ESTE EXEMPLAR CORRESPONDE A REDAÇÃO FINAL DA TESE DEFENDIDA POR OTROLLO BORGOS CANAVANDOS E APROVADA PILA COMISSÃO JULGADORA EM 16 1/0 98.

ORIENTADOR

UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE ENGENHARIA MECÂNICA

UMA METODOLOGIA PARA A ANÁLISE DA CONSISTÊNCIA DE DADOS DE CONSUMO REGIONAL DE ENERGIA, APLICADA AO PLANEJAMENTO ENERGÉTICO DA MESORREGIÃO 01 DE MATO GROSSO

> Autor: Otacilio Borges Canavarros Orientador: Ennio Peres da Silva

10/98

C16m

36585/BC

UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE ENGENHARIA MECÂNICA DEPARTAMENTO DE ENERGIA

UMA METODOLOGIA PARA A ANÁLISE DA CONSISTÊNCIA DE DADOS DE CONSUMO REGIONAL DE ENERGIA, APLICADA AO PLANEJAMENTO ENERGÉTICO DA MESORREGIÃO 01 DE MATO GROSSO

Autor: Otacílio Borges Canavarros Orientador: Ennio Peres da Silva

Curso: Planejamento de Sistemas Energéticos

Tese de doutorado apresentada à comissão de Pós Graduação da Faculdade de Engenharia Mecânica, como requisito para a obtenção do título de Doutor em Planejamento de Sistemas Energéticos

Campinas, 1998 S.P - Brasil

DADE_ BC	Service S
CHAMALA:	Differential
A SECTION OF THE PROPERTY OF T	SCENE SANSON
	St. Control and
00 429/99	ONE WAY AREAD
3 / J / 91-7	SECONDARY SECOND
00 RS 11 00	and the second
A 19/102/199	TOTAL STATE OF
CPO	-

FICHA CATALOGRÁFICA ELABORADA PELA BIBLIOTECA DA ÁREA DE ENGENHARIA - BAE - UNICAMP

C16m

Canavarros, Otacílio Borges

Uma metodologia para análise da consistência de dados de consumo regional de energia, aplicada ao planejamento energético da mesorregião 01 de Mato Grosso. / Otacílio Borges Canavarros.--Campinas, SP: [s.n.], 1998.

Orientador: Ennio Peres da Silva. Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecânica.

1. Energia - Consumo - Análise. 2. Metodologia. I. Silva, Ennio Peres da. II. Universidade Estadual de Campinas. Faculdade de Engenharia Mecânica. III Título.

CM-00120838-1

UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE ENGENHARIA MECÂNICA PLANEJAMENTO DE SISTEMAS ENERGÉTICOS

TESE DE DOUTORADO

UMA METODOLOGIA PARA A ANÁLISE DA CONSISTÊNCIA DE DADOS DE CONSUMO REGIONAL DE ENERGIA, APLICADA AO PLANEJAMENTO ENERGÉTICO DA MESORREGIÃO 01 DE MATO GROSSO

Autor : Otacílio Borges Canavarros
Orientador: Ennio Peres da Silva
my tedals
Prof. Dr. Ennio Peres da Silva, Presidente
Instituto de Física, UNICAMP
Cha Query
Prof. Dr.Mário Oscar Cencig
NIPE - Núcleo Interdisciplinar de Planej. Energético, UNICAMI
Prof. Dr.Sinclair Mallet-Guy Guerra
Faculdade de Engenharia Mecânica, UNICAMP
Marcha Wale March
Prof. Dr.Cláudio Schuller Maciel
Instituto de Economia, UNICAMP
Prof. Dr.Benedito Dias Pereira
Faculdado do Administração Faculação Ciências Contébais I

Dedicatória:

Dedico este trabalho a minha esposa Maria Ester e aos meus filhos: Fernando Artur, Lisa Maria, Diana e Selma Alana, na certeza de que o conteúdo do mesmo justifica as horas não dedicadas à família e na esperança de que os estimulem na evolução profissional.

Dedico ainda esta tese aos meus queridos pais Oátomo e Irene (in memoriam), aos quais sou grato pela correta orientação preparando-me para a longa caminhada.....

Agradecimentos:

O presente trabalho foi concluído com a colaboração de pessoas e de instituições, para as quais expresso publicamente o meu reconhecimento e gratidão:

A UFMT por ter concedida a minha liberação para a realização da pós graduação.

Ao orientador Prof. Dr. Ennio Peres da Silva pelo apoio, empenho e precisa orientação.

Aos professores da UNICAMP e colegas do curso pela boa convivência e aprendizagem.

Aos técnicos amigos do Sistema FIEMT pela colaboração e pronto atendimento.

Aos servidores de órgãos públicos e privados pela presteza na cessão dos dados.

Ao colega engenheiro químico Moisés Cândido de Melo pela especial atenção.

Ao amigo Alexandre dos Anjos pelo apoio nas dificuldades iniciais no computador.

A jovem engenheira Ribenildes Gomes e Souza pela ajuda nos gráficos e na impressão.

"A Verdadeira Riqueza do Homem é o Bem que ele faz aos semelhantes"

Mahatma Gandhi

ÍNDICE

	Pag.
Resumo	i
"Abstract"	>
Lista de Figuras	X
Lista de Quadros	х
Lista de Tabelas	xi
Lista de Gráficos	xii
Lista de Siglas	xiv
CAPÍTULO 1	^-
1 - Introdução	01
1.1 - Planejamento Energético Regional	02 02
1.3 - Balanço Energético Regional	04
1.4 - Balanço Energético em Mato Grosso.	05
1.5 - Justificativa da Tese	
1.6 - Objetivos da Tese.	06
1.7 - Revisão Bibliográfica.	07
CAPÍTULO 2	
2 - A Metodologia	12
2.1- Os Fundamentos da Metodologia	12
2.2 - As Etapas da Metodologia	13
2.3 - A Aplicabilidade da Metodologia	16
2.3.1 - Óleo Diesel	18
2.3.2 - Gasolina Automotiva	19
2.3.3 - Óleo Combustível.	20
2.3.4 - GLP e Gás Natural	21
2.3.5 - Carvão Mineral e seus Derivados.	22
2.3.6 - Lenha	23
2.3.7 - Carvão Vegetal	24
2.3.8 - Álcool Etilico Hidratado e Anidro.	25
2.3.9 - Outros Combustíveis	26
CAPÍTULO 3	
3 - Caracterização da Mesorregião 01	27
3.1 - Definição da Mesorregião 01	27
3.2 - Características Essenciais dos 12 Municípios.	31

3.3 - A Importância da Mesorregião 01	34
3.4 - A Economia da Mesorregião 01	35
3.5 - Aspectos Ambientais	38
3.6 - Aspectos Energéticos.	43
3.6.1 - O Sistema Energético da Eletricidade	45
3.6.2 - O Sistema Energético dos Derivados de Petróleo	46
3.6.3 - O Sistema Energético dos Derivados de Biomassas.	47
3.7 - Os Agentes nos Sistemas Energéticos.	48
5.7 Ob Asserted hos distented Energeneos	
CAPÍTULO 4	
4 - Produção e Consumo de Energia na Mesorregião 01	49
4.1 - Produção de Energia	49
	49
4.1.1 - Energia Elétrica.	
4.1.2 - Energia de Biomassas.	50
4.2 - Consumo de Energia sem a aplicação da Metodologia	52
4.2.1 - Consumo de Energia por Energéticos.	52
4.2.2 - Consumo de Energia por Setores da Economia	54
CAPÍTULO 5	
5 - As Matrizes Energéticas consoante a Metodologia.	63
5.1 - A Etapa de Reunião dos Dados de Consumo dos Energéticos.	63
5.2 - A Etapa de Averiguação dos Dados de Consumo de Energia.	63
5.2.1 - Óleo Diesel	64
5.2.2 - Óleo Combustível	65
5.2.3 - Gasolina Automotiva	65
5.2.4 - GLP	66
5.2.5 - Eletricidade	67
5.2.6 - Lenha	68
5.2.7 - Álcool Etílico Hidratado	68
5.2.8 - Álcool Etílico Anidro.	69
5.2.9 - Bagaço de Cana.	69
5.2.10 - Carvão Vegetal	70
5.2.11- Outros Derivados de Petróleo	70
5.3 - A Etapa de Retificação dos Dados de Consumo.	72
5.3.1 - Óleo Diesel	72
5.3.2 - Eletricidade	72
5.3.3 - GLP	73
5.3.4 - Gasolina Automotiva	74
5.4 - A Etapa de Elaboração das Matrizes de Consumo	75
5.4.1 - Consumo de Energia por Energéticos.	75
5.4.2 - Consumo de Energia por Setores da Economia.	76
5.5 - Consumo de Energéticos: Importados e de Produção Regional	85
5.6 - Consumo de Energéticos: não Renováveis e Renováveis	86
5.7 - As Intensidades Energéticas na Mesorregião 01	87
5.8 - Intensidades Energéticas Comparadas	88
5.9 - As Emissões de CO ₂ na Mesorregião 01	89
5.10 - Projeção da Demanda e da Oferta de Energia na Mesorregião 01	90

CAPÍTULO 6 6 - Conclusões, Recomendações e Sugestões para Pesquisas..... 91 6.1 - Quanto aos Dados Disponíveis de Consumo 91 6.1.1 - Conclusões 91 6.1.2 - Recomendações.... 92 6.2 - Quanto as Matrizes de Consumo da Mesorregião 01..... 92 6.2.1 - Conclusões. 92 6.3 - Sugestões de Trabalhos de Pesquisas.... 93 Referências Bibliográficas.... 94

126

Lista de Apêndices.

Resumo

CANAVARROS, Otacílio Borges, "Uma Metodologia para a Análise da Consistência de Dados de Consumo Regional de Energia, Aplicada ao Planejamento Energético da Mesorregião 01 de Mato Grosso," Faculdade de Engenharia Mecânica, Universidade Estadual de Campinas, 1998. 163 p. Tese de Doutorado.

A presente tese de doutorado desenvolveu uma metodologia de análise da consistência de dados de consumo regional de energia, estruturada em quatro etapas de procedimentos, a saber: reunião dos dados iniciais de consumo de energéticos na região de publicações diversas; averiguação da consistência dos referidos dados com base em informações sócioeconômicas da região e ainda dados de consumo de energia de outras regiões em semelhantes estágios de desenvolvimento; retificação dos dados iniciais de consumo consoante as conclusões da etapa de averiguação; elaboração das tabelas de consumo de energia por energéticos e setores da economia regional. A metodologia foi aplicada na mesorregião 01 de Mato Grosso, importante região do centro oeste brasileiro na qual se inclui a capital Cuiabá, conhecida como planície cuiabana, contendo 12 municípios, caracterizada por uma elevada dependência externa energética e em franco processo de industrialização de seus recursos naturais. A região destaca-se ainda como importante entroncamento de rodovias federais procedentes do sul e sudeste do país em direção à região amazônica, ao Peru e a Bolívia, tendo a mesma apresentado índices elevados de crescimento demográfico e econômico nos últimos 15 anos. A aplicação da metodologia possibilitou a constatação de diferenças apreciáveis no consumo de energia na mesorregião 01 para alguns energéticos (óleo Diesel, GLP, eletricidade), ao se comparar os dados de consumo disponíveis nas publicações oficiais e os dados estimados mediante o uso da metodologia. Após a retificação dos dados foi procedida a projeção da demanda de energia, ao longo do período 1998 a 2007, no cenário tendencial levando em conta as políticas de desenvolvimento em curso no Estado com reflexos no setor energético da mesorregião 01. Ficou evidente a necessidade do uso da metodologia para se assegurar dados de consumo reais, os quais serão essenciais quando da elaboração do planejamento energético na região. A tese apresentou, pela primeira vez, as matrizes de consumo e as intensidades energéticas da região, facilitando doravante a elaboração do planejamento energético regional, ao mesmo tempo em que estabelece um parâmetro para semelhantes estudos em outras regiões.

Palavras Chave Energia, Consumo, Análise

Abstract

CANAVARROS, Otacílio Borges, "A methodology to analise the consistency of regional energy consumption data, applied to the energetic planning to region number one in Mato Grosso", Mechanic Engineering College, Campinas State University, 1998, 163p; Doctorate's thesis.

The present doctorate's thesis has developed a methodology to analise the consistency of regional energy consumption data. It was framed in four procedures as it follows: collection of initial data of energetics consumption from several annual publications in the region; investigation of data consistency based on socio-economic information about the region and also energy consumption data from other regions of similar levels of development; rectification of initial data of energy consumption according to the conclusions of the investigation stage; elaboration tables of energy consumption by energetic and regional economy sector. The methodology was applied to region number one in Mato Grosso, where is the state capital Cuiabá, an important region in the Brazilian midwest called "cuiabana" plain, which has 12 small towns (municipalities) nearby and it is highly dependent on external power, it has also fostered a fast industrialization process of its natural resources. This region is still considered an important joint of federal roads coming from the south and southeast towards the Amazonic region, Peru and Bolívia. It has presented high levels of economic and demographic growth the last 15 years. The application of this methodology has verified the considerably different of energy consumption data of some energetics like Diesel oil, LPG and electricity in the region number one when compared to available consumption data in official publications and estimated data originated by the use of the methodology. After rectifying data it was made consumption needs of the region for the period of 1998-2007 considering the present trends according to the development politics of Mato Grosso which may influence the energetic sector in the region number one. The necessity of the use of this methodology was quite evident in order to garantee real consumption data wich will be very useful when they elaborate the regional energetic planning. The thesis has presented, for the first time, the consumption tables and the energetics intensities of the region, as well as setting a standard (parameter) for similar studies in other regions in the future.

Key Words

Energy, Consumption, Analysis

Lista de Figuras	Pág.
1.2 - Diagrama do Balanço Energético Nacional.	03
1.7 - Diagrama do Fluxo Geral de Energéticos em uma Região	11
2.2 - Fluxograma Síntese da Metodologia.	., 14
3.1.a - A localização da Mesorregião 01 no mapa de Mato Grosso	. 27
3.1.b - A Mesorregião 01 e os 12 Municípios	. 28
3.1.c - Principais Características Geográficas da Mesorregião 01	29
Lista de Quadros	
3.1 - Área e População do Estado, da Mesorregião 01 e dos seus 12 Municípios	30
3.4.a - Evolução da Arrecadação do ICMS no Estado e na Mesorregião 01	36
3.4.b - Arrecadação do ICMS por Setores na Mesorregião 01 - Ano 1990.	37
3.4.c - Arrecadação do ICMS por Setores na Mesorregião 01 - Ano 1995	37
4.1.1 - Dados da Produção de Energia Elétrica na Mesorregião 01	50
4.1.2.a - Dados da Produção Vegetal e da Silvicultura na Mesorregião 01	51
4.1.2.b - Dados da Produção de Derivados de Cana-de-Açúcar na Mesorregião 01	. 51
5.3.1 - Estimativa do Consumo de Óleo Diesel no Setor Agropecuário	72
5.3.2.a - Estimativa do Consumo de Eletricidade no Setor Industrial	72
5.3.2.b - Estimativa do Consumo de Eletricidade no Setor Residencial	73
5.3.2.c - Estimativa do Consumo de Eletricidade no Setor Agropecuário	73
5.3.2.d - Estimativa do Consumo de Eletricidade no Setor Comercial	73
5.3.2.e - Estimativa do Consumo de Eletricidade no Setor Público.	73
5.3.3 - Estimativa do Consumo de GLP nos Setores Residencial e Industrial	74
5.3.4 - Estimativa do Consumo de Gasolina Automotiva e de Álcool Etílico Anidro	74

5.7 - Estimativas das Intensidades Energéticas na Mesorregião 01	88
5.8 - Intensidades Energéticas Comparadas	88
5.9.1 - Fatores de Conversão para Cálculos de Emissões de C e de CO ₂	89
5.9.2 - Estimativas das Emissões de CO ₂ na Mesorregião 01 - ano de 1995	90
Lista de Tabelas	
4.2.1 - Dados de Consumo de Energia por Energéticos na Mesorregião 01	53
4.22 - Dados de Consumo de Energia por Setores da Economia na Mesorregião 01	54
4.2.2.a - Dados de Consumo de Energia por Energético no Setor Transporte	56
4.22.b - Dados de Consumo de Energia por Energético no Setor Agropecuário	57
4.2.2.c - Dados de Consumo de Energia por Energético no Setor Industrial	58
4.2.2.d - Dados de Consumo de Energia por Energético no Setor Residencial	59
4.2.2.e - Dados de Consumo de Energia por Energético no Setor Comercial	60
4.2.2.f - Dados de Consumo de Energia por Energético no Setor Público	61
4.2.2.g - Dados de Consumo de Energia por Energético no Setor Energético	62
5.4.1 - Dados de Consumo de Energia por Energéticos consoante a Metodologia	75
5.4.2 - Dados de Consumo de Energia por Setores consoante a Metodologia	76
5.4.2.a - Dados de Consumo de Energia por Energético no Setor Transporte	78
5.4.2.b - Dados de Consumo de Energia por Energético no Setor Industrial	79
5.4.2.c - Dados de Consumo de Energia por Energético no Setor Residencial	80
5.4.2.d - Dados de Consumo de Energia por Energético no Setor Agropecuário	81
5.4.2.e - Dados de Consumo de Energia por Energético no Setor Comercial	82
5.4.2.f - Dados de Consumo de Energia por Energético no Setor Público	83
5.4.2.g - Dados de Consumo de Energia por Energético no Setor Energético	84
5 5 - Relação entre Consumos de Energia: Importada e de Produção Regional	85

5.6 - Relação entre Consumos de Energia: não Renováveis e Renováveis	86
Lista de Gráficos	
4.2.1 - Evolução da Curva de Consumo de Energia por Categoria de Energéticos	54
4.2.2 - Evolução da Curva de Consumo de Energia por Setores da Economia	55
4.2.2.a - Evolução da Curva de Consumo de Energia no Setor Transporte	56
4.2.2.b - Evolução da Curva de Consumo de Energia no Setor Agropecuário	57
4.2.2.c - Evolução da Curva de Consumo de Energia no Setor Industrial	58
4.2.2.d - Evolução da Curva de Consumo de Energia no Setor Residencial	59
4.2.2.e - Evolução da Curva de Consumo de Energia no Setor Comercial	60
4.2.2.f - Evolução da Curva de Consumo de Energia no Setor Público.	61
4.2.2.g - Evolução da Curva de Consumo de Energia no Setor Energético	62
5.4.1 - Evolução das Curvas de Consumo de Energia por Categorias de Energéticos	76
5.4.2 - Evolução das Curvas de Consumo de Energia por Setores da Economia	77
5.4.2.a - Evolução das Curvas de Consumo de Energia no Setor Transporte	78
5.4.2.b - Evolução das Curvas de Consumo de Energia no Setor Industrial	79
5.4.2.c - Evolução das Curvas de Consumo de Energia no Setor Residencial	80
5.4.2.d - Evolução das Curvas de Consumo de Energia no Setor Agropecuário	81
5.4.2.e - Evolução das Curvas de Consumo de Energia no Setor Comercial	82
5.4.2.f - Evolução das Curvas de Consumo de Energia no Setor Público	83
5.4.2.g - Evolução das Curvas de Consumo de Energia no Setor Energético	84
5.5 - Relação entre Consumos de Energia: Importada e de Produção Regional	85
5.6 - Relação entre Consumos de Energia: não Renováveis e Renováveis	87

Lista de Siglas

BEEMT - Balanço Energético no Estado de Mato Grosso

BEESP - Balanço Energético do Estado de São Paulo

BEN - Balanço Energético Nacional

CELG - Centrais Elétricas de Goiás

CEMAT - Centrais Elétricas Matogrossenses S.A.

CEMIG - Cia Energética de Minas Gerais S.A.

ELETROBRÁS - Centrais Elétricas Brasileiras S.A

ELETRONORTE - Centrais Elétricas do Norte do Brasil S.A.

ENRON - ENRON Electric Power Brazil C.V.

FAMATO - Federação da Agricultura no Estado de Mato Grosso

FECOMÉRCIO - Federação do Comércio no Estado de Mato Grosso

FIEMT - Federação das Indústrias no Estado de Mato Grosso

FIBGE - Fundação Instituto Brasileiro de Geografia e Estatística

FINEP - Financiadora de Estudos e Projetos

FUFMT - Fundação Universidade Federal de Mato Grosso

GLD - Gerenciamento do Lado da Demanda

GLP - Gás Liquefeito do Petróleo

IEL/MT - Instituto Euvaldo Lodi - Núcleo Regional de Mato Grosso

J - Joule

keal - quilo calorias

kEP - quilo Equivalente de Petróleo

kW - quilo Watts

kWh - quilo Watts hora

LT - Linha de Transmissão

MERCOSUL - Mercado Comum do Cone Sul

MME - Ministério das Minas e Energia

MW - Mega Watts

MWh - Mega Watts hora

PIB - Produto Interno Bruto

PIMEB - Programa de Implementação do Modelo Energético Brasileiro

PROALCOOL - Programa Nacional do Alcool

PROCEL - Programa Nacional de Combate ao Desperdício de Energia Elétrica

SICT - Secretaria de Indústria, Comércio e Turismo

SIPOT - Sistema de Informações de Potenciais Hidráulicos no Brasil

STI/MIC - Secretaria de Tecnologia Industrial / Ministério da Indústria e Comércio

SUDAM - Superintendência do Desenvolvimento da Amazônia

tEP - tonelada Equivalente de Petróleo

TRR - Transportadores Revendedores Retalhistas

UFMT - Universidade Federal de Mato Grosso

UFRJ - Universidade Federal do Rio de Janeiro

UHE - Usina Hidroelétrica

UNICAMP - Universidade Estadual de Campinas

UPF/MT - Unidade Padrão Fiscal do Estado de Mato Grosso

UTE - Usina Termoelétrica

Wh - Watts hora

CAPÍTULO 1

1 - INTRODUÇÃO

Muitos entraves dificultam a elaboração do planejamento energético regional no Brasil, tais como: a carência de dados e informações sócio econômicas regionais, a imprecisão dos dados disponíveis alusivos ao consumo de energéticos por regiões, a não disponibilidade de balanços energéticos regionais por energético e por setor da economia, bem ainda a falta de uma metodologia adequada, de fácil compreensão e aplicabilidade, que possibilite a análise e a retificação dos dados existentes de consumo de energéticos, objetivando a correta elaboração das matrizes de consumo regional de energia.

Em razão desses elementos inibidores da prática do planejamento energético, poucas são as regiões do Brasil onde o mesmo ocorre deixando assim de ser o insumo energia tratado de forma adequada, a exemplo do que se faz em alguns países desde os anos setenta, em decorrência das duas "crises mundiais do petróleo". Os dados de consumo de energéticos encontrados nas publicações de órgãos públicos e privados (MME, FIBGE, Secretarias de Estado, Fundações de Pesquisas, Prefeituras Municipais, Sindicatos, etc.), quando utilizados sem uma prévia avaliação geram matrizes de consumo incorretas, as quais certamente irão propiciar uma projeção tendencial irreal da demanda de energia.

O presente trabalho desenvolveu uma metodologia para a análise da consistência dos dados de consumo regional de energéticos, útil aos profissionais dedicados ao planejamento energético, mormente nesta nova fase do setor energético brasileiro em que as atividades de produção e de distribuição de energia deixaram de ser de responsabilidade exclusiva do Estado por força de recentes leis, podendo ser desempenhadas também pelo setor privado quando se espera a regionalização do trato da questão energia.

Com o propósito de comprovar a praticidade da metodologia, a mesma foi aplicada na Mesorregião 01 de Mato Grosso também conhecida como planície cuiabana, região de elevado crescimento econômico bem como populacional nos últimos 15 anos, apresentando sérios problemas relativos à escassez da oferta de energia, demanda reprimida acentuada de energia elétrica, total dependência externa de derivados de petróleo, elevada importação de energia elétrica dos Estados vizinhos de Goiás e Minas Gerais e ainda importação de um volume considerável de álcool hidratado e anidro de mesorregiões contíguas.

1.1 - O Planejamento Energético Regional

O planejamento de sistemas energéticos regionais vem sendo posto em prática em muitos países com o intuito de resolver duas questões essenciais: atender a demanda social de energia e dar sustentação ao processo de crescimento econômico da região, em ambas assegurando a harmonia entre o uso de recursos naturais energéticos e a qualidade do meio ambiente. O atendimento a esses propósitos exige uma visão renovada dos que se dedicam ao planejamento, qual seja a de considerar o insumo energia como uma variável de importância estratégica, essencial ao processo de desenvolvimento, exigindo cuidados especiais nas suas etapas de exploração, produção, transporte, distribuição e consumo (CARVALHO,1987).

A implementação do planejamento energético em uma determinada região irá propiciar a utilização racional das diversas fontes e formas de energia a serem disponibilizadas, otimizando o suprimento das mesmas no atendimento da demanda, em concordância com as políticas regionais econômica e social e ainda em sintonia com a política energética em vigência no país. As experiências pioneiras em planejamento energético regional começaram a ocorrer nos anos setenta nos Estados Unidos, notadamente na Califórnia, bem como na França na região Nord - Pas de Calais, em razão da complexidade de suas economias regionais e das necessidades decorrentes dos efeitos perversos das "crises do petróleo" (BAJAY, 1989).

O Brasil em razão de sua grande extensão territorial e acentuadas disparidades sócio econômicas regionais, possuindo variados potenciais energéticos em diferentes regiões, além de um consumo de energia notadamente concentrado nas regiões Sul e Sudeste, apresenta-se com plenas características para a prática do planejamento energético regional. Nos anos 80 o Estado de São Paulo deu início a sua experiência em planejamento energético com a criação do Conselho Estadual de Energia, do qual emanaram inúmeras decisões para a racionalização da oferta e da demanda de energia nos diversos setores da economia estadual (BAJAY, 1989).

1.2 - O Balanço Energético Nacional

O Balanço Energético Nacional - BEN, documento de fundamental importância para o planejamento energético, elaborado praticamente com a mesma metodologia nos últimos 15 anos sob a responsabilidade do MME - Ministério de Minas e Energia, apresenta de forma detalhada os fluxos energéticos de fontes primárias e de fontes secundárias de energia, desde a produção até o consumo final nos setores da economia, conforme ilustra a Figura 1.2.

HACTETACAC EXPOSITAÇÃO

RECHMARIA

SELVAÇÃO

SELVICIAÇÃO

Figura 1.2
Diagrama do Balanço Energético Nacional

Fonte: BEN,1996

Como fontes primárias de energia consideram-se aquelas providas pela Natureza na sua forma direta: petróleo, gás natural, carvão mineral, lenha, energia hidráulica, etc., as quais após serem processadas nos centros de transformação (refinarias de petróleo, plantas de gás natural, coquerias, usinas termoelétricas e hidroelétricas, etc.), tornam-se fontes secundárias de energia (gasolina, óleo Diesel, coque de carvão mineral, carvão vegetal, eletricidade, etc.).

Deve-se ressaltar que uma parte da energia primária normalmente não é processada nos centros de transformação, sendo diretamente consumida nos vários setores da economia sob a denominação de consumo final. De igual forma, uma parte da energia secundária é utilizada nos centros de transformação para ser convertida em outras formas de energia secundária (óleo Diesel em eletricidade, óleo combustível em eletricidade, nafta em GLP, etc).

Na elaboração do Balanço Energético Nacional os dados de produção, importação, consumo, exportação e estoque de energia dos derivados de petróleo e álcool etílico hidratado, são fornecidos pela empresa PETROBRÁS ao MME, onde os mesmos são analisados e convertidos na unidade de energia denominada tEP (tonelada equivalente de petróleo), sendo adotado o poder calorífico superior (PCS) de cada um dos energéticos. Os dados relativos à eletricidade são fornecidos pela ELETROBRÁS com base nas informações provenientes das empresas concessionárias estaduais de distribuição, enquanto os relativos aos derivados de biomassa pela FIBGE (lenha e carvão vegetal) e os concernentes ao bagaço de cana pelas Associações, Cooperativas e Sindicatos Estaduais, representantes das empresas produtoras de açúcar e álcool.

O Balanço Energético Nacional - BEN, é uma publicação anual de muita utilidade sendo considerado indispensável para os planejadores do insumo energia, apresentando informações detalhadas de âmbito nacional referentes a todos os energéticos. O Balanço Energético Nacional apresenta no seu conteúdo o chamado balanço energético consolidado, onde estão especificados todos os dados energéticos da produção ao consumo, por energético e por setores da economia, anualmente ao longo da série histórica.

No entretanto, poucas são as informações relativas aos Estados inseridas no BEN, a saber: produção de energia primária, consumo final de energia, consumo industrial de energia, consumo de energia no setor transporte, consumo residencial de energia, consumo residencial de eletricidade, consumo residencial de GLP, consumo de gasolina e álcool, consumo total de derivados de petróleo, consumo total de eletricidade, produção e consumo de energia "per capita", as quais são insuficientes para a elaboração dos balanços energéticos regionais.

1.3 - O Balanço Energético Regional

O balanço energético no âmbito estadual começou a ser feito a partir do ano 1980 após a segunda "crise do petróleo", em decorrência do PIMEB - Programa de Implementação do Modelo Energético Brasileiro, lançado pelo governo federal com o propósito de sistematizar o fluxo de dados e informações energéticas concernentes à produção, importação, consumo, exportação e perdas de energia em cada Estado. Nos últimos anos muitos Estados deixaram de editar os seus balanços energéticos, não fornecendo as informações a Coordenação do BEN daí porque a ausência de dados energéticos estaduais na série histórica do BEN dos anos 90.

Pela qualidade de apresentação dos dados e informações, destacam-se os balanços energéticos do Rio Grande do Sul, São Paulo e Minas Gerais, em especial o de São Paulo que nos últimos dois anos passou a apresentar informações quanto às emissões de CO₂ (BEESP,1996). Embora os balanços estaduais venham sendo elaborados há mais de 15 anos, raríssimos são os que apresentam dados e informações relativas às regiões dos seus respectivos Estados. A quase inexistência de balanços energéticos regionais está diretamente relacionada à escassez de dados e informações por regiões nos balanços estaduais, associada às dificuldades com que se depara o pesquisador na averiguação dos dados, obstáculos estes passíveis de minimização na medida em que seja utilizada uma metodologia de análise da consistência de dados de consumo de energéticos nas publicações de órgãos públicos e privados.

1.4 - O Balanço Energético em Mato Grosso

O Governo de Mato Grosso através, inicialmente, da Secretaria da Indústria, Comércio e Turismo - SICT, por meio da Coordenadoria de Assuntos Energéticos, aderiu aos propósitos do PIMEB, viabilizando, embora tardiamente, a elaboração do primeiro Balanço Energético do Estado abrangendo o período 1980 a 1986, reunindo pela primeira vez as informações e dados energéticos no âmbito do Estado (BEEMT,1989). Posteriormente foi editado o segundo balanço englobando o período 1987 a 1988 (BEEMT,1992) e logo após o terceiro compreendendo os anos 1987 a 1990 (BEEMT,1993). Mais tarde, pela lei 6.224 de 23/6/1993, o Governo de Mato Grosso criou o CEEn - Conselho Estadual de Energia subordinado a Secretaria de Infra Estrutura, com o objetivo de efetuar estudos e definir políticas energéticas, estimular a elaboração de planejamento energético regional e apoiar a sua implementação, além de outras.

O Estado de Mato Grosso ainda não possui uma instituição de pesquisas que centralize todas as informações de ordem sócio-econômica, ambiental, energética, etc., por regiões e municípios. A Fundação Cândido Rondon, criada em 1979 para desempenhar o papel de entidade oficial de pesquisas sócio-econômicas no Estado, foi extinta no início dos anos noventa por razões de ordem política e administrativa. Na ausência de uma instituição central de pesquisas, a coleta de dados exige do pesquisador inúmeros contatos pessoais com técnicos de órgãos públicos e privados, das esferas federal e estadual.

Constituindo uma exceção, os dados relativos à produção, consumo e importação de energia elétrica estão disponíveis no boletim mensal de mercado, editado pela concessionária CEMAT, no qual as informações estão presentes por municípios e por setores da economia, facilitando sobremaneira o trabalho do pesquisador. Os dados relativos ao consumo de derivados de petróleo e de álcool estão contidos no documento anualmente editado pelo DNC - Departamento Nacional de Combustíveis do MME, denominado "Vendas e Usos de Combustíveis", ofertados a Coordenadoria do Balanço Energético no Estado.

Os dados relativos ao consumo de lenha e carvão vegetal estão na publicação "Produção Vegetal e da Silvicultura", editada pela FIBGE - Delegacia de Mato Grosso, única fonte dessas informações, com a ressalva de que os dados da produção de lenha e carvão vegetal constantes no documento da FIBGE, são estimados pelo consumo nas empresas industriais e pelas distribuidoras que vendem os produtos para as residências e o comércio, em cada município.

Em 1995, sob a responsabilidade da Secretaria de Infra Estrutura, foi publicado o quarto balanço energético do Estado alusivo ao período 1990 a 1993 (BEEMT,1995), ressaltando que os dados apresentados referem-se tão somente ao consumo de energia no âmbito estadual, não ocorrendo informações relativas às matrizes de consumo nas seis mesorregiões. Após uma paralisação de 3 anos na elaboração do balanço energético estadual, providências estão sendo tomadas para a publicação de um novo balanço abrangendo o período 1990/1997.

1.5 - Justificativa da Tese

A tese decorreu do convencimento do autor quanto à inconsistência dos dados disponíveis de consumo regional de energéticos e da necessidade premente de se estabelecer uma metodologia para a análise dos mesmos. A tese estabeleceu os procedimentos para o tratamento adequado dos dados e das informações, procedentes de fontes oficiais ou não, de modo a propiciar a construção de matrizes que expressem o real consumo de energia em uma determinada região, ao longo da série histórica considerada.

A possibilidade de elaboração pela primeira vez da matriz de consumo de energia de uma região em desenvolvimento no centro oeste brasileiro, especificamente a Mesorregião 01 de Mato Grosso, motivou o autor a testar a aplicabilidade da metodologia visto tratar-se de uma região importante à espera do planejamento energético, o qual para ser feito depende do conhecimento do real consumo de energia na região, por energético e setor da economia.

1.6 - Objetivos da Tese

O objetivo primeiro da tese foi o de apresentar a metodologia buscando aperfeiçoar e racionalizar o uso das técnicas e procedimentos pelos planejadores em seus trabalhos nos órgãos públicos e privados, bem ainda inserir este novo instrumento nos cursos de pós graduação das universidades, onde estudos são realizados e apresentados em dissertações e teses na área de Planejamento de Sistemas Energéticos.

O objetivo segundo foi o de elaborar a matriz de consumo da Mesorregião 01 de Mato Grosso, ensejando o conhecimento do real consumo de energia nessa região por energéticos e setores da economia, possibilitando o conhecimento da evolução das intensidades energéticas na região, propiciando informações precisas às autoridades regionais para a tomada de decisões quando da elaboração do planejamento energético.

1.7 - Revisão Bibliográfica

Procurou-se conhecer estudos recentes levados a efeito por autores diversos a respeito de matrizes e balanços energéticos regionais no Brasil, com o intuito de avaliar até que ponto a questão objeto da tese foi abordada e/ou avaliada, bem ainda para melhor evidenciar a validade e a importância da metodologia proposta.

A dissertação de mestrado intitulada "O Balanço Energético como instrumento para o Planejamento Energético Regional" (BARONE,1990),, apresenta um levantamento do estadoda-arte dos balanços energéticos nos âmbitos nacional, estadual e regional, com o estudo de caso da RAC - região administrativa de Campinas/SP. A dissertação é uma abordagem pioneira no trato da questão, ensejando uma série de considerações no decorrer da aplicação da mesma na montagem das matrizes de consumo da região, a segunda em importância sócio econômica no Estado de São Paulo (SEADE,1993).

A autora inicia afirmando "no Brasil, os balanços energéticos praticamente reúnem e organizam informações somente à nível nacional e estadual, pouco se conhecendo a respeito do equilíbrio e da dinâmica entre a oferta e a demanda de energia à nível de regiões dos Estados. Como a maioria dos setores energéticos brasileiros se concentra somente no seu próprio planejamento específico, tal desagregação das informações energéticas propiciaria uma ótima base para um planejamento energético regional mais descentralizado e eficiente".

Nas considerações sobre os dados de consumo no balanço energético nacional, a dissertação destaca o fato dos dados, oriundos do CNP - Conselho Nacional do Petróleo, à época (atualmente DNC - Departamento Nacional de Combustíveis do MME), representarem o volume de vendas para as companhias distribuidoras e não o consumo setorial de cada um dos derivados de petróleo.

Assim, prossegue a autora, torna-se necessário fazer uma série de hipóteses e considerações para se chegar ao correto consumo de cada energético por setores da economia, ressaltando ainda que o balanço energético deve atender às necessidades de um planejamento integrado, requerendo para tanto a identificação de correlações entre as informações energéticas e os dados econômicos, sociais e ambientais da região em estudo, exigindo para tanto um adequado banco de dados regionais.

O texto denominado "Planejamento Energético Municipal de Sete Lagoas/MG" (VASCONCELOS & COSTA,1994), assinala que a elaboração do balanço energético daquele município somente foi possível com a realização de pesquisas diretas de campo junto aos setores industrial, residencial e comercial, associada às informações obtidas em órgãos públicos e privados. Os autores afirmaram que houve necessidade de uma comparação entre os dados de consumo regional com os de consumo no âmbito estadual, buscando assegurar a confiabilidade das matrizes elaboradas.

Na dissertação de mestrado com o título "O Consumo e o Potencial de Energia da Região Administrativa de Campinas - possibilidades de substituição de energéticos" (CANAVARROS,1994)., o autor sentiu a dificuldade representada pela escassez de dados de consumo de energia da região, mesmo em se tratando de uma das mais importantes do Brasil, dentro do Estado de São Paulo onde se presumia serem abundantes e atualizadas as informações sócio-econômicas e energéticas.

O Balanço Energético do Estado de São Paulo, disponível na época, trazia informações apenas no âmbito estadual e tão somente até o ano de 1987, sem se reportar aos dados de consumo das regiões administrativas, comprovando assim as reais dificuldades com as quais o planejador se depara. No desenvolvimento da referida dissertação, o autor estimou o consumo de cada energético por setores da economia da região através da técnica da projeção tendencial da demanda, tomando por base as matrizes de consumo por setores na série histórica 1982 a 1987, contidas na dissertação inicialmente citada (BARONE, 1990).

Não há dúvida de que as matrizes setoriais de consumo energético, assim estimadas, contém dados imprecisos, os quais quando considerados para o cálculo das taxas geométricas anuais médias de crescimento, contribuem para a imprecisão dessas taxas, as quais por sua vez são utilizadas para se fazer a projeção tendencial da demanda de energia, procedimento esse muito utilizado no planejamento energético, acarretando projeções irreais de consumo.

No documento intitulado "Uso eficiente de energia e fontes renováveis para a cidade de Manaus" (JANNUZZI & al, 1995), os autores preocuparam em desenvolver uma metodologia para a prática do planejamento energético para micro regiões brasileiras, objetivando com isso facilitar a definição de políticas e ações no âmbito municipal, visando ao uso eficiente de energia e a uma menor emissão de gases poluentes.

No referido documento ficou nítida a dificuldade dos autores na análise da veracidade dos dados de consumo de muitos energéticos em alguns setores da economia de Manaus. A quantificação do consumo de lenha representou um dificil entrave na construção das matrizes bem ainda a identificação de um elevado consumo de GLP no setor residencial, muito acima da média nacional, fato este explicado pelo uso indevido de GLP nos garimpos em certas regiões, sendo os dados contabilizados no setor residencial (MIGUEZ & PASSOS,1993).

Relativamente ao energético eletricidade, foi apurado um consumo não faturado pela concessionária representado pelas perdas comerciais (ligações clandestinas), as quais somadas às perdas técnicas (geração, transmissão, distribuição e usos finais), atingem a 25% da energia ofertada. Os autores ressaltaram não ter sido possível estimar com precisão a estrutura de consumo e o estado das tecnologias que absorvem energia segundo as principais categorias de consumidores, visto que seria necessária a realização de uma pesquisa de campo e auditorias energéticas, trabalhos estes que não chegaram a ser realizados.

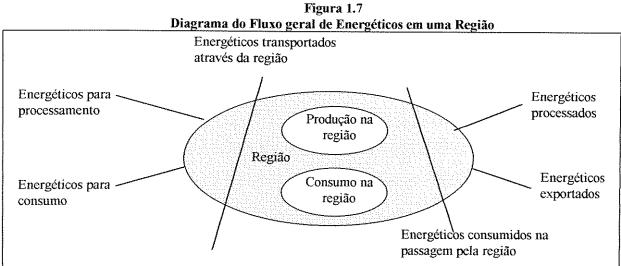
Devido a não confiabilidade dos dados de consumo estimados, os autores realizaram um Seminário para se proceder a uma averiguação dos dados preliminares, coletados nos órgãos oficiais, confrontando-os com os dados disponibilizados pelos profissionais dedicados ao planejamento da região, assim considerados os representantes da Universidade Federal, da Federação das Indústrias e de outros agentes regionais.

Na dissertação denominada "Avaliação energética e estimativa das emissões de poluentes pelo setor de transportes da Região Administrativa de Campinas" (PEDROSO JÚNIOR, 1996),, o autor teve dificuldades para a elaboração da matriz de consumo do setor, tendo aproveitado os dados, até 1993, contidos nos trabalhos citados (BARONE,1990) e (CANAVARROS,1994). Os dados de consumo do setor transporte na região no período 1988 a 1993, foram também objeto de comparação com os dados de consumo estadual fornecidos pela CESP, contidos no balanço energético estadual somente publicado em 1996 (BEESP, 1996).

Na impossibilidade de obter os dados reais de consumo de energia no setor transporte na região, o autor estimou o consumo pela via da comparação utilizando as taxas anuais de crescimento do consumo no âmbito do Estado, procedimento este passível de falhas visto que na determinação das taxas de crescimento do consumo regional com base nas taxas verificadas no âmbito do Estado, normalmente introduz-se um componente de erro nos dados.

A dissertação veio mais uma vez comprovar que as matrizes de consumo regional precisam ser cuidadosamente elaboradas sob pena de as imprecisões dos dados contidos nas mesmas virem a ser propagadas em outros trabalhos de interesse energético, na região ou até mesmo em outras, quando tomadas para efeito de análise comparativa.

Ao longo do trabalho "A Questão Energética em Mato Grosso - Elementos essenciais ao planejamento" (CANAVARROS & al, 1997), a equipe técnica vivenciou os problemas que apontam realmente para a necessidade de uma metodologia de análise, em razão da escassez de dados referentes à produção e ao consumo de energéticos no Estado, bem ainda pela falta de consistência de parte dos dados encontrados nas publicações oficiais.


A título de exemplo, relativamente aos dados de consumo de óleo Diesel embora o Estado ao longo do período analisado (1985 a 1995) tenha apresentado um grande crescimento na agropecuária com elevadas quantidades de soja, arroz, milho, etc., a falta de informações quanto ao consumo de óleo Diesel por tonelada colhida de cada tipo de grão, impossibilitou estabelecer o real consumo do óleo no setor agropecuário, tendo sido aceito, para a elaboração da matriz de consumo setorial o critério adotado pelo DNC/MME. Por outro lado, o fato da frota de caminhões que transporta grãos estar na sua maioria constituída de caminhões licenciados em municípios de outros Estados, portanto sem registro em Mato Grosso, constitui um elemento complicador para efeito da estimativa real de consumo do óleo Diesel no setor transporte.

A existência de inúmeras fazendas no interior do Estado consumindo óleo Diesel, gerando energia elétrica para uso próprio, sem registro do consumo em nenhuma publicação, constitui-se em um agravante quando do momento da apuração do consumo do referido óleo no setor energético, visto que os dados encontrados nos Boletins Estatísticos publicados pela CEMAT, referem-se apenas ao volume consumido nas usinas termoelétricas à Diesel de propriedade da empresa, em diversas localidades do Estado.

O consumo do combustível GLP em Mato Grosso nos setores residencial e industrial apresentou-se de forma estranha ao se averiguar os dados registrados pelo DNC/MME no documento informativo "Vendas e Usos de Combustíveis", mostrando-se elevados em alguns anos e quedas acentuadas em outros, fato este anormal no setor residencial, fugindo totalmente da média nacional, anomalia esta explicada pelo uso indevido do GLP na mineração de ouro no Estado, conforme já referido (MIGUEZ & PASSOS, 1993).

As observações apresentadas, alusivas aos textos citados, evidenciam que a elaboração do balanço energético de uma região é mais trabalhosa em relação a do balanço energético do Estado bem como a do país onde ela se encontra, devido ser mais complexa a avaliação dos fluxos energéticos que entram e saem da região em estudo, além da carência de dados regionais energéticos e sócio econômicos.

A Figura 1.7 sintetiza a complexidade da elaboração de um balanço energético regional.

Fonte: Elaboração do Autor

Na maioria dos casos de apuração do consumo regional de energia, não estão disponíveis dados diretos e confiáveis para todos os energéticos analisados, em especial quando a região em estudo não corresponde a uma das divisões políticas geográficas definidas pelo órgão oficial competente. É necessário conhecer quais os energéticos que apresentam dados de consumo desagregados por municípios, os quais não necessitarão ser estimados, bem como os que deverão ser analisados para terem os consumos inferidos por diferentes formas.

Pelo exposto neste capítulo fica evidente a imperiosa necessidade de uma metodologia que possibilite a análise da consistência dos dados de consumo provenientes de órgãos públicos e privados, no sentido de assegurar uma correta elaboração de matrizes de consumo regionais de energia, essenciais na elaboração do planejamento energético regional.

CAPÍTULO 2

2 - A METODOLOGIA

A necessidade de uma metodologia para a análise de dados de consumo de energia surge em decorrência da constatação de falhas e imprecisões relativas às informações e aos dados de consumo de energéticos oriundos de órgãos públicos e privados, os quais se não forem devidamente averiguados e corrigidos irão expressar consumos irreais nas matrizes, ao longo da série histórica, bem ainda gerar projeções de dados não corretos de demandas.

2.1 - Os Fundamentos da Metodologia

O DNC/MME apresenta anualmente no documento "Vendas e Usos de Combustíveis" os dados de consumo de energéticos nas unidades físicas (litro, m³, kg, tonelada), tabulados e agrupados por municípios de cada Estado, distribuídos nos seguintes setores de consumo: indústria, transporte, postos de revenda, doméstico, entidades públicas, entidades privadas, energia elétrica, TRR (transportadores revendedores retalhistas), outros insumos, uso próprio, agricultura e criação animal, comercial, forças armadas, abastecimentos de navios e aeronaves de transporte (APÊNDICES A).

Os dados relativos ao consumo de energéticos derivados de petróleo bem ainda do álcool etílico, fornecidos ao MME pela Petrobrás destinados à elaboração do Balanço Energético Nacional, correspondem aos constantes nas notas fiscais de venda emitidas pelas empresas distribuidoras de combustíveis, em suas bases secundárias de abastecimento localizadas nos Estados, para os setores de consumo acima especificados.

De posse das informações anualmente fornecidas pelo DNC/MME aos Estados, o órgão encarregado da elaboração do balanço energético estadual, através de sua equipe técnica, converte os dados de consumo de cada energético para a unidade de energia escolhida (tEP e kcal são as mais usuais), redistribuindo os novos dados para os setores tradicionais da economia, a saber: transporte, residência, indústria, agropecuário, comércio, público e energético, consoante os critérios estabelecidos pelo DNC/MME os quais estão apresentados nos APÊNDICES A, de modo a facilitar a compreensão da forma de distribuição dos dados de consumo por energético e por setor da economia regional.

Como exemplo, os dados de consumo de óleo Diesel relacionados como vendidos aos TRR, são aceitos e distribuídos consoante os critérios do DNC/MME ao consumo setorial na seguinte proporção: 80% para o setor agropecuário, 16% rodoviário, 3% segmento industrial da mineração e 1% segmento industrial de alimentos e bebidas. De igual forma, os dados relativos ao óleo Diesel vendidos para os postos de revenda são aceitos como destinados ao consumo na proporção: 85% para o setor rodoviário e 15% para o setor agropecuário. É de se esperar que os critérios do DNC/MME não sejam adequados para as estimativas de consumo nas diferentes regiões do país face às desigualdades econômicas regionais existentes, apresentando em razão disso consumos de energia não proporcionais.

Dentre os energéticos derivados de petróleo, o consumo regional do GLP por setores da economia é um problema a ser considerado visto que as informações do DNC/MME quase sempre apresentam distorções significativas, notando-se na série histórica um consumo residencial muito elevado, distante da média nacional, anomalia esta explicada pelo uso indevido em certas regiões do energético GLP no setor industrial na mineração de ouro, bem como no setor transporte no modo rodoviário, consumos esses contabilizados como sendo no setor residencial (MIGUEZ & PASSOS, 1993).

Relativamente aos dados de consumo dos energéticos derivados de biomassa: lenha e carvão vegetal, fornecidos pela FIBGE, os mesmos necessitam ser revistos visto que as fontes de informações são as próprias empresas industriais consumidoras e as revendedoras que compram a lenha nas fazendas para suprir a demanda das residências, ocorrendo que nem sempre todo o volume comercializado é declarado nas notas fiscais.

No boletim de mercado, editado anualmente pelas concessionárias de energia elétrica, encontram-se os dados de produção, importação, consumo, exportação e perda de energia, todavia sem a necessária especificação dos percentuais alusivos às perdas técnica e comercial, detalhe importante devido a perda comercial representar consumo não faturado.

2.2 - As Etapas da Metodologia

A metodologia engloba 4 etapas de procedimentos sintetizadas na Figura 2.2, a saber: reunião dos dados de consumo de energéticos; averiguação da consistência dos mesmos; retificação dos dados para a correta estimativa dos consumos; elaboração das matrizes de consumo de energia da região.

Dados de Dados de Consumo Reunião dos dados Consumo de de Energéticos de Disponíveis de Consumo de Energéticos Produção Regional Energéticos Importados (m3, 1, kg, t, kWh) Dados Sócio Novas Tecnologias econômicos da determinantes do Região Consumo de Energia Averiguação dos dados de Consumo de Intensidades Consumo de Energia por Eletricidade por Energéticas de Outras Energéticos e por Setores Setores na Região Regiões (tEP ou kcal ou MJ) Perdas Comerciais Dados de Pesquisas de Energia por Energéticas de Outras Setores na Região Regiões Exclusão de consumo indevido de energia Energia Exportada Retificação dos dados de em alguns setores Consumo de Energia por Energéticos e por Setores Especificação do Perdas Técnicas de (tEP ou kçal ou MJ) Consumo de Energia Energia Primária e Secundária por Setor, por Energético, para Elaboração das Matrizes de cada Ano Energético, Consumo de Energia por Ano, para cada Setor por Setor, por (tEP ou kçal ou MJ) Ano, para cada Energetico

Figura 2.2 Fluxograma Síntese da Metodologia Proposta

Fonte: Elaboração do Autor

Na etapa de *reunião* dos dados de consumo dos energéticos, o pesquisador irá se dedicar ao manuseio de publicações diversas (APÊNDICES B,C,D,E), tais como: balanço energético nacional, balanços energéticos estaduais, boletins de mercado de energia elétrica, documentos de Vendas e Usos de Combustíveis, dados relativos à venda de álcool etílico anidro e hidratado fornecidos pelos Sindicatos e Cooperativas Regionais, boletins de produção vegetal e da silvicultura onde podem ser encontrados os dados de consumo de lenha e de carvão vegetal.

Os dados coletados, normalmente expressos em variadas unidades de medida, a saber: metro cúbico (m³), litro (l), quilograma (kg), tonelada (t) e MWh no caso da eletricidade, necessitam ser convertidos para uma só unidade de energia para efeito de comparação e adição, sendo as mais usadas a quilo caloria (kcal) e a tonelada equivalente de petróleo (tEP).

A segunda etapa compreende a *averiguação* dos dados de consumo reunidos, quando haverá necessidade do conhecimento de outros dados e informações sejam da região em estudo ou de outras do Estado ou do país. Esses dados regionais servirão como referenciais, podendo ser úteis na obtenção de indicadores para efeito de comparação quando da averiguação da necessidade ou não da retificação dos dados de consumo de energia.

Os dados para fins comparativos provêm de setores da economia regional, a saber: população, área geográfica, produção agrícola, pecuária e industrial, arrecadação de ICMS, PIB regional, número de residências e de consumidores de energia elétrica, número de veículos licenciados em cada município da região, por tipo e ano de fabricação, etc. Ainda na segunda etapa é necessário o conhecimento de aspectos peculiares da região, os quais poderão explicar uma dada intensidade energética regional, em alguns casos bem distante daquela considerada média nacional e ou estadual.

Assim, no caso do combustível GLP, a região pode se caracterizar como distribuidora do mesmo para outras regiões vizinhas ou se constituir em um centro de turismo recebendo fluxos enormes de pessoas em determinadas épocas do ano, justificando um consumo "per capita" muito elevado comparado à população fixa. Igualmente, a região pode se apresentar como rota obrigatória de veículos transportando mercadorias de regiões vizinhas para outras distantes, fato este que justificará o consumo elevado de óleo Diesel quando comparado ao número de caminhões licenciados na região, podendo ainda ocorrer que a região apresenta municípios interligados por estradas não pavimentadas, elevando o consumo por veículo.

A terceira etapa é o procedimento de *retificação* dos dados preliminares de consumo de energia, quando ocorrerá a correta identificação quantitativa do consumo de cada energético por setor da economia regional. Assim, poderão ser quantificadas as perdas setoriais de ordem técnica bem como comercial, permitindo a apuração de desvio de consumo de um determinado energético de um setor econômico para o outro, em decorrência da aplicação de critérios alheios à realidade regional ou face aos usos indevidos do energético na região.

A quarta etapa corresponde à *elaboração* das matrizes de consumo por energético e por setor da economia da região, ao longo da série histórica considerada. Assim, conhecidas as matrizes de consumo, serão calculadas as relações energéticas regionais bem como realizada a projeção da demanda, essenciais para a correta elaboração do balanço energético regional.

2.3 - A Aplicabilidade da Metodologia

Os dados de consumo, anualmente disponibilizados nos boletins e publicações dos órgãos integrantes dos sistemas energéticos, são previamente analisados quanto a sua consistência e após remetidos aos Estados para a elaboração dos balanços energéticos (BEN, 1996), ressaltando todavia que nessa análise muitos aspectos e realidades regionais não são percebidas pelo analista, as quais podem interferir no consumo de energia. A seguir são relatados os procedimentos habituais para a elaboração do balanço energético nacional.

- Petróleo, Gás Natural e Derivados

A Petrobrás é a fonte de informações dos dados de produção, importação, exportação, estoque e transformação, enquanto os dados de consumo setorial vêm da Petrobrás e das Entidades das classes produtoras. Os dados da empresa estatal referem-se às vendas feitas pelas refinarias, enquanto do DNC, atualmente da ANP - Agência Nacional do Petróleo, vêm as informações das vendas realizadas pelas empresas distribuidoras aos atacadistas, especificadas consoante as atividades econômicas estabelecidas pela Receita Federal.

- Energia Hidráulica e Eletricidade

Como consumo de energia hidráulica considera-se o valor correspondente à produção bruta de energia medida nas centrais hidroelétricas, desprezando a parcela alusiva à energia vertida. O fornecimento e o consumo setorial de energia elétrica são disciplinados por portarias do DNAEE, atualmente ANEEL, estabelecendo classes e subclasses de consumidores.

- Lenha e Carvão Vegetal

Os dados de produção de lenha e de carvão vegetal são obtidos a partir dos dados de consumo dos mesmos, não se levando em conta a variação de estoques. Os dados de consumo setorial de lenha nos segmentos industriais, à exceção daqueles onde se quantificam consumos reais, a saber: Indústria de Papel e Papelão, Cimento e Pelotização e Não Ferrosos, são obtidos via interpolações e extrapolações dos dados do PIMEB, da FIBGE e ainda mediante correlações com o consumo setorial de outros energéticos, a exemplo do GLP no setor residencial. A produção de carvão vegetal é estimada pelo seu consumo, admitindo perdas na distribuição.

- Produtos da Cana-de-Açúcar

Os dados são obtidos a partir da cana esmagada destinada à produção de açúcar e álcool, sendo considerados como produtos primários o caldo da cana, melaço, bagaço, pontas e palhas da cana, enquanto o álcool anidro e o álcool hidratado são os produtos secundários. Considera-se que de cada tonelada de cana esmagada obtêm-se 730 kg de caldo, enquanto a quantidade de bagaço contabilizada corresponde à parcela usada para fins energéticos, calculada a partir do consumo de vapor por kg de açúcar e por litro de álcool, produzidos.

- Carvão Vapor e Carvão Metalúrgico

Os métodos de lavra do carvão mineral associados às condições das jazidas no Brasil, propiciam a extração de um "carvão bruto" com elevados percentuais de material inerte. Assim, no balanço energético nacional, considera-se como energia primária o carvão mineral após o seu beneficiamento com as denominações de carvão vapor e carvão metalúrgico.

- Coque de Carvão Mineral

Os dados de produção e de consumo regional do coque de carvão mineral vêm diretamente das indústrias que produzem ou consomem o mesmo, enquanto a quantidade do coque importado é fornecida pela Secretaria da Receita Federal.

Assim, feitas as explicações quanto ao tratamento dos dados no âmbito nacional, a aplicabilidade da metodologia passa a ser considerada para uma região genérica, na qual os dados de consumo são analisados com o fim de se estabelecer a correta elaboração das matrizes de consumo, sendo a aplicação verificada por energéticos em cada setor da economia.

2.3.1 - Óleo Diesel

O óleo Diesel está presente nas matrizes regionais de consumo nos setores: transporte, agropecuário, energético e industrial. Tratando-se de um combustível cuja estimativa de consumo real por setor é complexa, a conversão dos dados de vendas fornecidos pela ANP para dados de consumo regionais nos setores tradicionais da economia, não deve ser feita mediante a simples adoção do critério do DNC/MME já referido (APÊNDICES A).

Como mencionadas, nas vendas do óleo Diesel aos TRR (transportadores revendedores retalhistas) o critério estabelece a quantidade vendida como destinada aos seguintes consumos setoriais: 80% para o agropecuário, 16% para o transporte, 3% para o industrial (mineração) e 1% para o industrial (alimentos e bebidas), enquanto as vendas feitas aos Postos de Revenda o critério as consideram destinadas aos consumos setoriais: 85% rodoviário e 15% agropecuário.

- Setor Transporte

Neste setor o óleo Diesel é utilizado nos veículos de elevada capacidade de carga (navios, locomotivas, caminhões); nos ônibus urbanos, intermunicipais e interestaduais; nos utilitários usados nos transportes de pequenas cargas para as fazendas, chácaras e sítios. De posse dos dados preliminares de consumo do óleo Diesel no setor, a averiguação requer o conhecimento da frota regional de veículos à Diesel licenciados nos municípios da região em estudo (informação nem sempre disponível), necessitando da quilometragem média rodada anualmente e da quilometragem por litro, por modelo e ano do veículo, estimando assim o real consumo de óleo Diesel no setor.

É recomendável conhecer dentro da região quais os eixos rodoviários de maior tráfego de veículos pesados, bem ainda obter junto às Exatorias de Arrecadação, a quantidade média mensal de veículos à Diesel trafegando nesses eixos. É comum ocorrer um percentual elevado de veículos à Diesel nas rodovias de uma região com o certificado de licença emitido em outras regiões ou Estados, fato este relevante na averiguação do consumo.

- Setor Agropecuário

Neste setor o consumo de óleo Diesel pode se apresentar muito elevado quando a região em estudo caracteriza-se como uma fronteira agrícola, tendo em vista que as operações de desmatamento, preparo do solo, plantio e colheita, são feitas por máquinas e implementos acionados à óleo Diesel (tratores de esteira e de pneus, arados e colheitadeiras, etc.).

Na averiguação do consumo do óleo é importante conhecer a área plantada e ou a área colhida, a produção regional agrícola por tipo de grão (soja, arroz, milho, feijão, trigo, sorgo, etc.), o consumo médio de óleo Diesel por tonelada de grão produzido, informações estas obtidas na FIBGE, Secretaria de Planejamento, Federação da Agricultura e Sindicatos Rurais a ela filiados. As informações possibilitarão averiguar a consistência dos dados oriundos da ANP relativamente à alocação do volume de vendas do óleo Diesel para o setor agropecuário. Outra informação relevante no processo de averiguação é a intensidade energética relativa ao PIB rural regional, embora sejam poucas as regiões brasileiras que elaboram o PIB regional.

- Setor Energético

Neste setor o consumo de óleo Diesel ocorre nas usinas termoelétricas para a produção de energia elétrica, muito comum nas distantes zonas rurais do centro oeste e norte do país. As informações mais precisas quanto ao consumo do óleo Diesel nessas usinas são as encontradas nos boletins informativos de mercado, publicados pelas concessionárias de energia elétrica, as quais geralmente são proprietárias das usinas termoelétricas.

Ocorrem ainda usinas de propriedade de terceiros operando em fazendas, das quais pouco se têm informações relativas ao consumo do óleo, devendo a averiguação dos dados de consumo ser feita junto aos proprietários rurais através dos Sindicatos regionais, aos quais normalmente as empresas rurais estão filiadas.

O óleo Diesel também é utilizado para a produção de energia elétrica em muitos estabelecimentos comerciais tais como "shopping centers", hospitais, hotéis, supermercados, bem ainda em muitas indústrias localizadas em regiões onde o fornecimento de energia elétrica pelas concessionárias é precário, ocorrendo cortes frequentes de energia mormente no período de estiagem. Nestes casos o consumo do óleo torna-se de dificil quantificação, devendo ser estimado por meio de pesquisas junto aos estabelecimentos.

2.3.2 - Gasolina Automotiva

O consumo de gasolina automotiva ocorre quase exclusivamente no setor transporte em qualquer região, sendo normalmente pequeno o consumo em outros setores. Este combustível é consumido nos veículos automotivos de particulares, de táxis e ainda de utilitários trafegando nas cidades e no meio rural. Os dados da ANP expressam o volume de vendas da mistura da gasolina automotiva com o álcool etílico anidro.

- Setor Transporte

Tendo em vista a implementação do programa PROÁLCOOL no Brasil nos anos 80 e o desaquecimento do mesmo nos anos 90, na averiguação dos dados de consumo da gasolina automotiva constata-se normalmente uma diminuição do consumo até quase o final dos anos 80, seguido de um aumento gradativo ao longo dos anos 90.

A averiguação dos dados de consumo da gasolina automotiva é de fácil realização, comparada a do óleo Diesel, visto que quase sempre a maioria dos veículos que a consomem são licenciados nos municípios da região, circulando quase totalmente dentro da região na maior parte do ano e portanto com as informações disponíveis no DETRAN da região, especificando o total de veículos por tipo e ano de fabricação. Muitas vezes o consumo da gasolina ocorre em municípios vizinhos à região em estudo embora a compra tenha sido feita em Postos de Revenda da região, consumo este que pode ser admitido como compensado pelo ocorrido na região em decorrência da circulação de veículos licenciados em outras regiões.

A averiguação dos dados de consumo da gasolina irá requerer o conhecimento da quilometragem média anual rodada bem ainda a quilometragem por litro, tipo e ano de fabricação dos veículos. Assim procedendo o planejador poderá avaliar se a região em estudo caracteriza-se como exportadora ou importadora do referido combustível.

2.3.3 - Óleo Combustível

O óleo combustível quase sempre é consumido em sua totalidade no setor industrial, raramente aparecendo no setor transporte em determinadas regiões para uso em barcos e navios, no setor energético para produção de energia elétrica e no setor comercial para produção de vapor. O consumo deste óleo nas caldeiras para produção de vapor e nos fornos para produção de calor à temperatura elevada, tem a sua quantificação registrada nos órgãos oficiais podendo ser aceita sem restrição visto que, em se tratando de um combustível de uso mais restrito, os dados normalmente expressam o real consumo.

- Setor Transporte

O consumo do óleo neste setor, embora normalmente pouco expressivo, não é de fácil averiguação, visto que pode ocorrer consumo fora dos limites da região em estudo. Além disso, o consumo nos barcos de propriedade particular é de difícil estimativa.

2.3.4 - GLP e Gás Natural

O GLP e o gás natural são consumidos nos setores industrial e residencial e em quantidade bem menor no comercial, ocorrendo ainda o consumo do primeiro em certas regiões no setor transporte, onde é usado, muitas vezes, clandestinamente no acionamento de motores de veículos utilitários no meio rural.

- Setor Industrial

Neste setor o GLP é comercializado em botijões especiais, propiciando maior controle e portanto possibilitando dados oficiais de consumo corretos. Não obstante, é comum o uso indevido do mesmo no setor industrial em garimpos de ouro e também nas panificadoras, em botijões adequados para consumo residencial (MIGUEZ & PASSOS,1993). O gás natural como combustível é quase sempre usado nos fornos para a produção de calor, sendo o abastecimento do mesmo feito às indústrias através de tubulações com registros das vazões em cada um dos estabelecimentos, não constituindo problema a quantificação do seu consumo.

Normalmente, nos dados oficiais a parte indevida do consumo de GLP no setor industrial é contabilizada no setor residencial, fato este que eleva a intensidade energética do GLP neste setor, desviando-a da média nacional. Assim, a utilização de GLP nas minerações de ouro em certas regiões do centro oeste e norte do país, deve ser devidamente observada na averiguação dos dados de consumo do GLP no setor industrial.

- Setor Residencial

Neste setor o consumo de GLP é expressivo no meio urbano, sendo comercializado em botijões de 13 quilos para as residências, sendo que nos apartamentos o fornecimento é feito através de tubulações com medidores instalados na parte térrea dos edificios em uma área mais reservada. Na averiguação dos dados de consumo deve ser utilizada a intensidade energética de outras regiões com características semelhantes à região em estudo (consumo GLP/habitante), em razão dos dados oficiais expressarem o volume de vendas, não correspondendo necessariamente ao consumo na região. Na medida em que a taxa de urbanização cresce, aumenta o consumo de GLP e diminui o da lenha, correlação esta afetada nos últimos anos com a penetração dos fornos microondas nos lares dos consumidores de classes média e alta.

Relativamente ao consumo de gás natural no setor residencial, o mesmo ocorre no Brasil em apenas algumas cidades sendo o fornecimento feito por meio de tubulações onde a vazão é controlada na entrada dos edificios e das residências.

Quando da comparação das intensidades energéticas de uma região (kcal/habitante ou tEP/habitante), podem ocorrer três situações: a) a intensidade energética apresentar-se muito acima da média - indicativo da possibilidade de estar ocorrendo usos atípicos ou até mesmo ilegais do GLP (já comentado) ou a região funcionar como um centro de distribuição do GLP para outras; b) a intensidade energética apresentar-se menor que a média - indicativo de que a região não recebe diretamente o GLP para os seus municípios, importando-os de outras regiões próximas, portanto com deficiência na distribuição do produto; c) a intensidade energética mostrar-se próxima da média - indicativo de que os dados oficiais de consumo podem ser aceitos como consistentes.

É sabido que o consumo de GLP diminui tanto nas residências de famílias com renda baixa devido a pouca disponibilidade de recursos para a compra do GLP e do próprio alimento, bem como em muitas residências de famílias com renda alta em razão da crescente utilização de fornos microondas. O consumo de GLP por habitante pode se mostrar acima da média em regiões frias onde o mesmo é usado para aquecimento de água nas residências.

- Setor Comercial

Analogamente ao que ocorre no setor industrial, o GLP no setor comercial é vendido em botijões especiais destinados aos hotéis, hospitais, restaurantes, supermercados, etc, sendo considerados consumidores especiais, podendo assim os dados de consumo oriundos dos órgãos oficiais serem considerados confiáveis, minimizando o trabalho de averiguação.

2.3.5 - Carvão Mineral e seus derivados

O carvão mineral há muito tempo vem apresentando quedas no seu consumo no âmbito nacional, devido principalmente aos danos ambientais que decorrem da sua extração bem como da sua utilização, sendo o seu consumo, na atualidade, quase restrito ao setor industrial nas regiões sul e sudeste do Brasil na mineração, siderurgia, metalurgia e energia elétrica, estando localizadas no sul do país as jazidas minerais e a produção nacional, destacando-se na região sudeste o consumo do carvão nas siderurgias de Minas Gerais.

- Setor Industrial

A averiguação dos dados de consumo do carvão mineral e de seus derivados (carvão vapor e coque), no setor industrial, não apresenta maiores dificuldades devido ao fato de o mercado comprador ser reduzido e a importação do coque ocorrer tão somente para um número pequeno de empresas.

2.3.6 - Lenha

O combustível lenha, embora venha apresentando quedas apreciáveis no seu consumo na maioria das regiões do país, ainda é muito utilizado no centro oeste e norte do Brasil, sendo consumido no setor industrial para a produção de vapor nas caldeiras e de calor nos fornos e no setor residencial para cocção e aquecimento, ocorrendo ainda em menor proporção nos setores: comercial (cocção) e energético (produção de energia elétrica em termoelétricas).

Os dados de produção de lenha em alguns Estados são fornecidos exclusivamente pela FIBGE com base nos levantamentos anualmente realizados nos municípios pelos agentes de pesquisas da instituição, coletando dados de consumo de lenha junto às empresas industriais e aos postos de venda da mesma para as residências e o comércio.

- Setor Industrial

Neste setor, a lenha ainda utilizada nas regiões desenvolvidas do país é toda oriunda da silvicultura, enquanto nas outras regiões ela é procedente das matas e cerrados embora venha sendo paulatinamente substituída pela lenha de florestas energéticas. Sabe-se que os dados fornecidos pela FIBGE, alusivos à produção de lenha, não correspondem necessariamente aos de consumo na região visto que parte da lenha produzida em um dado município da região é comercializada para o consumo em outra região próxima ao município produtor.

Sendo os dados coletados provenientes das empresas consumidoras do produto (indústria, comércio), normalmente eles não traduzem o exato consumo quer pela precariedade do registro da lenha comprada pelas pequenas empresas ou pelo receio delas em fornecer dados reais devido à atuação do órgão de arrecadação fiscal e o de proteção ambiental. Em se tratando de lenha de silvicultura, a obtenção dos dados através das empresas produtoras constitui uma tarefa mais fácil sendo os mesmos quase sempre verdadeiros.

- Setor Residencial

Neste setor, conforme já assinalado, os dados de produção são fornecidos pela FIBGE, dados estes levantados de forma pouco precisa nos municípios onde a lenha é produzida. No meio urbano pode-se admitir uma correlação entre o consumo de GLP e o consumo de lenha no setor, isto é na medida em que o consumo do GLP/habitante se eleva, o de lenha/habitante decai, referencial este que facilita a averiguação dos dados de consumo residencial.

No meio rural, o consumo de lenha no setor residencial normalmente não é contabilizado nos registros de comercialização do produto, devendo neste caso o mesmo ser estimado com base no consumo nacional médio por habitante, valendo-se também de dados de pesquisas levadas à efeito em outras regiões do país.

- Setor Comercial

Neste setor o consumo de lenha é bem definido, ocorrendo nos fornos de muitas "pizzarias" e nas caldeiras de lavanderias e de hospitais para a produção de vapor. A lenha oriunda das áreas desmatadas para fins agrícolas nas fazendas próximas, é levada para o mercado comprador sendo a comercialização muitas vezes realizada sem a nota fiscal, daí porque a averiguação dos dados de consumo requer referenciais comparativos.

- Setor Energético

Na atualidade, a lenha utilizada para a produção de energia elétrica corresponde aos restos de madeira das indústrias localizadas nas regiões de fronteiras agrícolas onde o aproveitamento dos resíduos viabiliza a geração econômica de energia elétrica. Como esses resíduos industriais utilizados para fins energéticos ainda não estão contabilizados no Balanço Energético Nacional, o consumo dos mesmos pode ser estimado com base em informações procedentes dos Sindicatos das indústrias madeireiras.

2.3.7 - Carvão Vegetal

Trata-se de um derivado de biomassa com tendência crescente de consumo nas regiões mais desenvolvidas do país, sendo no setor residencial para fins de cocção e aquecimento, no setor comercial para cocção, enquanto no industrial o seu aproveitamento maior é como redutor no processo de fabricação de produtos siderúrgicos.

Excetuando o uso do carvão vegetal no setor industrial onde o consumo é restrito a um pequeno número de empresas e portanto expresso com precisão nos dados oficiais, nos demais setores a quantificação é de dificil estimativa visto que a comercialização em sacos para o setor comercial e em pequenos pacotes para o residencial, nem sempre é realizada com a devida emissão da nota fiscal em virtude da produção do carvão vegetal ser feita por micro empresas, pulverizadas no meio rural, especialmente nas regiões centro oeste e norte do país.

2.3.8 - Álcool Etílico Hidratado e Anidro

O consumo destes combustíveis para fins energéticos ocorre unicamente no setor transporte, sendo a produção nacional das inúmeras destilarias existentes adquirida pela Petrobrás, para posteriormente revender o produto às empresas distribuidoras de combustíveis, as quais são responsáveis pelo transporte e fornecimento do álcool para todo o interior brasileiro, em especial para os milhares de postos de revenda no país.

Para a averiguação da consistência dos dados de consumo do álcool etílico hidratado há necessidade do conhecimento da frota de veículos automotivos à álcool licenciados nos municípios da região, das informações técnicas quanto à quilometragem por litro e a quilometragem média rodada ao ano por modelo de veículo e ano de fabricação. No entretanto, pode ocorrer que em uma determinada região seja elevada a quantidade de veículos à álcool em circulação todavia licenciados em municípios de outras regiões, fato este que dificulta a averiguação dos dados.

Os dados de consumo de álcool etílico anidro são de fácil averiguação devido o produto ser consumido misturado à gasolina automotiva em percentual volumétrico estabelecido pelo MME. No documento "Vendas e Usos de Combustíveis", fornecido pelo DNC/MME, atualmente pela ANP, os dados de venda da gasolina correspondem à mistura de gasolina e álcool etílico anidro em razão dos dados serem fornecidos pela empresa distribuidora somente após a mistura ter sido feita nas bases secundárias localizadas nos Estados.

Deve-se ressaltar que no passado, conforme divulgado pelos órgãos de comunicação social, em certas regiões do país foram constatadas vendas de álcool em grande quantidade, feitas diretamente por alguns produtores aos postos de revenda sem o devido registro da comercialização, caracterizando o fato um procedimento ilegal além de contribuir para que os dados oficiais de consumo divulgados não traduzam a plena realidade.

2.3.9 - Outros Combustíveis

Os combustíveis querosene de aviação, gasolina de aviação e querosene de iluminação, presentes em algumas matrizes regionais, de um modo geral apresentam os seus dados de consumo pouco expressivos comparados aos dos demais energéticos. A querosene de aviação somente aparece nas matrizes de consumo de regiões nas quais se localizam aeroportos com pistas para decolagem e aterrissagem de aeronaves à jato nas capitais e em determinadas cidades de maior expressão sócio econômica.

A gasolina de aviação está presente nas matrizes de consumo do setor transporte em quase todas as regiões brasileiras, devido ser a mesma utilizada nos aparelhos (mono e bimotores), os quais operam em aeroportos pequenos existentes na quase totalidade dos municípios do Brasil. A querosene de iluminação, utilizada apenas no setor agropecuário de muitas regiões do interior brasileiro, vem apresentando quedas contínuas no seu consumo devido ao avanço da eletrificação rural e ao aumento da geração de eletricidade à base de termoelétricas beneficiando povoados distantes da sede do município.

Na etapa de averiguação preconizada pela metodologia, ao considerar os dados relativos à gasolina de aviação e à querosene de aviação, há necessidade do planejador atentar para o fato de que normalmente o volume de vendas desses combustíveis nos aeroportos da região não corresponde aos consumos dos mesmos no espaço aéreo da região. A explicação para a afirmativa acima reside no fato de que o abastecimento de uma aeronave é feito levando em conta a autonomia do vôo programado, isto é, o combustível deve ser suficiente para o consumo em cerca de 2 a 3 vezes o tempo previsto até a próxima escala.

Encerrando este capítulo alusivo aos fundamentos e à aplicabilidade da metodologia, pode-se afirmar que os dados de consumo regional de energia, disponíveis nas publicações de órgãos oficiais e privados, devem ser aceitos como dados preliminares porém essenciais para a análise da consistência, necessitando todavia de informações de ordem sócio-econômicas da região como de outras com características semelhantes, garantindo assim estimativas de consumo mais reais na etapa de retificação preconizada pela metodologia.

CAPÍTULO 3

3 - CARACTERIZAÇÃO DA MESORREGIÃO 01

O Estado de Mato Grosso na região centro oeste do Brasil, integrante da denominada Amazônia Legal, é o terceiro dentre os demais em dimensões territoriais com uma área de 906.806,9 km² contendo uma população de 2.235.832 habitantes, distribuída muito desigualmente em 126 municípios, estando 1.695.548 no meio urbano e 540.284 no meio rural, compreendendo ao todo 1.154.216 homens e 1.081.616 mulheres (FIBGE,1996).

A área do Estado está administrativamente dividida em 06 mesorregiões, dentro das quais estão distribuídas 17 microrregiões para efeito de análise e de planejamento do seu desenvolvimento. As 06 mesorregiões são: *Mesorregião 01 - Planicie Cuiabana*; Mesorregião 02 - Planície Pantaneira; Mesorregião 03 - Centro Sul Mato Grossense; Mesorregião 04 - Leste Mato Grossense; Mesorregião 05 - Oeste Mato Grossense; Mesorregião 06 - Norte Mato Grossense (SEPLAN,1995).

3.1 - Definição da Mesorregião 01

A Mesorregião 01 - Planície Cuiabana, tem a sua localização no sul do Estado conforme mostra a Figura 3.1.a, estando nela situada a capital Cuiabá (MAPA, 1995).

alização da Mesorregião 01 no mapa de Mato Grosso

FIGURA 3.1.a

A localização da Mesorregião 01 no mapa de Mato Grosso

Fonte: MAPA,1995

A mesorregião 01 engloba 12 municípios, a saber: Acorizal, Barão de Melgaço, Chapada dos Guimarães, Cuiabá, Jangada, Nobres, N. S. do Livramento, Poconé, Porto Estrela, Rosário Oeste, Santo Antonio de Leverger e Várzea Grande. Com exceção de Jangada, emancipado de Acorizal em 1989, e de Porto Estrela, emancipado em 1993 de Barra do Bugres (município este integrante da mesorregião 05), os demais municípios têm mais de 40 anos de emancipação.

As Figuras 3.1.b e 3.1.c mostram os contornos e localização da sede dos 12 municípios e as principais características geográficas da mesorregião 01, respectivamente.

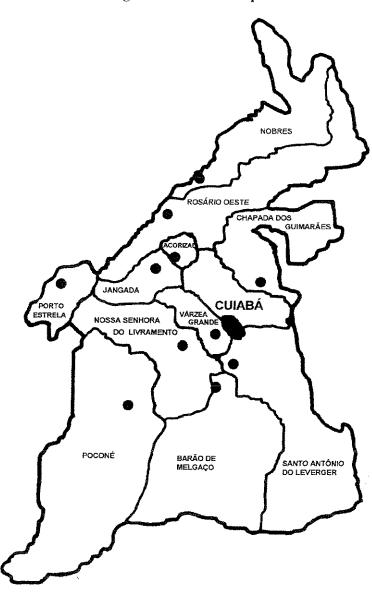


FIGURA 3.1.b A Mesorregião 01 e os 12 Municípios

Fonte: MAPA,1995

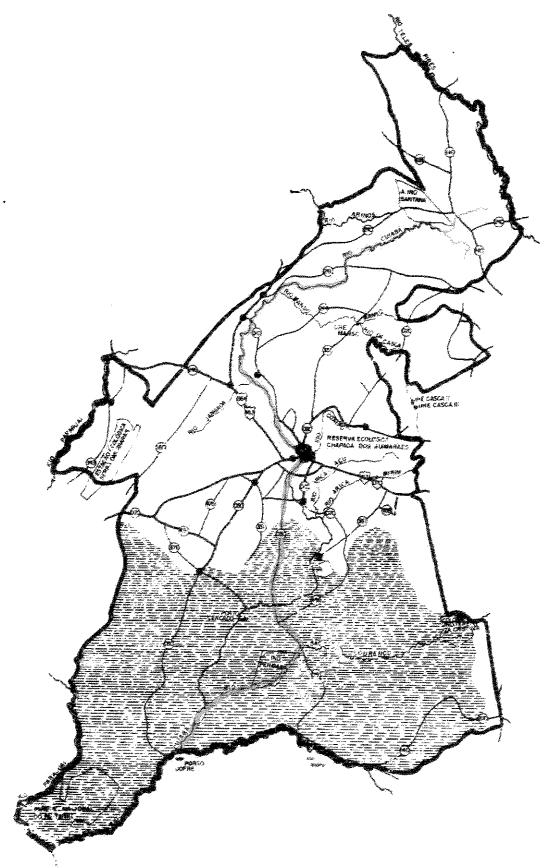


Figura 3.1.c Principais características geográficas da Mesorregião 01

Fonte: MAPA, 1995

A mesorregião 01 corresponde à denominada planície cuiabana, tendo como limites as serras de São Vicente ao leste, o rio Teles Pires e as serras do Tombador ao norte, as serras das Araras e o rio Paraguai ao oeste, ao sul o rio Itiquira, divisando a mesorregião 01 e Mato Grosso com Mato Grosso do Sul (Figura 3.1.c).

O rio Cuiabá, cortando toda a mesorregião 01 no sentido norte/sul, tem como afluentes principais o rio Manso, pela margem esquerda, no médio norte; o rio Jangada, pela margem direita, ao centro; o rio Coxipó, pela margem esquerda, ao centro; os rios Aricá-Açu e Aricá Mirim pela margem esquerda ao centro, os rios São Lourenço e Itiquira, pela margem esquerda, ao sul. O rio Cuiabá constitui a única via fluvial navegável da mesorregião 01, embora somente até a localidade de Porto Cercado no município de Poconé, não permitindo a chegada de barcos grandes a Cuiabá, exceto no período de chuvas (dezembro/março).

Observa-se pela Figura 3.1.c que o pantanal mato grossense ocupa cerca de 40% da área da mesorregião 01, onde predominam as atividades de pecuária, pesca e turismo, bem como ocorrem sérios problemas sócio econômicos decorrentes de inundações no período de chuvas.

O Quadro 3.1 abaixo apresenta a evolução dos dados populacionais da mesorregião 01.

Quadro 3.1 Área e População do Estado, da Mesorregião 01 e de seus 12 Municípios

Municípios	Área (km²)		pulação (ha	ib.)	Taxa Geo			ensidac	le
			T	,	Anual		Demográfica		
					no Pe	ríodo	no Ano		
	NA PARAMETER AND	1980	1991	1996	1980/91	1991/96	1980	1991	1996
Mato Grosso	906.807	1.138.691	2.027.231	2.235.832	5,38	1,98	1,25	2,23	2,47
Mesorregião 01	76.984	397.040	691.961	749,782	5,18	1,62	5,16	8,98	
Acorizal	857	5.289	5.308	5.950	0,03	2,31	6,17		
Barão Melgaço	11.611	8.253	9.858	7.846	1,63	-4,47	0,71	0,85	6,76
Chapada dos	6.493	9.366	12.888	13,515	2,94	0,95	1,44	1,97	2,08
Guimarães					·	·			,
Cuiabá	3.224	212.984	402.813	433.101	5,96	1,46	66,00	124,9	134,3
Jangada	1.136	3.327	5.227	6.621	4,19	4,84	3,89	4,59	5,83
Nobres	7.597	13,446	15,174	14,770	1,10	-0,54	1,77	1,99	1,94
N. S. Livramento	5.331	10.264	10.472	10.995	0,18	0,98	1,92	1,98	2,06
Poconé	17.125	23.359	29.856	30.615	2,25	0,50	1,36	1,73	1,79
Porto Estrela	2.072	2.596	2.968	4.728	1,22	9,76	1,25	1,43	2,28
Rosário Oeste	8.581	19.758	20.050	15.986	0,13	-4,43	2,30	2,34	1,86
S. A. Leverger	12.008	11.722	15.389	15.281	2,50	-0,14	0,98	1,27	1,27
Várzea Grande	949	76.676	161.958	190,374	7,03	3,28		170.3	200,6

Fonte: FIBGE - Censos Populacionais: 1980 e 1991; FIBGE - Contagem: 1996

A área da mesorregião 01 é de 76.984 km², portanto apenas 8,5% da área total do Estado, enquanto a população de 749.782 habitantes é a maior entre as demais mesorregiões, a qual representa 33,5% da população do Estado, estando 675.495 habitantes no meio urbano e 74.287 habitantes no meio rural, com a taxa de urbanização de 90,1% (FIBGE,1996). Observa-se a pouca diferença entre as taxas geométricas anual média de crescimento populacional do Estado (5,38% e 1,98%) e da mesorregião 01 (5,18% e 1,62%), nos períodos 1980/1991 e 1991/1996, bem ainda mantida a proporção 4:1 relativa às densidades demográficas nos anos de 1980, 1991 e 1996 da mesorregião 01 e do Estado, índices que dão à mesorregião 01 uma certa similaridade com o Estado em termos populacionais. Verifica-se também a pequena expressão populacional de alguns municípios, a saber: Porto Estrela, Jangada, Acorizal e Barão de Melgaço, todos com menos de 10.000 habitantes, conforme a contagem de 1996.

3.2 - Características Essenciais dos 12 Municípios

O município de *Acorizal* tem a sua sede situada a 170 metros acima do nível do mar, às margens do rio Cuiabá, distante 59 km de Cuiabá sendo apenas 40 km de rodovia asfaltada, estando a maioria de sua população no meio rural. O município é caracterizado por um elevado número de pequenas propriedades, tendo como atividade principal a agricultura de subsistência, a pecuária de corte e leiteira.

O município de *Barão de Melgaço*, compreendendo uma parte do pantanal matogrossense, tem a população distribuída em sua maioria no meio rural, estando sua sede situada às margens do rio Cuiabá a 132 metros acima do nível do mar, distante cerca de 150 km da capital Cuiabá, sendo apenas 70 km de rodovia asfaltada, município onde predominam as atividades da pesca e do turismo devido estarem alí localizadas as imensas baías de Chacororé e de Siá Mariana, visitadas anualmente por muitos turistas.

O município de *Chapada dos Guimarães*, nacionalmente conhecido pelas suas belezas naturais, excelente clima, estando a sede situada a 793 metros acima do nível do mar e distante 65 km de Cuiabá por rodovia asfaltada, será beneficiado nos próximos anos com a usina hidroelétrica de Manso. Nesse município foram construídas no rio Casca, afluente do rio Manso, nas décadas de 20, 50 e 60, as usinas hidroelétricas Casca I, Casca II e Casca III, respectivamente, estando Casca I, uma das primeiras hidroelétricas construídas no Brasil, há vários anos desativada, e as de Casca II e Casca III em pleno funcionamento.

O município de *Cuiabá* tem a sua sede situada às margens do rio de mesmo nome, estando a 165 metros acima do nível do mar, tendo a quase totalidade da população no meio urbano. Trata-se de uma capital em processo de crescimento acelerado com sérios problemas urbanos, destacando-se na sua economia os setores do comércio e da indústria, estando esta em franco desenvolvimento. Em torno do perímetro urbano estão localizados inúmeros minifúndios com plantações de diversas culturas, aliada à pecuária semi intensiva de corte. A atividade do turismo encontra-se em pleno crescimento devido ser a capital o ponto de partida para os mais variados roteiros turísticos na mesorregião 01.

O município de *Jangada* com a população predominante no meio rural, tem a sua sede situada a 200 metros acima do nível do mar, tendo sido desmembrado recentemente de Acorizal, distando apenas 65 km de Cuiabá por rodovia asfaltada. Constituindo-se em um entroncamento rodoviário demandando as regiões norte e oeste do Estado, o município vem progredindo nos últimos anos, sendo a economia do mesmo baseada na pecuária semi intensiva, em algumas fazendas, ocorrendo ainda a agricultura em minifúndios.

O município de *Nobres*, distante 140 km de Cuiabá por rodovia asfaltada, tem a sua sede situada a 250 metros acima do nível do mar, ao pé da serra do Tombador, constituindo-se em um município de grandes perspectivas de progresso devido ser um centro de atividades minerais, com várias instalações de beneficiamento de calcáreo e uma moderna fábrica de cimento do Grupo Votorantim. Ocorre ainda no município a cultura de arroz e a pecuária intensiva, apresentando também um expressivo potencial turístico face a ocorrência na serra do Tombador de interessantes pinturas e inscrições esculpidas em muitas pedras, a beleza natural, as cachoeiras e grutas inexploradas.

O município de N. S. do Livramento tem a sua sede distante 32 km da capital por rodovia asfaltada, estando a mesma situada a 171 metros acima do nível do mar, com a maioria da população distribuída no meio rural. A economia do município está baseada na pecuária intensiva, destacando-se na agricultura o cultivo de banana bem ainda uma intensa atividade nos garimpos de ouro. Embora esteja a sua sede próxima ao centro industrial e comercial de Várzea Grande e à capital Cuiabá, o município tem se caracterizado por uma estagnação econômica sem contar com nenhum grande investimento projetado para o crescimento de sua economia, quer pelo setor público ou privado até o momento.

O município de *Poconé* tem a sua sede distante 95 km da capital por rodovia asfaltada, situada a 91 metros acima do nível do mar, estando a maioria dos habitantes concentrada no meio urbano. O município é cortado de norte a sul pela estrada denominada "transpantaneira", utilizada pelos turistas no período de seca na região. A pecuária intensiva, propiciada pelo capim nativo, é a grande riqueza do município, além do turismo ecológico em expansão. A única usina de produção de álcool na mesorregião 01 está localizada neste município, próximo a sua sede, em volta da qual ocorrem as plantações de cana-de-açúcar. A mineração de ouro constitui também uma das principais atividades econômicas do município.

O município de *Porto Estrela* é o mais distante da capital, estando a sua sede a 199 km de Cuiabá, situada a 150 metros acima do nível do mar, apresentando a população quase toda no meio rural, sendo o município beneficiado com um porto fluvial no rio Paraguai, podendo no futuro dar escoamento às mercadorias destinadas à exportação através do porto da cidade de Cáceres/MT, início da hidrovia Paraguai/Paraná, estando esta em fase de estudos objetivando a reativação da mesma para a produção poder atingir os mercados promissores do MERCOSUL. No município predominam as culturas de feijão, milho, arroz e algodão, sendo esta última a base de sustentação do município, além da atividade pesqueira e o gado leiteiro.

O município de *Rosário Oeste* tem a sua sede distante 120 km da capital por rodovia asfaltada, situada a 174 metros acima do nível do mar, às margens do rio Cuiabá, com a população mais concentrada no meio urbano. No município predominam a pecuária de corte e as culturas de arroz e milho, ocorrendo ainda uma estação experimental para preparo de mudas de seringueiras sendo as mesmas comercializadas com destino a todo o interior do Estado. Um grande projeto de reflorestamento vem sendo implantado no município com a espécie vegetal "teca" de procedência asiática. O projeto de uma fábrica de fécula de mandioca, em análise no Conselho da SUDAM, está prestes a ser implantado no município.

O município de *Santo Antonio de Leverger* com a sua sede distante apenas 25 km da capital por rodovia asfaltada, situada à margem esquerda do rio Cuiabá e a 140 metros acima do nível do mar, destaca-se pelo potencial turístico, estando a população mais concentrada no meio rural. No município está localizada a velha e imponente Usina Itaicí, às margens do rio Cuiabá, construída no século passado para a produção de açúcar, atualmente tombada como patrimônio histórico, constitui um local de atração turística. O turismo é uma importante fonte de rendas do município, bem ainda a pesca, a pecuária semi extensiva e as culturas diversas.

O município de *Várzea Grande* desmembrado de Cuiabá ao final da década de 40 é o segundo em população e crescimento econômico da mesorregião 01 e de Mato Grosso, estando a sua sede, separada da capital pelo rio Cuiabá, situada a 185 metros acima do nível do mar. A partir dos anos 60 o município apresentou um acentuado progresso industrial em decorrência dos estímulos dados pelo poder público municipal às empresas locais e de outras regiões, interessadas em investir no Estado, ocasionando o aumento da arrecadação do ICMS propiciando ao município uma posição de destaque na economia da mesorregião 01.

3.3 - A Importância da Mesorregião 01

A mesorregião 01 é a mais importante em termos sócio-político e econômico em relação às demais do Estado, nela estando localizadas: a capital Cuiabá - centro político e administrativo do Estado, a cidade industrial de Várzea Grande, a cidade serrana e turística de Chapada dos Guimarães, a cidade de Nobres - centro minero-industrial e cimenteiro, o pantanal de Mato Grosso notabilizado pelo esplendor da fauna e da flora.

A mesorregião 01 possui um elevado potencial turístico representado pelo Balneário de Águas Quentes na Serra de São Vicente no município de Santo Antonio de Leverger; o clima e as belezas naturais de Chapada dos Guimarães localizada a 793 metros de altitude; o obelisco do centro geodésico da América do Sul em Cuiabá; a beleza e a exuberância do pantanal nos municípios de Poconé, Barão de Melgaço e Santo Antonio de Leverger; a rodovia denominada transpantaneira, importante eixo turístico, ligando a cidade de Poconé ao Porto Joffre, porto este no rio Cuiabá logo abaixo da foz do rio Itiquira (Figura 3.1.c).

A usina hidroelétrica de Manso, atualmente em fase de construção, localizada logo abaixo da foz do rio Casca no Manso, rios estes mostrados na Figura 3.1.c, propiciará a formação de um lago de 427 km², abrangendo áreas dos municípios de Chapada dos Guimarães e de Rosário Oeste, lago este a ser também aproveitado para fins de irrigação, piscicultura, lazer e principalmente para o controle do nível das águas do rio Cuiabá evitando as grandes inundações no período chuvoso bem como a queda excessiva do nível das águas no período da estiagem. A navegação turística no rio Cuiabá possibilita visitas às antigas instalações de diversas usinas de açúcar, implantadas no século XIX, às margens do rio Cuiabá próximas às cidades de Cuiabá, Santo Antonio do Leverger e Barão de Melgaço como também propicia o contato com o pantanal e as suas riquezas representadas pela fauna e flora.

Na mesorregião 01 ocorre o entroncamento de três rodovias federais BR/070, BR/163 e BR/364, próximo à serra de São Vicente; o bifurcamento da rodovia BR/070 com as BR/163 e BR/364 no município de Várzea Grande. A mesorregião 01 é também servida pelas rodovias estaduais asfaltadas: MT/010 - Cuiabá/distrito de N. S. da Guia/Acorizal/Rosário Oeste (ainda não asfaltada de N.S. da Guia até Rosário Oeste), MT/020 - Cuiabá/Chapada dos Guimarães, MT/040 - Cuiabá/Santo Antonio de Leverger, MT/060 - Cuiabá/N.S.do Livramento/Poconé e a MT/246 - Jangada/ Porto Estrela (Figura 3.1.c).

A ferrovia Ferronorte, atualmente em construção no nordeste do Estado de Mato Grosso do Sul, está destinada a fazer a ligação de Mato Grosso com os portos marítimos de Santos/SP, Sepetiba/RJ, Vitória/ES, com previsão da chegada dos trilhos a Cuiabá no ano 2003. A ferrovia beneficiará a mesorregião 01, cruzando-a no sentido transversal pelos municípios de Santo Antonio de Leverger e de Cuiabá, para posteriormente atingir a mesorregião 05 (planalto mato grossense), região produtora de soja e outros grãos (FERRONORTE,1994). O aeroporto internacional Marechal Rondon propicia vôos diários de aeronaves à jato para diversas capitais e dezenas de vôos de aviões mono e bimotores para cidades e fazendas do interior.

Na mesorregião 01 encontram-se instaladas as duas universidades no Estado: a FUFMT - Fundação Universidade Federal de Mato Grosso e a UNIC - Universidade de Cuiabá, bem ainda as Faculdades CÂNDIDO RONDON e o ICE - Instituto Cuiabano de Educação, todas elas no município de Cuiabá. Em Várzea Grande estão localizadas a UNIVAG- Faculdades Unidas de Várzea Grande e o IVE- Instituto Várzea Grandense de Educação, compreendendo cerca de 20.000 estudantes no ensino superior na mesorregião 01.

3.4 - A Economia da Mesorregião 01

Na mesorregião 01 estão as maiores e mais importantes indústrias do Estado, localizando-se a maioria delas nos municípios de Cuiabá e Várzea Grande, sendo expressivo o número de empresas ligadas a grupos nacionais, destacando-se: Brahma, Antárctica, Olvepar, Ceval, Sadia, Coca Cola, Votorantim, Camargo Correa, etc. Muitas empresas de portes médio e grande encontram-se instaladas no Distrito Industrial de Cuiabá, estando todavia as cinco maiores fora do Distrito, a saber: Brahma e Antárctica em Cuiabá, Coca Cola e Sadia em Várzea Grande e Votorantim em Nobres. Na mesorregião 01 estão 12% do rebanho bovino estadual notadamente no pantanal (FIBGE, 1996).

O turismo em Mato Grosso ocorre nas pousadas do pantanal, em Chapada dos Guimarães e no Balneário de Águas Quentes situado nas serras de São Vicente. Em Cuiabá estão sediados oito canais de televisão levando as imagens para quase todas as demais regiões do Estado. O comércio atacadista está mais concentrado em Várzea Grande, enquanto o comércio varejista é mais expressivo em Cuiabá, sendo a atividade agrícola pouco desenvolvida na mesorregião 01.

A evolução do crescimento econômico da mesorregião 01 é mostrada tomando-se por base a arrecadação do ICMS, devido este imposto representar cerca de 97% da arrecadação própria do Estado. A arrecadação do ICMS da mesorregião 01, é a maior dentre as demais mesorregiões, tendo a participação dela atingido 52,4% em 1990, caindo para 46,0% em 1995, sinalizando que nos últimos 5 anos a economia da região cresceu a taxas menores, comparadas as taxas das demais mesorregiões (SEFAZ, 1996).

O Quadro 3.4.a apresenta os dados da arrecadação do ICMS no período 1985/1995.

Quadro 3.4.a Evolução da Arrecadação de ICMS no Estado e na Mesorregião 01 Unidade: 10³ UPF/MT

		omuaue.	IO UEE!	141 1			
Municípios/Anos	1985	1990	1991	1992	1993	1994	1995
Mato Grosso	12.298	49.187	48.024	45.969	52.094	76.030	73.710
Mesorregião 01	4.654	25.765	23.673	23.361	25.820	34.956	33.890
Acorizal	7]	1	1	2	3	2
Barão de Melgaço	14	13	14	10	13	9	6
Chap. Guimarães	73	31	31	41	34	60	84
Cuiabá	2.905	19.475	17.977	16.750	18.399	24.951	24.500
Jangada	2	27	11	5	9	17	30
Nobres	233	151	262	746	829	804	585
N .S. Livramento	10	21	13	16	10	10	9
Poconé	50	131	67	38	39	47	100
Porto Estrela	zero	2	3	2	5	3	3
Rosário Oeste	37	28	20	15	16	13	19
S. Antônio Leverger	27	43	34	18	33	35	40
Várzea Grande	1.296	5.842	5.241	5.721	6.432	9.005	8.512

Fonte: SEFAZ, 1996

1 UPF = R\$ 10,26 (Dez.1995) R\$/US\$ = 0.97 (Dez. 1995)

Obs.: Até 1988 vigorava o ICM no qual não estava inclusa a arrecadação das atividades: energia, comunicação e combustível, inclusas no ICMS pela Constituição de 1988.

As arrecadações do ICMS dos municípios de Cuiabá e Várzea Grande, tomadas em conjunto, representaram 98,3% em 1990 e 97,4% em 1995 da arrecadação total do imposto na mesorregião 01, comprovando que a economia da região está muito concentrada nestes dois municípios limítrofes.

Os Quadros 3.4.b e 3.4.c, apresentam os dados da arrecadação do ICMS da mesorregião 01 por setores de arrecadação, nos anos de 1990 e 1995, respectivamente.

Os dados do ICMS por setores da mesorregião 01 mostram as participações dos municípios de Cuiabá e de Várzea Grande, bem como propicia a avaliação da economia regional da mesorregião 01 por setores em relação a economia do Estado, ressaltando a elevada participação, em 1990, do comércio (62%), indústria (47%), caindo em 1995 para 55% e 25%, respectivamente, dados inequívocos da supremacia econômica da região.

Quadro 3.4.b
Arrecadação do ICMS por Setores
Mesorregião 01 - Ano 1990 - Unidade: 103 UPF/MT

SETORES /	Cuiabá	Várzea	Mesorregião 01	Mato Grosso	% participação	% participação
MUNICÍPIOS		Grande	(2)	(1)	(2)/(1) x 100	dos setores na
						Mesorregião
Comércio	7.377	3,557	11.042	17.696	62,40	42,86
Combustível	3.576	743	4.319	5.214	82,83	16,76
Indústria	3.556	1,177	4.860	10.288	47,24	18,86
Energia	592	zero	592	592	100,00	2,30
Extração Vegetal	5	58	65	3.166	2,05	0,25
Extração Mineral	7	zero	7	44	15,91	0,03
Pecuária	14	10	93	1.275	7,69	0,36
Agricultura	1.670	3	1.753	5.409	32,41	6,80
Transporte	827	295	1.183	3,624	32,64	4,60
Comunicação	1.851	zero	1.851	1.880	98,46	7,18
Correção Monet.	Zero	zero	zero	zero	zero	zero
TOTAL	19.475	5.843	25.765	49.187	52,38	100,00

Fonte: SEFAZ,1996

1 UPF/MT = R\$ 10,26 (Dez. 1995) - R\$/US\$ = 0,97 (Dez. 1995)

Quadro 3.4.c
Arrecadação do ICMS por Setores
Mesorregião 01 - Ano 1995 - Unidade: 10³ UPF/MT

SETORES /	Cuiabá	Várzea	Mesorregião 01	Mato Grosso	%	% participação
MUNICÍPIOS		Grande	(2)	(1)	participação	dos setores na
					(2)/(1) x 100	Mesorregião
Comércio	7.685	4,320	12.129	22.007	55,11	35,78
Combustível	6.106	1.562	7.668	9.510	80,63	22,62
Indústria	3.870	2.010	6.497	25.671	25,31	19,16
Energia	1.561	zero	1.561	1.561	100,00	4,60
Extração Vegetal	3	10	16	179	8,93	0,04
Extração Mineral	2	zero	49	73	67,12	0,14
Pecuária	5	289	317	2.144	14,79	1,00
Agricultura	569	95	669	4.143	16,15	1,96
Transporte	906	184	1.144	4.408	25,95	3,38
Comunicação	3.659	zero	3.659	3.660	100,00	10,80
Correção Monet.	134	41	180	356	50,56	0,52
TOTAL	24,500	8.512	33.890	73,710	45,98	100,00

Fonte: SEFAZ, 1996

1 UPF/MT = RS 10,26 (Dez. 1995) - RS/USS = 0,97 (Dez. 95)

Na composição da arrecadação do ICMS na mesorregião 01 em 1990, verifica-se pelos dados a predominância da atividade comercial (43%), secundada de longe pelas atividades: industrial (19%) e combustível (17%), estas duas últimas em disputa pelo segundo lugar, perfazendo as três arrecadações cerca de 79 % em relação ao total do ICMS arrecadado.

No ano de 1995 a composição da arrecadação do ICMS na mesorregião 01 apresentou-se bem modificada, a saber: a atividade comercial com 36%, a da venda de combustíveis com 23%, a industrial mantendo-se em 19%, enquanto a de comunicações cresceu para 11%, dados estes que evidenciam uma certa tendência de equilíbrio nos próximos anos entre as arrecadações do ICMS nestes 4 setores da economia da região.

Verifica-se ainda, pelos dados dos Quadros 3.4.b e 3.4.c, que em 1990 a economia da mesorregião 01 correspondeu a 52% da economia de todo o Estado, enquanto em 1995 ela representou 46%, tendo apresentado portanto uma queda de seis pontos percentuais.

3.5 - Aspectos Ambientais

Na mesorregião 01 localizam-se algumas áreas de preservação ambiental, assinaladas na Figura 3.1.b, a saber: o *Parque Nacional e a Área de Preservação Ambiental de Chapada dos Guimarães*, a *Estação Ecológica da Serra das Araras* abrangendo parte das áreas dos municípios de Rosário Oeste e de Jangada, o *Parque Nacional do Pantanal* no extremo sul do município de Poconé, bem ainda 3 áreas indígenas: a *Área Indígena Pirigara* em Barão de Melgaço, a *Colônia Indígena Tereza Cristina* em Santo Antonio de Leverger, ambas situadas no rio São Lourenço e a *Área Indígena Santana* no município de Nobres (MAPA, 1995).

O rio Cuiabá percorre a mesorregião 01 no sentido norte/sul, estendendo-se desde a sua cabeceira no município de Nobres/Rosário Oeste até a sua fóz no rio Paraguai, banhando as cidades de Rosário Oeste, Acorizal, Cuiabá, Várzea Grande, Santo Antonio de Leverger e Barão de Melgaço (Figura 3.1.c), constituindo-se o mesmo em fonte de abastecimento de água a todas essas cidades. A área total de drenagem da bacia do rio Cuiabá está estimada em 10.000 km² (cerca de 13% da área total da mesorregião 01), sendo as águas desse rio e de seus afluentes utilizadas para o abastecimento das cidades, para a pesca, recreação, navegação em determinados trechos e ainda produção de energia elétrica (usinas Casca II e Casca III em operação há muito tempo e a de Manso a partir do ano 2001).

O expressivo crescimento populacional da mesorregião 01, ocorrido ao longo das últimas 3 décadas, com a consequente expansão desordenada da área urbana das cidades de Cuiabá e Várzea Grande, às margens do rio Cuiabá, contribuiu para o comprometimento da qualidade da água e do baixo nível do rio no período de estiagem, ameaçando o abastecimento de água às duas cidades. A FEMA - Fundação Estadual do Meio Ambiente, órgão responsável pelo controle da poluição, implementou um programa de monitoramento da qualidade das águas da bacia do rio Cuiabá, no período entre 1989 a 1992. Os resultados indicaram que relativamente à carga orgânica, as águas ainda não estão comprometidas, todavia com relação à presença de coliformes os números revelaram riscos à saúde pública (SOUZA,1995).

A presença de coliformes é devido ao fato de os pequenos riachos (Prainha, Mané Pinto, Barbado, Ribeirão do Lipa, Gambá, São Gonçalo e outros), afluentes do rio Cuiabá, correndo dentro do perímetro urbano das cidades de Cuiabá e Várzea Grande, receberem diariamente imensas descargas de efluentes tendo já se transformados em verdadeiros canais de esgotos (LEON BORDEST & MACEDO, 1995). A qualidade da água está classificada na Classe 2, segundo o padrão CONAMA - Conselho Nacional do Meio Ambiente, o que significa que os usos permitidos são: abastecimento público após tratamento convencional, proteção das comunidades aquáticas, recreação de contato primário, irrigação de hortaliças e de plantas frutíferas e a criação natural e/ou intensiva de espécies para a alimentação humana.

Na mesorregião 01 em algumas áreas ocorrem a mineração do ouro, notadamente no município de Poconé próximo ao pantanal mato-grossense, onde a presença do elemento químico mercúrio, metal tóxico e nocivo à fauna aquática, vem sendo objeto de estudos visando detectar a concentração do mesmo nas águas do pantanal, nas proximidades das mineradoras. Estudos iniciais comprovaram um decréscimo do acúmulo de mercúrio nos moluscos, na proporção em que estes se afastam da fonte de emissão do metal (CALIL,1995).

Na mesorregião 01 estão instalados alguns frigoríficos, matadouros e curtumes, os quais constituem atividades que exigem atenções especiais por parte das autoridades encarregadas da preservação do meio ambiente. Nos frigoríficos e matadouros ocorrem uma elevada demanda de água ao longo do processo industrial fazendo com que os despejos apresentem sólidos em suspensão, graxas, temperatura elevada, cor e turbidez acentuadas em decorrência do sangue, gorduras e vísceras, constituindo esses efluentes nocividade para as águas, fauna e flora dos riachos e rios, quando não são devidamente tratados (SEPLAN, 1995).

Os despejos oriundos de curtumes têm elevada demanda bioquímica e química de oxigênio; os coloides e sabões nos efluentes dão origem à formação de espumas; o ácido tânico combina com o ferro existente no leito dos rios ou dissolvido na água, formando o tanato férrico de cor negra; o sulfato de sódio produz sulfato ferroso que permanece em suspensão coloidal; os resíduos normalmente depositados ao lado das instalações fabris ou às margens dos cursos de água atraem ratos, moscas e baratas (SEPLAN,1995).

As atividades de piscicultura na mesorregião 01 vêm se ampliando com a construção de tanques próximos aos rios, raramente havendo o cuidado de se levar em conta dois aspectos importantes: a qualidade ecológica-sanitária da água e as espécies que serão utilizadas para o desenvolvimento da piscicultura. Nesses tanques são adicionados alimentos orgânicos - farelo e outras substâncias nutritivas, ou sais minerais - adubos minerais contendo nitrogênio, fósforo e potássio, os quais favorecerão o crescimento de algas e macrófitas (SEPLAN,1995).

Um sério problema ambiental na capital Cuiabá, é o decorrente do manejo inadequado do lixo urbano, o qual é diariamente lançado e queimado à céu aberto, emanando gases poluentes, servindo o resíduo sólido como aterro em uma área pública às margens da rodovia MT/020, ligando Cuiabá à Chapada dos Guimarães, questão esta minimizada com a recém construída Usina de Compostagem do lixo da capital (MODESTO FILHO,1995).

Relativamente à poluição do ar na região, estudos técnicos estão sendo realizados pela UFMT - Departamento de Engenharia Sanitária, no sentido de implementar programas de pesquisas no meio urbano das cidades de Cuiabá e Várzea Grande, face a elevada concentração populacional e o expressivo fluxo diário de viaturas à gasolina e óleo Diesel, nas avenidas e ruas dessas duas cidades limítrofes.

Um agente de poluição do ar na mesorregião 01, especialmente em Cuiabá e Várzea Grande, é o atribuído às "queimadas" no período da seca - junho a setembro -, época em que elas ocorrem em inúmeras áreas devido as derrubadas para o cultivo do solo para produção de alimentos, nos pastos nativos e artificiais, provocando a formação e a dispersão de fumaças e partículas, ocasionando maleficios à visão dos motoristas nas estradas e prejudicando a saúde das pessoas. Muitas queimadas ocorrem àquela época em virtude de acidentes ocasionais face a combustão expontânea devido a baixa umidade relativa do ar nesse período do ano.

A região próxima a Poconé também é alvo de poluição aérea por ocasião das queimadas dos canaviais localizados em torno da destilaria de álcool ali localizada, problema este que poderá ser solucionado a partir do momento em que a empresa passar a efetuar a colheita da cana com as modernas máquinas colheitadeiras, as quais dispensam as queimadas proporcionando assim a utilização das palhas e pontas da cana como combustíveis.

Nas diversas unidades de beneficiamento de calcáreo existentes no município de Nobres, a extração feita à céu aberto, propicia sérios danos às características fisicas e químicas da água, intensificando a cor e a turbidez da água, causando variações no pH, na dureza, aumentando a concentração de carbonatos. Nas proximidades das instalações das mineradoras, a poluição do ar é constatada face às partículas suspensas e posterior deposição sobre a vegetação, afetando o sistema respiratório das pessoas.

O funcionamento da destilaria de álcool localizada no município de Poconé constitui motivo de preocupação não apenas devido a queimada dos canaviais na época da safra, mas principalmente pelo lançamento do vinhoto - sub produto do processo de produção -, em grande quantidade nos canaviais, visto ser o mesmo produzido na proporção 13/1, isto é, para cada litro de álcool produzido ocorrem 13 litros de vinhoto. A solução vem sendo procurada objetivando a transformação do vinhoto em biogás, combustível este que tem na composição a predominância do gás metano (VELASCO,1995). Além disso a lavagem da cana consome de 2.000 a 7.000 litros de água por tonelada, sendo a água suja com um certo teor de cinza e terra decantada nas proximidades para somente após ser lançada no riacho próximo, evitando assim que se prejudique a qualidade da água, fauna e flora.

A fabricação de carvão vegetal na mesorregião 01, aproveitando o material lenhoso oriundo das matas nativas derrubadas para o plantio de sementes de grãos e formação de pastos, não vem provocando maiores danos ambientais em razão da utilização de modernas tecnologias do CETEC - Centro de Tecnologias de Minas Gerais para fornos de alvenaria e da ESALQ - Escola Superior de Agronomia Luiz de Queiroz em Piracicaba para fornos metálicos, adquiridas na década de 80 pela Secretaria de Indústria e Comércio do Estado.

Relativamente ao potencial hidráulico na mesorregião 01, providências estão sendo tomadas para que o aproveitamento do mesmo através da construção de barragens e represas, a exemplo da usina de Manso, acarrete um mínimo de impacto no meio ambiente.

Essas referidas preocupações começaram a surgir por ocasião dos debates ocorridos na audiência pública de apresentação do RIMA - Relatório de Impactos ao Meio Ambiente, em 1987, alusivo ao projeto de aproveitamento do potencial hidráulico de Manso cuja construção foi iniciada em 1988 e paralisada em 1989. A empresa CEMAT, atualmente REDE/CEMAT, concessionária de energia elétrica no Estado, há tempos vem desenvolvendo esforços e estudos no intuito da preservação ambiental nas localidades onde a empresa possui centrais hidroelétricas e termoelétricas. Em 1986 foi elaborado o I PDMA - Plano Diretor das Ações de Meio Ambiente do Setor Elétrico, expressando a preocupação da empresa para com o equacionamento das questões sócio ambientais (CEMAT, 1997).

O II PDMA, aprovado em 1990, vinculado ao Plano Decenal de Expansão da Geração (1990/1991), serviu de base para a CEMAT, em 1993, definir uma política para o meio ambiente com o propósito de orientar o encaminhamento das questões ambientais nas suas áreas de ações. A empresa viu alcançada uma de suas importantes metas com a aprovação, em 1994, da lei estadual 6.437 criando a Estação Ecológica do rio da Casca, abrangendo uma área de 3.544 hectares em terras de propriedade da empresa (CEMAT,1997). Nos últimos anos, a CEMAT elaborou projetos destinados à área ambiental, sem no entanto implementá-los por falta de recursos financeiros, dentre os quais alguns estão no âmbito da mesorregião 01 (CEMAT,1997), a saber:

- Projeto Casca: objetiva recuperar a potência de geração das usinas hidroelétricas através da recuperação hidrológica das condições de fluxo e da qualidade de seus mananciais, afetadas em face de desmatamento nas áreas das cabeceiras dos rios, garimpagem desordenada, etc;
- Projeto Arara Vermelha: objetiva recuperar a fauna e a flora nas áreas das usinas, por meio de estudos da composição florística e faunística, da implantação de infra estrutura de apoio nas usinas, de convênios com entidades afins para pesquisas, estudos, Banco de Dados, etc;
- *Projeto Natureza Viva*: objetiva levar a educação ambiental ao pessoal nas usinas da CEMAT, propiciando aos empregados o acesso às experiências no trato com os impactos ambientais, agregando-lhes valores e autocrítica no exercício da profissão;
- *Projeto Piracema*: visa a criação de peixes nos reservatórios das usinas de Casca II e Casca III a partir da maturação de 2.000.000 de alevinos, a serem adquiridos da empresa EMATER/MT com cerca de 1,5 cm de comprimento, depositados em tanques até atingirem 7,5 cm para serem transferidos para os reservatórios das usinas.

Na atualidade, as ações desenvolvidas com maior ênfase no sentido da proteção ambiental no Estado, concentram-se nos rios da bacia hidrográfica do rio Paraguai (abrangendo todos os rios da mesorregião 01), região onde se verifica a maior densidade demográfica no Estado com áreas mais sensíveis aos efeitos dos efluentes urbanos e dos garimpos, fatos estes que priorizam os trabalhos desenvolvidos dentro dos projetos do PNMA - Programa Nacional do Meio Ambiente e do PCBAP - Plano de Conservação da Bacia do Alto Paraguai (PNMA,1991). Possuidora de um potencial turístico ainda pouco explorado, a mesorregião 01 procura, prioritariamente, preservar os recursos naturais, a fauna e flora do pantanal, as fontes de águas termais e as bordas da Chapada dos Guimarães.

A reunião especial da SBPC, realizada em Cuiabá nas instalações da UFMT em abril de 1995, com o tema "Mato Grosso: Novos Caminhos - Ambiente e Diversidade Sócio Cultural", constituiu-se em um foro oportuno onde foram apresentados diversos trabalhos reveladores de uma série de preocupações quanto aos problemas ambientais no âmbito da mesorregião 01, os quais, após revelados, passaram a ser objeto de alguns estudos financiados pelo CNP_q - Conselho Nacional do Desenvolvimento Científico e Tecnológico.

3.6 - Aspectos Energéticos

A construção da usina hidroelétrica Casca I no rio da Casca, afluente do rio Manso, no município de Chapada dos Guimarães, inaugurada em 1928, constituiu-se no primeiro resultado das medidas governamentais, tomadas à época, no sentido de resolver o crucial problema da não disponibilidade de energia elétrica em Cuiabá. Mais tarde, no ano de 1958, entrou em operação a usina hidroelétrica Casca II possibilitando o atendimento da crescente demanda de energia elétrica da capital por mais algum tempo (CEMAT,1983).

Com o progresso de Cuiabá, tornou-se imprescindível uma maior oferta de energia elétrica, levando o Governo do Estado a decidir em 1966 pela construção da usina Casca III, a qual teve a sua inauguração realizada em 1971, ampliando substancialmente a oferta de energia elétrica. Nos anos 70 o Estado foi alvo de uma onda de progresso, decorrente do processo migratório em curso, bem ainda devido aos elevados investimentos que passaram a ser feitos por parte da iniciativa privada nos mais diversos setores da economia, situação esta que exigiu providências do governo estadual junto ao governo federal em busca de uma solução energética mais duradora para o Estado.

Em decorrência de decisões no âmbito do governo federal, foi construída a primeira linha de transmissão de energia proveniente do Estado de Goiás até a capital Cuiabá, inaugurada em 1974, dando início a uma longa dependência energética externa, inserindo-se assim o Estado de Mato Grosso no sistema elétrico integrado nacional. Posteriormente foram construídas pela ELETRONORTE duas outras linhas de transmissão para o atendimento da crescente demanda dos municípios próximos a Cuiabá.

De forma semelhante ao ocorrido em outros países, a chamada "crise mundial do petróleo" dos anos 70 ensejou, por parte do governo federal e da iniciativa privada, diversas providências no sentido de se buscar fontes alternativas nacionais para a produção de energia, o conhecimento maior dos potenciais energéticos regionais, as novas formas de fomento à produção de energia, procurando assim minorar a dependência energética externa. Paralelamente a essas iniciativas no plano federal começaram em 1979, no âmbito estadual logo após a divisão do Estado, as primeiras definições de ordem técnica e política no sentido do planejamento da oferta de energia, notadamente para as cidades de Cuiabá, Várzea Grande e demais municípios da mesorregião 01 para o atendimento da crescente demanda.

No ano de 1981, por iniciativa do Ministério da Indústria e do Comércio, o Governo do Estado, através da Secretaria de Agricultura, constituiu uma equipe de técnicos para a elaboração de um minucioso estudo relativo à palmeira babaçu, objetivando avaliar essa riqueza vegetal do Estado com vistas ao seu aproveitamento energético (SAGRI/CEPA, 1981). Por outro lado, após inúmeras gestões junto ao MME, ELETROBRÁS e ELETRONORTE, ficou definida a construção da usina hidroelétrica de Manso com uma potência instalada de 210 MW, a cargo da ELETRONORTE, tendo as obras sido iniciadas em 1988 e interrompidas em 1989 face à escassez de recursos financeiros por parte da empresa (ELETRONORTE, 1996).

A ELETROBRÁS, a ELETRONORTE e a concessionária de distribuição de energia elétrica estadual CEMAT, concluíram em 1994 um levantamento do potencial hidráulico do Estado nas três bacias hidrográficas, a saber: amazônica, paraguaia e araguaia (SIPOT,1997), constituindo esse estudo um documento precioso no momento da formulação de planejamentos energéticos regionais. Em 1996, paralelamente as decisões por parte da ELETROBRÁS e da ELETRONORTE para a retomada das obras da usina de Manso (ELETRONORTE, 1996), começaram os estudos por parte do Governo do Estado para a construção de uma UTE em Cuiabá a gás natural importado da Bolívia, operando inicialmente com óleo Diesel (ENRON,1996).

Conforme já foi assinalado, em 1997 foi concluído e ofertado aos órgãos públicos e privados do Estado, o trabalho denominado "A Questão Energética em Mato Grosso - elementos essenciais ao planejamento", fruto do convênio firmado entre as instituições FUFMT/UNICAMP/CEMAT/FIEMT/FECOMÉRCIO/FAMATO, reunindo dados e informações relativas à importação, produção e consumo de energia no Estado, o diagnóstico do problema energético estadual, a projeção da demanda, as conclusões e sugestões.

O Estado de Mato Grosso caracteriza-se pela elevada dependência de energia elétrica importada das centrais hidroelétricas de Goiás/Minas Gerais, sendo totalmente dependente da importação de combustíveis derivados de petróleo, oriundos da refinaria da Petrobrás localizada em Paulínia/SP, apresentando auto suficiência apenas quanto aos combustíveis lenha, álcool etílico anidro e álcool etílico hidratado, sendo exportador destes últimos para os Estados de Rondônia, Acre e Amazonas (CANAVARROS & al, 1997).

3.6.1- O Sistema Energético da Eletricidade

O suprimento de energia elétrica a Mato Grosso envolve diversas empresas, a saber: as concessionárias federais ELETRONORTE e FURNAS, as estaduais CELG e CEMAT, algumas prefeituras e vários auto-produtores. A CEMAT, adquire cerca de 85% da energia elétrica requerida pelo Estado, produzindo os restantes 15 % sendo a produção própria distribuída: 55% térmica e 45% hidroelétrica, proporção esta estabilizada nos últimos anos (CEMAT, 1995). A mesorregião 01 produz cerca de 10% do total de energia elétrica por ela requerida, apenas através de geração hidroelétrica, conforme será mostrado no capítulo 4.

A ELETRONORTE adquire a energia elétrica gerada por FURNAS na UHE de Itumbiara e a gerada pela CELG na UHE de Cachoeira Dourada (ambas localizadas no rio Grande em Goiás/Minas Gerais), revendendo-a para a CEMAT, inserindo assim a mesorregião 01 e outras regiões do Estado no sistema interligado sul/sudeste/centro oeste (Anexo I). O sistema elétrico do Estado está estruturado em dois sistemas distintos: o *sistema isolado*, coordenado pela concessionária CEMAT, atualmente REDE/CEMAT, compreendendo vários subsistemas no interior do Estado e o *sistema interligado*, extensão do sistema interligado sul/sudeste/centro oeste do Brasil, sendo a ELETRONORTE a responsável pela manutenção deste sistema. A mesorregião 01 está toda compreendida no sistema interligado, contribuindo para o mesmo com a energia gerada nas hidroelétricas de Casca II e Casca III.

O suprimento de energia elétrica via sistema interligado é feito por meio de três linhas de transmissão, as quais transportam energia das hidroelétricas Cachoeira Dourada e Itumbiara (Anexo I), sendo de 356 MW a capacidade total dessas linhas, assim especificadas:

- linha Rio Verde/Couto Magalhães/Rondonópolis/Coxipó em 138 kV;
- linha Rio Verde/Couto Magalhães/Rondonópolis/Coxipó em 230 kV;
- linha Rio Verde/Barra do Peixe/Rondonópolis/Coxipó/Sinop em 230 kV.

Operando no Estado em março/1997, encontravam-se vinte centrais hidroelétricas sendo a maioria PCHs (Anexo II), totalizando 142,59 MW de potência nominal, estando duas delas na mesorregião 01 (Casca II e III), ambas totalizando 15,94 MW (CANAVARROS & al, 1997). A construção da usina hidroelétrica de Manso (210 MW), distante 90 km de Cuiabá na confluência do rio da Casca com o rio Manso (Anexo III), foi reiniciada em março de 1998 com previsão de funcionamento a partir de dezembro do ano 2000, após um longo processo de renegociação da concessão para a exploração do potencial, finalmente entregue a uma nova empresa onde a ELETRONORTE é sócia majoritária.

3.6.2 - O Sistema Energético dos Derivados do Petróleo

O atendimento à demanda de derivados de petróleo à mesorregião 01 e ao Estado é feito pela refinaria de Paulínia/SP, ocorrendo em Cuiabá e Várzea Grande as bases comerciais das companhias distribuidoras dos derivados, a saber: Petrobrás, Esso, Texaco, Shell, São Paulo e Ipiranga/Atlantic, responsáveis pela colocação dos produtos no Estado (SINDIPETRO/MT, 1996).

No transporte rodoviário dos combustíveis da refinaria de Paulínia à Cuiabá, constata-se que em cada percurso de ida e volta, um caminhão tanque com capacidade para 30.000 litros de óleo Diesel consome cerca de 1.400 litros desse óleo, portanto 4,6%, percentual bastante expressivo que traduz as perdas que decorrem da importação de toda a quantidade de derivados de petróleo, necessária ao atendimento da demanda estadual (SINDIPETRO/MT,1996).

Em fase de estudos nos órgãos federais competentes, há alguns anos, encontra-se o projeto da PETROBRÁS relativo à construção de um poliduto Goiânia/Cuiabá, a partir do terminal recém construído em Goiânia para o transporte dos derivados de petróleo oriundos de Paulínia, investimento esse de grande importância para a mesorregião 01 e todo o Estado, eliminando o acentuado fluxo diário atual de caminhões tanques nas BR 070 e BR 163 e notadamente os riscos ecológicos iminentes nas duas rodovias.

3.6.3 - O Sistema Energético dos Derivados de Biomassas

O Estado e a mesorregião 01 produzem quatro combustíveis derivados de biomassas: bagaço de cana, álcool etílico, lenha e carvão vegetal, além de dois resíduos industriais com possibilidades de aproveitamento econômico: casca de arroz e resíduos da indústria madeireira. O aproveitamento dos dois resíduos é muito pequeno até o momento, estando a casca de arroz sendo parcialmente aproveitada em alguns fornos de indústrias cerâmicas, enquanto uma fábrica de briquetes, localizada em Várzea Grande, vem aproveitando parte dos resíduos de madeira (pó de serra e maravalhas).

Encontram-se instaladas no Estado 13 indústrias produtoras de álcool etílico hidratado, algumas delas produzindo também álcool anidro, sendo que 3 delas também são produtoras de açúcar. A destilaria da empresa COOCAPO, a única situada na mesorregião 01 no município de Poconé, iniciou a produção de álcool em 1987, tendo deixado de produzir nos anos 1992, 1993, 1994, devido às dificuldades financeiras, voltando a operar em 1995 sob a direção da nova empresa denominada ALCOPAN. O bagaço de cana obtido nessa destilaria vem sendo parcialmente consumido pela mesma, sendo o excesso do bagaço inaproveitado.

A indefinição governamental até o presente momento com relação ao futuro do programa PROÁLCOOL, associada ao bom preço do açúcar até o ano de 1997 no mercado internacional, acabaram levando algumas dessas indústrias a optarem por uma maior produção de açúcar em detrimento da produção de álcool. O SINDALCOOL - Sindicato das Indústrias Sucroalcooleiras no Estado de Mato Grosso, vem há alguns anos agilizando providências com o propósito de se estabelecer contratos de cogeração de energia entre algumas destilarias e a concessionária de energia elétrica no Estado, aproveitando assim de forma mais racional a energia do bagaço de cana (SINDALCOOL, 1996).

A lenha, importante combustível na matriz energética de consumo do Estado e da mesorregião 01, é produzida em quase todos os municípios em especial naqueles de fronteiras agrícolas (mesorregiões: leste, norte, oeste), sendo o transporte feito no período da seca, época das derrubadas de matas e cerrados. Na mesorregião 01 a quantidade de lenha produzida, oriunda das derrubadas de cerrados e contabilizada anualmente na FIBGE, vem caindo conforme será mostrada no capítulo 4, enquanto vêm sendo implantados alguns projetos de florestas energéticas na mesorregião.

Algumas empresas localizadas na mesorregião 01, preocupadas com a escassez de lenha para o atendimento de suas necessidades, optaram pelo plantio de florestas energéticas próprias com o intuito de assegurar o suprimento para as suas demandas futuras. Em 1994, empresas dos segmentos cerâmica e panificação de Cuiabá e Várzea Grande criaram a empresa denominada Flora Cuiabana, a qual vem implementando projetos na mesorregião 01.

3.7 - Os Agentes nos Sistemas Energéticos

Desde o ano de 1993, passou a atuar no Estado o CEEn - Conselho Estadual de Energia, órgão colegiado com representantes de várias entidades dos setores públicos e privados, criado pela lei estadual 6.224 de 23/6/93 com a finalidade de estudar e definir políticas energéticas, produzir os balanços energéticos anuais, estimular a elaboração de planejamentos energéticos regionais realizando esforços para viabilizar a implementação dos mesmos, etc.

No cenário energético do Estado, destacam-se: o CEEn - Conselho Estadual de Energia; as concessionárias REDE/CEMAT e ELETRONORTE; a EPE - Empresa Produtora de Energia Ltda., subsidiária da empresa norte americana ENRON, operadora da recém inaugurada UTE de Cuiabá; o consórcio formado pelas empresas ELETRONORTE e ODEBRECHT responsável pela construção e operação da UHE de Manso. Atuam ainda nos sistemas energéticos algumas empresas produtoras independentes de energia, o Conselho Estadual do Meio Ambiente, o Sindicato dos Urbanitários no Estado, o Sindicato das Empresas Revendedoras de Derivados de Petróleo, o Sindicato das Empresas Transportadoras de Derivados de Petróleo, o Sindicato das Indústrias Sucroalcooleiras no Estado, o Conselho dos Consumidores de Energia Elétrica, além de algumas Associações e grupos de estudos de energia e preservação do meio ambiente.

Resumindo o presente capítulo pode-se afirmar que a mesorregião 01 é a mais importante do Estado nos aspectos populacional, sócio-econômico, político e cultural, apresentando excelentes condições para acelerar o seu desenvolvimento nos próximos anos face ao grande número de empresas nacionais que vêm se instalando atraidas pela privilegiada posição geopolítica da região, ponto de passagem para a conquista da Amazônia, proximidade com os países andinos e ainda vantagens comerciais relativas ao MERCOSUL. O crescimento da economia da região, concentrada nos municípios de Cuiabá e Várzea Grande, vem gerando problemas típicos das grandes concentrações urbanas, em especial uma crescente demanda de energia exigindo ações dos órgãos competentes para o pronto atendimento.

CAPÍTULO 4

4 - PRODUÇÃO E CONSUMO DE ENERGIA NA MESORREGIÃO 01

Os quatro balanços energéticos do Estado de Mato Grosso publicados em 1989, 1992, 1993 e 1995, abrangendo o período 1980 a 1993, foram úteis em razão da apresentação dos dados de produção e de consumo de energia para a obtenção de indicadores. Todavia, sendo de âmbito estadual os dados e as informações constantes no balanço, as matrizes de consumo na mesorregião 01 foram pela primeira vez elaboradas para serem apresentadas neste capítulo.

Na escolha do poder calorífico dos combustíveis (Anexo IV), optou-se pelo PCS - poder calorífico superior, em razão de ser o mesmo utilizado no balanço energético de Mato Grosso e no balanço energético nacional. A unidade de energia escolhida para quantificar os dados de consumo foi a tEP - tonelada equivalente de petróleo -, devido ser a mesma muito difundida nos textos publicados em revistas periódicas, de fácil assimilação por parte do leitor, sendo ainda utilizada nos balanços energéticos de Mato Grosso e do País (Anexo V).

4.1 - Produção de Energia

A produção de energia na mesorregião 01 é pequena, estando representada pela energia elétrica de origem hidráulica, pelo álcool etílico hidratado, carvão vegetal e lenha, sendo que apenas a energia decorrente da queima da lenha, combustível este produzido totalmente na região, é suficiente para o atendimento da sua demanda na mesorregião 01.

4.1.1- Energia Elétrica

Conforme ressaltado no capítulo 3, na mesorregião 01 encontram-se em operação apenas as usinas hidroelétricas Casca II (3,52 MW) e Casca III (12,42 MW), ambas localizadas no rio da Casca afluente do rio Manso sendo este tributário do rio Cuiabá (Figura 3.1.c). A produção dessas usinas em 1995, correspondeu a 9,5% da energia elétrica necessária ao atendimento da demanda da mesorregião 01 naquele ano, situação esta que será modificada com a recente entrada em operação da nova UTE de Cuiabá, inicialmente à óleo Diesel, bem como da UHE de Manso, a qual terá a primeira turbina operando em dezembro do ano 2000 e as 3 restantes, ao final de cada quadrimestre do ano 2001 (ELETRONORTE,1998).

O Quadro 4.1.1 apresenta os dados da produção de energia elétrica na mesorregião 01.

Quadro 4.1.1 Dados da Produção de Energia Elétrica Mesorregião 01 - Período: 1985/1995 - Unidade: MWh

	HIDROEL	ÉTRICAS	HIDROELÉT.	RICAS	TERMOELÉTRICAS	TERMOELÉTRICAS		
ANO	Usina	Usina	Total	Total	Usina em	Total	Total	
	Casca II	Casca III	Mesorregião 01	Estado	Cuiabá	Mesorregião 01	Estado	
1985	27.262	54.958	82.220	104.200	6.829	6.829	78.170	
1986	25.004	35.133	60.137	91.669	1.277	1.277	94.537	
1987	22.687	51.274	73.961	117,852	1.445	1.445	118.632	
1988	26.385	53.099	79.484	118.140	zero	zero	152.502	
1989	21.822	66.210	88.032	130.267	zero	zero	178.274	
1990	9.825	64.649	74.473	123,699	zero	zero	191.270	
1991	22.233	57.014	79.247	142.734	zero	zero	208.668	
1992	24.158	59.944	84.102	149.877	zero	zero	233.770	
1993	25.786	59.771	85.557	164.327	zero	zero	259.451	
1994	23.720	57.406	81.125	171.070	zero	zero	284.794	
1995	27.433	67.372	94.805	190.921	zero	zero	239.153	

Fonte: CEMAT, Boletim Estatístico de Mercado de Energia, 1985 a 1995.

1 cal = 4,186 Joules; 1 kWh = 860,1 kcal; 1 MWh = 3,6 GJoule; 1×10^9 kcal = 10,8 x 10^3 tEP

Verifica-se que a partir de 1988 não mais ocorreu produção de energia elétrica na velha usina termoelétrica de Cuiabá à óleo Diesel, de propriedade da CEMAT, a qual foi desativada, visto que a região passou a dispor de uma maior oferta de energia elétrica oriunda das usinas hidroelétricas de Goiás e Minas Gerais com a energização de uma terceira linha de transmissão até Cuiabá. Observa-se que a produção de energia nas usinas termoelétricas no Estado continuou crescente, exceto em 1995 em razão da desativação de algumas delas integrantes do sistema isolado decorrente da energização da extensão da linha de transmissão do sistema interligado até Sinop, em dezembro de 1994, notando-se também, nos últimos 5 anos, o aumento da produção de energia elétrica das usinas hidroelétricas no Estado.

4.1.2 - Energia de Biomassas

A produção do combustível lenha decorre da necessidade do preparo das áreas de cerrados de inúmeras fazendas existentes na mesorregião 01, para o plantio de algumas culturas e a formação de pasto para a engorda do rebanho bovino. No entretanto, a produção de lenha de cerrados vem caindo nos anos 90 na mesorregião 01 e no Estado, daí porque o atendimento da demanda começa a ser complementado com a lenha oriunda de florestas energéticas, caso típico da empresa Sadia Oeste S.A cujo frigorífico em Várzea Grande, começou a consumir no ano de 1995 a lenha oriunda de suas primeiras áreas florestadas.

O Quadro 4.1.2.a apresenta os dados de produção vegetal na mesorregião 01.

Quadro 4.1.2.a Dados da Produção Vegetal e da Silvicultura Mesorregião 01 - Período: 1985/1995 - Unidade: diversas

	Estado e	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995
Espécie	Mesorregião											
Madeira em	Mato Grosso	1.104	1.527	1.399	1.900	1.660	1.899	2.875	2.608	2.730	4.089	4.257
tora (1000 m³)	Mesorregião 01	26	28	15	14	15	16	12	8	11	9	6
Lenha	(1) Mato Grosso	3.837	4.772	4.241	4.653	5.056	4.606	3.933	3.420	3.248	3.381	3.196
(1000 m^3)	(2) Mesorregião 01	782	785	805	768	718	677	562	541	500	497	498
Carvão	Mato Grosso	1.566	1.417	1.199	1.679	3.319	3.038	2.057	2.763	2.928	4.543	3.816
Vegetal (ton)	Mesorregião 01	37	478	517	405	411	416	79	184	229	190	202
Evolução % Produção de I 01: {(2)/(1)} x	da Participação da enha da Mesorregião : 100	1	16,4	18,9	16,5	14,2	14,7	14,3	15,8	15,4	14,7	15,6

Fonte: FIBGE - Produção Extrativa Vegetal e da Silvicultura, 1985 a 1995

Nota-se que a produção de madeira em tora na mesorregião 01 vem diminuindo em razão de na mesma não mais existir madeiras de lei para corte. Igualmente, vem caindo a produção de lenha na mesorregião 01 devido a escassez de cerrados e de matas para serem derrubadas, fato este que vem estimulando as empresas a investirem em florestas energéticas para consumo próprio no futuro.

O carvão vegetal, embora com produção pouco expressiva, é produzido em quase todos os municípios da mesorregião 01 (APÊNDICES C), tendo sido elevada a produção do mesmo no período 1986 a 1990, caindo abruptamente em 1991 em virtude do município de Poconé, maior produtor da mesorregião 01, ter diminuído a sua produção a partir desse ano (APÊNDICE C.7). No entretanto, a produção de carvão vegetal voltou a crescer nos últimos 3 anos, conforme mostram os dados do Quadro 4.1.2.a, o que pode estar sinalizando uma tendência de aumento da produção desse combustível.

O Quadro 4.1.2.b apresenta os dados de produção dos derivados da cana-de-açúcar.

Quadro 4.1.2.b Dados da Produção de Derivados da Cana - de - Açúcar Mesorregião 01 - Período:1985/1995 - Unidade: diversas

	17.1	esorreg	140 UI -	rerioao	11200/12	795 - UII.	iaaae: a	iversas			
Produtos/Safra	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995
Álcool (1000 l)	zero	zero	14.861	12.500	9.800	17.000	11.121	zero	zero	zero	19.820
- Hidratado	zero	zero	14.861	12.500	9.800	17.000	11.121	zero	zero	zero	19.820
- Anidro	zero	zero	zero	zero	zero	zero	zero	zero	zero	zero	zero
Bagaço (ton.)	zero	zero	49.538	47.928	32.500	67.500	34.660	zero	zero	zero	80.640
- Consumido	zero	zero	33.028	33.550	21.670	45.000	23.110	zero	zero	zero	53.760
- Excedente	zero	zero	16.510	14.378	10.830	22.500	11.550	zero	zero	zero	26.880
Cana Moida (ton.)	zero	zero	198.152	191.713	130.000	270.000	138.643	zero	zero	zero	252.000

Fonte: SINDALCOOL, 1996

No que se refere aos combustíveis derivados da cana-de-açúcar, a produção de álcool etílico hidratado na única destilaria na mesorregião 01 é insuficiente para o atendimento da demanda regional, sendo a diferença importada de outras mesorregiões, tendo em vista ser o Estado exportador desse produto (Anexo VI). A referida destilaria não produz álcool anidro, estando com projeto nesse sentido para ser implementado brevemente (SINDALCOOL,1996).

Observa-se que até 1986 a mesorregião 01 não produzia álcool etílico, tendo a produção sido iniciada em 1987 na única destilaria implantada na mesorregião 01 da empresa COOCAPO, a qual deixou de produzir em 1992, 1993 e 1994 em razão de dificuldades financeiras, tendo retornado à produção de álcool em 1995, sob nova direção e razão social.

4.2 - Consumo de Energia sem a aplicação da Metodologia

O consumo de energia na mesorregião 01 foi estimado por energético no curto período 1989 a 1995, tendo em vista que os dados oficiais de consumo de energia dos derivados de petróleo e de álcool etílico hidratado relativos aos anos anteriores a 1989 já não mais se encontravam disponíveis nos arquivos do DNC/MME, não tendo sido localizados também nos arquivos da Coordenadoria do Balanço Energético do Estado de Mato Grosso.

4.2.1 - Consumo de Energia por Energéticos

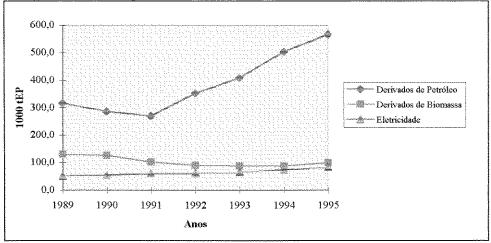
A Tabela 4.2.1 apresenta os dados de consumo de energia na mesorregião 01 (APÊNDICES B,C,D), sendo os relativos aos derivados de petróleo oriundos de dados de consumo obtidos segundo os critérios estabelecidos pelo DNC/MME (APÊNDICES A).

Verifica-se que o elevado consumo de óleo Diesel em relação aos demais, dá ao mesmo a condição de energético de maior participação na matriz de consumo da mesorregião 01, sendo cada vez mais crescente embora tenha apresentado uma queda expressiva no ano de 1991 em decorrência da recessão da economia no Estado com reflexos na mesorregião 01, conforme pode ser comprovado pela queda da arrecadação do ICMS (Quadro 3.4.a). Por outro lado, o consumo de gasolina automotiva voltou a ser crescente em razão da retomada de circulação de automóveis à gasolina em grande quantidade com a consequente diminuição do tráfego de automóveis movidos à álcool hidratado, fato este motivado pelas decisões políticas no âmbito federal, no começo dos anos 90, dentre as quais a de determinar o aumento da produção de veículos nacionais à gasolina em proporção muito superior a de veículos à álcool.

O aumento expressivo do óleo combustível foi devido à entrada em operação da moderna fábrica de cimento do grupo Votorantim em 1991, localizada em Nobres, e ao funcionamento recente de três unidades de extração de óleo de soja e uma unidade industrial de massas alimentícias no Distrito Industrial de Cuiabá, todas elas com elevada demanda do óleo. Por outro lado, a queda do consumo de GLP é atribuída à diminuição da atividade garimpeira, onde o combustível é muito utilizado (SINGAMPEMAT,1996).

Tabela 4.2.1
Dados de Consumo de Energia por Energéticos
Mesorregião 01 - Período:1989/1995 - Unidade: 10³ tEP

Energético \ Anos	1989	1990	1991	1992	1993	1994	1995
Óleo Diesel	194,7	175,0	148,0	233,0	274,1	337,8	365,8
Gasolina Autom.	49,2	49,2	55,2	52,0	57,6	66,3	78,8
Óleo Combustível	2,4	2,7	17,2	25,9	36,2	52,9	66,1
GLP	31,8	26,3	23,3	15,3	17,9	23,4	28,5
Querosene Aviação	31,3	26,9	22,8	23,7	20,1	19,7	21,4
Gasolina Aviação	5,2	4,5	2,6	1,9	2,5	3,8	5,1
Querosene Ilumin.	0,7	0,5	0,5	0,2	0,1	0,1	0,1
Derivados de Petróleo	315,3	285,1	269,6	352,0	408,5	504,0	565,8
Lenha	85,6	80,6	67,0	64,4	59,5	59,3	59,3
Álcool Etíl. Hidrat.	38,7	36,0	30,1	25,6	27,9	28,2	28,2
Bagaço de Cana	4,5	9,4	4,8	0,0	0,0	0,0	11,2
Carvão Vegetal	0,3	0,3	0,0	0,1	0,2	0,1	0,1
Derivados de Biomassa	129,1	126,3	101,9	90,1	87,6	87,6	98,8
Eletricidade	50,1	53,7	59,4	60,4	63,6	73,6	83,2
TOTAL	494,5	465,1	430,9	502,5	559,7	665,2	747,8


Fontes: a) DNC, 1989 a 1995 b) FIBGE, 1985 a 1995 c) CEMAT, 1985 a 1995

A diminuição do consumo de querosene de aviação é resultante da suspensão de alguns vôos com escala no Aeroporto Mal. Rondon, imposta pelas empresas aéreas nos primeiros anos da década de 90. O consumo elevado de gasolina de aviação nos anos 1989, 1990, 1994, é justificado por se tratar de anos de eleições caracterizados por campanhas eleitorais, época em que os aparelhos mono e bimotores são muito utilizados. Nota-se também um crescente consumo de eletricidade e uma queda do consumo do combustível lenha.

No período analisado, a taxa geométrica anual média de crescimento do consumo foi de 10,2% para os derivados de petróleo, de - 4,4% para os derivados de biomassa e de 8,8% para a eletricidade, destacando-se o consumo dos derivados de petróleo muito superior em relação aos das outras duas categorias, fazendo crer da necessidade de uma averiguação profunda quanto à veracidade dos dados oficiais de consumo, notadamente do óleo Diesel dentre os primeiros, bem como o da eletricidade.

O Gráfico 4.2.1 mostra as curvas de consumo de energia por categorias de energéticos.

Gráfico 4.2.1 Evolução das Curvas de Consumo de Energia por Categorias de Energéticos Mesorregião 01 - Período: 1989/1995 - Unidade: 10³ tEP

Fonte: Elaboração do Autor

Nota-se a prevalência do consumo dos energéticos derivados de petróleo em relação ao consumo dos energéticos derivados de biomassas e ao da eletricidade, notadamente a partir de 1992 quando o consumo do primeiro elevou-se de forma abrupta. O consumo de eletricidade manteve-se em ascensão pouco acentuada devido a limitada oferta da mesma na região.

4.2.2 - Consumo de Energia por Setores da Economia

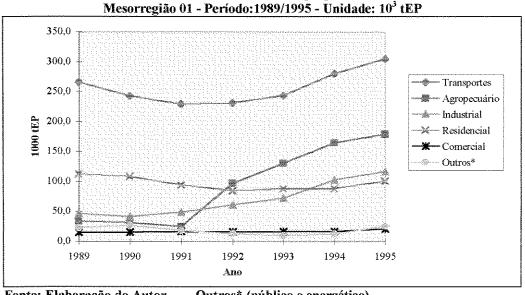
A Tabela 4.2.2 apresenta os dados de consumo de energia por setores da economia.

Tabela 4.2.2

Dados de Consumo de Energia por Setores da Economia

Mesorregião 01 - Período:1989/1995 - Unidade: 10³ tEP

Setores \ Anos	1989	1990	1991	1992	1993	1994	1995
Transportes	265,7	242,8	229,2	231,5	243,6	280,1	304,6
Agropecuário	33,9	31,1	24,4	96,6	130,2	164,5	179,2
Industrial	45,7	41,2	48,7	61,1	72,0	102,6	116,3
Residencial	112,2	107,9	94,3	84,5	87,4	88,3	100,7
Comercial	14,7	15,5	16,4	16,0	16,9	17,0	21,0
Público	10,5	12,0	11,7	11,7	8,4	11,2	13,0
Energético	11,8	14,6	6,3	1,3	1,2	1,2	12,8
TOTAL	494,5	465,1	431,0	502,7	559,7	664,9	747,6


Fontes: a) DNC, 1989 a 1995 b) FIBGE, 1985 a 1995 c) CEMAT,1985 a 1995

Pelos dados da Tabela 4.2.2 observa-se que o setor de maior consumo é o de transporte devido essencialmente ao elevado consumo de óleo Diesel, o qual conforme foi mostrado é o energético de maior participação na matriz da mesorregião 01.

O setor industrial, em franca expansão na mesorregião 01 (item 3.4), vem apresentando consumo de energia crescente enquanto os setores residencial, comercial e público tiveram uma elevação de consumo menos acentuada nos últimos anos, condizente com as medidas de contenção de gastos a que foram submetidos esses setores. O consumo do setor energético diminuiu na mesorregião 01 face à interrupção do funcionamento da destilaria de álcool nos anos 1992, 1993 e 1994, voltando a operar em 1995.

Gráfico 4.2.2 Evolução das Curvas de Consumo de Energia por Setores da Economia

O Gráfico 4.2.2 mostra a evolução das curvas de consumo de energia por setores.

Fonte: Elaboração do Autor Outros* (público e energético)

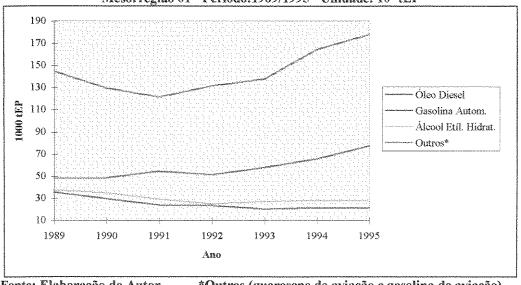
Observando a evolução das curvas de consumo dos setores industrial e residencial no Gráfico 4.2.2, verifica-se que de modo estranho o consumo de energia do setor residencial decresce acentuadamente a partir de 1990 voltando a crescer em 1995, sendo o fenômeno explicado pela contabilização do consumo do GLP, ocorrido clandestinamente nos garimpos durante a fase áurea dessa atividade nos anos 80, ter sido lançada no setor residencial pelo DNC (MIGUEZ & PASSOS, 1993).

Os anos 1990, 1991 e 1992, caracterizados por instabilidades políticas, foram adversos para a economia da mesorregião 01 ocasionando a diminuição do consumo de energia no setor transporte, recuperando-se todavia a partir de 1993, enquanto o consumo do setor agropecuário apresentou, estranhamente uma abrupta elevação do consumo em 1992, continuando a crescer aceleradamente nos anos subsequentes, comportamento este que ensejou uma análise mais aprofundada conforme será explicado no capítulo 5.

4.2.2.a - Consumo de Energia no Setor Transporte

A Tabela 4.2.2.a apresenta os dados de consumo de energia no setor transporte.

Tabela 4.2.2.a Dados de Consumo de Energia no Setor Transporte Mesorregião 01 - Período:1989/1995 - Unidade: 10³ tEP


Energéticos \ Anos	1989	1990	1991	1992	1993	1994	1995
Óleo Diesel	144,7	129,5	121,3	131,4	137,9	164,4	178,0
Gasolina Autom.	48,2	48,5	54,6	51,4	57,9	65,9	77,5
Álcool Etíl. Hidrat.	37,4	35,0	29,5	25,1	27,5	28,1	27,8
Querosene Aviação	30,6	25,6	21,5	22,1	18,4	18,4	19,1
Gasolina Aviação	4,8	4,2	2,3	1,5	1,9	3,3	2,2
TOTAL	265,7	242,8	229,2	231,5	243,6	280,1	304,6

Fonte: DNC, 1989 a 1995

O consumo de óleo Diesel liderou os demais neste setor sendo seguido pelo da gasolina automotiva, apresentando-se ambos os consumos em visível expansão desde 1993. O consumo de álcool hidratado, expressivo em 1989, diminuiu nos anos seguintes por razões explicadas anteriormente, enquanto o consumo de querosene de aviação bem elevado nos anos 1989 e 1990 (campanhas eleitorais), caiu sensivelmente em 1991 e 1992, estabilizando-se somente nos últimos 3 anos, enquanto a gasolina de aviação apresentou um consumo decrescente.

O Gráfico 4.2.2.a mostra a evolução das curvas de consumo de energia no setor.

Gráfico 4.2.2.a Evolução da Curva de Consumo de Energia no Setor Transporte Mesorregião 01 - Período:1989/1995 - Unidade: 10³ tEP

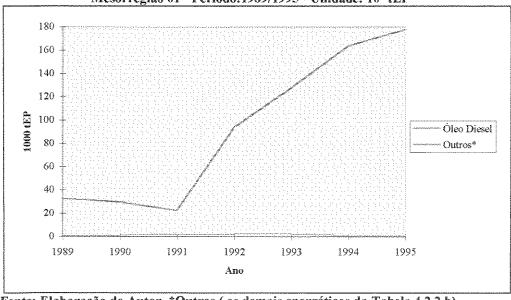
Fonte: Elaboração do Autor *Outros (querosene de aviação e gasolina de aviação)

4.2.2.b - Consumo de Energia no Setor Agropecuário

A Tabela 4.2.2.b apresenta os dados de consumo de energia no setor agropecuário.

Tabela 4.2.2.b

Dados de Consumo de Energia no Setor Agropecuário
Mesorregião 01 - Período: 1989/1995 - Unidade: 10³ tEP


	9						
Energéticos \ Anos	1989	1990	1991	1992	1993	1994	1995
Óleo Diesel	32,6	29,8	22,3	94,1	127,8	163,7	178,1
Eletricidade	0,4	0,5	0,4	0,4	0,5	0,5	0,6
Óleo Combustível	0,1	0,2	1,0	1,3	0,9	0,1	0,2
Gasolina Aviação	0,1	0,1	0,2	0,3	0,4	0,1	0,2
Querosene Aviaç.	0,0	0,0	0,0	0,3	0,5	0,0	0,0
Querosene Ilum.	0,7	0,5	0,5	0,2	0,1	0,1	0,1
TOTAL	33,9	31,1	24,4	96,6	130,2	164,5	179,2

Fontes: a) DNC, 1989 a 1995 b) CEMAT, 1985 a 1995

Verifica-se que o óleo Diesel é praticamente o único combustível utilizado no setor, tendo o consumo do mesmo crescido aceleradamente a partir de 1992, fato este bastante estranho já detectado quando da apresentação dos dados de consumo por setores (Tabela 4.2.2), cuja explicação será dada no capítulo 5, na etapa de averiguação da consistência dos dados de consumo do referido combustível no setor.

O Gráfico 4.2.2.b apresenta as curvas de consumo de energia no setor agropecuário.

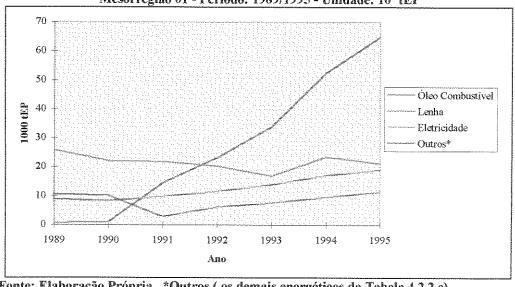
Gráfico 4.2.2.b Evolução da Curva de Consumo de Energia no Setor Agropecuário Mesorregião 01 - Período:1989/1995 - Unidade: 10⁵ tEP

Fonte: Elaboração do Autor *Outros (os demais energéticos da Tabela 4.2.2.b)

4.2.2.c - Consumo de Energia no Setor Industrial

A Tabela 4.2.2.c apresenta os dados de consumo de energia no setor industrial.

Tabela 4.2.2.c Dados de Consumo de Energia no Setor Industrial Mesorregião 01 - Período: 1989/1995 - Unidade: 103 tEP


***	7						
Energéticos \ Anos	1989	1990	1991	1992	1993	1994	1995
Óleo Combustível	0,7	0,9	14,4	23,2	33,8	52,5	64,9
Lenha	25,8	22,0	21,8	20,3	16,8	23,5	21,1
Eletricidade	8,7	8,2	9,7	11,5	13,9	17,1	18,9
Óleo Diesel	9,4	9,3	2,4	5,7	6,8	8,5	8,9
Gasolina Aviação	0,2	0,1	0,0	0,1	0,0	0,4	1,3
Querosene Aviação	0,2	0,2	0,2	0,2	0,3	0,5	1,2
GLP	0,4	0,3	0,2	0,1	0,4	0,1	0,0
Gasolina Autom.	0,2	0,1	0,0	0,0	0,0	0,0	0,0
Álcool Etíl. Hidrat.	0,1	0,1	0,0	0,0	0,0	0,0	0,0
TOTAL	45,7	41,2	48,7	61,1	72,0	102,6	116,3

Fontes: a) DNC, 1989 a 1995 b) FIBGE, 1985 a 1995 c) CEMAT, 1985 a 1995

O elevado consumo de óleo combustível, a partir de 1991, é devido ao funcionamento da fábrica de cimento no município de Nobres e das indústrias de esmagamento de soja e de massas alimentícias no Distrito Industrial de Cuiabá. O acentuado crescimento do consumo de eletricidade confirma a expansão industrial na mesorregião 01 nos últimos anos. O consumo de lenha decresceu enquanto cresceram os de óleo combustível e de eletricidade, evidenciando um processo de substituição de energéticos no setor (IEL/MT, 1995).

O Gráfico 4.2.2.c apresenta as curvas de consumo de energia no setor industrial.

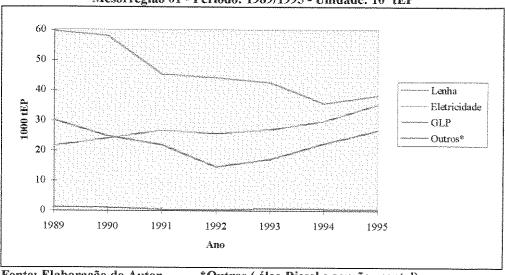
Gráfico 4.2.2.c Evolução da Curva de Consumo de Energia no Setor Industrial Mesorregião 01 - Período: 1989/1995 - Unidade: 103 tEP

Fonte: Elaboração Própria *Outros (os demais energéticos da Tabela 4.2.2.c)

4.2.2.d - Consumo de Energia no Setor Residencial

A Tabela 4.2.2.d apresenta os dados de consumo de energia no setor residencial.

Tabela 4.2.2.d
Dados de Consumo de Energia no Setor Residencial
Mesorregião 01 - Período: 1989/1995 - Unidade: 10³ tEP


-1	5240 VX X	CALUMUS A	74771X770		RF. TA 11	##.	
Energéticos \Anos	1989	1990	1991	1992	1993	1994	1995
Lenha	59,6	58,1	45,3	44,2	42,6	35,7	38,2
Eletricidade	21,4	24,0	26,7	25,6	27,0	29,7	35,3
GLP	30,1	24,7	21,9	14,5	17,1	22,3	26,7
Óleo Diesel	0,9	0,9	0,4	0,1	0,5	0,5	0,4
Carvão Vegetal	0,2	0,2	0,0	0,1	0,2	0,1	0,1
TOTAL	112,2	107,9	94,3	84,5	87,4	88,3	100,7

Fontes: a) DNC,1989 a 1995 b) FIBGE, 1985 a 1995 c) CEMAT, 1985 a 1995

Verifica-se pelos dados da Tabela 4.2.2.d que o consumo de energia do setor residencial caiu sensivelmente a partir do ano 1991, embora tenha voltado a crescer em 1995. Observa-se que o consumo de eletricidade manteve-se crescente, devido ao crescimento populacional demandando energia elétrica nas casas e edificios residenciais, notadamente na capital Cuiabá e em Várzea Grande. De forma diferente e estranha, o consumo de GLP, elevado no ano de 1989, diminuíu nos anos 1990 e 1991 e mais ainda no ano de 1992 para voltar a crescer a partir de 1993 de forma discreta até 1995, comportamento atípico para o setor, fato este explicado pelo uso indevido do GLP no Brasil analisado pelos autores MIGUEZ & PASSOS.

O Gráfico 4.2.2.d mostra as curvas de consumo de energia no setor residencial.

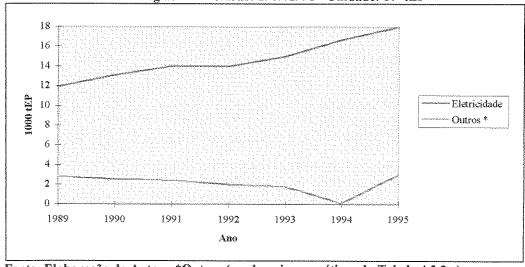
Gráfico 4.2.2.d Evolução da Curva de Consumo de Energia no Setor Residencial Mesorregião 01 - Período: 1989/1995 - Unidade: 10³ tEP

Fonte: Elaboração do Autor *Outros (óleo Diesel e caryão vegetal)

4.2.2.e - Consumo de Energia no Setor Comercial

A Tabela 4.2.2.e apresenta os dados de consumo de energia no setor comercial.

Tabela 4.2.2.e
Dados de Consumo de Energia no Setor Comercial
Mesorregião 01 - Período: 1989/1995 - Unidade: 10³ tEP


Energéticos \ Anos	1989	1990	1991	1992	1993	1994	1995
Eletricidade	11,9	13,1	14,0	14,0	15,0	16,7	18,0
Gasolina Aviação	0,1	0,1	0,0	0,0	0,0	0,0	1,4
Gasolina Autom.	0,0	0,0	0,0	0,0	0,0	0,0	0,5
Óleo Combustível	1,7	1,6	1,8	1,4	1,7	0,1	0,3
Querosene Aviação	0,0	0,1	0,0	0,1	0,0	0,0	0,3
Óleo Diesel	0,3	0,4	0,3	0,1	0,1	0,1	0,2
Álcool Etíl. Hidrat.	0,0	0,0	0,0	0,0	0,0	0,0	0,2
GLP	0,6	0,2	0,3	0,4	0,1	0,1	0,1
Carvão Vegetal	0,1	0,1	0,0	0,0	0,0	0,0	0,0
TOTAL	14,7	15,5	16,4	16,0	16,9	17,0	21,0

Fontes: a) DNC, 1989 a 1995 b) FIBGE, 1985 a 1995 c) CEMAT, 1985 a 1995

Os dados mostram o crescimento do consumo de eletricidade por todo o período, sendo o mesmo responsável pela quase totalidade do consumo na matriz do setor. Os consumos de gasolina automotiva e de álcool hidratado somente foram registrados neste setor a partir do ano de 1995, conforme constam nos documentos oficiais do DNC.

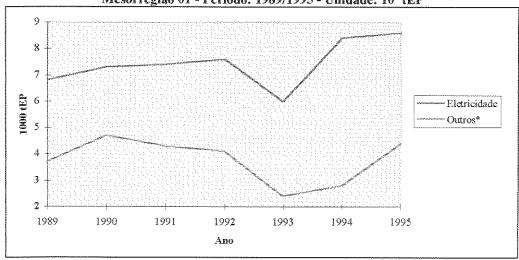
O Gráfico 4.2.2.e mostra as curvas de consumo de energia no setor comercial.

Gráfico 4.2.2.e Evolução da Curva de Consumo de Energia no Setor Comercial Mesorregião 01 - Período: 1989/1995 - Unidade: 10³ tEP

Fonte: Elaboração do Autor *Outros (os demais energéticos da Tabela 4.2.2.e)

A Tabela 4.2.2.f apresenta os dados de consumo de energia no setor público.

Tabela 4.2.2.f
Dados de Consumo de Energia no Setor Público
Mesorregião 01 - Período: 1989/1995 - Unidade: 10³ tEP


TYECHOLEC	SKEO OF T	CAXULEU.	*****	O CARRES	CHARL TO S	, <u>e</u> ;, e	
Energéticos \ Anos	1989	1990	1991	1992	1993	1994	1995
Eletricidade	6,8	7,3	7,4	7,6	6,0	8,4	8,6
GLP	0,6	1,1	0,9	0,3	0,2	0,9	1,7
Óleo Combustível	0,0	0,0	0,0	0,0	0,0	0,0	1,0
Gasolina Autom.	0,8	0,6	0,6	0,6	0,6	0,5	0,7
Querosene Aviação	0,5	1,2	1,1	1,1	0,6	0,7	0,5
Óleo Diesel	0,8	1,0	1,2	1,4	0,3	0,5	0,3
Álcool Etíl. Hidrat.	0,9	0,7	0,5	0,4	0,3	0,2	0,2
Querosene Ilumin.	0,1	0,0	0,0	0,0	0,0	0,0	0,0
Gasolina Aviação	0,0	0,1	0,0	0,3	0,4	0,0	0,0
TOTAL	10,5	12,0	11,7	11,7	8,4	11,2	13,0

Fontes: a) DNC, 1989 a 1995 b) CEMAT, 1985 a 1995

Neste setor o consumo de eletricidade, por todo o período, foi o maior dentre os demais, verificando-se no entretanto uma queda do mesmo no ano 1993 justificada pelo longo período de greve mantido pelos servidores públicos estaduais na constante luta sindical por aumento de salários. Os combustíveis querosene de aviação, álcool hidratado e óleo Diesel apresentaram consumos decrescentes enquanto a gasolina automotiva e o GLP mantiveram os consumos quase estáveis, face às contenções de despesas e a greve prolongada.

O Gráfico 4.2.2.f mostra a evolução das curvas de consumo de energia no setor público.

Gráfico 4.2.2.f Evolução da Curva de Consumo de Energia no Setor Público Mesorregião 01 - Período: 1989/1995 - Unidade: 10³ tEP

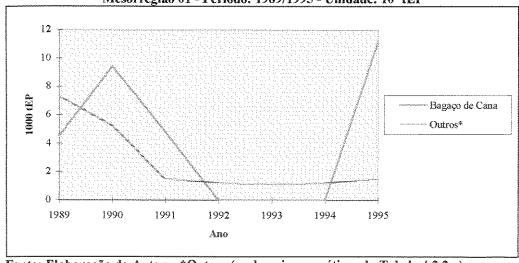
Fonte: Elaboração do Autor *Outros (os demais energéticos da Tabela 4.2.2.f)

4.2.2.g - Consumo de Energia no Setor Energético

A Tabela 4.2.2.g apresenta os dados de consumo de energia no setor energético.

Tabela 4.2.2.g

Dados do Consumo de Energia no Setor Energético
Mesorregião 01 - Período: 1989/1995 - Unidade: 10³ tEP


112000110510	OUX XV	LIVETO L.	,0,,2,,,	, something	4004 20	d-18*1 12	
Energéticos \ Anos	1989	1990	1991	1992	1993	1994	1995
Bagaço de Cana	4,5	9,4	4,8	0,0	0,0	0,0	11,2
Eletricidade	1,0	0,9	1,2	1,1	1,1	1,1	1,4
Óleo Diesel	6,0	4,1	0,2	0,1	0,1	0,1	0,1
Álcool Etíl. Hidrat.	0,3	0,2	0,1	0,1	0,0	0,0	0,1
TOTAL	11,8	14,6	6,3	1,3	1,2	1,2	12,8

Fontes: a) DNC, 1989 a 1995 b) CEMAT, 1985 a 1995

O consumo de energia neste setor deve-se ao bagaço de cana por quase todo o período, notando-se uma presença expressiva do óleo Diesel em 1989 e 1990 em face da utilização do mesmo na geração de eletricidade no canteiro de obras da UHE de Manso, decaindo a seguir em face da desativação do referido canteiro. O consumo de bagaço de cana após apresentar elevação expressiva no ano de 1990 e queda em 1991, deixou de existir nos anos 1992, 1993 e 1994, em virtude da paralização da destilaria de álcool, tendo voltado a operar em 1995.

O Gráfico 4.2.2.g mostra as curvas de consumo de energia no setor energético.

Gráfico 4.2.2.g Evolução da Curva de Consumo de Energia no Setor Energético Mesorregião 01 - Período: 1989/1995 - Unidade: 10³ tEP

Fonte: Elaboração do Autor *Outros (os demais energéticos da Tabela 4.2.2.g)

Em síntese, as matrizes apresentadas neste capítulo mostram os dados presumíveis de consumo de energia na mesorregião 01, os quais serão averiguados no decorrer do capítulo 5 relativamente à consistência conforme preconiza a metodologia.

CAPÍTULO 5

5 - AS MATRIZES DE CONSUMO CONSOANTE A METODOLOGIA

A aplicação da metodologia proposta, na mesorregião 01, foi realizada neste capítulo segundo as etapas apresentadas na Figura 2.2, valendo-se das diversas informações contidas nos capítulos anteriores, nos anexos e nos apêndices.

5.1 - Etapa de REUNIÃO dos Dados de Consumo dos Energéticos

Os dados preliminares de consumo dos energéticos derivados de petróleo, obtidos junto ao DNC/MME na publicação anual "Vendas e Usos de Combustíveis", estão apresentados nos APÊNDICES B, distribuídos por municípios para os quais as vendas foram destinadas. Os dados alusivos aos energéticos derivados de biomassa (lenha e carvão vegetal), obtidos junto a FIBGE, estão nos APÊNDICES C enquanto os dados de consumo do álcool etílico hidratado, fornecidos pelo DNC/MME, estão nos APÊNDICES B, todos eles distribuídos por municípios.

Deve-se ressaltar que os dados apresentados pela FIBGE, publicados anualmente no documento "Produção Vegetal e da Silvicultura", referem-se à produção dos energéticos lenha e carvão vegetal na mesorregião 01, os quais são normalmente aceitos como dados de consumo para efeito da elaboração do balanço energético estadual, visto que a obtenção dos mesmos pelos agentes da FIBGE é através de pesquisas junto às empresas consumidoras.

Os dados de consumo e de consumidores de eletricidade, obtidos junto à concessionária CEMAT na publicação anual "Boletim de Mercado de Energia Elétrica", estão apresentados, respectivamente, nos APÊNDICES D e E, por classes de consumo e por municípios.

5.2 - Etapa de AVERIGUAÇÃO dos Dados de Consumo de Energia

A averiguação dos dados de consumo de energia na mesorregião 01 foi procedida por categorias de energéticos, obedecendo a ordem de importância quantitativa do consumo de cada um dos energéticos, ao longo dos anos da série histórica analisada. Nesta etapa de aplicação da metodologia de análise procurou-se levar em conta todas as informações disponíveis da região em estudo bem como as de outras regiões, para efeito de comparação dos dados preliminares de consumo dos energéticos, conforme preconizada na Figura 2.2.

5.2.1 - Óleo Diesel

O consumo de óleo Diesel, em sua quase totalidade, ocorreu nos setores transporte e agropecuário da mesorregião 01 conforme mostrado nas Tabelas 4.2.1; 4.2.2.a e 4.2.2.b. A mesorregião 01, contendo a capital Cuiabá, é beneficiada por várias rodovias (Figura 3.1.c) por onde escoam os produtos oriundos de outras mesorregiões, o que propicia um consumo de óleo Diesel no setor transporte superior ao apresentado nas regiões sem esta particularidade.

O setor agropecuário é pouco expressivo na economia da mesorregião 01 conforme se deduz da leitura das características dos 12 municípios (item 3.2) e dos Quadros 3.4.b e 3.4.c, ocorrendo a pecuária extensiva no pantanal, a agricultura de pequenas propriedades e uma razoável atividade hortifrutigranjeira. Tais constatações põem em dúvida a validade da aplicação, na mesorregião 01, do critério de apropriação do consumo de energéticos estabelecido pelo DNC/MME e detalhado nos APÊNDICES A, o qual, conforme já ressaltado, estabelece para as vendas aos TRR a proporção para o consumo final: 80% (agropecuário), 16% (rodoviário), 3% (indústria de mineração) e 1% (indústria de alimentação e bebidas).

Pelas informações colhidas na entrevista com o ex-coordenador da Coordenadoria do Balanço Energético de Mato Grosso (ENTREVISTA, 1997), presume-se que realmente os 80% das vendas feitas aos TRRs em Cuiabá e Várzea Grande possam ser consideradas para uso agropecuário, mas a quase totalidade consumida nas áreas agrícolas localizadas fora do espaço da mesorregião 01. Os restantes 20% podem ser aceitos segundo o critério do DNC/MME, isto é: 16% para o setor rodoviário e 4% para o setor industrial. O fato é justificado devido Cuiabá e Várzea Grande se caracterizarem como centros de distribuição de derivados de petróleo, daí porque o óleo Diesel vendido aos TRRs na mesorregião 01 segue para as outras mais próximas, onde a produção de grãos é expressiva (Anexo VII), demandando grande quantidade do óleo.

Relativamente às vendas feitas aos Postos de Revenda, as informações colhidas em Cuiabá e Várzea Grande asseguram que os dados de vendas feitas aos postos da mesorregião 01 podem ser aceitos de conformidade com o que estabelece o critério do DNC/MME, isto é: 85% para o setor rodoviário e 15% para o setor agropecuário (APÊNDICES A). A falta de informações relativas à frota de caminhões de elevada capacidade de carga, licenciados em outros Estados, trafegando nas estradas da mesorregião 01 demandando óleo Diesel, dificulta uma averiguação mais apurada nos dados de consumo de óleo Diesel no setor transporte.

As afirmativas acima, relativas ao consumo de óleo Diesel no setor agropecuário, têm respaldo nos dados de produção das culturas de maior demanda de óleo Diesel, apresentadas no Anexo VIII onde são comparadas as áreas colhidas de grãos na mesorregião 01 e no Estado, em três safras no período analisado. Verifica-se pelos dados finais que a proporção, em termos de área total colhida, variou de 4,4%; 5,1% e 1,1%, respectivamente nas safras 1988/1989, 1991/1992 e 1994/1995. Tomando estas proporções como referenciais para a comparação dos dados de consumo de óleo Diesel no setor agropecuário da mesorregião 01 e do Estado, podese admitir como razoável que apenas 5% das vendas feitas aos TRRs tenham sido de fato destinadas ao consumo no setor agropecuário da mesorregião 01.

Associando o consumo do óleo Diesel representado pelos 5% acima referido com o consumo do mesmo alusivo aos 15% das vendas feitas aos Postos de Vendas (critério do DNC/MME), chega-se a uma estimativa mais realista quanto ao consumo total do óleo Diesel no setor agropecuário na mesorregião 01, oscilando em cerca de 10% do consumo do mesmo no setor agropecuário do Estado (BEEMT, 1995).

5.2.2 - Óleo Combustível

O óleo combustível na mesorregião 01 é todo consumido no setor industrial (Tabelas: 4.2.1 e 4.2.2.c), tendo apresentado dados de consumo inexpressivos nos anos de 1989 e 1990, sendo que a partir de 1991 ganha expressão a participação do óleo na matriz energética regional, transformando-se nos últimos 3 anos no combustível de maior consumo no setor industrial. O crescimento abrupto do consumo do óleo combustível é devido à operação, a partir de 1992, da única fábrica de cimento no Estado e o funcionamento de 4 fábricas no Distrito Industrial de Cuiabá. Tratando-se de combustível usado por poucas empresas na mesorregião 01, pode-se admitir como reais os dados fornecidos pelo DNC/MME.

5.2.3 - Gasolina Automotiva

A gasolina automotiva, igualmente ao que ocorre em outras regiões, é toda consumida no setor transporte na mesorregião 01, sendo os dados de consumo fornecidos pelo DNC/MME (APÊNDICES B), referentes à mistura da gasolina automotiva com álcool anidro na proporção fixada pelo governo federal (Anexo IX), visto que os dados do DNC provêm das distribuidoras de derivados nos Estados, após a realização da mistura e da emissão das notas de vendas.

Assim, conhecidos os percentuais anuais de participação volumétrica do álcool anidro, obtém-se os volumes de ambos os combustíveis e, de posse dos poderes caloríficos chega-se a energia de cada um deles consumida no setor transporte. Os dados referentes à frota de veículos à gasolina e à álcool, licenciados na mesorregião 01 no ano de 1995 (Anexos X.a e X.b), permitem uma melhor averiguação da consistência dos dados de consumo.

Observa-se que com base na quilometragem média rodada por litro (considerando os usualmente aceitos), variando por grupos de veículos (velhos, semi velhos e novos), à gasolina e à álcool, chegam-se às estimativas de consumo total no setor transporte naquele ano, dos combustíveis: gasolina, álcool hidratado e álcool anidro, cujos dados mostram a consistência dos dados oficiais de consumo, fornecidos pelo DNC/MME

5.2.4 - GLP

O combustível GLP é normalmente usado em sua quase totalidade nos setores residencial e industrial de qualquer região. Foi observado no capítulo 4 (Tabela 4.2.2.d e Gráfico 4.2.2.d), um comportamento anormal dos dados de consumo do GLP no setor residencial da mesorregião 01, apresentando-se muito elevado em 1989 e abruptamente caindo nos anos seguintes chegando a 50% em 1992 relativamente a 1989, voltando a crescer para atingir em 1995 um valor quase igual ao de 1989. Comparando os consumos "per capita" de GLP no setor residencial, verifica-se que na mesorregião 01, pelos dados oficiais, o consumo foi de 0,04 tEP/hab. em 1990 e 0,04 tEP/hab. em 1995, portanto sem variação (Tabela 4.2.2.d e Quadro 3.1), enquanto no âmbito nacional o consumo "per capita" também manteve-se estável: 0,04 tEP/hab. em 1990 e 0,04 tEP/hab. em 1995 (BEN, 1996).

O fato do consumo 'per capita" ter se mantido estável no âmbito nacional é plenamente justificável face a grande penetração dos fornos microondas nas residências de famílias de classes média e alta. No entretanto, é anormal a estabilização do consumo "per capita" do GLP no setor residencial na mesorregião 01 visto que a lenha, substituto do GLP nas regiões menos desenvolvidas onde a oferta da mesma ocorre a um custo mais acessível, apresentou um consumo "per capita" no setor residencial da região de 0,09 tEP/hab em 1990, e em 1995 de 0,05 tEP/hab. (Tabela 4.2.2.d e Quadro 3.1), diminuição essa que sinaliza uma substituição parcial da lenha pelo GLP ao longo do período analisado.

O SINGAMPEMAT - Sindicato dos Garimpeiros e das Médias e Pequenas Empresas de Mato Grosso, afirma que o GLP é muito utilizado e de forma indevida, em botijões para uso tão somente no setor residencial, nos locais de mineração de ouro existentes na mesorregião 01, fato este já detectado e esclarecido no estudo acerca do uso indevido de GLP no Brasil (MIGUEZ & PASSOS, 1993). Os autores revelam dados de uma pesquisa do SINDIGÁS - Sindicato Nacional da Indústria do Gás, constatando que o consumo médio na região centro oeste em 1988 foi de 2,2 kg/hab.mês, ou seja 26,4 kg/hab.ano.

As informações acima possibilitam estimar o consumo de GLP no setor residencial da mesorregião 01 conforme será mostrado no Quadro 5.3.3, admitindo a diferença resultante da comparação entre os dados do DNC e as estimativas de consumo baseada na informação do SINDIGÁS, como sendo o consumo no segmento mineração de ouro do setor industrial.

5.2.5 - Eletricidade

Na mesorregião 01 a eletricidade é muito consumida nos setores industrial, residencial, comercial e público, apresentando ainda pequeno consumo nos setores agropecuário e energético. Embora os dados de consumo de eletricidade fornecidos pela CEMAT sejam considerados de confiança, expressando as reais leituras mensais de consumo nos relógios, é preciso ressaltar uma particularidade no consumo de eletricidade na mesorregião 01. Em face da dificuldade financeira enfrentada pela concessionária CEMAT nos últimos 10 anos, deixaram de ser instalados cerca de 40 mil relógios de medição de consumo (CEMAT,1995) na mesorregião 01, notadamente nos bairros periféricos das cidades de Cuiabá e Várzea Grande, ocasionando o não faturamento de parte do consumo além de facilitar os furtos de energia.

Essas irregularidades disseminadas em alguns setores de consumo justificam as elevadas perdas de energia elétrica no âmbito estadual (Anexo XI), chegando as perdas totais (perdas técnicas + perdas comerciais), a atingirem em 1995 a 24,9% da energia elétrica ofertada (CEMAT, 1995), isto é produção própria acrescida da importada. Com a administração especial posta em prática na empresa em meados de 1996 com o fim de prepará-la para ser privatizada, fato este que ocorreu em dezembro de 1997, diversas providências foram implementadas, dentre elas a aquisição de relógios de medição e o combate às fraudes de energia. Acredita-se que as perdas comerciais serão paulatinamente eliminadas até o ano de 1999 com base nos resultados colhidos, embora preliminares, no segundo semestre de 1997.

Os resultados das providências indicaram perdas técnicas da ordem de 13% (geração, transmissão e distribuição), sendo as perdas comerciais, variáveis ano a ano, representadas pelo excedente aos 13%, assim distribuído por setores: cerca de 60% do excedente no residencial, 15% no industrial, 10% no comercial, 10% no público e 5% no agropecuário. Embora não conclusivas, estas informações mostram que o consumo de eletricidade na mesorregião 01 foi maior em todos esses setores conforme demonstrado no Anexo XII, em comparação aos constantes no Boletim de Mercado de Energia Elétrica (APÊNDICES D).

5.2.6 - Lenha

O combustível lenha ainda tem uma participação elevada na matriz de consumo da mesorregião 01, diferentemente do que ocorre em regiões de economia mais desenvolvida nas quais o consumo desse derivado de biomassa é pequeno. A lenha é usada nos setores industrial e residencial da mesorregião 01, sendo que neste último, notadamente no meio rural, os dados de consumo da mesma não são totalmente contabilizados nas publicações anuais da FIBGE.

Analisando o consumo "per capita" de lenha no setor residencial da mesorregião 01 (Tabela 4.2.2.d e Quadro 3.1), nos anos 1990 e 1995, nota-se uma queda, a saber: 0,09 tEP/hab. em 1990 e 0,05 tEP/hab. em 1995. Comparativamente aos dados no âmbito do Brasil, 0,05 tEP/hab. em 1990 e 0,04 tEP/hab. em 1995 (BEN,1996), observa-se uma pequena diferença de consumo "per capita" no ano de 1995 entre a mesorregião 01 e o país.

De modo diferente, no ano de 1990 os consumos "per capita" comparados mostraram diferenças substanciais, aceitas como normais em razão de, no passado recente, o consumo de lenha ainda ter sido acentuado nas regiões do interior brasileiro onde o combustível tem maior oferta. Pode-se pois considerar consistentes os dados da FIBGE relativas ao consumo de lenha nos setores residencial e industrial na mesorregião 01.

5.2.7- Álcool Etílico Hidratado

O consumo de álcool etílico hidratado mostrou-se cada vez menor na mesorregião 01 no período 1989 a 1995 (Tabela 4.2.2.a), em decorrência de decisões políticas no âmbito do governo federal ocorridas no ano de 1990, propiciando a redução da produção nacional de carros à álcool e o aumento substancial da produção de carros à gasolina, motivadas por várias razões as quais deixam de ser comentadas neste trabalho.

O fato da região conter a capital Cuiabá, exercendo forte influência econômica sobre toda a região, propicia um fluxo diário expressivo de veículos provenientes dos 11 municípios da mesorregião 01, estando as sedes dos mesmos dentro de um círculo de 120 km de raio com a capital no centro (Figura 3.1.b). Os dados referentes à frota de veículos à álcool e à gasolina, licenciados na mesorregião 01 no ano de 1995 (Anexos X.a e X.b), permitem uma melhor averiguação dos dados de consumo.

Observa-se que com base na quilometragem média rodada por litro (considerando os usualmente aceitos), variando por grupos de veículos (velhos, semi velhos e novos), à gasolina e à álcool, chegam-se às estimativas de consumo total no setor transporte naquele ano, dos combustíveis: gasolina, álcool hidratado e álcool anidro, cujos dados sinalizam no sentido da consistência dos dados oficiais de consumo, fornecidos pelo DNC/MME

5.2.8- Álcool Etílico Anidro

Sabe-se que o álcool etílico anidro é consumido misturado à gasolina automotiva e em sua quase totalidade no setor transporte. O combustível não é produzido na mesorregião 01 entretanto o é, em grande quantidade, em algumas mesorregiões de Mato Grosso, sendo a mistura processada nas bases secundarias das empresas distribuidoras de petróleo localizadas em Cuiabá e Várzea Grande. Por ser consumido agregado à gasolina automotiva, pelas razões expostas na análise do consumo desta pode-se admitir corretos os dados de consumo do álcool anidro na mesorregião 01, conforme demonstrados e expostos nos Anexos X.a e X.b.

5.2.9- Bagaço de Cana

O bagaço de cana é produzido e parcialmente consumido na única destilaria de álcool existente na mesorregião 01, não tendo ocorrido aproveitamento comercial do excedente até o ano de 1995. Analisando os dados relativos à produção de derivados de cana-de-açúcar na mesorregião 01 (Quadro 4.1.2.b), verifica-se que a relação tonelada de bagaço por tonelada de cana moída foi bem superior a 25% no ano de 1995 (parâmetro regional médio), face ao processamento, naquele ano, de cana envelhecida devido a paralização da destilaria por 3 anos, quando o teor de fibra da cana aumenta em relação ao caldo (SINDALCOOL,1996). Observa-se que a relação tonelada de bagaço consumido por litro de álcool produzido é bem menor que 3:1 (parâmetro regional médio), peculiaridade esta justificada pelo fato de se tratar de uma destilaria nova com maiores rendimentos no processo de produção (SINDALCOOL,1996).

As explicações acima asseguram a consistência dos dados de consumo de bagaço de cana na mesorregião 01, fornecidos pelo SINDALCOOL.

5.2.10 - Carvão Vegetal

Observa-se pelos dados dos APÊNDICES C que a produção de carvão vegetal, decrescente na mesorregião 01, é procedente praticamente de 3 municípios: Poconé, Porto Estrela e Rosário Oeste. Conforme ressaltado, o consumo de carvão vegetal, igualmente ao consumo de lenha, é aceito como sendo igual à produção do mesmo na mesorregião 01. Diferentemente da lenha, o transporte do carvão vegetal a longa distância é economicamente viável, havendo indícios de que a mesorregião 01 importa carvão vegetal oriundo da cidade de Pedra Preta, bem próxima a Rondonópolis na mesorregião 03.

Informações obtidas junto aos supermercados em Cuiabá e Várzea Grande comprovam que os mesmos efetuam compras de carvão vegetal de produção regional e importados, sendo a proporção das compras de 50% de origem regional e 50% de importados. Essas informações sinalizam para um consumo de carvão vegetal superior ao contabilizado nos órgãos oficiais (Tabelas 4.2.2.d e 4.2.2.e), podendo ser estimado em cerca de duas vezes o registrado, na impossibilidade de informações mais precisas.

5.2.11 - Outros Derivados de Petróleo

Comparados aos demais energéticos derivados do petróleo anteriormente analisados, os combustíveis querosene de aviação, gasolina de aviação e querosene de iluminação têm uma importância diminuta quanto aos seus consumos na matriz energética da mesorregião 01. Observa-se também que uma pequena parte do consumo dos dois primeiros combustíveis, acima referidos, aparece indevidamente contabilizada em outros setores da economia (capítulo 4), quando na realidade todo o consumo é próprio do setor transporte.

- Querosene de Aviação

O volume de vendas de querosene de aviação no aeroporto Marechal Rondon, com certeza não representa o volume consumido no espaço aéreo da mesorregião 01 independente se as aeronaves decolam no sentido sul, oeste, norte e leste do Estado, devido ser o referido espaço muito diminuto (Figura 3.1.a e item 3.2).

Somando ao volume do combustível consumido no espaço aéreo da mesorregião 01 quando da decolagem das aeronaves, o volume consumido quando da operação de aterrissagem, pode-se estimar, com base nas informações colhidas junto a INFRAERO, que o consumo anual total é no máximo igual a 30% do volume abastecido no aeroporto Marechal Rondon (APÊNDICES B).

- Gasolina de Aviação

O abastecimento de gasolina de aviação na mesorregião 01 é feita na sua quase totalidade no aeroporto Marechal Rondon, de onde as aeronaves mono e bimotor decolam rumo às cidades e fazendas distantes de Cuiabá pelo menos 200 a 250 km, limites a partir dos quais o vôo passa a ser economicamente viável comparativamente à viagem terrestre. Quando as aeronaves se destinam às regiões oeste, norte e leste do Estado, bem distantes do aeroporto, apenas uma pequena parte do combustível adquirido no aeroporto será consumido no espaço aéreo da mesorregião 01, contrariamente quando elas se destinam ao sul, rumo ao pantanal dirigindo-se às fazendas (Figura 3.1.c), ocasião em que quase todo o combustível é consumido no espaço aéreo sobre a região (ida e volta).

Por outro lado, quando do retorno das aeronaves que partiram rumo ao oeste, norte e leste, uma outra parte do combustível adquirido no aeroporto será consumido no espaço aéreo da mesorregião 01, compensando parcialmente o combustível utilizado fora do espaço aéreo da mesorregião 01 quando da decolagem. Assim sendo, pode-se estimar que pelo menos 50% do volume vendido no aeroporto não são consumidos no espaço aéreo da mesorregião 01.

- Querosene de Iluminação

O consumo de querosene de iluminação na mesorregião 01, todo ele processado no setor agropecuário, vem diminuindo de forma acentuada em decorrência da penetração da eletrificação rural que se ampliou em atendimento aos munícipes dos povoados próximos às sedes dos municípios da mesorregião 01. A referida queda de consumo do combustível também é atribuída à diminuição da população residente no meio rural conforme atestam os dados apurados no último censo no Estado em 1996 (Quadro 3.1). Assim, pode-se aceitar como consistentes os dados de consumo de querosene de iluminação na mesorregião 01, contidos nas publicações do DNC/MME (APÊNDICES B).

5.3 - Etapa de RETIFICAÇÃO dos Dados de Consumo

Nesta etapa de aplicação da metodologia foi procedida a retificação dos dados de consumo de energia que não se mostraram consistentes na averiguação levada a efeito sobre os mesmos. Assim, novas estimativas de consumo de energia na mesorregião 01 foram feitas relativas aos energéticos: óleo Diesel, eletricidade, GLP, gasolina automotiva, carvão vegetal, querosene de aviação e gasolina de aviação.

5.3.1 - Óleo Diesel

A retificação dos dados de consumo de óleo Diesel no setor agropecuário da mesorregião 01 foi realizada com base nas explicações dadas na etapa de averiguação, estando os cálculos apresentados no Quadro 5.3.1, a seguir.

Quadro 5.3.1
Estimativa do Consumo de Óleo Diesel no Setor Agropecuário
Mesorregião 01 - Período: 1989/1995 - Unidade;: 10³ tEP

Ano Especificações	1989	1990	1991	1992	1993	1994	1995
Consumo correspondente aos 5% das vendas aos TRR	0,8	0,7	0,3	4,8	7,0	8,9	9,7
Consumo correspondente aos 15% das vendas aos Postos de Vendas	20,1	17,5	17,1	16,6	16,1	20,3	22,4
Outros consumos	0,3	0,3	0,2	0,0	0,0	0,0	0,0
Consumo Total	21,2	18,5	17,6	23,1	23,1	29,2	32,1

Fonte: DNC, 1989 a 1995

5.3.2 - Eletricidade

Conforme explicado na etapa de averiguação, uma parte da energia elétrica contabilizada como perdas totais (Anexo XI), na realidade representa consumo não faturado ocorrido em alguns setores (Anexo XII), conforme estimado e apresentado nos Quadros a seguir.

Quadro 5.3.2.a

Estimativas do Consumo de Eletricidade no Setor Industrial
Mesorregião 01 - Período 1989/1995 - Unidade: 10³ tEP

MESOTIC	giao o	1 - 1 (110	UU 1707	1775 - 0.	maau.	EU EELE		
	Anos	1989	1990	1991	1992	1993	1994	1995
Especificação								
Consumo Inicial		8,7	8,2	9,7	11,5	13,9	17,1	18,9
Perdas Comerciais (MWh)		5.262	5.384	9.037	14.772	20.242	23.916	24.856
Consumo Adicional		1,5	1,6	2,6	4,3	5,9	6,9	7,2
Consumo Real		10,2	9,8	12,3	15,8	19,8	24,0	26,1

Fonte: CEMAT, 1989 a 1995

Quadro 5.3.2.b Estimativas do Consumo de Eletricidade no Setor Residencial Mesorregião 01 - Período 1989/1995 - Unidade: 10³ tEP

	Anos	1989	1990	1991	1992	1993	1994	1995
Especificação								
Consumo Inicial		21,4	24,0	26,7	25,6	27,0	29,7	35,3
Perdas Comerciais (MWh)		21.050	21.537	36.150	59.090	80.967	95,665	99,423
Consumo Adicional		6,1	6,2	10,5	17,1	23,5	27,7	28,8
Consumo Real		27,5	30,2	37,2	42,7	50,5	57,4	64,1

Fonte: CEMAT, 1989 a 1995

Quadro 5.3.2.c Estimativas do Consumo de Eletricidade no Setor Agropecuário Mesorregião 01 - Período 1989/1995 - Unidade: 10³ tEP

And	s 1989	1990	1991	1992	1993	1994	1995
Especificação							
Consumo Inicial	0,4	0,5	0,4	0,4	0,5	0,5	0,6
Perdas Comerciais (MWh)	1.754	1,795	3,012	4.924	6.747	7.972	8.285
Consumo Adicional	0,5	0,5	0,9	1,4	2,0	2,3	2,4
Consumo Real	0,9	1,0	1,3	1,8	2,5	2,8	3,0

Fonte: CEMAT, 1989 a 1995

Quadro 5.3.2.d Estimativas do Consumo de Eletricidade no Setor Comercial Mesorregião 01 - Período 1989/1995 - Unidade: 10³ tEP

Anos	1989	1990	1991	1992	1993	1994	1995
Especificação							
Consumo Inicial	11,9	13,1	14,0	14,0	15,0	16,7	18,0
Perdas Comerciais (MWh)	3,508	3.590	6.025	9.848	13,494	15.944	16,570
Consumo Adicional	1,0	1,0	1,7	2,9	3,9	4,6	4,8
Consumo Real	12,9	14,1	15,7	16,9	18,9	21,3	22,8

Fonte: CEMAT, 1989 a 1995

Quadro 5.3.2.e Estimativas do Consumo de Eletricidade no Setor Público Mesorregião 01 - Período 1989/1995 - Unidade: 10³ tEP

Anos	1989	1990	1991	1992	1993	1994	1995
Especificação							
Consumo Inicial	6,8	7,3	7,4	7,6	6,0	8,4	8,6
Perdas Comerciais (MWh)	3,508	3.590	6.025	9.848	13,494	15,944	16,570
Consumo Adicional	1,0	1,0	1,7	2,9	3,9	4,6	4,8
Consumo Real	7,8	8,3	9,1	10,5	9,9	13,0	13,4

Fonte: CEMAT, 1989 a 1995

5.3.3 - GLP

A retificação dos dados de consumo do energético GLP nos setores residencial e industrial da mesorregião 01 está demonstrada no Quadro 5.3.3 a seguir, tendo sido realizada com base nas explicações dadas na etapa de averiguação, levando em conta as informações contidas no trabalho dos autores MIGUEZ & PASSOS e os dados da pesquisa do SINDIGÁS.

O Quadro 5.3.3 apresenta os cálculos para as estimativas dos consumos de GLP nos setores residencial e industrial.

Quadro 5.3.3 Estimativa do Consumo de GLP nos Setores Residencial e Industrial Mesorregião 01 - Período:1989/1995

TIREBOLLE		A 0					
Anos Especificação	1989	1990	1991	1992	1993	1994	1995
Consumo médio de GLP no setor residencial							
da região centro oeste do Brasil (kg/hab. ano)	* 26,4	26,4	26,4	26,4	26,4	26,4	26,4
População da Mesorregião 01 (habitantes)	632.472	657.909	691.961	703.171	714.534	726.095	737.843
Consumo de GLP no setor residencial da mesorregião 01 segundo o DNC (10 ³ tEP)	30,1	24,7	21,9	** 14,5	** 17,1	22,3	26,7
Consumo de GLP no setor residencial segundo o SINDIGÁS (10 ³ tEP)	18,2	18,9	19,9	20,2	20,5	20,9	21,2
Diferença de consumo de GLP atribuído como uso indevido em garimpos (10 ³ tEP)	11,9	5,8	2,0	_	Ma,	1,4	5,5
Consumo de GLP a ser adicionado ao setor industrial da mesorregião 01 (10 ³ tEP)	11,9	5,8	2,0	-	**-	1,4	5,5

Fonte: DNC, 1989 a 1995 * consumo (kg/hab.ano) admitido constante no período

5.3.4 - Gasolina Automotiva

A separação dos dados de consumo de gasolina automotiva e de álcool etílico anidro nos setores da mesorregião 01, realizada com base nas explicações feitas na etapa de averiguação, está mostrada no Quadro 5.3.4.

Quadro 5.3.4 Estimativa do Consumo de Gasolina Automotiva e de Álcool Etílico Anidro Mesorregião 01 - Período: 1989/1995

Anos	1989	1990	1991	1992	1993	1994	1995
Especificação	See.						
Volume de vendas da mistura gasolina automotiva + álcool anidro (m³)	63. 75 6,9	64.003,2	71,602,1	67.550,0	74.773,1	85.999,3	102.243,0
Percentual de participação de álcool anidro (%)	17,26	11,88	13,85	15,65	20,00	21,3	22,00
Volume de vendas de álcool anidro (m³)	11.004,5	7.603,6	9.916,9	10.571,6	14.954,6	18.335,1	22.493,5
Volume de vendas de gasolina automotiva (m³)	52.752,6	56.399,6	61.685,2	56.978,4	59.818,5	67.664,3	79.749,5
Consumo de gasolina autom. na mesorregião 01 (10³ tEP)	40,7	43,5	47,6	43,9	46,1	52,2	61,5
Consumo de álcool anidro na mesorregião 01 (10 ³ tEP)	5,7	4,0	5,2	5,5	7,8	9,5	11,7

Fonte: DNC, 1989 a 1995

Relativamente às retificações dos consumos de carvão vegetal, querosene de aviação e gasolina de aviação, as mesmas foram efetuadas com base nas explicações dadas na etapa de averiguação dos dados disponíveis de consumo desses combustíveis.

^{* *} Consumos menores em relação aos calculados com base na pesquisa do SINDIGÁS, correspondendo aos anos em que as atividades nos garimpos estiveram quase desativadas.

5.4 - Etapa de ELABORAÇÃO das Matrizes de Consumo

Nesta etapa são apresentadas as matrizes de consumo por energéticos e por setores da economia, representando os dados nelas contidos as estimativas de consumo de energia, na mesorregião 01, mais próximas da realidade.

5.4.1 - Consumo de Energia por Energéticos

A Tabela 5.4.1 apresenta os dados de consumo de energia na mesorregião 01, por categorias de energéticos, na ordem decrescente de consumo relativo ao ano de 1995.

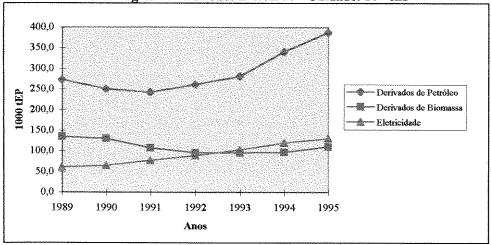
Tabela 5.4.1

Dados de Consumo de Energia por Energéticos

Mesorregião 01 - Período:1989/1995 - Unidade: 10³ tEP

TILCOUL	regiae or	" I CHUUU.	170711772	- Umuau	C. IV CEE		
——— Anos	1989	1990	1991	1992	1993	1994	1995
Energético			***************************************				
Óleo Diesel	183,3	163,7	143,4	160,6	168,8	203,3	220,0
Óleo Combustível	2,5	2,7	17,2	25,9	36,4	52,7	66,4
Gasolina Automotiva	40,6	43,5	47,6	43,9	46,1	52,2	61,5
GLP	31,7	26,3	23,3	21,0	21,2	23,4	28,5
Querosene Aviação	9,8	9,1	7,7	7,9	6,4	6,4	6,7
Gasolina Aviação	2,7	2,5	1,3	1,2	2,4	2,0	2,6
Querosene Iluminante	0,7	0,5	0,5	0,2	0,1	0,1	0,1
Derivados de Petróleo	271,3	248,3	241,0	260,7	281,4	340,1	385,8
Eletricidade	60,3	64,3	76,8	88,8	102,7	119,6	130,8
Lenha	85,4	80,1	67,1	64,5	59,4	59,2	59,3
Álcool Etílico Hidratado	38,6	35,9	30,1	25,6	27,8	28,3	28,1
Álcool Etílico Anidro	5,7	4,0	5,2	5,5	7,8	9,5	11,7
Bagaço de Cana	4,5	9,4	4,8	0,0	0,0	0,0	11,2
Carvão Vegetal	0,3	0,3	0,2	0,2	0,4	0,2	0,2
	<u> </u>						
Derivados de Biomassa	134,5	129,7	107,4	95,8	95,4	97,2	110,4

Fonte: Elaboração do Autor


Observa-se uma constante predominância do consumo de energia de derivados de petróleo em relação ao das demais categorias de energéticos, tendo a participação percentual desse consumo variado de 58,2% em 1989 para 58,5% em 1992 subindo para 61,5% em 1995, expressando dessa forma a elevada e crescente dependência da mesorregião 01 de energéticos não renováveis, agravado ainda mais pelo fato de os mesmos serem totalmente importados. Os derivados de biomassas apresentaram consumos pouco expressivos, enquanto o consumo de eletricidade mostrou-se muito crescente exigindo cada vez mais a importação da mesma, face a inexpressiva produção regional de energia elétrica ao longo dos anos 90.

O Gráfico 5.4.1 apresenta as curvas de consumo por categorias de energéticos.

Gráfico 5.4.1

Evolução das Curvas de Consumo de Energia por Categorias de Energéticos

Mesorregião 01 - Período: 1989/1995 - Unidade: 10³ tEP

Fonte: Elaboração do Autor

5.4.2 - Consumo de Energia por Setores da Economia

O consumo de energia por setores da economia da mesorregião 01 está apresentado na ordem decrescente de consumo relativamente ao ano de 1995.

A Tabela 5.4.2 mostra a evolução do consumo de energia por setores da economia.

Tabela 5.4.2 Dados de Consumo de Energia por Setores da Economia Mesorregião 01 - Período:1989/1995 - Unidade: 10³ tEP

Setores\Anos	1989	1990	1991	1992	1993	1994	1995
Transportes	240,0	223,0	211,9	214,4	227,5	261,6	287,7
Industrial	58,4	48,1	53,1	65,1	77,6	110,0	127,5
Residencial	106,4	108,3	102,9	107,3	114,3	114,6	124,0
Agropecuário	22,9	20,2	20,4	25,1	26,6	32,2	35,4
Comercial	15,6	16,4	18,2	18,9	21,0	21,7	23,5
Público	11,0	11,7	12,4	13,3	11,3	15,6	16,2
Energético	11,8	14,6	6,3	1,3	1,2	1,2	12,8
TOTAL	466,1	442,3	425,2	445,4	479,5	556,9	627,1

Fonte: Elaboração do autor

A soma dos consumos de energia nos setores transporte, industrial e residencial, vem se mantendo acima de 80% do total consumido na mesorregião 01, evidenciando uma desigual distribuição de usos de energia nos setores da economia regional.

Observa-se também o constante predomínio do consumo de energia no setor transporte na mesorregião 01, tendo a sua participação percentual variado de 51,5% em 1989 para 48,1% em 1992 caindo para 45,9% em 1995, declínio este explicado pelo surgimento de agroindústrias no Estado, tornando menor o fluxo de caminhões cortando a mesorregião 01 levando produtos agrícolas destinados à exportação.

O consumo de energia no setor industrial, inicialmente pouco representativo, ganhou expressão a partir do ano 1992 apresentando elevadas taxas de crescimento, tendo inclusive superado o consumo do setor residencial no ano de 1995, confirmando assim a existência de um processo industrial em curso na mesorregião 01.

Todos os outros setores apresentaram crescimentos do consumo de energia, dentre eles o setor agropecuário devido a ocupação cada vez maior, nos últimos anos, das áreas agricultáveis nas proximidades das sedes dos municípios da mesorregião 01. No período 1989 a 1995 a taxa geométrica anual média de crescimento do consumo de energia na mesorregião 01 foi de 5,1%.

O Gráfico 5.4.2 mostra a evolução das curvas de consumo de energia por setores.

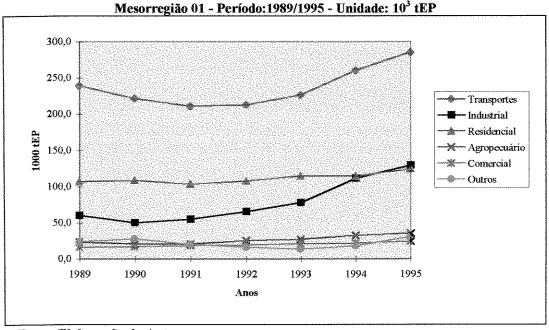


Gráfico 5.4.2 Evolução das Curvas de Consumo de Energia por Setores da Economia

Fonte: Elaboração do Autor

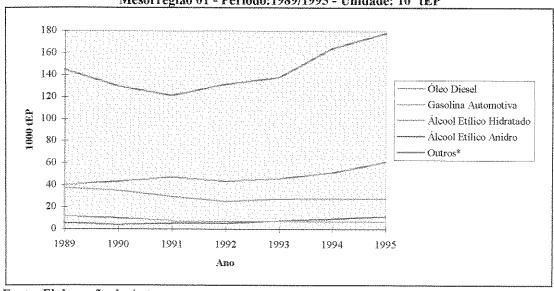
*Outros (público e energético)

5.4.2.a - Consumo de Energia no Setor Transporte

A Tabela 5.4.2.a apresenta os dados de consumo de energia no setor transporte.

Tabela 5.4.2.a

Dados de Consumo de Energia no Setor Transporte
Mesorregião 01 - Período:1989/1995 - Unidade: 10³ tEP


	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	****		*******	****		
Energéticos\Anos	1989	1990	1991	1992	1993	1994	1995
Óleo Diesel	144,7	129,5	121,3	131,4	137,9	164,4	178.0
Gasolina Automotiva	39,9	43,0	47,0	43,4	45,6	51,4	61,0
Álcool Etílico Hidratado	37,4	35,0	29,5	25,1	27,5	28,1	27,8
Álcool Etílico Anidro	5,5	3,9	5,1	5,3	7,7	9,3	11,6
Querosene Aviação	9,8	9,1	7,7	8,0	6,4	6,4	6,7
Gasolina Aviação	2,7	2,5	1,3	1,2	2,4	2,0	2,6
TOTAL	240,0	223,0	211,9	214,4	227,5	261,6	287,7

Fonte: Elaboração do Autor

O óleo Diesel é o combustível de maior expressão nesta matriz energética de consumo tendo a sua participação percentual sido de 61,9% no ano de 1995, seguida do consumo da gasolina automotiva com 21,2%, enquanto os derivados de biomassa: álcool hidratado e álcool anidro participaram com apenas 13,7%.

O Gráfico 5.4.2.a mostra a evolução das curvas de consumo no setor transporte.

Gráfico 5.4.2.a Evolução das Curvas de Consumo de Energia no Setor Transporte Mesorregião 01 - Período:1989/1995 - Unidade: 10³ tEP

^{*}Outros (querosene aviação e gasolina aviação)

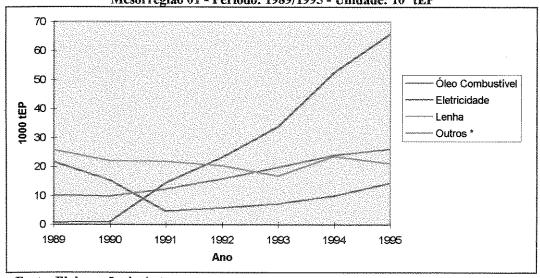
5.4.2.b - Consumo de Energia no Setor Industrial

A Tabela 5.4.2.b apresenta os dados de consumo de energia no setor industrial.

Tabela 5.4.2.b

Dados de Consumo de Energia no Setor Industrial

Mesorregião 01 - Período: 1989/1995 - Unidade: 10³ tEP


Energéticos\Anos	1989	1990	1991	1992	1993	1994	1995
Óleo Combustível	0,7	0,9	14,4	23,2	33,8	52,5	65,9
Eletricidade	10,2	9,8	12,3	15,8	19,8	24,0	26,1
Lenha	25,8	22,0	21,8	20,3	16,8	23,5	21,1
Óleo Diesel	9,4	9,3	2,4	5,7	6,8	8,5	8,9
GLP	12,3	6,1	2,2	0,1	0,4	1,5	5,5
TOTAL	58,4	48,1	53,1	65,1	77,6	110,0	127,5

Fonte: Elaboração do Autor

Nesta matriz de consumo observa-se uma menor disparidade entre os consumos dos combustíveis, embora nos últimos dois anos o crescente consumo do óleo combustível o tenha tornado predominante entre os demais. Observa-se que enquanto o consumo de eletricidade se eleva o de lenha diminui, fazendo crer que esta, a exemplo do que ocorreu nas regiões mais desenvolvidas do país, perdeu a competitividade em virtude do custo do seu transporte e do ônus acentuado decorrente da legislação do meio ambiente.

O Gráfico 5.4.2.b mostra a evolução das curvas de consumo no setor industrial.

Gráfico 5.4.2.b Evolução das Curvas de Consumo de Energia no Setor Industrial Mesorregião 01 - Período: 1989/1995 - Unidade: 10³ tEP

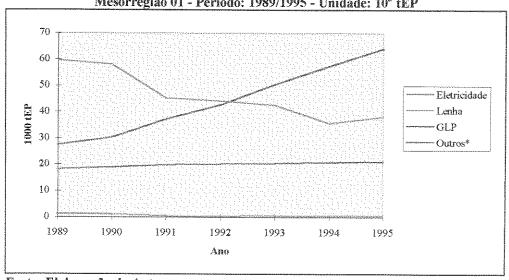
Fonte: Elaboração do Autor *Outros (óleo Diesel e GLP)

5.4.2.c - Consumo de Energia no Setor Residencial

A Tabela 5.4.2.c apresenta os dados de consumo de energia no setor residencial.

Tabela 5.4.2.c

Dados de Consumo de Energia no Setor Residencial
Mesorregião 01 - Período: 1989/1995 - Unidade: 10³ tEP


					. www.		
Energéticos \Anos	1989	1990	1991	1992	1993	1994	1995
Eletricidade	27,5	30,2	37,2	42,7	50,5	57,4	64,1
Lenha	59,6	58,1	45,3	44,2	42,6	35,7	38,2
GLP	18,2	18,9	19,9	20,2	20,5	20,9	21,2
Óleo Diesel	0,9	0,9	0,4	0,1	0,5	0,5	0,4
Carvão Vegetal	0,2	0,2	0,1	0,1	0,2	0,1	0.1
TOTAL	106,4	108,3	102,9	107,3	114,3	114,6	124,0

Fonte: Elaboração do Autor

Na matriz de consumo residencial nota-se ainda um certo equilíbrio entre os consumos dos três principais energéticos, embora o crescimento do consumo de eletricidade mostrou-se bem mais acentuado comparado aos da lenha e do GLP. A lenha, inicialmente com um expressivo consumo, vem perdendo importância conforme já explicado embora continue apresentando dados superiores aos do combustível GLP, realidade esta que bem diferencia a região em estudo de outras regiões do país, em semelhante estágio de desenvolvimento, onde a lenha perde em consumo para o GLP.

O Gráfico 5.4.2.c mostra a evolução das curvas de consumo no setor residencial.

Gráfico 5.4.2.c Evolução das Curvas de Consumo de Energia no Setor Residencial Mesorregião 01 - Período: 1989/1995 - Unidade: 10³ tEP

^{*}Outros (óleo diesel e carvão vegetal)

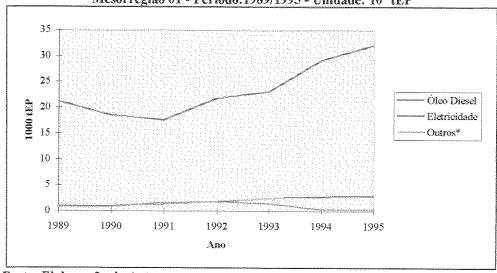
5.4.2.d - Consumo de Energia no Setor Agropecuário

A Tabela 5.4.2.d apresenta os dados de consumo de energia no setor agropecuário.

Tabela 5.4,2.d

Dados de Consumo de Energia no Setor Agropecuário

Mesorregião 01 - Período: 1989/1995 - Unidade: 10³ tEP


	- C			W REELE	CONTRACT.	O 45238	
Energéticos\Anos	1989	1990	1991	1992	1993	1994	1995
Óleo Diesel	21,2	18,5	17,6	21,8	23,1	29,2	32,1
Eletricidade	0,9	1,0	1,3	1,8	2,5	2,8	3,0
Óleo Combustível	0,1	0,2	1,0	1,3	0,9	0,1	0,2
Querosene Iluminante	0,7	0,5	0,5	0,2	0,1	0,1	0,1
TOTAL	22,9	20,2	20,4	25,1	26,6	32,2	35,4

Fonte: Elaboração do Autor

Observa-se o predomínio do consumo do óleo Diesel sobre o dos demais energéticos, bem como a inexistência de derivados de biomassas na matriz, o que demonstra que, até o momento, não há aproveitamento em escala comercial de qualquer derivado de biomassas no meio rural, exatamente onde os potenciais energéticos delas estão presentes. Deve ainda ser mencionada a quase inexpressividade do consumo de eletricidade ao longo de todo o período, fato este que mostra a necessidade de intensificação da eletrificação rural na mesorregião 01.

O Gráfico 5.4.2.d mostra a evolução das curvas de consumo no setor agropecuário.

Gráfico 5.4.2.d Evolução das Curvas de Consumo de Energia no Setor Agropecuário Mesorregião 01 - Período:1989/1995 - Unidade: 10³ tEP

^{*}Outros (óleo combustível e querosene iluminação.)

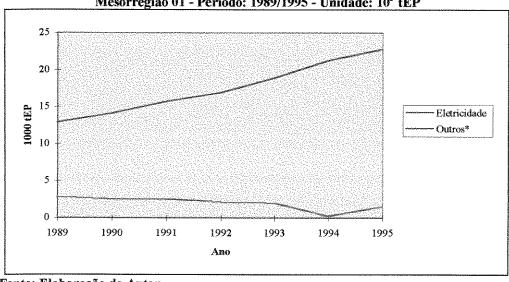
5.4.2.e - Consumo de Energia no Setor Comercial

A Tabela 5.4.2.e apresenta os dados de consumo de energia no setor comercial.

Tabela 5.4.2.e

Dados de Consumo de Energia no Setor Comercial

Mesorregião 01 - Período: 1989/1995 - Unidade: 10³ tEP


Energéticos\Anos	1989	1990	1991	1992	1993	1994	1995
Eletricidade	12,9	14,1	15,7	16,9	18,9	21,3	22,8
Óleo Combustível	1,7	1,6	1,8	1,4	1,7	0,1	0,3
Óleo Diesel	0,3	0,4	0,3	0,1	0,1	0,1	0,2
GLP	0,6	0,2	0,3	0,4	0,1	0,1	0,1
Carvão Vegetal	0,1	0,1	0,1	0,1	0,2	0,1	0,1
TOTAL	15,6	16,4	18,2	18,9	21,0	21,7	23,5

Fonte: Elaboração do Autor

Observa-se que prevalece na sua quase totalidade o consumo crescente de eletricidade, a exemplo do que ocorre neste setor em regiões mais desenvolvidas, visto a mesorregião 01 caracterizar-se também como um forte polo comercial concentrado nas duas cidades limitrofes Cuiabá e Várzea Grande, destacando-se o comércio varejista bem como o atacadista, super mercados, "shopping centers", revendedoras de automóveis e caminhões, hotéis e restaurantes, estabelecimentos esses que demandam muita energia elétrica.

O Gráfico 5.4.2.e apresenta as curvas de consumo de energia no setor comercial.

Gráfico 5.4.2.e Evolução das Curvas de Consumo de Energia no Setor Comercial Mesorregião 01 - Período: 1989/1995 - Unidade: 10³ tEP

^{*}Outros (óleo combustível, óleo Diesel, GLP e carvão vegetal)

5.4.2.f - Consumo de Energia do Setor Público

A Tabela 5.4.2.f apresenta os dados de consumo de energia no setor público.

Tabela 5.4.2.f

Dados de Consumo de Energia no Setor Público

Mesorregião 01 - Período: 1989/1995 - Unidade: 10³ tEP

Energéticos\Anos	1989	1990	1991	1992	1993	1994	1995
Eletricidade	7,8	8,3	9,1	10,5	9,9	13,0	13,4
GLP	0,6	1,1	0,9	0,3	0,2	0,9	1,7
Gasolina Automotiva	0,7	0,5	0,6	0,5	0,5	0,8	0,5
Óleo Diesel	0,8	1,0	1,2	1,4	0,3	0,5	0,3
Álcool Etíl. Hidratado	0,9	0,7	0,5	0,4	0,3	0,2	0,2
Álcool Etílico Anidro	0,2	0,1	0,1	0,2	0,1	0,2	0,1
TOTAL	11,0	11,7	12,4	13,3	11,3	15,6	16,2

Fonte: Elaboração do autor

Igualmente ao ocorrido na matriz de consumo comercial, prevaleceu no setor público da mesorregião 01 o consumo de eletricidade, comportamento típico deste setor em praticamente todas as regiões do país, notadamente naquelas regiões onde se localizam as capitais, devido nelas estarem concentradas as repartições públicas estaduais e as representações dos órgãos públicos federais.

O Gráfico 5.4.2.f mostra a evolução das curvas de consumo no setor público.

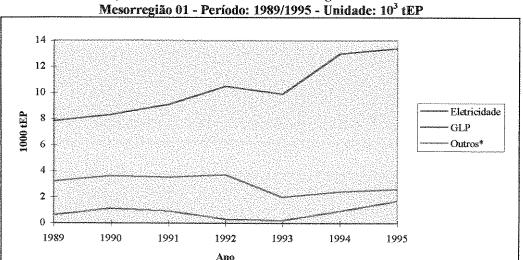


Gráfico 5.4.2,f Evolução das Curvas de Consumo de Energia no Setor Público

^{*}Outros (gasolina automotiva, óleo Diesel, álcool hidratado e anidro)

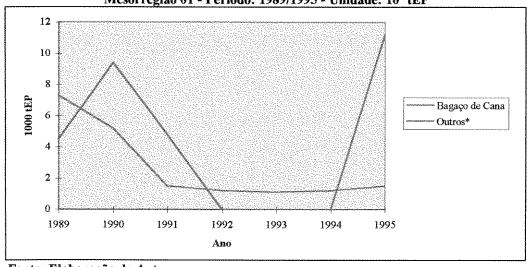
5.4.2.g - Consumo de Energia no Setor Energético

A Tabela 5.4.2.g apresenta os dados de consumo de energia no setor energético.

Tabela 5.4.2.g

Dados do Consumo de Energia no Setor Energético

Mesorregião 01 - Período: 1989/1995 - Unidade: 10³ tEP


Energéticos\Anos	1989	1990	1991	1992	1993	1994	1995
Bagaço de Cana	4,5	9,4	4,8	0,0	0,0	0,0	11,2
Eletricidade	1,0	0,9	1,2	1,1	1,1	1,1	1,4
Óleo Diesel	6,0	4,1	0,2	0,1	0,1	0,1	0,1
Álcool Etíl. Hidratado	0,3	0,2	0,1	0,1	0,0	0,0	0,1
TOTAL	11,8	14,6	6,3	1,3	1,2	1,2	12,8

Fonte: Elaboração do Autor

Observa-se o predomínio do consumo de bagaço de cana neste setor na mesorregião 01, consumo este que tende a crescer tendo em vista as reais possibilidades de aproveitamento do bagaço excedente para a geração de energia elétrica pelo processo de cogeração, energia esta destinada a ser comercializada para a atual concessionária REDE/CEMAT.

O Gráfico 5.4.2.g mostra a evolução das curvas de consumo no setor energético.

Gráfico 5.4.2.g Evolução das Curvas de Consumo de Energia no Setor Energético Mesorregião 01 - Período: 1989/1995 - Unidade: 10³ tEP

Fonte: Elaboração do Autor

*Outros (eletricidade, óleo Diesel e álcool hidratado)

Concluída a aplicação da metodologia com a elaboração das matrizes de consumo por energéticos e por setores da economia ao longo do período, o autor passa a fazer uso dos dados reais de consumo para uma série de aplicações com a finalidade de disponibilizar informações energéticas da mesorregião 01, objetivando o planejamento energético da região.

5.5 - Consumo de Energéticos na Mesorregião 01: Importados e de Produção Regional

A Tabela 5.5 apresenta os dados de consumo de energia de energéticos importados e de produção regional, bem como a evolução da relação entre esses consumos possibilitando assim uma análise do comportamento dessa relação ao longo da série histórica.

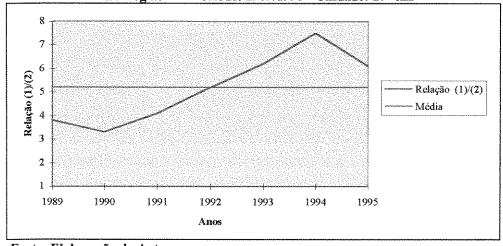
Tabela 5.5

Relação entre Consumos de Energia: Importada e de Produção Regional

Mesorregião 01 - Período: 1989/1995 - Unidade: 10³ tEP

	1989	1990	1991	1992	1993	1994	1995
(1) Cons. Energ. Importados	364,0	338,3	341,3	373,9	412,9	491,1	539,0
- Não Renováveis	271,3	248,3	241,0	260,6	281,3	340,1	385,8
. Derivados de Petróleo	271,3	248,3	241,0	260,6	281,3	340,1	385,8
- Renováveis	92,8	90,0	100,3	113,3	131,6	151,0	153,2
. Eletricidade	53,3	58,4	70,5	82,1	95,8	113,1	123,2
. Álcool Etílico Hidratado	33,7	27,5	24,5	25,6	27,8	28,3	18,2
. Álcool Etílico Anidro	5,7	4,0	5,2	5,5	7,8	9,5	11,7
. Carvão Vegetal	0,1	0,1	0,1	0,1	0,2	0,1	0,1
(2) Cons. Energ. Prod. Regional	97,0	104,0	83,9	71,3	66,5	65,8	88,1
- Não Renováveis	0,0	0,0	0,0	0,0	0,0	0,0	0,0
- Renováveis	97,0	104,0	83,9	71,3	66,5	65,8	88,1
. Eletricidade	7,0	5,9	6,3	6,7	6,9	6,5	7,6
. Álcool Etílico Hidratado	4,9	8,4	5,6	0,0	0,0	0,0	9,9
. Bagaço de Cana	4,5	9,4	4,8	0,0	0,0	0,0	11,2
. Lenha	85,4	80,1	67,1	64,5	59,4	59,2	59,3
. Carvão Vegetal	0,2	0,2	0,1	0,1	0,2	0,1	0,1
RELAÇÃO (1)/(2)	3,8	3,3	4,1	5,2	6,2	7,5	6,1

Fonte: Elaboração do Autor


A referida relação é crescente sendo o valor médio de 5,2 no período, observando-se ainda que além do crescente consumo dos energéticos não renováveis importados, é cada vez maior o consumo do energético eletricidade (renovável importado). A UTE de Cuiabá e a UHE de Manso irão contribuir para alterar essa relação energética.

O Gráfico 5.5 mostra a evolução da curva representativa da relação referida.

Gráfico 5.5

Evolução da Relação: Consumo de Energia Importada e de Produção Regional

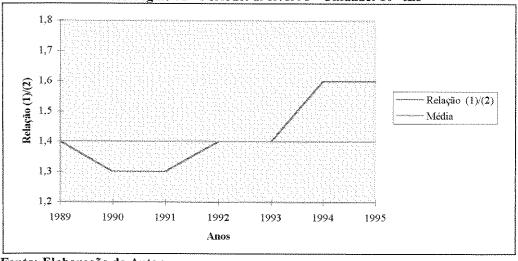
Mesorregião 01 - Período: 1989/1995 - Unidade: 103 tEP

5.6 - Consumo de Energéticos: não Renováveis e Renováveis

A Tabela 5.6 apresenta os dados de consumo de energia de energéticos de fontes não renováveis e de fontes renováveis bem como a relação entre esses consumos, sendo estas informações de grande interesse do ponto de vista do comportamento da qualidade do meio ambiente, em decorrência da utilização de energéticos poluentes na mesorregião 01.

Tabela 5.6
Relação entre Consumos de Energia: Não Renováveis e Renováveis
Mesorregião 01 - Período: 1989/1995 - Unidade: 103 tEP

MESOLIE	giao vi - i	CCLIVUV.	レフロファルフフェ	" Ciliuat	ie: iv tr	/ .	
Energéticos\Anos	1989	1990	1991	1992	1993	1994	1995
Não Renováveis (1)	271,3	248,3	241,0	260,7	281,4	340,1	385,8
- Óleo Diesel	183,3	163,7	143,3	160,6	168,8	203,3	220,0
 Óleo Combustível 	2,5	2,7	17,2	25,9	36,4	52,7	66,4
- Gasolina Automotiva	40,6	43,5	47,6	43,9	46,1	52,2	61,5
- GLP	31,7	26,3	23,3	21,0	21,2	23,4	28,5
 Querosene Aviação 	9,8	9,1	9,7	7,9	6,4	6,4	6,7
 Gasolina Aviação 	2,7	2,5	1,3	1,2	2,4	2,0	2,6
- Querosene Iluminante	0,7	0,5	0,5	0,2	0,1	0,1	0,1
Renováveis (2)	194,8	194,0	184,2	184,6	198,1	216,8	241,3
- Eletricidade	60,3	64,3	76,8	88,8	102,7	119,6	130,8
- Lenha	85,4	80,1	67,1	64,5	59,4	59,2	59,3
- Álcool Etíl. Hidratado	38,6	35,9	30,1	25,6	27,8	28,3	28,1
- Álcool Etílico Anidro	5,7	4,0	5,2	5,5	7,8	9,5	11,7
- Bagaço de Cana	4,5	9,4	4,8	0,0	0,0	0,0	11,2
- Carvão Vegetal	0,3	0,3	0,2	0,2	0,4	0,2	0,2
Relação: (1)/(2)	1,4	1,3	1,3	1,4	1,4	1,6	1,6


Fonte: Elaboração do Autor

Observa-se que a relação é continuamente crescente sendo a média no período analisado de 1,4, devendo ainda ser ressaltado que enquanto o esforço mundial é no sentido da busca de uma menor dependência de energéticos não renováveis, contrariamente na mesorregião 01 essa dependência vem aumentando na medida em que prevalece, de forma acentuada, o consumo de energéticos de fontes não renováveis.

Além de oneroso por ser importado, ocorre que o acentuado consumo de energéticos de fontes não renováveis propicia a formação de gases nocivos à saúde das pessoas (óxidos de carbono, enxofre e nitrogênio), contaminando o ar principalmente no perímetro urbano das cidades de Cuiabá e Várzea Grande, devido a forte concentração populacional, comercial e industrial em uma área urbana relativamente pequena, bem ainda em razão do intenso trânsito de veículos, movidos à gasolina e a óleo Diesel, de passagem pela mesorregião 01 com destino as outras mesorregiões ou Estados, conforme já explicado.

O Gráfico 5.6 mostra a evolução da curva representativa da relação referida.

Gráfico 5.6 Evolução da Relação: Consumo de Energia de Não Renováveis e de Renováveis Mesorregião 01 - Período: 1989/1995 - Unidade: 10³ tEP

Fonte: Elaboração do Autor

Concluindo a apresentação dos dados das matrizes de consumo, estimados dentro dos preceitos da metodologia proposta, pode-se afirmar que o óleo Diesel é o combustível mais consumido na mesorregião 01, acentuadamente no setor transporte e em menor quantidade no setor agropecuário, estando em segundo lugar a eletricidade com demanda cada vez maior, seguida dos crescentes consumos de óleo combustível e de gasolina automotiva.

É importante ressaltar que desses quatro energéticos citados, os três derivados de petróleo são importados, sendo muito elevada a importação de eletricidade proveniente de Goiás/Minas Gerais. Os dados expressando o comportamento das duas relações sintetizam as dificuldades energéticas persistentes nos últimos anos na mesorregião 01, a qual embora detentora de um expressivo potencial econômico há tempo vem almejando uma definitiva solução energética, finalmente resolvida com a entrada em operação da UTE de Cuiabá e em breve a UHE de Manso.

5.7 - As Intensidades Energéticas na Mesorregião 01

As principais intensidades energéticas (CHEVALIER & al, 1986), foram calculadas com a finalidade de ampliar as informações da região, tendo as mesmas sido estimadas com base nos dados sócio econômicos e energéticos da mesorregião 01 devidamente avaliados e apresentados nos capítulos anteriores, estando os mesmos reunidos no Anexo XIII.

O Quadro 5.7 apresenta as estimativas das intensidades energéticas na mesorregião 01.

Quadro 5.7
Estimativas das Intensidades Energéticas
Mesorregião 01 - Período:1989/1995 - Unidade: diversas

Relações Energéticas	1990	1991	1992	1993	1994	1995
Consumo Total de Energia por habitante (tEP/habitante)	0,67	0,62	0,63	0,67	0,77	0,85
Consumo Total de Energia por Arrecadação de ICMS (tEP/1000 US\$)	1,63	1,70	1,80	1,75	1,51	1,75
Consumo Energia no Setor Industrial por Arrecadação de ICMS (tEP/1000 US\$)	0,97	-	-		_	1,88
Consumo Energia no Setor Comercial por Arrecadação de ICMS (tEP/1000 US\$)	0,14	-	-	-	-	0,18
Consumo de Eletricidade no Setor Residencial por consumidor (tEP/consumidor)	0,24	0,28	0,31	0,34	0,37	0,39
Consumo de Eletricidade no Setor Comercial por Consumidor (tEP/consumidor)	1,03	1,08	1,14	1,20	1,33	1,36

Fonte: Elaboração do Autor

1 UPF/MT = R\$ 10,26 (Dez. 1995) Taxa de Câmbio: R\$/US\$ = 0,97 (Dez. 1995)

5.8 - Intensidades Energéticas Comparadas

O Quadro 5.8 apresenta, para efeito comparativo, as principais intensidades energéticas na mesorregião 01, em Mato Grosso e no Brasil, relativas aos anos 1990 e 1995.

Quadro 5.8 Intensidades Energéticas Comparadas

Anos/Regiões	1990			1995		
Intensidades Energéticas	Meso 01	MT	BR	Meso 01	MT	BR
Consumo Total de Energia por habitante (tEP/habitante)	0,67	1,24	1,17	0,85	1,29	1,25
Consumo Total de Energia por Arrecadação de ICMS (tEP/1000 US\$)	1,63	4,26	_	1,75	3,37	-
Consumo Energia no Setor Industrial por Arrecadação de ICMS (tEP/1000 US\$)	0,97	1,97	-	1,46	1,88	-
Consumo Energia no Setor Comercial por Arrecadação de ICMS (tEP/1000 US\$)	0,14	0,45	u.	0,51	0,18	-
Consumo de Eletricidade no Setor Residencial por Consumidor (tEP/consumidor)	0,24	0,61	0,55	0,39	0,66	0,56
Consumo Eletricidade no Setor Comercial por Consumidor						
(tEP/consumidor)	1,03	2,51		1,36	2,83	

Fontes: 1) CANAVARROS et al, 1997 2) CEMAT,1985 a 1995 3) BEN, 1996

..... dados não disponíveis

O consumo total de energia/habitante na mesorregião 01, embora tenha aumentado no período 1990/1995, ainda é pequeno frente aos de Mato Grosso e do Brasil. O fato é explicado pelo baixo consumo de energia nos setores industrial, agropecuário e residencial da região, devido a indústria regional não se caracterizar como energo-intensiva, ocorrendo ainda uma atividade agropecuária com pequena demanda energética. A maioria da população ativa da mesorregião 01 caracteriza-se pelo baixo poder aquisitivo, notadamente a parcela residente nas cidades de menor importância econômica, fato este que inevitavelmente leva a um consumo de energia pouco expressivo no setor residencial.

A relação consumo de energia por arrecadação de ICMS mostrou-se pequena por todo o período comparada a de Mato Grosso, em face da mesorregião 01 apresentar uma economia muito baseada nas atividades do comércio e da indústria, ambas caracterizadas pela baixa demanda de energia e elevada arrecadação do ICMS (Tabela 5.4.2 e Quadros 3.4.b e 3.4.c).

5.9 - As Emissões de CO₂ na Mesorregião 01

As informações do IPCC - International Panel Climates Changes, asseguram que no ano 2.100 estarão sendo emitidas 25 Giga toneladas/ano de CO₂ na atmosfera do planeta Terra, cerca de 4 vêzes a atual emissão (1995), estimada em 6 Giga toneladas/ano, decorrente da queima de combustíveis fósseis, sendo 50% do total atribuído aos atuais países membros da Organização de Cooperação e Desenvolvimento Econômico - OCDE (BEESP,1997).

As emissões de CO₂, classificam-se em biogênicas (decorrentes da combustão de biomassas) e não biogênicas (decorrentes de combustíveis fósseis), sendo as biogênicas não causadoras do denominado "efeito estufa" quando o consumo de biomassas é compensado pela equivalente reposição de matéria prima vegetal, visto que no processo de fotossíntese o CO₂ é absorvido pela planta para a fixação do carbono e a liberação de oxigênio.

O IPCC/OCDE e a CESP - Cia Energética de São Paulo, face a necessidade de quantificar a poluição decorrente do uso de energéticos poluentes, estimaram os fatores de emissão de C (carbono) e CO₂, na unidade tonelada por Tera Joule (t/TJ), mostrados no Quadro 5.9.1.

Quadro 5.9.1
Fatores de Conversão para Cálculos de Emissões de C e de CO.

Patores de Conversão para Calculos de Emissões de C e de CO2					
Combustiveis	(t de C / TJ)	(t de CO ₂ / TJ)			
Petróleo	20,0	69,7			
Carvão Vapor	26,8	93,4			
Gás Natural	15,3	53,3			
Óleo Diesel	20,2	70,4			
Óleo Combustível	21,1	73,5			
Gasolina Automotiva	18,9	65,8			
GLP	17,2	59,9			
Nafta	19,0	11,1 (*)			
Querosene de Iluminação	19,6	68,3			
Gás Canalizado	19,0	66,2			
Gás de Coqueria	18,2	63,5			
Coque de Carvão Mineral	29,5	102,8			
Gás de Refinaria	16,5	57,5			
Outros Energéticos de Petróleo	18,4	64,1			
Lenha / Carvão Vegetal	29,9	104,2			
Álcool Etílico	16,8	58,5			

Fonte: BEESP,1997 (*) a nafta é utilizada em sua maior parte como matéria prima Obs.: para estimar a emissão de CO₂ multiplicam-se os fatores de conversão alusivos às emissões de C pelo peso molecular do CO₂ (44) e divide-se pelo peso atômico do C (12).

O Quadro 5.9.2 apresenta as estimativas das emissões de CO₂ na mesorregião 01, por tipo de combustível no ano 1995, considerando os fatores de conversão expostos na Tabela 5.9.1 procedendo a conversão de consumo de energia de 10³ tEP para Tera Joule (TJ).

Quadro 5.9.2
Estimativas das Emissões de CO₂ por tipo de Combustível
Mesorregião 01 - Ano 1995

Mesorregiao 01 - Ano 1993							
Combustível	Fator de Conversão (t de CO ₂ / TJ)	Consumo de Combustíveis (10 ³ tEP)	Consumo de Combustíveis (TJ)	Emissão de CO_2 (10^3 t de CO_2)			
Óleo Diesel	70,4	220,0	4,866	342,6			
Gasolina Automotiva	65,8	61,5	1,360	89,5			
GLP	66,2	28,5	0,630	37,7			
Óleo Combustível	73,5	66,4	1,469	108,0			
Querosene de Aviação	64,1	6,7	0,148	9,5			
Gasolina de Aviação	64,1	2,6	0,057	3,7			
Querosene de Iluminação	68,3	0,0	0,000	0,0			
Lenha	104,2	59,3	1,312	136,7			
Carvão Vegetal	104,2	0,2	0,004	0,4			
Bagaço de Cana (1)	104,2	11,2	0,249	25,9			
Álcool Etílico	58,5	39,7	0,878	51,4			
TOTAL		496,1	10,973	(2) 805,4			

Fonte: Elaboração do Autor

1 cal = 4,186 Joules; 1 tEP = 10.800 Mcal

- (1) Admitiu-se o fator de conversão para o bagaço de cana igual ao da lenha (104,2 t CO2 / TJ).
- (2) Do total das emissões (805,4 x 10³ t de CO₂), deve ser diminuído as emissões biogênicas, as quais totalizam 214,4 x10³ t de CO₂, reduzindo as emissões para 591,0 x10³ t de CO₂.

As emissões de CO₂ apresentadas no Quadro 5.9.2, correspondem ao ônus ao meio ambiente acarretado pelo crescimento econômico da mesorregião 01 no ano 1995, em função principalmente do consumo de óleo Diesel no setor transporte. As emissões no total de 600.000 toneladas, aproximadamente, correspondem a 0,81 t CO₂/hab, considerada pequena se comparada com as de outras regiões, tais como: 2,31 t CO₂/hab na região compreendida pelas bacias dos rios Piracicaba e Capivarí designada pela sigla RBPC (JANNUZZI et al, 1996) e 1,82 t CO₂/hab no âmbito do Estado de São Paulo (BEESP,1997).

5.10- Projeção da Demanda e da Oferta de Energia na Mesorregião 01

Concluída a apresentação das informações úteis à elaboração do planejamento energético regional, o autor considera ainda a projeção da demanda e da oferta de energia no cenário tendencial. No entretanto, por não se encontrar dentro dos objetivos da tese, a contribuição relativa à projeção não aparece na forma de capítulo estando contida no Anexo XIV, com a ressalva de que se trata de uma especulação do autor no intuito de se ter uma idéia do montante da demanda e da oferta de energia na mesorregião 01 no período 1998/2007.

CAPÍTULO 6

6 - CONCLUSÕES, RECOMENDAÇÕES E SUGESTÕES PARA PESQUISAS

A metodologia mostrou ser abrangente, aplicando-se aos dados energéticos alusivos aos municípios, regiões e Estados, bem como de făcil utilização permitindo o aproveitamento de informações de outras regiões para o refinamento dos dados de consumo de energia da região em estudo. Ela possibilitou a retificação do consumo de energia por energético e por setor da economia da região propiciando estimativas confiáveis, permitindo construir corretamente as matrizes de consumo ao longo da série histórica, as quais são essenciais quando da projeção da demanda para a elaboração do planejamento energético.

A metodologia preconizando a interação de diversos dados com os dados energéticos da região, possibilita o cálculo das intensidades energéticas úteis na análise comparativa entre regiões com características semelhantes. Verificou-se também por este trabalho que a aplicação da metodologia se torna mais imperiosa quando a área geográfica da região em estudo se caracteriza como um centro de distribuição comercial e/ou como rota de escoamento da produção oriunda de outras regiões, a exemplo da mesorregião 01 analisada.

Ao término da apresentação da metodologia e da elaboração das matrizes de consumo da mesorregião 01, ficam registradas as conclusões a respeito da não consistência de muitos dos dados de consumo de energia normalmente disponíveis bem como da distribuição do consumo por energético e por setor da economia da região, sendo ainda sugerida a realização de trabalhos de pesquisas, os quais possibilitarão o conhecimento de novos dados e informações regionais valiosas para a aplicação da metodologia proposta em toda a sua amplitude.

6.1- Quanto aos Dados Disponíveis de Consumo

6.1.1 - Conclusões

- ficou evidente que a alocação dos dados referentes às vendas feitas pelas distribuidoras de derivados de petróleo para os setores de consumo do balanço energético nacional, emanada do DNC/MME e repassada aos órgãos estaduais para a elaboração dos balanços regionais, não reflete no seu todo o real consumo de energia ocorrido nos setores da economia.;
- os dados de consumo de lenha e de carvão vegetal, normalmente obtidos apenas junto a FIBGE, não englobam, na sua totalidade, os consumos ocorridos nas residências do setor rural:

- os dados relativos ao consumo de energia elétrica, embora sejam de fácil obtenção nos boletins das concessionárias estaduais, normalmente são contabilizados sem a inclusão da parcela do consumo representada pelas perdas comerciais, as quais variam dependendo do setor da economia e da capacidade de controle da administração da concessionária;
- os dados sócio econômicos das regiões são incompletos, sendo obtidos em documentos localizados em diversos órgãos públicos, quase sempre se referindo ao âmbito estadual, com escassas informações alusivas às mesorregiões.

6.1.2 - Recomendações

- reativar a Fundação Cândido Rondon, órgão de pesquisas do Estado, com a finalidade de reunir, analisar e publicar anualmente dados sócio econômicos, populacionais, energéticos, etc, por mesorregiões do Estado;
- instituir no âmbito estadual uma Comissão Permanente de Elaboração de Balanço Energético por mesorregião, constituída por profissionais representantes do governo, classe produtora e universidade.
- adicionar às atribuições das Federações da Agricultura e do Comércio, a incumbência de manter um Banco de Dados, a exemplo do que ocorre na Federação das Indústrias, reunindo as informações das respectivas atividades produtivas, disponibilizando dados alusivos às mesorregiões.
- instituir um programa de pesquisa na Faculdade de Administração, Economia e Ciências Contábeis das universidades, objetivando a elaboração anual do PIB Produto Interno Bruto, por setores da economia em cada mesorregião.

6.2 - Quanto as Matrizes de Consumo da Mesorregião 01

6.2.1 - Conclusões

- a aplicação da metodologia de análise revelou diferenças substanciais no consumo de alguns energéticos, alterando a ordem de importância dos setores da economia regional quanto ao consumo de energia;
- a estimativa do consumo total de energia no ano 1995, mostrou ser 16,1% menor em relação aquela inicialmente revelada pelos dados oficiais;
- dentre os consumos, os mais distanciados das estimativas decorrentes da metodologia foram os alusivos ao óleo Diesel no setor agropecuário o qual em 1995, revelou ser de apenas 18,0% do anteriormente constatado;

- o consumo total de energia no setor agropecuário passou para a quarta posição após a retificação dos dados consoante a metodologia, situando-se abaixo do consumo dos setores industrial e residencial:
- o consumo total de óleo Diesel em 1995 foi 61,0% do inicial revelado, muito embora continue superando o dos demais energéticos na mesorregião 01;
- a estimativa do consumo total de eletricidade mostrou ser 57,2% maior, no ano 1995, em relação aquela revelada inicialmente, passando a ocupar o segundo lugar em consumo a partir de 1993, superando o montante dos derivados de biomassas;
- os consumos de GLP com elevações e declínios anormais no período estudado, puderam ser explicados e retificados com a aplicação da metodologia.

6.3 - Sugestões de Trabalhos de Pesquisas

Em virtude da pouca disponibilidade de dados e informações inerentes ao consumo de energia na mesorregião 01, notadamente quanto ao óleo Diesel, GLP e lenha, não foi possível a aplicação da metodologia em toda a sua amplitude o que possibilitaria uma análise mais apurada sobre os dados oficiais de consumo, daí porque recomenda-se a realização de alguns estudos que venham agregar novas e valiosas informações.

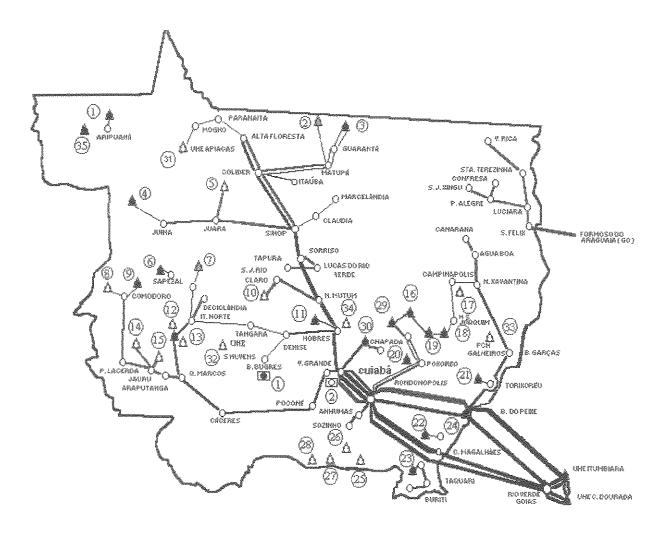
- um trabalho de pesquisas com vistas a obter informações relativas ao consumo de óleo Diesel por hectare nas operações de desmatamento, correção do solo, plantio e colheita por tipo de grão, cuja cultura demanda volume expressivo do aludido combustível;
- estimativa do número médio mensal de caminhões à óleo Diesel, procedência e destino, capacidade e tipo de carga transportada, licenciados em outras mesorregiões ou Estados, trafegando nas rodovias da mesorregião 01, com a finalidade de uma análise mais apurada do consumo de óleo Diesel no setor transporte;
- trabalhos de pesquisa no setor residencial de Cuiabá e Várzea Grande com o intuito de elaborar as matrizes de consumo por usos finais dos combustíveis: lenha (cocção), eletricidade (ar condicionado, chuveiro elétrico, cocção, eletrodoméstico e iluminação) e GLP (cocção);
- trabalhos de pesquisa no setor industrial das cidades de Cuiabá e Várzea Grande, com o intuito de elaborar matrizes de consumo por usos finais dos energéticos: eletricidade, lenha e óleo combustível (caldeira, forno, força motriz, secador/estufa, aquecimento e iluminação).

Certo de que a metodologia exposta, associada aos resultados decorrentes da aplicação dela na mesorregião 01, venha a se tornar de muita utilidade aos pesquisadores na elaboração de matrizes de consumo em outras regiões do Brasil, o autor encerra este trabalho.

REFERÊNCIAS BIBLIOGRÁFICAS

- Bajay, S.V, Planejamento Energético Regional: A Experiência Paulista à Luz de Práticas que a Inspiraram no Exterior, In .. La Rovere, E. & Robert, M. "Planejamento Energético: Elementos para um Novo Enfoque", Projeto FINEP/PNUD/UNESCO BRA 82/004, Escritório Regional de C & T da UNESCO para a América Latina e Caribe, Montevidéu, Uruguai, 1989 p. 271-322.
- Barone, Jussara Colombini. O Balanço Energético como Instrumento para o Planejamento Energético Nacional.. Campinas/SP: Faculdade de Engenharia Mecânica, Universidade Estadual de Campinas, 1990. 154 p. Dissertação de Mestrado.
- BEEMT Balanço Energético do Estado de Mato Grosso Período 1980/ 1986. Secretaria de Indústria, Comércio e Turismo, Cuiabá/MT, 1989, 73 p.
- BEEMT Balanço Energético do Estado de Mato Grosso Período 1987/ 1988. Secretaria de Indústria, Comércio e Turismo, Cuiabá/MT, 1992, 79 p.
- BEEMT Balanço Energético do Estado de Mato Grosso Período 1987/1990. Secretaria de Indústria, Comércio e Turismo, Cuiabá/MT, 1993, 59 p.
- BEEMT, Balanço Energético do Estado de Mato Grosso Período 1990/ 1993. Secretaria de Infra Estrutura, Cuiabá/MT, 1995, 92 p.
- BEESP Balanço Energético do Estado de São Paulo Secretaria de Estado de Energia, São Paulo/SP, 1997, 188 p.
- BEN Balanço Energético Nacional Secretaria de Energia do MME, Brasília, 1996, 150 p.
- Calil, C. T. Utilização de Moluscos como indicadores da concentração de mercúrio no Pantanal de Poconé, Universidade Federal de Mato Grosso, In.... Anais da Reunião Especial da SBPC, Cuiabá/MT, abril/1995.
- Canavarros, Otacílio Borges. O Consumo e o Potencial de Energia da Região Administrativa de Campinas - possibilidades de substituição de energéticos, Campinas/SP: Faculdade de Engenharia Mecânica, Universidade Estadual de Campinas, 1994. 83 p. Dissertação de Mestrado.
- Canavarros, O. B. & Silva, E. P. Os Potenciais Energéticos da Mesorregião 01 de Mato Grosso, Cuiabá, MT, In. Anais do CBE, 7, Rio de Janeiro, 1996, v. I, p. 411-423.
- Canavarros, O. B. & al, "A Questão Energética em Mato Grosso Elementos essenciais ao planejamento", Convênio: FUFMT/UNICAMP/CEMAT/FIEMT/FECOMÉRCIO/FAMATO, Cuiabá/ MT, 1997, 147 p.
- Carvalho, J. "O Desafio do Planejamento Energético", Tchê! Artes Gráficas Ltda., Porto Alegre/RS, 1987, 111p.

- CEMAT- Centrais Elétricas Matogrossenses, História da Energia Elétrica de Mato Grosso, Cuiabá/MT, 1983, 59 p.
- CEMAT- Centrais Elétricas Matogrossenses, Programa Plurianual de Investimentos 1991/1996, Diretoria Econômica Financeira, Cuiabá/MT, 1990, novembro.
- CEMAT- Centrais Elétricas Matogrossenses, Boletim Estatístico de Mercado de Energia Elétrica, 1985 a 1995, Cuiabá/MT.
- CEMAT- Centrais Elétricas Matogrossenses, Boletim Estatístico de Mercado de Energia Elétrica, 1996, Cuiabá/MT.
- CEMAT- Centrais Elétricas Matogrossenses, Relatório Técnico 004/DVES, 1997, Cuiabá/MT.
- Chevalier, J.M. & Barbet, P. & Benzoni, L., Economie de L[†] Energie, Edition Presses de La Fondation Nationale des Sciences Politiques & Dalloz, Paris, França, 1986, pag 135-136.
- DETRAN Departamento Estadual de Trânsito, Frota de Veículos Rodoviários por Tipo e Ano de Fabricação, 1996, Cuiabá/MT.
- DNC Departamento Nacional de Combustíveis Relatório Anual de Vendas e Usos de Combustíveis, MME, Brasília, 1989 a 1995.
- EIA Estudo de Impacto Ambiental da UTE de Cuiabá", Cuiabá/MT, 1997.
- ELETRONORTE, Aproveitamento Múltiplo de Manso-Audiência Pública-Cuiabá/MT,1996, abril.
- ELETRONORTE, Aproveitamento Múltiplo de Manso Contrato de Construção da UHE Cuiabá/MT, 1998, fevereiro.
- ENRON, Informações sobre o projeto da UTE à gás natural em Cuiabá, CEMAT/ENRON Cuiabá/MT, 1996, maio.
- ENTREVISTA, "Entrevista com o Eng. Moisés Cândido de Melo, ex Coordenador do Balanço Energético de Mato Grosso", Cuiabá/MT, 1997.
- FIBGE Fundação Instituto Brasileiro de Geografia e Estatística Produção Agrícola em Mato Grosso, 1985 a 1995.
- FIBGE Fundação Instituto Brasileiro de Geografia e Estatística -, Produção Extrativa Vegetal e da Silvicultura em Mato Grosso, 1985 a 1995.
- FIBGE Fundação Instituto Brasileiro de Geografia e Estatística -, Produção Pecuária em Mato Grosso, 1996.
- FIBGE Fundação Instituto Brasileiro de Geografia e Estatística, Censo Demográfico -1980.
- FIBGE Fundação Instituto Brasileiro de Geografia e Estatística, Censo Demográfico -1991.


- FIBGE Fundação Instituto Brasileiro de Geografia e Estatística, Contagem Demográfica-1996.
- FERRONORTE, O Projeto Ferronorte e suas repercussões na Amazônia Legal, São Paulo, 1994.
- IBAMA, Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis, Superintendência de Mato Grosso, Cuiabá/MT, 1995.
- IEL/MT- Instituto Euvaldo Lodi/Núcleo Regional de Mato Grosso, Levantamento das Empresas de Beneficiamento de Arroz e de Madeiras em Mato Grosso, 1995, Cuiabá/MT.
- Jannuzzi, G. M. & al, Uso eficiente de Energia e Fontes renováveis na cidade de Manaus", Convênio: UNICAMP/W. ALTHON JONES FOUNDACION, Manaus/AM, 1995, 105 p.
- Jannuzzi, G. M. & al, Uso eficiente de energia e Desenvolvimento Regional, Relatório Final do Projeto PROCEL/PNUD BRA-93/032, Campinas/SP, 1996.
- Leon Bordest, S. M. & Macedo, M. Visão Integrada da Questão Ambiental no córrego Barbado, Universidade Federal de Mato Grosso, In... Anais da Reunião Especial da SBPC, Cuiabá/MT, 1995, abril.
- MAPA Mapa Sócio-Econômico e Industrial de Mato Grosso, Prefeitura de Cuiabá/MT, 1995.
- Miguez, J. D. & Passos, M.F. Uso Indevido de GLP: Proposta de Combate ao Desperdício, In Anais CBE, 6, 1993, Rio de Janeiro, v.3, p. 785 791.
- MME Ministério de Minas e Energia Coordenadoria do Balanço Energético Nacional "Matriz de Alocação das Vendas Setoriais das Distribuidoras de Petróleo aos Setores Consumidores do Balanço Energético Nacional", Brasília, 1987.
- Modesto Filho, P. Alguns dados acerca da nova área de destino Final do Lixo urbano da cidade de Cuiabá, Universidade Federal de Mato Grosso. In ... Anais da Reunião Especial da SBPC, Cuiabá/MT,1995, abril.
- Pedroso Junior, Francisco Jorge. Avaliação Energética e Estimativa das Emissões de Poluentes pelo Setor de Transportes da Região Administrativa de Campinas, Campinas/SP: Faculdade de Engenharia Mecânica, Universidade Estadual de Campinas, 1996, 89 p, Dissertação de Mestrado.
- PNMA Programa Nacional do Meio Ambiente Revisão do Meio Termo, 1991, IBAMA.
- RIMA Relatório de Impacto Ambiental da UHE Manso Eletronorte, MME, Volume I-Síntese,1987, Brasília.
- SAGRI/CEPA/MT, Mapeamento Ecológico do Babaçu no Estado de Mato Grosso, Convênio: Secretaria de Agricultura de Mato Grosso e Fundação de Tecnologia Industrial do Ministério da Indústria e Comércio e a Sudeco, 1981, Cuiabá/MT.

- SEADE Fundação Sistema Estadual de Análise de Dados, Anuário Estatístico do Estado de São Paulo -1991; São Paulo, 1993.
- SEADE, Fundação Sistema Estadual de Análise de Dados, Anuário Estatístico do Estado de São Paulo -1995; São Paulo, 1996.
- SEFAZ Secretaria de Fazenda do Estado de Mato Grosso Coordenadoria de Arrecadação de ICMS, 1996, Cuiabá/MT.
- SEPLAN Secretaria de Estado de Planejamento e Coordenação Geral Regionalização Administrativa para fins de Planejamento, 1995, Cuiabá/MT.
- SINDALCOOL Sindicato das Indústrias Sucroalcooleiras do Estado de Mato Grosso, Relatório Anual de Produção das Destilarias, 1996, Cuiabá/MT.
- SINDIPETRO/MT- Sindicato das Empresas Distribuidoras de Petróleo no Estado de Mato Grosso, Entrevista com o Presidente do Sindicato, Cuiabá/MT 1996, janeiro.
- SINGAMPEMAT- Sindicato dos Garimpeiros e das Médias e Pequenas Empresas de Mato Grosso, Entrevista com o Presidente, Cuiabá/MT,1996, julho.
- SIPOT- Sistema de Informações de Potenciais Hidráulicos no Brasil, ELETROBRÁS, 1997, Rio de Janeiro.
- Souza, E. P., Impacto Ambiental à margem direita do rio Cuiabá, no Município de Várzea Grande, ocasionado pela exploração do mineral argila, Universidade Federal de Mato Grosso, In... Anais da Reunião Especial da SBPC, Cuiabá/MT,1995, abril.
- Vasconcelos, E. C. & Costa, J.N., Planejamento Energético Municipal de Sete Lagoas/MG -Depto de Planejamento Energético da CEMIG, In....Anais CBPE II, Universidade Estadual de Campinas, Campinas/SP, 1994, dezembro.
- Velasco, B. I. & al, Valorização do Vinhoto em destilarias de Álcool, Universidade Federal de Mato Grosso, In...Anais da Reunião Especial da SBPC, 1995, Cuiabá/MT, abril.

LISTA DE ANEXOS

- Anexo I Mapa Eletrogeográfico de Mato Grosso.
- Anexo II Usinas Hidroelétricas em Operação em Mato Grosso
- Anexo III Barragens para Aproveitamento Hidráulicos na bacia do rio Cuiabá.
- Anexo IV Massas Específicas e Poderes Caloríficos Superiores
- Anexo V Fatores de Conversão para tEP médio
- Anexo VI Produção de Cana-de-Açúcar, Açúcar, Álcool e Bagaço em Mato Grosso
- Anexo VII Produção Agrícola em Mato Grosso
- Anexo VIII Proporção entre Produção Agrícola (grãos) em M.T e na Mesorregião 01
- Anexo IX Percentuais Anuais de Mistura de Álcool Anidro na Gasolina Automotiva
- Anexo X.a Veículos (automóveis) à gasolina e à álcool licenciados na Mesorregião 01
- Anexo X.b Veículos (camionetas) à gasolina e à álcool licenciados na Mesorregião 01
- Anexo XI Produção, Importação, Consumo, Exportação e Perdas de Energia em M.T.
- Anexo XII Dedução dos reais consumos de eletricidade por Setores da Mesorregião 01
- Anexo XIII Dados Essenciais aos cálculos das Intensidades Energéticas na Mesorregião 01
- Anexo XIV Projeção da Demanda e da Oferta de Energia na Mesorregião 01

Anexo 1 Mapa Eletrogeográfico de Mato Grosso (Dezembro/ 1996)

TENSÃO	LINHAS
230 KV	
138 KV	And the first of t
69 KV	
HIDRO	assessed and a second a second and a second
À	EXISTENTE
	EM CONSTRUCAO
A.	A CONSTRUIR
TERMO	EXISTENTE
0	A CONSTRUIR

Fonte: CEMAT, 1996

Anexo II Usinas Hidroelétricas em Operação em Mato Grosso (Março / 1997)

a) Bacia do Rio Amazonas

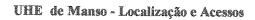
Nome	Proprietário Rio		Energia Firme (MW ano)	Pot. Efetiva (MW)	Pot. Nominal (MW)
Comodoro	HIDRECOM	Prata	6,57	1,50	1,50
Juina	CEMAT	Aripuanã	16,36	2,30	(*) 5,40
Aripuanã	CEMAT	Aripuanã	3,50	0,80	0,80
Faxinal I	MAD. FAXINAL	Aripuanã	2,53	2,79	2,79
JKO (Braço Norte)	CEMAT	Braço Norte	25,40	4,82	5,29
Culuene	CEMAT	Culuene	8,41	1,80	1,92
TOTAL NA BACI	A		62,77	14,01	17,70

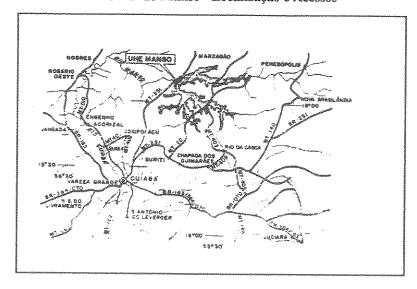
^(*) do total de quatro máquinas perfazendo 5,4 MW, apenas duas estão instaladas.

b) Bacia do Rio Tocantins

Nome	Proprietário	Proprietário Rio Energi Firme (MW ar		Pot. Efetiva (MW)	Pot. Nominal (MW)
Alto Araguaia 1	CEMAT	Araguaia	3,50	0,40	0,40
Alto Araguaia 2	CEMAT	Araguaia	5,26	0,60	0,80
Torixoréu	CEMAT	São Domingos	14,89	2,00	2,40
Alto Garças	CEMAT	Onça	2,63	0,28	0,36
Primavera	CEMAT	Mortes	48,18	2,46	8,61
Salto Belo	ENERCOOP	Noidore	20,30	4,00	4,00
Água Suja	ELOI BRUNETA	Água Suja	7,10	1,20	1,20
TOTAL NA B	ACIA		101,86	10,94	17,77

c) Bacia do Rio Paraná


Nome	Proprietário	Proprietário Rio Ener Firm (MW :		Pot. Efetiva (MW)	Pot. Nominal (MW)
Pedro Pedrossian	CEMAT	Paraguai	11,39	1,68	1,68
Juba I	ITACEL	Juba	304,41	42,00	42,00
Juba II	ITACEL	Juba	299,50	42,00	42,00
Jaciara	Usina Jaciara	Tenente Amaral	18,83	4,30	4,30
José Fragelli	CEMAT	Poxoréu	7,01	0,76	1,20
Casca II	CEMAT	Casca	26,28	3,52	3,52
Casca III	CEMAT	Casca	56,94	12,00	12,42
TOTAL NA BACIA			724,36	106,26	107,12
OTAL GERAL NO) ESTADO		888,99	131,21	142,59


Fonte: SIPOT, 1997

Obs.: 1 MWh = 8.760 x MW. ano Obs.: 8.760 = 24 h x 365 dias

NOBRES

Anexo III Barragens para Aproveitamento dos Potenciais Hidráulicos na bacia do Rio Cuiabá

Fonte: RIMA, 1987

Anexo IV Massas Específicas e Poderes Caloríficos Superiores

Fontes	Massa Específica Kg/m³ (1)	Poder Calorífico Kcal/kg
Energia Hidráulica	_	3.312 (2)
Lenha Catada	300	3.300
Lenha Comercial	390	3.300
Caldo de Cana	-	620
Melaço		1.930
Bagaço de cana	-	2.257 (3)
Óleo Diesel	852	10.750
Óleo Combustível Médio	1013	10.900
Gasolina Automotiva	742	11.220
Gasolina de Aviação	726	11.290
Gás Liquefeito de Petróleo	552	11.750
Querosene Iluminante	790	11.090
Querosene de Aviação	790	11.090
Eletricidade	-	3.132 (2)
Carvão Vegetal	250	6.800
Álcool Etílico Anidro	791	7.090
Álcool Etílico Hidratado	809	6.650
Petróleo	864	10.900
Gás Natural Úmido	-	10.454 (4)
Gás Natural Seco	-	9.256 (4)
Asfaltos	1025	10.050
Lubrificantes	875	10.770
Solventes	741	11.240
Outros não Energ. Petróleo	864	10.980

Fonte: BEEMT, 1993 BEEMT, 1995

Obs.: (1) A temperatura de 20° C, para os derivados de Petróleo e de Gás Natural

- (2) kcal / kWh
- (3) Bagaço com 50% de umidade
- (4) kcal / m³

Anexo V Fatores de Conversão para tEP Médio

Fontes	Unidade	1987	1988	1989	1990/1993
Energia Hidráulica	MWh	0,290	0,290	0,290	0,290
Lenha	t	0,306	0,306	0,306	0,306
Caldo de Cana	t	0,057	0,057	0,057	0,057
Melaço	t	0,179	0,179	0,179	0,179
Bagaço de cana	ŧ	0,209	0,209	0,209	0,209
Óleo Diesel	m ³	0,851	0,848	0,848	0,848
Óleo Combustível	m ³	0,951	0,943	0,931	0,946
Gasolina Automotiva	m ³	0,767	0,773	0,772	0,771
Gasolina de Aviação	m ³	0,740	0,743	0,727	0,759
Gás Liquefeito de Petróleo	m ³	0,600	0,601	0,602	0,601
Querosene Iluminante	m ³	0,804	0,801	0,804	0,811
Querosene de Aviação	m ³	0,806	0,802	0,807	0,811
Eletricidade	MWh	0,290	0,290	0,290	0,290
Carvão Vegetal	t	0,630	0,630	0,630	0,630
Álcool Etílico Anidro	m^3	0,520	0,520	0,520	0,520
Álcool Etílico Hidratado	m ³	0,496	0,496	0,496	0,496
" Petróleo Médio"	m ³	0,867	0,864	0,864	0,864
Gás Natural Úmido	1.000 m ³	0,912	0,912	0,912	0,912
Asfaltos	m ³	0,867	0,904	0,926	0,954
Lubrificantes	m ³	0,867	0,872	0,823	0,873
Solventes	m ³	0,867	0,761	0,742	0,771
Outros não Energ. Petróleo	m ³	0,867	0,864	0,864	0,872

Fonte: BEEMT, 1993 BEEMT, 1995

Anexo VI Produção de Cana-de-Açúcar, Açúcar, Álcool e Bagaço em Mato Grosso

SAFRA	CANA	AÇÚCAR (1)	ÁLCOOL E	TÍLICO (lts)	BAGAÇO (2)
	(ton.)	(ton.)	Hidratado	Anidro	(ton.)
1980	410.469	19.927	9.860.000	=	102.617
1981	302.348	21.418	9.738.000	-	75.587
1982	379.336	27.187	12.792.000	-	94.834
1983	525.758	25.300	22.981.000	-	131.440
1984	947.086	30.688	50.489.000	4.881.000	237.272
1985	(3)1.740.129	35.810	68.231.000	9.094.000	435.032
1986	1.450.026	23.319	102.440.000	9.541.000	362.506
1987	1.716.576	30.813	129.826.000	10.334.000	429.144
1988	1.572.087	25.613	126.479.000	10.398.000	393.022
1989	2.370.137	27.680	141.393.040	10.341.910	592.574
1990	3.036.690 (3)	23.217	168.906.050	10.504.680	759.173
1991	2.988.538	43.057	199.917.740	18.056.990	747.135
1992	3.116.582	45.846	202.708.000	21.600.000	779.146
1993	3.816.578	113.893	205.267.000	31.942.000	954.145
1994	4.922.624	177.107	248.203.000	29.270.000	1.230.656
1995	6.704.121	264.538	282.487.000	91.718.000	1.676.030

Fontes: BEEMT, 1989/1992/1993/1995 SINDALCOOL, 1996

Obs.: (1) Produção de Açúcar: de 1980 a 1992 = 1 usina; 1993 = 3 usinas; 1994/95 = 4 usinas

- (2) Estimou-se 0,25 tonelada de bagaço por tonelada de cana moída
- (3) Dados do FIBGE (inclui cana forrageira e cana para aguardente, etc)

Anexo VII Produção Agrícola em Mato Grosso - Período: 1985/1995

ANOS	1985		1986		1987		1988		1989		1990	
Produtos	Área	Quantidade	Área	Quantidade	Área	Quantidade	Área	Quantidade	Área	Quantidade	Área	Quantidade
	Colhida (ha)	Colhida ton.)	Colhida (ha)	Colhida (ton.)								
Soja (grão)	795,438	1.656.039	913.222	1.921.053	1.096,828	2.389.033	1.319.230	2.694.718	1.703.649	3.795.435	1.527.754	3.064.715
Milho (grão)	242.913	410.500	273.717	529.072	305.326	683.334	335.287	699.832	339.263	801.429	270.283	618.973
Arroz (grão)	406.589	521.776	589.496	794.182	678.243	922.384	731.858	973.675	612.413	890.237	355.210	420.722
Algodão(caroço)	16.945	21.837	16.015	20.408	13.307	16.308	30.744	36.860	42.763	56.605	43.422	57.634
Sorgo (grão)	60	139	5.938	11.755	19,100	27.357	20,912	25.129	14.840	18.713	10.528	10.211
Feijão (grão)	105.576	44.873	103.180	42.238	82.602	37.116	87.005	35.493	76.467	39.828	70.627	30.890
Trigo(grãos)	-	*	-	-	67 3	843	504	645	305	360	-	-
Total (grãos)	1.567.521	2.655.154	1.901.568	3.318.708	2.196.079	4.076.375	2,525,540	4.466.352	2.789.700	5.602.607	2.277.824	4.203.145
Cana-de-açúcar	30.027	1.740.129	36.241	2.157.740	41.557	2.549.359	43.685	2.406.636	49.707	2.832.768	50,675	3.036.690
Σ	1.597.548	4.395.283	1.937.809	5.476.448	2.237.636	6.625.734	2.569.225	6.872.988	2.839.407	8.435.375	2.328.499	7.239.835
Índice (Árca)	100		121,30		140,07		160,82		177,74		145,75	
Índice (Quantidade)		100		124,60		150,75		156,37		191,92		164,72
Índice (Consumo)	100		129,59		132,82		202,25		248,14		235,98	
Índice (Nº ligações)		100	135,67		184,27		218,12		180,8		348,15	

ANOS	1991		1992		1993		1994		1995	
Produtos	Área	Quantidade	Área	Quantidade	Área	Quantidade	Árca	Quantidade	Área	Quantidade
	Colhida (ha)	Colhida (ton.)								
Soja (grão)	1.164.585	2.738.410	1.453.702	3.642.743	1.678.532	4.118.726	2.022.956	5.319.793	2.322.825	5.491.426
Milho (grão)	253.022	669,683	290.266	763.907	339.772	908.186	434.705	1.163.551	439.390	1.226.157
Arroz (grão)	303.526	465.826	571.723	850.743	491.167	587,590	476.542	812.439	417.074	762,327
Algodão (caroço)	68.443	73.458	53.836	67.862	69.584	85.641	66.059	91,828	69.390	87.458
Sorgo (grão)	46.339	60.524	14.573	17.623	4.150	5.359	23.056	38.847	18.718	33.040
Feijão (grão)	54.315	28.029	52.171	28.528	43.059	23.893	38.696	24.394	36.915	23.220
Trigo (grãos)	-	-	•	*	-	-	-	-	-	-
Total (grãos)	1.890.230	4.035.930	2,436,271	5.371.406	2.626.264	5.729.395	3.062.014	7.450.852	3.304.318	7.623.628
Cana-de-açúcar	51.293	3.110.876	59.439	3.670.004	69.829	4.284.369	74,670	5.229.692	98.906	6.944.989
Σ	1.941.523	7.146.806	2.495.710	9.041.410	2.696.093	10.013.764	3.136.684	12.680.544	3.403.224	14.568.617
Índice (Área)	121,53		156,22		168,76		196,34		213,02	
Índice (Quantidade)		162,60		205,71		227,83		288,50		331,46
Índice (Consumo)	214.13		283,77		320,52		388,97		405,97	
Índice (N° ligações)	415,56		484,38		567,92		702,67		848,86	

Fonte: FIBGE, 1985 a 1995

Proporção entre Produção Agrícola em Mato Grosso e na Mesorregião 01 Mesorregião 01 - Período: 1989 a 1995 Anexo VIII

Safra	1994/95	(%)	9,0	2,8	1.3	0,5	0,1	6,1	1	1,0	5,5	1,1
Safra	1991/92	(1)/(2)	6,2	5,1	2,8	1,1	3,6	2,0	-	5,0	7,5	5,1
Safra	68/8861	(3)/(1)	4,3	4,5	4,6	7,0	14,2	1,6		4,3	9,7	1,
	sião 01	Quant. Colhida (ton)	31.753	22.577	8.919	286	74	410		64.019	355.524	419.543
1995	Mesorregião 01	(1) Area Colhida (ha)	13.474	12.148	5.241	323	25	710	-	31.921	5.397	37.318
Safra 1994/1995	Mato Grosso	Quant. Colhida (ton)	5,491,426	1.226.157	762.327	87.458	33.040	23.220	TANISMAN TANISMAN	7.623.628	6.944.989	14.568.617
	Mato	(2) Area Colhida (ha)	2.322.825	439.390	417.074	69.390	18.718	36,915	,	3.304.318	98.906	3,403,224
	jão 01	Quant. Colhida (ton)	221,694	27.732	24.268	985	1.207	489	-	276.375	152.295	428.670
11/1992	Mesorregião 01	(1) Area Colhida (ha)	89.409	14.663	16.214	618	530	1.064	,	122.498	4.474	126.972
Safra 1991/1992	rosso	Quant. Colhida (ton)	3.642.743	763.907	850.743	67.862	17.623	28.528	1	5.371.406	3.670.004	9,041,410
	Mato Grosso	(2) Area Colhida (ha)	1.453.702	290,266	571.723	53.836	14.573	52.171	,	2.436.271	59.439	2.495.710
	jão 01	Quant. Colhida (ton)	189.792	28.684	38.354	388	1.998	488	*	259,694	257.479	517.173
6861/8	Mesorregião 01	(1) Area Colhida (ha)	73.360	15.358	27.886	315	2.110	1.240	ŧ	120.264	4.811	125.080
Safra 1988/1989	rosso	Quant. Colhida (ton)	3.795.435	801.429	890.237	\$6.60\$	18.713	39.828	360	5.602.607	2.832.768	8.435.375
	Mato Grosso	(2) Área Colhida (ha)	1.703.649	339.263	612.413	42.763	14.840	76.467	365	2.789.700	49.707	2.839.407
	Especificações	Produtes	Soja	Milho	Arroz	Algodão	Sorgo	Feijão	Trigo	Sub Total	Cana-de-açticar	Total

Fonte: a) Elaboração do autor b) FIBGE, 1985 a 1995

Obs.: Pelos dados finais da última linha, pode-se admitir como média que a área colhida total da produção agrícola na mesorregião 01, foi de 5% em relação a de Mato Grosso ao longo do período.

Anexo IX Percentuais Anuais de Mistura de Álcool Anidro na Gasolina Automotiva no Brasil Mesorregião 01 - Período: 1989 a 1995

Anos	%
1988	21,65
1989	17,26
1990	11,88
1991	13,85
1992	15,65
1993	20,00
1994	21,32
1995	22,00
1996	22,00
1997	22,00

Fonte: Coordenadoria do BEN/MME

Anexo X.a Dados da frota de Veículos (Automóveis) à Gasolina e a Álcool Licenciados Mesorregião 01 - Ano: 1995

Em Cuiabá:

Grupos de Veículos	Combustível	% de Veículos	Total de	Quilometros	Quilometragem / 1	Consumo
		veiculos	Veículos	rodados / Ano		Anual (m ³)
Velhos	Gasolina	40	16.238	10.000	6.	20.297
(40.595)	Álcool	60	24.357	10.000	7	34.796
Semi velho	Gasolina	70	5.755	20.000	10	11.510
(8.222)	Álcool	30	2.467	20.000	9	5.482
Novos	Gasolina	90	16.241	30.000	12	40.602
(18.046)	Álcool	10	1.805	30,000	11	4.923

Em Várzea Grande:

Grupos de Veículos	Combustível	% de Veículos	Total de Veículos	Quilometros rodados / Ano	Quilometragem / 1	Consumo Anual (m³)
Velhos	Gasolina	40	3.427	10.000	6	5.712
(8.567)	Álcool	60	5.140	10.000	7	7.343
Semi velho	Gasolina	70	760	20.000	10	1520
(1.086)	Álcool	30	326	20.000	9	7.24
Novos	Gasolina	90	1.915	30.000	12	4.787
(2.128)	Álcool	10	213	30.000	11	581

Fonte: a) Elaboração do autor b) DETRAN/MT, 1996

Resumo: Consumo total nos automóveis (103 tEP)

- * Gasolina Pura 50,8 x 10³ tEP
- * Álcool Anidro 9,7 x 10³ tEP
- * Álcool Hidratado 26,7 x 103 tEP

Observações:

- a) os veículos licenciados em Cuiabá e Várzea Grande em 1995 representam cerca de 97% do total licenciados na mesorregião 01;
- b) a proporção entre veículos a gasolina e veículos à álcool, licenciados em 1995, era de 67,5 e 32,5 respectivamente (DETRAN, 1996);
- c) admitiu-se que a proporção acima não foi constante para todos os grupos de veículos (velhos, semi velhos e novos) licenciados em 1995;
- d) foram estimados as seguintes proporções:
 - para os velhos: 40 % e 60%;
 - para os semi velhos: 70% e 30%;
 - para os novos: 90 % e 10%.

Anexo X.b Dados da frota de Veículos (Camionetas) à Gasolina e a Álcool Licenciados Mesorregião 01 - Ano: 1995

Em Cuiabá:

Grupos de Veículos	Combustível	% de Veículos	Total de Veículos	Quilometros rodados / Ano	Quilometragem / 1	Consumo Anual (m³)
Velhos	Gasolina	30	2.205	10.000	6	3.175
(7.353)	Diesel	35	2.574	10.000	7	3.677
	Álcool	35	2.574	10.000	5	5.148
Semi velho	Gasolina	40	1.131	20.000	8	2.827
(2.827)	Diesel	35	989	20.000	9	2.198
	Álcool	25	707	20,000	7	2.020
Novos	Gasolina	45	2.191	30.000	10	6.573
(4.870)	Diesel	45	2.191	30.000	11	5.975
	Álcool	10	488	30,000	9	1.626

Em Várzea Grande:

Grupos de Veículos	Combustível	% de Veículos	Total de Veículos	Quilometros rodados / Ano	Quilometragem / 1	Consumo Anual (m³)
Velhos	Gasolina	30	643	10.000	6	1.072
(2.139)	Diesel	35	748	10.000	7	1.068
, ,	Álcool	35	748	10.000	5	1.496
Semi velho	Gasolina	40	201	20.000	8	503
(501)	Diesel	35	175	20.000	9	389
	Álcool	25	125	20.000	7	357
Novos	Gasolina	45	339	30.000	10	1.017
(753)	Diesel	45	339	30.000	11	924
	Álcool	10	75	30.000	9	250

Fonte: a) Elaboração do autor b) DETRAN/MT, 1996

Resumo: Consumo total nas camionetas (103 tEP)

- * Gasolina Pura 9,4 x 103 tEP
- * Álcool Anidro 1,8 x 10³ tEP
- * Óleo Diesel 12,1 x 10³ tEP
- * Álcool Hidratado 5,4 x 103 tEP

Consumo total (automóveis e camionetas) (103 tEP)

- * Gasolina Pura 60,2 x 10³ tEP
- * Álcool Anidro 11,5 x 103 tEP
- * Álcool Hidratado -32,1 x 103 tEP

Observações: Comparando os dados de consumo total (automóveis e camionetas) acima especificado, com os dados de consumo constantes na tabela 5.4.1, conclui-se que os mesmos são perfeitamente compatíveis.

Anexo XI Produção, Importação, Consumo , Exportação e Perdas de Energia Elétrica em Mato Grosso Unidade: MWh

Especificação	Produção	Produção	Produção	Importação	Consumo	Exportação	Perdas
Anos	Hidroelétrica	Termoelétrica	Total	(*)		(**)	Totais
1980	99.708	15.489	115.197	218.647	291.546	-	42.298
1985	104.200	78.170	182.370	639.285	701.186	1.738	118,731
1986	91.669	94.537	186.206	784.159	840.612	2.063	127.690
1987	116.005	118.632	234.637	908.295	968.493	2.287	172.150
1988	118.140	152.502	270.642	1.015445	1.060.191	2.331	223,565
1989	130.267	178.274	308.541	1.115137	1.169.997	2.536	251.145
1990	123.699	191.270	314.969	1.240.602	1.281.444	2.833	271.294
1991	142.734	208.668	351.402	1.399.934	1.405.885	3.089	342.362
1992	149.877	233.770	383.647	1.491.856	1,441,619	3.183	430.702
1993	164.327	259.451	423.778	1.647.839	1,544,734	3.265	523.618
1994	171.070	284.794	455.864	1.914,390	1.755.176	3.317	611.761
1995	190.922	239.153	430.075	2.245,540	2.000.388	8.271	666.956

Fonte: CEMAT - Boletins Anuais de Mercado - 1980 a 1995

^(*) Energia Comprada da ELETRONORTE, CELG e Outras

^(**) Energia Vendida para a CELG em Aragarças/GO e San Matias/BO

Anexo XII Dedução dos Reais Consumos de Eletricidade por Setores na Mesorregião 01

Ano	1989	1990	1991	1992	1993	1994	1995
Especificação	-				1330	1,,,,	1,7,5
Produção regional de energia	88.032	74.473	79.247	84.102	85.557	81.125	94.805
elétrica (MWh)							
Consumo regional de energia	628.436	673.851	746.176	758.321	819.542	924.267	1.045.754
elétrica (MWh)							
* Perdas totais de energia elétrica	17,6	17,4	19,5	23,0	25,3	25,8	24,9
(%)							
Importação de energia elétrica	664.663	741.327	847.680	900.730	1.011.554	1.164.518	1.297.677
(MWh)							
Perdas totais de energia elétrica	134.229	141.949	180.751	226.511	277.569	321.376	346.728
(MWh)							
Perdas técnicas (13%) - (MWh)	99.146	106.054	120.501	128.028	142.624	161.934	181.023
Perdas comerciais (MWh)	35.083	35.895	60.250	98.483	134.945	159.442	165.703
A ser adicionado no consumo	21.050	21.537	36.150	59.090	80.967	95.665	99.423
do setor residencial (60%)							
A ser adicionado no consumo	5.262	5.384	9.037	14.772	20.242	23.916	24.856
do setor industrial (15%)							
A ser adicionado no consumo	3.508	3.590	6.025	9.848	13.494	15.944	16.570
do setor comercial (10%)						-	
A ser adicionado no consumo	3.508	3.590	6.025	9.848	13.494	15944	16.570
do setor público (10%)							
A ser adicionado no consumo	1.754	1.795	3.012	4.924	6.747	7.972	8.285
do setor agropecuário (5%)							

Fonte: Elaboração do Autor

OBS.: * Os percentuais de perdas totais de energia elétrica na mesorregião 01, foram admitidos iguais aos ocorridos no âmbito do Estado (Anexo XI).

Anexo XIII Dados Essenciais ao Cálculo das Intensidades Energéticas na Mesorregião 01

Anos	1990	1991	1992	1993	1994	1995	1996
Especificação							
Consumo de Energia (tEP)	442.300	425.200	445.300	479.500	556,900	627.100	-
População (hab.)	657.909	691.961	703.171	714.534	726.095	737.843	749.782
Arrecadação de ICMS							
(US\$ 1.000)	272.525	250.397	247.097	273,106	.368.741	358.465	-
Consumo de Energia Elétrica no				·			
Setor Residencial (tEP)	30.200	37,200	42.700	50,500	57.400	64.100	-
Consumo de Energia Elétrica no							
Setor Comercial (tEP)	14.100	15.700	16.900	18.900	21.300	22.800	-
Número de Consumidores de							
Energia Elétrica no Setor							
Residencial	124.500	132.575	138.486	148,509	154.011	164.123	-
Número de Consumidores de							
Energia Elétrica no Setor							
Comercial	13,715	14.547	14.865	15.724	16.040	16.801	**
Consumo de Energia no Setor							
Industrial (tEP)	48.100	53.100	65.100	77.600	110.000	127.500	
Consumo de Energia no Setor							
Comercial (tEP)	16.400	18.200	18.900	21.000	21.700	23.500	-
Arrecadação de ICMS no Setor							
Industrial (US\$ 1.000)	51.406	-	-	-	-	68.721	*
Arrecadação de ICMS no Setor							
Comercial (US\$ 1.000)	116.795	-	-	μ.	-	128.292	
Consumo de Energia no Setor							
Agropecuário (tEP)	20.200	20.400	25.100	26.600	32.200	35.400	-

Fonte: Quadros, Tabelas, Anexos e Apêndices, contidos no trabalho

Obs.: população da Mesorregião 01 (em negrito), corresponde as dos Censos de 1991 e 1996.

Anexo XIV Projeção da Demanda e da Oferta de Energia na Mesorregião 01

XIV.1- Projeção da Demanda (1998 a 2007)

A demanda de energia em uma determinada região decorre do crescimento econômico que se processa na mesma através dos setores da economia, o qual deve ser planejado com a definição de políticas e estratégias de desenvolvimento regional. Assim, ao fazer projeções de demanda de energia o planejador precisa conhecer as políticas sócio-econômicas, tecnológicas, etc., em curso na região em estudo (BAJAY, 1989).

Na projeção da demanda de energia uma das primeiras exigências é a compreensão perfeita do comportamento do consumo no ano base, isto é, além de dispor dos dados de consumo é preciso saber se os mesmos são confiáveis e suficientes. É necessário verificar se ocorreu a contabilização dos consumos não faturados; o detalhamento do consumo por segmentos de cada setor e por usos finais; a avaliação das perdas nas etapas de transformação, armazenamento, distribuição e consumo final; a estimativa de demandas não atendidas no ano base da projeção, etc. A rigor, para a elaboração da projeção da demanda de energia deve-se conhecer a distribuição do consumo em cada segmento do setor por usos finais.

Assim, na projeção da demanda de eletricidade no setor comercial é preciso conhecer os dados de consumo no ano base nos segmentos: loja, banco, hotel, "shopping center", etc, em seus usos finais: iluminação, refrigeração, cocção elétrica, ar condicionado. No setor industrial, de igual forma, deve-se conhecer o consumo de eletricidade em cada um dos segmentos (têxtil, químico, não metálico, alimento, bebida, etc.), em seus usos finais: iluminação, aquecimento direto, motores elétricos, eletroquímica. No setor residencial, em cada um de seus segmentos representados pelas diversas faixas de renda em que se enquadram os consumidores, é necessário conhecer os dados do consumo contabilizados por usos finais (geladeira, ar condicionado, iluminação, chuveiro elétrico, ferro elétrico, etc).

Deve-se ainda definir qual o indicador relevante na demanda de energia de um dado setor da economia, para que se possa estabelecer a relação entre o consumo de energia e a variável determinante do mesmo. No setor industrial, o PIB - Produto Interno Bruto é comumente utilizado enquanto no setor comercial o consumo está relacionado com a área do espaço físico do estabelecimento comercial, sendo o número de domicílios a variável no setor residencial.

A partir da taxa geométrica anual média de crescimento do consumo no período, obtida em cada um dos usos finais dos segmentos do setor considerado, estima-se a projeção da demanda de energia no setor com base em cenários. No cenário tendencial não são levados em conta os programas de conservação de energia, novas tecnologias, eficiência de equipamentos e substituição de energéticos, etc, inovações estas que irão diminuir a demanda de energia por unidade produzida, enquanto no cenário eficiente esses programas são observados.

No caso específico da mesorregião 01, os dados de consumo de energia a esses níveis de detalhamento ainda não estão inseridos nos balanços energéticos de Mato Grosso, devido ao fato da maioria deles decorrer de pesquisas que ainda não foram realizadas no Estado. A não disponibilidade de grande parte dessas informações impediu que a elaboração da projeção da demanda de energia, para o período 1998/2007, fosse realizada com o devido rigor daí porque a mesma deixa de ser apresentada em um capítulo da tese para constar deste Anexo.

XIV. 1.1 - Projeção da Demanda de Derivados de Petróleo

Na mesorregião 01 a participação percentual do consumo de derivados de petróleo foi de 61,5% no ano base 1995, bem próxima a dos anos anteriores evidenciando uma estabilização na participação desses derivados na matriz de consumo. A taxa de crescimento entre 1994/1995 foi de 13,4%, bem inferior a de 20,9% entre 1993/1994, tendo sido verificada no período 1989/1995 uma taxa geométrica anual média de crescimento de 6,0%.

Os dados de consumo de energia dos derivados de petróleo (Tabela 5.4.1) possibilitam os cálculos das taxas geométricas anuais médias de crescimento do consumo de cada energético por setor da economia no período 1989/1995, as quais estão no Quadro XIV.1.1.

Quadro XIV.1.1

Taxa Geométrica (%) Anual Média de Crescimento do Consumo
Mesorregião 01 - Derivados de Petróleo - Período: 1989 a 1995

Energético/Setor	Transporte	Industrial	Residencia	Agropecuário	Comercial	Público	Energético
Óleo Diesel	3,5	- 0,9	- 12,6	7,2	- 6,5	- 15,1	(*)
Óleo Combustível	-	(**)10,0	-	12,3	- 25,0	-	
Gasolina Autom.	7,3	_	_	-	-	- 5,5	~
GLP	_	- 12,6	2,6	-	- 25,8	19,0	_
Querosene Aviação	- 6,1		-	-	-	•	•
Gasolina Aviação	- 0,6	_	-	w	-	-	-
Querosene Ilumin.	-	-	see	- 27,7		_	-

Fonte: Elaboração do Autor

^(*) vide explicação no parágrafo a seguir

^(**) taxa arbitrada para o período 1998/2007, com base no item 5.2.2 e os dados da Tabela 5.4.1

No setor energético está o óleo Diesel (Tabela 5.4.2.g), cujo consumo decresceu no período 1991/1995 a uma taxa geométrica anual média de -15,9%. Todavia, em outubro do corrente ano passou a funcionar a UTE de Cuiabá com 150 MW operando à óleo Diesel em apenas 5 dias na semana no horário do pico (5 horas/dia), devendo assim permanecer até setembro/1999 quando a UTE passará a operar com gás natural procedente da Bolívia com a capacidade ampliada para 300 MW. Sabe-se que o consumo de *óleo Diesel* na UTE está estimado em 238 m³/dia (consumo total durante o horário de pico), ou 53,3 x 10³ tEP ao ano (238 m³/dia x 264 dias x 0,848 tEP/m³), cessando o consumo em outubro/1999. Estima-se o consumo de óleo Diesel em 13,3 x 10³ tEP em 1998 (outubro/dezembro) e em 40,0 x 10³ tEP em 1999 (janeiro/setembro) e a partir do ano 2000 de 0,1 x 10³ tEP, igual ao de 1995.

A Tabela XIV.1.1 apresenta os dados da projeção da demanda de energia dos derivados de petróleo obtidos por meio da aplicação da taxa geométrica anual média de crescimento do consumo, no período 1989/1995 por energético e por setor, sobre o consumo no ano 1995.

Tabela XIV.1.1

Projeção da Demanda de Energia de Derivados de Petróleo por Setores da Economia

Mesorregião 01 - Período 1998 a 2007 - Unidade 10³ tEP - Ano Base: 1995

Mesorregiae 01 - Periodo 1998 a 2007 - Unidade 10 TEP - Ano Base: 1995											
Setores/Anos	1995	1998	2001	2004	2007						
Transportes	248,3	281,3	319,0	363,9	416,6						
* Óleo Diesel	178,0	197,4	218,8	242,6	269,0						
*Gasolina Automotiva	61,0	75,8	93,1	115,0	142,1						
*Querosene Aviação	6,7	5,5	4,6	3,8	3,1						
*Gasolina Aviação	2,6	2,6	2,5	2,5	2,4						
Industrial	80,3	100,1	127,6	165,2	215,9						
*Óleo Combustível	65,9	87,7	116,7	155,4	206,8						
*Óleo Diesel	8,9	8,7	8,4	8,2	8,0						
*GLP	5,5	3,7	2,5	1,6	1,1						
Agropecuário	32,4	39,8	49,1	60,6	74,7						
*Óleo Diesel	32,1	39,5	48,7	60,0	73,9						
*Óleo Combustível	0,2	0,3	0,4	0,6	0,8						
*Querosene de Ilum.	0,1	0,0	0,0	0,0	0,0						
Residencial	21,6	23,2	24,9	26,8	28,9						
*GLP	21,2	22,9	24,7	26,7	28,8						
*Óleo Diesel	0,4	0,3	0,2	0,1	0,1						
Público	2,5	3,5	5,3	8,4	14,0						
*GLP	1,7	2,9	4,8	8,1	13,7						
*Gasolina Automotiva	0,5	0,4	0,4	0,3	0,3						
*Óleo Diesel	0,3	0,2	0,1	0,0	0,0						
Comercial	0,6	0,3	0,2	0,1	0,1						
*Óleo Combustível	0,3	0,1	0,1	0,0	0,0						
*Óleo Diesel	0,2	0,2	0,1	0,1	0,1						
*GLP	0,1	0,0	0,0	0,0	0,0						
Energético	0,1	13,4	0,1	0,1	0,1						
*Óleo Diesel	0,1	13,4	0,1	0,1	0,1						
TOTAL	385,8	461,6	526,2	625,1	750,3						

Fonte: Elaboração do Autor negrito (consumo realizado)

Pelos dados da demanda projetada no período 1995/2007, tem-se uma taxa geométrica anual média de crescimento de 5,7%, próxima a de 6,0% verificada no período 1989/1995.

XIV.1.2 - Projeção da Demanda de Eletricidade

Na mesorregião 01 a participação percentual do consumo de eletricidade foi de 20,8% no ano base de 1995, praticamente igual a de 1994 (21,4%) e a de 1993 (21,4%), evidenciando uma estabilização de sua participação na matriz de consumo. A taxa de crescimento do consumo entre 1994/1995 foi de 9,4%, inferior a de 1993/1994 (16,5%) e a de 1992/1993 (15,7%), sendo verificada no período 1989/1995 uma taxa geométrica anual média de 13,8%.

Os dados de consumo de eletricidade apresentados na Tabela 5.4.1 possibilitam os cálculos das taxas geométricas anuais médias de crescimento do consumo da mesma por setor da economia no período 1989 a 1995, as quais estão mostradas no Quadro XIV.1.2.

Quadro XIV.1.2

Taxa Geométrica (%) Anual Média de Crescimento do Consumo Mesorregião 01 - Eletricidade - Período; 1989 a 1995

	Transporte	Industrial	Residencia	Agropecuário			Energético
Eletricidade	_	17,0	15,2	22,2	10,0	9,4	5,8

Fonte: Elaboração do Autor

A Tabela XIV.1.2 apresenta os dados da projeção da demanda de eletricidade obtidos por meio da aplicação da taxa geométrica anual média de crescimento do consumo, no período 1989/1995 por energético e por setor, sobre o consumo no ano 1995.

Tabela XIV.1.2

Projeção da Demanda de Eletricidade por Setores da Economia

Mesorregião 01 - Período: 1998 a 2007 - Unidade: 10³ tEP - Ano Base: 1995

nesonregiae or -	I CIJUUU. 1	220 a #UU/ ~	Umuauc. 10	, rea wand	Dasc. 122.
Setores/Anos	1995	1998	2001	2004	2007
Residencial	64,1	98,0	149,8	229,1	350,2
Industrial	26,1	41,8	67,0	107,2	171,7
Comercial	22,8	30,3	40,4	53,8	71,6
Público	13,4	17,5	23,0	30,1	39,4
Agropecuário	3,0	5,5	10,0	18,2	33,3
Energético	1,4	1,7	2,0	2,3	2,8
TOTAL	130,8	194,8	292,2	440,7	669,0

Fonte: Elaboração do Autor negrito (consumo realizado)

Observando os dados da projeção da demanda no período 1995/2007, constata-se uma taxa geométrica anual média de crescimento de 14,6%, bastante elevada e próxima à taxa de 13,8% verificada no período 1989/1995.

XIV.1.3 - Projeção da Demanda de Derivados de Biomassa

A participação percentual do consumo de derivados de biomassas foi de 17,6% no ano 1995 (Tabela 5.4.1), praticamente igual a dos anos anteriores. A taxa de crescimento entre 1994/1995 foi de 13,6%, superior a de 1993/1994 (1,9%) e a de 1992/1993 (-0,4%), tendo sido verificada no período 1989/1995 uma taxa geométrica anual média de -3,2%.

Os dados de consumo de energia de derivados de biomassa (Tabela 5.4.1), possibilitam os cálculos das taxas geométricas anuais médias de crescimento do consumo por setor da economia no período 1989 a 1995, mostrados no Quadro XIV.1.3.

Quadro XIV.1.3

Taxa Geométrica Anual Média de Crescimento do Consumo
Mesorregião 01 - Derivados de Biomassa - Período 1989 a 1995

Energético/Setor	Transporte	Industrial	Residencial	Agropecuário	Comercial	Público	Energético
Lenha	-	- 3,2	- 7,2		-	-	_
Álcool Etíl, Hidrat.	- 4,8	-	-		_	- 22,2	- 16,7
Álcool Etíl. Anidro	13,2	-	-	_	*	- 10,9	_
Bagaço de Cana		-		-	-	-	16,4
Carvão Vegetal	-	_	- 10,0		0,0	-	_

Fonte: Elaboração do Autor

A Tabela XIV.1.3 apresenta os dados da projeção da demanda de energia dos derivados de biomassa obtidos por meio da aplicação da taxa geométrica anual média de crescimento do consumo, no período 1989/1995 por energético e por setor sobre o consumo no ano 1995.

Tabela XIV.1.3

Projeção da Demanda de Energia de Derivados de Biomassa por Setores da Economia
Mesorregião 01 - Período 1998 a 2007 - Unidade: 10³ tEP - Ano Base: 1995

Setores/Anos	1995	1998	2001	2004	2007
Transporte	39,4	40,8	45,1	53,3	66,8
*Álcool Etil. Hidratado	27,8	24,0	20,7	17,9	15,4
*Álcool Etíl. Anidro	11,6	16,8	24,4	35,4	51,4
Residencial	38,3	30,6	24,5	19,5	15,6
*Lenha (cerrado)	38,2	30,5	24,4	19,5	15,6
*Carvão Vegetal	0,1	0,1	0,1	0,0	0,0
Industrial	21,1	19,1	17,4	15,7	14,3
*Lenha (cerrado)	21,1	19,1	17,4	15,7	14,3
Energético	11,3	17,8	27,9	43,9	69,3
*Bagaço de Cana	11,2	17,7	27,9	43,9	69,3
*Álcool Etíl. Hidratado	0,1	0,1	0,0	0,0	0,0
Público	0,3	0,2	0,1	0,0	0,0
*Álcool Etil. Hidratado	0,2	0,1	0,0	0,0	0,0
*Álcool Etíl. Anidro	0,1	0,1	0,1	0,0	0,0
Comercial	0,1	0,1	0,1	0,1	0,1
*Carvão Vegetal	0,1	0,1	0,1	0,1	0,1
TOTAL	110,5	108,6	115,1	132,5	166,1

Fonte: Elaboração do Autor negrito (consumo realizado)

Observando os dados da projeção da demanda no período 1995/2007, constata-se uma taxa geométrica anual média de crescimento do consumo de 3,5%, pouco expressiva embora muito superior à taxa de -3,2% verificada no período 1989/1995.

XIV.1.4 - Evolução da Demanda Total de Energia

A Tabela XIV.1.4 apresenta os dados de consumo/demanda de energia por energéticos.

Tabela XIV.1.4

Dados de Consumo/Demanda de Energia por Energéticos
Mesorregião 01 - Período: 1989 a 2007 - Unidade: 10³ tEP

Energéticos/Anos	1989	1992	1995	1998	2001	2004	2007
Óleo Diesel	183,3	160,6	220,0	259,7	276,4	311,1	351,2
Óleo Combustível	2,5	25,9	66,4	88,1	117,2	156,0	207,6
Gasolina Autom.	40,6	43,9	61,5	76,2	93,5	115,3	142,4
GLP	31,7	21,0	28,5	29,5	32,0	36,4	43,6
Querosene Aviação	9,8	7,9	6,7	5,5	4,6	3,8	3,1
Gasolina Aviação	2,7	1,2	2,6	2,6	2,5	2,5	2,4
Querosene Ilumin.	0,7	0,2	0,1	0,0	0,0	0,0	0,0
Eletricidade	60,3	88,8	130,8	194,8	292,2	440,7	669,0
Lenha	85,4	64,5	59,3	49,6	41,8	35,2	29,9
Álcool Etíl. Hidrat.	38,6	25,6	28,1	24,2	20,7	17,9	15,4
Álcool Etíl. Anidro	5,7	5,5	11,7	16,9	24,5	35,4	51,4
Bagaço de Cana	4,5	0,0	11,2	17,7	27,9	43,9	69,3
Carvão Vegetal	0,3	0,2	0,2	0,2	0,2	0,1	0,1
TOTAL	466,1	445,3	627,1	765,0	933,5	1.198,3	1.585,4

Fonte: Elaboração do Autor

negrito (consumo realizado)

No período 1995/2007 constatou-se uma taxa geométrica anual média de crescimento de 8,0%, muito elevada comparada a de 5,1% verificada no período 1989/1995.

A Tabela XIV.1.4.a mostra os dados consumo/demanda por categorias de energéticos.

Tabela XIV.1.4.a

Dados de Consumo/Demanda de Energia por Categorias de Energéticos

Mesorregião 01 - Período: 1989 a 2007 - Unidade: 10³ tEP

Categorias de	1989	1992	1995	1998	2001	2004	2007
Derivados de Petróleo	271,3	260,7	385,8	461,6	526,2	625,1	750,3
Eletricidade	60,3	88,8	130,8	194,8	292,2	440,7	669,0
Derivados de Biomassa	134,5	95,8	110,5	108,6	115,1	132,5	166,1
TOTAL	466,1	445,3	627,1	765,0	933,5	1.198,3	1.585,4

Fonte: Elaboração do Autor

negrito (consumo realizado)

Observando os dados da Tabela XIV.1.4.a referentes aos derivados de petróleo e eletricidade, constata-se que os consumos de ambos, bem distantes em 1989 estarão próximos em 2007, enquanto o alusivo aos derivados de biomassas no ano 2007 estará pouco distante do constatado em 1989.

A Tabela XIV.1.4.b mostra os dados da participação percentual do consumo/demanda.

Tabela XIV.1.4.b

Participação % do Consumo e da Demanda de Energia por Categorias de Energéticos

Mesorregião 01 - Período: 1989 a 2007

Categorias de	1989	1992	1995	1998	2001	2004	2007
Derivados de Petróleo	58,2	58,6	61,5	60,3	56,4	52,2	47,3
Eletricidade	12,9	19,9	20,9	25,4	31,3	36,7	42,2
Derivados de Biomassa	28,9	21,5	17,6	14,3	12,3	11,1	10,5
TOTAL	100,0	100,0	100,0	100,0	100,0	100,0	100,0

Fonte: Elaboração do Autor negrito (% do consumo realizado)

A Tabela XIV.1.4.c apresenta os dados de consumo/demanda por setores da economia.

Tabela XIV.1.4.c

Dados de Consumo/Demanda de Energia por Setores da Economia

Mesorregião 01 - Período: 1989 a 2007 - Unidade: 10³ tEP

Setores/Anos	1989	1992	1995	1998	2001	2004	2007
Transporte	240,0	214,4	287,7	322,1	364,1	417,2	483,4
Industrial	58,4	65,1	127,5	161,0	212,0	288,1	401,9
Residencial	106,4	107,3	124,0	151,8	199,2	275,4	394,7
Agropecuário	22,9	25,1	35,4	45,3	59,1	78,8	108,0
Comercial	15,6	18,9	23,5	30,7	40,7	54,0	71,8
Público	11,0	13,3	16,2	21,2	28,4	38,5	53,4
Energético	11,8	1,3	12,8	32,9	30,0	46,3	72,2
TOTAL	466,1	445,4	627,1	765,0	933,5	1.198,3	1.585,4

Fonte: Elaboração do Autor negrito (consumo realizado)

A Tabela XIV.1.4.d mostra a participação percentual do consumo/demanda por setores.

Tabela XIV.1.4.d

Participação % do Consumo/Demanda de Energia por Setores da Economia

Mesorregião 01 - Período: 1989 a 2007

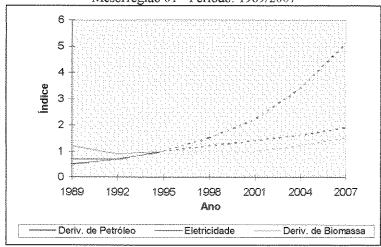
	X1.K C () () 1	Cresino ox	TCHOGO	· I/O/ a w	70 /		
Setores/Anos	1989	1992	1995	1998	2001	2004	2007
Transporte	51,5	48,1	45,9	42,1	39,0	34,8	30,5
Industrial	12,5	14,6	20,3	21,0	22,7	24,0	25,4
Residencial	22,8	24,1	19,8	19,8	21,3	23,0	24,9
Agropecuário	4,9	5,6	5,6	5,9	6,3	6,6	6,8
Comercial	3,3	4,2	3,7	4,0	4,4	4,5	4,5
Público	2,4	3,0	2,6	2,8	3,0	3,2	3,4
Energético	2,5	0,3	2,0	4,3	3,2	3,8	4,5
TOTAL	100,0	100,0	100,0	100,0	100,0	100,0	100,0

Fonte: Elaboração do Autor negrito (% do consumo realizado)

Observando os dados da Tabela XIV.1.4.c referentes aos setores transporte, industrial e residencial, constata-se que os consumos de energia nos mesmos, bem diferenciados em 1989 estarão muito próximos em 2007, fato este indicativo de desenvolvimento sócio econômico de uma região. Verifica-se ainda que o consumo no setor agropecuário no ano 2007 estará bem mais expressivo comparado aos dos setores comercial e público.

XIV.1.5 - Evolução dos Índices de Crescimento do Consumo/Demanda

Tomando o consumo no ano 1995 como base de indexação dos demais consumos e demandas (Tabela XIV.1.4.a), pode-se calcular os índices de crescimento por categorias de energéticos na mesorregião 01, conforme mostrados no Quadro XIV.1.5.


Quadro XIV.1.5 Índices de Consumo/Demanda de Energia por Categorias de Energéticos Mesorregião 01 - Período:1989/2007

7.77		* 200	**********	() O) (MOO	, ,		
Anos	1989	1992	1995	1998	2001	2004	2007
Energético							
Derivados de Petróleo	0,7	0,7	1,0	1,2	1,4	1,6	1,9
Eletricidade	0,5	0,7	1,0	1,5	2,2	3,4	5,1
Derivados de Biomassa	1,2	0,9	1,0	1,0	1,0	1,2	1,5

Fonte: Elaboração do Autor

O Gráfico XIV.1.5 mostra a evolução dos índices por categorias de energéticos.

Gráfico XIV.1.5
Evolução dos Índices de Consumo/Demanda de Energia por Categorias de Energéticos
Mesorregião 01 - Período: 1989/2007

Fonte: Elaboração do Autor

O Quadro XIV.1.5.a apresenta os índices consumo/demanda por derivado de petróleo.

Quadro XIV.1.5.a Índices de Crescimento do Consumo/Demanda por Derivado de Petróleo Mesorregião 01 - Período:1989/2007

Anos	1989	1992	1995	1998	2001	2004	2007
Energético							
Óleo Diesel	0,8	0,7	1,0	1,2	1,3	1,4	1,6
Óleo Combustível	0,0	0,4	1,0	1,3	1,8	2,3	3,1
Gasolina Automotiva	0,7	1,1	1,0	1,2	1,5	1,8	2,3
GLP	1,1	0,7	1,0	1,0	1,1	1,2	1,5
*Outros	1,4	1,0	1,0	0,9	0,8	0,7	0,6

Fonte: Elaboração do Autor * Outros (Gas. Aviação, Queros. Aviação e Iluminante)

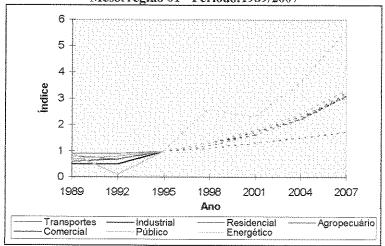
O Quadro XIV.1.5.b mostra os índices de consumo/demanda por derivado de biomassa.

Quadro XIV.1.5.b Índices de Crescimento do Consumo/Demanda por Derivado de Biomassa Mesorregião 01 - Período:1989/2007

11200110110011100711007									
Anos	1989	1992	1995	1998	2001	2004	2007		
Energético	_								
Lenha	1,4	1,1	1,0	0,8	0,7	0,6	0,5		
Álcool Etílico Hidratado	1.4	0,9	1,0	0.9	0,7	0,6	0,5		
Álcool Etílico Anidro	0,5	0,5	1,0	1,4	2,1	3,0	4,4		
Bagaço de Cana	0,4	0,0	1,0	1,6	2,5	3,9	6.2		
Carvão Vegetal	1,5	1,0	1,0	1,0	1,0	0,5	0,5		

Fonte: Elaboração do Autor

O Quadro XIV.1.5.c apresenta os índices de consumo/demanda por setores.


Quadro XIV.1.5.c Índices do Crescimento do Consumo/Demanda por Setores da Economia Mesorregião 01 - Período:1989/2007

	*12400244	S		****			
Setores\Anos	1989	1992	1995	1998	2001	2004	2007
Transportes	0,8	0,7	1,0	1,1	1,3	1,5	1,7
Industrial	0,5	0,5	1,0	1,3	1,6	2,2	3,1
Residencial	0,9	0,9	1,0	1,2	1,6	2,2	3,2
Agropecuário	0,6	0,7	1,0	1,3	1,7	2,2	3,1
Comercial	0,7	0,8	1,0	1,3	1,7	2,3	3,1
Público	0,7	0,8	1,0	1,3	1,8	2,4	3,3
Energético	0,9	0,1	1,0	2,6	2,3	3,6	5,6

Fonte: Elaboração do Autor

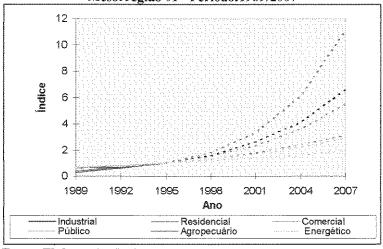
O Gráfico XIV.1.5.c mostra a evolução dos indices de consumo/demanda por setores.

Gráfico XIV.1.5.c Evolução dos Índices de Crescimento de Consumo/Demanda por Setores Mesorregião 01 - Período:1989/2007

Fonte: Elaboração do Autor

Dentre os índices de crescimento do consumo/demanda das 3 categorias de energéticos, expressos no Quadro XIV.1.5, observa-se que o mais acentuado ao longo da série histórica é o da eletricidade, a qual não é consumida apenas no setor transporte na mesorregião 01, conforme mostrado no capítulo 5.

O Quadro XIV.1.5.d apresenta os índices de consumo/demanda de eletricidade por setores da economia.


Quadro XIV.1.5.d Índices de Crescimento do Consumo/Demanda de Eletricidade por Setores Mesorregião 01 - Período:1989/2007

	Wicsoff egiae 01 - 1 cfredu. 1707/2007								
Setores\Anos	1989	1992	1995	1998	2001	2004	2007		
Industrial	0,4	0,6	1.0	1,6	2,6	4,1	6,6		
Residencial	0,4	0,7	1,0	1,5	2,3	3,6	5,5		
Comercial	0,6	0,7	1,0	1,3	1,8	2,4	3,1		
Público	0,6	0,8	1,0	1,3	1,7	2,2	2,9		
Agropecuário	0,3	0,6	1,0	1,8	3,3	6.1	11,1		
Energético	0,7	0,8	1,0	1,2	1,4	1,6	2,0		

Fonte: Elaboração do Autor

O Gráfico XIV.1.5.d mostra a evolução dos índices de consumo/demanda de eletricidade por setores da economia.

Gráfico XIV.1.5.d Evolução dos Índices de Crescimento do Consumo/Demanda de Eletricidade por Setores Mesorregião 01 - Período:1989/2007

Fonte: Elaboração do Autor

Observa-se que os índices de crescimento da demanda de eletricidade no setor agropecuário são excessivamente elevados nos últimos anos do período de projeção, fato este justificado em razão do pequeno consumo do energético no ano 1995, tomado como base de indexação dos consumos e das demandas.

XIV.2 - As Políticas no Setor de Energia na Mesorregião 01

O governo estadual, em 1995, definiu políticas para o setor de energia do Estado, muitas delas direcionadas à mesorregião 01, dentre as quais algumas em fase de implementação são de grande importância para a elaboração desta projeção, a saber:

- a) construção do gasoduto Bolívia/Cuiabá, disponibilizando o gás natural no Estado;
- b) reinício da construção da UHE de Manso;
- c) instalação de uma UTE em Cuiabá à gás natural de 480 MW.

Na medida em que a implementação dessas políticas vai se processando, passa a ocorrer um aumento da oferta de energia na mesorregião 01 e consequentemente o atendimento da demanda reprimida de energia elétrica atualmente existente. À título de especulação será comentada a projeção da oferta de energia na mesorregião 01 à luz dessas políticas.

XIV.3 - Projeção da Oferta de Energia de Produção Regional

Conforme foi afirmado, é pequena a produção de energéticos na mesorregião 01, notadamente a de energia elétrica, seguindo-se a de álcool etílico hidratado e de bagaço de cana, sendo todavia bem expressiva a produção de lenha de cerrados. No entanto, em decorrência de decisões governamentais levadas a efeito nos últimos anos a mesorregião 01 passará brevemente da condição de importadora de energia elétrica para a de exportadora desse energético, continuando todavia a importar derivados de petróleo em volume crescente se a substituição de parte dos mesmos não for feita por derivados de biomassa.

XIV.3.1 - Oferta de Energia Elétrica

Conforme ressaltado no capítulo 4 (Quadro 4.1.1), a oferta de energia elétrica de produção regional no período 1989/1995 foi propiciada apenas pelas UHE_s Casca II e Casca III.

* De origem hidroelétrica

Sendo muito antigas, as usinas Casca II e Casca III vêm apresentando produção quase estagnada, daí porque pode-se admitir dessas usinas por todo o período 1998/2007, uma oferta de *energia elétrica* anual de *27,5 x 10³ tEP*, igual a ocorrida no ano 1995. Relativamente à UHE de Manso em construção, projetada com 4 turbinas totalizando uma potência instalada de 210 MW, a primeira turbina deverá funcionar em dezembro do ano 2000, a segunda em março de 2001, a terceira em junho e a quarta em setembro (ELETRONORTE,1998).

Embora a potência instalada seja de 210 MW, a potência firme é de apenas 91 MW, podendo para efeito da projeção da oferta ser considerada uma potência de 120 MW_{medio}, a partir do ano 2002 com as 4 turbinas em operação (ELETRONORTE, 1998), admitindo para o ano 2001 uma potência instalada de 75 MW_{medio}. Assim, admite-se uma oferta de *energia elétrica* em 2001 de *156,6 x 10³ tEP* (75 MW x 300 dias x 24 horas x 0,29 tEP/MWh), elevando em 2002 para 250,6 x 10³ tEP (120 MW x 300 dias x 24 horas x 0,29 tEP/MWh).

* De origem termoelétrica

A UTE de Cuiabá operando desde outubro de 1998 à óleo Diesel no horário de ponta (5 horas), durante 5 dias na semana (EIA, 1997) com a capacidade de 150 MW, totalizará no ano de 1998 (outubro a dezembro) cerca de 11,5 x 10³ tEP (150 MW x 0,80 x 264 dias x 5 horas x 3/12 x 0,29 tEP/MWh), considerando apenas 80% da capacidade. Em 1999, operando nas mesmas condições de janeiro a setembro, haverá uma oferta de 34,5 x 10³ tEP (150 MW x 0,80 x 264 dias x 5 horas x 9/12 x 0,29 tEP/MWh), sendo que a partir de outubro a oferta de energia elétrica na UTE, ampliada para 300 MW à gás natural e operando em média 16 horas/dia, passará nesse ano (outubro a dezembro) a ser de 83,5 x 10³ tEP (300 MW x 0,80 x 300 dias x 16 horas x 3/12 x 0,29 tEP/MWh), totalizando em 1999 uma oferta de 118,0 x 10³ tEP.

No ano 2000, operando nas mesmas condições no período janeiro a setembro, haverá uma oferta de 250,6 x 10³ tEP (300 MW x 0,80 x 300 dias x 16 horas x 9/12 x 0,29 tEP/MWh). A partir de outubro do mesmo ano a oferta de energia elétrica na UTE, com capacidade ampliada para 480 MW, atingirá nesse ano (outubro a dezembro), cerca de 133,6 x 10³ tEP (480 MW x 0,80 x 300 dias x 16 horas x 3/12 x 0,29 tEP/MWh), totalizando 384,2 x 10³ tEP de oferta de energia elétrica no ano 2000. A partir de 2001 a oferta anual *de energia elétrica* na UTE será de 534,5 x 10³ tEP (480 MW x 0,80 x 300 dias x 16 horas x 0,29 tEP/MWh).

A Tabela XIV.3.1 apresenta a oferta total de energia elétrica de produção regional.

Tabela XIV.3.1 Projeção da Oferta Total de Energia Elétrica por Fontes de Produção Mesorregião 01 - Período: 1998 a 2007- Unidade: 10³ tEP - Ano Base: 1995

Fontes/Anos	1995	1998	2001	2004	2007
Hidráulica (Casca II e III)	27,5	27,5	27,5	27,5	27,5
Hidráulica (Manso)	-	-	156,6	250,6	250,6
Termoelétrica (óleo Diesel)	-	11,5	-	<u></u>	
Termoelétrica (gás natural)	-	-	534,5	534,5	534,5
TOTAL	27,5	39,0	718,6	812,6	812,6

Fonte: Elaboração do Autor negrito (consumo realizado)

Comparando os dados das Tabelas XIV.3.1 e XIV.1.2 e levando-se em conta as explicações acima relatadas, conclui-se que a oferta de energia elétrica, de produção regional, passará a ser superior a demanda na região ao longo do ano 2000 em face do funcionamento da UTE de Cuiabá, alcançando assim a mesorregião 01 a auto suficiência podendo passar a exportar, no ano 2001, com a produção plena das 4 turbinas de Manso.

XIV.3.2 - Oferta de Energia de Derivados de Biomassas

A produção de energia dos derivados lenha e carvão vegetal na mesorregião 01, vem diminuindo (Quadro 4.1.2.a), apresentando no entanto um pequeno acréscimo no que se refere ao álcool hidratado e ao bagaço de cana (Quadro 4.1.2.b). Embora a região possua um razoável potencial energético de biomassas mostrado no Quadro XIV.3.2 (CANAVARROS,1996), não há até o momento nenhuma decisão de governo no sentido do aproveitamento desse potencial, exceto o da lenha do reflorestamento de propriedade de algumas empresas privadas, razão pela qual a oferta de energia de biomassas deixa de ser aqui projetada.

Quadro XIV.3.2 Estimativas dos Potenciais Energéticos da Mesorregião 01 - Ano 1995

Fontes Primárias	Formas de Conversão	Energético	Potencial (MW)
Energia Hidráulica	PCH	Eletricidade	330,0
Lenha de Reflorestamento	Combustão	Calor	5,51
Álcool Etílico	Combustão	Eletricidade	11,0
Bagaço de Cana	Cogeração	Eletricidade	2,51
Palhas e Pontas	Содетаçãо	Eletricidade	9,9
Babaçu	Combustão	Calor	22,7
Casca de Arroz	Combustão	Calor	4,5
Resíduo de Madeira	Combustão	Calor	16,9
Energia Solar	Coletores Solares	Calor	4,7
Energia Solar	Células Fotovoltáicas	Eletricidade	2,0
Conservação de Energia	Diversas	Diversos	40,0
TOTAL			449,7

Fonte: CANAVARROS,1996

XIV.3.3 - Oferta de Energia de Derivados de Petróleo

Não ocorrendo potencial energético destes derivados na mesorregião 01 e nem mesmo no interior de Mato Grosso, a demanda dos mesmos ao longo do período de projeção continuará a ser satisfeita com os produtos oriundos da refinaria de Paulínia/SP, continuando assim e de forma mais acentuada a dependência externa em relação a estes derivados. É recomendável que estudos de viabilidade sejam feitos na mesorregião 01, objetivando a substituição parcial de alguns derivados por energéticos regionais oriundos de biomassas, questão esta importante para o planejamento energético a qual por estar fora do contexto desta tese deixa de ser abordada.

LISTA DE APÊNDICES

APÊNDICES A - Matrizes de Alocação das Vendas e Usos para os Setores do BEN

APÊNDICES B - Vendas e Usos de Combustíveis

APÊNDICES C - Produção Extrativa Vegetal e da Silvicultura

APÊNDICES D - Consumo de Energia Elétrica por Classes

APÊNDICES E - Número de Consumidores de Energia Elétrica por Classes

127

APÊNDICES A

Matriz de Alocação das Vendas Setoriais das Distribuidoras de Derivados de Petróleo

aos Setores Consumidores do Balanço Energético Nacional

As sete matrizes mostradas a seguir relacionam nas linhas os setores do BEN e nas

colunas os setores do DNC, para os quais são divulgadas as estatísticas de vendas de sete

derivados de petróleo das empresas distribuidoras. Como os setores do BEN não coincidem

com os setores do DNC e como as distribuidoras por motivos óbvios, não estão aptas a

informar a utilização final dos derivados vendidos, a Secretaria de Tecnologia do MME -

SETEC/MME - mediante a análise de outras fontes de referência e indicadores, estimou para os

sete derivados a alocação - parcial ou absoluta - das vendas setoriais das distribuidoras aos

setores do BEN.

Os sete derivados considerados são: GLP, gasolina automotiva, gasolina de aviação,

querosene iluminante, querosene de aviação, óleo Diesel e óleo combustível.

As notas de rodapé esclarecem os significados dos símbolos que figuram nas células das

matrizes.

Fonte: MME,1987

MATRIZ DE ALOCAÇÃO DAS VENDAS DE DERIVASOS SEGUNDO SETORES DO CNP AOS SETORES DO BALANÇO ENERGÉTICO NACIONAL G L P

TABELA 3.1

(continua:

								~~~~~~~~~~~~	·
1 1 1	SETORES CNP								
SETORES BEN	; Doméstico: ;				: Entidadesi Privadas : ;	   Agricultura   		Transporte l Ferroviáriol	
Centrais Elet.Serv.Publ.: Centrais Elet. Autoprod.: Consumo não energético Setor energético Residencial Comercial Público Agropecuario Transporte Rodoviário Transporte ferroviário Transporte hidroviário Transporte aereo Cimento Ferro gusa e açu Ferro ligas Não fer./Outros Hetalur.: Mineração/Pelotização Química Alimentos e bebidas Textil Papel e Celulose Cerâmica Outras industrias	X	X	¥	*	X	X	X	X	X

NOTA: x - quantidades vendidas pelas distribuidoras alocadas diretamente nos setores do BEN

^{? -} quantidades variáveis

⁻ Atenção para a unidade GLP que no CNP é em kg e nos Balanços é em m³.

MATRIZ DE ALOCAÇÃO DAS VENDAS DE DERIVASOS SEGUNDO SETORES DO CNP AOS SETORES DO BALANÇO ENERGÉTICO MACIONAL G L P

TABELA 3.1

(continua)

	SETORES CHP											
SETORES Ben	Transporte Aereo	l Outros   Transportes			Industria Hetalúrgica			:   Produtos   Alimentícios 				
Centrais Elet.Serv.Publ. Centrais Elet. Autoprod. Consum não energético Setor energético Residencial Comercial Público Agropecuario Transporte Rodoviário Transporte ferroviário Transporte hidroviário		·	X									
Transporte aereo Cimento Ferro gusa e aço Ferro ligas Hão fer./Outros Hetalur. Mineração/Pelotização Química Alimentos e bebidas Textil Papel e Celulose Cerâmica Outras industrias				X	?	X	X	X	X			

NOTA: x - quantidades vendidas pelas distribuidoras alocadas diretamente nos setores do BEN

^{? -} quantidades variáveis

⁻ Atenção para a unidade GLP que no CMP é em kg e nos Balanços é em m².

MATRIZ DE ALOCAÇÃO DAS VENDAS DE DERIVASOS SEGUNDO SETORES DO CNP AOS SETORES DO BALANCO ENERGÉTICO NACIONAL GLP

TABELA 3.1

(conclusão)

	) !				Ş	SETORES CNP				
SETORES Ben	l l Textil	Papel	1			Ind. Outros Consumos	Consumos		l Energia l l Elétrical l l	TRR
Centrais Elet.Serv.Publ. Centrais Elet. Autoprod. Consumo não energético Setor energético							**************************************			
Residencial Comercial Público Agropecuario	1 1 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5						X	X	X	
Transporte Rodoviário Transporte ferroviário Transporte hidroviário Transporte aereo	; ; ; ; ;									
Cimento Ferro gusa e aço Ferro ligas	3 3 3 1							,		
Não fer./Outros Metalur. Mineração/Pelotização Química Alimentos e bebidas	i i i i i i i i i i i i i i i i i i i									
Textil Papel e Celulose Cerâmica	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	x	X							
Outras industrias	;			χ	X	X				

NOTA: x - quantidades vendidas pelas distribuídoras alocadas diretamente nos setores do BEN ? - quantidades variáveis

⁻ Atenção para a unidade GLP que no CNP é em kg e nos Balanços é em mª.

CRITÉRIOS DE VENDAS DE DERIVADOS CMP X BEN Gasolina Automotiva

(continua)

:					SETOR	ES CHP			
SETORES BEN	Doméstico l			Armadasi	Privadas l	Agricultura; ;	Rodoviáriol		Aquaviário
Centrais Elet.Serv.Publ. Centrais Elet. Autoprod. Consumo não energético Residencial Comercial Público Agropecuario Transporte Rodoviário Transporte ferroviário Transporte hidroviário Transporte aereo Cimento Ferro gusa e aço Ferro ligas Não fer./Outros Metalur. Mineração/Pelotização Química Alimentos e bebidas Textil Papel e Celulose Cerâmica Outras industrias		X	X	X	X	X	X	X	X

CRITÉRIOS DE VENDAS DE DERIVADOS CNP X BEN

(continua) Gasolina Automotiva SETORES CNP l Transportel Outros | Posto del Industria | Industria | Extração| Químical Produtos | Bebidas SETORES BEN 1 1 Centrais Elst.Serv.Publ.: Centrais Elet. Autoprod.: Consumo não energético ! Setor energético Residencial Comercial Público Agropecuario Transporte Rodoviário χ Х Х χ X X Transporte ferroviário ! Transporte hidroviário Transporte aereo Cimento Ferro gusa e aço Ferro ligas Não fer./Outros Hetalur.; Mineração/Pelotização | Química Alimentos e bebidas Text i1 Papel e Celulose Cerâmica Outras industrias

TABELA 3.2

Gasolina Automotiva

(conclusão)

<u>}</u>						ξ	ETORES	CNP				
SETORES BEN	Textil	1 Pas	· · · · · · · · · · · · · · · · · · ·			l   Outros n/   Metálicos 					!       Energia     Elétrica! 	TRR
Centrais Elet. Serv. Publ. Centrais Elet. Autoprod. Consumo não energético Setor energético Residencial Comercial Público Agropecuario Transporte Rodoviário Transporte ferroviário Transporte hidroviário Transporte aereo Cimento Ferro gusa e aço Ferro ligas Não fer. / Outros Metalur. Mineração / Pelotização Química Alimentos e bebidas Textil Papel e Celulose	X		Х	X	X	<b>x</b>		X	X	X	X	X
Cerâmica Outras industrias	ł											

Gasolina de Aviação

(continua)

 !					SET0	RES CNP			
SETORES BEN	l'oméstico!		Ent idades l		Entidades; Privadas i	l Agricultura¦ I	l Transporte! Rodoviário!		
1	1	;	;	,	;	;	1		1
Centrais Elet.Serv.Publ. Centrais Elet. Autoprod. Consumo não energético Setor energético Residencial			***************************************	ANT					
Comercial Público Agropecuario Transporte Rodoviário									
Transporte ferroviário Transporte hidroviário Transporte aereo	1	X	X	X	Х	<b>X</b>	X	X	X
Cimento Ferro gusa e aço Ferro ligas Não fer./Outros Metalur.	t t t t t								
Mineração/Pelotização Química Alimentos e bebidas	† ; ; ; ;								
Textil Papel e Celulose Cerâmica									
Outras industrias	\$ }								

Gasolina de Aviação								(co	ntinua)
1				##- ### vite vite vite are are and also vite vite vite vite vite vite vite vite	SETORES CHP	**************************************	······································		
SETORES Ben	Bransporte Aereo				l Industria l Metalúrgical l			Produtos : Alimentícios:	
Centrais Elet.Serv.Publ. Centrais Elet. Autoprod. Consumo não energético Setor energético Residencial Comercial Público Agropecuario Transporte Rodoviário Transporte ferroviário Transporte hidroviário Transporte aereo Cimento Ferro gusa e aço Ferro ligas Não fer./Outros Hetalur. Hineração/Pelotização Química Alimentos e bebidas Textil Papel e Celulose Cerâmica Outras industrias	X	¥	X	X	X	X	X	X	X

CRITÉRIOS DE VENDAS DE DERIVADOS ENP X BEN Gasolina de aviação

aviação (conclusão)

	SETORES CNP											
SETORES BEN	Text i 1	Papel				Ind. Outros Consumos			Energia i Elétricai	TRR		
entrais Elet.Serv.Publ.; entrais Elet. Autoprod.; onsumo não energético; etor energético; esidencial; oaercial; ublico; gropecuario; ransporte Rodoviário; ransporte ferroviário;							:		`.			
ransporte hidroviário (ransporte aereo (	X	X	X	X	X	X	X	, X	X	X		

CRITERIOS DE DERIVADOS CAL A BEN

Querosene Basinante (continua)

1					SET0	RES CNP			
SETORES :	l Doméstico!					: Agricultura:			
8EN !	i		Publicas :	Armadasi	Privadas !	;	Rodoviário	Ferroviário	(Aquaviario
	1	i 	i	;	; 				1
Centrais Slet.Serv.Publ.									
Centrais Elet. Autoprod.:									
Consumo não energético l		?		χ	X		X	X	Х
Setor energetico									
Residencial		<b>?</b>							
Comercial									
Público			X						
Agropecuario						Х			
Transporte Rodoviário									
Transporte ferroviário									
Transporte hidroviário									
Transporte aereo :	1								
Cimento									
Ferro 985a 2 aço									
Ferro ligas									
Não fer./Outros Hetalur.:									
Mineração/Pelotização :									
Química :									
Alimentos e bebidas :									
Textil									
Papel e Calulose !									
Cerânica :									
Outras Industrias :									

NOTA: - As marcações com X indicam alocações absoluta das vendas das distribuidoras nos Setores do BEN.

⁻ As marcações com ? indicam alocações variáveis ano a ano e de muito pouco conhecimento. Acredita-se, segundo algumas informações e estudos que a maior parte da venda comercial é para uso não energético e que a maior parte da venda do Táx a postos de revenda é para o setor residencial.

⁻ Para o BEN 88 foram feitas as seguintes alocações: TRR e postos de revenda => 100% no residencia, l e comercial => 90% no comercial e 10% no residencial.

Ouerosene Iluminante

(continua)

!	SETORES CHP											
SETORES BEN	iransportel Aereo l	Outros ( Transportes)	Posto del		   Industria   Metalúrgica 			Produtos Alimentícios				
Centrais Elet.Serv.Publ.								********	TO 400 118 484 484 184 184 184 184 184 184 184			
Centrais Elet. Autoprod.:												
Consumo não energético ;	X	X	j				X					
Setor energético i												
Residencial :			? .									
Comercial												
Público i												
Agropecuario :												
Transporte Rodoviário 📑												
Transporte ferroviário ¦												
Transporte hidroviário (†												
Transporte aereo :												
Cimento I				X								
Ferro gusa e aço 💎 📑					χ							
Ferro ligas i												
Não fer./Outros Metalur.¦												
Mineração/Pelotização i						χ						
<del>Q</del> uímica :												
Alimentos e bebidas 💎 🗄								X	X			
Textil												
Papel e Celulose :												
Cerânica ;												
Outres industrias 💢 🦸												

NOTA: - As marcações com X indicam alocações absoluta das vendas das distribuidoras nos Setores do BEN.

⁻ As marcações com ? indicam alocações variáveis ano a ano e de muito pouco conhecimento. Acredita-se, segundo algumas informações e estados que a maior parte da venda comercial é para uso não energético e que a maior parte da venda do TRR e postos de revenda é para o setor residencial.

⁻ Para o BEN 88 forsa feitas as seguintes alocações: TRR e postos de revenda =) 100% no residencia, le comercial =) 90% no comercial e 10% no residencial.

CRITÉRIOS DE VENDAS DE DERIVADOS CNP X BEN

Querosene Iluminante (conclusão)

;					S	ETORES CNP				
SETORES BE <del>N</del>	Textil	Papel				Ind. Outros: Consumos :			Energia ( Elétrica)	TRR
Centrais Elet.Serv.Publ. Centrais Elet. Autoprod. Consumo não energético Setor energético Residencial Comercial							Х	X	X	?
Público Agropecuario Transporte Rodoviário Transporte ferroviário Transporte hidroviário Transporte aereo Cimento										<u>.</u>
Ferro gusa e aço Ferro ligas Não fer./Outros Metalur.! Mineração/Pelotização Guímica Alimentos e bebidas Textil	X									
Papel e Celulose Cerâmica : Outras industrias :	, way had 100 year late date date date	X	X	X	X	X		100 sts 100 100 100 100 100 100 100 100 100 10		****

NOTA: - As marcações com X indicam alocações absoluta das vendas das distribuidoras nos Setores do BEN.

⁻ As marcações com ? indicam alocações variáveis ano a ano e de muito pouco conhecimento. Acredita-se, segundo algumas informações e estudos que a maior parte da venda comercial é para uso não energético e que a maior parte da venda do TRR e postos de revenda é para o setor residencial.

⁻ Para o BER SE foram feitas as seguintes alocações: TRR e postos de revenda =) 100% no residencia,1 e comercial =) 90% no comercial e 10% no residencial.

CRITÉRIOS DE VENDAS DE DERIVADOS CNP X BEN Querosene de Aviação

(continua)

		SETORES CNP									
SETORES BEN	joméstico¦				t Entidades: Privadas ;	i Agricultura; ;	¦ Transporte; Rodoviário; ¦				
Centrais Elet.Serv.Publ. Centrais Elet. Autoprod. Consumo não energético Setor energético Residencial Comercial Público Agropecuario Transporte Rodoviário Transporte hidroviário											
Transporte aereo Cimento Ferro gusa e aço Ferro ligas Não fer./Outros Metalur. Mineração/Pelotização Química Alimentos e bebidas Textil Papel e Celulose Cerâmica Outras industrías	<b>X</b>	X	<b>X</b>	X	X.	X	X	X	X		

NOTA: X quantidades vendidas pelas distribuidoras alocadas diretamente nos setores do BEN

CRITERIOS DE VENDAS DE DERIVADOS CNP X BEN

Ouerosene de aviação

(continua)

	SETORES CNP											
SETORES BEN	Transporte Aereo				lndustria: l Metalúrgica! l			Produtos Alimentícios				
Centrais Elet.Serv.Publ. Centrais Elet. Autoprod. Consumo não energético Setor energético Residencial Comercial Público Agropecuario Transporte Rodoviário Transporte ferroviário Transporte hidroviário Transporte aereo Cimento Ferro gusa e aco Ferro ligas Não fer./Outro: hetalur. Mineração/Pelotização Química Alimentos a bebidas Textil Papel e Celulose Cerâmica	X	X	X	X	X	X	X	X	X			
Outras industrias		- 1800 TO THE LINE SEE THE THE THE SEE THE SEE THE SEE	The second secon	en tal en me en en tal tal tal tal ten en	*** *** *** *** *** *** *** *** *** **							

NOTA: X quantidades vendidas pelas distribuidoras alocadas diretamente nos setores do BEN

CRITÉRIOS DE VENDAS DE DERIVADOS CNP X 35% Querosene de Aviação

(conclusão)

			SETORES CNP										
SETORES : BEN :	Textil		Pape)	Cerâmical	Produtos!	l Outros n/l Hetálicosi I				Uso I	Energia : Elétrica:	TRR	-
Centrais Elet.Serv.Publ.! Centrais Elet. Autoprod.! Consumo não energético Setor energético Residencial Comercial Público Agropecuario Transporte Rodoviário Transporte ferroviário Transporte hidroviário Transporte aereo Cimento Ferro gusa e aço Ferro ligas Não fer./Outros Hetalur.! Mineração/Pelotização Química Alimentos e bebidas Textil Papel e Celulose Cerâmica Outras industrias	X	•	X	X	. X	X		X	X	X	X		×

NOTA: X quantidades vendidas pelas distribuidoras alocadas diretamente nos setores do BEN

TABELA 3.6

Oleo Diesel

(continua)

 					SET0	RES CNP		
3 E 1	<u> </u>		3 2		· · · · · · · · · · · · · · · · · · ·	1	:	1
SETORES	Domést ico:							Transporte l'Transporte
BEN {	i	! !	Públicas i	Ar madas i	Privadas l	;	Rodoviáriol	Ferroviário!Aquaviário
· · · · · · · · · · · · · · · · · · ·			; ;	!		;		
Centrais Elet.Serv.Fubl.								
Centrais Elet. Autoprod.								
Consumo não energético :								
Setor energético								
Residencial								
Comercial (		5						
Público			5	χ	5			
Agropecuario						Х		
Transporte Rodoviário (		95	. <b>9</b> 5		95	•	χ	
Transporte ferroviário i								X
Transporte hidroviário l								Х
Transporte aereo								
Cimento								
Ferro gusa e aço								
Ferro ligas								
Não fer./Outros Hetalur.								
Mineração/Pelotização l								
Ouimica :								
Alimentos e bebidas								
Textil								
Papel e Celulose								
Cerâmica								
Outras industrias								

- NOTA: Os números correspondem aos percentuais das vendas das distribuidoras a serem alocados nos setores do BEN
  - Os X correspondem a 100%.
  - Os ? quantidades informadas pelo setor elétrico que devem ser subtraídas das quantidades calculadas abaixo.
  - Os percentuais foram definidos com base em informações colhidas na Shell e de estudos efetuados no consumo de diesel no setor agrapacuário a partir do nº de tratores, no setor rodoviário a partir de pesquisas do GEIPOT no ano de 1982 e no setor industriala partir do confronto de vendas das distribuidoras com os consumos reais da pesquisa industrial do CNP. Os percentuais são válidos para médias nacionis. A nível de cada estado, dependendo de ser mais agricola ou mais industrial os percentuais podem variar.

Oleo Diesel

(continua) SETORES CNP SETORES ; l Transportel Outros | Posto del Industria | Extração! Químical Produtos | Bebidas BEN l Aereo (Transportes) Revenda i de Cimento; Metalúrgica; Mineral i l Alimentícios; Centrais Elet.Serv.Publ.1 ? ? ? ? Centrais Elet. Autoprod.: ? ? Consumo não energético : Setor energético Residencial Comercial Público Agropecuario 15 χ 85 Transporte Rodoviário 30 40 70 55 85 85 Transporte ferroviário : Transporte hidroviario Transporte aereo Cimento 70 Ferro gusa e aço 60 Ferro ligas Não fer./Outros Hetalur.; Mineração/Pelotização : 30 Química 45 Alimentos e bebidas 15 15 Textil

NOTA: - Os números correspondem aos percentuais das vendas das distribuidoras a serem alocados nos setores do BEN

Papel e Celulose

Outras industrias

Cerâmica

⁻ Os X correspondem a 100%.

⁻ Os ? quantidades informadas pelo setor elétrico que devem ser subtraídas das quantidades calculadas abaixo.

⁻ Os percentuais foram definidos com base em informações colhidas na Shell e de estudos efetuados no consumo de diesel no setor agropecuário a partir do nº de tratores, no setor rodoviário a partir de pesquisas do GEIPOT no ano de 1982 e no setor industriala partir do confronto de vendas das distribuidoras com os consumos reais da pesquisa industrial do CNP. Os percentuais são válidos para médias nacionis. A nível de cada estado, dependendo de ser mais agrícola ou mais industrial os percentuais podem variar.

TABELA 3.6

CRITERIOS DE VENDAS DE DERIVADOS CHP X BEN Oleo Diesel

(conclusão)

) 1						SE	TORES CNP				
SETORES : BEN :	Text :	Par					ind. Outros: Consumos i	Outros :	Uso 1		TRR
Centrals Elet.Serv.Publ. Centrals Elet. Autoprod. Consumo não energético Setor energético		:	?	?	?	?	?		X	X	
Residencial Comercial								5			
Público Agropecuario Transporte Rodoviário					80	8€	8 <b>0</b>	95			8 <b>0</b> 16
Transporte ferroviário : Transporte hidroviário : Transporte aereo :											
Cimento : Ferro gusa e aco :											
Ferro ligas Não fer./Outros Metalur.;											
Mineração/Pelotização : Ruísios											3
Milwert e bebidas : Textil	X				•						1
Papel e Celulose : : Cerâmica : :	Λ	Х		χ							
Outras industrias :				^	29	20	20				

NOTA: - Os números correspondem aos percentuais das vendas das distribuidoras a serem alocados nos setores do BEN

⁻ Os X correspondem a 190%.

⁻ Os ? quantidades informadas pelo setor elétrico que devem ser subtraídas das quantidades calculadas abaixo.

os percentuais foram definidos com base em informações colhidas na Shell e de estudos efetuados no consumo de diesel no setor agropecuário a partir do nº de tratores, no setor rodoviário a partir de pesquisas do GEIPOT no ano de 1982 e no setor industriala partir do confronto de vendas das distribuidoras com os consumos reais da pesquisa industrial do CNP. Os percentuais 100 válidos para médias nacionis. A nível de cada estado, dependendo de ser mais agrícola ou mais industrial os percentuais podem variar.

CRITERIOS DE VENDAS DE DERIVADOS CNP X BEN

Oleo Combustivel

(continua)

!					SET0	RES CNP			
SETORES BEN	Doméstico:				: Entidades; Privadas ;			¦ Transporte ; Ferroviário¦ ¦	
Centrais Elet.Serv.Publ. Centrais Elet. Autoprod. Consumo não energético Setor energético Residencial Comercial Público Agropecuario Transporte Rodoviário Transporte ferroviário		X	<b>X</b>	X	x				
Transporte hidroviário Transporte aereo Cimento Ferro gusa e aço Ferro ligas Não fer./Outros Metalur. Mineração/Pelotização Química Alimentos e bebidas Textil Papel e Celulose Cerâmica Outras industrias							X	X	X

NOTAS: - X quantidades alocadas 100% nos setores do BEN

- ? quntidades de alocação variável
- o quantidades informadas pelo setor elétrico que devem ser subtraídas das quantidades calculadas abaixo.
- Sempre que possível adotar os consumos reais dos setores intensivos em energia.
- Para Centrais Elétricas de Serviço Público adotar os dados das concessionárias.
- Segundo a Sheil, cerca de 70% a 80% do TRR é para agricultura. O restante está sendo alocado em outras indústrias por desconhecimento.

TABELA 3.7

)leo Combustivel

(continua)

er very last der ( $\diamondsuit$ ). $>$ ( $>$ ) of the sale of t					SETORES C	NP				
SETORES BEN	Transporte Aereo			Industria : de Cimento:					i Produtos i Alimentíciosi	
Centrais Elet.Serv.Publ. Centrais Elet. Autoprod. Consumo não energético Setor energético	•	an agus agus agus agus agus agus agus agus	 	 0	0		0	0	0	D
Residencial Comercial			X							
<b>Pú</b> blico (	}									
Agropecdario										
Transporte Rodoviário	Į									
Transporte ferroviário	1									
Transporte hidroviário	1									
Transporte aereo	! !									
Cimento	i i			X	_					
Ferro gusa e aço	1 1				?					
Ferro ligas	3 1				?					
Não fer./Outros Metalur.	! !				?		16			
Mineração/Pelotização	i -						X			
<b>Quinica</b>	! !							χ		
Alimentos e bebidas	t 1								X	X
Textil	1									
Papel e Celulose	1									
Cerânica	<u> </u>									
Outras industrias	1 X	Χ								

NOTAS: - X quantidades alocadas 100% nos setores do BEN

- ? quntidades de alocação variável
- o quantidades informadas pelo setor elétrico que devem ser subtraídas das quantidades calculadas abaixo.
- Sempre que possível adotar os consumos reais dos setores intensivos em energia.
- Para Centrais Elétricas de Servico Público adotar os dados das concessionárias.
- Segundo a Shell, cerca de 70% a 80% do TRR é para agricultura. O restante está sendo alocado em outras indústrias por desconhecimento.

Oleo Combustivel

(conclusão)

1					SE	TORES CNP				
SETORES BEN	Textil	   Papel			; Outros n/; Metálicos; ;	Ind. Outros: Consumos :		Própriol	l Energia l Elétrical	TRR
Centrais Elet.Serv.Publ. Centrais Elet. Autoprod. Consumo não energético Setor energético Residencial		0	0	0	ō	0		Х	X	
Comercial Público Agropecuario Transporte Rodoviário Transporte ferroviário Transporte hidroviário Transporte aereo							X			?
Cimento Ferro gusa e aco Ferro ligas Não fer./Outros Metalur. Mineração/Pelotização Química Alimentos e bebidas										
Textil Papel e Celulose Cerâmica Outras industrias	X ;	Χ	X	X	X	χ				·,

NOTAS: - X quantidades alocadas 100% nos setores do BEN

- ? quntidades de alocação variável
- o quantidades informadas pelo setor elétrico que devem ser subtraídas das quantidades calculadas abaixo.
- Sempre que possível adotar os consumos reais dos setores intensivos em energia.
- Para Centrais Elétricas de Serviço Público adotar os dados das concessionárias.
- Segundo a Shell, cerca de 70% a 80% do TRR é para agricultura. O restante está sendo alocado em outras indústrias por desconhecimento.

## APÊNDICES B Vendas e Usos de Combustíveis na Mesorregião 01

#### APÊNDICE B.1 - Ano 1989

Municipios/	Óleo	Gasolina	Álcool Etil.	GLP	Óleo	Querosene		Querosene de
Deriv. de Petróleo e	Diesel	Autom.	Hidratado	(ton)	Combust.	de Aviação		Iluminação
Álcool	(m ³ )	(m³)	(m ³ )		(ton)	(m ³ )	(m ³ )	(m ³ )
Mato Grosso	1.326.596	158.145	177.305	102.874	5.881	43.251	11.634	716
Mesorregião 01	229.651	63.757	77.701	29.155	2.624	38.620	6.824	657
Acorizal	2.553	613	734	194	zero	2.679	zero	zero
Barão de Melgaço	313	264	69	124	zero	zero	zero	zero
Chapada Guimarães	5.090	615	770	412	zero	zero	zero	zero
Cuiabá	117.204	44.139	56.941	18.253	2.624	1.491	4.246	307
Jangada	1.975	99	476		zero	zero	zero	zero
Nobres	13.198	846	1.109	432	zero	zero	zero	zero
N. S. Livramento	858	269	301	93	zero	zero	zero	zero
Poconé	16.564	2.461	2.375	917	zero	zero	zero	zero
Porto Estrela	-	-	+	-		-		-
Rosário Oeste	8.295	650	867	323	zero	zero	zero	zero
S. Antônio Leverger	4.171	387	440	202	zero	zero	149	zero
Várzea Grande	59.429	13.414	13.618	8.204	zero	34.450	2.429	349

## APÊNDICE B.2 - Ano 1990

Municípios/ Deriv. de	Óleo	Gasolina	Álcool Etíl.	GLP	Ól∞	Querosene	Gasolina	Querosene de
Petróleo e Álcool	Diesel	Autom.	Hidratado	(ton)	Combust.	de Aviação	, ,	Iluminação
	(m ² )	(m³)	(m³)		(ton)	(m³)	(m ³ )	(m³)
Mato Grosso	1.241.710	155.942	161.809	103.597	6.781	36.647	9.262	621
Mesorregião 01	206.545	64.003	72.440	24.228	2.872	33.243	5.967	581
Acorizal	2.168	504	565	206	zero	2.679	zero	2erc
Barão de Melgaço	273	224	64	140	zero	zero	zero	zero
Chapada Guimarães	4.681	544	685	457	zero	zero	zero	zero
Cuiabá	112.101	44.917	54.256	15.090	2.872	176	3.860	330
Jangada	2.288	249	484	-	zero	zero	zero	zero
Nobres	10.453	688	842	447	zero	zero	zero	zero
N. S. Livramento	883	162	191	89	zero	zero	zero	zero
Poconé	15.267	2.420	2.068	844	zero	zero	zero	zero
Porto Estrela	-	-	+	-	-	-	*	-
Rosário Oeste	4.310	521	487	333	zero	zero	zero	zero
S. Antônio Leverger	3.585	383	392	206	zero	zero	79	Zero
Várzea Grande	50.536	13.392	12.406	6.416	zero	30,388	2.028	251

### APÊNDICE B.3 - Ano 1991

Municípios/ Deriv. de	Óleo	Gasolina	Álcool Etíl.	GLP	Óleo	Querosene	Gasolina	Querosene de
Petróleo e Álcool	Diesel	Autom.	Hidratado	(ton)	Combust.	de Aviação		Iluminação
	(m ³ )	(m³)	(m³)		(ton)	(m ³ )	(m ³ )	(m ³ )
Mato Grosso	1.084.335	154.895	123.528	92.765	22.357	29.701	6.454	
Mesorregião 01	153.998	71.602	60.362	21.480	18.481	28.081	3.424	57€
Acorizal	237	114	40	180	zero	zero	zero	zero
Barão de Melgaço	278	343	50	131	zero	zero	zero	zero
Chapada Guimarães	1.985	673	478	451	zero	zero	zero	zero
Cuiabá	91.138	52.301	47.044	12.958	3.440	zero	2.240	486
Jangada	5.136	631	642	46	zero	zero	ZETO	zero
Nobres	5.754	755	615	538	15.040	zero	zero	zero
N. S. Livramento	1.356	161	105	99	zero	zero	zero	zero
Poconé	13.190	2.577	1.493	886	zero	zero	zero	zero
Porto Estrela	-	-	-	-	-	-	-	-
Rosário Oeste	4.903	528	536	332	zero	zero	zero	zero
S. Antônio Leverger	4.959	357	312	216	zero	zeto	40	zero
Várzea Grande	45.062	13.159	9.048	5.644	zero	28.081	1.144	90

Fonte: DNC - Departamento Nacional de Combustíveis

## APÊNDICE B.4 - Ano 1992

Municípios/ Deriv. de	Óleo	Gasolina	Álcool Etíl.	GLP	Óleo	Querosene	Gasolina	Querosene de
Petróleo e Álcool	Diesel	Autom.	Hidratado	(ton)	Combust.	de Aviação	de Aviação	Iluminação
	(m³)	(m³)	(m ³ )		(ton)	(m³)	(m ³ )	(m ³ )
Mato Grosso	1.096.907	148.115	105.827	134.461	30.658	30.524	4.413	295
Mesorregião 01	284.674	67.550	51.484	14.049	27.783	29.277	2.3457	276
Acorizal	102	20	30	151	zero	zero	zero	zero
Barão de Melgaço	269	364	55	104	zero	zero	zero	zero
Chapada Guimarães	2.109		421	484	zero	zero	zero	zero
Cuiabá	150.025	48.553	39.266	8.169	3.720	10	1.177	158
Jangada	6.437	530	548	62	zero	zero	zero	zero
Nobres	3.964	755	381	396	22.599	zero	zero	zero
N. S. Livramento	768	130	25	89	zero	zero	zero	zero
Poconé	10.931	2.179	1.183	675	zero	zero	zero	zero
Porto Estrela	-	*	-	-	-	-	-	-
Rosário Oeste	3.813	498	427	zero	zero	<b>гет</b> о	zero	zero
S. Antônio Leverger	5.400	184	142	209	zero	zero	zero	zero
Várzea Grande	90.855	14.337	9.005	3.396	1.464	29.267	1.280	118

### APÊNDICE B.5 - Ano 1993

Municípios/ Deriv. de	Óleo	Gasolina	Álcool Etíl.	GLP	Óleo	Querosene	Gasolina	Querosene de
Petróleo e Álcool	Diesel	Autom.		(ton)	Combust.	de Aviação	de Aviação	Iluminação
	(m ³ )	(m³)	(m ³ )		(ton)	(m ³ )	(m³)	(m³)
Mato Grosso	1.164.890	163.675	113.191	114.748	43.089	25.508	6.017	180
Mesorregião 01	323.042	74.773	55.956	16.320	38.725	24.730	3.257	160
Acorizal	150	75	40	66	zero	zero	zero	zero
Barão de Melgaço	50	189	30	96	zero	zero	zero	zero
Chapada Guimarães	1.667	578	397	430	zero	<i>zе</i> го	zero	zero
Cuiabá	224.928	52.044	40.641	8.511	10.585	zero	571	29
Jangada	5.455		665	113	zero	zero	zero	zero
Nobres	2.829	672	446	499	26.779	zero	zero	zero
N. S. Livramento	291	216	134	67	zero	zero	zero	zero
Poconé	5.315	1.894	1.192	736	zero	zero	zero	zero
Porto Estrela	-	-	-	-	-	-	*	-
Rosário Oeste	1.534	658	455	211	zero	zero	zero	zero
S. Antônio Leverger	7.886	340	284	228	zero	zero	104	zero
Várzea Grande	72.939	18.106	11.672	5.362	1.361	24.730	2.581	131

## APÊNDICE B.6 - Ano 1994

Municípios/ Deriv. de	Óleo	Gasolina	Álcool Etil.	GLP	Óleo	Querosene	Gasolina	Querosene de
Petróleo e Álcool	Diesel	Autom.	Hidratado	(ton)	Combust.	de Aviação	de Aviação	Iluminação
	(m ³ )	(m ³ )	(m ³ )		(ton)	$(m^3)$	$(m^3)$	$(m^3)$
Mato Grosso	1.344.084	184,917	115.450	85.644	63.109	24.935	6.254	76
Mesorregião 01	398.182	85.999	56.739	21.551	56.481	24.276	5.028	66
Acorizal	10	20	10	76	zero	zero	zero	zero
Barão de Melgaço	zero	zero	zero	132	zero	zero	zero	zero
Chapada Guimarães	1.935	764	390	449	zero	zero	zero	zero
Cujabá	276.446	59.327	40.590	12.289	24.618	zero	174	38
Jangada	5.423	670	452	114	zero	zero	zero	zero
Nobres	4.580	586	385	475	30.308	zero	zero	zero
N. S. Livramento	929	327	184	55	zero	zero	zero	zero
Poconé	4.820	1.792	1.016	704	zero	2сто	zero	zero
Porto Estrela	-	-	-	-	_	-	-	-
Rosário Oeste	1.806	383	292	224	zero	zero	zero	zero
S. Antônio Leverger	9.511	724	432	221	Zero	zero	10	zero
Várzea Grande	92.724	21.408	12.988	6.804	1.555	24.276	4.843	28

Fonte: DNC - Departamento Nacional de Combustíveis

APÊNDICE B.7 - Ano 1995

Municipios/ Deriv. de	Óleo	Gasolina	Álcool Etíl.	GLP	Óleo	Querosene	Gasolina	Querosene de
Petróleo e Álcool	Diesel	Autom.	1 .	(ton)	Combust.	de Aviação		Iluminação
	$(m^3)$	(m ³ )	(m ³ )	<u> </u>	(ton)	(m³)	(m ³ )	(m ³ )
Mato Grosso	1.425.707	219.165	114.290	83.152	77.746	28.906	8.183	55
Mesorregião 01	431.355	102.243	56.616	26.199	70.714	27.639	6.754	39
Acorizal	105	5	zero	63	zero	zero	zero	zero
Barão de Melgaço	zero	zero	zero	138	zero	zero	zero	zero
Chapada Guimarães	1.981	965	395	498	zero	zero	zero	zero
Cuiabá	285.894	75.649	42.489	15.941	31.182	8	47	39
Jangada	15.024	1.347	748	152	zero	zero	zero	zero
Nobres	13.737	649	332	450	36.957	zero	zero	zero
N. S. Livramento	1.037	335	156	51	zero	zero	zero	2ero
Poconé	3.239	1.810	915	830	zero	zero	zero	zero
Porto Estrela	zero	zero	zero	30	zero	zero	zero	zero
Rosário Oeste	3.203	647	368	283	zero	zero	zero	zero
S. Antônio Leverger	10.426	1.168	557	243	zero	zero	zero	zero
Várzea Grande	96.710	19.669	10.656	7.520	2.575	27.630	6.707	zero

Fonte: DNC - Departamento Nacional de Combustíveis

# APÊNDICES C Produção Extrativa Vegetal e da Silvicultura na Mesorregião 01

## APÊNDICE C.1 - Ano 1985

Municípios/Espécies	Madeira em tora (m³)	Lenha (m³)	Carvão Vegetal (ton.)
Mato Grosso	1.103.678	3.836.778	1.566
Mesorregião 01	26.124	781.701	37
Acorizal	300	60.000	04
Barão de Melgaço	620	37.810	zero
Chapada dos Guimarães	1.440	51.800	02
Cuiabá	560	154.530	01
Jangada	zero	zero	zero
Nobres	16.000	63.558	zero
N. S. do Livramento	493	92.274	09
Poconé	5.139	125.373	17
Porto Estrela	zето	zero	zero
Rosário Oeste	800	85,000	zero
S. Antônio do Leverger	716	65.656	01
Várzea Grande	56	45.700	03

### APÊNDICE C.2 - Ano 1986

Municípios/Espécies	Madeira em tora (m³)	Lenha (m³)	Carvão Vegetal (ton.)
Mato Grosso	1.527.317	4.772.435	1.417
Mesorregião 01	27.757	784.770	478
Acorizal	110	44.764	7
Barão de Melgaço	540	27.951	zero
Chapada dos Guimarães	1.290	42.943	13
Cuiabá	100	141.052	. 4
Jangada	zero	zero	zero
Nobres	18.913	78.198	zero
N. S. do Livramento	350	121.842	12
Poconé	5.139	144.309	388
Porto Estrela	zero	zero	zero
Rosário Oeste	640	88.097	zero
S. Antônio do Leverger	600	63.668	1
Várzea Grande	75	31.946	53

# APÊNDICE C.3 - Ano 1987

Municípios/Espécies	Madeira em tora	Lenha	Carvão Vegetal
	(m ³ )	$(m^3)$	(ton.)
Mato Grosso	1.398.816	4.240.811	1.199
Mesorregião 01	15.386	805.080	517
Acorizal	132	50.061	51
Barão de Melgaço	300	29.337	zero
Chapada dos Guimarães	2.400	56.767	1
Cuiabá	160	153.923	5
Jangada	zero	zero	zero
Nobres	4.800	68.212	zero
N. S. do Livramento	260	121.353	15
Poconé	3.000	137.237	441
Porto Estrela	zero	zero	zero
Rosário Oeste	294	90.881	zero
S. Antônio do Leverger	4.000	63.871	1
Várzea Grande	40	33.438	3

Fonte: FIBGE - Produção Extrativa Vegetal e da Silvicultura

## APÊNDICE C.4 - Ano 1988

Municípios/ Espécies	Madeira em tora (m³)	Lenha (m³)	Carvão Vegetal (ton.)
Mato Grosso	1.900.314	4.652.690	1.679
Меѕоггедіãо 01	13.635	768.159	405
A∞rizal	120	39.333	40
Barão de Melgaço	10	27.298	zero
Chapada dos Guimarães	2.000	47.998	zero
Cuiabá	145	158.485	6
Jangada	zero	zero	zero
Nobres	5.770	54.072	` zero
N. S. do Livramento	170	94.373	11
Poconé	1.120	111.687	340
Porto Estrela	zero	zero	zero
Rosário Oeste	4.065	90.641	zero
S. Antônio do Leverger	200	69.751	3
Várzea Grande	35	35.188	5

# APÊNDICE C.5 - Ano 1989

Municípios/Espécies	Madeira em tora	Lenha	Carvão Vegetal
	$(m^3)$	$(m^3)$	(ton.)
Mato Grosso	1.659.917	5.055.892	3.319
Mesorregião 01	14.926	718.303	411
Acorizal	200	41.500	42
Barão de Melgaço	zero	36.412	zero
Chapada dos Guimarães	3.410	48.150	zero
Cujabá	60	152.506	4
Jangada	380	1.350	zero
Nobres	5.539	43.974	zero
N. S. do Livramento	200	95,000	12
Poconé	2.000	118,500	350
Porto Estrela	zero	zero	zero
Rosário Oeste	2.837	78.023	zero
S. Antônio do Leverger	300	73.604	3
Várzea Grande	zero	29.284	zero

## APÊNDICE C.6 - Ano 1990

Municípios/ Espécies	Madeira em tora	Lenha	Carvão Vegetal
	(m ³ )	$(m^3)$	(ton.)
Mato Grosso	1.899.030	4.605.701	3.038
Mesorregíão 01	16.216	676.923	416
Acorizal	300	42.500	43
Barão de Melgaço	zero	41.872	zero
Chapada dos Guimarães	3.550	53.016	zero
Cuiabá	30	89.800	01
Jangada	400	21.824	zero
Nobres	5.250	46.100	zero
N. S. do Livramento	830	96,000	15
Poconé	2.936	130.500	355
Porto Estrela	zero	zero	zero
Rosário Oeste	2.600	59.701	zero
S. Antônio do Leverger	320	60.874	02
Várzea Grande	zero	34.736	zero

Fonte: FIBGE - Produção da Extração Vegetal e da Silvicultura

## APÊNDICE C.7 - Ano 1991

Municípios/ Espécies	Madeira em tora	Lenha	Carvão Vegetal
ų .	(m³)	$(m^3)$	(ton.)
Mato Grosso	2.874.701	3.932.575	<b>2</b> .057
Mesorregião 01	11.758	562.455	79
Acorizal	450	37.000	35
Barão de Melgaço	zero	32.874	zero
Chapada dos Guimarães	2.018	33.115	zero
Cuiabá	50	90.130	01
Jangada	zero	19.000	zero
Nobres	4.800	43.566	zero
N. S. do Livramento	600	85.000	15
Poconé	1.200	79.070	25
Porto Estrela	zero	zero	zero
Rosário Oeste	2.300	54.486	zero
S. Antônio do Leverger	340	52.700	03
Várzea Grande	zero	35.514	zero

# APÊNDICE C.8 - Ano 1992

Municípios/Espécies	Madeira em tora (m³)	Lenha (m³)	Carvão Vegetal (ton.)
Mato Grosso	2.607.967	3.419.643	2.763
Mesorregião 01	7.958	540.577	184
Acorizal	500	23.740	10
Barão de Melgaço	zero	30.351	zero
Chapada dos Guimarães	218	30.000	zero
Cuiabá	zero	93.618	zero -
Jangada	200	20.674	12
Nobres	3.200	43.056	zero
N. S. do Livramento	550	80.000	12
Poconé	1.300	86.714	150
Porto Estrela	zero	zero	zero
Rosário Oeste	1.650	50.156	zero
S. Antônio do Leverger	340	42.644	zero
Várzea Grande	zero	39.624	zero

#### APÊNDICE C.9 - Ano 1993

Municípios/ Espécies	Madeira em tora	Lenha (m³)	Carvão Vegetal
	(m ³ )		(ton.)
Mato Grosso	2.729.971	3.248.368	2.928
Mesorregião 01	10.848	499.725	229
Acorizal	300	29.140	01
Barão de Melgaço	zero	30.300	zero
Chapada dos Guimarães	180	24.167	zero
Cuiabá	zero	76.050	zero
Jangada	210	21.000	01
Nobres	4.400	31.893	zero
N. S. do Livramento	1.100	63.800	11
Poconé	1.670	79.950	120
Porto Estrela	988	6.112	96
Rosário Oeste	1.450	55.513	zero
S. Antônio do Leverger	550	42.000	zero
Várzea Grande	zero	39.800	zero

Fonte: FIBGE - Produção Extrativa Vegetal e da Silvicultura

## APÊNDICE C.10 - Ano 1994

Municípios/Espécies	Madeira em tora (m³)	Lenha (m³)	Carvão Vegetal (ton.)
Mato Grosso	4.088.591	3.380.657	4.543
Mesorregião 01	8.536	497.258	190
Acorizal	300	21.881	zero
Barão de Melgaço	10	30.551	zero
Chapada dos Guimarães	862	31.426	zero
Cuiabá	263	47.451	11
Jangada	241	19.616	11
Nobres	2.350	29.757	zero
N. S. do Livramento	500	74.773	9
Poconé	1.500	86.313	36
Porto Estrela	1.010	6.211	61
Rosário Oeste	1.000	56.302	60
S. Antônio do Leverger	500	54.929	zero
Várzea Grande	zero	38.048	2

## APÊNDICE C.11 - Ano 1995

Municípios/Espécies	Madeira em tora	Lenha	Carvão Vegetal
	(m ³ )	(m ³ )	(ton.)
Mato Grosso	4.256.770	3.196.208	3.816
Mesorregião 01	6.067	498.285	202
Acorizal	230	20.911	2
Barão de Melgaço	16	30.580	zero
Chapada dos Guimarães	50	28.637	zero
Cuiabá	55	63.299	zero
Jangada	1.105	31.378	42
Nobres	1.600	30.937	Z£TO
N. S. do Livramento	475	73.005	5
Poconé	1.100	81.241	22
Porto Estrela	460	6.349	59
Rosário Oeste	600	58.200	70
S. Antônio do Leverger	28	48.420	zero
Várzea Grande	348	25.328	2

Fonte: FIBGE - Produção Extrativa Vegetal e da Silvicultura

#### APÊNDICES D

#### Consumo de Energia Elétrica por Classes na Mesorregião 01 (Unidade: kWh)

#### APÊNDICE D.1 - Ano 1985

Municípios/Classes	Residencial	Industrial	Comercial	Rural	Iluminação Pública	Outros (*)	Total
Mato Grosso	283.150.652	102.408.786	178.329.935	11.875.317	43.010.631	82.410.274	701.185.595
Mesorregião 01	173.135.777	69.387.355	106.229.558	3.251.706	26.779.863	56,169,735	434.954.094
Acorizal	395.460	156.792	312.447	13.880	108.276	219.119	1.205.974
Barão de Melgaço	342.598	22.760	175.918	zero	53.809	78.375	673.460
Chapada Guimarães	564.246	248.544	526.953	139.426	251.560	266.726	1.997,455
Cuiabá	135.620.318	21.002.051	85.643.837	2.300.410	20.651.580	47.902.045	313.120.241
Jangada (**)	zero	<b>ze</b> ro	zero	zero	zero	zero	zero
Nobres	1.318.883	5.394.577	711.750	95.420	327.319	439.772	8.287.821
N. S. Livramento	348.802	12.054	171.792	119.724	86.438	135.533	874.343
Poconé	3.066.682	3.492.884	1.648.362	264.405	683.790	645.008	9.801.131
Porto Estrela (***)	zero	zero	zero	zero	zero	zero	zero
Rosário Oeste	1.495.745	300.000	810.876	7 3.057	346.982	374.325	3.400.985
S. Antônio Leverger	962.690	146.527	386.458	159.051	294.915	387.247	2.336.888
Várzea Grande	29.020.353	38.611.166	15.841.165	86.333	3.975.194	5.721.585	93.255.796

- (*) Outros Serviços Públicos, Poderes Públicos e Consumo Próprio.
- (**) O município do Jangada foi instalado em 01/01/1989, emancipando do município de Acorizal
- (***) O município de Porto Estrela foi instalado em 01/01/1993 (lei 5.901 de 19/12/91), saindo da condição de distrito de Barra do Bugres.

## APÊNDICE D.2 - Ano 1986

Municípios/Classes	Residencial	Industrial	Comercial	Rural	Iluminação Pública	Outros (*)	Total
Mato Grosso	339.833.195	139.947.979	210.352.452	15.613.938	46.043.845	88.820.275	840.611.684
Mesorregião 01	202.978.120	79.816.991	122.400.332	3.466.776	27.947.069	58.879.769	495.489.057
Acorizal	504.456	159.817	365.132	46.936	71.316	232.819	1.380.476
Barão de Melgaço	405.731	137.794	153.400	zero	49.908	90.745	837,578
Chapada Guimarães	729.985	412.877	630.470	229.135	170.419	301.717	2.474.603
Cuiabá	157.232.699	24.544.087	98.035.290	1.981.781	21.398.801	50.232.470	353.425.128
Jangada	-	-	-	-		- 1	*.
Nobres	1.615.452	10.082.934	951.898	158.865	521.964	392.226	13.723.339
N. S. Livramento	405.062	13.839	179.473	101.257	100.809	144.300	946. <b>2</b> 70
Poconé	3.920.720	6.772.596	2.043.173	449.847	667.724	666.390	14.520.450
Porto Estrela	-	-	-	-	*	-	*
Rosário Oeste	1.682.231	614.512	839.256	119.333	292.776	418.899	3.967.007
S. Antônio Leverger	1.107.329	151.540	425.749	259.298	272.640	372,427	2.588.983
Várzea Grande	35.374.455	36.926.995	18.776.491	120.324	4.400.712	6.026.246	101.625.223

(*) Outros - Serviços Públicos, Poderes Públicos e Consumo Próprio.

#### APÊNDICE D.3 - Ano 1987

				ZAREO ZOOT			
Municípios/Classes	Residencial	Industrial	Comercial	Rural	Huminação Pública	Outros (*)	Total
Mato Grosso	406.296.670	162.674.445	237.677.656	19.236.252	50.024.242	92.583.757	968.493.022
Mesorregião 01	236.701.128	85.443.546	135.201.645	4.437.563	28.835.336	59.695.580	550.314.834
Acorizal	641.393	153.391	345.201	86.789	71.316	236.271	1.534.361
Barão de Melgaço	491.832	111.980	163.455	562	67.805	118.424	954,058
Chapada Guimarà⇔	1.035.883	659.379	614.924	357.944	211.440	334.225	3.213.795
Cuiabá	183.023.675	27.305.271	108.068.661	2.295.454	21.739.193	50.067.870	392.500.124
Jangada	zero	zero	zero	zero	гето	zero	zero
Nobres	2.014.346	8.052.337	1.103.533	106.728	710.408	408.411	12.395.763
N. S. Livramento	494.215	7.011	190.749	123.875	109.980	183.830	1.109.660
Poconé	4.514.672	5.166.878	2.020.033	723.307	686.592	720.192	13.831.674
Porto Estrela	zero	zero	zero	zеro	zero	zero	zero
Rosário Oeste	2.044.895	1.465.865	851. <b>2</b> 93	152.747	292.776	466.9 <b>2</b> 6	5.274.502
S. Antônio Leverger	1.287.359	151.155	434.630	382.006	275.004	376.157	2.906.311
Várzea Grande	41.152.858	42.370.279	21.409.166	208.187	4.670.822	6.783.274	116.594.586

(*) Outros - Serviços Públicos, Poderes Públicos e Consumo Próprio

Fonte: CEMAT, 1987 - Boletim Estatístico Anual de Mercado de Energia Elétrica

#### APÊNDICE D.4 - Ano 1988

Municípios/Classes	Residencial	Industrial	Comercial	Rural	Iluminação Pública	Outros (*)	Total
Mato Grosso	435.880.197	188.807.259	250.534.317	<b>2</b> 7.077. <b>3</b> 99	54.230.794	103.660.689	1.060,190.655
Mesorregião 01	246.343.642	98.869.481	137.850.284	4.255.897	29.759.403	66.232.714	583.311.421
Acorizal	611.711	137.549	274.881	94.584	62.586	248.176	1.429.487
Barão de Melgaço	527.015	42.120	142.303	9.628	69.432	143.457	933.955
Chapada Guimarães	1.031.812	643.320	669.464	518.078	212.028	963.024	4.037.726
Cuiabá	189.233.647	31.624.777	110.942.457	2.175.323	21.928.222	54.172.007	410.076.433
Jangada	79.485	29.189	54.040	11.489	8.730	24.149	207.082
Nobres	2.136.769	10.951.816	1.212.115	90.438	973.776	453.957	15.818.871
N. S. Livramento	549.928	51.813	212.623	129.746	109.980	390.648	1.444.738
Poconé	4.537.794	3.746.692	1.805.768	488.199	686.591	774.714	12.039.759
Porto Estrela	-	-	-	-	-	1	-
Rosário Oeste	2.157.350	1.893.781	766.563	167.284	452.769	533.725	5.971.47 <b>2</b>
S. Antônio Leverger	1.463.489	128.983	441.657	440.961	294.528	424.711	3.194.329
Várzea Grande	44.014.642	49.619.441	21.328.413	130.167	4.960.760	8.104.146	128.157.569

### (*) Outros - Serviços Públicos, Poderes Públicos e Consumo Próprio

#### APÊNDICE D.5 - Ano 1989

Municípios/Classes	Residencial	Industrial	Comercial	Rural	Iluminação Pública	Outros (*)	Total
Mato Grosso	484.577.297	212.349.171	275.409.848	32.475.715	57.111.561	108.073.250	1.169.996.842
Mesorregião 01	268.777.369	109.338.528	149.951.925	4.538.338	28.630.349	67.377.287	628.435.564
Acorizal	426.708	106.815	101.420	40.063	86.589	168.950	930.545
Barão de Melgaço	586.267	63.800	131.138	6.215	69.432	168.242	1.025.094
Chapada Guimarães	1.301.516	745.869	668.757	547.479	212.913	306.532	3.604.834
Cuìabá	203.778.947	35,530,144	119.518.114	2.274.836	20.476.266	55.045.213	436.623.520
Jangada	354.249	56,435	212.841	72.656	34.920	95.660	826.761
Nobres	2.403.718	8.696.250	1.297.352	100.916	1.076.070	407.456	13.981.762
N. S. Livramento	595.849	231.813	233.379	111.213	160.272	210.912	1.543.438
Poconé	5.009.927	11.122.560	2.317.869	558.476	743.868	1.308.958	21.061.658
Porto Estrela	zero	zero	zero	zero	zero	zero	zero
Rosário Oeste	2.310.926	768.126	749.003	195.884	634.380	592,036	5.250.355
S. Antônio Leverger	1.547.162	128.713	425.080	508.725	289.839	487.822	3.387.341
Várzea Grande	50.426.100	51.888.003	24.296.972	121.875	4.845.800	8.585.506	140.200.256

### (*) Outros - Serviços Públicos, Poderes Públicos e Consumo Próprio

#### APÊNDICE D.6 - Ano 1990

Municípios/Classes	Residencial	Industrial	Comercial	Rural	Iluminação Pública	Outros (*)	Total
Mato Grosso	553.412.595	207.944.570	302.383.183	38.043.608*	58.628.241	118.915.634	1.281.443.720
Mesorregião 01	301.317.046	103,099.335	162.756.195	5.980.587	27.938.874	72.869.182	673.851.221
Acorizal	462.228	118.844	111.822	56.222	103.320	177.117	1.029.553
Barão de Melgaço	665,135	67.060	146.537	6.107	69.43 <b>2</b>	158.295	1.112.566
Chapada Guimarães	1.501.788	381.468	697.163	555.870	215.568	834.416	4.186.273
Cuiabá	228.955.212	35.032.760	129.239.112	3.055.660	19.700.362	59.648.942	475.612.048
Jangada	428.000	78.427	253.887	104.404	34.920	107.490	1.007.128
Nobres	2.748.071	4.201.292	1.492.220	110.142	1.110.168	443.811	10.105.704
N. S. Livramento	690.649	104.353	335.357	178.816	179.400	218.497	1.707.072
Poconé	5.811.187	13.237.363	2.364.274	913.304	779.229	1.051.170	24.156.527
Porto Estrela	zero	zero	zero	zero	zero	zero	zero
Rosário Oeste	2.492.551	842.820	770.581	200.392	641.844	569.485	5.517.673
S. Antônio Leverger	1.745.418	125.207	467.123	670.901	288.276	493.161	3.790.086
Várzea Grande	55.816.807	48.819.741	26.878.119	128.771	4.816.355	9.166.798	145.626.591

^(*) Outros - Serviços Públicos, Poderes Públicos e Consumo Próprio

Fonte: CEMAT,1990 - Boletim Estatístico Anual de Mercado de Energia Elétrica

^{*} Estimado

### APÊNDICE D.7 - Ano 1991

Municipios/Classes	Residencial	Industrial	Comercial	Rural	Iluminação Pública	Outros (*)	Total
Mato Grosso	616.807.598	229.348.464	325.257.696	43.611.502	60.470.867	130.389.203	1.405.885.330
Mesorregião 01	334.354.606	121.589.839	177.013.452	5.119.881	28.133.188	79.964.698	746.175.664
Acorizal	552.803	162.980	177.424	101.706	103.320	200.813	1.299.046
Barão de Melgaço	739.096	38.620	137.433	5.924	69.432	149.944	1.140.449
Chapada Guimarães	1.713.273	601.430	782.399	520.928	219.621	827.631	4.665.282
Cuiabá	253.616.686	36.856.166	139.564.120	2.001.086	19.746.706	64.895.943	516.680.707
Jangada	531.210	818.172	336.191	115.565	34.920	118.154	1.954.212
Nobres	3.001.306	21.150.167	1.470,504	145.972	1.110.168	459.393	27.337.510
N. S. Livramento	764.811	403.518	706.802	171.529	179.400	253.827	2.479.887
Poconé	6.363.779	9.536.407	2.565.886	876.146	780,708	1.034.472	21.157.398
Porto Estrela	zero	zero	zero	zero	zero	zero	zero
Rosário Oeste	2.690.189	273.357	790.148	226.685	641.844	634.624	5.256.847
S. Antônio Leverger	2.027.888	147.976	522.201	812.164	288.276	532.766	4.331.271
Várzea Grande	62.353.565	51.601.046	29.960.344	142.176	4.958.793	10.857.131	159.873.055

## (*) Outros - Serviços Públicos, Poderes Públicos e Consumo Próprio

# APÊNDICE D.8 - Ano 1992

Municipios/Classes	Residencial	Industrial	Comercial	Rural	Iluminação Pública	Outros (*)	Total
Mato Grosso	608.428.961	263.494.928	325.837.199	44.621.840	63.025.487	136.210.751	1.441.619.166
Mesorregião 01	322.460.545	144.612.706	176.391.457	5.083.805	28.587.143	81.185.800	758.321.456
Acorizal	588.019	221.652	218.588	141.410	103.320	222.212	1.495.201
Barão de Melgaço	754.679	14.050	136.154	5.904	69.432	200.852	1.181.071
Chapada Guimarães	1.771.411	533.750	765.440	473.323	229.464	711.074	4.484.462
Cuiabá	243.205.460	35.044.201	140.859.908	1.905.875	20.060.102	65.224.503	506.300.049
Jangada	583.245	1.016.873	353.554	108,986	34.920	99.490	2.197.068
Nobres	2.903.489	38.250.931	1.402.756	154.176	1.110.168	482.250	44.303.770
N. S. Livramento	817.663	199.157	225.233	193.710	180.489	264.116	1.880.368
Poconé	6.564.343	11.555.890	2.669.538	802.603	892.831	1.137.225	23.622.430
Porto Estrela	zero .	zero	zero	Zero	zero	zero	zero
Rosário Oeste	2.592.663	771.368	710.616	265.453	641.844	661.461	5.643,405
S. Antônio Leverger	2.089.728	132.392	511.643	815.769	288.276	422.328	4.260.136
Várzea Grande	60.589.845	56.872.442	28.538.027	216.596	4.976.297	11.760.289	162.953.496

## (*) Outros - Serviços Públicos, Poderes Públicos e Consumo Próprio

### APÊNDICE D.9 - Ano 1993

				ARRIO APP	•		
Municípios/Classes	Residencial	Industrial	Comercial	Rural	Iluminação Pública	Outros (*)	Total
Mato Grosso	643.429.019	297.987.128	346.392.905	52.797.459	64.076.501	140.051.015	1.544.734.027
Mesorregião 01	340.029.759	174.572.432	188.528.882	5.601.962	28.782.540	62.026.639	819.542.214
Acorizal	651.990	247.037	197.463	146.815	103.320	225.719	1.572.344
Barão de Melgaço	845.212	2.683	140.115	5.904	69.432	217.835	1.281.181
Chapada Guimarães	2.101.460	503.928	846.424	501.258	229.464	783.569	4.966.103
Cuiabá	256.096.776	49.173.658	149.612.438	1.981.539	20.210.376	65.365.754	542.440.541
Jangada	654.785	1.606.270	409.843	110.920	34.920	151.392	2.968.130
Nobres	3.209	42.732.873	1.613.970	165.677	1.110.168	498.038	49.330.619
N. S. Livramento	907.960	879.091	300.615	267.111	180.588	315.682	2.851.047
Poconé	6.803.676	13.615.164	2.738.447	805.842	903.024	1.217.531	26.083.684
Porto Estrela	273.040	45.818	53.587	227.147	28.572	88.453	716.617
Rosário Oeste	2.652.432	1.911.553	721.274	304.964	641.844	741.168	6.973.235
S. Antônio Leverger	2.257.690	122.357	528.266	884.828	288.276	464.515	4.545.932
Várzea Grande	63.574.845	63.732.000	31.366.440	199.957	4.982.556	11.956.983	175.812.781

^(*) Outros - Serviços Públicos, Poderes Públicos e Consumo Próprio.

Fonte: CEMAT,1993 - Boletim Estatístico Anual de Mercado de Energia Elétrica

## APÊNDICE D.10 - Ano 1994

Municípios/Classes	Residencial	Industrial	Comercial	Rural	Iluminação Pública	Outros (*)	Total
Mato Grosso	711.206.733	378.764.480	385.367.079	62.114.543	65.761.752	151.961.765	1.755.176.352
Mesorregião 01	373.616.381	214.868.117	209.555.981	6.022.408	30.063.501	90.140.138	924.266.526
Acorizal	719.828	277.523	255.744	150.516	20.391	287.351	1.711.353
Barão de Melgaço	923.930	2.540	125.086	6.990	69.432	237.033	1.365.011
Chapada Guimarães	2.375.718	537.151	957.438	584.959	229.464	1.033.421	5.718.151
Cuiabá	279.849.995	81.485.635	167.652.942	1.897.475	20.354.077	71.719.100	622.959.224
Jangada	748.942	2.258.545	443.166	164.458	34.920	233.172	3.883.203
Nobres	3.423.634	65.635.828	1.619.763	204.040	1.110.168	540.748	72.534.181
N. S. Livramento	1.002.744	786.542	390.494	377.876	180.588	347.500	3.085.744
Poconé	7.368.353	16.475.986	2.927.694	825.499	903.024	1.522.623	30.023.179
Porto Estrela	343.270	64.193	62.066	164.924	76.584	217.580	928.617
Rosário Oeste	2.828.974	2.731.604	707.846	379.782	641.844	653.474	7,943.524
S. Antônio Leverger	2.571.432	133.680	529.193	937.981	288.276	436.413	4.896.975
Várzea Grande	71.459.561	64,478.890	33.884.549	327.908	6.154,763	12.911.723	189.217.394

^(*) Outros - Serviços Públicos, Poderes Públicos e Consumo Próprio.

## APÊNDICE D.11 - Ano 1995

Municípios/Classes	Residencial	Industrial	Comercial	Rural	Iluminação Pública	Outros (*)	Total
Mato Grosso	863.206.642	400.055.212	437.198.623	62.394.816	81.006.571	156.526.375	2.000.388.239
Mesorregião 01	444.127.448	236.911.609	231.644.225	7.068.144	36.342.056	89.660.492	1.045.753.974
Acorizal	816.338	323.326	278.747	170.934	58,952	258.451	1.906.748
Barão de Melgaço	1.024.032	4.114	182.007	6.395	78.490	239.633	1.534.671
Chapada Guimarães	3.097.226	679.200	1.277.926	624.750	453.473	938.403	7.070.978
Cuiabá	327.695.299	90.162.079	185.607.098	2.298.873	24.331.239	70.936.562	701.031.150
Jangada	1.006.420	825.734	498.027	484.819	84.879	242.107	3.141.986
Nobres	4.180.208	61.628.246	1.785.606	293.195	1.195.128	706.986	69.789.369
N. S. Livramento	1.187.717	679.301	404.535	352.659	213.933	456.941	3.295.086
Poconé	8.556.320	13.891.285	2.917.006	984.274	903.024	1.539.901	<b>2</b> 8.791.810
Porto Estrela	454.462	50.061	74.786	178.702	76.584	181.490	1.016.085
Rosário Oeste	3.239.281	1.156.325	790.548	407.268	641.844	856.834	7.092.100
S. Antônio Leverger	3.098.624	110.966	601.871	931.016	281.358	503.702	5.527.537
Várzea Grande	89.771.521	67.400.9 <b>72</b>	37.226.068	335.259	8.023.152	12.799.482	215.556.454

(*) Outros - Serviços Públicos, Poderes Públicos e Consumo Próprio

Fonte: CEMAT,1995 - Boletim Estatístico Anual de Mercado de Energia Elétrica

# APÊNDICES E Número de Consumidores de Energia Elétrica na Mesorregião 01

APÊNDICE E.1 - Dezembro/1985

Municípios / Classes	Residencial	Industrial	Comercial	Rural	Iluminação Pública	Outros (*)	Total
Mato Grosso	160.833	2.863	22.544	1.755	135	2.525	190.655
Mesorregião 01	85.195	1.169	9.621	433	38	1.088	97.544
Acorizal	409	5	86	8	4	27	539
Barão de Melgaço	340	7	43	zero	1	17	408
Chapada Guimarães	459	9	101	34	1	55	659
Cuìabá	60.677	726	6.917	232	6	719	69.277
Jangada	-	-	*	-	-	-	-
Nobres	984	27	169	13	1	27	1.221
N. S. Livramento	320	1	35	13	2	18	389
Poconé	2.265	51	326	64	3	45	2.754
Porto Estrela	-	-	-	-	-		-
Rosário Oeste	1.242	16	134	6	1	43	1.442
S. Antônio Leverger	879	9	70	40	9	23	1.030
Várzea Grande	17.620	318	1.740	23	10	114	19.825

(*) Outros - Poderes Públicos, Serviços Públicos e Consumo Próprio.

APÊNDICE E.2 - Dezembro/1986

AI ENDICE E.2 - Dezemble/1960										
Municípios / Classes	Residencial	Industrial	Comercial	Rural	Iluminação Pública	Outros (*)	Total			
Mato Grosso	180.187	3.511	25.418	2.381	132	2.774	214.403			
Mesorregião 01	94.063	1.442	10.526	534	37	1.152	107.754			
Acorizal	457	4	90	14	4	30	599			
Barão de Melgaço	363	9	45	-	1	17	435			
Chapada Guimarães	615	11	109	50	1	58	844			
Cuiabá	66.514	926	7.488	250	6	755	75.939			
Jangada	-	-	-	-	_	- [	-			
Nobres	1.106	28	191	22	1	28	1.376			
N. S. Livramento	346	ł	43	21	2	21	434			
Poconé	2.590	64	375	92	2	49	3.172			
Porto Estrela		-	-	-		-	-			
Rosário Oeste	1,383	20	152	12	1	43	1.611			
S. Antônio Leverger	963	9	79	48	9	24	1.132			
Várzea Grande	19.726	370	1.954	25	10	127	22.212			

(*) Outros - Poderes Públicos, Serviços Públicos e Consumo Próprio.

APÊNDICE E.3 - Dezembro/1987

		MERCE	E E.J - DCZ	CHIDIOLAZ			····
Municípios / Classes	Residencial	Industrial	Comercial	Rural	Iluminação Pública	Outros (*)	Total
Mato Grosso	198.477	3.715	29.033	3.234	144	3.068	237.671
Mesorregião 01	100.590	1.519	11.711	661	37	1.203	115.721
Acorizal	562	7	101	20	4	30	724
Barão de Melgaço	397	3	52	1	1	19	473
Chapada Guimarães	667	11	112	72	1	60	923
Cuiabá	70.626	983	8.332	271	6	774	80.992
Jangada	-	-	-	-	-	- [	-
Nobres	1.232	30	198	30	1	31	1.522
N. S. Livramento	428	1	43	26	2	21	521
Poconé	2.797	57	408	130	2	56	3.450
Porto Estrela	-	_	_	-	-	- [	-
Rosário Oeste	1.569	29	151	14	1	42	1.806
S. Antônio Leverger	1.034	9	85	69	9	24	1.230
Várzea Grande	21.278	389	2.229	28	10	146	24.080

(*) Outros - Poderes Públicos, Serviços Públicos e Consumo Próprio.

Fonte: CEMAT,1987 - Boletim Estatístico Anual de Mercado de Energia Elétrica

APÊNDICE E.4 - Dezembro/1988

Municípios / Classes	Residencial	Industrial	Comercial	Rural	Iluminação Pública	Outros (*)	Total
Mato Grosso	222.659	3.843	30.123	3.828	146	3.512	264.111
Mesorregião 01	107.666	1.495	11.597	723	36	1.301	122.818
Acorizal	395	5	46	11	3	24	484
Barão de Melgaço	424	3	46	1	1	20	495
Chapada Guimarães	762	10	118	75	1	62	1.028
Cuiabá	75.045	892	8.197	268	. 5	817	85.224
Jangada	218	4	44	12	1	9	288
Nobres	1.361	36	201	31	1	31	1.661
N. S. Livramento	446	2	42	22	2	23	537
Poconé	2.963	83	392	164	2	65	3.669
Porto Estrela	-	-	-	~	*	-	-
Rosário Oeste	1.760	37	138	25	1	47	2.008
S. Antônio Leverger	1.089	9	78	82	9	29	1.296
Várzea Grande	23.203	414	2.295	32	10	174	26.128

# (*) Outros - Poderes Públicos, Serviços Públicos e Consumo Próprio.

#### APÊNDICE E.5 - Dezembro/1989

Municípios / Classes	Residencial	Industrial	Comercial	Rural	Iluminação Pública	Outros (*)	Total
Mato Grosso	246.682	4.026	32.487	4.928	156	3.735	292.014
Mesorregião 01	117.045	1.495	12.572	988	37	1.367	133.504
Acorizal	418	5	38	12	3	24	500
Barão de Melgaço	455	4	44	1	1	19	524
Chapada Guimarães	915	9	117	84	1	60	1.186
Cuiabá	80.767	883	8.812	331	5	848	91.646
Jangada	257	3	48	13	1	11	333
Nobres	1.481	34	223	32	1	30	1.801
N. S. Livramento	489	2	53	34	2	25	605
Poconé	3.141	99	395	202	2	68	3.907
Porto Estrela	-	-	-	-	-	-	*
Rosário Oeste	1.816	23	145	26	2	47	2.059
S. Antônio Leverger	1.138	9	98	222	9	36	1.512
Várzea Grande	26.168	424	2.599	31	10	199	29.431

### (*) Outros - Poderes Públicos, Serviços Públicos e Consumo Próprio.

### APÊNDICE E.6 - Dezembro/1990

Municípios / Classes	Residencial	Industrial	Comercial	Rural	Iluminação Pública	Outros (*)	Total
Mato Grosso	265.115	4.270	35.031	6.110	159	3.979	314.673
Mesorregião 01	124.500	1.566	13.715	1.130	37	1.399	142.347
Acorizal	428	5	41	22	3	25	524
Barão de Melgaço	486	3	42	1	1	19	552
Chapada Guimarães	999	8	128	104	1	64	1.304
Cuiabá	85.485	912	9.567	391	5	850	97.210
.Jangada	281	4	49	14	1 [	13	362
Nobres	1.635	29	238	36	1	33	1.972
N. S. Livramento	535	4	57	43	2	27	668
Poconé	3.333	97	411	229	2	73	4.145
Porto Estrela	-	-	-	-	~-	-	-
Rosário Oeste	1.896	23	149	34	2	51	2.155
S. Antônio Leverger	1.218	9	96	226	9	36	1.594
Várzea Grande	28.204	472	2.937	30	10	208	31.861

(*) Outros - Poderes Públicos, Serviços Públicos e Consumo Próprio.

Fonte: CEMAT, 1991 - Boletim Estatístico Anual de Mercado de Energia Elétrica

APÊNDICE E.7 - Dezembro/1991

Municípios / Classes	Residencial	Industrial	Comercial	Rural	Iluminação Pública	Outros (*)	Total
Mato Grosso	286.393	4.555	37.187	7.286	161	4.291	339.873
Mesorregião 01	132,575	1.626	14.547	1.200	37	1.467	151.452
Acorizal	499	5	45	28	3	25	605
Barão de Melgaço	504	3	42	1	1	20	571
Chapada Guimarães	1.078	8	129	92	1	66	1.374
Cuiabá	90.821	934	10.250	406	5	901	103.317
Jangada	327	6	52	17	1	12	415
Nobres	1.810	35	235	43	1	32	2.156
N. S. Livramento	572	5	56	49	2	28	712
Poconé	3.475	98	430	241	2	73	4.319
Porto Estrela		. ~	-	*	-	-	_
Rosário Oeste	1.984	22	160	38	2	52	2.258
S. Antônio Leverger	1.321	9	95	248	9	38	1,720
Várzea Grande	30.184	501	3.053	37	10	220	34.005

# (*) Outros - Poderes Públicos, Serviços Públicos e Consumo Próprio.

#### APÊNDICE E.8 - Dezembro/1992

Municípios / Classes	Residencial	Industrial	Comercial	Rural	Iluminação Pública	Outros (*)	Total
Mato Grosso	308.550	4.696	38.169	8.501	163	4.391	364.470
Mesorregião 01	138.486	1.660	14.865	1.347	37	1.332	157.726
Acorizal	539	4	53	46	3	26	670
Barão de Melgaço	548	1	39	1	1	19	609
Chapada Guimarães	1.321	9	136	109	1	70	1.646
Cuiabá	93.062	949	10.423	405	5	751	105.595
Jangada	380	5	65	22	1	13	486
Nobres	1.970	34	237	46	1	34	2.322
N. S. Livramento	608	8	54	69	2	29	770
Poconé	3.777	111	426	255	2	75	4.646
Porto Estrela		-	-	-	*	- 1	-
Rosário Oeste	2.074	24	161	79	2	50	2.390
S. Antônio Leverger	1.443	9	97	274	9	38	1.870
Várzea Grande	32.764	506	3.174	41	10	227	36.722

# (*) Outros - Poderes Públicos, Serviços Públicos e Consumo Próprio.

#### APÊNDICE E.9 - Dezembro/1993

Municípios / Classes	Residencial	Industrial	Comercial	Rural	Iluminação Pública	Outros (*)	Total
Mato Grosso	335.705	4.979	40.049	9.967	165	4.647	395.512
Mesorregião 01	148.509	1.723	15.724	1.722	38	1,406	169.122
Acorizal	610	6	56	38	3	31	744
Barão de Melgaço	606	1	40	1	1	18	667
Chapada Guimarães	1.518	10	164	126	1	76	1.895
Cuìabá	98.667	971	11.036	416	5	777	111.872
Jangada	461	4	66	26	1	19	577
Nobres	2.110	34	235	54	1	34	2.468
N. S. Livramento	705	11	58	86	2	31	893
Poconé	4.009	109	458	275	2	83	4.936
Porto Estrela	236	3	24	275	1	10	339
Rosário Oeste	2.131	21	149	114	2	48	2.465
S. Antônio Leverger	1.581	6	102	263	9	41	2.002
Várzea Grande	35.875	547	3.336	48	10	238	40.054

(*) Outros - Poderes Públicos, Serviços Públicos e Consumo Próprio.

Fonte: CEMAT,1993 - Boletim Estatístico Anual de Mercado de Energia Elétrica

APÊNDICE E.10 - Dezembro/1994

Municípios / Classes	Residencial	Industrial	Comercial	Rural	Iluminação Pública	Outros (*)	Total
Mato Grosso	355.988	5.181	41.968	12.332	181	5.002	420.652
Mesorregião 01	154.011	1.759	16.040	1.705	48	1.487	175.050
Acorizal	660	5	59	43	3	38	808
Barão de Melgaço	616	1	43	1	1	19	681
Chapada Guimarães	1.740	11	186	153	1	79	2.170
Cuiabá	100.667	973	11.186	436	5	814	114.081
Jangada	509	4	68	37	1	22	641
Nobres	2.194	31	218	72	1	36	2.552
N. S. Livramento	746	14	60	95	2	35	952
Poconé	4.196	131	470	298	2	84	5.181
Porto Estrela	264	4	31	72	1	16	388
Rosário Oeste	2.175	21	149	167	2	48	2.562
S. Antônio Leverger	1.821	フ	128	272	9	51	2.288
Várzea Grande	38.423	557	3.442	59	20	245	42.746

(*) Outros - Poderes Públicos, Serviços Públicos e Consumo Próprio.

APÊNDICE E.11 - Dezembro/1995

Municípios / Classes	Residencial	Industrial	Comercial	Rural	Iluminação Pública	Outros (*)	Total
Mato Grosso	378.251	5.462	44,749	14.89 3	184	5.254	448.793
Mesorregião 01	164.123	1.897	16.801	1.924	46	1.509	186.210
Acorizal	720	4	62	53	3	38	880
Barão de Melgaço	663	1	41	I	1	21	728
Chapada Guimarães	1.978	9	223	174	2	77	2.463
Cuíabá	108.390	1.014	11.715	453	5	830	122.407
Jangada	618	5	76	49	1	21	770
Nobres	2.253	29	221	116	1	35	2.655
N. S. Livramento	841	12	63	117	2	35	1.070
Poconé	4.306	115	453	351	2	88	5.315
Porto Estrela	328	4	30	85	1	21	469
Rosário Oeste	2.210	20	154	183	2	55	2.624
S. Antônio Leverger	1.949	5	129	282	16	57	2.438
Várzea Grande	39.867	589	3.634	60	10	231	44.391

(*) Outros - Poderes Públicos, Serviços Públicos e Consumo Próprio.

Fonte: CEMAT,1995 - Boletim Estatístico Anual de Mercado de Energia Elétrica