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Resumo 

 

As instalações em alto mar possuem linhas de ancoragem, chamadas de amarras, para 

proporcionar estabilidade, suporte e sustentação às estruturas. Essas linhas de ancoragem são 

geralmente compostas por cabos, correntes e cordas de fibra sintética. Quando a solicitação de 

carga é alta, as linhas de ancoragem devem ser constituídas por corrente. O monitoramento da 

força atuando nestas correntes é vital para a confiabilidade e segurança da produção de energia. 

Os métodos atuais para supervisionar as cargas nas amarras são caros e têm muitas incertezas 

envolvidas. Nesse contexto, propõe-se uma nova metodologia para a estimativa de força em 

correntes através da medição de suas frequências naturais. Um sistema de inferência difuso e 

otimizado por um algoritmo genético foi desenvolvido para estimar da carga nas correntes. As 

entradas dos modelos difusos são as frequências naturais das correntes e a saída é a força 

estimada. As metodologias Mamdani e Sugeno foram implementadas e comparadas. Funções 

de pertinência triangular e gaussiana foram usadas para modelar as entradas e a saída. As regras 

foram definidas de acordo com as relações entre as frequências naturais e a força na corrente. 

Para otimizar o sistema, o algoritmo genético pode usar como dados de treinamento os 

resultados fornecidos por um modelo matemático ou por um conjunto de medições. O modelo 

matemático desenvolvido apresenta boa concordância com os dados experimentais. O modelo 

genético difuso foi simulado e testado, fornecendo boa precisão na estimativa da força. 

Finalmente, demonstrou-se que a fuzzificação não singleton pode ser uma ferramenta útil 

quando as entradas são ruidosas. 

 

Palavras chave: Corrente, frequências naturais, logica difusa, Algoritmo genético.  

 

 

 

 

 

 

 

 



 
 

Abstract  
 

Offshore facilities have mooring lines to provide stability, support and holding to the structures. 

These mooring lines are commonly made up of synthetic fiber ropes, cables and chains. When 

the load solicitation is high, the mooring lines must be made up of chain. The monitoring of the 

strength of these chains is vital for the reliability and security of the production of energy. The 

current methods for supervising the loads on the chains are expensive and have many 

uncertainties involved. In this context, it is proposed a new methodology for the force 

estimation in chains through the measurements of their natural frequencies. The present 

dissertation arises as an improvement of this approach. A fuzzy inference system optimized by 

a genetic algorithm is introduced to enhance the estimation of the load on the chains. The inputs 

of the fuzzy models are the natural frequencies of the chains and the output is the estimated 

force. The Mamdani and Sugeno methodologies were implemented and compared. Triangular 

and Gaussian membership functions were used to model the inputs and the output. The rules 

were set according to the relations between the natural frequencies and the force on the chain. 

To optimize the system, the genetic algorithm can use the results provided by a mathematical 

model or by a set of measurements as training data. The mathematical model has good 

agreement with the experimental data. The fuzzy genetic model was simulated and tested 

providing good accuracy in estimating the force. In addition, the non-singleton fuzzification 

demonstrated that can be a helpful tool when the entries are noisy.  

 

Keywords: Chain, Natural frequencies, Fuzzy logic, Genetic algorithm. 
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1. INTRODUCTION 

 

In the offshore oil and gas industry, the monitoring of the structures is an important and 

vital work to do in order to ensure the safety of all equipment as well as of the staff that works 

over there.  

As the offshore facilities are not on the ground, it is necessary to have some elements 

that hold the structure and provide stability. These elements are essential for the correct 

operation and to ensure the production.  

The elements that provide support for the offshore structures are called mooring lines, 

which are composed by link chains and cables. In some cases, when the load solicitation is high, 

the mooring lines consist only of a link chain and an anchor.  

The knowledge of the mechanical stress in mooring lines allows to work with safety 

conditions as well as to project the maintenance plan in order to guarantee the reliability of the 

system.  

The measurement of the loads in mooring lines is currently made by techniques like the 

installation of load cells at the connection of the mooring line with the ship or floating platform, 

for example, or other types of sensors at the chains (PAPADIMITRIOU, 2016), (DU et al., 

2015), (ROBERT et al., 1973), (PRIOUR, 1995) or even through the approximation of the 

shape of the mooring line to a catenary ( JAMIESON, 2013).  

The usage of sensors or devices to acquire data of underwater structures makes the 

maintenance of these equipment to be frequent and, in some cases, requires stopping the 

monitoring system for a long period of time. In addition, the environment where they work in 

is hostile, including severe weather conditions, wind, waves and currents, and the contact with 

salty water. These environmental factors can make these sensors and devices suffer damage and 

need to be replaced. 

Furthermore, the installation of these devices is quite expensive, which is a decisive 

factor on the selection and implementation of a monitoring system. And finally, once this 

approach requires a rigorous maintenance program and, in many cases, it is necessary to replace 

some component, this solution is not viable.  
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The procedure of approaching the mooring line shape by a catenary in order to estimate 

the load applied to it is a process that has many uncertainties involved. The process consists on 

the measurement of the angle of the catenary with the information of the position of the vessel 

and the anchor, which is obtained with a differential GPS. The estimation of the force on the 

chain with this method is indirect and it is not accurate since the calculation of the load depends 

on the approximation of the profile of the mooring chain to a mathematical model of a catenary.  

In the context of the mooring line force estimation, it is proposed  to analyze the 

vibrational response of structures subjected exclusively to axial tensile load using vibration 

sensors and thereby to identify the natural frequencies of such structures and then to estimate 

the load to which the structure is being subjected. The concept of the technique is largely 

known, as the classical example of tuning the strings of a fiddle, where the increase in string 

tension produces a higher pitch and its relaxation results in a lower pitch. 

Then, taking advantage of the relationship between the tensile force on the chain and 

their natural frequencies, it is possible to construct a calibration chart. This chart allows to 

correlate the measured natural frequencies with the corresponding applied force.  

In simple terms, the analysis starts with the measurement of the free vibration of the 

mooring line. An accelerometer can be used for this purpose. Next, the natural frequencies of 

the system are calculated. Then, the frequencies are allocated in the calibration chart and the 

force applied to the mooring line is estimated. Usually, it is necessary an interpolation process 

to estimate this applied force, since the estimation is made with several entries. 

The previous process can have many uncertainties involved. Thus, this work arises as 

the improvement of this approach aiming to find a methodology to handle the uncertainty and 

the automation of the process.  

This work proposes the implementation of the fuzzy inference systems as a tool to 

estimate the force applied on a chain through the knowledge of its natural frequencies. Fuzzy 

logic has demonstrated to be a good tool to handle uncertainty (ZADEH, 1983). Another fact 

that encourages the use of the fuzzy logic is the high adaptability and the capability of modelling 

nonlinear systems.  

In addition, a linear model of a vertical chain is built to obtain its natural frequencies for 

a wide loading range. With this information, it was possible to create the fuzzy inference 
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systems. A genetic algorithm is implemented to improve the fuzzy inference systems and obtain 

an accurate estimate of the load on the chain.   

 

1.1. Objectives 

The main goal of this work is to develop a methodology that allows the prediction of 

the applied force on a link chain axially tensioned through the measurement of its natural 

frequencies. This approach uses a fuzzy inference system, which has three universes of 

discourse as antecedent parts representing the first three vibration modes and one universe of 

discourse as consequent part representing the force of the chain. In addition, a genetic algorithm 

is implemented in order to improve the estimation of the force of the chain by the fuzzy 

inference system.  

To achieve this main objective, there are some intermediate objectives that also need to be 

achieved, which are:  

1. The construction of a linear mathematical model of the link chain aiming the 

computation of the natural frequencies as a function of the variation of the applied force. 

The results produced by this model configure the training data for the fuzzy inference 

system.  

2. The measurement of the natural frequencies of real chains in order to validate the 

mathematical model as well as to have training data from different sources. 

 

1.2. Dissertation structure 

This dissertation was written with the following order: Chapter 3 presents the 

mathematical model of the chain and chapter 4 the experimental procedure. These chapters 

configure the dynamic knowledge of the chain, it means, how the natural frequencies vary with 

the variation of the applied force of the chain. Chapter 5 presents the fuzzy logic, more 

specifically the fuzzy inference system, which is the tool used to estimate the force of the chain 

knowing the natural frequencies. Chapter 6 presents the genetic algorithm that is applied to 

improve the estimation of the fuzzy inference system. Finally, chapter 7 presents the 

methodology of the work, here it is explained how the mathematical model, the experimental 
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data, the fuzzy inference system and the genetic algorithm work together in order to have an 

accurate estimation of the force of the chain.  

The summarize of each chapter of this dissertation is presented as follows. 

Chapter 2: Dynamics of chain: A review 

The relevant studies about the dynamics of chains are presented in this chapter. A variety 

of configurations of chains are analyzed considering from the falling chain until the finite 

elements of a mooring chain.  

Chapter 3: Mathematical model of a chain. 

In this chapter, the mooring chain modelling is presented. The chain is modeled as a 

sequence of rigid elements joined by spherical joints. Applying Newton’s Laws and considering 

small displacement a set of linear equations of motion is obtained. The eigenvalues are 

calculated in order to identify the natural frequencies.  

Chapter 4: Experimental procedure 

The experimental setup for the identification of the natural frequencies of the link chain 

is presented. The lay out as well as the experimental procedure is explained. The data processing 

techniques are presented.  

Chapter 5: Fuzzy logic 

The main application of the fuzzy logic is explained in this chapter: the fuzzy inference 

systems. The common membership functions are presented as well as the difference between 

the Mamdani and Sugeno fuzzy system. In addition, it is considered two types of fuzzification: 

singleton and non-singleton. The inference process is explain step by step.  

Chapter 6: Genetic algorithm 

Each step of the genetic algorithm is shown and an explanation about how it works is 

presented. The basic structure of a genetic algorithm is highlighted, which consists of: an initial 

population, the fitness function, the selection, crossover and mutation.  

Chapter 7: Methodology for this work 

This chapter presents the methodology for modelling the fuzzy inference system for the 

estimation of the force on the chains. In addition, it is exposed the strategy of optimization of 
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the parameters of the fuzzy system with the genetic algorithm, which uses the training data 

provided by the mathematical model results and/or the experimental measurements.  

Chapter 8: Results 

The following results are presented in this work  

1 Analysis of the mathematical model of a chain. 

2 Results from the experiment and comparison with the mathematical model. 

3 Performance of the different fuzzy inference system for estimating the force on the 

chains. 

4 Improvement of the fuzzy inference system with genetic algorithm. 

5 Influence of the non-singleton fuzzification.  

Chapter 9: Conclusions and final comments. 

Synthesis of the main conclusions of the work and relevant results as well as proposals 

for future works.  

Appendix A: Catalog of chains grade 8. 

Here is presented the catalog of a manufacturer of chains grade 8 from where the 

features of the chain were taken as input for the mathematical model.   
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2. DYNAMICS OF CHAINS: A REVIEW 

This chapter has as objective to show the different methodologies to study the dynamics of the 

chains. A variety of configurations as well as diverse environmental conditions of the chains 

are considered.  

 

2.1. The hanging chains. 

The hanging chain is the simplest configuration of a system formed by link chains. It 

consists of a vertically positioned chain, with one end fixed while the other is free to move. The 

study of the dynamic of this type of system can be treated with different approaches.  

When the chain is long (the chain length is very long when compared to the link size), 

and it is restricted to move transversally with small oscillations, the phenomenon can be 

characterized by the wave equation  (PUGSLEY, 1949), that is, the transversal displacement 

has the shape of a wave that propagates through the chain length. This is the same behavior of 

a string. Pugsley (1949) related the two equations obtaining a new expression depending on the 

span, dip and length of the chain that calculates the natural frequencies in a direct way. This 

approach provides fairly accuracy to predict the first vibration mode. 

Whether the chain is taken as a continuous body, the transversal vibration can be 

described with the wave equation. This type of differential equation can be transformed to 

Bessel form (VERBIN, 2015). The solution of the system is to find the zeroes of the Bessel 

equation.  The Bessel equation allows adopting different boundary conditions in order to 

simulate different configurations of the chain. Worth noting that the chain must always be 

tensioned. Once the zeroes are found, a direct expression of the natural frequencies is obtained. 

The equation permits to vary physical parameters of the chain, as length and linear density. If 

a bead is attached to the downiest point with mass greater than chain mass, it is possible to 

emulate an applied load to the chain.  The model is capable to predict a general shape of the 

vibrate modes and natural frequencies. The figure 2.1 shows the variation of the natural 

frequencies with the variation of the bead when is fixed at one end (a) and fixed at both ends 

(b).  
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Figure 2.1 Variation of the natural frequencies in function of the bead. 

 

Source: Verbin, 2015 

 

The chain can also be considered as the joint of n rods connected by the ends (Levinson, 

1976). The length of each link is 𝐿/𝑛 and its center of mass lies along the line that connect the 

two link joints. Each rod has a radius of gyration equal to 𝑘(𝐿/𝑛)2, where 𝑘 is a dimensionless 

number. Taking the angle between the link position with the vertical direction as generalized 

coordinate for each link, a linear equation of motion can be written for this system. The 

determination of the modal parameters is straightforward. This type of modelling is the most 

general formulation considering the chain as a multibody system. For more accurate results 

other parameters must be considered. 

The chain can be analyzed with both ends fixed, with an applied loaded and subjected 

to a spin velocity  (NOËL et al., 2008) The vibration is assumed to follow the wave shape. The 

solution of the equation of motion is made through the Bessel equation of zero order. The results 

of this approach have good accuracy for the first three vibration modes for different applied 

loads and spin velocities. In addition, it is possible to demonstrate that as the tension increase 

the resonance frequencies do too. Figure 2.2 shows the first vibration mode of chains made of 

different materials.  
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Figure 2.2 First vibration mode of the spin loaded chain. 

 

Source: Jean-Marc Noël et al. ,2005 

 

The non-linearized system is studied too  (TOMASZEWSKI; PIERANSKI, 2005), 

(FRITZKOWSKI; KAMINSKI, 2008). Carrying out with the approach of modeling the chain 

as n connected rod and limiting the problem to the plane (Figure 2.3), the Lagrange theory 

provides the equations of motion of the system. The angles with the vertical are set as the 

generalized coordinates. The kinetic and potential energy are described for each rod, 

considering that the mass center is localized in the length center and the joint is spherical. As 

the obtained equations of motion cannot be linearized, the computational cost is high as well as 

the time spent for calculating the response. The authors used some techniques in order to 

facilitate the integration work, as the introduction of dimensionless parameters depending on 

the sound velocity in the air, so as reducing the mathematical complexity of the system. The 

dynamic response of the system is a good approximation for the chain profile when is perturbed 

from the equilibrium position. This modelling also allows incorporating velocity to one end, 

but internal forces are not studied.  
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Figure 2.3 Chain modeled as the joint of cylindrical rods. 

 

Source: Bertoldi et al., 2007 

 

 

2.2. The moving chain 

 

The moving chain (link chain) is a special case which is very common in the transportation 

industry. The chains are capable of transport big loads and objects suspended in the air as a 

cableway.  

The chains used in transportation are normally long, so it is possible to treat them as strings. 

Considering a particle traveling through its length and taking into account the deflection in an 

instant of time, a differential equation is proposed to describe the motion of the point 

(MAHALINGAM , 1957). Centrifugal tension and transversal oscillations are considered. The 

string presents variations in resonance frequencies with the increase of the chain velocity (figure 

2.4). A fact to highlight is that, theoretically, for a constant tension, the natural frequencies 

decreases until zero as the chain velocity approaches the wave propagation velocity. In practice, 

this does not happen because the chain tension increases with the chain velocity owing to 

centrifugal effects.   
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Figure 2.4 Analysis of the critical frequencies as a function of the chain speed. 

 

Source: Mahalingam, 1957 

 

Another study was performed by (LI et al., 2014) This study case aims to find how the 

initial condition of the moving chain affects the resonance frequencies in order to suppress great 

vibrations. The authors model the chain as a string and formulate the equation of motion in the 

Laplace domain. The results showed that the amplitude of vibration of axially moving chain 

increases with the increment of the initial tension. The author proved that the proposed 

differential equation is valid to predict the effects of operation parameters on vibration 

frequency.  

The characterization of modal parameters and transversal vibration of a monochain 

ropeway is possible by modelling the chain with uniform mass distribution and concentrated 

inertia loads (Figure 2.5). (YANG et al. ,2015). The boundary conditions subjected to the 

polygonal action caused by the chain support engagement, coupling effect, variable tension and 

time depend speed on transversal vibration is investigated.  The results of this approach showed 

that supporting rollers with small wrap angle increase the vibration because of the polygonal 

action. The interaction of transportation speed and wave velocity influences the amplitude and 

frequency of transversal vibration. The amplitude and frequency are proportional to 

transportation speed. Performed experiments validate the equations. The collected data show 

good agreement with the calculated results.  
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Figure 2.5 Representation of the monochain ropeway. 

 

Source: Yang et al. (2015) 

The vertically moving chain is studied with non-negligible weight  (WANG ,2017). 

With the appropriate initial value method, the natural frequencies are determined for various 

axial velocities and string densities. No standing waves are considered as well as bending 

stiffness. Considering small vibration, the differential equation for a string is posed. The 

numerical method that the author used to find the natural frequencies is setting an initial value 

and a value for the frequency, if this frequency accomplishes a proposed constriction, then it is 

an Eigenvalue. The method shows high efficiency in finding the natural frequencies.  

 

Figure 2.6 Model of the vertical moving chain. 

 

Source: Wang (2017) 
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2.3. The mooring chain 

 

Mooring chains are largely used in offshore application. Some of them are oil and gas 

facilities as well as wind energy production. Mooring chains are used to provide sustentation to 

the structure in several configurations. The mooring lines are usually a combination of cables 

and link chains.  

The analysis of the mooring chains carries out aspects as the contact with the sand, the drag 

force, the interaction with the water, the induced inertia and others. Some of the methodologies 

are presented below with different approaches. 

 

2.3.1. Lumped mass and spring model 

 

The lumped mass and spring method (LMM) is largely used to model mooring chains 

for offshore applications. The method allows studying several configurations of the mooring 

line such as catenary and taut form. This approach considers the chain links as deformable 

bodies. 

The LMM permits to study tridimensional geometries as well as tridimensional motions. 

Large displacements are assumed. The inclusion of forces due to the weight of the string, 

buoyancy, drag and added mass of the fluid is possible. In addition, non-uniform strings can be 

analyzed, since the method shall have the capacity of include any subsystem. The 

implementation of several boundary conditions is available (HUANG, 1994).  

The method consists in the division of the mooring line in n elements. The mass of each 

element is concentrated and it is connected to the neighbor mass through an axial spring. Each 

lumped mass is considered as a node.  

The mathematical formulation of the equations of motion is made through the 

application of the Newton’s Laws. A system of non-linear partial differential equations is 

obtained. The method is versatile and it accepts a variety of boundary conditions, applied to  

each line end like, for example, the type of drag considered or the vessel floating at the top of 
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the chain. The solution of the system can be obtained applying the finite difference method, 

which provides stability to the integration.  

New assumptions can be introduced to the method. The definition of the boundary 

conditions reflects directly on the system response. The consideration of the interaction of the 

line with the seabed and the anchor as a pin configures a new study case (KURIAN et al., 2013). 

The line is connected to a floating structure, which can be affected by waves, wind and others. 

The response of the structure and the chain can be separately calculated, since the interference 

of the line in the dynamics of the structure is negligible. The mooring line rests on a bed of 

elastic foundation and the touchdown point varies during the oscillation (figure 2.7). The 

hydrodynamics forces have linear loading variation per element. The line is fully flexible at the 

bending direction and only the secant stiffness is considered. The frequency of the floating end 

directly affects the line dynamics tension. When the soil stiffness increases, the line tension 

decreases. The soil damping dissipates the impact due to mooring dynamics response, resulting 

in a decrease of the line tension.  

 

Figure 2.7 Lumped mass model of the mooring line. 

 

Source: Kurian et al. (2013) 

 

The effects of torsion and bending are included in the method of lumped mass (CHAI 

et al., 2002). A catenary is considered. Three translational coordinates are set as well as one for 
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torsional direction. The authors declared that this approach provides a simple way to simulate 

the dynamics of a mooring line, enabling the study of several situations and presenting good 

outcomes for a great number of cases. 

The study of the complete offshore structure comprises the anchor, the mooring line and 

the floating vessel is a hard work to do. The modeling of the vessel requires the implementation 

of forces of second order and the handling of non-linearities caused by geometry, drag effects 

and others (LOW; LANGLEY, 2006). The solution of the system is normally performed in the 

time domain, but the frequency approach can be accomplished too. This approach is 

computationally intensive. The vessel is modeled as a rigid body with six degrees of freedom, 

which experiments forces due to the water waves and the wind. The chain line is modelled 

applying the LMM with additional rotational springs in order to simulate the bending stiffness 

(figure 2.8). Large deflections and small strains are assumed. The drag, hydrodynamics, and 

inertial forces due to added mass are considered to construct the equations of motion. The 

frequency domain presents improved results when compared to the time domain for vessel 

motions and line tensions. It is recommended to use frequency domain when the non-linearities 

are not significant (large mooring lines). In addition, it is advisable to perform time domain 

coupled analysis to verify special cases.  

 

Figure 2.8 Spring model of two elements of the chain. 

 

Source: Low and Langley (2006) 
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The anchor point is commonly considered as a fixed pin. The increase of application of 

taut configuration (vertical chain) in mooring lines makes the anchor to be embedded several 

meters beneath the seabed in order to provide enough holding capacity, thus some part of the 

chain is embedded too, causing interesting interactions between the soil and the line (XIONG 

et al., 2016). The approach uses a simplified LMM aiming to focus on the analysis of the anchor. 

Although the embedded part of the line is small, interferes in the dynamics of the chain as well 

as the load of the line. 

 

2.3.2. Finite elements method 

The use of the finite elements method (FEM) is increasing for modelling mooring lines 

and study their dynamics behavior as well as to be a helpful tool for their project.  

A taut mooring line is fully suspended, and the touchdown point is fixed. For modelling 

this line, a geometrically nonlinear finite element formulation of a spatially distributed cable is 

presented by the use of an isoparametric cable element (YANG; TENG, 2010). The tangent 

stiffness and mass matrixes are evaluated and the equilibrium is obtained with the load 

incremental method and Newton-Raphson iterations. The incremental equations of motion of 

the cable is derived from the continuous mechanics. Considering the segment between two 

nodes, the displacements can be interpolated with nodal displacements. Thus, obtaining the 

interpolate shape functions, it is possible to get the mass and stiffness matrices, which are 

assembled to form the global matrices. Yang and Teng (2010) declared that the method presents 

good accuracy to estimate the line tension and the induced damping. The change of the 

considerations of the line or the boundary conditions, affects the induced damping. In addition, 

the method presented by the authors is adaptable for a different number of nodes, having the 

capability to performing many numbers of nodes or conversely only three nodes.  

Comparisons between the methods of modelling the mooring line dynamics are made 

in order to evaluate capability, versatility and numerical efficiency (KIM et al., 2013). The FEM 

applies the minimum energy principle to formulate the non-linear dynamic of the line with a 

discrete numerical model. The analysis of the system must be coupled, i.e., the dynamics of the 

line has to be included in the study of the dynamics of the floating vessel (figure 2.9). The FEM 

allows the inclusion of damping, a task that is difficult for LMM. In addition, this approach 

provides direct information about the line tension. 
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Figure 2.9 Finite elements of the mooring lines 

 

Source: Kim et al. (2013). 

 

The interaction of the embedded chain with the soil is studied by several methods. As 

shown above, the LMM is one of them but the FEM has been implemented in order to study 

new conditions since the buried chain length consideration is growing due to holding 

requirements(LI et al., 2016). The FEM method presents good agreements with tests and 

theoretical analysis. As the depth increases, the results vary for both methods. This can occur 

because of the plastic zone of around the chain changes with the location of the attachment 

point in the soil. In addition, the interaction between the chain and the soil reduces the load at 

the anchor but can increase the risk of failure.  

 

2.3.3. Inextensible links 

The mooring lines are usually taken as the union of several extensible links. A mooring 

line with enough number of links can establish a chain with inextensible links (FILIPICH; 

ROSALES, 2007) For each link are defined two nodes, which have three degrees of freedom 

representing the linear displacements. Applying the Newton´s Laws for every link, the motion 

equations of motion are obtained, considering the center mass accelerations and the internal 

forces due to the reactions. The solution of the differential equations is made through the power 

series method. The results show good agreement with outcomes from the finite elements 

method.  
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As conclusion of this chapter, it is possible to observe that it does not exist any 

mathematical model of a tensioned chain considered as a multibody system with both ends 

fixed. Thus, in the next chapter, it is proposed a mathematical model of a tensioned link chain 

as a multibody system, implementing some assumptions from the works of Tomaszewski and 

Pieranski ( 2005),  Fritzkowski and Kaminski (2008).  
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3. MATHEMATICAL MODEL OF A LINK CHAIN 

 

This chapter explains the proposed model of a link chain fixed at both ends and tensioned. 

The chain is treated as a multibody system. The goal of the modeling is to obtain the natural 

frequencies of vibration of the chain as a function of the applied force at one end. The 

mathematical model is made implementing some assumptions from the works of Tomaszewski 

and Pieranski ( 2005),  Fritzkowski and Kaminski (2008) applying a novel methodology for the 

analysis of the dynamics as well as the  consideration of the three-dimensional motion.  

 

3.1. Assumptions 

 

Some assumptions are made aiming to facilitate the modeling of the chain and the 

understanding of its dynamics. They are cited as follows: 

• The links of the chain are inextensible. 

• All the links of the chain have the same geometric characteristics, i.e. all of them have 

the same shape.  

• All the links have the same mass per length unit, which is constant.  

• The links are considered as cylindrical rods connected by means of spherical joints 

(TOMASZEWSKI; PIERANSKI, 2005), (FRITZKOWSKI; KAMINSKI, 2008). 

• The chain is vertical and constraint at both ends. 

• The lowest end is fixed and it does not allow translation movement. The upper end 

allows little translation at vertical direction because the links do not allow strain. 

• The chain is tensioned by a force applied at the upper end.  

• Spin motion of the links is neglected.  

Figure 3.1 shows a representation of the chain. 
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The position of any point of the link described in the inertial coordinates can be 

calculated with the following equation 

 𝒘 = 𝒓 + 𝑺𝟏𝑺𝟐𝒖𝑻 (3.5) 

 

where 𝒓 is the vector that described the position of the origin of the local reference frame 

respecting to the inertial system. 𝑺𝟏 and 𝑺𝟐 are the transformation matrices and 𝒖 is the position 

vector of any point of the rod described in the mobile coordinates. 

The length of all the links is the same and is denoted by 𝐿. The center of mass is 

considered to be at its midpoint.  

In order to develop the equation of motion of the link chain, it is necessary to obtain the 

position of the center of mass of each link. Starting with the lower link of the chain, one 

considers that its lower end is located at the origin of the inertial coordinate system. The position 

of the center of mass of this link is easily described in ℜ2 frame as follows: 

 𝒖𝑻 = {0, 0, 𝐿2} (3.6) 

 

In this case, the vector 𝒓, described in eq. (3.5), is made up of zeros, because the origin 

of ℜ2 lies at the origin of the inertial coordinate system. Thus, replacing at the equation (3.5) 

the position of the center of mass in absolute coordinates is  

 

𝒘𝟏 = {  
  𝐿2 cos(𝛽1) sin(𝜃1)−L2 sin(𝛽1)𝐿2 cos(𝛽1) cos(𝜃1)}  

  
 (3.7) 

 

where 𝜃1 and 𝛽1 are the generalized coordinate for the first link. 

In order to obtain the position of the center of mass of the next link, the same procedure 

is used. The only difference here, and in the case of the next links, is that the vector r is no 

longer zero. In the case of the second lower link, 𝒓 is the position of the upper end of the first 
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link. It is worth noting that the vector 𝒓 must be described in absolute coordinates. Then, the 

position of the center of mass for the second link is: 

 

 

𝒘𝟐 = {  
  𝐿 cos(𝛽1) sin(𝜃1) + 𝐿2 cos(𝛽2) sin(𝜃2)−L sin(𝛽1) − L2 sin(𝛽2)𝐿 cos(𝛽1) cos(𝜃1) + 𝐿2 cos(𝛽2) cos(𝜃2)}  

  
 (3.8) 

 

Note that if the procedure were applied for the third link, the position would have the 

same form, but with one additional term corresponding to the position of the center of mass of 

the third link. As the vector 𝒓 of any link corresponds to the sum of positions of the end of the 

previous links and the position of the center of mass is described in the corresponding mobile 

coordinates, the vector that describes the position of the center of mass of any link of the chain 

can be generalized as follows: 

 

𝒘𝒊 =
{  
  
   
 𝐿∑cos(𝛽𝑗) sin(𝜃𝑗)𝑖−1

𝑗=1 + 𝐿2 cos(𝛽𝑖) sin(𝜃𝑖)
−L∑sin(𝛽𝑗) − 𝐿2 sin(𝛽𝑖)𝑖−1

𝑗=1𝐿∑cos(𝛽𝑗) cos(𝜃𝑗)𝑖−1
𝑗=1 + 𝐿2 cos(𝛽𝑖) cos(𝜃𝑖)}  

  
   
 

 (3.9) 

 

where the integer 𝑖 represents the number of the link which one the position is being calculated. 

The link is counted upwards, that is, the first link is the lowest and the last is the highest.  

The velocity and acceleration of the center of mass is calculated deriving, with respect 

to the time, the expression of the position presented in eq. (3.9).  

Equations (3.10), (3.11) and (3.12) describe the general expressions of the velocity of 

the center of mass of any link in the 𝑋, 𝑌, and 𝑍 directions, respectively: 
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 𝑤̇𝑖𝑋 = 𝐿∑−𝛽𝑗̇ sin(𝛽1) sin(𝜃𝑗) + 𝜃𝑗̇ cos(𝛽𝑗) cos(𝜃𝑗)𝑖−1

𝑗=1+ 𝐿2 (−𝛽𝑖̇ sin(𝛽𝑖) sin(𝜃𝑖) + 𝜃𝑖̇ cos(𝛽𝑖) cos(𝜃𝑖)) 
(3.10) 

 

 𝑤̇𝑖𝑌 = 𝐿∑−𝛽𝑗̇ cos(𝛽𝑗)𝑖−1
𝑗=1 − 𝐿2𝛽𝑖̇ cos(𝛽𝑖) (3.11) 

   

 𝑤̇𝑖𝑍 = 𝐿∑−𝛽𝑗̇ sin(𝛽𝑗) cos(𝜃𝑗) − 𝜃𝑗̇ cos(𝛽𝑗) sin(𝜃𝑗)𝑖−1
𝑗=1+ 𝐿2 (−𝛽𝑖̇ sin(𝛽𝑖) cos(𝜃𝑖) − 𝜃𝑖̇ cos(𝛽𝑖) sin(𝜃𝑖)) 

(3.12) 

 

The general expressions of the acceleration of the center of mass of any link in the 𝑋0, 𝑌0, and 𝑍0 directions are presented in equations (3.13), (3.14) and (3.15), respectively: 

 𝑤̈i𝑋 = 𝐿∑−𝛽𝑗̈ sin(𝛽𝑗) sin(𝜃𝑗) − 𝛽𝑗2̇ cos(𝛽𝑗) sin(𝜃𝑗) − 𝛽𝑗̇𝜃𝑗̇ sin(𝛽𝑗) cos(𝜃𝑗)𝑖−1
𝑗=1 + 𝜃̈𝑗 cos(𝛽𝑗) cos(𝜃𝑗) − 𝜃𝑗̇𝛽𝑗̇ sin(𝛽𝑗) cos(𝜃𝑗)− 𝜃𝑗2̇ cos(𝛽𝑗) sin(𝜃𝑗)+ 𝐿2 (−𝛽𝑖̈ sin(𝛽𝑖) sin(𝜃𝑖) − 𝛽𝑖2̇ cos(𝛽𝑖) sin(𝜃𝑖)− 𝛽𝑖̇𝜃𝑖̇ sin(𝛽𝑖) cos(𝜃𝑖) + 𝜃𝑖̈ cos(𝛽𝑖) cos(𝜃𝑖)− 𝜃𝑖̇𝛽𝑖̇ sin(𝛽𝑖) cos(𝜃𝑖) − 𝜃𝑖2̇ cos(𝛽𝑖) sin(𝜃𝑖)) 

(3.13) 

 

 𝑤̈i𝑌 = 𝐿∑−𝛽𝑗̈ cos(𝛽𝑗) + 𝛽𝑗2̇ sin(𝛽𝑗)𝑖−1
𝑗=1 + 𝐿2 (−𝛽𝑖̈ cos(𝛽𝑖) + 𝛽𝑖2̇ sin(𝛽𝑖)) (3.14) 
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 𝑤̈i𝑍 = 𝐿∑−𝛽𝑗̈ sin(𝛽𝑗) cos(𝜃𝑗) − 𝛽𝑗2̇ cos(𝛽𝑗) cos(𝜃𝑗)𝑖−1

𝑗=1+ 𝛽𝑗̇𝜃𝑗̇ sin(𝛽𝑗) sin(𝜃𝑗) − 𝜃̈𝑗 cos(𝛽𝑗) sin(𝜃𝑗)+ 𝜃𝑗̇𝛽𝑗̇ sin(𝛽𝑗) sin(𝜃𝑗) − 𝜃𝑗2̇ cos(𝛽𝑗) cos(𝜃𝑗)+ 𝐿2 (−𝛽𝑖̈ sin(𝛽𝑖) cos(𝜃𝑖) − 𝛽𝑖2̇ cos(𝛽𝑖) cos(𝜃𝑖)+ 𝛽𝑖̇𝜃𝑖̇ sin(𝛽𝑖) sin(𝜃𝑖) − 𝜃̈𝑖 cos(𝛽𝑖) sin(𝜃𝑖)+ 𝜃𝑖̇𝛽𝑖̇ sin(𝛽𝑖) sin(𝜃𝑖) − 𝜃𝑖2̇ cos(𝛽𝑖) cos(𝜃𝑖)) 
 

(3.15) 

The angular velocity and acceleration of each link is described, in the inertial reference 

system, by the equations (3.16) and (3.17), respectively: 

 𝝎𝒊 = [ 𝛽𝑖̇ cos(𝜃𝑖)𝜃̇−𝛽𝑖̇ sin(𝜃𝑖)] (3.16) 

 

 𝜶𝒊 = [ 𝛽̈𝑖 cos(𝜃𝑖) − 𝛽𝑖̇𝜃̇i sin(𝜃𝑖)𝜃̈−𝛽𝑖̈ sin(𝜃𝑖) − 𝛽𝑖̇𝜃𝑖̇ cos(𝜃𝑖)] (3.17) 

 

 

3.3.1. Constraints 

The links of the chain are considered as inextensible. Aiming to accomplish that 

condition and knowing that both ends of the chain are fixed in the directions 𝑋 and 𝑌, the 

movement in the 𝑍 direction of the upper end is allowed.  

Another constraint is related to the fact that both ends are fixed in directions 𝑋 and 𝑌. 

Then the summation of the positions of all the links in the directions 𝑋 and 𝑌 must be equal to 

zero. This is because the chain begins and ends at the same point for both directions.  This 

constraint can be expressed in mathematical form by the following equations: 
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 ∑𝑥𝑠𝑖𝑛

𝑖=1 = 0 

∑𝑦𝑠𝑖𝑛
𝑖=1 = 0 

(3.18) 

 

Where 𝑥𝑠𝑖 and 𝑦𝑠𝑖 are the positions of the upper point of each link in the direction 𝑋 and 𝑌 

respectively.  

 

3.4. Kinetics  

Here the Newton’s laws are applied in order to analyze the effects of the forces and 

moments over the chain.  

As all links are connected by spherical joints, three reaction forces are considered for 

each joint. In order to take the influence of the gravity into account, the weight force of each 

link is applied at its midpoint. At the upper link, an external force 𝑇 is applied in order to tension 

the chain.  All the forces are described in directions according to the inertial coordinate system.  

For this model, the chain is considered to be always tensioned, i.e., the value of the force 𝑇 must be equal or greater than the total weight of the chain. The friction between the 

components is neglected.  

The chain is modeled as a multi-body system, and then the links of the chain are 

analyzed individually. As mentioned previously, the link is fixed on the axis 𝑍2 of ℜ2. For 

convenience, these axes are taken as the inertia principal axes.  

The sum of forces is performed in the inertial coordinate system since all the quantities 

are described there, and the sum of moments is done in ℜ2 because of the facilities for 

calculating the inertia tensor. It is important to highlight that when choosing ℜ2 as inertia 

principal axes, the inertia tensor does not change with time.  

The free body diagram of the upper link of the chain is shown in Figure 3.4. 
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As mentioned earlier, in this work, Euler equations are computed in the reference frame 

fixed to the link. For this reason, it is necessary to write forces and angular accelerations in this 

reference frame.  This can be done using the transformation matrices presented in equations 

(3.1) and (3.2).  

Consider the force vector 𝑅 = [𝑅𝑥, 𝑅𝑦, 𝑅𝑧] written in ℜ0. This vector can be written in ℜ2 as follows: 

 𝑅2 = 𝑠2𝑇𝑠1𝑇𝑅 (3.28) 

 

Substituting the values of s1 and s2 given by equations (3.1) and (3.2) in equation (3.28) gives: 

 𝑅2 = { 𝑅𝑥 cos(𝜃) − 𝑅𝑧sin (𝜃)𝑅𝑦 cos(β) + 𝑅𝑧 cos(𝜃) sin(𝛽) + 𝑅𝑥 sin(𝜃) sin (𝛽)𝑅𝑧 cos(𝜃) cos(𝛽) − 𝑅𝑦 sin(𝛽) + 𝑅𝑥 cos(𝛽) sin (𝜃)} (3.29) 

 

The transformation given by equation (3.28) is valid for the angular acceleration as well as for 

any vector fixed in the inertial reference frame.  

Consider the link 𝑘 again. The link has been isolated and its forces have been 

transformed to the reference frame fixed to the link (ℜ2). Figure 3.5 shows the configuration of 

the forces at the link 𝑘. In this figure, the resulting forces applied on the upper and lower end 

of the link were decomposed on the axis of ℜ2.   
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3.5. Linearization 

As the principal objective of the model of the chain is obtaining the lower frequencies 

of vibration of the system, it is convenient to consider small angular displacements and 

linearized the equations of motions, in this case, it is considered that: 

 sin(𝜃) ≅ 𝜃,   cos(𝜃) ≅ 1 (3.33) 

and 

 sin(𝛽) ≅ 𝛽,   cos(𝛽) ≅ 1 (3.34) 

   

 

Substituting the equations (3.25) to (3.27) in the equation (3.29) is obtained the general 

expressions of the reaction forces at the joints of the links described in ℜ2. Then, the forces 

described in ℜ2 are substituted in the equations (3.30) and (3.31). After, the linearization is 

applied to these expressions.  

 

3.6. Equation of Motion of the chain 

The introduction of the constraints shows in the equation (3.18) to the system has as 

consequent the elimination of two degrees of freedom, which now are described as functions 

of the others generalized coordinates. Thus, the system that represents the chain has 2(𝑛 − 1) 
degrees of freedom, where 𝑛 is the number of links.  

The linearized equation of motion of the system is presented as follows: 

 𝑴{𝒙̈} + 𝑲{𝒙} = 𝟎 (3.35) 

 

where 𝑴 is the mass matrix, 𝑲 is the stiffness matrix and 𝒙 is the vector of generalized 

coordinates shows in the equation (3.36) and 𝒙̈ their derives with respect to time. 
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𝒙 =
{  
  
  𝜃1𝛽1𝜃2𝛽2⋮⋮𝜃𝑛−1𝛽𝑛−1}  

  
  

 

 

(3.36) 

 

When analyzing the expression (3.5), it is perceived that as consequent of the 

linearization the equations are independent for each plane, in other words, for each direction X 

or Y, the equations of motion of the links are written in function of only one generalized 

coordinate, 𝛽 or 𝜃, respectively. The equations for both generalized coordinates are the same.  

Considering the previous information, a generic mass matrix 𝑴𝒑 is presented in the 

equations (3.37) to (3.39), where the subscript 𝑝 is 1 for 𝜃 and 2 for 𝛽.  

 𝑴𝒑(𝑖, 𝑗) = 𝐼𝑖 + 𝐿24 𝑚𝑖 + 𝐿2 ∑ 𝑚𝑘𝑛−1
𝑘=𝑖+1 + 34𝐿2𝑚𝑛 + 𝐼𝑛,                      𝑖 = 𝑗 (3.37) 

 

 𝑴𝒑(𝑖, 𝑗) = 𝐿22 𝑚𝑖 + 𝐿2 ∑ 𝑚𝑘𝑛−1
𝑘=𝑖+1 + 34𝐿2𝑚𝑛 + 𝐼𝑛,                              𝑖 > 𝑗 (3.38) 

 

 𝑴𝒑(𝑖, 𝑗) = 𝐿22 𝑚𝑗 + 𝐿2 ∑ 𝑚𝑘𝑛−1
𝑘=𝑗+1 + 34𝐿2𝑚𝑛 + 𝐼𝑛,                              𝑖 < 𝑗 (3.39) 

 

where 𝑖 and 𝑗 are the subscript for the rows and columns of the matrix respectively. 𝐼𝑖 
and 𝑚𝑖 are the mass and the inertia of each link, 𝑚𝑛  and 𝐼𝑛 are the mass and the inertia of the 

upper link. 𝐿 is the length of the link.  

On the other hand, a generic stiffness matrix 𝑲𝒑 is presented in the equations (3.40) and 

(3.41), where the subscript 𝑝 is 1 for 𝜃 and 2 for 𝛽. 
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 𝑲𝒑(𝑖, 𝑗) = 2𝐿𝑇 − 𝐿2𝑚𝑖𝑔 − 𝐿𝑔 ∑ 𝑚𝑘𝑛−1

𝑘=𝑖+1 − 𝐿2𝑚𝑛𝑔                          𝑖 = 𝑗 (3.40) 

 

 𝑲𝒑(𝑖, 𝑗) = 𝐿𝑇 − 𝐿2𝑚𝑛𝑔                                                                          𝑖 ≠ 𝑗  (3.41) 

 

where 𝑇 is the applied force at the upper link and 𝑔 is the gravity acceleration.  

The size of the matrices 𝑴𝒑 and 𝑲𝒑 is [𝑛 − 1 × 𝑛 − 1]. It is defined the matrices 𝑴𝟏 

and 𝑲𝟏 for 𝜃 and the matrices 𝑴𝟐 and 𝑲𝟐 for 𝛽. The generic matrixes 𝑴𝟏 and 𝑴𝟐 as well as 

the generic matrixes 𝑲𝟏 and 𝑲𝟐, are coupled in the global matrices 𝑴 and 𝑲, respectively. The 

equations (3.42) and (3.43) show the assembly of the global matrixes. 

 𝑴 = 

[  
   
  𝑀1(1,1) 0 𝑀1(1,2) 0 ⋯ 𝑀1(1, 𝑛 − 1) 00 𝑀2(1,1) 0 𝑀2(2,2) ⋯ 0 𝑀2(1, 𝑛 − 1)𝑀1(2,1) 0 𝑀1(2,2) 0 ⋯ ⋯ ⋮0 𝑀2(2,1) 0 𝑀2(2,2) ⋯ ⋯ ⋮⋮ ⋮ ⋮ ⋮ ⋱ ⋯ ⋮𝑀1(𝑛 − 1,1) 0 ⋮ ⋮ ⋮ 𝑀1(𝑛 − 1, 𝑛 − 1) 00 𝑀2(𝑛 − 1,1) ⋯ ⋯ ⋯ 0 𝑀2(𝑛 − 1, 𝑛 − 1)]  

   
  
 

(3.42) 

 𝑲 = 

[  
   
  𝐾1(1,1) 0 𝐾1(1,2) 0 ⋯ 𝐾1(1, 𝑛 − 1) 00 𝐾2(1,1) 0 𝐾2(2,2) ⋯ 0 𝐾2(1, 𝑛 − 1)𝐾1(2,1) 0 𝐾1(2,2) 0 ⋯ ⋯ ⋮0 𝐾2(2,1) 0 𝐾2(2,2) ⋯ ⋯ ⋮⋮ ⋮ ⋮ ⋮ ⋱ ⋯ ⋮𝐾1(𝑛 − 1,1) 0 ⋮ ⋮ ⋮ 𝐾1(𝑛 − 1, 𝑛 − 1) 00 𝐾2(𝑛 − 1,1) ⋯ ⋯ ⋯ 0 𝐾2(𝑛 − 1, 𝑛 − 1)]  

   
  
 

(3.43) 
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Applying the Newton’s laws and Euler’s equation for each link and linearizing, an 

equation of motion in matrix form as the one described by equation (3.35) is obtained. The 

elements of mass matrix are presented in equations (3.44) to (3.52): 

 𝑴(𝑖, 𝑗) = 𝐼𝑖 + 𝐿22 ∑ 𝑚𝑘𝑛
𝑘=𝑖+1 ,                                                                     𝑖 = 𝑗 = 1 (3.44) 

 

 𝑴(𝑖, 𝑗) = 𝐼𝑖 + 𝐿24 𝑚𝑖 + 𝐿2 ∑ 𝑚𝑘𝑛
𝑘=𝑖+1 ,                                        𝑖 = 𝑗 ≠ 1 ≠ 𝑛 + 1 (3.45) 

 

 𝑴(𝑖, 𝑗) = ∑𝑚𝑘𝑛
𝑘=1 ,                                                               𝑖 = 𝑛 + 1  ∧   𝑗 = 𝑛 + 1 (3.46) 

 

 𝑴(𝑖, 𝑗) = 𝐿24 𝑚𝑗 + 𝐿22 ∑ 𝑚𝑘𝑛
𝑘=𝑗+1 ,                              𝑖 = 1 ∧   𝑗 ≠ 1 ∧   𝑗 ≠ 𝑛 + 1 (3.47) 

 

 𝑴(𝑖, 𝑗) = 𝐿2∑𝑚𝑘𝑛
𝑘=2 ,                                                                     𝑖 = 1 ∧   𝑗 = 𝑛 + 1 (3.48) 

 

 𝑴(𝑖, 𝑗) = 𝐿22 𝑚𝑗 + 𝐿2 ∑ 𝑚𝑘𝑛
𝑘=𝑗+1 ,                               𝑖 < 𝑗 ∧   𝑖 ≠ 1 ∧   𝑗 ≠ 𝑛 + 1 (3.49) 

 

 𝑴(𝑖, 𝑗) = 𝐿22 𝑚𝑖 + 𝐿2 ∑ 𝑚𝑘𝑛
𝑘=𝑖+1 ,                                𝑖 < 𝑗 ∧  𝑖 ≠ 1 ∧   𝑗 = 𝑛 + 1 (3.50) 

 

 𝑴(𝑖, 𝑗) = 𝐿22 𝑚𝑖 + 𝐿2 ∑ 𝑚𝑘𝑛
𝑘=𝑖+1 ,                                                𝑖 > 𝑗 ∧   𝑖 = 𝑛 + 1 (3.51) 

 

 𝑴(𝑖, 𝑗) = 𝐿2𝑚𝑗 + 𝐿 ∑ 𝑚𝑘𝑛
𝑘=𝑗+1 ,                                          𝑖 = 𝑛 + 1 ∧   𝑗 ≠ 𝑛 + 1 (3.52) 

 

The elements of stiffness matrix are given by equations (3.53) to (3.61): 
 



53 
 
 𝑲(𝑖, 𝑗) = 𝐿22 𝑘2 − 𝐿𝑔 ∑ 𝑚𝑘𝑛

𝑘=𝑖+1 − 𝐿2𝑔𝑚𝑖 + 𝐿𝑇,                                       𝑖 = 𝑗 = 1 (3.53) 

 

 𝑲(𝑖, 𝑗) = 𝐿2𝑘2 − 𝐿𝑔 ∑ 𝑚𝑘𝑛
𝑘=𝑖+1 − 𝐿2𝑔𝑚𝑖 + 𝐿𝑇 ,   𝑖 = 𝑗 ∧   𝑖 ≠ 1  ∧   𝑖 ≠ 𝑛 + 1 (3.54) 

 

 𝑲(𝑖, 𝑗) = 𝑘1 + 𝑘2                                                               𝑖 = 𝑛 + 1 ∧   𝑗 = 𝑛 + 1 (3.55) 
 

 

 𝑲(𝑖, 𝑗) = 𝐿22 𝑘2 ,                                                       𝑖 = 1 ∧   𝑗 ≠ 1 ∧   𝑗 ≠ 𝑛 + 1 (3.56) 

 

 𝑲(𝑖, 𝑗) = 𝐿2 (𝑘2 − 𝑘1)  ,                                                              𝑖 = 1 ∧   𝑗 = 𝑛 + 1 (3.57) 

 

 𝑲(𝑖, 𝑗) = 𝐿2𝑘2 ,                                                           𝑖 < 𝑗 ∧   𝑖 ≠ 1  ∧   𝑗 ≠ 𝑛 + 1 (3.58) 
 

 𝑲(𝑖, 𝑗) = 𝐿𝑘2 ,                                                               𝑖 < 𝑗 ∧   𝑖 ≠ 1  ∧ 𝑗 = 𝑛 + 1 (3.59) 
 

 𝑲(𝑖, 𝑗) = 𝐿2𝑘2 ,                                                                              𝑖 > 𝑗 ∧   𝑖 ≠ 𝑛 + 1 (3.60) 
 

 𝑲(𝑖, 𝑗) = 𝐿𝑘2 ,                                                                      𝑖 = 𝑛 + 1 ∧   𝑗 ≠ 𝑛 + 1 (3.61) 
 

 

where 𝑘1 is the stiffness of the lowest support and 𝑘2 is the stiffness of the upper support.  
  

The matrices previously presented are the generic form for any chain with 𝑛 links. 

 

 

 

 

 

 

 

 

 



54 
 

4. EXPERIMENTAL PROCEDURE 

The experimental procedure was carried out with a chain grade 8/CR-16 with 24 links 

manufactured by Coforja. Each link of the chain had 16 mm of diameter and 48 mm of internal 

length. The chain was axially loaded by a hydraulic actuator MTS 200 KN, controlled by the 

controller MTS flex test 60 and excited by a shaker Brüel & Kjær type 4808. The vibration was 

measured by three accelerometers PCB 353B68. In addition, six strain gauges Excel PA 06 060 

BA 120 type S were installed along the chain to measure the specific deformation of some links. 

Figure 4.1 Dimensions of the chain. 

 𝐷 = 16 𝑚𝑚              𝑇 = 48 𝑚𝑚             𝐵 = 21 𝑚𝑚 

Source: Author. 

4.1. Lay out 

The setup used for the chain measurements is illustrated on Figure 4.2. The hydraulic 

actuator was fixed at the top of a reaction frame structure. At the front of the piston of the 

hydraulic actuator a load cell was installed in order to measure directly the force applied to the 

chain. The chain was fixed to the actuator through an eye bolt and a screw, as shown in Figure 

4.3 (a), which allowed the upper link of the chain to oscillate freely around the axis of the screw. 

The other end of the chain was fixed to the base of the reaction frame using a similar assembly. 

The hydraulic actuator and the lowest support were aligned in order to keep the chain in the 

vertical position.  

The links of the chain were numbered in ascendant order, being the lowest link the first 

one and the upper link the twenty-fourth. The shaker was suspended by a giraffe crane and 

connected to the chain on its eighteenth link by a connecting rod (stringer). To firmly connect 

the stinger to the link, a piece of aluminum was machined with exactly the same curvature of 
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number 5 and 12, two strain gauges were installed, on two opposed surfaces. In all cases, the 

strain gauges measure the axial deformation of the chain. Figure 4.4 (b) shows a strain gauge 

connected to a chain link. 

To excite the system, a white noise signal generated by the GenRad EQ 0331 noise 

generator was sent to the Brüel & Kjær type 2712 power amplifier and then to the shaker. All 

signal were collected by the data acquisition system HBM MGCplus. Figure 4.5 shows an 

overview of the experimental setup while the test is running. 

Figure 4.3 Support of the chain and shaker joint to the link. 

(a) 

 

(b) 

 
Source: Author. 

Figure 4.4 Piece for attaching the accelerometers and detail of a strain gauge. 

(a) 

 

(b) 

 

 

  Source: Author. 
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Figure 4.5 Running the experiment. 

 

Source: Author 

Table 4.1 summarizes the sensors installed on each link. 

Table 4-1 Sensors installed on each link of the chain. 

Link number Sensor 

2 External strain gauge 

5 External and internal strain gauge 

8 Accelerometer-x 

11 Accelerometer-y 

12 External and internal strain gauge 

16 External strain gauge 

18 Load cell/Shaker 

19 Accelerometer-y 

Source: Author. 
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4.2. Procedure  

The first step for the measurements is to set up the data acquisition system. For all the 

measurements the sample rate was 2400 Hz. As the objective is to analyze the lowest 

frequencies of the chain, this acquisition rate was more than enough.  

As the experiment aims to identify the variation of the natural frequencies depending on 

the load on the chain, the chain was loaded increasing the force in steps of 5 kN beginning in 5 

kN and increasing until 70 kN. Then, the load was released in discrete steps of 5 kN until the 

minimum of 5 kN. Next, this cycle of loading and unloading was repeated several times. This 

is done in order to check if the chain presents hysteresis in deformation as well as in the natural 

frequencies. Before starting a new cycle, the chain is totally unloaded to reset the channels of 

the data acquisition system aiming to eliminate any residual stress.  

 

4.3. Data processing  

The identification of the natural frequencies was performed with the acceleration data 

and the force collected from the force transducer.  The procedure consists of calculating the 

estimator of the frequency response function (FRF) 𝐻2 with the input signal (Force) and the 

output signal (Acceleration). The estimator H2 is calculated as follows: 

 𝐻2 = 𝐺𝑦𝑦𝐺𝑥𝑦 (4.1) 

 

where 𝐺𝑦𝑦 is the auto power spectral density of the output and 𝐺𝑥𝑦 is the cross power spectral 

density between the input and output signal. The procedure was made for each 

loading/unloading cycle.  

The extensometry analysis consists of transforming the deformation data into the force 

applied to the chain. This is easily done through the relation given by equation (4.2): 

 

 𝐹 = 𝛿𝐴𝐸𝐿 = 𝑒𝐴𝐸 (4.2) 
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where the strain 𝑒 is the one measured by the strain gauges, 𝐴 is the transversal area of the links 

and 𝐸 the elasticity modulus of the material of the chain which, in this case, is 200 GPa (Carbon 

Steel). The transversal area is twice the area given by the diameter of the link wire. 
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5. FUZZY LOGIC 

The way that humanity defines the things is subjective and ambiguous, since each person 

has different perceptions. The definition of many concepts that usually people use is universal 

for everyone, as the summation of two numbers, for example, two plus two is four for the entire 

world no matter where or when the affirmation is done. All those statements are clearly 

represented by the mathematical world or the Boolean world. The Boolean logic only considers 

two type of responses for affirmations, true or false.  

The real world is expressed with several statements that are relative for each person, 

depending on the individual experiences and thoughts. The phrase “the lady is beautiful” is a 

typical situation in which Boolean logic fails, since the perception of beauty is totally influenced 

by the culture and region in which the statement is made. One can say that the phrase is true 

(the lady is really beautiful), while others may say that it is false, and there is no parameter to 

determine who is correct. 

As the example previously shown, almost all the concepts of the world are subjective 

and ambiguous. Zadeh (1965) introduced the concept of fuzzy sets with the need of representing 

subjective expressions. The author proposes that the elements have degrees of membership with 

defined sets. For example, the definition of warm or hot is difficult to do by means of Boolean 

logic, since, for example, the temperature of 40°C can be warm for some people, but for others 

it can be hot. If the set for “warm” is defined for all temperatures in the range of 20°C to 50°C, 

and “hot” from 35°C to 70°C, the temperature of 40°C belongs to the sets warm and hot 

simultaneously, with different degree of membership. Thus, is possible to avoid the ambiguity 

in the definition of the temperature.  

 

5.1. Basic concepts 

5.1.1. Fuzzy set theory  

Consider 𝑋 as a group of elements and 𝑥 as a generic element that belongs to 𝑋. This 

statement can be mathematically expressed as: 𝑋 = {𝑥}.  A fuzzy set 𝐴 in 𝑋 is characterized by 

a membership function 𝑓𝐴(𝑥)  which assigns a value in the real interval [0,1] with the value of 𝑓𝐴(𝑥) representing the grade of membership of 𝑥 into 𝐴 (ZADEH, 1965). Thus, the nearer the 
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value of 𝑓𝐴(𝑥) to the unity, the greater the degree of membership of 𝑥 in 𝐴. it is possible to 

represent a classical set 𝐴 by (𝑥, 0) or (𝑥, 1), which indicates that 𝑥 ∉ 𝐴 or 𝑥 ∈ 𝐴, respectively. 

5.1.2. Fuzzy sets and membership functions 

The fuzzy sets can be considered as an extension of the classical sets, in which the 

characteristic function is allowed to assume any value in the interval [0,1]. Then, the fuzzy set 𝐴 can be denoted as:  

 𝐴 = {(𝑥, 𝜇𝐴(𝑥))|𝑥 ∈ 𝑋} (5.1) 

 

where 𝑋 is the universe of discourse, 𝜇𝐴(𝑥) is the membership function and 𝑥 is an element 

belonging to the universe of discourse. For better understanding, an example is shown next. 

Consider the following set 𝐵 = “Dark colors” and the elements 𝑋 = {Brown, gray, 

black}, with the following degree of membership 𝐵= {(Brown, 0.7), (gray, 0.8), (Black, 0.99)}. 

In this case, the discrete universe of discourse 𝑋 are the colors, and the set are some colors that 

can be considered as dark depending on the criteria of the writer. Other person can assign 

different degree of membership according to his or her experience.  

A fuzzy set is uniquely defined by its membership function. In order to describe the 

membership function in a better way, some definitions (ROGER JANG, 2000) are done .  

Support: The support of a fuzzy set 𝐴 is the set of all of points 𝑥 in 𝑋 such that 𝜇𝐴(𝑥) > 0: 

 𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝐴) = { 𝑥 | 𝜇𝐴(𝑥) > 0}. (5.2) 

 

Core: The core of a fuzzy set is the set of all points 𝑥 in 𝑋 such that 𝜇𝐴(𝑥) = 1: 

 𝑐𝑜𝑟𝑒(𝐴) = { 𝑥 | 𝜇𝐴(𝑥) = 1}. (5.3) 

 

Normality: A fuzzy set A is normal if its core is nonempty. In other words, it is possible always 

to find a point 𝑥 ∈ 𝑋 such that 𝜇𝐴(𝑥) = 1. 
Crossover points: A crossover point of a fuzzy set 𝐴 is a point 𝑥 ∈ 𝑋 at which 𝜇𝐴(𝑥) = 0.5: 

 𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟(𝐴) = {𝑥 | 𝜇𝐴(𝑥) = 0.5}. (5.4) 
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Figure 5.6 Sigmoidal membership function. 

 

Source: Author. 

 

5.1.4. Operations with Fuzzy sets 

Most of the applications of fuzzy sets requires the interactions between different fuzzy 

sets. Thus, some of the operation with fuzzy set commonly used are shown next (MIZUMOTO; 

TANAKA, 1981). 

Union 

The union of two fuzzy sets 𝐴 and 𝐵 is a fuzzy set 𝐶, written as 𝐶 = 𝐴 ∪ 𝐵 or 𝐶 = 𝐴 𝑜𝑟 𝐵, whose MF is related to those of 𝐴 and 𝐵 by: 

 𝜇𝐶(𝑥) = max(𝜇𝐴(𝑥), 𝜇𝐵(𝑥)) = 𝜇𝐴(𝑥) ∨ 𝜇𝐵(𝑥). (5.12) 

 

Figure 5.7 (a) illustrates a union of two triangular sets.  

Intersection 

The intersection of two fuzzy sets 𝐴 and 𝐵 s a fuzzy set 𝐶, written as 𝐶 = 𝐴 ∩ 𝐵 or 𝐶 = 𝐴 𝑎𝑛𝑑 𝐵, whose MF is related to those of 𝐴 and 𝐵 by 

 𝜇𝐶(𝑥) = min(𝜇𝐴(𝑥), 𝜇𝐵(𝑥)) = 𝜇𝐴(𝑥) ∧ 𝜇𝐵(𝑥). (5.13) 

Figure 5.7 (b) illustrates the intersection of two triangular sets. 
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Figure 5.8 alpha cut of a fuzzy set. 

 

Source: Author. 

 

5.2. Fuzzy Reasoning  

In this section, the concepts of extension principle for fuzzy sets, linguistic variables 

and fuzzy rules are presented. The objective of this section is to explain how to make relations 

between fuzzy sets and prepare the exposition of fuzzy inference system, which is the most 

important modeling tool on the fuzzy set theory. 

 

5.2.1. Extension principle 

 The extension principle was proposed by Zadeh (1975) and resumed by Nguyen (1978) 

and Gerla (1994). The extension principle provides a general procedure to apply mathematical 

relations used in crisp domain into fuzzy domain. The procedure generalizes the mapping 

between fuzzy sets.  

Consider that 𝑓 is a function from 𝑋 to 𝑌 and 𝐴 is a fuzzy set in 𝑋 defined as∶ 
 𝐴 = 𝜇𝐴(𝑥1) 𝑥1 + 𝜇𝐴(𝑥2) 𝑥2 +⋯+ 𝜇𝐴(𝑥𝑛) 𝑥𝑛⁄⁄⁄  (5.17) 
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The extension principle establishes that the image of the fuzzy set 𝐴 under the mapping 𝑓 is the fuzzy set 𝐵 given by: 

 𝐵 = 𝜇𝐴(𝑥1) 𝑦1 + 𝜇𝐴(𝑥2) 𝑦2 +⋯+ 𝜇𝐴(𝑥𝑛) 𝑦𝑛⁄⁄⁄  (5.18) 

   

where 𝑦𝑖 = 𝑓(𝑥𝑖), 𝑖 = 1,2, … , 𝑛 . In other words, the fuzzy set 𝐵 can be defined by the mapping 

of the values 𝑥 in 𝑓. Once the mapping is carried out, if there are two or more repeated value 

for 𝑦, the degree of membership for this value will be the maximum degree of membership. 

Mathematically,  

 𝑥1, 𝑥2  ∈ 𝑋 ,     𝑥1 ≠ 𝑥2 (5.19) 

and 

 𝑓(𝑥1) = 𝑓(𝑥2) = 𝑦 ∗, 𝑦 ∗ ∈ 𝑌 (5.20) 

 

Then, the membership degree of 𝐵 at 𝑦 = 𝑦 ∗ is the maximum of the membership degrees at 𝐴, 
that is, 

 𝜇𝐵(𝑦) = max(𝜇𝐴(𝑥1) , 𝜇𝐴(𝑥2)) (5.21) 

Then,  

 𝑥 = 𝑓−1(𝑦) (5.22) 

 

The theory previously explained is embodied in an example: 

Consider the following discrete universe of discourse with the respective degree of 

membership: 

 𝐴 = 0.1 −2 + 0.3 −1 + 0.5 0 + 0.2 1 + 0.4 2⁄⁄⁄⁄⁄  (5.23) 

And the mapping function 𝑓 from 𝑥 to 𝑦 

 𝑦 = 𝑥2 + 2 (5.24) 

 

Applying the extension principle, the following result is obtained:  

 𝐵 = 0.1 6 + 0.3 3 + 0.5 2 + 0.2 3 + 0.4 6⁄⁄⁄⁄⁄  (5.25) 
 

 𝐵 = 0.5 2 + (0.3 ∨ 0.2) 3 + (0.1 ∨ 0.4) 6⁄⁄⁄  (5.26) 
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 𝐵 = 0.5 2 + 0.3 3 + 0.4 6⁄⁄⁄  (5.27) 

 

Where ∨ means union, that is, the maximum value.  

 

5.2.2. Binary Fuzzy Relation 

Castillo and Melin (2008) explain in an easy way the binary fuzzy relation between 

fuzzy sets. “Binary fuzzy relations are fuzzy sets in 𝑋 ×  𝑌 which map each element in 𝑋 ×  𝑌 

to a membership grade between 0 and 1”.  

Let 𝑋 and 𝑌 be two universes of discourse. Then, 

 𝕽 = { ((𝑥, 𝑦), 𝜇ℜ(𝑥, 𝑦))| (𝑥, 𝑦) ∈ 𝑋 ×  𝑌} (5.28) 

 

Equation (5.28) presents a binary relation in 𝑋 ×  𝑌.  

Consider the following example from Castillo and Melin (2008): 

Let 𝑋 =  {1, 2, 3} and 𝑌 =  {1, 2, 3, 4, 5} and ℜ=”𝑦 𝑖𝑠 𝑠𝑙𝑖𝑔ℎ𝑡𝑙𝑦 𝑔𝑟𝑒𝑎𝑡𝑒𝑟 𝑡ℎ𝑎𝑛 𝑥”. The 

MF of the fuzzy relation can be defined (subjectively) as: 

 𝜇ℜ(𝑥, 𝑦) = {𝑦 − 𝑥𝑦 + 𝑥 ,   𝑖𝑓 𝑦 > 𝑥,0,   𝑖𝑓 𝑦 ≤ 𝑥.  (5.29) 

 

This fuzzy relation can be expressed as a matrix in the following form: 

 𝕽 = [0 0.333 0.5000 0 0.2000 0 0    0.600 0.6660.333 0.4280.142 0.250] (5.30) 

 

where the element at row 𝑖 and column 𝑗 is equal to the membership grade between the ith 

element of 𝑋 and jth element of 𝑌. In the literature, other common examples of binary relations 

are found, as “𝑥 𝑖𝑠 𝑠𝑖𝑚𝑖𝑙𝑎𝑟 𝑡𝑜 𝑦”,  “𝑥 𝑑𝑒𝑝𝑒𝑛𝑑𝑠 𝑜𝑛 𝑦” , “𝑖𝑓 𝑥 𝑖𝑠 𝑠𝑚𝑎𝑙𝑙 𝑡ℎ𝑒𝑛 𝑦 𝑖𝑠 𝑠𝑚𝑎𝑙𝑙” and 

others. 
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5.2.3. Max-min composition 

The max-min composition proposed by Zadeh (1965) states that: “Let ℜ1 and ℜ2 be 

two relations defined on 𝑋 ×  𝑌 and 𝑌 ×  𝑍, respectively. The max-min composition is a fuzzy 

set (CASTILLO; MELIN, 2008) defined by:  

 ℜ1 ∘ ℜ2 = {[(𝑥, 𝑧),maxmin(𝜇ℜ1(𝑥, 𝑦), 𝜇ℜ2(𝑦, 𝑧))] | 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌, 𝑧 ∈ 𝑍} (5.31) 

 

The calculation of the composition is almost the same as matrix multiplication, except 

that × and + are replaced by the min and max operations, respectively.  

 

5.3. Linguistic variables 

The concept of linguistic variables was introduced by Zadeh (1975). The linguistic 

variables represent crisp information that can carry some degree of ambiguity, which is 

independent of a measure device or a mathematical expression. For example, the conception of 

age is linguistic, if rather that number as 21, 22, etc., is represented with young, not young, old, 

very old and others.  

Usually, when a universe of discourse is a linguistic variable, the sets are linguistic 

variables too. Linguistic variables allow a better communication and notion of some procedure 

and it is easy to understand since they are used daily (Banks, 2002). Most of the instructions 

are given in linguistic variables, such as open a little, cook over medium heat, hold strongly and 

others.  

Zadeh (1965) defined that a linguistic variable is characterized by a quintuple 

(𝑥, 𝑇(𝑥), 𝑋, 𝐺,𝑀) in which 𝑥 is the name of the variable, 𝑇(𝑥) is the term set of 𝑥 that is, the 

set of its linguistic values or linguistic terms, 𝑋 is the universe of discourse, 𝐺 is a syntactic rule 

which generates the terms in 𝑇(𝑥), and 𝑀 is semantic rule which associates with each linguistic 

value 𝐴 its meaning 𝑀(𝐴), where 𝑀(𝐴) denotes a fuzzy set in 𝑋. 
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5.3.1. Concentration and dilatation of linguistic values 

Let 𝐴 be a linguistic variable. A modified version of 𝐴 can be obtained applying the 

concepts of concentration and dilatation. In the literature, usually these operations are expressed 

by: 

 𝐶𝑂𝑁(𝐴) = 𝐴2 (5.32) 
 

 𝐷𝐼𝐿(𝐴) = 𝐴0.5 (5.33) 
 

where 𝐴 is a fuzzy set, and 𝐶𝑂𝑁 (𝐴) and 𝐷𝐼𝐿 (𝐴) are the concentration and dilatation of the 

set, respectively. Conventionally, 𝐶𝑂𝑁() and 𝐷𝐼𝐿() are taken to be the results of applying the 

edges “very” and “more or less”, respectively. The addition of the edges is a good approach for 

some applications. Figure 5.9 presents a concentration and dilation of a sigmoidal membership 

function.  

Figure 5.9 Concentration and dilatation of linguistic variables. 

 

Source: Author. 

5.4. Fuzzy Inference Systems 

The fuzzy inference systems (FIS) are a powerful tool for modelling and handling data, 

and it is vastly  used in applications of artificial intelligence. The fuzzy world is more common 

than it is thought. Fuzzy allows expressing complex concepts in compressible expressions. The 
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fuzzy inference system simulates how the brain works, since most of the decision that human 

beings make are based on statements and rules that are constructed through the life.  

The fuzzy inference systems can be an optimal tool to transmit information. Usually, 

the intelligent systems use terms as p-values, eigenvalues, frequencies, derives and others, 

which only the experts understand and are able to handle the information. The society requires 

information understandable for everybody. Fuzzy logic is capable to communicate information 

with expressions used daily and by everyone. 

Facts that encourage the use of fuzzy logic are, for example, the nature of the 

environment. The nature and all the environment are not organized as expected, and the 

interactions that there occur have grades of imprecise and uncertainty and a touch of 

complexity.  

Then, a review of the fuzzy inference systems is presented and the operation of the 

inference machine is explained. 

 

 

5.4.1. Components of the fuzzy inference system 

The fuzzy inference systems are composed by three parts, which are the Antecedents, 

the rules, and the Consequences. Figure 5.10 presents the structure of a fuzzy inference system. 

At the same time, there exist three procedures associated with each of those parts (Figure 5.11), 

which are: the fuzzification, the inference, and the defuzzification. Thus, it is possible to say 

that the fuzzification is associated with the antecedents, the inferences with the rules, and the 

defuzzification is associated with the consequences. 
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Figure 5.10 Structure of a fuzzy inference system. 

 

Source: Author. 

The antecedents correspond to the input variables and they are always represented by 

fuzzy sets. The rules are the relations between antecedents and consequences. The 

consequences correspond to the output variables, which can be fuzzy sets or not, depending on 

the type of fuzzy inference system. 

Figure 5.11 Procedure of inference. 

 

Source: Author. 

The fuzzy inference system can be considered as a machine that transform the crisp 

information (real numbers) into the fuzzy domain, and handle the information with the inference 

engine, which is fueled with the rules. The outcome of the inference engine is a fuzzy set, so 

the defuzzifier transforms the result from fuzzy domain into the crisp domain.  
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The procedure of defuzzification is not always needed depending on the type of fuzzy 

inference system. This difference is explained deeper later.  

Each part of the fuzzy inference system is explained in the next sections. 

5.4.2. Antecedent parts 

The antecedent parts in the fuzzy inference systems represent the input variables of the 

systems. Each variable configures a universe of discourse. Each universe of discourse is divided 

into fuzzy sets and each fuzzy set may be described by any membership function. Figure 5.12 

presents a typical antecedent part in a fuzzy inference system. 

The form of the membership functions and the number of fuzzy sets for each universe 

of discourse depend on the type of system that is been modelled. Each universe of discourse is 

independent of the others, that is, the number and shape of the fuzzy sets of one variable do not 

depend on the other variables. Each fuzzy set of the universe of discourse is associated with a 

linguistic variable that can be perceived as the name of the set.  

Figure 5.12 Representation of an antecedent part of a fuzzy inference system. 

 

Source: Author. 

The process of definition of the universes of discourses and the respective fuzzy sets 

requires enough expert knowledge, since it influences the performance of the fuzzy inference 

system. For example, when the system presents a linear behavior, the triangular membership 
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the other hand, if the universe of discourse is, for example, velocity of a car, the possible 

linguistic values are slow, medium, or high.  

Once the antecedent and consequent parts are defined, it is necessary to create 

connections between the antecedent parts and the consequent parts that describe the relations 

between the fuzzy sets of the universes of discourse. The relations are called fuzzy rules.  

Zadeh (1996) explains the type of relationships that can be created between linguistic 

values and how the word calculation procedure works. The author explains a variety of 

possibilities for making correspondences between diffuse sets and their implications. In this 

work, the if-then fuzzy rules are explained, since these are the most common and applied to 

fuzzy inference systems. 

The if-then fuzzy rules are conditional rules and have the following form: 𝒊𝒇 𝑥 𝑖𝑠 𝐴 𝒕𝒉𝒆𝒏  𝑦 𝑖𝑠 𝐵 

where 𝐴 and 𝐵 are linguistic variables define by fuzzy sets of the universe of discourse 𝑋 and 𝑌, respectively. In this case, 𝑥 is the antecedent part and 𝑦 is the consequent part. Some classical 

examples of fuzzy rules are: 

• If pressure is low, then volume is big. 

• If the risk is low, then the business is profitable. 

• If the water flow is high, then close the valve a lot. 

The fuzzy rules dictate how the output is if a certain condition in the antecedent part is 

accomplished. The fuzzy rules describe the behavior of the system. For example, if a machine 

is being modeled by a fuzzy inference system, the fuzzy rules describes how the machine works. 

 

Inference engine 

The inference engine, that is, the inference procedure, is fueled by the rules which 

module and order the relationships for the inference. The inference engine calculates the firing 

strength of the fuzzy rule; it means that the inference engine calculates a value in the crisp 

interval [0, 1] that represents how the antecedent part is mapped into the consequent part.  
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For the case when the antecedent part is composed by only one element, the firing 

strength of the rule is the degree of membership of the cited fuzzy set. Consider the fuzzy rule  𝑖𝑓 𝑥 𝑖𝑠 𝐴 𝑡ℎ𝑒𝑛 𝑦 𝑖𝑠 𝐵 

The firing strength of the rule is the membership degree of 𝑥 in 𝐴, that is 𝜇𝐴(𝑥). 
Generally, fuzzy rules have more than one antecedent that are related by two types of 

connectors: 𝒂𝒏𝒅/𝒐𝒓. 
When the connector 𝒂𝒏𝒅 is used, the inference is performed applying the T-norm, and 

when the connector is 𝒐𝒓, the inference is performed by the T-conorm (GARCÍA-CERDAÑA; 

ARMENGOL; ESTEVA, 2010). The T-norm has two methods for its application: the first one 

is the minimum and the other one is the product. The T-conorm has also two methods: the first 

one is the maximum and the other one is the probabilistic or.  

Consider the next fuzzy rule: 𝑖𝑓 𝑥 𝑖𝑠 𝐴 𝒂𝒏𝒅/𝒐𝒓  𝑦 𝑖𝑠 𝐵 𝒕𝒉𝒆𝒏 𝑧 𝑖𝑠 𝐶 

where 𝐴 and 𝐵 are fuzzy sets of the universes of discourse of the antecedent parts and 𝐶 is a 

fuzzy set of the universe of discourse of the consequent part.  

The previous fuzzy rule has two antecedent parts, and then it is necessary to infer a value 

from them. For the connector 𝒂𝒏𝒅 the inference can be: 

 

 𝜇𝐴(𝑥) 𝒂𝒏𝒅 𝜇𝐵(𝑦) = min(𝜇𝐴(𝑥) , 𝜇𝐵(𝑦)) (5.36) 
or 

 𝜇𝐴(𝑥) 𝒂𝒏𝒅 𝜇𝐵(𝑦) = prod(𝜇𝐴(𝑥) , 𝜇𝐵(𝑦)) (5.37) 
 

And for the connector 𝒐𝒓 the inference can be:  

 𝜇𝐴(𝑥) 𝒐𝒓 𝜇𝐵(𝑦) = max(𝜇𝐴(𝑥) , 𝜇𝐵(𝑦)) (5.38) 
or 

 𝜇𝐴(𝑥) 𝒐𝒓 𝜇𝐵(𝑦) = probor(𝜇𝐴(𝑥) , 𝜇𝐵(𝑦)) (5.39) 
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where the min or max is the calculation of the minimum or maximum of the degree of 

membership, respectively. The prod is the product of the degree of membership and the probor 
is the or probabilistic that is defined as: 

 Probor =  𝜇𝐴(𝑥) + 𝜇𝐵(𝑦) − (𝜇𝐴(𝑥) ∗ 𝜇𝐵(𝑦)). (5.40) 

 

The outcome of the inference process is a degree of membership called rule firing 

strength 𝑾 which is how the antecedent part is mapped into the consequent part.  Thus, the 

relationships between the antecedent parts are represented by the firing strength of the rules. 

Each rule has a firing strength for a specific crisp input, that is, if the crisp input changes, 

the firing strength does too. That is because the firing strength depends on the inference, which 

depends on the degree of membership, which depends on the crisp inputs.  

 

Weight of the fuzzy rules 

The fuzzy inference system allows assigning weights to fuzzy rules. Weights can be 

perceived as the importance of the rule in the system and can assume values in the crisp interval 

[0, 1]. 

Usually, all rules have weight of 1, i.e., all rules have the same importance for the 

system. When the weight is different than 1, the firing strength of the rules is multiplied by the 

weight of the rule and a new firing strength is calculated as follows:  

 𝑾𝒏 = 𝑊𝑡 ∗𝑾 (5.41) 

 

where 𝑾 is the firing strength calculated in the inference, 𝑊𝑡 is the weight of the rule and 𝑾𝒏 

is the new firing strength modified by the weight of the rule.  

 

5.4.6. Consequent parts 

In fuzzy logic applications, two fuzzy inference systems are widely used: Mamdani and 

Sugeno. The difference between them lies in the consequent part of the system. Consequently, 

the process of associating with the consequent parts also has differences. 
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5.4.7. Mamdani Fuzzy models 

The Mamdani fuzzy inference system (MAMDANI; ASSILIAN, 1975) was proposed 

as the first attempt to control a steam engine and boiler combination, by a set of linguistic rules 

obtained from experimental human operators.  

In Mamdani fuzzy systems, the consequent parts are composed by fuzzy sets as the 

antecedent ones (see Figure 5.17). The process applied to discretize the antecedent parts is 

applied again to the consequent parts.  

Figure 5.17 Representation the consequent part in a Mamdani fuzzy inference system. 

 

Source: Author. 

The mapping of the firing strength of the rules on the consequent part consists in the 

location of the firing strength of the rule that is a membership degree, and cutting the 

corresponding fuzzy set described in the rule, with a horizontal line corresponding to the firing 

strength. The set under the cutting line is taken as the outcome of the mapping.  

As each crisp input can fire several rules, it is necessary to apply the aggregation 

procedure that is the union of all the consequent parts fired. The union of the consequent parts 

forms a new fuzzy set.  

Figure 5.18 presents the inference procedure for two rules with firing strength 𝑾𝟏 and 𝑾𝟐, respectively. The consequent part is formed by two triangular membership functions.  The 
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firing strength 𝑾𝟏 cuts the fuzzy set 𝐴 and 𝑾𝟐 cuts the fuzzy set 𝐵. The union of the fuzzy 

sets configures a new fuzzy set.  

 

Figure 5.18 Mapping of the firing strength of the rules in the consequent part. 

 

Source: Author. 

As the output of the inference engine is a fuzzy set for Mamdani fuzzy systems, it is 

necessary to convert the output into the crisp domain in order to obtain a crisp number (real 

number).  

5.4.7.1. Defuzzification 

The defuzzification refers to the way that a numeric value is extracted from a fuzzy set 

as representative value. In the literature, five methods of defuzzification are commonly found. 

These methods are presented next: 

• Centroid of area 

 𝑍𝐶𝑂𝐴 = ∫ 𝜇𝐴(𝑧)𝑧𝑑𝑧𝑧∫ 𝜇𝐴(𝑧)𝑑𝑧𝑧  (5.42) 

 

where 𝜇𝐴(𝑧) is the aggregated output membership function. This procedure consists of 

calculating the centroid of the area under the fuzzy set formed after the aggregation process.  
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• Bisector of area 

The bisector of area satisfies  

 ∫ 𝜇𝐴(𝑧)𝑑𝑧𝑍𝐵𝛼 = ∫ 𝜇𝐴(𝑧)𝑑𝑧𝛽
𝑍𝐵  (5.43) 

 

where 𝛼 = min{𝑧 | 𝑧 ∈ 𝑍} and 𝛽 = max{𝑧 | 𝑧 ∈ 𝑍}. It can be understood as the point that 

divides the area in two equal parts.  

• Mean of maximum 

The mean of maximum is the average of the maximizing 𝑧 at which the membership 

function reaches a maximum 𝜇∗. Mathematically: 

 𝑍𝑀𝑂𝑀 = ∫ 𝑧𝑑𝑧𝑧′∫ 𝑑𝑧𝑧′   (5.44) 

 

where 𝑧′ = {𝑧 | 𝜇𝐴(𝑧) = 𝜇∗}.  If 𝜇𝐴(𝑧) has a single maximum at 𝑧 = 𝑧∗, then 𝑍𝑀𝑂𝑀 = 𝑧∗. 
Moreover, if 𝜇𝐴(𝑧) reaches its maximum whenever 𝑧 ∈ [𝑧𝑙𝑒𝑓𝑡, 𝑧𝑟𝑖𝑔ℎ𝑡] the 𝑍𝑀𝑂𝑀 = 𝑧𝑙𝑒𝑓𝑡+𝑧𝑟𝑖𝑔ℎ𝑡2 . 

• Smallest of the maximum  

The smallest of the maximum is the minimum of maximizing Z.  

• Largest of the maximum 

The largest of the maximum is the maximum of maximizing Z 

Figure 5.19 shows the value 𝑍 for the different defuzzification methods represented by 

the blue points. The method frequently used is the centroid defuzzification and this is the 

method used in this work.  
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Figure 5.19 Defuzzification methodologies. 

 

Source: Castillo & Melin (2008)   

 

5.4.8. Sugeno Fuzzy Models 

The Sugeno fuzzy models emerged from the attempt to develop an approach to generate 

fuzzy rules from input-output data set (TAKAGI; SUGENO, 1985), (SUGENO; KANG, 1988). 

The Sugeno models differ from Mamdani model in the consequent part of the fuzzy rules. While 

Mamdani models have fuzzy sets as consequents, the Sugeno models have mathematical 

functions as consequents. Sugeno fuzzy rules have the following form: 𝑖𝑓 𝑥 𝑖𝑠 𝐴 𝑎𝑛𝑑 𝑦 𝑖𝑠 𝐵 𝑡ℎ𝑒𝑛 𝑧 = 𝑓(𝑥, 𝑦) 
where 𝐴 and 𝐵 are the fuzzy antecedent sets and 𝑓(𝑥, 𝑦) is a traditional function as consequent. 

Usually, this function is a polynomial in the input variables 𝑥 and 𝑦, but it does not mean that 

it cannot take other forms. When the consequent function is of zero order, in other words, 

constants, the system can be considered as a special case of Mamdani fuzzy model, with 

consequents as singleton fuzzy sets.  

The functions that describe the consequent parts depend on the inputs of the system. 

When the functions are evaluated with the input values, they provide an output level that is the 

value of the function for the crisp inputs.   

Then, for each input the rules provide a firing strength and the functions, an output level. 

As the firing strength and the output level both are crisp number, the process of defuzzification 

is not needed anymore; instead the crisp output is calculated as an average of the firing strengths 

and the output levels.  
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When the consequent part of the fuzzy rules is a function, the average process is made 

as follows. Consider the functions presented in equations (5.45) and (5.46). 

 𝑧1 = 𝑝1𝑥 + 𝑞1𝑦 + 𝑟1 (5.45) 

 

 𝑧2 = 𝑝2𝑥 + 𝑞2𝑦 + 𝑟2 (5.46) 

 

where 𝑧1 and 𝑧2 are the consequent parts of two fuzzy rules. The output of the fuzzy system is: 

 𝑍 = 𝑧1𝑤1 + 𝑧2𝑤2𝑤1 + 𝑤2  (5.47) 

where 𝑤1 and 𝑤2 are the firing strength of the fuzzy rules. 

Most of the Sugeno fuzzy systems take as consequent part constant functions because 

of its interpretability and easy association with the average process. As previously mentioned, 

this type of Sugeno systems can be perceived as a Mamdani system with consequent part as 

singleton sets. Thus, the average process provides more sense. Figure 5.20 represents a 

consequent Sugeno fuzzy part with constant functions. Here, the average process can be 

represented. Once 𝑤1 and 𝑤2 have values in the crisp interval [0, 1], when multiplied by the 

respective consequents, 𝑧1 and 𝑧2, the value is truncated, and the outcome is the average, since 

the set is singleton. It is important to note that the process shown in Figure 5.20 is a mere 

representation. 

Figure 5.20 Representation of constant functions as singletons of a Sugeno fuzzy inference 

system. 

 

Source: Author. 
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5.4.9. Surface of fuzzy models 

The fuzzy systems can be represented by a surface generated from the inputs and the 

fuzzy rules, in order to map the output when combining two inputs. Figure 5.21 shows a surface 

of a fuzzy inference system with two inputs. For the system which has just one input, the surface 

has no sense, instead, a curve or line is a suitable representation.  

The fuzzy surface is useful for the case when the system has two input and one output, 

since the surface maps all possible matches for the inputs; thus, the surface predicts the crisp 

output for any pair of inputs.  

On the other hand, if the system has more than two inputs or outputs, the surface will be 

the representation of the combination of two inputs and any output. In this case, the surface is 

useful for analyzing the influence of specific inputs on any output. 

 

Figure 5.21 Surface of a fuzzy inference system. 

 

Source: MathWorks, 2019 (Adapted) 
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5.5. Modeling with fuzzy logic 

The process of modeling a system with fuzzy logic requires prior knowledge of the 

functioning of the system. Wherever the system knowledge is taken from, the fuzzy system 

must be able to represent all situations in an approximate manner and with good precision. In 

general, all the fuzzy system has the same features for modeling the system. 

There are some basic steps that help to create a new system. The first and most important 

step is to have the knowledge of the system to be modeled. Generally, the fuzzy system is 

modeled based on the knowledge of human specialists, that is, people who have worked with 

the system for long periods and have experienced various operating situations can provide the 

necessary information about the performance of the system. 

Another alternative is to obtain sufficient data on the operation of the system in order to 

be able to identify relationships and thus generate knowledge of the system. The availability of 

these data can be useful for later design stages aiming the optimization of the system. The best 

of the cases is when human knowledge and performance data are available and combined. 

Once the system is identified, the next step is to choose the type of fuzzy inference 

system. The choice of the type of fuzzy system is closely associated with the application. Then, 

the inputs and outputs of the fuzzy system are identified. Each input has to be divided into fuzzy 

sets with respective membership functions.  For each membership function, a linguistic variable 

is associated. The outputs depending on the type of inference system can be divided into fuzzy 

sets or represented by functions.  

The next step is to create the relationship between the linguistic variables, that is, the 

fuzzy rules and its respective weights. The number of fuzzy rules to fully define the system is 

the multiplication of the number of membership functions for all inputs. It is necessary to 

highlight that not all the possible fuzzy rules are required for the functioning of the system. 

Depending on the application, only some rules are essential, in other words, not all the fuzzy 

rules are fired, then the unused fuzzy rules can be deleted.  

The last step is to choose the defuzzification method, if needed, depending on the type 

of fuzzy system applied. The previous steps are general for the construction of the fuzzy system, 

independent on the type of application.  
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For some applications, the construction of the fuzzy system is more complex and 

requires other techniques, as the creation of fuzzy trees or adaptive systems.  

 

5.6. Fuzzy logic and uncertainty  

Fuzzy logic is a powerful tool for modeling data and systems. As mentioned previously, 

fuzzy logic is able to represent things that make sense for human brain but mathematically is 

somewhat blurry or not clear.  

All the processes that occur in the world have uncertainty embedded. The uncertainty 

appears from different sources and it is important to learn how to deal with it. Mathematical 

equations and crisp data have no capacity to deal with uncertainty, since their construction 

assume that all the information is certain.  

Fuzzy logic allows working with values or quantities that are not rigidly bounded. This 

characteristic is helpful to handle data and systems, which have uncertainty involved. The 

definition of linguistic variables is a feature that simulates how the human brain thinks. 

Depending on the type and definition of the fuzzy systems, the uncertainty can be treated 

in different ways. For example, the nonsingleton fuzzification allows considering uncertainty 

in the input data. The grade of consideration of uncertainty depends on the application and the 

designer.  

The introduction of uncertainties in the system can improve the results, but the greater 

the uncertainties, the greater the computational time required. The fuzzy logic system designer 

must be aware of how the consideration of uncertainty will influence the outcome and whether 

it is worth doing. 

In general, the fuzzy logic systems have proved to be a powerful tool to handle 

uncertainty (ZADEH, 1983), (MENDEL, 2000), (VULLINGS et al., 2013). The fuzziness 

approach can provide a solution for problems where the mathematical description is difficult to 

do and have degrees of subjectivity.  
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6. GENETIC ALGORITHM  

 

Many engineering problems seek to find the optimal solution, requiring that the solution 

be the cheapest, easy to apply and quick to implement. Finding the right solution is not an easy 

job to do. Usually, the knowledge of the designers and the experience of the engineers and 

technicians are not enough, and it is necessary to use some methods to find the profitable 

solution. 

In engineering, the process of finding a suitable solution is usually based on the search 

of a variable or a set of variables that minimize or maximize some quantity. For example, for 

the project of a shaft, it is necessary to find the material that is flexible, but with enough 

hardness. In this case, the searching targets are flexibility and hardness, which need to be 

optimal for the same solicitation.  

When the problem requires finding only one variable, the procedure of searching is not 

generally complex and can be performed by using methodologies as try and failure, or a more 

sophisticated one, as least square. Unfortunately, most of the problems in engineering are not 

that simple and involve the searching of many variables to optimize a defined condition. 

Depending on the definition of the problem and the quantity of information available to 

solve it, several techniques can be applied, as the case of Newton-Raphson method, which aims 

to find the values of the target variables that zero a function or a set of functions. This method 

is widely used when the number of variables matches the number of equations. Otherwise, it is 

not possible to use it, as its procedure is based on the definition of the Jacobian matrix, which 

is square. 

In many optimization situations, the number of variables overcome the number of 

equations, making it difficult applying traditional methods to solve them. New optimization 

methods have been developed in order to face cases when traditional methods do not fit. 

Evolutionary algorithms are a large family of techniques that seek to solve complex 

optimization problems that can involve a large number of target variables, based on the theory 

of natural evolution.  

One of the most famous evolutionary algorithms is the Genetic Algorithm, called in the 

literature as GA and introduced by John Henry Holland in 1960. Holland, (1960) proposed the 
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Genetic Algorithm based on Darwin’s natural evolutionary theory. His student David Edward 

Goldberg in 1989 extended the definition of the genetic algorithm.  

This chapter aims to explain the Genetic Algorithm functionality, as well as its 

application in the optimization of functions and systems. 

 

6.1. Structure of the Genetic Algorithm  

A basic Genetic Algorithm is composed of five essential parts or steps that simulates 

the process of natural evolution (Goldberg, 1989). Figure 6.1 presents the five steps and the 

structure of a genetic algorithm.  

Figure 6.1 Structure of the genetic algorithm. 

 

Source: Author. 

A genetic algorithm starts by creating an initial population that contains the possible 

optimal values for the optimization. These values are evaluated by the fitness function. The 

result of the fitness function is compared with the stop criteria. If the comparison satisfies the 

condition, the procedure ends, but if it does not, three stages are performed: selection, crossover 
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and mutation, which creates new populations that are candidates for possible solution. These 

stages are defined and explained in the next sections.  

 

6.1.1. Initial population 

A population is composed of chromosomes that are composed by genes. A gene is the 

possible value for a specific variable. The set of all genes form a chromosome. The number of 

genes in each chromosome is equal to number of variables to optimize. A population can be 

composed of many chromosomes, as needed, in order to find the solution. Figure 6.2 shows an 

example of gene, chromosome, and population in genetic algorithm.  

A population can be seen as a matrix, in which the rows are the chromosomes and the 

columns are the genes. The genes do not change position during iteration.  

There are generally two ways to generate the initial population: the heuristic 

initialization and the random initialization. Heuristic initialization has a problem finding the 

ideal solution to a large scale problem due to the lack of diversity, being the random 

initialization a better option (Gen M. and Lin L, 2008).  

The generation of the initial population must respect the system the boundary 

conditions.  The number of chromosomes is defined by the designer of the algorithm. Roeva, 

Fidanova, and Paprzycki (2013) proposed that there is an adequate number of chromosomes in 

the population and, in their case, this value was 200, for a problem with three target variables, 

that is, approximately 66 times the number of variables. Many applications of the genetic 

algorithm use, by default, 10 times the variable number for the population size. 

On the other hand, Gotshall and Rylander (2000) concluded that a great population size 

has more chances to contain the optimal solution, but it has a price: a large number of 

generations will be needed since the genes are more mutated. Thus, the designer must find the 

equilibrium between convergence possibility and computational time.  

Some strategies are proposed in order to set the adequate population size, as the case of 

Eiben, Marchiori, and Valkó (2004), who proposed dynamic population size, then the 

population can increase or decrease as the iterations run. Their studies show promising results 

in consuming time, fitness evaluation and required memory. 
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Figure 6.2 Population in the genetic algorithm. 

 

Source: Author. 

6.1.2. Fitness Function 

The fitness function determines how fit an individual (chromosome) is.  The fitness 

function defines if an individual has the capacity of compete with other individuals. The 

capability is expressed by the fitness score that is the result of the evaluation of the fitness 

function.  

The choice of the fitness function is an important task to do. The fitness function 

influences on the capacity of the genetic algorithm to optimize the system (YANG et al., 2014). 

Many studies have analyzed the effect of the definition of the fitness function on the 

performance of the optimization, as is the case of Lima et al (1996). 

The shape of the fitness function depends on the type of problem being optimized. Many 

studies define the error based on the comparison of an optimal value with the obtained value. 

Several engineering problems have specific quality estimators that can be used as a fitness 

function in the optimization procedure. 

 

6.1.3. Stop criteria 

The stop criteria are the conditions that must be accomplished for the genetic algorithm 

for its stopping. The stop criteria are usually three: 

1. the fit condition is achieved,  
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2. the number of generations (iterations) is overcome or  

3. the number of stall generations is reached.  

A stall generation is a generation in which the minimum does not change compared to 

the previous generation. Once one of the conditions is reached, the algorithm stops. When the 

algorithm reaches the fit conditions, which is the best case, the results are the suitable values of 

the optimization.  

On the other hand, when the algorithm stopped because it has reached the maximum 

number of iterations, this does not mean that the results obtained are the appropriate values and 

it is necessary to modify the structure of the algorithm to ensure convergence. If the algorithm 

stops because of the number of stall generations, it means that the algorithm has possibly 

converged to a local minimum. 

 

6.1.4. Selection 

When the initial population does not accomplish the fit conditions, other stages of the 

algorithm are activated in order to find the best individual. The first step to create a new 

generation is the selection. As all individual are evaluated by the fitness function and 

consequently, they have assigned a fitness score, the selection process chooses the best 

chromosomes to be the “parents” of the next generation.  

  The selection method that currently exist can be grouped into two sets: the first group is 

composed by the methods that use the probability of being chosen and the second group is 

composed by the methods that use the best fitness value as choice criterion (Jebari and Madiafi, 

2014).   

One characteristic of the first group is that it keeps the genetic variety, a feature that 

helps the algorithm to achieve the global optima, but that requires a large number of 

generations. On the other hand, the elitist methods (second group) usually require few iterations, 

but can tent to lie in local optima (Jebari and Madiafi, 2014).  Razali and Geraghty, (2011) 

analyzed the methods of selection and proposed the tournament method, which randomly 

chooses some fitness values where the best is selected to be the parent.   

To improve the selection methods, Jadaan, Rajamani, and Rao, (2008) proposed a 

combination of probabilistic methods with the elitist method, showing promising results and 
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overcoming questions about computing time and lack of diversity.  One of these methods is the 

rank selection, which provides good performance and achieves the convergence to the global 

optimal. In general, depending on the application of the genetic algorithm, the selection method 

must be adjusted.  

 

6.1.5. Reproduction 

The reproduction in genetic algorithm refers to the procedures that are performed in 

order to create a new generation with the selected parents. The two main procedures are 

crossover and mutation.  

Compared with the Darwin’s theory, crossover is associated with the sexual 

reproduction and mutation with the asexual reproduction, since the first procedure requires two 

parents and the second one requires only one.  

In addition to the previous process, some parents are considered as elite. This means 

that they survive for the next generation and generate new children. They do not suffer any 

alteration on their genes.  

The elite children are important for a new generation because they ensure that the fittest 

value of one generation will be at least the same as the previous one, or better.  

 

6.1.6. Crossover 

The crossover is the most significant phase of the genetic algorithm and it is where the 

offspring is created. Once the parents are selected, the children are generated from the 

combination of the parents. Each chosen chromosome is a potential parent that will combine its 

genes with the genes from other parents. The combination of the genes becomes a new child as 

occurs in the nature.  

The way that the combination of the genes occurs can be different depending on the strategy 

applied to generate offspring. The most useful types of crossover are explain as follows 

(KORA; YADLAPALLI, 2017): 
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a. Single point crossover: Two possible parents are selected and matched. A random point 

that represents the position of the genes is chosen and the chromosomes are divided in 

two parts. One part of the first chromosome is exchanged with one part of the second 

chromosome, thus creating two new children. Figure 6.3 presents an example of 

crossover in one point.  

 

Figure 6.3 Crossover in one point. 

 

Source: Author. 

 

b. N point crossover: instead of using only one point to divide the chromosomes, the 

parents are divided into N parts and combined. 

c. Flat crossover: a linear combination is made with the genes of the parents.  

It is important to highlight that there exist other crossover operators and the designer of the 

genetic algorithm can introduce new methodologies in order to improve the performance of the 

algorithm. 

 

6.1.7. Mutation 

The mutation procedure consists in the creation of new children from only one parent. 

As the name indicates, the chromosome is mutated, it means that the genes of the individual 

(parent) are altered.  
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There exist several methods for mutating the genes of a chromosome. Some of them are 

based on the change of position within the chromosome (ABDOUN; ABOUCHABAKA; 

TAJANI, 2012) that is, the values of the genes are not altered but the position, then the gene 

receives a new value for the next generation. Other methods modify the value of the gens 

multiplying of addition a random number. 
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7. PROPOSED METHODOLOGY FOR THIS WORK 

 

The main objective of this work is to create a fuzzy inference system capable of 

predicting the force applied on a chain from the measurements of its natural frequencies.  

The mathematical model explained in the chapter 3 and the experiment explained in the 

chapter 4 provides the variation of the natural frequencies as a function of the variation of the 

applied force. This variation configures the training data and the expert knowledge for the fuzzy 

inference system.  

The input data of the mathematical model is the geometric and mass characteristics of 

the chain. The chain features are obtained from the Coforja catalog (see appendix A). Of course, 

the links of the chain were measured to check the dimensions. A link of the chain was modelled 

in SolidWorks1, as illustrates Figure 7.1, in order to get the inertias. The mass of the links was 

obtained weighting the chain.  

 

Figure  7.1 Link of the chain modeled in SolidWorks. 

 

Source: Author. 

As the links of the chain are not equally oriented, that is, a link is perpendicular to the 

previous and to next one, the inertias with respect to each axis change, and that change is 

considered in the model. Figure 7.2 presents a frontal view of the chain showing the 

perpendicularity of the links.  

 

 
1 Dassault Systèmes SolidWorks Corporation.  
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Figure  7.2 Front and isometric view of the chain. 

   

Source: Author. 

The chain was loaded with a vertical force ranging from 5 kN to 70 kN. The natural 

frequencies were calculated for each applied force. The results of the mathematical model were 

compared with the results of the experimental procedure in order to validate the mathematical 

model.  

As mentioned before, the output of the mathematical model and the experiment 

configures the expert knowledge for the construction of the fuzzy inference systems (FIS). For 

the modeling of the FIS, the natural frequencies are taken as the inputs of the model and the 

force on the chain is the output. For this study case, the first three natural frequencies of the 

chains were the inputs of the model.  

The fuzzy inference system for estimating the force applied on the chain is modeled 

using the two methodologies: Mamdani and Sugeno.  For both methodologies, the inputs are 

discretized in fuzzy sets with membership functions of type triangular and Gaussian.  

For the Mamdani type, the output was discretized in fuzzy sets with membership 

functions of the same type than the inputs. This means that, if the inputs were described in 

triangular fuzzy sets the output did too. This also applies for the Gaussian membership 

functions. 

The inference system of type Sugeno has mathematical function as consequent parts of 

type constant. They were the same for both type of membership functions.  
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The fuzzy inference systems, regardless of the type, had the same number of fuzzy sets 

in each universe of discourse. In this study case, all the universes of discourse had fuzzy sets. 

For the construction of the fuzzy sets of the universe of discourse, it was selected the centers of 

the fuzzy sets, it means a core, the point where the membership degree is 1. For the triangular 

membership functions, the range starts at the center of the previous MF and it ends at the center 

of the next MF. For the Gaussian MF the standard deviation was a constant value for all the 

MF. The figure 7.3 presents the triangular MF of the universe of discourse corresponding to the 

first natural frequency.  

Figure  7.3 Membership functions for the first natural frequency as defined by the author. 

 

Source: Author 

The rules for both types of inference systems used the connector 𝑎𝑛𝑑. The connector 𝑜𝑟 

was not considered for this work. For the Mamdani type, the t-norm was applied using the 

maximum, and for the Sugeno type, the t-norm was applied using the product of the 

membership degrees. Some examples of the rules used in this work are presented as follows: 𝐼𝑓 (𝑓1 𝑖𝑠 2) 𝑎𝑛𝑑 (𝑓2 𝑖𝑠 2) 𝑎𝑛𝑑 (𝑓3 𝑖𝑠 1) 𝑡ℎ𝑒𝑛 (𝑇 𝑖𝑠 2) 𝐼𝑓 (𝑓1 𝑖𝑠 5) 𝑎𝑛𝑑 (𝑓2 𝑖𝑠 4) 𝑎𝑛𝑑 (𝑓3 𝑖𝑠 4) 𝑡ℎ𝑒𝑛 (𝑇 𝑖𝑠 4) 𝐼𝑓 (𝑓1 𝑖𝑠 6) 𝑎𝑛𝑑 (𝑓2 𝑖𝑠 5) 𝑎𝑛𝑑 (𝑓3 𝑖𝑠) 𝑡ℎ𝑒𝑛 (𝑇 𝑖𝑠 5) 
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where 𝑦𝑖 is the real value,  𝑦𝑖̂ is the estimated value and 𝑛 is the number of samples. For this 

case, the samples are the training data obtained with the mathematical model of the link chain 

or the experimental data.  

As mentioned in the chapter 6, the stop criteria for the genetic algorithm are three: the 

fitness value is achieved, i.e., the algorithm converged successfully; the number of maximum 

generations is reached; the number of stall generations is reached.  

The selection procedure was made in two steps. The first was the scaling of the scores 

of the chromosomes and the next was the selection of the parents. The scaling of the scores was 

made as follows: the scores were ordered in ascending order, where the best score was the 

minimum one, since the function was been minimized. Once the scores were ordered, they were 

scaled by a function dependent on the position on the rank, which is given by:  

 𝑟 = 𝑘 ( 1√𝑛𝑟) (7.4) 

where 𝑛𝑟 is the position on the ranking, 𝑘 is a proportional constant and 𝑟 is the scaled value. 

The constant 𝑘 can be calculated with the premise that the summation of the scaled values must 

be equal to the number of parents required to create a new generation. The process of scaling is 

performed because the raw scores can have much dispersion, then the scaling function 

eliminates this issue.  

The selection method for this study case was the uniform stochastic selection, shown in 

Figure 7.4. The method consists of creating a line by joining lengths equivalent to the scaled 

values of the scores. After the line is created, the selection of the parents is performed by 

simulating a pointer that moves along the length of the line with the same step size. The 

algorithm allocates a parent of the section on which the pointer lands. The step size depends on 

the number of parents. 
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The first four natural frequencies of the chain were identified for a cycle of 

loading/unloading. The values of the frequencies are presented in Table 8-1. The symbol ↑ 
means loading and ↓ means unloading.  

Table 8-1 Experimental natural frequencies for a loading/unloading cycle of the chain. 

 

Force 

[kN] 

𝝎𝟏[Hz] ↑ 

𝝎𝟏[Hz] ↓ 

𝝎𝟐[Hz] ↑ 

𝝎𝟐[Hz] ↓ 

𝝎𝟑[Hz] ↑ 

𝝎𝟑[Hz] ↓ 

𝝎𝟒[Hz] ↑ 

𝝎𝟒[Hz] ↓ 

5 16.7 16.1 36.5 36.18 59 58.59 81.9 80.86 

10 22.9 22.27 49.5 49.22 79.4 79.25 119.5 118.9 

15 27.4 27.1 58.6 58.45 96.9 93.16 143.3 143 

20 30.9 30.62 65.6 65.63 105.6 107.8 156.6 155 

25 34.3 33.8 72.1 71.9 116.5 116.5 166.3 165.1 

30 36.6 36.8 77.6 77.5 125.7 125.5 173.9 172.4 

35 39.4 39.2 82 82.2 134.3 134.3 180.2 179.2 

40 41.8 41.5 86.1 85.6 142.5 142.1 185.2 184.9 

45 44.1 44 92.4 92.1 149.1 149 191.2 190.1 

50 45.9 45.9 99.2 98.9 155.4 155.1 195.7 195.1 

55 47.9 47.8 104.6 104.2 161.1 161.3 200.1 199.5 

60 49.5 49.5 108.1 108.1 166.8 166.7 203.6 203.2 

65 51.6 51.1 111.8 111.6 172.1 172.1 207 206.8 

70 52.9 52.9 114.7 114.7 177.1 177.1 209.5 209.5 

 

Source: Author. 

Observing the values of the first four natural frequencies calculated for a cycle of 

loading/unloading is possible to note that the values of the natural frequencies practically are 

equal for the loading and the unloading process. Then, the chain presents low hysteresis in 

relation to natural frequencies, which can be neglected. These results were the same for 

experiments carried out in several days.  

Figure 8.6 shows the first four natural frequencies of the chain estimated with the 

experimental data. The natural frequencies have the expected behavior, they increase with the 

increasing of the applied force.  
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where 𝜔1 is the value of the first natural frequency, 𝑛 is the number of the natural frequency, 

that is, 1, 2, 3, etc., and 𝜔𝑛 is the value of the 𝑛𝑡ℎ frequency. The results of the mathematical 

model of the chain present the relation described in equation (8.1).  The experimental results 

also show a relationship between the frequencies, which can be seen in Table 8-2.  

 

Table 8-2  Relationship between the experimental natural frequencies of the chain. 

Source: Author. 

 

According to Table 8-2, the second natural frequency is approximately 2.1 times the 

first, the third is 3.4 times the first, while the value of the fourth natural frequency is 4.5 times 

the value of the first. Then, the 4.9 Hz difference is amplified depending on the relationship for 

each natural frequency, making the higher the natural frequency, the greater the discrepancy of 

the model and the experimental data. 

Aiming to investigate the differences between the results of the model and the 

experimental data, a variation of the model was developed and explained in section 3.7 of this 

work. In this case, the supports of the chain were considered elastic, with stiffness 𝑘1 for the 

upper support and 𝑘2 for the lower one. Some simulations were run, and the results are 

explained next.  

Force [kN] 𝝎𝟐/𝝎𝟏 𝝎𝟑/𝝎𝟏 𝝎𝟒/𝝎𝟏 

5  2.18 3.53 4.90 

10  2.17 3.47 5.19 

15  2.14 3.54 5.23 

20  2.12 3.42 5.07 

25  2.10 3.40 4.85 

30  2.12 3.43 4.75 

35  2.08 3.41 4.57 

40 2.06 3.41 4.46 

45  2.10 3.38 4.34 

50  2.16 3.39 4.27 

55  2.18 3.36 4.18 

60  2.18 3.37 4.11 

65  2.17 3.34 4.01 

70  2.17 3.35 3.96 

Mean 2.15 3.40 4.51 
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The calculated forces show that the applied load and the one calculated with the signal 

from the strain gauges is practically equal. These results were the same for all six strain gauges 

installed on the chain. 

 

 

8.3. Fuzzy inference system 

 

Four fuzzy inference systems were built to estimate the force applied to the chain. Two 

of them used the Mamdani inference and two the Sugeno inference. Triangular and Gaussian 

membership functions (MF) were used to model the fuzzy sets of the antecedent parts, as well 

as the consequent one, in the case of Mamdani inference. The consequent part of the Sugeno 

system were defined as constants. All models were defined with 9 MF for each universe of 

discourse and used singleton fuzzification. The results of the fuzzy inference system without 

any optimization and using the computational model are shown in this section. 

The parameter used to measure the performance of the fuzzy inference system was the 

root of squared mean error (RMSE) between the applied force and the value estimated by the 

fuzzy system.  

Figure 8.14 presents the comparison of the force estimated by the Mamdani fuzzy 

inference system with triangular membership functions and the applied force of the 

mathematical model. This fuzzy system has a RMSE of 0.336 kN. Figure 8.15, on the other 

hand, shows the result for a Mamdani fuzzy inference system with 17 triangular membership 

functions. This model has a RMSE of 0.152 kN. 

Observe that the number of membership functions influences in the estimation, since its 

increments makes the model more accurate reducing the root mean squared error.  Usually, the 

higher the number of membership functions, the better the estimation. This implication has a 

counterpart, since it is necessary more rules to define the model, which means longer processing 

time.  
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The previous results correspond to fuzzy systems without any type of optimization. 

They all have the same rules and the same number of membership functions. The Mamdani 

fuzzy inference system with triangular membership functions was the one with the best 

performance. 

It is important to emphasize that the parameters of the membership functions and the 

rules were selected based on the specialized knowledge acquired through the mathematical 

model and experimental data. The selection of the parameters of a fuzzy system is a complex 

process, because, in most cases, the number of parameters is high and, in addition, it can be 

difficult to define them, as is the case of the standard deviation. 

Rules play an essential role in the fuzzy inference system. The correct definition of the 

rules directly affects the performance of the system. It is essential that the rules describe the 

system's behavior and characteristics accurately. It is important to pay close attention to the 

definition of all rules, as only one wrong rule can compromise the good performance of the 

fuzzy system. 

 

8.4.  Optimization of the fuzzy systems with genetic algorithm  

The main objective of the optimization is to obtain the set of parameters of the 

membership functions of the antecedent parts that improve the ability of the fuzzy system to 

estimate the force accurately. Only the Sugeno inference system has been optimized. This 

section presents the changes that the genetic algorithm made to the parameters of the fuzzy 

system. The systems were trained with 600 samples from the training data and tested with 

another different 600 samples. 

Figure 8.19 shows the membership functions for the first natural frequency that is one 

of the inputs of the fuzzy inference system. In this case, the membership functions here are not 

optimized. Figure 8.20, on the other hand, shows the membership functions of the first natural 

frequency of the fuzzy inference system optimized by the genetic algorithm. 
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Figure  8.19 Membership functions for the first natural frequency as defined by the author. 

 

Source: Author. 

 

Figure  8.20 Membership functions for the first natural frequency after the optimization 

process. 

 

Source: Author. 
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Figure  8.22 Membership functions for the first natural frequency as defined by the author. 

 

Source: Author. 

Figure  8.23 Membership functions for the first natural frequency after the optimization 

process. 

 

Source: Author.  

Figure 8.24 shows the results obtained by the optimized Sugeno fuzzy inference system 

with gaussian membership functions. The model has RMSE of 0.031 kN. The genetic algorithm 

was able to reduce the RMSE from 0.717 kN to 0.031 kN.  
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is noise and their identification is impaired, thus obtaining values different from the real ones. 

The natural frequencies were changed by adding a random number from a normal distribution 

with a mean equal to the value of the original frequency and standard deviation of 2, 4, 6, for 

the first, second and third natural frequencies, respectively. Each frequency was modified with 

a different standard deviation value, trying to simulate a real situation, since each natural 

frequency varies differently. Table 8-3 shows the value of the noisy frequencies used to test the 

non-singleton fuzzification. 

Table 8-3 Noisy inputs for the Fuzzy inference system. 

Original frequencies Noisy frequencies 𝝎𝟏 [Hz] 𝝎𝟐 [Hz] 𝝎𝟑 [Hz] 𝝎𝟏 [Hz] 𝝎𝟐 [Hz] 𝝎𝟑 [Hz] 

22.37 44.56 66.41 19.26 43.14 68.61 

25.66 51.12 76.19 24.33 47.48 70.69 

28.58 56.93 84.84 31.85 56.70 84.52 

31.22 62.20 92.70 33.95 59.04 96.65 

33.66 67.06 99.93 35.19 63.30 105.11 

35.93 71.59 106.68 38.45 75.42 103.46 

38.07 75.84 113.03 36.73 75.94 105.66 

40.09 79.88 119.03 38.32 84.37 122.68 

42.02 83.71 124.75 38.36 80.67 129.81 

43.86 87.38 130.22 42.25 85.96 137.39 

45.63 90.90 135.47 44.92 89.01 133.33 

47.33 94.29 140.52 45.70 95.74 138.19 

23.83 47.47 70.74 22.97 39.53 75.66 

27.31 54.41 81.09 27.97 53.01 77.38 

30.40 60.57 90.26 26.19 52.23 96.66 

33.21 66.16 98.59 33.97 64.34 105.97 

35.79 71.31 106.26 35.53 66.81 100.89 

38.20 76.11 113.42 32.56 75.19 107.77 

40.47 80.63 120.15 41.32 85.24 117.83 

42.62 84.90 126.52 44.81 87.08 125.90 

44.66 88.97 132.59 47.66 93.49 137.11 

46.61 92.87 138.39 50.44 90.62 134.47 

48.49 96.60 143.96 47.71 93.79 144.20 

 

Source: Author. 

The non-singleton fuzzification was implemented in a Mamdani fuzzy inference system 

with triangular membership functions. The input distribution was Gaussian with standard 
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deviation 2, 4, 6, for the first, second and third frequency, respectively. These results are 

presented in Table 8-4.  

 

Table 8-4 Comparison of the singleton and non-singleton fuzzification. 

Expected 

force 

[kN] 

Estimated 

force with 

singleton 

fuzzification 

[kN] 

Percentual 

error 

% 

Estimated 

force with 

non-

singleton 

fuzzification 

[kN] 

Percentual 

error 

% 

14.9 13.81 7.32 13.77 7.57 

19.6 17.17 12.39 17.14 12.54 

24.3 25.02 2.94 25.76 6.02 

29 32.47 11.96 31.30 7.94 

33.7 35.04 3.98 35.22 4.52 

38.4 42.52 10.73 41.83 8.94 

43.1 40.20 6.72 40.52 5.99 

47.8 50.00 4.60 49.56 3.69 

52.5 40.00 23.81 49.32 6.05 

57.2 56.00 2.10 56.85 0.61 

61.9 59.95 3.16 59.93 3.18 

66.6 63.95 3.98 65.04 2.34 

16.9 16.41 2.89 15.97 5.47 

22.2 21.40 3.59 21.56 2.88 

27.5 25.17 8.47 22.20 19.29 

32.8 33.77 2.97 34.26 4.46 

38.1 33.95 10.89 35.15 7.75 

43.4 38.37 11.59 38.30 11.75 

48.7 51.44 5.63 50.96 4.63 

54 56.97 5.49 56.95 5.47 

59.3 65.82 11.00 65.69 10.78 

64.6 40.00 38.08 65.77 1.81 

69.9 67.67 3.19 67.91 2.85 

Source: Author. 

Table 8-4 shows the comparison of the estimated force when it is used singleton 

fuzzification and when it is not. When compared the percentual error of the estimation, it is 

possible to perceive that when the non-singleton fuzzification is implemented the error of the 

estimation is lower.  
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9. CONCLUSIONS AND FURTHER WORKS. 

The main goal of this work is to develop a methodology that allows the prediction of 

the external applied force on link chains through the measurement of its natural frequencies. In 

this context, a fuzzy inference system capable of performing such task was created. The fuzzy 

model was constructed using two methodologies: Mamdani and Sugeno. Both methodologies 

were implemented using triangular and Gaussian membership functions. 

The Mamdani fuzzy inference system with triangular membership functions provided 

the best performance in estimating the force and was built using only specialized knowledge. 

In this case, the parameters of the membership functions and the rules were selected using only 

the author's sense and perception. On the other hand, the Mamdani fuzzy inference systems 

with Gaussian membership functions presented the worst results. 

The results of applying these methodologies are due to two main factors: the first is that 

the handling of triangular association functions is easier than with Gaussian, since the control 

over linearities is greater than over non-linearities. The second factor is related to the 

defuzzification process. The centroid of a possible consequent diffuse set is best viewed when 

the figure is composed of straight lines instead of curved lines, as is the case with Gaussian 

functions. 

The fuzzy systems with Sugeno inference depend on the output level which is calculated 

as the product of the membership degrees and the definition of the consequent functions.  

 The rules are the soul of the fuzzy inference systems. The definition of the rules must 

be objective, and they need to describe the behavior of the modeled system accurately. The lack 

of a rule could compromise the capability of the fuzzy system since it is a stage of the modeled 

system not considered. In addition, the over-definition of the system can introduce errors.  

The genetic algorithm significantly improves the performance of the fuzzy inference 

system. The algorithm is able to adjust the parameters of the membership functions, improving 

the estimation capacity, providing the force value with minimal errors. 

The fuzzy system with Sugeno inference and Gaussian association functions provides 

the best performance after optimization. This proves that Gaussian functions are better suited 

to the treatment of nonlinearities than triangular ones. In addition, the importance of a system 

improvement method is shown, since, although Gaussian functions are difficult to define, a 
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correct combination of parameters can significantly improve the system. And this applies to 

any type of membership function. 

The genetic algorithm uses the training data to tune the parameters. The training data 

play a fundamental role in the optimization, since the algorithm adjust the model aiming to 

reproduce the cases of the training data with the fuzzy inference system. The training data must 

contain at least one example of all possible behavior of the modeled system.  

It is important to note that the genetic algorithm or any other optimization procedure 

can improve fuzzy systems, but the correct convergence depends on the designer's knowledge 

of the system's behavior. The adjustable parameters of fuzzy systems can range from 

membership functions to rules. It is advisable to provide a path for optimization, that is, the 

smaller the number of parameters to optimize, the better the convergence. In this case, the 

tuning of the parameters of the antecedent parts is sufficient to obtain good results. 

Regarding the mathematical model of the chain, it presented reliable qualitative results, 

but it differs in the quantitative results, when compared to the values obtained experimentally. 

Considerations such as the deformation of the links and the stiffness of the contact between the 

links can make the model represent the real behavior of a link chain. For this work, the proposed 

model was sufficient, as it was proposed in order to obtain the training data to apply the 

technique. The dynamic behavior of the chain requires further study and more experiments, 

which is outside the scope of this dissertation. 

As a final conclusion, it can be said that fuzzy inference systems have demonstrated that 

they are powerful tools for modeling systems. They are versatile and adaptable, allowing their 

use in a wide variety of problems. For the case of this study, the diffuse inference system met 

the expectations and was able to accurately estimate the force of the link chain. 

 

9.1. Further works  

   The author suggests the following topics for future research works: 

1. To model the chain considering the deformation of the links as well as studying the 

influence of the contact conditions between the links. 

2. To model different configurations of the chain, taking into account the slope of the chain 

or the effect of gravity (catenary). 
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3. To perform more experiments with different chains, to validate the model and discover 

the relationship between natural frequencies. 

4. To optimize the Mamdani fuzzy system by implementing some computational 

strategies, as well as using advanced computational resources. 

5. To implement non-singleton fuzzification with the Sugeno fuzzy system, in order to 

evaluate its performance. 

6. To model the fuzzy inference system using type 2 fuzzy logic, which considers an 

uncertainty footprint in the membership functions, improving the estimation capacity 

when the data is noisy. 

7. To introduce some machine learning tool to automate the fuzzy inference system, 

making it adaptable to varying environmental conditions. 
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APPENDIX. CATALOG CHAINS GRADE 8. 

 

 

Source: Coforja.  

 

 

 

 

 


