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Resumo 

O foco de estudo neste trabalho é a cristalização, processo bastante 

utilizado industrialmente, principalmente na obtenção de produtos de alto valor 

agregado nas indústrias farmacêuticas e de química fina. Embora seja um 

processo de clássica utilização, seus mecanismos, sua modelagem e o real 

controle de sua operação ainda requerem estudos. A tese apresenta discussões e 

desenvolvimentos na área de modelagem determinística detalhada do processo e 

sua otimização, tanto por métodos determinísticos quanto estocásticos. 

A modelagem é discutida detalhadamente e os desenvolvimentos 

presentes na literatura de métodos numéricos aplicáveis à solução do balanço de 

população, parte integrante da modelagem, são apresentados com enfoque nos 

processos de cristalização e nas principais vantagens e desvantagens. 

Estudos preliminares de melhoria do processo de cristalização em modo 

batelada operada por resfriamento indicam a necessidade de otimização da 

política operacional de resfriamento. Uma vez que o método determinístico de 

otimização de Programação Quadrática Sucessiva se apresenta ineficiente para 

resolução do problema de otimização, a utilização de Algoritmo Genético, um 

método estocástico de otimização bastante estabelecido na literatura, é avaliada, 

para a busca do ótimo global deste processo, em um estudo pioneiro na literatura 

de aplicação dessa técnica de otimização em processos de cristalização. Uma vez 

que o uso de Algoritmos Genéticos exige que se executem sucessivas corridas 

com diferentes valores para os seus parâmetros no intuito de se aumentar a 

probabilidade de alcance do ótimo global (ou suas cercanias), um procedimento 

original, geral e relativamente simples é desenvolvido e proposto para detecção do 

conjunto de parâmetros do algoritmo de influência significativa sobre a resposta de 

otimização. A metodologia proposta é aplicada a casos de estudo gerais, de 

complexidades diferentes e se mostra bastante útil nos estudos preliminares via 

Algoritmo Genético. O procedimento é então aplicado ao problema de otimização 
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da trajetória de resfriamento a ser utilizada em um processo de cristalização em 

modo batelada. 

Os resultados obtidos na tese apontam para a dificuldade dos métodos 

determinísticos de otimização em lidar com problemas de alta dimensionalidade, 

levando a ótimos locais, enquanto os métodos evolucionários são capazes de se 

aproximar do ótimo global, sendo, no entanto, de lenta execução. O procedimento 

desenvolvido para detecção dos parâmetros significativos do Algoritmo Genético é 

uma contribuição relevante da tese e pode ser aplicado a qualquer problema de 

otimização, de qualquer complexidade e dimensionalidade. 
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Abstract 

This work is focused on crystallization, a process widely used in industry, 

especially for the production of high added-value particles in pharmaceutical and 

fine chemistry industries. Although it is a process of established utilization, its 

mechanisms, modeling and the real control of its operation still require research 

and study. This thesis presents considerations and developments on the detailed 

deterministic modeling area and the process optimization with both deterministic 

and stochastic methods. 

The modeling is discussed in detail and the literature developed numerical 

methods for the population balance solution, which is part of the modeling, are 

presented focusing on crystallization processes and on the main advantages and 

drawbacks. 

Preliminary studies on batch cooling crystallization processes improvement 

drive to the need of cooling operating policy optimization. Since the Sequential 

Quadratic Programming deterministic method of optimization is inefficient for the 

optimization problem, the use of Genetic Algorithm (GA), a stochastic optimization 

method well established in literature, is evaluated in the global optimum search for 

this process, in a pioneering literature study of GA application in crystallization 

processes. Since the GA requires that many runs, with different values for its 

parameters, are executed, in order to increase the probability of global optimum (or 

its neighborhood) achievement, an original, general and relatively simple 

procedure for the detection of the parameters set with significant influence on the 

optimization response is developed and proposed. The proposed methodology is 

applied to general case studies, with different complexities and is very useful in the 

preliminary studies via GA. The procedure is, then, applied to the cooling profile 

optimization problem in a batch cooling optimization process. 

The results of the study presented in this thesis indicate that the 

deterministic optimization methods do not deal well with high dimensionality 

problems, leading to achievement of local optima. The evolutionary methods are 
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able to detect the region of the global optimum but, on the other hand, are not fast 

codes. The developed procedure for the significant GA parameters detection is a 

relevant contribution of the thesis and can be applied to any optimization problem 

(of any complexity and of any dimensionality). 
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Capítulo 1 - Introdução 

Existem muitas maneiras pelas quais a cristalização a partir de solução 

é conduzida, incluindo-se cristalização evaporativa, por adição de anti-solvente 

ou pelo resfriamento da solução. A operação de um cristalizador, seja em modo 

contínuo ou em modo batelada, deve satisfazer as especificações do cliente 

para a pureza do produto e para a distribuição de tamanhos de cristal e as 

necessidades da planta produtiva para uma produção econômica e livre de 

custos adicionais, como os decorrentes de complicações das operações 

posteriores à cristalização. A distribuição de tamanho de cristal gerada afeta 

também outras características, como a taxa de dissolução ou fluidez. De modo 

a garantir que os objetivos, tanto de processo quanto de produto, sejam 

alcançados, todas as variáveis que afetam o processo de cristalização devem 

ser controladas dentro de uma faixa aceitável, a qual é ditada pela natureza 

química do soluto, do solvente e de possíveis impurezas presentes. Para 

satisfazer as necessidades de melhoria de processo e melhor condução do 

mesmo, a modelagem detalhada do processo é necessária. Quando se trata de 

cristalizadores operados em modo batelada, a análise de processo é mais 

complicada do que aquela em cristalizadores em modo contínuo, 

principalmente devido às dificuldades encontradas em sistemas batelada: a 

massa e superfície dos cristais variam de modo complexo durante o processo, 

como função do tempo. 

1.1 Objetivos 

O objetivo desta tese é apresentar um estudo detalhado da 

cristalização, com abrangência sobre as etapas de modelagem determinística 

detalhada e sobre otimização de políticas operacionais. Dentre os objetivos, 

destacam-se: 

• Estabelecimento do modelo determinístico detalhado do 

processo de cristalização; 



 2 

• Levantamento dos métodos numéricos para resolução do 

balanço de população mais usuais na literatura, com 

considerações relativas aos seus principais aspectos positivos e 

negativos, tempo computacional de resolução e incoerências 

apresentadas, fundamentalmente quando esses métodos são 

aplicados a processos de cristalização. 

• Elaboração de software para avaliação e melhoria de processos 

de cristalização; 

• Identificação da influência das variáveis de processo; 

• Avaliação de melhores políticas operacionais; 

• Avaliação das potencialidades de algoritmos determinísticos e 

estocásticos de otimização no tratamento do problema de 

otimização de políticas operacionais na cristalização; 

• Desenvolvimento de um procedimento baseado em estatística 

para detecção de parâmetros significativos do método 

estocástico de otimização. 

1.2 Organização da Tese 

O Capítulo 2 apresenta o processo de cristalização e discute tópicos 

relativos a seus mecanismos e sua modelagem. Fazem parte ainda do capítulo 

considerações acerca de problemas de otimização, aplicados a processos. O 

método determinístico de otimização por Programação Quadrática Sucessiva e 

o método estocástico Algoritmo Genético são apresentados e discutidos quanto 

à estrutura de funcionamento e seus parâmetros. 

A modelagem determinística detalhada do processo de cristalização e 

estudos preliminares de melhorias de processo são apresentados no Capítulo 

3, no qual o método de Programação Quadrática Sucessiva é utilizado para 

gerar informações de melhorias de processo em tentativas de otimização. 

No Capítulo 4, o balanço de população é detalhadamente discutido, 

uma vez que sua equação é de tratamento matemático/numérico difícil e ela, 

indefectivelmente, faz parte de qualquer modelagem determinística de 

processos de cristalização. 
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O Capítulo 5 é responsável por apresentar a ferramenta computacional 

desenvolvida, utilizando-se da modelagem e de métodos de otimização, para 

estudos de desenvolvimento de processos orientados para especificações de 

produto. Segue-se a isso o estudo do perfil ótimo de temperatura em diversos 

sistemas solvente-soluto, de modo a se atingir a desejada especificação de 

produto, o que é determinado por sua aplicação. 

A otimização do processo de cristalização do ácido adípico é então 

considerada no Capítulo 6, tanto por Programação Quadrática Sucessiva 

quanto por Algoritmo Genético, e os resultados obtidos por ambas as técnicas 

de otimização e o seu desempenho são discutidos. 

A utilização do Algoritmo Genético mostrou que havia uma deficiência 

na literatura quanto a uma metodologia de detecção de seus parâmetros que 

apresentam influência significativa sobre o problema de otimização 

considerado e, portanto, no Capítulo 7, um procedimento inovador, geral e de 

fácil utilização é proposto e aplicado a diferentes casos de estudo de 

dimensionalidade e complexidade diversas. 

O procedimento proposto é, então, no Capítulo 8, aplicado ao problema 

de otimização, por Algoritmo Genético, da política operacional de resfriamento 

da cristalização, em modo batelada, do ácido adípico. 

Por fim, o Capítulo 9 apresenta as conclusões deste trabalho e 

sugestões para trabalhos futuros. 

O fluxograma da Figura 1 ilustra de que forma a tese está organizada, 

com as inter-relações entre capítulos. 
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Figura 1: Fluxograma ilustrando as inter-relações entre capítulos da tese 

1.3 Contribuições da Tese 

Dentre as contribuições desta tese, destacam-se: 

• Desenvolvimento de ferramenta computacional para avaliação, 

otimização e projeto de processos de cristalização; 

• Avaliação do impacto dos parâmetros e estratégias operacionais 

no desempenho de processos de cristalização; 
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• Formulação dos procedimentos de otimização com a proposição 

e avaliação de diferentes funções objetivo; 

• Avaliação do desempenho de Algoritmo Genético para solução 

do problema matemático de otimização de cristalização, em um 

trabalho pioneiro na literatura; 

• Desenvolvimento e proposta de procedimento geral para 

identificação dos parâmetros do Algoritmo Genético de influência 

significativa em qualquer problema de otimização resolvido por 

esse método estocástico. 
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Capítulo 2 – Conceitos Fundamentais 

2.1. Introdução 

Cristalização é uma técnica de separação e purificação empregada na 

produção de uma ampla gama de materiais. Teoricamente, a cristalização pode 

ser definida como uma mudança de fase em que um produto cristalino é obtido 

a partir de uma solução (Myerson, 1993). Cristalizadores operados em batelada 

são usados na produção de cristais de química fina, especialidades e princípios 

ativos de fármacos, além de encontrar aplicações nas indústrias alimentícias, 

como alimentos funcionais, sendo muitas vezes a produção desses processos 

de baixa tonelagem, mas com alto valor agregado e com alta pureza (Mullin, 

1988; McCabe et al., 1993; Rohani et al, 2005; Hojjati e Rohani, 2005). Para o 

estudo determinístico detalhado da modelagem e de otimização de políticas 

operacionais a que se propõe esta tese, este capítulo traz alguns conceitos 

fundamentais sobre a cristalização, sua modelagem, seu modo de operação e 

sobre problemas de otimização, por resolução determinística ou estocástica. 

2.2. Aspectos gerais sobre cristalização 

A força motriz para qualquer processo de cristalização é a 

supersaturação, que representa a distância da concentração do sistema em 

relação à concentração de saturação, também chamada de concentração de 

equilíbrio (representada pela curva de solubilidade do soluto no solvente como 

função da temperatura, Figura 1) e cuja geração no sistema pode-se dar de 

maneiras diversas. Dentre as diversas maneiras de se manipular a 

supersaturação durante o curso da batelada, inclui-se o resfriamento da 

solução (se a solubilidade do soluto aumenta fortemente com a temperatura), a 

evaporação do solvente e adição de anti-solvente. 
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Figura 1: Regiões de supersaturação 

Em um processo de cristalização, uma massa discreta de cristais, com 

determinada distribuição de tamanhos, é produzida. Os fenômenos cinéticos 

responsáveis pela retirada de soluto da solução e inclusão em rede cristalina 

são nucleação, que envolve nucleação primária e secundária, e crescimento 

dos cristais já existentes em solução. Além desses fenômenos, há que se 

atentar para a ocorrência de aglomeração entre cristais e quebra dos mesmos, 

uma vez que esses fenômenos, embora não retirem soluto da solução, 

modificam a distribuição de tamanho dos cristais (CSD – Crystal Size 

Distribution) já existentes. 

Em qualquer processo de cristalização, as características das 

partículas formadas influenciam na seleção ou escolha de todas as operações 

unitárias posteriores, além de, incontestavelmente, determinar a qualidade e 

aplicabilidade do produto formado. O tamanho e forma das partículas em 

produtos particulados são importantes por muitas razões. A eficiência de 

qualquer processo de produção de material particulado depende de sua forma, 

de seu tamanho e sua distribuição: a forma do cristal de muitos fármacos 

influencia nas taxas de dissolução dos mesmos, o que leva a uma variação da 

biodisponibilidade para cristais de diferentes formas; um produto de tamanho 

médio muito pequeno é difícil de ser centrifugado, de lavar e ensacar; muitos 

produtos devem ser dissolvidos para uso subseqüente e uma faixa larga de 

tamanhos leva a uma variação no tempo necessário para a dissolução.  De 

modo a satisfazer requisitos relacionados à qualidade do produto final, todas as 

variáveis que afetam o processo de cristalização devem ser controladas dentro 
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de uma faixa aceitável, através da manipulação de variáveis do processo em 

um esquema de controle automático, seja na forma de um controlador ótimo 

em malha aberta (determinação offline) ou um controlador feedback tradicional 

(PID) ou preditivo. A disponibilidade de um modelo matemático confiável para 

estudos do comportamento dinâmico é importante para fins de projeto, 

otimização e controle e é válido, portanto, o investimento em estudos 

aprofundados para desenvolvimento de modelo matemático detalhado do 

processo de cristalização. 

2.3 Cinética e Mecanismos de Cristalização 

A cinética de um processo de cristalização é caracterizada em termos 

de dois fenômenos principais: nucleação e crescimento do cristal. A nucleação 

consiste na formação de novos cristais, enquanto o crescimento é o processo 

através do qual os cristais já existentes se tornam maiores. A nucleação e o 

crescimento dos cristais são fenômenos competitivos, já que ambos consomem 

massa de soluto durante o processo de cristalização. Dois outros fenômenos 

podem se fazer presentes e, apesar de não consumirem massa de soluto da 

solução, alteram a distribuição de cristais nos diversos tamanhos de partícula 

(alteram a CSD): a aglomeração e a quebra de cristais. 

2.3.1 Nucleação 

A nucleação primária ou espontânea ocorre na ausência de cristais e 

está associada a altos níveis de supersaturação. Na nucleação primária 

homogênea, a formação de novas partículas não é influenciada por sólidos de 

qualquer tipo, incluindo as paredes do cristalizador ou as partículas 

submicroscópicas de substâncias estranhas, e a formação de uma nova fase 

se dá por colisão de partículas de soluto que se aglomeram. Na nucleação 

primária heterogênea, uma substância estranha constituída de partículas finas 

está presente na solução na qual ocorre a cristalização, catalisando um 

aumento da taxa de nucleação. A nucleação heterogênea ocorre em níveis de 

supersaturação significativamente menores do que os requeridos para a 

homogênea, mas, mesmo assim, freqüentemente esses níveis de 

supersaturação ainda são muito altos para a formação de cristais de boa 

qualidade (Rawlings et al., 1993). A nucleação secundária, por definição, 
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ocorre somente quando cristais do soluto em consideração já estão presentes. 

Como este é quase sempre o caso em cristalizadores, a nucleação secundária 

é o mecanismo dominante na maioria dos processos industriais. Ao contrário 

da nucleação primária, que requer supersaturações relativamente altas, a 

nucleação secundária já ocorre em valores de supersaturação de baixos a 

moderados, o que leva à formação de cristais de boa qualidade. 

2.3.2 Crescimento 

O crescimento de cristais em uma solução pode ser descrito de 

maneira simplificada como um processo em duas etapas, que envolve: (1) 

transferência de massa, por difusão ou convecção, do soluto do seio da 

solução para a superfície do cristal, seguida por (2) reação na superfície, na 

qual as unidades de crescimento são integradas à rede cristalina. Para 

compostos muito solúveis, a etapa de integração superficial em geral não é 

limitante. Para solutos pouco solúveis, a integração superficial é o passo 

limitante. Além da solubilidade, também o tamanho do cristal e o nível de 

supersaturação têm efeito sobre qual dos dois passos de crescimento é 

dominante. Para cristais muito pequenos e valores muito baixos de 

supersaturação, a integração superficial é sempre a etapa dominante no 

processo de crescimento. Para a maioria dos compostos, entretanto, ambas as 

etapas devem ser levadas em conta no cálculo da taxa de crescimento 

(Bermingham et al., 2001). 

2.4 Cristalização em Modo Batelada Resfriada e suas Respostas a 

Diferentes Políticas Operacionais 

Uma cristalização típica em batelada por resfriamento se inicia com a 

alimentação de uma corrente quente (temperatura dependente de cada 

problema específico de cristalização) de uma solução não saturada a um 

tanque agitado, dotado de sistema de resfriamento (jaqueta / serpentina). A 

Figura 2 ilustra um cristalizador industrial dotado de jaqueta, agitador e 

chicanas. A supersaturação é criada por resfriamento, levando à ocorrência 

dos diversos mecanismos cinéticos (nucleação, crescimento, aglomeração e 

quebra). 
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Figura 2: Cristalizador industrial 

Enquanto houver supersaturação, os fenômenos cinéticos da 

cristalização se fazem presentes. No entanto, a magnitude de cada mecanismo 

é função da sua dependência em relação à supersaturação, dependência esta 

explicitada na expressão matemática de cada fenômeno. A CSD obtida ao final 

da batelada depende, portanto, do perfil de supersaturação seguido durante o 

curso do processo, evidenciando a importância da taxa de resfriamento 

empregada (Mullin, 1993). 

Na política operacional de resfriamento natural, o qual consiste em se 

passar fluido refrigerante a uma temperatura e vazão fixas pelo sistema de 

resfriamento, um grande pico de supersaturação é gerado nos instantes iniciais 

do processo de cristalização, devido ao alto gradiente de temperatura entre a 

solução e o fluido refrigerante, como mostrado na Figura 3. Esse pico se deve 

a uma queda muito rápida da temperatura da solução nos estágios iniciais da 

batelada. Isto faz aumentar a taxa de nucleação logo no início da batelada e o 

resultado deste tipo de operação são cristais pequenos com uma larga CSD ou 

ainda a obtenção de uma CSD final bimodal, caso tenha havido semeadura. 
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Figura 3: Resfriamento natural e controlado em cristalização em modo batelada 

por resfriamento: perfis de temperatura e de supersaturação. 

A diminuição do pico de supersaturação melhora significativamente o 

desempenho do processo. Para geração de um pico pequeno de 

supersaturação, que leva à nucleação não excessiva, e para a posterior 

manutenção da supersaturação em nível praticamente constante e 

relativamente baixo, uma política de resfriamento controlado deve ser aplicada. 

No resfriamento programado, o nível de supersaturação é calculado de forma 

tal que se mantenha dentro do limite da zona metaestável em toda a batelada, 

o que minimiza a taxa de nucleação primária. Neste tipo de operação, a curva 

de resfriamento cai lentamente nos estágios iniciais e mais rapidamente no 

final (Mullin, 1993), conforme ilustra a Figura 3. 

Na presença de sementes de cristal, a nucleação secundária pode ser 

suprimida. Aumentando-se a carga de semeadura, reduz-se a supersaturação 

em todos os modos de resfriamento (Figura 4). Em cristalização semeada, a 

magnitude da supersaturação deve ser controlada de tal maneira que o 

mecanismo necessário prevaleça: se a taxa de crescimento prevalece sobre a 

taxa de nucleação secundária, uma CSD estreita e unimodal, com um tamanho 

médio de cristal grande é obtida. Estes objetivos podem ser alcançados com o 

resfriamento e semeadura adequados. A quantidade de sementes necessárias 

para superar a nucleação secundária depende do tamanho médio, da 

quantidade e da qualidade das sementes, assim como da política operacional 

(Hojjati e Rohani, 2005). 
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Figura 4: Diferentes curvas de operação em cristalização semeada e não 

semeada 

2.5 Modelagem Matemática da Cristalização 

A modelagem completa de um processo de cristalização envolve 

balanço de massa (uma massa de soluto deixa a solução e se transforma em 

cristais, seja na forma de novos núcleos cristalinos, seja incorporando-se a 

estruturas cristalinas já existentes), balanço de energia (no processo de 

resfriamento, calor é retirado da solução pela passagem de um fluido 

refrigerante pela camisa / jaqueta que envolve o cristalizador) e balanço de 

população (que descreve de que forma os cristais se distribuem em diversos 

tamanhos de partícula, durante o curso do processo). No balanço de 

população, todos os fenômenos cinéticos responsáveis pela geração e 

distribuição de cristais em tamanhos variados são levados em consideração. 

São estes fenômenos cinéticos que caracterizam o andamento de um processo 

de cristalização, sendo a supersaturação existente a força motriz significante 

que desencadeia a sua ocorrência. 

Não somente a cristalização se utiliza do balanço de população: 

qualquer processo que envolva formação, crescimento, aglomeração ou quebra 

de entidades, sejam elas cristais, bolhas ou células, lança mão dessa 

abordagem. Uma das grandes dificuldades nesses processos, no entanto, é 

que, embora a estrutura teórica de abordagem para sua modelagem 

determinística (o balanço de população) esteja já bastante estabelecida, a 

solução do modelo resultante é inexistente em forma analítica na grande 
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maioria dos casos. A equação do balanço de população (PBE – Population 

Balance Equation) é diferencial parcial hiperbólica e nenhum método numérico 

geral foi desenvolvido de modo a produzir uma solução eficiente e precisa para 

uma ampla classe de processos, sendo que a escolha do melhor método é 

dependente do caso de estudo em que se vai aplicar a PBE. 

A equação referente ao balanço de população geral quando aplicada a 

processos de cristalização em que se desconsideram variações espaciais é 

apresentada na Equação (2.1) 
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O termo tn ∂∂ /  fornece a mudança da densidade em número com 

relação ao tempo em um cristalizador (regime transiente). A expressão 

LGn ∂∂ /)(  descreve a diferença entre cristais crescendo para dentro ou para 

fora do intervalo dL, devido à taxa de crescimento de cristal G = dL/dt. O termo 

n( tVV ∂∂ / ) considera mudanças no volume em relação ao tempo (por exemplo, 

o decréscimo de volume em cristalizadores evaporativos operados de modo 

batelada devido à evaporação do solvente). Os parâmetros D(L) e B(L) 

representam as taxas de desaparecimento e aparecimento, respectivamente. 

Esses eventos incluem aglomeração, nucleação e quebra. Finalmente, o termo 
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 fornece a soma de todos os fluxos de partículas entrando e 

saindo do cristalizador. 

No caso de cristalização batelada operada por resfriamento, o balanço 

populacional se reduz a: 
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Como a PBE é uma equação diferencial parcial com relação ao tempo 

e ao tamanho de partícula (n(L,t)), são necessárias uma condição inicial e uma 

condição de contorno para sua resolução (Bermingham et al., 2001): 
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=)0,(Ln distribuição inicial (2.4) 

Na Equação (2.3), o termo ( )tB0  indica taxa de aparecimento de 

partículas de tamanho zero e ),0( tGL  representa a taxa de crescimento de 

cristais de tamanho zero. 

A modelagem da cristalização, portanto, envolve equações integro-

diferencias (na grande maioria das vezes, os termos relativos à aglomeração e 

quebra na PBE são representados por equações integrais sobre o tamanho das 

partículas). A evolução, durante o tempo da batelada, da CSD, da 

concentração de soluto e da temperatura do cristalizador pode ser 

completamente descrita pela solução das equações do modelo determinístico 

(os balanços de massa, energia e população). No entanto, a solução 

simultânea da equação parcial hiperbólica que compõe o balanço de população 

e das equações diferenciais ordinárias representativas dos balanços de massa 

e energia pode ser uma tarefa extraordinária e a literatura apresenta uma série 

de trabalhos dedicados a desenvolver métodos numéricos de resolver a PBE 

em um estudo caso a caso (Sarkar et al., 2006). O Capítulo 4 desta tese faz um 

levantamento de vários métodos da literatura e discute-os, com enfoque em 

processos de cristalização. 

2.6 Políticas Operacionais e Otimização Matemática Aplicada a Processos 

de Cristalização 

Uma solução supersaturada não está em equilíbrio e, de modo a 

alcançar o equilíbrio, a solução supersaturada cristaliza. O processo de 

incorporação de soluto, que deixa a solução, a uma rede cristalina ocorre 

fundamentalmente, como já exposto, por dois mecanismos cinéticos: nucleação 

e crescimento. Apesar de serem mecanismos competitivos, uma vez que 

ambos retiram soluto da solução e aumentam a massa cristalina, suas cinéticas 

são bastante diferentes, principalmente no que concerne à dependência da 

força motriz do processo, a supersaturação. Além desses dois mecanismos 

fundamentais, a aglomeração e quebra de cristais podem se fazer presentes e 

afetar a distribuição de partículas cristalinas nos diversos tamanhos ao longo 

do curso do processo. Uma vez iniciada a cristalização, portanto, a 

supersaturação pode ser consumida por uma combinação dos seus 
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mecanismos cinéticos. É essa relação entre nucleação, crescimento, 

aglomeração e quebra que controla a distribuição de tamanho de cristais do 

produto obtido e é, portanto, um aspecto crucial de processos de cristalização 

industrial. 

Uma série de trabalhos na literatura lida com o problema de otimização 

de cristalização em modo batelada operada por resfriamento. O trabalho 

pioneiro foi o de Mullin e Nyvlt (1971), seguido dos de Jones (1974) e Jones e 

Mullin (1974), que o apresentaram tanto teórica quanto experimentalmente. 

A etapa de otimização do processo de cristalização em modo batelada 

operado por resfriamento envolve geralmente a determinação da trajetória 

ótima de resfriamento (ou conjuntamente, da semeadura ótima) a ser usada em 

um esquema de controle integrado ao problema de otimização, devido ao fato 

de que a CSD obtida ao final da batelada depende do perfil de supersaturação 

(e da semeadura) seguido durante o curso do processo. Em cristalizadores 

operados por resfriamento em modo batelada, uma das maneiras mais usadas 

na indústria, a otimização tem sido tratada tradicionalmente com relação ao 

perfil de resfriamento e características da semeadura, de modo a manter a 

supersaturação em nível ótimo durante a operação (Sarkar et al., 2006). A 

determinação da trajetória ótima é feita pela resolução de um problema 

matemático de otimização. Seu cálculo é feito objetivando minimizar ou 

maximizar um critério de desempenho pré-determinado. A definição do critério 

de desempenho, a chamada função objetivo, é feita baseada em termos da 

necessidade ou metas de produção da planta ou qualidade do produto. Os 

objetivos de otimização em processos de cristalização em modo batelada são 

definidos usualmente como função da CSD final ou de propriedades a ela 

relacionadas. Normalmente, deseja-se minimizar a nucleação e maximizar o 

crescimento do cristal, além de obter uma CSD final com baixo desvio padrão 

de distribuição. A Equação (2.5) é uma exemplificação de um possível 

problema de otimização em um processo de cristalização. Nessa equação, n 

representa a função de distribuição, os índices n e s representam, 

respectivamente, CSDs provenientes de cristais nucleados e de sementes, L 

representa o tamanho característico dos cristais e T é a temperatura. 
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O problema de otimização matemática do processo de cristalização é, 

portanto, postulado em termos de minimização ou maximização de 

características da CSD, estando sujeito ao modelo do processo (os balanços 

de massa, energia e população), e a possíveis restrições de processo e projeto 

(tais como taxa máxima possível de resfriamento, imposição de perfis 

decrescentes de temperatura e produtividade mínima aceitável da planta). Tal 

tipo de abordagem para a otimização do processo de cristalização se enquadra 

dentro da teoria de controle ótimo, uma técnica na qual o sinal de controle 

otimiza um certo índice de avaliação. Em um problema de controle ótimo, 

tendo-se as equações dinâmicas do processo e o critério de desempenho, o 

problema de otimização é formulado matematicamente de modo a minimizar 

(maximizar) a função objetivo, sujeitas às restrições dinâmicas/de processo, 

admitindo-se o conhecimento dos valores iniciais das variáveis de estado e 

estando livres seus valores finais. 

Para a solução do problema de otimização, a literatura apresenta uma 

série de métodos, os quais se dividem fundamentalmente, segundo a teoria 

clássica da literatura, em métodos determinísticos e métodos estocásticos de 

otimização, conforme descrito no item a seguir. 

2.7 Métodos Determinísticos e Estocásticos para Resolução de Problemas 

Matemáticos de Otimização 

Em qualquer problema matemático de otimização, deseja-se minimizar 

ou maximizar uma determinada função objetivo, sujeita a restrições de 

igualdade e desigualdade, conforme descrito na Equação (2.6), em que se 

deseja minimizar a função f(x), que está sujeita a m restrições de igualdade e n 

restrições de desigualdade. 
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Uma solução de um problema de otimização deve ser factível, isto é, 

deve obedecer às restrições do problema matemático. A solução ótima, por 

outro lado, deve, além de satisfazer às restrições do problema, fornecer o valor 

ótimo para a função que está sendo otimizada. Esta solução pode ser única ou 

não (Edgar e Himmelblau, 1989). 

Classicamente, a literatura classifica os métodos para se encontrar a 

solução de um problema de otimização em métodos determinísticos ou 

estocásticos. Os métodos determinísticos de resolução de problemas de 

otimização se utilizam de características matemáticas da própria função 

objetivo e exigem que ela seja contínua e diferenciável, bem como suas 

restrições. Assim, funções não diferenciáveis ou cuja diferenciação não se dá 

de forma analítica não permitem, a princípio, a utilização de métodos 

determinísticos, a menos que se lance mão de diferenciação numérica. 

Funções multimodais, que são caracterizadas por apresentarem mais de um 

mínimo (máximo) local, isto é, diversos ótimos locais e um ótimo global, 

dificultam ainda mais a aplicação de métodos determinísticos, pois se passa a 

depender da estimativa inicial. 

Um método determinístico bastante utilizado para a solução de 

problemas matemáticos de otimização não linear é a Programação Quadrática 

Sucessiva (Sequential Quadratic Programming, SQP). Neste método, a função 

objetivo é aproximada localmente por uma função quadrática e as restrições 

são aproximadas por funções lineares, de modo que a programação quadrática 

pode ser usada recursivamente. Programação quadrática é o nome atribuído 

ao procedimento que minimiza funções quadráticas de muitas variáveis sujeitas 

a restrições lineares de desigualdade ou igualdade, ou de ambos os tipos 

(Edgard e Himmelblau, 1989). 

As dificuldades associadas ao uso de otimização matemática em 

problemas de engenharia em larga escala contribuíram para o desenvolvimento 

de soluções alternativas (não determinísticas). Os métodos estocásticos não 
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usam, nas suas etapas internas de busca pelo ótimo global, nenhuma 

informação de derivadas da função objetivo ou das restrições. Pode-se, 

inclusive, utilizar um modelo não matemático como função objetivo. Via de 

regra, os métodos estocásticos são bastante robustos pela independência 

da(s) estimativa(s) inicial (is), operam com uma população de soluções 

individuais (exceto no Recozimento Simulado – Simulated Annealing) e 

geralmente simulam ou mimetizam a evolução biológica natural e/ou o 

comportamento social das espécies, apresentando um balanço notável entre 

aproveitamento de melhores soluções e exploração de espaço de busca. No 

entanto, são geralmente de cálculo mais lento do que os métodos 

determinísticos. 

Uma corrente de pesquisadores defende a classificação dos métodos 

de otimização em métodos locais ou globais, em oposição à classificação entre 

métodos determinísticos e estocásticos. Isso é motivado pelo fato de que os 

chamados métodos determinísticos são dependentes da estimativa inicial 

(tornando-os locais) e nem todos os métodos classicamente classificados como 

estocásticos se utilizam de aleatoriedade, mas todos os chamados métodos 

estocásticos têm maior capacidade de varredura do espaço de busca que os 

métodos locais, não sendo levados para o ótimo local mais próximo à 

estimativa inicial (daí a denominação de globais). 

O Algoritmo Genético (AG), técnica estocástica baseada em evolução, 

muito referenciada na literatura, foi concebido em analogia ao princípio da 

evolução das espécies de Darwin, segundo o qual o indivíduo mais apto 

sobrevive e tem maior probabilidade de propagar seus genes ao longo das 

gerações. Baseada em sua reconhecida habilidade em atingir soluções 

próximas ao ótimo em problemas de larga escala, o AG é muito aplicado em 

engenharia (Elbeltagi et al., 2005). Neste método, a solução para um dado 

problema é representada na forma de um cromossomo, que é formado por 

genes. Cada cromossomo representa uma solução, por conter valores 

codificados para cada variável de otimização. Uma população aleatória de 

soluções (cromossomos) é iniciada e o grau de adaptação de cada solução é 

avaliado de acordo com uma função objetivo e com as restrições do problema. 

De modo a simular o processo natural de sobrevivência dos mais aptos, os 
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melhores cromossomos trocam informações através do operador cruzamento, 

produzindo uma nova geração de cromossomos. No entanto, todos os 

indivíduos estão sujeitos a mutações aleatórias, geralmente empregadas com 

baixa probabilidade de ocorrência. Essa nova geração é novamente avaliada e 

usada para levar a população a evoluir (seqüência de passos de avaliação, 

cruzamento e mutação). O Algoritmo Genético requer que alguns parâmetros 

internos ao método tenham seus valores estipulados no início de uma corrida 

de otimização. Estes parâmetros incluem as probabilidades de cruzamento, de 

mutações, tamanho da população, mecanismos de seleção de indivíduos, 

semente para geração da população inicial e o número máximo de gerações a 

serem avaliadas. É importante, em problemas de otimização resolvidos por 

Algoritmo Genético, que se analise de que maneira esses parâmetros 

influenciam a resposta final obtida, isso é, o ótimo encontrado. Embora 

apresente etapas não determinísticas em seu desenvolvimento, o Algoritmo 

Genético não é um método de busca puramente aleatório, pois combina 

variações aleatórias com seleção polarizada pelos vetores de adequação 

atribuídos a cada indivíduo. 

É bom que se ressalte que o Algoritmo Genético faz parte das técnicas 

estocásticas de otimização, especificamente daquelas que se baseiam em 

técnicas evolutivas. No entanto, nada tem a ver com a chamada Operação 

Evolutiva (EVOP – Evolutionary Optimization). A EVOP consiste em uma 

metodologia para a melhoria de processos contínuos ou descontínuos e trata-

se de uma ferramenta estatística para a busca de melhoria da qualidade, 

produtividade e capacidade de plantas químicas. Foi desenvolvida estudando-

se as respostas, após variações dos fatores (variáveis) relevantes do processo, 

constituindo-se em uma variação do Planejamento Fatorial. Através de 

métodos estatísticos pode-se chegar a informações não previstas pela teoria 

ou modelos determinísticos utilizados nos estudos de projeto e otimização de 

unidades. A técnica destina-se a buscar melhores pontos de operação durante 

o próprio curso do processo, através de medidas de saídas do processo 

provocadas por pequenas alterações em duas ou três variáveis. Um dos 

objetivos da técnica é buscar substituir uma operação estática comum pela 

contínua investigação, através de uma operação evolucionária. O sucesso de 
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implementação desta metodologia depende da busca constante de melhorias, 

que não deve ser uma atividade isolada do processo. A operação evolutiva, 

que efetivamente busca novas condições de operação, deve ser uma atividade 

do cotidiano das pessoas responsáveis por um conjunto de unidades de 

produção (Stinghen, 1998). 

Neste trabalho, a otimização da política operacional a ser adotada em 

um processo de cristalização em modo batelada operado por resfriamento é 

feita tanto por SQP quanto por Algoritmo Genético. O desempenho de ambos 

os métodos é avaliado e discutido. 
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Capítulo 3 – Modelo Matemático de Cristalização e Estudos 

Preliminares de Melhoria de Processo 

3.1. Introdução 

Com o intuito de propor maneiras de melhorar o desempenho de 

processos de cristalização, este capítulo se dedica a apresentar o modelo 

matemático determinístico detalhado do processo de cristalização, em modo 

batelada do ácido adípico, e a fazer análises preliminares de melhorias de 

processo. O caso de estudo selecionado é representativo de muitos sistemas 

industriais e a supersaturação necessária para os cristais aparecerem e 

crescerem é gerada pelo resfriamento da solução. 

A modelagem aqui abordada engloba os mecanismos cinéticos de 

nucleação, crescimento e aglomeração. Esta última é desconsiderada em 

muitos trabalhos da literatura. No entanto, muitos sistemas solvente-soluto são 

caracterizados por aglomeração marcante, como é o caso do sistema ácido 

adípico-água, de modo que a aglomeração não poderia aqui ser negligenciada. 

Contudo, a sua consideração aumenta significantemente a não-linearidade do 

modelo, o que, como será exposto, dificulta grandemente o estudo de busca 

por melhores políticas operacionais. O balanço de população é resolvido neste 

capítulo com o uso do Método das Classes, desenvolvido originalmente por 

Marchal et al. (1988). Trata-se de um método de solução relativamente simples 

e geral, amplamente usado na literatura até a atualidade (detalhes acerca de 

suas principais vantagens e desvantagens, quando comparado a outros 

métodos desenvolvidos na literatura para a solução da equação do balanço de 

população, são discutidos no Capítulo 4). 

A análise preliminar de influência das variáveis de processo e de como 

se pode melhorá-lo apresentada neste capítulo é fundamental porque fornece 

evidências do papel e magnitude de cada variável, assim como da sua 

interação no desempenho do processo. A otimização é considerada, formulada 

em termos de se buscar a trajetória ótima de resfriamento através da teoria de 

controle ótimo. O estudo de otimização envolve etapas de como se deve 



 22 

postular o problema, levando-se em consideração as restrições e qual o melhor 

critério de desempenho a ser utilizado. O problema é postulado com o uso de 

programação não-linear e é resolvido por Programação Quadrática Sucessiva 

(Sequential Quadratic Programming, SQP) e com discretização da variável de 

controle. 

3.2. Desenvolvimento 

O desenvolvimento deste capítulo é apresentado a seguir, no artigo 

intitulado Mathematical modeling and optimal control strategy development for 

an adipic acid crystallization process, publicado no periódico internacional 

Chemical Engineering and Processing (v. 44, p. 737 – 753, 2005). 
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Abstract

The aim of this work is to propose ways to improve crystallization processes performance, choosing the batch crystallization of adipic acid
as a case study. In this process, representative of many industrial systems, the supersaturation necessary for the crystals to appear and grow
is generated by the cooling of the solution. The proposed approach involves the process modeling and its further optimization in a real-time
fashion. The modeling of the crystallization process is presented and it takes into account the contribution of agglomeration. The influence
of the process variables on the final crystal size distribution (CSD) and on the quantity of solids is analyzed. This analysis is fundamental
because it gives evidence of the role and magnitude of each variable as well as their interaction in the process performance. The optimization
of the process is then considered, and it can be focused on finding the optimal cooling trajectory through optimal control theory. A study
of the best way to postulate the problem is considered, taking into account the constraints and which is the best performance criterion to be
used. The problem is postulated as a non-linear programming problem, which is solved through sequential quadratic programming (SQP).
The non-linearity feature of the problem is strongly increased by the agglomeration contribution. The results have shown that the developed
mathematical model is a good representation of the process, able to reproduce results from the literature. The optimization problem has shown
to be strongly non-linear and difficult to postulate. Nevertheless, the solutions obtained through the optimization study, though the global
optimum may not be guaranteed, lead to a substantial improvement of the end product quality, expressed in terms of the mean size and the
variation coefficient.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Crystallization is an ancient unit operation and is widely
used, since solids of high purity can be obtained. Batch crys-
tallization is specially used in the production of high-value-
added products, such as pharmaceuticals, photo materials and
fine chemicals, mainly because it offers flexible and simple
processing steps for plants with frequently changing recipes
and product lines [1,2]. For this kind of material, product
purity and crystal size distribution (CSD) are of prime impor-
tance. Furthermore, the crystals produced through a crystal-

∗ Corresponding author. Tel.: +55 1937883971; fax: +55 1937883910.
E-mail address: caliane@lopca.feq.unicamp.br (C.B.B. Costa).

lization process have a decisive influence on the downstream
processing, and therefore, the CSD should be reproducible
in each operation and as regular as possible [3]. Bearing this
in mind, it is important that the variables that affect the crys-
tallization process be known and controlled so as to be kept
within an acceptable range, in order to satisfy the require-
ments concerning the final product quality and the production
demand [2].

The main purpose of this work is to propose and ana-
lyze ways to improve the performance of batch crystallization
processes. The batch cooling crystallization of adipic acid is
chosen as a case study, since it is typical of many processes
of industrial interest and some data are available from lit-
erature. In a well-mixed batch crystallizer, the final crystal

0255-2701/$ – see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.cep.2004.08.004
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product is determined by the supersaturation profile, the ini-
tial seed mass, and the seed crystal size distribution [3]. The
supersaturation evolution in time, during batch crystallization
processes, determines the magnitude of the many kinetic phe-
nomena of the process. Since in cooling crystallization pro-
cesses, the supersaturation magnitude is determined mainly
by the cooling rate during the process, the optimization of
the cooling trajectory is indispensable to the improvement of
the process performance and a substantial research activity
has been devoted to the computation of optimal temperature
trajectories [4]. According to Zhang and Rohani [1], many
studies have been recently focused on the solution of opti-
mization problems aiming to find the best operating profiles
in batch crystallization processes. Lewiner et al. [4] stress that
the control of industrial crystallizers or at least the optimiza-
tion of operating conditions is of potentially great importance,
mainly to avoid or to reduce the production of solids with low
quality and the differences in CSD from batch to batch. Nev-
ertheless, no work in the open literature has been devoted to
study optimizing cooling trajectories in crystallization when
agglomeration is present.

Seeding is frequently applied to avoid a supersaturation
peak at the beginning of the process [5]. This occurs because
the supersaturation values sufficient for crystal growth are
lower than the necessary ones for spontaneous nucleation. So,
if the system could be kept at a region in the metastable zone
with not so high supersaturation values and with addition
of seeds, just seed growth will occur. Hence, in the cooling
crystallization, the optimal purpose of the heat exchange is
to obtain a supersaturation level that favors the maximum
growth rate and suppresses nucleation of new crystals in order
to obtain crystals with a suitable CSD [6,7].

In this work, the mathematical modeling of the adipic
acid crystallization process was derived in order to imple-
ment optimal trajectories, looking at the process improve-
ment. The agglomeration mechanism is not neglected in the
modeling, which increases the non-linearity of the problem.
A software (written to be used in real-time implementations)
was developed to simulate the process and to identify the
role of the several process variables in the final product, as
well as to analyze the impact of the optimal cooling tra-
jectory on the product quality. The computation of optimal
cooling trajectories is done through optimal control theory
and its complexity is increased due to the agglomeration
contribution.

2. Mathematical modeling

In order to completely model a crystallization process,
mass balance, energy balance and a description of the crystal
size distribution are necessary. This description is required
because the process produces a mass of particles, the de-
scription of size distribution being crucial to its characteri-
zation. The models used in this description are denominated
population balance models. According to Puel et al. [8], the

population balance modeling is firmly established as a basic
theoretical framework for all particulate processes.

Two phenomena dominate the crystallization kinetics, i.e.
nucleation and crystal growth. Both phenomena produce the
desired material during the crystallization process and are,
therefore, competing mechanisms. They are different in the
way they produce material: nucleation involves the formation
of new crystals while in crystal growth the crystals become
larger with the deposition of material onto the already ex-
isting crystals [9]. Apart from nucleation and growth, other
phenomena such as agglomeration and breakage may occur
during the process, making it difficult to carry out reliable
predictions. Neglecting agglomeration may result in poor
representation of reality, especially when the crystallizing
substance is classically known as having an agglomerating
behavior.

Zhang and Rohani [1] emphasize that one of the advan-
tages of the process modeling over heuristic approaches is
that it makes possible the calculation of further on-line opti-
mal operating policies.

2.1. Population balance – the method of classes

The population balance equation (PBE) is a hyperbolic
partial differential equation, which involves all the crystal-
lization kinetic phenomena. Being strongly non-linear, the
PBE do not possess an analytical solution in most cases, re-
quiring the development and adaptation of numerical tech-
niques. According to Wulkow et al. [10], in the present state
of PBE studies, no standard numerical method has been es-
tablished for population balance models and none of the
presently available methods produce an efficient and accu-
rate solution for a broad class of models. In the literature,
the techniques are mainly one of three families: method of
moments, discretization techniques and finite elements meth-
ods [8]. Discretization sizing techniques appear to be robust.
Marchal et al. [11] developed the method of classes, a method
that transforms the partial differential equation into an ordi-
nary differential equations system by discretizing the range of
variation of the variable L, related to the crystal size. The ob-
tained differential equations are then no longer written with
population density functions but with absolute numbers of
crystals in each class [12]. Nallet et al. [12] used the method
of classes for solving salicylic acid batch precipitation model.
In a recent work, Puel et al. [8] also used the method of
classes to solve the population balance equation, but they ex-
tended the method to consider two characteristic dimensions.
This was necessary because they dealt with crystallization
of organic products (in particular, hydroquinone) present-
ing anisotropic morphologies that sometimes vary during
the process. This is not the case of the present study, and
so the original development of Marchal et al. [11] (mono-
dimensional PBE) was used as a base to the proposed solution
procedure.

In the method of classes, the particles sizes are defined as
L0, L1, L2, . . ., LN, where L0 is the size of the nuclei and LN



C.B.B. Costa et al. / Chemical Engineering and Processing 44 (2005) 737–753 739

Fig. 1. Division of classes.

is the size of the largest crystals. These sizes determine the
existence of N granulometric classes Ci, whose widths are
defined by �Ci =Li –Li−1 and whose characteristic size is
Si = (Li−1 +Li)/2 (see Fig. 1).

The population of crystals is described by the number den-
sity functionΨ .Ψ (L, t)dL is the number of crystals with a size
between L and L+ dL per unit volume at time t [12]. Ni(t) is
the number of crystals per unit of volume in the ith class (Ci)
at time t and is given by:

Ni(t) =

∫ Li

Li−1

ψ(L, t) dL (1)

The model assumes that the number density function is con-
stant at each granulometric class. The assumptions make pos-
sible the transformation of the population balance equation
into a set of ordinary differential equations, as represented in
(2).

Scarlett [13] suggested that mass was used as the distri-
bution parameter in order to make the consistency of mass
balance easier. However, in the present work, the classical for-
mulation based on crystal number density function was used.
In the development of the software for the crystallization sim-
ulation, the method of classes was chosen, because it is an
efficient method widely tested in literature [1,8,11,12,14].
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In the development of particulate system modeling, the great
challenge is the correct specification of the many mechanisms
occurring in the crystal population evolution, which requires
a detailed understanding of the transport and kinetic events
taking place [2]. The main mechanisms that are present in the
crystallization processes are nucleation, growth, agglomera-
tion and breakage. Except for the last one, all other mecha-
nisms are involved in the model.

2.1.1. Growth mechanism

The expression for the growth rate developed by Marchal
et al. [11] is based on the film model and may be written as:

G =
dL

dt
=

kaMMkc

3ρckv
ηr(c − c∗)j

′

(3)

The effectiveness factor, ηr, is found by the solution of the
following expression:
[

kc

kd
(c − c∗)j

′−1
]

ηr + ηr
1/j′

− 1 = 0 (4)

The effectiveness factor expresses the diffusional limita-
tions in crystal growth, causing a distribution at the growth
rates among the classes.The mass transfer coefficient, kd, is
found by the following expression for Sherwood number:

Sh =
kdL

D

= 2.0 + 0.47

[

L4/3ε1/3

ν

]0.62[
Diam

DiamT

]0.17
[ ν

D

]0.36
(5)

From the previous equation, it is possible to note that each
granulometric class has a value for the mass transfer coeffi-
cient, which means that the growth rate is size dependent.

The solubility data of adipic acid in water were extracted
from Postnikov and Nalivaiko [15] and are presented in
Table 1 (units as in Nomenclature):

2.1.2. Nucleation mechanism

The nucleation occurs in two distinct mechanisms, nor-
mally referenced as primary and secondary. When nucle-
ation from a clear solution takes place, it is known as primary
homogeneous nucleation. In industrial practice, this type of

nucleation seldom occurs because solutions usually contain
foreign particles that act as substrates for nucleation, known
as primary heterogeneous nucleation. When a supersaturated
solution is in contact with particles of the crystallizing com-
pound, secondary nucleation occurs [5]. Secondary nucle-
ation is the dominant mechanism for producing new crystals
in most seeded batch crystallizers [3]. Both primary and sec-
ondary nucleations are inserted into the developed model.
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Table 1
Solubility data of adipic acid

T c T c

283.0 74.10 311.0 306.52
285.0 82.84 313.0 335.52
287.0 92.47 313.8 347.74
289.0 103.04 313.8 345.09
291.0 114.64 315.0 370.92
293.0 127.34 317.0 417.67
295.0 141.23 319.0 469.35
297.0 156.40 321.0 526.36
299.0 172.94 323.0 589.08
301.0 190.94 325.0 657.92
303.0 210.51 327.0 733.26
305.0 231.74 329.0 815.51
307.0 254.74 331.0 905.03
309.0 279.63 333.0 1002.19

The expressions for these mechanisms are based on the work
of Marchal et al. [11] and are given by Eqs. (6) and (7):

rN1 = A exp

[

−
B

ln2([HR]/[HR]∗)

]

(6)

rN2 = k
′

N([HR] − [HR]∗)i
′

Ck′

s (7)

2.1.3. Agglomeration mechanism

The agglomeration is considered as a chemical reaction
between particle m and particle n, leading to the formation of
a crystal of size q. A model for the agglomeration mechanism
is proposed in literature, where only the agglomeration of
two particles is considered. The pseudo-chemical reaction
describing the agglomeration can be schematically shown
as:

A particle of class m agglomerates with a particle of
class n, generating an agglomerate in the class q. Since
in the agglomeration mechanism, the total volume of crys-
talline mass is preserved, b/a= (Sm3 + Sn

3)/Sq3 and the class
q, where the agglomerate fits, is found by the relation:
Lq−1<(Sm3 + Sn

3)1/3 ≤Lq. Considering the reaction:

νest = ν = (Sm3 + Sn
3)/Sq

3 may be considered as its stoi-
chiometric coefficient.

All possible agglomerations between two particles (m and
n, n≥m) can be arranged in a series and each one has its
position in its series represented by the rank lm,n. For N gran-
ulometric classes,N(N+ 1)/2 different binary agglomerations
are present and the series are represented by (1,1), (1,2), . . .,
(1,N), (2,2), (2,3) . . . (m, n) . . . (N, N). The position lm,n of
the agglomeration of a particle m with a particle n is found
by the relation:

lm,n = N(m − 1) −
m(m − 1)

2
+ n (10)

This agglomeration will affect class i, only if i equals m, n
(in both cases, νest = −1) or q (with νest = (Sm3 + Sn

3)/Sq3).

In this way, an overall stoichiometric coefficient of class i,
with respect to agglomeration of rank l can be computed, as
follows:

νest l,i =

(

S3
m + S3

n

S3
q

)

δi,q − (δi,m + δi,n) (11)

where δij = 1 if i= j and δij = 0 if i �= j.
The net rate of particle production by agglomeration in

the ith class is calculated by the following expression:

RA,i =

N(N+1)/2
∑

l=1

vest l,i r(l) (12)

where r(l) is the intrinsic rate of agglomeration of rank l. The
intrinsic rate of agglomeration is a function of the number of
collisions per volume per time as well as of the supersatura-
tion.

David et al. [16] proposed an expression for the cal-
culation of the intrinsic rate of agglomeration, based on
phenomenological and fluid mechanical considerations, tak-
ing into account the concentration of particles, the super-
saturation, the power dissipation per mass unit, the crys-
tallizer size as well as of the crystals being agglomerated.
Based on these assumptions, expression (Eq. (13)) was de-
veloped and allows the agglomeration contribution compu-
tation:

r = k
′

ASm

(

1 +
Sn

Sm

)2

N Diam f

(

Sn

Sm

)

[

1 −
(Sn + Sm)2

λ2
e

]

× k′
d(c − c∗) × NnNm(Sm − δ)H(λe − Sn − Sm)

(13)

whereH(x) = 1 for x≥ 0 andH(x) = 0 for x< 0. The coefficient
k′

d is calculated by the same expression as for kd (Eq. (5)),
but the size of crystal considered must be the size of the
agglomerate (Sm + Sn). The f function represents a relative
shape function of both crystals. Considering both particles as
spheres, the f function can be written as:

f

(

Sn

Sm

)

=

4

(

(1 + Sn/Sm −

√

(Sn/Sm)2 − 1)

)

1/3 + Sn/Sm −

√

(Sn/Sm)2 − 1

−

(

(Sn/Sm −

√

(Sn/Sm)2 − 1)

)2

×

(

2(Sn/Sm)/3 +

(

√

(Sn/Sm)2 − 1

)

/3

)

(14)

λe is defined as Lagrangian microscale, which is taken as hav-
ing the same magnitude as the Taylor microscale, calculated
by [16]:

λe = 0.3πN Diam

(

60ν

10ε

)1/2

(15)
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It is interesting to stress that the calculation of further
on-line optimal operating policies takes an advantage with
the inclusion of agglomeration into the model, compared to
most batch optimization studies found out in literature. Most
of them neglect agglomeration and consider just nucleation
and growth, which may be a poor consideration, as is the case
with adipic acid, a substance known to agglomerate during
crystallization processes.

2.2. Mass balance – batch crystallizer

The material balance of the solute is made based on the
fact that changes in the solution concentration results in al-
terations of the mass of crystals per volume unit.

Since the crystallizer is operated in a batch mode, there is
no entrance of fluid (or solute) into the system after t= 0. The
solute present in the solution in the beginning of the batch
is the whole mass of adipic acid available for crystallization.
The mass balance is made using the dissociation constant of
adipic acid, considered as a monoacid: the concentration of
solid in the suspension can be connected with the concentra-
tion of protons in the solution [11]:

V0C0 =
(H+)2

K

[

1 +
K

[H+]

]

V0 +
V0

1 − (MM/ρ)Cs
Cs (16)

2.3. Energy balance

The energy balance must take into account the differences
in enthalpy of the streams in and out, the heat of crystalliza-
tion and the heat removed by the cooling system. For batch
crystallization, the energy balance equation is:

ρCpV
dT

dt
= −�Hc3ρckvVsusp

∫ ∞

0
nL2GdL − UAc(T − Tc)

(17)

Using the method of classes, the integral present in the
previous equation is substituted by a summation over all gran-
ulometric classes.

According to Postinikov and Nalivaiko [15], the heat of
crystallization of adipic acid is 37.2 kJ/mol for temperatures
lower than 313.8 K and 50.7 kJ/mol for higher ones.

The specific heat of the slurry is considered to be not so
different from that of water, since the process considered is
the crystallization from solution, with not so high concentra-
tions of solids.

3. The software development

In the development of the model, it was assumed that no
breakage occurs during the process and that the crystallizer
is well-mixed, so that there is no spatial dependence of the
solution properties within the crystallizer. This is a reasonable

assumption since usually low density and viscosity occur in
most of the systems to be processed [2].

The solution procedure of the model equations consists
of solving Eq. (16) to find out the concentration of solution,
the supersaturation calculation, the nucleation rates (Eqs. (6)
and (7)), the mass transfer coefficient for each class through
Eq. (5), the effectiveness factor for each class through Eq.
(4) and the growth rate in each granulometric class (Eq. (3)).
The agglomeration rates are also calculated (Eqs. (11–13)).
With all kinetic contributions, the system (Eq. (2)) can be
solved, followed by the solution of the energy balance (Eq.
(17)). Taking into account the proposed solution procedure,
a software in Fortran 90 language was developed. The struc-
ture of the developed software can be delineated as follows
(Fig. 2):

• the initial data are supplied to the software (characteriza-
tion of the system, the batch and the particle analyzer);

• the time is counted from zero till the maximum batch time
through the time step. At each time, mass balance, pop-
ulation balance (with the computation of nucleation rate,
growth rate in each class and agglomeration rates) and en-
ergy balance are solved; and

• the output files are generated at the end of the batch
time.

At the first part of this work (influence of the process vari-
ables on the final CSD as well as on the quantity of solids),
the ordinary differential equations system (population bal-
ance) was solved using a Runge–Kutta routine (subroutine
DIVMRK of the IMSL Fortran electronic library) and the
energy balance was solved using first-order finite difference
(Euler). This was done, primarily, for the sake of simplicity of
software development. Furthermore, the solution of the en-
ergy balance through Euler brings not significant divergences
compared to the solution via Runge–Kutta, as shown in item
6.

4. Model validation

In order to validate the model, results from the litera-
ture were reproduced. The results of Marchal et al. [11] are

Fig. 2. Structure of the developed software.
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Fig. 3. Comparison between results from Marchal et al. [11] (left) and those obtained from the developed software (right) for the evolution of the relative
supersaturation during the crystallization.

compared with the ones generated through the developed
software.

Marchal et al. [11] analyzed the influence of agglomera-
tion, presenting results from a semi-batch crystallization both
with and without agglomeration. The same data were used as

an input to the developed software in order to compare the
original results with the predictions. The plots presented in
the original work are here reproduced and placed together
with the analogous results from the software developed in
the present work (Figs. 3–7).

Fig. 4. Comparison between results from Marchal et al. [11] (left) and those obtained from the developed software (right) for the evolution of the concentration
of solid during the crystallization.

Fig. 5. Comparison between results from Marchal et al. [11] (left) and those obtained from the developed software (right) for the crystal size distribution at the
end of the crystallization (number fraction).
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Fig. 6. Comparison between results from Marchal et al. [11] (left) and those obtained from the developed software (right) for the crystal size distribution at the
end of the crystallization (mass fraction).

Fig. 7. Comparison between results from Marchal et al. [11] (left) and those obtained from the developed software (right) for the effectiveness factor for some
granulometric classes without agglomeration.

When the results presented by Marchal et al. [11] are com-
pared to the ones generated through the developed software,
it states that they are identical in the following:

• evolution of relative supersaturation (Fig. 3);
• evolution of the concentration of solids (Fig. 4); and
• effectiveness factor (Fig. 7) – here just the curve shape can

be analyzed, since there is no information on which three
classes were chosen in the original article.

Nevertheless, the results of CSD at the end of the batch
(both number and mass fraction) generated via the developed
software are slightly different form the ones presented by
Marchal et al. [11] (Figs. 5 and 6). This point reveals the
impact that some design/process variables have on the crystal
size distribution. The original work of Marchal et al. [11] did
not publish all input data, including the power dissipation
rate per unit mass, and so the absent data were arbitrarily
decided. The impact of the power dissipation on the final
CSD is confirmed in the study of process variables influence
(Fig. 14, next section).

5. Simulations – process variables influence

Some simulations were made in order to evaluate the in-
fluence of several process variables. The variables studied
were seeding, global heat transfer coefficient, coolant temper-
ature profile, batch time, power dissipation, rotation speed,
impeller diameter, tank diameter and initial concentration of
the solution.

The input and output data of the simulations presented in
this section are shown in Appendix A.

The main results of this study are presented here. These
results are concerned with seeding, cooling rate, influence of
the global heat transfer coefficient and the role of the power
dissipation.

The first result is the influence of the seeding on the crys-
tallization process. In order to analyze the influence of this
variable, the results from Figs. 8–10 are presented. They show
the results of operation trajectories (Fig. 8), solution tempera-
ture evolution (Fig. 9) and supersaturation evolution (Fig. 10)
for two batches that differ each other only in the seeding: the
first one (Simu18) has insignificant amount of seeds, while
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Fig. 8. Operation curve for a non-seeded (Simu18) and a seeded (Simu23)
batch crystallization.

Fig. 9. Evolution of the solution temperature for a non-seeded (Simu18) and
a seeded (Simu23) batch crystallization.

the second one (Simu23) has a considerable mass of crystals
working as seeds. For these two simulations, a parabolic pro-
file of coolant temperature, with negative second derivative,
was employed (see Appendix A). The operation trajectories
presented in Fig. 8 are formed by the pairs of values of solu-
tion concentration and temperature followed during the batch
time. The difference in the path followed during the process
in the two simulations is extremely visible. When no seeds are

Fig. 10. Evolution of the supersaturation for a non-seeded (Simu18) and a
seeded (Simu23) batch crystallization.

added to the crystallization process (Simu18), the solution is
cooled with constant concentration until the metastable zone
limit is probably reached. An enormous quantity of crystals
is generated by nucleation, releasing great amount of heat
of crystallization (exothermic reaction), making the solution
temperature to rise (Simu18 in Fig. 9) – which means that the
cooling system was unable to remove all the heat released.
As a consequence of the operation curve, a great peak of
supersaturation is noted (Simu18 in Fig. 10).

On the other hand, if the crystallization is conducted in the
same way, except for the addition of seeds (Simu23), the cool-
ing of the solution happens softly, while the concentration of
adipic acid in solution decreases (Fig. 8), probably keeping
the operation far from the metastable zone limit. It is kept
at a reasonable distance from the equilibrium line [9]. Not
so high values of supersaturation are reached in the process
(Fig. 10) and the nucleation is disfavored. There is no great
release of heat of crystallization, and so there is no increase
of solution temperature (Fig. 9).

Apart from the influence of the seeding, other important
factor in the crystallization performance is the rate of cooling
during the whole process. According to Mullin [6], the use of
natural cooling is not the best choice. By natural cooling, one
understands that the coolant is passed through the exchange
device at both constant temperature and constant flow rate.
If natural cooling is used, the temperature inside the crys-
tallizer decreases exponentially, making the supersaturation
to increase very fast at the first moments of the process, fa-
voring nucleation. As a result, at the end of the batch, small
crystals and a large CSD are obtained. On the other hand, if
the cooling profile is characterized to have a soft decrease at
the early stages and a more pronounced one at the end of the
process, the growth of crystals is favored [6].

Two seeded simulations that differ in the coolant tempera-
ture profile illustrate this feature appropriately. In the first one
(Simu26), natural cooling is simulated (coolant temperature
and flow rate are both constant). In Simu20 (the second one),
the same amount of seed is used, but a parabolic profile of
coolant temperature, with negative second derivative, is em-
ployed. This last cooling rate is characterized to have a soft
decrease at the early stages and a more pronounced one at
the end of the process. The results of the two simulations can
be observed in Figs. 11–13 (evolution of solid concentration,
CSD in number at the end of the batch and evolution of the
supersaturation). When natural cooling is employed, a large
number of fines is obtained (Fig. 12). A great peak of su-
persaturation occurs at the early stages of the crystallization
process (Fig. 13), which causes the appearance of thousands
of nuclei. The concentration of solids in the suspension in-
creases too fast in the first moments (Fig. 11). Except for the
disadvantage of the great number of fines, this kind of cool-
ing has the advantage of being able to extract a great amount
(mass) of solute from the solution, bringing them into crystal
form (see output in Appendix A).

When a negative parabolic temperature profile is em-
ployed (Simu20), a much smaller number of fines is obtained
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Fig. 11. Evolution of solid concentration in a seeded crystallization with
natural cooling (Simu26) and with a negative parabolic coolant temperature
profile (Simu20).

Fig. 12. CSD in number at the end of the batch in a seeded crystallization with
natural cooling (Simu26) and with a negative parabolic coolant temperature
profile (Simu20).

Fig. 13. Evolution of supersaturation in a seeded crystallization with natural
cooling (Simu26) and with a negative parabolic coolant temperature profile
(Simu20).

(Fig. 12) and the solid concentration evolves softly (Fig. 11),
with seeds growth and less fines being generated. This is a
consequence of the evolution of the supersaturation during
the batch (Fig. 13), showing that it is desirable to avoid su-
persaturation peaks, in order to favor growth. This confirms
the results from literature [9], indicating that the optimum
temperature profile would produce no peak in supersatura-
tion at all, being almost flat. However, the slow evolution of
the process in Simu20 implies less extraction of solute from
the solution (less mass is obtained compared to natural cool-
ing) – see output in Appendix A.

Concerning the study of the influence of the global heat
transfer coefficient, its variation results from a variation in
the coolant flow rate: the greater the value of the global heat
transfer coefficient, the greater the coolant flow rate. The
study showed that an increase in the fluid flow rate would
be advantageous only in cases where the coolant temperature
profile decreases slowly in early stages and sharper latter in
time (like the cooling rate used in Simu20), which means to
pass the coolant fluid with lower temperature and higher flow
rate as the batch time passes. In this way, more mass is ob-
tained in the process. The simulations Simu04 and Simu18
(whose data are presented in Appendix A) illustrate this sit-
uation.

The role of the power dissipation is evaluated in the present
work and this variable has shown itself to be important in the
distribution of crystals into the various classes (Fig. 14). It
is an expected result, since the power dissipation is present
in the mass transfer coefficient expression, which influences
the growth rate in each class, as well as the intrinsic rate of
agglomeration. It has shown to be not so important in the
amount (mass) of crystals obtained.

6. Optimization study

The main purpose of the optimization study was the eval-
uation of the problem and its optimization through the use of
the sequential quadratic programming (SQP) algorithm. Lang
et al. [9], have studied the dynamic optimization of a batch

Fig. 14. CSD in mass at the end of the batch in Simu21 (ε= 0.02) and in
Simu29 (ε= 1.00).



746 C.B.B. Costa et al. / Chemical Engineering and Processing 44 (2005) 737–753

cooling crystallization process, treating the optimization of
the coolant profile. A good analogy may be traced between
the present work and the work of Lang et al. Both works deal
with modeling and optimization of crystallizing processes,
differing by the method used to solve the model. There, the
model was discretized using collocation on finite elements,
while in the present work the method of classes was used.
Another point of distinction between the two works is the
inclusion of agglomeration into the modeling of the present
work.

According to Rawlings et al. [7], optimizing crystallizer
batch problems means finding the optimal supersaturation
versus time profile, a problem the solution of which is difficult
and expensive to compute. The mean size and the variation

coefficient provide a reasonable description of the final CSD
[1].

As it was observed from the simulations results presented
in this work and as it was published in literature [9], the
cooling trajectory of crystallization processes is crucial for
process improvement. It is interesting to keep the cooling
trajectory in a part of the metastable zone that suppresses
nucleation and enhances growth. This means to keep the op-
erating trajectory as close as possible to the stable zone.

The natural cooling brings the largest cooling rate in the
initial period of the process, causing a large degree of su-
persaturation at early times, leading to excessive nucleation
and smaller final crystals. In contrast, if the supersaturation
can be adjusted to maintain a constant level of nucleation,

Fig. 15. Evolution of the number of particles per unit volume of suspension for the classes 01, 05, 10, 15, 20 and 25.
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the crystal size is increased and the CSD variance can be
improved [2].

Before the presentation of the results, it is interesting to
discuss two points: the discretization (in time) method used
and the set of objective function, control variable and the
constraints imposed in the optimization problem formulation.

6.1. Discretization in time

In the dynamic optimization problem, the model must be
discretized in time and a study of the proper method of dis-
cretization between Runge–Kutta and Euler was done. In this
study, the system simulated was the same as the one used in
item 5. The data used in the simulations are presented in
Appendix A.

The energy and population balance equations were solved
using Runge–Kutta with a time step of 0.5 s in a 1500 s batch.
Other five simulations of the process were done with the
differential equations being solved through Euler method.
These five simulations differ in the value of the time step
used: 20, 10, 5, 1 and 0.5 s.

The evolution of the number of crystals per unit volume
of suspension in classes 1, 5, 10, 15, 20 and 25 were plotted,
as well as the evolution of the solution temperature inside the
crystallizer. These results can be seen in Figs. 15 and 16.

The study brings another contribution of the present work,
showing that the Euler method is too inaccurate for solv-
ing the population balance ordinary differential equations,
especially with larger time steps and at the smallest granu-
lometric classes. The divergence, compared to the solution
via Runge–Kutta, is insignificant for the solution of the en-
ergy balance (Fig. 16), which makes evident that the Euler
method could be used to the solution of the energy balance
in the optimization studies, but is not satisfactory to solve
the population balance. It is an important point, since the
choice of an inappropriate method could cause serious errors
in crystallization calculations. In this way, the Runge–Kutta
was chosen as the method for solution of both the energy and
population balances in the optimization problem and the time
step used was of 0.5 s.

Fig. 16. Evolution of the solution temperature.

6.2. Objective function, control variable and constraints

In the optimization study, several tests were made in order
to evaluate the function of the optimizer (the SQP algorithm)
and the sensitivity of the problem: tests of control variable,
objective function and constraints.

In the present work, as control variable, the coolant tem-
perature and the temperature of the solution inside the crys-
tallizer were tested. It is important to mention that, when the
temperature inside the crystallizer was tested as control vari-
able, it was not necessary to compute the energy balance,
because studying the crystallizer temperature profile implies
disregarding the heat released by the crystallization itself and
the heat changed with the cooling device. In this case, the
optimization study conducts to the optimum profile of the
temperature inside the crystallizer and an extra investigation
would be necessary to determine which coolant temperature
(or flow rate) profile would lead to the optimum crystal-
lizer temperature. In this extra investigation, the crystalliza-
tion and heat exchange through the cooling device must be
considered.

It is found in Rawlings et al. [2] that it would be desirable to
determine the optimal operating policy that maximizes mean
particle size and minimizes CSD variance in minimum time.
Here, three objective functions were tested: minimization of
the standard deviation of the crystal number distribution at
the end of the batch, minimization of the variation coefficient
of this distribution and minimization of the summation of the
nucleation rates at all discretization points of the batch.

As constraints, during the study, some were imposed:

• The control variable should decrease or be kept con-
stant during the batch (after all, the crystallizer should be
cooled);

• The mass obtained at the end of the batch should be larger
than a stipulated value;

• The supersaturation should be below a stipulated value;
• The cooling rate should be below a stipulated value.

So, for an optimization trial, the objective function of
which has been set as the minimization of the standard devia-
tion of the crystal number distribution at the end of the batch
and for which the minimum mass to be obtained is 50 g, the
optimization problem can be stated as:

Minimize σtf (TC)
Subject to: model equations (Eqs. (2–7), (12) and (13))

Tc(i) − Tc(i + 1) ≥ 0.0
Mass of crystals (tf) ≥ 50.0
1.0 − (c − c∗)/c∗ ≥ 0.0
Tc(i + 1) − Tc(i) + 1/60 ≥ 0.0

(18)

For the optimization problem represented by Eq. (18), the
supersaturation has been limited to the unity and the cooling
rate to 1 K/min.
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Fig. 17. Initial estimates for three different optimization trials (standard
deviation of the number distribution as objective function).

6.3. Results of the optimization study

All input data concerned to the simulations presented in
this item are detailed in Appendix A.

The subroutine DNCONF of the IMSL Fortran electronic
library was used. This subroutine solves a general non-
linear programming problem using the sequential quadratic
programming (SQP) algorithm and a finite difference
gradient.

The conducted study showed that the crystallization prob-
lem is a very non-linear one. The initial estimate provided to
the optimizer has shown itself to be a very important item to
the correct convergence of the SQP algorithm. The objective
function seems to be very complex, with many local mini-
mums, what causes the SQP algorithm to lead to the minimum
nearest to the initial estimate.

This dependence on the initial estimate can be seen in
Figs. 17 and 18. They show three optimization studies, with
the same data supplied to the software, except for the initial
estimate. In this part of the study, the standard deviation of
the number distribution was set as objective function. As can
be seen, the ‘optimum point’ found, i.e., the optimum profile

Fig. 18. Optimizer results for three different optimization trials (standard
deviation of the number distribution as objective function).

Fig. 19. Two optimization runs illustrating the difficulty of the optimizer for
dealing with more granulometric classes when the variation coefficient of
the CSD is set as objective function.

of the crystallizer temperature during the batch, was different
in each one of the three cases.

It is interesting to note that in Otim05 the optimized pro-
file is very close to the provided initial estimate, differing
only in the final times of the batch. Probably, the final time
differences are due to the minimum mass constraint. The ini-
tial estimate provided to Otim05 was one that has a smooth
cooling in the early stages of the process, favoring growth,
instead of nucleation. This type of cooling is vastly referred
to in literature [1] as the best one. Really, the CSD properties
of the optimized cooling of Otim05 are the best presented in
Appendix A.

Another point of interest in the optimization study is
the evaluation of different objective functions. The variation
coefficient of a distribution is defined as the ratio of its stan-
dard deviation to its mean crystal size. In this way, the varia-
tion coefficient was thought to be the best objective function:
while the standard deviation could be minimized, the mean
crystal size could be maximized. But all the attempts to use
the variation coefficient as objective function were not suc-
cessful. The only positive result was obtained when just five

Fig. 20. Initial estimate and the last manipulation of the crystallizer temper-
ature by the optimizer when the variation coefficient of the CSD is set as the
objective function (10 granulometric classes).
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Fig. 21. Alternative way to face the optimization problem.

granulometric classes were used (Otim15 – Fig. 19). It seems
that the optimizer is unable to deal with many granulomet-
ric classes. When more granulometric classes are used, the
execution is terminated because the line search takes more
than five function calls (Otim14 – Fig. 19). Figure 20 depicts
another attempt to use the variation coefficient as objective
function, with 10 granulometric classes, but with an initial
estimate believed to be nearest to the global optimum (based
on results illustrated in Fig. 18). Once more, the execution
was terminated without coming to the optimum. The search
seems to be close to the optimum, as can be seen by the
last manipulation of the control variable by the optimizer in
Figs. 19 and 20, but the execution is terminated because it
comes to a stop criterion (line search takes more than five
function calls).

The control variable has shown itself to be not the reason
for not getting optimization convergence. When the optimizer
did not come to an optimum profile, it was not because of the
control variable being used, but due to extra reasons, such
as objective function or the size of the problem (number of
granulometric classes).

No success was obtained when the objective function was
set as the summation of the nucleation rates at all discretiza-
tion points of the batch.

The results of the optimization study suggest that a global
optimization technique, such as genetic algorithm (GA),
should be used to find out the region of the global opti-
mum. Choong and Smith [17] present the first attempt in
literature to use stochastic optimization in optimizing highly
non-linear batch cooling crystallization systems. According
to them, stochastic optimization strategies such as simulated
annealing and genetic algorithm have been known to solve
a large class of non-linear problems to global optimality. In
their work, the effectiveness of the simulated annealing tech-
nique in preventing the optimization from being trapped in
local optima has been demonstrated. Furthermore, this tech-
nique eliminates the traditional shortcoming of determinis-
tic optimization methods, the optimization results of which
are highly dependent on the initial estimate. In this way, a
scheme such as the one depicted in Fig. 21 should be tried in
future works, in order to obtain the correct convergence. Al-
though GA is a computational time-demanding technique,
its use may be an interesting alternative to define the re-
gion where the global optimum is located. The SQP may
then be used, but limited to this region to achieve the global
optimum.

7. Conclusions and further investigations

In this work a crystallization model is developed, which
includes nucleation, growth and agglomeration phenomena.
The inclusion of agglomeration in the model increases its
non-linearity and brings a novelty of the present work when
the optimization is considered, since no work deals with opti-
mizing cooling trajectories when agglomeration is taken into
account.

The developed model proved to be a good one, express-
ing representative results of the process. Literature results
were satisfactory reproduced from the available information.
The predictions generated by the model allow to analyze the
impact of the process variables on the system behavior. The
power dissipation has shown to have a great impact on the
crystal distribution into the various classes. This means that
this is a variable to which attention should be paid.

The optimization subroutine used in this study does not
seem to be the most suitable for the solution of the prob-
lem, because this latter is extremely non-linear. The objective
function has a lot of local minima and, as the SQP is unable
to scan the whole objective function surface, the optimizer
brings about local optima (minima). However, even so, the
found solutions are better than the original ones.

The variation coefficient seems to be the most proper ob-
jective function, since it relates two features of the CSD. Nev-
ertheless, the complexity of this objective function hampers
its use.

An interesting approach to the problem that was not con-
sidered in this work is the imposition of the constraint of
minimum mean crystal size at the end of the batch and the
optimization of two control variables (32 values), to know, the
coolant temperature and flow rate profiles. It is worthwhile
mentioning that this latter approach would be advantageous
only if one could express the global heat transfer coefficient
as a function of the coolant fluid flow rate. The use of a
global optimization technique, coupled with the SQP may be
an interesting alternative to face the optimization problem,
especially when the user is not familiar to the process.

Acknowledgements

Financial support from Fapesp–Fundação de Amparo à
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Appendix A

This appendix brings all data used in the simulations pre-
sented in this article. This appendix is separated according to
the items in this article.

Item 5

The total number of simulations that were made to eval-
uate the influence of the process variables in the devel-
oped work was 36 (Simu01 to Simu36). But just those that
were most significant were presented in this article (Simu04,
Simu18, Simu20, Simu21, Simu23, Simu26 and Simu29).
In each simulation made, one or two process variables were
changed from those set in the standard simulation (Simu01).
In this appendix, the input data to Simu01 (Tables 2 and 3)
and the input and output data of Simu04, Simu18, Simu20,
Simu21, Simu23, Simu26 and Simu29 (Table 4) are
presented.

The seeding in Simu01 was insignificant: it was made just
in the 21st class and the number of crystals per unit volume of
suspension was N0(21) = 338. No other granulometric class
was seeded.

Item 6.1

The input data used in the study of the differential equa-
tions discretizations were the same as those used in Simu01
(see item 9.1), except for the seeding, which was 1.62 × 108

crystals at the 20th granulometric class.

Item 6.4

In the optimization study, many trials were made, chang-
ing objective function, imposed constraints, control variable
and number of granulometric classes. Again, just the most
relevant results (or of interesting analyses) were presented
in this article (Otim05, Otim06, Otim10, Otim14, Otim15,
Otim21).

Table 3
Interval boundaries and classes characteristic sizes

I Li (�m) Si (�m) i Li (�m) Si (�m)

0 0.01 – 13 125.00 112.11
1 7.81 3.91 14 157.49 141.25
2 9.84 8.83 15 198.42 177.95
3 12.40 11.12 16 249.99 224.21
4 15.63 14.02 17 314.97 282.48
5 19.69 17.66 18 396.84 355.91
6 24.80 22.25 19 499.99 448.42
7 31.25 28.03 20 629.95 564.97
8 39.37 35.31 21 793.93 711.94
9 49.61 44.49 22 1000.24 897.09

10 62.50 56.06 23 1255.83 1128.04
11 78.75 70.63 24 1562.13 1408.98
12 99.21 88.98 25 1735.25 1648.69

The input data used in the characterization of the system
were the same used in Simu01, except when something op-
posite is stated in the summary below. When the number of
granulometric classes used was less than 25, the intervals
boundaries were the same used in Simu01 until the number
of the corresponding class.

Otim05

Number of granu-
lometric classes

5

Objective function Minimization of σ
Constraints Control variable must decrease or re-

main constant during the batch; crys-
tallized mass should be at least 50 g

Control variable Crystallizer solution temperature
Initial estimate T= −0.000018666t2 + 340 K
L̄num 17.64 �m
σ 0.34 �m
VC 1.92%

Table 2
Values used in Simu01

Data Value Unit Data Value Unit

V0 0.3 × 10−3 m3 Time step 0.5 s
DiamT 0.05 m K 4.4 –
Diam 0.02 m A 2.0 × 1015 # m−3 s−1

N (stirring speed) 13.6 s−1 B 40 –
ε 2.107 × 10−2 Wkg−1 k

′

N 1 # m6 mol−3 s−1

U 600 W m−2 K−1 I′ 1 –
Ac 236.0 × 10−4 m2 k′ 2 –
kv π/6 – kc 1 × 10−7 m4 mol−1 s−1

ka π – j′ 2 –
C0 1500 mol m−3 k′

a 1 × 10−6 m4 mol−1

Batch time 1500 s T0 340 K
N (number of granulometric classes) 25 – Tc 300 K
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Table 4
Simulations data

Name Change compared to Simu01 Seed mass (�g) Crystallized mass (g)

Simu04 Tc = −0.000018666t2 + 340 26 43.1

Simu18 Tc = −0.000018666t2 + 340 26 44.7
U= 600 if 0 < t< 375
U= 650 if 375 < t 750
U= 700 if 750 < t< 1125
U= 800 if 1125 < t< 1500

Simu20 Tc = −0.000018666t2 + 340 6.4 × 106 51.4
N0(20) = 1.62 × 108 (only seeded class)

Simu21 Tc = 0.000018666t2−0.056t+ 340 6.4 × 106 54.4
N0(20) = 1.62 × 108 (only seeded class)

Simu23 Tc = −0.000018666t2 + 340 6.4 × 106 52.0
N0(20) = 1.62 × 108 (only seeded class)
U= 600 if 0 < t< 375
U= 650 if 375 < t< 750
U= 700 if 750 < t< 1125
U= 800 if 1125 < t< 1500

Simu26 N0(20) = 1.62 × 108 (only seeded class) 6.4 × 106 54.4

Simu29 Tc = 0.000018666t2− 0.056t+ 340 6.4 × 106 54.4
N0(20) = 1.62 × 108 (only seeded class) ε= 1.0

Otim06

Number of granu-
lometric classes

5

Objective function Minimization of σ
Constraints Control variable must decrease or re-

main constant during the batch; crys-
tallized mass should be at least 50 g

Control variable Crystallizer solution temperature
Initial estimate T= 310 K
L̄num 17.42 �m
σ 1.39 �m
VC 7.99%

Otim10

Number of granu-
lometric classes

5

Objective function Minimization of σ
Constraints Control variable must decrease or re-

main constant during the batch; crystal-
lized mass should be at least 50 g

Control variable Crystallizer solution temperature
Initial estimate T= 339 K
L̄num 17.64 �m
σ 0.37 �m
VC 2.09%

Otim14

Number of granu-
lometric classes

25

Objective function Minimization of VC
Constraints Control variable must decrease or re-

main constant during the batch; crystal-
lized mass should be at least 50 g

Control variable Coolant temperature
Initial estimate T= 325 K
L̄num 69.40 �m
σ 81.43 �m
VC 117.38%

This trial did not came to the optimum. The execution was terminated
without coming to it (line search took more than five function calls).

Otim15

Number of granu-
lometric classes

5

Objective function Minimization of VC
Constraints Control variable must decrease or re-

main constant during the batch; crystal-
lized mass should be at least 50 g

Control variable Coolant temperature
Initial estimate T= 325 K
L̄num 17.66 �m
σ 0.17 �m
VC 0.94%
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Otim21

Number of granu-
lometric classes

10

Objective function Minimization of VC
Constraints Control variable must decrease or re-

main constant during the batch; crystal-
lized mass should be at least 50 g

Control variable Coolant temperature
Initial estimate T= −0.000018666t2 + 340 K
L̄num 48.340 �m
σ 8.73 �m
VC 18.06%

This trial did not came to the optimum. The execution was terminated
without coming to it (line search took more than five function calls).

Nomenclature

A pre-exponential factor (primary nucleation)
(m−3 s−1)

Ac heat transfer area (m2)
B kinetic parameter of the primary nucleation law
c solute molecules concentration in solution

(mol m−3 of solution)
c* solute molecules concentration in solution at super-

saturation (mol m−3 of solution)
Ci granulometric class of rank i

�Ci width of class Ci

Cp slurry specific heat (J kg−1 K−1)
CS solid concentration in the suspension (mol m−3 of

suspension)
C0 initial concentration of adipic acid (mol m−3 of so-

lution)
D diffusivity of the solute (m2 s−1)
Diam stirrer diameter (m)
DiamT tank diameter (m)
G growth rate (m s−1)
[H+] concentration of protons in solution (mol m−3 of

solution)
Hk enthalpy of stream k (J m−3)
�HC heat of crystallization (J mol−1)
[HR] concentration of molecular adipic acid in solution

(mol m−3 of solution)
[HR*] concentration of molecular adipic acid in solution

at saturation (mol m−3 of solution)
i′ kinetic order of the secondary nucleation law
j kinetic order of the integration growth law
K modified acidity constant of adipic acid (mol m−3

of solution)
k′ exponent to the solid concentration in secondary nu-

cleation law
ka surface shape factor
k

′

a agglomeration rate constant in the diffusional
growth regime (s)

kc kinetic constant of the integration law (m3j′−2

mol1−j′s−1)
kd mass transfer coefficient (m s−1)
k

′

d mass transfer coefficient in agglomeration process
(m4 mol−1s−1)

k
′

N kinetic constant of the secondary nucleation law
(m3(i′+k′)−3 mol−i′−j′ s−1)

kv volumetric shape factor
lm,n rank of the lth agglomeration of particle m with par-

ticle n

L characteristic size of crystals (m)
Li upper limit of class of number i (m)
L̄num mean size of the number distribution (m)
m, n, q granulometric classes involved in the agglomeration

reaction
MM molecular weight of the crystal (kg mol−1)
n number distribution density (population) per unit

volume of suspension (m−4)
N number of granulometric classes
N stirring speed (s−1)
Ni(t) number of crystals per unit volume of suspension in

granulometric classCi at time t (m−3 of suspension)
Qk flow rate of stream k (m3 s−1)
rN net rate of nucleation (m−3 s−1)
rN1 primary rate of nucleation (m−3s−1)
rN2 secondary rate of nucleation (m−3 s−1)
r(l) intrinsic rate of agglomeration of rank lm,n

(m−3 s−1)
RA,i net rate of agglomeration in the granulometric class

Ci (m−3 s−1)
RB,i net rate of breakage in the granulometric class Ci

(m−3 s−1)
Si characteristic size of the crystals of granulometric

class Ci (m)
Sh Sherwood number
t time (s)
tf final batch time (s)
T crystallizer solution absolute temperature (K)
Tc coolant absolute temperature (K)
Tc vector with the values for the coolant temperature

at all optimizer discretization points
U global heat transfer coefficient (J m−2 s−1 K−1)
V solution volume (m3)
Vsusp suspension volume (m3)
VC variation coefficient of the number distribution

(= σ/L̄num)
Vo initial volume of the solution in the crystallizer (m3)

Greek letters

ε power dissipation per unit of mass (W kg−1

(m2 s−3))
ηr effectiveness factor
λe Lagrangian microscale (m)
ν kinematic viscosity (m2 s−1)
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νest stoichiometric coefficient of a general agglomera-
tion reaction

νestl,i stoichiometric coefficient of class i in agglomeration
of number l

ρ slurry density (concentration) (kg m−3 of slurry)
ρc crystal density (kg m−3 of crystal)
σ standard deviation of the number distribution (m)
ψ number density function (m−1 m−3)

Subscripts

0 initial value
e,s inlet and outlet streams
i, j granulometric classes
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3.3. Conclusões 

Os resultados apresentados neste capítulo mostram que o modelo 

matemático desenvolvido representa bem o processo, sendo capaz de 

reproduzir os resultados da literatura. O problema de otimização se mostrou 

altamente não-linear e difícil de ser postulado. No entanto, as soluções obtidas 

com o estudo de otimização, embora não haja garantia de que o ótimo global 

tenha sido encontrado, levam a uma melhora substancial da qualidade do 

produto final, expresso em termos de tamanho médio de cristal e do coeficiente 

de variação da distribuição de tamanhos. 

A análise preliminar do efeito de variáveis de processo mostra que a 

semeadura é um fator importante em processos de cristalização em que se 

deseje evitar formação de muitos finos (via nucleação). Forte influência exerce 

também a taxa de resfriamento empregada durante a batelada. Trajetórias de 

resfriamento que apresentam taxas de decréscimo de temperatura pequenas 

no início do processo e mais acentuadas próximas ao final da batelada 

favorecem o crescimento das sementes adicionadas, devido à ausência de 

grandes picos de supersaturação. 

O estudo de otimização mostra que o SQP é altamente dependente da 

estimativa inicial, especialmente em problemas que apresentam muitos ótimos 

locais. Além do mais, problemas altamente não-lineares, como o abordado 

neste trabalho, não se adequam de maneira geral ao método determinístico de 

otimização utilizado. 

No próximo capítulo será apresentada uma breve revisão dos principais 

métodos numéricos já propostos na literatura para resolver o balanço de 

população, com enfoque em problemas de cristalização, visto que a PBE é 

uma equação diferencial parcial hiperbólica, cuja solução deve ser alcançada 

por métodos numéricos. O método numérico de solução selecionado traz 

consigo vantagens e desvantagens que terão influência direta na modelagem 

do processo de cristalização, uma vez que o balanço de população é parte 

integrante deste modelo, e consequentemente, faz-se presente na sua 

aplicação em estudos de otimização e controle. 
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Capítulo 4 – Solução do Balanço de População Aplicado a 

Problemas de Cristalização 

4.1. Introdução 

Em processos de cristalização, a necessidade de melhorar a qualidade 

de produto e minimizar os custos de produção requer um entendimento e a 

otimização para obtenção de uma distribuição apropriada de tamanhos de 

cristal. Para se alcançar esse objetivo, um modelo do processo é necessário e 

a distribuição de partículas deve ser representada, o que é feito pelo balanço 

de população. O balanço de população é representado por uma equação 

diferencial parcial hiperbólica altamente não linear e, na maioria dos casos, 

uma solução analítica não é possível. A ausência de soluções analíticas requer 

o desenvolvimento e adaptações de técnicas numéricas para que a equação do 

balanço de população seja útil para fins de modelagem, otimização e controle. 

Este capítulo se dedica a apresentar a estrutura original do balanço de 

população e a analisar os aspectos positivos e negativos de alguns métodos 

numéricos escolhidos como ferramenta no tratamento da equação do balanço 

de população (PBE) em processos de cristalização. São discutidos problemas 

de ordem numérica oriundos da transformação da equação diferencial parcial 

(especialmente quando todos os mecanismos cinéticos se fazem presentes – 

nucleação, crescimento, aglomeração e quebra) e o esforço computacional, 

bem como a predição incorreta do número total de partículas e/ou erros no 

balanço de massa da fase dispersa. 

4.2. Desenvolvimento 

O desenvolvimento deste capítulo é apresentado a seguir, no artigo 

intitulado Considerations on the crystallization modeling: Population Balance 

Solution, a ser publicado no periódico internacional Computers and Chemical 

Engineering em 2007 (v. 31, p. 206-218). 
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Abstract

In crystallization processes, the need to improve the product quality and to minimize production cost requires understanding and optimization

on how to obtain an appropriate particle-size distribution. In order to achieve this goal, a model of the process is necessary and the distribution

of particles must be represented, which is made through the population balance. This latter constitutes a strongly nonlinear hyperbolic partial

differential equation and, in most cases, an analytical solution is not possible, requiring the development and adaptation of numerical techniques.

In the present work, it is proposed to analyze the positive and negative aspects of some methods chosen as a tool in the treatment of the population

balance equation in crystallization processes. Numerical problems arising from transformation of the partial differential equation, computational

effort, as well as the incorrect prediction of the total number of particles and/or no mass conservation of the dispersed phase are discussed.

© 2006 Elsevier Ltd. All rights reserved.

Keywords: Crystallization; Population balance; Numerical methods; Computer simulation

1. Introduction

Population balance is a well established approach as the math-

ematical framework for dealing with particulate systems. These

kinds of processes involve formation of entities, growth, break-

age or aggregation of particles, as well as dispersion of one

phase in another one, and are, therefore, present in a large range

of applications, like polymerization, crystallization, bubble tow-

ers, aerosol reactors, biological processes, fermentation or cell

culture. Such mathematical approach in any of these systems

follows the number of entities, such as solid particles, bubbles

or cells in such way that their presence or occurrence may dictate

the behavior of the system under consideration (Puel, Févotte,

& Klein, 2003a; Ramkrishna & Mahoney, 2002). The theoret-

ical treatment covered by the population balance, nevertheless,

encounters a practical barrier in most applications, since it repre-

sents a hyperbolical partial differential equation with analytical

solutions in just few cases. In others, numerical methods must

be applied to calculate the system response, or even to optimize

existing processes or to design new ones. A large number of

numerical methods have been proposed in the open literature,

∗ Corresponding author. Tel.: +55 19 3788 3971; fax: +55 19 3788 3965.

E-mail address: caliane@lopca.feq.unicamp.br (C.B.B. Costa).

but many of them have their applicability restricted to some

special cases/processes, while others are of more general appli-

cation.

Some applications of the model numerical solution demand

fast and efficient codes, as in model-based control algorithms,

in which the model must be solved in real time. The control

objectives for many processes are different and the selection of

a numerical method must look to it. In continuous crystallization

problems, for example, the concern is in stabilization of a fre-

quently oscillating operation, while, in batch mode, stability is

not the issue. Here, the pressing question is whether the crystal

size distribution (CSD) can be tailored to user specifications by

applying an optimal manipulated variable trajectory to the sys-

tem and by periodically on-line computing to correct noise and

process disturbances (Rawlings, Witkowski, & Eaton, 1992).

Bearing the exposed in mind, the present paper presents the

original population balance framework, the hyperbolic partial

differential equation and reviews the main numerical methods

already proposed to solve it. The methods are, then, analyzed

and the advantages and drawbacks for application in crystalliza-

tion processes are discussed, focusing on possible numerical

problems, on the computational effort and on the correctness

of prediction of the total number of particles and of mass con-

servation. The idea is not to present a formal organization of

numerical methods based on any criteria, but, as mentioned,

0098-1354/$ – see front matter © 2006 Elsevier Ltd. All rights reserved.

doi:10.1016/j.compchemeng.2006.06.005
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Nomenclature

b (ε) breakage rate of a particle of size ε

bk defined as b(xk)

B birth rate using length as internal coordinate

B′ birth rate using volume as internal coordinate

B̄ mean birth rate using length as internal coordinate

B0 nucleation rate

Ci ith granulometric class

D death rate using length as internal coordinate

D′ death rate using volume as internal coordinate

D̄ mean death rate using length as internal coordi-

nate

f mesh function

G growth rate

h net rate of production of particles

kv volume shape factor

L characteristic length of the particles

La lower limit of a subdomain

Lb upper limit of a subdomain

Lmax maximum length of the particles in a truncated

domain

m number of properties of particles used in the PBE

n number density function using length as internal

coordinate

n′ number density function using volume as internal

coordinate

N number of particles per suspension volume unit

NE number of subdomains

pi properties of particles used in the PBE

p (v/ε) fraction of daughter particles with size between v

and v + dv generated from breakage of particles

of size ε

Qk volumetric rate of kth stream

R residual in the weighted residuals methods

RA net rate of agglomeration in Ci granulometric

class (=Bagg − Dagg)

RB net rate of breakage in Ci granulometric class

(=Bbr − Dbr)

S state vector

t time

ub, vb, wb components of the particle velocity vector vb

vb particle velocity vector

V suspension volume

wi weighting functions

x vector of internal coordinates

xi representative volume of the ith size range, also

the ith grid point

x, y, z spatial coordinates

Greek letters

�Ci width of ith class

β (L, λ) agglomeration kernel using length as internal

coordinate

β′ (v, ε) agglomeration kernel using volume as internal

coordinate

β′
j,k agglomeration kernel for sizes xj, xk (=β′ (xj, xk))

δ Dirac Delta function

γ (ε) number of daughter particles in the breakage of a

particle of size ε

µj moment j of a distribution

µij cross-moment ij of a distribution

ψi basis functions used in the weighted residuals

methods

Subscripts

agg aggregation

br breakage

nucl nucleation

to stress the positive and negative features of methods in the

solution of crystallization problems. Cooling crystallization is

a process in which the mechanisms of nucleation, growth and

aggregation occur in a competitive fashion and, so, a numer-

ical method suitable for solving PBE in crystallization prob-

lems should deal with the three mechanisms with acceptable

accuracy.

The paper is organized as follows. The population balance

approach is first introduced, with discussions in its area of

application and analytical solution limitations. Then the for-

mal complete population balance equation and some definitions

are presented, and some important issues are raised. Section 3

discusses in a general manner the three main groups in which

the specific methods for solving the population balance equa-

tion may be classified, while Section 4 presents specific meth-

ods, with their applications in literature, advantages, drawbacks

and applicability in crystallization systems. The next section

presents other methods, which cannot be classified in none of

the three main groups of Section 3. As an exemplification of a

method application in a crystallization process, Section 6 gives

some numerical results and points out the notable drawbacks

and advantages. Finally, the last section provides the conclud-

ing remarks.

2. The general population balance equation

The population balance framework considers space as the

physical one, as well as any important system property, which

changes due to the intrinsic mechanisms and external influences

to the system. Concerning to the physical space, the state vector

coordinates refer to spatial coordinates, like (x, y, z), and are

denoted as external coordinates. The coordinates corresponding

to the properties (internal coordinates) are the ones of relevance

to the process and may be composed, for example, by any impor-

tant dimension of the particle or its age in the system (Hounslow,

1998; Randolph & Larson, 1971). The state vector S can be, then,

expressed by S = [x, y, z, t, L, (pi)1≤i≤m], where L is the char-

acteristic dimension of the particles, besides m other properties

and t corresponds to time. The number density function n[x, t,

L, (pi)1≤i≤m] can then be used to make a balance in the particles
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population, composing the population balance equation, PBE

(Pilon & Viskanta, 2003):

∂n

∂t
+

∂

∂x
(ubn) +

∂

∂y
(vbn) +

∂

∂z
(wbn) +

∂

∂L
(L̇n)

+
m

∑

i=1

∂

∂pi

(ṗin) = h (1)

where ub, vb and wb are the components of the particle veloc-

ity vector vb, L̇ is the time rate of change of the characteristic

dimension, while ṗiis the time rate of change of the other prop-

erties. The net rate of particles production of a particular state

at time t is denoted by h, which comprises death and birth

mechanisms.

The main reason for the unavailability of analytical solu-

tions to the PBE is that the birth and death terms correspond-

ing to breakage and agglomeration are expressed as integral

functions. Apart from that, the density function may vary

in multidimensional space and may depend on external vari-

ables. These two last complications to the solution of the

PBE are normally neglected in most applications, by assum-

ing perfectly mixed tank. In this way, the external coordi-

nates are normally not considered and the PBE is expressed

only with the internal coordinates. An interesting work pre-

sented in literature dealing with imperfect mixing is the one

of Ma, Tafti, and Braatz (2002). The effect of spatial vari-

ation is evaluated using a compartmental model, which may

require the use of parallel computations, if the number of consid-

ered compartments is large, in order to have shorter simulation

times.

The hyperbolic differential operator of the PBE is the diver-

gence term, composed by all derivatives with respect to the

coordinates, which is divided into two parts. The divergence

concerning to external coordinates expresses the change in

population in a particular volume due to the particles pass-

ing through that volume with velocity vb. The second diver-

gence term represents the change in population due to particle

property, pi. If the property is the particle size, then the diver-

gence term represents the growth (represented by G) or shrink-

age of the particles (Verkoeijen, Pouw, Meesters, & Scarlet,

2002).

The kinetic mechanisms present in particulate processes are

growth (commonly associated with the rate of change of the char-

acteristic dimension), nucleation (appearance of new entities),

agglomeration and breakage. In crystallization field, nucleation

and crystal growth are dominant, but in many systems, agglom-

eration and breakage are present to a certain extent, that must be

considered into the modeling.

2.1. Expressions to birth and death terms

The birth (B) and death (D) terms represented in Eq. (1) by h

correspond to breakage and agglomeration mechanisms, which

are commonly expressed as integral functions.

Aggregation results from the binary collision of mother par-

ticles and the sticking by growth of crystalline bridges between

particles. Bearing aggregation in mind, the birth and death terms,

using volume as internal coordinate are given, respectively, by

Eqs. (2) and (3):

B′
agg(v) =

1

2

∫ v

0

β′(v − ε, ε)n′(v − ε, t)n′(ε, t) dε (2)

D′
agg(v) = n′(v, t)

∫ ∞

0

β′(v, ε)n′(ε, t) dε (3)

The agglomeration kernel, β′(ν, ε), is a measure of the fre-

quency of collisions between particles of volumes ν and ε which

produces a particle of volume ν + ε, being a function of the size

domains of mother particles and of the agglomerate and the

hydrodynamic conditions.

It is frequently easier to write the growth rate with length as

internal coordinate, and, therefore, a modification in the birth

and death rate terms, based on length, is necessary:

Bagg(L)=
L2

2

∫ L

0

β[(L3 − λ3)
1/3

, λ]n[(L3 − λ3)
1/3

, t]n(λ, t) dλ

(L3 − λ3)
2/3

(4)

Dagg(L) = n(L, t)

∫ ∞

0

β(L, λ)n(λ, t) dλ (5)

David, Paulaime, Espitalier, and Rouleau (2003) divide

agglomeration in three levels, to know, Brownian, laminar and

turbulent agglomeration and develop the expressions for the

agglomeration kernel for each one of them.

According to Verkoeijen et al. (2002), the birth and death

terms in the PBE express the transfer of particles from one size

class to the other by breakage or by agglomeration and, since

they are not rate processes, cannot be differentiated with respect

to time.

A different perspective in the modeling of agglomeration was

proposed by Marchal, David, Klein, and Villermaux (1988), con-

sidering this mechanism as chemical reactions between species

in the many particle sizes. The final agglomeration rate expres-

sion per size domain is based on an intrinsic rate, function of the

number of collision per time and volume unit and of supersatu-

ration.

Equations analogous to Eqs. (2) and (3) can be formulated

to express the birth and death terms due to the breakage mech-

anisms, as given by Eqs. (6) and (7):

B′
br(v) =

∫ ∞

v

γ(ε)b(ε)p
(v

ε

)

n′(ε, t) dε (6)

D′
br(v) = −b(v)n′(v, t) (7)

where γ(ε) is the number of daughter particles generated from

the breakup of a particle of size ε, b(ε) is the breakup rate of a

particle with size ε and p(v/ε) is the fraction of daughter parti-

cles with size between v and v + dv, generated from breakup of

particles of size ε.
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2.2. Internal coordinate and density function

considerations

Verkoeijen et al. (2002) present reasons why the population

balance should be expressed with particle volume as the basic

particle-size parameter. They argue, using the agglomeration

mechanism, that when length is used to express size, consis-

tency with the mass balance cannot be achieved. However, as

pointed out by Mahoney and Ramkrishna (2002), singularity in

the number density may occur in certain treatments. In precipi-

tation systems, the length based growth rate is usually finite at

small particle sizes. This corresponds to a volumetric growth

rate that approaches zero at L = 0, and a consequent singular-

ity in the volume based number density. The singular behavior

creates very steep gradients in the solution that are difficult to

capture with a discrete representation, besides being difficult to

scale the solution, even if v = 0 is not included in the domain.

These problems are avoided by the formulation in length, with

the drawback that evaluation of aggregation kernel becomes con-

siderably more complex.

Another point discussed by Verkoeijen et al. (2002) is the

proposal that the basic population distribution should be the

mass distribution of particle, instead of the common practice of

expressing the distribution of the particle size as a number distri-

bution. The reason is posed in terms that the number of particles

is not conserved, since the particles may break or agglomerate,

being the total mass of particles the amount that is conserved. As

a result, the basic PBE should be expressed in terms of the mass

distribution, or the volume distribution if the density is constant,

so the mass in the system is automatically conserved. Neverthe-

less, the authors deal with the description of grinding and aerosol

processes. Conservation of total particles mass is not the case

for crystallization process, where the extraction of solute from

solution can occur with the growth of existing crystals or with

the nucleation of new entities. So, this argument is not valid for

a crystallization application and, historically, the number distri-

bution has been the preferred approach, as exposed by Puel et al.

(2003a).

2.3. Moments of the distribution

The moment j of the number distribution n is defined as in

Eq. (8):

µj =
∫ ∞

0

Ljn(L, t) dL (8)

For the number distribution based on volume as internal coor-

dinate, the moment j is given by Eq. (9):

µj =
∫ ∞

0

vjn′(v, t) dv (9)

The zeroth moment (j = 0) represents the total number of par-

ticles present in the system, while the total volume of particles

is inferred from the third moment (j = 3) defined by Eq. (8) or

from the first moment (j = 1) defined by Eq. (9).

When more than one crystal dimension is considered, cross-

moments can be defined. For example, for two dimensions in

a distribution based on the width (L1) and the length (L2), the

cross-moments can be defined as in Eq. (10):

µij =
∫ ∞

0

∫ ∞

0

Li
1L

j
2n(L1, L2, t) dL (10)

The total number is given by µ00, while µ10 is the total width

and µ01 is the total length. The average width of crystals is

µ10/µ00 and the average length is µ01/µ00.

Some methods for solving the PBE appeal to the moments

of the distribution in order to manipulate the original partial

differential equation. Special attention to these methods will be

given in next section.

3. Numerical methods for PBE solution

The methods for solving the PBE can be classified into three

main groups: the method of moments, the discretization of the

size domain interval and the weighted residuals.

The method of moments is one of the oldest ones and trans-

forms the PBE into a set of ordinary differential equations

(ODEs) by multiplying the population balance equation by Lj (in

a length based PBE) and integrating it, giving equations in terms

of moments (Randolph & Larson, 1971). The solution of the set

of equations gives the moments of the distribution as function of

time, considering size independent growth and mean birth and

death terms:

∫ ∞

0

Lj

[

∂n

∂t
+

∂

∂L
(Gn) + D − B

]

= 0 (11)

dµ0

dt
= B0 + B̄ − D̄

dµ1

dt
= µ0G + B̄ − D̄

dµ2

dt
= 2µ1G + B̄ − D̄

dµ3

dt
= 3µ2G + B̄ − D̄

(12)

In the set of Eq. (12), B0 is the nucleation rate. When only

nucleation and growth are being considered, the moments can

be generated by the ordinary differential equation given by Eq.

(13):

dµj

dt
= 0jB0 + jGµj−1 (13)

It is easy to derive the ODEs when PBE is a two-dimensional

one:
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dµ00

dt
= B0

dµij

dt
= iG1µ(i−1)j + jG2µi(j−1) i + j > 0

(14)

The great disadvantage of the method is the mathematical

complication in the equations when the growth rate is a size

dependent mechanism. In this case, an alternative method of

solution is to use the moments and an orthogonal polynomial

to simulate the population density function. When aggregation

and/or breakage are included, the reduction to moment equations

is impossible. Apart from this drawback, reconstructing the real

distribution from its moments is numerically unstable (Nallet,

Mangin, & Klein, 1998; Rigopoulos & Jones, 2003). This last

disadvantage can represent a serious problem in certain model

applications. Many times, as in certain optimal control evalu-

ations, the entire particle size distribution may be necessary,

which prevents the use of the method of moments (Ma et al.,

2002).

The discretization technique, which is also referred to as

discretization sizing technique, discretize the spectrum of the

independent variable into a number of intervals and subsequently

use the mean-value theorem to transform the continuous PBE

into a series of equations in terms of either number or aver-

age population density in each class. The method turns the PBE

in the so-called discretized population balance (DPB) and the

resulting set of ODEs has so many equations as the number of

granulometric classes.

The computational effort for the numerical solution can be

severely reduced if the grid assumes a geometric progression—

the number of combinations of particles that must be

considered to evaluate the aggregation terms is substan-

tially reduced (Rigopoulos & Jones, 2003). Furthermore,

coarse discretization methods are particularly amenable to

process control applications because of the speed with

which solutions can be obtained especially when fronts and

discontinuities are not present (Ramkrishna & Mahoney,

2002).

Two drawbacks can be cited. Conservation of both number of

particles and mass is only guaranteed in the limit of infinite reso-

lution and a discontinuity can arise along the separatrix, which is

the curve that divides states deriving from initial conditions from

those arising from boundary conditions. A sharp discontinuity

can be created, which quickly broadens by numerical diffusion

in simulation (Mahoney & Ramkrishna, 2002).

The weighted residuals comprise methods that retrieve the

distribution by approximating the solution with a series of trial

functions, whose coefficients are to be determined so that their

sum will satisfy the PBE. They are divided in weighted residuals

with global functions and finite element (FE) methods. Weighted

residual methods with global functions were among the first to be

tried in PBE numerical solution. It was soon realized, however,

that global functions cannot capture the features of an arbitrar-

ily shaped distribution, especially if it exhibits sharp changes

and discontinuities. If a priori knowledge of the shape of the

resulting distribution is available, the trial functions can be tai-

lored to accommodate it; in that case, the method converges and

may even be computationally attractive. Finite element methods

approximate the solution with piecewise low-order polynomials

that are only locally nonzero, and are, thus, flexible and capable

of capturing highly irregular solutions. (Rigopoulos & Jones,

2003). According to Rawlings, Miller, and Witkowski (1993),

the computational time for the model solution with the weighted

residuals method is modest, turning possible to consider it in an

on-line control scheme.

In global methods, the population density function is approx-

imated as a linear combination of chosen basis function, Ψ i(L):

n(L, t) =
∞

∑

i=1

ai(t)Ψi(L) (15)

The unknown ai’s are determined by substituting the previous

equation into the population balance to define a residual, R (L,

t). The sense in which the residual is made small determines the

type of weighted residual method used. The idea of weighted

residuals is to find the ai’s that force the residual to be orthogonal

to a chosen set of weighting functions, wi(L):

∫ ∞

0

wi(L)R(L, t) dL = 0 (16)

Possible choices of the weighting functions include Dirac’s

delta functions, resulting in collocation methods, or the

basis functions themselves (possibly weighted), resulting in

Galerkin’s techniques (Mahoney & Ramkrishna, 2002).

In FE methods, the infinite domain is truncated to a finite

one, L = [0, Lmax). This truncated domain is then partitioned into

NE discrete subdomains. For all L ∈ (La, Lb], a subdomain, the

solution to the PBE will be approximated as a linear combination

of interpolation functions:

n(L) ≈ ne
h(L) =

nc
∑

j=1

ne
jΨ

e
j (L) ∀L ∈ (Le

a, L
e
b] (17)

where nc is the number of nodes in element e, nj’s are the

nodal values of the density distribution and the Ψ j(L)’s are

the basis polynomials of order nc − 1 (Nicmanis & Hounslow,

1996).

The truncation results in an underestimation of the integrals of

the death term due to agglomeration and breakage. In most prac-

tical applications, the density distribution asymptotes towards

zero at sufficiently large particle sizes, so a maximum size can

be selected to be sufficiently large that underestimation is neg-

ligibly small. However, care must be taken to avoid selection of

unnecessarily large values of the upper limit, since tail regions

can be difficult and/or computationally expensive to converge,

because of the very small values they can attain at large particle

sizes (Nicmanis & Hounslow, 1998).

In orthogonal collocation on finite elements (OCFE), the

residual is made small by forcing it to vanish at selected Li loca-

tions, called the collocation points. The choice of these locations

is vital, since they control the density of the collocation points

in the overall size domain. Thus, in regions with steep changes
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a higher density of collocation points is usually required. The

domain partition into finite elements can be performed either

based on previous knowledge about the shape and characteris-

tics of the distribution or based on the satisfaction of a certain

error criterion (Krallis et al., 2004).

The choice of the basis functions, both in collocation and

Galerkin’s methods, must be suitable to the specific problem,

either in global or FE applications. Laguerre polynomials are

relevant for continuous flow crystallizers, since the steady-state

solution is exponential in the range [0, +∞) and the cyclic behav-

ior frequently present can be satisfactorily represented (Puel et

al., 2003a; Rawlings et al., 1992).

Advantages are convergence properties on the entire distri-

bution and the availability of adaptive mesh techniques. Major

drawbacks include the inability to capture discontinuities, as

may arise along the separatrix, and the computational overhead

arising from double integral evaluations in Galerkin’s formu-

lations. Furthermore, the number of system states required to

represent the solution grows exponentially with the number of

dimensions (Mahoney & Ramkrishna, 2002). Here, DPBs are

much easier and more robust to be extended in a second (or

third, if necessary) dimension (Puel et al., 2003a).

The major advantages of FE numerical solutions are their

robustness, easier convergence and open scale of the size

domain. Apart from that, FE method does not incur any trun-

cation errors at the lower volume range and uses significantly

smaller amounts of memory when solving the PBE as well

as CPU time needed to convergence than some DPB methods

(Nicmanis & Hounslow, 1998).

The large number of schema that must be evaluated for a given

system, as well as the difficulty to implement varying grid reso-

lutions are possible disadvantages of the FE approach, although

existing theory makes extension to multiple internal coordi-

nates reasonably straightforward. Under conditions of excessive

nucleation, the stiffness characteristics of the OCFE can cause

integration problems (Immanuel & Doyle III, 2003).

An approach also used, which differs from the determinis-

tic approach of the population balance considered so far, is the

probabilistic Monte Carlo method. In this technique, the solu-

tion is determined using the Markov conditional probability,

which is the probability of a particular state proceeding to any

other state. Besides predicting the ensemble average properties,

it also predicts the fluctuations. This technique solves more com-

plex multi-dimensional population balance models (Immanuel

& Doyle III, 2003).

Summarizing, a comparison of the DPB techniques with FE

methods reveals that, although the latter are more difficult to

implement and computationally demanding, they are very gen-

eral and flexible, coping with any possible formulation, like size-

dependent growth and different aggregation kernels. However,

it is interesting to note that, when mechanisms of aggregation

and breakage are present, DPBs are a more natural choice, since

these mechanisms are essentially discrete. DPBs are, on the other

hand, methods easy to use and computationally efficient, but less

general, driven to specific problems, and may incur in severe

errors of certain distribution moments.

4. Application of numerical methods in literature

4.1. Method of moments

As already exposed, this method, although providing a simple

manipulation of the PBE, has a lot of restrictions and draw-

backs. One of the most recent papers in crystallization area

that uses this method is the one of Ma and Braatz (2003).

The main proposal was an approach for robust identification

and control of batch and semibatch processes and the two-

dimensional crystallization was used to demonstrate it. The

authors appealed to the cross-moments in order to reduce the

PBE, with only nucleation and size-independent growth, to a set

of ODEs.

4.2. Discretized population balances

Marchal et al. (1988) introduced the Method of Classes, appli-

cable to a general case, making possible to consider agglomer-

ation, breakage and length-dependent growth rate. The method

discretizes the size domain interval in a free of choice grid,

generating granulometric classes or bins (Ci). The mean size in

each class is assumed as the characteristic size for all particles

belonging to that class. The model assumes a constant value for

the density function in each bin (zero order method).

⎧
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G(Li) − G(Li−1)

2�Ci
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+

1
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V
+

−G(LNE−1)

2�CNE
NNE −

G(LNE−1)

2�CNE−1
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(18)

In their original work, Marchal et al. (1988) solved the formed

set of ODEs (Eq. (18)) with a fourth order Runge–Kutta code

and considered the mechanisms of nucleation, length depen-

dent growth and agglomeration. The Method of Classes was

vastly used in literature to solve the PBE in crystallization and

precipitation field, for simulation of experimental results, deter-

mination of kinetic parameters, modeling of process or optimiza-

tion of operation conditions (Blandin, Mangin, Nallet, Klein,

& Bossoutrot, 2001; David & Bossoutrot, 1996; David et al.,

2003; David, Villermaux, Marchal, & Klein, 1991; Frank, David,

Villermaux, & Klein, 1988; Matthews, Miller, & Rawlings,

1996; Matthews & Rawlings, 1998; Miller & Rawlings, 1994;



212 C.B.B. Costa et al. / Computers and Chemical Engineering 31 (2007) 206–218

Monnier, Févotte, Hoff, & Klein, 1996; Monnier, Févotte, Hoff,

& Klein, 1997; Nallet et al., 1998; Puel et al., 2003a; Puel,

Févotte, & Klein, 2003b).

The major drawback of the Method of Classes is its depen-

dency of the number or density functions on the adopted grid.

Since the number of discretized equations increases with the

number of classes, high computational times can be neces-

sary for the solution of a fine grid. Self-adaptive discretization

has already been proposed in order to reduce the number of

differential equations, without affecting the results. Another dis-

advantage of the method is that the feasibility of the computation

is, likely, strongly dependent on the complexity and location of

individual birth and death processes.

Numerical problems described in literature arise from the

possible loss of crystals, leading to an unbalanced mass bal-

ance during the crystal growth. In coagulation (aggregation)

processes, the method conserves particle mass, but underesti-

mates the number of entities (Kostoglou & Karabelas, 1994).

Kumar and Ramkrishna (1997) stress that the discretization

equations for the Method of Classes have the potential to produce

negative values for the number of particles in each class and

that the results from this technique oscillate about the analytical

solution, apart from the fact that the numerical solutions around

the location of a discontinuity are highly diffused, turning the

method not adequate to include growth. This is quite natural

for finite-difference-type approximation as they have an infinite

velocity of propagation for the signal.

Puel et al. (2003a) extended the Method of Classes to a

bi-dimensional population balance, arguing that some organic

systems can not be represented solely by one characteristic

dimension, being necessary the consideration of two particle

dimensions. The bi-dimensional Method of Classes predicts the

time-variation of the crystal habit, which must be a point of

concern in some applications. They suggest the implementation

of an adaptive bi-dimensional algorithm to improve the com-

putation. In order to speed it up, the LSODAR was adopted

to solve the resulting ODEs. In order to cope with possible

unbalanced mass balance, the area of the each class in the grid

was reduced, requiring an enormous number of classes (6 × 105

classes), which would prevent the use of this model for use in

real time applications.

Hounslow, Ryall, and Marshall (1988) have devoted many

works in the modeling of kidney stones formation, a process in

which only growth and aggregation are involved. The method

developed by them discretize the particle-size domain in a fixed

geometric progression (Li+1/Li = 3
√

2, which is equivalent to

vi+1/vi = 2) and is also a zero order method, that is, the particle-

size density is considered constant in each bin. The discretization

is chosen to prevent the high computational complexity associ-

ated with the aggregation term. The authors identified four types

of aggregation interactions that can change the total population

in a size range and derived expressions for each one of them

separately. The derived discretized expressions for the number

of particles due to the mechanisms of aggregation, growth and

nucleation are given, respectively, by Eqs. (19)–(21). When the

three mechanisms are present in the process, Eqs. (19)–(21) must

be combined in order to compute the evolution of the number of

particles in each size range during time.

(

dNi
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= Ni−1
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= 3
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(

dN1

dt

)

nucl

= B0 (21)

The set of equations derived was internally consistent with

regard to mass and total numbers (zeroth and, ultimately, third

moments, in a length basis).

The DPB proposed by Hounslow et al. (1988) was extended

by Litster, Smit, and Hounslow (1995) in order to permit the

use of an adjustable discretization with the form vi+1/vi = 21/q,

q ≥ 1, integer. The expression for the contribution of aggregation

with the adjustable discretization is given by Eq. (22).
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∑
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∞
∑
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βi,jNiNj (22)

where S(q) =
∑q

s=1s.

The numerical solution is as more accurate as greater the

value of q, but this demands more computational time.

The major drawback to the application of the method pro-

posed by Litster et al. (1995) is its limitation in combined growth

and aggregation mechanisms at large times, although nucleation

problems can be successfully solved with such method.
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Kumar and Ramkrishna (1996a) propose a discretization

method for the PBE solution for breakage and agglomeration

mechanisms, in which the size (volume) domain is divided into

sections of arbitrarily scales and a representative volume (pivot)

is chosen in each section. The main feature is not an attempt to

approximate the continuous number density function on a suit-

ably fine scale, but rather to target calculation of properties of the

population of specific interest to an application without seeking

the complete number density function resulting from the process

events. In the method, called fixed-pivot (FP) technique, events

among particles that lead to the formation of particles of sizes

other then the pivot ones are incorporated in the set of discretized

equations, in such a way that the properties corresponding to two

moments of interest are exactly preserved. The moments to be

preserved determine the two values of j in Eq. (9), here assigned

to ζ and ξ. These last two variables determine the value of η

in Eq. (23), used in Eq. (24), which computes the evolution of

number of particles in each section.
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Kotoulas and Kiparissides (2004) and Krallis et al. (2004)

used the FP technique for the numerical solution of the PBE

applied to polymerization reactors. Stork, Tousain, Wieringa,

and Bosgra (2003) also used the FP technique with a geometric

grid of factor 1.2, but in a process of emulsification.

The main advantages of the method lie in the feature of pre-

serving any two free of choice properties of the distribution

and in the possibility of varying the coarseness of discretiza-

tion. Furthermore, for appropriate values of involved parame-

ters, it produces solutions that are exactly identical to those of

Hounslow et al. (1988) and Litster et al. (1995) with less com-

putation time. Nevertheless, the method is restricted to aggre-

gation and breakage events, which makes the method useful in

polymerization–depolymerization and aerosol dynamics prob-

lems (and indeed a lot of work which uses this numerical method

is found in the open literature), but not in crystallization ones.

Apart from that, according to Kumar and Ramkrishna (1996a),

over prediction is always present with the discretized equations

for pure aggregation, unless special effort is made to prevent it.

Due to this over prediction, Kumar and Ramkrishna (1996b)

developed a technique that accounts for the variation of number

density in a size range, proposing the definition of the pivots in

such a way that their location in size range {vi, vi+1} reflects

the variation of the relevant density in the ith size range. In this

way, if the density in a section changes from steeply decreas-

ing to nearly uniform due to the particulate process, the pivot

moves from the lower end of the section to the middle. Eq. (25)

expresses the movement of the pivots in each section and Eq.

(26) computes the evolution of the number of particles.
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where B̄
(v)
i,j =

∫ vi+1

vi
vβ(v, xj) dv.

The new technique, called moving-pivot (MP) technique,

shows that the correct discrete representation of the birth term

due to the coalescence of smaller entities (which determines the

movement of the front) is crucial for the accuracy of the numer-

ical solutions.

The disadvantage of the two previous techniques of not

including nucleation and growth terms was overcome with the

work of Kumar and Ramkrishna (1997), which combines the

developed discretized technique with the method of character-

istics. The scale boundaries move with the growth rate of the

particles belonging to the respective interval (Eqs. (27) and (28)).

The presence of nucleation poses a new difficulty because a sit-

uation arises when some or all of the nuclei become smaller than

the smallest particle size represented in the bins, due to the bins

movement. This problem is overcome by adding new bins, one

at a time (Eqs. (29) and (30)), with zero population at the small

size end at regular intervals and the renumber of the old bins as

increasing sequence of integers. The number of equations that

need to be solved increases very rapidly, making the technique

computation-intensive. The effectiveness is restored by elimi-

nating some of the pivots to make the grid coarser in larger sizes

and assigning them to the adjoining pivots in a way that the

desired properties of the population at the pivot in question are

preserved. Eq. (31) provides for the calculation on the number

of particles in each section.

dvi

dt
= G(vi) (27)
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= G(vi+1) (28)
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An adaptive mesh method is proposed by Lee et al. (2001) to

be used combined with the technique of Kumar and Ramkrishna

(1997), conserving crystal number and mass during mesh adap-

tation, being able to handle stiff nucleation problems of the char-

acteristic method. For the decision tolerance to adapt meshes,

the authors use the mesh function based on the first derivative

of the solution, as in Eq. (32).
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The meshes will be adapted to equidistribute the mesh func-

tion. Therefore, the meshes having mesh function values larger

than the tolerance defined in Eq. (33) or in Eq. (34), a relative

equation in order to consider the size range where density func-

tion are very small, will be refined.

TOL =

∑M
i=1�vi

√

1 + N2
v,i

M
(33)
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2 + (Nv,i/Nref)

2

M
(34)

The idea is to eliminate meshes when the mesh function of the

solution is much smaller than the tolerance, in order to reduce

the calculation time. Mesh elimination, for conservation of both

number and mass, is made through Eqs. (35) and (36).
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The study adopted the strategy of keeping the mass ratio in

the nuclei mesh to all meshes under a pre-specified constant.

In this way, a new mesh is added when the mass in the nuclei

mesh is no longer negligible compared to the total mass. The

populations of new ith and (i + 1)th meshes should satisfy Eqs.

(37) and (38).
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The adaptive mesh method was applied to a potassium sulfate

crystallization system, showing that the method is suitable for

the simulation of crystallization processes.

Simultaneity of nucleation, growth and aggregation of parti-

cles is essential to characterize processes such as precipitation

and crystallization, among others, and the possibility of mod-

eling this processes are one of the advantages of the method.

Furthermore, the presence of moving discontinuities, which is

unavoidable due to the hyperbolic nature of the governing equa-

tion, is addressed with no additional difficulty.

The developments of Kumar and Ramkrishna (1996a, 1996b,

1997) allow the density function (particle distribution) evalua-

tions as a consequence of distribution moments calculations.

This fact makes the procedure interesting to broader applica-

tions. For example, in many processes, like polymerization,

crystallization and aerosol, the control of the full particle-size

distribution (PSD) may be necessary, due to the strong depen-

dence of the physico-chemical and mechanical properties of

products on the characteristics of the corresponding PSD (Kalani

& Christofides, 2002). In order to control these processes, great

effort is made to determine off-line and on-line state variables

values that lead to the achievement of a target distribution. These

calculations, which include optimization and control, require a

system model able to predict the full PSD.

Nopens, Beheydt, and Vanrolleghem (2005) compared the

methods of Hounslow et al. (1988), the FP technique and the

MP technique applied to activated sludge flocculation, a pro-

cess in which only aggregation and breakage mechanisms have

significant dynamics. The authors concluded that when both

mechanisms are present, the MP technique with a geometric

grid of factor 2 is the most accurate method. A finer grid in the

FP technique leads to an improvement in accuracy, but it is still

worse than the one provided by the MP technique.

4.3. Method of weighted residuals

Rawlings et al. (1992) used the global orthogonal collocation

for continuous crystallizers and orthogonal collocation on finite

elements for batch mode. All simulations in this work were

carried out using Petzold’s differential–algebraic equation

solver DASSL. Collocation and Galerkin FE algorithms were

used by Nicmanis and Hounslow (1996, 1998) to solve the

steady state population balance equation, using Lagrange cubic

interpolation polynomials and evenly spaced nodes within

each element. Simulations were performed for a large range

of indices of aggregation, and included, besides aggregation,

breakage, nucleation and particle growth. The algorithms were

found to be able to accurately predict the number density with
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reasonably small numbers of elements and the collocation

and Galerkin methods made almost identical predictions and

converged in similar numbers of iterations. The Galerkin algo-

rithm, however, requires additional integrations that make this

method computationally much more expensive than collocation

method. The authors claim that the FE method proves to be

able to predict two orders of magnitude more accurate than the

results of the DPB developed by Litster et al. (1995) and that

a mixed collocation-Galerkin formulation can be used to avoid

the ill-conditioned matrices associated with growth problems.

The OCFE was also used by Crowley, Meadows, Kostoulas,

and Doyle III (2000), Immanuel et al. (2002) and Doyle III,

Harrison, and Crowley (2003), applied to the emulsion poly-

merization field, using Lagrange and Legendre interpolation

polynomials.

Mahoney and Ramkrishna (2002) improved two refinements

in the Galerkin’s method on FE for the solution of PBEs for

precipitation systems, in order to reduce the traditional draw-

backs of this method: the time required for computation of the

two-dimensional integrals arising from the aggregation integrals

and the difficulty in handling discontinuities that often arise in

simulations of seeded crystallizers. Linear basis functions were

chosen. Computational costs were enormously reduced with the

careful arrangement of invariant integrals of separable aggrega-

tion models. The discontinuities are proposed to be specifically

tracked by the method of characteristics. It is found that the

computation speed may be sufficient for dynamic online opti-

mization.

A FE scheme was used by Rigopoulos and Jones (2003) with

collocation linear elements and an upwind propagation of growth

term. The method is claimed to be computationally much faster

than higher-order FE collocation methods, such as cubic splines,

or integral FE schemes, such as the Galerkin’s.

5. Alternative numerical methods for solving the PBE

This section deals with some alternative methods to solve

the PBE that are not included in the general classification

of method of moments, discretization and weighted residual

methods.

5.1. Integral method

A different approach in the modeling of particulate processes

was made by Wynn and Hounslow (1997) by following the

progress of particles since their insertion (through the feed flow

or generation as nuclei) and computing their contribution to the

eventual crystal size distribution (CSD). This approach leads to

integrals from earlier times and smaller sizes until the present

time and size, opposing to the traditional treatment of deriva-

tives. It reduces to the characteristics method for a batch case,

without nucleation and with length-dependent growth: particles

in an interval are described by their characteristic curve, defined

by the growth rate equation. Due to the differences in the growth

rates between the lowest and the highest interval boundaries, the

interval width changes, while the number of particles remains

unchanged.

The integral approach can have more applications and it is

easier to understand, having intuitive derivation in many cases.

It can be employed to any residence-time distributions in contin-

uous operations. Furthermore, it does not require the evaluation

of the CSD in each time step, which can mean great computa-

tional time saving in applications where the detailed CSD is not

needed in each instant.

The great disadvantage of this approach lies in its difficulty

to cope with more complicated phenomena, like agglomeration.

5.2. Kinetics decomposition

Immanuel and Doyle III (2003) proposed other different

approach based on employing individual rates of nucleation,

growth and coagulation to update the PSD in a hierarchical

framework, with a semi-analytical solution in the coagulation

kernel, which reduces the computational requirement. Stiff-

ness is claimed to be eliminated by the decomposition of the

fast and the slow kinetics. The algorithm follows a two step

strategy—one to calculate the individual rates of nucleation,

growth and coagulation, and the other to update the PSD based

on these individual rates. The method discretizes the size particle

domain, but the proposed approach turns the method a com-

pletely different mathematical perspective other than a strictly

DPB.

The method is applied to emulsion polymerization, but can

be extended to other PBE systems. According to the authors,

efficacy of the method in on-line feedback applications is guar-

anteed from a computational standpoint, while not losing any

process information. In addition to this advantage, the current

code is very robust to a variety of operating conditions that one

might encounter in industrial practice, including very high nucle-

ation rates.

5.3. Closed-form solution with the method of

characteristics

Lee, Lee, Yang, and Mahoney (2002) used a closed-form of

solution of the PBE, when the growth rate takes on a separa-

ble form of GtGL in which Gt is the time-dependent part of

the growth rate and GL is the size-dependent part. The solu-

tion involves an integral along the characteristic curve and the

analytical solution is given by the set of Eq. (39):

n(L, t) =
V (t0)

V (t)
nt0 (Lb)

GL(Lb)

GL(L)
for Lb(L, t) ≥ 0

n(L, t) =
V (tb)

V (t)
nL0 (tb)

GL(0)

GL(L)
for tb(L, t) ≥ t0

(39)

where t0 is the start time of growth reaction. Lb and tb are the birth

size and birth time of the particle of size L at time t, respectively,

and can be obtained by solving the following Eqs. (40) and (41):

∫ L

Lb

1

GL(l)
dl =

∫ t

t0

Gt(t
′) dt′ (40)

∫ L

0

1

GL(l)
dl =

∫ t

tb

Gt(t
′) dt′ (41)
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This method is limited to absence of aggregation and break-

age and to a separable form of the growth rate. The simulations

are managed quickly and accurately, turning possible its use in

on-line model-based control.

5.4. Parallel parent and daughter classes (PPDC)

A novel approach has been suggested by Bove, Solberg, and

Hjertager (2005), but the technique is still limited to breakage

and agglomeration problems, although the authors promise to

extend it to include nucleation and growth in order to be appli-

cable to wider classes of processes in which PBE is used.

The name of the technique comes from the generation of

several distinct grids, parallel in the internal coordinate domain,

each grid depending on the specific mechanism (aggregation,

breakage). Breakage daughter classes are also parallel in the

internal coordinate domain. In the PPDC method, the PBE is

discretized in time using an explicit Eulerian time marching

method and the density function is approximated by a finite set

of Dirac’s functions in order to assign function values just in the

pivot sizes in each bin of the partition domain.

The advantages are the need to track very few classes, a better

closure of the agglomeration processes and the improvement

of the breakage mechanism accuracy with the increase in the

number of breakage daughter classes.

6. Numerical results with the method of classes

This section is devoted to present a case study as an exempli-

fication of a method application, in order to outline its numerical

issues. The Method of Classes was selected, for its ease of

implementation, and a FORTRAN code was written in order to

simulate the batch cooling crystallization of adipic acid. Details

about the code structure and the system features can be found in

Costa, da Costa, and Maciel Filho (2005).

In order to test the numerical ability, many runs were made,

which allowed acquisition of skill at the method. Some remarks

may be, then, outlined about a few numerical issues.

As already pointed out by Kumar and Ramkrishna (1997),

the set of ODEs produced with the Method of Classes (Eq. (18))

has the potential to produce negative values of the number of

crystals in each class, when the kinetics that drives crystals out

of a specific granulometric class is greater than the one respon-

sible for the appearance of them. This is a point of concern that

was not made clear in the development of the method. In the

developed code (Costa et al., 2005), it was dealt merely by set-

ting negative values of number of particles to zero. Apart from

this point, the set of ODEs constitutes a very stiff-nonlinear sys-

tem, which can cause oscillation in the numerical solution. It

was already remarked in Costa et al. (2005) that some integra-

tors are not suitable for the system solution. Fig. 1 illustrates this

feature, showing the evolution of the number of crystals during

batch time in the first and in the 25th granulometric classes in

a run with 25 granulometric classes. The results were gener-

ated with the Euler method with three different time steps and

with Runge–Kutta. The Euler integrator produces a lot of oscil-

lation in the solution and this oscillation is more pronounced

Fig. 1. Evolution of the number of particles per volume unit of suspension for

the first and last classes.

with larger time steps and at the smallest granulometric classes.

In the 25th granulometric class, the oscillation is of the order of

103 times smaller than the ones in the 1st class. Furthermore,

for a time step of 0.5 s, there is no noticeable difference between

the Euler and the Runge–Kutta solution (results are superim-

posed). It is evident, therefore, that the choice of an inappropriate

integrator method could cause serious errors in crystallization

calculations. The Fortran LSODAR code, developed by Petzold

and Hindmarsh, is even better than the Runge–Kutta technique,

since the former is a solver for ODEs with automatic method

switching for stiff and nonstiff problems and with root-finding.

Details about the solver can be found in Petzold (1980).

In order to evaluate the influence of the number of granu-

lometric classes on the numerical result, the same system was

simulated, with the same range of crystal size (from 0.01 to

1735.25 �m) and with the same amount (in mass) and size of

seeds, but differing in the chosen number of classes (and, as a

consequence, in the values of the characteristic sizes in each

class). The set of ODEs was solved using LSODAR. Fig. 2

depicts the final CSD, both in mass and number percentage,

for 5, 25 and 50 classes. The particle size in the right graphic

of Fig. 2 was presented only up to 600 �m in order to increase

its visualization in the smaller sizes range. It is clear that the

number of classes is a key variable in the correct representation



C.B.B. Costa et al. / Computers and Chemical Engineering 31 (2007) 206–218 217

Fig. 2. Final CSD for different number of classes.

of the system. As the number of considered classes increases

in the same size range, the solution is more accurate. The solu-

tions with 25 and 50 classes are closer to each other than that

of just 5 granulometric classes, but, since they are not superim-

posed, 50 classes is still not a enough number of classes for the

method convergence. The main idea in the selection of optimal

number of granulometric class is to increase it to the limit that

produces no more change in the results (system minimization

realization). Furthermore, the greater the number of granulomet-

ric classes, the better is the accuracy in the mass balance, a fact

easily observed with the application of the Method of Classes.

Though the previous remarks represent disadvantages

observed in the applicability of the method, it is easy to be imple-

mented, leading to a very fast code, which took approximately

35 s to simulate a batch with 3000 time iterations in a AMD

XP 2.4 GHz Processor with 50 granulometric classes. This is an

important feature for on-line applications.

7. Conclusions

The present paper made a brief review in the numerical solu-

tion of the population balance model, discussing the difficulty

in solving it, particularly when a complete set of mechanisms

(nucleation, growth, agglomeration and breakage) is present,

like in crystallization systems. Some important numerical meth-

ods developed in the literature in DPBs and in weighted residuals

methods, besides different approaches, were presented and the

major advantages and drawbacks were raised. Attention was

given to the issues of numerical problems, computational effort

and the correctness of prediction of the total number of particles

and mass conservation. The discussion of the most used numer-

ical methods and their limitations intends to be useful for the

reader dealing with crystallization problems.

DPBs are a more natural choice when aggregation and break-

age are included in the PBE. Notable developments are the ones

of Kumar and Ramkrishna (1996a, 1996b, 1997), which allow

to a free choice of grid and preserve two properties of interest

(moments). Their method that includes nucleation and growth

requires an adaptive grid and Lee et al. (2001) proposed an adap-

tive mesh method able to handle stiff nucleation problems, being

able to deal with crystallization problems.

The weighted residuals methods are of more difficult imple-

mentation and are computationally demanding, but have the

great advantage of being general and able to handle any for-

mulation of the PBE. The computational burden was improved

in the work of Mahoney and Ramkrishna (2002), turning the

computational speed sufficient for dynamic online optimization.

As other presented methods, the integral approach has its

limitations in the comprised kinetic mechanisms. The integral

approach can save great computational time when detailed CSD

is not needed in each instant, but cannot easily handle with

agglomeration and breakage.
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4.3. Conclusões 

Neste capítulo foi discutida a dificuldade de solução da PBE, 

especialmente em problemas de cristalização, em que os mecanismos 

cinéticos de nucleação, crescimento, aglomeração e, possivelmente, quebra 

estão presentes. A discretização do balanço de população é a escolha mais 

natural quando a aglomeração e quebra devem ser consideradas. Por outro 

lado, os métodos de resíduos ponderados têm a vantagem de ser mais gerais e 

capazes de lidar com qualquer formulação da PBE, embora sejam de 

implementação computacional mais difícil e dispendiosa. 

Tendo sido apresentados a modelagem do processo de cristalização, a 

problemática de solução do balanço de população e um estudo preliminar de 

melhoria de processo, o capítulo seguinte apresenta a ferramenta desenvolvida 

para estudos de desenvolvimento de processos orientados a especificações de 

produto. A ferramenta faz uso da modelagem tanto para avaliar processos 

existentes quanto para buscar políticas operacionais que levem à obtenção de 

produtos com características definidas. Subseqüentemente, a ferramenta é 

utilizada para estudo de maneiras para alcançar CSDs desejadas em diferentes 

sistemas solvente–soluto. 
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Capítulo 5. Procedimento para Desenvolvimento de Processos 

Orientados para Especificações de Produto 

5.1. Introdução 

A área de projeto de produto aplicada à área de particulados demanda 

não mais somente pureza, mas também que o produto apresente CSD e 

morfologia específicas. Na área de projeto de processo, por outro lado, 

abordagens baseadas em modelo devem ser capazes de conduzir o processo 

para a máxima produtividade e para a redução de tempos e custos de 

retrabalho e limpeza. Neste capítulo, é apresentada uma ferramenta de 

engenharia de processos assistida por computador que foca em uma 

perspectiva ampla no projeto, tanto de processo quanto de produto, em uma 

operação de cristalização em modo batelada operado por resfriamento. A 

ferramenta abrange módulos para avaliação de processos, para projeto de 

política operacional ótima, em uma perspectiva dual processo-produto e para 

ajuste de modelo (estimativa de parâmetros). Alguns tópicos relacionados a 

cada módulo são discutidos, como os métodos disponíveis para a solução do 

modelo e para a otimização, assim como os desafios na área de projeto de 

produtos particulados. 

Em seguida, um estudo é apresentado, em modo de engenharia 

reversa, que analisa a distribuição de cristais produzida ao final de uma 

batelada de cristalização operada por resfriamento em diversos sistemas 

solvente-soluto, submetidos a uma série de trajetórias de resfriamento 

previamente determinadas. A taxa de resfriamento utilizada durante a batelada 

determina os valores de supersaturação alcançados, o que delimita a extensão 

dos mecanismos cinéticos. Assim, diferentes sistemas solvente-soluto, 

representados por diferentes cinéticas de cristalização, são utilizados, de modo 

a permitir que seja determinado o efeito das taxas de resfriamento em 

diferentes sistemas sobre a distribuição final de tamanhos de cristal obtida. 

Este último estudo é bastante relevante segundo a ótica de projeto de produto, 
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uma vez que, a depender da cinética inerente a cada sistema, certas 

características de CSD são naturalmente favorecidas, como será exposto. 

5.2. Desenvolvimento 

O desenvolvimento deste capítulo é apresentado a seguir, nos artigos 

intitulados Cooling Crystallization: a Process-Product Perspective e Achieving 

desired crystal size distributions by the properly manipulation of temperature 

profile in batch cooling crystallization processes, publicados nos anais, 

respectivamente, do ESCAPE 16 – 16th Europeran Symposium on Computer 

Aided Process Engineering (v. 21A, p. 967-972, 2006) e do ICheaP-7 – The 7th 

Italian Conference on Chemical and Process Engineering (v. 6, p. 401-406, 

2005). 

 



Cooling Crystallization: a Process-Product 

Perspective 

Caliane Bastos Borba Costa, Rubens Maciel Filho 

Abstract 

This paper presents a CAPE tool that focus on a wide perspective to the process and 

product design in a batch cooling crystallization operation. The tool comprises modules 

for process evaluation, design of optimal operation policy, in a process-product 

perspective, and the adjustment of modeling (parameter estimation). Some issues 

concerned to each module are discussed, like the available methods for modeling 

solution and the optimization, as well as the challenges in the particulate product design 

field. 

 

Keywords: crystallization, product design, process simulation, optimization, modeling 

1. Introduction 

The fast demanding market requires the development and increasing research in the area 

of product design, which devotes efforts in the design of specific products, for very 

specific purposes, such as drugs with controlled release of active ingredients or 

functional feed, in which additives may stimulate imune system or help in the 

cholesterol level control. In the particulate area, massively present in the high-value 

added chemicals and pharmaceutical industry, the product design nowadays demands 

not just purity, but also specific particle size distribution (PSD), particle shape and 

morphology, which represents an increase in the chemistry complexity (Ng, 2001). In 

the process design, on the other hand, model-based approaches must necessarily be able 

to drive to process designs that maximize productivity and reduce reprocessing/clean-up 

costs and time. Efforts should be driven to integrate both process and product 

requirements. In this scenario, the present paper presents a computer-aided tool to 

integrate process and product design for batch cooling crystallization, dealing with the 

issue of modeling and optimization as well as of the understanding of the product-

process complexities. 

2. Crystallization: Process and Product Design Concerns 

The process design concerns the determination of the operating conditions (cooling rate, 

seeding policy and mixing) to produce the crystals, given the identity of the 

crystallizing product and the required yield. But the crystallization system does not exist 

in isolation and it does have an influence on the downstream processing system in 

which crystals are separated from solution and dried. Bearing the exposed in mind, not 

just yield is required, but also crystals features that are satisfactory for the downstream 

processing. In the present work, the process design is solved with CAPE methods, 

which integrate energy, mass and population balances, composing first principles 

understanding of materials and process to assure correct process representation 

 and 9th International Symposium on Process Systems Engineering
W. Marquardt, C. Pantelides (Editors)  

© 2006 Published by Elsevier B.V.

16th European Symposium on Computer Aided Process Engineering

967

LOPCA, Chemical Engineering School (FEQ), UNICAMP, CP 6066, CEP 13081-970, 

Campinas – SP, Brazil 



(modeling). Mathematical programming problems are formulated and solved in order to 

determine operating conditions that drive to achievement of required process yield. 

On the other hand, the product design requires a look backwards in the process, in order 

to produce crystals with very specific features for the active ingredient to work properly 

(e.g. controlled release). In a lot of applications, PSDs often need to be maintened in 

specific ranges to ensure good quality indices. The proper PSD is, therefore, essential in 

product desings, being the critical link between the product quality indices and the 

operating process variables. Indeed, the achieved crystal-size distribution (CSD) in 

crystallization processes controls the end product quality and influences significantly 

the necessary liquid-solid separation. The population balance used in the modeling of 

the process can be used to accurately describe, analyze and control the CSD (Shi et al., 

2006). 

However, when a product is being designed from the beginning, a product is sought to 

meet a market need and then ideas are generated. The product must have a good 

performance (fulfill market need) and be convenient (ease of handling, minimal 

environmental impact) (Gani, 2004). If the product is a crystal, however, neither 

population balance nor mass and energy balances are able of predicting, for example, 

particle morphology when different solvents are used or the important solubility 

dependence on temperature. This sort of problem can be solved with molecular 

modeling, a research area of increasing interest, able of predicting product properties. It 

is still a challenge to integrate product and process design in a complex and complete 

CAPE tool (multi-level modeling tool), which could not only design a process to meet 

required yield and CSD of known properties, but also design the crystals properties. 

According to Gani (2004), the CAPE community has been an user/implementer of 

property models in various computer-aided application tools. For the current and future 

products, however, it is necessary to develop a new class of computer-aided methods 

and tools that is systematic but flexible, that is simple but accurate and most important, 

that can “create” the necessary models for a given problem. 

In the present work a powerful and useful tool is presented, which itegrates the process 

and product designs of a crystal with known properties (solubility data, crystal 

morphology, and so on). Molecular issues are not covered by the tool; the properties are 

supplied as input data. The tool is able to cover various product-process crystallization 

design problem formulations, and to identify methods and policies to drive to optimal 

product design, constrained to economical or process/product issues. 

3. Crystallization Modeling and Inter-relations in a Batch Crystallizer 

The modeling of the process involves mass, energy and population balances. For a batch 

crystallization, these balances are represented by Eq. (1)-(3) respectively: 
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where D(L) and B(L) denote death and birth phenomena rate, which include 

agglomeration and breakage of existing crystals and nucleation of new ones. G(L,t) 

represents the growth rate. Ac is the heat transfer area, C the solute concentration, Cp 

represents the specific heat capacity, kv the volume shape factor; L is the particle 

characteristic dimension, n is the density distribution of particles, T and Tj stand for the 

crystallizer and coolant temperatures, respectively. U denotes the global heat transfer 

coefficient, V and Vsusp are the particle and suspension volumes, ΔHc is the 

crystallization heat and ρ and ρc represent respectively suspension and particle densities. 

Among the kinetic mechanisms taking place in the crystallization process, nucleation 

and growth are the dominant ones, but in many systems, agglomeration and breakage 

are present to a certain extent, that must be considered into the modeling. 

The developed CAPE tool deals with nucleation, growth and agglomeration. Fig. 1 

depicts the general framework for the batch crystallization evolution. 

 

Fig. 1: General framework for the inter-relations among the conservative equations in a batch 

crystallizer. 

Mass and energy balances are easily handled by numerical methods of ODEs solution. 

The population balance equation (PBE), Eq. (3), however, is a partial hyperbolic 

differential equation, with no analytical solution and requires development and 

adaptation of numerical techniques. The developed CAPE tool makes use of the Method 

of Classes (Marchal et al., 1988; David et al., 2003) and the vastly known Orthogonal 

Collocation Method to solve the PBE. Both methods transform the partial differential 

equation in a set of ODE, solvable by public recognized codes, like DASSL. 

4. CAPE Tool for Batch Crystallization 

The process-product design integration is achieved in the developed CAPE tool by 

incorporating the stages of both process and product problems into one integrated 

structure. It turns possible also cooling crystallization processes evaluation, i.e., perform 

an analysis of the present operating conditions and trial of new alternatives in order to 

improve sustainability indices based on product design. 
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The optimal process design, defined in terms of product feature requirements, may be 

obtained through optimization in terms of minimizing (or maximizing) both single or a 

multiparametric performance function. The step of optimizing a product design to meet 

a set of requirements of diferent production stages is an increasing area of interest and 

research, which is supported by CAPE tools development. Good understanding of the 

target product properties is essential to achieve optimal design. 

Optimizing crystallization process, with focus on the integration of process-poduct 

design, is dealt in the developed CAPE tool both with Successive Quadratic 

Programming (SQP) and Genetic Algorithms (GAs). The latter is very attractive in 

simultaneously evaluating extremely different process conditions, in order to detect the 

region of global optimum operation. Fig. 2. brings, in a schematic way, the working 

structure of the CAPE tool, with three main modules: Process Evaluation, Process-

Product Perspective, Modeling Adjustment. Due to the limitation of pages, it is not 

possible to get into details of each module unit. The code for each module is 

independent but make use of common sub-routines, like the one that contains the 

process modeling or the optimization codes 

 

 

Fig. 2: Crystallizer CAPE tool and its modules structure. 

Both modules of Process-Product Perspective and of Modeling Adjustment make use of 

optimization methods, that is, the problems covered by these modules are translated into 

optimization ones. For example, looking through a process-product perspective, the 

optimization is formulated with an objective function (actually, it is possible to define 

just one objective function, characterizing a single objective problem, or two or more 

objectives, composing a multi-objective optimization problem) that translates both 

product and process goals (for example, minimization of the coefficient of variation of 

the CSD and maximization of the mean crystal size). This objective function is 

constrained to a set of equality and inequality constraints related to process design 
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specification (such as physical operation ones and minimum acceptable yield) and a set 

of equality constraints representing the process model equations (mass, energy and 

population balances). 

Process-product design problems may become too complex to solve if the model is 

highly non-linear and discontinuous, although in principle, a global solution could be 

obtained. Actually, this is the case of models dealing with PBE. Generally, optimization 

problems can be solved through deterministic and heursitic methods. The developed 

tool makes use of both of them, with Successive Quadratic Programming, SQP, 

(deterministic method) and Genetic Algorithms, GA, (an evolutionary algorithm, part of 

the heuristic procedures). Fig. 3, in which maxgen stands for the maximum number of 

generations, brings the main steps in each one of these methods. SQP is an iterative 

procedure, which makes use of the objective function and its derivatives in order to 

generate a new (better) solution. On the other hand, GA initializes a population of 

possible solutions and evolves the individuals with the genetic operators (selection, 

crossover, mutation) during some generations in order to get “fitter” solutions. 

 

Fig. 3: Optimization Module, used both in Process-Product Perspective and in Modeling 

Adjustment Modules. 

The developed tool provides evaluation of existing processes, understanding of the 

product-process complexities, evaluation of obtained products features (CSD) in 

extremely different kinetic systems with different operating policies, as well as 

optimizing both product and process in order to obtain the optimal policy to be 

implemented in the batch process. Fig. 4 brings examples of modules responses. On the 

left, two optimal cooling profiles are presented (for minimizing the coefficient of 

variation of the final CSD), as well as the non-optimized cooling policy. It is an 

illustrative example of two optimal responses from the Process-Product Perspective 

Module, each one using one type of method (deterministic and heuristic ones). The SQP 

response is dependent on the initial estimate and the optimal policy for the two methods 

were different. The CSDs depicted on the right of Fig. 4 illustrates how the system can 
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produce completely different responses, reflected in terms of final obtained CSDs, 

depending on the employed cooling policy. As a last powerful option, the user can 

obtain the kinetic parameters of a solute-solvent crystallizing system, given the 

employed policies and the the system response (experimental / industrial data). 

 

Fig. 4: CAPE tool response for two different problems: optimization of product-process (left) and 

processes simulations (right) in order to evaluate obtainable CSDs with different cooling and 

seeding policies. 

5. Conclusions 

The development of tools for process-product design integration is essential to carry out 

extensive evaluations so that decisions can be taken in an early stage of design leading 

to robust and relatively easy to operate process. Bearing this in mind, in this work it was 

developed a computer-aided tool able to integrate process and product design for batch 

cooling crystallization, dealing with the issue of modeling and optimization taking into 

account the product-process interactions. This was achieved through the incorporation 

of the stages of both process and product problems into one integrated structure. To do 

so, the process design is solved with CAPE methods, which integrate energy, mass and 

population balances and mathematical programming problems are formulated and 

solved in order to determine operating conditions that drive to achievement of required 

process yield. The product quality specifications are considered trough the particle size 

distribution maintained in specific ranges to ensure good quality indices. 
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The present work proposes to study the crystal size distribution produced at the end of a 
batch cooling crystallization as a consequence of the imposition of different temperature 
profiles, as well as of the different kinetic features of the system. The rate of cooling 
used during the batch determines the values of supersaturation achieved, which 
characterize the extent of the kinetic mechanisms. Nucleation and growth are the most 
dominant phenomena in the crystallization process. Apart from them, other phenomena, 
such as agglomeration and breakage, may occur. Neglecting agglomeration may result 
in poor representation of reality, especially when the crystallizing substance is 
classically known as having an agglomerating behavior. 
 
In this way, different systems, expressed by different crystallization kinetics, are studied 
with the imposition of very different temperature profiles in order to provide analyses of 
the effect of the cooling rates in different systems on the final crystal size distribution 
obtained. The optimal temperature profile depends on the desired application of the 
product, since it can favor the production of more fines or greater crystals. Systems 
characterized by having strong growth kinetics naturally disfavour nucleation, while 
strong secondary nucleation tend to produce many fines. Stronger agglomeration 
kinetics leads to the production of more particles with larger sizes. 
 

1. Introduction 

Batch crystallization is the preferred process in pharmaceutical, specialty and fine 
chemicals industries for obtaining their products, due to the purity achieved and to the 
flexibility of operation offered by batch operation (Choong and Smith, 2004; Ma et al., 
2002). Nevertheless, the operation employed in the crystallizer during the batch 
determines the final crystal size distribution. Depending on the further processing of the 
crystallized material and on its application, the optimal crystal size distribution may 
exhibit different features: in industrial crystallization of an intermediate, it may be 
interesting to produce large crystals, with a small standard deviation of the particle 
distribution. In pharmaceuticals applications, otherwise, it may be desirable to have a 
large amount of very small crystals. Optimal operation is then important to improve the 
efficiency of the overall process and this optimum must be determined in terms of the 
extent, in each batch instant, of the kinetic phenomenon that governs the extraction of 
solute from solution and its deposition into crystal lattice (Zhang and Rohani, 2003). 



The driving force for these phenomena is the supersaturation, which, in batch cooling 
crystallization, is achieved through the cooling of the solution (Choong and Smith, 
2004). 
 
In order to determine the optimal operation, it is, therefore, important to know the 
system response to different temperature profiles. Furthermore, depending on the 
system to be processed, different kinetics responses may be present and, hence, different 
crystal size distribution (CSD) responses are to be expected. The present study analyses 
the influence of both different imposed temperature profiles and different system 
kinetics on the final CSD. 
 

2. Kinetic Phenomena and their Mathematical Equations  

The model comprises the phenomena of primary and secondary nucleation (Rn1 and 
Rn2, respectively), growth (G) and binary agglomeration (RA). The proposed 
mathematical expressions to represent these mechanisms rates are the empirical 
equations (1) to (7). 
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In the adjustment of the kinetic expressions to the physical crystallizing system, the 
kinetic parameters must be estimated. These parameters are A and B for primary 
nucleation, kn’, i’ and k’ for secondary nucleation, kc and j’ for growth and ka’ for 
agglomeration. During this study, the values for these parameters were varied, in order 
to simulate systems characterized by different kinetics of crystallization. 
 

3. Analyzed Systems and Temperature Profiles  

In order to study the influence of the imposition of different temperature profiles, eight 
different coolant temperature profiles were selected. The choice of the imposed cooling 
profile was made arbitrarily, with the restriction that it could vary only between 340K 
and 298K (due to the solubility curve imposed and operating conditions). It was 
imposed only decreasing temperature profiles, due to the need for cooling the 
crystallizer solution for the beginning and progress of the process. The eight imposed 
temperature profiles are illustrated in Figure 1. 
 
The eight different imposed temperature profiles were selected in order to analyse 
different temperature rates during the process. In this way, the first temperature profile 
represents natural cooling (constant coolant temperature), while the second represents a 
linear decrease of temperature. The third and fourth profiles are arbitrarily strictly 
concave curves. Strictly convex curves are described by the fifth and sixth profiles. 
Finally, the seventh and eighth curves are composed part by convex and part by concave 
curves. 
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Figure 1: Coolant temperature profiles imposed during the study. 

 
The simulation of different systems, characterized by different rates of nucleation, 
growth and agglomeration were made through the variation of some parameters values. 
A standard system was adopted, and the variations were made, accelerating or slowing 
down a particular mechanism. Table 1 brings the values of the standard parameters and 
of the parameters with variation in kinetics. Just secondary nucleation, and not primary 
nucleation as well, had a strong kinetics tested during the present study, because 



primary nucleation hardly ever occur in industrial practice. Primary nucleation only 
happens when there is a complete absence of the solute crystals in the solution, a 
situation nearly impossible to happen in real practice. 
 
Table 1: Parameters values in each case studied 
Parameter Standard Strong 

secondary 
nucleation 

Strong 
growth 

Weak 
growth 

Strong 
agglomeration 

A 2.0 x 1015 2.0 x 1015 2.0 x 1015 2.0 x 1015 2.0 x 1015 
B 40.0 40.0 40.0 40.0 40.0 
kn' 1.0 2.0 1.0 1.0 1.0 
i' 1.0 1.5 1.0 1.0 1.0 
k' 2.0 4.0 2.0 2.0 2.0 
kc 1.0 x 10-7 1.0 x 10-7 

1.0 x 10-7 1.0 x 10-7 1.0 x 10-7 

j' 2.0 2.0 4.0 0.5 2.0 
ka' 1.0 x 10-6 1.0 x 10-6 1.0 x 10-6 1.0 x 10-6 1.0 x 10-3 

 

4. Results  

In order to analyze just the influence of the different temperature profiles, the eight 
system responses to them were compared using the standard system kinetics. The first 
temperature profile is the one that produces the greatest coefficient of variation of the 
final crystal size distribution and produces the largest amount of fines among all 
profiles. It is also the profile that causes the most mass extraction from solution. This is 
somewhat expected, since the large temperature difference between the solution inside 
the crystallizer and the coolant just in the beginning of the process causes a sharp 
solution temperature decrease and, consequently, great supersaturation, favouring 
nucleation, instead of growth. The largest crystals – more than the double of the mean 
crystal size of the first temperature profile - and smallest coefficient of variation of the 
distribution are produced with the fourth profile, which is characterized by very smooth 
coolant temperature decrease during the most part of the process, with a sharp decrease 
at the final instants of the batch. This causes disfavouring of nucleation, letting the 
added seeds to grow. Nevertheless, this slow evolution of the process leads to only 
around 16% of the mass extraction achieved with the first temperature profile. The 
seventh profile produces an interesting result, extracting considerable mass of crystals 
(around 83% of the one produced with the first profile), with crystals around 42% 
greater than the mean crystal size of the first temperature profile and with the smallest 
coefficient of variation among all profiles (except by the one corresponding to the 
fourth temperature profile). It can be observed that the seventh temperature profile, as 
the fourth one, but not so marked, is characterized by having smaller first derivative of 
temperature at the beginning of the batch and increasing one with the advance of the 
process. In this way, depending on the application desired, the optimal temperature 
profile may be characterized by having the features as in the 4th /7th ones or the 1st/5th/6th 
ones. Figure 2 exhibits the final crystal size distributions obtained with the imposition 
of the eight temperature profiles. 
 



The different system kinetics may deviate the system response towards a particular 
direction, due to a marked kinetic contribution of any mechanism. With the purpose of 
evaluating kinetics’ influence, the response to different kinetics is here evaluated. 
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Figure 2: Final CSDs in the standard kinetics sytem with the 8 temperature profiles 

 
Systems characterized by having strong growth kinetics naturally disfavour nucleation, 
leading to final CSD with a great improvement in the coefficient of variation of the 
distribution (smaller values) and move up of the CSD towards greater sizes, regardless 
of the imposed temperature profile. An inverse analogy may be traced when the system 
is characterized by having weak growth rate. The imposed temperature profiles cause 
similar influences as already discussed in previous paragraph. Figure 3 brings a 
comparison between the final CSD with a standard kinetics and with a strong growth 
rate for two temperature profiles. 
 
The marked secondary nucleation in crystallizing systems tends to produce very large 
amount of small particles, no matter which temperature profile is imposed. Figure 4 
brings the final CSD with a standard kinetics and with a strong secondary nucleation 
rate for some temperature profiles. 
 
The influence of the agglomeration behavior was evaluated, by increasing the kinetics 
of agglomeration and comparing the final CSD. Figure 5 brings the result of the final 
CSD for the seventh temperature profile, both for standard kinetics and with accelerated 
agglomeration behavior. It can be observed that the agglomeration tends to produce 
more particles with larger sizes, due to the joining of particles. 
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Figure 3: Final CSDs with standard kinetics and with strong growth. 
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Figure 4: Final CSDs with standard kinetics and with strong secondary nucleation rate. 
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Figure 5: Final CSDs with standard kinetics and with strong agglomeration rate. 

 

5. Concluding remarks  

The present study analysed the influence of different temperature profiles and of 
different system kinetics on final responses of batch cooling crystallization systems. 
The choice of the best temperature profile is a matter of the desired application of 
crystals produced, as well as of the downstream processing of the particles, since it can 
favour the production of more fines or larger particles. Nucleation is disfavoured 
naturally if the system presents strong growth kinetics, while it is extremely difficult to 
produce larger particles if the system is characterized by having strong secondary 
nucleation kinetics. As it is expected, the more pronounced the agglomeration, the 
greater the number of particles with larger sizes produced. 
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5.3. Conclusões 

Este capítulo apresentou uma ferramenta computacional para integrar 

projeto de produto e processo de cristalização em modo batelada operado por 

resfriamento. A ferramenta envolve módulos de avaliação de processos, de 

projeto de processo–produto e de ajuste de parâmetros do modelo. As 

especificações de qualidade do produto foram consideradas através da 

distribuição de tamanho de partículas em extensões específicas. O estudo do 

perfil ótimo de temperatura mostrou que este depende da aplicação desejada 

do produto, uma vez que ela pode favorecer a produção de mais finos ou de 

maiores cristais. Sistemas caracterizados por ter cinéticas de crescimento 

fortes desfavorecem naturalmente a nucleação, enquanto cinéticas de 

nucleação secundária fortes tendem a produzir maiores finos. Aglomeração 

marcada por forte cinética leva à produção de mais partículas de tamanhos 

maiores. Dessa forma, o exato perfil de temperatura (supersaturação) que seja 

solução de um problema de otimização dependerá dos valores dos parâmetros 

do modelo, que são particulares para cada sistema solvente-soluto, e da 

função objetivo. 

O capítulo a seguir se dedica a fazer um estudo criterioso da 

otimização da trajetória de resfriamento empregada na cristalização batelada 

de ácido adípico. Uma vez que o estudo preliminar de otimização apresentado 

no Capítulo 3, que se utilizava de discretização da variável de controle e do 

método determinístico SQP de otimização, demonstrou que a abordagem 

utilizada não possuía a habilidade necessária para lidar com o problema, a 

utilização de um método estocástico de otimização (especificamente o 

Algoritmo Genético) e a parametrização da variável de controle são avaliadas. 
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Capítulo 6. Otimização de Cristalização por Métodos 

Determinísticos e Estocásticos 

6.1. Introdução 

A otimização matemática de um processo de cristalização em modo 

batelada operado por resfriamento é o foco deste capítulo, que tem como 

objetivo minimizar o desvio padrão da distribuição final de tamanho de cristal 

(CSD final), o que é requerido em muitos processos industriais. Devido aos 

resultados preliminares obtidos no Capítulo 3, que demonstram ser o método 

SQP altamente dependente da estimativa inicial (característica de métodos de 

busca local, dentro dos quais se enquadra o SQP) e incapaz de lidar 

apropriadamente com a alta dimensionalidade e alta não-linearidade do 

problema, o Algoritmo Genético (AG), método estocástico de otimização 

bastante estabelecido na literatura, é avaliado conjuntamente com a 

parametrização da variável de controle. Essa parametrização é também 

acoplada ao SQP para verificação de seu desempenho. Os resultados obtidos 

com a variável de controle parametrizada, tanto com a utilização do método 

determinístico quanto com o método estocástico, são comparados com os 

resultados obtidos no Capítulo 3 (utilização de SQP conjuntamente com 

discretização da variável de controle). 

6.2. Desenvolvimento 

O desenvolvimento deste capítulo é apresentado a seguir, no artigo 

intitulado Evaluation of optimisation techniques and control variable 

formulations for a batch cooling crystallization process, publicado no periódico 

internacional Chemical Engineering Science (v. 60, p. 5312 – 5322, 2005). 
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Abstract

The mathematical optimisation of a batch cooling crystallization process is considered in this work. The objective is to minimize the
standard deviation of the final crystal size distribution (CSD), which is an important feature in many industrial processes. The results
with the problem written as a nonlinear programming and solved with the successive quadratic programming (SQP) coupled with the
discretization of the control variable are compared with those obtained when SQP coupled with the parameterisation of the control variable
is applied. Also it is proposed the implementation of the genetic algorithm (GA) coupled with parameterisation of the control variable.
Extensive evaluations show that the SQP method is sensitive both to the parameterisation formulation and to the initial estimate. The
solution with GA provided the control variable profile that leads to the minimum standard deviation of the final CSD. Nevertheless, it is a
very time-consuming technique, which hampers its utilization in real time applications. However, its feature of global searching suggests
its suitability in solving offline problems, in order to provide initial setup profiles. Bearing this in mind, it is proposed an algorithm which
allows for the implementation of GA solution in a real time fashion, taking advantage of its robustness to find out the optimal solution.
� 2005 Elsevier Ltd. All rights reserved.

Keywords: Batch; Crystallization; Dynamic simulation; Genetic algorithm; Optimisation; Successive quadratic programming

1. Introduction

Crystallization is a very important unit operation, used in
many processes mainly because it leads to the formation of
particulate material with high purity. This can be carried out
either in a continuous or batch operation mode. Batch op-
eration offers the flexibility required when there are many
simple steps to be executed, with changing recipes. In this
way, batch crystallization is the preferred process in phar-
maceutical, specialty and fine chemicals industries for ob-
taining their products. Nevertheless, the operation employed
in the crystallizer during the batch influences all the subse-
quent processes (downstream processing), since the solids
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E-mail address: caliane@lopca.feq.unicamp.br (C.B.B. Costa).
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produced constitutes a mass of particulate material, which
may exhibit an infinite number of different features, like
habit, crystal size distribution (CSD) or solvent hindering
(Ma et al., 2002). Optimal operation is then important to
improve the efficiency of the overall process and, in the
batch crystallization field, this optimum must be determined
in terms of the extent, in each batch instant, of the kinetic
phenomena that governs the extraction of solute from solu-
tion and its deposition into crystal lattice. The driving force
for these phenomena is the supersaturation, which, in batch
cooling crystallization, is achieved through the cooling of
the solution. Therefore, many optimisation studies in batch
cooling crystallization are focused on finding the optimal
cooling profile in order to improve the process performance
(Costa et al., 2005; Lewiner et al., 2002; Zhang and Rohani,
2003). In fact, the cooling profile is a dominant item in terms
of operational policy and two questions arise at this point,
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to know, how to find out a suitable and feasible to implement
cooling profile and how adequate are the design features,
which may be a limitation to practical implementation in
real situations.
The solution of an optimisation problem can be found

through either a deterministic or a stochastic approach. The
former composes the traditional optimisation methods (di-
rect and gradient-based methods) and have the disadvan-
tages of requiring the first and/or second-order derivatives of
the objective function and/or constraints. This implies that
such approach is not efficient in non-differentiable or dis-
continuous problems. Furthermore, the deterministic meth-
ods, such as Successive Quadratic Programming (SQP), are
dependent on the chosen initial solution (da Costa and Ma-
ciel Filho, 2004; Deb, 1999). The stochastic methods, such
as Genetic Algorithms (GA), do not possess these draw-
backs. GAs are part of the so-called evolutionary algorithms
and compose a search and optimisation tool with increas-
ing application in scientific problems (Deb et al., 2004;
Hanai et al., 2003; Immanuel and Doyle, 2002; Sarkar and
Modak, 2003, 2004; Upreti, 2004). They do not need to
have any information about the search space, just need-
ing an objective/fitness function that assigns a value to any
solution. Details about the working principle of GAs can
be found elsewhere (Deb, 1998, 1999; Fühner and Jung,
2004).
The main objective of the present work is the evaluation

of deterministic (SQP) and stochastic (GA) optimisation al-
gorithms applied to a batch cooling crystallization system,
coupled with different formulations of the problem in the
dynamic optimisation, concerning the control variable. This
is an important point to be dealt with, since it has impact
on the numerical procedure performance as well as on the
equipment design. The control functions in a dynamic op-
timisation problem can be discretized or parameterised and
it is necessary to access the advantages and drawbacks of
each approach. In the present work, the optimisation of the
batch cooling crystallization of adipic acid (Costa et al.,
2005) is addressed, which is typical of many processes of
industrial importance. The objective is to minimize the stan-
dard deviation of the final crystal size distribution. Costa et
al. (2005) optimized the same process using SQP coupled
with discretization of the control variable (coolant temper-
ature). Although this optimizing method is less time con-
suming than the evolutionary algorithms, it is highly de-
pendent on the initial estimate, as exposed by Costa et al.
(2005).
In the present study, the dynamic optimisation is con-

sidered with a parameterisation of the control variable
and the optimisation is solved both by SQP and GA.
These results are compared with the best result obtained
through the discretization of the control variable coupled
with optimisation by SQP (Costa et al., 2005). As the GA
methods are usually not suitable for real time implementa-
tion, in this work an algorithm to deal with this matter is
proposed.

2. Theoretical fundamentals

2.1. Batch cooling crystallization

In a batch cooling crystallization operation, the solution
is cooled in order to create a supersaturation into the system,
which is the driving force for the kinetic mechanisms. The
nucleation and growth are the most dominant phenomena.
Apart from them, other phenomena, such as agglomeration
and breakage, may occur during the process, making it dif-
ficult to carry out reliable predictions. Neglecting agglom-
eration may result in poor representation of reality, espe-
cially when the crystallizing substance is classically known
as having an agglomerating behaviour (Costa et al., 2005).
Fig. 1 shows a scheme of the batch cooling crystallization.
Figs. 2 and 3 bring the CSD at the end of the batch, both
in mass and number fractions, for the same batch cooling
crystallization system, differing each other in the inclusion
or not of the agglomeration mechanism. It is clear from
both figures the importance of not neglecting the agglom-
eration mechanism when it is of real occurrence, since its
presence (and extent) alters significantly the final CSD ob-
tained.
The modelling of the process involves mass, energy and

population balances. This latter is a general approach and
constitutes a complex partial differential equation, which ac-
counts how the kinetic phenomena alter the population den-
sity both in size and time. Eq. (1) is the general form of the
population balance equation for a well-mixed crystallizer,
where B(L) andD(L) represent the birth and death rates, in
which the effects of abrasion, breakage, agglomeration and
dissolution are accounted; vi is the internal velocity vector,
orientated according to an internal orientation system; and
V̇i represents inlet and outlet streams particle volumetric
rates.

�n

�t
+∇vin+n

�V

V �t
+D(L)−B(L)+

∑

k

V̇i · ni

V
= 0. (1)

A lot of work in literature (Kiparissides, 2004; Puel et al.,
2003; Rawlings et al., 1993) reviews the many techniques

Fig. 1. Schematic drawing of the batch cooling crystallizer and the concen-
tration versus temperature curve, showing a hypothetical cooling profile.
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Fig. 2. Mass fraction in each particle size for the same system with and
without inclusion of agglomeration into the model.
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Fig. 3. Number fraction in each particle size for the same system with
and without inclusion of agglomeration into the model.

and methods used to solve the population balance equation
(PBE). In the present work, the Method of Classes (Costa
et al., 2005; Marchal et al., 1988; Nallet et al., 1998; Puel
et al., 2003) is used to solve the population balance equation.
It is worth mentioning that the model of the process is highly
nonlinear. The mean model equations are composed by
Eqs. (2)–(4), which represent, respectively, the popula-
tion, mass and energy balances, coupled with the kinetic
equations for the growth, nucleation and aggregation mech-
anisms, Eqs. (5)–(8). More details about the model used, its

validation and resolution can be found in Costa et al. (2005)
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2.2. Optimising batch cooling crystallization processes

The rate of cooling used during the batch determines the
values of supersaturation achieved, which characterize the
extent of the kinetic mechanisms. The favouring of nucle-
ation over growth leads to a large crystal size distribution,
with many small crystals, thanks to a great peak of super-
saturation at the early stages of the crystallization process.
Since the dependence of the nucleation rate upon the su-
persaturation is much larger than that of the growth rate, a
great peak of supersaturation favours nucleation, consuming
a large amount of solute and transforming it into a lot of nu-
clei. In batch crystallization, a large mean size and a narrow
distribution are desired. According to literature, a cooling
profile characterized as having a soft decrease in the begin-
ning and a more pronounced one at the end of the process
makes the supersaturation to evolve softly, without peaks,
leading to a narrower CSD, due to the favouring of growth
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(Choong and Smith, 2004; Costa et al., 2005; Mullin, 1993).
In face of the importance of the final CSD in the down-
stream processes and in product applications, the objectives
of the optimisation in crystallization problems are normally
chosen according to features related to product quality and
market specifications. The most common objective functions
in crystallization optimisation problems are maximization
of the mean crystal size at the end of the batch, minimiza-
tion of the standard deviation (�) of the final CSD or mini-
mization of its coefficient of variation (CV), and sometimes
minimization of the batch time.
The optimisation of the process can, then, be done se-

lecting one of the previous objective functions, characteriz-
ing a single objective optimisation problem, or two (or even
more) objective functions, which leads to a multi-objective
optimisation problem (MOOP). These objectives are usually
conflicting ones, that is, the improvement of one objective
damages the quality of another one. There is in MOOPs no
single optimal solution. The less robust Pontryagin principle
is often recommended for handling MOOPs in the field of
traditional optimisation. In evolutionary algorithms as GA,
the approach usually employed yields a family of solutions
called Pareto optimal set. Many fronts are identified in the
population, each one formed by non-dominated solutions. A
solution is said to dominate a second one if it is not worse
than the second solution in all objectives and is strictly bet-
ter in at least one objective. Thus, the non-dominated solu-
tions in one front are superior to other solutions in fronts of
inferior levels, but comparatively good among themselves.
The upper front is the Pareto optimal front and any solu-
tion belonging to it is an acceptable solution (Deb et al.,
2004; Mitra et al., 2004; Silva and Biscaia Jr., 2003; Suman,
2004).
There are fundamentally two ways to formulate a prob-

lem in dynamic optimisation: the control functions may be
discretized or parameterised. The former is the most used in
dynamic optimisation problems, and in this case the control
variables are discretized by a piecewise constant or linear
function (Costa et al., 2005). Nevertheless, the accuracy of
the optimal control profile in this method is dependent on
the number of discretizations and the computational effort
increases with the number of discretizations. Furthermore,
different discretization levels are needed to ensure that the
discretized profile is a satisfactory approximation of the true
continuous optimal profile (Choong and Smith, 2004). Bear-
ing this in mind, these authors propose a new parameter-
isation framework for the control variable profile, able to
produce all types of continuous curves. It consists of two
distinct profiles, named Types 1 and 2, described by the fol-
lowing mathematical equations:

Type 1 : X =XF − (XF −X0)

[

1 −
t

ttotal

]A1

, (9)

Type 2 : X =X0 − (X0 −XF )

[

t

ttotal

]A2

. (10)

In these equations, X is the instantaneous value of any
control variable at time t. X0 is the initial value and XF is
the final value. ttotal is the total batch time. The whole con-
trol variable profile is composed by a combination of Types
1 and 2 functions, each one present in a batch period. The
proposed framework for the control variable parameterisa-
tion makes possible the representation of any concave, con-
vex or a combination of both types of functions.
This framework is interesting due to the reduction in the

dimensionality of the problem, since it leads to only six ad-
justable variables: the initial and the final control variable
values, two exponential constants, the intermediate time and
its corresponding intermediate value of the control variable
(there is the constraint for the whole function, composed by
Types 1 and 2 functions, to be continuous). This proposed
framework is chosen in the formulation of the dynamic prob-
lem in the present work, with the coolant temperature as the
control variable, since it is desired to find out an optimal
cooling profile.
The formulated optimisation problem presents some con-

straints that must be imposed to the optimisation algorithm.
The first constraint is necessary in order to dispose of the
so-called trivial solutions and, so, it is imposed a constraint
of minimum acceptable yield of particles. Furthermore, as
mentioned in the previous paragraph, the control variable
must have a continuous profile and the intermediate value
of the control variable of both types functions (Eqs. (9) and
(10)) must be constrained to have the same value at the in-
termediate time.
Once the optimisation is formulated, the next step is to

find out a solution procedure which is at the same time
robust and precise. Two procedures are discussed, to know,
the SQP and GA.

2.3. Successive quadratic programming (SQP)

The SQP method is a classically known deterministic op-
timisation method, based on iterative formulation and on
the solution of quadratic programming subproblems. The
subproblems are obtained using quadratic approximation
of the Lagrangian and by linearizing the constraints. The
augmented Lagrangian is the objective function less the
sum of the active constraints multiplied by their respective
estimated Lagrange multipliers. The Hessian of the aug-
mented Lagrangian and the Jacobian of the active constraints
compose a linear system, whose solution determines the
search direction (line search) and then the new point (cooling
profile).
The method is vastly used in optimisation problems, but

it is also known that it depends on the initial estimate (Costa
et al., 2005; da Costa and Maciel Filho, 2004). Furthermore,
the high nonlinearity of the crystallization problem (Choong
and Smith, 2004; Costa et al., 2005) imposes a severe com-
plication to the solution. The derivatives of the system vari-
ables cannot be computed, making necessary the use of
numerical ones.
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In this work, SQP implementation was done using the
routine DNCONF of the IMSL math library of FORTRAN.

2.4. Genetic algorithms (GA)

Genetic Algorithms have proven very adaptable to a great
variety of different optimisation tasks (Fühner and Jung,
2004).The algorithms work with a population of possible
solutions, which suffers evolution during the generations,
an analogy borrowed from the Darwin’s Evolutionary The-
ory. Each solution is coded as a collection (chromosome)
of binary or real strings, each string representing a variable
in the solution. The evolution is achieved by some genetic
operators as reproduction, crossover and mutation. The sur-
vival of the fittest is achieved by the assignment of a fit-
ness function, usually defined as the objective function for
an unconstrained optimisation problem, or a combination of
the objective function and a penalty function for constrained
optimisation (Deb, 1998, 1999).
The set of solutions (i.e., the population) per iteration

(generation) is fixed. In each iteration, pairs of individu-
als are selected randomly and are recombined into new so-
lutions (crossover operator). A random change on the off-
spring generation is optionally applied (mutation operator).
The newly created solutions are evaluated according to the
fitness function (Fühner and Jung, 2004).
In a search for the optimum through the use of GA, it

is necessary to set the population size, the maximum num-
ber of generations allowed during the search, the number of
children in the offspring generation per pair of parents and
the crossover, jump mutation and creep mutation probabili-
ties. The definitions of the mutation and crossover (single-
point, two-point or uniform crossover) types can be found
elsewhere in literature. Niching and micro-GA technique are
interesting tools, respectively, in multiple optimal solutions
and in unimodal/simple problems. The features and details
of both alternatives can be found in Deb (1999).
The imposition of constraints in GAs is normally made

with penalty functions. Nevertheless, its use may require a
lot of refinement, in order to find the most suitable penalty
parameters needed to guide the search towards the con-
strained optimum, in a case fashion. Deb (2000) proposed
a different constraint handling method, exploiting the fea-
ture of the GAs algorithm of pairwise comparison in tour-
nament selection. Penalty parameters are not needed in the
proposed method because, in any scenario of comparison
between two solutions, they are never compared in terms
of both objective function and constraint violation informa-
tion, but, in fact, are analyzed separately. When two feasible
solutions are compared, the one with better objective func-
tion value is chosen; when one feasible and one infeasible
solutions are compared, the feasible solution is chosen; and
when two infeasible solutions are compared, the one with
smaller constraint violation is chosen. The proposed fitness
function is formulated in the following manner (for a mini-

mization problem), where infeasible solutions are compared
based only on their constraint violation:

F(x)=











f (x) if gj (x)�0
∀j = 1, 2, . . . , m,

fmax +
m
∑

j=1
〈gj (x)〉 otherwise,

(11)

where the parameter fmax is the objective function value of
the worst feasible solution in the population
In this work, the GA used was basically the FORTRAN

Genetic Algorithm Driver by David Carroll, version 1.7a
(Carroll, 2004), with some modifications. The code initial-
izes a random sample of individuals with different parame-
ters (variables). The selection scheme used is tournament se-
lection with a shuffling technique for choosing random pairs
for mating. The individuals are coded in binary manner and
the routine can apply jump mutation, creep mutation and
single-point or uniform crossover. The routine is used cou-
pled with the crystallization model (Eqs. (2–8)) in order to
optimise the cooling profile parameterised as given by Eqs.
(9) and (10). The constraint handling method proposed by
Deb (2000) was implemented to the original Carroll’s code
in order to perform the needed constrained optimisation of
the cooling profile.
During the optimisation with Carroll’s GA code, it was

set two children per pair of parents, niching and single-point
crossover.

3. Methodology

The problem was formulated in order to compare param-
eterisation of the coolant temperature function with its dis-
cretization. This later formulation of the control variable, in
the form of piecewise constant, was chosen in the work of
Costa et al. (2005). In that work, the Method of Classes,
with five granulometric classes, was used to solve the PBE
in the process model coupled with SQP in order to minimize
the standard deviation of the final CSD. The best result of
that work is here referred to as SQP+discretization.
The optimisation problem formulated can be written as:

Minimize �tf(Tc)

Subject to : model equations (Eqs. (2.8))

Tc(i)− Tc(i + 1)�0.0,

mass of crystals (tf )�50.0. (12)

It is worth noting that, in order to compare parameterisa-
tion of the coolant temperature with the discretization results
obtained in the work of Costa et al. (2005), the same ob-
jective function is chosen, characterizing a single objective
problem. A multi-objective optimisation problem would be
an interesting task, addressing maximization of mean crys-
tal size at the end of the batch, minimization of the standard
deviation of the final CSD and, possibly, minimization of
batch time, but it is beyond the scope of the present paper.
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The parameterisation given by Eqs. (9) and (10) makes
the optimisation problem formulation to be different: Costa
et al. (2005) looked for the optimal coolant temperature val-
ues at the discretization points, and in this work the problem
is formulated in order to find the best parameters of Types 1
and 2 equations (Eqs. (9) and (10)). Furthermore, the opti-
misation search should investigate whether it is best to have
Type 1+Type 2 or Type 2+Type 1. The authors devised two
ways of formulating the search with the proposed parame-
terisation of the control variable:

(A) First parameterisation formulation: five searching vari-
ables

The first variable sign determines whether the con-
trol variable is represented by Type 1+Type 2 or Type
2+Type 1 functions. The second variable determines
X0, the third XF , the fourth the intermediate time,
where the two type functions have an interception, and
the fifth variable determines the exponential constant
of the function in the first interval (before the inter-
mediate time). The other exponential constant (of the
function prevailing after the intermediate time) is found
by mathematical manipulation of the two type function
equations, since they must have the same X value at
the intermediate time.
In this way, letting x be the vector containing all the
searching variables, x(1) is allowed to vary from −1
to +1. If it assumes a negative value, Type 1+Type
2 function is determined, otherwise, Type 2+Type 1
function is stipulated. x(2) = X0, x(3) = XF , x(4) =
tintermediate. Supposing x(1) assumes a negative value,
x(5)= A1 and A2 is calculated by Eq. (13):

A2 =

log

[

1 −

(

1 −
tintermediate

ttotal

)A1
]

log

(

tintermediate

ttotal

) . (13)

An equation similar to Eq. (13) may be written to find
out the value of A1, if x(1) assumes a non-negative
value, when x(5)= A2.
In this parameterisation formulation, the optimisation
problem can be written as:

Minimize �tf(x)

Subject to : model equations (Eqs. (2.8))

mass of crystals (tf )�50.0. (14)

(B) Second parameterisation formulation: six searching

variables

The first variable sign determines whether the con-
trol variable is represented by Type 1+Type 2 or Type
2+Type 1 functions. The second variable determines
X0, the third XF , the fourth the intermediate time,
where the two type functions have an interception, the
fifth variable determines the A1 exponential constant
(Type 1 function) and the sixth the A2 exponential

constant (Type 2 function). This formulation, however,
asks for the imposition of another constraint to the
problem: both functions must have an interception at
the intermediate time, that is, the X value calculated by
the Type 1 function minus the X value calculated by the
Type 2 function must equal zero (equality constraint).
This equality constraint was handled transforming it in
an inequality constraint with the use of a tolerance, set
to 10−4.
In this way, with this parameterisation formulation, the
optimisation problem is written as:

Minimize �tf(x)

Subject to : model equations (Eqs. (2.8))

mass of crystals (tf )�50.0.

|XF −X0 − (XF −X0)

×

[

1 −
tintermediate

ttotal

]A1

+ (X0 −XF )

×

[

tintermediate

ttotal

]A2
∣

∣

∣

∣

∣

�10−4. (15)

Both parameterisation formulations were tested in the
present work.
It is worth stressing that the process model was devel-

oped in order to simulate a cooling crystallization process,
not having any modelling of dissolution. This means that
the coolant temperature (the control variable) that serves as
input to the model could not have a positive derivative with
respect to time. This constraint was posed in the lower and
upper boundaries of the searching variables, and with the
imposition that XF could not be greater than X0. It is im-
portant to point out that is worthwhile to consider a lack of
dissolution modelling, since in many practical situations, es-
pecially in industrial plants, it is hard to have all the needed
information to describe adequately a dissolution model. One
of the strong reasons is the impurities presence in the crys-
tals.
In order to compare the results generated with the param-

eterisation coupled both with SQP and GA with the results
generated with SQP+discretization, the Method of Classes
with five granulometric classes was also used in the present
work. It is convenient to say that the choice of such num-
ber of granulometric classes was due to its capability to
represent well experiment data in a suitable computer time.
Also it has to be pointed out that, depending on the solu-
tion procedure, such number of classes may be a limitation
(Costa, 2003).

4. Results and discussion

The study showed that the optimisation with GA was
not sensitive to the parameterisation formulation: the best
individual found with the same initial population was the
same if five or six searching variables were used. This was
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Table 1
Set-up of GA parameters for the best result in the GA+parameterisation
study

Type of crossover Single-point
Niching? Yes
Number of children per pair of parents 2
Number of individuals per generation 50
Maximum number of generations 200
Jump mutation probability 0.05
Creep mutation probability 0.04
Crossover probability 0.8

Table 2
Initial estimates provided to SQP in the SQP+parameterisation study

Variable Initial estimate Initial estimate
that leads that leads
to the best result to a local minimum

Function −0.5 0.5
combination (x(1)) (Type 1+Type 2) (Type 2+Type 1)
X0 (x(2)) 335.0 335.0
XF (x(3)) 298.0 298.0
tintermediate (x(4)) 300.0 300.0
A1 (x(5)) 0.6 0.6
A2 (x(6)) 1.5 1.5

not observed with the SQP technique. In fact, with this opti-
mizer it was not possible to conduct optimisation if five vari-
ables were used. In this case, the optimum was presented as
the initial estimate, independently of which one it was. The
reason to this fact should be located in the non-suitability
of the SQP method in treating non-convex problems, con-
verging to the initial estimate itself or to a point very near
it. With the five searching variables parameterisation for-
mulation, the second exponential constant is found exactly
by mathematical manipulation (Eq. (13)). In this way, be-
ing the initial estimate feasible and the objective function
surface extremely non-convex, the line search cannot find
any downhill direction and the SQP algorithm identifies the
point as the optimal. With the six searching variables pa-
rameterisation, the SQP optimizer executed the search but,
as expected, the solution has shown to be dependent on the
provided initial estimate. The six searching variable param-
eterisation formulation allows the SQP algorithm to move
in the search for the optimal, since both exponential con-
stants are searching variables, constrained to the imposition
of continuous cooling profile to be obtained.
An extensive evaluation concerning the GA parameters

was carried out and the best result is here presented, named
GA+parameterisation. For this optimisation, the parameters
input to the GA were the ones presented in Table 1.
The best result of this work with the SQP technique,

named SQP+parameterisation, is showed to be com-
pared to GA+parameterisation. The initial population
provided to the optimizer in this situation is presented
in Table 2. Table 3 brings the standard deviation of the

Table 3
Standard deviation of the final CSD (�tf ) for the optimal response in
each optimisation study

Optimisation �tf (�m)

SQP+discretization (Costa et al., 2005) 0.337
SQP+parameterisation 0.180
GA+parameterisation 0.165

Table 4
Optimal parameters, according to GA+parameterisation and SQP
+parameterisation studies

Variable GA+parameterisation SQP+parameterisation

Function −0.4755 −0.5
combination (x(1)) (Type 1+Type 2) (Type 1+Type 2)
X0 (x(2)) 337.3699 334.9994
XF (x(3)) 298.0822 298.0006
tintermediate (x(4)) 197.4110 300.0
A1 (x(5)) 0.0783 0.4847
A2 (x(6)) 2.2233 1.4153
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Fig. 4. Optimal coolant temperature profiles for the three optimisation
studies.

three studies: SQP+discretization (Costa et al., 2005),
SQP+parameterisation and GA+parameterisation.
It can be seen, from Table 3, that the genetic algorithm

was the technique that allowed to find out the control vari-
able profile that produced the minimum of the objective
function. Nevertheless, it is a very time consuming tech-
nique, which could not be used in real time applications.
The SQP+parameterisation formulation has provided a pro-
file with a standard deviation better than the one found by
the formulation SQP+discretization. However, the SQP was
dependent on the initial estimate. Table 2 brings an exam-
ple of an initial estimate that conducted to a local optimum,
characterized by a standard deviation of �tf = 0.185�m.
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Fig. 5. Evolution of the supersaturation during the batch for the optimal
profiles.

0 200 400 600 800 1000 1200 1400
0

200

400

600

800

1000

1200

C
s 

(m
ol

/m
3  

of
 s

us
pe

ns
io

n)

time (s)

GA + parametrization
SQP + parametrization
SQP + discretization

Fig. 6. Evolution of the solids concentration during the batch for the
optimal profiles.

The best profiles presented by the GA+parameterisation
and SQP+parameterisation studies are determined by the
best values found for the searching variables, Types 1 and 2
parameters. These best parameters are presented in Table 4.
The main graphical comparisons among the three optimi-

sation approaches are presented from Figs. 4–8 .An interest-
ing and important point of discussion is the real application
of a discretized profile, as the one considered in the work
of Costa et al. (2005). This type of profile is easy to calcu-
late but hard to be implemented in practice. As pointed by
Choong and Smith (2004), a discretized profile must be an
approximation of the true optimal profile, but the instanta-
neous decrease of the coolant temperature depicted in Fig. 4
is not possible to carry out. A much more realistic approach
to solve the problem is parameterise the control variable, and

Fig. 7. Operation curve followed during the batch for the optimal profiles.
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Fig. 8. Evolution of solution temperature during the batch for the optimal
profiles.

imposing, if necessary, additional constraints on the value
of derivatives of the control variable with respect to time,
due to physical and design constraints. In this way, the re-
sults presented in the present work (GA+parameterisation
and SQP+parameterisation) are easier to follow in real pro-
cess implementations.
Fig. 5 confirms the unrealistic feature of the results from

SQP+discretization. In this case, the supersaturation during
batch time is characterized by many peaks: the supersatu-
ration reaches a high value and comes to nearly zero, due
to solute consumption by the solid phase. The driving force
for crystallization is almost none until the next discretiza-
tion point in time for the coolant temperature is reached
and the temperature is decreased to the next value, leading
to the appearance of another supersaturation peak. The pro-
cess evolves in this way successively. As a consequence, the
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Fig. 9. Schematic diagram for the optimisation approach for real-time applications.

solids concentration (Fig. 6) for SQP+discretization presents
periods of sharp increase, due to the supersaturation peaks
at the discretization points, followed by soft evolution, when
the supersaturation is small.

Fig. 6 shows the solids concentration evolution during the
batch. GA+parameterisation profile is the one with softer
increase, due to the prevailing of growth upon nucleation.
Nevertheless, the soft increase of solids concentration during
the same batch time makes this profile to generate less mass
of solids at the end of the batch, as can be checked by the
observation of the final values of solids concentration in
Fig. 6: GA+parameterisation profile possesses the smallest
one.
Fig. 7 depicts the operating trajectories for the three op-

timal profiles. The operation trajectories are formed by the
pairs of values of solution concentration and temperature fol-
lowed during the batch time. According to literature (Costa
et al., 2005; Lang et al., 1999; Mullin, 1993), in cooling
crystallization systems, it is interesting to keep the operation
at a region in the metastable zone with not so high supersat-
uration values, since growth can occur with smaller driving
force, while nucleation demands larger values of supersatu-
ration to take place. This means to keep the operating trajec-
tory as close as possible to the stable zone, for crystals with
suitable CSD to be obtained. It is clear from Fig. 7 that the
GA+parameterisation profile is the one kept nearest to the
equilibrium line, leading to the smaller supersaturation val-
ues, as shown in Fig. 5. This confirms the results from litera-
ture, indicating that the optimum temperature profile would
exhibit less values of supersaturation and corroborates the
results presented in Table 3.
An important point to be considered is the notice-

able difference between the GA+parameterisation and
SQP+parameterisation profiles (Fig. 4), as well as the solu-
tion temperature profiles in both cases (Fig. 8). Nevertheless,
as it was already pointed out, SQP is a method dependent
on the initial estimate. It is clear that the profile presented
by the GA study is the best (Table 3 results) and this profile
can be used as the initial set point to be followed in real
applications. Since GA is a very time-consuming technique,
for real-time applications, in which online optimisation cal-
culations are needed, the SQP can be used for optimisation
calculations, since the region where the process may be
operated would be near the global optimum region, thanks

to the initial set point stipulated by the GA global searching
technique. In this way, the schematic approach shown in
Fig. 9 is proposed in order to deal with real-time applica-
tions. The use of GA is necessary to determine the region
where the global optimum is located. The SQP is then used,
but limited to this region to achieve the global optimum.

5. Conclusions

In this work an original study in batch crystallization
optimization problems is carried out, with the comparison
of results from deterministic and stochastic methods cou-
pled with different control variable formulations. The study
showed that parameterisation of the control variable profile
is a much more realistic situation. Concerning to the chosen
deterministic method, its sensitivity to problem formulation
and initial estimate was clear. The genetic algorithm pro-
vided the best result. The procedure showed to be robust and
efficient to find out the optimal conditions. However, due to
its time-consuming feature, it is not recommended for real-
time applications. Bearing this in mind, a shared procedure
is proposed, which works with both optimisation methods.
The results provided by this technique may be used as the
initial set-point and deterministic methods may be used for
online optimisation calculations.

Notation

〈 〉 indicates absolute value of the operand, if it
is negative and zero value otherwise

A pre-exponential factor (primary nucleation),
m−3 s−1

A1 exponential constant of Type 1 function
A2 exponential constant of Type 2 function
Ac heat transfer area, m2

B kinetic parameter of the primary nucleation
law

B(L) birth rate, m−4 s−1

c solute molecules concentration in solution,
molm−3 of solution

c∗ solute molecules concentration in solution at
supersaturation, molm−3 of solution
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Ci granulometric class of rank i
�Ci width of class Ci
Cp slurry specific heat, J kg−1K−1

Cs
solid concentration in the suspension,
molm−3 of suspension

C0 initial concentration of adipic acid, molm−3

of solution
CV coefficient of variation of the crystal size dis-

tribution, %
D(L) death rate, m−4 s−1

f (x) objective function
fmax objective function value of the worst feasible

solution in the population
F(x) fitness function
g(x) inequality constraints
G growth rate, m s−1

�Hc heat of crystallization, Jmol−1

(HR) concentration of molecular adipic acid in so-
lution, molm−3 of solution

(HR∗)
concentration of molecular adipic acid in so-
lution at saturation, molm−3 of solution

(H+)
concentration of protons in solution, molm−3

of solution
i counter to discretization points
i′ kinetic order of the secondary nucleation law
j counter to the number of constraints
j ′ kinetic order of the integration growth law
k total number of inlet and outlet streams
k′ exponent to the solid concentration in sec-

ondary nucleation law
ka surface shape factor
kc kinetic constant of the integration law,

m3j ′−2mol1−j
′
s−1

k′
N

kinetic constant of the secondary nucleation
law, m3(i′+k′)−3mol−i

′−j ′
s−1

kv volumetric shape factor
K modified acidity constant of adipic acid,

molm−3 of solution
L characteristic size of crystals, m

Li upper limit of class of number i, m
m number of constraints
MM molecular weight of the crystal, kgmol−1

n number distribution density (population) per
unit volume of suspension, m−4

N number of granulometric classes
Ni(t) number of crystals per unit volume of sus-

pension in granulometric class Ci at time t,
m−3 of suspension

rN net rate of nucleation, m−3 s−1

rN1 primary rate of nucleation, m−3 s−1

rN2 secondary rate of nucleation, m−3 s−1

r(l) intrinsic rate of agglomeration of rank lm,n,
m−3 s−1

RA,i net rate of agglomeration in the granulomet-
ric class Ci , m−3 s−1

RB,i net rate of breakage in the granulometric class
Ci , m−3 s−1

t instantaneous time, s
tintermediate intermediate time, where Types 1 and 2 func-

tions have the same value, s
tf final time, s
ttotal total batch time, s
T crystallizer solution absolute temperature, K
Tc vector with the values for the coolant absolute

temperature at all discretization points, K
U global heat transfer coefficient,

J m−2 s−1K−1

vi internal velocity vector, orientated according
to an internal orientation system

V solution volume, m3

Vsusp suspension volume, m3

V0 initial volume of the solution in the crystal-
lizer, m3

V̇i inlet and outlet streams particle volumetric
rates, m3 s−1

x vector containing the optimizing (adjustable)
variables

X control variable
X0 control variable initial value
XF control variable final value

Greek letters

�r effectiveness factor
�est l,i Stoichiometric coefficient of class i in ag-

glomeration of number l

� slurry density (concentration), kgm−3 of
slurry

�c crystal density, kgm−3 of crystal
� standard deviation of the CSD
�tf standard deviation of the final CSD
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6.3. Conclusões 

Os resultados obtidos neste capítulo mostram que o método SQP é 

sensível tanto à formulação da parametrização quanto à estimativa inicial dada 

para a variável de controle (seus valores discretos, quando discretização é 

utilizada, ou os parâmetros da equação de parametrização, quando esta é 

utilizada). Já a solução obtida pelo AG demonstrou ser este realmente um método 

de busca global, levando a um ótimo bastante melhor do que os indicados pelo 

SQP. Porém, este método de otimização demanda muito tempo computacional de 

cálculo, o que impede a sua utilização pura e simples em aplicações em tempo 

real. 

Como os resultados bastante promissores obtidos com o uso de AG 

indicam sua característica de busca global, sugere-se sua adequação para 

resolver problemas offline, para que sejam calculados os setups inicias de 

processo. No entanto, é sabido que qualquer estudo com Algoritmo Genético 

exige que sejam feitas diversas corridas de otimização, em que se variem os 

valores dos seus parâmetros (tais como probabilidade de mutação, probabilidade 

de cruzamento, tamanho de população, etc.) a fim de se garantir, ou ao menos, ter 

maior probabilidade de alcance do ótimo global (ou suas vizinhanças). Em face 

dessa característica do AG e da inexistência de um procedimento padrão na 

literatura de como se deve fazer a abordagem para variação desses parâmetros, o 

capítulo a seguir propõe um procedimento geral e original para detecção dos 

parâmetros do AG significativamente relevantes para um problema de otimização 

em que se vá utilizar o AG para detecção do ótimo global. 
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Capítulo 7. Procedimento Geral para Investigação dos Efeitos dos 

Parâmetros para Otimização por Algoritmo Genético 

7.1. Introdução 

Este capítulo propõe um procedimento geral e original a ser adotado em 

uma análise a priori em problemas de otimização a serem resolvidos com a 

utilização de algoritmos genéticos. Não há na literatura nenhum procedimento 

sistemático que determine qual o conjunto dos melhores parâmetros do algoritmo 

genético e que possa ser aplicado a qualquer problema (de qualquer dimensão e 

complexidade). Nesse sentido, aqui se apresenta uma sistemática significativa e 

de uso relativamente simples. O procedimento proposto consiste na aplicação do 

Planejamento Fatorial, uma técnica estatística bastante estabelecida, para que 

sejam identificadas as informações mais significativas relativas às influências dos 

fatores em um problema de otimização. O planejamento fatorial serve, portanto, 

como uma ferramenta suporte de identificação dos parâmetros do algoritmo 

genético que possuem efeito significativo sobre o problema de otimização. Essa 

abordagem é bastante útil em estudos a priori, uma vez que possibilita a 

separação dos parâmetros de efeitos significativos dos não-significativos, no 

processo de busca evolutiva do ótimo. Uma vez que qualquer estudo de 

otimização por algoritmos genéticos exige que se execute o algoritmo diversas 

vezes variando-se seus parâmetros de modo a se ter maiores chances de se 

alcançar o ótimo global (ou suas proximidades), a identificação dos parâmetros 

significativos reduz o tempo e a carga computacional em estudos de otimização 

evolucionária por descartar variações em parâmetros não significativos. 

O procedimento proposto é detalhado neste capítulo e sua aplicação em 

casos de estudo gerais é apresentada. Os casos de estudo aqui selecionados 

exemplificam a aplicação da abordagem proposta em problemas gerais, desde 

problemas matemáticos simples a problemas não-lineares de engenharia. Todos 

os casos de estudo, no entanto, foram selecionados focando-se aplicações de 

engenharia, como, por exemplo, ajuste de funções polinomiais a dados. Além do 
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mais, exceto pelo primeiro, os casos de estudo selecionados possuem vários 

ótimos locais, situação típica dos problemas de engenharia e que os tornam 

difíceis de serem otimizados por métodos determinísticos (locais), tais como o 

SQP. 

7.2. Desenvolvimento 

O desenvolvimento deste capítulo é apresentado a seguir, no artigo 

intitulado Prior Detection of Genetic Algorithm Significant Parameters: coupling 

Factorial Design Technique to Genetic Algorithm, submetido ao periódico 

internacional Chemical Engineering Science e atualmente em fase de revisão. 
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Abstract 

This work proposes an original and general procedure to be adopted as a prior 

analysis in optimisation problems to be solved using genetic algorithm (GA). No 

systematic approach to establish the best set of GA parameters for any problem 

was found in literature and a relatively easy to use and meaningful approach is 

proposed. The proposed approach consists on applying factorial design, a well 

established statistical technique to identify the most meaningful information 

about the influences of factors on a specific problem, as a support tool to 

identify the GA parameters with significant effect on the optimisation problem. 

This approach is very useful in conducting further optimisation works, since it 

discharges GA parameters that are not statistically significant for the 

evolutionary search for the optimum, saving time and computation burden in 

evolutionary optimisation studies. 

Keywords: Factorial Design, Genetic Algorithm, Optimisation, Numerical 

Analysis, Parameter Identification, Computation 

 

1. Introduction 

Genetic Algorithms (GAs) are part of the so-called evolutionary algorithms and 

compose a search and optimisation tool with increasing application in scientific 

problems (to cite just a few: Fühner and Jung, 2004; Laquerbe et al., 2001; 

Leboreiro and Acevedo, 2004; Silva and Biscaia Jr., 2003, Summanwar et al., 

2002). They do not need to have any information about the search space, just 
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needing an objective/fitness function that assigns a value to any solution. This 

makes the optimisation procedure to be very robust and attractive for the 

solution of large scale nonlinear systems. Deterministic procedures tend to fail 

for such problems and heuristic methods are difficult to be used without a 

relatively sophisticated knowledge basis. Details about the working principle of 

GAs can be found elsewhere (Deb, 1998, 1999; Fühner and Jung, 2004; 

Goldberg, 1989). 

In order to use GAs, setting up a relatively large number of parameters is 

required. A quick view leads to about six to nine parameters to be established 

before running a typical GA algorithm. Since GAs are evolutionary algorithms, 

whose history of advance in the evolution is part provided at random and part 

by the values of their parameters, it is recommended in an optimisation search 

by GAs to perform a lot of runs to increase the chance to obtain the global 

optimum. The task of parameter tuning is an obscure one and many results of 

GAs are reported in literature without many explanations on the choice made. In 

fact, few attention has been given to a suitable parameter choice. However, 

Eiben et al. (1999) stress that the values of the parameters for each component 

(representation, crossover, mutation, selection mechanism and so on) greatly 

determine whether the algorithm will find a near-optimum solution and in an 

efficient way. The performance of the GA will depend, to a great extent, on the 

values of the parameters that govern these genetic operators, and some studies 

have been presented to determine suitable values (Leboreiro and Acevedo, 

2004). The choice of the suitable parameter values is a time consuming task, 

normally made by hand in a try and error basis, which is not easy to cope, since 

specific problem requires specific GA setups. An interesting alternative, instead 

of tuning fixed values for the natural parameters, is the control (adaptation) of 

them during the evolutionary process, which is normally made in mutation 

parameter and penalty parameters in fitness function. Control of parameters 

includes any change of any of the parameters that influence the action of the 

evolutionary algorithm. The majority of applications control only one parameter, 

or a few parameters that relate to a single operator of the code, mainly because 

the exploration of capabilities of adaptation is done experimentally (Eiben et al., 

1999). 
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The need for good parameter tuning methods is justified by the “optimal 

parameter” dependence on the problem type and by the often interaction of 

them in a complex way, which would require an enormous amount of runs in 

simultaneous tuning of GA parameters (Eiben et al., 1999). 

Since a lot of parameters must be set in a GA in order to perform an 

optimisation study, factorial design, a well-known technique for the selection of 

the variables with the most meaningful effects on a response, is proposed to be 

applied in optimisation problems solved through GA. The selection of the GA 

parameters with significant effect on the optimisation response is dependent on 

the problem being considered. The present work aims to propose a 

methodology, coupling GA to a statistical technique, to compose a simple and 

systematic procedure to be adopted for identification of which GA parameters 

affect significantly the optimisation of particular problems. No systematic 

approach to establish the best set of parameters for GA in optimisation 

problems was found in literature, leading the proposed approach to be a simple 

and meaningful novel contribution. The proposed approach is an important 

analysis to be conducted prior to the optimisation trials through GAs, since it 

discharges GAs parameters that are not statistically significant for the 

evolutionary search. In a previous work, Costa et al. (2005) have detected the 

significant parameters in GA evolutionary search for the batch cooling 

crystallization. In present work, the proposed systematic procedure is presented 

as a general one and applied in some case studies, covering a broad class of 

problems. 

The prior detection of significant parameters is an important point to be 

considered in optimisation studies through GA, particularly in engineering 

problems, which is characterized to be complex, nonlinear and, many times, 

implicit in the optimising variables. Furthermore, this kind of problems involves a 

detailed model of the process being analyzed and whose optimisation trials are 

very time consuming tasks. The proposed approach detects the significant GA 

parameters to be extensively varied, or on which control actions should be 

applied, saving human and computational effort in making variations to 

parameters not statistically significant. 

2. Optimisation Problems and Genetic Algorithm 
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The general objective in optimisation problems is to choose a set of variables 

values subject to the various constraints that will reach the optimum response 

for the chosen objective function. Genetic Algorithms (GAs) are part of the 

optimisation evolutionary algorithms and work with a collection (population) of 

possible solutions. Each solution (chromosome) is composed by random values 

to each optimising variable (gene). The chromosome, also called individual, is 

usually codified through a series of bits (0-1), although it may also be 

represented by real values. The random initial population is evolved with three 

basic genetic operators: selection, crossover, and mutation (Leboreiro and 

Acevedo, 2004). The survival of the fittest is achieved by the assignment of a 

fitness function, usually defined as the objective function for the unconstrained 

optimisation problem, or a combination of the objective function and a penalty 

function for constrained optimisation (Deb, 1998, 1999). Detailed explanations 

on the GA technique and its operators may be found in Goldberg (1989). 

GA may be particularly useful in practical engineering problems that have 

“black-box” functions or get aid of modular simulators, in which the model of 

each unit is only available in an implicit form. The use of such modules is 

common in chemical and related industries. Furthermore, modules external to 

optimisation subroutines are often black-box-like. (Jezowski  et al., 2005; 

Leboreiro and Acevedo, 2004). 

Laquerbe et al. (2001) have used both simulated annealing and genetic 

algorithm in the problem of structural and parametric identification of models for 

residence time distribution. GA was applied with a set of parameters, according 

to the authors, ‘quite unusual for a GA implementation’, and whose values have 

been obtained after numerous numerical trials in order to obtain ‘good’ 

convergence. The authors performed a parameter sensitivity analysis of the GA 

through the ratio of exploration of search space. Their study showed that 

without mutation, the exploration ratio remained equal to 5%, showing that 

mutation clearly introduces diversity. Apart from that, the GA implemented in 

that case study appeared sensitive to essentially the number of generations, 

i.e., choosing the number of generations, and with the other GA parameters 

fixed to classical values, one could determine a fixed percentage of exploration 

of the search space. The authors concluded that the set of parameters of a 
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simulated annealing (SA) is easier to determine than the set of parameters of a 

GA (population size, mutation probability, percentage of crossover and number 

of generations) but a GA might give better solutions when its set of parameters 

was well suited to the problem under consideration. This claims for the need of 

tuning methods and of a procedure to prior identify in which GA parameters 

tuning methods should be applied. 

Leboreiro and Acevedo (2002) analyse the effect of the parameters of the GA in 

its performance in a series of typical process engineering problems, solved with 

explicit mathematical models or using simulators. The results indicated that 

mutation is a governing factor in the performance of the GA, being the best 

values for the probability of the jump mutation between 0.005 and 0.01, while 

creep mutation was very dependent of the number and type of variables. 

Uniform crossover was preferred over single-point, with 0.6 as the best value for 

the crossover probability. The authors also proposed the use of group elitism, 

passing from 10 to 15% of the individuals directly from one generation to the 

next. The study of GA parameters effects was made using factorial design, 

though the paper did not detail the conducted procedure and did not establish a 

systematic procedure to be used in general problems. A possible way to attack 

the problem of finding the best set of GA parameters is through some statistical 

tool, since it may provide a comprehensive basis to analyse their impact on the 

algorithm performance. Bearing this is mind, it is proposed in this work the use 

of factorial design as a support tool in the definition of the best set of GA 

parameters. 

3. Factorial Design 

The factorial design is a well-known technique based on statistical 

considerations that brings the most meaningful information about the influences 

of factors on a specific problem, including the effects of interactions among 

variables. It evaluates at the same time all process (or any focus of study) 

variables in order to determine which ones really exert significant influence on 

the final response, which gives a better analysis of the response (Kar et al., 

2002). All variables are called factors and the different values chosen to study 

the factors are called levels (Barros Neto et al., 2003; Box et al., 1978). 
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In a complete factorial design, all possible combinations of the selected levels 

for the factors are made, but this procedure may be too time-consuming. On the 

other hand, the most common factorial designs are the two levels ones, which 

bring enough information for the purpose of this work. Important trends may be 

observed with these factorial designs and the effects of each independent 

variable, on the dependent one are estimated. The values of the resulting first 

order effects indicate the more sensitive parameters applied to the case studied 

and consequently which ones are more important in the seeking procedure. It is 

worth mentioning that the obtained results depend strongly on the case study to 

which the methodology is being applied (Rodrigues et al., 2002). 

When a relatively large number of factors is evaluated, the total number of 

combinations may be too large and, hence, time consuming to be evaluated. 

Furthermore, the high order interactions (third, fourth or superior) are usually 

small, when compared to first and second order effects, and may be mixed with 

the standard deviation of the effects. In this case, it is advisable and convenient 

to use a fractional factorial. The number of combinations is diminished and the 

most important effects are statistically determined (Barros Neto et al., 2003). 

In the interpretation of the results generated by a complete or fractional factorial 

design, it is necessary to decide which calculated effects are significantly 

different from zero. The usual practice is use the concept of statistical 

significance (generally 95% of confidence). 

When analysing the results of a factorial design, two statistic parameters are of 

relevance, to know, the t-statistics and p-level. The t-statistics of a factor is 

obtained by the division of its effect by its error. This statistic parameter is 

dependent on the freedom degree, which is calculated by the subtraction of the 

number of calculated effects from the total number of experiments/trials 

available. The higher the t-statistics, the higher is the significance of the 

corresponding factor. On the other hand, the p-level, which represents the 

probability of error that is involved in accepting the effect as valid, is a 

decreasing index of the reliability of a result. The higher the p-level, the less one 

can believe that the observed relation between factor and effect is reliable. The 

common practice is to consider 95% of confidence in a result, so that, for an 

effect to be considered statistically significant, its p-level must be less than 0.05. 
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The two levels evaluated in a factorial design are coded by (+) and (-), 

representing the upper and lower levels, respectively. 

4. A Novel Proposal: Coupling Factorial Design to GA Parameters to 

Identify Significant Effects 

Since the GA technique itself has a lot of parameters that should be varied in 

many trials in order to drive so many possible evolutionary paths that the 

achievement of the specific problem global optimum can be more assured, the 

simple and original approach proposed in this work offers a plan of action 

(statistically guided orientation) to select in which ones of these GA parameters 

efforts should be concentrated in optimisation trials of the particular problem. 

Costa et al. (2005) proposed an approach in order to evaluate the most 

significant GA parameters in the search for the best cooling profile in a 

crystallization process. It proposes that efforts should be concentrated only in 

those parameters that have shown statistical significance on the problem 

response. In an optimisation problem through GA, the problem response is the 

best value of the objective function / fitness function among all individuals at the 

end of the evolutionary search. In this way, the proposed approach analyzes the 

effects that the GA parameters have on the fitness function. This proposed 

approach can be applied to any GA optimisation problem as well as for any kind 

of GA algorithm. This meaningful approach discharges many trials that would 

make variations to GA parameters that do not show to have any statistical effect 

on the problem response, saving time and computation burden in evolutionary 

optimisation studies. Optimisation trials without prior knowledge of on which GA 

parameters attention should be drawn could be a great waste of time and 

human and computational effort. This may have significant relevance for the 

development of real-time process integration procedures using GA as 

optimisation tool. 

The proposed approach is based on the general structure of GA (Fig. 1), with its 

inputs and output. All features of GA compose the universe set of 

characteristics that must be defined in order to run an evolutionary search. This 

universe is subdivided into two subsets: the GA parameters and the GA settings 

and the elements of each subset are determined based only on the information 

whether if the particular feature for which the element stands for will have, 
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respectively, its influence on the GA response analysed or not. In this way, 

features such as type of crossover, use of niching, elitism, number of children 

per pair of parents, crossover probability, number of individuals selected in 

elitism or any other characteristic of GA may be part of the subset GA settings 

(if the characteristic is set to be fixed and not varied during the influence 

analysis) or GA parameters (if their values should be varied in many different 

optimisation trials). 

The input data that must be supplied to GAs is composed by: 

• GA settings: any characteristic feature fixed. Since these settings are 

fixed, they are not part of the so-called GA parameters, whose effects on 

the optimisation response are object of study in the detection of statistical 

significance. 

• Problem variables minimum and maximum allowed variables: the 

decision on which are these minimum and maximum allowed variables is 

dependent on the specific problem being considered. 

• GA parameters: these parameters must be varied in many GA trials (or a 

control action may be applied to them) in order to drive so many possible 

evolutionary paths that the achievement of the specific process global 

optimum can be more assured. Examples of GA parameters could be 

mutation probability, population size, crossover probability, selection 

mechanisms for selecting parents and survivors and initial population. 

The problem model that figures in Fig. 1 is necessary for the evaluation of both 

the objective function and constraints violation (in constrained problems). GC 

and IC are only counters (respectively generation counter and individual 

counter) used by the algorithm to make calculations for each individual of each 

generation. The vectors best_fitness and best_individual are responsible for 

recording the best fitness function and the corresponding best individual in each 

generation. 

As can be seen by the structure outlined in Fig. 1, given a set of values of the 

GA parameters, the GA optimisation code executes the evolutionary search and 

gives as output the best fitness function. The outer box of Fig. 1, which 

encloses all the sequence of steps for Genetic Algorithms, can be seen as a 
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black-box: given an input (GA settings, minimum and maximum allowed values 

and GA parameters values), for a particular problem model, the black-box gives 

an output. Since the problem is fixed, the minimum and maximum allowed 

values are fixed. The GA settings are also fixed. In this way, the only variables 

able to be varied in the input are the GA parameters. The proposal is, then, to 

use factorial design in the identification of the significant GA parameters in 

optimisation problems, i.e., parameters that really exert significant influence on 

the output. The proposed approach should be seen as a prior and important 

analysis to be conducted in optimisation trials through GAs in order to discharge 

GAs parameters that are not statistically significant for the evolutionary search 

in the specific problem. As already pointed out by Eiben et al. (1999), the choice 

of the suitable parameter values is a time consuming task, and the literature 

does not offer a conclusive procedure to identify the truly significant parameters, 

for which suitable values must be set or, alternatively, an adaptation should be 

imposed during the evolutionary process. 

A step-by-step description of the proposed approach may be outlined as 

follows: 

1. Define the case study/ problem and formulate it mathematically (process 

model) or design it in modular simulators; 

2. Define the objective function; 

3. Define the constraints of the problem; 

4. Define the control variables (optimising variables), i.e., the variables that 

compose the individuals and that should suffer evolution in order to 

provide better fitness function values; 

5. Stipulate the GA settings and the minimum and maximum allowed values 

of the control variables; 

6. Stipulate the values of the upper and lower levels for the GA parameters 

to be used in the factorial design study; 

7. Build the complete or fractional factorial design spreadsheet, with the 

many combinations of GA parameters levels that must be supplied to a 

GA to perform the evolutionary optimisation. For information on how to 
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build fractional factorial designs, the reader is referred to Barros Neto et 

al. (2003) and Box et al. (1978); 

8. Perform the optimisation through GA for each combination of GA 

parameters in order to obtain the problem response to these GA 

parameters values; 

9. Calculate effects of each GA parameters on the problem response, as 

well as their errors and statistical significance (p-level). Information on 

how to calculate the effects, its errors and p-levels is found in Barros 

Neto et al. (2003) and Box et al. (1978). Calculate, as well, the effects, 

errors and p-level for the interactions between factors (GA parameters); 

10. The GA parameters that do not show statistical significance on the 

problem response may be discharged in further optimisation studies 

because, irrespective of which value is stipulated to these parameters, 

the problem response will not vary significantly, in statistical sense. The 

GA parameters that show effects statistically significant should be 

extensively varied in further optimisation works with this particular 

problem or should suffer a control action, as suggested by Eiben et al. 

(1999). 

For multi-objective optimisation problems (MOOPs), for which a family of 

solutions (Pareto optimal set) is generated, the approach could also be applied. 

The Pareto optimal set is composed by solutions comparatively good among 

themselves and that dominate all other possible solutions. A solution is said to 

dominate a second one if it is not worse than the second solution in all 

objectives and is strictly better in at least one objective (Deb et al., 2004; Mitra 

et al., 2004; Silva and Biscaia Jr., 2003; Suman,2004). In this way, the 

statistically significant parameters would be those that cause a statistical 

change in the optimal values for all objectives. 

5. Application of the proposed approach 

In order to illustrate the proposed approach, it is here applied to four 

optimisation problems, with different levels of complexities concerning to the 

number of optimising variables, the presence of constraints, linearity and explicit 

dependence. This section is organized in the following manner. First, the 
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selected GA code is presented, with its features and restrictions. The manner in 

which the constraints are here dealt with in constrained problems is also 

explained. Then the four case studies are briefly introduced. Finally, the results 

for each case study are presented and discussed. 

5.1 GA code 

The GA used was basically the FORTRAN Genetic Algorithm Driver by David 

Carroll, version 1.7a (Carroll, 2005), with some modifications in order to deal 

with constraints. This code initializes a random sample of individuals with 

different genes (problem variables). This initial random sample of individuals is 

actually dictated by the value assigned to a GA parameter named idum: the 

same initial population is generated every time the code is run with the same 

value assigned to idum. The selection scheme used is tournament selection 

(Deb, 1999) with a shuffling technique for choosing random pairs for mating. 

The individuals are coded in binary manner and the routine can apply jump 

mutation, creep mutation and single-point or uniform crossover. Niching 

(sharing) and an option for the number of children per pair of parents are added. 

An option for the use of a micro-GA is also part of the code, as well as the 

possibility to use elitism, which consists of passing the best individuals, 

according to their fitness, from one generation to the next, without being 

modified by the genetic operators. However, the elitism in Carroll’s code is 

restricted to just one individual. In all cases studied in this work, elitism was 

used. 

It is interesting to stress here that the results extracted from the conducted 

studies are dependent on the selected code. If a real (not binary) code had 

been selected, the results would have been different. In fact, the specific GA 

parameters would have been different and so would their effects on the 

responses. Nevertheless, what is interesting to emphasize is that the proposed 

approach is general and important and meaningful results can be obtained with 

its application. 

Carroll’s code has the following variables to be set, in order to run the 

optimisation: 
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• microga: if set to 1, the micro-GA search is activated. In the conducted 

study cases, microga is set to 0 (deactivated) 

• npopsiz: determines the number of individuals in each generation 

(iteration) 

• pmutate: jump mutation probability 

• maxgen: maximum number of generations to be accounted in the 

evolution 

• idum: a parameter that determines the initial population of individuals; in 

the code idum is the initial random number seed for the GA run and it 

must equal a negative integer 

• pcross: crossover probability 

• pcreep: creep mutation probability 

• iunifrm: 0 for single-point crossover; 1 for uniform crossover 

• iniche: 0 for no niching, 1 for niching 

• nchild: determines if the number of children per pair of parents is 1 or 2. 

The code was modified in order to handle constraints as proposed by Deb 

(2000). The used approach exploits the feature of the GAs algorithm of pair-

wise comparison during the selection of individuals with tournament selection 

operator. Penalty parameters are not needed in the proposed method because, 

in any scenario of comparison between two solutions, they are never compared 

in terms of both objective function and constraint violation information. The 

proposed fitness function is formulated in the following manner, where 

infeasible solutions are compared based only on their constraint violation (for a 

minimization problem): 
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The parameter fmax is the objective function value of the worst feasible solution 

in the population. In this way, when two feasible solutions are compared, the 

one with better objective function value is chosen; when one feasible and one 
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infeasible solution are compared, the feasible solution is chosen; and when two 

infeasible solutions are compared, the one with smaller constraint violation is 

chosen (Deb, 2000). The method makes the search initially focuse on finding 

feasible solutions, and later, when an adequate number of feasible solutions is 

found, the algorithm finds better feasible solutions by maintaining a diversity in 

solutions in the feasible region. In a number of test problems and in engineering 

design problem, this approach has shown to be able to find out constrained 

optimum solutions (Michalewicz et al., 2000). 

5.2 Case studies 

The characterization of any problem can be made according to many issues, 

like the number of linear constraints, the number of nonlinear constraints, the 

number of equality constraints, the ratio of sizes of feasible search space to the 

whole, number of variables, and number of local optima and the existence of 

derivatives of the fitness function (Michalewicz et al., 2000). The case studies 

selected to exemplify the application of the proposed approach goes from 

simply ones to nonlinear engineering problems. All case studies, however, were 

selected focusing engineering applications. For example, f2 function (case study 

#2) can find application in fitting data to polynomial types. The majority of the 

selected case studies have numerous local optima, which cause serious 

problems for local optimisers. 

5.2.1 Case study #1 (f1) 

The first case study is a very simple unconstrained problem, with no local 

optima and just one global optimum (Hatta et al., 1998). The optimisation 

problem for case study #1 is described in Eq. (2) and its global optimum is 

known to be located at (0,0) and with function value of zero.  
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= ∑
2
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1

minf min i

i

x
x x

 (2) 

Fig. 2 brings the profile of f1 for ≤ ≤5.12 5.12ix , the interval in which the 

optimum is searched. 

5.2.2 Case study #2 (f2) 
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This case study is a typical benchmark GA test function and can be found in 

many references (Deb, 2000; Jezowski  et al., 2005; Michalewicz and Fogel, 

2002). It possesses 13 variables and 9 linear constraints. Eq. (3) formulates 

mathematically the case study #2, which has a known minimum of -15. 
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The minimum and maximum allowed values for the optimising variables are 

≤ ≤0 1ix  for i=1, 2, …, 8, 9, 13 and ≤ ≤0 1000ix  for i=10, 11, 12. 

5.2.3 Case study #3 (f3) 

The case selected is a simple engineering optimisation problem, extracted from 

Summanwar et al. (2002). It is a heat exchanger network synthesis problem, 

requiring minimization of the total cost. There is only one optimising variable 

(T1) and 12 constraints. The minimization problem can be described by the 

optimisation statement of Eq. (4). 
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The minimum and maximum allowed values for the optimising variable are 

determined by ≤ ≤1405 575T  and the best solution, according to Summanwar 

et al. (2002), is a function value of 36,162.9886. 

5.2.4 Case study #4 (f4) 

Case study #4 is an example of parameters estimate, a problem with which 

many engineers face, particularly those involved in the mathematical modelling 

of processes. These models frequently contain adjustable parameters that need 

to be determined from available experimental data. The process selected in this 

case study is batch ethanol fermentation from sugarcane molasses, for which 

the mass balance equations that describe microorganisms growth, substrate 

consumption and ethanol formation are: 
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Atala et al. (2001) showed that, when Saccharomyces cerevisiae was used as 

yeast, cellular, substrate and product inhibitions are of importance. In this study, 

the cell growth rate, rx, includes terms for such types of inhibitions, as 

expressed in Eq. (8): 
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Luedking-Piret expression (Lee et al., 1981) was used to account for the 

ethanol formation rate, rp (Eq. 9), while the substrate (sugar) consumption rate, 

rs, is given by Eq. (10), balancing cell mass and ethanol formation. 

XmrΥr pxpxp +=
 (9) 

XmΥrr xxxs )/( +=  (10) 

According to Eq. (5)-(10), there are 11 parameters (µmax, Pmax, Ks, Ki, Xmax, m, n, 

Υx, mx, Υpx, and mp) that have to be estimated from experimental observations. 

Among them, some parameters are temperature-dependent: µmax, Pmax, Xmax, Υx 

and Υpx. The present case study is the estimate of these temperature-

dependent kinetic parameters at 34ºC, based on experimental data (Atala et al., 

2001). This parameter estimation, in fact, is part of a larger problem, which 

looks for the exact dependence of the five parameters on temperature. 

Nevertheless, the sub-problem of estimate of their values at 34oC is here 

selected as case study #4. The values of the non temperature-dependent 

parameters were extracted from Atala et al. (2001), which is referred to for 

detailed information on the process. These values are presented in Table 1. 

The mathematical estimate of model parameters is made based on optimisation 

of a quantity that is a function of the kinetic parameters to be estimated. In the 

present case study, the least-squares error is considered as the chosen 

criterion to evaluate how close the computed profiles of the state variables (cell 
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mass, substrate and ethanol concentrations) is to the experimental observations 

(Wang et al., 2001). In this way, the optimisation problem of case study #4 can 

be described by Eq. (11): 
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In the objective function Xei, Sei and Pei are the measured concentrations of 

cell mass, substrate and ethanol at the sampling time i. Xi, Si and Pi are the 

concentrations computed by the model at the sampling time i. Xemax, Semax and 

Pemax are the maximum measured concentrations and the term np is number of 

sampling points. Here ( )ε i x  is the error in the output due to the ith sample. 

When one faces with the problem of parameters fitting, one of the major 

problems is the lack of information on the order of magnitude of the parameters, 

which, for this case study, implies a large range of searching values for the 

optimizing variables. The minimum and maximum allowed values for the 

temperature-dependent kinetic parameters were set so as to allow for a large 

range of values, since the order of magnitude of each parameter is supposed to 

be unknown. Table 2 brings the minimum and maximum allowed values for 

each one of the kinetic parameters. The values used at this table were chosen 

in a very large range to evaluate difficulties normally found in the definition of 

values for kinetic parameters. The aim in this study is to be able to evaluate the 

potential of the GA to work such adverse condition. 

 

5.3 Results and Discussion 

In order to estipulate a value for the population size at the zero level (central 

point), the scaling law suggested by Deb (1998) was used: 

⋅= ×1.65 20.21npoposiz  (12) 

where  is the total chromosome string length and corresponds, for each case 

study, to the total sum of each variable string length, i : 
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Each variable string length is calculated based on the interval upon which the 

corresponding variable can vary and its required precision, as in Eq (14), where 

α i  denotes the required precision: 
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x x
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The estimate of the maximum number of allowed generations was set equal to 

the estimate of the population size. 

The estimate of population size for the zero level was constrained to 225 

individuals, since Eq. (12) is overkill, especially when there are many variables 

with a very tiny precision required in the problem. 

Both jump and creep mutation probabilities were estimated at level zero with the 

scaling law of Eq. (15). 

= = 1/pcreep pmutate  (15) 

Concerning to the crossover probability, the usual practice is to set at a large 

value (Deb, 1998). In all case studies, the crossover probability at level zero 

was set to 0.8. A variation of ±20% to the central point value of each factor was 

made in order to calculate the values for the upper and lower level values in 

each case study. 

5.3.1 Case study #1 

The string length for each problem variable is calculated as in Eq. (16), which 

leads to 20= , and so npopsiz=30, by Eq. (12), and = = 0.05pcreep pmutate . 

( )
+ 

= = = = 
 

1 2 2 2

5.12 5.12
log log 1024 10

0.01  (16) 

For this first study case, 9 parameters of GA were selected as factors, in order 

to have their influence on the fitness function analyzed. Table 3 presents these 

factors and their corresponding values for each level. Some GA parameters of 

the used code allow only two possible values. This happens, for example, with 
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iunifrm: only 0 or 1 can be assigned to it, indicating, respectively, single-point 

and uniform crossover. Due to it, no central point can be calculated for the 

factorial design in this case study. 

A fractional factorial design 29-3 study was carried out. Table 4 depicts the 

combinations of GA parameters for the optimisations that were conducted for 

the fractional factorial design. The results for the fitness function of the best 

individual in the last generation generated by the GA in each case are 

presented in the final column. As case study #1 is an unconstrained one, F1, the 

fitness function of this study case, is equal to f1, its objective function. 

The software STATISTICA (Statsoft, v. 6.0) was used to analyze the results. 

Table 5 presents the effect estimates of the GA parameters, calculated with 

95% of confidence, with no interaction between the effects. Fig.3 brings the 

corresponding Pareto chart, used for identification of the most important factors. 

The ‘t’ statistics that figures in Table 5 is presented with its freedom degree, 

which is 54, since there were 64 available runs and only 10 effects were 

calculated (the mean effect plus the effects for each factor). The values for the 

t-statistics are also indicated next to each bar in the Pareto chart. 

As can be seen, two parameters, the jump mutation probability (expressed by 

pmutate) and the maximum number of generation allowed (expressed by 

maxgen) have significant effects on the search for a minimum of F1. 

The fraction factorial design was reduced by a factor of 8 from the complete 

factorial design and, so, some 2-way interaction effects cannot be estimated, 

since they are linear combination of other effects. In this way, the effects of (4) 

by (8) – maxgen versus pcross-, (4) by (9) – maxgen versus pmutate- and (8) 

by (9) – pcross versus pmutate- cannot be estimated. All estimable interaction 

effects are presented in Table 6. 

Table 6 shows that no interaction effect is statistically important. Once again, 

factors (9) and (4) (jump mutation probability and maximum number of 

generations allowed) have shown a great effect on F1 of the best individual 

generated by GA at the end of the evolution process.  

5.3.2 Case study #2 
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The first 9 variables and the 13th one have string lengths calculated by Eq. (17), 

while string lengths for the 10th, 11th, and 12th variable are determined by Eq. 

(18). 
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The chromosome string is then 10*10 3*20 160= + = . In this case, Eq. (12) is 

overkill (it would be necessary 7x109 individuals, according to Eq. (12)) and so 

npopsiz is set to 225. The mutation probability is 
−= = = 31/160 6.25 10pcreep pmutate x . 

From study case #2 on, six GA parameters were selected as factors. In these 

three case studies (cases studies #2, #3 and #4), uniform crossover, 2 children 

per pair of parents and niching were set fixed in the code, i.e., iunifrm, nchild 

and iniche are part of the GA settings, with values fixed, respectively, to 1, 2 

and 1.  

Table 7 presents the analyzed GA parameters (factorial design factors) and 

corresponding values for each level, including the central point, while Table 8 

presents the conducted optimisations for a 26-1 fractional factorial design with a 

central point. F2 that figures in the final column is the fitness function of the best 

individual in the last generation. Although this study case is a constrained 

optimisation problem, the way constraints were handled (Eq. (1)) led to feasible 

individuals, so that F2 for the best individual is actually its value of f2. 

Table 9 and 10 present the effect estimates for, respectively, no interaction 

between the effects and with two-way interaction. Fig. 4 and 5 are the 

corresponding Pareto charts. 

For case study#2, the crossover probability (pcross) and the maximum number 

of generations (maxgen) are GA parameters with the most significant effects on 

the response. Since the initial population, represented by idum, has an effect 

near the limit of significance, the analysis of interactions of factors (in couples) 

is conducted. In this second set of results (Table 10 and Fig. 5), the interaction 
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between the crossover probability and the initial population has shown to be of 

great significance. This result carries a great influence of the crossover 

probability, the most meaningful effect for this case study, but also shows that 

the initial population must be considered in further optimisations. The 

importance of the initial population effect is also corroborated by the significant 

(though the least one) effect it has on F2 (Fig. 5)  

5.3.3 Case study #3 

The only problem variable determine the chromosome length, calculated by Eq. 

(19). The use of Eq. (12) leads to npopsiz ≈ 20 and 

= = =1/17 0.0588pcreep pmutate . 

− 
= = ≈ 

 
1 2

575 405
log 17

0.001  (19) 

Tables 11 and 12 are related to the 26-1 fractional factorial design for case study 

#3. Tables 13 and 14 present the effect and its statistical significance for, 

respectively, no factor interaction and with 2-way interaction. As can be 

extracted from theses tables, only the population size has shown to be a 

parameter of statistical significance on the objective function of case study #3. 

Fig.6 brings the Pareto chart of the main effects. No interaction factor is of 

statistical significance (Table 14). 

5.3.4 Case study #4 

The calculation for the string length of each variable is made by Eq. (20)-(21), 

leading to 4*24 20 116= + = . 

− −
= = = = ≈ 

 

3

1 2 3 5 2

1000 1 10
log 24

0.0001
x

 (20) 

− −
= ≈ 

 

1

4 2

100 1 10
log 20

0.0001
x

 (21) 

The application of Eq. (12) leads to an overkill, and then, the population size is 

limited, at first, to 225 individuals. The mutation probabilities are given by Eq. 

(22). 

−= = = 31/116 8.621 10pcreep pmutate x  (22) 
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The proposed approach should be a task to be executed in order to provide 

insight of the significant parameters for the specific case study. Being a prior 

study, whose motivation is on saving time and computational effort, the 

approach is not suitable to be applied in long time executions. For large 

engineering problems, for which case study #4 is a relatively simple example, 

the execution time is extremely large when a lot of individuals and a large 

number of generations are stipulated. This can be a challenge, particularly 

when one looks for real time applications. Apart from that, the evolution rate 

(that is, the rate upon which the best fitness function in each generation 

evolves) tends to have a large value in the first generations and then diminishes 

to near zero (or to zero, in certain cases) for larger generations numbers. For 

this case study, the time execution, when 225 generations with 225 individuals 

is used, is about 45 minutes in a PC of 2,4GHz. For a prior analysis, this time is 

too long in order to execute all runs for the factorial design. In this way, the 

number of individuals for the level zero was set to 50, whose evolution 

computation time is about 2 minutes. In this way, Table 15 brings the values for 

each level of the GA parameters analysed in this case study. Table 16 brings 

the correspondent 26-1 fractional factorial design. The effects, with no factor 

interaction and with 2-way interaction, are given in Tables 17 and 18 

respectively and the corresponding Pareto chart are presented in Fig. (7) and 

(8). 

The most significant GA parameter for case study #4 is the initial population, as 

can be extracted from Table 17 and Fig 7. The study of interaction between 

factors conducted to a great significance of the interaction between the 

crossover and the creep mutation probabilities as well as of the interaction 

between the crossover probability and the population size. Apart from that, the 

population size appears as the least significant effect (Table18 and Fig. 18). 

The interpretation of these results can be that the crossover probability has an 

effect that should be considerable, so that its interaction with the creep mutation 

probability is even larger than the effect of the initial population. The population 

size has a minor significant effect, but interacting with the crossover probability, 

they have together a great significant effect. In this way, for case study #4, the 
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significant GA parameters are the initial population, the crossover probability, 

the population size and the creep mutation probability. 

6. Conclusions 

A systematic approach to detect the best set of parameters for GA is proposed, 

coupling GA to factorial design technique. The evolution of GAs is greatly 

determined by the values of these parameters and, so, they should be varied in 

further optimisation works or they should suffer a type of control action. Four 

case studies were presented in order to demonstrate the application of the 

approach, which shows that the set of significant parameters is dependent on 

the case study. However, the proposed approach is useful as a tool to identify 

the best set of parameters to be considered. 

The methodology should be seen as a prior task to be executed in order to give 

insight of the significant parameters for a problem that is to be optimised using 

GA. The approach saves time, since gives an statistical orientation of on which 

GA parameters efforts should be concentrated in the global optimum search. It 

is worthwhile mentioning that the objective function is part of the problem 

formulation and obviously it influences on the impact of the GA parameters and 

this claims to the need of a procedure able to discriminate among the 

parameters and in order to do an extensive analysis. 

The proposed methodology is not restricted to single objective problems and 

can be normally used in multi-objective optimisation problems. 
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Nomenclature 

< >: indicates absolute value of the operand, if it is negative, and zero value 

otherwise. 

best_fitness: vector that records the best fitness function in each generation 

best_individual: vector that records the best individual in each generation 

F(x): Fitness function 
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f(x): objective function 

fmax: Objective function value of the worst feasible solution in the population 

GC: generation counter 

gj(x): Inequality constraint 

idum: GA parameter to determine the initial population of individuals 

iniche: GA parameter to determine if niching is used 

iunifrm: GA parameter to determine if single or uniform crossover is used 

IC: individual counter 

Ki: substrate inhibition coefficient (m3/kg) 

KS: substrate saturation constant (kg/m3) 

: total chromosome string length 

i : ith variable string length 

m: parameter used to describe cellular inhibition 

maxgen: Maximum number of generations in the evolution of GA code 

microga: GA parameter to determine if migroga option is used 

mp: ethanol production associated with growth (kg/[kg h]) 

mX: maintenance coefficient (kg/[kg h]) 

n: parameter used to describe product inhibition 

nc: number of constraints 

nchild: GA parameter to determine the number of children per pair of parents 

np: number of sample points 

npopsiz: GA parameter to determine the number of individuals per generation 

p: p-level, probability of error that is involved in accepting an effect as valid 

P: concentration of ethanol (kg/m3) 

pcreep: creep mutation probability in the GA code 

pcross: crossover probability in the GA code 
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Pei: measured concentration of ethanol at sample time i 

Pemax: maximum measured concentration of ethanol 

Pi: concentration ethanol at sample time i computed by the model 

Pmax: product concentration when cell growth ceases (kg/m3) 

pmutate: jump mutation probability in the GA code 

Qi: heat rate exchanged in the ith heat exchanger 

rp: kinetic rate of ethanol formation (kg/[m3h]) 

rS: kinetic rate of substrate consumption (kg/[m3h]) 

rX: cell kinetic growth rate (kg/[m3h]) 

S: concentration of substrate (kg/m3) 

Sei: measured concentration of substrate at sample time i 

Semax: maximum measured concentration of substrate 

Si: concentration of substrate at sample time i computed by the model 

t: time 

t(freedom degree): t-statistics 

Ti: temperature of the ith flow in the heat exchanger network (K) 

x: vector containing the optimising (adjustable) variables 

max
ix : maximum allowed value for ith optimising variable 

min
ix : minimum allowed value for ith optimising variable 

X: concentration of cell mass (kg/m3) 

Xei: measured concentration of cell mass at sample time i 

Xemax: maximum measured concentration of cell mass 

Xi: concentration of cell mass at sample time i computed by the model 

Xmax: biomass concentration when cell growth ceases (kg/m3) 

Ypx: yield of product based on cell growth (kg/kg) 

YX: limit cellular yield (kg/kg) 
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Greek letters 

iα : required precision for ith optimising variable 

iT∆ : difference of temperatures in heat exchanger flows (K) 

( )ε i x : error in the output due to the ith sample 

µmax: maximum specific growth rate (h-1) 
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Fig. 1: General working structure of GAs. 



 115 

 

Fig. 2: Profile of f1 

 

Fig. 3: Pareto chart of variables effects on F1 of the best individual (at 95% of 

confidence level), with no factor interactions. 
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Fig. 4: Pareto chart of variables effects on F2 of the best individual (at 95% of 

confidence level), with no factor interactions. 

 

Fig. 5: Pareto chart of variables effects on F2 of the best individual (at 95% of 

confidence level), with two factor interactions. 
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Fig. 6: Pareto chart of variables effects on F3 of the best individual (at 95% of 

confidence level), with no factor interactions. 

 
Fig. 7: Pareto chart of variables effects on F4 of the best individual (at 95% of 

confidence level), with no factor interactions. 
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Fig. 8: Pareto chart of variables effects on F4 of the best individual (at 95% of 

confidence level), with two factor interactions. 

 
Table 1: Values for the non temperature-dependent kinetic parameters of the 
batch fermentation form sugarcane molasses using Saccharomyces cerevisiae 

Batch Fermentation non 
Temperature-dependent 

Parameter 

Value 

Ks 4.1  

Ki 4.23 x 10-3  

m 1 

n 1.5 

mx  0.2  

mp 0.1  
 
Table 2: Minimum and maximum allowed values, in the GA search, for the 
temperature-dependent kinetic parameters of the batch fermentation from 
sugarcane molasses using Saccharomyces cerevisiae 

Batch Fermentation 
Temperature-dependent 

Parameter 

Minimum allowed 
value 

Maximum allowed 
value 

µmax 0.001 1000 

Pmax 0.001 1000 
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Xmax  0.001 1000 

Υx 0.001 1000 

Υpx 0.100 100 

 

Table 3: Levels of the parameters used in sensitivity analysis of the GA code 
applied to case study #1 

GA Parameters (-) level (+) level 
(1) idum1 -1200 -800 
(2) iniche 0 1 
(3) iunifrm 0 1 
(4) maxgen 24 36 
(5) nchild 1 2 
(6) npopsiz 24 36 
(7) pcreep 0.04 0.06 
(8) pcross 0.64 0.96 
(9) pmutate 0.04 0.06 
1 idum assumes negative integer value and is the initial seed for the GA run; each value 
assigned to idum gives rise to a different initial population 

 

Table 4: Fractional factorial design 29-3 study results for case study #1 
Run idum iniche iunifrm maxgen nchild npopsiz pcreep pcross pmutate F1 

CS1-01 -1200 0 0 24 1 24 0.06 0.96 0.06 2.505E-04 
CS1-02 -800 0 0 24 1 24 0.04 0.64 0.06 1.453E-03 
CS1-03 -1200 1 0 24 1 24 0.04 0.96 0.06 5.010E-05 
CS1-04 -800 1 0 24 1 24 0.06 0.64 0.06 1.252E-03 
CS1-05 -1200 0 1 24 1 24 0.04 0.64 0.04 5.010E-05 
CS1-06 -800 0 1 24 1 24 0.06 0.96 0.04 5.010E-05 
CS1-07 -1200 1 1 24 1 24 0.06 0.64 0.04 5.010E-05 
CS1-08 -800 1 1 24 1 24 0.04 0.96 0.04 5.010E-05 
CS1-09 -1200 0 0 36 1 24 0.04 0.96 0.04 5.010E-05 
CS1-10 -800 0 0 36 1 24 0.06 0.64 0.04 5.010E-05 
CS1-11 -1200 1 0 36 1 24 0.06 0.96 0.04 2.505E-04 
CS1-12 -800 1 0 36 1 24 0.04 0.64 0.04 5.010E-05 
CS1-13 -1200 0 1 36 1 24 0.06 0.64 0.06 5.010E-05 
CS1-14 -800 0 1 36 1 24 0.04 0.96 0.06 5.010E-05 
CS1-15 -1200 1 1 36 1 24 0.04 0.64 0.06 2.505E-04 
CS1-16 -800 1 1 36 1 24 0.06 0.96 0.06 5.010E-05 
CS1-17 -1200 0 0 24 2 24 0.06 0.64 0.04 5.010E-05 
CS1-18 -800 0 0 24 2 24 0.04 0.96 0.04 5.010E-05 
CS1-19 -1200 1 0 24 2 24 0.04 0.64 0.04 5.010E-05 
CS1-20 -800 1 0 24 2 24 0.06 0.96 0.04 1.252E-03 
CS1-21 -1200 0 1 24 2 24 0.04 0.96 0.06 2.054E-03 
CS1-22 -800 0 1 24 2 24 0.06 0.64 0.06 1.252E-03 
CS1-23 -1200 1 1 24 2 24 0.06 0.96 0.06 2.505E-04 
CS1-24 -800 1 1 24 2 24 0.04 0.64 0.06 6.513E-04 
CS1-25 -1200 0 0 36 2 24 0.04 0.64 0.06 5.010E-05 
CS1-26 -800 0 0 36 2 24 0.06 0.96 0.06 5.010E-05 
CS1-27 -1200 1 0 36 2 24 0.06 0.64 0.06 5.010E-05 
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CS1-28 -800 1 0 36 2 24 0.04 0.96 0.06 5.010E-05 
CS1-29 -1200 0 1 36 2 24 0.06 0.96 0.04 2.505E-04 
CS1-30 -800 0 1 36 2 24 0.04 0.64 0.04 5.010E-05 
CS1-31 -1200 1 1 36 2 24 0.04 0.96 0.04 5.010E-05 
CS1-32 -800 1 1 36 2 24 0.06 0.64 0.04 5.010E-05 
CS1-33 -1200 0 0 24 1 36 0.06 0.64 0.04 5.010E-05 
CS1-34 -800 0 0 24 1 36 0.04 0.96 0.04 6.513E-04 
CS1-35 -1200 1 0 24 1 36 0.04 0.64 0.04 5.010E-05 
CS1-36 -800 1 0 24 1 36 0.06 0.96 0.04 5.010E-05 
CS1-37 -1200 0 1 24 1 36 0.04 0.96 0.06 2.505E-04 
CS1-38 -800 0 1 24 1 36 0.06 0.64 0.06 2.505E-04 
CS1-39 -1200 1 1 24 1 36 0.06 0.96 0.06 8.517E-04 
CS1-40 -800 1 1 24 1 36 0.04 0.64 0.06 5.010E-05 
CS1-41 -1200 0 0 36 1 36 0.04 0.64 0.06 4.509E-04 
CS1-42 -800 0 0 36 1 36 0.06 0.96 0.06 5.010E-05 
CS1-43 -1200 1 0 36 1 36 0.06 0.64 0.06 2.505E-04 
CS1-44 -800 1 0 36 1 36 0.04 0.96 0.06 5.010E-05 
CS1-45 -1200 0 1 36 1 36 0.06 0.96 0.04 5.010E-05 
CS1-46 -800 0 1 36 1 36 0.04 0.64 0.04 5.010E-05 
CS1-47 -1200 1 1 36 1 36 0.04 0.96 0.04 5.010E-05 
CS1-48 -800 1 1 36 1 36 0.06 0.64 0.04 5.010E-05 
CS1-49 -1200 0 0 24 2 36 0.06 0.96 0.06 1.252E-03 
CS1-50 -800 0 0 24 2 36 0.04 0.64 0.06 5.010E-05 
CS1-51 -1200 1 0 24 2 36 0.04 0.96 0.06 3.256E-03 
CS1-52 -800 1 0 24 2 36 0.06 0.64 0.06 2.505E-04 
CS1-53 -1200 0 1 24 2 36 0.04 0.64 0.04 2.505E-04 
CS1-54 -800 0 1 24 2 36 0.06 0.96 0.04 2.505E-04 
CS1-55 -1200 1 1 24 2 36 0.06 0.64 0.04 5.010E-05 
CS1-56 -800 1 1 24 2 36 0.04 0.96 0.04 5.010E-05 
CS1-57 -1200 0 0 36 2 36 0.04 0.96 0.04 5.010E-05 
CS1-58 -800 0 0 36 2 36 0.06 0.64 0.04 2.505E-04 
CS1-59 -1200 1 0 36 2 36 0.06 0.96 0.04 5.010E-05 
CS1-60 -800 1 0 36 2 36 0.04 0.64 0.04 5.010E-05 
CS1-61 -1200 0 1 36 2 36 0.06 0.64 0.06 5.010E-05 
CS1-62 -800 0 1 36 2 36 0.04 0.96 0.06 2.505E-04 
CS1-63 -1200 1 1 36 2 36 0.04 0.64 0.06 5.010E-05 
CS1-64 -800 1 1 36 2 36 0.06 0.96 0.06 2.054E-03 

 

Table 5: Effect estimates on F1 for the fractional factorial design with no factor 
interactions (case study #1) 

Factor Effect Standard 
error 

t(54) p 

Mean 0.000338 0.000069 4.86804 0.000010 
(1) idum 0.000000 0.000139 -0.00009 0.999929 
(2) iniche 0.000050 0.000139 0.36050 0.719876 
(3) inufrm -0.000063 0.000139 -0.45053 0.654133 
(4) maxgen -0.000351 0.000139 -2.52393 0.014579 
(5) nchild 0.000225 0.000139 1.62247 0.110527 
(6) npopsiz 0.000038 0.000139 0.27057 0.787754 
(7) pcreep 0.000012 0.000139 0.08980 0.928778 
(8) pcross 0.000200 0.000139 1.44238 0.154971 
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(9) pmutate 0.000401 0.000139 2.88475 0.005617 
Italic values: significant for a 95% confidence level 

 

Table 6: Effect estimates on F1 for the fractional factorial design with two factor 
interactions (case study #1) 

Factor Effect 
Standard 

Error 
t(21) p 

Mean 0.000338 0.000080 4.21739 0.000386 
(1)idum 0.000000 0.000160 -0.00008 0.999939 
(2)iniche 0.000050 0.000160 0.31232 0.757878 
(3)iunifrm -0.000063 0.000160 -0.39031 0.700237 
(4)maxgen -0.000351 0.000160 -2.18659 0.040234 
(5)nchild 0.000225 0.000160 1.40561 0.174462 
(6)npopsiz 0.000038 0.000160 0.23441 0.816941 
(7)pcreep 0.000012 0.000160 0.07780 0.938726 
(8)pcross 0.000200 0.000160 1.24959 0.225198 
(9)pmutate 0.000401 0.000160 2.49918 0.020815 
1 by 2 0.000025 0.000160 0.15606 0.877474 
1 by 3 0.000038 0.000160 0.23421 0.817090 
1 by 4 0.000075 0.000160 0.46869 0.644117 
1 by 5 -0.000075 0.000160 -0.46858 0.644200 
1 by 6 -0.000163 0.000160 -1.01499 0.321663 
1 by 7 0.000213 0.000160 1.32750 0.198593 
1 by 8 -0.000250 0.000160 -1.56191 0.133254 
1 by 9 -0.000100 0.000160 -0.62476 0.538861 
2 by 3 -0.000088 0.000160 -0.54645 0.590515 
2 by 4 0.000050 0.000160 0.31251 0.757732 
2 by 5 0.000075 0.000160 0.46877 0.644063 
2 by 6 0.000138 0.000160 0.85928 0.399890 
2 by 7 0.000113 0.000160 0.70306 0.489740 
2 by 8 0.000125 0.000160 0.78101 0.443511 
2 by 9 0.000050 0.000160 0.31251 0.757732 
3 by 4 0.000163 0.000160 1.01515 0.321590 
3 by 5 0.000113 0.000160 0.70306 0.489740 
3 by 6 -0.000075 0.000160 -0.46854 0.644227 
3 by 7 0.000075 0.000160 0.46877 0.644063 
3 by 8 0.000013 0.000160 0.07838 0.938266 
3 by 9 0.000038 0.000160 0.23437 0.816970 
4 by 5 -0.000125 0.000160 -0.78078 0.443645 
4 by 6 0.000113 0.000160 0.70287 0.489859 
4 by 7 0.000113 0.000160 0.70326 0.489621 
5 by 6 0.000088 0.000160 0.54669 0.590357 
5 by 7 0.000013 0.000160 0.07803 0.938542 
5 by 8 0.000301 0.000160 1.87431 0.074868 
5 by 9 0.000150 0.000160 0.93715 0.359333 
6 by 7 0.000000 0.000160 0.00027 0.999785 
6 by 8 0.000238 0.000160 1.48380 0.152717 
6 by 9 0.000063 0.000160 0.39043 0.700152 
7 by 8 -0.000013 0.000160 -0.07799 0.938573 
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7 by 9 -0.000063 0.000160 -0.39066 0.699982 
Italic values: significant for a 95% confidence level 

 

Table 7: Levels of the parameters used in sensitivity analysis of the GA code 
applied to case study #2 

GA Parameters (-) level Central (+) level 
(1) idum -1200 -1000 -800 
(2) maxgen 180 225 270 
(3) npopsiz 180 225 270 
(4) pcreep 0.00500 0.00625 0.00750 
(5) pcross 0.64 0.8 0.96 
(6) pmutate 0.00500 0.00625 0.00750 

 

Table 8: Fractional factorial design 26-1 study results for case study #2 
Run idum maxgen npopsiz pcreep pcross pmutate F2 

CS2-01 -1200 180 180 0.00500 0.64 0.0050 -11.2507 
CS2-02 -800 180 180 0.00500 0.64 0.0075 -11.2612 
CS2-03 -1200 270 180 0.00500 0.64 0.0075 -11.6875 
CS2-04 -800 270 180 0.00500 0.64 0.0050 -12.4535 
CS2-05 -1200 180 270 0.00500 0.64 0.0075 -10.3636 
CS2-06 -800 180 270 0.00500 0.64 0.0050 -11.3462 
CS2-07 -1200 270 270 0.00500 0.64 0.0050 -11.7452 
CS2-08 -800 270 270 0.00500 0.64 0.0075 -11.9710 
CS2-09 -1200 180 180 0.00750 0.64 0.0075 -10.4403 
CS2-10 -800 180 180 0.00750 0.64 0.0050 -11.1042 
CS2-11 -1200 270 180 0.00750 0.64 0.0050 -11.7780 
CS2-12 -800 270 180 0.00750 0.64 0.0075 -11.7904 
CS2-13 -1200 180 270 0.00750 0.64 0.0050 -12.2913 
CS2-14 -800 180 270 0.00750 0.64 0.0075 -10.7645 
CS2-15 -1200 270 270 0.00750 0.64 0.0075 -11.6599 
CS2-16 -800 270 270 0.00750 0.64 0.0050 -12.3273 
CS2-17 -1200 180 180 0.00500 0.96 0.0075 -14.3243 
CS2-18 -800 180 180 0.00500 0.96 0.0050 -12.5684 
CS2-19 -1200 270 180 0.00500 0.96 0.0050 -14.5072 
CS2-20 -800 270 180 0.00500 0.96 0.0075 -12.6474 
CS2-21 -1200 180 270 0.00500 0.96 0.0050 -14.2432 
CS2-22 -800 180 270 0.00500 0.96 0.0075 -14.2581 
CS2-23 -1200 270 270 0.00500 0.96 0.0075 -13.5912 
CS2-24 -800 270 270 0.00500 0.96 0.0050 -13.6692 
CS2-25 -1200 180 180 0.00750 0.96 0.0050 -13.0883 
CS2-26 -800 180 180 0.00750 0.96 0.0075 -11.8159 
CS2-27 -1200 270 180 0.00750 0.96 0.0075 -13.6570 
CS2-28 -800 270 180 0.00750 0.96 0.0050 -12.7025 
CS2-29 -1200 180 270 0.00750 0.96 0.0075 -14.4513 
CS2-30 -800 180 270 0.00750 0.96 0.0050 -12.3190 
CS2-31 -1200 270 270 0.00750 0.96 0.0050 -14.4390 
CS2-32 -800 270 270 0.00750 0.96 0.0075 -13.4442 
CS2-33 -1000 225 225 0.00625 0.80 0.0063 -12.4769 
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Table 9: Effect estimates on F2 for the fractional factorial design with no factor 
interactions (case study #2) 

Factor Effect 
Standard 

Error 
t(26) p 

Mean -12.4981 0.116684 -107.111 0.000000 
(1)idum 0.4422 0.236987 1.866 0.073379 
(2)maxgen -0.5113 0.236987 -2.157 0.040403 

(3)npopsiz -0.3630 0.236987 -1.532 0.137706 
(4)pcreep 0.2384 0.236987 1.006 0.323654 
(5)pcross -1.9682 0.236987 -8.305 0.000000 

(6)pmutate 0.2316 0.236987 0.977 0.337467 
Italic values: significant for a 95% confidence level 

 

Table 10: Effect estimates on F2 for the fractional factorial design with two factor 
interactions (case study #2) 

Factor Effect 
Standard 

Error 
t(11) p 

Mean -12.4981 0.090321 -138.374 0.000000 
(1)idum 0.4422 0.183443 2.410 0.034585 

(2)maxgen -0.5113 0.183443 -2.787 0.017682 

(3)npopsiz -0.3630 0.183443 -1.979 0.073444 
(4)pcreep 0.2384 0.183443 1.300 0.220274 
(5)pcross -1.9682 0.183443 -10.729 0.000000 

(6)pmutate 0.2316 0.183443 1.262 0.232896 
1 by 2 -0.1848 0.183443 -1.007 0.335516 
1 by 3 -0.1065 0.183443 -0.581 0.573105 
1 by 4 0.2500 0.183443 1.363 0.200271 
1 by 5 0.6674 0.183443 3.638 0.003900 

1 by 6 -0.1644 0.183443 -0.896 0.389378 
2 by 3 0.1600 0.183443 0.872 0.401663 
2 by 4 -0.1792 0.183443 -0.977 0.349661 
2 by 5 0.3126 0.183443 1.704 0.116416 
2 by 6 0.1651 0.183443 0.900 0.387466 
3 by 4 -0.3020 0.183443 -1.646 0.127919 
3 by 5 -0.2751 0.183443 -1.499 0.161901 
3 by 6 0.0030 0.183443 0.016 0.987298 
4 by 5 0.2481 0.183443 1.352 0.203461 
4 by 6 0.0217 0.183443 0.118 0.908074 
5 by 6 -0.3132 0.183443 -1.707 0.115831 
Italic values: significant for a 95% confidence level 

 

Table 11: Levels of the parameters used in sensitivity analysis of the GA code 
applied to case study #3 

GA Parameters (-) level Central (+) level 
(1) idum -1200 -1000 -800 
(2) maxgen 16 20 24 
(3) npopsiz 16 20 24 
(4) pcreep 0.04704 0.05880 0.07056 
(5) pcross 0.64 0.8 0.96 
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(6) pmutate 0.04704 0.05880 0.07056 

 

Table 12: Fractional factorial design 26-1 study results for case study #3 
Run idum maxgen npopsiz pcreep pcross pmutate F3 

CS3-01 -1200 16 16 0.04704 0.64 0.04704 36703.240 
CS3-02 -800 16 16 0.04704 0.64 0.07056 37224.459 
CS3-03 -1200 24 16 0.04704 0.64 0.07056 36182.524 
CS3-04 -800 24 16 0.04704 0.64 0.04704 37024.209 
CS3-05 -1200 16 24 0.04704 0.64 0.07056 36268.600 
CS3-06 -800 16 24 0.04704 0.64 0.04704 36574.062 
CS3-07 -1200 24 24 0.04704 0.64 0.04704 36268.600 
CS3-08 -800 24 24 0.04704 0.64 0.07056 36574.062 
CS3-09 -1200 16 16 0.07056 0.64 0.07056 36607.633 
CS3-10 -800 16 16 0.07056 0.64 0.04704 37018.604 
CS3-11 -1200 24 16 0.07056 0.64 0.04704 37013.698 
CS3-12 -800 24 16 0.07056 0.64 0.07056 37224.459 
CS3-13 -1200 16 24 0.07056 0.64 0.04704 36268.600 
CS3-14 -800 16 24 0.07056 0.64 0.07056 36574.062 
CS3-15 -1200 24 24 0.07056 0.64 0.07056 36172.891 
CS3-16 -800 24 24 0.07056 0.64 0.04704 36574.062 
CS3-17 -1200 16 16 0.04704 0.96 0.07056 37038.212 
CS3-18 -800 16 16 0.04704 0.96 0.04704 37046.606 
CS3-19 -1200 24 16 0.04704 0.96 0.04704 39330.948 
CS3-20 -800 24 16 0.04704 0.96 0.07056 37049.403 
CS3-21 -1200 16 24 0.04704 0.96 0.04704 36356.793 
CS3-22 -800 16 24 0.04704 0.96 0.07056 36574.062 
CS3-23 -1200 24 24 0.04704 0.96 0.07056 36209.540 
CS3-24 -800 24 24 0.04704 0.96 0.04704 36562.493 
CS3-25 -1200 16 16 0.07056 0.96 0.04704 41706.395 
CS3-26 -800 16 16 0.07056 0.96 0.07056 37224.459 
CS3-27 -1200 24 16 0.07056 0.96 0.07056 36812.103 
CS3-28 -800 24 16 0.07056 0.96 0.04704 36594.647 
CS3-29 -1200 16 24 0.07056 0.96 0.07056 36261.229 
CS3-30 -800 16 24 0.07056 0.96 0.04704 36574.062 
CS3-31 -1200 24 24 0.07056 0.96 0.04704 36356.793 
CS3-32 -800 24 24 0.07056 0.96 0.07056 36574.062 
CS3-33 -1000 20 20 0.05880 0.80 0.05880 36185.487 

 

Table 13: Effect estimates on F3 for the fractional factorial design with no factor 
interactions (case study #3) 

Factor Effect 
Standard 

Error 
t(26) p 

Mean 36870.64 164.1528 224.6116 0.000000 
(1)idum -160.63 333.3960 -0.4818 0.633986 
(2)maxgen -218.54 333.3960 -0.6555 0.517913 
(3)npopsiz -941.10 333.3960 -2.8228 0.009009 

(4)pcreep 160.62 333.3960 0.4818 0.633997 
(5)pcross 499.88 333.3960 1.4994 0.145828 
(6)pmutate -462.63 333.3960 -1.3876 0.177031 
Italic values: significant for a 95% confidence level 
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Table 14: Effect estimates on F3 for the fractional factorial design with two factor 
interactions (case study #3) 

Factor Effect 
Standard 

Error 
t(11) p 

Mean 36870.64 155.2540 237.4860 0.000000 
(1)idum -160.63 315.3223 -0.5094 0.620532 
(2)maxgen -218.54 315.3223 -0.6931 0.502644 
(3)npopsiz -941.10 315.3223 -2.9846 0.012418 

(4)pcreep 160.62 315.3223 0.5094 0.620543 
(5)pcross 499.88 315.3223 1.5853 0.141207 
(6)pmutate -462.63 315.3223 -1.4672 0.170333 
1 by 2 139.41 315.3223 0.4421 0.666960 
1 by 3 462.86 315.3223 1.4679 0.170135 
1 by 4 -194.49 315.3223 -0.6168 0.549923 
1 by 5 -573.40 315.3223 -1.8185 0.096299 
1 by 6 593.91 315.3223 1.8835 0.086323 
2 by 3 198.67 315.3223 0.6300 0.541535 
2 by 4 -395.50 315.3223 -1.2543 0.235736 
2 by 5 -192.94 315.3223 -0.6119 0.553048 
2 by 6 96.83 315.3223 0.3071 0.764522 
3 by 4 -164.68 315.3223 -0.5223 0.611850 
3 by 5 -475.62 315.3223 -1.5083 0.159638 
3 by 6 421.76 315.3223 1.3375 0.208042 
4 by 5 81.34 315.3223 0.2580 0.801202 
4 by 6 -119.37 315.3223 -0.3786 0.712222 
5 by 6 -385.58 315.3223 -1.2228 0.246953 
Italic values: significant for a 95% confidence level 

 

Table 15: Levels of the parameters used in sensitivity analysis of the GA code 
applied to case study #4 

GA Parameters (-) level Central (+) level 
(1) idum -1200 -1000 -800 
(2) maxgen 40 50 60 
(3) npopsiz 40 50 60 
(4) pcreep 0.006897 0.008621 0.010345 
(5) pcross 0.64 0.8 0.96 
(6) pmutate 0.006897 0.008621 0.010345 

 

Table 16: Fractional factorial design 26-1 study results for case study #4 
Run idum maxgen npopsiz pcreep pcross pmutate F4 

CS4-01 -1200 40 40 0.006897 0.64 0.006897 4.008222 
CS4-02 -800 40 40 0.006897 0.64 0.010345 4.163750 
CS4-03 -1200 60 40 0.006897 0.64 0.010345 3.995767 
CS4-04 -800 60 40 0.006897 0.64 0.006897 4.021299 
CS4-05 -1200 40 60 0.006897 0.64 0.010345 3.272924 
CS4-06 -800 40 60 0.006897 0.64 0.006897 4.049079 
CS4-07 -1200 60 60 0.006897 0.64 0.006897 1.864791 
CS4-08 -800 60 60 0.006897 0.64 0.010345 2.629927 
CS4-09 -1200 40 40 0.010345 0.64 0.010345 3.995312 



 126 

CS4-10 -800 40 40 0.010345 0.64 0.006897 5.098247 
CS4-11 -1200 60 40 0.010345 0.64 0.006897 3.854496 
CS4-12 -800 60 40 0.010345 0.64 0.010345 5.988173 
CS4-13 -1200 40 60 0.010345 0.64 0.006897 3.998500 
CS4-14 -800 40 60 0.010345 0.64 0.010345 3.983345 
CS4-15 -1200 60 60 0.010345 0.64 0.010345 4.053518 
CS4-16 -800 60 60 0.010345 0.64 0.006897 4.048225 
CS4-17 -1200 40 40 0.006897 0.96 0.010345 3.994422 
CS4-18 -800 40 40 0.006897 0.96 0.006897 4.814700 
CS4-19 -1200 60 40 0.006897 0.96 0.006897 3.981457 
CS4-20 -800 60 40 0.006897 0.96 0.010345 4.789001 
CS4-21 -1200 40 60 0.006897 0.96 0.006897 4.004197 
CS4-22 -800 40 60 0.006897 0.96 0.010345 4.166973 
CS4-23 -1200 60 60 0.006897 0.96 0.010345 3.880197 
CS4-24 -800 60 60 0.006897 0.96 0.006897 5.609285 
CS4-25 -1200 40 40 0.010345 0.96 0.006897 2.615757 
CS4-26 -800 40 40 0.010345 0.96 0.010345 4.045827 
CS4-27 -1200 60 40 0.010345 0.96 0.010345 3.791794 
CS4-28 -800 60 40 0.010345 0.96 0.006897 4.386188 
CS4-29 -1200 40 60 0.010345 0.96 0.010345 3.971225 
CS4-30 -800 40 60 0.010345 0.96 0.006897 4.152820 
CS4-31 -1200 60 60 0.010345 0.96 0.006897 3.784063 
CS4-32 -800 60 60 0.010345 0.96 0.010345 4.080427 
CS4-33 -1000 50 50 0.008621 0.80 0.008621 4.074593 

 

Table 17: Effect estimates on F4 for the fractional factorial design with no factor 
interactions (case study #4) 

Factor Effect 
Standard 

Error 
t(26) p 

Mean 4.035409 0.122423 32.96287 0.000000 

(1)idum 0.685039 0.248642 2.75512 0.010572 

(2)maxgen 0.026457 0.248642 0.10640 0.916078 
(3)npopsiz -0.374682 0.248642 -1.50691 0.143888 
(4)pcreep 0.162620 0.248642 0.65403 0.518833 
(5)pcross 0.190172 0.248642 0.76484 0.451251 
(6)pmutate 0.031954 0.248642 0.12851 0.898733 
Italic values: significant for a 95% confidence level 
 

Table 18: Effect estimates on F4 for the fractional factorial design with two factor 
interactions (case study #4) 

Factor Effect 
Standard 

Error 
t(11) p 

Mean 4.035409 0.081210 49.69124 0.000000 

(1)idum 0.685039 0.164938 4.15332 0.001607 

(2)maxgen 0.026457 0.164938 0.16040 0.875470 
(3)npopsiz -0.374682 0.164938 -2.27166 0.044179 

(4)pcreep 0.162620 0.164938 0.98595 0.345348 
(5)pcross 0.190172 0.164938 1.15300 0.273352 
(6)pmutate 0.031954 0.164938 0.19373 0.849918 
1 by 2 0.108266 0.164938 0.65641 0.525056 
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1 by 3 -0.198706 0.164938 -1.20473 0.253587 
1 by 4 0.029784 0.164938 0.18058 0.859981 
1 by 5 0.067725 0.164938 0.41061 0.689245 
1 by 6 -0.323506 0.164938 -1.96138 0.075636 
2 by 3 -0.232536 0.164938 -1.40984 0.186230 
2 by 4 0.239275 0.164938 1.45070 0.174776 
2 by 5 0.290605 0.164938 1.76191 0.105814 
2 by 6 0.175422 0.164938 1.06356 0.310318 
3 by 4 0.161723 0.164938 0.98051 0.347907 
3 by 5 0.528437 0.164938 3.20386 0.008397 

3 by 6 -0.216007 0.164938 -1.30963 0.217015 
4 by 5 -0.714137 0.164938 -4.32974 0.001195 

4 by 6 0.214462 0.164938 1.30026 0.220095 
5 by 6 -0.110529 0.164938 -0.67012 0.516600 
Italic values: significant for a 95% confidence level 
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7.3. Conclusões 

A metodologia apresentada é bastante relevante por estabelecer, 

através de uma técnica simples, um procedimento a ser adotado 

preliminarmente em estudos de otimização por algoritmo genético para 

identificação dos parâmetros desse algoritmo que são significativos para o caso 

de estudo adotado. O procedimento é original e vem preencher uma deficiência 

da literatura, que não apresenta nenhum desenvolvimento que defina uma 

metodologia geral de identificação de parâmetros significativos para cada caso 

de estudo. 

Os quatro casos de estudo apresentados para a aplicação da 

metodologia proposta demonstram que nem todos os parâmetros do algoritmo 

genético são relevantes em todos os casos e, além do mais, o conjunto de 

parâmetros significativos é dependente do problema em questão, o que 

ressalta a necessidade de realmente haver um procedimento que faça essa 

detecção. 

Tendo sido desenvolvida uma metodologia para detecção dos 

parâmetros do AG significativos, o próximo capítulo apresenta a aplicação 

desse procedimento geral ao problema de otimização da cristalização do ácido 

adípico em modo batelada por resfriamento. 
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Capítulo 8. Procedimento para Seleção de Parâmetros para 

Otimização Estocástica de Cristalização 

8.1. Introdução 

O procedimento geral para detecção dos parâmetros mais significativos 

do algoritmo genético aplicado a problemas de otimização em escala de 

engenharia é neste capítulo aplicado ao problema de otimização do processo 

de cristalização em modo batelada operada por resfriamento. 

8.2. Desenvolvimento 

O desenvolvimento deste capítulo é apresentado a seguir, no artigo 

intitulado Factorial design Technique applied to genetic algorithm parameters in 

a batch cooling crystallization optimisation, publicado no periódico internacional 

Computers and Chemical Engineering (v. 29, p. 2229 – 2241, 2005). 
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Abstract

An original approach is proposed in this work for the evaluation of genetic algorithm (GA) applied to a batch cooling crystallization optimisation.
Since a lot of parameters must be set in a GA in order to perform an optimisation study, factorial design, a well-known technique for the selection
of the variables with the most meaningful effects on a response, is applied in an optimisation problem solved through GA. No systematic approach
to establish the best set of parameters for GA was found in literature and a relatively easy to use and meaningful approach is proposed. The results
show that the parameters with significant (95% confidence) effect are initial population, the population size and the jump and creep mutation
probabilities, being the ones in which alterations should be made during a GA study of optimisation, in the search for the optimum.
© 2005 Elsevier Ltd. All rights reserved.

Keywords: Batch; Crystallization; Dynamic simulation; Factorial design; Genetic algorithm; Optimisation

1. Introduction

Crystallization is a very important unit operation, used in
many processes mainly because it leads to the formation of par-
ticulate material with high purity. Batch operation offers the flex-
ibility required when there are many simple steps to be executed,
with changing recipes. In this way, batch crystallization is the
preferred process in pharmaceutical, specialty and fine chemi-
cals industries for obtaining their products. Nowadays, operation
requirements involve the trade-off between large throughput and
product with specified properties related to size distribution and
particle size. Furthermore, the operation employed in the crys-
tallizer during the batch influences all the subsequent processes
(downstream processing), since the solids produced constitutes
a mass of particulate material, which may exhibit an infinite
number of different features, like habit, crystal size distribu-
tion (CSD) or solvent hindering (Ma, Tafti, & Braatz, 2002).
Optimal operation is then important to obtain the desired prod-
uct specification, as well as to improve the efficiency of the
overall process. In the batch crystallization field, this optimum

∗ Corresponding author. Tel.: +55 19 3788 3971; fax: +55 19 3788 3965.
E-mail address: caliane@lopca.feq.unicamp.br (C.B.B. Costa).

must be determined in terms of the extent, in each batch instant,
of the kinetic phenomena that governs the extraction of solute
from solution and its deposition into crystal lattice. The driv-
ing force for these phenomena is the supersaturation, which, in
batch cooling crystallization, is achieved through the cooling
of the solution. Therefore, many optimisation studies in batch
cooling crystallization are focused on finding the optimal cool-
ing profile (Costa, da Costa, & Maciel Filho, 2005; Zhang &
Rohani, 2003).

The solution of an optimisation problem can be found
through, among others, deterministic or stochastic approaches.
The former composes the traditional optimisation methods
(direct and gradient-based methods) and have the disadvan-
tages of requiring the first and/or second-order derivatives of
the objective function and/or constraints or of being not effi-
cient in non-differentiable or discontinuous problems. Further-
more, the deterministic methods are dependent on the chosen
initial solution (Deb, 1999). The stochastic methods, such as
Genetic Algorithms (GAs), do not possess these drawbacks.
Genetic Algorithms (GAs) are part of the so-called evolution-
ary algorithms and compose a search and optimisation tool with
increasing application in scientific problems. They do not need
to have any information about the search space, just needing
an objective/fitness function that assigns a value to any solu-

0098-1354/$ – see front matter © 2005 Elsevier Ltd. All rights reserved.
doi:10.1016/j.compchemeng.2005.08.005
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Nomenclature

〈 〉 indicates absolute value of the operand, if it is
negative, and zero value otherwise

A pre-exponential factor (primary nucleation)
(m−3 s−1)

A1 exponential constant of Type 1 function
A2 exponential constant of Type 2 function
Ac heat transfer area (m2)
best fitness vector that records the best fitness function in

each generation
best individual vector that records the best individual in

each generation
B kinetic parameter of the primary nucleation law
c solute molecules concentration in solution,

mol m−3 of solution
c* solute molecules concentration in solution at

supersaturation, mol m−3 of solution
Ci granulometric class of rank i

�Ci width of class Ci

Cp slurry specific heat (J kg−1 K−1)
CS solid concentration in the suspension, mol m−3 of

suspension
C0 initial concentration of adipic acid, mol m−3 of

solution
CV coefficient of variation of the crystal size distri-

bution (%)
f(x) objective function
F(x) fitness function
fmax objective function value of the worst feasible solu-

tion in the population
G growth rate (m s−1)
GC generation counter
gj(x) inequality constraint
�Hc heat of crystallization (J mol−1)
(HR) concentration of molecular adipic acid in solution,

mol m−3 of solution
(HR*) concentration of molecular adipic acid in solution

at saturation, mol m−3 of solution
(H+) concentration of protons in solution, mol m−3 of

solution
idum GA parameter to determine the initial population

if individuals
iniche GA parameter to determine if niching is used
iunifrm GA parameter to determine if single or uniform

crossover is used
i′ kinetic order of the secondary nucleation law
IC individual counter
j′ kinetic order of the integration growth law
K modified acidity constant of adipic acid, mol m−3

of solution
k′ exponent to the solid concentration in secondary

nucleation law
ka surface shape factor
kc kinetic constant of the integration law

(m3j′−2 mol1−j′ s−1)

k′
N kinetic constant of the secondary nucleation law

(m3(i′+k′)−3 mol−i′−j′ s−1)
kv volumetric shape factor
L characteristic size of crystals (m)
Li upper limit of class of number i (m)
m number of constraints
maxgen maximum number of generations in the evolution

of GA code
microga GA parameter to determine if migroga option is

used
MM molecular weight of the crystal (kg mol−1)
n number distribution density (population) per unit

volume of suspension (m−4)
N number of granulometric classes
nchild GA parameter to determine the number of chil-

dren per pair of parents
Ni(t) number of crystals per unit volume of suspension

in granulometric class Ci at time t, m−3 of sus-
pension

p p-level, probability of error that is involved in
accepting an effect as valid

npopsiz GA parameter to determine the number of indi-
viduals per generation

pcreep creep mutation probability in the GA code
pcross crossover probability in the GA code
pmutate jump mutation probability in the GA code
rN net rate of nucleation (m−3 s−1)
rN1 primary rate of nucleation (m−3 s−1)
rN2 secondary rate of nucleation (m−3 s−1)
r(I) intrinsic rate of agglomeration of rank Im,n

(m−3 s−1)
RA,i net rate of agglomeration in the granulometric

class Ci (m−3 s−1)
RB,i net rate of breakage in the granulometric class Ci

(m−3 s−1)
t instantaneous time (s)
T crystallizer solution absolute temperature (K)
Tc coolant absolute temperature (K)
t(freedom degree) t-statistics
tf final time (s)
tintermediate intermediate time, where Type 1 and Type 2

functions have the same value (s)
ttotal total batch time (s)
U global heat transfer coefficient (J m−2 s−1 K−1)
V solution volume (m3)
Vsusp suspension volume (m3)
V0 initial volume of the solution in the crystallizer

(m3)
x vector containing the optimising (adjustable) vari-

ables

Greek letters

ηr effectiveness factor
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νest I,i stoichiometric coefficient of class i in agglomer-
ation of number I

ρ slurry density (concentration), kg m−3 of slurry
ρc crystal density, kg m−3 of crystal

tion. Details about the working principle of GAs can be found
elsewhere (Deb, 1998, 1999; Fühner & Jung, 2004).

The working principle of the GAs requires setting up a rela-
tively large number of parameters. The history of advance in the
evolution of evolutionary algorithms is part provided at random,
part by the values of their parameters. Due to this feature, it is
recommended, in an optimisation search by GAs, to perform a
lot of runs to increase the chance to obtain the global optimum.

The factorial design is a well-known technique based on
statistical considerations that brings the most meaningful infor-
mation about the influences of parameters on a specific problem.
The present work proposes the application of factorial design
in the Genetic Algorithms parameters to determine which ones
affect significantly the optimisation of the cooling profile in a
batch crystallization system. The proposed approach needs to
be conducted prior to the optimisation trials through GAs, since
it removes GA parameters that are not statistically significant
for the evolutionary search, saving time and computation bur-
den in evolutionary optimisation studies. The proposed approach
makes the GA drive the system to an optimal solution through a
systematic procedure. This approach, compared to the trial-and-
error setting of GA parameters, leads to less time in the optimum
search. The results indicate that the initial population, the pop-
ulation size and the jump and creep mutation probabilities are
the parameters with significant relevance in the search for the
optimal cooling profile in a batch cooling crystallization system
by Genetic Algorithms.

2. Batch cooling crystallization

In a batch cooling crystallization operation, as shown
schematically in Fig. 1, the solution is cooled in order to create
a supersaturation into the system, which is the driving force for
the kinetic mechanisms. The nucleation and growth are the most

Fig. 1. Schematic drawing of the batch cooling crystallizer and the concentration
vs. temperature curve, showing two different cooling profiles.

dominant phenomena. Apart from them, other phenomena, such
as agglomeration and breakage, may occur during the process,
making it difficult to carry out reliable predictions. Neglecting
agglomeration may result in poor representation of reality, espe-
cially when the crystallizing substance is classically known as
having an agglomerating behaviour (Costa et al., 2005).

The modelling of the process involves mass, energy and
population balances. This latter is a general approach and con-
stitutes a complex partial differential equation, which accounts
how the kinetic phenomena alter the population density both in
size and time. A lot of work in literature (Kiparissides, 2004;
Puel, Févotte, & Klein, 2003; Rawlings, Miller, & Witkowski,
1993) reviews the many techniques and methods used to solve
the population balance equation (PBE). In the present work, the
Method of Classes (Costa et al., 2005; Marchal, David, Klein,
& Villermaux, 1988; Nallet, Mangin, & Klein, 1998; Puel et al.,
2003) is used to solve the PBE in the modelling of an adipic
acid crystallization process, the chosen study system. It is worth
mentioning that the model of the process is highly nonlinear.
The model equations are composed of Eqs. (1)–(3), which rep-
resent, respectively, the population, mass and energy balances,
coupled with the kinetic equations for the growth, nucleation
and aggregation mechanisms, Eqs. (4)–(7):
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In Eqs. (1) and (7), the subscript i indicates the granulometric
class in which the population is being balanced and, so, varies
from 1 to N, the total number of granulometric classes.

The mass balance is based on the fact that changes in the solu-
tion concentration results in alteration of the mass of crystals per
volume unit and on the dissociation constant of the crystalliz-
ing substance. Eq. (3), the energy balance, takes into account
the heat of crystallization and the heat removed by the cooling
device.

The method of classes transforms the population balance par-
tial differential equation into one ordinary differential equation
system, Eq. (1), by discretizing the range of variation of the
variable L, related to crystal size, and assuming that the num-
ber density function is constant at each granulometric class. The
discretization is done from the nuclei size to the largest crystals
size. All defined sizes determine the existence of N granulomet-
ric classes Ci, whose widths are defined by �Ci = Li − Li−1. The
obtained differential equations are no longer written with pop-
ulation density functions, but with absolute number of crystals
in each class.

The nucleation rate, represented by rN, includes primary (rN1)
and secondary (rN2) nucleation. The former takes place when
there are no crystals of the crystallizing substance in suspension,
while the latter is more common in industrial practice because
seeding is almost always present.

The growth rate expression (Eq. (4)) is based on the film
model and the effectiveness factor ηr is found by a proper relation
(Costa et al., 2005) to the mass transfer coefficient, kd. This
latter coefficient is found by an expression for Sherwood number.
Details can be found in Costa et al. (2005). Each granulometric
class has a value for the mass transfer coefficient, which means
that the growth rate is size dependent.

Only dual agglomeration is considered and its rate in each
granulometric class, RA,i, is dependent on an intrinsic rate of
agglomeration r(I). Further details about the agglomeration rate
expression are given in Costa et al. (2005).

The solubility of adipic acid (c* as a function of T, the solu-
tion temperature) is used in the calculation of supersaturation
(c − c*), the driving force for the process of crystallization. The
kinetic parameters (A, B, i′, j′, k′, kc and k′

N) for adipic acid
are known and so one has to fix only the initial condition, i.e.,
the initial seeding (number of seeds added per volume unit for
each granulometric class), and the cooling profile (the curve of
Tc during all the batch) in order to simulate the crystallization
process, i.e., how Ni, the number of crystals per volume unit
of suspension in each granulometric class, evolves during batch
time.

2.1. The objectives of the optimisation problem

The rate of cooling used during the batch determines the val-
ues of supersaturation achieved, which characterize the extent
of the kinetic mechanisms. The favouring of nucleation over
growth leads to a large crystal size distribution (CSD), with
many small crystals, thanks to a great peak of supersaturation at
the early stages of the crystallization process. In batch crystal-
lization, a large mean size and a narrow distribution are desired.

According to the literature, a cooling profile characterized as
having a soft decrease in the beginning and a more pronounced
one at the end of the process makes the supersaturation to evolve
softly, without peaks, leading to a narrower CSD, due to the
favouring of growth (Choong & Smith, 2004; Costa et al., 2005;
Mullin, 1993). Due to the importance of the final CSD in the
downstream processes and in product applications, the objec-
tives of the optimisation in crystallization problems are normally
chosen according to features related to product specifications
and market requirements. The most common objective func-
tions in crystallization optimisation problems are maximization
of the mean crystal size at the end of the batch, minimization
of the standard deviation (σ) of the final CSD or minimiza-
tion of its coefficient of variation (CV). This latter is a very
interesting objective function, since it relates the standard devi-
ation to the mean crystal size. Sometimes, the batch time is also
included in the objective function, but this is not considered
in this work, since a specified throughput is assumed. Bearing
this in mind, the optimisation problem is formulated so as to
minimize the CV. The final product CSD depends strongly on
the selected optimisation objective function (Zhang & Rohani,
2003) and this, in fact, makes the problem more difficult to be
postulated.

The high non-linearity of the crystallization model as well
as its dimensionality makes deterministic optimisation methods
inefficient and unlikely to be successful, apart from the fact that
the derivatives of the system variables are not easily computed
(Choong & Smith, 2004). GA is used in the present work in order
to determine the optimal cooling profile, with a fixed seeding
policy. In addition, a factorial design method is proposed as a tool
to improve the performance of the GA method for crystallization
processes through a choice of a suitable set of parameters.

2.2. Cooling profile

As mentioned earlier, the cooling profile is part of the oper-
ating strategy to obtain the product at desired properties. In
practice, it is an usual procedure in industry with two relevant
difficulties, to know, to find out the optimal cooling profile batch
to batch and how to implement it in real time operations due to
design restrictions. This last feature is not considered in this
work. In this way, the coolant temperature, Tc, is the considered
control variable.

The parameterisation of the control profiles usually takes the
form of a sum of a convergent series of linearly independent
functions of time. Choong and Smith (2004) propose a new
parameterisation framework for the control variable profile, able
to produce all types of continuous curves. It consists of two dis-
tinct profiles, named Type 1 and Type 2, whose mathematical
formulations for the control variable considered in the present
work are described by the following equations:

Type 1 : Tc = TcF − (TcF − Tc0)

[

1 −
t

ttotal

]A1

(8)

Type 2 : Tc = Tc0 − (Tc0 − TcF)

[

t

ttotal

]A2

(9)
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In these equations, Tc is the instantaneous value of coolant tem-
perature at time t, Tc0 the initial value and TcF is the final value.
ttotal is the total batch time. The whole control variable profile
is composed by a combination of Type 1 and Type 2 functions,
each one present in a batch period.

This framework is interesting due to the reduction in the
dimensionality of the problem, possessing only six adjustable
variables, to know: the initial and the final control variable val-
ues, two exponential constants, the intermediate time and its
corresponding intermediate value of the control variable (there
is the constraint for the whole function, composed by Type 1 and
Type 2 functions, to be continuous). This proposed framework is
chosen in the formulation of the dynamic problem in the present
work.

2.3. A constrained problem

The problem to be solved in the crystallization system is the
optimisation of the cooling profile, that is, the best values of
coolant temperature to be imposed during the batch time are
sought through the optimisation algorithm. The cooling of the
crystallizer solution causes the appearance of supersaturation,
the driving force for the crystallization process to occur. No crys-
tal would appear and/or grow into the system if supersaturation
does not take place. In this way, the formulated optimisation
problem presents some constraints that must be imposed to the
optimisation algorithm. The first constraint deals with the need
to have supersaturation. It is necessary in order to dispose of the
so-called trivial solutions, in which there is no crystallization at
all because of the maintenance of temperature at the initial value
(no generation of supersaturation). With no crystal being pro-
duced, there is no crystal size distribution and with the objective
function being set as the minimization of the CV, it would reach
a minimum (zero) value in this condition. It should, therefore, be
imposed a constraint of minimum acceptable yield of particles,
in order to force the optimizer to search for coolant temperature
values that cause the production of a minimum mass of crystals.
Furthermore, as mentioned above, the control variable (coolant
temperature) must have a continuous profile and the intermedi-
ate value of the control variable of both types functions (Eqs.
(8) and (9)) must be constrained to have the same value at the
intermediate time. Fig. 2 shows in a schematic way two profiles
for the control variable. For each profile, Type 1 and Type 2
functions possess the same value for the coolant temperature at
the intermediate time (each cooling profile is continuous during
the whole batch).

2.4. Optimisation problem statement

The general objective in optimisation problems is to choose a
set of variables values subject to the various constraints that will
produce the desired optimum response for the chosen objective
function. The purpose of the present optimisation problem is the
minimization of the coefficient of variation (CV) of the CSD at
the end of the crystallization batch and the operating strategy to
obtain the product at desired properties is the manipulation of
the cooling profile. The cooling profile (i.e., coolant temperature

Fig. 2. Two hypothetical cooling profiles, illustrating the feature of continuity
of the whole control variable profile.

values during batch time) imposed to the crystallizer is deter-
mined by a combination of Eqs. (8) and (9). The infinite possible
coolant temperature profiles are determined by the initial (Tc0)
and final (TcF) control variable values, the two exponential con-
stants (A1 and A2), the intermediate time (tintermediate) where both
functions (Type 1 and Type 2) intercept each other and the defi-
nition whether the control variable must be represented by Type
1 + Type 2 or Type 2 + Type 1 functions (more details on how the
sequence of functions is determined is given in Section 5). The
coolant temperature in each instant of the batch time is, there-
fore, determined by the values assigned to these six variables
(Tc0, TcF, A1, A2, tintermediate and the variable that determines
the sequence of functions). These six variables are assigned to
a vector, x, containing the optimising (adjustable) variables.

So, in the sense of an optimisation problem formulation, the
CV of the final CSD is the objective function and the optimising
variables are joined in x vector. The constraints that must be
imposed to the optimisation problem are the model equations,
Eqs. (1)–(7), the minimum acceptable yield of crystals (here
translated in mass of particles obtained at the end of the batch),
and the need for both functions of Eqs. (8) and (9) to have an
interception at the intermediate time, that is, the Tc value calcu-
lated by the Type 1 function minus the Tc value calculated by
the Type 2 function must equal zero (equality constraint). This
equality constraint was handled transforming it in an inequality
constraint with the use of a tolerance set to 10−4.

In this way, the formal mathematical description of the for-
mulated optimisation problem is given by Eq. (10):

Minimize CVtf(x)

Subject to model equations (Eqs. 1–7)

mass of crystals (tf) ≥ 50.0
∣

∣

∣

∣

TcF − Tc0 − (TcF − Tc0)

[

1 −
tintermediate

ttotal

]A1

+(Tc0 − TcF)

[

tintermediate

ttotal

]A2
∣

∣

∣

∣

≤ 10−4

(10)
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The objective function in Eq. (10) presents CV as a function of
x. The extent of each mechanism in each batch instant will deter-
mine how the crystal size distribution (CSD) evolves during the
batch. So, at the end of a batch, different CSDs are obtained if dif-
ferent supersaturation profiles were imposed, which, ultimately,
can be translated to imposition of different coolant temperature
profiles. For each CSD, a CV can be calculated and, so, since
x determines the coolant temperature profile, CV is an implicit
function of x.

3. Genetic algorithms

3.1. Framework

Genetic Algorithms have proven to be very adaptable to a
great variety of different optimisation tasks (Fühner & Jung,
2004). The algorithms work with a population of possible solu-
tions, which suffers evolution during the generations, an analogy
borrowed from the Darwin’s Evolutionary Theory. Each solu-
tion is coded as a collection (chromosome) of binary or real
strings; each string representing a variable in the solution. The
evolution is achieved by some genetic operators as reproduction,
crossover and mutation. The survival of the fittest is achieved
by the assignment of a fitness function, usually defined as the
objective function for the unconstrained optimisation problem,
or a combination of the objective function and a penalty function
for constrained optimisation (Deb, 1998, 1999).

The set of solutions (i.e., the population) per iteration (gener-
ation) is fixed. In each iteration, pairs of individuals are selected
randomly and are recombined into new solutions (crossover
operator). A random change on the offspring generation is
optionally applied (mutation operator). The newly created solu-
tions are evaluated according to the fitness function (Fühner &
Jung, 2004).

In a search for the optimum through the use of GA, it is
necessary to set the population size, the maximum number of
generations allowed during the search, the number of children
in the offspring generation per pair of parents and the crossover,
jump mutation and creep mutation probabilities. The difference
between the two types of mutation is that the jump mutation acts
on the chromosome (genotype), while creep mutation acts on the
decoded individual (phenotype). Concerning to the crossover
operator, it is possible to define single-point, two-point or uni-
form crossovers. In the first one, just one crossover point is
selected and the string from the beginning of the chromosome
to the crossover point is copied from the first parent, while the
rest is copied from the other parent. In the two-point crossover,
two crossover points are selected. The string from the beginning
of the chromosome to the first crossover point is copied from
the first parent; the part from the first to the second crossover
point is copied from the other parent and the rest is copied from
the first parent again. Finally, in the uniform crossover, bits are
randomly copied from the first or from the second parent.

Genetic Algorithm can also borrow the idea from nature of
coexistence of multiple niches in order to deal with multimodal
optimisation. A sharing concept (in an analogy to the sharing,
in nature, of available resources, such as land and food) may

be introduced artificially in GA population. This allows coexis-
tence of multiple optimal solutions (both local and global). More
details about the niching in GA may be found in Deb (1999).

Another interesting tool available in the Genetic Algorithms
is the micro-GA technique, which uses a very small population
(micro-population) that converges towards a single individual
representing the best result obtainable with that particular pop-
ulation. Once the convergence is reached, the best individual is
preserved and the micro-population is restarted with new indi-
viduals. This GA largely depends on the mutation operator, since
such a small population cannot take advantage of the discovery
of good partial solutions by crossover. This tool works better
with unimodal or simple problems (Deb, 1999).

3.2. Constraint handling

Constraint handling in optimisation problems that use GAs is
not a simple task. The most usual approach is the use of penalty
functions. Nevertheless, its use may require a lot of refine-
ment, in order to determine the most suitable penalty parameters
needed to guide the search towards the constrained optimum.
Deb (2000) proposed a different constraint handling method,
exploiting the feature of the GAs algorithm of pair-wise com-
parison during the selection of individuals, being the selection
done by tournament or not. Penalty parameters are not needed
in the proposed method because, in any scenario of compari-
son between two solutions, they are never compared in terms
of both objective function and constraint violation information.
The proposed fitness function is formulated in the following
manner, where infeasible solutions are compared based only on
their constraint violation (for a minimization problem):

F (x)=















f (x), if gj(x) ≥ 0, ∀j = 1, 2, . . . , m,

fmax +

m
∑

j=1

〈gj(x)〉, otherwise

(11)

The parameter fmax is the objective function value of the worst
feasible solution in the population. In this way, when two feasible
solutions are compared, the one with better objective function
value is chosen; when one feasible and one infeasible solutions
are compared, the feasible solution is chosen; when two infea-
sible solutions are compared, the one with smaller constraint
violation is chosen (Deb, 2000).

For the present optimisation problem, i.e., minimization of
CVtf, the CV at the end of a batch in a cooling crystallization
process, Eq. (11) can be translated in the following manner.
F(x), the fitness function, is equal to CVtf, the CV at the end
of the batch (the objective function, f(x), of the crystallization
problem being considered) for feasible individuals, while, for
infeasible solutions, it is equal to the worst CVtf among all CVtf
of feasible individuals in that generation plus the constraints
violation amount.

3.3. The employed code

The GA used was basically the FORTRAN Genetic Algo-
rithm Driver by David Carroll, Version 1.7a (Carroll, 2004),
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with some modifications. The code initializes a random sam-
ple of individuals with different parameters (problem variables).
This initial random sample of individuals is actually dictated by
the value assigned to a GA parameter named idum: the same
initial population is generated every time the code is run with
the same value assigned to idum. The selection scheme used is
tournament selection (Deb, 1999) with a shuffling technique for
choosing random pairs for mating. The individuals are coded in
binary manner and the routine can apply jump mutation, creep
mutation and single-point or uniform crossover. Niching (shar-
ing) and an option for the number of children per pair of parents
are added. An option for the use of a micro-GA is also part of
the code.

The routine is used coupled with the crystallization model
(Eqs. (1)–(7)) in order to optimise the cooling profile parame-
terised as given by Eqs. (8) and (9). The constraint handling
method given by Eq. (11) was implemented to the original
Carroll’s code in order to perform the needed constrained opti-
misation of the cooling profile.

Carroll’s code has the following variables to be set, in order
to run the optimisation:

• microga: if set to 1, the micro-GA search is activated. In this
work, microga is set to 0 (deactivated)

• npopsiz: determines the number of individuals in each gener-
ation (iteration)

• pmutate: jump mutation probability
• maxgen: maximum number of generations to be accounted in

the evolution
• idum: a parameter that determines the initial population of

individuals; in the code idum is the initial random number
seed for the GA run and it must equal a negative integer

• pcross: crossover probability
• pcreep: creep mutation probability
• iunifrm: 0 for single-point crossover; 1 for uniform crossover;

in this work uniform crossover is used
• iniche: 0 for no niching, 1 for niching. In this work niching is

used
• nchild: determines if the number of children per pair of parents

is 1 or 2. Two children per pair of parents are used in the
present work.

More details about these parameters can be found in Carroll
(2004).

To accomplish an optimisation with the GA code, it is neces-
sary to study the remaining parameters: pmutate, pcross, pcreep,
npopsiz, maxgen and idum. A factorial design was conducted in
order to determine which ones of the six parameters have sig-
nificant effects on the optimisation result, as well as how they
interact among themselves. This procedure is proposed in this
work, since it allows for a systematic approach to find out the
suitable set of parameters for GA method.

4. Factorial design and its application to the problem

The factorial design method is a statistical technique that
evaluates at the same time all process (or any focus of study)

variables in order to determine which ones really exert signifi-
cant influence on the final response, which gives a better analysis
of the response (Kar, Banerjee, & Bhattacharyya, 2002). All vari-
ables are called factors and the different values chosen to study
the factors are called levels (Barros Neto, Scarminio, & Bruns,
2001; Box, Hunter, & Hunter, 1978).

In a complete factorial design, all possible combinations of
the selected levels for the factors are made, but this proce-
dure may be too time-consuming. On the other hand, the most
common factorial designs are the two levels ones, which bring
enough information for the purpose of this work. Important
trends may be observed with these factorial designs and the
effect of each independent variable, on the dependent one are
estimated. The values of the resulting first-order effects indicate
the more sensitive parameters applied to the case studied and
consequently which ones are more important in the seeking pro-
cedure. It is worth mentioning that the obtained results depend
strongly on the case study to which the methodology is being
applied (Rodrigues, Toledo, & Maciel Filho, 2002).

When a relatively large number of factors is evaluated, the
total number of combinations may be too large. Furthermore,
the high order interactions (third, fourth or superior) are small
and may be mixed with the standard deviation of the effects.
In this case, it is advisable and convenient to use a fractional
factorial. The number of combinations is diminished and the
most important effects are determined (Barros Neto et al., 2001).

In the interpretation of the results generated by a complete
or fractional factorial design, it is necessary to decide which
calculated effects are significantly different from zero. The usual
practice is use the concept of statistical significance (generally
95% of confidence).

When analysing the results of a factorial design, two statis-
tic parameters are of relevance. The t-statistics of a factor is
obtained by the division of its effect by its error. This statistic
parameter is dependent on the freedom degree, which is calcu-
lated by the subtraction of the number of calculated effects from
the total number of experiments/trials available. The higher the
t-statistics, the higher is the significance of the corresponding
factor. On the other hand, the p-level, which represents the prob-
ability of error that is involved in accepting the effect as valid,
is a decreasing index of the reliability of a result. The higher
the p-level, the less one can believe that the observed relation
between factor and effect is reliable. The common practice is
to consider 95% of confidence in a result, so that, for an effect
to be considered statistically significant, its p-level must be less
than 0.05.

The two levels evaluated in a factorial design are coded by (+)
and (−), representing the upper and lower levels, respectively.

5. Systematic approach in optimisation with

GAs—prior detection of significant parameters

The proposal to use factorial design in the selection of the
significant GA parameters in the optimisation of coolant tem-
perature profile in order to minimize the coefficient of variation
of the CSD at the end of the batch in the batch cooling crystal-
lization is here presented in a systematic way.
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Fig. 3. General working structure of GAs.

A supporting chart, Fig. 3 is presented, which depicts the
general working structure of GAs. The input data that must be
supplied to GAs is composed by:

• GA settings: the characteristics of micro GA, type of
crossover, niching and number of children per pair of parents
must be supplied to the GA code. As explained in Section 3.3,
these characteristics are determined by the values assigned to
microga, iunifrm, iniche and nchild, which were respectively
0, 1, 1 and 2 in this particular problem. These values are fixed
and are not part of the so-called GA parameters, whose effects
on the optimisation response are object of study in the detec-
tion of statistical significance.

• Problem variables minimum and maximum allowed vari-
ables: the decision on which are these minimum and max-
imum allowed variables is dependent on the specific problem
being considered. In the present work, optimising variables
are assigned to x vector, which contains the values of Tc0,
TcF, A1, A2, tintermediate and the variable that determines the
sequence of Type 1 and Type 2 functions (Eqs. (8) and (9)).
In this way, based on the physical problem, Tc0 and TcF are
allowed to vary between 298 and 340 K, the exponentials con-
stants between 10−6 and 20, the intermediate time is allowed
to vary between 0 and 1500 s, the batch time. The determi-
nation of the sequence of Type 1 and Type 2 functions, since
the optimisation search should investigate whether it is best
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to have Type 1 + Type 2 or Type 2 + Type 1, is delegated to a
variable allowed to vary between −1 and +1: negative values
determine Type 1 + Type 2, while nonnegative values deter-
mine Type 2 + Type 1.

• GA parameters: these parameters must be varied in many
GA trials in order to drive so many possible evolutionary
paths that the achievement of the specific process global opti-
mum can be more assured. These parameters are, as exposed
in Section 3.3, npopsiz, pmutate, maxgen, idum, pcross and
pcreep.

The objective function is coupled with constraints violation,
as proposed by Deb (2000)—Eq. (11), in order to calculate
the fitness function of each individual. The problem model, the
batch cooling crystallization, is necessary for the evaluation of
both the objective function and constraints violation. GC and IC
that figures in Fig. 3 are only counters (respectively generation
counter and individual counter) used by the algorithm to make
calculations for each individual of each generation. The vectors
best fitness and best individual are responsible for recording
the best fitness function and the corresponding best individual
in each generation.

As can be seen by the structure outlined in Fig. 3, given a set of
values of the GA parameters, the GA optimisation code executes
the evolutionary search and gives as output the best fitness func-
tion, that is, the minimum value found for the objective function
(the CV of the CSD at the end of the batch in the crystallization
process, for the present work). The outer box of Fig. 3, which
encloses all the sequence of steps for Genetic Algorithms, can be
seen as a black-box: given an input (GA settings, minimum and
maximum allowed values and GA parameters), for a particular
problem model, the black-box gives an output. Since the problem
is fixed (here, batch cooling crystallization model), the minimum
and maximum allowed values are fixed. The GA settings are
also fixed. In this way, the only variables able to be varied in the
input are the GA parameters. And it is here that it is based on the
approach of using factorial design to identify which ones of these
GA parameters really exert significant influence on the output.
The proposed approach should be seen as a prior and important
analysis to be conducted in optimisation trials through GAs in
order to discharge GAs parameters that are not statistically sig-
nificant for the evolutionary search to the specific problem, sav-
ing time and computation burden in evolutionary optimisation
studies.

A step-by-step description of the proposed approach may be
outlined as follows:

1. Define the case study/problem and formulate it mathemat-
ically (process model).

2. Define the objective function.
3. Define the constraints of the problem.
4. Define the control variables (optimising variables), i.e., the

variables that compose the individuals and that should suffer
evolution in order to provide better fitness functions.

5. Stipulate the GA settings and the minimum and maximum
allowed values of the control variables.

6. Stipulate the values of the upper and lower levels for the
GA parameters to be used in the factorial design study.

7. Build the complete or fractional factorial design spread-
sheet, with the many combinations of GA parameters levels
that must be supplied to a GA to perform the evolutionary
optimisation. For information on how to build fractional
factorial designs, the reader is referred to Barros Neto et al.
(2001) and Box et al. (1978).

8. Perform the optimisation through GA for each combination
of GA parameters in order to obtain the problem response
to these GA parameters values.

9. Calculate effects of each GA parameters on the problem
response, as well as their errors and statistical significance
(p-level). Information on how to calculate the effects, its
errors and p-levels, is found in Barros Neto et al. (2001) and
Box et al. (1978). Calculate, as well, the effects, errors and p-
level for the interactions between factors (GA parameters).

10. The GA parameters that do not show statistical significance
on the problem response may be discharged in further opti-
misation studies because, irrespective of which value is
stipulated to these parameters, the problem response will
not vary significantly, in statistical sense. The GA param-
eters that show effects statistically significant should be
extensively varied in further optimisation works with this
particular problem.

6. Results and discussion

The independent variables considered in this work and their
corresponding values for each level are presented in Table 1. A
fractional factorial design 26−1 study was conducted, since the
following GA parameters are taken into account: jump muta-
tion probability (pmutate), crossover probability (pcross), creep
mutation probability (pcreep), population size (npopsiz), max-
imum number of generations allowed (maxgen) and the initial
sample of individuals (idum). Table 2 presents the combinations
of GA parameters for the optimisations that were conducted,
for the fractional factorial design with a central point. The cen-
tral point is normally used with repetition for error estimation.
However, there is no error in computer simulations (the crystal-
lization model Eqs. (1)–(7) are used) and, therefore, only one
point is used. The results of CV of the best individual in the last
generation generated by the GA in each case are presented in the
final column. An explanation of the crystallization optimisation

Table 1
Levels of the parameters used in sensitivity analysis of the GA code applied to
the crystallization problem

GA parameters (−) Level Central (+) Level

(1) pmutate 0.0425 0.05 0.0575
(2) pcross 0.68 0.8 0.92
(3) pcreep 0.034 0.04 0.046
(4) npopsiz 43 50 58
(5) maxgen 43 50 58
(6) iduma −1150 −1000 −850

a idum assumes negative integer value and is the initial seed for the GA run;
each value assigned to idum gives rise to a different initial population.
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Table 2
Fractional factorial design 26−1 study results

Run name pmutate pcross pcreep npopsiz maxgen idum Response (CV)

pl01a − − − − − − 103.0
pl02a − − − − + + 127.7
pl03a − − − + − + 129.4
pl04a − − − + + − 99.03
pl05a − − + − − + 112.8
pl06a − − + − + − 105.6
pl07a − − + + − − 110.6
pl08a − − + + + + 120.4
pl09a − + − − − + 104.2
pl10a − + − − + − 118.6
pl11a − + − + − − 99.29
pl12a − + − + + + 131.8
pl13a − + + − − − 102.3
pl14a − + + − + + 110.4
pl15a − + + + − + 131.8
pl16a − + + + + − 125.6
pl17a + − − − − + 125.1
pl18a + − − − + − 97.55
pl19a + − − + − − 98.51
pl20a + − − + + + 115.1
pl21a + − + − − − 100.2
pl22a + − + − + + 104.0
pl23a + − + + − + 116.1
pl24a + − + + + − 100.4
pl25a + + − − − − 100.9
pl26a + + − − + + 113.2
pl27a + + − + − + 128.4
pl28a + + − + + − 99.0
pl29a + + + − − + 108.2
pl30a + + + − + − 102.3
pl31a + + + + − − 108.4
pl32a + + + + + + 122.3
Zero 0 0 0 0 0 0 102.0

problem is given in Appendix A, which brings detailed infor-
mation on optimisation and model variables for one selected
optimal solution, to know, for that of run ‘pl32a’.

The software STATISTICA (Statsoft, v. 6.0) was used to ana-
lyze the results. Table 3 presents the effect estimates of the GA
parameters, calculated with 95% of confidence, with no interac-
tion between the effects. Fig. 4 brings the corresponding Pareto
chart, used for identification of the most important factors. The
‘t’ statistics that figures in Table 3 is presented with its freedom
degree, which is 26, since there were 33 available runs and only 7
effects were calculated (the mean effect plus the effects for each

Table 3
Effect estimates on CV for the fractional factorial design with no factor
interactions

Factor Effect S.E. t(26) p

Mean 111.3461 1.428299 77.95712 0.000000

(1) pmutate −5.8038 2.900876 −2.00069 0.055969
(2) pcross 2.5750 2.900876 0.88766 0.382860
(3) pcreep −0.5863 2.900876 −0.20209 0.841416
(4) npopsiz 6.2929 2.900681 2.16947 0.039373

(5) maxgen 0.8992 2.900681 0.30999 0.759037
(6) idum 14.3513 2.900876 4.94721 0.000039

Italic values denotes significant effect for a 95% confidence level.

factor). The values for the t-statistics are also indicated next to
each bar in the Pareto chart.

As can be seen, two parameters, the initial population
(expressed by idum) and its size (expressed by npopsiz) have
significant effects on the search for a minimum CV of the final
CSD in the batch cooling crystallization system optimisation.
The Pareto chart of Fig. 4 shows that the jump mutation probabil-

Fig. 4. Pareto chart of variables effects for CV of the best individual (at 95% of
confidence level), with no factor interactions.
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Fig. 5. Pareto chart of variables effects for CV of the best individual (at 95% of confidence level), with two factor interactions.

ity (pmutate) has an effect, if considered no interaction between
the factors, near the limit of significance. In this way, an analysis
with two-way factor interactions was performed. These results
are outlined in Table 4 and the correspondent Pareto chart of
effects presented in Fig. 5.

Once again, factors (6) and (4) (initial population and its size)
have shown a great effect on the CV of the final CSD of the best
individual generated by GA at the end of the evolution pro-
cess. The interactions between the creep mutation probability

Table 4
Effect estimates on CV for the fractional factorial design with two factor
interactions

Factor Effect S.E. t(11) p

Mean 111.3462 1.028469 108.2640 0.000000

(1) pmutate −5.8038 2.088822 −2.7785 0.017953

(2) pcross 2.5750 2.088822 1.2328 0.243365
(3) pcreep −0.5863 2.088822 −0.2807 0.784179
(4) npopsiz 6.2929 2.088681 3.0129 0.011805

(5) maxgen 0.8992 2.088681 0.4305 0.675146
(6) idum 14.3513 2.088822 6.8705 0.000027

1 by 2 0.6425 2.088822 0.3076 0.764140
1 by 3 −1.3963 2.088822 −0.6684 0.517634
1 by 4 −1.6600 2.088822 −0.7947 0.443593
1 by 5 −4.8563 2.088822 −2.3249 0.040231

1 by 6 1.2912 2.088822 0.6182 0.549048
2 by 3 2.5750 2.088822 1.2328 0.243365
2 by 4 4.5562 2.088822 2.1813 0.051752
2 by 5 4.1025 2.088822 1.9640 0.075296
2 by 6 −2.6125 2.088822 −1.2507 0.236991
3 by 4 4.9700 2.088822 2.3793 0.036544

3 by 5 −0.7862 2.088822 −0.3764 0.713773
3 by 6 −5.5262 2.088822 −2.6456 0.022763

4 by 5 −1.9725 2.088821 −0.9443 0.365283
4 by 6 4.9575 2.088822 2.3733 0.036933

5 by 6 −2.2487 2.088822 −1.0766 0.304720

Italic values denotes significant effect for a 95% confidence level.

and the initial population (pcreep and idum, factors (3) and (6))
and between the creep mutation probability and the population
size (pcreep and npopsiz, factors (3) and (4)) have presented a
significant effect. These interaction results carry a great influ-
ence from the factors (6) and (4), the most meaningful factors
in the GA response in this case study, but also show that the
creep mutation probability (factor (3)) is a factor with important
influence. As a result from the strong influence of factors (6)
and (4), their interaction is also of significant effect on the final
response.

Another GA parameter that should be carefully varied during
a GA optimisation study, according to Table 4 and Fig. 5, is the
jump mutation probability (pmutate, factor (1)), evidenced by
the meaningful effect of this factor. The interaction between the
jump mutation probability and the maximum number of gener-
ations (pmutate and maxgen, factors (1) and (5)) is presented as
of significant importance, but this result is attributed mainly to
the strong effect of factor (1) and not to the importance of factor
(5) on the final response.

The crossover probability (pcross, factor (2)) does not seem
to affect significantly the GA optimisation response.

7. Conclusions

An original perspective is proposed to genetic algorithm
parameters in the application of this stochastic optimisation tech-
nique in batch cooling crystallization systems. Factorial design
technique was used in order to select the most meaningful param-
eters, when optimising the coefficient of variation of the final
crystal size distribution. The results guide to the significance
(95% confidence level) of the initial population, the popula-
tion size and the jump and creep mutation probabilities. Future
optimisation works should direct focus on alterations in these
parameters during GA optimisation.
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Appendix A

This appendix brings detailed information on model variables
and optimisation results for run ‘pl32a’ that figures in Table 2.

As can be extracted from Tables 1 and 2, pl32a was run with
all GA parameters in the upper level, i.e., the values assigned
to pmutate, pcross, pcreep, npopsiz, maxgen and idum were,
respectively, 0.0575, 0.92, 0.046, 58, 58 and −850. The 58
individuals defined by idum, each one carrying values for all
parameters of Eqs. (8) and (9), plus the definition of the right
sequence of functions (Type 1 + Type 2 or Type 2 + Type 1) to be
followed, evolve for 58 generations, with the rate of GA oper-
ators defined by pmutate, pcross and pcreep. Each individual
is transferred to the crystallization process model subroutine.
Extremely detailed information on the crystallization system
variables (like crystallizer dimensions, global heat coefficient,
initial solution concentration, solubility data of adipic acid as a
function of solution temperature, classes boundaries and so on)
can be found in Costa et al. (2005). The seeding policy used con-
sisted of 1.32 × 1012 crystals in the seventh class and 1.62 × 108

crystals in the 20th class.
The CV that figures in Table 2 for pl32a is the minimum

CV calculated from all CSD generated with the crystallization
simulations whose input were, for each one of them, the set of
parameters of Eqs. (8) and (9) (vector x). The minimum CV
determines the best individual evolved, that is, the best values
for the parameters of Eqs. (8) and (9), as well as the definition
of the sequence of functions. The best individual for ‘pl32a’ is
presented in Table A1.

The coolant temperature for the best individual of pl32a is
then defined as expressed in Eq. (12), which is determined first
by Type 2 function and then by Type 1.

Tc =















337.6164 − (337.6164 − 309.3425)
[ t

1500

]1.7613
, if t ≤ 1267.0

309.3425 − (309.3425 − 337.6164)
[

1 −
t

1500

]0.7292
, if t > 1267.0

(12)

Fig. A1 shows the best cooling profile (Eq. (12)), determined by
the information presented in Table A1, as well as the profile of the

Table A1
Vector x for the best individual of ‘pl32a’

x component Value

Sequence of functions Type 2 + Type 1
Tc0 337.6164
TcF 309.3425
tintermediate 1267.0000
A1 0.7292
A2 1.7613

Fig. A1. Profiles of coolant temperature, temperature of solution inside the crys-
tallizer and supersaturation for best individual of run ‘pl32a’.

Fig. A2. CSD generated for best individual of run ‘pl32a’.

crystallizer medium temperature and of supersaturation during
all batch time. Both profiles of crystallizer medium temperature
and of supersaturation are generated with the process simulation
with the model equations and process parameters, whose details
can be found in Costa et al. (2005). An illustration of the obtained
CSD for the individual presented in Table A1 is depicted in
Fig. A2.
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8.3. Conclusões 

Os resultados mostram que os parâmetros mais significativos (95% de 

confiança) são a população inicial, o tamanho da mesma e as probabilidades de 

mutação. Estes parâmetros são os que devem ser modificados em estudos de 

otimização deste processo por Algoritmo Genético, na busca pelo ótimo. 



 144 

Capítulo 9. Conclusões e Sugestões de Trabalhos Futuros 

9.1. Conclusões 

É inegável a importância do processo de cristalização para a obtenção de 

produtos de alto valor agregado na indústria. É também incontestável o excelente 

nível de trabalhos publicados na literatura na área de cristalização. No entanto, 

esse processo é marcado por modelagem não trivial e de difícil solução, 

principalmente quando se consideram mecanismos cinéticos além da nucleação e 

do crescimento. A consideração de estudos de cristalização no sentido de se 

tentar investigar a sensibilidade da distribuição de tamanhos de cristal em relação 

ao perfil de temperatura empregado para resfriamento teve início na década de 

70. Porém, até a atualidade, não se tem um completo entendimento do 

detalhamento dos mecanismos envolvidos e de como representá-los, nem se 

possui um método numérico padrão estabelecido para solução rápida e confiável 

das equações que compõem a sua modelagem detalhada. A alta complexidade e 

não linearidade desse processo impõe ainda uma dificuldade na determinação de 

políticas operacionais ótimas. Assim, notou-se a necessidade de desenvolvimento 

de um software para avaliação de processos de cristalização e melhoria de 

processo, através de sua modelagem determinística detalhada e da utilização de 

métodos determinísticos e estocásticos de otimização. 

Dentro desse contexto, este trabalho apresentou inicialmente a 

modelagem determinística detalhada de processos de cristalização com 

representação dos mecanismos de nucleação, crescimento e aglomeração. Um 

levantamento dos métodos numéricos existentes na literatura para solução do 

balanço de população indica que não há até o presente momento um método 

estabelecido de resolução do modelo. A seleção do método numérico é ainda 

sujeita à dependência do caso de estudo em questão e dos mecanismos 

envolvidos na modelagem. De qualquer forma, qualquer método numérico, por 

não se tratar da solução real (analítica), traz em si desvantagens inerentes e, 

portanto, deve-se, na seleção do método a ser utilizado, ponderar entre a 
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adequação do método ao caso de estudo e suas vantagens (como fácil 

programação, rapidez e precisão de cálculo) e desvantagens. 

A modelagem desenvolvida é acoplada a métodos de otimização de modo 

a compor um software geral para estudos de desenvolvimento de processos 

orientados a especificações de produto. Os estudos preliminares feitos com o 

auxílio do modelo do processo apontaram para a real necessidade de se buscar 

políticas operacionais que levassem à obtenção de produtos com distribuição de 

tamanhos controlada. A utilização de Programação Quadrática Sucessiva e 

discretização da variável de controle nos estudos preliminares de otimização 

indicaram que a abordagem adotada não conduzia a resultados satisfatórios, 

embora conduzisse a melhorias de qualidade de produto. Estudos subseqüentes 

de projeto de produto mostraram que, a depender da cinética inerente a cada 

sistema, certas características de distribuição de tamanhos de cristal são 

naturalmente favorecidas. 

A abordagem não completamente satisfatória por via determinística da 

otimização do processo levou à utilização da técnica estocástica de otimização por 

Algoritmo Genético. Essa técnica tem sido aplicada em uma série de processos na 

área de engenharia e de matemática aplicada, tendo sido relatado na literatura 

sucesso no tratamento de problemas não-lineares e de alta dimensionalidade. De 

fato, a sua aplicação no caso de estudo da otimização da política operacional de 

resfriamento do processo de cristalização do ácido adípico em modo batelada 

apresentou resultados bastante melhores do que aqueles oriundos da utilização 

da Programação Quadrática Sucessiva, indicando a sua adequação a estudos de 

busca por setpoints de processo. 

Não obstante o sucesso da utilização do Algoritmo Genético em 

problemas com escala de engenharia, pode ser notada a dificuldade na 

identificação dos parâmetros para a solução do problema de otimização. De fato, 

este é um ponto bastante relevante, levando-se em conta que o tempo 

computacional é uma restrição a ser superada. Não foi encontrado na literatura ou 

nos softwares existentes um procedimento mínimo que pelo menos servisse para 

auxiliar na tomada de decisão sobre quais parâmetros devem ser usados ou 

mesmo alterados para um melhor desempenho do método global de otimização. 
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Nesse sentido, este trabalho desenvolveu um procedimento original e de utilização 

geral para detecção dos parâmetros do algoritmo que exercem influência 

significativa na resposta final do problema de otimização. Essa contribuição é 

relevante por descartar variações em parâmetros sem influência significativa na 

resposta final. A aplicação do procedimento desenvolvido em diferentes casos de 

estudo, incluindo-se o processo de cristalização com a definição de sua trajetória 

ótima de resfriamento, demonstrou que o conjunto de parâmetros significativos é 

dependente do problema em questão. 

9.2. Trabalhos Futuros 

O desenvolvimento deste trabalho de doutoramento levantou 

possibilidades de extensão e/ou investigação mais aprofundada, bem como novas 

frentes de pesquisa, que são aqui apresentadas como sugestões de trabalhos 

futuros. 

Este trabalho apresentou a parametrização da variável de controle (com 

os chamados Tipo 1 e Tipo 2 de funções) em oposição à sua discretização, 

considerada apenas constante por partes. No entanto, trabalhos futuros poderiam 

investigar mais a fundo a potencialidade da discretização, com a interpolação dos 

valores discretos encontrados por otimização, ou mesmo a consideração de 

variável de controle linear por partes. 

Outro ponto de possíveis investigações futuras reside na verificação da 

precisão do número de classes a ser utilizado no Método das Classes, um 

problema de mínima realização, e na comparação dos coeficientes de variação 

das distribuições obtidas correspondentes aos sub-ótimos encontrados com 

aquela decorrente da utilização de resfriamento natural. 

Concernente à modelagem do processo, a obtenção e avaliação de 

modelos simplificados, seja por redução na dimensionalidade, seja pela 

consideração da real necessidade de levarem-se em conta todos os fenômenos 

observáveis, são vislumbradas como campo de trabalhos futuros, uma vez que um 

modelo muito detalhado exige um tempo computacional maior e requer valores de 

parâmetros muitas vezes difíceis de serem obtidos. 
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A otimização do processo de cristalização, feita tanto por métodos 

determinísticos quanto evolucionistas, aponta para a grande dificuldade dos 

primeiros métodos em lidar com a alta dimensionalidade do problema e, por 

dependerem da estimativa inicial, levam a ótimos locais, enquanto os métodos 

evolucionistas se mostraram mais hábeis em encontrar as cercanias do ótimo 

global, sendo, no entanto, de lenta execução. Isso sugere que se desenvolva e se 

avalie uma metodologia híbrida de otimização, que una algoritmos de busca locais 

e métodos estocásticos de otimização, de modo que se obtenha um método que 

guarde a independência da estimativa inicial (principal vantagem do método 

estocástico) e a ela alie a rápida solução, típica dos métodos determinísticos. Na 

concepção da metodologia híbrida, seria interessante a avaliação de outros 

métodos estocásticos de otimização, como o Recozimento Simulado ou o Enxame 

de Partículas, uma vez que estes métodos possuem menos parâmetros a serem 

ajustados e que a literatura aponta resultados bastante satisfatórios com a 

utilização dos mesmos. 

A otimização multiobjetivo não foi o foco de estudo desta tese, mas a sua 

investigação na otimização da cristalização poderia ser feita futuramente, uma vez 

que os objetivos costumeiramente tratados em problemas de otimização de 

cristalização são conflitantes. A investigação segundo a frente ótima de Pareto 

poderia trazer elucidações acerca de maneiras mais efetivas de se postularem 

problemas de otimização de cristalização. 

A falta de medidas online precisas em todas as faixas de operação e o alto 

investimento necessário para medidas das variações no tempo das variáveis de 

saída relevantes, como a CSD ou a supersaturação, assim como a alta 

dimensionalidade e alta não-linearidade (difícil cálculo online de políticas 

operacionais ótimas), têm dificultado a implementação de controladores preditivos 

em cristalizadores em processos batelada operados por resfriamento em malha 

fechada. Em trabalhos futuros, técnicas inferenciais de predição de estados 

(estimador de estados) podem ser desenvolvidas através de modelos 

determinísticos, de modo a estimar valores das variáveis-chave do processo e de 

difícil mensuração a partir de valores facilmente mensuráveis na prática, como 

temperatura e concentração de soluto. O estimador de estados seria bastante útil 
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em estudos de controle avançado do processo. Seguindo o mesmo conceito de 

modelos inferenciais, sugere-se também o desenvolvimento de modelos híbridos, 

acoplando-se os modelos determinísticos com redes neurais. 

Dentre as estratégias de controle promissoras para o tipo de problema que 

impõe a cristalização, destacam-se os controles preditivos multivariáveis e 

baseados em modelo, uma vez que se pode inserir nas restrições das variáveis de 

estado as especificações de produto (propriedades da distribuição de tamanhos 

de cristais). A investigação da melhor estratégia e do tipo de modelo interno 

(modelos internos lineares – tipo Dynamic Matrix Control - ou não lineares – uso 

de redes neurais artificiais, por exemplo) é um campo de trabalhos futuros. 

Por fim, a integração das etapas de otimização e controle poderia ser feita 

em estrutura de uma ou duas camadas. 

O Capítulo 7 ilustrou, no seu quarto caso de estudo, o ajuste de 

parâmetros para o modelo de fermentação alcoólica. Na abordagem utilizada, a 

faixa de busca para os parâmetros foi propositalmente bastante larga, de modo a 

simular as situações em que o pesquisador se depara com uma nova modelagem, 

nas quais não tem ainda informação de qual a ordem de grandeza dos 

parâmetros. No entanto, uma faixa de busca larga torna mais difícil e demanda 

mais tempo para o algoritmo de otimização encontrar o ótimo (valores ótimos para 

os parâmetros). Assim, seria interessante que trabalhos futuros investigassem que 

influência a faixa de busca tem na procura pelo ótimo (inclusão da faixa de busca 

como um dos fatores em estudos de planejamento fatorial). 
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