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Análise Dinâmica de Problemas não
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DEPARTAMENTO DE MECÂNICA COMPUTACIONAL

TESE DE DOUTORADO

Análise Dinâmica de Problemas não
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Dedication

To my father Sebastião Nunes (1944 - 2003).



The less we know, the more certain and precise we are in our explanations; the more we

know, the more we realize the limitations of being certain and precise.

Socrates
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Resumo

Nunes, Ronaldo Fernandes, Análise Dinâmica de Problemas não Determińısticos usando

Métodos Baseados em Conjuntos Nebulosos, Campinas: Faculdade de Engenharia

Mecânica, Universidade Estadual de Campinas, 2005, 142 p., Tese (Doutorado).

Neste trabalho, o problema da análise dinâmica de estruturas em médias freqüências é

abordado. Em geral, métodos numéricos tais como elementos finitos e elementos de contorno

não são apropriados para tratar estes casos. As principais razões são a necessidade do refi-

namento das malhas com o aumento da freqüência e o cálculo da influência dos parâmetros

incertos, cujo efeito em particular, para médias e altas freqüências, tende a ser significativo.

O problema do refinamento do modelo pode ser superado através de métodos semi-anaĺıticos,

como por exemplo o método do elemento espectral. Em relação à simulação dos sistemas

com parâmetros de entrada incertos, métodos baseados em conjuntos nebulosos e métodos

probabiĺısticos são adotados. Nesta tese, uma proposta combinando o método do elemento

espectral com conjuntos nebulosos é conduzida. O principal foco deste trabalho é apresentar

uma nova abordagem para o problema em médias freqüências. Neste contexto, funções de

resposta em freqüência são adotadas para representar o efeito dos parâmetros de entrada não

determińısticos na resposta dinâmica de estruturas. Para ilustrar o procedimento proposto,

exemplos numéricos são tratados, como o caso simples de uma placa retangular reforçada com

vigas e também o caso de uma estrutura do tipo pórtico.

Palavras Chave

Método dos elementos espectrais, médias freqüências, conjunto nebulosos, parâmetros de

entrada incertos, método de transformação.



Abstract

Nunes, Ronaldo Fernandes, Dynamic Analysis of Non-Deterministic Problems using Fuzzy

Set Based Methods, Campinas: Faculdade de Engenharia Mecânica, Universidade

Estadual de Campinas, 2005, 142 p., Thesis (Doctorate).

It is well-known that, in the mid-frequency range, numerical methods such as finite and

boundary elements are not suitable for structural dynamic analysis. One of the reasons is

the fine mesh resolution required to accurately model the physical problem, leading to large

computational models. The other reason is associated with the difficulty in estimating the

response statistics for system parameter variations. The mesh refinement problem can be

addressed using semi-analytical methods, such as the spectral element method. However, in

general, these methods are very limited with respect to the geometry and boundary conditions

that can be treated. With respect to parameter variation, the simulation of systems with

uncertain parameters has in the past been addressed with different techniques, such as finite

elements applied to stochastic problems and fuzzy set based methods. In this thesis, the

spectral element method is combined with a special implementation of a fuzzy set based

method that avoids the well-know effect of overestimation in interval computations. In this

regard, some efficient alternatives, such as the transformation method and the sparse grids

approach are proposed. In this work, the main goal is to provide alternatives to address

dynamic problems under uncertainty in the mid-frequency range. In this context, envelopes

for frequency response functions are used to represent the effect of non-deterministic input

parameters in the dynamic response of structures. To illustrate the proposed procedure,

numerical examples are treated, such as a simple rectangular plate reinforced with beams and

a frame-type model.

Key words

Spectral element method, mid frequencies, fuzzy set based methods, uncertainty parameters,

transformation method.



Introdução

Mesmo quando se pode obter um modelo determińıstico do comportamento dinâmico

de uma estrutura através de métodos numéricos como o método de elementos finitos, por

mais exato que seja este modelo para descrever a resposta dinâmica, o seu resultado é apenas

uma representação de uma estrutura nominal. Porém, sabe-se que, em uma situação real, a

análise determińıstica é insuficiente. Por exemplo, se tomarmos o caso de várias amostras

de um véıculo comercial na sáıda da linha de produção, sabe-se que a resposta dinâmica

irá apresentar grandes variações apesar de serem véıculos nominalmente idênticos. Estru-

turas similares podem apresentar, durante o seu processo de fabricação, variações em suas

propriedades individuais que, de certa forma, refletirão na sua resposta dinâmica. Algu-

mas pequenas mudanças nas propriedades f́ısicas da estrutura podem afetar diretamente os

resultados finais (Kompella e Bernhard, 1993).

Neste contexto, muitas pesquisas têm sido conduzidas na área de simulação numérica para

que os modelos numéricos de elementos finitos sejam capazes de estimar as respostas levando

em conta a influência dos parâmetros de entrada não determińısticos e para que limites em

freqüência sejam estendidos em aplicações de freqüências mais altas.

Considerando a discussão acima, o objetivo deste trabalho é apresentar alternativas para

o estudo da resposta de sistemas dinâmicos em médias freqüências considerando os efeitos

dos parâmetros de entrada não determińısticos. Métodos numéricos, tais como elementos

finitos e elementos de contorno, em geral não são apropriados para tratar tais problemas.

Uma das razões é a necessidade do refinamento dos modelos e a outra é a influência dos

parâmetros de entrada incertos, cujo efeito, em particular para médias e altas freqüências,

torna-se mais evidente. Considerando o comprimento de onda das vibrações, para se obter

uma boa correlação entre soluções anaĺıticas e numeŕıcas, recomendam-se de 6 a 10 elementos

lineares por comprimento de onda para manter as respostas dentro de limites aceitáveis de

erro de predição (Desmet, 2002).
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Indo mais adiante, outro ponto importante no contexto acima é que, à medida que a

freqüência aumenta, a resposta dinâmica da estrutura fica mais senśıvel à influência dos

parâmetros incertos, como, por exemplo, detalhes geométricos e variações das propriedades

dos materiais. Outro problema que também deve ser considerado diz respeito aos modos de

vibração de ordem elevada que, em particular para altas freqüências, tendem a apresentar

uma flutuação espacial mais complexa (Shorter, 1998).

Ao longo do tempo, muitas pesquisas foram conduzidas de forma a criar alternativas

aos problemas descritos acima. Para o problema do refinamento do modelo, este pode ser

resolvido em alguns casos através de métodos semi-anaĺıticos, tais como o método dos ele-

mentos espectrais (SEM), que são menos afetados pelo pequeno comprimento de onda. Em

relação à simulação dos sistemas com parâmetros de entrada não determińısticos, por exem-

plo, métodos baseados em conjuntos nebulosos (Hanss, 2002b; Klimke et al., 2004a; Nunes et

al., 2005) e métodos estocásticos (Elishakoff e Ren, 2003; Ghanem e Spanos, 2003; Manohar

e Ibrahim, 1999) são sugeridos na literatura. Neste trabalho, para o termo em inglês Fuzzy

Sets, será adotado o termo em português conjuntos nebulosos ou, quando combinado com o

SEM, simplemente SEM/Fuzzy.

Vários outros métodos para descrever o problema em médias e altas freqüências têm sido

considerados na literatura, tais como técnicas probabiĺısticas de modelagem e o uso da Análise

Estat́ıstica de Energia (SEA), a qual pode ser considerada de grande aplicabilidade para altas

freqüências.

Lyon e DeJong (1995) postulam que, em altas freqüências, a representação da resposta de

uma estrutura em termos de energia torna-se mais apropriada. Na SEA o problema é tratado

através do balanço de energia e do fluxo de potência entre os diferentes grupos de modos em

um sistema dinâmico. Neste caso, grupos modais são tratados como subsistemas, onde, para

cada subsistema, modos naturais com caracteŕısticas semelhantes devem ser considerados.

Para cada subsistema dentro de uma determinada banda, a resposta é calculada através dos

ńıveis médios de energia.

Por exemplo, a Figura 1 apresenta o modelo de duas barras acopladas, onde a barra 1,

em função das caracteŕısticas geométricas e propriedades f́ısicas adotadas, apresenta uma

densidade modal muito inferior à barra 2. Neste caso, o objetivo é obter a resposta dinâmica

da estrutura no ponto de conexão da barra 1 com a barra 2, assumindo uma excitação unitária

em uma das extremidades, i.e., para uma força longitudinal P de 1 N. Para a barra 2, um
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comprimento de L2 = 2.46 m é adotado, enquanto a barra 1 possui um comprimento de apenas

L1 = 0.20 m. Para as propriedades f́ısicas das barras tem-se valores médios de Módulo de

Young igual a E1/2 = 2.71× 109 N/m2, densidade ρ1/2 = 1140 kg/m3, amortecimento igual a

η1/2 = 1.0× 10−2 e áreas da seção transversal A1 = 1.735× 10−3 m2 e A2 = 1.862× 10−4 m2,

respectivamente.

barra 1✲

✛ ✲

P

L1

barra 2

✛ ✲L2

Figura 1: Esquema de duas barras acopladas.

A Figura 2 compara os resultados obtidos com o método da SEA e com o método dos

SEM para o caso simples de duas barras acopladas. Com base no resultado apresentado, o

que se nota é que para altas freqüências, o resultado obtido via SEA fica muito próximo do

valor médio da curva obtida via SEM, enquanto que, para as baixas freqüências, o resultado

não é tão representativo.

Em geral, para que o uso da SEA produza resultados precisos, algumas pré-condições

devem ser atendidas. Por exemplo, uma das principais condições a ser atendida diz respeito

à alta densidade modal dentro da banda de freqüência de interesse, o que não é atendido

para as baixas freqüências. Neste caso, é importante ressaltar que caso não haja um número

mı́nimo de modos por banda de freqüência ou mesmo um valor de sobreposição modal superior

(modal overlap factor) a 1, grandes erros podem ser introduzidos com o uso da SEA (Langley

e Brown, 2002). Assim, para casos de estruturas com baixa densidade modal, o uso da SEA

não é recomendado, pois suas hipóteses não são válidas (Lyon e DeJong, 1995).
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Figura 2: Energia obtida via SEA (linha pontilhada) e SEM (linha sólida).

De acordo com a discussão anterior, a faixa que se convencionou denominar de médias

freqüências está situada entre o limite de aplicação dos métodos determińısticos e o limite onde

a SEA é aplicável ou, simplemente, onde as hipóteses da SEA são válidas (Lyon e DeJong,

1995).

Em relação ao termo médias freqüências, este ainda não foi consolidado, porém algumas

definições são tratadas na literatura, como, por exemplo, Langley (1998) descreve que o

problema deve ser considerado para cada tipo de estrutura independentemente do número de

modos presentes. Lyon e DeJong (1995) definem o termo como sendo a faixa de freqüência

onde os métodos determińısticos como elementos finitos e elementos de contorno não são mais

válidos e onde as hipóteses para aplicações da SEA ainda não são válidas.

Para abordar tal problema, vários métodos combinando elementos finitos e SEA têm

sido sugeridos. Indo mais adiante, quatro diferentes métodos têm obtido destaque especial:

o método de fluxo de energia ou também chamado método de coeficientes de influência de

energia (Zhang et al., 2003), o método da SEA virtual/experimental (Gagliardini et al., 2003),

métodos h́ıbridos combinando SEA e elementos finitos (Langley e Bremner, 1999) e o método

baseado em propagação de ondas (WBM) (Desmet, 2002).

Neste trabalho, uma proposta combinando o método do elemento espectral com métodos

xii



baseados em conjuntos nebulosos será formulada. Um dos focos deste trabalho é apresen-

tar uma abordagem para tratar o problema em médias freqüências considerando a influência

dos parâmetros de entrada não determińısticos. Neste contexto, funções de resposta em

freqüência são adotadas para representar a resposta dinâmica de alguns exemplos numéricos

considerando os limites máximos e mı́nimos (Nunes et al., 2005). A Figura 3 apresenta um

exemplo onde o cálculo de energia para a barra 2 obtida via SEA apresentado anteriormente

na Figura 2 é comparado com o método proposto nesta tese, ou seja, o SEM combinado com

métodos baseados em conjuntos nebulosos (SEM/Fuzzy). Para este exemplo, os parâmetros

Módulo de Young igual a E = 2.71 × 109 N/m2 e fator de perda η = 0.01 são considera-

dos não determińısticos, assumindo-se um desvio padrão de 10% em relação aos respectivos

valores médios. Neste caso, os resultados apresentados deixam de ser apenas determińısticos

para também inserir os efeitos dos parâmetros de entrada incertos. Portanto, o principal

objetivo nesta tese é lançar bases para a aplicação de métodos baseados em conjuntos neb-

ulosos, apresentando os principais pontos positivos e as respectivas limitações. Ao longo do

trabalho, diversos exemplos serão tratados, tendo como foco principal o problema das médias

freqüências.
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Figura 3: Energia obtida via SEA (linha pontilhada) e SEM/Fuzzy (linha sólida).
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Conclusões e Comentários

Nesta tese, importantes questões relacionando o problema da análise dinâmica de médias

freqüências foram discutidas. Neste caso, o uso do método do elemento espectral combi-

nado com conjuntos nebulosos foi proposto. Considerando os parâmetros de entradas não

determińısticos, funcões de resposta em freqüência usando envelopes foram adotadas para

representar os limites máximos e mı́nimos encontrados.

Na primeira parte do trabalho, uma introdução com uma breve revisão das principais

alternativas para o problema de médias freqüências foi apresentada. Neste caso, os seguintes

métodos foram destacados: o método conhecido como Hı́brido, que combina FEA/SEA, o

método chamado Virtual/Experimental SEA, o método usando coeficiente de influência de

energia (EIC) e também o método baseado em ondas (WBM).

No Caṕıtulo 2, os efeitos da análise dinâmica de estruturas levando em consideração a

influência dos parâmetros de entradas incertos foram considerados. Neste caṕıtulo, uma im-

plementação especial do prinćıpio de extensão conhecida como método de transformação foi

introduzida. A principal idéia foi mostrar um método eficiente baseado em conjuntos nebu-

losos para ser combinado com o método do elemento espectral. Neste caso, foi recomendado

que, no caso de poucos dados estat́ısticos dispońıveis, os métodos baseados em conjuntos

nebulosos são mais adequados do que as técnicas probabiĺısticas.

No Caṕıtulo 3, antes de apresentar a implementação do método do elemento espectral com-

binado com conjuntos nebulosos, algumas eficientes alternativas para os métodos de conjuntos

nebulosos foram apresentadas. Assim, um método alternativo que considera a remoção dos

pontos recorrentes no método de transformação original e mais o uso dos sparse grids foram

introduzidos como alternativas atrativas para serem combinadas com o método do elemento

espectral.

No Caṕıtulo 4, alguns exemplos numéricos foram apresentados para mostrar a aplicação do

método proposto nesta tese. Três problemas básicos usados como teste foram apresentados: o
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caso simples de um sistema de barras acopladas, um modelo de placa com reforços e também

uma estrutura constitúıda de duas vigas acopladas. Neste mesmo caṕıtulo, aplicações usando

a Análise Estat́ıstica de Energia (SEA) foram apresentadas para o cálculo dos fatores de perda

por acoplamento (CLF).

No Caṕıtulo 5, para apresentação da metodologia de forma mais detalhada, um exemplo

numérico aplicado dentro do contexto da engenharia foi apresentado. Neste caso, importantes

aspectos, tais como o processo a ser adotado durante um projeto de engenharia, o uso de dados

estat́ısticos dispońıveis, os limites de aceitabilidade durante o projeto e tipo de incertezas

foram discutidos.

Adicionalmente, nos Apêndices A, B, C e D, uma revisão do método dos elementos espe-

trais foi apresentada para os elementos de barra, viga e placa.

Principais contribuições

As principais contribuições desta tese podem sem resumidas como:

i. Definição de uma alternativa para o problema das médias freqüências considerando os

efeitos da resposta dinâmica de estruturas com dados de entradas não determińısticos.

Para tanto, o método dos elementos espectrais combinado com conjuntos nebulosos foi

proposto. Através deste método, alternativas para dois aspectos negativos encontrados

no método tradicional dos elementos finitos foram sugeridas: a extensão do limite de

freqüência para as médias e altas freqüências e o uso de dados de entrada não deter-

mińısticos no cálculo da resposta dinâmica de estruturas.

ii. Apresentação de uma descrição eficiente baseada no prinćıpio de extensão para ser

combinada com o método dos elementos espectrais.

iii. Um novo esquema para a estimativa dos fatores de perda por acoplamento (CLFs)

usados em SEA, cobrindo os limites de confiança através do uso do método do elemento

espectral combinado com conjuntos nebulosos.

iv. Discussão com apresentação das vantagens e desvantages de cada método utilizado nesta

tese, baseados em conjuntos nebulosos para combinação com métodos determińısticos,

como o método dos elementos espectrais.
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Sugestões para pesquisas futuras

Para o desenvolvimento de futuras pesquisas, duas áreas devem ser consideradas como

principais: Considerando aplicações mais reaĺısticas, ainda há a necessidade do desenvolvi-

mento de elementos espetrais que tenham maior flexibilidade nas condições de contorno e

também aplicado para estruturas mais gerais. Em geral, o uso do método dos elemen-

tos espectrais pode ser considerado uma ferramenta poderosa para aplicações de problemas

dinâmicos em médias freqüências. No entanto, para aplicações do tipo industrial, uma bib-

lioteca mais geral dos elementos deve ser desenvolvida. Por exemplo, elementos do tipo casca

com condições de contorno mais gerais podem ser consideradas uma grande área a ser explo-

rada. Igualmente, o estudo de um método h́ıbrido, no caso combinando elementos espectrais

com elementos finitos ou mesmo com a Análise Estat́ıstica de Energia, também pode ser

considerada uma interessante área a ser desenvolvida.

Em relação aos métodos baseados em conjuntos nebulosos, a primeira área de interesse de

desenvolvimento pode ser considerada a área de implementação de novos algoritmos. Neste

campo de pesquisa, o principal foco está no desenvolvimento de algoritmos para tornar a

área mais atrativa do ponto de vista industrial. Por exemplo, considerando o método de

transformação geral removendo os pontos recorrentes da sua formulação original, para casos

com dimensões maiores que dez parâmetros de entradas incertos, sua complexidade aumenta

consideravelmente. Para o caso dos sparse grids, este depende da superf́ıcie de interpolação

em função dos parâmetros de entrada incertos.

Uma outra área também de grande importância está relacionada com o desenvolvimento

de algoritmos capazes de selecionar os parâmetros de entrada mais importantes, evitando com

isto alto custo computacional nas análises envolvendo parâmetros não determińısticos. Esta

área tem sido objeto de pesquisa e alguns trabalhos já podem ser encontrados na literatura,

por exemplo os trabalhos de Hanss e Klimke (2004) e Hanss (2003). No mesmo contexto, im-

plementações de softwares comerciais que combinem métodos determińısticos com conjuntos

nebulosos também pode ser considerada uma área a ser explorada. Para casos mais sim-

ples, como os apresentados nesta tese, o uso do método de elemento espectral pode ser uma

execelente alternativa.
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ĝ frequency dependent rod shape functions
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Chapter 1

Introduction and Motivation

Even the most accurate Finite Element (FE) model of a structural dynamic system is just a

representation of a nominal structure. In this context, several similar structures taken out

of the production line will exhibit variations on all of these individual properties and this

dispersion will reflect in the global response of the structure. Small changes in the physical

properties of the structure can directly affect the results, and the prediction error can increase

with frequency (Kompella and Bernhard, 1993).

The above statement summarizes one of the main challenges in adopting numerical models

to cover the full range of structural dynamic analysis response. To date, much research has

been done towards improving the numerical models, hence towards achieving full spectrum

response. However, deterministic models, such as the finite element (FE) and the boundary

element (BE) methods, have limitations at higher frequencies due to the necessity of refining

the mesh, whereas analytical methods, such as the spectral element (SEM) are less sensitive

to the higher wave-numbers.

In terms of wavelength, it is well known that to achieve sufficient agreement between

numerical and analytical solutions, 6 to 10 linear elements per wavelength are necessary to

keep the prediction error within acceptable limits (Desmet, 2002). Experience shows that, as

the frequency range increases, the structure becomes very sensitive to small uncertainties in

material properties and geometrical details. Additionally, the high order modes of vibration

also tend to have more complex spatial fluctuations. As a result, the size of the finite element

model increases with frequency (Shorter, 1998). Therefore, in terms of a frequency response

function (FRF), the response of the structure is not adequately predicted, and it is more

convenient to predict the frequency averaged response in terms of the energy (Lyon and
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DeJong, 1995).

In order to address the limitation described above, probabilistic techniques have been

proposed. In this case, the Statistical Energy Analysis (SEA) has been considered the most

applicable modelling strategy (Lyon and DeJong, 1995). SEA is a procedure for calculating

the flow and storage of dynamical energy in complex systems. It is a sub-structuring technique

where the response in each subsystem is the space averaged, mean-squared vibration (or

sound pressure) level within a given frequency band. In this methodology, the main focus is

to describe the dynamic response in terms of the space averaged energy response levels for

each subsystem. As it is normally the case when such assumptions are made, the accuracy

of the model response depends on the validity of these assumptions. For instance, a simple

look at one of the main assumptions in SEA, i.e., high modal density in the frequency range

of interest, leads to the result that, at lower frequencies ranges, the accuracy of the SEA

becomes questionable (Desmet, 2002).

Considering the above, it appears that there is a gap in the mid-frequency range, above

the range of applicability of deterministic methods and below the frequency range where SEA

is applicable. Research is under way to try to address this problem. Many papers have been

published combining deterministic and statistical methodology. In this context, four different

methods have emerged: the Energy Influence Coefficient (EIC), also called the Energy Flow

Method, the Virtual/Experimental SEA, the Hybrid FEA/SEA and the Wave Based Method

(WBM). There are, however, disadvantages that restrict the applicability of the methodologies

proposed above. See, for instance, (Zhang et al. (2003), Gagliardini et al. (2003), Langley

and Bremner (1999), Desmet (2002)).

To overcome some of the above drawbacks, the present work proposes a Spectral Element

Method (SEM) combined with fuzzy set based methods, in order to address the frequency re-

sponse function envelopes in the mid-frequency range applied to dynamic structural problems.

See for instance Nunes et al. (2004ab).

1.1 Alternatives based on the FE method

This section intends to present some relevant aspects and possible improvements achieved

with FE modelling methods. According to Zienkiewicz (2000), the short wavelength dynamic

problems are among the currently unsolved problems of the FE method, which means the FE

dynamic analysis is restricted in practice to low frequency applications (Desmet, 2002).
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Considering the limitations of the FE method, other alternatives to the conventional

FE method have been proposed. In what follows, some important aspects of the dynamic

model reduction technique, the hierarchical FE, and the sub-structuring method, with special

attention to the Component Mode Synthesis (CMS), are discussed. In addition, the Monte

Carlo simulation is also presented.

1.1.1 Dynamic reduction

In several practical engineering problems, dynamic reduction can be considered an option

to reduce the number of degrees of freedom (DOF) in a dynamic model. Broadly speaking,

the main idea is to work with small matrices, where the original dynamic characteristic of the

model is maintained.

Basically, two methodologies dominate: the static condensation and the generalized dy-

namic reduction. The first one is also called the Guyan Reduction approach, which considers

a partition of the global DOF into master and slave DOF (Bathe, 1996). The procedure is

done defining two sets which contain master and slave DOF, respectively. In this case, a set

defined as master DOF is retained and the remaining set which contains the slave DOF is

removed by using condensation process. In such a case, during the condensation, only stiff-

ness properties are taken into account; inertia coupling of master and slave nodes are simply

ignored. Following that, the eigenvalue problem can be solved considering the master DOF

by adopting a coordinate transformation (Bathe, 1996).

In comparison to the Guyan reduction, the generalized dynamic reduction can be shown

to be more accurate, which can be explained by the fact that dynamic effects are taken

into account during the transformation process, i.e., by using the coordinate transformation

(Bathe, 1996).

1.1.2 Hierarquical FE

To improve the accuracy of the FE method, adaptive strategies, such as the h-, p- and hp-

method have been proposed.

In the h-version, the method is applied to refine the mesh of the FE model. This case,

which has been implemented in many commercial FE codes, the convergence is achieved

by adopting small elements, which increase the mesh refinement. This version is based on

elements with low-order polynomials that can be used to describe the displacement field
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(Zienkiewicz and Taylor, 1989). According to Babuska et al. (1981) and Zienkiewicz et al.

(1983), the h-version is appropriate for treating problems in the low frequency range, however

less so for medium and high frequencies.

In order to address the limitation of the h-version, the p-version of the FE has been

proposed. See for instance: Meirovitch and Baruh (1983), Babuska et al. (1981), Zienkiewicz

et al. (1983). The idea is to increase the order of the polynomial shape functions considering

a fixed mesh. According to Zienkiewicz and Taylor (1989), the p-version converges more

rapidly per DOF introduced.

Nowadays, the h and p-versions have also been applied simultaneously to increase the

frequency range of FE analysis. The method, called hp-version of the FE is constructed

based on higher order finite elements and refined meshes to address the dynamic response for

higher frequency application (Langley and Bardell, 1998).

Behind the idea of the hierarchical methods or adaptive strategies is the ability to achieve

the optimal polynomial function order for each element within the mesh. Nevertheless, in

most cases, polynomial functions are ill-conditioned. West et al. (1997) concluded that in h-p

applications, one has to restrict the degree of polynomial enrichment to: (1) 24 or less in 1-D

applications, (2) 14 or less in 2-D applications, and (3) 8 or less in 3-D applications. In this

case, the p-version application is drastically limited. In order to address this problem, Leung

and Chan (1998) have suggested the use of products of polynomials and Fourier series, instead

of polynomials alone in the p-version. In that work, the Fourier p-element shape functions

are applied to the analysis of beams and plates and the limitation observed in the p-version

with the polynomial functions is overcome.

In addition, there are several works with application of the h- and hp methods to address

the acoustic Helmholtz problems. The adaptive techniques might be also applied with high

computational efficiency to more challenging problems, such as those involving fluid/structure

coupling. However, according to a recent review by Desmet (2002), there has not yet been

an application to industrial problems.

1.1.3 Component Mode Synthesis (CMS)

Consider now a large system to be analyzed with an FE dynamic analysis. One alternative

to solve the FE dynamic problem is to split up the global system into small additional sub-

systems, and to perform local analyses on those components or subsystems, which represent
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the global system as whole. Such a procedure is called Component Mode Synthesis, and can

be adopted in FE analysis to reduce the size of a model (Craig, 1995).

The Component Mode Synthesis (CMS) was introduced by Hurty in 1965. The idea

behind this method is to adopt individual substructures to describe the global behavior of a

structure. In such an approach, the size of the global model can be drastically reduced in

performing the structural dynamic FE analysis. The synthesis of the model as a whole is

carried out by imposing continuity of co-ordinates at interfaces nodes.

In order to perform the synthesis of a model, two basic methods have been proposed: the

fixed-interface methods and the free-interface component mode methods (Craig, 1995).

In the fixed-interface methods, which adopt normal modes of the components with fixed

boundary conditions at interfaces nodes, a general improvement of the characteristics of con-

vergence can be achieved. This can be done by using constraint modes, which are defined as

the shapes of the deformed substructure when a unit displacement is applied to each interface

DOF with the other interface DOF fixed (Craig and Bampton, 1968).

In the free-interface mode method the modal basis must be enriched with the so-called

attachment modes. This approach is used only when experimentally obtained modes are used

in the synthesis. Otherwise, in most FE modelling applications, including commercial codes,

the fixed-interface methods are preferred (Craig, 2000).

1.1.4 Monte-Carlo Simulation

Even considering the possibility of extending the frequency range of application of the

FE methods, the computational time becomes in most cases prohibitive. Moreover, the

wavelength of interest becomes smaller, which leads to the model becoming very sensitive to

small perturbations in the properties. This is one of the main problems in the deterministic

methods. Such a problem is concerned with the uncertainties in the properties of the system,

which are not taken into account in FE deterministic modelling.

In practical engineering problems, most real models possess some kind of uncertainty, such

as in domain geometry, material properties or even loads which are not known for certain. In

fact, another possibility is that uncertainty can also be considered due to a lack of knowledge.

The amount of research in this area and also the interest in new methodologies has been

increased. One possibility is to adopt updating techniques, where a conventional FE model

is used with measurement data. In such an approach, the FE models are compared with
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experimental data and the simulation results must be matched to the measurements. This

technique allows to increase the accuracy of the FE prediction with respect to one particular

realization of the structure, but does not improve the representation of the statistics of the

predicted response (Shorter, 1998).

Another possible way to describe the uncertainty parameters may through the use of

approximate methods. For instance, in a Monte-Carlo simulation, the global structure is

described in terms of sample individual structures, which can be used to achieve the sta-

tistical information responses. Monte Carlo simulation is considered a stochastic technique,

when used to solve mathematical problems in general. The word stochastic means that it

uses random numbers and probability statistics to obtain results. Monte Carlo methods were

originally developed for the Manhattan Project during World War II. However, this tech-

nique has found application in many fields, such as stock market, forecasting, biology, etc.

Regarding the name Monte Carlo, it originated from the city Monte Carlo in Monaco, whose

main attractions are casinos and gambling. In a fashion similar to gambling, Monte Carlo

simulations use a random selection process which is repeated many times to create multiple

scenarios for the proposed problem. Each time a value is randomly selected, it forms one

possible scenario and solution to the problem. Taking all scenarios together gives a range of

possible solutions, some of which are more probable, and others less so. It is clear that for

many scenarios, say 10, 000 or more, the average solution will give an approximate answer

to the problem. Naturally, to improve the accuracy of this answer, more scenarios should be

used.

In terms of practical application, unfortunately, due to the number of members to be

sampled and the number of samples to perform the statistical responses, the use of the Monte

Carlo approach can be prohibitive. For more details on Monte Carlo simulation, please refer

to Huber (1999) and Klieber and Hien (1992).

Thus, the Monte Carlo approach is usually associated with methods to reduce the compu-

tational burden of the FE dynamic model, such as model reduction methods and the response

surface methods.
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1.2 SEA Method

Before developing deeper into the medium frequency review, an introduction to the Sta-

tistical Energy Analysis (SEA) will be given. Following that, some important developments

achieved for mid-frequency range application is presented.

1.2.1 Statistical Energy Analysis (SEA)

Statistical Energy Analysis (SEA) is a technique that is suited for the study of sound and

vibration transmission through complex structures at high frequency range. SEA has been

proposed to address the limitations of deterministic approaches, such as FE, which in the high

frequency range becomes very sensitivity to small changes in the structural model. On the

other hand, the number of DOFs required to describe the high frequency behavior becomes

excessive in terms of computational resources and computing power.

In the SEA application, in contrast to deterministic approaches, the average value of an

energy response over the frequency band is the main issue. In this case, the description

is statistical, which means that the systems being studied are presumed to be drawn from

populations of similar design construction having known distributions of their dynamical

parameters (Lyon and DeJong, 1995).

SEA is a procedure for calculating the flow and storage of dynamical energy in complex

systems. It is a sub-structuring technique where the response in each subsystem is the space

averaged energy, mean-squared vibration (or sound pressure) level within a given frequency

band.

In the SEA methodology, a system is subdivided into subsystems where the main attempt

is made to predict the time and space average energy within a subsystem. The idea is to

estimate the power in each subsystem by taking into account the input power acting on each

subsystem and the coupling power which flow from one subsystem to another (Mace, 1993).

This fact leads to a power balance equation, which is the basic fundamental equation of SEA,

defined as

P i
in = P i

diss + P i
coup (1.1)

where P i
in is the input power from external loading to the system i, P i

diss is the dissipated

power, due, for instance, to internal damping, radiation, etc and the P i
coup is the coupling
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power flowing from subsystem i to all the other connected subsystems.

The dissipated power can be related to the subsystem energies Ei by considering the

following expression

P i
diss = ∆i

pEi (1.2)

where ∆i
p is the average half-power bandwidth of the modes of subsystem i.

As described above, the primary interest in the SEA method is to assess the ensemble

energy response, which can be done by averaging across the ensemble as follows

〈P i
in〉 = 〈P i

diss〉 + 〈P i
coup〉 (1.3)

The symbol 〈 〉 indicates the ensemble average, which means the variable is an appropriate

representation of the ensemble member. Now, considering that ∆i
p is constant across the

ensemble leads to

〈Ei〉 = (〈P i
in〉 − 〈P i

coup〉)/∆i
p (1.4)

According to Eq.(1.4) the main problem is to assess the coupling powers. However, there

are several assumptions which are generally made in the development of SEA models. One

of them is that the ensemble average coupling energy flow from subsystem i to subsystem j

is related to the ensemble average subsystem energies by (Mace, 1993)

〈P ij〉 = ωηij{〈Ei〉 −
ni

nj

〈Ej〉} (1.5)

where ηij is the Coupling Loss Factor (CLF), and is defined as a constant independent of

the levels of the excitation applied to the individual subsystems. Also, the following terms,

defined as ni and nj, are respectively the asymptotic modal densities of the subsystems and

ω is the central frequency band of the problem considered. According to SEA assumptions,

the coupling power between subsystems i and j is proportional to the difference in the average

modal energies of subsystems i and j, which leads equation (1.5) to be rewritten as follows

P ij = ωniηij

(
Ei

ni
− Ej

nj

)
(1.6)

The assumption of proportional coupling power has been discussed in several papers,

which is known to be exact for two coupled oscillators, as described by Lyon and Maidanik
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(1962) and also considering broadband excitation described by Lyon and Eicher (1964). In

addition, Scharton et al. (1968) presented the power flow sharing in random vibration. In

that work, they show that the coupling power proportionality between two oscillators holds

for any strength of coupling, considering the energy of the oscillator system. Other works have

shown that coupling power proportionality holds for general dynamic systems provided weak

coupling is considered (Langley (1989), Langley (1990)). In this context, other alternatives

have been proposed in the literature for estimating coupling loss factors, such as the wave

approach in which the effects of reflections are not considered (Mace (1992), Mace (1994)).

Several authors have proposed the use of FE to assess the coupling loss factor, which in this

sense leads to a new approach called FEA/SEA methodology. This approach will be discussed

in the next section.

In addition to SEA assumptions, it is assumed that the input power spectra are broadband,

which means that there are no strong pure tones in the input spectra. In this sense, white

noise excitation uniformly distributed spatially over the structure surface is adopted, the so

called rain-on-the-roof excitation. Another hypothesis is that the Damping Loss Factor (DLF)

is equally distributed for all modes within a subsystem and in the frequency band proposed.

The SEA method assumes that energy is not created in the coupling between subsystems.

Energy can be dissipated in junctions between subsystems, such as in isolation mounts. The

SEA method considers that the effect of isolation is generally added to subsystem DLF. Modes

within a subsystem do not interact except to share an equipartition of energy.

Following the original idea proposed by Lyon and Madanik (1962), much research has been

done in this area to improve the conventional SEA, as well as to address the main limitations

of this methodology. Additional information can be found, for example, in (Fahy, 1994) and

(Fahy, 1993), where a critical overview of the limits of SEA following the assumptions used

to derive the power balance is presented.

In this context, there are several areas where SEA should be improved, such as application

to the strong coupling instead of just weak coupling system application, non-conservative

coupling, the applicability of SEA to the low frequency range and also to address correctly

the mid frequency range, where SEA assumptions are not well fulfilled.

In addition, however, in the same context, Langley and Cotoni (2003), Langley et al.

(2003), Langley and Brown (2002) presented a method to predict the variance of the energy

levels in built-up systems. The idea is to predict not only the mean energy of each subsystem,
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but also the higher order statistics, such as the variance. In both works, expressions for

predicting the variance of energy levels in a built-up system are presented. Additionally,

Lyon and DeJong (1995) in a previous work, have also discussed this possibility for built-up

systems.

1.3 Developments in the Mid-Frequency Range

In this section, some recent developments achieved in the mid-frequency range are dis-

cussed. Considering the discussion from the former sections, one can note that the Statistical

Energy Analysis has been established as a powerful technique for addressing dynamic prob-

lems in the high frequency range. The Finite Element Analysis (FEA) has been considered as

a standard methodology to assess problems in the low-frequency range. Both techniques work

well in their respective frequency ranges. It has also been pointed out the former sections that

to extend the applicability of SEA and FEA methods, i.e., SEA for low and mid-frequency

ranges and FEA for mid-high frequencies, some theoretical and numerical restrictions are

found.

To address some of these limitations, in this section four separate methods have been

chosen for review: the Virtual/Experimental SEA, the Energy Influence Coefficient (EIC),

the FE/SEA Hybrid and the Wave Based Method (WBM).

1.3.1 Virtual/Experimental SEA

In the proposed Virtual/Experimental SEA, the FE model is adopted to predict the CLFs

instead of using experimental measurements. In this approach, the Frequency Response

Functions (FRF) are computed for a very fine FE structural model to allow the FE to be

applied to the medium frequency range.

In this methodology, the first question that arises is why one should not apply directly the

FE analysis to assess the full spectrum dynamic response. First of all, in a realistic structure,

the responses in the medium and high frequency range are very sensitive to the physical

material uncertainties. (See for example the Monte-Carlo simulation described in a previous

section). Secondly, to assess the response of such structure in the medium and high frequency

ranges, the energy response is a more convenient way to understand the structure-borne
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problem. In this regard, as described in Lyon and DeJong (1995), the computer programs

used to evaluate mode shapes and frequencies directly are known to be inaccurate for higher

order modes.

The concepts of the Virtual/Experimental SEA was applied recently to the floor of a

minivan, where an automatic sub-structuring process was proposed to optimize the model

identification (Gagliardini et al., 2003). In their work, computed energetic transfer functions

based on an FE model are compared with measurement data. Very similar results are found

for the structure proposed, which is represented by four sub-systems (Gagliardini et al., 2003).

To find the energetic transfer functions, uniform structural damping is taken into account in

the FE model, which for a SEA model the definition is applied as a Damping Loss Factor

(DLF). Additionally, they also propose that the squared transfer function due to the variance

among input power is considered small, which in practical terms, means more information

about the dynamic behavior of the structure response (Gagliardini et al., 2003).

Going further, they also proposed an automatic sub-structuring process, where after all

energetic transfer mobility functions have been performed, the size of the database is com-

pressed to add in the SEA model. The next step involves an inverse SEA process, which makes

use of the sub-systems defined in a substructure process and SEA parameters identified. The

CLFs are found considering a balance of energy for a unit power.

In contrast to traditional Experimental SEA, in the Virtual/SEA, an equivalent mass is

adopted before the computation of the CLFs is carried out. During this process, some values

of the CLFs can be identified negative. In practical terms, it is indicate that the coupling

sub-systems estimated is not physical. Alternatives to address this problem have also been

proposed, considering a least square problem with multiple excitation points defined in a

structure (Gagliardini et al., 2003).

One of the main disadvantages of this technique is related to the strong coupling, which is

not considered in this approach. In terms of computational time, many commercially avail-

able codes provide efficient schemes for improving the solution of the FE analysis. See for in-

stance, the Automatic Component Mode Synthesis (ACMS) available in the MSC.NASTRAN

(2004ab).
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1.3.2 Energy Influence Coefficient (EIC)

The Energy Influence Coefficient (EIC) method has been proposed for dynamic structural

analysis in the mid and high frequency range. The theory is based on the power injection

method, in which the structure is discretised into a number of subsystems. The energy

response is performed considering spatially incoherent rain-on-the-roof excitation, e.g., spa-

tially uniform distributed white noise is applied. The methodology described is also called

the Energy Flow Method, perhaps a more common name adopted in the literature. See for

instance, Mace and Shorter (2000). Basically, the main difference between the EIC and the

Virtual/Experimental SEA is that the EIC is based on exact expressions for the energies and

input powers, instead of estimating them using Frequency Response Functions (FRFs).

In terms of mathematical description, the linear system can be described as

E = APin (1.7)

where E is described as a vector of subsystem energies, i.e., the potential and kinetic energies

of various responding subsystems, Pin is a vector of input powers, and the matrix A represent

the energy influence coefficients (Mace and Shorter (2000)).

Eq.(1.7) can be written in inverse form, which leads to

Pin = HE (1.8)

where in this case H = A−1. In the EIC method, the matrix A is assumed to be defined; if

A is a singular matrix, then H is undefined. In this case the response becomes independent

of the particular subsystem to which the power is applied and the energy is equipartitioned

(Shorter, 1998).

Considering that the matrix A is defined, as well as conservation of energy, the input

power can be written as sum of the dissipated and coupling powers, which leads to

Pin = Pdiss + Pcoup (1.9)

where Pdiss and Pcoup are, respectively, vectors which represent the dissipated and coupling

power for each subsystem.

Assuming next that the system to be analyzed is lightly damped and the potential and

kinetic energies are equal, and the coupling is also conservative, the following expressions can
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be defined according to Lyon and DeJong (1995)

Pdiss = ωηE (1.10)

Pcoup = [H − ωη]E (1.11)

The net coupling power can be treated as a linear combination of the subsystems energies,

which can be defined as

Pcoup =
∑

j 6=i

P ij (1.12)

where P ij defines the coupling power between subsystem i and j. Eq.(1.12) enables the CLFs

(Coupling Loss Factors) to be determined in terms of subsystem energies.

Recently, this method was proposed and implemented in a commercial code MSC Nastran

(Zhang et al., 2003). The description of this implementation and some details concerning the

bulk data cards and additional case control cards are also discussed in Zhang et al. (2003).

One important point to add is that the EIC is currently restricted to groups of plate and shell

elements, and is also computationally expensive for large models. Another inherent problem

is that the method requires that the entire matrix of CLFs be performed as a new design is

proposed, which is unfeasible for some applications.

With regard to advantages and disadvantages of the EIC, two main concerns can be

addressed. The first is that the EIC does not provide any kind of sub-structuring process,

which is considered one of the most critical points to identify a SEA model. Second, the EIC

technique provides an exact value of energy into the subsystems, i.e., it does not take into

account uncertainties in the properties, which can be also considered as a deterministic one.

1.3.3 FEA/SEA Hybrid Method

The equations of motion for the discrete multi-degree-of-freedom (MDOF) model of a con-

tinuous system formulated using Lagrange-Rayleigh-Ritz theory are now considered (Meirovitch,

1986). In this approach, the response can be expressed in terms of a complete set of

admissible functions. The continuous systems can be generated in terms of shape func-

tions Ψ(x) = (Ψ1, Ψ2, . . . , ΨN), x = (x1, x2, x3) and generated coordinate expressed by
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q(t) = (q1, q2 . . . , qN)T , which in terms of the displacement field u(x, t) = (u1, u2, u3) is then

written in the following form

u(x, t) =
N∑

n=1

qn(t)Ψn(x) (1.13)

It is well know that, the equations of motion applied to Lagrange’s equation which govern

the amplitude q is expressed in the form

Mq̈(t) + Cq̇(t) + Kq(t) = F (t) (1.14)

where M , C, and K are the mass, damping and stiffness matrices, and the vector F contains

the generalized forces. In this approach, the mass, damping and stiffness matrices are deter-

mined as a function of the shape functions, which are based on a variational formulation of

the governing partial differential equation. Additionally, the mass and the stiffness matrices

are assumed to be positive definite, the damping matrix is symmetric, i.e., M = MT , K = KT

and also C = CT .

In terms of the frequency domain solution, applying a Fourier transform, the following

expression can be expressed

DQ = F (1.15)

D = −ω2M + iωC + K (1.16)

where D is the dynamic stiffness matrix of the system and Q and F the respectively Fourier

transform of q(t) and f(t). In general, the basic formulation described above is adopted in

FE to predict the modal parameters, described in terms of eigenfrequencies and eigenmodes

or mode shapes.

As described in former sections, it is well know that FE is able to predict structural

response of a model in the low frequency range. However, in the high frequencies, some errors

can be expected compared to measurement of a real structure data. One of the expected

errors is caused by uncertainties present in the physical material properties, which in terms of

FE response functions becomes very sensitive as the frequency range increases. On the other

hand, another distinction can be made between modal responses, which can be performed with

sufficient accuracy and others that cannot be accurately predicted (Langley and Bremner,
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1999). In this context, the equation of motion described can be partitioned into sets which

contain certain and uncertain modes, or, respectively, global and local as shown below

u(x, t) =
Nc∑

j=1

qc
j(t)Ψ

c
j(x) +

Nu∑

j=1

qu
j (t)Ψu

j (x) (1.17)

Eq.(1.17) can be also partitioned as follows

[
Dcc Dcu

Duc Duu

] [
Qc

Qu

]
=

[
F c

F u

]
(1.18)

In a more convenient form, Eq.(1.18) can be rewritten in the following form

(Dcc − DuuD
−1
uu DT

cu)Q
c = F c − DcuD

−1
uu F u (1.19)

DuuQ
u = F u − DT

cuQ
c (1.20)

Following that, the global equation of motion which contain the response of the certain

modes is described by Eq.(1.19) and the response of the uncertain modes is described by

equation Eq.(1.20). The solution of this approach is that equation Eq.(1.19) may be solved

by FEA, while Eq.(1.20) is based on the SEA approach. This approach has been called the

Hybrid FEA/SEA method, which adopts a combination of FE and SEA methodologies in a

rigorous way to describe the full structural dynamic response of a system.

In additional, as described in Eq.(1.19), the dynamic stiffness matrix and global forcing

vector must be modified. FE is adopted to solve the long wavelength global behavior, while

the short wavelength local behavior is modelled statistically using SEA in Eq.(1.20).

Since Langley and Bremner in (1999) proposed this approach, much progress in this area

has been seen, see for instance Shorter and Langley (2004) in a recent work that they demon-

strated some numerical and experimental validation of this method.

In terms of advantages of such a technique, the concept of the hybrid method is based

on the development of junctions which can be used to couple the FE and SEA subsystems.

In terms of a solution of a given structure-borne problem, FE is adopted to model the local

junction details, i.e., only the stiff parts described into the model are taken by account in a

deterministic manner. In terms of computation resource, this can be consider an advantage,

since the short wavelength subsystems are not treated using a FE method.
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Some disadvantages of this methodology are that the approach must be modelled by FE

or SEA subsystems, which for some complex structure models can not be easily established,

or it may difficult to identify the in-plane response for the subsystem. In such cases, one

way out is to model the entire system with FE in order to check the response of the system

modelling. In addition, the proposed method is currently restricted to point and line junctions

between the FE and the SEA subsystems, which in terms of practical application, can be also

considered a limitation as a whole.

1.3.4 Wave Based Method (WBM)

The Wave Based Method (WBM) has been developed in the KULeuven-Noise and Vibra-

tion Research group. In this methodology, an indirect Trefftz approach has been adopted.

The idea is to express the entire domain in terms of a wave function, which represents the

homogeneous solution of the governing dynamic equation (Desmet, 2002). The Trefftz ap-

proach was introduced in 1926 as an alternative to the Rayleigh-Ritz method. In contrast to

FE method that adopts polynomial shape functions for field variable expansion, the Trefftz

method adopts exact solution functions of the governing partial differential equations. For

instance, the Spectral Element Method (SEM) has also been proposed, which combines the

Treffzt and the element method approaches of the FE method (Doyle, 1997).

In this context, Desmet (2002) has developed an alternative method for dynamic analysis

called the Wave Based Method (WBM). The technique proposed, which adopts an indirect Tr-

efftz approach, has been applied for many vibro-acoustic problems; see for instance Hepberger

et al. (2002) and Van Hal et al. (2002).

The use of the WBM has been suggested as an alternative for the FE method, which for

comparison has been shown to convergence better than the FE method. The WBM was also

applied to the mid-frequency range, where better convergence and improvements compared

to the FE method was found (Hepberger et al., 2002).

The main disadvantages of the WBM is that the system matrix cannot be decomposed

in frequency independent matrices due to the implicit frequency dependence of the wave

functions. Also, the fully populated and complex matrix are defined in the entire continuum

domain (Desmet, 2002).

In general, the WBM has been shown to be a promising technique for addressing the prob-

lem in the mid-frequency range. Also, some hybrid alternatives using WBM coupled with
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element based models have been proposed (Hal et al., 2004). In this paper, they developed

the so-called hybrid finite element - wave based method (HFE-WBM), which the main idea is

to take the advantages and efficiency of each method. In addition, to show the potential ap-

plicability of the HFE-WBM, they applied such a technique for a test problem comparing the

FEM with the WBM applied separately. Basically, they concluded that, for higher frequency

range, the HFE-WBM is more accurate than FEM. However, due to the irregularity shape of

the cavity proposed, the FEM provides better and more accurate results in the low frequency

range. Therefore, future research in this area should be done to improve the accuracy of the

proposed method as a whole.
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1.4 Thesis Outline

In Chapter 2, methods to address the influence in the uncertain parameters to the dynamic

analysis are discussed. A review of this area is presented for the probabilistic and fuzzy set

based methods. As the main subject of this thesis, special attention is draw to the fuzzy

set based methods. The so-called transformation method is introduced in its original version.

Additionally, some important aspects to be improved with the general transformation method

are discussed.

In Chapter 3, efficient alternatives to be implemented with fuzzy set based methods are

presented, such as the transformation method implemented via multi-dimensional arrays and

avoiding recurring permutations. Likewise, the sparse grids interpolation method is also

suggested as an efficient alternative to be combined with the SEM.

In Chapter 4, the Spectral Element Method (SEM) combined with fuzzy set based methods

is applied for selected test problems. Numerical examples adopting the reduced, general

transformation method avoiding recurring permutations and the sparse grids interpolation

method are treated for the case of two connected rods, as well as for a reinforced plate, which

are compared with Monte Carlo simulation. For SEA applications, numerical tests covering

the SEA coupling loss factors (CLFs) estimation are also proposed.

In Chapter 5, the SEM combined with a fuzzy set based method called general transforma-

tion method avoiding recurring permutations or simply called SEM combined with gtrmrecur

is applied to a typical engineering problem. In this regard, a reinforced plate modelled by

SEM is proposed. One important thing to add is that, due to present development stage of

the SEM, the numerical example suggested here consists only of a simply supported plate

with reinforced beams. The main focus in this chapter is to show that such a method can

be successfully applied for some specific engineering problems, especially during the initial

design phase, where, in general, little information is available.

In Chapter 6, the main conclusions and contribution achieved in this thesis are discussed.

Following that, some additional areas that can be used as future research are proposed.

At the end of this work, to give a review of the SEM, including rod, beam and plate

elements, Appendices A, B, C and D are presented. In this sense, the main advantage of the

SEM and the applicability to the medium frequency range analysis is discussed. Additionally,

examples adopting rod, beam and plate elements are presented and compared with FEM.
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Chapter 2

Dynamic Analysis of Structures for
Design Under Uncertainty

Many alternative methods that address the influence of uncertain parameters in dynamic anal-

ysis have been discussed in literature. In general, probabilistic and fuzzy set based methods

have been suggested. As discussed in the former chapter, one of the main challenges in us-

ing deterministic approaches, such as FE, BE or SE methods, is to consider the influence of

non-deterministic input parameters in the mid- and high-frequency range responses. In this

chapter, a brief review of this area is presented, including the probabilistic and fuzzy set based

methods. Special attention is given to the fuzzy set based method, which is the main focus in

this thesis.

2.1 Introduction

In recent years, an important research effort has been deployed in the mid-frequency

range problem in structural dynamics. In this regard, one of the most important issues

is the numerical simulation of dynamic systems taking into account the influence of non-

deterministic input parameters.

In order to describe how uncertainty can influence the engineering design process, both the

variability of physical artifacts and their interaction with environments have to be taken into

account. Many possible factors can lead to uncertainty, such as variations in the measurement

process, variation in the outer environment, geometrical and material variation of the same

product and so on (Battil et al., 2000).

According to a review paper by Manohar and Gupta (2002), the sources of uncertainties

in dynamic structural engineering problems can be split up into four categories: physical or
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inherent uncertainties, model uncertainties, estimations errors and human errors. Some of

the sources, such as inherent uncertainties, are beyond the control of engineers. With regard

to model uncertainty some assumptions, usually done in the mathematical models based

on simplifying assumptions, also lead to model uncertainty. The study of estimation errors

belongs to the science of statistics, while human errors can arise at any stage of the design

process.

Other authors, such as Keese (2003) summarize that uncertainties can be caused either

by the intrinsic variability of physical quantities such as irregularities in material properties

caused by the manufacturing process or simply by lack of knowledge, which can be called

epistemic uncertainty.

In the context of non-deterministic numerical modelling, different methods using different

approximate models of uncertainties have been proposed to deal with this problem. Basically,

some important methods include worst-case scenario, safety factors, Taguchi methods, prob-

abilistic and fuzzy set based methods. According to Maglaras et al. (1997), the worst-case

scenario concept used to improve safety factors in many cases lead to over design. Also, for

Taguchi methods in general, the concept is to find values of some parameters for which system

performance is close to the target values and is insensitive to uncertainties.

In Maglaras et al. (1997), experimental comparison of probabilistic and fuzzy set based

methods was conducted. They state that a model with uncertainty and enough statistical

information available, is better represented by stochastic description; otherwise fuzzy theory

is better suited.

In terms of stochastic approach, the finite element method for stochastic problems applied

to dynamic analysis is a fast growing area of research. Many authors have discussed such an

application in papers reviews and books, see for instance in (Keese (2003), Elishakoff and Ren

(2003), Ghanem and Spanos (2003), Manohar and Gupta (2002) and Manohar and Ibrahim

(1999)).

In order to give some examples of non-deterministic input parameters, in Marczyk (2004)

some typical values of the coefficient of variation (ν) defined as ν = σ/µ, where σ is the

standard deviation and µ the mean value for aerospace-type materials and loads are presented.

See some examples in Tables 2.1 and 2.2. For instance, the level of scatter for transient loads

can achieve something around 60%, which is not considered in any deterministic approach.

Such an example illustrates how important it is to take into account the influence of uncertain
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parameters during the development process of a new engineering system.

Table 2.1: Coefficient of variation (ν) for same typical aerospace materials
(Marczyk, 2004).

Material Characteristic ν (%)

Metallic Rupture 8 − 15

Metallic Buckling 14

Carbon fiber Rupture 10 − 17

Screw, Rivet, Welding Rupture 8

Bonding Adhesive strength 12 − 16

Bonding Metal/Metal 8 − 13

Honeycomb Tension 16

Honeycomb Shear, compression 10

Honeycomb Face wrinkling 8

Inserts Axial Loading 12

Thermal Protection (QA60) In-plane Tension 12 − 24

Thermal Protection (QA60) In-plane compression 15 − 20

Table 2.2: Coefficient of variation (ν) for same typical aerospace loads (Mar-
czyk, 2004).

Load Type Origin of Results ν (%)

Launch vehicle thrust STS, ARIANE 5

Transient ARIANE 4 60

Thermal Thermal tests 8 − 20

Deployment shocks (solar array) Aerospace tests 10

Thrusts burner Calibration tests 2

Acoustic ARIANE 4 and STS 4 (flights) 30

Vibration Satellite tests 20

In what follows, some important aspects covering probabilistic and fuzzy set methods

are discussed. Thus, in this section, the main idea is to present important aspects of both

methods, showing the advantages and disadvantages of each methodology.

2.2 Probabilistic Methods

2.2.1 General aspects

The idea of probabilistic methods is to include uncertainties of the input parameters in

the analysis. Basically, important aspects as a risk of failure, safety factors or simply targets
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established in the industry are possible examples of the application of probabilistic approach.

In terms of mathematical foundation, the concept of probability is defined as a number

assigned to events of a universal set (Chen, 2000). Probability also satisfies the three axioms

of Kolmogorov, which state that (Papoulis, 1965)

i. The probability of any single event occurring is greater or equal to zero.

ii. The probability of the universal set is one, i.e., in case the universal set includes all

possible outcomes.

iii. The probability of the union of mutually exclusive events is equal to the sum of the

probabilities of these events. This is also called the additivity axiom.

In other words, considering the objective sense, the probability concept is the relative

frequency of occurrence of an event (Siddall, 1983). In this context, one important factor

to add is that to give a confidence interval, probability must be estimated considering a

large number of observations. In this scenario, it is important to stress the quote proposed

by Freudenthal cited in Moens and Vandelpitte (2004) that ” ... ignorance of the cause of

variation does not make such variation random”. Besides that, the concept of probability is

also defined in terms of a subjective view, which in general is called Bayesian interpretation.

The probability concept is then defined as a likelihood that an event will occur (Savage, 1972).

On one hand, it is important to add that with the Bayesian method, it is possible to add

objective information if it becomes available. On the other hand, when no information is

available, the Bayesian approach is just a subjective representation of real-life cases (Moens

and Vandelpitte, 2004).

Going further, in terms of assumptions, one assumption which is very often applied in

probability theory is that variables are uncorrelated. However, this is not true or at least it

cannot be defined when little information is available. This can lead to very inaccurate models

or can be unrealistic in terms of real applications. In the same context, it is important to

add that modelling errors should also be considered in the problem formulation. However, in

general, they are not taken into account. Considering, for instance, an optimization problem,

where little statistical information is available, this can also lead to poor results as a whole.

In addition, in Maglaras et al. (1997), the effect of the choice of probability distribution is

also discussed. According to results presented by Fox and Safie in 1992, it is concluded that

probability of failure is very sensitive to the choice of distribution.
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Therefore, in real life applications, to give all statistical information which is necessary to

satisfy the probability method assumptions is, in general, time consuming or, in most cases,

impracticable.

2.2.2 Probability density function (PDF) and central moments

One important property is used in the context of probabilistic concept, which defines a

probability density function (PDF) f(x) for the probabilistic quantity X considering a domain

of possible values. In this case, for a interval [a, b], the PDF can be defined as follows

P (a ≤ X ≤ b) =

∫ b

a

f(x)dx (2.1)

In terms of mathematical expectation of a function g(X) with respect to f(X), we have

E{g(X)} =

∫ ∞

−∞

g(X)f(x)dx (2.2)

In this regard, the mean value of the distribution f(X) equals E{X}. In addition, the

concept of central moments might also be defined associated with the PDF. The nth central

moment mn is defined from the mean value using the following relation

mn =

∫ ∞

−∞

(x − E{X})nf(x)dx (2.3)

Following that, the second order central moment is defined as the variance of the distribu-

tion simply defined as var(X). The measure for the dispersion of the distribution about the

mean, which is called standard deviation is also defined as σ =
√

var(X). For more insight

into this area, please refer to Miller and Freund (1985).

2.2.3 Variability, uncertainty and error

Recently, Moens and Vandelpitte (2004) presented a survey on the use of non-probabilistic

methods for non-deterministic dynamic FE analysis. In this paper review, they discussed

the main methods available with basic concepts, types of application for imprecisely defined

structures and notably the organization of the terminology to be applied for non-determinist

approaches. According to Oberkampf in 1999, cited in Moens and Vandelpitte (2004), the

term variability, uncertainty and error should be defined as follows
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i. Variability covers the variation which is inherent to the physical system or the environ-

ment under consideration.

ii. Uncertainty is a potential deficiency in any phase of activity of the modelling process

that is due to lack of knowledge.

iii. Error is defined as a recognizable deficiency in any phase of modelling or simulation

that is not due to lack of knowledge.

The reason for presenting the above definitions is to clarify or at least to give some

definition that can be useful to distinguish the probabilistic and non-probabilistic quantities.

In addition, Moens and Vandelpitte (2004) also suggest some extension for the definitions

proposed above, where some correlation between uncertainty and variability can be found.

For instance, for the term variability, when no information on its range or likelihood is missing,

a variability should be subject to lack of knowledge, which means that such a variability is also

an uncertainty. In this regard, they suggest the term uncertain variability. However, assuming

that the likelihood is exactly known, the term certain variability should be used. Another case

is where for some model properties that are implemented as constant deterministic values, a

possible lack of knowledge in the deterministic properties should be considered. This is the

case of model properties that are difficult to model, e.g. damping, loads and so on. For those

model properties, the concept of invariable uncertainty is defined.

Going further, the main question that arises is which method is in general recommended

to deal with engineering problems for designing under uncertainty. In Maglaras et al. (1997),

a review comparing fuzzy set based methods and probabilistic methods were presented. Al-

though this review was focused in the last decade, the answer to the question on how to treat

non-deterministic input parameters still remains unclear.

Today, there is a consensus that in the presence of statistical information about the random

variables, probability methods are better suited. On the other hand, i.e., if little information

is available, which is usually true for most realistic engineering problems, it would be better to

adopt possibility theory based on fuzzy set methods. The author agrees with the statements

above, especially in the case of engineering applications considering the initial design phase.

Additionally, Moens and Vandelpitte (2004) also suggested that fuzzy set theory is well suited

for the initial phase of a project. When more information becomes available, which is usually

the case of a project in industry, probability methods are recommended.
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In this thesis, instead of applying the probabilistic approach, the possibility theory based

on the Zadeh’s (1965) extension principle will be the focus. For a comparison of probabilis-

tic and fuzzy set approaches with numerical and experimental results, please refer to Chen

(2000) and Maglaras et al. (1997). Also, for a comparison of probabilistic and deterministic

approaches for optimization process, refer to Ponslet (1995).

In what follows, fuzzy set based method will be introduced covering important aspects of

fuzzy arithmetic concepts including some discussion about interval and fuzzy set as a whole.

By doing so, in the context of fuzzy set based method, the transformation method proposed

by Hanss (2002b) is reviewed and suggested to be combined with SEM.

2.3 Fuzzy Set Based Methods

2.3.1 Standard fuzzy arithmetic

Fuzzy arithmetic has been proposed in the literature as a methodology that can be very

helpful to analyze systems with respect to uncertain model parameters. The concept of fuzzy

has been developed to deal with imprecision and also what is called verbal information. In the

context of engineering applications, a fuzzy model adopted for a dynamic problem can help

in determining the range of results or simply intervals of confidence, considering a variability

of materials, geometrical dimensions, manufacturing process and so on.

Going one step further, Zadeh’s extension principle provides the fundamental basis of

fuzzy arithmetic. He states that real valued functions can be extended to functions of fuzzy

numbers (Zadeh, 1965). In this concept, also a fuzzy set can be defined as a class with a

continuum of grades of membership. This is the case that an element belongs to a fuzzy set

to a certain degree.

The main idea behind the concept of the fuzzy set is to model uncertainty considering

subjective information or simply vagueness. In terms of practical applications, the fuzzy

arithmetic based on Zadeh’s extension principle, such as LR-fuzzy numbers according to

Dubois and Prade (1980) and the standard fuzzy arithmetic described in Kaufmann and

Gupta (1991), lead to a serious drawback. Such effect is well known in interval arithmetic as

the effect of overestimation or simply defined as dependency effect. In Hanss (2002b) the effect

of overestimation is discussed and simple examples are treated to show the major drawback

in applying standard fuzzy arithmetic.
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In order to address the limitation described above, other alternatives in the literature

have been proposed. In this context, algorithms for fuzzy arithmetic based on interval-based

branch-and-bounds codes according to Hansen (1992) and point-based methods or just called

constrained fuzzy arithmetic, such as proposed by Hanss (2002b), Dong and Wong (1987),

Dong and Shah (1987) have been suggested.

In this thesis, the transformation method proposed by Hanss (2002b) will be the main

focus. By doing so, in the next section, before presenting the main concepts of the pro-

posed method, implementations for fuzzy numbers are introduced, which include the LR- and

discretized approaches.

2.4 Fuzzy Numbers Implementation

According to Hanss and Willner (1999), the following requirements for fuzzy numbers must

be filled out to represent the uncertain model parameters: representation of fuzzy numbers

with arbitrarily shaped membership functions. In this case, special attention must be given

to the set of fuzzy numbers with representation from measured data. The second requirement

is to avoid any loss of information in the uncertainty and to allow a practical realization of

arithmetical operations between fuzzy numbers.

In this context, the concept of implementing fuzzy numbers is represented using LR-fuzzy

numbers and, in a more appropriate way, using discretized fuzzy numbers.

In what follows, the LR- and discretized fuzzy numbers are discussed in more detail.

2.4.1 LR-fuzzy numbers

Here we define a fuzzy number according to Dubois and Prade (1980), for different types

of fuzzy numbers and definition, please refer to Hanss (2004b).

Assuming the definition proposed by Dubois and Prade (1980), a fuzzy number p̃ is called

LR-fuzzy number if two shape functions L (left) and R (right) with three parameters m̄ ∈ IR,

α ∈ IR+, and β ∈ IR+ exist as follows

∀ x : µp̃(x) =






L( m̄−x
α

) if x < m̄
1 if x = m̄

R(x−m̄
β

) if x > m̄
(2.4)

respectively the following description, m̄ is the modal value or also called the peak value, α

and β are called the left-hand and the right-hand spread parameters.
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In short notation, LR-fuzzy number p can be defined as

p̃ = 〈m̄, α, β〉LR (2.5)

In addition, special cases of LR fuzzy numbers are also used, such as triangular fuzzy

numbers (TFN), in which the shape function is defined as

L(u) = R(u) = max(0, 1 − u) (2.6)

where u = (m̄ − x)/α. We can also define the triangular fuzzy numbers simply as

p̃ = 〈m̄, α, β〉TFN (2.7)

Note that, in the definition above, β = α, which leads to TFN symmetric, otherwise,

semi-symmetric.

Figure 2.1 shows an example of a triangular membership function. According to Moens

and Vandelpitte (2004), in most practical engineering problems, triangular and quasi-Gaussian

membership functions are used to represent fuzzy sets.

✻

✲0

1

3σ−3σ m̄

Figure 2.1: Triangular membership function with standard deviation σ and
mean value m̄.

A Gaussian fuzzy numbers (GFN) is represented as follows

L(u) = R(u) = exp(−1

2
u2) (2.8)

or also

p̃ = 〈m̄, σ, σ〉GFN = 〈m̄, σ〉GFN (2.9)

27



and we can also adopt a quasi-Gaussian fuzzy numbers (QGFN) defined as follows

L(u) = R(u) =

{
exp(−1

2
u2) if | m̄ − x |≤ rσ

0 if | m̄ − x |> rσ
(2.10)

or simply defined as

p̃ = 〈m̄, σ, r〉QGFN (2.11)

For instance, taking a symmetric fuzzy number of a QGFN shape function which is defined

by the membership with r = 3:

µ(x) = e
−

(x − m̄)2

2 σ2 for |x − m̄ | ≤ 3 σ and

µ(x) = 0 for x > m̄ + 3 σ or x < m̄ − 3 σ

(2.12)

where m̄ is the mean value and σ the standard deviation of the Gaussian distribution.

Now consider that a Young’s modulus with a nominal value of E = 2.0× 1011 N/m2 is set

up with a standard deviation of 5%. Assuming the proposed standard deviation and adopting

triangular and quasi-Gaussian membership functions, its approximation can be represented

according to Figures 2.2 (a) and (b).
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Figure 2.2: Triangular (a) and quasi-Gaussian (b) membership functions for

a linear Young’s modulus.

In addition, a closed interval [a, b] and the concept of crisp value number considering

conventional subsets of the universal set Ω are described in the following form
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µ[a,b](x) =

{
1 for a ≤ x ≤ b
0 for all other x

and (2.13)

µc(x) =

{
1 for x = c
0 for all other x

(2.14)

with membership functions µ(x) ∈ [0, 1], and with µ(x) = 1 true only for the single value

x = m̄ (Oexl et al., 2002). See Figure 2.3.

0

1

x

µ(x)

a bc m̄

σ

Figure 2.3: Symmetric fuzzy number of quasi-Gaussian shape expressed by
their membership functions with mean value m̄ and standard
deviation σ, crisp number c and closed interval [a, b].

2.4.2 Discretization of the fuzzy numbers

As discussed above, the concept of LR-fuzzy numbers is not complicated to implement and

does not require complex computation. However, according to Hanss and Willner (1999), it

is unsuitable to treat fuzzy numbers with arbitrary shape.

In this sense, in Hanss (2002b) one alternative is described based on subdividing the axis

for the degree of membership µ into a number of m segments, equally spaced by ∆µ = 1/m.

Such an alternative is based on the practice of sampling analog signals, which consists in

describing the fuzzy number in a discrete form. Moreover, the m + 1 levels of membership µj

for a given α-cut at the level α-level ∈ [0, 1] are then given by

µj =
j

m
, j = 0, 1, . . . ,m (2.15)
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Figure 2.4 shows an implementation of a fuzzy number p̃ using decomposition into intervals

by the discrete fuzzy numbers representation (Hanss, 2002b).
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Figure 2.4: Implementation of a fuzzy number p̃ decomposed into intervals.

One important point to add is that, in the fuzzy application, the intervals of confidence

are called simply α-cuts with the α-level α = j/m ∈ [0, 1]. According to Hanss and Willner

(1999), this discretization is also called in literature as α-cut representation or α-sublevel

technique.

In this case, the fuzzy number to be implemented either using approximation by discrete

number or decomposed into a number of intervals, for instance [aj, bj], aj ≤ bj, j = 0, 1, . . . ,m

given by α-cuts and the α -levels µj.

Additionally, an interesting question in the context of finding an approximation of a fuzzy

number in its discrete solution is how to measure the error of the final result. This question

is discussed in Klimke (2003) based on work of Giachetti (1997a). In that work, they suggest

that the error measure is defined by comparing the approximation and the actual results

separately for the left and right parts of the fuzzy numbers for a given α-level with α ∈ [0, 1].

For instance, taking p̃ defined as the actual result and p̃∗ as the approximation with

[a(α), b(α)] the actual interval and [a
(α)
∗ , b

(α)
∗ ], the approximate interval for a given α-level, the

following absolute error ǫ can be defined as

ǫ
(α)
left = |a(α) − a(α)

∗ | and ǫ
(α)
right = |b(α) − b(α)

∗ | (2.16)
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Following that, the measure suggested above can also be defined as distance to the left

∆
(α)
left = ǫ

(α)
left and distance to the right ∆

(α)
right = ǫ

(α)
right of two intervals of confidence with the

distance given by ∆(α) = ∆
(α)
left + ∆

(α)
right.

In Klimke (2003), the absolute error is defined integrating over all membership levels

α ∈ [0, 1], which leads to the following integral

ǫ =

∫ 1

α=0

∆(α) dα (2.17)

or also defined as

ǫ =

∫ 1

α=0

(|a(α) − a(α)
∗ | + (|b(α) − b(α)

∗ |) dα (2.18)

The relative error is found by dividing the absolute error by the area of fuzzy number, i.e.,

e = ǫ/area(p̃) (2.19)

where

area(p̃) =

∫ 1

α=0

(b(α) − a(α)) dα (2.20)

In addition, the following properties can be defined for the error e

i. e ≥ 0.

ii. (p̃∗ = p̃) −→ e = 0.

iii. For p̃∗ defined as a crisp number with real value p, the peak value of p̃ is equal to p and

e = 1.

2.5 Constrained Fuzzy Arithmetic

The well known overestimation effect in fuzzy arithmetic is discussed in the literature and

different approaches have been proposed. A non-overestimating approach, also called fuzzy

weighted averages (FWA) has been proposed by Dong and Wong (1987) as an alternative to

address this problem. However, in its initial proposal, only monotonic functions with respect

to all of their fuzzy variables were used.
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In Wood et al. (1992), an enhancement is achieved for the case of non-monotonic function

applications. According to Klimke (2003), the proposed algorithm requires an additional

routine that should be used to locate the internal extrema. For such kind of application,

numerical and analytical approaches are used combined with special algorithms that take

into account the non-linear functions as input.

Additionally, a new theoretical framework proposed by Klir (1997) takes into account

dependencies of the fuzzy parameters. Such an approach in literature is called constrained

fuzzy arithmetic.

In this sense, the transformation method is proposed by Hanss (2002b) as a practical ap-

proach to evaluate fuzzy parameterized models in order to avoid any other extra optimization

routine such as suggested by Wood et al. (1992). The transformation method is considered

an advanced approach of the Vertex Method proposed by Dong and Shah (1987).

Thus, in the next section, the transformation method is introduced and the main advan-

tages and disadvantages are discussed.

2.6 Implementation of the Transformation Method

The implementation of fuzzy arithmetic using the transformation method was introduced

by Hanss (2002b). In what follows, some of the main characteristics of this method will be

reviewed. For more detailed explanation about the fundamental ideas of the transformation

method, please refer to a recent book published by Hanss (2004b).

Consider a problem with n independent uncertain parameters, represented by fuzzy num-

bers p̃i, i = 1, 2, . . . , n, each decomposed into a set Pi of m + 1 intervals defined by X
(j)
i with

j = 0, 1, . . . ,m, of the form

Pi =
{

X
(0)
i , X

(1)
i , . . . , X

(m)
i

}
(2.21)

where

X
(j)
i =

[
a

(j)
i , b

(j)
i

]
, a

(j)
i ≤ b

(j)
i , (2.22)

i = 1, 2, . . . , n , j = 0, 1, . . . ,m
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Based on this representation of the fuzzy numbers, the general and reduced transformation

method in its standard form will be introduced according to Hanss (2002b). In what follows,

the same notation proposed by Hanss (2002b) is used to introduce the general transformation

method.

2.6.1 General transformation method

In the proposed transformation method, instead of applying standard interval arithmetic

to the intervals X
(j)
i , i = 1, 2, . . . , n for each level of membership µj, j = 0, 1, . . . ,m, the

intervals are transformed into arrays X̂
(j)
i of the following form (Hanss, 2002b)

X̂
(j)
i =

(m+1−j)i−1(m+1−j)−tuples︷ ︸︸ ︷
(γ

(j)
1,i , γ

(j)
2,i , . . . , γ

(j)
(m+1−j),i, γ

(j)
1,i , γ

(j)
2,i , . . . , γ

(j)
(m+1−j),i) (2.23)

with

γ
(j)
l,i = (c

(j)
l,i , . . . , c

(j)
l,i )

︸ ︷︷ ︸
(m+1−j)n−1 elements

(2.24)

and also

c
(j)
l,i =






a
(j)
i for l = 1 and j = 0, 1, . . . ,m,

1
2
(c

(j+1)
l−1,i + c

(j+1)
l,i ) for l = 2, 3, . . . ,m − j and j = 0, 1, . . . ,m − 2,

b
(j)
i for l = m − j + 1 and j = 0, 1, . . . ,m,

(2.25)

In Figure 2.5, decomposition scheme proposed of the general transformation method is

shown for m = 5 (Hanss, 2003). In this case, addition points within the intervals X
(j)
i , i =

1, 2, . . . ,m − 2 are considered.
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Figure 2.5: Decomposition scheme for the general transformation method
for m = 5.

2.6.2 Reduced transformation method

To reduced form, the transformation method is defined as follows

X̂
(j)
i =

2i−1 pairs︷ ︸︸ ︷
(α

(j)
i , β

(j)
i , α

(j)
i , β

(j)
i , . . . , α

(j)
i , β

(j)
i ) (2.26)

with

α
(j)
i = (a

(j)
i , . . . , a

(j)
i )︸ ︷︷ ︸

2n−i elements

, β
(j)
i = (b

(j)
i , . . . , b

(j)
i )︸ ︷︷ ︸

2n−i elements

(2.27)

where a
(j)
i and b

(j)
i are the lower and upper bounds of the interval at membership level µj for

the i-th uncertain model parameter.

Assuming that the uncertain system response is given by a function F defined as follows

q̃ = F (p̃1, p̃2, . . . , p̃n) (2.28)

its evaluation can be carried out separately at each of the values of the arrays using conven-

tional arithmetic for crisp numbers. If the output q̃ of the system can be expressed in its

decomposed and transformed form by the arrays Ẑ(j), j = 0, 1, . . . ,m, the k-th element kẑ(j)

of the array Ẑ(j) is then given by
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kẑ(j) = F
(

kx̂
(j)
1 , kx̂

(j)
2 , . . . , kx̂(j)

n

)
, (2.29)

k = 1, 2, . . . , 2n ,

where kx̂
(j)
i denotes the k-th element of the array X̂

(j)
i . For a conclusion, the fuzzy-valued

response q̃ of the system can be obtained in its decomposed form

Z(j) =
[
a(j), b(j)

]
, j = 0, 1, . . . ,m , (2.30)

by back-transforming the arrays Ẑ(j) as follows

a(j) = min
k

(
kẑ(j)

)

b(j) = max
k

(
kẑ(j)

) , j = 0, 1, . . . ,m (2.31)

In order to give an interpretation of the transformation scheme, an example for n = 3

uncertain parameters using the reduced transformation method is presented in Hanss (2002b).

In this case, the process can be interpreted as a coordinates of points on the (n−1) dimensional

hypersurfaces of a number of m+1 n-dimensional cuboids according to the membership level.

In addition, one interesting to add is that, for µ = 1, it represents just one single point.

Also, its is important to emphasize that in its reduced form just the 2n vertex points of the

n-dimensional cuboids are considered during the evaluation of the problem.

2.6.3 Applying the general transformation method for a simple one
DOF system

In order to give a simple example adopting the transformation method, we consider a mass-

spring system. In this example, we assume force and structural damping as non-deterministic

input parameters with 20% and 10% standard deviation, respectively. The numerical mean

values used are: k = 1000 N.m−1, m = 1 kg, F = 1 N and internal loss factor η = 0.01.

For the non-deterministic input parameters, quasi-Gaussian shape membership function is

assumed. Figure 2.6 (a) and (b) shown the FRF and a zoom between 4.0 Hz and 6.0 Hz.

Additionally, in Figure 2.7, fuzzy-valued result depending on three different numbers of α-

cuts at 5.25 Hz are shown. Basically, we see that using only 2 α-cuts, the resolution for the

fuzzy-valued is very poor. On the other hand, increasing the number of α-cuts to 5, we found
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a similar convergence using 15 α-cuts. Therefore, in this simple case, we can adopt only 5

α-cuts to assess the envelopes for receptance response.
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Figure 2.6: Envelope FRFs for the one DOF system using the general trans-

formation method. (a) envelope and nominal value, (b) zoom
between 4.0 Hz and 6.0 Hz.
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Figure 2.7: Degree of possibility for different α-cuts at f = 5.25 Hz. 2 α-cuts
(solid), 5 α-cuts (dashed line) and 15 α-cuts (plus sign).

2.6.4 Advantages and disadvantages of the transformation method

In what follows, the main advantages and disadvantages of the transformation method

proposed as a practical implementation of the Zadeh’s (1965) extension principle will be

discussed.
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i. The most important point is that for the transformation method, there is no need to add

any external optimization routine to evaluate fuzzy-parameterized models. In contrast

to the (extension) of the FWA proposed by Wood et al. (1992) for FWA, an additional

routine to locate internal extrema is required.

ii. The process to combine the lower and upper interval bounds, also values described in

the middle, are correctly described, without any ambiguities.

iii. The relative influence of the uncertainty of each parameter on the overall uncertainty of

the model output can be quantified. In addition, it can also be used as an alternative

method to provide a sensitivity analysis. Nevertheless, in case of increasing fuzziness in

the model parameter, the degrees of influence are less reliable (Hanss, 2004a).

iv. The present decomposition scheme for the general transformation method, in certain

applications, produces recurring points which are dependent on the membership func-

tion. This might be a drawback in terms of practical applications, especially for complex

systems that computation time is one of the main issues (Klimke, 2003).

v. Also, a drawback concerning memory allocation must be considered. For instance, in

the reduced transformation method, for each of the n fuzzy input parameters, 8n2n

bytes are required just to allocate the input arrays of the function when using double

precision floating point numbers (Klimke, 2003).

Therefore, instead of adopting the transformation method in its standard form, in the next

chapter, efficient alternatives that have been proposed by Klimke (2003, 2004ab) to improve

some of the limitations discussed above will be addressed.

In this sense, the main idea is to provide an efficient and attractive method to be com-

bined with any other structural dynamics deterministic method, such as the spectral element

method, to address the influence of non-deterministic input parameters in the frequency re-

sponse analysis.
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2.7 Summary

In this Chapter, a review in the field of fuzzy set based methods and some words on

probabilistic methods were presented. In this regard, one important point to emphasize is

that in the case of more statistical information about the random variables, probabilistic

methods are recommended. However, in the opposite side, i.e., little statistical information

about random variables is available, fuzzy set based methods are better suited.

In this thesis, fuzzy set based is the chosen method, where one the main focus is to treat

dynamic problems considering the initial design phase. In this context, the transformation

method proposed by Hanss (2002b) is suggested to be combined with a deterministic method,

which in this thesis, is the spectral element method (See Appendices A, B, C and D). In

addition, the main advantages and disadvantages of the transformation method were pointed

out.

Following this work, in the next chapter, an efficient and alternative proposal to be applied

in the transformation method will be discussed.
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Chapter 3

Efficient Fuzzy Set Based Methods to
be Combined with SEM

In Chapter 2, a brief review of the field of probabilistic and fuzzy set based methods was

presented. Basically, the main idea stressed was that when statistical information about the

random variables is available, probabilistic methods are recommended. However, when little

or no statistical information is available, fuzzy set based methods are better suited. In this

thesis, the transformation method applied in the context of fuzzy set based methods, is used.

In this chapter the main focus is to explore some possible alternative schemes that improve the

original version of the transformation method and also to introduce the sparse grids approach

as an efficient alternative.

3.1 Introduction

The use of fuzzy set methods applied in engineering problems has been extensively discussed

in literature (Hanss (2004ab), Hanss (2002ab), Hanss (1999) and Klimke et al. (2004a)).

Recently, Nunes et al. (2004a) and Arruda et al. (2004) presented the application of

the fuzzy set combined with the spectral element method. In both papers, the standard

transformation method in its reduced form proposed by Hanss (2002b) is applied to estimate

frequency response function envelopes.

In terms of practical applications, however, as discussed in Chapter 2, some improvements

to the transformation method should be done. First, this can be focused in terms of an efficient

implementation of the algorithm, which leads to less computation effort as whole. Second,

the idea also provides a more compact algorithm that can be combined with deterministic

approaches to address typical engineering problems. In this thesis, the spectral element
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method has been chosen as our deterministic method. It is important to keep in mind that

some characteristics described in Chapters 1 and 2 justified such a choice.

Considering the above, the transformation method proposed by Hanss (2002) has been

shown to be a very interesting approach that can be combined with the spectral element

method. Nevertheless, some improvements should be done for a possible, realistic application.

Therefore, in this chapter, some possible improvements to be applied to the transformation

method will be discussed. Following that, a new approach based on a sparse grid interpolation

algorithm is also introduced. This chapter is based on recent works published by Klimke (see

for instance Klimke, 2004b) in the context of algorithm improvement for fuzzy set based

methods application.

3.2 Transformation Method Removing Recurring Points

This section presents alternatives that improve the original version of the transformation

method. Here, the general transformation method that eliminates recurring combinations is

presented. Also, in the same context, Klimke (2003) proposed the use of a multi-dimensional

array, instead of working with the original arrays proposed by Hanss (2002b). However, even

with the multi-dimensional array alternative for the transformation method, there is also a

important drawback that must be considered. For each of the n fuzzy input parameters,

8n2n (reduced) and 8n(m + 1)n (general) bytes are required just to allocate the input arrays

of the function when using double-precision floating point numbers. Therefore, further im-

provements are necessary to give a more efficient and general implementation. For example,

the alternative of removing recurring points is suggested to cover some of the weak points

presented in the transformation method.

In the general transformation method, it has been noted that the interior points of each

fuzzy number interval of a given membership level are subsets of the next, lower level. In

such a case, considering the decomposition scheme proposed in the general transformation

method, it is found that this produces recurring points. Klimke (2003) also observed that

this is a special case, which happens when fuzzy numbers are implemented using a symmetric

triangular membership function. An alternative to remove recurring combinations from the

evaluation procedure is the reuse of inner points described for any α-cut. See for instance

Figure 3.1, where the recurring points are shown in detail.
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Figure 3.1: General transformation method and its recurring points (Klimke,
2003).

In this case, to compute the discretization points, instead of adopting the original Eq. (2.25)

presented in Chapter 2, a new expression for the decomposition scheme is defined

c
(j)
l,i =






a
(j)
i for l = 1 and j = 0, 1, . . . ,m,

c
(j+2)
l−1,i for l = 2, 3, . . . ,m − j and j = 0, 1, . . . ,m − 2,

b
(j)
i for l = m − j + 1 and j = 0, 1, . . . ,m,

(3.1)

On the one hand, it can be found that, in terms of results, using the new step introduced

in the general transformation method, a less accurate result can be found due to a smaller

number of inner points. On the other hand, to avoid such a problem, the number of α-cuts

should be increased to achieve better results.

For instance, as described in Klimke (2003), taking the original form for the general

transformation method (gtrm) with dimension 2, one can say that with 100 α-cuts, a reduction

number of function evaluation of a factor 17.1 is found using the proposed method (avoiding

additional functions evaluations for recurring combinations) called gtrmrecur. For the same

example, taking 10 α-cuts, a factor of 2.1 is found. Therefore, a general conclusion is that,

in the case of large numbers of α-cuts compared with the number of uncertain parameters,

better performance is found with the gtrmrecur. However, it is important to add that, in the

case of less regular distribution of the inner points, results are less accurate. In this case, it

is suggested to increase the number of α-cuts instead of keeping it constant as in the original

version of the transformation method (Klimke, 2003).
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Table 3.1: Comparison of the number of function evaluations in gtrm and in
the gtrmrecur (Klimke, 2003).

α-cuts parameters gtrm gtrmrecur

10 n = 2 385 181

100 n = 2 338350 19801

10 n = 3 3025 1729

100 n = 3 26 Million 2.0 Million

10 n = 5 22085 159049

100 n = 5 172 Billion 20 Billion

From Table 3.1 it can be noted that for a large number of α-cuts in comparison with the

number of uncertain parameters n, the new scheme presents better performance in terms of

functions evaluations.

Additionally, in Klimke (2003) the new scheme with the gtrmrecur is compared to the

original algorithm for some specific test functions, in terms of convergence for three types

of membership functions, the symmetric triangular, the non-symmetric triangular and the

quasi-Gaussian. The results presented in that work show that for the symmetric triangular

fuzzy numbers, the gtrmrecur requires less function evaluations than the original one, i.e, the

gtrm. However, considering the case of small number of α-cuts, the new algorithm presents

no regular distribution for the inner points of the non-symmetric and non-linear membership

functions.

In terms of computation time, the new proposal offers the advantage that just the lowest

α-cut of each part of all permutations is treated with the upper α-cuts defined automatically

(Klimke, 2003).

In Nunes et al. (2004b), the new scheme is compared with the reduced transformation

method rtrm algorithm and the fuzzy arithmetic using sparse grids interpolation for two

test problems, which consist of a coupled rod and a reinforced plate model. Also, the SEM is

combined with a Monte Carlo analysis and compared to the fuzzy set based methods proposed.

In the same context, the fuzzy arithmetic using sparse grids interpolation can also be

considered an attractive approach when combined with the SEM. In the next section, a fuzzy

set method using sparse grids interpolation will be introduced for further applications with

the SEM.
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3.3 Fuzzy Set Method using Sparse Grids Interpolation

Some possible improvements for the general transformation method were discussed in the

former sections. In this section, the sparse grid interpolation approach, which has been the

subject of intensive study by A. Klimke at the University of Stuttgart, Institute of Applied

Analysis and Numerical Simulation, Germany (Klimke, 2004b), will be combined with the

SEM in the context of fuzzy set based methods.

The sparse grid interpolation method is based on previous work by Smolyak (1963). In

this area, most of the important developments are based on numerical data compression

and image processing. Besides that, the sparse grids has also been applied to solve partial

differential equations, which was addressed by Zenger (1991).

The main idea of the method is to compute a sparse grid interpolant of the objective

function with sufficient accuracy for the d-dimensional box Ω0 in Eq. 3.2, using only a small

number of real-valued function evaluations. The number of support nodes of the sparse grid

interpolant grows moderately with increasing problem dimension d (Klimke, 2004b). The

hierarchical structure of the sparse grid interpolation scheme permits a subsequent increase

to the interpolation depth until a sufficient estimated relative or absolute accuracy is reached.

Going further, the interpolant then replaces the objective function in the optimization

problems in Eq. 3.2. The subsequent optimization problems are solved by suitable global

optimization algorithms that take advantage of the known properties of the interpolant as

described in Nunes et al. (2004b).

B̃ = {(y, µB̃(y)) | y ∈ Y }, with

µB̃(y) =

{
sup{α | y ∈ Bα} if y ∈ B0,

0 otherwise,
(3.2)

Bα =
[

min
x∈Ωα

f(x) , max
x∈Ωα

f(x)
]
, 0 ≤ α ≤ 1.

The computational complexity of the sparse grid approach cannot be expressed as simply

as the other methods above, since it depends on the objective function itself. However, in

the case of expensive objective functions, the evaluation of the model at the support nodes of

the interpolant usually governs the overall computation time. Depending on the type of the

sparse grid used, the number of support nodes varies.

From the mathematical point of view, the idea is to interpolate smooth functions with
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f : [0, 1]d → R adopting a finite number of support nodes. Taking the interpolation case for

one-dimensional problems, the following formula can be defined

U i(f) =

mi∑

j=1

ai
j · f(xi

j) (3.3)

with i ∈ N, the basis function ai
j ∈ C ([0, 1]), ai

j(x
i
l) = δj,l, l ∈ N, and the support nodes

xi
j ∈ X i = {xi

1, . . . , x
i
mi
}, xi

k ∈ [0, 1], 1 ≤ k ≤ mi.

In Klimke (2004b), the application for the multivariate case is introduced. In this case, a

tensor product formula can be adopted. However, it requires a very high number of support

nodes. In order to solve this problem, the Smolyak’s algorithm is then applied to reduce the

number of support nodes, with the important property that it maintains the approximation

quality of the interpolation formula. The Smolyak interporlant Aq,d(f) is given by

Aq,d(f) =
∑

|i|≤q

(∆i1 ⊗ . . . ⊗ ∆id)(f) = Aq−1,d(f) +
∑

|i|=q

(∆i1 ⊗ . . . ⊗ ∆id)(f)

︸ ︷︷ ︸
∆Aq,d(f)

(3.4)

where the multi-index i, with |i| = i1 + . . .+ id and i ∈ Nd. The parameter n, with n = q− d,

q ≥ d, q ∈ N indicates the depth of the hierarchical construction. One important thing to add

is that, to assess the term Aq,d, we need just points defined at the sparse grid, which leads to

Hq,d =
⋃

q−d+1≤|i|≤q

(X i1 × . . . × X id) (3.5)

and we might select the sets X i in a way that X i ⊂ X i+1 to provide many recurring points

increasing the parameter q. By doing so, with X0 = ∅, X i
∆ = X i�X i−1, Eq. (3.5) can be

rewrite as

Hq,d = Hq−1,d ∪
⋃

|i|=q

(X i1
∆ × . . . × X id

∆ ) (3.6)

with Hq−d,d = ∅, which is more convenient in case of refinement of the grid with increasing

q. In terms of comparison with the full grid HCC
full,n+d,d, applying the full grid, the number of

points in the sparse grid Hq,d is given by

Hfull,q,d = Xq−d+1 × . . . × Xq−d+1 (3.7)
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It is important to note that the sparse grid interpolation is based on a collection of points

and that a smooth function can be approximated with an interpolation formula. In this

context, different approaches based on sparse grids are needed in order to find a function that

is suitable for the interpolation. In Klimke (2004b), three types of construction have been

suggested: the classical maximum or simply L2-norm-based sparse grid HM , the maximum-

norm-based sparse grid denoted by HNB and the Clenshaw-Curtis denoted by HCC .

The set of support nodes X i for the L2-norm based sparse grid including the boundary

can be defined as follows

mi = 2i + 1,
xi

j = (j − 1)/(mi − 1) for j = 1, . . . ,mi and i ≥ 1

The maximum-norm-based sparse denoted by HNB, which excludes the points on the

boundary is introduced with the following set of support nodes

mi = 2i − 1,
xi

j = j/(mi + 1) for j = 1, . . . ,mi

In the case of the Clenshaw-Curtis type sparse grid with equidistant nodes represented by

HCC , the following description is found in Klimke (2004b)

mi =

{
1 if i = 1
2i−1 + 1 if i > 1

xi
j =

{
(j − 1)/(mi − 1) for j = 1, . . . ,mi if mi > 1
0.5 for j = 1 if mi = 1

In terms of basis functions ai
j, we have the following piecewise linear basis functions

a1
1(x) = 1 for i = 1, and

ai
j(x) =

{
1 − (mi − 1) · |x − xi

j|, if |x − xi
j| < 1

(mi−1)
,

0 otherwise,
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for i > 1 and j = 1, . . . ,mi.

Figure 3.2 shows a 2D example for H3,2 considering the Clenshaw-Curtis type sparse grid

with univariate sets of nodes X i.

∪

|i| = 2

∆H2,2

i1 = 1

i2 = 1

|i| = 3

∪

i1 = 2

i2 = 1

=

H3,2

i1 = 1

i2 = 2

∆H3,2

Figure 3.2: Sparse grid H3,2 construction using Clenshaw-Curtis for 2D case.

In Klimke (2004b), the three sparse grids discussed above are presented with some dis-

cussion on how to evaluate the accuracy of the piecewise interpolation. In that work, he

demonstrated, using simple numerical results, that the Clenshaw-Curtis grids is more attrac-

tive in terms of the grid size. On the other hand, other basis functions have been used, such

as polynomial basis and wavelets (Bungartz and Gribiel, 2004). In order to give an example,

Figure 3.3 shows the grids for HM
7,2, HNB

7,2 and HCC
7,2 in case of a problem with dimension d = 2.

In this figure, it is important to note that the occurrence of the number of grid points increase

for HM , while the HCC presents the lowest number of points.
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Figure 3.3: Comparison for sparse grids: (a) HM
7,2, (b) HNB

7,2 and (c) HCC
7,2 .

In addition, in Table 3.2, the Clenshaw-Curtis type sparse grid is compared with full grid

interpolation, which shows some important advantages of the sparse grids method.

Table 3.2: Comparison of number of grid points for refinement level n = q−d
(Klimke, 2005).

full grid HCC
full,n+d,d sparse grid HCC

n+d,d

n d = 2 d = 4 d = 8 d = 16 d = 2 d = 4 d = 8 d = 16

1 9 81 6581 4.3e7 5 9 17 33

2 25 625 41553 1.5e11 13 41 145 545

3 81 6561 4.3e7 1.9e15 29 137 849 6049

4 289 83521 7.0e9 4.9e19 65 401 3937 51137

5 1089 1.2e6 1.4e12 2.0e24 145 1105 15713 3.5e5

6 4225 1.8e7 3.2e14 1.0e29 321 2561 31745 2.1e6

7 16641 2.8e8 7.7e16 5.9e33 705 7537 1.9e5 1.1e7

In Nunes et al. (2004b), the sparse grid with piecewise multilinear basis functions defined

in Klimke (2004b) is adopted, where the number of function evaluations N is at most

N ≤ 2n+1 · (n + d − 1)!

n!(d − 1)!

where n denotes the depth of the sparse grid, n ∈ N. The interpolant can be made arbitrarily

accurate with increasing n.

According to Klimke (2005) the sparse interpolation has the following important charac-

teristics:

i. Number of support nodes is reduced in comparison to full grid (See Table 3.2);
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ii. Hierarchical structure (In this case, its is important to use this benefit to estimate the

current approximation error);

iii. A special tensor product construction can be used (Smolyak, 1963);

iv. The most important property of the method is that the the asymptotic quadratic error

decay of the full grid interpolation with increasing grid resolution is preserved up to a

logarithmic factor. According to Barthelmann et al. (2000) the order of the interpola-

tion error in the maximum norm is then given by

‖f − Aq,d(f)‖∞ = O(N−2 · (log2N)3·(d−1)) (3.8)

where N denotes the number of sparse grid points of Hq,d.

To give an example of the sparse grids approach, consider a two coupled rod system

modelled via SEM with two non-deterministic input parameters, with nominal values for

Young’s modulus E equal to 2.71 × 109 N/m2 and an internal loss factor η equal to 0.03.

We assume a standard deviation for the parameter E of 10% and for η a value of 30%. In

this example, the idea is to show for one specific frequency, namely at 5.4774 × 103 Hz, the

interpolation surface response considering the range proposed for those uncertain parameters.

Figure 3.4 (a) shows the original surface and Figure 3.4 (b) the surface obtained using the

sparse grid type HCC
7,2 with piecewise linear basis functions. See also Figure 3.3 (c). For more

detail about the two coupled rod set-up, i.e., point forces, material and geometrical details,

please refer to the Chapter 4, where the main results for some test problems using the SEM

and fuzzy set based method are discussed.

For the proposed case, adopting d = 2 with Clenshaw-Curtis type sparse grid, just 321

points were used for the interpolation process showing similar results compared with the

original function.
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Figure 3.4: Sparse grids method: (a) original surface and (b) result using
the interpolation.

3.4 Estimating of Envelopes for FRF using SEM and

Fuzzy Set Based Methods

In this section, the main idea is to present a step-by-step implementation of SEM combined

with fuzzy set based methods in order to obtain an approximate solution of the dynamic

response envelopes. As described in Nunes et al. (2004b), this can be done by a three-step

procedure:

Step 1: Discretization process. First, the objective frequency range [f0, f1] is divided

into s − 1 logarithmically spaced steps, giving s discrete frequencies fi, i = 1, . . . , s. It is

advisable to compute the frequency response function for a crisp set of input parameters first

to select an adequate resolution, i.e., capable of clearly resolving the resonance frequencies.

The d uncertain input parameters p̃1, . . . p̃d are discretized into N discrete parameter vectors

pj, j = 1, . . . , N , pj ∈ Ω0 according to the chosen implementation of the extension principle,

i.e., in this work the transformation and its variants and the sparse grid interpolation method,

and also Ω0 as in Eq. 3.2. In case of the reduced and the general transformation method, N

is determined by the number of α-cuts m chosen for the fuzzy number discretization. For the

sparse grid approach, it requires the interpolation depth parameter n.

Step 2: Model evaluation. In the next step, the FRF(fi,pj) is computed for all s · N
permutations. In this regard, using the MATLAB software, an efficient implementation may

vectorize the calls to the SEM model to treat multiple discrete frequencies, or alternatively,
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several sets of parameter permutations at once.

Step 3: FRF envelope construction. In case of the reduced and the general transfor-

mation method, the resulting discrete frequency responses FRF(fi,pj) can be used directly

to compute an approximate envelope. For each α-cut ∈ [0, 1] (where α must match the

cuts selected for the discretization), that means one can be done as follows FRFα(fi) =
[
FRFα,min(fi), FRFα,max(fi)

]
, with

FRFα,min(fi) = min
pj∈Ωα

FRF(fi,pj) and (3.9)

FRFα,max(fi) = max
pj∈Ωα

FRF(fi,pj). (3.10)

In case of sparse grid-based fuzzy arithmetic, the discrete frequency responses FRF(fi,pj),

i = 1, . . . , s, j = 1, . . . , N , are used to construct s sparse grid interpolants An+d,d(FRF(fi))

that approximate the frequency response function at each discrete frequency fi in the param-

eter domain Ω0. In Klimke (2004a) a detailed description of constructing these sparse grid

interpolants can be found. Then, to obtain the frequency response envelope, a suitable global

optimization algorithm is used to compute, according to

FRFα,min(fi) = min
p∈Ωα

An+d,d(FRF(fi))(p) and (3.11)

FRFα,max(fi) = max
p∈Ωα

An+d,d(FRF(fi))(p). (3.12)

Additionally, any set of α levels can be chosen for the optimization part. For the sparse

grid-based approach, however, it requires more computational effort to compute the envelope

as whole. On the other hand, often much fewer evaluations of the SEM model are required

to compute an accurate approximation of the response envelope. In real world applications,

for more complex, expensive to evaluate models, this can result in enormous time savings.

On important to note is that to obtain plausive results using the sparse grid-based ap-

proach, it is recommended to perform FRF function values in logarithmic scale, i.e., use

log(FRF(fi,pj)) to build the interpolant. This is necessary, since the underlying multilinear

interpolation scheme will produce more appropriate interpolated values.

At the end of the process, the fuzzy-valued frequency response at any given frequency

fi can be composed from the α-level sets FRF(fi)α. Furthermore, the response function

envelopes for a given interval of confidence α are easily obtained by plotting the two curves

of the minimum and the maximum FRF values FRFα,min(fi) and FRFα,max(fi), respectively,

over the frequencies fi, i ∈ [f0, f1]. In practical applications, for instance, the maximum curve
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can be set up as a target or a safety value to be achieved during the development process of

some structural dynamic system.
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3.5 Summary

In this chapter, some alternatives to improve the original version of the transformation

method were presented. Basically, for an efficient implementation of the transformation

method combined with the SEM, the proposed method of considering recurring permuta-

tions (gtrmrecur) with a multi-dimensional array was recommended. Also, the sparse grids

interpolation was introduced. It can be used to reduce the computational effort in computing

real-valued function evaluations in the fuzzy set based methods. At the end of this chapter, a

step-by-step procedure to estimate the envelopes for FRF using the SEM and fuzzy set based

methods was proposed.
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Chapter 4

Numerical Applications using the
SEM Combined with Fuzzy Set Based
Methods

In this Chapter, the spectral element method is combined with a special implementation of

fuzzy arithmetic that avoids the well-know effect of overestimation in interval computations.

In this context, the transformation method and the sparse grid approach combined with fuzzy

sets are proposed. The proposed methods are used to build the envelopes for frequency response

function and the results are compared with Monte Carlo simulation. In addition, the SEM

is combined with a fuzzy set based method to estimate SEA coupling loss factors under the

influence of non-deterministic input parameters.

4.1 Coupled Rods System

In this chapter, numerical examples are proposed in order to show the applicability of the

SEM combined with fuzzy set-based methods. In the Appendices A, B, C and D, the SEM

formulation is presented for rod, beam and plate elements. Also, some numerical examples

using SEM and FEM are discussed.

The first example is the main part of the work proposed by Nunes et al. (2004b), which

investigates a coupled rod system (see Figure 4.1). In this case, it is assumed that there

are two non-deterministic input parameters, the Young’s Modulus E and the loss factor η.

Table 4.1 summarizes the physical properties for rod 1 and rod 2 used in the numerical model

with description of uncertain parameters. In addition, free-free condition was adopted in the

numerical model. In this set-up, one important feature is that rod 2 has a much higher modal

density than rod 1, which, in other words, means that rod 2 acts as fuzzy attachment to
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rod 1 providing additional damping to the modes of rod 1. In additional, as the frequency

increases, the modal overlap of rod 2 exceeds unity and the effect of individual modes is no

longer visible (Langley and Bremner, 1999).

rod 1✲

✛ ✲

P

L1

rod 2

✛ ✲L2

Figure 4.1: Schematic of the coupled rods system.

Table 4.1: Physical and geometrical properties of the coupled rods system.

parameter mean value m̄ standard deviation σ dimension

E1/2 2.71 × 109 10 % m̄ N/m2

ρ1/2 1140 0 kg/m3

η1/2 1.0 × 10−2 10 % m̄ —

A1 1.735 × 10−3 0 m2

A2 1.862 × 10−4 0 m2

L1 0.20 0 m

L2 2.46 0 m

4.2 Plate with Reinforcements

In the second case, also described in Nunes et al. (2004b), a simply supported plate in the

yz-plane and free-free in the xz-plane is adopted. See Figure 4.2. The plate is assumed to

have the following properties described in Table 4.2. The uncertain parameters assumed are

the Young’s modulus E and the thickness h. The FRF deterministic curve is carried out at

the driving point located at position (x, y) = (333.4, 160.0) mm.

0.07 0.18 0.18 0.18 0.07

0.4

0.006

0.004
0.015

x

y

z

Figure 4.2: Schematic diagram of the stiffened plate (units in meters).
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Table 4.2: Physical properties of the plate with non-deterministic input pa-
rameters.

parameter mean value m̄ standard deviation dimension

E 69 × 109 5% N/m2

ρ 2700 0 kg/m3

ν 0.3 0 —

Lx 0.400 0 m

Ly 0.704 0 m

h 0.004 10 % m

4.2.1 Envelopes for FRF: coupled rods system

In this section, we present some results using envelopes for frequency response function

(FRF) variations. Note that the choice of the envelopes for FRF is due to the possibility to

obtain maximum and minimum amplitude values for the dynamic system to be analyzed. In

terms of engineering application, such a choice can be very helpful during design phase.

In order to obtain envelopes for frequency response function variations, the following

methods are combined with SEM: the reduced transformation method (rtrm), the general

transformation method considering recurring permutations (gtrmrecur) and the sparse grid

approach (sparse grids). Also, the SEM is combined with Monte Carlo analysis (SEM/MC)

in order to give a reference value.

In this context, it is important to note that the comparison of each method with the

MC is done using the same deterministic method, i.e., without any other influence. In this

example, the SEM/MC is applied using uniform distribution instead of Gaussian one. Here,

it is important to emphasize that such a choice is based on preliminary tests that indicates

better results using uniform distribution instead of applying Gaussian distribution.

In the first numerical example presented in Fig. 4.3, just rod 1 is presented. In the second,

shown in Fig. 4.4, rods 1 and 2 are presented to form the coupled systems.

In case of SEM combined with fuzzy set based methods, the influence of the number of

α−cuts m is also presented. For the SEM/MC, instead of m, the number of samples N is

used for comparison. Also, for the uncoupled case, a zoom between 7.0 kHz and 8.5 kHz is

presented. For the coupled case, a zoom between 3 kHz and 5 kHz is shown.

In what follows, the results for the uncoupled and coupled cases are presented for the

methods proposed above.
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Figure 4.3: Envelopes for FRF for the uncoupled rod system. (a) MC, (b) rtrm, (c) gtrm-

recur, (d) sparse grid ; (i) full spectrum, (a,ii–iv) zoom for N = 10, 100, 1000,
(b–c,ii–iv) zoom for m = 2, 5, 17 α-cuts, (d,ii–iv) zoom for level n = 1, 3, 5;
(a,v) range of MC results depending on N at f892 = 7796.4 Hz, (b–d,v)
fuzzy-valued result at f892 depending on m,n.
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Figure 4.4: Envelopes for FRF for the coupled rod system. (a) MC, (b) rtrm, (c) gtrm-

recur, (d) sparse grid; (i) full spectrum, (a,ii–iv) zoom for N = 10, 100, 1000,
(b–c,ii–iv) zoom for m = 2, 5, 17 α-cuts, (d,ii–iv) zoom for level n = 1, 3, 5;
(a,v) range of MC results depending on N at f867 = 3986.6 Hz, (b–d,v)
fuzzy-valued result at f867 depending on m,n.
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4.2.2 Envelopes for FRF: plate model

In Fig. 4.5, assuming the same procedure adopted to the rod setup, the results for the plate

model are presented for three different fuzzy set based methods and MC. For each method

proposed, a SEM model is used as a determinist one.

4.2.3 Error plots

In general, the output of the fuzzy set methods are just discrete fuzzy numbers, i.e., a set

of intervals which, in other words, is only an approximation of the exact solution.

In this context, one important thing is to determine a way to measure the error of the

result. According to Giachetti and Young (1997a), error measures were given by comparing

the approximation and the actual result separately for the left and right segment of the fuzzy

numbers for a given α level α ∈ [0, 1].

Here, to conduct an error analysis and to assess the quality of the computed results, the

reference solutions Rmin and Rmax at α = 0 were obtained numerically with a highly accurate

sparse grid interpolant using an interpolation depth of n = 9, which resulted in N = 3329

support nodes per frequency. The maximum error emax and the average error eavg of the

frequency response function envelopes were computed according to the following formulae

emax = maxi=1,...,s

[ ∣∣ FRF0,min(fi) − Rmin(fi)
∣∣ +

∣∣FRF0,max(fi) − Rmax(fi)
∣∣ ]

(4.1)

eavg =
[ s∑

i=1

( ∣∣ FRF0,min(fi) − Rmin(fi)
∣∣ +

∣∣FRF0,max(fi) − Rmax(fi)
∣∣ )]

· s−1 (4.2)

In case of a Monte Carlo analysis (MC), the following number of samples were performed

with N = 10, 100, and 1000. The samples were uniformly distributed in Ω0, generated by the

pseudo-random number generator RAND of Matlab.

To summarize, the error plots are displayed in Fig. 4.6 for the two rod cases and also for

the plate set-up. In addition, a summary for the discretization and accuracy of each method

is displayed in Table 4.3.

In order to obtain more information about the results found, in the next section, a sum-

mary with interpretation of the main results found is presented. The idea is to cover all
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Figure 4.5: Envelopes for FRF for the plate system. (a) MC, (b) rtrm, (c) gtrmrecur,
(d) sparse grid ; (i) full spectrum, (a,ii–iv) zoom for N = 10, 100, 1000, (b–

c,ii–iv) zoom for m = 2, 5, 17 α-cuts, (d,ii–iv) zoom for level n = 1, 3, 5;
(a,v) range of MC results depending on N at f849 = 897.90 Hz, (b–d,v)
fuzzy-valued result at f849 depending on m,n.
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advantages and disadvantages of each method discussed. Therefore, to avoid simple con-

clusions based on just elapsed time, the results will be discussed in terms of performance,

accuracy and scalability.

Table 4.3: Discretization parameters and approximation error for the simu-
lation runs.

uncoupled rod coupled rod plate
method m n N emax eavg emax eavg emax eavg

MC – – 10 4.6 1.3 7.4 0.57 14 3.3
– – 100 0.73 0.15 0.85 0.083 6.5 0.86
– – 1000 0.30 0.037 0.38 0.024 2.3 0.22

rtrm 2 – 5 5.0 0.52 7.0 0.37 14 3.0
5 – 17 1.1 0.11 1.8 0.092 8.6 1.2
17 – 65 0.49 0.054 0.58 0.042 3.9 0.33
33 – 129 0.46 0.051 0.54 0.039 3.8 0.23

gtrmrecur 5 – 41 1.0 0.078 1.6 0.069 5.2 0.56
17 – 545 0.085 0.0076 0.14 0.0068 0.55 0.059
33 – 2113 0.028 0.0026 0.042 0.0023 - -

sparse 21 1 5 5.0 0.56 7.2 0.39 15 3.0
21 3 29 1.0 0.090 1.6 0.082 11 1.0
21 5 145 0.096 0.0089 0.15 0.0080 5.2 0.27
21 6 321 0.027 0.0023 0.036 0.0020 2.1 0.13
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Figure 4.6: Error plots for the SEM combined with fuzzy set based methods and
with MC: (a-b) uncoupled rod (c-d) coupled rod (e-f) plate case.
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4.2.4 Interpretation of the results

Accuracy

All of the deterministic fuzzy set-based methods significantly outperformed the Monte

Carlo analysis in terms of achieved accuracy vs. the number of required function evaluations.

This is no surprise, since unlike in problems such as integration, where pure Monte Carlo

methods provide the attractive convergence order of 1/
√

N due to the central limit theorem

independently of the problem dimension, the convergence order decreases exponentially with

the dimension. We emphasize that the MC method was only used here to verify the correctness

of the fuzzy-set based results.

Both transformation method variants sample the corner points of the domain of the un-

certain parameters, which are the relevant points when monotonicity is present. In proximity

of the resonance frequencies, the response function is non-monotonic, and the sampled in-

ner points become relevant. The reduced transformation method only samples the diagonals

of the parameter domain hypercube, and is thus not guaranteed to converge to the correct

result. This can be observed in the sub-plots (b,ii-iv) of the Figs. 4.3 and 4.4, where the en-

velope curve shows a kink near to the peak, which is not present in case of the other methods

(a,c,d,ii-iv).

The sparse grid-based approach showed mixed results. In the rod case, the performance

was very good. Compared to the general transformation method, a significantly better asymp-

totic convergence rate was achieved (see Fig. 4.6), as was shown to hold in Klimkle (2004b)

for smooth functions. However, for the plate example, the encountered oscillations were to

strong to be correctly resolved by an interpolant with a small number of nodes.

In summary, considering the error plot of Fig. 4.6, we suggest to use the reduced trans-

formation method if only a crude approximation of the envelope is needed. For frequency

response functions that do not exhibit a highly oscillatory behavior in the objective frequency

domain, we suggest to use sparse-grid based approach. Otherwise, the general transformation

method is most suitable.

Performance

In this section, the performance of each method will be discussed. In practice, it is of great

importance to obtain simulation results quickly. We therefore give performance results of the

discussed SEM combined with fuzzy set based methods in the following. All numerical tests
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were carried out using Matlab V6.5 running on a Linux i686 1.6 GHz PC.

The evaluation of the coupled rod SEM model at 1000 discrete frequencies took trod = 0.55

seconds. The evaluation of the plate SEM model at 1000 discrete frequencies took tplate = 24

seconds. The overhead of the transformation method variants was negligible in all runs (i.e.,

less than 0.1 % of the overall computation time). The sparse grid-based approach required

additional computing time depending on m and n; this took about tsp = 25 − 40 seconds for

the considered parameters m = 21 and n = 1, . . . , 5. In case of the plate model, this overhead

was insignificant due to the expensive model evaluations. The approximate overall run times

can be obtained by multiplying trod and tplate by N from Table 4.3, and adding tsp in case of

the sparse grid-based method.

Scalability

The scalability is the most important parameter to be checked. For these first examples,

only problems with two uncertain parameters were addressed. In that case a maximum of

about 1000 model evaluations per frequency is feasible in practice. The applicability of the

reduced transformation is then limited to about d = 8 uncertain parameters if five α-cuts

are used. For the general transformation method scaling is significantly worse, since its

complexity grows with O(md). Better results than with the reduced transformation method

were only achieved for more than 10 α-cuts. Therefore, only models with up to three uncertain

parameters are feasible. For d = 4, a sparse grid interpolant of level n = 5 requires 1105

function evaluations. For d = 9, a level 3 interpolant requires 1177 evaluations, which may

be still suffice depending on the smoothness of the FRF curve. Of course, it is quite needless

to say that a Monte Carlo simulation would require significantly more than 1000 samples to

produce reliable results in higher dimensions.
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4.3 SEA Coupling Loss Factors Estimation

In this section, the general transformation method without recurring permutations, i.e.,

gtrmrecur presented in Chapter 3 is applied to the estimation of the SEA coupling loss fac-

tors (CLFs) under influence of the uncertain parameters. The CLFs can be considered an

important parameter when building and solving Statistical Energy Analysis (SEA) models.

In Chapter 1, a review for SEA was presented. In addition, some alternatives based on de-

terministic approaches to assess the CLFs were also discussed. Finite element models have

been used by many authors to provide accurate estimations of CLFs. See the following works

by (Simmons (1991), Steel and Craik (1994), Fredö (1997), Maxit and Guyader (2001ab),

Gagliardini et al. (2003)). Also, Ahmida and Arruda (2003a) presented an efficient alter-

native based on the SEM to assess these parameter. Although much progress in this area

has been achieved, little attention has been paid to the influence of the uncertain parameters

in the deterministic model used to estimate these factors. In this context, a fuzzy method

is proposed as an alternative to compute coupling loss factors. The proposed technique is

applied to a coupled rod system and to a frame-type structure.

4.3.1 Case 1: Estimation of SEA CLFs for two coupled rods

For the first case, the same setup applied in Section 4.1 is used. In this simple case, two

subsystems with just longitudinal waves are considered, leads to

• η12: CLF between longitudinal waves incident at rod 1 and longitudinal waves trans-

mitted to rod 2.

• η21: CLF between longitudinal waves incident at rod 2 and longitudinal waves trans-

mitted to rod 1.

In order to build a SEA model for the two coupled rod system, a formulation presented

in Lyon and DeJong (1995) is reviewed. Note that, in Chapter 1, the SEA was discussed in

more details and here just the main equations necessary to assess the CLFs will be reviewed.

We begin with definition of the modal density of rod, which leads to

ni = 2L

√
ρi

Ei

(4.3)
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where the modal density (n) of each rod is defined respectively for its physical parameters.

In this case, the sub-indices i, j refer to the subsystem i for rod 1 and j for 2, respectively.

The modal overlap factor m is defined as follows

mi = ωηini (4.4)

For the transmission coefficient between two rods, the rod impedance is needed, which

can be defined as infinite rod impedance

Zi = 2ρiAi

√
ρi

Ei

(4.5)

and for the transmission coefficient, we have the following

τij =
4RiRj

|ZiZj|2
(4.6)

Note that, the term R means the real part of the impedance, and for the particular case

of a semi-infinite rod, the half value of the infinite one is required.

The next step is to develop a way to assess the CLFs. This can be done as follows

βi =
2mi

π
(4.7)

βcorr =
1

[1 + ( 1
2π(βi+βj)

)8]
1
4

(4.8)

Going further, the CLFs is found using the following expression

ηij =

√
Ei

ρi

1

2πfLi

βcorr
τij

2 − τij

(4.9)

and using the reciprocity relation

ηji =
ni

nj

ηij (4.10)

In order to determine the energies values, it is necessary to assess the input power from a

excitation point, which can be found using the following relation

Pi =
(P0)

2

Zi

(4.11)
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With the coupling loss factor defined and the input power found, the energies can be

estimated using the matrix system defined as

{
Ei(ω)
Ej(ω)

}
=

1

ω

[
ηi(ω) + ηij(ω) −ηji(ω)

−ηij(ω) ηj(ω) + ηji(ω)

]−1 {
Pi(ω)
Pj(ω)

}
(4.12)

It is important to note that with the above expression for the energies values, the energy

level performed by the standard SEA equals M〈 v2〉, with M defined as the subsystem mass

and 〈 v2〉 the mean-squared velocity. On the other hand, to find out the total vibration energy

with spectral and finite elements, the average kinetic energy is multiplied per two.

Now, with the short review presented, the energies and the CLFs can be easily estimated

either by standard SEA equations or by SEM. In addition, it is interesting to also present

a comparison with the energies performed with the SEM combined with the fuzzy method-

gtrmrecur. This can be done and instead of one curve carried out, the envelope energy

responses are found.

Figure 4.7 presents the results considering both, the SEA and the SEM as nominal energy

responses. In this case, it is important to emphasize that for the energy of rod 1, the coupling

with rod 2 is not considered, which clarified the poor results presented by standard SEA.

The results for the CLFs using the standard SEA analytical expressions combined with the

gtrmrecur are shown in Fig. 4.8. Here, it is also clear that the influence of non-deterministic

input parameters for rods 1 and 2 play an important role in the CLFs estimation. Finally,

Figure 4.9 show the energies estimated with the SEM combined with fuzzy method-gtrmrecur,

which in this case are compared with the mean energy performed with the standard SEA for

rods 1 and 2.

4.3.2 Case 2: Estimation of SEA CLFs for frame-type structures

In order to show the applicability of the SEM combined with a fuzzy set based method-

gtrmrecur for estimation of the SEA CLFs of frame-type junction, an example proposed in

Figure 4.10 is presented. This example is the main part of the work proposed by Nunes et

al.(2005).

Table 4.4 shows the physical properties for the beams 1 and 2 with mean values and

standard deviation for each non-deterministic input parameter. In this regard, it is important

to emphasize that different parameterization schemes may be used for the frame junction
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Figure 4.7: Energies for rods 1 and 2 performed by standard SEA and SEM.
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Figure 4.9: Nominal energy performed via standard SEA and energies by
SEM combined with the fuzzy set based method-gtrmrecur.
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depending on the physics of the problem at hand.

For the proposed example, the Young’s modulus Ẽ, mass density ρ̃ and moment of inertia

in z direction Ĩz are treated as uncertain parameters. Also, it is important to note that in

this simulation, Ẽ12, ρ̃12 and Iz12 are not independent, i.e., Ẽ1 = Ẽ2 = Ẽ, ρ̃1 = ρ̃2 = ρ̃ and

Ĩz1 = Ĩz2 = Ĩz. For the length of the beams L1,2 and the cross-section areas A1,2, the mean

values are assumed. In this study a simple, and not very realistic, uncertainty model was

used only for the sake of illustrating the proposed procedure. The L-beam model shown in

Figure 4.10 (a) consists of two semi-infinite beams, respectively, beam 1 and beam 2 connected

at an arbitrary angle θ. In this example an angle of 60o is assumed. However, it is important

to stress that it is straightforward to address arbitrary angles and arbitrary number of beams

converging to the junction with the SE model described here.

Table 4.4: Physical properties: beams with non-deterministic input parameters.
parameter mean value m̄ standard deviation dimension

E1,2 2.62 × 109 10% N/m2

ρ1,2 1280 10% kg/m3

A1,2 1 × 10−4 0 m2

Iz1,z2 8.33 × 10−10 1% m4

L1,2 100 0 m

(1)

1 2 3

4

5

x

y

throw-off elements(1&4)

2-noded elements(2&3)

θ(2)

(3)

(4)

beam 1
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P
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in

P
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in
P
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P
1

in

θ

(a) (b)

Figure 4.10: SE model for connected beams with arbitrary angle.

The SE model is composed of two 2-noded and two throw-off spectral elements as presented

in Figure 4.10 (a). Using SEA methodology, four subsystems are set-up: two for longitudinal

waves and another two for the flexural waves in the x-y plane. To assess the total energy in

each subsystem using SEM, power is input into each subsystem and then the energy is found

one at a time. See Figure 4.10 (b). The CLFs for these subsystems are defined as follows

• ηB1B2: CLF between flexural waves incident at beam 1 and flexural waves transmitted

to beam 2.
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• ηB1L2: CLF between flexural waves incident at beam 1 and longitudinal waves trans-

mitted to beam 2.

• ηL1B2: CLF between longitudinal waves incident at beam 1 and flexural waves trans-

mitted to beam 2.

• ηL1L2: CLF between longitudinal waves incident at beam 1 and longitudinal waves

transmitted to beam 2.

As discussed in Ahmida and Arruda (2003a), in terms of deterministic response, a good

agreement with the CLFs was obtained using the SEM with the simplified expressions of

Stimpson and Lalor (S&L) (1991) and using the analytical expressions of Cremer and Heckel

(1988).

In the next section, the SEA CLFs will be estimated using the proposed SEM combined

with the fuzzy set based method-gtrmrecur with the simplified expression defined in Stimpson

and Lalor (1991) so that a more robust estimation of the SEA CLFs can be expected, instead

of just obtaining a deterministic one.

4.3.3 Estimation of CLFs using the SEM combined with the fuzzy
method-gtrmrecur

In this section, the CLFs estimated via the SEM combined with the fuzzy method-gtrmrecur

are presented. Robust CLFs by means of confidence limits are provided in order to be used

in SEA models. A frequency range is setup from 1 Hz to 5kHz using 1/3-octave bands.

In addition, for each frequency band analyzed, the mean square energy values were com-

puted over 10 frequency lines. Figures 4.11 and 4.12 show the main results found using the

Stimpson and Lalor approximation with the SEM combined with the fuzzy method-gtrmrecur.

The energies for bending and longitudinal waves in beams 1 and 2 were computed from the

spectral element solution using the methodology explained in (Ahmida and Arruda, 2003b).

With an internal loss factor of η = 0.001 in each beam the energy in the throw-off elements

could be neglected due to the length of the two-noded elements, i.e., equal to 100 m. For

the fuzzy method combined with SEM, 7 α-cuts and a membership functions of type quasi-

Gaussian shaped, clipped at plus and minus 3 standard deviations. The results include the

mean, maximum and minimum values for the CLFs found for beam 1 and beam 2 plotted ver-

sus Average Modal Overlap (AMO). In order to compute the AMO, the following expressions
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defined in (Lyon and DeJong, 1995) are adopted

m = ωηn (4.13)

where m is defined as the modal overlap factor, η is the loss factor and n is the total modal

density of the L-beam system, which is composed by modal densities for the longitudinal and

transversal waves.

To assess the AMO, a central frequency band is considered. As discussed above, for each

frequency band analyzed, the mean values were computed over 10 frequency lines.

Also, a Monte Carlo analysis (MC) was conducted to check the results found using the

SEM combined with a fuzzy set based method. For the MC analysis considering the same

uncertain parameters defined in Table 4.4, Gaussian normal distributions, but also clipped

at 3σ-bounds, were adopted. They were generated by the pseudo-random number generator

of Matlab. In addition, to determine the required sample size, the following expression,

suggested in Maglaras et al. (1997) was adopted

N =
1 − P

P − COV 2
P

(4.14)

with P defined as the anticipated probability of failure and COVP the desired coefficient

of variation of probability of failure. The coefficient of variation is defined as the standard

deviation divided by the mean. For instance, taking a probability of failure of 0.1 and a

coefficient of variation of 0.1, we find, substituting these values, a minimum required N of

900. In our case, just for simplicity, we assume a sample size of N = 1000.

In what follows, the estimation of the SEA coupling loss factors for the two beams shown

in Figure 4.10 are presented for SEM combined with the fuzzy set based method-gtrmrecur

and the SEM combined with MC approach.
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Figure 4.11: Estimation of CLFs using S&L approximation and their en-
velopes: (a) ηB1B2 and (b) ηB1L2. SEM-nominal (solid), SEM
with the fuzzy method-gtrmrecur (dotted-line) and SEM with
MC (dashed +)
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Figure 4.12: Estimation of CLFs using S&L approximation and their en-
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In general, Figures 4.11 and 4.12 show that the SEM combined with the fuzzy set based

method-gtrmrecur and the SEM with MC yielded quite similar results, specially for higher

Average Modal Overlap. However, in Figure 4.12 (a) and (b), for the longitudinal waves, some

difference in the anti-resonance can be observed for the SEM with fuzzy set based method-

gtrmrecur and SEM with MC results. In this context, it is important to add that on the basis

of the transformation method, the overestimation effect is avoided.

In the next section, where the main proposal is to find the energy envelopes using the

robust CLFs obtained in Figures 4.11 and 4.12, we have used just the CLFs found with the

SEM with fuzzy set based method-gtrmrecur. In order to assess the energy levels for the 4

sub-systems described above, conventional SEA is adopted in this process.

4.3.4 Estimation of energies using the SEM with the fuzzy method-
gtrmrecur

Basically, in this section, two examples are proposed to estimate the energies levels. In

the first one, the CLFs obtained with the SEM combined with the fuzzy set based method-

gtrmrecur are adopted with a unit power to the subsystem associated with transverse waves on

beam 1 to assess the energy levels, i.e., maximum, mean and minimum values. In the second,

the same CLFs obtained above, instead, are combined with the power input envelopes of each

subsystem in order to build the confidence energy limits. The second example is proposed in

order to show that uncertainty in the input power plays an important role in SEA analysis.

See for example the recent paper presented by Davis (2004), where the uncertainty in the

predictions are presented as three separate problems. The first concern is due to uncertainty

in the input power, which is demonstrated as the major issue. The second is regard to

uncertainty in the transfer functions, and finally uncertainty due to the definition of SEA

model and its subsystems. Here, the two examples proposed are mainly focus on two of those

concerns, which means, uncertainty in the input power and transfer functions addressed to

the influence of the input physical parameters.

Figures 4.13 and 4.14 show the results for the transversal and longitudinal energies for

beams 1 and 2 for the first case, i.e., the energies were computed for a unit power input to the

subsystem associated with transverse waves on beam 1. In this first example, it is important

to add that the effects of uncertain parameters increase when the central frequency increase,

which is clearly presented in Figures 4.13(b) and 4.14(a).
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Figure 4.13: Energy levels for the beams 1 and 2 using CLFs estimated with
SEM combined with fuzzy method-gtrmrecur : (a) Transversal
energy in beam 1 and (b) Transversal energy in beam 2. Max
and Min energies (dotted-line) and nominal energy (solid)
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(b)

Figure 4.14: Energy levels for the beams 1 and 2 using CLFs estimated with
SEM combined with the fuzzy method-gtrmrecur : (a) Longitu-
dinal energy in beam 1 and (b) Longitudinal energy in beam 2.
Max and Min energies (dotted-line) and nominal energy (solid)

In the second example, the energy limits are performed using the same CLFs, however,

including the respective envelopes obtained with the input powers, i.e., input powers max,

min and mean. To assess those values of input power, for each point mobility, the respective

force and velocity are assessed using the following expression
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Pin =
1

2
ℜ(F · v∗) (4.15)

where F is the affecting point force, in this example simulated with 1 N, ℜ is the real number

specified under simulation and v∗ is the complex conjugate velocity at the same point where

the force acts. In the case of displacement u assessment, velocity is defined as v = iωu, which

leads to Pin/ω = −(F · ℑ(u))/2. In this regard, the imaginary part (ℑ) of displacement at

the node where the force is applied is always negative and the input power is always positive.

Figures 4.15 and 4.16 shown those plots. Basically, note that the envelope energies found

considering the power input for each subsystem have greater influence in the estimation final

result as a whole.

To summarize, both examples show that, using the SEM with the fuzzy set based method-

gtrmrecur, it is possible to take into account the influence of the uncertain input parameters

into a SEA model. In addition, one important fact to add from example 2 is that in terms

of input power, it is recommended that such envelope might be considered in this analysis.

This is clarified based on results presented in Figures 4.13 (a) and 4.15 (b). Thus, either

CLFs and input powers envelopes can be well estimated via SEM with the fuzzy set based

method-gtrmrecur and more robust energy levels can be found.

In terms of the scope proposed, both examples assumed that some of the input parameters

contain uncertainty, which can be considered for the specialist that those hypotheses are taken

as possible to occur.

For a new projects, not much information is available and uncertainty is predicted based

upon the experience in former projects. On the one hand, as the development cycle evolves and

more experimental data becomes available, a more accurate parameter variation prediction

can be made. The pressure to develop new products in shorter time means, in most cases,

that there is no time to set up many experiments to provide power density functions (PDF)

of model parameters. However, in the case for which input data with PDF are available, more

accurate models can be obtained combining both theories, i.e., possibility and probability.

Therefore, for an initial estimation of the influence of non-deterministic input parameters,

the SEM combined with fuzzy set based methods proposed here can be helpful to address

uncertainty in frame-type structures.
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(b)

Figure 4.15: Energy levels for the beams 1 and 2 using CLFs and power
input estimated with the SEM combined with the fuzzy method-
gtrmrecur : (a) Transversal energy in beam 1 and (b) Transversal
energy in beam 2. Max and Min energies (dotted-line) and
nominal energy (solid)
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(b)

Figure 4.16: Energy levels for the beams 1 and 2 using CLFs and power in-
put estimated with the SEM combined with the fuzzy method-
gtrmrecur : (a) Longitudinal energy in beam 1 and (b) Longi-
tudinal energy in beam 2. Max and Min energies (dotted-line)
and nominal energy (solid)
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4.4 Summary

In this chapter, a spectral element method combined with fuzzy set methods was proposed

to perform frequency response function envelopes for structures under uncertain input param-

eters. Initially, to discuss in more details the different application of the extension principle,

two different test problems were presented. Although those test problems considered only two

simple examples, very important conclusions were made in terms of different alternatives of

implementation of the extension principle compared with the Monte Carlo simulation. One

important conclusion is that the SEM combined with the fuzzy method using the rtrm is

suggested to get a first approximate solution with just few function evaluations. In the case

of FRFs that are sufficiently smooth, which was the case of the rod example, the sparse

grid method performs better. For FRFs that have very high curvature, i.e., for example the

plate case set-up, the sparse grid method did perform better than the other fuzzy set meth-

ods proposed. The SEM combined with MC is significantly inferior to the SEM combined

with fuzzy set based methods proposed, specially in terms of function evaluations and error

plot. Additionally, the SEM with fuzzy set based method was also adopted to estimate the

SEA coupling loss factors (CLFs), which is another important area to be covered with this

approach. Finally, two test problems were selected to show the applicability of the SEM

combined with fuzzy set based methods for CLFs estimation.
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Chapter 5

Initial Design Phase Considering a
Non-Deterministic Dynamic Analysis

This chapter provides a numerical example using a fuzzy set based method in the initial design

phase of a new engineering project. Based on the fundamental ideas presented in former

chapters, the main focus here is to give more insight on how to apply the concepts of the

methodology proposed. Our chosen example consists of an automotive application, where the

use of reinforced panels is proposed.

5.1 Describing our Example Problem

In the present stage of industrial development, the characteristics of new materials become

one of the main issues. Important industries, such as the automotive, aerospace and naval

industries, require less weight and more resistance for new material applications, and one

attractive alternative is the use of composite materials. In this sense, the main idea is to have

materials with high mechanical resistance combined with weightlessness. However, composite

materials are note suitable in applications where there is a high temperature or an aggressive

environment (Agarwal and Broutman, 1990).

Considering the above, one alternative applied in the industry is to adopt reinforced panels,

which in general are composed of panels reinforced with beams. In those applications, the

idea is to add local stiffness, without adding excessive weight to the structure. In terms of

dynamic behavior, as discussed in previous chapters, this presents some important modelling

challenges, since panels generally have a much higher modal density than reinforcement beams.

To give an example, Figure 5.1 shows a floor area applied in the automotive industry, where

transversal and longitudinal beams are added to the main panel to provide local stiffness.
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Figure 5.1: Floor area with reinforcement applied in the automotive industry.

In this context, we would like to provide in this chapter a numerical example using the

concepts presented in the former chapters using a fuzzy set based method. The numerical

example used here is the same discussed in Chapter 4, Figure 4.2. It consists of a simply

supported plate with reinforcement beams.

Before presenting the main results found using the concepts of fuzzy set based methods,

the plate model is discussed and some important considerations and limitations using the

present methodology are presented.

5.2 Dynamic Modelling of the Example Structure

5.2.1 Finite element model

Considering a reinforced plate model with a thickness equal to h = 2 mm, the wave number

using the Kirchhoff theory is given by k = 1.3347
√

f , where f is the frequency in Hz. The

wavelength is then equal to λ = 4.707/
√

f . Considering a maximum dimension, Lx =

0.70 m, and assuming the rule-of-thumb, which recommends that 6 to 10 linear elements

per wavelength are necessary to correctly describe the dynamic behavior. Now, assume the

expression suggested by Langley (1998), which says that the number of nodes necessary to

model a structure with length L and wavelength λ is computed by (8L/λ)r, where r is defined

for plates as r = 2. Thus, we have for this example a total of 1.41f nodes, i.e., consider that

in a 3D analysis we have 6 DOFs per node, for a frequency range of up to 1kHz, it leads

to 8460 DOFs to perform such an analysis. In addition, in Appendix D of this thesis, the
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FEM and the SEM for a reinforced plate are compared for frequency response function (FRF)

analysis.

For the present simple case, the number of DOFs, considering typical computers adopted

in CAE developments, a low computational effort is required. However, in a more realistic

scenery, if we change the present dimension to L = 10 m, which is a typical size in aerospace

applications, we should have a model with approximately 2 million DOFs. For the present

development stage of commercial FE codes and computers, such a number of DOFs is compu-

tationally expensive, but still feasible in terms of dynamic analysis. However, if we intend to

treat problems considering non-deterministic input parameters and to increase the frequency

range of applicability, much more computational effort is required. This is the situation where

methods such as the SEM might be suggested.

5.2.2 Spectral element model

The SE model for the reinforced plate example is shown in Figure 5.2 (a). Also, to give an

example comparing with FEM, in Figure 5.2 (b) the respective reinforced plate is presented.

For the FE model, HEXA elements consisting of 6806 nodes and 3280 elements were used to

describe the reinforced plate model.

In the context above, the biggest advantage of the SEM compared with FEM is that the

number of elements needed to model the reinforced plate with the SEM is only 6 elements. For

the present SE model, the response is obtained with 10 propagation modes for the frequency

range DC-2 kHz.

On one hand, the SEM demands less computation effort than FEM, which, for the mid-

high frequency range is an important factor. On the other hand, the negative point for the

SEM is that in its present stage, this technique is quite limited with respect to the geometries

that can be treated (see Appendix D).
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Figure 5.2: Scheme for the spectral element and finite element mesh for the
reinforced plate: (a) SEM and (b) FEM.

5.3 Non-Deterministic Input Data

5.3.1 Uncertainty, variability and error

In this section, using the definitions proposed in Chapter 2 for uncertainty, variability, error

and their extensions, we first select our input data according to these definitions.

Initially, we begin with the analysis of the variability. Considering our plate model,

material properties and manufacturing tolerances should be considered with this definition.

This include the following data: Young’s modulus E = 69 GPa, Poisson’s ratio υ = 0.3, mass

density ρ = 2700 kg/m3 and the geometrical dimensions, such as Lx = 0.70 m and Ly = 0.40

m. For the reinforcements of the plate with a beam rectangular section, we will just consider

the moment of inertia Ib = 1.687 × 109 m4.

Furthermore, as suggested by Moens and Vandepitte (2004), the term variability could

also be limited to lack of knowledge, where the information on the likelihood is missing or

simply no information of the possible bounds are available. In this case, they suggest the
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concept of uncertain variability, because there is a lack of knowledge.

For this first group of uncertain parameters, we have found additional information from

experimental results obtained for the thickness h, which will be considered in our project. An

experiment was conducted considering only one prototype plate system, where the thickness

of the plate was measured for a grid of 209 points. The measurement uncertainty was 10 µm

for a confidence level of 95 %. The temperature was 20o C. For the sample considered, a mean

value of the thickness equal to h = 4.128 mm with a standard deviation equal to σh = 6.93%

was found.

Note that, if we consider that such an experiment is representative of the ensemble of pro-

duced panels, the initial definition of the source on non-determinism applied to the parameter

h should be changed to certain variability, because the variability range and the likelihood

would be known.

Although we know that for one sample such a measurement is not representative of the

ensemble, for our plate model, only to illustrate the concepts discussed above, we assume that

the h is classified as certain variability. In Figure 5.3, a histogram for the thickness value

with the symmetric quasi-Gaussian membership function clipped at 3σ-bounds are adopted

to represent it.
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Figure 5.3: Experimental data for the thickness h with respective histogram
and quasi-Gaussian approximation adopted for membership func-
tion.
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Considering the term invariable uncertainty, in our plate model, this can refer to the

damping, the input force and also the boundary conditions, which are generally assumed

constant in numerical models. In our plate model, the boundary conditions are considered

constant, but in real problems they can be a major source of uncertainty. Also, based on

experimental results discussed in Albuquerque et al. (2004), for the internal loss factor, a

mean value equal to η = 0.001 and a standard deviation of ση = 5.56% are adopted.

Again, it is important to emphasize that, for the η measured value, the result only con-

sidered one sample structure, i.e., without any selection of a representative statistical group

of the same type of structure. In practical terms, this would mean building and testing many

nominally plates and measuring the effects of non-deterministic input data (Maglaras et al.,

1997). In terms of a realistic application, in general, it is impractical or simply too difficult

to have such a group of measurements.

Additionally, for some practical applications in the aerospace industry, e.g. in Marczyk

(2004), it is found that the coefficient of variation (CV) for a dynamic load P around 20%.

Although in our case the reinforced plate is applied to the automotive industry, the idea to

add the dynamic load as invariable uncertainty is quite convenient.

Therefore, for the initial design phase, the type of load and their amplitudes can also be

important issues, and are generally considered deterministic in FE analysis. Thus, based on

test results presented in Marczyk (2004), the dynamic load P in our plate problem assumed

non-deterministic and represent by a membership function.

In Figures 5.4 (a,b), the triangular shape membership functions for the η and P adopted

to represent the non-deterministic input parameters are shown.
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Figure 5.4: Uncertain parameter for the (a) internal loss factor η̃ and (b)

force P̃ for the reinforced plate model.

In terms of the error concept, which can be applied to modelling assumptions, the limits

based on the Euler-Bernoulli beam theory and the Kirchhoff model for plates might also be

considered. In this context, if we take the FE plate model discussed in Section 5.2.1, and if

we don’t have such a discretization, our result might be a poor estimate and an error may

be introduced in our model.

Going one step further, we can select in our plate model each parameter separately, accord-

ing to its definition. Table 5.1 summarizes the mean and standard deviation values proposed.

Also, for each non-deterministic parameter we add two extra information, which consist of

the type of membership function selected and type of non-determinism in our numerical mod-

elling. Here, we select only fuzzy numbers represented by symmetric membership functions.

The reason for such a choice is that for the fuzzy set based method to be used, the General

Transformation Method avoiding recurring permutations (gtrmrecur) using symmetric mem-

bership functions require significantly less function evaluations than the original version of

the General Transformation Method (gtrm) algorithm. The alternative gtrmrecur algorithm

was treated in Chapter 3.
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Table 5.1: Plate properties with non-deterministic input parameters.

input mean standard dimension membership source of
parameter value m̄ deviation σ adopted function non-determinism

E 69 × 109 5% N/m2 triangular uncertain variability
ρ 2700 5% kg/m3 triangular uncertain variability
ν 0.3 5% — triangular uncertain variability

Lx 0.400 1% m triangular uncertain variability
Ly 0.704 1% m triangular uncertain variability
h 0.004 6.93 % m quasi-Gaussian certain variability
Ib 1.687 × 109 1% m4 triangular uncertain variability
η 0.001 5.56 % — triangular invariable uncertain
P 1 20 % N triangular invariable uncertain

In the next Section, a sensitivity analysis will be done for the plate model with the non-

deterministic input parameters described in Table 5.1. The main idea is to obtain the degree

of influence of each parameter in the response envelope.

5.4 Sensitivity Analysis: Degree of Influence of the Non-

Deterministic Input Parameters

We initially perform a sensitivity analysis in order to check the degree of influence of

each non-deterministic parameter separately. After selecting the most important parameters

that contribute to the response of our dynamic system, we perform a new analysis adopting

just the parameters selected. To perform the sensitivity analysis, we adopt the procedure

described in Hanss and Klimke (2004a). In that work, the degree of influence provided by the

transformation method is compared to the classical one derived from differential calculus.

In order to give a brief description of the procedure, the idea is to adopt the total dif-

ferential df of the model function f(p1, p2, . . . , pn) to assess the degree of influence of each

parameter pi, i = 1, 2, . . . , n, where n are the uncertain parameters. The total differential at

the point P̄ = (x̄1, x̄2, . . . , n) is given by

df =
n∑

i=1

∂f

∂xi

(P̄ )dxi (5.1)

where df is an approximation of the overall change rate of the function value f(P̄ ). This is

the case when the input parameters xi are changed by dxi around x̄i. In this expression, we

can interpret that for each input change dxi, a separate contribution by (df)i to the overall

change rate df can be determined. If assuming that the change rate dxi of the ith input
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parameter is constant percentage c of its corresponding value x̄i, then the following can be

done

df =
n∑

i=1

(df)i = c
n∑

i=1

x̄i
∂f

∂xi

(P̄ ) (5.2)

where dxi in Eq. 5.1 is replaced by cx̄i.

Going further, a relative degree of influence can be determined in terms of the normalized

change rates ρ∗
i of each parameter as follows

ρ∗
i =

|(df)i|
n∑

q=1

|(df)q|
=

|x̄i
∂f
∂xi

(P̄ )|
n∑

q=1

|x̄q
∂f
∂qi

(P̄ )|
(5.3)

also satisfying the consistency condition

n∑

q=1

ρ∗
i = 1 (5.4)

However, in terms of a realistic application, the total differential procedure can only be

determined for a model function f described in analytical form. In this regard, a common

procedure adopted in practical engineering is replacing the derivative by a finite difference

approximation

∂f

∂xi

(P̄ ) ∼= f(x0
1, . . . , x

0
i , . . . , x

0
n) − f(x0

1, . . . , x
0
i − hi, . . . , x

0
n)

hi

(5.5)

where hi is defined as the mean value of the upper and lower bounds of the interval X0
i at

the membership level α0 (see Eq. (2.27) defined in Chapter 2).

5.4.1 Results using a sensitivity analysis

Next, we present the main results found using the sensitivity analysis for the plate with

non-deterministic input parameters. The results are presented for different frequency ranges

in order to give more detail about the most important parameters to be selected.

In conducting a sensitivity analysis, the degree of influence of all input data can be found

and the most important parameters that contribute to the response of the dynamic system

can be selected.

Considering Figure 5.5, we can select from our original group of non-deterministic input

parameters, four parameters with a higher contribution: Lx, h, E and ρ.
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Therefore, taking only these four parameters selected, we can avoid extra computational

effort by taking into account only the parameters that have more influence in the dynamic

behavior of our plate model. Basically, for the present reinforced plate model, the effects

of manufacturing tolerances and material properties uncertainty are responsible for the non-

deterministic behavior in our numerical model. In the next section, we introduce the concept

of target applied in the initial design phase. Also, the effects of non-deterministic input

parameters are discussed.
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Figure 5.5: Degree of influence for the non-deterministic input parameters of
the reinforced plate model.
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5.5 Targets during the initial design phase

In the automotive industry, during the initial design phase, it is quite common practice

to work with CAE models to give some initial information, for instance, on vibration and

acoustic comfort. At this point, FE models are built to provide a possible way to check

the new concepts. When using numerical models whilst considering vibration and acoustic

applications, the dynamic behavior is verified and some possible changes are suggested. This

can be a concern with respect to receptance responses, mobility points, sound pressure levels at

the driver’s ear, vibration comfort (mounts, suspension and so on) and the dynamic stiffness.

In this context, another practice is to adopt initial limits also called targets based on former

projects. The concept of the target is defined as a limit that can be used to have an initial idea

about the behavior (vibration and acoustic) of the new structure. During the development

phase, it is also common practice that as more data becomes available, new targets or limits

are proposed. The important concept to have in mind is that the initial target is helpful to

give an initial idea about the virtual CAE project.

In the situation presented above, a question arises as to how to take into account the

influence of the non-deterministic input parameters in this initial design phase. In order

to address this problem, one idea is to apply the concepts discussed in this work, where

fuzzy set based methods have been suggested. Here it is also important to emphasize that

other alternatives have been discussed in the literature, such as the probabilistic framework.

However, we decide that the available data is neither representative nor applicable in terms

of probabilistic concepts. For this reason, we select, in this initial design phase, the use of a

fuzzy set based method.

In the next section, the dynamic behavior of the reinforced plate model taking into account

the influence of the non-deterministic input parameters and the concept of the target value

will be presented.

5.6 Dynamic Behavior of the Reinforced Plate Model

5.6.1 Initial design requirements

We assume that, in the present set-up, just one drive point is required in our dynamic

response analysis. In terms of SE modelling, if we add more points, additional elements

must be considered. For the boundary conditions, the reinforced plate is simply supported
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in the yz-plane and free-free in the xz-plane. The drive point is taken at position (x, y) =

(333.4, 160) mm. Here, the drive point location is chosen based on previous results presented

by Albuquerque et al. (2004). However, in a more realistic situation, such as in the automotive

application, such a choice might be, for instance, based upon mounts locations, points located

at suspension areas, chassis and so on. To assess the frequency response function (FRF), a

frequency range up to 1 kHz is chosen.

In addition, an upper limit on the receptance at the drive point on the structure is set as

equal to 10−4 m/N for a fixed damping, i.e., constant internal loss factor equal to η = 0.001.

Note that, in our plate model, such a target is suggested only between 250 Hz to 1kHz, which

can be justified in terms of the high dependence of the damping value in the low frequency

range, i.e., up to 250 Hz.

Therefore, in this initial design phase, our reinforced plate system fails if the receptance

response exceeds this limit for the frequency range up to 250 Hz. It is important to add that,

in the present setup, such a limit is not available from experimental data. Thus, this limit is

assumed in our problem based on a preliminary study from a similar structure. In additional,

during the initial design phase, such an assumption is generally based on former projects,

which is a common practice adopted in the automotive industry.

5.6.2 Deterministic receptance response and target

Figure 5.6 shows the vibration limit proposed, where the reinforced plate model in this

initial phase fails if the receptance response is above this limit or target.

It is again important to emphasize that a nominal damping equal to η = 0.001 is selected,

which leads to say that the vibration peaks observed above 250 Hz in our present case study

must lie within this target, which is the case for the deterministic response.

For some other general application, i.e., without any initial information about damping,

the peak values are much dependent on the damping adopted, which in our example is very

low due to the simplicity of the reinforced plate model adopted.
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Figure 5.6: Deterministic receptance response (solid line) at the drive point
with the target (dashed line) proposed.

In the next section, the vibration behavior of the reinforced plate model considering the

effects of non-deterministic input data will be considered. At this stage, a fuzzy set based

method might be a good alternative to check this effect, which means computing the envelopes

for frequency response function, i.e., the max and the min receptances.

5.6.3 Envelopes for the Receptance

The fuzzy based method called gtrmrecur (see Chapter 3) is used to assess the envelopes

for the panel receptance. Even when applying the gtrmrecur algorithm proposed by Klimke

(2003) which removes recurring combinations from the evaluation by reusing the inner points

of the α-cuts and thus, reduces the number of real function evaluations, it is important to

emphasize that a preliminary sensitivity analysis, such as the one presented in Section 5.4.1,

is recommended in practical applications to avoid excessive computational effort.

To assess the envelopes for the receptance curve, the number of α-cuts used in the gtrm-

recur is chosen to the m = 3, m = 5 and m = 9. Figures 5.7, 5.8 and 5.9 show the results

for different numbers of α-cuts and the target. Note that the main difference observed in

Figures 5.7, 5.8 and 5.9 is that increasing the number of α-cuts, the envelopes become more

smooth in the peaks and anti-resonances. In Chapter 4, for the same plate model, 17 α-cuts

were used with very smooth envelopes found.
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Figure 5.7: SEM-deterministic (solid), SEM combined with gtrmrecur using
3 α-cuts: envelopes (dotted line) and target value (dashed line).
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Figure 5.8: SEM-deterministic (solid), SEM combined with gtrmrecur using
5 α-cuts: envelopes (dotted line) and target value (dashed line).
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Figure 5.9: SEM-deterministic (solid), SEM combined with gtrmrecur using
9 α-cuts: envelopes (dotted line) and target value (dashed line).

In addition, we have also selected here a fuzzy-valued result at 84 Hz and 304 Hz. Fig-

ure 5.10 (a) and (b) shown results obtained for three different α-cuts, m = 3, m = 5 and

m = 9, respectively.
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Figure 5.10: Fuzzy-valued results for different number of α-cuts: at 84 Hz (a)
and at 304 Hz (b) with 3 α-cuts (solid line), 5 α-cuts (dotted
line) and 9 α-cuts (dash dot line).

For the frequency range of interest, i.e., above 250 Hz, we note that in Figure 5.9 the

max receptance response is found above the target proposed between 330 Hz and 370 Hz.

93



In this case, we suggest to change the original plate thickness h = 4 mm to h = 5.5 mm.

Conducting a deterministic analysis, we found a suitable reduction for the frequency range

of interesse, especially for the two peaks observed in the baseline model. Figure 5.11 shows

this effect comparing with the original value of h = 4.0 mm. In addition, in Figure 5.12 the

envelopes for the receptance considering a mean thickness value equal to h = 5.5 mm are

presented. In terms of project recommendation, such an example give us an idea that with

the new thickness value, deterministic and the envelopes for receptance response lie within

the target proposed.
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Figure 5.11: SEM-deterministic (solid), target value (dashed line) and the
improved version with h = 5.5 mm (dotted line).
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Figure 5.12: SEM-deterministic improved version with h = 5.5 mm (dotted
line), target value (dashed line) and the envelopes with 3 α-cuts
(dash dot line).
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5.6.4 Interpretation of the results

With the results presented in Section 5.6.3, the main goal was to provide a design scenario

where a fuzzy set based method could be well applied. With the envelope curves obtained,

the analysis can be very helpful during the initial design phase. It gives information about

the effects of uncertain parameters in the dynamic response. If we take the max receptance

while taking into account the influence of uncertain parameters, and such receptance lies

within this limit, then a more safe design would be achieved. In addition, in conducting

a sensitivity analysis, the degree of influence of all input data can be found and the most

important parameters that contribute to the response of the dynamic system can be selected.
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5.7 Summary

This chapter shows the application of a fuzzy set based method considering a non-

deterministic dynamic analysis of a reinforced plate in the context of an automotive appli-

cation. Typical considerations were treated and the main steps to conduct such an analysis

were pointed out. In conclusion, within the above context, fuzzy set based methods can be

used to address structural dynamic problems under the influence of non-deterministic input

parameters.
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Chapter 6

Concluding Remarks

In this thesis, some important issues concerning the dynamic analysis of structures in the

mid-frequency range were discussed. In this sense, a SEM combined with fuzzy set based

methods was proposed. Frequency response function envelopes were presented to cover the

maximum and minimum responses under the influence of the uncertain input parameters.

In the first part of this work, a review of different techniques for addressing the mid-

frequency range were presented. Some of the most important areas were covered, including the

Hybrid FEA/SEA methods, the Virtual/Experimental SEA, the Energy Influence Coefficient

(EIC) and also the Wave Based Method (WBM).

In Chapter 2, the effects of dynamic analysis of structures taking into account the in-

fluence of the non-deterministic input parameters were addressed. In this chapter, a special

implementation of the extension principle called the transformation method was introduced.

In addition, a brief introduction to probabilistic methods was also presented. The main idea

was to show how we select the fuzzy set based methods to be combined with the SEM. In

this sense, it was recommended that, in the presence of few statistical data, fuzzy set based

methods are better suited than probabilistic techniques.

In Chapter 3, before implementing the SEM combined with fuzzy set based methods,

some possible efficient alternatives to the fuzzy set based methods were discussed, including

the transformation method using multi-dimensional arrays and its variant avoiding recurring

permutations. The sparse grid interpolation method was also introduced as an attractive

alternative.

In Chapter 4, some test problems were presented to show the applicability of the proposed

SEM combined with fuzzy set based methods. Three main problems were shown: a simple

coupled rods system, a reinforced plate and a frame-type model. In this chapter, applications
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to Statistical Energy Analysis (SEA) were also addressed.

In Chapter 5, an example is presented to give more insight into the proposed methodology

in the context of a practical engineering application. Some important aspects covering the

design process, such as possible initial data available, targets, statistical information type of

non-determinism were discussed.

Additionally, a review of the spectral element method for rod, beam and plate elements

is given in appendices A, B, C and D.

6.1 Main contributions

The main contributions of this thesis can be summarized as follows:

i. Definition of an alternative method to address the mid-frequency range problems con-

sidering the effect of the dynamic response of structures under uncertainty. The SEM

combined with fuzzy set methods is proposed. With this approach, two main weak

points found in the traditional Finite Element Analysis (FEA) are addressed: the limi-

tation of the frequency range of application and the influence of the non-deterministic

input parameters in the predicted dynamic response.

ii. Description of an efficient implementation of the fuzzy set based methods to be combined

with the SEM.

iii. A new scheme to provide accurate estimation of the SEA coupling loss factors (CLFs),

covering the confidence limits using the SEM combined with fuzzy set based methods.

iv. More accurate explanation of how to combine the fuzzy set based methods with an

efficient deterministic approach, showing the main advantages and disadvantages of

each method.

6.2 Discussion for further research

In this thesis, two main areas might be considered subject for further research: considering

more realistic applications, it is necessary to develop a more general spectral element approach

with flexible choice of boundary conditions. The SEM, in general, can be considered a power-

ful tool to be applied in the mid frequencies range for structural dynamic problems. However,
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in terms of practical and possible future industrial applications, a more general library of ele-

ments should be developed for different kinds of structural elements and boundary conditions.

In this regard, reinforced shell elements with more general boundary conditions should be an

interesting area to be explored. Likewise, hybrid methods combining finite elements and also

statistical energy analysis should be a very interesting area of research.

Regarding fuzzy set based methods, the first topic to be subject of further development

is algorithm implementation. In this area, more research seems to be necessary to make the

method more attractive for practical engineering applications. For instance, the transfor-

mation method without recurring permutation has shown some advantages in this context.

Despite this, for the case of more than ten uncertain parameters, for example, even with such

improvements achieved, the complexity increases substantially. The sparse grids interpolation

seems to be absolutely necessary in such cases. However, to obtain results more efficiently,

it still depends on the smoothness of the surfaces representing response as a function of

structural parameters.

Another important area for future research is related to how to select the main non-

deterministic input parameters during the development process. This subject was already

introduced by Hanss (2003) and Hanss and Klimke (2004) for some simple functions. For

complex functions, it requires more investigation, specially for the case of increasing fuzziness

of the model parameters. Considering the above, it seems also to be very interesting to

combine a deterministic method with fuzzy sets in a commercial finite element code. For

more simple problems, the SEM can be adopted to extend the frequency range of applicability,

covering some limitations found with traditional FEA.
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6.3 List of Publications

During development of this thesis, the following manuscripts have been submitted to

journals:

Nunes, R. F., Ahmida, K. M. and Arruda, J. R. F. Applying a Fuzzy Set Based Method

for Robust Estimation of the Coupling Loss Factors. Submitted to the Journal of Sound and

Vibration, 2005.

Nunes, R. F., Klimke, A. and Arruda, J. R. F. On estimating frequency response function

envelopes using the spectral element method and fuzzy sets. Accepted to be published in the

Journal of Sound and Vibration, 2005.

Also, the following paperwork have been published:

Nunes, R. F., Ahmida, K. M. and Arruda, J. R. F. A SEM/Fuzzy Method for the Esti-

mation of the SEA Coupling Loss Factors. Proceedings of the NOVEM 2005, Saint Raphael,

France, paper 52, 2005.

Nunes, R. F., Klimke, A. and Arruda, J. R. F. On estimating frequency response function

envelopes using the spectral element method and fuzzy sets. IANS report 2004/020, Tech. rep.,

University of Stuttgart, 2004, URL http://preprints.ians.uni-stuttgart.de. 09/11/2004.

Arruda, J. R. F., Donadon, L. Nunes, R. F. and Albuquerque, E. On the modeling of

reinforced plates in the mid-frequency range, Proceedings of the ISMA2004, Leuven, Belgium,

paper number 308, 2004.

Nunes, R. F., Oexl, S. and Arruda, J. R. F. Taking uncertainties into account in spectral

element modeling of structures, Proceedings of the Inter-Noise 2004, Prague, Czech Republic,

paper number 436, 2004.
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Appendix A

The Spectral Element Method

The Spectral Element Method (SEM) was proposed by Doyle (1997), although its basic

formulation was already widely known and currently used in the context of wave propagation

solutions. In the SEM, the main idea is to combine the advantages of analytical spectral

analysis with the efficiency and organization of the Finite Element Method (FEM). The major

advantage of the SEM in comparison with the FEM is due to the spectral element dynamic

stiffness matrix which is computed in the frequency domain, which allows the stiffness and

inertia of the distributed system to be described exactly. Thus it is not necessary to refine

the mesh as the wavelength becomes smaller (Doyle, 1997).

The SEM is formulated based on two types of elements, two-noded and single-noded,

or throw-off elements. The latter is adopted when the member extends to infinity and is

connected at a single point (or line). The major drawback of SEM is that the elements may

only be assembled in one dimension, the solution along the orthogonal dimensions having to

be found analytically, which is only possible for simple geometries. Doyle (1997) proposes a

more general approach, which consists of using image sources to enforce arbitrary boundary

conditions, but the approach still requires an ad hoc solution, which is not always existing.

Considering the discussion above, in the following Appendices, the SEM is presented in

its application to rod, beam and plate elements with development of the dynamic stiffness

matrix. The SEM is introduced, and some numerical tests are compared with the FEM. The

main part of this review is based on Doyle (1997) and Ahmida (1998).
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Appendix B

The Spectral Element applied to Rods

In order to introduce the SEM, the so-called low-order rod element is presented. The most

simple rod theory is described by the following equation of motion

∂

∂x

[
EA

∂u

∂x

]
= ρA

∂2u

∂t2
− q (B.1)

where q is the distribute force, EA is the uniform axial stiffness and ρA is the mass density

per unit length of the rod. Following that, the solution of Eq. (B.1) considering a general

longitudinal displacement for a rod, in the spectral analysis, the solution can be represented

as

û(x, ω) = Ae−ikx + Be−ik(L−x) (B.2)

where A and B are the amplitudes at each frequency and L is the length of the rod element.

It is understood that all quantities inside the summation (A, B, k, etc) could depend on the

frequency ω. In addition, considering the undamped case for the wave number k, we have the

following expression

k = ±ω

√
ρA

E A
(B.3)

Note that, for shorthand, here, the following representation is assumed

u(x, y, t) =⇒ ûn(x, y, ωn), û(x, y, ω) or simply û.

The displacement end conditions for the two-noded element, can be found using

û(0) ≡ û1 = A + Be−ikL, û(L) ≡ û2 = Ae−ikL + B (B.4)
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In this case, û1 and û2 are refired as nodal displacements or simply degrees of freedom.

Going further, after solving for A and B terms of the nodal displacements, the longitudinal

displacement at an arbitrary point in a finite rod can then be defined as

û(x) = ĝ1(x)û1 + ĝ2(x)û2 (B.5)

where ĝ1(x) and ĝ2(x) are the frequency dependent rod shape functions which have the

following relations

ĝ1(x) =
e−ikx − e−ik(2L−x)

1 − e−i2kL
(B.6)

and

ĝ2(x) =
−e−ik(L+x) + e−ik(L−x)

1 − e−i2kL
(B.7)

Further, the significance of the shape functions is that the complete description of the

element is captured in the two nodal degrees of freedom û1 and û2.

Now, applying boundary conditions to a uniform wave-guide at each end of the rod, the

forces are obtained as follows

F̂1 = −F̂ (0) = −EA[ĝ′
1(0)û1 + ĝ′

2(0)û2

F̂2 = −F̂ (L) = −EA[ĝ′
1(L)û1 + ĝ′

2(L)û2

(B.8)

Following that, the symmetric matrix can be obtained as

{
F̂1

F̂2

}
=

EA

L

ikLL

(1 − e−i2kLL)

[
1 + e−i2kLL −2e−ikLL

−2e−ikLL 1 + e−i2kLL

] {
û1

û2

}
= [k̂e]{û} (B.9)

where k̂e is defined as complex dynamic stiffness matrix for the rod element, F̂ is the complex

amplitude of applied force, û is the vector of the complex amplitudes of the node displacements

and, finally, kL is the wave number, which for rod is defined as

kL =

√
ω2ρ

E
(B.10)
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Also, in case of dispersion relation, the following definition for constant phase and group

speed is given

c =
ω

k
=

√
EA

ρA
= co (B.11)

and

cg =
dω

dk
=

√
EA

ρA
= co (B.12)

The relations described in Eqs. (B.11) and (B.12) shown that the phase and group speeds

are constant considering low order rod elements.

For taking into account structural damping, an internal loss factor η can be applied by

just using a complex Young’s modulus Ê defined as

Ê → E(1 + iη) (B.13)

which in this case has the following relation with viscous damping defined as η = 2ξ, with ξ

defined as the viscous damping fraction.

Thus, with the dynamic stiffness matrix of each element k̂e, it is straightforward to as-

semble a global stiffness matrix k̂ using the direct stiffness method. The solution is found by

solving a linear system of equations of the type {F̂} = [k̂]{û}.
In case of energy application, the following expression can be used to define the average

kinetic energy of a rod

Tkinetic =
1

4
ω2ρA

∫ L

0

ℜ{u · u∗}dx (B.14)

According to Lyon and DeJong (1995), considering the displacement and velocity, which

repeat themselves in a period defined as 1/f0, the average of the kinetic and the potential

energies over such period is found equal to the value of half of the total vibration energy T .

This leads to both energies equal each other. Therefore, the total energy of vibration can be

calculated using just the Eq. (B.14) defined for the average kinetic energy.

In case of rod application, the integral defined in Eq. (B.14) is calculated using Eq. (B.5)

as follows
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∫ L

0

Re{u · u⋆}dx = u1 · u∗
1

∫ L

0

(g1 · g∗
1)dx + u2 · u∗

2

∫ L

0

(g2 · g∗
2)dx +

u1 · u∗
2

∫ L

0

(g1 · g∗
2)dx + u2 · u∗

1

∫ L

0

(g2 · g∗
1)dx (B.15)

Thus, with the displacements u1 and u2 found in Eq. (B.9) and the frequency dependent

rod functions defined in Eqs. (B.6) and (B.7), the average kinetic energy is given.

B.0.1 Dynamic stiffness matrix of a throw-off element

In order to develop a throw-off element, the term B defined in Eq. (B.2) is neglected.

This can be done since there are no reflections. Thus, we replace the coefficient A with nodal

information by using the end condition as follows

û(0) ≡ û1 (B.16)

where û is the single nodal displacement. Also, the displacement at an arbitrary point in a

semi-infinite rod can be written as

û(x) = ĝ1(x)û1 (B.17)

and

ĝ1(x) ≡ e−ikx (B.18)

Finally, the stiffness matrix relation is given by the following expression

{F̂1} = E A[ik]{û1} = [k̂]{û} (B.19)

with the shape function ĝ1(x) complex and frequency dependent even in the simple rod case

with no damping. This means, the throw-off elements dissipate energy out of the system.

B.0.2 Application to two coupled rods

In this Section, the SEM is applied to two test problems, which consisting of two connected

rods. Additionally, for the examples proposed, the SEM is compared with Finite Element
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Method (FEM) considering just longitudinal waves. Table B.1 summarizes the physical prop-

erties of rod 1 and rod 2 adopted for both numerical examples. In both cases, the free-free

condition was also considered.

Table B.1: Physical properties for rods 1 and 2.

parameter mean value m̄ dimension

E1/2 2.71 × 109 N/m2

ρ1,2 1140 kg/m3

η1,2 2.0 × 10−2 —

A1 1.735 × 10−3 m2

A2 1.862 × 10−4 m2

L1 0.20 m

L2 2.46 m

B.0.3 Numerical results: case 1

In the first example, an axial force P is applied to the free end of rod 1 as shown in Figure

B.1. In order to do this investigation, the SEM for rod elements was implemented in Matlab

software. The FEM analyzes were performed in MSC.NASTRAN commercial code using

the ROD element defined in (Nastran, 2004b). Figure B.2 shows the respective SE model

which adopt two 2-noded spectral elements.

rod 1✲

✛ ✲

P

L1

rod 2

✛ ✲L2

Figure B.1: Coupled rods system with axial force P applied to free end of
uncoupled rod 1.

P

✲
(1) (2)

Figure B.2: SE model for the coupled rods applied to case 1.

Figures B.3 and B.4 present the results respectively for the FRF uncoupled rod, i.e., just

rod 1 present, and coupled rods 1 and 2 using SEM and FEM.
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Figure B.3: FRFs for the uncoupled rod 1: comparison of FEM (dashed) and
SEM (continuous).
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Figure B.4: FRFs for the coupled rods 1 and 2: comparison of FEM (dashed)
and SEM (continuous).
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Figure B.5: Comparison for the uncoupled rod 1 (continuous) and coupled
rods 1 and 2 (dashed) using SEM.

Considering the frequency range from 0 to 10 kHz, similar results for SEM and FEM are

found. One important feature of this simple numerical example is that rod 2 has a much higher

modal density than rod 1, which, in other words, means that rod 2 acts as fuzzy attachment

to rod 1 (Langley and Bremner, 1999). In Figure B.5 it is clear that rod 2 provides additional

damping to the modes of rod 1. In additional, as the frequency increases, the modal overlap

of rod 2 exceeds unity and the effect of individual modes is no longer visible (Langley and

Bremner, 1999).

B.0.4 Numerical and experimental results

In this section, results obtained via experimental measurements for the coupled rods case

will be presented. Correspondingly, in the experimental setup, the rods were suspended as a

pendulum.

Figure B.6 shows the experimental set-up used to obtain the FRFs. In the first one, the

FRF of the single rod 1 was measured. In the second, shown in Figure B.6, the measurements

were made on the coupled rods. The excitation signal was a white noise with the frequency

range 0 to 12.8 kHz, 3200 frequency lines, total time window of 0.25 seconds, and Hanning

window to avoid leakage. Also, in the second set-up, two accelerometers were used at the
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junction of the two rods, and the sum signal was used to minimize the effects of undesirable

flexural vibration as, in this investigation, only longitudinal waves are considered. Figure B.7

shows in details the accelerometers and the shaker position.

Finally, a comparison between numerical and experimental results for the uncoupled and

coupled rods adopting the SEM were made. The connected point between rods 1 and 2 is

used for comparison with experimental results. Figures B.8 and B.9 shown the results for

the numerical and experimental cases. As a whole, a good agreement between numerical and

experimental results is found. Some small differences can be explained about the influence of

the flexural waves, which was not considered in the numerical model.

Figure B.6: Coupled rods experimental set-up.

Figure B.7: Accelerometers in details.
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Figure B.8: Numerical (continuous) and experimental (dashed) results for
the uncoupled rod case.
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Figure B.9: Numerical (continuous) and experimental (dashed) results for
the coupled rods case.
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B.0.5 Numerical results: case 2

For the second case, an axial force P is applied at the middle of rod 1. See Figures B.10

and B.11 for the rod scheme and SE model, respectively. For the FE model, the same mesh is

adopted. In this numerical example, the SE model consist of three 2-noded spectral elements

shown in Figure B.11.

rod 1

✲

✛ ✲

P

L1

rod 2

✛ ✲L2

x0
✛ ✲

Figure B.10: Coupled rods system with axial force P applied at the middle
of rod 1.

(1) (2) (3)

Figure B.11: SEM model for the coupled rods applied to case 2.

In Figure B.12, results for the FEM and SEM are compared considering just rod 1 present.

In this case, considering the new point force location, we found just one structural mode for

the uncoupled case. As a whole, we found equivalent results between FEM and SEM for

the uncoupled and coupled rod cases. In addition, Figures B.13 and B.14 present the results

considering the FRF coupled rods 1 and 2 and respective comparison between uncoupled and

coupled rods using SEM. Again, it is interesting to add that in this setup rod 2 acts as fuzzy

attachment to rod 1, which the main idea is to provide additional damping to the modes of

rod 1 as well as additional modes at low frequencies (Langley and Bremner, 1999).
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Figure B.12: FRFs for the uncoupled rod 1: comparison of FEM (dashed)
and SEM (continuous)
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Figure B.13: FRFs for the coupled rods 1 and 2: comparison of FEM
(dashed) and SEM (continuous).
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Figure B.14: Comparison for the uncoupled rod 1 (continuous) and coupled
rods 1 and 2 (dashed) using the SEM.
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Appendix C

The Spectral Element applied to
Beams

The SEM applied to beams is developed here based on the elementary Bernoulli-Euler

beam theory, which is considered as a simplification of the Timoshenko theory. A more

complete description of the SEM applied to beam elements for higher waveguides theory can

be found in Doyle (1997).

In this chapter, the Bernoulli-Euler beam theory will be reviewed, which means that the

shear stiffness GAκ =⇒ ∞ and the rotational inertia ρI =⇒ ∞ are not considered. Assuming

both simplification, the following equation of the movement is derived

∂2

∂x2

[
EA

∂v2

∂x2

]
+ ρA

∂2v

∂t2
= q(x, t) ≡ qv −

∂qφ

∂x
(C.1)

where q(x, t) is the extern force which can be separated in the transverse load qv and the

distribute torque qφ.

Assuming that the beam treated here has constant property along its length, the following

homogeneous differential equation is defined

d4v̂

dx4
− β4v̂ = 0 (C.2)

Considering Eq. (C.2), particular solutions can be obtained based on solutions of the two

equations described by

d2v̂

dx2
+ β2v̂ = 0 and

d2v̂

dx2
− β2v̂ = 0 (C.3)

with the wavenumbers
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k1 = ±β , k2 = ±iβ and β2 ≡
√

ω2ρA − iωηA

EI
(C.4)

Following that, the complete solution can be found using the spectral representation as

v(x, t) = Σ[Ae−iβx + Be−βx + Ceiβx + Deβx]eiωt (C.5)

where A, B, C and D are coefficients determined from the boundary conditions on the

element.

C.0.6 Dynamic Stiffness Matrix - Bernoulli-Euler beam two nodes
element

In order to develop the dynamic stiffness for a 2 nodes element with length L, displacements

v̂i and node rotation φ̂i at the end of the beam, the following expression are defined

v̂(0) ≡ v̂1 , φ̂(0) ≡ φ̂1 , v̂(L) ≡ v̂2 and φ̂(L) ≡ φ̂2 (C.6)

Applying Eq.(C.6) into Eq.(C.5), the coefficients A, B, C and D can be found. Again, if

applied Eq.(C.5), the displacement v̂i and rotation φ̂i in any point defined in this beam with

length L, the following expression is used to find the response

v̂(x) = ĝ1(x)v̂1 + ĝ2(x)φ̂1 + ĝ3(x)v̂2 + ĝ4(x)φ̂2 (C.7)

with φ̂(x) = ∂v̂(x)
∂x

. Following that, the functions ĝi are the frequency dependent beam shape

functions defined as

ĝ1(x) = (r1ĥ1(x) + r2ĥ2(x))/∆

ĝ2(x) = (r1ĥ3(x) + r2ĥ4(x))/∆

ĝ3(x) = (r1ĥ2(x) + r2ĥ1(x))/∆

ĝ3(x) = (−r1ĥ4(x) − r2ĥ3(x))/∆

(C.8)

with the terms in Eq. (C.8) defined as
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∆ = −r2
1 + r2

2

r1 = i(k1 − k2)(1 − e−ik1Le−ik2L)
r2 = i(k2 + k2)(e

−ik1L − e−ik2L)

ĥ1(x) = ik2(e
−ik1x − e−ik2Le−ik1(L−x)) − ik1(e

−ik2x − e−ik1Le−ik2(L−x))

ĥ2(x) = −ik2(e
−ik2Le−ik1x − e−ik1(L−x)) + ik1(e

−ik1Le−ik2x − e−ik2(L−x))

ĥ3(x) = (e−ik1x + e−ik2Le−ik1(L−x)) − (e−ik2x + e−ik1Le−ik2(L−x))

ĥ4(x) = (e−ik2Le−ik1x + e−ik1(L−x)) − (e−ik1Le−ik2x + e−ik2(L−x))
k1 = k
k2 = −ik

The nodal loads are written then in terms of the displacement degrees of freedom (DOFs)

for the structural resultants as

V̂ (x) = −E I
∂2φ̂

∂x2
, M̂(x) = E I

∂φ̂

∂x
(C.9)

Applying the boundary conditions to a beam with length L, the matrix equation is found

as






V̂1

M̂1

V̂2

M̂2





=

EI

L3
[k̂B]






v̂1

φ̂1

v̂2

φ̂2





(C.10)

which can be written in the following form

{F̂} =
EI

L3
[k̂B]{û} (C.11)

where EI
L3 [k̂B] is defined as the dynamic stiffness matrix of the two nodes beam element for

the Bernoulli-Euler theory.

The matrix k̂B is a [4 × 4] symmetric and in general complex matrix. The individuals

terms in this matrix are defined as follows,

127



k̂11 = (z11z22 − iz12z21)ξ
3/∆

k̂12 = 0.5(i + 1)(z2
12z

2
21)ξ

2L/∆

k̂13 = (iz12z22 − z11z21)ξ
3/∆

k̂14 = −(1 − i)z11z22ξ
2L/∆

k̂22 = (iz11z22 − z12z21)ξL
2/∆

k̂23 = −k̂14

k̂24 = (z12z22 − iz11z21)ξL
2/∆

k̂33 = k̂11

k̂34 = −k̂12

k̂44 = k̂22

with

z11 = (1 − e−iξeξ) , z12 = (e−iξ − eξ) , z21 = (e−iξ + eξ) , z22 = (1 + e−iξeξ) ,

∆ =
(z2

11+z2
12)

(1+i)
and ξ = kL.

C.0.7 Dynamic Stiffness Matrix - Bernoulli-Euler beam throw-off
element

For the throw off element, the solution for the displacement in any arbitrary point in this

element is found with

v̂(x) = ĝ1(x)v̂1 + ĝ2(x)φ̂1 (C.12)

where the functions ĝi are beam shape functions defined as

ĝ1(x) = [−k2e
−ik1x + k1e

−ik2x]/∆
ĝ2(x) = [i(e−ik1x − e−ik2x)]/∆

(C.13)

and ∆ ≡ (k1 − k2), k1 = k and k2 = ik.

Also, making use of Eq. (C.5) and consider C = D = 0, the following solution can be

defined to the throw off element

v(x, t) = Σ[Ae−iβx + Be−βx] (C.14)

Applying Eq.(C.14) into Eq.(C.9) and performing a solution for the degrees of freedom

(DOFs) at the point x = 0, the matrix relation can be found as

{
−V̂ (0)

−M̂(0)

}
≡

{
V̂1

M̂1

}
= EI

[
(i − 1)k3 ik2

ik2 (1 − i)k3

] {
v̂1

φ̂1

}
(C.15)
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which can be rewritten in the following form

{F̂} = EI[k̂B]{û} (C.16)

where EI[k̂B] is defined as the dynamic stiffness matrix to the Bernoulli-Euler beam throw

off element. This is a symmetric and complex matrix which exhibit a damping behavior in

the time domain (Doyle, 1997). One important to add is that such kind of element conduct

energy out of the system, which can be interpreted as damping effect.

C.0.8 Numerical Example

In order to show the applicability of the SE method applied to a beam element, a simple

example which consist of a Cantilever beam is proposed. The result is compared with a FE

model implemented in the MSC.NASTRAN commercial software using BAR elements. A

more detailed description regarding BAR elements can be found in NASTRAN (2004b).

In this example, the beam is supposed to be made of aluminum with the properties defined

in Table C.1. Also, in this example I1 and I2 are assumed to be equal, which means that the

cross section is perfectly round.

Table C.1: Physical properties to the Cantilever beam model.

parameter mean value m̄ dimension

E 7.1 × 109 N/m2

ρ 2700 kg/m3

ν 0.33 —

η 1.0 × 10−2 —

L 1.0 m

A 6.158 × 10−4 m2

I 3.0 × 10−8 m4

In this example a Cantilever beam is defined with a load force P = 1 N applied in the

middle of the beam. A fixed-free boundary condition is applied at one end of the beam as

shown in Figure C.1 with the equivalent SE model in Figure C.2.

In Figure C.3 a point mobility receptance response is checked, while in Figure C.4 the

response at the end of the cantilever beam is verified. In general, a good agreement between

FE and SE receptance responses is found.
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Figure C.1: Cantilever beam model.
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Figure C.2: SEM model applied to a Cantilever beam model.
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Figure C.3: Comparison of FEM (dashed) and SEM (continuous) results at
the point mobility for the Cantilever beam model.
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Figure C.4: Comparison of FEM (dashed) and SEM (continuous) results at
the end of the Cantilever beam model.
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Appendix D

The Spectral Element applied to
Plates

The Kirchhoff plate equation described in Ugural (1981) is defined as follows

D∇2∇2w(x, y) − ω2ρhw(x, y) = F (x, y) (D.1)

where D = Eh3/12(1−ν2), h is the thickness, ν is Poisson’s ratio, ρ is the density, and w(x, y)

represents the transverse displacement of the plate. Two approaches are now possible. One

consists is choosing a boundary condition in one direction, say the y direction, and the other

consists in assuming a Fourier series solution in this direction, imposing periodicity, but

leaving the boundary condition enforcement for afterwards.

The first approach, used for example in Lee and Lee (1999), is currently, to our knowledge,

restricted to the simply supported solution. Assuming a sinusoidal solution for a flat plate

that is simply supported along two opposite parallel sides, the transverse displacement can

be written as

w(x, y) =
∞∑

n=1

[Ane
−ik1nx + Bne

ik1nx + Cne
−k2nx + Dne

k2nx)] sin(kyny) (D.2)

The wave-numbers can be computed by replacing Eq. (D.2) in Eq. (D.1), and us-

ing the following properties of the sine function: d2 sin(kyny)/dy2 = −k2
ynsin(kyny) and

d4 sin(kyny)/dy4 = k4
ynsin(kyny). It is important to mention here that these properties are

essential in developing the method and they are the limiting factor for extending the method

to other boundary conditions. The wave-numbers are given by

k1n =
√

k2
p − k2

yn , k2n =
√

k2
p + k2

yn , kp = (ω2ρω/D)1/4 , and kyn = nπ/Ly (D.3)
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The coefficients An, Bn, Cn and Dn are found using the transverse and angular displace-

ments at the two ends as boundary conditions, and using the moment and effective shear

force expressions (Ugural, 1981)

Mx = D

[
∂2w

∂x2
+ ν

∂2w

∂y2

]
and Vx = Qx +

∂Mxy

∂y
= −D

[
∂3w

∂x3
+ (2 − ν)

∂3w

∂x∂y2

]
(D.4)

One may look at the proposed solution to the wave equation as a wave propagation solution

in the x-direction and by a sum of sine functions in the y-direction. These sine terms can be

interpreted as propagation modes (Gautier et al., 2003). Each mode n will only propagate for

frequencies that are higher than the frequency where the wave-number associated to it, in Eq.

(D.3), becomes real, i.e., kp ≥ kyn. Given a desired frequency range, it is then straightforward

to determine how many propagation modes, N , should be taken into account.

The thin plate spectral element matrix can be obtained by writing the shear force and the

moment using the displacements and the slopes at the two extremities along x. Considering

an element with length Lx in the x-dimension, the transverse displacement and the slope at

positions x = 0 and x = Lx is given by






w1

φ1

w2

φ2





=





1 1 1 1
−ik1 ik1 −k2 k2

e−ik1Lx eik1Lx e−k2Lx ek2Lx

−ik1e
−ik1Lx ik1e

ik1Lx −k2e
−k2Lx k2e

k2Lx










A
B
C
D





= [α]






A
B
C
D





(D.5)

and the shear force and the moment are given by






V1

M1

V2

M2





= D





α1 −α1 α2 −α2

β1 β1 β2 β2

−α1e
−ik1Lx α1e

ik1Lx −α2e
−k2Lx α2e

k2Lx

−β1e
−ik1Lx −β1e

ik1Lx −β2e
−k2Lx −β2e

k2Lx










A
B
C
D





= [β]






A
B
C
D






(D.6)

where

α1 = ik3
1 + ik2

y(2 − ν)k1 ; α2 = −k3
2 + k2

y(2 − ν)k2 ; β1 = k2
1 + νk2

y ; β2 = −k2
2 + νk2

y (D.7)

and the subscript n was dropped for simplicity. Thus, combining the equations above to write

the element matrix gives
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{V1 M1 V2 M2}T = [β][α]−1 {w1 φ1 w2 φ2}T (D.8)

It is interesting to note that the element matrix is independent of the term sin(kyny) and

the sum in kyn can be performed for each element independently, or it can be done after the

global matrix assembled. In order to complete the process, the force must be projected on

the basis of sine function in terms of kyn related to the y-direction. This representation takes

into account the position of the concentrated driving force, y0 , and it is given by

F = F0
2

Ly

sin(kyny0) (D.9)

The final solution will be given by the sum in the y-direction expressed in Eq. (D.2), which

can be interpreted as a propagation mode superposition. The global matrix is assembled with

the standard direct stiffness method (Craig, 1981).

The second approach, proposed by Doyle (1997), consists in writing the displacement

solution as a Fourier series along direction y:

w(x, y) =
N∑

n=1

[Ane
−ik1nx + Bne

ik1nx + Cne
−k2nx + Dne

k2nx)]e−ikyny (D.10)

where kyn = n2π/L̄y and L̄y is the Fourier series period, which, as it will be shown later, is

not necessarily equal to the plate length along y. This solution will not impose the simply

supported boundary condition, but, instead, will impose a spatial periodicity along direction

y. In order to impose a given boundary condition, Doyle (1997) proposes the use of an image

method. Pavic (2001) recently formulated image methods, such as the boundary source sub-

stitution and the boundary conversion method, that can be used to impose different boundary

conditions in a systematic way. The idea of using image sources - fictitious forces used to

impose the desired boundary conditions, such as mirror sources used in acoustics to model a

rigid surface, but the approach still requires an ad hoc solution, which does not always exist.

In order to impose a simply supported line along x at a given y0 it is necessary to impose

a force distribution equal to the force distribution along the beam span, but located sym-

metrically with respect to the simply supported edge and with a negative sign (a positive

sign would produce a simply guided boundary condition). Therefore, to impose two parallel

simply supported edges in a plate excited by a point force, three image sources are needed,
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as shown schematically in Figure D.1 (the image sources are shown in gray), and the Fourier

series period becomes L̄y = 4Ly.

It should be noted that the dynamic stiffness matrix is the same for both approaches.

Therefore, Eqs. (D.5)–(D.8) are also used in Doyle’s formulation, but the solution will now

be obtained by summing on the Fourier series terms in Eq. (D.10), and the point forces

(actual and image) will be expressed as:

Fn =
F0

Ly

eikyny0 (D.11)

In this work, only the simply-supported boundary condition is treated, using both the

standard solution proposed by Lee and Lee (1999) and the Fourier series solutions according to

Doyle (1997). Nevertheless, using the techniques proposed by Pavic (2001) along with Doyle’s

formulation for the spectral element, it should be possible to extend the SE formulation for

reinforced plates with other boundary conditions.

y
L

Ly Ly Ly Ly

actual plate

Figure D.1: Scheme of image sources for two simply supported edges.
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D.0.9 Introducing the beam reinforcements on the plate element

Stiffener beams can be introduced in the SEM plate element them as ideally attached to

the plate, where the effective shear force and the moments at the end of the plate are equal

to those in the beam (Ungar, 1961).

Figure D.2 shows the equilibrium for a plate with an edge rigidly connected to a beam.
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Figure D.2: Equilibrium for a plate with an edge rigidly connected to a beam
(Donadon et al., 2004).

When the flexural waves reach the beam, they introduce both flexural and torsional motion

in the beam. The equations of movement for Figure D.2 become,

EIb
∂4u(y)

∂y4
− ω2ρAu(y) =

(
Qx +

∂Mxy

∂y

)

x=0−
−

(
Qx +

∂Mxy

∂y

)

x=0+

(D.12)

GJb
∂2θ(y)

∂y2
+ ω2ρIpθ(y) = (Mxx)x=0− − (Mxx)x=0+ (D.13)

where u(y) is the transverse displacement of the beam, θ(y) is the torsion angle of the beam,

EIb and GJb are the flexural and torsional stiffness of the beam, respectively, and ρA and ρIp

are the mass and the polar mass moment of inertia per unit length of the beam, respectively.

Thus, a modified boundary condition can be established at position x = 0+ to take into

account the effective shear force and the moment including the beam effects as

Vx = −D

[
∂3w

∂x3
+ (2 − ν)

∂3w

∂x∂y2

]
+ EIb

∂4w

∂y4
− ω2ρAw (D.14)

Mx = −D

[
∂2w

∂x2
+ ν

∂2w

∂y2

]
− GJb

∂3w

∂x∂y2
− ω2ρIp

∂w

∂x
(D.15)
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The beam effect in the boundary conditions must be applied at the position of the stiffener.

Here, the stiffener will be placed at right end of the spectral plate element. Using the same

procedure used to derive Eq. (D.5), the modified matrix [βn] can be obtained

[βn] = D





α1 −α1 α2 −α2

β1 β1 β2 β2

(δ1 − α1)e
−ik1Lx (δ1 + α1)e

ik1Lx (δ1 − α2)e
−k2Lx (δ1 + α2)e

k2Lx

(δ2 − β1 + κ1)e
−ik1Lx (−δ2 − β1 − κ1)e

ik1Lx (δ3 − β2 + κ2)e
−k2Lx (−δ3 − β2 − κ2)e

k2Lx





(D.16)

where the modifying terms are

Dδ1 = EIbk
4
y−ω2ρA ; Dδ2 = −iGJbk

2
yk1 ; Dδ3 = −GJbk

2
yk2 ; Dκ1 = iω2ρIpk1 ; Dκ2 = ω2ρIpk2

(D.17)

Replacing this result in Eq. (D.8) gives the dynamic stiffness matrix.

D.0.10 Numerical results for a plate with reinforcements

In order to illustrate the use of the SE method, a plate that is simply supported in the

yz-plane and free-free in the xz-plane, shown in Figure D.3, is modelled (Arruda et al., 2004).
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y
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Figure D.3: Schematic diagram of the stiffened plate (units in meters).

In this numerical example, also a comparison with FE method is made to check the

SE methodology applied to plates simply supported for two cases of applications, with and

without reinforcements. The plate is assumed to have the following properties described in

Table D.1. The receptance at the driving point located at position (x, y) = (333.4, 160.0)
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Figure D.4: Scheme of the spectral elements used in the model (Arruda et al.,
2004).

mm for the SEM and FEM solutions for both cases, with and without reinforcements are

compared.

Table D.1: Physical properties defined to the plate.

parameter mean value m̄ dimension

E 69 × 109 N/m2

ρ 2700 kg/m3

ν 0.3 —

Lx 0.400 m

Ly 0.704 m

h 0.004 m

For the first case, without reinforcements, the SEM model were evaluated using only 2

elements in order to include the driving point. For the second case, 4 reinforced plate and 2

simple plate elements as indicated in the scheme shown in Figure D.4 were used.

In case of the SEM, the responses were obtained with 10 propagation modes for the

frequency range DC-2 kHz, while the FEM model was carried out with a commercial code

MSC.NASTRAN (2004ab) using SHELL elements, with 4 nodes and 6 DOFs per node, and

BAR elements in case with reinforcements shown in Figure D.4.

In the present case, results obtained with the Fourier series approach and image sources

were not distinguishable from the sinusoidal solution using 40 Fourier lines.

Figures D.5 and D.6 shown the results obtained by FEM and SEM. The agreement in

general is very well. Nevertheless, some improvements can be done in the FE model to

achieve better results in the higher frequency range (Craig, 1981). This can be done changing

the mode truncation in modal frequency response analysis as shown in Figure D.6, where

the mode truncation is changed to a higher value. In general, it is recommended for better

accuracy with the FE model, that all modes up to at least two or three times the highest
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forcing frequency should be retained.

Finally, Figure D.7 shows the effect of a damping loss factor of η = 0.01 applied to the

case of reinforcement plate. The results for the receptances responses are nearly identical.
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Figure D.5: Comparison of FEM (dashed) and SEM (continuous) results for
the plate without reinforcements.
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Figure D.6: Comparison of FEM (dashed) and SEM (continuous) results for
the plate in Fig.D.3 (Arruda et al., 2004).
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Figure D.7: Comparison of FEM (dashed) and SEM (continuous) results for
the plate in Fig.D.3 with η = 0.01 (Arruda et al., 2004).
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