## EFEITOS DA ADIÇÃO DE ELETRÓLITO NO

## EQUILIBRIO LIQUIDO-LIQUIDO

Este exemplar corresponde à redação final da Tese de Mestrado defendida pela Enga. Regina Ferreira Vianna e aprovada pela Comissão Julgadora em 07 de Agosto de 1991.

Л

# UNICAMP - UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE ENGENHARIA QUÍMICA

i.

# EFEITOS DA ADIÇÃO DE ELETROLITO NO EQUILÍBRIO LÍQUIDO-LÍQUIDO

Autora : Enga. REGINA FERREIRA VIANNA

Tese submetida à Comissão de Pós-Graduação da Faculdade de Engenharia Química - UNICAMP como parte dos requisitos necessários para a obtenção do grau de "Mestre em Engenharia Química".

Aprovada por : Prof. Dr. Saul Goncalves d'Avila (Orientador) Profa. Dro. Maria Angela de A. M. Petenate Pendon. Prof. Dr. Élias Basile Tambourgi Campinas - SP - Brasil

07 de Agosto de 1991

"Que os nossos esforços desafiem as impossibilidades. Lembrai-vos de que as grandes proezas da História foram conquistas do que parecia impossível." (Charlie Chaplin)

> Aos meus pais, Elzira e Guilherme, que com muito amor, vencendo os obstáculos que a vida lhes impôs, plantaram as sementes que hoje frutificam.

> Ao meu querido marido, Paulo, verdadeiro amigo, companheiro e cúmplice em todos os momentos, que com todo o amor, compreensão e carinho vem, ao meu lado, trilhando os caminhos da vida.

#### AGRADECIMENTOS

Ao Prof. Dr. Saul Gonçalves d'Ávila, mestre e orientador dedicado e, sobretudo, amigo no convívio diário,

Aos professores da FEQ pela dedicação e apoio,

A colega Vânia Maria Wendhausen pelas valiosas sugestões,

Aos meus irmãos e sogros pelo carinhoso apoio e estímulo,

Aos colegas da FEQ e, em especial, do LPT pelos bons momentos e pela solidariedade,

Ao CNPq e à FAPESP pelo suporte financeiro,

Aos funcionários da FEQ e a todos que, direta ou indiretamente, contribuiram para a realização deste trabalho.

#### RESUMO

Neste trabalho foram estudados os efeitos provocados pela adição de eletrólito no equilíbrio líquido-líquido de um sistema não-eletrolítico, e procurou-se, também, estabelecer uma metodologia para determinação, tratamento e interpretação de dados experimentais de sistemas eletrolíticos.

de equilíbrio líquido-líquido para o Dados sistema Acetato de Etila - Etanol - Água - Acetato de Sódio a 30, 40 e 50°C, e concentrações de sal iguais a 0%, 2%, 5% e 10% em peso, foram determinados experimentalmente e, numa etapa posterior, foram correlacionados através dos modelos NRTL e Chen, e de uma modificação proposta para o modelo de Hála. O ajuste de parâmetros destes modelos foi efetuado através de um programa desenvolvido neste trabalho, que usa o Princípio da Máxima Verossimilhança Aplicado a Restrições Implicitas. Os desvios percentuais entre as frações molares calculadas e médios experimentais foram sempre inferiores a 2%.

Os seguintes efeitos decorrentes da adição do sal foram observados : aumento na região de imiscibilidade parcial do sistema, alteração na inclinação das linhas de amarração, redução no coeficiente de distribuição do Etanol e acentuação do fenômeno do solutropismo. Tais efeitos evidenciaram o *salting-out* do Etanol em relação a fase aquosa.

Dentre as consequências práticas advindas destes efeitos, pode-se citar a obtenção de um éster mais seco e menores perdas de produto na fase aquosa, que são aspectos de interesse industrial.

#### ABSTRACT

The effects of Sodium Acetate at concentrations of 2%, 5% and 10% by weight on the liquid-liquid equilibrium data of the ternary system Ethyl Acetate - Ethanol - Water were investigated at 30, 40 and 50°C. The experimental data were correlated using the NRTL and the Chen models. A computer program was developed to estimate the parameters of the models. The program uses the Maximum Likelihood Method Applied to Implicit Constraints. The observed mean percent deviations between the experimental and calculated mole fractions were always below 2%.

The following phenomena caused by salt addition were observed : increase in the region of partial immiscibility, shift in the slope of the tie lines, decrease of Ethanol distribution coefficient and enhancement of the phenomenon of solutropy. These effects evidence the *salting-out* of Ethanol from the aqueous phase.

# SUMÁRIO

|              |                                                                                                       | <u>Pág</u> . |
|--------------|-------------------------------------------------------------------------------------------------------|--------------|
| RESUMO       |                                                                                                       | iv           |
| ABSTRACT .   | • • • • • • • • • • • • • • • • • • • •                                                               | v            |
| NOMENCLATURA |                                                                                                       | ×            |
| CAPITULO I   | - INTRODUÇÃO                                                                                          | 1            |
| CAPÍTULO II  | - FUNDAMENTOS TERMODINÂMICOS                                                                          |              |
| II. 1 -      | Critérios de Equilíbrio                                                                               | 8            |
| II. 2 -      | Relações entre Energia Livre de Gibbs<br>Excedente e Coeficiente de Atividade                         | 9            |
| CAPITULO III | - REVISÃO BIBLIOGRÁFICA                                                                               |              |
| III.1 -      | Introdução                                                                                            | 18           |
| III.2 -      | Efeitos dos Eletrólitos no Equilíbrio<br>Líquido-Líquido                                              | 13           |
| III.3 -      | Sistemas Acetato de Etila - Etarol - Água<br>- Acetato de Sódio e Acetato de Etila -<br>Etanol - Água | 17           |
| III.4 -      | Modelos Termodinâmicos para Cálculo do<br>Coeficiente de Atividade em Soluções<br>Eletrolíticas       | 18           |
| III.5 -      | Correlação de Linhas de Amarração                                                                     | 28           |
| III.5        | 1 - Sistemas Não-Eletrolíticos                                                                        | 29           |
| III.5        | .2 - Sistemas Eletrolíticos                                                                           | 30           |

32

33

32

38

38

39

40

46

## LIQUIDO-LIQUIDO IV.1 -Introdução ..... IV.2 -Metodologia Experimental ..... IV.2.1 - Condições Operacionais do Cromatógrafo e Fatores de Área ..... IV.2.2 - Desvio-Padrão Característico das Análises Cromatográficas ..... IV.2.3 - Determinação dos Tempos de Agitação e Decantação ..... IV.2.4 - Calibração da Célula de Equilíbrio ..... IV.2.5 - Cromatografia Gasosa na Presença de Sal ..... IV.2.6 - Procedimento Experimental para os Sistemas Eletrolíticos ..... IV.3 -Resultados Analíticos ..... 51 CAPITULO V - CORRELAÇÃO DOS DADOS EXPERIMENTAIS V. 1 Introdução ..... 84 V.2 -Determinação das Concentrações de Acetato de Sódio nas Fases em Equilíbrio ..... 65 V.3 -Correlação de Linhas de Amarração Através dos Modelos Empíricos de Othmer e Tobias

CAPITULO IV - DETERMINAÇÃO EXPERIMENTAL DO EQUILIBRIO

- (1942) e de Eisen e Joffe (1966) ..... 73
- V.4 -Tratamento de Dados de Equilíbrio Líquido-Líquido através de Modelos para Cálculo de Coeficiente de Atividade ( $\gamma$ ) ..... 82

# <u>Pág</u>.

| V. 4. 1       | - Ajuste de Parâmetros                    | 83  |
|---------------|-------------------------------------------|-----|
| V.4.2         | - Modificação do Modelo de Hála (1983)    |     |
|               | para o Equilíbrio Líquido-Líquido         | 87  |
| V.5 -         | Programa de Computador para Tratamento de |     |
|               | Dados de Equilíbrio Líquido-Líquido -     |     |
|               | ELLMXV                                    | 91  |
| V.6 -         | Princípio da Máxima Verossimilhança       |     |
|               | Aplicado a Restrições Implícitas          | 96  |
| V. 6. 1       | - Descrição do Método                     | 97  |
| V.6.2         | - Subrotina MAXVELL                       | 111 |
| V. 6. 3       | - Ajuste de Parâmetros Via Subrotina      |     |
|               | MAXVELL - Metodologia e Testes            | 116 |
| V.7 -         | Resultados dos Ajustes de Parâmetros e da |     |
|               | Correlação dos Dados Experimentais        | 120 |
| V.7.1         | - Sistema Não-Eletrolítico                | 181 |
| V.7.2         | - Sistema Eletrolítico                    | 123 |
| CAPITULO VI   | - ANÁLISE E DISCUSSÃO DOS RESULTADOS      |     |
| VI.1 -        | Técnica e Aparato Experimentais           | 132 |
| VI.2 -        | Modelos Termodinâmicos e Ajuste de        |     |
| 1             | Parāmetros                                | 134 |
| VI.3 -        | Efeitos da Adição do Acetato de Sódio no  |     |
| 1             | Equilíbrio Líquido-Líquido do Sistema     |     |
|               | Acetato de Etila - Etanol - Água          | 135 |
| CAPITULO VII  | - CONCLUSTES E SUGESTOES                  | 142 |
| CAPITULO VIII | - REFERENCIAS BIBLIOGRÁFICAS              | 145 |

### APENDICES

| Apêndice I -   | · Especificação de Equipamentos                                                          | 151 |
|----------------|------------------------------------------------------------------------------------------|-----|
| Apêndice II -  | Cálculo do Desvio-Padrão                                                                 | 152 |
| Apêndice III - | Cargas Utilizadas para Obtenção das<br>Linhas de Amarração dos Sistemas<br>Eletrolíticos | 153 |
| Apêndice IV -  | Linhas de Amarração Experimentais,<br>em Fração Molar, para os Sistemas<br>Quaternários  | 155 |
| Apêndice V -   | Exemplos de Arquivos de Saída do<br>Programa <i>ELLMXV</i>                               | 160 |
| Apêndice VI -  | Parâmetros <i>Específicos</i>                                                            | 166 |
| Apéndice VII - | Linhas de Amarração Calculadas                                                           | 168 |

<u>Pág</u>.

## NOMENCLATURA

| A                                | coeficiente linear da correlação de Othmer e Tobias                          |
|----------------------------------|------------------------------------------------------------------------------|
| A <sub>ij</sub>                  | parâmetros energéticos dos modelos (K)                                       |
|                                  | $A_{ij} = (g_{ij} - g_{jj})/R$ , para os modelos de NRTL e Chen              |
|                                  | $A_{ij} = -(A_{ij} = A_{ij})/R$ , para os moderos de r $R + e$ mara ij ij jj |
| Ao                               | coeficiente linear da correlação de Eisen e Joffe                            |
| A*                               | coeficiente linear da correlação de Hand                                     |
| а                                | constante da correlação de Eisen e Joffe                                     |
| a <sup>I</sup> , a <sup>II</sup> | atividade nas fases I, II                                                    |
| <sup>a</sup> o                   | fração mássica de etanol na fase orgânica                                    |
| aı                               | fração mássica de acetato de etila na fase orgânica                          |
| В                                | coeficiente angular da correlação de Othmer e Tobias                         |
| Ba                               | coeficiente angular da correlação de Eisen e Joffe                           |
| Ь                                | constante da correlação de Eisen e Joffe                                     |
| b <sub>o</sub>                   | fração mássica de acetato de etila na fase orgânica                          |
| ь,                               | fração mássica de água na fase aquosa                                        |
| c                                | constante da correlação de Eisen e Joffe                                     |
| c <sub>D</sub>                   | fração mássica de etanol na fase aquosa                                      |
| d                                | constante da correlação de Eisen e Joffe                                     |
| d <sub>o</sub>                   | fração mássica de água na fase aquosa                                        |
| E <sub>ij</sub>                  | parâmetros de interação binária do modelo de Hála                            |
| Fa                               | função-objetivo em termos de atividades                                      |
| F×                               | função-objetivo em termos de concentrações                                   |
| F                                | função (restrição) F do método de Niesen e Yesavage                          |
| Fv                               | derivada da função F em relação à variável V                                 |
| F                                | derivada da função F em relação à variável W                                 |
| F                                | derivada da função F em relação à variável Y                                 |
| Fz                               | derivada da função F em relação à variável Z                                 |
| F                                | derivada da função F em relação às variáveis indep. $\chi$                   |
| F                                | derivada da função F em relação aos parâmetros $	heta$                       |

| f               | fugacidade                                                 |
|-----------------|------------------------------------------------------------|
| f <sup>o</sup>  | fugacidade no estado padrão                                |
| G               | função (restrição) G do método de Niesen e Yesavage        |
| GE              | energia livre de Gibbs excedente                           |
| G <sup>t</sup>  | energia livre de Gibbs                                     |
| G               | parâmetro do modelo de Chen                                |
| G               | derivada da função G em relação à variável V               |
| G               | derivada da função G em relação à variável W               |
| G               | derivada da função G em relação à variável Y               |
| G               | derivada da função G em relação à variável Z               |
| Ģ               | derivada da função G em relação às variáveis indep. $\chi$ |
| Ĝ               | derivada da função G em relação aos parâmetros $	heta$     |
| g <sub>ii</sub> | parâmetro energético dos modelos de NRTL e Chen            |
| H               | função (restrição) H do método de Niesen e Yesavage        |
| H               | derivada da função H em relação à variável V               |
| H               | derivada da função H em relação à variável W               |
| H               | derivada da função H em relação à variável Y               |
| Hz              | derivada da função H em relação à variável Z               |
| н               | derivada da função H em relação às variáveis indep. $\chi$ |
| H               | derivada da função H em relação aos parâmetros $	heta$     |
| I               | função (restrição) I do método de Niesen e Yesavage        |
| I               | derivada da função I em relação à variável V               |
| Iw              | derivada da função I em relação à variável W               |
| I               | derivada da função I em relação à variável Y               |
| Iz              | derivada da função I em relação à variável Z               |
| I               | derivada da função I em relação às variáveis indep. $\chi$ |
| I               | derivada da função I em relação aos parâmetros $	heta$     |
| М               | número total de linhas de amarração                        |
| Ν               | número total de componentes                                |
| n               | número de moles                                            |
| Q               | energia livre de Gibbs excedente, segundo o modelo de      |
|                 | Hála                                                       |
| R               | constante universal dos gases                              |
| S               | função-objetivo                                            |
| Т               | temperatura (K)                                            |
| V               | vetor de variáveis dependentes (Niesen e Yesavage)         |
| V <sup>r</sup>  | valor da variável V na iteração anterior                   |
| 1/              |                                                            |

v volume molar

ХŁ

| vetor de variáveis dependentes (Niesen e Yesavage)     |
|--------------------------------------------------------|
| valor da variável W na iteração anterior               |
| fração molar ou mássica                                |
| gramas de sal / 100 gramas (sal + água)                |
| fração molar verdadeira do modelo de Chen, levando em  |
| consideração todas as espécies (moleculares e iônicas) |
| vetor de variáveis dependentes (Niesen e Yesavage)     |
| valor da variável Y na iteração anterior               |
| vetor de variáveis dependentes do método de Niesen e   |
| valor da variável Z na iteração anterior               |
| carga dos íons (valor absoluto)                        |
|                                                        |

# LETRAS GREGAS

| a                                  | fator de não-aleatoridade dos modelos NRTL e Chen      |
|------------------------------------|--------------------------------------------------------|
| x                                  | vetor de variáveis independentes (Niesen e Yesavage)   |
| $\chi^r$                           | valor da variável $\chi$ na iteração anterior          |
| Δ                                  | variação                                               |
| б                                  | inverso da variança (método de Niesen e Yesavage)      |
| r                                  | coeficiente de atividade                               |
| Ψ                                  | inverso da variança (método de Niesen e Yesavage)      |
| Λ <sub>ιί</sub>                    | parâmetro energético do modelo de Hála (admensional)   |
| λ                                  | inverso da variança (método de Niesen e Yesavage)      |
| λ                                  | parâmetro energético do modelo de Hála                 |
| μ                                  | potencial químico                                      |
| ν                                  | número de íons (coeficiente estequiométrico da equação |
|                                    | de dissociação do eletrólito)                          |
| Π                                  | fase П                                                 |
| θ                                  | vetor de parâmetros ajustáveis (Niesen e Yesavage)     |
| $\boldsymbol{\Theta}^{\mathbf{r}}$ | valor da variável $	heta$ na iteração anterior         |
| Ø                                  | desvio-padrão                                          |
| $\tau_{ii}$                        | parâmetro energético do modelo de Chen (admensional)   |
| φ                                  | inverso da variança (método de Niesen e Yesavage)      |
| ξ                                  | inverso da variança (método de Niesen e Yesavage)      |

XLL

### SUBSCRITOS

| ac                | acetato de etila                       |
|-------------------|----------------------------------------|
| ag                | água                                   |
| a, a', a''        | ânions                                 |
| c, c', c''        | cátions                                |
| e t               | etanol                                 |
| i, j, k           | componentes da solução                 |
| i -               | cátion                                 |
| í                 | ânion                                  |
| m, m <sup>9</sup> | qualquer espécie (molecular ou iônica) |
| E.                | pressão                                |
| 8                 | sal                                    |
| Т                 | temperatura                            |
| ×                 | fração molar                           |
|                   | iônico médio                           |
|                   |                                        |

### SUPERSCRITOS

| c        | calculado                                      |
|----------|------------------------------------------------|
|          | grandeza termodinâmica excedente               |
| e        | experimental                                   |
| m        | valor medido                                   |
| 0        | valor de referência                            |
| 7        | iteração anterior (Niesen e Yesavage)          |
| т        | sinal para calcular a transposta de uma matriz |
| t        | total                                          |
| +        | cátion                                         |
|          | ânion                                          |
| - 1      | sinal para inversão de uma matriz              |
| I, II, T | fases I, II, N                                 |

#### CAPITULO I

#### INTRODUÇÃO

A importância dos processos de extração líquido-líquido na indústria química é incontestável, sendo, ao lado da destilação, uma das técnicas de separação mais largamente empregadas.

Quando se avalia o comportamento de um solvente para uso num processo de extração líquido-líquido, procura-se conhecer a distribuição, entre as fases líquidas coexistentes, do material a ser extraido. A partir desta informação, pode-se determinar a quantidade de solvente e o número de estágios requeridos para se alcançar a separação desejada, e por fim, concluir sobre a viabilidade técnico-econômica do solvente.

Procedimentos que aumentem a solubilidade do soluto no solvente, são extremamente interessantes para o desenvolvimento de processos de extração mais econômicos. A adição de determinados eletrólitos, em concentrações adequadas, em sistemas não-eletrolíticos, pode desempenhar este papel, sendo esta uma técnica conhecida desde o início do século, e que vem ganhando grande impulso nas últimas décadas.

O eletrólito altera as atividades dos componentes envolvidos no processo de extração, modificando as composições de equilíbrio, podendo favorecer a separação das fases e incrementar a recuperação do soluto através do aumento da solubilidade deste no solvente. Entretanto, quando o eletrólito é um sal, algumas desvantagens advêm do seu estado físico, quais sejam, acentuação do processo de corrosão e dificuldade de transporte através do sistema e, em alguns casos, dificuldade de solubilização do sal.

São encontradas na literatura referências a respeito de processos industriais de extração que utilizam eletrólitos para

melhorar a separação dos componentes do sistema. Apesar disto, o que se constata ao se fazer uma revisão bibliográfica mais extensa é :

- pouca atenção dedicada ao desenvolvimento de teorias bem fundamentadas e difundidas, que auxiliem na compreensão dos diversos fenômenos observados em estudos de sistemas eletrolíticos,
- falta de metodologia, bem estabelecida, para determinação e tratamento de dados experimentais de sistemas eletrolíticos,
- relativamente poucos modelos termodinâmicos adequados à descrição dos mesmos,
- escassez de dados de boa qualidade, numa vasta gama de concentrações e temperaturas.

Diante deste quadro, verífica-se que a situação não é muito favorável ao desenvolvimento de novos processos, dificultando a realização de simulações e estudos de avaliação.

Este trabalho procura contribuir para o avanço do conhecimento na área através dos seus objetivos principais, quais sejam, estudar os efeitos provocados pela adição de um eletrólito num sistema não-eletrolítico, e estabelecer uma metodologia para determinação, tratamento e interpretação dos dados experimentais de equilíbrio líquido-líquido destes sistemas. O trabalho traz ainda como contribuições adicionais, a determinação de dados experimentais para um sistema eletrolítico pouco estudado, Acetato de Etila - Etanol - Água - Acetato de Sódio, a diversas temperaturas e concentrações de sal, além do teste de modelos termodinâmicos para interpretação destes dados (NRTL, Chen e Hála Modificado).

Escolheu-se estudar os efeitos provocados pela adição do Acetato de Sódio no equilíbrio líquido-líquido do sistema ternário Acetato de Etila - Etanol - Água , tendo-se em mente, não apenas a escassez de dados na literatura, mas também o interesse industrial que o mesmo apresenta.

O Acetato de Etila é um produto químico de grande importância industrial, sendo amplamente utilizado como solvente na indústria de tintas e texteis, além de ser empregado na fabricação de remédios e produção de alimentos, dentre diversos outros usos. No processo de produção deste éster obtém-se uma mistura azeotrópica do mesmo, com Etanol e Água. Para proceder à purificação do éster, usa-se um processo de extração do Etanol com Áqua. Assim, a maxi mi zação desta extração, aliada А minimização da perda de Acetato de Etila na fase aquosa, e a viabilização da produção de um éster mais seco, é de grande interesse industrial. Segundo Pai e Rao (1966), estes resultados podem ser alcançados através da adição de Acetato de Sódio ou de Acetato de Potássio ao ternário básico. Entretanto, estes autores estudaram os referidos sistemas usando soluções saturadas com apresentando, portanto, pouco interesse prático para a sal, Este fato motivou o estudo, neste trabalho, do Engenharia. sistema Acetato de Etila - Etanol - Água - Acetato de Sódio, utilizando concentrações de sal mais baixas.

Este trabalho envolve diversas etapas, que encontram-se resumidas a seguir :

- 1. Revisão bibliográfica focalizando, dentre outros efeitos provocados pela adição de aspectos, os eletrólitos em sistemas multicomponentes, e os modelos termodinâmicos disponíveis para a representação dos dados experimentais destes sistemas,
- 2. Determinação de dados de equilíbrio líquido-líquido para o sistema escolhido, Acetato de Etila - Etanol - Água -Acetato de Sódio a 30, 40 e 50°C e concentrações de sal iguais a 0%, 2%, 5% e 10% em peso.
- 3. Desenvolvimento de um programa para computador, em linguagem FORTRAN, que permite o ajuste de parâmetros dos modelos termodinâmicos para cálculo de coeficiente de atividade ( $\gamma$ ) e a correlação dos dados, usando os modelos escolhidos (NRTL, Chen e Hála Modificado), obtendo-se linhas de amarração e curvas binodais,

З

4. Análise dos efeitos provocados pela adição do sal no equilíbrio líquido-líquido do sistema Acetato de Etila -Etanol - Água, à luz dos resultados obtidos nos itens anteriores.

#### CAPITULO II

#### FUNDAMENTOS TERMODINAMICOS

Os processos de separação, que envolvem o contato entre fases, encontram-se largamente difundidos na indústria química, a exemplo da extração, da destilação e da absorção. Estes processos estão fundamentados no fenômeno da transferência de massa que ocorre quando duas fases, de composições distintas, são colocadas em contato, tendendo a trocar massa até que as suas composições deixem de variar. Quando este estado é alcançado, diz-se que as fases estão em equilíbrio.

As composições das fases de um sistema em equilíbrio dependem de diversas variáveis, tais como, a temperatura e a pressão, além da natureza química e da concentração das substâncias que constituem a mistura inicial.

A Termodinâmica do Equilíbrio de Fases procura estabelecer relações entre estas diversas propriedades, em particular, entre a temperatura, a pressão e a composição, utilizando as equações fundamentais da Termodinâmica e os critérios de equilíbrio.

#### II.1 - CRITÉRIOS DE EQUILÍBRIO

O estado de equilíbrio termodinâmico é definido como uma condição limite, em direção à qual todos os sistemas tendem a evoluir. Neste estado, nenhuma propriedade do sistema varia com o tempo (Modell e Reid, 1983).

Na realidade, é possível que nunca se atinja um verdadeiro estado de equilíbrio, em virtude das incessantes modificações que ocorrem nas vizinhanças do sistema. O equilíbrio exige a anulação de todos os potenciais que possam provocar modificações no sistema. Para efeitos práticos, entretanto, considera-se que haja equilíbrio nas investigações científicas, quando as alterações não são detectadas por meio dos dispositivos usuais de medição.

Deduz-se das relações fundamentais da Termodinâmica para sistemas fechados, que todos os processos irreversíveis, que ocorrem a temperatura e pressão constantes, avançam numa direção que provoca a diminuição da energia livre de Gibbs do sistema, ou seja :

$$(d G^{t})_{T,P} \leq 0$$
 (II.1)

Assim sendo, é condição necessária e suficiente para que um sistema esteja em equilíbrio, que a energia livre de Gibbs seja um mínimo em relação a todas as modificações possíveis do sistema, a determinada temperatura e pressão (Smith e Van Ness, 1975).

Existem sistemas líquidos cujo valor mínimo da energia livre de Gibbs á atingido mediante a formação de duas ou mais fases. Isto ocorre em virtude desses sistemas apresentarem grandes desvios da idealidade.

Quando um sistema está em equilíbrio, ocorrem variações diferenciais, a temperatura e pressão contantes, sem que haja modificações significativas na energia livre de Gibbs total do sistema (G<sup>t</sup>), valendo a igualdade na equação (II.1), isto é :

$$(d G') = 0$$
 (II.2)

Este critério é condição necessária, mas não suficiente, para que haja equilíbrio num sistema, pois não distingue entre pontos de máximo, mínimo ou inflexão, podendo causar problemas quando a curva hipotética para a energia livre de Gibbs (predita através de um modelo), possuir vários pontos de derivada nula (Sørensen et al., 1979). Restringindo-se a atenção ao equilíbrio de fases, pode-se utilizar a equação (II.2) no sentido de se obter critérios de equilíbrio mais especializados e diretamente aplicáveis. Assim, partindo-se da expressão (II.2) e utilizando-se a relação fundamental que expressa a energia livre de Gibbs (G) como uma função da temperatura, da pressão e do número de moles, pode-se demonstrar (Smith e Van Ness, 1975) que, para um sistema fechado com  $\pi$  fases e N componentes, a temperatura e pressão constantes :

$$\mu_i^{(I)} = \mu_i^{(II)} = \mu_i^{(II)}$$
 (i = 1,2,...,N) (II.3)

A equação (II.3) é um critério geral de equilíbrio de fases, e afirma que duas ou mais fases, na mesma temperatura e pressão, estão em equilíbrio quando o potencial químico ( $\mu$ ) de cada espécie presente no sistema é o mesmo em todas as fases.

Aplicando-se, na equação (II.3), a definição de fugacidade (Smith e Van Ness, 1975), obtém-se a seguinte igualdade :

$$f_i^{(I)} = f_i^{(II)} \dots = f_i^{(II)}$$
 Ci = 1,2,...,N2 (II.42)

A equação (II.4) também é um critério de equilíbrio, sendo de maior utilidade prática que a relação (II.3), em virtude de existirem expressões matemáticas que relacionam diretamente a fugacidade com as variáveis medidas , temperatura, pressão e composição (Smith e Van Ness, 1975).

Quando duas fases líquidas estão em equilíbrio, a equação (II.4) reduz-se a seguinte expressão :

$$f_i^{(I)} = f_i^{(II)} , \qquad (II.5)$$

que pode ainda ser escrita como (Smith e Van Ness, 1975) :

$$(\gamma_i X_i f_i^{\circ})^{I} = (\gamma_i X_i f_i^{\circ})^{II}$$
 (II.6)

onde,  $\gamma_i = \text{coeficiente}$  de atividade do componente i  $X_i = \text{fração molar}$  do componente i  $i = 1, 2, \dots, N.$ 

A fugacidade no estado padrão ( $f_i^o$ ) é uma propriedade do componente i puro. Normalmente utiliza-se o mesmo estado padrão para as fases líquidas em equilíbrio, e assim a equação (II.6) pode ser reescrita de modo a obter-se a seguinte relação :

$$(X_i \gamma_i)^{T} = (X_i \gamma_i)^{T}$$
, (II.7)

ou ainda :

$$a_i^{I} = a_i^{II}$$
 (II.8)

onde,  $a_i = \text{atividade}$  $i = 1, 2, \dots, N.$ 

As N equações (II.7), juntamente com as duas restrições  $\sum X_i^{I} = 1$  e  $\sum X_i^{II} = 1$ , constituem o sistema básico de equações para o cálculo do equilíbrio líquido-líquido.

Aplicando-se a regra das fases (F=2- $\pi$ +N), verifica-se ser necessário fixar N variáveis, de modo a descrever completamente as duas fases em equilíbrio. Assim, além da temperatura e da pressão, fixam-se N-2 frações molares, calculando-se as restantes.

Assumindo-se que, a baixas e moderadas pressões, o equilíbrio líquido-líquido é insensível ao efeito da pressão, o coeficiente de atividade que aparece na equação (II.7) é apenas função da temperatura e da composição de ambas as fases. O fato da pressão não estar incluida nos modelos que descrevem a não-idealidade da fase líquida, inviabiliza os testes de consistência termodinâmica, tão comummente usados no equilíbrio líquido-vapor (Sørensen e Arlt, 1979).

As relações termodinâmicas (modelos) para o coeficiente de atividade ( $\gamma$ ), em função da temperatura e da composição, constituem-se no ponto chave para a resolução dos problemas de equilíbrio líquido-líquido. A adequabilidade destes modelos ao sistema em estudo é evidenciada pela fidelidade com que os mesmos reproduzem as curvas binodais e as linhas de amarração experimentais do sistema.

# II.2 - <u>RELAÇÕES ENTRE ENERGIA LIVRE DE GIBBS EXCEDENTE E</u> COEFICIENTE DE ATIVIDADE

As propriedades termodinâmicas das soluções são frequentemente expressas por meio das "Funções Excedentes". Estas funções quantificam o afastamento de uma dada solução em relação a uma outra, ideal e hipotética, de mesma composição e as mesmas temperatura e pressão.

Para as espécies moleculares (não-iônicas), a energia livre de Gibbs excedente ( $G^E$ ) está intimamente relacionada ao coeficiente de atividade ( $\gamma$ ) através da expressão :

$$\left(\frac{\partial G^{E}}{\partial n_{i}}\right)_{T, P, n_{j \neq i}} = R. T. \ln \gamma_{i}$$
 (II.9)

A relação (II.9) é facilmente deduzida a partir das definições de potencial químico ( $\mu$ ), coeficiente de atividade ( $\gamma$ ), funções excedentes ( $M^{E}$ ) e grandeza parcial molar ( $\overline{M}$ ) (Smith e Van Ness, 1975).

Assim, conhecendo-se uma expressão teórica ou empírica para a energia livre de Gibbs excedente  $(G^E)$  em função da temperatura e da composição, os coeficientes de atividade das várias espécies moleculares constituintes da solução podem ser determinados por diferenciação da expressão de  $G^E$  em relação ao número de moles de cada substância (i).

A relação (II.9) é válida para qualquer componente molecular da solução. Entretanto, para os componentes eletrolíticos surgem relações ligeiramente diferentes.

Seja um eletrólito C $_{\nu_+}^{}A_{\nu_-}^{}$  que se dissocia segundo a equação :

$$C_{\nu+\nu-} = \nu_{+}C^{2+} + \nu_{-}A^{2-}$$
 (II.10)

onde,  $\nu_{+} = n \text{ úmero de cátions,}$   $\nu_{-} = n \text{ úmero de ânions,}$   $z_{+} = carga do cátion,$  $z_{-} = carga do ânion.$ 

Aplicando o critério intensivo de equilíbrio em torno do eletrólito que se dissocia, tem-se :

$$\mu_{i} = \nu_{i+}\mu_{i+} + \nu_{i-}\mu_{i-} \qquad (II.11)$$

e, segundo a definição de potencial químico (Denbigh, 1981) :

$$\mu_{i+} = \left(\frac{\partial G}{\partial n_{i+}}\right)$$
 (II.12)

$$\mu_{i-} = \left(\frac{\partial G}{\partial n_{i-}}\right)$$
 (II.13)

As expressões (II.11) a (II.13) estão formalmente corretas, porém as grandezas  $\mu_{i+} = \mu_{i-}$  não têm significado físico, uma vez que é impossível variar o número de moles do cátion sem ocorrer variação no número de moles do ânion.

Com o intuito de contornar este problema, foram propostas as propriedades iônicas médias  $(M_{\pm})$ , que possuem significado físico.

Assim, o coeficiente de atividade iônico médio é definido como (Denbigh, 1981) :

$$\gamma_{i\pm} = (\gamma_{i+}^{\nu_{i+}}, \gamma_{i-}^{\nu_{i-}})^{i/\nu_{i}}$$
 (II.14)

onde,

$$v_{i} = v_{i+} + v_{i-}$$
 (II.15)

Um outro enfoque é proposto por Hála (1967) que, utilizando as definições de propriedades iônicas médias e as relações fundamentais da Termodinâmica, chegou à expressão abaixo, específica para os componentes eletrolíticos da solução :

$$\left(\frac{\partial G_{\pm}^{E}}{\partial n_{i}}\right)_{T,P,n_{j\neq i}} = \nu_{i}.R.T.\ln\gamma_{i\pm} \qquad (II.16)$$

onde, i é um eletrólito.

A equação (II.16) é bastante semelhante à expressão (II.9), diferindo apenas da constante  $\nu_i$ . Esta equação indica que a derivada de uma expressão proposta para  $G^E$ , que leve em consideração o efeito da presença do eletrólito, em relação ao número total de moles do eletrólito, fornece diretamente o coeficiente de atividade iônico médio ( $\gamma_{i+}$ ).

Assim sendo, o tratamento mais usual dado ao equilíbrio líquido-líquido em soluções eletrolíticas é bastante semelhante àquele empregado para as soluções não-eletrolíticas.

A seguir se fará uma revisão bibliográfica, versando sobre o estudo de sistemas salinos e os modelos termodinâmicos para cálculo de coeficiente de atividade ( $\gamma$ ) em soluções eletrolíticas.

#### CAPÍTULO III

#### REVISÃO BIBLIOGRÁFICA

#### III.1 - INTRODUÇÃO

Os efeitos dos eletrólitos no equilíbrio de fases, embora sejam conhecidos há bastante tempo, ainda se constituem num campo muito fértil para o desenvolvimento de pesquisas. Nesta área, nas últimas décadas, têm surgido publicações que versam sobre os mais variados assuntos, abrangendo desde a teoria das soluções eletrolíticas, até os processos industriais que utilizam sistemas eletrolíticos.

Embora diversas pesquisas tenham sido publicadas desde o início do século, o grande impulso para o estudo das soluções eletrolíticas aconteceu a partir dos anos 70, quando os meios científicos e tecnológicos despertaram para as aplicações potenciais dos sistemas eletrolíticos no controle da poluição ambiental e em diversas outras áreas da indústria química e metalúrgica. Diante disto, e baseados no fato de que só a partir da década de 60 são encontrados dados experimentais de melhor qualidade, devido ao aprimoramento das técnicas experimentais e analíticas, resolveu-se concentrar a revisão bibliográfica no período compreendido entre 1960 e 1991.

A pesquisa bibliográfica foi desenvolvida visando o levantamento de informações, tanto sobre os efeitos provocados pela adição de sais nos sistemas multicomponentes, como sobre os modelos termodinâmicos disponíveis para a representação dos dados experimentais dos sistemas eletrolíticos. Procurou-se também obter informações sobre o sistema escolhido para estudo, Acetato de Etila-Etanol-Água-Acetato de Sódio, e sobre o ternário básico que o constitui, Acetato de Etila-Etanol-Água.

#### III.2 - EFEITOS DOS ELETROLITOS NO EQUILIBRIO LIQUIDO-LIQUIDO

A adição de determinados eletrólitos, em concentrações adequadas, num sistema não-eletrolítico com duas ou mais fases, pode afetar consideravelmente o equilíbrio termodinâmico deste sistema, levando à obtenção de uma separação mais efetiva dos componentes constituintes da solução. Este é um fenômeno de grande relevância, visto que, a eficiência é uma variável de importância primordial no projeto de equipamentos que envolvem separação de fases. Além disso, a presença dos sais pode provocar abaixamento de dos sistemas  $\circ$ na pressão vapor eletrólito-solvente e, no equilíbrio líquido-vapor, alterar a volatilidade relativa de sistemas contendo mais de um solvente.

Estes efeitos provocados pela adição dos sais, estão relacionados com os fenômenos denominados de salting-in e salting-out que são, respectivamente, o aumento e a diminuição da solubilidade, no solvente, de componentes não-eletrolíticos da solução. Diversas teorias procuram explicar estes fenômenos, encontrando-se na literatura algumas discussões sobre o assunto, a exemplo dos trabalhos publicados por Gross (1933) e Long e McDevit (1952). Dentre elas destacam-se a Teoria da Hidratação, as Teorias Eletrostáticas e o Conceito da Pressão Interna.

A Teoria da Hidratação assume que cada ion proveniente do sal atrai um número constante de moléculas de água. A interação ion-dipolo é forte o suficiente para aglomerar a água em torno dos íons, reduzindo a guantidade de água disponível para solubilizar os outros componentes da solução, dando origem ao salting-out do soluto em relação à fase aquosa. Esta teoria porém, não explica o efeito salting-in, que é o inverso do salting-out, ou seja, é 0 aumento da solubilidade de 1000não-eletrólito no solvente, após a adição do eletrólito.

As Teorias Eletrostáticas procuram explicar os efeitos dos sais com base nas alterações da constante dielétrica da solução. Debye e McAulay em 1925, Debye em 1927 e Butler em 1929, derivaram equações para o coeficiente de atividade ( $\gamma$ ) de não-eletrólitos em soluções diluidas de sais. Essas equações predizem que o *salting-out* ocorrerá se a constante dielétrica da solução não-eletrolítica for menor que a da água, e o *salting-in* ocorrerá se o inverso for verdadeiro.

O Conceito da Pressão Interna proposto por Tammann em 1926 e aplicado por McDevit e Long em 1952, relaciona o efeito *salting-out* com o decréscimo do volume da solução, após a adição do sal. A compressão devida ao decréscimo no volume do solvente, torna mais difícil a introdução de moléculas de não-eletrólitos na solução, resultando no fenômeno de *salting-out*. Um aumento no volume produziria o efeito contrário, conhecido como *salting-in*. De acordo com esta teoria, o grau de *salting-out* ou de *salting-in* de um soluto é determinado pela extensão na qual um solvente é comprimido ou expandido, quando os íons são adicionados ao sistema.

Estas teorias, entretanto, foram desenvolvidas para soluções aquosas, além disso, aquelas quantitativas não encontram aplicação prática na Engenharia, motivos pelos quais são pouco estudadas na atualidade.

A alteração do equilíbrio termodinâmico em sistemas líquidos, após a adição do sal, é evidenciada, graficamente, pela variação do tamanho da região de duas fases e por mudanças na inclinação das linhas de amarração, podendo inclusive, provocar solutropismo nos sistemas originalmente não-solutrópicos, ou eliminar este fenômeno nos sistemas tipicamente solutrópicos. Entende-se por solutropismo a inversão da seletividade do solvente com o aumento da concentração do soluto. Isto provoca inversão na inclinação das linhas de amarração, podendo passar de positiva a negativa ou vice-versa. A linha de amarração que apresenta inclinação nula 4 denomi nada solutrópica.

Quantitativamente, os efeitos provocados pela adição de sais em sistemas líquidos podem ser evidenciados pela variação no coeficiente de distribuição do soluto e pela alteração na seletividade dos solventes.

Apesar da evidente importância do estudo do equilíbrio líquido-líquido na presença de eletrólitos, relativamente poucos trabalhos têm sido publicados sobre o assunto, embora, nos últimos anos, a tendência seja de crescimento. A seguir serão destacadas as principais publicações encontradas nesta área, a partir de 1960.

Pai e Rao (1966) estudaram o efeito do Acetato de Sódio e do Acetato de Potássio no equilíbrio líquido-líquido do sistema Acetato de Etila - Etanol - Água a 30°C, e nas condições de saturação dos sais. Neste trabalho foram publicadas linhas de amarração e curvas binodais (curvas de solubilidade) para os dois sistemas eletrolíticos e para o ternário na ausência de sal. Os autores observaram que a adição de ambos os sais provocou um aumento na região de duas fases e *solting-out* do Etanol em relação à fase aquosa.

Eisen e Joffe (1966) investigaram o efeito dos Cloretos de Lítio, Sódio e Potássio na distribuição dos ácidos Acético, Propiônico e Butírico, no sistema Benzeno-Água a 25 °C. Ôs autores modificaram a equação de Hand de 1930, originalmente desenvolvida para sistemas ternários, visando correlacionar as de amarração de sistemas quaternários com sal. linhas Classificaram, também, os três sais em ordem decrescente de efeito salting-out dos ácidos carboxílicos em relação à fase aquosa : LiCl > NaCl > KCl.

Desai e Eisen (1971) estudaram o efeito de Cloreto de Magnésio sobre os mesmos sistemas estudados por Eisen e Joffe (1966), acrescentando este sal na escala decrescente de efeito *salting-out* : MgCl<sub>2</sub> > LiCl > NaCl > KCl.

Shah e Tiwari (1981) pesquisaram o efeito do Sulfato de Sódio sobre a distribuição do Ácido Acético nos sistemas Água -Acetato de Etila, Água - 2-Etil-hexanol e Água -Metil-etil-cetona a 30°C. Como resultado, constataram que a adição do sal provocou um aumento no coeficiente de distribuição do Ácido Acético em todos os sistemas, evidenciando o efeito *salting-out*.

Saravanan e Srinivasan (1985) investigaram o comportamento do sistema ternário solutrópico, Acetato de Etila-Ácido Acético - Água a 30°C, na presença dos sais, Cloreto de potássio, Sulfato de Sódio ou Cloreto de Sódio. Os autores publicaram curvas binodais e linhas de amarração para três

15

concentrações diferentes de cada sal (5, 10 e 15 % em peso). Em todos os casos a adição do eletrólito provocou distribuição preferencial do Ácido Acético na fase orgânica e desaparecimento da tendência ao solutropismo. As linhas de amarração foram correlacionadas pela equação de Eisen-Joffe (1966).

Rajendran e Srinivasan (1988) mostraram que a adição de Cloreto de Sódio, Cloreto de Cálcio ou Cloreto de Zinco, na faixa de concentração de 5 a 20 % em peso, afeta significativamente o equilíbrio líquido-líquido do sistema ternário Acetato de Etila -Metanol - Água a 30 °C, provocando aumento da região de duas fases e variação nos valores da seletividade. Observaram também a tendência ao solutropismo nos sistemas com 10 % de NaCl, 20 % de CaCl<sub>2</sub> e saturado em ZnCl<sub>2</sub>. Os autores correlacionaram as linhas de amarração pela equação de Eisen-Joffe e introduziram uma pequena modificação nesta equação, para melhorar a representação dos dados experimentais dos sistemas estudados. As curvas binodais foram preditas através do modelo NRTL, utilizando-se dados binários de equilíbrio líquido-vapor.

Marco et al. (1988) publicaram dados de equilíbrio líquido-líquido a 25°C para o sistema Água - Ácido Fosfórico -1-Hexanol-ciclohexanona, na presença de Cloreto de Sódio, nas condições de saturação. Concluiram que o Cloreto de Sódio aumenta o coeficiente de distribuição do Ácido Fosfórico, tanto entre solventes puros e Água, quanto entre misturas de solventes e Água, evidenciando o efeito *salting-out*.

Rajendran et al. (1989) estudaram o efeito do Cloreto de Sódio, Cloreto de Cálcio e Cloreto de Zinco sobre o equilíbrio líquido-líquido do sistema ternário solutrópico Benzeno 2-Propanol -Água e no equilíbrio líquido-vapor (ELV) dos sistemas binários azeotrópicos que o constituem. Usaram concentrações de sal na faixa de 5 a 30 % em peso, e temperatura igual a 30°C. sendo os dados de ELV determinados a uma pressão igual a 101,3  $\pm$ 0,4 KPa. As linhas de amarração foram correlacionadas pela ELV foram equação de Eisen-Joffe dados binários de e os representados pelos modelos de Wilson e NRTL. Concluiram que a adição dos sais altera a distribuição do 2-Propanol entre os solventes. Observaram também, que o NaCl e o CaCl, quebram o

16

solutropismo característico do sistema ternário básico e alteram a composição do azeótropo no ELV dos sistemas binários. Todas essas observações evidenciaram o efeito *solting-out* provocado pela adição dos sais no sistema não-eletrolítico.

Marinho (1991) estudou o efeito do Sulfato de Amônio no equilíbrio líquido-líquido do sistema Caprolactama - Benzeno -Água a 45°C e concentrações de sal iguais a 0,82 % e 1,5 % em peso. Neste trabalho foram publicadas linhas de amarração experimentais para os dois sistemas quaternários e para o sistema ternário básico na ausēncia de sal a 35, 45 e 55°C. Os dados experimentais de equilíbrio líquido-líquido foram interpretados através dos modelos NRTL e UNIQUAC para o sistema sem sal, e do modelo de Chen para o sistema eletrolítico. Os ajustes de parâmetros dos modelos termodinâmicos apresentaram um desvio médio percentual entre as frações molares calculadas e experimentais inferior a 2%. Como efeito decorrente da adição do sal observou-se um aumento na concentração da Caprolactama na camada orgânica e, a consequente, mudança na inclinação das linhas de amarração, evidenciando o efeito salting-out.

# III.3 - <u>SISTEMAS ACETATO DE ETILA - ETANOL - ÁGUA - ACETATO DE</u> SÓDIO E ACETATO DE ETILA - ETANOL - ÁGUA

O equilíbrio líquido-líquido do sistema Acetato de Etila - Etanol - Água - Acetato de Sódio foi estudado por Pai e Rao (1966) nas condições de saturação do sal e a 30°C.

Neste estudo, os autores procuraram evidenciar a importância industrial da utilização de eletrólitos no sistema Acetato de Etila - Etanol - Água, conduzindo à obtenção de um éster mais puro e seco.

Através de curvas binodais, linhas de amarração e curvas de distribuição do Etanol entre as fases éster e aquosa, os autores fizeram um estudo comparativo entre os efeitos provocados pela adição dos sais Acetato de Sódio e Acetato de Potássio, no sistema ternário Acetato de Etila - Etanol - Água. Observaram, que a adição de Acetato de Potássio leva à obtenção de um éster mais seco, enquanto o Acetato de Sódio diminui a solubilidade do éster na fase aquosa, minimizando perdas de produto. Em ambos os casos, os autores constataram *salting-out* do Etanol da fase aquosa e *salting-in* na fase éster. Entretanto, quando o sal é o Acetato de Potássio este fenômeno é bem menos intenso.

Posteriormente, Mock et al. (1986) ajustaram parâmetros de interação binária para ambos os sistemas salinos estudados por Pai e Rao (1966), utilizando o modelo de Chen.

O sistema Acetato de Etila - Etanol - Água foi estudado por Mertl (1972a, b) a 40, 55 e 70°C. O autor publicou linhas de amarração e curvas de solubilidade (binodais) experimentais. Usou o modelo NRTL para ajustar os dados experimentais obtendo bons resultados na região de baixa concentração de Etanol. Porém, com o aumento na concentração desta substância, e com a aproximação do ponto crítico, não obteve bom ajuste dos dados experimentais. Dados deste sistema, nas diversas temperaturas, e parâmetros de interação binária para os modelos NRTL e UNIQUAC encontram-se em Sørensen e Arlt, 1980.

# III.4 - MODELOS TERMODINAMICOS PARA CALCULO DO COEFICIENTE DE ATIVIDADE EM SOLUÇÕES ELETROLÍTICAS

O projeto de equipamentos de processo da indústria química que envolvem separação de fases, bem como a simulação por computador de plantas químicas, requer uma descrição precisa Assim sendo, tem sido crescente o do equilíbrio de fases. incentivo ao desenvolvimento de modelos termodinâmicos, para representação da energia livre de Gibbs excedente (G<sup>E</sup>) do coeficiente de atividade ( $\gamma$ ), adequados a estes objetivos. No que se refere a modelos específicos para os sistemas eletrolíticos, a maioria começou a surgir a partir da década de 70, e muito progresso já foi alcançado desde então.

Os diversos modelos existentes para calcular o coeficiente de atividade em soluções eletrolíticas podem ser classificados, apenas para efeitos acadêmicos, em três grandes grupos, de acordo com a metodologia empregada em sua formulação : modelos empíricos, modelos semi-empíricos e modelos baseados na Mecânica Estatística (Cardoso et al., 1989).

Os modelos empíricos são aqueles, na sua maioria, baseados em modificações empíricas da fórmula de Debye-Huckel de 1923, com o objetivo de adaptá-la a regiões com elevadas concentrações de eletrólitos.

No segundo grupo, encontram-se aqueles modelos que combinam a teoria de Debye-Huckel com modificações das teorias usadas para sistemas não-eletrolíticos. O desenvolvimento deste tipo de modelo considera que as propriedades termodinâmicas das soluções eletrolíticas são 0 resultado da soma duas de contribuições. Uma contribuição de longo alcance que leva em consideração as interações eletrostáticas entre os ions, sendo representada pela expressão de Debye-Huckel ou modificações da mesma; e uma contribuição de curto alcance relativa às forças de interação ions-solventes e solventes-solventes. Estas forças de curto alcance são equivalentes àquelas existentes nos sistemas não-eletrolíticos, podendo portanto ser representadas por modelos semelhantes aos usados para estes sistemas.

O último grupo é constituido por modelos elaborados a partir de hipóteses sobre as interações intermoleculares. Estes modelos partem de expressões para os potenciais intermoleculares calculam propriedades 0 as estruturais e termodinâmicas da solução, usando as ferramentas da Termodinâmica Estatística.

Extensas revisões bibliográficas sobre os mais variados modelos para representação do coeficiente de atividade das eletrolíticas sol uções foram elaboradas por Maurer (1983),Horvath (1985), Renon (1986), Zemaitis et al. (1986) e Cardoso et al. (1989). Tais revisões mostram que os modelos baseados na Mecânica Estatística, atualmente disponíveis, ou são muito complexos ou muito simples para serem usados na Engenharia Química, de modo que a atenção tem sido voltada para os modelos empíricos e semi-empíricos.

Deve ser ressaltado que as expressões para o coeficiente de atividade desenvolvidas antes de 1960 têm apenas interesse histórico, não encontrando uso prático nos dias atuais. Em geral, estas equações são adequadas, apenas, à representação de soluções aquosas muito diluídas. A partir dos anos 70, entretanto, um grande número de novas expressões foram publicadas na literatura, superando em suas aplicações todos os modelos anteriores.

Do ponto de vista industrial, as soluções eletrolíticas usadas nos processos químicos são na sua 5 maioria, multicomponentes, motivo pelo qual, cada vez mais. tem-se direcionado a atenção à equações que representem estes sistemas.

Segundo Horvath (1985), a equação de Bromley desenvolvida em 1973, pode ser usada para o cálculo do coeficiente de atividade em soluções com um (1) eletrólito e onde a força iônica seja menor ou igual a 6 mol. Kg<sup>-1</sup>. Esta equação é uma modificação da equação original de Pitzer, de 1973.

A equação original de Pitzer, 1973, foi modificada por Pitzer et al. em 1973 e em 1974, que a tornaram adequada a misturas de eletrólitos fortes em soluções aquosas, com molalidade até 6 mol.Kg<sup>-1</sup>. A elevadas concentrações essa equação não contém parâmetros suficientes para levar em consideração as interações entre íons de mesmo sinal. Além disso, é incapaz de representar misturas de solventes (Horvath,1985). Ainda de acordo com Horvath (1985), Pytkowicz em 1980 afirmou que o procedimento descrito por Pitzer em 1973 é bastante adequado para predição do coeficiente de atividade iônico em soluções complexas, a partir de dados de soluções simples.

Horvath (1985), ainda em sua revisão bibliográfica, cita o trabalho de Edwards et al., que em 1978 estenderam a correlação de Pitzer para concentrações até 20 mol.Kg<sup>-1</sup>.

Além do modelo de Pitzer e suas modificações, merecem destaque o modelo de Chen, e os diversos outros modelos desenvolvidos a partir deste; além do modelo de Hála.

Chen et al. (1982) desenvolveram um modelo para a energia livre de Gibbs excedente ( $G^E$ ) de sistemas eletrolíticos baseado no conceito da composição local, inicialmente proposto por Wilson em 1964. O modelo é específico para soluções eletrolíticas aquosas com um (1) eletrólito.

Hála (1983) desenvolveu uma expressão para o cálculo da energia livre de Gibbs excedente (G<sup>E</sup>), visando representar o equilíbrio líquido-vapor (ELV) em sistemas eletrolíticos com mistura de solventes. Essa expressão é constituida de dois termos, sendo um empírico, função de  $(x_{1}^{3/2})$ eletrólito X ), 0 outro uma equação usualmente empregada para 0 EL.V 0 não-eletrolítico. Hála testou o modelo usando como contribuição de curto alcance a expressão de Wilson, reproduzindo bem os dados de ELV dos sistemas binários Cloreto de Lítio - Metanol e Cloreto de Lítio - Água, e do sistema ternário Cloreto de Lítio - Metanol - Água a 60°C. Os parâmetros de interação binária para o sistema ternário foram obtidos a partir dos dados experimentais dos sistemas binários, à mesma temperatura.

Chen e Evans (1986) publicaram uma modificação do modelo anterior (Chen et al., 1982), de modo a permitir o uso em sistemas aquosos com mais de um (1) eletrólito. O modelo foi muito bem sucedido.

Mock et al. (1986) estenderam a aplicação do modelo de Chen para o equilíbrio de fases em sistemas com vários solventes. Na atualidade, essa equação é uma das mais largamente utilizadas, apresentando bons resultados. Mock et al. (1986) testaram o modelo, com sucesso, para diversas soluções eletrolíticas, incluindo o sistema estudado neste trabalho, usando os dados levantados por Pai e Rao (1966), nas condições de saturação do sal e a 30°C. O modelo de Chen também foi testado por Marinho (1991), para o sistema Caprolactama - Benzeno - Água - Sulfato de Amônio, obtendo bons ajustes.

Song e Larson (1990) modificaram a equação de Chen, de modo a levar em consideração as forças de longo alcance. Além disso, não usaram o conceito da eletroneutralidade local, usado na dedução da expressão original. Testaram a expressão para vários sistemas eletrolíticos e concluiram que os resultados foram bons, não fizeram, porém, comparações com aqueles obtidos por Mock et al (1986). A seguir serão descritos os modelos escolhidos para a correlação dos dados experimentais dos sistemas eletrolíticos deste trabalho. Tais modelos foram o de Chen (Mock et al.,1986), escolhido por sua performance comprovadamente positiva, e o de Hála (1983) por sua potencial aplicação no ajuste de dados experimentais de equilíbrio líquido-líquido em soluções eletrolíticas.

#### i) MODELO DE CHEN (Mock et al., 1986)

O modelo eletrolítico NRTL (*Nonrandom Two Liquid*), inicialmente proposto para representar a energia livre de Gibbs excedente ( $G^E$ ) de sistemas eletrolíticos aquosos (Chen et al., 1982, e Chen e Evans, 1986), está fundamentado em duas considerações:

- A composição local dos cátions (ânions) ao redor do cátion (ânion) central é zero;
- A distribuição de cátions e ânions ao redor da molécula central é tal que a carga iônica local é nula (conceito da eletroneutralidade local).

A energia livre de Gibbs excedente foi inicialmente proposta como a soma de duas expressões. Uma expressão era derivada da equação NRTL de Renon e Prausnitz, 1968, que considerava as contribuições locais resultantes de interações de longo e curto alcance entre todas as moléculas vizinhas. A outra expressão era a equação Pitzer-Debye-Hückel, desenvolvida por Pitzer em 1980, que levava em consideração as forças de longo alcance, resultantes das interações eletrostáticas entre o íon central e aqueles localizados além da vizinhança imediata do mesmo.

Na adaptação do modelo eletrolítico NRTL para misturas de solventes, Mock et al. (1986) desprezaram as contribuições das forças de longo alcance, usando apenas o termo relativo às interações de curto alcance (composição local). Para tanto, os autores alegaram que as contribuições de longo alcance têm pouco efeito sobre o equilíbrio de fases.
As expressões para os coeficientes de atividade ( $\gamma$ ) do modelo de Chen, adaptado aos sistemas eletrolíticos com mistura de solventes, estão descritas a seguir :

a) Para as espécies moleculares :

$$\ln \gamma_{m} = \frac{\sum_{j} X_{j} G_{jm} \tau_{jm}}{\sum_{k} X_{k} G_{km}} + \sum_{m'} \frac{X_{m'} G_{mm'}}{\sum_{k} X_{k} G_{km'}} \left( \tau_{mm'} - \frac{\sum_{k} X_{k} G_{km'} \tau_{km'}}{\sum_{k} X_{k} G_{km'}} \right)$$
$$+ \sum_{c} \sum_{a'} \frac{X_{a'}}{\sum_{a'} X_{a''}} \frac{X_{c} G_{mc,a'c}}{\sum_{k} X_{k} G_{kc,a'c}} \left( \tau_{mc,a'c} - \frac{\sum_{k} X_{k} G_{kc,a'c} \tau_{kc,a'c}}{\sum_{k} X_{k} G_{kc,a'c}} \right)$$
$$+ \sum_{a} \sum_{c'} \frac{X_{c'}}{\sum_{c'} X_{c''}} \frac{X_{a} G_{ma,c'a}}{\sum_{k} X_{k} G_{ka,c'a}} \left( \tau_{ma,c'a} - \frac{\sum_{k} X_{k} G_{kc,a'c} \tau_{kc,a'c}}{\sum_{k} X_{k} G_{kc,a'c}} \right)$$
$$(III.1)$$

b) Para os cátions :

$$\frac{1}{z_c} \ln \gamma_c = \sum_{a'} \frac{X_{a'}}{\sum_{a''} X_{a''}} \frac{\sum_{k} X_{k} G_{kc,a'c}}{\sum_{k} X_{k} G_{kc,a'c}}$$

$$+\sum_{m}\frac{X_{m} G_{cm}}{\sum_{k} X_{k} G_{km}} \left[ \tau_{cm} - \frac{\sum_{k} X_{k} G_{km} \tau_{km}}{\sum_{k} X_{k} G_{km}} \right]$$

$$+ \sum_{\alpha} \sum_{c'} \frac{X_{c'}}{\sum_{c''} X_{c''}} \frac{X_{\alpha} G_{\alpha,c'\alpha}}{\sum_{k} X_{k} G_{k\alpha,c'\alpha}} \left( \tau_{\alpha,c'\alpha} - \frac{\sum_{k} X_{k} G_{k\alpha,c'\alpha} \tau_{k\alpha,c'\alpha}}{\sum_{k} X_{k} G_{k\alpha,c'\alpha}} \right)$$

23

CIII.2>

c) Para os ânions :

$$\frac{1}{z_{a}} \ln \gamma_{a} = \sum_{c'} \frac{X_{c'}}{\sum_{c''} X_{c''}} \frac{\sum_{k} X_{k} G_{ka,c'a}^{T}_{ka,c'a}}{\sum_{k} X_{k} G_{ka,c'a}}$$

$$+ \sum_{m} \frac{X_{m} G_{am}}{\sum_{k} X_{k} G_{km}} \left( \tau_{am} - \frac{\sum_{k} X_{k} G_{km} \tau_{km}}{\sum_{k} X_{k} G_{km}} \right)$$

$$+ \sum_{c} \sum_{a'} \frac{X_{a'}}{\sum_{a''} X_{a''}} \frac{X_{c} G_{ac,a'c}}{\sum_{k} X_{k} G_{kc,a'c}} \left( \tau_{ac,a'c} - \frac{\sum_{k} X_{k} G_{kc,a'c} \tau_{kc,a'c}}{\sum_{k} X_{k} G_{kc,a'c}} \right)$$
(III.3)

Para as três expressões anteriores valem as seguintes definições:

 $X_{j} = \times_{j} C_{j}$  (III.4)

onde,  $C_j = \begin{cases} z_j \text{ (carga) , para os ions} \\ 1 , para as espécies moleculares \end{cases}$ 

x ≡ fração molar verdadeira da fase líquida baseada em todas as espécies (moleculares e iônicas).

m, m' ≡ espécies moleculares, j, k ≡ qualquer espécie, a, a', a'' ≡ ânion, c, c', c'' ≡ cátion

$$G_{ji} = \exp\left(-\alpha_{ji}, \tau_{ji}\right)$$
(III.5)

л.

$$\tau_{ji} = (g_{ji} - g_{ii}) / R T \qquad (III.6)$$

$$G_{ji,ki} = \exp(-\alpha_{ji,ki}, \tau_{ji,ki}) \qquad (III.7)$$

$$\tau_{ji,ki} = (g_{ji} - g_{ki}) / RT \qquad (III.8)$$

$$\alpha_{cm} = \frac{\sum_{a}^{\sum_{a}} \alpha_{ca,m}}{\sum_{a'} X_{a'}}$$
(III.9)

$$\alpha_{am} = \frac{\sum_{c} \sum_{c} \alpha_{ca,m}}{\sum_{c} \sum_{c'}}$$
(III.10)

$$G_{cm} = \frac{\sum_{a} X_{a}}{\sum_{a'} X_{a'}}$$
(III.11)

$$G_{am} = \frac{\sum_{c} X_{c} G_{ca,m}}{\sum_{c} X_{c}}$$
 (III.12)

$$\tau = \tau - \tau + \tau$$
ma, ca am ca, m m, ca (III.13)

$$\tau = \tau - \tau + \tau$$
 (III.14)  
mc,ac cm ca, m m, ca

$$\tau = \tau$$
(III.15)

$$\tau = \tau$$
 (III.16)

A relação (g<sub>ji</sub>-g<sub>ji</sub>)∕R pode ser denominada parâmetro energético de interação binária (A<sub>ji</sub>), cuja unidade é Kelvín (K).

Para os eletrólitos valem as expressões (II.14) e (II.15), ou seja,

$$\gamma_{i\pm} = \left( \gamma_a^{\nu a}, \gamma_c^{\nu c} \right)^{1/\nu i}$$
 (II.14)

$$\nu_i = \nu_a + \nu_c \qquad \text{(II.15)}$$

Observa-se que na ausência de sal, (X = X = O), as equações (III.1) a (III.3) reduzem-se à expressão original NRTL para sistemas não-eletrolíticos.

Para um sistema quaternário com apenas um (1) eletrólito, como é o caso estudado neste trabalho, são necessários 18 parâmetros ajustáveis, a saber :  $\tau_{12}$ ,  $\tau_{13}$ ,  $\tau_{14}$ ,  $\tau_{21}$ ,  $\tau_{23}$ ,  $\tau_{24}$ ,  $\tau_{31}$ ,  $\tau_{32}$ ,  $\tau_{34}$ ,  $\tau_{41}$ ,  $\tau_{42}$ ,  $\tau_{43}$ ,  $\alpha_{12}$ ,  $\alpha_{13}$ ,  $\alpha_{14}$ ,  $\alpha_{29}$ ,  $\alpha_{24}$ ,  $\alpha_{34}$ .

## ii) MODELO DE HALA (Hála, E., 1983)

Hála (1983) propôs uma expressão semi-empírica para a energia livre de Gibbs excedente (G<sup>E</sup>), com o objetivo de descrever quantitativamente o equilíbrio líquido-vapor (ELV). Esta expressão é composta por dois termos, apresentando a seguinte forma :

$$Q = Q_{a} + Q_{b} \qquad (III.17)$$

onde, 
$$Q = G^E / (nRT)$$
 (III.18)

Q é uma expressão empírica :

$$Q_{\alpha} = \sum_{ij} E_{ij} \cdot X_{i} \cdot X_{j}$$
 (III.19)

onde, i  $\equiv$  eletrólitos  $j \equiv n$ ão-eletrólitos

Q<sub>b</sub> é função das frações molares dos componentes, podendo ser uma das expressões comummente usadas para soluções não-eletrolíticas, como por exemplo, Wilson, NRTL, UNIQUAC, UNIFAC, etc.

Hála (1983) usou a equação de Wilson para testar o modelo, obtendo a seguinte expressão para  $\overline{G}^{\rm E}$  :

$$\frac{G^{E}}{nRT} = \sum_{ij} E_{ij} \cdot X_{i} \cdot X_{j} - \sum_{k}^{m} X_{k} \ln \left[\sum_{l}^{m} X_{l} \Lambda_{kl}\right]$$
(III.20)

onde, 
$$\Lambda_{kl} = \frac{\nabla_l}{\nabla_k} \exp \left[-(\lambda_{kl} - \lambda_{kk}) / RT\right]$$

(III.21)

i ≡ eletrólitos
j ≡ não-eletrólitos
k,l,m ≡ todas as espécies (moleculares e
iõnicas
v ≡ volume molar

Para a obtenção das expressões dos coeficientes de atividade, basta derivar a expressão (III.20) em relação ao número de moles de cada componente, usando as relações (II.9) e (II.16) para as espécies moleculares e iônicas, respectivamente.

Deve ser observado que Hála desconsiderou o parâmetro energético (A) cruzado, quando um dos componentes do par é um eletrólito, ou seja, considerou que :

$$\Lambda_{kl} = \Lambda_{lk}$$
, quando k ou l é um eletrólito.

A fração molar (X), usada neste modelo, é definida levando-se em consideração a dissociação total do eletrólito, isto é :

$$X_{j} = \frac{\nu_{j} n_{j}}{\sum_{i} \nu_{i} n_{i} + \sum_{k} n_{k}}$$
(III.22)

$$X_{l} = \frac{n_{l}}{\sum_{i} \nu_{i} n_{i} + \sum_{k} n_{k}}$$
(III.23)

onde, i, j  $\equiv$  eletrólitos 1, k  $\equiv$  não-eletrólitos

# III.5 - CORRELAÇÃO DE LINHAS DE AMARRAÇÃO

As linhas de amarração, obtidas a temperatura e pressão constante, são os dados de equilibrio líquido-líquido mais comummente encontrados na literatura. Este tipo de dado experimental apresenta como principal vantagem a facilidade de, conhecendo-se a composição global da mistura inicial (carga), obtém-se imediatamente a composição das fases conjugadas. Entretanto, este procedimento apresenta a desvantagem de requerer o conhecimento de um número muito grande de dados em toda a faixa de concentração, e a menos que a composição global da mistura, cuja distribuição se deseja conhecer, coincida exatamente com alguma das linhas de amarração experimentais, interpolações entre linhas adjacentes serão necessárias.

Interpolações em diagramas ternários normalmente levam a resultados errôneos. Assim sendo, correlações lineares entre as linhas de amarração são de grande utilidade, uma vez que, permitem extrapolações com boa margem de segurança, além de fornececem uma indicação da qualidade dos dados experimentais.

Estas correlações entre linhas de amarração de um mesmo sistema são diferentes para as soluções eletrolíticas e não-eletrolíticas, e são inteiramente empíricas, ou seja, não apresentam nenhum fundamento teórico.

## III.5.1 - SISTEMAS NÃO-ELETROLÍTICOS

Na literatura são encontradas diversas expressões que correlacionam linearmente os dados experimentais de equilíbrio líquido-líquido em sistemas não-eletrolíticos. Porém, segundo Alders (1955), o método proposto por Othmer e Tobias (1942) é o mais amplamente utilizado em virtude de fornecer os melhores resultados.

Segundo Othmer e Tobias (1942), existe uma dependência linear entre  $log((1-a_i)/a_i) = log((1-b_i)/b_i)$ , onde "a\_i" é a fração mássica do solvente 1 na fase rica em solvente 1 e "b<sub>i</sub>" é a fração mássica do solvente 2 na fase rica em solvente 2, ou seja :

$$\log\left(\frac{1-a_{1}}{a_{1}}\right) = A + B \log\left(\frac{1-b_{1}}{b_{1}}\right)$$
(III.24)

Para o caso particular deste trabalho,

a₁ ≡ fração mássica de Acetato de Etila na fase orgânica;
 b, ≡ fração mássica de Água na fase aquosa.

Uma vez obtidos os coeficientes angular (B) e linear (A) da equação (III.24), através do ajuste de dados experimentais, pode-se, conhecendo-se um valor qualquer de  $a_i$  ou  $b_i$ , obter-se o valor de  $b_i$  ou  $a_i$  correspondente e, com o auxílio da curva binodal do sistema, determinar as frações molares dos outros constituintes das fases conjugadas.

## III.5.2 - SISTEMAS ELETROLITICOS

Eisen e Joffe (1966) modificaram a equação de Hand, originalmente desenvolvida para sistemas ternários, de modo a poder representar sistemas quaternários, contendo 1 (um) eletrólito.

Eisen e Joffe expressaram os coeficientes linear e angular da correlação original de Hand, dada por,

$$\log \frac{a_0}{b_0} = \log A^* + B_0 \log \frac{c_0}{d_0} \qquad (III.25)$$

como funções lineares da concentração do sal (Xsa), isto é :

$$\log \frac{a_0}{b_0} = A_0 + B_0 \log \frac{c_0}{d_0}$$
(III.26)

onde,  $A_n = a + b X_{sa}$  (III.27)

 $B_{n} = c + d X_{so} \qquad (III.28)$ 

Para o sistema estudado neste trabalho :

a<sub>n</sub> ≡ fração mássica do etanol na fase orgânica,

- $b_0 \equiv$  fração mássica do Acetato de Etila na fase orgânica,
- $c_n \equiv$  fração mássica do Etanol na fase aquosa,
- $d_n \equiv$  fração mássica da Água na fase aquosa,
- Xeo concentração de sal na carga ( gramas de sal / 100 gramas de (sal + Água )),
- a, b, c, d  $\equiv$  constantes a serem determinadas.

As constantes a, b, c, d foram consideradas, originalmente, dependentes da natureza das espécies químicas presentes na solução e da temperatura, porém independentes da concentração do sal. Posteriormente, Rajendran e Srinivasan (1988) constataram que, em determinados sistemas, as constantes b e d podem variar, embora pouco, com a concentração do sal (X<sub>50</sub>).

## CAPITULO IV

## DETERMINAÇÃO EXPERIMENTAL DO EQUILÍBRIO LÍQUIDO-LÍQUIDO

## IV.1 - INTRODUÇÃO

O equilíbrio líquido-líquido pode ser completamente descrito através do conhecimento da temperatura e da composição das fases coexistentes. A pressão, como já visto, tem pouca influência no comportamento dos líquidos não sendo, portanto, considerada uma variável a ser medida.

A obtenção de dados experimentais, composições e temperaturas, de boa qualidade, torna possível a estimativa dos parâmetros de interação binária dos modelos para cálculo do coeficiente de atividade ( $\gamma$ ) ou da energia livre de Gibbs excedente (G<sup>E</sup>). A determinação destes parâmetros permite o uso dos modelos no projeto de equipamentos e na otimização dos processos de separação.

As técnicas experimentais usadas para a obtenção de dados de equilíbrio líquido-líquido são, em geral, muito simples se comparadas àquelas empregadas para o estudo do equilíbrio líquido-vapor.

Dentre as diversas metodologias utilizadas para а determinação do equilíbrio líquido-líquido, as mais comuns, para sistemas multicomponentes, são os métodos Analítico e da os (Turbidimetria). No Método Analítico Titulação obtém-se, simultâneamente, linhas de amarração e pontos da curva binodal. enquanto no método da titulação determina-se, apenas, a curva binodal do sistema. Ambos os métodos são conduzidos a uma temperatura constante.

Descrições detalhadas destes dois métodos, e de alguns outros, podem ser encontradas em Othmer et al. (1941), Alders (1955), Novák et al. (1987) e Bueno (1990).

A escolha do método a ser utilizado no trabalho experimental é função, basicamente, do sistema estudado e das experiências anteriores de outros pesquisadores.

Para o desenvolvimento deste trabalho escolheu-se o Método Analítico.

## IV.2 - METODOLOGIA EXPERIMENTAL

Neste trabalho foram determinados dados experimentais de equilíbrio líquido-líquido para o sistema ternário não-eletrolítico Acetato de Etila - Etanol - Água a 30, 40 e 50°C, e para o sistema eletrolítico Acetato de Etila - Etanol -Água - Acetato de Sódio às mesmas temperaturas. As concentrações de sal usadas na mistura inicial (carga) foram iguais a 2%, 5% e 10% em peso.

Para a obtenção dos dados experimentais dos sistemas não-eletrolíticos usou-se, sem modificações, o procedimento descrito no trabalho de Bueno (1990).Para os sistemas eletrolíticos. entretanto, foram feitas algumas pequenas adaptações neste procedimento. Apesar das diferenças, ambas as técnicas experimentais estão fundamentadas no método Analítico, que será descrito a seguir.

#### DESCRIÇÃO DO METODO ANALÍTICO

A mistura heterogênea é inicialmente colocada num recipiente fechado e agitada vigorosamente por um determinado tempo, a temperatura constante. Posteriormente, a mistura é posta para decantar até que ocorra completa separação das fases e a mistura atinja o equilíbrio. Em seguida, coletam-se amostras de ambas as fases, individualmente, e procede-se à análise, obtendo-se então uma linha de amarração. A determinação analítica pode ser feita por Cromatografia Gasosa ou por métodos físicos,

tais como, medidas de densidade e de índice de refração. Escolheu-se, para este trabalho, o uso da Cromatografia Gasosa.

Este procedimento é repetido diversas vezes, para misturas iniciais com diferentes composições, obtendo-se então várias linhas de amarração.

O aparato experimental necessário à utilização deste método é bastante simples, constituindo-se basicamente de um agitador magnético, um banho termostático, um recipiente fechado transparente, também denominado célula de equilíbrio, e um cromatógrafo à gás, caso a Cromatografia seja o método de análise escolhido.

A utilização deste procedimento, incluindo o uso da Cromatografia, exige a realização de diversas etapas preliminares que objetivam não apenas a viabilização do trabalho, como também a garantia da qualidade dos dados obtidos. Estas etapas são as seguintes :

- Determinação das condições operacionais do cromatógrafo e obtenção dos fatores de área (método da Padronização Externa);
- Cálculo do desvio-padrão característico das análises cromatográficas;
- Determinação dos tempos ótimos de agitação e decantação;
- 4. Calibração (teste) do equipamento;
- 5. Determinação da influência da presença do sal na Cromatografia Gasosa (exclusivo para os sistemas salinos).

Nos próximos itens se fará a análise de cada uma destas etapas, seguida de uma descrição detalhada do procedimento utilizado na determinação experimental dos dados de equilíbrio líquido-líquido dos sistemas eletrolíticos.

# IV.2.1 - CONDIÇÕES OPERACIONAIS DO CROMATÕGRAFO E FATORES DE ÁREA

A determinação das condições operacionais do cromatógrafo, incluindo a escolha da coluna cromatográfica e a obtenção dos fatores de área, são procedimentos básicos da técnica cromatográfica, sendo encontradas descrições detalhadas nas di versas publicações que versam sobre o assunto, a exemplo dos livros de McNair e Bonelli (1969) e de Ciola (1973), não sendo necessário portanto, descrevê-los neste trabalho.

Após os testes pertinentes, obteve-se as seguintes condições operacionais para o cromatógrafo :

| Coluna Cromatográfica - Porapak Q, 80/100 mesh         |
|--------------------------------------------------------|
| comprimento = 1,8 m                                    |
| diâmetro = 3,2 mm                                      |
| Gás de Arraste - $H_2$ ultra puro<br>vazão = 60 ml/min |
| Temperatura da Coluna = 160°C                          |
| Temperatura do Vaporizador = 180°C                     |
| Temperatura do Detetor = 200°C                         |
| Corrente dos Filamentos = 150 mA                       |
| Volume de Amostra Injetado = 2 $\mu$ l.                |

As especificações do equipamento encontram-se no Apêndice I.

O método cromatográfico com Padronização Externa, usado neste tabalho, requer o conhecimento dos fatores de área para o cálculo da composição da solução. Estes fatores nem sempre são constantes, podendo variar com a concentração da substância.

Neste trabalho, encontrou-se um valor constante para o fator de área da Água, enquanto o fator do Etanol variou muito pouco com a concentração, podendo ser considerado constante na faixa de trabalho adotada, que varia de 0% a 35% em mol, já considerando o possível aumento decorrente da adição do sal. Esta faixa restrita de concentrações deve-se ao fato do sistema Acetato de Etila Etanol - Água região possuir uma de imiscibilidade parcial relativamente pequena.

Para o Acetato de Etila, cuja faixa de concentrações de trabalho é bastante ampla, encontrou-se uma variação linear do fator de área com a concentração, conforme pode ser visto na Figura IV.1. Obteve-se uma expressão para esta reta , cujo coeficiente de correlação  $(r^2)$  foi igual a 0,997, revelando um ótimo ajuste.



Fig. IV.1 - Fator de Área do Acetato de Etila

Os fatores obtidos (em mol) encontram-se discriminados a seguir :

| Substância       | Fator de Área - F <sup>n</sup> ( mol ) |
|------------------|----------------------------------------|
| Água             | 2,640                                  |
| Etanol           | 1,358                                  |
| Acetato de Etila | -0,03706 * X + 0,9201                  |
|                  | CIV. 1)                                |

onde, X ≡ fração molar do Acetato de Etila.

Devido à variação do fator do Acetato de Etila com a concentração, foi necessário adotar um procedimento iterativo para determinar a composição da amostra. Este procedimento pode ser resumido nos seguintes passos :

- Arbitra-se um valor para o fator do Acetato de Etila (F<sup>n</sup><sub>ac</sub>),
- Calcula-se uma composição para a amostra usando o fator arbitrado, e o procedimento normal usado para fatores constantes,
- 3. Com a concentração calculada para o Acetato de Etila no item (2), utiliza-se a equação (IV.1), obtendo-se um novo fator para o Acetato de Etila, que é comparado com aquele do item (1).

O método converge quando a diferença entre os fatores calculados, para o Acetato de Etila, em duas iterações consecutivas for menor que uma dada tolerância.

No teste dos fatores, a diferença máxima entre as composições reais e as calculadas, usando os fatores, foi de  $\pm$  0,005.

# IV.2.2 - DESVIO-PADRÃO CARACTERÍSTICO DAS ANALISES CROMATOGRAFICAS

A determinação do desvio-padrão associado às frações molares obtidas por Cromatografia é uma etapa essencial, visto que, o mesmo pode ser utilizado como critério para eliminação de dados experimentais ruins, além de ser necessário ao método da Máxima Verossimilhança, usado para ajuste de parâmetros dos modelos.

O desvio-padrão foi calculado através dos dados do Apêndice II, obtendo-se um valor igual a <u>0,005</u>, em fração molar.

# IV. 2.3 - DETERMINAÇÃO DOS TEMPOS DE AGITAÇÃO E DECANTAÇÃO

tempos de agitação e decantação, fatores Ôs para que um sistema líquido atinja determinantes  $\circ$ das características físicas equilíbrio, dependem e químicas do sistema estudado. O tempo requerido para a completa separação das fases depende, por exemplo, das diferenças entre as densidades dos solventes e da tensão interfacial. Estes tempos podem variar de algumas horas até 2 dias, como é o caso de algumas misturas contento Hidrocarbonetos Água. A maioria das soluções, e entretanto, atinge o equilíbrio num curto espaço de tempo, apresentando-se transparentes e visivelmente separadas por uma interface após poucas horas de decantação.

Ôs agitação e tempos de decantação são determinados por tentativa e erro através de variações arbitrárias dos mesmos, iniciando-se com 1 hora para Após a agitação e a decantação, analisam-se cada. as fases e incrementa-se em mais 1 hora um dos dois tempos, repetindo-se o procedimento. Os tempos considerados ótimos são aqueles, a partir dos quais, *qualquer* 

incremento não produz alteração significativa na composição das fases do sistema. Diz-se, então, que estes são os tempos mínimos necessários para que o sistema atinja o equilíbrio.

Os resultados obtidos para o sistema Acetato de Etila - Etanol - Água, a 40 °C, foram :

> Tempo de Agitação = 3 horas. Tempo de Decantação = 3 horas.

Escolheu-se a temperatura de 40°C, por ser esta a única, dentre aquelas selecionadas para trabalho (30, 40 e 50°C), para a qual existiam dados na literatura, a partir de 1960, que pudessem ser usados para efeitos de comparação.

# IV. 2.4 - CALIBRAÇÃO DA CÉLULA DE EQUILÍBRIO

A calibração da célula de equilíbrio faz-se necessária, não apenas para comprovar o bom desempenho da mesma em relação ao sistema estudado, como também para verificar a adequabilidade da técnica experimental utilizada.

O procedimento de calibração da célula encontra-se descrito em Bueno (1990) e consiste, basicamente, em se tentar reproduzir dados publicados na literatura. Escolheu-se, para tanto, a reprodução dos dados de Mertl (1972a) para o sistema Acetato de Etila -Etanol - Água a 40°C.

Para efeitos de comparação, construiu-se um gráfico da distribuição do Etanol entre as fases aquosa e orgânica (Figura IV.2), contendo os dados de Mertl (1972a) e os dados experimentais determinados neste trabalho, que encontram-se na Tabela IV.5.



Fig. IV.2 - Distribuição do Etanol entre a Fase Aquosa e a Fase Orgânica para o Sistema Acetato de Etila - Etanol - Água a 40 °C.

IV.2 Observa-se Figura que existe na uma concordância bastante satisfatória entre os dados obtidos neste trabalho <u>.</u> aqueles publicados por Mertl, evidenciando, portanto, o bom desempenho da célula e a adequabilidade do procedimento experimental utilizado.

#### IV. 2.5 - CROMATOGRAFIA GASOSA NA PRESENÇA DE SAL

O Acetato de Sódio trihidratado (NaC, HaO, 3H, O), usado neste trabalho, funde-se a 58°C e perde as três (3) moléculas de Água a 120°C, voltando a se cristalizar, passando então à condição de Acetato de Sódio anidro cujo ponto de fusão é 324°C. Com base nestas informações, concluiu-se que o Acetato de Sódio presente na solução, ao ser injetado no cromatógrafo, onde as temperaturas do da coluna de 180 160°C. vaporizador e eram e respectivamente, deveria perder as moléculas de Agua e recristalizar, depositando-se na coluna cromatográfica.

As concentrações obtidas para os outros componentes da solução seriam, então, em base livre de sal.

Com o intuito de confirmar estas conclusões, e de verificar se haveria a necessidade de modificações, cuidados, ou proteção adicional do sistema, realizou-se uma pesquisa bibliográfica. Encontraram-se, porém, apenas algumas publicações que citavam o uso da análise cromatográfica para sistemas contendo sais sem. no tecerem maiores comentários à respeito. Como entanto, exemplo, pode-se citar o trabalho de Hashitani e Hirata (1969), que usaram uma coluna recheada com Porapak Q para analisar a fase líquida e a fase vapor dos sistemas Acetato de Metila - Metanol e Acetato de Etila - Etanol, ambos na presença de Acetato de Potássio. E, também, o trabalho de Rajendran e Srinivasan (1988), que usaram uma coluna Chromosorb 104 para analisar Metanol no sistema Acetato de Etila - Metanol - Água na presença dos sais NaCl, CaCl, e ZnCl,

Recorreu-se então a uma pesquisa de campo, visando obter informações sobre experiências práticas de outros pesquisadores que trabalhassem com sistemas salinos . Os resultados foram muito bons, revelando a existência de duas linhas de trabalho, descritas a seguir :

## i) COLUNA DE SACRIFÍCIO -

Este procedimento foi usado por Marinho (1991) e consiste em adaptar, no início da coluna cromatográfica, por meio de conexões, um trecho de coluna recheado com o mesmo enchimento coluna principal. Neste trecho, da com aproximadamente 10 cm de comprimento, ocorre o depósito do sal recristalizado. Após um determinado tempo, quando os desvios-padrão obtidos nos resultados das análises começam a exceder 0 desvio-padrão característico do sistema, este pequeno trecho é retirado para troca do recheio.

#### 11) TRECHO DE COLUNA SEM RECHEIO -

Aqui o procedimento é semelhante ao descrito no ítem (i), porém o trecho de coluna não contém recheio. O sal deposita-se nas paredes deste tubo vazio, cujo comprimento é fator determinante para que o sal não contamine o recheio da coluna cromatográfica.

O método ideal para a determinação do comprimento deste trecho é usar uma coluna de vidro sem recheio, e injetar diversas vezes a solução salina, observando a distância máxima, a partir dos injetores, na qual ainda ocorre deposição de sal.

A limpeza deste pequeno trecho de coluna sem recheio, pode ser feita com ar comprimido, ou lavagem com solvente adequado e secagem em estufa.

Optou-se, neste trabalho, pelo uso do trecho de coluna sem recheio (item ii), em virtude de ser mais econômico e fornecer a mesma proteção ao sistema. A seguir se fará uma descrição do procedimento utilizado, incluindo todos os testes realizados :

1. Adaptou-se, por meio de conexões, no início da coluna de 1,8 m de comprimento, recheada com Porapak Q, um trecho de coluna sem recheio com 30 cm de comprimento, que fazia um pequeno *loop*. As extremidades deste trecho foram fechadas com lã de vidro, especial para cromatografia.

2. Realizou-se testes para verificar se o espaço morto, advindo da adição deste trecho sem recheio, influenciaria o resultado das análises. Para tanto, preparou-se misturas de composições conhecidas e injetou-se no cromatógrafo usando a coluna Porapak Q, com e, sem o trecho vazio. Não foi observada nenhuma interferência provocada pela presença do trecho sem recheio, seja nos resultados analíticos, seja no tempo de retenção da amostra.

3. Com o intuito de determinar o tempo requerido entre duas lavagens consecutivas, e de verificar se o sal ficaria, realmente, retido na parte oca da coluna, e que, uma vez retido, não se decomporia em outras substâncias, preparou-se uma solução com concentrações conhecidas de Acetato de Etila, Etanol, Água e com 10 % em peso de Acetato de Sódio (máxima concentração de trabalho) e efetuou-se cerca de 100 injeções, o que equivaleria a uma semana de trabalho. Como resultados advindos deste teste, não foram constatadas concentrações cujos desvios-padrão fossem superiores àquele calculado no item IV.2.2, e nem picos extras nos cromatogramas. Concluiu-se então, que de fato o sal havia ficado retido no trecho vazio, não contaminando a coluna de Porapak Q, nem se decompondo em outros produtos. A princípio, adotou-se a sistemática de lavagens semanais para o trabalho com soluções contendo 10 % em peso de sal, e mensais para as concentrações de sal iguais a 2 % e 5% em peso.

Posteriormente, com o decorrer do trabalho usando as soluções mais concentradas (10 % em peso), constatou-se que o sal ficava retido, preferencialmente, no trecho da coluna que se localizava dentro do vaporizador de amostras e no septo de silicone. Após cada corrida, limpava-se este trecho com uma haste fina e trocava-se o septo, conseguindo-se, deste modo, prolongar o período entre duas lavagens para 15 dias.

4. Adotou-se o seguinte procedimento para limpeza do trecho de coluna sem recheio :

> a) desconexão do trecho e remoção da lã de vidro das extremidades,

- b) limpeza mecânica com ar comprimido,
- c) imersão em água fervente por 1 hora,
- d) imersão em acetona comercial por alguns minutos,
- e) secagem em estufa a 120 °C por 2 horas,
- f) remontagem na coluna cromatográfica.

Outras questões surgiram no decorrer do trabalho, não estando porém, relacionadas à presença do sal no cromatógrafo, mas sim ao fato de se usar um sal hidratado num sistema que contém Água, sendo esta última, cuja concentração se deseja uma das substâncias fato eram : 1) haveria de determinar. As questões moléculas Água liberação de todas as três de de hidratação do sal durante a injeção no cromatógrafo ? 2) haveria alguma diferença entre secar previamente o sal ou somar matematicamente a Água de hidratação à Água do sistema ? Com o intuito de responder a estas questões, realizou-se um teste que consistiu, basicamente, no preparo de duas soluções com composições conhecidas de Etanol, Água e Acetato de Sódio. A primeira solução foi preparada com Acetato de Sódio previamente desidratado numa estufa a 120°C, durante 3 horas. A segunda solução continha Acetato de Sódio hidratado, sendo que а composição da solução foi calculada de duas maneiras : (a) somando e (b) não somando a Água de hidratação do sal à Água do sistema. Os resultados obtidos estão resumidos na Tabela IV.1, a seguir :

Tabela IV.1 -Desvio Absoluto entre as Frações Mássicas Calculada e Experimental, da Água

| Condição                                        | (X <sub>calc</sub> - X) |
|-------------------------------------------------|-------------------------|
| Sal Seco                                        | + 0,001                 |
| Sal hidratado,<br>usando cálculo<br>do tipo (a) | + 0,001                 |
| Sal hidratado,<br>usando cálculo<br>do tipo (b) | + 0,216                 |

Da Tabela IV.1 conclui-se que, de fato, as moléculas de Água presas na estrutura cristalina do sal são liberadas, nas condições operacionas do cromatógrafo, incorporando-se à massa de Água do sistema. Esta conclusão é evidenciada pela queda do desvio absoluto de + 0,216 para + 0,001 guando, para efeitos de cálculo, soma-se a Água de hidratação à Água do sistema. Ainda nesta tabela, observa-se que é indiferente secar o sal, uma vez que o desvio obtido com o sal anidro, + 0,001, é idêntico aquele obtido com o sal hidratado ao somar-se a Água de hidratação à Água do sistema, +0,001.

# IV.2.6 - PROCEDIMENTO EXPERIMENTAL PARA OS SISTEMAS ELETROLÍTICOS

O Método Analítico para determinação de dados experimentais de equilíbrio líquido-líquido, aplicado aos sistemas eletrolíticos, envolve etapas de pesagem, agitação, decantação e análise, sendo semelhante aquele utilizado por Marinho (1991).

O aparato experimental utilizado constituiu-se, basicamente, dos seguintes equipamentos :

- célula de equilíbrio,

- banho termostático,

- termômetro graduado,

- agitador magnético,

- estufa,

- balança analítica,

- cromatógrafo à gás, registrador e integrador.

O desenho esquemático da montagem experimental básica encontra-se na Figura IV.3, e as especificações dos equipamentos constam do Apêndice I deste trabalho.

A seguir se fará uma descrição da técnica experimental utilizada.

# 1) PREPARAÇÃO DA MISTURA INICIAL (CARGA) PARA A ALIMENTAÇÃO DA CÉLULA DE EQUILÍBRIO -

A solução heterogênea, cuja composição das fases líquidas desejava-se determinar, era alimentada à célula de equilíbrio. Tal equipamento, projetado por Bueno (1990) e Andrade (1991), foi confeccionado em vidro pirex e possui capacidade para 200 cm<sup>3</sup> de solução. O desenho esquemático do mesmo encontra-se na Figura IV.4.

A composição global da mistura heterogênea, a ser alimentada à célula, era estimada tomando-se por base o diagrama ternário levantado por Mertl (1972a) para o sistema Acetato de Etila - Etanol - Água a 40°C, e a composição de sal desejada na mistura inicial (carga). Com base nestas informações determinava-se, aproximadamente, a massa de cada componente que deveria ser alimentada à célula. Este procedimento era repetido para cada linha de amarração, tomando-se o cuidado para que não apenas a solução ocupasse todo o volume, minimizando também a formação de vapores, como 3 interface entre as duas fases se localizasse à meia altura da célula, possibilitando, deste modo, a retirada amostras, tanto pelo septo superior quanto pelo de inferior, sem haver perturbação das fases em equilíbrio.

O equilibrio líquido-líquido é, normalmente, muito sensível a pequenas impurezas dos componentes da solução, obrigando ao uso de reagentes com alto grau de pureza. Deste modo, utilizou-se Etanol e Acetato de Etila marca Merck, Água destilada e P.A. (por analysi) da deionizada, e Acetato de Sódio trihidratado P.A., também da marca Merck, tendo sido mantido num dessecador para evitar absorção de umidade do ambiente. Antes do preparo da carga de cada linha de amarração tomava-se o cuidado verificar, de por Cromatografia, а pureza de cada reagente. Considerava-se aceitável teores de impureza da ordem de 0,1% em área para o Etanol e 0,2% em área para o Acetato de Etila, que tinha como principal contaminante a Água.



(1) banho termostático
(2) agitador magnético
(3) célula de equilíbrio
(4) termômetro
(5) cromatógrafo à gás
(6) integrador e registrador

Fig. IV.3 - Esquema da Montagem Experimental



- (i) conexão para termômetro
- (2) saída de fluido térmico
- (3) camisa para circulação de fluido térmico
- (4) interior da célula
- (5) entrada de fluido térmico
- (6) juntas esmerilhadas
- (7) capilar
- (8) coletor de amostra da fase leve
- (9) coleior de amostra da fase pesada

Fig. IV.4 - Esquema da Célula de Equilíbrio Líquido -Líquido (Fonte : Bueno, 1990)

#### 11) PESAGEM -

Com base na estimativa inicial da quantidade de cada componente que deveria ser alimentada à célula, efetuava-se a pesagem das substâncias em uma balança analítica obtendo-se com precisão a carga da célula. No Apêndice III encontram-se tabelas contendo as cargas que geraram as linhas de amarração deste trabalho.

Esta pesagem é muito importante, visto que, as composições obtidas por Cromatografia são em base livre de sal, sendo que a concentração do sal em cada fase em equilíbrio é determinada, posteriormente, por balanço material, conforme será descrito no ítem V.1.

Para cada carga eram, normalmente, tirados dados nas três temperaturas de trabalho, 30, 40 e 50°C, evitando-se gastos desnecessários de tempo e de reagentes. Observa-se, porém, que os procedimentos descritos a partir do ítem (iii) eram repetidos para cada nova temperatura.

Antes de recarregar a célula, a mesma era lavada abundantemente com Água destilada e Acetona, e secada com ar comprimido.

### iii) AJUSTE DA TEMPERATURA DA CÉLULA -

Após a alimentação da célula, vedava-se com filme de Teflon e borracha de Silicone a tampa da mesma e a conexão onde era, previamente, adaptado um termômetro. Este procedimento visava eliminar qualquer possibilidade de perda de solução durante as etapas seguintes de agitação e de decantação. O termômetro de mercúrio servia para indicar a temperatura da solução no interior da célula de equilíbrio, possuindo escala de O a 150°C e divisões de 1,0 em 1,0°C, tendo sido calibrado usando-se um termômetro padrão com precisão de 0,1°C.

solução Á temperatura da era mantida da circulação de constante através Água pelo encamisamento da célula. O controle de temperatura da Água, bem como a sua circulação, eram efetuados através de um banho term stático, ligado, por meio de mangueiras à célula de equilíbrio. A precisão do de Silicone. controlador de temperatura era de 0,1°C, tanto no banho com refrigeração utilizado para as medidas a 30°C, quanto no banho sem refrigeração empregado para a obtenção dos dados a 40 e 50°C.

# iv) AGITAÇÃO E DECANTAÇÃO -

Estando a temperatura da célula no valor desejado, prosseguia-se o trabalho experimental agitando-se a solução por 3 (três) horas através de um agitador magnético. Após este período, desligava-se o agitador, permitindo-se que a solução decantasse por, no mínimo, 3 (três) horas.

#### V) ANÁLISES -

А etapa final consistia em retirar se amostras da fase da fase inferior, superior 0 individualmente, usando-se os coletores capilares lateraís da célula, e analisá-las no Cromatógrafo.

As amostras, no mínimo três de 2  $\mu$ l para cada fase, eram coletadas utilizando-se uma micro-seringa de 5  $\mu$ l, previamente aquecida na estufa, por poucos minutos, a uma temperatura 5°C acima da temperatura do sistema. Este procedimento evitava que ocorresse separação de fases dentro da seringa, devido à diferença entre a temperatura de equilíbrio da célula e a temperatura ambiente, o que poderia acarretar resultados errôneos.

As análises eram efetuadas num cromatógrafo à gás com detetor de condutividade térmica . Cada análise levava 12 minutos para ser efetivada. Os cromatogramas eram obtidos através de um registrador potenciométrico de um canal, e as áreas eram fornecidas por um integrador eletrônico programável. As especificações destes equipamentos encontram-se no Apêndice I.

Um cuidado todo especial era dedicado à micro-seringa, uma vez que, devido à presença do sal, havia grande tendência a entupimentos. Após cada injeção lavava-se a mesma com Água e Acetona, usando-se uma trompa de vácuo que possibilitava a circulação abundante destas substâncias pela seringa.

Foram realizadas análises gravimétricas para determinação do teor de sal em 3 (três) linhas de amarração, com o intuito de verificar se as composições de sal, em ambas as fases, calculadas por balanço material, descrito no item V.1 próximo, estavam corretas. Tais análises eram levadas a termo através da pesagem, em balança analítica, de macro-amostras (3 ml) de cada fase, e posterior secagem em estufa, inicialmente a 80°C, e posteriormente a 120°C, até que a massa de cada amostra deixasse de variar (mínimo de 3 horas). A secagem era feita em duas temperaturas diferentes para evitar a ocorrência de perdas de sal, devido à rápida evaporação que o Etanol (ponto de ebulição =78,4°C) e o Acetato de Etila (ponto de ebulição=77,1°C) apresentariam a 120°C, carreando sal com os seus vapores. Após a secagem, os frascos de amostras contendo apenas sal eram pesados novamente, determinando-se deste modo, a porcentagem em peso de sal em cada fase.

## IV.3 - RESULTADOS ANALÍTICOS

Nas Tabelas IV.2 a IV.7 encontram-se os dados obtidos experimentalmente para o sistema ternário básico Acetato de Etila - Etanol - Água a 30, 40 e 50°C. As composições são fornecidas em fração molar e em fração mássica. As Tabelas IV.8 a IV.25 contém os dados levantados para os três sistemas quaternários eletrolíticos (2%, 5% e 10% em peso de sal) a 30, 40 e 50°C. As composições também são apresentadas em frações molares e em frações mássicas, e estão em base livre de sal.

No próximo item se fará o tratamento destes dados experimentais, analisando-se, inclusive, a qualidade dos mesmos.

Tabela IV.2 - Linhas de Amarração Experimentais em Fração Molar

| SISTEMA : ACETATO DE ETILA (1)- ETANOL (2)- ÁGUA (3)<br>TEMPERATURA : 30 °C |                |       |       |             |       |       |  |
|-----------------------------------------------------------------------------|----------------|-------|-------|-------------|-------|-------|--|
| 5 F                                                                         | FASE ORGANI CA |       |       | FASE AQUOSA |       |       |  |
| 140.                                                                        | (1)            | (2)   | (3)   | (1)         | යො    | (3)   |  |
| 1                                                                           | 0,675          | 0,077 | 0,248 | 0,020       | 0,036 | 0,944 |  |
| 2                                                                           | 0,664          | 0,083 | 0,253 | 0,021       | 0,038 | 0,941 |  |
| з                                                                           | 0,618          | 0,095 | 0,287 | 0,022       | 0,044 | 0,934 |  |
| 4                                                                           | 0,552          | 0,121 | 0,327 | 0,024       | 0,056 | 0,920 |  |
| 5                                                                           | 0,517          | 0,125 | 0,358 | 0,026       | 0,058 | 0,916 |  |
| 6                                                                           | 0,394          | 0,150 | 0,456 | 0,035       | 0,074 | 0,891 |  |

Tabela IV.3 - Linhas de Amarração Experimentais em Fração Mássica

| SISTEMA : ACETATO DE ETILA (1)- ETANOL (2)- ÁGUA (3)<br>TEMPERATURA : 30 °C |                |       |       |             |       |       |  |
|-----------------------------------------------------------------------------|----------------|-------|-------|-------------|-------|-------|--|
| No                                                                          | FASE ORGANI CA |       |       | FASE AQUOSA |       |       |  |
|                                                                             | (1)            | (2)   | (3)   | (1)         | යා    | ദ്രാ  |  |
| 1                                                                           | 0,882          | 0,052 | 0,066 | 0,085       | 0,081 | 0,834 |  |
| 2                                                                           | 0,875          | 0,057 | 0,068 | 0,088       | 0,086 | 0,826 |  |
| З                                                                           | 0,851          | 0,068 | 0,081 | 0,093       | 0,098 | 0,809 |  |
| 4                                                                           | 0,809          | 0,093 | 0,098 | 0,101       | 0,121 | 0,778 |  |
| 5                                                                           | 0,789          | 0,099 | 0,112 | 0,106       | 0,125 | 0,769 |  |
| 6                                                                           | 0,696          | 0,139 | 0,165 | 0,137       | 0,151 | 0,712 |  |

| SISTEMA : ACETATO DE ETILA (1)- ETANOL (2)- ÁGUA (3)<br>TEMPERATURA : 40 °C |               |       |       |             |       |       |
|-----------------------------------------------------------------------------|---------------|-------|-------|-------------|-------|-------|
| No                                                                          | FASE ORGANICA |       |       | FASE AQUOSA |       |       |
|                                                                             | (1)           | (2)   | (3)   | (1)         | (2)   | (3)   |
| 1                                                                           | 0,736         | 0,045 | 0,219 | 0,016       | 0,020 | 0,964 |
| 2                                                                           | 0,632         | 0,080 | 0,288 | 0,020       | 0,034 | 0,946 |
| З                                                                           | 0,621         | 0,087 | 0,292 | 0,020       | 0,037 | 0,943 |
| 4                                                                           | 0,573         | 0,102 | 0,325 | 0,022       | 0,043 | 0,935 |
| 5                                                                           | 0,554         | 0,107 | 0,339 | 0,022       | 0,046 | 0,932 |
| 6                                                                           | 0,506         | 0,125 | 0,369 | 0,025       | 0,053 | 0,922 |
| 7                                                                           | 0,360         | 0,148 | 0,492 | 0,036       | 0,071 | 0,893 |

Tabela IV.4 - Linhas de Amarração Experimentais em Fração Molar

Tabela IV.5 - Linhas de Amarração Experimentais em Fração Mássica

| SISTEMA : ACETATO DE ETILA (1)- ETANOL (2)- ÁGUA (3)<br>TEMPERATURA : 40 °C |               |       |       |             |       |       |  |  |
|-----------------------------------------------------------------------------|---------------|-------|-------|-------------|-------|-------|--|--|
| No                                                                          | FASE ORGANICA |       |       | FASE AQUOSA |       |       |  |  |
|                                                                             | (1)           | (2)   | (3)   | (1)         | (2)   | (3)   |  |  |
| 1                                                                           | 0,915         | 0,029 | 0,056 | 0,072       | 0,046 | 0,882 |  |  |
| г                                                                           | 0,860         | 0,058 | 0,082 | 0,085       | 0,078 | 0,837 |  |  |
| З                                                                           | 0,855         | 0,063 | 0,082 | 0,088       | 0,082 | 0,830 |  |  |
| 4                                                                           | 0,827         | 0,077 | 0,096 | 0,095       | 0,094 | 0,811 |  |  |
| 5                                                                           | 0,815         | 0,083 | 0,102 | 0,092       | 0,101 | 0,807 |  |  |
| 6                                                                           | 0,782         | 0,101 | 0,117 | 0,105       | 0,115 | 0,780 |  |  |
| 7                                                                           | 0,669         | 0,144 | 0,187 | 0,141       | 0,145 | 0,714 |  |  |

| SISTEMA : ACETATO DE ETILA (1)- ETANOL (2)- ÁGUA (3)<br>TEMPERATURA : 50 °C |       |           |       |             |       |       |  |
|-----------------------------------------------------------------------------|-------|-----------|-------|-------------|-------|-------|--|
| Na                                                                          | FAS   | SE ORGANI | [ CA  | FASE AQUOSA |       |       |  |
| 140.                                                                        | (1)   | (2)       | (3)   | (1)         | (2)   | (3)   |  |
| 1                                                                           | 0,597 | 0,086     | 0,317 | 0,019       | 0,034 | 0,947 |  |
| s                                                                           | 0,575 | 0,099     | 0,326 | 0,021       | 0,036 | 0,943 |  |
| З                                                                           | 0,512 | 0,108     | 0,380 | 0,023       | 0,042 | 0,935 |  |
| 4                                                                           | 0,455 | 0,127     | 0,418 | 0,027       | 0,053 | 0,920 |  |
| 5                                                                           | 0,328 | 0,144     | 0,528 | 0,038       | 0,069 | 0,893 |  |

Tabela IV.6 - Linhas de Amarração Experimentais em Fração Molar

Tabela IV.7 - Linhas de Amarração Experimentais em Fração Mássica

| SISTEMA : ACETATO DE ETILA (1)- ETANOL (2)- ÁGUA (3)<br>TEMPERATURA : 50 °C |                 |       |       |             |       |       |  |
|-----------------------------------------------------------------------------|-----------------|-------|-------|-------------|-------|-------|--|
| λr                                                                          | F'ASE ORGÂNI CA |       |       | FASE AQUOSA |       |       |  |
| . no.                                                                       | (1)             | (2)   | (3)   | (1)         | යා    | (3)   |  |
| 1                                                                           | 0,844           | 0,064 | 0,092 | 0,084       | 0,076 | 0,840 |  |
| 2                                                                           | 0,829           | 0,075 | 0,096 | 0,089       | 0,082 | 0,829 |  |
| З                                                                           | 0,792           | 0,088 | 0,120 | 0,096       | 0,092 | 0,812 |  |
| 4                                                                           | 0,749           | 0,110 | 0,141 | 0,109       | 0,115 | 0,776 |  |
| 5                                                                           | 0,641           | 0,147 | 0,212 | 0,147       | 0,141 | 0,711 |  |

Tabela IV.8 - Linhas de Amarração Experimentais em Fração Molar e Base Livre de Sal (Sistema com 2% em peso de Sal na Carga)

| SISTEMA : ACETATO DE ETILA (1)- ETANOL (2)- ÁGUA (3)-<br>ACETATO DE SÓDIO<br>TEMPERATURA : 30 °C |       |           |       |             |       |       |  |  |
|--------------------------------------------------------------------------------------------------|-------|-----------|-------|-------------|-------|-------|--|--|
| No                                                                                               | FAS   | SE ORGANI | [ CA  | FASE AQUOSA |       |       |  |  |
| NO.                                                                                              | (1)   | (2)       | (3)   | (1)         | (2)   | (3)   |  |  |
| 1                                                                                                | 0,764 | 0,047     | 0,189 | 0,013       | 0,022 | 0,965 |  |  |
| S                                                                                                | 0,692 | 0,080     | 0,228 | 0,014       | 0,034 | 0,952 |  |  |
| З                                                                                                | 0,579 | 0,125     | 0,296 | 0,017       | 0,051 | 0,932 |  |  |
| 4                                                                                                | 0,495 | 0,157     | 0,348 | 0,019       | 0,062 | 0,919 |  |  |
| 5                                                                                                | 0,398 | 0,186     | 0,416 | 0,023       | 0,076 | 0,901 |  |  |

Tabela IV.9 - Linhas de Amarração Experimentais em Fração <u>Mássica</u> e Base Livre de Sal (Sistema com 2% em peso de Sal na Carga)

| SISTEMA : ACETATO DE ETILA (1)- ETANOL (2)- ÁGUA (3)-<br>ACETATO DE SÓDIO<br>TEMPERATURA : 30 °C |       |           |       |       |             |       |  |  |
|--------------------------------------------------------------------------------------------------|-------|-----------|-------|-------|-------------|-------|--|--|
| No                                                                                               | FAS   | SE ORGÂNI | [ CA  | F     | FASE AQUOSA |       |  |  |
| <i>н</i> о.                                                                                      | (1)   | (2)       | (3)   | (1)   | (2)         | (3)   |  |  |
| 1                                                                                                | 0,923 | 0,030     | 0,047 | 0,060 | 0,052       | 0,888 |  |  |
| 2                                                                                                | 0,887 | 0,053     | 0,060 | 0,063 | 0,079       | 0,858 |  |  |
| З                                                                                                | 0,821 | 0,093     | 0,086 | 0,073 | 0,113       | 0,814 |  |  |
| 4                                                                                                | 0,764 | 0,126     | 0,110 | 0,078 | 0,135       | 0,787 |  |  |
| 5                                                                                                | 0,686 | 0,168     | 0,146 | 0,092 | 0,160       | 0,748 |  |  |

Tabela IV.10- Linhas de Amarração Experimentais em Fração Molar e Base Livre de Sal (Sistema com 2% em peso de Sal na Carga)

| SISTEMA : ACETATO DE ETILA (1)- ETANOL (2)- ÁGUA (3)-<br>ACETATO DE SÓDIO<br>TEMPERATURA : 40 °C |       |           |       |             |       |       |  |  |
|--------------------------------------------------------------------------------------------------|-------|-----------|-------|-------------|-------|-------|--|--|
| Na                                                                                               | FAS   | SE ORGANI | I CA  | FASE AQUOSA |       |       |  |  |
| <i>NO</i> .                                                                                      | (1)   | (2)       | (3)   | (1)         | (2)   | (3)   |  |  |
| 1                                                                                                | 0,741 | 0,051     | 0,208 | 0,012       | 0,021 | 0,967 |  |  |
| З                                                                                                | 0,662 | 0,086     | 0,252 | 0,014       | 0,032 | 0,954 |  |  |
| З                                                                                                | 0,547 | 0,130     | 0,323 | 0,017       | 0,047 | 0,936 |  |  |
| 4                                                                                                | 0,464 | 0,158     | 0,378 | 0,019       | 0,059 | 0,922 |  |  |
| 5                                                                                                | 0,374 | 0,185     | 0,441 | 0,022       | 0,071 | 0,907 |  |  |

Tabela IV.11- Linhas de Amarração Experimentais em Fração <u>Mássica</u> e Base Livre de Sal (Sistema com 2% em peso de Sal na Carga)

| SISTEMA : ACETATO DE ETILA (1)- ETANOL (2)- ÁGUA (3)-<br>ACETATO DE SODIO<br>TEMPERATURA : 40 °C |       |       |       |       |       |       |
|--------------------------------------------------------------------------------------------------|-------|-------|-------|-------|-------|-------|
| FASE ORGANICA FASE AQUOSA                                                                        |       |       |       |       |       | SA    |
| мо.<br>                                                                                          | (1)   | (2)   | (3)   | (1)   | (2)   | (ဒ)   |
| 1                                                                                                | 0,915 | 0,033 | 0,052 | 0,056 | 0,050 | 0,894 |
| 5                                                                                                | 0,873 | 0,059 | 0,068 | 0,062 | 0,074 | 0,864 |
| З                                                                                                | 0,803 | 0,010 | 0,097 | 0,073 | 0,106 | 0,821 |
| 4                                                                                                | 0,744 | 0,132 | 0,124 | 0,079 | 0,129 | 0,792 |
| 5                                                                                                | 0,667 | 0,172 | 0,161 | 0,090 | 0,152 | 0,758 |

Tabela IV.12- Linhas de Amarração Experimentais em Fração <u>Molar</u> e Base Livre de Sal (Sistema com 2% em peso de Sal na Carga)

| SISTEMA : ACETATO DE ETILA (1)- ETANOL (2)- ÁGUA (3)-<br>ACETATO DE SÓDIO<br>TEMPERATURA : 50 °C |       |       |       |       |       |       |  |
|--------------------------------------------------------------------------------------------------|-------|-------|-------|-------|-------|-------|--|
| FASE ORGANICA FASE AQUOSA                                                                        |       |       |       |       |       | SA    |  |
| NO.                                                                                              | (1)   | (2)   | (3)   | (1)   | (2)   | ဒော   |  |
| 1                                                                                                | 0,712 | 0,055 | 0,233 | 0,012 | 0,020 | 0,968 |  |
| 2                                                                                                | 0,629 | 0,091 | 0,279 | 0,014 | 0,030 | 0,956 |  |
| З                                                                                                | 0,505 | 0,133 | 0,362 | 0,017 | 0,046 | 0,937 |  |
| 4                                                                                                | 0,440 | 0,159 | 0,401 | 0,019 | 0,056 | 0,925 |  |
| 5                                                                                                | 0,359 | 0,186 | 0,455 | 0,020 | 0,068 | 0,912 |  |

Tabela IV.13- Linhas de Amarração Experimentais em Fração <u>Mássica</u> e Base Livre de Sal (Sistema com 2% em peso de Sal na Carga)

| SISTEMA : ACETATO DE ETILA (1)- ETANOL (2)- ÁGUA (3)-<br>ACETATO DE SÓDIO<br>TEMPERATURA : 50 °C |               |       |       |             |       |       |  |
|--------------------------------------------------------------------------------------------------|---------------|-------|-------|-------------|-------|-------|--|
| Na                                                                                               | FASE ORGÂNICA |       |       | FASE AQUOSA |       |       |  |
| no.                                                                                              | (1)           | යා    | (3)   | (1)         | (2)   | (3)   |  |
| 1                                                                                                | 0,904         | 0,036 | 0,060 | 0,054       | 0,046 | 0,900 |  |
| 5                                                                                                | 0,857         | 0,065 | 0,078 | 0,061       | 0,071 | 0,868 |  |
| 3                                                                                                | 0,779         | 0,107 | 0,114 | 0,074       | 0,103 | 0,823 |  |
| 4                                                                                                | 0,727         | 0,138 | 0,135 | 0,081       | 0,123 | 0,796 |  |
| 5                                                                                                | 0,654         | 0,177 | 0,169 | 0,084       | 0,146 | 0,770 |  |

Tabela IV.14- Linhas de Amarração Experimentais em Fração Molar e Base Livre de Sal (Sistema com 5% em peso de Sal na Carga)

| SISTEMA : ACETATO DE ETILA (1)- ETANOL (2)- ÁGUA (3)-<br>ACETATO DE SÓDIO<br>TEMPERATURA : 30 °C |               |       |       |             |       |       |  |
|--------------------------------------------------------------------------------------------------|---------------|-------|-------|-------------|-------|-------|--|
| No                                                                                               | FASE ORGÂNICA |       |       | FASE AQUOSA |       |       |  |
| ло.                                                                                              | (1)           | යො    | (3)   | (1)         | (2)   | (3)   |  |
| 1                                                                                                | 0,784         | 0,048 | 0,168 | 0,009       | 0,020 | 0,971 |  |
| З                                                                                                | 0,701         | 0,088 | 0,211 | 0,010       | 0,033 | 0,957 |  |
| З                                                                                                | 0,586         | 0,140 | 0,274 | 0,012       | 0,047 | 0,941 |  |
| 4                                                                                                | 0,479         | 0,187 | 0,334 | 0,013       | 0,060 | 0,927 |  |
| 5                                                                                                | 0,435         | 0,207 | 0,358 | 0,014       | 0,066 | 0,920 |  |

Tabela IV.15- Linhas de Amarração Experimentais em Fração <u>Mássica</u> e Base Livre de Sal (Sistema com 5% em peso de Sal na Carga)

| SISTEMA : ACETATO DE ETILA (1)- ETANOL (2)- AGUA (3)-<br>ACETATO DE SÓDIO<br>TEMPERATURA : 30 °C |               |       |       |             |       |       |
|--------------------------------------------------------------------------------------------------|---------------|-------|-------|-------------|-------|-------|
| Na                                                                                               | FASE ORGÂNICA |       |       | FASE AQUOSA |       |       |
| NO.                                                                                              | (1)           | (2)   | (3)   | (1)         | (2)   | (3)   |
| 1                                                                                                | 0,930         | 0,030 | 0,040 | 0,043       | 0,048 | 0,909 |
| 2                                                                                                | 0,887         | 0,058 | 0,055 | 0,046       | 0,078 | 0,876 |
| Э                                                                                                | 0,820         | 0,102 | 0,078 | 0,052       | 0,108 | 0,840 |
| 4                                                                                                | 0,743         | 0,151 | 0,106 | 0,056       | 0,135 | 0,809 |
| 5                                                                                                | 0,705         | 0,176 | 0,119 | 0,058       | 0,147 | 0,795 |
Tabela IV.16- Linhas de Amarração Experimentais em Fração Molar e Base Livre de Sal (Sistema com 5% em peso de Sal na Carga)

| SISTEMA : ACETATO DE ETILA (1)- ETANOL (2)- ÁGUA (3)-<br>ACETATO DE SÓDIO<br>TEMPERATURA : 40 °C |       |           |            |       |             |       |  |  |
|--------------------------------------------------------------------------------------------------|-------|-----------|------------|-------|-------------|-------|--|--|
| No                                                                                               | FAS   | SE ORGANI | e organica |       | FASE AQUOSA |       |  |  |
| NO.                                                                                              | C10   | (2)       | (3)        | (1)   | (2)         | (3)   |  |  |
| 1                                                                                                | 0,763 | 0,050     | 0,187      | 0,009 | 0,018       | 0,973 |  |  |
| З                                                                                                | 0,672 | 0,093     | 0,235      | 0,010 | 0,031       | 0,959 |  |  |
| З                                                                                                | 0,557 | 0,145     | 0,298      | 0,012 | 0,046       | 0,942 |  |  |
| 4                                                                                                | 0,458 | 0,189     | 0,353      | 0,013 | 0,057       | 0,930 |  |  |
| 5                                                                                                | 0,411 | 0,206     | 0,383      | 0,014 | 0,063       | 0,923 |  |  |

Tabela IV.17- Linhas de Amarração Experimentais em Fração Mássica e Base Livre de Sal (Sistema com 5% em peso de Sal na Carga)

| SISTEMA : ACETATO DE ETILA (1)- ETANOL (2)- ÁGUA (3)-<br>ACETATO DE SÓDIO<br>TEMPERATURA : 40 °C |               |       |       |             |       |       |  |  |
|--------------------------------------------------------------------------------------------------|---------------|-------|-------|-------------|-------|-------|--|--|
| Na                                                                                               | FASE ORGANICA |       |       | FASE AQUOSA |       |       |  |  |
| NO.                                                                                              | (1)           | (2)   | (3)   | (1)         | (2)   | (3)   |  |  |
| 1                                                                                                | 0,922         | 0,032 | 0,046 | 0,041       | 0,043 | 0,916 |  |  |
| 5                                                                                                | 0,874         | 0,064 | 0,062 | 0,045       | 0,073 | 0,882 |  |  |
| З                                                                                                | 0,803         | 0,109 | 0,088 | 0,051       | 0,105 | 0,844 |  |  |
| 4                                                                                                | 0,728         | 0,157 | 0,115 | 0,057       | 0,128 | 0,815 |  |  |
| 5                                                                                                | 0,689         | 0,180 | 0,131 | 0,059       | 0,140 | 0,801 |  |  |

Tabela IV.18- Linhas de Amarração Experimentais em Fração Molar e Base Livre de Sal (Sistema com 5% em peso de Sal na Carga)

| SISTEMA : ACETATO DE ETILA (1)- ETANOL (2)- ÁGUA (3)-<br>ACETATO DE SÓDIO<br>TEMPERATURA : 50 °C |                |       |       |             |                |       |  |  |
|--------------------------------------------------------------------------------------------------|----------------|-------|-------|-------------|----------------|-------|--|--|
| No                                                                                               | FASE ORGANI CA |       |       | FASE AQUOSA |                |       |  |  |
|                                                                                                  | (1)            | (2)   | (3)   | (1)         | (2)            | (3)   |  |  |
| 1                                                                                                | 0,733          | 0,054 | 0,213 | 0,009       | 0,017          | 0,974 |  |  |
| 2                                                                                                | 0,640          | 0,099 | 0,261 | 0,010       | 0,029          | 0,961 |  |  |
| З                                                                                                | 0,533          | 0,148 | 0,319 | 0,012       | 0,043          | 0,945 |  |  |
| 4                                                                                                | 0,438          | 0,189 | 0,373 | 0,014       | 0, <b>0</b> 55 | 0,931 |  |  |
| 5                                                                                                | 0,390          | 0,209 | 0,401 | 0,013       | 0,060          | 0,927 |  |  |

Tabela IV.19- Linhas de Amarração Experimentais em Fração Mássica e Base Livre de Sal (Sistema com 5% em peso de Sal na Carga)

| SISTEMA : ACETATO DE ETILA (1)- ETANOL (2)- ÁGUA (3)-<br>ACETATO DE SÓDIO<br>TEMPERATURA : 50 °C |               |       |       |             |       |       |  |  |
|--------------------------------------------------------------------------------------------------|---------------|-------|-------|-------------|-------|-------|--|--|
| No.                                                                                              | FASE ORGANICA |       |       | FASE AQUOSA |       |       |  |  |
|                                                                                                  | (1)           | (2)   | (3)   | (1)         | (2)   | (3)   |  |  |
| 1                                                                                                | 0,911         | 0,035 | 0,054 | 0,039       | 0,042 | 0,919 |  |  |
| З                                                                                                | 0,858         | 0,070 | 0,072 | 0,046       | 0,069 | 0,885 |  |  |
| З                                                                                                | 0,788         | 0,115 | 0,097 | 0,052       | 0,099 | 0,849 |  |  |
| 4                                                                                                | 0,714         | 0,162 | 0,124 | 0,059       | 0,123 | 0,818 |  |  |
| 5                                                                                                | 0,671         | 0,188 | 0,141 | 0,054       | 0,134 | 0,812 |  |  |

Tabela IV.20- Linhas de Amarração Experimentais em Fração Molar e Base Livre de Sal (Sistema com 10% em peso de Sal na Carga)

| SISTEMA : ACETATO DE ETILA (1)- ETANOL (2)- ÁGUA (3)-<br>ACETATO DE SÓDIO<br>TEMPERATURA : 30 °C |               |       |       |             |       |       |  |  |  |
|--------------------------------------------------------------------------------------------------|---------------|-------|-------|-------------|-------|-------|--|--|--|
| No.                                                                                              | FASE ORGANICA |       |       | FASE AQUOSA |       |       |  |  |  |
|                                                                                                  | (1)           | (2)   | (3)   | (1)         | (2)   | (3)   |  |  |  |
| 1                                                                                                | 0,798         | 0,055 | 0,147 | 0,005       | 0,017 | 0,978 |  |  |  |
| 2                                                                                                | 0,713         | 0,100 | 0,187 | 0,007       | 0,029 | 0,964 |  |  |  |
| З                                                                                                | 0,605         | 0,157 | 0,238 | 0,007       | 0,040 | 0,953 |  |  |  |
| 4                                                                                                | 0,560         | 0,185 | 0,255 | 0,007       | 0,046 | 0,947 |  |  |  |
| 5                                                                                                | 0,467         | 0,232 | 0,301 | 0,008       | 0,056 | 0,936 |  |  |  |

Tabela IV.21- Linhas de Amarração Experimentais em Fração <u>Mássica</u> e Base Livre de Sal (Sistema com 10% em peso de Sal na Carga)

| SISTEMA : ACETATO DE ETILA (1)- ETANOL (2)- ÁGUA (3)-<br>ACETATO DE SÓDIO<br>TEMPERATURA : 30 °C |               |       |       |             |       |       |  |  |
|--------------------------------------------------------------------------------------------------|---------------|-------|-------|-------------|-------|-------|--|--|
| Na                                                                                               | FASE ORGÂNICA |       |       | FASE AQUOSA |       |       |  |  |
| NO.                                                                                              | (1)           | දුන   | (3)   | (1)         | යා    | (3)   |  |  |
| 1                                                                                                | 0,931         | 0,034 | 0,035 | 0,025       | 0,040 | 0,935 |  |  |
| 5                                                                                                | 0,887         | 0,065 | 0,048 | 0,031       | 0,069 | 0,900 |  |  |
| з                                                                                                | 0,822         | 0,112 | 0,066 | 0,031       | 0,094 | 0,875 |  |  |
| 4                                                                                                | 0,790         | 0,136 | 0,074 | 0,033       | 0,108 | 0,859 |  |  |
| 5                                                                                                | 0,718         | 0,187 | 0,095 | 0,036       | 0,128 | 0,836 |  |  |

Tabela IV.22- Linhas de Amarração Experimentais em Fração Molar e Base Livre de Sal (Sistema com 10% em peso de Sal na Carga)

| SISTEMA : ACETATO DE ETILA (1)- ETANOL (2)- ÁGUA (3)-<br>ACETATO DE SÓDIO<br>TEMPERATURA : 40 °C |               |       |       |             |       |       |  |  |  |
|--------------------------------------------------------------------------------------------------|---------------|-------|-------|-------------|-------|-------|--|--|--|
| No.                                                                                              | FASE ORGÂNICA |       |       | FASE AQUOSA |       |       |  |  |  |
|                                                                                                  | (1)           | යා    | (3)   | (1)         | (2)   | (3)   |  |  |  |
| 1                                                                                                | 0,778         | 0,059 | 0,163 | 0,006       | 0,016 | 0,978 |  |  |  |
| 2                                                                                                | 0,688         | 0,104 | 0,208 | 0,006       | 0,027 | 0,967 |  |  |  |
| з                                                                                                | 0,596         | 0,154 | 0,250 | 0,008       | 0,038 | 0,954 |  |  |  |
| 4                                                                                                | 0,540         | 0,189 | 0,271 | 0,007       | 0,043 | 0,950 |  |  |  |
| 5                                                                                                | 0,453         | 0,234 | 0,313 | 0,009       | 0,056 | 0,935 |  |  |  |

Tabela IV.23- Linhas de Amarração Experimentais em Fração <u>Mássica</u> e Base Livre de Sal (Sistema com 10% em peso de Sal na Carga)

| SISTEMA : ACETATO DE ETILA (1)- ETANOL (2)- ÁGUA (3)-<br>ACETATO DE SÓDIO<br>TEMPERATURA : 40 °C |               |       |       |             |       |       |  |  |
|--------------------------------------------------------------------------------------------------|---------------|-------|-------|-------------|-------|-------|--|--|
| No.                                                                                              | FASE ORGÂNICA |       |       | FASE AQUOSA |       |       |  |  |
|                                                                                                  | (1)           | (2)   | (3)   | (1)         | ෭ව    | (3)   |  |  |
| 1                                                                                                | 0,923         | 0,037 | 0,040 | 0,027       | 0,040 | 0,933 |  |  |
| S                                                                                                | 0,877         | 0,069 | 0,054 | 0,030       | 0,064 | 0,906 |  |  |
| З                                                                                                | 0,819         | 0,111 | 0,070 | 0,034       | 0,089 | 0,877 |  |  |
| 4                                                                                                | 0,778         | 0,142 | 0,080 | 0,032       | 0,101 | 0,867 |  |  |
| 5                                                                                                | 0,709         | 0,191 | 0,100 | 0,038       | 0,127 | 0,835 |  |  |

Tabela IV.24- Linhas de Amarração Experimentais em Fração Molar e Base Livre de Sal (Sistema com 10% em peso de Sal na Carga)

| SISTEMA : ACETATO DE ETILA (1)- ETANOL (2)- ÁGUA (3)-<br>ACETATO DE SÓDIO<br>TEMPERATURA : 50 °C |               |       |       |             |       |       |  |  |  |
|--------------------------------------------------------------------------------------------------|---------------|-------|-------|-------------|-------|-------|--|--|--|
| No.                                                                                              | FASE ORGÂNICA |       |       | FASE AQUOSA |       |       |  |  |  |
|                                                                                                  | C10           | (2)   | (3)   | (1)         | (2)   | (3)   |  |  |  |
| 1                                                                                                | 0,753         | 0,063 | 0,184 | 0,006       | 0,015 | 0,979 |  |  |  |
| г                                                                                                | 0,663         | 0,109 | 0,228 | 0,006       | 0,026 | 0,968 |  |  |  |
| З                                                                                                | 0,572         | 0,158 | 0,270 | 0,008       | 0,037 | 0,955 |  |  |  |
| 4                                                                                                | 0,522         | 0,191 | 0,287 | 0,008       | 0,042 | 0,950 |  |  |  |
| 5                                                                                                | 0,459         | 0,228 | 0,313 | 0,009       | 0,052 | 0,939 |  |  |  |

Tabela IV.25- Linhas de Amarração Experimentais em Fração <u>Mássica</u> e Base Livre de Sal (Sistema com 10% em peso de Sal na Carga)

| SISTEMA : ACETATO DE ETILA (1)- ETANOL (2)- ÁGUA (3)-<br>ACETATO DE SÓDIO<br>TEMPERATURA : 50 °C |               |       |       |             |       |       |  |  |
|--------------------------------------------------------------------------------------------------|---------------|-------|-------|-------------|-------|-------|--|--|
| No.                                                                                              | FASE ORGÂNICA |       |       | FASE AQUOSA |       |       |  |  |
|                                                                                                  | (1)           | (2)   | (3)   | (1)         | (2)   | (3)   |  |  |
| 1                                                                                                | 0,914         | 0,040 | 0,046 | 0,027       | 0,037 | 0,936 |  |  |
| 5                                                                                                | 0,864         | 0,075 | 0,061 | 0,030       | 0,062 | 0,908 |  |  |
| з                                                                                                | 0,806         | 0,116 | 0,078 | 0,035       | 0,086 | 0,879 |  |  |
| 4                                                                                                | 0,767         | 0,147 | 0,086 | 0,034       | 0,099 | 0,867 |  |  |
| 5                                                                                                | 0,714         | 0,186 | 0,100 | 0,039       | 0,120 | 0,841 |  |  |

#### CAPITULO V

### CORRELAÇÃO DOS DADOS EXPERIMENTAIS

### V.1 - INTRODUÇÃO

Tradicionalmente, os dados experimentais de equilíbrio líquido-líquido têm sido correlacionados através do uso de duas categorias de modelos. A primeira delas é constituida por aqueles aue descrevem empiricamente a razão de distribuição dos componentes em função da composição da solução, como é o caso das correlaçõés de Othmer e Tobias para sistemas não-eletrolíticos, e eletrolíticos. de Eisen e Joffe para sistemas O caráter totalmente empírico destes modelos faz com que , atualmente, os mesmos não sejam adequados ao uso em simuladores de processo, sendo, portanto, empregados apenas para rápidas interpolações, e como um indicativo da qualidade dos dados experimentais.

Na segunda categoria encontram-se aqueles modelos fundamentados na Termodinâmica do Equilíbrio de Fases, podendo ser usados, a princípio, tanto para interpolações quanto para extrapolações de dados, revelando-se bastante adequados ao uso em projeto e simulação de processo por computador. Nesta categoria encontram-se os modelos mais largamente utilizados na atualidade, que são aqueles que expressam o coeficiente de atividade ( $\gamma$ ) ou a energia livre de Gibbs excedente (G<sup>E</sup>), como uma função da composição e da temperatura do sistema. Entre estes modelos, destacam-se aqueles que usam o conceito da composição local, a exemplo de NRTL, UNIQUAC, e outros. Todos estes modelos possuem parâmetros de interação binária, que devem ser ajustados matematicamente a partir de dados experimentais previamente determinados. Uma vez obtidos estes parâmetros, o modelo pode ser utilizado para o cálculo de curvas binodais e linhas de amarração do sistema, além de poder ser usado para a interpretação de dados

de equilíbrio líquido-líquido, sem a necessidade de trabalhos experimentais adicionais.

Neste trabalho se fará, inicialmente, a correlação das linhas de amarração dos sistemas estudados , utilizando-se os modelos da primeira categoria (correlações de Othmer e Tobias e de Eisen e Joffe). Em seguida, se procederá ao tratamento dos dados obtidos experimentalmente, através de modelos para cálculo do coeficiente de atividade ( $\gamma$ ) (segunda categoria). Nesta etapa se fará o ajuste de parâmetros e, posteriormente, a correlação dos dados utilizando-se os parâmetros ajustados.

Antes porém, da realização das etapas descritas acima, faz-se necessário calcular as concentrações de sal nas fases em equilíbrio, sem o que, não se pode efetivar o tratamento dos dados dos sistemas salinos.

## V.2 - DETERMINAÇÃO DAS CONCENTRAÇÕES DE ACETATO DE SÓDIO NAS FASES EM EQUILÍBRIO

O cálculo das concentrações de Acetato de Sódio nas fases em equilíbrio foi realizado através da resolução do sistema de equações de balanço material, descrito a seguir :

1. Balanço de Massa para o Acetato de Etila

$$X_{ac}^{*I} * (1-X_{s}^{I}) * M^{I} + X_{ac}^{*II} * (1-X_{s}^{II}) * M^{II} - M_{ac} = 0$$
 (V.1)

2. Balanço de Massa para o Etanol

$$X_{et}^{*I} * (1-X_{s}^{I}) * M^{I} + X_{et}^{*II} * (1-X_{s}^{II}) * M^{II} - M_{et} = 0$$
  
(V.2)

3. Balanço de Massa para a Água

$$X_{ag}^{*I} * (1-X_{s}^{I}) * M^{I} + X_{ag}^{*II} * (1-X_{s}^{II}) * M^{II} - M_{ag} = 0$$
  
(V.3)

4. Balanço Material Global

$$M^{I} + M^{II} = M + M + M + M$$
 (V.4)

O sistema acima, constituido de 4 (quatro) equações, possui 4 (quatro) incógnitas :  $X_s^I$ ,  $X_s^{II}$ ,  $M^I$  e  $M^{II}$ , onde :

- I = fase orgânica, II = fase aquosa,  $X_s^I \in X_s^{II} = \text{fração mássica do sal nas fases I e II,}$  $M^I \in M^{II} = \text{massa total das fases I e II,}$  $X_i^{*\pi} = \text{fração mássica do componente i na fase $\pi$ em}$ base livre de sal, ou seja, aquela obtida por Cromatografia,
- M<sub>i</sub> ≡ massa total do componente i na carga alimentada à célula.

O sistema de equações (V.1) a (V.4) possui múltiplas soluções, de modo que se faz necessária a imposição de restrições que conduzam o sistema à solução mais adequada.

Usou-se, então, as seguintes restrições :

1. Como limite superior para  $X_s^{I} = X_s^{II}$ , usaram-se as concentrações de sal obtidas por Pai e Rao (1966) para o sistema Acetato de Etila - Etanol - Água -Acetato de Sódio, na condição de saturação e a 30°C.

- 2. O limite inferior para  $X_s^I = X_s^{II}$  foi tomado, arbitrariamente, como 10% do limite superior,
- 3. Adotou-se ainda, como restrição, a quinta equação de balanço material, que não pôde ser usada no sistema de equações, em virtude de só se possuir 4 (quatro) incógnitas. Esta quinta equação é a de balanço de massa para o sal :

$$X_{s}^{I} * M^{I} + X_{s}^{II} * M^{II} = M_{s}$$
 (V.5a)

4. A última restrição foi baseada na conclusão de que a massa de sal na fase orgânica (I) deveria ser menor que aquela na fase aquosa (II), ou seja :

$$X_{x}^{I} * M^{I} < X_{x}^{II} * M^{II}$$
 (V.5b)

Com a imposição destas restrições obteve-se, na maioria dos casos, apenas uma solução para o sistema de equações (V.1) a (V.4). Para verificar a precisão destes resultados, foram realizadas, durante o levantamento dos dados experimentais, análises gravimétricas para 3 (três) linhas de amarração, conforme está descrito no item IV.2.6. Os resultados destas análises foram então comparados com aqueles obtidos por balanço material para as mesmas linhas de amarração. A Tabela V.1 resume tais comparações :

| Sistema                    |                  | Fração<br>Exper. | Mássica<br>Calcul. | Desvio<br>Absoluto |
|----------------------------|------------------|------------------|--------------------|--------------------|
| 2% em peso de sal, 30°C    | XIs              | 0,000            | 0,000              | + 0,000            |
| Linha de Amarração 3       | X <sup>II</sup>  | 0,027            | 0,031              | + 0,004            |
| 5% em peso de sal, 40°C    | X <sup>I</sup> s | 0,000            | 0,000              | + 0,000            |
| Linha de Amarração 1       | X <sup>II</sup>  | 0,082            | 0,088              | + 0,006            |
| 10% em peso de sal, 40°C   | X <sup>I</sup> s | 0,002            | 0,002              | + 0,000            |
| Linha de Amarração 5       | X <sup>II</sup>  | 0,192            | 0,189              | - 0,003            |
| Média do Módulo dos Desvio | S                |                  |                    | 0,002              |

Tabela V.1 Concentrações de Sal - Resultados Experimentais vs Calculados

Na Tabela V.1 observa-se que, exceto para um dos resultados, todos os outros apresentaram desvios absolutos inferiores ao desvio-padrão máximo permitido para as análises cromatográficas (0,005), indicando a adequabilidade do procedimento utilizado na realização do balanço material.

Os resultados obtidos, através do balanço material, para as concentrações do sal, em fração mássica, encontram-se nas Tabelas V.2 a V.10. As concentrações em fração molar encontram-se no Apêndice IV.

Após a apresentação das tabelas se fará a correlação dos dados experimentais, utilizando-se as expressões empíricas de Othmer e Tobias e de Eisen e Joffe.

Linhas de Amarração Experimentais em Fração <u>Mássica</u> (Sistema com 2% em peso de Sal na Carga)

| SI S<br>TEI | SISTEMA : ACETATO DE ETILA (1)- ETANOL (2)- AGUA (3) -<br>ACETATO DE SÓDIO (4)<br>TEMPERATURA : 30 °C |       |       |       |       |             |       |       |  |
|-------------|-------------------------------------------------------------------------------------------------------|-------|-------|-------|-------|-------------|-------|-------|--|
| No          | FASE ORGÂNICA                                                                                         |       |       |       |       | FASE AQUOSA |       |       |  |
| 011         | (1)                                                                                                   | (2)   | (3)   | (4)   | (1)   | (2)         | (3)   | (4)   |  |
| 1           | 0,923                                                                                                 | 0,030 | 0,047 | 0,000 | 0,058 | 0,050       | 0,862 | 0,030 |  |
| 2           | 0,887                                                                                                 | 0,053 | 0,060 | 0,000 | 0,061 | 0,076       | 0,833 | 0,030 |  |
| З           | 0,821                                                                                                 | 0,093 | 0,086 | 0,000 | 0,070 | 0,110       | 0,789 | 0,031 |  |
| 4           | 0,763                                                                                                 | 0,126 | 0,110 | 0,001 | 0,075 | 0,129       | 0,756 | 0,040 |  |
| 5           | 0,685                                                                                                 | 0,167 | 0,146 | 0,002 | 0,089 | 0,154       | 0,719 | 0,038 |  |

### Tabela V.3

Linhas de Amarração Experimentais em Fração <u>Mássica</u> (Sistema com 2% em peso de Sal na Carga)

| SI S<br>TEN | SISTEMA : ACETATO DE ETILA (1)- ETANOL (2)- ÁGUA (3) -<br>ACETATO DE SÓDIO (4)<br>TEMPERATURA : 40 °C |       |       |       |       |       |       |       |  |  |  |
|-------------|-------------------------------------------------------------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|--|--|--|
| No          | FASE ORGANICA FASE AQUOSA                                                                             |       |       |       |       |       |       |       |  |  |  |
| 70          | (1) (2) (3) (4) (1) (2) (3) (4)                                                                       |       |       |       |       |       |       |       |  |  |  |
| 1           | 0,915                                                                                                 | 0,033 | 0,052 | 0,000 | 0,054 | 0,048 | 0,868 | 0,030 |  |  |  |
| 2           | 0,873                                                                                                 | 0,059 | 0,068 | 0,000 | 0,060 | 0,072 | 0,837 | 0,031 |  |  |  |
| З           | 0,803                                                                                                 | 0,100 | 0,097 | 0,000 | 0,071 | 0,103 | 0,793 | 0,033 |  |  |  |
| 4           | 0,742                                                                                                 | 0,132 | 0,124 | 0,002 | 0,076 | 0,124 | 0,761 | 0,039 |  |  |  |
| 5           | 0,664                                                                                                 | 0,172 | 0,160 | 0,004 | 0,087 | 0,146 | 0,728 | 0,039 |  |  |  |

Tabela V.4

Linhas de Amarração Experimentais em Fração Mássica (Sistema com 2% em peso de Sal na Carga)

| SI S | SISTEMA : ACETATO DE ETILA (1)- ETANOL (2)- ÁGUA (3) -<br>ACETATO DE SÓDIO (4)<br>TEMPERATURA : 50 °C |       |       |       |       |       |       |       |  |  |  |
|------|-------------------------------------------------------------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|--|--|--|
| No   | FASE ORGANICA FASE AQUOSA                                                                             |       |       |       |       |       |       |       |  |  |  |
|      | ° (1) (2) (3) (4) (1) (2) (3) (4)                                                                     |       |       |       |       |       |       |       |  |  |  |
| 1    | 0,903                                                                                                 | 0,036 | 0,061 | 0,000 | 0,052 | 0,045 | 0,872 | 0,031 |  |  |  |
| г    | 0,857                                                                                                 | 0,065 | 0,078 | 0,000 | 0,059 | 0,069 | 0,841 | 0,031 |  |  |  |
| З    | 0,778                                                                                                 | 0,107 | 0,114 | 0,001 | 0,071 | 0,100 | 0,798 | 0,031 |  |  |  |
| 4    | 0,726 0,138 0,135 0,001 0,078 0,118 0,764 0,040                                                       |       |       |       |       |       |       |       |  |  |  |
| 5    | 0,651                                                                                                 | 0,176 | 0,169 | 0,004 | 0,081 | 0,140 | 0,741 | 0,038 |  |  |  |

Linhas de Amarração Experimentais em Fração <u>Mássica</u> (Sistema com 5% em peso de Sal na Carga)

| SI :<br>TEI | SISTEMA : ACETATO DE ETILA (1)- ETANOL (2)- ÁGUA (3) -<br>ACETATO DE SÓDIO (4)<br>TEMPERATURA : 30 °C |       |        |       |       |       |       |       |  |  |  |
|-------------|-------------------------------------------------------------------------------------------------------|-------|--------|-------|-------|-------|-------|-------|--|--|--|
| No          |                                                                                                       | FASE  | AQUOSA |       |       |       |       |       |  |  |  |
|             | (1)                                                                                                   | (2)   | (3)    | (4)   | (1)   | (2)   | (3)   | (4)   |  |  |  |
| 1           | 0,930                                                                                                 | 0,030 | 0,040  | 0,000 | 0,039 | 0,044 | 0,833 | 0,084 |  |  |  |
| 2           | 0,887                                                                                                 | 0,058 | 0,055  | 0,000 | 0,042 | 0,072 | 0,808 | 0,078 |  |  |  |
| З           | 0,820                                                                                                 | 0,102 | 0,078  | 0,000 | 0,048 | 0,099 | 0,771 | 0,082 |  |  |  |
| 4           | 0,742 0,151 0,106 0,001 0,051 0,122 0,734                                                             |       |        |       |       |       |       |       |  |  |  |
| 5           | 0,704                                                                                                 | 0,175 | 0,119  | 0,003 | 0,052 | 0,133 | 0,718 | 0,097 |  |  |  |

| Linhas | de  | Amarr | ação | > E> | (per | iment | lais | ; em | Fra | ),<br>Ação | Mássica |
|--------|-----|-------|------|------|------|-------|------|------|-----|------------|---------|
| C      | Sis | tema  | com  | 5%   | em   | peso  | de   | Sal  | na  | Carc       | ya)     |

-

| SI S | SISTEMA : ACETATO DE ETILA (1)- ETANOL (2)- ÁGUA (3) -<br>ACETATO DE SÓDIO (4)<br>TEMPERATURA : 40 °C |       |       |       |         |       |       |       |  |  |  |
|------|-------------------------------------------------------------------------------------------------------|-------|-------|-------|---------|-------|-------|-------|--|--|--|
| No   | FASE ORGANICA FASE AQUOSA                                                                             |       |       |       |         |       |       |       |  |  |  |
|      | (1)                                                                                                   | (୧୦)  | (3)   | (4)   | (1) (2) |       | (3)   | (4)   |  |  |  |
| 1    | 0,922                                                                                                 | 0,032 | 0,046 | 0,000 | 0,037   | 0,039 | 0,836 | 0,088 |  |  |  |
| s    | 0,874                                                                                                 | 0,063 | 0,063 | 0,000 | 0,041   | 0,067 | 0,812 | 0,080 |  |  |  |
| З    | 0,802                                                                                                 | 0,109 | 0,088 | 0,001 | 0,047   | 0,096 | 0,776 | 0,081 |  |  |  |
| 4    | 0,727                                                                                                 | 0,157 | 0,115 | 0,001 | 0,051   | 0,116 | 0,738 | 0,095 |  |  |  |
| 5    | 0,687                                                                                                 | 0,180 | 0,131 | 0,002 | 0,053   | 0,126 | 0,721 | 0,100 |  |  |  |

## Tabela V.7

Linhas de Amarração Experimentais em Fração <u>Mássica</u> (Sistema com 5% em peso de Sal na Carga)

| SIS | SISTEMA : ACETATO DE ETILA (1)- ETANOL (2)- ÁGUA (3) -<br>ACETATO DE SÓDIO (4)<br>TEMPERATURA : 50 °C |       |       |       |       |       |       |       |  |  |  |
|-----|-------------------------------------------------------------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|--|--|--|
| Na  | FASE ORGANICA FASE AQUOSA                                                                             |       |       |       |       |       |       |       |  |  |  |
|     | , (1) (2) (3) (4) (1) (2) (3) (4)                                                                     |       |       |       |       |       |       |       |  |  |  |
| 1   | 0,911                                                                                                 | 0,035 | 0,054 | 0,000 | 0,036 | 0,038 | 0,838 | 0,088 |  |  |  |
| 2   | 0,858                                                                                                 | 0,070 | 0,072 | 0,000 | 0,042 | 0,064 | 0,814 | 0,080 |  |  |  |
| З   | 0,788                                                                                                 | 0,115 | 0,097 | 0,000 | 0,048 | 0,091 | 0,778 | 0,083 |  |  |  |
| 4   | 0,713 0,161 0,124 0,002 0,053 0,112 0,740 0,095                                                       |       |       |       |       |       |       |       |  |  |  |
| 5   | 0,669                                                                                                 | 0,188 | 0,141 | 0,002 | 0,049 | 0,120 | 0,731 | 0,100 |  |  |  |

71

Linhas de Amarração Experimentais em Fração Mássica (Sistema com 10% em peso de Sal na Carga)

| SI S<br>TEI | SISTEMA : ACETATO DE ETILA (1)- ETANOL (2)- ÁGUA (3) -<br>ACETATO DE SÓDIO (4)<br>TEMPERATURA : 30 °C |       |       |       |       |       |       |       |  |  |  |
|-------------|-------------------------------------------------------------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|--|--|--|
| No          | FASE ORGANICA FASE AQUOSA                                                                             |       |       |       |       |       |       |       |  |  |  |
| no          | ° (1) (2) (3) (4) (1) (2) (3) (                                                                       |       |       |       |       |       |       |       |  |  |  |
| 1           | 0,931                                                                                                 | 0,034 | 0,035 | 0,000 | 0,020 | 0,034 | 0,773 | 0,173 |  |  |  |
| 2           | 0,887                                                                                                 | 0,065 | 0,048 | 0,000 | 0,026 | 0,058 | 0,760 | 0,157 |  |  |  |
| з           | 0,822                                                                                                 | 0,731 | 0,164 |       |       |       |       |       |  |  |  |
| 4           | 0,790                                                                                                 | 0,136 | 0,073 | 0,001 | 0,027 | 0,089 | 0,707 | 0,177 |  |  |  |
| 5           | 0,717                                                                                                 | 0,186 | 0,095 | 0,002 | 0,029 | 0,105 | 0,681 | 0,185 |  |  |  |

### Tabela V.9

Linhas de Amarração Experimentais em Fração Mássica (Sistema com 10% em peso de Sal na Carga)

| SI :<br>TEI | SISTEMA : ACETATO DE ETILA (1)- ETANOL (2)- ÁGUA (3) -<br>ACETATO DE SÓDIO (4)<br>TEMPERATURA : 40 °C |       |       |       |        |       |       |       |  |  |  |
|-------------|-------------------------------------------------------------------------------------------------------|-------|-------|-------|--------|-------|-------|-------|--|--|--|
| No          | FASE ORGANICA FASE AQUOSA                                                                             |       |       |       |        |       |       |       |  |  |  |
| NO          | (1)                                                                                                   | ദ്രാ  | (4)   |       |        |       |       |       |  |  |  |
| 1           | 0,923                                                                                                 | 0,037 | 0,040 | 0,000 | 0,023  | 0,033 | 0,772 | 0,172 |  |  |  |
| s           | 0,877                                                                                                 | 0,069 | 0,054 | 0,000 | 0,025  | 0,054 | 0,761 | 0,160 |  |  |  |
| 3           | 0,818                                                                                                 | 0,111 | 0,070 | 0,001 | 0,029  | 0,075 | 0,733 | 0,163 |  |  |  |
| 4           | 0,777 0,142 0,080 0,001 0,026 0,083 0,712                                                             |       |       |       |        |       |       |       |  |  |  |
| 5           | 0,707                                                                                                 | 0,191 | 0,100 | 0,002 | 0 ,031 | 0,104 | 0,681 | 0,184 |  |  |  |

Linhas de Amarração Experimentais em Fração <u>Mássica</u> (Sistema com 10% em peso de Sal na Carga)

| SI S | SISTEMA : ACETATO DE ETILA (1)- ETANOL (2)- ÁGUA (3) -<br>ACETATO DE SÓDIO (4)<br>TEMPERATURA : 50 °C |       |       |       |       |       |       |       |  |  |  |
|------|-------------------------------------------------------------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|--|--|--|
| No   | FASE ORGÂNICA FASE AQUOSA                                                                             |       |       |       |       |       |       |       |  |  |  |
|      | ° (1) (2) (3) (4) (1) (2) (3) (4                                                                      |       |       |       |       |       |       |       |  |  |  |
| 1    | 0,914                                                                                                 | 0,040 | 0,046 | 0,000 | 0,022 | 0,031 | 0,773 | 0,174 |  |  |  |
| 5    | 0,864                                                                                                 | 0,075 | 0,061 | 0,000 | 0,025 | 0,053 | 0,763 | 0,159 |  |  |  |
| 3    | 0,805                                                                                                 | 0,116 | 0,078 | 0,001 | 0,029 | 0,072 | 0,735 | 0,164 |  |  |  |
| 4    | 0,766 0,147 0,086 0,001 0,028 0,081 0,713 0,178                                                       |       |       |       |       |       |       |       |  |  |  |
| 5    | 0,713                                                                                                 | 0,185 | 0,100 | 0,002 | 0,032 | 0,097 | 0,682 | 0,189 |  |  |  |

## V.3 - CORRELAÇÃO DAS LINHAS DE AMARRAÇÃO ATRAVÉS DOS MODELOS EMPÍRICOS DE OTHMER-TOBIAS (1942) E DE EISEN-JOFFE (1966)

Visando verificar a qualidade dos dados obtidos experimentalmente, as linhas de amarração do sistema não-eletrolítico, Acetato de Etila - Etanol - Água a 30, 40 e 50°C, foram correlacionados através da expressão empírica de Othmer e Tobias (1942), equação (III.24), repetida a seguir :

$$\log\left(\frac{1-a_{1}}{a_{1}}\right) = A + B \log\left(\frac{1-b_{1}}{b_{1}}\right), \quad (III.24)$$

Os dados experimentais do sistema eletrolítico Acetato de Etila - Etanol - Água - Acetato de Sódio a 30, 40 e 50°C, e concentrações de sal iguais a 2%, 5% e 10% em peso, foram correlacionados através da expressão empírica de Eisen e Joffe (1966), equações (III.26) a (III.28), repetidas a seguir :

$$\log \frac{a_0}{b_0} = A_0 + B_0 \log \frac{c_0}{d_0} \qquad (III.26)$$

$$A_{n} = a + b X_{so} \qquad (III.27)$$

$$B_{n} = c + d X_{sa} \qquad (III.28)$$

O uso da correlação de Othmer e Tobias (III.24) para os sistemas não-eletrolíticos gerou linhas retas, como pode ser observado na Figura V.1. Os coeficientes linear (A) e angular (B), além dos coeficientes de correlação (r<sup>2</sup>) das retas ajustadas, encontram-se na Tabela V.11.

Tabela V.11

Correlação de Othmer e Tobias - Sistema sem Sal Acetato de Etila - Etanol - Água

| TEMP | A     | В     | r <sup>2</sup> |  |
|------|-------|-------|----------------|--|
| 30°C | 0,295 | 1,674 | 0,999          |  |
| 40°C | 0,270 | 1,499 | 0,997          |  |
| 50°C | 0,316 | 1,452 | 0,997          |  |

Da Tabela V.11 observa-se que os valores obtidos para os coeficientes de correlação  $(r^2)$  das retas estão bem próximos da unidade (valor máximo), comprovando a boa qualidade dos dados experimentais obtidos para o sistema não-eletrolítico.



### Fig. V.1

Correlação de Othmer e Tobias para o Sistema Ternário Acetato de Etila - Etanol - Água 75

Mesmo sabendo-se que a expressão de Othmer e Tobias foi proposta para sistemas não-eletrolíticos, resolveu-se usá-la para correlacionar os dados experimentais dos sistemas eletrolíticos, Acetato de Etila - Etanol - Água - Acetato de Sódio com 2%, 5% e 10% em peso de sal a 30, 40 e 50°C, usando-se as concentrações em base livre de sal, obtidas por Cromatografia. Os resultados dos ajustes foram bons, conforme está evidenciado nas Figuras V.2 (a, b, c) e na Tabela V.12.

|      |        | the second s |       |                |
|------|--------|----------------------------------------------------------------------------------------------------------------|-------|----------------|
| TEMP | %p SAL | A                                                                                                              | В     | r <sup>2</sup> |
| 30°C | 2      | 0,471                                                                                                          | 1,738 | 0,998          |
|      | 5      | 0,665                                                                                                          | 1,806 | 0,994          |
|      | 10     | 0,699                                                                                                          | 1,611 | 0,983          |
| 40°C | 5      | 0,511                                                                                                          | 1,672 | 0,998          |
|      | 5      | 0,648                                                                                                          | 1,677 | 0,994          |
|      | 10     | 0,736                                                                                                          | 1,600 | 0,995          |
| 50°C | 2      | 0,535                                                                                                          | 1,595 | 0,996          |
|      | 5      | 0,667                                                                                                          | 1,610 | 0,985          |
|      | 10     | 0,632                                                                                                          | 1,431 | 0,996          |
|      |        |                                                                                                                |       |                |

Tabela V.12

Correlação de Othmer e Tobias - Sistema em Base Livre de Sal Acetato de Etila - Etanol - Água - Acetato de Sódio





Fig. V.2 - Correlação de Othmer Tobias e para Sistema  $\circ$ Eletrolítico Acetato de etila Água -Etanol Sódio, Acetato de usando Concentrações em Base Livre de Sal (a) 30°C сы 40°С -----9 (c)50°C .

A correlação dos dados dos sistemas eletrolíticos quaternários (Tabelas V.2 a V.10), através da expressão de Eisen e Joffe (1966), também deu ótimos resultados, como pode ser visto na Tabela V.13, onde todos os coeficientes de correlação ( $r^2$ ) das retas estão próximos à unidade. Nesta tabela encontram-se, também, os coeficientes linear ( $A_0$ ) e angular ( $B_0$ ) destas retas. As Figuras V.3 (a, b, c), gráficos de (log  $a_0/b_0$ ) versus (log  $c_0/d_0$ ), mostram que os dados assim correlacionados obedecem à função linear proposta por Eisen e Joffe (1966), evidenciando a qualidade dos mesmos.

#### Tabela V.13

Correlação de Eisen e Joffe Vistoma Acetata da Etila - Etapol - Acetata da Sódi

| Sistema | Acetato | de | Etila | - | Etanol |  | Agua | W000 | Acetato | ae | Soarc |
|---------|---------|----|-------|---|--------|--|------|------|---------|----|-------|
|---------|---------|----|-------|---|--------|--|------|------|---------|----|-------|

| TEMP | %p SAL | Xsa   | Ao    | B <sub>o</sub> | r <sup>2</sup> |
|------|--------|-------|-------|----------------|----------------|
| 30°C | 0      | 0,00  | 0,230 | 1,441          | 0,999          |
|      | 2      | 4,27  | 0,406 | 1,551          | 0,997          |
|      | 5      | 9,95  | 0,575 | 1,639          | 0,994          |
|      | 10     | 18,55 | 0,642 | 1,549          | 0,990          |
| 40°C | 0      | 0,00  | 0,263 | 1,389          | 0,999          |
|      | 2      | 4,27  | 0,450 | 1,512          | 0,998          |
|      | 5      | 9,95  | 0,566 | 1,547          | 0,994          |
|      | 10     | 18,55 | 0,654 | 1,510          | 0,996          |
| 50°C | 0      | 0,00  | 0,318 | 1,369          | 0,992          |
|      | 2      | 4,27  | 0,463 | 1,450          | 0,999          |
|      | 5      | 9,95  | 0,600 | 1,511          | 0,995          |
|      | 10     | 18,55 | 0,599 | 1,410          | 0,996          |

78





Fig. V.3 - Correlação de Eisen e Joffe para o Sistema Eletrolítico Acetato de Etila - Etanol - Água -Acetato de Sódio - (a) 30°C, (b) 40°C, (c) 50°C

Eisen e Joffe (1966) propuseram, também, uma dependência linear entre os coeficientes linear ( $A_0$ ) e angular ( $B_0$ ) destas retas e a concentração do sal (X<sub>80</sub> = massa do sal / massa de (sal+Água)). Entretanto, isto não foi constatado neste trabalho, conforme pode ser observado nas Figuras V.4 e V.5. Encontrou-se, porém, uma dependência quadrática entre  $A_0$  e Xsa, e entre  $B_0$  e Xsa, cujas expressões estão discriminadas a seguir :

$$30^{\circ}C \implies A_{0} = 0,2283 + 0,0487 X_{Sa} - 0,0014 X_{Sa}^{2} (V.6a)$$

$$r^{2} = 0,98$$

$$40^{\circ}C \implies A_{0} = 0,2703 + 0,0430 X_{Sa} - 0,0012 X_{Sa}^{2} (V.6b)$$

$$r^{2} = 0,94$$

$$50^{\circ}C \implies A_{0} = 0,3148 + 0,0429 X_{Sa} - 0,0015 X_{Sa}^{2} (V.6c)$$

$$r^{2} = 0,98$$

$$30^{\circ}C \implies B_{0} = 1,4371 + 0,0354 X_{Sa} - 0,0016 X_{Sa}^{2} (V.6d)$$

$$r^{2} = 0,99$$

$$40^{\circ}C \implies B_{0} = 1,3959 + 0,0287 X_{Sa} - 0,0012 X_{Sa}^{2} (V.6e)$$

$$r^{2} = 0,98$$

$$50^{\circ}C \implies B_{0} = 1,3658 + 0,0273 X_{Sa} - 0,0013 X_{Sa}^{2} (V.6f)$$

$$r^{2} = 0,99$$





Fig.V.4-Dependência de A<sub>D</sub> com a Concentração do Sal (Xso)

Fig.V.5-Dependência de B<sub>0</sub> com a Concentração do Sal (Xsa) Rajendran e Srinivasan (1988) também enfrentaram o problema da não linearidade de  $A_0 \in B_0$  com Xsa, e propuseram que as constantes "b" e "d", das expressões (III.27) e (III.28), variassem com a concentração do sal. Seguiu-se o procedimento sugerido por estes autores gerando-se a Tabela V.14, onde encontram-se os diversos valores de "b" e "d" em função da concentração do sal (X<sub>BQ</sub>). As constantes "a" e "c" são assumidas iguais a  $A_0 \in B_0$ , quando X<sub>BQ</sub> é igual à zero.

#### Tabela V.14

Constantes para a Correlação de Eisen e Joffe Sistema Acetato de Etila - Etanol - Água - Acetato de Sódio

| TEMP | %p SAL | Xsa   | a     | b      | С     | d                                                                        |
|------|--------|-------|-------|--------|-------|--------------------------------------------------------------------------|
| 30°C | 0      | 0,00  | 0,230 |        | 1,441 |                                                                          |
|      | 2      | 4,27  |       | 0,0411 |       | 0,0258                                                                   |
|      | 5      | 9,95  |       | 0,0347 |       | 0,0199                                                                   |
|      | 10     | 18,55 |       | 0,0222 |       | 0,0058                                                                   |
| 40°℃ | 0      | 0,00  | 0,263 |        | 1,389 | sammen men men samme kan men Mark Mark Mark Mark All di ka da sama.<br>I |
|      | 2      | 4,27  |       | 0,0438 |       | 0,0287                                                                   |
|      | 5      | 9,95  |       | 0,0305 |       | 0,0158                                                                   |
|      | 10     | 18,55 |       | 0,0211 |       | 0,0065                                                                   |
| 50°C | 0      | 0,00  | 0,318 |        | 1,369 |                                                                          |
|      | 2      | 4,27  |       | 0,0338 |       | 0,0188                                                                   |
|      | 5      | 9,95  |       | 0,0283 |       | 0,0142                                                                   |
|      | 10     | 18,55 |       | 0,0151 |       | 0,0022                                                                   |

Os resultados obtidos para as correlações, tanto de Othmer e Tobias, quanto de Eisen e Joffe, atestam a boa qualidade dos dados obtidos experimentalmente, permitindo que se prossiga à etapa seguinte de tratamento destes dados, através do uso de modelos semi-empíricos para cálculo do coeficiente de atividade ( $\gamma$ ).

81

## V.4 - TRATAMENTO DE DADOS DE EQUILÍBRIO LÍQUIDO-LÍQUIDO ATRAVÉS DE MODELOS PARA CÁLCULO DE COEFICIENTE DE ATIVIDADE $\langle \gamma \rangle$

O tratamento de dados de equilíbrio líquido-líquido, utilizando modelos para cálculo de coeficiente de atividade  $(\gamma)$ , envolve duas etapas: (1) ajuste de parâmetros dos modelos usando os dados experimentais, e (2) correlação dos dados experimentais através dos modelos, usando os parâmetros ajustados. Estas duas etapas, entretanto, estão interligadas, uma vez que o ajuste de parāmetros só pode ser considerado bem sucedido, quando a correlação dos dados experimentais através do cálculo de linhas binodais, utilizando os de amarração e curvas parametros ajustados, dá bons resultados. Assim, quando a correlação não é boa, deve-se retornar ao ajuste de parâmetros, visando encontrar um conjunto de parâmetros que represente adequadamente  $^{\circ}$ equilíbrio líquido-líquido do sistema estudado. Algumas vezes, porém, não se consegue obter uma boa correlação entre os dados experimentais, devido às limitações do próprio modelo.

Os dados de equilíbrio líquido-líquido mais comummente usados para estimar parâmetros dos modelos de coeficiente de atividade ( $\gamma$ ) são as linhas de amarração, obtidas a uma temperatura constante.

O modelo escolhido para correlacionar os dados dos sistemas não-eletrolíticos foi NRTL, e para os sistemas eletrolíticos usou-se, além do modelo NRTL, o modelo de Chen (Mock et al., 1986), e uma modificação do modelo de Hála (1983), proposta neste trabalho.

O modelo NRTL é amplamente conhecido, podendo ser encontrado em Prausnitz et al. (1986). O modelo de Chen e a expressão original do modelo de Hála foram descritos no item III.4, deste trabalho.

A seguir se fará uma descrição da metodologia utilizada no ajuste de parâmetros, e posteriormente, se descreverá a modificação proposta para o modelo de Hála (1983).

#### V. 4.1 - AJUSTE DE PARAMETROS

A estimativa de parâmetros de modelos empíricos e semi-empíricos a partir de dados experimentais é de fundamental importância em diversos campos da Ciência e da Engenharia. Tais modelos oferecem um meio adequado e prático de se resumir grande quantidade de dados. permitindo interpolações e, muitas vezes, extrapolações além das regiões nas quais os dados experimentais foram obtidos. Além disso. fornecem subsídios para interpretação de fenômenos físicos e químicos.

Nos processos de estimativa de parâmetros de modelos não-lineares, normalmente se conhece mais dados experimentais (linhas de amarração) que os necessários para satisfazer a relação : número de equações 🖛 número de incógnitas (parāmetros). Deste modo, o procedimento matemático exige a minimização de uma função-objetivo (Sørensen e Arlt, 1980) e, consequentemente, a escolha de além do uso de métodos de minimização adequados, programas de computador, devido à complexidade destes métodos e funções.

Segundo Sørensen et al. (1979), a escolha do influência método de minimização tem na taxa de convergência do sistema e no tempo computacional gasto. Além disso, a escolha da função-objetivo influencia no modo como os parâmetros representam um diagrama de fases, ou seja, qual parte do diagrama é melhor reproduzida, e quão bem as linhas de amarração calculadas representam as linhas de amarração experimentais. Deve-se acrescentar ainda que, diferentes métodos de minimização e diferentes funções-objetivo podem levar a diferentes conjuntos de parâmetros, sem prejudicar a eficácia da reprodução dos dados experimentais.

### i) FUNÇZES-OBJETIVO (FO)

Existem diversos tipos de função-objetivo que podem ser usados no tratamento de dados de equilíbrio líquido-líquido, sendo os mais comuns aqueles que envolvem o critério da isoatividade, como por exemplo :

$$Fa = \sum_{k} \sum_{ik} (a_{ik}^{I} - a_{ik}^{II})^{2} \qquad (V.7)$$

onde, a = atividade,

i = 1,...,N (componentes)

k = 1,..., M (linhas de amarração),

e as funções-objetivo em termos de concentrações, a exemplo de :

$$F \times = \sum_{k} \sum_{i} \sum_{j} \left( X_{ijk}^{e} - X_{ijk}^{c} \right)^{2} \qquad (V.8)$$

onde, X<sup>e</sup> = fração molar experimental, X<sup>c</sup> = fração molar calculada, i = 1,...,N (componentes), j = I,II (fases), k = 1,...,M (linhas de amarração).

Os dois tipos de função-objetivo (FO) apresentam vantagens. Á FO em termos de atividades leva à convergência mais rápida, em virtude de não necessitar do cálculo das composições, usando sempre as experimentais. Isto também implica na não exigência de boas estimativas iniciais para os parāmetros. Já a FO termos de concentrações conduz em A uma reprodução mais fiel das linhas de amarração

experimentais, pois a sua minimização implica na obtenção de desvios mínimos entre as fracões molares calculadas e as experimentais, que em última análise é o que se pretende. Entretanto, esta FO exige boas estimativas iniciais para os parâmetros, além de consumir maior tempo cálculo das computacional, pois requer  $\circ$ concentrações a cada estimativa de parâmetros . Deve-se ainda ter em mente que, a minimização das diferenças de atividade nem sempre garante a diferenças entre as fracões minimização das experimentais, pois molares calculadas e а conjugação destes dois fatores depende do modo como o modelo representa o equilíbrio de fases do sistema estudado.

Normalmente, o procedimento adotado para se estimar parâmetros de modelos termodinâmicos envolve um ajuste inicial, usando uma FO em de atividades, e após a convergência, termos adota-se os parâmetros obtidos neste ajuste, como estimativa inicial para o algoritmo que usa a FO termos de concentrações. Ôs resultados em alcançados com este procedimento são, em geral, muito bons (Sørensen et al, 1979; Bueno, 1990 e Andrade, 1991).

### 11) MÉTODOS DE MINIMIZAÇÃO DAS FUNÇõES-OBJETIVO

Dentre os métodos de minimização mais utilizados na Termodinâmica, destacam-se os de Marquardt e de Nelder-Mead, e os métodos de regressão baseados nos princípios estatísticos dos Minimos Quadrados, ou Mínimos Quadrados Ponderados, ou Máxima Verossimilhança.

Os métodos que utilizam o Princípio da Máxima Verossimilhança são os que levam à obtenção dos melhores parâmetros, pois consideram os erros aleatórios inerentes a todas as variáveis medidas, tratando-os estatisticamente. Assim, obtém-se com este método não apenas  $\circ$ s parâmetros. mas também uma estimativa das incertezas a eles associadas. Tal informação é de grande valia para o engenheiro, facilitando não só a escolha do melhor modelo, como também a estimativa das incertezas dos cálculos efetuados usando-se o modelo e o conjunto de parâmetros estimados.

Neste trabalho, o ajuste de parāmetros foi efetuado através do procedimento em duas etapas, escolhendo-se os seguintes métodos de minimização e funções-objetivo:

 Estimativa inicial dos parāmetros através do Método Simplex de Nelder e Mead (1965), utilizando o programa desenvolvido por Fredenslund et al. (1977) e a FO em termos de atividades (a), como segue :

$$Fa = \sum_{k}^{M} \sum_{i}^{N} \left[ \left( a_{ik}^{I} - a_{ik}^{II} \right) \times \left( a_{ik}^{I} + a_{ik}^{II} \right) \right]^{2}, \quad (V.9)$$

onde, M é o número de linhas de amarração e N é o número de componentes.

2. Ajuste final dos parâmetros através do programa desenvolvido neste trabalho, que usa o método de mi ni mi zação baseado no Princípio da Máxi ma Verossimilhança adaptado por Niesen e Yesavage (1989) para funções implícitas, e a FO em termos de fracões molares (X) e temperaturas (T), como segue :

$$F \times = \sum_{k}^{M} \frac{(T_{k}^{e} - T_{k}^{c})^{2}}{\sigma_{T_{k}}^{2}} + \sum_{k}^{M} \sum_{i}^{N} \sum_{j}^{\pi} \frac{(X_{ijk}^{e} - X_{ijk}^{c})^{2}}{\sigma_{X_{ijk}}^{2}}, \quad (V.10)$$

onde, M é o número de linhas de amarração, N é o número de componentes ,  $\pi$  é o número de fases (I ou II) e  $\sigma$  é o desvio-padrão de cada variável.

O método de Niesen e Yesavage (1989) e o programa desenvolvido, neste trabalho, para ajuste de parâmetros usando o Princípio da Máxima Verossimilhança, estão descritos nos itens V.5 e V.6.

Embora assim resumido, em duas etapas, pareça simples, 0 ajuste de parâmetros dos modelos termodinâmicos para representação do equilíbrio líquido-líquido é, na maioria das vezes, uma tarefa exaustiva e complexa. A não-linearidade dos modelos leva à existência de diversos pontos de mínimos locais, para os quais o método de minimização pode convergir, levando a um conjunto de parâmetros que não é o adequado. Assim, uma vez que se está procurando o ponto de mínimo global, onde a energia livre de Gibbs é mínima em relação a todas as modificações possíveis do sistema (capítulo II), o conjunto de parâmetros que satisfaz ao mínimo local, não deve dar bons resultados quando utilizado para gerar linhas de amarração e curvas binodais a partir das equações de equilíbrio : (  $a_i^{I} = a_i^{II}$  ). Deste modo, no processo de ajuste de parâmetros só se considera que o conjunto de parâmetros obtido é o ótimo, quando obtém-se também bons resultados nas linhas de amarração geradas com os mesmos. Este processso de ajuste, e posterior correlação dos dados, pode ter que ser repetido diversas até que se obtenha o conjunto de parâmetros vezes adequado.

# V.4.2 - MODIFICAÇÃO DO MODELO DE HALA (1983) PARA O EQUILÍBRIO LÍQUIDO-LÍQUIDO

O modelo de Hála (1983), originalmente desenvolvido para representar o equilíbrio líquido-vapor,

foi modificado neste trabalho, com o intuito de adaptá-lo à representação de dados de equilíbrio líquido-líquido em sistemas eletrolíticos. Hála (1983) testou o modelo usando como contribuição de curto alcance a expressão de Wilson. As equações originais deste modelo, encontram-se descritas no item III.4, deste trabalho.

A modificação proposta consiste em substituir a expressão de Wilson pela equação T-K-W, desenvolvida por Tsuboka e Katayama (1975), que é uma adaptação da expressão de Wilson, com o intuito de representar 0 equilíbrio líquido-líquido. Segundo os autores. esta expressão é superior à equação NRTL na representação de dados ternários de equilíbrio líquido-líquido em sistemas não- eletrolíticos. Bueno (1990) testou a equação T-K-W para os sistemas Água - Etanol - Hexano e Água - Etanol bons resultados, Ciclohexano, obtendo em geral, através modelos NRTL equivalentes aos obtidos dos e UNIQUAC. Assim, com a substituição da equação de Wilson pela T-K-W, esperava-se que o modelo reproduzisse bem os líquido-líquido dados equilíbrio em sistemas de eletrolíticos, à semelhança dos resultados obtidos por Hála (1983) para o equilíbrio líquido-vapor. Entretanto, deve-se adiantar que, para o sistema estudado, Acetato de Etila - Etanol - Água - Acetato de Sódio, não obteve-se sucesso com esta modificação, como se verá no item V.7.

A equação de Hála (1983) modificada para  $\circ$ equilíbrio líquido-líquido de sistemas eletrolíticos é constituida por dois termos, o primeiro, continua sendo igual ao termo empírico proposto por Hála (1983) para o equilíbrio líquido-vapor, e o segundo termo é a expressão de T-K-W. As expressões para os coeficientes de atividade ( $\gamma$ ) tiveram que ser derivadas das expressões de  $G^{E}$ , artigos de Hála (1983) e de advindas dos Tsuboka e Katayama (1975), apresentando a seguinte forma final, para sistemas com um (1) eletrólito :

a) Para os componentes moleculares :

$$\ln \gamma_{k} = X_{i}^{3 \times 2} \left[ E_{ik} - \frac{3}{2} \left( \sum_{j}^{J} E_{ij} X_{j} \right) \right]$$
$$- \ln \left( \sum_{m}^{N} X_{m} \Lambda_{mk} \right) - \sum_{m}^{N} \left( X_{m} \Lambda_{km} \times \sum_{m'}^{N} X_{m'} \Lambda_{m'm} \right)$$
$$+ \ln \left( \sum_{m}^{N} X_{m} \varphi_{mk} \right) + \sum_{m}^{N} \left( X_{m} \varphi_{km} \times \sum_{m'}^{N} X_{m'} \varphi_{m'm} \right)$$
(V.11)

b) Para o componente eletrolítico :

$$\ln \gamma_{i} = 3/2 \quad X_{i}^{1/2} \left( 1 - X_{i} \right) \cdot \left( \sum_{j}^{J} E_{ij} X_{j} \right)$$
$$- \ln \left( \sum_{m}^{N} X_{m} A_{mi} \right) - \sum_{m}^{N} \left( X_{m} A_{im} \times \sum_{m'}^{N} X_{m'} A_{m'm} \right)$$
$$+ \ln \left( \sum_{m}^{N} X_{m} \varphi_{mi} \right) + \sum_{m}^{N} \left( X_{m} \varphi_{im} \times \sum_{m'}^{N} X_{m'} \varphi_{m'm} \right)$$
$$(V.12)$$

Para as equações acima, valem as expressões a seguir :

$$\rho_{mm} = v_{m} / v_{m}$$
(V.13)

$$\Lambda_{mm'} = \rho_{mm'} \exp \left[ - \left( \lambda_{mm'} - \lambda_{m'm'} \right) / RT \right]$$
 (V.14)

A relação  $-(\lambda_{mm'}-\lambda_{m'm'}) \nearrow R$  pode ser denominada parâmetro energético de interação binária  $(A_{ij})$ , cuja unidade é o Kelvin (K).

$$X_{i} = \frac{\nu_{i} n_{i}}{\nu_{i} n_{i} + \sum_{j} n_{j}}$$
 (V.15)

$$X_{k} = \frac{n_{k}}{\nu_{i} n_{i} + \sum_{j} n_{j}}$$
(V.16)

Deve-se ressaltar que quando um dos componentes do par binário é um eletrólito :

$$\Lambda_{ki} = \Lambda_{ik} \qquad (V.17)$$

quando os dois são espécies moleculares :

$$\Lambda_{kj} \neq \Lambda_{jk} \tag{V.18}$$

onde, k , j = componentes não-eletrolíticos,

- i = componente eletrolítico,
- m e m' = qualquer componente (eletrolítico e não-eletrolítico)
- J = número total de componentes não-eletrolíticos,
- N = número total de componentes do sistema.

Deve-se ainda observar que, nas duas expressões para o cálculo do coeficiente de atividade ( $\gamma$ ), os termos referentes à expressão de T-K-W são idênticos por mera coincidência, uma vez que, usaram-se expressões diferentes para a dedução dos mesmos, equação (II.9) para os componentes não-eletrolíticos e equação (II.16) para o componente eletrolítico.

O volume molar dos componentes moleculares foi calculado pela equação de Rackett. Para o sal adotou-se o volume molar aparente do Acetato de Sódio a infinita diluição na Água (Millero, 1971).

90

## V.5 - PROGRAMA DE COMPUTADOR PARA TRATAMENTO DE DADOS DE EQUILÍBRIO LÍQUIDO-LÍQUIDO - ELLMXV

O programa *ELLMXV* foi desenvolvido com o intuito de reunir os diversos programas utilizados nas várias etapas de tratamento de dados de equilíbrio líquido-líquido. Este programa permite :

- 1 Ajuste de Parâmetros, utilizando as seguintes opções:
  - a) Método Simplex de Nelder-Mead, com função-objetivo
     (FO) em termos de diferenças de atividades -Subrotina NELMID;
  - b) Método da Máxima Verossimilhança Aplicado a Restrições Implícitas (Niesen e Yesavage, 1989), com FO em termos de frações molares e temperaturas
     Subrotina MAXVELL;
  - c) Ajuste inicial usando o método de Nelder-Mead e FO em termos de atividades, e ajuste final usando o método da Máxima Verosimilhança e FO em termos de frações molares e temperaturas - Subrotinas NELMID e MAXVELL;
- 2 Cálculo de linhas de amarração, e teste de estabilidade das mesmas Subrotina *TIELINE*;
- 3 Cálculo de curva binodal, para sistemas ternários -Subrotina BINODAL.

O programa *ELLMXV* lē e cria arquivos de dados contendo variáveis de controle, dados experimentais, dados de componentes puros, estimativas iniciais de parâmetros, tipo de modelo a ser utilizado, e imprime resultados em arquivos de saída. Entretanto, possui capacidade de gerenciamento limitada, não permitindo interações entre as quatro subrotinas principais , *NELMID*, *MAXVELL*, *TIELINE* e *BINODAL*, mas apenas escolha de rumos. Neste programa, merece destaque a subrotina *MAXVELL* por ter sido inteiramente desenvolvida neste trabalho, uma vez que, não se tem conhecimento da existência de programas que utilizem a metodologia desenvolvida por Niesen e Yesavage (1989) para o Princípio da Máxima Verossimilhança Aplicado a Restrições Implícitas. A subrotina, bem como o método, encontram-se descritos no item V.6.

A seguir se fará uma descrição sucinta das quatro subrotinas principais, e se apresentará um diagrama de blocos do programa *ELLMXV*.

Descrição sucinta das principais subrotinas de ELLMXV :

- i) Subrotina NELMID
  - Objetivo Ajustar parâmetros através da minimização da FO em termos de diferenças de atividades (equação V.9),

Método - Nelder e Mead (1965),

Referência - Fredenslund et al. (1977).

ii) Subrotina MAXVELL

- Objetivo Ajustar parāmetros através da minimização da FO em termos de diferenças entre as frações molares, e as temperaturas , calculadas e experimentais (equação V.10),
- Método Princípio da Máxima Verossimilhança Aplicado a Restrições Implícitas,
- Referência Niesen e Yesavage (1989), Prausnitz et al. (1980), este trabalho.

iii) Subrotina TIELINE

Objetivo - Calcular linhas de amarração e testar a estabilidade das mesmas,

Método - Flash Isotérmico,

Referência - Fredenslund et al. (1977).

iv) Subrotina BINODAL

Objetivo - Calcular curvas binodais para sistemas ternários.

Método - Fredenslund et al. (1980)

Referência - Sørensen e Arlt (1980).

Condições gerais de uso do programa :

- a) No. máximo de pontos experimentais = 30
- b) No. máximo de parametros para ajuste = 20
- c) No. máximo de componentes = 4
- d) Modelos : UNIQUAC, NRTL, T-K-W, Chen, e Hála Modificado.
- e) Os modelos de Chen e Hála só podem ser usados para sistemas onde :

 $\nu_a + \nu_c = z_a + z_c$ ,

onde, να = número de ânions, νc = número de cátions, za = carga, em valor absoluto, do ânion, zc = carga, em valor absoluto, do cátion

Esta condição só é satisfeita quando os dois ions têm cargas iguais a 1 (um), ou quando têm cargas diferentes, em valor absoluto. Entretanto, quando os ions têm cargas iguais e maiores que 1 (um), em valor absoluto, isto não acontece, a exemplo, do Sulfato de Cálcio (CaSO") :

$$CaSO_{4} \longrightarrow Ca^{+2} + SO_{4}^{-2}$$

onde, va + vc ≡ 2 za + zc ≡ 4,

logo, va + ve = za + ze.

 f) Os modelos de Chen e Hála foram desenvolvidos para sistemas multicomponentes com apenas 1 (um) componente eletrolítico.

As quatro subrotinas principais fazem uso de várias outras, merecendo destaque a subrotina *FUNCG*. Esta subrotina calcula os coeficientes de atividade ( $\gamma$ ), usando o modelo escolhido na entrada de dados. Com os coeficientes de atividade, a subrotina calcula as equações de equilíbrio do sistema (restrições) :

$$F = (X_i \gamma_i)^i - (X_i \gamma_i)^{ii}$$
,  $i = 1, ..., N$   
(V.19)

No Apéndice V encontram-se exemplos de arquivos de saída gerados pelo programa *ELLMXV*.

A seguir se descreverá o diagrama de blocos do programa, Figura V.6.


Fig. V.6 - Diagrama de Blocos do Programa ELLMXV

# V.6 - PRINCÍPIO DA MÁXIMA VEROSSIMILHANÇA APLICADO A RESTRIÇÕES IMPLÍCITAS

O Princípio da Máxima Verossimilhança, originalmente formulado por Fischer em 1925, é o mais sofisticado dentre os métodos estatísticos para ajuste de parâmetros, uma vez que leva em consideração os erros associados a todas as variáveis medidas experimentalmente. Assim, obtém-se com este método os melhores ajustes para os parâmetros.

Anderson et al. (1978) desenvolveram um método para ajuste de parâmetros de modelos não-lineares, baseado no princípio da máxima verossimilhança e utilizando restrições explícitas nas variáveis dependentes (funções das variáveis independentes). Os autores ressaltam que um algoritmo baseado neste método deve convergir rapidamente, devido à semelhança com o método iterativo de Gauss-Newton e à facilidade de adaptação ao procedimento do "Passo-limite", desenvolvido por Law e Bailey (1963) para acelerar a convergência e evitar oscilações.

Prausnitz et al. (1980) publicaram um programa para computador, baseado no método de Anderson et al. (1978), obtendo excelentes resultados para o equilíbrio líquido-vapor de sistemas binários.

Bueno (1990) e Andrade (1991) modificaram o programa de Prausnitz et al. (1980), adaptando-o ao equilíbrio líquido-líquido, obtendo, porém, um algoritmo muito sensível às estimativas iniciais dos composições e parâmetros, e que nem sempre convergia.

Niesen e Yesavage (1989) modificaram o método de Anderson et al. (1978), adaptando-o ao uso com restrições implícitas, tornando-o adequado ao ajuste de parâmetros de modelos para representação do equilíbrio líquido-líquido. Por restrições implícitas entende-se aquelas onde não se pode explicitar as variáveis dependentes como funções das variáveis independentes.

Neste trabalho, o método originalmente desenvolvido por Niesen e Yesavage (1989) para duas restrições implícitas foi

estendido para uso com três e quatro restrições implícitas, de modo а permitir 0 tratamento de dados de equilíbrio líquido-líquido de sistemas ternários quaternários, e respectivamente, além dos sistemas binários. Posteriormente, se desenvolveu um programa para computador (subrotina MAXVELL), baseado neste método, utilizando-se ainda as técnicas de aceleração de convergência e prevenção de oscilações, de Law e Bailey (1963).

O Princípio da Máxima Verossimilhança Aplicado a Restrições Implícitas, bem como as modificações introduzidas no método, e a subrotina *MAXVELL*, encontram-se descritos nos próximos itens.

### V.6.1 - DESCRIÇÃO DO METODO

O Princípio da Máxima Verossimilhança Aplicado a Equações Implícitas foi originalmente desenvolvido por Niesen e Yesavage (1989) para duas restrições, conforme está resumido a seguir :

### i) Método de Niesen e Yesavage (1989)

"Sejam N pontos experimentais (linhas de amarração), constituídos por M variáveis medidas, sendo K variáveis independentes.  $\chi$  é um vetor constituído dos valores experimentais das variáveis independentes, e tem comprimento NK. Para o caso de duas variáveis dependentes, Y e Z são vetores que contêm os valores medidos para essas variáveis e possuem comprimento N.

As duas variáveis dependentes requerem duas restrições para relacioná-las às variáveis independentes e aos parâmetros, ou seja :

| $F(\chi, Y, Z, \theta)$                   | 0 | CV. 20) |
|-------------------------------------------|---|---------|
| $\mathfrak{S}(\chi, \Upsilon, Z, \theta)$ | 0 | CV. 21) |

onde  $\theta$  é um vetor constituido por L parâmetros ajustáveis, e F e G são vetores de comprimento N . No equilibrio líquido-líquido, essas restrições provém da igualdade das atividades dos componentes i nas duas fases em equilíbrio, isto é :  $a_i^{I} = a_i^{II}$ , onde i = 1, ..., N. Para os sistemas binários, por exemplo, as expressões (V.20) = (V.21) representam as seguintes relações :

$$F = (X_{1} \gamma_{1})^{T} - (X_{1} \gamma_{1})^{T} = 0$$
(V. 22)  
$$G = (X_{2} \gamma_{2})^{T} - (X_{2} \gamma_{2})^{T} = 0$$
(V. 23)

O critério de convergência é escolhido como a minimização da função-objetivo (S), obtida a partir da função verossimilhança do método original da máxima verossimilhança, ou seja :

$$S = (\chi - \chi^{m})^{T} \lambda (\chi - \chi^{m}) + (Y - Y^{m})^{T} \varphi (Y - Y^{m}) + (Z - Z^{m})^{T} \delta (Z - Z^{m})$$

onde, m = valor medido

 $\mathbf{r}$  = transposta da matriz

- λ = matriz diagonal (NK,NK), cujos elementos são o inverso do quadrado dos desvios-padrão das variáveis independentes.
- φ e δ = matrizes diagonais (N,N), cujos elementos
   são o inverso do quadrado dos desvios-padrão das variáveis dependentes, Y
   e Z, respectivamente.

O próximo passo é expressar Y e Z nas restrições (V.20) e (V.21), como funções de  $\chi$  e  $\theta$ , e substituí-las na equação (V.24), obtendo-se a função-objetivo (S) como função apenas das variáveis independentes ( $\chi$ ) e dos parámetros ( $\theta$ ), de modo a poder minimizá-la em relação a  $\chi$  e a  $\theta$ , como segue :

$$\delta S \neq \delta \chi = 0 \tag{V.25}$$
  
$$\delta S \neq \delta \theta = 0 \tag{V.26}$$

Para eliminar Y e Z da equação (V.24), tem-se que escrevê-los como funções de  $\chi$  e  $\theta$ , através das restrições (V.20) e (V.21). Porém, em virtude destas equações não serem lineares nas variáveis dependentes e independentes, tem-se que linearizá-las através de uma expansão em séries de Taylor de 1a. ordem, em torno das estimativas mais recentes dos parâmetros e das variáveis independentes. Assim, as restrições ganham a forma :

$$F \cong F^{r} + F_{\chi} (\chi - \chi^{r}) + F_{\chi} (Y - Y^{r}) + F_{z} (Z - Z^{r}) +$$
$$+ F_{\varphi} (\theta - \theta^{r}) \qquad (V.27)$$

$$G \cong G^{r} + G_{\chi} (\chi - \chi^{r}) + G_{\chi} (Y - Y^{r}) + G_{Z} (Z - Z^{r}) +$$
$$+ G_{\chi} (\theta - \theta^{r}) \qquad (V.28)$$

onde,  $F^r$ ,  $G^r$  = valor assumido pela função F ou G, na iteração anterior (r),

F e G = 0 (por definição, equações V.20 e V.21)

- $F_{\chi}$ ,  $G_{\chi}$  = derivadas de F e G, em relação às variáveis independentes  $\chi$ , sendo matrizes esparsas de tamanho (N,NK),
- $F_{Y}, G_{Y}, F_{Z}, G_{Z}$  = derivadas de F e G, em relação às variáveis dependentes Y e Z, sendo matrizes diagonais de tamanho (N,N),

F, G = derivadas de F e G, em relação a cada parâmetro, sendo matrizes (N,L),

superscrito r = iteração anterior.

O erro associado às aproximações das equações (V.27) e (V.28) tende a zero quando a convergência é alcançada.

As equações lineares, (V.27) e (V.28), podem ser resolvidas para (Y - Y<sup>r</sup>) e (Z - Z<sup>r</sup>), em termos de  $\chi$  e  $\theta$ , e dos valores de F e G na iteração anterior (F<sup>r</sup> e G<sup>r</sup>), obtendo-se :

$$\Delta Z = Z - Z^{r} = -(G_{Z} - G_{Y} F_{Y}^{-1} F_{Z})^{-1} ((G^{r} - G_{Y} F_{Y}^{-1} F^{r}) + (G_{\chi} - G_{Y} F_{Y}^{-1} F_{\chi}) (\chi - \chi^{r}) + (G_{\chi} - G_{Y} F_{Y}^{-1} F_{\chi}) (\theta - \theta^{r})$$
(V.29)

$$\Delta Y = Y - Y^{r} = -(G_{Y} - G_{Z} F_{Z}^{-1} F_{Y})^{-1} ((G^{r} - G_{Z} F_{Z}^{-1} F^{r}) + (G_{\chi} - G_{Z} F_{Z}^{-1} F_{\chi}) (\chi - \chi^{r}) + (G_{\varphi} - G_{Z} F_{Z}^{-1} F_{\chi}) (\theta - \theta^{r})$$
(V.30)

As funções obtidas para as variáveis Y e Z através das expressões (V.29) e (V.30), podem ser substituidas na equação (V.24), obtendo-se uma expressão para a função-objetivo (S), em termos das variáveis independentes  $\chi$ , dos parâmetros  $\theta$ , dos valores assumidos pelas variáveis e funções na iteração anterior ( $F^r$ ,  $G^r$ ,  $Y^r$ ,  $Z^r$ ) e das variáveis medidas ( $\chi^m$ ,  $Y^m$ , etc.). Esta expressão tem a seguinte forma :

$$S = (\chi - \chi^{m})^{T} \lambda (\chi - \chi^{m}) + [f^{r} - Y^{m} + f_{\chi}(\chi - \chi^{r}) + f_{\varphi}(\theta - \theta^{r})]^{T} \varphi [f^{r} - Y^{m} + f_{\chi}(\chi - \chi^{r}) + f_{\varphi}(\theta - \theta^{r})] + [g^{r} - Z^{m} + g_{\chi}(\chi - \chi^{r}) + g_{\varphi}(\theta - \theta^{r})]^{T} \delta *$$

$$* [g^{r} - Z^{m} + g_{\chi}(\chi - \chi^{r}) + g_{\varphi}(\theta - \theta^{r})] \qquad (V.31)$$

onde,

$$f^{r} = Y^{r} - (G_{Y} - G_{Z} F_{Z}^{-1} F_{Y})^{-1} (G^{r} - G_{Z} F_{Z}^{-1} F^{r}) \qquad (V. 32a)$$

$$f_{\chi} = - (G_{Y} - G_{Z} F_{Z}^{-1} F_{Y})^{-1} (G_{\chi} - G_{Z} F_{Z}^{-1} F_{\chi}) \qquad (V. 32b)$$

$$f_{\phi} = - (G_{Y} - G_{Z} F_{Z}^{-1} F_{Y})^{-1} (G_{\phi} - G_{Z} F_{Z}^{-1} F_{\phi}) \qquad (V. 32c)$$

$$g^{r} = Z^{r} - (G_{Z} - G_{Y} F_{Y}^{-1} F_{Z})^{-1} (G^{r} - G_{Y} F_{Y}^{-1} F^{r}) \qquad (V. 32d)$$

$$g_{\chi} = - (G_{Z} - G_{Y} F_{Y}^{-1} F_{Z})^{-1} (G_{\chi} - G_{Y} F_{Y}^{-1} F_{\chi}) \qquad (V. 32e)$$

$$g_{z} = -(G_{z} - G_{y} F_{y}^{-1} F_{z})^{-1} (G_{y} - G_{y} F_{y}^{-1} F_{z}) \qquad (V.32f)$$

A derivada da expressão V.31 (S) em relação a  $\chi$  e  $\theta,$  (equações V.25 e V.26), leva às seguintes expressões :

$$\Delta \theta = \theta - \theta^{\mathrm{r}} = - [\mathrm{TT} - \mathrm{R}^{\mathrm{T}} \mathrm{D}^{-1} \mathrm{R} \mathrm{J}^{-1} [\mathrm{U} - \mathrm{R}^{\mathrm{T}} \mathrm{D}^{-1} \mathrm{Q}]$$
(V.33)

$$\Delta \chi = \chi - \chi^{r} = -D^{-1} [Q + R \Delta \theta] \qquad (V. 34)$$

101

onde as matrizes e vetores são definidos como segue :

$$D = \lambda + f_{\chi}^{T} \varphi f_{\chi} + g_{\chi}^{T} \delta g_{\chi}$$
(V. 35a)

$$R = f_{\chi}^{T} \varphi f_{\varphi} + g_{\chi}^{T} \delta g_{\varphi}$$
(V. 35b)

$$TT = f_{\phi}^{T} \varphi f_{\phi} + g_{\phi}^{T} \delta g_{\phi}$$
(V. 35c)

$$U = f_{\varphi}^{T} \varphi \Delta Y^{m} + g_{\varphi}^{T} \delta \Delta Z^{m}$$
 (V. 35d)

$$Q = \lambda \Delta \chi^{m} + f_{\chi}^{T} \varphi \Delta Y^{m} + g_{\chi}^{T} \delta \Delta Z^{m}$$
 (V.35e)

$$\Delta \chi^{\rm m} = \chi^{\rm r} - \chi^{\rm m} \tag{V.35f}$$

$$\Delta Y^{m} = f^{r} - Y^{m} \tag{V.35g}$$

 $\Delta Z^{m} = q^{r} - Z^{m} \qquad (V. 35h)''$ 

A expressão (V.31), usando as variáveis redefinidas nas expressões (V.32a) - (V.32f), e as expressões de (V.33) e (V.34) são semelhantes àquelas obtidas por Anderson et al. (1978) para restrições explícitas, e são equivalentes as equações utilizadas por Prausnitz et al. (1980) no programa para ajuste de parâmetros de modelos Termodinâmicos para representação do equilíbrio líquido-vapor.

Assim, o novo algoritmo desenvolvido neste trabalho torna-se semelhante ao de Prausnitz et al. (1980) a partir das expressões (V.33), incluindo o método de aceleração de convergência utilizado por estes autores.

As equações (V.33) e (V.34) são a base do método do Máxima Verossimilhança, sendo  $\theta$  e  $\chi$  as novas estimativas para as variáveis independentes, que substituídas nas expressões (V.29) e (V.30) levam à obtenção de novas estimativas para as variáveis dependentes, Y e Z. O novo valor de S  $(S_n)$  é calculado a partir da expressão (V.31) e comparado com o valor da iteração anterior, sendo esta diferença  $(S_n - S)$  utilizada para verificar se o método está convergindo.

Niesen e Yesavage (1989) propuseram que o método convergiria quando (Sn - S)/Sn fosse menor que uma tolerância previamente admitida. Entretanto, resolveu-se adotar como critério de convergência, a variação nos valores dos parâmetros entre duas iterações consecutivas, ou seja :  $(\theta - \theta^r)/\theta <$  tol.. Este novo critério de convergência foi proposto em virtude da função-objetivo (S) nem sempre ser sensível a variações relativamente grandes nos parâmetros, o que levava ao término do programa sem a real convergência destes parâmetros.

## ii) <u>EXTENSÃO DO MÉTODO DE NIESEN E YESAVAGE PARA 3 (TRÊS)</u> E 4 (QUATRO) RESTRIÇÕES IMPLÍCITAS

Neste trabalho, em virtude de se estar estudando sistemas líquidos ternários e quaternários, foi necessário estender o método de Niesen e Yesavage para três e quatro restrições implícitas, respectivamente.

Para efetuar a extensão do método, seguiu-se o mesmo procedimento matemático utilizado pelos autores. Para o sistema com quatro restrições, onde o número de equações, matrizes e vetores é muito grande, o tratamento matemático tornou-se bastante tedioso.

As equações obtidas para os sistemas com três e quatro restrições implícitas estão discriminadas a seguir. O tratamento matemático será omitido, em virtude de ter sido descrito no item anterior (i). Restrições :

- $F(\chi, \Upsilon, Z, W, \theta) = 0$  (V. 36)
- $G(\chi, \Upsilon, Z, \Psi, \theta) = 0$  (V. 37)

$$H(\chi, Y, Z, W, \theta) = 0 \qquad (V.38)$$

onde, 
$$\chi$$
 = vetor de variáveis independentes (NK)  
Y, Z e W = vetores de variáveis dependentes (N)  
 $\theta$  = vetor de parâmetros (L)

A função-objetivo tem a forma :

$$S = (\chi - \chi^{m})^{T} \lambda (\chi - \chi^{m}) + (Y - Y^{m})^{T} \varphi (Y - Y^{m}) + (Z - Z^{m})^{T} \delta (Z - Z^{m}) + (W - W^{m})^{T} \xi (W - W^{m})$$

$$(V.39)$$

As expressões para as variáveis dependentes, como funções das variáveis independentes ( $\chi$ ) e dos parâmetros ( $\theta$ ), são iguais a :

$$\Delta Y = Y - Y^{r} = -k^{-1} (y_{1} + y_{2} \Delta \chi + y_{3} \Delta \theta)$$
 (V.40)

$$\Delta Z = Z - Z^{r} = -a^{-1} (z_{1} + z_{2} \Delta \chi + z_{3} \Delta \theta) \qquad (V.41)$$

$$\Delta W = W - W^{r} = + w_{1}^{-1} (w_{2} + w_{3} \Delta \chi + w_{4} \Delta \theta) \qquad (V.42)$$

onde,

superscrito r = iteração anterior

$$y_1 = 1 + u w_1^{-1} w_2$$
,  $y_2 = m + u w_1^{-1} w_3$  (V.43a,b)

$$y_3 = n + u w_1^{-1} w_4$$
,  $z_1 = b + x w_1^{-1} w_2$  (V.43c,d)

 $z_{2} = c + \times w_{1}^{-1} w_{2}$ ,  $z_{3} = d + \times w_{1}^{-1} w_{4}$  (V.43e,f)

$$w_{1} = r k^{-1}u + s a^{-1}x , w_{2} = p-r k^{-1}l-s a^{-1}b \quad (V. 43g,h)$$

$$w_{3} = q-r k^{-1}m-s a^{-1}c , w_{4} = t-r k^{-1}n-s a^{-1}d \quad (V. 43i,j)$$

$$a = G_{z} - G_{y} F_{y}^{-1} F_{z} , b = G^{r} - G_{y} F_{y}^{-1} F^{r} \quad (V. 43k,l)$$

$$c = G_{z} - G_{y} F_{y}^{-1} F_{z} , d = G_{o} - G_{y} F_{y}^{-1} F_{o} \quad (V. 43k,l)$$

$$k = G_{y} - G_{z} F_{z}^{-1} F_{y} , l = G^{r} - G_{z} F_{z}^{-1} F^{r} \quad (V. 43o,p)$$

$$m = G_{z} - G_{z} F_{z}^{-1} F_{z} , n = G_{o} - G_{z} F_{z}^{-1} F_{o} \quad (V. 43q,r)$$

$$p = H^{r} - H_{v} G_{v}^{-1} G^{r} , q = H_{z} - H_{v} G_{v}^{-1} G_{z} \quad (V. 43u,v)$$

$$t = H_{o} - H_{v} G_{v}^{-1} G_{o} , u = G_{v} - G_{z} F_{z}^{-1} F_{v} \quad (V. 43u,v)$$

$$x = G_{v} - G_{y} F_{y}^{-1} F_{v} \quad (V. 43v,x)$$

H<sub> $\chi$ </sub>, H<sub>Y</sub>, H<sub>Z</sub>, H<sub>W</sub> = derivadas de H em relação à  $\chi$ , Y, Z e W. F<sub>W</sub>, G<sub>W</sub> = derivadas de F e G em relação à W, As outras derivadas já foram definidas no item (i).

A substituição das expressões (V.40), (V.41) e (V.42) na expressão (V.39) leva à obtenção da função-objetivo em termos das variáveis independentes  $\chi$  e dos parâmetros  $\theta$ , como segue :

$$S = (\chi - \chi^{m})^{T} \lambda (\chi - \chi^{m}) + [\Delta Y^{m} + f_{\chi}(\chi - \chi^{r}) + f_{\varphi}(\theta - \theta^{r})]^{T} \varphi [\Delta Y^{m} + f_{\chi}(\chi - \chi^{r}) + f_{\varphi}(\theta - \theta^{r})] + f_{\varphi}(\theta - \theta^{r})]^{T} \delta + [\Delta Z^{m} + g_{\chi}(\chi - \chi^{r}) + g_{\varphi}(\theta - \theta^{r})]^{T} \delta + [\Delta Z^{m} + g_{\chi}(\chi - \chi^{r}) + g_{\varphi}(\theta - \theta^{r})] + f_{\chi}(\chi - \chi^{r}) + f_{\varphi}(\theta - \theta^{r})] + f_{\chi}(\chi - \chi^{r}) + f_{\varphi}(\theta - \theta^{r})]^{T} \xi + f_{\chi}(\chi - \chi^{r}) + f_{\varphi}(\theta - \theta^{r})]^{T} \xi + f_{\chi}(\chi - \chi^{r}) + f_{\varphi}(\theta - \theta^{r})] + f_{\chi}(\chi - \chi^{r}) + f_{\chi}(\theta - \theta^{r})]^{T} \xi + f_{\chi}(\chi - \chi^{r}) + f_{\varphi}(\theta - \theta^{r})]^{T} \xi + f_{\chi}(\chi - \chi^{r}) + f_{\varphi}(\theta - \theta^{r})] + f_{\chi}(\chi - \chi^{r}) + f_{\chi}(\theta - \theta^{r})]^{T} \xi + f_{\chi}(\chi - \chi^{r}) + f_{\chi}(\theta - \theta^{r})]^{T} \xi + f_{\chi}(\chi - \chi^{r}) + f_{\chi}(\theta - \theta^{r})] + f_{\chi}(\chi - \chi^{r}) + f_{\chi}(\theta - \theta^{r})] + f_{\chi}(\chi - \chi^{r}) + f_{\chi}(\theta - \theta^{r})]^{T} \xi + f_{\chi}(\chi - \chi^{r}) + f_{\chi}(\theta - \theta^{r})] + f_{\chi}(\chi - \chi^{r}) + f_{\chi}(\eta - \theta^{r})] + f_{\chi}(\eta - \theta^{r})$$

onde, 
$$\Delta \chi^{m} = \chi^{r} - \chi^{m}$$
 (V.45a)

$$\Delta Y^{m} = f^{r} - Y^{m} \qquad (V.45b)$$

$$\Delta Z^{m} = g^{r} - Z^{m} \qquad (V. 45c)$$

$$\Delta W^{m} = h^{r} - W^{m} \qquad (V. 45d)$$

$$f^{r} = Y^{r} - k^{-1} y_{1}$$
 (V. 45e)

$$f_{\chi} = -k^{-1} y_{2}$$
 (V. 45f)

$$f_{g} = -k^{-1} y_{3}$$
 (V. 45g)

$$g^{r} = Z^{r} - a^{-1} Z_{1}$$
 (V. 45h)

$$g_{\chi} = -a^{-1}z_{\chi}$$
 (V. 45i)

$$g_{a} = -a^{-1}z_{3}$$
 (V. 45j)

$$h^{r} = W^{r} + w_{1}^{-1} w_{2}$$
 (V. 45k)

$$h_{\chi} = + w_1^{-1} w_3$$
 (V. 451)

$$h_{a} = + w_{a}^{-1} w_{4}$$
 (V. 45m)

Observa-se que a expressão (V.44) é semelhante à expressão (V.31) de Niesen e Yesavage a menos do último termo, que leva em consideração a variável W, e das redefinições (V.45a) - (V.45m) para as variáveis  $f^r$ ,  $f_{\gamma}$ , f, g<sup>r</sup>, etc.

Usando-se as duas condições de minimização (V.25) e (V.26), obtém-se :

$$\Delta \theta = \theta - \theta^{r} = - [TT - R^{T} D^{-1}R]^{-1} [U - R^{T} D^{-1}Q]$$
(V.46)

$$\Delta \chi = \chi - \chi' = - D^{-1} [Q + R \Delta \theta] \qquad (V.47)$$

106

As expressões (V.46) e (V.47) são idênticas às expressões (V.33) e (V.34). Entretanto os vetores e matrizes são redefinidos como segue :

$$D = \lambda + f_{\chi}^{T} \varphi f_{\chi} + g_{\chi}^{T} \delta g_{\chi} + h_{\chi}^{T} \xi h_{\chi} \qquad (V.48a)$$

$$R = f_{\chi}^{T} \varphi f_{\varphi} + g_{\chi}^{T} \delta g_{\varphi} + h_{\chi}^{T} \xi h_{\varphi}$$
(V. 48b)

$$TT = f \phi f + g \phi \delta g + h \phi \xi h$$
 (V. 48c)

$$U = f_{\phi}^{T} \phi \Delta Y^{m} + g_{\phi}^{T} \delta \Delta Z^{m} + h_{\phi}^{T} \xi \Delta W^{m}$$
 (V. 48d)

$$Q = \lambda \Delta \chi^{m} + f_{\chi}^{T} \varphi \Delta Y^{m} + g_{\chi}^{T} \delta \Delta Z^{m} + h_{\chi}^{T} \xi \Delta W^{m} \qquad (V.48e)$$

As expressões (V.48a) - (V.48e) diferem das expressões (V.35a) - (V.35e), de Niesen e Yesavage (1989), apenas pela presença do último termo, referente à variável W e à restrição H.

### 11. b) QUATRO RESTRIÇÕES IMPLÍCITAS

Restrições :

| F | $(\chi, \Upsilon, Z, W, V, \theta)$ | <b>1</b> 25 | 0 | (V. 49) |
|---|-------------------------------------|-------------|---|---------|
| G | $(\chi, \Upsilon, Z, W, V, \theta)$ |             | 0 | (V.50)  |
| Н | $(\chi, \Upsilon, Z, W, V, \theta)$ |             | 0 | (V.51)  |
| Ι | $(\chi, \Upsilon, Z, W, V, \theta)$ | <b>8</b> 53 | 0 | (V. 52) |

onde, χ = vetor de variáveis independentes (NK) Y, Z, W e V = vetores de variáveis dependentes (N) θ = vetor de parametros (L) A função-objetivo tem a forma :

$$S = (\chi - \chi^{m})^{T} \lambda (\chi - \chi^{m}) + (Y - Y^{m})^{T} \varphi (Y - Y^{m}) + (Z - Z^{m})^{T} \delta (Z - Z^{m}) + (W - W^{m})^{T} \xi (W - W^{m}) + (V - V^{m})^{T} \psi (V - V^{m})$$
(V.53)

As expressões para as variáveis dependentes, como funções das variáveis independentes ( $\chi$ ) e dos parâmetros ( $\theta$ ), são iguais a :

$$\Delta Y = Y - Y^{r} = -k^{-1} (y_{ij} + y_{j} \Delta \chi + y_{j} \Delta \theta) \qquad (V.54)$$

$$\Delta Z = Z - Z^{r} = -a^{-1} \left( z_{\mu} + z_{5} \Delta \chi + z_{6} \Delta \theta \right) \qquad (V.55)$$

$$\Delta W = W - W^{T} = + w_{1}^{-1} (w_{0} + w_{7} \Delta \chi + w_{8} \Delta \theta) \qquad (V. 56)$$

$$\Delta V = V - V^{r} = -v_{1}^{-1} (v_{2} + v_{3} \Delta \chi + v_{4} \Delta \theta) \qquad (V.57)$$

onde,

$$v_1 = s' - q'a^{-1}a' - q'a^{-1}x w_1^{-1}w_s + r'w_1^{-1}w_s$$
 (V.58a)

$$v_2 = d' - q'a^{-1}b - q'a^{-1}x w_1^{-1} w_2 + r'w_1^{-1}w_2$$
 (V.58b)

$$v_3 = l' - q'a^{-1}c - q'a^{-1}x w_1^{-1}w_3 + r'w_1^{-1}w_3$$
 (V.58c)

$$v_{\mu} = t' - q'a^{-1}d - q'a^{-1}x w_{1}^{-1} w_{\mu} + r'w_{1}^{-1}w_{\mu}$$
 (V.58d)

$$W_{\rm s} = c' - r k^{-1}b' - s a^{-1}a'$$
 (V.58e)

$$W_{5} = W_{2} - W_{5} V_{1}^{-1} V_{2}$$
,  $W_{7} = W_{3} - W_{5} V_{1}^{-1} V_{3}$  (V.58f,g)

$$W_{g} = W_{u} - W_{g} V_{1} V_{u}$$
 (V.58h)

$$z_{4} = b + x w_{1}^{-1} w_{6} - a' v_{1}^{-1} v_{2}$$
 (V.58i)

$$z_{s} = c + x w_{1}^{-1} w_{7} - a' v_{1}^{-1} v_{3}$$
 (V.58j)

| <sup>z</sup> 6 | <b>\$</b> 20, | $d + \times W_1^{-1}$                          | W <sub>8</sub> - a' | V <sup>1</sup> <sub>1</sub> V <sub>4</sub>  | (V. 58k)  |
|----------------|---------------|------------------------------------------------|---------------------|---------------------------------------------|-----------|
| Уц             | 1812          | l + u w <sub>1</sub> <sup>-1</sup>             | w <sub>6</sub> - b' | v <sub>1</sub> <sup>-1</sup> v <sub>2</sub> | (V.581)   |
| Уs             | <b>6</b> 33   | $m + u w_{1}^{-1}$                             | w <sub>7</sub> - b' | v <sup>-i</sup> v <sub>3</sub>              | (V. 58m)  |
| УB             | <b>8</b> 53   | $n + u w_1^{-1}$                               | w <sub>B</sub> - b' | v_1 v_4                                     | (V.58n)   |
| a'             | <b>100</b>    | G <sub>v</sub> - G <sub>v</sub> F <sub>v</sub> | f, F, ,             | $b' = G - G F^{-i} F$                       | (V.580,p) |

| c' | -           | $^{\rm H}{ m v}$ |   | H<br>₩ | G <sub>w</sub> <sup>−1</sup> | G <sub>v</sub> | , | ď٢ |             | I <sup>r</sup> | -   | I              | $H_{Y}^{-1}$                 | H <sup>r</sup> | (V.58q,r] |
|----|-------------|------------------|---|--------|------------------------------|----------------|---|----|-------------|----------------|-----|----------------|------------------------------|----------------|-----------|
| 1, | 22          | I<br>x           |   | I Y    | H_Y <sup>1</sup>             | H<br>x         | , | q' | 770m        | Iz             |     | I <sub>Y</sub> | H <sub>×</sub> -1            | Hz             | (V.58s,t) |
| r' | <b>3</b> 32 | I<br>W           | - | IY     | H <sub>Y</sub> <sup>-1</sup> | H<br>W         | > | s' | <b>5</b> .2 | I <sub>v</sub> | *27 | I<br>Y         | H <sub>Y</sub> <sup>−1</sup> | Hv             | (V.58u,v) |
| ť, | <b>8</b>    | Iø               |   | IY     | H_Y <sup>-1</sup>            | H              |   |    |             |                |     |                |                              |                | (V.58w)   |

As expressões para a, b, c, d, k, l, m, n, p, q, r, s, t, x, u,  $w_1$ ,  $w_2$ ,  $w_3$  e  $w_4$  são as mesmas usadas para três restrições (item iia).

A função-objetivo, em termos das variáveis independentes  $\chi$  e dos parâmetros  $\theta$ , tem a seguinte forma :

$$S^{m}(\chi - \chi^{m})^{T} \lambda (\chi - \chi^{m}) + [\Delta Y^{m} + f_{\chi}(\chi - \chi^{r}) + f_{\varphi}(\theta - \theta^{r})]^{T} \varphi [\Delta Y^{m} + f_{\chi}(\chi - \chi^{r}) + f_{\varphi}(\theta - \theta^{r})] +$$

$$+ f_{\varphi}(\theta - \theta^{r})]^{T} \delta + f_{\chi}(\theta - \eta^{r})]^{T} \delta +$$

$$+ [\Delta Z^{m} + g_{\chi}(\chi - \chi^{r}) + g_{\varphi}(\theta - \theta^{r})] +$$

$$+ [\Delta W^{m} + h_{\chi}(\chi - \chi^{r}) + h_{\varphi}(\theta - \theta^{r})]^{T} \xi +$$

$$+ [\Delta W^{m} + h_{\chi}(\chi - \chi^{r}) + h_{\varphi}(\theta - \theta^{r})] +$$

$$+ [\Delta W^{m} + h_{\chi}(\chi - \chi^{r}) + h_{\varphi}(\theta - \theta^{r})] +$$

$$+ [\Delta V^{m} + i_{\chi}(\chi - \chi^{r}) + i_{\varphi}(\theta - \theta^{r})] +$$

$$+ [\Delta V^{m} + i_{\chi}(\chi - \chi^{r}) + i_{\varphi}(\theta - \theta^{r})] +$$

$$(V.59)$$

109

onde, 
$$\Delta V^{m} = i^{r} - V^{m}$$
 (V.60a)

$$f^{r} = Y^{r} - k^{-1} y_{4}$$
 (V. 60b)

$$f_{\chi} = -k^{-1} y_{5} \qquad (V.60c)$$

$$f_{e} = -k^{-1} y_{s}$$
 (V. 60d)

$$g^{r} = Z^{r} - a^{-1} Z_{4}$$
 (V.60e)

$$g_{\chi} = -a^{-1}z_{5} \qquad (V.60f)$$

$$g_{\mu} = -a^{-1} z_{\mu} \qquad (V.60g)$$

$$h^{r} = W^{r} + w_{1}^{-1} w_{E}$$
 (V. 60h)

$$h_{\chi} = + w_{1}^{-1} w_{7}$$
 (V. 601)

$$h_{s} = + w_{1}^{-1} w_{B}$$
 (V.60j)

$$\mathbf{i}^{r} = \mathbf{V}^{r} + \mathbf{v}_{1}^{-i} \mathbf{v}_{2} \tag{V.60k}$$

$$i_{\chi} = -v_{1}^{-1}v_{3} \qquad (V. 601)$$

$$i_{\varphi} = -v_{1}^{-1}v_{4} \qquad (V.60m)$$

As expressões para  $\Delta\chi^m$  ,  $\Delta\Upsilon^m$  ,  $\Delta Z^m$  ,  $\Delta W^m$  são as mesmas usadas para três restrições (item ila, equações V.45a, V.45b, V.45c, V.45d).

Usando-se as duas condições de minimização (V.25) e (V.26), obtém-se :

$$\Delta \theta = \theta - \theta^{r} = - [TT - R^{T} D^{-1}R J^{-1} [U - R^{T} D^{-1} Q]$$
(V. 61)

$$\Delta \chi = \chi - \chi^{r} = -D^{-1} [Q + R \Delta \theta] \qquad (V. 62)$$

As expressões (V.61) e (V.62) são idênticas às expressões (V.33) e (V.34), obtidas originalmente por Niesen e Yesavage (1989). Entretanto, os vetores e matrizes são redefinidos como segue :

$$D = \lambda + f_{\chi}^{T} \varphi f_{\chi} + g_{\chi}^{T} \delta g_{\chi} + h_{\chi}^{T} \xi h_{\chi} + i_{\chi}^{T} \psi i_{\chi} \qquad (V.63a)$$

$$R = f_{\chi}^{T} \varphi f_{\varphi} + g_{\chi}^{T} \delta g_{\varphi} + h_{\chi}^{T} \xi h_{\varphi} + i_{\chi}^{T} \psi i_{\varphi} \qquad (V.63b)$$

$$TT = f_{\phi}^{T} \varphi f_{\phi} + g_{\phi}^{T} \delta g_{\phi} + h_{\phi}^{T} \xi h_{\phi} + i_{\phi}^{T} \psi i_{\phi} \qquad (V.63c)$$

$$U = f_{\varphi}^{T} \varphi \Delta Y^{m} + g_{\varphi}^{T} \delta \Delta Z^{m} + h_{\varphi}^{T} \xi \Delta W^{m} + i_{\varphi}^{T} \psi \Delta V^{m}$$
(V.63d)

$$Q = \lambda \Delta \chi^{m} + f_{\chi}^{T} \varphi \Delta Y^{m} + g_{\chi}^{T} \delta \Delta Z^{m} + h_{\chi}^{T} \xi \Delta W^{m} + i_{\chi}^{T} \psi \Delta V^{m}$$
(V.63e)

Uma vez que as expressões para  $\Delta \chi \in \Delta \theta$  são idênticas, independendo do número de restrições, o algoritmo principal da subrotina *MAXVELL* é único, devendo acessar, porém, diferentes subrotinas para cálculo das variáveis :  $f^r, g^r, h^r, i^r, f_{\chi}, g_{\chi}, h_{\chi}, i_{\chi}, f_{\gamma}, g_{\gamma}, h_{\gamma}, i_{\gamma}, \Delta \chi, f_{\gamma}, g_{\gamma}, h_{\gamma}, i_{\gamma}, \Delta \chi, \Delta Y, \Delta Z, \Delta W e \Delta V, que variam de acordo com o número de$ restrições.

Em termos computacionais, a inversão de matrizes não oferece problemas, pois a maioria delas é diagonal ou simétrica.

O tempo computacional é função do número de restrições, do número de pontos experimentais (linhas de amarração) e do número de parâmetros ajustáveis.

### V.6.2 - SUBROTINA MAXVELL

A subrotina *MAXVELL*, desenvolvida durante a realização deste trabalho, tem por objetivo estimar

parâmetros de modelos termodinâmicos para o cálculo de coeficiente de atividade ( $\gamma$ ), através de dados de equilíbrio líquido-líquido. A subrotina utiliza o Princípio da Máxima Verossimilhança Aplicado a Restrições Implícitas, descrito no item V.6.1 deste trabalho. Além disso, utiliza também, o método de aceleração de convergência e prevenção de oscilações de Law e Bailey (1963), adaptado por Prausnitz et al. (1980) para o equilíbrio de fases.

A seguir se fará uma descrição das diversas etapas constituintes da subrotina *MAXVELL* :

> 1) Cálculo dos valores das restrições F<sup>r</sup>, G<sup>r</sup>, H<sup>r</sup> e I<sup>r</sup>, através da subrotina FUNCG, usando as estimativas iniciais para as frações molares, o valor experimental da temperatura, e as equações de equilíbrio (V.64) :

$$F^{r}(ou \ G^{r}ou \ H^{r}ou \ I^{r}) = (X_{i}\gamma_{i})^{I} - (X_{i}\gamma_{i})^{II}$$
$$i = 1, \dots, N$$
$$(V. 64)$$

- 2) Cálculo das derivadas ,  $F_{\chi}$  ,  $G_{\chi}$  ,  $F_{\chi}$  ,  $G_{\chi}$  ,  $F_{z}$  ,  $G_{z}$  , etc. através da subrotina *FUNDRV*, que utiliza o método numérico de derivação por diferença central,
- Cálculo da função-objetivo (S), expressão (V.10), utilizando os dados experimentais e os valores arbitrados para a temperatura e as frações molares,
- 4) Cálculo das matrizes D, TT, e dos vetores Q, S, U, utilizando também a subrotina INVSIM, para inversão de matrizes simétricas,
- 5) Cálculos do vetores  $\Delta \theta = \Delta \chi$ ,
- 6) Cálculo dos vetores  $\Delta Y$ ,  $\Delta Z$ ,  $\Delta W$ ,  $\Delta V$ , através da subrotina *DELTAS*,

7) Aplicação da técnica do "Passo-limite" de Law e Bailey (1963), na integra, como usada por Prausnitz et al. (1980). Este método é um tipo de relaxação matemática aplicado primeiro à função-objetivo (FO) linearizada, e depois à função-objetivo (FO) normal. O método constitui-se, basicamente, em verificar se o valor da FO (FOi+101) está aumentando ou diminuindo em relação à FO da iteração anterior, FOL. Se estiver aumentando, o método está tendendo a divergir, e então o programa multiplica os incrementos dos parâmetros e das variáveis por um fator (AL), menor que a unidade, e inverte os sinais dos incrementos, mudando a direção do passo, e calcula FO (FOi+1(2)). Se novamente a esta ainda continuar maior que aquela da iteração anterior (FOi), o valor do fator "AL" é diminuido, e o programa continua caminhando nessa nova direção até conseguir que a nova FOi+1(n) seja menor que a FO da iteração anterior (FOi). Quando isto acontece, o programa prossegue para a etapa (8) fazendo FOi + i = FOi + i(n). Gráficamente este método pode ser representado como :



Fig. V.7 - Esquema do Método do Passo-Limite

8) Cálculo do desvio relativo dos parâmetros  $(\theta)$ , entre duas iterações consecutivas, e comparação com uma tolerância pré-estabelecida (tol):

$$\frac{\theta^{i+1} - \theta^{i}}{\theta^{i+1}} \le \text{tol} , \qquad (V.65)$$

Se este desvio for menor ou igual à tolerância (tol) o programa segue para a etapa (11),

- 9) Se o número de iterações superar o máximo estabelecido pelo usuário, o programa segue para a etapa (11),
- 10) Retorna à etapa (1),
- 11) Cálculo da variança do ajuste  $(S^2)$ :

$$S^2 = \frac{S}{Np - L}$$
, (V.66)

onde, S = valor da função-objetivo, Np = número de pontos experimentais, L = número de parâmetros ajustáveis,

12) Fim da subrotina.

A variança do ajuste serve para comparar a performance de dois modelos diferentes.

O diagrama de blocos da subrotina *MAXVELL* encontra-se na Figura V.8.



Fig. V.8 - Diagrama de Blocos da Subrotina MAXVELL

115



Fig. V. 8 - Diagrama de Blocos da Subrotina MAXVELL (continuação)

# V. 6. 3 - AJUSTE DE PARAMETROS VIA SUBROTINA MAXVELL -METODOLOGIA E TESTES

Realizaram-se diversos testes com o intuito de verificar, não apenas a performance da subrotina MAXVELL, como também a eficiência do método desenvolvido por Niesen e Yesavage (1989), quando aplicado ao ajuste de parâmetros de modelos termodinâmicos para representação do equilíbrio líquido-líquido.

Durante a realização dos testes, desenvolveu-se uma metodologia de uso do programa *ELLMXV* para o ajuste de parâmetros através da subrotina *MAXVELL*. Acredita-se que esta metodologia seja a melhor para a maioria dos casos, e pode-se resumi-la nas seguintes etapas :

- 1) Arbitram-se valores iniciais para os parâmetros,
- 2) Ajustam-se os parâmetros, utilizando o método de Nelder-Mead (subrotina NELMID),
- 3) Com os parâmetros ajustados na etapa (2), geram-se linhas de amarração, através da subrotina TIELINE. Esta subrotina fornece um desvio médio percentual entre as frações molares calculadas (X<sup>c</sup>) e experimentais (X<sup>e</sup>), que é estimado segundo a fórmula utilizada no Dechema (Sørensen e Arlt, 1980) :

$$D = 100 \sqrt{\sum_{k} \sum_{i j} \sum_{j k} (X_{ijk}^{e} - X_{ijk}^{c})^{2} / (2 N M)}$$
(V.67)

onde, N = número de componentes, M = número de linhas de amarração, i = 1,...,N, k = 1,...,M, j = I, II (fases)

Normalmente, considera-se um bom ajuste quando  $D \le 2\%$  .

- 4) Os parâmetros inicialmente ajustados por Nelder-Mead e as linhas de amarração geradas com esses parâmetros são usados como valores iniciais para o método da Máxima Verossimilhança.
- 5) Ajustam-se os parâmetros (aconselha-se um máximo de três pares por vez) utilizando o princípio da Máxima Verossimilhança subrotina MAXVELL.
- 6) Com os parāmetros obtidos na etapa (5), geram-se novas linhas de amarração com a

subrotina TIELINE. Se 0 desvio médio percentual nas frações molares (D) for maior do 2%. retorna-se à etapa (5). que utilizando-se as novas composições calculadas na subrotina TIELINE como estimativas para a subrotina MAXVELL, fixando-se todos os outros parâmetros, exceto um único par.

Normalmente, o procedimento mais indicado quando se necessita retornar da etapa (6) à etapa (5) é ajustar-se um par de parâmetros por vez, até que todos eles tenham sido ajustados. Quando isto acontecer, via de regra, o desvio (D) será inferior à 2%.

7) Quando o desvio (D) for inferior à 2%, e caso o sistema seja ternário, gera-se a Curva Binodal do mesmo.

O método de Nelder-Mead é usado para gerar as estimativas iniciais dos parâmetros para a subrotina MAXVELL, pois converge rapidamente, além de não exigir boas testes estimativas iniciais. Entretanto. os ajustes realizados, e os posteriores dos dados experimentais, revelaram que nem sempre a estimativa de parâmetros gerada por Nelder-Mead era boa. Isto acontecia, principalmente, quando o modelo não conseguia reproduzir muito bem a inclinação das linhas de amarração experimentais, embora algumas vezes descrevesse bem a forma da curva binodal.

A subrotina *MAXVELL* não converge para estimativas iniciais de frações molares nulas.

Todas as subrotinas apresentam um tempo de processamento relativamente elevado, em virtude das derivadas serem feitas numericamente. Uma redução de cerca de 60% neste tempo pode ser alcançada caso se inclua, na subrotina FUNDRV, expressões para as derivadas analíticas dos diversos modelos utilizados para o cálculo dos coeficiente de atividade ( $\gamma$ ), ficando a derivada numérica apenas como opção.

0 teste da subrotina MAXVELL foi feito utilizando-se sistemas para os quais foram encontrados dados experimentais e parâmetros publicados na literatura. Assim, ajustaram-se parâmetros para estes sistemas, utilizando-se a subrotina MAXVELL e os dados da literatura. Em seguida, as linhas de amarração geradas com os parâmetros ajustados foram comparadas com aquelas geradas usando os parâmetros da literatura. Os resultados de um destes testes, sistema Heptano - Triclorometano -Anilina a 18°C, encontram-se na Tabela V.15.

### Tabela V.15

Teste da Subrotina *MAXVELL* - Ajuste de Parâmetros Sistema Heptano (1) - Triclorometano (2) - Anilina (3) Temperatura = 18 °C

| DADAM           | M        | ERTL *       | ESTE     | TRABALHO     |
|-----------------|----------|--------------|----------|--------------|
| CKD             | UNI QUAC | NRTL (a=0,2) | UNI QUAC | NRTL (a=0,2) |
| A <sub>12</sub> | -39,35   | -47,41       | -40,30   | -152,44      |
| A <sub>13</sub> | 277,36   | 520,61       | 267,50   | 502,16       |
| Azı             | -21,79   | -239,22      | -16,41   | -142,63      |
| Aza             | -211,00  | -293,74      | -211,40  | -294,16      |
| Aai             | 54,00    | 676,90       | 59,92    | 674,07       |
| A <sub>32</sub> | 220,80   | 32,53        | 221,34   | 31,74        |
| DESVIO<br>(D) % | 0,29     | 0,25         | 0,37     | 0,33         |

(\*) DADOS E PARÂMETROS PUBLICADOS NO DECHEMA (SORENSEN E ARTL , 1980).

Observa-se uma boa concordância entre os desvios (D) da literatura e aqueles obtidos neste trabalho, de modo que pode-se considerar tanto a subrotina *MAXVELL*, quanto o método de Niesen e Yesavage (1989), adequados ao ajuste de parâmetros de modelos termodinâmicos para o cálculo do equilíbrio líquido-líquido.

## V.7 - RESULTADOS DOS AJUSTES DE PARAMETROS E DA CORRELAÇÃO DOS DADOS EXPERIMENTAIS

A metodologia adotada para obtenção dos parâmetros dos modelos termodinâmicos foi o ajuste simultâneo de todos os parâmetros, partindo-se de valores iniciais arbitrários. Não foram utilizados parâmetros oriundos do ajuste de dados binários de equilíbrio líquido-vapor.

Utilizou-se o procedimento de ajuste de parâmetros descrito no item V.6.3, deste trabalho. Deve ser ressaltado que, exceto para o sistema não-eletrolítico, o método de Nelder-Mead não gerou boas estimativas iniciais para os parâmetros, seja para o modelo NRTL, seja para os modelos de Chen e de Hála Modificado.

Os parâmetros foram considerados ajustados quando geraram, através da subrotina *TIELINE*, linhas de amarração que comparadas com as experimentais, forneceram um desvio médio percentual (D), nas frações molares, menor que 2%.

Os parâmetros ajustados e o desvio (D) foram colocados em tabelas, que encontram-se adiante. As linhas de amarração calculadas e experimentais encontram-se no Apêndice VII.

As cargas necessárias para a geração das linhas de amarração dos sistemas eletrolíticos foram aquelas usadas experimentalmente CApêndice III). Para sistemas 05 não-eletrolíticos assumi da a carga foi comoponto um arbitrário, pertencente à reta (linha de amarração) que passa pelos dois pontos que representam as composições das fases em equilibrio.

Após o ajuste, os parâmetros foram utilizados para correlacionar os dados experimentais, gerando as linhas de amarração e as curvas binodais dos respectivos sistemas. Em seguida, as linhas de amarração experimentais, juntamente com as linhas de amarração calculadas e a curva binodal gerada, foram colocadas em gráficos.

### V.7.1 - SISTEMA NÃO-ELETROLÍTICO

Iniciou-se o trabalho, ajustando-se os parâmetros do modelo NRTL para o sistema não-eletrolítico, Acetato de Etila - Etanol - Água, nas temperaturas de 30, 40 e Obtiveram-se desvios médios percentuais (D) nas 50°C. 0,53% fracões molares iguais a 0,55%. e 0,77%, tabelas contendo respectivamente. As os parâmetros encontram-se no Apêndice VI. Verificou-se, porém, que os parâmetros eram muito semelhantes, de modo que, apenas um único conjunto de parâmetros (parâmetros comuns) era necessário para representar o sistema na faixa de temperatura de 30 a 50°C, obtendo-se um desvio médio global (D) igual a 1,40%. Tais parâmetros encontram-se na Tabela V.16.

Adotou-se, então, a denominação "parâmetros comuns", para aqueles parâmetros que são válidos para uma <u>faixa</u> de temperaturas e/ ou concentrações de sal, e "parâmetros específicos", para aqueles que ajustam um único conjunto de dados, a uma dada temperatura e concentração de sal.

As Figuras V.9 (a , b) comparam a correlação dos dados para 0 sistema a 30°C, usando parâmetros específicos e comuns, respectivamente. Observa-se nestas figuras que não existe perda significativa de qualidade ao se correlacionar os dados com os parâmetros comuns. Conclui-se também que o modelo NRTL representa muito bem o sistema ternário básico, Acetato de Etila - Etanol -Água, apesar de prever uma região de imiscibilidade ligeiramente menor que a experimental, e da qualidade do ajuste tender a cair com a aproximação do ponto crítico.

121



Fig. V.9

Correlação dos Dados do Sistema Acetato de Etila 30°С, Parâmetros Etanol usando ----Água а (a) Específicos (b) Comuns. e (---) NRTL -) dados experimentais ς-

Parâmetros Comuns - Modelo NRTL ( $\alpha_{ij} = 0,2$ ) Sistema : Acetato de Etila - Etanol - Água Faixa de Temperatura = 30 a 50°C

Tabela V.16

| Sistema : Acetato de Etila (1)-<br>Etanol (2) - Água (3) |   |                     |  |  |  |  |  |  |
|----------------------------------------------------------|---|---------------------|--|--|--|--|--|--|
| ï                                                        | j | A <sub>ij</sub> (K) |  |  |  |  |  |  |
| 1                                                        | 2 | 703,43              |  |  |  |  |  |  |
| 1                                                        | З | 190,20              |  |  |  |  |  |  |
| 2                                                        | 1 | -697,62             |  |  |  |  |  |  |
| 2                                                        | З | 153,25              |  |  |  |  |  |  |
| З                                                        | 1 | 1323,48             |  |  |  |  |  |  |
| З                                                        | 2 | -576,84             |  |  |  |  |  |  |
| Desvio Médio (D) % = 1,40                                |   |                     |  |  |  |  |  |  |

#### V.7.2 - SISTEMA ELETROLITICO

O ajuste de parâmetros para o sistema eletrolítico, Acetato de Etila - Etanol - Água - Acetato de Sódio com 2%, 5% e 10% em peso de sal na carga, a 30, 40 e 50°C, foi efetuado através de quatro procedimentos distintos : (1) ajuste de parâmetros para o modelo NRTL, usando concentrações em base livre de sal (sistema pseudo-ternário), (2) ajuste de parâmetros para o modelo NRTL, usando as concentrações do sistema quaternário, (3) ajuste de parâmetros para o modelo de Chen, (4) ajuste de parâmetros para o modelo Hála Modificado. A seguir se descreverá cada procedimento e os resultados obtidos.

## 1. Ajuste de Parâmetros para o Modelo NRTL usando as Concentrações em Base Livre de Sal -

Neste procedimento, considerou-se um sistema pseudo-ternário, constituido por três componentes . Acetato de Etila, Etanol e Água.

de nove (9) conjuntos Obteve-se um total de parâmetros específicos, sendo um para cada sistema salino, 2%, 5% e 10% em peso de sal a 30, 40 e 50°C, discriminados no Apêndice VI. Os desvios médi os percentuais nas frações molares variaram entre 0,64% e 1.28%.

Verificou-se, também, ser possível representar cada sistema salino com um único conjunto de parâmetros (parâmetros *comuns*), válido para a faixa de 30 a 50°C, Tabela V.17. Entretanto, não se conseguiram parâmetros *comuns* em termos de concentrações.

As Figuras V.10 (a, b) comparam a correlação dos dados do sistema eletrolítico com 10% em peso de sal e a 50°C. usando parâmetros específicos e comuns, respectivamente. Observa-se nestas figuras, aue os sistema parâmetros comuns representam os dados do eletrolítico da mesma maneira que parâmetros os específicos, sem introduzir grandes erros. Nota-se também, que o modelo NRTL não reproduz com fidelidade a inclinação das linhas de amarração para estes sistemas. Para efeitos práticos, entretanto, este pode  $\leq er$ considerado um bom ajuste, visto que os desvios médios percentuais nas frações molares foram inferiores a 2%.





Correlação dos Dados do Sistema Acetato de Etila - Etanol - Água - Acetato de Sódio com 10% em peso de Sal, a 50°C, e Concentrações em Base Livre de Sal, usando Parâmetros (a) *Específicos* e (b) *Comuns*. (---) NRTL (----) dados experimentais

Tabela V.17

Parâmetros *Comuns* - Modelo NRTL (α<sub>ij</sub> = 0,2) Sistema : Acetato de Etila-Etanol-Água-Acetato de Sódio Concentrações em Base Livre de Sal

| Sistema : Acetato de Etila (1) - Etanol (2) - Água (3)-<br>Acetato de Sódio (Base Livre de Sal)<br>Faixa de Temperatura : 30 a 50 °C |   |           |                     |            |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------|---|-----------|---------------------|------------|--|--|--|--|--|
|                                                                                                                                      |   |           | A <sub>ij</sub> (K) |            |  |  |  |  |  |
|                                                                                                                                      | J | 2% de Sal | 5% de Sal           | 10% de Sal |  |  |  |  |  |
| 1                                                                                                                                    | s | 719,47    | 582,42              | 162,66     |  |  |  |  |  |
| 1                                                                                                                                    | З | 205,87    | 195,92              | 196,79     |  |  |  |  |  |
| s                                                                                                                                    | 1 | -692,42   | -668,30             | -597,59    |  |  |  |  |  |
| З                                                                                                                                    | З | 490,44    | 269,22              | 1548,55    |  |  |  |  |  |
| (1)                                                                                                                                  | 1 | 1393,90   | 1824,80             | 1909,66    |  |  |  |  |  |
| З                                                                                                                                    | 2 | -515,85   | -241,04             | -599,18    |  |  |  |  |  |
| Desvio %(D)                                                                                                                          |   | 1,72      | 1,68                | 1,46       |  |  |  |  |  |

2. Ajuste de Parâmetros para o Modelo NRTL, usando as Concentrações do Sistema Quaternário (Tabelas V.2 a V.10)

Neste procedimento, tratou-se o sal como um quarto componente molecular, e não como um eletrólito. Obteve-se um único conjunto de parâmetros, válido para toda a faixa de temperatura e concentração, com um desvio médio global percentual (D) nas frações molares igual a 1,74%. O conjunto de parâmetros encontra-se na Tabela V.18. A Figura V.11 ilustra o ajuste através da comparação entre as linhas de amarração experimentais e aquelas calculadas usando-se os parâmetros ajustados. Deve ser ressaltado que, embora o gráfico tenha sido tração usando-se concentrações em base livre de sal, o

ajuste foi feito usando-se as concentrações do sistema quaternário. Desta figura, conclui-se que o modelo NRTL reproduz, razoavelmente bem, a inclinação das linhas de amarração binodal e а forma da curva do sistema eletrolítico estudado. Observa-se ainda que a qualidade do ajuste tende a cair com a aproximação do ponto crítico.



Fig. V.11

Correlação dos Dados do Sistema Quaternário Acetato de Etila - Etanol - Água - Acetato de Sódio. (---) NRTL (----) dados experimentais

127

Tabela V.18

Parāmetros *Comuns* - Modelo NRTL (α<sub>ij</sub> = 0,2) Sistema : Acetato de Etila-Etanol-Água-Acetato de Sódio Faixa de Concentração de Sal = 2% a 10% em peso Faixa de Temperatura = 30 a 50°C

| Sistema : Acetato de Etila (1) - Etanol (2) -<br>Água (3) - Acetato de Sódio (4) |   |                                             |     |   |         |  |  |  |
|----------------------------------------------------------------------------------|---|---------------------------------------------|-----|---|---------|--|--|--|
| i                                                                                | j | A <sub>ij</sub> CKD i j A <sub>ij</sub> CKD |     |   |         |  |  |  |
| 1                                                                                | 5 | 809,09                                      | Э   | 1 | 1820,26 |  |  |  |
| 1                                                                                | з | 104,29                                      | (i) | 2 | 311,24  |  |  |  |
| 1                                                                                | 4 | 325,22                                      | Э   | 4 | -547,12 |  |  |  |
| 2                                                                                | 1 | -554,47 4 1 160,61                          |     |   |         |  |  |  |
| 2                                                                                | З | -30,68 4 2 -65,25                           |     |   |         |  |  |  |
| 2 4 -229,42 4 3 -1057,73                                                         |   |                                             |     |   |         |  |  |  |
| Desvio Médio nas Composições (D) % = 1,74                                        |   |                                             |     |   |         |  |  |  |

O sistema com 2% em peso de sal é melhor representado usando-se A = 2344,34 e A = -588,25. 32

## 3. <u>Ajuste de Parâmetros para o Modelo de Chen, usando as</u> Concentrações do Sistema Quaternário (Tabelas V.2 a V.10)

O modelo de Chen, específico para sistemas eletrolíticos, foi utilizado adotando-se os  $\alpha_{ij}$  do artigo de Mock et al. (1986) para o sistema Acetato de Etila -Etanol - Água - Acetato de Sódio, nas condições de saturação. Obteve-se um único conjunto de parâmetros (parâmetros *comuns*), válido para toda a faixa de temperaturas e concentrações, com um desvio médio percentual global nas frações molares (D) igual a 1,57. O conjunto de parâmetros encontra-se na Tabela V.19. A Figura V.12 ilustra o ajuste através da comparação entre

as linhas de amarração experimentais e aquelas calculadas usando-se os parâmetros ajustados. Usaram-se, para traçar o gráfico, concentrações em base livre de sal. Observa-se na Figura V.12 que o modelo de Chen Ó capaz de reproduzir, razoavelmente bem, a inclinação das linhas de amarração forma da curva binodal. Nota-se, e а entretanto, que a qualidade do ajuste tende a cair com a aproximação do ponto crítico.



Fig. V.12

Correlação dos Dados do Sistema Acetato de Etila - Etanol - Água - Acetato de Sódio. Chen (---) (----) dados experimentais

Tabela V.19

Parametros Comuns - Modelo de CHEN

Sistema : Acetato de Etila-Etanol-Água-Acetato de Sódio Faixa de Concentração de Sal = 2% a 10% em peso Faixa de Temperatura = 30 a 50°C

| Sistema : Acetato de Etila (1) - Etanol (2) - Água (3) -<br>Acetato de Sódio (4)<br>Faixa de Concentração : 2 a 10 % em peso de sal<br>Faixa de Temperatura : 30 a 50°C |   |                     |                    |                   |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---------------------|--------------------|-------------------|--|--|--|
| ï                                                                                                                                                                       | j | А <sub>іј</sub> СКЭ | а <sub>јі</sub> сю | Q <sup>*</sup> ij |  |  |  |
| 1                                                                                                                                                                       | 2 | 879,82              | -317,42            | 0,30              |  |  |  |
| 1                                                                                                                                                                       | 3 | 429,32              | 1133,52            | 0,30              |  |  |  |
| 1                                                                                                                                                                       | 4 | 1254,19             | 3479,00            | 0,02              |  |  |  |
| 2                                                                                                                                                                       | Э | 113,54              | 442,99             | 0,30              |  |  |  |
| 2                                                                                                                                                                       | 4 | 7905,62             | -151,60            | 0,05              |  |  |  |
| З                                                                                                                                                                       | 4 | -5960,49            | -815,23            | 0,20              |  |  |  |
| Desvio Médio Percentual nas Composições = 1,57                                                                                                                          |   |                     |                    |                   |  |  |  |

Mock et al. (1986)

4. Ajuste de Parâmetros para o Modelo de Hála Modificado usando as Concentrações do Sistema Quaternário (Tabelas V.2 a V.10) -

O modelo proposto (Hála Modificado) não conseguiu representar com sucesso o equilíbrio líquido-líquido do sistema Acetato de Etila - Etanol - Água - Acetato de Sódio, em toda a extensão do diagrama de fases. As tentativas de ajuste foram infrutíferas, pois quando se conseguia convergir as linhas de amarração inferiores, desvios médios percentuais nas frações molares (D) menores que 2%, as linhas de amarração superiores ficavam com desvios maiores que 20%. E quando se conseguia
desvios pequenos para as linhas de amarração superiores, o inverso acontecia, ou seja, obtinham-se desvios maiores que 20% nas linhas de amarração inferiores. Atribuiu-se este insucesso ao termo empírico, uma vez que o termo T-K-W foi testado separadamente fornecendo ótimos resultados (desvio médio percentual nas composições igual a 1,43%). Este teste foi realizado assumindo-se valores nulos para os parâmetros  $E_{ij}$ , de modo que a contribuição do termo empírico desaparecia, ficando todo o ajuste a cargo da equação T-K-W.

No Apêndice VII encontram-se, para cada sistema estudado, as linhas de amarração geradas com os parâmetros *comuns*.

Deve ser ressaltado que os parâmetros *comuns* são de grande interesse para a Engenharia, uma vez que, não são poucas as colunas de extração que trabalham com perfil de temperatura variável.

A análise da adequabilidade dos modelos utilizados para a representação dos dados experimentais dos sistemas estudados, bem como, a discussão sobre os ajustes obtidos, será feita no próximo item ("Análise e Discussão dos Resultados").

#### CAPITULO VI

#### ANÁLISE E DISCUSSÃO DOS RESULTADOS

Considerando que os trabalhos desenvolvidos envolveram uma série de etapas distintas, embora interrelacionadas, resolveu-se dividir a discussão dos resultados em três subitens. No primeiro, analisam-se a técnica e o aparato experimental utilizados durante a obtenção dos dados de equilíbrio eletrolíticos. No líquido-líquido dos sistemas segundo, discutem-se os resultados obtídos no ajuste de parâmetros, incluindo uma análise sobre а adequabilidade dos modelos utilizados e programa desenvolvido. No terceiro do item. analisam-se os efeitos provocados pela adição do sal, Acetato de Sódio, no equilíbrio líquido-líquido do sistema Acetato de Etila - Etanol - Água .

#### VI.1 - TÉCNICA E APARATO EXPERIMENTAIS

Durante realização do trabalho а experimental, verificou-se que o Método Analítico é bastante adequado à determinação de dados experimentais de sistemas salinos, não apresentando nenhum problema em qual quer uma das etapas: agitação, decantação, amostragem e análise. Tal adequabilidade é evidenciada pela boa qualidade dos dados obtidos, demonstrada através dos excelentes resultados alcançados ao se utilizar as correlações empíricas de Othmer e Tobias, e de Eisen e Joffe.

Quanto à operação do sistema, observou-se apenas que as análises da fase orgânica apresentavam maiores desvios-padrão que as da fase aquosa, embora sempre inferiores ao máximo esperado (0,005). Não verificou-se deposição de sal no interior da célula de equilíbrio, nem nos coletores laterais de amostras, ou na micro-seringa utilizada para amostragem. Não observou-se, também, separação de fases na micro-seringa, concluindo-se que o procedimento adotado, de pré-aquecimento da mesma antes da coleta de amostras, é adequado e pertinente.

A célula de equilibrio, porém, apresentou limitações de trabalho, guanto à temperatura máxima para os sistemas estudados, que foi de 50°C. Acima desta temperatura não se conseguiu manter a célula vedada, devido ao aumento na pressão interna, perdendo-se substâncias durante o processo de agitação. A propósito, uma revisão no projeto da célula, substituindo-se a tampa por uma conexão de menor diâmetro, suficiente apenas para passar o "magneto" do agitador magnético e permitir alimentação de soluções, seria bastante proveitosa. Esta modificação eliminaria, em grande parte, o trabalho tedioso de vedação da célula, além de reduzir a superfície de contato da solução com materiais estranhos ao sistema (Teflon, graxa e borracha de Silicone).

O uso da análise cromatográfica na presença de sal, bem como a adoção do trecho de coluna sem recheio, para proteção da coluna recheada e do detetor do cromatógrafo, foram muito bem sucedidos, merecendo aqui um destaque especial.

Quanto à determinação da concentração do sal nas fases em equilíbrio, conclui-se que apenas o balanço material não é o caminho mais seguro para a obtenção destes dados, pois mesmo impondo-se restrições, o sistema de equações pode apresentar múltiplas soluções para algumas linhas de amarração. O ideal é realizar, em paralelo ao balanço material, a análise gravimétrica para todas as linhas de amarração, além de determinar a massa de cada fase em equilíbrio, através da leitura, em uma escala graduada na própria célula, da quantidade de cada fase, e da medida de densidade das mesmas.

# VI.2 - MODELOS TERMODINAMICOS E AJUSTE DE PARAMETROS

O ajuste de parâmetros utilizando o Princípio da Máxima Verossimilhança Aplicado a Restrições Implícitas, de Niesen e Yesavage (1989), bem como o programa desenvolvido neste trabalho e a metodologia de uso proposta, revelaram-se extremamente adequados e bem sucedidos. Isto pode ser verificado através dos desvios médios percentuais entre as frações molares calculadas e experimentais que ficaram sempre abaixo de 2%, valor considerado bom, seja para os sistemas ternários, seja para os quaternários.

Como observação adicional, deve ser ressaltado que o método converge rapidamente para os sistemas ternários, mesmo quando as estimativas iniciais de parâmetros não são muito boas. Para os sistemas quaternários, nestas mesmas condições, o método oscila um pouco, necessitando de um maior número de iterações, mas converge sempre.

Quanto aos modelos utilizados para interpretação dos dados de equilíbrio líquido-líquido, conclui-se que o modelo NRTL representa muito bem o sistema ternário básico Acetato de Etila -Etanol - Água. Para os sistemas eletrolíticos, observa-se que o modelo de Chen, específico para este tipo de sistema, apresenta performance semelhante a do modelo NRTL, que também foi usado para ajustar os dados dos sistemas eletrolíticos, embora tenha sido desenvolvido para sistemas não-eletrolíticos. De certo modo, este comportamento já era esperado, visto que o Acetato de Sódio encontra-se apenas parcialmente dissociado na solução. Nas condições de trabalho, o grau de dissociação deste sal É de aproximadamente 60% (Moore, 1957). Assim, o modelo NRTL deve descrever melhor a porção não dissociada do sal, enquanto o modelo de Chen, que leva em consideração a dissociação total, deve descrever melhor a porção dissociada do sal. Para ambos os modelos, porém, observou-se uma tendência de queda na qualidade do ajuste com a aproximação do ponto crítico.

Provavelmente, o ajuste de parâmetros do modelo de Chen teria sido melhor se os fatores  $\alpha_{ij}$  tivessem sido ajustados, também. Segundo Mock et al. (1986), os valores dos parâmetros  $\alpha_{ij}$ são críticos na representação do equilíbrio de fases dos sistemas eletrolíticos com mistura de solventes, que é o caso ora estudado, sendo estes parâmetros bastante dependentes da natureza do solvente.

A modificação proposta para o modelo de Hála não foi bem sucedida, e levando-se em consideração que a equação de T-K-W ajustou bem os dados do sistema, conclui-se que o termo empírico é o responsável pela inadequabilidade do modelo para representação do equilíbrio líquido-líquido do sistema estudado.

# VI.3 - EFEITOS DA ADIÇÃO DO ACETATO DE SÓDIO NO EQUILÍBRIO LÍQUIDO-LÍQUIDO DO SISTEMA ACETATO DE ETILA- ETANOL- ÁGUA

O eletrólito, quando adicionado a uma solução nãoeletrolítica, pode alterar, promover ou destruir as interações entre os componentes da solução, provocando modificações nas propriedades seletivas do soluto, aumentando ou diminuindo a solubilidade do mesmo nos solventes, fenômeno de *salting-in* ou *salting-out*, respectivamente. Pode também, afetar a solubilidade mútua dos solventes. Num sistema em equilíbrio termodinâmico estes fenômenos podem se manifestar de diversas maneiras, conforme elucidado na revisão bibliográfica (item III.2), deste trabalho.

No sistema estudado, Acetato de Etila - Etanol - Água -Acetato de Sódio, o efeito *salting-out* manifestou-se através de :

- Alteração na inclinação das linhas de amarração e redução no coeficiente de distribuição do Etanol, consequências diretas da diminuição da concentração de etanol na fase aquosa (salting-out),
- Acentuação do fenômeno do solutropismo, evidenciado pela variação do coeficiente de distribuição do Etanol, passando de valores maiores que a unidade, para valores inferiores à unidade,
- 3. Aumento da região de imiscibilidade parcial do sistema.

A análise qualitativa do efeito salting-out pode ser feita através da Figura VI.1. Observa-se, neste gráfico, que a região de imiscibilidade parcial Cduas fases) aumenta consideravelmente com o aumento do teor de sal do sistema. levando à obtenção de um éster mais seco e menores perdas de produto (éster) na fase aquosa. Ainda nesta figura, traçou-se uma linha de amarração para cada sistema, com o intuito de permitir a visualização da inclinação das mesmas. Nota-se que a inclinação das linhas de amarração torna-se tanto mais negativa, quanto maior é a concentração de sal.



Fig. VI.1 - Efeito da Adição do Acetato de Sódio na Inclinação das Linhas de Amarração e no Tamanho da Região Heterogênea.

A distribuição do Etanol entre as fases aquosa e orgânica é mostrada nas Figuras VI.2 (a, b, c). Através desses diagramas pode-se avaliar, quantitativamente, a variação da distribuição do Etanol em função da concentração do sal, além de se identificar a ocorrência do solutropismo. O ponto onde as curvas cruzam a reta de 45° representa a solutrópica, linha com inclinação nula. Diagramas deste tipo são traçados usando-se frações mássicas, e não molares, pois segundo Vriens e Medcalf (1953), a diferença entre os pesos moleculares dos solventes, usados na conversão de fração molar para fração mássica, introduz a distorção necessária para se visualizar o solutropismo.

Observa-se no diagrama VI.2a, por exemplo, que o sistema sem sal apresenta tendência ao solutropismo e distribuição preferencial do Etanol na fase aguosa. Com a adição do Acetato de Sódio, e posterior aumento na concentração do mesmo, ocorre uma acentuação do fenômeno do solutropismo, e а consequente reorientação da distribuição do Etanol entre as fases em equilíbrio. O Etanol, a uma determinada concentração, deixa de mais solúvel na fase aquosa para se solubilizar mais ser facilmente na fase éster. Nota-se ainda, desses diagramas, que o aumento da concentração do sal faz com que a solutrópica ocorra a concentrações cada vez mais baixas de Etanol, de modo que espera-se um desaparecimento do solutropismo a concentrações mais elevadas de sal. Quando isto acontecer, o Etanol se distribuirá em toda faixa de preferencialmente na fase orgânica æ concentrações do diagrama de fases. Por fim, observa-se que o aumento da temperatura afeta a distribuição do Etanol de maneira semelhante a da adição do sal, de modo que os efeitos destes dois fatores são, neste caso, cumulativos.

Nas Figuras VI.3 (a, b) encontram-se as curvas do coeficiente de distribuição CKD do Etanol. em função da concentração deste soluto na fase orgânica. O coeficiente de distribuição, definido como a razão entre as frações mássicas do Etanol na fase aquosa e na fase orgânica, em base livre de sal, é de extrema importância na avaliação de um solvente, para uso em operações de extração. Através deste coeficiente, conhece-se como o material a ser extraido se distribui entre as duas fases.





Fig.VI.2 - Distribuição do Etanol Fases Aquosa e entre as orgânica (a) 30°C (Concentrações , (b) 40°C Base de Sal). em Livre (c) 50°C. e

A quantidade de solvente, bem como, o número de estágios de extração requeridos para se obter a separação desejada, dependem do valor do coeficiente de distribuição do soluto, sendo, portanto, este fator essencial nas avaliações técnico-econômicas que envolvem processos de extração.

Nas Figuras VI.3 (a, b) fica evidenciada, com maior clareza, a soma dos efeitos provocados pela adição do sal e pelo A curva mais alta, na Figura VI.3b, aumento da temperatura. corresponde ao sistema com menor concentração de sal ದಾ а temperatura mais baixa; enquanto a curva mais baixa, representa os dados do sistema com maior concentração de sal e a temperatura alta. Nota-se ainda que para a curva mais alta, mais  $\odot$ coeficientes de distribuição são sempre maiores que a unidade, significando distribuição preferencial do Etanol na fase aquosa, coeficientes de enquanto, para а curva mais baixa, os unidade. distribuição são, na maior parte, menores que а indicando a distribuição preferencial do Etanol na fase orgânica. Fica claro, portanto, que a adição do sal provoca o efeito salting-out do Etanol em relação a fase aquosa, fenômeno favorecido, também, pelo aumento da temperatura.

O salting-out, termo usualmente empregado para denominar o decréscimo da solubilidade de um não-eletrólito com o aumento da concentração do eletrólito, é um fenômeno bastante complexo, não havendo uma regra geral que explique o comportamento das soluções na presença dos sais. Assim, diferentes sais podem afetar diferentemente o comportamento de um soluto numa mesma solução, bem como, o mesmo sal pode provocar efeitos diferentes em diferentes soluções. Esta complexidade e diversidade de comportamento advém da grande variedade de forças de interação intermolecular envolvidas na formação das soluções eletrolíticas, de modo que, a extensão dos efeitos provocados pelos sais no coeficiente de atividade de um não-eletrólito, vai depender fortemente das propriedades de ambos, eletrólito e não-eletrólito.



(b)

Fig. VI.3 - Coeficiente de Distribuição do Etanol (K). (a) sistema sem sal, (b) sistema com sal (concentrações em base livre de sal)

Como visto na revisão bibliográfica, existe um grande número de teorias desenvolvidas originalmente para sistemas aquosos, e sem aplicações práticas na Engenharia, que procuram explicar o fenômeno *solting-out*, destacando-se entre elas a Teoria da Hidratação, as Teorias Eletrostáticas e o Conceito da Pressão Interna.

Explicar os efeitos do Acetato de Sódio sobre o equilíbrio líquido-líquido do sistema Acetato de Etila - Etanol -Água, à luz de uma destas teorias, é uma tarefa que foge ao escopo deste trabalho, ficando como proposta para futuros estudos.

#### CAPITULO VII

#### CONCLUSÕES E SUGESTÕES

O desenvolvimento deste trabalho teve por objetivos principais estudar o equilíbrio líquido-líquido na presença de eletrólitos, e estabelecer uma metodologia para determinação, tratamento e interpretação de dados experimentais de sistemas eletrolíticos. Para a realização do mesmo escolheu-se o sistema Acetato de Etila - Etanol - Água - Acetato de Sódio, tendo-se em mente não apenas a escassez de dados na literatura, como também o interesse industrial apresentado pelo sistema ternário básico.

Dados para o sistema Acetato de Etila - Etanol - Água -Acetato de Sódio a diversas temperaturas, 30, 40 e 50°C, e a várias concentrações de sal na alimentação do sistema, 0%, 2%, 5% e 10% em peso, foram obtidos experimentalmente.

A técnica experimental escolhida revelou-se bem sucedida, obtendo-se dados de equilíbrio líquido-líquido de boa gualidade, conforme ficou evidenciado no item V.3, deste trabalho. Uma especial foi dedicada à realização atenção da análise cromatográfica na presença do sal, por não se encontrar literatura especializada sobre o assunto. Desenvolveu-se uma metodologia própria , baseada em experiências de outros pesquisadores, obtendo-se ótimos resultados.

Os dados experimentais foram correlacionados através de modelos para cálculo de coeficiente de atividade ( $\gamma$ ), tendo sido escolhidos, para tanto, os modelos NRTL e de Chen, comummente utilizados na área técnica. Além destes, propôs-se uma modificação para o modelo de Hála, desenvolvido originalmente para o equilíbrio líquido-vapor.

O modelo NRTL, embora desenvolvido para uso em sistemas não-eletrolíticos, representou razoavelmente bem o equilíbrio de fases do sistema eletrolítico estudado, apresentando performance equivalente a do modelo de Chen.

O modelo de Hála Modificado, entretanto, não reproduziu bem os dados experimentais em toda a extensão do diagrama de fases.

O programa desenvolvido para ajuste de parâmetros, usando o Princípio da Máxima Verossimilhança Aplicado a Restrições Implícitas, forneceu desvios médios percentuais entre as frações molares calculadas e experimentais compatíveis com aqueles normalmente encontrados na literatura, atestando a adequabilidade do método e a boa performance do programa.

Os conjuntos de parâmetros obtidos para os modelos são específicos para as condições nas quais os dados experimentais foram obtidos.

Através interpretação dos dados de equilíbrio da líquido-líquido obtidos para os sistemas estudados, concluiu-se que a adição do sal provocou salting-out do Etanol em relação a fase aquosa, além de diminuição na solubilidade mútua dos solventes. Como consequências decorrentes destes efeitos, foram constatadas : alteração na inclinação das linhas de amarração, redução no coeficiente de distribuição do Etanol, acentuação do fenômeno do solutropismo e aumento na região de imiscibilidade parcial do sistema. Observou-se, ainda, que o aumento da temperatura provocou diminuição da solubilidade do Etanol na fase efeitos do sal sobre o equilíbrio aquosa, acentuando os líquido-líquido dos sistemas estudados.

Dentre as consequências práticas advindas da adição do sal no sistema ternário, Acetato de Etila - Etanol - Agua, obtido industrialmente no processo de produção do éster, pode-se citar a obtenção de um éster mais seco e menores perdas de produto na fase aquosa. Entretanto, o aumento da solubilidade do Etanol no Acetato de Etila, após a adição do sal, é um ponto negativo, uma vez que a etapa de extração visa, justamente, remover o Etanol da fase orgânica. Deste modo, só através de um estudo de viabilidade econômica pode-se decidir se a adição do Acetato de Sódio na etapa de purificação do Acetato de Etila é vantajosa. A fim de que se possa avançar no conhecimento dos efeitos provocados pelos eletrólitos no equilíbrio líquido-líquido de sistemas não-eletrolíticos, sugere-se que trabalhos futuros envolvam os seguintes aspectos :

- Estabelecimento de uma metodologia adequada para determinação das massas das fases em equilíbrio, e utilização da análise gravimétrica para a obtenção das concentrações do sal em todas as linhas de amarração do sistema,
- 2. Avaliação, para diferentes sistemas eletrolíticos, da performance do modelo NRTL, tratando o eletrólito como um quarto componente molecular, comparando-a com a do modelo de Chen. Com este procedimento, pode-se verificar se as conclusões obtidas neste trabalho são extensivas a outros sistemas eletrolíticos,
- 3. Teste do modelo de Hála Modificado para outros sistemas eletrolíticos, visando obter conclusões definitivas a respeito da sua adequabilidade, ou não, para a representação do equilibrio líquido-líquido em toda a extensão do diagrama de fases,
- Redução do tempo de processamento do programa ELLMXV, usando inclusive a sugestão feita no item V.6.3, deste trabalho,
- 5. Alteração no projeto da célula de equilíbrio, diminuindo o seu volume e substituindo a tampa por uma conexão de menor diâmetro, visando reduzir o consumo de reagentes e melhorar as condições de operação da mesma, respectivamente.

#### CAPITULO VIII

#### **REFERENCIAS BIBLIOGRAFICAS**

- ALDERS, L., 1955 "Liquid-Liquid Extraction Theory and Laboratory Experiments", Elsevier Scientific Publishing Company, cap. I e II.
- ANDERSON, T.F., ABRAMS, D.S., & GRENS II, E.A., 1978 -"Evaluation of Parameters for Nonlinear Thermodynamic Models", AIChE Journal, 24(1), 20-29
- ANDRADE, M.H.C, 1991 "Equilíbrio Líquido-Líquido-Vapor de Misturas Ternários : Algoritmo de Cálculo e Aspectos Termodinâmicos", Tese de Mestrado, FEQ/UNICAMP, Campinas -S.P. - Brasil
- BUENO, S.M.A., 1990 "Equilíbrio Líquido-Líquido de Misturas Ternárias Água-Etanol-Solvente", Tese de Mestrado, FEQ/UNICAMP, Campinas - S.P. - Brasil
- CARDOSO, M.J.E.M., FREDENSLUND,Aa., & RASMUSSEN, P., 1989 -"Modeling of Strong Electrolyte Systems", Anais do 20. Simpósio Latino-Americano de Propriedades de Fluido e Equilíbrio de Fases em Projetos de Processos Químicos, Salvador-Ba-Brasil
- CHEN, C.-C., BRITT, H.I., BOSTON, J.F., & EVANS, L.B., 1979 -"Extension and Application of the Pitzer Equation for Vapor-Liquid Equilibrium of Aqueous Electrolyte Systems with Molecular Solutes", *AIChE Journal*, 25(5), 820-831

- CHEN, C.-C., BRITT, H.I., BOSTON, J.F., & EVANS, L.B., 1982 -"Local Composition Model for Excess Gibbs Energy of Electrolyte Systems - Part I", *AIChE Journal*, **28**(4), 588-596
- CHEN, C.-C., & EVANS, L.B., 1986 "A Local Composition Model for the Excess Gibbs Energy of Aqueous Electrolyte Systems", *AIChE Journal*, **32**(3), 444-454
- CIOLA, R., 1973 "Introdução à Cromatografia em Fase Gasosa", Edgard Blucher, 1-231
- DENBIGH, K., 1981 "The Principles of Chemical Equilibrium", 4th. Edition, Cambridge Univ. Press, 270-330
- DESAI, M.L., & EISEN, E.O., 1971 "Salt Effects in Liquid-Liquid Equilibria", Journal of Chem. Eng. Data, 16(2), 200-202
- EISEN, E.O., & JOFFE, J., 1966 "Salt Effects in Liquid-Liquid Equilibria", Journal of Chem. Eng. Data, 11(4), 480-484
- FREDENSLUND, Aa., MICHELSEN, M.L., & SØRENSEN, J.M., 1980 -"Liquid-Liquid Equilibrium Calculations Using Activity Coefficient Models", 2nd Intern. Conf. on Phase Equil. and Fluid Prop. in the Chem. Ind., Berlin (West), 433-443
- FREDENSLUND, Aa., GMEHLING, J. & RASMUSSEN, P., 1977 -"Vapour-Liquid Equilibria using UNIFAC - a group contribution method", Elsevier Scientific Publishing Company, New York
- GROSS, P.M., 1933 "The Salting-Out of Non-Electrolytes from Aqueous Solutions", Chemical Reviews, 13, 91-101
- HALA, E., PICK, J., FRIED, V., & VILIM, O., 1967 "Vapour-Liquid Equilibrium in Real Systems", in Vapour-Liquid Equilibrium, 2nd. Edition, Pergamon Press, 142-155

- HALA, E., 1983 "Vapor-Liquid Equilibria of Strong Electrolytes in Systems Containing Mixed Solvent" , *Fluid Phase Equilibria*, **13**, 311-319
- HASHITANI, M., & HIRATA, M., 1969 "Salt Effect in Vapor-Liquid Equilibrium Acetic Ester-Alcohol with Potassium Acetate and Zinc Chloride", Journal of Chem. Eng. of Japan, 2(2), 149-153
- HORVATH, A.L., 1985 "Handbook of Aqueous Electrolyte Solutions. Physical Properties, Estimation and Correlation Methods", Ellis Horwood Ltd., 206-232
- LAW, V.J., & BAILEY, R.V., 1963 "A Method for the Determination of Approximate System Transfer Functions", Chem. Eng. Science, 18, 189-202
- LONG, F.A., & McDEVIT, W.F., 1952 "Activity Coefficients of Nonelectrolyte Solutes in Aqueous Salt Solutions", *Chemical Reviews*, 51, 119-169
- MARCO, J.M., GALÁN, M.I., & COSTA, J., 1988 "Effect of Sodium Chloride on the Water- Phosphoric Acid- 1-Hexanol-Cyclohexanone Liquid-Liquid Equilibria at 25°C", Journal of Chem. Eng. Data, 33, 524-527
- MARINHO, R.L.A., 1991 "Equilíbrio Líquido-Líquido na Presença de Eletrólitos", Tese de Mestrado, EP/UFBa, Salvador - Ba - Brasil
- MAURER, G., 1983 "Electrolyte Solutions", *Fluid Phase Equilibria*, 13, 269-296
- McNAIR, H.M. & BONELLI, E.J., 1969 "Basic Gas Chromatography", 5th Edition, Varian, 1-306

- MERTL, I., 1972a "Liquid-Vapour Equilibrium. IL. Phase Equilibria in the Ternary System Ethyl Acetate-Ethanol-Water", Collec. Czech. Chem. Commum., 37, 366-374
- MERTL, I., 1972b "Liquid-Vapour Equilibrium. L. Prediction of Multicomponent Vapour-Liquid Equilibria from the Binary Parameters in Systems with Limited Miscibility", Collec. Czech. Chem. Commun., 37, 375-411
- MILLERO, F.J., 1971 "The Molal Volumes of Electrolytes", Chemical Reviews, 71, 147-176
- MOCK, B., EVANS, L.B., & CHEN, C.-C., 1986 "Thermodynamic Representation of Phase Equilibria of Mixed-Solvent Electrolyte Systems", *AIChE Journal*, **32**(10), 1655-1664
- MODELL, M., & REID, R.C., 1983 " Thermodynamics and Its Applications", 2nd Edition, Prentice Hall, 1-450
- MOORE, W. J., 1957 "Physical Chemistry", 3rd Edition, Longmans Green and Co, 437-441
- NELDER, J.A., & MEAD,R. 1965 "A Simplex Method for Function Minimization", Computer Journal, 7, 308-313
- NIESEN, V.G. & YESAVAGE, V.F., 1989 "Application of a Maximum Likelihood Method Using Implicit Constraints to Determine Equation of State Parameters from Binary Phase Behavior Data", Fluid Phase Equilibria, 50, 249-266
- NOVÁK, J.P., MATOUŠ, J., & PICK, J., 1987 "Liquid-Liquid Equilibria", ELSEVIER, 1-321
- OTHMER, D.F., & TOBIAS, P.E., 1942 "Tie Line Correlation", Ind. Eng. Chem, 34(6), 693-696
- OTHMER, D. F., WHITE, R. E. & TRUEGER, E., 1941 "Liquid-Liquid Extraction Data", Ind. Eng. Chem., 33(10), 1240-1248

- PAI, M.U., & RAO, K.M., 1966 "Salt Effect on Liquid-Liquid Equilibria in the Ethyl Acetate-Ethyl Alcohol-Water System", Journal of Chem. Eng. Data, 11, 353-356
- PRAUSNITZ, J.M., ANDERSON, T.F., GRENS, E.A., ECKERT, C.A., HSIEH, R., & O'CONNELL, J.P., 1980 - "Computer Calculations for Multicomponent Vapor-Liquid and Liquid-Liquid Equilibria", Prentice Hall Inc, 1-353
- PRAUSNITZ, J.M., LICHTENTHALER, R.N., & AZEVEDO, E.G., 1986 -"Molecular Thermodynamics", 2nd Edition, Prentice Hall Inc, 1-600
- RAJENDRAN, M., & SRINIVASAN, D., 1988 "Measurement and Prediction of Liquid-Liquid Equilibria of Ethyl Acetate-Methanol-Water in the Presence of Dissolved Inorganic Salts", Fluid Phase Equilibria, 44, 53-75
- RAJENDRAN, M., RENGANARAYANAN, S., & SRINIVASAN, D., 1989 "Salt Effect in Phase Equilibria : Effect of Dissolved Inorganic Salts on the Liquid-Liquid Equilibria of Benzene-2-Propanol-Water System and the Vapor-Liquid Equilibria of Its Constituent Binaries", *Fluid Phase Equilibria*, **50**, 133-164
- RENON, H., 1986 "Electrolyte Solutions", Fluid Phase Equilibria, 30, 181-195
- SARAVANAN, G., & SRINIVASAN, D., 1985 "Liquid-Liquid Equilibria for the System Ethyl Acetate-Acetic Acid-Water in the Presence of Dissolved Inorganic Salts", Journal of Chem. Eng. Data, 30, 166-171
- SHAH, D.J., & TIWARI, K.K., 1981 "Effect of Salt on the Distribution of Acetic Acid between Water and Organic Solvent", Journal of Chem. Eng. Data, 26, 375-378

- SMITH, J.M., & VAN NESS, H.C., 1975 "Introduction to Chemical Engineering Thermodynamics", 3rd Edition, McGraw-Hill Kogakusha, 1-632
- SONG, W., & LARSON, M.A., 1990 "Activity Coefficient Model of Concentrated Electrolyte Solutions", *AIChE Journal*, <u>36</u>(12), 1896-1900
- SØRENSEN, J.M., & ARLT, W., 1979 "Liquid-Liquid Equilibrium Data Collection 1 - Binary Systems", DECHEMA, V, Part 1
- SØRENSEN, J.M., & ARLT, W., 1980 "Liquid-Liquid Equilibrium Data Collection 2 - Ternary Systems", DECHEMA, V, Part 2
- SØRENSEN, J.M., MAGNUSSEN, T., RASMUSSEN, P., FREDENSLUND, Aa., 1979 - "Liquid-Liquid Equilibrium Data : Their Retrieval, Correlation and Prediction - Part II : Correlation", Fluid Phase Equilibria, 3, 47-82
- TSUBOKA, T. & KATAYAMA, T., 1975 "Modified Wilson Equation for Vapor-Liquid and Liquid-Liquid Equilibria", Journal of Chem. Eng. of Japan, 8(3), 181-187
- VRIES, C.N. & MEDCALF, E.C., 1953 "Correlation of Ternary Liquid-Liquid Equilibria", Ind. Eng. Chem., 45, 1098-1104
- ZEMAITIS Jr., J.F., CLARK, D.M., RAFAL, M., & SCRIVNER, N.C., 1986 - "Handbook of Aqueous Electrolyte Solutions. Theory & Application", *AICHE*, 1-852

# APENDICE I

# ESPECIFICAÇÃO DOS EQUIPAMENTOS

| EQUI PAMENTO            | MARCA / MODELO                        |
|-------------------------|---------------------------------------|
| Cromatógrafo à Gás      | Instr. Cient. CG Ltda / CG 35         |
| Integrador Eletrônico   | Varian / CDS 111                      |
| Registrador Potenc.     | Instr. Cient. CG Ltda / SRG-GC        |
| Banho Termostático      | PEMEM Ind. Metal. Ltda / BT-220-PE    |
| Banho Termost. c⁄ Refr. | TECNAL-Sarge Apar. Cient. Ltda/TE-184 |
| Agitador Magnético      | PEMEM Ind. Metal. Ltda / AMA-18       |
| Balança Analítica       | METTLER Instrumente AG / H33AR        |
| Estufa                  | Ética / 400.6                         |

# APENDICE II

# CÁLCULO DO DESVIO-PADRÃO

| Injeção                 | > 1                    | Fração Mo       | lar    | Desvio   | Abs. em Rel | lação Média |
|-------------------------|------------------------|-----------------|--------|----------|-------------|-------------|
| no.                     | C10                    | (2)             | (3)    | (1)      | (2)         | (3)         |
|                         |                        |                 |        |          |             |             |
| 1                       | 0,5886                 | 0,1046          | 0,3068 | -0,0083  | 0,0046      | 0,0037      |
| 2                       | 0,5956                 | 0,1003          | 0,3042 | -0,0013  | 0,0003      | 0,0011      |
| З                       | 0,6059                 | 0,0989          | 0,2951 | 0,0090   | -0,0011     | -0,0080     |
| 4                       | 0,5958                 | 0,0991          | 0,3051 | -0,0011  | -0,0009     | 0,0020      |
| 5                       | 0,5986                 | 0,0982          | 0,3031 | 0,0017   | -0,0018     | 0,0000      |
| 6                       | 0,5971                 | 0,0986          | 0,3043 | 0,0002   | -0,0014     | 0,0012      |
| Média                   | 0,5969                 | 0,1000          | 0,3031 | 0,0036   | 0,0017      | 0,0027      |
| Ø                       |                        |                 |        | 0,0050   | 0,0022      | 0,0037      |
| (1) = A<br>$\sigma = d$ | cetato de<br>esvio-pad | > Etila<br>irão | (2)    | = Etanol | , 3 )       | - Água      |

O desvio-padrão característico das análises cromatográficas foi assumido como igual a <u>0,005</u>, em virtude de ser o maior valor.

## APENDICE III

# CARGAS UTILIZADAS PARA OBTENÇÃO DAS LINHAS DE AMARRAÇÃO DOS SISTEMAS ELETROLÍTICOS

Tabela III.1 - SISTEMA COM 2% EM PESO DE SAL NA CARGA

| SISTEMA : ACETATO DE ETILA (1)- ETANOL (2)- ÁGUA (3)<br>- ACETATO DE SÓDIO ANIDRO (4)<br>TEMPERATURA : 30 / 40 / 50 °C |                  |                  |                  |                  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------|------------------|------------------|------------------|------------------|--|--|--|
| LINHA DE<br>AMARRAÇÃO                                                                                                  | (1)<br>massa (g) | (2)<br>massa (g) | (3)<br>massa (g) | (4)<br>massa (g) |  |  |  |
| 1                                                                                                                      | 84,40            | 6,93             | 90,31            | 3,68             |  |  |  |
| S                                                                                                                      | 75,25            | 11,72            | 93,48            | 3,79             |  |  |  |
| Э                                                                                                                      | 73,70            | 18,18            | 87,96            | 3,72             |  |  |  |
| 4                                                                                                                      | 78,50            | 22,78            | 74,40            | 3,59             |  |  |  |
| 5                                                                                                                      | 75,88            | 28,62            | 72,90            | 3,73             |  |  |  |

Tabela III.2 - SISTEMA COM 5% EM PESO DE SAL NA CARGA

| SISTEMA : ACETATO DE ETILA (1)- ETANOL (2)- ÁGUA (3)<br>- ACETATO DE SÓDIO ANIDRO (4)<br>TEMPERATURA : 30 / 40 / 50 °C |                  |                  |                  |                  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------|------------------|------------------|------------------|------------------|--|--|--|--|
| LINHA DE<br>AMARRAÇÃO                                                                                                  | (1)<br>massa (g) | (2)<br>massa (g) | (3)<br>massa (g) | (4)<br>massa (g) |  |  |  |  |
| 1                                                                                                                      | 80,36            | 6,47             | 92,28            | 9,63             |  |  |  |  |
| 2                                                                                                                      | 72,31            | 11,48            | 93,60            | 9,48             |  |  |  |  |
| 3                                                                                                                      | 71,63            | 18,35            | 89,39            | 9,40             |  |  |  |  |
| 4                                                                                                                      | 74,51            | 25,07            | 78,85            | 9,26             |  |  |  |  |
| 5                                                                                                                      | 73,28            | 27,96            | 74,18            | 9,25             |  |  |  |  |

| SISTEMA : ACETATO DE ETILA (1)- ETANOL (2)- AGUA (3)<br>- ACETATO DE SÓDIO ANIDRO (4) |                  |                  |                  |                  |  |  |
|---------------------------------------------------------------------------------------|------------------|------------------|------------------|------------------|--|--|
| LINHA DE<br>AMARRAÇÃO                                                                 | (1)<br>massa (g) | (2)<br>massa (g) | (3)<br>massa (g) | (4)<br>massa (g) |  |  |
| 1                                                                                     | 75,32            | 6,06             | 91,01            | 20,17            |  |  |
| s                                                                                     | 68,99            | 11,38            | 96,04            | 19,59            |  |  |
| Э                                                                                     | 66,54            | 17,72            | 90,66            | 19,34            |  |  |
| 4                                                                                     | 71,11            | 20,78            | 81,58            | 19,18            |  |  |
| 5                                                                                     | 68,54            | 27,15            | 77,15            | 19,16            |  |  |

Tabela III.3 - SISTEMA COM 10% EM PESO DE SAL NA CARGA A 30°C

Tabela III.4 - SISTEMA COM 10% EM PESO DE SAL NA CARGA A 40°C

| SI STEMA              | : ACETATO DE ETILA (1)- ETANOL (2)- ÁGUA (3)<br>- ACETATO DE SÓDIO ANIDRO (4) |                  |                  |                  |  |  |
|-----------------------|-------------------------------------------------------------------------------|------------------|------------------|------------------|--|--|
| LINHA DE<br>AMARRAÇÃO | (1)<br>massa (g)                                                              | (2)<br>massa (g) | (3)<br>massa (g) | (4)<br>massa (g) |  |  |
| 1                     | 75,32                                                                         | 6,06             | 91,01            | 20,17            |  |  |
| 5                     | 68,99                                                                         | 11,38            | 96,04            | 19,59            |  |  |
| З                     | 67,60                                                                         | 17,15            | 91,47            | 19,45            |  |  |
| 4                     | 71,11                                                                         | 20,78            | 81,58            | 19,18            |  |  |
| 5                     | 68,54                                                                         | 27,15            | 77,15            | 19,16            |  |  |

Tabela III.5 - SISTEMA COM 10% EM PESO DE SAL NA CARGA A 50°C

| SI STEMA              | : ACETATO DE ETILA (1)- ETANOL (2)- ÁGUA (3)<br>- ACETATO DE SÓDIO ANIDRO (4) |                  |                  |                  |  |  |  |
|-----------------------|-------------------------------------------------------------------------------|------------------|------------------|------------------|--|--|--|
| LINHA DE<br>AMARRAÇÃO | (1)<br>massa (g)                                                              | (2)<br>massa (g) | (3)<br>massa (g) | (4)<br>massa (g) |  |  |  |
| 1                     | 75,32                                                                         | 6,06             | 91,01            | 20,17            |  |  |  |
| S                     | 68,99                                                                         | 11,38            | 96,04            | 19,59            |  |  |  |
| 3                     | 67,60                                                                         | 17,15            | 91,47            | 19,45            |  |  |  |
| 4                     | 71,10                                                                         | 21,16            | 82,55            | 19,16            |  |  |  |
| 5                     | 68,42                                                                         | 25,84            | 78,10            | 20,07            |  |  |  |

OBS: A Água de hidratação já foi somada à Água do sistema , motivo pelo qual o sal foi denominado "anidro".

#### APENDICE IV

# LINHAS DE AMARRAÇÃO EXPERIMENTAIS EM FRAÇÃO MOLAR PARA OS SISTEMAS QUATERNÁRIOS

Tabela IV.1 - Linhas de Amarração Experimentais em Fração Molar (Sistema com 2% em peso de Sal na Carga e 30°C)

| SI S<br>TEN | SISTEMA : ACETATO DE ETILA (1)- ETANOL (2)- ÁGUA (3) -<br>ACETATO DE SÓDIO (4)<br>TEMPERATURA : 30 °C |         |          |       |       |        |        |       |  |
|-------------|-------------------------------------------------------------------------------------------------------|---------|----------|-------|-------|--------|--------|-------|--|
| N°          | ]                                                                                                     | FASE OF | RGANI CA |       |       | FASE / | AQUOSA |       |  |
|             | (1)                                                                                                   | (2)     | (3)      | (4)   | (1)   | (2)    | (3)    | (4)   |  |
| 1           | 0,764                                                                                                 | 0,047   | 0,189    | 0,000 | 0,013 | 0,022  | 0,958  | 0,007 |  |
| З           | 0,692                                                                                                 | 0,080   | 0,228    | 0,000 | 0,014 | 0,034  | 0,945  | 0,007 |  |
| з           | 0,579                                                                                                 | 0,125   | 0,296    | 0,000 | 0,017 | 0,050  | 0,925  | 0,008 |  |
| 4           | 0,495                                                                                                 | 0,157   | 0,347    | 0,001 | 0,018 | 0,061  | 0,910  | 0,011 |  |
| 5           | 0,398                                                                                                 | 0,186   | 0,415    | 0,001 | 0,023 | 0,075  | 0,892  | 0,010 |  |

Tabela IV.2 - Linhas de Amarração Experimentais em Fração Molar (Sistema com 2% em peso de Sal na Carga e 40°C)

| SI :<br>TEI | SISTEMA : ACETATO DE ETILA (1)- ETANOL (2)- ÁGUA (3) -<br>ACETATO DE SÓDIO (4)<br>TEMPERATURA : 40 °C |         |                   |       |       |        |        |       |  |
|-------------|-------------------------------------------------------------------------------------------------------|---------|-------------------|-------|-------|--------|--------|-------|--|
| N°          | ]                                                                                                     | FASE OI | RG <b>A</b> NI CA |       |       | FASE . | AQUOSA |       |  |
|             | (1)                                                                                                   | (2)     | (3)               | (4)   | (1)   | (2)    | (3)    | (4)   |  |
| 1           | 0,741                                                                                                 | 0,051   | 0,208             | 0,000 | 0,012 | 0,021  | 0,960  | 0,007 |  |
| З           | 0,662                                                                                                 | 0,086   | 0,252             | 0,000 | 0,014 | 0,032  | 0,946  | 0,008 |  |
| 3           | 0,547                                                                                                 | 0,130   | 0,323             | 0,000 | 0,017 | 0,047  | 0,927  | 0,009 |  |
| 4           | 0,463                                                                                                 | 0,158   | 0,378             | 0,001 | 0,019 | 0,058  | 0,913  | 0,010 |  |
| 5           | 0,374                                                                                                 | 0,184   | 0,440             | 0,002 | 0,022 | 0,070  | 0,898  | 0,010 |  |

Tabela IV.3 - Linhas de Amarração Experimentais em Fração Molar CSistema com 2% em peso de Sal na Carga e 50°C)

| SI :<br>TEI | SISTEMA : ACETATO DE ETILA (1)- ETANOL (2)- ÁGUA (3) -<br>ACETATO DE SÓDIO (4)<br>TEMPERATURA : 50 °C |        |          |       |       |        |        |       |  |
|-------------|-------------------------------------------------------------------------------------------------------|--------|----------|-------|-------|--------|--------|-------|--|
| N°          |                                                                                                       | FASE O | RGÂNI CA |       |       | FASE / | AQUOSA |       |  |
|             | (1)                                                                                                   | (2)    | (3)      | (4)   | (1)   | (2)    | (3)    | (4)   |  |
| 1           | 0,712                                                                                                 | 0,055  | 0,233    | 0,000 | 0,012 | 0,019  | 0,961  | 0,008 |  |
| 2           | 0,629                                                                                                 | 0,091  | 0,279    | 0,001 | 0,014 | 0,030  | 0,948  | 0,008 |  |
| 3           | 0,504                                                                                                 | 0,133  | 0,362    | 0,001 | 0,017 | 0,045  | 0,930  | 0,008 |  |
| 4           | 0,440                                                                                                 | 0,159  | 0,400    | 0,001 | 0,019 | 0,055  | 0,915  | 0,011 |  |
| 5           | 0,358                                                                                                 | 0,186  | 0,454    | 0,002 | 0,020 | 0,067  | 0,903  | 0,010 |  |

Tabela IV.4 - Linhas de Amarração Experimentais em Fração Molar (Sistema com 5% em peso de Sal na Carga e 30°C)

| SI S | SISTEMA : ACETATO DE ETILA (1)- ETANOL (2)- ÁGUA (3) -<br>ACETATO DE SÓDIO (4)<br>TEMPERATURA : 30 °C |       |       |       |       |       |       |       |  |
|------------------------------------------|-------------------------------------------------------------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|--|
| FASE ORGANICA FASE AQUOSA                |                                                                                                       |       |       |       |       |       |       |       |  |
| ,,,                                      | (1)                                                                                                   | (2)   | (3)   | (4)   | C1)   | (2)   | (3)   | (4)   |  |
| 1                                        | 0,784                                                                                                 | 0,048 | 0,168 | 0,000 | 0,009 | 0,020 | 0,950 | 0,021 |  |
| 2                                        | 0,701                                                                                                 | 0,088 | 0,211 | 0,000 | 0,010 | 0,033 | 0,937 | 0,020 |  |
| з                                        | 0,586                                                                                                 | 0,140 | 0,274 | 0,000 | 0,012 | 0,046 | 0,920 | 0,022 |  |
| 4                                        | 0,479                                                                                                 | 0,187 | 0,334 | 0,000 | 0,013 | 0,059 | 0,903 | 0,025 |  |
| 5                                        | 0,434                                                                                                 | 0,206 | 0,358 | 0,002 | 0,013 | 0,065 | 0,895 | 0,027 |  |

Tabela IV.5 - Linhas de Amarração Experimentais em Fração Molar (Sistema com 5% em peso de Sal na Carga e 40°C)

| SI S<br>TEI               | SISTEMA : ACETATO DE ETILA (1)- ETANOL (2)- ÁGUA (3) -<br>ACETATO DE SÓDIO (4)<br>TEMPERATURA : 40 °C |       |       |       |       |       |       |       |  |
|---------------------------|-------------------------------------------------------------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|--|
| FASE ORGANICA FASE AQUOSA |                                                                                                       |       |       |       |       |       |       |       |  |
|                           | (1)                                                                                                   | (2)   | (3)   | (4)   | C10   | (2)   | (3)   | (4)   |  |
| 1                         | 0,762                                                                                                 | 0,051 | 0,187 | 0,000 | 0,009 | 0,018 | 0,951 | 0,022 |  |
| 2                         | 0,672                                                                                                 | 0,093 | 0,235 | 0,000 | 0,010 | 0,030 | 0,940 | 0,020 |  |
| З                         | 0,553                                                                                                 | 0,145 | 0,298 | 0,000 | 0,011 | 0,045 | 0,923 | 0,021 |  |
| 4                         | 0,458                                                                                                 | 0,188 | 0,353 | 0,001 | 0,013 | 0,056 | 0,906 | 0,025 |  |
| 5                         | 0,411                                                                                                 | 0,206 | 0,382 | 0,001 | 0,014 | 0,061 | 0,898 | 0,027 |  |

Tabela IV.6 - Linhas de Amarração Experimentais em Fração Molar (Sistema com 5% em peso de Sal na Carga e 50°C)

| SI S | SISTEMA : ACETATO DE ETILA (1)- ETANOL (2)- ÁGUA (3) -<br>ACETATO DE SÓDIO (4)<br>TEMPERATURA : 50 °C |       |       |       |       |             |       |       |  |
|------|-------------------------------------------------------------------------------------------------------|-------|-------|-------|-------|-------------|-------|-------|--|
| N°   | FASE ORGÂNICA                                                                                         |       |       |       |       | FASE AQUOSA |       |       |  |
| м    | (1)                                                                                                   | (2)   | (3)   | (4)   | (1)   | (2)         | (3)   | (4)   |  |
| 1    | 0,733                                                                                                 | 0,054 | 0,213 | 0,000 | 0,008 | 0,017       | 0,953 | 0,022 |  |
| 2    | 0,639                                                                                                 | 0,099 | 0,262 | 0,000 | 0,010 | 0,029       | 0,941 | 0,020 |  |
| З    | 0,533                                                                                                 | 0,148 | 0,319 | 0,000 | 0,012 | 0,042       | 0,924 | 0,022 |  |
| 4    | 0,438                                                                                                 | 0,189 | 0,372 | 0,001 | 0,013 | 0,054       | 0,908 | 0,025 |  |
| 5    | 0,389                                                                                                 | 0,209 | 0,401 | 0,001 | 0,012 | 0,058       | 0,903 | 0,027 |  |

Tabela IV.7 - Linhas de Amarração Experimentais em Fração Molar (Sistema com 10% em peso de Sal na Carga e 30°C)

| SI S | SISTEMA : ACETATO DE ETILA (1)- ETANOL (2)- AGUA (3) -<br>ACETATO DE SÓDIO (4)<br>TEMPERATURA : 30 °C |       |       |       |                |       |       |       |  |
|------|-------------------------------------------------------------------------------------------------------|-------|-------|-------|----------------|-------|-------|-------|--|
| N°   | FASE ORGÂNICA                                                                                         |       |       |       | FASE AQUOSA    |       |       |       |  |
|      | (1)                                                                                                   | යා    | (3)   | (4)   | (1)            | යා    | (3)   | (4)   |  |
| 1    | 0,798                                                                                                 | 0,055 | 0,147 | 0,000 | 0,005          | 0,016 | 0,933 | 0,046 |  |
| S    | 0,714                                                                                                 | 0,099 | 0,187 | 0,000 | 0,007          | 0,027 | 0,924 | 0,042 |  |
| (M)  | 0,605                                                                                                 | 0,157 | 0,238 | 0,000 | 0,007          | 0,038 | 0,910 | 0,045 |  |
| 4    | 0,560                                                                                                 | 0,184 | 0,255 | 0,001 | 0,007          | 0,044 | 0,900 | 0,049 |  |
| 5    | 0,466                                                                                                 | 0,232 | 0,300 | 0,002 | 0 <b>,0</b> 08 | 0,053 | 0,886 | 0,053 |  |

Tabela IV.8 - Linhas de Amarração Experimentais em Fração Molar (Sistema com 10% em peso de Sal na Carga e 40°C)

| SI S | SISTEMA : ACETATO DE ETILA (1)- ETANOL (2)- ÁGUA (3) -<br>ACETATO DE SÓDIO (4)<br>TEMPERATURA : 40 °C |       |       |       |       |             |       |       |  |
|------|-------------------------------------------------------------------------------------------------------|-------|-------|-------|-------|-------------|-------|-------|--|
| N°   | FASE ORGÂNICA                                                                                         |       |       |       |       | FASE AQUOSA |       |       |  |
|      | (1)                                                                                                   | (2)   | (3)   | (4)   | (1)   | (2)         | (3)   | (4)   |  |
| 1    | 0,778                                                                                                 | 0,059 | 0,163 | 0,000 | 0,006 | 0,015       | 0,933 | 0,046 |  |
| г    | 0,688                                                                                                 | 0,104 | 0,208 | 0,000 | 0,006 | 0,025       | 0,926 | 0,043 |  |
| З    | 0,596                                                                                                 | 0,154 | 0,250 | 0,000 | 0,007 | 0,036       | 0,912 | 0,045 |  |
| 4    | 0,539                                                                                                 | 0,189 | 0,271 | 0,001 | 0,007 | 0,041       | 0,902 | 0,050 |  |
| 5    | 0,452                                                                                                 | 0,234 | 0,313 | 0,001 | 0,008 | 0,052       | 0,887 | 0,053 |  |

Tabela IV.9 - Linhas de Amarração Experimentais em Fração Molar (Sistema com 10% em peso de Sal na Carga e 50°C)

| SI S | SISTEMA : ACETATO DE ETILA (1)- ETANOL (2)- AGUA (3) -<br>ACETATO DE SÓDIO (4)<br>TEMPERATURA : 50 °C |       |       |       |             |       |       |       |  |
|------|-------------------------------------------------------------------------------------------------------|-------|-------|-------|-------------|-------|-------|-------|--|
| N°   | FASE ORGANICA                                                                                         |       |       |       | FASE AQUOSA |       |       |       |  |
| N    | (1)                                                                                                   | යා    | (3)   | (4)   | (1)         | (2)   | (3)   | (4)   |  |
| 1    | 0,753                                                                                                 | 0,063 | 0,184 | 0,000 | 0,005       | 0,015 | 0,934 | 0,046 |  |
| 5    | 0,663                                                                                                 | 0,109 | 0,228 | 0,000 | 0,006       | 0,025 | 0,927 | 0,042 |  |
| З    | 0,572                                                                                                 | 0,158 | 0,269 | 0,001 | 0,007       | 0,035 | 0,913 | 0,045 |  |
| 4    | 0,521                                                                                                 | 0,191 | 0,287 | 0,001 | 0,007       | 0,041 | 0,903 | 0,049 |  |
| 5    | 0,458                                                                                                 | 0,228 | 0,313 | 0,001 | 0,009       | 0,049 | 0,888 | 0,054 |  |

#### APENDICE V

#### EXEMPLOS DE ARQUIVOS DE SAÍDA DO PROGRAMA ELLMXV

# I - LISTAGEM DE SAIDA DAS SUBROTINAS DE AJUSTE DE PARAMETROS (NM ou AJ.....LST)

# PARAMETROS AJUSTADOS PELO METODO DA MAXIMA VEROSSIMILHANCA EQUILIBRIO LIQUIDO-LIQUIDO

DADOS : TERNARIO BASICO @ 40,0 oC

MODELO : NRTL

SISTEMA :

(1) ACET. DE ETILA(2) ETANOL(3) AGUA

#### PROPRIEDADES DOS COMPONENTES PUROS

| No. | PM    | TC     | PC     | VC       | Zra    | RO     | R      | Q      | Q'     |
|-----|-------|--------|--------|----------|--------|--------|--------|--------|--------|
|     |       | C KO   | (bar)  | Ccm3/mol | >      | (g∕cm3 | 0      |        |        |
| (1) | 88.11 | 523.20 | 38. 30 | 286.00   | . 2539 | . 90   | 3.4786 | 3.1160 | 3.1160 |
| (2) | 46.07 | 513.90 | 61.40  | 167.10   | . 2502 | . 79   | 2.1055 | 1.9720 | . 9200 |
| (3) | 18.02 | 647.30 | 221.20 | 57.10    | . 2338 | 1.00   | . 9200 | 1.4000 | 1.0000 |

INFORMACOES GERAIS

| NUM. | COMPONENTES         |       | З |
|------|---------------------|-------|---|
| NUM. | PONTOS EXP.         |       | 5 |
| NUM. | TOTAL DE PARAMETROS |       | 9 |
| NUM. | DE PARAM. AJUSTADOS | 1.11P | 2 |

# INCREMENTOS P/ CALC. DE DERIVADAS POR DIF. FINITAS

| P/ | PARAMETROS      | .00100000000 |
|----|-----------------|--------------|
| P/ | TEMPERATURA     | .00010000000 |
| P/ | FRACOES MOLARES | .00000000010 |

## DADOS EXPERIMENTAIS

|                       |                                                          | FASE ORGANICA                                  |                                           |                                                | FASE AQUOSA                                    |                                                |                                                |
|-----------------------|----------------------------------------------------------|------------------------------------------------|-------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|
| No.                   | TEMP (o.C)                                               | XC1)                                           | XC22                                      | XC3)                                           | XC1)                                           | X(S)                                           | X(3)                                           |
| 1<br>2<br>3<br>4<br>5 | 313.15<br>313.15<br>313.15<br>313.15<br>313.15<br>313.15 | . 6322<br>. 6207<br>. 5725<br>. 5535<br>. 5064 | .0804<br>.0871<br>.1024<br>.1074<br>.1249 | . 2874<br>. 2922<br>. 3251<br>. 3391<br>. 3687 | . 0197<br>. 0205<br>. 0224<br>. 0219<br>. 0253 | . 0344<br>. 0366<br>. 0426<br>. 0458<br>. 0533 | . 9459<br>. 9429<br>. 9350<br>. 9323<br>. 9214 |

# RESULTADOS DO AJUSTE

|     |            | FAS    | FASE ORGANICA |        |        | FASE AQUOSA |        |  |
|-----|------------|--------|---------------|--------|--------|-------------|--------|--|
| No. | TEMP (o.C) | XC1>   | XCSD          | XC3D   | X(1)   | XCSD        | XCBD   |  |
| 1   | 313.15     | .6327  | . 0841        | . 2832 | . 0185 | . 0337      | . 9477 |  |
| 2   | 313.15     | .6217  | . 0879        | . 2904 | .0193  | . 0356      | . 9450 |  |
| 3   | 313.15     | . 5737 | .1018         | . 3245 | . 0219 | .0423       | . 9358 |  |
| 4   | 313.15     | . 5544 | .1072         | . 3384 | . 0231 | . 0451      | .9318  |  |
| 5   | 313.15     | . 5069 | .1213         | .3719  | . 0279 | . 0546      | .9176  |  |
|     |            |        |               |        |        |             |        |  |

## DESVIOS PADRAO EXPERIMENTAIS

| TEMPERAT | 'URA    | <b>Bank</b> | .1000 |
|----------|---------|-------------|-------|
| FRACOES  | MOLARES |             | .0051 |

## PARAMETROS ENERGETICOS (kelvin)

|   |           | CHUTE INICIAL | NELDER-MEAD | MAX. VEROSSIM |
|---|-----------|---------------|-------------|---------------|
| A | (1,2) ==> | 703.426       | .000        | 703.426       |
| A | (1,3) ==> | 190.199       | .000        | 190.199       |
| A | (2,1) ==> | -697.620      | .000        | -697.620      |
| A | (2,3) ==> | -58.497       | .000        | 153.249       |
| A | (3,1) ==> | 1323.479      | .000        | 1323.479      |
| А | (3,2) ==> | -394.023      | .000        | -576.840      |
| A | (3,2) ==> | -394.023      | .000        | -576.840      |

#### PARAMETROS ALFA

|   |       |               | CHUTE | INICIAL | NELDER-MEAD | MAX. | VEROSSIM. |
|---|-------|---------------|-------|---------|-------------|------|-----------|
| A | (1,2) | ==>           |       | .200    | .000        |      | .200      |
| А | (1,3) | <b>==&gt;</b> |       | .200    | .000        |      | .200      |
| А | (2,3) | ==>           |       | .200    | .000        |      | .200      |

## MAXIMA VEROSSIMILHANCA - RESUMO DE INFORMACOES

| NUM. MAX.DE ITERACOES    |              | 20                   |
|--------------------------|--------------|----------------------|
| NUM.DE ITER. NA CONV.    |              | б                    |
| TOL. P/ CONV. DOS PARAM. |              | . <b>0</b> 500000000 |
| FUNCAO OBJETIVO          | -            | .18E+01              |
| BETA                     |              | .25                  |
| RP                       | *            | 1.50                 |
| ALST                     | <b>50</b> 33 | 1.00                 |
| PRCG                     |              | 100.0                |

DESVIOS PADRAO ESTIMADOS P/ OS PARAMETROS AJUSTADOS A(2,3) = 153.25 +/- 66.79 A(3,2) = -576.84 +/- 56.82 VARIANCA ESTIMADA DO AJUSTE = .5937 DESVIO MED. QUAD. (CONC. % MOLAR) = .18 MATRIZ COVARIANCA 4461.33 -3471.00 -3471.00 3228.80 MATRIZ DE CORRELACAO DOS COEFICIENTES

1.00 -.91 -.91 1.00

#### II - LISTAGEM DE SAÍDA DA SUBROTINA TIELINE (TL.....LST)

# COMPOSICOES DE EQUILIBRIO LIQUIDO-LIQUIDO

DADOS : SIST. LIVRE DE SAL / 5,0 %PESO DE SAL NA CARGA / MODELO : NRTL

SISTEMA :

(1) ACET. DE ETILA
(2) ETANOL
(3) AGUA

## PARAMETROS DE INTERACAO :

| I | J | A(I,J)<br>(Kelvin) | A(J,I)<br>(Kelvin) | ALFA(I,J) |
|---|---|--------------------|--------------------|-----------|
| 1 | 2 | 593.906            | -615.051           | . 200     |
| 1 | 3 | 214.471            | 1511.567           | . 200     |
| 2 | 3 | 269.220            | -241.038           | . 200     |

TIE-LINE No. 1

| CARGA | (% | molar) | -> | Z(1)= | 14.770 |
|-------|----|--------|----|-------|--------|
|       |    |        |    | Z(2)= | 2.270  |
|       |    |        |    | Z(3)= | 82.960 |

TEMPERATURA (0,C) = 30.00

NUM. DE MOLES: FASE ORGANICA: .1839(base = 1 mol de carga)FASE AQUOSA: .8161TIE-LINE 1 :

|       | FASE ORGANICA |        |        | FA     |         |        |
|-------|---------------|--------|--------|--------|---------|--------|
|       | C10           | (2)    | (3)    | (1)    | (2)     | (3)    |
| XCALC | . 7795        | . 0600 | .1605  | . 0052 | . 01 43 | . 9805 |
| X EXP | . 7845        | . 0479 | .1676  | . 0093 | . 0199  | . 9708 |
| DABS. | . 0050        | 0121   | . 0071 | . 0041 | . 0056  | 0097   |
| GAMA  | 1.08          | . 20   | 6.13   | 161.69 | . 84    | 1.00   |

DESVIO MEDIO QUAD. PERC. ENTRE XCALC E XEXP.= .778 DIFERENCA DE ATIVIDADES ENTRE AS FASES :

| COMP. | (1) | ==>       | .1074E-02 |
|-------|-----|-----------|-----------|
|       | (2) | <b>**</b> | .2680E-04 |
|       | (3) | ==>       | .2073E-02 |

DESVIO QUADR. MEDIO GLOBAL % MOLAR (Formula Dechema) = .778

#### III- LISTAGEM DE SAÍDA DA SUBROTINA BINODAL (BN.....LST)

# CURVA BINODAL

DADOS : BASE LIVRE DE SAL / 5,0 % PESO DE SAL NA CARGA / 30,0 oC

MODELO : NRTL

SISTEMA :

- 1 ACET. DE ETILA
- 2 ETANOL
- 3 AGUA

#### PARAMETROS DE INTERACAO :

| I | J | A(I,J)<br>(Kelvin) | A(J,I)<br>(Kelvin) | ALFA |
|---|---|--------------------|--------------------|------|
| 1 | 2 | 593.906            | -615.051           | .200 |
| 1 | 3 | 214.471            | 1511.567           | .200 |
| 2 | 3 | 269.220            | -241.038           | .200 |

TEMPERATURA (o.C) = 30.00

ESTIMATIVA INICIAL DE SOLUBILIDADE MUTUA (%) -(1)em(3) = 0.0 (3)em(1) = 0.0

# CURVA BINODAL CALCULADA :

| FA     | SE ORGAN | ICA    | FA     | SE AQUOS | A      |
|--------|----------|--------|--------|----------|--------|
| (1)    | (2)      | (3)    | (1)    | (2)      | (3)    |
| 89.328 | 00.000   | 10.672 | .373   | 00.000   | 99.627 |
| 87.000 | 1.305    | 11.695 | . 400  | . 284    | 99.316 |
| 85.000 | 2.395    | 12.605 | . 424  | .532     | 99.043 |
| 83.000 | 3.458    | 13.542 | . 451  | .785     | 98.764 |
| 81.000 | 4.494    | 14.506 | . 479  | 1.042    | 98.479 |
| 79.000 | 5.504    | 15.496 | .508   | 1.304    | 98.188 |
| 77.000 | 6.490    | 16.510 | .540   | 1.571    | 97.889 |
| 75.000 | 7.451    | 17.549 | .574   | 1.843    | 97.583 |
| 73.000 | 8.388    | 18.612 | .610   | 2.122    | 97.268 |
| 71.000 | 9.301    | 19.699 | .649   | 2.407    | 96.944 |
| 69.000 | 10.191   | 20.809 | .691   | 2.700    | 96.609 |
| 67.000 | 11.057   | 21.943 | .736   | 3.000    | 96.263 |
| 65.000 | 11.899   | 23.101 | .785   | 3.310    | 95.905 |
| 63.000 | 12.718   | 24.282 | . 838  | 3.629    | 95.533 |
| 61.000 | 13.513   | 25.487 | .895   | 3.959    | 95.146 |
| 59.000 | 14.283   | 26.717 | .957   | 4.300    | 94.743 |
| 57.000 | 15.028   | 27.972 | 1.025  | 4.653    | 94.322 |
| 55.000 | 15.747   | 29.253 | 1.099  | 5.019    | 93.882 |
| 53.000 | 16.440   | 30.560 | 1.180  | 5.399    | 93.421 |
| 51.000 | 17.104   | 31.896 | 1.269  | 5.794    | 92.937 |
| 49.000 | 17.740   | 33.260 | 1.368  | 6.206    | 92.427 |
| 47.000 | 18.345   | 34.655 | 1.476  | 6.634    | 91.890 |
| 45.000 | 18.918   | 36.082 | 1.596  | 7.082    | 91.322 |
| 43.000 | 19.456   | 37.544 | 1.730  | 7.549    | 90.721 |
| 41.000 | 19.958   | 39.042 | 1.879  | 8.038    | 90.083 |
| 39.000 | 20.421   | 40.579 | 2.046  | 8.550    | 89.404 |
| 37.000 | 20.842   | 42.158 | 2.234  | 9.087    | 88.679 |
| 35.000 | 21.217   | 43.783 | 2.445  | 9.650    | 87.904 |
| 33.000 | 21.543   | 45.457 | 2.685  | 10.242   | 87.073 |
| 31.000 | 21.815   | 47.185 | 2.959  | 10.865   | 86.170 |
| 29.000 | 22.028   | 48.972 | 3.272  | 11.521   | 85.207 |
| 27.000 | 22.174   | 50.826 | 3.634  | 12.212   | 84.154 |
| 25.000 | 22.247   | 52.753 | 4.054  | 12.943   | 83.004 |
| 23.000 | 22.236   | 54.764 | 4.546  | 13.715   | 81.739 |
| 21.000 | 22.131   | 56.869 | 5.128  | 14.531   | 80.340 |
| 19.000 | 21.917   | 59.083 | 5.825  | 15.396   | 78.779 |
| 17.000 | 21.574   | 61.426 | 6.671  | 10.311   | 77.018 |
| 15.000 | 21.080   | 63.920 | 7.715  | 17.277   | 75.007 |
| 13.000 | 20.400   | 66.600 | 9.033  | 18.293   | 72.674 |
| 10.868 | 19.422   | 69.710 | 10.868 | 19.428   | 69.703 |

## IV - LISTAGEM DE SAÍDA DA SUBROTINA BINODAL (BN......DAT)

A listagem de saída .DAT da subrotina *BINODAL* é constituida apenas das composições das fases em equilíbrio, não contendo caracteres alfanuméricos, estando em formato adequado para ser utilizada por Softwares gráficos, como pode ser visto a seguir :

| 89.328 | 00.000 | 10.672   |
|--------|--------|----------|
| .373   | 00.000 | 99.627   |
| 87.000 | 1.305  | 11.695   |
| .400   | .284   | 99.316   |
| 85.000 | 2.395  | 12.605   |
| .424   | .532   | 99.043   |
| 83.000 | 3.458  | 13.542   |
| .451   | .785   | 98.764   |
| 81.000 | 4.494  | 14.506   |
| .479   | 1.042  | 98.479   |
| 79.000 | 5.504  | 15.496   |
| .508   | 1.304  | 98.188   |
| 77.000 | 6.490  | 16.510   |
| .540   | 1.571  | 97.889   |
| 75.000 | 7.451  | 17.549   |
| .574   | 1.843  | 97.583   |
| 73.000 | 8.388  | 18.612   |
| .610   | 2.122  | 97.268   |
| 71.000 | 9.301  | 19.699   |
| .649   | 2.407  | 96.944   |
| 69.000 | 10.191 | 20.809   |
| .691   | 2.700  | 96.609   |
| 67.000 | 11.057 | 21.943   |
| .736   | 3.000  | 96.263   |
| 65.000 | 11.899 | 23.101   |
| .785   | 3.310  | 95.905   |
| 63.000 | 12.718 | 24.282   |
| .838   | 3.629  | 95.533   |
| 61.000 | 13.513 | 25.487   |
| .895   | 3.959  | 95.146   |
| 59.000 | 14.283 | 26.717   |
| .957   | 4.300  | 94.743   |
| 57.000 | 15.028 | 27.972   |
| 1.025  | 4.653  | 94.322   |
| 55.000 | 15.747 | 29.253   |
| 1.099  | 5.019  | 93.882   |
| 53.000 | 10.440 | 30.560   |
| 1.180  | 5.399  | 93.421   |
| 51.000 | 17.104 | 31.896   |
| 1.269  | 5.794  | 92.937   |
| 49.000 | 17.740 | 33.260   |
| 1.368  | 6.206  | 92.427   |
| 47.000 | 18.345 | 34.655 , |

etc...

#### APENDICE VI

#### PARAMETROS ESPECÍFICOS

|            |     | Tab             | >ela | a VI.1      |       |        |
|------------|-----|-----------------|------|-------------|-------|--------|
| Parâmetros | Esp | <i>ectficos</i> | - 7  | Modelo NRTL | . (a  | = 0,2) |
| Sistema    | L : | Acetato         | de   | Etila - Eta | nol - | Água   |

| Sistema : Acetato de Etila (1) - Etanol (2) - Água (3) |        |         |                     |         |  |  |  |
|--------------------------------------------------------|--------|---------|---------------------|---------|--|--|--|
| ż                                                      | ý      |         | A <sub>ij</sub> (K) |         |  |  |  |
| -                                                      |        | 30°C    | 40°C                | 50°C    |  |  |  |
| 1                                                      | 2      | 703,43  | 703,43              | 703,43  |  |  |  |
| 1                                                      | З      | 190,20  | 190,20              | 190,20  |  |  |  |
| З                                                      | 1      | -697,62 | -697,62             | -697,62 |  |  |  |
| 2                                                      | З      | -58,50  | 153,25              | 446,22  |  |  |  |
| З                                                      | 1      | 1323,48 | 1323,48             | 1323,48 |  |  |  |
| 3 2 -394,02 -576,84 -825,72                            |        |         |                     | -825,72 |  |  |  |
| Desvic                                                 | > %(D) | 0,55    | 0,53                | 0,77    |  |  |  |

#### Tabela VI.2

Parâmetros Específicos - Modelo NRTL ( $\alpha = 0,2$ ) Sistema : Acetato de Etila-Etanol-Água-Acetato de Sódio Concentrações em Base Livre de Sal - 2% em peso de Sal na Carga

| Sistema : Acetato de Etila (1) - Etanol (2) - Água (3)-<br>Acetato de Sódio (Base Livre de Sal)<br>Concentração de Sal na Carga = <u>2</u> % em peso |                            |                      |         |         |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------|---------|---------|--|--|
| ż                                                                                                                                                    | 4                          | . А <sub>. (К)</sub> |         |         |  |  |
| *                                                                                                                                                    | -                          | 30°C                 | 40°C    | 50°C    |  |  |
| 1                                                                                                                                                    | 2                          | 719,47               | 720,46  | 703,43  |  |  |
| 1                                                                                                                                                    | З                          | 211,47               | 205,87  | 185,33  |  |  |
| З                                                                                                                                                    | 1                          | -613,38              | -692,42 | -697,62 |  |  |
| 2                                                                                                                                                    | З                          | 318,68               | 490,44  | 880,68  |  |  |
| З                                                                                                                                                    | 1                          | 1324,81              | 1393,90 | 1452,58 |  |  |
| 3 2 -355,91 -515,85 -680,91                                                                                                                          |                            |                      |         |         |  |  |
| Desvio                                                                                                                                               | Desvio %CD) 0,64 0,91 0,68 |                      |         |         |  |  |
## Tabela VI.3

Parâmetros *Específicos* - Modelo NRTL (α = 0,2) Sistema : Acetato de Etila-Etanol-Água-Acetato de Sódio Concentrações em Base Livre de Sal - 5% em peso de Sal na Carga

| Sister<br>Concer            | Sistema : Acetato de Etila (1) - Etanol (2) - Água (3)-<br>Acetato de Sódio (Base Livre de Sal)<br>Concentração de Sal na Carga = 5% em peso |         |         |         |  |  |  |  |  |
|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|---------|--|--|--|--|--|
| A (K)                       |                                                                                                                                              |         |         |         |  |  |  |  |  |
| L.                          | j<br>30°C 40°C 50°C                                                                                                                          |         |         |         |  |  |  |  |  |
| 1                           | 2                                                                                                                                            | 593,91  | 582,41  | 763,81  |  |  |  |  |  |
| 1                           | Э                                                                                                                                            | 214,47  | 195,92  | 196,79  |  |  |  |  |  |
| 2                           | 1                                                                                                                                            | -615,05 | -668,30 | -636,35 |  |  |  |  |  |
| 5                           | З                                                                                                                                            | 269,22  | 269,22  | 1548,55 |  |  |  |  |  |
| З                           | · 1                                                                                                                                          | 1511,57 | 1824,80 | 1909,66 |  |  |  |  |  |
| 3 2 -241,04 -241,04 -599,18 |                                                                                                                                              |         |         |         |  |  |  |  |  |
| Desvio %CD) 0,74 0,88 0,91  |                                                                                                                                              |         |         |         |  |  |  |  |  |

Tabela VI.4

Parâmetros Específicos - Modelo NRTL ( $\alpha = 0,2$ ) Sistema : Acetato de Etila-Etanol-Água-Acetato de Sódio Concentrações em Base Livre de Sal - 10% em peso de Sal na Carga

| Sister<br>Concer           | Sistema : Acetato de Etila (1) - Etanol (2) - Água (3)-<br>Acetato de Sódio (Base Livre de Sal)<br>Concentração de Sal na Carga = <u>10</u> % em peso |         |         |         |  |  |  |  |  |
|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|---------|--|--|--|--|--|
| А (К)                      |                                                                                                                                                       |         |         |         |  |  |  |  |  |
|                            | i j 30°C 40°C 50°C                                                                                                                                    |         |         |         |  |  |  |  |  |
| 1                          | З                                                                                                                                                     | 89,61   | 162,66  | 256,97  |  |  |  |  |  |
| 1                          | З                                                                                                                                                     | 196,79  | 196,79  | 204,89  |  |  |  |  |  |
| 2                          | 1                                                                                                                                                     | -542,75 | -597,59 | -646,99 |  |  |  |  |  |
| s                          | (i)                                                                                                                                                   | 1394,36 | 1548,55 | 1548,55 |  |  |  |  |  |
| З                          | 1                                                                                                                                                     | 1909,66 | 1909,66 | 1986,43 |  |  |  |  |  |
| 3                          | 3 2 -598,49 -599,18 -599,18                                                                                                                           |         |         |         |  |  |  |  |  |
| Desvio %CD) 1,28 1,06 0,91 |                                                                                                                                                       |         |         |         |  |  |  |  |  |

## APENDICE VII

## LINHAS DE AMARRAÇÃO CALCULADAS

| D                    | ADOS : TERNA                               | RIO BASICO                             |                                         |                                          |                                        |                          |                                                                          |
|----------------------|--------------------------------------------|----------------------------------------|-----------------------------------------|------------------------------------------|----------------------------------------|--------------------------|--------------------------------------------------------------------------|
| TI                   | EMP = 30°C                                 | MOI                                    | DELO : NRT                              | L CPARA                                  | METROS CO                              | MUNSO                    |                                                                          |
| S                    | ISTEMA : (1)                               | ACET. DE I                             | ETILA (2)                               | ETANOL (                                 | C3) AGUA                               |                          | . <u> </u>                                                               |
| P                    | ARAMETROS :                                | IJ                                     | ACI,J)<br>(Kelvin)                      | A(J,I)<br>(Kelvin)                       | ALFA                                   | (I,J)                    | aan ar an an an an than an a dhar an |
|                      |                                            | 1 2<br>1 3<br>2 3                      | 703.426<br>190.199<br>153.249           | -697.620<br>1323.479<br>-576.840         | 0 .20<br>9 .20<br>0 .20                | 00<br>00<br>00           |                                                                          |
| TIE                  | FAS                                        | E ORGANICA                             |                                         | FAS                                      | SE AQUOSA                              |                          |                                                                          |
| LINE                 | (1)                                        | (2)                                    | (3)                                     | C10                                      | (2)                                    | (3)                      |                                                                          |
| 1                    | CARGA (% mo                                | lar): Z(1)=                            | = 40.000                                | Z(2)= 8                                  | 5.950                                  |                          |                                                                          |
| XCAL<br>XEXP<br>DABS | .6585<br>.6756<br>.0171 ·<br>DESVIO MEDIO  | .0796<br>.0767<br>0029 -<br>O QUAD.PER | .2619<br>.2477<br>0142<br>RC. ENTRE     | .0151<br>.0197<br>.0046<br>XCALC E XE    | . 0296<br>. 0358<br>. 0062<br>EXP. = : | .9553<br>.9445<br>0108   |                                                                          |
| S                    | CARGA (% mo                                | lar): 2(1)=                            | 35.000                                  | Z(2)= 6                                  | .130                                   |                          |                                                                          |
| XCAL<br>XEXP<br>DABS | . 6372<br>. 6639<br>. 0267 -               | .0862<br>.0826<br>.0036 -              | . 2766<br>. 2535<br>. 0231              | . 0160<br>. 0205<br>. 0045               | . 0323<br>. 0383<br>. 0060             | .9517<br>.9412<br>0105   | <u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>                             |
| ***                  | DESVIO MEDIO                               | D QUAD. PER                            | C. ENTRE                                | XCALC E XE                               | EXP. =                                 | 1.544                    |                                                                          |
| 3                    | CARGA (% mola                              | ar): Z(1)=                             | 30.000                                  | <u>Z(2)= 6</u>                           | . 700                                  | ······                   |                                                                          |
| XCAL<br>XEXP<br>DABS | .5974<br>.6178<br>.0204 -                  | .0981<br>.0946<br>0035 -               | .3044<br>.2876<br>.0168                 | . 0177<br>. 0220<br>. 0043<br>XCALC E XE | .0374<br>.0441<br>.0067                | . 9448<br>. 9339<br>0109 |                                                                          |
| 4                    | CARGA (% mol                               | $ar$ $\cdot$ $7(1)$                    | = 35.000                                | 7(2) =                                   | 9 500                                  |                          |                                                                          |
| XCAL<br>XEXP<br>DABS | . 5211<br>. 5517<br>. 0306<br>DESVIO MEDIO | .1192<br>.1208<br>.0016 -              | . 3596<br>. 3275<br>. 0321<br>20. ENTRE | . 0220<br>. 0244<br>. 0024<br>XCALC E XF | .0485<br>.0558<br>.0073                | . 9295<br>. 9198<br>0097 |                                                                          |
| 5                    | CARGA (% mol                               | ar). 7(1)-                             | 30 000                                  | 7(2)=                                    | <u> </u>                               | n e vez en se            |                                                                          |
| XCAL<br>XEXP<br>DABS | . 4954<br>. 5173<br>. 0219 -               | .1258<br>.1248<br>.0010 -              | . 3788<br>. 3579<br>. 0209              | . 0238<br>. 0258<br>. 0020               | . 0527<br>. 0583<br>. 0056             | . 9234<br>. 9159<br>0075 |                                                                          |
|                      | DESVIO MEDIC                               | ) QUAD. PER                            | C. ENTRE                                | XCALC E XE                               | EXP. = 1                               | . 298                    |                                                                          |

| D,                                     | ADOS : TE          | RNARIO BAS        | 160                      |                                         |               |                 |                                        |
|----------------------------------------|--------------------|-------------------|--------------------------|-----------------------------------------|---------------|-----------------|----------------------------------------|
| TI                                     | $EMP = 40^{\circ}$ | C                 | MODELO : NI              | TL CPAR                                 | AMETROS CO    | OMUNS)          | ······                                 |
|                                        | STEMA :            | (1) ACET.         | DE ETILA CA              | ETANOL                                  | C3) AGUA      |                 |                                        |
| P                                      | ARAMETROS          | CKO I J           | ACI, J                   | ACJ,I                                   | ) ALF         | ACI, JD         |                                        |
|                                        |                    | 1 2               | 703.420                  | 5 -697.6                                | S20 .20       | 00              |                                        |
|                                        |                    | 1 3               | 190.199                  | 1323.4                                  | 179 . Z       |                 |                                        |
|                                        |                    |                   | 153.249                  | <u> </u>                                |               | 30              |                                        |
| LINE                                   | (1)                | rase organ<br>(21 | LCA<br>(S)               | r<br>715                                | ASE AQUUSA    | 4<br>(2)        |                                        |
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |                    |                   |                          | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ |               |                 |                                        |
| 0                                      | LARGA (%           | MOIAFJ: 24        | <u>.1)≡ 30.000</u>       |                                         | 5.500         |                 |                                        |
| XCAL                                   | . 6468             | . 0818            | . 2714                   | . 01 86                                 | . 0333        | . 9481          |                                        |
| XEXP                                   | . 6322             | . 0804            | . 2874                   | .0197                                   | . 0344        | . 9459          |                                        |
| DABS                                   | 0146               | 0014              | . 0160                   | . 0011                                  | . 0011        | 0022            |                                        |
|                                        | DESVIO M           | EDIO QUAD.        | PERC. ENTRE              | E XCALC E                               | XEXP. =       | . 892           |                                        |
| 7                                      | CARGA (%           | molar) : 2        | 2(1)= 30.00              | 0 <b>Z</b> (2)=                         | 6.000         |                 |                                        |
| XCAL                                   | 6268               | 0879              | 2853                     | 01 96                                   | . 0360        | 9443            |                                        |
| XEXP                                   | . 6207             | . 0871            | . 2922                   | 0205                                    | . 0366        | 9429            |                                        |
| DABS                                   | 0061               | 0008              | , 0069                   | . 0009                                  | . 0006        | 0014            |                                        |
|                                        | DESVIO M           |                   | PERC ENTRE               | YCALCE                                  | VEXP -        | 203             |                                        |
| <u> </u>                               |                    | DIC QUAD.         | $\frac{12RC}{2} = 20.00$ | $\Delta = \frac{7}{2}$                  | 7 210         |                 |                                        |
| 8                                      | CARGA (%           | molar):2          | <u>x(1)= 30.00</u>       | <u> </u>                                | 0.610         |                 |                                        |
| XCAL                                   | . 5796             | .1017             | . 3186                   | . 0223                                  | . 0427        | . 9351          |                                        |
| XEXP                                   | . 5725             | .1024             | . 3251                   | . 0224                                  | . 0426        | . 9350          |                                        |
| DABS                                   | 0071               | . 0007            | . 0065                   | . 0001                                  | 0001          | 0001            |                                        |
|                                        | DESVIO M           | EDIO QUAD.        | PERC. ENTRE              | XCALC E                                 | XEXP. =       | . 393           |                                        |
| 9                                      | CARGA (%           | molar) : 2        | (1)= 27.50               | ) Z(2)=                                 | 7.500         |                 |                                        |
| XCAL                                   | . 5579             | .1078             | . 3344                   | . 0236                                  | . 0459        | . 9305          |                                        |
| XEXP                                   | . 5535             | .1074             | . 3391                   | . 0219                                  | . 0458        | . 9323          |                                        |
| DABS                                   | 0044               | 0004              | . 0047                   | 0017                                    | 0001          | . 0018          |                                        |
|                                        | DESVIO M           | EDIO OUAD.        | PERC. ENTRE              | XCALC E                                 | XEXP. =       | . 283           |                                        |
| 10                                     | CARGA (%           | molar) : Z        | (1) = 30.000             | ) Z(2)=                                 | 9.400         |                 | <u></u>                                |
| <u> </u>                               |                    | 4007              | ~~~~                     | ~~~~                                    | ~~~~          | ~ ~ ~ ~         |                                        |
| XCAL                                   | . 5011             | .1227             | . 3762                   | . 0281                                  | . 055         | . 9167          |                                        |
| XEXP<br>DADC                           | . 5064             | .1249             | . 3087                   | . 0253                                  | . 053         | . 9214          |                                        |
| DABS                                   | . 0053             | . 0022            | 0075                     | 0028                                    | 001           | . 0047          |                                        |
|                                        | DESVIO M           | EDIO QUAD.        | PERC. ENTRE              | XCALC E                                 | XEXP. =       | . 451           |                                        |
| TEMP                                   | = 50 °C            |                   |                          |                                         |               |                 |                                        |
| 11                                     | CARGA (%           | molar) : Z        | (1) = 31.000             | ) Z(2)=                                 | 6.000         |                 |                                        |
| XCAL                                   | . 6308             | . 0850            | .2842                    | . 0229                                  | . 0376        | . 9395          |                                        |
| XEXP                                   | , 5967             | . 0858            | . 3175                   | .0193                                   | . 0337        | . 9470          |                                        |
| DABS                                   | 0341               | . 0008            | . 0333                   | 0036                                    | 0039          | . 0075          |                                        |
| 1996 marting with a second second      | DESVIO ME          | EDIO QUAD.        | PERC. ENTRE              | XCALC E                                 | XEXP. =       | 1.981           |                                        |
| 12                                     | CARGA (%           | molar) ->         | Z(1)= 30.0               | 00 Z(2)                                 | <b>6.75</b> 0 |                 | ~~~~********************************** |
| XCAI                                   | ROR2               | 0017              | 3071                     | 0250                                    | 0424          | 2226            |                                        |
| VEVD                                   | . 5365<br>8780     | . 0341            | 3282                     | . 0200                                  | . 0464        | . 3360<br>0120  |                                        |
| DARS                                   | - 0232             | . 0300            | 01 01                    | - 0042                                  | - 0061        | . 3403<br>01 03 |                                        |
| w 1944 w                               |                    | , UU+±+           |                          |                                         |               |                 |                                        |
|                                        | $-\infty$          | INTA ATTAN        | DEDC ENTER               |                                         | VEVD m        | 1 241           |                                        |

| DAS                                                                  |                                                                                                                                                                                                                        |                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                           |                                                                                                                                                     | an a                                                                              | -                                                                |
|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|
| TTT                                                                  | DOS : IERNA                                                                                                                                                                                                            | RIO BASI                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                           | VETTO CO                                                                                                                                            | ANCO                                                                                                                  |                                                                  |
|                                                                      | STEMA · (1)                                                                                                                                                                                                            | ACET D                                                                                                                                                     | MODELO :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NRIL CPARA                                                                                                                                                                | METRUS CUI                                                                                                                                          | CAUM                                                                                                                  |                                                                  |
| PA                                                                   | RAMETROS (K)                                                                                                                                                                                                           | T T                                                                                                                                                        | ACT. T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\Delta(T,T)$                                                                                                                                                             | ALFA                                                                                                                                                | T. T.                                                                                                                 |                                                                  |
|                                                                      |                                                                                                                                                                                                                        | $\frac{1}{1}$                                                                                                                                              | 703.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 26 -697                                                                                                                                                                   | 620 20                                                                                                                                              | $\overline{\mathbf{n}}$                                                                                               |                                                                  |
|                                                                      |                                                                                                                                                                                                                        | 1 3                                                                                                                                                        | 190.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 99 1323.                                                                                                                                                                  | 479 .20                                                                                                                                             | 00                                                                                                                    |                                                                  |
|                                                                      |                                                                                                                                                                                                                        | 2 3                                                                                                                                                        | 153.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 49 -576.                                                                                                                                                                  | 840 .20                                                                                                                                             | 00                                                                                                                    |                                                                  |
| TIE                                                                  | FAS                                                                                                                                                                                                                    | E ORGANI                                                                                                                                                   | CA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | FA                                                                                                                                                                        | SE AQUOSA                                                                                                                                           |                                                                                                                       |                                                                  |
| LINE                                                                 | (1)                                                                                                                                                                                                                    | (2)                                                                                                                                                        | (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (1)                                                                                                                                                                       | (2)                                                                                                                                                 | (3)                                                                                                                   |                                                                  |
| 13                                                                   | CARGA (% mo                                                                                                                                                                                                            | lar) -> :                                                                                                                                                  | Z(1)= 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .000 Z(2)=                                                                                                                                                                | 7.500                                                                                                                                               |                                                                                                                       |                                                                  |
| XCAL                                                                 | . 5571                                                                                                                                                                                                                 | .1062                                                                                                                                                      | . 3367                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | . 0280                                                                                                                                                                    | . 0487                                                                                                                                              | . 9234                                                                                                                |                                                                  |
| XEXP                                                                 | .5117                                                                                                                                                                                                                  | .1082                                                                                                                                                      | . 3801                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | . 0226                                                                                                                                                                    | . 0417                                                                                                                                              | . 9357                                                                                                                |                                                                  |
| DABS                                                                 | 0454                                                                                                                                                                                                                   | . 0020                                                                                                                                                     | . 0434                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0054                                                                                                                                                                      | 0070                                                                                                                                                | .0123                                                                                                                 |                                                                  |
|                                                                      | DESVIO MED                                                                                                                                                                                                             | IO QUAD.                                                                                                                                                   | PERC. EN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TRE XCALC E                                                                                                                                                               | XEXP. =                                                                                                                                             | 2.640                                                                                                                 | a star full tangen solver a lare brann an star star son a second |
| 14                                                                   | CARGA (% m                                                                                                                                                                                                             | olar) ->                                                                                                                                                   | Z(1)= 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.000 Z(2):                                                                                                                                                               | 9.200                                                                                                                                               |                                                                                                                       |                                                                  |
| XCAL                                                                 | . 4838                                                                                                                                                                                                                 | .1250                                                                                                                                                      | . 3911                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | . 0351                                                                                                                                                                    | . 0616                                                                                                                                              | . 9032                                                                                                                |                                                                  |
| XEXP                                                                 | . 4551                                                                                                                                                                                                                 | .1272                                                                                                                                                      | . 4177                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | . 0266                                                                                                                                                                    | . 0533                                                                                                                                              | . 9201                                                                                                                |                                                                  |
| DABS                                                                 | 0287                                                                                                                                                                                                                   | .0022                                                                                                                                                      | . 0266                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0085                                                                                                                                                                      | 0083                                                                                                                                                | . 0169                                                                                                                |                                                                  |
|                                                                      | DESVIO MED                                                                                                                                                                                                             | IO QUAD.                                                                                                                                                   | PERC. EN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TRE XCALC E                                                                                                                                                               | XEXP.=                                                                                                                                              | 1.808                                                                                                                 |                                                                  |
| DE                                                                   | ESVIO QUADR.                                                                                                                                                                                                           | MEDIO GI                                                                                                                                                   | JOBAL % M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | OLAR (Formula                                                                                                                                                             | a Dechemal                                                                                                                                          | = 1.403                                                                                                               |                                                                  |
|                                                                      |                                                                                                                                                                                                                        |                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | an 2 an an Anna ann an Anna an                                                            |                                                                                                                                                     | <u>11. – Nakola mangangan katang mangkanan mangkan katang mangkan pangkan pangkan katang mangkan katang katang ka</u> |                                                                  |
|                                                                      |                                                                                                                                                                                                                        |                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                           |                                                                                                                                                     |                                                                                                                       |                                                                  |
| 52                                                                   | THOS · BASE                                                                                                                                                                                                            | LIVEF DI                                                                                                                                                   | SA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2% EM PESO DI                                                                                                                                                             | SAL NA (                                                                                                                                            | ARGA                                                                                                                  |                                                                  |
| TE                                                                   | $\frac{1000}{\text{EMP}} = 30^{\circ}\text{C}$                                                                                                                                                                         |                                                                                                                                                            | MODELO : 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NRTL (PARA)                                                                                                                                                               | METROS CON                                                                                                                                          | IUNSO                                                                                                                 |                                                                  |
| SI                                                                   | STEMA : (1)                                                                                                                                                                                                            | ACET. DI                                                                                                                                                   | E ETILA (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CED ETANOL (                                                                                                                                                              | 3) AGUA                                                                                                                                             | C) AC. DE                                                                                                             | SODIO                                                            |
| P/                                                                   | ARAMETROS (K                                                                                                                                                                                                           | <u> </u>                                                                                                                                                   | ACI,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | J) A(J,I)                                                                                                                                                                 | > ALF/                                                                                                                                              | VCI,JO                                                                                                                |                                                                  |
|                                                                      |                                                                                                                                                                                                                        | 1 2                                                                                                                                                        | 719.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 70 -692.4                                                                                                                                                                 | 420                                                                                                                                                 | . 200                                                                                                                 |                                                                  |
|                                                                      |                                                                                                                                                                                                                        | 1 3                                                                                                                                                        | 205.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 70 1393.9                                                                                                                                                                 | 900                                                                                                                                                 | . 200                                                                                                                 |                                                                  |
|                                                                      |                                                                                                                                                                                                                        | 23                                                                                                                                                         | 490.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 40 -515.8                                                                                                                                                                 | 350                                                                                                                                                 | 200                                                                                                                   |                                                                  |
| TIE                                                                  |                                                                                                                                                                                                                        |                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                           |                                                                                                                                                     |                                                                                                                       |                                                                  |
|                                                                      | FA                                                                                                                                                                                                                     | SE ORGANI                                                                                                                                                  | CA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | F.                                                                                                                                                                        | ASE AQUOSA                                                                                                                                          | - 200<br>                                                                                                             | an a                         |
| LINE                                                                 | (1)                                                                                                                                                                                                                    | SE ORGANI<br>(2)                                                                                                                                           | CA<br>(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | FA<br>C1D                                                                                                                                                                 | ASE AQUOSA<br>(2)                                                                                                                                   | (3)                                                                                                                   |                                                                  |
| LINE<br>1                                                            | FA<br>(1)<br>CARGA (% m                                                                                                                                                                                                | SE ORGANI<br>(2)<br>olar) ->                                                                                                                               | CA<br>(3)<br>Z(1)= 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | F2<br>(1)<br>5.640 Z(2)=                                                                                                                                                  | ASE AQUOSA<br>(2)<br>2.460                                                                                                                          | (3)                                                                                                                   |                                                                  |
| LINE<br>1<br>XCALC                                                   | FA<br>(1)<br>CARGA (% m<br>, 7353                                                                                                                                                                                      | SE ORGAN)<br>(2)<br>olar) -><br>.0646                                                                                                                      | CA<br>(3)<br>Z(1)= 15<br>. 2001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | F2<br>(1)<br>5.640 Z(2)=<br>.0080                                                                                                                                         | ASE AQUOSA<br>(2)<br>2.460<br>.0144                                                                                                                 | . 200                                                                                                                 |                                                                  |
| LINE<br>1<br>XCALC<br>X EXP                                          | FA<br>(1)<br>CARGA (% m<br>. 7353<br>. 7641                                                                                                                                                                            | SE ORGANI<br>(2)<br>olar) -><br>.0646<br>.0473                                                                                                             | CA<br>(3)<br>Z(1)= 15<br>. 2001<br>. 1886                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | F4<br>(1)<br>5.640 Z(2)=<br>.0080<br>.0134                                                                                                                                | ASE AQUOSA<br>(2)<br>= 2.460<br>.0144<br>.0220                                                                                                      | . 9777<br>. 9646                                                                                                      |                                                                  |
| LINE<br>1<br>XCALC<br>X EXP<br>DESV.                                 | FA<br>(1)<br>CARGA (% m<br>. 7353<br>. 7641<br>. 0288                                                                                                                                                                  | SE ORGANI<br>(2)<br>olar) -><br>.0646<br>.0473<br>0173                                                                                                     | CA<br>(3)<br>Z(1)= 15<br>. 2001<br>. 1886<br>0115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | F2<br>(1)<br>5.640 Z(2)=<br>.0080<br>.0134<br>.0054                                                                                                                       | ASE AQUOSA<br>(2)<br>2.460<br>.0144<br>.0220<br>.0076                                                                                               | . 200<br>(3)<br>. 9777<br>. 9646<br>0131                                                                              |                                                                  |
| LINE<br>1<br>XCALC<br>X EXP<br>DESV.                                 | FA<br>(1)<br>CARGA (% m<br>. 7353<br>. 7641<br>. 0288<br>DESVIO MED                                                                                                                                                    | SE ORGAN<br>(2)<br>olar) -><br>.0646<br>.0473<br>0173<br>IO QUAD.                                                                                          | CA<br>(3)<br>Z(1)= 15<br>. 2001<br>. 1886<br>0115<br>PERC. EN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | F2<br>(1)<br>5.640 Z(2)=<br>.0080<br>.0134<br>.0054<br>IRE XCALC E )                                                                                                      | ASE AQUOSA<br>(2)<br>2.460<br>.0144<br>.0220<br>.0076<br>(EXP. =                                                                                    | . 200<br>(3)<br>. 9777<br>. 9646<br>0131<br>1. 592                                                                    |                                                                  |
| LINE 1 XCALC X EXP DESV. 2                                           | FA<br>(1)<br>CARGA (% m<br>. 7353<br>. 7641<br>. 0288<br>DESVIO MED<br>CARGA (% m                                                                                                                                      | SE ORGAN<br>(2)<br>olar) -><br>.0646<br>.0473<br>0173<br>IO QUAD.<br>olar) ->                                                                              | CA<br>(3)<br>Z(1)= 15<br>.2001<br>.1886<br>0115<br>PERC. EN<br>Z(1)= 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | F4<br>(1)<br>5.640 Z(2)=<br>.0080<br>.0134<br>.0054<br>IRE XCALC E 3<br>3.560 Z(2)=                                                                                       | ASE AQUOSA<br>(2)<br>= 2.460<br>.0144<br>.0220<br>.0076<br>(EXP.=<br>= 4.040                                                                        | . 200<br>. (3)<br>. 9777<br>. 9646<br>0131<br>1. 592                                                                  |                                                                  |
| LINE 1 XCALC X EXP DESV. 2 XCALC                                     | FA<br>(1)<br>CARGA (% m<br>.7353<br>.7641<br>.0288<br>DESVIO MED<br>CARGA (% m<br>.6349                                                                                                                                | SE ORGANI<br>(2)<br>olar) -><br>.0646<br>.0473<br>0173<br>IO QUAD.<br>olar) -><br>.1021                                                                    | CA<br>(3)<br>Z(1)= 15<br>. 2001<br>. 1886<br>0115<br>PERC. EN<br>Z(1)= 13<br>. 2630                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | F4<br>(1)<br>5.640 Z(2)=<br>.0080<br>.0134<br>.0054<br>IRE XCALC E 3<br>3.560 Z(2)=<br>.0099                                                                              | ASE AQUOSA<br>(2)<br>2.460<br>.0144<br>.0220<br>.0076<br>(EXP. =<br>4.040<br>.0249                                                                  | . 200<br>(3)<br>. 9777<br>. 9646<br>0131<br>1. 592<br>. 9652                                                          |                                                                  |
| LINE 1 XCALC X EXP DESV. 2 XCALC X EXP                               | FA<br>(1)<br>CARGA (% m<br>.7353<br>.7641<br>.0288<br>DESVIO MED<br>CARGA (% m<br>.6349<br>.6924                                                                                                                       | SE ORGANI<br>(2)<br>olar) -><br>.0646<br>.0473<br>0173<br>IO QUAD.<br>olar) -><br>.1021<br>.0797                                                           | CA<br>(3)<br>Z(1) = 18<br>. 2001<br>. 1886<br>0115<br>PERC. EN<br>Z(1) = 13<br>. 2630<br>. 2279                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | F <sub>2</sub><br>(1)<br>5.640 Z(2)=<br>.0080<br>.0134<br>.0054<br>IRE XCALC E 3<br>3.560 Z(2)=<br>.0099<br>.0142                                                         | ASE AQUOSA<br>(2)<br>2.460<br>.0144<br>.0220<br>.0076<br>(EXP. =<br>4.040<br>.0249<br>.0341                                                         | . (3)<br>. 9777<br>. 9646<br>0131<br>1. 592<br>. 9652<br>. 9517                                                       |                                                                  |
| LINE 1 XCALC X EXP DESV. 2 XCALC X EXP DESV.                         | FA<br>(1)<br>CARGA (% m<br>. 7353<br>. 7641<br>. 0288<br>DESVIO MED<br>CARGA (% m<br>. 6349<br>. 6924<br>. 0575                                                                                                        | SE ORGAN<br>(2)<br>olar) -><br>. 0646<br>. 0473<br>0173<br>IO QUAD.<br>olar) -><br>. 1021<br>. 0797<br>0224                                                | CA<br>(3)<br>Z(1)= 15<br>.2001<br>.1886<br>0115<br>PERC. EN<br>Z(1)= 13<br>.2630<br>.2279<br>0351                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | F <sub>4</sub><br>(1)<br>5.640 Z(2)=<br>.0080<br>.0134<br>.0054<br>IRE XCALC E )<br>3.560 Z(2)=<br>.0099<br>.0142<br>.0043                                                | ASE AQUOSA<br>(2)<br>2.460<br>.0144<br>.0220<br>.0076<br>(EXP. =<br>4.040<br>.0249<br>.0341<br>.0092                                                | . 200<br>(3)<br>. 9777<br>. 9646<br>0131<br>1. 592<br>. 9652<br>. 9517<br>0135                                        |                                                                  |
| LINE<br>1<br>XCALC<br>X EXP<br>DESV.<br>2<br>XCALC<br>X EXP<br>DESV. | FA<br>(1)<br>CARGA (% m<br>. 7353<br>. 7641<br>. 0288<br>DESVIO MED<br>CARGA (% m<br>. 6349<br>. 6349<br>. 6924<br>. 0575<br>DESVIO MED                                                                                | SE ORGANI<br>(2)<br>olar) -><br>.0646<br>.0473<br>0173<br>IO QUAD.<br>olar) -><br>.1021<br>.0797<br>0224<br>IO QUAD.                                       | CA<br>(3)<br>Z(1)= 18<br>. 2001<br>. 1886<br>0115<br>PERC. EN<br>Z(1)= 13<br>. 2630<br>. 2279<br>0351<br>PERC. EN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | F <sub>4</sub><br>(1)<br>5.640 Z(2)=<br>.0080<br>.0134<br>.0054<br>IRE XCALC E )<br>3.560 Z(2)=<br>.0099<br>.0142<br>.0043<br>IRE XCALC E )                               | ASE AQUOSA<br>(2)<br>2.460<br>.0144<br>.0220<br>.0076<br>(EXP. =<br>4.040<br>.0249<br>.0341<br>.0092<br>(EXP. =                                     | . 200<br>. 9777<br>. 9646<br>0131<br>1. 592<br>. 9652<br>. 9517<br>0135<br>2. 979                                     |                                                                  |
| LINE 1 XCALC X EXP DESV. 2 XCALC X EXP DESV. 3                       | FA<br>(1)<br>CARGA (% m<br>. 7353<br>. 7641<br>. 0288<br>DESVIO MED<br>CARGA (% m<br>. 6349<br>. 6924<br>. 0575<br>DESVIO MED<br>CARGA (% m                                                                            | SE ORGANI<br>(2)<br>olar) -><br>.0646<br>.0473<br>0173<br>IO QUAD.<br>olar) -><br>.1021<br>.0797<br>0224<br>IO QUAD.<br>olar) ->                           | CA<br>(3)<br>Z(1) = 18<br>. 2001<br>. 1886<br>0115<br>PERC. EN<br>Z(1) = 13<br>. 2630<br>. 2279<br>0351<br>PERC. EN<br>Z(1) = 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | F4<br>(1)<br>5.640 Z(2)=<br>.0080<br>.0134<br>.0054<br>IRE XCALC E 3<br>.0099<br>.0142<br>.0043<br>IRE XCALC E 3<br>3.680 Z(2)=                                           | ASE AQUOSA<br>(2)<br>2.460<br>.0144<br>.0220<br>.0076<br>(EXP. =<br>4.040<br>.0249<br>.0341<br>.0092<br>(EXP. =<br>6.450                            | . (3)<br>. 9777<br>. 9646<br>0131<br>1. 592<br>. 9652<br>. 9517<br>0135<br>2. 979                                     |                                                                  |
| LINE 1 XCALC X EXP DESV. 2 XCALC X EXP DESV. 3 XCALC                 | FA<br>(1)<br>CARGA (% m<br>. 7353<br>. 7641<br>. 0288<br>DESVIO MED<br>CARGA (% m<br>. 6349<br>. 6924<br>. 0575<br>DESVIO MED<br>CARGA (% m                                                                            | SE ORGANI<br>(2)<br>olar) -><br>.0646<br>.0473<br>0173<br>IO QUAD.<br>olar) -><br>.1021<br>.0797<br>0224<br>IO QUAD.<br>olar) ->                           | CA<br>(3)<br>Z(1)= 15<br>.2001<br>.1886<br>0115<br>PERC. EN<br>Z(1)= 13<br>.2630<br>.2279<br>0351<br>PERC. EN<br>Z(1)= 13<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br>.2011<br> | F4<br>(1)<br>5.640 Z(2)=<br>.0080<br>.0134<br>.0054<br>IRE XCALC E 3<br>.0099<br>.0142<br>.0043<br>IRE XCALC E 3<br>3.680 Z(2)=                                           | ASE AQUOSA<br>(2)<br>2.460<br>.0144<br>.0220<br>.0076<br>(EXP. =<br>4.040<br>.0249<br>.0341<br>.0092<br>(EXP. =<br>6.450                            | (3)<br>. 9777<br>. 9646<br>0131<br>1. 592<br>. 9652<br>. 9517<br>0135<br>2. 979                                       |                                                                  |
| LINE 1 XCALC X EXP DESV. 2 XCALC X EXP DESV. 3 XCALC X EXP           | FA<br>(1)<br>CARGA (% m<br>. 7353<br>. 7641<br>. 0288<br>DESVIO MED<br>CARGA (% m<br>. 6349<br>. 5230<br>ESVIO MED | SE ORGANI<br>(2)<br>olar) -><br>.0646<br>.0473<br>0173<br>IO QUAD.<br>olar) -><br>.1021<br>.0797<br>0224<br>IO QUAD.<br>olar) -><br>.1396                  | CA<br>(3)<br>Z(1)= 15<br>.2001<br>.1886<br>0115<br>PERC. EN<br>Z(1)= 13<br>.2630<br>.2279<br>0351<br>PERC. EN<br>Z(1)= 13<br>.3374                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | F4<br>(1)<br>5.640 Z(2)=<br>.0080<br>.0134<br>.0054<br>IRE XCALC E 3<br>3.560 Z(2)=<br>.0099<br>.0142<br>.0043<br>IRE XCALC E 3<br>3.680 Z(2)=<br>.0135<br>.0135          | ASE AQUOSA<br>(2)<br>= 2.460<br>.0144<br>.0220<br>.0076<br>(EXP. =<br>= 4.040<br>.0249<br>.0341<br>.0092<br>(EXP. =<br>= 6.450<br>.0405             | (3)<br>. 9777<br>. 9646<br>0131<br>1. 592<br>. 9652<br>. 9517<br>0135<br>2. 979<br>. 9460                             |                                                                  |
| LINE 1 XCALC X EXP DESV. 2 XCALC X EXP DESV. 3 XCALC X EXP DESV. 3   | FA<br>(1)<br>CARGA (% m<br>. 7353<br>. 7641<br>. 0288<br>DESVIO MED<br>CARGA (% m<br>. 6349<br>. 6924<br>. 0575<br>DESVIO MED<br>CARGA (% m<br>. 5230<br>. 5794<br>. 5794                                              | SE ORGANI<br>(2)<br>olar) -><br>.0646<br>.0473<br>0173<br>IO QUAD.<br>olar) -><br>.1021<br>.0797<br>0224<br>IO QUAD.<br>olar) -><br>.1396<br>.1250         | CA<br>(3)<br>Z(1)= 18<br>.2001<br>.1886<br>0115<br>PERC. EN<br>Z(1)= 13<br>.2630<br>.2279<br>0351<br>PERC. EN<br>Z(1)= 13<br>.3374<br>.2956                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | F4<br>(1)<br>5.640 Z(2)=<br>.0080<br>.0134<br>.0054<br>IRE XCALC E 3<br>3.560 Z(2)=<br>.0099<br>.0142<br>.0043<br>IRE XCALC E 3<br>3.680 Z(2)=<br>.0135<br>.0170<br>.0075 | ASE AQUOSA<br>(2)<br>2.460<br>.0144<br>.0220<br>.0076<br>(EXP. =<br>4.040<br>.0249<br>.0341<br>.0092<br>(EXP. =<br>6.450<br>.0405<br>.0506          | (3)<br>. 9777<br>. 9646<br>0131<br>1. 592<br>. 9652<br>. 9517<br>0135<br>2. 979<br>. 9460<br>. 9324                   |                                                                  |
| LINE 1 XCALC X EXP DESV. 2 XCALC X EXP DESV. 3 XCALC X EXP DESV.     | FA<br>(1)<br>CARGA (% m<br>. 7353<br>. 7641<br>. 0288<br>DESVIO MED<br>CARGA (% m<br>. 6349<br>. 6924<br>. 0575<br>DESVIO MED<br>CARGA (% m<br>. 5230<br>. 5794<br>. 0564                                              | SE ORGANI<br>(2)<br>olar) -><br>.0646<br>.0473<br>0173<br>IO QUAD.<br>olar) -><br>.1021<br>.0797<br>0224<br>IO QUAD.<br>olar) -><br>.1396<br>.1250<br>0146 | CA $C3)$ $Z(1) = 18$ $2001$ $1886$ $0115$ $PERC. EN$ $Z(1) = 13$ $.2630$ $.2279$ $0351$ $PERC. EN$ $Z(1) = 13$ $.3374$ $.2956$ $0418$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | F4<br>(1)<br>5.640 Z(2)=<br>.0080<br>.0134<br>.0054<br>IRE XCALC E 3<br>3.560 Z(2)=<br>.0099<br>.0142<br>.0043<br>IRE XCALC E 3<br>3.680 Z(2)=<br>.0135<br>.0170<br>.0035 | ASE AQUOSA<br>(2)<br>2.460<br>.0144<br>.0220<br>.0076<br>(EXP. =<br>4.040<br>.0249<br>.0341<br>.0092<br>(EXP. =<br>5.450<br>.0405<br>.0506<br>.0101 | . (3)<br>. 9777<br>. 9646<br>0131<br>1. 592<br>. 9652<br>. 9517<br>0135<br>2. 979<br>. 9460<br>. 9324<br>0136         |                                                                  |

| D2              | DOS : BASE  |               | E SAL       | - 2%   | EM PESO        | DE SAL     | , NA           | CARGA                                  | an a |
|-----------------|-------------|---------------|-------------|--------|----------------|------------|----------------|----------------------------------------|------------------------------------------|
| TE              | CMP = 30°C  |               | MODELO      | : NRT  | L CPAR         | AMETRO     | os col         | MUNSO                                  |                                          |
| SI              | STEMA : (1) | ACET. I       | E ETILA     | (2)    | ETANOL         | (3) /      | AGUA           | C) AC.                                 | DE SODIO                                 |
| PA              | RAMETROS (K | :) <u>I</u> J | A(          | I,J>   | ACJ,           | D          | ALF.           | ACI, J)                                |                                          |
|                 |             | 1 2           | ? 719       | 3. 470 | -692           | . 420      |                | . 200                                  |                                          |
|                 |             | 1 3           | 205         | 5.870  | 1393           | . 900      |                | . 200                                  |                                          |
| 775             | 12° A       | CE OPCA       | 490         | ). 440 | -515           | . 850      | AUAC           | . 200                                  | ******                                   |
| LINE            | (1)         |               | 11 CA<br>(3 | 3)     | (1)            |            | (2)            | A (3                                   | >                                        |
| 4               | CARGA C% m  | olar) ->      | Z(1)=       | 16.16  | <u>50 ZC2</u>  | )= 8       | 8.970          |                                        |                                          |
| XCALC           | . 4480      | .1609         | . 39        | 12     | .0171          |            | 0538           | . 92                                   | 91                                       |
| X EXP           | . 4954      | .1570         | . 34        | 76     | . 0187         | •          | 0616           | . 91                                   | 97                                       |
| DESV.           | . 0474      | 0039          | 04          | -36    | .0016          |            | 0078           | 00                                     | 94                                       |
|                 | DESVIO MED  | IO QUAD.      | PERC.       | ENTRE  | XCALC E        | XEXP.      | 1990)<br>1990) | 2.682                                  |                                          |
| 5               | CARGA C% m  | olar) ->      | Z(1)=       | 15.58  | 30 ZC23        | )= 11      | . 230          |                                        | waantaliinii                             |
| XCALC           | . 3745      | .1728         | . 45        | 528    | . 0222         | •          | 0753           | . 90                                   | 25                                       |
| X EXP           | . 3983      | .1860         | . 41        | 57     | . 0227         |            | 0757           | . 90                                   | 16                                       |
| DESV.           | . 0238      | . 0132        | 03          | 71     | . 0005         |            | 0004           | 00                                     | 09                                       |
|                 | DESVIO MED  | IO QUAD.      | PERC.       | ENTRE  | XCALC E        | XEXP.      |                | 1.880                                  |                                          |
| TEMP            | = 40 °C     |               |             |        |                |            |                |                                        |                                          |
| 6               | CARGA C% m  | olar) ->      | Z(1)=       | 15.64  | o zceo         | ) == 2     | . 460          |                                        |                                          |
| XCALC           | . 7379      | .0621         | . 20        | 00     | . 0095         |            | 01 51          | . 97                                   | 54                                       |
| X EXP           | . 7409      | . 0514        | . 20        | 77     | .0124          | -          | 6020           | . 96                                   | 67                                       |
| DESV.           | . 0030      | 0107          | . 00        | 77     | . 0029         |            | 0058           | 00                                     | 87                                       |
| 27.7.28.1.7.2.2 | DESVIO MED  | IO QUAD.      | PERC.       | ENTRE  | XCALC E        | XEXP.      |                | . 707                                  |                                          |
| 7               | CARGA (% m  | olar) ->      | Z(1)=       | 13.56  | io zczo        | ) na 4     | . 040          |                                        |                                          |
| XCALC           | . 6404      | . 0988        | . 26        | 08     | .0118          |            | 0261           | . 96                                   | 21                                       |
| X EXP           | . 6625      | . 0859        | . 25        | 16     | . 0140         | •          | 0320           | . 95                                   | 40                                       |
| DESV.           | . 0221      | 0129          | 00          | 92     | . 0022         |            | 0059           | 00                                     | 81                                       |
|                 | DESVIO MED  | IO QUAD.      | PERC.       | ENTRE  | XCALC E        | XEXP.      | 223            | 1.189                                  |                                          |
| 8               | CARGA C% m  | olar) ->      | Z(1)=       | 13.68  | <u>o zcz</u> ) | <b>≡</b> 6 | . 450          |                                        |                                          |
| XCALC           | . 5279      | .1371         | . 33        | 50     | . 0159         |            | 0421           | . 94                                   | 20                                       |
| X EXP           | .5472       | .1297         | . 32        | 31     | . 0171         |            | 0473           | . 93                                   | 36                                       |
| DESV.           | . 0193      | 0074          | 01          | 19     | .0012          |            | 0052           | 00                                     | 54                                       |
|                 | DESVIO MED  | IO QUAD.      | PERC.       | ENTRE  | XCALC E        | XEXP.      | 42000<br>#2000 | 1.033                                  | n an |
| 9               | CARGA C% m  | olar) ->      | Z(1)=       | 16.16  | 0 Z(2)         | 8          | . 970          |                                        |                                          |
| XCALC           | .4512       | .1584         | . 39        | 04     | . 0202         | -          | 0562           | . 92:                                  | 37                                       |
| X EXP           | . 4638      | .1579         | . 37        | 83     | .0189          |            | 0588           | . 92                                   | 23                                       |
| DESV.           | .0126       | 0005          | 01          | 21     | 0013           |            | 0026           | 00                                     | 14                                       |
|                 | DESVIO MED  | IO QUAD.      | PERC.       | ENTRE  | XCALC E        | XEXP.      | <b>2</b> 2     | . 725                                  |                                          |
| 10              | CARGA (% m  | olar) ->      | Z(1)=       | 15.58  | 0 Z(2)         | = 11.      | . 230          | ······································ |                                          |
| XCALC           | . 3751      | .1736         | . 45        | 12     | . 0268         |            | 0762           | . 89'                                  | 70                                       |
| X EXP           | . 3741      | .1847         | . 44        | 12     | . 0221         | •          | 0710           | . 90                                   | 69                                       |
| DESV.           | 0010        | . 0111        | 01          | 00     | 0047           | 94200 ·    | 0052           | . 00                                   | 99                                       |
|                 | DESVIO MED  | IO QUAD.      | PERC.       | ENTRE  | XCALC E        | XEXP.      |                | . 787                                  |                                          |

| DA                                                     | DOS : BASE  | E LIVRE D   | <u> Sal - 2</u> | % EM PESO DE     | SAL NA CA  | ARGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |
|--------------------------------------------------------|-------------|-------------|-----------------|------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| TE                                                     | MP 🖛 50°C   |             | MODELO :        | NRTL CPARA       | METROS CON | MUNSD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
| SI                                                     | STEMA : (1) | ACET. DI    | E ETILA C       | 2) ETANOL (      | 3) AGUA (  | DAC. DE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SODIO |
| PA                                                     | RAMETROS CH | O I J       | ACI,J           | ) A(J,I)         | ALFAC      | <u>(I,J)</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |
|                                                        |             | 1 2         | 719.47          | -692.4           | 20 .       | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |
|                                                        |             | 1 3         | 205.87          | 0 1393.90        | 00 .       | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |
|                                                        |             | 5 3         | 490.44          | 0 -515.8         | 50 .       | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |
| TIE                                                    | FA          | ASE ORGANI  | [ CA            | FA               | SE AQUOSA  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| LINE                                                   | (1)         | (2)         | (3)             | (1)              | (2)        | (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |
| 11                                                     | CARGA C% n  | nolar > ->  | Z(1)= 15        | .640 Z(2)=       | 2.460      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| XCALC                                                  | 7395        | 0598        | 2007            | 0112             | 0158       | . 9730                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |
| X EXP                                                  | . 7126      | 0548        | 2326            | . 0119           | . 01 95    | . 9686                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |
| DESV.                                                  | 0269        | 0050        | . 031.9         | . 0007           | . 0037     | 0044                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |
|                                                        | DESVIO MET  |             | PEPC ENT        | DE YCALC E XI    | EVP = 1    | 734                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |
| 1071 E 1197 (John Z. V. Participal proprietario) (J. 1 |             |             |                 |                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| 12                                                     | CARGA C% n  | nolar) ->   | Z(1) = 13       | .560 Z(2)=       | 4.040      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| XCALC                                                  | . 6446      | . 0957      | . 2598          | . 01 38          | . 0272     | . 9590                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |
| X EXP                                                  | . 6293      | . 0914      | . 2793          | .0137            | . 0305     | . 9558                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |
| DESV.                                                  | 0153        | 0043        | . 0195          | 0001             | . 0033     | 0032                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |
|                                                        | DESVIO MED  | DTO OUAD.   | PERC. ENT       | RE XCALC E XI    | EXP = 1    | . 044                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
| * ~                                                    |             |             | 7642- 42        |                  |            | And a start of the |       |
| 13                                                     | CARGA C% n  | nolar J - J | Z(1) = 13       | .080 <u>2(2)</u> | 0.400      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| XCALC                                                  | . 5305      | .1335       | . 3359          | . 0184           | . 0437     | . 9378                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |
| X EXP                                                  | . 5052      | .1329       | . 3619          | . 0171           | . 0457     | . 9372                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |
| DESV.                                                  | 0253        | 0006        | . 0260          | 0013             | . 0020     | 0006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |
|                                                        | DESVIO MED  | DIO QUAD.   | PERC. ENT       | RE XCALC E XI    | EXP. = 1   | . 484                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
| 14                                                     | CARGA (% m  | Nolar) ->   | Z(1)= 16        | .160 2(2)=       | 8.970      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| VCALC                                                  | 4800        | 4 660       | ~~~ <i>i</i>    |                  | 0505       | 0170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |
| ACALC<br>V EVD                                         | . 4000      | 1504        | . 3904          | . 0230           | . 0565     | 02/0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |
| A EAF                                                  | - 01 07     | .1094       | . 4005          | - 0042           | - 0027     | . 3649                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |
| DESV.                                                  | 0137        | . 0030      | .0101           | 0043             | 0027       | .0070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
|                                                        | DESVIO MED  | DIO QUAD.   | PERC. ENT       | RE XCALC E XI    | EXP.=      | . 792                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
| 15                                                     | CARGA C% m  | olar) ->    | Z(1) = 15.      | 580 Z(2)=        | 11.230     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| XCALC                                                  | . 3765      | 1727        | 4508            | . 0317           | . 0783     | . 8900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |
| X EXP                                                  | . 3591      | .1857       | 4552            | . 0204           | . 0675     | . 91 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |
| DESV.                                                  | 0174        | . 01 30     | . 0044          | 0113             | 0108       | . 0221                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |
|                                                        | DESVIO MET  |             | PERC FNT        | RE XCALC E X     |            | 428                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |
|                                                        |             |             |                 |                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| DE                                                     | SVIO QUADR. | MEDIO GL    | OBAL % MO       | LAR (Formula     | Dechema)   | = 1.718                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ł     |

|              |                                       | SELLIVEE   | F SAL - | - 5% 1   | M PESO         | DE 34        |              | CARC                    | 2                       |                              | <b>Manager Construction</b> |
|--------------|---------------------------------------|------------|---------|----------|----------------|--------------|--------------|-------------------------|-------------------------|------------------------------|-----------------------------|
| TE           | MP = 30°                              |            | MODELO  |          | . (PAR         | AMETR        | os co        | MUNS                    | $\overline{\mathbf{S}}$ | etuanet de energe riverheide |                             |
| SI           | STEMA : C                             | ID ACET. D | E ETILA | (2)      | ETANOL         | (3)          | AGUA         | $\overline{\mathbf{O}}$ | AC.                     | DE                           | SODIO                       |
| PA           | RAMETROS (                            | CKO I J    | AC      | [,J)     | ACJ.           | 15           | ALF          | ACI,                    | JD                      |                              |                             |
|              |                                       | 1 2        | . 582.  | 416      | -668           | . 301        |              | 200                     |                         |                              |                             |
|              |                                       | 1 3        | 3 195.  | 920      | 1824           | . 800        | <b>.</b> i   | 200                     |                         |                              |                             |
|              |                                       | 2 3        | 8 269.  | 220      | -241           | . 038        |              | 200                     |                         |                              |                             |
| TIE          | ]                                     | FASE ORGAN | IICA    |          | 1              | FASE         | AQUOS        | A                       |                         |                              |                             |
| LINE         | (1)                                   | (2)        | (3)     | )        | (1)            |              | (2)          |                         |                         | 3)                           | ······                      |
| 1            | CARGA (%                              | molar) ->  | Z(1)=   | 14.77    | <u>'0 zcz</u>  | ) 🛤 👔        | 2.270        |                         |                         |                              | •                           |
| XCAL         | .7482                                 | . 0699     | . 181   | 9        | .0019          |              | .0112        |                         | . 98                    | 369                          |                             |
| XEXP         | . 7845                                | . 0479     | .167    | 76       | . 0093         |              | . 01 99      |                         | . 97                    | 708                          |                             |
| DABS         | . 0363                                | 0220       | 014     | 43       | . 0074         |              | . 0087       |                         | 01                      | 61                           |                             |
|              | DESVIO ME                             | EDIO QUAD. | PERC. E | ENTRE    | XCALC E        | XEXP         | 200          | 1.9                     | 95                      |                              |                             |
| 2            | CARGA (%                              | molar) ->  | Z(1)=   | 13.10    | 0 Z(2)         | ) 255 (      | 3.970        |                         |                         |                              |                             |
| XCAL         | 6517                                  | 1131       | . 235   | 53       | 0026           |              | 0216         |                         | 97                      | 758                          |                             |
| XEXP         | 7015                                  | 0878       | 210     | 17       | 0103           |              | 0334         |                         | . O.                    | 563                          |                             |
| DABS         | . 0498                                | 0253       | 024     | 16       | . 0077         |              | .0118        |                         | 01                      | 95                           |                             |
|              | DESVIO ME                             | EDTO OUAD. | PERC. F | INTRE    | XCALC E        | XEXP         |              | 2.6                     | 78                      |                              |                             |
| 3            | CAPGA (%                              | molarl ->  | 7(1) =  | 12 17    | $\frac{1}{10}$ |              | 5 <u>450</u> |                         |                         |                              | <u></u>                     |
|              |                                       | <u> </u>   |         | <u> </u> |                |              |              |                         | ~~~~                    |                              |                             |
| XCAL         | . 5449                                | .1554      | . 299   | 37       | . 0040         |              | . 0364       |                         | . 95                    | 596                          |                             |
| XEXF<br>DADC | . 0804                                | .1396      | . 4/4   | 10       | .0119          |              | . 0476       |                         | . 94                    | 109                          |                             |
| DADS         | . 0415                                | 0158       | 065     | 27       | .00/9          |              | . 0108       |                         | Ui                      | .07                          |                             |
|              | DESVIO ME                             | EDIO QUAD. | PERC. E | INTRE    | XCALC E        | XEXP         |              | 2.2                     | 95                      |                              |                             |
| 4            | CARGA (%                              | molar) ->  | Z(1)=   | 14.66    | <u>o z(2)</u>  | 9.           | . 440        |                         |                         |                              |                             |
| XCAL         | . 4529                                | .1858      | . 361   | 4        | . 0060         |              | . 0525       |                         | . 94                    | 15                           |                             |
| XEXP         | . 4788                                | .1866      | . 334   | -6       | .0132          |              | . 0602       |                         | . 92                    | 266                          |                             |
| DABS         | . 0259                                | . 0008     | 026     | 8        | .0072          |              | . 0077       |                         | 01                      | 49                           |                             |
|              | DESVIO ME                             | DIO QUAD.  | PERC. E | NTRE     | XCALC E        | XEXP         | -            | 1.6                     | 94                      | nanod i krunya krosyna       |                             |
| 5            | CARGA C%                              | molar) ->  | Z(1)=   | 14.97    | <u>o zcz</u>   | = <u>1</u> ( | 0. 930       |                         | <b></b>                 |                              |                             |
| XCAL         | . 4107                                | .1976      | . 391   | 7        | . 0074         |              | .0612        |                         | . 93                    | 314                          |                             |
| XEXP         | . 4348                                | . 2068     | . 358   | 34       | . 0136         |              | . 0666       |                         | . 91                    | 98                           |                             |
| DABS         | . 0241                                | . 0092     | 033     | 3        | .0062          |              | . 0054       |                         | 01                      | 16                           |                             |
|              | DESVIO ME                             | DIO QUAD.  | PERC. E | NTRE     | XCALC E        | XEXP         |              | 1.8                     | 14                      |                              |                             |
| TEMP :       | = 40 °C                               |            |         |          |                |              |              |                         |                         |                              |                             |
| 6            | CARGA (%                              | molar) ->  | Z(1)=   | 14.77    | 0 Z(2)         | <b>n</b> 2   | 2.270        |                         |                         |                              |                             |
| XCAL         | . 7528                                | . 0677     | .179    | 15       | . 0023         |              | . 0119       | <u> </u>                | . 98                    | 358                          |                             |
| XEXP         | . 7626                                | . 0501     | .187    | 3        | . 0088         |              | . 0179       |                         | . 97                    | '33                          |                             |
| DABS         | . 0098                                | 0176       | . 007   | 8        | . 0065         |              | . 0060       |                         | 01                      | 25                           |                             |
|              | DESVIO ME                             | DIO QUAD.  | PERC. E | NTRE     | XCALC E        | XEXP         | . 111        | 1.0                     | 78                      |                              |                             |
| 7            | CARGA (%                              | molar) ->  | Z(1)=   | 13.10    | 0 Z(2)         | <b>#</b> 3   | 3.970        |                         | S                       |                              | <u>,</u>                    |
| YCAI         | 6500                                  | 1100       | 220     | 8        | 0099           |              | 0226         |                         | <del>د</del> رب         | 110                          |                             |
| XEXD         | . 0009                                | . 1102     | 221     |          | . 0032         |              | 0210         |                         | . 37<br>05              | 4±62<br>101                  |                             |
| DABS         | . 01 29                               | 0169       | . 004   | -        | . 0067         |              | . 0084       |                         | . 90<br>- 01            | ,51<br>51                    |                             |
|              | · · · · · · · · · · · · · · · · · · · |            |         | -        |                |              |              |                         |                         | want alm                     |                             |
|              | DESVIO ME                             | DIO QUAD.  | PERC. E | NTRE     | XCALC E        | XEXP.        | . ###        | 1.1                     | 63                      |                              |                             |

|                                                                                                                 | ADOS : B  | ASE LIVRE I                           | DE SAL - S     | 5% EM PESO  | DE SAL NA      | CARGA                                                                                                            |                                        |
|-----------------------------------------------------------------------------------------------------------------|-----------|---------------------------------------|----------------|-------------|----------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| 1                                                                                                               | EMP = 40  |                                       | MODELO :       | NRIL CPA    | RAMETROS C     | CAUMOS)                                                                                                          | <u> </u>                               |
|                                                                                                                 | ISIEMA :  | CID ACEI. I                           | DE ETILA (     | 2) ETANOL   | C3) AGUA       | CAC. DE                                                                                                          | SODIO                                  |
| r                                                                                                               | ARAMEIRUS |                                       | ACL,           | J) (J,.     | 1) ALF         | ACL,JJ                                                                                                           |                                        |
|                                                                                                                 |           | 1 6                                   | 582.41         |             | . 301 .        | 200                                                                                                              |                                        |
|                                                                                                                 |           | 1 .                                   | 3 195.92       | 30 1824     | . 800 .        | 200                                                                                                              |                                        |
|                                                                                                                 |           | 2                                     | 3 209.2d       | 20 -241     | . 038 .        | 200                                                                                                              |                                        |
| TIE                                                                                                             |           | FASE ORGAN                            | VICA           | ]           | FASE AQUOS     | A                                                                                                                | ************************************** |
| LINE                                                                                                            | (1)       | (2)                                   | (3)            | (1)         | (2)            | (3)                                                                                                              |                                        |
| 8                                                                                                               | CARGA C   | % molar) ->                           | · Z(1)= 13     | 3.170 Z(2)  | )= 6.450       |                                                                                                                  | 99 <del>99 </del>                      |
| YCAL                                                                                                            | BR24      | 1 8 2 2                               | 2012           | 0100        | 0077           | 0878                                                                                                             |                                        |
| YEYP                                                                                                            | 5562      | 1 / 1 / 7                             | . 2943<br>2005 | .0048       | . 0377         | 0126.                                                                                                            |                                        |
| DARC                                                                                                            | . 0008    | - 0096                                | . 2965         | 0050        | . 0407         | - 0140                                                                                                           |                                        |
| هسه وساردسم استا                                                                                                | . 0044    | 0085                                  | . 0042         | . 0059      | . 0080         | UI 45                                                                                                            |                                        |
|                                                                                                                 | DESVIO    | MEDIO QUAD.                           | PERC. ENT      | TRE XCALC E | XEXP. =        | . 861                                                                                                            |                                        |
| 9                                                                                                               | CARGA C   | % molar) ->                           | Z(1)= 14       | 660 Z(2)    | 9.440          |                                                                                                                  |                                        |
| XCAL                                                                                                            | . 4610    | . 1841                                | . 3550         | . 0071      | . 0546         | . 9382                                                                                                           |                                        |
| XEXP                                                                                                            | 4579      | 1887                                  | 3534           | 01.32       | 0570           | 9298                                                                                                             |                                        |
| DARS                                                                                                            | - 0031    | 0046                                  | - 0016         | 0061        | 0024           | - 0084                                                                                                           |                                        |
| And S And Land                                                                                                  | . 0001    | . 0040                                | . 0010         | . 0001      | . 0024         | . 0004                                                                                                           |                                        |
|                                                                                                                 | DESVIO    | MEDIO QUAD.                           | PERC. ENT      | RE XCALC E  | XEXP. =        | . 495                                                                                                            |                                        |
| 10                                                                                                              | CARGA C   | % molar) ->                           | Z(1) = 14      | .970 2(2)   | = 10.930       |                                                                                                                  |                                        |
| XCAL                                                                                                            | . 4183    | .1963                                 | . 3853         | . 0087      | . 0636         | . 9276                                                                                                           |                                        |
| XEXP                                                                                                            | . 4113    | . 2060                                | . 3827         | . 01 39     | . 0630         | . 9231                                                                                                           |                                        |
| DABS                                                                                                            | 0070      | . 0097                                | 0026           | . 0052      | 0006           | 0045                                                                                                             |                                        |
|                                                                                                                 | DESVIO    | EDTO OUAD                             | PERC ENT       | RE YCALC E  | YEYP =         | 57A                                                                                                              |                                        |
| TEMP                                                                                                            | = 50 °C   |                                       |                |             |                | and the second |                                        |
| 11                                                                                                              | CARGA ()  | < molar) ->                           | 7(1) = 14      | 770 7(2)=   | 2 2 270        |                                                                                                                  |                                        |
| <u> </u>                                                                                                        |           | · · · · · · · · · · · · · · · · · · · |                |             |                |                                                                                                                  |                                        |
| XCAL                                                                                                            | . 7563    | . 0656                                | . 1781         | . 0028      | . 0125         | . 9847                                                                                                           |                                        |
| XEXP                                                                                                            | . 7334    | . 0540                                | . 2126         | . 0085      | . 0172         | . 9743                                                                                                           |                                        |
| DABS                                                                                                            | 0229      | 0116                                  | . 0345         | . 0057      | . 0047         | 0104                                                                                                             |                                        |
|                                                                                                                 | DESVION   | ÆDIO QUAD.                            | PERC. ENI      | RE XCALC E  | XEXP. =        | 1.829                                                                                                            |                                        |
| 12                                                                                                              | CARGA (>  | <pre>% molar) -&gt;</pre>             | Z(1)= 13       | .100 Z(2)   | <b>a</b> 3.970 |                                                                                                                  |                                        |
| XCAL.                                                                                                           | 6656      | 1074                                  | 2270           | 0038        | 0236           | 9726                                                                                                             |                                        |
| XEXP                                                                                                            | 6394      | 0004                                  | 2612           | 01.02       | 0201           | 0804                                                                                                             |                                        |
| DABS                                                                                                            | - 0262    | - 0080                                | 0342           | 0064        | . 0058         | - 0122                                                                                                           |                                        |
|                                                                                                                 |           |                                       | . 0040         | . 0004      | . 0000         | . VILL                                                                                                           |                                        |
| in a second design of the s | DESVION   | EDIO QUAD.                            | PERC. ENT      | RE XCALC E  | XEXP. =        | 1.888                                                                                                            |                                        |
| 13                                                                                                              | CARGA (%  | <pre>% molar) -&gt;</pre>             | Z(1)= 13       | .170 Z(2)   | = 6.450        |                                                                                                                  |                                        |
| XCAL                                                                                                            | . 5599    | .1501                                 | . 2900         | . 0056      | . 0393         | . 9551                                                                                                           |                                        |
| XEXP                                                                                                            | . 5325    | . 1 481                               | . 3194         | .0120       | . 0430         | . 9450                                                                                                           |                                        |
| DABS                                                                                                            | 0274      | 0020                                  | . 0294         | . 0064      | . 0037         | 0101                                                                                                             |                                        |
|                                                                                                                 | DESVIO N  |                                       | PERC ENT       | RE XCALC E  | YFYP =         | 1 721                                                                                                            |                                        |
| 1 /                                                                                                             | CAPGA C   | ( molon) = \                          | 7(1) = 14      |             |                |                                                                                                                  |                                        |
| <del>بر مربع</del>                                                                                              |           |                                       |                | . 000 2(2)  | - 9.440        |                                                                                                                  |                                        |
| XCAL                                                                                                            | . 4683    | .1822                                 | . 3495         | . 0084      | . 0567         | . 9349                                                                                                           |                                        |
| XEXP                                                                                                            | . 4381    | .1894                                 | . 3725         | . 0136      | . 0550         | . 9314                                                                                                           |                                        |
| DABS                                                                                                            | 0302      | . 0072                                | . 0230         | . 0052      | 0017           | 0035                                                                                                             |                                        |
|                                                                                                                 | DESVIO M  | EDIO QUAD.                            | PERC. ENT      | RE XCALC E  | XEXP. =        | 1.600                                                                                                            |                                        |

| 15   | CARGA (% m    | olar) -> | Z(1)= 14.97   | '0 Z(2)∞   | 10.930   |               |                        |
|------|---------------|----------|---------------|------------|----------|---------------|------------------------|
| XCAL | . 4252        | . 1948   | . 3799        | . 01 02    | . 0660   | . 9238        |                        |
| XEXP | . 3897        | . 2093   | . 4010        | .0127      | . 0597   | . 9276        |                        |
| DABS | 0355          | . 01 45  | . 0211        | . 0025     | 0063     | . 0038        |                        |
|      | DESVIO MED    | IO QUAD. | PERC. ENTRE   | XCALC E X  | EXP. = 1 | . 815         | Martin Note Hallowards |
|      | DESVIO QUADR. | MEDIO GL | LOBAL % MOLAF | R (Formula | Dechema) | <b>1</b> .676 |                        |

| DA           | ADOS : BASE  | S LIVRE D | )E SAL - | 10% l            | em peso       | DE S              | AL NA      | CARC | 3A     |          |       |
|--------------|--------------|-----------|----------|------------------|---------------|-------------------|------------|------|--------|----------|-------|
| TE           | EMP = 30°C   |           | MODELC   | ) : NR'          | TL CP.        | ARAME             | TROS C     | OMUN | 1S)    |          |       |
| SI           | STEMA : (1)  | ACET. D   | E ETILA  | . (2)            | ETANOL        | (3)               | AGUA       | 0    | AC.    | DE :     | SODIO |
| P/           | ARAMETROS CK | C I J     | AC       | I,J)             | AC J          | ,10               | ALF        | ACI, | .J)    |          |       |
|              |              | 1 2       | 162      | . 660            | -597          | . 590             | . 2        | 00   |        |          |       |
|              |              | 1 3       | 196      | . 787            | 1909          | . 655             | . 2        | 00   |        |          |       |
|              |              | 23        | 1548     | . 550            | -599          | .180              | . 2        | 00   |        |          |       |
| TIE          | FA           | SE ORGAN  | TCA      |                  |               | FASE              | AOUOS      | A    |        |          |       |
| LINE         | (1)          | (2)       | (3       | 5                | (1)           |                   | (2)        |      | C3     | 37       |       |
|              |              |           |          |                  |               |                   |            |      |        | ·        |       |
| 1            | CARGA C% n   | olar) ->  | Z(1)=    | 14.16            | <u>so zca</u> | <u>2) = </u>      | 2.190      |      |        |          |       |
| XCAL         | . 7545       | . 0775    | .16      | 80               | . 001 3       | З                 | . 0092     |      | . 98   | 96       |       |
| XEXP         | . 7976       | . 0554    | . 14     | 70               | 005           | 3                 | . 0166     |      | . 97   | '81      |       |
| DABS         | . 0431       | 0221      | - 02     | 10               | . 0040        | Ď                 | .0074      |      | 01     | 15       |       |
|              |              |           |          |                  |               |                   |            |      |        |          |       |
| -            | DESVIO MED   | DIO QUAD. | PERC.    | ENTRE            | XCALC I       | E XEXI            | <u>,</u> ≈ | 2.2  | 33     |          |       |
| 5            | CARGA (% m   | olar) ->  | Z(1)=    | 12.31            | 0 ZC2         | 2) =              | 3.890      |      |        |          |       |
| XCAL.        | 6673         | 1243      | 20       | 84               | 0018          | 3                 | 01 99      |      | 97     | 84       |       |
| XEXP         | 71.31        | 0995      | 1 9      | 7A               | 0068          | 2                 | 0287       |      | <br>QR | :45      |       |
| DARS         | 0458         | - 0248    | - 02     | 10               | 0050          | ้า                | 0088       |      | - 01   | 30       |       |
|              | . 0400       | . 0440    | . 00     | 10               | . 0000        | ara <sup>ge</sup> | . 0000     |      | . 01   |          |       |
| <b></b>      | DESVIO MED   | IO QUAD.  | PERC.    | ENTRE            | XCALC I       | E XEXI            | ⊃. ≊«      | 2.3  | 399    | N        |       |
| 3            | CARGA C% m   | olar) ->  | Z(1)=    | 12.24            | .0 ZC2        | <u>}</u>          | 6.230      |      |        |          |       |
| XCAL.        | . 5797       | 1666      | 25       | 37               | 0023          | 7                 | 0350       |      | 96     | 23       |       |
| XEXP         | 6047         | 1 571     | . 20     | 22               | 0060          | ว                 | 0401       |      | <br>05 | 20       |       |
| DARS         | 0250         |           | - 01     |                  | . 000.        | >                 | 0051       |      | - 00   | 00       |       |
|              | . 0000       | . 0030    | . UI ,   | 00               | . 004         |                   | . 0001     |      | ~.00   | 30       |       |
|              | DESVIO MED   | IO QUAD.  | PERC.    | ENTRE            | XCALC H       | E XEXF            | <u>, e</u> | 1.3  | 345    | MARING   |       |
| 4            | CARGA C% m   | olar) ->  | Z(1)=    | 13.95            | io zca        | <u>}</u> =        | 7.790      |      |        |          |       |
| XCAL         | . 5448       | 1827      | 27       | 25               | 0034          | 1                 | 0427       |      | 95     | 30       |       |
| XEXP         | 5605         | 1846      | 25       | 10               | 0074          | 1                 | 0463       |      |        | 62       |       |
| DARC         | 0187         | .1040     | - 01     | + <i>3</i><br>76 | 0040          | *                 | . 0403     |      | - ^^   | 00<br>70 |       |
| DADS         | . 01 07      | . 0015    | 01       | 10               | . 0040        | )                 | . 0030     |      | 00     | 10       |       |
|              | DESVIO MED   | IO QUAD.  | PERC. 1  | ENTRE            | XCALC E       | E XEXF            | >_ ==      | 1.0  | 38     |          |       |
| 5            | CARGA C% m   | olar) ->  | Z(1)=    | 13.77            | o zca         | 2)= 1             | 0.430      |      |        |          |       |
| XCAL         | . 4705       | . 2124    | . 31 '   | 71               | . 0053        | 3                 | . 0613     |      | . 93   | 33       |       |
| XEXP         | 4668         | 2323      | 200      | na               | 008:          | >                 | 0562       |      |        | RA       |       |
| ALAI<br>DADO |              |           | . 301    | 73<br>20         | . 0002        | nd:<br>^          | . 0002     |      | . 33   | 30<br>~~ |       |
| DARP         | 0037         | .0199     | 016      | 24               | - 0029        | d -               | 0051       |      | . 00   | ය්ජ      |       |
|              | DESVIO MED   | IO OUAD.  | PERC. I  | ENTRE            | XCALC E       | S XEXF            | े.<br>इ    | 1.0  | 88     |          |       |

| D                 | ADOS : BAS          | SE LIVRE I | DE SAL - 1                               | 0% EM PESO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DE SAL NA  | CARGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                        |
|-------------------|---------------------|------------|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| T                 | $EMP = 40^{\circ}($ | ~se<br>~rt | MODELO :                                 | NRTL CPA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | RAMETROS C | OMUNS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |
| <u> </u>          | ISTEMA : CI         | D ACET. I  | DE ETILA                                 | CED ETANOL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C3) AGUA   | C AC. DE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SODIO                                  |
| P                 | ARAMEIRUS (         |            | ACI,                                     | J) A(J,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            | ACI,JJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |
|                   |                     |            |                                          | -597.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 990 . C    | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                        |
|                   |                     |            | 5 190.7<br>5 1840 B                      | 87 1909.<br>60 -600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100 .2     | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                        |
|                   |                     | <u>ب</u>   | 1048.0                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 180 .6     | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                        |
| TIE               | F                   | ASE ORGAN  | IICA                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | FASE AQUOS | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                        |
| LINE              | (1)                 | (2)        | (3)                                      | (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (2)        | (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                        |
| 6                 | CARGA (%            | molar) ->  | $\frac{Z(1)=1}{2}$                       | 4.160 ZC2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.190      | en en ne 'n ethel St. Webne edhalaannoor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |
| XCAL              | . 7567              | . 0766     | .1667                                    | . 0016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | . 0094     | . 9890                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |
| XEXP              | . 7779              | . 0594     | .1627                                    | . 0059                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | . 0162     | . 9779                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |
| DABS              | . 0212              | 0172       | 0040                                     | . 0043                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | . 0068     | 0111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                        |
|                   | DESVIO ME           | EDIO QUAD. | PERC. EN                                 | TRE XCALC E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | XEXP. =    | 1.258                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                        |
| 7                 | CARGA (%            | molar) ->  | Z(1) = 1                                 | 2 310 702                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | )= 3.890   | <b>WARTER CONTRACTOR OF CONTRACTOR OF</b> | ************************************** |
| VCAL              | 6718                | 1224       | 2010                                     | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0202       | 0776                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                        |
| XEXP              | 6883                | 1036       | 2081                                     | 0065                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | . 0203     | 0662                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                        |
| DABS              | . 0165              | - 0198     | . 2001                                   | . 0085                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0064       | - 0108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |
|                   |                     |            |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        |
| -                 | DESVIO ME           | DIO QUAD.  | PERC. EN                                 | TRE XCALC E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | XEXP. =    | 1.191                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                        |
| 8                 | CARGA C%            | molar) ->  | Z(1) = 12                                | 2.340 ZC2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | )≈ 5.980   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        |
| XCAL              | . 5944              | .1619      | . 2437                                   | . 0030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | . 0337     | . 9633                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |
| XEXP              | . 5959              | .1543      | . 2498                                   | . 0076                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | . 0380     | . 9544                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |
| DABS              | . 0015              | 0076       | . 0061                                   | . 0046                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | . 0043     | 0089                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                        |
|                   | DESVIO ME           | DIO QUAD.  | PERC. EN                                 | TRE XCALC E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | XEXP. =    | . 598                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                        |
| 9                 | CARGA C%            | molar) ->  | Z(1)= 13                                 | 3.950 Z(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | >= 7.790   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        |
| XCAL.             | 551.0               | 1 829      | 2662                                     | 0039                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0433       | 9528                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |
| XEXP              | . 5398              | .1887      | . 2002                                   | 0071                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0434       | 9495                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                        |
| DABS              | 0112                | . 0058     | . 0053                                   | . 0032                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | . 0001     | 0033                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                        |
|                   | DESVIA ME           |            |                                          | THE VOALCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | VEVD -     | RQO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                        |
| 10                | CADGA CY            | malan = 1  | 776                                      | $\frac{1}{2} = \frac{1}{2} = \frac{1}$ | = 10 100   | . 005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                        |
|                   |                     |            |                                          | <u>s. 170 222</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | /= 10.430  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        |
| XCAL              | . 4772              | . 2128     | . 3100                                   | . 0060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | . 0622     | . 9318                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |
| AEAF<br>DADC      | . 4520              | . 2339     | . 31 35                                  | . 0087                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | . 0555     | . 9357                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |
| DADO              | 0240                |            | . 0035                                   | .0027                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0066       | . 0039                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |
|                   | DESVIO ME           | DIO QUAD.  | PERC. ENT                                | TRE XCALC E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | XEXP. =    | 1.371                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                        |
| TEMP              | = 50 °C             |            | ······································   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                        |
| 11                | CARGA C%            | molar) ->  | Z(1) = 14                                | .160 Z(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.190      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        |
| XCAL              | . 7587              | . 0757     | .1656                                    | . 0019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | . 0097     | . 9884                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |
| XEXP              | . 7528              | . 0628     | .1844                                    | . 0057                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | . 0152     | . 9791                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |
| DABS              | 0059                | 0129       | . 0188                                   | . 0038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | . 0055     | 0093                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                        |
|                   | DESVIO ME           | DIO QUAD.  | PERC. ENT                                | TRE XCALC E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | XEXP. =    | 1.070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                        |
| 12                | CARGA (%            | molar) ->  | Z(1) = 12                                | 2.310 Z(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | = 3.890    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        |
| VCAT              | 6781                | 1 2 2 4    | 202F                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            | ~~~~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                        |
| XEXD              | 6620                | 1001       | . 2020<br>2276                           | . 0020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | . 0207     | . 9/08<br>0676                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                        |
| DABS              | 0121                | 01:30      | 0251                                     | - 0004<br>0030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0053       | - 0002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |
| mar a dalari bari | • we we week        |            | ب من |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | . 0000     | . 0036                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |
|                   | DESVIO ME           | DIU QUAD.  | PERC. ENT                                | RE XCALC E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | XEXP. =    | 1.339                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                        |

|                                             | ANC · DACC         | TTUDE NE C                  | XI = 10% E | W BEEK KE S | AL NA CARGA  | n den kan den sin der Grad Ministernisch ander bei Still die Armeine Bach bei mer Gill (Still Still Bach Bach |
|---------------------------------------------|--------------------|-----------------------------|------------|-------------|--------------|---------------------------------------------------------------------------------------------------------------|
|                                             | EMP = 50°C         | MC                          | DELO : NRT | L (PARAME   | TROS COMUNS  |                                                                                                               |
| S                                           | ISTEMA : (1)       | ACET. DE E                  | CS) Alit   | ETANOL (3)  | AGUA CO AC.  | DE SODIO                                                                                                      |
| P/                                          | ARAMETROS (K)      | ) I J                       | ACI, JO    | ACJ,ID      | ALFACI, J)   | uuuuguugupa ka kaysaa ka k                                                   |
|                                             |                    | 1 2                         | 162.660    | -597.590    | . 200        |                                                                                                               |
|                                             |                    | 1 3                         | 196.787    | 1909.655    | . 200        |                                                                                                               |
| مىغ غىنىك                                   | F- 4 C             | 2 3                         | 1548.550   | -599.180    | . 200        |                                                                                                               |
| LINE                                        | (1)                | (2)                         | (3)        | (1)         | (2) (2)      | 3)                                                                                                            |
| 13                                          | CARGA (% mc        | plar) -> ZC                 | 1)= 12.34  | 0 Z(2)=     | 5.980        |                                                                                                               |
| XCAL                                        | . 5988             | .1613                       | .2400      | . 0035      | .0342 .9     | 9623                                                                                                          |
| XEXP                                        | . 5724             | .1581                       | . 2695     | .0077       | .0366 .9     | 9557                                                                                                          |
| DABS                                        | 0264               | 0032                        | . 0295     | .0042       | .0024(       | 066                                                                                                           |
| Berthild States and a state with the second | DESVIO MEDI        | O QUAD. PE                  | RC. ENTRE  | XCALC E XEX | P.= 1.656    | ******                                                                                                        |
| 14                                          | CARGA (% mc        | olar) -> ZC                 | 1)= 13.80  | 0 Z(2)=     | 7.850        |                                                                                                               |
| XCAL                                        | . 551 8            | .1829                       | . 2653     | . 0045      | .0448 .9     | 3507                                                                                                          |
| XEXP                                        | . 5218             | .1913                       | . 2869     | . 0077      | . 0423 . 9   | 9500                                                                                                          |
| DABS                                        | 0300               | .0084                       | .0216      | . 0032      | 00250        | 007                                                                                                           |
|                                             | DESVIO MEDI        | O QUAD. PE                  | RC. ENTRE  | XCALC E XEX | P.= 1.556    |                                                                                                               |
| 15                                          | CARGA (% mo        | olar) -> Z(1                | L)= 13.69  | 0 Z(2)=     | 9.890        | ······                                                                                                        |
| XCAL                                        | . 4960             | .2078                       | . 2963     | . 0062      | . 0593 . 9   | 3346                                                                                                          |
| XEXP                                        | . 4587             | . 2283                      | . 3130     | . 0090      | .0522 .9     | 1388                                                                                                          |
| DABS                                        | 0373               | . 0205                      | .0167      | . 0028      | 0071 .0      | 042                                                                                                           |
|                                             | DESVIO MEDI        | O QUAD. PE                  | RC. ENTRE  | XCALC E XEX | P.= 1.899    |                                                                                                               |
| DE                                          | SVIO QUADR.        | MEDIO GLOB.                 | AL % MOLAR | CFormula D  | echema) = 1  | . 463                                                                                                         |
|                                             |                    |                             | <u></u>    |             |              |                                                                                                               |
| D4                                          | ADOS : SISTE       | MA QUATERN                  | ARIO - 2%  | EM PESO DE  | SAL NA CARGA |                                                                                                               |
|                                             | $MP = 30^{\circ}C$ | MODE                        | LO : NRIL  | CPARAMETR   | OS COMUNS)   |                                                                                                               |
|                                             | RAMETROS (K)       | T I                         | ACT. D     | ACT. TO     | AGUA (4) AC  |                                                                                                               |
| 1 1                                         |                    | $\frac{1}{1}$ $\frac{3}{2}$ | 809.091    | -554.465    | . 200        |                                                                                                               |
|                                             |                    | 1 3                         | 104.287    | 1820.264    | . 200        |                                                                                                               |
|                                             |                    | 5 3                         | -30.680    | 311.240     | . 200        |                                                                                                               |
|                                             |                    | 1 4                         | 325.218    | 160.605     | .200         |                                                                                                               |
|                                             |                    | 2 4                         | -229.416   | -65.249     | . 200        |                                                                                                               |
| TTE                                         | EAC                | 3 4<br>E ODCANT CA          | -547.118   | -1057.732   | . 200        |                                                                                                               |
| LINE                                        | (1) (2             | 2 ORGANICA<br>2 (3)         | (4)        | (1)         | (2) (3)      | (4)                                                                                                           |
| 1                                           | CARGA (% mol       | ar) -> Z(1                  | .)= 15.530 | Z(2)= 2.44  | 40 Z(3)= 81. | 300                                                                                                           |
| XCAL                                        | . 7226 . 06        | 60 .2114                    | . 0000     | .0027 .     | 0132 .9749   | . 0093                                                                                                        |
| XEXP                                        | .7640 .04          | 73 .1886                    | . 0001     | .0133 .     | 0219 .9574   | . 0074                                                                                                        |
| DABS                                        | .041401            | 870228                      | . 0001     | .0106 .     | 00870175     | 0019                                                                                                          |
|                                             | DESVIO MEDI        | O QUAD. PER                 | RC. ENTRE  | XCALC E XEX | P.= 1.964    |                                                                                                               |
| 5                                           | CARGA (% mo        | lar) -> Z(1                 | )= 13.460  | Z(2)= 4.01  | lo Z(3)= 81. | 800                                                                                                           |
| XCAL                                        | .6369 .10          | 83 . 2548                   | . 0000     | .0034 .     | 0223 . 9651  | . 0092                                                                                                        |
| XEXP                                        | . 6922 . 07        | 97 . 2279                   | . 0002     | . 01 41     | 0339 .9444   | . 0076                                                                                                        |
| DABS                                        | .055302            | 860269                      | . 0002     | .0107 .     | 01160207     | 0016                                                                                                          |
|                                             | DESVIO MEDI        | O QUAD. PER                 | RC. ENTRE  | XCALC E XEX | P. = 2.568   |                                                                                                               |

|                    | KAC . AT ATTALLA ATTA THEST INT A L AL ATTA ATTACA                                                      |
|--------------------|---------------------------------------------------------------------------------------------------------|
|                    | MP = 30°C MODELO · NETT (PARAMETROS COMUNS NA CONC E NA TEMP)                                           |
| SI                 | STEMA : (1) ACET. DE ETILA (2) ETANOL (3) AGUA (4) AC. DE SODIO                                         |
| PA                 | ARAMETROS (K) I J ACI, J) ACJ, I) ALFACI, J)                                                            |
|                    | 1 2 809.091 -554.465 .200                                                                               |
|                    | 1 3 104.287 1820.264 .200                                                                               |
|                    | 2 3 -30.680 311.240 .200                                                                                |
|                    | 1 4 325.218 160.605 .200                                                                                |
|                    | 2 4 - 229,410 - 55,249 .000                                                                             |
| TTF                | $\frac{3}{100} \frac{4}{100} \frac{-347.118}{1007.732} \frac{1007.732}{1007.132} \frac{1007}{1007.132}$ |
| LINE               | (1) (2) (3) (4) (1) (2) (3) (4)                                                                         |
| ~                  |                                                                                                         |
| <u>ت</u>           | (ARGA (% molar) -> 2(1)= 13.580 2(2)= 0.400 2(3)= 79.280                                                |
| XCAL               | .5363 .1543 .3093 .0000 .0045 .0344 .9512 .0098                                                         |
| XEXP               | .5792 .1250 .2955 .0003 .0168 .0502 .9250 .0080                                                         |
| DABS               | .042902930138 .0003 .0123 .015802620018                                                                 |
|                    | DESVIO MEDIO QUAD. PERC. ENTRE XCALC E XEXP. = 2.231                                                    |
| 4                  | CARGA (% molar) -> Z(1)= 16.030 Z(2)= 8.900 Z(3)= 74.290                                                |
| XCAL               | .4734 .1813 .3452 .0001 .0056 .0434 .9395 .0116                                                         |
| XEXP               | .4951 .1569 .3474 .0006 .0185 .0609 .9100 .0106                                                         |
| DABS               | .02170244 .0022 .0005 .0129 .017502950010                                                               |
|                    | DESVIO MEDIO QUAD. PERC. ENTRE XCALC E XEXP. = 1.738                                                    |
| 5                  | CARGA (% molar) -> Z(1)= 15.450 Z(2)= 11.140 Z(3)= 72.590                                               |
| XCAL               | 4056 2076 3866 0002 0070 0549 9251 0129                                                                 |
| XEXP               | .3979 .1858 .4153 .0010 .0225 .0749 .8923 .0103                                                         |
| DABS               | 00770218 .0287 .0008 .0155 .020003280026                                                                |
|                    | DESVIO MEDIO QUAD. PERC. ENTRE XCALC E XEXP. = 1.962                                                    |
| TEMP               | = 40 °C 2% EM PESO                                                                                      |
| 6                  | CARGA (% molar) -> Z(1)= 15.530 Z(2)= 2.440 Z(3)= 81.300                                                |
| VCAL               |                                                                                                         |
| YEYP               | 7409 051 4 2076 0001 0123 0208 9595 0074                                                                |
| DARS               | 0141 - 0124 - 0017 0001 0091 0069 - 0141 - 0018                                                         |
| And S "Adapt Incol | DESVIO MEDIO OLAD DEDC ENTRE VOALCE VEVD - 027                                                          |
| 7                  | CAPGA (% molec) = 27(1) = 12.460 - 7(2) = 4.010 - 7(2) = 81.800                                         |
| *<br>V ^ * * *     |                                                                                                         |
| XCAL<br>VEVD       | .0435 .1001 .2011 .0000 .0041 .0234 .9533 .0092<br>6622 .0050 .251.6 .0002 .0120 .021.9 .0466 .0077     |
| DARC               | 0185 - 0192 0005 0002 0009 0094 - 0167 - 0015                                                           |
| UNDO               | .0100 .0195 .0000 .0005 .0098 .008401070015                                                             |
|                    | DESVIO MEDIO QUAD. PERC. ENTRE XCALC E XEXP.= 1.204                                                     |
| 8                  | CARGA (% molar) -> Z(1)= 13.580 Z(2)= 6.400 Z(3)= 79.280                                                |
| XCAL               | .5438 .1511 .3050 .0001 .0055 .0362 .9486 .0097                                                         |
| XEXP               | .5471 .1297 .3230 .0002 .0169 .0469 .9277 .0085                                                         |
| DABS               | .00330214 .0180 .0001 .0114 .010702090012                                                               |
|                    | DESVIO MEDIO QUAD. PERC. ENTRE XCALC E XEXP. = 1.359                                                    |

|              | DADOS :           | SISTEMA QU | JATERNARI                               | 0 - 2%                | EM PESC             | DE SAL                          | NA CARGA                       | <u></u>    |
|--------------|-------------------|------------|-----------------------------------------|-----------------------|---------------------|---------------------------------|--------------------------------|------------|
|              | TEMP = 4          | O°C MODE   | ELO : NRI                               | L CPARA               | METROS              | COMUNS N                        | IA CONC. E                     | NA TEMP. ) |
| ·····        | <u>SISTEMA</u> :  | (1) ACET.  | DE ETIL                                 | (S) A.                | ETANOL              | COD AGL                         | IA (4) AC                      | . DE SODIO |
|              | PARAMETRO         | S (K) I    | J A                                     | CI,J)                 | ACJ,                | A CI                            | LFACI, J)                      |            |
|              |                   | 1          | 2 8                                     | 309.091               | -554.               | 465                             | . 200                          |            |
|              |                   | 1          | 3 1                                     | 04.287                | 1820.               | 264                             | . 200                          |            |
|              |                   | 2          | 3 -                                     | 30.680                | 311.                | 240                             | . 200                          |            |
|              |                   | 1          | 4 3                                     | 25.218                | 160.                | 605                             | .200                           |            |
|              |                   | 2          | 4 -2                                    | 29.416                | -65.                | 249                             | . 200                          |            |
| 775          |                   |            | 4 - C                                   | 47.118                | -1057.              | <u> 136</u><br>Exce             | . 200                          |            |
|              | (1)               | FASE URU   | CON                                     | < A >                 | C13                 | r Ade                           | AUUUSA                         | 647        |
|              |                   |            |                                         |                       | <u> </u>            |                                 |                                |            |
| 9            | CARGA             | (% molar)  | -> Z(1)=                                | 16.030                | Z(2)=               | 8.900                           | Z(3) = 74.                     | 290        |
| XCAL         | . 4794            | .1788      | . 3417                                  | . 0001                | . 0067              | . 0457                          | . 9361                         | .0115      |
| XEXP         | . 4033            | .1578      | . 3779                                  | . 0010                | . 0187              | . 0583                          | .9126                          | . 0104     |
| DABS         |                   | 0210       | .0362                                   | . 0009                | . UIZU              | VEVD -                          | 4 0235                         | 0011       |
|              | DESATO            | MEDIO QUA  | W. FEKC.                                | ENIKE                 | ACALC E             | . <u>ЛЕ</u> ЛГ. =               | 1.093                          |            |
| 10           | CARGA (           | (% molar)  | => Z(1)=                                | 15.450                | Z(2)=               | 11.140                          | Z(3) = 72                      | . 590      |
| XCAL         | . 4109            | . 2054     | . 3835                                  | .0002                 | . 0085              | . 0579                          | . 9209                         | .0127      |
| XEXP         | . 3734            | .1843      | . 4401                                  | . 0022                | . 0219              | . 0702                          | . 8975                         | . 01 04    |
| DABS         | 0375              | 0211       | . 0566                                  | . 0020                | .0134               | . 0123                          | 0234                           | 0023       |
|              | DESVIO            | MEDIO QUA  | D. PERC.                                | ENTRE                 | XCALC E             | XEXP. =                         | 2.728                          |            |
| TEM          | P = 50 °C         | 2% EM      | I PESO                                  |                       |                     |                                 |                                |            |
| 11           | CARGA (           | (% molar)  | -> Z(1)=                                | 15.530                | Z(2)=               | 2.440                           | Z(3)= 81.                      | 300        |
| XCAL         | . 7299            | . 0618     | . 2082                                  | . 0000                | , 0039              | . 0145                          | . 9723                         | . 0092     |
| XEXP         | .7124             | . 0547     | . 2326                                  | . 0003                | .0118               | . 0193                          | .9613                          | .0076      |
| DABS         | 0175              | 0071       | . 0244                                  | . 0003                | . 0079              | . 0048                          | 0110                           | 0016       |
|              | DESVIO            | MEDIO QUA  | D. PERC.                                | ENTRE                 | XCALC E             | XEXP. =                         | 1.205                          |            |
| 12           | CARGA (           | 1% molar)  | -> Z(1)=                                | 13.460                | Z(2)=               | 4.010                           | Z(3)= 81.                      | 800        |
| XCAL         | . 6494            | . 1021     | . 2485                                  | . 0000                | . 0049              | . 0245                          | . 9615                         | . 0091     |
| XEXP         | . 6291            | . 0914     | . 2793                                  | . 0002                | .0136               | . 0303                          | . 9485                         | . 0076     |
| DABS         | 0203              | 0107       | . 0308                                  | . 0002                | . 0087              | . 0058                          | 0130                           | 0015       |
|              | DESVIO            | MEDIO QUA  | D. PERC.                                | ENTRE                 | XCALC E             | XEXP. =                         | 1.481                          |            |
| 1 🔾          | CARGA (           | °% molar)  | -> 7017-                                | 12 580                | (2) = F             | <u>s 400 70</u>                 | (2) - 70 2                     | 80         |
| XCAL         | <u> </u>          | 1479       | 2015                                    | 0001                  | 7 200               | 0278                            |                                | 0097       |
| XEXP         | 5049              | 1328       | 361.8                                   | 0005                  | 0170                | 0453                            | 0208                           | 0079       |
| DABS         | 0456              | - 0151     | . 0603                                  | 0004                  | 01.05               | 0075                            | - 0162                         | 0018       |
|              | DESVIO            | MEDIO OUA  | D PEPC                                  | ENTER                 | VCALC E             | YEVP -                          | 2 022                          |            |
| 1 A          | CAPCA (           | W malan    | $ = \sum \frac{7(4)}{2} $               | 16 ADA                |                     |                                 | $\frac{6.063}{7(3)}$           | 200        |
| XCAL         |                   | 1762       | 2227                                    | $\frac{10.030}{0001}$ |                     | <u>0. 300</u> .<br><u>0.401</u> | <u> </u>                       |            |
| XEXP         | 4397              | 1503       | 4003                                    | 0001                  | . 0080              | . 0401                          | . 5520                         | 01.06      |
| DARS         | - 0452            | - 0170     | 0616                                    | 0007                  | . 01 31             | 0071                            | -0175                          | - 0008     |
| ورو مرود مرو | . 5-205<br>респла | MEDIA ANA  |                                         |                       |                     | VEVD -                          | · · · · · ·                    |            |
| 1 🕾          | DESATO            | MEDIU QUA  | $-\mathbf{N} = \mathbf{N} = \mathbf{N}$ | ENIKE                 | ACALC E             | AEAM. =                         | 2.8/3                          | E00        |
| TO<br>TO     |                   | 2020       | -/ <u>2(1)</u> =                        | 10.400                | $\frac{2(2)}{0100}$ | 11.140                          | <u>∠∟3)≡ (2</u><br><u>0167</u> | . 090      |
| AGAL         | . 4100            | . 2030     | . 3011                                  | 0003                  | . 0100              | . 0007                          | . 9101                         | . 01 02    |
| XEXP         | . 3083            | .1853      | . 4041                                  | . UUZJ                | . 0202              | . 0008                          | . 9068                         | - 0024     |
| DABS         | 0573              | 0177       | . 0730                                  | . 0020                | . 0102              | . 0061                          | 0139                           | UUG4       |
|              | DESVI O           | MEDIO QUA  | D. PERC.                                | ENTRE                 | XCALC E             | XEXP. =                         | 3.405                          |            |

DESVIO QUADR. MEDIO GLOBAL % MOLAR (Formula Dechema) = 2.144

|                                        |                                        | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------------------------------------|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D                                      | ADOS : SISTEMA QUATERNARIO             | - 5% EM PESO DE SAL NA CARGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Т                                      | EMP = 30°C MODELO : NRTL               | (PARAMETROS COMUNS NA CONC. E NA TEMP.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| S                                      | ISTEMA : (1) ACET. DE ETILA            | (2) ETANOL (3) AGUA (4) AC. DE SODIO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| P                                      | ARAMETROS (K) I J ACI                  | (,J) A(J,I) ALFA(I,J)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                        | 1 2 809                                | <b>∂.</b> 091 -554. 465 . 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                        |                                        | 1.287 1820.264 .200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                        |                                        | J. 580 311.240 .200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                        | 2 4 -220                               | 2.218 100.005 .200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                        | 3 4 -542                               | 7 118 -1057 732 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| TIE                                    | FASE ORGANICA                          | FASE AQUOSA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| LINE                                   | (1) (2) (3) (                          | (1) (2) (3) (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1                                      | CARGA (% molar) -> Z(1)= 1             | 4.500 Z(2)= 2.230 Z(3)= 81.410                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| XCAL.                                  | 7325 0644 2031 (                       | 1550 9189 1510 9500 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| XEXP                                   | .7845 .0479 .1675 .0                   | 0001 .0091 .0195 .9503 .0211                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| DABS                                   | .052001650356 .0                       | 0001 .0062 .007401160020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                        | DESVIO MEDIO QUAD. PERC. E             | ENTRE XCALC E XEXP. = 2.364                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2                                      | CARGA (% molar) -> Z(1)= 1             | 2.860 Z(2)= 3.900 Z(3)= 81.430                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| VCAL                                   | 6406 1107 2497 0                       | 001 0026 0215 0524 0225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| VEVP                                   |                                        | 1002 $0101$ $0327$ $9374$ $0198$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| DARS                                   | . 0608 - 0229 - 0380 . 0               | 0001 0005 0112 - 0150 - 0027                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                        | DESVIO MEDIO QUAD PERC. E              | $\mathbf{E} = \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{E}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2                                      | $CAPGA (% molec) \rightarrow 7(1) = 1$ | 2  and  7(2) = 6  and  7(3) = 78  and  7 |
| **~~ < 3                               |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| XCAL                                   | .5367 .1599 .3032 .0                   | 002 .0048 .0338 .9378 .0237                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ALAF<br>DADC                           | -0.002 - 0.004 - 0.002 0               | 1003 , 0110 . 0402 . 9200 . 0210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| DADS                                   | .04900204 .0293 .0                     | 1001 .0008 .0124 .0172 .0021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                        | DESVIO MEDIO QUAD. PERC. E             | NTRE XCALC E XEXP. = 2.300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <u> </u>                               | CARGA (% molar) -> Z(1)= 1             | 4.380 Z(2)= 9.260 Z(3)= 74.440                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| XCAL                                   | .4540 .1977 .3480 .0                   | 004 .0062 .0460 .9203 .0276                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| XEXP                                   | .4786 .1865 .3345 .0                   | 004 .0128 .0588 .9033 .0251                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| DABS                                   | .024601120135 .0                       | 000 .0066 .012801700025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| aluiddau a charach a cogunal a charach | DESVIO MEDIO QUAD. PERC. E             | NTRE XCALC E XEXP. = 1.330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 5                                      | CARGA (% molar) -> Z(1)= 1             | 4.670 Z(2)= 10.710 Z(3)= 72.630                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| XCAL                                   | .4182 .2136 .3677 .0                   | 006 .0070 .0523 .9108 .0298                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| XEXP                                   | .4341 .2065 .3577 .0                   | 017 .0133 .0649 .8953 .0265                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| DABS                                   | .015900710100 .0                       | 011 .0063 .012601550033                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                        | DESVIO MEDIO QUAD. PERC. E             | NTRE XCALC E XEXP. = 1.032                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| TEMP                                   | = 40 °C 5% EM PESO                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 6                                      | CARGA (% molar) -> Z(1)= 1             | 4.500 Z(2)= 2.230 Z(3)= 81.410                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| YCAL                                   | 7368 0621 2011 0                       | 000 0035 0128 9607 0230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| YFYD                                   | 7624 0501 1873 0                       | 0002 0087 0175 9518 0220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| DARS                                   | 0256 - 0120 - 0138 0                   | 002 .0052 .004700890010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| المنبط البيدي المراجع                  |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                        | DESVIO MEDIO QUAD. PERC. E             | NIKE XCALC E XEXP. $=$ 1.183                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

| TEMP = 40°C       MODELO : NRTL (PARAMETROS COMUNS NA CONC, E NA TEMP.)         SISTEMA : (1) ACET. DE ETILA (2) ETANOL (2) AGUA (4) AC. DE SODIO         PARAMETROS (K) I       J       A(1,7)       ALFA(1,7)         1       2       800 (91) -554 465       .200         2       3       -30.680       311.240       .200         1       4       325.218       160.605       .200         2       4       -252.416       -65.249       .200         3       4       -547.118       -1057.732       .200         TTE       FASE ORGANICA       (1)       (2)       (3)       (4)         7       CARGA (% molar) -> Z(1)= 12.860       Z(2)= 3.900       Z(3)= 61.430         XCAL       .6475       .1073       .2451       .0001       .0043       .0226       .9506       .0224         XEXP       .6716       .0933       .2349       .0002       .0097       .3044       .9396       .0023         DABS       .0241       .0140       .0102       .0001       .0057       .0356       .9352       .0236         XEXP       .5655       .147       .2894       .0002       .0057       .0356       .9352       .0236                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | D            | ADOS :    | SISTEMA (     | QUATERNAF                               | 210 - 5% | EM PESC               | DE SAL                    | NA CARGA   |                                         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------|---------------|-----------------------------------------|----------|-----------------------|---------------------------|------------|-----------------------------------------|
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | T            | EMP = 4   | LO°C MOI      | DELO : NR                               | TL CPARA | METROS                | COMUNS N                  | A CONC. E  | E NA TEMP. )                            |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2            | ADAMETDO  | CIJACE        | $\frac{1}{r}$ DE EII                    | LA (2)   | EIANOL                | CO AGU                    | A (4) A    | . DE SODIO                              |
| 1       3       104.287       1820.264       .200         2       3       -30.680       311.240       .200         1       4       325.218       160.605       .200         2       4       -229.416       -65.249       .200         3       4       -647.118       -1057.732       .200         7       CARGA (% molar) -> Z(1)=       12.860       Z(2)=       3.900       Z(3)=       64)         7       CARGA (% molar) -> Z(1)=       12.860       Z(2)=       3.900       2(3)=       64)         7       CARGA (% molar) -> Z(1)=       12.860       Z(2)=       3.900       2(3)=       6.9506       .0224         XEXP       .6715       .0933       .2349       .0002       .0097       .0304       .9396       .0203         DABS       .0241       .0140       .0102       .0001       .0054       .0078<0110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.           | ANADIGING | $\frac{1}{1}$ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | R09 091  | $-\underline{RS}_{4}$ | <u>17 A</u><br><u>465</u> | 200        |                                         |
| 2         3         -30,680         311,240         .200           1         4         325,218         160,605         .200           2         4         -522,416         -65,249         .200           3         4         -547,118         -1057,732         .200           11NE         (1)         (2)         (3)         (4)         (1)         (2)         (3)         (4)           7         CARGA (% molar) -> Z(1)=         12.860         Z(2)=         3.900         Z(3)=         81,430           XCAL         .6475         .1073         .2451         .0001         .0043         .0226         .9506         .0224           DESVIO MEDIO QUAD         -0102         .0001         .0054         .0078        0110         .0021           DESVIO MEDIO QUAD         PERC. <entre e="" xcalc="" xexp.="&lt;/td">         1.170         8         CARGA (% molar) -&gt; Z(1)=         12.930         Z(2)=         6.330         Z(3)=         7.0235           XEXP         .5565         .147         .2984         .0004         .0144         .0447         .9227         .0212           DABS         .0122         .0118         .0006         .0007         .0285         .9060</entre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |           | 1             | 3                                       | 104.287  | 1820.                 | 264                       | . 200      |                                         |
| 1       4       325.216       160.605       .200         2       4       -229.416       -65.249       .200         TIE       FASE ORGANICA       FASE AQUOSA         LINE       (1)       (2)       (3)       (4)         7       CARGA (% molar) ->       2(1)=       12.860       2(2)=       3.900       Z(3)=       61.430         XCAL       .6475       .1073       .2451       .0001       .0043       .0226       .9506       .0224         XEXP       .6716       .0933       .2349       .0002       .0097       .0304       .9396       .0203         DABS       .0241       .0140       .0102       .0001       .0054       .0078      0120       .0021         DESVIO MEDIO QUAD       PERC       ENTRE XCALC E XEXP.=       1.170       8       CARGA (% molar) -> Z(1)= 12.930       Z(2)= 6.330       Z(3)= 78.920         XCAL       .5443       .1585       .2990       .0002       .0057       .0356       .9352       .0236         XEXP       .5585       .1447       .2984       .0004       .0114       .0447       .227       .0024         DAS       .0122       .0125       .0026       .00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |           | 2             | 3                                       | -30.680  | 311.                  | 240                       | . 200      |                                         |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |           | 1             | 4                                       | 325.218  | 160.                  | 605                       | . 200      |                                         |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |           | 2             | 4 -                                     | 229.416  | -65.                  | 249                       | . 200      |                                         |
| TIE         FASE ORGANICA         FASE AUDSA           LINE         (1)         (2)         (3)         (4)         (1)         (2)         (3)         (4)           7         CARGA (% molar) ->         Z(1)=         12.860         Z(2)=         3.900         Z(3)=         81.430           XCAL         .6475         .1073         .2451         .0001         .0043         .0226         .9506         .0224           MEXP         .6716         .0933         .2349         .0002         .0097         .0304         .9396         .0203           DABS         .0241        0140         .0102         .0001         .0054         .0078         .0110         .0021           DESVIO MEDIO QUAD         PERC.         ENTRE XCALC E XEXP. =         1.170         8         CARGA (% molar) -> Z(1)=         12.930         Z(2)=         8.30         Z(3)=         78.920           XCAL         .5443         .1565         .2990         .0002         .0057         .0356         .9352         .0235           DABS         .0122         .0118         .0006         .0002         .0057         .0091         .0024         .0024           DESVIO MEDIO QUAD         PERC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |           | 3             | 4                                       | 547.118  | -1057.                | 732                       | . 200      |                                         |
| LINE (1) (2) (3) (4) (1) (2) (3) (4) (1) (2) (3) (4)<br>7 CARGA ( $\chi$ molar) -> Z(1)= 12.860 Z(2)= 3.900 Z(3)= 81.430<br>XCAL .6475 .1073 .2451 .0001 .0043 .0226 .9506 .0224<br>EXP .6716 .0333 .2349 .0002 .0097 .0304 .9396 .0203<br>DABS .024101400102 .0001 .0054 .007801100021<br>DESVIO MEDIO QUAD. PERC. ENTRE XCALC E XEXP.= 1.170<br>8 CARGA ( $\chi$ molar) -> Z(1)= 12.930 Z(2)= 6.330 Z(3)= 76.920<br>XCAL .5443 .1565 .2990 .0002 .0057 .0356 .9352 .0236<br>XCAL .5443 .1565 .2990 .0002 .0057 .03910125 .0024<br>DESVIO MEDIO QUAD. PERC. ENTRE XCALC E XEXP.= .840<br>9 CARGA ( $\chi$ molar) -> Z(1)= 14.380 Z(2)= 9.260 Z(3)= 74.440<br>XCAL .4602 .1948 .3446 .0004 .0074 .0465 .9168 .0273<br>XEXP .4576 .1886 .3531 .0007 .0129 .0556 .9068 .0255<br>DABS .0026 .0062 .007101080018<br>DESVIO MEDIO QUAD. PERC. ENTRE XCALC E XEXP.= .630<br>10 CARGA ( $\chi$ molar) -> Z(1)= 14.670 Z(2)= 10.710 Z(3)= 72.630<br>XCAL .4235 .2109 .3649 .0007 .0084 .0552 .9069 .0295<br>XEXP .4108 .2057 .3821 .0014 .0135 .0613 .8978 .0274<br>DABS01270052 .0172 .0007 .0051 .006100910021<br>DESVIO MEDIO QUAD. PERC. ENTRE XCALC E XEXP.= .890<br>TEMP = 50 °C 5 $\chi$ EM PESO<br>11 CARGA ( $\chi$ molar) -> Z(1)= 14.600 Z(2)= 2.230 Z(3)= 81.410<br>XCAL .7399 .0599 .2001 .0001 .0041 .0134 .9595 .0230<br>XEXP .7333 .0540 .2125 .0000 .0063 .0169 .9529 .0219<br>DABS00660059 .0125 .0001 .0044 .0134 .9595 .0230<br>XEXP .7333 .0540 .2126 .0001 .0042 .003500660011<br>DESVIO MEDIO QUAD. PERC. ENTRE XCALC E XEXP.= .622<br>12 CARGA ( $\chi$ molar) -> Z(1)= 12.860 Z(2)= 3.900 Z(3)= 81.430<br>XCAL .5536 .1040 .2423 .0001 .0052 .0237 .9488 .0223<br>XEXP .6393 .0994 .2611 .0002 .0100 .0267 .9410 .0203 | TIE          |           | FASE OF       | RGANICA                                 |          |                       | FASE                      | AQUOSA     |                                         |
| 7       CARGA (% molar) → Z(1)= 12.860       Z(2)= 3.900       Z(3)= 81.430         XCAL       .6475       .1073       .2451       .0001       .0043       .0226       .9506       .0224         DABS       .0241      0140      0102       .0001       .0057       .0110      0021         DESVIO MEDIO QUAD. PERC.       ENTRE XCALC E XEXP.=       1.170         8       CARGA (% molar) → Z(1)= 12.930       Z(2)= 6.330       Z(3)= 78.920         XCAL       .5443       .1565       .2990       .0002       .0057       .0356       .9352       .0236         XEXP       .5565       .1447       .2884       .0004       .0114       .0447       .9227       .0212         DABS       .0122       .0118       .0006       .0002       .0057       .0091       .0125       .0024         DESVIO MEDIO QUAD. PERC.       ENTRE XCALC E XEXP.=       .840       .846       .0004       .0074       .0485       .9168       .0273         XEXP       .4576       .1948       .3446       .0007       .0129       .0556       .9060       .2255         DABS       .0026       .0063       .0065       .0071       .0108       .0018       .0273                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | LINE         | (1)       | (2)           | (3)                                     | (4)      | (1)                   | (2)                       | (3)        | (4)                                     |
| XCAL       .6475       .1073       .2451       .0001       .0043       .0226       .9506       .0224         XEXP       .6716       .0933       .2349       .0002       .0097       .0304       .9396       .0203         DABS       .0241      0140      0102       .0001       .0054       .0078      0110      0021         DESVIO       MEDIO QUAD       PERC.       ENTRE XCALC E XEXP.=       1.170       1.170         8       CARGA (% molar)       -> Z(1)=       12.930       Z(2)=       6.330       Z(3)=       78.920         XCAL       .5443       .1565       .2990       .0002       .0057       .0356       .9352       .0236         XEXP       .5565       .1447       .2984       .0004       .0114       .0447       .9227       .0212         DABS       .0122      0118      0006       .0002       .0057       .0035       .0024       .0024         S       CARGA (% molar)       -> Z(1)=       14.380       Z(2)=       .260       Z(3)=       74.440         XEXP       .4576       .1886       .9531       .0007       .0125       .018       .0273         DABS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7            | CARGA     | (% molar)     | ) -> Z(1)                               | = 12.860 | Z(2)=                 | 3.900 2                   | Z(3) = 81. | 430                                     |
| XEXP       .6716       .0933       .2349       .0002       .0097       .0304       .9396       .0203         DABS       .0241      0140      0102       .0001       .0054       .0078      0110      0021         DESVIO       MEDIO QUAD       PERC.       ENTRE XCALC E XEXP.=       1.170         8       CARGA (% molar) → Z(1)=       12.930       Z(2)=       6.330       Z(3)=       78.920         XCAL       .5443       .1565       .2990       .0002       .0057       .0394       .9352       .0236         XEXP       .5565       .1447       .2884       .0004       .0114       .0447       .9227       .0212         DABS       .0122      0118       .0006       .0002       .0057       .0091      0125      0024         DESVIO       MEDIO QUAD       PERC.       ENTRE XCALC E XEXP.=       .840       .840       .840       .840       .0074       .0485       .9168       .0273         XEXP       .4576       .1886       .3531       .0007       .0129       .0355       .9060       .0255         DABS       .0026       .0062       .0063       .0055       .0071       .0108       .001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | XCAL         | . 6475    | .1073         | .2451                                   | . 0001   | . 0043                | . 0226                    | . 9506     | . 0224                                  |
| DABS       .024101400102       .0001       .0054       .007601100021         DESVIO MEDIO QUAD. PERC. ENTRE XCALC E XEXP.=       1.170         8       CARGA (% molar) -> Z(1)= 12.930       Z(2)= 6.330       Z(3)= 78.920         XCAL       .5443       .1565       .2990       .0002       .0057       .0356       .9352       .0236         MEXP       .5565       .1447       .2984       .0004       .0114       .0447       .9227       .0212         DABS       .0122      0116      0006       .0002       .0057       .0091      0125      0024         DESVIO MEDIO QUAD. PERC.       ENTRE XCALC E XEXP.=       .840       .840       .0273       .0215       .0024         SCARGA (% molar) -> Z(1)= 14.380       Z(2)= 9.260       Z(3)= 74.440       .0273         XCAL       .4602       .1948       .3446       .0004       .0074       .0465       .9168       .0273         XEXP       .4576       .1886       .3531       .0007       .0129       .0555       .0018         DESVIO MEDIO QUAD. PERC.       ENTRE XCALC E XEXP.=       .630       .0028       .0029       .0235         DABS       .0026       .0062       .0085       .007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | XEXP         | . 6716    | . 0933        | . 2349                                  | . 0002   | . 0097                | . 0304                    | . 9396     | . 0203                                  |
| DESVIO MEDIO QUAD. PERC. ENTRE XCALC E XEXP.=         1.170           8         CARGA (% molar) → Z(1)= 12.930         Z(2)= 6.330         Z(3)= 76.920           XCAL         .5443         .1565         .2990         .0002         .0057         .0356         .9352         .0236           XEXP         .5565         .1447         .2984         .0004         .0114         .0447         .9227         .0212           DABS         .0122         .0118        0006         .0002         .0057         .0091        0125         .0024           DESVIO MEDIO QUAD. PERC.         ENTRE XCALC E XEXP.=         .840         .840         .840         .840           9         CARGA (% molar) → Z(1)= 14.380         Z(2)= 9.260         Z(3)= 74.440         .845           XCAL         .4602         .1948         .3446         .0004         .0074         .0485         .9168         .0273           XEXP         .4576         .1886         .9531         .0007         .0129         .0556         .9060         .0255           DABS         .0026         .0083         .0055         .0071         .0108         .0274           DABS         .0027         .96849         .0007         .0064         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DABS         | . 0241    | 0140          | 0102                                    | . 0001   | . 0054                | . 0078                    | 0110       | 0021                                    |
| 8       CARGA (% molar) → Z(1)= 12.930       Z(2)= 6.330       Z(3)= 78.920         XCAL       .5443       .1565       .2990       .0002       .0057       .0386       .9352       .0236         XEXP       .5565       .1447       .2984       .0004       .0114       .0447       .9227       .0212         DABS       .0122       .0118      0006       .0002       .0057       .0091      0125      0024         DESVIO       MEDIO       QUAD       PERC       ENTRE       XCALC       E XEXP.=       .840         9       CARGA (% molar)       -> Z(1)=       14.380       Z(2)= 9.260       Z(3)= 74.440         XCAL       .4602       .1948       .3445       .0004       .0074       .0485       .9168       .0273         XEXP       .4576       .1886       .3531       .0007       .0129       .0586       .9060       .0255         DABS      0026      0062       .0065       .0003       .0055       .0071      0108       .0018         DESVIO MEDIO QUAD       PERC       ENTRE XCALC E XEXP.=       .630       .0255       .0274         DABS       .0127       .0052       .0172       .0007 <td< td=""><td></td><td>DESVIC</td><td>MEDIO QL</td><td>JAD. PERC</td><td>. ENTRE</td><td>XCALC E</td><td>XEXP. =</td><td>1.170</td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              | DESVIC    | MEDIO QL      | JAD. PERC                               | . ENTRE  | XCALC E               | XEXP. =                   | 1.170      |                                         |
| XCAL       .5443       .1565       .2990       .0002       .0057       .0356       .9352       .0236         XEXP       .5565       .1447       .2984       .0004       .0114       .0447       .9227       .0212         DABS       .0122       .0118      0006       .0002       .0057       .0991      0125      0024         DESVIO       MEDIO       QUAD.       PERC.       ENTRE XCALC E XEXP. =       .840         9       CARGA (% molar)       -> Z(1)=       14.380       Z(2)=       9.260       Z(3)=       74.440         XCAL       .4602       .1948       .3445       .0004       .0074       .0485       .9168       .0273         XEXP       .4576       .1886       .3531       .0007       .0129       .0556       .9060       .0255         DABS      0026       .0062       .0065       .0071      0108       .0018         DESVIO       MEDIO       QUAD.       PERC.       ENTRE XCALC E XEXP.=       .630         10       CARGA (% molar) => Z(1)=       14.670       Z(2)=       10.710       Z(3)=       72.630         XCAL       .4235       .2109       .3649       .0007       .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8            | CARGA     | (% molar)     | -> Z(1)                                 | = 12.930 | Z(2)=                 | 6.330 :                   | Z(3)= 78.  | 920                                     |
| XEXP       .5565       .1447       .2984       .0004       .0114       .0447       .9227       .0212         DABS       .0122      0118      0006       .0002       .0057       .0091      0125      0024         DESVIO       MEDIO       QUAD       PERC       ENTRE       XCALC       E       XEXP       .840         9       CARGA (% molar) → Z(1)=       14.380       Z(2)=       9.260       Z(3)=       74.440         XCAL       .4502       .1948       .3446       .0004       .0074       .0485       .9168       .0273         XEXP       .4576       .1886       .3531       .0007       .0129       .0556       .9060       .0255         DABS      0026      0062       .0085       .0003       .0055       .0071      0108      0018         DESVIO       MEDIO       QUAD       PERC       ENTRE       XCALC       E       XEXP.=       .630         10       CARGA (%molar) =>       Z(1)=       14.670       Z(2)=       10.710       Z(3)=       72.630         XCAL       .4235       .2109       .3649       .0007       .0084       .0552       .9069       .0295 <td>YCAI</td> <td>5443</td> <td>1 865</td> <td>2000</td> <td>0002</td> <td>0057</td> <td>0256</td> <td>0352</td> <td>0236</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | YCAI         | 5443      | 1 865         | 2000                                    | 0002     | 0057                  | 0256                      | 0352       | 0236                                    |
| DABS       .0122      0118      0006       .0002       .0057       .0091      0125      0024         DESVIO       MEDIO       QUAD       PERC.       ENTRE       XCALC       E       XEXP.=       .840         9       CARGA       (% molar)       ->       Z(1)=       14.380       Z(2)=       9.260       Z(3)=       74.440         XCAL       .4602       .1948       .3446       .0004       .0074       .0485       .9168       .0273         XEXP       .4576       .1886       .3531       .0007       .0129       .0556       .9060       .0255         DABS      0026      0062       .0085       .0003       .0055       .0071      0108      0018         DESVIO       MEDIO       QUAD       PERC.       ENTRE       XCALC E       XEXP.=       .630         10       CARGA (%molar) =>       Z(1)=       14.670       Z(2)==       10.710       Z(3)=       72.630         XCAL       .4235       .2109       .3649       .0007       .0084       .0552       .9069       .0295         XEXP       .4108       .2057       .3821       .0014       .0135       .0613       .897                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | XEXP         | 5565      | 1447          | . 2990                                  | . 0002   | . 00057               | . 0355                    | 9227       | 0212                                    |
| DESVIO MEDIO QUAD. PERC. ENTRE XCALC E XEXP. =       .840         9       CARGA (% molar) → Z(1)= 14.380       Z(2)= 9.260       Z(3)= 74.440         XCAL       .4602       .1948       .3446       .0004       .0074       .0485       .9168       .0273         XEXP       .4576       .1886       .3531       .0007       .0129       .0556       .9060       .0255         DABS      0026      0062       .0085       .0003       .0055       .0071      0108      0018         DESVIO MEDIO QUAD. PERC.       ENTRE XCALC E XEXP. =       .630         10       CARGA (%molar) =>       Z(1)= 14.670       Z(2)= 10.710       Z(3)= 72.630         XCAL       .4235       .2109       .3649       .0007       .0084       .0552       .0069       .0295         XEXP       .4108       .2057       .3821       .0014       .0135       .0613       .8978       .0274         DABS       .0127       .0052       .0172       .0007       .0051       .0061       .0091       .0021         DESVIO MEDIO QUAD. PERC.       ENTRE XCALC E XEXP. =       .890       .897       .0231         TEMP = 50 °C       5% EM PESO       .11       CARGA (% molar) -> Z(1)= 14.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DABS         | . 01.22   | - 0118        | - 0006                                  | . 0002   | 0057                  | 0091                      | 01.25      | - 0024                                  |
| DESVIO MEDIO QUAD. PERC. ENTRE XCALC E XEXP.=       .840         9       CARGA (% molar) → Z(1)= 14.380       Z(2)= 9.260       Z(3)= 74.440         XCAL       .4602       .1948       .3446       .0004       .0074       .0485       .9168       .0273         XEXP       .4576       .1986       .3531       .0007       .0129       .0556       .9060       .0255         DABS      0026       .0062       .0085       .0003       .0055       .0071      0108      0018         DESVIO MEDIO QUAD. PERC. ENTRE XCALC E XEXP.=       .630         10       CARGA (%molar) => Z(1)= 14.670       Z(2)= 10.710       Z(3)= 72.630         XCAL       .4235       .2109       .3649       .0007       .0084       .0552       .9069       .0295         XEXP       .4108       .2057       .3821       .0014       .0135       .0613       .8978       .0274         DABS      0127       .0052       .0172       .0007       .0051       .0061       .0021       .0021         DESVIO MEDIO QUAD. PERC. ENTRE XCALC E XEXP.=       .890       .0230       .0232       .0230       .0232       .0230       .0232       .0230       .0232       .0230       .0232       .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |           |               |                                         |          |                       |                           | . •        |                                         |
| 9       CARGA (% molar) → Z(1)= 14.380       Z(2)= 9.260       Z(3)= 74.440         XCAL       .4502       .1948       .3446       .0004       .0074       .0485       .9168       .0273         XEXP       .4576       .1886       .3531       .0007       .0129       .0556       .9060       .0255         DABS      0026      0062       .0085       .0003       .0055       .0071      0108      0018         DESVIO       MEDIO       QUAD       PERC.       ENTRE       XCALC       E       XEXP.=       .630         10       CARGA (%molar) =>       Z(1)=       14.670       Z(2)=       10.710       Z(3)= 72.630         XCAL       .4235       .2109       .3649       .0007       .0084       .0552       .9069       .0295         XEXP       .4108       .2057       .3821       .0014       .0135       .0613       .8978       .0274         DABS      0127      0052       .0172       .0007       .0051       .0061      0021         DESVIO       MEDIO       QUAD       PERC       ENTRE       XCALC       E       XEXP       .890         11       CARGA (% molar)       -> Z(1)= <td></td> <td>DESVIC</td> <td>MEDIO QL</td> <td>JAD. PERC</td> <td>. ENTRE</td> <td>XCALC E</td> <td>XEXP. =</td> <td>. 840</td> <td>an ann an ann ann an ann an an an an an</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              | DESVIC    | MEDIO QL      | JAD. PERC                               | . ENTRE  | XCALC E               | XEXP. =                   | . 840      | an ann an ann ann an ann an an an an an |
| XCAL       .4502       .1948       .3446       .0004       .0074       .0485       .9168       .0273         XEXP       .4576       .1886       .3531       .0007       .0129       .0556       .9060       .0255         DABS      0026      0062       .0085       .0003       .0055       .0071      0108      0018         DESVIO       MEDIO       QUAD       PERC       ENTRE       XCALC       E       XEXP       .630         10       CARGA (%molar) =>       Z(1)=       14.670       Z(2)=       10.710       Z(3)=       72.630         XCAL       .4235       .2109       .3649       .0007       .0084       .0552       .9069       .0295         XEXP       .4108       .2057       .3821       .0014       .0135       .0613       .8978       .0274         DABS      0127      0052       .0172       .0007       .0051       .0061      0091      0021         DESVIO       MEDIO       QUAD       PERC       ENTRE       XCALC E       XEXP.=       .890         11       CARGA (% molar)       ->       Z(1)=       14.500       Z(2)=       2.230       Z(3)=       81.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9            | CARGA     | (% molar)     | -> Z(1)                                 | = 14.380 | Z(2)=                 | 9.260 2                   | Z(3) = 74. | 440                                     |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | XCAL         | . 4602    | .1948         | . 3446                                  | . 0004   | . 0074                | . 0485                    | .9168      | . 0273                                  |
| DABS      0026      0062       .0085       .0003       .0055       .0071      0108      0018         DESVIO       MEDIO       QUAD.       PERC.       ENTRE       XCALC       E       XEXP.=       .630         10       CARGA (%molar) =>       Z(1)=       14.670       Z(2)=       10.710       Z(3)=       72.630         XCAL       .4235       .2109       .3649       .0007       .0084       .0552       .9069       .0295         XEXP       .4108       .2057       .3821       .0014       .0135       .0613       .8978       .0274         DABS      0127      0052       .0172       .0007       .0061      0091      0021         DESVIO       MEDIO       QUAD.       PERC.       ENTRE       XCALC E       XEXP.=       .890         TEMP = 50 °C       5% EM PESO       5% EM PESO       2(2)=       2.230       Z(3)=       81.410         XCAL       .7399       .0599       .2001       .0001       .0041       .0134       .9595       .0230         XEXP       .7333       .0540       .2126       .0000       .0042       .0035      0066       .0011         DESVIO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | XEXP         | . 4576    | .1886         | . 3531                                  | . 0007   | . 0129                | . 0556                    | . 9060     | . 0255                                  |
| DESVIO MEDIO QUAD. PERC. ENTRE XCALC E XEXP. =       .630         10       CARGA (%molar) => Z(1)= 14.670       Z(2)= 10.710       Z(3)= 72.630         XCAL       .4235       .2109       .3649       .0007       .0084       .0552       .9069       .0295         XEXP       .4108       .2057       .3821       .0014       .0135       .0613       .8976       .0274         DABS      0127      0052       .0172       .0007       .0051       .0061      0091      0021         DESVIO MEDIO QUAD. PERC. ENTRE XCALC E XEXP. =       .890       .0017       .0051       .0061       .0021       .0021         DESVIO MEDIO QUAD. PERC. ENTRE XCALC E XEXP. =       .890       .0023       .0230       .0230         TEMP = 50 °C       5% EM PESO       .0001       .0041       .0134       .9595       .0230         XCAL       .7399       .0599       .2001       .0001       .0041       .0134       .9595       .0230         XEXP       .7333       .0540       .2126       .0000       .0042       .0035       .0066       .0011         DESVIO MEDIO QUAD. PERC. ENTRE XCALC E XEXP. =       .622       .0125       .0000       .0042       .0035       .0066                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DABS         | 0026      | 0062          | . 0085                                  | . 0003   | . 0055                | . 0071                    | 0108       | 0018                                    |
| 10       CARGA (%molar) ⇒ Z(1)= 14.670       Z(2)= 10.710       Z(3)= 72.630         XCAL       .4235       .2109       .3649       .0007       .0084       .0552       .9069       .0295         XEXP       .4108       .2057       .3821       .0014       .0135       .0613       .8978       .0274         DABS      0127      0052       .0172       .0007       .0051       .0061      0091      0021         DESVIO       MEDIO       QUAD       PERC       ENTRE       XCALC       E       XEXP. =       .890         TEMP = 50 °C       5% EM       PESO       .0001       .0041       .0134       .9595       .0230         XCAL       .7399       .0599       .2001       .0001       .0041       .0134       .9595       .0230         XEXP       .7333       .0540       .2126       .0001       .0083       .0169       .9529       .0219         DABS      0066       .0059       .0125       .0000       .0042       .0035      0066       .0011         DESVIO       MEDIO       QUAD       PERC       ENTRE       XCALC E       XEXP. =       .622         12       CARGA (% molar) -> Z(1)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              | DESVI O   | MEDIO OL      | IAD. PERC                               | ENTRE    | XCALC E               | XEXP. =                   | . 630      |                                         |
| XCAL       .4235       .2109       .3649       .0007       .0084       .0552       .9069       .0295         XEXP       .4108       .2057       .3821       .0014       .0135       .0613       .8978       .0274         DABS      0127      0052       .0172       .0007       .0051       .0061      0091      0021         DESVIO       MEDIO       QUAD       PERC       ENTRE       XCALC       E       XEXP. =       .890         TEMP = 50 °C       5% EM PESO       5% EM PESO       Z(2)= 2.230       Z(3)= 81.410         XCAL       .7399       .0599       .2001       .0001       .0041       .0134       .9595       .0230         XEXP       .7333       .0540       .2126       .0001       .0063       .0169       .9529       .0219         DABS       .0066       .0059       .0125       .0000       .0042       .0035      0066       .0011         DESVIO       MEDIO       QUAD       PERC       ENTRE       XCALC E       XEXP.=       .622         12       CARGA (% molar) -> Z(1)= 12.860       Z(2)= 3.900       Z(3)= 81.430       Z(3)= 81.430         XCAL       .6536       .1040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10           | CARGA     | (%molar)      | => Z(1)=                                | 14.670   | Z(2)= 1               | 10.710 2                  | 2(3)= 72.  | 630                                     |
| XCAL       .4235       .2109       .3849       .0007       .0084       .0552       .9089       .0295         XEXP       .4108       .2057       .3821       .0014       .0135       .0613       .8978       .0274         DABS      0127      0052       .0172       .0007       .0051       .0061      0091      0021         DESVIO       MEDIO       QUAD       PERC       ENTRE       XCALC       E       XEXP.=       .890         TEMP = 50 °C       5% EM PESO       5% EM PESO       Z(2)=       2.230       Z(3)=       81.410         XCAL       .7399       .0599       .2001       .0001       .0041       .0134       .9595       .0230         XEXP       .7333       .0540       .2126       .0001       .0063       .0169       .9529       .0219         DABS      0066      0059       .0125       .0000       .0042       .0035      0066      0011         DESVIO       MEDIO       QUAD       PERC       ENTRE       XCALC E       XEXP.=       .622         12       CARGA (% molar)       ->       Z(1)=       12.860       Z(2)=       3.900       Z(3)=       81.430                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | V / 1 1      |           |               |                                         |          |                       | 0990                      | ~~~~~      |                                         |
| XEXP       .4108       .2037       .3821       .0014       .0135       .0813       .8978       .0274         DABS      0127      0052       .0172       .0007       .0051       .0061      0091      0021         DESVIO       MEDIO       QUAD.       PERC.       ENTRE XCALC E       XEXP.=       .890         TEMP = 50 °C       5% EM       PESO       .0011       .0041       .0134       .9595       .0230         XCAL       .7399       .0599       .2001       .0001       .0041       .0134       .9595       .0230         XEXP       .7333       .0540       .2126       .0001       .0083       .0169       .9529       .0219         DABS      0066      0059       .0125       .0000       .0042       .0035      0066      0011         DESVIO       MEDIO       QUAD.       PERC.       ENTRE XCALC E       XEXP.       .622         12       CARGA (% molar) -> Z(1)= 12.860       Z(2)= 3.900       Z(3)= 81.430       .0223         XCAL       .6536       .1040       .2423       .0001       .0052       .0237       .9488       .0223         XEXP       .6393       .0994                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ACAL<br>VEVD | . 4630    | . 2109        | . 3049                                  | . 0007   | .0084                 | . 0552                    | . 9069     | . 0295                                  |
| DABS $1.0172$ $1.0007$ $1.0031$ $1.0031$ $1.0031$ $1.0031$ $1.0031$ $1.0031$ $1.0031$ $1.0031$ $1.0031$ $1.0031$ $1.0031$ $1.0031$ $1.0031$ $1.0031$ $1.0031$ $1.0031$ $1.0031$ $1.0031$ $1.0031$ $1.0031$ $1.0031$ $1.0031$ $1.0031$ $1.0031$ $1.0031$ $1.0031$ $1.0031$ $1.0031$ $1.0031$ $1.0031$ $1.0031$ $1.0031$ $1.0031$ $1.0031$ $1.0031$ $1.0031$ $1.0031$ $1.0031$ $1.0031$ $1.0021$ TEMP = 50 °C       5% EM PESO       5% EM PESO       2(1)= 12.800 $2(2)= 2.230$ $2(3)= 81.410$ XCAL       .7333       .0540       .2126       .0001       .0042       .0035 $0066$ $0011$ DESVIO MEDIO QUAD.       PERC.       ENTRE XCALC E XEXP. =       .622       .0231       .0232       .0232         12       CARGA (% molar) -> Z(1)= 12.860       Z(2)= 3.900       Z(3)= 81.430       .0231       .0233       .0233       .0233       .0237       .9488       .0223         XEXP       .6393       .0994       .2611       .0002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DADC         | -0127     | - 0052        | . 3861                                  | . 0014   | . 0130                | . 0013                    | - 0001     | - 0021                                  |
| DESVIO MEDIO QUAD. PERC. ENTRE XCALC E XEXP.=       .890         TEMP = 50 °C       5% EM PESO         11       CARGA (% molar) -> Z(1)= 14.500       Z(2)= 2.230       Z(3)= 81.410         XCAL       .7399       .0599       .2001       .0001       .0041       .0134       .9595       .0230         XEXP       .7333       .0540       .2126       .0001       .0083       .0169       .9529       .0219         DABS      0066      0059       .0125       .0000       .0042       .0035      0066      0011         DESVIO MEDIO QUAD. PERC. ENTRE XCALC E XEXP.=       .622       .622         12       CARGA (% molar) -> Z(1)= 12.860       Z(2)= 3.900       Z(3)= 81.430         XCAL       .6536       .1040       .2423       .0001       .0052       .0237       .9488       .0223         XEXP       .6393       .0994       .2611       .0002       .0100       .0287       .9410       .0203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DADO         | . 01 6 1  | .0002         | - 01 7 6                                | . 0007   | . 0001                | . 0001                    | . OOst     |                                         |
| TEMP = 50 °C       5% EM PESO         11       CARGA (% molar) -> Z(1)= 14.500       Z(2)= 2.230       Z(3)= 81.410         XCAL       .7399       .0599       .2001       .0001       .0041       .0134       .9595       .0230         XEXP       .7333       .0540       .2126       .0001       .0083       .0169       .9529       .0219         DABS      0066      0059       .0125       .0000       .0042       .0035      0066      0011         DESVIO MEDIO QUAD.       PERC.       ENTRE XCALC E XEXP.=       .622         12       CARGA (% molar) -> Z(1)= 12.860       Z(2)= 3.900       Z(3)= 81.430         XCAL       .6536       .1040       .2423       .0001       .0052       .0237       .9488       .0223         XEXP       .6393       .0994       .2611       .0002       .0100       .0287       .9410       .0203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              | DESVIO    | MEDIO QU      | AD. PERC                                | . ENTRE  | XCALC E               | XEXP. =                   | . 890      |                                         |
| 11       CARGA (% molar) → Z(1)= 14.500       Z(2)= 2.230       Z(3)= 81.410         XCAL       .7399       .0599       .2001       .0001       .0041       .0134       .9595       .0230         XEXP       .7333       .0540       .2126       .0001       .0083       .0169       .9529       .0219         DABS      0066      0059       .0125       .0000       .0042       .0035      0066      0011         DESVIO       MEDIO       QUAD.       PERC.       ENTRE       XCALC       E       XEXP.       .622         12       CARGA (% molar)       ->       Z(1)=       12.860       Z(2)= 3.900       Z(3)=       81.430         XCAL       .6536       .1040       .2423       .0001       .0052       .0237       .9488       .0223         XEXP       .6393       .0994       .2611       .0002       .0100       .0287       .9410       .0203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TEMP         | = 50 °C   | 5% E          | M PESO                                  |          |                       |                           |            |                                         |
| XCAL       .7399       .0599       .2001       .0001       .0041       .0134       .9595       .0230         XEXP       .7333       .0540       .2126       .0001       .0083       .0169       .9529       .0219         DABS      0066      0059       .0125       .0000       .0042       .0035      0066      0011         DESVIO       MEDIO       QUAD       PERC       ENTRE       XCALC       E       XEXP       .622         12       CARGA (% molar)       ->       Z(1)=       12.860       Z(2)=       3.900       Z(3)=       81.430         XCAL       .6536       .1040       .2423       .0001       .0052       .0237       .9488       .0223         XEXP       .6393       .0994       .2611       .0002       .0100       .0287       .9410       .0203         NEXP       .6393       .0946       .0010       .0267       .0079       .0020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11           | CARGA     | (% molar)     | -> Z(1):                                | = 14.500 | Z(2)=                 | 2.230 2                   | 2(3)= 81.  | 410                                     |
| XEXP       .7333       .0540       .2126       .0001       .0083       .0169       .9529       .0219         DABS      0066      0059       .0125       .0000       .0042       .0035      0066      0011         DESVIO       MEDIO       QUAD.       PERC.       ENTRE       XCALC       E       XEXP.       .622         12       CARGA       (% molar)       ->       Z(1)=       12.860       Z(2)=       3.900       Z(3)=       81.430         XCAL       .6536       .1040       .2423       .0001       .0052       .0237       .9488       .0223         XEXP       .6393       .0994       .2611       .0002       .0100       .0287       .9410       .0203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | XCAL         | . 7399    | . 0599        | . 2001                                  | . 0001   | . 0041                | .0134                     | . 9595     | . 0230                                  |
| DABS      0066      0059       .0125       .0000       .0042       .0035      0066      0011         DESVIO       MEDIO       QUAD       PERC       ENTRE       XCALC       E       XEXP.=       .622         12       CARGA (% molar)       ->       Z(1)=       12.860       Z(2)=       3.900       Z(3)=       81.430         XCAL       .6536       .1040       .2423       .0001       .0052       .0237       .9488       .0223         XEXP       .6393       .0994       .2611       .0002       .0100       .0287       .9410       .0203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | XEXP         | . 7333    | . 0540        | . 2126                                  | . 0001   | . 0083                | . 0169                    | . 9529     | . 0219                                  |
| DESVIO MEDIO QUAD.         PERC.         ENTRE XCALC E XEXP.=         .622           12         CARGA (% molar) -> Z(1)= 12.860         Z(2)= 3.900         Z(3)= 81.430           XCAL         .6536         .1040         .2423         .0001         .0052         .0237         .9488         .0223           XEXP         .6393         .0994         .2611         .0002         .0100         .0287         .9410         .0203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | DABS         | 0066      | 0059          | .0125                                   | . 0000   | .0042                 | . 0035                    | 0066       | 0011                                    |
| 12       CARGA (% molar) -> Z(1)= 12.860       Z(2)= 3.900       Z(3)= 81.430         XCAL       .6536       .1040       .2423       .0001       .0052       .0237       .9488       .0223         XEXP       .6393       .0994       .2611       .0002       .0100       .0287       .9410       .0203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              | DESVIO    | MEDIO QU      | AD. PERC                                | . ENTRE  | XCALC E               | XEXP.=                    | . 622      |                                         |
| XCAL       .6536       .1040       .2423       .0001       .0052       .0237       .9488       .0223         XEXP       .6393       .0994       .2611       .0002       .0100       .0287       .9410       .0203         DEEC       .0142       .0045       .0045       .0020       .0020       .0020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12           | CARGA     | (% molar)     | -> Z(1):                                | = 12.860 | Z(2)=                 | 3.900 2                   | 2(3)= 81.  | 430                                     |
| XEXP .6393 .0994 .2611 .0002 .0100 .0287 .9410 .0203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | XCAL         | . 6536    | .1040         | .2423                                   | . 0001   | .0052                 | . 0237                    | . 9488     | . 0223                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | XEXP         | 6393      | . 0994        | 2611                                    | .0002    | . 01 00               | . 0287                    | .9410      | . 0203                                  |
| DABS = .0143 = .0046 .0188 .0001 .0048 .0000 = .0078 = .0020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DABS         | 0143      | 0046          | . 01 88                                 | . 0001   | . 0048                | . 0050                    | 0078       | 0020                                    |
| DESVIO MEDIO QUAD. PERC. ENTRE XCALC E XEXP. = . 932                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              | DESVIO    | MEDIO OU      | AD. PERC                                | ENTRE    | XCALC F               | XEXP. =                   | . 932      |                                         |

| DADOS : SISTEMA QUATERNARIO - 5% EM PESO DE SAL NA CARGA                                             |
|------------------------------------------------------------------------------------------------------|
| TEMP = 50°C MODELO : NRTL (PARAMETROS COMUNS NA CONC. E NA TEMP.)                                    |
| SISTEMA : (1) ACET. DE ETILA (2) ETANOL (3) AGUA (4) AC. DE SODIO                                    |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                |
| 1 3 104 287 1820 264 200                                                                             |
| 2 3 -30,680 311,240 200                                                                              |
| 1 4 325,218 160,605 .200                                                                             |
| 2 4 -229.416 -65.249 .200                                                                            |
| 3 4 -547.118 -1057.732 .200                                                                          |
| TIE FASE ORGANICA FASE AQUOSA                                                                        |
| LINE (1) (2) (3) (4) (1) (2) (3) (4)                                                                 |
| 13 CARGA (% molar) -> Z(1)= 12.930 Z(2)= 6.330 Z(3)= 78.920                                          |
| XCAL . 5515 . 1530 . 2953 . 0002 . 0068 . 0373 . 9325 . 0234                                         |
| XEXP .5324 .1481 .3193 .0002 .0117 .0421 .9245 .0217                                                 |
| DABS01910049 .02400000 .0049 .004800800017                                                           |
| DESVIO MEDIO QUAD. PERC. ENTRE XCALC E XEXP. = 1.160                                                 |
| 14 CARGA (% molar) -> $Z(1) = 14.380$ $Z(2) = 9.260$ $Z(3) = 74.440$                                 |
|                                                                                                      |
| XCAL .4039 .1918 .3418 .0005 .0088 .0510 .9132 .0270<br>XFXP 4376 1892 3722 0010 0133 0536 0077 0254 |
| DABS = 0283 = 0026 0304 0005 0045 0026 = 0055 = 0016                                                 |
|                                                                                                      |
| DESVIO MEDIO QUAD. PERC. ENTRE XCALC E XEXP. = 1.496                                                 |
| 15 CARGA (% molar) -> Z(1)= 14.670 Z(2)= 10.710 Z(3)= 72.630                                         |
| XCAL . 4285 . 2081 . 3626 . 0008 . 0099 . 0581 . 9028 . 0292                                         |
| XEXP . 3892 . 2091 . 4006 . 0011 . 0123 . 0581 . 9025 . 0271                                         |
| DABS0393 .0010 .0380 .0003 .0024 .000000030021                                                       |
| DESVIO MEDIO QUAD. PERC. ENTRE XCALC E XEXP. = 1.936                                                 |
| DESVIO QUADR. MEDIO GLOBAL % MOLAR (Formula Dechema) = 1.517                                         |
|                                                                                                      |
|                                                                                                      |
| IEMP = 30 C 10% EM PESO                                                                              |
| TIE FASE ORGANICA FASE AQUOSA                                                                        |
| LINE (1) (2) (3) (4) (1) (2) (3) (4)                                                                 |
| 1 CARGA (% molar) -> Z(1)= 13.610 Z(2)= 2.100 Z(3)= 80.380                                           |
| XCAL .7456 .0652 .1891 .0001 .0034 .0114 .9377 .0476                                                 |
| XEXP .7975 .0554 .1470 .0001 .0050 .0158 .9333 .0459                                                 |
| DABS .0519009804210000 .0016 .004400440017                                                           |
| DESVIO MEDIO QUAD. PERC. ENTRE XCALC E XEXP. = 2.400                                                 |
| 2 CARGA (% molar) -> Z(1)= 11.860 Z(2)= 3.750 Z(3)= 80.770                                           |
| XCAL . 6494 . 1148 . 2357 . 0002 . 0040 . 0208 . 9312 . 0440                                         |
| XEXP .7130 .0994 .1874 .0002 .0065 .0275 .9240 .0420                                                 |
| DABS .063601540483 .0000 .0025 .006700720020                                                         |
| DESVIO MEDIO QUAD. PERC. ENTRE XCALC E XEXP. = 2.899                                                 |

| DA                          | ADOS : SISTEMA OUATERNARIO - 10% EM PESO DE SAL NA CARGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TE                          | EMP = 30°C MODELO : NRTL (PARAMETROS COMUNS NA CONC. E NA TEMP.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| SI                          | STEMA : (1) ACET. DE ETILA (2) ETANOL (3) AGUA (4) AC. DE SODIO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| PA                          | ARAMETROS (K) I J A(I,J) A(J,I) ALFA(I,J)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                             | 1 2 809.091 -554.465 .200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                             | 1 3 104.287 1820.264 .200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                             | 2 3 -30,680 311,240 .200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                             | 1 4 325.218 160.605 .200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                             | 2 4 -229.416 -65.249 .200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                             | 3 4 -547.118 -1057.732 .200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| TIE                         | FASE ORGANICA FASE AQUOSA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| LINE                        | (1) (2) (3) (4) (1) (2) (3) (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3                           | CARGA (% molar) -> Z(1)= 11.790 Z(2)= 6.000 Z(3)= 78.530                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| XCAL                        | 5502 1655 2839 0005 0052 0325 9160 0463                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| XEXP                        | 6047 1571 2381 0001 0066 0383 9102 0449                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| DARS                        | 0.0545 - 0.084 - 0.458 - 0.004 0.014 0.058 - 0.058 - 0.014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                             | .0014 .0004 .0004 .0004 .0014 .0000 .0000 .0014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 4 <u>94.00.2511.200.000</u> | DESVIO MEDIO QUAD. PERC. ENTRE XCALC E XEXP. = 2.551                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                             | CARGA (% molar) -> Z(1)= 13.410 Z(2)= 7.490 Z(3)= 75.220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| XCAL                        | .5156 .1855 .2982 .0007 .0059 .0377 .9048 .0516                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| XEXP                        | .5602 .1845 .2548 .0005 .0070 .0440 .8996 .0494                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| DABS                        | .0446001004340002 .0011 .006300520022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                             | DESVIO MEDIO QUAD. PERC. ENTRE XCALC E XEXP. = 2.222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 5                           | CARGA (% molar) -> Z(1)= 13.220 Z(2)= 10.020 Z(3)= 72.790                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| XCAL.                       | 4405 2230 3350 0014 0074 0505 8869 0552                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| XEXP                        | 4660 .2319 .3005 .0016 .0078 .0532 .8861 .0529                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| DABS                        | .0255 .00890345 .0002 .0004 .002700080023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Olivera and a second second | DESVIO MEDIO QUAD. PERC. ENIRE XCALC E XEXP. = 1.554                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| TEMP                        | = 40 °C 10% EM PESO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 6                           | CARGA (% molar) -> Z(1)= 13.610 Z(2)= 2.100 Z(3)= 80.380                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| XCAL                        | .7496 .0627 .1875 .0001 .0040 .0120 .9365 .0475                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| XEXP                        | .7777 .0594 .1627 .0002 .0056 .0155 .9332 .0457                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| DABS                        | .028100330248 .0001 .0016 .003500330018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                             | DESVIO MEDIO OLIAD PERC ENTRE XCALC E XEXP = 1 343                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 7                           | CARGA (% molar) -> 7(1) = 11 860 7(2) = 3 750 7(3) = 80 770                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| VCAI                        | 6564 1110 2224 0002 0040 0220 0204 0400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| VEVD                        | 6882 1036 2001 0001 0062 0255 0256 0438                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| DARC                        | -0.001 - 0.001 - 0.001 - 0.001 - 0.002 - 0.000 - 0.001 - 0.002 - 0.000 - 0.001 - 0.000 - 0.001 - 0.000 - 0.001 - 0.000 - 0.001 - 0.000 - 0.001 - 0.000 - 0.001 - 0.000 - 0.001 - 0.000 - 0.001 - 0.000 - 0.001 - 0.000 - 0.001 - 0.000 - 0.001 - 0.000 - 0.001 - 0.000 - 0.001 - 0.000 - 0.001 - 0.000 - 0.001 - 0.000 - 0.001 - 0.000 - 0.001 - 0.000 - 0.001 - 0.000 - 0.001 - 0.000 - 0.001 - 0.000 - 0.001 - 0.000 - 0.001 - 0.000 - 0.001 - 0.000 - 0.001 - 0.000 - 0.001 - 0.000 - 0.001 - 0.000 - 0.001 - 0.000 - 0.000 - 0.001 - 0.000 - 0.001 - 0.000 - 0.001 - 0.000 - 0.001 - 0.000 - 0.001 - 0.000 - 0.001 - 0.000 - 0.001 - 0.000 - 0.001 - 0.000 - 0.000 - 0.001 - 0.000 - 0.001 - 0.000 - 0.000 - 0.001 - 0.000 - 0.001 - 0.000 - 0.000 - 0.001 - 0.000 - 0.000 - 0.001 - 0.000 - 0.000 - 0.001 - 0.000 - 0.000 - 0.001 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.0 |
| DADS                        | .0316007402430001 .0014 .003500380011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                             | DESVIO MEDIO QUAD. PERC. ENTRE XCALC E XEXP. = 1.452                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 8                           | CARGA (% molar) -> Z(1)= 11.890 Z(2)= 5.760 Z(3)= 78.680                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| XCAL                        | .5685 .1562 .2748 .0005 .0060 .0328 .9153 .0458                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| XEXP                        | .5956 .1543 .2497 .0004 .0073 .0363 .9118 .0446                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| DABS                        | .0271001902510001 0013 003500350012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| السبة السمل با البيد        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                             | DESVIO MEDIO QUAD. PERC. ENTRE XCALC E XEXP. = 1.322                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

|                                          | DADOS :          | SISTEMA OL | ATERNART            | 0 - 10           | ZEM PES      | O DE SAL  | NA CARGA           | an a                                                                        |
|------------------------------------------|------------------|------------|---------------------|------------------|--------------|-----------|--------------------|-----------------------------------------------------------------------------------------------------------------|
|                                          | TEMP = 4         | O°C MOL    | DELO : NR           | TL C             | PARAMETR     | OS COMUN  | S NA CONC.         | E NA TEMP                                                                                                       |
|                                          | SISTEMA :        | (1) ACET.  | DE ETIL             | (2) A            | ETANOL       | C3> AGU   | A (4) AC.          | DE SODIO                                                                                                        |
|                                          | PARAMETRO        | S(K) I     | JA                  | CI,J)            | ACJ,         | A CI      | LFACI, J)          |                                                                                                                 |
|                                          |                  | 1          | 2 8                 | 09.091           | -554.        | 465       | . 200              |                                                                                                                 |
|                                          |                  | 1          | 3 1                 | 04.287<br>20 600 | 1820.        | 204       | . 200              |                                                                                                                 |
|                                          |                  | ے<br>۱     | 3 -                 | 30.080           | 311.<br>160  | 605       | 200                |                                                                                                                 |
|                                          |                  | 2          |                     | 29 416           | -65          | 249       | 200                |                                                                                                                 |
|                                          |                  | 3          | 4 -5                | 47.118           | -1057.       | 732       | . 200              |                                                                                                                 |
| TIE                                      |                  | FASE ORG   | ANICA               |                  |              | FASE      | AQUOSA             | ······································                                                                          |
| LINE                                     | <u>(1)</u>       | (2)        | (3)                 | (4)              | (1)          | (2)       | (3)                | (4)                                                                                                             |
| 9                                        | CARGA            | (% molar)  | -> Z(1)=            | 13.410           | ) Z(2)=      | 7.490 2   | Z(3)= 75.2         | 20                                                                                                              |
| XCAL                                     | . 5220           | .1818      | . 2954              | . 0008           | . 0070       | . 0399    | . 901 9            | .0512                                                                                                           |
| XEXP                                     | . 5393           | .1886      | .2713               | . 0008           | . 0067       | .0413     | . 9023             | .0497                                                                                                           |
| DABS                                     | . 0173           | . 0068 -   | .0241 -             | . 0000           | 0003         | . 001 4   | . 0004             | 0015                                                                                                            |
|                                          | DESVIO           | MEDIO QUA  | D. PERC.            | ENTRE            | XCALC E      | XEXP. =   | 1.078              |                                                                                                                 |
| 10                                       | CARGA            | (% molar)  | $\rightarrow$ 2(1)= | 13.220           | ) Z(2)=      | 10.020    | Z(3) = 72.         | 790                                                                                                             |
| XCAL                                     | . 4459           | . 2194     | . 3331              | .0016            | . 0088       | . 0533    | . 8832             | . 0547                                                                                                          |
| XEXP                                     | . 4521           | . 2337     | . 31 31             | . 0011           | . 0082       | . 0527    | . 8866             | . 0525                                                                                                          |
| DABS                                     | . 0062           | .0143 -    | . 0200 -            | . 0005           | 0006         | 0006      | . 0034             | 0022                                                                                                            |
|                                          | DESVIO           | MEDIO QUA  | D. PERC.            | ENTRE            | XCALC E      | XEXP. =   | . 908              |                                                                                                                 |
| TEM                                      | P = 50 °C        | 10% EM     | PESO                |                  |              |           |                    |                                                                                                                 |
| 11                                       | CARGA            | (% molar)  | -> 2(1)=            | 13.610           | ) 2(2)=      | 2.100 2   | 2(3)= 80.3         | 80                                                                                                              |
| XCAL                                     | . 7526           | . 0604     | .1868               | . 0002           | . 0047       | .0126     | . 9353             | . 0474                                                                                                          |
| XEXP                                     | . 7526           | . 0628     | .1844               | . 0002           | . 0054       | . 01 45   | . 9341             | . 0460                                                                                                          |
| DABS                                     | . 0000           | .0024 -    | .0024               | . 0000           | . 0007       | . 0019    | 0012               | 0014                                                                                                            |
|                                          | DESVIO           | MEDIO QUA  | D. PERC.            | ENTRE            | XCALC E      | XEXP. =   | . 154              |                                                                                                                 |
| 12                                       | CARGA            | (% molar)  | -> Z(1)=            | 11.860           | ) Z(2)=      | 3.750 2   | 2(3)= 80.7         | 70                                                                                                              |
| XCAL                                     | . 6626           | .1073      | . 2298              | . 0003           | . 0057       | . 0230    | . 9276             | . 0437                                                                                                          |
| XEXP                                     | . 6628           | .1094      | . 2276              | . 0002           | . 0062       | . 0249    | . 9266             | . 0423                                                                                                          |
| DABS                                     | . 0002           | .0021 -    | . 0022 -            | . 0001           | . 0005       | .0019     | 0010               | 0014                                                                                                            |
|                                          | DESVIO           | MEDIO QUA  | D. PERC.            | ENTRE            | XCALC E      | XEXP. =   | . 1 4 1            | CHIMMER REPORT OF THE OWNER AND THE OWNER OF T |
| 13                                       | CARGA            | (%molar) = | > 2(1)= 1           | 1.890            | Z(2)=5.      | 760 203   | <u>3)</u> ≡ 78.680 |                                                                                                                 |
| XCAL                                     | . 5757           | .1522      | .2716               | . 0006           | . 0071       | . 0345    | . 91 29            | . 0455                                                                                                          |
| XEXP                                     | . 5721           | .1580      | . 2694              | . 0005           | . 0074       | . 0349    | . 91 31            | . 0446                                                                                                          |
| DABS                                     | 0036             | .0058 -    | . 0022 -            | . 0001           | . 0003       | .0004     | . 0002             | 0009                                                                                                            |
|                                          | DESVIO           | MEDIO QUA  | D. PERC.            | ENTRE            | XCALC E      | XEXP. =   | . 257              |                                                                                                                 |
| 14                                       | CARGA (          | (% molar)  | -> Z(1)=            | 13.270           | Z(2)=        | 7.550 2   | 2(3)= 75.3         | 40                                                                                                              |
| XCAL                                     | . 5243           | .1795      | . 2952              | . 001 0          | . 0083       | . 0425    | . 8989             | .0503                                                                                                           |
| XEXP                                     | . 5213           | .1911      | . 2866              | . 001 0          | . 0073       | .0402     | . 9031             | . 0494                                                                                                          |
| DABS                                     | 0030             | .0116 -    | . 0086              | . 0000           | 0010         | 0023      | .0042              | 0009                                                                                                            |
|                                          | DESVI O          | MEDIO OUA  | D. PERC.            | ENTRE            | XCALC E      | XEXP ==   | . 550              |                                                                                                                 |
| 15                                       | CARGA (          | % molar)   | -> 2015=            | 13.120           | Z(2)=        | 9.480 2   | 2(3)= 73.2         | 70                                                                                                              |
| ¥~**                                     | AREA             | 2000       | 3221                | 0017             | <u>01 00</u> | 0800      | 001 2              | 0556                                                                                                            |
| ALAL<br>VEVD                             | , 4004<br>1000   | 2202       | . JEEL .<br>21 26   |                  | , 0100       | 200V .    | . 001E<br>0001     | 0530                                                                                                            |
| DADC                                     | - 4060<br>- 0091 | 0181 -     | 0005 -              | 0003             | - 0015       | - 0030    | 0069               | 0015                                                                                                            |
| LHDO                                     | . 0004           |            |                     |                  |              |           |                    | a the second to a                                                                                               |
| annan an a | DESVIO           | MEDIO QUA  | D. PERC.            | ENTRE            | XCALC E      | XEXP. =   | . 834              | an a                                                                        |
| I                                        | DESVIO QUA       | ADR. MEDIO | GLOBAL S            | % MOLAF          | CFormul      | la Decher | na) = 1.           | 566                                                                                                             |

| <u> </u> | DADOS :  | SISTEMA (  | DUATERNAR    | 10 - 2             | % EM PES | O DE SAL     | NA CARGA   |                                           |
|----------|----------|------------|--------------|--------------------|----------|--------------|------------|-------------------------------------------|
|          | remp =   | 30°C M     | DELO : C     | HEN CI             | PARAMETR | OS COMUNS    | S NA CONC. | E NA TEMP                                 |
| 2        | SISTEMA  | : (1) ACE? | C. DE ETI    | LA (2)             | ETANOL   | (3) AGUA     | A (4) AC.  | DE SODIO                                  |
| F        | PARAMETR | OS (K) I   | J,           | ACI,J)             | ACJ,     | IA CI        | _FA(I,J)   |                                           |
|          |          | 1          | 2 1          | 879.821            | -317     | . 423        | . 300      |                                           |
|          |          | 1          | 3            | 429.321            | 1133.    | . 523<br>006 | . 300      |                                           |
|          |          | <u> </u>   | 3 .          | 113.544<br>SEA 40E | 44C.     | . 980        | . 300      |                                           |
|          |          | 2          | 4 10<br>A 70 | 204.100<br>205 621 | -151     | - 330<br>R07 | . 020      |                                           |
|          |          | 3          | 4 -5         | 960.490            | -815     | . 226        | . 200      |                                           |
| TIE      |          | FASE OF    | GANICA       |                    | <u> </u> | FASE         | AOUOSA     |                                           |
| LINE     | (1)      | (2)        | (3)          | C4)                | (1)      | (2)          | (3)        | (4)                                       |
| 1        | CARGA    | (% molar)  | -> Z(1)=     | = 15.530           | ) Z(2)=  | 2.440 Z      | (3)≖ 81.3  | 00                                        |
| XĈAL     | . 7758   | .0519      | .1723        | . 0000             | . 01 00  | . 0180       | . 9630     | . 0090                                    |
| XEXP     | . 7640   | .0473      | .1886        | . 0001             | . 0133   | . 0219       | .9574      | . 0074                                    |
| DABS     | 0118     | 0046       | .0163        | . 0001             | . 0033   | . 0039       | 0056       | 0016                                      |
|          | DESVI    | O MEDIO QL | JAD. PERC.   | ENTRE              | XCALC E  | XEXP. =      | . 782      |                                           |
| 2        | CARGA    | (% molar)  | -> Z(1)=     | = 13.460           | ) Z(2)=  | 4.010 Z      | (3)= 81.8  | 00                                        |
| XCAL     | . 681 0  | . 0967     | . 2223       | . 0000             | .0117    | . 0274       | .9519      | . 0089                                    |
| XEXP     | . 6922   | . 0797     | . 2279       | . 0002             | . 01 41  | . 0339       | . 9444     | . 0076                                    |
| DABS     | .0112    | 0170       | . 0056       | . 0002             | .0024    | . 0065       | 0075       | 0013                                      |
|          | DESVI    | O MEDIO QL | IAD. PERC.   | ENTRE              | XCALC E  | XEXP. =      | . 830      |                                           |
| 3        | CARGA    | (% molar)  | -> Z(1)=     | : 13.580           | ) Z(2)=  | 6.400 Z      | (3)= 79.2  | B0                                        |
| XCAL     | . 5472   | .1523      | . 3005       | . 0000             | . 01 31  | . 0377       | . 9397     | . 0096                                    |
| XEXP     | . 5792   | .1250      | . 2955       | .0003              | .0168    | . 0502       | . 9250     | . 0080                                    |
| DABS     | . 0320   | 0273       | 0050         | . 0003             | . 0037   | . 0125       | 0147       | 0016                                      |
|          | DESVI    | O MEDIO QU | AD. PERC.    | ENTRE              | XCALC E  | XEXP. =      | 1.653      |                                           |
| 4        | CARGA    | (% molar)  | -> Z(1)=     | : 16.030           | ) Z(2)=  | 8.900 Z      | (3)= 74.2  | 90                                        |
| XCAL     | . 4711   | .1830      | . 3458       | . 0000             | . 0129   | . 0444       | .9312      | .0115                                     |
| XEXP     | . 4951   | .1569      | .3474        | . 0006             | . 0185   | . 0609       | .9100      | .0106                                     |
| DABS     | . 0240   | 0261       | .0016        | . 0006             | . 0056   | . 0165       | 0212       | 0009                                      |
|          | DESVI    | O MEDIO QU | AD. PERC.    | ENTRE              | XCALC E  | XEXP. =      | 1.585      | na su |
| 5        | CARGA    | (% molar)  | -> Z(1)=     | 15.450             | Z(2)=    | 11.140       | Z(3)= 72.9 | 590                                       |
| XCAL     | . 3906   | . 2098     | . 3996       | . 0001             | .0129    | . 0524       | . 9216     | . 01 31                                   |
| XEXP     | . 3979   | .1858      | . 4153       | . 0010             | . 0225   | . 0749       | . 8923     | .0103                                     |
| DABS     | . 0073   | 0240       | .0157        | . 0009             | . 0096   | . 0225       | 0293       | 0028                                      |
|          | DESVI    | O MEDIO QU | AD. PERC.    | ENTRE              | XCALC E  | XEXP. =      | 1.713      |                                           |
| TEMP     | = 40 °(  | C 5% E     | M PESO       |                    |          |              |            |                                           |
| 6        | CARGA    | (% molar)  | -> Z(1)=     | 15.530             | Z(2)=    | 2.440 Z      | (3)= 81.30 | 00                                        |
| XCAL     | .7730    | . 0499     | .1771        | . 0000             | .0117    | .0185        | . 9608     | . 0090                                    |
| XEXP     | . 7409   | . 0514     | . 2076       | . 0001             | .0123    | . 0208       | . 9595     | .0074                                     |
| DABS     | 0321     | .0015      | . 0305       | . 0001             | . 0006   | . 0023       | 0013       | 0016                                      |
|          | DESVI    | D MEDIO QU | AD. PERC.    | ENTRE              | XCALC E  | XEXP. =      | 1.571      |                                           |
| 7        | CARGA    | (% molar)  | -> Z(1)=     | 13.460             | Z(2)=    | 4.010 Z      | (3)= 81.80 | 00                                        |
| XCAL     | . 6821   | . 0925     | . 2254       | . 0000             | . 0138   | . 0285       | . 9488     | . 0089                                    |
| XEXP     | . 6623   | . 0859     | .2516        | . 0002             | . 0139   | . 0318       | . 9466     | .0077                                     |
| DABS     | 0198     | 0066       | . 0262       | . 0002             | . 0001   | . 0033       | 0022       | 0012                                      |
|          | DESVI    | O MEDIO QU | AD. PERC.    | ENTRE              | XCALC E  | XEXP. =      | 1.192      |                                           |

| 1    | DADOS :          | SISTEMA QU | JATERNARI | 0-2°             | % EM PES | O DE SAL       | NA CARGA         |           |
|------|------------------|------------|-----------|------------------|----------|----------------|------------------|-----------|
|      | $\Gamma EMP = 4$ | O°C MOI    | DELO : CH | EN CI            | PARAMETR | OS COMUNS      | S NA CONC.       | E NA TEMP |
|      | SISIEMA :        | CID AGET.  | DE ETTL   | A (2)<br>A (2)   | ETANOL   | CB) AGU        | A (4) AC.        | DE SODIO  |
| r    | -ARAMEIRO        |            | A         | (1, J)           | ACJ,     |                | <u>200</u>       |           |
|      |                  | 1          | 2 0       | 79.001<br>20 321 | - 317    | . 460<br>Roa   | . 300            |           |
|      |                  | 2          | 3 4       | 13 544           | 442      | 025<br>026     | 300              |           |
|      |                  | 1          | 4 12      | 54.185           | 3478     | .900           | . 020            |           |
|      |                  | 2          | 4 79      | 05.621           | -151     | . 597          | . 050            | ,         |
|      |                  | З          | 4 -59     | 60.490           | -815     | . 226          | . 200            |           |
| TIE  |                  | FASE ORG   | SANI CA   | *******          |          | FASE           | AQUOSA           |           |
| LINE | (1)              | (2)        | (3)       | (4)              | C10      | (2)            | (3)              | (4)       |
| 8    | CARGA            | (% molar)  | -> Z(1)=  | 13.580           | ) Z(2)=  | 6.400 2        | 2(3)= 79.2       | :80       |
| XCAL | . 5437           | .1474      | . 3089    | . 0000           | . 0152   | . 0394         | . 9358           | . 0096    |
| XEXP | . 5471           | .1297      | . 3230    | . 0002           | . 0169   | .0469          | .9277            | . 0085    |
| DABS | . 0034           | 0177       | . 01 41   | . 0002           | . 0017   | . 0075         | 0081             | 0011      |
|      | DESVIO           | MEDIO QUA  | D. PERC.  | ENTRE            | XCALC E  | XEXP. =        | . 900            |           |
| 9    | CARGA (          | (% molar)  | -> Z(1)=  | 16.030           | ) Z(2)=  | 8.900 Z        | (3)= 74.2        | 90        |
| XCAL | . 4658           | . 1780     | . 3562    | . 0000           | . 0151   | . 0467         | . 9266           | .0115     |
| XEXP | . 4633           | .1578      | . 3779    | . 001 0          | . 0187   | . 0583         | . 91 26          | . 01 04   |
| DABS | 0025             | 0202       | .0217     | 0010             | . 0036   | .0116          | 0140             | 0011      |
|      | DESVIO           | MEDIO QUA  | D. PERC.  | ENTRE            | XCALC E  | XEXP. =        | 1.239            |           |
| 10   | CARGA (          | (% molar)  | -> Z(1)=  | 15.450           | Z(2)=    | 11.140         | Z(3)= 72.        | 590       |
| XCAL | . 3817           | . 2035     | 4148      | 0001             | . 0150   | . 0548         | . 9170           | . 01 32   |
| XEXP | . 3734           | .1843      | . 4401    | 2200             | . 0219   | . 0702         | . 8975           | . 01 04   |
| DABS | 0083             | 0192       | . 0253    | 0021             | . 0069   | .0154          | 0195             | 0028      |
|      | DECVIA           | MEDIA OUM  |           | ENTER            | VCALC E  | VEVD -         | 1 101            |           |
|      | UES VI U         | MEDIO QUA  | D. FERG.  | ENIKE            | ACALC C  | ALAF. ~        | T . 40T          |           |
| TEMP | ' <b>=</b> 50 °C | 2% EM      | PESO      |                  |          |                |                  |           |
|      | CARGA (          | (% molar)  | -> Z(1)=  | 15.530           | Z(2)=    | <u>2.440 Z</u> | <u>(3)= 81.3</u> | 00        |
| XCAL | . 7693           | .0482      | .1825 .   | 0000             | . 0136   | .0189          | . 9585           | . 0090    |
| XEXP | .7124            | . 0547     | . 2326 .  | 0003             | .0118    | .0193          | .9613            | , 0076    |
| DABS | 0569             | . 0065     | .0501 .   | 0003             | 0018     | . 0004         | . 0028           | 0014      |
|      | DESVI O          | MEDIO QUA  | D. PERC.  | ENTRE            | XCALC E  | XEXP. =        | 2.694            |           |
| 12   | CARGA C          | % molar)   | -> Z(1)=  | 13.460           | Z(2)=    | 4.010 Z        | (3)= 81.8        | 00        |
| XCAL | .6804            | . 0889     | . 2307 .  | 0000             | .0159    | . 0295         | . 9457           | . 0089    |
| XEXP | . 6291           | . 0914     | . 2793 .  | 2000             | .0136    | . 0303         | . 9485           | . 0076    |
| DABS | 0513             | . 0025     | . 0486 .  | 2000             | 0023     | . 0008         | . 0028           | 0013      |
|      | DESVIO           | MEDIO QUA  | D. PERC.  | ENTRE            | XCALC E  | XEXP. =        | 2.504            |           |
| 13   | CARGA C          | % molar)   | -> Z(1)=  | 13.580           | Z(2)=    | 6.400 Z        | (3)= 79.2        | 80        |
| XCAL | . 5361           | .1428      | . 3211    | 0000             | . 0175   | . 0407         | . 9322           | . 0096    |
| XEXP | .5049            | .1328      | . 3618    | 0005             | . 0170   | . 0453         | . 9298           | .0079     |
| DABS | 0312             | 0100       | .0407 .   | 0005             | 0005     | . 0046         | 0024             | 0017      |
|      | DESVI O          | MEDIO OUA  | D. PERC.  | ENTRE            | XCALC E  | XEXP. =        | 1.858            |           |

| DADOS : SISTEMA QUATERNARIO - 2% EM PESO DE SAL NA CARGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ******   |
| TEMP = 50°C MODELO : CHEN CPARAMETROS COMUNS NA CONC. E NA TEM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MP       |
| SISTEMA : (1) ACET. DE ETILA (2) ETANOL (3) AGUA (4) AC. DE SODIO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <u>ر</u> |
| $\frac{1}{1} = \frac{1}{2} = \frac{1}$ |          |
| 1 - 3 - 429 - 321 - 517 - 425 - 500 - 517 - 425 - 500 - 517 - 425 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |
| 2 3 113 544 442 986 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |
| 1 4 1254.185 3478.996 .020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |
| 2 4 7905.621 -151.597 .050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |
| 3 4 -5960.490 -815.226 .200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |
| TIE FASE ORGANICA FASE AQUOSA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |
| LINE (1) (2) (3) (4) (1) (2) (3) (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |
| 14 CARGA (% molar) -> Z(1)= 16.030 Z(2)= 8.900 Z(3)= 74.290                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |
| XCAL . 4581 . 1730 . 3689 . 0000 . 0174 . 0487 . 9223 . 0115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |
| XEXP . 4397 . 1593 . 4003 . 0007 . 0191 . 0552 . 9151 . 0106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |
| DABS01840137 .0314 .0007 .0017 .006500720009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |
| DESVIO MEDIO QUAD. PERC. ENTRE XCALC E XEXP. = 1.417                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |
| 15 CARGA (% molar) -> Z(1)= 15.450 Z(2)= 11.140 Z(3)= 72.590                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |
| XCAL . 3705 . 1970 . 4324 . 0001 . 0172 . 0570 . 9125 . 0134                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |
| XEXP . 3583 . 1853 . 4541 . 0023 . 0202 . 0668 . 9028 . 0102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |
| DABS01220117 .0217 .0022 .0030 .009800970032                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |
| DESVIO MEDIO QUAD. PERC. ENTRE XCALC E XEXP. = 1.103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |
| DESVIO QUADR. MEDIO GLOBAL % MOLAR (Formula Dechema) = 1.594                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |
| TEMP = 30 °C 5% EM PESO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |
| 1 CARGA (%molar) Z(1)= 14.500 Z(2)= 2.230 Z(3)= 81.410                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |
| 1       CARGA (%molar)       Z(1)= 14.500       Z(2)= 2.230       Z(3)= 81.410         XCAL       7898       0497       1604       0000       0055       0164       9555       0226                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| 1       CARGA (%molar)       Z(1)= 14.500       Z(2)= 2.230       Z(3)= 81.410         XCAL       .7898       .0497       .1604       .0000       .0055       .0164       .9555       .0226         XEXP       .7845       .0479       .1675       .0001       .0091       .0195       .9503       .0211                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
| 1       CARGA (%molar)       Z(1)= 14.500       Z(2)= 2.230       Z(3)= 81.410         XCAL       .7898       .0497       .1604       .0000       .0055       .0164       .9555       .0226         XEXP       .7845       .0479       .1675       .0001       .0091       .0195       .9503       .0211         DABS      0053      0018       .0071       .0001       .0036       .0031      0052      0015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ****     |
| 1       CARGA (%molar)       Z(1)= 14.500       Z(2)= 2.230       Z(3)= 81.410         XCAL       .7898       .0497       .1604       .0000       .0055       .0164       .9555       .0226         XEXP       .7845       .0479       .1675       .0001       .0091       .0195       .9503       .0211         DABS      0053      0018       .0071       .0001       .0036       .0031      0052      0015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |
| 1       CARGA (%molar)       Z(1)= 14.500       Z(2)= 2.230       Z(3)= 81.410         XCAL       .7898       .0497       .1604       .0000       .0055       .0164       .9555       .0226         XEXP       .7845       .0479       .1675       .0001       .0091       .0195       .9503       .0211         DABS      0053      0018       .0071       .0001       .0036       .0031      0052      0015         DESVIO       MEDIO       QUAD.       PERC.       ENTRE       XCALC       E       XEXP.=       .410                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
| 1       CARGA (%molar)       Z(1)= 14.500       Z(2)= 2.230       Z(3)= 81.410         XCAL       .7898       .0497       .1604       .0000       .0055       .0164       .9555       .0226         XEXP       .7845       .0479       .1675       .0001       .0091       .0195       .9503       .0211         DABS      0053      0018       .0071       .0001       .0036       .0031      0052      0015         DESVIO       MEDIO       QUAD.       PERC.       ENTRE XCALC E XEXP.=       .410         2       CARGA (% molar)       -> Z(1)= 12.860       Z(2)= 3.900       Z(3)= 81.430                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |
| 1       CARGA (%molar)       Z(1)= 14.500       Z(2)= 2.230       Z(3)= 81.410         XCAL       .7898       .0497       .1604       .0000       .0055       .0164       .9555       .0226         XEXP       .7845       .0479       .1675       .0001       .0091       .0195       .9503       .0211         DABS      0053      0018       .0071       .0001       .0036       .0031      0052      0015         DESVIO       MEDIO       QUAD.       PERC.       ENTRE       XCALC       E       XEXP.=       .410         2       CARGA (% molar)       ->       Z(1)= 12.860       Z(2)= 3.900       Z(3)= 81.430         XCAL       .6903       .0993       .2104       .0000       .0065       .0259       .9456       .0220         XCAL       .6903       .0993       .2104       .0000       .0065       .0259       .9456       .0220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| 1       CARGA (%molar)       Z(1)= 14.500       Z(2)= 2.230       Z(3)= 81.410         XCAL       .7898       .0497       .1604       .0000       .0055       .0164       .9555       .0226         XEXP       .7845       .0479       .1675       .0001       .0091       .0195       .9503       .0211         DABS      0053      0018       .0071       .0001       .0036       .0031      0052      0015         DESVIO       MEDIO       QUAD.       PERC.       ENTRE       XCALC       E       XEXP.=       .410         2       CARGA       (% molar)       ->       Z(1)=       12.860       Z(2)= 3.900       Z(3)=       81.430         XCAL       .6903       .0993       .2104       .0000       .0065       .0259       .9456       .0220         XEXP       .7013       .0878       .2107       .0002       .0101       .0327       .9374       .0198         DABS       .0116       .0023       .0026       .0026       .0026       .0026       .0026       .0022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |
| 1       CARGA (%molar)       Z(1)= 14.500       Z(2)= 2.230       Z(3)= 81.410         XCAL       .7898       .0497       .1604       .0000       .0055       .0164       .9555       .0226         XEXP       .7845       .0479       .1675       .0001       .0091       .0195       .9503       .0211         DABS      0053      0018       .0071       .0001       .0036       .0031      0052      0015         DESVIO       MEDIO       QUAD       PERC.       ENTRE       XCALC       E       XEXP.=       .410         2       CARGA (% molar)       ->       Z(1)=       12.860       Z(2)=       3.900       Z(3)=       81.430         XCAL       .6903       .0993       .2104       .0000       .0065       .0259       .9456       .0220         XEXP       .7013       .0878       .2107       .0002       .0101       .0327       .9374       .0198         DABS       .0110      0115       .0003       .0022       .0036       .0068      0082      0022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |
| 1       CARGA (%molar)       Z(1)= 14.500       Z(2)= 2.230       Z(3)= 81.410         XCAL       .7898       .0497       .1604       .0000       .0055       .0164       .9555       .0226         XEXP       .7845       .0479       .1675       .0001       .0091       .0195       .9503       .0211         DABS      0053      0018       .0071       .0001       .0036       .0031      0052      0015         DESVIO       MEDIO       QUAD.       PERC.       ENTRE       XCALC       E       XEXP.=       .410         2       CARGA (% molar)       ->       Z(1)= 12.860       Z(2)= 3.900       Z(3)= 81.430         XCAL       .6903       .0993       .2104       .0000       .0065       .0259       .9456       .0220         XEXP       .7013       .0878       .2107       .0002       .0101       .0327       .9374       .0198         DABS       .0110      0115       .0003       .0002       .0036       .0068      0082      0022         DESVIO       MEDIO       QUAD.       PERC.       ENTRE       XCALC E       XEXP.=       .694                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |
| 1       CARGA (%molar)       Z(1)= 14.500       Z(2)= 2.230       Z(3)= 81.410         XCAL       .7898       .0497       .1604       .0000       .0055       .0164       .9555       .0226         XEXP       .7845       .0479       .1675       .0001       .0091       .0195       .9503       .0211         DABS      0053      0018       .0071       .0001       .0036       .0031      0052      0015         DESVIO MEDIO QUAD.       PERC.       ENTRE XCALC E XEXP.=       .410         2       CARGA (% molar) -> Z(1)= 12.860       Z(2)= 3.900       Z(3)= 81.430         XCAL       .6903       .0993       .2104       .0000       .0065       .0259       .9456       .0220         XEXP       .7013       .0878       .2107       .0002       .0101       .0327       .9374       .0198         DABS       .0110      0115       .0003       .0002       .0036       .0068       .0082       .0022         DESVIO MEDIO QUAD.       PERC.       ENTRE XCALC E XEXP.=       .694       .0022       .0036       .0068       .0082       .0022         DESVIO MEDIO QUAD.       PERC.       ENTRE XCALC E XEXP.=       .694       .002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
| 1       CARGA (%molar)       Z(1)= 14.500       Z(2)= 2.230       Z(3)= 81.410         XCAL       .7898       .0497       .1604       .0000       .0055       .0164       .9555       .0226         XEXP       .7845       .0479       .1675       .0001       .0091       .0195       .9503       .0211         DABS      0053      0018       .0071       .0001       .0036       .0031      0052      0015         DESVIO       MEDIO       QUAD       PERC.       ENTRE XCALC E       XEXP.=       .410         2       CARGA (% molar)       ->       Z(1)=       12.860       Z(2)= 3.900       Z(3)= 81.430         XCAL       .6903       .0993       .2104       .0000       .00655       .0259       .9456       .0220         XEXP       .7013       .0878       .2107       .0002       .0101       .0327       .9374       .0198         DABS       .0110      0115       .0003       .0002       .0036       .0068       .0022       .0022         DESVIO       MEDIO QUAD       PERC.       ENTRE XCALC E       XEXP.=       .694         3       CARGA (% molar)       -> Z(1)=       12.930       Z(2)= <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |
| 1       CARGA (%molar)       Z(1)= 14.500       Z(2)= 2.230       Z(3)= 81.410         XCAL       .7898       .0497       .1604       .0000       .0055       .0164       .9555       .0226         XEXP       .7845       .0479       .1675       .0001       .0091       .0195       .9503       .0211         DABS      0053      0018       .0071       .0001       .0036       .0031      0052      0015         DESVIO       MEDIO       QUAD.       PERC.       ENTRE       XCALC       E       XEXP.=       .410         2       CARGA (% molar)       ->       Z(1)=       12.860       Z(2)= 3.900       Z(3)= 81.430         XCAL       .6903       .0993       .2104       .0000       .0065       .0259       .9456       .0220         XEXP       .7013       .0878       .2107       .0002       .0101       .0327       .9374       .0198         DABS       .0110      0115       .0003       .0002       .0036       .0068       .0022       .0022         DESVIO       MEDIO       QUAD.       PERC.       ENTRE       XCALC E       XEXP.=       .694         3       CARGA (% molar)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |
| 1       CARGA (%molar)       Z(1)= 14.500       Z(2)= 2.230       Z(3)= 81.410         XCAL       .7898       .0497       .1604       .0000       .0055       .0164       .9555       .0226         XEXP       .7845       .0479       .1675       .0001       .0091       .0195       .9503       .0211         DABS      0053      0018       .0071       .0001       .0036       .0031      0052      0015         DESVIO       MEDIO QUAD.       PERC.       ENTRE XCALC E XEXP.=       .410         2       CARGA (% molar)       -> Z(1)= 12.860       Z(2)= 3.900       Z(3)= 81.430         XCAL       .6903       .0993       .2104       .0000       .0065       .0259       .9456       .0220         XEXP       .7013       .0878       .2107       .0002       .0101       .0327       .9374       .0198         DABS       .0110      0115       .0003       .0002       .0036       .0068       .0082       .0022         DESVIO MEDIO QUAD.       PERC.       ENTRE XCALC E XEXP.=       .694       .023       .0231       .0235       .0233         ACARGA (% molar)       -> Z(1)= 12.930       Z(2)= 6.330       Z(3)= 78.920                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |
| 1       CARGA (%molar)       Z(1)= 14.500       Z(2)= 2.230       Z(3)= 81.410         XCAL       .7898       .0497       .1604       .0000       .0055       .0164       .9555       .0226         XEXP       .7845       .0479       .1675       .0001       .0091       .0195       .9503       .0211         DABS      0053      0018       .0071       .0001       .0036       .0031      0052      0015         DESVIO MEDIO QUAD.       PERC.       ENTRE XCALC E XEXP.=       .410       .410         2       CARGA (% molar)       -> Z(1)= 12.860       Z(2)= 3.900       Z(3)= 81.430         XCAL       .6903       .0993       .2104       .0000       .0065       .0259       .9456       .0220         XEXP       .7013       .0878       .2107       .0002       .0101       .0327       .9374       .0198         DABS       .0110      0115       .0003       .0002       .0036       .0068       .0082       .0022         DESVIO MEDIO QUAD.       PERC.       ENTRE XCALC E XEXP.=       .694       .0235       .0233         XCAL       .5626       .1599       .2775       .0000       .0071       .0361       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |
| 1       CARGA (%molar)       Z(1)= 14.500       Z(2)= 2.230       Z(3)= 81.410         XCAL       .7898       .0497       .1604       .0000       .0055       .0164       .9555       .0226         XEXP       .7845       .0479       .1675       .0001       .0091       .0195       .9503       .0211         DABS      0053      0018       .0071       .0001       .0036       .0031      0052      0015         DESVIO       MEDIO       QUAD.       PERC.       ENTRE       XCALC       E       XEXP.=       .410         2       CARGA (% molar)       ->       Z(1)=       12.860       Z(2)= 3.900       Z(3)= 81.430         XCAL       .6903       .0993       .2104       .0000       .0065       .0259       .9456       .0220         XEXP       .7013       .0878       .2107       .0002       .0101       .0327       .9374       .0198         DABS       .0110      0115       .0003       .0002       .0036       .0068       .0082       .0022         XEXP       .7613       .0878       .2107       .0002       .0101       .0327       .9374       .0198         DABS       .01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
| 1       CARGA (%molar)       Z(1)= 14.500       Z(2)= 2.230       Z(3)= 81.410         XCAL       .7898       .0497       .1604       .0000       .0055       .0164       .9555       .0226         XEXP       .7845       .0479       .1675       .0001       .0091       .0195       .9503       .0211         DABS      0053      0018       .0071       .0001       .0036       .0031      0052      0015         DESVIO       MEDIO       QUAD       PERC.       ENTRE       XCALC       E       XEXP.=       .410         2       CARGA (% molar)       ->       Z(1)=       12.860       Z(2)= 3.900       Z(3)= 81.430         XCAL       .6903       .0993       .2104       .0000       .0065       .0259       .9456       .0220         XEXP       .7013       .0878       .2107       .0002       .0101       .0327       .9374       .0198         DABS       .0110      0115       .0003       .0002       .0036       .0068      0022         DESVIO       MEDIO QUAD       PERC.       ENTRE XCALC E XEXP.=       .694       .0233       .0233       .0233         XCAL       .5626       .15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |
| 1       CARGA (%molar)       Z(1)= 14.500       Z(2)= 2.230       Z(3)= 81.410         XCAL       .7898       .0497       .1604       .0000       .0055       .0164       .9555       .0226         XEXP       .7845       .0479       .1675       .0001       .0091       .0195       .9503       .0211         DABS      0053      0018       .0071       .0001       .0036       .0031      0052      0015         DESVIO       MEDIO       QUAD       PERC       ENTRE       XCALC       E       XEXP.=       .410         2       CARGA (% molar)       ->       Z(1)=       12.860       Z(2)=       3.900       Z(3)=       81.430         XCAL       .6903       .0993       .2104       .0000       .00655       .0259       .9456       .0220         XEXP       .7013       .0878       .2107       .0002       .0101       .0327       .9374       .0198         DABS       .0110      0115       .0003       .0002       .0036       .0068       .0082       .0022         DESVIO       MEDIO       QUAD       PERC       ENTRE       XCALC       E       XEXP.=       .694 <td< td=""><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |

|                      | DADOS :         | SISTEMA       | QUATERNA                                | <u> 710 - 55</u> | K EM PESC                              | DE SAL NA CARGA  |                 |
|----------------------|-----------------|---------------|-----------------------------------------|------------------|----------------------------------------|------------------|-----------------|
|                      |                 | <u>30°C M</u> | ODELO : (                               | CHEN CI          | PARAMETRO                              | S COMUNS NA CONC | E NA TEMP       |
| <br>E                | DADAMETD        | CIJ ACE       | I. DE EI                                | ILA (2)          | ETANOL                                 | CEST AGUA (4) AC | . DE SODIO      |
| 2                    | MICHIGIN        |               | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 870 821          |                                        | <u>A23 200</u>   |                 |
|                      |                 | 1             | 3                                       | 429.321          | 1133.                                  | 523 . 300        |                 |
|                      |                 | 2             | 3                                       | 113.544          | 442.                                   | 986 . 300        |                 |
|                      |                 | 1             | 4 1                                     | 254.185          | 3478.                                  | 996 . 020        |                 |
|                      |                 | 5             | 4 7                                     | 7905.621         | -151.                                  | 597 .050         |                 |
|                      |                 | 3             | 4 -5                                    | 5960.490         | -815.                                  | 226 . 200        |                 |
| TIE                  | C 4 3           | FASE O        | RGANICA                                 | ~                | ~ ~ ~ ~                                | FASE AQUOSA      | ~ ~ ~           |
| LINE                 |                 |               | (3)                                     | (4)              | <u> </u>                               |                  | (4)             |
| 5                    | CARGA           | (% molar]     | ) -> Z(1)                               | = 14.670         | <u> </u>                               | 10.710 Z(3)= 72  | . 630           |
| XCAL                 | . 4361          | . 2249        | . 3389                                  | . 0001           | . 0065                                 | . 0501 . 91 39   | . 0295          |
| XEXP                 | . 4341          | . 2065        | . 3577                                  | . 0017           | . 01 33                                | .0649 .8953      | . 0265          |
| DABS                 | 0020            | 0184          | . 0188                                  | .0016            | . 0068                                 | .01480186        | 0030            |
|                      | DESVI           | O MEDIO QU    | JAD. PERC                               | . ENTRE          | XCALC E                                | XEXP. = 1.284    |                 |
| TEMP                 | = 40 °          | C 5% B        | EM PESO                                 |                  |                                        |                  |                 |
| 6                    | CARGA           | (% molar)     | ) -> Z(1)                               | <b>=</b> 14.500  | Z(2)= ;                                | 2.230 Z(3)= 81.4 | 410             |
| XCAL                 | . 7864          | . 0480        | . 1656                                  | . 0000           | . 0065                                 | . 0168 . 9541    | . 0226          |
| XEXP                 | . 7624          | . 0501        | .1873                                   | . 0002           | . 0087                                 | .0175 .9518      | . 0220          |
| DABS                 | 0240            | . 0021        | .0217                                   | . 0002           | . 0022                                 | .00070023        | 0006            |
|                      | DESVI           | O MEDIO QU    | JAD. PERC                               | ENTRE            | XCALC E                                | XEXP. = 1.151    |                 |
| 7                    | CARGA           | (% molar)     | ) -> Z(1)                               | = 12.860         | Z(2)= 3                                | 3.900 Z(3)= 81.4 | 130             |
| XCAL.                | 6905            | 0953          | 2142                                    | 0000             | 0078                                   | 0269 9434        | 0220            |
| XEXP                 | . 6716          | . 0933        | . 2349                                  | . 0002           | . 0097                                 | . 0304 . 9396    | . 0203          |
| DABS                 | 0189            | 0020          | . 0207                                  | . 0002           | .0019                                  | .00350038        | 0017            |
|                      | DESVI           | O MEDIO QU    | JAD. PERC                               | . ENTRE          | XCALC E                                | XEXP. = 1.015    |                 |
| 8                    | CARGA           | (% molar)     | -> Z(1)                                 | = 12.930         | Z(2)= (                                | 6.330 Z(3)= 78.9 | 950             |
| VCAI                 | <br>            | 1 840         | 2024                                    | 0000             |                                        |                  |                 |
| VEVD                 | - 5029<br>RRAR  | 1447          | . 2024<br>2021                          | . 0000           | . 0085                                 | .0376 .9304      | . 0255          |
| DABS                 | 0064            | 01 01         | 0160                                    | . 0004           | . 0029                                 | .0069 - 0077     | - 0021          |
|                      | DESVI           |               |                                         | ' FNTRF          | YCALC E                                | XFXP = 806       | 2               |
| 9                    | CARGA           | (% molar)     | -> 2(1)                                 | = 14.380         | 7(2)= <sup>(</sup>                     | 9.260 7(3)= 74.4 | 140             |
| YCAI                 | 1682            | 2002          |                                         |                  | 0081                                   | 0476 0171        | 0272            |
| XEXP                 | . 4576          | . 1.886       | . 3531                                  | 0007             | 01 29                                  | .0556 .9060      | 0255            |
| DABS                 | 0106            | 0116          | .0216                                   | . 0006           | . 0048                                 | .00800111        | 0017            |
|                      | DESVI           | MEDIO OL      |                                         | ENTRE            | XCALC E                                | XEXP = 1 077     |                 |
| 10                   | CARGA           | (% molar)     | -> Z(1);                                | = 14.670         | Z(2)= 1                                | 10.710 Z(3)= 72. | 630             |
| ¥ (~ 1.1             | 1001            | 21 02         | 3405                                    |                  | <u> </u>                               | 0525 0102        | 0205            |
| VEND                 | . 4361<br>A1 00 | 2057          | 2920                                    | 0001             | . 0070                                 | 0613 0070        | 0274            |
| DABS                 | 0213            | 01.36         | . 0336                                  | . 0013           | . 0057                                 | .0088 - 0124     | 0021            |
| and a subject topolo |                 |               |                                         | · · · · · · ·    | ، سید سر بید و<br>- سبب عبد و د بید جد |                  | a naar waarbaha |
|                      | DESVIC          | MEDIO QU      | IAD. PERC                               | . ENTRE          | XCALC E                                | XEXP. = 1.594    |                 |

|                                                              | DADOS :  | SISTE   | MA OL    | ATERNA  | RIO -  | 5     | & EM PES    | O DE            | SAL 1          | VA CARGA  |                                                                                                                 |
|--------------------------------------------------------------|----------|---------|----------|---------|--------|-------|-------------|-----------------|----------------|-----------|-----------------------------------------------------------------------------------------------------------------|
|                                                              | TEMP 🚥   | 50°C    | MOE      | ELO :   | CHEN   | CI    | PARAMETR    |                 | OMUNS          | NA CONC.  | E NA TEMP                                                                                                       |
|                                                              | SISTEMA  | : (1)   | ACET.    | DE EI   | ILA    | (2)   | ETANOL      | (3)             | AGUA           | (4) AC.   | DE SODIO                                                                                                        |
|                                                              | PARAMETR | CKS (K) | <u> </u> | J       | ACI,   | JD    | ACJ,        | I)              | ALI            | FACI, J)  |                                                                                                                 |
|                                                              |          |         | 1        | 2       | 879.   | 821   | -317        | . 423           | •              | 300       |                                                                                                                 |
|                                                              |          |         | 2        | చ<br>ం  | 429.   | 321   | 1133        | . 523           |                | 300       |                                                                                                                 |
|                                                              |          |         | <u>د</u> | 3       | 113.   | 108   | 44C<br>2170 | 006             | •              | 300       |                                                                                                                 |
|                                                              |          |         | à        | -#<br>  | 7905   | 621   | -151        | . 990<br>507    | •              | 020       |                                                                                                                 |
|                                                              |          |         | 3        | 4 -     | 5960.  | 490   | -815        | . 226           | •              | 200       |                                                                                                                 |
| TIE                                                          |          | FAS     | E ORG    | ANICA   |        |       |             | <u> </u>        | ASE A          | AQUOSA    |                                                                                                                 |
| LINE                                                         | (1)      | (2      | >        | (3)     | (4     | 2     | (1)         |                 | 22             | (3)       | (4)                                                                                                             |
| 11                                                           | CARGA    | C% mo   | lar)     | -> Z(1) | )= 14  | . 500 | ) Z(2)=     | 2.23            | 10 ZC          | 3)= 81.4  | 10                                                                                                              |
| XCAL                                                         | . 7826   | . 04    | 64       | .1710   | . 00   | 00    | . 0077      | . 0             | )171           | . 9526    | . 0226                                                                                                          |
| XEXP                                                         | . 7333   | . 05    | 40       | . 21 26 | . 00   | 01    | . 0083      | . 0             | )169           | . 9529    | . 0219                                                                                                          |
| DABS                                                         | 0493     | . 00    | 76       | . 0416  | . 00   | 01    | . 0006      | C               | 2000           | . 0003    | 0007                                                                                                            |
| THE PERSON AND ADDRESS OF                                    | DESVI    | O MEDI  | O QUA    | D. PER  | C. EN  | TRE   | XCALC E     | XEXF            | ) <u>-</u> 222 | 2.297     | 1858 (1990) - The State of Sta |
| 12                                                           | CARGA (  | % mola  | r) ->    | Z(1)=   | 12.8   | 60    | Z(2)= 3.    | 900             | Z(3)           | = 81.430  |                                                                                                                 |
| XCAL                                                         | . 6897   | . 09    | 17       | . 21 86 | . 00   | 00    | . 0091      | . C             | 278            | .9412     | . 0220                                                                                                          |
| XEXP                                                         | . 6393   | . 09    | 94       | . 2611  | . 00   | 02    | . 01 00     | . C             | 287            | . 9410    | . 0203                                                                                                          |
| DABS                                                         | 0504     | . 00    | 77       | . 0425  | . 00   | 02    | . 0009      | . 0             | 009            | 0002      | 0017                                                                                                            |
|                                                              | DESVI    | O MEDI  | O QUA    | D. PER  | C. EN  | TRE   | XCALC E     | XEXF            | >_ ===         | 2.346     |                                                                                                                 |
| 13                                                           | CARGA    | C% mo.  | lar) ·   | -> ZC1  | )= 12. | . 930 | Z(2)=       | 6.33            | o zc           | 3)= 78.9  | 20                                                                                                              |
| XCAL                                                         | . 5613   | .15     | 00       | . 2887  | . 00   | 00    | . 01 00     | . 0             | 393            | . 9275    | . 0232                                                                                                          |
| XEXP                                                         | . 5324   | .14     | 81       | . 31 93 | . 00   | 20    | .0117       | . 0             | 421            | . 9245    | . 0217                                                                                                          |
| DABS                                                         | 0289     | 00      | 19       | . 0306  | . 00   | 02    | .0017       | . C             | 8200           | 0030      | 0015                                                                                                            |
|                                                              | DESVI    | O MEDI  | O QUAI   | D. PER  | C. EN  | TRE   | XCALC E     | XEXF            | , <b>z</b>     | 1.498     | www.commashire.com                                                                                              |
| 14                                                           | CARGA    | C% mo.  | lar) ·   | -> Z(1] | )= 14. | . 380 | Z(2)=       | 9.26            | <u>o zc</u>    | 3)= 74.4  | 40                                                                                                              |
| XCAL                                                         | . 4641   | .19     | 51       | . 3408  | . 00   | 01    | . 0095      | . C             | 496            | . 91 36   | .0272                                                                                                           |
| XEXP                                                         | - 4376   | .18     | 92       | . 3722  | . 00;  | 10    | . 0133      | . C             | 536            | . 9077    | . 0254                                                                                                          |
| DABS                                                         | 0265     | 00      | 39 .     | 0314    | . 00   | 09    | . 0038      | . C             | 040            | 0059      | 0018                                                                                                            |
|                                                              | DESVI    | O MEDIO | D QUAI   | D. PER  | C. EN  | TRE   | XCALC E     | XEXF            |                | 1.496     | anna bhainn fac ann an an ann an ann an ann ann ann a                                                           |
| 15                                                           | CARGA    | C% mo.  | lar) -   | -> Z(1) | )= 14. | 670   | Z(2)=       | 10.7            | 10 Z           | (3)= 72.1 | 630                                                                                                             |
| XCAL                                                         | . 4271   | . 21:   | 38 .     | 3590    | . 00   | 01    | . 0092      | . C             | 547            | . 9065    | . 0296                                                                                                          |
| XEXP                                                         | . 3892   | . 209   | 91 ,     | 4006    | . 00;  | 11    | .0123       | . C             | 581            | . 9025    | . 0271                                                                                                          |
| DABS                                                         | 0379     | 00      | 47.      | 0416    | . 00:  | 10    | . 0031      | . C             | 034            | 0040      | 0025                                                                                                            |
|                                                              | DESVI    | O MEDIO | O QUAI   | D. PER  | C. EN  | TRE   | XCALC E     | XEXP            | `_ <b>m</b> a  | 2.010     |                                                                                                                 |
| DESVIO QUADR. MEDIO GLOBAL % MOLAR (Formula Dechema) = 1.443 |          |         |          |         |        |       |             |                 |                |           |                                                                                                                 |
| TEMP = 30 °C 10% EM PESO                                     |          |         |          |         |        |       |             |                 |                |           |                                                                                                                 |
| 1                                                            | CARGA    | C% mo.  | lar) -   | -> Z(1) | )= 13. | 610   | Z(2)=       | 2.10            | 0 ZC           | 3)= 80.3  | B0                                                                                                              |
| XCAL                                                         | . 81 59  | . 04'   | 71.      | 1370    | . 00   | 00    | .0024       | . C             | 159            | . 9349    | . 0468                                                                                                          |
| XEXP                                                         | . 7975   | . 055   | 54 .     | 1470    | . 000  | 01    | . 0050      | . 0             | 158            | . 9333    | . 0459                                                                                                          |
| DABS                                                         | 0184     | . 008   | 33 .     | 0100    | . 000  | 01    | . 0026      | <del>-</del> .C | 001            | 0016      | 0009                                                                                                            |
|                                                              | DECAL    |         |          |         | ~ FN   | TRE   | XCALC F     | YEYP            | • •••          | 806       |                                                                                                                 |

|                    | DADOS :         | SISTEMA  | QUATERN   | ARIO - 10  | % EM PES | O DE SAL               | NA CARGA           |             |
|--------------------|-----------------|----------|-----------|------------|----------|------------------------|--------------------|-------------|
|                    | TEMP =          | 30°С М   | ODELO :   | CHEN CPA   | RAMETROS | COMUNS                 | NA CONC.           | E NA TEMP.  |
|                    | SISTEMA         | : (1) AC | ET. DE E  | TILA (2)   | ETANOL   | (3) AGU                | A (4) AC           | . DE SODIO  |
| 1                  | PARAMETR        | OS (K)   | I J       | ACI,J)     | ACJ,     | IA CI                  | LFACI, J)          |             |
|                    |                 |          | 1 2       | 879.821    | -317     | 423                    | . 300              |             |
|                    |                 |          | 1 3       | 429.321    | 1133     | . 523                  | . 300              |             |
|                    |                 |          | 2 3       | 113.544    | 442      | . 986                  | . 300              |             |
|                    |                 |          | 1 4       | 1254.185   | 3478     | . 996                  | . 020              |             |
|                    |                 |          |           | 7905.621   | -151     | . 597                  | . 050              |             |
| TTE                |                 | EACE     | 3 4 ·     | -5960.490  | -815     |                        | . 200              |             |
| ITE                | (1)             | rase (2) | URGANI CA | 645        | (1)      | rade<br>(2)            | AQUUSA             | CAD         |
| مسلة ٩٩ قاسة فسيلا |                 |          |           | ~ ~ ~ ~    | <u> </u> |                        | (3)                | <u> </u>    |
| 5                  | CARGA           | C% mola  | r) -> Z(1 | )= 11.860  | ) Z(2)=  | 3.750 2                | <u> 2(3)= 80.1</u> | 770         |
| XCAL               | . 7198          | . 0990   | .1812     | . 0000     | . 0031   | . 0257                 | . 9280             | . 0432      |
| XEXP               | . 7130          | . 0994   | .1874     | . 0002     | . 0065   | . 0275                 | . 9240             | .0420       |
| DABS               | 0068            | . 0004   | . 0062    | . 0002     | . 0034   | . 0018                 | 0040               | 0012        |
|                    | DESVIC          | MEDIO    | OUAD. PER | C. ENTRE   | XCALC E  | XEXP. =                | . 382              |             |
| 3                  | CARGA           | (% mola  | ~) -> Z(1 | )= 11.790  | Z(2)=    | 6.000 Z                | (3)= 78.5          | 530         |
| VCAT               | 6060            | 1 6 21   | 2201      | 0000       | 0000     | 0250                   | 01 R <i>J</i>      | 0454        |
| VEVD               | .0008<br>6047   | 1 571    | . 2301    | . 0000     | . 0033   | . 0383                 | . 91 04<br>01 02   | . 0404      |
| DARC               | - 0021          |          | 0080      | . 0001     | 0033     | 0024                   | - 0052             | - 0005      |
|                    |                 |          |           |            |          |                        | . 0000             | . 0000      |
| 4                  | DESVIC          | MEDIO    | JUAD. PER | C. ENIKE   | XCALC E  | <u>XEXF.</u>           |                    | <u>~~</u> ~ |
| 4                  | CARGA           | C% molai | <u> </u>  | )≡ 13.410  | ∠(∠)≊    | 7.490 2                | <u>(3)= 75.</u>    | 220         |
| XCAL               | . 5715          | .1894    | . 2392    | . 0000     | . 0031   | . 0406                 | . 9059             | . 0504      |
| XEXP               | . 5602          | .1845    | . 2548    | . 0005     | . 0070   | . 0440                 | . 8996             | . 0494      |
| DABS               | 0113            | 0049     | . 0156    | . 0005     | . 0039   | . 0034                 | 0063               | 0010        |
|                    | DESVIC          | MEDIO    | QUAD. PER | C. ENTRE   | XCALC E  | XEXP. =                | . 761              |             |
| 5                  | CARGA           | C% molar | ·) -> Z(1 | )= 13.220  | Z(2)=    | 10.020                 | Z(3)= 72.          | 790         |
| XCAL               | . 4957          | . 2391   | . 2650    | . 0001     | . 0031   | . 0509                 | . 8923             | . 0538      |
| XEXP               | . 4660          | . 2319   | . 3005    | .0016      | . 0078   | . 0532                 | . 8861             | . 0529      |
| DABS               | 0297            | 0072     | . 0355    | .0015      | . 0047   | . 0023                 | 0062               | 0009        |
|                    | DESVIC          |          |           | C ENTRE    | YCALC E  | VEXP =                 | 1 682              |             |
| TEMF               | $= 40^{\circ}C$ | 10% E    | EM PESO   |            |          |                        |                    |             |
| 6                  | CARGA           | (% molar | ·) -> Z(1 | )= 13.610  | Z(2)=    | 2.100 Z                | (3)= 80.3          | 380         |
| XCAL               | 81 23           | 0457     | 1 1 21    |            | 0020     | 01 61                  | 02/1               | 0469        |
| XEXP               | . 01 20         | 0594     | 1627      | 0002       | 0056     | 0155                   | 0332               | 0457        |
| DARS               | - 0346          | 01 37    | 0206      | 0002       | 0027     | - 0006                 | - 0000             | - 0011      |
|                    | , UOzU          |          | VULU .    |            | VONO D   |                        | 1 500              | . VOLL      |
|                    | DESVIC          | MEDIO    | 20AD. FER | C. ENIRE   | XCALC E  | $\Delta E \lambda P =$ | 1.508              |             |
| 1                  | CARGA           | C% molar | -> -> 201 | j = 11.860 | 2(2)=    | 3.750 Z                | (3) = 80.7         | 70          |
| XCAL               | . 7193          | . 0952   | .1855     | . 0000     | . 0038   | . 0265                 | . 9266             | . 0431      |
| XEXP               | . 6882          | .1036    | . 2081    | . 0001     | .0062    | . 0255                 | . 9256             | .0427       |
| DABS               | 0311            | . 0084   | . 0226    | . 0001     | . 0024   | 0010                   | 0010               | 0004        |
|                    | DESVIC          | MEDIO    | MAD PER   | C ENTRE    | XCALC E  | XEXP =                 | 1 394              |             |

| DADOS : SISTEMA QUATERNARIO - 10% EM PESO DE SAL NA CARGA |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |
|-----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| <u>ر</u>                                                  | $IEMP = 40^{\circ}C$ MODELO : CHEN CPARAMETROS COMUNS NA CONC. E NA IEMP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |
| 2                                                         | ADAMETROS (V) T T ACT IN ACT IN ACT IN ALEACT IN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |  |
| 1                                                         | $\frac{1}{1} = \frac{1}{2} = \frac{1}$                                                                                                                                                                                                             |  |  |  |  |  |  |  |
|                                                           | 1 2 420 221 1122 522 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |
|                                                           | 2 3 113 544 442 986 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |
|                                                           | 1 4 1254 185 3478 996 020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |  |
|                                                           | 2 4 7905 621 -151 597 050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |  |
|                                                           | 3 4 -5960, 490 -815, 226 , 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |
| TIE                                                       | FASE ORGANICA FASE AQUOSA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |  |
| LINE                                                      | (1) (2) (3) (4) (1) (2) (3) (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |
| R                                                         | CAPGA (% molec) - 7(1) = 11 890 7(2) = 5 760 7(3) = 78 680                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |  |
|                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |
| XCAL                                                      | .6188 .1511 .2301 .0000 .0040 .0361 .9147 .0451                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |
| ALAF<br>DADC                                              | -0.000 $-0.000$ $-0.000$ $-0.000$ $-0.000$ $-0.000$ $-0.000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |
| DADS                                                      | 0232 .0032 .0196 .0004 .0033 .000200290005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |  |
| -                                                         | DESVIO MEDIO QUAD. PERC. ENTRE XCALC E XEXP. = 1.092                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |
| 9                                                         | CARGA (% molar) -> Z(1)= 13.410 Z(2)= 7.490 Z(3)= 75.220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |
| XCAL                                                      | .5708 .1840 .2452 .0000 .0037 .0423 .9036 .0504                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |
| XEXP                                                      | .5393 .1886 .2713 .0008 .0067 .0413 .9023 .0497                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |
| DABS                                                      | 0315 .0046 .0261 .0008 .0030001000130007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |
|                                                           | DESVIO MEDIO OUAD. PERC. ENTRE XCALC E XEXP. = 1.462                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |
| 10                                                        | CARGA (% molar) -> Z(1)= 13,220 Z(2)= 10,020 Z(3)= 72,790                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |  |
|                                                           | 4940 2331 2729 0001 0039 0530 8894 0538                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |
| XEXP                                                      | 4521 2337 3131 0011 0082 0527 8866 0525                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |
| DABS                                                      | 0419 .0006 .0403 .0010 .0044000300280013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |
|                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |
| 2000.000.000                                              | DESVIO MEDIO QUAD. PERC. ENTRE XCALC E XEXP. = 2.063                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |
| TEMP                                                      | = 50 °C 10% EM PESO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |  |
| 11                                                        | CARGA (% molar) -> Z(1)= 13.610 Z(2)= 2.100 Z(3)= 80.380                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |
| XCAL                                                      | .8081 .0444 .1475 .0000 .0035 .0164 .9333 .0468                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |
| XEXP                                                      | .7526 .0628 .1844 .0002 .0054 .0145 .9341 .0460                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |
| DABS                                                      | 0555 .0184 .0369 .0002 .00190019 .00080008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |  |
|                                                           | DESVIO MEDIO QUAD. PERC. ENTRE XCALC E XEXP. = 2.445                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |
| 12                                                        | CARGA (% molar) -> Z(1)= 11.860 Z(2)= 3.750 Z(3)= 80.770                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |
| XCAL                                                      | 71.78 091.8 1.904 0000 0045 0272 9252 0431                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |  |
| XEXP                                                      | .6628 .1094 .2276 .0002 .0062 .0249 .9266 .0423                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |
| DABS                                                      | 0550 .0176 .0372 .0002 .0017 $0023$ .0014 $0008$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |  |
| <u> </u>                                                  | DESVIG MEDIO GUAD DEDC ENTRE VCALC E VEVD - 2422                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |  |
| 1 0                                                       | $\frac{1}{2} \frac{1}{2} \frac{1}$ |  |  |  |  |  |  |  |
| <u>+0</u>                                                 | $\frac{1}{2} \frac{1}{2} \frac{1}$ |  |  |  |  |  |  |  |
| XCAL                                                      | . D18D .1462 .2352 .0000 .0049 .0374 .9127 .0451                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |  |
| XEXP                                                      | .0/21 .1080 .2094 .0005 .00/4 .0349 .9131 .0446                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |
| DABS                                                      | 0465 .0118 .0342 .0005 .00250025 .00040005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |  |
|                                                           | DESVIO MEDIO QUAD. PERC. ENTRE XCALC E XEXP. = 2.089                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |

| D                                                            | ADOS :  | SISTEMA   | QUATER   | NARIO - 10 | % EM PESO DE | SAL NA CA   | RGA            |  |
|--------------------------------------------------------------|---------|-----------|----------|------------|--------------|-------------|----------------|--|
| TI                                                           | EMP =   | 40°C 1    | ODELO    | : CHEN C   | PARAMETROS C | OMUNS NA CO | ONC. E NA TEMP |  |
| SI                                                           | ISTEMA  | : (1) ACI | ET. DE   | ETILA (2)  | ETANOL (3)   | AGUA (4)    | AC. DE SODIO   |  |
| P                                                            | ARAMETR | OS (K)    | J        | ACI,J)     | A(J,I)       | ALFACI,     | J)             |  |
|                                                              |         |           | . 2      | 879.821    | -317.423     | . 300       |                |  |
|                                                              |         | 1         | . 3      | 429.321    | 1133.523     | . 300       |                |  |
|                                                              |         | á         | 3        | 113.544    | 442.986      | . 300       |                |  |
|                                                              |         | 1         | . 4      | 1254.185   | 3478.996     | . 020       |                |  |
|                                                              |         | é         | 2 4      | 7905.621   | -151.597     | . 050       |                |  |
|                                                              |         | 3         | 34       | -5960.490  | -815.226     | . 200       |                |  |
| TIE                                                          |         | FASE (    | RGANI C  | A          |              | FASE AQUOS  | 4              |  |
| LINE                                                         | (1)     | (2)       | (3)      | (4)        | (1)          | (2) (3)     | ) (4)          |  |
| 14                                                           | CARGA   | C% molar  | ·) -> Z( | 1)= 13.27  | ) Z(2)= 7.5  | 30 Z(3)= 7  | <b>'</b> 5.340 |  |
| XCAL                                                         | . 5650  | .1808     | . 2543   | 2 . 0000   | . 0046       | 0443 . 901  | 3 .0498        |  |
| XEXP                                                         | . 5213  | .1911     | . 2866   | 5 .0010    | .0073 .      | 0402 .903   | 31 . 0494      |  |
| DABS                                                         | 0437    | .0103     | . 0324   | 4 .0010    | .0027        | 0041 .001   | 80004          |  |
|                                                              | DESVI   | MEDIO ¢   | UAD. PI  | ERC. ENTRE | XCALC E XEX  | P.= 1.96    | 38             |  |
| 15                                                           | CARGA   | C% molar  | ) -> zo  | 1)= 13.120 | ) Z(2)= 9.48 | 30 Z(3)= 7  | '3.270         |  |
| XCAL                                                         | . 5100  | . 2195    | . 2704   | 4 . 0001   | .0043 .      | 0530 .887   | 76 . 0551      |  |
| XEXP                                                         | . 4580  | . 2280    | . 31 26  | 5.0014     | . 0085 .     | 0493 . 888  | 31 . 0541      |  |
| DABS                                                         | 0520    | . 0085    | . 0422   | 3.0013     | .0042        | 0037 .000   | 50010          |  |
|                                                              | DESVIO  | MEDIO C   | UAD. PH  | ERC. ENTRE | XCALC E XEX  | P.= 2.39    | 97             |  |
|                                                              |         |           |          |            |              |             |                |  |
| DESVIU QUADK. MEDIU GLUBAL % MULAK (FORMUIA Dechema) = 1.075 |         |           |          |            |              |             |                |  |