

RENATO BRISIGUELI PEREIRA

EFEITO DA PRESENÇA DE ADITIVO NUCLEANTE E MODIFICADOR DE IMPACTO NAS PROPRIEDADES TÉRMICAS E MECÂNICAS DO POLI (ÁCIDO LÁTICO)

CAMPINAS

2014

UNIVERSIDADE ESTADUAL DE CAMPINAS Faculdade de Engenharia Química

RENATO BRISIGUELI PEREIRA

EFEITO DA PRESENÇA DE ADITIVO NUCLEANTE E MODIFICADOR DE IMPACTO NAS PROPRIEDADES TÉRMICAS E MECÂNICAS DO POLI (ÁCIDO LÁTICO)

Dissertação apresentada à Faculdade de Engenharia Química da Universidade Estadual de Campinas como parte dos requisitos para obtenção do título de Mestre em Engenharia Química.

Orientadora: PROFA. DRA. ANA RITA MORALES Autor: RENATO BRISIGUELI PEREIRA

ESTE EXEMPLAR CORRESPONDE À VERSÃO FINAL DA DISSERTAÇÃO DEFENDIDA PELO ALUNO RENATO BRISIGUELI PEREIRA E ORIENTADA PELA PRQFA. DRA. ANA RITA MORALES

Assinatura do Orientador le A **CAMPINAS**

2014

Ficha catalográfica Universidade Estadual de Campinas Biblioteca da Área de Engenharia e Arquitetura Rose Meire da Silva - CRB 8/5974

P414e	Pereira, Renato Brisigueli, 1973- Efeito da presença de aditivo nucleante e modificador de impacto nas propriedades térmicas e mecânicas do poli(ácido lático) / Renato Brisigueli Pereira. – Campinas, SP : [s.n.], 2014.
	Orientador: Ana Rita Morales. Dissertação (mestrado) – Universidade Estadual de Campinas, Faculdade de Engenharia Química.
	 Polímeros. 2. Polímeros - Aditivos. 3. Poli (ácido lático). 4. Polímeros - Propriedades mecânicas. 5. Polímeros - Propriedades térmicas. I. Morales, Ana Rita,1958 II. Universidade Estadual de Campinas. Faculdade de Engenharia Química. III. Título.

Informações para Biblioteca Digital

Título em outro idioma: Effect of nucleating additive and impact modifier additive on thermal and mechanical properties of poly(lactic acid) Palavras-chave em inglês: Polymers Polymers - Additives Poly (lactic acid) Polymers - Mechanical properties Polymers - Thermal properties Área de concentração: Engenharia Química Titulação: Mestre em Engenharia Química Banca examinadora: Ana Rita Morales [Orientador] Lucilene Betega de Paiva Leila Peres Data de defesa: 30-01-2014 Programa de Pós-Graduação: Engenharia Química

Dissertação de Mestrado defendida por Renato Brisigueli Pereira e aprovada em 30 de Janeiro de 2014 pela banca examinadora constituída pelos doutores:

Profa. Dra. Ana Rita Morales

Profa. Dra. Lucilene Betega de Paiva

Profa. Dra. Leila Peres

RESUMO

Neste trabalho foram avaliados os efeitos de aditivo modificador térmico (MT), aditivo modificador de impacto (MI) e tratamento de recozimento nas propriedades térmicas e mecânicas do poli(ácido lático), PLA. As propriedades térmicas foram avaliadas por meio de ensaios de temperatura de deflexão térmica (HDT) e ponto de amolecimento Vicat e a partir de curvas de calorimetria diferencial de varredura (DSC) de cada composição testada. As propriedades mecânicas foram avaliadas a partir de ensaios de resistência à tração. As alterações morfológicas na estrutura cristalina das amostras também foram analisadas por análise de difração de raios-X. O uso dos aditivos propostos não se mostrou viável para o aumento da temperatura de deflexão térmica (HDT) e do ponto de amolecimento Vicat do PLA estudado. Estas propriedades mostraram-se sensíveis ao aumento do grau de cristalinidade que aumentou de 3% do PLA puro para aproximadamente 12% do PLA modificado, porém não foi suficiente para promover as melhorias esperadas. O tratamento de recozimento foi mais efetivo que os aditivos promovendo aumento no grau de cristalinidade para valores de até 44% e elevou os valores de HDT em torno de 10°C e de Vicat em mais de 70°C. A temperatura de transição vítrea, Tg, foi pouco alterada, sendo observados uma tendência de redução pela presença dos aditivos e um discreto aumento pelo recozimento. A cristalização a frio do PLA foi acelerada pelo aditivo nucleante e totalmente eliminada pelo tratamento de recozimento. O módulo de elasticidade apresentou aumento significativo pela adição dos aditivos testados, o que não foi observado para a resistência à tração e para o alongamento. O recozimento também foi significativo, porém, diferentemente do esperado, causou redução em todas as propriedades mecânicas. A maior cristalinidade observada deveria ter aumentado o módulo elástico, bem como a resistência à tração, o que não ocorreu por uma possível degradação causada pelas condições empregadas no tratamento térmico. As modificações no estado cristalino também foram acompanhadas pela alteração na transparência das amostras e por difração de raios-X que identificou a predominância da fase α , caracterizada por uma célula unitária ortorrômbica. Para potenciais aplicações industriais os teores adequados de aditivos e uma análise detalhada do processo são necessários, incluindo-se o tempo e temperatura de resfriamento durante o processo de moldagem, para que o material final possa apresentar as propriedades desejadas.

ABSTRACT

This work evaluated the effects of a thermal modifier additive, an impact modifier additive, and an annealing treatment over the thermal and mechanical properties of the poli(lactic acid) (PLA). The thermal properties were evaluated through heat deflection temperature (HDT) and Vicat softening point measurements and through differential scanning calorimetric (DSC) curves of each tested composition. The mechanical properties were evaluated through tensile strength measurements. Morphological changes in the crystalline structure of the samples were also analyzed through X-ray diffraction. The use of the proposed additives was not feasible to increase the heat deflection temperature (HDT), and the Vicat softening point of the studied PLA. These properties were sensitive to the degree of crystallinity that was increased from 3% of the pure to around 12% of the modified PLA, but was not sufficient to promote the expected improvements. The annealing treatment was more effective than the additives and promoted an increasing of the degree of crystallinity to values up to 44%, it also increased the HDT values in approximately 10°C and the Vicat in more than 70°C. The glass transition temperature, Tg, was slightly altered, being observed a tendency of reduction by the presence of additives and a minor increase by the annealing treatment. The cold crystallization of the PLA was accelerated by the nucleating additive and completely eliminated by annealing treatment. The modulus of elasticity was significantly increased by the addition of the tested additives, but not for the tensile strength and the elongation. Annealing was also significant, however, unlike the expected, caused a reduction in all the mechanical properties. The higher crystallinity observed should have increased the elastic modulus and the tensile strength, which did not occur because of a possible sample degradation caused by annealing treatment conditions employed. Changes in the crystalline state were also accompanied by changes in the transparency of the samples and through X-ray diffraction where it was identified the prevalence of the α phase, characterized by an orthorhombic unit cell. For potential industrial applications the appropriate levels of the additives and a detailed analysis of the process is required, including time and temperature of cooling during the molding process, so that the final material can offer the desired properties.

SUMÁRIO

CAPAi
PÁGINA DE ROSTOiii
FICHA CATALOGRÁFICAiv
FOLHA DE APROVAÇÃO v
RESUMO vii
SUMÁRIO ix
DEDICATÓRIA xi
AGRADECIMENTOS xiii
LISTA DE FIGURAS xv
LISTA DE TABELAS xvii
NOMENCLATURA xix
PUBLICAÇÃO E TRABALHO APRESENTADO EM CONGRESSO xxi

1 – INTRODUÇÃO	
2 – REVISÃO DA LITERATURA	4
2.1 – O ÁCIDO LÁTICO	4
2.2 – O POLI(ÁCIDO LÁTICO), PLA	5
2.2.1 – POLIMERIZAÇÃO	5
2.3 – PROPRIEDADES DO PLA	9
2.3.1 – PROPRIEDADES MECÂNICAS E CRISTALINIDADE	
2.4 – ADITIVOS	
2.4.1 – AGENTES NUCLEANTES	
2.4.2 – MODIFICADORES DE IMPACTO	

2.5 – BIODEGRADABILIDADE 17		
3 – MATERIAIS E MÉTODOS		
3.1 – MATERIAIS		
3.1.1 – POLI(ÁCIDO LÁTICO), PLA		
3.1.2 – MODIFICADOR TÉRMICO (NUCLEANTE) 20		
3.1.3 – MODIFICADOR DE IMPACTO 21		
3.2 – MÉTODOS		
3.2.1 – PREPARAÇÃO DAS AMOSTRAS 22		
3.2.2 – CARACTERIZAÇÃO		
3.2.3 – ANÁLISE ESTATÍSTICA 24		
4 – RESULTADOS		
4.1 – CARACTERIZAÇÃO DAS MATÉRIAS PRIMAS		
4.1 – CARACTERIZAÇÃO DAS MATÉRIAS PRIMAS		
 4.1 – CARACTERIZAÇÃO DAS MATÉRIAS PRIMAS		
 4.1 – CARACTERIZAÇÃO DAS MATÉRIAS PRIMAS		
 4.1 – CARACTERIZAÇÃO DAS MATÉRIAS PRIMAS		
4.1 – CARACTERIZAÇÃO DAS MATÉRIAS PRIMAS 25 4.1.1 – PLA 25 4.1.2 – MODIFICADOR TÉRMICO 26 4.1.3 – MODIFICADOR DE IMPACTO 27 4.2 – PROPRIEDADES TÉRMICAS 29 4.3 – ANÁLISES DE DIFRAÇÃO DE RAIOS-X 35		
 4.1 – CARACTERIZAÇÃO DAS MATÉRIAS PRIMAS		
4.1 - CARACTERIZAÇÃO DAS MATÉRIAS PRIMAS 25 4.1.1 - PLA 25 4.1.2 - MODIFICADOR TÉRMICO 26 4.1.3 - MODIFICADOR DE IMPACTO 27 4.2 - PROPRIEDADES TÉRMICAS 29 4.3 - ANÁLISES DE DIFRAÇÃO DE RAIOS-X 35 4.4 - ENSAIOS MECÂNICOS 37 5 - CONCLUSÕES 41		
4.1 - CARACTERIZAÇÃO DAS MATÉRIAS PRIMAS254.1.1 - PLA254.1.2 - MODIFICADOR TÉRMICO264.1.3 - MODIFICADOR DE IMPACTO274.2 - PROPRIEDADES TÉRMICAS294.3 - ANÁLISES DE DIFRAÇÃO DE RAIOS-X354.4 - ENSAIOS MECÂNICOS375 - CONCLUSÕES415.1 - PROPOSTAS DE TRABALHOS FUTUROS42		

APÊNDICES 49

Dedico esta dissertação à minha filha Maitê, à minha esposa Fabiana, e aos meus pais José Antonio e Sonia

AGRADECIMENTOS

Agradeço a todas as pessoas do meu convívio que acreditaram e contribuíram, mesmo que indiretamente, para a conclusão deste trabalho.

Agradecimento especial para a minha filhinha Maitê que, mesmo inconscientemente, me incentiva diariamente com suas maravilhosas gargalhadas, abraços, sorrisos e primeiras palavras; e à minha esposa Fabiana pelo apoio e incentivo constantes.

Aos meus pais que sempre me apoiaram e torceram por mim.

À minha orientadora Profa. Dra. Ana Rita Morales pelo empenho e paciência, por acreditar em mim, por me ajudar nos momentos mais críticos, por acreditar no futuro deste trabalho.

À Fabiana, Borys e Fernanda, meus gestores nestes últimos anos, por permitirem que eu dedicasse parte do meu tempo nas aulas e na execução dos testes para completar este trabalho.

Ao meu colega de trabalho Walter que, a partir de uma conversa, trouxe uma série de necessidades de onde surgiu a ideia deste trabalho.

Ao Prof. Carvalho pela ajuda no planejamento experimental e na análise estatística dos resultados e pelo constante incentivo.

Aos colegas do SENAI que muito ajudaram para a preparação das blendas estudadas, confecção dos corpos de prova e execução dos testes.

Aos amigos de trabalho que fizeram parte desses momentos sempre me ajudando e incentivando.

Aos professores da pós-graduação pelo convívio e aprendizado.

xiii

LISTA DE FIGURAS

Figura 1. Estruturas químicas da L- e D- ácido lático
Figura 2. Rotas de polimerização do poli (ácido lático)
Figura 3. Estruturas químicas do LL-, meso- e DD- lactídeos
Figura 4. Unidade constitucional do poli (ácido lático)7
Figura 5. Esquema de produção do PLA via pré-plímero e lactídeo
Figura 6. Processo sem solvente para preparação do poli (ácido lático)
Figura 7. Estados metaestáveis de polilactídeos amorfos de alto peso molecular 12
Figura 8. Estados metaestáveis de polilactídeos semicristalinos de alto peso molecular 12
Figura 9. Hidrólise e diminuição do pelo molecular do PLA 18
Figura 10. Curva esquemática de DSC: temperatura de transição vítrea (Tg); temperatura de
cristalização à frio (Tc); temperatura de fusão (Tm); Entalpia de cristalização à frio (ΔHc) e de
fusão (ΔHm)
Figura 11. Estimativa dos efeitos sobre (a) HDT e (b) Vicat dos fatores analisados: Tratamento
de recozimento (RECOZ), modificador térmico (MT) e modificador de impacto (MI) 31
Figura 12. Transparência das amostras de PLA puro e com diferentes teores de MT e MI 33
Figura 13. Transparência das amostras de PLA puro e com diferentes teores de MT e MI após
tratamento de recozimento
Figura 14. Difratograma do PLA puro antes e após tratamento de recozimento
Figura 15. Estimativa dos efeitos sobre (a) Módulo de elasticidade, (b) Resistência à tração e (c)
Alongamento na força máxima dos fatores analisados: Tratamento de recozimento (RECOZ),
modificador térmico (MT) e modificador de impacto (MI)

LISTA DE TABELAS

Tabela 3.1. Propriedades mecânicas típicas do poliácido lático D2002 20	0
Tabela 3.2. Propriedades típicas do Biomax Thermal 300 21	1
Tabela 3.3. Composição do Biomax Thermal 300	1
Tabela 3.4. Composição do Biostrength 280 22	2
Tabela 3.5. Composição das blendas resultantes para o experimento fatorial de 2 níveis com	
ponto central (fórmulas de 1 a 5) e complementares (fórmulas de 6 a 8) 23	3
Tabela 4.1. Valores de Tg, Tc, Tm, Δ Hc e Δ Hm do PLA25	5
Tabela 4.2. Dados de espectroscopia por infravermelho. Posição dos picos encontrados para o	
PLA 2002D da Cargill NatureWorks comparados com picos descritos na literatura	6
Tabela 4.3. Valores de Tc, Tm, Δ Hc e Δ Hm do Biomax Thermal 300 26	6
Tabela 4.4. Dados de espectroscopia por infravermelho. Posição dos picos encontrados para o	
Biomax Thermal 300	7
Tabela 4.5. Valores de Tg, Tc, Tm do Biostrength 280 28	8
Tabela 4.6. Dados de espectroscopia por infravermelho. Posição dos picos encontrados para o	
Biostrength 280	8
Tabela 4.7. Valores das propriedades térmicas antes e após recozimento 29	9
Tabela 4.8. Valores médios do Módulo de elasticidade (E), da Resistência à tração (τ), e do	
Alongamento na força máxima (ε)	7

NOMENCLATURA

- ABNT Associação Brasileira de Normas Técnicas
- ASTM American Society for Testing and Materials
- CEN Comité Europée de Normalisation
- DRX difração de raios-X
- DSC calorimetria diferencial exploratória
- FTIR espectrofotometria de infravermelho por transformada de Fourier
- HDT heat deflection temperature (temperatura de deflexão térmica)
- MI modificador de impacto
- µm micrometro
- Mn peso molecular médio
- MT modificador térmico
- PLA poli(ácido lático)
- PDLA poli(D-ácido lático)
- PLLA poli(L-ácido lático)
- PDLLA poli(DL-ácido lático)
- Tc temperatura de cristalização
- Tg temperatura de transição vítrea
- Tg^{∞} temperatura de transição vítrea para peso molecular infinito
- Tm temperatura de fusão
- VICAT temperatura de amolecimento Vicat
- Xc grau de cristalinidade
- ΔH^0 m variação de entalpia correspondente à fusão de PLA 100% cristalino
- Δ Hc variação de entalpia correspondente à cristalização a frio
- Δ Hm variação de entalpia correspondente à fusão
- θ ângulo de difração
- λ comprimento de onda

PUBLICAÇÃO E TRABALHO APRESENTADO EM CONGRESSO

Nesta seção estão listados os trabalhos resultantes desta dissertação

PUBLICAÇÃO EM PERIÓDICO

PEREIRA, R. B.; MORALES, A. R. Estudo do Comportamento Térmico e Mecânico do PLA Modificado com Aditivo Nucleante e Modificador de Impacto, *Revista Polímeros*, aceito para publicação em 27 de junho de 2013.

TRABALHO APRESENTADO EM CONGRESSO

PEREIRA, R. B.; MORALES, A. R. Estudo do Comportamento Térmico e Mecânico do PLA Modificado para Aplicação em Embalagens Termoformadas, *XIX Congresso Brasileiro de Engenharia Química*, 09 a 12 de setembro de 2012.

1 – INTRODUÇÃO

Há mais de 50 anos os polímeros sintéticos começaram a substituir materiais naturais em praticamente todas as áreas e hoje são parte indispensável de nossas vidas (MUELLER, 2006).

As propriedades mecânicas e térmicas destes materiais permitem variadas aplicações nas mais diversas áreas. Aproximadamente 30% dos plásticos são utilizados na indústria de embalagem para produtos alimentícios, cosméticos, farmacêuticos, detergentes e químicos. Atualmente mais de 140 milhões de toneladas de plásticos são produzidas anualmente (SHAH *et. al.*, 2008).

Os plásticos provaram ser resistentes ao ataque microbiano, já que neste curto período de existência na natureza a evolução não desenvolveu nenhuma estrutura enzimática capaz de degradar os polímeros sintéticos. O aumento acentuado na produção de plásticos nas últimas décadas em combinação com sua durabilidade geram problemas cada vez maiores em relação ao lixo e ao gerenciamento de resíduos (MUELLER, 2006).

A chamada poluição branca, proveniente dos plásticos, vem chamando a atenção da mídia e do público e os bioplásticos, ou plásticos biodegradáveis, estão preparados para desempenhar um grande papel como um substituto viável.

A produção global de plásticos continua sendo dominada pelos polímeros sintéticos baseados em petróleo. Mas, fatores ambientais e preocupações econômicas associados à eliminação de resíduos e aumento dos custos de produção do petróleo resultante da redução das reservas mais acessíveis, têm tornado os polímeros biodegradáveis economicamente atrativos (NAMPOOTHIRI *et. al.*, 2010).

A degradabilidade dos plásticos depende da estrutura química do material e da constituição do material final, e não apenas da matéria-prima utilizada para sua produção. Plásticos biodegradáveis podem ser baseados em resinas naturais ou sintéticas. Plásticos biodegradáveis naturais são baseados principalmente em recursos renováveis e podem ser tanto

produzidos naturalmente quanto sintetizados. Os recursos renováveis podem ser polissacarídeos (amido, celulose, lignina, etc.), proteínas (gelatina, lã, seda, etc.), lipídeos (gorduras e óleos), poliésteres produzidos por plantas ou microorganismos, como os poli(hidroxialcanoatos), poliésteres derivados de monômeros bioderivados, como o poli(ácido lático) e diversos outros polímeros como borrachas naturais, compósitos, etc. Plásticos sintéticos de fontes não-renováveis são baseados em petróleo (NAMPOOTHIRI *et. al.*, 2010).

Muitos plásticos biodegradáveis naturais são misturados com polímeros sintéticos para produzir plásticos que atendam requisitos funcionais. O poli(ácido glicólico), a policaprolactona, o polihidroxibutirato e o próprio poli(acido lático) são comercialmente disponíveis para liberação controlada de medicamentos, compósitos implantáveis, peças para fixação óssea, sistemas de liberação controlada de pesticidas e fertilizantes entre outras aplicações (NAMPOOTHIRI *et. al.*, 2010).

Os poliésteres têm um papel predominante como plásticos biodegradáveis devido às suas ligações éster potencialmente hidrolisáveis (NAMPOOTHIRI *et. al.*, 2010). O poli(ácido lático), PLA, é uma alternativa econômica e sustentável aos produtos derivados de petróleo já que os lactídeos dos quais ele é produzido podem ser produzidos em grande escala por fermentação microbiológica de sub-produtos agrícolas (JOHN *et. al.*, 2006).

A produção do PLA apresenta inúmeras vantagens: pode ser obtido de fontes agrícolas renováveis, sua produção consome quantidades consideráveis de dióxido de carbono, provê significativa economia de energia, é reciclável e compostável, e é uma alternativa para ajudar a melhorar a economia nas propriedades agrícolas (AURAS *et al.*, 2004). Porém, este material puro apresenta algumas limitações importantes de aplicação e por isto são encontrados na literatura vários estudos para melhorar suas propriedades físicas e mecânicas tais como flexibilidade, resistência ao impacto e processamento (NAMPOOTHIRI *et. al.*, 2010).

Embalagens termoformadas são produzidas em grande quantidade e a possibilidade em produzi-las com um polímero biodegradável seria de grande relevância do ponto de vista ambiental. Porém uma limitação para esta aplicação está na falta de estabilidade térmica do PLA

durante seu uso, e embalagens feitas com este material podem apresentar deformações mesmo quando submetidas às temperaturas de transporte.

Esta proposta de trabalho foi criada a partir de um problema real na indústria de bens de consumo e visa avaliar o poli(ácido lático), PLA, e alguns aditivos comerciais de modo a se encontrar uma formulação com estabilidade dimensional térmica adequada para a utilização deste polímero como material de embalagem termoformada para produtos de consumo. A escolha do PLA deu-se devido à necessidade crescente da indústria em substituir os materiais plásticos convencionais por polímeros biodegradáveis evitando ou reduzindo assim a chamada poluição branca e a dependência de materiais de fontes não-renováveis.

O objetivo do trabalho foi o de estudar as alterações na temperatura de deflexão térmica (HDT) e no ponto de amolecimento Vicat (VICAT) do PLA a partir de modificações no polímero baseadas em dois tipos de aditivos e submetido a um tratamento de recozimento. Paralelamente também foram estudadas as propriedades mecânicas e a influência destes aditivos e do recozimento nas temperaturas de transição vítrea (Tg), de cristalização (Tc) e de fusão (Tm) nos sistemas, pois o comportamento térmico do PLA é descrito como altamente sensível à história térmica e às condições de processamento (PANTANI *et al.*, 2010).

Considerando que a distorção sob o efeito da temperatura estaria ocorrendo em temperaturas próximas à Tg do PLA, que é descrita ocorrer tipicamente de 50°C a 80°C (AURAS *et al.*, 2004), e que o grau de cristalinidade também poderia ser um fator predominante para este efeito buscou-se no mercado um aditivo nucleante para agir como modificador térmico. Um modificador de impacto também foi considerado para atuar de maneira a flexibilizar as cadeias reduzindo o nível de tensionamento nas embalagens e com isto diminuir o efeito de distorção pelo aquecimento das embalagens em uso, além de potencialmente ajudar a manter a transparência.

2 – REVISÃO DA LITERATURA

2.1 – O ÁCIDO LÁTICO

O monômero do PLA, o ácido lático, ou ácido 2-hidroxi-propiônico, CH₃-CHOHCOOH, é um dos principais membros da família dos ácidos carboxílicos devido às suas aplicações na indústria de alimentos, farmacêutica, cosmética entre outras. É usado como preservante e acidulante na indústria alimentícia, como controlador de pH na produção de vinho, é utilizado na produção de queijos. Seus sais de cálcio, sódio, potássio, zinco, ferro, etc. têm aplicação na indústria farmacêutica, cosmética e alimentícia, entre outras aplicações (JOHN *et. al.*, 2006).

O ácido lático é um ácido orgânico de ocorrência natural que pode ser produzido por síntese química ou por fermentação. A síntese química pode ser realizada por diferentes processos como hidrólise da lactonitrila por ácidos fortes, degradação de açúcares catalisada por bases, oxidação de propileno glicol, reação de acetaldeído, monóxido de carbono e água em altas temperaturas e pressões, hidrólise do ácido cloro-propiônico e oxidação do propileno com ácido nítrico (NAMPOOTHIRI *et. al.*, 2010).

O interesse na produção fermentativa se dá pelos aspectos ambientais e de uso de recursos renováveis ao invés de derivados de petróleo. Além disso, a produção por fermentação tem vantagens como baixo custo de substratos, baixa temperatura de produção, baixo consumo de energia e alta especificidade (JOHN *et. al.*, 2006).

Em relação à alta especificidade, o ácido lático existe em duas configurações opticamente ativas, os isômeros L-ácido lático e D-ácido lático (Figura 1). Os dois isômeros são produzidos em sistemas fermentativos bacterianos. Os mamíferos produzem o ácido lático naturalmente, porém apenas o isômero L-ácido lático. (AURAS *et. al.*, 2004) Estas configurações espaciais vão determinar a arquitetura final do polímero e influenciarão diretamente em suas propriedades.

A fonte de carbono para a fermentação pode ser de açúcar na sua forma pura (glucose, sucrose, lactose, etc.) ou materiais que contenham açúcar (melaços, soros, bagaço de cana de açúcar ou mandioca, amido de batata, tapioca, trigo ou cevada, etc.) (NAMPOOTHIRI *et. al.*, 2010).

2.2 – O POLI (ÁCIDO LÁTICO), PLA

2.2.1-POLIMERIZAÇÃO

O PLA pode ser polimerizado pela condensação direta do ácido lático ou pela polimerização por abertura de anel do dímero cíclico (lactídeo) (Figura 2). Como a condensação direta é uma equação de equilíbrio, a dificuldade na remoção da água nos estágios finais da polimerização é um fator limitante para a obtenção de grandes pesos moleculares.

Figura 2. Rotas de polimerização do poli (ácido lático) (adaptado de MOHANTY *et. al.*, 2005)

A maioria dos trabalhos tem focado na polimerização por abertura do anel do lactídeo embora outras abordagens, como destilação azeotrópica para direcionar na remoção de água no processo de condensação direta, têm sido avaliadas (MOHANTY *et. al.*, 2005).

A Cargill Dow LLC patenteou (U.S. Patent 5,142,023, 1992; U.S. Patent 5,247,058, 1992; U.S. Patent 5,247,059, 1993; U.S. Patent 5,258,488, 1993; U.S. Patent 5,274,073, 1993; U.S. Patent 5,357,035, 1994; U.S. Patent 5,484,881, 1996) um processo contínuo de baixo custo para a produção de polímeros do ácido lático (MOHANTY *et. al.*, 2005).

A partir da fermentação da glicose, o (D)-ácido láctico ou (L)-ácido láctico ou uma mistura dos dois são pré-polimerizados para se obter um poli(ácido lático) intermediário de baixa massa molecular, que é então, sob baixa pressão, cataliticamente convertido em uma mistura de láctideos estéreo-isômeros. O lactídeo, o dímero cíclico do ácido láctico, é formado pela condensação de duas moléculas de ácido lático da seguinte forma: L-láctideo (duas moléculas de L-ácido láctico), D-lactídeo (duas moléculas de D-ácido láctico) meso-lactídeo (uma molécula de L-ácido láctico e uma molécula de D-ácido láctico) (Figura 3) (AURAS *et. al.*, 2004).

Figura 3 – Estruturas químicas do LL-, meso- e DD lactídeos (p.f. é o ponto de fusão). (adaptado de AURAS *et. al.*, 2004)

Após a destilação a vácuo do ácido lático, o PLA de alto massa molecular com pureza óptica e com unidade de controle constitucional -[OCH(CH₃)CO-O-CH(CH₃)-CO]- é formado pela polimerização por abertura dos anéis dos lactídeos. A polimerização por abertura dos anéis pode ser catiônica, iniciada por ácido metil-trifluoro-metano-sulfônico ou ácido trifluoro-metano-sulfônico, ou aniônica, iniciado pela reação nucleofílica do ânion com a carbonila, com subseqüente dissociação acila-oxigênio e com o uso de um catalisador organo-estanho, eliminando completamente o uso de solventes prejudiciais ao meio ambiente.

Depois de completada a polimerização, qualquer monômero residual é removido a vácuo e reciclado para o início do processo. A Figura 4 mostra a unidade constitucional do polímero de PLA. As Figuras 5 e 6 mostram o Esquema da produção de PLA via pré-polímero e lactídeo e o processo sem solvente para preparação do poli(ácido lático) (MOHANTY *et. al.*, 2005).

Figura 4 – Unidade constitucional do poli (ácido lático). (adaptado de AURAS *et. al.*, 2004)

Figura 6. Processo sem solvente para preparação do poli (ácido lático) (adaptado de MOHANTY *et. al.*, 2005)

2.3 – PROPRIEDADES DO PLA

O PLA se polimeriza em forma de hélice, com uma célula unitária ortorrômbica (NAMPOOTHIRI *et. al.*, 2010). As propriedades do PLA são determinadas pela arquitetura do polímero (composição estereoquímica da cadeia polimérica) e pela massa molar, que é controlada pela adição de compostos hidroxílicos (AURAS *et. al.*, 2004).

A temperatura de transição vítrea, Tg e temperatura de fusão cristalina, Tm, são afetadas pela composição estereoquímica, estrutura primária, história térmica, e pela massa molar. E como para outros polímeros, as propriedades do PLA são dependentes das suas temperaturas de transição para propriedades comuns como massa específica, capacidade térmica, e propriedades mecânicas e reológicas (MOHANTY *et al.*, 2005).

De modo geral, a relação entre Tg e a massa molar pode ser representada pela equação de Flory-Fox (Equação 2.1):

$$T_{g} = \frac{T_{g}^{\infty} - K}{\overline{M}_{n}}$$
(Equação 2.1)

onde T_g^{∞} é a Tg para peso molecular infinito, K é a constante representando o volume livre em excesso das terminações das cadeias poliméricas e \overline{Mn} é o peso molecular numérico médio. Os valores reportados na literatura de T_g^{∞} e K são aproximadamente 57-58°C e (5,5-7,3) x 10⁴, respectivamente (LIM *et. al.*, 2008; JAMSHIDI *et. al.*, 1988).

A relação entre Tm e o teor de meso-lactídeo pode ser dada de modo aproximado pela Equação 2.2:

$$T_{\rm m} = 175^{\circ}{\rm C} - 300 \ {\rm W}_{\rm m} \tag{Equação 2.2}$$

onde Wm é a fração de meso-lactídeo e 175°C é a temperatura de fusão do PLA 100% L-lactídeo (LIM *et. al.*, 2008 apud WITZKE, 1997). Valores típicos de Tm para o PLA ficam na faixa de 130 a 160°C. A redução da Tm com o aumento do teor de meso-lactídeo tem implicações

importantes já que ajuda a aumentar a janela de processamento, reduzir a degradação e reduzir a formação de lactídeos.

A capacidade térmica de PLAs (C_{p-liquido}, J/K.mol) pode ser representada pela Equação 2.3:

$$C_{p-liquido} = 120,17 + 0,076.T$$
 (Equação 2.3)

onde T é a temperatura em Kelvin (K)-(LIM et. al., 2008 apud PYDA et. al., 2004).

Os homopolímeros D-polilactídeo ou L-polilactídeo e copolímeros com grandes percentagens de D- ou L-lactídeo apresentam estrutura muito regular e desenvolvem uma fase cristalina. De modo geral, os PLAs podem ser amorfos ou semicristalinos à temperatura ambiente, dependendo das quantidades de L-, D- e meso-lactídeos na sua estrutura. PLA pode ser produzido totalmente amorfo ou com até 40% de cristalinidade (AURAS *et. al.*, 2004).

Para os PLAs amorfos a temperatura de transição vítrea (Tg) determina a temperatura máxima de uso para a maioria das aplicações comerciais. Para os PLAs semicristalinos tanto a Tg (~58°C) quanto a temperatura de fusão (Tm), 130°-230°C dependendo da estrutura, são importantes para determinar as temperaturas de uso nas várias aplicações (MOHANTY *et. al.*, 2005).

Na técnica de polimerização por abertura do anel, os lactídeos (dímeros) são formados pela utilização de iniciadores e catalisadores estéreo-seletivos, portanto as frações dos isômeros podem ser controladas. A capacidade de controlar a arquitetura polimérica permite o controle sobre a velocidade de cristalização e, portanto, o grau de cristalização, propriedades mecânicas e temperaturas de processamento do material. O comportamento de degradação também depende fortemente da cristalinidade da amostra (AURAS *et. al.*, 2004).

O PLA derivado de 93% ou mais de L-ácido lático pode ser semicristalino, enquanto o PLA derivado de 50 a 93% de L-ácido lático é estritamente amorfo. A presença de meso- e D-lactídeos provocam torções na cadeia de arquitetura regular do L-poliácido lático, e estas imperfeições moleculares são responsáveis tanto pela diminuição de velocidade quanto pelo grau de cristalinidade (AURAS *et. al.*, 2004).

O PLLA, L-poli(ácido lático), produto resultante da polimerização do L-lactídeo, tem uma cristalinidade de aproximadamente 37%, uma temperatura de transição vítrea, Tg, entre 50-80°C e temperatura de fusão, Tm, entre 173-178°C. Devido à microestrutura cristalina regular, o PLLA e o PDLA (polímero resultante da polimerização do D-lactídeo) são semicristalinos (NAMPOOTHIRI *et. al.*, 2010).

Para PLA amorfo, a temperatura de transição vítrea (Tg) é um dos parâmetros mais importantes já que mudanças acentuadas na mobilidade da cadeia acontecem em temperaturas acima da Tg. Para PLA semicristalino, tanto a Tg quanto a temperatura de fusão (Tm) são parâmetros físicos importantes para prever o comportamento do polímero (AURAS *et. al.*, 2004).

Conforme mostrado na Figura 7, acima da Tg o PLA amorfo muda do estado vítreo para borrachoso e vai se comportar como um líquido viscoso sob aquecimento. Abaixo da Tg o PLA tem comportamento vítreo, podendo ser deformável até ser resfriado a sua temperatura de transição β , de aproximadamente - 45°C. A partir desta temperatura o PLA se comportará apenas como um polímero friável, quebradiço (MOHANTY *et. al.*, 2005).

Temperatura °C

Figura 7. Estados metaestáveis de polilactídeos amorfos de alta massa molar (WITZKE, 1997 apud AURAS *et. al.*, 2004)

Conforme mostrado na Figura 8, acima da Tg o PLA semicristalino muda de estado frágil para outro mais resistente e dúctil. Sob aquecimento vai se comportar como um líquido viscoso. Abaixo da Tg o PLA tem comportamento friável, e deformação limitada até resfriado à sua temperatura de transição β , de aproximadamente -45°C. A partir desta temperatura o PLA se comportará apenas como um polímero friável.

Figura 8. Estados metaestáveis de polilactídeos semicristalinos de alta massa molar (WITZKE, 1997 apud AURAS *et. al.*, 2004)

A temperatura de deflexão térmica (HDT, do inglês Heat Deflection Temperature) e a temperatura de amolecimento Vicat (VICAT) são temperaturas nas quais um polímero se deforma sob a força de uma determinada pressão ou carga. São fatores importantes para certas aplicações industriais e para uso como embalagens (CANEVAROLO, 2002). Neste trabalho a HDT e a Vicat são de especial interesse. A HDT é a temperatura na qual uma barra de ensaio, sob uma pressão de 1,82 MPa, se deforma em 0,25 mm. A Vicat é a temperatura na qual uma agulha de extremidade plana penetra o polímero em uma profundidade de 1.0 mm sob uma carga de 10 N. Tanto a HDT quanto a Vicat são medidas úteis para a avaliação da temperatura de serviço de um polímero.

2.3.1 – PROPRIEDADES MECÂNICAS E CRISTALINIDADE

As propriedades mecânicas e a cristalinidade do PLA são dependentes da massa molar e da composição estereoquímica do polímero. A composição estereoquímica pode ser controlada através de teores de D-, L-, D,L- ou meso-lactídeo para formar copolímeros randômicos ou em bloco, enquanto a massa molar é controlado pela adição de compostos hidroxílicos (por exemplo, ácido lático, água, álcoois) (GARLOTTA, 2001).

As propriedades mecânicas do poli(ácido láctico) têm sido estudadas por muitos pesquisadores (AURAS *et. al.*, 2004). Estudos mostram que a resistência ao impacto e a temperatura de amolecimento Vicat aumentam com a massa molar e com o grau de cristalinidade (GARLOTTA, 2001). Foram encontrados incrementos da ordem de 20% no módulo elástico de PLLA comparado com PDLA (menor estéreo-regularidade e portanto menor grau de cristalinidade) e que a resistência ao impacto também foi fortemente influenciada pela cristalinidade (PEREGO *et. al.*, 1996).

Investigação entre as propriedades do poli(98% L-lactídeo) e do poli(94% L-lactídeo) mostraram que o maior teor de L-lactídeo, que resulta em uma maior estereo-regularidade e, portanto, maior grau de cristalinidade, contribui para uma maior resistência à tração, que variou entre 72 MPa e 84 MPa (AURAS *et. al.*, 2004). Neste mesmo estudo, embora o poli(98% L-

lactídeo) tenha apresentado maior alongamento no escoamento, 5% versus 3%, o poli(94% Llactídeo) apresentou alongamento na ruptura por volta de sete vezes maior, 78% versus 11%, indicando uma maior plasticidade deste último. O poli(94% L-lactídeo) apresentou maior módulo elástico, 2,31 GPa contra 2,11 GPa do poli(98% L-lactídeo).

A orientação das cadeias quando realizada em baixas temperaturas mostrou aumento na resistência à tração do PLLA porém sem aumento significativo da cristalinidade. Já a orientação biaxial simultânea produz filmes de PLA com diferentes graus de cristalinidade com impactos significativos nas propriedades finais destes filmes (OU e CAKMAK, 2003 apud AURAS *et. al.*, 2004).

O recozimento do PLLA aumentou a resistência à tração, devido ao aumento na estereoregularidade das cadeias e aumentou a resistência ao impacto devido aos efeitos de reticulação dos domínios cristalinos. Recozimento a 105°C por 90 minutos resultou em aumento da cristalinidade do material, determinada por análise de DSC, onde uma variação de entalpia de cristalização entre 3 J/g a 13 J/g para um material sem o recozimento aumentou para uma variação de entalpia entre 42 J/g a 65 J/g para o material recozido, dependendo da massa molar do polímero utilizado. Também foi observado que pesos moleculares menores, nas mesmas condições de recozimento, resultaram em maiores taxas de cristalinidade devido à maior mobilidade das cadeias. As temperaturas de transição vítrea e de fusão não sofreram alterações significativas e nem mostraram dependência com a massa molar dos polímeros testados. Para PLLA com peso molecular de aproximadamente 70.000 g/mol, o recozimento resultou em aumento na resistência à tração e módulo de elasticidade de 59 e 3750 MPa, respectivamente, para 66 e 4150 MPa. A temperatura de deflexão témica (HDT) aumentou de 55 °C para 66 °C e a temperatura de amolecimento Vicat de 59 °C para 165 °C (PEREGO *et. al.*, 1996).

O recozimento para induzir a cristalização do PLA geralmente produz dois picos de fusão. No estudo de Yasuniwa *et al.* (2004) a indução da cristalização de PLA amorfo por recozimento foi realizada em temperaturas entre 75°C e seu ponto de fusão, e pontos de fusão duplos foram encontrados sendo explicados pela ocorrência de efeitos competitivos de fusão e recristalização durante o processo de aquecimento.
Mais recentemente alguns produtos e estudos vêm indicando a possibilidade de aumentos ainda maiores da HDT e da Vicat em PLA. Um grau de PLA resistente ao calor foi obtido por modificação do PLA convencional por um processo de extrusão, obtendo-se uma HDT superior a 120°C para o PLA modificado a partir de aditivos patenteados (TANG *et. al.*, 2012). Novos produtos prometendo altos valores de HDT em PLA também começaram a ser oferecidos recentemente. A Corbion Purac oferece blendas de PLA com desempenho de resistência ao calor similares ao poliestireno, polipropileno e poliacrilonitrila-butadieno-estireno (ABS), com valores de HDT entre 95°C e 120°C (Ficha *CORBION PURAC High Heat PLA, 2013*). Também a Sulzer começou a oferecer PLA de alta pureza com alta resistência térmica que também pode ser trabalhado de modo a apresentar estruturas espaciais que resultam em excelente estabilidade térmica, com valores de HDT maiores que 180°C (Ficha de PLA Sulzer, 2013).

2.4 – ADITIVOS

A possibilidade da utilização dos plásticos em inúmeras aplicações tais como indústria automotiva, setor de eletrônica, embalagem e produção de bens de consumos é essencialmente atribuída à incorporação de aditivos às resinas virgens ou recicladas. Os aditivos provêm maneiras de resolver problemas de processamento, limitações de desempenho e restrições de estabilidade ambiental. Na necessidade contínua de facilitar o processamento, melhorar propriedades físicas, melhorar durabilidade e atender as novas regulamentações ambientais, os aditivos continuam a evoluir e diversificar (BART, 2005).

2.4.1 – AGENTES NUCLEANTES

Agentes nucleantes são compostos inorgânicos (talco, sílica, fibra de vidro, caulim, etc.), compostos orgânicos (sais de ácidos mono e policarboxílicos e certos pigmentos) ou poliméricos (copolímeros etileno/ éster acrílico, PET, etc.) utilizados para aumentar o grau de cristalinidade e diminuir o tamanho dos cristais ou esferulitos.

O aumento no grau de cristalinidade resulta em maior dureza, maior módulo de elasticidade, maior resistência à tração e maior tensão de escoamento em comparação com o material não nucleado. As concentrações a serem incorporadas dependem da quantidade total de energia superficial fornecida para que o núcleo adquira uma estabilidade energética e possa iniciar o crescimento do cristal.

Esferulitos menores resultam em melhores propriedades ópticas como transparência e translucidez. Para um mesmo grau de cristalinidade a diminuição dos esferulitos implica em um maior número de células cristalinas e maior alongamento, maior resistência ao impacto e maior resistência à tração.

O mecanismo exato de nucleação ainda não é completamente conhecido mas para que a nucleação ocorra o agente nucleante deve ter afinidade pelo polímero, sendo que maiores afinidades resultam em maiores velocidades de nucleação. O aditivo deve ser insolúvel no polímero, deve ter um ponto de fusão maior que o do polímero e ser bem disperso em partículas pequenas, geralmente de 1 µm a 10 µm (RABELLO, 2000).

Estudos com compostos orgânicos que contêm grupos hidrazida, como benzoilhidrazida mostraram efeito nucleante em PLA (KAWAMOTO *et al.*, 2007). Substâncias inorgânicas, como as nanopartículas de BaSO₄ e TiO₂, na concentração em torno de 0,5% aumentaram significativamente a cristalinidade do PLA (LIAO *et al.*, 2007). TSUJI *et al.* (2006) estudaram o comportamento de cristalização isotérmica e não isotérmica do PLLA tendo como agente nucleante pequenas quantidades de PDLA e observaram uma aceleração no processo de cristalização do PLLA e um aumento no número de esferulitos.

2.4.2 – MODIFICADORES DE IMPACTO

Um polímero vítreo ou semi-cristalino apresenta baixa resistência ao impacto devido à baixa mobilidade molecular, dificultando os mecanismos de deformação, que são os

responsáveis pela dissipação de energia aplicada durante uma solicitação mecânica. A presença de falhas internas, como vazios, concentram a tensão aplicada e as trincas se propagam rapidamente até a ruptura. Com a adição de modificadores de impacto criam-se mecanismos de deformação capazes de dissipar a energia aplicada que seria, de outra forma, utilizada para estender falhas ou trincas existentes (LUTZ e GROSSMAN, 2001).

Modificadores de impacto são compostos borrachosos com baixa miscibilidade na matriz polimérica a ser modificada que podem ser incorporados através de mistura mecânica ou por enxertia com a finalidade de aumentar a resistência ao impacto e a tenacidade do polímero.

Devido à baixa miscibilidade, o aspecto geral da matriz polimérica é de uma matriz vítrea com partículas dispersas de elastômero. O comportamento mecânico do polímero tenacificado está diretamente relacionado com esta morfologia. Aspectos como tamanho de partícula, concentração e grau de adesão entre as fases definem a eficiência do aditivo.

Para se obter uma mistura com alta resistência ao impacto, a temperatura de transição vítrea do componente elastomérico deve ser bem abaixo da temperatura ambiente, a borracha deve formar uma segunda fase, dispersa na matriz vítrea e deve haver uma boa adesão entre as fases (RABELLO, 2000).

Africat e Matana (2010) estudaram o efeito do copolímero etileno/acrilato nas propriedades mecânicas do PLA e observaram grande eficiência na tenacificação do PLA, demonstrada pelo aumento na resistência ao impacto e da ductibilidade e pouca alteração no módulo elástico.

2.5 - BIODEGRADABILIDADE

O PLA degrada principalmente por hidrólise, sob exposição à umidade. A degradação ocorre em duas fases. Primeiro, a cisão não-enzimática aleatória da cadeia nos grupos éster conduz a uma fragilização do polímero com a redução da massa molar. Esta etapa é

impulsionada pela hidrólise e quebra das ligações éster na cadeia polimérica, que é autocatalítica devido à presença de grupos finais de ácidos carboxílicos. O processo segue uma cinética de primeira ordem, pode ser acelerada por ácidos ou bases e é afetada tanto pelos níveis de temperatura quanto de umidade. Em seguida, o PLA de baixa massa molar pode difundir para fora da massa do polímero, a massa molar é reduzida até que o ácido láctico e os oligômeros de sejam naturalmente metabolizados pelos microrganismos para produzir dióxido de carbono, água e húmus (AURAS *et. al.*, 2004).

Figura 9. Hidrólise e diminuição da massa molar do PLA (AURAS et. al., 2004)

Embora o processo de degradação em PLA seja uma simples hidrólise, a taxa de degradação pode ser afetada por muitos fatores devido à complexidade do sistema de reação sólido-líquido. A taxa de degradação de polímero é determinada por fatores ambientais que têm influência na população microbiana e na atividade de diferentes microorganismos. Umidade, temperatura, pH, salinidade, presença ou ausência de oxigênio e disponibilidade de diferentes

nutrientes têm efeitos importantes na degradação microbiana de polímeros. A degradação também é dependente das características químicas e físicas do polímero, que incluem difusividade, porosidade, morfologia, grau de reticulação, pureza, reatividade química, resistência mecânica e tolerância térmica (NAMPOOTHIRI *et. al.*, 2010).

A degradação do PLA é descrita como dependente de fatores como massa molar, cristalinidade, pureza, temperatura, pH, presença de grupos terminais carboxílicos ou hidroxílicos, permeabilidade à água, e aditivos atuando cataliticamente, que podem incluir enzimas, bactérias ou cargas inorgânicas. (PARK e XANTHOS, 2009).

Embora o PLA possua biodegradabilidade certificada segundo as normas ASTM D-6400 e EN-13432, essas diretrizes apenas avaliam sua degradação em até seis meses em condições de compostagem.

De acordo com a Associação Brasileira de Normas Técnicas (ABNT) NBR 13591, compostagem é o processo de decomposição biológica da fração orgânica biodegradável dos resíduos, efetuado por uma população diversificada de organismos, em condições controladas de aerobiose e demais parâmetros, desenvolvido em duas etapas distintas: uma de degradação ativa e outra de maturação, que é o processo bioquímico de umificação do extrato orgânico.

Em lixões a céu aberto, destino mais provável de uma embalagem no Brasil, o material não se degradaria rapidamente. Em aterros pode ocorrer degradação anaeróbica, que, ao invés de gerar gás carbônico produz metano (CH₄), cuja contribuição para o efeito estufa é muito mais intensa.

De forma geral, apesar de seu custo ainda maior que o dos plásticos sintéticos, o uso do PLA como material de embalagem é uma alternativa tecnicamente viável de fonte renovável ao petróleo. Porém, com as atuais condições de gerenciamento de resíduos no Brasil, o uso do PLA ainda não é uma alternativa para o problema de resíduos sólidos.

3 – MATERIAIS E MÉTODOS

3.1 – MATERIAIS

3.1.1 – POLI(ÁCIDO LÁTICO) – PLA

O PLA usado neste trabalho é o Ingeo 2002D da Cargill Dow, fabricado pela Natureworks. O Ingeo 2002D é uma resina termoplástica produzida a partir de recursos renováveis anualmente e foi desenvolvida para aplicações que envolvem extrusão e termoformagem. Apresenta massa específica de 1,24 g/cm³, índice de fluidez de 5 a 7 g/10 min a 210°C/ 2,16 kg, teor de D-lactídeo de 4-5% e massa molar de 205.000 g/mol. As propriedades mecânicas do material serão apresentadas na Tabela 3.1.

Tabela 3.1- Propriedades mecânicas típicas do poliácido lático D2002 (Ficha técnica: NatureWorks PLA Polymer 2002D – APÊNDICE 1)

Propriedades mecânicas		
Resistência à Tração @ quebra, psi (MPa)	7700 (53)	ASTM D882
Resistência à Tração Rendimento, psi (MPa)	8700 (60)	ASTM D882
Módulo de tração, kpsi (GPa)	500 (3,5)	ASTM D882
Alongamento, %	6,0	ASTM D882
Resistência ao Impacto IZOD, ft-lb/in (J/m)	0,24 (12,81)	ASTM D256

3.1.2 – MODIFICADOR TÉRMICO (NUCLEANTE)

O modificador térmico (MT) foi o Biomax Thermal 300 da DuPont cujos componentes descritos pelo fornecedor são: um copolímero de etileno/acrilato (>40%), n-butil/acrilato (<0,1%) e cera inerte (<60%), com massa específica de 0,94g/cm³ e ponto de fusão de 113°C. Foi desenvolvido para modificação do poli (ácido lático) para melhorias nas propriedades térmicas e de resistência para aplicações em embalagens e outras aplicações industriais. Suas propriedades típicas e composição são mostradas nas Tabelas 3.2 e 3.3.

Tabela 3.2- Propriedades típicas do Biomax Thermal 300 (Ficha técnica: DuPont Biomax Thermal 300 – APÊNDICE 2)

Físicas	Valores nominais	Método(s) d	le teste
Massa específica	0,94 g/cm ³	ASTM D792	ISO 1183
Índice de fluidez (190°C/ 2,16kg)	1200 g/10 min	ASTM D1238	ISO 1133
Térmicas			
Ponto de fusão (DSC)	113°C (235°F)	ASTM D3418	ISO 3146

Tabela 3.3- Composição do Biomax Thermal 300 (Folha de segurança (MSDS – Material Safety Data Sheet): DuPont Biomax Thermal 300 – APÊNDICE 3)

Material	Número CAS	%
Cera não regulamentada		< 60
Copolímero Etileno Acrilato		> 40
n-Butil Acrilato	141-32-2	< 0,1

3.1.3 – MODIFICADOR DE IMPACTO

O modificador de impacto (MI) foi o Biostrenght 280 da Arkema que é um material com núcleo acrílico desenvolvido para aumentar a resistência do PLA mantendo a transparência. O aditivo é composto por uma mistura de ácidos e ésteres orgânicos (Ficha técnica Arkema Biostrength 280 – APÊNDICE 4). Para este estudo o modificador de impacto foi fornecido como um concentrado incorporado a 1:1 em PLA.

O material foi incorporado pela própria Arkema no PLA descrito em 3.1.1. A composição do modificador de impacto é mostrada na Tabela 3.4.

Tabela 3.4- Composição do Biostrength 280 (Folha de segurança (MSDS – Material Safety Data Sheet): Arkema Biostrength 280 – APÊNDICE 5)

Material	Número CAS	%
Ácido 2-propenóico, 2-metil, metil-		
éster, polímero com Butil 2-propenoato	25852-37-3	95 - 99%
Ácido sulfúrico, ésteres de alquila		
mono-C10-16, sais de sódio	68585-47-7	1 - 5%

3.2 – MÉTODOS

3.2.1 – PREPARAÇÃO DAS AMOSTRAS

Neste trabalho foram avaliadas combinações de aditivo modificador térmico (MT) e aditivo modificador de impacto (MI) em matriz de PLA.

A incorporação dos aditivos na matriz polimérica de PLA foi feita diretamente no processo de injeção dos corpos de prova. O PLA foi submetido à secagem prévia a 100°C por 90 minutos para evitar degradação durante o processamento. Os corpos de prova foram injetados em um equipamento Romi 100TGR a uma temperatura de 150°C na zona de alimentação, com gradiente de temperatura entre 160°C e 190°C entre a zona 2 da injetora até o bico, com a temperatura do molde de 110°C, conforme recomendado pelo fabricante da resina, com uma pressão de 30% de 120Kgf e pressão de recalque de 20% de 120Kgf com tempo de resfriamento de 20s em porcentagens pré-determinadas de acordo com um experimento fatorial de 2 níveis com ponto central e 2 fatores (MT e MI) e complementada com formulações com aditivos (MT) aplicados isoladamente, resultando nas formulações descritas na Tabela 3.5. As concentrações mínimas e máximas utilizadas de cada aditivo seguiram a recomendação do fabricante. Um tratamento de recozimento também foi incluído como uma variável na análise. Neste tratamento os corpos de prova foram submetidos a aquecimento em estufa a 105°C por 90 minutos, conforme descrito na literatura (KOLSTAD, 1996).

	A (%	
Formula	Amostra	PLA	MT	MI
1	PLA0005	99,5	0	0,5
2	PLA0015	98,5	0	1,5
3	PLA4005	95,5	4	0,5
4	PLA4015	94,5	4	1,5
5	PLA2010	97	2	1
6	PLA0000	100	0	0
7	PLA2000	98	2	0
8	PLA4000	96	4	0

Tabela 3.5. Composição das blendas resultantes para o experimento fatorial de 2 níveis com ponto central (fórmulas de 1 a 5) e complementares (fórmulas de 6 a 8)

3.2.2 – CARACTERIZAÇÃO

Os ensaios de temperatura de deflexão térmica (HDT) e Ponto de amolecimento Vicat (Vicat) foram realizados no Laboratório de Ensaios Físicos e Químicos em Polímeros do Núcleo de Tecnologia de Plásticos da Escola SENAI Mario Amato em São Bernardo do Campo conforme os procedimentos das normas ASTM D648-07 e ASTM D1525-09, respectivamente, para um mínimo de 3 espécimes em um equipamento CEAST de 3 estações. Os ensaios de resistência à tração foram realizados no mesmo laboratório conforme o procedimento da norma ASTM D638-10, com velocidade de deformação de 50mm/min em um equipamento EMIC Modelo DL3000.

As amostras para o DSC, retiradas dos corpos de prova injetados, foram submetidas a um aquecimento de 10°C/min, de -10 °C até 220°C (1° aquecimento), resfriadas até -10°C e submetidas à um segundo aquecimento até 220°C. Neste estudo, foram usados somente valores obtidos no 1° aquecimento com o objetivo de avaliar a cristalinidade do corpo de prova. A

temperatura de transição vitrea (Tg), Temperatura de fusão (Tm), Temperatura de cristalização a frio (Tc), e as variações de entalpias de fusão (Δ Hm) e cristalização a frio (Δ Hc) foram determinadas utilizando-se um DSC Modelo 2920 TA Instruments com fluxo de nitrogênio no Laboratório de Pesquisa Analítica da Johnson & Johnson.

Para verificar alterações morfológicas na estrutura cristalina as amostras foram analisadas no LRAC (Laboratório de Recursos Analíticos e de Calibração) da Faculdade de Engenharia Química da Unicamp por Difração de Raios–X utilizando-se um Difratômetro Philips X'Pert, varredura de 5 a 50° (2 θ), radiação de K α do Cu (λ = 1,54 A°), tensão de 40 kV e corrente de 40 mA.

Os ensaios de HDT, Vicat e mecânicos, assim como as análises de DSC e difração de raios-X foram realizadas com os corpos de prova injetados sem recozimento e após tratamento de recozimento.

3.2.3 – ANÁLISE ESTATÍSTICA

As análises estatísticas foram realizadas através de modelos de regressão utilizando-se o software JMP versão 10, desta forma os dados estão apresentados em inglês na forma original do programa. Para cada resposta avaliada um teste global de significância do modelo proposto foi realizado, assim como a avaliação da significância fator a fator através da resposta das estimativas no mesmo modelo.

4 – RESULTADOS

4.1 – Caracterização das matérias primas

4.1.1 – PLA

A caracterização do PLA2002D da Cargill NatureWorks por análise de calorimetria diferencial exploratória, DSC, e por microscopia de infravermelho por transformada de Fourier, FTIR, mostrou resultados coerentes com os descritos na literatura, conforme mostrados nas Tabelas 4.1 e 4.2. As curvas obtidas estão apresentadas no APÊNDICE 6.

Tabela 4.1. Valores de Tg, Tc, Tm, Δ Hc e Δ Hm do PLA

	Tg (°C)	Tc (°C)	Tm (°C)	ΔHc (J/g)	ΔHm (J/g)
PLA 2002D	57	121	153	28	22

Tabela 4.2. Dados de FTIR. Posição dos picos encontrados para o PLA 2002D da Cargill NatureWorks comparados com picos descritos na literatura (AURAS *et. al.*, 2004)

	Posição do pico (cm ⁻¹)			
Atribuição	Literatura	PLA Cargill NatureWorks2002D		
Estiramento –CH–	2997 (assimétrico),	2995, 2945		
	2946 (simétrico), 2877			
Estiramento de carbonila –C=O	1748	1748		
Flexão –CH ₃	1456	1452		
Deformação –CH– (inclui flexão	1382, 1365	1382, 1360		
simétrica e assimétrica)				
Flexão –C=O	1225	1266		
Estiramento –CH–	1194, 1130, 1093	1181, 1128, 1081		
Flexão –OH	1047	1043		
Modos de oscilação –CH ₃	956, 921	956		
Estiramento –C–C–	926, 868	868		

4.1.2 – MODIFICADOR TÉRMICO

A caracterização do modificador térmico (MT), Biomax Thermal 300 da DuPont, por DSC apresentou o valores de Tc, Tm, Δ Hc e Δ Hm relacionados na Tabela 4.3, e por FTIR os picos relacionados na Tabela 4.4. A curvas obtidas estão apresentadas no APÊNDICE 7.

Tabela 4.3. Valores de Tc, Tm, Δ Hc e Δ Hm do Biomax Thermal 300 (2° aquecimento)

	Tc (°C)	Tm (°C)	ΔHc (J/g)	Δ Hm (J/g)
Biomax	106	111	100	141

Tabela 4.4	. Dados	de FTIR.	Posição	dos picos	encontrad	os para	o Biomax	Thermal	300 da
				DuP	ont				

A tuibuisão	Posição do pico (cm ⁻¹)
Atribuição	Biomax Thermal
Estiramento O-H (3200 – 3600)	3393, 3188
Estiramento C-H (2850 – 3000)	2916, 2849
Estiramento C=O (1670 – 1820)	1732
Estiramento C=C (1620 – 1680)	1644
Flexão C-H (1350 – 1480)	1420, 1470
Estiramento C-O (1000 – 1300)	1169
Flexão =C-H (675 – 1000)	810, 719

4.1.3 – MODOFICADOR DE IMPACTO

A caracterização do modificador de impacto (MI), Biostrenght 280 da Arkema, por DSC apresentou os valores de Tg, Tc, Tm relacionados na Tabela 4.5, e por FTIR os picos relacionados na Tabela 4.6. A curvas obtidas estão apresentadas no APÊNDICE 8.

Nota-se que no 1º aquecimento os picos de Tg, Tc e Tm são os picos do PLA, já que o aditivo foi incorporado na proporção 1:1 no PLA. No 2º aquecimento, os picos de Tc e Tm não aparecem, mostrando que, o modificador de impacto, nesta concentração, atua de modo a reduzir a cristalinidade do material.

Biostrengh	Tg (°C)	Tc (°C)	Tm (°C)
1° aquecimento	57	108	155
2° aquecimento	53		

Tabela 4.5. Valores de Tg, Tc, Tm, do Biostrenght 280

Tabela 4.6. Dados de FTIR. Posição dos picos encontrados para o Biostrenght 280 da Arkema

	Posição do pico (cm ⁻¹)
Atribuição	Biostrength 280 da Arkema,
	incorporado em poli(ácido lático)
	2002D na proporção 1:1
Estiramento O-H	banda larga e discreta entre 3200-3600
Estiramento –CH–	2951, 2949
Estiramento de carbonila –C=O	1732
Flexão –CH ₃	1455
Deformação -CH- (inclui flexão	1376
simétrica e assimétrica)	
Estiramento –CH–	1181, 1128, 1084

Observa-se que os picos evidentes na análise apresentam os valores de picos similares ao PLA, exceto pela banda entre 3200-3600 cm⁻¹. Como o aditivo utilizado foi fornecido já incorporado ao PLA 2002D, possivelmente os picos de absorções relacionadas ao estiramento C=O (1670-1820 cm⁻¹) e ao estiramento C-O (1000-1300 cm⁻¹) dos ácidos e ésteres orgânicos estejam ocultados em picos de absorções do próprio PLA. A única diferença encontrada está na banda larga de absorção entre 3200-3600 cm⁻¹, possivelmente relacionado ao estiramento O-H dos ácidos orgânicos.

4.2 – PROPRIEDADES TÉRMICAS

Após incorporação dos aditivos na matriz polimérica de PLA, conforme formulações mostradas na Tabela 3.5, e injeção dos corpos de prova, os materiais foram analisados quanto às propriedades térmicas.

Na Tabela 4.7 são mostrados os valores médios de HDT e Vicat bem como as propriedades térmicas para as amostras antes e após o tratamento de recozimento. A Figura 10 mostra, esquematicamente, como foram definidas as temperaturas obtidas na curva de DSC, como também a variação de entalpia de cristalização a frio e a variação de entalpia de fusão que foram utilizadas para o cálculo de cristalinidade. As curvas obtidas para cada amostra são apresentadas no APÊNDICE 9 e as análises originais de HDT e Vicat são apresentadas no APÊNDICE 10.

													_
		Ant	es do rec	ozimento				Apó	s recoz	imento			
	HDT (°C)	Vicat (°C)	Tg (°C)	Tc (°C)	Tm (°C)	Xc (%)	HDT (°C)	Vicat (°C)	Tg (°C)	$Tc (^{\circ}C)^2$	Tm (°C)	Xc (%)	
PLA0000	$50,2 \pm 0,3$	$60,2 \pm 0,9$	60	117	151/157	3	59,6 ± 0,9	$138,0 \pm 1,0$	65		152/158	43	
PLA0005	$47,2\pm0,6$	59,3 ± 1,0	60	113	153/159	0	$59,6 \pm 0,5$	$134,5 \pm 0,2$	57		151/158	41	
PLA0015	$47{,}4\pm0{,}8$	$58,4 \pm 0,0$	57	111	151/158	0	$59,7 \pm 0,5$	133,4 ± 1,6	63		151/159	41	
PLA2000	$48,7\pm0,8$	57,7 ± 1,4	59	98	157	8	$59,2 \pm 0,8$	$129,2 \pm 0,6$	58		158	44	
PLA4000	$49,0\pm0,4$	56,6 ± 1,2	60	94	156	12	59,7 ± 0,3	132,3 ± 1,3	60		156	32	
PLA2010	$45,0\pm0,5$	$55,1 \pm 0,5$	57	96	158	0	59,7 ± 0,6	$132,1 \pm 0,5$	59		157	31	
PLA4005	$45,8\pm0,4$	$56,5 \pm 0,6$	60	93/112 ¹	156	10	57,6 ± 0,0	131,7 ± 0,6	59		156	31	
PLA4015	$44{,}4\pm0{,}5$	$55,1 \pm 0,6$	56	94/111 ¹	156	9	$60,1 \pm 0,6$	$131,2 \pm 1,1$	59		157	30	

Tabela 4.7. Valores das propriedades térmicas antes e após recozimento

¹Surgimento de um primeiro pico pronunciado, seguido por um segundo pico pequeno

² Nenhuma amostra apresentou temperatura de cristalização a frio

A Tg medida para o PLA puro (PLA0000) foi de 60 e 65°C, antes e após o tratamento de recozimento, respectivamente, e a Tm entre 150 e 160°C, valores dentro das faixas típicas relatadas para o PLA de Tg, entre 50 e 80°C, e de Tm, entre 130 a 180°C (AURAS *et al.*, 2004).

Figura 10. Curva esquemática do DSC: Temperatura de transição vítrea (Tg); Temperatura de cristalização a frio (Tc); Temperatura de fusão (Tm); variação de Entalpia de cristalização a frio (ΔHc) e de fusão (ΔHm).

Destaca-se, primeiramente, o comportamento das amostras antes do tratamento térmico. A análise estatística dos resultados para os quais houve a incorporação dos aditivos indicou que os aditivos isolados não causaram alteração significativa nos valores de Vicat, e o MI, apesar de causar alteração estatisticamente significativa nos valores de HDT, a redução da resposta em função da presença do MI é desprezível, se comparada à significância do fator recozimento. A Figura 11 mostra a estimativa dos efeitos calculados de cada fator e suas interações frente à resposta de (a) HDT e (b) Vicat. Deste modo, na prática, somente o fator recozimento apresentou alterações significantes nas respostas de HDT e Vicat. A análise estatística completa dos experimentos é apresentada no APÊNDICE 11.

Pareto Plot of Transfor	(a) HDT		
Term	Orthog Estimate		
	-6,322742		_
	-0,052912		
MT	-0,675000		
(MT-2)*(MI-0,67)	-0,391527		
(MT-2)*RECOZ[0]	-0,282036		
(MT-2)*(MI-0,67)*RECOZ[0	-0,212543		
Pareto Plot of Transfor	med Estimates	6	(b) Vicat
Pareto Plot of Transfor	med Estimates Orthog	;	(b) Vicat
Pareto Plot of Transfor	med Estimates Orthog Estimate	3	(b) Vicat
Pareto Plot of Transfor Term RECOZ[0]	med Estimates Orthog Estimate -38,49890	\$	(b) Vicat
Pareto Plot of Transfor Term RECOZ[0] MT	Orthog Estimate -38,49890 -3,71500		(b) Vicat
Pareto Plot of Transfor Term RECOZ[0] MT (MT-2)*(MI-0,67)	Orthog Estimate -38,49890 -3,71500 -2,03695		(b) Vicat
Pareto Plot of Transfor Term RECOZ[0] MT (MT-2)*(MI-0,67) MI	Orthog Estimate -38,49890 -3,71500 -2,03695 -1,43708		(b) Vicat
Pareto Plot of Transfor Term RECOZ[0] MT (MT-2)*(MI-0,67) MI (MT-2)*RECOZ[0]	Orthog Estimate -38,49890 -3,71500 -2,03695 -1,43708 0,27042 -2,03695		(b) Vicat
Pareto Plot of Transfor Term RECOZ[0] MT (MT-2)*(MI-0,67) MI (MT-2)*RECOZ[0] (MI-0,67)*RECOZ[0]	Orthog Estimate -38,49890 -3,71500 -2,03695 -1,43708 0,27042 0,22246 0,2545		(b) Vicat

Figura 11. Estimativa dos efeitos sobre (a) HDT e (b) Vicat dos fatores analisados: Tratamento de recozimento (RECOZ), modificador térmico (MT) e modificador de impacto (MI)

A associação dos dois aditivos indicou uma tendência de redução nestas propriedades térmicas em torno de 5°C. Os valores de Tg não apresentaram variação significativa em nenhum caso. Nota-se que os valores de HDT e Vicat são encontrados muito próximos da faixa de Tg, como esperado, porém não existe uma correlação entre os valores encontrados. Estes resultados sugerem que as diferenças devem-se às diferentes solicitações que o material sofre para cada método de medição. Para HDT e Vicat, além do aquecimento existe uma solicitação mecânica, enquanto no DSC são detectáveis apenas as alterações no sinal de fluxo de calor. Na literatura são relatados valores de HDT entre 60-66°C e Vicat entre 59-60°C para o PLA semicristalino sendo que a Vicat é mais fortemente influenciado pelo grau de cristalinidade do material (PEREGO & CELLA, 2010).

O comportamento da cristalização a frio revela a ação nucleante do MT, pois se observa o deslocamento de Tc para temperaturas mais baixas, indicando o favorecimento do processo de nucleação. O MI não interferiu nesta característica. A associação dos aditivos promove a ocorrência de dois picos de Tc o que sugere a existência de frações do material com diferentes velocidades de cristalização.

Com o objetivo de determinar-se o grau de cristalinidade das amostras injetadas foi necessário descontar a fração que cristalizou durante o aquecimento no DSC. Portanto para o cálculo do grau de cristalinidade (Xc) utilizou-se a Equação 4.1:

$$Xc (\%) = \frac{\Delta Hm - \Delta Hc}{\Delta Hm^{\infty}} \times 100 \qquad (equação 4.1)$$

Onde: Δ Hm é a entalpia endotérmica de fusão, Δ Hc é a entalpia exotérmica associada aos cristais durante o aquecimento, ou seja, a entalpia da cristalização a frio do PLA e Δ Hm^{∞} é a entalpia teórica do PLA 100% cristalino que é assumida ser 93 J/g (HARRIS & LEE, 2008).

O grau de cristalinidade foi significativamente modificado pelos aditivos. Como esperado o agente nucleante aumentou o grau de cristalinidade de 3% para o PLA puro para 8 e 12% com teores de MT de 2 e 4%, respectivamente. O aditivo modificador de impacto parece restringir a cristalinidade sendo que, pelo método utilizado, as amostras injetadas apenas com aditivo modificador de impacto se apresentaram completamente amorfas. Mesmo quando associado a 2% do aditivo nucleante o modificador de impacto parece dificultar a cristalização.

Estas diferenças foram também observadas através da transparência das amostras. A Figura 12 mostra as amostras em escala decrescente de cristalinidade, exceto pelo PLA puro (PLA0000) que apresentou em torno de 3% de cristalinidade e foi o material mais opaco observado. Isto ocorreu, muito provavelmente, por ter poucos cristais porém de maiores dimensões capazes de maior espalhamento da luz.

Figura 12. Transparência antes do tratamento de recozimento das amostras de PLA puro e com diferentes teores de MT e MI

Os resultados são significativamente alterados após o tratamento de recozimento, sendo este o fator que apresentou maior importância no aumento de todas as propriedades térmicas estudadas. Independentemente da presença de um ou outro aditivo, as amostras recozidas apresentaram valores de HDT entre 58 e 60°C e Vicat entre 129 e 138°C. A melhoria nas propriedades térmicas pode ser atribuída ao aumento da cristalinidade, como é verificado nos valores de Xc. Além disto, pode estar relacionado também com crescimento dos cristais que o processo de recozimento tipicamente confere ao PLA (PEREGO & CELLA, 2010).

O PLA moldado por injeção pode apresentar-se quase totalmente amorfo devido à lenta cinética de cristalização deste material, o que resulta em peças frágeis e com baixa tenacidade. Estudos anteriores indicam Tg de 64°C, Tm de 168°C e Xc de 2,7% para peças injetadas e após recozimento, Tg de 66°C, Tm de 169°C e Xc de 45% até 70% dependendo da massa molar do polímero (PEREGO & CELLA, 2010).

Os resultados deste estudo estão em concordância com estes relatos, pois verificou-se pequeno aumento em Tg e significativo aumento em Xc, além de indicar maior sensibilidade do Vicat ao aumento da cristalinidade do PLA, comparativamente à HDT. Após o recozimento observam-se os seguintes efeitos associados aos aditivos: (a) o MT não demonstra uma tendência clara, indicando que o recozimento é mais determinante quanto ao processo de cristalização do que o efeito nucleante do aditivo; (b) o MI tem uma tendência a reduzir Tg e Xc e (c) a associação dos dois aditivos causa redução em Xc limitando os valores próximos a 30%.

A análise visual para as amostras tratadas termicamente mostra que todas tornaram-se opacas, resultado da maior cristalinidade, como é observado na Figura 13.

Figura 13. Transparência das amostras de PLA puro e com diferentes teores de MT e MI após tratamento de recozimento

As amostras de PLA puro e com a presença do aditivo MI apresentaram pontos de fusão duplos. Isto foi observado em outros estudos sendo fortemente dependentes da taxa de aquecimento (YASUNIWA et al., 2004), sendo explicados pela ocorrência de efeitos competitivos de fusão e recristalização durante o processo de aquecimento. Cristais imperfeitos e pequenos mudam sucessivamente para cristais mais estáveis através deste mecanismo de fusão-

recristalização. O pico endotérmico ficaria evidenciado quando a taxa de fusão ultrapassa a de recristalização e um sinal exotérmico quando a taxa de recristalização é maior que a da fusão. Como cada processo tem uma cinética diferente, dependendo das condições de aquecimento um ou outro será mais favorecido (YASUNIWA et al., 2004).

Neste trabalho somente a taxa de 10°C/min foi utilizada, e nestas condições este efeito esteve presente. Como os pontos de fusão duplos não ocorreram para todas as amostras pode ser considerado que a presença do aditivo nucleante pode ter alterado a cinética do processo de recristalização ou mesmo proporcionado uma maior homogeneidade no tamanho e perfeição dos cristais originais.

Outros autores associaram a presença de dois picos à formação da fase β coexistindo com a fase α (FAMBRI and MIGLIARESI, 2010; HOOGSTEEN et al., 1990), ou mesmo à formação de uma fase desordenada da fase α denominada α ' (DI LORENZO et al., 2011). A análise de difração de raios-X foi realizada para as amostras antes e após o recozimento, e não foi possível confirmar a coexistência de diferentes fases cristalinas, reforçando a hipótese de que de que o mecanismo fusão-recristalização estivesse atuando. Os resultados da Difração de raios-X são apresentados e discutidos no item 4.3.

4.3 – ANÁLISES DE DIFRAÇÃO DE RAIOS-X

Os difratogramas de Raios-X são apresentados no APÊNDICE 12. A Figura 14 mostra de forma representativa a diferença entre os gráficos antes e após tratamento de recozimento para o PLA puro. Sem o tratamento térmico, quaisquer formulações resultaram em uma mesma absorção basal. Após o tratamento térmico, para todas as amostras, pode ser observado um pico bem definido em $2\theta = 16,04^{\circ}$ devido à difração dos planos [200] e/ou [110] e picos menores a $2\theta = 14,38^{\circ}$ do plano [010], $2\theta = 18,08^{\circ}$ do plano [203] e $2\theta = 21,86^{\circ}$ do plano [015]. Estes são os picos característicos da fase α (DI LORENZO et al., 2011; MANO et al., 2004)

As amostras modificadas apresentaram o mesmo padrão de curva para antes e após recozimento e por isto não estão mostrados os dados para todas as amostras. A partir destas análises pode-se concluir que a utilização dos aditivos MT e MI não proporcionou alterações na estrutura cristalina do PLA testado onde somente a fase α está presente.

Figura 14. Difratograma do PLA puro antes e após tratamento de recozimento

Similar a outros poliésteres, o PLA apresenta polimorfismo com três formas cristalinas principais que dependem das condições de cristalização. A partir do fundido, da cristalização a frio e da solução origina-se a fase α , com célula cristalina ortorrômbica com parâmetros a = 1,066nm, b = 0,616nm e c = 2,888nm. Sob diferentes temperaturas de cristalização, uma desordem na fase α também já foi detectada para o PLA, chamada de fase α '. A fase β foi detectada na fabricação de fibras, sob condições de alto estiramento e a fase γ em condições de cristalização em substrato de hexametilbenzeno (DI LORENZO et al., 2011).

4.4 – ENSAIOS MECÂNICOS

A Tabela 4.8 apresenta os valores médios do Módulo de elasticidade (E), da Resistência à tração (τ) e Alongamento na força máxima (ϵ) antes e após o tratamento de recozimento. As curvas originais são apresentadas no APÊNDICE 10.

	Ante	s do recozim	iento	Após recozimento			
	E (MPa)	τ (MPa)	ε (%)	E (MPa)	τ (MPa)	ε (%)	
PLA0000	1673 ± 85	60 ± 2	$4,0 \pm 0,2$	1227 ± 146	57 ± 5	$3,3 \pm 0,5$	
PLA0005	2589 ± 46	65 ± 1	$4,2 \pm 0,2$	2032 ± 710	40 ± 15	$2,0\pm0,6$	
PLA0015	2551 ± 59	64 ± 1	$4,4 \pm 0,2$	2105 ± 1020	41 ± 3	$1,9 \pm 0,2$	
PLA2000	1440 ± 153	54 ± 1	$4,1 \pm 0,3$	1246 ± 1066	29 ± 3	$1,7\pm 0,3$	
PLA4000	2004 ± 173	53 ± 2	$3,9 \pm 0,3$	1646 ± 746	50 ± 4	$2,7 \pm 0,3$	
PLA2010	2464 ± 32	55 ± 1	$3,4 \pm 0,0$	1085 ± 410	48 ± 1	$3,1 \pm 0,1$	
PLA4005	2526 ± 65	58 ± 2	$3,6 \pm 0,2$	1111 ± 174	47 ± 0	$2,8 \pm 0,1$	
PLA4015	2445 ± 63	55 ± 1	$3,5 \pm 0,1$	902 ± 128	43 ± 4	$2,9 \pm 0,1$	

Tabela 4.8. Valores médios do Módulo de elasticidade (E), da Resistência a tração (τ), e do Alongamento na força máxima (ε)

A análise estatística dos resultados indicou que, de acordo com a análise estatística global do experimento, todos os fatores foram significantes na resposta Módulo de Elasticidade. O fator isolado mais significante, impactando no aumento da resposta, foi o MI. O fator isolado mais significante, impactando na redução da resposta, foi o RECOZ. O fator MT também impacta reduzindo a resposta Módulo de Elasticidade. Para facilitar a análise, isolando-se o fator RECOZ que é o mais significante, o que se nota é que sem o recozimento o MT não tem influência nenhuma na resposta e o MI influencia de modo a aumentar o Módulo de Elasticidade. Já com recozimento, o MT age de modo a reduzir a resposta e o MI perde sua influência.

Os fatores significantes na resposta Resistência a Tração, de acordo com a análise estatística, foram RECOZ, MT e a interação entre Recozimento e Modificador Térmico (MT*RECOZ), sendo que o fator Recozimento apresenta influência aproximadamente 3 vezes maior que o fator Modificador Térmico isolado. E para a resposta Alongamento na Força Máxima, foram significantes os fatores RECOZ e as interações entre Recozimento e MT (MT*RECOZ), além da interação (RECOZ*MT*MI), sendo que o fator Recozimento apresenta influência pelo menos aproximadamente 3 vezes maior que os outros fatores ou interações.

A Figura 15 mostra a estimativa dos efeitos calculados de cada fator e suas interações frente à resposta de (a) Módulo de elasticidade, (b) Resistência à tração e (c) Alongamento na força máxima. O fator recozimento foi o mais significante para as três respostas, sempre no sentido de reduzir o valor da resposta. Além do fator recozimento, na prática, isoladamente, apenas o fator MI apresentou impacto significativo no aumento do Módulo de Elasticidade. Para as outras respostas a presença dos aditivos não apresentaram influência significativa ou apresentaram influência muito menor que o fator recozimento, sendo desprezível, comparativamente. As análises estatísticas foram realizadas através de modelos de regressão utilizando-se o software JMP versão 10, desta forma os dados estão apresentados em inglês na forma original do programa. A análise estatística completa dos experimentos é apresentada no APÊNDICE 11.

(a) Módulo de elasticidade (E)

Pareto Plot of Transformed Estimates					
Term	Orthog Estimate				
RECOZ[0]	341,8600				
MI	236,4794				
(MI-0,65816)*RECOZ[0]	124,7155				
(MT-2)*RECOZ[0]	117,0281				
(MT-2)*(MI-0,65816)	-114,1968				
(MT-2)*(MI-0,65816)*RECOZ[0	80,0036				
MT	-41,0997				

(b) Resistência à tração (τ)

Pareto Plot of Transformed Estimates					
Torm	Orthog				
RECOZ[0]	5,837485				
MT	-2,072519				
(MT-2)*RECOZ[0]	-1,524840				
(MI-0,65816)*RECOZ[0]	0,765754				
(MT-2)*(MI-0,65816)*RECOZ[0	-0,738248				
MI	0,596802				
(MT-2)*(MI-0,65816)	-0,001935				

(c) Alongamento na força máxima (ε)

Pareto Plot of Transformed Estimates					
Term	Orthog Estimate				
RECOZ[0]	0,5450404				
(MT-2)*RECOZ[0]	-0,1794449				
(MT-2)*(MI-0,65816)*RECOZ[0	-0,1572157				
MT	-0,1206358				
MI	-0,0391185				
(MT-2)*(MI-0,65816)	-0,0282176				
(MI-0,65816)*RECOZ[0]	-0,0255618				

Figura 15. Estimativa dos efeitos sobre (a) Módulo de elasticidade, (b) Resistência à tração e (c) Alongamento na força máxima dos fatores analisados: Tratamento de recozimento (RECOZ), modificador térmico (MT) e modificador de impacto (MI) O Módulo de elasticidade foi afetado significativamente pela adição de MI e MT. O aditivo modificador de impacto, MI, apresentou um comportamento diferente do esperado aumentando em torno de 50% o valor do Módulo elástico do material.

Baixa concentração do agente nucleante reduziu o Módulo elástico que mostrou um aumento quando esta concentração foi aumentada para 4%. Os nucleantes no PLA podem apresentar efeitos bastante distintos tendo sido observados aumentos no Módulo elástico de flexão para PLA nucleado com talco e uma manutenção dos valores quando o nucleante foi o elileno bis-esteramida (EBS) (HARRIS & LEE, 2008).

A associação dos dois aditivos teve um efeito muito positivo com aumento de 50% no valor de E. A adição de MT e MI mostra pequena influência sobre a Resistência à tração e sobre o Alongamento dos corpos de prova testados.

O fator recozimento, diferentemente do esperado, causou redução em todas as propriedades. A maior cristalinidade observada deveria ter aumentado o Módulo elástico, bem como a Resistência à tração (HARRIS & LEE, 2008), o que não ocorreu. Isto poderia ser explicado por uma possível degradação, com consequente queda da massa molar do polímero, causada pelas condições empregadas no tratamento térmico e/ou processamento.

5 – CONCLUSÕES

O uso dos aditivos propostos não se mostrou viável para o aumento da temperatura de deflexão térmica (HDT) e do ponto de amolecimento Vicat do PLA estudado. Estas propriedades mostraram-se sensíveis ao aumento do grau de cristalinidade, que foi significativamente modificado pelos aditivos, porém o aumento de 3% do PLA puro para algo em torno de 12% do PLA modificado não foi suficiente para promover as melhorias esperadas.

O recozimento foi mais efetivo promovendo aumento no grau de cristalinidade para valores de até 44% e elevou os valores de HDT em torno de 10°C e de Vicat em mais de 70°C.

As modificações no estado cristalino também foram acompanhadas pela alteração na transparência das amostras e por Difração de Raios-X que identificou a predominância fase α , caracterizada por uma célula unitária ortorrômbica.

A Tg foi pouco alterada, sendo observados uma tendência de redução pela presença dos aditivos e um discreto aumento pelo recozimento. A cristalização a frio do PLA foi acelerada pelo aditivo nucleante e totalmente eliminada pelo tratamento de recozimento.

O Módulo de elasticidade apresentou aumento significativo pela adição dos aditivos testados, o que não foi observado para a Resistência à tração e para o Alongamento. O recozimento também foi significativo, porém, diferentemente do esperado, causou redução em todas as propriedades mecânicas. A maior cristalinidade observada deveria ter aumentado o Módulo elástico, bem como a Resistência à tração, o que não ocorreu por uma possível degradação causada pelas condições empregadas no tratamento térmico.

Para potenciais aplicações industriais os teores adequados de aditivos e uma análise detalhada do processo ainda são necessários, incluindo-se o tempo e temperatura de resfriamento durante o processo de moldagem, para que o material final possa apresentar as propriedades desejadas.

5.1 – SUGESTÕES DE TRABALHOS FUTUROS

O estudo da cinética de cristalização em diferentes condições de recozimento, variando tempo e temperatura de recozimento, assim como as concentrações dos aditivos propostos seria de especial interesse para avaliar a influência no aumento do HDT e Vicat, assim como na melhoria das propriedades mecânicas do PLA.

Mais recentemente, alguns estudos com diferentes aditivos também mostraram bons resultados de aumento de HDT e Vicat, especialmente o etileno-bis-estereamida (EBS). Também como sugestão de trabalhos futuros a comparação entre os aditivos propostos e os novos aditivos aparecendo no mercado seria de interesse.

6 – REFERÊNCIAS BIBLIOGRÁFICAS

ABNT - Associação Brasileira de Normas Técnicas NBR 13591 – "Compostagem – Terminologia", 1996

ASTM – AMERICAN SOCIETY OF TESTING AND MATERIALS D6400 – "Standard Specification for Labeling of Plastics Designed to be Aerobically Composted in Municipal or Industrial Facilities", 2012

ASTM – AMERICAN SOCIETY OF TESTING AND MATERIALS D648 – "Standard Test Method for Deflection Temperature of Plastics Under Flexural Load in the Edgewise Position", 2007

ASTM – AMERICAN SOCIETY OF TESTING AND MATERIALS D638 – "Standard Test Method for Tensile Properties of Plastics", 2010

ASTM – AMERICAN SOCIETY OF TESTING AND MATERIALS D1525 – "Standard Test Method for Vicat Softening Temperature of Plastics", 2009

AFRIFAH, K. A,; MATUANA, L. M. - Impact Modification of Polylactide with a Biodegradable Ethylene/Acrylate Copolymer. *Macromolecular Materials and Engineering*, v.295, p. 802-811, 2010

AURAS, R., HARTE, B., SELKE, S. An overview of polylactides as packaging materials. *Macromolecular Bioscience*, v. 4, p. 835–864, 2004

BART, JAN C. J. Additives in Polymers. Industrial Analysis and Applications. John Wiley and Sons, 2005

CANEVAROLO, S. V. Ciência dos polímeros – um texto básico para tecnólogos e engenheiros. São Paulo, SP, *Artliber Editora*, 2002. CEN – Comité Européen de Normalisation EN 13432 – "Packaging - Requirements for packaging recoverable through composting and biodegradation - Test scheme and evaluation criteria for the final acceptance of packaging, 2000

CORBION PURAC. Ficha técnica do PLA Purac resistente à temperatura (*CORBION PURAC High Heat PLA*). Disponível em: http://www.purac.com/EN/Bioplastics/PLA-applications/High-heat-packaging.aspx. Acesso em: 06 de dez. 2013.

DI LORENZO, M. L.; COCCA, M.; MALINCONICO, M. "Crystal polymorphism of poly(llactic acid) and its influence on thermal properties", *Thermochimica Acta*, v. 522, p. 110-117, 2011

FAMBRI, L.; MIGLIARESI, C. "Poly(lactic acid): Synthesis, Structures, Properties, Processing, and Applications", John Wiley & Sons, 2010

GARLOTTA, D. A Literature Review of Poly(Lactic Acid). Journal of Polymers and the Environment. v. 9, no. 2, p. 63-84, 2001

HARRIS, A. M.; LEE, E. C. "Improving Mechanical Performance of Injection Molded PLA by Controlling Crystallinity", *Journal of Applied Polymer Science*, v. 107, p. 2246-2255, 2008

HENTON, D. E.; GRUBER, P; LUNT, J.; RANDALL, J. Natural Fibers, Biopolymers, and Biocomposites. Chapter 16, p. 550-552. CRC Press 2005, Print ISBN: 978-0-8493-1741-5, Edited by Mohanty, A. K.; Misra, M.; Drzal, L. T.

HOOGSTEEN, W.; POSTEMA, A. R.; PENNINGS, A. J.; BRINKE, G. "Crystal Structure, Conformation, and Morphology of Solution-Spun Poly(L-lactide) Fibers", *Macromolecules*, v. 23, p.634-642, 1990

JAMSHIDI, K.; HYONA, S.-H.; IKADAA, Y. Thermal characterization of polylactides. *Polymer*, v. 29, p. 2229-2234, 1988

JOHN, R. P., NAMPOOTHIRI, K. M., PANDEY, A. Solid-state fermentation for L-lactic acid production from agro wastes using *Lactobacillus delbrueckii*. *Process Biochemistry*, v. 41, p. 759-763, 2006

KAWAMOTO, N.; SAKAI, A.; HORIKOSHI, T.; URUSHIHARA, T.;E. TOBITA, E. Nucleating agent for poly(L-lactic acid)—An optimization of chemical structure of hydrazide compound for advanced nucleation ability. *Journal of Applied Polymer Science*, v. 103, (1), p. 198–203, 2007

KOLSTAD, J. J. Crystallization Kinetics of Poly(i-lactide-co-meso-lactide). *Journal of Applied Polymer Science*, v. 62, p. 1079-1091, 1996

LIAO, R.; YANG, B.;YU, W.; ZHOU, C. Isothermal cold crystallization kinetics of polylactide/nucleating agents. *Journal of Applied Polymer Science*, v.104 (1), p. 310–317, 2007

LIM, L.-T.; AURAS, R.; RUBINO, M. Processing technologies for poly(lactic acid). *Progress in Polymer Science*, v. 33, p. 820–852, 2008

LUTZ, J. T. JR.; GROSSMAN, R. F. Polymer Modifiers and Additives. New York, Marcel Dekker, 2001

MANO, J. F.; WANG, Y.; VIANA, J. C.; DENCHEV, Z.; OLIVEIRA, M. J. "Cold Crystallization of PLLA Studied by Simultaneous SAXS and WAXS", *Macromolecular Materials and Engineering*. v. 289, p. 910-915, 2004

MOHANTY, A. K., MISRA, M., DRZAL, L. T. Natural Fibers, Biopolymers, and Biocomposites. CRC Press 2005, Print ISBN: 978-0-8493-1741-5, eBook ISBN: 978-0-203-50820-6, DOI: 10.1201/9780203508206.ch16

MUELLER, R.-J. Biological degradation of synthetic polyesters-Enzymes as potential catalysts for polyester recycling. *Process Biochemistry*, v. 41, p. 2124-2128, 2006

NAMPOOTHIRI, K. M., NAIR, N. R., JOHN, R. P. An overview of the recent developments in polylactide (PLA) research. *Bioresource Technology*, v. 101, p. 8493-8501, 2010

PANTANI, R.; DE SANTIS, F.; SORRENTINO, A.; DE MAIO, F.; TITOMANLIO G. Crystallization kinetics of virgin and processed poly(lactic acid). *Polymer Degradation and Stability*, v. 95, p. 1148-1159, 2010

PARK, K.I.; XANTHOS, M. A study on the degradation of polylactic acid in the presence of phosphonium ionic liquids. *Polymer Degradation and Stability*, v.94, p. 834–844, 2009

PEREGO, G.; CELLA, G. D.; BASTIOLI, C. Effect of Molecular Weight and Crystallinity on Poly(lactic acid) Mechanical Properties. *Journal of Applied Polymer Science*, v. 59, p. 37-43, 1996

PEREGO, G.; CELLA, G.D. "Poly(lactic acid): Synthesis, Structures, Properties, Processing, and Applications", John Wiley & Sons, 2010

M.; BOPP, R. C.; WUNDERLICH, B. Heat capacity of poly(lactic acid). *Journal of Chemical Thermodynamics*, v. 36, p. 731-742, 2004

RABELLO, M. Aditivação de polímeros. São Paulo, Artiber Editora, 2000

SHAH, A. A., HASAN, F., HAMEED, A., AHMED, S. Biological degradation of plastics: A comprehensive review. *Biotechnology Advances*, v. 26, p. 246-265, 2008

SULZER CHEMTECH. Ficha de PLAs Sulzer (Sulzer Polylactides (PLA)). Disponível em: http://www.sulzer.com/en/Products-and-Services/Process-Technology/Polymer-Production-Technology/PLA-Samples-Order-Form. Acesso em: 26 de nov. 2013.

TANG, Z.; ZHANG, C.; ZHU, J. ; GAO, L. PLA resistente ao calor tem boas características de claridade e alta resistência ao impacto, *Plástico Industrial*, Jan. 2012, p.86, 2012

TSUJI, H.; TAKAI, H.; SAHA, S. K. Isothermal and non-isothermal crystallization behavior of poly(L-lactic acid):Effects of stereocomplex as nucleating agent. *Polymer* v.47, p. 3826–3837, 2006

WITZKE, D. R., PhD. Thesis, Michigan State University, East Lansing, MI 1997, p. 389

YASUNIWA, M.; TSUBAKIHARA, S.; SUGIMOTO, Y.; NAKAFUKU, C. "Thermal Analysis of the Double-Melting Behavior of Poly(L-lactic acid)", *Journal of Applied Polymer Science, Part B: Polym. Phys.* v. 42, p. 25-32, 2004

APÊNDICES
Ficha técnica: NatureWorks PLA Polymer 2002D

🛞 NatureWorks®

NatureWorks[®] PLA Polymer 2002D

Extrusion/Thermoforming

NatureWorks[®] PLA polymer 2002D, a NatureWorks LLC product, is a thermoplastic resin derived from annually renewable resources and is specifically designed for extrusion/thermoforming applications. PLA polymer 2002D is a clear extrusion sheet grade and processes easily on conventional extrusion and thermoforming equipment. See table at right for properties.

Applications

Potential applications for PLA polymer 2002D include:

- · Dairy containers
- Food serviceware
- Transparent food containers
- Blister packaging
- Cold drink cups

Processing Information

PLA polymer 2002D is easily processed on conventional extrusion equipment. The material is stable in the molten state, provided that the drying procedures are followed. More detailed recommendations and processing requirements are found in the NatureWorks[®] PLA sheet extrusion processing guide, the purging technical data sheet, and the drying and crystallizing processing guide; all of which can be found at www.natureworksllc.com.

Machine Configuration

PLA polymer 2002D will process on conventional extrusion machinery with the following equipment: General purpose screw with L/D ratios from 24:1 to 32:1 and compression ratio of 2.5:1 to 3:1. Smooth barrels are recommended.

Typical Material & Application Properties ⁽¹⁾		
Physical Properties	PLA Polymer 2002D	ASTM Method
Specific Gravity	1.24	D792
Melt Index, g/10 min (210°C/2.16kg)	5-7	D1238
Clarity	Transparent	
Mechanical Properties		
Tensile Strength @ Break, psi (MPa)	7,700 (53)	D882
Tensile Yield Strength, psi (MPa)	8,700 (60)	D882
Tensile Modulus, kpsi (GPa)	500 (3.5)	D882
Tensile Elongation, %	6.0	D882
Notched Izod Impact, ft-Ib/in (J/m)	0.24 (12.81)	D256
Shrinkage is similar to PET (2)		

Typical properties; not to be construed as specifications.

Refer to NatureWorks[®] PLA Sheet Extrusion Processing Guide

Process Details

Startup and Shutdown

PLA polymer 2002D is not compatible with a wide variety of commodity resins, and special purging sequences should be followed:

- Clean extruder and bring temperatures to steady state with low-viscosity, general-purpose polystyrene or polypropylene.
- 2. Vacuum out hopper system to avoid contamination.
- Introduce PLA polymer into the extruder at the operating conditions used in Step 1.
- Once PLA polymer has purged, reduce barrel temperatures to desired set points.
- At shutdown, purge machine with high-viscosity polystyrene or polypropylene.

Drying

In-line drying may be required. A moisture content of less than 0.025% (250 ppm) is recommended to prevent viscosity degradation. Typical drying conditions for crystallized granules are 2 hours at 195°F (90°C) or to a dew point of -40°F (-40°C), airflow rate of greater than 0.5 cfm/lbs per hour of resin throughput. The resin should not be exposed to atmospheric conditions after drying. Keep the package sealed until ready to use and promptly reseal any unused material.

Pellets that have been exposed to the atmosphere for extended time periods will require additional drying time. Amorphous regrind must be crystallized prior to drying, to assure efficient and effective drying.

Processing Temperatu	ure Profile ⁽¹⁾	
MINT	44.000	24.00

Melt Temperature	410°F	210ºC
Feed Throat	113ºF	45⁰C
Feed Temperature	355⁰F	180°C
Compression Section	375⁰F	190°C
Metering Section	390°F	200°C
Adapter	390°F	200°C
Die	375°F	190°C
Screw Speed	20-100	rpm

NatureWorks® PLA Polymer 2002D

Compostability

Composting is a method of waste disposal that allows organic materials to be recycled into a product that can be used as a valuable soil amendment. PLA is made of polylactic acid, a repeating chain of lactic acid, which undergoes a 2step degradation process. First, the moisture and heat in the compost pile attack the PLA polymer chains and split them apart, creating smaller polymers, and finally, lactic acid. Microorganisms in compost and soil consume the smaller polymer fragments and lactic acid as nutrients. Since lactic acid is widely found in nature, a large number of organisms metabolize lactic acid. At a minimum, fungi and bacteria are involved in PLA degradation. The end result of the process is carbon dioxide. water and also humus, a soil nutrient. This degradation process is temperature and humidity dependent. Regulatory guidelines and standards for composting revolve around four basic criteria: Material Characteristics. Biodegradation. Disintegration, and Ecotoxicity. Description of the requirements of these testing can be found in the appropriate geographical area: DIN V 54900-1 (Germany), EN 13432 (EU), ASTM D 6400 (USA), GreenPla (Japan). This grade of Natureworks® PLA meets the requirements of these four standards with limitation of maximum laver thickness of 1650 µm and for coating layers up to 37 µm thick.

FDA Status

U.S. Status-

This is to advise you that on January 3, 2002 FCN 000178 submitted by NatureWorks LLC to FDA became effective. This effective notification is part of list currently maintained on FDA's website at http://www.cfsan.fda.gov/~dms/opa -fcn.html. This grade of Nature-Works® PLA may therefore be used in food packaging materials and, as such, is a permitted component of such materials pursuant to section 201(s) of the Federal, Drug, and Cosmetic Act, and Parts 182, 184, and 186 of the Food Additive Regulations. All additives and adjuncts contained in the referenced NatureWorks® PLA formulation meet the applicable sections of the Federal Food, Drug, and Cosmetic Act. The finished polymer is approved for all food types and B-H use conditions. We urge all of our customers to perform GMP (Good Manufacturing Procedures) when constructing a package so that it is suitable for the end use. Again, for any application, should you need further clarification, please do not hesitate to contact NatureWorks LLC.

European Status

This grade of NatureWorks® PLA complies with Commission Directive 2002/72/EC as amended by 2004/19/EC. No SML's for the above referenced grade exist in Commission Directive 2002/72/EC or as amended by 2004/19/EC. NatureWorks LLC would like to draw your attention to the fact that the EU-Directive 2002/72/EC, which applies to all EU-Member States, includes a limit of 10 mg/dm2 of the overall migration from finished plastic articles into food. In accordance with EU-Directive 2002/72/EC the migration should be measured on finished articles placed into contact with the foodstuff or appropriate food simulants for a period and at a temperature which are chosen by reference to the contact conditions in actual use, according to the rules laid down in EU-Directives 93/8/EEC (amending 82/711/EEC) and 85/572/EEC

Please note that it is the responsibility of both the manufacturers of finished food contact articles as well as the industrial food packers to make sure that these articles in their actual use are in compliance with the imposed specific and overall migration requirements. This grade as supplied meets European Parliament and Council Directive 94/62/EC of 20 December 1994 on packaging and packaging waste heavy metal content as described in Article 11. It is recoverable in the form of material recycling, energy recovery, composting, and biodegradable per Annex II point 3, subject to the standards of the local community. Again, for any application, should you need further clarification, please do not hesitate to contact NatureWorks LLC.

Bulk Storage Recommendations

The resin silos recommended and used by NatureWorks LLC are designed to maintain dry air in the silo and to be isolated from the outside air. This design would be in contrast to an open, vented to atmosphere system that we understand to be a typical polystyrene resin silo. Key features that are added to a typical (example: polystyrene) resin silo to achieve this objective include a cyclone and rotary valve loading system and some pressure vessel relief valves. The dry air put to the system is sized to the resin flow rate out of the silo. Not too much dry air would be needed and there may be excess instrument air (-30°F dew point) available in the plant to meet the needs for dry air. Our estimate is 10 scfm for a 20,000 lb/hr rate resin usage. Typically, resin manufacturers specify aluminum or stainless steel silos for their own use and avoid epoxylined steel

NatureWorks® PLA Polymer 2002D

Safety and Handling Considerations Material Safety Data (MSD) sheets for PLA polymers are available from NatureWorks LLC, MSD sheets are provided to help customers satisfy their own handling, safety, and disposal needs, and those that may be sarety, and disposal needs, and mose that may be required by locally applicable health and safety regulations, such as OSHA (U.S.A.), MAK (Germany), WHMIS (Canada), MSD sheets are updated regularly; therefore, please request and review the most current MSD sheets before handling or using any product. manv), or

The following comments apply only to PLA polymers; additives and processing aids used in fabrication and other materials used in finishing steps have their own safe-use profile and must be investigated separately.

Hazards and Handling Precautions PLA polymers have a very low degree of toxicity and, under normal conditions of use, should pose no unusual problems from incidental ingestion, or eye and skin contact. However, caution is advised when handling, storing, using, or disposing of these resins, and good housekeeping and controlling of dusts are necessary for safe handling of product. Workers should be protected from the possibility of contact with motiler nesin during Sale rhandling to produce, workers should be protected from the possibility of contact with molten neesin during fabrication. Handling and fabrication of resins can result in the generation of vapors and dusts that may cause initiation to eyes and the upper respiratory tract. In dusty atmospheres, use an approved dust respirator. Pellets or beads may present a slipping hazard. Good general ventilation of the polymer processing area is vernation of the polymer processing area is recommended. At temperatures exceeding the polymer melt temperature (typically 170°C), polymer can release fumes, which may contain fragments of the polymer, creating a potential to irritate yees and mucous membranes. Good general ventilation should be sufficient for most conditions. Local exhaust ventilation is recomthe most control to the second precautions other than clean, body-covering clothing should be needed for handling PLA polymers. Use gloves with insulation for thermal protection when exposure to the melt is localized

Combustibility PLA polymers will burn. Clear to white smoke is produced when product burns. Toxic fumes are released under conditions of incomplete combustion. Do not permit dust to accumulate. Dust layers can be ignited by spontaneous combustion or other ignition sources. When suspended in air, dust can pose an explosion hazard. Firefighters should wear positive-pressure, self-contained breathing apparatuses and full protective equipment. Water or water fog is the preferred extinguishing medium. Froan, alcohol-resistant foam, carbon dioxide or dry chemicals may also be used. Soak thoroughly with water to cool and prevent re-ignition.

Disposal DO NOT DUMP INTO ANY SEWERS, ON THE GROUND, OR INTO ANY BODY OF WATER. For unused or uncontaminated material, the preferred options include recycling into the process or sending to an industrial composting facility, if available; otherwise, send to an composting facility, ir available; otherwise, send to an indinerator or other thermal destruction device. For used or contaminated material, the disposal options required, (For example, in the U.S.A., see 40 CFR, Part 201, "Identification and Listing of Hazardous Waste.") All disposal methods must be in compliance with Federal, State/Provincial, and local laws and regulations.

🛞 Nature Works®

Environmental Concerns

Environmental Concerns Generally speaking, lost pellets are not a problem in the environment except under unusual circumstances when they enter the marine environment. They are benign in terms of their physical environment. They are built in terms of their physical environmental impact, but if ingested by waterfowl or aquatic life, they may mechanically cause adverse effects. Spills should be minimized, and they should be cleaned up when they happen. Plastics should not be discarded into the ocean or any other body of water.

Product Stewardship NatureWorks LLC has a fundamental duty to all those NatureWorks LLC has a fundamental duty to all those that make and use our products, and for the environmen in which we live. This duty is the basis for our Product Stewardship philosophy, by which we assess the health and environmental information on our products and their intended use, then take appropriate steps to protect the environment and the health of our employees and the public.

Customer Notice NatureWorks LLC encourages its customers and potential users of its products to review their applications for such products from the standpoint of human health and environmental quality. To help ensure our products are not used in ways for which they were not intended or tested, our personnel will assist oustomers in dealing with ecological and product safety considerations. Your sales representative can arrange the proper portacts. econgucal and product safety considerations. Four safes representative can arrange the proper constants. NatureWorks LLC literature, including Material Safety Data sheets, should be consulted prior to the used Stafety company's products. These are available from your NatureWorks LLC representative.

NOTICE: No freedom from any patent owned by NatureWorks LLC or others is to be inferred. Because use conditions and applicable laws may differ from one location to another and may change with time. Customer is responsible for determining whether products and the information in this document are appropriate for Customer's use and for ensuing that Customer's workplace and disposal practices are in compliance with applicable laws and other governmental enactments. NatureWorks LLC assumes no obligation or liability for the information in this document. NO WARRANTIES ARE GIVEN; ALL IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE ARE EXPRESSLY EXCLUDED.

NOTICE REGARDING PROHIBITED USE RESTRICTIONS: NatureWorks LLC does not recommend any of its products, including samples, for use as: Components of, or packaging for, tobacco products; Components of products where the end product is intended for human to rainial a consumption; In any application that is intended for any internal contact with human body fluids or body tissues; As a ortical component is not medical device that supports or sustains human life; In any product that is designed specifically for ingestion or internal use by pregnant women: and in any application designed specifically to romote or interfere with human reorduction.

For additional information in the U.S. and Canada, call toll-free 1-877-423-7659 In Europe, call 31-(0)35-699-1344 In Japan, call 81-33-285-0824

NatureWorks and the NatureWorks logo are trademarks of NatureWorks LLC Copyright © 2005 NatureWorks LLC

NWPKG0310205V2

Ficha técnica: DuPont Biomax Thermal 300

<section-header>DuPont** Biomax® Thermal 300 Elemex® Thermal Resins Product Data Sheet Product Description Product Desc</section-header>	DuPont Packaging & Inc	lustrial Polymers	The miracles of science
Biomax® Thermal Resins Product Data Sheet Product Description Biomax® Thermal 300 is an ethylene copolymer with a nucleating agent designed to modif Polytocits Acid (PLA) for improved thermal and toughness properties in packaging and industrial applications. Some of the attributes of Biomax® Thermal 300 in PLA include: • Reduced distortion and shrinkage of thermoformed articles at temperatures up to 300 in PLA include: • Reduced distortion and shrinkage of thermoformed articles at temperatures up to 800 in PLA include: • Reduced distortion and shrinkage of thermoformed articles at temperatures up to 800 in PLA include: • Paletizzed for PLA providing ray of HetH copersion, even with single screw extruders, and reducing extruder power requirements: • Paletizzed for PLA providing ray of HetH copersion or sen event with PLA. Indension Status • Peletizzed for PLA providing ray of HetH copersion or sen event with PLA. Indension Status • Peletizzed Screw extruders: Indension Status • Peletizzed Screw extruders: Notacity • Peletizzed Screw extruders: Indension Status • Developmental: Active Autobility • Developmental: Active Instant Status • Platescrewistical providing thermoformed Articles Material Status • Platescrewistical providing thermoformed Articles Material Status • Platescrewistical providing thermoformed Article		DuPont [™] Biomax® Thermal 300	0
Postcription Biomax® Thermal 300 is an ethylene copolymer with a nucleating agent designed to marky Polylecic Acid (PLA) for improved thermal and toughness properties in ackacing and industrial applications. Some of the attributes of Biomax® Thermal 300 in PLA include: • Reduced distortion and shrinkage of thermoformed articles at temperatures up in 00 in PLA include: • Reduced distortion and shrinkage of thermoformed articles at temperatures up in 00 in PLA include: • Reduced distortion and shrinkage of thermoformed articles at temperatures up in 00 in PLA include: • Reduced distortion and shrinkage of thermoformed articles at temperatures up in 00 in PLA include: • Reduced distortion and shrinkage of thermoformed articles at temperatures up on 00 in PLA include: • Reduced distortion gavituder power requirements: • Plantage of the PLA only only provides some of the processing and toughness advantages of Biomax® Thermal 300. At these levels, contact clarity is still maintained. In addition of improving the thermal stability of thermoformed articles. Biomax® Thermal 300 provides some of the processing and toughness advantages of Biomax® Strong 120 to PLA. Poteclense • Developmental: Active Availability • Isotics Modification Thermal Stability of Thermoformed Articles Thermoformed articles made from anorphous PLA typically deform when exposed to temperatures at babe the glass strantion temperatures of around 55 C. Adding 2 to 4% Biomax® Thermal 300 to Natureworks Ingeo "PLA resuitage processing maze. Biomax® Thermal 300 to Natureworks Ingeo "PLA resmitage and improving dimensional stability while only runnimally	Biomax® Thermal Resins Proc	luct Data Sheet	
Description Biomax® Thermal 300 is an ethylene copolymer with a nucleating agent designed to modify Polyhetic Acid (PLA) for improved thermal and toughness properties in packaging and industrial applications. Some of the attributes of Biomax® Thermal 300 in PLA include: • Reduced distortion and shrinkage of thermoformed articles at temperatures up to 90 C: • Reduced distortion and shrinkage of thermoformed articles at temperatures up to 90 C: • Allows for short cycle time two-stage molding • Reduced distortion and shrinkage of thermoformed articles at temperatures up to 90 C: • Allows for short cycle time two-stage molding • Reduced distortion and shrinkage of thermoformed articles at temperatures up to 90 C: • Allows for short cycle time two-stage molding • Reduced distortion and shrinkage of thermoformed articles at temperatures up to 90 C: • Allows for short cycle time two-stage molding • Reduced distortion and shrinkage of thermoformed articles at temperatures up the 90 C: • Allows for short cycle time two-stage molding • Reduced distortion and shrinkage of thermoformed articles. Biomax® Thermal 300 provides some of the processing and toughness advantages of Biomax® Strong 120 to PLA. Restrictions • Developmental: Active Availability • Clobally Typical Characteristics • Plestics Modification Characteristics / Benefits • Plestics Modification Thermal Stability of Thermoformed Articles Thermal Stability of Thermoformed articles reade f			
Product Description Biomax® Thermal 300 is an ethylene copolymer with a nucleeting agent designed to modify Polylactic Acia (PLA) for improved thermal and loughness properties in packaging and industrial applications. Some of the attributes of Biomax® Thermal 300 in PLA include: 00 in PLA include: • Reduce distortion and shrinkage of thermoformed articles at temperatures up to 90 C. 01 in PLA include: • Allows for short cycle time two-stege molding 01 end cycle time two-stege molding • Pelleticate difficient textuder feeding: separately or as pellet-bend with PLA: Blends with PLA will typically comprise 5% or less of Biomax® Thermal 300. At these levels, contact clarity is still maintained. In addition of improving the thermal stability of thermoformed articles. Biomax® Thermal 300 provides arous of the processing and toughness advantages of Biomax® Strong 120 to PLA. Restrictions • Developmental: Active Availability • Developmental: Active Valeability • Plastics Modification Thermal 300 more articles smade from amorphous PLA typically deform when exposed to temperatures above the glass transition temperature articles the durage temperature at the set on a morphous PLA typically deform when exposed to temperatures above the glass transition temperature articles the durage temperature threshold to 90 C or higher, substatility will enduring shrinkage and improving dimensional stability will complex provemax®. Thermal 300 works best in a two-stege (hot and cold mold) thermoforming process. Biomax® Thermal 300 modifier addition is valid OP LA nanurfactured an markete	Description		
 Beduced distortion and shrinkage of thermoformed articles at temperatures up to 90 C. Allows for short cycle time two-stage molding Engineered for PLA providing rapid meth-dispersion, even with single screw extuders. and reducing extruder power requirements: Pelletized, efficient extruder feeding: separately or as a pellet-bend with PLA: Blends with PLA will typically comprise 5% or less of Biomax® Thermal 300. At these levels, contact clarity is still maintained. In addition of improving the thermal stability of thermoformed articles, Biomax® Thermal 300 provides some of the processing and toughness advantages of Biomax® Strong 120 to PLA. Restrictions Availability Globally Pypical Characteristics Plastics Modification Thermal Stability of Thermoformed Articles Biomax® Thermal 300 to Natureworks Ingeo" PLA resins raises the end-use temperatures above the glass transition temperature of around 5C. A daria 2 to 4% Biomax® Thermal 300 to Natureworks Ingeo" PLA resins raises the end-use temperature streshold to 90 C or higher, substantially reducing shrinkage and improving dimensional stability with endy minimally increasing haze. Biomax® Thermal 300 works best in a two-stage (hot and cold mold) thermoforming process. Biomax® Thermal 300 modifier addition is wild for PLA nanufactured and marketed by Natureworks ILC. Please consult your DuPont sales representative before using Biomax® Thermal 300 modifier Addition sing PLA supplied by other manufacturers. Impact Strength / Toughness 	Product Description	Biomax® Thermal 300 is an ethylene copolymer with modify Polylactic Acid (PLA) for improved thermal an packaging and industrial applications. Some of the a 300 in PLA include:	n a nucleating agent designed to nd toughness properties in ttributes of Biomax® Thermal
Blends with PLA will typically comprise 5% or less of Biomax® Thermal 300. At these levels, contact clarity is still maintained. In addition of improving the thermal stability of thermoformed articles, Biomax® Thermal 300 provides some of the processing and toughness advantages of Biomax® Strong 120 to PLA. Restrictions Material Status Availability • Developmental: Active Availability • Globally Typical Characteristics Uses • Plastics Modification Characteristics / Benefits • Plestics Modification Thermal Stability of Thermoformed Articles Thermoformed articles made from amorphous PLA typically deform when exposed to temperatures above the gless transition temperature of around 55 C. Adding 2 to 4% Biomax® Thermal 300 to Autureworks Inge® TPLA resins resises the end-use temperature threshold to 90 C or higher, substantially reducing shrinkage and improving dimensional stability while only minimally increasing haze. Biomax® Thermal 300 to Natureworks Inge® TPLA resins resises the end-use temperature threshold to 90 C or higher, substantially reducing shrinkage and improving dimensional stability while only minimally increasing haze. Biomax® Thermal 300 works best in a two-stage (hot and cold mold) thermoforming process. Biomax® Thermal 300 modifier addition is valid for PLA manufactured and marketed by Natureworks LLC. Please consult your DuPont sales representative before using Biomax® Thermal in applications using PLA supplied by other manufacturers. Impact Strength / Toughness Impact Strength of BIOMAX® Thermal 300 modified PLA is significantly improved even at 2 wt% addition level.		 Reduced distortion and shrinkage of thermoform to 90 C; Allows for short cycle time two-stage molding Engineered for PLA providing rapid melt-disper- extruders, and reducing extruder power requirement Pelletized, efficient extruder feeding; separately 	ned articles at temperatures up sion, even with single screw s: / or as a pellet-bend with PLA;
In addition of improving the thermal stability of thermoformed articles, Biomax® Thermal 300 provides some of the processing and toughness advantages of Biomax® Strong 120 to PLA. Restrictions Material Status Developmental: Active Globally Ypical Characteristics Globally Characteristics / Benefits Plastics Modification Thermal Stability of Thermoformed Articles Thermal Stability of Natureworks Ingeo" PLA resins raises the end-use temperature sabove the gless transition temperature of around 55 C. Adding 2 to 4% Biomax® Thermal 300 to Natureworks Ingeo" PLA resins raises the end-use temperature sabove the gless transition temperature of around 55 C. Adding 2 to 4% Biomax® Thermal 300 works best in a two-stage (hot and cold mold) thermoforming process. Biomax® Thermal 300 modifier addition is valid for PLA manufactured and marketed by Natureworks LLC. Please consult your DuPont sales representative before using Biomax® Thermal 300 modifier addition is valid for PLA manufactured and marketed by Natureworks LLC. Please consult your DuPont sales representative before using Biomax® Thermal 300 modifier addition is valid for PLA is significantly improved even at 2 wt% addition level. 		Blends with PLA will typically comprise 5% or less of these levels, contact clarity is still maintained.	f Biomax® Thermal 300. At
Restrictions . Developmental: Active Availability . Globally Typical Characteristics . Slobally Uses . Plastics Modification Characteristics / Benefits . Plastics Modification Thermal Stability of Thermoformed Articles . Thermal Stability of Natureworks LICs. Adding 2 to 4% Biomax® Thermal 300 to Natureworks Ingeo" PLA resins raises the end-use temperature threshold to 90 C or higher, substantially reducing shrinkage and improving dimensional stability while only minimally increasing haze. Biomax® Thermal 300 works best in a two-stage (hot and cold mold) thermoforming process. Biomax® Thermal 300 modifier addition is valid for PLA manufactured and marketed by Natureworks LIC. Please consult your DuPont sales representative before using Biomax® Thermal 300 modifier addition is valid for PLA manufacturers. Impact Strength / Toughness Impact strength of BIOMAX® Thermal 300 modified PLA is significantly improved even at 2 wt% addition level.		In addition of improving the thermal stability of therm Thermal 300 provides some of the processing and to Biomax® Strong 120 to PLA.	oformed articles, Biomax® oughness advantages of
Material Status • Developmental: Active Availability • Globally Typical Characteristics • Plastics Modification Uses • Plastics Modification Characteristics / Benefits Thermal Stability of Thermoformed Articles Thermoformed articles made from amorphous PLA typically deform when exposed to temperatures above the glass transition temperature of around 55 C. Adding 2 to 4% Biomax® Thermal 300 to Natureworks Ingeo TM PLA resins raises the end-use temperature threshold to 90 C or higher, substantially reducing shrinkage and improving dimensional stability while only minimally increasing haze. Biomax® Thermal 300 works best in a two-stage (hot and cold mold) thermoforming process. Biomax® Thermal 300 modifier addition is valid for PLA manufactured and marketed by Natureworks LLC. Please consult your DuPont sales representative before using Biomax® Thermal in applications using PLA supplied by other manufacturers. Impact Strength / Toughness Impact strength of BIOMAX® Thermal 300 modified PLA is significantly improved even at 2 wt% addition level.	Restrictions		
Availability • Globally Typical Characteristics • Plastics Modification Uses • Plastics Modification Characteristics / Benefits Thermal Stability of Thermoformed Articles Thermoformed articles made from amorphous PLA typically deform when exposed to temperatures above the glass transition temperature of around 55 C. Adding 2 to 4% Biomax® Thermal 300 to Natureworks Ingeo" PLA resins raises the end-use temperature threshold to 90 C or higher, substantially reducing shrinkage and improving dimensional stability while only minimally increasing haze. Biomax® Thermal 300 works best in a two-stage (hot and cold mold) thermoforming process. Biomax® Thermal 300 modifier addition is valid for PLA manufactured and marketed by Natureworks LLC. Please consult your DuPont sales representative before using Biomax® Thermal in applications using PLA supplied by other manufacturers. Impact Strength / Toughness Impact strength of BIOMAX® Thermal 300 modified PLA is significantly improved even at 2 wt% addition level.	Material Status	Developmental: Active	
Typical Characteristics Uses • Plastics Modification Characteristics / Benefits • Plastics Modification Thermal Stability of Thermoformed Articles Thermal Stability of Thermoformed Articles Biomax® Thermal 300 to Natureworks Ingeo" PLA resins raises the end-use temperature threshold to 90 C or higher, substantially reducing shrinkage and importance dipo of thermal 300 works best in a two-stage (hot and cold mold) thermoforming process. Biomax® Thermal 300 modifier addition is valid for PLA manufactured and marketed by Natureworks LLC. Please consult your DuPont sales representative before using Biomax® Thermal in applications using PLA supplied by other manufacturers. Impact Strength / Toughness Impact strength of BIOMAX® Thermal 300 modified PLA is significantly improved even at 2 wt% addition level.	Availability	Globally	
Uses • Plastics Modification Characteristics / Benefits Thermal Stability of Thermoformed Articles Thermal Stability of Thermoformed Articles Thermoformed articles made from amorphous PLA typically deform when exposed to temperatures above the glass transition temperature of around 55 C. Adding 2 to 4% Biomax® Thermal 300 to Natureworks Ingeo" PLA resins raises the end-use temperature threshold to 90 C or higher, substantially reducing shrinkage and improving dimensional stability while only minimally increasing haze. Biomax® Thermal 300 works best in a two-stage (hot and cold mold) thermoforming process. Biomax® Thermal 300 modifier addition is valid for PLA manufactured and marketed by Natureworks LLC. Please consult your DuPont sales representative before using Biomax® Thermal in applications using PLA supplied by other manufacturers. Impact Strength / Toughness Impact strength of BIOMAX® Thermal 300 modified PLA is significantly improved even at 2 wt% addition level.	Typical Characteristics		
Characteristics / Benefits Thermal Stability of Thermoformed Articles Thermoformed articles made from amorphous PLA typically deform when exposed to temperatures above the glass transition temperature of around 55 C. Adding 2 to 4% Biomax® Thermal 300 to Natureworks Ingeo [™] PLA resins raises the end-use temperature threshold to 90 C or higher, substantially reducing shrinkage and improving dimensional stability while only minimally increasing haze. Biomax® Thermal 300 works best in a two-stage (hot and cold mold) thermoforming process. Biomax® Thermal 300 modifier addition is valid for PLA manufactured and marketed by Natureworks LLC. Please consult your DuPont sales representative before using Biomax® Thermal in applications using PLA supplied by other manufacturers. Impact Strength / Toughness Impact strength of BIOMAX® Thermal 300 modified PLA is significantly improved even at 2 wt% addition level.	Uses	 Plastics Modification 	
Thermoformed articles made from amorphous PLA typically deform when exposed to temperatures above the glass transition temperature of around 55 C. Adding 2 to 4% Biomax® Thermal 300 to Natureworks Ingeo" PLA resins raises the end-use temperature threshold to 90 C or higher, substantially recleasing shrinkage and improving dimensional stability while only minimally increasing haze. Biomax® Thermal 300 works best in a two-stage (hot and cold mold) thermoforming process. Biomax® Thermal 300 modifier addition is valid for PLA manufactured and marketed by Natureworks LLC. Please consult your DuPont sales representative before using Biomax® Thermal in applications using PLA supplied by other manufacturers. Impact Strength / Toughness Impact strength of BIOMAX® Thermal 300 modified PLA is significantly improved even at 2 wt% addition level.	Characteristics / Benefits	Thermal Stability of Thermoformed Articles	
Biomax® Thermal 300 modifier addition is valid for PLA manufactured and marketed by Natureworks LLC. Please consult your DuPont sales representative before using Biomax® Thermal in applications using PLA supplied by other manufacturers. Impact Strength / Toughness Impact strength of BIOMAX® Thermal 300 modified PLA is significantly improved even at 2 wt% addition level.		Thermoformed articles made from amorphous PLA to temperatures above the glass transition temperature Biomax® Thermal 300 to Natureworks Ingeo"* PLA r temperature threshold to 90 C or higher, substantially improving dimensional stability while only minimally Thermal 300 works best in a two-stage (hot and cold	ypically deform when exposed to of around 55 C. Adding 2 to 4% esins raises the end-use y reducing shrinkage and increasing haze. Biomax® I mold) thermoforming process.
Impact Strength / Toughness Impact strength of BIOMAX® Thermal 300 modified PLA is significantly improved even at 2 wt% addition level.		Biomax® Thermal 300 modifier addition is valid for P by Natureworks LLC. Please consult your DuPont so Biomax® Thermal in applications using PLA supplied	PLA manufactured and marketed ales representative before using d by other manufacturers.
Impact strength of BIOMAX® Thermal 300 modified PLA is significantly improved even at 2 wt% addition level.		Impact Strength / Toughness	
D. W.		Impact strength of BIOMAX® Thermal 300 modified at 2 wt% addition level.	PLA is significantly improved even
Brittieness		Brittleness	

01/12/2010 12:40PM Copyright E.I. du Pont de Nemours and Company, Inc.

Biomax[®] Thermal 300 greatly improves the cutting & trimming of PLA. While unmodified PLA exhibits breakage at the edge of the sheet, blends with 2 to 5 wt.% of Biomax[®] Thermal 300 show no breakage. There is also a marked improvement of "pinning". While unmodified PLA breaks at the edge of the sheet, there is no breakage once BIOMAX[®] Thermal 300 is added.

Extruder Torque and Processing Stability

Addition of 1-2% Biomax® Thermal 300 to PLA in the feedhopper of the extruder significantly reduces the power per output required to extrude PLA. Addition of Biomax® Thermal 300 also helps maintain the viscosity and molecular weight of PLA during processing.

Applications	Polylactic Acid (PLA) Modification		
Typical Properties			
Physical	Nominal Values	Test Met	hod(s)
Density ()	0.94 g/cm*	ASTM D792	ISO 1183
Melt Flow Rate (190°C/2.16kg)	1200 g/10 min	ASTM D1238	ISO 1133
Thermal	Nominal Values	Test Met	hod(s)
Melting Point (DSC)	113°C (235°F)	ASTM D3418	ISO 3146
Processing Information			
General			
Maximum Processing Temperature	280°C (536°F)		
General Processing Information	Handling & Storage		
	Biomax® Thermal 300 is supplied in pol product does not require drying but the minimizes moisture pick-up. For examp bags or boxes are not being used.	lyethylene bag lined boxes material should be handled ble reseal bags or box liner:	or bags. The l in a way that s when partial
	Processing of blends of Biomax® Thern	nal 300 and PLA	
	Blends of Biomax® Thermal 300 and Pl and under the same processing condition	LA can be processed in the ons recommended for PLA	same equipment
	The melting point of Biomax® Thermal hopper will be required in cases where t temperature of the hot dried PLA excee	300 is 72C (162F) so a spli the PLA resin is dried on lir ds the melting point of the	t feed extruder ne and modifier.
	Melt Viscosity and Melt Thermal Stabilit	у	
	Under typical processing conditions me Thermal 300 is not significantly different of PLA is improved by adding Biomax®	It viscosity of PLA melt bler t from that of unmodified Pl Thermal.	nds with Biomax® LA. Melt stability
	Thermoforming sheet of PLA and Bioma	ax® Thermal 300	
	Add 2% to 4% Biomax® Thermal 300 to the blend into cast sheet under conditio might require cooler quench drums to a limit thermoformability. Pre-heat the she additive levels might require limiting the crystallinity. The thermoforming equipm crystallinity) followed by a cool mold (to The hot mold should be heated to 110-1 optimized according to the article design cool mold should be set below about 40 PLA will also effect the ultimate amount mechanical strength of the semifinished	modify PLA via a second ns typical of PLA. The high void excessive sheet crysts tet at conditions typical for time in the heater to avoid ent should use a hot mold harden the article enough 20 C and the residence tin n. and end-use thermal req C to obtain the best cycle I of crystallinity which in tun article.	feeder. Process est additive levels allinity which can PLA. The highest excessive sheet (for developing for handling). ne in the mold uirements. The ime. The grade of n effects the

01/12/2010 12:40PM Copyright E.I. du Pont de Nemours and Company, Inc.

2 of 4

FDA Status Information	DuPont [™] BIOMAX [®] Thermal 300 Resin Modifier complies with Food and Drug Administration Regulation 21 CFR 175.105 Adhesives. This Regulation describes adhesives that may be used as components of articles intended for use in packaging, transporting, or holding food, subject to the limitations and requirements therein. DuPont [™] BIOMAX [®] Thermal 300 Resin Modifier may be used at up to a level of 10 percent in polylactic acid (PLA) resin for direct food contact. The PLA resin containing DuPont [™] BIOMAX [®] Thermal 300 Resin Modifier is intended for contact with all food types under temperature conditions C through G, as described in Table 2 of 21 CFR 176.170(c). Such use may be properly said to comply fully with the Federal Food, Drug, and Cosmetic Act and all applicable food additive regulations.
Regulatory Information	For information on the compliance of Biomax® Thermal 300 with food contact regulations outside the U.S., please consult your local DuPont representative.
Safety & Handling	Refer to the MSDS for Biomax® Thermal 300.

Read and Understand the Material Safety Data Sheet (MSDS) before using this product

Regional Centres

06454-080 Barueri, SP Brasil Telephone +55 11 4166 8000 Fax +55 11 4166 8736

DuPont operates in more than 70 countries. For help finding a local representative, please contact one of the following regional customer contact centers:

Americas	Asia Pacific	Europe / Middle East / Africa
DuPont Company, BMP26-2215 Lancaster Pike & Route 141 Wilmington, DE 19805 U.S.A. Telephone +1 302-774-1161 Toll-free (USA) 800-628-6208, ext. 6 Fax +1 302-355-4056	DuPont China Holding Co., Ltd. Shanghai Branch 399 Keyuan Road, Bldg. 11 Zhangjiang Hi-Tech Park Pudong New District, Shanghai P.R. China (Postcode: 201203) Telephone +86 21 3862 2888 Fax +86-21-3862-2889	DuPont de Nemours Int'1. S.A. 2,Chemin du Pavillon Box 50 CH-1218 Le Grand Saconnex Geneva, Switzerland Telephone +41 22 717 51 11 Fax +41 22 717 55 00
DuPont do Brasil, S.A. Alameda Itapecuru, 506		

http://biomax.dupont.com

The data listed here fall within the normal range of properties, but they should not be used to establish specification limits nor used alone as the basis of design. The DuPont Company assumes no obligations or liability for any advice furnished or for any results obtained with respect to this information. All such advice is given and accepted at the buyer's risk. The disclosure of information herein is not a licence to operate under, or a recommendation to infringe, any patent of DuPont or others. Since DuPont cannot anticipate all variations in actual end-use conditions, DuPont makes no warranties and assumes no liability in connection with any use of this information.

CAUTION: Do not use DuPont materials in medical applications involving implantations in the human body or contact with internal body fluids or tissues unless the material has been provided from DuPont under a written contract that is consistent with DuPont policy regarding medicalk applications and expressly acknowledges the contemplated use. For further information, please contact your DuPont representative. You may also request a copy of DuPont POLICY Regarding Medical Applications H-50103-3 and DuPont CAUTION Regarding Medical Applications H-50102-3.

Copyright © 2009 DuPont. The DuPont Oval Logo, DuPont™, The miracles of science™, and trademarks designated with "S" are registered trademarks of E.I. du Pont de Nemours and Company or its affiliates. All rights reserved.

This data sheet is effective as of 01/12/2010 12:40PM and supersedes all previous versions.

01/12/2010 12:40PM Copyright E.I. du Pont de Nemours and Company, Inc.

3 of 4

01/12/2010 12:40PM Copyright E.I. du Pont de Nemours and Company, Inc.

Folha de segurança (MSDS - Material Safety Data Sheet): DuPont Biomax Thermal 300

Du Pont

Material Safety Data Sheet _____ "BIOMAX" RESINS ALL IN SYNONYM LIST BIOSO11 BIOS011 Revised 24-JUL-2008 _____ Substance ID :130000043939 CHEMICAL PRODUCT/COMPANY IDENTIFICATION _____ Material Identification "BIOMAX" is a registered trademark of DuPont. Tradenames and Synonyms "DUPONT" "BIOMAX" THERMAL 300 Company Identification MANUFACTURER/DISTRIBUTOR DuPont Packaging & Industrial Polymers 1007 Market Street Wilmington, DE 19898 PHONE NUMBERS Product Information : 1-(800)-441-7515 Transport Emergency : 1-(800)-424-9300 Medical Emergency : 1-(800)-441-3637 Medical Emergency _____ COMPOSITION/INFORMATION ON INGREDIENTS _____ Components CAS Number Material % NON-REGULATED WAX <60 ETHYLENE ACRYLATE COPOLYMER >40 141-32-2 <0.1 N-BUTYL ACRYLATE Components (Remarks) Material is not known to contain Toxic Chemicals under Section 313 of Title III of the Superfund Amendments and Reauthorization Act of 1986 and 40 CFR part 372. _____ HAZARDS IDENTIFICATION ------Potential Health Effects ADDITIONAL HEALTH EFFECTS ACUTE OR IMMEDIATE EFFECTS - ROUTES OF ENTRY AND SYMPTOMS INGESTION There is no information on the ingestion toxicity

Printed on 10/31/2008

Print Date: 4 - 16 - 2009

Page 1

Du Pont Material Safety Data Sheet

Page 2

of these resins. Ingestion is not a probable route of exposure.

SKIN Prolonged or repeated skin contact may cause skin irritation including redness, itching and in extreme cases blisters. Molten polymer contacting the skin will cause thermal burns.

EYE Mechanical irritation only.

INHALATION At processing temperatures above 280 C (536 F), fumes irritating to the eyes, nose and throat may be produced. This exposure may result in redness, tearing and itching of the eyes and soreness in the nose and throat together with coughing.

MEDICAL CONDITIONS AGGRAVATED BY EXPOSURE None known.

Carcinogenicity Information

None of the components present in this material at concentrations equal to or greater than 0.1% are listed by IARC, NTP, OSHA or ACGIH as a carcinogen.

FIRST AID MEASURES

First Aid

INHALATION

If exposed to fumes from overheating or combustion, move to fresh air. Consult a physician if symptoms persist.

SKIN CONTACT

In case of contact, immediately wash skin with soap and water. Wash contaminated clothing before reuse. If molten material gets on skin, cool rapidly with cold water. Do not attempt to remove material from skin. Obtain medical treatment for thermal burn.

INGESTION

Not a probable route. However, in case of accidental ingestion, call a physician.

EYE CONTACT

In case of contact, immediately flush eyes with plenty of water for at least 15 minutes. Call a physician.

FIRE FIGHTING MEASURES

Printed on 10/31/2008

Print Date: 4 - 16 - 2009

Du Pont Material Safety Data Sheet

Flammable Properties : 430 C (806 F) Setchkin Flash Point Method : Apparatus Fire and Explosion Hazards: UNUSUAL FIRE, EXPLOSION HAZARDS The solid polymer can be combusted only with difficulty. An electrostatic charge can potentially build up when pouring pellets. Grounding of equipment is recommended. HAZARDOUS COMBUSTION PRODUCTS Complete combustion gives carbon dioxide and water. Incomplete combustion gives, in addition, carbon monoxide and hydrocarbon oxidation products including organic acids, aldehydes, alcohols, amines and oxides of nitrogen. Extinguishing Media Water, Foam, Dry Chemical, CO2. Fire Fighting Instructions Keep personnel removed and upwind of fire. Wear self-contained breathing apparatus (SCBA) and full protective equipment. _____ ACCIDENTAL RELEASE MEASURES _____ Safeguards (Personnel) NOTE: Review FIRE FIGHTING MEASURES and HANDLING (PERSONNEL) sections before proceeding with clean-up. Use appropriate PERSONAL PROTECTIVE EQUIPMENT during clean-up. Spill Clean Up Sweep up to avoid slipping hazard. _____ HANDLING AND STORAGE -----Handling (Personnel) See FIRST AID and PERSONAL PROTECTIVE EQUIPMENT SECTIONS. Storage Store in a cool, dry place. Keep containers tightly closed to prevent moisture absorption and contamination. _____

Printed on 10/31/2008

Print Date: 4 - 16 - 2009

Page 3

Du Pont Material Safety Data Sheet

EXPOSURE CONTROLS/PERSONAL PROTECTION

Engineering Controls

VENTILATION When hot processing this material, use local and/or general exhaust ventilation to control the concentration of vapors and fumes below exposure limits.

In cutting or grinding operations with this material, use local exhaust to control the concentration of dust below exposure limits.

Local ventilation is required over processing equipment to keep the concentration of gases which are irritating to the eyes and upper respiratory system below recommended values.

Personal Protective Equipment

EYE/FACE PROTECTION

Wear safety glasses. Wear coverall chemical splash goggles and face shield when possibility exists for eye and face contact due to splashing or spraying of molten material. A full face mask respirator provides protection from eye irritation.

RESPIRATORS

A NIOSH/MSHA approved air purifying respirator with an organic vapor cartridge with a dust/mist filter may be permissible under certain circumstances where airborne concentrations are expected to exceed exposure limits. Protection provided by air purifying respirators is limited. Use a positive pressure air supplied respirator if there is any potential for an uncontrolled release, exposure levels are not known, or any other circumstances where air purifying respirators may not provide adequate protection.

PROTECTIVE CLOTHING

If there is potential contact with hot/molten material, wear heat resistant clothing and footwear.

Exposure Guidelines

Exposure Limits "BIOMAX" RESINS AL PEL (OSHA)	L IN SYNONYM LIST BIOS011 : Particulates (Not Otherwise Regulated) 15 mg/m3, 8 Hr. TWA, total dust
Other Applicable Exp N-BUTYL ACRYLATE	osure Limits
PEL (OSHA)	: None Established
TLV (ACGIH)	: 2 ppm, 8 Hr. TWA, A4, SEN
AEL * (DuPont)	: 2 ppm, 8 & 12 Hr. TWA, Skin

Printed on 10/31/2008

Print Date: 4 - 16 - 2009

Du Pont Material Safety Data Sheet

* AEL is DuPont's Acceptable Exposure Limit. Where governmentally imposed occupational exposure limits which are lower than the AEL are in effect, such limits shall take precedence. _____ PHYSICAL AND CHEMICAL PROPERTIES _____ Physical Data % Volatiles : Negligible Solubility in Water : Negligible Odor : Mild acrylate-like Form : Solid Color : Beige Specific Gravity : 0.9 Melting Point : 100 C (212 F) _____ STABILITY AND REACTIVITY _____ Chemical Stability Stable at normal temperatures and storage conditions. Conditions to Avoid Temperatures above 280 C (536 F) . Incompatibility with Other Materials Strong oxidizing agents. Decomposition Decomposes with heat. Decomposition temperature - For the resin as shipped, greater than 280 C (536 F) as defined by TGA weight loss of less than 1 percent in air. Decomposition behavior may be affected through customer use of stabilizers or other ingredients.

HAZARDOUS DECOMPOSITION PRODUCTS Carbon monoxide and hydrocarbon oxidation products including organic acids, aldehydes, alcohols, amines, and oxides of nitrogen.

Polymerization

Polymerization will not occur.

ECOLOGICAL INFORMATION ECotoxicological Information

Printed on 10/31/2008

Print Date: 4 - 16 - 2009

63

Page 5

Du Pont Material Safety Data Sheet

```
BIOS011
```

AQUATIC TOXICITY: No information is available. Do not discharge to streams, ponds, lakes or sewers. N-BUTYL ACRYLATE AQUATIC TOXICITY: Moderately toxic. 96 hour LC50 - Rainbow trout: 5.2 mg/L _____ DISPOSAL CONSIDERATIONS _____ Waste Disposal Preferred options for disposal are (1) recycling, (2) incineration with energy recovery, and (3) landfill. The high fuel value of this product makes option 2 very desirable for material that cannot be recycled. Treatment, storage, transportation, and disposal must be in accordance with applicable federal, state/provincial, and local regulations. _____ TRANSPORTATION INFORMATION Shipping Information DOT/IMO/IATA Not Regulated. _____ REGULATORY INFORMATION U.S. Federal Regulations TSCA Inventory Status : In compliance with TSCA Inventory requirements for commercial purposes. State Regulations (U.S.) STATE RIGHT-TO-KNOW LAWS No substances on the state hazardous substances list, for the

states indicated below, are used in the manufacture of products on this Material Safety Data Sheet. SUBSTANCES ON THE PENNSYLVANIA HAZARDOUS SUBSTANCES LIST PRESENT

AT A CONCENTRATION OF 1% OR MORE (0.01% FOR SPECIAL HAZARDOUS SUBSTANCES): None known.

WARNING: SUBSTANCES KNOWN TO THE STATE OF CALIFORNIA TO CAUSE CANCER, BIRTH DEFECTS OR OTHER REPRODUCTIVE HARM: None known.

Printed on 10/31/2008

Print Date: 4 - 16 - 2009

Page 6

Du Pont Material Safety Data Sheet

Page 7

SUBSTANCES ON THE NEW JERSEY WORKPLACE HAZARDOUS SUBSTANCE LIST PRESENT AT A CONCENTRATION OF 1 % OR MORE (0.1% FOR SUBSTANCES IDENTIFIED AS CARCINOGENS, MUTAGENS OR TERATOGENS): None known.

OTHER INFORMATION

Additional Information

MEDICAL USE: CAUTION: Do not use in medical applications involving permanent implantation in the human body. For other medical applications see DuPont CAUTION Bulletin No. H-50102.

The data in this Material Safety Data Sheet relates only to the specific material designated herein and does not relate to use in combination with any other material or in any process.

Responsibility	for	MSDS	:	S. C. FEINBERG
				DUPONT PACKAGING & INDUSTRIAL POLYMERS
Address			:	CHESTNUT RUN PLAZA 713
				WILMINGTON, DE 19880-0713
Telephone			:	302-999-4124

Printed on 10/31/2008

Print Date: 4 - 16 - 2009

Ficha técnica Arkema Biostrength 280

Biostrength[®] 280

Impact Modifier

Product Description

Biostrength[®] 280 is an acrylic core shell impact modifier designed to increase toughness of polylactic acid (PLA) while maintaining clarity.

Product Benefits

Impact Improvement: Biostrength[®] 280 impact modifier increases impact strength of PLA extruded, calendered, blow molded and thermoformed articles.

Optical Properties: Biostrength[®] 280 impact modifier maintains low haze in PLA at recommended use levels.

Suggestions for Use

Biostrength® 280 impact modifier is recommended for use in PLA applications that require toughness and high transparency. Typical use levels range from 2% to 6% by weight. Blends of Biostrength® 280 impact modifier with PLA can be processed in the same equipment and under the same processing conditions recommended for PLA. Prospective clients should evaluate Biostrength® 280 impact modifier in their own laboratories to establish optimum conditions for use in their processes and applications. Arkema's technical services department is available to discuss your application requirements.

Packaging

Biostrength[®] 280 impact modifier is packaged in 40 lb (20 kg) bags and 1,000 lb (450 kg) super sacks.

Masterbatch Information

Biostrength[®] 280 impact modifier can be supplied as a masterbatch in PLA. Contact your Arkema account manager for more information.

Environmental & Safety Information

BEFORE HANDLING THIS MATERIAL, READ AND UNDERSTAND THE MSDS (MATERIAL SAFETY DATA SHEET) FOR ADDITIONAL INFORMATION ON PERSONAL PROTECTIVE EQUIPMENT AND FOR SAFETY, HEALTH AND ENVIRONMENTAL INFORMATION.

For Environmental, Safety & Toxicology information, contact our Customer Service Department at (800) 446-2800 to request a Material Safety Data Sheet. Arkema believes strongly in Responsible Care® as a public commitment.

Visit us at our Website

www.additives-arkema.com

Biostrength® 280 impact modifier is patent pending.

For Order Information Contact

Arkema Inc. Additives Customer Service 2000 Market Street, Philadelphia, PA 19103-3222 (800) 446-2800 (phone) (215) 419-7875 (fax) arkema.usph-additives-cs@arkema.com (e-mail)

info.additives@arkema.com (e-mail)

For Technical Information Contact

Arkema Inc. Functional Additives Technical Service 900 First Avenue, King of Prussia, PA 19406 (610) 878-6658 (phone) (610) 878-6260 (fax) www.additives-arkema.com (website)

More Technical Information Available

Ask your account manager for more information about Arkema's complete product line for PLA.

Biostrength® 700 Melt Strength Enhancer

Biostrength® 700 is an acrylic copolymer that improves the melt strength and enhances processability of PLA for use in sheet extrusion, calendering, blow molding, coating and thermoforming applications.

Biostrength[®] 150 Impact Modifier Biostrength[®] 150 is a high efficiency modifier that increases impact strength of PLA in applications that do not require transparency.

Biostrength[®] 900 Metal Release Agent

Biostrength® 900 is an acrylic copolymer that metal release improves and enhances processability of polylactic acid (PLA).

IMPORTANT: The statements, technical information and recommendations contained herein are believed to be accurate as of the date hereof. Since the conditions and methods of use of the product and of the information referred to herein are beyond our control, Arkema expressly disclaims any and all liability as to any results obtained or arising from any use of the product or reliance on such information: NO WARRANTY OF FITNESS FOR ANY PARTICULAR PURPOSE, WARRANTY OF MERCHANTABILITY OR ANY OTHER WARRANTY, EXPRESS OR IMPLED, IS MADE CONCERNING THE GOODS DESCRIBED OR THE INFORMATION PROVIDED HEREIN. The information provided herein relates only to the specific product designated and may not be applicable when such product is used in combination with other materials or in any process. The user should thoroughly test any application before commercialization. Nothing contained herein constitutes a license to practice under any patent and it should not be construed as an inducement to infinge any patent and its hould not be sure that any proposed use of the product will not result in patent infringement.

Before handling this material, read and understand the MSDS (Material Safety Data Sheet) for additional information on personal protective equipment and for safety, health and environmental

For environmental, safety and toxicological information, contact our Customer Service Department at 1-800-331-7654 to request a Material Safety Data Sheet or visit our website at www.biostrength.com

© 2010 Arkema Inc. All rights reserved. Biostrength" is a registered trademark of Arkema Inc. Responsible Care[®] is a registered trademark of the American Chemistry Council Inc.

Arkema Inc 2000 Market Street Philadelphia, PA 19103 215-419-7000 //www.arkema-inc.com

Folha de segurança (MSDS – Material Safety Data Sheet): Arkema Biostrength 280

Material Safety Data Sheet

BIOSTRENGTH® 280

1. PRODUCT AND COMPANY IDENTIFICATION

Company

Arkema Inc. 2000 Market Street Philadelphia, Pennsylvania 19103

Functional Additives

Customer Service Telephone Number:

(800) 331-7654 (Monday through Friday, 8:30 AM to 5:30 PM EST)

Emergency Information

Transportation:

Medical:

CHE (24 | Bool

white

solid powder

None

CHEMTREC: (800) 424-9300 (24 hrs., 7 days a week) Rocky Mountain Poison Center: (303) 623-5716 (24 hrs., 7 days a week)

Product Information

Product name: Synonyms: Molecular formula: Chemical family: Product use: BIOSTRENGTH® 280 Not available Complex mixture acrylic polymer Impact modifier

2. HAZARDS IDENTIFICATION

Emergency Overview

Color: Physical state: Form: Odor:

WARNING! MAY FORM COMBUSTIBLE DUST AIR MIXTURES. MAY CAUSE EYE IRRITATION. MAY CAUSE ALLERGIC SKIN REACTION. PROCESSING MAY RELEASE VAPORS AND/OR FUMES WHICH CAUSE EYE, SKIN AND RESPIRATORY TRACT IRRITATION.

Potential Health Effects

Primary routes of exposure: Inhalation and skin contact.

Signs and symptoms of acute exposure:

Dust: May cause eye irritation. Prolonged or repeated skin contact may cause: Allergic skin reaction: redness, rash. Effects due to processing releases: Irritating to eyes, respiratory system and skin. May also cause: nausea, headache, drowsiness, weakness. (severity of effects depends on extent of exposure).

Eyes:

Product code: VMO04

Version 1.0

Issued on: 10/06/2009

Page: 1 / 10

BIOSTRENGTH® 280

May cause eye irritation. (based on components)

Remarks:

This product may release fume and/or vapor of variable composition depending on processing time and temperature.

3. COMPOSITION/INFORMATION ON INGRE	DIENTS		
Chemical Name	CAS-No.	Wt/Wt	OSHA Hazardous
2-Propenoic acid, 2-methyl-, methyl ester, polymer with butyl 2-propenoate	25852-37-3	>= 95 - <= 99 %	Ν
Sulfuric acid, mono-C10-16-alkyl esters, sodium salts	68585-47-7	>= 1 -< 5 %	Y

The substance(s) marked with a "Y" in the Hazard column above, are those identified as hazardous chemicals under the criteria of the OSHA Hazard Communication Standard (29 CFR 1910.1200).

This material is classified as hazardous under Federal OSHA regulation.

4. FIRST AID MEASURES

Inhalation:

If inhaled, remove victim to fresh air.

Skin:

In case of contact, immediately flush skin with soap and plenty of water. Remove contaminated clothing and shoes. Get medical attention. Wash clothing before reuse. Thoroughly clean shoes before reuse.

Eyes:

Immediately flush eye(s) with plenty of water. Get medical attention immediately if irritation persists.

Ingestion:

If swallowed, DO NOT induce vomiting. Get medical attention. Never give anything by mouth to an unconscious person.

Flash point	no data available
Auto-ignition temperature:	no data available
Lower flammable limit (LFL):	no data available
Upper flammable limit (UFL):	no data available
Extinguishing media (suitable): Water spray, Carbon dioxide (CO2), Foam, Dry chemical
Protective equipment:	

Product code: VMO04

Version 1.0

Issued on: 10/06/2009

Page: 2 / 10

BIOSTRENGTH® 280

Fire fighters and others who may be exposed to products of combustion should wear full fire fighting turn out gear (full Bunker Gear) and self-contained breathing apparatus (pressure demand / NIOSH approved or equivalent).

Further firefighting advice:

Do not use a solid stream of water. A solid stream of water can cause a dust explosion. Fire fighting equipment should be thoroughly decontaminated after use.

Fire and explosion hazards:

Dust clouds generated during handling and/or storage can form explosive mixtures with air. Dust explosion characteristics vary with the particle size, particle shape, moisture content, contaminants, and other variables. Note: Check that all equipment is properly grounded and installed to satisfy electrical classification requirements. As with any dry material, pouring this material or allowing it to free-fall or to be conveyed through chutes or pipes can accumulate and generate electrostatic sparks, potentially causing ignition of the material itself, or of any flammable materials which may come into contact with the material or its container. When burned, the following hazardous products of combustion can occur: Acrylates

Methacrylates

Carbon oxides

6. ACCIDENTAL RELEASE MEASURES

In case of spill or leak:

Prevent further leakage or spillage if you can do so without risk. Evacuate area of all unnecessary personnel. Ventilate the area. Eliminate all ignition sources. Avoid dust formation and dispersal of dust in the air. Wet down (dampen) the spilled material with water. Sweep or scoop up using non-sparking tools and place into suitable properly labeled containers for prompt disposal. The sweepings should be wetted down further with water. Avoid dispersal of spilled material and runoff and contact with soil, waterways, drains and sewers. Implement workplace practices such that dusts are not allowed to accumulate on surfaces, as these may form an explosive mixture if they are released into the atmosphere in sufficient concentration. Consult a regulatory specialist to determine appropriate state or local reporting requirements, for assistance in waste characterization and/or hazardous waste disposal and other requirements listed in pertinent environmental permits.

Product code: VMO04

Version 1.0

Issued on: 10/06/2009

Page: 3 / 10

BIOSTRENGTH® 280

7. HANDLING AND STORAGE

Handling

General information on handling: Keep away from heat, sparks and flames. Avoid contact with eyes. Avoid prolonged or repeated contact with skin. Avoid breathing processing fumes or vapors. Avoid breathing dust. Avoid creating dust in handling, transfer or clean up Prevent dust accumulation. Check that all equipment is properly grounded and installed to satisfy electrical classification requirements. Wash thoroughly after handling. Keep container closed. Container hazardous when empty. Emptied container retains product residue. Follow label warnings even after container is emptied. RESIDUAL DUSTS MAY EXPLODE ON IGNITION. DO NOT CUT, DRILL, GRIND, OR WELD ON OR NEAR THIS CONTAINER. Improper disposal or reuse of this container may be dangerous and/or illegal.

Storage

General information on storage conditions:

Keep in a dry place. Store in closed containers, in a secure area to prevent container damage and subsequent spillage. Store in well ventilated area away from heat and sources of ignition such as flame, sparks and static electricity. Ensure that all storage and handling equipment is properly grounded and installed to satisfy electrical classification requirements. Static electricity may accumulate when transferring material. All storage containers, including drums, cylinders and IBCs, must be bonded and grounded during filling and emptying operations.

Storage stability - Remarks:

Stable under recommended storage conditions.

Storage incompatibility – General:

Keep away from heat, sparks and flames. Do NOT store near strong bases. Keep away from reducing agents.

8. EXPOSURE CONTROLS/PERSONAL PROTECTION	RSONAL PROTECTIO	8. EXPOSURE CONTROLS/PERSONAL PRO
--	------------------	-----------------------------------

Airborne Exposure Guidelines:

Particles Not Otherwise Specified / Nuisance Dust

US. ACGIH Threshold Limit Values

Form:	Inhalable particles.
Time Weighted Average (TWA):	10 mg/m3
Form:	Respirable particles
Time Weighted Average (TWA):	3 mg/m3

US. OSHA Table Z-1 Limits for Air Contaminants (29 CFR 1910.1000)

Form: PEL:	Respirable fraction. 5 mg/m3

Product code: VMO04

Version 1.0

Issued on: 10/06/2009

Page: 4 / 10

BIOSTRENGTH® 280

Remarks:	All inert or nuisance dusts, whether mineral, inorganic, or organic, not listed specifically by substance name are covered by the Particulates Not Otherwise Regulated (PNOR) limit which is the same as the inert or nuisance dust limit of Table Z-3.
Form: PEL:	Total dust. 15 mg/m3
Remarks:	All inert or nuisance dusts, whether mineral, inorganic, or organic, not listed specifically by substance name are covered by the Particulates Not Otherwise Regulated (PNOR) limit which is the same as the inert or nuisance dust limit of Table Z-3.

Only those components with exposure limits are printed in this section. Limits with skin contact designation above have skin contact effect. Air sampling alone is insufficient to accurately quantitate exposure. Measures to prevent significant cutaneous absorption may be required. Limits with a sensitizer designation above mean that exposure to this material may cause allergic reactions.

Engineering controls:

Investigate engineering techniques to reduce exposures below airborne exposure limits or to otherwise reduce exposures. Provide ventilation if necessary to minimize exposures or to control exposure levels to below airborne exposure limits (if applicable see above). If practical, use local mechanical exhaust ventilation at sources of air contamination such as open process equipment. Consult ACGIH ventilation manual or NFPA Standard 91 for design of exhaust systems.

Respiratory protection:

Avoid breathing processing fumes or vapors. Avoid breathing dust. Where airborne exposure is likely or airborne exposure limits are exceeded (if applicable, see above), use NIOSH approved respiratory protection equipment appropriate to the material and/or its components (full facepiece recommended). Consult respirator manufacturer to determine appropriate type equipment for a given application. Observe respirator use limitations specified by NIOSH or the manufacturer. For emergency and other conditions where there may be a potential for significant exposure or where exposure limit may be significantly exceeded, use an approved full face positive-pressure, self-contained breathing apparatus or positive-pressure airline with auxiliary selfcontained air supply. Respiratory protection programs must comply with 29 CFR § 1910.134.

Skin protection:

Wear appropriate chemical resistant protective clothing and chemical resistant gloves to prevent skin contact. Consult glove manufacturer to determine appropriate type glove material for given application. Rinse immediately if skin is contaminated. Wash contaminated clothing and clean protective equipment before reuse. Wash thoroughly after handling.

Eye protection:

Where eye contact may be likely, wear chemical goggles and have eye flushing equipment available.

9. PHYSICAL AND CHEMICAL PROPERTIES

Product code: VMO04

Version 1.0

Issued on: 10/06/2009

Page: 5 / 10

BIOSTRENGTH® 280

Color:	white
Physical state:	solid
Form:	powder
Odor:	None.
pH:	Not applicable
Density:	no data available
Specific Gravity (Relative density):	no data available
Vapor pressure:	no data available
Vapor density:	no data available
Boiling point/boiling range:	no data available
Freezing point:	no data available
Melting point:	no data available
Solubility in water:	no data available

10. STABILITY AND REACTIVITY

Stability:

The product is stable under normal handling and storage conditions.

Hazardous reactions: Hazardous polymerization does not occur.

Materials to avoid: Strong bases. Reducing agents

Conditions / hazards to avoid: Sparks, flames, ignition points and static electricity.

Hazardous decomposition products:

Thermal decomposition giving flammable and toxic products Acrylates Methacrylates Carbon oxides

Product code: VMO04

Version 1.0

Issued on: 10/06/2009

Page: 6 / 10

BIOSTRENGTH® 280

11. TOXICOLOGICAL INFORMATION

Data on this material and/or its components are summarized below.

Data for Sulfuric acid, mono-C10-16-alkyl esters, sodium salts (68585-47-7)

Acute toxicity

Oral:

Slightly toxic. (rat) LD50 = 800 - 2,700 mg/kg.

Dermal:

Slightly to moderately toxic. (rabbit) LD50 between 580 - 4,000 mg/kg.

Inhalation: Slightly toxic. (rat) 4 h ALC = 0.78 mg/l.

Skin Irritation:

Moderately to severely irritating. (rabbit) 4.5 - 6 / 8.0. (24 h)

Eye Irritation:

Moderately to severely irritating. (rabbit) Irritation Index: 26 - 35.6/110.

Repeated dose toxicity

Repeated oral administration to rat, mouse, dog, guinea pig / No adverse systemic effects reported.

Repeated dermal administration to guinea pig / affected organ(s): liver

Repeated drinking water administration to rat / affected organ(s): liver, GI tract / signs: irritation, changes in organ structure or function, decreased growth rate, decreased survival

<u>Genotoxicity</u>

Assessment in Vitro:

Generally, no genetic changes were observed in laboratory studies using: bacteria

Both positive and negative responses for genetic changes were observed in laboratory tests using: animal cells

Genotoxicity

Assessment in Vivo: Generally, no genetic changes were observed in laboratory studies using: animals

Developmental toxicity Exposure during pregnancy. oral (mouse, rabbit) / No birth defects were observed. (delays in development)

Human experience

Skin contact: Skin: Skin allergy was observed.

Product code: VMO04

Version 1.0

Issued on: 10/06/2009

Page: 7 / 10

BIOSTRENGTH® 280

12. ECOLOGICAL INFORMATION

Chemical Fate and Pathway

Data on this material and/or its components are summarized below.

Data for Sulfuric acid, mono-C10-16-alkyl esters, sodium salts (68585-47-7)

Biodegradation:

Biodegradable. (1 - 28 d) biodegradation 95 - 100 % Biodegradable. (< 1 d) biodegradation 45 - 95 %

Ecotoxicology

Data on this material and/or its components are summarized below.

Data for Sulfuric acid, mono-C10-16-alkyl esters, sodium salts (68585-47-7)

Aquatic toxicity data: Slightly toxic. Oryzias latipes (medaka) 48 h LC50 = 46.0 mg/l

Moderately toxic. Pimephales promelas (fathead minnow) 96 h LC50 = 6.6 mg/l

Aquatic invertebrates:

Highly toxic. Oyster larvae 48 h EC50 = 0.37 mg/l Highly toxic. Marine clams 48 h EC50 = 0.47 mg/l Slightly to highly toxic. Brine shrimp 48 h EC50 between 0.94 - 21.1 mg/l Slightly toxic to moderately toxic. Daphnia magna (Water fiea) 48 h EC50 between 1.8 - 15.0 mg/l Slightly toxic. Juvenile mussels 48 h EC50 = 19.04 mg/l No more than slightly toxic. Palaemonetes pugio (grass shrimp) 48 h EC50 between 70 - 162 mg/l

Chronic toxicity to aquatic invertebrates:

Daphnia magna (Water flea) 21 d EC50 < 3 mg/l

13. DISPOSAL CONSIDERATIONS

Waste disposal:

Where possible recycling is preferred to disposal or incineration. If recycling is not an option, incinerate or dispose of in accordance with federal, state, and local regulations. Pigmented, filled and/or solvent laden product may require special disposal practices in accordance with federal, state and local regulations. Consult a regulatory specialist to determine appropriate state or local reporting requirements, for assistance in waste characterization and/or hazardous waste disposal and other requirements listed in pertinent environmental permits. Note: Chemical additions to, processing of, or otherwise altering this material may make this waste management information incomplete, inaccurate, or otherwise inappropriate. Furthermore, state and local waste disposal requirements may be more restrictive or otherwise different from federal laws and regulations.

14. TRANSPORT INFORMATION

US Department of Transportation (DOT): not regulated

International Maritime Dangerous Goods Code (IMDG): not regulated

Product code: VMO04

Version 1.0

Issued on: 10/06/2009

Page: 8 / 10

BIOSTRENGTH® 280

15. REGULATORY INFORMATION

Chemical Inventory Status		
EU. EINECS	EINECS	Conforms to
US. Toxic Substances Control Act	TSCA	The components of this product are all on the TSCA Inventory.
Australia. Industrial Chemical (Notification and Assessment) Act	AICS	Conforms to
Canada. Canadian Environmental Protection Act (CEPA). Domestic Substances List (DSL). (Can. Gaz. Part II, Vol. 133)	DSL	All components of this product are on the Canadian DSL list.
Japan. Kashin-Hou Law List	ENCS (JP)	Does not conform
Korea. Toxic Chemical Control Law (TCCL) List	KECI (KR)	Conforms to
Philippines. The Toxic Substances and Hazardous and Nuclear Waste Control Act	PICCS (PH)	Conforms to
China. Inventory of Existing Chemical Substances	IECSC (CN)	Conforms to
New Zealand. Inventory of Chemicals (NZIoC), as published by ERMA New Zealand	NZIOC	Conforms to

United States – Federal Regulations

SARA Title III - Section 302 Extremely Hazardous Chemicals:

The components in this product are either not SARA Section 302 regulated or regulated but present in negligible concentrations.

SARA Title III - Section 311/312 Hazard Categories:

Fire Hazard, Acute Health Hazard

SARA Title III - Section 313 Toxic Chemicals:

SARA 313: This material does not contain any chemical components with known CAS numbers that exceed the threshold (De Minimis) reporting levels established by SARA Title III, Section 313.

Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) - Reportable Quantity (RQ):

The components in this product are either not CERCLA regulated, regulated but present in negligible concentrations, or regulated with no assigned reportable quantity.

OSHA Regulated Carcinogens (NTP, IARC, OSHA Listed):

NTP:

No component of this product present at levels greater than or equal to 0.1% is identified as a known or anticipated carcinogen by NTP.

Product code: VMO04

Version 1.0

Issued on: 10/06/2009

Page: 9 / 10

BIOSTRENGTH® 280

IARC:

No component of this product present at levels greater than or equal to 0.1% is identified as probable, possible or confirmed human carcinogen by IARC.

OSHA:

No component of this product present at levels greater than or equal to 0.1% is identified as a carcinogen or potential carcinogen by OSHA.

United States – State Regulations

Massachusetts Right to Know

No components are subject to the Massachusetts Right to Know Act.

New Jersey Right to Know

No components are subject to the New Jersey Right to Know Act.

Pennsylvania Right to Know

Chemical Name 2-Propenoic acid, 2-methyl-, methyl ester, polymer with butyl 2-propenoate

CAS-No. 25852-37-3

California Prop. 65

This product does not contain any chemicals known to the State of California to cause cancer, birth defects, or any other reproductive defects.

00000063009

10/06/2009

10/06/2009

16. OTHER INFORMATION

Latest Revision(s):

Reference number: Date of Revision: Date Printed:

BIOSTRENGTH® is a registered trademark of Arkema Inc.

Arkema Inc. believes that the information and recommendations contained herein (including data and statements) are accurate as of the date hereof. NO WARRANTY OF FITNESS FOR ANY PARTICULAR PURPOSE, WARRANTY OF MERCHANTABILITY, OR ANY OTHER WARRANTY, EXPRESSED OR IMPLIED, IS MADE CONCERNING THE INFORMATION PROVIDED HEREIN. The information provided herein relates only to the specific product designated and may not be valid where such product is used in combination with any other materials or in any process. Further, since the conditions and methods of use are beyond the control of Arkema Inc., Arkema Inc. expressly disclaims any and all liability as to any results obtained or arising from any use of the product or reliance on such information.

Product code: VMO04

Version 1.0

Issued on: 10/06/2009

Page: 10 / 10

Calorimetria exploratória diferencial (DSC) do poliácido lático D2002 da Cargill NatureWorks

Análise de Infravermelho (FTIR) por refletância total atenuada (ATR) do poliácido lático D2002 da Cargill NatureWorks

Atribuição	Posição do pico (cm ⁻¹)	
	Literatura (7)	Amostra Cargill 2002D
Estiramento –CH–	2997 (assimétrico), 2946 (simétrico), 2877	2995, 2945
Estiramento de carbonila –C=O	1748	1748
Flexão –CH ₃	1456	1452
Deformação –CH– (inclui flexão simétrica e assimétrica)	1382, 1365	1382, 1360
Flexão –C=O	1225	1266
Estiramento –CH–	1194, 1130, 1093	1181, 1128, 1081
Flexão –OH	1047	1043
Modos de oscilação –CH ₃	956, 921	956
Estiramento –C–C–	926, 868	868

Calorimetria exploratória diferencial (DSC) do modificador térmico (MT) Biomax Thermal 300 da DuPont

A tribuição	Posição do pico (cm ⁻¹)
Atribulçao	Biomax Thermal
Estiramento O-H (3200 – 3600)	3393, 3188
Estiramento C-H (2850 – 3000)	2916, 2849
Estiramento C=O (1670 – 1820)	1732
Estiramento C=C (1620 – 1680)	1644
Flexão C-H (1350 – 1480)	1420, 1470
Estiramento C-O (1000 – 1300)	1169
Flexão =C-H (675 – 1000)	810, 719

Calorimetria exploratória diferencial (DSC) do modificador de impacto (MI) Biostrength 280 da Arkema, incorporado em poli(ácido lático) 2002D na proporção 1:1

Análise de Infravermelho (FTIR) por refletância total atenuada (ATR) do modificador de impacto (MI) Biostrength 280 da Arkema, incorporado em poli(ácido lático) 2002D na proporção 1:1

	Posição do pico (cm ⁻¹)	
Atribuição	Biostrength 280 da Arkema, incorporado em	
	poli(ácido lático) 2002D na proporção 1:1	
Estiramento –CH–	2951, 2949	
Estiramento de carbonila –C=O	1732	
Flexão –CH ₃	1455	
Deformação –CH– (inclui flexão	1376	
simétrica e assimétrica)		
Estiramento –CH–	1181, 1128, 1084	

Curvas de DSC - Amostra 1

Temperature (°C)

Universal V2.6D TA Instruments

Exo Up

Curvas de DSC – Amostra 1 após tratamento de recozimento

Curvas de DSC – Amostra 2 após tratamento de recozimento

Curvas de DSC – Amostra 3 após tratamento de recozimento

Curvas de DSC – Amostra 4 após tratamento de recozimento

Curvas de DSC – Amostra 5 após tratamento de recozimento

Curvas de DSC – Amostra 6 após tratamento de recozimento

Curvas de DSC – Amostra 7 após tratamento de recozimento

Curvas de DSC – Amostra 8 após tratamento de recozimento

APÊNDICE 10

Análises originais de HDT, Vicat e curvas originais do Módulo de elasticidade (E), da Resistência à tração (τ) e Alongamento na força máxima (ϵ) antes do tratamento de recozimento

PUA 0005

SENAL

RELATÓRIO DE ENSAIO

NOME DA AMOSTRA	Fórmula 1 - PLA + 100 g Aditiv	vo Biostrenght				
SEQUENCIAL	1077/11	REGISTRO DE AMOSTRA	1077-002/11			
CLIENTE	Johnson & Johnson do Brasil In	lohnson & Johnson do Brasil Ind. e Com. Prod. para Saúde Ltda.				
ENDEREÇO	Rua Manoel Bosco Ribeiro, 102	Rua Manoel Bosco Ribeiro, 1020 - Jd. das Industrias - São José dos Campos - SP				
CONTATO	Renato B. Pereira	CARGO R&D				

 FORMA DA AMOSTRA
 Grânulo

 FABRICAÇÃO CORPO DE PROVA
 NTP

 DATA DE EMISSÃO DO RELATÓRIO
 21/06/11

CONDIÇÃO DE RECEBIMENTO Conforme DATA DE RECEBIMENTO 13/06/11

Ensaios Contratados	Norma	Data realização	Unidade	Resultado
Resistência à Tração	ASTM D 638-10	15/06/11	MPa % MPa	Tensão Força Máx. = 65,33 ± 0,4370 Def. Esp. F. Máx. = 4,169 ± 0,2461 Mód.Elast= 2589 ± 46,38
Temperatura de Deflexão Térmica - (HDT)	ASTM D 648-07	16/06/11	°C	47,2 ± 0,6 (Método 1,82 MPa - 120°C/h)
Temperatura de Amolecimento Vicat	ASTM D 1525-09	15/06/11	°C	59,3 ± 1,0 (Método 10 N - 120°C/h)

CLÁUSULAS DE RESPONSABILIDADE

- Os resultados obtidos somente se referem ao material submetido ao ensaio.

- A identificação do material analisado é responsabilidade do solicitante.

- Não se admite qualquer responsabilidade referente à exatidão da amostragem, a menos que esta tenha sido efetuada mediante nossa

própria supervisão. Salvo menção expressa, as amostras foram livremente selecionadas pelo solicitante.

- O Laboratório de Ensaios Físicos e Químicos em Polímeros não se torna responsável pela divulgação ou o uso que o solicitante, outra pessoa ou entidade venham a fazer dos resultados do presente relatório.

- O Laboratório de Ensalos Físicos e Químicos em Polímeros garante a confidencialidade dos resultados contidos no presente relatório de ensalos.

- Qualquer parecer expresso neste relatório, não faz parte do escopo de acreditação.

- Este relatório só deve ser reproduzido por inteiro. Reprodução de partes requer aprovação por escrita do laboratório. O Laboratório não se torna responsável em nenhum caso de interpretação ou uso indevido que se possa fazer deste documento.

OBSERVAÇÕES: Anexos - Anexo 04 (Tração), Anexo 05 (HDT) e Anexo 06 (Vicat).

Kleber Augusto Zotovici Coordenador do Laboratório

F-PLA-021 Ver 06 Aprovado em 05/01/2009

Laboratório de Ensaios Físicos e Químicos em Polímeros (PLA) Escola SENAI Mario Antato - Núcleo de Tecnologia em Plásticos Av. José Odorizzi, 1.555 - São Bernardo do Campo - SP CEP 09861-000 Fone: {011} 4109-9499 r:140 Fax:{011} 4109-9499 r:140 e-mail: plastico@sp.senai.br

Página 1 de 1

NÚCLEO DE TECNOLOGIA DO PLÁSTICO LABORATÓRIO DE ENSAIOS FÍSICOS E QUÍMICOS EM POLÍMEROS

Relatório de Ensaio de Tração

Máquina: Emic DL3	3000 Célula: Trd 27	Extensômetro: -	Data: 15/06/11	Hora: 11:26:38	Trabalho nº 2749
Programa: MTest ve	ersão 2.02			Mél	odo de Ensaio: Tração
Ident. Amostra: > Seq	uencial: 1077/11 (1077-002/	11) Material:: Fór	mula 1- PLA + 10	0g Aditivo Biostren	ght Código::
Parâmetro	>> Tensão	Tensão	Def.Especif.	Def.Especif.	Mod.Elástic.
Evento	>> Força Max.	Ruptura	Força Max.	Ruptura	
Unidade	>> (MPa)	(MPa)	(%)	(%)	(MPa)
CP 1	65.37	63.98	4.515	4.746	2581
CP 2	65.49	65.03	4.092	4.208	2545
CP 3	65.07	62.26	4.419	4.803	2576
CP 4	65.66	65.11	4.112	4.227	2635
CP 5	66.08	63.94	4.419	4.650	2508
CP 6	65.41	63.27	3.958	4.227	2611
CP 7	64.74	62.14	3.900	4.169	2607
CP 8	64.86	60.88	3.939	4.361	2648
Número CF	rs 8	8	8	8	8
Média	65.33	63.33	4.169	4.424	2589
Mediana	65,39	63.61	4.102	4.294	2594
Desv.Padra	io .4370	1.484	.2461	.2650	46.38
Coef.Var.(9	%) .6689	2.344	5,901	5.990	1.791
Mínimo	64.74	60.88	3.900	4.169	2508
Máximo	66.08	65.11	4.515	4.803	2648

\$

TESTING LABORATORY HDT TEST TEST NAME HEAT TRANSFER FLUID TEMPERATURE RATE	PLA HDT SILICONE [/h] 120.0 [C] 23.0 [C] 200.0 [C] 23.0		
	STATION 1	STATION 2	STATION 3
STANDARD MATERIAL CODE ORDER NO. SPECIMEN PREPARATION SPECIMEN ANNEALING	ASTMD648 FORM.1	ASTMD648 FORM.1	ASTMD648 FORM.1
SPECIMEN CONDITIONING TEMPERATURE[C] HUMIDITY[%] LENGTH	23 50	23 50	23 50
SPECIMEN DIMENSIONDEPTH[mm]WIDTH[mm]SPAN[mm]STRESS[kPa]APPLIEDLOAD[g]TESTEND	13.270 3.250 100.00 1820 708 0.25	13.270 3.250 100.00 1820 708 0.25	$13.270 \\ 3.250 \\ 100.00 \\ 1820 \\ 708 \\ 0.25$
FINAL DEFLECTION [mm] DISTORSION TEMPERATURE [C]	0.25 46.6	0.25 47.8	0.25 47.2
COMMENTSTATION1COMMENTSTATION2COMMENTSTATION3			
Thu 16/06/2011 10:20 OPER	RATOR SOLYMAR		

Anexo 05	Nº Sequencial	11 7601	Aprovado	· _ }ba	ata 21.06.11
----------	---------------	---------	----------	---------	--------------

TESTING LABORATORY	PLA
VICAT TEST	
TEST NAME	VICAT
HEAT TRANSFER FLUID	SILICONE
TEMPERATURE RATE[C/h]	120.0
START TEMPERATURE[C]	23.0
MAX. TEMPERATURE[C]	250.0
COOLING TEMPERATURE [C]	23.0
COMMENT 1077-002/11	

	STATION	1	STATION	2	STATION	3
STANDARD MATERIAL CODE ORDER NO. SPECIMEN PREPARATION SPECIMEN ANNEALING	ASTM FORM.1		ASTM FORM,1		ASTM FORM.1	
SPECIMEN CONDITIONING TEMPERATURE[C] HUMIDITY[%] LENGTH	23 50		23 50		23 50	
APPLIED LOAD [N] TEST END [mm]	10.00 1.00		10.00 1.00		10.00 1.00	
FINAL DEFLECTION [mm] SOFTENING TEMPERATURE [C]	1.00 58.3		1.00 59.4		1.00 60.3	

COMMENT	STATION	1
COMMENT	STATION	2
COMMENT	STATION	3

Wed 15/06/2011 10:37 OPERATOR SOLYMAR

		·····	_
Anexo 06	Nº Sequencial 1077/1	Aprovado	Data 21.06.11

PLA OOLS

RELATÓRIO DE ENSAIO

ENALE

NOME DA AMOSTRA	Fórmula 2 - PLA + 300 g Aditivo	Biostrenght				
SEQUENCIAL	1077/11	REGISTRO DE AMOSTRA	1077-003/11			
CLIENTE	Johnson & Johnson do Brasil Ind	Johnson & Johnson do Brasil Ind. e Com. Prod. para Saúde Ltda.				
ENDEREÇO	Rua Manoel Bosco Ribeiro, 1020 - Jd. das Industrias - São José dos Campos - S					
CONTATO	Renato B. Pereira	CARGO R&D				

FORMA DA AMOSTRA Grânulo FABRICAÇÃO CORPO DE PROVA NTP DATA DE EMISSÃO DO RELATÓRIO 21/06/11 **CONDIÇÃO DE RECEBIMENTO** Conforme DATA DE RECEBIMENTO 13/06/11

Ensaios Contratados	Norma	Data realização	Unidade	Resultado
Resistência à Tração	ASTM D 638-10	15/06/11	MPa % MPa	Tensão Força Máx.= $64,40 \pm 1,225$ Def. Esp. F. Máx. = $4,412 \pm 0,2280$ Mód.Elast = $2551 \pm 59,26$
Temperatura de Deflexão Térmica - (HDT)	ASTM D 648-07	16/06/11	°C	47,4 ± 0,8 (Método 1,82 MPa - 120°C/h)
Temperatura de Amolecimento Vicat	ASTM D 1525-09	15/06/11	°C	58,4 ± 0,0 (Método 10 N - 120°C/h)

CLÁUSULAS DE RESPONSABILIDADE

- Os resultados obtidos somente se referem ao material submetido ao ensaio.

- A identificação do material analisado é responsabilidade do solicitante.

- Não se admite qualquer responsabilidade referente à exatidão da amostragem, a menos que esta tenha sido efetuada mediante nossa

própria supervisão. Salvo menção expressa, as amostras foram livremente selecionadas pelo solicitante.

- O Laboratório de Ensaios Físicos e Químicos em Polímeros não se torna responsável pela divulgação ou o uso que o solicitante, outra - O Laboratório de Ensaios Físicos e Químicos em Polímeros garante a confidencialidade dos resultados contidos no presente relatório.
 - O Laboratório de Ensaios Físicos e Químicos em Polímeros garante a confidencialidade dos resultados contidos no presente relatório de

ensaios.

- Qualquer parecer expresso neste relatório, não faz parte do escopo de acreditação.

Este relatório só deve ser reproduzido por interio. Reprodução de partes requer aprovação por escrita do laboratório. O Laboratório não se torna responsável em nenhum caso de interpretação ou uso indevido que se possa fazer deste documento.

OBSERVAÇÕES: Anexos - Anexo 07 (Tração), Anexo 08 (HDT) e Anexo 09 (Vicat).

Kleber Augusto Zotovici Coordenador do Laboratório

F-PLA-021 Ver 06 Aprovado em 05/01/2009

Laboratório de Ensaios Físicos e Químicos em Polímeros (PLA) Escola SENAI Mario Amato - Núcleo de Tecnología em Plásticos Av. José Odorizzi, 1.555 - São Fernardo do Campo - SP CEP 09861-000 Fone: (011) 4109-9499 r:140 Fax:(011) 4109-9499 r:140 e-mail: plastico@sp.senai.br Página 1 de 1

NÚCLEO DE TECNOLOGIA DO PLÁSTICO LABORATÓRIO DE ENSAIOS FÍSICOS E QUÍMICOS EM POLÍMEROS

Relatório de Ensaio de Tração

Máquina: Emic DI	L3000	Célula: Trd 27 Ex	tensômetro: -	Data: 15/06/11	Hora: 14:45:36	Trabalho n° 2	750
Programa: MTest	versão	2.02			Me	itodo de Ensalo: T	ração
Ident. Amostra: > Se	equencia	I: 1077/11 (1077-003/11)	Material:: Fó	rmula 1- PLA + 30	0g Aditivo Biostrer	ight Código::	
Parâmetr	o >>	Tensão	Tensão	Def.Especif.	Def.Especif.	Mod.Elástic.	
Evento	>>	Força Max.	Ruptura	Força Max.	Ruptura		
Unidade	>>	(MPa)	(MPa)	(%)	(%)	(MPa)	
CP 1		63.48	60.97	4.189	4.400	2663	
CP 2		65.78	65.28	4.438	4.515	2502	
CP 3		61.97	61.97	4.227	4.227	2537	
CP 4		65.16	61.64	4.823	5.188	2515	
CP 5		63.94	60.92	4.611	4.957	2505	
CP 6		64.82	62.35	4.169	4.400	2502	
CP 7		65.24	63.98	4.342	4.515	2590	
CP 8		64.82	63.23	4.496	4.688	2596	
Número (CPs	8	8	8	8	8	
Média		64.40	62.54	4.412	4.611	2551	
Mediana		64.82	62.16	4.390	4.515	2526	
Desv.Pad	Irão	1.225	1.528	.2280	.3192	59.26	
Coef.Var.	(%)	1.902	2.443	5.168	6.922	2.323	
Mínimo		61.97	60,92	4.169	4.227	2502	
Máximo		65.78	65.28	4.823	5.188	2663	

\$

TESTING LABORATORYHDT TESTTEST NAMEHEAT TRANSFER FLUIDTEMPERATURE RATESTART TEMPERATUREMAX. TEMPERATURECOOLING TEMPERATURECOMMENT1077-003/11	PLA HDT SILICONE [C/h] 120.0 [C] 23.0 [C] 200.0 [C] 23.0			
	STATION 1	STATION 2	STATION	3
STANDARD MATERIAL CODE ORDER NO. SPECIMEN PREPARATION SPECIMEN ANNEALING	ASTMD648 FORM.2	ASTMD648 FORM.2	ASTMD648 FORM.2	
SPECIMEN CONDITIONING TEMPERATURE[C] HUMIDITY[%] LENGTH	23 50	23 50	23 50	
SPECIMEN DIMENSIONDEPTH[mm]WIDTH[mm]SPAN[mm]STRESS[kPa]APPLIED LOAD[g]TEST END[mm]	13.270 3.250 100.00 1820 708 0.25	13.270 3.250 100.00 1820 708 0.25	13.270 3.250 100.00 1820 708 0.25	
FINAL DEFLECTION [mm] DISTORSION TEMPERATURE [C	0.25 C] 46.8	0.53 23.9 can culado	0.25 47.9	
COMMENTSTATION1COMMENTSTATION2COMMENTSTATION3		v		
*Thu 16/06/2011 11:45 OF	PERATOR SOLYMAR			

TESTING LABORATORY	PLA
TEST NAME	VICAT
HEAT TRANSFER FLUID	SILICONE
TEMPERATURE RATE[C/h]	120.0
START TEMPERATURE[C]	23.5
MAX. TEMPERATURE[C]	250.0
COOLING TEMPERATURE [C]	23.0
COMMENT 1077-003/11	

	STATION	1	STATION	2	STATION	3
STANDARD MATERIAL CODE ORDER NO. SPECIMEN PREPARATION SPECIMEN ANNEALING	ASTM FORM.2		ASTM FORM.2		ASTM FORM.2	
SPECIMEN CONDITIONING TEMPERATURE[C] HUMIDITY[%] LENGTH	23 50		23 50		23 50	
APPLIED LOAD [N] TEST END [mm]	10.00 1.00		10.00 1.00		10.00 1.00	1.05
FINAL DEFLECTION [mm] SOFTENING TEMPERATURE [C]	1.00 58.4		1.00 58.4		1.00 gr 62.7	15/06/11

COMMENT	STATION	1
COMMENT	STATION	2
COMMENT	STATION	3

\$Wed 15/06/2011 15:35 OPERATOR SOLYMAR

			X
Anexo 03	Nº Sequencial J077/11	Aprovado	Data 21.06.11
		and the second se	

opposite the second designed to the second de

RUA 4005

SENAL

RELATÓRIO DE ENSAIO

NOME DA AMOSTRA	Fórmula 3 - PLA + 100 g Aditivo	Biostrenght + 400 g Aditivo BIOMAX		
SEQUENCIAL	1077/11 F	EGISTRO DE AMOSTRA 1077-004/11		
CLIENTE	Johnson & Johnson do Brasil Ind. e Com. Prod. para Saúde Ltda.			
ENDEREÇO	Rua Manoel Bosco Ribeiro, 1020	- Jd. das Industrias - São José dos Campos - SP		
CONTATO	Renato B. Pereira	CARGO R&D		

FORMA DA AMOSTRAGrânuloFABRICAÇÃO CORPO DE PROVANTPDATA DE EMISSÃO DO RELATÓRIO21/06/11

CONDIÇÃO DE RECEBIMENTO Conforme DATA DE RECEBIMENTO 13/06/11

Ensaios Contratados	Norma	Data realização	Unidade	Resultado
Resistência à Tração	ASTM D 638-10	16/06/11	MPa	Tensão Força Máx. = 58,35 ± 1,581
000			%	Def. Esp. F. Máx. = $3,555 \pm 0,1740$
			MPa	$Mód.Elast = 2526 \pm 65,40$
Temperatura de Deflexão Térmica - (HDT)	ASTM D 648-07	16/06/11	°C	45,8 ⊥ 0,4 (Método 1,82 MPa - 120°C/h)
Temperatura de Amolecimento Vicat	ASTM D 1525-09	16/06/11	°C	56,5 ± 0,6 (Método 10 N - 120°C/h)

CLÁUSULAS DE RESPONSABILIDADE

- Os resultados obtidos somente se referem ao material submetido ao ensaio.

- A identificação do material analisado é responsabilidade do solicitante.

- Não se admite qualquer responsabilidade referente à exatidão da amostragem, a menos que esta tenha sido efetuada mediante nossa

própria supervisão. Salvo menção expressa, as amostras foram livremente selecionadas pelo solicitante.

- O Laboratório de Ensaios Físicos e Químicos em Polímeros não se torna responsável pela divulgação ou o uso que o solicitante, outra pessoa ou entidade venham a fazer dos resultados do presente relatório.

- O Laboratório de Ensaios Físicos e Químicos em Polímeros garante a confidencialidade dos resultados contidos no presente relatório de ensaios.

- Qualquer parecer expresso neste relatório, não faz parte do escopo de acreditação.

- Este relatório só deve ser reproduzido por inteiro. Reprodução de partes requer aprovação por escrita do laboratório. O Laboratório não se torna responsável em nenhum caso de interpretação ou uso indevido que se possa fazer deste documento.

OBSERVAÇÕES: Anexos - Anexo 10 (Tração), Anexo 11 (HDT) e Anexo 12 (Vicat).

Kleber Augusto Zotovici Coordenador do Laboratório

F-PLA-021 Ver 06 Aprovado em 05/01/2009 Laboratório de Ensaios Físicos e Químicos em Polímeros (PLA) Escola SENAI Mario Arnato - Núcleo de Tecnologia em Plásticos Av. José Odorizzi, 1.555 - São Bernardo do Campo - SP CEP 09861-000 Fone: (011) 4109-9499 r:140 Fax:(011) 4109-9499 r:140 e-mail: plastico@sp.senai.br Página 1 de 1

NÚCLEO DE TECNOLOGIA DO PLÁSTICO LABORATÓRIO DE ENSAIOS FÍSICOS E QUÍMICOS EM POLÍMEROS

Relatório de Ensaio de Tração

Máquina:)	Emic DL3	000	Célula: Trd 27	Extensômetro: -	Data: 16/06/11	Hora: 10:41:01	Trabalho nº 2751
Programa:	MTest ve	rsão 2.02	2			м	étodo de Ensaio: Tração
Ident, Amo	stra: > Seq	uencial: 10	77/11 (1077-004	4/11) Materiai:: Fórn	ula 3 PLA+100g	Biostrengt+400gBi	omax Código::
					L et al.	0 0	
	Parametro	>>	Tensão	Tensão	Def.Especif.	Def.Especif.	Mod.Elástic.
	Evento	>>	Força Max.	Ruptura	Força Max.	Ruptura	
	Unklade	>>	(MPa)	(MPa)	(%)	(%)	(MPa)
	CP 1		59.87	59.11	3.692	3.788	2620
	CP 2		59.96	57.93	3.731	3.865	2487
	CP 3		60.00	58.57	3.634	3.750	2584
	CP 4		58.95	56.50	3.711	3.884	2567
	CP 5		57.47	57.47	3.558	3.558	2435
	CP 6		56.88	56.88	3.404	3.404	2509
	CP 7		56.63	56.63	3.192	3.192	2589
	CP 8		59.33	56.80	3.596	3.769	2461
	CP 9		56.08	56.08	3.481	3.519	2481
	Número CP	s	9	9	9	9	9
	Média		58.35	57.33	3.555	3.637	2526
	Mediana		58.95	56.88	3.596	3.750	2509
1	Desv.Padrā	D	1.581	1.021	.1740	.2342	65.40
	Coef.Var.(%)	2.710	1.780	4.894	6.441	2.589
1	Minimo		56.08	56.08	3,192	3.192	2435
]	Máximo		60.00	59.11	3.731	3.884	2620

TESTING LABORATORY HDT TEST TEST NAME HEAT TRANSFER FLUID	PLA HDT SILICONE /h] 120.0 [C] 23.0 [C] 200.0 [C] 23.0			
	STATION 1	STATION	2 STATION	3
STANDARD MATERIAL CODE ORDER NO SPECIMEN PREPARATION SPECIMEN ANNEALING	ASTMD648 FORM.3	ASTMD648 FORM.3	ASTMD648 FORM.3	l
SPECIMEN CONDITIONING TEMPERATURE[C] HUMIDITY[%] LENGTH	23 50	23 50	23 50	
SPECIMEN DIMENSIONDEPTH[mm]WIDTH[mm]SPAN[mm]STRESS[kPa]APPLIED LOAD[g]TEST END[mm]	13.270 3.250 100.00 1820 708 0.25	13.270 3.250 100.00 1820 708 0.25	$13.270 \\ 3.250 \\ 100.00 \\ 1820 \\ 708 \\ 0.25$	
FINAL DEFLECTION [mm] DISTORSION TEMPERATURE [C]	0.25 45.4	0.25 45.8	0.25 46.1	
COMMENT STATION 1 COMMENT STATION 2				

Thu 16/06/2011 13:58 OPERATOR SOLYMAR

STATION 3

COMMENT

TESTING LABORATORY	PLA
VICAT TEST	
TEST NAME	VICAT
HEAT TRANSFER FLUID	SILICONE
TEMPERATURE RATE[C/h]	120.0
START TEMPERATURE[C]	24.0
MAX. TEMPERATURE[C]	200.0
COOLING TEMPERATURE [C]	23.0
COMMENT 1077-004/11	

	STATION	1	STATION	2	STATION	3
STANDARD MATERIAL CODE ORDER NO SPECIMEN PREPARATION SPECIMEN ANNEALING	ASTM FORM.3		ASTM FORM.3		ASTM FORM.3	
SPECIMEN CONDITIONING TEMPERATURE[C] HUMIDITY[%] LENGTH	23 50		23 50		23 50	
APPLIED LOAD [N] TEST END [mm]	10.00 1.00		10.00 1.00		10.00 1.00	
FINAL DEFLECTION [mm] SOFTENING TEMPERATURE [C]	1.00 55.8		1.00 56.9		1.00 56.8	

COMMENT	STATION	1
COMMENT	STATION	2
COMMENT	STATION	3

\$Thu	16/06/2011	08:47	OPERATOR	SOLYMAR

PURYOIS

RELATÓRIO DE ENSAIO

ENALE

NOME DA AMOSTRA Fórmula 4 - PLA + 300g Aditivo Biostrenght + 400 g Aditivo BIOMA					
SEQUENCIAL	1077/11		REGISTRO DE AMOSTRA	1077-005/11	
CLIENTE	Johnson & J	l. e Com. Prod. para Saúde L	e Com. Prod. para Saúde Ltda.		
ENDERECO	Rua Manoel	Bosco Ribeiro, 1020) - Jd. das Industrias - São Jo	osé dos Campos - SP	
CONTATO	Renato B. P	ereira	CARGO R&D		

Grânulo FORMA DA AMOSTRA FABRICAÇÃO CORPO DE PROVA NTP DATA DE EMISSÃO DO RELATÓRIO 21/06/11 **CONDIÇÃO DE RECEBIMENTO** Conforme 16/06/11 DATA DE RECEBIMENTO

Ensaios Contratados	Norma	Data realização	Unidade	Resultado
Resistência à Tração	ASTM D 638-10	20/06/11	MPa % MPa	Tensão Força Máx.= 55,31 ± 0,7212 Def. Esp. F. Máx.= 3,487 ± 0,08382 Mód.Elast= 2445 ± 63,19
Temperatura de Deflexão Térmica - (HDT)	ASTM D 648-07	17/06/11	°C	44,4 ± 0,5 (Método 1,82 MPa - 120°C/h)
Temperatura de Amolecimento Vicat	ASTM D 1525-09	20/06/11	°C	55,1 ± 0,6 (Método 10 N- 50°C/h)

CLÁUSULAS DE RESPONSABILIDADE

- Os resultados obtidos somente se referem ao material submetido ao ensaio.

A identificação do material analisado é responsabilidade do solicitante.

- Não se admite qualquer responsabilidade referente à exatidão da amostragem, a menos que esta tenha sido efetuada mediante nossa própria supervisão. Salvo menção expressa, as amostras foram livremente selecionadas pelo solicitante.

- O Laboratório de Ensalos Físicos e Químicos em Polímeros não se torna responsável pela divulgação cu o uso que o solicitante, outra pessoa ou entidade venham a fazer dos resultados do presente relatório.

- O Laboratório de Ensaios Físicos e Químicos em Polímeros garante a confidencialidade dos resultados contidos no presente relatório de ensaios.

- Qualquer parecer expresso neste relatório, não faz parte do escopo de acreditação.

 Este relatório só deve ser reproduzido por inteiro. Reprodução de partes requer aprovação por escrita do laboratório. O Laboratório não se torna responsável em nenhum caso de interpretação ou uso indevido que se possa fazer deste documento.

OBSERVAÇÕES: Anexos - Anexo 13 (Tração), Anexo 14 (HDT) e Anexo 15 (Vicat).

Kleber Augusto Zotovici Coordenador do Laboratório

F-PLA-021 Ver 06 Aprovado em 05/01/2009

Laboratório de Ensaios Físicos e Químicos em Polímeros (PLA) Escola SENAI Mario Amato - Núcleo de Tecnologia em Plásticos Av. José Odorizzi, 1.555 - São Bernardo do Campo - SP CEP 09861-000 Fone: (011) 4109-9499 r:140 Fax:(011) 4109-9499 r:140 e-mail: plastico@sp.senai.br Página 1 de 1

NÚCLEO DE TECNOLOGIA DO PLÁSTICO LABORATÓRIO DE ENSAIOS FÍSICOS E QUÍMICOS EM POLÍMEROS

Relatório de Ensaio de Tração

Máguina: Emic DL3000	Célula: Trd 27	Extensômetro: -	Data: 20/06/11	Hora: 11:33:01	Trabalho nº 2752			
Programa: MTest versão 2.	Programa: MTest versão 2.02 Método de Ensaio: Tração							
Ident. Amostra: > Sequencial: 1	1077/11 (1077-00	Material:: Fórmula 4	- PLA+300g Adit.	Biostrenght+400g	Adit.BioCódigo::			
	25	_		D. C. Canadi	Mad Eléaka			
Parâmetro >>	Tensão	Tensão	Def.Especif.	Der.Especif.	MOO.EI8SUC.			
Evento >>	Força Max.	Ruptura	Força Max.	Ruptula				
Unidade >>	(MPa)	(MPa)	(%)	(%)	(IVIPa)			
CP1	54.14	53.88	3.468	3.544	2391			
CP 2	55.85	50.09	3.372	3.774	2551			
CP 3	56.36	46.30	3.583	4,215	2486			
CR4	54.47	45.83	3.429	4.311	2434			
CP5	55.27	50.44	3.525	3.851	2366			
CP6	55.23	54.64	3.583	3.659	2385			
CP7	55.65	47.11	3.544	4.177	2453			
CP 8	55.52	50.98	3.391	3.678	2490			
Número CPo	8	8	8	8	8			
Numero CFS	55 31	40 01	3.487	3.901	2445			
Madiana	55.40	50.27	3.496	3.813	2444			
Deeu Padrão	7212	3,319	.08382	.2918	63.19			
Coof Var (%)	1 304	6 650	2.404	7,480	2.585			
GOELVOL.(10)	54 14	45 83	3 372	3.544	2366			
MININO	54.14	45.05 54.74	2 502	1 311	2551			
Máximo	36.30	34.04	3.393	4.311	La J.J.L			
m ~ (10).)								

Observação: Velocidade de ensaio 50mm/min.

¢

TESTING LABORATORY	PLA		
HDT TEST TEST NAME	HDT SILICONE [C/h] 120.0 .[C] 23.0 .[C] 200.0 .[C] 23.0		
	STATION 1	STATION 2	STATION 3
STANDARD MATERIAL CODE ORDER NO SPECIMEN PREPARATION SPECIMEN ANNEALING	ASTMD648 FORM.4	ASTMD648 FORM.4	ASTMD648 FORM.4
SPECIMEN CONDITIONING TEMPERATURE[C] HUMIDITY[%] LENGTH	23 50	23 50	23 50
SPECIMEN DIMENSIONDEPTH[mm]WIDTH[mm]SPAN[mm]STRESS[kPa]APPLIEDLOADTESTEND[mm]	13.280 3.250 100.00 1820 709 0.25	13.280 3.250 100.00 1820 709 0.25	$13.280 \\ 3.250 \\ 100.00 \\ 1820 \\ 709 \\ 0.25$
FINAL DEFLECTION [mm] DISTORSION TEMPERATURE [C	0.25] 44.3	0.25 44.9	0.25 43.9
COMMENTSTATION1COMMENTSTATION2COMMENTSTATION3			
\$Fri 17/06/2011 13:13 OF	PERATOR SOLYMAR		

117

TESTING LABORATORY	PLA
VICAT TEST	
TEST NAME	VICAT
HEAT TRANSFER FLUID	SILICONE
TEMPERATURE RATE[C/h]	50.0
START TEMPERATURE[C]	23.0
MAX. TEMPERATURE[C]	200.0
COOLING TEMPERATURE [C]	23.0
COMMENT 1077-005/11	

	STATION	1	STATION	2	STATION	3
STANDARD MATERIAL CODE ORDER NO SPECIMEN PREPARATION SPECIMEN ANNEALING	ASTM FORM.4		ASTM FORM.4		ASTM FORM.4	
SPECIMEN CONDITIONING TEMPERATURE[C] HUMIDITY[%] LENGTH	23 50		23 50		23 50	
APPLIED LOAD[N] TEST END [mm]	10.00 1.00		10.00 1.00		10.00 1.00	
FINAL DEFLECTION [mm] SOFTENING TEMPERATURE [C]	1.00 54.5		1.00 55.2		1.00 55.6	

COMMENT	STATION	1
COMMENT	STATION	2
COMMENT	STATION	3

Mon 20/06/2011 09:52 OPERATOR SOLYMAR

PLA2010

SENAI

RELATÓRIO DE ENSAIO

NOME DA AMOSTRA	Fórmula 5 - PLA + 200 g Aditivo Biostrenght + 200 g Aditivo BIOMAX				
SEQUENCIAL	077/11 REGISTRO DE AMOSTRA 1077-006/11				
CLIENTE	Johnson & Johnson do Brasil Ind. e Com. Prod. para Saúde Ltda.				
ENDEREÇO	Rua Manoel Bosco Ribeiro, 1020 - Jd. das Industrias - São José dos Campos - SP				
CONTATO	Renato B. Pereira	CARGO R&D			

FORMA DA AMOSTRAGrânuloFABRICAÇÃO CORPO DE PROVANTPDATA DE EMISSÃO DO RELATÓRIO21/06/11

CONDIÇÃO DE RECEBIMENTO Conforme DATA DE RECEBIMENTO 16/06/11

Ensaios Contratados	Norma	Data realização	Unidade	Resultado
Resistência à Tração	ASTM D 638-10	20/06/11	MPa	Tensão Força Máx.= 55,33 ± 0,5871
000			%	Def. Esp. F. Máx.= $3,406 \pm 0,03685$
	-		MPa	Mód.Elast= 2464 ±32,30
Resistência à Tração	ASTM D 638-10	20/06/11	MPa	Tensão Força Máx.= 55,37 ± 0,2962
7 03a			%	Def. Esp. F. Máx. = $3,433 \pm 0,06553$
			MPa	Mód.Elast= $2425 \pm 30,11$
Resistência à Tração	ASTM D 638-10	20/06/11	MPa	Tensão Força Máx.= $55,25 \pm 0,8638$
			%	Def. Esp. F. Máx. = $3,468 \pm 0,1044$
			MPa	Mód.Elast = $2399 \pm 72,27$
Temperatura de Deflexão Térmica -	ASTM D 648-07	17/06/11	°C	$44,9 \pm 0,6$
(HDT)		5.04 D 12.08		(Método 1,82 MPa - 120°C/h)
AN A REPORT OF A DESCRIPTION OF A DESCRIPT				

CLÁUSULAS DE RESPONSABILIDADE

- Os resultados obtidos somente se referem ao material submetido ao ensaio.

- A identificação do material analisado é responsabilidade do solicitante.

- Não se admite qualquer responsabilidade referente à exatidão da amostragem, a menos que esta tenha sido efetuada mediante nossa

própria supervisão. Salvo menção expressa, as amostras foram livremente selecionadas pelo solicitante.

 O Laboratório de Ensaios Físicos e Químicos em Polímeros não se torna responsável pela divulgação ou o uso que o solicitante, outra pessoa ou entidade venham a fazer dos resultados do presente relatório.

- O Laboratório de Ensaios Físicos e Químicos em Polímeros garante a confidencialidade dos resultados contidos no presente relatório de ensaios.

- Qualquer parecer expresso neste relatório, não faz parte do escopo de acreditação.

- Este relatório só deve ser reproduzido por inteiro. Reprodução de partes requer aprovação por escrita do laboratório. O Laboratório não se torna responsável em nenhum caso de interpretação ou uso indevido que se possa fazer deste documento.

OBSERVAÇÕES: Anexos - Anexo 16 (Tração), Anexo 17 (Tração), Anexo 18 (Tração), Anexo 19 (HDT), Anexo 20 (HDT), Anexo 21 (HDT), Anexo 22 (Vicat), Anexo 23 (Vicat) e Anexo 24 (Vicat).

Os ensaios foram realizados 03 (três) vezes conforme solicitação do cliente.

Kleber Augusto Zotovici Coordenador do Laboratório

F-PLA-021 Ver 06 Aprovado em 05/01/2009

Laboratório de Ensaios Físicos e Químicos em Polímeros (PLA) Escola SENAI Mario Amato - Núcleo de Tecnologia em Plásticos Av. José Odorizzi, 1.555 - São Bernardo do Campo - SP CEP 09861-000 Fone: (011) 4109-9499 r.140 Fax:(011) 4109-9499 r.140 e-mail: plastico@sp.senai.br Página 1 de 3

RELATÓRIO DE ENSAIO

NOME DA AMOSTRA	Fórmula 5 - PLA + 200 g Aditivo Biostrenght + 200 g Aditivo BIOMAX				
SEQUENCIAL	1077/11 REGISTRO DE AMOSTRA 1077-006/11				
CLIENTE	Johnson & Johnson do Brasil Ind. e Com. Prod. para Saúde Ltda.				
ENDEREÇO	Rua Manoel Bosco Ribeiro, 1020 - Jd. das Industrias - São José dos Campos - SP				
CONTATO	Renato B. Pereira	CARGO R&D			

FORMA DA AMOSTRA Grânulo FABRICAÇÃO CORPO DE PROVA NTP DATA DE EMISSÃO DO RELATÓRIO 21/06/11 CONDIÇÃO DE RECEBIMENTO Conforme DATA DE RECEBIMENTO 16/06/11

Ensaios Contratados	Norma	Data realização	Unidade	Resultado
Temperatura de Deflexão Térmica - (HDT)	ASTM D 648-07	17/06/11	°C	45,1 ± 0,5 (Método 1,82 MPa - 120°C/h)
Temperatura de Deflexão Térmica - (HDT)	ASTM D 648-07	17/06/11	°C	45,1 ± 0,5 (Método 1,82 MPa - 120°C/h)
Temperatura de Amolecimento Vicat	ASTM D 1525-09	20/06/11	°C	55,0 ± 0,5 (Método 10 N- 50°C/h)
Temperatura de Amolecimento Vicat	ASTM D 1525-09	20/06/11	°C	55,2 ± 0,5 (Método 10 N - 50°C/h)

CLÁUSULAS DE RESPONSABILIDADE

- Os resultados obtidos somente se referem ao material submetido ao ensaio.

- A identificação do material analisado é responsabilidade do solicitante.

- Não se admite qualquer responsabilidade referente à exatidão da amostragem, a menos que esta tenha sido efetuada mediante nossa

 - O Laboratório de Ensaios Físicos e Químicos em Polímeros não se torna responsável pela divulgação ou o uso que o solicitante, outra pessoa ou entidade venham a fazer dos resultados do presente relatório.

- O Laboratório de Ensaios Físicos e Químicos em Polímeros garante a confidencialidade dos resultados contidos no presente relatório de ensaios.

Qualquer parecer expresso neste relatório, não faz parte do escopo de acreditação.

Este relatório só deve ser reproduzido por interio. Reprodução de partes requer aprovação por escrita do laboratório. O Laboratório não se torna responsável em nenhum caso de interpretação ou uso indevido que se possa fazer deste documento.

Anexos - Anexo 16 (Tração), Anexo 17 (Tração), Anexo 18 (Tração), Anexo 19 (HDT), Anexo 20 (HDT), **OBSERVAÇÕES:** Anexo 21 (HDT), Anexo 22 (Vicat), Anexo 23 (Vicat) e Anexo 24 (Vicat).

Os ensaios foram realizados 03 (três) vezes conforme solicitação do cliente.

Kleber Augusto Zotovici Coordenador do Laboratório

F-PLA-021 Ver 06 Aprovado em 05/01/2009

Laboratório de Ensaios Físicos e Químicos em Polímeros (PLA) Escola SENAI Mario Amato - Núcleo de Tecnología em Plásticos Av. José Odorizzi, 1.555 - São Bernardo do Campo - SP CEP 09861-000 Fone: (011) 4109-9499 r:140 Fax:(011) 4109-9499 r:140 e-mail: plastico@sp.senai.br Página 2 de 3

SINAVE

RELATÓRIO DE ENSAIO

NOME DA AMOSTRA	Fórmula 5 - PLA + 200 g Aditivo Biostrenght + 200 g Aditivo BIOMAX				
SEQUENCIAL	1077/11	REGISTRO DE AMOSTRA	1077-006/11		
CLIENTE	Johnson & Johnson do Brasil Ind. e Com. Prod. para Saúde Ltda.				
ENDEREÇO	Rua Manoel Bosco Ribeiro, 1020 - Jd. das Industrias - São José dos Campos - SP				
CONTATO	Renato B. Pereira	CARGO R&D			
FORMA DA AMOSTRA	Grânulo	CONDICÃO DE RE	CEBIMENTO Conforme		

FORMA DA AMOSTRA	Grânulo	CONDIÇÃO DE RECEBIMENTO	Conform
FABRICAÇÃO CORPO DE PROVA	NTP	DATA DE RECEBIMENTO	16/06/11
DATA DE EMISSÃO DO RELATÓRIO	21/06/11		

Ensaios Contratados	Norma	Data realização	Unidade	Resultado
Temperatura de Amolecimento Vicat	ASTM D 1525-09	20/06/11	°C	55,1 ± 0,6 (Método 10 N - 50°C/h)

CLÁUSULAS DE RESPONSABILIDADE

- Os resultados obtidos somente se referem ao material submetido ao ensaio.

- A identificação do material analisado é responsabilidade do solicitante.

Não se admite qualquer responsabilidade referente à exatidão da amostragem, a menos que esta tenha sido efetuada mediante nossa

própria supervisão. Salvo menção expressa, as amostras foram livremente selecionadas pelo solicitante.

- O Laboratório de Ensaios Físicos e Químicos em Polímeros não se torna responsável pela divulgação ou o uso que o solicitante, outra pessoa ou entidade venham a fazer dos resultados do presente relatório.

- O Laboratório de Ensaios Físicos e Químicos em Polímeros garante a confidencialidade dos resultados contidos no presente relatório de ensaios.

- Qualquer parecer expresso neste relatório, não faz parte do escopo de acreditação.
 - Este relatório só deve ser reproduzido por inteiro. Reprodução de partes requer aprovação por escrita do laboratório. O Laboratório não se torna responsável em nenhum caso de interpretação ou uso indevido que se possa fazer deste documento.

Anexos - Anexo 16 (Tração), Anexo 17 (Tração), Anexo 18 (Tração), Anexo 19 (HDT), Anexo 20 (HDT), OBSERVAÇÕES: Anexo 21 (HDT), Anexo 22 (Vicat), Anexo 23 (Vicat) e Anexo 24 (Vicat).

Os ensaios foram realizados 03 (três) vezes conforme solicitação do cliente.

Kleber Augusto Zotovici Coordenador do Laboratório

F-PLA-021 Ver 06 Aprovado em 05/01/2009

Laboratório de Ensaios Físicos e Ouímicos em Polímeros (PLA) Escola SENAl Mario Amato - Núcleo de Tecnologia em Plásticos Av. José Odorizzi, 1.555 - São Bernardo do Campo - SP CEP 09861-000 Fone: (011) 4109-9499 r:140 Fax:(011) 4109-9499 r:140 e-mail: plastico@sp.senai.br

Página 3 de 3

NÚCLEO DE TECNOLOGIA DO PLÁSTICO LABORATÓRIO DE ENSAIOS FÍSICOS E QUÍMICOS EM POLÍMEROS

Relatório de Ensaio de Tração

Máquina: Emic DL3	000 Célula:	Trd 27 Exten	sômetro: - Da	ta: 20/06/11 Hora	r: 14:13:42 Tra	ibalho n° 2753
Programa: MTest ve	ersão 2.02				Método d	e Ensaio: Tração
Ident. Amostra: > Seq	uencial: 1077/11	(1077-00(Material::	Fórmula 5- PL	A+200g Adit.Biostro	enght+200g Adit.I	BioCódigo::
				8	50 67	
Parametro	>> _	Tensão	Tensão E	lef.Especif. Def.	Especif. Mod	Elástic.
Evento	>> For	rça Max.	Ruptura	Força Max.	Ruptura	
Unidade	>>	(MPa)	(MPa)	(%)	(%)	(MPa)
CP 1		54.76	48.68	3.468	3.813	2488
CP 2		55.86	47.58	3.410	4.291	2467
CP 3		54.64	47.39	3.391	4.138	2420
CP 4		55.82	50.02	3.372	3.774	2501
CP 5		55.57	47.92	3.391	3.755	2446
Número CF	's	5	5	5	5	5
Média		55.33	48.32	3.406	3.954	2464
Mediana		55.57	47.92	3.391	3.813	2467
Desv.Padra	0	.5871	1.071	.03685	.2448	32.30
Coef.Var.(9	6)	1.061	2.216	1.082	6.191	1.311
Minimo		54.64	47.39	3.372	3.755	2420
Máximo		55.86	50.02	3.468	4.291	2501

Tensão (MPa)

Observação: Velocidade de ensaio 50mm/min.

Relatório de Ensaio de Tração

Máquina: Emic DL3	1000 Célula	: Trd 27 Exte	nsômetro: -	Data: 20/06/11	Hora: 14:45:21	Trabalho nº 2754
Programa: MTest v	ersão 2.02				Mét	odo de Ensaio: Tração
Ident. Amostra: > Seq	uencial: 1077/11	l (1077-00Material::	Fórmula 5- PI	A+200g Adit.Blo	strenght+200g Ad	it.BiCooligo:: 2º Teste
Parâmetro	>>	Tensão	Tensão	Def.Especif.	Def.Especif.	Mod.Elástic.
Unidade	>> FC >>	(MPa)	(MPa)	Força Max. (%)	киршга (%)	(MPa)
CP 1		55.27	48.00	3,429	3.985	2458
CP 2		54.97	53.29	3.372	3.525	2392
CP 3		55.64	51.87	3.525	3.774	2429
CP 4		55.69	45.76	3.468	4.215	2448
CP 5		55.27	46.15	3.372	3.966	2395
Número Cl	s	5	5	5	5	5
Média		55.37	49.01	3,433	3,893	2425
Mediana		55.27	48.00	3.429	3.966	2429
Desv.Padri	io	.2962	3.402	.06553	.2582	30.11
Coef.Var.(*	6)	.5349	6.941	1.909	6.634	1.242
Minimo	-	54.97	45.76	3.372	3.525	2392
Máximo		55.69	53.29	3.525	4.215	2458

Tensão (MPa)

Observação: Velocidade de ensaio 50mm/min.□□

Relatório de Ensaio de Tração

Máquina: Emic DL3	000 Célula:	Trd 27 Ex	tensômetro: -	Data: 20/06/11	Hora: 15:28:24	Trabalho nº 2755
Programa: MTest ve	rsão 2.02				Mét	odo de Ensaio: Tração
Ident. Amostra: > Sequ	iencial: 1077/11	(1077-0(Materia	l:: Fórmula 5- PI	A+200g Adit.Bio	strenght+200g Ad	it.BiCódigo:: 3º Teste
2010 54 3 St						10000 W. #20000 Mat
Parâmetro	>>	Tensão	Tensão	Def.Especif.	Def.Especif.	Mod.Elástic.
Evento	>> For	ça Max.	Ruptura	Força Max.	Ruptura	
Unidade	>>	(MPa)	(MPa)	(%)	(%)	(MPa)
CP 1		55.27	45.17	3.410	4.579	2458
CP 2		55.23	48.61	3.353	3.832	2408
CP 3		55.14	48.10	3.391	3.813	2353
CP 4		54.93	45.09	3.391	4.885	2348
CP 5		54.76	47.77	3.602	4.042	2340
CP 6		54.35	53.80	3.544	3.659	2357
CP 7		57.07	48.56	3.583	4.253	2532
Número CP	s	7	7	7	7	7
Média		55.25	48.16	3.468	4.152	2399
Mediana		55.14	48.10	3.410	4.042	2357
Desv.Padrā	0	.8638	2.908	.1044	.4478	72.27
Coef.Var.(%	5)	1.563	6.038	3.009	10.78	3.012
Minimo		54.35	45.09	3.353	3.659	2340
Máximo		57.07	53.80	3.602	4.885	2532

Tensão (MPa)

Anexo 19	Nº Sequencial		Aprovado	·]	Data a o u
1 110110 70	n ooquonoidi	10++/11	riprortation of		al. 06.11

TESTING LABORATORYHDT TESTHDT TESTTEST NAMEHEAT TRANSFER FLUIDTEMPERATURE RATESTART TEMPERATUREMAX. TEMPERATURECOOLING TEMPERATURECOMMENT1077-006/11	PLA HDT SILICONE C/h] 120.0 .[C] 23.0 .[C] 200.0 [C] 23.0			
	STATION 1	STATION 2	STATION	3
STANDARD MATERIAL CODE ORDER NO SPECIMEN PREPARATION SPECIMEN ANNEALING	ASTMD648 FORM.5	ASTMD648 FORM.5	ASTMD648 FORM.5	
SPECIMEN CONDITIONING TEMPERATURE[C] HUMIDITY[%] LENGTH	23 50	23 50	23 50	
SPECIMEN DIMENSIONDEPTH[mm]WIDTH[mm]SPAN[mm]STRESS[kPa]APPLIED LOAD[g]TEST END[mm]	13.280 3.250 100.00 1820 709 0.25	13.280 3.250 100.00 1820 709 0.25	13.280 3.250 100.00 1820 709 0.25	
FINAL DEFLECTION [mm] DISTORSION TEMPERATURE [C]	0.25 44.3	0.25 44.9	0.25 45.4	
COMMENTSTATION1COMMENTSTATION2COMMENTSTATION3		x =44,9		
\$Fri 17/06/2011 13:54 OPE	RATOR SOLYMAR			

TESTING LABORATORYHDT TESTTEST NAMEHEAT TRANSFER FLUIDTEMPERATURE RATESTART TEMPERATUREMAX. TEMPERATURECOOLING TEMPERATURECOMMENT1077-006/11	PLA HDT [C/h] 120.0 [C] 23.0 [C] 200.0 . [C] 23.0	3		
	STATION	1 STATION 2	STATION 3	\$
STANDARD MATERIAL CODE ORDER NO SPECIMEN PREPARATION SPECIMEN ANNEALING	ASTMD648 FORM.5	ASTMD648 FORM.5	ASTMD648 FORM.5	
SPECIMEN CONDITIONING TEMPERATURE[C] HUMIDITY[%] LENGTH	23 50	23 50	23 50	
SPECIMEN DIMENSIONDEPTH[mm]WIDTH[mm]SPAN[mm]STRESS[kPa]APPLIEDLOADTESTEND[mm]	$13.280 \\ 3.250 \\ 100.00 \\ 1820 \\ 709 \\ 0.25$	$ \begin{array}{r} 13.280 \\ 3.250 \\ 100.00 \\ 1820 \\ 709 \\ 0.25 \end{array} $	$ \begin{array}{r} 13.280 \\ 3.250 \\ 100.00 \\ 1820 \\ 709 \\ 0.25 \end{array} $	
FINAL DEFLECTION [mm] DISTORSION TEMPERATURE [0	0.25 C] 44.6	0.25 45.3	0.25 45.5	
COMMENTSTATION1COMMENTSTATION2COMMENTSTATION3		ZE USII		
¢Fri 17/06/2011 14:53 O	PERATOR SOLY	MAR		

TESTING LABORATORY HDT TEST TEST NAME HEAT TRANSFER FLUID TEMPERATURE RATE START TEMPERATURE MAX. TEMPERATURE	PLA HDT [C/h] 120.0 [C/h] 23.0 [C] 200.0	E		
COOLING TEMPERATURE COMMENT 1077-006/11	[C] 23.0			
	STATION	1 STATION	2 STATION	3
STANDARD MATERIAL CODE ORDER NO. SPECIMEN PREPARATION SPECIMEN ANNEALING	ASTMD648 FORM.5 	ASTMD648 FORM.5	ASTMD64 FORM.5	3
SPECIMEN CONDITIONING TEMPERATURE[C] HUMIDITY[%] LENGTH	23 50	23 50	23 50	
SPECIMEN DIMENSIONDEPTH[mm]WIDTH[mm]SPAN[mm]STRESS[kPa]APPLIED LOAD[g]TEST END[mm]	$13.280 \\ 3.250 \\ 100.00 \\ 1820 \\ 709 \\ 0.25$	13.280 3.250 100.00 1820 709 0.25	$13.280 \\ 3.250 \\ 100.00 \\ 1820 \\ 709 \\ 0.25$	
FINAL DEFLECTION [mm] DISTORSION TEMPERATURE [4	0.25 44.5	0.25 45.2	0.25 45.5	
COMMENTSTATION1COMMENTSTATION2COMMENTSTATION3		Z = 47,1		
¢Fri 17/06/2011 16:04 0	PERATOR SOLY	MAR		

TESTING LABORATORY	PLA				
VICAT TEST TEST NAME HEAT TRANSFER FLUID TEMPERATURE RATE START TEMPERATURE MAX. TEMPERATURE COOLING TEMPERATURE COMMENT 1077-006/11	VICAT SILICON /h] 50.0 [C] 23.0 [C] 200.0 [C] 23.0	E			
	STATION	1 STATION	2	STATION	3
STANDARD MATERIAL CODE ORDER NO. SPECIMEN PREPARATION SPECIMEN ANNEALING	ASTM FORM.5	ASTM FORM.	5	ASTM FORM.5	
SPECIMEN CONDITIONING TEMPERATURE[C] HUMIDITY[%] LENGTH	23 50	23 50		23 50	
APPLIED LOAD[N] TEST END [mm]	10.00 1.00	10.00 1.00		10.00 1.00	
FINAL DEFLECTION [mm] SOFTENING TEMPERATURE [C]	1.00 54.5	1.00 55.1		1.00 55.4	
COMMENTSTATION1COMMENTSTATION2COMMENTSTATION3		Ş= <u>S</u>	5,0		

Mon 20/06/2011 11:22 OPERATOR SOLYMAR

\$

Anexo 2.2 Nº Sequencial (0.12/1) Aprovado	-			<u> </u>
	Anexo 22	Nº Sequencial 1077/11	Aprovado	Data 21.06.11

TESTING LABORATORY	PLA					
VICAT TEST TEST NAME HEAT TRANSFER FLUID TEMPERATURE RATE START TEMPERATURE MAX. TEMPERATURE COOLING TEMPERATURE COMMENT 1077-006/11	VICAT SILICON /h] 50.0 [C] 23.0 [C] 200.0 [C] 23.0	NE				
	STATION	1	STATION	2	STATION	3
STANDARD MATERIAL CODE ORDER NO SPECIMEN PREPARATION SPECIMEN ANNEALING	ASTM FORM.5		ASTM FORM.5		ASTM FORM.5	
SPECIMEN CONDITIONING TEMPERATURE[C] HUMIDITY[%] LENGTH	23 50		23 50		23 50	
APPLIED LOAD[N] TEST END [mm]	10.00 1.00		10.00 1.00		10.00 1.00	
FINAL DEFLECTION [mm] SOFTENING TEMPERATURE [C]	1.00		1.00 55.3		1.00 55.7	
COMMENTSTATION1COMMENTSTATION2COMMENTSTATION3			÷ = 55,2			

Mon 20/06/2011 13:53 OPERATOR SOLYMAR

\$

Anexo 23 Nº Sequencial 1077/11 Aprovado	Data 21.06.11

12		

TESTING LABORATORY	PLA
VICAT TEST	
TEST NAME	VICAT
HEAT TRANSFER FLUID	SILICONE
TEMPERATURE RATE[C/h]	50.0
START TEMPERATURE[C]	23.0
MAX. TEMPERATURE[C]	200.0
COOLING TEMPERATURE [C]	23.0
COMMENT 1077-006/11	

	STATION	1	STATION	2	STATION	3
STANDARD MATERIAL CODE ORDER NO SPECIMEN PREPARATION SPECIMEN ANNEALING	ASTM FORM.5		ASTM FORM.5		ASTM FORM.5	
SPECIMEN CONDITIONING TEMPERATURE[C] HUMIDITY[%] LENGTH	23 50		23 50		23 50	
APPLIED LOAD[N] TEST END [mm]	10.00 1.00		10.00 1.00		10.00 1.00	
FINAL DEFLECTION [mm] SOFTENING TEMPERATURE [C]	1.00 54.6		1.00 54.9	an an ann a' fhan ann an	1.00 55.7	
	Control of		× = 1	5,1		

COMMENT	STATION	1
COMMENT	STATION	2
COMMENT	STATION	3

Mon 20/06/2011 16:00 OPERATOR SOLYMAR

RELATÓRIO DE ENSAIO

NOME DA AMOSTRA	PLA + 0% Biomax	(Fórmula 6)					
SEQUENCIAL	1834/11	REGISTRO DE AMOSTRA	1834-001/11				
CLIENTE	Johnson & Johnson	Johnson & Johnson do Brasil Ind. e Com. Prod. para Saúde Ltda.					
ENDEREÇO	Rua Manoel Bosco F	Ribeiro, 1020 - Jd. das Industrias - São Jo	sé dos Campos - SP				
CONTATO	Renato B. Pereira	CARGO R&D					

FORMA DA AMOSTRA Grânulo FABRICAÇÃO CORPO DE PROVA NTP DATA DE EMISSÃO DO RELATÓRIO 30/11/11 CONDIÇÃO DE RECEBIMENTO Conforme DATA DE RECEBIMENTO 23/11/11

Ensaios Contratados	Norma	Data realização	Unidade	Resultado
Resistência à Tração	ASTM D 638-10	28/11/11	MPa	Tensão Força Máx = 59,93 ± 1,782
			%	Def. Esp. F. Máx = $3,974 \pm 0,1660$
			MPa	$M \acute{o} d. Elast = 1673 \pm 84,75$
Temperatura de Amolecimento Vicat	ASTM D 1525-09	28/11/11	°C	60,2 ± 0,9 (Método 10 N - 120°C/h)
Temperatura de Deflexão Térmica - (HDT)	ASTM D 648-07	29/11/11	°C	50,2 ± 0,3 (Método 1,82 MPa - 120°C/h)

CLÁUSULAS DE RESPONSABILIDADE

- Os resultados obtidos somente se referem ao material submetido ao ensaio.

- A identificação do material analisado é responsabilidade do solicitante.

- Não se admite qualquer responsabilidade referente à exatidão da amostragem, a menos que esta tenha sido efetuada mediante nossa própria supervisão. Salvo menção expressa, as amostras foram livremente selecionadas pelo solicitante.

- O Laboratório de Ensaios Físicos e Químicos em Polímeros não se torna responsável pela divulgação ou o uso que o solicitante, outra - O Laboratório de Ensaios Físicos e Químicos em Polímeros garante a confidencialidade dos resultados contidos no presente relatório.

ensaios.

- Qualquer parecer expresso neste relatório, não faz parte do escopo de acreditação.

- Este relatório só deve ser reproduzido por inteiro. Reprodução de partes requer aprovação por escrita do laboratório. O Laboratório não se torna responsável em nenhum caso de interpretação ou uso indevido que se possa fazer deste documento.

OBSERVAÇÕES: Anexo 01 (Tração), Anexo 02 (Vicat), Anexo 03 (HDT).

Kleber Augusto Zotovici Coordenador do Laboratório

F-PLA-021 Ver 06 Aprovado em 05/01/2009

Laboratório de Ensaios Físicos e Químicos em Polímeros (PLA) Escola SENAI Mario Amato - Núcleo de Tecnologia em Plásticos Av. José Odorizzi, 1.555 - São Bernardo do Campo - SP CEP 09861-000 Fone: (011) 4109-9499 r:140 Fax:(011) 4109-9499 r:140 e-mail: plastico@sp.senai.br Página 1 de 1

Relatório de Ensaio de Tração

Máquina:	Emic DL	3000	Célula: Tr	rd 27	Extensôm	etro: -	Data: 28/1	1/11	Hora: 14:33	:19 Tı	abalho n° 2	899
Programa	: MTest v	ersão 2.	0 2							Método	de Ensaio: 7	Cração
Ident. Am	ostra: >>>>	>>>>>>	>> Sequenci	al: 1834/	/11 (1834-0	01/11)	Material:: P	PLA + 0%	6 BIOMAX	Fórmula	6 Códig	o:: ——
							5.2	172		2121	1	
	Parâmetro	>>	Te	nsão	Ter	nsão	Def.Espe	cif.	Def.Especif.	Mo	d.Elastic.	
	Evento	>>	Força	Max.	Rup	(Da)	Força Ma	8X. 0/1	Ruptura		(MDa)	
	Olligade	22	Q	vira)	(n	nra)	1	70)	(%)		(IAIL a)	
	CP 1		6:	2.83	57	.01	3.8	69	4.635		1780	
	CP 2		5	8.76	58	3.67	4.1	56	4.233		1692	
	CP 3		5	8.00	57	.71	4.1	18	4.195		1598	
	CP 4		6	1.94	58	3.76	3.9	07	4.233		1737	
	CP 5		6	0.25	52		3.9	46	5.191		1683	
	CP 6		5	9.66	59).19	4.1	95	4.271		1613	
	CP 7		5	7.82	57	.73	3.7	16	3.792		1749	
	CP 8		6	0.18	58	3.75	3.8	88	4.061		1534	
	Número Ci	Pe		8		8		8	8		8	
	Mádia		5	0.93	51	7.56	3.9	74	4.326		1673	
	Mediana		5	9.92	55	2.20	3.9	26	4.233		1687	
	Deev Padr	ลีก	1	782	2	108	.16	60	.4202		84.75	
	Coof Vor (04)	2	974	3	667	4.1	78	9.712		5.065	
	Minimo	<i>N</i>)	5	7 87	50	66	37	16	3.792		1534	
	Ménime		5	7.02	54	110	4.1	05	5 101		1780	
	OHIDOSIVI		U.	2:00	.	.13	4.1	75	5.171		1700	
Toneño	(MEDa)											
LCHSAU	(DII a)											
100.0		1	1				1 1	1	1		1	
				i i		1	1	t i		т і 6 б	1	
						1		}				
80.00 L.												
00.00								Î			1	
						Ì						
60.00	····			·								
		n A	A /			11		i	i i	i i	i	

TESTING LABORATORYVICAT TESTTEST NAMEHEAT TRANSFER FLUIDTEMPERATURE RATESTART TEMPERATUREMAX. TEMPERATURECOOLING TEMPERATURECOMMENT1834-001/11	PLA VICAT SILICONE /h] 120.0 [C] 24.5 [C] 250.0 [C] 23.0		
	STATION 1	STATION	2 STATION 3
STANDARD MATERIAL CODE ORDER NO SPECIMEN PREPARATION SPECIMEN ANNEALING	ASTM PLA 0./.BIOM	ASTM PLA 0./.BIOM	ASTM PLA 0./.BIOM
SPECIMEN CONDITIONING TEMPERATURE[C] HUMIDITY[%] LENGTH	23 50	23 50	23 50
APPLIED LOAD[N] TEST END [mm]	10.00 1.00	10.00 1.00	10.00 1.00
FINAL DEFLECTION [mm] SOFTENING TEMPERATURE [C]	1.00 59.2	1.00 60.5	1.02 60.9
COMMENTSTATION1COMMENTSTATION2COMMENTSTATION3			

Mon 28/11/2011 08:20 OPERATOR SOLYMAR

		60	State of the state	$\langle \rangle$	1
Anexo 02	Nº Sequencial	1834/11	Aprovado	\cdot	Data 30.11.11

TESTING LABORATORY	PLA		
HDT TEST TEST NAME	אטע		
HEAT TRANSFER FLUTD	STLICONE		
TEMPERATURE RATE	/h] 120.0		
START TEMPERATURE	[C] 25.0		
MAX. TEMPERATURE	[C] 200.0		
COOLING TEMPERATURE	[C] 23.0		
COMMENT 1834-001/11			
	STATION 1	STATION 2	STATION 3
STANDARD	ASTMD648	ASTMD648	ASTMD648
MATERIAL CODE	PLA	PLA	PLA
ORDER NO	0./.BIOM	0./.BIOM	0./.BIOM
SPECIMEN PREPARATION			
SPECIMEN ANNEALING			
SPECIMEN CONDITIONING			
TEMPERATURE[C]	23	23	23
HUMIDITY[%]	50	50	50
LENGTH			
SPECIMEN DIMENSION			
DEPTH [mm]	13.220	13.220	13.220
WIDTH [mm]	3.260	3.260	3.260
SPAN [mm]	100.00	100.00	100.00
	1820	1820	1820
TROT FND [mm]	705	0.25	0.25
	0.25	0.43	L.C.D
FINAL DEFLECTION [mm]	0.25	0.25	0.25 ana 104
DISTORSION TEMPERATURE [C]	50.0	50.4	AT.5 29.11
			×

COMMENT	STATION	1
COMMENT	STATION	2
COMMENT	STATION	3

\$

Tue 29/11/2011 09:09 OPERATOR SOLYMAR

fut 2000

RELATÓRIO DE ENSAIO

SERVAL

NOME DA AMOSTRA	PLA + 2% Biomax	(Fórmula 7)					
SEQUENCIAL	1834/11	REGISTRO DE AMOSTRA	1834-002/11				
CLIENTE	Johnson & Johnson	Johnson & Johnson do Brasil Ind. e Com. Prod. para Saúde Ltda.					
ENDEREÇO	Rua Manoel Bosco	Ribeiro, 1020 - Jd. das Industrias - São Jo	osé dos Campos - SP				
CONTATO	Renato B. Pereira	CARGO R&D					

FORMA DA AMOSTRAGrânuloFABRICAÇÃO CORPO DE PROVANTPDATA DE EMISSÃO DO RELATÓRIO30/11/11

 CONDIÇÃO DE RECEBIMENTO
 Conforme

 DATA DE RECEBIMENTO
 23/11/11

Ensaios Contratados	Norma	Data realização	Unidade	Resultado
Resistência à Tração	ASTM D 638-10	29/11/11	MPa % MPa	Tensão Força Máx = 53,94 ± 1,210 Def. Esp. F. Máx = 4,082 ± 0,2687 Mód.Elast = 1440 ± 153,2
Temperatura de Amolecimento Vicat	ASTM D 1525-09	28/11/11	°C	57,7 ± 1,4 (Método 10 N - 120°C/h)
Temperatura de Deflexão Térmica - (HDT)	ASTM D 648-07	28/11/11	°C	48,7 ± 0,8 (Método 1,82 MPa - 120°C/h)

CLÁUSULAS DE RESPONSABILIDADE

- Os resultados obtidos somente se referem ao material submetido ao ensaio.

- A identificação do material analisado é responsabilidade do solicitante.

- Não se admite qualquer responsabilidade referente à exatidão da amostragem, a menos que esta tenha sido efetuada mediante nossa própria supervisão. Salvo menção expressa, as amostras foram livremente selecionadas pelo solicitante.

- O Laboratório de Ensaios Físicos e Químicos em Polímeros não se torna responsável pela divulgação ou o uso que o solicitante, outra pessoa ou entidade venham a fazer dos resultados do presente relatório.

- O Laboratório de Ensaios Físicos e Químicos em Polímeros garante a confidencialidade dos resultados contidos no presente relatório de ensaios.

- Qualquer parecer expresso neste relatório, não faz parte do escopo de acreditação.

- Este relatório só deve ser reproduzido por inteiro. Reprodução de partes requer aprovação por escrita do laboratório. O Laboratório não se torna responsável em nenhum caso de interpretação ou uso indevido que se possa fazer deste documento.

OBSERVAÇÕES: Anexo 04 (Tração), Anexo 05 (Vicat), Anexo 06 (HDT).

Kleber Augusto Zotovici Coordenador do Laboratório

F-PLA-021 Ver 06 Aprovado em 05/01/2009

Laboratório de Ensaios Físicos e Químicos em Polímeros (PLA) Escola SENAI Mario Amato - Núcleo de Teenologia em Plásticos Av. José Odorizzi, 1.555 - São Bernardo do Campo - SP CEP 09861-000 Fone: (011) 4109-9499 r.140 Fax:(011) 4109-9499 r.140 e-mail: plastico@sp.senai.br Página 1 de 1

Relatório de Ensaio de Tração

Máquina	Emic DL3	000	Célula: Trd 27	Extensômetro: -	Data: 29/11/11	Hora: 09:09:31	Trabalho nº 29	00
Program	a: MTest vo	ersão 2.	02			N	létodo de Ensaio: Tra	ção
Ident. An	nostra: >>>>>	·>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	Sequencial: 1834/1	1 (1834-002/11)	Material:: PLA + 2%	6 BIOMAX - Fói	mula 7 Código:: -	
	Parâmetro	>>	Tensão	Tensão	Def.Especif.	Def.Especif.	Mod.Elástic.	
	Evento	>>	Força Max.	Ruptura	Força Max.	Ruptura		
	Unidade	>>	(MPa)	(MPa)	(%)	(%)	(MPa)	
	CP 1		55.93	55.93	3.658	3.658	1615	
	CP 2		53.97	53.97	4.367	4.367	1279	
	CP 3		54.82	53.97	4.290	4.424	1225	
	CP 4		53.17	53.17	3.677	3.677	1419	
	CP 5		54.09	51.78	4.348	4.520	1659	
	CP 6		52.98	52.98	4.099	4.099	1289	
	CP 7		55.29	47.51	4,252	4.980	1557	
	CP 8		52.38	52.12	3.984	3.946	1452	
	CP 9		52.85	52.77	4.061	4.022	1463	
	Número Cf	Ps	9	9	9	9	9	
	Média		53.94	52.69	4.082	4.188	1440	
	Mediana		53.97	52.98	4.099	4.099	1452	
	Desv.Padri	ão	1.210	2.295	.2687	.4273	153.2	
	Coef.Var.(36)	2.242	4.355	6.584	10.20	10.64	
	Minimo		52.38	47.51	3.658	3.658	1225	
	Máximo		55.93	55.93	4.367	4.980	1659	

TESTING LABORATORYVICAT TESTTEST NAMEHEAT TRANSFER FLUIDTEMPERATURE RATESTART TEMPERATUREMAX. TEMPERATURECOOLING TEMPERATURECOMMENT1834-002/11	PLA VICAT SILICONE 2/h] 120.0 [C] 24.5 [C] 250.0 [C] 23.0		
	STATION 1	STATION 2	STATION 3
STANDARD MATERIAL CODE ORDER NO SPECIMEN PREPARATION SPECIMEN ANNEALING	ASTM PLA 2./.BIOM	ASTM PLA 2./.BIOM	ASTM PLA 2./.BIOM
SPECIMEN CONDITIONING TEMPERATURE[C] HUMIDITY[%] LENGTH	23 50	23 50	23 50
APPLIED LOAD[N] TEST END [mm]	10.00 1.00	10.00 1.00	10.00 1.00
FINAL DEFLECTION [mm] SOFTENING TEMPERATURE [C]	1.00 56.7	1.20 Caniclado 65.8 20	1.00 58.7
COMMENTSTATION1COMMENTSTATION2COMMENTSTATION3		,	
*Mon 28/11/2011 12:32 OPER	ATOR SOLYMAR		

TESTING LABORATORYHDT TESTTEST NAMEHEAT TRANSFER FLUIDTEMPERATURE RATECOLING TEMPERATURECOMMENT1834-002/11	PLA HDT SILICONE /h] 120.0 [C] 25.0 [C] 250.0 [C] 23.0		
	STATION 1	STATION 2	2 STATION 3
STANDARD MATERIAL CODE ORDER NO SPECIMEN PREPARATION SPECIMEN ANNEALING	ASTMD648 PLA 2./.BIOM	ASTMD648 PLA 2./.BIOM	ASTMD648 PLA 2./.BIOM
SPECIMEN CONDITIONING TEMPERATURE[C] HUMIDITY[%] LENGTH	23 50	23 50	23 50
SPECIMEN DIMENSIONDEPTH[mm]WIDTH[mm]SPAN[mm]STRESS[kPa]APPLIED LOAD[g]TEST END[mm]	13.200 3.300 100.00 1820 711 0.25	13.200 3.300 100.00 1820 711 0.25	13.200 3.300 100.00 1820 711 0.25
FINAL DEFLECTION [mm] DISTORSION TEMPERATURE [C]	0.25 48.0	0.25 48.7	0.25 49.5
COMMENT STATION 1	e.		

COMMENT	STATION	2
COMMENT	STATION	3

#Mon 28/11/2011 14:30 OPERATOR SOLYMAR

. .

COOP AUG

SENAL

RELATÓRIO DE ENSAIO

NOME DA AMOSTRA	PLA + 4% Biomax (Fórmula 8)			
SEQUENCIAL	1834/11	REGISTRO DE AMOSTRA	1834-003/11		
CLIENTE	Johnson & Johnson do Brasil Ind. e Com. Prod. para Saúde Ltda.				
ENDEREÇO	Rua Manoel Bosco Ribeiro, 1020 - Jd. das Industrias - São José dos Campos - SP				
CONTATO	Renato B. Pereira	CARGO R&D			

 FORMA DA AMOSTRA
 Grânulo

 FABRICAÇÃO CORPO DE PROVA
 NTP

 DATA DE EMISSÃO DO RELATÓRIO
 30/11/11

CONDIÇÃO DE RECEBIMENTO Conforme DATA DE RECEBIMENTO 23/11/11

Ensaios Contratados	Norma	Data realização	Unidade	Resultado
Resistência à Tração	ASTM D 638-10	17/11/11	MPa	Tensão Força Máx = $53,42 \pm 1,887$
~			%	Def. Esp. F. Máx = $3,864 \pm 0,2853$
			MPa	Mód.Elast = $2004 \pm 173,4$
Temperatura de Amolecimento Vicat	ASTM D 1525-09	17/11/11	°C	56,6 ± 1,2 (Método 10 N - 120°C/h)
Temperatura de Deflexão Térmica - (HDT)	ASTM D 648-07	17/11/11	°C	49,0 ± 0,4 (Método 1,82 MPa - 120°C/h)

CLÁUSULAS DE RESPONSABILIDADE

- Os resultados obtidos somente se referem ao material submetido ao ensaio.

- A identificação do material analisado é responsabilidade do solicitante.

- Não se admite qualquer responsabilidade referente à exatidão da amostragem, a menos que esta tenha sido efetuada mediante nossa própria supervisão. Salvo menção expressa, as amostras foram livremente selecionadas pelo solicitante.

- O Laboratório de Ensaios Físicos e Químicos em Polímeros não se torna responsável pela divulgação ou o uso que o solicitante, outra pessoa ou entidade venham a fazer dos resultados do presente relatório.

- O Laboratório de Ensaios Físicos e Químicos em Polímeros garante a confidencialidade dos resultados contidos no presente relatório de ensaios.

- Qualquer parecer expresso neste relatório, não faz parte do escopo de acreditação.

 Este relatório só deve ser reproduzido por inteiro. Reprodução de partes requer aprovação por escrita do laboratório. O Laboratório não se torna responsável em nenhum caso de interpretação ou uso indevido que se possa fazer deste documento.

OBSERVAÇÕES: Anexo 07 (Tração), Anexo 08 (Vicat), Anexo 09 (HDT).

Kleber Augusto Zotovici Coordenador do Laboratório

F-PLA-021 Ver 06 Aprovado em 05/01/2009

Laboratório de Ensaios Físicos e Químicos em Polímeros (PLA) Escola SENAI Mario Anato - Núcleo de Tecnologia em Plásticos Av. José Odorizzi, 1.555 - São Bernardo do Campo - SP CEP 09861-000 Fone: (011) 4109-9499 r:140 Fax:(011) 4109-9499 r:140 e-mail: plastico@sp.senai.br Página 1 de 1

Relatório de Ensaio de Tração

Máquina: Emic DL3000	Célula: Trd 27	Extensômetro: -	Data: 17/11/11	Hora: 10:10:06	Trabalho nº 2887
Programa: MTest versão 2	.02			М	étodo de Ensalo: Tração
Ident. Amostra: >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	>>> Sequencial: 1834/	/11 (1834-003/11)	Material:: PLA +	4% BIOMAX Fór	mula 8 Código::
Parâmetro >> Evento >> Unidade >>	Tensão Força Max. (MPa)	Tensão Ruptura (MPa)	Def.Especif. Força Max. (%)	Def.Especif. Ruptura (%)	Mod.Elástic. (MPa)
CP 1 CP 2 CP 3 CP 4 CP 5 CP 6 CP 7	54.79 52.39 55.73 54.61 53.59 50.08 52.73	54.79 52.39 54.75 54.61 53.59 50.08 52.73	3.697 3.563 4.156 3.658 3.639 4.099 4.233	3.697 3.563 4.271 3.658 3.639 4.099 4.271	2112 2192 1695 2072 2123 1959 1874
Número CPs Média Mediana Desv.Padrão Coef.Var.(%) Minimo Máximo	7 53.42 53.59 1.887 3.532 50.08 55.73	7 53.28 53.59 1.715 3.219 50.08 54.79	7 3.864 3.697 .2853 7.385 3.563 4.233	7 3.885 3.697 .3150 8.107 3.563 4.271	7 2004 2072 173.4 8.653 1695 2192
Tensão (MPa)					
80.00					
60.00					
40.00	/////	A			
20.00					
.0000					

8.000

CP1 CP2 CP3 CP4 CP5 CP6 CP7 CP8 CP9 CP10

12.00

4.000

.0000

16.00

20.00

Def.Especif. (%)

TESTING LABORATORYVICAT TESTTEST NAMEHEAT TRANSFERFLUIDTEMPERATURE RATESTART TEMPERATUREMAX. TEMPERATURECOOLING TEMPERATURECOMMENT1834-003/11	PLA VICAT SILICONE /h] 120.0 [C] 23.5 [C] 250.0 [C] 23.0		
	STATION 1	STATION 2	STATION 3
STANDARD MATERIAL CODE ORDER NO SPECIMEN PREPARATION SPECIMEN ANNEALING	ASTMD152 PLA FORM.8	ASTMD152 PLA FORM.8	ASTMD152 PLA FORM.8
SPECIMEN CONDITIONING TEMPERATURE[C] HUMIDITY[%] LENGTH	23 50	23 50	23 50
APPLIED LOAD [N] TEST END [mm]	10.00 1.00	10.00 1.00	10.00 1.00
FINAL DEFLECTION [mm] SOFTENING TEMPERATURE [C]	1.00 55.4	1.00 56.6	1.00 57.7
COMMENTSTATION1COMMENTSTATION2COMMENTSTATION3			

Thu 17/11/2011 10:45 OPERATOR SOLYMAR

TESTING LABORATORYHDT TESTHDT TESTTEST NAMEHEAT TRANSFERFLUIDTEMPERATURE RATESTART TEMPERATUREMAX. TEMPERATURECOOLING TEMPERATURECOMMENT1834-003/11	PLA HDT SILICONE /h] 120.0 [C] 25.0 [C] 200.0 [C] 23.0		
	STATION 1	STATION 2	STATION 3
STANDARD MATERIAL CODE ORDER NO SPECIMEN PREPARATION SPECIMEN ANNEALING	ASTMD648 PLA FORM.8	ASTMD648 PLA FORM.8	ASTMD648 PLA FORM.8
SPECIMEN CONDITIONING TEMPERATURE[C] HUMIDITY[%] LENGTH	23 50	23 50	23 50
SPECIMEN DIMENSIONDEPTH[mm]WIDTH[mm]SPAN[mm]STRESS[kPa]APPLIED LOAD[g]TEST END[mm]FINAL DEFLECTION[mm]DISTORSION TEMPERATURE[C]	13.250 3.300 100.00 1820 717 0.25 0.25 48.6	$13.250 \\ 3.300 \\ 100.00 \\ 1820 \\ 717 \\ 0.25 \\ 0.25 \\ 49.3$	$ \begin{array}{r} 13.250 \\ 3.300 \\ 100.00 \\ 1820 \\ 717 \\ 0.25 \\ 0.25 \\ 49.0 \end{array} $
COMMENT STATION 1			

COMMENT	STATION	2
COMMENT	STATION	3
12		

Thu 17/11/2011 14:14 OPERATOR SOLYMAR

RELATÓRIO DE ENSAIO

NOME DA AMOSTRA	Fórmula 3 - PLA + 100 g Aditivo Biostrenght + 400 g Aditivo BIOMAX				
SEQUENCIAL	1834/11	REGISTRO DE AMOSTRA	1834-004/11		
CLIENTE	Johnson & Johnson do Brasil Ind. e Com. Prod. para Saúde Ltda.				
ENDEREÇO	Rua Manoel Bosco Ribeiro, 1020 - Jd. das Industrias - São José dos Campos - SP				
CONTATO	Renato B. Pereira	CARGO R&D			
CODMA DA AMOOTOA	Corno do Drovion		CEDIMENTO Conforma		

FORMA DA AMOSTRA	Corpo de Provas	CONDIÇÃO DE RECEBIMENTO	Conforme
FABRICAÇÃO CORPO DE PROVA	NTP	DATA DE RECEBIMENTO	23/11/11
DATA DE EMISSÃO DO RELATÓRIO	30/11/11		

Ensaios Contratados	Norma	Data realização	Unidade	Resultado
Temperatura de Deflexão Térmica - (HDT)	ASTM D 648-07	30/11/11	°C	50,1 ± 0,8 (Método 1,82 MPa - 120°C/h)

CLÁUSULAS DE RESPONSABILIDADE

- Os resultados obtidos somente se referem ao material submetido ao ensaio.

- A identificação do material analisado é responsabilidade do solicitante.

- Não se admite qualquer responsabilidade referente à exatidão da amostragem, a menos que esta tenha sido efetuada mediante nossa própria supervisão. Salvo menção expressa, as amostras foram livremente selecionadas pelo solicitante.

- O Laboratório de Ensaios Físicos e Químicos em Polímeros não se torna responsável pela divulgação ou o uso que o solicitante, outra pessoa ou entidade venham a fazer dos resultados do presente relatório.

- O Laboratório de Ensaios Físicos e Químicos em Polímeros garante a confidencialidade dos resultados contidos no presente relatório de ensaios.

- Qualquer parecer expresso neste relatório, não faz parte do escopo de acreditação.

- Este relatório só deve ser reproduzido por inteiro. Reprodução de partes requer aprovação por escrita do laboratório. O Laboratório não se torna responsável em nenhum caso de interpretação ou uso indevido que se possa fazer deste documento.

OBSERVAÇÕES: Anexo 10 (HDT)

Conforme solicitado pelo cliente, foi realizado novamente o ensaio de Temperatura de Deflexão Térmica na Fórmula 3 do Relatório de Ensaio 1077/2011 - Registro de Amostra: 1077-004/11 (Processo anterior da referida empresa).

Kleber Augusto Zotovici Coordenador do Laboratório

F-PLA-021 Ver 06 Aprovado em 05/01/2009 Laboratório de Ensaios Físicos e Químicos em Polímeros (PLA) Escola SENAI Mario Anato - Núcleo de Tecnologia em Plásticos Av. José Odorizzi, 1.555 - São Bernardo do Campo - SP CEP 09861-000 Fone: (011) 4109-9499 r:140 Fax:(011) 4109-9499 r:140 e-mail: plastico@sp.senai.br Página 1 de 1

TESTING LABORATORY	PLA		
TEST NAME HEAT TRANSFER FLUID	HDT SILICONE 2/h] 120.0 [C] 25.0 [C] 200.0 [C] 23.0		
	STATION 1	STATION 2	STATION 3
STANDARD MATERIAL CODE ORDER NO SPECIMEN PREPARATION SPECIMEN ANNEALING	ASTMD648 PLA FORM.3	ASTMD648 PLA FORM.3	ASTMD648 PLA FORM.3
SPECIMEN CONDITIONING TEMPERATURE[C] HUMIDITY[%] LENGTH	23 50	23 50	23 50
SPECIMEN DIMENSIONDEPTH[mm]WIDTH[mm]SPAN[mm]STRESS[kPa]APPLIED LOAD[g]TEST END[mm]	13.270 3.250 100.00 1820 708 0.25 0.25	13.270 3.250 100.00 1820 708 0.25 0.25	13.270 3.250 100.00 1820 708 0.25 0.26 concideds
DISTORSION TEMPERATURE [C]	49.5	50.7	50.5 30/11/1

COMMENT.	STATION	1000
COMMENT	STATION	2
COMMENT	STATION	3

Wed 30/11/2011 07:31 OPERATOR SOLYMAR

Observação : Ete anexo 10, reference a repetitividade do referido ensaio da amostra Fórmula 3 do Registro de Amostra : 1077-004/11

Análises originais de HDT, Vicat e curvas originais do Módulo de elasticidade (E), da Resistência à tração (τ) e Alongamento na força máxima (ϵ) após tratamento de recozimento

PLA 0005

SANAVE

RELATÓRIO DE ENSAIO

NOME DA AMOSTRA	Amostra 1		
SEQUENCIAL	176/12	REGISTRO DE AMOSTRA	176-001/12
CLIENTE	Johnson & Johnson de	Brasil Ind. e Com. Prod. para Saúde I	tda
ENDEREÇO	Rua Manoel Bosco Ri	beiro, 1020 - Jd. das Industrias - São Jo	sé dos Camoon SD
CONTATO	Renato B. Pereira	CARGO R&D	

FORMA DA AMOSTRA Corpo de Provas FABRICAÇÃO CORPO DE PROVA Cliente DATA DE EMISSÃO DO RELATÓRIO 29/02/12

CONDIÇÃO DE RECEBIMENTO Conforme DATA DE RECEBIMENTO 13/02/12

Ensaios Contratados	Norma	Data realização	Unidade	Resultado
Resistência à Tração	ASTM D 638-10	16/02/12	MPa % MPa	Tensão Força Máx = $39,84 \pm 14,52$ Def. Esp. F. Máx = $2,036 \pm 0,5707$ Mód.Elast = 2032 ± 710.8
Temperatura de Deflexão Térmica - (HDT)	ASTM D 648-07	16/02/12	°C	59,6 ± 0,5 (Método 1,82 MPa - 120°C/h)
Temperatura de Amolecimento Vicat	ASTM D 1525-09	23/02/12	°C	134,5 ± 0,2 (Método 10 N - 120°C/h)

CLÁUSULAS DE RESPONSABILIDADE

- Os resultados obtidos somente se referem ao material submetido ao ensaio.

- A identificação do material analisado é responsabilidade do solicitante.

 Não se admite qualquer responsabilidade referente à exatidão da amostragem, a menos que esta tenha sido efetuada mediante nossa própria supervisão. Salvo menção expressa, as amostras foram livremente selecionadas pelo solicitante.

 - O Laboratório de Ensaios Físicos e Químicos em Polímeros não se torna responsável pela divulgação ou o uso que o solicitante, outra pessoa ou entidade venham a fazer dos resultados do presente relatório.

 O Laboratório de Ensaios Físicos e Químicos em Polímeros garante a confidencialidade dos resultados contidos no presente relatório de ensaios.

- Qualquer parecer expresso neste relatório, não faz parte do escopo de acreditação.

 Este relatório só deve ser reproduzido por inteiro. Reprodução de partes requer aprovação por escrita do laboratório. O Laboratório não se torna responsável em nenhum caso de interpretação ou uso Indevido que se possa fazer deste documento.

OBSERVAÇÕES: Anexos 01 (Tração), 02 (HDT) e 03 (Vicat).

Kleber Augusto Zotovici Coordenador do Laboratório

F-PLA-021 Ver 06 Aprovado em 05/01/2009

Laboratório de Ensaios Físicos e Químicos em Polímeros (PLA) Eatoriation de Essaios riscos e Quínicos en Fonicios (FEA) Escola SENAI Mario Anato - Núcleo de Tecnologia em Plásticos Av. José Odorizzi, 1.555 - São Bernardo do Campo - SP CEP 09861-000 Fone: (011) 4109-9499 r.140 Fax:(011) 4109-9499 r.140 e-nuil: plastico@sp.senai.br

Página 1 de 1

Relatório de Ensaio de Tração

Máquina: Emic DL30)0 Célula: Tro	1 27 Ext	ensômetro: -	Data: 1	6/02/12	Hora: 14:32:59	Trabalho nº 2930
Programa: MTest vers	aão 2.02					N	létodo de Ensaio: Tração
Ident. Amostra: >>>>>	·>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	·>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	>>> Sequencia	: 176/12	(176-001/12) Material:: Am	ostra 1 Código::
Parâmetro >: Evento >: Unidade >:	Ten Força M	são Iax. Pa)	Tensão Ruptura (MPa)	Def.E: Força	specif. a Max. (%)	Def.Especif. Ruptura (%)	Mod.Elástic. (MPa)
CP 1 CP 2 CP 3	36. 27 55.	.60 .22 .71	36.35 27.05 55.41		1.786 1.632 2.689	1.767 1.613 2.650	2547 2329 1221
Número CPs Média Mediana Desv.Padrão Coef.Var.(%) Mínimo Máximo	39. 36. 14. 36. 27. 55.	3 84 60 52 44 22 71	39.60 36.35 14.46 36.50 27.05 55.41		3 2.036 1.786 5707 28.03 1.632 2.689	3 2.010 1.767 .5597 27.84 1.613 2.650	3 2032 2329 710.8 34.98 1221 2547
Tensão (MPa)				i i i		1 1 2 1 1 1	
48.00		/					
36.00		/					
24.00							
12.00							
.0000 2.000 .0000 2.000 <u>CP 1</u> <u>CP</u>	4.000 2 [<i>CP 3</i>]	6.000 CP 4	8.000 CP 5	10.00	Def.Espec	if. (%)	

Observação: Velocidade de ensaio: 5 mm/min

TESTING LABORATORY HDT TEST TEST NAME HEAT TRANSFER FLUID	PLA HDT SILICONE (h] 120.0 [C] 27.0 [C] 150.0 [C] 23.0		
	STATION 1	STATION 2	STATION 3
STANDARD MATERIAL CODE ORDER NO SPECIMEN PREPARATION SPECIMEN ANNEALING	ASTM AMOSTRA 1	ASTM AMOSTRA 1	ASTM AMOSTRA 1
SPECIMEN CONDITIONING TEMPERATURE[C] HUMIDITY[%] LENGTH	23 50	23 50	23 50
SPECIMEN DIMENSION DEPTH [mm] WIDTH [mm] SPAN [mm] STRESS [kPa] APPLIED LOAD[g] TEST END [mm]	13.330 3.190 100.00 1820 701 0.25	13.440 3.280 100.00 1820 733 0.25	13.450 3.260 100.00 1820 730 0.25
FINAL DEFLECTION [mm] DISTORSION TEMPERATURE [C]	0.25 59.3	0.25 60.2	0.25 59.3
COMMENTSTATION1COMMENTSTATION2COMMENTSTATION3			
Thu 16/02/2012 13:06 OPER	ATOR RS		

TESTING LABORATORY	PLA
TECT NAME	11T (13 m)
IEDI NAME	VICAT
HEAT TRANSFER FLUID	SILICONE
TEMPERATURE RATE[C/h]	120.0
START TEMPERATURE[C]	28.0
MAX. TEMPERATURE[C]	200.0
COOLING TEMPERATURE [C]	23.0
COMMENT 176-001/12	

	STATION	1	STATION	2	STATION	3
STANDARD MATERIAL CODE ORDER NO. SPECIMEN PREPARATION SPECIMEN ANNEALING	ASTM AMOSTRA 1		ASTM AMOSTRA 1		ASTM AMOSTRA 1	
SPECIMEN CONDITIONING TEMPERATURE[C] HUMIDITY[%] LENGTH	23 50		23 50		23 50	
APPLIED LOAD [N] TEST END [mm]	10.00 1.00		10.00 1.00		10.00 1.00	
FINAL DEFLECTION [mm] SOFTENING TEMPERATURE [C]	1.05 134.6		1.00 134.3		1.00 134.6	

COMMENT	STATION	1
COMMENT	STATION	2
COMMENT	STATION	3

₽

Thu 23/02/2012 13:19 OPERATOR RS

SENALE

RELATÓRIO DE ENSAIO

NOME DA AMOSTRA	Amostra 2					
SEQUENCIAL	176/12	REGISTRO DE AMOSTRA	176-002/12			
CLIENTE	Johnson & Johnson do Brasil Ind. e Com. Prod. para Saúde Ltda.					
ENDEREÇO	Rua Manoel Bosco Ribeiro, 1020 - Jd. das Industrias - São José dos Campos - SP					
CONTATO	Renato B. Pereira	CARGO R&D				

FORMA DA AMOSTRA	Corpo de Provas
FABRICAÇÃO CORPO DE PROVA	Cliente
DATA DE EMISSÃO DO RELATÓRIO	29/02/12

CONDIÇÃO DE RECEBIMENTO Conforme DATA DE RECEBIMENTO 13/02/12

Ensaios Contratados	Norma	Data realização	Unidade	Resultado
Resistência à Tração	ASTM D 638-10	16/02/12	MPa % MPa	Tensão Força Máx = $40,67 \pm 3,061$ Def. Esp. F. Máx = $1,914 \pm 0,1845$ Mód Elast = 2105 ± 1020
Temperatura de Deflexão Térmica - (HDT)	ASTM D 648-07	17/02/12	°C	$59,7 \pm 0.5$ (Método 1,82 MPa - 120°C/h)
Temperatura de Amolecimento Vicat	ASTM D 1525-09	24/02/12	°C	133,4 ± 1,6 (Método 10 N - 120°C/h)

CLÁUSULAS DE RESPONSABILIDADE

- Os resultados obtidos somente se referem ao material submetido ao ensaio.

- A identificação do material analisado é responsabilidade do solicitante.

- Não se admite qualquer responsabilidade referente à exatidão da amostragem, a menos que esta tenha sido efetuada mediante nossa

própria supervisão. Salvo menção expressa, as amostras foram livremente selecionadas pelo solicitante.

- O Laboratório de Ensaios Físicos e Químicos em Polímeros não se torna responsável pela divulgação ou o uso que o solicitante, outra pessoa ou entidade venham a fazer dos resultados do presente relatório.

- O Laboratório de Ensalos Físicos e Químicos em Polímeros garante a confidencialidade dos resultados contidos no presente relatório de ensalos.

 - Qualquer parecer expresso neste relatório, não faz parte do escopo de acreditação.
 - Este relatório só deve ser reproduzido por inteiro. Reprodução de partes requer aprovação por escrita do laboratório. O Laboratório não se torna responsável em nenhum caso de interpretação ou uso indevido que se possa fazer deste documento.

OBSERVAÇÕES: Anexos 04 (Tração), 05 (HDT) e 06 (Vicat).

Kleber Augusto Zotovici Coordenador do Laboratório

F-PLA-021 Ver 06 Aprovado em 05/01/2009

Laboratório de Ensaios Físicos e Químicos em Polímeros (PLA) Escola SENAI Mario Amato - Núcleo de Tecnologia em Plásicos Av. José Odorizzi, 1.555 - São Bernardo do Campo - SP CEP 09861-000 Fone: (011) 4109-9499 r:140 Fax:(011) 4109-9499 r:140 e-mail: plastico@sp.senai.br Página 1 de 1

Relatório de Ensaio de Tração

Máquina: Emic DL3000	Célula: Trd 27	Extensômetro: -	Data: 16/02/12	Hora: 15:02:40	Trabalho nº 2931
Programa: MTest versão 2	.02			M	étodo de Ensaio: Tração
Ident. Amostra: >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	·>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	>>>>>> Sequencial	: 176/12 (176-002/1	12) Material:: Am	ostra 2 Código::
Parâmetro >> Evento >> Unidade >>	Tensão Força Max. (MPa)	Tensão Ruptura (MPa)	Def.Especif. Força Max. (%)	Def.Especif. Ruptura (%)	Mod.Elástic. (MPa)
CP 1 CP 2 CP 3	37.15 42.74 42.12	37.15 42.74 42.12	1.748 2.113 1.882	1.748 2.113 1.882	2584 933.5 2798
Número CPs Média Mediana Desv.Padrão Coef.Var.(%) Mínímo Máximo	3 40.67 42.12 3.061 7.526 37,15 42.74	3 40.67 42.12 3.061 7.526 37.15 42.74	3 1.914 1.882 .1845 9.641 1.748 2.113	3 1.914 1.882 .1845 9.641 1.748 2.113	3 2105 2584 1020 48.47 933.5 2798
Tensão (MPa)					
48.00					
36.00					
24.00					
12.00					
.0000 <u>/ / /</u> .0000 2.000 <u>CP 1</u> <u>CP 2</u>	4.000 6.00 CP 3 C	0 8.000 CP 4 CP 5	^{10.00} Def.Esp	pecif. (%)	

Observação: Velocidade de ensaio: 5 mm/min 🗆 🗆 CP 2 - Rompeu na garra de fixação do cp. 🗆 🗆

TESTING LABORATORYHDT TESTTEST NAMEHEAT TRANSFERFLUIDTEMPERATURE RATESTART TEMPERATUREMAX. TEMPERATURECOOLING TEMPERATURECOMMENT176-002/12	PLA HDT SILICONE (h] 120.0 [C] 27.0 [C] 150.0 [C] 23.0		
	STATION 1	STATION 2	STATION 3
STANDARD MATERIAL CODE ORDER NO SPECIMEN PREPARATION SPECIMEN ANNEALING	ASTM AMOSTRA 2	ASTM AMOSTRA 2	ASTM AMOSTRA 2
SPECIMEN CONDITIONING TEMPERATURE[C] HUMIDITY[%] LENGTH	23 50	23 50	23 50
SPECIMEN DIMENSIONDEPTH[mm]WIDTH[mm]SPAN[mm]STRESS[kPa]APPLIED LOAD[g]TEST END[mm]	13.250 3.230 100.00 1820 702 0.25	13.250 3.270 100.00 1820 710 0.25	$13.250 \\ 3.280 \\ 100.00 \\ 1820 \\ 712 \\ 0.25$
FINAL DEFLECTION [mm] DISTORSION TEMPERATURE [C]	0.25 59.1	0.25 59.9	0.25 60.0
COMMENTSTATION1COMMENTSTATION2COMMENTSTATION3			
\$Fri 17/02/2012 07:39 OPER	ATOR RS		

PLA VICAT SILICONE /h] 120.0 [C] 25.8 [C] 200.0 [C] 23.0		
STATION 1	STATION 2	STATION 3
ASTM AMOSTRA 2	ASTM AMOSTRA 2	ASTM AMOSTRA 2
23 50	23 50	23 50
10.00 1.00	10.00 1.00	10.00 1.00
1.35 150.0 canceloudo	1.00 132.2	1.00 134.5
Ú		
	PLA VICAT SILICONE /h] 120.0 [C] 25.8 [C] 200.0 [C] 23.0 STATION 1 ASTM AMOSTRA 2 23 50 10.00 1.35 150.0 earealease earealease	PLA VICAT SILICONE /h] 120.0 [C] 25.8 [C] 200.0 [C] 23.0 STATION 1 STATION 2 ASTM ASTM AMOSTRA AMOSTRA 2 2 23 50 10.00 10.00 1.00 10.00 1.35 1.00 150.0 132.2 earranged arranged arranged 1.00 132.2

\$Fri 24/02/2012 08:48 OPERATOR RS

RELATÓRIO DE ENSAIO

SENALE

NOME DA AMOSTRA	Amostra 3		
SEQUENCIAL	176/12	REGISTRO DE AMOSTRA	176-003/12
CLIENTE	Johnson & Johnson do B	rasil Ind. e Com. Prod. para Saúde L	tda.
ENDEREÇO	Rua Manoel Bosco Ribei	ro, 1020 - Jd. das Industrias - São Jo	sé dos Campos - SP
CONTATO	Renato B. Pereira	CARGO R&D	

FORMA DA AMOSTRA	Corpo de Provas
FABRICAÇÃO CORPO DE PROVA	Cliente
DATA DE EMISSÃO DO RELATÓRIO	29/02/12

CONDIÇÃO DE RECEDIMENTO	J Conforme
DATA DE RECEBIMENTO	13/02/12

Ensaios Contratados	Norma	Data realização	Unidade	Resultado
Resistência à Tração	ASTM D 638-10	16/02/12	MPa	Tensão Força Máx = $47,41 \pm 0,2469$
			%	Def. Esp. F. Máx = $2,842 \pm 0,0837$
			MPa	Mód.Elast = $1111 \pm 173,6$
Temperatura de Deflexão Térmica - (HDT)	ASTM D 648-07	17/02/12	°C	57,6 (Método 1,82 MPa - 120°C/h)
Temperatura de Amolecimento Vicat	ASTM D 1525-09	24/02/12	°C	131,7 ± 0,6 (Método 10 N - 120°C/h)

CLÁUSULAS DE RESPONSABILIDADE

- Os resultados obtidos somente se referem ao material submetido ao ensaio.

- A identificação do material analisado é responsabilidade do solicitante.

- Não se admite qualquer responsabilidade referente à exatidão da amostragem, a menos que esta tenha sido efetuada mediante nossa própria supervisão. Salvo menção expressa, as amostras foram livremente selecionadas pelo solicitante.

- O Laboratório de Ensaios Físicos e Químicos em Polímeros não se torna responsável pela divulgação ou o uso que o solicitante, outra

- O Laboratório de Enalos rísicos o domineos em romeros não do toma responderor por arraigução da o do economano, osad pessoa ou entidade venham a fazer dos resultados do presente relatório.
- O Laboratório de Ensalos Físicos e Químicos em Polímeros garante a confidencialidade dos resultados contidos no presente relatório de ensaios.

- Qualquer parecer expresso neste relatório, não faz parte do escopo de acreditação.

- Este relatório só deve ser reproduzido por inteiro. Reprodução de partes requer aprovação por escrita do laboratório. O Laboratório não se torna responsável em nenhum caso de interpretação ou uso indevido que se possa fazer deste documento.

OBSERVAÇÕES: Anexos 07 (Tração), 08 (HDT) e 09 (Vicat).

Kleber Augusto Zotovici Coordenador do Laboratório

F-PLA-021 Ver 06 Aprovado em 05/01/2009

Laboratório de Ensaios Físicos e Químicos em Polímeros (PLA) Escola SENAI Mario Amato - Núcleo de Tecnologia em Plásticos Av. José Odorizzi, 1.555 - São Bernardo do Campo - SP CEP 09861-000 Fone: (011) 4109-9499 r.140 Fax:(011) 4109-9499 r.140 e-mail: plastico@sp.senai.br

Relatório de Ensaio de Tração

Máquina: Emic DL3000	Célula: Trd 27	Extensômetro: -	Data: 16/02/12	Hora: 15:18:43	Trabalho nº 2932
Programa: MTest versão 2	.02			M	étodo de Ensalo: Tração
Ident. Amostra: >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	->>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	>>>>>>Sequencial	: 176/12 (176-003/	12) Material:: Am	ostra 3 Código::
Parâmetro >> Evento >> Unidade >>	Tensão Força Max. (MPa)	Tensão Ruptura (MPa)	Def.Especif. Força Max. (%)	Def.Especif. Ruptura (%)	Mod.Elástic. (MPa)
CP 1 CP 2 CP 3	47.36 47.68 47.19	38.26 39.36 40.71	2.881 2.900 2.746	3.803 3.803 3.111	943.8 1100 1290
Número CPs Média Mediana Desv.Padrão Coef.Var.(%) Mínímo Máximo	3 47.41 47.36 .2469 .5208 47.19 47.68	3 39.44 39.36 1.231 3.120 38.26 40.71	3 2.842 2.881 .08371 2.945 2.746 2.900	3 3.572 3.803 .3992 11.17 3.111 3.803	3 1111 1100 173.6 15.62 943.8 1290
Tensão (MPa)		1 I			
48.00		\wedge			
36.00	/ /				
24.00					
12.00					
.0000 2.000 CP 1 CP 2	4.000 6.000 CP 3 C	0 8.000 P 4 CP 5	10.00 Def.Esp	pecif. (%)	

Observação: Velocidade de ensaio: 5 mm/min

TESTING LAB HDT TEST TEST NAME . HEAT TRANSF TEMPERATURE START TEMPE MAX. TEMPER COOLING TEM COMMENT	PER FLUID RATE RATE RATURE PERATURE 176-003/12	[C	PLA HDT SILICO /h] 120.0 [C] 27.5 [C] 150.0 [C] 23.0	NE				
			STATION	1	STATION	2	STATION	3
STANDARD . MATERIAL CO ORDER NO. SPECIMEN PR SPECIMEN AN	DE EPARATION NEALING	• • • • • • •	ASTM AMOSTRA 3		ASTM AMOSTRA 3		ASTM AMOSTRA 3	
SPECIMEN CO TEMPERATURE HUMIDITY LENGTH	NDITIONING [C] [%]		23 50		23 50		23 50	
SPECIMEN DI DEPTH WIDTH SPAN STRESS APPLIED LOAN TEST END	MENSION [mm] [mm] [mm] [kPa] D[g] [mm]		13.300 3.230 100.00 1820 707 0.25		$13.300 \\ 3.250 \\ 100.00 \\ 1820 \\ 711 \\ 0.25$		13.300 3.250 100.00 1820 711 0.25	
FINAL DEFLE	CTION [mm] TEMPERATURE	[C]	0.25 57.6		0.27 102.0		0.27 101.4 Jow Con Mar	31
COMMENT S COMMENT S COMMENT S	STATION1STATION2STATION3				How		° (f	
\$Fri 17/02/2	2012 09:54	OPERA	ATOR RS					
		• • • • • • •	******					

TESTING LABORATORY	PLA
VICAT TEST	
TEST NAME	VICAT
HEAT TRANSFER FLUID	SILICONE
TEMPERATURE RATE[C/h]	120.0
START TEMPERATURE[C]	27.0
MAX. TEMPERATURE[C]	200.0
COOLING TEMPERATURE [C]	23.0
COMMENT 176-003/122	

	STATION	1	STATION	2	STATION	3
STANDARD MATERIAL CODE ORDER NO SPECIMEN PREPARATION SPECIMEN ANNEALING	ASTM AMOSTRA 3		ASTM AMOSTRA 3		ASTM AMOSTRA 3	
SPECIMEN CONDITIONING TEMPERATURE[C] HUMIDITY[%] LENGTH	23 50		23 50		23 50	
APPLIED LOAD [N] TEST END [mm]	10.00 1.00		10.00 1.00		10.00 1.00	
FINAL DEFLECTION [mm] SOFTENING TEMPERATURE [C]	1.00 131,1		1.00 131.9		1.00 132.2	

COMMENT	STATION	1
COMMENT	STATION	2
COMMENT	STATION	3

\$Fri 24/02/2012 13:05 OPERATOR RS

PUR 4015

SENAL

RELATÓRIO DE ENSAIO

NOME DA AMOSTRA	Amostra 4					
SEQUENCIAL	176/12	REGISTRO DE AMOSTRA	176-004/12			
CLIENTE	Johnson & Johnson c	lo Brasil Ind. e Com. Prod. para Saúde L	tda.			
ENDEREÇO	Rua Manoel Bosco Ribeiro, 1020 - Jd. das Industrias - São José dos Campos - SP					
CONTATO	Renato B. Pereira	CARGO R&D				

FORMA DA AMOSTRACorpo de ProvasFABRICAÇÃO CORPO DE PROVAClienteDATA DE EMISSÃO DO RELATÓRIO29/02/12

 CONDIÇÃO DE RECEBIMENTO
 Conforme

 DATA DE RECEBIMENTO
 13/02/12

Ensalos Contratados Data realização Unidade Resultado Norma Tensão Força Máx = $43,09 \pm 3,899$ Resistência à Tração ASTM D 638-10 16/02/12 MPa Def. Esp. F. Máx = $2,894 \pm 0,1307$ % MPa Mód.Elast = $901,8 \pm 127,5$ °C $60,1 \pm 0,6$ Temperatura de Deflexão Térmica -ASTM D 648-07 17/02/12 (Método 1,82 MPa - 120°C/h) (HDT) Temperatura de Amolecimento ASTM D 1525-09 24/02/12 °C $131,2 \pm 1,1$ (Método 10 N - 120°C/h) Vicat

CLÁUSULAS DE RESPONSABILIDADE

- Os resultados obtidos somente se referem ao material submetido ao ensaio.

- A identificação do material analisado é responsabilidade do solicitante.

 Não se admite qualquer responsabilidade referente à exatidão da amostragem, a menos que esta tenha sido efetuada mediante nossa própria supervisão. Salvo menção expressa, as amostras foram livremente selecionadas pelo solicitante.

- O Laboratório de Ensaios Físicos e Químicos em Polímeros não se torna responsável pela divulgação ou o uso que o solicitante, outra pessoa ou entidade venham a fazer dos resultados do presente relatório.

- O Laboratório de Ensaios Físicos e Químicos em Polímeros garante a confidencialidade dos resultados contidos no presente relatório de ensaios.

- Qualquer parecer expresso neste relatório, não faz parte do escopo de acreditação.

- Este relatório só deve ser reproduzido por inteiro. Reprodução de partes requer aprovação por escrita do laboratório. O Laboratório não se torna responsável em nenhum caso de interpretação ou uso indevido que se possa fazer deste documento.

OBSERVAÇÕES: Anexos 10 (Tração), 11 (HDT) e 12 (Vicat).

Kleber Augusto Zotovici Coordenador do Laboratório

F-PLA-021 Ver 06 Aprovado em 05/01/2009 Laboratório de Ensaios Físicos e Químicos em Polímeros (PLA) Escola SENAI Mario Amato - Núcleo de Tecnologia em Plásticos Av. José Odorizzi, 1.555 - São Bernardo do Campo - SP CEP 09861-000 Fone: (011) 4109-9499 r:140 Fax:(011) 4109-9499 r:140 e-mail: plastico@sp.senai.br Página 1 de 1

NÚCLEO DE TECNOLOGIA DO PLÁSTICO LABORATÓRIO DE ENSAIOS FÍSICOS E QUÍMICOS EM POLÍMEROS

Relatório de Ensaio de Tração

Máquina: Emic DL3000	Célula: Trd 27	Extensômetro: -	Data: 16/02/12	Hora: 15:33:54	Trabalho nº 2933
Programa: MTest versão 2	.02			M	étodo de Ensaio: Tração
Ident. Amostra: >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	176/12 (176-004/1	(2) Material:: Am	ostra 4 Código::
Parâmetro >> Evento >> Unidade >>	Tensão Força Max. (MPa)	Tensão Ruptura (MPa)	Def.Especif. Força Max. (%)	Def.Especif. Ruptura (%)	Mod.Elástic. (MPa)
CP 1 CP 2 CP 3	45.41 38.58 45.26	26.78 38.58 38.29	2.938 2.746 2.996	3.783 2.785 5.147	1015 763.9 926.4
Número CPs Média Mediana Desv.Padrão Coef.Var.(%) Mínimo Máximo	3 43.09 45.26 3.899 9.049 38.58 45.41	3 34.55 38.29 6.734 19.49 26.78 38.58	3 2.894 2.938 .1307 4.518 2.746 2.996	3 3.905 3.783 1.186 30.37 2.785 5.147	3 901.8 926.4 127.5 14.13 763.9 1015
Tensão (MPa)					
48.00					
36.00					
24.00					
12.00					
.0000 2.000 .0000 2.000 <u>CP 1</u> <u>CP 2</u>	4.000 6.00 [CP 3	00 8.000 CP 4 CP 5	^{10.00} Def.Esp	pecif. (%)	

Observação: Velocidade de ensaio: 5 mm/min

TESTING LABORATORY	PLA
HDT TEST	
TEST NAME	HDT
HEAT TRANSFER FLUID	SILICONE
TEMPERATURE RATE[C/h]	120.0
START TEMPERATURE	27.0
MAX. TEMPERATURE[C]	150.0
COOLING TEMPERATURE [C]	23.0
COMMENT 176-004/12	

	STATION	1	STATION	2	STATION	3
STANDARD MATERIAL CODE ORDER NO SPECIMEN PREPARATION SPECIMEN ANNEALING	ASTM AMOSTRA 4		ASTM AMOSTRA 4		ASTM AMOSTRA 4	
SPECIMEN CONDITIONING TEMPERATURE[C] HUMIDITY[%] LENGTH	23 50		23 50		23 50	
SPECIMEN DIMENSIONDEPTH[mm]WIDTH[mm]SPAN[mm]STRESS[kPa]APPLIED LOAD[g]TEST END[mm]	$ \begin{array}{r} 13.200 \\ 3.260 \\ 100.00 \\ 1820 \\ 703 \\ 0.25 \\ \end{array} $		13.200 3.250 100.00 1820 701 0.25		$13.200 \\ 3.240 \\ 100.00 \\ 1820 \\ 698 \\ 0.25$	
FINAL DEFLECTION [mm] DISTORSION TEMPERATURE [C]	0.25 59.5		0.25 60.6		0.25 60.1	

COMMENT	STATION	1
COMMENT	STATION	2
COMMENT	STATION	3

\$Fri 17/02/2012 12:29 OPERATOR RS

TESTING LABORATORY	PLA
TEST NAME	VICAT
HEAT TRANSFER FLUID	SILICONE
TEMPERATURE RATE[C/h]	120.0
START TEMPERATURE[C]	28.2
MAX. TEMPERATURE[C]	200.0
COOLING TEMPERATURE [C]	23.0
COMMENT 176-004/12	

1

\$

	STATION	1	STATION	2	STATION	3
STANDARD MATERIAL CODE ORDER NO. SPECIMEN PREPARATION SPECIMEN ANNEALING	ASTM AMOSTRA 4		ASTM AMOSTRA 4		ASTM AMOSTRA 4	
SPECIMEN CONDITIONING TEMPERATURE[C] HUMIDITY[%] LENGTH	23 50		23 50		23 50	
APPLIED LOAD [N] TEST END [mm]	10.00 1.00		10.00 1.00		10.00 1.00	
FINAL DEFLECTION [mm] SOFTENING TEMPERATURE [C]	1.00 130.1		1.00 131.3		1.00 132.2	

COMMENT	STATION	1
COMMENT	STATION	2
COMMENT	STATION	3

\$Fri	24/	02/2012	15:13	OPERATOR	RS

PUA 2010

I STAVE

RELATÓRIO DE ENSAIO

NOME DA AMOSTRA	Amostra 5					
SEQUENCIAL	176/12	REGISTRO DE AMOSTRA	176-005/12			
CLIENTE	Johnson & Johnson do E	rasil Ind. e Com. Prod. para Saúde L	tda.			
ENDEREÇO	Rua Manoel Bosco Ribeiro, 1020 - Jd. das Industrias - São José dos Campos - SP					
CONTATO	Renato B. Pereira	CARGO R&D				

FORMA DA AMOSTRA	Corpo de Provas
FABRICAÇÃO CORPO DE PROVA	Cliente
DATA DE EMISSÃO DO RELATÓRIO	29/02/12

CONDIÇÃO DE RECEBIMENTO Conforme DATA DE RECEBIMENTO 13/02/12

Ensaios Contratados	Norma	Data realização	Unidade	Resultado
Resistência à Tração	ASTM D 638-10	16/02/12	MPa	Tensão Força Máx = $47,88 \pm 0,3486$
			%	Def. Esp. F. Máx = $3,060 \pm 0,1158$
		201	MPa	Mód.Elast = $1085 \pm 41,00$
Temperatura de Deflexão Térmica - (HDT)	ASTM D 648-07	17/02/12	°C	59,7 ± 0,6 (Método 1,82 MPa - 120°C/h)
Temperatura de Amolecimento Vicat	ASTM D 1525-09	27/02/12	°C	132,1 ± 0,5 (Método 10 N - 120°C/h)

CLÁUSULAS DE RESPONSABILIDADE

- Os resultados obtidos somente se referem ao material submetido ao ensaio.

- A identificação do material analisado é responsabilidade do solicitante.

- Não se admite qualquer responsabilidade referente à exatidão da amostragem, a menos que esta tenha sido efetuada mediante nossa própria supervisão. Salvo menção expressa, as amostras foram livremente selecionadas pelo solicitante. - O Laboratório de Ensaios Físicos e Químicos em Polímeros não se torna responsável pela divulgação ou o uso que o solicitante, outra

pessoa ou entidade venham a fazer dos resultados do presente relatório.

- O Laboratório de Ensaios Físicos e Químicos em Polímeros garante a confidencialidade dos resultados contidos no presente relatório de ensaios.

- Qualquer parecer expresso neste relatório, não faz parte do escopo de acreditação.

- Este relatório só deve ser reproduzido por inteiro. Reprodução de partes requer aprovação por escrita do laboratório. O Laboratório não se torna responsável em nenhum caso de interpretação ou uso indevido que se possa fazer deste documento.

OBSERVAÇÕES: Anexos 13 (Tração), 14 (HDT) e 15 (Vicat).

Kleber Augusto Zotovici Coordenador do Laboratório

F-PLA-021 Ver 06 Aprovado em 05/01/2009

Laboratório de Ensaios Físicos e Químicos em Polímeros (PLA) Escola SENAI Mario Amato - Núcleo de Tecnologia em Plásticos Av. José Odorizzi, 1.555 - São Bernardo do Campo - SP CEP 09861-000 Fone: (011) 4109-9499 r:140 Fax:(011) 4109-9499 r:140 e-mail: plastico@sp.senai.br

Página 1 de 1

NÚCLEO DE TECNOLOGIA DO PLÁSTICO LABORATÓRIO DE ENSAIOS FÍSICOS E QUÍMICOS EM POLÍMEROS

Relatório de Ensaio de Tração

Máquina: Emic DL3000	Célula: Trd 27	Extensômetro: -	Data: 16/02/12	Hora: 15:48:17	Trabalho nº 2934
Programa: MTest versão 2.	.02			м	étodo de Ensaio: Tração
Ident. Amostra: >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	·>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	>>>>>>Sequencial	: 176/12 (176-005/1	12) Material:: Am	ostra 5 Código::
Parâmetro >> Evento >>	Tensão Força Max. (MBe)	Tensão Ruptura	Def.Especif. Força Max.	Def.Especif. Ruptura	Mod.Elástic.
Unidade PP	(WIFB)	(141-8)	(%)	(%)	(MPa)
CP 1	48.00	42.85	3.169	3.534	1068
CP 2	47.49	45.47	3.073	3.322	1056
UF 5	40.13	45.15	2,938	3.087	1132
Número CPs	3	3	3	3	3
Média	47.88	43.15	3.060	3.515	1085
Mediana Desy Padrão	48.00	43.10	3.073	5,554	1068
Coef.Var.(%)	.7280	.7214	3.783	5.213	3 777
Mínimo	47.49	42.85	2.938	3,322	1056
Máximo	48.15	43.47	3.169	3.687	1132
Tensão (MPa)				i i	t 1 1
48.00		~			
36.00					
24.00	//				
12.00					
.0000 2.000 <u>CP 1</u> CP 2	4.000 6.000 CP 3 Cl	8.000 P.4 CP.5	10.00 Def.Esp	ecif. (%)	

Observação: Velocidade de ensaio: 5 mm/min

HDT TEST HDT TEST TEST NAME HEAT TRANSFER FLUID TEMPERATURE RATE START TEMPERATURE MAX. TEMPERATURE COOLING TEMPERATURE COMMENT 176-005/12	<pre> PLA HDT SILICONE .[C/h] 120.0[C] 28.0[C] 150.0[C] 23.0</pre>		
	STATION 1	STATION 2	STATION 3
STANDARD MATERIAL CODE ORDER NO SPECIMEN PREPARATION SPECIMEN ANNEALING	ASTM AMOSTRA 5 	ASTM AMOSTRA 5	ASTM AMOSTRA 5
SPECIMEN CONDITIONING TEMPERATURE[C] HUMIDITY[%] LENGTH	23 50	23 50	23 50
SPECIMEN DIMENSION DEPTH [mm] WIDTH [mm] SPAN [mm] STRESS [kPa] APPLIED LOAD[g] TEST END [mm]	13.250 3.250 100.00 1820 706 0.25	13.250 3.250 100.00 1820 706 0.25	13.250 3.250 100.00 1820 706 0.25
FINAL DEFLECTION [mm] DISTORSION TEMPERATURE [(0.25 C] 59.1	0.25 60.3	0.25 59.8
COMMENTSTATION1COMMENTSTATION2COMMENTSTATION3			
\$Fri 17/02/2012 13:45 OI	PERATOR RS		

TESTING LABORATORY	PLA
VICAT TEST	
TEST NAME	VICAT
HEAT TRANSFER FLUID	SILICONE
TEMPERATURE RATE[C/h]	120.0
START TEMPERATURE[C]	27.2
MAX. TEMPERATURE[C]	200.0
COOLING TEMPERATURE [C]	23.0
COMMENT 176-005/12	

	STATION	1	STATION	2	STATION	3
STANDARD MATERIAL CODE ORDER NO SPECIMEN PREPARATION SPECIMEN ANNEALING	ASTM AMOSTRA 5		ASTM AMOSTRA 5		ASTM AMOSTRA 5	
SPECIMEN CONDITIONING TEMPERATURE[C] HUMIDITY[%] LENGTH	23 50		23 50		23 50	
APPLIED LOAD[N] TEST END [mm]	10.00 1.00		10.00 1.00		10.00 1.00	
FINAL DEFLECTION [mm] SOFTENING TEMPERATURE [C]	1.00 131.6		1.00 132.0		1.00 132.6	
COMMENT STATION 1 COMMENT STATION 2						

		-
COMMENT	STATION	3

\$Mon 27/02/2012 10:51 OPERATOR RS

0000 AUG

RELATÓRIO DE ENSAIO

NOME DA AMOSTRA	Amostra 6			
SEQUENCIAL	176/12	REGISTRO DE AMOSTRA	176-006/12	
CLIENTE	Johnson & Johnson do Brasil In	d. e Com. Prod. para Saúde Li	tda.	
ENDEREÇO	Rua Manoel Bosco Ribeiro, 1020 - Jd. das Industrias - São José dos Campos - SP			
CONTATO	Renato B. Pereira	CARGO R&D		

 FORMA DA AMOSTRA
 Corpo de Provas

 FABRICAÇÃO CORPO DE PROVA
 Cliente

 DATA DE EMISSÃO DO RELATÓRIO
 29/02/12

 CONDIÇÃO DE RECEBIMENTO
 Conforme

 DATA DE RECEBIMENTO
 13/02/12

Ensaios Contratados Norma Data realização Unidade Resultado Resistência à Tração ASTM D 638-10 17/02/12 MPa Tensão Força Máx = $56,50 \pm 4,915$ Def. Esp. F. Máx = $3,261 \pm 0,5157$ % MPa $M\acute{o}d.Elast = 1227 \pm 145,8$ Temperatura de Deflexão Térmica -°C $59,6 \pm 0,9$ ASTM D 648-07 22/02/12 (HDT) (Método 1,82 MPa - 120°C/h) Temperatura de Amolecimento ASTM D 1525-09 27/02/12 °C 138.0 ± 1.0 (Método 10 N - 120°C/h) Vicat

CLÁUSULAS DE RESPONSABILIDADE

- Os resultados obtidos somente se referem ao material submetido ao ensaio.

- A identificação do material analisado é responsabilidade do solicitante.

 Não se admite qualquer responsabilidade referente à exatidão da amostragem, a menos que esta tenha sido efetuada mediante nossa própria supervisão. Salvo menção expressa, as amostras foram livremente selecionadas pelo solicitante.

- O Laboratório de Ensalos Físicos e Químicos em Polímeros não se torna responsável pela divulgação ou o uso que o solicitante, outra pessoa ou entidade venham a fazer dos resultados do presente relatório.

- O Laboratório de Ensaios Físicos e Químicos em Polímeros garante a confidencialidade dos resultados contidos no presente relatório de ensaios.

- Qualquer parecer expresso neste relatório, não faz parte do escopo de acreditação.

- Este relatório só deve ser reproduzido por inteiro. Reprodução de partes requer aprovação por escrita do laboratório. O Laboratório não se torna responsável em nenhum caso de interpretação ou uso indevido que se possa fazer deste documento.

OBSERVAÇÕES: Anexos 16 (Tração), 17 (HDT) e 18 (Vicat).

Kleber Augusto Zotovici Coordenador do Laboratório

F-PLA-021 Ver 06 Aprovado em 05/01/2009

Laboratório de Ensaios Físicos e Químicos em Polímeros (PLA) Escola SENAI Mario Amato - Núcleo de Tecnologia em Plásticos Av. José Odorizzi, 1.555 - São Bernardo do Campo - SP CEP 09861-000 Fone: (011) 4109-9499 r:140 Fax:(011) 4109-9499 r:140 e-mail: plastico@sp.senai.br Página 1 de 1

NÚCLEO DE TECNOLOGIA DO PLÁSTICO LABORATÓRIO DE ENSAIOS FÍSICOS E QUÍMICOS EM POLÍMEROS

Relatório de Ensaio de Tração

Máquina:	Emic DL3000	Célula: Trd 27	Extensômetro: -	Data: 17/02/12	Hora: 15:07:21	Trabalho nº 2935
Programa	: MTest versão	2.02			M	étodo de Ensaio: Tração
Ident. Am	ostra: >>>>>>>>>>>>>	·>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	>>>>>>Sequencial	: 176/12 (176-006/	12) Material:: Am	ostra 6 Código::
	Parâmetro >> Evento >> Unidade >>	Tensão Força Max. (MPa)	Tensão Ruptura (MPa)	Def.Especif. Força Max. (%)	Def.Especif. Ruptura (%)	Mod.Elástic. (MPa)
	CP 1 CP 2 CP 3	59.51 59.16 50.83	59.01 59.16 50.83	3.587 3.529 2.666	3.683 3.529 2.666	1245 1363 1073
	Número CPs Média Mediana Desv.Padrão Coef.Var.(%) Mínimo Máximo	3 56.50 59.16 4.915 8.699 50.83 59.51	3 56.33 59.01 4.768 8.463 50.83 59.16	3 3.261 3.529 .5157 15.82 2.666 3.587	3 3.293 3.529 .5480 16.64 2.666 3.683	3 1227 1245 145.8 11.88 1073 1363
Tensão 70.00	(MPa)	, . ,				
56.00						
42.00			4			
28.00						
14.00	//					
.0000 .0000 [<i>CP</i>	2.000 21 CP 2	4.000 6.00 CP 3 C	0 8.000 2P.4 CP.5	^{10.00} Def.Esp	ecif. (%)	

Observação: Velocidade de ensaio: 5 mm/min

.

TESTING LABORATORYHDT TESTHDT TESTTEST NAMEHEAT TRANSFER FLUIDTEMPERATURE RATESTART TEMPERATUREMAX. TEMPERATURECOOLING TEMPERATURECOMMENT176-006/12	PLA HDT SILICONE /h] 120.0 [C] 26.7 [C] 150.0 [C] 23.0		
	STATION 1	STATION 2	STATION 3
STANDARD MATERIAL CODE ORDER NO SPECIMEN PREPARATION SPECIMEN ANNEALING	ASTM AMOSTRA 6	ASTM AMOSTRA 6	ASTM AMOSTRA 6
SPECIMEN CONDITIONING TEMPERATURE[C] HUMIDITY[%] LENGTH	23 50	23 50	23 50
SPECIMEN DIMENSIONDEPTH[mm]WIDTH[mm]SPAN[mm]STRESS[kPa]APPLIED LOAD[g]TEST END[mm]	13.150 3.300 100.00 1820 706 0.25	13.150 3.360 100.00 1820 719 0.25	$13.380 \\ 3.250 \\ 100.00 \\ 1820 \\ 720 \\ 0.25$
FINAL DEFLECTION [mm] DISTORSION TEMPERATURE [C]	0.25 58.9	0.25 60.2	0.26 79.0 .0.
COMMENTSTATION1COMMENTSTATION2COMMENTSTATION3			\lor
*Wed 22/02/2012 09:06 OPER	ATOR RS		

TESTING LABORATORY	PLA
VICAT TEST	
TEST NAME	VICAT
HEAT TRANSFER FLUID	SILICONE
TEMPERATURE RATE[C/h]	120.0
START TEMPERATURE[C]	29.5
MAX. TEMPERATURE[C]	200.0
COOLING TEMPERATURE [C]	23.0
COMMENT 176-006/12	

	STATION	1	STATION	2	STATION	3
STANDARD MATERIAL CODE ORDER NO SPECIMEN PREPARATION SPECIMEN ANNEALING	ASTM AMOSTRA 6		ASTM AMOSTRA 6		ASTM AMOSTRA 6	
SPECIMEN CONDITIONING TEMPERATURE[C] HUMIDITY[%] LENGTH	23 50		23 50		23 50	
APPLIED LOAD[N] TEST END [mm]	10.00 1.00		10.00 1.00		10.00 1.00	
FINAL DEFLECTION [mm] SOFTENING TEMPERATURE [C]	1.00 137.4		1.00 137.4		1.00 139.1	

COMMENT	STATION	1
COMMENT	STATION	2
COMMENT	STATION	3

\$Mon 27/02/2012 16:23 OPERATOR RS

		and the second
Anexo 18	Nº Sequencial (76∫12	Aprovado Data 29.02.12
0.00		

RA 2000

JANKAVE

RELATÓRIO DE ENSAIO

NOME DA AMOSTRA	Amostra 7					
SEQUENCIAL	176/12	REGISTRO DE AMOSTRA	176-007/12			
CLIENTE	Johnson & Johnson do Brasil Ind. e Com. Prod. para Saúde Ltda.					
ENDEREÇO	Rua Manoel Bosco Ribeiro, 1020 - Jd. das Industrias - São José dos Campos - SP					
CONTATO	Renato B. Pereira	CARGO R&D				

FORMA DA AMOSTRA	Corpo de Provas
FABRICAÇÃO CORPO DE PROVA	Cliente
DATA DE EMISSÃO DO RELATÓRIO	29/02/12

CONDIÇÃO DE RECEBIMENTO	Conforme
DATA DE RECEBIMENTO	13/02/12

Ensaios Contratados	Norma	Data realização	Unidade	Resultado
Resistência à Tração	ASTM D 638-10	17/02/12	MPa	Tensão Força Máx = 29,37 ± 2,895
			%	Def. Esp. F. Máx = $1,694 \pm 0,3538$
			MPa	$M\acute{o}d.Elast = 1246 \pm 1066$
Temperatura de Deflexão Térmica - (HDT)	ASTM D 648-07	22/02/12	°C	59,2 ± 0,8 (Método 1,82 MPa - 120°C/h)
Temperatura de Amolecimento Vicat	ASTM D 1525-09	28/02/12	°C	129,2 ± 0,6 (Método 10 N - 120°C/h)

CLÁUSULAS DE RESPONSABILIDADE

- Os resultados obtidos somente se referem ao material submetido ao ensaio.

- A identificação do material analisado é responsabilidade do solicitante.

- Não se admite qualquer responsabilidade referente à exatidão da amostragem, a menos que esta tenha sido efetuada mediante nossa

própria supervisão. Salvo menção expressa, as amostras foram livremente selecionadas pelo solicitante.

- O Laboratório de Ensaios Físicos e Químicos em Polímeros não se torna responsável pela divulgação ou o uso que o solicitante, outra - O Laboratório de Ensaios Físicos e Químicos em Polímeros garante a confidencialidade dos resultados contidos no presente relatório.
 - O Laboratório de Ensaios Físicos e Químicos em Polímeros garante a confidencialidade dos resultados contidos no presente relatório de

ensaios.

- Qualquer parecer expresso neste relatório, não faz parte do escopo de acreditação.

Este relatório só deve ser reproduzido por inteiro. Reprodução de partes requer aprovação por escrita do laboratório. O Laboratório não se torna responsável em nenhum caso de interpretação ou uso indevido que se possa fazer deste documento.

OBSERVAÇÕES: Anexos 19 (Tração), 20 (HDT) e 21 (Vicat).

Kleber Augusto Zotovici Coordenador do Laboratório

F-PLA-021 Ver 06 Aprovado em 05/01/2009

Laboratório de Ensaios Físicos e Químicos em Polímeros (PLA) Escola SENAl Mario Amato - Núcleo de Tecnologia em Plásticos Av. José Odorizzi, 1.555 - São Bernardo do Campo - SP CEP 09861-000 Fone: (011) 4109-9499 r:140 Fax:(011) 4109-9499 r:140 e-mail: plastico@sp.senai.br Página 1 de 1

NÚCLEO DE TECNOLOGIA DO PLÁSTICO LABORATÓRIO DE ENSAIOS FÍSICOS E QUÍMICOS EM POLÍMEROS

Relatório de Ensaio de Tração

Máquina: Emic DL	3000 c	célula: Trd 2	27 Exter	nsômetro: -	Data: 17/0)2/12	Hora: 15:35:45	Traba	iho nº 2936
Programa: MTest v	ersão 2.02							Método de E	insalo: Tração
Ident. Amostra: >>>>	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>		>>>>>>>>>>>>>	>>Sequencial:	176/12 (17	76-007/12)	Material:: A	nostra 7	Código::
Parâmetro	>>	Tensã	0	Tensão	Def.Espe	cif.	Def.Especif.	Mod.El	ástic.
Evento Unidade	>> >>	Força Max (MPa	K. 3)	Ruptura (MPa)	Força M	lax. (%)	Ruptura (%)	(MPa)
CP 1		27.9	1	27.91	1.7	/84	1.784	5	53.0
CP 2 CP 3		27.5 32.7	0 1	27.50 32.46	1.3	104 195	1.304	7	10.5
Número C	Ps	a 0.2	3	3	14	3	3	1.0	3
Média		29.3	/ 1	29.29	1.0	784	1.784	7	10.5
Desv Pad	rão	2.89	5	2.751	.35	538	.3458		1066
Coef.Var.	(%)	9.85	5	9.392	20	.88	20.49	8	5.60
Minimo	•	27.5	0	27.50	1.3	804	1.304	5	53.0
Máximo		32.7	1	32.46	1.9	995	1.976	3	24/4
Tensão (MPa)							·		
00.00									
48.00									
36.00									
24.00	A								
	<u> / -</u>	/-							
12.00	+/								
0000									
.0000 2	.000	4.000	6.000	8.000	10.00	Def.Espe	cif. (%)		
.0000 .0000 2 CP 1	.000 [CP 2]	4.000 CP 3	6.000 CP 4	8.000 CP 5	10.00	Def.Espe	cif. (%)		39

Observação: Velocidade de ensaio: 5 mm/min

TESTING LABORATORY	PLA
IEST NAME	HDT
HEAT TRANSFER FLUID	SILICONE
TEMPERATURE RATE[C/h]	120.0
START TEMPERATURE[C]	27.5
MAX. TEMPERATURE[C]	150.0
COOLING TEMPERATURE [C]	23.0
COMMENT 176-007/12	

			STATION	1	STATION	2	STATION	3
STANDARD MATERIAL CO ORDER NO. SPECIMEN PI SPECIMEN AI	ODE REPARATION . NNEALING		ASTM AMOSTRA 7		ASTM AMOSTRA 7		ASTM AMOSTRA 7	
SPECIMEN CO TEMPERATURI HUMIDITY LENGTH	ONDITIONING E[C] [%]		23 50		23 50		23 50	
SPECIMEN DI DEPTH WIDTH SPAN STRESS APPLIED LOA TEST END	[MENSION [mm] [mm] [mm] [kPa] 4D[g] [mm]		$13.220 \\ 3.350 \\ 100.00 \\ 1820 \\ 724 \\ 0.25$		13.220 3.280 100.00 1820 709 0.25		$13.500 \\ 3.300 \\ 100.00 \\ 1820 \\ 744 \\ 0.25$	
FINAL DEFLE DISTORSION	SCTION [mm] TEMPERATURE	[C]	0.25 58.8		0.25 60.1		0.25 58.6	
COMMENT COMMENT COMMENT	STATION STATION STATION	1 2 3						

*Wed 22/02/2012 12:35 OPERATOR RS

3

TESTING LABORATORY	PLA				
VICAI IBDI TROT NAME	VICAT	LS .			
		ONTE			
HEAT TRANSFER FLOID		ONE			
TEMPERATURE RATE [C/	n] 120.0				
START TEMPERATURE	[C] 28.8				
MAX. TEMPERATURE	[C] 200.0				
COOLING TEMPERATURE	[C] 23.0				
COMMENT 176-007/12					
new whether neurons and contains					
	STATION	1	STATION	2	STATION
<u> </u>	ASTM		ASTM		ASTM
	AMOSTRA		AMOSTRA		AMOSTRA
ODDED NO	ANOSINA 7		7		7
URDER INU.	7		,		7
SPECIMEN PREPARATION					
SPECIMEN ANNEALING					
SPECIMEN CONDITIONING					

SPECIMEN CONDITIONING TEMPERATURE[C] HUMIDITY[%] LENGTH	23 50	23 50	23 50
APPLIED LOAD [N] TEST END [mm]	10.00 1.00	10.00 1.00	10.00 1.00
FINAL DEFLECTION [mm]	1.05	1,21	1.00
SOFTENING TEMPERATURE [C]	128.7	178,300	129.6
		canafaxio	
COMMENT STATION 1		\mathbf{O}	
COMMENT STATION 2			
COMMENT STATION 3			

Tue 28/02/2012 10:28 OPERATOR RS

\$

...........

		and the second	
Anexo 21	№ Sequencial (76/12	Aprovado	Data 29.02.12

PUA 4000

SENAL

RELATÓRIO DE ENSAIO

NOME DA AMOSTRA	Amostra 8		
SEQUENCIAL	176/12	REGISTRO DE AMOSTRA	176-008/12
CLIENTE	Johnson & Johnson do Brasil Ir	nd. e Com. Prod. para Saúde L	tda.
ENDEREÇO	Rua Manoel Bosco Ribeiro, 102	20 - Jd. das Industrias - São Jo	sé dos Campos - SP
CONTATO	Renato B. Pereira	CARGO R&D	

 FORMA DA AMOSTRA
 Corpo de Provas

 FABRICAÇÃO CORPO DE PROVA
 Cliente

 DATA DE EMISSÃO DO RELATÓRIO
 29/02/12

 CONDIÇÃO DE RECEBIMENTO
 Conforme

 DATA DE RECEBIMENTO
 13/02/12

Ensaios Contratados	Norma	Data realização	Unidade	Resultado
Resistência à Tração	ASTM D 638-10	17/02/12	MPa	Tensão Força Máx = $49,55 \pm 3,790$
			%	Def. Esp. F. Máx = $2,743 \pm 0,3192$
			MPa	Mód.Elast = $1646 \pm 745,6$
Temperatura de Deflexão Térmica - (HDT)	ASTM D 648-07	22/02/12	°C	59,7 ± 0,3 (Método 1,82 MPa - 120°C/h)
Temperatura de Amolecimento Vicat	ASTM D 1525-09	28/02/12	°C	132,3 ± 1,3 (Método 10 N - 120°C/h)

CLÁUSULAS DE RESPONSABILIDADE

- Os resultados obtidos somente se referem ao material submetido ao ensaio.

- A identificação do material analisado é responsabilidade do solicitante.

 Não se admite qualquer responsabilidade referente à exatidão da amostragem, a menos que esta tenha sido efetuada mediante nossa própria supervisão. Salvo menção expressa, as amostras foram livremente selecionadas pelo solicitante.

 O Laboratório de Ensalos Físicos e Químicos em Polímeros não se torna responsável pela divulgação ou o uso que o solicitante, outra pessoa ou entidade venham a fazer dos resultados do presente relatório.

- O Laboratório de Ensaios Físicos e Químicos em Polímeros garante a confidencialidade dos resultados contidos no presente relatório de ensaios.

- Qualquer parecer expresso neste relatório, não faz parte do escopo de acreditação.

Este relatório só deve ser reproduzido por inteiro. Reprodução de partes requer aprovação por escrita do laboratório. O Laboratório não se torna responsável em nenhum caso de interpretação ou uso indevido que se possa fazer deste documento.

OBSERVAÇÕES: Anexos 22 (Tração), 23 (HDT) e 24 (Vicat).

Kleber Augusto Zotovici Coordenador do Laboratório

F-PLA-021 Ver 06 Aprovado em 05/01/2009

Laboratório de Ensaios Físicos e Químicos em Polimeros (PLA) Escola SENAI Mario Amato - Núcleo de Tecnologia em Plásticos Av. José Odorizzi, 1.555 - São Bernardo do Campo - SP CEP 09861-000 Fone: (011) 4109-9499 r:140 Fax:(011) 4109-9499 r:140 e-mail: plastico@sp.senai.br Página 1 de 1

NÚCLEO DE TECNOLOGIA DO PLÁSTICO LABORATÓRIO DE ENSAIOS FÍSICOS E QUÍMICOS EM POLÍMEROS

Relatório de Ensaio de Tração

Máquina:	Emic DL30	00 C	élula: T	rd 27	Ext	ensômeti	ro: -	Data: 1	7/02/12	Hora: 15	:54:32	Traba	lho nº 2	937
Programa	: Wilest ver	sao 2.02									M	létodo de E	Ensalo: T	ração
Ident. Am	iostra: >>>>>>	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	>>>>>>	>>>>>>	·>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	>>>Sequ	iencial:	176/12	(176-008/1	2) Mate	rial:: \mathbf{Am}	ostra 8	Código	o::
	Parâmetro >> Evento >>	•	Te Força	ensão Max.		Tensi Ruptu	ão Ira	Def.E Forç	specif. a Max.	Def.Espe Rupl	cif. ura	Mod.El	ástic.	
	Unidade >:	>	(MPa)		(MP	a)		(%)		(%)	(MPa)	
	CP 1		4	5.34		45.3	14		2.378	2.3	78	2	2504	
	CP 2		5	0.59		49.5	59		2.877	2.8	96		273	
	CP 3		5	2.70		52.4	15		2.973	3.0	11	1	160	
	Número CPs Média Mediana Desv.Padrão Coef.Var.(%) Mínimo Máximo		4 5 3 7 4 5	3 9.55 0.59 .790 .649 5.34 2.70		49.1 49.5 3.57 7.28 45.3 52.4	3 33 59 77 11 14 15		3 2.743 2.877 .3192 11.64 2.378 2.973	2.7 2.8 .33 12. 2.3 3.0	3 62 96 72 21 78 11	1 7 4 1	3 1646 1273 45.6 5.30 1160 2504	
Tensão ^{60.00}	(MPa)	í												
48.00	/		A		Á									
36.00		/	/											
24.00			/	/										
12.00	//	/												
.0000	1	1	1								<u> </u>	1	1	
.0000	2.000	4.	000	6.0	00	8.000	122	10.00	Def.Espe	ecif. (%)		20102		
CP	I CP	4	CP3		CP4	CP	5		_					

Observação: Velocidade de ensaio: 5 mm/min

		i seren a seren	<u> </u>
Anexo 22	Nº Sequencial 176/12	Aprovado // -	Data 29.02.12

TESTING LABORATORY	PLA
HDT TEST	
TEST NAME	HDT
HEAT TRANSFER FLUID	SILICONE
TEMPERATURE RATE[C/h]	120.0
START TEMPERATURE[C]	27.7
MAX. TEMPERATURE[C]	150.0
COOLING TEMPERATURE [C]	23.0
COMMENT 176-008/12	

	STATION	1	STATION	2	STATION	3
STANDARD MATERIAL CODE ORDER NO. SPECIMEN PREPARATION SPECIMEN ANNEALING	ASTM AMOSTRA 8		AS'TM AMOSTRA 8		ASTM AMOSTRA 8	
SPECIMEN CONDITIONING TEMPERATURE[C] HUMIDITY[%] LENGTH	23 50		23 50		23 50	
SPECIMEN DIMENSION						
DEPTH [mm]	13.250		13.250		13.500	
WIDTH [mm]	3.300		3.300		3.320	
SPAN [mm] STRRSS [kDa]	100.00		100.00		100.00	
APPLIED LOAD [g]	717		717		749	
TEST END [mm]	0.25		0.25		0.25	
FINAL DEFLECTION [mm]	0.25		0.25		0.25	
DISTORSION TEMPERATURE [C]	59.3		59.8		59.9	
COMMENT STATION 1						
COMMENT STATION 2						

COMMENT STATION 3

*Wed 22/02/2012 14:32 OPERATOR RS

Anexo 23	Nº Sequencial	76/12	Aprovado	E.	-	Øata "	29.02.12

TESTING LABORATORY	PLA		
TEST NAME TEST NAME HEAT TRANSFER FLUID TEMPERATURE RATE	VICAT SILICONE /h] 120.0 [C] 27.7 [C] 200.0 [C] 23.0		
	STATION 1	STATION 2	STATION
STANDARD MATERIAL CODE ORDER NO SPECIMEN PREPARATION SPECIMEN ANNEALING	ASTM AMOSTRA 8	ASTM AMOSTRA 8	ASTM AMOSTRA 8
SPECIMEN CONDITIONING TEMPERATURE[C] HUMIDITY[%] LENGTH	23 50	23 50	23 50
APPLIED LOAD [N] TEST END [mm]	10.00 1.00	10.00 1.00	10.00 1.00
FINAL DEFLECTION [mm] SOFTENING TEMPERATURE [C]	1.00 131.0	1.00 132.4	1.00 133.5
COMMENTSTATION1COMMENTSTATION2COMMENTSTATION3			

3

Tue 28/02/2012 13:29 OPERATOR RS

Anexo	24	Nº Sequencial	176/12	Aprovado	K	* * *	Data	29 02	1.2.
L			110/10	/	<u>۲</u>			xJ.08.	IW.

APÊNDICE 11

As análises estatísticas descritas abaixo foram realizadas através de modelos de regressão para cada resposta avaliada utilizando-se o software JMP versão 10, desta forma os dados estão apresentados em inglês na forma original do programa.

A) Estudo dos efeitos dos fatores Modificador de Impacto (MI), Modificador Térmico (MT) e Recozimento (RECOZ) na resposta Temperatura de Deflexão Térmica (HDT) através de um modelo de regressão.

Summary of Fit

RSquare RSquare Adj Root Mean Square Error Mean of Response Observations (or Sum Wats)	<mark>0,981624</mark> 0,978561 0,967184 52,066 50	← Proporção da variância explicada pelo modelo de regressão
Observations (or Sum Wgts)	50	

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	7	2098,7635	299,823	320,5143
Error	42	39,2887	0,935	Prob > F
C. Total	49	2138,0522		<mark><,0001*</mark>

← Teste global de significancia do modelo

Parameter Estimates				
Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	54,25975	0,269632	201,24	<,0001*
MT	-0,18761	0,086285	-2,17	0,0354*
MI	-1,136157	0,237128	-4,79	<,0001*
(MT-2)*(MI-0,67)	-0,132238	0,136342	-0,97	0,3377
RECOZ[0]	-6,421166	0,138901	-46,23	<,0001*
(MT-2)*RECOZ[0]	-0,16745	0,086285	-1,94	0,0590
(MI-0,67)*RECOZ[0]	-1,445273	0,237128	-6,09	<,0001*
(MT-2)*(MI-0,67)*RECOZ[0]	-0,211862	0,136342	-1,55	0,1277

MI Leverage Plot

Least	Squares means	rable	
Level	Least Sq Mean	Std Error	Mean
0	46,702139	0,18017366	46,6517
1	59,544470	0,21145193	59,5429

mais importante na resposta HDT

Scaled Estimates

Nominal factors expanded to all levels

Continuous factors centered by mean, scaled by range/2

Term	Scaled	Plot Estimate	Std Error	t Ratio	Prob> t
Intercept	53.123304		0.138901	382.45	<.0001*
RECOZ[1]	6,4211656		0,138901	46,23	<.0001*
(MI-0,67)*RECOZ[1]	1,0839549		<mark>0,177846</mark>	6,09	<mark><,0001*</mark>
(MT-2)*RECOZ[1]	0,3349		0,172569	1,94	0,0590
(MT-2)*(MI-0,67)*RECOZ[1]	0,3177934		0,204514	1,55	0,1277
(MT-2)*(MI-0,67)	-0,198357		0,204514	-0,97	0,3377
(MT-2)*(MI-0,67)*RECOZ[0]	-0,317793		0,204514	-1,55	0,1277
(MT-2)*RECOZ[0]	-0,3349		0,172569	-1,94	0,0590
MT	-0,375221		0,172569	-2,17	0,0354*
MI	-0,852117		<mark>0,177846</mark>	<mark>-4,79</mark>	<mark><,0001*</mark>
(MI-0,67)*RECOZ[0]	<mark>-1,083955</mark>		<mark>0,177846</mark>	<mark>-6,09</mark>	<mark><,0001*</mark>
RECOZ[0]	<mark>-6,421166</mark>		<mark>0,138901</mark>	<mark>-46,23</mark>	<mark><,0001*</mark>

Pareto Plot of Transformed Estimates						
Term	Orthog Estimate					
RECOZ[0]	-6,322742					
(MI-0,67)*RECOZ[0]	-0,852912					
МІ	-0,732881					
МТ	-0,675000					
(MT-2)*(MI-0,67)	-0,391527					
(MT-2)*RECOZ[0]	-0,282036					
(MT-2)*(MI-0,67)*RECOZ[0	-0,212543					

Os fatores significantes na resposta HDT, de acordo com a análise estatística global do experimento foram Recozimento (RECOZ), Modificador de Impacto (MI) e a interação entre Recozimento e Modificador de Impacto (MI*RECOZ).

Na prática o único fator significante na resposta HDT é o Recozimento (RECOZ), a interação tem influência no resultado aproximadamente 7 vezes menor que o fator Recozimento e o fator MI isolado tem influência no resultado aproximadamente 8,5 vezes menor que o fator recozimento.

B) Estudo dos efeitos dos fatores Modificador de Impacto (MI), Modificador Térmico (MT) e Recozimento (RECOZ) na resposta Temperatura de Amolecimento Vicat (VICAT) através de um modelo de regressão.

Summary of Fit

RSquare	<mark>0,970884</mark>
RSquare Adj	0,966032
Root Mean Square Error	7,323566
Mean of Response	90,214
Observations (or Sum Wgts)	50

← Proporção da variância explicada pelo modelo de regressão

Analysis of Variance

Parameter Estimates

Source	DF	Sum of Squares	Mean Square	F Ratio	
Model	7	75116,306	10730,9	200,0742	
Error	42	2252,654	53,6	Prob > F	
C. Total	49	77368,960		<mark><,0001*</mark>	← Teste global de

significancia do modelo

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	100,1221	2,041671	49,04	<,0001*
MT	-1,090774	0,653352	-1,67	0,1025
MI	-2,219262	1,795547	-1,24	0,2233
(MT-2)*(MI-0,67)	-0,352663	1,032392	-0,34	0,7344
RECOZ[0]	-39,08777	1,051769	-37,16	<,0001*
(MT-2)*RECOZ[0]	0,1676913	0,653352	0,26	0,7987
(MI-0,67)*RECOZ[0]	0,3639301	1,795547	0,20	0,8404
(MT-2)*(MI-0,67)*RECOZ[0]	0,1510691	1,032392	0,15	0,8844

Whole Model **Actual by Predicted Plot**

Residual by Predicted Plot

MT*MI*RECOZ

Os Levarage Plots mostram que o fator RECOZ é

o mais importante na resposta VICAT

Scaled Estimates

Nominal factors expanded to all levels

Continuous factors centered by mean, scaled by range/2

Term	Scaled Estimate Plot Estimate	Std Error	t Ratio	Prob> t
Intercept	96,453652	1,051769	91,71	<,0001*
RECOZ[1]	39,087766	<mark>1,051769</mark>	<mark>37,16</mark>	<mark><,0001*</mark>
(MT-2)*RECOZ[0]	0,3353826	1,306704	0,26	0,7987
(MI-0,67)*RECOZ[0]	0,2729475	1,34666	0,20	0,8404
(MT-2)*(MI-0,67)*RECOZ[0]	0,2266036	1,548588	0,15	0,8844
(MT-2)*(MI-0,67)*RECOZ[1]	-0,226604	1,548588	-0,15	0,8844
(MI-0,67)*RECOZ[1]	-0,272948	1,34666	-0,20	0,8404
(MT-2)*RECOZ[1]	-0,335383	1,306704	-0,26	0,7987
(MT-2)*(MI-0,67)	-0,528994	1,548588	-0,34	0,7344
MI	-1,664446	1,34666	-1,24	0,2233
MT	-2,181547	1,306704	-1,67	0,1025
RECOZ[0]	-39,08777	<mark>1,051769</mark>	<mark>-37,16</mark>	<mark><,0001*</mark>

Pareto Plot of Transformed Estimates

Term	Orthog Estimate	
RECOZ[0]	-38,49890	
MT	-3,71500	
(MT-2)*(MI-0,67)	-2,03695	
MI	-1,43708	
(MT-2)*RECOZ[0]	0,27042	
(MI-0,67)*RECOZ[0]	0,22246	
(MT-2)*(MI-0,67)*RECOZ[0	0,15155	

Os fatores significantes na resposta VICAT, de acordo com a análise estatística global do experimento foi o Recozimento (RECOZ), com influência no resultado no mínimo 10 vezes maior que qualquer outro fator ou interação.

C) Estudo dos efeitos dos fatores Modificador de Impacto (MI), Modificador Térmico (MT) e Recozimento (RECOZ) na resposta Módulo de Elasticidade (E) através de um modelo de regressão.

Whole Model Actual by Predicted Plot

Summary of Fit

RSquare RSquare Adj Root Mean Square Error Mean of Response Observations (or Sum Wgts)	0,615467 0,585559 389,65 2031,44 98	← Propor pelo mod	rção da variâr elo de regress	ncia expli aão	cada
Analysis of variance					
Source DF Sum of Squares	Mea	n Square	F Ratio		
Model 7 21870753		3124393	20,5786		
Error 90 13664440		151827	Prob > F		
C. Total 97 35535193			<mark><,0001*</mark>	← Test	te global de
				signific	cancia do modelo
Parameter Estimates					
Term	Es	stimate	Std Error	t Ratio	Prob> t
Intercept	176	7,4653	85,99647	20,55	<.0001*
MT	-61	.30754	26,92953	-2.28	0.0252*
MI	270	.16866	77,29309	3.50	0.0007*
(MT-2)*(MI-0.65816)	-15	3.5915	43,31295	-3.55	0.0006*
BECOZI01	402	68495	45,82122	8.79	< 0001*
(MT-2)*BECOZ[0]	78	704463	26,92953	2,92	0 0044*
(MI-0 65816)*BECOZ[0]	245	75852	77 29309	3 18	0.0020*
(MT-2)*(MI-0,65816)*RECOZ[0]	88,0	037046	43,31295	2,03	0,0450*

Least Squares Means Table						
Level	Least Sq	Std Error	Mean			
	Mean					
0	2225,3503	45,308357	2230,01			
1	1419,9804	79,658582	1419,17			

MT*MI*RECOZ Leverage Plot

Os Levarage Plots mostram que todos os fatores e

interações impactam de alguma maneira, negativa ou positivamente, na resposta Módulo de Elasticidade

Scaled Estimates

Nominal factors expanded to all levels

Continuous factors centered by mean, scaled by range/2

Term	Scaled Estimate	Plot Estimate	Std Error	t Ratio	Prob> t
Intercept	1822,6653		<mark>45,82122</mark>	<mark>39,78</mark>	<mark><,0001*</mark>
RECOZ[0]	<mark>402,68495</mark>		<mark>45,82122</mark>	<mark>8,79</mark>	<mark><,0001*</mark>
MI	202,6265		<mark>57,96982</mark>	<mark>3,50</mark>	<mark>0,0007*</mark>
(MI-0,65816)*RECOZ[0]	<mark>184,31889</mark>		<mark>57,96982</mark>	<mark>3,18</mark>	<mark>0,0020*</mark>
(MT-2)*RECOZ[0]	157,40893		<mark>53,85906</mark>	<mark>2,92</mark>	<mark>0,0044*</mark>
(MT-2)*(MI-0,65816)*RECOZ[0]	132,05557		<mark>64,96942</mark>	<mark>2,03</mark>	<mark>0,0450*</mark>
MT	-122,6151		<mark>53,85906</mark>	<mark>-2,28</mark>	<mark>0,0252*</mark>
(MT-2)*(MI-0,65816)*RECOZ[1]	-132,0556		<mark>64,96942</mark>	-2,03	<mark>0,0450*</mark>
(MT-2)*RECOZ[1]	<mark>-157,4089</mark>		<mark>53,85906</mark>	-2,92	<mark>0,0044*</mark>
(MI-0,65816)*RECOZ[1]	<mark>-184,3189</mark>		<mark>57,96982</mark>	<mark>-3,18</mark>	<mark>0,0020*</mark>
(MT-2)*(MI-0,65816)	-230,3873		<mark>64,96942</mark>	-3,55	<mark>0,0006*</mark>
RECOZ[1]	<mark>-402,6849</mark>		<mark>45,82122</mark>	<mark>-8,79</mark>	<mark><,0001*</mark>

Pareto Plot of Transformed Estimates

Term	Orthog Estimate	
RECOZ[0]	-38,49890	
МТ	-3,71500	
(MT-2)*(MI-0,67)	-2,03695	
MI	-1,43708	
(MT-2)*RECOZ[0]	0,27042	
(MI-0,67)*RECOZ[0]	0,22246	
(MT-2)*(MI-0,67)*RECOZ[0	0,15155	

Todos os fatores foram significantes na resposta Módulo Elástico, de acordo com a análise estatística global do experimento. O fator isolado mais significante, impactando no aumento da resposta, foi o MI. O fator isolado mais significante, impactando na redução da resposta, foi o RECOZ. O fator MT também impacta reduzindo a resposta Módulo de Elasticidade.

Para facilitar a análise, isolando-se o fator RECOZ que é o mais significante, o que se nota é que sem o recozimento o MT não tem influência nenhuma na resposta e o MI influencia de modo a aumentar o Módulo de Elasticidade. Já com recozimento, o MT age de modo a reduzir a resposta e o MI perde sua influência.

D) Estudo dos efeitos dos fatores Modificador de Impacto (MI), Modificador Térmico (MT) e Recozimento (RECOZ) na resposta Resistência à Tração (τ) através de um modelo de regressão.

Whole Model Actual by Predicted Plot

Summary of Fit

RSquare RSquare Adj Root Mean Square E Mean of Response Observations (or Sun	rror n Wgts	3)	<mark>0,621367</mark> 0,591918 5,290564 54,56673 98	← Proporção da variância explicada pelo modelo de regressão				
Analysis of Varia	ance							
Source	DF	Sum of Squares	Mean	Square	F Ratio			
Model	7	4134,0584	:	590,580	21,0996			
Error	90	2519,1057		27,990	Prob > F			
C. Total	97	6653,1642			<mark><,0001*</mark>	← Test	e global de	
						signific	ancia do mod	lelo
Parameter Estim	nates							
Term			Esti	mate	Std Error	t Ratio	Prob> t	
Intercept			52,65	2541	1,167637	45,09	<,0001*	
MT			-0,79	3746	0,365642	-2,17	0,0326*	
MI			-0,00	0863	1,049465	-0,00	0,9993	
(MT-2)*(MI-0,65816)			0,342	1452	0,588092	0,58	0,5622	
RECOZ[0]			6,826	1993	0,622148	10,97	<,0001*	
(MT-2)*RECOZ[0]			-1,03	5873	0,365642	-2,83	0,0057*	
(MI-0,65816)*RECOZ	Z[0]		1,495	8033	1,049465	1,43	0,1575	
(MT-2)*(MI-0,65816)*	*RECC	DZ[0]	-0,81	2379	0,588092	-1,38	0,1706	

Residual by Predicted Plot

MT*MI Leverage Plot

RECOZ Leverage Plot

Least Squares Means Table

Level	Least Sq Mean	Std Error	Mean
0	57,890681	0,6151848	57,9004
1	44,238282	1,0815830	44,2879

MT*MI*RECOZ Leverage Plot

Os Levarage Plots mostram que o fator RECOZ e

MT são os mais importante na resposta Resistência à Tração.

Interaction Profiles

MI*RECOZ Leverage Plot

Scaled Estimates

Nominal factors expanded to all levels

Continuous factors centered by mean, scaled by range/2

Term	Scaled Plot Estimate Estimate	Std Error	t Ratio	Prob> t
Intercept	51,064482	0,622148	82,08	<,0001*
RECOZ[0]	6,8261993	<mark>0,622148</mark>	<mark>10,97</mark>	<mark><,0001*</mark>
(MT-2)*RECOZ[1]	2,0717455	<mark>0,731284</mark>	<mark>2,83</mark>	<mark>0,0057*</mark>
(MT-2)*(MI-0,65816)*RECOZ[1]	1,2185679	0,882137	1,38	0,1706
(MI-0,65816)*RECOZ[0]	1,1218525	0,787099	1,43	0,1575
(MT-2)*(MI-0,65816)	0,5132178	0,882137	0,58	0,5622
MI	-0,000648	0,787099	-0,00	0,9993
(MI-0,65816)*RECOZ[1]	-1,121852	0,787099	-1,43	0,1575
(MT-2)*(MI-0,65816)*RECOZ[0]	-1,218568	0,882137	-1,38	0,1706
MT	-1,587491	<mark>0,731284</mark>	<mark>-2,17</mark>	<mark>0,0326*</mark>
(MT-2)*RECOZ[0]	-2,071746	<mark>0,731284</mark>	<mark>-2,83</mark>	<mark>0,0057*</mark>
RECOZ[1]	<mark>-6,826199</mark>	<mark>0,622148</mark>	<mark>-10,97</mark>	<mark><,0001*</mark>

Pareto Plot of Transformed Estimates

	Orthog	
Term	Estimate	
RECOZ[0]	5,837485	
MT	-2,072519	
(MT-2)*RECOZ[0]	-1,524840	
(MI-0,65816)*RECOZ[0]	0,765754	
(MT-2)*(MI-0,65816)*RECOZ[0	-0,738248	
MI	0,596802	
(MT-2)*(MI-0,65816)	-0,001935	

Os fatores significantes na resposta Resistência a Tração, de acordo com a análise estatística global do experimento foram Recozimento (RECOZ), Modificador Térmico (MT) e a interação entre Recozimento e Modificador Térmico (MT*RECOZ), sendo que o fator Recozimento apresenta influência aproximadamente 3 vezes maior que o fator Modificador Térmico isolado.
E) Estudo dos efeitos dos fatores Modificador de Impacto (MI), Modificador Térmico (MT) e Recozimento (RECOZ) na resposta Alongamento na Força Máxima (ε) através de um modelo de regressão.

Summary of Fit

RSquare	<mark>0,743916</mark>
RSquare Adj	0,723999
Root Mean Square Error	0,373174
Mean of Response	3,509398
Observations (or Sum Wgts)	98

← Proporção da variância explicada pelo modelo de regressão

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio	
Model	7	36,408886	5,20127	37,3496	
Error	90	12,533302	0,13926	Prob > F	
C. Total	97	48,942187	,	<mark><,0001*</mark>	← Teste global de
					significancia do modelo

Parameter Estimates				
Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	3,2715078	0,08236	39,72	<,0001*
MT	-0,016932	0,025791	-0,66	0,5132
MI	-0,075037	0,074025	-1,01	0,3135
(MT-2)*(MI-0,65816)	0,0470096	0,041482	1,13	0,2601
RECOZ[0]	0,6336082	0,043884	14,44	<,0001*
(MT-2)*RECOZ[0]	-0,1207	0,025791	-4,68	<,0001*
(MI-0,65816)*RECOZ[0]	-0,051878	0,074025	-0,70	0,4852
(MT-2)*(MI-0,65816)*RECOZ[0]	-0,173002	0,041482	-4,17	<,0001*

Least	Squares Means	Table	
Level	Least Sq Mean	Std Error	

Level	Least Sq Mean	Std Error	Mean
0	3,8218650	0,04339255	3,81880
1	2,5546486	0,07629031	2,55542

MT*MI*RECOZ Leverage Plot

Os Levarage Plots mostram que o fator RECOZ é

os mais importante na resposta Alongamento.

Interaction Profiles

Scaled Estimates

Nominal factors expanded to all levels

Continuous factors centered by mean, scaled by range/2

Term	Scaled Plot Estimate	Std Error	t Ratio	Prob> t
	Estimate			
Intercept	3,1882568	0,043884	72,65	<,0001*
RECOZ[0]	0,6336082	<mark>0,043884</mark>	<mark>14,44</mark>	<mark><,0001*</mark>
(MT-2)*(MI-0,65816)*RECOZ[1]	0,2595035	<mark>0,062222</mark>	<mark>4,17</mark>	<mark><,0001*</mark>
(MT-2)*RECOZ[1]	0,2414003	<mark>0,051582</mark>	<mark>4,68</mark>	<mark><,0001*</mark>
(MT-2)*(MI-0,65816)	0,0705143	0,062222	1,13	0,2601
(MI-0,65816)*RECOZ[1]	0,0389084	0,055519	0,70	0,4852
MT	-0,033864	0,051582	-0,66	0,5132
(MI-0,65816)*RECOZ[0]	-0,038908	0,055519	-0,70	0,4852
MI	-0,056278	0,055519	-1,01	0,3135
(MT-2)*RECOZ[0]	-0,2414	0,051582	-4,68	<mark><,0001*</mark>
(MT-2)*(MI-0,65816)*RECOZ[0]	-0,259504	0,062222	<mark>-4,17</mark>	<mark><,0001*</mark>
RECOZ[1]	-0,633608	<mark>0,043884</mark>	<mark>-14,44</mark>	<mark><,0001*</mark>

Pareto Plot of Transformed Estimates

	Orthog	
Term	Estimate	
RECOZ[0]	0,5450404	/
(MT-2)*RECOZ[0]	-0,1794449	
(MT-2)*(MI-0,65816)*RECOZ[0	-0,1572157	
MT	-0,1206358	1 1
MI	-0,0391185	
(MT-2)*(MI-0,65816)	-0,0282176	1.1
(MI-0,65816)*RECOZ[0]	-0,0255618	

Os fatores significantes na resposta Alongamento na Força Máxima, de acordo com a análise estatística global do experimento foram Recozimento (RECOZ) e as interações entre Recozimento e MT (MT*RECOZ), além da interação (RECOZ*MT*MI), sendo que o fator Recozimento apresenta influência pelo menos 3 vezes maior que os outros fatores ou interações.

APÊNDICE 12

Difratogramas de Raios-X - antes do tratamento de recozimento

2 Theta

Difratogramas de Raios-X – após tratamento de recozimento

2 Theta