UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE ENGENHARIA QUÍMICA AREA DE CONCENTRAÇÃO DESENVOLVIMENTO DE PROCESSOS QUÍMICOS

COEFICIENTE DE ATIVIDADE PELO METODO DO ARRASTE

Autora: Ana Lúcia Ferreira de (Morais (1999) Orientador: Prof. Dr. Saul Gonçalves d'Avila Davila +

Tese apresentada à Faculdade de Engenharia Química - UNICAMP como parte dos requisítos exigidos para obtenção do título de Mestre em Engenharia Química.

Fevereiro - 1993 Campinas - SP - Brasil

> UNICAMP BIBLIOTECA CENTRAL

A CONTRACT OF A	
THUDADE BC	
N.º GHAMADA:	
170DICAMP	
M 792 G	
V. Ex.	
TOMAO BC/21161	
PROG. 286/94	
	Annual Contraction
PRECO CR\$ 800,00	Branning and
DATA 23 3 14	
1 11 1 1 1310	

СМ-00059035-3

M792c

FICHA CATALOGRAFICA ELABORADA PELA BIBLIOTECA CENTRAL - UNICAMP

Morais, Ana Lucia Ferreira de Coeficiente de atividade pelo metodo do arraste / Ana Lucia Ferreira de Morais. -- Campinas, SP : [s.n.], 1993. Orietador : Saul Goncalves d'Avila.

Dissertacao (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Química.

1. Termodinamica. 2. Equilibrio liquido-vapor. 3. Coeficiente de atividade. I. D'Avila, Saul Goncalves. II. Universidade Estadual de Campinas, Faculdade de Engenharia Química. III. Titulo.

> 28. CDD -541.369 -668.296 -541.39

Indices para Catalogo Sistematico:

Iermodinamica 541.369
 Equilibrio liquido-vapor 660.296
 Coeficiente de atividade 541.39

Este exemplar corresponde à redação final da tese de Mestrado defendida pelo Eng^o Ana Lúcia Ferreira de Morais, aprovada pela Comissão Julgadora em 05/02 $\sqrt{1993}$.

Prof. Dr. Saul Gonçalves d'Ávila - orientador

Tese defendida e aprovada, em 05 de fevereiro de 1993, pela banca examinadora constituída pelos professores:

1diffili. Prof. Dr. Saul Gonçalves d'Avila - orientador Profil Dra Maria Regina Wolf Maciel Remanded

Prof. Dr. Rahoma Sadik Mohamed

Aos meus pais, Emerson e Antonia, aos meus írmãos, Ari e Gerson, ao Flávio e à Gabriela, com amor.

.

.

Agradeço:

- ao Professor Doutor Saul Gonçalves d'Ávila, pela orientação primorosa e grande incentivo e amizade, dedicados durante estes anos de trabalho.

à Professora Maria Alvina Krähenbül e Vânia Maria
 Wendhausen, pela amizade e pelo companheirismo no desenvolvimento
 dos trabalhos no Laboratório de Propriedades Termodinâmicas.

- ao CNPQ, FAEP, e OXITENO, pelo auxílio financeiro para realização deste trabalho.

- aos colegas da Faculdade de Engenharia Química da Unicamp, pelo apoio.

- à Cleyde Teixeira, pelo amor, incentivo e auxílio.

- ao Professor Ruy Luiz Chaves, pelos valiosos ensinamentos, incentivo e apoio, e pela inestimável amizade.

- a todos aqueles que, de algum modo, contribuíram para a realização deste trabalho.

SUMARIO

LISTA DE FIGURASi
LISTA DE TABELASii
NOMENCLATURA
RESUMD
CAPITULO I - INTRODUÇÃO
CAPÍTULO II - EQUILÍBRIO LÍQUIDO-VAPOR (ELV)4
II.1 – Relações Termodínâmicas do ELV
II.1.1 - Simplificações na Relações de ELV
II.2 - Determinação Experimental de Dados de ELV10
II.3 - Correlação de Dados Experimentais
CAPÍTULO III - COEFICIENTE DE ATIVIDADE PELO MÉTODO DO
ARRASTE
III.1 - Introdução20
III.2 – Revisão Bibliográfica20
III.3 - Teoria e Equacionamento
III.3.1 - Coeficiente de Atividade a Concentrações
Finitas
III.3.2 - Coeficiente de Atividade a Infinita
Diluição
III.3.2.1 – Soluto e Solvente Voláteis
III.3.2.2 - Solvente Não Volátil41
III.3.3 - Resumo das Equações47
III.3.4 - Cálculo das Propriedades Físicas
CAPÍTULO IV - APARELHAGEM E METODOLOGIA EXPERIMENTAL
DO MÉTODO DO ARRASTE
IV.1 - Descrição da Aparelhagem52
IV.1.1 - Célula de Equilíbrio52
IV.1.2 - Banhos
IV.1.3 - Manômetros de Mercúrio
IV.1.3.1 - Correção da Pressão Lida no Manômetro59

IV.1.4 - Fluxímetros de Filme
IV.1.4.1 - Condensação dos Compostos Voláteis do
Vapor para Medir a Vazão de Gás Inerte61
IV.1.4.2 - Cálculo da Vazão de Gás Inerte na
Pressão e Temperatura de Equilíbrio61
IV.1.5 – Válvula de Amostragem da Fase Vapor
IV.1.6 - Cromatógrafo65
IV.1.6.1 - Dedução da Equação da Curva de
Calibração de um Composto no
Cromatógrafo
IV.1.6.2 - Ajuste dos Parâmetros da Curva de
Calibração de um Composto no
Cromatógrafo
IV.1.7 - Gás de Arraste70
IV.2 - Procedímento Experimental de Obtenção de
Coeficiente de Atividade a Concentração
Fínita71
IV.3 - Procedimento Experimental de Obtenção de
Coeficiente de Atividade a Diluição
Infinita
IV.4 - Procedímento Experimental de Obtenção da
Curva de Calibração de um Composto no
Cromatógrafo75
CAPITULO V - RESULTADOS E DISCUSSÃO
V.1 – Introdução
V.2 - Curvas de Calibração dos Compostos no
Cromatógrafo78
V.3 - Resultados88
V.3.1 - Teste da Aparelhagem88
V.3.2 - Soluto Volátil e Solvente Não Volátil
V.3.2.1 - Sistema N-Heptano/N-Metil-Pirrolidona
V.3.2.2 - Sistema Benzeno/N-Metil-Pirrolidona
V.3.3 - Soluto e Solvente Voláteis
V.3.3.1 - Sistema Etanol/Água110
CAPÍTULO VI - CONCLUSÃO E SUGESTÕES

APENDICE	A	-	PROPRIEDADES	FÍSICAS E ESPECIFICAÇÃO
			DOS COMPOSTOS	QUÍMICOS122
APENDICE	В		ESTIMATIVA DO	ERRO EXPERIMENTAL125
APENDICE	С	-	ESPECIFICAÇ X O	DOS EQUIPAMENTOS135
BIBLIOGRA	FIA			
"ABSTRACT	r•• •••			

.

•

•

LISTA DE FIGURAS

II.1 - EQUILÍBRIO LÍQUIDO-VAPOR DE UM SISTEMA	
MULTICOMPONENTE	.4
III.1 - FAIXA DE APLICABILIDADE DOS MÉTODOS DE OBTENÇÃO	
DE COEFICIENTE DE ATIVIDADE A DILUIÇÃO INFINITA	24
IV.1 - ESQUEMA DA APARELHAGEM DO MÉTODO DO ARRASTE	53
IV.2.a - CÉLULA DE EQUILÍBRIO (VISTA I)	55
IV.2.6 - CÉLULA DE EQUILÍBRIO (VISTA II)	56
IV.3 - ESQUEMA DE FUNCIONAMENTO DA VALVULA DE	
AMOSTRAGEM DA FASE VAPOR	64
V.1 - CURVAS DE CALIBRAÇÃO DOS COMPOSTOS NO	
CROMATÓGRAFO	87
V.2 - COEFICIENTE DE ATIVIDADE DO N-HEPTANO(1) EM	
N-METIL-PIRROLIDONA(2) A 25,0°C. COMPARAÇÃO DOS	
VALORES OBTIDOS NESTE TRABALHO COM VALORES	
EXISTENTES NA LITERATURA	95
V.3.a.b - COEFICIENTE DE ATIVIDADE DO N-HEPTANO(1) EM	
N-METIL-PIRROLIDONA(2) A 25,0°C, 35,0°C,	
40,0°C E 50,0°C. COMPARAÇÃO DOS VALORES	
OBTIDOS NESTE TRABALHO COM VALORES EXISTENTES	
NA LITERATURA	02
V.4 - CDEFICIENTE DE ATIVIDADE DO BENZENO(1) EM	
N-METIL-PIRROLIDONA(2) A 25,0°C E 50,0°C.	
COMPARAÇÃO DOS VALORES OBTIDOS NESTE TRABALHO COM	_
VALORES EXISTENTES NA LITERATURA	05
V.5 - COEFICIENTES DE ATIVIDADE DO ETANOL(1) E DA AGUA	
A 55,0°C OBTIDOS NESTE TRABALHO PELO METODO DO	
ARRASTE, COMPARAÇÃO COM COEFICIENTES DE ATIVIDADE	
CALCULADOS PELO MODELO WILSON AJUSTADO DE DADOS	
DE ELV(MERTL, 1972)1	10

II.1 -	EQUAÇÕES PARA COEFICIENTE DE ATIVIDADE9
V.1 -	CURVA DE CALIBRAÇÃO DE UM COMPOSTO NO
	CROMATÓGRAFO (N-HEPTANO)
V.2 -	CURVA DE CALIBRAÇÃO DE UM COMPOSTO NO
	CROMATOGRAFO (BENZENO)82
V.3 -	CURVA DE CALIBRAÇÃO DE UM COMPOSTO NO
	CROMATOGRAFO (ETANOL)
V.4 -	CURVA DE CALIBRAÇÃO DE UM COMPOSTO NO
	CROMATOGRAFO (AGUA)85
V.5 -	DADOS EXPERIMENTAIS E COEFICIENTES DE ATIVIDADE
	A CONCENTRAÇÕES FINITAS OBTIDOS NESTE TRABALHO
	PELO MÉTODO DO ARRASTE PARA TESTAR A APARELHAGEM.
	COMPARAÇÃO COM COEFICIENTES DE ATIVIDADE
	CALCULADOS POR NRTL
	N-HEPTANO/N-METIL-PIRROLIDONA, T=25,0°C91
V.6 -	PARAMETROS DO MODELO NRTL AJUSTADOS POR FABRIES
	ET AL.(1977) A PARTIR DE DADOS DE ELLV, ELL,
	EXCESSO DE ENTALPIA E COEFICIENTE DE ATIVIDADE A
	DILUIÇÃO INFINITA
	N-HEPTANO/N-METIL-PIRROLIDONA92
V.7 -	COEFICIENTES DE ATIVIDADE A CONCENTRAÇÕES FINITAS
I	OBTIDOS POR LEROI ET AL.(1977) PELO MÉTODO DO
i	ARRASTE
	N-HEPTAND/N-METIL-PIRROLIDONA
V.8 -	COEFICIENTE DE ATIVIDADE A DILUIÇÃO INFINITA DO
ł	N-HEPTAND(1) EM N-METIL-PIRROLIDONA(2) A 25,0°C
!	OBTIDOS POR DIFERENTES MÉTODOS EXPERIMENTAIS
V.9 - 1	DADOS EXPERIMENTAIS E COEFICIENTES DE ATIVIDADE A
t	CONCENTRAÇÕES FINITAS OBTIDOS NESTE TRABALHO PELO
,	MÉTODO DO ARRASTE. COMPARAÇÃO COM COEFICIENTES DE
i	ATIVIDADE CALCULADOS POR NRTL
1	N-HEPTANO/N-METIL-PIRROLIDONA,T=35,0°C98

1 i

V.10 - DADOS EXPERIMENTAIS E COEFICIENTES DE ATIVIDADE A CONCENTRACOES FINITAS OBTIDOS NESTE TRABALHO PELO MÉTODO DO ARRASTE, COMPARACÃO COM COEFICIENTES DE ATIVIDADE CALCULADOS POR NRTL N-HEPTANO/N-METIL-PIRROLIDONA, T=40,0°C V.11 - DADOS EXPERIMENTAIS E COEFICIENTES DE ATIVIDADE A CONCENTRACOES FINITAS OBTIDOS NESTE TRABALHO PELO MÉTODO DO ARRASTE. COMPARAÇÃO COM COEFICIENTES DE ATIVIDADE CALCULADOS POR NRTL N-HEPTAND/N-METIL-PIRRDLIDDNA,T=50,0°C100 V.12 - COEFICIENTE DE ATIVIDADE A DILUIÇÃO INFINITA EXPERIMENTAL DO N-HEPTAND(1) EM N-METIL-PIRROLIDONA(2) A 40,0°C E 50,0°C EXISTENTES NA V.13 - DADOS EXPERIMENTAIS E COEFICIENTES DE ATIVIDADE A CONCENTRAÇÕES FINITAS OBTIDOS NESTE TRABALHO PELO MÉTODO DO ARRASTE. COMPARAÇÃO COM COEFICIENTES DE ATIVIDADE CALCULADOS POR NRTL BENZENO/N-METIL-PIRROLIDONA,T=25,0°C105 V.14 - DADOS EXPERIMENTAIS E COEFICIENTES DE ATIVIDADE A CONCENTRACOES FINITAS OBTIDOS NESTE TRABALHO PELO MÉTODO DO ARRASTE. COMPARAÇÃO COM COEFICIENTES DE ATIVIDADE CALCULADOS POR NRTL V.15 - PARAMETROS DO MODELO NRTL AJUSTADOS POR FABRIES ET AL. (1977) A PARTIR DE DADOS DE ELV, ELL, EXCESSO DE ENTALPIA E COEFICIENTE DE ATIVIDADE A DILUICAD INFINITA BENZENO/N-METIL-PIRROLIDONA107 V.16 - COEFICIENTE DE ATIVIDADE A DILUIÇÃO INFINITA EXPERIMENTAL DO BENZENO(1) EM N-METIL-PIRROLIDONA(2) A 25.0°C E 50.0°C EXISTENTES NA

iii

V.17 - DADOS EXPERIMETNAIS E COEFICIENTES DE ATIVIDADE
A CONCENTRAÇÕES FINITAS OBTIDOS NESTE TRABALHO
PELO MÉTODO DO ARRASTE
ETANOL/ÁGUA, T=55,0°C112
V.18 - DADOS EXPERIMENTAIS DE EQUILÍBRIO LÍQUIDO-VAPOR
DE MERTL(1972) DO SISTEMA ETANOL(1)/ÁGUA(2) A
55,0°C113
V.19 - PARAMETROS DO MODELO WILSON AJUSTADOS POR
GMEHLING E ONKEN(1977) A PARTIR DE DADOS DE ELV
DE MERTL(1972) OBTIDOS A 55,0°C
V.20 - COMPARAÇÃO ENTRE OS COEFICIENTES DE ATIVIDADE DO
ETANOL(1) E DA ÁGUA(2) OBTIDOS NESTE TRABALHO E
OS CALCULADOS PELO MODELO WILSON AJUSTADO DE
DADOS DE ELV(MERTL, 1972).
A.1 - PROPRIEDADES FÍSICAS DE COMPOSTO PURO122
B.1 - ESTIMATIVA DOS DESVIOS PADRÃO ASSOCIADOS AOS

iv

COEFICIENTES DE ATIVIDADE OBTIDOS NESTE TRABALHO134

NOMENCLATURA

A		Constante de Antoine
a	-	Parâmetro dos modelos NRTL e Wilson
		Constante de Tsonopoulos
в		Segundo Coeficiente Virial
		Constante de Antoine
Ь		Constante de Tsonopoulos
С		Constante de Antoine
 D		Vazão volumétrica
Ε		Expressão para coeficiente de atividade
F		Número de propriedades intensivas
FO		Função objetiva
k		Constante
m		Massa
N	-	Número de componentes do sístema
n	_	Número de mol
NP	-	Número de pontos
NC		Número de componentes do sistema
Ρ		Pressão
R	_	Constante universal dos gases
S		Área resultante da análise cromatográfica
S	-	Desvio padrão
Т		Temperatura
t		Темро
v		Volume
×		Fração molar no líquido
У	-	Fração molar no vapor
Z RA	-	Parâmetro de Rackett

<u>Letras Gregas</u>

α – Volatilidade relativa

ß	-	Coeficiente angular da reta
ϕ	****	Coeficiente de fugacidade
r	•••••	Coeficiente de atividade
π	-	Número de fases do sistema
Ø	-	Variância
μ		Potencial Químico
ω		Fator acêntrico

Subscritos

		Propriedade molar	
0	۶	Condição inicial	-
1	-	Soluto	
2	_	Solvente	
з		Gás inerte	
A		Amostra do vapor	
a		Condição ambiente	
с		Condição crítica	
E		Gás que entra na célula	
i,j	- (Componente i, j	
L		Variável medida	
м		Mistura gasosa	
s	-	Gás que sai da célula	

Sobrescritos

^		Propriedade do componente na mistura
œ		Diluição infinita
с		Valor calculado
E		Valor experimental
a	-	Gás inerte

- r Líquido
- o Valor verdadeiro

. ..

- sat Saturação
- Total (líquido+vapor)
- v '- Vapor

RESUMO

Este trabalho trata do projeto e construção de uma aparelhagem visando avaliar o potencial do Método do Arraste na obtenção de coeficientes de atividade a infinita diluição e a concentração finita.

Foi desenvolvida uma metodologia experimental e de cálculo, tendo sido testada na coleta de dados isotérmicos dos sistemas n-heptano/n-metil-pirrolidona(NMP), benzeno/NMP e etanol/água na faixa de 25,0°C a 55,0°C.

Foram determinados os limites de aplicabilidade da aparelhagem, que mostrou-se apropriada para a determinação dos coeficientes de atividade dos componentes voláteis de uma mistura líquida.

CAPITULO I

INTRODUÇÃO

A indústria química fornece direta ou indiretamente a maior parte dos produtos industrializados utilizados pelo ser humano. Em muítos processos químicos de fabricação, as misturas fluidas precisam ser separadas em seus componentes por operações como absorção, destilação e extração. O projeto e simulação destas operações requerem o conhecimento de dados de equilíbrio líquído-vapor(ELV) da místura de interesse. A meta usual de utilização destes dados é a representação matemática dos coeficientes de atividade dos componentes da mistura líquida através de modelos de soluções.

Existem algumas compilações de dados de ELV, além de jornais e revistas especializados. A fonte mais recente são os bancos de dados computadorizados. Mas infelizmente, nem sempre os dados da mistura de interesse são disponíveis.

Com o desenvolvimento dos computadores os métodos de predição de dados de equilíbrio de fases se transformaram numa ferramenta muito prática, que fornece resultados rápidos e confiáveis. Por exemplo, para muitos sistemas é possível predizer uma curva completa de ELV conhecendo-se apenas a fórmula molecular dos componentes envolvidos (Martinez, 1992) usando métodos de contribuição de grupos. Porém, mesmo estes métodos são baseados num mínimo de informações experimentais, características de cada classe de substâncias. O fato de um método de predição ser,de certa forma, dependente de dados experimentais limita sua aplicabilidade, devido a grande variedade de compostos químicos existentes, principalmente quando se trata de compostos novos. Consequentemente, o recurso ao laboratório 6 praticamente inevitável.

Obter os dados de ELV experimentalmente é mais demorado e caro, mas frequentemente é a única opção. E quando o

-

interessado não dispõe de um laboratório para este fim, deve considerar a possibilídade de recorrer a alguém que já o tenha.

Πs métodos experimentais clássicos de ELV nnr ebuliometria permitem obter dados somente na recião de concentrações finitas. Porém, as soluções diluídas representam um ponto muito importante a ser considerado no estudo dos processos componentes de separação. Quando um ou mais da mistura encontram-se altamente diluídos, as propriedades de interesse são os coeficientes de atividade a diluíção infinita destas espécies. passado recente. estes dados não ser obtidos No podiam experimentalmente, mas eram preditos dos dados a concentrações finitas por diferentes métodos de extrapolação. O resultado. na maioria dos casos, era bastante insatisfatório, pela dificuldade de se operar os ebuliômetros na região de baixas concentrações e pela inexistência de métodos analíticos adequados, como a cromatografia gasosa.

Nos últimos vinte e cinco anos, foram apresentadas na líteratura, como discutido no Capítulo II, várias técnicas experimentais que permitem a obtenção direta do coeficiente de atividade a diluição infinita de forma mais fácil e rápida. Na realidade, nestes métodos o coeficiente de atividade a diluição infinita não é medido diretamente, mas calculado de grandezas experimentais, utilizando-se efetivamente a mistura líquida com 0 componente desejado infinitamente diluído. Cada método apresenta vantagens e desvantagens. Mas indiscutivelmente, o coeficiente de atividade a diluição infinita assim obtido é muito mais preciso do que quando extrapolado dos dados a concentrações finitas.

O coeficiente de atividade a diluição infinita experimental pode ser utilizado para predizer o comportamento da solução a concentrações finitas, proporcionando excelentes resultados, embora a recíproca não seja verdadeira (Schreiber e Eckert, 1971).

Dos métodos de obtenção direta de coeficiente de atividade a diluição infinita, o Método do Arraste é o que apresenta equipamento mais simples e barato e o que possui maior

aplicabilidade no que se refere a natureza dos compostos do sistema de interesse. Além disso, presentemente, é o único que também pode ser usado na obtenção de coeficiente de atividade a concentrações finitas.

Este trabalho trata do projeto e construção de uma aparelhagem visando avaliar o potencial do Método do Arraste na obtenção de coefícientes de atividade a infinita diluição e a concentrações finitas. Uma metodologia experimental e de cálculo foi desenvolvida e testada na coleta de dados isotérmicos dos sistemas n-heptano/n-metil-pirrolidona(NMP), benzeno/NMP e etanol/água na faíxa de 25,0°C a 55,0°C.

CAPITULO II

EQUILIBRIO LIQUIDO-VAPOR (ELV)

II.1 - Relações Termodinâmicas do Equilíbrio Líquido-Vapor

O problema fundamental do ELV consiste em estabelecer relações entre as variáveis que descrevem um sistema com duas fases, líquida e vapor. Cada fase possui N componentes e o sistema é caracterizado pelas variáveis temperatura, T, pressão, P, N-1 frações molares na fase líquida, x_i, e N-1 frações molares na fase vapor, y_i, onde:

$$\sum_{i=1}^{N} x_{i} = 1$$
 (II.1)

$$\sum_{i}^{N} y_{i} = 1 \qquad (II.2)$$

A Figura II.1 ilustra esquematicamente o sistema:

FIGURA II.1 EQUILÍBRIO LÍQUIDO-VAPOR DE UM SISTEMA MULTICOMPONENTE.

A condição de equilíbrio entre as fases líquida e vapor que estão na mesma temperatura e pressão é dada pela equação que segue:

$$\mu_i^{\mathbf{V}} = \mu_i^{\mathbf{L}} \tag{II.3}$$

sendo $\mu_i^{\mathbf{V}} \in \mu_i^{\mathbf{L}}$ os potenciais químicos do componente i no vapor e no líquido, respectivamente.

De acordo com o procedimento proposto por Prausnitz et al.(1980), da igualdade de potenciais químicos vem:

$$y_{i} \hat{\phi}_{i}^{\mathbf{v}} P = x_{i} \gamma_{i} P_{i}^{\mathbf{sat}} \phi_{i}^{\mathbf{sat}} \exp\left[\frac{\underline{\forall}_{i}^{\mathbf{L}} (P - P_{i}^{\mathbf{sat}})}{R T}\right] \quad (II.4)$$

onde: $\hat{\phi}_i^v$ - coeficiente de fugacidade do componete i no vapor $\gamma_i^{}$ - coeficiente de atividade do componente i, definido para a pressão de referência $P^r = 0$ P_i^{sat} - pressão de saturação do componente i ϕ_i^{sat} - coeficiente de fugacidade do componente i na P_i^{sat} \underline{V}_i^L - volume molar de líquido do componente i R - constante universal dos gases

A não idealidade da fase vapor pode ser representada pela equação virial truncada no segundo termo:

$$\frac{P \vee V}{R T} = 1 + \frac{B P}{M}$$
(II.5)

onde:

$$B_{M} = \sum_{i}^{N} \sum_{j}^{N} y_{i} y_{j} B_{ij} \qquad (II.6)$$

e sendo $\underline{\nabla}^{\mathbf{V}}$ o volume molar do vapor, $\mathbf{B}_{\mathbf{M}}$ o segundo coeficiente virial da mistura gasosa e \mathbf{B}_{ij} o segundo coeficiente virial cruzado dos componentes i e j.

A equação virial normalmente se aplica a pressões baixas e moderadas. O limite da pressão de aplicabilidade da Equação (II.6) é dado empiricamente pela equação seguinte (Prausnitz et al., 1986) :

$$P \leq \frac{T}{2} \frac{\sum_{i}^{N} y_{i} P_{ci}}{\sum_{i}^{N} y_{i}^{T} c_{i}}$$
(11.7)

Adotando-se a equação virial, o coeficiente de fugacidade do componente i na fase vapor é calculado por:

$$\ln \hat{\phi}_{i}^{\mathbf{v}} = \frac{P}{RT} \left(2 \sum_{j}^{N} y_{j} B_{ij} - B_{M} \right)$$
(II.8)

e o coeficiente de fugacidade do componente i na saturação é dado por:

$$\ln \phi_{i}^{sat} = \frac{B_{ii} P_{i}^{sat}}{R T}$$
(II.9)

sendo B_{ii} o segundo coeficiente virial do componete i.

Os segundos coeficientes viriais de componente puro . e cruzados podem ser calculados pela correlação de Tsonopoulos

Ŀ

(1974). Para sistemas com componentes que sofrem forte associação, como por exemplo os ácidos carboxílicos, a Teoria Química de Hayden e O'Connell (1975) é mais adequada para calcular os segundos coeficientes viriais.

O volume molar de líquido puro saturado é obtido de dados experimentais ou estimado por correlações empíricas, como por exemplo a equação de Rackett modificada (Reid et al., 1987):

$$\underline{\underline{V}}_{i}^{L} = \frac{R T_{Ci}}{P_{Ci}} (Z_{RA_{i}})^{\tau_{i}}$$
(II.10)

com:

$$\tau_i = 1,00 + \left(1,00 - \frac{T}{T_{ci}}\right)^{2/7}$$
, para $\frac{T}{T_{ci}} < 0,75$ (II.11)

ou:

$$\tau_{i} = 1,60 + 6,93 \times 10^{-3} \left(\frac{T}{T_{ci}} - 6,55 \times 10^{-4} \right), \text{ para } \frac{T}{T_{ci}} \ge 0,75$$

$$(II.12)$$

ZRA_i é o chamado parâmetro de Rackett do componente i, encontrado em Reid et al.(1987) para muitos compostos químicos. Caso ZRA_i não se encontre disponível, ele pode ser estimado por:

$$Z_{RA_i} = 0,29056 - 0,08775 \omega_i$$
 (II.13)

onde ω_i é o fator acéntrico do componente i.

Dados de pressão de saturação normalmente são apresentádos na forma de uma equação como função da temperatura. A equação de Antoine, dada a seguir, é a equação mais utilízada para correlacionar dados de pressão de saturação em curtos intervalos de temperatura:

$$\log P_i^{\text{sat}} = A_i - \frac{B_i}{T + C_i}$$
(II.14)

sendo A_i , B_i e C_i as constantes para o componente i, que podem ser encontradas em Gmehling e Onken (1977) para um grande número de compostos químicos.

A prática usual é representar o coeficiente de atividade por meio de equações originadas de modelos de soluções líquídas (Prausnitz et al., 1986; Walas, 1985). Por exemplo, na Tabela (II.1) são apresentados os modelos NRTL e Wilson a dois parâmetros (Prausnitz et al.,1986). As equações representam os coeficientes de atividade de um componente numa mistura binária.

Em Gmehling e Onken (1977) podem ser encontrados parâmetros de interação binária dos modelos mais usados, entre eles NRTL, para um grande número de sistemas, cujos parâmetros foram ajustados a partir de dados experimentais de ELV.

TABELA II.1 EQUAÇÕES PARA COEFICIENTE DE ATIVIDADE

II.1.1 - <u>Simplificações nas Relações de ELV</u>

A fase vapor pode ser considerada ideal quando as interações moleculares entre seus componentes são desprezíveis. Neste caso:

$$\hat{\phi}_i^{\mathbf{v}} = 1 \qquad (II.15)$$

$$\phi_i^{\text{sat}} = 1 \tag{II.16}$$

Para componentes subcríticos, quando a pressão é baixa, o termo exponencial da Equação (II.4), chamado Fator de Poynting, assume valores muitos próximos da unidade.

Utilizando estas duas hipóteses simplificadoras a equação de equilíbrio (II.4) reduz-se a:

$$y_i P = x_i \gamma_i P_i^{sat} \qquad (II.17)$$

II.2 - Determinação Experimental de Dados de ELV

p

A determinação experimental de dados de ELV pode ser feita pela medida das variáveis P, T, $x_i = y_i$. Tais medidas são realizadas isotermicamente (P, x_i , y_i) ou isobaricamente (T, x_i , y_i).

Como a Termodinâmica fornece relações matemáticas exatas entre as varáveis P, T, $x_i e y_i$, é possível testar a consistência termodinâmica destes dados, verificando se as medidas experimentais satisfazem determinada relação escolhida. Diversas maneiras de se proceder ao teste de consistência dos dados são encontradas na literatura. O trabalho de Krähenbühl (1987) é representativo do esforço recente nesta área.

Num sistema com N componentes no entanto, não é necessário medir experimentalmente P, T, N-1 valores de x_i e N-1 valores de y_i . A Regra das Fases de Gibbs fornece o número de propriedades intensivas, F, que devem ser especificadas para

descrever um sistema termodinâmico em equilíbrio:

$$F = N - \Pi + 2 \qquad (II.18)$$

sendo N o número de componentes do sistema e Π o número de fases que compõem o sistema.

No caso do ELV (Π=2), a Regra das Fases dá F=N. Isto significa que uma vez especificadas N variáveis, as N variáveis restantes podem ser calculadas pelas relações termodinâmicas.

<u>A</u> desvantag<u>em em não</u> se medir as 2N variáveis (P, T, x_i, y_i) é que não se pode aplicar um teste de consistência termodinâmica para verificar a qualidade dos dados experimentais.

Portanto. quando dados são os obtidos isobaricamente, é suficiente medir T e N-1 valores de ×. para descrever o sistema em equilíbrio, ou então medir (T, y_i) ou (×,, y_i). E, em condições isotérmicas, basta medir (P, x_i), (P, y_i) ou (x_i, y_i). O Método da Pressão Total é o mais conhecido destes métodos. Nele são medidos P e x_, isotermicamente. Uma discussão do Método da Pressão Total pode ser encontrada no trabalho recente de Wendhausen (1992).

Existem descritos na literatura muitos métodos experimentaís desenvolvidos para medir dados ELV. Todos apresentam vantagens e desvantagens, mas nenhum deles é adequado para ser usado com todos os tipos de compostos químicos e condições de temperatura, pressão e composição.

Hála et al.(1967) reuniram em sua obra um grande número de métodos para coletar dados experimentais de ELV e os classificaram nos seguintes grupos:

- Método de destilação.
- Método de circulação.
- Método de fluxo.
- Método dos pontos de bolha e orvalho.
- Método estático.

Uma classificação mais geral (Abbott, 1986) divide

os métodos citados em doís tipos: dinâmicos (métodos de destilação, circulação e fluxo) e estáticos (método estático e do ponto de bolha e orvalho).

Basicamente, o método dinâmico é caracterizado pela circulação de uma ou ambas as fases que entram em contato na presença de um gás inerte, o qual determina a pressão do sistema. Assume-se que o equilíbrio é estabelecido a partir do momento que , a temperatura do sistema permanecer constante.

No método estático o líquido e o vapor são mantidos a uma temperatura fixa dentro de uma célula completamente evacuada. O equilíbrio é estabelecido quando a pressão do <u>si</u>stema permanecer constante.

Abbott (1986) e Marsh (1989) complementaram <u>o</u> trabalho de Hála et al.(1967) revisando os métodos para medidas de ELV que foram apresentados mais recentemente na literatura.

Em muitos processos químicos, ocorrem condições onde um ou mais componentes de uma mistura líquida encontram-se a concentrações muito baixas, até mesmo em condições de diluição infinita, como por exemplo no topo e no fundo das colunas de destilição. Nestes casos, os coeficientes de atividade a diluição infinita destes componentes são de grande importância nos cálculos de engenharia.

Os coeficientes de atividade a diluição infinita podem ser obtidos de dados experimentais de ELV a concentrações nos equipamentos convencionais citados finitas. medidos anteriormente, extrapolando-os graficamente ou numericamente às condições de diluição infinita (Gatreaux e Coates, 1955; Ellis e Jonah, 1962). Mas se os dados não forem de excelente qualidade, diluição principalmente próximo à região de infinita, a extrapolação é muito imprecisa.

Alternativamente, os dados a concentrações finitas podem ser ajustados por um modelo de coeficiente de atividade e o coeficiente de atividade a diluição infinita obtido aplicando-se o limite no modelo. Contudo, o coeficiente de atividade a diluição infinita obtido dependerá muito do comportamento matemático do

1.22

modelo próximo à região de infinita diluição.

Geralmente, são necessários excelentes dados а concentrações finitas para predizer um bom valor de coeficiente de atividade a diluição infinita, enquanto que а predicão do comportamento da solução a concentrações finitas por meio de modelos é relativamente insensível a erros moderados no valor do coeficiente de atividade a diluição infinita utilizado. Na determinacão parâmetros isto é explicado dos pelo fato do coeficiente de atividade a diluição infinita de um soluto caracterizar o comportamento de uma única molécula de soluto rodeada por moléculas de solvente; o que geralmente indica um máximo de não idealidade (Eckert et al., 1981).

- Método da Cromatografia Gás-Líquido também conhecido como Método do Tempo de Retenção.

- Método do Arraste ou Método Diluidor.

- Ebuliometria Diferencial.

No Método da Cromatografia Gás-Líquido uma quantidade muito pequena de soluto é injetada no gás inerte que flui através da coluna cromatográfica, enquanto que o solvente líquido é suportado sobre um sólido inerte formando o recheio da coluna. O coeficiente de atividade a diluição infinita do soluto está matematicamente relacionado ao tempo de retenção do soluto na coluna.

Esta técnica foi aperfeiçoada por Eckert et al.(1981) e permite medir o coeficiente de atividade a diluição infinita de um soluto num solvente não volátil ou levemente mais volátil que o soluto.

A exatidão do coeficiente de atividade a diluição infinita obtido por este método pode ser prejudicada por

interações do soluto com o suporte sólido (Leroi et al.(1977); Tiegs et al.(1986)). Várias aproximações feitas no equacionamento matemático também podem acarretar erros sistemáticos (Santacesaria et al., 1979). A magnitude destes efeitos varia em função da natureza do sistema soluto-solvente utilizado.

O Método do Arraste consiste em borbulhar um fluxo constante de cas inerte numa mistura líquida em que o soluto se encontre infinitamente diluído. Os componentes voláteis são carregados para a fase vapor. A variação da concentração do soluto no vapor ao longo do tempo é analisada por cromatografia gasosa e permite a obtenção do coeficiente de atividade a diluição infinita do soluto.

Para muitos sistemas, um experimento completo do Método do Arraste para determinar um valor de coeficiente de atividade a diluição infinita leva de uma a duas horas (Leroi et al., 1977).

Este método se aplica a sistemas com solvente volátil ou não e também pode ser utilizado para determinar coeficiente de atividade a diluição infinita de um soluto numa mistura multicomponente, desde que ocorra a separação dos picos no cromatógrafo.

Dos métodos de determinação experimental de coeficiente de atividade a diluição infinita o Método do Arraste é o único que também pode ser usado para determinar coeficientes de atividade na região de concentrações finitas.

O ebuliômetro diferencial é formado basicamente por dois ebuliômetros conectados. Num dos ebuliômetros é colocado o solvente puro e no outro a solução do solvente com o soluto infinitamente diluído. Com um termômetro diferencial é possível medir a diferença entre a temperatura de ebulição dos líquidos dos dois ebuliômetros que é utilizada na obtenção do coeficiente de atividade a diluição infinita do soluto.

Thomas et al.(1982) descrevem um ebuliômetro diferencial formado por cinco ebuliômetros conectados capaz de produzir valores de coeficiente de atividade a diluição infinita

para quatro solutos num solvente comum em 8 horas de experimento.

A Ebuliometría Diferencial permite obter os dois coeficientes de atividade a diluição infinita de um sistema binário soluto-solvente. Porém sua utilização não é indicada em dois casos : para determinar o coeficiente de atividade a diluição infinita do solvente quando o soluto é muito mais volátil do que ele e para sistemas onde soluto e solvente apresentam volatilidades muito próximas. Neste último caso o método da Cromatografia Gás-Líquido e o Método do Arraste dão melhores resultados com menos esforço experimental (Eckert et al., 1981).

A desvantagem <u>do</u> Método <u>da</u> <u>Cromatografia</u> Gás-Líquido e do Método do Arraste é que estes métodos não permitem a medída dos dois coeficientes de atividade a diluição infinita da mistura binária, mas somente o do componente mais volátil. Estas duas técnicas podem ser utilizadas para determinar os dois coeficientes de atividade a diluição infinita de misturas binárias somente para sistemas que apresentam azeótropo de mínima temperatura, pois nestes casos qualquer que seja o componente infinitamente diluído ele é sempre o mais volátil.

Kikic et al.(1983) analisaram as incertezas associadas as variáveis medidas experimentalmente no Método da Cromatografia Gás-Líquido, no Método do Arraste e na Ebuliometria Diferencial e concluíram que as incertezas médias associadas a cada um deles são da mesma ordem de grandeza. Isto permite comparar e combinar dados de coeficiente de atividade a diluição infinita obtidos pelas três técnicas.

II.3 - Correlação de Dados Experimentais

Os parâmetros de interação binária dos modelos de coeficiente de atividade podem ser obtidos pela correlação de dados experimentais de ELV.

Quando se conhece P, T, x_i e y_i experimentais é possível calcular os coeficientes de atividade "experimentais"

pela equação de equilíbrio (II.4), que rearranjada fíca:

$$\gamma_{i} = \frac{\gamma_{i} P}{x_{i} P_{i}^{aat}} \frac{\hat{\phi}_{i}^{v}}{\phi_{i}^{aat}} \exp\left[-\frac{\underline{\nabla}_{i}^{L} (P - P_{i}^{aat})}{R T}\right]$$
(II.19)

Neste caso, o método mais simples de estimar os parâmetros de cada modelo consiste em minimizar a função objetiva, FO, definida em termos do princípio dos mínimos quadrados como:

$$FO = \sum_{i}^{N} \sum_{j}^{NP} (\gamma_{i}^{C} - \gamma_{i}^{E})_{j}^{2}$$
(II.20)

onde N é o número de componentes do sistema, NP o número de pontos experimentais, γ_i^c o coeficiente de atividade do componente i calculado por um modelo, por exemplo NRTL, e γ_i^E o coeficiente de atividade "experimental" do componente i.

O inconveniente deste método é que os coeficientes de atividade "experimentais" não são medidos diretamente.

Este problema não se coloca quando se usa o método da máxima verossímilhança (Anderson et al., 1978; Prausnitz et al., 1980), que busca os parâmetros de um modelo levando em consideração prováveis incertezas experimentais em todas as variáveis medidas, minimizando a função objetiva, FO :

$$FO = \sum_{j}^{NP} \left\{ \frac{(P^{O} - P^{E})_{j}^{2}}{\sigma_{P_{j}}^{2}} + \frac{(T^{O} - T^{E})_{j}^{2}}{\sigma_{T_{j}}^{2}} + \frac{\sum_{i}^{N-1} \left[\frac{(X_{i}^{O} - X_{i}^{E})_{j}^{2}}{\sigma_{X_{j}}^{2}} + \frac{(Y_{i}^{O} - Y_{i}^{E})_{j}^{2}}{\sigma_{Y_{j}}^{2}} \right] \right\}$$
(II.21)

sendo σ a variância estimada de cada propriedade e os superscritos "o" e "E" indicam valores "verdadeiros" (calculados) e experimentais, respectivamente. A cada iteração determinam-se os valores "verdadeiros" de P, T, x_i e y_i através de algoritmo de ponto de bolha e orvalho.

Conhecendo-se somente P, T e x_i o método da máxima verossimilhança também pode ser usado na determinação de parâmetros, e neste caso, a função objetiva, FO, a ser minimizada reduz-se a:

$$FD = \sum_{j}^{NP} \left[\frac{(P^{O} - P^{E})_{j}^{2}}{\sigma_{p_{j}}^{2}} + \frac{(T^{O} - T^{E})_{j}^{2}}{\sigma_{T_{j}}^{2}} + \sum_{i}^{N-1} \frac{(x_{i}^{O} - x_{i}^{E})_{j}^{2}}{\sigma_{x_{j}}^{2}} \right]$$
(II.22)

Dutro procedimento de correlação de dados P, T, ×_i consiste em minimizar apenas a diferença entre pressões "verdadeiras" e experimentais, sem levar em consideração a incerteza experimental em P. A função a ser minimizada, FO, fica:

FD =
$$\sum_{j}^{NP} (P^{O} - P^{E})_{j}^{2}$$
 (II.23)

Este procedimento é conhecido como Método de Barker (Barker,1953). Em Prausnitz et al.(1980) pode ser encontrado o programa de computador VPLQFT, em linguagem FORTRAN, que estima parâmetros de interação binária para vários modelos de coeficiente de atividade, usando o método da regressão não linear baseado no princípio da máxima verossimilhança. O programa correlaciona dados binários de ELV (P, T, x₁, y₁ ou P, T, x₁) obtidos a pressões baixas e moderadas.

Os parâmetros de interação binária das expressões de coeficiente de atividade também podem ser estimados a partir de dados experimentais de coeficiente de atividade a diluição infinita, γ_i^∞ .

Ds modelos para coeficiente de atividade a diluição infinita são obtidos aplicando-se o límite nas expressões de coeficiente de atividade:

$$E_{i}^{\infty} = \lim_{i \to \infty} E_{i} = f(\gamma_{i}^{\infty}, T, a_{ij}) \quad (II.24)$$

onde E_i^{∞} é a expressão do coeficiente de atividade a diluição infinita do componente i, que é somente função da temperatura, T, e dos parâmetros a_{ij} , e E_i a expressão do coeficiente de atividade deste componente, sendo ambas referentes ao mesmo modelo.

Numa mistura binária, supondo que γ_1^{∞} e γ_2^{∞} sejam disponíveis, estes valores podem ser usados na determinação de dois parâmetros, a e a de uma expressão para coeficiente de atividade. O problema consiste na resolução simultânea de duas relações matemáticas do tipo :

$$E_{4}^{\infty}(\gamma_{4}^{\infty}, T, a_{12}, a_{21}) = 0$$
 (II.25)

$$E_{2}^{\infty}(\gamma_{2}^{\infty}, T, a_{12}, a_{21}) = 0$$
 (II.26)

sendo $E_1^{\infty} e E_2^{\infty}$ expressões para $\gamma_1^{\infty} e \gamma_2^{\infty}$, respectivamente, de um modelo qualquer de coeficiente de atividade a diluição infinita. Por exemplo, quando o modelo utilizado é NRTL, o sistema de equações é não linear e pode ser resolvido por método iterativo, como Newton-Raphson (Press et al., 1986). Estes parâmetros, uma vez determinados, permitem a predição da curva completa de ELV.

Há casos onde apenas um dos coeficientes de atividade a diluição infinita é disponível. Mesmo assim, é possível descrever o comportamento do sistema em toda faixa de concentrações, desde que se utilizem modelos com apenas um parâmetro ajustável por sistema binário. É claro que, reduzindo o número de parâmetros, o modelo torna-se menos flexível. Porém, conforme indica a literatura, resultados muito bons foram

conseguidos com modelos a um parâmetro (Bruin e Prausnitz, 1971; Kikic et al., 1983; Krumins et al., 1980; Schreiber e Eckert, 1971; Tassios, 1971).

Recentemente, Tiegs et al.(1986) reuniram da literatura um grande número de valores experimentais de coeficiente de atividade a diluição infinita de solutos em vários solventes.
CAPITULO III

COEFICIENTE DE ATIVIDADE PELO MÉTODO DO ARRASTE

III.1 - Introdução

Em 1977, Leroi et al. apresentaram o Método do Arraste, ou Diluidor como também é conhecido, como uma técnica experimental que permite obter o coeficiente de atividade de componentes voláteis de uma mistura líquida. Aqui, um componente é considerado não volátil quando sua pressão de saturação é no máximo de 2 mmHg na temperatura de interesse.

O Método do Arraste consiste em colocar a mistura líquida numa célula mantida a temperatura constante. Um fluxo de gás inerte puro borbulha no líquido arrastando os componentes voláteis para o vapor. Assume-se que existe o equilíbrio termodinâmico entre o líquido na célula e o vapor que deixa a célula.

Analisando o decaimento da concentração do componente i no vapor com o tempo, o Método do Arraste permite obter valores de coeficientes de atividade a concentração finita ou a diluição infinita. No último caso, o método faz uso do fato de que a concentrações muito baixas, próximas das condições de diluição infinita, na mistura líquida, o coeficiente de atividade do componente i é praticamente independente da concentração.

III.2 - <u>Revisão Bibliográfica</u>

O Método do Arraste tem origem na técnica de diluição usada por Fowlis e Scott (1963) para calibrar detectores de cromatografia, checar suas linearidades numa faixa de concentração e analisar traços de componentes numa mistura líquida.

Ritter e Adams (1976) utilizaram o mesmo método para calibrar detectores de ionização de chama com misturas gasosas e estudaram a eficiência de diferentes frascos de diluição.

Em 1977, Leroi et al. aplicaram a técnica de diluição para determinar o coeficiente de atividade a diluição infinita a 25,0°C dos hidrocarbonetos n-hexano e benzeno em . 10 solventes não voláteis. Estes sistemas apresentam uma larga faixa de valores de coeficiente de atividade a diluição infinita, entre 1 e 80.

Quando os coeficentes de atividade a diluição infinita são comparados aos da literatura obtidos pelo Método da Cromatografia Gás-Líquido e a valores extrapolados de dados de ELV, excesso de entalpia e equilíbrio líquido-líquido (ELL) por modelos de coeficiente de atividade, o desvio relativo médio é considerado muito bom, da ordem de 6%.

Com o mesmo equipamento os autores determinaram 0 25.0°C a do coeficiente de atividade n-heptano em n-metilpirrolidona a concentrações finitas e a diluição infinita. Dados da literatura de ELV, ELL e excesso de entalpia deste sistema foram reduzidos pelo modelo NRTL e os coeficientes de atividade comparados aos obtidos pelo Método do Arraste. O desvio relativo médio é de 3%.

O trabalho de Leroi et al. sugere a potencialidade do método ao apresentar valores de coeficientes de atividade obtidos a concentrações finitas, mas não apresenta a metodologia utilizada para trabalhar nestas condições.

Outros grupos que trabalharam com o Método do Arraste utilizaram equipamentos muito semelhantes ao descrito por Leroi et al..

Duhem e Vidal(1978) observaram algumas que hipóteses simplificadoras assumidas por Leroi et al. no equacionamento matemático do Método do Arraste podem não ser válidas para sistemas com solvente não volátil que o coeficiente de atividade a diluição infinita do soluto é muito alto. **N**S

autores aplicaram o método a vários sistemas formados de benzeno como soluto e misturas de água e dimetilformamida como solvente não volátil a 25,0°C, estudando uma larga faixa de valores de coeficiente de atividade a diluição infinita, entre 6 e 2000.

Santacesaria et al.(1979) obtiveram coeficiente de atividade a diluição infinita de n-hexano, metilciclopentano, ciclohexano, metilciclohexano, benzeno e tolueno em três solventes não voláteis : fenol, furfural e dimetilformamida, no intervalo de 20,0°C a 50,0°C. Os valores de coeficiente de atividade a diluição infinita obtidos estão entre 1 e 30. As medidas foram feitas com o Método da Cromatografia Gás-Líquido e o Método do Arraste. Os coeficientes de atividade a diluição infinita obtidos pelos dois métodos foram comparados entre si apresentando um desvio relativo médio de 8%.

Richon et al.(1980) fizeram um estudo sobre a transferência de massa no interior da câmara de equilíbrio da célula estabelecendo condições experimentais que visam facilitar a transferência de massa. Eles determinaram o coeficiente dp atividade a diluição infinita de alcanos normais e ramificados em n-hexadecano a 25,0°C obtendo valores entre 0,8 e 1. Nesta temperatura o n-hexadecano não é volátil. Os autores concluíram que se o soluto do qual se deseja o coeficiente de atividade а diluição infinita for muito pouco volátil o Método do Arraste não é adequado. Se a quantidade de soluto no vapor for muito pequena as medidas são difíceis e inexatas.

Cori e Delogu(1986) utilizaram o Método do Arraste com misturas binárias de etanol com alcanos normais. Estes sistemas apresentam azeótropo de mínima temperatura, o que possibilitou determinar o coeficiente de atividade a diluição infinita dos dois componentes de cada mistura. Para cada sistema foram determinados os pares de coeficiente de atividade a diluição infinita em várias temperaturas entre $20,0^{\circ}$ C e $100,0^{\circ}$ C, obtendo valores entre 6 e 65.

Contudo, o Método do Arraste na sua forma original não permite a obtenção do coeficiente atividade a diluição

infinita do solvente, mesmo quando ele é volátil, a menos que o sistema utilizado apresente azeótropo de mínima temperatura. Além disso, se o soluto é pouco volátil, a quantidade deste composto no vapor não é suficiente para uma análise quantitativa exata por cromatografia gasosa.

Muito recentemente, Hradetzky et al.(1990) apresentaram uma variação do Método do Arraste em que a amostragem periódica do vapor saturado que sai da célula durante um intervalo de tempo determinado é substituída pela análise da fase líquida remanescente também por cromatografia gasosa. O novo método amplia os límites de aplicabilidade do Método do Arraste original.

límites de aplicabilidade dos Os métodos de obtenção de coeficiente de atividade a diluição infinita são geralmente determinados pelas pressões de vapor do soluto e do 00 solvente e pela volatilidade relativa a diluição infinita, α 1.2' $\alpha_{1,2}^{00} = \gamma_1^{00} P_1^{\text{sat}} / P_2^{\text{sat}}.$ definida como

A Figura (III.1) deste trabalho reproduz um gráfico apresentado por Hradetzky et al. que mostra os limites de aplicabilidade dos métodos mais usados para determinar coeficiente de atividade a diluição infinita, que são o Método do Tempo de Retenção, Ebuliometria Diferencial e o Método do Arraste. Observa-se que o Método do Arraste com Análise da Fase Líquida possui uma faixa de aplicabilidade grande, cobrindo totalmente a região de aplicabilidade do Método do Tempo de Retenção e do Método do Arraste com Análise da Fase Vapor, e parcialmente a região da Ebuliometria Diferencial.

FIGURA (III.1)

(REPRODUZIDA DE HRADETZKY ET AL., 1990)

FAIXA DE APLICABILIDADE DOS MÉTODOS DE OBTENÇÃO DE COEFICIENTE DE ATIVIDADE A DILUIÇÃO INFINITA. A UNIDADE DA PRESSÃO DE SATURAÇÃO É PASCAL.

Os autores utilizaram o novo método na determinação dos coeficientes de atividade a diluição infinita de compostos de baixa volatilidade como a NMP em hidrocarbonetos saturados, e na determinação dos coeficientes de atividade a diluição infinita de n-alcanos e cicloalcanos em NMP e dimetilformamida, que também é pouco volátil. Os coeficientes de atividade a diluição infinita obtidos apresentaram uma concordância muito boa com os valores existentes na literatura determinados por diferentes métodos experimentais de obtenção de dados de ELV.

Wobst et al.(1992) utilizaram o Método do Arraste com Análise da Fase Vapor e com Análise da Fase Líquida para determinar a variação dos coeficientes de atividade com a concentração na região de alta diluição. Foram determinados os coeficientes de atividade do metanol em hidrocarbonetos saturados . e do etanol em ciclohexano, obtendo valores na faixa de 26 a 157, no intervalo de $6,0^{\circ}$ C a $30,0^{\circ}$ C.

Exceto o grupo de Leroí, todos que trabalharam com o Método do Arraste o utilizaram somente para determinar coeficientes de atividade a diluição infinita. Provavelmente, devido ao grande número de equipamentos disponíveis e consagrados para determinar dados de ELV na faixa de concentrações finitas, esta importante característica do Método do Arraste não tenha despertado interesse.

III.3 - <u>Teoria e Equacionamento</u>

Na Figura (III.2) está esquematizado o equipamento do Método do Arraste.

Uma mistura líquida formada por $n_{i,0}^{T}$ mol de soluto(1) e $n_{2,0}^{T}$ mol de solvente(2) é colocada numa célula mantida a temperatura constante. O componente mais volátil é chamado de soluto. Na fase líquida inicia-se o borbulhamento de um fluxo constante de gás inerte(3) que carrega os componentes voláteis para a fase vapor. O gás de arraste deve ser puro e sua solubilidade na fase líquida negligenciável.

As concentrações dos componentes da fase líquida e vapor variam continuamente e quando soluto e solvente são voláteis, num instante t qualquer, a fase vapor é constituída por

 n_{1}^{V} mol de soluto, n_{2}^{V} mol de solvente e n_{3}^{V} mol de gás inerte. A fase líquida contém n_{1}^{L} mol de soluto e n_{2}^{L} mol de solvente.

A pressão e a temperatura no interior da célula são P e T, respectivamente, e a vazão volumética de inerte à entrada da célula é D_.

As frações molares na fase líquida são:

$$x_{i} = \frac{n_{i}^{L}}{n_{i}^{L} + n_{2}^{L}}$$
(III.1)

$$x_{2} = \frac{n_{2}^{L}}{n_{1}^{L} + n_{2}^{L}}$$
(III.2)

$$x_{3} = 0 \qquad (III.3)$$

e na fase vapor:

$$y_{1} = \frac{n_{1}^{v}}{n_{1}^{v} + n_{2}^{v} + n_{3}^{v}}$$
(III.4)

$$y_{2} = \frac{n_{2}^{v}}{n_{1}^{v} + n_{2}^{v} + n_{3}^{v}}$$
(III.5)

$$y_{3} = 1 - y_{1} - y_{2}$$
 (III.6)

Para uma variação infinitesimal de tempo, dt, aplicando-se o princípio de conservação da massa, determinam-se as variações do número total de mol de soluto, n_i^T , e solvente, n_2^T , no interior da célula:

$$\frac{dn_{1}^{T}}{dt} = -n_{1}^{V} \frac{D_{s}}{V_{s}^{V}}$$
(III.7)

$$\frac{dn'_{z}}{dt} = -n_{z}^{v} \frac{D_{s}}{v_{z}^{v}}$$
(III.8)

onde D é a vazão volumétrica total de vapor que deixa a célula a T e P, V_s^v o volume total de vapor e sendo:

$$n_{i}^{T} = n_{i}^{L} + n_{i}^{V}$$
(III.9)

$$n_2^{\mathbf{T}} = n_2^{\mathbf{L}} + n_2^{\mathbf{V}}$$
(III.10)

O volume total de vapor está associado a seu volume molar, $\underline{v}_s^v,$ por:

$$V_{\mathbf{s}}^{\mathbf{v}} = \left(\begin{array}{c} n_{\mathbf{1}}^{\mathbf{v}} + n_{\mathbf{z}}^{\mathbf{v}} + n_{\mathbf{y}}^{\mathbf{v}} \right) \underbrace{\vee}_{\mathbf{s}}^{\mathbf{v}}$$
(III.11)

Representando-se $\frac{\nabla^{\mathbf{v}}}{\mathbf{s}}$ pela equação virial (III.5)

obtém-se:

$$V_{\mathbf{s}}^{\mathbf{v}} = \left(\begin{array}{c} n_{\mathbf{i}}^{\mathbf{v}} + n_{\mathbf{z}}^{\mathbf{v}} + n_{\mathbf{y}}^{\mathbf{v}} \right) \frac{\mathsf{R} \mathsf{T}}{\mathsf{P}} \left(\begin{array}{c} 1 + \frac{\mathsf{B}_{\mathbf{s}} \mathsf{P}}{\mathsf{R} \mathsf{T}} \right) \quad (\mathsf{III.12})$$

onde B é o segundo coeficiente virial da mistura gasosa que sai da célula.

Substituindo-se as Equações (III.4), (III.5) e (III.12) em (III.7) e (III.8) resulta:

$$\frac{dn_{1}^{T}}{dt} = -y_{1}P \frac{D_{s}}{RT\left(1 + \frac{B_{s}P}{RT}\right)}$$
(III.13)

$$\frac{dn_{2}^{T}}{dt} = -y_{2}P \frac{D_{s}}{RT \left(1 + \frac{B_{s}P}{RT}\right)}$$
(III.14)

Um balanço de massa total na célula produz:

$$\frac{dn_{\underline{i}}^{T}}{dt} + \frac{dn_{\underline{2}}^{T}}{dt} + \frac{dn_{\underline{3}}^{T}}{dt} = n_{\underline{3}}^{G} \frac{D_{\underline{E}}}{\sqrt{\underline{V}}} - (n_{\underline{i}}^{V} + n_{\underline{2}}^{V} + n_{\underline{3}}^{V}) \frac{D_{\underline{S}}}{\sqrt{\underline{V}}} (III.15)$$

sendo n_g^{σ} o número de mol de gás inerte que entra na célula, $D_E^{}$ a vazão volumétrica de gás inerte puro que entra na célula a T e P e V_E^{V} o volume total de gás associado a $D_E^{}$.

Se a variação da quantidade de inerte no interior da célula ao longo do tempo é desprezível, a Equação (III.15) torna-se:

$$\frac{dn_{\mathbf{1}}^{\mathbf{T}}}{dt} + \frac{dn_{\mathbf{2}}^{\mathbf{T}}}{dt} = n_{\mathbf{9}}^{\mathbf{G}} \frac{D_{\mathbf{E}}}{V_{\mathbf{E}}^{\mathbf{V}}} - (n_{\mathbf{1}}^{\mathbf{V}} + n_{\mathbf{2}}^{\mathbf{V}} + n_{\mathbf{9}}^{\mathbf{V}}) \frac{D_{\mathbf{S}}}{V_{\mathbf{S}}^{\mathbf{V}}}$$
(III.16)

onde V_{E}^{V} está associado a seu volume molar por:

$$V_{\mathbf{E}}^{\mathbf{V}} = n_{\mathbf{3}}^{\mathbf{G}} \frac{\nabla^{\mathbf{V}}}{\mathbf{E}}$$
(III.17)

Representando-se o gás inerte que entra na célula também pela Equação Virial (II.5), a Equação (III.17) fica:

$$V_{\mathbf{E}}^{\mathbf{V}} = n_{\mathbf{S}}^{\mathbf{G}} \frac{\mathbf{R} \mathbf{T}}{\mathbf{P}} \left(\mathbf{1} + \frac{\mathbf{B}_{\mathbf{E}}}{\mathbf{R} \mathbf{T}} \right)$$
(III.18)

onde B_E é o segundo coeficiente virial do gás inerte puro. Substituíndo-se as Equações (III.12) e (III.18 em (III.16) e rearranjando-se os termos obtém-se:

$$D_{s} = \left(1 + \frac{B_{s}P}{RT}\right) \left[\frac{D_{E}}{1 + \frac{B_{E}P}{RT}} - \frac{RT}{P}\left(\frac{dn_{1}^{T}}{dt} + \frac{dn_{2}^{T}}{dt}\right)\right]$$
(III.19)

Combinando-se (III.19) com (III.13) e (III.14) resulta:

$$D_{s} = \frac{\left(1 + \frac{B_{s}P}{RT}\right)D_{E}}{(1 - y_{1} - y_{2})\left(1 + \frac{B_{E}P}{RT}\right)}$$
(III.20)

A Equação (III.20) relaciona a vazão volumétrica de inerte que entra na célula, D_E, à vazão volumétrica total de vapor que deixa a célula, D_E.

Representando-se D pela Equação (III.20) em (III.13) e (III.14), tem-se:

$$\frac{dn_{1}^{T}}{dt} = -y_{1}P \frac{1}{(1-y_{1}-y_{2})\left(1+\frac{B_{E}P}{RT}\right)^{T}} \frac{D_{E}}{(111.21)}$$

$$\frac{dn_{z}^{T}}{dt} = -y_{z}P \frac{1}{(1-y_{i}-y_{z})\left(1+\frac{B_{E}P}{RT}\right)RT} (III.22)$$

As equações diferenciais (III.21) e (III.22) fornecem a variação de número de mol de soluto e solvente no , interior da célula com o tempo.

Se o volume da fase vapor for suficientemente pequeno de tal forma que as quantidades de soluto e solvente no vapor são desprezíveis, isto é, $n_1^L >> n_2^V e n_2^L >> n_2^V$, das Equações (III.9) e (III.10), obtém-se:

$$n_{i}^{T} \simeq n_{i}^{L}$$
(III.23)

$$n_2^T \simeq n_2^L$$
 (III.24)

e as frações molares na fase líquida, definidas pelas Equações (III.1) e (III.2), ficam:

$$x_{i} = \frac{n_{i}^{T}}{n_{i}^{T} + n_{2}^{T}}$$
(III.25)

$$x_{2} = \frac{n_{2}^{T}}{n_{1}^{T} + n_{2}^{T}}$$
(III.26)

Para se garantir a condição acima é necessário que o espaço do vapor na célula seja reduzido ao mínimo possível.

Se houver boa dispersão do gás de arraste no líquido e se o tempo de contato entre eles for suficiente assume-se que a fase vapor que deixa a célula e a fase líquida estão em equilíbrio. Escrevendo-se a equação de equilíbrio (III.4) para cada componente tem-se:

$$y_{i} \hat{\phi}_{i}^{\mathbf{V}} \mathbf{P} = x_{i} \gamma_{i} \mathbf{P}_{i}^{\mathbf{sat}} \phi_{i}^{\mathbf{sat}} \exp \left[\frac{\underline{\nabla}_{i}^{\mathbf{L}} (\mathbf{P} - \mathbf{P}_{i}^{\mathbf{sat}})}{\mathbf{R} \mathbf{T}} \right] (III.27)$$

$$y_{2} \hat{\phi}_{2}^{\mathbf{v}} \mathbf{P} = x_{2} \gamma_{2} \mathbf{P}_{2}^{\mathbf{sat}} \phi_{2}^{\mathbf{sat}} \exp\left[\frac{\underline{\nabla}_{2}^{\mathbf{L}} (\mathbf{P} - \mathbf{P}_{2}^{\mathbf{sat}})}{\mathbf{R} \mathbf{T}}\right] (III.28)$$

sendo $\hat{\phi}_i^v e \phi_i^{eat}$ representados de acordo com a equação virial, pelas Equações (III.8) e (III.9), respectivamente.

As Equações (III.27)⁻e (III.28) fornecem relações entre as concentrações no líquido e no vapor.

III.3.1 - Coeficiente de Atividade a Concentrações Finitas

No caso onde os componentes estão a concentração finita, acompanha-se a variação da concentração de cada componente na fase vapor, que é amostrado em intervalos de tempo determinados. O número total de mol inicial de cada componente, $n_{1,0}^{T}$ e $n_{2,0}^{T}$, é conhecido.

Com as informações experimentais de P, T, y_i ao longo do tempo, é possível se integrar as Equações (III.21) e (III.22) com as condições de contorno $n_{1,0}^{T} e n_{2,0}^{T}$ para t=0. Desta forma são determinadas, a cada instante, as concentrações $n_{1}^{T} e n_{2}^{T}$. Combinando-se as Equações (III.25) a (III.28), obtém-se os valores dos coeficientes de atividade $\gamma_1 e \gamma_2$.

Observou-se na célula utilizada neste trabalho que a vazão de inerte em torno de 30 ml/min a variação da composição da fase vapor era lenta. Por exemplo, trabalhando-se com o sistema n-heptano(1)/NMP(2) a 25⁰C, que é o caso estudado por Leroi et al. (1977) a concentrações finitas, foram necessárias 7 horas de eluição para que a fração molar de n-heptano no vapor variasse de 0,056 para 0,050. Com estes dados experimentais, a integração numérica da Equação(III.21), fornece a variação correspondente na fração molar de n-heptano no líquido de 0,099 a 0,082, que é muito pequena, caracterizando uma constância no valor do seu coeficiente de atividade.

Desta maneira, é possível se determinar valores de coeficiente de atividade a concentrações finitas para diferentes concentrações da mistura inicial, desde que o arraste do soluto não seja expressivo.

Nestas condições, as Equações (III.21) e (III.22) são simplificadas para:

$$\frac{dn^{T}}{1} = 0 \qquad (III.29)$$

$$\frac{dn_{z}^{T}}{dt} = 0 \qquad (III.30)$$

e as frações molares de soluto e solvente no líquido neste instante podem ser aproximadas pelas frações molares iniciais, que representadas pelas Equações (III.25) e (III.26) ficam:

$$x_{1} \simeq x_{1,0} = \frac{\prod_{i=1,0}^{T} (III.31)}{\prod_{i=0}^{T} + \prod_{i=2,0}^{T} (III.31)}$$

$$x_{2} \simeq x_{2,0} = 1 - x_{1,0} \qquad (III.32)$$

Os coeficientes de atividade podem então ser calculados usando as expressões de equilíbrio (III.27) e (III.28), que rearranjadas ficam:

$$\gamma_{i} = \frac{\gamma_{i} \hat{\phi}_{i}^{V} P}{\underset{i}{\times} P_{i}^{Pat} \hat{\phi}_{i}^{Pat} \exp\left[\frac{\underline{\nabla}_{i}^{L} (P - P_{i}^{Pat})}{R T}\right]} (III.33)$$

$$\gamma_{2} = \frac{\gamma_{2} \hat{\phi}_{2}^{\mathbf{v}} P}{\underset{2}{\times} 2 \overset{P^{\text{sat}}}{\underset{2}{\times} 2} \exp\left[\frac{\underline{\nabla}_{2}^{\mathbf{L}} (P - P^{\text{sat}})}{R T}\right]} \quad (III.34)$$

Assim, o coeficiente de atividade do soluto e do solvente podem ser determinados na região de concentração finita medindo-se experimentalmente: $n_{1,0}^{T}$, $n_{2,0}^{T}$, y_{1} , y_{2} , P e T.

Quando o solvente não é volátil (y=0) só é possível calcular o coeficiente de atividade do soluto (Equação (III.33)).

Os coeficientes de atividade dos componentes voláteis da mistura líquida podem ser obtidos em várias temperaturas e composições permitindo o ajuste dos parâmetros de modelos de coeficiente de atividade pela minimização da função objetiva (II.20).

Variações maiores na concentração do vapor podem ser conseguidas usando maiores vazões do gás inerte, porém com riscos ou de arraste do líquido na corrente gasosa que deixa a célula ou de não atingimento da condição de equilíbrio termodinâmico. Os limites de vazão são determinados pelo projeto da célula e pela volatilidade dos componentes.

Obtendo-se curvas de y_i em função do tempo, os valores dos coeficientes de atividade podem ser calculados resolvendo-se o sistema formado pelas Equações (III.21-22) e (III.25-28), como citado anteriormente.

III.3.2 - Coeficiente de Atividade a Infínita Diluição

Leroi et al. (1977) apresentaram as equações do Método do Arraste para se trabalhar com sistemas binários a diluição infinita. Aqui, estas equações são detalhadamente demonstradas de acordo com as hipóteses apresentadas por Leroi et al.

Quando o soluto está altamente diluído no solvente seu coeficiente de atividade pode ser aproximado pelo coeficiente de atividade a diluição infinita, γ_{i}^{∞} . Esta aproximação normalmente é válida se a fração molar do soluto, x_{i} , é menor que 10⁻³.

A fração molar do solvente na fase líquida, x_2 , e seu coeficiente de atividade, γ_2 , são iguais a 1.

Considerando-se a fase vapor ideal e se o termo corretivo de Poynting pode ser desprezado, as equações de equilíbrio (III.27) e (III.28) ficam:

$$\gamma_{i} P = \chi_{i} \gamma_{i}^{0} P_{i}^{\text{sat}}$$
(III.35)

$$y_2 P = P_2^{sat}$$
(III.36)

e as Equações (III.21) e (III.22) tornam-se:

$$\frac{dn_{1}^{T}}{dt} = -y_{1}P \frac{1}{(1-y_{1}-y_{2})} \frac{D_{E}}{RT}$$
(III.37)

$$\frac{dn_{2}^{T}}{dt} = -y_{2}P \frac{1}{(1-y_{1}-y_{2})} \frac{D_{E}}{RT}$$
 (III.38)

A quantidade de soluto na fase líquida é muito pequena, .consequentemente sua quantidade no vapor também é pequena, o suficiente para que se considere a fração molar de soluto no vapor desprezível. Assim as Equações (III.37) e (III.38) ficam:

$$\frac{dn_{1}^{T}}{dt} = -y_{1}P \frac{1}{(1-y_{2})} \frac{D_{E}}{RT}$$
 (III.39)

$$\frac{dn_{2}^{T}}{dt} = -y_{2}P \frac{1}{(1-y_{2})} \frac{D_{E}}{RT}$$
 (III.40)

Das Equações (III.35), (III.36), (III.39) e (III.40) obtém-se:

$$\frac{dn_{1}^{T}}{dt} = -x_{1} \gamma_{1}^{00} P_{1}^{sat} \frac{1}{\left(1 - \frac{P^{sat}}{P}\right)} \frac{D_{E}}{RT} \quad (III.41)$$

$$\frac{dn_{2}^{T}}{dt} = -P_{2}^{sat} \frac{1}{\left(1 - \frac{P_{2}^{sat}}{P}\right)} \frac{D_{E}}{RT}$$
(III.42)

A diluição infinita, x dado pela Equação (III.25) pode ser aproximado por:

$$x_{i} = \frac{\prod_{i=1}^{T} \sum_{j=1}^{T} \sum_{j=1}^{T} \frac{\prod_{i=1}^{T} \sum_{j=1}^{T} \sum_{j=1}^{T} \frac{\prod_{i=1}^{T} \sum_{j=1}^{T} \sum_$$

pois $n_2^T \gg n_1^T$. Assim sendo, de (III.41) resulta:

$$\frac{dn_{i}^{T}}{dt} = -\frac{n_{i}^{T}}{n_{2}^{T}} \gamma_{i}^{\infty} P_{i}^{sat} \frac{1}{\left(1-\frac{P^{sat}}{P}\right)} \frac{D_{E}}{RT} (III.44)$$

As Equações (III.42) e (III.44) fornecem a variação das quantidades de solvente e soluto na câmara de equilíbrio com o , tempo quando o soluto está a diluição infinita.

Mas é a fase vapor que é amostrada, e utilizando-se um cromatógrafo para analísar as amostras, é demonstrado no Item (IV.1.6.1) deste trabalho que, para fase vapor ideal, dentro da faixa de linearidade do detector, tem-se:

$$S_{i} = k_{i} y_{i} P \qquad (III.45)$$

sendo S₁ a área do pico do soluto e k₁ uma constante de proporcionalidade do soluto.

Da equação de equilíbrio (III.35) obtém-se:

$$S_{i} = k_{i} \gamma_{i}^{\infty} P_{i}^{sat} \times (III.46)$$

A Equação (III.46) informa que decorrido um tempo t de eluição, quando a fração molar de soluto na fase líquida é x₁, a amostra do vapor injetada no cromatógrafo produz um pico relativo ao soluto cuja área é S₁.

No instante em que se inicia a eluição tem-se:

$$S_{i,0} = k_{i} \gamma_{i}^{00} P_{i}^{sat} \times (III.47)$$

Dividindo-se (III.46) por (III.47) resulta:

$$\frac{S_1}{S_{1,0}} = \frac{X_1}{X_{1,0}}$$
(III.48)

Expressando-se x e x pela Equação (III.43) a 1 1,0 Equação (III.48) torna-se:

Rearranjando-se e aplícando-se logaritmo neperiano nos dois membros da equação obtém-se:

$$\ln \frac{n_{1}^{T}}{n_{1,0}^{T}} = \ln \frac{S_{1}}{S_{1,0}} + \ln \frac{n_{2}^{T}}{n_{2,0}^{T}}$$
(III.50)

A Equação (III.50) relaciona as quantidades de soluto e solvente na célula com a área do pico do soluto

resultante da análise da fase vapor. Como o soluto está muito diluído, a sua concentração no vapor também será reduzida, e sua determinação só pode ser feita com segurança usando detectores de ionização de chama.

O coeficiente de atividade a diluição infinita do soluto pode se obtido num solvente volátil ou não. Estes dois casos são apresentados a seguir.

III.3.2.1 - Soluto e Solvente Voláteis

Neste caso, as quantidades de soluto e solvente na célula variam com o tempo.

Dividindo-se a Equação (III.44) pela (III.42) resulta:

$$\frac{dn_{i}^{T}}{dn_{2}^{T}} = \frac{n_{i}^{T}}{n_{2}^{T}} \frac{\gamma_{i}^{\omega} P^{sat}}{P^{sat}}$$
(III.51)

Integrando-se:

$$\int_{i}^{T} \frac{1}{n_{i}^{T}} dn_{i}^{T} = \frac{\gamma_{i}^{0} P_{i}^{sat}}{P_{2}^{sat}} \int_{n_{2}^{T}}^{T} dn_{2}^{T}$$
(III.52)
$$\int_{i,0}^{T} \frac{1}{n_{2}^{T}} dn_{2}^{T} = \frac{\gamma_{i}^{0} P_{i}^{sat}}{P_{2}^{sat}} \int_{n_{2}^{T}}^{T} dn_{2}^{T}$$
(III.52)

$$\ln \frac{\prod_{i=1}^{n} - \frac{\gamma_{i}^{\infty} P^{sat}}{\prod_{i=1}^{n} - \frac{\gamma_{i}^{\infty} P^{sat}}{p_{2}^{sat}}} = \frac{\prod_{i=1}^{n} - \prod_{i=1}^{n} - \prod_{i=1$$

Relacionando-se as Equações (III.50) e (III.53)

tem-se:

$$\ln \frac{S_{1}}{S_{1,0}} + \ln \frac{n_{2}^{T}}{n_{2,0}^{T}} = \frac{\gamma_{1}^{\infty} P^{sat}}{P_{2}^{sat}} \ln \frac{n_{2}^{T}}{n_{2,0}^{T}}$$
(III.54)

Rearranjando-se:

.

$$\ln \frac{\prod_{i=1}^{T} I}{\prod_{i=1}^{T} I} = \frac{1}{\left(\frac{\gamma_{i}^{0} P^{sat}}{1 I} - 1\right)} \frac{\ln \frac{S_{i}}{1 I}}{\prod_{i=1}^{T} I}$$
(III.55)

Integrando-se a Equação (III.42) tem-se:

$$\int dn_{2}^{T} = - \frac{P_{2}^{sat}}{(P - P_{2}^{sat})} \frac{PD_{E}}{RT} \int dt \qquad (III.56)$$

$$n_{2,0}^{T} \qquad t_{0}$$

$$n_{z}^{T} - n_{z,0}^{T} = - \frac{P_{z}^{sat}}{(P - P_{z}^{sat})} \frac{P_{E}}{RT} t$$
 (III.57)

Rearranjando-se os termos e aplicando-se logarítmo neperiano resulta:

$$\ln \frac{n_{z}^{T}}{n_{z,0}^{T}} = \ln \left(1 - \frac{P_{z}^{sat}}{(P - P_{z}^{sat})} - \frac{P_{E}^{D}}{R_{z,0}^{T}} t \right) (III.58)$$

Das Equações (III.55) e (III.58) obtém-se:

$$\ln \frac{S_{i}}{S_{i,0}} = \left(\frac{\gamma_{i}^{\infty} P^{sat}}{P_{2}^{sat}} - 1\right) \ln \left(1 - \frac{P_{2}^{sat}}{(P - P^{sat}_{2})} - \frac{P_{E}}{R T n_{2,0}^{T}} t\right)$$
(III.59)

A Equação (III.59) relaciona a variação da área do pico do soluto com o tempo quando o soluto está infinitamente diluído num solvente volátil.

O coeficiente de atividade a diluíção infinita é obtido ajustando-se uma reta com as seguintes coordenadas:

Abcissa :
$$\ln \left(1 - \frac{P_z^{aat}}{(P - P_z^{aat})} - \frac{P D_E}{R T n_{z,0}^T} t \right)$$
 (III.60)
.
Ordenada : $\ln S_1$ (III.61)

onde as variáveis obtidas experimentalmente são: $n_{2,0}^{T}$, P, T, D e S como função de t.

O coeficiente angular da reta é:

$$\beta = \frac{\gamma_{i}^{\infty} P_{i}^{sat}}{P_{2}^{sat}} - 1 \qquad (III.62)$$

e o coeficiente de atividade a diluição infinita é obtido de:

$$\gamma_{1}^{\infty} = \frac{P_{2}^{\text{sat}}}{-P_{1}^{\text{sat}}} (\beta + 1) \qquad (\text{III.63})$$

III.3.2.2 – <u>Solvente Não Volátil</u>

Guando o solvente não é volátil, y = 0 e a Equação (III.42) torna-se:

$$\frac{dn^{T}}{z} = 0 \qquad (III.64)$$

ou seja:

 $n_{2}^{T} = n_{2,0}^{T} = n_{2,0}^{L}$, para todo t. (III.65)

Além disso, é válida a seguinte aproximação:

$$1 - \frac{\frac{P^{sat}}{2}}{P} \simeq 1 \qquad (III.66)$$

pois P^{sat} « P.

Assim, a Equação (III.44) torna-se:

$$\frac{dn_{i}^{T}}{dt} = -\frac{n_{i}^{T}}{n_{i}^{T}} \gamma_{i}^{00} P_{i}^{sat} \frac{D_{E}}{RT}$$
(III.67)

Integrando-se esta equação:

$$n_{i}^{T} \qquad t$$

$$\int \frac{1}{n_{i}^{T}} dn_{i}^{T} = -\frac{\gamma_{i}^{\varpi} P_{i}^{sat}}{n_{z,o}^{T}} \frac{D_{E}}{RT} \int dt \quad (III.68)$$

$$n_{i,o}^{T} \qquad t_{o}$$

tem-se :

$$\ln \frac{\prod_{i=1}^{T} \sum_{j=1}^{T} \sum_{i=1}^{T} \frac{\gamma_{i}^{\infty} P^{sat}}{\prod_{i=1}^{T} \frac{D}{E}} t \qquad (III.69)$$

A variação da quantidade de soluto na célula deve ser relacionada à área do pico do soluto pela Equação (III.50), que no caso do solvente não volátil é simplificada, pois $n_z^T = n_{z,o}^T$, resultando:

$$\ln \frac{S_{1}}{S_{1,0}} = \ln \frac{n^{T}}{1,0}$$
(III.70)

Relacionando-se (III.69) e (III.70) obtém-se:

$$\ln \frac{S_{1}}{S_{1,0}} = - \frac{\gamma_{1}^{\infty} P^{sat}}{n_{2,0}^{T}} \frac{D_{E}}{RT} t \qquad (III.71)$$

A Equação (III.71) informa que, quando o soluto está a diluição infinita num solvente não volátil, e a fase vapor é ideal, ocorre uma variação exponencial de S, com o tempo.

O coeficiente de atividade a diluição infinita do soluto é obtido de uma reta, ajustada com as seguintes coordenadas:

Ordenada: lnS (III.73)

e cujo coeficiente angular, β , é dado por:

$$\beta = -\frac{\gamma_{1}^{\infty} P_{1}^{\text{sat}}}{\frac{D_{E}}{R T}}$$
(III.74)

As grandezas medidas experimentalmente são: $n_{z,o}^{T}$, P, T, D_ e S_ como função de t.

Finalmente, o coeficiente de atividade a diluição infinita é obtido da seguinte expressão:

$$r_{1}^{\infty} = -\frac{\beta n_{z,0}^{T} R T}{P_{1}^{sat} D_{F}}$$
(III.75)

Duhem e Vidal (1978) estudaram o Método do Arraste para sistemas com solventes não voláteis. Eles observaram que quando o coeficiente de atividade a diluição infinita do soluto é muito alto, da ordem de 2000, a quantidade de soluto no vapor não pode ser desprezada e a Equação (III.25) não é adequada para representar a fração molar de soluto na fase líquida. Neste caso, partindo-se da expressão de fração molar no líquido dada pela Equação '(III.1) e considerando-se que quando o soluto está infinitamente diluído $n_2^L \gg n_4^L$, obtém-se:

$$x_{i} = \frac{\prod_{i=1}^{L}}{\prod_{2}^{L}}$$
(III.76)

Substituindo-se n^L dado pela Equação (III.9) tem-se:

> $\mathbf{x}_{\mathbf{1}} = \frac{\mathbf{n}_{\mathbf{1}}^{\mathbf{T}} - \mathbf{n}_{\mathbf{1}}^{\mathbf{V}}}{\mathbf{n}_{\mathbf{2}}^{\mathbf{L}}}$ (III.77)

Para o caso de 0. para todo t, obtendo-se:

> $x_{1} = \frac{n_{1}^{T} - n_{1}^{V}}{n_{2,0}^{T}}$ (III.78)

Considerando-se a fase vapor ideal e o fator de correção de Poynting desprezível, da equação de equilíbrio (III.35), a fração molar do soluto no vapor é dada por:

$$y_{i} = \frac{x_{i} \gamma_{i}^{0} P_{i}^{sat}}{P}$$
(III.79)

que pode ser reescrita como:

$$\frac{n_{\mathbf{i}}^{\mathbf{v}}}{n_{\mathbf{i}}^{\mathbf{v}} + n_{\mathbf{i}}^{\mathbf{v}} + n_{\mathbf{i}}^{\mathbf{v}}} = \frac{x_{\mathbf{i}} \gamma_{\mathbf{i}}^{\mathbf{\omega}} P^{\text{sat}}}{P}$$
(III.80)

Para fase vapor ideal tem-se:

o solvente não volátil,
$$n_2^L = n_2^T$$

$$n_{i}^{V} = \frac{\bigvee_{s=i}^{V} \times \gamma_{i}^{\infty} P_{i}^{sat}}{R T}$$
(III.81)

sendo Vv o volume da fase vapor. Representando-se nv por (III.81) na Equação (III.78) e rearranjando-se os termos resulta:

$$x_{i} = -\frac{n_{i}^{T}}{n_{z,0}^{T} + \frac{\nabla_{s}^{V} \gamma_{i}^{\infty} P_{i}^{sat}}{R T}}$$
(III.82)

Utilizando-se x dado pela Equação (III.82), e considerando-se que para solventes não voláteis $P_2^{sat} \ll P$ (Equação (III.66)), a Equação (III.41) torna-se:

$$\frac{dn_{1}^{T}}{dt} = - \frac{n_{1}^{T} \gamma_{1}^{\varpi} P^{sat}}{n_{2,0}^{T} + \frac{V_{s}^{v} \gamma_{1}^{\varpi} P^{sat}}{R T}} \frac{D_{E}}{R T}$$
(III.83)

Integrando-se (III.83):

$$\int \frac{1}{n_{1}^{T}} dn_{1}^{T} = - \frac{\gamma_{1}^{\varpi} P_{1}^{sat}}{n_{2,0}^{T} + \frac{\nabla_{s}^{\nabla} \gamma_{1}^{\varpi} P_{1}^{sat}}{R T}} \frac{D_{E}}{R T} \int dt \quad (III.84)$$

obtém-se:

$$\ln \frac{\prod_{i=1}^{n} = -\frac{\gamma_{i}^{\infty} P^{sat}}{\prod_{i=1}^{n} P^{sat}} - \frac{D_{E}}{E} t \quad (III.85)$$

$$\prod_{i=1}^{n} \frac{\prod_{i=1}^{n} P^{sat}}{\prod_{i=1}^{n} P^{sat}} - \frac{\prod_{i=1}^{n} P^{sat}}{P^{sat}} - \frac{P_{E}}{P} t \quad (III.85)$$

Relacionando-se a quantidade de soluto na célula à área do pico do soluto dada pela Equação (III.70), resulta:

$$\ln \frac{S_{1}}{S_{1,0}} = - \frac{\gamma_{1}^{\infty} P^{sat}}{\prod_{2,0}^{T} + \frac{\nabla_{s}^{\infty} \gamma_{1}^{\infty} P^{sat}}{R}} \frac{D_{E}}{RT} t \quad (III.86)$$

Também neste caso observa-se uma variação exponencial de S₁ com o tempo.

O coefíciente de atividade a diluição infinita do soluto é obtido do coeficiente angular de uma reta, ajustada com as seguintes coordenadas:

e cujo coeficiente angular, β , é dado por:

$$\beta = - \frac{\gamma_{1}^{\infty} P_{1}^{\text{sat}}}{\prod_{2,0}^{T} + \frac{\nabla_{2}^{v} \gamma_{1}^{\infty} P_{1}^{\text{sat}}}{P} + \frac{\nabla_{2}^{v} \gamma_{1}^{\infty} P_{1}^{\text{sat}}}{P} + \frac{\nabla_{2}^{v} P_{1}^{v}}{P} + \frac$$

As grandezas medidas experimentalmente são: $n_{2,0}^{T}$, P, T, D_E, S₁ como função de t, e V^V_S.

Finalmente, o coeficiente de atividade a diluição infinita do soluto é obtido da seguinte expressão:

$$\gamma_{1}^{\infty} = -\frac{\beta p_{2,0}^{T} R T}{P_{1}^{sat} (D_{E} + \beta V_{S}^{V})}$$
(III.90)

A Equação (III.90) reduz-se a Equação (III.75) quando ($\beta \vee_{s}^{v}$)<<D.

Portanto, para solutos muito voláteis o valor de β é alto e a influência do termo ($\beta \ V_{S}^{v}$) no cálculo do coeficiente de atividade a diluição infinita deve ser analisada.

III.3.3 - <u>Resumo das Equações</u>

A seguir é apresentado um resumo das equações utilizadas para se obter o coeficiente de atividade pelo Método do Arraste.

SOLUTO E SOLVENTE A CONCENTRAÇÃO FINITA

1. <u>Soluto e Solvente Voláteis</u>

$$\gamma_{i} = \frac{\gamma_{i} \hat{\phi}_{i}^{\mathbf{v}} P}{\underset{i}{\times} P_{i}^{\text{sat}} \phi_{i}^{\text{sat}} \exp\left[\frac{\underline{\nabla}_{i}^{\mathbf{L}} (P - P_{i}^{\text{sat}})}{R T}\right]} (III.33)$$

$$\gamma_{2} = \frac{\gamma_{2} \phi_{2}^{\mathsf{v}} P}{\underset{2}{\mathsf{v}_{2}} \mathsf{P}_{2}^{\mathsf{sat}} \phi_{2}^{\mathsf{sat}} \exp\left[\frac{\underline{\nabla}_{2}^{\mathsf{L}} (P - P_{2}^{\mathsf{sat}})}{R T}\right]} \quad (III.34)$$

$$x_{i} = \frac{\prod_{i,0}^{T}}{\prod_{i,0}^{T} + \prod_{2,0}^{T}} (III.31)$$

$$y_{3} = 1 - y_{1} - y_{2}$$
 (III.6)

Variáveis medidas experimentalmente : $n_{i,0}^{T}$, $n_{2,0}^{T}$, y, y, P e T.

2. <u>Solvente Não Volátil</u>

$$\gamma_{1} = \frac{\gamma_{1} \hat{\phi}_{1}^{V} P}{\underset{1}{\times} P_{1}^{\text{sat}} \phi_{1}^{\text{sat}} \exp \left[\frac{\underline{\nabla}_{1}^{L} (P - P_{1}^{\text{sat}})}{R T}\right]} (III.33)$$

 $x_{i} = \frac{\prod_{i,0}^{T} (III.31)}{\prod_{i,0}^{T} + \prod_{2,0}^{T}}$

$$y_2 = 0$$

$$y_2 = 1 - y_1$$

Variáveis medidas experimentalmente : $n_{1,0}^{T}$, $n_{2,0}^{T}$, y, P e T.

1. <u>Soluto e Solvente Voláteis</u>

$$\ln \frac{S_{i}}{S_{i,0}} = \left(\frac{\gamma_{i}^{\infty} P^{sat}}{P_{2}^{sat}} - 1 \right) \ln \left(1 - \frac{P_{2}^{sat}}{(P - P_{2}^{sat})} \frac{P_{E}}{R T n_{2,0}^{T}} t \right)$$
(III.59)

Coordenadas da reta :

Abcissa : $\ln \left(1 - \frac{P_{2}^{sat}}{(P - P_{2}^{sat})} - \frac{P_{E}}{R T n_{2,0}^{T}} t \right)$ (III.60)

Coeficiente angular da reta : β

$$\gamma_{1}^{\infty} = \frac{P_{2}^{\text{sol}}}{P_{1}^{\text{sol}}} (\beta + 1)$$
 (III.63)

Variáveis medidas experimentalmente: $n_{2,0}^{T}$, P, T, D e S como função de t.

2. <u>Solvente Não Volátil</u>

$$\ln \frac{S_{i}}{S_{i,0}} = - \frac{\gamma_{i}^{\infty} P^{sat}}{\prod_{i=1}^{T} \frac{D_{E}}{E}} t \qquad (III.71)$$

Coordenadas da reta :

•

Coeficiente angular da reta : β

..

$$\gamma_{1}^{\infty} = - \frac{\beta n_{2,0}^{T} R T}{P_{1}^{sat} D_{E}}$$
(III.75)

Variáveis medidas experimentalmente: $n_{2,0}^T$, P, T, D e S como função de t.

2.1. <u>Solvente Não Volátil - Altos Coeficientes de Atividade a</u> <u>Diluição Infinita</u>

$$\ln \frac{S_{i}}{S_{i,0}} = - \frac{\gamma_{i}^{\infty} P_{i}^{sat}}{\prod_{i=1}^{T} P_{i}^{sat}} \frac{D_{E}}{R} t \quad (III.86)$$

$$\frac{\nabla_{i}^{T} \gamma_{i}^{\infty} P_{i}^{sat}}{R} T$$

Coordenadas da reta :

.

Ordenada : lnS_ (III.88)

Coeficiente angular da reta : β

UNICAMP BIBLIOTECA CENTRAL

$$\gamma_{i}^{\infty} = -\frac{\beta \prod_{z,o}^{T} R T}{P_{i}^{sat} (D_{E} + \beta V_{S}^{V})}$$
(III.90)

Variáveis medidas experimentalmente: $n_{2,0}^{T}$, P, T, D, V $_{E}^{V}$ e S como função de t.

III.3.4 - Cálculo das Propriedades Físicas

Todos os cálculos de propriedades físicas deste trabalho foram feitos pelas seguintes equações:

- P^{sat} por Antoine : Equação (III.14).
- \underline{V}_{i}^{L} por Rackett Modificada : Equações (III.10-13).
- B_{ii} e B_{ij} pelas correlações apresentadas no trabalho de Tsonopoulos(1974).

As propriedades de componente puro necessárias no cálculo das propriedades acima são apresentadas no Apêndice A.

CAPITULO IV

APARELHAGEM E METODOLOGIA EXPERIMENTAL DO MÉTODO DO ARRASTE

IV.1 - Descrição da Aparelhagem

A aparelhagem do Método do Arraste projetada e construída neste trabalho é esquematizada na Figura (IV.1). 0 projeto foi baseado essencialmente na aparelhagem de Leroi et al.(1977). Aparelhagens construídas por outros grupos que utilizaram o mesmo método também foram analisadas, como as de Richon et al.(1980) e Cori e Delogu(1986), ambas muito semelhantes a de Leroi. Duhem e Vidal(1978) e Santacesaria et al.(1979) também utilizaram aparelhagens similares a de Leroi mas não apresentaram os esquemas.

Os equipamentos utilizados são especificados no Apéndice C.

IV.1.1 - <u>Célula de Equilíbrio</u>

Na Figura (IV.2) é apresentado o esquema da célula de equilíbrio construída neste trabalho.

A hipótese mais importante do Método do Arraste é a de que o gás saturado que deixa a câmara de equilíbrio e o líquido contido nela estejam em equilíbrio termodinâmico. Por esta razão é fundamental que as condições de transferência de calor e massa no interior da câmara sejam as melhores possíveis.

Richon et al. fizeram um estudo sobre a tranferência de massa no interior da câmara e concluíram que ela é favorecida se o diâmetro das bolhas de gás inerte puro for menor do que 0,2cm, se a altura mínima que o gás atravessa no líquido for de 3cm e se a coalescência das bolhas de gás for evitada.

Neste trabalho utilizou-se o distribuidor de vidro

FIGURA IV.1 ESQUEMA DA APARELHAGEM DO MÉTODO DO ARRASTE

1.	Cilindro de gás inerte	
2.	Válvula abre-fecha	
з.	Válvula controladora de pressão	
4.	Válvula agulha controladora de vaza	ăo
5.	Válvula agulha com diafragma contro	oladora de vazão
、 6.	Fluxímetro de filme	
7.	Válvula de três vías	
8.	Manômetro de mercúrio	
9.	T <u>ermômetro</u> de mercúrio	
10,	Banho termostático	
_ 11.	Serpentina de cobre	
12.	Termômetro de mercúrio	
13.	Célula de equilíbrio	
14.	Agitador magnético	
15.	Variador de voltagem	
16.	Amperimetro	
17.	Variador de voltagem	
18.	Amperímetro	
19.	Termopar	
20.	Indicador digital de temperatura	
21.	Indicador e controlador digital de	temperatura
22.	Termopar	
23.	Caíxa com isolação térmica	
24.	Válvula de amostragem	
25.	Indicador digital de temperatura	34. Serpentina de aço inox
26.	Termopar	35. Banho de circulação
27.	Condensador de vidro	36. Integrador eletrônico
28.	Balão coletor	37. Registrador
29.	Recipiente de isopor	38. Válvula de três vias
30.	Cromatógrafo	39. Manômetro de mercúrio
31.	"Trap" de vidro	40. Termômetro
32.	Recipiente de isopor	41. Fita de aquecimento
33.	Fluximetro de filme	42. Fita de aquecimento

FIGURA IV.2.a CÉLULA DE EQUILÍBRIO (VISTA I) Escala 1:1

poroso que permite a distribuição do gás inerte no centro da fase líquida, próximo ao fundo da câmara de equilíbrio. As bolhas apresentam um diâmetro máximo estimado visualmente de 0,1cm.

A célula é de vidro Pyrex permitindo a visualização de seu conteúdo, sendo conectada às tubulações de aço inox por conexões de aço inox e anéis de borracha.

O líquido é introduzido na câmara de equilíbrio pela abertura para o termômetro. São colocados 50cm³ de mistura líquida que correspondem a mais de 90% do volume total da câmara.

Para manter a temperatura constante no interior da câmara no valor desejado ao longo do tempo circula fluido térmico na jaqueta da célula.

A temperatura de equilíbrio medida é pelo termômetro de mercúrio introduzido na câmara. 0 termômetro foi construído com um pescoço prolongado de tal forma que sua cabeça fique mergulhada no centro da fase líquida, a meia altura da câmara. A fixação do termômetro na célula se faz por um sistema de junta cônica esmerilhada (macho no termômetro e fêmea na célula). cuja vedação é feita aplicando-se uma pequena quantidade de graxa de sílicone nas faces esmerilhadas. O termômetro previamente calibrado, com escala de -10.0° C a 150.0 $^{\circ}$ C, tem precisão de ±0.5°C.

A célula é colocada sobre o agitador magnético que movimenta a barra imantada mergulhada na fase líquida no interior da câmara de equilíbrio. Esta homogeneização evita a coalescência das bolhas de gás e facilita a transferência de calor e massa. A barra é revestida de teflon, cilíndrica, com 0,3cm de diâmetro e 1cm de comprimento.

IV.1.2 - Banhos

A serpentina formada por 2m de tubo de cobre de 1/Bin está mergulhada no mesmo banho termostático utilizado para controlar a temperatura e promover a circulação do fluido térmico

que passa pela jaqueta da célula. O gás inerte é aquecido ou resfriado no interior da serpentina, antes de entrar no interior da câmara da célula de equilíbrio. A tubulação que líga a serpentina à célula é termicamente isolada com fita de amianto. O fluido térmico circula externamente ao banho dentro de mangueiras de silicone.

No outro banho o fluido térmico está a temperatura ambiente. Todo composto volátil contído no vapor que deixa a célula é condensado e o gás inerte puro segue pela serpentina formada por 20m de tubo de aço inox de 1/Bin mergulhada neste banho, atingindo a temperatura ambiente na qual sua vazão é medida.

IV.1.3 - Manômetros de Mercúrio

Ambos manômetros de mercúrio consistem de um tubo de vidro em "U", contendo mercúrio limpo e isento de ar, com 1,25m de altura e 0,7cm de diâmetro interno. A pressão é lida em escala milimetrada com precisão de ±0,5mmHg. Uma das extremidades é fechada e evacuada.

O manômetro utilizado para ler a pressão de equilíbrio no interior da célula é conectado à tubulação de cobre que precede a célula através de conexões de cobre e anéis de borracha.

A pressão atmosférica na qual se mede a vazão de gás inerte é medida no outro manômetro que tem uma extremidade aberta para o ambiente.

Junto a cada manômetro encontra-se um termômetro de mercúrio calibrado com escala de $-10,0^{\circ}$ C a $100,0^{\circ}$ C e precisão de $\pm 0,5^{\circ}$ C destinado a medir a temperatura ambiente, utilizada no cálculo das correções da pressão lida.

IV.1.3.1 - Correção da Pressão Lida no Manômetro

A pressão lida no manômetro, $P_L(mmHg)$, deve ser corrigida, P(mmHg), levando-se em consideração os fatores expressos pela seguinte relação (Benedict, 1969):

$$P = w_{M} (P^{L} + C^{C})$$
 (IV.1)

sendo C^C o fator de correção capilar e w o peso específico corrigido do fluido manométrico que depende da temperatura e aceleração da gravidade local.

Para o mercúrio obtém-se (Benedict, 1969) :

$$P = \frac{g_{local}}{g_{padrão}} \frac{(P^{L} + C^{C})}{(1 + 1,818 \times 10^{-4} T_{a})}$$
(IV.2)

sendo T_a a temperatura ambiente ([°]C), g_{local} a aceleração da gravidade local (cm.s⁻¹) e g_{padrão} a aceleração da gravidade · padrão (cm.s⁻¹).

A aceleração da gravidade local pode ser calculada a partir da latitude, ϕ , e a altura acíma do nível do mar, H(m), pela seguinte equação (Hala, 1967) :

 $g_{local} = 978,039 [1 + 0,005294 sen^2 \phi - 7 \times 10^{-6} sen^2 (2\phi)] + - 3,086 \times 10^{-4} H$ (IV.3)

Para a cidade de Campinas, H=692m e ϕ =22°53'20", do que resulta g =978,6049043cm.s⁻².

A aceleração da gravidade padrão vale g_{pad}=981,3254614cm.s⁻² (Internacional Critical Tables, 1928).

Para manômetros de vidro, preenchidos com mercúrio puro, a correção capilar é dada por (Benedict, 1967) :

$$C^{C} = \frac{2 \cos \vartheta}{W} \left(\frac{\tau_{AM} - \tau_{BM}}{r} \right)$$
(IV.4)

onde ϑ_{M} é o ângulo de contato entre o mercúrio e o vidro, τ_{AM} é o coeficiente de tensão superficial do mercúrio em relação ao vácuo(A), τ_{BM} é o coeficiente de tensão superficial do mercúrio em relação ao gás inerte(B) no manômetro conectado à célula de equilíbrio, e do mercúrio em relação ao ar(B) no manômetro aberto para a atmosfera, e r é o raio do tubo que vale 0,35cm.

Sabe-se que $\vartheta = 140^{\circ}$ (Benedict, 1967) e (Handbook of Chemistry and Physics, 1986-87) :

 $\tau_{AM} = 470,0 \text{ dyn.cm}^{-1}$ $\tau_{BM} = 474,0 \text{ dyn.cm}^{-1} \text{ para o hidrogênio (gás inerte)}$ $\tau_{BM} = 480,0 \text{ dyn.cm}^{-1} \text{ para o ar}$

E obtém-se :

$$P = \frac{0,997286663}{(1 + 1,818 \times 10^{-4} T_{a})} = 0,001149239 (470,0 - \tau_{BM})$$

$$(1 + 1,818 \times 10^{-4} T_{a})$$

$$(I \vee .5)$$

sendo P^L e P em mmHg, T em [°]C e $\tau_{\rm RM}$ em dyn.cm⁻¹.

IV.1.4 - Fluxímetros de Filme

Antes de iniciar o borbulhamento do gás inerte na célula, sua vazão é medida no fluxímetro de filme com o auxílio de um cronômetro digital. A válvula de controle de pressão seguida da válvula de membrana permitem o ajuste da vazão de inerte no valor desejado e a manutenção de um fluxo constante ao longo do tempo.

O fluxo de gás inerte é desviado para a célula através da válvula de três vias.

O verdadeiro valor da vazão de gás inerte que passa pela célula é medido no outro fluxímetro de filme a pressão e temperatura ambientes, após a condensação dos componentes orgânicos do vapor que sai da célula.

Os dois fluxímetros são de vidro, com capacidade para medir 20cm³ de gás.

IV.1.4.1 - <u>Condensação dos Compostos Voláteis do Vapor antes da</u> Medida da Vazão de Gás Inerte

O gás inerte que sai da célula de equilíbrio carregando os componentes voláteis passa pela válvula de amostragem e depois é resfriado ao atravessar a serpentina de um condensador de vidro em cuja camisa circula água fria. A condensação dos componentes orgânicos se completa num balão volumétrico e num "trap" que ficam imersos numa mistura refrigerante.

Utilizou-se uma mistura refrigerante de cloreto de sódio anidro (23% em peso) e gêlo, obtendo-se a temperatura de $-20,0^{\circ}$ C (Lange's Handbook of Chemistry, 1985). Observou-se por cromatografia que, nestas condições, o gás inerte sai completamente puro do sistema de condensação.

IV.1.4.2 - <u>Cálculo da Vazão de Gás Inerte a Pressão e Temperatura</u> <u>de Equilíbrio</u>

A vazão de gás inerte que passa pela célula, D_{Ea} , é medida no fluxímetro de filme a pressão ambiente, P_{a} , e a temperatura ambiente, T_{a} . Mas para se obter o coeficiente de atividade a diluição infiníta necessita-se da vazão de gás inerte

correspondente, D_e, na temperatura de equilíbrio, T, e na pressão e equilíbrio, P.

Como a mássa de gás associada a D e D é a mesma tem-se:

$$D_{E} = \frac{\bigvee_{E}^{V}}{\bigvee_{E\alpha}^{V}} D_{E\alpha} \qquad (IV.6)$$

sendo $\underline{V}_{E}^{\mathbf{v}} \in \underline{V}_{Ea}^{\mathbf{v}}$ os volumes molares de inerte relacionados a \underline{D}_{E} e $\underline{D}_{Ea}^{\mathbf{v}}$, respectivamente.

Representando-se o gás inerte pela equação virial (II.5), a Equação (IV.6) torna-se:

$$D_{E} = \frac{T\left(P_{a} - P_{\dot{a}gua}^{sat}\right)\left(1 + \frac{B_{E}P}{RT}\right)}{T_{a}P\left(1 + \frac{B_{E}a}{RT}\right)}D_{Ea} \quad (IV.7)$$

onde $B_E e B_{Ea}$ são os segundos coeficientes viriais do gás inerte puro a (P,T) e (P_a , T_a), respectivamente, e sendo $P_{água}^{eat}$ a pressão de saturação da água a T_a , que é devida ao filme de água. A pressão de saturação da água é calculada pela equação de Antoine(II.14), sendo que as constantes da equação referentes a água são encontradas no Apéndice A.

E quando o gás inerte é considerado ideal resulta:

$$D_{E} = \frac{T \left(P_{a} - P_{dgua}^{eat}\right)}{T_{a} P} D_{Ea} \qquad (IV.8)$$

IV.1.5 - Válvula de Amostragem da Fase Vapor

A válvula de amostragem tipo pistão de sete vias permite injetar amostras do vapor que sai da célula de equilíbrio no cromatógrafo sem interromper o fluxo do vapor.

Para evitar a condensação dos componentes orgânicos do vapor a válvula é mantida a temperatura mais alta que a temperatura de equilíbrio. Ela é envolvida por fita de aquecimento e o conjunto é mantido termicamente isolado com fita de amianto.

O termopar colocado em contato com a válvula é conectado ao indicador e controlador digital de temperatura. O controlador age sobre o variador de voltagem que proporciona o aquecimento da fita.

As tubulações que conduzem a fase vapor para а válvula e para fora dela também são mantidas a temperatura mais alta que a temperatura de equilíbrio da célula para evitar a condensação dos componentes orgânicos. Elas são envolvidas por fita de aquecimento e de amianto e têm suas temperaturas medidas por termopares ligados ao indicador digital de temperatura. n controle da temperatura é feito manualmente através do nutro variador de voltagem.

O funcionamento da válvula de amostragem é esquematizado na Figura (IV.3).

Na Figura (IV.3.a) a fase vapor que deixa a célula passa continuamente pelo "loop" de amostragem e sai da válvula seguindo para o sistema de condensação de compostos orgânicos. O gás inerte puro, após ser aquecido no cromatógrafo, passa pela válvula sem entrar em contato com o vapor, voltando novamente para o cromatógrafo onde percorre a coluna cromatográfica.

No momento da injeção (Figura (IV.3.b)), a porção da fase vapor que está contida no "loop" de aproximadamente 1cm³ passa a ser carregada pelo inerte para o interior do cromatógrafo onde é analisada. O vapor que continua saindo da célula é purgado da válvula de amostragem seguindo para o sistema de condensação.

Para que a amostra que está no "loop" da válvula de

DO CROMATÓGRAFO

(a) Posição de funcionamento sem injeção da amostra.

(b) Posição de injeção da amostra contida no "loop".

FIGURA IV.3

ESQUEMA DO FUNCIONAMENTO DA VÁLVULA DE AMOSTRAGEM DA FASE VAPOR - VÁLVULA TIPO PISTÃO DE SETE VIAS - amostragem no momento da injeção tenha a mesma composição do vapor que está na câmara de equilíbrio da célula neste instante a distância entre a válvula e a célula deve ser a menor possível.

IV.1.6 - Cromatógrafo

Neste trabalho, as amostras da fase vapor foram analisadas num cromatógrafo a gás com detector de condutividade térmica o que limitou a utilização da aparelhagem à obtenção de coeficiente de atividade a concentrações finitas. No entanto, o emprego de cromatógrafo com detector de ionização de chama permitirá o uso da mesma aparelhagem para a obtenção de dados a diluição infinita.

Num detector de condutividade térmica a fração molar mínima detectável de um componente é aproximadamente 10^{-9} (Ciola, 1973). Quando o componente se encontra infinitamente diluído na fase líquida sua fração molar no vapor também é muito pequena (menor que 10^{-9}), sendo detectável por um detector de ionização de chama, sensível até frações molares da ordem de 10^{-6} (Ciola, 1973).

Os cromatogramas foram obtidos no registrador e a área correspondente ao pico de cada componente presente na amostra foi calculada pelo integrador eletrônico.

Quando se utiliza o Método do Arraste para determinar coeficiente de atividade a diluição infinita C cromatógrafo não precisa ser calibrado, pois como foi demostrado a área obtida da análise da fase no Capítulo III, vapor utilizada diretamente nos cálculos. Contudo, quando o método é utilizado a concentrações finitas, para se calcular o coeficiente de atividade de um componente, ao invés da área, utiliza-se a fração molar dos componentes na fase vapor, que são obtidas calibrando-se o cromatógrafo.

IV.1.6.1 - Dedução da Equação da Curva de Calibração de um Composto no Cromatógrafo

O vapor que sai da célula de equilíbrio é formado por gás inerte e componentes voláteis totalizando NC² componentes. A válvula de amostragem permite injetar amostras do vapor no cromatógrafo para serem analisadas.

A fração molar do componente i no vapor, y_i, é dada por:

$$y_{i} = \frac{\prod_{i,A}^{V}}{\sum_{j=1}^{NC}}$$
 (IV.9)

onde $n_{i,A}^{V}$ e $n_{j,A}^{V}$ representam os números de moles dos componentes i e j presentes na amostra gasosa contida no interior do "loop" da válvula de amostragem no momento da injeção.

O volume molar da amostra gasosa, $\underline{\nabla}_{A}^{v}$, está relacionado ao volume da amostra, ∇_{A}^{v} , por:

$$\frac{\nabla \mathbf{v}}{\mathbf{A}} = \frac{\nabla \mathbf{v}}{\mathbf{NC}}$$

$$\sum_{j}^{\mathbf{NC}} \prod_{j,\mathbf{A}}^{\mathbf{V}}$$
(IV.10)

Das Equações (IV.9) e (IV.10) tem-se:

$$n_{i,A}^{\mathbf{v}} = y_i \frac{\nabla_A^{\mathbf{v}}}{\underline{\nabla}_A^{\mathbf{v}}}$$
(IV.11)

. Usando a equação virial (II.5) para representar o volume molar da amostra obtém-se:

 $n_{i,A}^{V} = \gamma_{i} - \frac{\gamma_{A}^{V}}{A}$ (IV.12) $- \frac{R T_{A}}{P_{A}} + B_{S,A}$

sendo P e T a pressão e a temperatura no interior do "loop" e B o segundo coeficiente virial da amostra. S.A \mathbf{s} .

Na faixa de concentrações onde a resposta do detector é linear, a área resultante da integração do pico do componente i no cromatograma, S_i, é proporcional a quantidade deste componente na amostra analisada (Ciola, 1973):

$$S_{i} = k_{i,0} n_{i,A}^{V}$$
 (IV.13)

sendo k uma constante de proporcionalidade referente ao i,o componente i.

Substituíndo-se a Equação (IV.12) na (IV.13) tem-se:

$$S_{i} = \frac{k_{i,0} \quad \nabla_{A}^{V} \quad y_{i} \quad P_{A}}{R \quad T_{A} \quad + \quad B_{S,A} \quad P_{A}} \quad (IV.14)$$

Definem-se duas constantes k e k:

$$k_{i,1} = k_{i,0} \bigvee_{\mathbf{A}}^{\mathbf{V}}$$
 (IV.15)

$$k_{i,2} = R T_{A}$$
 (IV.16)

pois o volume da amostra injetada no cromatógrafo é sempre igual ao volume'do "loop" de amostragem que é fixo e a válvula de amostragem é mantida aquecida sempre a mesma temperatura.

A queda de pressão entre a célula e o "loop" é desprezível, o que significa considerar:

$$\mathsf{P}_{\mathbf{A}} = \mathsf{P} \tag{IV.17}$$

resultando em:

$$S_{i} = \frac{k_{i,1} y_{i} P}{k_{i,2} + B_{s,A}}$$
 (IV.18)

A Equação (IV.18) é _a curva de calibração do componente i no cromatógrafo considerando-se que a amostra gasosa pode ser representada pela equação virial.

Se a amostra gasosa contida no "loop" pode ser considerada um gás ideal a Equação (IV.18) é simplificada pois B_{s a} é nulo:

$$S_{i} = k_{i} y_{i} P \qquad (IV.19)$$

sendo k_i uma constante definida da seguinte maneira:

$$k_{i} = \frac{k_{i,1}}{k_{i,2}} \qquad (IV.20)$$

Para determinar as constantes da curva de calibração de um componente injetam-se várias amostras de concentração conhecida no cromatógrafo. Para cada amostra o integrador fornece a área correspondente do componente de interesse. Obtém-se um conjunto de pontos do tipo (y_i, S_i) que pode ser representado pela Equação (IV.18) ou (IV.19). As constantes de cada equação são determinadas rapidamente por método numérico como o de Newton-Raphson (Press et al., 1986).

IV.1.6.2 - <u>Ajuste dos Parâmetros da Curva de Calibração de um</u> Composto no Cromatógrafo

Para ajustar as constantes da curva de calibração de um composto no cromatógrafo utiliza-se a própria aparelhagem do Método do Arraste para medir os dados experimentais necessários.

O gás inerte é borbulhado na câmara de equilíbrio que deve ser preenchida com o composto de interesse líquido e puro.

Quando a fase líquida é formada por soluto puro pode-se afirmar que:

$$x_{4} = 1 \qquad (IV.21)$$

$$\gamma_{1} = 1 \qquad (IV.22)$$

Mantendo-se a temperatura, T, e a pressão, P, no interior da câmara constantes ao longo do tempo assume-se que a fase líquida contida na célula e o vapor que sai dela estão em equilíbrio termodinâmico:

$$y_{i} \hat{\phi}_{i}^{V} P = P_{i}^{sat} \phi_{i}^{sat} exp \left[\frac{\underline{\nabla}_{i}^{L} (P - P_{i}^{sat})}{R} \right] \quad (IV.23)$$

sendo P_{i}^{sat} calculado por Antoine (Equação(II.14)) e o volume molar $\underline{V}_{i}^{\text{L}}$ calculado pela equação de Racket modificada (Equação(II.10)). Representando-se a fase vapor pela equação virial $\hat{\phi}_{i}^{\mathbf{v}}$ é calculado pela Equação (II.8) e ϕ_{i}^{sat} pela Equação (II.9). As propriedades de componente puro necessárias nos cálculos são encontradas no Apêndice A.

. Sabendo-se que o vapor é formado por soluto e gás inerte tem-se:

$$y_{g} = 1 - y_{g} \qquad (IV.24)$$

Conhecendo-se a temperatura e a pressão de equilíbrio é possível calcular a fração molar de soluto no vapor através da Equação (IV.23). Como se trata de uma equação não linear ela pode ser resolvida pelo Método de Newton-Raphson.

Se a fase vapor pode ser considerada ideal a fração molar de soluto no vapor é calculada por:

$$y_{1} = \frac{1}{P}$$
(IV.25)

Injetando-se uma amostra do vapor no cromatógrafo através da válvula de amostragem obtém-se a área do pico do soluto, S, que corresponde a fração molar de soluto calculada.

Trabalhando-se em várias temperaturas de equilíbrio obtém-se um conjunto de pontos caracterizados pelas variáveis T, P, S e y que pode ser representado pelas Equações (IV.18) ou (IV.19), possibilitando o ajuste das constantes da curva de calibração pelo Método dos Mínimos Quadrados.

IV.1.7 - <u>Gás de Arraste</u>

No Método do Arraste é extremamente importante que o gás de arraste seja inerte e insolúvel na fase líquida contida na célula de equilíbrio nas condições de pressão e temperatura do experimento. O hélio e o hidrogênio são os gases já utilizados neste método.

Neste trabalho foi feito um estudo sobre a solubilidade do hidrogênio e do hélio a 1atm como função da temperatura nos solventes orgânicos mais comumente usados (Wilhelm e Battino, 1973 e 1977). Em todas as situações analisadas a fração molar do hélio num solvente líquido é menor que a do hidrogênio no

mesmo solvente, porém são da mesma ordem de grandeza, 10⁻⁴ ou menor. Portanto, ambos podem ser considerados insolúveis na fase líquida.

O cromatógrafo a gás utilizado para analisar as amostras do vapor também necessita de um gás de arraste para seu funcionamento. Para detectores de condutividade térmica o hidrogênio e o hélio são os mais indicados porque proporcionam uma resposta de boa qualidade (Ciola, 1973).

Como no Brasil o hélio é extremamente caro, o hidrogênio foi escolhido como gás de arraste nos dois casos.

IV.2 - <u>Procedimento Experimental de Obtenção de Coeficiente de</u> <u>Atividade a Concentração Finíta</u>

Os números de referência dos equipamentos utilizados neste Itém são os mesmos da Figura (IV.1).

Primeiramente ligam-se cromatógrafo(30), integrador(36) e registrador(37) e espera-se que estabilizem.

Aciona-se o sistema de aquecimento da válvula de amostragem-VA(17,18,21,22,42), mantida a 120°C. Inicia-se também o aquecimento da tubulação(15,16,19,20,25,26,41) entre a célula e a VA e da tubulação pós VA, mantidas a 70°C.

Abre-se a válvula redutora de pressão do hidrogênio(3) mantendo-a em 4kgf.cm⁻², e a válvula de três vias(7) permite a passagem do fluxo de gás para o fluxímetro de filme(6). Com o auxílio da válvula agulha com diafragma(5) ajusta-se a vazão volumétrica do hidrogênio em 30ml.min⁻¹, medida a temperatura e pressão ambientes.

Para que a transferência de calor e massa dentro da célula sejam eficientes é fundamental que a vazão de gás inerte seja mantida dentro de um certo intervalo de trabalho. Se a vazão for muito alta o tempo de contato entre as fases líquida e vapor é pequeno e pode comprometer o equilíbrio termodinâmico, além de provocar o arraste do líquido. Uma vazão muito baixa é difícil de

ser mantida constante experimentalmente. Assim, observou-se que uma vazão de 30ml.min⁻¹, medida no fluxímetro a temperatura e pressão ambientes antes do gás íniciar a passagem pela célula, é bastante razoável para se trabalhar experimentalmente.

A barra imantada é colocada dentro da câmara de equilíbrio da célula(13) que deve estar limpa e seca.

Coloca-se a célula na balança e pela abertura para termômetro do topo da célula são introduzidos o soluto e o solvente líquidos no interior da câmara. As massas de soluto e solvente a serem pesadas são previamente calculadas a fim de que a mistura líquida tenha a composição desejada e o volume total igual a 50cm³. Neste trabalho foi utilizada uma balança digital com precisão de $\pm 0,01g$.

O termômetro(12) é introduzido na câmara de equilíbrio sendo fixo pela junta esmerilhada na qual deve-se espalhar uma camada muito fina de graxa de silicone.

Fixa-se a célula por uma garra de corrente sobre Ο agitador magnético(14) e conecta-se sua entrada de inerte е sua saída de vapor às tubulações de inox. A entrada e a saída de fluido térmico da jaqueta são conectadas ao banho termostático(10) circulação por mangueiras de silicone iniciando-se a de fluido térmico que já deve estar na temperatura de equilíbrio desejada. O agitador magnético é acionado e depois de um minuto que a temperatura no interior da câmara permanecer na temperatura de equilíbrio o fluxo de hidrogênio é desviado para a célula iniciando-se o borbulhamento do gás inerte.

Observa-se experimentalmente que alguns segundos após iniciar o borbulhamento do gás de arraste no líquido a ínterior da câmara atínge valor determinado pressão no um permanecendo constante. Este é o valor da pressão de equilíbrio. A temperatura ambiente indicada no termômetro(9) colocado junto ao manômetro(8) deve ser medida pois ela é utilizada para corrigir O valor da pressão lida (Equação(IV.5)).

Passados quinze mínutos de eluição aciona-se a válvula de amostragem(24) injetando-se uma amostra do vapor no

cromatógrafo.

De acordo com as hipóteses assumidas para calcular o coeficiente de atividade (Equações (III.31-34)) o tempo de eluição no qual é feita a amostragem do vapor tem que ser o menor possível para que a variação da composição da fase líquida seja desprezível. De acordo com observações experimentais realizadas neste trabalho, nos primeiros minutos de eluição a dispersão dos valores das frações molares dos componentes da fase vapor é grande. Mas aos quinze minutos o sistema está plenamente estabelecido.

O integrador(36) fornece a área de cada componente volátil do vapor. As frações molares correspondentes são obtidas das curvas de calibração de cada componente ajustadas previamente. Interrompe-se a passagem de hidrogênio pela célula

que é retirada do equipamento, sendo lavada e seca em estufa. Pesa-se outra mistura líquida na célula e repete-se

o procedimento descrito obtendo-se um novo estado de equilíbrio. Cada estado de equilíbrio é definido pelas medidas da temperatura e pressão de equilíbrio e da composição das fases líquida e vapor. Utilizando-se apenas uma célula, ém oito horas é

possível trabalhar em média com cinco misturas líquidas.

O valor da vazão de gás inerte que passa pela célula de equilíbrio não é utilizado no cálculo do coeficiente de atividade a concentrações finitas.

Para determinar os coeficientes de atividade dos componentes de uma mistura líquida em várias temperaturas e composições o procedimento experimental mais conveniente é fixar a temperatura de equilíbrio e ir variando a composição da mistura líquida colocada na célula até cobrir toda a faixa de concentrações $(0 < x_i < 1)$. Em cada temperatura de equilíbrio desejada, para cada componente volátil da mistura, obtém-se uma curva de coeficiente de atividade em função da composição no líquido.

IV.3 - Procedimento Experimental de Obtenção de Coeficiente de Atividade a Diluição Infinita

A coleta de dados experimentais para obtenção de coeficiente de atividade a diluição infinita inicia-se de acordo com o procedimento de ligação e estabilização das várias partes da aparelhagem descrito no Item (IV.2), mantendo-se as mesmas condições operacionais nos equipamentos auxiliares e a mesma vazão de gás de arraste.

A primeira diferença aparece na preparação da _solução líquida colocada na célula de equilíbrio. Pesa-se a massa de solvente colocada na célula, mas como pode ser observado no equacionamento matemático apresentado no Ítem (III.3.2), a massa de soluto infinitamente diluído não é utilizada nos cálculos do coeficiente de atividade. Adicionando-se aproximadamente 10μ l de soluto ao solvente, que pode ser feito através de นตล microseringa, obtém-se uma fração molar inicial de soluto menor do que 10^{-3} .

A célula(13) é mantida a temperatura constante e iniciado o borbulhamento do gás inerte que carrega os componentes voláteis para a fase vapor, a variação da concentração do soluto na fase vapor ao longo do tempo é acompanhada pela injeção cromatógrafo feita periódica de uma amostra do vapor no pela válvula de amostragem. O período de amostragem e o tempo total de eluição variam de acordo com o sistema soluto-solvente utilizado.

Não é necessário calibrar o cromatógrafo pois a área do píco do soluto obtida pela análise de cada amostra do vapor é utilizada diretamente nos cálculos.

A pressão de equilíbrio é medida no manômetro(8) e a temperatura ambiente indicada no termômetro(9) colocado junto ao manômetro permite a correção da pressão lída através da Equação (IV.5).

A vazão de gás inerte que passa pela célula é medida no fluxímetro de filme(13) após a condensação dos compostos voláteis(27,28,29,31,32). A pressão e a temperatura ambientes devem ser medidas(39,40) pois elas são utilizadas no cálculo de conversão da vazão de inerte para temperatura e pressão de equilíbrio (Equação (IV.7) ou (IV.8)).

Por não se dispor do detector de ionização de chama no Laboratório de Propriedades Termodinâmicas na ocasião, não foram realizadas medidas experimentais para determinação de coeficiente de atividade a diluição infinita.

IV.4. - Procedimento Experimental de Obtenção da Curva de Calibração de um Composto no Cromatógrafo

O procedimento inicial de ligação e estabilização das várias partes da aparelhagem é o mesmo descrito no Item (IV.2), mantendo-se as mesmas condições operacionais nos equipamentos auxilíares e a mesma vazão de gás de arraste.

A câmara de equilíbrio é preenchida com 50cm³ do componente de interresse líquido e puro e a célula é conectada a aparelhagem. A temperatura de equilíbrio, T, é fixada num valor desejado através da circulação de fluido térmico pela jaqueta da célula e a fase líquida contida na câmara é agitada continuamente pelo agitador magnético.

Atingida a temperatura de equilíbrio no interior da câmara o gás inerte é desviado para a célula iniciando-se o borbulhamento na fase líquida.

Aos quinze minutos de eluição injeta-se uma amostra do vapor no cromatógrafo. Repete-se a amostragem do vapor aos trinta mínutos e aos quarenta e cinco minutos de eluição. O integrador fornece a área do pico do soluto correspondente a cada uma das três amostras analisadas.

Mede-se a pressão de equilíbrio, P^L , e a temperatura ambiente, T_a, indicada no termômetro(9) colocado junto ao manômetro(8), necessária para se corrigir a pressão lida (Equação (IV.5)).

Sem parar a eluição muda-se a temperatura do fluido

térmico que circula na camisa da célula alterando-se a temperatutra de equilíbrio. Após quinze minutos que a temperatura no interior da câmara permanecer no novo valor injetam-se maís três amostras consecutivas do vapor no cromatógrafo, mantendo-se o intervalo de quinze minutos entre as injeções. A nova pressão de equilíbrio e a temperatura ambiente necessária para sua correção são medidas.

Repete-se o procedimento para outras temperaturas de equilíbrio.

A cada amostra analisada correspondem as seguintes <u>variávei</u>s medidas experimentalmente : T, P^L, T_a e S₁.

Analisando-se um número mínimo de dez amostras dentro de um intervalo razoável de temperatura, obtém-se uma boa representação do comportamento da curva de calibração.

Neste trabalho os dados experimentais coletados para ajustar a curva de calibração de cada componente foram obtidos mantendo-se a temperatura de equilíbrio da célula no intervalo de 25,0°C a 60,0°C.

A medida da vazão de gás inerte que entra na célula de equilíbrio é desnecessária.

Todas as condições cromatográficas, bem como a temperatura da válvula de amostragem e o volume do "loop" de amostragem devem ser os mesmos durante a coleta de dados experimentais para ajustar os parâmetros das curvas de calibração e para determinar coeficiente de atividade a concentrações finitas.

CAPITULO V

RESULTADOS E DISCUSSÃO

V.1 - Introdução

Para testar a aparelhagem e a metodologia desenvolvidas neste trabalho, foram determinados dados isotérmicos de coeficientes de atividade de sistemas binários na região de concentrações finitas e seus valores comparados com aqueles existentes na literatura.

Os sistemas envolvidos _ foram: n-heptano/n-metil-pirrolidona(NMP) a 25,0°C, 35,0°C, 40,0°C e 50,0°C; benzeno/NMP a 25,0°C e 50,0°C e etanol/água a 55,0°C.

O teste da aparelhagem foi feito com o sistema n-heptano/NMP a 25,0[°]C por ser o único sistema apresentado na literatura para o qual se conhecem coeficientes de atividade a concentrações finitas obtidos com o Método do Arraste.

A indústria de fracionamento de petróleo tem grande interesse em dados de equilíbrio de fases dos sistemas n-heptano/NMP e benzeno/NMP. A NMP é muito utilizada como solvente na separação dos hidrocarbonetos por extração e destilação extrativa. Por esta razão vários autores trabalharam na obtenção destes dados utilizando diferentes métodos experimentais.

Fabries et al.(1977) obtiveram dados destes sistemas de equilíbrio líquido-vapor(ELV), líquido-líquido(ELL), líquido-líquido-vapor(ELLV) e coeficiente de atividade a diluição infinita, complementando dados de excesso de entalpia, ELL e coeficiente de atividade a diluição infinita existentes na literatura. Os autores correlacionaram todos estes dados pelo modelo NRTL. Assim, os coeficientes de atividade obtidos neste trabalho são comparados aos calculados pelo modelo.

Os coeficientes de atividade do etanol e da água obtidos neste trabalho foram comparados com valores calculados pelo modelo Wilson cujos parâmetros foram ajustados por Gmehling e Onken(1977) a partir de um conjunto de dados experimentais de ELV termodinamicamente consistente de Mertl(1972).

Tanto o etanol como a água são voláteis, e sua mistura foi escolhida para avaliar os limites de concentração na operação da aparelhagem.

V.2 - <u>Curvas de Calibração dos Compostos no Cromatógrafo</u>

Os dados coletados experimentalmente para ajustar as curvas de calibração dos compostos n-heptano, benzeno, etanol e água são apresentados nas Tabelas (V.1-4).

Para os quatro compostos, obtiveram-se praticamente os mesmos resultados correlacionando os dados experimentais ou pelas Equações (IV.18) e (IV.23) (fase vapor não ideal) ou pelas Equações (IV.19) e (IV.25) (fase vapor ideal).

Por esta razão e também por sua simplicidade, neste trabalho adotou-se a Equação (IV.19) que é uma reta, como modelo para a curva de calibração dos compostos no cromatógrafo.

Nas mesmas tabelas são apresentados os resultados de cada ajuste feito por Mínimos Quadrados com a respectiva curva de calibração e coeficiente de correlação linear.

Na Figura (V.1) são plotados os dados experimentais e as retas resultantes dos ajustes para os quatro compostos. Observa-se uma boa relação linear entre os dados, que é confirmada pelos altos coeficientes de correlação linear obtidos.

LEGENDA PARA AS TABELAS (V.1-4) E FIGURA (V.1)

Curva de calibração : S = k y P .

- k Constante ajustada da curva de calibração
- T Temperatura de equilíbrio experimental_____
- P Pressão de equilíbrio experimental
- S Área do píco do componente no cromatógrafo
- y Fração molar do componente no vapor calculada pela Equação (IV.18)
- y^C- Fração molar do componente no vapor calculada da curva de calibração ajustada.

TABELA V.1 CURVA DE CALIBRAÇÃO DE UM COMPOSTO NO CROMATOGRAFO

	N-HEPTANO									
	T/°C	P∕mmHg	5	y .	y c	y ^c - y				
01	31,0	718,50	638510	0,0855	0,0830	-0,0025				
02	31,0	718,50	643210	0,0855	0,0836	-0,0019				
03	31,0	718,50	639339	0,0855	0,0831	-0,0024				
04	31,0	718,50	627150	0,0855	0,0815	-0,0040				
05	31,0	718,50	628557	0,0855	0,0817	-0,0038				
06	35,0	716,83	772083	0,1033	0,1006	-0,0027				
07	35,0	716,83	761951	0,1033	0,0991	-0,0040				
08	35,0	716,83	783313	0,1033	0,1020	-0,0012				
09	35,0	716,83	784907	0,1033	0,1022	-0,0010				
10	40,0	716,60	996586	0,1294	0,1299	0,0005				
11	40,0	716,60	989528	0,1294	0,1289	-0,0005				
12	40,0	716,60	974189	0,1294	0,1269	-0,0025				
13	40,0	716,60	981636	0,1294	0,1279	-0,0015				
14	40,0	716,60	962918	0,1294	0,1255	-0,0039				
15	45,0	716,48	1254960	0,1608	0,1636	0,0028				
16	45,0	716,48	1214160	0,1608	0,1582	-0.0025				
17	45,0	716,48	1235450	0,1608	0,1610	0,0002				
18	45,0	716,48	1241680	0,1608	0,1618	0,0011				
- 19	50,0	716,46	1550080	0,1981	0,2020	0,0040				
20	50,0	716,46	1537290	0,1981	0,2004	0,0023				

٠

BO

TABELA V.1 (CONTINUAÇÃO) CURVA DE CALIBRAÇÃO DE UM COMPOSTO NO CROMATOGRAFO

	N-HEPTAND								
	T/°C	P∕mmHg	S	У	у ^с	y ^c - y			
21	50,0	716,46	1552070	0,1981	0,2023	0,0042			
22	50,0	716,46	1546630	0,1981	0,2016	0,0035			
H I C	; = 1070 Desvio at Coeficier)9,50- osoluto me ate de cor	⊖dio em y = Trelação li	= 0,0024 inear = 1,	,00				

	ŗ	r a be	ELA	V.2		
CURVA DE	CALIBRAÇÃO	DE	UM	COMPOSTO	NO	CROMATOGRAFO

	BENZENO										
	т/°с	P/mmHg	s	У	y ^c	у ^с - у					
01	25,0	727,60	913081	0,1324	0,1206	-0,0117					
02	25,0	727,60	893108	0,1324	0,1180	-0,0144					
03	25,0	727,60	866017	0,1324	0,1144	-0,0180					
04	25,0	727,60	889020	0,1324	0,1174	-0,0149					
05	25,0	727,60	888128	θ,1324 -	- 0,1173	-0,0150					
06	35,0	727,17	1451330	0,2067	0,1918	-0,0149					
07	35,0	727,17	1414095	0,2067	0,1869	-0,0198					
08	35,0	727,17	1414602	0,2067	0,1870	-0,0197					
09	35,0	727,17	1415616	0,2067	0,1871	-0,0196					
10	45,0	725,96	2448939	0,3123	0,3242	0,0120					
11	45,0	725,96	2348285	0,3123	0,3109	-0,0014					
12	45,0	725,96	2353057	0,3123	0,3116	-0,0007					
13	45,0	725,96	2251056	0,3123	0,2980	-0,0142					
14	50,0	725,17	2919378	0,3795	0,3870	0,0075					
15	50,0	725,17	3069402	0,3795	0,4068	0,0274					
16	50,0	725,17	2883313	0,3795	0,3822	0,0027					
17	50,0	725,17	3023187	0,3795	0,4007	0,0213					

k = 10403,70

Desvio absoluto médio em y = 0,0156

Coeficiente de correlação linear = 0,98

TABELA V.3

CURVA DE CALIBRAÇÃO DE UM COMPOSTO NO CROMATOGRAFO

ETANOL										
	T/°C	P∕mmHg	S	У	y c	y ^c - y				
01	26,0	728,07	336758	0,0859	0,0883	0,0025				
02	26,0	728,07	329233	0,0859	0,0863	0,0005				
03	26,0	728,07	338654	0,0859	0,0888	0,0030				
04	26,0	727,07	330878	0,0859	0,0868	0,0009				
05	30,0	727,73	399663	0,1078	0,1049	-0,0029				
06	30,0	727,73	409486	0,1078	0,1074	-0,0004				
07	30,0	727,73	398281	0,1078	0,1045	-0,0033				
08	30,0	727,73	401307	0,1078	0,1053	-0,0025				
09	30,0	727,73	404093	0,1078	0,1060	-0,0018				
10	35,0	727,60	531915	0,1418	0,1396	-0,0022				
11	35,0	727,60	526726	0,1418	0,1382	-0,0036				
12	35,0	727,60	532464	0,1418	0,1397	-0,0021				
13	35,0	727,60	525848	0,1418	0,1380	-0,0038				
14	35,0	727,60	526678	0,1418	0,1382	-0,0036				
15	40,0	726,60	705653	0,1848	0,1854	0,0006				
16	40,0	726,60	691893	0,1849	0,1818	-0,0031				
17	40,0	726,60	694893	0,1849	0,1826	-0,0023				
18	40,0	726,60	690196	0,1849	0,1814	-0,0035				
19	45,0	726,41	919356	0,2384	0,2416	0,0033				
20	45,0	726,41	912773	0,2384	0,2399	0,0015				

.

TABELA V.3 (CONTINUAÇÃO)

ETANOL										
	T∕°C	P∕mmHg	S	У	У ^с	y ^c - y				
21	45,0	726,41	891987	0,2384	0,2344	-0,0039				
22	45,0	726,41	903337	0,2384	0,2374	-0,0010				
23	50,0	726,46	1160100	0,3045	0,3049	0,0004				
24	50,0	726,46	1165250	0,3045	0,3062	0,0017				
25	50,0	726,46	-1153770-	0,3045	0,3032	-0,0013				
26	55,0	726,38	1477050	0,3856	0,3882	0,0026				
27	55,0	726,38	1488410	0,3856	0,3912	0,0056				
28	55,0	726,38	1483760	0,3856	0,3900	0,0044				

k = 5237,660

Desvio absoluto médio em y = 0,0025

Coeficiente de correlação linear = 1,00

			i ABt	LA	V.4		
CURVA	DE	CALIBRAÇÃO	DE	UM	COMPOSTO	NO	CROMATOGRAFO

Ā GUA									
	т/°с	P/mmHg	S	Y	у ^с	y ^c - y			
01	25,0	742,51	62228	0,0319	0,0355	0,0036			
02	25,0	742,51	62750	0,0319	0,0358	0,0039			
03	25,0	742,51	67071	0,0319	0,0382	0,0063			
04	25,0	742,51	60491	0,0319	0,0345	0,0026			
05	30,0	741,45	85102	0,0428	0,0486	0,0058			
06	30,0	741,45	90162	0,0428	0,0514	0,0086			
07	30,0	741,45	80074	0,0428	0,0457	0,0029			
08	35,0	738,87	125854	0,0569	0,0712	0,0151			
09	35,0	738.87	104324	0,0569	0,0597	0,0028			
10	35,0	738,87	100837	0,0569	0,0577	0,0008			
11	45,0	738,95	136869	0,0970	0,0784	-0,0187			
12	45,0	738,95	178352	0,0970	0,1021	0,0051			
13	45,0	738,95	163042	0,0970	0,0933	-0,0037			
14	45,0	738,95	146834	0,0970	0,0841	-0,0130			
15	50,0	739,45	228410	0,1248	0,1289	0,0058			
16	50,0	739,45	218930	0,1248	0,1253	0,0004			
17	50,0	739,45	222548	0,1248	0,1273	0,0025			
18	50,0	739,45	199604	0,1248	0,1142	-0,0106			
19	60,0	740,71	339035	0,2012	0,1937	-0,0076			
20	60,0	740,71	343886	0,2012	0,1964	-0,0048			

TABELA V.4 (CONTINUAÇÃO)

CURVA DE CALIBRAÇÃO DE UM COMPOSTO NO CROMATÓGRAFO

ϪGUA									
	T/°C	P∕mmHg	S	У	y ^c	y ^c - y			
21	60,0	740,71	368744	0,2012	0,2106	0,0094			
22	60,0	740,71	353452	0,2012	0,2019	0,0007			
F F	k = 2363, Desvio at Coeficier	,580 psoluto mé ate de cor	dio em y = relação li	= 0,0061 inear = 0,	,98				

FIGURA V.1 CURVAS DE CALIBRAÇÃO DOS COMPOSTOS NO CROMATÓGRAFO

V.3 - <u>Resultados</u>

V.3.1 - <u>Teste da Aparelhagem</u>

Os dados experimentais obtidos neste trabalho do sistema n-heptano(1)/NMP(2) a 25,0°C são apresentados na Tabela (V.5). Juntamente encontram-se os coeficientes de atividade do n-heptano calculados a partir dos dados experimentais utilizando as Equações (IV.31-33).

Na mesma tabela estão os coeficientes de atividade do n-heptano calculados pelo modelo NRTL. Os parâmetros do modelo são apresentados na Tabela (V.6). Eles foram ajustados por Fabries et al.(1977) a partir de dados experimentais de excesso de entalpia, ELL e ELLV e coeficiente de atividade a diluição infinita e são válidos no intervalo de 20,0°C a 100,0°C. Cabe ressaltar que não foram usados dados de ELV a concentrações finitas na obtenção dos parâmetros.

Para o mesmo sistema, na Tabela (V.7), são apresentados os coeficientes de atividade a^cconcentrações finitas do n-heptano a 25,0°C obtidos por Leroi et al.(1977) através do Método do Arraste.

Na Figura (V.2) são plotados tanto os coeficientes de atividade do n-heptano em n-metil-pirrolidona a 25,0[°]C obtidos neste trabalho como os valores dos coeficientes de atividade obtidos por Leroi et al. nas mesmas condições. A curva calculada pelo modelo NRTL também é dada no gráfico.

O desvio relativo médio, DRM, entre os coeficientes de atividade obtidos neste trabalho e os calculados pelo modelo NRTL é de 6%, considerado muito bom, enquanto que os valores de Leroi apresentam um DRM de 3%.

A Tabela (V.8) reúne valores da literatura de coeficiente de atividade a diluição infinita de n-heptano em NMP a 25,0°C. Eles foram obtidos pelo Método do Arraste e pelo Método do Tempo de Retenção e também são plotados na Figura (V.2). Aproximando-se graficamente os coeficientes de atividade do n-heptano obtidos neste trabalho por uma curva, e extrapolando-se esta curva para a região diluída (x = 0), o coeficiente de atividade a diluição infinita obtido vale aproximadamente 18,0, que difere de 4% da média dos valores da literatura apresentados na Tabela (V.8). O coeficiente de atividade a diluição infinita obtido experimentalmente por Leroi et al. pelo Método do Arraste, que vale 16,24, difere de 6% do valor médio.

Os desvios entre os coeficientes de atividade obtidos neste trabalho e os calculados pelo modelo NRTL são maiores quando a fração molar de n-heptano no líquido é pequena $= (x_{i} < 0, 0.5)$. Nestas condições, a fração molar de n-heptano no vapor também é muito pequena comprometendo a exatidão da análise pelo fato dela ser feita no cromatógrafo com detector de condutividade térmica na proximidade do límite de detectabilidade deste equipamento. Isto vem reforçar a necessidade de se utilizar um cromatógrafo equipado com detector de ionização de chama para determinar coeficientes de atividade a diluição infinita.

Mesmo com esse comportamento na região de baixas concentrações, o coeficiente de atividade a diluição infinita resultante da extrapolação gráfica dos coeficiente de atividade obtidos neste trabalho concorda muito bem com os valores de coeficiente de atividade a diluição infinita experimentais existentes na literatura.

A maioria dos dados de equilíbrio de fases utilizados no ajuste dos parâmetros NRTL são dados de ELL e ELLV, o que explica a boa concordância entre os coeficientes de atividade obtidos neste trabalho e os calculados pelo modelo próximo da região de imiscibilidade.

Os coeficientes de atividade a concentrações finitas obtidos neste trabalho apresentam uma boa concordância com os coeficientes de atividade obtidos por Leroi com o mesmo método e com os coeficientes calculados do modelo NRTL cujos parâmetros foram ajustados a partir de dados de equilíbrio de fases (ELL,

ELLV, excesso de entalpia e coeficiente de atividade a infinita diluição), confirmando a confiabilidade da aparelhagem montada e da metodologia utilizada para se trabalhar a concentrações finitas.

TABELA V.5

DADOS EXPERIMENTAIS E COEFICIENTES DE ATIVIDADE A CONCENTRAÇÕES FINITAS OBTIDOS NESTE TRABALHO PELO MÉTODO DO ARRASTE PARA TESTAR A APARELHAGEM. COMPARAÇÃO COM COEFICIENTES DE ATIVIDADE CALCULADOS POR NRTL(FABRIES ET AL., 1977).

> Sistema : N-HEPTAND(1) / N-METIL-PIRROLIDONA(2) Temperatura : 25,0°C

Componente 2 não volátil ($P_2^{pat} = 0,27 \text{ mmHg}$)

	₽∕mmHg	У 1	× 1	¥ 1	2** 1	$\gamma_1^{*} - \gamma_1^{**}$	DR/%
01	732,72	0,0195	0,0200	15,46	13,95	1,51	10,8
02	728,35	0,0395	0,0499	12,45	11,28	1,17	10,4
03	728,75	0,0432	0,0612	11,12	10,46	0,66	6,3
04	726,23	0,0502	0,0798	9,85	9,29	0,56	6,0
05	724,85	0,0549	0,0997	8,60	8,25	0,35	4,2
06	723,75	0,0565	0,1198	7,35	7,36	-0,01	-0,1
07	721,12	0,0616	0,1297	7,38	6,98	0,40	5,7

DRM = 6%

* – Deste trabalho

** - Calculado por NRTL

DR - Desvio relativo

DRM - Desvio relativo médio
PARÀMETROS DO MODELO NRTL AJUSTADOS POR FABRIES ET AL.(1977) APARTIR DE DADOS DE ELLV, ELL, EXCESSO DE ENTALPIA E COEFICIENTE DE ATIVIDADE A DILUIÇÃO INFINITA.

> Sistema : N-HEPTAND(1) / N-METIL-PIRROLIDONA(2) Intervalo do ajuste : $20,0^{\circ}C$ a $100,0^{\circ}C$ $a_{12} = 1306 - 3,932$ (T - 273,15) $a_{21} = 1102 - 1,027$ (T - 273,15) $\alpha = 0,3501 - 0,000516$ (T - 273,15) $a_{12} = a_{21} \text{ em cal.mol}^{-1}$ T em Kelvin

92

COEFICIENTES DE ATIVIDADE A CONCENTRAÇÕES FINITAS OBTIDOS POR LEROI ET AL.(1977) PELO MÉTODO DO ARRASTE.

Sistema : N-HEPTANO(1) / N-METI L- PIRROLIDONA(2) Temperatura : 25,0°C Componente 2 não volátil (P ^{sat} = 0,27 mmHg)								
	$\times_{1} \qquad $							
01	0,0110	14,04	14,94	-0,90	-6,0			
02	0,0478	11,80	11,44	0,36	3,1			
03	0,0497	11,67	11,30	0,37	3,3			
04	0,0957	8,31	8,44	-0,13	-1,5			
05	0,1257	7,22	7,13	0,09	1,3			
*	DRM = 3%							
** DR DR1	* - Leroi ** - Calculado por NRTL DR - Desvio relativo DRM - Desvio relativo médio							

COEFICIENTE DE ATIVIDADE A DILUIÇÃO INFINITA DO N-HEPTANO(1) EM N-METIL-PIRROLIDONA(2) A 25,0°C OBTIDOS POR DIFERENTES METODOS EXPERIMENTAIS.

r_{i}^{∞}	Referência	Método
16,24	Leroi et al.(1977)	MA
15,10	Tiegs et al.(1986)	MTR
19,10	Fabries et al.(1977)	MTR
18,54	Tiegs et al.(1986)	MTR
Valor médi MA – Mét MTR – Mét	to de $\gamma_1^{\infty} = 17,25$ codo do Arraste codo do Tempo de Retenção	

FIGURA V.2

COEFICIENTE DE ATIVIDADE DO N-HEPTANO(1) EM N-METIL-PIRROLIDONA(2) A 25,0[°]C. COMPARAÇÃO DOS VALORES OBTIDOS NESTE TRABALHO COM VALORES EXISTENTES NA LITERATURA.

95

V.3.2 - Soluto Volátil e Solvente Não Volátil

V.3.2.1 - <u>Sistema n-Heptano/n-Metil-Pirrolidona</u>

Os dados experimentais do sistema n-heptano(1)/NMP(2) determinados a 35,0°C, 40,0°C e 50,0°C são apresentados nas Tabelas (V.9-11).

Nas mesmas tabelas estão os coeficientes de atividade do n-heptano calculados a partir dos dados experimentais através das Equações (IV.31-33) e os calculados pelo modelo NRTL com os parâmetros da Tabela (V.6).

Na Figura (V.3) foram plotados os coeficientes deatividade do n-heptano em NMP a $25,0^{\circ}$ C, $35,0^{\circ}$ C, $40,0^{\circ}$ C e $50,0^{\circ}$ C obtidos neste trabalho com as respectivas curvas de coeficiente de atividade calculadas pelo modelo NRTL. Para facilitar a apreciação dos dados os coeficientes de atividade obtidos a $35,0^{\circ}$ C e $40,0^{\circ}$ C foram plotados separadamente nas Figuras (V.3.a) e (V.3.b).

Os desvios relativos médios entre os coeficientes de atividade obtidos neste trabalho e os calculados pelo modelo NRTL a 35,0°C, 40,0°C e 50,0°C são respectivamente 3%, 2% e 5%.

A Tabela (V.12) reúne valores da literatura de coeficiente de atividade a diluição infinita de n-heptano em NMP a 40,0°C e 50,0°C obtidos experimentalmente. Para cada temperatura foi calculada a média dos valores dos coeficientes de atividade a diluição infinita que também foram plotadas na Figura (V.3).

Semelhante ao que foi feito para os coeficientes de atividade obtidos a $25,0^{\circ}$ C, aproximando-se graficamente os coeficientes de atividade do n-heptano obtidos neste trabalho a $40,0^{\circ}$ C por uma curva, e extrapolando-se esta curva para a região diluída (x = 0), o coeficiente de atividade a diluíção infinita obtido vale aproximadamente 14,5, que difere de 4% da média dos valores da literatura apresentados na Tabela (V.12). Procedendo-se do mesmo modo para a temperatura de $50,0^{\circ}$ C, obtém-se um coeficiente de atividade a diluíção infinita aproximadamente igual

a 12,5, que difere de 2% do valor experimental da literatura (Tabela (V.12)).

Os coeficientes de atividade deste trabalho referentes ao sistema n-heptano/NMP demonstram coerência entre os valores obtidos em diferentes temperaturas e concentrações, além de concordarem muito bem com os coeficientes de atividade obtidos de dados de equilíbrio de fases da literatura (ELL, ELLV, excesso de entalpia e coeficiente de atividade a diluição infinita).

DADOS EXPERIMENTAIS E COEFICIENTES DE ATIVIDADE A CONCENTRAÇÕES FINITAS OBTIDOS NESTE TRABALHO PELO MÉTODO DO ARRASTE. COMPARAÇÃO COM COEFICIENTES DE ATIVIDADE CALCULADOS POR NRTL(FABRIES ET AL., 1977).

> Sistema : N-HEPTAND(1) / N-METIL-PIRROLIDONA(2) Temperatura : 35,0°C

1							
	P∕mmHg	У <u>1</u>	1 ×	2* 1	2** 1	$\gamma_1^* - \gamma_1^{**}$	DR/%
01	731,62	0,0155	0,0106	14,47	13,57	0,90	6,6
02	726,27	0,0467	0,0399	11,44	11,06	0,38	3.4
03	724,10	0,0524	0,0508	10,02	10,30	-0.28	-2,7
04	725,42	0,0593	0,0620	9,30	9,59	-0,20	-3,0
05	- 725,12	0,0729	0,0803	8,80	8,58	0,22	2,6
06	724,60	0,0797	0,1005	7,67	7,64	0,03	0,4
07	730,99	0,0849	0,1200	6,90	6,88	0,02	0,3
08	730,01	0,0918	0,1399	6,38	6,21	0,17	2,7
09	734,15	0,0925	0,1596	5,67	5,64	0,03	0,5

Componente 2 não volátil ($P_2^{sat} = 0,58 \text{ mmHg}$)

DRM = 3%

* - Deste trabalho

** - Calculado por NRTL

DR - Desvio relativo

DRM - Desvio relativo médio

DADOS EXPERIMENTAIS E COEFICIENTES DE ATIVIDADE A CONCENTRAÇÕES FINITAS OBTIDOS NESTE TRABALHO PELO METODO DO ARRASTE. COMPARAÇÃO COM COEFICIENTES DE ATIVIDADE CALCULADOS POR NRTL(FABRIES ET AL., 1977).

	Sistema : N-HEPTAND(1) / N-METIL-PIRROLIDONA(2)									
	Temperatura : 40,0°C									
	Componente 2 não volátil (P ^{sat} = 0,84 mmHg) 2									
	₽/mmHg	y 1	×1	2° 1	** 7 1	$\gamma_{1}^{*}-\gamma_{1}^{**}$	DR/%			
01	727,37	0,0456	0,0301	11,85	11,30	0,55	4,9			
02	728,70	0,0601	0,0459	10,24	10,19	0,05	0,5			
03	727,39	0,0737	0,0604	9,51	9,31	0,20	2,1			
04	730,65 0,0954 0,0960 7,75 7,56 0,19						2,5			
05	728,29	0,1018	0,1203	6,57	6,64	-0,07	-1,1			
06	724,18	0,1148	0,1516	5,83	5,69	0,14	2,5			
07	725,86	0,1082	0,1517	5,51	5,69	-0,18	-3,2			
						DRM	1 = 2%			
	* -	- Deste t	rabalho							
	**	Calcula	ado por NF	RTL						
	DR -	- Desvio	relativo							
	DRM -	- Desvio	relativo	médio						

DADOS EXPERIMENTAIS E COEFICIENTES DE ATIVIDADE A CONCENTRAÇÕES FINITAS OBTIDOS NESTE TRABALHO PELO MÉTODO DO ARRASTE. COMPARAÇÃO COM COEFICIENTES DE ATIVIDADE CALCULADOS POR NRTL(FABRIES ET AL., 1977).

Sistema : N-HEPTANO(1) / N-METIL-PIRROLIDONA(2) Temperatura : 50,0°C								
Componente 2 não volátil (P ^{sat} = 1,67 mmHg) 2								
	₽/mmHg	У ₁	×	×* 1	γ** 1	$\gamma_1^{*}-\gamma_1^{**}$	DR/%	
01	731,57	0,0229	0,0101	11,81	11,81	0,00	0,0	
02	733,09	0,0712	0,0397	9,25	9,75	-0,50	-5,1	
03	732,23	0,0988	0,0596	· 8,51	8,64	-0,13	-1,5	
04	730,92	0,1248	0,0799	7,97	7,70	0,27	3,5	
05	732,95	0,1506	0,1010	7,61	6,87	0,74	10,8	
06	730,37	0,1741	0,1512	5,84	5,37	0,47	8,8	
07	732,53	0,1810	0,2197	4,18	4,03	0,15	3,7	
08	730,96	0,1924	0,2500	3,90	3,60	0,30	8,3	
						DRM	1 = 5%	
	* -	- Deste 1	trabalho					
	**	- Calcula	ado por NF	RTL				
	DR -	- Desvio	relativo					
	DRM -	- Desvio	relativo	médio				

.

COEFICIENTE DE ATIVIDADE A DILUIÇÃO INFINITA EXPERIMENTAL DO N-HEPTANO(1) EM N-METIL-PIRROLIDONA(2) A 40,0°C E 50,0°C EXISTENTES NA LITERATURA.

T∕°C	r 100	Referência	Método	Valor Médio de γ_1^{∞}				
10.0	17,20	Fabries et al.(1977)	MTR	15 15				
40,0	13,10	Tiegs et al.(1986)	MTR	10,10				
50,0	50,0 12.30 Tiegs et al.(1986) MTR							
	MTR - Método do Tempo de Retenção							

FIGURA V.3

COEFICIENTE DE ATIVIDADE DO N-HEPTANO(1) EM N-METIL-PIRROLIDONA(2) A 25,0°C, 35,0°C, 40,0°C E 50,0°C. COMPARAÇÃO DOS VALORES OBTIDOS NESTE TRABALHO COM VALORES EXISTENTES NA LITERATURA.

V.3.2.2 - Sistema Benzeno/n-Metil-Pirrolidona

Os dados experimentais do sistema benzeno(1)/NMP(2) determinados a 25,0°C e 50,0°C são apresentados nas Tabelas (V.13-14).

Nas mesmas tabelas estão os coeficientes de atividade do benzeno calculados a partir dos dados experimentais através das Equações (IV.31-33) e os calculados pelo modelo NRTL. Os parâmetros do modelo são apresentados na Tabela (V.15). Eles foram ajustados por Fabries et al.(1977) a partir de dados experimentais de excesso de entalpia, ELL, ELV e coeficiente de atividade a diluição infinita e são válidos no intervalo de 20,0°C a 100,0°C.

Na Figura (V.4) são plotados os coeficientes de atividade do benzeno em NMP a 25,0°C e 50,0°C obtidos neste trabalho e as curvas de coeficiente de atividade calculadas pelo modelo NRTL nas respectivas temperaturas.

Na Tabela (V.16) são apresentados os coeficientes de atividade a diluição infinita de benzeno em NMP a $25,0^{\circ}C$ e $50,0^{\circ}C$. Eles foram obtidos pelo Método do Arraste e pelo Método do Tempo de Retenção. Para cada temperatura foi calculada a média dos valores de coeficiente de atividade a diluição infinita que também foram plotadas na Figura (V.4).

Como pode ser observado na Figura (V.4) os valores dos coeficientes de atividade do benzeno na mistura benzeno/NMP calculados por NRTL e os coeficientes de atividade a diluição infinita experimentais são muito próximos de um no intervalo de temperatura de 25,0°C a 50,0°C, o que expressa um comportamento do sistema muito próximo do ideal.

Assim sendo, o coeficiente de atividade do benzeno é bastante sensível a uma pequena variação de sua fração molar no líquido, explicando a dispersão dos coeficientes de atividade obtidos neste trabalho que não definem claramente duas curvas distintas, uma a 25,0°C e outra a 50,0°C.

Os desvios relativos médios entre os coeficientes

de atividade obtídos neste trabalho e os calculados pelo modelo NRTL a $25,0^{\circ}$ C e $50,0^{\circ}$ C que são respectivamente 4% e 8%, podem ser considerados razoáveis para um sistema com este tipo de comportamento.

DADOS EXPERIMENTAIS E COEFICIENTES DE ATIVIDADE A CONCENTRAÇÕES FINITAS OBTIDOS NESTE TRABALHO PELO MÉTODO DO ARRASTE. COMPARAÇÃO COM COEFICIENTES DE ATIVIDADE CALCULADOS POR NRTL(FABRIES ET AL., 1977).

.

Sistema : BENZENO(1) / N-METIL-PIRROLIDONA(2) Temperatura : 25,0°C									
	Componente 2 não volátil ($P_z^{eat} = 0,27 \text{ mmHg}$)								
	P∕mmHg	Y s	×1	×*1	2** 1	$\gamma_1^{*} - \gamma_1^{**}$	DR/%		
01	733,07	0,0128	0,1003	0,99	1,02	-0,03	-2,9		
02	2 731,21 0,0394 0,3051 0,99 1,05						-5,7		
03	5 730,95 0,0697 0,5042 1,06 1,05						1,0		
04	733,45	0,0768	0,7001	1,06	1,03	0,03	2,9		
05	731,58	0,1192	0,9409	0,96	1,00	-0,04	-3,6		
	DRM = 4% * - Deste trabalho								
	** -	- Calcula	ado por NF	RTL					
	DR -	- Desvio	relatívo						
	DRM -	- Desvio	relativo	médio					

DADOS EXPERIMENTAIS E COEFICIENTES DE ATIVIDADE A CONCENTRAÇÕES FINITAS OBTIDOS NESTE TRABALHO PELO MÉTODO DO ARRASTE. COMPARAÇÃO COM COEFICIENTES DE ATIVIDADE CALCULADOS POR NRTL(FABRIES ET AL., 1977).

Sistema : BENZEND(1) / N-METIL-PIRROLIDONA(2) Temperatura : 50,0°C								
Componente 2 não volátil (P ^{sat} = 1,67 mmHg) 2								
	P∕mmHg	У <u>1</u>	×	?* <u>1</u>	γ** 1	$\gamma_1^* - \gamma_1^{**}$	DR/%	
01	737,20	0,0771	0,2000	1,06	1,08	-0,02	-1,9	
02	02 730,44 0,0759 0,2032 1,01 1,08 -0,07 -							
03	03 736,65 0,1113 0,2989 1,02 1,08 -0,06 -						-5,6	
04	738,36	0,2142	0,4988	1,16	1,07	0,09	8,4	
05	737,31	0,2932	0,6827	1,16	1,04	0,12	11,5	
06	739,41	0,3187	0,8947	0,96	1,01	-0,05	-5,0	
						DRM	= 8%	
	* -	- Deste t	rabalho					
	**	- Calcula	ado por NF	RTL				
	DR -	- Desvio	relatívo					
L	DRM -	- Desvio	relativo	médio				

PARAMETROS DO MODELO NRTL AJUSTADOS POR FABRIES ET AL.(1977) A PARTIR DE DADOS DE ELV, ELL, EXCESSO DE ENTALPIA E COEFICIENTE DE ATIVIDADE A DILUIÇÃO INFINITA.

> Sistema : BENZEND(1) / N-METIL-PIRROLIDONA(2) Intervalo do ajuste : $20,0^{\circ}C$ a $100,0^{\circ}C$ $a_{12} = 1236 - 10,698$ (T - 273,15) $a_{21} = -902 + 7,737$ (T - 273,15) $\alpha = 0,1778$ (T - 273,15) $a_{12} = a_{21} \text{ em cal.mol}^{-1}$ T em Kelvin

COEFICIENTE DE ATIVIDADE A DILUIÇÃO INFINITA EXPERIMENTAL DO BENZEND(1) EM N-METIL-PIRROLIDONA(2) A 25,0°C E 50,0°C EXISTENTES NA LITERATURA.

T/°C	γ [∞] ₁	Referência	Método	Valor Médio de γ_{i}^{∞}			
	1,03	Leroí et al.(1977)	MA				
	1,2	Tiegs et al.(1986)	MTR				
25 0	1,00	Tiegs et al.(1986)	MTR	1 10			
20,0	1,31	Tiegs et al.(1986)	MTR	1,10			
	1,02	Tiegs et al.(1986)	MTR				
	1,05	Tiegs et al.(1986)	MTR				
50,0	1,00	Tiegs et al.(1986)	MTR	1,00			
MA – Método do Arraste MTR – Método do Tempo de Retenção							

FIGURA V.4

COEFICIENTE DE ATIVIDADE DO BENZENO(1) EM N-METIL-PIRROLIDONA(2) A 25,0°C E 50,0°C. COMPARAÇÃO DOS VALORES OBTIDOS NESTE TRABALHO COM VALORES EXISTENTES NA LITERATURA.

109

V.3.3 - Soluto e Solvente Voláteis

V.3.3.1 - Sistema Etanol/Áqua

Os dados experimentais obtidos neste trabalho do sistema etanol(1)/água(2) a 55,0°C são apresentados na Tabela (V.17). Juntamente encontram-se os coeficientes de atividade do etanol e da água calculados a partir dos dados experimentais utilizando as Equações (IV.31-34).

Não foi possível determinar os coeficiente de atividade da água para frações molares de etanol no líquido maiores do que 0,81 pois nestas condições a quantidade de água no vapor é muito pequena e não é detectada no cromatógrafo.

Para o mesmo sistema, na Tabela (V.18) são apresentados os dados experimentais de ELV de Mertl(1972) obtidos a 55,0°C. Gmehling e Onken(1977) correlacionaram estes dados ajustando os parâmetros de vários modelos de coeficiente de atividade. O melhor ajuste foi obtido com o modelo Wilson (Tabela (II.1)) cujos parâmetros são apresentados na Tabela (V.19). A comparação entre os coeficientes de atividade do etanol e da água obtidos neste trabalho com os calculados pelo modelo é apresentada na Tabela (V.20).

Na Figura (V.5) são plotados os coeficientes de atividade do etanol e da água a 55,0°C obtidos neste trabalho juntamente com as curvas calculadas pelo modelo Wilson.

O desvio relativo médio entre os coeficientes de atividade do etanol e da água deste trabalho e os calculados pelo modelo são 8% nos dois casos.

A concordância entre os coeficientes de atividade do etanol e da água obtidos neste trabalho com os valores calculados pelo modelo Wilson é muito boa para frações molares de etanol no líquido de até 0,55. Contudo, para frações molares de etanol maiores observam-se grandes desvios.

Na região concentrada em etanol a fração molar de

água no vapor é pequena causando a dispersão nos coeficientes de atividade da água devido a proximidade do limite de detectabilidade do cromatógrafo. Por outro lado, como a quantidade de etanol no vapor é alta deixou de ser válida a hipótese assumida no equacionamento matemático, expressa pela Equação (III.23), que afirma que a quantidade de etanol no vapor pode ser desprezada se ela é muito menor que a quantidade deste composto no líquido. Por esta razão, o erro introduzido no cálculo do coeficiente de atividade do etanol cresce tanto quanto sua concentração no vapor.

DADOS EXPERIMENTAIS E COEFICIENTES DE ATIVIDADE A CONCENTRAÇÕES FINITAS OBTIDOS NESTE TRABALHO PELO MÉTODO DO ARRASTE.

	Sistema : ETANOL(1) / ĀGUA(2) Temperatura : 55,0°C									
	P∕mmHg	y i	У ₂	×1	× 1	Ϋ́ ₂				
01	742,50	0,0740	0,1586	0,0507	3,89	1,04				
02	742,89	0,1108	0,1554	0,0846	3,48	1,06				
03	741,90	0,1315	0,1494	0,1052	3,31	1,04				
04	740,89	0,1731	0,1655	0,1801	2,53	1,25				
05	742,24	0,1740	0,1461	0,2298	2,00	1,18				
06	742,09	0,2026	0,1469	0,3237	1,65	1,35				
07	739,83	0,2339	0,1246	0,4259	1,44	1,34				
08	738,46	0,2622	0,1032	0,5516	1,24	1,42				
09	740,69	0,3336	0,0649	0,7702	- 1,13	1,76				
10	739,58	0,3626	0,0493	0,8074	1,17	1,59				
11	739,44	0,3987	0,0000	0,8888	1,17					
12	739,04	0,4392	0,0000	0,9509	1,20	-				

112

DADOS EXPERIMENTAIS DE EQUILÍBRIO LÍQUIDO-VAPOR DE MERTL(1972) DO SISTEMA ETANOL/ÁGUA A 55,0°C.

Sistema : ETANOL(1) / ÁGUA(2) Temperatura : 55,0°C							
	P∕mmHg	y 1	×1				
01	173,35	0,3360	0,0510				
02	197,80	0,4280	0,0850				
03	207,50	0,4610	0,1060				
04	227,30	0,5240	0,1800				
05	236,30	0,5550	0,2300				
06	248,20	0,5890	0,3240				
07	258,00	0,6280	.0,4290				
08	267,00	0,6800	0,5530				
09	274,90	0,7460	0,6850				
10	278,40	0,8010	0,7740				
11	279,40	0,8290	0,8100				
12	280,60	0,8780	0,8940				
13	280,50	0,9520	0,9540				

PARAMETROS DO MODELO WILSON AJUSTADOS POR GMEHLING E ONKEN(1977) A PARTIR DE DADOS DE ELV DE MERTL(1972) OBTIDOS A 55,0°C.

> Sistema : ETANOL(1)/AGUA(2) Temperatura do ajuste : $55,0^{\circ}C$ $a_{12} = 339,1783$ $a_{21} = 881,1112$ $a_{12} = a_{21} \text{ em cal.mol}^{-1}$

COMPARAÇÃO ENTRE OS COEFICIENTES DE ATIVIDADE DO ETANOL(1) E DA ÁGUA(2) OBTIDOS NESTE TRABALHO E OS CALCULADOS PELO MODELO WILSON AJUSTADO DE DADOS DE ELV(MERTL, 1972).

	Sistema : ETANOL(1)/ÁGUA(2) Temperatura : 55,0 C								
	×	2 * _1	~** 1	r*-r**	DR1/%	¥ 2	2** 2	x [*] -x ^{**} 2	DR2/%
01	0,05	3,89	4,34	-0,45	-10,4	1,04	1,01	0,03	3,0
02	0,09	3,48	3,43	0,05	1,5	1,06	1,03	0,03	2,9
03	0,11	3,31	3,11	0,20	6,4	1,04	1,04	0,00	0,0
04	0,18	2,53	2,35	0,18	7,7	1,25	1,09	0,16	14,7
05	0,23	2,00	2,01	-0,01	-0,5	1,18	1,13	0,05	4,4
06	0,32	1,65	1,63	0,02	1,2	1,35	1,23	0,12	9,8
07	0,43	1,44	1,36	0,08	5,9	1,34	1,37	-0,03	-2,2
08	0,55	1,24	1,19	0,05	4,2	1,42	1,55	-0,13	-8,4
07	0,77	1,13	1,04	0,09	8,7	1,76	2,00	-0,24	-12,0
10	0,81	1,17	1,03	0,14	13,6	1,59	2,11	-0,52	-24,6
11	0,90	1,17	1,01	0,16	15,8	-	2,36		_
12	0,95	1,20	1,00	0,20	20,0	-	2,52		
	* -	Deste t	rabalhc)		·····		<u></u>	
	** -	Calcula	do pelo) modelc	Wilso	n			
	DR1 =	Desvio	relativ	o entre	e _Y * e	2 ^{**}			
	DR2 =	Desvio	relativ	o entre	$\gamma_z^* =$	2 ^{**} 2			
	Desvic) relati	vo médi	o entre	$\gamma_i^* e$	$\gamma_{\pm}^{**} =$	8%		
	Desvic	n relatí	vo médi	o entre	$\gamma_z^* e$	r ^{**} =	8%		

GRAFICO V.5

55,0°C COEFICIENTES DE ATIVIDADE DO ETANOL(1) DA AGUA(2) Α Ε OBTIDOS NESTE TRABALHO PELO MÉTODO ARRASTE. COMPARAÇÃO COM DO AJUSTADO COEFICIENTES DE ATIVIDADE CALCULADOS PELO MODELO WILSON DE DADOS DE ELV(MERTL, 1972).

116

V.4 - Modificações na Aparelhagem

Algumas modificações podem ser feitas na aparelhagem a fim de ampliar seus limites de aplicabilidade e melhorar a qualidade dos coeficientes de atividade obtidos.

Mesmo quando um composto encontra-se a concentração finita na fase líquida, se a sua concentração no vapor for muito pequena, a análise do vapor efetuada num cromatógrafo equipado com detector de condutividade térmica não é de boa qualidade, devido a proximidade do límite de detectabilidade deste equipamento. Por ser mais sensível um detector de ionização de chama permite a determinação de um componente que esteja em concentrações muito pequenas no vapor, na faixa de ppm.

Por outro lado, quando a concentração do componente no vapor é alta, o volume da fase vapor dentro da célula de equilíbrio tem que ser o menor possível, pois caso contrário deixa de ser válida a hipótese considerada nas Equações (III.23) e (III.24) de que o número de mol do componente no vapor é desprezível diante de seu número de mol no líquido.

Construindo-se uma nova célula de equilíbrio, cuja saída do vapor saturado esteja localizada em seu topo, o líquido ocupará quase todo o volume da célula sem o risco de ser carregado pela corrente de vapor, de tal forma que o volume da fase vapor dentro da célula será muito pequeno. Assim, a metodologia de cálculo fica assegurada por condições experimentais favoráveis a ela.

Por dificultar o arraste de gotas de líquido para a tubulação que conduz o vapor para a válvula de amostragem, esta modificação da célula possibilita a utilização de vazões de gás inerte bem maiores do que as que foram utilizadas neste trabalho. A variação da composição das fases líquida e vapor

é mais rápida para vazões altas de gás de arraste, tornando viável o primeiro procedimento experimental e de cálculo utilizado neste trabalho, no qual a variação das concentrações dos componentes é acompanhada ao longo do tempo através de injeções periódicas de amostras do vapor no cromatógrafo, tal como é feito na determinação de coeficiente de atividade a diluição infinita.

No Apêndice B é apresentada uma estimativa do erro no valor das variáveis medidas neste trabalho e no valor dos coeficientes de atívidade calculados a partir destas variáveis. Esta análise demonstra que as medidas que mais influenciaram dos coeficientes de significativamente nos valores atividade obtidos foram a fração molar no vapor e no líquido. Assim, melhorando-se a precísão dos equipamentos de medidas destas melhora também a exatidão grandezas. coeficientes dos de atividade obtidos.

No caso da fração molar no vapor, para concentrações médias e elevadas de um componente, o detector de condutividade térmica proporciona análises de muito boa qualidade, porém para pequenas concentrações o mais indicado é o detector de ionização de chama.

Quanto à medida da fração molar no líquido, ela pode ser melhorada utilizando-se uma balança analítica, que não foi possível neste trabalho pois a célula de equilíbrio utilizada possui massa e volume muito grandes, inviabilizando o uso deste tipo de balança.

A construção de uma célula menor e mais leve possibilita o uso de balança analítica, além de reduzir o consumo de compostos químicos.

118

CAPITULO VI

CONCLUSÕES E SUGESTÕES

A proposta inicial deste trabalho era utilizar o equipamento do Método do Arraste para determinar coeficiente de atividade a concentrações finitas e a infinita diluição. Mas para trabalhar com soluções diluídas é necessário utilizar um cromatógrafo com detector de ionização de chama, não disponível no Laboratório de Propriedades Termodinâmicas durante o período de medidas experimentais. Por esta razão, neste trabalho só foram determinados coeficientes de atividade a concentrações finitas.

Os coeficientes de atividade a concentrações finitas do n-heptano em NMP obtidos neste trabalho 25.0°C a apresentam uma boa concordância com os coeficientes de atividade obtidos por Leroi com o mesmo método e com os coeficientes calculados a partir de dados de equilíbrio de fases (ELL, ELLV, excesso de entalpia e coeficiente de atividade diluição а infinita), confirmando a confiabilidade da aparelhagem montada e metodología utilízada para se trabalhar a concentrações da finitas.

A aparelhagem demonstrou ser adequada para trabalhar com sistemas contendo um solvente pouco volátil. Isto foi comprovado no caso do sistema n-heptano/NMP que forma uma mistura com comportamento longe do ideal, expresso pelos altos coeficientes de atividade do n-heptano.

Contudo, devido ao espalhamento nos valores dos atividade do benzeno em NMP, no coeficientes de momento a aparelhagem não é adequada para se obter valores de coeficientes de atividade de sistemas com comportamento próximo do ideal. Α utilização da aparelhagem com estes sistemas deve ser testada após serem efetuadas as melhorias experimentais sugeridas neste trabalho.

Os menores desvios para o sistema n-heptano/NMP

foram observados próximos da região de imiscibilidade, demonstrando o bom desempenho da aparelhagem na obtenção de dados experimentais próximo desta região, que é muito difícil de ser feita nos equipamentos tradicionais de medida de dados de ELV.

Para o sistema etanol/água. em aue dois 05 componentes são voláteis, os valores dos coeficientes de atividade obtidos neste trabalho concordam muito bem com os coeficientes de ELV termodinamicamente calculados a partir de dados as consistentes, na faixa de operações onde são válidas equações do Método do Arraste.

Os coeficientes de atividade a diluição infinita obtidos da extrapolação gráfica dos coeficientes de atividade a concentrações finitas obtidos neste trabalho para o sistema n-heptano/NMP a 25,0°C, 40,0°C e 50,0°C concordam muito bem com os valores existentes na literatura, que foram obtidos pelo Método do Arraste e pelo Método do Tempo de Retenção, demonstrando a capacidade da aparelhagem montada para determinar coeficientes de atividade a diluição infinita.

A aparelhagem é bastante simples por ser formada por equipamentos e acessórios que podem ser encontrados prontos no mercado, com exceção da célula de equilíbrio que deve ser construída numa vidraria, mas que também é uma peça simples e barata.

A operação da aparelhagem é simples e a obtenção dos dados é rápida. A concentrações finitas, utilizando-se apenas uma célula; em oito horas é possível trabalhar em média com cinco misturas líquidas.

A obtenção dos coeficientes de atividade dos componentes voláteis de uma mistura multicomponente na região de concentrações finitas, também pode ser feita nesta aparelhagem, desde que ocorra a separação dos picos de cada composto no cromatógrafo.

A aparelhagem deste trabalho também pode ser modificada possibilitando que se explore a capacidade do Método do Arraste com Análise da Fase Líquida (Hradetzky et al., 1990) na obtenção de coeficientes de atividade de compostos voláteis e não voláteis a concentrações finitas. As únicas partes da aparelhagem que devem ser substituídas são a célula de equilíbrio e a válvula de amostragem de vapor.

Uma característica muito importante do Método do Arraste que pode ser implantada em outros métodos de obtenção de dados de equilíbrio de fases é a amostragem do vapor com injeção direta no cromatógrafo. A amostragem direta melhora muito a exatidão dos dados experimentais além de aumentar a velocidade da coleta de dados. Principalmente quando se trabalha com soluções diluídas, os erros experimentais causados pela transferência de amostras através de seringas para o instrumento de análise são altos.

121

PROPRIEDADES FÍSICAS E ESPECIFICAÇÃO DE PRODUTOS OUÍMICOS

Na Tabela (A.1) são apresentadas as propriedades físicas dos compostos puros obtidas das seguintes refências : Reid et al., 1986; Gmehling e Onken, 1977.

TABELA A.1

PROPRIEDADES FÍSICAS DE COMPOSTO PURO

PROPRIE	DADE	HIDROGÊNIO	N-HEPTANO	N-METIL- PIRROLIDONA		
FORMULA MOLE	CULAR	H 2	C_H 7 10			
PESO MOLECUL	AR	2,016	100,205	99,13		
TEMPERATURA	CRÍTICA / K	33,2	540,30			
PRESSÃO CRÍT	ICA / atm	12,83	27,04	*****		
VOLUME CRÍTI	CO /cm ⁹ mol ⁻¹	65,1	432			
PARAMETRO DE	RACKETT	0,3060				
FATOR ACENTR	ICO	-0,218	0,349			
a TSONOPOULOS		0	0			
b TSONOPOULOS		0	0			
CONSTANTES	CONSTANTES A		6,8939	8,27890		
DE	DE B		1264,37	2570,300		
ANTOINE	С		216,64	273,150		
FAIXA DE VALIDADE DAS CONSTANTES ANTOINE		_	(-3,127)°C	(100,205)°C		

TABELA A.1 (CONTINUAÇÃO)

PROPRIEDADES FÍSICAS DE COMPOSTO PURO

PROPRIED	ADE	BENZENO	ETANOL	ĀGUA		
FORMULA MOLECI	ULAR	CH		H ₂ D		
PESO MOLECULA	R	78,114	46,069	18,015		
TEMPERATURA CI	RÍTICA / K	562,2	513,9	647,3		
PRESSÃO CRÍTI	CA / atm	48,3	60,6	57,1		
VOLUME CRÍTICO	D ∕cm ⁹ mol ⁻¹	259	167,1	218,297		
PARAMETRO DE P	RACKETT	0,2698	0,2502	0,2338		
FATOR ACENTRI	0	0,212	0,644	0,344		
^a tsonopoulos		· 0	0,0878	0,0279		
^b tsonopoulos		0	0,0572	0,0229		
CONSTANTES	A	6,8799	8,1122	8,0713		
DE	В	1196,760	1592,864	1730,63		
ANTOINE	С.	219,161	226,184	233,426		
FAIXA DE VAL CONSTANTES A	IDADE DAS ANTOINE	(8,80)°C	(20,93)°C	(1,100)°C		
EQUAÇÃO DE ANTOINE : log P ^{sat} = A - $\frac{B}{T + C}$ { P ^{sat} em mmHg T em °C						

A especificação dos compostos químicos é feita a

seguir:

1. N-HEPTANO

Procedência: Petroquímica União (PQU) Características: 100% puro (análise cromatográfica)

2. N-METIL-PIRROLIDONA

Procedência: PQU Características: 99,77% de pureza em base molar (análise cromatográfica)

3. BENZENO

Procedência: PQU Características: 99,90% de pureza em base molar (análise cromatográfica)

4. ETANOL

Fabricante: MERCK S.A. Características: "pro analysi", 99,8% de pureza em base molar (análise cromatográfica)

5. <u>AGUA</u>

Procedência: Laboratório de Propriedades Termodinâmicas - UNICAMP Características: destilada e deionizada, 100% pura (análise cromatográfica)

6. HIDROGÉNIO

Procedência: Laboratório de Hidrogênio - UNICAMP Características: ultra puro

ESTIMATIVA DO ERRO EXPERIMENTAL

Os erros que acompanham uma medida são classificados em duas categorias:

Erros determinados ou sistemáticos: possuem um valor definido e,
pelo menos em princípio, podem ser medidos (se detectados) e
computados no resultado final.
Erros indeterminados: não possuem valor definido, não são
mensuráveis e flutuam de um modo aleatório.

B.1 - Erros Sistemáticos

As limitações de cada peça da aparelhagem podem dar uma idéia do erro sistemático.

a.	Manômetro	(me	edida	d	а	pres	ssão	de	equilíbrio,	Ρ.	-)	
	precisão	:	Spt :		±	0,5	mmHç]		(B	. 1)

b. Termômetros (medida da temperatura de equilíbrio, T, e da temperatura ambiente, T_)

precisão : $S_{T} = \pm 0,5^{\circ}C$ (B.2) $S_{T} = \pm 0,5^{\circ}C$ (B.3)

c. Balança (medida da massa, m) precisão : $S_m = \pm 0,01$ g (B.4)

125

π

B.2 - Estimativa do Erro nas Variáveis P-x-y-y

B.2.1 - Pressão de Equilíbrio - P

Para estimar a precisão da Pressão de equilíbrio, P, utilizou-se o teorema de propagação de erro(Barford, 1985) enunciado a seguir.

Se uma quantidade q é função de várias quantidades medidas x, y, z, ... tal que q=f(x,y,z,...), a precisão de q pode ser expressa pela estimativa de seu desvio padrão, S_{o} , escrito como:

$$S_{q} = \pm \sqrt{\left(\frac{\partial q}{\partial x}\right)^{2}} S_{x}^{2} + \left(\frac{\partial q}{\partial y}\right)^{2}} S_{y}^{2} + \left(\frac{\partial q}{\partial z}\right)^{2}} S_{z}^{2} + \dots \qquad (B.5)$$

sendo S_x , S_y , S_z , ... os desvios padrão associados a x, y, z, ..., respectivamente.

A pressão de equilíbrio é calculada pela Equação (IV.5). As variáveis que influenciam significativamente no cálculo são P^L e T_c.

Da Equação (A.5) o desvio padrão na pressão é dado por :

$$S_{\rm P} = \pm \sqrt{\left(\frac{\partial P}{\partial P^{\rm L}}\right)^2} S_{\rm P} {\rm L}^2 + \left(\frac{\partial P}{\partial T_{\rm a}}\right)^2 S_{\rm T} {\rm a}^2 \qquad (B.6)$$

Calculando-se as derivadas parciais a partir da Equação (IV.5) tem-se:

$$\frac{\partial P}{\partial P} = \frac{0,997286663}{(B.7)}$$

 $\frac{\partial P}{L} = (1 + 1,818 \times 10^{-4} T_{a})$

$$\frac{\partial P}{\partial T_{a}} = - \frac{0,997286663 (1,818 \times 10^{-4}) P_{L}}{(1 + 1,818 \times 10^{-4} T_{a})^{2}}$$
(B.8)

Substituindo-se (B.1), (B.3), (B.7) e (B.8) em (B.6) é possível calcular o desvio padrão associado às medidas de pressão de equilíbrio apresentadas nas Tabelas (V.1-4,5,9-11,13-14,17). - Fazendo-se a média aritmética destes desvios obtem-se:

$$S_{\rm D} = \pm 0.4 \,\,\mathrm{mmHg} \tag{B.9}$$

ou ainda:

.

$$P = (P \pm 0, 4) \text{ mmHg}$$
 (B.10)

B.2.2 - Fração Molar no Líquido - x

A fração molar do componente 1 no líquido é calculada por:

$$x_{1} = \frac{n_{1}}{n_{1} + n_{2}}$$
(B.12)

sendo n_i o número de mol do componente i no líquido, que é definido por:
$$m_i = \frac{m_i}{M_i}$$
(B.12)

onde m_i é a massa de i pesada na balança e M_i seu peso molecular. Das Equações (B.11) e (B.12) obtem-se:

$$x_{1} = \frac{M_{1}}{M_{1}}$$
(B.13)
$$\frac{M_{1}}{M_{1}} + \frac{M_{2}}{M_{2}}$$

Assim, das Equações (B.5) e (B.13), é possível obter o desvio padrão associado a x_1, S_2 , da seguinte equação:

$$S_{x_{1}} = \pm \sqrt{\left(\frac{\partial x_{1}}{\partial m_{1}}\right)^{2}} S_{m_{1}}^{2} + \left(\frac{\partial x_{1}}{\partial m_{2}}\right)^{2}} S_{m_{2}}^{2}$$
(B.14)

sendo:

$$\frac{\partial x_{i}}{\partial m_{i}} = \frac{m_{z}}{M_{i} M_{z} \left(\frac{m_{i}}{M_{i}} + \frac{m_{z}}{M_{z}}\right)^{2}}$$
(B.15)

$$\frac{\partial x_{1}}{\partial m_{2}} = - \frac{m_{1}}{M_{1}} \frac{M_{2}}{M_{1}} \left(\frac{m_{1}}{M_{1}} + \frac{m_{2}}{M_{2}}\right)^{2}$$
(B.16)

Sabe-se que:

$$m_2 = m_{C2} - m_{C}$$
 (B.17)

$$m_{1} = m_{C1} - m_{C2} - m_{C}$$
 (B.18)

onde m é a massa da célula vazia e m a massa da célula com o ci componente i.

Da Equação (B.4) tem-se:

$$S_{m_{1}} = \pm \sqrt{S_{m_{C1}}^{2} + S_{m_{C2}}^{2} + S_{m_{C}}^{2}}$$
(B.19)

 $S_{m_2} = \pm \sqrt{S_{m_2}^2 + S_{m_2}^2}$ (B.20)

De (B.4) sabe-se que:

$$S = S = S = \pm 0,01 \text{ g}$$
 (B.21)
 $C_1 C_2 C_2$

obtendo-se:

$$S_{m} = \pm 0,017 \text{ g}$$
 (B.22)

$$S_{m_2} = \pm 0,014 \text{ g}$$
 (B.23)

Substituindo-se (B.15), (B.16), (B.22) e (B.23) em (B.14) calculam-se os desvios padrão associados a x_1 das Tabelas (V.5,9-11,13,14,17). Procedendo-se da mesma maneira para x_2 obtem-se o desvio padrão associado a esta variável. Finalmente,

calculando-se a média entre todos os valores de S = S obtidos, tem-se:

$$S_{x_{i}} = \pm 0,0003$$
 (B.24)

ou ainda:

$$x_i = x_i \pm 0,0003$$
 (B.25)

B.2.3 - Fração Molar no Vapor - y

A fração molar de um componente i no vapor, y_i, é calculada a partir da curva de calibração, deste componente no cromatógrafo dada pela Equação (IV.19), que rearranjada fica:

$$y_i = \frac{S_i}{k_i P_i}$$
(B.26)

Sendo y_i uma função de S_i e P, da Equação (B.5) obtem-se que a estimativa do desvio padrão em y_i , S_i , é dada por:

$$S_{y_{i}} = \pm \sqrt{\left(\frac{\partial y_{i}}{\partial S_{i}}\right)^{2}} S_{S_{i}}^{2} + \left(\frac{\partial y_{i}}{\partial P}\right)^{2}} S_{P}^{2}$$
(B.27)

sendo:

$$\frac{\partial \gamma_i}{\partial S_i} = \frac{1}{k_i P}$$
(B.28)

$$\frac{\partial y_i}{\partial P} = -\frac{S_i}{k_i P^2}$$
(B.29)

O desvio padrão em S, $S_{\rm S}$, é obtido dos dados medidos para ajustar as curvas de calibração dos compostos no cromatógrafo apresentados nas Tabelas (V.1-4). Por exemplo, no raso do n-heptano (Tabela (V.1)), quando a célula de equilíbrio foi mantida a 31,0°C foram analisadas cinco amostras do vapor. Canculando-se o valor médio das áreas do n-heptano resultantes destas cinco análises obtem-se \overline{S} =635353. O desvio padrão associado a esta média é calculado pela seguinte equação:

$$S_{\overline{S}} = \pm \sqrt{\frac{\sum_{i=1}^{NA} (S - \overline{S})_{i}^{2}}{NA - 1}}$$
 (B.30)

obtendo-se S_e=7090.

Repetindo-se este procedimento de cálculo para todas as temperaturas de equilíbrio das Tabelas (V.1-4) e fazendo-se a média dos desvios padrão obtem-se:

$$S_{\rm g} = \pm 17000$$
 (B.31)

Finalmente, calculando-se a média dos valores de S obtidos pelas Equações (B.9), (B.27-29) e (B.31) para todos os y_i valores de y_i, S_i e P das Tabelas (V.1-4) resulta:

$$S_{y_i} = \pm 0,003$$
 (B.32)

ou ainda:

$$y_{i} = y_{i} \pm 0,003$$
 (B.33)

B.2.4 - Coeficiente de atividade - γ

Para fazer uma estimativa do erro no valor dos `coeficientes de atividade calculados a partir dos dados experimetais obtidos neste trabalho, utiliza-se a equação de equilíbrio simplificada (II.17) que rearranjada fica:

$$\gamma_{i} = \frac{\gamma_{i} P}{x_{i} P_{i}^{\text{pat}}}$$
(B.34)

····

Assim sendo, de acordo com a Equação (B.5), tem-se:

$$S\gamma_{i} = \pm \sqrt{\left(\frac{\partial\gamma_{i}}{\partial\gamma_{i}}\right)^{2}} S_{\gamma_{i}}^{2} + \left(\frac{\partial\gamma_{i}}{\partialP}\right)^{2}} S_{P}^{2} + \left(\frac{\partial\gamma_{i}}{\partialx_{i}}\right)^{2}} S_{\chi_{i}}^{2} + \left(\frac{\partial\gamma_{i}}{\partialP_{i}^{sat}}\right)^{2}} S_{P_{i}^{sat}}^{sat}^{2}$$
(B.35)

As derivadas parciais obtidas da Equação (B.34)

são:

$$\frac{\partial \gamma_{i}}{\partial \gamma_{i}} = \frac{P}{x_{i} P_{i}^{sat}}$$
(B.36)

$$\frac{\partial \gamma_{i}}{\partial P} = \frac{\gamma_{i}}{x_{i} P_{i}^{\text{sat}}}$$
(B.37)

132

$$\frac{\partial \gamma_i}{\partial x_i} = -\frac{\gamma_i}{x_i^2} P_i^{aat}$$
(B.38)

$$\frac{\partial \gamma_i}{\partial P_i^{\text{sat}}} = -\frac{\gamma_i P}{x_i (P_i^{\text{sat}})^2}$$
(B.39)

Dos cálculos anteriores sabe-se que $S = \pm 0,003$, - $S_{P} = \pm 0,4$ mmHg e $S_{X} = \pm 0,0003$.

O valor experimental da pressão de saturação de um composto é considerado de boa qualidade quando a precisão desta grandeza é igual a ±0,01mmHg. Como a pressão de saturação foi calculada neste trabalho pela Equação de Antoine, a partir das constantes de Gmehling e Onken(1977), que é uma fonte confiável de dados de ELV, considera-se aqui que:

$$S_{\text{psat}} = \pm 0,01 \text{ mmHg} \qquad (B.40)$$

Através das Equações (B.35-40) foram calculados os desvios padrão de todos os coeficientes de atividade obtidos neste trabalho. Como os coeficientes de atividade referentes aos sistemas n-heptano/n-metil-pirrolidona(NMP), benzeno/NMP e etanol/água apresentam diferentes ordens de grandeza, calculou-se a média dos desvios padrão para cada sistema que são apresentadas na Tabela (B.1) a seguir.

TABELA B.1

ESTIMATIVA DOS DESVIOS PADRÃO ASSOCIADOS AOS COEFICIENTES DE ATIVIDADE OBTIDOS NESTE TRABALHO

SISTEMA	s _{ri}
N-HEPTANO/NMP	± 0,6
BENZENO/NMP	± 0,06
ETANOL/AGUA	± 0,05

APENDICE C

ESPECIFICAÇÃO DOS EQUIPAMENTOS

A especificação dos equipamentos é feita a seguir, sendo que o números a direita do nome dos equipamentos, entre parênteses, correspondem ao números da Figura (IV.1).

VALVULA ABRE-FECHA(2)

Fabrícante: PEMEM Modelo: esfera, 1/8 in

VALVULA CONTROLADORA DE PRESSÃO(3)

Fabricante: MICROMECANICA Modelo: 0.400.000.111

VALVULA AGULHA CONTROLADORA DE VAZÃO(4)

Fabricante: PEMEM Modelo: 1/8 in

VALVULA AGULHA COM DIAFRAGMA CONTROLADORA DE VAZÃO(5)

Fabricante: Instrumentos Científicos CG Ltda Modelo: 1/8 in

VALVULAS DE TRÊS VIAS(7, 38)

Fabricante: PEMEM Modelo: esfera, 1/8 in

BANHO TERMOSTÁTICO(10)

Fabricante: TECNAL Modelo: TE184, escala de $^{\circ}$ 0 C a 2 $^{\circ}$ 0 C, precisão de 0,1 $^{\circ}$ C

AGITADOR MAGNÉTICO(14)

Fabricante: PEMEM Modelo: AMA-18, 50 a 1100 RPM

VARIADORES DE VOLTAGEM(15, 17)

Fabricante: Sociedade Técnica Paulista Ltda Modelo: ATV 215 M

TERMOPARES(19, 22, 26)

Fabricante: IOPE Modelo: PR2, inox 304 ASTM, diâmetro externo de 1 mm, condutores tipo J, isolação mineral

INDICADOR DIGITAL DE TEMPERATURA(20,25)

Fabricante: IDPE Modelo:SPG20 CSE-8, escala de 0°C a 600°C, 8 canais

INDICADOR É CONTROLADOR ANALÓGICO DE TEMPERATURA(21)

Fabricante: ENGRO Modelo: 6000, precisão $\pm 1^{\circ}C$

CROMATOGRAFD(30)

Fabricante: Instrumentos Científicos CG Ltda Modelo: CG 35, equipado com detector de condutividade térmica

BANHO DE CIRCULAÇÃO (35)

Fabricante: PEMEM Modelo: escala de 0°C a 200°C, precisão de ± 0.5 C

INTEGRADOR ELETRONICO(36)

Fabricante: Varian Modelo: CDS 111

REGISTRADOR(37)

Modelo: SRG-GC, potenciométrico de um canal

FITAS DE AQUECIMENTO(41,42)

Fabricante: FISATON Modelo: para a tubulação: 7, Potência de 160W; para a válvula de amostragem: 8, Potência de 200W

BIBLIDGRAFIA

- ABBOTT, M.M., 1986. Low-Pressure Phase Equilibria: Measurement of VLE. Fluid Phase Equilibria, 29: 193-207.
- ANDERSON, T.F., ABRAMS, D.S. & GRENSII, E.A., 1978. Evaluation of Parameters for Nonlinear Thermodynamic Models. <u>AIChE J</u>., <u>24(1): 20-29.</u>
- BARFORD, N.C., 1985. Experimental Measurements: Precision, Error and Truth. Second edition, John Wiley & Sons, Great Britain.
- BARKER, J.A., 1953. Determination of Activity Coefficients from Total Pressure Measurements. <u>Austr. J. Chem.</u>, <u>6</u>: 207-210.
- BENEDICT, R.P., 1969. <u>Fundamentals of Temperature</u>, <u>Pressure and</u> <u>Flow Measurements</u>. Wiley, New York.
- BRUIN, S. & PRAUSNITZ, J.M., 1971. One Parameter Equation for Excess Gibbs Energy of Strongly Nonideal Liquid Mixtures. <u>Ind</u>. <u>Enq. Chem. Process Des. Develop.</u>, <u>10</u>(4): 562-571.
- CIOLA, R., 1973. <u>Introdução à Cromatografia em Fase Gasosa</u>. Editora Edgard Blücker Ltda.
- CORI, L. & DELOGU, P., 1986. Infinite Dilution Activity Coefficients of Ethanol-n-Alkanes Mixtures. <u>Fluid Phase</u> <u>Equilibria</u>, <u>27</u>: 103-118.
- DUHEM, P. & VIDAL, J., 1978. Extension of the Dilutor Method to Measurement of High Activity Coefficients at Infinite Dilution. <u>Fluid Phase Equilibria, 2</u>: 231-235.

138

- ECKERT, C.A., NEWMAN, B.A., NICOLAIDES, G.L. & LONG, T.C., 1981. Measurement and Application of Limiting Activity Coefficients. <u>AIChE J., 27(1): 33-40.</u>
- ELLIS, S.R.M. & JONAH, D.A., 1962. Prediction of Activity Coefficients at Infinite Dilution. <u>Chem. Eng. Sci.</u>, <u>17</u>: 971-976.
- FABRIES, J.F., GUSTIN, J.L. & RENON, H., 1977. Experimental Measurements of Phase Equilibrium Properties for Systems Containing n-Heptane, Benzene, n-Methylpyrrolidone and Monoethanolamine. Representation by the NRTL Equation. J. of Chem. and Eng. Data, 22(3): 303-308.
- FOWLIS, I.A. & SCOTT, R.P.W., 1963. A Vapour Dilution System for Detector Calibration. J. Chromatogr., <u>11</u>: 1-10.
- GATREAUX, M.F. & COATES, J., 1955. Activity Coefficients at Infinite Dilution. <u>AIChE J., 1(12)</u>: 496-500.
- GMEHLING, J. & ONKEN, U., 1977. <u>Vapor-Liquid Equilibrium Data</u> <u>Collection</u> - I1 - I7 & supplements. <u>DECHEMA</u>, Federal Republic of Germany.
- HALA, E., PICK, J., FRIED, V. & VILIM, O., 1967. <u>Vapor-Liquid</u> Equilibrium. Second Edition, Pergamon Press.
- HANDBOOK OF CHEMISTRY AND PHYSICS, 1986-87. 67th edition, CRC PRESS, Flórida, USA.
- HAYDEN, J.G. & O'CONNELL, J.P., 1975. A Generalized Method for Predicting Second Virial Coefficients. Ind. Eng. Chem. Process. Des. Dev., 14(3): 209-216.

HRADETZKY, G., WOBST, M., VOPEL, H. & BITTICH, H.J., 1990. Measurement of Activity Coefficients in Highly Dilute Solutions. Part I. <u>Fluid Phase Equilibria</u>, <u>54</u>: 133-145.

INTERNATIONAL CRITICAL TABLES, 1928. 1: 401.

- KIKIC, I., ALESSI, P. & FERMEGLIA, M., 1983. Prediction of Finite Concentration Behavior from Infinite Dilution Equilibrium Data. <u>Fluid Phase Equilibria</u>, <u>14</u>: 363-372.
- KLAUS, R.L. & VAN NESS, H.C., 1967. An Extension of the Spline Fit Technique and Applications to Thermodynamic Data. <u>AIChE</u> J., <u>13</u>(6): 1132-1136.
- KRÄHENBÜHL, M.A., 1987. Tratamento Termodinâmico de Dados de Equilíbrio Líquido-Vapor. Tese de Mestrado. Faculdade de Engenharia Química, Universidade Estadual de Campinas.
- KRUMINS, A.E., RASTOGI, A.K., RUSAK,M.E. & TASSIDS, D., 1980. Prediction of Binary Vapor-Liquid Equilibrium from One-Parameter Equations. <u>Can. J. Chem. Eng.</u>, <u>58</u>: 663-669.
- LANGE'S HANDBOOK OF CHEMISTRY, 1985. 13th edition, McGraw-Hill Book Company.
- LERDI, J.C., MASSON, J.C., RENON, H., FABRIES, J.F. & SANNIER, H., 1977. Accurate Measurement of Activity Coefficients at Infinite Dilution by Inert Gas Stripping and Gas Chromatography. <u>Ind</u>. <u>Eng. Chem. Process. Des. Dev.</u>, <u>16</u>(1): 139-144.
- MARSH, K.N., 1989. New Methods for Vapor-Liquid Equilibria Measurements. <u>Fluid Phase Equilibria</u>, <u>52</u>: 169-184.

- MARTINEZ, C.L.M., 1992. Avaliação de Métodos de Contribuição de Grupos para Uso em Cálculos de Equilíbrio Líquido-Vapor. Tese de Mestrado. Faculdade de Engenharía Química, Universidade Estadual de Campinas.
- MERTL, I., 1972. <u>Collect</u>. <u>Czech</u>. <u>Chem</u>. <u>Commun</u>., <u>37</u>: 366, in GMEHLING, J. & ONKEN, U., 1977. <u>Vapor-Liquid</u> <u>Equilibrium</u> <u>Data</u> <u>Collection</u> - I1 - I7 & supplements. <u>DECHEMA</u>, Federal Republic of Germany.
- PRAUSNITZ, J.M., ANDERSON, T.F., GRENS, E.A., ECLERT, C.A., HSIEH, R. & O'CONNELL, J.P., 1980. Computer Calculation for <u>Multicomponent Vapor-Liquid and Liquid-Liquid Equilibria</u>. New Jersey, Prentice-Hall.
- PRAUSNITZ, J.M., LICHTENTHALER, R.M. & AZEVEDO, E.G., 1986. <u>Molecular Thermodynamics of Fluid Phase Equilibria</u>. Second Edition, New Jersey, Prentice-Hall.
- PRESS, W.H., FLANNERY, B.P., TEULKOLSKY, S.A. & VETTERLING, W.T., 1986. <u>Numerical Recipes</u>. <u>The Art of Scientific Computing</u>. Cambridge University Press.
- REID, R.C., PRAUSNITZ, J.M. & POLING, B.E., 1987. <u>The Properties</u> of <u>Gases</u> and <u>Liquids</u>. Fourth Edition, McGraw-Hill.
- RICHON, D., ANTOINE, P. & RENON, H., 1980. Infinite Dilution Activity Coefficients of Linear and Branched Alkanes from C1 to Cø im n-Hexadecane by Inert Gas Stripping. <u>Ind. Eng. Chem.</u> <u>Process Des. Dev., 19</u>: 144-147.
- RITTER, J.J & ADAMS, N.K., 1976. Exponential Dilution as a Calibration Technique. <u>Anal. Chem.</u>, <u>48</u>(3): 612-619.

- SANTACESARIA, E., BERLENDIS, D. & CARRX, S., 1979. Measurement of Coefficients at Infinite Dilution by Stripping and Retention Time Methods. <u>Fluid Phase Equilibria</u>, <u>3</u>: 167-176.
- SCHREIBER, L.B. & ECKERT, C.A., 1971. Use of Infinite Dilution Activity Coefficients with Wilson's Equation. <u>Ind</u>. <u>Eng</u>. <u>Chem</u>. <u>Process Des</u>. <u>Develop</u>., <u>10</u>(4): 572-575.
- TASSIDS, D., 1971. A Single-Parameter Equation for Isotermal Vapor-Liquid Equilibrium Correlations. <u>AIChE</u> J., <u>17</u>(6) 1367-1371.
- THOMAS, E.R., NEWMAN, B.A., NICOLAIDES, G.L. & ECKERT, C.A., 1982. Limiting Activity Coefficientes from Differential Ebulliometry. J. Chem. Eng. Data, 27: 233-240.
- TIEGS, D., GMEHLING, J. MEDINA, A., SDARES, M., BASTOS, J., ALESSI, P. & KIKIC, I., 1986. Activity Coefficients at Infinite Dilution - Part 1-2. DECHEMA. Federal Republic of Germany.
- TSONOPOULOS, C., 1974. An Empirical Correlation of Second Virial Coefficients. <u>AIChE</u> J., <u>20</u>(2): 263-271.
- WALAS, S.M., 1985. <u>Phase Equilibria in Chemical Engineering</u>. U.S.A., Butterworth Publishers.
- WENDHAUSEN, V.M., 1992. Medidas de Pressão Total de Misturas Binárias de Baixa Volatilidade. Tese de Mestrado. Faculdade de Engenharia Química, Universidade Estadual de Campinas.
- WILHELM, E. & BATTINO, R., 1973. Thermodynamic Functions of the Solubilities of Gases in Liquids at 25°C. <u>Chemical Reviews</u>, <u>73(1): 1-9</u>.

- WILHELM, E. BATTINO, R. & WILCOCK, R.J., 1977. Low-Pressure Solubility of Gases in Liquid Water. <u>Chemical Reviews</u>, <u>77</u>(2): 219-261.
- WOBST, M., HRADETZKY, G. & BITTRICH, H.J., 1992. Measurement of Activity Coefficients in Highly Dilute Solutions. Part II. Fluid Phase Equilibria, 77: 297-312.

•

ABSTRACT

This work treats the design and construction of an apparatus to avaluate the potential of the Stripping Method for determination of activity coefficients at infinite dilution and at finite concentration.

An experimental and calculation methodology has been developed and tested to measure isothermal data of systems n-heptane/n-methylpyrrolidone(NMP), benzene/NMP and ethanol/water in the range $25,0^{\circ}$ C to $55,0^{\circ}$ C.

It was found the limits of applicability for the apparatus, that is suitable for determining activity coefficient of the volatile compounds of a liquid mixture.