâmetros cinéticos sobre as concentrações de piruvato
Tabela C.8	ANOVA dos parâmetros cinéticos sobre as concentrações de lactato 234
Tabela C.9	ANOVA dos parâmetros cinéticos sobre as concentrações de ácido acrílico
Tabela D.1	ANOVA dos parâmetros operacionais sobre as concentrações de glicose 236
Tabela D.2	ANOVA dos parâmetros operacionais sobre a concentração final de glicose
Tabela D.3	ANOVA dos parâmetros operacionais sobre as concentrações de ácido acrílico
Tabela D.4	ANOVA dos parâmetros operacionais sobre a concentração final de ácido acrílico
Tabela D.5	ANOVA dos parâmetros operacionais sobre as concentrações de biomassa
Tabela D.6	ANOVA dos parâmetros operacionais sobre a concentração final de biomassa
Tabela D.7	ANOVA dos parâmetros de projeto sobre as concentrações de glicose239
Tabela D.8	ANOVA dos parâmetros de projeto sobre a concentração final de glicose239
Tabela D.9	ANOVA dos parâmetros de projeto sobre as concentrações de ácido acrílico
Tabela D.10	ANOVA dos parâmetros de projeto sobre a concentração final de ácido acrílico
Tabela D.11	ANOVA dos parâmetros de projeto sobre as concentrações de biomassa.240
Tabela D.12	ANOVA dos parâmetros de projeto sobre a concentração final de biomassa
Tabela D.13	Efeitos dos parâmetros cinéticos sobre as concentrações de glicose241
Tabela D.14	Efeitos dos parâmetros cinéticos sobre as concentrações de ácido acrílico242
Tabela D.15	Efeitos dos parâmetros cinéticos sobre as concentrações de biomassa243
Tabela D.16	ANOVA dos parâmetros cinéticos sobre as concentrações de glicose244
Tabela D.17	ANOVA dos parâmetros cinéticos sobre a concentração final de glicose . 244
Tabela D.18	ANOVA dos parâmetros cinéticos sobre as concentrações de ácido acrílico

Tabela D.19	ANOVA dos parâmetros cinéticos sobre a concentração final de ácido acrílico
Tabela D.20	ANOVA dos parâmetros cinéticos sobre as concentrações de biomassa245
Tabela D.21	ANOVA dos parâmetros cinéticos sobre a concentração final de biomassa

NOMENCLATURA

CAPÍTULO III

Símbolos

Simolos	
A-AA	concentração de ácido acrílico (kg m ⁻³)
D	taxa de diluição (h ⁻¹)
F	vazão volumétrica de alimentação (m ³ s ⁻¹)
K _A	constante de inibição pelo produto (m ³ kg ⁻¹)
k _d	constante de morte celular (h ⁻¹)
Ki	constante de inibição pelo substrato (h ⁻¹)
Ks	constante de saturação (kg m ⁻³)
kt	constante de morte celular devido a toxicidade (h^{-1})
L	concentração de lactato (kg m ⁻³)
m	coeficiente de manutenção $(kg_{substrato} kg^{-1}_{células} h^{-1})$
Q[]	produtividade volumétrica (kg m ⁻³ h ⁻¹)
r _d	velocidade de morte celular (kg m ⁻³ h ⁻¹)
S	concentração de substrato (kg m ⁻³)
V	volume (m ³)
Х	concentração celular (kg _{ms} m ⁻³)
X _{sat}	concentração saturada de células (kg _{ms} m ⁻³)
Y _{[]/s}	coeficiente de rendimento (kg kg ⁻¹)

Letras gregas

μ_{max}	velocidade específica máxima de crescimento (h ⁻¹)
μ_x	velocidade específica de crescimento (h ⁻¹)
τ	tempo médio de residência (h)

Subscrito

in	condições de alimentação
0	condições iniciais

Siglas

k Bioreactor
k Bioreact

PFR	Plug Flow Reactor
RSM	Response Surface Methodology
SQP	Successive Quadratic Programming

CAPÍTULO IV

Símbolos

A - AA	concentração de ácido acrílico (kg m ⁻³)
am	área interfacial líquido-sólido (m ² m ⁻³)
Bi	número de Biot (adm)
С	concentração de substrato (kg m ⁻³)
D _A	coeficiente de difusão $(m^2 s^{-1})$
D _{az}	coeficiente de dispersão axial (m ² s ⁻¹)
D	diâmetro (m)
D _e	difusividade efetiva $(m^2 s^{-1})$
D_p, d_p	diâmetro da partícula (m)
D _r	diâmetro do biorreator (m)
F	vazão de alimentação (m ³ s ⁻¹)
G	velocidade superficial mássica (kg m ⁻² s ⁻¹)
J_{D}	fator de Chilton-Colburn (adm)
K _A	constante de inibição pelo produto (m ³ kg ⁻¹)
k _d	constante de morte celular (h ⁻¹)
K _i	constante de inibição pelo substrato (m ³ kg ⁻¹)
k _m	coeficiente de transferência de massa (m s ⁻¹)
K _p	velocidade específica de formação de produto (kg m ⁻³)
Ks	velocidade específica de saturação (kg m ⁻³)
K _t	constante de morte celular devido a toxicidade (h^{-1})
L	comprimento do biorreator (m)
m	coeficiente de manutenção $(kg_{substrato} kg^{-1}_{células} h^{-1})$
Р	concentração de produto (kg m ⁻³)
Pe	número de Peclet (adm)
R, r	raio da partícula (m)
r _d	velocidade de morte celular (kg m ⁻³ h ⁻¹)
Re	número de Reynolds (adm)
r _g	velocidade de crescimento celular (kg m ⁻³ h ⁻¹)

NOMENCLATURA Modelagem e Controle da Síntese do Ácido Acrílico via Processo Fermentativo

r _m	taxa de transferência de massa local de substrato (kg m ⁻³ s ⁻¹)
r _i	velocidade de reação (kg $m^{-3}h^{-1}$)
S	concentração de substrato (kg m ⁻³)
Sc	número de Schmidt (adm)
Sh	número de Sherwood (adm)
u	velocidade do fluxo (m s ⁻¹)
V	volume (m ³)
Х	concentração celular (kg _{ms} m ⁻³)
X _{sat}	concentração saturada de células (kg m ⁻³)
Y _{A/s}	coeficiente de rendimento do produto a partir do consumo de substrato $(kg kg^{-1})$
Y _{A/x}	coeficiente de rendimento do produto em relação ao crescimento celular (kg kg ⁻¹)
Y _{x/s}	coeficiente de rendimento de biomassa em relação ao consumo de substrato (kg kg ⁻¹)

Letras gregas

ξ	fator empírico (adm)
η	fator de efetividade interna (adm)
8	porosidade do leito (adm)
ρ	densidade do fluido (kg m ⁻³)
μ	viscosidade do fluido (kg m ⁻¹ s ⁻¹)
ν	viscosidade cinemática (m ² s ⁻¹)
μ_{max}	velocidade específica máxima de crescimento (h ⁻¹)
μ_{x}	velocidade específica de crescimento (h ⁻¹)

Subscrito

А	ácido acrílico
f	fase fluida
in	condição de alimentação
S	fase sólida
S	substrato
0	condição inicial

CAPÍTULO V

Símbolos

A - AA	concentração de ácido acrílico (kg m ⁻³)
D	taxa de diluição (h ⁻¹)
F	vazão volumétrica de alimentação (m ³ s ⁻¹)
ki	velocidade específica de reação (h ⁻¹)
Ki	constante de afinidade (kg m ⁻³)
K _{ji}	constante de inibição (m ³ kg ⁻¹)
L	concentração de lactato (kg m ⁻³)
Q _p	produtividade volumétrica de formação de produto (kg m ⁻³ h ⁻¹)
Q _x	produtividade volumétrica de produção de biomassa (kg $m^{-3}h^{-1}$)
R _i	velocidade de reação (h ⁻¹)
S	concentração de substrato (kg m ⁻³)
V	volume (m ³)
Х	concentração celular ($kg_{ms}m^{-3}$)
Xa	material celular ativo (kg kg ⁻¹)
Y _{[]/s}	coeficiente de rendimento (kg kg ⁻¹)

Subscrito

0	condição inicial
in	condição de alimentação

CAPÍTULO VI

Símbolos

A –A	concentração de ácido acrílico (kg m ⁻³)
a _m	área interfacial líquido-sólido $(m^2 m^{-3})$
Bi	número de Biot (adm)
С	concentração de substrato (kg m ⁻³)
D _A	coeficiente de difusão (m ² s ⁻¹)
D _{az}	coeficiente de dispersão axial $(m^2 s^{-1})$
D	diâmetro (m)
De	difusividade efetiva (m ² s ⁻¹)
D_p, d_p	diâmetro da partícula (m)

D _r	diâmetro do biorreator (m)
F	vazão de alimentação (m ³ s ⁻¹)
G	velocidade superficial mássica (kg m ⁻² s ⁻¹)
J_{D}	fator de Chilton-Colburn (adm)
K _A	constante de inibição pelo produto (m ³ kg ⁻¹)
k _d	constante de morte celular (h ⁻¹)
ki	velocidade específica de reação (h ⁻¹)
K _i	constante de afinidade (kg m ⁻³)
K _{ji}	constante de inibição (m ³ kg ⁻¹)
k _m	coeficiente de transferência de massa (m s ⁻¹)
L	comprimento do biorreator (m)
R,r	raio da partícula (m)
Re	número de Reynolds (adm)
r _m	taxa de transferência de massa local de substrato (kg m ⁻³ h ⁻¹)
R _i	velocidade de reação (h ⁻¹)
S	concentração de substrato (kg m ⁻³)
Sc	número de Schmidt (adm)
u	velocidade do fluxo (m s ⁻¹)
V	volume (m ³)
Х	concentração celular ($kg_{ms} m^{-3}$)
Xa	material celular ativo (kg kg ⁻¹)
X_{Ladh}	<i>lactato desidrogenase</i> (kg kg ⁻¹)
X _{sat}	concentração saturada de células (kg _{ms} m ⁻³)
Y _{A/s}	coeficiente de rendimento do produto a partir do consumo de substrato $(kg kg^{-1})$
Y _{x/s}	coeficiente de rendimento de biomassa em relação ao consumo de substrato $(kg kg^{-1})$
Y _{A/x}	coeficiente de rendimento de ácido acrílico em relação ao crescimento celular (kg kg ⁻¹)
Y _{L/x}	coeficiente de rendimento de lactato em relação ao crescimento celular $(kg kg^{-1})$

Letras gregas

ξ	fator empírico (adm)
η	fator de efetividade (adm)

ε	porosidade do leito (adm)
ρ	densidade do fluido (kg m ⁻³)
μ	viscosidade do fluido (kg m ⁻¹ s ⁻¹)
ν	viscosidade cinemática (m ² s ⁻¹)
μ_{max}	velocidade específica máxima de crescimento (h ⁻¹)
μ_{x}	velocidade específica de crescimento (h ⁻¹)
Siglas	
DMC	Dynamic Matrix Control
PID	Proportional Integral Derivative
RSM	Response Surface Methodology
SQP	Successive Quadratic Programming
STDMC	Generalized Predictive Control

Subscrito

0	condição inicial
f	fase fluida
in	condição de alimentação
S	fase sólida

CAPÍTULO I. INTRODUÇÃO

Com o aumento das necessidades do homem e a transformação das mesmas ao longo do tempo, tornou-se quase que obrigatório explorar novas tecnologias obrigadas a gerir novas pesquisas e descobertas. A este fato encontram-se intrínseco os processos de transformação da matéria, no qual inclui diretamente a figura da ciência da Engenharia Química.

Um grande desafio relacionado com a preservação do meio ambiente é o esgotamento de matérias-primas derivadas do petróleo. O crescimento da população associado com a demanda por combustíveis e produtos químicos, tem aumentado a busca e o desenvolvimento para o uso mais diversificado de matéria-prima renovável.

Existem diversas possibilidades para substituir processos químicos convencionais por processos biotecnológicos baseados em fontes renováveis. Porém, isso se torna viável somente quando a matéria-prima é barata, como é o caso do bagaço de cana-de-açúcar no Brasil. Adicionalmente, é necessário o desenvolvimento de processos que trabalham de forma adequada para fazer o melhor uso possível de matéria-prima, com procedimentos que evitam o máximo possível à agressão ao meio ambiente, onde a utilização de fontes alternativas é feita de forma equilibrada entre a cadeia alimentar e a obtenção de produtos químicos.

Após 1950, o uso de *feedstocks* (matéria-prima) petroquímicos para a produção de produtos químicos cresceu rapidamente por causa da disponibilidade e do baixo custo do petróleo e do custo elevado das matérias-primas derivadas de plantas. Entretanto, o impacto causado pelo preço do petróleo nos anos 70, não somente mudou bruscamente os custos relativos da matéria-prima petroquímica, mas também expôs a instabilidade do mercado mundial de petróleo, além de tornar viável a síntese de produtos químicos através da fermentação. Como conseqüência, a matéria-prima agrícola tornou-se outra vez atrativa (Hatch e Hardy, 1989).

As ciências biológicas quando combinadas com os recentes e futuros avanços em engenharia de processos podem tornar-se o fundamento para a produção de uma ampla

variedade de produtos industriais a partir de fontes renováveis. Estes produtos industriais "biobaseados" incluem combustíveis líquidos, produtos químicos, lubrificantes, plásticos e materiais de construção. Alguns benefícios desses produtos industriais incluem (Hatch e Hardy, 1989):

✓ uso da produtividade agrícola inexplorada e/ou resíduos da agricultura ou de florestas e alguns resíduos orgânicos municipais;

✓ aumento na confiança de processos e produtos que são ambientalmente sustentáveis;

 ✓ desenvolvimento de menor custo, melhor "apresentação" dos produtos, geralmente indisponíveis (comparado com produtos produzidos a partir de petroquímicos);

✓ uso de biologia molecular para modificar a matéria-prima de forma a facilitar o processamento e reduzir os custos ambientais e econômicos do processo;

 ✓ aumentar a estabilidade social e econômica das comunidades rurais através da produção e processamento de matérias-primas renováveis;

✓ reduzir a dependência de petróleo;

✓ melhorar o sistema ecológico global e local em função da produção e processamento de matérias-primas derivadas de plantas.

É incontestável que, particularmente na área de produção básica e na química fina, o uso de processos biotecnológicos são significativos, uma vez que (Dechema, 2004):

✓ são usualmente distintos pela sua alta especificidade (conversão de substrato) e seletividade (espectro do produto);

✓ usam fontes renováveis como matéria-prima, desta forma, contribuem para a sustentabilidade de processos e produtos;

 ✓ as reações dos processos biotecnológicos podem ocorrer em condições brandas em relação aos valores de pH, temperatura e pressão.

A Figura 1.1 mostra que a maior parte dos produtos obtidos de fontes petroquímicas, podem ser obtidos através de processos fermentativos para posterior síntese de produtos químicos.

2

Figura 1.1 - Produtos de fermentação usados para síntese de produtos químicos (Hanselmann, 1982 apud Stottmeister *et al.*, 2005)

A síntese de produtos através de processos biotecnológicos expõe duas vantagens importantes. A primeira tem seu argumento fundamentado na realidade de que os processos biotecnológicos possibilitam a descoberta e a exploração de inúmeras rotas de obtenção de produtos de alto valor agregado, formando caminhos paralelos e alternativos para a produção dos mesmos produtos de interesse, fato este que denota a possibilidade de enfrentar o problema de esgotamento das matérias-primas. A segunda é fundamentada no argumento ecológico, onde a diminuição acentuada da exploração dos recursos naturais, viabilizada pelos processos de síntese biotecnológica, teria uma conseqüência diretamente proporcional à qualidade de vida e do meio ambiente, e inversamente proporcional à degradação ambiental (Lunelli *et al.*, 2006).

Os processos biotecnológicos incluem (Stottmeister et al., 2005):

✓ uso de matéria-prima renovável;

 ✓ otimização de processos biotecnológicos, resultando em alto rendimento, minimização da quantidade de resíduos e baixa demanda de energia, por meio de:

alto desempenho de microrganismos;

- medidas on-line de produtos e substratos no biorreator;
- sustentabilidade sócio-econômico e desenvolvimento régio-estrutural.

Apesar das vantagens que os processos biotecnológicos apresentam, pode-se citar como um dos principais problemas deste tipo de processo, a alta diluição do produto em solução aquosa, aumentando o custo do processo de *downstream* (separação e purificação do produto) tornando-o o fator economicamente limitante do processo. Neste contexto, a principal tarefa da bioengenharia em cooperação com a biologia molecular é superar este problema, não através da construção de novos biorreatores, mas através do desenvolvimento de processos economicamente sustentáveis (Gerbsh e Buchholz, 1995).

A Figura 1.2 mostra os produtos químicos que são produzidos atualmente de fontes renováveis via fermentação e a Figura 1.3, apresenta os produtos químicos que podem ser produzidos a partir de biomassa.

Figura 1.2 - Produtos químicos produzidos por fermentação de carboidratos (Danner e Braun, 1999).

Figura 1.3 - Produção de novos produtos químicos a partir de biomassa (Danner e Braun, 1999)

Entre os produtos apresentados na Figura 1.2, o etanol, o butanol e o ácido láctico são os produtos mais tradicionais de processos fermentativos, e são formados como resultado do metabolismo anaeróbio de açúcares.

Dentro do contexto apresentado acima, procurou-se desenvolver modelos que representassem a síntese de ácido acrílico a partir da fermentação da cana-de-açúcar, através da conversão direta de glicose em ácido acrílico, com formação de produtos intermediários, usando um único microrganismo (*Saccharomyces cerevisiae*), robusto, tolerável a baixos valores de pH e também, com alta aceitação nos processos industriais, com o objetivo de tornar o processo economicamente viável. Ressalta-se que este trabalho é uma simulação computacional, baseado em modelos determinísticos com informações disponíveis na literatura e a produção de ácido acrílico, através do uso de *Saccharomyces cerevisiae* vai depender das condições ambientais de fermentação, como também, das propriedades fisiológicas do microrganismo, sendo necessárias talvez, modificações

genéticas para que ele consiga atingir as habilidades fermentativas desejáveis, e assim, produzir elevadas concentrações de ácido acrílico.

1.1 Objetivos

Os objetivos gerais deste trabalho consistem no desenvolvimento de modelos determinísticos do processo biotecnológico de síntese do ácido acrílico, visando estudos do comportamento estacionário/dinâmico e controle em tempo real do processo, com a finalidade de compreender adequadamente o processo e apresentar uma metodologia alternativa para a sua produção.

Com a finalidade de atingir os objetivos acima expostos, as seguintes etapas foram desenvolvidas:

 ✓ Desenvolvimento de modelos estruturados e não estruturados do processo, com células livres e imobilizadas;

✓ Realização de planejamentos de experimentos para compreender as influências dos parâmetros cinéticos, operacionais e de projeto no processo estudado;

✓ Otimização do processo;

✓ Implementação de algoritmos e estratégias de controle ao reator biotecnológico e a avaliação do desempenho dos mesmos.

1.2 Organização do trabalho

Este trabalho de mestrado foi dividido em duas partes, onde na primeira parte é apresentada uma introdução geral dos processos biotecnológicos e os objetivos deste trabalho (presente capítulo) como também, uma revisão bibliográfica sobre os assuntos com maior importância para o desenvolvimento do trabalho (Capítulo II). A segunda parte (Capítulos III – VI) apresenta a modelagem matemática desenvolvida para representar a síntese de ácido acrílico a partir de um processo fermentativo.

O Capítulo II apresenta uma revisão bibliográfica sobre a produção química e biotecnológica do ácido acrílico. Descreve de forma sucinta o processo de glicólise, a tecnologia de células imobilizadas, os benefícios do uso da levedura *Saccharomyces cerevisiae*, além de outros itens, como cana-de-açúcar e processos fermentativos. Neste capítulo também, é descrita a modelagem matemática de processos biotecnológicos, os

métodos matemáticos freqüentemente utilizados para resolução destes modelos, além de técnicas para otimização e controle de processos.

No Capítulo III é apresentada a modelagem matemática da síntese do ácido acrílico via processo fermentativo, onde um modelo não estruturado com células de *Saccharomyces cerevisiae* livres foi considerado. Inicialmente, é apresentado a descrição do modelo, com seus respectivos balanços de massa e taxas reacionais. Para visualizar os resultados obtidos com o modelo foram realizadas simulações, e os perfis de concentração de substrato, produto e biomassa obtidos nestas simulações são apresentados. Na seqüência são apresentados os planejamentos experimentais realizados para identificar os parâmetros cinéticos e operacionais com maior significância no processo de síntese de ácido acrílico. Para finalizar o estudo da modelagem matemática da síntese de ácido acrílico com representação não estruturada e células livres foi realizada a otimização dos parâmetros operacionais, através da utilização da metodologia de superfície de resposta e também do método de programação quadrática sucessiva, onde se procurou encontrar condições ótimas de forma a aumentar o rendimento final de ácido acrílico.

O Capítulo IV apresenta a modelagem matemática da síntese de ácido acrílico via processo fermentativo, onde foi considerado um modelo não estruturado com células de *Saccharomyces cerevisiae* imobilizadas.

Nos Capítulos V e VI são apresentados modelos estruturados com células de *Saccharomyces cerevisiae* livres e imobilizadas, respectivamente, para representar a síntese de ácido acrílico. Nestes capítulos serão apresentadas estratégias de controle aplicadas aos modelos, com o objetivo de encontrar condições ótimas para que o biorreator consiga operar de forma eficiente e segura.

Para finalizar, no Capítulo VII serão apresentadas conclusões gerais, contribuições deste trabalho e algumas sugestões para trabalhos futuros.

1.3 Lista de trabalhos apresentados em conferências e publicados em revistas indexadas

Durante o desenvolvimento deste projeto de mestrado, os seguintes artigos foram desenvolvidos:

✓ B. H. Lunelli, E. A. Ccopa Rivera, E. C. Vasco de Toledo, E. R. Duarte,M.R. Wolf Maciel, R. Maciel Filho and D. P. Stremel. A structured kinetic model for

bioethanol production by fermentation. Trabalho apresentado no 28th Symposium on Biotechnology for Fuels and Chemicals, 2006, Tennesse, USA.

 ✓ B. H. Lunelli, E. C. Vasco de Toledo, E. R. Duarte, M.R. Wolf Maciel and R. Maciel Filho. A New Process for Acrylic Acid Synthesis by Fermentative Process. Trabalho apresentado no 28th Symposium on Biotechnology for Fuels and Chemicals, 2006, Tennesse, USA.

✓ E. R. Duarte, R. Maciel Filho, L. Enger, B. H. Lunelli . A non-linear control strategy of a fixed bed catalytic reactor for bioethanol oxidation. Trabalho apresentado no 28th Symposium on Biotechnology for Fuels and Chemicals, 2006, Tennesse, USA.

 \checkmark E. R. Duarte, R. Maciel Filho, D. I. P. Atala, L. Enger, B. H. Lunelli . Control of an extractive fermentation process to bioethanol production. Trabalho apresentado no 28th Symposium on Biotechnology for Fuels and Chemicals, 2006, Tennesse, USA.

 ✓ B. H. Lunelli, E. C. Vasco de Toledo, E. R. Duarte, M.R. Wolf Maciel and R. Maciel Filho. A New Process for Acrylic Acid Synthesis by Fermentative Process. Trabalho publicado na Applied Biochemistry and Biotechnology. Vol. 137-140, p. 487-499, 2007.

✓ B. H. Lunelli, E. Ccopa Rivera, E. C. Vasco de Toledo, R. Maciel Filho, D.
 P. Stremel. Estudo da cinética de um modelo estruturado para síntese de produtos químicos a partir da cana-de-açúcar. Trabalho apresentado no XVI Congresso Brasileiro de Engenharia Química (COBEQ), 2006, Lorena/SP.

✓ B. H. Lunelli, E. Ccopa Rivera, E.C. Vasco de Toledo, R. Maciel Filho and D. P. Stremel. Study of a structured kinetic model for synthesis of chemical product from sugar cane. Trabalho apresentado no XVI International Symposium on Alcohol Fuels (ISAF), 2006, Rio de Janeiro/Brasil.

✓ B. H. Lunelli, R. Maciel Filho, M. R. Wolf Maciel, E. C. Vasco de Toledo and D. P. Stremel. A by-product oriented simulator with structured model: application for acrylic acid production from renewable sources. Trabalho apresentado no 17th European Symposium on Computer Aided Process Engineering (ESCAPE), 2007, Bucharest/Romênia.

8
Modelagem e Controle da Síntese do Ácido Acrílico via Processo Fermentativo

✓ B. H. Lunelli, R. Maciel Filho and E. Ccopa Rivera. Analysis of kinetic and operational parameters in a structured model for acrylic acid production through experimental design. Trabalho apresentado no 29th Symposium on Biotechnology for Fuels and Chemicals, 2007, Denver/USA e aceito para publicação na Applied Biochemistry and Biotechnology.

✓ E. Ccopa Rivera, A. C. Costa, S. R. Andrietta, B. H. Lunelli and R. Maciel Filho. Kinetic modelling and parameter estimation in a pseudo-expanded bed tower bioreactor for bioethanol production. Trabalho apresentado no 29th Symposium on Biotechnology for Fuels and Chemicals, 2007, Denver/USA e aceito para publicação na Applied Biochemistry and Biotechnology.

✓ B. H. Lunelli, R. Maciel Filho and E. C. Vasco de Toledo. Biological production of acrylic acid from sugar cane: deterministic model for process. Trabalho submetido para International Journal of Chemical Reactor Engineering.

✓ B. H. Lunelli, R. Maciel Filho and E. C. Vasco de Toledo. Dynamic modeling of the acrylic acid synthesis from renewable resources. Trabalho apresentado no European Congress Chemical Engineering (ECCE-6), 2007,Copenhagen/Dinamarca.

CAPITULO II. REVISÃO BIBLIOGRÁFICA

Com o objetivo de modelar, otimizar e controlar o processo de síntese de ácido acrílico a partir de um processo fermentativo, este capítulo apresenta uma revisão bibliográfica sobre os assuntos de maior relevância para o desenvolvimento do trabalho proposto.

2.1 Cana-de-açúcar – fonte de glicose

A cana-de-açúcar (*Saccharum officinarum*) foi introduzida no Brasil pelos portugueses no início do século XV. Ela representou o segundo ciclo econômico durante a colonização, após o declínio do ciclo do pau-brasil (Braunbeck e Cortez, 2005).

O Brasil é o maior produtor de cana-de-açúcar, ajudando com isso, o país a aumentar suas exportações e reduzir sua dependência da importação do petróleo (Carvalho, 2004). É um dos setores mais antigos de extração, manipulação e processamento industrial de biomassa. Os resíduos de cana-de-açúcar são uma das fontes de biomassa mais importantes e promissoras do mundo e têm sido amplamente estudados no Brasil (Bajay e Ferreira, 2005).

A Tabela 2.1 apresenta uma estatística da produção de cana-de-açúcar e álcool no Brasil para o ano de 2007, segundo o Departamento de Cana-de-Açúcar e Agroenergia do Ministério da Agricultura, Pecuária e Abastecimento (DCAA/SPAE/MAPA, 2007).

Cana	427.520.294 toneladas
Álcool hidratado	9.828.161 m ³
Álcool anidro	8.081.661 m ³

Tabela 2.1 – Estatística da produção brasileira de cana-de-açúcar e álcool para 2007

Fonte: DCAA/SPAE/MAPA (Posição em 01/06/2007).

2.2 Fermentação

Fermentação é um termo geral que denota a degradação anaeróbica da glicose ou de outros nutrientes orgânicos em vários produtos para obter energia na forma de adenosina trifosfato (ATP).

A quebra anaeróbica da glicose é, provavelmente, o mais antigo mecanismo biológico para obtenção de energia a partir de moléculas orgânicas combustíveis, já que os organismos vivos apareceram primeiro em atmosfera destituída de oxigênio. A fermentação está se tornando cada vez mais, parte integrante do desenvolvimento de novos produtos de alto valor agregado e está substituindo rotas convencionais para produção de importantes produtos químicos. De modo geral, uma fermentação em larga escala compreende as seguintes etapas (Hoek *et al.*, 2003):

1- Seleção de organismos, levando em consideração: versatilidade de substrato; características de formação de bioprodutos; robustez do organismo; viabilidade em relação ao reciclo de células; características fisiológicas; acessibilidade genética.

2- Engenharia celular e metabólica: melhorar as propriedades do organismo; introduzir novas funções, por exemplo, simplificar a recuperação do produto.

3- Desenvolvimento de processos fermentativos: otimização da cultura e do meio; otimização dos parâmetros de cultivo que consideram a recuperação e purificação do produto (minimizando a formação de bioprodutos e desenvolvendo cultivos em alta densidade celular); incorporação de reciclo e retenção de células.

4- Introdução de unidades de processos de *downstream* com processos de fermentação.

Durante um processo fermentativo, ocorre o processo chamado de glicólise. O termo glicólise é usado para descrever o principal caminho da dissimilação da glicose 6-fosfato e, é representada pela rota EMP (Embden-Meyerhof-Parnas) (Thaysen, 2005). As principais etapas do processo de degradação da glicose para formação de piruvato são descritas abaixo (Nelson e Cox, 2000) e podem ser visualizadas na Figura 2.1.

1. Ativação da glicose com ATP; isomerização e fosforilização para gerar frutose-1,6-bifosfato e 2-adenosina difosfato (ADP);

2. Cisão da frutose-1,6-bifosfato para gerar uma molécula de triose-fosfato;

3. Oxidação de 3-fosforogliceraldeído com redução de nicotinamida adenina dinucleotídeo (NAD) e absorção de fosfato inorgânico, resultando na formação de uma ligação de "alta energia" em 1,3-bifosfoglicerato;

4. Transferência de uma molécula de fósforo (P) de 1,3-bifosfoglicerato para ADP;

5. Isomerização de 3-fosfoglicerato, seguido de desidratação para formar fosfoenolpiruvato;

6. Transferência de uma molécula de (P) de fosfoenolpiruvato para ADP e a formação de piruvato e ATP.

Figura 2.1 - Etapas de degradação da glicose (Embden-Meyerhof-Parnas) (Thaysen, 2005)

Durante a glicólise, parte da energia existente na molécula é conservada nas moléculas de ATP, enquanto a maior parte permanece nas moléculas do produto, o piruvato. A equação global final para a glicólise é (Nelson e Cox, 2000):

$$Gli\cos e + 2NAD^{+} + 2ADP + 2P_{i} \rightarrow 2\,piruvato + 2NADH + 2H^{+} + 2ATP + 2H_{2}O \qquad (2.1)$$

Para cada molécula de glicose degradada a piruvato, duas moléculas de ATP são geradas a partir de ADP e P_i. A equação poderá ser dividida em dois processos:

1. A conversão da glicose em piruvato, que é exotérmica:

$$Gli \cos e + 2NAD^{+} \rightarrow 2 \, piruvato + 2NADH + 2H^{+}$$

$$\Delta G_{*}^{^{(0)}} = -146kJ \, / \, mol$$

$$(2.2)$$

2. A formação de ATP a partir de ADP e P_i, que é endotérmica:

$$2ADP + 2P_i \rightarrow 2ATP + 2H_2O$$

$$\Delta G_2^{'0} = 61kJ / mol$$
(2.3)

A exceção de interessantes variações encontradas entre as bactérias, o piruvato formado pela glicólise pode tomar três rotas catabólicas alternativas.

1. O piruvato é oxidado, com perda de seu grupo carboxila em CO_2 , para liberar o grupo acetil da acetil-CoA, a qual é então, totalmente oxidada a CO_2 pelo ciclo do ácido cítrico. Os elétrons originados dessas oxidações são passados para o O_2 por meio de uma cadeia de transportadores na mitocôndria, formando H₂O. A energia liberada nas reações de transferência de elétrons permite a síntese de ATP nas mitocôndrias.

2. A segunda rota para o metabolismo do piruvato é a sua redução a lactato através da chamada via de fermentação do ácido láctico.

Quando os tecidos animais não podem ser supridos com oxigênio suficiente para suportar a oxidação aeróbica do piruvato e do NADH produzidos na glicólise, o NAD⁺ é regenerado a partir do NADH pela redução do piruvato a lactato. A redução do piruvato é catalisada pela enzima *lactato desidrogenase* que forma lactato, conforme reação abaixo.

Um grande número de microrganismos fermenta a glicose e outras hexoses até lactato.

3. A terceira grande rota do metabolismo do piruvato leva ao etanol. Em alguns tecidos vegetais e em certos invertebrados, protistas e microrganismos, o piruvato é convertido anaerobicamente em etanol e CO₂, um processo chamado de fermentação alcoólica, fermentação do etanol ou simplesmente fermentação do álcool (Nelson e Cox, 2000).

2.3 Saccharomyces cerevisiae

Saccharomyces cerevisiae é um microrganismo simples, unicelular e é o pioneiro entre os microrganismos. Ele foi o primeiro microrganismo a ser "domesticado" para a produção de alimentos; observado microscopicamente; descrito como um agente de transformação bioquímica vivo (por Louis Pasteur); usado como hospedeiro para a produção da primeira vacina recombinante (contra a hepatite B) e a primeira enzima de alimento; usado para revelar a seqüência completa de nucleotídeos de um genoma eucariótico (Pretorius *et al.*, 2003).

Saccharomyces cerevisiae é geralmente, considerado um microrganismo robusto, tolerante a meio ácido e, é bem aceito em processos industriais. Quando *Saccharomyces cerevisiae* participa do processo, o maior fluxo do metabolismo do piruvato é para a formação de etanol pelo caminho do *piruvato descarboxilase* e *álcool desidrogenase*. Através de uma rota alternativa para regenerar NAD⁺, através de *lactato desidrogenase* que catalisa a redução de piruvato para lactato, é possível teoricamente, substituir a fermentação alcoólica pela fermentação homoláctica (Skory, 2003).

Atualmente, é o microrganismo responsável pela produção dos quatro maiores produtos (em termos de produção mundial de toneladas/ano) obtidos por fermentação, isto é, 60 milhões de toneladas de cerveja, 30 milhões de toneladas de vinho, 800.000 toneladas de proteína de uma única célula (do inglês – *Single Cell Protein* - SCP) e 600.000 toneladas de fermento de padaria. Entretanto, pode-se dizer que no futuro, *Saccharomyces cerevisiae* pode tornar-se um importante microrganismo para a produção de produtos biotecnológicos de alto valor agregado e de baixo volume (Pretorius *et al.*, 2003).

2.4 Células imobilizadas

A imobilização de células é um termo utilizado quando as células, por métodos naturais ou artificiais, são impedidas de se mover livremente em todas as partes da fase aquosa. A escolha do método de imobilização e do tipo de suporte depende das características peculiares do microrganismo e das condições de uso do sistema. Contudo, o processo de imobilização deve ser realizado sob condições suaves de forma a manter a estrutura do biocatalisador (Fregonesi, 1998).

A tecnologia de enzimas ou células imobilizadas pode ajudar no futuro para integrar bioprocessos com processos de *downstream*, com o objetivo de aumentar a produtividade e reduzir o custo de recuperação do produto (Bianchi *et al.*, 2001).

Os biocatalisadores imobilizados estão sempre na competição com os naturais. Para saber qual das duas formas (livres ou imobilizados) é preferível para um determinado processo, é necessário que seja feito primeiramente, uma análise detalhada do processo. No caso de enzimas baratas, solúveis e altamente ativas, a imobilização raramente é viável. A natureza dos substratos também tem uma grande importância na decisão de usar células ou enzimas (biocatalisadores) livres ou imobilizadas. Somente se o substrato forma uma solução "limpa" e tem baixo peso molecular, células imobilizadas poderão ser empregadas sem a preocupação de gerar problemas. As razões para isso são que, a turbidez complica a separação do biocatalisador imobilizado das partículas de substrato e, essas grandes moléculas de substrato, por causa de sua relativa imobilidade, são mais facilmente convertidas por células livres do que por células imobilizadas (Fregonesi, 1998). Alguns métodos de imobilização de células e enzimas podem ser obtidos em Gerbsch e Buchholz (1995).

O aumento da produtividade em sistemas com células imobilizadas se deve ao fato do processo de imobilização aumentar substancialmente a densidade da população (Yu *et al.*, 2007). Segundo Rychtera *et al.* (1987 apud Yu *et al.*, 2007), as células imobilizadas podem reter atividade enzimática por um longo tempo, devido a diferentes composições das células (proteínas, lipídios, ácido ribonucléico (do inglês – *Ribonucleic Acid* - RNA), ácido desoxirribonucléico (do inglês – *Deoxyribonucleic Acid* - DNA) e substâncias inorgânicas) comparadas com células livres.

2.5 Ácido Acrílico

O ácido acrílico é um líquido incolor que desprende um odor irritante à temperatura e pressão ambiente (25°C e 1 atm), seu ponto de fusão é 14°C e o de ebulição 141,0°C. É miscível em água e na maior parte de solventes orgânicos. Polimeriza-se facilmente na presença de oxigênio.

Ácido acrílico é usado como um precursor para uma grande variedade de produtos químicos na indústria têxtil e de polímeros. Ele é utilizado principalmente, como matériaprima na produção de ésteres acrílicos e como monômeros para ácidos e sais poliacrílicos. Também é utilizado no recobrimento de superfícies, têxtil, adesivos, tratamento de papel, polimentos, couro, fibras, detergentes e materiais superabsorventes (Brockinton *et al.*, 1986; Alba, 1999).

O ácido acrílico é um produto químico com uma capacidade de produção anual estimada de 4,2 milhões de toneladas métricas, o qual se encontra aproximadamente na 25^a posição na lista de produtos químicos orgânicos (Weissermel e Arpe, 2003).

Em 1843, Redtenbacher relatou a primeira síntese do ácido acrílico. Isto foi realizado através de uma oxidação de acroleína e ar. Cem anos mais tarde a primeira produção comercial do ácido acrílico foi desenvolvida usando o acetileno como matériaprima. Existem vários caminhos para a produção de ácido acrílico, mas o mais comum é via a oxidação parcial do propileno. O processo para produção de ácido acrílico ocorre em duas etapas, onde primeiramente o propileno é oxidado a acroleína e em seguida, a acroleína é oxidada a ácido acrílico. Posteriormente, o ácido acrílico é purificado, atingindo 99% de pureza. Cada etapa da reação, geralmente, usa diferentes catalisadores e diferentes condições de operação (Kurland e Bryant, 1987). A estequiometria da reação é apresentada abaixo.

$$C_{3}H_{4}O + \frac{1}{2}O_{2} \rightarrow C_{3}H_{4}O_{2}$$

$$\stackrel{\downarrow}{\text{Acido acrílico}}$$
(2.5)

Neste processo, o ácido acrílico é obtido na forma de soluções aquosas diluídas contendo cerca de 10% a 50% (em massa) de ácido acrílico (Chubarov *et al.*, 1984).

O processo de produção de ácido acrílico a partir do propileno é apresentado na Figura 2.2.

CAPÍTULO III - MODELAGEM MATEMATICA

Modelagem e Controle da Síntese do Ácido Acrílico via Processo Fermentativo

Figura 2.2 - Diagrama para a produção química de ácido acrílico (Felder e Rouseau, 1986)

A produção biotecnológica do ácido acrílico tem despertado cada vez mais interesse de pesquisadores, pois, as opções industriais relevantes para a conversão de biomassa em ácido acrílico e acrilatos serão importantes para a utilização eficiente de fontes renováveis e para a redução da dependência do petróleo.

A Figura 2.3 apresenta diferentes rotas para obtenção de ácido acrílico por processo fermentativo. A rota mais direta é via lactato. Formação anaeróbica de ácido acrílico é encontrada no caminho de redução direta de ácido láctico pelo microrganismo *Clostridium propionicum*. Esta conversão é uma reação de desidratação. Há diversos problemas com a produção de acrilato através deste caminho. Primeiramente, um terço do lactato não conduz ao acrilato, porque é convertido em acetato e em CO₂. Sem esta conversão para acetato, nenhum ATP para o crescimento e manutenção é gerado (Straathof *et al.*, 2005). Entretanto, a concentração de acrilatos nunca excede 1% da concentração de substrato inicial (Akedo *et al.*, 1983). Esta baixa produção é devido à inibição do crescimento de novas células, ocasionado pela formação de componentes como ferrodoxina, rubredoxina e flavodoxina. O ácido 3-butinóico tem uma estrutura similar ao ácido acrílico e a hipótese do uso deste ácido, seria que este poderia inibir a atividade enzimática de propanoil-CoA desidrogenase a fim de que a enzima Acriloil-CoA não seja metabolizada e ácido acrílico é formado (Straathof *et al.*, 2005).

CAPÍTULO III - MODELAGEM MATEMATICA

Modelagem e Controle da Síntese do Ácido Acrílico via Processo Fermentativo

Figura 2.3 - Caminhos metabólicos hipotéticos para biossíntese de ácido acrílico a partir de açúcares (Straathof *et al.*, 2005)

Danner *et al.* (1998), mostraram que a adição de diferentes e baixas concentrações de ácido 3-butinóico, após 20 horas de fermentação não influenciava na formação de acetatos nem acrilatos, enquanto que favorecia a redução na formação de propionatos, o que indicava que o ácido 3-butinóico pode ser considerado um bloqueador apropriado da reação enzimática do propanoil-CoA desidrogenase.

O ácido acrílico, normalmente, não é o produto final do metabolismo do processo enzimático. No entanto, as seguintes estratégias poderiam ser seguidas para se obter altas concentrações de ácido acrílico (Danner *et al.*, 1998):

✓ A produção biotecnológica via fermentação do ácido láctico a partir de biomassa, concentração do produto, purificação e, finalmente, conversão química de ácido láctico à ácido acrílico;

✓ Conversão via fermentação convencional de substratos complexos para ácido láctico por meio de *Lactobacillus, Bacillus* ou *Streptococus*. Conversão de ácido láctico para ácido acrílico por redução direta modificada, via fermentação com *Clostridium propionicum*. Este microrganismo tem demonstrado a conversão de 3 moles de ácido láctico para 1 mol de acetato e 2 moles de propionato, via Acriloil-CoA por redução direta. Normalmente, os acrilatos são produzidos somente depois de bloquear o caminho da redução direta (formação de propionato);

✓ Outro método seria seguindo a estratégia citada anteriormente, com a inserção de um gene de Lactoil-CoA desidratase dentro da bactéria do ácido láctico ou dentro do microrganismo;

✓ Conversão direta dos substratos complexos para ácido propiônico, com cultivo de *Lactobacillus* e *Propionibacterium shermanii* e conversão de propionato a ácido acrílico com *Clostridium propionicum*. Nesta rota, as taxas de conversão de propionato para ácido acrílico podem atingir valores maiores que 18,5% (O'Brien *et al.*, 1990);

✓ Redução de L-alanina para lactato, via formação de piruvato ou da fermentação de lactato para ácido acrílico com *Clostridium propionicum*, via redução direta bloqueando a desidrogenase e inserindo a hidrogenase para evitar a formação de agentes, como por exemplo, ferrodoxina. Neste caso, o microrganismo conduzirá principalmente à formação de ácido acrílico.

Portanto, ainda não se tem um conhecimento claro de como obter altos rendimentos de ácido acrílico a partir de açúcares. Para um processo fermentativo economicamente competitivo, o rendimento molar de ácido acrílico a partir de açúcares deve ser preferivelmente quantitativo. Usando glicose como fonte de açúcar, a estequiometria desejada é (Straathof *et al.*, 2005):

glicose
$$\rightarrow 2 \operatorname{acrilato} + 2 \operatorname{água}$$
 (2.6)

Um ponto de partida para minimizar o custo de um processo para produção de ácido acrílico a partir de açúcar seria o desenvolvimento de um único biocatalisador para todo caminho, a partir da glicose até ácido acrílico. Uma quantidade adicional de glicose pode ser usada para o crescimento celular, mas essa quantidade deve ser relativamente pequena. De preferência, o caminho de formação de ácido acrílico gera todo o ATP necessário para o crescimento e manutenção, não necessitando de um caminho adicional para geração de ATP. A conversão de açúcar para piruvato geralmente, gera um ATP por piruvato. Assim, as rotas subseqüentes a partir de piruvato para ácido acrílico não necessitam gerar ATP, mas nenhum deles consome o ATP gerado pela formação de piruvato (Straathof *et al.*, 2005).

2.6 Modelagem e Simulação de Processos

Modelos matemáticos são usados na ciência para captar experiências e conhecimentos para aplicar em diferentes propósitos. Uma importante aplicação de modelos é para testar ou validar hipóteses. Pela análise de discrepância entre os modelos e pelo sistema que eles representam é possível estender o modelo para outras aplicações ou desenvolver um novo modelo e validar o modelo através do uso de dados do sistema obtidos por planejamento de experimentos ou a partir de medidas prévias do comportamento do sistema (Thaysen, 2005).

Segundo Secchi (1995) para o desenvolvimento da modelagem de um processo deve-se considerar:

✓ Descrição do processo e definição do problema: talvez a parte mais importante para análise de um processo, seja o conhecimento dos fenômenos que o envolvem e o que se deseja conhecer de suas causas e efeitos, ainda que não seja possível estabelecer regras para a definição do problema;

 \checkmark Teoria e aplicação das leis fundamentais: definição da teoria que governa os seus fenômenos. Esta teoria está geralmente disponível em uma variedade de fontes publicadas ou não. Para casos isolados, onde não existe teoria disponível, é interessante postular uma ou várias e posteriormente testar sua validade através da comparação da solução do modelo matemático com resultados experimentais;

✓ Equacionamento: escrever a teoria em simbologia matemática;

✓ Considerações do modelo;

✓ Consistência: verificar se o número de equações é igual ao número de variáveis a determinar (graus de liberdade igual a zero), isto é muito importante em sistemas complexos e grandes;

 ✓ Solução desejada: uma consideração das soluções requeridas do modelo é um processo necessário antes de suas obtenções propriamente ditas;

✓ Matemática e computação: a natureza das equações do modelo é que determina o método para a obtenção da solução a ser selecionada, seja ele analítico, numérico ou por inspeção;

✓ Solução e validação: verificar as soluções obtidas do modelo matemático, através de comparações com dados experimentais ou julgamentos de engenharia.

Segundo Schmidell e Bonomi (2001), para a modelagem de um processo microbiano, se deve também, analisar os principais fenômenos que caracterizam as interações: população microbiana – meio ambiente – tipo de processo fermentativo, conforme descrição abaixo.

✓ Influência da "história" da população microbiana no processo (fase lag e de adaptação, mutações, perda de viabilidade entre outros);

 Influência da composição do meio de cultivo nas velocidades de crescimento ou de produção da população microbiana;

✓ Consumo de substrato para crescimento e também, na maioria dos casos, para manutenção da viabilidade celular;

✓ Geração de produtos associados ou não ao crescimento celular;

 ✓ Transferência de substrato do meio para o interior das células e de produtos da célula para o meio;

✓ Velocidade de respiração em processos aeróbios;

 \checkmark Tipo de processo;

✓ Influência das variáveis fisico-químicas no processo;

✓ Influência das variações na síntese dos componentes celulares;

✓ Homogeneidade ou heterogeneidade do processo;

✓ Influência das condições operacionais na morfologia da população microbiana.

2.6.1 Modelagem de Processos Biotecnológicos

Roels e Kossen (1978) apresentam uma perspectiva sobre os vários tipos de modelos usados em processos microbianos, os quais estão relacionados na Tabela 2.2. Através desta Tabela, pode-se perceber a variedade de modelos que podem ser usados para a representação matemática de processos fermentativos (biotecnológicos). Porém, nesta revisão serão descritos apenas os modelos estruturados e não estruturados, os quais se enquadram nos objetivos do trabalho desenvolvido.

CAPÍTULO III - MODELAGEM MATEMATICA

Tabela 2.2 - Tipos de modelos usados em processos microbianos		
MODELOS		
Determinístico	Estocástico	
Não estruturado	Estruturado	
Distribuído	Segregado	
Descritivo	Preditivo	
Caixa preta	Caixa cinzenta	
Contínuo	Discreto	
Parâmetros concentrados	Parâmetros distribuídos	

Modelagem e Controle da Síntese do Ácido Acrílico via Processo Fermentativo

Em relação aos modelos estruturados e não estruturados Fredrickson (1970 apud Bailey, 1998), introduziu uma classificação para representar matematicamente a população celular utilizando estes dois termos (estruturado e não estruturado), além da introdução dos termos, segregado e não segregado. Esta classificação proposta por Fredrickson pode ser visualizada na Figura 2.4. Ele introduziu o termo segregado para indicar de forma explícita a presença de indivíduos heterogêneos em uma população celular, e o termo estruturado para designar a formulação, onde o material celular é composto de múltiplos componentes químicos.

Em estudos tradicionais de processos fermentativos, metabólitos extracelulares (como substrato e produto) tem sido medidos, como também a concentração de biomassa. Os modelos que podem ser formulados baseados nestes tipos de medidas são altamente não estruturados e sua aplicação para a interpretação da fisiologia celular e predição do comportamento celular de diferentes condições de cultivo é completamente limitada.

Os modelos não estruturados constituem uma classe de modelos sem preocupação da descrição da estrutura da população a ser modelada. No caso de uma população microbiana, a composição ou qualidade da biomassa não é levada em consideração. Estes modelos incluem as observações mais fundamentais dos processos de crescimento microbiano: a taxa de produção de massa celular é proporcional à concentração de biomassa; existe um limite de saturação para a taxa de crescimento para cada substrato; as células necessitam de substrato e podem sintetizar produtos quando elas não crescem (Montesinos *et al.*, 1995). Este tipo de modelo não reconhece nenhuma estrutura interna da célula, também não difere entre as formas celulares, as quais são evidentes em culturas celulares, animal e vegetal e que podem ser importantes características de certas culturas.

Modelos não estruturados são geralmente mais tratáveis do ponto de vista matemático e mais facilmente verificáveis experimentalmente. De certa forma, estes modelos são mais preferíveis onde sua precisão e descrição do sistema sejam adequadas a uma determinada aplicação.

A equação de Monod, para o crescimento de microrganismo limitado pelo substrato é um exemplo de um modelo não estruturado bem sucedido. Em geral modelos não estruturados podem ser considerados como uma boa precisão em dois casos: quando a composição dos organismos não é relevante ao aspecto do sistema, ou quando ela é independente do tempo, isto é, em crescimento balanceado (Fredrickson, 1970 apud Bailey, 1998). Quando a composição celular e/ou a morfologia da cultura celular são importantes e as variáveis fortemente dependentes do tempo, a solução é o uso de modelos estruturados que incluem os principais aspectos da estrutura e da fisiologia microbiana para a descrição matemática do metabolismo dos microrganismos (Nielsen e Villadsen, 1992). Seguindo os avanços das técnicas analíticas, medidas das concentrações de metabólitos intracelulares e as atividades de enzimas intracelulares têm possibilitado a formulação de modelos mais estruturados, que tem aumentado a possibilidade para interpretação e predição da fisiologia celular (Gombert e Nielsen, 2000).

De acordo com Harder e Roels (1982) a importância de se construir modelos estruturados, reside no fato de que estes se tornam mais significantes, exatamente onde os modelos não estruturados, como por exemplo, Monod falham. Isto particularmente, se aplica no estado transiente, para culturas em batelada, batelada alimentada ou contínua. Apesar da complexidade dos fenômenos envolvidos, o mais importante é que o modelo estruturado seja tão simples quanto possível.

Os modelos estruturados contêm uma grande quantidade de parâmetros que tornam complicada sua manipulação com vistas à aplicação na biotecnologia. A classe dos potencialmente úteis é formada por uma simples extensão da aproximação não estruturada, onde a quantia e propriedades da biomassa são especificadas por duas ou três variáveis e, são chamados modelos a dois ou três compartimentos. Eles combinam uma descrição melhor do comportamento do sistema com complexidade matemática razoável e um número suficiente de parâmetros para permitir a verificação experimental. Exemplos destes modelos são cada vez mais freqüentes na literatura, contudo, algum grau de dificuldade é inerente e se não considerada pode levar a erro na formulação da modelagem (Fredrickson, 1976).

2.7 Métodos matemáticos utilizados para a resolução dos modelos

Para resolução das equações diferenciais parciais dos modelos optou-se por usar o método dos resíduos ponderados (MRP), por ser um método eficiente e de rápida resolução. O método dos resíduos ponderados pode ser aplicado para resolver equações integrais diferenciais. Nesse método, a função de densidade de população é aproximada por uma combinação linear de funções de base. Os pesos do método são determinados pela substituição da equação total do método no balanço de população para definir um resíduo. A maneira como o resíduo é minimizado determina o tipo de MRP utilizado.

A idéia dos resíduos ponderados é forçar que os resíduos sejam ortogonais a um conjunto escolhido de funções de peso. Um caso particular do método dos resíduos ponderados é o método de colocação, que força os resíduos a serem nulos em pontos (*Li*) selecionados: os chamados pontos de colocação (Rawlings *et al.*, 1993).

Para resolução das equações diferenciais ordinárias foi usado o método de Runge-Kutta 4^ª ordem.

2.7.1 Método de Colocação Ortogonal

No método de colocação ortogonal, as variáveis envolvidas são expandidas em termos de uma função tentativa polinomial e as equações diferenciais parciais (EDP) são satisfeitas nos pontos discretos ou pontos de colocação os quais resultarão num conjunto de equações diferenciais ordinárias (EDO). Estas EDO's são expressas, normalmente, em termos do valor da solução nos pontos de colocação e, a colocação ortogonal pode ser feita em uma das duas ou em ambas as direções espaciais do modelo matemático (Vasco de Toledo, 1999), no caso deste trabalho, radial e axial.

No método de colocação ortogonal, desenvolvido por Villadsen e Stewart (1967), para problemas de condição de contorno, a solução aproximada é especificada como uma série de polinômios ortogonais que satisfazem as condições de contorno, sendo os pontos de colocação como as raízes de um desses polinômios.

Finlayson (1980), Pinto e Lage (1997) apresentam um tratamento didático do método, o qual será apresentado abaixo.

Uma grande simplificação pode ser obtida quando a solução aproximada é desenvolvida em termos do valor da solução nos pontos de colocação e não em termos dos coeficientes da solução aproximada, expressa por:

$$y(x) = \sum_{i=1}^{N} a_i y_i(x)$$
(2.7)

onde, y_i(x) são conhecidas como funções posição.

Rearranjando e resolvendo para (a_i), obtemos:

$$a_{i} = \sum_{i=1}^{N} \left[y_{i}(x_{j}) \right]^{-1} \left[y(x_{j}) \right]$$
(2.8)

Deste modo, se o valor da solução é conhecido em *N* pontos, então os coeficientes (a_i) são determinados e a solução para qualquer ponto (x) é calculada.

Para resolver uma equação diferencial que inclui derivadas de (y) como também se diferenciarmos uma ou duas vezes a equação (2.7), por exemplo, e avaliamos os resultados nos pontos de colocação, temos:

$$y'(x_j) = \sum_{i=1}^{N} a_i y_i'(x_j)$$
 (2.9)

$$y''(x_j) = \sum_{i=1}^{N} a_i y_i''(x_j)$$
(2.10)

ou na forma matricial:

$$\begin{bmatrix} y'(x_1) \\ y'(x_2) \\ \vdots \\ y'(x_3) \end{bmatrix} = \begin{bmatrix} y'_1(x_1) & y'_2(x_1) \dots & y'_N(x_1) \\ y'_1(x_2) & y'_2(x_2) \dots & y'_N(x_2) \\ \vdots & \vdots & \vdots \\ y'_1(x_N) & y'_2(x_N) \dots & y'_N(x_N) \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix}$$
(2.11)

$$[y'(x_j) = [y'_i(x_j)]][a_i]$$
(2.12)

$$\begin{bmatrix} y^{"}(x_{1}) \\ y^{"}(x_{2}) \\ \vdots \\ y^{"}(x_{3}) \end{bmatrix} = \begin{bmatrix} y_{1}^{"}(x_{1}) & y_{2}^{"}(x_{1}).... & y_{N}^{"}(x_{1}) \\ y_{1}^{"}(x_{2}) & y_{2}^{"}(x_{2}).... & y_{N}^{"}(x_{2}) \\ \vdots & \vdots & \vdots \\ y_{1}^{"}(x_{N}) & y_{2}^{"}(x_{N}).... & y_{N}^{"}(x_{N}) \end{bmatrix} \begin{bmatrix} a_{1} \\ a_{2} \\ \vdots \\ a_{N} \end{bmatrix}$$
(2.13)
$$\begin{bmatrix} y^{"}(x_{j}) = \begin{bmatrix} y_{1}^{"}(x_{j}) \end{bmatrix} \begin{bmatrix} a_{1} \end{bmatrix}$$
(2.14)

Como os coeficientes (a_i) podem ser expressos em termos dos valores da solução nos pontos de colocação [$y(x_j)$], as derivadas também podem. Em um ponto de colocação particular, necessário para o resíduo, a derivada é expressa em termos da solução em todos os pontos de colocação.

$$y'(x_{j}) = \sum_{i,k=1}^{N} [y_{i}(x_{k})]^{-1} [y(x_{k})] y'(x_{j})$$
(2.15)

$$y''(x_j) = \sum_{i,k=1}^{N} [y_i(x_k)]^{-1} [y(x_k)] y''(x_j)$$
(2.16)

Portanto, os resultados das derivadas podem ser escritos da seguinte forma:

$$y'(x_j) = \sum_{i=1}^{N} A_{jk} y(x_k)$$
 (2.17)

$$y''(x_j) = \sum_{i=1}^{N} B_{jk} y(x_k)$$
 (2.18)

As matrizes A e B são conhecidas, uma vez estabelecidas às funções de aproximação e os pontos de colocação. Assim, as derivadas em qualquer ponto de colocação são expressas em termo dos valores das funções nos pontos de colocação, reduzindo o problema num conjunto de equações matriciais.

A aplicação do método de colocação ortogonal para solução de equações diferenciais parciais envolve o uso dos seguintes conceitos:

- 1. Polinômio ortogonal;
- 2. Avaliação das integrais definidas pelo uso de quadraturas;
- 3. Método dos resíduos ponderados e colocação ortogonal.

1. Polinômios ortogonais

Duas funções $g_n(x)$ e $g_m(x)$ selecionadas de uma família de funções $\{g_k(x)\}$, são ditas serem ortogonais com respeito a uma função peso positiva W(x) sobre o intervalo fechado [a,b], se:

$$\int_{a}^{b} W(x)g_{n}(x)g_{m}(x)dx = 0 \qquad n \neq m \qquad (2.19)$$

$$\int_{a}^{b} W(x)[g_{n}(x)]^{2} dx > 0 \qquad n = m \qquad (2.20)$$

Se as duas equações acima se conservam para todo (n), então as funções $\{g_k(x)\}$ constituem um conjunto de condições ortogonais.

Uma característica importante dos polinômios ortogonais, é que qualquer polinômio arbitrário de grau n, com coeficientes reais, conforme equação abaixo,

$$f_n(x) = \sum_{i=0}^{n} a_i x^i$$
 (2.21)

pode ser representado por uma combinação linear de qualquer das famílias de polinômios ortogonais, conforme a seguinte expressão:

$$f_n(x) = \sum_{i=0}^{n} b_i F_i(x)$$
 (2.22)

onde, F_i é um polinômio de grau (i) de qualquer uma das famílias de polinômios ortogonais.

2. Quadratura Gaussiana

A aproximação numérica de uma integral definida pode ser representada pela expressão abaixo, conhecida como uma quadratura gaussiana.

$$\int_{a}^{b} f(x)dx \cong \sum_{i=0}^{N} w_i f(x_i)$$
(2.23)

onde, w_i são os N+1 pontos positivos dados aos N+1 valores da função $f(x_i)$.

Se x_i e w_i não são fixos, então existem 2N+2 parâmetros, os quais podem ser usados para definir um polinômio de grau 2N+1.

Pode ser demonstrado que se f(x) é um polinômio de grau 2N+1, então a integral torna-se exata quando N+1 pontos (x_i), nos quais a função f(x) e os pesos devem ser avaliados, são tomados como as raízes de polinômios ortogonais de grau N+1 sobre o intervalo [a,b].

Todas as raízes de qualquer polinômio de um conjunto de polinômios ortogonais são únicas e reais.

Uma forma mais geral da equação anterior (2.23) pode incluir uma função ponderadora W(x):

$$\int_{a}^{b} W(x)f(x)dx \cong \sum_{i=0}^{N} w_i f(x_i)$$
(2.24)

Para cada função ponderadora W(x) escolhida, diferentes conjuntos de peso (w_i) na quadratura são obtidos.

Quando a função ponderadora W(x) toma a forma da função ponderadora usada na definição do polinômio ortogonal correspondente, as expressões obtidas para computar os pesos {w_i} da quadratura são chamadas de quadratura Gauss-Jacobi, Gauss-Legendre, Gauss- Chebyshev e Gauss-Hermite.

3. Método dos resíduos ponderados e colocação ortogonal

A utilização dos MRP resulta na obtenção de uma solução aproximada em termos de séries de funções conhecidas, chamadas de funções-tentativa. De uma forma geral, o método parte da expansão em um número arbitrário de termos da solução desconhecida, como uma combinação linear das funções-tentativa com coeficientes a determinar. A solução aproximada proposta é substituída na equação diferencial, produzindo assim um resíduo. Fazendo com que a média ponderada deste resíduo se anule no domínio de interesse, criam-se as condições para a determinação dos coeficientes arbitrados na solução proposta. Esta metodologia básica é seguida por todos os métodos agrupados como MRP. A diferenciação entre eles será dada pelo critério de escolha da ponderação utilizada na determinação da média do resíduo, através da equação da quadratura:

$$\int_{0}^{1} W(x) f(x) dx = 0$$
 (2.25)

Escolhendo f(x) como sendo o resíduo, ou seja,

$$f(x) = \operatorname{Re} s(a, t) \tag{2.26}$$

onde, a expressão do resíduo é gerada pela aplicação da solução de aproximação dentro da equação diferencial.

A solução exata requer que os parâmetros ou os coeficientes (a) sejam escolhidos tal que o resíduo seja zero sobre todo o intervalo de integração e que também satisfaça as condições de contorno.

O método de ponderação de colocação propõe simplesmente que o vetor resíduo seja anulado em alguns pontos do intervalo de definição do problema, o que é equivalente a obrigar que a equação original seja satisfeita nestes pontos com a solução aproximada.

Para modelos de estado estacionário, na qual dispersão axial não é normalmente considerada, a variável espacial radial é discretizada e as equações, agora um sistema de EDO's, podem ser integradas ao longo da direção axial. Se dispersão axial é incluída, colocação ortogonal pode ser aplicada em ambas às direções radial e axial, a chamada colocação dupla e as equações do modelo são transformadas dentro de um sistema de equações algébricas não-lineares. Para simulação do comportamento dinâmico há necessidade da aplicação da colocação dupla, transformando o modelo num conjunto de EDOs, as quais são integradas no tempo, através do uso do método das linhas (Vasco de Toledo, 1999).

2.7.2 Método das Linhas

O método das linhas consiste na discretização parcial de uma equação diferencial parcial, na qual todas as coordenadas menos uma são discretizadas. A coordenada que não é discretizada deve aparecer apenas como uma derivada primeira, isto é, a equação diferencial parcial é de primeira ordem em relação a esta coordenada. Assim, um sistema de equações diferenciais ordinárias é o resultado da discretização parcial (Pinto e Lage, 1997).

2.7.3 Método de Runge-Kutta

O método de Runge-Kutta é um método clássico de fácil resolução e suficientemente preciso para resolução de problemas que envolvem equações diferenciais ordinárias.

Um dos métodos de Runge-Kutta mais usado é o método de quarta ordem. Esse método envolve uma média ponderada dos valores de f(t, y) tomados em diferentes pontos de intervalo ($t_n \le t \le t_{n+1}$), e é dado por:

$$y_{n+1} = y_n + \frac{h}{6} (k_{n1} + 2k_{n2} + 2k_{n3} + k_{n4})$$

$$k_{n1} = hf(t_n, y_n)$$

$$k_{n2} = hf \left(t_n + \frac{1}{2}h, y_n + \frac{1}{2}hk_{n1} \right)$$

$$k_{n3} = hf \left(t_n + \frac{1}{2}h, y_n + \frac{1}{2}hk_{n2} \right)$$

$$k_{n4} = hf(t_n + h, y_n + hk_{n3})$$

(2.27)

2.8 Planejamento Experimental

Planejamento experimental vem sendo muito usado para avaliar e otimizar processos industriais, pois é uma ferramenta que busca facilitar o estudo de um sistema, diminuindo a quantidade de experimentos necessários para obtenção de informações sobre o comportamento do mesmo.

Segundo Box e Hunter (1987), o planejamento experimental fatorial facilita a elaboração de modelos, interagindo os dados, fazendo comparações, buscando similaridades, diferenças e tendências.

Quando se necessita investigar um grande número de fatores a fim de estabelecer aqueles mais importantes, emprega-se um projeto que permita verificar os efeitos principais do maior número possível de fatores com um menor número de observações. Tais projetos são chamados projetos saturados, porque toda a informação é usada para estimar os efeitos principais, não restando graus de liberdade para estimar os efeitos de interação e às vezes, nem o erro experimental. Embora em um planejamento saturado com N ensaios seja possível estudar até N-1 fatores, sempre é conveniente escolher um número menor, para que as colunas não utilizadas façam um papel de variáveis inertes e possam ser empregadas para estimar o erro associado aos contrastes (Barros Neto *et al.*, 1996). Um exemplo deste tipo de planejamento saturado é o planejamento de Plackett-Burman. Detalhes sobre o planejamento de Plackett-Burman podem ser obtidos em Plackett e Burman (1946).

2.9 Otimização de Processos

Na seqüência será apresentada uma revisão sobre técnicas de otimização, baseada nos trabalhos de Vaz (2006) e Himmelblau *et al.* (2001).

A solução de problemas de otimização envolve vários aspectos matemáticos. Nem todos os problemas podem ser determinados ou analisados quantitativamente. Cada problema de otimização contém três categorias essenciais:

- 1. pelo menos uma função objetiva para ser otimizada;
- 2. restrições de igualdade;
- 3. restrições de desigualdade.

Nenhum método ou algoritmo de otimização pode ser aplicado eficientemente para todos os problemas. O método escolhido para algum caso particular depende primeiramente:

- 1. do caráter da função objetivo e seu conhecimento explícito;
- 2. da natureza das restrições;
- 3. do número de variáveis dependentes e independentes.

Problemas de otimização estão interessados em encontrar o ótimo (máximo ou mínimo) de funções. O problema pode ser declarado em termos gerais, da seguinte forma:

✓ dada uma função escalar estimada real f(x) de (n) variáveis $x = (x_1, ..., x_n)$, encontrando um mínimo de f(x), de modo que $g_i(x) \ge 0$ com i = 1,...,m (restrição de desigualdade) e $h_i(x) = 0$ com j = 1,...,m (restrição de igualdade).

Geralmente, a função objetivo f(x) e as restrições de igualdade e desigualdade são não lineares.

Os métodos de programação linear são muito populares devido a sua habilidade em tratar centenas de milhares de parâmetros, porém não podem ser aplicados para problemas bioquímicos, devido a sua necessidade de linearidade da função objetivo em termos dos parâmetros ajustáveis. Devido a isso, métodos de otimização não linear são preferíveis. Uma fórmula geral para representar uma função objetivo através do emprego de um método de otimização é apresentada a seguir.

$$\min_{x \in \Re^n} f(x)$$

$$c(x) = 0$$
(2.28)

onde, $f(x) \in c(x)$ são funções não lineares em x.

$$x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \qquad \qquad f(x): R^n \to R \\ c(x): R^n \to R^m$$
(2.29)

onde, n = número de variáveis do problema; m = número de restrições de igualdade.

$$c(x) = \begin{pmatrix} c_1(x) \\ c_2(x) \\ \vdots \\ c_m(x) \end{pmatrix}$$
(2.30)

Outra forma geral de expressar um problema de otimização é:

$$\min_{x \in \Re^{n}} f(x)$$

$$c_{i}(x) = 0, \quad i = 1, ..., m$$

$$c_{j}(x) \ge 0, \quad j = m + 1, ..., t$$
(2.31)

onde, f(x) é a função objetivo; $c_i(x)=0$ são as restrições de igualdade e $c_j(x)$ são as restrições de desigualdade.

- a) Equivalência entre os problemas de otimização
- ✓ Problema de maximização

$$\max_{x \in \Re^{n}} g(x)$$

$$c_{i}(x) = 0, \quad i = 1,...,m$$

$$\tilde{c}_{j}(x) \le 0, \quad j = m + 1,...,t$$
(2.32)

Problema de minimização

$$\min_{x \in \Re^{n}} f(x) = -g(x)$$

$$c_{i}(x) = 0, \quad i = 1,...,m$$

$$c_{j}(x) \equiv -\tilde{c_{j}} \ge 0, \quad j = m+1,...,t$$
(2.33)

b) Otimização não linear com restrições de desigualdade

$$\min_{x \in \Re^n} f(x)$$

$$c(x) \ge 0$$
(2.34)

onde, $f(x) \in c(x)$ são funções não lineares em x.

$$x = (x_1, x_2, \dots, x_n)^T \qquad \qquad f(x): \mathbb{R}^n \to \mathbb{R} \\ c(x): \mathbb{R}^n \to \mathbb{R}^m \qquad (2.35)$$

$$c(x) = (c_1(x), c_2(x), \dots, c_m(x))^T$$
(2.36)

Para otimizar os parâmetros dos modelos foram utilizados os métodos de Otimização Evolucionária (do inglês - *Evolutionary Optimization* - EVOP), Metodologia de Superfície de Resposta (do inglês – *Response Surface Methodology* -RSM) e Otimização por Programação Quadrática Sucessiva (do inglês – Successive Quadratic Programing -SQP). Na seqüência será apresentada uma breve descrição destes métodos.

2.9.1 Otimização Evolucionária

A otimização evolucionária é uma ferramenta estatística que busca a melhoria da qualidade, produtividade e capacidade da planta química. A EVOP é operacionalmente simples, porém, tem-se mostrado instrumento gerencial para a otimização da produção, já que sua base matemática é precisa, consistente e robusta (Box e Draper, 1969).

A EVOP é uma técnica de otimização baseada num projeto fatorial 2^k , com k = 2 ou 3 fatores, onde apenas dois níveis de cada variável são ajustados em cada ciclo (Werkema, 1996). O tratamento de um conjunto de respostas obtido em diversos ciclos de aplicação da otimização evolucionária resulta em uma superfície de resposta. Esta superfície não é previamente conhecida, mas na medida da evolução da EVOP será construída de forma a se determinar seus máximos e mínimos locais e globais (Geiger, 1986).

O método de otimização evolucionária é um processo iterativo em que uma figura simples é gerada por um número de ensaios (experimentos) a mais do que o número de

variáveis a serem otimizadas. O nome surgiu a partir do fato que o processo evolui lentamente em direção ao ótimo.

A EVOP tem as suas limitações. Primeiro, devido à sua natureza iterativa, é um processo lento, o que pode exigir muitas etapas. Em segundo lugar, ele fornece apenas informações limitadas sobre os efeitos das variáveis. Após a conclusão do processo de otimização somente uma região limitada da superfície de reação terá sido explorada e, portanto, estarão disponíveis informações mínimas sobre os efeitos das variáveis e suas interações. Esta informação é necessária para determinar os intervalos dentro dos quais as variáveis devem ser controladas para assegurar uma operação ótima. Apesar das limitações, a EVOP é uma técnica de otimização extremamente útil, ela é robusta, pode trabalhar com muitas variáveis ao mesmo tempo e sempre conduzirá a um ótimo (Geiger, 1986).

As principais etapas para a realização da otimização evolucionária são as seguintes (Werkema, 1996):

1. Selecione a variável resposta a ser estudada;

2. Selecione dois ou três fatores que provavelmente influenciam a variável resposta escolhida;

3. Promova pequenas variações nos fatores escolhidos, de acordo com um planejamento experimental pré-estabelecido;

4. Após cada repetição do planejamento experimental (ciclo), estime os efeitos dos fatores;

5. Após o terceiro ciclo, estime o desvio padrão do erro experimental e avalie a significância dos efeitos;

6. Quando for detectada a significância de um ou mais fatores, passe a operar o processo nas condições indicadas pela EVOP como mais favoráveis;

7. Se após oito ciclos não for observada significância de nenhum fator, selecione novos fatores ou mude a faixa de variação dos fatores;

8. Quando o máximo ou mínimo for encontrado, diminua a faixa de variação dos fatores para melhor delimitar a região do ótimo ou passe a estudar novos fatores.

2.9.2 Metodologia de Superfície de Resposta

A metodologia de superfície de resposta (RSM) é uma técnica de otimização baseada no emprego de planejamentos fatoriais, introduzida por G. E. P. Box na década de

50 e que desde então vem sendo usada com grande sucesso na modelagem de diversos processos industriais. A metodologia é constituída de duas etapas distintas: modelagem e deslocamento. Essas etapas são repetidas tantas vezes quantas forem necessárias, com o objetivo de atingir uma região ótima (máxima ou mínima) da superfície investigada. A modelagem normalmente é feita ajustando-se modelos lineares ou quadráticos a resultados experimentais obtidos a partir de planejamentos fatoriais (Barros Neto *et al*, 1996). Maiores detalhes sobre a metodologia de superfície de resposta podem ser obtidos em Box e Wilson (1951) e em Barros Neto *et al.* (1996).

2.9.3 Otimização por Programação Quadrática Sucessiva

A otimização por Programação Quadrática Sucessiva é utilizada na maioria dos casos para resolução de problemas de programação não linear. A descrição do método SQP foi retirada de Vaz (2006).

O algoritmo SQP corresponde a um método iterativo que gera uma seqüência de valores {x_k, λ_k , μ_k } que converge para a solução do problema (equação 2.37) dado por (x*, λ^* , μ^*).

$$\begin{array}{ll} \text{Minimizar} & f(x) & \text{sendo } \mathbf{x} \in \mathbb{R}^n \\ \text{Sujeito a} & h_j(x) = 0 & j = 1, 2, ..., m_1 \\ & g_j(x) \geq 0 & j = 1, 2, ..., m_2 \end{array}$$

Fórmula geral:

$$\min_{x \in \Re^n} f(x)$$

$$g(x) \ge 0 \tag{2.38}$$

$$h(x) = 0$$

onde,

$$f(x): \mathbb{R}^n \to \mathbb{R}, g(x): \mathbb{R}^n \to \mathbb{R}^{md}, h(x): \mathbb{R}^n \to \mathbb{R}^{md}$$

a) Função Lagrangeana

$$L(x,\lambda,\pi) = f(x) - \lambda^{T} h(x) - \pi^{T} g(x)$$
(2.39)

onde, $\lambda \in \pi$ são os vetores dos multiplicadores de Lagrange associados às restrições de igualdade e desigualdade.

b) Equação iterativa

Usando as condições de otimalidade de primeira ordem, tem-se:

$$\nabla L(x,\lambda,\pi) = 0 \tag{2.40}$$

Aplicando o método de Newton na iteração k,

$$\nabla^{2} L(x^{k}, \lambda^{k}, \pi^{k}) \begin{pmatrix} \Delta x^{k} \\ \Delta \lambda^{k} \\ \Delta \pi^{k} \end{pmatrix} = -\nabla L(x^{k}, \lambda^{k}, \pi^{k})$$
(2.41)

O sistema linear tem a seguinte forma:

$$\begin{pmatrix} \nabla_{xx}^{2} L(x^{k}, \lambda^{k}, \pi^{k}) & -\nabla h(x^{k}) & -\nabla g(x^{k}) \\ -\nabla h(x^{k})^{T} & 0 & 0 \\ -\nabla g(x^{k})^{T} & 0 & 0 \end{pmatrix} \begin{pmatrix} \Delta x^{k} \\ \Delta \lambda^{k} \\ \Delta \pi^{k} \end{pmatrix} = \begin{pmatrix} -\nabla_{x} L(x^{k}, \lambda^{k}, \pi^{k}) \\ h(x^{k}) \\ g(x^{k}) \end{pmatrix} (2.42)$$

O sistema representa as condições de otimalidade de primeira ordem do problema:

$$\min_{d \in \mathbb{R}^{n}} \frac{1}{2} d^{T} \left(\nabla_{xx}^{2} L\left(x^{k}, \lambda^{k}, \pi^{k}\right) \right) d + d^{T} \left(\nabla_{x} L\left(x^{k}, \lambda^{k}, \pi^{k}\right) \right) \\
\left(\nabla g\left(x^{k}\right) \right)^{T} d + g\left(x^{k}\right) \geq 0 \\
\left(\nabla h\left(x^{k}\right) \right)^{T} d + h\left(x^{k}\right) = 0$$
(2.43)

onde, $d = \Delta x$; $\Delta \lambda e \Delta \pi$ são os multiplicadores de Lagrange.

c) Globalização

Uma das possíveis técnicas de globalização consiste no uso de uma função mérito.

$$M(x) = f(x) + \rho h(x)^{T} h(x) + \rho g^{-}(x)^{T} g^{-}(x) = f(x) + \rho \sum_{i=1}^{m_{i}} h_{i}(x)^{2} + \rho \sum_{i=1}^{m_{d}} g_{i}^{+}(x) \quad (2.44)$$

d) Procura unidimensional

$$\begin{aligned} x^{k+1} &= x^{k} + \alpha^{k} \Delta x^{k} \\ \lambda^{k+1} &= \lambda^{k} + \Delta \lambda^{k} \\ \pi^{k+1} &= \pi^{k} + \Delta \pi^{k} \end{aligned}$$
(2.45)

- e) Possíveis critérios de paragem
- ✓ Admissibilidade

$$\begin{aligned} \left| h(x^{k}) \right|_{2} &\leq \epsilon_{1} \\ g(x^{k}) &\geq -\epsilon_{2} \end{aligned}$$

$$(2.46)$$

✓ Complementaridade

$$\left\|\boldsymbol{\pi}_{i}^{k}\boldsymbol{g}_{i}\left(\boldsymbol{x}^{k}\right)\right\| \leq \boldsymbol{\epsilon}_{3} \qquad i = 1,...,m_{d} \qquad (2.47)$$

✓ Estacionaridade

$$\left\|\nabla L\left(x^{k},\lambda^{k},\pi^{k}\right)\right\|_{2} \leq \epsilon_{4}$$

$$(2.48)$$

2.10 Controle de Processo

O entendimento dos conceitos de técnicas de controle de processo é de fundamental importância para posterior aplicação neste trabalho. Devido a isso, extraiu-se de Luyben (1989), Dechechi (1996) e Maciel Filho (2005) os conceitos de técnicas de controle de processo e suas classificações.

Controlar um processo significa atuar sobre ele ou sobre as condições a que o processo está sujeito, de modo a atingir algum objetivo, por exemplo, pode-se achar necessário ou desejável manter o processo sempre próximo de um determinado estado estacionário, mesmo que efeitos externos tentem desviá-lo desta condição. Este estado estacionário pode ter sido escolhido por atender melhor aos requisitos de qualidade e segurança do processo.

Uma malha de controle consiste de quatro componentes básicos:

- \checkmark Um elemento de medida;
- ✓ Um controlador;
- \checkmark Um elemento de controle final;
- \checkmark O processo a ser controlado.

A atuação de um controlador pode ser representada graficamente como um fluxo de informações entre módulos com funções distintas.

A Figura 2.5 mostra uma representação da ação de um controlador, onde um módulo de monitoração obtém uma informação proveniente do processo e envia ao controlador. O controlador recebe esta informação, toma decisões e comunica ao elemento final a ação a ser tomada. O elemento final, por sua vez, interfere em alguma condição de processo para tentar alterar o comportamento dele.

CAPÍTULO III - MODELAGEM MATEMATICA

Modelagem e Controle da Síntese do Ácido Acrílico via Processo Fermentativo

Figura 2.5 - Representação da ação de um controlador

Os principais objetivos de controlar um processo consistem em:

- ✓ Segurança operacional e pessoal;
- ✓ Adaptação a perturbações externas;
- ✓ Estabilidade operacional;
- ✓ Especificação do produto;
- ✓ Redução do impacto ambiental;
- ✓ Adaptação às restrições inerentes (equipamento, materiais,...);
- ✓ Otimização.

A idéia básica que envolve controle de processos é a medição de uma variável do processo para manipulação de alguma quantidade que alimente o processo em relação a algum valor de referência (*set-point*). Para isto existem duas estratégias básicas:

1. controle *feedback* ou controle por realimentação, constitui a forma mais utilizada de controle de processos. Fato este justificado pela extensão e simplicidade de acoplamento aos mais variados processos.

2. controle *feedforward* - utilizado para casos específicos.

Nesta revisão, serão descritos três tipos de controle *feedback* (proporcional, integral e derivativo) e também o controle avançado, conhecido como DMC (*Dynamic Matrix Control*).

2.10.1 Controle *feedback*

O princípio do controle *feedback* é estabelecer o desvio (ε), entre uma variável de saída de um processo (y), e um valor de referência (*set-point*). A partir deste desvio, manipular uma variável (u) de forma que (ε) seja o menor possível. Assim, podem-se

distinguir duas variáveis essenciais: a variável medida (y) e a variável manipulada (u). A Figura 2.6 mostra uma representação esquemática de um controle *feedback*.

Figura 2.6 - Representação de um controle *feedback*

O controle tipo *feedback* apresenta as seguintes vantagens:

✓ o sistema de controle não requer nenhum conhecimento da fonte ou natureza da perturbação;

✓ para fazer um sistema *feedback* funcionar só é necessário saber se a variável manipulada faz a variável controlada aumentar ou diminuir.

Em contrapartida, pode se dizer que a principal desvantagem do controle *feedback* é que a perturbação atinge o processo e somente depois que a saída controlada se afasta do *set-point* é que o sistema de controle toma alguma ação.

Embora, a maioria dos processos permite alguma flutuação da variável controlada dentro de certa faixa, existem duas condições que fazem com que o controle *feedback* não funcione bem. Uma delas é a ocorrência de perturbações de grande magnitude que sejam fortes o suficiente para afetar seriamente ou mesmo danificar o processo. O outro caso é o de processos com grandes atrasos (*lag*).

Há três tipos básicos de controladores que são geralmente usados para o controle *feedback* contínuo.

- $\checkmark \qquad \text{Proporcional (P);}$
- ✓ Proporcional Integral (PI);
- ✓ Proporcional-Integral-Derivativo (PID);

a) Controlador Proporcional (P)

A forma mais simples de controle contemplando a idéia que:

 ✓ se um desvio do valor requerido se apresenta, então uma ação em proporção a este pode ser tomada desde que seja estabelecida uma proporcionalidade.

Seu sinal de saída é proporcional ao erro,

$$c(t) = k_c \mathcal{E}(t) + c_s \tag{2.49}$$

onde, K_c é o ganho proporcional do controlador e c_s é o sinal de bias do controlador, ou seja, o seu sinal de saída quando ($\varepsilon = 0$).

Um controlador proporcional é descrito pelo valor do seu ganho proporcional (K_c) ou pela sua banda proporcional (BP = 100/K_c). Quanto maior o ganho K_c ou, equivalentemente, quanto menor a sua banda proporcional, maior a sensibilidade do sinal de atuação c(t) a desvios no erro $\varepsilon(t)$.

O ganho no controlador pode ser positivo ou negativo, através do ajuste de um interruptor em um controlador analógico ou um sinal específico desejado em um controlador digital.

Um ganho positivo resulta num decréscimo na saída do controlador, quando as medidas do processo aumentam. Esta ação de "aumento-redução" é chamada de ação reversa. Para um ganho negativo a saída de controlador aumenta quando a medida do processo aumenta, e esta ação é chamada de ação direta. O sinal correto depende da ação do transmissor, da ação da válvula e do efeito da variável manipulada na variável controlada.

Num controle *feedback* proporcional pode-se:

✓ ajustar o ganho do controlador para fazê-lo tão sensível quanto desejado ao erro;

✓ ajustar o sinal de K_c de forma que a saída do controlador aumente ou diminua quando o desvio aumenta.

b) Controlador Proporcional-Integral (PI)

Este modo de controle incorpora a integral do erro ao longo do tempo, sendo também conhecido como *reset control* ou *floating control* por sua capacidade de eliminar o *off-set*. Ao adicionarmos a integral do erro, o controlador passa a não tolerar que um desvio

do *set-point* seja mantido por muito tempo. Desta forma, elimina-se o problema do *off-set*. Contudo, apesar da capacidade de eliminar *off-set* este modo de controle reage lentamente a perturbações e então, é associado ao controle proporcional para formar o controlador proporcional-integral (PI).

O seu sinal de saída está relacionado ao erro pela equação

$$c(t) = K_c \varepsilon(t) + \frac{K_c}{\tau_I} \int_0^t \varepsilon(t) dt + c_s$$
(2.50)

onde, τ_l é a constante de tempo integral ou tempo de *reset*.

Em variáveis desvio:

$$c'(t) = K_c \mathcal{E}(t) + \frac{K_c}{\tau_I} \int_0^t \mathcal{E}(t) dt$$
(2.51)

Uma desvantagem do controle integral, é que quando $\varepsilon(t)$ permanece por tempo suficiente para que a saída do controlador esteja saturada, o valor da integral continua a crescer mesmo após a saturação do elemento final de controle, o que induz a resposta do sistema a grandes *overshoot*. A Figura 2.7 mostra o comportamento de uma variável controlada por um controlador proporcional integral.

Figura 2.7 - Representação da ação de um controlador proporcional-integral

c) Controlador Proporcional-Integral-Derivativo (PID)

Também chamado de controle antecipatório, este modo considera a tendência do erro ao longo do tempo com o intuito de prever o comportamento futuro do sistema.

A saída deste controlador é dada por:

$$c(t) = K_c \varepsilon(t) + \frac{K_c}{\tau_I} \int_0^t \varepsilon(t) dt + K_c \tau_D \frac{d\varepsilon}{dt} + c_s \qquad (2.52)$$

onde, τ_D é a constante de tempo derivativa.

Os maiores desafios proporcionados por esta ação de controle são:

✓ para uma resposta com erro diferente de zero mas constante, não há ação de controle, já que d𝔅/dt=0;

✓ para uma resposta com ruído e erro praticamente zero, derivadas grandes podem ser calculadas e logo a ação de controle será grande, embora não necessária.

A ação derivativa tira proveito da informação de processo que permite prever, em curto prazo, a tendência da variável de processo. Assim, ao observar que a variável está aumentando a ação derivativa atuará no sentido de reduzi-la, mesmo que o erro e a integral do erro apontem em outra direção. Desta forma, a ação derivativa torna a resposta do controlador mais rápida. A ação derivativa deve ser evitada em situações onde o erro varie bruscamente em forma de degrau.

2.10.2 DMC

A técnica de controle avançado DMC destaca-se devido a sua simplicidade de implementação/aplicação e clareza no processo de ajuste de seus parâmetros, bem como de suas excelentes capacidades de manipular restrições impostas às condições operacionais.

O DMC utiliza um modelo linear, chamado modelo de convolução, o qual é obtido diretamente do sistema a ser controlado, através de perturbações do tipo degrau nas variáveis de entrada (variáveis manipuladas e/ou perturbações medidas). Pode ser aplicado, tanto em sistemas com uma única entrada e uma única saída (do inglês - *Single Input Single Output* – SISO) quanto em sistemas com múltiplas entradas e múltiplas saídas (do inglês - *Multiple Input Multiple Output* –MIMO).

A metodologia DMC caracteriza-se por ser uma metodologia digital e para tanto, utiliza-se de uma modelagem matemática dinâmica através de um modelo de convolução discreto que descreve o comportamento das variáveis de saída do processo.

O algoritmo DMC pode ser aplicado em processos químicos que podem ser descritos ou aproximados por um conjunto de equações diferenciais lineares. As propriedades mais importantes de sistemas lineares são: Modelagem e Controle da Síntese do Ácido Acrílico via Processo Fermentativo

✓ preservação de escala: se (y) é a saída do processo para uma entrada (u), então (a.y) é a saída do mesmo para a entrada (a.u).

✓ sobreposição: se (y_1) é a saída do processo para uma entrada (u_1) e (y_2) é a saída para uma entrada (u_2) , então, $(y_1 + y_2)$ é a saída para uma entrada $(u_1 + u_2)$.

Estas propriedades são úteis para o desenvolvimento da metodologia DMC, onde se superpõem os efeitos das variáveis manipuladas sobre as variáveis controladas. Além disso, se é conhecida a resposta para um degrau de certa intensidade, tem-se a resposta para degrau de outra magnitude.

O algoritmo DMC baseia-se no cálculo de NC (Horizonte de Controle) valores futuros da variável manipulada a partir da minimização de NP (Horizonte de Predição) valores futuros do quadrado da diferença entre o *set point* e a saída predita pelo modelo de convolução. Sendo que este, é formado por NM (Horizonte de Modelo) valores da saída obtidos a partir da resposta ao impulso ou ao degrau (Rezende, 2003).

O Horizonte de Controle (NC) é o número de ações de controle futuras que são calculadas na otimização para reduzir erros preditos. À medida que NC aumenta, o esforço computacional também é aumentado.

O Horizonte de Predição (NP) é o número de predições que são usadas nos cálculos de otimização. Um aumento de NP resulta em uma ação de controle mais conservativa, a qual tem efeito estabilizante, mas também, aumenta o esforço computacional.

O Horizonte de Modelo (NM), corresponde ao tempo de resposta em malha aberta para atingir 95-99% do estado estacionário. Para a escolha desse parâmetro, a literatura recomenda valores de NM entre 20 e 70.

Segundo Seborg *et al.* (1989), uma recomendação é escolher NC igual ao tempo de resposta em malha aberta para atingir 60% do estado estacionário. Para NC > 5, o valor de NP não é tão crucial já que somente a primeira ação de controle é implementada. Contudo, um valor muito grande de NC resulta em excessiva ação de controle. Um valor pequeno de NC conduz a um controle robusto, relativamente sensível a erros de modelagem.

O fator de supressão (f) também é um parâmetro a ser estimado. Valores grandes desse parâmetro penalizam muito a magnitude de Δu ocasionando, então, um controle menos vigoroso. O menor valor de (f) é (0), ou seja, quando não há restrições aos movimentos da variável manipulada, e desta forma, pode ocorrer variações bruscas, levando o sistema a uma condição de descontrole devido às ações do controlador DMC. Com o aumento do valor de (f) o sistema torna-se amortecido. O valor de (f) deve ser escolhido conforme o sistema e as condições a que se deseja trabalhar.

A constante da trajetória de referência (α) está relacionada com o comportamento imposto pela trajetória de referência. Para pequenos valores de (α), tem-se uma trajetória menos suave, o que pode levar à sobre elevações e ações de controle mais rígidas. Já para um aumento de (α), tem-se uma trajetória suave, permitindo menores oscilações na variável controlada (Vasco de Toledo, 1999).

O tempo de amostragem Δt deve ser também selecionado como parte do procedimento do projeto do controlador. Devendo ser pequeno o suficiente para assegurar que informações dinâmicas importantes não sejam perdidas. Por outro lado, se Δt é muito pequeno, NM deve ser muito maior, o que é indesejável. O tempo de amostragem não é considerado um parâmetro de sintonia devido ao ajuste de NC, NP e *f* serem, usualmente, suficientes para obter desempenho satisfatório em malha fechada (Rezende, 2003).

Do ponto de vista de controle, devem-se distinguir mudanças na variável manipulada no passado e no futuro. Se houveram NP mudanças na variável manipulada durante os NP intervalos passados e se nenhuma outra mudança fosse feita, a variável de saída deverá mudar no futuro, devido a estas mudanças passadas feitas na variável de entrada.

Chamando estas mudanças passadas na variável de entrada de $(\Delta m)^{old}$, a resposta para estas mudanças serão definidas como respostas em malha aberta (x_{ol}) . Usando o modelo de convolução na forma dos coeficientes de resposta à perturbação do tipo degrau para predizer esta resposta em malha aberta, $(\hat{c}_{ol,i})$, a equação resultante para representar os valores destas saídas preditas aos $(i^{ésimos})$ intervalos futuros é dado pela equação (2.53).

$$\hat{c}_{ol,i} = \sum_{k=0}^{-NP+1} b_{i+1-k} (\Delta m_k)^{old}$$
(2.53)
No instante presente de amostragem (i = 0) pode-se ter a medida da saída do processo, (c_0^{medida}), então se o modelo adotado for perfeito, e melhor, se nenhum distúrbio ocorrer, o erro cometido entre o valor predito no instante passado e o valor atual medido deverá ser zero. Quando o erro não for zero, a diferença entre os dois é usada para corrigir o modelo dinamicamente, proporcionando uma melhor predição no futuro. O valor predito no atual tempo de amostragens é o ($\hat{c}_{ol,0}$) e é dado pela equação (2.54).

$$\hat{c}_{ol,0} = \sum_{k=0}^{-NP+1} b_{1-k} (\Delta m_k)^{old}$$
(2.54)

A diferença entre a medida atual (c_0^{medida}) e o valor presente previsto $(\hat{c}_{ol,0})$ é adicionada ao modelo ao $(i^{\acute{esimo}})$ período de amostragem para dar uma melhor predição da resposta em malha aberta.

$$\hat{c}_{ol,i} = \sum_{k=0}^{-NP+1} b_{i+1-k} (\Delta m_k)^{old} + c_0^{medido} - \hat{c}_{ol,0}$$
(2.55)

Substituindo a equação (2.54) nesta última equação, obtém-se:

$$\hat{c}_{ol,i} = \sum_{k=0}^{-NP+1} b_{i+1-k} (\Delta m_k)^{old} + c_0^{medido} - \sum_{k=0}^{-NP+1} b_{1-k} (\Delta m_k)^{old}$$
(2.56)

Rearranjando, o modelo de convolução e corrigindo dinamicamente, tem-se:

$$\hat{c}_{ol,i} = c_0^{medido} + \sum_{k=0}^{NP+1} [b_{i+1-k} - b_{1-k}] (\Delta m_k)^{old}$$
(2.57)

A equação (2.56) é o modelo de convolução que prediz a resposta em malha aberta devido às mudanças passadas na variável manipulada $(\Delta m_k)^{old}$ e que será utilizada nos cálculos do algoritmo DMC.

Da mesma forma, a modelagem pode ser empregada para predizer o comportamento das variáveis de saída em malha fechada sob ação de controle. A resposta em malha fechada considera os efeitos das modificações passadas da variável manipulada no futuro, através da resposta em malha aberta (x_{ol}) , adicionado aos efeitos futuros das próprias variações futuras na variável manipulada, $(\Delta m_k)^{new}$.

A resposta em malha fechada será $(x_{cl,i})$ para o valor do (i^{esimo}) intervalo no futuro, sendo descrita pela equação (2.58), a qual prediz o comportamento da variável da saída quando NC mudanças nas variáveis manipuladas atualmente calculadas forem feitas no futuro.

$$\hat{c}_{cl,i} = \hat{c}_{ol,i} + \sum_{k=1}^{NC} a_{ik} \left(\Delta m_k\right)^{new}$$
(2.58)

Existem também critérios de avaliação do desempenho dinâmico de um sistema em malha fechada. Um deles é o critério que usa somente poucos pontos de resposta. Ele é simples, mas somente aproximado. Este critério baseia-se em algumas características da resposta em malha fechada do sistema, como o *overshoot*, que é definido como a razão A/B, onde B é o valor final da resposta e A é o valor máximo pelo qual a resposta excede o valor final.

Outro critério para o projeto do controlador é escolher os valores dos parâmetros que minimizem o erro da resposta em relação ao *set-point* desejado. Esse é um critério de desempenho dinâmico baseado na resposta do processo como um todo, pois uma formulação utiliza a forma da resposta em malha fechada do tempo igual a zero, até que o estado estacionário tenha sido atingido. Podem ser citados três critérios desta categoria:

1. Integral do erro ao quadrado (do inglês - Integral of the Square Error - ISE):

$$ISE = \int_{0}^{\infty} \varepsilon^{2}(t) dt$$
 (2.59)

2. Integral do valor absoluto do erro (do inglês - *Integral of the Absolute value of Error* - IAE):

$$IAE = \int_{0}^{\infty} |\varepsilon(t)| dt$$
 (2.60)

3. Integral do tempo vezes o erro absoluto (do inglês - *Integral of the Time-weighted Absolute Error* - ITAE):

$$ITAE = \int_{0}^{\infty} t |\varepsilon(t)| dt$$
 (2.61)

onde, $(\mathcal{E}(t)=y_{sp}(t)-y(t))$ é o desvio da resposta do *set-point* desejado.

A escolha dos critérios apresentados anteriormente depende das características do sistema a ser controlado e de exigências impostas à resposta do processo controlado. A seguir são apresentadas algumas regras gerais.

✓ ISE é melhor do que IAE, quando se deseja evitar erros grandes no processo, pois os erros estão elevados ao quadrado e assim, contribuem mais para o valor da integral.

✓ Para evitar pequenos erros, IAE é melhor que ISE, pois quando elevamos números pequenos ao quadrado eles se tornam menores ainda. Para evitar erros que persistem por longos tempos, o critério ITAE é o melhor, porque grandes tempos ampliam o efeito de erros mesmo pequenos no valor da integral. É importante ressaltar que diferentes critérios levam a diferentes projetos do controlador. Para um mesmo critério, diferentes mudanças na entrada também levam a diferentes projetos (Stephanopoulos, 1984).

2.10.2.1 Algoritmo DMC para sistema SISO

A idéia principal dos algoritmos deste tipo de controle é de encontrar os melhores valores futuros de mudança na variável manipulada $(\Delta m_k)^{new}$ como resultado da otimização (minimização) de uma função objetivo (*J*), definida pela equação (2.62).

$$J = \sum_{i=1}^{NP} \left(c^{set} - c_{cl,i} \right)^2 + f^2 \sum_{i=1}^{NC} \left[\left(\Delta m_k \right)^{new} \right]^2$$
(2.62)

Substituindo a equação (2.58) na equação (2.62), tem-se:

$$J = \sum_{i=1}^{NP} c^{set} - c_{ol,i} - \sum_{k=1}^{NC} a_{ik} (\Delta m_k)^{new} + f^2 \sum_{i=1}^{NC} \left[(\Delta m_k)^{new} \right]^2 \quad (2.63)$$

$$(\Delta m)^{new} = \left[A^T A + f^2 I \right]^{-1} A^T x$$
 (2.64)

A adição da variável manipulada dentro da função objetivo multiplicada pelo fator de supressão (f) é feita para prevenir modificações bruscas na variável manipulada.

A estratégia de controle clássica (PID) e a preditiva (DMC) serão aplicadas ao modelo que será apresentado no Capítulo VI. Ambas as estratégias de controle foram aplicadas na formulação digital. Maiores detalhes sobre essas estratégias poderão ser encontrados em Stephanopoulos (1984) e em Vasco de Toledo (1999).

2.11 Conclusão

Neste capítulo foi apresentada uma revisão bibliográfica, onde os principais assuntos envolvidos no desenvolvimento dos modelos de síntese de ácido acrílico via processo fermentativo, como por exemplo, técnicas de simulação, otimização e controle de processo foram abordados. Na seqüência serão apresentados os modelos matemáticos desenvolvidos para representar a síntese biotecnológica de ácido acrílico.

CAPÍTULO III. Modelo Matemático Não Estruturado para a Síntese de Ácido Acrílico via Processo Fermentativo com Células Livres

3.1 Introdução

Neste capítulo será apresentado um modelo matemático com representação não estruturada com células de *Saccharomyces cerevisiae* livres, para representar a síntese de ácido acrílico.

Para desenvolvimento do modelo considerou-se um processo homofermentativo, onde, a glicose é convertida quase que exclusivamente em lactato, o qual sofre desidratação para formação de ácido acrílico. Inicialmente foi desenvolvida a modelagem e realizadas as simulações do processo. Na seqüência foram aplicadas algumas técnicas de planejamento experimental para identificar os parâmetros cinéticos e operacionais de maior significância no processo e, para finalizar o estudo deste modelo foi realizada a otimização dos parâmetros operacionais do processo, através da aplicação da metodologia de superfície de resposta e da técnica de otimização por programação quadrática sucessiva. Para resolução das equações diferenciais ordinárias do modelo foi usado o método de Runge-Kutta 4^a ordem.

3.2 Modelo Matemático Não Estruturado com Células Livres

Para representar a síntese de ácido acrílico a partir de um modelo não estruturado simples, foi considerado um processo homofermentativo, onde o lactato é o maior produto final do metabolismo da glicose. Um biorreator de mistura perfeita (do inglês – *Continuous Stirred Tank Bioreactor* - CSTBR) com um volume constante (V), uma vazão de alimentação (F_{in}) e uma concentração de substrato (S_{in}) e de células (X_{in}) na alimentação foram considerados neste processo. As equações do modelo são representadas por balanço de massa para células, substrato e produto.

Para desenvolvimento do modelo foi considerado:

✓ modelo pseudo-homogêneo;

Modelagem e Controle da Síntese do Ácido Acrílico via Processo Fermentativo

✓ processo contínuo (alimentação contínua de substrato e células e remoção contínua de produto);

✓ processo isotérmico;

✓ biorreator ideal (biorreator perfeitamente agitado, onde a concentração de cada espécie na corrente de saída é igual a concentração no interior do biorreator);

✓ sistema com células de Saccharomyces cerevisiae livres;

✓ um único substrato limitante;

 \checkmark composição da biomassa definida: CH_{1,82}O_{0,576}N_{0,146};

✓ crescimento celular com inibição por substrato, células e produto.

Para desenvolver os balanços de massa do processo, as seguintes reações foram consideradas:

$$C_{6}H_{12}O_{6} \rightarrow 2C_{3}H_{6}O_{3}$$
glicose lactato
$$C_{3}H_{6}O_{3} \leftrightarrow C_{3}H_{4}O_{2} + H_{2}O$$
lactato ác.acrílico
$$(3.1)$$

Num processo contínuo os parâmetros de operação característicos são a taxa de diluição (D) e o tempo médio de residência (τ), onde:

$$D = \frac{F}{V} \tag{3.2}$$

$$\tau = \frac{1}{D} = \frac{V}{F} \tag{3.3}$$

Para se manter o volume de líquido no biorreator constante, ajustam-se os valores das vazões de entrada e de saída de forma que as duas se mantenham iguais ($F_{in}=F_{out}$), desta maneira a taxa de diluição (D) é constante para o processo contínuo.

O balanço de massa para o crescimento celular pode ser representado pela equação (3.4):

$$\frac{dX}{dt} = 0.732\mu_x X - r_d + D*(X_{in} - X)$$
(3.4)

onde, se considerou formação de biomassa apenas a partir da glicose e a velocidade específica de crescimento (μ_x) como sendo:

$$\mu_{x} = \mu_{\max}\left(\frac{S}{K_{s} + S + \frac{S^{2}}{k_{i}}}\right)\left(1 - \frac{X}{X_{sat}}\right)\exp(-k_{A}A)$$
(3.5)

A velocidade de morte celular considerada neste processo foi:

$$r_d = k_d X + k_t A \tag{3.6}$$

onde, além da constante de morte celular (k_d) também foi levado em consideração a morte celular devido a toxicidade do produto formado (k_tA).

Os modelos de fluxo de substrato em células que sintetizam produtos dependem da formação destes produtos estar ou não associada ao metabolismo energético. Quando se formam produtos nas rotas de geração de energia, por exemplo, em cultivos anaeróbios, a síntese do produto é uma conseqüência inevitável do crescimento e da manutenção celular. Porém, quando o produto não está associado ou diretamente associado ao metabolismo energético, todo o substrato necessário para a síntese do produto é adicional ao necessário para o crescimento e manutenção e, é fornecido separadamente (Doran, 1998).

Quando a produção está diretamente associada ao crescimento não é necessário colocar um termo adicional na taxa de reação para formação de produto, pois a concentração de substrato necessária para a formação já está inclusa nos termos de consumo de substrato associado ao crescimento e manutenção (Doran, 1998).

A equação (3.7) apresenta o balanço de massa para o substrato.

$$\frac{dS}{dt} = D * \left(S_{in} - S\right) - \left(\frac{\mu_x}{Y_{X/s}} + m\right) X$$
(3.7)

O valor do coeficiente de rendimento da biomassa $(Y_{x/s})$ foi estabelecido como sendo igual a 0,03kg kg⁻¹. Os coeficientes de rendimento teórico e observado podem, também, ser determinados pelas equações (3.8) e (3.9), respectivamente.

Rendimento teórico, verdadeiro ou estequiométrico (Doran, 1998)

$$Y_{x/s} = \frac{X}{S_x} \tag{3.8}$$

O rendimento teórico, verdadeiro ou estequiométrico da biomassa em relação ao substrato $(Y_{x/s})$ é a razão entre a quantidade (massa ou moles) total de biomassa produzida e a quantidade (massa ou moles) de substrato consumido para o crescimento celular.

Rendimento aparente ou observado

$$Y_{x/s} = \frac{X}{S_{in} - S} \tag{3.9}$$

O rendimento aparente ou observado é a razão entre a quantidade (massa ou moles) de biomassa produzida e a quantidade (massa ou moles) total consumida de substrato.

O lactato é formado a partir do metabolismo da glicose, que é metabolizada via o caminho Embden-Meyerhof (processo de glicólise) (Wee *et al.*, 2006), e pode ser representado pelo seguinte balanço de massa.

$$\frac{dL}{dt} = D * (L_{in} - L) + (\mu_x Y_{L/x}) X$$
(3.10)

$$Y_{L/x} = \frac{Y_{L/s}}{Y_{x/s}}$$
(3.11)

Considerando o lactato como sendo o principal produto do metabolismo da glicose, utilizou-se um rendimento observado de 90% ($Y_{L/s} = 0.9$).

O balanço de massa para ácido acrílico é descrito na equação (3.12).

$$\frac{dA}{dt} = D * (A_{in} - A) + 0.8 (\mu_x Y_{A/x}) X$$
(3.12)

$$Y_{A/x} = \frac{Y_{A/s}}{Y_{x/s}}$$
(3.13)

A velocidade de produção de biomassa em um biorreator CSTBR é igual à velocidade que as células abandonam o biorreator (FX). A produtividade volumétrica é, portanto, igual a (Doran, 1998):

$$Q_x = \frac{FX}{V} = DX \tag{3.14}$$

A produtividade volumétrica de formação de produto é:

$$Q_p = \frac{FP}{V} = DP \tag{3.15}$$

Na Figura 3.1 é apresentado um fluxograma do modelo não estruturado com células de *Saccharomyces cerevisiae* livres, de forma a descrever o funcionamento do programa desenvolvido para representar a produção de ácido acrílico via fermentação. A Tabela 3.1 apresenta os parâmetros usados para resolução do modelo.

Figura 3.1 - Fluxograma para resolução do modelo não estruturado com células livres

Parâmetro	Valor	Unid.	Referência	Parâmetro	Valor	Unid.	Referência
K _A	0,01	kg m ⁻³	Estimado	D	0,5	h^{-1}	Estimado
k _d	0,01	s^{-1}	Estimado	A _{in}	0,0	kg m ⁻³	Estimado
K _i	100	s^{-1}	Estimado	A_0	0,0	kg m ⁻³	Estimado
\mathbf{k}_{t}	0,09	s^{-1}	Estimado	L _{in}	0,0	kg m ⁻³	Estimado
Ks	24	kg m ⁻³	Estimado	L_0	0,0	kg m ⁻³	Estimado
μ_{max}	0,45	s^{-1}	Stremel (2001)	S _{in}	100,0	kg m ⁻³	Estimado
Y _{L/s}	0,9	kg kg ⁻¹	Estimado	\mathbf{S}_0	0,0	kg m ⁻³	Estimado
Y _{A/s}	0,5	kg kg ⁻¹	Estimado	X _{in}	20,0	kg m ⁻³	Doran (1998)
Y _{X/s}	0,03	kg kg ⁻¹	Stremel (2001)	X_0	0,02	kg m ⁻³	Estimado
Y _{A/X}	16,67	kg kg ⁻¹	Estimado	X _{sat}	80,0	kg m ⁻³	Stremel (2001)
Y _{L/X}	30	kg kg ⁻¹	Estimado	m	0,5	s^{-1}	Doran (1998)

Tabela 3.1 - Parâmetros usados para a resolução do modelo

Alguns dos valores apresentados na Tabela 3.1 foram obtidos de um modelo desenvolvido para fermentação alcoólica (Stremel, 2001) e de dados disponíveis em Doran (1998), para crescimento celular de *Saccharomyces cerevisiae*. Os demais foram estimados a partir de simulações realizadas no modelo desenvolvido, de modo a obter valores que representassem o processo de síntese de ácido acrílico a partir de um processo fermentativo.

Na seqüência serão apresentados os resultados das simulações do modelo para síntese biotecnológica de ácido acrílico. A Figura 3.2a apresenta os perfis de concentração de glicose, lactato e ácido acrílico, obtidos ao longo do tempo. Na Figura 3.2b são apresentados os perfis de concentração de glicose e biomassa, obtidos ao longo do tempo.

Com uma concentração de glicose na alimentação (S_{in}) de 100kg m⁻³, uma concentração de células na alimentação (X_{in}) de 20kg m⁻³ e uma taxa de diluição (D) de 0,5h⁻¹, foi obtida uma produção de 59,4kg m⁻³ de lactato, com uma produtividade de 29,8kg m⁻³h⁻¹ e uma produção de 26,5kg m⁻³ de ácido acrílico, com uma produtividade de 13,2kg m⁻³ e, uma concentração residual de glicose menor que 24kg m⁻³.

Figura 3.2 - Perfis de concentração ao longo do tempo

Para analisar a influência da taxa de diluição (D) sobre as concentrações de glicose, lactato, ácido acrílico e biomassa, foram realizadas variações na taxa de diluição $(0,1-0,5h^{-1})$. Os resultados obtidos podem ser visualizados nas Figuras 3.3(a-d) e 3.4(a-b).

CAPÍTULO III - MODELAGEM MATEMATICA Modelagem e Controle da Síntese do Ácido Acrílico via Processo Fermentativo

Figura 3.3 - Efeitos da taxa de diluição sobre as concentrações ao longo do tempo (a -glicose; b - lactato; c - ácido acrílico; d – biomassa)

Figura 3.4 - Efeitos da taxa de diluição sobre as concentrações no estado estacionário (a - glicose e biomassa; b – lactato e ácido acrílico)

A Figura 3.3 (a-d) mostra a variação dos perfis de concentração de glicose, lactato, ácido acrílico e biomassa usando diferentes valores da taxa de diluição (D). Podendo-se,

assim, determinar o melhor valor de D para atingir a máxima concentração de glicose, lactato, ácido acrílico ou biomassa.

Através da Figura 3.4a pode-se perceber que as concentrações de glicose e biomassa aumentam à medida que a taxa de diluição aumenta. Já as concentrações de lactato e ácido acrílico são máximas numa taxa de diluição de 0,25h⁻¹ (conforme Figura 3.4b).

A Figura 3.5 mostra o efeito da taxa de diluição sobre a produtividade de lactato e ácido acrílico. A máxima produtividade de lactato e de ácido acrílico foi obtida em uma taxa de diluição de $0,5h^{-1}$. Para calcular a produtividade de lactato e ácido acrílico foi utilizada a equação (3.15).

Figura 3.5 - Efeito da taxa de diluição sobre a produtividade de lactato e ácido acrílico

Através das simulações realizadas no modelo desenvolvido para representar a síntese de ácido acrílico via processo fermentativo, considerando representação não estruturada com células livres, foi possível determinar os perfis de concentração de substrato, células e produtos, frente às condições pré-estabelecidas para este modelo. Na seqüência, serão apresentados os planejamentos experimentais que foram realizados para identificar os parâmetros mais significativos do modelo e seus efeitos sobre as concentrações.

3.3 Planejamento Experimental

Com o objetivo de aumentar a produção de lactato e ácido acrílico, foram analisadas as influências dos parâmetros operacionais e cinéticos sobre o processo de síntese de ácido acrílico, através da técnica de planejamento experimental.

Primeiramente, foram analisados os parâmetros operacionais (S_{in} , X_{in} e D), através da realização de um planejamento fatorial 2^k (k = 3).

O planejamento fatorial 2^k é útil, quando se deseja fazer análises preliminares no processo, ou seja, deseja-se saber apenas a influência de determinados fatores sobre o processo.

Os diferentes parâmetros foram avaliados em dois níveis, inferior (-1) e superior (+1), onde estes níveis correspondem a uma variação de \pm 50% nos valores de cada parâmetro, conforme Tabela 3.2. Na Tabela 3.3 é apresentada a matriz codificada dos parâmetros analisados.

O Software STATISTICA foi usado para gerar a matriz codificada dos valores dos parâmetros operacionais e o modelo descrito anteriormente foi usado para gerar as respostas desejadas. As simulações foram realizadas de acordo com o planejamento fatorial 2³ especificado na Tabela 3.3, e cada simulação gerou quatro respostas de interesse (concentrações de glicose, lactato, ácido acrílico e biomassa durante o comportamento dinâmico e estacionário do processo). As simulações são apresentadas no Apêndice A.

Parâmetros		Níveis				
	(-)	Ponto central	(+)			
S _{in}	50	100	150			
X _{in}	10	20	30			
D	0,250	0,5	0,750			

Tabela 3.2- Parâmetros operacionais analisados no planejamento fatorial 2³

Tabela 3.3 - Matriz codificada dos valores dos parâmetros analisados						
Ensaios	S _{in}	X _{in}	D			
1	-1	-1	-1			
2	1	-1	-1			
3	-1	1	-1			
4	1	1	-1			
5	-1	-1	1			
6	1	-1	1			
7	-1	1	1			
8	1	1	1			

Modelagem e Controle da Síntese do Ácido Acrílico via Processo Fermentativo

Depois de obtidas as respostas de interesse, através das simulações realizadas no modelo, de acordo com planejamento fatorial apresentado na Tabela 3.3, foram determinados os efeitos estimados das variáveis sobre as respostas, através do uso do software STATISTICA.

As Tabelas 3.4 - 3.11 apresentam os efeitos dos parâmetros operacionais (S_{in}, X_{in} e D) sobre as concentrações de glicose, lactato, ácido acrílico e biomassa, respectivamente, para um nível de confiança de 95% (1 - α ; $\alpha = 0.05$), tanto no comportamento dinâmico quanto estacionário.

		_				
(comportamento di	inâmico)					
Tabela 3.4 - Efe	eitos dos j	parâmetros	operacionais	sobre as	concentrações	de glicose

	Efeito	Desvio padrão	р	Coeficiente de regressão
Média	20,946	0,744	0,023	20,946
* S _{in}	25,993	1,488	0,036	12,996
X_{in}	-9,113	1,488	0,103	-4,556
D	16,438	1,488	0,057	8,219
$\mathbf{S}_{\mathrm{in}}\mathbf{X}_{\mathrm{in}}$	-3,523	1,488	0,254	-1,761
S _{in} D	11,498	1,488	0,082	5,749
X _{in} D	-4,038	1,488	0,225	-2,019

* Parâmetros significativos (p< α ; α =0,05)

CAPÍTULO III - MODELAGEM MATEMATICA Modelagem e Controle da Síntese do Ácido Acrílico via Processo Fermentativo

	Efeito	Desvio padrão	р	Coeficiente de regressão
Média	39,124	0,941	0,015	39,124
* S _{in}	68,093	1,883	0,018	34,046
X _{in}	-22,828	1,883	0,052	-11,414
D	14,643	1,883	0,081	7,321
$S_{in}X_{in}$	-16,313	1,883	0,073	-8,156
S _{in} D	9,568	1,883	0,124	4,784
X _{in} D	0,228	1,883	0,923	0,114

Modelagem e	Controle da Sintes	e do Acido Acriio	co via Processo	rermentativ
Ū.				

* Parâmetros significativos (p< α ; α =0,05)

Tabela 3.6 - Efeitos dos parâmetros operacionais sobre as concentrações de lactato (comportamento dinâmico)

	Efeito	Desvio padrão	р	Coeficiente de regressão
Média	9,388	0,670	0,045	9,388
S _{in}	5,975	1,340	0,140	2,988
X _{in}	7,075	1,340	0,119	3,538
D	9,220	1,340	0,092	4,610
S _{in} X _{in}	3,165	1,340	0,255	1,583
S _{in} D	2,110	1,340	0,360	1,055
X _{in} D	3,200	1,340	0,252	1,600

* Parâmetros significativos (p< α ; α =0,05)

Tabela 3.7 - Efeito dos parâmetros operacionais sobre a concentração final de lactato

	Efeito	Desvio padrão	р	Coeficiente de regressão
Média	41,765	3,250	0,049	41,765
S_{in}	35,925	6,500	0,114	17,963
X _{in}	7,500	6,500	0,455	3,750
D	-3,835	6,500	0,661	-1,918
$\mathbf{S}_{\mathrm{in}}\mathbf{X}_{\mathrm{in}}$	20,895	6,500	0,192	10,448
S _{in} D	-14,210	6,500	0,273	-7,105
X _{in} D	5,315	6,500	0,564	2,658

* Parâmetros significativos (p<α; α=0,05)

Modelagem e Controle da Síntese do Ácido Acrílico via Processo Fermentativo

	Efeito	Desvio padrão	р	Coeficiente de regressão
Média	4,171	0,296	0,045	4,171
S _{in}	2,653	0,593	0,140	1,326
\mathbf{X}_{in}	3,148	0,593	0,118	1,574
D	4,098	0,593	0,091	2,049
S _{in} X _{in}	1,408	0,593	0,254	0,704
S _{in} D	0,938	0,593	0,359	0,469
X _{in} D	1,423	0,593	0,251	0,711

Tabela 3.8 - Efeitos dos parâmetros operacionais sobre as concentrações de ácido acrílico (comportamento dinâmico)

* Parâmetros significativos ($p < \alpha; \alpha = 0.05$)

Tabela 3.9 - Efeitos dos parâmetros operacionais sobre a concentração final de ácido acrílico

	Efeito	Desvio padrão	р	Coeficiente de regressão
Média	18,568	1,445	0,049	18,568
S _{in}	15,970	2,890	0,114	7,985
X_{in}	3,335	2,890	0,455	1,668
D	-1,705	2,890	0,661	-0,853
$\mathbf{S}_{in}\mathbf{X}_{in}$	9,290	2,890	0,192	4,645
S _{in} D	-6,320	2,890	0,273	-3,160
X _{in} D	2,365	2,890	0,563	1,183

* Parâmetros significativos (p< α ; α =0,05)

Tabela 3.10 - Efeitos dos parâmetros operacionais sobre as concentrações de biomassa

	Efeito	Desvio padrão	р	Coeficiente de regressão
Média	6,574	0,016	0,002	6,574
S _{in}	0,033	0,033	0,500	0,016
* X _{in}	6,423	0,033	0,003	3,211
* D	5,468	0,033	0,004	2,734
$S_{in}X_{in}$	-0,013	0,033	0,766	-0,006
S _{in} D	-0,028	0,033	0,553	-0,014
* X _{in} D	2,643	0,033	0,008	1,321

* Parâmetros significativos (p< α ; α =0,05)

	Efeito	Desvio padrão	р	Coeficiente de regressão
Média	11,911	1,139	0,061	11,911
S _{in}	-5,383	2,278	0,255	-2,691
X _{in}	11,778	2,278	0,122	5,889
D	4,028	2,278	0,328	2,014
SinXin	-4,608	2,278	0,292	-2,304
S _{in} D	2,703	2,278	0,446	1,351
X _{in} D	0,763	2,278	0,794	0,381

Tabala 3.11 Efaitas das parâmetros anaracionais sobra a concentração final de hiemassa

Modelagem	e Controle	da Síntes	۰ do Ác	ido Acrí	lico via	Processo	Fermentativo
modelugem	c controit	au onneo		iuo men	neo via	11000000	i ci incinati v o

* Parâmetros significativos (p< α ; α =0,05)

Para analisar os efeitos dos parâmetros sobre as respostas no estado dinâmico, foram usadas as concentrações obtidas entre a primeira hora do processo e a última hora, antes que o processo atingisse o estado estacionário, e a partir desses valores foram calculados os efeitos.

As análises de variância dos parâmetros operacionais e os coeficientes de determinação do modelo (R^2) , são apresentados no Apêndice A.

Através dos valores de "p" (p = nível de significância, onde p < α ; $\alpha = 0.05$) apresentados nas Tabelas 3.4 - 3.11, pode-se observar que as concentrações de glicose obtidas ao longo do tempo e, também, a concentração final de glicose sofrem influências significativas da concentração de substrato alimentada no biorreator (Sin). Já nas concentrações de lactato e ácido acrílico obtidas ao longo do tempo e nas concentrações finais, não foi identificado nenhum dos parâmetros operacionais analisados (p < 0.05) como sendo estatisticamente significativo para um nível de confiança de 95%.

As concentrações de biomassa sofrem influências dos parâmetros (X_{in}) e (D) e, também, da interação entre eles (XinD). Na concentração final de biomassa não foi identificada nenhuma influência significativa dos parâmetros analisados.

Os sinais (±) no valor dos efeitos de cada parâmetro referem-se à direção do efeito, isto é, se o valor do parâmetro deve ser minimizado ou maximizado para que se consiga um aumento no valor da resposta desejada.

A Figura 3.6 apresenta os efeitos de cada parâmetro sobre as concentrações de glicose, lactato, ácido acrílico e biomassa.

CAPÍTULO III - MODELAGEM MATEMATICA Modelagem e Controle da Síntese do Ácido Acrílico via Processo Fermentativo

Figura 3.6 - Efeitos estimados sobre as concentrações de glicose, lactato, ácido acrílico e biomassa (a – dinâmico; b – estacionário)

Dando seqüência ao estudo do comportamento dinâmico e estacionário do processo, foi realizada uma análise dos parâmetros cinéticos do modelo.

Como o número de parâmetros a serem analisados era um pouco elevado, não seria viável realizar um planejamento fatorial tipo 2^k , pois seriam necessários 128 ensaios (k=7). Em virtude disso, para identificar os parâmetros cinéticos mais importantes no processo foi utilizada a técnica de planejamento Plackett-Burman, conhecido como planejamento saturado.

A técnica de Plackett-Burman é utilizada para selecionar as variáveis de maior relevância, para posteriormente fazer a otimização do processo. Os planejamentos mais usuais propostos neste método são para 12, 20, 24, 28 e 36 ensaios.

Neste trabalho foi utilizado um planejamento Plackett-Burman com 12 ensaios e 11 graus de liberdade, onde sete graus de liberdade estão associados aos parâmetros analisados, e os demais foram usados para estimação do erro.

Os diferentes parâmetros foram avaliados em dois níveis, inferior (-1) e superior (+1), onde estes níveis correspondem a uma variação de \pm 50% nos valores de cada parâmetro, conforme Tabela 3.12. Quatro variáveis inertes foram usadas para estimar o erro durante a análise dos dados. Na Tabela 3.13 é apresentada a matriz codificada dos parâmetros analisados.

Antes de realizar o planejamento para analisar a influência dos parâmetros cinéticos, foram realizadas simulações, variando-se um parâmetro de cada vez e mantendo os demais constantes para avaliar a necessidade de incluir os sete parâmetros cinéticos no

planejamento fatorial. Como se percebeu que todos exerciam alguma influência sobre o processo, os sete parâmetros foram analisados no planejamento e assim, identificados os efeitos principais de cada parâmetro sobre as respostas desejadas.

As Tabelas 3.14 – 3.21 apresentam os efeitos principais estimados dos parâmetros analisados sobre as concentrações de glicose, lactato, ácido acrílico e biomassa, respectivamente, para um nível de confiança de 95%. Esses efeitos também podem ser visualizados na Figura 3.7.

As simulações realizadas no modelo de acordo com o planejamento Plackett-Burman, como também, as análises de variância dos parâmetros cinéticos e os coeficientes de determinação do modelo são apresentados no Apêndice A.

Parâmetros		Níveis	
	(-)	Ponto central	(+)
K _s	12	24	36
K _i	50	100	150
K _A	0,005	0,01	0,015
k _d	0,005	0,01	0,015
k _t	0,045	0,09	0,0135
μ_{max}	0,225	0,45	0,675
m	0,250	0,5	0,750

 Tabela 3.12 - Parâmetros cinéticos analisados no Planejamento Plackett-Burman

Tab	Tabela 3.13 - Matriz codificada dos valores dos parâmetros analisados										
Ensaios	Ks	Ki	K _A	k _d	k _t	μ_{max}	m	VI ₁	VI ₂	VI ₃	VI ₄
1	1	-1	1	-1	-1	-1	1	1	1	-1	1
2	1	1	-1	1	-1	-1	-1	1	1	1	-1
3	-1	1	1	-1	1	-1	-1	-1	1	1	1
4	1	-1	1	1	-1	1	-1	-1	-1	1	1
5	1	1	-1	1	1	-1	1	-1	-1	-1	1
6	1	1	1	-1	1	1	-1	1	-1	-1	-1
7	-1	1	1	1	-1	1	1	-1	1	-1	-1
8	-1	-1	1	1	1	-1	1	1	-1	1	-1
9	-1	-1	-1	1	1	1	-1	1	1	-1	1
10	1	-1	-1	-1	1	1	1	-1	1	1	-1
11	-1	1	-1	-1	-1	1	1	1	-1	1	1
12	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1

Modelagem e Controle da Síntese do Ácido Acrílico via Processo Fermentativo

Tabela 3.14 - Efeitos principais dos parâmetros cinéticos sobre as concentrações de glicose (comportamento dinâmico)

	Efeito	Desvio padrão	р	Coeficiente de regressão
Média	19,525	0,469	0,000	19,525
$*K_s$	5,757	0,938	0,004	2,878
K _i	-1,310	0,938	0,235	-0,655
K _A	1,363	0,938	0,220	0,682
k _d	-0,463	0,938	0,647	-0,232
k _t	0,643	0,938	0,531	0,322
$* \mu_{max}$	-11,410	0,938	0,000	-5,705
m	-1,950	0,938	0,106	-0,975

* Parâmetros significativos (p < α ; $\alpha = 0.05$)

Modelagem e Controle da Síntese do Ácido Acrílico via Processo Fermentativo

	Efeito	Desvio padrão	р	Coeficiente de regressão
Média	27,563	1,153	0,000	27,563
$*K_s$	6,438	2,306	0,049	3,219
K _i	0,342	2,306	0,889	0,171
* <i>K</i> _A	10,722	2,306	0,010	5,361
k _d	-1,082	2,306	0,663	-0,541
$* k_t$	10,308	2,306	0,011	5,154
* μ_{max}	-22,478	2,306	0,001	-11,239
m	-5,212	2,306	0,087	-2,606

Tabela 3.15 - Efeitos principais dos parâmetros cinéticos sobre a concentração final de glicose

* Parâmetros significativos (p < α ; $\alpha = 0.05$)

Tabela 3.16 - Efeitos principais dos parâmetros cinéticos sobre as concentrações de lactato (comportamento dinâmico)

	Efeito	Desvio padrão	р	Coeficiente de regressão
Média	13,849	1,081	0,000	12,815
K _s	-3,065	2,161	0,229	-1,418
K _i	-0,988	2,161	0,671	-0,457
K _A	-3,052	2,161	0,231	-1,412
k _d	-1,725	2,161	0,470	-0,798
k _t	1,715	2,161	0,472	0,793
* μ_{max}	13,592	2,161	0,003	6,288
m	2,968	2,161	0,242	1,373

* Parâmetros significativos (p < α ; $\alpha = 0.05$)

Tabela 3.17 - Efeitos principais dos parâmetros cinéticos sobre a concentração final de lactato

	Efeito	Desvio padrão	р	Coeficiente de regressão
Média	54,734	0,830	0,000	54,734
$* K_s$	-5,265	1,659	0,034	-2,633
K _i	-0,628	1,659	0,724	-0,314
* <i>K</i> _A	-11,375	1,659	0,002	-5,688
k _d	1,502	1,659	0,417	0,751
k_t	-4,908	1,659	0,042	-2,454
* μ_{max}	21,212	1,659	0,000	10,606
* <i>m</i>	-6,155	1,659	0,021	-3,078

* Parâmetros significativos (p < α ; $\alpha = 0.05$)

Modelagem e Controle da Síntese do Ácido Acrílico via Processo Fermentativo

	Efeito	Desvio padrão	р	Coeficiente de regressão
Média	5,281	0,188	0,000	5,281
$*K_s$	-2,295	0,376	0,004	-1,148
K _i	0,518	0,376	0,240	0,259
K _A	-0,548	0,376	0,218	-0,274
k _d	0,188	0,376	0,642	0,094
k _t	-0,245	0,376	0,550	-0,123
* μ_{max}	4,552	0,376	0,000	2,276
m	0,238	0,376	0,560	0,119

Tabela 3.18 - Efeitos principais dos parâmetros cinéticos sobre as concentrações de ácido acrílico (comportamento dinâmico)

* Parâmetros significativos (p < α ; $\alpha = 0.05$)

Tabela 3.19 - Efeitos principais dos parâmetros cinéticos sobre a concentração final de ácido acrílico

	Efeito	Desvio padrão	р	Coeficiente de regressão
Média	24,333	0,368	0,000	24,333
$*K_s$	-2,342	0,736	0,033	-1,171
K _i	-0,278	0,736	0,725	-0,139
* <i>K</i> _A	-5,055	0,736	0,002	-2,528
k _d	0,668	0,736	0,415	0,334
$* k_t$	-2,182	0,736	0,041	-1,091
* μ_{max}	9,428	0,736	0,000	4,714
* <i>m</i>	-2,738	0,736	0,020	-1,369

* Parâmetros significativos ($p < \alpha$; $\alpha = 0.05$)

Tabela 3.20 -Efeitos principais dos parâmetros cinéticos sobre as concentrações de biomassa (comportamento dinâmico)

	Efeito	Desvio padrão	р	Coeficiente de regressão
Média	6,939	0,009	0,000	6,939
$*K_s$	-0,072	0,018	0,016	-0,036
K _i	0,048	0,018	0,055	0,024
K _A	0,002	0,018	0,931	0,001
k _d	-0,022	0,018	0,296	-0,011
k_t	-0,155	0,018	0,001	-0,078
* μ_{max}	0,122	0,018	0,003	0,061
m	0,045	0,018	0,067	0,023

* Parâmetros significativos ($p < \alpha; \alpha = 0,05$)

Modelagem e Controle da Síntese do Ácido Acrílico via Processo Fermentativo

	Efeito	Desvio padrão	р	Coeficiente de regressão
Média	11,472	0,098	0,000	11,472
K _s	0,190	0,196	0,386	0,095
K _i	0,010	0,196	0,962	0,005
* <i>K</i> _A	0,930	0,196	0,009	0,465
k _d	-0,123	0,196	0,563	-0,062
$* k_t$	-5,040	0,196	0,000	-2,520
* μ_{max}	-1,730	0,196	0,001	-0,865
* <i>m</i>	0,577	0,196	0,042	0,288

Tabela 3.21 - Efeitos principais dos parâmetros cinéticos sobre a concentração final de biomassa

* Parâmetros significativos (p < α ; $\alpha = 0.05$)

Figura 3.7 - Efeitos estimados sobre as concentrações de glicose, lactato, ácido acrílico e biomassa (a – dinâmico; b – estacionário)

Através dos valores de "p" apresentados nas Tabelas 3.14 – 3.21, pode-se visualizar que os parâmetros cinéticos (K_s) e (μ_{max}) têm influência significativa sobre as concentrações de glicose, ácido acrílico e biomassa obtidas ao longo do tempo. As concentrações de biomassa, além de influenciadas pelos parâmetros cinéticos (K_s) e (μ_{max}), também sofrem influências significativas de (k_t).

As concentrações de lactato sofrem influências significativas apenas da velocidade específica máxima de crescimento (μ_{max}). Enquanto, que as concentrações finais de lactato e ácido acrílico são influenciadas pela velocidade específica máxima de crescimento (μ_{max}), pelo coeficiente de manutenção (m), pela constante de saturação (K_s) e pelas constantes de inibição (K_A) e (k_t).

Os parâmetros (K_s, K_A, k_t, μ_{max}) influenciam a concentração final de glicose e os parâmetros (K_A, k_t, μ_{max} , m) influenciam a concentração final de biomassa.

Nas Tabelas 3.14 – 3.21 também, é possível visualizar a direção (±) dos efeitos principais dos parâmetros cinéticos analisados para cada resposta desejada.

Com a realização do planejamento de experimentos foi possível identificar os efeitos estimados dos parâmetros cinéticos e operacionais sobre as concentrações de glicose, lactato, ácido acrílico e biomassa, bem como, identificar os parâmetros estatisticamente significativos sobre estas concentrações para um nível de confiança de 95%. Com o objetivo de maximizar o rendimento final de ácido acrílico foi realizada a otimização dos parâmetros operacionais (S_{in}, X_{in} e D), através da aplicação das técnicas de metodologia de superfície de resposta e de otimização por programação quadrática sucessiva. Os resultados obtidos nas otimizações serão apresentados a seguir.

3.4 Otimização do Processo

Nesta seção, serão apresentados os resultados da otimização dos parâmetros operacionais do processo de síntese de ácido acrílico via processo fermentativo. Para a otimização dos parâmetros foram utilizadas a metodologia de superfície de resposta (RSM) e a técnica de otimização por programação quadrática sucessiva (SQP).

Os parâmetros operacionais (S_{in} , X_{in} e D) foram otimizados com o objetivo de encontrar valores ótimos ou próximos destes de forma a aumentar o rendimento final de ácido acrílico. A equação do rendimento foi definida como sendo:

$$Y_{A/S} = \frac{A}{S_{in} - S}$$
(3.16)

Para a determinação dos efeitos dos parâmetros sobre o rendimento final de ácido acrílico, como também, para determinação da equação do modelo a ser otimizada através da técnica de otimização por programação quadrática sucessiva e para análise da superfície de resposta, foi realizado um planejamento composto central, tipo estrela, conforme Tabela 3.22. Os oito primeiros ensaios correspondem aos pontos 2³, os ensaios 9 a 14 correspondem aos pontos axiais e o último ensaio corresponde ao ponto central. Neste trabalho foi utilizado apenas um ensaio com ponto central (ensaio 15), pois se trata de um

trabalho de simulação. A Tabela 3.23 apresenta os parâmetros operacionais usados no planejamento estrela.

Ensaios	Sin	X _{in}	D
1	-1	-1	-1
2	-1	-1	1
3	-1	1	-1
4	-1	1	1
5	1	-1	-1
6	1	-1	1
7	1	1	-1
8	1	1	1
9	-1,68179	0	0
10	1,68179	0	0
11	0	-1,68179	0
12	0	1,68179	0
13	0	0	-1,68179
14	0	0	1,68179
15	0	0	0

Tabela 3.22 - Matriz codificada dos valores dos parâmetros

 Tabela 3.23 - Parâmetros operacionais analisados no planejamento composto central

Parâmetros		Níveis		
	(-)	Ponto central	(+)	
S _{in}	90	100	110	
\mathbf{X}_{in}	18	20	22	
D	0,450	0,5	0,550	

Foram utilizados polinômios de 2^a ordem e realizada a análise de variância dos parâmetros sobre as respostas, para um nível de confiança de 95%. Os resultados da ANOVA são apresentados na Tabela 3.24.

Modelagem e Controle da Síntese do Ácido Acrílico via Processo Fermentativo

Fator	SQ	GL	MQ	F	р
$*S_{in}(L)$	1,769	1	1,769	5.529	0,000
$*S_{in}(Q)$	0,051	1	0,051	158	0,000
$*X_{in}(L)$	1,120	1	1,120	3.500	0,000
$X_{in}\left(Q ight)$	0,000	1	0,000	0	0,953
*D (L)	0,173	1	0,173	539	0,000
D (Q)	0,000	1	0,000	0	0,689
*S _{in} X _{in}	0,035	1	0,035	110	0,000
*S _{in} D	0,014	1	0,014	43	0,001
X _{in} D	0,002	1	0,002	5	0,082
Erro	0,002	5	0,0003	1.186,67	
SQ _R	3,206	9	0,356		
SQT	3,208	14			
R^2	0,9995	•	4		

Tabela 3.24 - ANOVA dos parâmetros operacionais sobre o rendimento final de ácido acrílico

* Parâmetros significativos (p< α ; α =0,05)

Através dos valores de "p", pode-se perceber a significância dos três parâmetros operacionais (S_{in}, X_{in} e D) e da interação entre S_{in} e X_{in} e entre S_{in} e D sobre o rendimento final de ácido acrílico, para um intervalo de confiança de 95%. Como o valor de $F_{calculado}(MQ_R/MQr = 1.186,67)$ é bem maior que o valor de $F_{tabelado}$ (F_{9,5} = 4,77) e o valor do coeficiente de determinação do modelo (R²) está próximo de 1, pode se dizer que o modelo quadrático usado no planejamento estrela é adequado para verificar a variação da resposta em função dos três parâmetros analisados.

No gráfico de Pareto (Figura 3.8) é possível visualizar os efeitos dos parâmetros operacionais e de suas possíveis interações sobre o rendimento final de ácido acrílico.

Modelagem e Controle da Síntese do Ácido Acrílico via Processo Fermentativo

Figura 3.8 - Gráfico de Pareto dos efeitos dos parâmetros operacionais sobre o rendimento final de ácido acrílico

A Figura 3.9 mostra a superfície de resposta do rendimento de ácido acrílico em função da concentração de substrato alimentada no biorreator (S_{in}) e da taxa de diluição (D). A concentração de células alimentada no biorreator (X_{in}) foi mantida no seu nível inferior (-1).

Figura 3.9 - Superfície de resposta do rendimento de ácido acrílico em função dos parâmetros operacionais

Através da Figura 3.9 é possível perceber que para aumentar o rendimento final de ácido acrílico, a concentração de substrato (S_{in}) e a taxa de diluição (D) devem ser mantidas em seus valores máximos (níveis superiores).

A função obtida com o modelo quadrático para o rendimento final de ácido acrílico foi:

$$Y_{A_{A_{i}}} = 34,6097 + 0,3599S_{in} - 0,2864X_{in} + 0,1124D - 0,0915S_{in}^{2} + 0,006663S_{in}X_{in} - 0,0413S_{in}D \quad (3.17)$$

Na Equação (3.17) foram usados apenas os parâmetros e as interações, identificados como sendo estatisticamente significativas sobre o rendimento final de ácido acrílico, para um nível de confiança de 95%.

A Equação (3.17) foi utilizada como função objetivo na otimização por programação quadrática sucessiva, e os resultados obtidos serão apresentados na seqüência.

O algoritmo SQP corresponde a um método iterativo que gera uma seqüência de valores que converge para a solução do problema. É um método fortemente dependente da estimativa inicial e a partir desta, pode aproximar os valores próximos de um ótimo, como também, pode afastá-los deste ótimo. A subrotina utilizada foi a DNCONF da biblioteca IMSL do FORTRAN, que resolve problemas de programação não linear através de programação quadrática sucessiva.

O objetivo da otimização é encontrar o ótimo (máximo ou mínimo) de uma função. Encontrar o máximo de uma função f(x) é equivalente a encontrar o mínimo de -f(x).

A Tabela 3.25 apresenta os valores iniciais e otimizados dos parâmetros operacionais usados no processo e os rendimentos obtidos.

Tubela 5.25 - Valores dos parametros operacionars e rendimientos de acido acimico				
	S_{in} (kg m ⁻³)	X_{in} (kg m ⁻³)	$D(h^{-1})$	Y _{A/S}
Início do processo	100	20	0,5	34,6
Valores otimizados	107	16,6	0,58	35,4

 Tabela 3.25 - Valores dos parâmetros operacionais e rendimentos de ácido acrílico

Através deste estudo de otimização dos parâmetros operacionais foi possível perceber a influência da estimativa inicial sobre o método de otimização empregado, como também a alta sensibilidade deste em relação às restrições do problema impostas,

dificultando com isso, encontrar valores próximos do ótimo de forma a obter aumentos consideráveis no rendimento final de ácido acrílico. Isso poderia ser melhorado, através da otimização dos parâmetros operacionais ao longo do processo (estado dinâmico), de forma que o rendimento aumentasse gradativamente.

3.5 Conclusão

Neste capítulo foi apresentado um modelo que representou a síntese de ácido acrílico a partir da degradação da glicose. Considerou-se um modelo simples não estruturado com células livres, onde foram descritos a formação de lactato e ácido acrílico, crescimento celular e consumo de substrato num processo contínuo e ideal. Através da aplicação da técnica de planejamento fatorial foi possível identificar a influência dos parâmetros operacionais e cinéticos sobre o processo. Com a aplicação da metodologia de superfície de resposta foi possível determinar a equação modelo, isto é, a equação do rendimento final do ácido acrílico em função dos parâmetros operacionais, que foi maximizada através da otimização por programação quadrática sucessiva. O método de otimização SQP possibilitou otimizar os parâmetros operacionais (Sin, Xin e D), aumentando o rendimento final de ácido acrílico em relação ao consumo de substrato. Teve-se certa dificuldade para otimizar os parâmetros com o algoritmo SQP, o que pode ter sido ocasionado pela elevada sensibilidade do método de otimização em relação às restrições impostas, como também, sua alta dependência das estimativas iniciais, as quais são fundamentais para a sua convergência. Ou ainda, pelo fato de ter sido estimado um coeficiente de rendimento $(Y_{A/s})$ no início do processo (equação de Monod – 3.12).

CAPÍTULO IV. Modelo Matemático Não Estruturado para Síntese de Ácido Acrílico via Processo Fermentativo com Células Imobilizadas

4.1 Introdução

Neste capítulo será apresentado um modelo matemático desenvolvido para representar a síntese de ácido acrílico via processo fermentativo. Este modelo segue um comportamento não estruturado com células imobilizadas, onde o crescimento celular, consumo de substrato e produção de ácido acrílico são representados. Inicialmente foi desenvolvida a modelagem do processo e realizadas as simulações, as quais forneceram os perfis de concentrações de interesse. Um biorreator tubular tipo PFR (do inglês - Plug Flow Reactor) foi usado neste modelo. Na seqüência foram aplicadas algumas técnicas de planejamento experimental para identificar os parâmetros operacionais, cinéticos e de projeto de maior significância no processo, seguindo com a otimização do processo, através da aplicação da metodologia de superfície de resposta e da estratégia de otimização por programação quadrática sucessiva. Neste modelo, foi considerado um processo heterofermentativo, isto é, além do ácido acrílico, outros produtos podem ser formados a partir da degradação da glicose, porém, apenas a produção de ácido acrílico será apresentada. As equações diferenciais parciais do modelo foram resolvidas através da aplicação do método de colocação ortogonal acoplado a subrotina LSODAR e integradas em função do tempo, através do método das linhas.

4.2 Modelo Matemático Não Estruturado com Células Imobilizadas

No desenvolvimento deste modelo matemático para representar a síntese de ácido acrílico a partir de um processo fermentativo com células imobilizadas foi considerado:

- ✓ modelo heterogêneo (sistema bifásico fase sólida e fluida);
- ✓ processo contínuo e isotérmico;
- ✓ sistema com células de *Saccharomyces cerevisiae* imobilizadas;
- ✓ composição de biomassa igual a: $CH_{1,82}O_{0,576}N_{0,146}$;
- ✓ partículas esféricas (células imobilizadas no interior de esferas);
- ✓ efeitos de dispersão axial.

No processo estão envolvidos três substratos, onde numa primeira etapa a glicose é convertida a piruvato, o piruvato em lactato, o qual é metabolizado a ácido acrílico. A reação procede da seguinte forma:

$$\begin{array}{rcl} C_6H_{12}O_6 & \rightarrow & 2C_3H_4O_3 + 2H_2 \\ C_3H_4O_3 + H_2 & \rightarrow & C_3H_6O_3 \\ C_3H_6O_3 & \rightarrow & C_3H_4O_2 + H_2O \end{array}$$
(4.1)

A Tabela 4.1 apresenta a composição e os pesos moleculares dos componentes envolvidos na reação. As reações intermediárias (formação de piruvato e lactato) não serão apresentadas neste modelo.

Tubera 111 Composição e posos monocatares dos componentes da reação				
Componente	Composição	Peso molecular		
Glicose	$C_{6}H_{12}O_{6}$	180		
Piruvato	$C_3H_4O_3$	88		
Lactato	$C_3H_6O_3$	90		
Ácido Acrílico	$C_3H_4O_2$	72		
Biomassa	$CH_{1,82}O_{0,576}N_{0,146}$	25		

 Tabela 4.1 - Composição e pesos moleculares dos componentes da reação

Para um modelo heterogêneo, os gradientes dentro da partícula são considerados, pois a concentração no leito é diferente da concentração local do fluido no sistema $(C_{AF} \neq C_{AS}).$

Em sistemas biotecnológicos, as velocidades das reações são muitas vezes aumentadas por biocatalisadores sólidos, como por exemplo, células imobilizadas. Quando as moléculas das células se juntam em uma partícula sólida, os substratos devem ser transportados para dentro do sólido para que se produza a reação. A transferência de massa no interior das partículas sólidas ocorre por difusão molecular. À medida que aumenta a distância entre os reagentes, à velocidade de transferência de massa exerce uma maior influência no controle sobre a velocidade de reação.

Quando a molécula é ligada a um suporte sólido inerte, ela fica sujeita a uma circunvizinhança, o que não acontece quando ela está livre no meio fluido. Isso poderá se refletir sobre os parâmetros cinéticos. Os efeitos da circunvizinhança, que dependem da natureza física e química do suporte, podem acarretar uma distribuição desigual do

substrato, produto e co-fatores entre a região vizinha ao sistema imobilizado e o restante da solução (Vitolo, 2001).

A velocidade local de transferência de massa por difusão pode ser considerada proporcional à área para a transferência de massa e a diferença de concentração entre o sistema e a superfície externa da célula imobilizada, de acordo com a equação (4.2).

$$r_m = k_m a_m (C_0 - C_s)$$
 (4.2)

$$a_{m} = \frac{\text{Volume de esferas no leito}}{\text{Volume total do leito}} = \frac{(1 - \varepsilon)\pi d_{p}^{2}}{\frac{\pi d_{p}^{3}}{6}} = \frac{6(1 - \varepsilon)}{d_{p}}$$
(4.3)

Para determinar o coeficiente de transferência de massa (k_m) pode-se utilizar o fator de Chilton-Colburn (J_D), o qual é citado na literatura, como função do número de Reynolds (*Re*) e pode ser representado pela equação (4.4) (Fogler, 1992).

$$J_D = \frac{Sh}{Sc^{\frac{1}{3}} \operatorname{Re}}$$
(4.4)

Chilton e Colburn (1934 apud Cussler, 2005) reconheceram que a expressão do fator (J_D) é boa para gases, mas não para líquidos. Eles acreditavam que as variações nos líquidos poderiam melhorar se representadas pelo número de Schmidt para determinação do coeficiente de transferência de massa. Em função disso, Chilton e Colburn propuseram a seguinte analogia para a correlação de transferência de massa em paredes fluido-sólido:

$$J_D = \frac{k_m \rho}{G} \left(\frac{\upsilon}{D_A}\right)^{2/3} \tag{4.5}$$

$$G = u \times \rho \tag{4.6}$$

McCune e Wilhelm (apud Nath e Chand, 1996) propuseram uma equação para determinar o fator de Chilton-Colburn, que foi testada por Rovito e Kittrell (1973 apud Nath e Chand, 1996) para a enzima glicose oxidase imobilizada em leito poroso, onde,

$$J_D = 1,625 \,\mathrm{Re}^{-0,507} \tag{4.7}$$

Maiores detalhes sobre a analogia de Chilton-Colburn podem ser encontrados em Cussler (2005). Correlações para o coeficiente de transferência de massa, utilizando o fator de Chilton-Colburn, podem ser encontradas em Nath e Chand (1996), Incropera *et al.* (1998) e Bird *et al.* (1960).

Para a determinação do fator J_D as três equações (4.4), (4.5) e (4.7) foram testadas no modelo e a equação (4.7) mostrou ser a mais adequada para este processo, em função disso, optou-se pelo seu uso.

Os números de Reynolds (Re), Schmidt (Sc) e Sherwood (Sh) podem ser determinados pelas equações (4.8), (4.9) e (4.10), respectivamente.

$$\operatorname{Re} = \frac{D_s u\rho}{\mu} \tag{4.8}$$

$$Sc_{[]} = \frac{\mu}{\rho D_{A_{[]}}} \tag{4.9}$$

$$Sh_{[]} = \frac{k_m R}{D_{A_{[]}}}$$
 (4.10)

No processo de difusão interna, o reagente (substrato) se difunde a partir da superfície externa do poro para dentro da partícula (*pellet*), onde se considera apenas variação na superfície catalítica dos poros. A Figura 4.1 apresenta um esquema envolvendo estas duas etapas do processo de difusão interna.

Figura 4.1 - Transferência de massa e etapas da reação para um *pellet* catalítico (Fogler, 1992)

Para descrever a difusão média, considerando alguma posição (r) no *pellet*, utilizase um coeficiente de difusão efetiva (D_e), onde,

$$D_e = D_A \mathcal{E} \tag{4.11}$$

Para calcular a difusividade efetiva para substrato e produto no modelo desenvolvido para representar o processo de produção de ácido acrílico, foram utilizadas as equações (4.12) e (4.13), propostas por Stremel (2001).

$$D_{e[substrato]} = 2,142 \times 10^{-4} \left[e^{-0,00199S} \right]$$
(4.12)

$$D_{e[produto]} = 2,94 \times 10^{-4} \left[e^{-0,00199A} \right]$$
(4.13)

Para saber como o substrato se difunde para o interior do *pellet* antes da reação ocorrer, determina-se o fator de efetividade interna (η).

$$\eta = \frac{r_{Aobs}}{r_{A(c_{As},T_s)}} \tag{4.14}$$

O fator de efetividade (η) para substrato e produto num processo fermentativo pode ser derivado a partir de um balanço de massa, conforme equações (4.15) e (4.16) (Volesky e Votruba, 1992).

$$\eta = \frac{\frac{F}{V_F} (S_0 - S) - k_{[p]} X_F}{\frac{V_S}{V_F} k_{[s]} X_s}$$
(4.15)

$$\eta = \frac{\frac{F}{V_F}(P) - k_{[p]}X_F}{\frac{V_s}{V_F}k_{[p]}X_s}$$
(4.16)

A magnitude do fator de efetividade (varia de 0 - 1) indica a relativa importância da limitação da reação e da difusão.

Finalizando as equações usadas na transferência de massa, serão apresentados na seqüência os balanços de massa dos principais componentes envolvidos no processo.

Embora existam muitas leis para expressar a velocidade de crescimento celular, isto é:

$$C\acute{e}lulas + Substrato \rightarrow C\acute{e}lulas + Produtos$$
(4.17)

A expressão mais usada é a equação de Monod (Fogler, 1992), onde,

$$r_g = \mu_x X \tag{4.18}$$

A velocidade específica de crescimento pode ser expressa por:

$$\mu_x = \mu_{\max} \frac{S}{S + K_s} \tag{4.19}$$

Na velocidade específica de crescimento, foi considerado crescimento com um único substrato limitante e inibidor, inibição pela concentração celular e inibição pelo produto, conforme equação (4.20).

$$\mu_{x} = \mu_{\max}\left(\frac{S}{K_{s} + S + \frac{S^{2}}{K_{i}}}\right)\left(1 - \frac{X}{X_{sat}}\right)\exp(-K_{A}A)$$
(4.20)

O balanço de massa para o crescimento celular (considerando-se a velocidade de reprodução e morte celular) pode ser representado por:

$$\frac{dX}{dt} = 0,732\mu_x X - r_d \tag{4.21}$$

A cinética de morte celular é um fator importante que deve ser considerado em processos fermentativos, onde, se espera ter uma perda substancial da viabilidade celular (Doran, 1998).

A velocidade de morte celular considerada neste processo foi:

$$r_d = k_d X + k_t A \tag{4.22}$$

Além da constante de morte celular (k_d), também, foi levado em consideração a morte celular devido à toxicidade do produto formado (k_tA).

Para o balanço de massa do substrato na fase sólida foi considerada a formação do produto diretamente associado ao metabolismo energético:

$$\frac{dS}{dt} = \frac{D_s}{R^2} \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial S}{\partial r} \right) - \left(\frac{\mu_x}{Y_{X/s}} + m \right) X$$
(4.23)

O rendimento observado da produção de biomassa em relação ao consumo de substrato pode ser determinado pela equação (4.24).

$$Y_{x/s} = \frac{X_{in} - X}{S_{in} - S} = -\frac{dX}{dS} = \frac{r_x}{r_s}$$
(4.24)

Neste modelo os coeficientes de rendimento foram estabelecidos no início do processo.

Balanço de massa para ácido acrílico na fase sólida:

$$\frac{dA}{dt} = \frac{D_A}{R^2} \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial A}{\partial r} \right) + \left(\mu_x Y_{A/x} \right) X \tag{4.25}$$

$$Y_{A/x} = \frac{A - A_{in}}{X_{in} - X} = \frac{r_A}{r_s} = \frac{Y_{A/s}}{Y_{x/s}}$$
(4.26)

As condições iniciais e de contorno consideradas para a fase sólida estão listadas a seguir.

$$Em \quad t = 0 \qquad r = R \qquad S = A = 0$$

Condições de simetria no centro da partícula.

Em
$$t \ge 0$$
 $r = 0$ $\frac{\partial S}{\partial r} = \frac{\partial A}{\partial r} = 0$

Na superfície externa da partícula foi aplicada a condição para transferência de massa.

Para substrato:

$$D_{As} \frac{\partial S}{\partial r} = k_{mS} R \left(S_{fluida} - S_{solida} \right)$$
(4.27)

Para produto:

$$D_{AP} \frac{\partial A}{\partial r} = k_{mP} R \left(A_{fluida} - A_{solida} \right)$$
(4.28)

$$\frac{k_{m[]}R}{D_{A[]}} = Bi_{[]}$$
(4.29)

A magnitude relativa da resistência externa e interna pode ser expressa pelo número de Biot (*Bi*), o qual relaciona a velocidade de transporte de massa na camada líquida estagnada ao redor da biopartícula com a velocidade de difusão dentro da partícula. Para números de Biot altos, o tempo característico para difusão interna é grande quando comparado com a difusão externa, e a difusão interna é dominante (Finlayson, 1980).

Um balanço semelhante ao balanço na fase sólida (partícula) é escrito para a fase fluida. Nesta fase é considerado o efeito de dispersão, caracterizado por um coeficiente de difusão efetiva (D_{az}).

Um modelo com dispersão axial é caracterizado pelo número de Peclet (Pe), que representa todos os efeitos que causam os desvios a partir de um comportamento ideal. Como o número de Peclet aumenta de $(0 - \infty)$, o fluxo no reator varia a partir de uma mistura completa (CSTR) para um reator sem mistura (PFR) (Abu-Reesh e Abu-Sharkh, 2003).

Balanço de massa para o substrato na fase fluida:

$$\frac{dS_F}{dt} = D_{az} \left(\frac{\partial^2 S_F}{\partial z^2} \right) - u \left(\frac{\partial S_F}{\partial z} \right) - \frac{1 - \varepsilon}{\varepsilon} \eta r_s$$
(4.30)

$$D_{az} = \frac{u \times D}{0.15 \times \varepsilon} \tag{4.31}$$

A equação (4.31) para o cálculo do coeficiente de dispersão foi obtida de Stremel (2001).

O balanço de massa para o ácido acrílico é mostrado na equação (4.32).

$$\frac{dA_F}{dt} = D_{az} \left(\frac{\partial^2 A_F}{\partial z^2} \right) - u \left(\frac{\partial A_F}{\partial z} \right) - \frac{1 - \varepsilon}{\varepsilon} \eta r_p \qquad (4.32)$$

Para resolução das equações das fases sólida e fluida foi utilizado o método de colocação ortogonal. As concentrações no centro e na superfície da partícula são calculadas através das seguintes equações:

$$A_{0,0}y_0 + A_{0,N+1}y_{N+1} = -\sum_{i=1}^N A_{0,1}y_i$$

$$A_{N+1,0}y_0 + \left(A_{N+1,N+1} + \frac{Sh}{2}\right)y_{N+1} = -\sum_{i=1}^N A_{N+1}y_i + \frac{Sh}{2}y_f$$
(4.33)

Os balanços de massa para os pontos de colocação internos na fase sólida são transformados em um sistema de equações diferenciais ordinárias, resultando em:
$$\frac{dy_i}{dt} = \frac{4D}{d^2} \left[\sum_{i=0}^{N+1} B_{ji} y_i + \frac{1}{z_j} \sum_{i=0}^{N+1} A_{ji} y_i \right] + r_{[]} x_i$$
(4.34)

onde, (y_i) corresponde as variáveis dependentes e $(r_{t,i})$ é a velocidade específica de reação para formação de produto, crescimento celular ou consumo de substrato.

Os balanços de massa da fase fluida são substituídos pela equação (4.35):

$$\frac{dy_{f_i}}{dt} = D_G \sum_{i=0}^{N+1} \left[\frac{1}{Pe} \frac{d_p}{L} B_{ji} - A_{ij} \right] y_{fi} - \frac{1-\varepsilon}{\varepsilon} \eta r_{[1]}$$
(4.35)

Na Figura 4.2 é apresentado um fluxograma do modelo, de forma a descrever o funcionamento do programa que foi desenvolvido para representar a produção de ácido acrílico via fermentação, considerando um modelo não estruturado com células de *Saccharomyces cerevisiae* imobilizadas. O programa foi desenvolvido em linguagem FORTRAN.

Modelagem e Controle da Síntese do Ácido Acrílico via Processo Fermentativo

Figura 4.2 - Fluxograma para resolução do modelo não estruturado

Na seqüência serão apresentados os resultados da simulação dinâmica e estacionária do modelo para síntese de ácido acrílico via fermentação com células imobilizadas.

Por se tratar de um assunto recente, com poucos trabalhos publicados na literatura e sem dados cinéticos conclusivos do processo (Lunelli *et al.*, 2007), alguns dos dados usados no modelo foram obtidos de Stremel (2001) e Doran (1998) e os demais foram estimados através de simulações realizadas no modelo. Os parâmetros usados nas simulações e seus valores são listados na Tabela 4.2.

Modelagem e Controle da Síntese do Ácido Acrílico via Processo Fermentativo

Tabela 4.2 -	Tabela 4.2 - Parâmetros usados para a resolução do modelo						
Parâmetro	Valor	Unidade	Referencia				
K _A	0,01	kg m ⁻³	Estimado				
k _d	0,01	s ⁻¹	Estimado				
Ki	100	s ⁻¹	Estimado				
kt	0,009	s^{-1}	Estimado				
K _s	24	kg m ⁻³	Estimado				
μ_{max}	0,45	s^{-1}	Stremel (2001)				
Y _{A/x}	6,67	kg kg⁻¹	Estimado				
Y _{x/s}	0,03	kg kg ⁻¹	Stremel (2001)				
D _P	0,0003	m	Estimado				
S _{in}	150	kg m ⁻³	Estimado				
S _{0F}	150	kg m ⁻³	Estimado				
S _{0s}	0	kg m ⁻³	Stremel (2001)				
X_{in}	20	kg m ⁻³	Doran (1998)				
X_{0F}	20	kg m ⁻³	Doran (1998)				
P _{0F}	0	kg m ⁻³	Estimado				
P _{0s}	0	kg m ⁻³	Estimado				
Dr	0,05	m	Stremel (2001)				
F _{in}	0,0003	$m^{3} s^{-1}$	Estimado				
ε	0,36	adm	Doran (1998)				
L	1	m	Estimado				
ρ	1.152	kg m ⁻³	Stremel (2001)				
μ_i	4,6	kg m ⁻¹ h ⁻¹	Estimado				
X _{sat}	80	kg m ⁻³	Stremel (2001)				
m	0,5	s ⁻¹	Doran (1998)				

Como foi considerado um processo heterofermentativo, se estimou um coeficiente de rendimento de ácido acrílico ($Y_{A/x}$) em relação ao crescimento celular de 6,67% ($Y_{A/s}$ = 20%) e as concentrações de substrato e células na alimentação foram consideradas iguais às concentrações iniciais de substrato e células na fase fluida ($S_{in} = S_{0F} = 150$ kg m⁻³; $X_{in} = X_{0F} = 20$ kg m⁻³).

A Figura 4.3 apresenta os perfis de concentração de glicose e ácido acrílico obtidos ao longo do tempo na fase fluida. Na Figura 4.4 são apresentados os perfis de concentração de ácido acrílico, glicose e biomassa obtidos ao longo do biorreator quando o estado estacionário é alcançado.

Figura 4.3 - Perfis de concentração de ácido acrílico e glicose obtidos ao longo do tempo

Figura 4.4 - Perfis de concentração de ácido acrílico, glicose e biomassa obtidos no estado estacionário

Na Figura 4.4 é possível perceber que as concentrações de glicose e biomassa diminuem à medida que se aproximam da saída do biorreator. A concentração de ácido acrílico aumenta gradativamente ao longo do comprimento do biorreator.

A Figura 4.5(a – c) apresenta os perfis de concentração de ácido acrílico, glicose e biomassa respectivamente, encontrados ao longo do comprimento do biorreator em diferentes tempos de operação. Na Figura 4.5a pode-se visualizar que a concentração de ácido acrílico aumenta de forma mais acentuada até a metade do comprimento axial do biorreator (L = 0 – 0,5), onde ela se aproxima da concentração de saída. A concentração de glicose tem uma diminuição mais acentuada nesta parte do biorreator (Figura 4.5b).

Na Figura 4.5c pode-se perceber uma maior variação na concentração de biomassa, quanto maior for o tempo de operação. Já as concentrações de ácido acrílico e glicose não apresentam variações entre os tempos de 3h – 30h de processo.

Figura 4.5 – Perfis de concentração obtidos ao longo do comprimento do biorreator em diferentes tempos de operação (a – ácido acrílico; b – glicose; c - biomassa)

A partir da Figura 4.6(a - c) é possível visualizar a variação da concentração de ácido acrílico, glicose e biomassa, respectivamente, no interior do pellet em diferentes

tempos de operação, na saída do biorreator. A Figura 4.6a mostra que a concentração de ácido acrílico é maior no interior da partícula e diminui à medida que se aproxima da superfície, enquanto que, a concentração de glicose é máxima na superfície da partícula e diminui à medida que se aproxima do centro, apresentando o mesmo perfil de concentração em diferentes tempos de operação (Figura 4.6b).

A Figura 4.6c mostra que a concentração de biomassa, durante o crescimento celular no interior da partícula, é máxima na superfície da partícula, onde a concentração de glicose é máxima e a concentração de ácido acrílico mínima.

Figura 4.6 – Perfis de concentração no interior do *pellet* em diferentes tempos de operação (a – ácido acrílico; b – glicose; c - biomassa)

A Figura 4.7(a – c), apresenta os perfis de concentração de glicose, ácido acrílico e biomassa, respectivamente, encontrados ao longo do tempo na fase fluida, em cada ponto

de colocação. Na Figura 4.7(a – b) é possível perceber que as variações das concentrações de ácido acrílico e glicose são maiores próximo à saída (z = 5) e na saída do biorreator (z = 6). A concentração de biomassa apresenta uma maior variação na entrada (z = 1) e no primeiro ponto interno (z = 2) do biorreator (Figura 4.7c).

Figura 4.7 – Perfis de concentração obtidos ao longo do tempo nos seis pontos de colocação (a – glicose; b – ácido acrílico; c – biomassa)

Com o objetivo de identificar quais parâmetros tem maior influência no processo, em determinada condição de operação, foi realizado o estudo da sensibilidade do modelo através de variações nos parâmetros operacionais (S_{in} , X_{in} e F_{in}), como também, nos parâmetros de projeto (D_r , D_p e L). A Tabela 4.3 apresenta os valores dos parâmetros e as variações realizadas. As variações foram realizadas em um parâmetro de cada vez, mantendo os demais constantes. Os resultados obtidos são apresentados na Tabela 4.4.

Modelagem e Controle da Síntese do Ácido Acrílico via Processo Fermentativo

Tabela 4.3 - Varia	Tabela 4.3 - Variações realizadas nos parâmetros operacionais e de projeto					
Parâmetros		Variações				
	(-)	Padrão	(+)			
S_{in} (kg m ⁻³)	135	150	165			
$F_{in}(m^3 s^{-1})$	0,00024	0,0003	0,00036			
X_{in} (kg m ⁻³)	16	20	24			
$D_{p}(m)$	0,00024	0,0003	0,00036			
$D_r(m)$	0,045	0,05	0,055			
L (m)	0,8	1	1,2			

 Tabela 4.4 - Concentrações finais obtidas ao longo do biorreator através de variações realizadas nos parâmetros operacionais e de projeto

	Valores						
Concentrações	Inicial	S _{in} (1	0%)	F _{in} (20%)		X _{in} (20%)	
finais		-	+	-	+	-	+
Ácido Acrílico	26,86	24,77	28,77	28,99	24,62	26,71	26,98
Glicose	15,72	11,16	21,13	5,07	26,88	16,46	15,08
Biomassa	18,17	16,29	20,24	13,08	22,71	16,99	19,51
			Va	alores			
Concentrações	Inicial	D _p (2	0%)) $D_r (10\%)$		L (2	0%)
finais		-	+	-		-	+
Ácido Acrílico	26,86	26,64	26,97	24,25	28,72	24,04	28,70
Glicose	15,72	16,79	15,13	28,75	6,38	29,82	6,51
Biomassa	18,17	18,21	18,06	23,41	13,79	23,77	13,96

Na Tabela 4.4 pode-se perceber uma maior variação nas concentrações finais de ácido acrílico, glicose e biomassa, quando a vazão (F_{in}) e as dimensões do reator (D_r e L) são alteradas. Diminuindo a vazão (F_{in}) em 20% de seu valor inicial é possível aumentar em 7,92% a concentração final de ácido acrílico e diminuir em 67,77% e 28,03% a concentração final de glicose e biomassa, respectivamente.

Através da resolução das equações do modelo foi possível determinar os perfis de concentração de glicose, ácido acrílico e biomassa e posteriormente, analisar a sensibilidade das concentrações frente aos parâmetros operacionais e de projeto usados

neste modelo. Com o objetivo de identificar os efeitos dos parâmetros sobre as concentrações, como também, possíveis interações entre os parâmetros, foram realizados planejamentos experimentais e os resultados obtidos são apresentados na seqüência.

4.3 Planejamento Experimental

Para poder avaliar as influências dos parâmetros operacionais, de projeto e cinéticos sobre o processo de síntese de ácido acrílico, foi aplicada a técnica de planejamento experimental. Primeiramente, foram analisados os parâmetros operacionais $(S_{in}, F_{in} \in X_{in})$, através da realização de um planejamento fatorial 2^k (k = 3).

Os diferentes parâmetros foram avaliados em dois níveis, inferior e superior, onde estes níveis correspondem a uma variação de $\pm 20\%$ nos valores de cada parâmetro, conforme Tabela 4.5. A Tabela 4.6 apresenta a matriz codificada dos parâmetros, onde o sinal (-) corresponde ao nível inferior e o sinal (+) ao nível superior.

Neste planejamento foram consideradas como respostas de interesse as concentrações de glicose, ácido acrílico e biomassa, obtidas no estado dinâmico e estacionário do processo.

O Software STATISTICA foi usado para gerar a matriz dos valores dos parâmetros operacionais e o modelo descrito anteriormente foi usado para gerar as respostas desejadas. As simulações foram realizadas de acordo com o planejamento fatorial completo 2^3 especificado na Tabela 4.6. As simulações realizadas neste planejamento são apresentadas no Apêndice B.

Parâmetros	Níveis					
	(-)	Ponto central	(+)			
S _{in}	120	150	180			
F _{in}	F _{in} 0,00024		0,00036			
X _{in}	16	20	24			

Tabela 4.5 – Parâmetros operacionais usados no planejamento fatorial 2³

Ensayos	Sin	Fin	Xin
1	-1	-1	-1
2	1	-1	-1
3	-1	1	-1
4	1	1	-1
5	-1	-1	1
6	1	-1	1
7	-1	1	1
8	1	1	1

Modelagem e Controle da Síntese do Ácido Acrílico via Processo Fermentativo

Depois de obtidos os valores das respostas de interesse, estes valores foram transportados na matriz experimental e, seqüencialmente, foi gerada a matriz dos efeitos dos parâmetros sobre as respostas, bem como a tabela ANOVA (Análise de Variância). As Tabelas 4.7 – 4.12 apresentam os efeitos dos parâmetros operacionais (S_{in} , F_{in} e X_{in}) sobre as concentrações de glicose, ácido acrílico e biomassa, respectivamente, para um nível de confiança de 95%, tanto no comportamento dinâmico quanto no estacionário.

As análises de variância dos parâmetros operacionais sobre as respostas e os coeficientes de determinação do modelo (R^2) são apresentados no Apêndice B.

•	Ffaita	Desvie nedrão	n	Confiniante de regressão
	Elelto	Desvio paurao	Р	Coenciente de regressão
Média	77,047	2,840	0,023	77,047
S _{in}	40,583	5,680	0,089	20,292
F _{in}	-4,570	5,680	0,569	-2,285
X _{in}	0,740	5,680	0,918	0,370
$S_{in}F_{in}$	5,593	5,680	0,505	2,797
$S_{in}X_{in}$	-6,954	5,680	0,436	-3,477
FinXin	-6,193	5,680	0,472	-3,097

Tabela 4.7 - Efeitos dos parâmetros operacionais sobre as concentrações de glicose

abela 4.8 - Efeitos dos parâmetros operacionais sobre a concentração final de glicose							
	Efeito Desvio padrão p		р	Coeficiente de regressão			
Média	18,005	0,768	0,027	18,005			
S _{in}	18,593	1,536	0,052	9,296			
* <i>F</i> _{in}	22,145	1,536	0,044	11,072			
X_{in}	-1,249	1,536	0,565	-0,624			
$S_{in}F_{in}$	8,125	1,536	0,119	4,062			
$S_{in}X_{in}$	-1,004	1,536	0,631	-0,502			
$F_{in}X_{in}$	-0,620	1,536	0,756	-0,310			

Modelagem e Controle da Síntese do Ácido Acrílico via Processo Fermentativo

* Parâmetros significativos ($p < \alpha$; $\alpha = 0.05$)

Tabela 4.9 - Efeitos dos p	arâmetros operacionais	s sobre as conce	entrações de ác	ido acrílico
(comportamento dinâmico))			

	Efeito	Desvio padrão	р	Coeficiente de regressão
Média	15,341	0,182	0,008	15,341
S _{in}	2,384	0,364	0,097	1,192
F _{in}	-0,586	0,364	0,354	-0,293
X_{in}	1,352	0,364	0,168	0,676
$S_{in}F_{in}$	0,381	0,364	0,485	0,191
S _{in} X _{in}	-0,109	0,364	0,814	-0,055
FinXin	-0,261	0,364	0,604	-0,131

* Parâmetros significativos (p < α ; $\alpha = 0.05$)

Tabela	4.10 -	Efeitos	dos	parâmetros	operacionais	sobre a	concentração	final	de	ácido
acrílico										

	Efeito	Desvio padrão	р	Coeficiente de regressão
Média	27,149	0,644	0,001	27,149
* S _{in}	6,781	1,288	0,034	3,391
* F _{in}	-5,929	1,288	0,044	-2,964
X _{in}	1,750	1,288	0,307	0,875
$S_{in}F_{in}$	-0,125	1,288	0,932	-0,062
$S_{in}X_{in}$	-1,299	1,288	0,419	-0,650

Modelagem e Controle da Síntese do Ácido Acrílico via Processo Fermentativo

	Efeito	Desvio padrão	р	Coeficiente de regressão
Média	17,829	1,886	0,067	17,829
S _{in}	1,270	3,773	0,793	0,635
F _{in}	-1,701	3,773	0,730	-0,850
X_{in}	4,761	3,773	0,427	2,380
$S_{in}F_{in}$	5,358	3,773	0,391	2,679
$S_{in}X_{in}$	0,345	3,773	0,942	0,173
F _{in} X _{in}	0,193	3,773	0,967	0,097

Tabela 4.11 - Efeitos dos parâmetros operacionais sobre as concentrações de biomassa (comportamento dinâmico)

* Parâmetros significativos (p < α ; $\alpha = 0.05$)

Tabela 4.12 - Efeitos dos parâmetros operacionais sobre a concentração final de biomassa

	Efeito	Desvio padrão	р	Coeficiente de regressão
Média	19,840	0,199	0,006	19,840
S _{in}	4,256	0,398	0,059	2,128
F _{in}	5,036	0,398	0,050	2,518
X _{in}	4,752	0,398	0,053	2,376
S _{in} F _{in}	1,446	0,398	0,171	0,723
S _{in} X _{in}	-0,513	0,398	0,420	-0,257
FinXin	-0,448	0,398	0,463	-0,224

* Parâmetros significativos (p < α ; $\alpha = 0.05$)

Através dos valores de "p" (p < α ; $\alpha = 0,05$) apresentados nas Tabelas 4.7 - 4.12, pode-se observar que as concentrações de glicose e ácido acrílico obtidas ao longo do tempo, não sofrem influências significativas de nenhum dos três parâmetros analisados, considerando um nível de confiança de 95%. A concentração final de ácido acrílico sofre influência significativa da vazão de alimentação (F_{in}) e da concentração de substrato alimentada no biorreator (S_{in}), enquanto a concentração final de glicose é influenciada apenas pela vazão de alimentação (F_{in}). As concentrações de biomassa obtidas ao longo do tempo e a concentração final de biomassa não sofrem influências significativas de nenhum dos três parâmetros operacionais analisados. A Figura 4.8 apresenta os efeitos de cada parâmetro sobre as concentrações de glicose, ácido acrílico e biomassa durante o comportamento dinâmico e estacionário do processo.

Figura 4.8 - Efeitos estimados dos parâmetros operacionais sobre as concentrações de glicose, ácido acrílico e biomassa (a – dinâmico; b – estacionário)

A partir desta análise (dentro dos limites de valores pré-estabelecidos), pode-se concluir que:

✓ Aumentando a concentração de S_{in} e diminuindo F_{in} , a concentração final de ácido acrílico aumenta;

 \checkmark Aumentando a vazão F_{in}, a concentração residual de glicose será maior.

Para investigar a influência dos parâmetros de projeto sobre as concentrações de glicose, ácido acrílico e biomassa, também, foi realizado um planejamento fatorial 2^3 . Os três parâmetros (D_p, D_r e L) foram avaliados em dois níveis, inferior (-) e superior (+), onde estes níveis correspondem a uma variação de \pm 15% no valor do diâmetro da partícula (D_p) e no comprimento do biorreator (L) e \pm 5% no diâmetro do biorreator (D_r), conforme Tabela 4.13. Os parâmetros de projeto foram variados em diferentes níveis percentuais devido à sensibilidade dos parâmetros no modelo utilizado. A Tabela 4.14 apresenta a matriz codificada dos parâmetros. As simulações realizadas neste planejamento são apresentadas no Apêndice B.

É importante analisar estes parâmetros sobre o processo em estudo, pois caso contrário é possível que se tenha um processo com baixo desempenho operacional, uma vez que as alterações operacionais podem não conduzir o processo para um desempenho elevado.

Parâmetros	Níveis							
	(-)	Ponto central	(+)					
D _p	0,000255	0,0003	0,000345					
Dr	0,0475	0,05	0,0525					
L	0,85	1,00	1,15					

Tabela 4.13 – Parâmetros de projeto usados no planejamento fatorial 2^3

Tabela 4.14 - Matriz codificada dos valores dos parâmetros de projeto

Ensaios	Dp	Dr	L
1	-1	-1	-1
2	1	-1	-1
3	-1	1	-1
4	1	1	-1
5	-1	-1	1
6	1	-1	1
7	-1	1	1
8	1	1	1

As Tabelas 4.15 – 4.20 apresentam os efeitos dos parâmetros de projeto (D_p , D_r e L) sobre as concentrações de glicose, ácido acrílico e biomassa, respectivamente, para um nível de confiança de 95%, tanto no comportamento dinâmico quanto estacionário. As análises de variância dos parâmetros de projeto sobre as respostas e os coeficientes de determinação do modelo (R^2) são apresentados no Apêndice B.

Modelagem e Controle da Síntese do Ácido Acrílico via Processo Fermentativo

	Efeito	Desvio padrão	р	Coeficiente de regressão
Média	73,021	0,018	0,000	73,021
D _p	-0,368	0,036	0,062	-0,184
D _r	-0,017	0,036	0,719	-0,009
L	0,152	0,036	0,148	0,076
$D_p D_r$	-0,360	0,036	0,063	-0,180
$^{*}D_{p}L$	-0,613	0,036	0,037	-0,307
$* D_r L$	-0,663	0,036	0,035	-0,332

Tabela 4.15 – Efeitos dos parâmetros de projeto sobre as concentrações de glicose (comportamento dinâmico)

* Parâmetros significativos (p < α ; $\alpha = 0.05$)

Tabela 4.16 - Efeitos dos parâmetros de projeto sobre a concentração final de glicose

	Efeito	Desvio padrão	р	Coeficiente de regressão
Média	18,018	0,018	0,001	18,018
$* D_p$	-1,228	0,037	0,019	-0,614
$*D_r$	-11,659	0,037	0,002	-5,830
* L	-18,173	0,037	0,001	-9,086
$D_p D_r$	-0,007	0,037	0,875	-0,004
D _p L	0,048	0,037	0,416	0,024
* <i>D</i> _{<i>r</i>} <i>L</i>	1,298	0,037	0,018	0,649

* Parâmetros significativos ($p < \alpha$; $\alpha = 0.05$)

	Efeito	Desvio padrão	р	Coeficiente de regressão
Média	15,396	0,004	0,000	15,396
D _p	0,074	0,007	0,062	0,037
Dr	0,003	0,007	0,732	0,002
L	-0,031	0,007	0,147	-0,015
$D_p D_r$	0,072	0,007	0,064	0,036
$* D_p L$	0,122	0,007	0,038	0,061
$* D_r L$	0,133	0,007	0,035	0,066

Tabela 4.17 - Efeitos dos parâmetros de projeto sobre as concentrações de ácido acrílico (comportamento dinâmico)

Modelagem e Controle da Síntese do Ácido Acrílico via Processo Fermentativo

	Efeito	Desvio padrão	р	Coeficiente de regressão
Média	26,396	0,004	0,000	26,396
$* D_p$	0,246	0,007	0,019	0,123
$* D_r$	2,332	0,007	0,002	1,166
* L	3,635	0,007	0,001	1,817
$D_p D_r$	0,001	0,007	0,874	0,001
D_pL	-0,010	0,007	0,415	-0,005
$* D_r L$	-0,260	0,007	0,018	-0,130

Tabela 4.18 - Efeitos dos parâmetros de projeto sobre a concentração final de ácido acrílico

* Parâmetros significativos (p < α ; $\alpha = 0.05$)

Tabela 4.19 - Efeitos dos parâmetros de projeto sobre as concentrações de biomassa (comportamento dinâmico)

	Efeito	Desvio padrão	р	Coeficiente de regressão
Média	20,105	0,682	0,022	20,105
D _p	1,363	1,365	0,500	0,682
Dr	-1,361	1,365	0,501	-0,680
L	1,368	1,365	0,499	0,684
D _p D _r	1,367	1,365	0,499	0,684
D_pL	-1,360	1,365	0,501	-0,680
D _r L	1,366	1,365	0,500	0,683

* Parâmetros significativos ($p < \alpha; \alpha = 0.05$)

Tabela 4.20 – Efeitos dos parâmetros de projeto sobre a concentração final de biomassa

	Efeito	Desvio padrão	р	Coeficiente de regressão
Média	19,883	0,001	0,000	19,883
D _p	-0,020	0,002	0,079	-0,010
$*D_r$	-2,896	0,002	0,001	-1,448
* L	-4,382	0,002	0,000	-2,191
$D_p D_r$	-0,023	0,002	0,070	-0,011
$^{*}D_{p}L$	-0,036	0,002	0,044	-0,018
* <i>D</i> _r <i>L</i>	0,093	0,002	0,017	0,047

Através dos valores de "p" apresentados nas Tabelas 4.15 – 4.20, pode-se observar que as interações entre o diâmetro da partícula (D_p) e o comprimento do biorreator (L) e entre o diâmetro do biorreator (D_r) e (L) exercem influências significativas sobre as concentrações de glicose e ácido acrílico durante o comportamento dinâmico do processo. As concentrações finais de glicose e ácido acrílico são influenciadas pelos três parâmetros de projeto analisados (D_p , D_r e L) e também, pela interação entre (D_r) e (L). As concentrações de biomassa durante o comportamento dinâmico não sofrem influências significativas de nenhum dos parâmetros de projeto analisados. A concentração final de biomassa é influenciada por (D_r) e (L), como também pelas interações entre (D_p) e (L) e entre (D_r) e (L).

A Figura 4.9 apresenta os efeitos de cada parâmetro sobre as concentrações de glicose, ácido acrílico e biomassa durante o comportamento dinâmico e estacionário do processo.

Figura 4.9 - Efeitos estimados dos parâmetros de projeto sobre as concentrações de glicose, ácido acrílico e biomassa (a – dinâmico; b – estacionário)

Comparando as Figuras 4.8 e 4.9, é possível perceber que os efeitos estimados dos parâmetros operacionais sobre as concentrações de glicose, ácido acrílico e biomassa são maiores que os efeitos estimados dos parâmetros de projeto sobre essas concentrações, porém, os parâmetros de projeto apresentam influências estatisticamente mais significativas sobre as concentrações.

Dando seqüência ao estudo do comportamento dinâmico e estacionário do processo, foi realizada também, uma análise dos parâmetros cinéticos do modelo. Os

parâmetros foram variados igualmente em \pm 20% de seus valores iniciais, conforme Tabela 4.21.

Neste trabalho foi utilizado um planejamento Plackett-Burman com 12 ensaios e 11 graus de liberdade, onde sete graus de liberdade estão associados aos parâmetros analisados e os demais foram usados para estimação do erro.

A Tabela 4.22 apresenta a matriz codificada para o planejamento de Plackett-Burman com 12 ensaios. As variáveis inertes (VI_n) que aparecem na matriz codificada são usadas para a determinação do erro e, assim, definir os fatores estatisticamente significativos, através dos efeitos principais de cada um deles.

Os perfis de concentração de glicose, ácido acrílico e biomassa obtidos em cada simulação, realizadas de acordo com planejamento de Plackett-Burman para os sete parâmetros cinéticos especificados na Tabela 4.22 são apresentados no Apêndice B.

As respostas analisadas neste planejamento foram as concentrações de glicose, ácido acrílico e biomassa obtidas durante o comportamento dinâmico e estacionário do processo.

Parâmetros	Níveis						
	(-)	Ponto central	(+)				
Ks	19,2	24	28,8				
K _i	80	100	120				
K _A	0,008	0,01	0,012				
k _d	0,008	0,01	0,012				
kt	0,0072	0,009	0,0108				
μ_{max}	0,36	0,45	0,54				
m	0,40	0,50	0,60				

 Tabela 4.21 – Parâmetros cinéticos analisados no planejamento de Plackett-Burman

Tabel	Tabela 4.22 - Matriz codificada dos valores dos parâmetros cinéticos										
Ensaios	Ks	Ki	KA	k _d	k _t	μ_{max}	m	VI ₁	VI ₂	VI ₃	VI ₄
1	1	-1	1	-1	-1	-1	1	1	1	-1	1
2	1	1	-1	1	-1	-1	-1	1	1	1	-1
3	-1	1	1	-1	1	-1	-1	-1	1	1	1
4	1	-1	1	1	-1	1	-1	-1	-1	1	1
5	1	1	-1	1	1	-1	1	-1	-1	-1	1
6	1	1	1	-1	1	1	-1	1	-1	-1	-1
7	-1	1	1	1	-1	1	1	-1	1	-1	-1
8	-1	-1	1	1	1	-1	1	1	-1	1	-1
9	-1	-1	-1	1	1	1	-1	1	1	-1	1
10	1	-1	-1	-1	1	1	1	-1	1	1	-1
11	-1	1	-1	-1	-1	1	1	1	-1	1	1
12	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1

CAPÍTULO IV - MODELAGEM MATEMÁTICA

Modelagem e Controle da Síntese do Ácido Acrílico via Processo Fermentativo

As Tabelas 4.23 – 4.28 e a Figura 4.10 apresentam os efeitos principais dos parâmetros cinéticos (K_s, K_i, K_A, k_d, k_t, μ_{max} e m) sobre as concentrações de glicose, ácido acrílico e biomassa, respectivamente, para um nível de confiança de 95%, tanto no comportamento dinâmico quanto estacionário. As análises de variância dos parâmetros cinéticos e os coeficientes de determinação do modelo (R²) são apresentadas no Apêndice B.

Através das Tabelas 4.23 – 4.28 é possível visualizar que os sete parâmetros cinéticos analisados no planejamento de Plackett-Burman têm influências estatisticamente significativas sobre as concentrações finais de glicose e ácido acrílico. As concentrações de glicose e ácido acrílico obtidas ao longo do tempo são influenciadas por três dos sete parâmetros cinéticos analisados, são eles (K_s, μ_{max} , m). A concentrações final de biomassa sofre influência significativa de (K_s, k_d, μ_{max} , m), e as concentrações de biomassa obtidas ao longo do tempo sofrem influências de (K_s, K_i, k_d, μ_{max}).

Modelagem e Controle da Síntese do Ácido Acrílico via Processo Fermentativo

	Efeito	Desvio padrão	р	Coeficiente de regressão
Média	72,382	0,653	0,000	72,382
$*K_s$	13,183	1,306	0,001	6,592
Ki	-3,087	1,306	0,077	-1,543
K _A	1,939	1,306	0,212	0,969
k _d	-0,979	1,306	0,495	-0,490
kt	0,843	1,306	0,554	0,422
* μ_{max}	-20,762	1,306	0,000	-10,381
* <i>m</i>	-6,809	1,306	0,006	-3,405

Tabela 4.23 - Efeitos principais dos parâmetros cinéticos sobre as concentrações de glicose (comportamento dinâmico)

* Parâmetros significativos ($p < \alpha; \alpha = 0.05$)

Tabela 4.24 - Efeitos principais dos parâmetros cinéticos sobre a concentração final de glicose

	Efeito	Desvio padrão	р	Coeficiente de regressão
Média	17,835	0,137	0,000	17,835
$*K_s$	10,787	0,274	0,000	5,394
* <i>K</i> _i	0,936	0,274	0,027	0,468
$* K_A$	1,766	0,274	0,003	0,883
* k _d	1,372	0,274	0,007	0,686
$* k_t$	-1,338	0,274	0,008	-0,669
* μ_{max}	-13,005	0,274	0,000	-6,502
* m	-10,394	0,274	0,000	-5,197

Modelagem e Controle da Síntese do Ácido Acrílico via Processo Fermentativo

	Efeito	Desvio padrão	р	Coeficiente de regressão
Média	15,524	0,131	0,000	15,524
$*K_s$	-2,637	0,261	0,001	-1,318
Ki	0,617	0,261	0,077	0,309
K _A	-0,388	0,261	0,211	-0,194
k _d	0,196	0,261	0,495	0,098
k _t	-0,168	0,261	0,554	-0,084
* μ_{max}	4,152	0,261	0,000	2,076
* <i>m</i>	1,362	0,261	0,006	0,681

Tabela 4.25 - Efeitos principais dos parâmetros cinéticos sobre as concentrações de ácido acrílico (comportamento dinâmico)

* Parâmetros significativos ($p < \alpha; \alpha = 0.05$)

Tabela 4.26 - Efeitos principais dos parâmetros cinéticos sobre a concentração final de ácido acrílico

	Efeito	Desvio padrão	р	Coeficiente de regressão
Média	26,433	0,027	0,000	26,433
* K _s	-2,157	0,055	0,000	-1,079
$* K_i$	-0,187	0,055	0,027	-0,094
$* K_A$	-0,353	0,055	0,003	-0,177
k_d	-0,274	0,055	0,007	-0,137
k_{t}	0,268	0,055	0,008	0,134
$*\mu_{max}$	2,601	0,055	0,000	1,300
* <i>m</i>	2,079	0,055	0,000	1,039

Modelagem e Controle da Síntese do Ácido Acrílico via Processo Fermentativo

	Efeito	Desvio padrão	р	Coeficiente de regressão
Média	20,795	0,008	0,000	20,795
$*K_s$	-0,220	0,017	0,000	-0,110
* <i>K</i> _i	0,057	0,017	0,028	0,028
K _A	-0,031	0,017	0,144	-0,015
* <i>k</i> _d	-0,073	0,017	0,012	-0,036
kt	-0,012	0,017	0,532	-0,006
* μ_{max}	0,339	0,017	0,000	0,170
m	-0,009	0,017	0,615	-0,005

Tabela 4.27 - Efeitos principais dos parâmetros cinéticos sobre as concentrações de biomassa (comportamento dinâmico)

* Parâmetros significativos ($p < \alpha; \alpha = 0,05$)

Tabela 4.28 – Efeitos principais dos parâmetros cinéticos sobre a concentração final de biomassa

	Efeito	Desvio padrão	р	Coeficiente de regressão
Média	19,501	0,103	0,000	19,501
$*K_s$	1,267	0,206	0,004	0,634
Ki	-0,391	0,206	0,131	-0,195
K _A	0,321	0,206	0,195	0,160
$* k_d$	-2,085	0,206	0,001	-1,043
k _t	0,240	0,206	0,308	0,120
* μ_{max}	-1,911	0,206	0,001	-0,955
* <i>m</i>	-2,757	0,206	0,000	-1,379

CAPÍTULO IV - MODELAGEM MATEMÁTICA Modelagem e Controle da Síntese do Ácido Acrílico via Processo Fermentativo

Figura 4.10 - Efeitos estimados dos parâmetros cinéticos sobre as concentrações de glicose, ácido acrílico e biomassa (a – dinâmico; b – estacionário)

Através da realização dos planejamentos experimentais foi possível identificar os valores ótimos dos parâmetros cinéticos, operacionais e de projeto, identificados como sendo estatisticamente significativos sobre a concentração final de ácido acrílico (concentração de maior interesse), dentro da faixa de valores estabelecida para este processo. A Tabela 4.29 mostra os valores ótimos para estes parâmetros obtidos através da aplicação da técnica de planejamento de experimentos.

Parâmetros	Valores	Parâmetros	Valores
Ks	19,2	m	0,6
Ki	80	S _{in}	180
K _A	0,008	F _{in}	0,00024
k _d	0,008	D _p	0,000345
kt	0,0108	Dr	0,0525
μ_{max}	0,54	L	1,15

 Tabela 4.29 - Valores ótimos para os parâmetros analisados

4.4 Otimização do Processo

Nesta seção, serão apresentados os resultados da otimização dos parâmetros operacionais e de projeto do processo de síntese de ácido acrílico via processo fermentativo, levando em consideração um modelo não estruturado com células de *Saccharomyces cerevisiae* imobilizadas. Para a otimização dos parâmetros foram utilizadas

a metodologia de superfície de resposta (RSM) e a técnica de otimização por programação quadrática sucessiva (SQP).

Os parâmetros operacionais (S_{in} , X_{in} e D) e de projeto (D_p , D_r e L) foram otimizados com o objetivo de encontrar valores ótimos ou próximos destes de forma a aumentar a concentração final de ácido acrílico. Neste planejamento procurou-se avaliar apenas a concentração final em relação aos parâmetros operacionais e de projeto, pois, devido ao fato de ter sido estimado um rendimento ($Y_{A/s} = 20\%$) no início do processo, não se conseguiu aumentar o rendimento final através da variação dos parâmetros operacionais e de projeto.

Para a determinação dos efeitos dos parâmetros sobre concentração final de ácido acrílico, como também, para determinação da equação do modelo a ser otimizada através da técnica de otimização por programação quadrática sucessiva e para análise da superfície de resposta, foram realizados planejamentos composto central, tipo estrela, conforme Tabela 4.30. Os oito primeiros ensaios correspondem aos pontos 2³, os ensaios 9 a 14 correspondem aos pontos axiais e o último ensaio corresponde ao ponto central. Neste trabalho foi utilizado apenas um ensaio com ponto central (ensaio 15), pois se trata de um trabalho de simulação.

Ensaios	S _{in}	X _{in}	F _{in}
1	-1	-1	-1
2	-1	-1	1
3	-1	1	-1
4	-1	1	1
5	1	-1	-1
6	1	-1	1
7	1	1	-1
8	1	1	1
9	-1,68179	0	0
10	1,68179	0	0
11	0	-1,68179	0
12	0	1,68179	0
13	0	0	-1,68179
14	0	0	1,68179
15	0	0	0

Tabela 4. 30- Matriz codificada dos valores dos parâmetros

A Tabela 4.31 apresenta os parâmetros operacionais e de projeto usados nos planejamentos. Inicialmente, foi realizado um planejamento estrela para os parâmetros operacionais e posteriormente, para os parâmetros de projeto.

	L	1 5	1 5			
Parâmetros		Níveis				
	(-)	Ponto central	(+)			
S _{in}	135	150	165			
X _{in}	18	20	22			
Fin	0,00027	0,0003	0,00033			
D _p	0,00027	0,0003	0,00033			
Dr	0,0475	0,05	0,0525			
L	0,9	1	1,1			

 Tabela 4.31 - Parâmetros operacionais e de projeto analisados no planejamento estrela

Para determinação das equações do modelo foram utilizados polinômios de 2^a ordem e realizada a análise de variância dos parâmetros sobre a resposta, para um nível de confiança de 95%.

Os resultados da ANOVA dos parâmetros operacionais são apresentados na Tabelas 4.32. Para cálculo do erro foi ignorado um efeito (S_{in}F_{in}).

No gráfico de Pareto (Figura 4.11) é possível visualizar os efeitos dos parâmetros operacionais e de suas interações sobre a concentração final de ácido acrílico.

Através da Tabela 4.32 e da Figura 4.11, é possível visualizar que apenas os parâmetros S_{in} e F_{in} exercem influências significativas sobre a concentração final de ácido acrílico.

A concentração de substrato alimentada no biorreator (S_{in}) tem efeito positivo sobre a concentração final de ácido acrílico, enquanto a vazão (F_{in}) tem efeito negativo, isto é, para que se consiga aumentar a concentração final de ácido acrílico, S_{in} deve ser mantido em seu valor máximo (nível superior) e F_{in} em seu valor mínimo (nível inferior), conforme mostra a Figura 4.12.

Modelagem e Controle da Síntese do Ácido Acrílico via Processo Fermentativo

Fator	SQ	GL	MQ	F	р	
$*S_{in}(L)$	45,558	1	45,558	207,672	0,000007	
$S_{in}(Q)$	0,103	1	0,103	0,468	0,519	
$X_{in}(L)$	1,049	1	1,049	4,781	0,072	
$X_{in}(Q)$	0,028	1	0,028	0,128	0,733	
$*F_{in}\left(L\right)$	14,527	1	14,522	66,196	0,0002	
$F_{in}\left(Q\right)$	0,019	1	0,019	0,085	0,780	
$S_{in}X_{in}$	0,455	1	0,455	2,073	0,199	
$X_{in}F_{in}$	0,577	1	0,577	2,632	0,156	
Erro	1,316	6	0,219	35,543		
SQ _R	62,270	8	7,784			
SQT	63,586	14				
R^2	0.9793	•	1			

Tabela 4.32 - ANOVA dos parâmetros operacionais sobre a concentração final de ácido acrílico

Figura 4.11 - Gráfico de Pareto dos efeitos dos parâmetros operacionais sobre a concentração final de ácido acrílico

Figura 4.12 - Superfície de resposta da concentração de ácido acrílico em função dos parâmetros operacionais

A função obtida com o modelo quadrático para a concentração final de ácido acrílico em função dos parâmetros operacionais foi:

$$AA = 26786 + 1,826S_{in} - 0,130S_{in}^{2} + 0,277X_{in} - 0,068X_{in}^{2} - 1,032F_{in} - 0,056F_{in}^{2} + 0,238S_{in}X_{in} - 0,269X_{in}F_{in}$$

$$(4.36)$$

Na Equação (4.36) foram usados todos os parâmetros operacionais e suas interações. Esta equação foi utilizada como função objetivo na otimização por programação quadrática sucessiva, onde se procurou maximizar a concentração final de ácido acrílico.

A Tabela 4.33 apresenta os valores iniciais e otimizados dos parâmetros operacionais e as concentrações obtidas com esses valores.

Tabela 4.55 - Valores dos parametros operacionais e concentrações de acido actineo						
	S_{in} (kg m ⁻³)	X_{in} (kg m ⁻³)	$F_{in}(m^3 s^{-1})$	$AA (kg m^{-3})$		
Início do processo	150	20	0,0003	26,74		
Valores otimizados	175,23	23,37	0,000249	32,67		

Tabela 4.33 - Valores dos parâmetros operacionais e concentrações de ácido acrílico

Depois de otimizados os parâmetros operacionais, foi realizado o planejamento estrela para os parâmetros de projeto, com objetivo de encontrar valores ótimos para estes parâmetros e, assim, maximizar a concentração final de ácido acrílico. Para este planejamento foram usados os valores otimizados dos parâmetros operacionais.

Os resultados da ANOVA dos parâmetros de projeto são apresentados na Tabela 4.34. No gráfico de Pareto (Figura 4.13) é possível visualizar os efeitos dos parâmetros de projeto e de suas interações sobre a concentração final de ácido acrílico

Fator	SQ	GL	MQ	F	р	
$D_p(L)$	0,006	1	0,006	0,113	0,751	
$D_p(Q)$	0,019	1	0,019	0,367	0,571	
$^{*}D_{r}\left(L ight)$	19,861	1	19,861	385,378	0,000006	
$D_{r}(Q)$	0,122	1	0,122	2,373	0,184	
*L (L)	24,432	1	24,432	474,084	0,000004	
L (Q)	0,192	1	0,192	3,735	0,111	
$D_p D_r$	0,117	1	0,117	2,263	0,193	
D _p L	0,007	1	0,007	0,144	0,719	
D _r L	0,165	1	0,165	3,208	0,133	
Erro	0,258	5	0,052	95,83		
SQ _R	44,841	9	4,983			
SQT	45,099	14				
\mathbb{R}^2	0,9943	•				

Tabela 4.34 - ANOVA dos parâmetros de projeto sobre a concentração final de ácido acrílico

Através do valor de $F_{calculado}$ ($F_{R/r} = 95,83$), que é aproximadamente vinte vezes maior que o valor de $F_{tabelado}$ ($F_{9,5} = 4,77$) e pela variação explicada de 99,43% pode-se dizer que o modelo quadrático usado no planejamento composto central, é adequado para verificar a variação da concentração final de ácido acrílico em função dos parâmetros analisados (D_p , D_r e L).

CAPÍTULO IV - MODELAGEM MATEMÁTICA Modelagem e Controle da Síntese do Ácido Acrílico via Processo Fermentativo

Figura 4.13 - Gráfico de Pareto dos efeitos dos parâmetros de projeto sobre a concentração final de ácido acrílico

A Figura 4.14 mostra a superfície de reposta da concentração final de ácido acrílico em função dos parâmetros de projeto ($D_r e L$).

Figura 4.14 - Superfície de resposta da concentração de ácido acrílico em função dos parâmetros de projeto

Através das Figuras 4.13 e 4.14 e também, dos valores de "p" apresentados na Tabela 4.34, pode-se perceber que o diâmetro do biorreator (D_r) e o comprimento (L)

exercem influências estatisticamente significativas sobre a concentração final de ácido acrílico, para um intervalo de confiança de 95%. Os dois parâmetros ($D_r \ e \ L$) têm efeitos positivos sobre a concentração, consequentemente, para que se consiga aumentar a concentração final de ácido acrílico, os valores de (D_r) e (L) devem ser máximos (dentro dos limites estabelecidos no planejamento).

A função obtida com o modelo quadrático para a concentração final de ácido acrílico em função dos parâmetros de projeto foi:

$$AA = 32,694 + 0,021D_p - 0,056D_p^2 + 1,206D_r - 0,143D_r^2 + 1,338L - 0,178L^2 - 0,121D_pD_r + 0,031D_pL - 0,144D_rL$$
(4.37)

A Equação (4.37) foi usada como função objetivo na otimização por programação quadrática sucessiva, onde se consegui otimizar os parâmetros de projeto (D_p , D_r e L) e assim, maximizar a concentração final de ácido acrílico, considerando um rendimento ($Y_{A/s}$) de 20%.

A Tabela 4.35 apresenta os valores dos parâmetros operacionais e de projeto usados no início do processo, seus valores otimizados e as concentrações finais de ácido acrílico. Através da otimização dos parâmetros operacionais e de projeto foi possível aumentar a concentração final de ácido acrílico em aproximadamente 33%.

Tabela 4.35 - Valore	es dos parâ	metros op	eracionais	e de projet	to e concei	ntrações	finais de
ácido acrílico							
	S _{in}	Xin	F _{in}	Dp	Dr	L	AA

	S _{in}	X _{in}	F _{in}	Dp	Dr	L	AA
	(kg m^{-3})	(kg m^{-3})	$(m^3 s^{-1})$	(m)	(m)	(m)	(kg m^{-3})
Início do processo	150	20	0,0003	0,0003	0,05	1	26,74
Valores otimizados	175,23	23,37	0,00025	0,0003	0,05	1	32,67
Valores otimizados	175,23	23,37	0,00025	0,00029	0,054	1	35,58

4.5 Conclusão

Neste capítulo foi apresentado um modelo não estruturado com células imobilizadas, que representou a síntese de ácido acrílico a partir da degradação da glicose. Durante o desenvolvimento deste modelo percebeu-se uma maior dificuldade em relação ao modelo apresentado no Capítulo III, devido a certa complexidade do método de colocação ortogonal quando comparado ao método de Runge-Kutta, como também, por se tratar de

CAPÍTULO IV - MODELAGEM MATEMÁTICA Modelagem e Controle da Síntese do Ácido Acrílico via Processo Fermentativo

um modelo heterogêneo, onde foi necessário descrever balanços de massa, tanto para a fase fluida quanto para a fase sólida. Através da aplicação da técnica de planejamento fatorial foi possível identificar a influência dos parâmetros operacionais, de projeto e cinéticos sobre o processo. Com a aplicação da metodologia de superfície de resposta foi possível encontrar condições de operação e de projeto que aumentaram à concentração final de ácido acrílico, e também, determinar a equação do modelo que foi utilizada posteriormente, na otimização por SQP. Com a aplicação da estratégia de otimização por programação quadrática sucessiva foram obtidos valores ótimos dos parâmetros operacionais e de projeto, conseguindo assim, aumentar a concentração final de ácido acrílico.

CAPITULO V. Modelo Matemático Estruturado para a Síntese de Ácido Acrílico via Processo Fermentativo com Células Livres

5.1 Introdução

Neste capítulo será apresentado um modelo matemático com células de *Saccharomyces cerevisiae* livres. O processo fermentativo consiste na conversão de glicose em piruvato (processo de glicólise), lactato, biomassa e ácido acrílico como produto final do processo. Neste modelo a composição da biomassa será considerada. Inicialmente foi desenvolvida a modelagem do processo e realizadas as simulações. Na seqüência foram aplicadas técnicas de planejamento experimental, com o objetivo de identificar os parâmetros operacionais e cinéticos que exercem influências significativas sobre o processo. Depois de identificados os efeitos de cada parâmetro, foi realizada a otimização dos parâmetros operacionais do processo, através da aplicação do método de otimização por programação quadrática sucessiva, com o objetivo de encontrar condições ótimas de operação de forma a maximizar o rendimento final de ácido acrílico. Para finalizar o trabalho, foi realizado o controle do processo com a aplicação da estratégia de controle em duas camadas.

5.2 Modelo Matemático Estruturado com Células Livres

O modelo que será apresentado neste capítulo descreve um processo fermentativo, onde a glicose (substrato) é convertida em piruvato (processo de glicólise), lactato, ácido acrílico (produto final) e em biomassa.

Foi considerado um processo anaeróbio, com formação de produto associado ao crescimento celular e o modelo como sendo bioquimicamente estruturado de dois compartimentos. O sistema foi considerado como sendo uma mistura ideal (CSTBR) com fluxo contínuo, caracterizado por uma taxa de diluição (D).

O modelo desenvolvido foi baseado no trabalho de Lei et al. (2001).

✓ Modelo de Lei *et al.* (2001): um modelo bioquímico estruturado que descreve o crescimento aeróbio de *Saccharomyces cerevisiae* em um meio limitado de

glicose e/ou etanol. A formulação do modelo é baseada em observações experimentais do metabolismo do piruvato sobre taxa de diluição crítica, onde o piruvato e o acetaldeído são importantes pontos de ruptura. Mais detalhes sobre o modelo de Lei *et al.* (2001) são apresentados no Anexo (A).

Antes de desenvolver o modelo estruturado para representar a síntese biotecnológica de ácido acrílico, reproduziu-se o modelo proposto por Lei *et al.* (2001). O modelo foi desenvolvido em linguagem FORTRAN. Para resolução das equações diferenciais ordinárias do modelo utilizou-se o método de Runge-Kutta 4ª ordem. Depois de se conseguir resultados muito próximos do trabalho original, os parâmetros cinéticos do modelo foram ajustados através da aplicação da técnica de otimização por algoritmo genético (do inglês – *Genetic Algorithm* - GA). A otimização dos parâmetros cinéticos por GA foi desenvolvida por Rivera (2006). Os resultados são apresentados no anexo A.

O modelo de cinética estruturada foi baseado na cinética de Michaelis-Menten e considerou-se que:

✓ Piruvato e biomassa são produzidos a partir da degradação da glicose;

✓ A biomassa formada a partir da glicose e do lactato é distribuída dentro de um compartimento ativo semelhante em todas as partes da célula, que está diretamente associado ao crescimento;

✓ Produção de biomassa a partir de lactato, com inibição por excesso de glicose;

Produção de enzima *lactato desidrogenase* a partir da parte ativa do material celular;

✓ O desaparecimento do compartimento celular ativo é dependente da concentração de ácido acrílico e glicose.

As reações consideradas neste modelo podem ser representadas de acordo com:

Glicose	$\xrightarrow{R_1}$ 2 Piruvato	
Glicose	$\xrightarrow{R_2} X_a$	
Piruvato	$\xrightarrow{R_3} \text{Lactato}$	
Lactato	$\xrightarrow{R_4} \text{ Ácido Acrílico} + H_2O$	(5.1)
Lactato	$\xrightarrow{R_5} X_a$	(3.1)
X_a	$\xrightarrow{R_6} X_{Ladh}$	
X_a	$\xrightarrow{R_7} \text{degradção}$	

A Figura 5.1 mostra uma rota representativa envolvida no processo de produção de ácido acrílico e, também, as taxas reacionais.

Figura 5.1 - Rota metabólica representativa

As taxas reacionais usadas no modelo são descritas a seguir.

$$R_{1} = k_{1} \frac{S_{glicose}}{S_{glicose} + K_{1}} X_{a} + k_{1a} \frac{S_{glicose}}{S_{glicose} + K_{1a}} X_{a}$$
(5.2)

$$R_2 = k_2 \frac{S_{gli\cos e}}{S_{gli\cos e} + K_2} \frac{1}{1 + \left(\frac{S_{lactato}}{K_{2i}}\right)} X_a$$
(5.3)

$$R_3 = k_3 \frac{S_{piruvato}}{S_{piruvato} + K_3} X_a$$
(5.4)

117

$$R_4 = k_4 \frac{S_{lactato}}{S_{lactato} + K_4} X_a \tag{5.5}$$

$$R_5 = k_5 \frac{S_{lactato}}{S_{lactato} + K_5} \left(\frac{1}{1 + K_{5i}S_{glicose}}\right) X_a$$
(5.6)

$$R_{6} = k_{6} \left(\frac{S_{glicose}}{S_{glicose} + K_{6}} + \frac{S_{lactato}}{S_{lactato} + K_{6a}} \right) \left(\frac{1}{K_{6i}S_{ac.acrílico} + 1} \right) X_{a}$$
(5.7)

$$R_{7} = \left(k_{7} \frac{S_{gli \cos e}}{S_{gli \cos e} + K_{7}}\right) X_{a} + \left(k_{7a} \frac{S_{ac.acrílico}}{S_{ac.acrílico} + K_{7a}}\right) X_{a}$$
(5.8)

A taxa de reação (R_1) descreve a degradação da glicose e o caminho glicolítico e, é representada por duas equações de Michaelis-Menten. (R_2) representa o crescimento celular (formação de biomassa) a partir da glicose com inibição pelo lactato. A biomassa formada é armazenada dentro de um material celular ativo (X_a).

As taxas de reação (R_3) e (R_4) descrevem a formação de lactato e ácido acrílico, respectivamente.

A equação (R_5) corresponde à formação de biomassa a partir de lactato, onde um termo de inibição pela glicose é incluído na equação. A equação (R_6) descreve a formação de *lactato desidrogenase* a partir do componente ativo do material celular (X_a), responsável pela síntese de proteínas.

A equação (R_7) mostra a degradação do compartimento ativo (X_a), que é dependente da concentração de ácido acrílico e glicose presente no meio. Estas taxas de reação, como também, os parâmetros cinéticos foram obtidos de Lei *et al.* (2001) e modificados para descrever o processo de produção de ácido acrílico.

Os balanços de massa dos principais componentes do sistema foram baseados nas taxas reacionais apresentadas anteriormente, e podem ser descritos da seguinte forma:

 $Balanço \ de \ massa \ para \ glicose \ (substrato) \ com \ uma \ concentração \ (S_{in}) \ na \ corrente \ de \ alimentação:$

$$\frac{dS}{dt} = -(R_1 + R_2)X + D(S_{in} - S)$$
(5.9)

Balanço de massa para piruvato:

Modelagem e Controle da Síntese do Ácido Acrílico via Processo Fermentativo

$$\frac{dP}{dt} = (0.978R_1 - R_3)X - D(P)$$
(5.10)

Balanço de massa para lactato:

$$\frac{dL}{dt} = (1,023R_3 - R_4 - R_5)X - D(L)$$
(5.11)

Balanço de massa para ácido acrílico:

$$\frac{dA}{dt} = (0,8R_4)X - D(A)$$
(5.12)

 $Balanço \ de \ massa \ para \ células \ com \ uma \ concentração \ (X_{in}) \ na \ corrente \ de alimentação:$

$$\frac{dX}{dt} = (0.732R_2 + 0.821R_5)X + D(X_{in} - X)$$
(5.13)

Balanço de massa para o componente celular ativo (X_a):

$$\frac{dX_a}{dt} = 0,732R_2 + 0,821R_5 - R_6 - R_7 - (0,732R_2 + 0,821R_5)X_a$$
(5.14)

Balanço de massa para a enzima *lactato desidrogenase* (X_{Ladh}):

$$\frac{dX_{Ladh}}{dt} = R_6 - (0.732R_2 + 0.821R_5)X_{Ladh}$$
(5.15)

O conjunto de equações diferenciais ordinárias do modelo foi resolvido pelo método de Runge-Kutta 4^a ordem. Na Figura 5.2 é apresentado um fluxograma do modelo, de forma a descrever o funcionamento do programa desenvolvido para representar a síntese de ácido acrílico a partir de um modelo estruturado com células livres.
Modelagem e Controle da Síntese do Ácido Acrílico via Processo Fermentativo

Figura 5.2 - Fluxograma para resolução do modelo estruturado

A Tabela 5.1 apresenta as condições iniciais e de operação dos principais componentes do processo. A Tabela 5.2 apresenta os valores dos parâmetros cinéticos usados na simulação do modelo estruturado para síntese do ácido acrílico com células livres. Inicialmente, foram usados os parâmetros cinéticos disponíveis em Lei *et al.* (2001), mas estes não foram adequados para representar a síntese de ácido acrílico. Em função disso, foram estimados valores para os parâmetros cinéticos através de simulações e os que melhor representaram os perfis de concentração foram usados para avaliação do modelo.

	naições interais e	de operação asa	
Parâmetros	Valor	Parâmetros	Valor
S _{in}	100	A ₀	0,00001
S_0	10	X _{in}	20
P _{in}	0	X ₀	5
P_0	0,00001	Xa	0,36
L _{in}	0	X_{Ladh}	0,01
L ₀	0,00001	D	0,05
A _{in}	0	X _{in}	20

Tabela 5.1- Condições iniciais e de operação usadas no modelo

Parâmetros	Valor	Parâmetros	Valor
\mathbf{k}_1	1,2	K ₂	0,01
k _{1a}	0,40	K ₃	0,0235
k ₂	0,191	K4	0,05
k ₃	0,634	K ₅	0,1231
k ₄	0,599	K ₆	0,0231
k ₅	0,022	K _{6a}	0,0011
k ₆	0,0112	K ₇	0,21
k ₇	0,00295	K _{7a}	0,01
k _{7a}	0,009	K _{2i}	0,09
K ₁	0,05792	K _{5i}	3,90
K _{1a}	0,02	K _{6i}	0,50

Tabela 5.2 - Parâmetros cinéticos

A Figura 5.3 apresenta os perfis de concentração dos principais componentes do processo, obtidos ao longo do tempo na saída do biorreator. A concentração de substrato aumenta inicialmente com o tempo, atingido uma concentração de 13,86kg m⁻³ e a partir da 4^a hora do processo a concentração começa a diminuir até atingir uma concentração de 0,03kg m⁻³. A concentração de piruvato atinge um valor máximo de 18,30kg m⁻³ em nove horas de processo e, a partir deste momento sua concentração começa a diminuir, sendo consumida quase que totalmente em 28 horas.

Na Figura 5.3b é possível visualizar que a concentração de lactato aumenta gradativamente durante as 28 horas de processo, decaindo a partir deste momento (consumo total de piruvato). A concentração de biomassa aumenta em equilíbrio com o consumo de substrato (Figura 5.3c).

Com uma concentração inicial de substrato (S_0) de 10kg m⁻³, uma concentração de substrato na alimentação (S_{in}) de 100kg m⁻³ e uma taxa de diluição (D) de 0,05h⁻¹, foi possível atingir uma produção de 54,63kg m⁻³ de ácido acrílico em 30 horas de processo.

A Figura 5.4 mostra a quantidade de células ativas (X_a) e de enzimas *lactato desidrogenase* produzidas ao longo de 30 horas de processo para uma taxa de diluição (D) de $0,05h^{-1}$.

Figura 5.3 - Perfis de concentração obtidos ao longo do tempo para D =0,05h⁻¹ (a – glicose; b – piruvato e lactato; c – ácido acrílico e biomassa)

Figura 5.4 - Quantidade de material celular ativo (X_a) e de enzima *lactato desidrogenase* (X_{Ladh}) produzidos ao longo do tempo

Para analisar a influência da taxa de diluição (D) sobre as concentrações de glicose, piruvato, lactato, ácido acrílico e biomassa e sobre a quantidade de material celular ativo (X_a), foram realizadas variações na taxa de diluição $(0,05 - 0,5h^{-1})$. Os resultados obtidos podem ser visualizados na Figura 5.5.

Figura 5.5 – Efeitos da taxa de diluição sobre as concentrações e sobre X_a (a – glicose; b – piruvato; c – lactato; d - ácido acrílico; e – biomassa; f - X_a)

Através da Figura 5.5 pode-se perceber que as concentrações de glicose e biomassa e a quantidade de material celular ativo (X_a) aumentam à medida que a taxa de diluição aumenta. A concentração de piruvato é máxima numa taxa de diluição de 0,4 h^{-1} , enquanto que, a máxima concentração de lactato e ácido acrílico são alcançadas com taxas de diluição de 0,07 h^{-1} e 0,06 h^{-1} , respectivamente.

A partir das simulações do modelo e das condições operacionais usadas, não se conseguiu alcançar um estado estacionário no processo. As concentrações atingiam um valor máximo e em seguida diminuiam, não conseguindo manter um valor constante. Este comportamento pode ter sido ocasionado por se adaptar o modelo de um modelo de crescimento com um meio limitado por glicose e/ou etanol.

Depois da obtenção dos perfis de concentração durante o comportamento dinâmico do processo, procurou-se identificar a influência dos parâmetros operacionais e cinéticos sobre o processo, através da realização de planejamentos de experimentos.

5.3 Planejamento Experimental

Na seqüência serão apresentados os planejamentos experimentais, realizados para se poder avaliar a influência dos parâmetros operacionais e cinéticos sobre o processo de síntese de ácido acrílico com células livres.

Inicialmente foi realizado um planejamento fatorial 2^3 para identificar a influência dos parâmetros operacionais sobre o processo em estudo. Os diferentes parâmetros foram avaliados em dois níveis, inferior (-) e superior (+), onde estes níveis correspondem a uma variação de \pm 50% nos valores de cada parâmetro, conforme Tabela 5.3. A Tabela 5.4 apresenta a matriz codificada dos parâmetros.

Neste planejamento foram consideradas como respostas de interesse as concentrações de glicose, piruvato, lactato, ácido acrílico e biomassa, obtidas durante o comportamento dinâmico do processo.

O Software STATISTICA foi usado para gerar a matriz dos valores dos parâmetros e o modelo descrito anteriormente foi usado para gerar as respostas desejadas. As simulações foram realizadas de acordo com o planejamento fatorial completo 2³ especificado na Tabela 5.3. As simulações realizadas neste planejamento são apresentadas no Apêndice C.

Modelagem e Controle da Síntese do Ácido Acrílico via Processo Fermentativo

Tabela 5.3 – Parâmetros operacionais usados no planejamento fatorial 2 ⁵					
Parâmetros		Níveis			
	(-) Ponto central (+)				
\mathbf{S}_{in}	50	100	150		
X _{in}	10	20	30		
D	0,025	0,05	0,075		

Tabela 5.4	- Matriz co	dificada dos	s valores do	os parâmetros	operacionais
					op • 1 • • • • • • • • • • • • • • • • •

Ensaios	S _{in}	X _{in}	D
1	-1	-1	-1
2	1	-1	-1
3	-1	1	-1
4	1	1	-1
5	-1	-1	1
6	1	-1	1
7	-1	1	1
8	1	1	1

As Tabelas 5.5 - 5.9 apresentam os efeitos dos parâmetros operacionais (S_{in}, X_{in} e D) sobre as concentrações de glicose, piruvato, lactato, ácido acrílico e biomassa, respectivamente, para um nível de confiança de 95%.

As análises de variância dos parâmetros operacionais e os coeficientes de determinação do modelo (R^2) são apresentados no Apêndice C.

Fabela 5.5 - Efeitos dos parâmetros operacionais sobre as concentrações de glicose					
	Efeito	Desvio padrão	р	Coeficiente de regressão	
Média	11,951	0,001	0,000	11,951	
* S _{in}	4,058	0,003	0,000	2,029	
$*X_{in}$	-0,133	0,003	0,012	-0,066	
* D	3,533	0,003	0,000	1,766	
$S_{in}X_{in}$	0,003	0,003	0,500	0,001	
* S _{in} D	1,998	0,003	0,001	0,999	
$*X_{in}D$	-0,063	0,003	0,025	-0,031	

Modelag	em e Control	e da Síntese d	o Ácido Acrílico	via Processo	Fermentativo
---------	--------------	----------------	------------------	--------------	--------------

* Parâmetros significativos (p< α ; α =0,05)

Tabela 5.6 - Efeitos dos parâmetros operacionais sobre as concentrações de piruvato

	Efeito	Desvio padrão	р	Coeficiente de regressão
Média	0,934	0,001	0,001	0,934
S _{in}	0,003	0,003	0,500	0,001
$*X_{in}$	0,068	0,003	0,024	0,034
* D	0,033	0,003	0,049	0,016
$S_{in}X_{in}$	0,003	0,003	0,500	0,001
S _{in} D	-0,003	0,003	0,500	-0,001
* X _{in} D	0,033	0,003	0,049	0,016

* Parâmetros significativos (p< α ; α =0,05)

Tabela 5.7 - Efeitos dos parâmetros operacionais sobre as concentrações de lactato

	Efeito	Desvio padrão	р	Coeficiente de regressão
Média	1,311	0,004	0,002	1,311
S _{in}	0,068	0,008	0,070	0,034
$* X_{in}$	0,323	0,008	0,015	0,161
* D	0,103	0,008	0,046	0,051
$S_{in}X_{in}$	0,038	0,008	0,126	0,019
$S_{in}D$	-0,023	0,008	0,205	-0,011
$*X_{in}D$	0,143	0,008	0,033	0,071

* Parâmetros significativos ($p < \alpha; \alpha = 0,05$)

Modelagem e Controle da Síntese do Ácido Acrílico via Processo Fermentativo

Fabela 5.8 - Efeitos dos parâmetros operacionais sobre as concentrações de ácido acrílico					
	Efeito	Desvio padrão	р	Coeficiente de regressão	
Média	4,789	0,011	0,001	4,789	
S _{in}	0,083	0,023	0,170	0,041	
$*X_{in}$	1,633	0,023	0,009	0,816	
* D	0,688	0,023	0,021	0,344	
$S_{in}X_{in}$	0,058	0,023	0,237	0,029	
S _{in} D	-0,038	0,023	0,344	-0,019	
* X _{in} D	0,763	0,023	0,019	0,381	

* Parâmetros significativos (p< α ; α =0,05)

Tabela 5.9 - Efeitos dos parâmetros operacionais sobre as concentrações de biomassa

	Efeito	Desvio padrão	р	Coeficiente de regressão
Média	12,160	0,030	0,002	12,160
S _{in}	0,110	0,060	0,318	0,055
$*X_{in}$	4,840	0,060	0,008	2,420
* D	3,070	0,060	0,012	1,535
$S_{in}X_{in}$	0,080	0,060	0,410	0,040
S _{in} D	-0,070	0,060	0,451	-0,035
$*X_{in}D$	2,310	0,060	0,017	1,155

* Parâmetros significativos ($p < \alpha; \alpha = 0,05$)

Através dos valores de "p" apresentados nas Tabelas 5.5 - 5.9, pode-se observar que as concentrações de piruvato, lactato, ácido acrílico e biomassa sofrem influências significativas da concentração de células alimentadas no biorreator (Xin), da taxa de diluição (D) e da interação entre elas (Xin D). As concentrações de glicose são influenciadas pelos três parâmetros analisados (Sin, Xin e D) e pelas interações entre (Sin) e (D) e entre (X_{in}) e (D), considerando um nível de confiança de 95%.

A Figura 5.6 apresenta os efeitos de cada parâmetro sobre as concentrações de glicose, piruvato, lactato ácido acrílico e biomassa durante o comportamento dinâmico do processo.

Figura 5.6 - Efeitos estimados dos parâmetros operacionais sobre as concentrações de glicose, piruvato, lactato, ácido acrílico e biomassa

Para avaliar a influência dos parâmetros cinéticos do modelo sobre as concentrações de interesse, foi realizado planejamento do tipo Plackett-Burman. Os parâmetros foram variados igualmente em \pm 10% de seus valores iniciais, conforme Tabela 5.10. Foi utilizado um planejamento Plackett-Burman com 32 ensaios e 31 graus de liberdade, onde 22 graus de liberdade estão associados aos parâmetros analisados e os demais foram usados como variáveis inertes (*VI_n*) para determinação do erro e, assim, definir os fatores estatisticamente significativos, através dos efeitos principais de cada um. A Tabela 5.11 apresenta a matriz codificada para o planejamento de Palckett-Burman com 32 ensaios.

As Tabelas 5.12 – 5.16 apresentam os efeitos dos parâmetros cinéticos analisados sobre as concentrações de glicose, piruvato, lactato, ácido acrílico e biomassa, respectivamente, para um nível de confiança de 95%.

As análises de variância dos parâmetros cinéticos e os coeficientes de determinação do modelo (R^2) , são apresentadas no Apêndice C.

CAPÍTULO V - MODELAGEM MATEMÁTICA Modelagem e Controle da Síntese do Ácido Acrílico via Processo Fermentativo

Parâmetros		Níveis				
	(-)	Ponto central	(+)			
k_1	1,08	1,20	1,32			
k _{1a}	0,36	0,40	0,44			
k ₂	0,1719	0,191	0,2101			
k ₃	0,5706	0,634	0,6974			
k_4	0,5391	0,599	0,6589			
k_5	0,0198	0,022	0,0242			
k ₆	0,01008	0,0112	0,01232			
k ₇	0,00265	0,00295	0,00324			
k _{7a}	0,0081	0,009	0,0099			
K ₁	0,052	0,058	0,064			
K _{1a}	0,018	0,02	0,022			
K ₂	0,009	0,01	0,011			
K ₃	0,0212	0,0235	0,0259			
K_4	0,045	0,05	0,055			
K ₅	0,1108	0,1231	0,1354			
K ₆	0,0208	0,0231	0,0254			
K _{6a}	0,0099	0,011	0,0121			
K ₇	0,189	0,21	0,231			
K _{7a}	0,009	0,01	0,011			
K _{2i}	0,081	0,09	0,099			
K _{5i}	3,51	3,90	4,29			
K _{6i}	0,45	0,50	0,55			
			1			

CAPÍTULO V - MODELAGEM MATEMÁTICA Modelagem e Controle da Síntese do Ácido Acrílico via Processo Fermentativo

	Tabela 5.11- Matriz codificada dos valores dos parâmetros cinéticos																														
	\mathbf{k}_1	k_{1a}	k ₂	k3	k_4	k ₅	k ₆	k ₇	k _{7a}	K ₁	K _{1a}	K ₂	k3	K ₄	K ₅	K ₆	K _{6a}	K ₇	K _{7a}	K _{2i}	K _{5i}	K _{6i}	VI ₁	VI ₂	VI ₃	VI ₄	VI ₅	VI ₆	VI ₇	VI ₈	VI ₉
1	-1	-1	-1	-1	-1	1	1	1	1	1	1	1	1	1	1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	1	1	1	1	1	-1
2	1	-1	-1	-1	-1	-1	-1	-1	-1	1	1	1	1	1	1	1	1	1	1	1	1	-1	-1	-1	-1	-1	-1	-1	-1	1	1
3	-1	1	-1	-1	-1	-1	1	1	1	-1	-1	-1	1	1	1	1	1	1	-1	-1	-1	1	1	1	-1	-1	-1	-1	1	-1	1
4	1	1	-1	-1	-1	1	-1	-1	-1	-1	-1	-1	1	1	1	-1	-1	-1	1	1	1	1	1	1	-1	1	1	1	-1	-1	-1
5	-1	-1	1	-1	-1	1	-1	1	1	-1	1	1	-1	-1	1	1	-1	-1	1	1	-1	1	1	-1	1	-1	-1	1	-1	-1	1
6	1	-1	1	-1	-1	-1	1	-1	-1	-1	1	1	-1	-1	1	-1	1	1	-1	-1	1	1	1	-1	1	1	1	-1	1	-1	-1
7	-1	1	1	-1	-1	-1	-1	1	1	1	-1	-1	-1	-1	1	-1	1	1	1	1	-1	-1	-1	1	1	1	1	-1	-1	1	-1
8	1	1	1	-1	-1	1	1	-1	-1	1	-1	-1	-1	-1	1	1	-1	-1	-1	-1	1	-1	-1	1	1	-1	-1	1	1	1	1
9	-1	-1	-1	1	-1	1	1	-1	1	1	-1	1	-1	1	-1	-1	1	-1	1	-1	1	1	-1	1	1	-1	1	-1	-1	-1	1
10	1	-1	-1	1	-1	-1	-1	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1	1	1	1	-1	1	1	-1	-1
11	-1	1	-1	1	-1	-1	1	-1	1	-1	1	-1	-1	1	-1	1	-1	1	1	-1	1	-1	1	-1	1	1	-1	1	-1	1	-1
12	1	1	-1	1	-1	1	-1	1	-1	-1	1	-1	-1	1	-1	-1	1	-1	-1	1	-1	-1	1	-1	1	-1	1	-1	1	1	1
13	-1	-1	1	1	-1	1	-1	-1	1	-1	-1	1	1	-1	-1	1	1	-1	-1	1	1	-1	1	1	-1	1	-1	-1	1	1	-1
14	1	-1	1	1	-1	-1	1	1	-1	-1	-1	1	1	-1	-1	-1	-1	1	1	-1	-1	-1	1	1	-1	-1	1	1	-1	1	1
15	-1	1	1	1	-1	-1	-1	-1	1	1	1	-1	1	-1	-1	-1	-1	1	-1	1	1	1	-1	-1	-1	-1	1	1	1	-1	1
16	1	1	1	1	-1	1	1	1	-1	1	1	-1	1	-1	-1	1	1	-1	1	-1	-1	1	-1	-1	-1	1	-1	-1	-1	-1	-1
17	-1	-1	-1	-1	1	1	1	1	-1	1	1	-1	1	-1	-1	-1	-1	1	-1	1	1	-1	1	1	1	1	-1	-1	-1	-1	1
18	1	-1	-1	-1	1	-1	-1	-1	1	1	1	-1	1	-1	-1	1	1	-1	1	-1	-1	-1	1	1	1	-1	1	1	1	-1	-1
19	-1	1	-1	-1	1	-1	1	1	-1	-1	-1	1	1	-1	-1	1	1	-1	-1	1	1	1	-1	-1	1	-1	1	1	-1	1	-1
20	1	1	-1	-1	1	1	-1	-1	1	-1	-1	1	1	-1	-1	-1	-1	1	1	-1	-1	1	-1	-1	1	1	-1	-1	1	1	1
21	-1	-1	1	-1	1	1	-1	1	-1	-1	1	-1	-1	1	-1	1	-1	1	1	-1	1	1	-1	1	-1	-1	1	-1	1	1	-1
22	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1	-1	1	-1	-1	1	-1	-1	1	-1	1	-1	1	-1	1	-1	1	-1	1	1
23	-1	1	1	-1	1	-1	-1	1	-1	1	-1	1	-1	1	-1	-1	1	-1	1	-1	1	-1	1	-1	-1	1	-1	1	1	-1	1
24	1	1	1	-1	1	1	1	-1	1	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1	-1	1	-1	-1	-1	1	-1	-1	-1	-1
25	-1	-1	-1	1	1	1	1	-1	-1	1	-1	-1	-1	-1	1	-1	1	1	1	1	-1	1	1	-1	-1	-1	-1	1	1	1	-1
26	1	-1	-1	1	1	-1	-1	1	1	1	-1	-1	-1	-1	1	1	-1	-1	-1	-1	1	1	1	-1	-1	1	1	-1	-1	1	1
27	-1	1	-1	1	1	-1	1	-1	-1	-1	1	1	-1	-1	1	1	-1	-1	1	1	-1	-1	-1	1	-1	1	1	-1	1	-1	1
28	1	1	-1	1	1	1	-1	1	1	-1	1	1	-1	-1	1	-1	1	1	-1	-1	1	-1	-1	1	-1	-1	-1	1	-1	-1	-1
29	-1	-1	1	1	1	1	-1	-1	-1	-1	-1	-1	1	1	1	1	1	1	-1	-1	-1	-1	-1	-1	1	1	1	1	-1	-1	1
30	1	-1	1	1	1	-1	1	1	1	-1	-1	-1	1	1	1	-1	-1	-1	1	1	1	-1	-1	-1	1	-1	-1	-1	1	-1	-1
31	-1	1	1	1	1	-1	-1	-1	-1	1	1	1	1	1	1	-1	-1	-1	-1	-1	-1	1	1	1	1	-1	-1	-1	-1	1	-1
32	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Tabela 5.12 - Efeitos principais dos parâmetros cinéticos sobre as concentrações de glicose									
	Efeito	Desvio padrão	р	Coeficiente de regressão					
Média	11,961	0,000	0,000	11,961					
$* k_1$	-0,229	0,001	0,000	-0,114					
* k _{1a}	-0,071	0,001	0,000	-0,036					
$* k_2$	-0,059	0,001	0,000	-0,029					
k ₃	0,000	0,001	1,000	0,000					
k_4	-0,001	0,001	0,063	-0,001					
k_5	-0,001	0,001	0,063	-0,001					
k_6	0,001	0,001	0,063	0,001					
k ₇	0,000	0,001	1,000	0,000					
k _{7a}	-0,001	0,001	0,063	-0,001					
K ₁	-0,001	0,001	0,063	-0,001					
k _{1a}	0,000	0,001	1,000	0,000					
K ₂	0,001	0,001	0,063	0,001					
K ₃	0,000	0,001	1,000	0,000					
K_4	-0,001	0,001	0,063	-0,001					
K ₅	0,000	0,001	1,000	0,000					
K ₆	-0,001	0,001	0,063	-0,001					
K _{6a}	0,000	0,001	1,000	0,000					
K ₇	0,001	0,001	0,063	0,001					
K _{7a}	0,000	0,001	1,000	0,000					
K_{2i}	-0,001	0,001	0,063	-0,001					
K _{5i}	0,000	0,001	1,000	0,000					
K _{6i}	0,000	0,001	1,000	0,000					

CAPÍTULO V - MODELAGEM MATEMÁTICA Modelagem e Controle da Síntese do Ácido Acrílico via Processo Fermentativo

* Parâmetros significativos (p<α; α=0,05)

Modelagem e Controle da Síntese do Ácido Acrílico via Processo Fermentativo

	Efeito	Desvio padrão	р	Coeficiente de regressão
Média	0,936	0,000	0,000	0,936
* <i>k</i> 1	0,218	0,001	0,000	0,109
* k _{1a}	0,071	0,001	0,000	0,036
* k ₂	0,016	0,001	0,000	0,008
* k3	-0,108	0,001	0,000	-0,054
k_4	0,001	0,001	0,168	0,001
k ₅	0,001	0,001	0,168	0,001
k ₆	0,001	0,001	0,168	0,001
* k ₇	-0,003	0,001	0,015	-0,001
k _{7a}	0,001	0,001	0,168	0,001
K_1	0,000	0,001	1,000	0,000
k_{1a}	0,001	0,001	0,168	0,001
\mathbf{K}_2	0,000	0,001	1,000	0,000
* <i>K</i> ₃	0,006	0,001	0,000	0,003
\mathbf{K}_4	0,000	0,001	1,000	0,000
K_5	0,001	0,001	0,168	0,001
K ₆	0,000	0,001	1,000	0,000
K _{6a}	0,001	0,001	0,168	0,001
K ₇	0,000	0,001	1,000	0,000
K _{7a}	0,001	0,001	0,168	0,001
K _{2i}	0,000	0,001	1,000	0,000
K _{5i}	0,001	0,001	0,168	0,001
K _{6i}	0,000	0,001	1,000	0,000

Tabela 5.13 - Efeitos principais dos parâmetros cinéticos sobre as concentrações de piruvato

* Parâmetros significativos (p< α ; α =0,05)

	Efeito	Desvio padrão	р	Coeficiente de regressão
Média	0,369	0,000	0,000	0,369
* k ₁	0,007	0,001	0,000	0,003
k _{1a}	0,001	0,001	0,343	0,000
* k_2	0,008	0,001	0,000	0,004
*k3	0,188	0,001	0,000	0,094
* k4	-0,146	0,001	0,000	-0,073
k5	-0,001	0,001	0,343	0,000
* k ₆	-0,003	0,001	0,001	-0,002
* k7	0,002	0,001	0,015	0,001
k _{7a}	0,001	0,001	0,343	0,000
K ₁	0,001	0,001	0,343	0,000
K _{1a}	0,001	0,001	0,343	0,000
K ₂	-0,001	0,001	0,343	0,000
* K ₃	-0,002	0,001	0,015	-0,001
* K4	0,024	0,001	0,000	0,012
* K ₅	-0,021	0,001	0,000	-0,010
K ₆	-0,001	0,001	0,343	0,000
K _{6a}	-0,001	0,001	0,343	0,000
K ₇	0,001	0,001	0,343	0,000
* K _{7a}	0,002	0,001	0,015	0,001
K _{2i}	0,001	0,001	0,343	0,000
K _{5i}	0,001	0,001	0,343	0,000
K _{6i}	0,001	0,001	0,343	0,000

* Parâmetros significativos (p<α; α=0,05)

Modelagem e Controle da Síntese do Ácido Acrílico via Processo Fermentativo

	Efeito	Desvio padrão	р	Coeficiente de regressão
Média	1,478	0,000	0,000	1,478
* k ₁	0,005	0,001	0,000	0,003
k _{1a}	0,001	0,001	0,168	0,001
* k ₂	0,086	0,001	0,000	0,043
$* k_3$	0,111	0,001	0,000	0,056
$* k_4$	0,219	0,001	0,000	0,109
k ₅	0,000	0,001	1,000	0,000
* k ₆	-0,010	0,001	0,000	-0,005
k ₇	0,000	0,001	1,000	0,000
* k _{7a}	0,005	0,001	0,000	0,003
K_1	0,001	0,001	0,168	0,001
K _{1a}	0,001	0,001	0,168	0,001
K ₂	-0,001	0,001	0,168	-0,001
* K3	-0,004	0,001	0,001	-0,002
$* K_4$	-0,021	0,001	0,000	-0,011
$* K_5$	0,034	0,001	0,000	0,017
K ₆	0,000	0,001	1,000	0,000
K _{6a}	0,000	0,001	1,000	0,000
K ₇	0,000	0,001	1,000	0,000
K _{7a}	0,000	0,001	1,000	0,000
K _{2i}	0,000	0,001	1,000	0,000
K _{5i}	0,000	0,001	1,000	0,000
K _{6i}	0,001	0,001	0,168	0,001

Tabela 5.15 - Efeitos principais dos parâmetros cinéticos sobre as concentrações de ácido acrílico

* Parâmetros significativos (p< α ; α =0,05)

Modelagem e Controle da Síntese do Ácido Acrílico via Processo Fermentativo

	Efeito	Desvio padrão	р	Coeficiente de regressão
Média	12,419	0,001	0,000	12,419
* k ₁	-0,003	0,001	0,044	-0,002
k_{1a}	-0,001	0,001	0,651	0,000
* k ₂	0,942	0,001	0,000	0,471
* k3	-0,017	0,001	0,000	-0,008
* k4	0,012	0,001	0,000	0,006
k ₅	0,001	0,001	0,651	0,000
k ₆	-0,002	0,001	0,193	-0,001
k ₇	-0,001	0,001	0,651	0,000
* k _{7a}	0,003	0,001	0,044	0,002
K ₁	-0,002	0,001	0,193	-0,001
k_{1a}	0,002	0,001	0,193	0,001
* <i>K</i> ₂	-0,004	0,001	0,010	-0,002
* <i>K</i> ₃	-0,003	0,001	0,044	-0,002
K_4	0,001	0,001	0,651	0,000
K ₅	0,002	0,001	0,193	0,001
K ₆	0,002	0,001	0,193	0,001
K _{6a}	0,001	0,001	0,651	0,000
K ₇	-0,001	0,001	0,651	0,000
K _{7a}	0,001	0,001	0,651	0,000
$*\overline{K_{2i}}$	0,004	0,001	0,010	0,002
K _{5i}	0,001	0,001	0,651	0,000
K _{6i}	0,001	0,001	0,651	0,000

Tabela 5.16 - Efeitos principais dos parâmetros cinéticos sobre as concentrações de biomassa

* Parâmetros significativos (p<α; α=0,05)

Através da análise das Tabelas 5.12 - 5.14 é possível visualizar que as concentrações de glicose são influenciadas apenas por três velocidades específicas de reação (k₁, k_{1a}, k₂). As concentrações de piruvato são influenciadas pelas velocidades específicas de reação (k₁, k_{1a}, k₂, k₃, k₇) e pela constante de afinidade (K₃). Enquanto que, as

concentrações de lactato sofrem influências significativas das velocidades específicas de reação (k_1 , k_2 , k_3 , k_4 , k_6 , k_7) e das constantes de afinidade (K_3 , K_4 , K_5 , K_{7a}).

Para as concentrações de ácido acrílico seis velocidades específicas de reação (k_1 , k_2 , k_3 , k_4 , k_6 , k_{7a}) e três constantes de afinidade (K_3 , K_4 , K_5) foram identificadas como sendo estatisticamente significativas, para um nível de confiança de 95% (Tabela 5.15). Nas concentrações de biomassa cinco velocidades específicas de reação (k_1 , k_2 , k_3 , k_4 , k_{7a}), duas constantes de afinidade (K_2 , K_3) e uma constante de inibição (K_{2i}) foram identificadas como sendo estatisticamente significativas (Tabela 5.16).

Depois de identificados os parâmetros operacionais e cinéticos estatisticamente significativos e determinados os efeitos destes parâmetros sobre as concentrações, foi realizada a otimização dos parâmetros operacionais para encontrar condições operacionais que maximizasse o rendimento final de ácido acrílico. Os resultados obtidos na otimização são apresentados na seqüência.

5.4 Otimização do Processo

Nesta seção serão apresentados os resultados da otimização dos parâmetros operacionais (S_{in}, X_{in} e D) do processo de síntese de ácido acrílico via fermentação, levando em consideração um modelo estruturado com células livres. Para a otimização dos parâmetros foi usada a técnica de otimização por programação quadrática sucessiva (SQP).

A função objetivo definida para a otimização foi:

$$Max f(x)$$

s.t. Eqs. (5.9 - 5.15) (5.16)
 $0,01 < D < 0,5$

onde, f(x) = rendimento final de ácido acrílico (t \approx 50h). A equação do rendimento foi definida como sendo:

$$Y_{A/S} = \frac{A}{S_{in} - S} \tag{5.17}$$

Na Figura 5.7 é apresentado um fluxograma simplificado do programa para resolução do modelo. Inicialmente foi dada uma estimativa inicial dos valores dos parâmetros a serem otimizados e através da subrotina de otimização DNCONF (biblioteca FORTRAN) foi obtido diversos valores para estes parâmetros, de forma a maximizar a função objetivo. O melhor valor fornecido foi utilizado como estimativa inicial para a próxima otimização e, assim sucessivamente, de forma a encontrar valores ótimos para os parâmetros operacionais e maximizar o rendimento final de ácido acrílico. A Tabela 5.17 mostra alguns rendimentos obtidos com a estimativa inicial e com os valores otimizados. Na Figura 5.8 pode-se visualizar os perfis de concentração de glicose e ácido acrílico obtidos com a estimativa inicial e com os valores otimizados.

Figura 5.7 - Fluxograma para otimização dos parâmetros operacionais

	S_{in} (kg m ⁻³)	X_{in} (kg m ⁻³)	D (h ⁻¹)	Y _{A/S}
Estimativa inicial	140	15	0,047	63,51
Otimização 1	139,7	17,43	0,0448	65,36
Otimização 2	139,4	20	0,0606	67,70
Otimização 3	139,4	20	0,0578	68,72

Tabela 5.17 - Estimativa inicial, valores otimizados e rendimentos obtidos

Figura 5.8 - Perfis de concentração obtidos com os valores otimizados e estimativa inicial (a – glicose; b – ácido acrílico)

Através da otimização dos parâmetros operacionais (S_{in} , X_{in} e D) foi possível aumentar o rendimento de ácido acrílico, porém, teve-se certa dificuldade para a otimização destes parâmetros. Isto pode ter sido ocasionado devido à:

✓ alta sensibilidade do método em relação as restrições impostas;

✓ dificuldade em se fazer uma boa estimativa inicial e de estabelecer limites inferiores e superiores adequados de modo que os valores convergissem para valores próximos do ótimo;

 ✓ a faixa de valores da taxa de diluição, onde a produção de ácido acrílico aumenta é muito limitada;

✓ necessidade de uma melhor estimação dos parâmetros do modelo.

5.5 Controle do Processo

Nesta seção serão apresentados os resultados obtidos com a aplicação de uma estratégia de controle no processo biotecnológico de síntese de ácido acrílico, considerando um modelo estruturado com células livres.

O objetivo de controle era maximizar o rendimento de ácido acrílico na saída do biorreator. Para controle do biorreator usado no processo de síntese de ácido acrílico, foi utilizada a estratégia de controle em duas camadas.

Na estratégia em duas camadas tem-se uma estrutura hierárquica, onde a camada de otimização calcula os *set-points* para o controle avançado (Santos, 2006). A Figura 5.9 apresenta um fluxograma do algoritmo de otimização em duas camadas.

Figura 5.9 - Estrutura de otimização em duas camadas (Santos, 2006)

A camada inferior é responsável pelo controle do processo e a camada superior determina, através de algoritmos de otimização, o melhor *set-point* para o estado estacionário, como função da variável controlada, restrições do processo e da função objetivo. Esta informação é enviada para a camada inferior como um *set-point* da variável controlada (Melo *et al.*, 2005).

O algoritmo de otimização é baseado na otimização por programação quadrática sucessiva (SQP) e o controle avançado é baseado no controle por matriz dinâmica (do inglês – *Dynamic Matrix Control* – DMC).

A otimização foi realizada com o modelo determinístico do processo, onde o principal objetivo da otimização era maximizar o rendimento final do ácido acrílico. O problema é sujeito à restrição de igualdade descrita pelos balanços de massa (equações 5.9 -5.15) e à restrições de desigualdade. A função objetivo foi definida na equação (5.16) e o rendimento foi determinado pela equação (5.17).

Na otimização em duas camadas são gerados, tanto os novos valores de *set-points*, quanto os valores das variáveis manipuladas. Neste trabalho foram propostas duas

estratégias de otimização e controle. Na primeira (estratégia *feedback*), somente os novos valores de *set-points*, gerados pela camada de otimização são enviados para o controlador (estratégia tradicional em duas camadas). Na segunda, a estratégia *feedback-feedforward* foi implementada. Nesta estratégia a variável controlada otimizada e a variável manipulada otimizada são enviadas para o controlador e o processo é operado em condições ótimas desde o inicio do processo. Mais detalhes sobre otimização e controle em duas camadas podem ser encontrados em Melo *et al.* (2005) e Santos (2006).

Através de simulações em malha aberta, foi possível identificar a influência dos parâmetros operacionais sobre a concentração de ácido acrílico. A partir dos resultados obtidos, percebeu-se que a taxa de diluição (D) exercia maior influência sobre a concentração em estudo, portanto, foi usada como variável manipulada e a concentração de ácido acrílico na saída do biorreator, como variável controlada (*set-point*). A Figura 5.10 mostra os resultados obtidos com aplicação da estratégia em duas camadas, onde o principal objetivo foi maximizar o rendimento de ácido acrílico na saída do biorreator.

Na estratégia *feedback*, quando a variável manipulada (D) otimizada não é usada no processo e, somente o *set-point* é enviado para o controlador, a resposta é baixa. Quando a estratégia *feedback-feedforward* é usada (variável manipulada otimizada também é enviada ao controlador), o valor ótimo (*set-point*) é rapidamente alcançado, mostrando com isso, o melhor desempenho da estratégia mista (*feedback-feedforward*) quando comparada com a estratégia *feedback*.

Figura 5.10 - Perfis de concentração de ácido acrílico

Através da aplicação da estratégia de otimização e controle em duas camadas, foi possível obter um rendimento próximo do rendimento estequiométrico (0,8). Isto mostra o potencial da estratégia em duas camadas, baseada no método de otimização SQP e controle avançado (DMC) para encontrar ótimas condições operacionais para o processo de síntese de ácido acrílico com células livres.

5.6 Conclusão

Neste capítulo foi apresentado um modelo estruturado que representou a síntese de ácido acrílico. Um sistema contínuo ideal com células de *Saccharomyces cerevisiae* livres foi considerado. Através da aplicação da técnica de planejamento fatorial foi possível identificar os parâmetros operacionais e cinéticos que exercem maior influência sobre o processo, podendo com isso determinar os valores ótimos destes parâmetros de forma a aumentar a produção de ácido acrílico. Com a aplicação do método de otimização por programação quadrática sucessiva foi possível otimizar os parâmetros operacionais e aumentar o rendimento final de ácido acrílico em relação ao consumo de substrato. Através da aplicação da estratégia de otimização e controle em duas camadas foi possível determinar um valor ótimo para a taxa de diluição (variável manipulada), através do algoritmo de otimização (SQP) e, então, enviar este valor ao controlador de forma que este mantivesse o processo nas condições ótimas de operação e, conseqüentemente, a concentração e o rendimento de ácido acrílico na saída do biorreator fossem maximizados.

CAPITULO VI. Modelo Matemático Estruturado para a Síntese de Ácido Acrílico via Processo Fermentativo com Células Imobilizadas

6.1 Introdução

Neste capítulo será apresentado um modelo matemático estruturado com células de *Saccharomyces cerevisiae* imobilizadas, desenvolvido para representar a síntese de ácido acrílico a partir de um processo fermentativo. Inicialmente foi desenvolvida a modelagem do processo e realizadas as simulações. Na seqüência foram aplicadas técnicas de planejamento experimental, com o objetivo de identificar os parâmetros operacionais, de projeto e cinéticos que exercem influências significativas sobre o processo em estudo. Depois de identificados os parâmetros mais significativos, foi realizada a otimização dos parâmetros operacionais, através das técnicas de otimização evolucionária, metodologia de superfície de resposta e otimização por programação quadrática sucessiva. Para finalizar o trabalho foi realizado o controle do processo, onde a estratégia de controle clássica (PID), a preditiva (DMC) e a preditiva adaptativa (SDMC) foram aplicadas.

6.2 Modelo Matemático Estruturado com Células Imobilizadas

O modelo que será apresentado neste capítulo segue um comportamento estruturado e foi baseado em dois modelos disponíveis na literatura, a saber:

✓ Modelo de Lei *et al.* (2001): um modelo bioquímico estruturado que descreve o crescimento aeróbio de *Saccharomyces cerevisiae* em um meio limitado de glicose e/ou etanol. A formulação do modelo é baseada em observações experimentais do metabolismo do piruvato sobre taxa de diluição crítica, onde o piruvato e o acetaldeído são importantes pontos de ruptura.

✓ Modelo de Stremel (2001): um modelo estruturado alternativo desenvolvido para representar a simulação dinâmica de um biorreator tubular com células de *Saccharomyces cerevisiae* imobilizadas para fermentação alcoólica.

Mais detalhes sobre os modelos de Lei *et al.* (2001) e de Stremel (2001) são apresentados nos Anexos (A) e (B), respectivamente.

O modelo foi desenvolvido em linguagem FORTRAN. Para desenvolvimento do modelo foi utilizado um biorreator tubular tipo PFR, onde um sistema bifásico com dispersão axial e células de *Saccharomyces cerevisiae* imobilizadas foi considerado. O modelo de cinética estruturada foi baseado na cinética de Michaelis-Menten e foi considerado que:

✓ Piruvato e biomassa são produzidos a partir da degradação da glicose;

 ✓ A biomassa formada a partir da glicose e do lactato é distribuída dentro de um compartimento celular ativo semelhante em todas as partes da célula, que está diretamente associado ao crescimento;

✓ Produção de biomassa a partir de lactato, com inibição por excesso de glicose;

Produção de enzima *lactato desidrogenase* a partir da parte ativa do material celular;

✓ O desaparecimento do compartimento celular ativo é dependente da concentração de ácido acrílico e glicose.

As reações consideradas neste modelo podem ser representadas de acordo com:

Glicose
$$\xrightarrow{R_1}$$
 2 Piruvato
Glicose $\xrightarrow{R_2}$ X_a
Piruvato $\xrightarrow{R_3}$ Lactato
Lactato $\xrightarrow{R_4}$ Ácido Acrílico + H₂O (6.1)
Lactato $\xrightarrow{R_5}$ X_a
 $X_a \xrightarrow{R_6}$ X_{Ladh}
 $X_a \xrightarrow{R_7}$ degradção

A Figura 6.1 mostra um esquema do caminho metabólico para a obtenção de ácido acrílico. Várias reações paralelas e consecutivas ocorrem e, é necessário encontrar as condições de operação que conduzem à obtenção do produto desejado (Lunelli *et al.*, 2007).

CAPÍTULO VI - MODELAGEM MATEMÁTICA

Modelagem e Controle da Síntese do Ácido Acrílico via Processo Fermentativo

Figura 6.1 - Rota Glicolítica (Dawes e Large, 1982)

A Figura 6.2 mostra uma rota representativa envolvida no processo de produção de ácido acrílico e também, as taxas reacionais.

Figura 6.2 - Rota metabólica representativa

As taxas reacionais usadas no modelo são descritas a seguir.

$$R_{1} = k_{1} \frac{S_{glicose}}{S_{glicose} + K_{1}} X_{a} + k_{1a} \frac{S_{glicose}}{S_{glicose} + K_{1a}} X_{a}$$
(6.2)

$$R_{2} = k_{2} \frac{S_{glicose}}{S_{glicose} + K_{2}} \frac{1}{1 + \left(\frac{S_{lactato}}{K_{2i}}\right)} X_{a}$$
(6.3)

$$R_3 = k_3 \frac{S_{piruvato}}{S_{piruvato} + K_3} X_a$$
(6.4)

$$R_4 = k_4 \frac{S_{lactato}}{S_{lactato} + K_4} X_a \tag{6.5}$$

$$R_5 = k_5 \frac{S_{lactato}}{S_{lactato} + K_5} \left(\frac{1}{1 + K_{5i}S_{glicose}}\right) X_a$$
(6.6)

$$R_{6} = k_{6} \left(\frac{S_{glicose}}{S_{glicose} + K_{6}} + \frac{S_{lactato}}{S_{lactato} + K_{6a}} \right) \left(\frac{1}{K_{6i}S_{acacrílico} + 1} \right) X_{a}$$
(6.7)

$$R_{7} = \left(k_{7} \frac{S_{gli \cos e}}{S_{gli \cos e} + K_{7}}\right) X_{a} + \left(k_{7a} \frac{S_{ac.acrílico}}{S_{ac.acrílico} + K_{7a}}\right) X_{a}$$
(6.8)

A taxa de reação (R_1) descreve a degradação da glicose e o caminho glicolítico e, é representada por duas equações de Michaelis-Menten. (R_2) representa o crescimento celular a partir da glicose com inibição pelo lactato. A biomassa formada é armazenada dentro de um material celular ativo.

As taxas de reação (R_3) e (R_4) descrevem a formação de lactato e ácido acrílico, respectivamente.

A equação (R_5) corresponde à formação de biomassa a partir de lactato, onde um termo de inibição pela glicose é incluído na equação. A equação (R_6) descreve a formação de *lactato desidrogenase* a partir do componente ativo do material celular (X_a), responsável pela síntese de proteínas.

A equação (R_7) mostra a degradação do compartimento celular ativo (X_a), que é dependente da concentração de ácido acrílico e glicose presente no meio. Estas taxas de reação, como também, os parâmetros cinéticos são obtidos de Lei *et al.* (2001) e modificados para descrever o processo de produção de ácido acrílico.

As correlações para a transferência de massa utilizadas neste modelo foram às mesmas apresentadas no Capítulo IV, e são descritas nas equações (6.9 - 6.18).

$$r_m = k_m a_m (C_0 - C_s)$$
(6.9)

$$a_m = \frac{\text{Volume de esferas no leito}}{\text{Volume total do leito}} = \frac{(1-\varepsilon)\pi d_p^2}{\frac{\pi d_p^3}{6}} = \frac{6(1-\varepsilon)}{d_p} \quad (6.10)$$

$$J_D = \frac{k_m}{v} \left(\frac{v}{D_A}\right)^{\frac{2}{3}}$$
(6.11)

$$J_D = 1,625 \,\mathrm{Re}^{-0,507} \tag{6.12}$$

$$Re = \frac{D_s u\rho}{\mu}$$
(6.13)

147

$$Sc_{[]} = \frac{\mu}{\rho D_{A_{[]}}} \tag{6.14}$$

$$D_e = D_A \varepsilon \tag{6.15}$$

$$D_{e[substrato]} = 2,142 \times 10^{-4} \left[e^{-0,00199S} \right]$$
(6.16)

$$D_{e[produto]} = 2,94 \times 10^{-4} \left[e^{-0,00199A} \right]$$
(6.17)

$$\eta = \frac{r_{Aobs}}{r_{A(c_{As},T_s)}} \tag{6.18}$$

Na seqüência serão apresentados os balanços de massa dos principais componentes envolvidos no processo. Inicialmente, foram realizados os balanços de massa para os componentes na fase sólida, conforme equações (6.19 - 6.25).

Balanço de massa para glicose

$$\frac{\partial S_{gli\cos e}}{\partial t} = \frac{D_{Ag}}{R^2} \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial S_{gli\cos e}}{\partial r} \right) - (R_1 + R_2) e^{-K_A S_{ac.acrílico} X}$$
(6.19)

Balanço de massa para piruvato

$$\frac{\partial S_{piruvato}}{\partial t} = \frac{D_{Ap}}{R^2} \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial S_{piruvato}}{\partial r} \right) + (0.978R_1 - R_3)e^{-K_A S_{ac.acrílico}} X \quad (6.20)$$

Balanço de massa para lactato

$$\frac{\partial S_{lactato}}{\partial t} = \frac{D_{Al}}{R^2} \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial S_{lactato}}{\partial r} \right) + (1,023R_3 - R_4 - R_5)e^{-K_A S_{ac.acrílico}} X \quad (6.21)$$

Balanço de massa para ácido acrílico

$$\frac{\partial S_{ac.acrílico}}{\partial t} = \frac{D_{Aaa}}{R^2} \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial S_{ac.acrílico}}{\partial r} \right) + \left(0,8R_4 - R_7 \right) e^{-K_A S_{ac.acrílico}} X \quad (6.22)$$

Balanço de massa para células totais

$$\frac{\partial X}{\partial t} = (0.732R_2 + 0.821R_5) X \left(1 - \frac{X}{X_{sat}}\right) e^{-K_A S_{ac.acrílico}} - k_d X$$
(6.23)

Modelagem e Controle da Síntese do Ácido Acrílico via Processo Fermentativo

Balanço de massa para células ativas

$$\frac{\partial X_a}{\partial t} = (0,732R_2 + 0.821R_5 - R_6 - R_7) - (0,732R_2 + 0.821R_5)X_a$$
(6.24)

Balanço de massa para a enzima *lactato desidrogenase*

$$\frac{\partial X_{Ladh}}{\partial t} = R_6 - (0.732R_2 + 0.821R_5) X_{Ladh}$$
(6.25)

As condições iniciais e de contorno consideradas para a fase sólida, foram:

$$Em \quad t = 0 \quad r = R \quad S = P = L = A = 0$$

Condições de simetria no centro da partícula

Em
$$t \ge 0$$
 $r = 0$ $\frac{\partial S}{\partial r} = \frac{\partial P}{\partial r} = \frac{\partial L}{\partial r} = \frac{\partial A}{\partial r} = 0$

Na superfície externa da partícula foi aplicada a condição para transferência de massa.

Para substrato:

$$D_{As} \frac{\partial S}{\partial r} = k_{mS} R \left(S_{fluida} - S_{solida} \right)$$
(6.26)

Para produto:

$$D_{AP} \frac{\partial P}{\partial r} = k_{mP} R \left(P_{fluida} - P_{solida} \right)$$
(6.27)

$$\frac{k_{m[]}R}{D_{A[]}} = Bi_{[]}$$
(6.28)

Balanços de massa semelhantes aos desenvolvidos para a fase sólida, foram desenvolvidos para os componentes na fase fluida. Nesta fase é considerado o efeito de dispersão, caracterizado por um coeficiente de difusão efetiva (D_{az}).

Balanço de massa para glicose

$$\frac{\partial S_{glicose}}{dt} = D_{az} \left(\frac{\partial^2 S_{glicose}}{\partial z^2} \right) - u \left(\frac{\partial S_{glicose}}{\partial z} \right) - \frac{1 - \varepsilon}{\varepsilon} \eta \left[(R_1 + R_2) e^{-K_A S_{ac.acrílico}} X \right]$$
(6.29)

Balanço de massa para piruvato

$$\frac{\partial S_{piruvato}}{dt} = D_{az} \left(\frac{\partial^2 S_{piruvato}}{\partial z^2} \right) - u \left(\frac{\partial S_{piruvato}}{\partial z} \right) + \frac{1 - \varepsilon}{\varepsilon} \eta \left[(0,978R_1 - R_3) e^{-K_A S_{ac.acrílico}} X \right]$$
(6.30)

Balanço de massa para lactato

$$\frac{\partial S_{lactato}}{dt} = D_{az} \left(\frac{\partial^2 S_{lactato}}{\partial z^2} \right) - u \left(\frac{\partial S_{lactato}}{\partial z} \right) + \frac{1 - \varepsilon}{\varepsilon} \eta \left[(1,023R_3 - R_4 - R_5) e^{-K_A S_{ac.acrílico}} X \right]$$
(6.31)

Balanço de massa para ácido acrílico

$$\frac{\partial S_{ac.acrílico}}{dt} = D_{az} \left(\frac{\partial^2 S_{ac.acrílico}}{\partial z^2} \right) - u \left(\frac{\partial S_{ac.acrílico}}{\partial z} \right) + \frac{1 - \varepsilon}{\varepsilon} \eta \left[(0,8R_4 - R_7) e^{-K_A S_{ac.acrílico}} X \right]$$
(6.32)

O conjunto de equações diferenciais parciais foi discretizado usando o método de colocação ortogonal acoplado a subrotina de integração LSODAR e o sistema de equações resultantes foi integrado em função do tempo, através do uso do método das linhas.

Na Figura 6.3 é apresentado um fluxograma do modelo, de forma a descrever o funcionamento do programa que foi desenvolvido para representar a síntese de ácido acrílico a partir de um modelo estruturado.

A Tabela 6.1 apresenta as condições iniciais e de operação, parâmetros de projeto e propriedades físicas do fluido. A Tabela 6.2 apresenta os valores dos parâmetros cinéticos usados na simulação do modelo estruturado para síntese do ácido acrílico. Inicialmente, foram testados os valores dos parâmetros cinéticos disponíveis nos trabalhos de Lei *et al.* (2001) e de Stremel (2001), porém os valores não foram adequados para representar a síntese de ácido acrílico a partir da degradação glicose e, por não ter dados cinéticos conclusivos do processo disponíveis na literatura, foram feitas estimações destes valores a partir de simulações no modelo. Os valores que melhor representaram os perfis de concentração foram usados para reprodução dos resultados. Podendo assim, estes valores variarem conforme condições de operação e suposições estabelecidas para o processo.

Modelagem e Controle da Síntese do Ácido Acrílico via Processo Fermentativo

Figura 6.3 - Fluxograma para resolução do modelo estruturado

Parâmetros	Valor	Parâmetros	Valor
S _{in}	150	Xt	20
S _{s0}	1	Xa	0,36
$S_{ m f0}$	150	X _{in}	0,64
P _{in}	0	X _{Ladh}	0,01
P _{s0}	0,00001	X _{sat}	80
P _{f0}	0,0001	F _{in}	0,0003
L_{in}	0	D _p	0,003
L _{s0}	0,00001	Dr	0,05
L_{f0}	0,0001	L	1
A _{in}	0	ρ	1.152
A _{s0}	0,00001	μ	4,6
A _{sf}	0,0001	ε	0,36
X _{in}	20		

Tabela 6.1 - Condições iniciais, parâmetros operacionais e de projeto e propriedades do fluido usados no modelo

Tabela 6.2 - Parâmetros cinéticos									
Parâmetros	Valor	Parâmetros	Valor						
k ₁	2,40	K4	2,10						
k _{1a}	0,584	K5	2,35						
k ₂	3,30	K ₆	1,95						
k ₃	5,20	K _{6a}	13,0						
k4	4,25	K ₇	0,02						
k5	1,20	K _{7a}	0,0009						
k ₆	0,03	K _{2i}	1,90						
k ₇	0,04	K _{5i}	4,98						
k _{7a}	0,004	K _{6i}	0,50						
K ₁	0,001	K _A	0,09						
K _{1a}	0,0116	KA	0,19						
K ₂	2,90	k _d	0,01						
K ₃	3,20								

Modelagem e Controle da Síntese do Ácido Acrílico via Processo Fermentativo

Na seqüência serão apresentados os resultados obtidos com as simulações realizadas no modelo estruturado com células imobilizadas, desenvolvido para representar a síntese biotecnológica de ácido acrílico.

A Figura 6.4(a – c) apresenta os perfis de concentração obtidos ao longo do tempo na saída do biorreator. A Figura 6.5(a – c) mostra os perfis de concentração obtidos ao longo do biorreator quando o estado estacionário é alcançado.

A Figura 6.6 mostra as variações de X_a (material celular ativo) e de *lactato desidrogenase* ao longo do tempo.

Figura 6.4 - Perfis de concentração obtidos ao longo do tempo (a – glicose e ácido acrílico; b – piruvato e lactato; c - glicose e biomassa)

Com uma concentração de 150kg m⁻³ de glicose e uma concentração de 20kg m⁻³ de células alimentadas no biorreator, uma produção de 28kg m⁻³ de ácido acrílico e uma concentração residual de glicose de 76kg m⁻³ foram obtidas. Pode-se perceber, que a produção de ácido acrílico aumenta rapidamente nas duas primeiras horas de processo, mantendo-se praticamente constante até o final do processo.

CAPÍTULO VI - MODELAGEM MATEMÁTICA Modelagem e Controle da Síntese do Ácido Acrílico via Processo Fermentativo

Figura 6.5 - Perfis de concentração obtidos no estado estacionário (a – glicose e ácido acrílico; b – piruvato e lactato; c – biomassa)

Figura 6.6 - Variações de X_a e X_{Ladh} obtidas ao longo do tempo

Através da Figura 6.5(a –c) é possível perceber que as concentrações de piruvato, lactato e ácido acrílico são máximas na saída do biorreator, enquanto as concentrações de biomassa e glicose são mínimas neste ponto.

A quantidade de células ativas aumenta bruscamente nas duas primeiras horas de processo, mantendo-se constante nas demais. A quantidade de enzima *lactato desidrogenase* atinge seu valor máximo na primeira hora de processo, onde a concentração de piruvato é máxima (Figura 6.6).

Na Figura 6.7(a - e) são apresentados os perfis de concentração de glicose, piruvato, lactato, ácido acrílico e biomassa obtidos ao longo do tempo na fase fluida, em cada ponto de colocação.

Através das Figuras 6.7a e 6.7e, pode-se visualizar que as concentrações de glicose e de biomassa são mantidas constantes na entrada do biorreator (z = 1) ao longo do tempo. As Figuras 6.7b - 6.7d mostram que as concentrações de piruvato, lactato e ácido acrílico são nulas na entrada do biorreator e aumentam à medida que se deslocam para a saída do biorreator.

CAPÍTULO VI - MODELAGEM MATEMÁTICA

Modelagem e Controle da Síntese do Ácido Acrílico via Processo Fermentativo

Figura 6.7 - Perfis de concentração obtidos ao longo do tempo nos seis pontos de colocação

Depois de desenvolvido o modelo matemático para representar a síntese de ácido acrílico a partir de um processo fermentativo com células imobilizadas e, realizadas as simulações para determinação dos perfis de concentração dos componentes do processo,
foram realizados planejamentos de experimentos para identificar os parâmetros operacionais, de projeto e cinéticos mais influentes no processo, como também seus efeitos. Os resultados obtidos são apresentados a seguir.

6.3 **Planejamento Experimental**

Para poder-se avaliar a influência dos parâmetros operacionais, de projeto e cinéticos sobre o processo de síntese de ácido acrílico, foram realizadas as análises destes parâmetros, através da realização de planejamentos experimentais.

Inicialmente, foi realizado um planejamento fatorial 2³ para identificar a influência dos parâmetros operacionais (Sin, Xin e Fin) sobre o processo em estudo. Os diferentes parâmetros foram avaliados em dois níveis, inferior (-) e superior (+), onde estes níveis correspondem a uma variação de + 20% nos valores de cada parâmetro, conforme Tabela 6.3. A Tabela 6.4 apresenta a matriz codificada dos valores dos parâmetros.

Neste planejamento foram consideradas como respostas de interesse as concentrações de glicose, ácido acrílico e biomassa, obtidas no estado dinâmico e estacionário do processo.

O Software STATISTICA foi usado para gerar a matriz dos valores dos parâmetros e o modelo descrito anteriormente foi usado para gerar as respostas desejadas. As simulações foram realizadas de acordo com o planejamento fatorial completo 2^3 especificado na Tabela 6.3. As simulações realizadas neste planejamento são apresentadas no Apêndice D.

Parâmetros	Níveis				
	(-)	Ponto central	(+)		
S _{in}	120	150	180		
Fin	0,00024	0,0003	0,00036		
X _{in}	16	20	24		

1 1 · · · · 103

Tabela 6.4 - Matriz codificada dos valores dos parâmetros operacionais				
Ensaios	S _{in}	F _{in}	X _{in}	
1	-1	-1	-1	
2	1	-1	-1	
3	-1	1	-1	
4	1	1	-1	
5	-1	-1	1	
6	1	-1	1	
7	-1	1	1	
8	1	1	1	

Modelagem e Controle da Síntese do Ácido Acrílico via Processo Fermentativo

Depois de obtidos os valores das respostas de interesse, estes valores foram transportados na matriz experimental e, seqüencialmente, foi gerada a matriz dos efeitos dos parâmetros sobre as respostas e também, a tabela ANOVA (Análise da variância).

As Tabelas 6.5 - 6.10 apresentam os efeitos dos parâmetros (S_{in}, F_{in} e X_{in}) sobre as concentrações de glicose, ácido acrílico e biomassa, respectivamente, para um nível de confiança de 95%, tanto no comportamento dinâmico quanto no estacionário.

As análises de variância dos parâmetros operacionais e os coeficientes de determinação do modelo (R^2) são apresentados no Apêndice D.

	Efeito	Desvio padrão	р	Coeficiente de regressão
Média	85,8660	0,0113	0,00008	85,8660
* S _{in}	58,2034	0,0225	0,00025	29,1017
*F _{in}	-1,1704	0,0225	0,0122	-0,5852
* X _{in}	-10,1027	0,0225	0,0014	-5,0513
*S _{in} F _{in}	-0,4814	0,0225	0,0297	-0,2407
*S _{in} X _{in}	-0,7551	0,0225	0,0189	-0,3775
*F _{in} X _{in}	-0,5371	0,0225	0,0266	-0,2685

 Tabela 6.5 - Efeitos dos parâmetros operacionais sobre as concentrações de glicose (comportamento dinâmico)

* Parâmetros significativos ($p < \alpha$; $\alpha = 0.05$).

Fabela 6.6 - Efeitos dos parâmetros operacionais sobre a concentração final de glicose					
	Efeito	Desvio padrão	р	Coeficiente de regressão	
Média	76,2268	0,0002	0,000001	76,2268	
$* S_{in}$	59,4611	0,0003	0,000003	29,7305	
$*F_{in}$	4,4182	0,0003	0,000047	2,2091	
$*X_{in}$	-3,3536	0,0003	0,000062	-1,6767	
$S_{in}F_{in}$	0,0525	0,0003	0,0039	0,0262	
$S_{in}X_{in}$	-0,0317	0,0003	0,0065	-0,0158	
* F _{in} Xin	0,3802	0,0003	0,0005	0,1901	

Modelagem e Controle da Síntese do Á	Ácido Acrílico via Processo Fermentativo
--------------------------------------	--

* Parâmetros significativos (p< α ; α =0,05).

Tabela 6.7 - Efeitos dos parâmetros operacionais sobre as concentrações de ácido acrílico (comportamento dinâmico)

	Efeito	Desvio padrão	р	Coeficiente de regressão
Média	18,3319	0,0074	0,0003	18,3319
*S _{in}	0,3573	0,0148	0,0264	0,1786
*F _{in}	-0,3020	0,0148	0,0312	-0,1510
$* X_{in}$	4,4448	0,0148	0,0021	2,2224
$*S_{in}F_{in}$	0,2304	0,0148	0,0408	0,1152
$*S_{in}X_{in}$	0,2444	0,0148	0,0385	0,1222
$F_{in}X_{in}$	0,1089	0,0148	0,0859	0,0544

* Parâmetros significativos (p< α ; α =0,05).

	Efeito	Desvio padrão	р	Coeficiente de regressão
Média	28,0824	0,0003	0,000007	28,0824
* S _{in}	0,0773	0,0006	0,0047	0,0387
* F _{in}	-2,7111	0,0006	0,0001	-1,3555
$*X_{in}$	1,3914	0,0006	0,0002	0,6957
$*S_{in}F_{in}$	-0,0157	0,0006	0,0234	-0,0078
$S_{in}X_{in}$	0,0055	0,0006	0,0670	0,0027
$F_{in}X_{in}$	-0,1685	0,0006	0,0022	-0,0842

Tabela 6.8 - Efeitos dos parâmetros operacionais sobre a concentração final de ácido acrílico

* Parâmetros significativos (p< α ; α =0,05).

Modelagem e Controle da Síntese do Ácido Acrílico via Processo Fermentativo

	Efeito	Desvio padrão	р	Coeficiente de regressão
Média	25,1582	0,0035	0,000088	25,1582
*S _{in}	0,2299	0,0070	0,0193	0,1150
*F _{in}	0,1183	0,0070	0,0375	0,0591
$* X_{in}$	7,3703	0,0070	0,0006	3,6852
$S_{in}F_{in}$	-0,0152	0,0070	0,2743	-0,0076
SinXin	0,0237	0,0070	0,1824	0,0118
FinXin	0,0165	0,0070	0,2549	0,0082

Tabela 6.9 - Efeitos dos parâmetros operacionais sobre as concentrações de biomassa (comportamento dinâmico)

* Parâmetros significativos ($p < \alpha$; $\alpha = 0.05$).

Tabela 6.10 - Efeitos dos parâmetros operacionais sobre a concentração final de biomassa

	Efeito	Desvio padrão	р	Coeficiente de regressão
Média	20,7232	0,0206	0,0006	20,7232
S _{in}	0,2257	0,0412	0,1150	0,1128
*F _{in}	1,2831	0,0412	0,0204	0,6415
*X _{in}	4,8704	0,0412	0,0054	2,4352
$S_{in}F_{in}$	-0,0023	0,0412	0,9640	-0,0012
$S_{in}X_{in}$	0,0169	0,0412	0,7522	0,0084
FinXin	-0,0533	0,0412	0,4193	-0,0266

* Parâmetros significativos (p< α ; α =0,05).

Através dos resultados apresentados nas Tabelas 6.5 - 6.10 pode-se observar que as concentrações de glicose obtidas ao longo do tempo e também, a concentração final são influenciadas pelos três parâmetros analisados (S_{in}, F_{in} e X_{in}) e pelas interações entre eles. As concentrações de ácido acrílico obtidas ao longo do tempo são influenciadas por (S_{in}, F_{in} e X_{in}) e pelas interações entre (S_{in}) e (F_{in}) e entre (S_{in}) e (X_{in}) e a concentração final de ácido acrílico é influenciada por (S_{in}, F_{in} e X_{in}) e pelas interações entre (S_{in}) e entre (F_{in}) e (X_{in}), para um nível de confiança de 95%.

Nas concentrações de biomassa obtidas ao longo do tempo os três parâmetros exercem influências significativas, mas nenhuma interação entre eles foi identificada como sendo estatisticamente significativa para um nível de confiança de 95%. Para a

concentração final de biomassa foram identificados os parâmetros (F_{in}) e (X_{in}) como sendo estatisticamente significativos.

Os efeitos de cada parâmetro sobre as concentrações de glicose, ácido acrílico e biomassa durante o comportamento dinâmico e estacionário do processo podem ser visualizados na Figura 6.8.

Figura 6.8 - Efeitos estimados dos parâmetros operacionais sobre as concentrações de glicose, ácido acrílico e biomassa (a – dinâmico; b – estacionário)

A partir desta análise (dentro do limite de valores pré-estabelecidos), pode-se concluir que:

✓ Aumentando as concentrações de S_{in} e X_{in} e diminuindo a vazão volumétrica (F_{in}), tem-se uma concentração final de ácido acrílico maior;

✓ Aumentando (S_{in}) e (F_{in}) e diminuindo (X_{in}) , maior será a concentração residual de glicose.

Para investigar a influência dos parâmetros de projeto sobre as concentrações de glicose, ácido acrílico e biomassa, também foi realizado um planejamento fatorial 2^3 . Os três parâmetros (D_p, D_r e L) foram avaliados em dois níveis, inferior (-) e superior (+), onde estes níveis correspondem a uma variação de $\pm 20\%$ no valor de cada parâmetro, conforme mostra a Tabela 6.11. A Tabela 6.12 apresenta a matriz codificada dos parâmetros de projeto. As simulações realizadas neste planejamento são apresentadas no Apêndice D.

Modelagem e Controle da Síntese do Ácido Acrílico via Processo Fermentativo

Tabela 6.11 - Parâmetros usados no planejamento fatorial 2 ³						
Parâmetros		Níveis				
	(-)	(-) Ponto central (+)				
D_p	0,0024	0,003	0,0036			
Dr	0,04	0,05	0,06			
L	0,80	1,00	1,20			

 Tabela 6.12- Matriz codificada dos valores dos parâmetros de projeto

Ensaios	Dp	Dr	L
1	-1	-1	-1
2	1	-1	-1
3	-1	1	-1
4	1	1	-1
5	-1	-1	1
6	1	-1	1
7	-1	1	1
8	1	1	1

As Tabelas 6.13 – 6.18 apresentam os efeitos dos parâmetros de projeto (D_p , D_r e L) sobre as concentrações de glicose, ácido acrílico e biomassa, respectivamente, para um nível de confiança de 95%, no comportamento dinâmico e estacionário. As análises de variância dos parâmetros de projeto sobre as respostas de interesse e os coeficientes de determinação do modelo (R^2) são apresentados no Apêndice D.

	Efeito	Desvio padrão	р	Coeficiente de regressão
Média	85,5096	0,2676	0,0020	85,5096
D _p	-0,4437	0,5352	0,5593	-0,2219
D _r	0,8945	0,5352	0,3432	0,4473
L	-1,7955	0,5352	0,1844	-0,8977
D _p D _r	0,0735	0,5352	0,9131	0,0367
$\overline{D}_{p}L$	0,0831	0,5352	0,9019	0,0415
D _r L	1,0034	0,5352	0,3119	0,5017

 Tabela 6.13 - Efeitos dos parâmetros de projeto sobre as concentrações de glicose (comportamento dinâmico)

* Parâmetros significativos ($p < \alpha$; $\alpha = 0,05$).

Fabela 6.14 - Efeitos dos parâmetros de projeto sobre a concentração final de glicose									
	Efeito	Desvio padrão	р	Coeficiente de regressão					
Média	77,4929	0,0174	0,0001	77,4929					
$*D_p$	-5,1454	0,0347	0,0043	-2,5727					
$*D_r$	-8,7187	0,0347	0,0025	-4,3593 -5,2683					
* L	-10,5367	0,0347	0,0021						
$D_p D_r$	-0,1001	0,0347	0,2126	-0,0500					
D_pL	0,4071	0,0347	0,0542	0,2036					
*D _r L	-0,7813	0,0347	0,0283	-0,3907					

Modelagem e Controle da Síntese do Ácido	o Acrílico via Processo Fermentativo
--	--------------------------------------

* Parâmetros significativos (p< α ; α =0,05).

Tabela 6.15 - Efeitos dos parâmetros de projeto sobre as concentrações de ácido acrílico (comportamento dinâmico)

	Efeito	Desvio padrão	Р	Coeficiente de regressão
Média	18,4975	0,0771	0,0026	18,4975
D _p	-0,3746	0,1542	0,2486	-0,1873
Dr	0,6763	0,1542	0,1427	0,3381
L	0,3584	0,1542	0,2587	0,1792
$D_p D_r$	-0,0860	0,1542	0,6760	-0,0430
$\overline{D_p}L$	-0,1007	0,1542	0,6316	-0,0504
D _r L	-0,0041	0,1542	0,9831	-0,0020

* Parâmetros significativos (p< α ; α =0,05).

Tabela 6.16 - Efeitos dos parâmetros de projeto sobre a concentração final de ácido acrílico

	Efeito	Desvio padrão	р	Coeficiente de regressão
Média	27,4918	0,0114	0,0003	27,4917
$* D_p$	1,5705	0,0228	0,0093	0,7853
$*D_r$	5,3012	0,0228	0,0027	2,6506
* L	4,5718	0,0228	0,0032	2,2859
D _p D _r	0,1660	0,0228	0,0871	0,0830
D_pL	-0,1348	0,0228	0,1069	-0,0674
*D _r L	0,5428	0,0228	0,0268	0,2714

* Parâmetros significativos (p< α ; α =0,05).

Modelagem e Controle da Síntese do Ácido Acrílico via Processo Fermentativo

	Efeito	Desvio padrão	р	Coeficiente de regressão
Média	25,2074	0,0026	0,00006	25,2074
$*D_p$	0,1215	0,0051	0,0269	0,0607
* <i>D</i> _r	-0,2413	0,0051	0,0136	-0,1207
L	0,0100	0,0051	0,3014	0,0050
$D_p D_r$	0,0304	0,0051	0,1068	0,0152
$\overline{D}_{p}L$	-0,0092	0,0051	0,3249	-0,0046
D_rL	0,0035	0,0051	0,6199	0,0017

Tabela 6.17 - Efeitos dos parâmetros de projeto sobre as concentrações de biomassa (comportamento dinâmico)

* Parâmetros significativos ($p < \alpha; \alpha = 0,05$).

Tabela 6.18 - Efeitos dos parâmetros de projeto sobre a concentração final de biomassa

	Efeito	Desvio padrão	р	Coeficiente de regressão
Média	21,5471	0,0395	0,0012	21,5471
D_p	-0,1651	0,0790	0,2842	-0,0825
*D_r	-2,9851	0,0790	0,0168	-1,4925
*L	-1,8881	0,0790	0,0266	-0,9440
$D_p D_r$	0,1058	0,0790	0,4083	0,0529
D_pL	-0,0124	0,0790	0,9008	-0,0062
*D _r L	1,0850	0,0790	0,0463	0,5425

* Parâmetros significativos ($p < \alpha$; $\alpha = 0,05$).

Através dos resultados apresentados nas Tabelas 6.13 - 6.18 pode-se observar que as concentrações finais de glicose e ácido acrílico são influenciadas pelos três parâmetros de projeto analisados e pela interação entre (D_r) e (L), para um nível de confiança de 95%.

As concentrações de biomassa obtidas ao longo do tempo são influenciadas pelo diâmetro da partícula (D_p) e pelo diâmetro do biorreator (D_r) e a concentração final de biomassa pelo diâmetro (D_r) e pelo comprimento do biorreator (L) e pela interação entre eles.

A Figura 6.9 apresenta os efeitos de cada parâmetro sobre as concentrações de glicose, ácido acrílico e biomassa durante o comportamento dinâmico e estacionário do processo.

CAPÍTULO VI - MODELAGEM MATEMÁTICA Modelagem e Controle da Síntese do Ácido Acrílico via Processo Fermentativo

Figura 6.9 - Efeitos estimados dos parâmetros de projeto sobre as concentrações de glicose, ácido acrílico e biomassa (a – dinâmico; b – estacionário).

Dando seqüência ao estudo do comportamento dinâmico e estacionário do processo, foi realizada uma análise dos parâmetros cinéticos do modelo. Os parâmetros foram variados igualmente em $\pm 20\%$ de seus valores iniciais, conforme Tabela 6.19.

Como o número de parâmetros a serem analisados era elevado, não seria viável realizar um planejamento fatorial tipo 2^k , pois seriam necessários 33.554.432 ensaios (k=25). Em virtude disso, para identificar os parâmetros cinéticos mais importantes do processo foi utilizado o planejamento de Plackett-Burman.

Foi utilizado um planejamento Plackett-Burman com 32 ensaios e 31 graus de liberdade, onde 25 graus de liberdade estão associados aos parâmetros analisados e os demais foram usados como variáveis inertes (VI_n) para a determinação do erro e, assim, definir os fatores estatisticamente significativos, através dos efeitos principais de cada um deles. A Tabela 6.20 apresenta a matriz codificada para o planejamento de Palckett-Burman com 32 ensaios.

As respostas analisadas neste planejamento foram as concentrações de glicose, ácido acrílico e biomassa obtidas durante o comportamento dinâmico e estacionário.

CAPÍTULO VI - MODELAGEM MATEMÁTICA Modelagem e Controle da Síntese do Ácido Acrílico via Processo Fermentativo

Parâmetros	Níveis							
	(-)	Ponto central	(+)					
k ₁	1,95	2,44	2,93					
k _{1a}	0,467	0,584	0,7008					
k ₂	2,64	3,30	3,96					
k ₃	4,16	5,20	6,24					
k4	3,40	4,25	5,10					
k5	0,96	1,20	1,44					
k ₆	0,024	0,03	0,036					
k ₇	0,032	0,04	0,048					
k _{7a}	0,0032	0,004	0,0048					
K ₁	0,0008	0,001	0,0012					
K _{1a}	0,00928	0,0116	0,01392					
K ₂	2,32	2,90	3,48					
K ₃	2,56	3,20	3,84					
K_4	1,68	2,10	2,52					
K ₅	1,88	2,35	2,82					
K ₆	1,56	1,95	2,34					
K _{6a}	10,40	13	15,60					
K ₇	0,016	0,02	0,024					
K _{7a}	0,00072	0,0009	0,00108					
K _{2i}	1,52	1,90	2,28					
K _{5i}	3,984	4,98	5,976					
K _{6i}	0,40	0,50	0,60					
K _A	0,072	0,09	0,108					
K _A ,	0,152	0,19	0,228					
k _d	0,008	0,01	0,012					

	Tabela 6.20 - Matriz codificada dos valores dos parâmetros cinéticos																														
	\mathbf{k}_1	k _{1a}	\mathbf{k}_2	k3	\mathbf{k}_4	k_5	k ₆	k ₇	k _{7a}	K ₁	K _{1a}	K ₂	k3	K4	K ₅	K ₆	K _{6a}	K ₇	K _{7a}	K _{2i}	K_{5i}	K _{6i}	K _A	K _{A'}	k _d	VI ₁	VI ₂	VI ₃	VI ₄	VI ₅	VI ₆
1	-1	-1	-1	-1	-1	1	1	1	1	1	1	1	1	1	1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	1	1	1	1	1	-1
2	1	-1	-1	-1	-1	-1	-1	-1	-1	1	1	1	1	1	1	1	1	1	1	1	1	-1	-1	-1	-1	-1	-1	-1	-1	1	1
3	-1	1	-1	-1	-1	-1	1	1	1	-1	-1	-1	1	1	1	1	1	1	-1	-1	-1	1	1	1	-1	-1	-1	-1	1	-1	1
4	1	1	-1	-1	-1	1	-1	-1	-1	-1	-1	-1	1	1	1	-1	-1	-1	1	1	1	1	1	1	-1	1	1	1	-1	-1	-1
5	-1	-1	1	-1	-1	1	-1	1	1	-1	1	1	-1	-1	1	1	-1	-1	1	1	-1	1	1	-1	1	-1	-1	1	-1	-1	1
6	1	-1	1	-1	-1	-1	1	-1	-1	-1	1	1	-1	-1	1	-1	1	1	-1	-1	1	1	1	-1	1	1	1	-1	1	-1	-1
7	-1	1	1	-1	-1	-1	-1	1	1	1	-1	-1	-1	-1	1	-1	1	1	1	1	-1	-1	-1	1	1	1	1	-1	-1	1	-1
8	1	1	1	-1	-1	1	1	-1	-1	1	-1	-1	-1	-1	1	1	-1	-1	-1	-1	1	-1	-1	1	1	-1	-1	1	1	1	1
9	-1	-1	-1	1	-1	1	1	-1	1	1	-1	1	-1	1	-1	-1	1	-1	1	-1	1	1	-1	1	1	-1	1	-1	-1	-1	1
10	1	-1	-1	1	-1	-1	-1	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1	1	1	1	-1	1	1	-1	-1
11	-1	1	-1	1	-1	-1	1	-1	1	-1	1	-1	-1	1	-1	1	-1	1	1	-1	1	-1	1	-1	1	1	-1	1	-1	1	-1
12	1	1	-1	1	-1	1	-1	1	-1	-1	1	-1	-1	1	-1	-1	1	-1	-1	1	-1	-1	1	-1	1	-1	1	-1	1	1	1
13	-1	-1	1	1	-1	1	-1	-1	1	-1	-1	1	1	-1	-1	1	1	-1	-1	1	1	-1	1	1	-1	1	-1	-1	1	1	-1
14	1	-1	1	1	-1	-1	1	1	-1	-1	-1	1	1	-1	-1	-1	-1	1	1	-1	-1	-1	1	1	-1	-1	1	1	-1	1	1
15	-1	1	1	1	-1	-1	-1	-1	1	1	1	-1	1	-1	-1	-1	-1	1	-1	1	1	1	-1	-1	-1	-1	1	1	1	-1	1
16	1	1	1	1	-1	1	1	1	-1	1	1	-1	1	-1	-1	1	1	-1	1	-1	-1	1	-1	-1	-1	1	-1	-1	-1	-1	-1
17	-1	-1	-1	-1	1	1	1	1	-1	1	1	-1	1	-1	-1	-1	-1	1	-1	1	1	-1	1	1	1	1	-1	-1	-1	-1	1
18	1	-1	-1	-1	1	-1	-1	-1	1	1	1	-1	1	-1	-1	1	1	-1	1	-1	-1	-1	1	1	1	-1	1	1	1	-1	-1
19	-1	1	-1	-1	1	-1	1	1	-1	-1	-1	1	1	-1	-1	1	1	-1	-1	1	1	1	-1	-1	1	-1	1	1	-1	1	-1
20	1	1	-1	-1	1	1	-1	-1	1	-1	-1	1	1	-1	-1	-1	-1	1	1	-1	-1	1	-1	-1	1	1	-1	-1	1	1	1
21	-1	-1	1	-1	1	1	-1	1	-1	-1	1	-1	-1	1	-1	1	-1	1	1	-1	1	1	-1	1	-1	-1	1	-1	1	1	-1
22	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1	-1	1	-1	-1	1	-1	-1	1	-1	1	-1	1	-1	1	-1	1	-1	1	1
23	-1	1	1	-1	1	-1	-1	1	-1	1	-1	1	-1	1	-1	-1	1	-1	1	-1	1	-1	1	-1	-1	1	-1	1	1	-1	1
24	1	1	1	-1	1	1	1	-1	1	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1	-1	1	-1	-1	-1	1	-1	-1	-1	-1
25	-1	-1	-1	1	1	1	1	-1	-1	1	-1	-1	-1	-1	1	-1	1	1	1	1	-1	1	1	-1	-1	-1	-1	1	1	1	-1
26	1	-1	-1	1	1	-1	-1	1	1	1	-1	-1	-1	-1	1	1	-1	-1	-1	-1	1	1	1	-1	-1	1	1	-1	-1	1	1
27	-1	1	-1	1	1	-1	1	-1	-1	-1	1	1	-1	-1	1	1	-1	-1	1	1	-1	-1	-1	1	-1	1	1	-1	1	-1	1
28	1	1	-1	1	1	1	-1	1	1	-1	1	1	-1	-1	1	-1	1	1	-1	-1	1	-1	-1	1	-1	-1	-1	1	-1	-1	-1
29	-1	-1	1	1	1	1	-1	-1	-1	-1	-1	-1	1	1	1	1	1	1	-1	-1	-1	-1	-1	-1	1	1	1	1	-1	-1	1
30	1	-1	1	1	1	-1	1	1	1	-1	-1	-1	1	1	1	-1	-1	-1	1	1	1	-1	-1	-1	1	-1	-1	-1	1	-1	-1
31	-1	1	1	1	1	-1	-1	-1	-1	1	1	1	1	1	1	-1	-1	-1	-1	-1	-1	1	1	1	1	-1	-1	-1	-1	1	-1
32	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Modelagem e Controle da Síntese do Ácido Acrílico via Processo Fermentativo

As Tabelas 6.21 – 6.23 apresentam os efeitos dos parâmetros cinéticos analisados sobre as concentrações finais de glicose, ácido acrílico e biomassa, respectivamente, para um nível de confiança de 95%.

Os efeitos dos parâmetros cinéticos sobre as concentrações de glicose, ácido acrílico e biomassa durante o comportamento dinâmico do processo, as análises de variância dos parâmetros e os coeficientes de determinação do modelo (R^2) são apresentados no Apêndice D.

Modelagem e Controle da Síntese do Ácido Acrílico via Processo Fermentativo

<u>6</u>	Efeito	Desvio padrão	р	Coeficiente de regressão
Média	73,7341	0,3769	0,0000	73,7341
* k ₁	5,4021	0,7537	0,0004	2,7010
k _{1a}	1,5672	0,7537	0,0828	0,7836
* k ₂	-14,7159	0,7537	0,000001	-7,3579
* k3	5,0818	0,7537	0,0005	2,5409
* k4	-3,4650	0,7537	0,0037	-1,7325
k5	-0,9342	0,7537	0,2615	-0,4671
* k ₆	3,1289	0,7537	0,0060	1,5645
* k ₇	2,4235	0,7537	0,0182	1,2117
k _{7a}	0,4443	0,7537	0,5770	0,2221
*K1	1,9722	0,7537	0,0398	0,9861
k _{1a}	0,1357	0,7537	0,8631	0,0678
K ₂	1,2089	0,7537	0,1599	0,6044
K ₃	-1,4078	0,7537	0,1110	-0,7039
K4	0,0320	0,7537	0,9675	0,0159
K ₅	0,0541	0,7537	0,9451	0,0271
K ₆	-0,0027	0,7537	0,9972	-0,0014
K _{6a}	0,5068	0,7537	0,5264	0,2534
K ₇	-0,7513	0,7537	0,3573	-0,3757
K _{7a}	-0,2101	0,7537	0,7898	-0,1051
K _{2i}	-0,2340	0,7537	0,7667	-0,1170
* K _{5i}	-3,7579	0,7537	0,0025	-1,8789
K _{6i}	-0,1174	0,7537	0,8814	-0,0587
$* K_A$	10,4803	0,7537	0,000009	5,2401
* <i>K</i> _A ,	8,4673	0,7537	0,00003	4,2336
*k _d	1,8504	0,7537	0,0495	0,9252

Tabela 6.21 - Efeitos principais dos parâmetros cinéticos sobre a concentração final de glicose

* Parâmetros significativos (p< α ; α =0,05).

Modelagem e Controle da Síntese do Ácido Acrílico via Processo Fermentativo

	Efeito	Desvio padrão	р	Coeficiente de regressão			
Média	28,3567	0,0884	0,0000	28,3567			
* k ₁	0,7584	0,1768	0,0051	0,3792			
k _{1a}	0,1714	0,1768	0,3696	0,0857			
* k ₂	1,4083	0,1768	0,0002	0,7041			
k ₃	0,0674	0,1768	0,7159	0,0337			
* k4	1,3400	0,1768	0,0003	0,6700			
k5	-0,1320	0,1768	0,4835	-0,0660			
k ₆	-0,0792	0,1768	0,6698	-0,0396			
k ₇	-0,1752	0,1768	0,3598	-0,0876			
k _{7a}	0,3368	0,1768	0,1053	0,1684			
K ₁	-0,2248	0,1768	0,2506	-0,1124			
k _{1a}	0,0488	0,1768	0,7917	0,0244			
K ₂	-0,0466	0,1768	0,8007	-0,0233			
K ₃	0,0180	0,1768	0,9222	0,0090			
*K4	-0,5668	0,1768	0,0184	-0,2834			
K ₅	0,1740	0,1768	0,3629	0,0870			
K ₆	-0,0922	0,1768	0,6205	-0,0461			
K _{6a}	-0,0962	0,1768	0,6058	-0,0481			
K ₇	0,0792	0,1768	0,6699	0,0396			
K _{7a}	-0,0581	0,1768	0,7534	-0,0291			
K _{2i}	0,0069	0,1768	0,9701	0,0034			
*K _{5i}	0,4389	0,1768	0,0476	0,2195			
K _{6i}	0,1100	0,1768	0,5565	0,0550			
$* K_A$	-6,1223	0,1768	0,0000	-3,0612			
* <i>K</i> _A ,	-3,3205	0,1768	0,0000	-1,6603			
* <i>k</i> _d	-0,8326	0,1768	0,0033	-0,4162			

Tabela 6.22 - Efeitos principais dos parâmetros cinéticos sobre a concentração final de ácido acrílico

* Parâmetros significativos (p<α; α=0,05).

Modelagem e Controle da Síntese do Ácido Acrílico via Processo Fermentativo

	Efeito	Desvio padrão	р	Coeficiente de regressão
Média	22,3843	0,3431	0,0000	22,3842
*k1	-2,1269	0,6861	0,0211	-1,0635
k _{1a}	-0,6414	0,6861 0,3859	-0,3207	
*k ₂	2,4711	0,6861	0,0113	1,2355
k ₃	-1,1430	0,6861	0,1468	-0,5715
\mathbf{k}_4	0,4076	0,6861	0,5742	0,2038
k ₅	0,0382	0,6861	0,9574	0,0191
k ₆	-0,2950	0,6861	0,6823	-0,1475
k ₇	-0,2429	0,6861	0,7354	-0,1215
k _{7a}	0,0401	0,6861	0,9552	0,0201
K ₁	0,2603	0,6861	0,7174	0,1302
k _{1a}	-0,4652	0,6861	0,5231	-0,2326
K ₂	0,7441	0,6861	0,3198	0,3721
*K3	-2,3760	0,6861	0,01342	-1,1880
K ₄	-0,1752	0,6861	0,8070	-0,0876
K ₅	0,1931	0,6861	0,7878	0,0965
K ₆	-0,0238	0,6861	0,9735	-0,0119
K _{6a}	0,0389	0,6861	0,9566	0,0195
K ₇	0,0388	0,6861	0,9567	0,0194
K _{7a}	0,3826	0,6861	0,5972	0,1913
K _{2i}	-0,0566	0,6861	0,9369	-0,0283
K_{5i}	0,4613	0,6861	0,5264	0,2306
K _{6i}	0,1784	0,6861	0,8035	0,0892
* <i>K</i> _A	4,3006	0,6861	0,0008	2,1503
$* K_{A'}$	-5,9924	0,6861	0,0001	-2,9962
* <i>k</i> _d	-2,5570	0,6861	0,0098	-1,2785

Tabela 6.23 – Efeitos principais dos parâmetros cinéticos sobre a concentração final de biomassa

* Parâmetros significativos (p< α ; α =0,05).

Através da análise da Tabela 6.21 é possível visualizar que a concentração final de glicose é influenciada por seis velocidades específicas de reação (k_1 , k_2 , k_3 , k_4 , k_6 e k_7), uma

constante afinidade (K_1) e quatro constantes de inibição (K_{5i} , K_A , K_A ' e k_d), as quais se mostraram estatisticamente significativas no planejamento fatorial realizado, para um nível de confiança de 95%.

Para a concentração final de ácido acrílico três velocidades específicas de reação $(k_1, k_2 e k_3)$, uma constante de afinidade (K_4) , três constantes de inibição $(K_{5i}, K_A e K_{A'})$ e a constante de morte celular (k_d) , foram identificadas como sendo estatisticamente significativas, para um nível de confiança de 95% (Tabela 6.22). Enquanto que, para a concentração final de biomassa as velocidades específicas de reação $(k_1 e k_2)$, a constante de afinidade (K_3) , as constantes de inibição $(K_A e K_{A'})$ e a constante de morte celular (k_d)

Depois de identificadas as influências dos parâmetros operacionais, cinéticos e de projeto sobre o processo, foi realizada a otimização dos parâmetros operacionais e de projeto, com o objetivo de encontrar valores que maximizassem o rendimento final de ácido acrílico. Os resultados da otimização serão apresentados na seqüência.

6.4 Otimização do Processo

Nesta seção serão apresentados os resultados da otimização do processo de síntese de ácido acrílico via fermentação, levando em consideração um modelo estruturado com células imobilizadas.

Para a otimização do processo foram utilizadas três técnicas de otimização, a saber, técnica de otimização evolucionária (EVOP), metodologia de superfície de resposta (RSM) e a técnica de otimização por programação quadrática sucessiva (SQP).

Inicialmente, foi realizada a otimização evolucionária para os parâmetros operacionais com o objetivo de determinar limites operacionais ótimos ou próximos destes. Na seqüência, esta técnica de otimização foi aplicada aos parâmetros de projeto. Foram realizadas cinco fases de EVOP para os parâmetros operacionais e de projeto.

Para a otimização evolucionária dos parâmetros operacionais e de projeto foram realizados planejamentos fatoriais completos 2³ de acordo com a Tabela 6.24. O Software STATISTICA foi usado para gerar a matriz dos valores dos parâmetros e o modelo desenvolvido para representar a síntese de ácido acrílico foi usado para gerar a resposta de interesse. Foi considerada como resposta de interesse a concentração de ácido acrílico no

estado estacionário. Os diferentes parâmetros foram avaliados em dois níveis, inferior (-) e superior (+), onde estes níveis variam a cada fase da otimização evolucionária. A Tabela 6.25 apresenta os valores dos parâmetros operacionais usados na primeira fase da EVOP.

Tubelu 0.24 Multi2 counteada dos parametros operacional									
Ensaios	S _{in}	\mathbf{F}_{in}	X _{in}						
1	-1	-1	-1						
2	1	-1	-1						
3	-1	1	-1						
4	1	1	-1						
5	-1	-1	1						
6	1	-1	1						
7	-1	1	1						
8	1	1	1						

 Tabela 6.24 – Matriz codificada dos parâmetros operacionais

Tabela 6.25 – Valores dos parâmetros operacionais usados na 1^a fase da EVOP

Parâmetros	Níveis		
	(-)	Ponto central	(+)
S _{in}	145	150	155
F _{in}	0,00028	0,0003	0,00032
X _{in}	17	20	23

O gráfico de Pareto (Figura 6.10) foi usado para identificar os efeitos dos parâmetros operacionais sobre a concentração de ácido acrílico, para um intervalo de confiança de 95%, na primeira fase da EVOP.

Figura 6.10 – Gráfico de Pareto dos efeitos dos parâmetros operacionais

Através da Figura 6.10 pode-se perceber que os parâmetros F_{in} e X_{in} exercem influências estatisticamente significativas sobre a concentração de ácido acrílico, para um intervalo de confiança de 95%. Os dois parâmetros apresentaram efeitos elevados sobre a concentração, porém X_{in} apresentou efeito positivo e F_{in} negativo, ou seja, para que se consiga atingir a máxima concentração de ácido acrílico, a concentração de células alimentadas no biorreator deverá ser mantida em seu valor máximo (nível superior), enquanto a vazão de alimentação no seu valor mínimo (nível inferior). Usando os valores do ponto central desta fase, um rendimento de ácido acrílico ($Y_{P/S}$) de aproximadamente 38% foi obtido. As concentrações finais médias de ácido acrílico obtidas na primeira fase da EVOP são mostradas na Figura 6.11.

Figura 6.11 – Concentrações finais médias de ácido acrílico obtidas na 1ª fase da EVOP

A partir dos valores usados na 1^{a} fase da EVOP, foram realizadas mais quatro fases e os resultados obtidos em cada fase são apresentados na seqüência (Figuras 6.12 – 6.15).

Figura 6.12 – Resultados obtidos na 2^a fase da EVOP (a – gráfico de Pareto dos efeitos dos parâmetros operacionais; b – concentrações médias finais de ácido acrílico)

Figura 6.13 - Resultados obtidos na 3^a fase da EVOP (a – gráfico de Pareto dos efeitos dos parâmetros operacionais; b – concentrações médias finais de ácido acrílico)

CAPÍTULO VI - MODELAGEM MATEMÁTICA Modelagem e Controle da Síntese do Ácido Acrílico via Processo Fermentativo

Figura 6.14 - Resultados obtidos na 4^a fase da

EVOP (a - gráfico de Pareto dos efeitos dos parâmetros operacionais; b - concentrações médias finais de ácido acrílico)

Figura 6.15 - Resultados obtidos na 5ª fase da EVOP (a – gráfico de Pareto dos efeitos dos parâmetros operacionais; b – concentrações médias finais de ácido acrílico)

A otimização evolucionária foi aplicada, também, para os parâmetros de projeto, a saber, diâmetro da partícula (D_p) , diâmetro do biorreator (D_r) e comprimento do biorreator (L). Foram realizados planejamentos fatoriais 2^3 para identificar a influência dos parâmetros de projeto sobre o processo em estudo. Os diferentes parâmetros foram avaliados em dois níveis, inferior (-) e superior (+), onde estes níveis variam a cada fase da otimização evolucionária. Os valores dos parâmetros operacionais (Sin, Fin e Xin) usados nesta otimização foram 110kg m⁻³, 0,00027m³ s⁻¹ e 22kg m⁻³, respectivamente, os quais apresentaram melhor resultado na otimização evolucionária, isto é, apresentaram maior efeito sobre a concentração de ácido acrílico e maior rendimento. A Tabela 6.26 apresenta os valores dos parâmetros de projeto usados na primeira fase da EVOP.

Modelagem e Controle da Síntese do Ácido Acrílico via Processo Fermentativo

Parâmetros	Níveis		
	(-)	Ponto central	(+)
D _p	0,0028	0,003	0,0032
Dr	0,04	0,05	0,06
L	0,9	1	1,1

O gráfico de Pareto (Figura 6.16) foi usado para identificar os efeitos dos parâmetros de projeto sobre a concentração de ácido acrílico, para um intervalo de confiança de 95%, na primeira fase da EVOP.

Figura 6.16 – Gráfico de Pareto dos efeitos dos parâmetros de projeto

Através da Figura 6.16 pode-se perceber que os parâmetros (D_r , L e D_p) e a interação entre (D_r) e (L) exercem influências estatisticamente significativas sobre a concentração de ácido acrílico, para um intervalo de confiança de 95%. Estes parâmetros apresentaram efeitos positivos sobre a concentração, entretanto os efeitos dos parâmetros D_r e L são bem superiores frente aos efeitos de D_p e da interação entre (D_r) e (L). O rendimento de ácido acrílico obtido nesta 1ª fase, a partir dos valores do ponto central foi de aproximadamente 39%. As concentrações finais médias de ácido acrílico obtidas na primeira fase da EVOP são mostradas na Figura 6.17.

176

Figura 6.17 - Concentrações finais médias de ácido acrílico obtidas na 1ª fase da EVOP

A partir dos valores usados na 1^{a} fase da EVOP foram realizadas mais quatro fases e os resultados obtidos em cada fase são apresentados nas Figuras 6.18 – 6.21.

Figura 6.18 – Resultados obtidos na 2^a fase da EVOP (a – gráfico de Pareto dos efeitos dos parâmetros de projeto; b – concentrações médias finais de ácido acrílico)

CAPÍTULO VI - MODELAGEM MATEMÁTICA Modelagem e Controle da Síntese do Ácido Acrílico via Processo Fermentativo

Figura 6.19 - Resultados obtidos na 3^a fase da EVOP (a – gráfico de Pareto dos efeitos dos parâmetros de projeto; b – concentrações médias finais de ácido acrílico)

Figura 6.20 - Resultados obtidos na 4^a fase da EVOP (a – gráfico de Pareto dos efeitos dos parâmetros de projeto; b – concentrações médias finais de ácido acrílico)

Figura 6.21 - Resultados obtidos na 5^a fase da EVOP (a – gráfico de Pareto dos efeitos dos parâmetros de projeto; b – concentrações médias finais de ácido acrílico)

Depois de concluída a otimização evolucionária dos parâmetros operacionais e de projeto, foi realizado um planejamento composto central (tipo estrela) para determinação da equação do modelo e também, para análise da superfície de resposta do rendimento final de ácido acrílico em função dos paramentros operacionais. Neste planejamento foram utilizados os melhores valores dos parâmetros de projeto e operacionais obtidos na EVOP. A matriz codificada dos parâmetros operacionais é apresentada na Tabela 6.27. Os ensaios 1 a 8 correspondem ao planejamento fatorial completo 2³, os ensaios 9 a 14 correspondem aos pontos axiais e o ensaio 15 ao ponto central (foi usado apenas 1 ponto central, pois se trata de um trabalho de simulação computacional).

Para determinação da equação do modelo foram utilizados polinômios de 2^a ordem e realizada a análise de variância dos parâmetros operacionais sobre o rendimento final de ácido acrílico, para um intervalo de confiança de 95%. Os resultados da ANOVA são apresentados na Tabela 6.28.

Ensaios	S _{in}	F _{in}	X _{in}
1	-1	-1	-1
2	-1	-1	1
3	-1	1	-1
4	-1	1	1
5	1	-1	-1
6	1	-1	1
7	1	1	-1
8	1	1	1
9	-1,68179	0	0
10	1,68179	0	0
11	0	-1,68179	0
12	0	1,68179	0
13	0	0	-1,68179
14	0	0	1,68179
15	0	0	0

Tabela 6.27 – Matriz codificada dos parâmetros operacionais

Fator	SQ	GL	MS	F	р
$*S_{in}(L)$	0,162	1	0,162	159,78	0,000
$*S_{in}(Q)$	0,025	1	0,025	24,28	0,0001
$*F_{in}(L)$	1,721	1	1,721	1.701,01	0,0000
F _{in} (Q)	0,004	1	0,004	4,23	0,0738
$*X_{in}(L)$	0,027	1	0,027	26,53	0,0009
X _{in} (Q)	0,0005	1	0,0005	0,47	0,5102
Erro	0,008	8	0,001	323	3,9
SQ _R	1,944	6	0,324		
SQT	1,952	14			
R^2	0,996				

Tabela 6.28 – ANOVA dos parâmetros operacionais sobre o rendimento final de ácido acrílico

* Parâmetros significativos ($p < \alpha; \alpha = 0,05$)

Através dos valores de "p" (p = nível de significância), pode-se perceber a significância dos três parâmetros operacionais (S_{in}, F_{in} e X_{in}) sobre o rendimento final de ácido acrílico, para um intervalo de confiança de 95%. Como o valor de $F_{calculado}$ (F = 323,9) é bem maior que o valor de $F_{tabelado}$ (F_{6,8} = 3,58) e o valor do coeficiente de determinação do modelo (R²) é próximo de 1, pode se dizer que o modelo quadrático é adequado para verificar a variação do rendimento em função dos três parâmetros analisados.

A Figura 6.22 apresenta a superfície de resposta do rendimento de ácido acrílico em função dos parâmetros ($S_{in} e F_{in}$), os quais apresentaram maior efeito sobre o rendimento. Através desta figura é possível perceber que o máximo rendimento de ácido acrílico é obtido quando a vazão volumétrica de alimentação está em seu valor mínimo e a concentração de substrato alimentada no biorreator está entre seu valor central e mínimo.

Figura 6.22 – Superfície de resposta do rendimento final de ácido ácrílico em função dos parâmetros operacionais

A equação quadrática do modelo, obtida a partir dos resultados do planejamento estrela para o rendimento de ácido acrílico foi:

$$Y_{A_{S}} = 38,451 - 0,109S_{in} + 0,064(S_{in})^2 - 0,355F_{in} + 0,027(F_{in})^2 + 0,043X_{in} + 0,009(X_{in})^2$$
(6.33)

A Equação (6.33) foi utilizada como função objetivo na otimização por programação quadrática sucessiva, onde se buscou maximizar a função a partir de valores de $(S_{in}, F_{in} e X_{in})$.

Com os parâmetros operacionais otimizados foi obtido um rendimento final de ácido acrílico de aproximadamente 40%, com uma redução de 34% na concentração de substrato alimentada no biorreator. A Tabela 6.29 apresenta os valores otimizados dos parâmetros operacionais (Sin, Fin e Xin) obtidos através da otimização por programação quadrática sucessiva.

Parâmetros	Valores
S_{in} (kg m ⁻³)	99
$F_{in}(m^3 s^{-1})$	0,000225
X_{in} (kg m ⁻³)	23,2

6.5 Controle do Processo

Nesta seção, serão apresentados os resultados obtidos com a aplicação de estratégias de controle no processo biotecnológico de síntese de ácido acrílico, considerando um modelo estruturado com células imobilizadas.

O objetivo do controle era regular a concentração de ácido acrílico na saída do biorreator a partir da manipulação dos parâmetros operacionais. Os algoritmos de controle aplicados foram o clássico proporcional integral derivativo (PID), o preditivo (DMC) e o preditivo adaptativo (STDMC), todos na forma digital.

O primeiro algoritmo de controle aplicado ao processo foi o PID. Inicialmente, realizaram-se perturbações nos três parâmetros operacionais (S_{in}, X_{in} e F_{in}) e foi analisada a variação na concentração final de ácido acrílico. Percebeu-se que a vazão volumétrica de alimentação (F_{in}) foi o parâmetro que exercia maior influência sobre a concentração. Assim, optou-se em manipular a vazão de alimentação (F_{in}), com o objetivo de controlar a concentração de ácido acrílico na saída do biorreator. Para analisar a ação de controle sobre o processo fermentativo para síntese de ácido acrílico, considerou-se,

✓ Alteração no *set point* em aproximadamente + 50% do valor inicial.

A Tabela 6.30 apresenta os valores dos parâmetros operacionais (S_{in} , X_{in} e F_{in}) usados no controle do processo fermentativo para síntese do ácido acrílico.

Parâmetros	Valores
S _{in}	150
X _{in}	20
F _{in}	0,0005

Tabela 6.30 – Valores dos parâmetros usados no controle do processo

A Figura 6.23 mostra os resultados obtidos em malha aberta com uma perturbação de $(\pm 30\%)$ no valor da vazão em uma hora de processo.

Figura 6.23 – Resposta do sistema em malha aberta sem ação de controle para perturbação de (± 30%) na vazão de alimentação (F_{in})

Para a ação do controle PID, considerou-se:

- ✓ Variável controlada: concentração de ácido acrílico na saída do biorreator;
- ✓ Variável manipulada: vazão de alimentação;
- \checkmark Set point: 33kg m⁻³;
- \checkmark Tempo de amostragem: 0,1h.

A Figura 6.24 apresenta os resultados obtidos com a ação do controlador PID na dinâmica do biorreator.

Figura 6.24 - Controle da concentração de ácido acrílico na saída do biorreator

A Figura 6.24 mostra que, quando ocorreu uma mudança no *set point* do sistema (\approx +50% do seu valor), o controlador proporcional integral derivativo conseguiu levar o sistema até esse *set-point* em 45 horas de processo, considerando,

- ✓ ganho do controlador → $K_c = 0,00001$
- \checkmark constante de tempo integral \rightarrow Ti = 4
- \checkmark constante de tempo derivativo \rightarrow Td = 0,1

Para avaliar o desempenho do controlador preditivo (DMC) e do preditivo adaptativo (STDMC), inicialmente, foram realizadas perturbações em malha aberta nos três parâmetros (S_{in} , X_{in} e F_{in}) após uma hora de processo, e os resultados obtidos são apresentados na Figura 6.25. O tempo de amostragem considerado foi de 0,1h.

Figura 6.25 - Resposta do sistema em malha aberta para perturbação nos parâmetros operacionais (S_{in}, X_{in} e F_{in})

Através da Figura 6.25 é possível perceber que perturbando $S_{in} e X_{in} em (\pm 40\%)$, o sistema apresentou o mesmo comportamento. Já quando a vazão de alimentação foi perturbada em (±30), percebeu-se diferentes comportamentos. Com uma perturbação de (+30%), o sistema após 25 horas de processo se aproxima do *set point*, enquanto, para uma perturbação de (-30%), após 7 horas o sistema atinge um novo valor de concentração de ácido acrílico na saída do biorreator.

Para avaliar o desempenho dos controladores DMC e STDMC, F_{in} também foi usada como variável manipulada. Diversas simulações foram realizadas, variando os parâmetros dos controladores, com o objetivo de determinar os melhores, conforme mostra Figura 6.26.

Figura 6.26 - Respostas obtidas em malha fechada alterando-se os parâmetros do controlador

A Figura 6.27 mostra os resultados obtidos em malha fechada para o controlador DMC. As condições usadas nesta simulação são descritas na Tabela 6.31.

Variável controlada	Concentração de ácido acrílico na saída do reator
Variável manipulada	Vazão de alimentação (F _{in})
Alteração no set point	$\approx 50\% = (33(\text{kg m}^{-3}))$
Horizonte de convolução	100
Horizonte de predição mínima	1
Horizonte de predição máxima	10
Horizonte de controle	1
Constante da trajetória de referência	0,95
(α)	
Fator de supressão (λ)	1

 Tabela 6.31 - Condições usadas para avaliação do controlador DMC

Figura 6.27 - Controle da concentração de ácido acrílico na saída do biorreator para uma alteração de aproximadamente (+50%) no *set point*

A Figura 6.27 mostra que, quando ocorre uma mudança no *set point* o controlador DMC consegue levar o sistema a esse *set point* em 10 horas de processo, apresentando leves oscilações. A estratégia de controle DMC foi estendida à forma preditiva adaptativa (STDMC), através do acoplamento de técnicas de identificação "on-line" dos mínimos quadrados recursivos (Vasco de Toledo, 1999).

O controle STDMC é um tipo de controle auto-ajustável e, é interessante aplicá-lo em processos não-lineares ou que variam no tempo. A extensão à forma auto-ajustável tem por objetivo contornar problemas que ocorrem em processos químicos, onde os parâmetros do modelo interno, que permitem representar a dinâmica do processo, podem não satisfazer as exigências necessárias para um controle eficaz durante um longo período de tempo, garantindo assim, uma boa representação dinâmica através do seu modelo interno (Stremel, 2001).

Para avaliar o desempenho do controlador STDMC, também foram realizadas simulações, onde foram variados os parâmetros de controle (horizonte máximo de predição, fator de supressão e a constante da trajetória de referência). Os resultados obtidos com aplicação do controlador STDMC são muito semelhantes aos resultados obtidos com o DMC, conforme mostra a Figura 6.28. As condições usadas nesta simulação são descritas na Tabela 6.32.

Figura 6.28 - Controle da concentração de ácido acrílico na saída do biorreator para uma alteração de aproximadamente (+50%) no *set point*

Modelagem e Controle da Síntese do Ácido Acrílico via Processo Fermentativo Tabela 6.32 - Condições usadas para avaliação do controlador STDMC Variável controlada Concentração de ácido acrílico na saída do reator Vazão de alimentação (Fin) Variável manipulada $\approx 50\% = (33(\text{kg m}^{-3}))$ Alteração no set point Horizonte de convolução 100 Horizonte de predição mínima 1 Horizonte de predição máxima 10 Horizonte de controle 1 Constante da trajetória de referência 0,95 (α)

CAPÍTULO VI - MODELAGEM MATEMÁTICA

1

A Figura 6.29 mostra as respostas obtidas com a aplicação das três estratégias de controle (PID, DMC e STDMC). Pode-se perceber que utilizando o controle preditivo (DMC) ou o preditivo adaptativo (STDMC) o sistema atingiu o novo set point em 10 horas de processo. O controle proporcional integral derivativo (PID) demorou 45 horas para levar o sistema a esse novo set point. Mostrando com isso, a maior eficiência dos controladores DMC e STDMC para o processo de síntese de ácido acrílico via processo fermentativo.

Fator de supressão (λ)

Figura 6.29 - Respostas obtidas com as estratégias de controle STDMC, DMC e PID

6.5 Conclusão

Neste capítulo foi apresentado um modelo estruturado que representou a síntese de ácido acrílico. Considerou-se um modelo estruturado heterogêneo, com células de Saccharomyces cerevisiae imobilizadas, onde foram descritos a formação de piruvato, lactato e ácido acrílico, crescimento celular, quantidade de células ativas e quantidade de enzima lactato desidrogenase produzidas e consumo de substrato. Um sistema contínuo com dispersão axial foi considerado. Através da aplicação da técnica de planejamento fatorial, foi possível identificar parâmetros operacionais, de projeto e cinéticos que exercem maior influência sobre o processo, podendo com isso determinar os valores ótimos destes parâmetros de forma a maximizar a produção do produto desejado. Com a aplicação da otimização evolucionária, metodologia de superfície de resposta e com o método de otimização por programação quadrática sucessiva, foi possível encontrar condições que aumentaram o rendimento final de ácido acrílico em relação ao consumo de substrato. Como também, através da otimização por SQP, perceber a sensibilidade deste algoritmo de otimização e da importância da estimativa inicial para que ocorra a convergência da resposta para um valor próximo do ótimo. Através da aplicação das estratégias de controle sobre o processo de síntese de ácido acrílico foi possível aumentar em aproximadamente 50% a concentração final de ácido acrílico na saída do biorreator.

CAPÍTULO VII. CONCLUSÕES FINAIS E SUGESTÕES PARA TRABALHOS FUTUROS

A produção biotecnológica de ácido acrílico tem despertado cada vez mais interesse de pesquisadores. As opções industriais relevantes para a conversão de biomassa em ácido acrílico e acrilatos serão importantes para a utilização eficiente de fontes renováveis e para a redução da dependência do petróleo.

Neste trabalho, o processo de síntese de ácido acrílico via processo fermentativo foi modelado utilizando uma rota glicolítica, onde ocorre a conversão direta da glicose à ácido acrílico, com formação de produtos intermediários. Foram desenvolvidos quatro modelos, onde se levou em consideração processos contínuos ideais e não ideais, como também, sistemas pseudo-homogêneos e heterogêneos, com representação estruturada e não estruturada, para representar a formação de produto, crescimento celular e consumo de substrato. Os modelos foram desenvolvidos em linguagem FORTRAN. Foram realizadas as simulações do processo, e também, a análise dos parâmetros dos modelos, através da técnica de planejamento fatorial para identificação da influência dos parâmetros sobre o processo desenvolvido, podendo assim, aumentar o desempenho operacional e, conseqüentemente, aumentar a produção do produto desejado, uma vez que a partir da degradação da glicose diversas reações paralelas e consecutivas ocorrem, formando diferentes produtos. A otimização dos parâmetros operacionais também foi realizada, com o objetivo de encontrar valores ótimos de forma a aumentar a concentração e o rendimento final de ácido acrílico. Nos modelos estruturados foram aplicadas estratégias de controle, fazendo com que o biorreator operasse de forma eficiente e segura. Os principais resultados obtidos nos modelos desenvolvidos para representar a síntese biotecnológica de ácido acrílico podem ser resumidos como:

✓ Modelo não estruturado com células livres

 Considerando um processo contínuo, homofermentativo, com mistura perfeita (CSTBR), uma concentração de substrato (S_{in}) e de células (X_{in}) na alimentação de 100 kg m^{-3} e 20kg m⁻³, respectivamente, e uma taxa de diluição (D) de 0,5h⁻¹, atingiu-se uma produção de 26,5kg m⁻³ de ácido acrílico com uma produtividade de 13,2kg m⁻³h⁻¹.

A concentração de ácido acrílico é máxima numa taxa de diluição de $0,2h^{-1}$.

• Cinco parâmetros cinéticos (K_s , K_A , k_t , μ_{max} e m) influenciam estatisticamente a concentração final de ácido acrílico.

• Com a otimização dos parâmetros operacionais, foi possível aumentar a concentração e o rendimento final de ácido acrílico.

✓ Modelo não estruturado com células imobilizadas

• Considerando um processo heterofermentativo, com uma concentração de substrato (S_{in}) e de células (X_{in}) na alimentação de 150kg m⁻³ e 20kg m⁻³, respectivamente, e uma vazão volumétrica (F_{in}) de $0,0003m^3 s^{-1}$, foi obtida uma concentração final de ácido acrílico de 26,8kg m⁻³.

Se a concentração de substrato na alimentação (S_{in}) for máxima e a vazão (F_{in}) mínima, maior será a concentração final de ácido acrílico.

Os sete parâmetros cinéticos usados no modelo (K_s, K_i, K_A, k_d, k_t, μ_{max} e m) exercem influências significativas sobre a concentração final de ácido acrílico.

As concentrações de ácido acrílico obtidas nos modelos não estruturados (células livres e imobilizadas) desenvolvidos foram muito próximas, concluindo-se a partir desses resultados, que o modelo não estruturado com células imobilizadas não apresentou vantagens significativas frente ao modelo com células livres.

✓ Modelo estruturado com células livres

Piruvato atinge uma concentração máxima de 18,30kg m⁻³ em nove horas de processo.

Biomassa aumenta em equilíbrio com a concentração de substrato.

• Quando a concentração de piruvato é muito alta, a enzima *lactato desidrogenase* é inibida, diminuindo conseqüentemente, a produção de lactato.

• Uma concentração máxima de 54,63kg m⁻³ de ácido acrílico é obtida em 30h de processo ($S_{in} = 100$ kg m⁻³, $X_{in} = 20$ kg m⁻³ e D = 0,05h⁻¹).

Entre os vinte e dois parâmetros cinéticos analisados, nove (k₁, k₂, k₃, k₄, k₆, k_{7a}, K₃, K₄ e K₅) foram identificados como sendo estatisticamente significativos sobre a concentração final de ácido acrílico.

• Aumento no rendimento de ácido acrílico foi obtido com a aplicação de estratégias de controle e otimização em duas camadas.

✓ Modelo estruturado com células imobilizadas

 $\label{eq:Fin} \quad \mbox{Diminuindo a vazão de alimentação (F_{in}) e maximizando as concentrações de substrato (S_{in}) e de células (X_{in}) alimentadas no biorreator, maior será a concentração final de ácido acrílico.$

• Entre os vinte e cinco parâmetros cinéticos analisados, seis $(k_1, k_2, k_4, K_A, K_{A'} e k_d)$ foram identificados como sendo estatisticamente significativos sobre a concentração final de ácido acrílico.

 A aplicação de estratégias de controle proporcionou um aumento de aproximadamente 50% na concentração final de ácido acrílico, em 10h de processo, através da manipulação da vazão de alimentação e da ação dos controladores DMC e STDMC e, em 45h com a ação do controlador PID.

O desenvolvimento deste trabalho trouxe algumas contribuições para o estudo da obtenção biotecnológica de ácido acrílico, onde se podem destacar as principais como sendo:

✓ Desenvolvimento de modelos que representam a síntese de ácido acrílico a partir da degradação da glicose. Os poucos trabalhos publicados sobre o assunto fazem apenas uma "prospecção" dos diferentes caminhos metabólicos para a possível obtenção biotecnológica do ácido acrílico, não descrevendo cinéticas e modelos para a obtenção do produto.

✓ Desenvolvimento de modelos que constituem uma ferramenta interessante para predizer o comportamento do processo de síntese de ácido acrílico via processo fermentativo. Foram desenvolvidos modelos simples, para representar apenas formação do
produto, crescimento celular e consumo de substrato, como também, modelos um pouco mais complexos, onde foi considerada a estrutura interna da célula.

✓ Desenvolvimento de processos biotecnológicos contínuos, considerando mistura ideal e não ideal, com biocatalisadores livres e imobilizados, pois a maior parte dos processos biotecnológicos são desenvolvidos em operações descontínuas.

Algumas sugestões de trabalhos futuros são descritas abaixo.

✓ Otimização dos parâmetros cinéticos dos modelos;

 Desenvolvimento de um modelo considerando um sistema com reciclo de células, o que poderá aumentar a produtividade do biorreator;

 ✓ Aplicação do modelo para outras estratégias de operação (batelada, batelada alimenta e contínuo com reatores em série);

✓ Desenvolvimento de modelos utilizando diferentes rotas para obtenção biotecnológica de ácido acrílico;

✓ Desenvolvimento de modelos estruturados, descrevendo também a modelagem da matriz intracelular;

✓ Desenvolvimento de experimentos para obtenção de dados cinéticos e operacionais, podendo com isso ajustar os parâmetros dos modelos, como também ver a validade dos modelos desenvolvidos para o processo proposto.

REFERÊNCIAS BIBLIOGRÁFICAS

ABU-REESH, I. M., ABU-SHARKH, B. F. Comparison of axial dispersion and tanks in series models for simulating the performance of enzyme reactors. *Ind. Eng. Chem. Res.* v. 42, p. 5495-5505, 2003.

AKEDO, M., COONEY, C. L., SINSKEY, A. J. Direct demonstration of lactate-acrylate interconversion in *Clostridium propionicum*. *Biotechnol*. v. 1, p. 791-794, 1983.

ALBA, R. Introducción a la Química Orgânica, 1999. Disponível em: <u>www.telecable.es/personales/albatros1/quimic/industrial.htm</u>. Acessado em: julho de 2007.

BAJAY, S. V., FERREIRA, A. L. (2005). A energia da biomassa no Brasil. In: *Uso da biomassa para produção de energia na indústria brasileira*. CALLE, F. R., BAJAY, S. V., ROTHMAN, H. Campinas: Editora da UNICAMP, 2005. Cap. 2.

BARROS NETO, B., SCARMINO, I. S., BRUNS, R. E. *Planejamento e otimização de experimentos*. Campinas: Editora da UNICAMP, 1996.

BIANCHI, M. M., BRAMBILLA, L., LIEVENSE, J., LIU, C. L., PORRO, D., PROTANI,
F. Efficient homolactic fermentation by *Kluyveromyces Lactis* strains defective in pyruvate utilization and transformed with the heterologous Ldh genes. *Appl. Environ. Microbiol.* v. 67, n. 12, p. 5621-5625, 2001.

BIRD, R. B., STEGART, W. E., LINGHTFOOT, E. N. *Transport phenomena*. New York: John Wiley, 1960.

BOX, G. E. P., WILSON, K. B. On the experimental attainment of optimum conditions. *JSTOR*. v.13, n. 1, p. 1-45, 1951. Disponivel em: <u>http://www.jstor.org/stable/2983966</u>. Acessado em: maio de 2007.

BOX, G. E. P., DRAPER, N. R. Evolutionary operation: a statistical method for process improvement. New York: John Wiley, 1969.

Modelagem e Controle da Síntese do Ácido Acrílico via Processo Fermentativo

BOX, G. E.P., HUNTER, W.G. Statistics for experimenters: an introduction to design, data analysis and model building. New York: John Wiley, 1987.

BRAUNBECK, O. A., CORTEZ, L. A. B. (2005). O cultivo da cana-de-açúcar e o uso dos resíduos. In: *Uso da biomassa para produção de energia na indústria brasileira*. CALLE, F. R., BAJAY, S. V., ROTHMAN, H. Editora da UNICAMP, Campinas, SP, 2005. Cap. 5.

BROCKINTON, L., SAVAGE, P., HUNTER, D. Acrylic Acid capacity expands worldwide. *Chemical Week*, October 15, 1986.

CARVALHO, E. P. (2004). In: *Uso da biomassa para produção de energia na indústria brasileira*. CALLE, F. R., BAJAY, S. V., ROTHMAN, H. Editora da UNICAMP, Campinas, SP, 2005. Cap. 5, p. 217.

CHILTON, T. H., COLBURN, A. P. (1934) apud CUSSLER, E. L. *Diffusion, mass transfer in fluid systems*. 2^a. ed. New York: Cambridge University Press, 2005.

CHUBAROV, G. A., DANOV, S. M., LOGUTOV, V. I., OBMELYUKHINA, T. N. Esterification of acrylic acid with methanol. *J. Appl. Chem. USSR.* v. 57, n. 1, p. 203-205, 1984.

CUSSLER, E. L. *Diffusion, mass transfer in fluid systems.* 2^a. ed. New York: Cambridge University Press, 2005.

DANNER, H., BRAUN, R. Biotechnology for the production of commodity chemicals from biomass. *Chem. Soc. Rev.* v. 28, p. 395-405, 1999.

DANNER, H., URMÖS, M., GARTNER, M., BRAUN, R. Biotechnological production of acrylic acid from biomass. *App. Biochem. Biotechnol.* v. 70, n. 2, p. 887-894, 1998.

DAWES, I., LARGE, P. J. In: *Biochemistry of Bacterial Growth*. MANDELSTAM, J., MCQUILLEN, K., DAWES, I. Blackwell: Oxford, 1982. Cap. 3, p.125-158.

DCAA. Produção de cana-de-açúcar e álcool. Disponível em: www.agricultura.gov.br/pls/portal/docs/PAGE/MAPA/ESTATISTICAS/PRODUCAO/PR OD_CANA_ACUCAR_ALCOOL_MENSAL.PDF. Acessado em: 22 de julho de 2007. DECHECHI, E. C. Controle DMC de um processo de fermentação alcoólica contínua em escala industrial. Tese (Doutorado) – Faculdade de Engenharia Química, Universidade Estadual de Campinas, Campinas, SP, 1996.

DECHEMA e. V. White biotechnology: opportunities for Germany. *Position Paper of Dechema e.V.* Frankfurt, 2004.

DORAN, P. M. *Principios de ingeniería de los bioprocessos*. Espanha: Editorial Acribia, S. A., 1998.

FELDER, R. M., ROUSEAU, R. W. *Elementary Principles of Chemical Processes*. 2^a. ed. New York: Wiley, 1986.

FINLAYSON, B. A. Nonlinear analysis in chemical engineering. USA: Mc. Graw-Hill Inc., 1980.

FOGLER, H. S. *Elements of chemical reaction engineering*. 2^a. ed. USA: Prentice Hall PTR, 1992.

FREDRICKSON, A. (1970) apud BAILEY, J. E. Mathematical modeling and analysis in biochemical engineering: past accomplishments and future opportunities. *Biotechnol. Prog.* v. 14, p. 8-20, 1998.

FREDRICKSON, A. G. Formulation of structured growth models. *Biotech. Bioeng.* v. 18, p. 1481-1486, 1976.

FREGONESI, A. A. Adesão de células de *Saccharomyces SP* em materiais inorgânicos para a produção de etanol. Dissertação (Mestrado) - Instituto de Química, Universidade Estadual de Campinas. Campinas, SP, 1998.

GEIGER, O. E. Statistical methods for fermentation optimization. In: *Fermentation and biochemical engineering handbook: principles, process design and equipment*. VOGEL, H.
C., TODARO, C. L. William Andrew Publishing, 2^a.ed. 1996.

GERBSCH, N., BUCHHOLZ, R. New processes and actual trends in biotechnology. *FEMS Microbiol. Rev.* v. 16, p. 259-269, 1995.

GOMBERT, A. K., NIELSEN, J. Mathematical modeling of metabolism. *Cur. Op. Biotechnol.* v. 11, p. 180-186, 2000.

HANSELMANN, K. W. (1982) apud STOTTMEISTER, U., AURICH, A., WILDE, H., ANDERSCH, J., SCHMIDT, S., SICKER, D. White biotechnology for green chemistry: fermentative 2-oxocarboxylic acids as novel building blocks for subsequent chemical syntheses. *J. Ind. Microbiol. Biotechnol.* v. 32, n. 11-12, p. 651-664, 2005.

HARDER, A., ROELS, J. A. Application of simple structured models in bioengineering. *Adv. Biochem. Bioeng.* v. 21, p. 55-107, 1982.

HATCH, R. T., HARDY, R. (1989). Microrganisms as producers of feedstock chemicals. Disponível em: www.ryanherco.com/Industries/Health/Articles/BiotechnologyBook/Health03Microorganis ms.pdf. Acessado em: abril de 2006.

HIMMELBLAU, D. M., EDGAR, T. F., LASDON, L. S. *Optimization of chemical process*. 2^a. ed. New York: McGraw Hill, 2001.

HOEK, P. V., ARISTIDOU, A., HAHN, J. J., PATIST, A. Fermentation goes large-scale. *Biotechnology*. p.37-42, January, 2003.

INCROPERA, F. P., DEWITT, D. P. *Fundamentos de transferência de calor e massa*. Rio de Janeiro. Livros Técnicos e Científicos Editora, 1998.

KURLAND, J. J., BRYANT, D. B. "Shipboard polymerization of acrylic acid". *Plant. Oper. Prog.* v. 6, n. 4, p. 203-207, 1987.

LEI, F., ROTBOLL, M., JORGENSEN, S. B. A biochemically structured model for *Saccharomyces cerevisiae*. J. Biotechnol. v. 88, p. 205-221, 2001.

LUNELLI, B. H., MACIEL FILHO, R., RIVERA, E. C., VASCO DE TOLEDO, E. C., STREMEL, D. P. Estudo da cinética de um modelo estruturado para a síntese de produtos químicos a partir da cana-de-açúcar. In: XVI Congresso Brasileiro de Engenharia Química. Santos, SP, 2006. CD-ROM. LUNELLI, B. H., RIVERA, E. C., MACIEL FILHO, R. Analysis of kinetic and operational parameters in a structured model for acrylic acid production through experimental design. In: 29th Symposium on Biotechnology for Fuels and Chemicals. Denver/USA, 2007.

LUYBEN, W. L. *Process modeling, simulation and control for chemical engineers.* 2^a.ed., McGraw-Hill International Edition, 1989.

MACIEL FILHO, R. *Apostila de Controle de Processos*. Faculdade de Engenharia Química, Universidade Estadual de Campinas, Campinas, SP, 2005.

MELO, D. N. C., VASCO DE TOLEDO, E. C., SANTOS, M. M., HASAN, S. D. M., WOLF MACIEL, M. R., MACIEL FILHO, R. Off-line optimization and control for real time integration of a three-phase hydrogenation catalytic reactor. *Comput. Chem. Eng.* v. 29, p.2485-2493, 2005.

MONTESINOS, J. L., LAFUENTE, J., GORDILLO, M. A., VALERO, F., SOLÀ, C. Structured modeling and state estimation in a fermentation process: lipase production by Candida rugosa. *Biotechnol. Bioeng.* v. 48, p. 573-584, 1995.

NATH, S., CHAND, S. Mass transfer and biochemical reaction in immobilized cell packed bed reactor: correlation of experiment with theory. *J. Chem. Technol. Biotechnol.* v. 6, p. 286-292, 1996.

NELSON, D. L., COX, M. M. (Org). LEHNINGER, A. L. Principles of Biochemistry. 3^a.ed. New York, USA, 2000.

NIELSEN, J., VILLADSEN, J. Modelling of microbial kinetics, review. *Chem. Eng. Sci.* v. 47, p. 4225-4270, 1992.

O'BRIEN, D. J., PANZER, C. C., EISELE, W. P. Biological production of acrylic acid from cheese whey by resting cells of *Clostridium propionicum*. *Biotechnol. Prog.* v. 6, p. 237-342, 1990.

PINTO, J. C., LAGE, P. L. C. *Métodos numéricos em problemas de engenharia química*. Escola Piloto de Engenharia Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 1997. PLACKETT, R. L., BURMAN, J. P. The design of optimum multifactorial experiments. *Biometrika*. v. 33, p. 305-325, 1946.

PRETORIUS, I. S., TOIT, M. D., RENSBURG, P. V. Designer yeast for the fermentation industry of the 21st century. *Food Technol. Biotechnol.* v. 41, n. 1, p. 3-10, 2003.

RAWLINGS, J. B., MILLER, S. M., WITKOWKI, W. R. Model identification and control of solution crystallization processes: a review. *Ind. Eng. Chem. Res.* v.32, p. 1275-1296, 1993.

REZENDE, M. C. A. F. Controle e otimização de um reator de hidrogenação trifásico. Dissertação (Mestrado) – Faculdade de Engenharia Química, Universidade Estadual de Campinas, Campinas, SP, 2003.

ROELS, J. A., KOSSEN, N. W. F. On the modeling of microbial metabolism. *Prog. Ind. Microbiol.* v. 14, p. 95-203, 1978.

ROVITO, B. J., KITRELL, J. R. (1973) apud NATH, S., CHAND, S. Mass transfer and biochemical reaction in immobilized cell packed bed reactor: correlation of experiment with theory. *J. Chem. Technol. Biotechnol.* v. 66, p. 286-292, 1996

RYCHTERA, M., BASAROVA, G., IVANOVA, V. (1987) apud YU, J., ZHANG, X., TAN, T. A novel immobilization meted of *Saccharomyces cerevisiae* to sorghum bagasse for ethanol production. *J. Biotechnol.* v. 129, p. 415-420, 2007.

SANTOS, M. G. M. Controle e otimização em tempo real de um reator trifásico. Tese (Doutorado) – Faculdade de Engenharia Quimica, Universidade Estadual de Campinas, Campinas, SP, 2006.

SCHMIDELL, W., BONOMI, A. Modelagem matemática e simulação de processos fermentativos. In: *Biotecnologia industrial*. LIMA, U. A., BORZANI, W., AQUARONE, E., SCHMIDELL, W. 1^a. ed. São Paulo: Editora Edgard Blücher, 2001. V. 2. Cap. 7.

SEBORG, D. E., EDGAR, T. F., MELLICHAMP, D. A. *Process Dynamics and Control*, John Wiley & Sons, Inc., 1989.

SECCHI, A. R. *Modelagem e simulação de processos*. Apostila. Departamento de Engenharia Química, Universidade Federal do Rio Grande do Sul, Porto Alegre, 1995.

SKORY, C. D. Lactic acid production by *Saccharomyces cerevisiae* expressing a *Rhizopus oryzae* lactate dehydrogenase gene. *J. Ind. Microbiol. Biotechnol.* v. 30, p. 22-27, 2003.

STEPHANOPOULOS, G. Chemical process control: an introduction to theory and practice. Prentice Hall, 1984.

STOTTMEISTER, U., AURICH, A., WILDE, H., ANDERSCH, J., SCHMIDT, S., SICKER, D. White biotechnology for green chemistry: fermentative 2-oxocarboxylic acids as novel building blocks for subsequent chemical syntheses. *J. Ind. Microbiol. Biotechnol.* v. 32, n. 11-12, p. 651-664, 2005.

STRAATHOF, A. J. J., SIE, S., FRANCO, T. T., VAN DER WIELEN, L. A. M. Feasibility of acrylic acid production by fermentation. *Appl. Microbiol. Biotechnol.* v. 67, p.727-734, 2005.

STREMEL, D. P. Desenvolvimento de modelos estruturados alternativos para o processo de produção de etanol. Tese (Doutorado) – Faculdade de Engenharia Química, Universidade Estadual de Campinas, Campinas, SP, 2001.

THAYSEN, M. Hybrid modeling for enhanced bioreactor performance. PhD Thesis. Technical University of Denmark, Denmark, 2005.

VASCO DE TOLEDO, E. C. Modelagem, simulação e controle de reatores catalíticos de leito fixo. Tese (Doutorado) – Faculdade de Engenharia Química, Universidade Estadual de Campinas, Campinas, SP, 1999.

VAZ, A. I. F. *Otimização semi-infinita*. Departamento de Produção e Sistemas, Escola de Engenharia, Universidade do Minho. Disponível em: <u>http://www.norg.uminho.pt/aivaz/binaries/aulas/slides_apresenta.pdf</u>. Acessado em: 12 dezembro de 2006.

VILLADSEN, J. V., STEWART, W. E. Solution of boundary-value problems by orthogonal collocation. *Chem. Eng. Sci.* v. 22, p. 483-501, 1967.

VITOLO, M. Imobilização de enzimas. In: *Biotecnologia industrial*. LIMA, U. A., BORZANI, W., AQUARONE, E., SCHMIDELL, W. 1^a. ed. São Paulo: Editora Edgard Blücher, 2001. v. 3. Cap. 18.

VOLESKY, B., VOTRUBA, J. *Modeling and optimization of fermentation processes*. Amsterdam: Elsevier Science Publishers, 1992.

WEE, Y. J., KIM, J. N., RYU, H. W. Biotechnological production of lactic acid and its recent applications. *Food Technol. Biotechnol.* v. 44(2), p. 163–172, 2006.

WEISSERMEL, K., ARPE, H. J. *Industrial organic chemistry*. 4^a. ed. New York: Wiley – VCH, 2003.

WERKEMA, M. C. C. Otimização estatística de processos: como determinar a condição de operação de um processo que leva ao alcance de uma meta de melhoria. Belo Horizonte, MG, 1996. v. 9. Cap. 6.

YU, J., ZHANG, X., TAN, T. A novel immobilization method of *Saccharomyces cerevisiae* to sorghum bagasse for ethanol production. *J. Biotechnol.* v. 129, p. 415-420, 2007.

ANEXOS

ANEXO A. Um modelo bioquímico estruturado para Saccharomyces cerevisiae

Neste anexo será apresentado, o modelo estruturado bioquímico desenvolvido por F. Lei, M. Rotboll e S. B. Jorgensen (2001), para representar o crescimento aeróbio de *Saccharomyces cerevisiae* em um meio limitado por glicose e/ou etanol.

Os autores propuseram um modelo estruturado bioquímico com dois compartimentos que descreve o crescimento aeróbio de *Saccharomyces cerevisiae* sobre condições de fermentação ideal.

Para o desenvolvimento do modelo foi considerado que:

1. A glicose é metabolizada por dois caminhos: um caminho catabólico, onde através da glicólise o piruvato é formado e um caminho anabólico que leva a formação de biomassa;

2. Em baixos fluxos glicolíticos piruvato é convertido através da enzima *piruvato desidrogenase* e do ciclo do ácido tricarboxílico (TCA) em CO₂;

3. Quando o fluxo glicolítico excede um valor crítico, a dissimilação respiratória de piruvato via *piruvato desidrogenase* é saturada e acetaldeído é formado;

4. Acetaldeído é preferivelmente convertido em acetato, mas através da saturação de *acetaldeído desidrogenase* etanol é produzido.

5. Etanol é convertido via acetaldeído em acetato, que pode ser usado no caminho catabólico para formação de CO_2 ou no caminho anabólico para formação de biomassa.

As taxas reacionais do modelo são apresentadas na seqüência e foram baseadas na cinética de Michaelis-Menten em relação a um determinado substrato e com dependência de primeira ordem em relação à biomassa ativa.

$$r_{1} = k_{1l} \frac{s_{glu}}{s_{glu} + K_{1l}} X_{a} + k_{1h} \frac{s_{glu}}{s_{glu} + K_{1h}} X_{a} + k_{1e} \frac{s_{glu}}{s_{glu} (K_{1i} s_{acetald} + 1) + K_{1e}} s_{acetald} X_{a}$$
(A.1)

$$r_2 = k_2 \frac{s_{pyr}}{s_{pyr} + K_2} \frac{1}{K_{2i} s_{glu} + 1} X_a$$
(A.2)

$$r_3 = k_3 \frac{s_{pyr}^4}{s_{pyr}^4 + K_3} X_a$$
(A.3)

$$r_4 = k_4 \frac{s_{acetald}}{s_{acetald} + K_4} X_a X_{Acdh}$$
(A.4)

$$r_{5} = k_{5} \frac{s_{acetate}}{s_{acetate} + K_{5}} X_{a} + k_{5e} \frac{s_{acetate}}{s_{acetate} + K_{5e}} \frac{1}{K_{5i} s_{glu} + 1} X_{a}$$
(A.5)

$$r_{6} = k_{6} \frac{s_{acetald} - k_{6r}s_{ethanol}}{s_{acetald} + K_{6} + K_{6r}s_{ethanol}} X_{a}$$
(A.6)

$$r_7 = k_7 \frac{s_{glu}}{s_{glu} + K_7} X_a$$
 (A.7)

$$r_8 = k_8 \frac{s_{acetate}}{s_{acetate} + K_{5e}} \frac{1}{K_{5i}s_{glu} + 1} X_a$$
(A.8)

$$r_{9} = \left(k_{9} \frac{s_{glu}}{s_{glu} + K_{9}} + k_{9e} \frac{s_{ethanol}}{s_{ethanol} + K_{9e}}\right) \frac{1}{K_{9i}s_{glu} + 1} X_{a} + k_{9c} \frac{s_{glu}}{s_{glu} + K_{9}} X_{a}$$
(A.9)

$$r_{10} = k_{10} \frac{s_{glu}}{s_{glu} + K_{10}} X_a + k_{10e} \frac{s_{ethanol}}{s_{ethanol} + K_{10e}} X_a$$
(A.10)

$$r_{11} = k_{11} X_{Acdh} \tag{A.11}$$

Os parâmetros do modelo foram estimados usando uma combinação de dados dinâmico e estacionário para limitar o número de parâmetros do modelo insensíveis, enquanto que a validação do modelo foi feita somente com dados do comportamento dinâmico. O modelo foi testado em vários modos de operação (batelada, batelada alimentada e contínuo).

As Figuras A.1 e A.2 apresentam os resultados obtidos por Lei *et al.* (2001), para um processo contínuo e uma taxa de diluição variando entre $(0,08 - 0,265h^{-1})$ e um processo batelada com uma concentração inicial de glicose de 15g L⁻¹. A Figura A.3 apresenta os resultados obtidos através da reprodução do modelo de Lei *et al.* (2001).

Na Figura A.4 são apresentados os perfis de concentração de glicose, etanol e biomassa obtidos com os parâmetros ajustados por Rivera (2006). Pela falta de dados

experimentais disponíveis, os perfis de acetato, piruvato e X_A não foram ajustados. As condições iniciais usadas no modelo ajustado não foram as mesmas usadas por Lei *et al.* (2001), apenas os parâmetros cinéticos.

Figura A.1 - Perfis de concentração para uma cultura contínua (Lei et al. 2001)

Figura A.2 – Simulação batelada do modelo usando uma concentração inicial de glicose de 15g L^{-1} (Lei *et al.* 2001)

Figura A.3 – Perfis de concentração obtidos com a reprodução do modelo de Lei *et al.* (2001) para um processo batelada

Figura A.4 - Perfis de concentração obtidos por Rivera (2006)

Nomenclatura

- k_i taxa específica de reação (h⁻¹)
- K_i constante de afinidade (g L⁻¹)
- K_{ji} constante de inibição (L g⁻¹)
- r_i taxa de reação (h⁻¹)
- s_i concentração extracelular (g L⁻¹)
- X_i concentração intracelular
- X_{Acdh} acetaldeído desidrogenase (g g⁻¹)
- X_a material celular ativo (g g⁻¹_{biomassa})

ANEXO B. Desenvolvimento de modelos estruturados alternativos para o processo de produção de etanol

Neste anexo será apresentado de forma resumida, o modelo estruturado desenvolvido por Stremel (2001) para representar a produção de etanol.

O modelo matemático estruturado foi desenvolvido por Stremel (2001) para representar a simulação dinâmica de um biorreator tubular com células de *Saccharomyces cerevisiae* imobilizadas para produção de etanol.

As reações e as taxas reacionais envolvidas no processo são apresentadas a seguir.

$$F_{1}[S] \xrightarrow{R_{1}} F_{2}[P]$$

$$F_{6}[S] \xrightarrow{R_{6}} 0,732X_{[S]} \xrightarrow{0,732R_{6}X[S]} X_{[T]}$$

$$F_{4}[P] + O_{2} \xrightarrow{R_{2}} TCA + CO_{2}$$

$$F_{4}[P] \xrightarrow{R_{3}} F_{3}[A]$$

$$F_{4}[A] + O_{2} + X_{[r]} \xrightarrow{R_{4}} TCA + X_{[r]} + CO_{2}$$

$$F_{4}[A] + X_{[fe]} \xrightarrow{R_{5}} F_{5}[E] + X_{[fe]} + CO_{2}$$

$$F_{4}[A] \xrightarrow{R_{7}} 0,850X_{[s]} \xrightarrow{0,850R_{7}X[s]} X_{[T]}$$

$$X_{[S]} \xrightarrow{R_{8}} X_{[P]} \xrightarrow{(0,732R_{6} + 0,850R_{7})X[P]} X_{[T]}$$

$$X_{[S]} \xrightarrow{R_{10}} X_{[r]} \xrightarrow{(0,732R_{6} + 0,850R_{7})X_{[r]}} X_{[T]}$$

$$X_{[T]} \xrightarrow{k_{d}} X_{[ny]}$$

onde, F₁, F₂, F₃, F₅ e F₆ são constantes estequiométricas a serem ajustadas para as rotas glicolíticas e respiratória. As variáveis $X_{[r]}$ e $X_{[fe]}$ correspondem às enzimas da rota respiratória e fermentativa, respectivamente. $X_{[S]}$ representa todos os componentes intracelulares responsáveis pelas atividades celulares de respiração, fermentação e constituição dos componentes $X_{[P]}$, os quais são responsáveis pela parte estrutural e genética da célula.

$$R_{1} = k_{1} \frac{S}{S+S_{1}} X_{s} + k_{1} \frac{SA}{S(1+K_{1i}A) + S_{1e}} X_{s}$$
(B.1)

$$R_2 = k_2 \frac{P}{(P(m_2A+1) + S_2)(m_{2e}S+1)} X_s$$
(B.2)

$$R_3 = k_3 \frac{P}{P + S_3} X_s \tag{B.3}$$

$$R_{4} = \frac{k_{4}A\left(k_{4e} - \frac{1}{(K_{4i}S + 1)}\right)X_{r}X_{s}}{(A + S_{4})}$$
(B.4)

$$R_{5} = \frac{k_{5} \left(A - \frac{k_{5r}E}{1 + K_{5i}A}\right) (X_{f}) (X_{s})}{(A + S_{5} + S_{5e}E)}$$
(B.5)

$$R_6 = k_6 \frac{S}{S + S_6} X_s \tag{B.6}$$

$$R_7 = k_4 \frac{A}{(A+S_4)(K_{4i}S+1)}(X_r)(X_s)$$
(B.7)

$$R_8 = k_8 \frac{S}{S + S_8} X_s + k_{8e} \frac{E}{E + S_{8e}} X_s$$
(B.8)

$$R_{9} = k_{9} \left(\frac{S}{S+S_{9}} + \frac{E}{E+S_{9e}}\right) \left(\frac{1}{K_{9i}S^{2} + 1}\right) X_{s}$$
(B.9)

$$R_{10} = k_1 \frac{1}{K_{10i}S^2 + 1} X_s + k_{10e} \frac{A}{A + S_{10e}} X_s$$
(B.10)

Nomenclatura

- A concentração de acetaldeído $(g L^{-1})$
- E concentração de etanol (g L^{-1})
- F_i fator estequiométrico
- k_d constante de morte celular (h^{-1})
- k_i taxa específica de reação (h⁻¹)
- K_{ji} constante de inibição (L g⁻¹)
- m_{2i} constante de afinidade (g L⁻¹)
- P concentração de piruvato (g L^{-1})
- R_i taxa de reação (h⁻¹)
- S concentração de substrato (g L⁻¹)
- S_i constante de afinidade (g L⁻¹)

APÊNDICES

APÊNDICE A

Neste apêndice serão apresentadas as simulações e as análises de variância relacionadas ao planejamento fatorial 2^3 e ao planejamento de Plackett-Burman com 12 ensaios apresentados no Capítulo III.

A Figura A.1 apresenta as simulações realizadas no modelo em estudo, de acordo com planejamento fatorial 2^3 .

Figura A.1 - Perfis de concentração obtidos nas simulações conforme planejamento fatorial 2^3 (a – glicose; b – biomassa; c – lactato; d – ácido acrílico)

As Tabelas A.1 – A.8 apresentam as análises de variância dos parâmetros operacionais (S_{in} , X_{in} e D) sobre as concentrações de glicose, biomassa, lactato e ácido

acrílico, respectivamente, e os coeficientes de determinação do modelo para um nível de confiança de 95%.

Fator	SQ	GL	MQ	F
SQ _R	2.379,5	6	396,581	80.623
SQr	4,425	1	4,425	89,623
SQT	2.383,9	7		
R^2	0,9981	•		

Tabela A.1 - ANOVA dos parâmetros operacionais sobre as concentrações de glicose (comportamento dinâmico)

Tabela A.2 - ANOVA dos parâmetros operacionais sobre a concentração final de glicose

Fator	SQ	GL	MQ	F
SQ _R	11.459,5	6	1.909,9	260.450
SQr	7,09	1	7,088	209,439
SQT	11.466,6	7		
R^2	0,9994	·		

Tabela A.3 - ANOVA dos parâmetros operacionais sobre as concentrações de biomassa (comportamento dinâmico)

Fator	SQ	GL	MQ	F
SQ _R	156,254	6	26,042	13 021 2
SQr	0,002	1	0,002	15.021,2
SQT	156,256	7		
\mathbb{R}^2	0,9999			

Tabela A.4 - ANOVA dos parâmetros operacionais sobre a concentração final de biomassa

Fator	SQ	GL	MQ	F
SQ _R	474,31	6	79,052	7.048
SQr	9,946	1	9,946	7,940
SQT	484,256	7		
\mathbb{R}^2	0,9795			

Fator	SQ	GL	MQ	F
SQ _R	390,948	6	65,158	10 145
SQr	3,591	1	3,591	18,145
SQT	394,539	7		
R^2	0,9909			

Tabela A.5 - ANOVA dos parâmetros operacionais sobre as concentrações de lactato (comportamento dinâmico)

Tabela A.6 - ANOVA dos parâmetros operacionais sobre a concentração final de lactato

Fator	SQ	GL	MQ	F
SQ_R	4.057,2	6	676,207	° 003
Erro	84,500	1	84,500	8,002
SQT	4.141,2	7		
R^2	0,9796		·	

Tabela A.7 - ANOVA dos parâmetros operacionais sobre as concentrações de ácido acrílico (comportamento dinâmico)

Fator	SQ	GL	MQ	F
SQ _R	73,185	5	14,637	20.85
SQr	0,702	1	0,702	20,85
SQT	73,887	6		
R^2	0,9909			

Tabela A.8 - ANOVA dos parâmetros operacionais sobre a concentração final de ácido acrílico

Fator	SQ	GL	MQ	F
SQ _R	801,82	6	133,637	8.0
SQr	16,704	1	16,704	0,0
SQT	818,524	7		
R^2	0,9796	•		

Na Figura A.2 são apresentadas as simulações realizadas de acordo com o planejamento Plackett-Burman com 12 ensaios, descrito no Capítulo III.

Figura A.2- Perfis de concentração obtidos nas simulações conforme planejamento Plackett-Burman com 12 ensaios (a – glicose; b – biomassa; c – lactato; d – ácido acrílico)

As Tabelas A.9 – A.16 apresentam as análises de variância dos parâmetros cinéticos (K_s, K_i, K_A, k_d, k_t, μ_{max} e m) sobre as concentrações de substrato, biomassa, lactato e ácido acrílico, respectivamente, e os coeficientes de determinação do modelo para um nível de confiança de 95%.

× 1	/			
Fator	SQ	GL	MQ	F
SQ _R	513,999	7	73,428	27 703
SQr	10,566	4	2,642	21,193
SQT	524,565	11		
\mathbb{R}^2	0,9799			

Tabela A.9 - ANOVA dos parâmetros cinéticos sobre as concentrações de glicose (comportamento dinâmico)

Tabela A.10 - ANOVA dos parametros cineticos sobre a concentração final de glicose					
Fator	SQ	GL	MQ	F	
SQ _R	2.389,175	7	341,311	21.401	
SQr	63,792	4	15,948	21,401	
SQT	2.452,967	11			
\mathbf{R}^2	0,9740				

 Tabela A.10 - ANOVA dos parâmetros cinéticos sobre a concentração final de glicose

Tabela A.11 - ANOVA dos parâmetros cinéticos sobre as concentrações de biomassa (comportamento dinâmico)

Fator	SQ	GL	MQ	F
SQ _R	0,1463	7	0,0209	20.0
SQr	0,004	4	0,001	20,9
SQT	0,1503	11		
R^2	0,9741	•	·	

Tabela A.12 - ANOVA dos parâmetros cinéticos sobre a concentração final de biomassa

Fator	SQ	GL	MQ	F
SQ _R	88,930	7	12,704	110.472
SQr	0,459	4	0,115	110,472
SQT	89,389	11		
R^2	0,9949			

Tabela A.13 - ANOVA dos parâmetros cinéticos sobre as concentrações de lactato (comportamento dinâmico)

Fator	SQ	GL	MQ	F
SQ _R	657,435	7	93,919	6 701
SQr	56,061	4	14,015	0,701
SQ_T	713,496	11		
R^2	0,9214			

Tabela A.14 - ANOVA dos parametros cineticos sobre a concentração final de factato					
Fator	SQ	GL	MQ	F	
SQ _R	2.015	7	287,859	24.850	
SQr	33,039	4	8,260	54,850	
SQT	2.048	11			
R^2	0,9839				

 Tabela A.14 - ANOVA dos parâmetros cinéticos sobre a concentração final de lactato

Tabela A.15 - ANOVA dos parâmetros cinéticos sobre as concentrações de ácido acrílico (comportamento dinâmico)

Fator	SQ	GL	MQ	F
SQ _R	80,119	7	11,446	24.050
SQr	1,693	4	0,423	24,039
SQT	81,812	11		
R^2	0,9793		·	

Tabela A.16 - ANOVA dos parâmetros cinéticos sobre a concentração final de ácido acrílico

Fator	SQ	GL	MQ	F
SQ _R	398,137	7	56,877	25.0
SQr	6,499	4	1,625	55,0
SQT	404,636	11		
R^2	0,9839	·		

APÊNDICE B

Neste apêndice serão apresentadas as simulações e as análises de variância relacionadas aos planejamentos fatoriais 2^3 e ao planejamento de Plackett-Burman com 12 ensaios apresentados no Capítulo IV.

A Figura B.1 apresenta as simulações realizadas no modelo de acordo com planejamento fatorial 2^3 , realizado para avaliar a influência dos parâmetros operacionais (S_{in}, F_{in}, X_{in}) sobre as concentrações de glicose, ácido acrílico e biomassa.

Figura B.1 - Perfis de concentração obtidos nas simulações conforme planejamento fatorial 2³ dos parâmetros operacionais (a – glicose; b – ácido acrílico; c - biomassa)

As Tabelas B.1 – B.6 apresentam as análises de variância dos parâmetros operacionais (S_{in} , F_{in} e X_{in}) sobre as concentrações de glicose, ácido acrílico e biomassa,

respectivamente, e os coeficientes de determinação do modelo (R^2) para um nível de confiança de 95%.

(comportament	to uniunico)	-		
Fator	SQ	GL	MQ	$\mathbf{F}_{\mathbf{calculado}}$
SQ _R	3.572,8	6	595,465	0.220
SQr	64,513	1	64,513	9,230
SQT	3.637,3	7		
R^2	0,9823			

Tabela B.1 - ANOVA dos parâmetros operacionais sobre as concentrações de glicose (comportamento dinâmico)

 Tabela B.2 - ANOVA dos parâmetros operacionais sobre a concentração final de glicose

Fator	SQ	GL	MQ	$\mathbf{F}_{\mathbf{calculado}}$
SQ _R	1.810,1	6	301,68	63.929
SQr	4,719	1	4,719	
SQT	1.814,8	7		
\mathbb{R}^2	0,9974			

Tabela B.3 - ANOVA dos parâmetros operacionais sobre as concentrações de ácido acrílico (comportamento dinâmico)

Fator	SQ	GL	MQ	$\mathbf{F}_{\mathbf{calculado}}$
SQ _R	16,160	6	2,693	10.162
SQr	0,265	1	0,265	10,102
SQT	16,425	7		
R^2	0,9838			

Tabela B.4 - ANOVA dos parâmetros operacionais sobre a concentração final de ácido acrílico

Fator	SQ	GL	MQ	F _{calculado}
SQ _R	171,810	5	34,362	10.362
SQr	6,633	2	3,316	
SQT	178,443	7		
R^2	0,9628			

Fator	SQ	GL	MQ	F _{calculado}
SQ _R	112,061	6	18,677	0.656
SQr	28,463	1	28,463	0,000
SQT	140,524	7		
R^2	0,7974			

Tabela B.5 - ANOVA dos parâmetros operacionais sobre as concentrações de biomassa (comportamento dinâmico)

Tabela B.6 - ANOVA dos parâmetros operacionais sobre a concentração final de biomassa

Fator	SQ	GL	MQ	F _{calculado}
SQ _R	137,216	6	22,869	72 1/2
SQr	0,317	1	0,317	72,145
SQT	137,533	7		
R^2	0,9977			

A Figura B.2 apresenta as simulações realizadas no modelo, de acordo com planejamento fatorial 2^3 , realizado para avaliar a influência dos parâmetros de projeto (D_p , $D_r e L$) sobre as concentrações de glicose, ácido acrílico e biomassa.

APÊNDICE B Modelagem e Controle da Síntese do Ácido Acrílico via Processo Fermentativo

Figura B.2 - Perfis de concentração obtidos nas simulações conforme planejamento fatorial 2³ dos parâmetros de projeto (a – glicose; b - ácido acrílico; c – biomassa)

As Tabelas B.7 – B.12 apresentam as análises de variância dos parâmetros de projeto (D_p , D_r e L) sobre as concentrações de glicose, ácido acrílico e biomassa, respectivamente, e os coeficientes de determinação do modelo (R^2) para um nível de confiança de 95%.

Fator	SQ	GL	MQ	$\mathbf{F}_{\mathbf{calculado}}$	
SQ _R	2,207	6	0,368		
SQr	0,003	1	0,003	122,667	
SQT	2,210	7			
R^2	0,9988				

Tabela B.7 - ANOVA dos parâmetros de projeto sobre as concentrações de glicose (comportamento dinâmico)

Tabela B.8 - ANOVA dos parâmetros de projeto sobre a concentração final de glicose

Fator	SQ	GL	MQ	F _{calculado}
SQ _R	938,785	6	156,464	52.154
SQr	0,003	1	0,003	
SQT	938,788	7		
\mathbb{R}^2	0,9999			

Tabela B.9 - ANOVA dos parâmetros de projeto sobre as concentrações de ácido acrílico (comportamento dinâmico)

Fator	SQ	GL	MQ	$\mathbf{F}_{\mathbf{calculado}}$
SQ _R	0,0879	6	0,015	
SQr	0,0001	1	0,0001	150,0
SQT	0,088	7		
R^2	0,9988	•	•	

Tabela B.10 - ANOVA dos parâmetros de projeto sobre a concentração final de ácido acrílico

Fator	SQ	GL	MQ	$\mathbf{F}_{\mathbf{calculado}}$
SQ _R	37,552	6	6,259	
SQr	0,00011	1	0,00011	56.900
SQT	37,552	7		
\mathbb{R}^2	0,9999			

Fator	SQ	GL	MQ	F _{calculado}
SQ _R	22,326	6	3,721	
SQr	3,724	1	3,724	1
SQT	26,05	7		
\mathbb{R}^2	0,8571			

Tabela B.11 - ANOVA dos parâmetros de projeto sobre as concentrações de biomassa (comportamento dinâmico)

Tabela B.12 - ANOVA dos parâmetros de projeto sobre a concentração final de biomassa

Fator	SQ	GL	MQ	F _{calculado}
SQ _R	55,207	6	9,201	920.116
SQr	0,00001	1	0,00001	
SQT	55,207	7		
\mathbb{R}^2	0,9999			

A Figura B.3 apresenta as simulações realizadas no modelo apresentado no Capítulo IV, de acordo com planejamento de Plackett-Burman com 12 ensaios, que foi realizado para avaliar a influência dos parâmetros cinéticos (K_s, K_i, K_A, k_d, k_t, μ_{max} , m) sobre as concentrações de glicose, ácido acrílico e biomassa.

Figura B.3 - Perfis de concentração obtidos nas simulações conforme planejamento de Plackett-Burman dos parâmetros cinéticos (a – glicose; b - ácido acrílico; c – biomassa)

As Tabelas B.13 – B.18 apresentam as análises de variância dos parâmetros cinéticos (K_s, K_i, K_A, k_d, k_t, μ_{max} e m) sobre as concentrações de glicose, ácido acrílico e biomassa, respectivamente, e os coeficientes de determinação do modelo (R²) para um nível de confiança de 95%.

\mathbf{i}	/			
Fator	SQ	GL	MQ	F _{calculado}
SQ _R	1.998,5	7	285,508	55,807
SQr	20,466	4	5,116	
SQT	2.019	11		
R^2	0,9899	•		

Tabela B.13 - ANOVA dos parâmetros cinéticos sobre as concentrações de glicose (comportamento dinâmico)

Tabela B.14 - ANOVA dos parâmetros cinéticos sobre a concentração final de glicose

Fator	SQ	GL	MQ	$\mathbf{F}_{\mathbf{calculado}}$
SQ _R	1.203,5	7	171,937	760.783
SQr	0,903	4	0,226	
SQT	1.204,4	11		
\mathbb{R}^2	0,9993			

Tabela B.15 - ANOVA dos parâmetros cinéticos sobre as concentrações de ácido acrílico (comportamento dinâmico)

Fator	SQ	GL	MQ	F _{calculado}
SQ _R	79,939	7	11,420	55.707
SQr	0,818	4	0,205	
SQT	80,757	11		
R^2	0,9899			

Tabela B.16 - ANOVA dos parâmetros cinéticos sobre a concentração final de ácido acrílico

Fator	SQ	GL	MQ	F _{calculado}
SQ _R	48,142	7	6,877	764 111
SQr	0,036	4	0,009	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
SQT	48,178	11		
\mathbb{R}^2	0,9993			

Fator	SQ	GL	MQ	$\mathbf{F}_{\mathbf{calculado}}$	
SQ _R	0,5186	7	0,0741	87.176	
SQr	0,0034	4	0,00085	0,,170	
SQT	0,522	11			
R^2	0,9939				

Tabela B.17 - ANOVA dos parâmetros cinéticos sobre as concentrações de biomassa (comportamento dinâmico)

 Tabela B.18 - ANOVA dos parâmetros cinéticos sobre a concentração final de biomassa

Fator	SQ	GL	MQ	$\mathbf{F}_{\mathbf{calculado}}$
SQ _R	52,568	7	7,509	59.126
SQr	0,509	4	0,127	
SQT	53,077	11		
R^2	0,9904			

APÊNDICE C

Neste apêndice serão apresentadas as simulações e as análises de variância relacionadas ao planejamento fatorial 2^3 e ao planejamento de Plackett-Burman com 32 ensaios apresentados no Capítulo V.

A Figura C.1 apresenta as simulações realizadas no modelo, de acordo com planejamento fatorial 2^3 , realizado para avaliar a influência dos parâmetros operacionais (S_{in}, X_{in}, D) sobre as concentrações de glicose, piruvato, lactato, ácido acrílico e biomassa.

Figura C.1 - Perfis de concentração obtidos nas simulações conforme planejamento fatorial 2³ dos parâmetros operacionais

(a – glicose; b – piruvato; c – lactato; d - ácido acrílico; e – biomassa)

As Tabelas C.1 – C.5 apresentam as análises de variância dos parâmetros operacionais (S_{in} , X_{in} e D) sobre as concentrações de glicose, piruvato, lactato, ácido acrílico e biomassa, respectivamente, e os coeficientes de determinação do modelo (R^2) para um nível de confiança de 95%.

Fator	SQ	GL	MQ	F _{calculado}
SQ _R	65,907	6	10,984	1.098.5
SQr	0,00001	1	0,00001	
SQT	65,907	7		
\mathbb{R}^2	0,9999			

Tabela C.1- ANOVA dos parâmetros operacionais sobre as concentrações de glicose

Tabela C.2- ANOVA dos parâmetros operacionais sobre as concentrações de piruvato

Fator	SQ	GL	MQ	$\mathbf{F}_{\mathbf{calculado}}$
SQ _R	0,1299	6	0,0216	1.661,5
SQr	0,000013	1	0,000013	
SQT	0,013	7		
\mathbb{R}^2	0,9991			
APÊNDICE C Modelagem e Controle da Síntese do Ácido Acrílico via Processo Fermentativo

Tabela C.5- ANOVA dos parametros operacionais sobre as concentrações de factato					
Fator	SQ	GL	MQ	$\mathbf{F}_{\mathbf{calculado}}$	
SQ _R	0,2829	6	0,04715	428,636	
SQr	0,00011	1	0,00011		
SQT	0,283	7			
R^2	0,9996				

Tabela C.3 - ANOVA dos parâmetros operacionais sobre as concentrações de lactato					
	60	CI	MO	Е	

Tabela C.4- ANOVA dos parâmetros operacionais sobre as concentrações de ácido acrílico

Fator	SQ	GL	MQ	$\mathbf{F}_{\mathbf{calculado}}$
SQ _R	7,461	6	1,243	1.243
SQr	0,001	1	0,001	
SQT	7,462	7		
R^2	0,9999			

Tabela C.5- ANOVA dos parâmetros operacionais sobre as concentrações de biomassa

Fator	SQ	GL	MQ	$\mathbf{F}_{\mathbf{calculado}}$
SQ _R	76,420	6	12,737	1819,6
SQr	0,007	1	0,007	
SQT	76,427	7		
\mathbb{R}^2	0,9999			

As tabelas C.6 – C.10 apresentam as análises de variância dos parâmetros cinéticos sobre as concentrações de glicose, piruvato, lactato, ácido acrílico e biomassa, respectivamente, e os coeficientes de determinação do modelo (R²) para um nível de confiança de 95%.

 Tabela C.6 - ANOVA dos parâmetros cinéticos sobre as concentrações de glicose

Fator	SQ	GL	MQ	$\mathbf{F}_{\mathbf{calculado}}$
SQ _R	0,487	22	0,022	8.148
SQr	1,2E-05	9	2,7E-06	
SQT	0,487	31		
R^2	0,9999			

APÊNDICE C Modelagem e Controle da Síntese do Ácido Acrílico via Processo Fermentativo

Tabela C.7 - ANOVA dos parametros cineticos sobre as concentrações de piruvato					
Fator	SQ	GL	MQ	$\mathbf{F}_{\mathbf{calculado}}$	
SQ _R	0,514	22	0,023	3.833	
SQr	5E-05	9	6E-06		
SQT	0,514	31			
R^2	0,9999				

in áti 1. C 7 ANOVA J .<u>^</u>. h +-. ~ . 4+.

Tabela C.8 - ANOVA dos parâmetros cinéticos sobre as concentrações de lactato

Fator	SQ	GL	MQ	$\mathbf{F}_{\mathbf{calculado}}$
SQ _R	0,462	22	0,021	7.000
SQr	2,8E-05	9	3E-06	
SQT	0,462	31		
R^2	0,9999			

Tabela C.9 - ANOVA dos parâmetros cinéticos sobre as concentrações de ácido acrílico

Fator	SQ	GL	MQ	$\mathbf{F}_{\mathbf{calculado}}$
SQ _R	0,555	22	0,0252	4 200
SQr	5E-05	9	6E-06	4.200
SQT	0,555	31		
\mathbb{R}^2	0,9999			

Tabela C.10 - ANOVA dos parâmetros cinéticos sobre as concentrações de biomassa

Fator	SQ	GL	MQ	F _{calculado}
SQ _R	7,101	22	0,323	2 3071
SQr	0,00013	9	1,4E-05	2.5071
SQT				
	7,101	31		
R^2	0,9999			

APÊNDICE D

Neste apêndice serão apresentadas as simulações e as análises de variância relacionadas aos planejamentos fatoriais 2^3 e ao planejamento de Plackett-Burmann com 32 ensaios apresentados no Capítulo VI.

A Figura D.1 apresenta as simulações realizadas no modelo, de acordo com o planejamento fatorial 2^3 que foi realizado para avaliar a influência dos parâmetros operacionais (S_{in}, F_{in}, X_{in}) sobre as concentrações de glicose, ácido acrílico e biomassa.

Figura D.1 - Perfis de concentração obtidos nas simulações conforme planejamento fatorial 2³ dos parâmetros operacionais (a – glicose; b – ácido acrílico; c – biomassa)

As Tabelas D.1 – D.6 apresentam as análises de variância dos parâmetros (S_{in} , F_{in} e X_{in}) sobre as concentrações de glicose, ácido acrílico e biomassa, respectivamente, e os coeficientes de determinação do modelo (R^2) para um nível de confiança de 95%.

Tabela D.1- ANOVA dos parâmetros operacionais sobre as concentrações de glicose (comportamento dinâmico)

Fator	SQ	GL	MQ	$\mathbf{F}_{\mathbf{calculado}}$
SQ _R	6.984,3	6	1.164	116.405
SQr	0,001	1	0,001	
SQT	6.984,3	7		
\mathbb{R}^2	0,9999			

 Tabela D.2- ANOVA dos parâmetros operacionais sobre a concentração final de glicose

Fator	SQ	GL	MQ	$\mathbf{F}_{\mathbf{calculado}}$
SQ _R	7.133,1	6	1.188,8	5.94E+09
SQr	2E-07	1	2E-07	
SQT	7.133,1	7		
R^2	0,9999	•	•	

Tabela D.3- ANOVA dos parâmetros operacionais sobre as concentrações de ácido acrílico (comportamento dinâmico)

Fator	SQ	GL	MQ	F _{calculado}
SQ_R	40,200	6	6,7	15.227.4
SQr	0,00044	1	0,00044	,
SQT	40,200	7		
\mathbb{R}^2	0,9999			

Tabela D.4- ANOVA dos parâmetros operacionais sobre a concentração final de ácido acrílico

Fator	SQ	GL	MQ	$\mathbf{F}_{\mathbf{calculado}}$
SQ _R	18,641	6	3,107	3.107E+06
SQr	1E-06	1	1E-06	0,1072.00
SQT	18,641	7		
R^2	0,9999			

Fator	SQ	GL	MQ	F _{calculado}
SQ _R	108,779	6	18,130	1.81E+05
SQr	0,0001	1	0,0001	1,012103
SQT	108,779	7		
\mathbb{R}^2	0,9999			

Tabela D.5- ANOVA dos parâmetros operacionais sobre as concentrações de biomassa (comportamento dinâmico)

Tabela D.6- ANOVA dos	parâmetros o	peracionais sobre a	a concentração f	final de biomassa
-----------------------	--------------	---------------------	------------------	-------------------

Fator	SQ	GL	MQ	F _{calculado}
SQ _R	50,842	6	8,474	2.824.7
SQr	0,003	1	0,003	2.02.1,7
SQT	50,845	7		
R^2	0,9999			

A Figura D.2 apresenta as simulações realizadas no modelo de acordo com planejamento fatorial 2^3 , realizado para avaliar a influência dos parâmetros de projeto (D_p, D_r e L) sobre as concentrações de glicose, ácido acrílico e biomassa.

Figura D.2 - Perfis de concentração obtidos nas simulações conforme planejamento fatorial 2³ dos parâmetros de projeto (a – glicose; b – ácido acrílico; c – biomassa)

As tabelas D.7 – D.12 apresentam as análises de variância dos parâmetros de projeto (D_p , D_r e L) sobre as concentrações de glicose, ácido acrílico e biomassa, respectivamente, e os coeficientes de determinação do modelo (R^2) para um nível de confiança de 95%.

Fator	SQ	GL	MQ	F _{calculado}
SQ _R	10,481	6	1,747	3 049
SQr	0,573	1	0,573	5,017
SQT	11,054	7		•
R^2	0,9482			

Tabela D.7 - ANOVA dos parâmetros de projeto sobre as concentrações de glicose (comportamento dinâmico)

Tabela D.8 - ANOVA dos parâmetros de projeto sobre a concentração final de glicose

Fator	SQ	GL	MQ	$\mathbf{F}_{\mathbf{calculado}}$
SQ _R	428,598	6	71,433	29.763.7
SQr	0,0024	1	0,0024	
SQT	428,6	7		
\mathbb{R}^2	0,9999			

Tabela D.9 - ANOVA dos parâmetros de projeto sobre as concentrações de ácido acrílico (comportamento dinâmico)

Fator	SQ	GL	MQ	F _{calculado}
SQ _R	1,487	6	0,248	5.2
SQr	0,048	1	0,048	
SQT	1,535	7		
R^2	0,9690			

Tabela D.10 - ANOVA dos parâmetros de projeto sobre a concentração final de ácido acrílico

Fator	SQ	GL	MQ	F _{calculado}
SQ_R	103,622	6	17,270	17.270
SQr	0,001	1	0,001	17.270
SQT	103,623	7		
\mathbb{R}^2	0,9999			

Fator	SQ	GL	MQ	F _{calculado}
SQ_R	0,148	6	0,025	465.407
SQr	5,3E-05	1	5,3E-05	
SQT	0,148	7		
R^2	0,9996			

Tabela D.11 - ANOVA dos parâmetros de projeto sobre as concentrações de biomassa (comportamento dinâmico)

Tabela D.12 - ANOVA dos parâmetros de projeto sobre a concentração final de biomassa

Fator	SQ	GL	MQ	F _{calculado}
SQ _R	27,384	6	4,564	380.3
SQr	0,012	1	0,012	200,2
SQT	27,396	7		
\mathbb{R}^2	0,9995			

As Tabelas D.13 – D.15 apresentam os efeitos dos parâmetros cinéticos sobre as concentrações de glicose, ácido acrílico e biomassa, durante o comportamento dinâmico do processo.

	APÊNDICE D
Modelagem e Controle da Síntese do Ácido Acrílico via Proc	esso Fermentativo

Tabela D.15 - Ele	Elettos dos parametros cineticos sobre as concentrações de gircose					
	Efeito	Desvio padrão	р	Coeficiente de regressão		
Média	84,4705	0,3019	0,0000	84,4705		
* k ₁	-4,6641	0,6038	0,0002	-2,3320		
k _{1a}	-0,8204	0,6038	0,2231	-0,4102		
* k ₂	-17,8402	0,6038	0,0000	-8,9201		
* k3	5,2572	0,6038	0,0001	2,6286		
k4	-0,3047	0,6038	0,6318	-0,1523		
k5	-0,4693	0,6038	0,4665	-0,2347		
* k ₆	2,8003	0,6038	0,0035	1,4001		
k ₇	1,9512	0,6038	0,0179	0,9756		
k _{7a}	0,6714	0,6038	0,3088	0,3357		
K ₁	0,4799	0,6038	0,4571	0,2399		
k _{1a}	0,0842	0,6038	0,8937	0,0421		
* K ₂	2,8803	0,6038	0,0031	1,4401		
K ₃	-1,5520	0,6038	0,0423	-0,7759		
K_4	-0,1207	0,6038	0,8481	-0,0604		
K ₅	0,1329	0,6038	0,8331	0,0665		
K ₆	0,2870	0,6038	0,6514	0,1435		
*K _{6a}	1,5426	0,6038	0,0432	0,7713		
K ₇	-0,5631	0,6038	0,3870	-0,2815		
K _{7a}	-0,3269	0,6038	0,6078	-0,1634		
K _{2i}	-0,1257	0,6038	0,8420	-0,0628		
* K _{5i}	-2,9320	0,6038	0,0028	-1,4659		
K _{6i}	-0,0596	0,6038	0,9246	-0,0298		
$* K_A$	7,4273	0,6038	0,0000	3,7137		
K _A ,	0,5732	0,6038	0,3791	0,2866		
k _d	-0,0863	0,6038	0,8910	-0,0431		

* Parâmetros significativos (p < α ; $\alpha = 0.05$)

	APÊNDICE D
Modelagem e Controle da Síntese do A	Ácido Acrílico via Processo Fermentativo

	Efeito	Desvio padrão	Desvio padrão p	
		-		regressão
Média	18,0428	0,0670	0,0000	18,0428
* k1	1,4029	0,1341	0,0000	0,7015
*k _{1a}	0,3972	0,1341	0,0252	0,1986
$* k_2$	3,1137	0,1341	0,0000	1,5569
* k3	0,7729	0,1341	0,0012	0,3865
k_4	2,5299	0,1341	0,0000	1,2649
k5	-0,2112	0,1341	0,1662	-0,1056
* k ₆	-0,6503	0,1341	0,0028	-0,3251
k ₇	0,0496	0,1341	0,7242	0,0248
k _{7a}	0,2344	0,1341	0,1309	0,1172
K ₁	-0,2912	0,1341	0,0729	-0,1456
k _{1a}	-0,0045	0,1341	0,9742	-0,0023
* <i>K</i> ₂	-0,5308	0,1341	0,0075	-0,2654
K ₃	-0,3028	0,1341	0,0646	-0,1514
* K4	-1,1034	0,1341	0,0002	-0,5517
K ₅	0,1276	0,1341	0,3778	0,0638
K ₆	-0,1428	0,1341	0,3279	-0,0714
* K _{6a}	-0,5132	0,1341	0,0087	-0,2566
K ₇	0,0512	0,1341	0,7157	0,0256
K _{7a}	-0,0644	0,1341	0,6480	-0,0322
K _{2i}	0,0896	0,1341	0,5286	0,0448
* K _{5i}	0,5375	0,1341	0,0070	0,2688
K _{6i}	0,0804	0,1341	0,5705	0,0402
$* K_A$	-3,0840	0,1341	0,0000	-1,5420
K _{A'}	-0,3053	0,1341	0,0630	-0,1526
k _d	0,0095	0,1341	0,9459	0,0047

* Parâmetros significativos (p < α ; $\alpha = 0.05$)

	APÊNDICE D
Modelagem e Controle da Síntese do Ácid	o Acrílico via Processo Fermentativo

	Efeito	Desvio padrão	р	Coeficiente de
Mádia		0.00.00		regressão
	25,3724	0,0862	0,0000	25,3724
$* k_1$	-0,8859	0,1724	0,0021	-0,4429
k _{1a}	-0,2701	0,1724	0,1683	-0,1350
$* k_2$	2,2991	0,1724	0,0000	1,1495
* k3	-0,6497	0,1724	0,0093	-0,3248
k4	-0,0097	0,1724	0,9571	-0,0048
k5	0,0353	0,1724	0,8443	0,0177
k ₆	-0,2770	0,1724	0,1593	-0,1385
k7	-0,1487	0,1724	0,4217	-0,0743
k _{7a}	0,0094	0,1724	0,9583	0,0047
K_1	0,0037	0,1724	0,9833	0,0019
k _{1a}	-0,0842	0,1724	0,6427	-0,0421
K_2	-0,0295	0,1724	0,8699	-0,0147
K ₃	0,1336	0,1724	0,4678	0,0668
K_4	0,0132	0,1724	0,9413	0,0066
K_5	0,0301	0,1724	0,8670	0,0151
K ₆	-0,0328	0,1724	0,8552	-0,0164
K _{6a}	-0,0473	0,1724	0,7928	-0,0237
\mathbf{K}_7	0,0483	0,1724	0,7886	0,0242
K _{7a}	0,0243	0,1724	0,8925	0,0121
K_{2i}	-0,0275	0,1724	0,8785	-0,0137
K _{5i}	0,3518	0,1724	0,0874	0,1759
K _{6i}	0,0169	0,1724	0,9252	0,0084
K _A	0,3958	0,1724	0,0615	0,1979
* <i>K</i> _{A'}	-1,3572	0,1724	0,0002	-0,6786
k _d	-0,1084	0,1724	0,5526	-0,0542

* Parâmetros significativos (p < α ; $\alpha = 0.05$)

As Tabelas D.16 – D.21 apresentam as análises de variância dos parâmetros cinéticos sobre as concentrações de glicose, ácido acrílico e biomassa, respectivamente, e os coeficientes de determinação do modelo (\mathbb{R}^2) para um nível de confiança de 95%.

Tabela D.16 - ANOVA dos parâmetros cinéticos sobre as concentrações de glicose (comportamento dinâmico)

Fator	SQ	GL	MQ	F _{calculado}
SQ _R	3.669,8	25	146,792	50,32
SQr	17,502	6	2,917	
SQT	3.687,3	31		
\mathbf{R}^2	0.9952		•	

Tabela D.17 - ANOVA dos parâmetros cinéticos sobre a concentração final de glicose

Fator	SQ	GL	MQ	$\mathbf{F}_{\mathbf{calculado}}$
SQ _R	4.081	25	163,240	25.00
SQr	27,270	6	4,545	35,92
SQT	4.108,3	31		
R^2	0,9934			

Tabela D.18 - ANOVA dos parâmetros cinéticos sobre as concentrações de ácido acrílico (comportamento dinâmico)

Fator	SQ	GL	MQ	F _{calculado}
SQ _R	249,876	25	9,995	69,41
SQr	0,863	6	0,144	
SQT	250,739	31		
\mathbf{R}^2	0,9966			

Tabela D.19 - ANOVA dos parâmetros cinéticos sobre a concentração final de ácido acrílico

Fator	SQ	GL	MQ	F _{calculado}
SQ _R	435,178	25	17,407	69,63
SQr	1,500	6	0,250	
SQT	436,678	31		
\mathbb{R}^2	0,9966			

\sim	/			
Fator	SQ	GL	MQ	F _{calculado}
SQ _R	70,674	25	2,827	11,88
SQr	1,427	6	0,238	
SQT	72,101	31		
\mathbb{R}^2	0,9802			

Tabela D.20 - ANOVA dos parâmetros cinéticos sobre as concentrações de biomassa (comportamento dinâmico)

Tabela D.21 - ANOVA dos	parâmetros ci	inéticos sobre a	concentração	final de biomassa
-------------------------	---------------	------------------	--------------	-------------------

Fator	SQ	GL	MQ	F _{calculado}
SQ _R	644,447	25	25,778	
SQr	22,598	6	3,766	6,84
SQT	667,045	31		
\mathbb{R}^2	0,9666			