Esta versão corresponde a redação final da Tese de Mestrado em Engenharia Química, defendida pelo Eng² Sílvio Diniz de Medeiros, e aprovada pela Comissão Julgadora em .28./.05./1983.

Prof. Dr. Saul Gonçalves d'Avila Orientador

UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE ENGENHARIA QUIMICA ÁREA DE CONCENTRAÇÃO DESENVOLVIMENTO DE PROCESSOS QUIMICOS

EQUILÍBRIO LÍQUIDO-VAPOR UTILIZANDO UMA NOVA RELAÇÃO P-V-T CÚBICA

Autor: Silvio Diniz de Medeiros 46⁴⁴ Orientador: Prof. Dr. Saul G./d'Ávila D'Avila, Saul Jergan

Tese apresentada à Faculdade de Engenharia Química como parte dos requisitos exigidos para a obtenção do título de Mestre em Engenharia Química.

> MAI 0/1993 CAMPINAS - SP

UND.	BC
tte (11	M4672
÷.	19622
	261193
: 	X
ъ.,	a\$ 100,000,00
þ. í	28)07/93
N.º Ori	/

CM-00047514-2

FICHA CATALOGRAFICA ELABORADA PELA BIBLIOTECA CENTRAL - UNICAMP

Medeiros, Silvio Diniz de
M467e Equilibrio Tiquido-vapor utilizando uma nova relacao P-V-T cubica / Silvio Diniz de Medeiros. -- Campinas, SP : [s.n.], 1993.
Orientador : Saul G. d'Avila. Dissertacao (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Quimica.
1. Termodinamica. 2. Equilibrio líquido-vapor. 3. Equaçoes de estado. I. D'Avila, Saul Goncalves. II. Universidade Estadual de Campinas, Faculdade de Engenharia, Saul Goncalves. II. Universidade Estadual de Campinas, Faculdade de Engenharia Quimica. III.
Titulo. 20. CDD. -541.369 -541.942

Indices para Catalogo Sistematico:

- 1. Termodinamica 541.369
- 2. Equilibric liquido-vapor 660.296
- 3. Equacoes de estado 541.042

Tese defendida e aprovada, em 28 de maio de 1993, pela banca examinadora constituída pelos professores:

- Prof. Dr. Saul Gonçalves 🔊 Avila

warp Maciel

Prof^a. Dr^a. Maria Regina Wolf Maciel

Prof^a. Dr⁴. Maria Ângela de Almeida Meireles

Aos meus pais, Francisco e Júlia, e aos meus irmãos, Lia, Ricardo e Mónica.

. .

... _____

.

AGRADECIMENTOS

AO Prof. Dr. Saul Gonçalves d'Ávila pela orientação, e todo apoio dispensado, no desenvolvimento deste trabalho.

Aos amigos e colegas do Laboratório de Propriedades Termodinâmicas, Lu, Luiz, Lúcio, Vânia, Maria Helena, Eliana, pelo companherismo, interesse e cooperação durante a realização deste trabalho.

À CAPES pelo suporte financeiro durante os últimos dois anos.

"Gente é pra brilhar, não pra morrer de fome ... "

•

- -----

. **.**

Caetano Veloso

-

INDICE

*

INDICE DE F	IGURAS	ίx
INDICE DE T	ABELAS	xiii
NOMENCLATUR	A	χυί
RESUMO		xxi
CAPITULO 1	INTRODUÇÃO	1
CAPITULO 2	REVISÃO BIBLIOGRAFICA	5
CAP1TULO 3	MECANICA ESTATÍSTICA - FUNDAMENTO TEÓRICO PARA O DESENVOLVIMENTO DA NOVA	
	RELAÇÃO P-V-T	9
CAP1TULO 4	A NOVA RELAÇÃO P-V-T Análise da Eguação Proposta no Ponto	17
	Crítico Cálculo dos Coefícientes $\alpha_i \in \beta_i$ para	19
	Substâncias Puras	20
	Extensão para Misturas	32
CAPITULO 5	APLICAÇÕES DA RELAÇÃO P-V-T PROPOSTA	34
	Cálculo de Propriedades Termodinâmicas	
	de Substâncias Puras no Equilibrio	
	Líqüido-Vapor	34
	Cálculos de Ponto de Bolha	38
	Cálculo de Entalpias	45

CAPITULO 6	CONCLUSÕES E SUGESTÕES	48
APÉNDICE A	EQUAÇÕES DEDUZIDAS E UTILIZADAS	50
APÉNDICE B	TABELAS E GRÁFICOS	61
REFERENCIAS	BIBLIOGRÁFICAS	101
ABSTRACT	· · · · · · · · · · · · · · · · · · ·	106

.

,

INDICE DE FIGURAS

FIGURA 3.1	η X Z PARA AS EQUAÇÕES DE VAN DER WAALS,	
. .	CARNAHAN-STARLING E KIM-LIN-CHAO	15
FIGURA 4.1	FLUXOGRAMA DE CALCULO DE $\alpha \in \beta$	26
FIGURA 4.2	ILUSTRAÇÃO GRÁFICA DA DEPENDÊNCIA DE α COM T	27
FIGURA 4.3	ILUSTRAÇÃO GRÁFICA DA DEPENDÊNCIA DE β COM T	27
FIGURA 4.4	ILUSTRAÇÃO GRAFICA DO AJUSTE DE α COM T .	31
FIGURA 4.5	ILUSTRAÇÃO GRÁFICA DO AJUSTE DE β COM T	31
FIGURA 5.1	DIAGRAMA P X V	35
FIGURA 5.2	FLUXOGRAMA DE CÁLCULO DE P	37
FIGURA 5.3	FLUXOGRAMA DE CÁLCULO DE K _{aij} E K _{bij}	41
FIGURA B.1	DIAGRAMAS P × V DO HIDROGÉNIO	67
FIGURA B.2	DIAGRAMAS P × V DO BENZENO	67
FIGURA B.3	DIAGRAMAS P × V DO FURFURAL	68
FIGURA B.4	DIAGRAMAS P × V DO ETANOL	68

FIGURA B.5	DIAGRAMAS P × V DO AC. ACÉTICO	69
FIGURA B.6	DIAGRAMA P x X, Y N-HEPTANO - P-XILENO	71
FIGURA B.7	DIAGRAMA P × X, Y BENZENO - TOLUENO	71
FIGURA B.8	DIAGRAMA P x X, Y BENZENO - TIOFENO	73
FIGURA B.9	DIAGRAMA P x X, Y BENZENO - ACETONA	73
FIGURA B.10	DIAGRAMA P × X,Y ÉTER DIETÍLICO - ACETONA	75-
FIGURA B.11	DIAGRAMA P × X,Y ACETALDE1DO - ACETATO DE VINILA	75
FIGURA B.12	DIAGRAMA P × X,Y CICLOPENTANO - CLOROFORMIO	77
FIGURA B.13	DIAGRAMA P x X, Y TOLUENO - 1,2 DICLOROETANO	77
FIGURA B.14	DIAGRAMA P x X, Y 1,4 DIOXANO - METANOL	79
FIGURA B.15	DIAGRAMA P x X,Y ÉTER DIETÍLICO - DICLOROMETANO	79
FIGURA B.16	DIAGRAMA P × X,Y 1-PROPANOL - 2-METIL-1-PROPANOL	81
FIGURA B.17	DIAGRAMA P x X, Y TERC-BUTANOL - 1-BUTANOL	81

FIGURA B.18 DIAGRAMA P x X,Y ÁGUA - PIRIDINA	83
FIGURA B.19 DIAGRAMA P x X,Y ÁGUA - METANOL	83
FIGURA B. 20 DIAGRAMA P \times X, Y CCl - AC. FORMICO	84
FIGURA B. 21 DIAGRAMA P x X, Y METANOATO DE BUTILA -	
ÁC. FÓRMICO	84
FIGURA B. 22 DIAGRAMA P x X, Y METANO - N-HEXANO	-
FIGURA B.23 DIAGRAMA P × X,Y ETANO - SULFETO DE	
HIDROGÉNIO	88
FIGURA B. 24 DIAGRAMA P × X, Y ETANO - ACETONA	89
FIGURA B.25 DIAGRAMA P x X,Y MONÓXIDO DE CARBONO -	
METANO	89
FIGURA B. 26 DIAGRAMA P x X, Y SULFETO DE HIDROGÉNIO -	
AGUA	90
FIGURA B. 27 DIAGRAMA P \times X, Y N-PROPANO - ETANOL	90
FIGURA B.28 DIAGRAMA P × X,Y MONÓXIDO DE CARBONO -	
ETANO	92
FIGURA B.29 DIAGRAMA P × X,Y DIÓXIDO DE CARBONO -	
N-PROPANO	92
FIGURA B.30 DIAGRAMA P x X,Y DIOXIDO DE CARBONO -	
TOLUENO	93

s.

~

ę

-

- -

FIGURA	B. 31	DI AGRAMA P	, ×	Х,Ү	SULFETO	DE	HIDROGÉNIO -	
		N-PENTANO	• •	• • • •				93

FIGURA B. 32 DIAGRAMA P × X, Y HIDROGENIO - TOLUENO 95

FIGURA B. 33 DIAGRAMA P x X, Y METANO - BENZENO 95

INDICE DE TABELAS

TABELA 4.1	RESULTADOS DOS PARAMETROS α_c , β_c PARA 90 SUBSTANCIAS PURAS	22
TABELA 4.2	LI STAGEM DOS PARAMETROS DE AJUSTE DAS EQUAÇÕES PARA CALCULO DE $\alpha \in \beta$	29
TABELA B.1	CLASSIFICAÇÃO DAS SUBSTANCIAS QUANTO AO GRAU DE POLARIDADE	71
TABELA B.2	RESULTADOS DOS DESVIOS MÉDIOS DE P_{aat} , V_{-vap} , V_{-liq} obtidos com a equação proposta e com a equação de soave	72
TABELA B.3	RESULTADOS DAS MÉDIAS DOS DESVIOS MÉDIOS DE P_{sat} , V_{rap} , V_{-liq} obtidos com a equação proposta E COM A EQUAÇão DE SOAVE	A 76
TABELA B.4	RESULTADOS DOS CALCULOS DE PONTO DE BOLHA DE SISTEMAS BINARIOS A BAIXAS PRESSÕES - SISTEMAS DO TIPO NÃO POLAR - NÃO POLAR	80
TABELA B.5	RESULTADOS DOS CALCULOS DE PONTO DE BOLHA DE SISTEMAS BINARIOS A BAIXAS PRESSÕES - SISTEMAS DO TIPO NÃO POLAR - FRACAMENTE POLAR	8 2

TABELA	B. 6	RESULTADOS DOS CALCULOS DE PONTO DE BOLHA DE	
		SISTEMAS BINARIOS A BAIXAS PRESSÕES -	
		SISTEMAS DO TIPO FRACAMENTE POLAR -	
		FRACAMENTE POLAR	74
TABELA	B.7	RESULTADOS DOS CALCULOS DE PONTO DE BOLHA DE	
		SISTEMAS BINÁRIOS A BAIXAS PRESSÕES -	
	•	SISTEMAS DO TIPO-NÃO POLAR - FORTEMENTE	
		POLAR	76
		-	
TABELA	B. 8	RESULTADOS DOS CALCULOS DE PONTO DE BOLHA DE	
		SISTEMAS BINÁRIOS A BAIXAS PRESSÕES -	
		SISTEMAS DO TIPO FRACAMENTE POLAR -	
		FORTEMENTE POLAR	78
TABELA	B. 9	RESULTADOS DOS CALCULOS DE PONTO DE BOLHA DE	
		SISTEMAS BINÁRIOS A BAIXAS PRESSÕES -	
		SISTEMAS DO TIPO FORTEMENTE POLAR -	
		FORTEMENTE POLAR	80
TABELA	B.10	RESULTADOS DOS CALCULOS DE PONTO DE BOLHA DE	
		SISTEMAS BINARIOS A BAIXAS PRESSÕES -	
		SISTEMAS AQUOSOS	82
TABELA	B.11	RESULTADOS DOS CALCULOS DE PONTO DE BOLHA DE	
		SISTEMAS BINÁRIOS A BAIXAS PRESSÕES -	
		SISTEMAS CONTENDO ACIDOS CARBOXÍLICOS	82

TABELA B. 12 RESULTADOS DOS CALCULOS DE PONTO DE BOLHA DESISTEMAS TERNARIOS85

TABELA B.13 VALORES DOS PARAMETROS KREFERENTES AOSSISTEMAS TERNARIOS95

TABELA	B.15	RESULTADOS DOS CALCULOS DE PONTO DE BOLHA DE	
		SISTEMAS BINARIOS EM CONDIÇÕES	·
		SUPERCRITICAS	101

- TABELA B.18 RESULTADOS DOS MEDIAS DOS DESVIOS MEDIOS DAS ENTALPIAS DE VAPORIZAÇÃO OBTIDOS COM A EQUAÇÃO PROPOSTAE E COM A EQUAÇÃO DE SOAVE. 110

4

NOMENCLATURA

ALFABETO LATINO

а	parâmetro de van der Waals no termo atrativo das
ć	relações P-V-T cúbicas
A	parâmetro adimensional definido pela equação (4.9)
A	energia livre de Helmholtz
A	constante específica para cada componente e
	propriedade (equações do DIPPR)
ь	parâmetro de van der Waals no termo repulsivo das
	relações P-V-T cúbicas
В	parâmetro adimensional definido pela equação (4.10)
В	segundo coeficiente do Virial
В	constante específica para cada componente e
	propriedade (equações do DIPPR)
с	parâmetro ajustável do termo atrativo da equação de
	Soave
G	parâmetro da equação de cálculo de α (eq. 4.22)
С	constante específica para cada componente e
	propriedade (equações do DIPPR)
D	parâmetro da equação de cálculo de α (eq. 4.22)
D	constante específica para cada componente e
	propriedade (equações do DIPPR)
E	parâmetro da equação de cálculo de α (eq. 4.22)
E _i	energia de um estado energético i
Ē	energia de interação intermolecular média
Е	constante específica para cada componente e
	propriedade (equações do DIPPR)

f	fugacidade
F	parâmetro da equação de cálculo de β (eq. 4.23)
F	função objetivo definida pela equação (4.
G	parâmetro da equação de cálculo de β (eq. 4.23)
G	função objetivo definida pela equacão (4.
h	constante de Planck
н	parâmetro da equação de cálculo de β (eq. 4.23)
н	entalpia
I	parâmetro da equação de cálculo de β -(eq. 4.23)
J	parâmetro da equação de cálculo de α (eq. 4.22)
k	constante de Boltzman
K	coeficiente de separação
K _{aij}	constante de interação binária
К _{. bij}	constante de interação binária
m	massa de uma partícula
n	número de componentes
N	número de moléculas
N C	número de coordenação
Р	pressão
q	função partição interna
Q	função partição
r	vetor posição
r _{ij}	distância entre duas moléculas i e j
R	constante universaol dos gases
Ra	parâmetro da equação de cálculo de $\hat{\phi}_{i}$ (eq. 5.5)
R _b	parâmetro da equação de cálculo de $\hat{\phi}_i$ (eq. 5.5)
S	função objetivo
Т	temperatura absoluta
u	potencial intermolecular
v	volume

- --

۰.

<u>v</u>	volume molar
V _f	volume livre
х	fração molar da fase líqüida
Y	fração molar da fase vapor
z	fração molar genérica
Z	fator de compressibilidade
Ζ	integral configuracional

LETRAS GREGAS

OL .	fator de dependência com a temperatura do termo
	atrativo da relação P-V-T proposta, definido pela
	equação (4.4)
ß	fator de dependência com a temperatura do termo
	repulsivo da relação P-V-T proposta, definido pela
	equação (4.5)
δ	incremento
Δ	diferença do valor de uma dada propriedade calculada
	em relação ao seu valor experimental
η	densidade reduzida = $b/(4V)$
φ	coeficiente de fugacidade
Φ	potencial médio
Ω	constante específica para cálculo de a (eq. 4.6)
Ω _b	constante específica para cálculo de b $_{c}$ (eq. 4.7)

SUBSCRITOS

at	contribuição atrativa
c	propriedade crítica
с	coordenação
Ø	eletrônico
f	excluido
g	fase gasosa
ì	componentes; moléculas; estados energéticos
j	componentes; moléculas; estados energéticos
k	componentes
1	componentes; fase líquida
L	fase líquida
liq	fase líqüida
m	propriedade da mistura
r	propriedade reduzida
r	rotacional
rep	contribuição repulsiva
sat	condições de saturação
v	vibracional
v	fase vapor
vap	fase vapor

SOBRESCRITOS

calc valor calculado

CONF configuracional

exp experimental

id ideal (gás perfeito)

estado padrão

sat condições de saturação

vap fase vapor

^ propriedade do componente na mistura

RESUMO

Uma nova relação P-V-T do tipo cúbica é proposta para o cálculo de propriedades termodinâmicas de substâncias puras e de sistemas multicomponentes em condições de equilíbrio líqüido-vapor, na faixa de baixa e alta pressão, incluíndo a região crítica.

A forma genérica da nova relação, assim como a equação de van der Waals, é expressa em termos da soma de um termo repulsivo e de um termo atrativo,

 $P = P_{rep} + P_{at}$

A correlação foi desenvolvida substituindo-se o termo repulsivo da equação de van der Waals (1873), por outro oriundo da aplicação do Modelo de Esferas Rígidas.

A aplicação da nova correlação em cálculos computacionais é bastante prática, devido a sua estrutura simples e ao pequeno tempo envolvido em resolução numérica. Nas aplicações envolvendo componentes puros, por exemplo, basta que se disponha dos valores de suas temperatura e pressão críticas, além dos parâmetros ajustáveis para cálculo das constantes $\alpha \in \beta$. Nos problemas envolvendo misturas, adicionalmente são necessárias duas constantes de interação binária. A nova correlação se aplica a sistemas com componentes subcríticos ou supercríticos, polares ou não polares.

A equação apresentou bons resultados na predição de propriedades termodinâmicas, tais como pressão de vapor, volume molares de líqüido e de vapor, e entalpias de substâncias puras. Nos cálculos de equilíbrio líqüido-vapor de misturas pode-se dizer que os resultados obtidos com a nova equação foram similares ou melhores àqueles obtidos com a equação de Redlich-Kwong-Soave (1972) (no caso de sistemas apolares em condições sub ou supercríticas) e foram superiores àqueles obtidos pelo método UNIQUAC (no caso de sistemas polares).

CAPÍTULO 1

INTRODUÇÃO

Os processos de separação convencionais tais como destilação, absorção, extração são largamente utilizados na maioria das plantas químicas.

Sabe-se que a descrição teórica de tais processos está relacionada com o equilíbrio de fases, em particular o equilíbrio líquido-vapor e o equilíbrio líquido-líquido. Portanto, é de extrema importância ter-se uma informação quantitativa do equilíbrio de fases a mais exata possível, para o projeto e simulação destes processos.

A caracterização quantitativa do estado intensivo de um sistema multifásico em equilibrio, pode ser dada por valores das variáveis termodinâmicas pressão, temperatura e frações molares dos componentes de cada fase. No entanto, as determinações experimentais dos valores destas propriedades são caras e demoradas, devendo ser evidentemente reduzidas ao minimo indispensável.

Existem diversos métodos de se gerar dados termodinâmicos de equilíbrio, entre os quais se destacam a abordagem gama-fi e a abordagem das relações P-V-T. Na abordagem gama-fi, 05 coeficientes de atividade são usados para representar а não-idealidade da fase liquida, enquanto os coeficientes de fugacidade descrevem a não-idealidade da fase vapor. Esta metodologia pode ser aplicada para descrever o comportamento de diversos tipos de sistemas em equilíbrio a pressões moderadas, sendo no entanto, não recomendável a sistemas a altas pressões ou a sistemas contendo componentes supercríticos.

As relações P-V-T juntamente com adequadas equações termodinâmicas podem também ser utilizadas para realizar cálculos envolvendo o equilíbrio de fases. Neste caso, uma só equação é usada para descrever o comportamento de todas as fases fluídas. informação, é equivalente Esta metodologia, em nível de а abordagem gama-fi, tendo a grande vantagem sobre esta última de ser aplicável a sistemas com componentes em condições críticas ou _supercríticas, além de permitir, diretamente, o cálculo de outras propriedades termodinâmicas, tais como os volumes molares de líquido e de vapor e as entalpias de vaporização.

Entre os vários tipos de relações P-V-T já estudados, as equações cúbicas mostraram ser especiais, devido a sua capacidade de representar realisticamente o comportamento de ambas as fases líquida e vapor, apesar de sua estrutura simples. A forma genérica destas equações é geralmente expressa em termos da soma de um termo repulsivo e de um termo atrativo, ou seja (Carnahan & Starling, 1972):

$$P = P_{rep} + P_{at}$$
(1.1)

Um exemplo de equação cúbica é a equação de van der Waals, representada em sua forma P por:

$$P = \frac{RT}{V - b} - \frac{a}{V^2}$$
(1.2)

onde:

$$P_{rep} = \frac{R T}{V - b}$$
 (1.3) $e P_{at} = \frac{a}{V^2}$ (1.4)

As equações cúbicas podem ser resolvidas analiticamente gerando três raízes. Quando estas raízes são reais, tem-se a situação de equilíbrio bifásico, sendo que a maior delas é identificada como o volume do vapor, a menor raíz se identifica com o volume do líqüido e a raiz intermediária não tem significado físico, pois não atende as condições de estabilidade intrisica (Van Ness & Abbott, 1982).

Desde 1873, quando van der Waals propós sua equação de estado. mais de uma centena de relações P-V-T têm sido publicadas. Anderko (1990) apresentou uma extensa revisão dos diversos tipos de relações P-V-T, não só do tipo cúbica, mas também aquelas do tipo virial, forma dos na estados correspondentes.

As relações P-V-T continuam a ser um importante assunto de pesquisa na termodinâmica aplicada, apesar do grande número de trabalhos já realizados nesta área.

Na década de setenta, muitas das relações P-V-T estudadas destinavam-se apenas à predição de propriedades termodinâmicas de sistemas apolares, em condições limitadas de temperatura e pressão. Já na década passada, muitos trabalhos publicados apresentaram relações P-V-T aplicáveis a sistemas contendo compostos polares.

Sendo assim, mais uma contribuição é proposta neste trabalho ao desenvolvimento de uma nova relação P-V-T, do tipo cúbica, adequada para predizer propriedades termodinâmicas de substâncias apolares e polares, e de suas misturas, em ampla faixa de pressão e temperatura, incluíndo a região crítica. As propriedades a serem consideradas, no caso de compostos puros, serão a pressão de saturação, os volumes molares de líqüido e de vapor, e a entalpia de vaporização. No caso de sistemas multicomponentes serão calculados as composições dos componentes na fase vapor, a temperatura (pressão) do ponto de bolha e os parámetros de

З

interação binária K_{aij} e K_{bij}.

CAPÍTULO 2

REVISÃO BIBLIOGRÁFICA

Existem numerosas relações P-V-T propostas na literatura para representar propriedades termodinâmicas de substâncias puras e de misturas. Uma boa coletânea destas relações é dada por Reid et al. (1977). Recentemente, Anderko (1990) fez uma revisão atualizada da aplicação de diversos tipos de relações P-V-T no cálculo de equilíbrio de fases. Sendo assim, não se pretende, neste capítulo, revisar este assunto exaustivamente, mas apenas comentar os trabalhos relacionados diretamente com o objetivo da dissertação.

As relações P-V-T de caráter cúbico têm uma particular importância prática, uma vez que podem ser resolvidas facilmente através de métodos matemáticos analíticos ou numéricos, gerando raízes com significado físico para o problema de equilíbrio de fases.

A primeira relação P-V-T cúbica que representou razoavelmente o comportamento de ambas as fases, líquida e vapor, foi proposta por van der Waals (1873). Esta equação foi concebida, sendo composta de um termo repulsivo e de um termo atrativo, estando ambos ligados com as forças intermoleculares de repulsão e de A conceituação desta atracão. equação permite descrever qualitativamente bem o comportamento de ambas as fases fluidas na região de baixa densidade. No entanto, o mesmo não acontece na região de alta densidade e na região crítica. Portanto, verificou-se a necessidade de elaboração de modificações consistentes nos termos que compõem esta equação.

As modificações na equação de van der Waals podem envolver alteração do termo atrativo, mantendo a forma do termo de repulsão, alteração do termo repulsivo, mantendo o termo de atração, assim como, podem promover alteração nos dois termos ao mesmo tempo.

Redlich e Kwong (1949) propuseram a primeira modificação amplamente utilizada nos cálculos de engenharia. A equação destes autores é formada pelo termo repulsivo de van der Waals e pelo termo atrativo $a/T^{0.5}$ V(V+b), onde ambos os parâmetros a e b podem ser expressos como função das propriedades críticas de temperatura e pressão. O desempenho desta correlação é superior àquele apresentado pela equação de van der Waals, principalmente na entanto, verificou-se que região crítica. No ainda havianecessidade de aprimoramento da mesma, a fim de se descrever melhor o comportamento da fase liquida, assim como predizer melhores valores de pressão de vapor. Sendo assim, Giorgio Soave (1972) propôs o termo atrativo a/V(V+b), onde o parâmetro a apresenta uma dependência com a temperatura. Esta modificação ficou conhecida como a equação de Redlich-Kwong-Soave (RKS). Posteriores alterações na dependência com a temperatura devem-se entre outros, a Graboski e Daubert (1978, 1979), Heyen (1980), Mathias (1983), Mathias e Copeman (1983), Soave (1984), Stryjek e Vera (1986), Androulakis et al. (1989) e Melhem et al. (1989). Devido à sua forma cúbica simples, outros autores continuaram estudando possíveis melhorias na equação de Soave, a fim de ampliar sua aplicabilidade, sem no entanto, aumentar o número de parâmetros envolvidos na mesma. Assim, vários trabalhos apresentaram correlações onde os parâmetros a e b foram expressos como função da temperatura. As publicações mais interessantes nesta linha devem-se a Chaudron (1973), Silva Jr. (1976), Soave (1979), Ravagnani (1983).

Deve-se registrar a importante contribuição dada por Peng e Robinson (1976). Estes autores postularam uma correlação com o termo atrativo a/[V(Y+b)+b(Y-b)], capaz de reduzir o valor de compressibilidade crítico para valores próximos dos experimentais $(Z_c = 0.321)$, além de predizer melhores valores de densidades de liquido.

Outros autores também propuzeram diferentes termos atrativos, porém com a adição de novos parâmetros em sua estrutura. Fuller (1976), Harmens e Knapp (1980), e Yu et al. (1987) apresentaram formas com três parâmetros, enquanto Adachi et al. (1983) e Trebble e Bishnoi (1987) desenvolveram formas com quatro parâmetros, e Kumar e Starling (1982) e Adachi et al. (1986) apresentaram formas com cinco parâmetros.

Existem diversos trabalhos publicados que tratam da modificação do termo repulsivo da equação de van der Waals. Carnahan e Starling (1969) propuseram uma boa expressão para este termo , considerando que o fluido em questão se comportasse de acordo com o Modelo de Esferas Rígidas. Eles aplicaram esta expressão juntamente com os termos atrativos de Redlich-Kwong e de van der Waals obtendo considerável melhoria nos resultados de cálculo de propriedades termodinâmicas. (Carnahan e Starling, 1972). Anderson e Prausnitz (1980) também desenvolveram uma nova relação P-V-T composta de um termo repulsivo de Carnahan-Starling e de um termo atrativo de van der Waals. Entretanto, deve-se salientar que estas equações perdem o caráter cúbico, requerendo portanto, maior tempo de cálculo computacional. Kim, Lin e Chao (1986) desenvolveram uma relação P-V-T do tipo cúbica onde o termo obtido repulsivo foi а partir do ajuste da equação de Carnahan-Starling para fluidos de esferas rigidas. Sendo assim, a equação apresenta os mesmos fundamentos teóricos da equação de Carnahan-Starling, tendo ainda a grande vantagem sobre esta última de manter sua forma cúbica, quando associada a apropriados termos de atração. No entanto, esta correlação não é de aplicação prática, já que apresenta cinco parâmetros a serem determinados.

Recentemente, Prausnitz e Dohrn (1990) propuseram uma relação

P-V-T composta pelo termo repulsivo de Carnahan-Starling e por um termo de atração obtido a partir de dados experimentais de isotermas críticas de algumas substâncias puras (metano, etano, propano, n-butano, dióxido de carbono e argônio), a pressão de 35 MPa. Esta equação apresenta um desempenho bem superior à equação de Peng-Robinson (1976) no cálculo de densidades de líquido, no entanto, o mesmo não acontece na predição de pressões de saturação. O grande incoveniente desta correlação reside no fato dela ser um polinômio do sétimo grau, o que por sua vez aumenta o seu tempo de resolução computacional.

Neste trabalho, propõe-se uma combinação de dois termos, atrativo e repulsivo, com o compromisso de manter o caráter cúbico da equação final, de modo que sua estrutura seja simples, permitindo representar satisfatoriamente o comportamento de fluidos reais.

CAPITULO 3

MECÂNICA ESTATÍSTICA

FUNDAMENTO TEÓRICO PARA O DESENVOLVIMENTO DA NOVA RELAÇÃO P-V-T

A maioria das relações P-V-T utilizadas nos cálculos envolvendo equilíbrio de fases foram estruturadas baseadas em modelos empíricos, como por exemplo a equação de van der Waals (van der Waals, 1873). Sendo assim, a aplicabilidade dessas relações é limitada a uma faixa de baixa densidade e a uma faixa de temperatura que não inclui a região crítica.

A falta de uma base teórica sólida na estruturação das relações P-V-T faz com que as mesmas apresentem algumas caracteríticas indesejáveis, como por exemplo a sensibilidade dos parâmetros com a temperatura, a densidade e o grau de polaridade dos componentes.

Uma das maneiras de solucionar este problema é fazer uso da teoria molecular tratada pela Mecânica Estatística. Sendo assim, pretende-se desenvolver uma nova relação P-V-T com base em argumentos teóricos fornecidos por ela.

A Mecânica Estatistica trata da descrição microscópica da matéria. O seu objetivo é mostrar como propriedades da matéria podem ser relacionadas com propriedades das moléculas individuais.

A Mecânica Estatística define uma função chamada de função partição canônica Q, que pode ser usada como o ponto de partida para a estruturação de uma nova relação P-V-T.

A definição da função partição canônica Q para N moléculas em

um volume V a temperatura T é dada por:

QCN, V, TD =
$$\sum_{i} \exp\left(-E_{i}(N, V)/kT\right)$$
 (3.1)

(Para maiores detalhes vide Hill, 1960). Na equação acima, a soma é feita sobre todos os estados energéticos E_i e k é a constante de Boltzman.

A grande utilidade prática da função partição, Q, reside na possibilidade de se estabelecer relações entre a mesma e as propriedades termodinâmicas macroscópicas do sistema.

Assim, demonstra-se que (Hill, 1960):

$$A(N, V, T) = -k T \ln Q(N, V, T)$$
 (3.2)

Através da equação (3.2) e de relações termodinâmicas clássicas pode-se obter expressões P-V-T:

$$P = -\left(\frac{\partial A}{\partial V}\right)_{T,N} = k T \left(\frac{\partial \ln Q}{\partial V}\right)_{T,N}$$
(3.3)

onde A é a energia livre de Helmholtz e P a pressão.

Esta última correlação evidencia a possibilidade da obtenção de relações P-V-T quando se conhece a expressão da função partição, Q.

Para se calcular a função partição, é conveniente separar as contribuições de energias dos vários graus de liberdade das moléculas. Assim, para um conjunto de N moléculas simples e iguais pode-se separar a energia total em tranlacional, rotacional, vibracional, eletrônica e de interação (Hill, 1960), ou seja:

Q(N, V, T) =
$$\frac{1}{N!} \left(\frac{2\pi m k T}{h^2} \right)^{(3/2)N} (q_r q_v q_o)^N Z(N, V, T)$$
 (3.4)

onde m é a massa de uma partícula, h é a constante de Planck, q_r , q_e são as contribuições dos estados rotacionais, vibracionais e eletrônicos, respectivamente, da função partição interna de uma partícula e Z é a integral configuracional que é dada por:

$$Z(N, V, T) = \int \cdots \int exp - (u(r_1, r_2, \dots, r_N)/kT) dr_1 dr_2 dr_N (3.5)$$

onde $u(r_1, r_2, \ldots, r_N)$ é a energia de interação quando uma molécula é colocada entre a posição dos vetores $r_1 e r_1 + dr_1$, uma segunda molécula é colocada entre os vetores $r_2 e r_2 + dr_2$ etc, e as integrais cobrem todos os valores de posição dos vetores dentro do volume V.

Para os gases ideias não existe energia potencial intermolecular, sendo assim, $Z^{id}(N, V, T) = V^{N}$. Conseqüentemente, pode-se calcular as propriedades configuracionais como sendo a diferença entre as propriedades reais e a propriedades dos gases perfeitos, ou seja,

 $\tilde{E}^{CONF}(N, V, T) = \tilde{E}(N, V, T) - \tilde{E}^{id}(N, V, T)$

$$= kT \left(\frac{\partial \ln Z}{\partial T} \right)_{N, V}$$
(3.6)

A Teoria de van der Waals Generalizada (Sandler, 1990) fornece uma expressão para a função partição que esclarece os fundamentos em que se baseiam as relações P-V-T atualmente em uso.

Esta teoria adota o "princípio de atividades aos pares" para

o cálculo da energia de interação. Este princípio é expresso pela seguinte equação:

$$\mathbf{u}(\mathbf{r}_{1},\mathbf{r}_{2},\ldots,\mathbf{r}_{N}) = \sum_{i=j} \sum_{i=j} u(\mathbf{r}_{ij})$$
(3.7)

onde r_{ij} é a distância entre duas moléculas i e j. Portanto, a energia total é calculada apenas pelas contribuições binárias das interações intermoleculares. Embora, esta suposição seja restritiva, seus bons resultados justificam a sua utilização.

Fazendo a integração da equação (3.6) desde a temperatura infinita até a temperatura de interesse tem-se:

$$\ln Z(N, V, T) - \ln Z(N, V, T=\omega) = \int_{T=\omega}^{T} \frac{\bar{E}^{CONF}(N, V, T)}{k T^{2}} dT (3.8)$$

Definindo o potencial médio Φ como

$$\Phi = \frac{-2kT}{N} = \int_{T=\infty}^{T} \frac{\bar{E}^{CONF}(N, V, T)}{kT^2} dT$$
(3.9)

e observando que quando T= ∞ apenas as forças repulsivas são preponderantes, então o resultado da integral configuracional (eq. 3.5) é dada por V^N, ou seja, não há volume excluído. No entanto, para moléculas de tamanho finito existe um volume excluído, podendo-se representar Z por:

$$Z(N, V, T=\infty) = V_{f}^{N}$$
 (3.10)

onde V, é chamado de volume livre (volume total menos volume

excluído). Aplicando as definições de potencial médio e volume livre na equação (3.8) e o seu resultado na expressão (3.4) obtem-se:

$$Q(N, V, T) = \frac{1}{N!} \left(\frac{2\pi m k T}{h^2} \right)^{(3/2)N} \left(q_r q_v q_e \right)^N V_f^N \exp \left(\frac{N \Phi}{2kT} \right)$$
(3.11)

Esta é a expressão da função partição generalizada de van der Waals para um fluido puro.

A esta altura, pode-se concluir que de posse das expressões para o volume livre V_f e para o potencial médio Φ , pode-se obter uma relação P-V-T de um fluido puro, utilizando para tanto, as equações (3.3), (3.11) e observando que as funções partição internas dependem apenas da temperatura.

A equação (3.11) pode ser extendida para misturas originando:

$$Q(N_1, N_2, \dots, V, T) = \prod_{i} \left[\frac{1}{N_i!} \left(\frac{2\pi m kT}{h^2} \right)^{(3/2)N_i} (q_r q_v q_e)^{N_i} \right] \times V_f^N(N_1, N_2, \dots, V, T) exp \left[\frac{-N\Phi(N_1, N_2, \dots, V, T)}{2kT} \right]$$
(3.12)

onde N = $\sum_{i} N_{i}$.

Novamente, através da equação (3.3), pode-se utilizar a equação (3.12) para deduzir a relação P-V-T de uma mistura.

Com esta revisão da Mecânica Estatística, pode-se analisar as relações P-V-T comumente utilizadas pelos engenheiros químicos, em termos das considerações feitas a respeito do volume livre V_f e do potencial médio Φ . Desta forma, consegue-se evidenciar as falhas existentes na concepção destas relações. Este procedimento foi
adotado utilizando a equação de van der Waals (Sandler,1990). Verificou-se, então, que no modelo deste autor há uma subpredição do volume livre na região de alta densidade, além do erro na consideração do número de coordenação como sendo independente da temperatura. Portanto, estas seriam, respectivamente, as causas da má predição de densidades de líquido e da difícil representação do comportamento dos fluidos próximo à região crítica.

Com o objetivo de melhorar o termo repulsivo da equação de van der Waals, Carnahan e Starling (1969) propuseram a seguinte expressão de volume livre de um fluido de esferas rígidas:

$$V_{f} = \underline{V} \exp \left[\frac{\eta (3\eta - 4)}{(1 - \eta^{2})} \right]$$
(3.13)

onde $\eta = b/4V$

Verificou-se que esta expressão é a que mais se aproxima daquela obtida através da simulação molecular computadorizada de um fluido de esferas rígidas (Sandler, 1990).

Esta expressão de V_f representa mais realisticamente o comportamento dos efeitos repulsivos intermoleculares de fluidos reais, mesmo em regiões de altas densidades.

Deve-se ressaltar que o termo repulsivo de Carnahan e Starling, quando associado a diversos termos de atração geram polinômios de graus elevados, o que por sua vez, implica em um maior tempo de cálculo computacional. A fim de obter um termo repulsivo de estrutura mais simples, Kim, Lin e Chao (1983) desenvolveram a partir do ajuste da equação (3.13) para o modelo de esferas rígidas, a seguinte expressão:

$$V_{f} = V \left(1 - 1.68 \eta \right)^{2.8999}$$
 (3.14)

A equação (3.14) produz, no cálculo de P_{rep} , o mesmo efeito que a e expressão (3.13) e tem a vantagem de poder continuar a gerar relações P-V-T cúbicas, quando combinadas com apropriados termos de atração (Vide Figura 3.1).

FIGURA 3.1 - η x Z_{rep} para as equações de van der waals, carnahan-starling e kim-lin-chao

A proposta de uma melhor expressão para o termo atrativo da equação de van der Waals, exige o conhecimento de uma correlação mais realista para o cálculo do número de coordenação. No entanto, a obtenção de correlações para N_ é muito mais difícil, já que o mesmo está intimamente relacionado à estrutura do estado líquido. Além disso, diversas pesquisas têm mostrado que N₂ depende da densidade e da temperatura na forma de equações complexas. (Lee et al., 1985). Portanto, diversos autores, com 0 intuito de simplificar 0 trabalho, recorrem а modelos empíricos ou semi-empíricos para descrever este parâmetro. Assim, mesmo que estes modelos não sejam fundamentalmente corretos, eles podem produzir um bom desempenho quando somados aos modelos de V_f , como resultado de um cancelamento de erros entre os termos repulsivo e atrativo da relação P-V-T final.

Neste trabalho foi feita uma análise de vários termos atrativos (Medeiros, S.D., 1991) que, quando combinados com o termo repulsivo de Kim-Lin-Chao, pudessem ainda gerar relações P-V-T cúbicas. Desta análise, concluiu-se que o termo atrativo de van der Waals, $a \sim V^2$, apesar de sua simplicidade, mostrou-se mais apropriado do que variações do termo de Soave na forma $a \sim V(V+cb)$, com c variando entre 0 e 1.

CAPITULO 4

A NOVA RELAÇÃO P-V-T

A equação estudada neste trabalho é composta de um termo repulsivo de Kim-Lin-Chao e de um <u>ter</u>mo atrativo de van der Waals. O termo repulsivo, P_{rep}, é obtido através da relação:

$$P_{rep} = k T \left(\frac{\partial V_{f}}{\partial V} \right)_{T,N}$$
(4.1)

onde V $_{\rm f}$ é dado pela expressão de volume livre de Kim-Lin-Chao (equação (3.14))

O termo atrativo, P_{at}, é dado pela mesma expressão fornecida pela equação de van der Waals, ou seja,

$$P_{at} = -\frac{a(T)}{v^2}$$
(4.2)

Sendo assim, a expressão da nova relação P-V-T, em sua forma P, é dada por:

$$P = \frac{R T}{V} \left(\frac{V + 0.77 bCT}{V - 0.42 bCT} \right) - \frac{aCT}{V^2}$$
(4.3)

Seguindo o mesmo procedimento adotado por Silva Jr.(1976) e Ravagnani (1983), assume-se que os parâmetros $a_i(T) = b_i(T)$ são dependentes da temperatura e definidos por:

$$a_i(T) = a_{i,i} \alpha_i(T) \tag{4.4}$$

$$\mathbf{b}(\mathbf{T}) = \mathbf{b}_{\alpha}, \boldsymbol{\beta}(\mathbf{T}) \tag{4.5}$$

sendo a e b dados pelas equações:

$$a_{ci} = \Omega_{a} R^{2} T_{ci}^{2} / P_{ci}$$
(4.6)

$$b_{ci} = \Omega_b R T_{ci} / P_{ci}$$
(4.7)

onde, $\Omega_a \in \Omega_b$ são constantes a serem determinadas posteriormente, e o índice i denota um componente puro qualquer.

A equação (4.8) pode também ser escrita em sua forma Z, onde Z é o fator de compressibilidade. Assim, obtem-se o seguinte polinômio cúbico (Vide Apêndice A):

$$Z^{3} - (0.42B + 1) Z^{2} + (A - 0.77B) Z - 0.42 AB = 0$$
 (4.8)

onde:

$$A = \frac{a_i P}{R^2 T^2}$$
 (4.9) $e B = \frac{b_i P}{R T}$ (4.10)

Para resolver a equação (4.8) pode-se utilizar o método de resolução analítico de polinômios cúbicos (Spiegel, 1968).

ANÁLISE DA EQUAÇÃO PROPOSTA NO PONTO CRÍTICO

Um dos pontos importantes no estudo de novas relações P-V-T, é o cálculo do fator de compressibilidade crítico, Z_c . Sabe-se que boas equações de estado apresentam um valor de Z_c na faixa de 0.27 a 0.37 (Prausnitz e Dohrn, 1990). Portanto, pretende-se, através da correlação proposta, calcular um valor de Z_c o mais próximo possível desta faixa.

As condições de estabilidade no ponto crítico e o Princípio dos Estados Correspondentes de dois parâmetros, exigem que as seguintes condições sejam satisfeitas a compostos puros:

$$\left(\begin{array}{c} \frac{\partial P}{\partial V} \\ - \end{array} \right)_{\mathbf{T}_{c}} = 0 \quad (4.11) \qquad \left(\begin{array}{c} \frac{\partial^{2} P}{-} \\ - \end{array} \right)_{\mathbf{T}_{c}} = 0 \quad (4.12) \\ \frac{\partial V}{-} \end{array} \right)_{\mathbf{T}_{c}} = 0 \quad (4.12)$$

Aplicando estas condições à equação (4.3), obtem-se os parâmetros a_{ci} e b_{ci} (equações 4.6 e 4.7), juntamente com os respectivos valores das constantes Ω_a e Ω_b . A obtenção dos valores de Ω_a e Ω_b encontra-se descrita no Apéndice A, de onde:

 $\Omega_{2} = 0.5510753734$

Ω = 0.2050195233

e

$$a_{ci} = 0.5510753734 R^2 T_{ci}^2 / P_{ci}$$
 (4.13)

$$b_{ci} = 0.2050195233 R T_{ci} / P_{ci}$$
 (4.14)

Tais correlações de a $_{c}$ e $_{c}$ geram um valor de Z_{c} que assume um valor constante e igual a 0.3620 para todas as substâncias, estando, portanto, dentro do limite esperado. Observa-se ainda que este valor de Z_{c} coincide com o mesmo obtido através da equação de Carnahan-Starling-van der Waals (Prausnitz e Dohrn, 1990), mostrando assim, a equivalência entre estas duas relações no ponto crítico.

CÁLCULO DOS COEFICIENTES $\alpha_i \in \beta_i$ para substâncias_puras...

A princípio, será feito o cálculo dos valores de $\alpha_i \in \beta_i$ no ponto crítico.

Verificou-se que a aplicação da equação proposta nas condições críticas fornece um valor de fator de compressibilidade constante para todas as substâncias. Assim, o cálculo de um Z específico para cada substância, através da eq. (4.3), requer o relaxamento das condições de estabilidade termodinâmica no ponto crítico. Este procedimento já é usual no desenvolvimento de novas relações P-V-T e muitos autores o adotaram no passado. (Silva Jr., 1976; Fuller, 1976; Patel, 1982; Ravagnani, 1983).

A obtenção dos parâmetros $\alpha_{ci} \in \beta_{ci}$ exige a utilização de duas relações que envolvam estas variáveis. Uma destas relações é a própria equação proposta em sua forma Z (eq. 4.8), aplicada no ponto crítico. A outra relação é dada pela imposição de igualdade das três raízes reais da equação (4.8), quando resolvida à temperatura crítica. Esta última condição pode ser expressa matematicamente por:

$$0.1764 B^2 + 3.15 B - 3.00 A + 1.00 = 0$$
 (4.15)

Resolvendo pelo método de Newton-Raphson o sistema de equações formado por (4.8) e (4.15), pode-se encontrar os valores de A_{ci} , B_{ci} , α_{ci} , β_{ci} e Z_{ci}^{calc} para o número de substâncias puras desejadas.

Na Tabela 4.1 apresenta-se os resultados destes cálculos para uma relação de 90 substâncias puras. Os mesmos foram realizados através do programa NEWTON.FOR, onde o usuário fornece dados de Z_{ci}^{exp} e obtém A_{ci}, B_{ci}, α_{ci} , β_{ci} e Z_{ci}^{calc} . Os dados de Z_{ci}^{exp} foram retirados do DIPPR (Daubert, T.E. & Danner, R.P., 1985).

Os valores de Z_{ci}^{calc} são listados na Tabela 4.1 para demonstrar a concordância com os valores de Z_{ci}^{exp} , dentro de uma tolerância pré-estabelecida de 10⁻⁷.

A partir de então, será feita a extensão do cálculo dos parâmetros α_i e β_i para a região de equilíbrio líquido-vapor.

A determinação destes parâmetros em função da temperatura foi feita utilizando dados de pressão de saturação e de volume molar de líqüido (gerados pelas equações do DIPPR), além do critério de igualdade de fugacidades, de diversas substâncias puras. Este procedimento é bastante conhecido e já foi adotado com sucesso por outros autores (Silva Jr., 1976 e Ravagnani, 1983).

Para uma substância pura, ao longo da curva de saturação, a igualdade de fugacidades em ambas as fases deve ser observada. Assim:

$$f_i^{(V)} = f_i^{(L)}$$
(4.16)

TABELA 4.1

resultados dos parâmetros α_c , β_c para 90 substâncias puras

Sabetância	Zerr	Zeale	Ac	Be	α,	₿.
Acetaldeido	0.227	0.227	0.5414	0.1960	0.9824	0.9559
Acetato de Butila	0,255	0.255	0.6462	0.2005	0.9912	0.9780
Acetato de Etila	0.252	0.252	0.5458	0.2001	0.9904	0.9761
Acetato de Metila	0.254	0.254	0.5461	0.2004	0.9910	0.9774
Acetato de Propila	0.254	0.254	0.5401	0.2004	0.9910	0.9774
Acetato de Vinila	0.263	0.263	0.5472	0.2014	0.9930	0.9825
Acetileno	0.271	0.271	0.5481	0.2022	0.9946	0.9864
Асејова	0.233	0.233	0.5426	0.1971	0.9846	0.2015
Acetonithla	0.164	0.184	0.5289	0.1844	0.9598	0.8992
Ácido Acético	0.201	0.201	0.5346	0.1897	0.9702	0.9254
Acido Pórmico	0.192	0.192	0.6318	0.1870	0.9649	0.9122
Ácido Propiónico	0.243	0.243	0.5444	0.1988	0.9879	0.9698
Acriloniteila	0.214	0.214	0.5383	0.1931	0.9768	0.9420
Água	0.233	0.233	0.5426	0.1971	0.9846	0.9615
Aldeido Propiônico	0.237	0.237	0.5434	0.1978	0.9860	0.9650
Benzeno	0.271	0.271	0.5481	0.2022	0.9946	0.9864
1,3-Butadieno	0.270	0.270	0.5480	0.2021	0.9944	0.9860
iso-Butano	0.282	0.282	0.5490	0.2031	0.9963	0.9906
n-Butano	0.274	0.274	0.5484	0.2025	0.9951	0.9877
1-Butanol	0.259	0.259	0.5468	0.2010	0.9922	0.9804
terc-Butanol	0.260	0.260	0.5469	0.2011	0.9924	0.9809
2-Butanona	0.249	0.249	0.5454	0.1997	0.9897	0.8741
1-Buteno	0.276	0.276	0.5486	0.2027	0.9954	0.9885
iso-Buteno	0.375	0.275	0.5484	0.2026	0.9953	0.3681
2-metil-2-Buteno	0.254	0.254	0.5461	0.2004	0.9910	0.9774
trans-2-Bateno	0.274	0.274	0.5484	0.2025	0.9951	0.9877
n-Butilamina	0.297	0.297	0.5500	0.2040	0.9980	0.9950
Ciclohexano	0.273	0.273	0.5483	0.2024	0.8848	0.9873
Ciclobesanol	0.232	0.232	0.5424	0.1910	0.2643	0.9606
Giciohexanona O' losse lines	0.229	0.229	0.5418	0.1204	0.9032	0.9378
Ciclopentadieno	0.375	0.210	0.0101	0.2020	0.0040	0.0072
Cicropentano	0.215	0.215	0.0103	0.2025	0.0010	0.0013
Chorobenseno	0.003	0.200	0.5409	0.2010	0.0005	0.0011
Decano	0.230	0.200	0.0100 0.6154	0.1997	0.9897	0.9741
1 2. Diclorestane	0.253	0 253	0.5101	0.2002	0.9907	0.9767
Diclosymetano	0.265	0.265	0.5474	0.2016	0.9934	0.9836
2.3-Dimetilhano	0.269	0.209	0.5479	0.2020	0.9942	0.9855
1.4-Diorano	0.254	0.254	0.5461	0.2004	0.9910	0.9774
Dióxido de Carbono	0.274	0.274	0.5484	0.2025	0.9951	0.9877
n-Dodecano	0.238	0.238	0.5435	0.1980	0.9863	0.9658
Estireno	0.261	0.261	0.5470	0.2012	0.9926	0.9815
Etano	0.284	0.284	0.5492	0.2032	0.9966	0.9914
Etanol	0.248	0.248	0.5452	0.1996	0.9894	0.9734
Eteno	0.277	0.277	0.5486	0.2028	0.9956	0.9889

TABELA 4.1 CONTINUAÇÃO

Substância	Zett	Zcale	Ac	B _c	۵c	Be
Éter Dietífico	0.262	0.262	0.5471	0.2013	0.9926	0.9620
Éter Diisopropilico	0.267	0.267	0.5477	0.2018	0.9938	0.9646
Etilacetileno	0.270	0.270	0.5460	0.2021	0.9944	0.9660
Etilbenzono	0.263	0.263	0.5472	0.2014	0.9930	0.9825
Fend	0.243	0.243	0.5444	0.1988	0.9879	0.9698
Furfacal	0.254	0.254	0.5461	0.2004	0.9910	0.9774
n-Heptano	0.263	0.263	0.5472	0.2014	0.9930	0.9825
1-Hopteno	0.262	0.262	0.5471	0.2013	0.9928	0.9820
n-Hexadecano	0.220	0.330	0.5398	0.1945	0.9795	0.9487
n-Hexano	0.264	0.264	0.5473	0.2015	0.9932	0.9831
Hidrogênio	0.305	0.305	0.5503	0.2043	0.9987	0.9966
Iodeto de Etila	0.306	0.306	0.5504	0.2044	0.9967	0.9968
lodeto de Metila	0.233	0.233	0.5436	0.1971	0.9846	0.9615
Metano	0.288	0.288	0.5494	0.2035	0.9971	0.9927
Metanosto de Butila	0.254	0.254	0.5461	0.2004	0.9910	0.9774
Metanol	0.224	0.224	0.5407	0.1954	0.9612	0.9529
Metilacetilono	0.276	0.276	0.5486	0.2027	0.9954	0.9565
2-Metilpentano	0.267	0.267	0.5477	0.2018	0.9938	0.9546
Monóxido de Carbono	0.295	0.295	0.8499	0.2039	0.9978	0.9946
Nitrobenzeno	0.259	0.253	0.5460	0.2002	0.9907	0.9767
Nitrogénio	0.292	0.292	0.5497	0.2038	0.9975	0.9938
n-Nonano	0.255	0.255	0.5462	0.2005	0.9912	0.9780
n-Ociano	0.259	0.259	0.5466	0.2010	0.9922	0.9604
iso-Pentano	0.270	0.370	0.5480	0.2021	0.9944	0.9860
n-Pentano	0.269	0.269	0.5479	0.2020	0.9942	0.9655
3-Pentanona	0.269	0.369	0.5479	0.2020	0.9942	0.9855
4-metil-2-Pentanona	0.254	0.254	0.5461	0.2004	0.9910	0.9774
I-Penieno	0.270	0.270	0.5460	0.2021	0.9944	0.9660
Piridina	0.278	0.278	0.5487	0.2028	0.9957	0.9893
Propadieno	0.271	0.271	0.5480	0.2022	0.9946	0.9864
n-Propano	0.280	0.280	0.5489	0.2030	0.9960	0.9901
1-Propanol	0.253	0.253	0.5460	0.2002	0.9907	0.9767
2-Propanol	0.248	0.248	0.5452	0.1996	0.9894	0.9734
2-metil-1-Propanol	0.25T	0.257	0.5465	0.2006	0.9917	0.9792
1-Propeno	0.275	0.275	0.5484	0.2026	0.9953	0.9881
Sulfeto de Carbono	0.276	0.276	0.5456	0.2027	0.9954	0.9885
Sulfeto de Hidrogênio	0.283	0.283	0.5491	0.2032	0.9964	0.9911
Tetracloroetileno	0.216	0.216	0.5368	0.1936	0.9778	0.9443
Tetraclorometano	0.272	0.272	0.5482	0.2023	0.9948	0.9869
Tiofeno	0.259	0.259	0.5468	0.2010	0.9922	0.9604
Tolueno	0.264	0.264	0.5473	0.2015	0.9932	0.9831
n-Undecano	0.243	0.243	0.5444	0.1986	0.9679	0.9698
m-Xileno	0.259	0.259	0.5468	0.2010	0.9922	0.9604
o-Xileno	0.263	0.263	0.5472	0.2014	0.9930	0.9625
p-Xileno	0.260	0.260	0.5469	0.2011	0.9924	0.9609

,

O coeficiente de fugacidade de uma substância pura pode ser calculado por (Reid et al, 1987):

$$\ln \phi_{i} = \ln \left(\frac{fi}{P} \right) = \int_{V}^{\infty} (Z - 1) \frac{dV}{V} + (Z - 1) - \ln Z$$
$$= \frac{1}{RT} \int_{V}^{\infty} \left(P - \frac{RT}{V} \right) \frac{dV}{V} + (Z - 1) - \ln Z \qquad (4.17)$$

Substituindo-se a equação (4.3) na expressão (4.17), obtem-se (Vide Apéndice A):

$$\ln\phi_{i} = \frac{1.19}{0.42} \ln\left(\frac{\underline{V}}{\underline{V}-0.42b}\right) + \frac{\underline{a}}{\underline{RTV}} - \ln Z + Z - 1 \quad (4.18)$$

Da igualdade de fugacidades, eq.(4.16), chega-se a:

•

$$\ln f_i^{\mathbf{V}} - \ln f_i^{\mathbf{L}} = 0 \implies \ln \phi_i^{\mathbf{V}} - \ln \phi_i^{\mathbf{L}} = 0$$
(4.19)

Aplicando-se a eq.(4.18) para cada uma das fases na equação acima, e fazendo-se as substituições e simplificações algébricas necessárias, deduz-se a seguinte equação:

$$Z_{v} - Z_{L} + \ln \left(\frac{Z_{L}}{Z_{v}}\right) - \frac{1.19}{0.42} \ln \left[\frac{Z_{L}C_{v} - 0.42B}{Z_{v}C_{L} - 0.42B}\right] + A \left(\frac{1}{Z_{L}} - \frac{1}{Z_{v}}\right) = 0 \qquad (4.20)$$

onde $Z_{v} \in Z_{L}$ são respectivamente, os fatores de compressibilidade do vapor e do líqüido, raízes da equação (4.6), para uma dada temperatura e pressão. A e B são os mesmos para ambas as fases.

Através de dados de temperatura, pressão e volume molar de líquido saturado, calcula-se o fator de compressibilidade Z_{L}^{exp} , fazendo uso da seguinte equação:

$$Z_{\underline{L}}^{exp} = \frac{P_{sat}^{exp} V_{\underline{L}}^{exp}}{R T_{sat}}$$
(4.21)

Desenvolveu-se um programa para o cálculo dos parámetros α_i e β_i a cada temperatura específica. O fluxograma do mesmo está apresentado na Figura 4.1.

A metodologia para resolução do sistema de equações dado por (4.20) e (4.21) utiliza o método desenvolvido por Nelder e Mead (1965), com a função objetivo $S = |F_1| + |G_1|$, onde $|F_1| = |G_1|$ são as equações citadas anteriormente.

As Figuras 4.2 e 4.3 mostram os resultados de α_i e β_i em função de T_{ri} para o n-butano. As demais substâncias estudadas apresentam perfis de temperatura semelhantes.

Observa-se através destas figuras, que existem duas regiões de tendências diferentes, uma região onde os pontos assumem um comportamento linear e outra onde os pontos assumem um perfil parabólico. Isto poderia sugerir um ajuste de dados de modo diferenciado em cada região dos gráficos em estudo. Este procedimento tem sido adotado por diversos autores (Silva Jr., 1976 e Ravagnani, 1983).

Neste trabalho são propostas as dependências de $\alpha \in \beta$ com T_r de acordo as equações(4.22) e (4.23), relacionadas a seguir, que ajustam os valores de $\alpha \in \beta$ ao longo de toda a faixa de temperatura de interesse, para cada substância em particular.

FIGURA 4.1 FLUXOGRAMA DE CÁLCULO DE $\alpha \in \beta$

ILUSTRAÇÃO GRÁFICA DA DEPENDÊNCIA DE B COM T,

A forma destas equações é semelhante àquela apresentada por Androulakis et al., 1989.

$$\alpha_{i} = \alpha_{ci} + C_{i}(1 - T_{ri})^{I}i + D_{i}(1 - T_{ri}) + E_{i}(1 - T_{ri})^{1.5} \quad (4.22)$$

$$\beta_{i} = \beta_{ci} + F_{i}(1 - T_{ri})^{J}i + G_{i}(1 - T_{ri}) + H_{i}(1 - T_{ri})^{1.5} \quad (4.23)$$

sendo que, se $T_{ri} \ge 1$, faz-se $\alpha_{i} = \alpha_{ci} \in \beta_{i} = \beta_{ci}$.

O ajuste destes parâmetros foi realizado através do programa AJUSTE.FOR, onde o usuário fornece os seguintes dados de entrada: $T_{r}(i)$, $V_{L}^{exp}(i)$, $P_{sat}^{exp}(i)$, $\alpha_{c}(i)$, $\beta_{c}(i)$, $T_{c}(i)$, $P_{c}(i)$, nome do componente, número de pontos a ajustar e as estimativas dos parâmetros a serem ajustados. Em seguida é feita a minimização da seguinte função objetvo:

Deve-se ressaltar que os valores de $V_L^{e\times p}(i)$ e $P_{sat}^{e\times p}(i)$ foram gerados utilizando as equações do DIPPR (Daubert & Danner,1985).

Obtém-se, assim, como dados de saída: os parâmetros CCi), DCi), ECi), JCi), FCi), GCi), HCi), ICi), onde i refere-se a cada substância pura estudada.

Assim, como resultado do programa teremos um grande banco de dados, onde constarão os parâmetros C, D, E, J, F, G, H, I, além das constantes críticas $\alpha_c \in \beta_c$, para os noventa componentes que compõem este banco (Veja Tabela 4.2).

As Figuras 4.4 e 4.5 demonstram o bom ajuste , para o n-butano, obtido utilizando as equações (4.22) e (4.23).

TABELA 4.2

LISTAGEM DOS PARÂMETROS DE AJUSTE DAS EQUAÇÕES PARA CÁLCULO DE α E β

C-Lateria		1 1			i n		1 10	
Substance.	0.010101	D	E A DURARY		<u> </u>	0	0 707041	1
Acetalacido	- 0.352505	1000000	- 0.943834	0.146503	- 0/13/2118	0,735509	- 0.726011	0.101008
Acetavo de Dutita	- 0.229012	1.110001	- 0.893628	0.130.286	- 0.30/925	0.261403	- 1.145244	0.155570
ACRESO GE ALHA	- 0.3013141	1.112000	- 0.743493	0.195108	- 0.110.241	1.0/1/1/	- 1.031233	0.20/131
Acetato de Stetua	- 0.300/22	1.101078	- 0./92.96/	0.19/438	- 0.445366	1.000/85	- 0.998/8/	0.203371
Acetato de Propeia	- 0.337058	1.047359	- 0.603/220	0.190109	- 0.458439	1.913.46.2	- 0.950315	0.203785
Acetato de vimis	- 0.355333	1.1240.8	- 0.052619	0.215860	- 0.435512	1.001(8)	- 0.9/8352	0.21,002
Acetueno	- 0.20/009	0.679015	- 0.591434	0.196568	- 0.374505	0.923538	- 0.191903	0.209983
ACELOBA	- 0.300172	0.902195	+ 0.751101	0.178366	- 0.138518	0.869/12	- 0.003010	0.180131
Aceromitika	- 0.4/1340	0.695455	• 0.690552	0.144034	- 0.053964	0.577510	- 0.5497.30	0.141165
Acado Aconico	- 0.429039	1.131583	- 0.901953	0.157030	- 0.459903	0.859712	- 0.825/49	0.161313
Acido Fórmico	- 0.479333	1.151900	- 1.171994	0.133124	- 0.5.34266	0.691527	- 0.685732	0.144320
Acido Propiônico	- 0.372367	1.370423	- 0.863332	0.186072	- 0.434226	1.006957	- 0.971422	0.174276
Acrilomtrile	- 0.412763	0.779060	- 0.706564	0.166148	- 0.503447	0.565195	- 0.524927	0.184926
Agua	- 0.311565	0.311245	0.122042	0.102176	- 0.383982	0.160775	0.074938	0.113543
Aldeído Propiónico	- 0.385950	0.875129	- 0.571294	0.199137	- 0.456678	0.719554	- 0.600206	0.203802
Bennenö	- 0.340266	0.908616	- 0.45433ð	0.244408	- 0.455308	1.067459	- 0.812206	0.256083
1-3-Butadieno	- 0.323546	0.901146	- 0.490660	0.233992	- 0.416390	0.952592	- 0.698727	0.240071
ino-Butano	- 0.341271	0.888374	- 0.437668	0.379680	- 0.416333	1.055725	- 0.847148	0.249314
n-Butano	- 0.327764	0.890781	- 0.452127	0.253049	- 0.422521	1.048514	- 0.631534	0.247402
1-Butanol	- 0.329567	0.858680	0.252278	0.167110	- 0.439606	1.079699	- 0.846690	0.183066
terc-Batanol	- 0.267915	1.085310	- 0.411275	0.155954	- 0.381945	0.112969	- 1.307079	6.179604
3-Butanona	+ 0.347134	1.049055	- 0.785757	0.181368	- 0.424522	0.882189	• 0.835816	0.191122
1-Duteno	- 0.315727	0.832458	- 0.415207	0.254052	- 0.417802	1.004465	- 0.787265	0.255772
Ho-Bateno	- 0.305566	0.814748	- 0.403781	0.233619	- 0.423934	0.966302	- 0.750023	0.249655
2-metul-2-Duteno	- 0.255209	1.095820	- 0.919588	0.158794	- 0.319461	1.021368	- 1.045563	0.1,2819
trans-2-BBlenc	* U.2004U5	1.069392	- 0.809102	0.120710	- 0.333360	0.966836	- 0.899702	0.134220
B-DUIDAIMBA	- 0.310146	0.804550	- 0.136206	0.204922	- 0.390677	0.755102	- 0.190/01	0.196303
Gicionerano	- 0.301142	1.11/585	- 0.818630	0.164405	- 0.304336	1.063408	- 0.000109	0.113910
CICIOBEXERON	- 0.294174	0.826221	- 0.221568	0.195500	- 9.11(351	1.0200/6	- 0.612675	9.220195
CRIMEIANOHA	- 0.20-12-2	1.141102	- 0.3003000 0.406074	0.001100	- 0.300117	1.046720	0.720036	0.1230000
(?iclopentance)	- 0.320130	1.007056	- 0.480878	0.221100	- 0.110507	1 104410	- 0.937540	0.2129154
Clorobenseno	- 0.397416	0.663990	0 124720	0.277612	- 0.578712	0.992368	- 0.487369	0.278582
Clorofórmia	. 0.263538	1.114551	322083.0 -	0.176123	- 0.337549	1.056477	- 1.039967	0.194670
p-Decano	- 0.350480	0.862541	- 0.138019	0.215083	- 0.434308	0.771359	- 0.561460	0.217688
1.3-Diclorostano	- 0.277658	1.016094	- 0.736840	0.186614	- 0.355484	0.938736	- 0.875700	0.193164
Dickorometano	- 0.343240	0.869653	- 0.568733	0.316236	0.436631	0.951375	- 0.826351	0.224204
2.3-Dimetilbutano	- 0.326733	0.977168	- 0.493449	0.239646	- 0.420412	0.999314	- 0.746333	0.242518
1.4-Dioxano	- 0.360592	0.687104	- 0.005646	0.327694	0.560989	0.976160	- 0.492667	0.376422
Dióxido de Carbono	- 0.790427	2.675809	- 2.149369	0.406636	- 0.904927	2.819796	- 2.515702	0.392110
n-Dodecano	- 0.352572	1.229209	- 0.638079	0.207944	- 0.466579	1.192511	- 1.166486	0.224918
Estireno	- 0.370842	1.040826	- 0.643727	0.234268	- 0.481431	1.205004	- 1.056052	0.244753
Biano	- 0.264668	0.859573	- 0.661458	0.209733	- 0.343057	0.925944	- 0.786282	0.218040
Bianol	- 0.265070	0.655812	0.348934	1.205732	- 0.348066	0.512686	- 0.224889	0.137823
Bieno	- 0.346788	1.022684	- 0.731044	0.264818	- 0.432187	1.146023	- 0.890624	0.209483

TABELA 4.2 CONTINUAÇÃO

Subatância	1 c	D	I R	1 3	I F	G G	ГВ	7
Eter Dietflico	- 0.341534	1.136675	- 0.751766	0.219896	- 0.433200	1.123909	- 0.991144	0.203795
Éter Disopropilico	- 0.342758	1.269691	- 0.733971	0.336942	0.101478	1.161933	- 1,029538	0.220045
Etilacetileno	- 0.385753	0.534672	0.026877	0.245740	- 0.513215	1.125057	- 0.793342	0.260208
Etilbenseno	- 0.273098	0.789452	- 0.397995	0.168234	- 0.369739	0.808624	- 0.707763	0.187652
Fend	- 0.282759	0.904645	- 0.223057	0.200947	- 0.389062	1.232406	- 0.823514	0.228839
Furfural	- 0.337157	1.255799	- 0.697754	0.208936	- 0.389433	0.881287	- 0.699138	0.205253
n-Heptano	- 0.299967	1.014091	- 0.593468	0.172966	- 0.406911	1.019177	- 0.931204	0.199595
1-Hepteno	- 0.292326	0.908033	- 0.511919	0.169606	- 0.368732	0.787538	- 0.689960	0.176840
n-Hexadecano	- 0.360204	1.358092	- 0.654050	0.184610	- 0.481314	1.266973	- 1.260304	0.217731
n-Hexano	- 0.325768	0.994607	- 0.548925	0.211736	- 0.428255	0.946267	- 0.737013	0.225227
Hidrogènio	- 0.224833	1.014252	- 1.189445	0.172804	- 0.276332	1.163939	- 0.875087	0.192400
Iodeto de Etila	- 0.148905	0.988299	- 0.846706	0.159643	- 0.21261å	0.796923	- 0.805826	0.182069
Iodeto de Metila	- 0.383643	0.592462	- 0.453805	0.157498	- 0.497958	0.902220	- 0.816470	0.180254
Metano	- 0.128783	- 0.105364	0.462410	0.916898	- 0.169615	- 0.046732	0.470006	0.121975
Metanuato de Butila	- 0.356215	1.174805	- 0.673750	0.192127	0.426971	1.093899	- 1.009710	0.195226
Metanol	- 0.386730	1.059576	- 0.532706	0.152037	- 0.488862	0.893784	- 0.753574	0.175203
Metilacetilano	- 0.321948	1.078589	- 0.775794	0.319752	- 0.418202	1.127930	- 1.014565	0.228539
2-Metilpentano	- 0.295921	0.973771	- 0.578036	0.192543	- 0.388515	0.997663	- 0.881272	0.206619
Monóxido de Carbono	- 0.309549	1.060293	- 0.852450	0.314026	- 0.414187	1.151635	- 0.868354	0.312532
Nitrobenzeno	- 0.320965	1.251148	- 1.098417	0.165024	- 0.401026	0.631549	- 0.672910	0.174351
Nitrogénic '	- 0.182378	0.776951	- 0.783321	0.131236	0.261904	0.972921	- 1.004750	0.158400
B-NoBARO	- 0.317960	0.811294	- 1.654053	0.206564	0.409434	0.605260	- 0.646526	0.210234
n-Octano	- 0.414514	1.695635	- 1.468626	0.239101	0.510256	1.659259	- 1.820931	0.239180
iso-Pentano	- 0.292104	0.954464	- 0.562497	0.208400	- 0.385761	1.074683	- 0.930423	0.216154
n-Pentano	- 0.283374	0.940552	- 0.626416	0.192850	- 0.385286	1.035159	- 0.968737	0.208806
3- Pentanona	- 0.31577a	1.005366	- 0.677114	0.172594	- 0.412228	0.943310	- 0.916137	0.185376
4-metil-2-Pentanona	- 0.276350	1.105550	- 0.631990	0.173284	- 0.383142	0.945174	- 0.917687	0.196440
1-Penteno	- 0.233375	1.010863	- 0.933003	0.127631	- 0.331146	1.057420	- 1.227386	0.161261
Piridina	- 0.279776	0.848494	0.553005	0.218138	• 0.360600	0.811018	- 0.745837	0.225884
Propadieno	- 0.294380	1.386702	- 1.523283	0.211264	- 0.416406	1.425994	- 1.550473	0.237804
n-Propano	- 0.276453	0.843063	- 0.572712	0.318544	0.366656	0.964498	- 0.838525	0.222150
1-Propanol	- 0.263912	0.610243	- 0.408483	0.133317	0.349739	0.607477	- 0.401114	0.144712
2-Propanol	- 0.325640	0.715179	0.424956	0.105164	- 0.474782	0.854385	- 0.493138	0.225709
2-metil-1-Propanol	- 0.410444	1.173182	- 0.615690	0.217890	- 0.551752	1.497268	- 1.237724	0.178604
1-Propeno	- 0.263209	0.856316	- 0.622944	0.209077	- 0.344228	0.910281	- 0.789451	0.218946
Sulieto de Carbono	- 0.288439	1.089533	- 0.836704	0.215838	- 0.358297	1.149142	- 0.956136	0.224192
Suffeto de Hidrogemo	- 0.246847	0.742779	- 0.536766	0.176995	- 0.358995	1.153446	- 1.051290	0.208455
Tetraclorostileno	- 0.304850	1.079805	- 0.781230	0.169084	- 0.371390	1.250927	- 1.214613	0.196440
Tetrackrometano	- 0.277395	0.845942	- 0.496199	0.187868	- 0.393620	1.051084	- 0.890131	0.512881
TIOMBO	- 0.309597	1.074332	- 0.801719	0.208064	* 0.390253	1.140269	- 1.01/868	0.222220
Tolaeno	- U.269329	1.012879	- U./65864	0.1/7248	- 0.381803	1.029541	- 1.0442.96	0.123007
n-Undecano	- 0.341232	1.219514	- 0.650463	0.155517	- U.101576	1.226032	- 1.105335	0.213330
m-Alienc	- 0.2,1694	0.885930	- 0.617176	U.155794	- 0.350066	0.741195	- 0.(34174	0.1+1-52+
0- Alieno	- 0.525832	1.062679	- 0.715415	0.215308	- 0.412949	0.955249	- 0.809517	0.221000
р-Лыево	- 0.303936	0.888668	- 0.535090	0.200330	- 0.400480	9041£8.0	0.703073	0.207704

ILUSTRAÇÃO GRÁFICA DO AJUSTE DE \propto COM T_r

FIGURA 4.5 ILUSTRAÇÃO GRÁFICA DO AJUSTE DE β com t.

EXTENSÃO PARA MISTURAS

A extensão da relação P-V-T proposta para sistemas multicomponentes, é obtida de equações empricas que relacionam os parâmetros $a_m(T,z_i) = b_m(T,z_i)$ da mistura com os parâmetros $a_i(T)$ $= b_i(T)$ dos componentes puros.

Foram adotadas as regras de mistura propostas por <u>So</u>ave (1979):

$$a_{m} = \sum_{i} \sum_{j} z_{i} z_{j} a_{ij}$$
(4.25)

$$\mathbf{b}_{m} = \sum_{i} \sum_{j} z_{i} z_{j} \mathbf{b}_{ij}$$
(4.26)

onde z_i e z_j representam as frações molares dos componentes i e j em qualquer das duas fases, líqüida ou vapor.

Nestas equações, quando i = j, tem-se $a_{ii} = a_i e b_{ii} = b_i$. Para $i \neq j$, os coeficientes cruzados $a_{ij} e b_{ij}$ são dados por:

$$a_{ij} = (a_i, a_j)^{0.5} (1 - K_{aij})$$
 (4.27)

$$b_{ij} = 1/2 (b_i + b_j)(1 - K_{bij})$$
 (4.28)

sendo K_{aij} e K_{bij}, dois parâmetros binários, cujos valores são obtidos por ajuste de dados experimentais de equilibrio líquido-vapor. Estes parâmetros são considerados independentes da temperatura e da composição.

Assim, para se efetuar um cálculo envolvendo o equilibrio liquido-vapor de misturas multicomponentes são necessários os dados críticos dos componentes, juntamente com suas constantes para cálculo dos parámetros α e β , assim como os valores dos parámetros K_{ij}, para cada par de substâncias.

CAPITULO 5

APLICAÇÕES DA RELAÇÃO P-V-T PROPOSTA

CÁLCULO DE PROPRIEDADES TERMODINÂMICAS DE SUBSTÂNCIAS PURAS NO EQUILÍBRIO LÍQUIDO-VAPOR

Nos cálculos envolvendo o equilíbrio líquido-vapor de um sistema monocomponente basta que se conheça a temperatura (pressão) do mesmo, para que seja determinada sua pressão (temperatura) de saturação definindo-o completamente. Sendo assim, as demais propriedades termodinâmicas, tais como os volumes molares de líquido e de vapor são automaticamente calculados.

Um dos pontos importantes a considerar quando investiga-se uma nova relação P-V-T é a determinação da pressão de saturação. Uma boa relação deve ser capaz de predizer o mais precisamente possível as pressões de saturação dos componentes puros.

O cálculo da pressão de saturação através de equações P-V-T é feito baseando-se na regra das áreas de Maxwell (Callen, 1985), ilustrada na Figura 5.1. De acordo com esta regra, a pressão e os volumes de saturação a uma dada temperatura são determinadas pela interseção de uma linha horizontal com o envelope bifásico, de modo que as duas áreas sejam iguais. Matematicamente, esta condição pode ser escrita por:

FIGURA 5.1 - DIAGRAMA P X V

$$AREA = \int_{\mathbf{v}_{L}}^{\mathbf{v}_{V}} P \, dV - P^{sat} (\mathbf{v}_{V} - \mathbf{v}_{L}) = \int_{P^{sat}}^{P} V \, dP = 0$$
$$= P^{sat} = \left[\int_{\mathbf{v}_{L}}^{\mathbf{v}_{V}} P \, dV \right] / (\mathbf{v}_{V} - \mathbf{v}_{L})$$
(5.1)

Empregando a regra de Maxwell descrita anteriormente, foi desenvolvido o programa PSAT.FOR para o cálculo da pressão e dos volumes de saturação de componentes puros, através da relação P-V-T proposta e da equação de Redlich-Kwong-Soave (1972). O fluxograma de cálculo deste programa é apresentado na Figura 5.2.

Os resultados dos cálculos são apresentados nas Tabelas B.2 e B.3 do Apéndice B, para substâncias de diferentes graus de polaridade. Foram testadas 90 substâncias, num total de 2625 pontos experimentais, obtendo-se para a equação proposta, erros relativos médios globais de 0.34, 0.41 e 5.44% de pressão de saturação, volumes molares de líqüido e de vapor, respectivamente; enquanto que, para a equação de Soave, os desvios médios relativos globais são de 2.21, 19.89 e 10.02%. Os maiores desvios entre os valores calculados e experimentais são observados nas proximidades da região crítica. Os dados ditos experimentais, na verdade foram calculados a partir das equações do DIPPR, apresentadas no Apêndice A. Estas equações são função de constantes específicas para cada componente, que por sua vez, encontram-se tabeladas na referência bibliográfica citada acima.

A avaliação dos resultados revela que a correlação proposta apresenta um desempenho bem melhor que a equação de Soave (1972), para o cálculo de propriedades de substâncias puras. Esta conclusão é válida para todas as classes de compostos estudados (apolares, fracamente polares, fortemente polares e ácidos carboxílicos), em uma ampla faixa de temperatura, inclusive na região crítica; o que por sua vez, pode ser atribuído ao fato das correlações para cálculo de $\alpha \in \beta$ (equações 4.23 e 4.24) serem específicas para cada substância e temperatura em particular.

Observa-se que a grande contribuição dada pela equação proposta foi no cálculo do volume molar de líqüido. Os desvios obtidos na predição desta propriedade foram extremamente baixos, uma vez que o termo repulsivo da correlação descreve mais realisticamente o comportamento da fase líqüida.

A correlação mostrou-se também adequada para a predição da pressão de saturação de substâncias puras. Os desvios entre os valores calculados e experimentais foram em torno de 0.3%, o que é um bom resultado, quando se inclui a região crítica. Provavelmente, menores desvios serão obtidos, considerando-se a faixa de T<0.95.

Aparentemente, o índice de erro em torno de 5% no cálculo do volume molar do vapor pode sugerir que a correlação proposta não é . adequada para o cálculo desta propriedade. No entanto, é preciso evidenciar que a utilização da correlação do DIPPR para a determinação do volume molar do vapor experimental não é apropriada nas proximidades da temperatura crítica.

As Figuras B.1 a B.5, apresentadas no Apêndice B, ilustram o comportamento dos diagramas P X V para algumas substâncias de diferentes grau de polaridade. O diagrama P X V para o hidrogênio (Figura B.1) ilustra o sofrível desempenho da correlação proposta predição da pressão de saturação, deste componente na em particular. Tal fato se deve, provavelmente, a má gualidade dos parâmetros para cálculo de a. A Figura B.5 ilustra que a equação proposta não prediz bem pressões de saturação de ácidos carboxílicos, o que era de se esperar, ja que no seudesenvolvimento não levou-se em conta os efeitos de associação intermoleculares.

FIGURA 5.2 - FLUXOGRAMA DE CÁLCULO DE P. .

CÁLCULOS DE PONTO DE BOLHA

De acordo com a Termodinâmica Clássica a condição de equilíbrio líqüido-vapor a uma dada temperatura e pressão, é dada pela igualdade das fugacidades do componente i na mistura, em ambas as fases:

 $\hat{\mathbf{f}}_{i}^{\mathbf{L}} = \hat{\mathbf{f}}_{i}^{\mathbf{V}} \quad (i = 1, n)$ (5.2)

As fugacidades são função da temperatura, da pressão e das n-1 frações molares independentes de cada fase. Então, as 2n variáveis estão relacionadas por n equações representadas pela equação (5.2). Portanto, deve-se especificar n variáveis na estruturação do problema de líqüido-vapor para permitir o cálculo das outras n relações de equilíbrio. Geralmente, as n variáveis são especificadas fixando-se T ou P e as composições da fase líqüida ou da fase vapor. Por isso, a maioria dos problemas de cálculo de equilíbrio líqüido-vapor podem estar englobados em uma das quatro seguintes classificações:

Calcular T e Y_i dados P e X_i . (BOLHA T) Calcular P e Y_i dados T e X_i . (BOLHA P) Calcular T e X_i dados P e Y_i . (ORVALHO T) Calcular P e X_i dados T e Y_i . (ORVALHO P)

O procedimento usual de cálculo é representar as fugacidades na equação (5.2) por meio dos coeficientes de fugacidade:

$$P \hat{\phi}_{i}^{V} Y_{i} = P \hat{\phi}_{i}^{L} X_{i} \quad (i = 1, n)$$
(5.3)

A equação (5.3) relaciona os valores das propriedades T, P, $X_i \in Y_i$. A solução das n equações é feita através de cálculos iterativos, sendoos coeficientes de fugacidade dos componentes na mistura são obtidos da equação (5.4) abaixo (Reid et al., 1987):

$$\ln \hat{\phi}_{i} = \frac{1}{R T} \int_{\underline{\mathbf{v}}}^{\infty} \left[\left(\frac{\partial P}{\partial n_{i}} \right)_{\mathbf{T}, \mathbf{v}, n_{j}} - \frac{R T}{\underline{\mathbf{v}}} \right] d\underline{\mathbf{v}} - \ln Z \quad (5.4)$$

É claro que a forma integrada da equação (5.4) dependerá da relação P-V-T e das regras de mistura escolhidas.

Substituíndo a equação proposta (eq. 4.3), juntamente com as regras de misturas dadas pelas expressões (4.25) e (4.26), na equação acima obtem-se (Vide dedução no Apéndice A):

$$\ln \hat{\phi}_{i} = 1.19(2 R_{bi} - 1) \frac{B}{Z - 0.42B} - \left(\frac{1.19}{0.42}\right) \ln \left(1 - 0.42 \frac{B}{Z}\right)$$

 $\sum_{j=1}^{n} z_j a_{ij}$

$$-2R_{ai} \frac{A}{Z} - \ln Z$$
 (5.5)

com

$$R_{bi} = \frac{\sum_{j=1}^{n} z_{j} b_{ij}}{b_{m}}$$
(5.7)

(5.6)

onde z representa a fração molar do componente i em qualquer das duas fases, líquida ou vapor.

Os parâmetros A e B da mistura são calculados de maneira análoga àqueles calculados para substâncias puras:

$$A = A_{m} = \frac{a_{m}}{R^{2} T^{2}}$$
(5.8)

$$= \begin{array}{c} & b \\ B \\ m \\ m \\ m \\ R \\ T \end{array}$$
(5.9)

onde a e b são obtidos através das expressões (4.25) e (4.26).

Os valores dos fatores de compressibilidade em ambas as fases são calculados através das expressões (4.8), (5.8) e (5.9). Deve-se alertar que os parâmetros $A_m = B_m$ assumem valores distintos para cada fase, pois dependem da composição.

Os dados de K_{ij} são determinados a partir da regressão de dados experimentais de equilíbrio líquido-vapor de sistemas binários. O método de Nelder-Mead (1965), esquematizado no fluxograma da Figura 5.3, foi utilizado para a obtenção de valores de K_{ij} dos sistemas binários. Os valores de K_{ij} , rigorosamente, são válidos na faixa de temperatura dos dados utilizados na sua determinação, embora possam ser empregados para pequenas extrapolações nas curvas de equilíbrio.

Um dos cálculos de equilibrio líquido-vapor comumente utilizado é o cálculo do ponto de bolha. Nele, o usuário deseja achar a temperatura (pressão) e as frações molares da fase vapor conhecendo-se a pressão (temperatura) e as frações molares da fase líquida.

FIGURA 5.3 FLUXOGRAMA DE CÁLCULO DE $K_{\alpha i j}$ E $K_{b i j}$

Empregando o algorítimo descrito por Prausnitz et al. (1986), foram desenvolvidos os programas BOLHAT.FOR E BOLHAP.FOR para o cálculo da temperatura e pressão de bolha de misturas multicomponentes, respectivamente.

A solução deste tipo de problema é obtida resolvendo-se o sistema de equações formado pelas n relações de equilíbrio:

$$P \hat{\phi}_{i}^{V} Y_{i} = -P \hat{\phi}_{i}^{L} X_{i}$$
 (i = 1, n) (5.10)

sujeito à restrição:

$$\sum_{i=1}^{n} Y_{i}^{+} = 1$$
 (5.11)

A equação proposta foi testada em cálculos de temperatura e pressão de bolha de 154 sistemas somando um total de 3462 pontos experimentais, em uma larga faixa de temperatura e pressão, inclusive a região supercrítica.

A grande maioria dos sistemas estudados foi de sistemas binários, estes dividos em quatro grupos:

Sistemas a baixas pressões Sistemas a altas pressões, porém ainda em condições subcríticas Sistemas em condições supercríticas Sistemas em condições supercríticas contendo H₂ e/ou CH₄.

O primeiro subgrupo acima, por sua vez, foi dividido em oito grupos de acordo com o grau de polaridade dos componentes pertencentes na mistura. Assim, tem-se a seguinte classificação para os sistemas a baixas pressões:

Sistema não polar - não polar Sistema não polar - fracamente polar Sistema não polar - fortemente polar Sistema fracamente polar - fracamente polar Sistema fortemente polar - fracamente polar Sistema fortemente polar - fortemente polar Sistema contendo água Sistema contendo ácidos carboxílicos.

Nas Tabelas B.4 a B.16 do Apéndice B são apresentados os resultados dos programas BOLHAT e BOLHAP, de acordo com cada tipo de sistema. No caso dos sistemas a baixas pressões foram utilizadas além da equação de Soave (1972) e da correlação proposta, a abordagem gama-fi, empregando o modelo UNIQUAC (Abrans e Prausnitz, 1975) para cálculo dos coeficientes de atividade da fase líquida.

Analisando os desvios médios, entre os valores calculados e experimentais de pressão (temperatura) e composição dos sistemas a baixas pressões, observa-se que o desempenho da correlação proposta é superior àquele apresentado pela equação de Soave (1972) e àquele apresentado pelo modelo UNIQUAC. Foram testados 70 sistemas binários (compostos por substâncias nos graus de polaridade mencionados anteriormente), em um total de 1049 pontos experimentais. Os resultados, na sua quase totalidade, evidenciam, por meio dos desvios médios apresentados nas Tabelas B.4 a B.11, a boa adequação da nova correlação para cálculos de inclusive equilíbrio líqüido-vapor, em sistemas polares.

A Tabela B.12 demonstra os bons resultados da predição do equilíbrio líqüido-vapor, utilizando a equação proposta, de sete sistemas ternários, obtidos com os parâmetros binários $K_{aij} = K_{bij}$ calculados a partir de dados experimentais binários (Vide Tabela B.13).

Para os cálculos de ponto de bolha de sistemas a altas pressões foram utilizados dados isotérmicos (Knapp et al., 1982) e valores dos parâmetros K_{ij} específicos para cada relação P-V-T estudada e para cada conjunto de dados experimentais empregado. Observa-se que estes cálculos geram menores desvios médios de pressão para a correlação proposta, e desvios médios de composição próximos, para as duas equações estudadas. Nesta classe de sistemas, avaliaram-se 37 pares binários, somando 726 pontos experimentais.

O teste da nova relação P-V-T em sistemas supercríticos demonstra que o desempenho da mesma é, em alguns casos, superior àquele obtido com a equação de Soave, e em outros, inferior, sugerindo que, de modo geral, estas duas equações são equivalentes para cálculos de equilíbrio líqüido-vapor de sistemas deste tipo. Neste estudo, foram investigados 26 sistemas binários contendo no total 958 pontos experimentais.

A última classe de sistemas avaliada, foi aquela composta por hidrogênio e/ou metano, em condições supercríticas. Observa-se, nestes sistemas, que a equação proposta apresenta menores desvios médios na pressão de bolha, mas por outro lado, fornece maiores desvios médios na composição do vapor. Analisou-se 13 sistemas deste tipo, somando 350 dados experimentais.

As Figuras B.6 a B.33 ilustram o desempenho da nova correlação na predição da pressão (temperatura) de bolha de alguns sistemas binários. Foi escolhida uma pequena amostra de sistemas de cada grupo e subgrupos estudados.

O banco de dados P-T-X-Y experimentais utilizado foi o mesmo usado por Daubert e Danner (1985), no caso dos sistemas a baixas pressões. Para sistemas a altas pressões e correlatos, fez-se uso dos dados de Knapp et al. (1982).

CÁLCULO DE ENTALPIAS

A determinação experimental de dados de entalpia de vaporização (ΔH_{vap}) de substâncias puras é difícil e cara, portanto, existem poucos dados confiáveis publicados na literatura. Uma das maneiras de se gerar dados de ΔH_{vap} é fazer uso de relações P-V-T.

A termodinâmica fornece a seguinte expressão que relaciona a entalpia com propriedades P-V-T (Reid et al., 1987):

$$\underline{\mathbf{H}} - \underline{\mathbf{H}}^{\circ} = \int_{\mathbf{V}}^{\infty} \left[\mathbf{P} - \mathbf{T} \left(\frac{\partial \mathbf{P}}{\partial \mathbf{T}} \right)_{\mathbf{V}} \right] d\underline{\mathbf{V}} + \mathbf{P}\underline{\mathbf{V}} - \mathbf{R}\mathbf{T}$$
(5.11)

Esta expressão pode ser aplicada a ambas as fases, líquida e vapor, utilizando a relação P-V-T proposta. Sendo assim, desde que se estabeleça o mesmo estado de referência para as duas fases, pode-se calcular ΔH_{vap} através da subtração das expressões obtidas para cada fase.

Substituíndo-se a equação proposta (4.3) na expressão (5.11), tem-se:

$$H - H^{\circ} = -1.19 RT^{2} \frac{db}{dT} + \left(\frac{1}{V - 0.42b}\right) + \left(T \frac{da}{dT} - a\right) \frac{1}{V} + PV - RT$$
(5.12)

Esta expressão está deduzida no Apêndice A.

As derivadas dos parâmetros a e b com relação à temperatura são dadas por:

$$\frac{da}{dT} = a_c \frac{d\alpha}{dT}$$
(5.13)

$$\frac{db}{dT} = b_c \frac{d\beta}{dT}$$
(5.14)

Estas derivadas são facilmente realizadas, uma vez que os parâmetros $\alpha \in \beta$ são funções polinomiais da temperatura (equações 4.22 e 4.23).

A equação final da entalpia de vaporização fica então:

$$\Delta H_{vap} = -1.19 \text{ RT}^2 \frac{db}{dT} + \left(\frac{1}{V_v - 0.42b} - \frac{1}{V_z - 0.42b}\right) + \left(T \frac{da}{dT} - a\right) \left(\frac{1}{V_v} - \frac{1}{V_z}\right) + P^{sat}(V_v - V_z) \quad (5.15)$$

A qualidade da predição das entalpias de vaporização pode ser verificada nas Tabelas B.17 e B.18 do Apêndice B, onde são apresentados os desvios médios entre os valores calculados e experimentais de 90 substâncias puras, nos mais diversos graus de polaridade, dentro de uma larga faixa de temperatura (T = 0.7 a T = 0.99). Novamente, os cálculos foram feitos utilizando-se a relação P-V-T proposta e a equação de Soave. Ôs l resultados evidenciam a superioridade da nova correlação, em relação à equação de Soave, no cálculo de entalpia de vaporização de compostos puros. De um modo geral, os desvios obtidos com a equação proposta são quatro vezes inferiores àqueles apresentados pela equação de Soave. Este fato seria facilmente presumível, uma vez que já foi provado o melhor desempenho da correlação (4.3) na predição de pressão de saturação e de volumes molares de líquido e de vapor e a expressão de ΔH é função destas propriedades mencionadas anteriormente.

Deve-se salientar que a expressão utilizada para o cálculo do ∆нөхр foi aquela proposta por Daubert e Danner (1985). Esta van equação é função de constantes específicas para cada substância pura, encontradas na mesma referência citada acima. Vale ainda ressaltar, que a faixa de aplicabilidade desta correlação não inclui a região próxima à temperatura crítica. Por isso que os maiores desvios foram sempre observados nesta faixa de temperatura.

As entalpias das misturas líquida e vapor, assim como as entalpias de vaporização, podem ser diretamente determinadas através da equação (4.3), agora aplicada à mistura. Sendo assim, obtém-se uma expressão análoga a equação (5.12), onde os parâmetros a e b, neste caso, são referentes à mistura. As derivadas da/dT e db/dT são dadas por:

$$\frac{da_{m}}{dT} = \sum_{i} \sum_{j} z_{i} z_{j} \frac{da_{ij}}{dT}$$
(5.16)

$$\frac{db_{m}}{dT} = \sum_{i} \sum_{j} z_{i} z_{j} \frac{db_{ij}}{dT}$$
(5.17)

Adaptou-se o programa de cálculo de temperatura de bolha para a predição de entalpias de sistemas binários. No entanto, a falta da disponibilidade de dados experimentais de entalpias de misturas inviabilizou a possibilidade da determinação dos desvios obtidos com a correlação proposta.

CAPITULO 6

CONCLUSÕES E SUGESTÕES

A correlação proposta mostrou-se adequada para a predição de propriedades termodinâmicas de substâncias apolares e polares, e de suas misturas, em ampla faixa de pressão e temperatura, incluindo a região crítica. As propriedades termodinâmicas consideradas, no caso de compostos puros, foram a pressão de saturação, os volumes molares de líquido e de vapor, e a entalpia de vaporização. No caso de sistemas multicomponentes, foram calculadas as composições da fase vapor, a temperatura (pressão) do ponto de bolha e os parâmetros de interação binária K_{aij} e K_{hij}.

De um modo geral, pode-se afirmar que o desempenho da correlação proposta nos cálculos envolvendo o equilíbrio líqüido-vapor é superior aquele apresentado pela equação de Soave, no caso de sistemas contendo compostos apolares, assim como é superior ao desempenho obtido pelo modelo UNIQUAC, no caso de sistemas polares. Esta conclusão é bastante útil, uma vez que, fica evidenciado a grande flexibilidade de aplicação da nova correlação. Sendo assim, evita-se recorrer a equações ou modelos diferentes a depender do grau de polaridade do sistema em estudo.

Através deste trabalho, pode-se comprovar a importância da Mecânica Estatística como base teórica na estruturação de novas relações P-V-T. A análise destas relações dentro de uma base molecular, em termos das considerações feitas a respeito do volume livre e do número de coordenação, facilita o estudo e o desenvolvimento de novos modelos termodinâmicos. Para futuros trabalhos, sugere-se que seja feito o teste da nova correlação em cálculos de coluna de destilação, o que seria bastante útil, uma vez que, através da mesma, poderia simular-se o comportamento de sistemas apolares e/ou polares em diversas condições de temperatura e pressão, sem necessidade de se recorrer a diferentes modelos termodinâmicos.

Sugere-se também que seja feito a aplicação da nova equação nos cálculos envolvendo equilíbrio líqüido-líqüido-vapor. O uso da correlação proposta em cálculos de flash trifásico, seria por demais interessante.

Por fim, poderia ser estudado com maior profundidade os modelos de número de coordenação, na tentativa de propor um termo atrativo melhor fundamentado para a correlação, sem no entanto, comprometer sua estrutura simples.
APENDICE A

EQUAÇÕES DEDUZIDAS E UTILIZADAS

OBTENÇÃO DA CORRELAÇÃO PROPOSTA ESCRITA NA FORMA Z

$$P = \frac{R T}{V} \left(\frac{V + 0.77b}{V - 0.42b} \right) - \frac{a}{V^2}$$

Multiplicando ambos os termos da equação acima por V/RT tem-se:

$$\frac{P V}{P T} = \left(\frac{V + 0.77b}{V - 0.42b}\right) - \frac{a}{V R T} = Z$$

Por definição sabe-se que:

$$\underline{V} = \frac{Z R T}{P}, \qquad A = \frac{a P}{p^2 T^2} \qquad e \qquad B = \frac{b P}{R T}$$

Substituíndo-se as três equações acima na expressão anterior e fazendo as possíveis simplificações algébricas chega-se a:

$$Z = \frac{Z + 0.77B}{Z - 0.42B} - \frac{A}{Z}$$

Esta correlação, por sua vez, pode ser ré-escrita na seguinte forma polinomial:

5-

$$Z^{3} - (0.42B + 1)Z^{2} + (A - 0.77B)Z - 0.42AB = 0$$

A expressão acima é chamada de forma Z da correlação proposta.

OBTENÇÃO DOS PARÂMETROS
$$Z_{c'} \stackrel{\Omega}{}_{a} \in \stackrel{\Omega}{}_{b}$$

PARA A EQUAÇÃO PROPOSTA

As condições de estabilidade termodinâmica no ponto crítico:

$$\left(\begin{array}{c} \frac{\partial P}{\partial V} \\ - \end{array} \right)_{\mathbf{T}_{c}} = 0 \qquad \qquad \left(\begin{array}{c} \frac{\partial^2 P}{\partial V^2} \\ - \end{array} \right)_{\mathbf{T}_{c}} = 0$$

aplicadas à equação proposta:

- -

$$P = \frac{R T}{V} \left(\frac{V + 0.77b}{V - 0.42b} \right) - \frac{a}{V^2}$$

levam a:

$$\left(\frac{\partial P}{\partial V}\right)_{\mathbf{T}_{c}} = \frac{-RT_{c}(V_{-c}^{2} + 1.54b_{c-c}^{2}V - 0.3234b_{c}^{2})}{V_{-c}^{2}(V_{-c} - 0.42b_{c})} + \frac{2a_{c}}{V_{-c}^{3}} = 0$$

$$\left(\frac{\partial^{2} P}{\partial V_{-}^{2}}\right)_{T_{c}} = \frac{2RT_{c}(V_{-c}^{9} + 2.31b_{c-c}^{2} - 0.9702b_{c}^{2} + 0.135828b_{c}^{3})}{V_{-c}^{3}(V_{-c} - 0.42b_{c}^{3})^{3}}$$
$$- \frac{6a_{c}}{V_{-c}^{4}} = 0$$

Das expressões acima pode-se explicitar o valor de a :

$$a_{c} = \frac{RT_{c}(V_{c}^{2} + 1.54b_{c-c} + 0.3234b_{c}^{2})V_{-c}}{2(V_{-c} - 0.42b_{c})^{2}} - \frac{1}{2(V_{-c} - 0.42b_{c})^{2}}$$

$$a_{c} = \frac{2RT_{c}(V_{-c}^{3} + 2.31b_{c-c}^{2} - 0.9702b_{c-c}^{2}V_{-c} + 0.135828b_{c}^{3})V_{-c}}{6(V_{c} - 0.42b_{c})^{3}}$$

Igualando as correlações acima e desenvolvendo toda a álgebra envolvida, obtem-se a seguinte equação cúbica:

$$V_{-c}^{3} = 1.26 b_{c-c}^{2} = 0.9702 b_{c-c}^{2} + 0.135828 b_{c}^{3} = 0$$

Resolvendo a equação cúbica em V apresentada acima através do método analítico de Tartaglia - Cardan (M.R.Spiegel, 1968), obtem-se três raízes, dais quais a única positiva é dada por:

$$V_{c} = 1.765861421 b_{c} = b_{c} = 0.5662958533 V_{c}$$

Substituíndo este valor de b_c na expressão de a_c chega-se a: $a_c = 1.522156007 \text{ R T}_{c-c}^{V}$ Substituíndo estes valores de a $_{c}$ e b na correlação proposta obtem-se o seguinte valor de Z:

Z_ = 0.3620360666

A esta altura, pode-se determinar os valores de Ω_{a} e Ω_{b} .

Por definição sabe-se que: $a_c = \Omega_a R^2 T^2 / P_c$

No entanto, provou-se anteriormente que a = 1.522156007 R TV Como, $V_c = Z_c R T_c / P_c$ pode-se ré-escrever a equação acima da seguinte maneira: a = 1.522156007 R T_Z_R T_/ P_c

Substituíndo o valor encontrado de Z nesta última expressão, obtem-se a = 0.5510753734 $RT_c^2 \times P_c^2$

Portanto, $\Omega_{2} = 0.5510753734$

De modo análogo, determina-se o seguinte valor para o parâmetro Ω_{1} :

Ω = 0.2050195233

OBTENÇÃO DO COEFICIENTE DE FUGACIDADE DE SUBSTÂNCIA PURA ATRAVÉS DA EQUAÇÃO PROPOSTA

O coeficiente de fugacidade de uma substância pura pode ser determinado através da seguinte relação: (Reid et al., 1987)

$$\ln \phi_{i} = \frac{1}{RT} \int_{V}^{\infty} \left(P - \frac{RT}{V} \right) dV - \ln Z + (Z - 1)$$

Substituíndo a correlação proposta na expressão acima, e resolvendo convenientemente a integral definida acima, tem-se:

$$\ln \phi_{i} = \frac{1.19}{0.42} \ln \left(\frac{V}{V} - 0.42b} \right) - \frac{a}{RTV} - \ln - 2 + (Z - 1)$$

CÁLCULO DA EXPRESSÃO DE PRESSÃO DE SATURAÇÃO PARA A EQUAÇÃO PROPOSTA

Através da regra das áreas de Maxwell (Callen, 1985), define-se a seguinte expressão para o cálculo da pressão de saturação de uma dada substância pura:

$$P^{SAT} = \int_{\underline{V}_{L}}^{\underline{V}_{V}} P d\underline{V} / (\underline{V}_{V} - \underline{V}_{L})$$

Aplicando a correlação proposta na expressão acima e realizando a integração chega-se a:

$$P^{SAT} = RT \ln \left(\frac{(V_{-v} - 0.42b)}{(V_{-L} - 0.42b)} \right) - 1.6\bar{6} RT \ln \left(\frac{V_{v}(V_{-L} - 0.42b)}{V_{v}(V_{-L} - 0.42b)} \right) + a \left(\frac{1}{V_{v}} - \frac{1}{V_{-L}} \right)$$

OBTENÇÃO DO COEFICIENTE DE FUGACIDADE DE MISTURAS ATRAVÉS DA CORRELAÇÃO PROPOSTA

O coeficiente de fugacidade de uma substância pertencente a uma dada mistura pode ser determinado através da seguinte relação: (Reid et al., 1987)

$$\ln \hat{\phi}_{i} = \frac{1}{RT} \int_{\underline{V}}^{\underline{W}} \left[\left(\frac{\partial P}{\partial n_{i}} \right)_{T, V, n_{j \neq i}} - \frac{RT}{\underline{V}} \right] d\underline{V} - \ln \mathbb{Z}$$

A derivada parcial da equação proposta em relação ao número de moles de um dado componente i é dada por:

$$\left(\frac{\partial P}{\partial n_i}\right)_{\mathbf{T},\mathbf{V},n_{j\neq i}} = -\frac{C_1 RT}{V} - C_2 RT (Vn^{-1} - 0.42b)^2$$
$$\left(-Vn^{-2} - 0.42\overline{b}_i\right) - \left(\frac{2a}{V^2} + \frac{n^2}{V^2}\overline{a}_i\right)$$

onde:
$$C_1 = \frac{0.77}{0.42}$$
 $C_2 = \frac{1.19}{0.42}$

$$a = \frac{1}{n^2} \sum_{k=1}^{N} \sum_{l=1}^{N} x_k x_l a_{kl}$$

$$b = \frac{1}{n^2} \sum_{k=1}^{N} \sum_{l=1}^{N} x_k x_l b_{kl}$$

$$\overline{a}_{i} = \left(\frac{\partial a}{\partial n_{i}}\right)_{T, V, n_{j \neq i}} = \frac{2}{n} \left(\sum_{k=i}^{N} x_{k} a_{ki} - a\right)$$

$$\overline{\mathbf{b}}_{i} = \left(\frac{\partial \mathbf{b}}{\partial \mathbf{n}_{i}}\right)_{\mathbf{T}, \mathbf{V}, \mathbf{n}_{j \neq i}} = -\frac{2}{n} \left(\sum_{k=1}^{N} \mathbf{x}_{k} \mathbf{b}_{ki} - \mathbf{b}\right)$$

ou

$$\overline{a}_i = \frac{2}{n} (R_a - a) = \frac{R_a}{n}$$

$$\overline{b}_i = \frac{2}{n} (R_b - b) = \frac{R_b}{n}$$

.

Sendo assim, pode-se ré-escrever a expressão da derivada parcial da seguinte maneira:

$$\left(\frac{\partial P}{\partial n_{i}}\right)_{T,V,n_{j\neq i}} = -\frac{C_{1}RT}{V} + \frac{C_{2}RT}{n} \left[\frac{(V n^{-1} + 0.42R_{b})}{(V n^{-1} - 0.42b)^{2}}\right] - \frac{n(2a + R_{a})}{V^{2}}$$

Aplicando esta última expressão na correlação para cálculo do coeficiente de fugacidade obtem-se:

$$\ln \hat{\phi}_{i} = \frac{1}{R T} \int_{V}^{\infty} \left[-\frac{C_{i}RT}{V} + \frac{C_{2}RT}{n} \frac{(V n^{-1} + 0.42R_{b})}{(V n^{-1} - 0.42b)^{2}} \right]$$

$$-\frac{n(2a + R_{a})}{V^{2}} - \frac{RT}{V} dV - lnZ$$

•

Resolvendo a integral acima chega-se a:

$$\ln \hat{\phi}_{i} = C_{2} \ln \left(1 - \frac{0.42b}{V}\right) - 1.19 \left(\frac{R_{b}' + b}{V - 0.42b}\right)$$
$$+ \frac{2a + R_{a}'}{2} - 10.7$$

Por definição sabe-se que:

RTV

$$\underline{\mathbf{Y}} = \frac{\mathbf{Z} \mathbf{R} \mathbf{T}}{\mathbf{P}}$$
$$\mathbf{A} = \frac{\mathbf{a} \mathbf{P}}{\mathbf{R}^2 \mathbf{T}^2}$$

$$B = \frac{b P}{R T}$$

$$R_{ai}^{*} = \left(\sum_{k=i}^{N} \frac{x_{k}a_{ki}}{a}\right)$$

$$R_{bi}^{*} = \left(\sum_{k=1}^{N} \frac{x_{k}b_{ki}}{b}\right)$$

Substituíndo-se estas equações na expressão integrada de ln $\hat{\phi}_{_i}$ obtem-se:

$$\ln \hat{\phi}_{i} = -\left(\frac{1.19}{0.42}\right) \ln \left(1 - 0.42 - \frac{B}{Z}\right) + 1.19 (2R_{bi}^{*} - 1)$$

$$\cdot \left(\frac{B}{Z - 0.42B}\right) - 2R_{ai}^{*} - \frac{A}{Z} - \ln Z$$

CÁLCULO DA ENTALPIA DE VAPORIZAÇÃO DE SUBSTÂNCIAS PURAS ATRAVÉS DA CORRELAÇÃO PROPOSTA

O cálculo de entalpia é feito através da seguinte relação termodinâmica: (Reid et al., 1987)

$$\underline{H} - \underline{H}^{\circ} = \int_{\underline{V}}^{\infty} \left[P - T \left(\frac{\partial P}{\partial T} \right)_{\underline{V}} \right] d\underline{V} + P\underline{V} - RT$$

Aplicando a correlação proposta na expressão acima obtem-se:

$$H - H^{\circ} = -1.19 \text{ RT}^2 \frac{db}{dT} \left(\frac{1}{V} - 0.42b\right) + \left(T \frac{da}{dT} - a\right) \frac{1}{V}$$
$$+ PV - RT$$

Resolvendo-se a expressão anterior para cada uma das fases, líquida e vapor, calcula-se facilmente a entalpia de vaporização:

$$\Delta \underline{H}^{\mathbf{VAP}} = -1.19 \text{ RT}^2 \frac{db}{dT} \left\{ \frac{1}{\underline{V}_{\mathbf{V}}} - 0.42b} - \frac{1}{\underline{V}_{\mathbf{L}}} - 0.42b} \right\}$$

$$+ \left\{ T \frac{da}{dT} - a \right\} \left\{ \frac{1}{\underline{V}_{\mathbf{V}}} - \frac{1}{\underline{V}_{\mathbf{L}}} \right\} + P^{\mathbf{SAT}} \left(\underline{V}_{\mathbf{V}} - \underline{V}_{\mathbf{L}} \right)$$
EQUAÇÕES DO DIPPR PARA CÁLCULO DE P^{SAT}, \underline{Y}_{vap} , $\underline{Y}_{liq} \in \Delta \underline{H}^{\mathbf{VAP}}$

$$P^{\mathbf{SAT}} = \exp \left[\mathbf{A} + \mathbf{B}/\mathbf{T} + \mathbf{C} \ln \mathbf{T} + \mathbf{D} \mathbf{T}^{\mathbf{E}} \right] \quad [=] \text{ Pa}$$

$$\frac{\underline{V}_{liq}}{\underline{V}_{liq}} = \frac{\underline{B}^{\left[1 + (1 - T/\mathbf{C})^{\mathbf{D}} \right]}}{A} \quad [=] M^{3}/\mathrm{Kmol}$$

$$B = \mathbf{A} + \mathbf{B}/\mathbf{T} + \mathbf{C}/\mathbf{T}^{3} + \mathbf{D}/\mathbf{T}^{8} + \mathbf{E}/\mathbf{T}^{9} \quad [=] M^{3}/\mathrm{Kmol}$$
onde $B \neq 0$ segundo coeficiente do Virial

-

$$\Psi_{vap} = \frac{R T}{p^{SAT}} + B \quad [=] M^{9} / Kmol$$

$$\Delta \mathbf{H}^{\mathbf{VAP}} = \mathbf{A}(1 - T_r)^{[\mathbf{B} + \mathbf{C} T_r + \mathbf{D} T_r^2 + \mathbf{E} T_r^3]} \quad [=] J / Kmol$$

A, B, C, D, E são constantes específicas para cada componente e propriedade, estando disponíveis nas tabelas do DIPPR (Daubert & Danner, 1985).

APENDICE B

TABELAS E GRAFICOS

TABELA B.1

CLASSIFICAÇÃO DAS SUBSTÂNCIAS QUANTO AO GRAU DE POLARIDADE DE ACORDO COM O DIPPR (DAUBERT & DANNER, 1985)

Classe	Substâncias
	Acetileno, Benzeno, 1,3-Butadieno, iso-Buteno, n-Butano, 1-Buteno, iso-Buteno,
	2-metil-2-Buteno, trans-2-Buteno, Ciclopentadieno, Ciclopentano, n-Decano,
	2,3-Dimetilbutano, n-Dodecano, Estireno, Etano, Eteno, Etilacetileno, Etilbenzeno,
Apolares	n-Heptano, 1-Hepteno, n-Hexadecano, n-Hexano, Hidrogênio, Metano, Metilacetileno,
	2-Metilpentano, Monóxido de Carbono, Nitrogênio, n-Nonano, n-Octano, iso-Pentano,
	n-Pentano, 1-Penteno, Propadieno, n-Propano, 1-Propeno, Sulfeto de Carbono,
	Tetracloroetileno, Tetraclorometano, Tolueno, n-Undecano, m-Xileno, o-Xileno, p-Xileno
	Acetaldeído, Acetato de Butila, Acetato de Etila, Acetato de Metila, Acetato de
Fracamente Polares	Propila, Acetato de Vinila, Acetona, Aldeído Propiônico, 2-Butanona, 1,4-Dioxano,
	Dióxido de Carbono, Éter Dietílico, Éter Diisopropílico, Furfural, 3-Pentanona,
	4-metil-2-Pentanona, Sulfeto de Hidrogênio
	Acetonitrila, Acrilonitrila, Água, 1-Butanol, terc-Butanol, n-Butilamina, Ciclohexanol
Fortemente Polares	Ciclohexanona, Clorobenzeno, Clorofórmio, 1,2-Dicloroetano, Diclorometano, Etanol,
	Fenol, Iodeto de Etila, Iodeto de Metila, Metanoato de Butila, Metanol, Nitrobenzeno,
	Piridina, 1-Propanol, 2-Propanol, 2-metil-1-Propanol, Tiofeno
Ácidos Carboxílicos	Ácido Acético, Ácido Fórmico, Ácido Propiônico

RESULTADOS DOS DESVIOS MÉDIOS DE P_{sat} , \underline{V}_{vap} , \underline{V}_{liq} obtidos com a equação proposta e com a equação de soave

Substância	N°	$\Delta P_{\rm ref}$	%P	Δ	%V	ΔΫκο	%Ve.	Faixa de T.
	Ptor	bar		cm ³ /mol		em ³ /mol		
Acetaldeído	28	0.0649	0.36	202.09	9.75	0.18	0.24	0.72 a 0.99
χ		1.1002	6.28	104.22	8.48	31.35	40.93	
Acetato de Butila	30	0.0138	0.23	289.18	4.16	1.25	0.66	0.70 • 0.99
v.v.	 	- 0.1933	1.62	166.70	6.37	34.04	16.77	
Acetato de Etila	27	0.0212	0.17	163.05	4.40	0.47	0.35	0.73 = 0.99
	}	0.0432	0.25	99.79	6.57	36.41	25.42	
Acetato de Metila	32	0.0102	0.07	220.11	6.48	0.18	0.17	0.68 a 0.99
		0.1831	0.93	102.44	4.76	26.72	24.02	
Acetato de Propila	28	0.0140	0.12	177.38	3.46	0.22	0.14	0.72 a 0.99
	<u> </u>	0.1530	1.12	138.20	7.43	41.45	24.25	
Acetato de Vinila	32	0.0290	0.18	125.26	\$.08	0.11	0.09	0.68 a 0.99
		0.0732	0.59	91.18	5.98	25.43	19.14	
Acetileno	33	0.0951	0.55	92.85	5.17	0.03	0.05	0.67 a 0.99
	1	0.3538	1.40	57.14	7.02	8.83	15.29	
Acetona	30	0.0247	0.13	146.68	5.67	0.21	0.22	0.70 a 0.99
		0.1929	1.07	106.07	6.83	34.3 6	32.87	
Acetonitrila	25	0.0708	0.37	537.31	30.69	0.33	0.38	0.75 a 0.99
		1.0121	6.50	85.37	3.74	67.85	84.94	
Ácido Acético	27	0.0947	0.39	342.03	14.10	0.13	0.17	0.73 a 0.99
		0.9971	5.19	700.87	26.90	46.16	54.63	
Ácido Fórmico	22	0.0492	0.14	218.63	13.85	0.11	0.20	0.78 a 0.99
		2.3258	10.23	611.30	33.70	46.93	82.14	
Ácido Propiônico	28	0.6917	5.07	\$04.09	11.33	3.75	3.31	0.72 a 0.99
		0.8466	6.01	697.90	23.58	30.02	26.11	
Acrilonitrila	27	0.0454	0.27	143.81	4.51	0.34	0.33	0.73 a 0.99
		0.7710	5.48	278.05	13.06	54.99	55.43	
Água	30	0.0842	0.16	51.82	5.06	0.18	0.69	0.70 a 0.99
-		1.3772	1.83	31.93	8.34	11.61	45.30	
Aldeído Propiónico	30	0.0981	0.42	332.05	13.01	0.22	0.21	0.70 a 0.99
		0.7809	7.88	345.08	15.12	34.29	33.51	
Benzeno	34	0.0498	0.26	87.88	2.66	0.43	0.34	0.66 a 0.99
		0.1782	0.82	117.15	8.32	20.06	15.40	
1,3-Butadieno	34	0.0565	0.35	73.23	2.56	0.50	0.46	0.66 a 0.99
		0.1914	1.22	112.97	8.56	16.48	14.57	
iso-Butano	30	0.0285	0.17	96.05	5.46	0.22	0.18	0.68 2 0.99
		0.3341	1.23	143.19	15.04	25.09	17.80	
n-Butano	35	0.0091	0.07	106.23	2.92	0.05	0.04	0.65 a 0.99
		0.2206	0.98	97.94	7.66	17.83	13.72	
1-Butanol	15	0.0202	0.07	96.13	7.62	0.25	0.18	0.85 a 0.99
		0.7865	4.02	172.55	14.30	39.31	27.17	

CONTINUAÇÃO

Anhatância	1 2/4	AD	(d D		Q1/	314	4 1/.	Fairs de T
JUDATAUCIA	ptor	har	for sat	cm ³ /mol	707 yap	cm ³ /mol	Autin	I dika de 17
tero-Rutanol	30	0.0484	0.44	101 84	5 42	1.24	0.95	0.72 a 0.99
1010-D'4104107		0.3552	3.57	296.66	9.67	23.78	17.20	
2-Betapona	27	0.0122	0.08	218.68	7.52	0.14	0.11	0.73 • 0.99
		0.1576	1.37	60.21	4.43	36.67	27.51	
1-Rateno	28	0.0173	0.10	96.42	5.16	0.04	0.03	0.72 8 0.99
		0.2345	0.92	254.00	12.96	18.06	14.36	
iso-Buteno	33	0.0338	0.32 -	76.73	3.38	0.39	0.33	0.67 a 0.99
		0.1600	0.90	115.26	9.21	17.04	13.97	
2-metil-2-Buteno	28	0.0476	0.24	96.42	5.46	0.26	0.22	0.72 a 0.99
		0.2030	1.78	232.20	11.72	35.61	24.08	
trans-2-Buteno	34	0.0304	0.18	118.08	3.50	0.15	0.13	0.66 a 0.99
		1.0785	7.48	373.88	8.17	16.50	13.59	
n-Butilamina	28	0.0531	0.33	182.39	5.34	0.68	0.46	0.72 a 0.99
		0.2034	1.46	129.55	5.62	24.79	17.22	
Ciclohexano	35	0.0412	0.29	123.49	4.00	0.28	0.16	0.65 a 0.99
·		0.4471	3.35	284.74	8.05	20.75	13.12	
Ciclohexanol	27	0.1050	0.61	253.13	9.85	0.43	0.36	0.73 a 0.99
		0.7422	6.20	326.78	9.80	49.25	30.08	
Ciclohenanona	22	0.0247	0.16	343.39	9.64	0.35	0.21	0.78 a 0.99
		0.7060	6.33	784.39	24.81	58.93	36.40	
Ciclopentadieno	33	0.0499	0.25	57.66	2.30	0.48	0.44	0.67 a 0.99
		0.1093	0.43	82.31	7.69	16.18	13.90	
Ciclopentano	30	0.0297	0.15	61.90	4.05	0.32	0.24	0.70 a 0.99
		0.1461	0.82	164.27	11.35	19.75	14.69	
Clorobenzeno	32	0.1206	0.74	84.02	2.11	1.56	1.05	0.68 a 0.99
		0.1419	0.64	102.37	6.99	28.82	18.68	
Clorofórmio	29	0.0163	0.10	79.23	3.24	0.21	0.19	0.71 a 0.99
		0.2507	0.78	49.25	5.20	12.59	10.24	
n-Decano	27	0.0220	0.43	452.71	5.07	2.67	0.96	0.73 a 0.99
		0.0809	1.18	307.32	6.31	71.88	23.56	
1,2-Dicloroetano	30	0.0190	0.07	46.42	3.03	0.09	0.09	0.70 a 0.99
		0.6471	3.01	214.59	12.87	20.86	17.76	
Diclorometano	29	0.0454	0.21	54.90	3.38	0.09	0.11	0.71 a 0.99
		0.0568	0.22	84.09	9.47	19.75	21.35	
2,3-Dimetilbutano	30	0.0490	0.30	116.52	4.42	0.69	0.36	0.70 2 0.99
		0.1966	1.54	164.67	8.74	27.80	14.87	
1,4-Dioxano	33	0.0347	0.19	249.71	8.20	0.36	0.28	0.67 a 0.99
		0.0914	0.29	180.71	6.51	18.20	14.37	
Dióxido de Carbono	28	0.1384	0.53	29.03	3.29	0.39	0.89	0.72 a 0.99
		0.0311	0.15	33.61	8.02	7.35	14.96	

CONTINUAÇÃO

Substância	1 1.00	ΔP	%.P	AV.	%T'	Δ <u>1</u> 2.	%V.	Faixa de T.
	plos	bar	···· 181	cm ³ /mol		cm ³ /mol	1	
n-Dodecano	25	0.0115	0.20	260.29	2.73	2.05	0.63	0.75 a 0.99
		0.1784	2.20	485.91	10.15	97.67	26.43	
Estireno	29	0.0298	0.18	108.59	2.71	0.45	0.26	0.71 a 0.99
		0.0684	0.35	127.75	7.86	36.47	20.32	
Etano	29	0.0107	0.06	27.66	3.44	0.11	0.15	0.71 a 0.99
		0.1961	0.97	78.89	10.79	8.91	11.20	
Etanol	27	0.0710	0.28	79.86	3.36	0.53	0.66	0.73 a 0.99
	<u> </u>	0.0831	2.37	81.92	8.34	20.52	24.89	
Eteno	39	0.0221	0.10	64.69	3.20	0.16	0.25	0.61 a 0.99
		0.1270	0.72	68.77	7.14	7.08	10.39	
Éter Dietílico	32	0.0432	0.37	130.41	3.20	0.41	0.30	0.68 a 0.99
		0.4387	4.47	337.25	12.15	26.12	18.46	
Éter Diisopropílico	31	0.0346	0.30	180.82	5.30	0.26	0.12	0.69 a 0.99
		0.0893	0.89	271.23	7.95	26.97	13.29	
Etilacetileno	35	0.0314	0.17	111.67	4.18	0.20	0.17	0.65 a 0.99
		0.8218	4.79	144.78	7.73	20.35	18.39	
Etilbenzeno	30	0.0395	0.28	81.02	3.42	0.18	0.10	0.70 a 0.99
		0.1593	1.16	288.27	11.46	36.34	19.36	
Fend	33	0.1031	0.58	124.78	2.85	1.09	0.86	0.66 a 0.99
		0.4649	2.44	159.15	5.88	11.71	8.21	
Furfural	29	0.0746	0.31	121.35	2.90	0.84	0.67	0.71 a 0.99
		0.2912	2.01	148.09	8.14	23.65	18.08	
n-Heptano	3 0	0.0461	0.52	144.48	2.40	0.64	0.31	0.70 a 0.99
		0.1065	1.20	211.69	8.16	41.33	19.20	
1-Hepteno	30	0.0225	0.28	197.37	3.06	0.45	0.20	0.70 a 0.99
		0.1290	1.22	177.00	7.71	42.65	20.84	
n-Hexadecano	25	0.0375	1.08	116.56	1.41	5.25	1.02	0.75 a 0.99
		0.1075	2.64	601.72	10.74	144.89	24.14	
n-Hexano	30	0.0470	0.41	124.92	2.57	0.72	0.40	0.70 z 0.99
		0.2070	2.13	234.98	9.86	34.85	18.71	
Hidrogênio	15	0.0636	0.80	20.04	10.38	0.40	1.02	0.85 a 0.99
<u>.</u>		0.2211	2.25	40.01	20.84	3.04	7.10	
Iodeto de Etila	33	0.0485	0.18	55.95	3. 00	0.11	0.09	0.67 2 0.99
		0.6626	3.29	162.42	10.38	4.69	3.53	
Iodeto de Metila	30	0.0664	0.20	238.31	16.54	1.12	1.37	0.70 a 0.99
		0.0946	0.50	356.23	23.82	39.05	44.33	
Metano	39	0.0539	0.26	30.33	2.76	0.32	0.66	0.61 a 0.99
		0.1589	1.01	49.65	8.03	4.16	7. 6 6	
Metanoato de Butila	30	0.0380	0.30	170.31	3.45	0.27	0.17	0.70 a 0.99
		0.1516	1.22	133.00	6.13	36.92	21.92	

CONTINUAÇÃO

Substância	No	AP	% P	ΔV	%V	AVe.	%V.	Faixa de T.
	pros	bar		cm ³ /mol		cm ³ /mol] ,
Metanol	23	0.1614	0.45	80.98	4.98	0.28	0.48	0.77 & 0.99
		0.5794	2.55	93.19	10.82	25.40	44.27	
Metilacetileno	34	0.0197	0.11	86.51	2.80	0.13	0.17	0.66 2 0.99
		0.3178	1.05	74.40	7.77	13.08	14.78	
2-Metilpentano	33	0.0106	0.08	160.41	2.91	0.23	0.13	0.67 a 0.99
· · · ·		0.0616	0.57	154.30	7.37	29.34	15.79	
Monóxido de Curbono	38	0.0637	0.51	30.33	22.96	0.27	0.58	0.64 a 0.99
		0.4684	3.88	86.31	11.03	2.68	5.06	
Nitrobenzeno	28	0.0270	0.20	169.60	2.90	0.84	0.21	0.72 a 0.99
	Į	0.7667	6.12	436.82	12.68	46.49	28.02	
Nitrogênio	39	0.0518	0.84	21.03	2.74	0.28	0.68	0.61 a 0.99
	1	0.1172	0.99	46.24	8.54	3.07	6.06	
n-Nonano	30	0.0114	0.16	347.79	3.86	0.49	0.18	0.70 a 0.99
		0.0924	0.87	261.81	6.41	58.33	21.48	
n-Octano	28	0.0572	0.64	230.18	8.71	1.64	1.20	0.72 a 0.99
		0.0922	0.61	186.65	7.42	54.40	22.31	
isc-Pentano	30	0.0690	0.32	102.12	4.47	0.67	0.42	0.67 a 0.99
		0.2096	1.12	177.90	14.48	34.56	19.94	
n-Pentano	29	0.0185	0.11	105.88	3.08	0.41	0.28	0.71 a 0.99
		0.2076	1.31	137.09	8.90	26.65	16.58	
3-Pentanona	30	0.0373	0.26	124.39	8.32	0.25	0.17	0.70 a 0.99
		0.1151	0.97	191.66	9.76	36.21	23.01	
4-metil-2-Pentanona	30	0.0632	0.56	172.65	2.33	0.54	0.29	0.70 a 0.99
		0.5305	5.11	370.63	11.62	37.52	19.98	
1-Penteno	32	0.0712	0.46	89.32	2.54	0.96	0.68	0.68 a 0.99
		0.1358	1.13	145.51	8.57	23.38	15.50	
Piridina	28	0.0312	0.16	70.76	3.61	0.10	0.07	0.72 a 0.99
		0.1133	0.47	111.78	9.34	15,64	14.33	
Propadieno	33	0.0553	0.32	55.22	2.55	0.57	0.73	0.68 a 0.99
		1.0263	5.10	139.06	12.37	12.42	14.76	
n-Propano	35	0.0203	0.11	61.79	2.81	0.24	0.25	0.65 a 0.99
		0.2543	1.16	89.25	8.50	12.71	12.24	
1-Propanol	23	0.0745	0.48	85.26	3.29	0.82	0.74	0.77 a 0.99
		0.3982	2.54	122.06	8.33	27.19	24.75	
2-Propanol	22	0.0683	0.28	128.01	5.03	0.77	0.67	0.78 a 0.99
		0.3159	1.95	103.45	6.29	29.52	26.63	
2-metil-1-Propanol	27	0.0942	0.68	141.60	3.86	0.13	0.09	0.73 a 0.99
		0.3314	3.07	227.81	8.86	30.62	23.00	
1-Propeno	32	0.0108	0.06	50.47	3.04	0.06	0.07	0.68 a 0.99
		0.2136	1.10	82.41	8.99	11.09	11.40	

CONTINUAÇÃO

Substância	Nº	$\Delta P_{\rm saf}$	%P	ΔV_{***}	%V	$\Delta V_{h_{2}}$	%Viie	Faixa de T,
	P ^{ios}	bar		cm ³ /mol		cm ⁹ /mol		
Sulfeto de Carbono	35	0.0249	0.10	65.34	8.25	0.09	0.11	0.65 a 0.99
		0.1341	0.35	47.65	5,18	7.09	7.75	
Sulfeto de Hidrogênio	39	0.1142	0.59	219.54	18.84	0.28	0.62	0.61 • 0.99
		0.1672	1.00	163.76	10.66	4.75	9.19	
Tetracloroetileno	33	0.0230	0.15	103.13	2.61	0.52	0.36	0.67 a 0.99
		0.2676	2.04	140.04	6.40	28.81	18.89	
Tetraclorometano	34	0.0538	0.34	190.08	6.22	0.68	0.50	0.66 a 0.99
		0.1910	1.04	82.91	3.73	20.14	14.25	
Tiofeno	33	0.0440	0.25	138.12	5.03	0.27	0.24	0.67 a 0.99
		0.1732	0.80	54.44	4.13	17.16	14.51	
Tolueno	29	0.0279	0.14	105.47	3.05	0.43	0.29	0.71 a 0.99
		0.1827	1.17	152.84	9.17	30.07	18.58	
n-Undecano	28	0.0391	0.78	180.85	1.92	1.86	0.58	0.72 a 0.99
		0.1004	1.68	406.21	8.68	80.68	24.24	
m-Xileno	29	0.0393	0.35	182.20	5.99	1.26	0.67	0.71 a 0.99
		0.1613	1.25	312.11	13.08	40.73	21.76	
o-Xileno	29	0.0509	0.25	156.28	4.89	0.66	0.84	0.71 a 0.99
		0.2092	1.52	265.74	11.85	36.06	19.39	а. -
p-Xileno	30	0.0570	0.32	209.48	9.72	1.19	0.58	0.69 a 0.99
		0.2052	1.14	338.70	19.72	50.72	24.32	

TABELA B.3

RESULTADOS DAS MÉDIAS DOS DESVIOS MÉDIOS DE P_{sat} , Ψ_{vap} , Ψ_{liq} obtidos com a equação proposta e com a equação de soave

Substância (Tipo)	%P _{set}	%V	%V6.	N° Substâncias
Não Polar	0.29 1.61	4.14 9.39	0.37 16.34	46
Fracamente Polar	0.28 1.70	5.29 8.00	0.34 20.99	17
Fortemente Polar	0.32 3.10	7.08 10.40	0.44 38.35	24
Ácido Carboxílico	1.87 7.14	13.09 28.06	1.22 54.29	03

FIGURA B.2 - DIAGRAMAS P × V DO BENZENO

FIGURA B.3 - DIAGRAMAS P × V DO FURFURAL

FIGURA B.4 - DIAGRAMAS P × V DO ETANOL

FIGURA B.5 - DIAGRAMAS P × V DO AC. ACÉTICO

RESULTADOS DOS CÁLCULOS DE PONTO DE BOLHA DE SISTEMAS BINÁRIOS A BAIXAS PRESSÕES - SISTEMAS DO TIPO NÃO POLAR - NÃO POLAR

Sistema	Relação	Faiza de	Paiza de	Nº	ΔΤ	ΔP	ΔΥ	Kais	Kşi.j
	P-V-T	T (o C)	P (bar)	ptos	(0 C)	(bar)			
1-Hopteno	Proposta		0.1545			0.001	0.00305	0.01122	0.01062
Telueno	Soave	55.0	a	13	1	0.003	0.00648	0.00839	
	Uniquac		0.2749			0.002	0.00532		
n-Heptano	Proposta		0.0266		Γ	0.001	0.00680	-0.00364	-0.00474
p-Xileno	Soave	40.0	۵	15	1	0.004	0.01554	0.01211	
	Uniquac		0.1229		[· ·	0.002	0.01198		
Benzeno	Proposta		0.2430			0.004	0.01005	-0.08337	-0.10734
Ciclohezano	Soave	40.0	٩	11		0.001	0.00274	0.02768	
	Uniquac		0.3730			0.005	0.00902		
Cicloherano	Proposta		0.0379		[0.004	0.00730	-0.09356	-0.11169
Solueno	Soave	25.0	•	13		0.001	0.00511	0.02806	
	Uniquac		0.1312			0.004	0.00724		
Benzono	Proposta	ð0.1			0.098		0.00187	0.05594	0.06377
Tolneno	Soare		1.0132	13	0.128		0.00273	0.00242	
	Uniquac	110.6			0.045		0.00455		
n-Octano	Proposta	125.7			0.148		0.00305	0.05885	0.06776
Btilbenzano	Soave		1.0132	21	0.106		0.00391	0.00230	
	Uniquae	136.2			0.460		0.00458		
Tetraclorometano	Proposta	76.5			0.163		0.00205	-0.22064	-0.26158
Benzeno	Soave	۵	1.0132	16	0.157	1	0.00358	0.00110	
	Uniquac	80.0			0.152		0.00207		
	Proposta				0.136	0.0035	0.00488		
Média Olobal	Soave				0.130	0.0022	0.00572		
	Uniquac				0.219	0.0035	0.00639		

FIGURA B.6 - DIAGRAMA P × X.Y N-HEPTANO - P-XILENO

FIGURA B.7 - DIAGRAMA T × X.Y BENZENO - TOLUENO

RESULTADOS DOS CÁLCULOS DE PONTO DE BOLHA DE SISTEMAS BINÁRIOS A BAIXAS PRESSÕES - SISTEMAS DO TIPO NÃO POLAR - FRACAMENTE POLAR

Sistema	Relacio	Faixa de	Fairs de	Nº 0	ΔΤ	ΔΡ	AY	Kaii	Kuit
1	P-V-T	TOCI	P (ber)	pter	(0 C)	(bar)			
Tolueno	Proposta		0.0944			0.0010	0.00838	-0.01944	-0.06844
4-metil-2-Pentanona	Suave	50.0	•	28		0.0020	0.01744	0.01811	
	Uniquac		0.1235		1	0.0001	0.00215		
Benzeno	Proposta		0.3761			0.0020	0.00319	0.20696	0.22517
Tiofeno	Soave	55.0		12	1	0.0030	0.00413	0.00643	
	Uniquec	Ъ.,	0.4447		[.	0.0040	0.00335		
n-Heptano	Proposta		0.2309		}	0.0030	0.00417	-0.13481	-0.13941
Tiolono	Soare	55.0	•	25		0.0030	0.00636	0.00525	
	Uniquac		0.3945			0.0040	0.00656		
n-Heptano	Proposta		0.4974		[0.0050	0.00608	0.44704	0.46036
3-Pentanona	Soave	80.0		17	(·	0.0070	0.01496	0.05932	
	Uniquac		0.6891			0.0060	0.00287		
n-Decano	Proposta		0.0152			0.0100	0.00636	-0.06890	-0.09860
Acetona	Soave	60.0	a	14		0.0260	0.01744	0.06156	
	Uniquac		1.1518			0.0510	0.00130		
Benzeno	Proposta	56.2			0.134		0.00235	-0.18673	-0.2421s
Acetona	Soave	8	1.0132	15	0.269	× .	0.00473	0.03596	
	Uniquac	š0.1			0.271		0.00413		
Benzeno	Proposta	116.5			0.226		0.00679	-0.49469	-0.61945
2-Butanona	Suave	*	3.0810	09	1.314		0.01047	0.03631	
	Uniquec	119.6			0.313		0.00307		
Tetraclorometano	Proposta	73.7			0.229		0.00402	0.56324	0.60228
2 Buianona	Soare	a	1.0132	14	0.258		0.00702	0.04147	
	Uniquac	79.6			0.131		0.00291		
Ciclohexano	Proposta	71.6			0.487		0.01215	0.39592	0.39309
2-Butanona	Soave		1.0132	23	0.243		0.00735	0.06717	
	Uniquac	80.8			1.373		0.00804		
n-Hepiano	Proposta	77.0			0.919		0.01931	-0.32276	-0.43105
2-Butanona	Soave		1.0132	19	0.859		0.01927	0.08462	
-	Uniquac	98.3			0.779		0.01162		
Tetradorometano	Proposta	77.0			1.160		0.01181	0.19354	0.14446
Furfural	Soave	•	1.0132	11	2.463		0.01246	0.08732	
	Umquac	162.0			4.778		0.02408		
Tetraclorometano	Proposta	31.2			0.349		0.01002	-0.41070	-0.51307
Acetona	Soave	•	0.4000	29	0 409		0.01356	0.06255	
	Uniquac	48.8			0.171		0.00420		J
	Proposta				0.500	0.0042	0.00805		}
Média Global	Soave				0.835	0.0082	0.00112		
	Uniquae				1.116	0.0130	0.00619		

FIGURA B.8 - DIAGRAMA P × X.Y BENZENO - TIOFENO

FIGURA B.9 - DIAGRAMA T × X.Y BENZENO - ACETONA

73

RESULTADOS DOS CÁLCULOS DE PONTO DE BOLHA DE SISTEMAS BINÁRIOS A BAIXAS PRESSÕES - SISTEMAS DO TIPO FRACAMENTE POLAR - FRACAMENTE POLAR

Sistema	Relação P.V.C.	Faixa de	Faixe de	N ⁶ Dire		ΔΡ	ΔY	Kais	K _{\$1.j}
	<u><u><u>r</u>-v-1</u></u>	1 (0 ())	PLOAF		60	(oar)			
Ster Detubco	Proposia		0.3769	•		0.0010	0.00317	0.14764	0.14722
Acetona	Scave	30.0	2	13		0.0110	0.00872	0.04151	
	Uniquac		0.8613			0.0040	0.00387		
Acetona	Proposta	56.3			0.136		0.00159	-0.18136	-0.20896
Acetato de Vinila	Soave		1.0132	11	0.159		0.00385	0.00976	
	Uniquac	72.6			0.308		0.00157		
Acatom	Proposta	57.7			0:708	-	-0.00584	-0.02148	-0.03916
Acetato de Propila	Soave	۵	1.0132	15	0.718		0.00632	0.02210	
	Uniquac	99.0			0.722		0.01391		
Acetaldeido	Proposta	44.0			0.102		0.00221	0.00334	0.01481
Acetato de Vinila	Soave	8	1.0132	28	0.703		0.00505	0.00637	
	Uniquac	72.6							
Acetaldeido	Proposta	20.4			0.153		0.00357	0.00436	0.01150
Acetato de Metila	Soave	a	1.0132	19	0.683		0.00886	0.00605	
	Uniquac	56.9			0.548		0.00292		
Acetaldeido	Proposta	19.6			0.252		0.00451	0.12603	0.13097
Éter Dietilico	Scare		1.0132	12	0.689		0.01159	0.05669	
	Uniquec	34.6					0.01162		
	Proposta				0.270	0.0040	0.00348		
Média Global	Soave				0.590	0.0110	0.00740		
	Uniquac				0.526	0.0040	0.00678		

FIGURA B.10 - DIAGRAMA P × X.Y ÉTER DIETÍLICO - ACETONA

FIGURA B.11 - DIAGRAMA T × X.Y ACETALDEÍDO - ACETATO DE VINILA

RESULTADOS DOS CÁLCULOS DE PONTO DE BOLHA DE SISTEMAS BINÁRIOS A BAIXAS PRESSÕES - SISTEMAS DO TIPO NÃO POLAR - FORTEMENTE POLAR

Sistema	Relacio	Fairs de	Faixa de	N.		ΔΡ	AY	Kaii	K.::
	P-V-T	T(CC)	P (bar)	ptor	(0 C)	(bar)	1		
Тошево	Proposta		0.0284	<u>t</u>		0.0050	0.00367	0.01126	0.00881
Nitrobrazeno	Soare	100.0		06	[[
	Uniquac		0.7475			0.0050	0.00125		
Cidopentano	Proposta		0.2643	<u> </u>		0.0010	0.00166	0.08425	0.07677
Clorofórmio	Soave	25.0		1 14	1	0.0020	0.00297	0.02432	1
	Uniquac		0.4238		l	0.0050	0.00352		
Etilbesseno	Proposta		0.0284	[0.0020	0.00723	0.03838	0.04029
Nitrobenzeno	Soave	100.0		08			[
	Uniquac		0.3365			0.0030	0.00127		
Benzeno	Proposta		0-1812			0.0040	0.01075	0.26098	0.22652
terc-Butanol	Soave	45.0		13		0.0090	0.02683	0.07343	
	Uniquac		0.3420	·		0.0030	0.00715		
n-Heptano	Proposta.		0.1881			0.0060	0.00900	-0.06382	-0.06968
Iodeto de Etila	Soave	50.0		16		0.0100	0.00980	0.01563	
	Uniquac		0.4731			0.0110	0.00644		
n-Octano	Proposta		0.2813			0.0020	0.00838	0.65079	0.68223
Pinidina.	Soave	80.0		15		0.0070	0.02336	0.02642	
	Uniquac		0.3667			0.0050	0.00468		
Ciclohaxano	Proposta		0.1376			0.0100	0.03375	0.47524	0.46740
Etanol	Scave	35.0		09		0.0350	0.05427	0.06843	
	Uniquec		0.3030			0.0070	0.01143		
Benzeno	Proposta	80.1			0.080		0.00128	0.02120	0.02348
1,2-Diclorometano	Soave	۵	1.0132	17	0.269		0.00675	0.00696	
	Uniquac	63 .5			0.117		0.00097		
Tolueno	Proposta	83.4			0.064		0.00137	0.14962	0.16709
1,2-Diclorometano	Soave	•	1.0132	13	0.526		0.00724	0.01002	
	Uniquac	110.6			0.123		0.00466		
2,3-Dimetilbutano	Proposta	\$5.5			0.132		0.00479	0.09036	0.10131
Clorofórmio	Soave	*	1.0132	11	0.209		0.00564	0.00852	
	Uniquac	60.8			0.904		0.01101		
Benzono	Proposta	51.2			0.500		0.02640	0.72764	0.74160
Etanol	Scave	•	0.5333	12	0.998		0.03540	0.09582	
	Uniquac	62.5			0.284		0.00533		
Benzano	Proposta	71.1			0.321		0.01578	0.73289	0.75215
3-Propanol	Soave	•	1.0132	-30	0.454		0.01784	0.10250	
	Uniquec	82.4			0.49]		0.00641		
Cicioherano	Proposta	\$0.0			0.456		0.00740	0.31504	0.09344
Pundina.	Soave	ā.	1.0132	13	0.672		0.01478	0.05916	
	Uniquic	102.0			0.947		0.00574	1 1 2 2 2 4	1 10070
n-Octano	Proposta	63.7			3.299		0.03309	-1.13754	-1.1.9578
Bitianol	Soave		1.0132	33	7.181		0.07578	0.06361	
(Defendence the	Uniquac	125.0			1.583		0.01361	0.0000-	0.30650
Tetracioroetileno	Proposta	77.7	1 0100		0.723		0.01381	-U. 5.01	-0.39852
Elanof	Soare		1.0132	17	2.105		0.03370	0.13193	
	เลเลนละ	121.1			0.266		0.01033		
	Proposta				0.699	0.0042	0.01189		
Média Global	Soave				1.590	0.0106	0.02418		
	Uniquac				0.578	0.0056	0.00639		

FIGURA B.12 - DIAGRAMA P × X,Y CICLOPENTANO - CLOROFÓRMIO

FIGURA B.13 - DIAGRAMA T × X.Y TOLUENO - 1.2 DICLOROETANO

RESULTADOS DOS CÁLCULOS DE PONTO DE BOLHA DE SISTEMAS BINÁRIOS A BAIXAS PRESSÕES - SISTEMAS DO TIPO FRACAMENTE POLAR - FORTEMENTE POLAR

Sistema	Relació	Faixa de	Fairs de	N*		ΔΡ	ΔΥ	Kais	Kuit
	P-V-T	T (0 C)	P(bar)	ptor	(0 C)	(bar)			
Bter Dietflico	Proposta	·	0.7841			0.0030	0.00204	-0.09623	-0.10103
lodeto de Metila	Soare	35.0		11		0.0100	0.00768	0.01284	
	Uniquac		1.0339			0.0050	0.00235		
Acetona	Proposta		0.3352			0.0030	0.01065	0.00556	0.05826
Clorofórmio	Soave	35.0	*	11		0.0090	0.00979	-0.05917	
	Uniquac		0.4646			0.0050	0.00558		
Acetato de Btila	Proposta		0.4166			0.0030	0.00359	0.15409	0.14275
2-Propanol	Soave	60.0	۵	19		0.0070	0.02218	0.03501	
-	Uniquac		0.5786			0.0050	0.00540		
Éter Dietílico	Proposta		0.0491			0.0040	0.00382	0.09230	0.11729
Etanol	Soare	0.0	•	19		0.0180	0.01330	-0.01997	
	Uniquec		0.2412			0.0020	0.00336		
Furfural	Proposta		0.0746			0.0070	0.01090	-0.09660	-0.15883
Etanol	Soave	65.0		09		0.0210	0.01179	0.08360	
	Uniquac		0.5599			0.0250	0.00950		
Acetona	Proposta		0.6853			0.0030	0.00341	0.13935	0.16712
Metanol	Soave	55.0		12		0.0160	0.01073	0.00769	
	Uniquac		1.0028			0.0060	0.00231		
1,4-Dioxano	Proposta		0.0806			0.0030	0.00529	-0.26534	-0.29700
Metanod	Scave	35.0	*	16		0.0080	0.01404	0.05396	
	Uniquac		0.2802			0.0070	0.01995		
Éter Dietilico	Proposta	34.0			0.145		0.00195	-0.25779	-0.22054
Diclorometano	Soave	۵	0.9902	27	0.275		0.00563	-0.06498	
	Uniquac	40.2			0.350		0.00422		
1,4-Dioxano	Proposta .	82.5			0.209		0.00664	0.19934	0.19917
2-Propanol	Souve	•	1.0132	20	0.232		0.01140	0.03208	
	Uniquac	99.5			0.343		0.00904		
Éter Distílico	Proposta	37.3			0.288		0.00382	-0.15014	-0.08790
Clorotórmio	Scave	•	0.9959	10	0.370		0.00848	0.09868	
-	Uniquac	60.3			0.396		0.00143		
Acetato de Propila	Proposta	88.0			0.120		0.00286	0.13757	0.13846
I-Propanol	Scave	2	0.8000	11	0.166		0.00512	0.02260	
	Uniquec	94.0			0.124		0.00399		
Acetato de Batila	Proposta	50.7			0.134		0.00498	0.09629	0.08607
1-Butanol	Soave	•	0.0667	12	0.695		0.03020	0.01068	ł
	Uniquac	58.1]		0.146		0.00414		
	Proposta				0.179	0.0043	0.00499]
Média Global	Soave				0.347	0.0127	0.01253		
	Uniquac				0.272	0.0051	0.00594		

FIGURA B.14 - DIAGRAMA P × X.Y 1.4-DIOXANO - METANOL

FIGURA B.15 - DIAGRAMA P × X.Y ÉTER DIETÍLICO - DICLOROMETANO

RESULTADOS DOS CÁLCULOS DE PONTO DE BOLHA DE SISTEMAS BINÁRIOS A BAIXAS PRESSÕES - SISTEMAS DO TIPO FORTEMENTE POLAR - FORTEMENTE POLAR

Gatama	Relacio	Prine de	Thing do	N7.0	17		1.12	12	K
"118 CC 1132	DVT	The C	D (has)	pter	6.0			ورهد	A-94-3
1. Propagol	Drangets	1000	0.2000	4		0.0020	0.00729	0 12428	0.19640
2-1 ropanti 2. matil. 1. Propanol	Scours	50.0	0.2010			0.0020	0.00120	0.13000	V.1.0010
2-man-1-1 Johnne	Unionac	70.0	0 3330			0.0020	0.01012	•0.03350	
Matanal	Bronosta		0.000			0.0000	0.00102	0.04900	0.01200
2 matil 1. Dronano	Coord	200	0.0190	11		0.0030	0.00200	-0.01000	-0.01.00
2-mere-1-1 ropeau	Tiniomac	400.0	0.5434	**		0.0170	0.02211	0.00120	
Princel	Basanata	· -	0.0050			0.0100	0.00123	0.00214	0.00474
Evenor 7 mail 1 December 3	Ficipotia	20.0	0.1.400	44		0.0020	0.00338	0.02398	0.02019
A mour 1- r toapuot	77	00.0	6 0 4710			0.0000	0.02210	0.00371	
D	Omquac Deserves		0.0074			0.0090	0.00201	0.01130	0.01000
	r toposta		0.0254			0.0020	0.00233	0.01532	U.U42222
1-1981ano4	DOBTE -	20.0	•	10		0.0010	0.02666	-0.01711	
124 I	Cuiquac		0.2048			0.0020	0.00428	A 14174	0.1000
Bianol	Proposta	ا معد ا	0.1798			0.0030	0.01150	-0.10156	-0.17787
Acetoniunia	Doave	40.0	a	17		0.0190	0.05166	0.08265	
	UBIGBAC		0.2612			0.0170	0.03574		
Buthamuna	Proposta		0.0906			0.0020	0.00563	0.03743	0.11792
1-Propanol	Soave	45.0	a.	1]		0.0040	0.00851	-0.09611	
	Uniquac		0.3068			0.0070	0.00495		
1,2 Diclorostano	Proposta		0.0747			0.0020	0.00461	0.20277	0.16455
2-metil-1-Propanol	Soare	50.0	4	11		0.0150	0.03926	0.07829	
	Uniquec		0.3120			0.0030	0.00181		
Metanol	Proposta		0.2000			0.0170	0.04442	-0.08326	-0.13509
1,2-Diclorostano	Soave	40.0	4	11		0.0220	0.05142	0.10463	
_	Umquac		0.4372			0.0100	0.00819		
terc-Butanol	Proposta	39.4			0.072		0.00267	-0.00934	-0.00334
1-Batanol	Soave	•	1.3331	11	1.266		0.02236	-0.03602	
	Uniquac	69.9			0.141		0.00496		
Bianol	Proposta	78.5			0.069		0.00679	0.17097	0.19856
2-Propanol	Soave	a	1.0132	12	0.079		0.00687	-0.00784	
	Uniquac	82.4			0.162		0.00682		
	Proposta			1	0.070	0.0041	0.00917	0.17097	0.19856
Média Global	Soare	· · · · · · · · · · · · · · · · · · ·			0.672	0.0116	0.02672	-0.00784	
	Uniquac				0.153	0.0084	0.00808	_	

FIGURA B.16 - DIAGRAMA P × X.Y 1-PROPANOL - 2-METIL-1-PROPANOL

FIGURA B.17 - DIAGRAMA T × X.Y TERC-BUTANOL - 1-BUTANOL

RESULTADOS DOS CÁLCULOS DE PONTO DE BOLHA DE SISTEMAS BINÁRIOS A BAIXAS PRESSÕES - SISTEMAS AQUOSOS

Sistema	Relação	Friza de	Faixa de	N° Dtai	ΔT	ΔP	ΔΥ	Kaij	Ksij
Águs Piridina	Proposta Scave	89.8	0.4558	19		0.0015	0.02020 0.02920	0.18885	0.34511
	Uniquac		0.8683		i	0.0013	0.01551		
Agua Metanol	Proposta Soave Uniquac	64.5 - * 100.0	1.0132	21	0.211 0.875 0.598		0.00657 0.01468 0.00856	-0.01934 -0.07460	0.05779
Agua 2-Propend	Proposta Soave Uniquac	36.0 a 50.7	0.1266	24	0.449 1.289 0.422		0.01951 0.02952 0.01230	0.12668 -0.10926	0.30003
Água Bianol	Proposta Soave Uniquac	78.1 8 96.1	1.0132	13	0.274 1.818 0.310		0.00729 0.02789 0.00501	0.07429 -0.09320	0.20052
Média Global	Proposta Soave Uniquac				0.311 1.327 0.443	0.0015 0.0032 0.0013	0.01339 0.02532 0.01034		

TABELA B.11

RESULTADOS DOS CÁLCULOS DE PONTO DE BOLHA DE SISTEMAS BINÁRIOS A BAIXAS PRESSÕES - SISTEMAS CONTENDO ÁCIDOS CARBOXÍLICOS

Sistema	Relação P-V-T	Faixa de T (o C)	Faixa de P (bar)	N* Ptes	ΔT (ο C)	ير (bar)	<u>۲۲</u>	Kaij	Kiij
Tetraclorometano Ácido Acético	Proposta Soave Uniquac	20.0	0.0157	11		0.0040	0.02477	0.21456	0.23060
Metanoato de Butila Ácico Fórmico	Proposta Soave Uniquac	99.1 107.0	1.0132	13	0.306 1.775		0.00430 0.02959	-0.26166 -0.01995	-0.13036
Ácico Fórmico Ácido Acético	Proposta Soave Uniquac	100.8 * 118.1	1.0132	17	0.391 1.635		0.02631 0.03602	0.94507 0.02805	0.95076
Dicloromotano Ácido Acético	Proposta Soave Uniquac	40.8 4 90.7	1.0132	11	0.890 0.911		0.02596 0.03702	0.11173 0.04960	0.101160
Média Global	Proposta Soave Uniquac				0.529 1.440	0.0040	0.02134 0.03421		

FIGURA B.18 - DIAGRAMA P × X.Y ÁGUA - PIRIDINA

FIGURA B.19 - DIAGRAMA P × X.Y ÁGUA - METANOL

83

FIGURA B.20 - DIAGRAMA P × X/Y TETRACLOROCARBONO - AC. FÓRMICO

FIGURA B.21 - DIAGRAMA T × X.Y METANOATO DE BUTILA - AC. FÓRMICO

RESULTADOS DOS CÁLCULOS DE PONTO DE BOLHA DE SISTEMAS TERNÁRIOS

Siriema	Relação	Faixa de	Faixa de	Nº	ΔΡ	ΔT	ΔΥ
	P-V-T	T (o C)	P (bar)	Plot	(bar)	(0 C)	
Etanol	Proposta		0.7720		0.0420		0.01650
Água	Scave	80.0		27	0.0850		0.02864
Acetato de Metila	Uniquac	}	2.0510		0.0470		0.00656
Acetonitrila	Proposta		0.3160		0.0250		0.03518
Benzeno	Soave	45.0	*	26	0.0250		0.04282
n-Heptano	Uniquac		0.4260		0.0060		0.01024
Acetona	Proposta	56.0				0.328	0.01063
Metanol	Soave	•	1.0132	<i>8</i> 3		0.429	0.01200
Etanol	Uniquac	96.5				0.295	0.00524
Acetona	Proposta	58.0				0.679	0.01655
Cloroformio	Source	•	1.0132	36		0.666	0.01679
Metanci	Uniquac	61.5		-		0.708	0.01565
Астіова	Proposta	56.0				0.415	0.01105
Metanol	Soave		1.0132	54		1.395	0.02895
Água	Uniquac	72.š				1.097	0.01224
Acetona	Proposta	83.2				0.637	0.01415
Acetonitrila	Soave		1.0132	30		3.764	0.06414
Água	Uniquac	92.2				1.079	0.00\$33
n-Hexano	Proposta	70.1				0.419	0.00912
Benzeno	Soave	a	1.0132	38		0.479	0.01140
p-Xileao	Unionac	108.5				0.614	0.01056
	Proposta				0.0350	0.500	0.01617
Média Global	Soave				0.0550	1.350	0.02925
	Uniquac:	e .			0.0265	0.759	0.01013

TABELA B.13

valores dos parâmetros \boldsymbol{k}_{ij} referentes aos sistemas ternários

Sistema	Relação P-V-T	K.1.3	K.1.3	K	Kus	K _{\$1.3}	K12,3
Etanol	Proposta	0.02833	0.02223	0.22153	0.00239	0.16264	0.39091
Água	Soave	-0.09759	0.07359	-0.21070		\$	
Acetato de Metila							
Acetonitrila	Proposta	-0.18742	0.46139	-0.18742	-0.21394	0.46398	1.05646
Benzono	Soave	0.09454	0.16170	-0.01410		(,	
n-Heptano							
Acetona	Proposta	0.16624	-0.01924	0.12340	0.19286	0.02075	0.15499
Metanol	Soave	-0.01060	-0.01013	-0.00497		}	
Etanol							
Acetona	Proposta	-0.00202	-0.08781	0.02146	0.02448	0.02158	0.00934
Clorofórmio	Soare	-0.03510	-0.01047	0.04648		. ·	
Metanol							
Acelona	Proposta	0.01196	0.08829	-0.08592	0.03259	0.27342	-0.01942
Metanol	Soave	0.01923	-0.02153	-0.06232			
Água				1			
Acetona	Proposta	0.07435	0.02622	0.22378	-0.02954	0.21979	0.29138
Acetonitrila	Scave	0.05058	-0.22576	-0.18079			
Ágna							
n-Hexano	Proposta	0.06850	-0.02224	-0.03458	0.08873	-0.03583	-0.04348
Benzeno	Soave	-0.22576	-0.18079				
p-Xileno							
RESULTADOS DOS CÁLCULOS DE PONTO DE BOLHA DE SISTEMAS BINÁRIOS A ALTAS PRESSÕES, PORÉM AINDA EM CONDIÇÕES SUBCRÍTICAS

Sistema	Relacio	Raixa de	Drive de	No	AP	AY'	K-::	Kutt
	P-V-T	T (o C)	P (bar)	pter	(bar)			
Metaso	Proposta	-85.682.2	3.447 + 31.026	18	0.984	0.0000s	-0.03125	0.00492
s-Pentaso	Suave			ł	0.484	0.00006	0.02889	
Metano	Proposta	-90.0	5.068 a 36.335	08	0.210	0.00087	-0.00508	0.01583
n-Hexano	Soave				0.544	0.00066	0.04086	
Eteno	Proposta	-73.3 + -17.8	2.158 . 26.662	33	0.043	0.00113	-0.06958	-0.09730
Etamo	Soave	({	0.169	0.00268	0.01480	
Eteno	Proposta	-41.6 a -20.2	9.524 . 25.869	25	0.101	0.00543	-0.00971	-0.0589€
Dióxido de Carbono	Suave				0.111	0.00358	0.05707	
Dióxido de Carbono	Proposta	-23.2	13.020 a 21.349	15	0.140	0.00716	-0.01910	-0.14043
Etano	Soave				0.065	0.00455	0.13658	
Etano	Proposta	-45.2 a 10.0	2.565 . 30.523	35	0.161	0.00961	0.11806	0.07144
Sulfeto de Hidrogênio	Soare				0.113	0.01542	0.08441	
Etano	Proposta	-17.8 a 10.0	2.606 a 27.579	13	0.059	0.00625	-0.00143	0.00450
n-Propano	Suave				0.068	0.00410	0.00022	
Etano	Proposta	25.0	4.804 . 39.364	08	0.368	0.00388	0.10553	0.04862
Acetona	Soave				0.895	0.00061	0.13340	
Nitzogêmo	Proposta	-162.2 + -151.1	1.014 + 27.579	34	0.091	0.00744	0.00649	-0.01713
Metano	Soare				0.143	0.00515	0.02752	
Nitrogênio	Proposta	-173.2 a -151.2	5.714 a 27.864	66	0.344	0.00626	-0.39516	-0.52500
Monóxido de Carbono	Suave				0.227	0.00622	0.00438	
Monóxido de Carbono	Proposta	-168.3 a -149.2	0.874 a 5.209	13	0.057	0.02574	-0.00828	-0.02748
Melano	Soave				0.058	0.02896	0.01684	
Metano	Proposta	-125.0 + -104.5	1.959 • 21.139	84	0.054	0.00349	0.01452	0.00141
Etano	Soare				0.102	0.00298	0.02248	
Metano	Proposta	-101.1 a - 82.3	0.491 a 46.263	57	0.302	0.00549	-0.01720	0.00030
Etabo	Suave				0.178	0.00352	-0.00503	
Metano	Proposta	-99.8 a -87.0	25.791 a 40.305	36	1.289	0.00101	-0.23120	-0.39631
Dióxido de Carbono	Soave				1.339	0.00056	0.17515	
Metano	Proposta	-128.9 a -83.2	0.007 a 43.402	36	0.445	0.00072	-0.01891	-0.00815
n-Propano	Soate				0.289	0.00057	0.01094	
Lietano	Proposta	-106.7 a -87.2	0.006 a 39.851	29	0.274	0.00051	-0.01615	0.00444
n-Butano	Suave				0.344	0.00037	0.01814	
Etano	Proposta	25.0	4.805 a 38.495	10	0.660	0.00485	0.11019	0.05558
Acetato de Metila	Soave				1.594	0.00155	0.11994	
Etano	Proposta	25.0	10.938 ± 41.244	05	0.779	0.00046	-0.02706	0.00654
Metanol	Soare				1.644	0.00255	0.01771	
Etano	Proposta	4.4	0.303 • 26.545	09	0.064	0.00513	-0.01436	0.00674
n-Pentano	Soave		2		0.100	0.00363	0.00550	
Eteno	Proposta	25.0	5.078 a 35.494	07	0.249	0.00560	-0.06542	-0.02420
B-Heyano	Soave				0.430	0.00496	-0.00142	

CONTINUAÇÃO

Serlamon	Ralacia	Pairs de	Dian Ja	N.	AP	AV	R	P
	P.V.T	T(aC)	D (hay)	pter	(har)			1.11
Ptano	Proposta	25.0	7 759 . 16 066	1 07	0.325	0.00169	-0.01024	-0.02154
Benzeno	Soare	1		1 "	0.797	0.00053	0.04013	
Etano	Proposta	0.0 + 35.0	4.054 + 40.539	18	0.380	0.00074	-0.04708	-0.00067
n-Octano	Soave			1 ~~	0.301	0.00008	0.01828	
Etano	Preposta	4.4	3.447 + 26.545	08	0.123	0.00032	-0.03575	0.01340
B-Decano	Scave			<u> </u>	0.343	0.00031	0.02864	
Dióxido de Carbono	Proposta	-48.3 + 43.3	6.695 . 34.473	43	0.490	0.01136	0.03994	-0.03655
Sulfeto de Hidrogénio	Soare	· · · · ·			0.397	0.01597	0.10217	
Dióxido de Carbono	Proposta	4.4	5.447 = 39.058	12	0.133	0.00594	0.00144	-0.07824
a-Propano	Soave				0.245	0.00572	0.13398	
Dióxido de Carbono	Proposta	0.0	1.206 - 34.655	13	0.173	0.01044	0.03629	0.03493
1-Buteno	Scave				0.184	0.00649	0.05941	
Dióxido de Carbono	Proposta	4.5	0.296 a 36.955	12	0.195	0.00357	0.00204	-0.03355
n-Pentano	Soave				0.772	0.00278	0.13890	
Dióxido de Carbono	Proposta	-60.0 = -26.0	1.013 a 15.199	30	0.194	0.00083	0.02874	0.03918
Metanol	Soave				0.431	0.00074	0.00986	
Sulfeto de Hidrogènio	Proposta	51.1 a 93.9	27.579 a 41.437	15	1.397	0.01919	-0.16776	-0.23670
s-Propano	Soave				1.395	0.02588	0.05149	
Sulfeto de Hidrogénio	Proposta	4.4 + 71.1	0.303 a 53.703	27	0.289	0.01152	-0.03562	-0.02558
n-Pentano	Soare				0.234	0.00638	0.06047	
Sulfeto de Hidrogênio	Proposta	30.0 a 90.0	17.237 a 23.442	19	2.336	0.00612	1.92960	1.49957
Água	Soare				4.654	0.00422	-0.02019	
n-Propano	Proposta	71.1 + 87.8	2.924 + 36.334	24	0.165	0.00839	0.01851	0.02191
n-Pentano	Soave				0.106	0.00922	0.16602	
n-Propano	Proposta	51.è a 76.8	0.323 a 29.503	32	0.499	0.01005	0.01124	0.00738
Etanol	Scave				0.400	0.00878	0.01756	
n-Propano	Proposta	37.8 a 71.1	0.221 a 26.462	20	0.121	0.00404	-0.03520	-0.06319
Benzeno	Soare				0.343	0.00799	0.04182	
n-Propano	Proposta	4.4 a 71.1	1.724 • 26.476	14	0.217	0.00066	-0.02809	0.01344
n-Decano	Soave				0.161	0.00049	0.00412	
1-Buteno	Proposta	37.4 a 137.8	3.551 a 34.887	44	0.182	0.00401	0.06945	0.06478
n-Bulano	Suave				0.109	0.00352	-0.00555	
a-Butano	Proposta	37.4 ± 137.8	1.724 + 30.0617	27	0.152	0.00131	-0.03340	-0.00710
n-Decano	Soave				0.148	0.00071	0.00476	
n-Pentano	Proposta	95.7 a 190.6	5.068 15.203	22	0.322	0.01949	0.09690	0.16224
a-Octaac	Soave				0.294	0.01171	-0.03652	
Etanol	Proposta	100.0 a 200.0	1.041 a 39.438	45	1.819	0.03867	0.25234	0.37015
Agus	Soave				2.384	0.04174	-0.09458	
Média	Proposta				0.416	0.00666		
Global	Soare				0.690	0.00638		

FIGURA B.22 - DIAGRAMA P × X.Y METANO - N-HEXANO

FIGURA B.23 - DIAGRAMA P × X.Y ETANO - SULFETO DE HIDROGÊNIO

FIGURA B.24 - DIAGRAMA P × X.Y ETANO - ACETONA

FIGURA B.25 - DIAGRAMA P × X.Y MONÓXIDO DE CARBONO - METANO

FIGURA B.26 - DIAGRAMA P × X.Y SULFETO DE HIDROGÊNIO - ÁGUA

FIGURA B.27 - DIAGRAMA P × X.Y n-PROPANO - ETANOL

RESULTADOS DOS CÁLCULOS DE PONTO DE BOLHA DE SISTEMAS BINÁRIOS EM CONDIÇÕES SUPERCRÍTICAS

Sistema	Relação	Faixa de	Faixa de	4	AP	ΔΥ	Kaii	Kaii
	P-V-T	T (o C)	P (bar)	ptor	(bar)			
Nitrorenio	Proposta	-73.2 + -13.2	4.543 + 110.362	15	1.413	0.02452	-0.03042	-0.04025
Etena	Soave			12	8.860	0.05858	0.08973	
Nitrogànio	Proposta	-73.2 a 16.8	2.181 4 102.418	31	1.212	0.01712	-0.05836	-0.03567
Etano	Soave			27	1.529	0.00981	0.02922	
Nitrogênio	Proposta	-50.0 a 0.0	32.060 . 129.769	12	2.517	0.02253	-0.11327	-0.05027
Dióxido de Carbono	Scave			13	1.523	0.00661	-0.02303	
Nitrogênio	Proposta	-16.7 + 71.1	11.652 + 207.050	54	4.905	0.02302	-0.02370	-0.04775
Suffeto de Hidrogènio	Soave			47	4.028	0.01358	0.17686	
Nitrogânio	Proposta	-130.0 a -80.0	13.789 * 88.947_	29	1.800	0.03279	-0.04863	-0.02988
a-Propano	Soave			29	1.572	0.01264	0.08470	
Nitrogênio	Proposta.	S7.6 a 104.4	2.503 a 65.844	21	1.819	0.01942	-0.28546	-0.09929
p-Pentano	Scave			31	1.192	0.01278	0.10333	
Monóxido de Carbono	Proposta	-100.0 a 0.0	6.616 a 68.947	14	1.030	0.02191	-0.05370	-0.02227
Etano	Soave			- 14 -	1.437	0.01232	-0.00501	
Monúzido de Carbono	Proposta	-70.0 a 20.0	0.608 a 105.660	35	1.745	0.01273	0.22870	0.15439
Sulieto de Hidrogênio	Soare			35	2.408	0.01623	0.01623	
Monónido de Carbono	Proposta	-125.0 a 50.0	13.789 + 68.947	18	2.868	0.01531	-0.04728	-0.01658
n-Propano	Suave				2.889	0.01497	0.03938	
Etens	Proposta	48.9 a 115.6	4.881 a 55.158	31	1.273	0.01624	0.04575	-0.00533
n-Butano	Soave				1.769	0.02619	0.10661	
Eteno	Proposta	75.0	15.199 a 91.191	09	0.733	0.00612	-0.01804	-0.00264
Benzeno	Soare				2.287	0.00592	0.02121	
Dióxido de Carbono	Proposta	10.0 a 25.0	30.387 + 65.620	74	0.536	0.00526	-0.05165	-0.22643
Etano	Soave				0.303	0.00852	0.14480	
Etano	Proposta	-21.67 a 95.39	13.769 a 82.736	28	0.690	0.00494	0.02943	-0.03596
Salfeto de Hidrogénio	Soave				0.337	0.00303	0.08713	
Etano	Proposta	71.1 # 171.1	2.930 4 63.673	-15	0.712	0.01362	-0.00506	0.02097
n-Pentano	Soave				0.697	0.01113	0.01019	
Etano	Proposta	65.6 a 176.6	0.938 + 55.947	33	0.941	0.02002	-0.05654	-0.02227
n-Hexano	Suave				3.823	0.04733	0.12300	
Etano	Proposta	-20.6 ± 227.2	13.790 a 68.950	41	0.872	0.01012	-0.03259	-0.01490
n-Heptano	Soave				0.853	0.01212	0.00721	
Dióxido de Carbono	Proposta.	8.3 a 76.6	41.368 a 82.736	36	0.839	0.01272	0.04554	-0.01953
Sulleto de Hidrogèmo	Soave				0.431	0.01591	0.09721	
Dióxido de Carbono	Proposta	4.4 * 71.1	5.447 a 09.119	76	1.030	0.01317	0.04463	-0.03330
n-Propano	Soare				0.590	0.00884	0.14140	
Dióxido de Carbono	Proposta	37.8 2 75.8	3.551 a 75.642	5ð	0.720	0.01544	0.07977	0.02114
n-Butano	Súa¥e				0.553	0.01028	0.14580	
Dióxido de Carbono	Proposta.	4.5 a 104.4	0.296 • 82.874	-19	1.188	0.00746	0.04585	0.00159
n-Pentano	Soave				0.845	0.01056	0.14226	
Deóxido de Carbono	Proposta	25.0 a 40.0	7.350 a 79.746	21	0.802	0.00424	-0.13500	-0.06541
Acetato de Metila	Soare				1.367	0.00437	-0.05317	
Dióxido de Carbono	Proposta	35.1 & 203.9	3.337 \$ 95.561	23	1.327	0.00753	0.03452	0.01739
Tolueno	Suave				1.670	0.00439	0.10438	
Sulfeto de Hidrogênio	Proposta	71.1 a 171.1	2.930 a 75.842	37	1.297	0.01790	0.04843	0.05926
p-Pentano	Soave				1.294	0.02518	0.07808	
n-Propano	Proposta	64.4 + 167.8	6.546 a 44.816	54	0.785	0.02236	-0.01994	-0.05070
n-Pentano	Soare				0.647	0.01212	0.03883	
Média	Proposta			1	1.379	0.01499		
Global	Soare				1.792	0.01516		

FIGURA B.29 - DIAGRAMA P × X,Y DIÓXIDO DE CARBONO - TOLUENO

FIGURA B.30 - DIAGRAMA P × X.Y DIÓXIDO DE CARBONO - TOLUENO

FIGURA B.31 - DIAGRAMA P × X.Y SULFETO DE HIDROGÊNIO - N-PENTANO

RESULTADOS DOS CÁLCULOS DE PONTO DE BOLHA DE SISTEMAS BINÁRIOS EM CONDIÇÕES SUPERCRÍTICAS, CONTENDO HIDROGÊNIO E/OU METANO

Sistema	Relação	Faixa de	Faixa de	N*	ΔP	AY	Keiji	Krij
	P-V-T	T (o C)	P (bar)	P 104	(bar)			
Hidrogenio	Proposta	-183.2 a -160.2	16.110 + 69.609	12	2.146	0.02183	-0.20836	0.03906
Nitrogênio	Soave				1.635	0.04135	-0.06466	
Hidrogênio	Proposta	-205.0 a -185.0	17.225 a 56.640	16	3.314	0.01833	-0.16575	-0.19024
Monóxido de Carbono	Soave			ł	2.734	0.01100	-0.13656	
Hidrogemo	Proposta	-170.0 = -130.1	10.234 . 61.200	11	1.887	0.02829	-0.85813	-0.29185
Metano	Soave				5.104	0.01737	-0.13602	_
Hidrogénio	Proposta	-125.0 a -50.0	20.265 + 60.794	11	1.560	0.01174	-1.01551	-0.21666
Btano	Soave				3.396	0.00808	0.00646	
Hidrogénio	Proposta	-53.2 a 16.8	10.842 . 156.747	23 .	2.303	0.02691	-0-51916	-0.00071
Dióxido de Carbono	Soave				3.748	0.01383	0.05839	-
Hidrogêmo	Proposta	54.5 • 121.1	27.783 a 56.174	14	1.377	0.02454	-1.03121	-0.15850
n-Bulano	Soave				1.404	0.01171	0.47486	
Hidrogenio	Proposta	166.7 a 302.0	20.164 a 51.067	09	0.665	0.01054	-1.04017	-0.00855
Tolueno	Soave				1.925	0.03349	0.86816	
Metano	Proposta	-128.9 + 10.0	0.490 a 55.158	22	0.291	0.01006	-0.03476	-0.01436
Biano	Scare				1.130	0.00481	-0.00416	
Metano	Proposta	-43.2 + -3.2	5.916 • 55.193	36	0.867	0.01428	0.03576	0.00160
Dióxido de Carbono	Soave				0.682	0.01175	0.09868	
Metano	Proposta	4.4 a ö7.ö	5.447 a 82.736	105	0.621	0.01553	-0.05620	-0.01919
n-Propano	Soave				0.719	0.00953	0.02706	
Metano	Proposta	21.1 a 121.1	2.151 a 82.738	67	0.272	0.00467	-0.05010	0.00407
n-Batano	Soare				0.622	0.01195	0.03878	1
Metano	Proposta	37.6 a 137.6	3.445 a 17.235	16	0.309	0.00944	-0.23633	-0.07257
n-Hexano	Soavo				0.169	0.00325	0.02187	
Metano	Proposta	65.6	6.695 a 137.894	06	0.296	0.00939	-0.06500	0.00054
Benzeno	Soave				0.592	0.01298	0.02776	
Média	Proposta				1.224	0.01580		
Global	Soave				1.835	0.01470		

FIGURA B.32 - DIAGRAMA P × X.Y HIDROGÊNIO - TOLUENO

FIGURA B.33 - DIAGRAMA P × X.Y METANO - BENZENO

95

.

TABELA B.17

RESULTADOS DOS DESVIOS MÉDIOS DAS ENTALPIAS DE VAPORIZAÇÃO OBTIDOS COM A EQUAÇÃO PROPOSTA E COM A EQUAÇÃO DE SOAVE

Substância	N*	ΔH _{res}	%H,	Faixa de T,
	Ptor	J/mol		
Acetaldeído	28	1417.16	8.51	0.72 a 0.99
		7414.46	40.90	
Acetato de Butila	30	4545.84	16.12	0.70 a 0.99
		11375.04	43.60	
Acetato de Etila	27	2836.60	12.43	0.73 a. 0.99
		9023.37	42.28	
Acetato de Metila	32	2497.61	11.43	0.68 a 0.99
		8386.08	39.83	
Acetato de Propila	28	3350.49	13.55	0.72 a 0.99
		9851.69	42.36	
Acetato de Vinila	32	3314.30	18.71	0.68 a 0.99
		9390.77	41.99	
Acetileno	33	626.88	5.07	0.67 a.0.99
		3985.31	35.73	
Acetons	30	1880.08	7.66	0.70 a 0.99
		6317.15	27.68	
Acetonitrila	25	958.49	4.07	0.75 a 0.99
		10755.46	47.08	
Ácido Acético	27	2917.94	18.44	0.73 a 0.99
		6524.87	38.16	
Ácido Fórmico	22	2852.69	19.66	0.78 a 0.99
		8033.03	50.26	
Ácido Propiônico	28	8160.97		0.72 a 0.99
		8861.51		
Acrilonitrila	27	1731.41	7.21	0.73 a 0.99
		10156.12	45.37	
Água	30	2327.60	10.35	0.70 & 0.99
		10348.17	39.56	
Aldeído Propiônico	30	1863.81	8.73	0.70 a. 0.99
		8263.93	41.41	
Benzeno	34	1726.90	8.19	0.66 a 0.99
		7646.88	36.03	
1,3-Butadieno	34	1065.87	6.67	0.66 a 0.99
		5604.94	35.73	
iso-Butano	30	1102.54	7.17	0.68 2 0.99
		5059.64	34.61	
n-Batano	35	1258.78	8.07	0.65 a 0.99
		5625.53	35.36	
1-Butanol	15	4002.76	18.06	0.85 a 0.99
		9884.44	46.12	

TABELA B.17 CONTINUAÇÃO

Substância	Nº		%H	Faixa de T.
	Plos	J/mol		
terc-Butanol	30	6945.93	27.73	0.72 a 0.99
	ł	11833.93	43.38	
2-Butanona	27	2118.54	9.68	0.73 a 0.99
		8604.77	41.17	
1-Buteno	28	1045.64	7.76	0.72 . 0.99
		5180.31	35.91	
iso-Buteno	33	1100.38	7.45	0.67 a 0.99
		5351.60	35.15	
2-metil-2-Buteno	28	2291.69	11.79	0.72 a 0.99
		7143.79	39.95	
trans-2-Buteno	34	1083.01	7.65	0.66 a 0.99
		5345.96	35.73	
n-Butilamina	28	\$066.04	13.24	0.72 a 0.99
		8883.82	41.51	
Ciclohexano	35	1936.04	8.88	0.65 a 0.99
		7468.86	35.39	
Ciclohexanol	27	5809.28	20.21	0.73 a 0.99
		12639.09	42.98	
Ciclohexanona	22	4264.62	15.11	0.78 B 0.99
		13236.78	49.17	
Ciclopentadieno	33	1309.22	7.87	0.67 a 0.99
		6284.33	34.58	
Ciclopentano	30	1326.86	7.59	0.70 a 0.99
		6552.98	36.07	
Clorobenzeno	32	2451.78	10.25	0.68 a 0.99
		9103.49	37.30	
Clorofórmio	29	1883.29	8,89	0.71 a 0.99
		7318.16	37.72	
n-Decano	27	6228.64	19.97	0.73 a 0.99
		13691.28	46.94	
1,2-Dicloroetano	30	2343.66	9.86	0.70 a 0.99
		8875.99	40.31	
Diciorometano	29	1260.84	8.40	0.71 в 0.99
		6323.04	35.42	
2,3-Dimetilbutano	30	1721.73	8.98	0.70 a 0.99
		7021.65	37.53	A 44 A 44
1,4-Dioxano	33	2745.77	10.33	U.67 & 0.99
<u> </u>		9176.63	38.66	<u> </u>
Dioxido de Carbono	28	1162.32	9.71	0.72 a 0.99
		4352.40	38.92	

TABELA B.17 CONTINUAÇÃO

Substância.	Nº	ΔH_{vap}	%Hyay	Faixa de T,
	Pter	J/mol		
n-Dodecano	25	6686.44	19.54	0.75 a 0.99
		15027.12	47.88	
Estireno	39	2110.29	9.55	0.71 a 0.99
		8841.22	37.14	
Etano	29	340.25	5.11	0.71 a 0.99
		3004.32	31.72	
Etunal	27	5932.14	20.69	0.73 s 0.99_
		12438.23	47.73	
Eteno	39	411.53	6.27	0.61 a 0.99
		2807.43	29.36	
Eter Dietflico	32	2077.79	10.91	0.68 a 0.99
		7316.11	39.10	
Éter Diisopropilico	31	\$171.11	14.30	0.68 = 0.99
The supplied in the		\$364 17	39.83	
Etilacetileno	35	1397.26	9.96	0.65 a 0.99
		5552.69	34.20	0.00 2 0.00
Etilbenzeno	30	2801 72	10 78	070 = 0.44
LINENVALIGAN	•••	9761.81	34.75	0.10 0 0.00
Fanol	22	6834 73	20.03	0.86 - 0.00
I CHOI	~	13307 83	40.53	0.00 4 0.00
Korines]	26	8034 04	10.30	071 = 0.90
runua	-20°	13060.00	10.00	0.11 4 0.00
n Hentano	20	2040 00	12 10	070 - 0.99
n-neptano	-00	40-10.00	41 01	0.10 0 0.02
1. Hentero	30	2110.00 2014 9K	19 9K	0.70 = 0.00
1-neptero	-00	4710.00 019947	11 15	0.10 & 0.95
- Name Jamas	05	3100.11 D947 99	21.10	0 75 - 0 00
a-nexadecano	40	0091.40 009746	29.10 E1 29	0.75 2 0.99
	70	20001.10	91.00	0 50 - 0 64
n-nexano	30	2091.20	10.07	0.10 5 0.85
17:3	58	1113.03	30.00	0.05 - 0.00
ridrogenic	15	218.33	46.40	0.85 2 0.99
		1372.30	408.41	0.07.0.00
lodero de l'alla	33	1311.55	10.37	0.67 8 0.99
	-	1111.33	37.11	A 194
lodeto de Metila	30	1850.04	14.03	0.70 a 0.99
		\$381.65	32.37	
Metano	39	394.37	8.16	U.61 a 0.99
		1501.32	26.11	
Metanosto de Butila	30	7115.51	24.45	0.70 a 0.99
		13805.50	50.28	

.

TABELA B.17 CONTINUAÇÃO

.

Substâncie	1.0		& H	Foirs de T
GR DSLARCIA	Pior	J/mol	7611¥0¥	raixa ue r,
Metanol	23	3193.59	13.00	0.77 a 0.99
		10457.87	46.35	
Metilacetileno	34	1158.11	8.02	0.66 a 0.99
		5371.53	34.97	
2-Metilpentano	33	2243.06	10.49	0.67 a 0.99
-		7710.82	38.61	
Monóxido de Carbono	38	82.60	2.32	0.64 a 0.99
		1262.99	29.63	
Nitrobenzeno	28	4704.72	13.62	0.72 в 0.99
		14425.87	45.21	
Nitrogênio	39	164.55	8.47	0.61 a 0.99
		1074.64	26.92	
n-Nonano	30	4847.43	17.36	0.70 a 0.99
		11554.35	42.54	
n-Octano	28	3781.64	14.78	0.72 a 0.99
		10287.31	42.44	
isc-Pentano	30	1419.18	8.56	0.67 a 0.99
		6073.24	36.13	
n-Pentano	29	1559.78	9.14	0.71 a 0.99
		6469.12	37.35	
3-Pentanona	30	3241.66	12.60	0.70 a 0.99
		10044.29	42.51	
4-metil-2-Pentanona	30	3522.60	13.32	0.70 a 0.99
		10346.69	41.84	
1-Penteno	32	1617.81	9.35	0.68 a 0.99
		6399.55	36.41	
Piridina	28	2068.74	8.92	0.72 a 0.99
		8441.75	37.42	
Propadieno	32	738.69	6.65	0.68 a 0.99
		4577.09	33.75	
n-Propano	35	744.31	6.07	0.65 a 0.99
		4434.19	33.76	
1-Propanol	23	5490.35	21.26	0.77 a 0.99
		11458.33	45.59	
2-Propanol	23	6270.94	22.98	0.78 a 0.99
		12577.68	50.46	
2-metil-1-Propanol	27	6134.58	23.91	0.73 a 0.99
		11658.12	42.56	
1-Propeno	32	581.93	5.56	0.68 a 0.99
		4036.88	32.83	

Substância	N. Ptos	ΔH _{vep} J/mol	%H _{***}	Faixa de T,
Sulfeto de Carbono	35	1052.67 6563.82	5.41 34.61	0.65 2 0.99
Sulfeto de Hidrogênio	39	668.87 4036.11	6.04 31.09	0.61 • 0.99
Tetracloroetileno	33	2261.96 8673.73	9.79 36.81	0.67 2 0.99
Tetraclorometano	34	1453.47 7260.04	6.95 35.43	0.66 a 0.99
Tioleno	33	1655.12 7535.32	8.08 35.35	0.67 & 0.99
Tolueno	29	2160.22 8659.95	9.32 38.73	0.71 a 0.99
n-Undecano	28	6426.23 14384.93	19.06 46.58	0.72 a 0.99
m-Xileno	29	3360.37 10662.44	12.31 42.20	0.71 a 0.99
o-Xileno	29	3031.64 10307.87	11.06 40.91	0.71 a 0.99
p-Xileno	30	3689.10 11017.00	13.56 43.50	0.69 2 0.99

CONTINUAÇÃO

TABELA B.18

RESULTADOS DAS MÉDIAS DOS DESVIOS MÉDIOS DAS ENTALPIAS DE VAPORIZAÇÃO OBTIDOS COM A EQUAÇÃO PROPOSTA E COM A EQUAÇÃO DE SOAVE

Substância (Tipo)	%Hyay	N ^o Substâncias
Não Polar	10.69 37.28	46
Fracamente Polar	11.31 39.61	17
Fortemente Polar	14.86 40.90	24
Ácido Carboxílico	24.83 42.36	03

REFERÊNCIAS BIBLIOGRÁFICAS

- Adachi, Y., Lu, B.C.-Y. & Sugie, H., 1983. Three-Parameter Equations of State. Fluid Phase Equilib., 13, 133-142.
- Alder, B.J., Young, D.A. & Mark, M.A., 1971. Studies in Molecular Dynamics. X. Corrections to the Augmented van der Waals Theory for The Square Well Fluid. J. Chem. Phys., 56(6), 3013-3029.
- Anderko, A., 1990. Equation-of-State Methods for the Modelling of Phase Equilibria. *Fluid Phase Equilib.*, 61, 145-225.
- Anderson, F.T. & Prausnitz, J.M., 1980. Computational Methods for High-Pressure Phase Equilibria and Other Fluid-Phase Properties Using a Partition Function. I. Pure Fluids. Ind. Eng. Chem. Process. Des. Dev., 19(1), 1-14.
- Aznar, M., 1991. Equações de Estado: Uma Nova Forma da Dependência com a Temperatura do Termo Atrativo e Uma Regra de Mistura Contendo um Modelo de g^E. *Tese de Mestrado*, COPPE/UFRJ, Rio de Janeiro-RJ.
- Boublik, T. & Nezbed, I., 1976. Equation of State for Hard Dumbbells. Chem. Phys. Lett., 46(2), 315-316.
- Callen, H.B., 1985. Thermodynamics and an Introduction to Thermostatistics, 2^{-1} ed., John & sons, Inc.

- Campbell, S.W., 1988. A Good Initial Estimate for Pure-Component Vapor Pressures in Equation of State Calculations. Ind. Eng. Chem., 27, 1333-1335.
- Carnahan, N.F. & Starling, K.E., 1969. Equation of State for Nonattracting Rigid Spheres. J. Chem. Phys., 51(2), 635-636.
- Carnahan, N.F. & Starling, K.E., 1972. Intermolecular Repulsions and the Equation of State for Fluids. *AIChE J.*, 18(6), 1184-1188.
- Chaudron, J., Asselineau, L. & Renon, H., 1973. A New Modification of Redlich-Kwong Equation of State Based on the Analysis of a Large Set of Pure Component Data. *Chem. Eng. Sci.*, 28,839-846.
- Chien, C.H., Grenkorn, R.A. & Chao, K.C., 1983. Chain-of-Rotators Equation of State. *AIChE J.*, 29(4), 560-571.
- Daubert, T.E. & Danner, R.P., 1985. Data Compilation Tables of Properties of Pure Compounds, DIPPR, Volumes 1 e 2.
- Danner, R.P. & Gess, M.A., 1990. A Data Base Standard for the Evaluation of Vapor-Liquid-Equilibrium Models. Fluid Phase Equilib., 56, 285-301.
- Dohrn, R. & Prausnitz, J.M., 1990. A Simple Pertubation Term for the Carnahan-Starling Equation of State. *Fluid Phase Equilib.*, 61, 53-69.
- Fredenslund, A., Gmehling, J. & Rasmussen, P., 1977. Vapor-Liquid Equilibria Using UNIFAC - a Group-Contribution Method. Elsevier Scientific Publishing Company.

- Fuller, G.G., 1976. A Modified Redlich-Kwong-Soave Equation of State Capable of Representing the Liquid State. Ind. Chem. Fundam., 15(4), 254-257.
- Gmehling, J. & Onken, V., 1977. Vapour Liquid Equilibrium Data Collection, Dechema, Berlin.
- Hill, T.L., 1960. An Introduction to Statiscal Thermodynamics. Addison-Wesley Publishing Co., Inc. Reading, MA.
- Kim, C.-H., Vilmalchand, P., Donohue, M.D. & Sandler, S.I., 1986. Local Composition Model For Chainlike Molecules: A New Simplified Version of the Perturbed Hard Chain Theory. AIChE J., 32(10), 1726-1733.
- Kim, H., Lin, H. & Chao, K., 1986. Cubic Chain-of-Rotators Equation of State. Ind. Eng. Chem. Fundam., 25, 75-84.
- Knapp, H., Döring, R., Oellrich, L., Plöcker, U. & Prausnitz, J.M., 1982. Vapor-Liquid Equilibria for Mixtures of Low Boiling Substances. Schön & Wetzel GmbH.
- Lee, K.-H., Lombardo, M. & Sandler, S.I., 1985. The Generalized van der Waals Partition Function. II. Aplication to the Square Well Fluid. *Fluid Phase Equilib.*, 21, 177-196.
- Lin, H.M., Guo, T.M. & Chao, K.C., 1983. Cubic Chain-of-Rotators Equation of State and VLE Calculation. Fluid Phase Equilib., 13, 143-152.
- Medeiros, S.D., 1991. Relatório Final dos Estudos Dirigidos de Mestrado, LPT/FEQ/UNICAMP, Campinas-SP.

- Naphtali, M.L., Sandholm, D.P., 1971. Multicomponent Separation Calculations by Linezrization. AIChE J., 17(1), 148-153.
- Nelder, J.A. & Mead, R., 1965. A Simplex Method for Function Minimization. Computer J., 7(4), 308-313.
- Patel, N.C. & Teja, A.S., 1982. A New Cubic Equation of State for Fluids and Fluid Mixtures. Chem. Eng. Sci., 37(4), 463-473.
- Prausnitz, J.M, Anderson, T.F. & Grens, E.A, 1980. Computer Calculations for Multicomponent Vapor-Liquid and Liquid-Liquid Equilibria. Prentice-Hall, Inc.
- Press, W.H., Flannery, B.P., Teukolsky, S.A. & Vetterling, W.T., 1988. Numerical Recipes in Fortran. Cambridge University Press.
- Ravagnani, S.P., 1983. Equilíbrio Liquido-Vapor de Misturas Polares. *Tese de Mestrado*, FEQ/UNICAMP, Campinas-SP.
- Reid, R.C., Prausnitz, J.M. & Poling, B.E., 1977. The Properties of Gases and Liquids, 3⁻ ed., McGraw Hill.
- Reid, R.C., Prausnitz, J.M. & Poling, B.E., 1987. The Properties of Gases and Liquids, 4^a ed., McGraw Hill.
- Sandler, S.I., 1989. Chemical and Engineering Thermodynamicas, 2⁻ ed., John Wiley & Sons.
- Sandler, S.I., 1990. From Molecular Theory to Thermodynamic Models: Part I. Pure Fluids. Chem. Eng. Ed., 24(1), 12-19.

- Sandler, S.I., 1990. From Molecular Theory to Thermodynamic Models: Parte II. Mixtures. Chem. Eng. Ed., 24(2), 80-87.
- Silva Jr., E.C., 1976. Equilíbrio Líquido-Vapor a Alta Pressão. *Tese de Mestrado*, COPPE/UFRJ, Rio de Janeiro-RJ.
- Soave, G., 1972. Equilibrium Constants From a Modified Redlich-Kwong Equation of State. Chem Eng. Sci., 27(6), 1197-1203.
- Soave, G., 1979. Rigorous and Simplified Procedures for Determining the Pure-Component Parameters in the Redlich-Kwong-Soave Equation of State. *Chem. Eng. Sci.*, **35**, 1725-1729.
- Spiegel, M.R., 1968. Mathematical Haondbook of Formulas and Tables, McGraw Hill.
- Sugie, H., Iwanoii, Y., Lu, B.C.-Y., 1989. On the Application of Cubic Equations of State. Analytical Expression for α/T_r and Improved Liquid Density Calculations. Fluid Phase Eq., 50, 1-20.
- Szarawara, J. & Gawdzik, A., 1989. Method of Calculation of Fugacity Coficient from Cubic Equations of State. Chem. Eng. Sci., 44(7), 1489-1494.

van der Waals, J.D., 1873. Doctoral Dissertation, Leiden.

Van Ness & Abbott, 1982. Classical Thermodynamics of Nonelectrolyte Solutions. Mc Graw-Hill Book Company. -----

- --

- Vera, J.H., Prausnitz, J.M., 1972. Generalized van der Waals Theory for Dense Fluids. Chem. Eng. J., 3, 1-13.
- Waintraub, S., 1988. Avaliação da Equação de Soave-Redlich-Kwong Modificada no Cálculo do Equilíbrio Líqüido-Vapor e Entalpias em Misturas com Compostos Polares. B. técn. PETROBRAS, 31(1), 47-52.

ABSTRACT

A new cubic P-V-T relation is proposed in order to calculate thermodynamic properties of pure components and multicomponent systems in conditions of vapor-liquid equilibria. The relation is suitable for applications to systems involving non-polar and polar compounds. The new equation also predicts both the low and high pressure ranges of the equilibrium diagram, including the critical region.

The general form of the new relation, as in the van der Waals equation, is expressed in terms of the summation of a repulsive term and an attractive term,

 $P = P + P_{rep}$ att

The correlation was developed changing the repulsive term of van der Waals equation (1873) for another one derived from the Hard Sphere Model.

The application of the proposed correlation to computer calculations proved to be specially useful due to its simplicity, short computation time and reliability. In applications envolving pure components, only critical temperature, pressure, and fitted parameters are necessary. For mixture calculations, two binary interactions constants are also required.

The new equation can be applied to systems with polar or non-polar components, in subcritical or supercritical conditions.

It has been shown that good results are obtained in predicting thermodynamic properties such as vapor pressure, liquid and vapor densities, and enthalpies of pure components. Concerning mixture calculations, the correlation performance is equivalent or better than that of the Redlich-Kwong-Soave equation (in applications containing non-polar components in subcritical or supercritical conditions). In applications with polar compounds at low-pressure conditions, the performance of the new P-V-T relation is better than that of the well known UNIQUAC method.

. .