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Abstract

Fault reactivation resulting from pore pressure changes may be accompanied by seismic

activity, subsidence, well damage and the creation of fluid leakage paths. To ensure

acceptable reservoir performance in hydrocarbon production, it is critical to assess the

reactivation tendencies of existing faults. In this work, a numerical approximation is

presented that allows quasi-static deformation coupled with monophasic flow considering

compressible constituents. Two dimensional modeling is carried out using the theory of

linear poroelasticity and a new treatment of poroelastic equations defined into a multi-

physics data structure. Dimensionless forms of poroelasticity equations are presented and

several analytic and semi analytic solutions, as well as poroelastic inclusion theory were

reproduced with the proposed implementation in order to validate it. The computational

model is used to evaluate the stress changes around and into the reservoir in order to assess

the fault reactivation tendency at different scenarios. Fault reactivation tendency result-

ing from induced stress changes was calculated using the Coulomb failure stress change

method for definition of the shear slip potential along pre-existing faults at one specific

time associated to pore pressure change. It was found that fault reactivation tendency

depends on the reservoir geometry, poroelastic properties of the reservoir and surround-

ing rocks, reservoir geometry, static friction coefficient, and pore pressure distribution.

A numerical study about the accuracy of surrounding material dimensions is presented

and several scenarios with different depletion programs were evaluated to determine the

influence of the production rates over fault reactivation tendency.

Keywords: Poroelasticity, Finite Element Method, Galerkin Method, Faults (Geology).
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Resumo

A reativação de falhas, resultante de variações na pressão de poros, pode ocasionar ativi-

dades śısmicas, subsidência, dano nos poços e criação de caminhos de escape dos fluidos

contidos nos reservatórios. Para se garantir uma produção de hidrocarbonetos eficiente,

mostra-se um fator cŕıtico a avaliação das tendências de reativação das falhas existentes no

meio poroso. Neste trabalho, apresenta-se uma aproximação numérica para uma análise

de deformação quase-estática com escoamento monofásico, considerando a compressibil-

idade da rocha e dos fluidos. Um modelo bidimensional foi empregado considerando a

teoria de poroelasticidade linear e un novo tratamento da poroelasticidade através de

estruturas de dados multif́ısicos. Formas adimensionais das equações de poroelastici-

dade são apresentadas, juntamente com a reprodução de diversas soluções anaĺıticas e

semi-anaĺıticas das mesmas em semiespaços, com o propósito de se validar o algoritmo

desenvolvido. O modelo computacional foi utilizado para avaliar as mudanças de tensão,

no reservatório e em suas fronteiras, com o objetivo de se estudar as tendências reativação

de falhas em diferentes cenários. As tendências de reativação de falhas, resultantes da

indução de variações de tensão na rocha, foram calculadas através do método de variação

de tensão de ruptura de Coulomb para a definição das seções com potencial de desloca-

mento por tensões cisalhante das falhas pre-existentes em tempos espećıficos, associados

com as alterações na pressão de poros. Mostrou-se que a reativação de falhas depende da

geometria de reservatório, das propriedades poroelásticas da rocha, coeficiente de atrito

e a distribução da pressão de poros. Um estudo sobre precisão dos calculos baseado na

dimensão do material circundante é apresentada e vários cenários com diferentes progra-

mas depleção foram avaliados para determinar a influência das taxas de produção sobre

a tendência de reactivação das falhas.

Palavras-chave: Poroelasticidade, Método de Elementos Finitos, Galerkin, Métodos de,

Falhas (Geologia).
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1. Introduction

1.1 Research motivation

Porous media like rocks are solid skeletons containing pores connected and filled with

fluids in different phases (gas, oil and water). The deformation of the solid matrix and

the flow of fluids are intrinsically coupled; for practical purposes, it can be neglected,

but the manifestation of the pore pressure effect of solid deformation made it an impor-

tant phenomenon in a number of engineering situations. A good grasp of this physical

mechanism can equip engineers with the necessary insight to diagnose the poroelastic

effect for their problems on hand. In general, the diffusion of fluid pressure is followed by

the deformation of the porous rock and is a time-dependent process. The mathematical

theory of linear poroelasticity was first established by Terzaghi (1943) and Biot (1941).

From this time forth, poroelasticity has had many important applications in different ar-

eas: petroleum engineering, civil engineering and biomedical engineering. Specifically in

petroleum engineering, the effective management of underground fluid extraction relies

on the trustworthy evaluation of the subsidence of the ground surface, fault reactivation,

well damage and the creation of fluid leakage paths in the recent applications. However,

linear poroelastic problems that can be solved analytically are limited due to the complex

coupled nature of the problem. In particular for reservoir fault reactivation, several ana-

lytical and semi-analytical approaches have been developed with several limitations and

ideal assumptions.

In practical applications, generally, we have to seek numerical solutions as tools for solving

this kind of problems. In the numerical approximation of geomechanical consolidation, the

most popular numerical method is the continuous Galerkin (CG) finite element method in

particular in commercial finite element packages. In this work, a non-commercial imple-

mentation oriented to solve fault reactivation problems by means of the inclusion theory

in linear poroelasticity is developed. Consequently, it can be used to model problems with

very complex geometries, material contrast, as well as it can exploit the advantages of

numerical approximations.

1
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1.2 Literature review

1.2.1 Poroelasticity in reservoir engineering

Muskat, in the 1930’s, considered storage effects resulting primarily from fluid expan-

sion and assumed that rocks were considered as an incompressible material at reservoir

depths. Fluid expansion, however, could not explain the extra production in the East

Texas Oil Field. He deemed the high production to be due to highly compressible gas

or water drive mechanism from the reservoir peripheries. Jacob (1940) suggested alter-

natively that the high production rate was due to the compressibility of sand and clays.

Initially, poroelasticity was used in petroleum engineering to understand subsidence, es-

timate hydrocarbon volumes and predict stresses around boreholes. The subsidence of

Goosse Creek oil field described by Pratt (1926) was the first conceptual realization of

the coupling between large volumes of fluid extraction and large scale mechanical defor-

mation. Since the problem of large groundwater withdrawals from aquifers is identical,

Geertsma, who was affiliated with Shell in the Netherlands, studied the effect of pore fluid

decline on volumetric changes of rocks (Geertsma, 1957). The groundwater subsidence

literature in the 1970’s used analytical and numerical techniques introduced by Geertsma

and most recently used by Segall to connect hydrocarbon extraction with induced seismic-

ity (Segall, 1987). Poroelasticity research in the 1940’s and 1950’s was oriented primarily

toward rock mechanics. Hughes (1953) made laboratory measurements of pore compress-

ibilities to correct the available pore space at reservoir conditions. Poroelasticity research

continues in petroleum engineering and geophysics in the use of hydraulic fracturing as

a technique for measuring earth stresses, geomechanical behavior of reservoirs and its in-

teractions with side-burden rocks, faults, and another structural elements (Germanovich,

2004).

1.2.2 Induced seismicity

Injection induced seismicity

Currently, it is widely accepted that fluid injection into the subsurface environment does

induce seismicity, in other words the fluid injection can trigger small earthquakes that

evidence the induced seismicity (i.e, the in-situ stress changes along an existing fault

or fracture of an extremely low seismic magnitude). The most well-known example of

injection-induced seismicity is probably given by the earthquakes triggered by fluid injec-

tion at the Rocky Mountain Arsenal (RMA), northeast of Denver, Colorado in 1967 (Hsieh

and Bredehoeft, 1981). The U.S. Army Corps of Engineers drilled deep injection wells at

RMA in 1962 for disposal of contaminated waste water. Waste fluid was injected into a
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fractured reservoir in the Precambrian bedrock below the RMA between 1962 and 1966.

During this 4-year period, a total of 625 million of liters of waste fluid were disposed off in

the wells. Shortly after the injection of fluids started, small earthquakes were detected in

the Denver area. There was an apparent correlation between the volume of fluid injected

into the well and the number of earthquakes generated. In 1967, one year after the fluid

injection was interrupted, there were three major earthquakes in the Denver area. This

was attributed to the migration of the pressure front developed (Hsieh and Bredehoeft,

1981). After 1967, the number of earthquakes began to decline and by the 1980’s, the

swarm of seismic activity had virtually disappeared.

Another example of experimentation with fluid injection-induced seismicity is given by

the German Continental Deep Drilling Program (KTB), which was designed to increase

the knowledge of crustal stresses based on borehole measurements and to directly test

the frictional equilibrium hypothesis by evaluating whether relatively small pore pressure

perturbations could trigger micro-earthquakes (Zoback and Harjes, 1997). The injection

of 200 m3 of KBr/KCl brine into a 70 m open-hole section at the bottom of the 9.1 km

main borehole induced almost 400 micro-earthquakes at an average depth of 8.8 km. Most

of the earthquakes were determined to be strike-slip events by focal plane mechanisms

and had a NNW trending, essentially parallel to the major horizontal compressive stress.

The largest induced earthquake, of magnitude M = 1.2, occurred 18 h after the beginning

of injection (Zoback and Harjes, 1997). The study suggested that many earthquakes were

induced by very small pore pressure changes ( 1 MPa) less than 1 percent more than the

surrounding (approximately hydrostatic) pore pressure at depth.

The exploitation of the Romashikinskoye oil field, the largest in Europe, located on the

south part of the Tatarstan arch (Russia), began in the 1960’s using water flooding as

a secondary recovery method (Galybin, 1998). Observations showed that there was a

time-dependent correlation between the beginning of the water injection and the seismic

activity. Based on these observations, Galybin (1998) developed a quantitative mechanical

model to address the influence of pore pressure on fault movements. He followed the

original work by Hubbert (1959) and used the Mohr-Coulomb failure criterion for fault

stability. Their model showed that the water flooding method may induce seismic events

in historically aseismic regions and increase the magnitude of natural earthquakes in

tectonically active regions.

As noted by Nicholson and Wesson (1992), ), in each of the well-documented examples of

injection induced seismicity, there were three common characteristics; first, there was a

close geological connection between the fluid injection zones and the earthquake locations;

second, the measured or inferred in-situ stress and the measured pore pressure pointed

out that the frictional strength along the favorably oriented pre-existing faults was sur-

passed; and third, there was a clear difference between any previous seismic history and
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the induced earthquakes, which are often characterized by swarms of small shallow earth-

quakes lasting as long as the elevated pore pressures exists. It is now well understood that

injection-induced seismicity is caused by the pore pressure increase allowing the inferred

stresses in the Earth’s crust to overcome the threshold for frictional sliding along favor-

ably oriented pre-existing faults (Nicholson and Wesson, 1992). Since the shear stresses

in the poroelastic constitutive relations (Detournay, 1993), are not affected by the pore

pressure, it is usually assumed that the pre-existing shear stress is the main driving force

for fault slip caused by the shear strength reduction due to the increased pore pressure.

Extraction induced seismicity

Triggered or induced earthquakes, which spatially correlate with areas of massive fluid

withdrawal, can be classified into two rather broad categories (Nicholson and Wesson,

1992): (1) shallow and (2) deep induced earthquakes. The former occur near or within

the producing zone and exhibit, in general, normal or reverse faulting focal mechanisms

(studied in this work). They can be linked to the rapid subsidence and poroelastic strain

changes due to the extraction of large volumes of fluid (Segall, 1987). The latter occur

near the seismogenic zone base, often show signs of thrust focal mechanism and may

be related to stress and/or strain changes due to the unloading effects of the removal

of large amounts of fluid from the area undergoing crustal convergence. They are more

ambiguous and much larger in magnitude than shallow induced earthquakes, and are

much more difficult to separate from the background seismicity.

The first well documented example of shallow induced seismicity correlated with hydro-

carbon extraction was probably given by Pratt (1926). In the Goose Creek oil field, in

Galveston Bay, south Texas, production began in 1917 at depths ranging from 300 m to

1200 m, and by 1925, there was recorded surface subsidence by as much as 1 m centring

over the producing field. Subsidence was accompanied by small earthquakes, and several

normal faults developed along the field margins breaking the ground. Since then, in many

other cases around the world, it has been possible to identify seismicity correlated with

fluid withdrawal.

Probably, the most studied example of extraction-induced seismicity is that of the Lacq

gas field where seismic events have been monitored for more than 25 years (Feignier, 1990;

Grasso, 1992; Guyoton and Volant, 1992; Segall, 1994; Lahaie and Boyer, 1998). Since the

onset of production in 1957, 220109 m3 of gas had been produced by 1995 and the reservoir

pressure progressively declined from 66 MPa to 35 MPa in 1969 to 16 MPa in 1987 to 7.5

MPa in 1995 at 3700 m depth. The first seismic event was recorded in 1969, roughly 10

years after the gas exploitation started. Since 1974, when the local seismological network

was deployed, more than 1000 seismic events with the largest magnitude (M = 4.2) in

1978 have been recorded in a historically aseismic region. More than 90 percent of the
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epicentres were located in the hydrocarbon field. Surface subsidence of about 60 mm has

been observed over the 40 years of gas production in Lacq field.

Segall (1987) suggested that the poroelastic stressing of the reservoir and surrounding

rocks, associated with volumetric contraction of the reservoir material, is responsible for

the induced seismicity associated with fluid extraction. He suggested a mechanism of

surface deformation and faulting associated with fluid extraction. Pore fluid withdrawal

causes reduction in the pore pressure within the reservoir, triggering adjustments of the

geological structures to perturbations related to the reservoir response to depletion. Ac-

cording to Segall (1987), poroelastic mechanisms transfer this stress change from the

reservoir rock to its surroundings where seismic instabilities occur either above or below

the reservoir if the faults are sufficiently pre-stressed.

Existing models of depleting hydrocarbon reservoirs

The increasing number of such cases initiated great interest in studying mechanics of

fault reactivation, ground subsidence, reservoir deformation, and in-situ stress changes

caused by fluid withdrawal e.g. (Geertsma, 1966; Segall, 1987; Teufel, 1991; Morita, 1992;

Grasso, 1992; Rudnicki, 1999; Hawkes, 2009). In this section, existing models of depleting

hydrocarbon reservoirs are reviewed. In most cases, the reservoir has been treated as a

(partially) drained poroelastic inclusion surrounded by an elastic host material. Addi-

tionally, with conventional numerical modeling (Kosloff and Scott, 1980; Maillot, 1999;

Roest, 1994; Ferronato, 2008), usually two approaches are implemented: (1) the reservoir

is modeled as an inclusion with the same material properties as the matrix but with a

different pore pressure (Geertsma, 1966; Segall, 1987, 1992, 1994); (2) the reservoir is

modeled as a uniformly pressurized homogeneous ellipsoidal inclusion with properties dif-

ferent compared to the surrounding rock (Addis, 1998; Rudnicki, 1999). Figure 1.1 shows

a schematic representation of poroelastic inclusion representing the depleted reservoir ∆P

and induced stress changes in side burden rocks that can reactivate part of the pre-existent

faults (green lines).
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Figure 1.1: Fault reactivation problem divided in two parts. Upper) Initial problem.

Lower) Perturbation problem. Fault inclination θ, and green zones represent reactivated

part of fault planes. Source: redraw from Wang (2000).

Models based on homogeneous formation

The first approach is based on the works by Geertsma (1966) and Segall (1987), who

investigated the subsidence caused by oil-reservoir depletion based on elastic continuum
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mechanics. Geertsma (1966) treated an isolated volume of reduced pore pressure in a

poroelastic half-space with a traction-free surface. He considered a disc-shaped, producing

reservoir separated from its fluid-saturated, semi-infinite surroundings by an impermeable

barrier. He assumed that the pore pressure distribution is independent of the displacement

field and that the pore pressure can be determined by the uncoupled diffusion equation

or that it is prescribed from measurements at a given time. Further, assuming that the

reservoir and surrounding materials are homogeneous and have the same deformation

properties, he analyzed the corresponding poroelastic problem using the concept of strain

nucleus in the half-space, as it was introduced in the theory of thermoelasticity. He then

computed the subsidence above the disc-shaped reservoir by integrating the nucleus solu-

tion (which, essentially, is a Green’s function) over the entire reservoir volume. Although,

Geertsma (1966) did not apply his model to induced seismicity, he was able to arrive

at the important conclusion that the displacement field and subsidence are the result of

shrinkage or compaction of the reservoir, which in turn depends upon the reservoir pres-

sure reduction, height of productive interval, rock compressibility, as well as the depth of

burial and the lateral extent of the reservoir.

Based on the theory of poroelasticity (Biot, 1941; Rice, 1976; Detournay, 1993; Segall,

1987) developed a model for computing poroelastic stress changes due to fluid extraction

for general axisymmetric reservoir geometries and recovered the results of Geertsma (1966)

for a thin disk reservoir with the uniform pressure decrease as a special case. As Geertsma

(1966), rather than solving for pore pressure distribution, he assumed the pressure within

the reservoir is known from the field measurements and reservoir simulations. He further

assumed that the hydraulic diffusivity of the rocks surrounding the reservoir was suffi-

ciently low so that the deformation outside the reservoir was not drained. However, he

did consider the mechanical coupling between the stress and pore pressure and calculated

the undrained pore pressure changes outside the reservoir (i.e., ignoring changes in the

fluid content).

Geertsma (1966) and Segall (1987) also assumed that the producing reservoir has the same

elastic properties as the surrounding material to which it is perfectly bonded. He derived

Green’s functions equivalent to Geertsma (1966) approach for a radial pressure source (or

sink). Using these Green’s functions that are essentially identical to those appearing in

similar thermoelastic problems, he was able to model flat reservoirs with arbitrary radial

pressure distributions. Modeling Lacq gas field in France, Segall (1992) calculated the

poroelastic stresses resulting from production generated decreases in pore pressure and

suggested that these perturbed stresses are responsible for earthquakes associated with

fluid extraction. However, his calculations showed that the perturbing stresses are only

0.01 MPa, which is at least an order of magnitude smaller than typical stress decrease

(0.1 - 10 MPa) associated with earthquakes in nature. Therefore, he concluded that
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extraction of fluids in Lacq gas field destabilized only those faults that are already near

the frictional instability limit, i.e. shear stresses are near to overcome the frictional

strength existing on fault planes. Though the stress changes he computed were very

small, he did make a comment that steep pressure gradients in pore pressure could lead

to local stress concentrations.

the models of Geertsma (1966), Segall (1987) and after Segall (1992) were aimed at

accounting for the main reason for stress redistribution around depleted reservoir: the

change in reservoir pore pressure. Not only did they consider the stress changes within

the reservoir but also in its surrounding material. After that, Segall (1992) also used

his model to analyze the onset of fault instability. Both models assumed the elastic

properties of the reservoir to be identical to those of the surrounding material. The fact

that the material is homogeneous allowed Geertsma (1966) to consider the interaction

between the reservoir and the Earth’s surface via employing the model of a half-space.

Furthermore, because the solution was based on the corresponding Green’s function for

the homogeneous half-space, it was possible to study non-uniform pressure distributions

and non-planar reservoirs (Segall, 1992). Even though, in general, the approach requires

numerical computing of improper integrals, it is still analytical by nature and allows for

a relatively simple analysis of rather geologically complex cases as, for example Grasso

(1992), Hawkes (2009).

Models based on ellipsoidal inhomogeneity

The second approach, by Addis (1998) and Rudnicki (1999), allows for consideration

of the additional factor of material heterogeneity, i.e., the difference in the properties

between the reservoir and surrounding rocks. Their approach is based on Eschelby’s

work (Eshelby, 1957) on ellipsoidal inhomogeneity. Addis (1998) and Rudnicki (1999)

considered the reservoir to be represented by an ellipsoidal inclusion and the overburden

by the host material. Both the reservoir and the overburden were considered homogeneous

isotropic poroelastic materials with the properties of the inclusion being different from

those of the surrounding material.

The inhomogeneity was assumed to be embedded in an infinite medium. This corresponds

to the reservoir for which the depth from the surface is greater than its lateral extent

(Rudnicki, 1999). Accordingly, both Addis (1998) and Rudnicki (1999) did not account

for the interaction of the depleting reservoir with the free surface. The inhomogeneity

or inclusion was assumed to be hydraulically isolated so that its pore pressure could

differ from the surrounding material. They also assumed that the reservoir is relatively

permeable and conductive so that it has a uniform distribution of pore pressure. Finally,

they assumed that no pressure change occurs outside the reservoir or, in other words,

they assumed drained deformation of the surrounding rock.
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Modelling the reservoir with a homogeneous ellipsoidal inclusion, with different elastic

properties and a pore pressure uniform throughout the reservoir (Mura, 1982), allowed

Addis (1998) and Rudnicki (1999) to study the effect of various ellipsoidal geometries and

property mismatch on alterations of the local stress state inside the reservoir caused by

the pore pressure changes. Addis (1998) considered a large flat oblate horizontal reservoir

(that is, in the extreme of the infinitesimal aspect ratio) and concluded that the stress-

depletion response inside the reservoir decreases with increasing magnitude of Poisson’s

ratio and decreasing value of Biot’s poroelastic parameter of the reservoir material and

that the moduli of the reservoir and surrounding rocks have little influence on the stress

response inside the reservoir.

Rudnicki (1999) also considered an axisymmetric inhomogeneity, but, in addition to the

effect of Poisson’s ratio and the shear modulus, he also studied the influence of the aspect

ratio of the reservoir on the stress depletion response inside the reservoir. He concluded

that as the shape of the reservoir becomes flatter (tending in the limit towards a layered

geometry), the axial stress perturbation approaches zero, but the approach is slower for

smaller values of Poisson’s ratio and the shear modulus of the reservoir material. Further,

the strain perturbation within the reservoir approaches to the uniaxial model with the

decreasing aspect ratio of the reservoir, but the approach is slower if the shear modulus of

the inhomogeneity exceeds that of the surrounding material. In the limit of the infinitesi-

mal aspect ratio, the effect of contrast in the shear modulus becomes insignificant on both

the axial and lateral stress perturbations inside the reservoir. However, the influence of

Poisson’s ratio becomes insignificant only in the case of axial stress perturbation while

the lateral stress perturbation can differ by a few times. Rudnicki (1999) further used the

calculated stress paths to evaluate whether the stress state is going towards or away from

failure on faults within the reservoir.

Segall (1994) also used the inclusion method proposed by Eshelby (1957) to compute the

stress changes occurring within hydrocarbon reservoirs, but considered the properties of

the reservoir material to be same as the surrounding material. Their analysis showed

that if the regional stress is extensional (i.e., normal faulting stress regime), the Biot’s

coefficient is greater than 0.85, Poisson’s ratio is 0.20, the reservoir aspect ratio is 1/26,

and the coefficient of friction is smaller than 0.5, then normal faulting is promoted within

the reservoir itself due to its depletion. Regardless of these conditions, dilatant fracturing

and normal faulting are always stimulated near the edges of the reservoir or near the

regions of high-pore pressure gradients at the boundary. In the compressional regional

stress environment (i.e., reverse faulting stress regime), reverse faulting is stimulated

above and below the level of the reservoir due to reservoir depletion.

Since Addis (1998) and Rudnicki (1999) focused on the stress-depletion response within

the reservoir, they did not evaluate the poroelastic deformation and possible fault reac-
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tivation outside the reservoir. Nevertheless, although in their model, the reservoir pore

pressure was assumed to be uniform throughout and, therefore, they could not analyze the

depletion strategies associated with non-uniform distributions of reservoir pore pressure,

their work demonstrated that indeed, material inhomogeneity is an important factor (in

addition to the changes in the reservoir pore pressure).

1.2.3 Continuous Galerkin (CG) method

In terms of geomechanical modeling many techniques have been developed in order to

simulate physical processes such as stress/strain behavior, fluid flow, heat transfer and

dynamic loading in complex situations. They are often used to estimate the effects of

mining activities on stress/strain behavior of rocks and environmental issues. Many tech-

niques have been developed such as the finite element, finite difference, discrete element,

distinct element (Rejeb, 1996) and boundary element methods. For this work the finite

element method is chosen and implemented in a C++ code called LPA (Linear Poroelas-

tic Analysis), in order to provide a non-commercial option to study the fault reactivation

issues by means of linear poroelasticity.

The most popular numerical techniques for solving poromechanics problems are the con-

tinuous Galerkin (CG) finite element methods. The first application of the CG finite

element methods to model the flow of compressible fluid in porous elastic media be-

gan in 1969 by Wilson (1973). Their finite element formulation was based on Gurtin’s

variational principle (Gurtin, 1964) and applied to three-dimensional soil consolidation

problems. The stability of the CG methods was first briefly commented on Wilson (1973).

He pointed out that a very small time step resulted in oscillatory pressure for problems

with low permeability. However, he didn’t present his unstable results obtained with

small time steps. The earliest appropriate use of finite element spaces for consolidation

problems is attributed to Hwang (1971). In his numerical study on plane strain consoli-

dation problems, a six node triangle was used to represent a quadratic displacement field

and a three node triangle was selected to represent a linear pore pressure field. These

proposed finite element spaces happened to represent a stable scheme, which satisfies the

Ladyzhenskaya-Babuska-Brezzi (LBB) inf-sup condition (Brezzi, 1991). However, this

scheme is not popular in practical applications due to the constraint on approximation

spaces which requires complex programming. However using the NeoPZ environment,

arbitrary approximation orders can be used for pressure and displacement, consequently

LBB condition is easily satisfied. Vermeer and Verruijt (1981) were the first who demon-

strated nonphysical pressure oscillations in continuous Galerkin (CG) finite element so-

lutions, which are induced by using small time steps. Their stability analysis was based

on a 1-D problem. They showed that there is a lower bound for the time step, dependent
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on the order of the finite elements employed, below which spatial oscillations in pressure

will occur. A few techniques have been proposed to remove the oscillation in pressure

solution obtained by the popular CG methods. An obvious technique is to use a fine mesh

or a high order element near the boundary. Indeed, this method can help to alleviate the

oscillation. But it is not able to completely remove the oscillation until an extremely fine

mesh is used, which is not practical. Sandhu (1977) proposed to use singular elements near

the loaded surface. However, the appropriate polynomial order of singular elements could

exceed 60 degrees, which could be difficult for computer implementations. In fact these

oscillations do not only depend on the LBB condition. They occur for any approximation

of parabolic problems. An intensive search for an appropriate stabilizing parameter is re-

quired for this stabilized CG method. Since the (LBB) condition is satisfied, it is easy to

show that no considerable oscillations in pressure occur in comparison with cheap linear-

linear elements; thus a reasonable approximation can be obtained using cubic-quadratic

or high order elements for displacement and pressure chosen as state variables.

1.3 Research objectives

The main objective of the research presented in this dissertation is to understand the

fundamental mechanisms of fault reactivation induced by oil production using 2D ge-

omechanical modelling of oil reservoirs, as well as to develop the corresponding quan-

titative numerical implementation. Ideally, any model intended to simulate a physical

phenomenon should be calibrated against the real data for practical implementation but

this is left for future works. Therefore, the suggested implementation is a simple and ro-

bust platform to generate numerical models, that would allow to do parametric analysis

and identify the critical issues related to induced reservoir fault reactivation caused by

hydrocarbon production, following the next specific objectives:

• To understand fundamental mechanisms of fault reactivation due to reservoir de-

pletion by means of poroelastic effects.

• To develop a simple, robust, and quantitative numerical model for the depletion of

a hydrocarbon reservoir.

• To account for both non-uniform pressure distribution within the reservoir and

material contrast between reservoir and surrounding rocks.

• To analyze the onset of fault instability caused by the perturbation a known initial

stress state.

• To identify the important parameters affecting the fault stability.
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The study focuses on the influence of several geomechanical parameters on stress develop-

ment and fault slip in and around an arbitrary-shaped oil reservoir intersected or not by

a normal or reverse faults that are represented with potential slip surfaces in continuous

poroelastic media. Attention is given to the development, implementation and quantifi-

cation methods. Wich include arching, normal, shear stress and fault reactivation factor

along faults plane. Parameters include reservoir geometry, reservoir size, depth, tilt angle,

reservoir shape and surrounding rock properties.

As discussed in the previous section, the existing models based on the approach of a ho-

mogeneous formation accounted for the principal reason of stress redistribution around

depleted reservoirs, i.e. a change in reservoir pore pressure, while those utilizing the

approach of ellipsoidal inclusion accounted for another important factor of material in-

homogeneity, but considered uniform pressure distribution inside the reservoir. The next

natural step is to account for both the non-uniform reservoir pressure and the material

inhomogeneity in the model by using this numerical approach.

1.4 Outline of dissertation

A theoretical review of the constitutive equations for mono-phasic poroelastic model is

given in Chapter 2. Main assumptions made in the model are discussed. A dimension-

less form of the strong formulation is presented in Chapter 2. Also theoretical concepts

and a mathematical description of semi-analytical method for fault reactivation using

inclusion theory are provided in chapter 2. Through 3, the weak statement and finite

element continuous Galerkin formulation is presented. The corresponding computational

implementation and validation with some analytical solutions is presented in Chapter

4. Finally fault reactivation tendency caused by the reservoir depletion is analyzed and

numerical comparison with STARS Simulator for reservoir geomechanics calculations is

given in Chapter 5. The effect of different depletion strategies (e.g., various pressure dis-

tributions) as well as of the reservoir rigidity on the onset of fault reactivation are studied.

Chapter 6 summarizes results and conclusions obtained in this work and provides some

recommendations for future research.
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2.1 Small deformations in porous media

With the current progress in the mechanics of porous media and non-linear finite element

analysis, a finite deformation analysis of coupled problem can be established directly.

However, it is still necessary to establish a separate small deformation formulation for

comparison and modeling purposes. First, for some simple cases, it is possible to find

analytical solutions under the small deformation assumption. The analytical solutions

can be used in the validation of the small deformation analysis, as well as in the finite

deformation analysis at small strains. Under the finite deformation assumption, it is more

difficult (in most cases impossible) to find an analytical solution. Thus, the small defor-

mation analysis provides a good comparison to the finite deformation analysis. Second,

the results from the small deformation analysis are usually accurate enough in the small

deformation regime, and the amount of computer time required in the small deformation

analysis is much less than that of the finite deformation analysis. Thus the small defor-

mation approach is still acceptable and even preferable for engineering problems at small

strains. Although the response of near surface earth materials is seldom precisely linear,

the theory of linear fluid infiltrated elastic solids has proven to be very useful in studying a

variety of geotechnical and geophysical problems. These include soil consolidation (Biot,

1941), hydraulic fracture (Cleary, 1979), and various aspects of earth faulting (Booker,

1974; Rudnicki, 1986).

Even in the small strain regime, there are a number of ways to investigate the transient

response of fluid saturated porous media subject to external loading. The problem can

be simplified under different assumptions. In some cases, when the permeability of the

saturated rock is very small or large, the problem may be simplified by assuming undrained

or drained condition. Usually, the undrained condition assumption is valid if the rate of

loading is much higher than the diffusion of pore fluid. In this case, very little amount

of pore fluid can escape in transient process, the mass content of fluid in each material

element remains essentially constant, and there is no relative displacement between the

fluid phase and the solid skeleton. On the other hand, if the loading rate is much smaller

13
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than the diffusion rate of the pore fluid, the pore pressure in each material element can

be assumed to remain constant at its hydrostatic level, and does not vary with the solid

skeleton deformation.

The most direct formulation of governing equations for a linear poroelastic solid were

established by Biot (1941), other formulations have been given by Bear (1972), Rice

(1976), Cleary (1977), Rudnicki (1986) and Wang (2000). A treatment of the equations

based on those works is presented in this section.

2.2 Poroelastic formulation

2.2.1 Main assumptions

The most common and general cases in reality are intermediate. Generally an interaction

exists between the solid phase and the fluid phase. The pore fluid flows out during

loading, the pore fluid pressure varies with time. To analyze these cases, a mono-phasic

continuum model must be formulated to incorporate the effect of the transient flow of the

fluid through the porous media.

The following assumptions are introduced in this analysis:

• No inertial effects, i.e. a quasi-static deformation process.

• Small deformation regime.

• Isothermal flow.

• The flow is governed by diffusive mass flux.

• Full saturated isotropic solid.

• The permeability tensor is diagonal.

• Compressible rock formation. Fluid flow is characterized by Darcy’s law (a thorough

study of Darcy’s law is given for Bear (1972)). Some assumptions are intrinsically

related to Darcy’s law:

• Fluid phase is homogeneous and Newtonian.

• No chemical reaction, precipitation or adsorption occurs.

• There is no electro-kinetic effect.
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Used sign convention

The sign convention used in this work conforms to the continuum mechanics convention:

Tension stress is defined as a positive field.

State variables

For the small deformation analysis, the state of saturated porous media can be fully

expressed in the following variables:

• Excess pore pressure, P ex;

• The average displacement of the solid phase, u;

The mass conservation equations of the solid and fluid phases are derived. An arbitrary

volume Vvol containing solid and fluid phases is considered. Assuming a fully saturated

solid, then the volume occupied by the fluid phase (i.e. f suffix for fluid phase) is φVvol.

Let ρf , ρsolid represent the mass density of fluid and solid phase of a continuum, respec-

tively. The total mass of fluid contained in arbitrary volume Vvol can be written as

mf =
∫

Vvol

ρfφdVvolume (2.1)

while the total mass of solid contained in the same volume is

msolid =
∫

Vvol

ρsolid (1 − φ) dVvolume (2.2)

The balance of mass for the fluid phase gives

dmf

dt
=
∫

Vvol

∂ (ρfφ)

∂t
+ ∇ · (ρfφvf ) dVvolume = 0 (2.3)

Where vf is the interstitial phase velocity. The balance of mass for the solid phase gives

dmsolid

dt
=
∫

Vvol

∂ (ρsolid (1 − φ))

∂t
+ ∇ · (ρsolid (1 − φ) vsolid) dVvolume = 0 (2.4)

With Vvol being arbitrary, the last two equations using the localization theorem given in

Gurtin (1981) take the following localized form:

for the fluid phase

∂ (ρfφ)

∂t
+ ∇ · (ρfφvf ) = 0 (2.5)
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for the solid phase

∂ (ρsolid (1 − φ))

∂t
+ ∇ · (ρsolid (1 − φ) vsolid) = 0 (2.6)

2.2.2 Fluid potential and excess pore pressure

In earth sciences e.g. reservoir engineering, geology and hydrology, fluid potential at a

point is defined as the work required by frictionless process to transport a unit mass of

fluid from a state of atmospheric pressure to zero elevation or absolute datum to the point

in question D i.e. D = Zdatum − Z. Mathematically the definition of Hubbert ΦH fluid

potential for any fluid (valid for compressible and incompressible fluid Ertekin (2001)) is:

ΦH =
∫ P

Pdatum

1

γ (P )
dP − D (2.7)

The potential gradient is obtained from (2.7)

∇ΦH = ∇
(

∫ P

Pref

1

γ (P )
dP − D

)

=
1

γ
∇ (P − D) (2.8)

multiplying the ∇ΦH by γ, the conventional form of the fluid potential is found

∇Φ = γ∇ΦH = ∇ (P − ρf g D) (2.9)

where γ (P ) = ρf (P ) g is the fluid density in terms of pressure per distance usually called

fluid gravity.

In geomechanics a typical problem is to find fluid pore pressure and displacement response

due to applied load or to fluid extraction Wang (2000). If the fluid is static in the initial

state, it is possible to decompose the total pressure into the sum of hydrostatic pressure

and an excess pore pressure P ex (figure 2.1). Excess pore pressure is the total pore

pressure minus hydrostatic pressure. Thus P ex is analogue to fluid potential and can be

expressed as:

P ex = P − γD (2.10)
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Figure 2.1: Definition of excess pore pressure as decomposed total pressure referred to

hydrostatic pressure. Source: redraw from Wang (2000).

2.2.3 Darcy’s law

Darcy’s law is an empirical relationship between the flow rate through a porous medium

and the potential gradient. The Darcy average velocity of fluid phase v̄f is given as:

v̄f = −κ

η
∇Φ = −κ

η
∇P ex (2.11)

v̄mf = qf = −ρf
κ

η
∇Φ = −ρf

κ

η
∇P ex (2.12)

while v̄f is the Darcy velocity, κ is a diagonal absolute permeability tensor.

Darcy’s law can be considered an empirical or analytical expression derived from the

Navier Stokes equation (e.g. derivation is presented on Bear (1972)). In either case, it is

still the cornerstone of the contemporary reservoir simulation.

It is important to point out that the mass balance in the petroleum industry really are

the volume conservation equations written in terms of volumetric volume factors of each

phase; the basis for this mass balance is the volume of each phase at stock-tank conditions.

Once the stock tank conditions are specified, the volume balance of the oil, water and gas
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may be converted through the phase densities at stock-tank conditions. Taking the fact

that Darcy law describes flow with respect to the solid matrix Biot (1941), the macroscopic

Darcy velocity can be written as:

v̄f = φ (vf − vsolid)

φvf = v̄f + φvsolid
(2.13)

Substituting this in the mass balance equation 2.5 for v̄f

∂ (φρf )

∂t
= −∇ · (ρf v̄f ) − ∇ · (φρfvsolid) + qf (2.14)

in terms of v̄mf , the continuity equation became:

∂ (φρf )

∂t
= −∇ · (v̄mf ) − ∇ · (ρfvsolid) + qf (2.15)

The coupling term in a poroelastic simulation are φ and vs, they account for the effect of

solid deformation on flows. A conventional reservoir simulation is based on the fact that

rock deforms very slowly compared to multiphase flow, i.e. in equation 2.13 vsolid ≪ v̄f

so v̄f = φvf .

Applying the chain rule over equations 2.15 and 2.6:

∂(φρf )

∂t
+ ∇ · (v̄mf ) + vsolid · ∇ (φρf ) + φρf∇ · vsolid = qf (2.16)

∂((1 − φ)ρsolid)

∂t
+ vsolid · ∇ ((1 − φ)ρsolid) + (1 − φ)ρsolid∇ · (vsolid) = 0 (2.17)

applying the definition of Lagrangian’s total derivative with respect to a moving solid:

D(·)
Dt

=
∂ (·)
∂t

+ vsolid · ∇ (·) (2.18)

Equations can be written as:

D(φρf )

Dt
+ ∇ · v̄mf + φρf∇ · vsolid = qf (2.19)

D((1 − φ)ρsolid)

Dt
+ (1 − φ)ρsolid∇ · vsolid (2.20)

solving for ∇ · vsolid

∇ · vsolid = − 1

(1 − φ)ρsolid

D((1 − φ)ρsolid)

Dt
(2.21)
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introducing the solid fraction 1−φ = Vsolid

Vbulk
and since the volume of solids remains constant

∂ρsolidVsolid = (1 − φ)∂Vbulk = constant, is obtained:

∇ · vsolid = − Vbulk

ρsolidVsolid

D(ρsolid
Vsolid
Vbulk

)

Dt

=
(

− Vbulk

ρsolidVsolid

)

(

D(ρsolidVsolid)

Dt
−ρsolidVsolid

D(Vbulk)

Dt

V 2
bulk

)

=
(

− Vbulk

ρsolidVsolid

)

(

−ρsolidVsolid
D(Vbulk)

Dt

V 2
bulk

)

= 1
Vbulk

D(Vbulk)
Dt

(2.22)

but εv = ∇ · u = ∂Vbulk

Vbulk
, vsolid = Du

Dt
and taking the divergence of this becomes:

∇ · vsolid =
D∇ · u

Dt
(2.23)

so that:

Dεv

Dt
=

1

Vbulk

D(Vbulk)

Dt
(2.24)

the divergence of solid velocity reflects the rate of bulk volume change, substituting ∇ ·
vsolid with Dεv

Dt
in 2.19, the result is:

D(φρf )

Dt
+ (φρf )

Dεv

Dt
+ ∇ · v̄mf = qf (2.25)

adding and subtracting εv
D(φρf)

Dt

D(φ (1 + εv) ρf )

Dt
+ ∇ · v̄mf − εv

D (φρf )

Dt
= qf (2.26)

since the last term on the left hand side is small compared to the term
D(φ(1+εv)ρf )

Dt

εv
D (φρf )

Dt
≪

D(φ (1 + εv) ρf )

Dt
(2.27)

εv
D(φρf)

Dt
can be neglected. Thus the last equation can be written in a form quite similar

to the flow equations in a uncoupled simulation

D(φ∗ρf )

Dt
+ ∇ · v̄mf = qf (2.28)

where φ∗ is the so called fluid fraction and is defined as

φ∗ = φ (1 + εv) (2.29)
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for a poroelastic material with small deformation regime, the total bulk volume Vbulk can

be approximated by a linear function of εv as Vbulk = V ◦
bulk (1 + εv) and taking into account

this approximation in equation 2.29. The fluid fraction or fluid mass content (Rudnicki,

1986) φ∗ can be viewed as the system “porosity” relative to the initial under-formed bulk

volume V ◦
bulk i.e.

φ∗ = φ
Vbulk

V ◦
bulk

=
Vporous

V ◦
bulk

(2.30)

Non-deformable porous media or the initial state of deformable porous media implies that

the fluid fraction φ∗ is equal to the true porosity φ. However in an uncoupled reservoir

model, the contribution of total stress to the fluid fractions is always approximated by

the linear function of pore pressure

φ∗ = φ (1 + Cr (P ex − P ex
◦ )) (2.31)

with Cr as rock compressibility.

According to Geertsma (1957), the relative porosity variation in a deformed medium is

approximated by

dφ

φ
=

(

1

φ

(

1

Kb

− 1

Ks

)

− 1

Kb

)

(dσ̄ + dP ex) (2.32)

where σ̄ = 3λ+2µ
3

εv − αP ex is the mean stress, Kb and Ks are respectively the bulk

modulus of solid matrix and solid constituents. The Biot’s coefficient α (Biot, 1941) can

be measured independently in a jacketed drained test and is associated with Kb and Ks

by the following relationship

α =
(

1 − Kb

Ks

)

(2.33)

If small strain modelling is assumed the porosity φ can be approximated from equation

2.32

φ∗ = φ◦ +

(

1

φ

(

(1 − φ◦)

Kb

− 1

Ks

)

− 1

Kb

)

(σ̄ + P ex) (2.34)

by using φ∗ = φ (1 + εv) or φ = φ∗

(1+εv)
, it becomes

φ∗ = φ◦ + (Cb − (1 + φ◦) Cs) P ex + (Cb − Cs) σ̄ (2.35)

or in terms of ε and P ex

φ∗ = φ◦ + αεv +
1

M
P ex (2.36)
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where the M is Biot’s constant defined as

1

M
= (1 − α) (α − φ◦)Cb (2.37)

Cb and Cs are respectively the bulk compressibility and solid grain compressibility, they

are related to Kb and Ks by

Cb = 1
Kb

Cs = 1
Ks

(2.38)

if M > 0 α lies within the following bounds

φ◦ ≤ α ≤ 1 (2.39)

if the solid material is incompressible, Cs = 0 and α = 1 or α = φ◦ then 1
M

= 0. Finally,

a low advective velocity is imposed on the coupled mass balance equation
∂(φ∗ρf)

∂t
≫

vsolid · ∇ (φ∗ρf ), that is

D(φ∗ρf )

Dt
≈

∂(φ∗ρf )

∂t
(2.40)

The physical interpretation of this approximation is that the medium is undergoing de-

formation but remains stationary. Thus the multiphase flow equation 2.28 coupled with

geomechanics can finally be written as

∂(ρf

(

φ◦ + α∇ · u + 1
M

P ex
)

)

∂t
+ ∇ · v̄mf = qf (2.41)

with φ∗ replaced by equation 2.36. However, in rock mechanics analysis, it is standard to

write the coupled equations in terms of total stress and excess pore pressure as

φ∗ ∂(ρf )

∂t
+ ρf (Cb − (1 + φ◦) Cs)

∂(P ex)

∂t
+ ρf (Cb − Cs)

∂(σ̄)

∂t
+ ∇ · v̄mf = qf (2.42)

The above derivation is based on volume variations, including bulk volume, pore volume

and porosity variations. As a result, displacements or stresses explicitly show up in the

continuity equations.

Another term that implicitly involves geomechanical effect is the transmissibility term (∇·
v̄f ) through permeability changes, although rock permeability is generally considered to

remain constant in standard reservoir simulations. Permeability-stress coupling, however,

is not a direct coupling as in pore volume. It is usually conducted in a stepped manner.

One simple approach is to assume that permeability depends on porosity as, for example,

according to the Garman-Kozeny relation commonly used in basin simulators. Other
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stress-dependent permeability models may also be used, e.g. Morita (1992). Here, it is

pointed out that pore volume coupling is the primary interest of this work. Permeability-

stress coupling and non-linear relations of fluid properties by dependence of pressure are

proposed as future works.

In summary the mathematical description for coupling porous flow and geomechanics must

account for the following important characteristics of the reservoir system (Osorio, 1992):

1. The multi-component nature of the reservoirs require descriptions for both the pore

pressure of fluids and the solid components, so mass and force conservation laws

and constitutive relations, which represent the coupling effects must be combined

to obtain the fully coupled equations.

2. Pressure depletion, which occurs inside the reservoir induces an extended stress-

disturbed region outside the reservoir boundaries. The disturbed region affects the

evolution of the stress at the reservoir boundaries. The geomechanical interaction

between boundaries and stress state inside the reservoir is a fully coupled process.

This indicates that the inclusion of a surrounding environment (over burden, under

burden and side burden) is necessary to achieve a realistic modeling of the actual

geomechanical boundary conditions. Indeed the surrounding domain needs to be

extensive enough to ensure that its boundaries are not perturbed by reservoir pro-

duction or injections during the time period of interest.

2.2.4 Strong formulation

Returning to the formulation, the coupled mass balance and force equations are written

as:

∂
∂t

(ρf (φ◦ + α (∇ · u − ∇ · u◦) + Sǫ (P ex − P ex
◦ ))) + ∇ · ρf v̄f = qf (2.43)

where Sǫ = 1
M

, and

v̄f = −κ
η

(∇P ex) (2.44)

and the corresponding initial and boundary conditions

Initial at time t◦
{

P ex = P ex
◦

Boundary on ∂Γ






v̄f · n on ∂Γq

P ex on ∂ΓP ex

(2.45)
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The system is complete with equilibrium equation and linear elastic constitutive behavior:

∇ · σt + b = 0

and

σt = µ(∇u + ∇T u) + λ∇ · u − α (P ex) I

(2.46)

defining the corresponding initial and boundary conditions

Initial at time t◦






P ex
◦ = P ex

◦

u = u◦

Boundary on ∂Γ






σ · n on ∂Γσt

u on ∂Γu

(2.47)

The mono-phasic flow at reservoir conditions for compressible solid and fluid constituents

is given by taking the divergence of linear constitutive equation 2.46. Thus the system

becomes:

(λ + µ) ∇ (∇ · u) + µ∇2u − α∇P ex + b = 0

α∂(∇·u)
∂t

+ Sǫ
∂(P ex)

∂t
− c∇2P ex = 0

(2.48)

where the diffusivity (Rudnicki, 1986) is:

c =

{

κ

η

(λu − λ) (λu + 2µ)

α2 (λu + 2µ)

}

(2.49)

with the corresponding boundary conditions.

Let Ω be the physical domain and ∂Ω the boundary of Ω. It can be separated into

∂Ωdiffusion and ∂Ωelasticity:

∂Ωelasticity = ∂Γu + ∂Γσt

∂Ωdiffusion = ∂Γpex + ∂Γq
(2.50)

where ∂Γu is the displacement boundary, ∂Γσt
is the total stress or traction boundary, ∂ΓP

is the excess pore pressure boundary, and ∂Γq is the fluid flux boundary. The displacement

boundary condition is

u = u on ∂Γu (2.51)

where u is the prescribed displacement on surface. The total stress or traction boundary

condition on ∂Γσt
is:

σt · n = t on ∂Γσt
(2.52)
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where t denotes the prescribed tractions on one surface and n denotes the unit normal

vector. The excess pore pressure boundary condition is:

P ex = P ex on ∂ΓP ex (2.53)

where P ex denotes the prescribed excess pore pressure on surfaces. The fluid flux boundary

condition is:

−
(

κ
η
∇ · P ex

)

· n = q on ∂Γq (2.54)

where q denotes the prescribed flow normal to surface ∂Γq.

Initial conditions are given in terms of pressure and total stress by:

P ex = P ex
0 on Ω at t = 0

σt = σt 0 on Ω at t = 0
(2.55)

2.2.5 Dimensionless Strong Formulation

In this section dimensionless forms of poroelasticity are presented to exploit and obtain

more general results in the following sections.

Dimensionless Analysis by Using the Pi Theorem

The Buckingham π theorem is key in dimensional analysis. It is the formalization of

Rayleigh’s method of dimensional analysis. The theorem states that if we have a physi-

cally meaningful equation involving a certain number n of physical variables, and these

variables are expressible in terms of k independent fundamental physical quantities, then

the original expression is equivalent to an equation involving a set of r = n − k dimen-

sionless parameters constructed from the original variables: rewriting the equations in a

non-dimensional form. It provides a method for computing sets of dimensionless parame-

ters from the given variables, even if the form of the equation is still unknown. However,

the choice of dimensionless parameters is not unique, Buckingham’s theorem only pro-

vides a way of generating sets of dimensionless parameters, and will not choose the most

physically meaningful set (Wong, 1990). Combined with inspection analysis this proce-

dure allows the choice of important quantities that represent the fundamental behavior

of one phenomenon.

Using the procedure in Wong (1990), the poroelastic coupled system described by (2.48)

with boundary and initial conditions: (2.51), (2.52), (2.53), (2.54), (2.55), are transformed
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by the dimensionless group presented in table 2.1 as:

(λD + µD) ∇ (∇ · uD) + µD∇2uD − α∇P ex
D + bD = 0

α∂(∇·uD)
∂tD

+ SrD
∂(P ex

D )
∂tD

− ∇2P ex
D = 0

(2.56)

Table 2.1: Group of dimensionless variables. Left) Incompressible fluid constituent case.

Right) Compressible fluid constituent case.

Incompressible Definition

uD
u

LP ex
0

(λ+2µ)
α2

λD λ α2

(λ+2µ)

µD µ α2

(λ+2µ)

SrD 0

σt D
σt

P ex
0

bD b L
P ex

0

P ex
D

P ex

P ex
0

qD q η
κ

L
ρ0fluidP ex

0

vD v η
κ

L
P ex

0

xD
x
L

tD t c
L2

Compressible Definition

uD
u

LP ex
0

(λu−λ)
α2

(λ+2µ)
(λu+2µ)

λD λ α2

(λu−λ)
(λu+2µ)
(λ+2µ)

µD µ α2

(λu−λ)
(λu+2µ)
(λ+2µ)

SrD
(λ+2µ)

(λu+2µ)

σt D
σt

P ex
0

bD b L
P ex

0

P ex
D

P ex

P ex
0

qD q η
κ

L
ρ0fluidP ex

0

vD v η
κ

L
P ex

0

xD
x
L

tD t c
L2

where SrD = Sǫ

S
with Sε < S, is analog to relative fluid compressibilities at different

constraints conditions (Wang, 2000). Using the above relations the constitutive equations

take the forms:

Linearly elasticity:

∇ · σtD + bD = 0 (2.57)

σtD = µD

(

∇uD + ∇T uD

)

+ λD (∇ · uD) I − αP ex
D I (2.58)

The fluid mass content per unit of porous solid:

φ∗
D − φ∗

◦D = (α∇ · uD + SrDP ex
D ) (2.59)

Darcy’s law:

qD = −∇P ex
D (2.60)
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The equation of fluid mass conservation:

∇ · qD +
∂φ∗

D

∂t
= 0 (2.61)

The displacement boundary condition:

uD = uD on ∂ΓuD
(2.62)

The total stress or traction boundary condition on ∂Γσt D
:

σt D · n = tD on ∂Γσt D
(2.63)

The excess pore pressure boundary condition:

P ex
D = P ex

D on ∂ΓP ex
D

(2.64)

The fluid flux boundary condition:

− (∇ · P ex
D ) · n = vD on ∂ΓvD

(2.65)

Initial conditions are given in terms of pressure and total stress:

P ex
D = P ex

0 D on Ω at tD = 0

σt D = σt 0 D on Ω at tD = 0
(2.66)

There are a variety of dimensionless numbers published in petroleum literature and, based

on the flow system, they can be divided in two groups: single-phase and two-phase sys-

tems. Normally, single-phase systems are used in well test analysis where inspection

analysis enables the transformation into dimensionless space for any given set of given

boundary conditions. For two-phase systems, Lake (1990) presents a general method to

scale flow through heterogeneous permeable media for an immiscible displacement of oil

by water in a two-dimensional, anisotropic, heterogeneous cross section with statistically

stationary properties. Gharbi (2002) established a foundation for scaling miscible dis-

placement in three-dimensional reservoirs. These examples illustrate how dimensional

forms allow the understanding of essential mechanisms and present the results in a com-

pact form.

2.3 Fault Reactivation according to the inclusion the-

ory

Geological discontinuities such as faults are inherent in most petroleum formations. There

are a number of human activities, such as hydrocarbon production, that can sufficiently
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alter the in-situ stresses within a period of a few years or even a few months resulting

in reactivation and slip of the nearby faults (Hawkes, 2009). Fault reactivation due to

reservoir depletion may have various consequences ranging from shearing boreholes drilled

to inducing seismicity on faulted zones. Stress state perturbation resulting from subsur-

face fluid extraction clearly and robustly demonstrates the importance of considering the

poroelastic effect. The increasing number of induced seismicity and well damages initiated

great interest in studying the mechanics of fault reactivation, ground subsidence, reservoir

deformation, and in-situ stress changes caused by fluid withdrawal (Germanovich, 2004).

In most cases the reservoir has been treated as a partially drained poroelastic inclusion

surrounded by an elastic host material. Usually to solve this problem in the literature,

three approaches can be considered:

1. The reservoir is modelled by an inclusion with a rather arbitrary pore pressure

distribution but with the same material properties as the surrounding rock matrix.

2. The reservoir is modelled as a uniformly pressurized homogeneous ellipsoidal inclu-

sion with different material properties compared to the surrounding rock.

3. Numerical approximations as: finite difference, finite elements, or boundary ele-

ments procedures, are used to model the phenomenon.

The first approach is based on a homogeneous formation and accounts for the main reason

for stress redistribution around depleted reservoirs, i.e., a change in the reservoir pore

pressure. The second approach, utilizing an ellipsoidal inclusion, accounts for another

important factor of material inhomogeneity, but considers uniform pressure distribution

inside the reservoir.

The third approach, used in this work, is relatively flexible, but when modeling large

domains with complex geometries, unreliable solutions can be obtained if conventional

numeric techniques are used. In addition, with numerical modeling, it is possible to cal-

culate different material contrast and different production programs. Using the suggested

implementation, the challenge is to obtain a reasonable approximation without extreme

refinements and large simulations times.

2.3.1 Main assumptions

The following simplifying assumptions are made for the semi-analytical approach given

in Hawkes (2009) and Germanovich (2004):

1. Plane strain conditions. This means the third normal stress is expressed as function

of the other ones and pore pressure excess.
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2. The reservoir can interact with the earth surface, having the same elastic moduli as

side burden rocks.

3. Side burden rocks are under the drained limit.

4. Linear poroelastic behavior of reservoir and side burden rocks.

5. The initial in-situ stress state is known.

6. Ideal cohesion on the reservoir boundaries.

7. Fault gouge obeys the Mohr-Coulomb failure criterion.

8. Thin pre-existing faults. Mechanically, faults don’t exist, they represent potential

slip surfaces.

Note that, before the onset of slip, the presence of the fault does not affect the stress

state around the reservoir. In this respect, mechanically, the fault does not exist before

the slip initiates and only represents a potential slip surface rather than a displacement

discontinuity affecting the state of stress.

2.3.2 Theoretical concepts

An inclusion is defined as a sub-domain Ω in domain D, where the arbitrary strains

referred as eigenstrain ǫ∗ (x) (Mura, 1982; Hawkes, 2009) is given in Ω and is zero in

D−Ω, this strain field can be thought as internal strains that would be caused by different

mechanisms, including poroelastic, poroelastoplastic and thermal changes in a unbounded

body free of external forces and surface constrains. The elastic moduli in Ω and D−Ω are

the same, assumption (2). The remaining domain D − Ω is called the elastic matrix. In

his well-known papers on this subject, Eshelby (1957) showed that the inclusion problem

is equivalent to solving equations of elastic equilibrium for a homogeneous body with a

known body force distribution. For such bodies, the equations of elastic equilibrium are

solved using the elastic static Green functions (Mura, 1982).

The Green function G (x, x′) gives the magnitude of the displacement in the xi direction

at point x when a unit body force in the xj direction is applied at point x′ to an elastic

medium under plane strain conditions into half space assumption (1), (2), (3) and (4).

In the Green function method, the displacement u and stress field σ due to eigenstrain

ǫ∗ (x) in the inclusion is given as:

u =
∮

Ω

Cjlmnǫ∗
mn (x′) Gij,l (x − x′) dx′ (2.67)
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ǫ = −1

2

∮

Ω

Cjlmnǫ∗
mn (x′) {Gik,lj (x − x′) + Gjk,li (x − x′)} dx′ (2.68)

σ (x) = −Cijkl







∮

Ω

Cpqmnǫ∗
mn (x′) Gkp,ql (x − x′) dx′ + ǫ∗

kl (x′)







(2.69)

where ǫ∗ (x) = 0 for x ∈ D − Ω, Cjikl = λδijδkl + µ (δikδjl + δilδjk).

Since ǫ∗ (x) is discontinuous on the boundary of the inclusion ∂Ω, some quantities may

also be discontinuous on the boundary. However the displacement and the inter-facial

tractions across the boundary must be continuous, i.e. assumption (6) that is:

∆u∂Ω = uout − uin (2.70)

∆σ∂Ω · n = {σout − σin} · n (2.71)

Eshelby (1957) showed that, for an ellipsoidal inclusion in a full-space, the strain and

stress field are uniform for all interior points. In the case of dilatational eigenstrain (i.e.,

the tendency of the inclusion would be to expand or contract isotropically, as would be

the case for poroelastic or thermoelastic strains in an isotropic medium), ǫ∗ (x) = ǫC (x) I,

with I representing the identity matrix, thus equations 2.67, 2.68 and 2.69 are reduced

to:

u (x) = − (2µ + 3λ)
∮

Ω

ǫC (x′) GD
i (x, x′) dx′ (2.72)

ǫ (x) = −1

2
(2µ + 3λ)

∮

Ω

ǫC (x′) {Gik,lj (x − x′) + Gjk,li (x − x′)} dx′ (2.73)

σ (x) = − (2µ + 3λ)
∮

Ω

ǫC (x′) GS
ij (x, x′) dx′ + σ∗ (x′) (2.74)

where σ∗ (x) = (2µ + 3λ) δijǫ
C (x) is the eigenstress at point x, and GD

i (x, x′) = Gij,l (x − x′)

and GS
ij (x, x′) = µ (Gip,pj (x − x′) + Gjp,pi (x − x′)) + λ (Gkp,pk (x − x′)) δij respectively,

are influence and stress functions for dilatation (Segall, 1987; Hawkes, 2009).

It is possible to consider a reservoir as an inclusion if it has the same material properties

as the surrounding rock, and the eigenstrains are defined as the dilatational strains that

would be caused by changes in pore pressure excess ∆P ex or temperature ∆T inside the

reservoir if it was unbounded. The values of dilatational eigenstrain for these conditions,

respectively, are:

ǫC (x) =
1

3

(

α∆P ex (x)

Ku

)

=
α∆P ex (x)

(2µ + 3λ)
(2.75)
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ǫC (x) = β∆T (x) (2.76)

where Ku is the undrained bulk modulus and β is the linear coefficient of thermal expan-

sion.

The treatment of a reservoir as an inclusion also requires the assumption that no pressure

or temperature change occurs in the surrounding rocks; i.e., there is no hydraulically

driven flow, no heat transfer, and fully drained loading occurs. Inclusion theory allows

the consideration of reservoirs of arbitrary shape. A useful result of the treatment of

the dimensionless equations is the possibility to use LPA in linear thermal stress calcu-

lations, since in the dimensionless form of poroelastic and thermoelastic equations are

mathematically equal.

2.3.3 Assessment of fault reactivation

Stress arching ratios

The ratio of the change in total stress to the change in pore pressure within the reservoir

has been referred to as the stress arching ratio. Normalized stress arching ratios are

defined by Hawkes (2009) and are slightly more generalized for poroelastic analysis, since

they results from the stresses and homogeneous excess pore pressure change combination,

and are expressed as follows:

γ =
∆σ

α∆P ex
(2.77)

when γ and ∆P ex are defined σ is directly determine using 2.77.

Coulomb failure stress change ∆CFS

The Coulomb Failure Stress (CFS) is defined as follows :

CFS = τ − µsσn (2.78)

where τ and σn respectively are, shear and effective normal stress on the fault plane,

µs is the coefficient of friction in the fault plane (i.e., the tangent of the fault friction

angle normally between 0.4 < µs < 0.8 for several brittle rocks (Hawkes, 2009)). A fault

plane is activated when CFS is equal to or greater than zero. In a production or injection

scenario, where in stress changes have been induced, the change in CFS is:

∆CFS = ∆τ − µs∆σn (2.79)
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The sign of ∆τ is positive when it points in the same direction as the initial shear stress

on the plane. The sign of ∆σn is negative for an increase in compressive stress. As such,

a positive ∆CFS indicates a tendency towards fault reactivation. Earthquake-induced

∆CFS values as small as 0.1 MPa have been found to induce seismic activity in faulted

settings evidencing fault reactivation where initial CFS values are close to zero (Segall,

1992; Guyoton and Volant, 1992; Rudnicki, 1999; Ferronato, 2008; Hawkes, 2009). In

order to achieve a more general, dimensionless characterization of fault reactivation risk,

a parameter called fault reactivation factor Hawkes (2009) is defined here as follows:

λF R =
∆CFS

α∆P ex
=

∆τ

α∆P ex
− µs

∆σn

α∆P ex
=

∆γshear

α∆P ex
− µs

∆γn

α∆P ex
(2.80)

Fault Reactivation calculations

Following Hawkes (2009), effective stress changes or normalized stress arching ratios can

be calculated as follow:

• Given a ∆P ex calculate σ using the equation 2.74.

• Calculate γ and λF R over a fault plane (straight lines in this work) by applying a

stress rotation over required angles.

• Using the sing of λF R convention, evaluate which planes are reactivated.

To define fault reactivation calculation, it is necessary to solve the normal and shear stress

or arching ratios along fault plane inclined θ degrees counter-clockwise from x axis, then

calculate λF R or ∆CFS to define the tendency to reactivate. The reactivation is given

for the sign convention in table 2.2

Table 2.2: Fault reactivation tendency sign convention. Opposite case tendency to sta-

bilization. Left) Used for normalized arching ratios (Hawkes, 2009; Germanovich, 2004).

Right) Direct form of ∆CFS. Used for LPA computations. In both cases τ sign is inverted

for reverse faulting.

λF R ∆P ex < 0 ∆P ex > 0

Normal faulting
λF R < 0 λF R > 0

Reverse faulting

∆CFS sign τ

Normal faulting
∆CFS > 0

τ > 0

Reverse faulting τ < 0
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2.4 Summary

In this chapter, a displacement-pressure (also called u-p formulation) mono phasic and

dimensionless poroelastic formulation was presented. The basic assumptions and consti-

tutive relations of the continuum theory were described. The governing equations consist

of the balance of mass equations and the balance of momentum equations for each phase.

Detailed derivations of these governing equations were presented. The equations finally

became a mono phasic poroelastic system used for subsequent analyses. Also, mathemati-

cal approximation of fault reactivation is given by means of inclusion theory, a formulation

that is going to be used in chapter 5 to compare against LAP calculations.



3. Continuous Galerkin Formulation

3.1 Weak Formulation

Abstract spaces and bilinear forms

Here are defined some function spaces and bilinear forms for variational and finite element

formulations:

L2 (Ω) : Hilbert space of square integrable scalar valued functions defined in Ω. Its inner

product is defined as

(f1, f2) =
∫

Ω
f1 · f2dΩ (3.1)

and the corresponding norm is

‖f‖L2 = (f, f)
1
2 (3.2)

D|ζ| (Ω) : partial derivatives of function f with order ζ = (ζ1, ζ2, . . . , ζn). This definition

is detailed in some applied mathematics books e.g. Greenberg (1978) as

D|ζ| (Ω) =
∂

∂ζ1
x1∂ζ2

x2 · · · ∂ζn
xn

(f1, f2)
1
2 (3.3)

with

|ζ| = ζ1 + ζ2 + . . . + ζn (3.4)

where n = 2 or 3

Hm (Ω) : Hilbert space of order m, with definition

Hm (Ω) =
{

f ∈ L2 (Ω) , ∀ |ζ| ≤ m, D|ζ|f ∈ L2 (Ω)
}

(3.5)

33
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with norm

‖f‖m =





∑

|ζ|≤m

‖D|ζ|f‖2
L2(Ω)





1
2

(3.6)

and semi-norm

|f |m = ‖∂mf‖L2(Ω) (3.7)

H1
0 (Ω) : Hilbert space of order 1, with definition

H1
0 (Ω) =

{

f ∈ H1 (Ω) , f = 0 on ∂Ω
}

(3.8)

let’s define the base function spaces to approximate each state variable

V : function space of displacement field u, defined by

V =
{

f ∈ H1 (Ω) , f = uD on ∂Ω1

}

(3.9)

W : function space of excess pore pressure field, defined by

W =
{

f ∈ H1 (Ω) , f = P ex
D on ∂Ω2

}

(3.10)

V r1

h : continuous piecewise polynomial finite element space of V with degree r1 W r2

h :

continuous piecewise polynomial finite element space of W with degree r2

Please note from the above definitions in this implementation that is possible to have a

arbitrary polynomial orders.

a (u, v) : bilinear form on V corresponding to the elasticity equation defined by

a (u, v) =
∫

Ω

{λ (∇ · u) (∇ · v) + 2µǫ (u) · ǫ (v)} dΩ (3.11)

a (u, v) =
∫

Ω

{

λ (∇ · u) (∇ · v) + 2µ
(

1

2

(

∇u + ∇T u
)

)

·
(

1

2

(

∇v + ∇T v
)

)}

dΩ (3.12)

b (u, v) : bilinear form on W corresponding to the diffusion equation defined by

b (u, v) =
∫

Ω

ρ
κ

µ
∇u · ∇vdΩ (3.13)

Please note that the constitutive bilinear form depend on the constitutive material be-

havior i.e. a linear poroelastic material composed by linear elasticity and Darcy’s law
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‖u‖Ea
: energy norm related to elasticity defined by

‖u‖ = {a (u, u)}
1
2 (3.14)

‖P ex‖Eb
: energy norm related to diffusion problem defined by

‖P ex‖Eb
= {b (P ex, P ex)}

1
2 (3.15)

3.2 Variational formulation

Based on the strong formulation of poroelasticity defined in 2.56, and corresponding initial

and boundary conditions, the weak statement for this work is obtained with the follow

steps:

1. Multiply by admissible members of V for equilibrium equation and W for the mass

conservation equation. These members contract the equations to a scalar.

2. Integrate these equations over all the domain Ω.

3. Apply the divergence theorem in order to progressively weaken the smoothness

requirements of the strong solution.

4. Insert the corresponding constitutive equations, in this case the linear elasticity and

Darcy’s law.

5. Finally rewrite the weak statements in terms of the bilinear forms already defined.

3.2.1 Mass conservation equation

By multiplying the mass conservation equation by w ∈ W and integrating over all spatial

domain, the following equation is obtained

∫

Ω

(

∂φ∗
D

∂t
+ ∇ · qD

)

w ∂Ω = 0 ∂Ω (3.16)

Green’s Theorem states that:

∫

Ω

(∇ · η) ∂Ω =
∫

Γ

(η · n) ∂Γ (3.17)
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where η is a vectorial function, it can be expressed as the product of two functions η = uv,

and the last expression becomes

∫

Ω

(∇ · (uv)) ∂Ω =
∫

Γ

((uv) · n) ∂Γ (3.18)

the left hand side expands to give:

∫

Ω

(u∇ · v + v · ∇u) ∂Ω =
∫

Γ

(uv · n) ∂Γ (3.19)

this is an integration by parts; thus using this correspondences u =⇒ w and v =⇒ v̄o

into
∫

Ω
(∇ · ρov̄o) w ∂Ω result in

∫

Ω

(∇ · qD) w ∂Ω = −
∫

Ω

(qD) · ∇w +
∫

Γ

(w (qD) · n) ∂Γ (3.20)

inserting this results in 3.16

∫

Ω

(

∂φ∗
D

∂t

)

w ∂Ω −
∫

Ω

(qD · ∇w) ∂Ω +
∫

Γ

(w (qD) · n) ∂Γ = 0 (3.21)

Introducing qD normal = (qD) · n, the boundary term may be split into two parts and

expressed as

∫

Γ

wqD normal ∂Γ =
∫

ΓDirichlet

wqD normal ∂Γ +
∫

ΓNeuman

wqD normal ∂Γ (3.22)

without any loss of generality, let’s set w to zero only over ΓDirichlet. Substituting in 3.21

the final expression is

∫

Ω

(

∂φ∗
D

∂t

)

w ∂Ω −
∫

Ω

(qD) · ∇w +
∫

ΓNeuman

wqD normal ∂Γ = 0 (3.23)

inserting equation 2.60 into 3.23

∫

Ω

(

∂φ∗
D

∂t

)

w ∂Ω +
∫

Ω

(∇P ex
D ) · ∇w +

∫

ΓNeuman

wqD normal ∂Γ = 0 (3.24)

Please note that the above form only involves first derivatives of quantities instead of the

second derivatives in the original differential equation. This leads to weaker conditions to

define the solutions to this problem and thus the notion of a weak form is established.
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3.2.2 Equilibrium Equation

By multiplying the equilibrium equation 2.57 by v = v1e1 + v2e2 with v ∈ V and inte-

grating over all spatial domain, the following equation is obtained

∫

Ω

(∇ · σtD + bD) · v dΩ = 0 (3.25)

∫

Ω

(∇ · σtD) · v dΩ +
∫

Ω

bD · v dΩ = 0 (3.26)

Considering the divergence theorem applied to vectorial quantity as the dot product of

the total stress tensor σtD and the trial or test function v, σtD ·v and knowing ∇·
(

ST v
)

=

S · ∇v + v · ∇ · (S) (Gurtin, 1981) the following results in:

∫

Ω

∇ · (σtD · v) dΩ =
∫

Γ

(σtD · v) · n ∂Γ (3.27)

knowing that σtD is a symmetric tensor, by expanding the left-hand side, the result is:

∫

Ω

σtD · ∇v dΩ +
∫

Ω

v · ∇ · σtD dΩ =
∫

Γ

(σtD · v) · n ∂Γ = 0 (3.28)

∫

Ω

σtD · ∇v dΩ +
∫

Ω

∇ · σtD · v dΩ =
∫

Γ

(σtD · v) · n ∂Γ = 0 (3.29)

∫

Ω

∇ · σtD · v dΩ = −
∫

Ω

σtD · ∇v dΩ +
∫

Γ

(σtD · n) · v ∂Γ (3.30)

By substituting in the weak form, the result is

−
∫

Ω

σtD · ∇v dΩ +
∫

Γ

(σtD · n) · v ∂Γ +
∫

Ω

bD · v dΩ = 0 (3.31)

By separating the integration over Γ into integrations surface domains the action of surface

tractions over the boundary ΓNeuman and with displacement conditions over the remaining

boundary ΓDirichlet

−
∫

Ω

σtD ·∇v dΩ+
∫

ΓNeuman

(σtD · n) ·v ∂Γ+
∫

ΓDirichlet

(σtD · n) ·v ∂Γ+
∫

Ω

bD ·v dΩ = 0 (3.32)

recognizing that v = 0 on ΓDirichlet

∫

ΓNeuman

(σtD · n) · v ∂Γ =
∫

ΓNeuman

TnD · v ∂Γ (3.33)



38 Chapter 3. Continuous Galerkin Formulation

−
∫

Ω

(σtD · ∇v) dΩ +
∫

ΓNeuman

(σtD · n) · v ∂Γ +
∫

Ω

bD · v dΩ = 0 (3.34)

and please note that since the stress is symmetric

σtD · ∇v = 1
2

(

σtD + σT
tD

)

· ∇v

= 1
2

(σtD) · ∇v + 1
2

(

σT
tD

)

· ∇v

= 1
2

(σtD) · ∇v + 1
2

(σtD) · ∇T v

= σtD ·
(

1
2

(

∇v + ∇T v
))

= σtD · ǫ (v)

(3.35)

it means

−
∫

Ω

σtD · ǫ (v) dΩ +
∫

ΓNeuman

(σtD · n) · v ∂Γ +
∫

Ω

bD · v dΩ = 0 (3.36)

by inserting the linear elastic constitutive equation

−
∫

Ω

(λD (∇ · uD) + 2µDǫ (uD)) · ǫ (v) dΩ+
∫

ΓNeuman

(σtD · n) ·v∂Γ+
∫

Ω

bD ·vdΩ = 0 (3.37)

by inserting the linear poroelastic constitutive equation

−
∫

Ω

(λD (∇ · uD) + 2µDǫ (uD)) · ǫ (v) dΩ +
∫

Ω

(α (P ex
D ) I · ∇v) dΩ

+
∫

ΓNeuman

(σtD · n) · v ∂Γ +
∫

Ω

bD · v dΩ = 0 (3.38)

3.3 Bilinear Forms

In terms of bilinear forms the previously defined equations 3.24 and 3.38 become

(

α
∂ (∇ · uD)

∂tD

, w

)

+

(

SrD
∂ (P ex

D )

∂tD

, w

)

+ b (P ex
D , w) = q̂D (w) (3.39)

a (uD, v) − α (P ex
D , ∇v) = b̂D (v) (3.40)

where

q̂D (w) =
∫

ΓNeuman

w qD n ∂Γ +
∫

Ω
w qD ∂Ω (3.41)
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b̂D (v) =
∫

ΓNeuman

(σtD · n) · v ∂Γ +
∫

Ω
bD · v dΩ (3.42)

The statement of variational formulation for poroelasticity is described as

find {uD (xD, tD) , P ex
D (xD, tD)} ∈ V × W such that:

(

α∂(∇·uD)
∂tD

, w
)

+
(

SrD
∂(P ex

D )
∂tD

, w
)

+ b (P ex
D , w) = q̂D (w) ∀ w ∈ W

a (uD, v) − α (P ex
D , ∇v) = b̂D (v) ∀ v ∈ V

(3.43)

with the initial conditions

P ex
D = P ex

0D on Ω at tD = 0

u = u0D on Ω at tD = 0
(3.44)

and boundary conditions included in equations 3.41 and 3.42

for Neumann

qD normal = q̄D · n on ΓNeuman

σD normal = σtD · n on ΓNeuman
(3.45)

for Dirichlet

Po = Pinlet / outlet on ΓDirichlet

u = uconstrains on ΓDirichlet
(3.46)

3.4 Spatial discretization

Based on the statement of variational formulation given in 3.43 the semi-discrete contin-

uous Galerkin finite element approximation for poroelasticity is given as follow:

Find {uhD (xD, tD) , P ex
hD (xD, tD)} ∈ V r1

h × W r2

h such that:

(

α
∂ (∇ · uD)

∂tD

, wh

)

+

(

SrD
∂ (P ex

D )

∂tD

, wh

)

+ b (P ex
D , wh) (3.47)

where

q̂D (wh) =
∫

ΓNeuman

wh qD n ∂Γ +
∫

Ω
wh qD ∂Ω (3.48)

b̂D (vh) =
∫

ΓNeuman

(σtD · n) · vh ∂Γ +
∫

Ω
bD · vh dΩ (3.49)
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with the initial conditions

P ex
D = P ex

0D on Ω at tD = 0

u = u0D on Ω at tD = 0
(3.50)

and boundary conditions included in 3.48 and 3.49

for Neumann

qD normal = q̄D · n on ΓNeuman

σD normal = σtD · n on ΓNeuman
(3.51)

for Dirichlet

Po = Pinlet / outlet on ΓDirichlet

u = uconstrains on ΓDirichlet
(3.52)

for application of finite element method, it is necessary to introduce shape functions for

primary variables uhD (xD, tD), and Pex
hD (xD, tD) interpolated by unknown node values

ū = {u1, u2, u3} and p̄ as follows:

base function for displacements

uhD (xD, tD) =
nodes
∑

i=1

u1 iΨ
u
i e1 +

nodes
∑

i=1

u2 iΨ
u
i e2 +

nodes
∑

i=1

u3 iΨ
u
i e3 (3.53)

base function for excess pore pressure

P ex
hD (xD, tD) =

nodes
∑

i=1

p̄iΨ
P
i (3.54)

and the test functions

vh (x, t) =
nodes
∑

i=1

v1 jΨ
v
i e1 +

nodes
∑

i=1

v2 jΨ
v
i e2 +

nodes
∑

i=1

v3 jΨ
v
i e3 (3.55)

wh (x, t) =
nodes
∑

i=1

wjΨ
w
i (3.56)

where the node values of equations 3.55 and 3.56 i.e. v1, v2, v3 and w are arbitrary. The

use of continuous Galerkin method is given from continuous piecewise polynomial finite

element base and test functions such that belong to the same approximation space H1.

For simplicity we can set

v1 l = 1 and v1 j = 0 for j 6= l

v2 l = 1 and v2 j = 0 for j 6= l

v3 l = 1 and v3 j = 0 for j 6= l

wl = 1 and wj = 0 for j 6= l

(3.57)
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inserting this expressions (3.53), (3.54), (3.55) and (3.56) into (3.47), it yields:

−
∫

Ω
(λD (∇ · uhD) + 2µDǫ (uhD)) · ǫ (vh) dΩ +

∫

Ω
(αP ex

hDI · ∇vh) dΩ

+
∫

ΓNeuman

(σtD · n) · vh ∂Γ +
∫

Ω
bD · vh dΩ = 0 (3.58)

∫

Ω

(

∂ (α∇ · uhD)

∂t

)

wh ∂Ω +
∫

Ω

(

∂ (SrDP ex
hD)

∂t

)

wh ∂Ω +
∫

Ω
(∇ (P ex

hD)) · ∇wh

+
∫

ΓNeuman

whqD normal ∂Γ +
∫

Ω
whqD ∂Ω = 0 (3.59)

Integral terms can be written in form of matrices operations as:

Linear strain operator

Kelasticity ū =
∫

Ω
(λD (∇ · uhD) + 2µDǫ (uhD)) · ǫ (vh) dΩ (3.60)

Coupling matrix

Qc p̄ =
∫

Ω
(αP ex

hDI · ∇vh) dΩ (3.61)

Force right hand term

F u =
∫

ΓNeuman

(σtD · n) · vh ∂Γ +
∫

Ω
bD · vh dΩ (3.62)

For diffusion problem

QT
c

dū

dtD

=
∫

Ω

(

∂ (α∇ · uhD)

∂tD

)

wh ∂Ω (3.63)

Compressibility matrix

S
dp̄

dtD

=
∫

Ω

(

∂ (SrDP ex
hD)

∂tD

)

wh ∂Ω (3.64)

Permeability matrix

H p̄ =
∫

Ω
(∇ (P ex

hD)) · ∇wh (3.65)

Mass right hand term

F p =
∫

ΓNeuman

whqD normal ∂Γ +
∫

Ω
whqD ∂Ω (3.66)
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obtaining the follow semi-discrete continuous galerkin system

[

Kelasticity −Qc

QT
c S + H

] [

ū

p̄

]

=

[

F u

F p

]

(3.67)

3.5 Time discretization

Since the discretization in space has been carried out, the system 3.67 represent a set of

ordinary differential equations in time. For convenience the equations are written in the

following form:

[

Kelasticity −Qc

0 H

] [

ū

p̄

]

+

[

0 0

QT
c S

]

d

dtD

[

ū

p̄

]

=

[

F u

F p

]

(3.68)

Finite differences in time are used for the solution of the initial value problem. Consider

the follow equation:

H
dx

dt
+ Cx = F (3.69)

The discretization in time is carried out by the generalized trapezoidal method (Wynne,

2000). This is an implicit method, and for the approximation of

(

dx
dt

)

n+ξ
= (xn+1−xn)

∆tD

xn+ξ = (1 − ξ) xn + ξxn+1

(3.70)

where ∆tD is the time step length, xn and xn+1, are the state vectors at times tDn and

tD n+1, and ξ is a parameter which has limits 0 ≤ ξ ≤ 1. The value of ξ may be obtained

from the numerical properties of the scheme in Table 3.1.

Application of this procedure to equation 3.68 and multiplying by −1 the set of the

equations corresponding to diffusive problem, the symmetry is restored

[

Kelasticity −Qc

−QT
c −S − ξ∆tDH

]

n+ξ

[

ū

p̄

]

n+1

+

[

0 0

QT
c S − (1 − ξ) ∆tDH

]

n+ξ

[

ū

p̄

]

n

=

[

F u

∆tDF p

]

n+ξ

(3.71)

In Wynne (2000) is proved that ξ ≥ 1
2

is corresponding to unconditionally stable methods

in time.

The first matrix on (3.71) represents the stiffness and the second one represents the mass

contribution to poroelastic problem. If the initial condition of poroelasticity corresponds
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Table 3.1: Time schemes summarized in terms of different ξ values. Source: Wynne
(2000).

ξ value Time Scheme

ξ = 0 Euler forward finite difference method
ξ = 1 Backward finite difference method
ξ = 0.5 Crank-Nicolson finite difference method
ξ = 0.6667 Zienkiewicz Galerkin method

ξ = 1 +
(

1
∆tD

− 1
ln(1+∆tD)

)

Sanhu logarithmic method

ξ = 1 +





tk

tk+1−tk
− 1

ln

(

1+
tk−1−tk

tk

)



 Hwang logarithmic method

to undrained conditions, the initial solution corresponds to solving the elastic problem,

and the pressure field is dependent on the volumetric deformation of the solid matrix.

Thus the initial system leads to

[

Kelasticity −Qc

QT
c S + ξ∆tDH

] [

ū

p̄

]

=

[

F u

∆tDF p

]

n+ξ

(3.72)

But if incompressible constituents are present and diffusion terms do not exist, the com-

pressibility matrix and permeability matrix lead to zero diagonal terms in 3.72, conse-

quently, the matrices to be solved are identical to incompressible elasticity. In such cases,

there are limitations for the approximating functions and the Babuska-Brezzi convergence

condition must be satisfied to avoid non-physical oscillations.

The perturbation problem presented in Figure 1.1 is solved by the system (3.71), where it

is important to point out that stiffness and mass global matrices (3.73) are calculated once

time as well as the solution of the global system. Thus, the iterative process is reduced to

update the global load vector (3.74) as the product between the solution vector at time

n and the global mass matrix, plus the constant load vector representing the mass flux

and the body forces (right term in (3.74)), and finally by multiplying by the inverse of

the stiffness matrix, the solution vector at time n + ξ is obtained. This implies that the

time step ∆tD is held constant for the entire calculation.

Stiffness

[

Kelasticity −Qc

−QT
c −S − ξ∆tDH

]

n+ξ

Mass Matrix

[

0 0

QT
c S − (1 − ξ) ∆tDH

]

n+ξ

(3.73)
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Load V ectorn+ξ = −
[

0 0

QT
c S − (1 − ξ) ∆tDH

]

n+ξ

[

ū

p̄

]

n

+

[

F u

∆tDF p

]

n+ξ

(3.74)

3.6 Summary

The derivation of the weak formulation and its respective continuous Galerkin (CG) form

of poroelastic monophasic flow is presented in terms of bilinear forms, thus the corre-

sponding solution of these equations were described in terms of displacement and excess

pore pressure as state variables of the problem. The discrete form of the equations rep-

resents a set of ordinary differential equations in time. Finite differences were used to

approximate the temporal variable in an implicit matrix and fully coupled formulation

with different time schemes.
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4.1 Implementation

The finite element method was selected to implement the formulation represented by the

matrix systems 3.73 and 3.74. One of its capabilities is modeling complex geometries and

using different polynomial orders to approximate the state variables. However, the use

of this technique represents relative complex challenges from the computational point of

view. This complexity is related to integral calculations, boundary conditions, the need

to use different polynomial orders and different elements types in the same computational

mesh. It is possible to overcome these computational complexities by using object oriented

programming. In object oriented programming, data processing is given by the interaction

of objects that can compute and interchange data to solve one specific problem.

In an object oriented environment, classes represent entities describing data and set of

actions for designing applications and computer programs. When one set of data is

determined, the actions to be executed over this set are determined only under the class

rules. The use of classes is reflected through objects generated from them; thus one object

can be viewed as an independent machine with a distinct role or responsibility. When one

object is generated its actions (or methods) on data are closely associated with it. Thus

instead of programming one set of routines to solve a problem, it is possible to generate

objects that interact between them to solve the same problem.

The cornerstone of object oriented programming is the reuse of classes already developed

and tested in different problems. This favors the quick development of new functionalities

of an existing system to solve another type of problem, since the programmer is focused on

implementing the needed code without thinking about all the possible modifications. It

decreases the possibilities of errors that can alter the normal functionality of the system.

In object oriented environments to solve partial differential equations with finite elements;

matrices, vectors, solvers, nodes, geometric and computational elements are treated as

objects that interact under several rules. This implementation, LPA, was developed using

the NeoPZ environment Devloo (2009) and new classes were implemented to solve the

formulation in question.

45
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NeoPZ description

NeoPZ environment is an object oriented C++ library for the development of finite el-

ement programs (Devloo, 2009), maintained by the LabMeC staff at Unicamp and ac-

cessible from Google Code. The main characteristic of the NeoPZ environment is the

strong separation between geometry modelling, definition of the interpolation space and

definition of the variational statement used to approximate the physical problem. This

approach offers user a generic environment where the re-usability of implemented finite

element algorithms is maximized, for instance:

• One dimensional geometric element which uses a mapping in cylindrical coordinates

is implemented . Using this, rings or helicoidal springs can be approximated without

error in the geometrical map.

• Hierarchical shape functions have been defined for the computational elements. Con-

sequently, all finite element approximations using NeoPZ can make use of high order

interpolation functions, independently of the underlying variational statement.

• H-adaptivity has been implemented, both at the level of the geometric and computa-

tional grid. At the computational grid level, compatibility constraints are computed

between elements which have common sides at a different level. As a result, all finite

element models implemented in PZ can use adaptive grids.

• Any new model, represented by some partial differential equation can be introduced

by adding a class derived from the TPZMaterial class. After the variational state-

ment has been implemented, it can be approximated by C0 finite elements of any

interpolation order, using adapted grids if desired.

LPA description

Linear poroelastic analysis LPA is composed of several C++ classes already implemented

in NeoPZ (TPZGeomesh,TPZCompMesh,TPZMultiphysicsElement). In addition, the

class TPZPoroElastic2d was developed to compute the poroelastic contribution based

on the weak statement previously presented as well as others for geometry processing and

analytical functions (TPZReadGIDGrid). The LPA is based on three principal classes

TPZGeomesh, TPZCompMesh and TPZPoroElastic2d, which involve finite element com-

putations. Operations like generation of geometries, matrix and solution calculations are

considered out of these classes, since they are not an essential part of finite elements

procedures.

The main program can be described by several steps as follows:
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• Generate the geometry that represents the description of nodes, elements and ma-

terials identifiers.

• Using the geometric information two computational meshes are created one for

elasticity, another for the diffusion problem.

• Based on these meshes, the Poroelastic mesh (overlapping of diffusive and elastic

domains is generated (see Figure 4.2), by using the class TPZPoroElastic2d.

• Compute the contribution for each computational element and assemble the global

stiffness and load vector

• Do time calculations and print the required data at each time.

TPZGeomesh

The class TPZGeomesh implements a geometric mesh for the NeoPZ environment. It

provides services for description of geometric elements: one, two and three-dimensional

elements can be used. Several classes derived from TPZGeomesh are used to store the

necessary data in the geometric information such as nodes, elements, material identifiers

as well as node coordinates, elements sides and jacobean calculations for isoparametric

elements. All this information is needed to compute global stiffness and load vector arrays.

TPZCompMesh

The class TPZPoroElastic2d defines the interpolation space and the integration over each

element. It has the information required to compute the stiffness and load vector arrays

for each boundary and domain elements. The computational mesh is like a repository of

computational elements, nodes and material objects that define the way the calculations

are done. In this work the class TPZPoroElastic2d controls how to compute the contribu-

tion over each computational element. TPZCompMesh also contains the current solution

of the mesh and an element wise solution vector.

TPZPoroElastic2d

The class TPZPoroElastic2d is the most important in LPA computations because it rep-

resents the mathematical description of the poroelastic problem defined previously, and

in particular it contains one method called contribute that represents the weak statement

and how the poroelastic contributions of each elements are done. Detailed description of

this method is given in the appendix B.1. Algorithms 1, 2, 3 and 4 explain the code lines
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of contribute method and their relationships with the mathematical expressions developed

in chapter 3.

In TPZPoroElastic2d the element contributions are computed using basis and weight

functions and their corresponding derivatives according to the bilinear forms given in

chapter 3. This basis and weight functions values are provided for the computational

mesh into TPZCompMesh class. Figure 4.1 represents how the element information is

processed between the objects generated by each class.

Figure 4.1: Schematic flow of data computations and class interactions.

TPZGeoMesh
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Solve system

Assemble

1
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4
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Execute 1, 3 and 2 for  each computational 
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1
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2

3

4

5

6

Multiphysics point of view

The concept of multi-physics simulations into NeoPZ is very different from other known

finite element implementations. Multiphysics meshes and classes have been validated on

approximations using HDiv flux-pressure interaction. In this work, coupled flow through

porous media modeled by linear poroelasticity is validated, contributing to NeoPZ’s mul-

tiphysics branch. In a general form a multiphysic mesh is composed of the information

given in each material domain that represents one specific state variable. Thus it is nec-

essary to define different domains with geometric information to calculate the respective

basis and weight functions presented in the finite element formulations. Figure 4.2 shows
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how it is possible to define different domains and to compose the poroelastic domain (red

domain) embedded in an elastic matrix with conforming meshes.

Figure 4.2: Embedded domain by overlapping areas. Left) Diffusion domain that contains
all geometric information and computational information for flow calculations, Right)
Elastic domain that contains all geometric information and computational information
for elasticity.

In finite element approximations of systems of partial differential equations, it is cus-

tomary to associate the same weight function to each state variable. For instance, in

two-dimensional elasticity the same weight function is associated with the horizontal and

vertical displacements. In most of finite element approximations, the number of state

variables associated with each shape function is constant. In these cases, the number of

state variables can be a value associated with geometric meshes. In multiphysics prob-

lems, the number of state variables can vary according to the physical quantity being

represented. For instance, in numerical approximations of flow through porous media,

two (or three) state variables are associated with the shape functions which approximate

the displacements of the porous matrix and a single shape function is associated with

the pressure variable. In NeoPZ there exists one entity that contains the information

about the shape functions called connect. Each connect keeps track of the number of

state variables associated with its weight function and consequently it is used to model

poroelastic inclusions, by combining the geometric information for each weight function

in each domain intersection, i.e. one computational mesh can be viewed as an indepen-

dent 2D plane of information that combine the multiphysics classes (see Figure 4.3 ) with

other computational domains, as TPZPoroElastic2d that merges the intersecting meshes

information, following mathematical statements of linear poroelasticity.

Also it is very important to point out that once the variational statement of a multi-

physic problem, for example thermo-poroelasticity,is defined, it can implemented via the

procedure explained in appendix B. Figure 4.3 represents the associated basis and weight
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functions with each computational mesh, thus the TPZCompMesh and TPZPoroElastic2d

classes have the required data to calculate the contribution of each element.

Figure 4.3: Multi-physics view of the poroelastic problem. All the information of each
computational element that represent one physical problem is stored and processed by
multiphysics elements as the poroelastic elements represented by TPZPoroElastic2d. Left)
Computational Elasticity Mesh. Right) Computational Diffusion Mesh.

+

Geometry Generation using GID

In this section, the process to generate the geometry using GID is described. GID is

a universal, adaptive and user-friendly pre and post-processor for numerical simulation

in science and engineering. It has been designed to cover all the common needs in the

numerical simulations field from pre to post-processing: geometrical modeling, effective

definition of analysis data, meshing, data transfer to analysis software, as well as the

visualization of numerical results. It was chosen for preprocessing the geometry, because
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it can be easily adapted to the problem requirements. For LPA geometric input a cus-

tomized material template was defined in order to associate the material identifiers with

the geometric elements (Algorithm 5).

Geometry generation can be done by command line or graphical user interface (GUI). For

the quick generation of meshes, the GUI method is preferred, but to generate a model

for parametric analysis the command line is preferred. Basically, geometry generation is

divided into four steps:

• Open a new project, then select a problem and type ansys55plane, by following

Menu / Data / Problem Type / ansys55 / ansys55plane.

• Save under any name and close the program.

• In the folder of the GID project, replace the content of the *.mat file by Algorithm

5.

• Open the project and generate your own geometry associating the materials identi-

fiers.

Finally once the geometry is generated, it is exported to a *.dump file that contains all

the information of the geometric mesh and the associated materials.

Figure 4.4: Geometry generated in GID and its corresponding geometric mesh.

Xml control file

Extensible Language (XML) is a set of rules for encoding documents in machine readable

form. XML is a popular format for sharing data on internet. Websites that frequently

update their content, such as news sites or blogs, often provide an XML feed so that

external programs can keep abreast of content changes. Uploading and parsing XML

data is a common task for network-connected apps. TinyXML is a simple, small, C++
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XML parser that can be easily integrated into other programs. In brief, TinyXML parses

an XML document, and builds from that a Document Object Model (DOM) that can

be read, modified, and saved. Xml files control LPA computations. All the cases and

tests presented here have one GID *.dump and *.xml files that define the control of the

simulation and the simulation times to print information.

In summary, to implement a strong formulation using NeoPZ environment, the attention

is concentrated on coding the corresponding weak formulation in NeoPZ code lines. Weak

forms of linear poroelasticity were translated to NeoPZ syntax as shown in Appendix B.1.

Figure 4.5 shows a simple work flow to generate computational models with LPA; the

information is processed from the geometry created in GID and exported to *.dump

files, then converted for LPA to geometric and computational meshes and the simulation

behavior is defined by *.xml files. The simulation results are post-processed using *.vtk

files in Paraview.

Figure 4.5: General work flow to solve poroelasticity equations.

4.2 Computational Tests

In order to demonstrate the code validity, two different problems with analytical solutions

are presented:

1. Step load applied to infinite and finite columns.

2. Mass source injection into a bounded infinite poroelastic medium.

4.3 Step load applied to an elastic half space

The sudden application of a uniform surface load by permeable piston is the natural

consolidation problem. When a burial history occurs in a very short time relative to fluid

diffusion it can be modeled as a step change in vertical load as shown in Figure 4.6.
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Figure 4.6: Step load applied to a poroelastic half space. Left) Boundary conditions for

the poroelastic column. Geometric Mesh with associated materials identifiers (Colors),

the blue one (number 1) represents the poroelastic column and the others, the boundary

conditions. Center) Mesh for finite poroelastic column, Right) Mesh for Infinite poroelas-

tic column. Source: redraw from Wang (2000).

Semi-Infinite poroelastic column

Initial and boundary conditions

The problem is to find the excess pore pressure P ex(y, t) , and vertical displacement,

u (y, t), after a uniform downward load −σt0 is suddenly applied at t = 0 on y = 0 of

a vertical infinite column that is constrained laterally for two non flux boundaries. The

vertical load is held constant with time, and the top surface is drained P ex (0, t) = 0.

Mechanical equilibrium requires that the suddenly applied surface load −σt0 be transmit-

ted instantaneously throughout the column. This constant vertical stress at all depths

induces an excess pore pressure P ex = γσt0 at all depths and at different times.

Dimensionless expressions

Using the same procedure for dimensionless forms of poroelastic problem and inserting

the dimensionless groups of table 4.1 in the equations given in Wang (2000), the following

analysis results are obtained:
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Table 4.1: Group of dimensionless variables for step load in semi-infinite poroelastic solid.

Symbol Definition

uD
u

LP ex
0

(λu−λ)
α2

(λ+2µ)
(λu+2µ)

cmD cm P ex
0

P ex
D

P ex

P ex
0

vD v η
κ

L
P ex

0

z D
z
L

uzD
uz

L

tD tL2

c

Excess pore pressure

The governing equation and initial and boundary conditions for excess pore pressure

are mathematically identical to the heat diffusion problem (Figure 4.6). In one specific

conditions of one-dimensional problem, uniaxial strain with constant vertical stresses, the

uncoupled homogeneous pore pressure diffusion equation is obtained as:

P ex
D (yD, tD) = erfc

(

yD

2
√

tD

)

(4.1)

at dimensionless argument yD

2
√

tD
= 1.0 the excess pore pressure has declined about 15

percent from initial state. Based on this criterion, an estimate of the time it takes for the

surface pressure to propagate diffusively to depth yD is given by tD =
y2

D

4
.

Displacement

An infinite column length means that the initial vertical displacement at the surface

is infinite in response to sudden application of the load. However the time-dependent

displacements of the surface yD of the infinite column is finite and is given as.

uyD (yD, tD) =









2
√

tDe
− y2

D
4tD

√
π

− yD erfc

(

yD

2
√

tD

)









1y (4.2)

Darcy velocity

vyD (yD, tD) = − e
− z2

D
4tD

√
π

√
tD

1y (4.3)
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Numerical results

The geometric mesh is composed of 10 quadrilateral elements with cubic-quadratic orders

(displacements r1 = 3 and excess pore pressure r2 = 2) representing a column with finite

length of L = 10.0 ( see Figure 4.6 right side). Assuming incompressible rock and fluid

constituents, simulation time of 1 and time step ∆tD = 0.001, figures 4.7 and 4.8 show

the evolution of excess pore pressure and displacement at different dimensionless times.

A good approximation is obtained using cubic-quadratic elements.

Figure 4.7: Dimensionless displacement y direction for semi-infinite column at different

dimensionless times. Plot line ((0, 0), (0, −10.0)). Points represent the numerical solution.
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Figure 4.8: Dimensionless excess pore pressure for semi-infinite column at different di-

mensionless times. Plot line ((0, 0), (0, −10.0)). Points represent the numerical solution.
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Finite poroelastic column

In Terzaghi’s classical consolidation test the poroelastic column is finite i.e. L = 1.0. A

constant stress −σt is applied suddenly on the surface z = 0 of a fluid saturated sample

of length L. This problem is analogue to a semi-infinite column with the same boundary

condition and step load. Dimensionless forms of these equations are given by Korsawe

and Starke (2006) as:

Pore Pressure Excess

P ex
D (yD, tD) =

∞
∑

n=0

(

2

M
sin (M · xD) exp−M2tD

)

(4.4)

Displacement

uyD (yD, tD) = 1 − xD −
∞
∑

n=0

(

2

M
cos (M · xD) exp−M2tD

)

(4.5)

Darcy velocity

vD (yD, tD) = −
∞
∑

n=0

(

2cos (M · xD) exp−M2tD

)

(4.6)

where M = 1
2
π (2n + 1). These expressions are compatible with the variables defined in

Table 2.1.
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Numerical results

An excellent fit is obtained for the state variables shown in figures 4.9 and 4.10.

Figure 4.9: Dimensionless displacement y direction for finite column at different di-

mensionless times along the plot line ((0, 0), (0, −1.0)). Points represent the numerical

solution.
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Figure 4.10: Dimensionless excess pore pressure for finite column at different dimension-

less times along the plot line ((0, 0), (0, −1.0)). Points represent the numerical solution.
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The solution of Korsawe and Starke (2006) is described by equation 4.1 for tD < 0.04. For

tD greater than this limit the effect of the impermeable boundary is observed in figure

4.11, because limited mass in the finite column doesn’t support pressure for long times.

Consequently a fast draw down is observed in relation to infinite behavior.

Figure 4.11: Dimensionless excess pore pressure for finite and semi-infinite columns at

tD = 0.2. Plot line ((0, 0), (0, −1.0)).

Figure 4.12: Poroelastic response of finite column along 0 < yD < 0.2 case with incom-

pressible constituents at 10 time steps.
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The figure 4.12 shows pressure oscillations generated by using linear-linear (L-L or (r1 =

1, r2 = 1)) and quadratic-linear (Q-L) elements when undrained initial response with

incompressible constituents is approximated. Please note that for cubic-quadratic (C-Q)

elements no oscillation was observed. C-Q or higher order elements are used over the

calculations in chapter 5.

Convergence rate in time approximation

The Crank-Nicolson (ξ = 0.5) finite difference scheme has second-order approximation.

Consequently ξ = 0.5 has the best answer in terms of error norm ‖error‖ = ‖Un − Uan‖
for each state variable with time step decrease as shown in Figures 4.13 and 4.14. In

general ξ = 0.5 will be used to calculate poroelastic responses in chapter 5.

‖error‖ =





∫

Ω

error2∂Ω





1
2

(4.7)

Another consideration is the Courant–Friedrichs–Lewy condition (CFL condition) that

relates the time step size with the size of the discrete parts (elements). Normally, if an

explicit numeric scheme is used, the CFL must be equal to 1 to obtain convergence. The

implicit scheme used here is less sensitive to numerical instability and so larger values of

CFL may be tolerated.

Figure 4.13: Error norm for excess pore pressure vs different time steps with different

time schemes ξ = {0.5, 0.6667, 1.0}.

PD
ex
with Ξ " 0.5

PD
ex
with Ξ " 0.6667

PD
ex
with Ξ " 1.0

!5.0 !4.5 !4.0 !3.5 !3.0 !2.5 !2.0

!4.0

!3.5

!3.0

!2.5

Log! "tD "

L
o
g
! # #

er
ro
r2
$
#
"1 2



60 Chapter 4. Implementation and validation

Figure 4.14: Error norm for displacement in y direction vs different time steps with

different time schemes ξ = {0.5, 0.6667, 1.0}.
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Convergence rate with different DOF

The error norm is computed for spatial discretization refinement and polynomial order

increase, and both cases reflect an increase in the numbers of degrees of freedom. Starting

from a base mesh, spatial refinement or level of refinement are built by dividing each

element into four elements. Figures 4.15 and 4.16 show how the error norm decreases

with progressive refinement.

Figure 4.15: Error norm for excess pore pressure vs number of DOF with different

refinement levels 0, 1, 2, 3.

Sem i-in fin ite PD
ex

Finite PD
ex

4 5 6 7 8

-14

-12

-10

-8

-6

-4

-2

Log of DOF number

L
o
g
H à W

e
rr
o
r
2
â
W
L1 2



4.3. Step load applied to an elastic half space 61

Figure 4.16: Error norm for displacement in y direction vs number of DOF with different

refinement levels 0, 1, 2, 3.
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Figures 4.17 and 4.18 show fast convergence with increment in polynomial order in com-

parison with spatial refinement . Using (r1 = 4, r2 = 3) or (r1 = 5 r2 = 4) with

coarse meshes, it is possible to obtain reasonable approximations, this is expected with

approximation of smooth solutions.

Figure 4.17: Error norm for excess pore pressure vs number of DOF with different

polynomial orders ((r1 = 2, r2 = 1), r1 = 3, r2 = 2), r1 = 4, r2 = 3), r1 = 5, r2 = 4)).
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Figure 4.18: Error norm for displacement in y direction vs number of DOF with different

polynomial orders ((r1 = 2, r2 = 1), r1 = 3, r2 = 2), r1 = 4, r2 = 3), r1 = 5, r2 = 4)).
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4.4 Mass source injection into a bounded infinite poroe-

lastic medium

Analytic expressions

In order to validate 2D calculations, the analytical solution by Cleary (1979) was pre-

sented. It was corrected by Rudnicki (1986), and it calculates the poroelastic response

under plain strain condition to constant fluid mass injection/production into a bounded

infinite poroelastic medium (figure 4.19).

Solutions for continuous fluid mass injection rate q per unit of length Lline can be obtained

by the superposition of the solution of instantaneous injection of a amount of fluid Q at

one time (Rudnicki, 1986). As a result of this superposition, fluid mass change is

m (r, t) =
q

4πc
E1

(

r2

4ct

)

(4.8)

where

E1 (z) =
∫ ∞

z
s−1e−sds (4.9)
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show that excess pore pressure ∆P ex and horizontal stress changes are coupled. Heidbach

(2010) mathematically showed the maximum value of ∆σ
∆P ex PSC ratio from the long-term

limit. By knowing the initial pore pressure and stress field, the spatio-temporal evolution

of excess pore pressure and horizontal stress changes caused by fluid injection/production

from mass sources is:

∆σ

∆P ex
=

αµ

(λ + 2µ)
I (4.14)

This means that for long times of constant fluid injection/production the excess pore

pressure and the stresses rise a constant changes for each volume of fluid removed from the

rock, thus areas with considerable long times of average constant injection or production

may be near to this long term, if the rock behavior is assumed linear.

Initial and boundary conditions

Figure 4.20: Geometric mesh with directional refinement at line source. Below) Table

shows dimensionless variables corresponding to values in table 4.2.

α SrD λD µD σtD n P ex
D qD ξ ∆tD

0.7 0.790984 1.00818 0.668069 0 0 1.0 0.5 1.0 · 10−5
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Figure 4.20 shows the setup of the 2D plane quarter-domain FE-model. The problem has

2 planes of symmetry. Heidbach (2010) uses the parameters presented in table 4.2. Initial

conditions are assumed zero and boundary conditions are:

• An injection point (red point) located at the center e.g. intersection of symmetry

lines

• Symmetry lines have non flux and null displacements in x direction for blue line and

y direction for withe line.

• Far field contour is a free normal stress and drained condition (red line).

Here, a zero dimensional element is used (Point element located in corner, see Figure 4.20)

to represent the mass line source. For this problem the dimensionless time step is small

due to the need to compare secondary variables, in other words, it is indispensable to have

a good match in state variables (excess pore pressure and displacements). The spatio-

temporal evolution of PSC was computed for long times. Heidbach (2010) computed the

poroelastic response of Rudnicki (1986) three-dimensional solution with a homogeneous

2D axis-symmetric FE model and solved the poroelasticity equations using a commercial

software package ABAQUS / StandardTM. Similarly, this modeling was based on a 2D

version of Rudnicki (1986) analytic solution under plane strain conditions, modeled with

LPA.

For long times tD = 10.0, 2D solutions converge to the same PSC ratio of tangential

stresses in 3D solutions αµ
(λ+2µ)

= α(1−2ν)
2(1−ν)

(Heidbach, 2010). This limit is one half of the

radial stress limit. Assuming a = 0.7 and ν = 0.3, the PSC ratio for long times is equal

to 0.2 (figure 4.25).

Table 4.2: Model parameters for line mass source solution (Rudnicki, 1986). SI units.

q
[

kg
s

]

ρfluid

[

kg
m3

]

λu [Pa] λ [Pa] µ [Pa] α L [m] κ
η

[

m2

P a·s

]

P ex
0 [Pa]

20.0 1000.0 13.4 · 109 8.3 · 109 5.5 · 109 0.7 25 · 103 1.11 · 10−11 q
ρf

κ
η

Lline

Numerical Results

Figures 4.21, 4.22, 4.23 and 4.25 show a comparison between numerical and analytical

excess pore pressure, stresses and PSC ratio distributions along different plot lines. Com-

puted excess pore pressure, stress distributions and PSC ratios fit the analytical solutions.
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Figure 4.21: Dimensionless P ex
D , σDx , and σDy at tD = 0.1. Plot line ((0,0),(0.2,0)).

Figure 4.22: uD near to injection point at tD = 0.1. Plot line ((1,0),(0,1)).

Figure 4.23: uD far from injection point uDx at tD = 0.1. ((50,0),(0,50))
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Figure 4.24: PSC ratio at tD = 0.1. Plot line ((0,0),(1,0)).

Figure 4.25: PSC ratio at long times tD = 10. Plot line ((0,0),(1,0)).

Close to the injection point excess pore pressure is larger than the stress changes. With

increasing distance to the injection, point excess pore pressure decreases more rapidly

than the stress changes. This leads to an intersection point of the pore pressure profile

with the σx profile. The location of this intersection point depends on the duration

of injection. The y direction stress changes, i.e. σy along the x direction, even become

slightly negative before converging towards zero with distance, this means that the induced

total stress change is compressive. For two-dimensional LPA approximation, figure 4.23

shows that the numerical results fit those values at the injection point, and diverge with

the increase in distance from the point source. In addition calculations in displacements

are overestimated from xD > 1.0, since the numerical approximation uses an unbounded

elastic to model an infinite bounded domain. Analytical long-term limit of PSC ratio of
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0.2 is obtained with the two-dimensional solution for radial stresses as in Heidbach (2010)

for tangential stresses.

4.5 Summary

In this chapter, a brief description for the NeoPZ environment and LPA implementation

was shown. LPA was based on three principal classes that interact to solve a poroelastic

problem with the finite element procedures given in chapter 3. A multiphysics point of

view was inherited from NeoPZ. LPA validation was presented in terms of 1D and 2D

dimensional modeling and error norm charts were given for one-dimensional cases showing

the convergence of LPA to analytic solutions, validating the implementation.



5. Fault reactivation

In this section, a series of calculations are presented to illustrate the problem of reactiva-

tion and its corresponding numerical approximation with the suggested implementation,

showing several advantages over analytical approaches. Also, the effect of various param-

eters as reviewed in chapter 1 is shown.

5.1 The rectangular reservoir problem

Figure 5.1: Rectangular reservoir inclusion and boundary conditions.

Hosting Material

Reservoir Material

Consider the rectangular reservoir presented in figure 5.1, where Ra, Rb, SBRa, SBRb,

represent respectively: reservoir thickness, reservoir extension, and side burden rock di-

69
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mensions. RD is the reservoir depth measured from surface to reservoir top plus one half

Ra. The rectangular inclusion is depleted ±∆P ex (e.g. ∆P ex < 0 represents oil produc-

tion) for all x ∈ Ω (e.g. homogeneous excess pore pressure distribution). Mechanical

conditions for side burden rocks are zero normal stress at surface σn = 0, lateral bound-

ary displacements in x direction are zero, bottom boundary displacements in y direction

are zero. The problem is to find the stress changes due to reservoir depletion with the

corresponding boundary conditions.

Comparison of LPA computations with other numerical approximation (STARS simulator)

are given in the next section by contrasting with equation 2.74 representing the solution

given in Hawkes (2009).

LPA Calculations

Using the material properties given in Table 5.1 and ∆P ex < 0 (e.g. depletion) and

the computational mesh presented in figure 5.2, the calculations of γ due to poroelastic

inclusion (blue color) are compared with results obtained using STARS.

Figure 5.2: Rectangular reservoir geometric mesh.
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Table 5.1: Parameters for rectangular reservoir and side rocks with similar elastic moduli.

All these parameters are in SI units. The model geometry has been normalized by RD.

Mat λ µ λu α ∆P ex
D r1 r2 ξ ∆tD

Reservoir 8.1 · 109 5.4 · 109 1.0 · 1010 0.8 −1.0 3 2
0.5 0.0001

Side rocks 8.1 · 109 5.4 · 109 1.0 · 1010 − 0.0 3 2

Ra Rb SBRa SBRb

0.05 1.0 10.0 20.0

It is important to point out that the formulation here is linear and the initial static state is

a solution that can be separated from the stress and pore pressure excess changes. Figure

5.3 shows the calculations given in this section (dotted lines) compared with calculations

including an arbitrary initial state, by subtracting this initial state from the current solu-

tion at one specific time t, the same response is obtained, assuming zero initial conditions

at the same specific time; i.e. the initial state is important to place the problem in a

specific physic situation, but the stress and excess pore pressure changes determine the

essential part of the reactivation in linear analysis. It is clear that for non-linear formula-

tions and no static initial conditions, this is not possible. Nevertheless, following equation

2.79, the sign τ depends on the faulting regime acting on (e.g. normal faulting or reverse

faulting stress regimes) the initial condition (Hawkes, 2009).

Figure 5.3: Arching ratios obtained from arbitrary initial state compared with the zero

initial state calculations. Arching ratios normalized by (1−2ν)
(1−ν)

.
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Figures 5.4, 5.5 and 5.6 show vertical horizontal and shear arching ratios calculated with

LPA. From equation 2.77, please note that zero contour represents the change of sign

in stress and, following the conventional sign in continuum mechanics, compression is

negative, so the positive values of γ in this contours represents compression since ∆P ex < 0

as in Hawkes (2009).

Figure 5.4: Horizontal arching ratio for rectangular reservoir computed with LPA. Arching

ratio normalized by (1−2ν)
(1−ν)

.

Figure 5.5: Vertical arching ratio for rectangular reservoir computed with LPA. Arching

ratio normalized by (1−2ν)
(1−ν)

.
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Figure 5.6: Shear arching ratio for rectangular reservoir computed with LPA. Arching

ratio normalized by (1−2ν)
(1−ν)

.

STARS Calculations

STARS is a coupled fluid flow and geomechanics simulator developed by Computer Mod-

elling Group Ldt. (Calgary, AB, Canada) and used extensively by the petroleum industry

worldwide. The fluid flow model is a multiphase, multicomponent reactive flow, that can

simulate the injection and flow of gases, solvents, polymers, surfactants, and other chem-

icals. It can be run isothermally or not. The geomechanics module can simulate linear

and non-linear elasticity, elastoplasticity and viscoleasticity behavior, as well fracturing

effects.

The geometric mesh is composed of 301 cells in j direction and 321 cells in k direction with

different cell dimensions near the reservoir. Please note that for this model, discussion

about dimension are irrelevant since spatial data is scaled for comparison purposes. Thus,

the relation between reservoir thickness - extension and its depth must be the same for

comparison purposes.

In this example, there is one well producing from the centre of the reservoir during a

given time and after this period, it is shut-in until a homogeneous excess pore pressure

distribution is obtained. This final step is used to calculated the stress changes. Figure

5.7 shows the contours of σx that have the same shape that the contours in figure 5.4. Is

important to point out that null contour is independent of how the variables are scaled,

since the null contour is invariant after non-dimensionalization (i.e. the null contour

shown in figure 5.4 has exactly the same shape of σx = 0 shown in figure 5.7).

Since the solution in Hawkes (2009) is in dimensionless forms, σ computed by STARS is
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Figure 5.8: γx, γy STARS solution comparison with LPA and Hawkes (2009) solution.

Plot line ((0,0),(0,-2)).

Sem i-Analytic

LPA

STARS

0.0 0.5 1.0 1.5 2.0
-0.06

-0.04

-0.02

0.00

Dimensionless distance

Γ
H
o
r
iz
o
n
ta
l

Sem i-Analytic

LPA

STARS

0.0 0.5 1.0 1.5 2.0

-0.02

-0.01

0.00

0.01

0.02

Dimensionless distance

Γ
V
e
r
ti
c
a
l

Figure 5.9: γx, γy STARS solution comparison with LPA and Hawkes (2009) solution.

Plot line ((-0.5,-1),(0.5,-1)).
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Fault reactivation

Figures 5.10, 5.11 and 5.12 show λF R for faults inclined 60 degrees counter-clockwise from

the positive x axis direction, at different offsets (offset represents the distance of the fault

outcrop to the x axis origin, see Figure 5.1).

Figure 5.10: Fault reactivation factor for rectangular reservoir geometry, faults inclined

60 degrees. Bottom) λF R for far offset faults along fault planes. Arching ratio normalized

by (1−2ν()
(1−ν)

.
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Figure 5.11: λF R along fault planes. Top) Fault at offset 0. Bottom) Fault at offset 1.

λF R normalized by (1−2ν)
(1−ν)

, (λF R < 0 tendency to reactivate).
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Figure 5.12: λF R along reservoir extension. λF R normalized by (1−2ν)
(1−ν)

, (λF R < 0 tendency

to reactivate).

The fault reactivation tendency analysis is based on mapping the null contour λF R = 0,

since it represents the change in compression and tension stress state. Using the Table

2.2, any fault inclined at 60 degrees that is crossed by the null contour has a tendency to

reactivate for negative values of λF R, and a tendency to stabilize for positive values λF R,

when normal fault regime is assumed.

5.1.1 Fault reactivation threshold

Induced earthquake ∆CFS module as 0.1 MPa have been found to induce seismic activity

in faulting settings where initial ∆CFS values are close to zero (Segall, 1992; Guyoton

and Volant, 1992; Rudnicki, 1999; Ferronato, 2008; Hawkes, 2009). If this value is assumed

to be consistent with fault gouge in this example, it is possible to define a threshold value

λF Rt = ∆CF St

α∆pex = 0.1
α∆pex , and all negative values over this threshold strictly represent a

strong tendency to reactivate. Thus, using α = 0.8 and ∆P ex = −10 MPa, is equivalent

to λF Rt = −0.0125, and it can be interpreted in previously results as follows:

• Figure 5.10 shows that faults at far offsets, despite having negative values, the

tendency to reactivate is null.

• Figure 5.11 shows that fault at offset 0 tends to reactivate at depths equivalent to

the left reservoir flank.
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• Figure 5.12 shows that any plane inclined 60 degrees crossing the reservoir reacti-

vates along all reservoir extension. Consequently, the fault at offset 1 has a strong

tendency in localized parts because it crosses the reservoir on the right flank.

5.1.2 Side burden dimensions

Another important question at this point is: which is the optimal size of the hosting

material in order to avoid boundary effects?. According with Osorio (1992) it is important

to minimize boundary effects is important in reservoir geomechanics modeling. This

reduces the computational cost and makes reasonable solutions in regions possible near

the reservoir rocks. Figure 5.13 shows dimensionless displacements computed with 2.72

for side burden rocks along depth and extensions. Displacements tend to zero but never

reach this value for infinite behavior.

Table 5.2: Spatial ratios for different side burden dimensions with ν ≈ 0.3.

Ratio Ra

SBRa

Rb

RSBRb
Line

Case1 1
40

1
4

Red

Case2 1
50

1
6

Green

Case3 1
100

1
5

Orange

Case4 1
100

1
10

Blue

Case5 1
200

1
20

Brown

Reference 1
400

1
40

Black

To illustrate the effect of boundaries, a reference model (Black line fitting Hawkes (2009)

solution, figure 5.14) was used to evaluate differences between several hosting material

dimensions presented in table 5.2. Based on figure 5.15 and table 5.2 the choice of case

5 has small errors (error was not quantified) in comparison with the reference model,

but for practical modelling with the combination of case 2 with case 4, it is possible to

capture infinite behavior with Ra

SBRa
< 1

50
, Rb

SBRb
< 1

10
. Thus, for a region defined by one

rectangle with dimensions Ra and Rb, and hosting material with ν ≈ 0.3, it is modeled

with small errors in displacements since γ is a secondary variable in LPA computations.

If the interest is modeling regions near the reservoir, case 2 is a good option, because all

cases in Table 5.2 were tested into reservoir domain without considerable differences in γ,

but for brevity results are not shown here.
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Figure 5.13: uDy, uDx dimensionless displacement as function of dimensionless depth and

lateral extension. Plot line ((0,0)(0,20)).

0 5 10 15 20
-0.006

-0.005

-0.004

-0.003

-0.002

-0.001

0.000

Dimensionless depth

u
D
y

0 5 10 15 20

0.000

0.001

0.002

0.003

0.004

0.005

0.006

Dimensionless extension

u
D
x

Figure 5.14: γx, γy arching ratios comparison with LPA reference solution (Black line in

table 5.2). Plot line ((-2,-2)(2,-2)).
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Figure 5.15: γx , γy lines for different hosting material sizes with ν ≈ 0.3.
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5.1.3 Friction coefficient variation

Friction coefficient in most of rocks can vary from 0.4 to 0.8 for different brittle rocks

materials (Hawkes, 2009; Germanovich, 2004). Figure 5.16 shows the effect of µs variation

in the null contour, showing that for rectangular case there is no significant effect for faults

inclined 60 degrees.

Figure 5.16: µs friction variation effect in zero λF R contour. Fault reactivation factor

normalized by (1−2ν)
(1−ν)

.

5.1.4 Material contrast

Material contrast is an important factor. In relation to initial case with similar elastic

modules, two cases are presented:

• Case 1: soft side burden rocks with young modulus one tenth of the base case (e.g.

λcase1 = 0.1 ∗ λbase and µcase1 = 0.1 ∗ µbase).

• Case 2: rigid side burden rocks with young modulus ten times bigger (e.g. λcase2 =

10.0 ∗ λbase, µcase2 = 10.0 ∗ µbase ).

Figure 5.17 shows that, with the same set of faults, soft side burden favors fault stability,

and rigid side burdens favor fault reactivation, having a strong effect on fault reactivation

factor. Please note that several negative regions are generated by soft reservoir compaction

or contraction.
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Figure 5.17: Stiffness effect on λF R. Top) Soft side burden. Bottom) Rigid side burden.

Values normalized by (1−2ν)
(1−ν)

.
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Figure 5.18: Reservoir inclination (45 degrees) effect on λF R. Fault reactivation factor

normalized by (1−2ν)
(1−ν)

.

Figure 5.19: Anticline reservoir geometry effect on λF R. Fault reactivation factor normal-

ized by (1−2ν)
(1−ν)

.
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5.1.5 Tilted reservoir

Reservoir inclination and geometry are important since they have a strong effect in λF R.

Figure 5.18 shows that faults near the reservoir flanks have larger regions with tendency

to reactivate than horizontal reservoir with the same depletion level.

5.1.6 Reservoir geometry

To analyze more complicated reservoirs, accounting for more realistic geometries, through-

out this example the effect of reservoir shape is illustrated. Figure 5.19 shows that near

the anticline flanks there are larger regions with tendency of reactivation in comparison

with rectangular shape for the same depletion level.

All these effects represent changes in λF R null contour, but the pore pressure excess is not

homogeneous and constant. However, it is possible to use previous solutions to obtain a

rough approximation when the reservoir in general has a smooth change in pore pressure,

thus the average pore pressure can be used to calculate γ and λF R factors. Nevertheless

oil production programs represent no constant, no homogeneous pore pressure fields and

they have an important effect on λF R distributions.

5.2 Reservoir with non-constant pressure distribu-

tion

In this section, fault reactivation analysis is used for different productions schemes, in

order to evaluate the effect of reservoir depletion (non-constant pressure distribution) on

fault reactivation tendency.

5.2.1 Reservoir depletion due to one well

Constant unit rate

One well producing at constant unit rate (e.g. qD = −1.0) is draining the reservoir at

different offsets in x direction, at a depth of one half of the reservoir thickness plus the

reservoir top depth. All these cases use the same set of faults previously defined.
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Figure 5.20: λF R for early times of unitary production at dimensionless time of tD = 0.06.

Bottom) Near offset fault planes. Well location at offset 0.
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Figure 5.21: λF R for long times of unitary production, dimensionless time of tD = 0.09.

Bottom) Near offset faults planes. Well location at offset 0.
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Figure 5.22: λF R for early times of unitary production at dimensionless time of tD = 0.06.

Bottom) Near offset fault planes. Well location at offset −0.4.



5.2. Reservoir with non-constant pressure distribution 89

Figure 5.23: λF R for long times of unitary production at dimensionless time of tD = 0.2.

Bottom) Near offset fault planes. Well location at offset −0.4.

Figures 5.20, 5.22 show that for initial times, null contour lies on the center of production,
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faults near the reservoir well location have a tendency to reactivate in time. If the well

location is near the reservoir flanks, the fault in this side increases its risk of reactivation

since the production and stress changes are larger for this region in comparison to the

opposite side.

To define which faults reactivate using ∆CFSt = 0.1 MPa, Table 5.3 is used to calculate

the diffusivity c = 0.269757 m2/s and the excess pore pressure reference value for a

source line of length Lline = 1000.0 m, P ex
0 = q

ρf
κ
η

Lline
= −0.125 MPa. In terms of

λF Rt = ∆CF St

P ex
0

= −0.8 MPa, this is the dimensionless threshold used to compare LPA

computations based on Table 2.1.

Table 5.3: Model parameters for one well production scheme. SI units.

q
[

kg
s

]

ρfluid

[

kg
m3

]

λu [Pa] λ [Pa] µ [Pa] α RD [m] κ
η

[

m2

P a·s

]

P ex
0 [Pa]

−10.0 800.0 10.0 · 109 8.1 · 109 5.4 · 109 0.8 3 · 103 1.0 · 10−10 q
ρf

κ
η

Lline

Table 5.3 represents one specific situation for one well with rate of 1080 m3/d, perforated at

a depth of 3075 m and producing oil with η = 0.001 Pa s from reservoir with thickness 150

m, reservoir extension 3000 m and average permeability κ = 1.0 ·10−13 m2. This situation

illustrates how it is possible to use the results for one production well at different rates

with different λF Rt values. For λF Rt = −0.8 previous results can be interpreted as follows:

• Figure 5.20 shows that for far and near offset faults, despite having values with

a negative trend, faults have a null tendency to reactivate at dimensionless time

tD = 0.06 after 23 d of constant production.

• Figure 5.21 shows that the fault at offset 0 does not reach the critical value of

tD = 0.09 (after 35 d), at depths equivalent to reservoir flanks. The fault at offset

1 reach the critical value of tD = 0.09 (after 35 d).

When the rate is twice large, the threshold value turns to λF Rt = −0.4, the scenario is

different for 23 d of production and there is a strong tendency to reactivate the fault at

offset 0.

In the case of the production well on the left flank under the same operating conditions,

results can be interpreted as follows:

• Figure 5.22 shows that for far and near offset faults, despite having negative values,

faults have a null tendency to reactivate at dimensionless time tD = 0.06 after 23 d

of constant production. Note that for fault at offset 0, the effect of production on

the left side is relevant.



5.2. Reservoir with non-constant pressure distribution 91

• Figure 5.23 shows that the fault at offset 1 reaches the critical value for tD = 0.2

(after 77 d) of constant production.

Thus it is possible to do a parametric analysis with these simulation results for different

reservoir depths, permeabilities, fluid viscosities and well rates, as well as bhp pressures by

setting this condition for line sources, since all these calculations are given in dimensionless

forms. This explains, why despite linear poroelastic problem being well know, the use

of dimensionless forms exploits poroelastic computations for simple problems in isotropic

and homogeneous materials, obtained by solving one specific problem (“master problem”).

Thus, it is possible to obtain different solutions with simple post-processing computations.

5.2.2 Reservoir depletion due to injection-production scheme

In this section, fault reactivation is analyzed in two cases when injection and production

exist, at the same time, as shown in Figure 5.24.

• The first case is a simple unitary injection/production array on the left and right

reservoir flanks respectively.

• In second case, the reservoir is depleted by single production well during 0.05 units

of tD, after this time, two injection wells on reservoir lateral flanks start the injection

to maintain the reservoir pressure with one half of unitary rate (i.e. qD = −0.5).

Figure 5.24: Production strategy to analyze the effect of depletion. Left) case 1. Right)

case 2.
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Case 1

Two mass sources at unitary rate qD = ±1.0 (injection - production) with normal faulting

regime. The situation represented by Table 5.4 (c = 0.0269757 m2/s, using Lline = km,

the result is λF R = −0.8) is critic when the velocity has positive x axis direction (left-right

direction). The fault at offset 1 for time tD = 0.01 (e.g. 38 d) has a strong tendency

because the production induces rock contraction and favors reactivation (see Figure 5.26

(Top)). If this flow occurs in the opposite direction negative x axis direction, the fault at

offset 1 has a tendency to reactivate for constant injection twice as large, i.e. λF R = −0.4

(invert sign of λF R) at tD = 0.02 (e.g. 77 d) (see Figure 5.26 (Bottom)).

Table 5.4: Model parameters for injection/production scheme. SI units.

q
[

kg
s

]

ρfluid

[

kg
m3

]

λu [Pa] λ [Pa] µ [Pa] α RD [m] κ
η

[

m2

P a·s

]

P ex
0 [Pa]

−10.0 800.0 10.0 · 109 8.1 · 109 5.4 · 109 0.8 3 · 103 1.0 · 10−11 q
ρf

κ
η

Lline

The fault at offset 0 after tD = 0.5 (i.e. 5 years) does not attain the limit (see Figure 5.27

(Top)). However, for opposite flow direction, in the negative x axis direction, this fault

reactivates for tD = 0.08 (e.g. 308 d) (see Figure 5.27 (Bottom)) when the production

rate is twice the one in table 5.4 (invert the sign of λF R).

Case 2

In this case, injection at reservoir flanks to maintain reservoir pressure is analyzed. Using

the rate of production in Table 5.5, c = 0.0269757 m2/s, Lline = 10 km, and the corre-

sponding threshold value is λF R = −0.4. Figure 5.28 and 5.29 (Top) show that for time

tD = 0.08 (i.e 308 d) fault at offset 1 is near to reactivation, since after tD = 0.09 (i.e. 346

d) or 38 d of constant injection in flanks (see Figure 5.28 and 5.29 (Bottom)). The fault

begins to stabilize, since injection expands the rock in favor of positive values of λF R.

Table 5.5: Model parameters for injection on flanks and production on middle region. SI

units.

q
[

kg
s

]

ρfluid

[

kg
m3

]

λu [Pa] λ [Pa] µ [Pa] α RD [m] κ
η

[

m2

P a·s

]

P ex
0 [Pa]

−20.0 800.0 10.0 · 109 8.1 · 109 5.4 · 109 0.8 3 · 103 1.0 · 10−11 q
ρf

κ
η

Lline
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Figure 5.25: λF R contours at different dimensionless times. Top) tD = 0.01. Bottom)

tD = 0.02.
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Figure 5.26: λF R for near offset faults at different dimensionless times. Top) tD = 0.01.

Bottom) tD = 0.02.
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Figure 5.27: λF R for fault at offset 0 at different dimensionless times. Top) tD = 0.5.

Bottom) tD = 0.08.
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Figure 5.28: λF R = −0.4 contour at different dimensionless times. Top) tD = 0.08.

Bottom) tD = 0.09.
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Figure 5.29: λF R for near offset faults at different dimensionless times. Top) tD = 0.08.

Bottom) tD = 0.09.
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5.3 Summary

Fault instability due to uniform depletion of a reservoir and due to various non-uniform

depletion strategies has been analyzed by conducting an extensive parametric analysis

using dimensionless LPA calculations. Computations have been compacted in charts for

different reservoir geometries and depths using dimensionless parameters. Also, several

interesting effects on fault stability were shown according to the literature.



6. Discussion

6.1 Main results

An implementation for fault reactivation analysis based on Biot’s linear poroelasticity

of cross-sections in half-space, under plane strain conditions, has been developed. LPA

takes into account both traction and displacement continuity between the reservoir sides.

The developed code allows considering the reservoir to have rather arbitrary shapes and

non-uniform pressure distribution inside the reservoir by modeling diffusive mono-phasic

flow, and different material properties of the reservoir and the surrounding medium. Us-

ing this program, redistributed stresses around a depleted, homogeneous reservoir with

non-uniform pressure distribution have been calculated and the fault instability due to

reservoir depletion has been analyzed.

6.2 Conclusions

From this work, it can be concluded that:

• Using numerical modeling it was corroborated that fault reactivation potential is

dependent on reservoir geometry, dip angle, reservoir shape and material contrast.

Hence, it is very important to consider the real reservoir geometry in the analysis

of induced fault reactivation.

• Different reservoir depletion strategies affect the fault stability differently. Pore

pressure gradients inside the reservoir have a greater tendency to reactivate and

induce slip of the nearby faults. Direction of depletion is an important consideration

in evaluating the fault zones prone to slip.

• The Coulomb failure stress change methodology is appropriate for settings where

faults are relatively close to their frictional limits (e.g., recently or currently active

fold and thrust belts; recently or actively subsiding basins). However, in an absolute

99
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sense, a positive ∆CFS value will not necessarily result in a significant risk of fault

reactivation in settings where the shear stresses on existing faults are relatively low.

• In literature, it is common to find numerical hydromechanics models that not con-

sider an reasonable side burden rocks size. In order to avoid boundary effects a

series of computations are presented in charts to model regions near or far of reser-

voir domains with acceptable accuracy.

• An implementation using NeoPZ environment was developed. It can be used to anal-

yse fault reactivation tendency by means of linear poroelasticity equations using or

not dimensionless calculations. Dimensionless calculations allow LPA calculated

thermoelastic problems in structural analysis. Also, a 3D extension of this compu-

tational implementation is trivial since it was developed in a generic environment

to develop finite element programs.

• During the development of this work, several multiphysics classes in NeoPZ en-

vironment were created and their corresponding validation for linear poroelastic

monophasic flow is shown in this dissertation. LPA computations compared sev-

eral analytic and semi-analytic solutions presented in literature and the commercial

software STARS.

• The fault reactivation analysis presented in this work applies to multiphase flow

models since the pressure coupling of the equations is given for an average of the

partial pressure of each phase, when linear poroelasticity is assumed.

• NeoPZ environment allows the quick development of complex finite element pro-

grams since it uses the paradigm of Object Oriented Programming.

6.3 Recommendations for future work

The developed approach provides a basis for a robust reservoir simulation accounting for

the poroelastic effects on geologic faults. The following modifications/additions to this

model are recommended for future work:

• Several LPA characteristics were not presented in this dissertation; modeling no

conductive faults, modeling several reservoir with heterogeneous formations. Hence,

it is recommended to evaluate these characteristics.

• LPA has not been adequately tested by back-analyzing case histories of production

and injection-induced fault slip.
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• Extension to three dimensions, multiphase flow and permeability-stress coupling.

• Model the mechanical interaction between fault blocks and the depleting reservoir,

as well modeling fault slip to obtain a more accurate estimate of fault onset and

slip. This implies non linear analyses.

• The current model assumes completely reversible, elastic rock mass response to

both depletion and injection. However, especially in poorly consolidated rocks, the

stress–strain response during compression can be very different from the response

in extension. This implies the use of nonlinear models.
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A. Dimensionless forms

A.1 Computation of dimensionless forms

Based on the proof of the Buckingham π theorem and the homogeneity theorem Wong

(1990) gives the matrix relationships:

Spar = RparPpar (A.1)

where Spar is the secondary variable matrix, Ppar is the principal variable matrix, Rpar

is the relationship matrix that contains the dimensionless groups by choosing Ppar and

Spar, from the complete set of parameter involved in the problem. Rpar is computed as in

Wong (1990) using:

Rpar = SparP
−1
par (A.2)

the dimensionless form of the equations in question are obtained by inserting the dimen-

sionless groups calculated in the original expressions.

Step load direct dimensionless formulation

The analysis is based on length [m], mass [Kg] and time [s] as fundamental units. The

object of this part is to determine from the next set of variables the corresponding dimen-

sionless form of the equations given by Wang (2000) for Semi-infinite column problem.

• cm [m Kg
s2 ] : Geertsma uniaxial poroelastic expansion coefficient.

• P ◦ = Po [ s2

m Kg
] : The initial pressure excess as reference pressure.

• c [m2

s
] : The hydraulic diffusivity.

• L [m] : Domain max dimension.

• P [ s2

m Kg
] : The initial pressure excess as reference pressure.
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• z [m] : The column depth as positive value.

• uz [m] : Z-direction displacement.

• t [s] : Time.

The parameters matrix MP, P (independent parameters) and S (dependent parameters)

matrices are defined as

Table A.1: Step Load one dimensional consolidation matrices. MP matrix of rank 3, P,
S set of principal and secondary variables.

MP [m] [Kg] [s]

cm 1 -1 2
Po -1 1 -2
c 2 0 -1
L 1 0 0
P -1 1 -2
z 1 0 0
uz 1 0 0
t 0 0 1

P [m] [Kg] [s]

Po -1 1 -2
c 2 0 -1
L 1 0 0

S [m] [Kg] [s]

P -1 1 -2
z 1 0 0
uz 1 0 0
t 0 0 1

cm 1 -1 2

The matrix R is computed as R = SP−1 Wong (1990) is obtained R matrix, that contains

the relationship between the secondary and dimensionless variables as follow:

Table A.2: Step Load one dimensional consolidation relationship matrix R and definitions
of dimensionless group of variables.

R Po c L
P 1 0 0
z 0 0 1
uz 0 0 1
t 0 -1 2

cm -1 0 0

Group Equation
P PDPo

z zDL
uz uDzL

t tD
L2

c

cm cmD
1

P0

By inserting the expressions of the Table A.2 into original expressions (Wang, 2000), and

simplifying dimensionless forms are obtained as:

PD (zD, tD) = erf

(

zD

2
√

tD

)

(A.3)
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uDz (zD, tD) = cmD









2exp
(

− z2
D

tD

)√
tD

√
π

− zDerf

(

zD

2
√

tD

)









(A.4)

Note that z-direction displacement is redefined as uz = uDzLcmD = uDzLcmPo, the

material parameters are eliminated from the equations A.3, A.5 that can characterize any

group of material parameters.

uDz (zD, tD) =









2exp
(

− z2
D

tD

)√
tD

√
π

− zDerf

(

zD

2
√

tD

)









(A.5)





B. Contribute Method

B.1 Poroelastic Contribute Method

Since the matrix problem is associated with a weak statement, the approximation spaces

can be changed, but here, CG modeling is used with H1 Sobolev space with different

polynomial orders. Algorithms 1, 2, 3 and 4 calculate the matrices contribution at the

element level. All these element contributions are calculated and assembled to obtain the

global stiffness matrix, mass matrix and vectors presented in 3.73 and 3.74.

Let’s introduce the expanded forms of the matrices and vectors 3.60, 3.61, 3.62, 3.63,

3.65, 3.66 in terms of shape and test functions 3.53, 3.54, 3.55, 3.56, using plain strain

conditions, where mathematical operators are expanded in terms of spatial derivatives

Linear strain operator

Kelasticity ū =
[

∑nodes
i=1

(

∑nodes
j=1 ([Kij])

)]

ūi

[Kij] =

∫

Ω
(λD + 2µD)

∂Ψu
i

∂xD

∂Ψv
j

∂xD
+ µD

∂Ψu
i

∂yD

∂Ψv
j

∂yD
∂Ω

∫

Ω

(

λD
∂Ψu

i

∂xD

∂Ψv
j

∂yD
+ µD

∂Ψu
i

∂yD

∂Ψv
j

∂xD

)

∂Ω

∫

Ω

(

λD
∂Ψu

i

∂yD

∂Ψv
j

∂xD
+ µD

∂Ψu
i

∂xD

∂Ψv
j

∂yD

)

∂Ω
∫

Ω
(λD + 2µD)

∂Ψu
i

∂yD

∂Ψv
j

∂yD
+ µD

∂Ψu
i

∂xD

∂Ψv
j

∂xD
∂Ω

(B.1)

Coupling matrix

Qc p̄ =
[

∑nodes
i=1

(

∑nodes
j=1 ([Qcij])

)]

p̄i

[Qcij] =

∫

Ω

(

−αΨP
i

∂Ψv
j

∂xD

)

∂Ω

∫

Ω

(

−αΨP
i

∂Ψv
j

∂xD

)

∂Ω

(B.2)
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Force right hand term

F u =
∑nodes

i=1 ([F u
i ])

F u
i =

∫

ΓNeumman
(Tx) · Ψv

j ∂Γ +
∫

Ω bxD · Ψv
j dΩ

∫

ΓNeumman
(Ty) · Ψv

j ∂Γ +
∫

Ω byD · Ψv
j dΩ

(B.3)

For diffusion problem

QT
c

dū
dtD

=
[

∑nodes
i=1

(

∑nodes
j=1

([

QT
cij

]))]

dū
dtD

[

QT
cij

]

=

∫

Ω

(

α
∂Ψu

i

∂xD
Ψw

j

)

∂Ω

∫

Ω

(

α
∂Ψu

i

∂yD
Ψw

j

)

∂Ω

(B.4)

Compressibility matrix

S dp̄

dtD
=
[

∑nodes
i=1

(

∑nodes
j=1 ([Sij])

)]

dp̄

dtD

[Sij] =
∫

Ω

(

SrDΨP
i Ψw

j

)

∂Ω

(B.5)

Permeability matrix

H p̄ =
[

∑nodes
i=1

(

∑nodes
j=1 ([Hij])

)]

p̄

[Hij] =
∫

Ω

(

∂ΨP
i

∂xD

∂Ψw
j

∂xD
+

∂ΨP
i

∂yD

∂Ψw
j

∂yD

)

∂Ω

(B.6)

Mass right hand term

F P =
∑nodes

i=1

([

F P
i

])

∆tD

F P
i =

∫

ΓNeumman
(qnormal) · Ψw

i ∂Γ

(B.7)
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Algorithm 1 Qc matrix implementation.

1 // Matrix Qc

// Coupling matrix Qc

3
∑

nodes

i=1

f o r ( i n t i n = 0 ; i n < phru ; i n++ )
5 {

// D e r i v a t i v e c a l c u l a t i o n s f o r Ψv
i

7 // Note that du(xD → 0, Ψv
i

→ 1)
∂Ψ

v
i

∂xD
du ( 0 , 1 ) = dphiu ( 0 , jn ) ∗ axes ( 0 , 0 )+dphiu ( 1 , jn ) ∗ axes ( 1 , 0 ) ;

9
// Note that du(yD → 1, Ψv

i
→ 1)

11
∂Ψ

v
i

∂yD
du ( 1 , 1 ) = dphiu ( 0 , jn ) ∗ axes ( 0 , 1 )+dphiu ( 1 , jn ) ∗ axes ( 1 , 1 ) ;

13
∑

nodes

j=1

f o r ( i n t jn = 0 ; jn < phrp ; jn++)
15 {

//
[

Qcij

]

1

=
∫

Ω

(

−αΨP
i

∂Ψ
v
j

∂xD

)

∂Ω

17
ek (2∗ in , 2 ∗ phru+jn ) += ( −1.) ∗ f a l p h a ∗ weight ∗( phip ( jn , 0 ) ∗du ( 0 , 1 ) ) ;

19 //
[

Qcij

]

2

=
∫

Ω

(

−αΨP
i

∂Ψ
v
j

∂yD

)

∂Ω

21 ek (2∗ i n +1 ,2∗ phru+jn ) += ( −1.) ∗ f a l p h a ∗ weight ∗( phip ( jn , 0 ) ∗du ( 1 , 1 ) ) ;
}

23 }

Algorithm 2 QT
c matrix implementation.

// Matrix QT
c

2 // Coupling matrix t r a n s p o s e QT
c

∑

nodes

i=1

4 f o r ( i n t i n = 0 ; i n < phru ; i n++ )
{

6 // D e r i v a t i v e c a l c u l a t i o n s f o r Ψu
i

// Note that du(xD → 0, Ψu
i

→ 0)

8
∂Ψ

u
i

∂xD
du ( 0 , 0 ) = dphiu ( 0 , i n ) ∗ axes ( 0 , 0 )+dphiu ( 1 , i n ) ∗ axes ( 1 , 0 ) ;

10 // Note that du(yD → 1, Ψu
i

→ 0)
∂Ψ

u
i

∂yD
du ( 1 , 0 ) = dphiu ( 0 , i n ) ∗ axes ( 0 , 1 )+dphiu ( 1 , i n ) ∗ axes ( 1 , 1 ) ;

12
∑

nodes

j=1

14 f o r ( i n t jn = 0 ; jn < phrp ; jn++)
{

16 //
[

QT
cij

]

1

=
∫

Ω

(

α
∂Ψ

u
i

∂xD
Ψw

j

)

∂Ω

18 ek (2∗ phru+jn , 2 ∗ i n ) += ( −1.) ∗ f a l p h a ∗ weight ∗du ( 0 , 0 ) ∗( phip ( jn , 0 ) ) ;

//
[

QT
cij

]

2

=
∫

Ω

(

α
∂Ψ

u
i

∂yD
Ψw

j

)

∂Ω

20
ek (2∗ phru+jn , 2 ∗ i n +1) += ( −1.) ∗ f a l p h a ∗ weight ∗du ( 1 , 0 ) ∗( phip ( jn , 0 ) ) ;

22 }
}
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Algorithm 3 H matrix implementation.

1 // D i f f u s i o n Equation
// C o m p r e s i b i l i t y and P e r m e a b i l i t y matrix

3 ∆tD
c o n s t REAL DeltaT = fTimeStep ;

5
∑

nodes

i=1

f o r ( i n t i n = 0 ; i n < phrp ; i n++)
7 {

// Fp Vector Mass r i g h t hand term F P
i

9
∫

ΓNeumman

(qnormal) · Ψw
i

∂Γ

e f ( i n +2∗phru , 0) += weight ∗Qnormal [ 2 ] ∗ phip ( in , 0) ;
11

∑

nodes

j=1

13 f o r ( i n t jn = 0 ; jn < phrp ; jn++)
{

15 // S Matrix S

//
[

Sij

]

=
∫

Ω

(

SrDΨP
i

Ψw
j

)

∂Ω

17
ek ( i n +2∗phru , jn +2∗phru ) += ( −1.0) ∗ weight ∗ f S e ∗ phip ( in , 0 ) ∗ phip ( jn , 0 ) ;

19 // H Matrix H

f o r ( i n t kd=0; kd<fDim ; kd++)
21 {

//
[

Hij

]

=
∫

Ω

(

∂Ψ
P
i

∂xD

∂Ψ
w
j

∂xD
+

∂Ψ
P
i

∂yD

∂Ψ
w
j

∂yD

)

∂Ω

23
ek ( i n +2∗phru , jn +2∗phru ) +=(−1.0)∗ weight ∗( f k / f v i s c ) ∗ DeltaT ∗ f t h e t a ∗ dphip ( kd , i n ) ∗ dphip ( kd , jn ) ;

25 }
}

27 }
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Algorithm 4 Kelasticity matrix implementation.

1 // E l a s t i c e q u a t i o n
// Li nea r s t r a i n o p e r a t o r Kelasticity

3
∑

nodes

i=1

f o r ( i n t i n = 0 ; i n < phru ; i n++ )
5 {

// D e r i v a t i v e c a l c u l a t i o n s f o r Ψu
i

7 // Note that du(xD → 0, Ψu
i

→ 0)
∂Ψ

u
i

∂xD
du ( 0 , 0 ) = dphiu ( 0 , i n ) ∗ axes ( 0 , 0 )+dphiu ( 1 , i n ) ∗ axes ( 1 , 0 ) ;

9
// Note that du(yD → 1, Ψu

i
→ 0)

11
∂Ψ

u
i

∂yD
du ( 1 , 0 ) = dphiu ( 0 , i n ) ∗ axes ( 0 , 1 )+dphiu ( 1 , i n ) ∗ axes ( 1 , 1 ) ;

13 // Fu Vector Force r i g h t hand term F u
i∫

ΓNeumman

(Tx) · Ψv
j

∂Γ +
∫

Ω

bxD · Ψv
j

dΩ

15
e f (2∗ in , 0) += weight ∗ f T r a c t i o n [ 0 ] ∗ phiu ( in , 0 ) + weight ∗ fb [ 0 ] ∗ phiu ( in , 0) ;

17
∫

ΓNeumman

(

Ty

)

· Ψv
j

∂Γ +
∫

Ω

byD · Ψv
j

dΩ

19
e f (2∗ i n +1, 0) += weight ∗ f T r a c t i o n [ 1 ] ∗ phiu ( in , 0 ) + weight ∗ fb [ 1 ] ∗ phiu ( in , 0) ;

21
∑

nodes

j=1

23 f o r ( i n t jn = 0 ; jn < phru ; jn++)
{

25 // D e r i v a t i v e c a l c u l a t i o n s f o r Ψv
i

// Note that du(xD → 0, Ψv
i

→ 1)

27
∂Ψ

v
i

∂xD
du ( 0 , 1 ) = dphiu ( 0 , jn ) ∗ axes ( 0 , 0 )+dphiu ( 1 , jn ) ∗ axes ( 1 , 0 ) ;

29 // Note that du(yD → 1, Ψv
i

→ 1)
∂Ψ

v
i

∂yD
du ( 1 , 1 ) = dphiu ( 0 , jn ) ∗ axes ( 0 , 1 )+dphiu ( 1 , jn ) ∗ axes ( 1 , 1 ) ;

31 /∗ P l a i n S t r a i n S t a t e ∗/

//
[

Kij

]

11

=
∫

Ω

(

(λD + 2µD)
∂Ψ

u
i

∂xD

∂Ψ
v
j

∂xD
+ µD

∂Ψ
u
k

∂yD

∂Ψ
v
l

∂yD

)

∂Ω

33
ek (2∗ in , 2 ∗ jn ) += weight ∗ ( ( flambda + 2∗fmu ) ∗du ( 0 , 0 ) ∗du ( 0 , 1 ) +(fmu ) ∗du ( 1 , 0 ) ∗du ( 1 , 1 ) ) ;

35 //
[

Kij

]

12

=
∫

Ω

(

λD)
∂Ψ

u
i

∂xD

∂Ψ
v
j

∂yD
+ µD

∂Ψ
u
k

∂yD

∂Ψ
v
l

∂xD

)

∂Ω

37 ek (2∗ in , 2 ∗ jn +1) += weight ∗ ( flambda ∗du ( 0 , 0 ) ∗du ( 1 , 1 ) + ( fmu ) ∗du ( 1 , 0 ) ∗du ( 0 , 1 ) ) ;

//
[

Kij

]

21

=
∫

Ω

(

λD

∂Ψ
u
i

∂yD

∂Ψ
v
j

∂xD
+ µD

∂Ψ
u
k

∂xD

∂Ψ
v
l

∂yD

)

∂Ω

39
ek (2∗ i n +1 ,2∗ jn ) += weight ∗ ( flambda ∗du ( 1 , 0 ) ∗du ( 0 , 1 ) + ( fmu ) ∗du ( 0 , 0 ) ∗du ( 1 , 1 ) ) ;

41 //
[

Kij

]

22

=
∫

Ω

(

(λD + 2µD)
∂Ψ

u
i

∂yD

∂Ψ
v
j

∂yD
+ µD

∂Ψ
u
k

∂xD

∂Ψ
v
l

∂xD

)

∂Ω

43 ek (2∗ i n +1 ,2∗ jn +1) += weight ∗ ( ( flambda + 2∗fmu ) ∗du ( 1 , 0 ) ∗du ( 1 , 1 ) + ( fmu ) ∗du ( 0 , 0 ) ∗du ( 0 , 1 ) ) ;
}

45 }





C. GID Mat Template

C.1 GID Mat Template

GID template was used in order to associated materials identifiers with the geometric

mesh. A extensive documentation for the use of templates can be found in GID web site.

Algorithm 5 Template to generate geometric grids for LPA.

1 // Def i ne m a t e r i a l domain p r o p e r t i e s
NUMBER: 1 MATERIAL: DReservoirRock

3 QUESTION: Rock Density ( kg/m3)
VALUE: 2 3 0 0 . 0

5 QUESTION: F l u i d D e n s i t y ( kg/m3)
VALUE: 1 0 0 0 . 0

7 QUESTION: P o r o s i t y r e f ( F r a c t i o n )
VALUE: 0 . 3

9 QUESTION: P e r m e a b i l i t y (m2)
VALUE: 1 . 0 e−12

11 QUESTION: F l u i d V i s c o s i t y (Pa . s )
VALUE: 0 . 0 0 1

13 QUESTION: F i r st L a m e (Pa)
VALUE: 8 . 0 e9

15 QUESTION: Second Lame (Pa)
VALUE: 5 . 0 e9

17 QUESTION: First Lame Undrained (Pa)
VALUE: 1 0 . 0 e9

19 QUESTION: B i o t C o n s t a n t ( none )
VALUE: 0 . 8

21 QUESTION: Bluid Group ( none )
VALUE: 1

23 QUESTION: I s P o r o e l a s t i c ( Flag )
VALUE: 1

25 END MATERIAL
// Def i ne boundary m a t e r i a l p r o p e r t i e s

27 NUMBER: 2 MATERIAL: Contour
QUESTION: Domain Associated ID ( IDNumber )

29 VALUE: 0
QUESTION: BC Type ( BoundaryType )

31 VALUE: 000
QUESTION: V a r i a b l e 1 V a l u e ( Value )

33 VALUE: 0
QUESTION: V a r i a b l e 2 V a l u e ( Value )

35 VALUE: 0
QUESTION: V a r i a b l e 3 V a l u e ( Value )

37 VALUE: 0
QUESTION: Bluid Group ( none )

39 VALUE: 1
QUESTION: I s P o r o e l a s t i c ( Flag )

41 VALUE: 1
END MATERIAL
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