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DEPARTAMENTO DE MECÂNICA COMPUTACIONAL

Análise pelo Método dos Elementos de
Contorno de Placas de Reissner Trincadas e

Reparadas com Compósitos Colados
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Resumo

Useche Vivero, Jairo Francisco, Análise pelo Método dos Elementos de Contorno de Placas

de Reissner Trincadas e Reparadas com Compósitos Colados, Campinas,: Faculdade

de Engenharia Mecânica, Universidade Estadual de Campinas, 2007. 181 p. Tese

(Doutorado).

O objetivo deste projeto é o desenvolvimento de uma ferramenta computacional para á

análise e projeto de estruturas aeronáuticas trincadas e reparadas por placas de materiais

compositos laminadas coladas. As placas metálicas isotropicas da estrutura aeronáutica serão

modeladas pelo método dos elementos de contorno considerando a presença de tensões de

cisalhamento nos planos normais à superf́ıcie das placas (formulação de Reissner-Mindlin). No

modelamento do reparo será usada uma formulação por elementos de contorno para placas

anisotrópicas sem considerar a presença de tensões de cisalhamento nos planos normais à

superf́ıcie da placa (formulação do Kirchhoff-Love). A análise será validada com resultados

anaĺıticos, numéricos e experimentais disponiveis na literatura e com modelos desenvolvidos

pelo método dos elementos finitos.

Palavras Chave

Placas de Reissner trincadas, Reparos Aeronáuticos em Materiais Compositos, Placas de

Kirchhoff Anisotrópicas, Método dos Elementos de Contorno, Mecánica da Fratura
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Abstract

Useche Vivero, Jairo Francisco, Boundary Element Analysis of Cracked Reissner’s Plates

Repaired with Adhesively Composite Patches, Campinas,: Faculdade de Engenharia

Mecânica, Universidade Estadual de Campinas, 2007. 181 p. Tese (Doutorado).

The objective of this project is the development of a computational tool for the analy-

sis and design of cracked aeronautical structures repaired by adhesively bonded laminated

composites. The isotropic metallic plates of the aeronautical structure will be modeled by

the boundary element method considering the presence of shear stresses in planes that are

normal to the surface of the plates (formulation of Reisner-Mindlin). In order to model the

repair, a boundary element formulation for anisotropic plates will be used neglecting the

presence of shear stresses in planes that are normal to the surface of the plate (formulation of

Kirchhoff-Love). The analysis will be validated with analytical, numerical and experimental

results avalilable in the literature and with finite element models.

Keywords

Cracked Reissner’s plates, Aeronautic Composite Repairs, Anisotropic Kirchhoff’s Plates,

Boundary Element Method, Fracture Mechanics
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ςij,kl : Coeficientes de Chentsov

U : Matriz de coeficientes da solucão fundamental para deslocamentos no plano.

T : Matriz de coeficientes da solucão fundamental para tração no plano.

W : Matriz de coeficientes da solucão fundamental para flexão.

P : Matriz de coeficientes da solucão fundamental para momentos e forças cortantes.

J : Matriz Jacobiana.

H : Matriz de influência para deslocamentos.

G : Matriz de influência para trações.

B : Vetor de influência para forças de corpo para problemas de tensão plana.

Q : Vetor de influência para forças de corpo para problemas de flexão.

xxi



Chapter 1

Introdução

1.1 Reparos de compósitos colados

As estruturas aeronáuticas são constitúıdas geralmente por painéis e reforçadores metálicos

(figura 1). Um painel trincado é freqüentemente reparado colando, rebitando ou parafu-

sando um remendo metálico na área trincada. A vida em fadiga e as tensões residuais no

painel reparado é dependente da eficiência da transferência de carga do painel trincado para

o reparo. Os reparos colados têm sido usados na indústria aeronáutica e são aceitos como

soluções eficientes para o reparo de danos em paneis metálicos. A principal vantagem quando

comparado aos reparos parafusados ou rebitados é que fornecem transferência da carga rel-

ativamente uniforme entre os componentes estruturais que são ligados (figura 2). Os furos

requeridos no caso de reparos parafusados ourebitados agem como concentradores de tensão

o que reduz a vida útil do painel aeronáutico. Adicionalmente, os reparos rebitados são feitos

geralmente de placas de alumı́nio ou do mesmo material que compõe a estrutura reparada.

No entanto os reparos colados admitem o uso de materiais mais avançados como são os ma-

teriais compósitos.

Entre os materiais usados na engenharia, os compósitos apresentam a menor relação
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Figure 1.1: Reparo de compósito colado na estrutura do avião. Este tipo de reparo gera um
campo de tensões mais uniforme. (Tomado de www.wallpaper.net.au/wallpaperaviation1.php, AFRL
Monthy Accomplishment Report, http://www.afrl.af.mil/accomprpt/jan04/accompjan04.htm and Lourenço
et al., 2003)

rigidez-densidade, também chamada rigidez espećıfica. Adicionalmente, alguns compósitos

apresentam um bom desempenho térmico, alcançando temperaturas similares aos materiais

comumente utilizados em projetos de engenharia. Devido à grande variedade das combinações

e arranjos das fibras e das matrizes, os engenheiros têm materiais dispońıveis para um grande

número de projetos que exigem caracteŕısticas espećıficas, tais como: rigidez, resistência, den-

sidade, condutividade térmica ou elétrica ou outras propriedades do material.

O método dos elementos finitos (MEF) foi usado extensivamente para a análise de prob-

lemas de fratura em estruturas aeronáuticas, principalmente devido a sua generalidade. No

caso de estruturas laminadas o MEF é implementado baseado nas teorias de Kirchhoff ou de

Reissner-Mindlin. Entretanto, esta generalidade podeŕıa introduzir custos computacionais

elevados, principalmente nos problemas que envolvem singularidades no campo de tensões

(como aqueles encontrados próximo à ponta de uma trinca) que requer uma discretização

mais fina ao redor do ponto de singularidade. O método dos elementos de contorno (MEC)
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é uma alternativa numérica atrativa para tratar problemas da mecânica linear da fratura,

principalmente devido à sua habilidade para modelar de forma cont́ınua os gradientes eleva-

dos do campo de tensões sem a necessidade de discretizar o domı́nio (desconsiderando forças

de corpo). Adicionalmente, os problemas de propagação de trincas podem ser analisados

com técnicas simples que requerem unicamente elementos de contorno adicionais na ponta

da trinca e algoritmos de solução incrementais. O uso deste método na análise de estruturas

aumentou fortemente desde os anos oitenta (Brebbia and Dominguez, 1989). Por sua vez, o

comportamento de estruturas laminares trincadas e reparadas com a aplicação de compósitos

colados usando o MEC exige ainda muito trabalho de pesquisa.

1.2 Revisão bibliografica

Os primeiros trabalhos que analisaram reparos isotrópicos em estruturas foram apresentados

nos anos setenta por Ratawani, 1979, e Erdogan and Arin, 1972. Estes trabalhos apresen-

tam o estudo de reparos colados em chapas infinitas com trincas 1. Eles usaram soluções

anaĺıticas para a deformação e consideraram a compatibilidade dos deslocamentos entre a

chapa trincada e o reparo.

Mitchell, Wooley and Chwiruth, 1975, usaram o MEF para estudar o reforço de placas

induzido pela aplicação de reparos. Eles usaram uma formulação de elementos finitos bidi-

mensionais com tensões constantes e acoplaram a placa e o reparo através dos nós onde as

condições de compatibilidade de deslocamentos foram impostas. Eles analisaram também a

presença de uma trinca na placa. Entretanto, o trabalho não considerou a singularidade no

campo de tensões na ponta da trinca e também não avaliaram os fatores de intensidade de

tensão.

1Neste trabalho, o termo chapa (sheet) refere-se a corpos submetidos a carregamento no plano (estado de
tensão plana). No entanto o termo placa (plate) refere-se a corpos submetidos a flexão.
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Figure 1.2: Reparo parafusado na estrutura do avião. Este tipo de reparo gera a concentração
se tensões nos furos dos parafusos .(Fonte: BOJCAS Project, http://www.smr.ch/bojcas/index.html
and Murata Mechinary LTD., http://www.muratec.net)

Nos trabalhos de Jones and Callinan, 1977, Jones and Callinan, 1979 and Jones and Cal-

linan, 1981, usaram o MEF para a análise de placas metálicas reparadas com uma camada

de material compósito. Eles desenvolveram uma matriz de rigidez para acoplar a placa, a

camada adesiva e o reparo de material compósito. Esta matriz foi acoplada com um modelo

do MEF da placa metálica e, na ponta da trinca, eles usaram elementos singulares especiais.

Young et al., 1988 modelaram a chapa trincada e o reparo usando o método dos elementos

de contorno. As tensões de cisalhamento na camada adesiva asim como as forças de corpo

agindo sobre à placa e o reparo foram modeladas. No trabalho eles usaram uma função de

Green especial para modelar domı́nios com trincas retas, o qual limita a aplicabilidade do

modelo.

Tarn and Shek, 1991 estudaram o problema de chapas trincadas reparadas com materiais

compósitos colados. Um modelo de mola foi usado para acoplar o modelo da placa trincada

com o modelo do reparo. O reparo foi modelado usando o MEF e a trinca usando do MEC.
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Young, 1987 modelou a força distribúıda de interação entre a chapa e o reparo, dis-

cretizando a área de contato entre o reparo e a placa usando celulas internas numa formulação

MEC.

Salgado and Aliabadi, 1997 usaram o método dos elementos de contorno dual para mod-

elar chapas metálicas trincadas e o método direto dos elementos do contorno para modelar

o reparo. A força distribúıda entre a chapa e o reparo foi modelada utilizando o método

dos elementos de contorno de reciprocidade dual. Esta formulação foi aplicada por Salgado

and Aliabadi, 1998 na análise de chapas finas metálicas reforçadas com reparos isotrópicos

colados. A chapa reforçada foi modelada usando o método dos elementos de contorno de

reciprocidade dual (DRBEM). As tensões de cisalhamento na camada adesiva foram mode-

ladas como forças de corpo.

Lourenço, 2000 analisou chapas metálicas isotrópicas com reparos adesivos e carregamento

no plano usando o DRBEM para modelar as forças de interação entre a placa e o reparo como

forças de corpo distribúıdas. Esta formulação foi estendida por Lourenço et al., 2003 para

a análise de reparos anisotrópicos com reforço estrutural de placas metálicas submetidas a

carregamento estático no plano da chapa.

O trabalho de Dirgantara and Aliabadi, 1999 apresenta uma nova formulação mista de el-

ementos de contorno para resolver problemas de deflexão em cascas metálicas isotrópicas

considerando deformação de cisalhamento (formulação de Reissner). Os termos de cur-

vatura da formulação da casca foram rearranjados junto com os termos de forças externas

na equação governante. Foi acoplada uma formulação por elementos de contorno para pla-

cas considerando a deformação por cisalhamento com uma formulação do MEC para tensão

elástica plana, completando assim o modelo de casca metálica com deformação por cisal-
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hamento e deformação elástica no plano.

Nos trabalhos de Wen, 2000; Wen, 2000 foram analisadas cascas metálicas isotrópicas com

deformação por cisalhamento usando o MEC. Novas equações integrais foram desenvolvidas

usando o prinćıpio do reciprocidade de Betti, e foram acopladas às formulações de elementos

de contorno para placas com deformação por cisalhamento e tensão elástica no plano. Estes

autores utilizaram duas técnicas para transformar as integrais do domı́nio em integrais de

contorno: o método direto dos elementos de contorno (MDEC) e o método de reciprocidade

dual.

Dirgantara and Aliabadi, 2001 desenvolveram uma formulação inovadora do MEC para

análise de cascas metálicas isotrópicas trincadas considerando as deformações devidas ao es-

forço cortante. Eles desenvolveram uma equação integral hipersingular de contorno usando

uma formulação de reciprocidade dual, aplicando uma equação integral de força de superf́ıcie

em uma das superf́ıcies da trinca e equações integrais de deslocamento na outra.

Widagdo and Aliabadi, 2001 apresentam uma formulação do MEC para a análise de pla-

cas metálicas reparadas por materiais compósitos parafusados. A chapa trincada é modelada

usando uma formulação de reciprocidade dual. Os parafusos são modelados como molas

lineares cujas forças são tratadas como forças pontuais. O reparo é modelado usando uma

formulação MEC bidimensional para chapas anisotrópicas.

Recentemente, Wen et al., 2003 desenvolveram uma formulação do MEC para a análise

de painéis metálicos curvos com trincas e reparos adesivos isotrópicos. O efeito da camada

adesiva foi modelada considerando forças distribúıdas. Uma formulação integral para a placa

com tensão de cisalhamento acoplada com uma formulação integral para tensão plana foi

usada para determinar os momentos fletores e as forças de membrana no reparo adesivo.
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1.3 Descripção do trabalho

O objetivo deste projeto é o desenvolvimento de uma ferramenta computacional para a análise

e desenho de estruturas aeronáuticas trincadas e reparadas utilizando compósitos laminados

colados. As placas metálicas isotrópicas da estrutura aeronáutica são modeladas pelo método

dos elementos de contorno considerando a presença de cisalhamento em planos normais á

superfcie das placas (formulação de Reissner-Mindlin). A f́ım de modelar o reparo, uma

formulação por elementos de contorno de três parámetros, baseada na teoŕıa de Kirchhoff

para placas laminadas simetricas é desenvolvida. A Interacção entre as forçãs e momentos da

placa trincada e reparada foi modelada como cargas distribúıdas. Equações de acoplamento,

baseadas em considerações de compatibilidade cinemática e de equiĺıbrio para a camada do

adesivo, são estabelecidas. Um modelo de rigidez cortante transversal é proposto a f́ım de

modelar a resposta mecânica do adesivo. Os Fatores de intensificação de tensoes são calcu-

lados utilizando o método de apertura da trinca e extrapolação de deslocamentos. A análise

validada com resultados anaĺıticos, numéricos e experimentais disponiveis na literatura.

As contribuições principais do presente trabalho podem-se classificadas no que diz respeito

ao grupo de pesquisa em Modelagem de Materiais Compósitos e Biomédicos do Departamento

de Mecânica Computacional da Unicamp, e no que diz respeito ao avanço do conhecimento

na análise de placas trincadas e reparadas com materiais compósitos colados, utilizando o

método dos elementos de contorno.

No que diz respeito ao grupo de pesquisa, a principal contribuição encontra-se na geração

de conhecimento e no desenvolvimento de programas computacionais para a análise de placas

de Reissner trincadas utilizando o método dual de elementos de contorno. Estes programas

permitirão o desenvolvimento de novos trabalhos na área de mecânica da fratura em estru-

turas.
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Por outro lado, a contribuição do trabalho ao conhecimento na área de análise pelo método

de elementos de contorno de placas espessas trincadas e reparadas com compósitos colados

encontra-se representado nos seguintes avanços:

- Desenvolvimento e implementação computacional de uma formulação do método dos

elementos de contorno de placas anisotrópicas laminadas simétricas baseadas na teoŕıa

de Kirchhoff, utilizando três parâmetros cinemáticos.

- Desenvolvimento e implementação computacional de uma formulação dual do método

dos elementos de contorno para análise de placas isotrópicas espessas trincadas e

reparadas com compósitos colados utilizando laminados simétricos.
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Chapter 2

Two-dimensional elastostatics

2.1 Introduction

This chapter shows the boundary element formulation for two-dimensional elastostatics prob-

lems used to describe the in-plane mechanical behavior of isotropic elastic plates. First part

of this chapter presents a general definition of plane stress problems in linear elasticity devel-

oping governing differential equations for isotropic elastic materials. Kelvin’s fundamental

solution for an infinite elastic plane is presented.

2.2 Plane stress elasticity

Thin flat objects (like the ones showed in figure 2.1), loaded in their plane, generates a plane

stress state in the body. This situation is often referred to as membrane or in-plane type

of action, and plane stress analysis is therefore also sometimes called membrane or in-plane

analysis. The basic assumptions for the plane stress are (see Brebbia and Dominguez, 1989):

- The body is thin, i.e., h is small in comparison to the representative dimensions along

x1 or x2.
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Figure 2.1: Plane stress definition

- There are no tractions acting at the end surfaces, i.e., at x3 = ±h/2, tk = 0, where h

is thickness and tk are traction components acting on boundary Γt.

- Body forces acts on x1 − x2 planes and are independent of x3, i.e. f3 = 0 and f1 and

f2 are functions of coordinates x1 and x2 only, where fi are the components of body

force vector acting on the domain Ω.

- Forces acting on the body are planar and independent of x3 coordinate, i.e., t3 = 0 and

t1 and t2 are functions of the x1 and x2 coordinates.

Under these assumptions, it is assumed that the components σ3k of the stress tensor are

all small in comparison with the components σαβ and that the variation of the latter with

respect to coordinate x3 are negligible (figure 10.4). Hence, one assumes: σ3k = 0, and σαβ

are functions of the coordinates xα only. This ability of thin objects to freely strain in the

third dimension is exactly what puts them in a state where all components of the stress

tensor in direction 3 are zero. It should be noted however that although these assumptions

are reasonable in engineering practice, they are only approximation as they violate the com-

patibility equations.
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2.2.1 Strain-displacement relationships

In linear elasticity, the gradient of displacement vector is consider as infinitesimal order.

Then, the strain tensor εαβ is given by (figure 2.2):

ε11 =
∂u1

∂x1

(2.1)

ε22 =
∂u2

∂x2

(2.2)

ε12 =
∂u1

∂x2

+
∂u2

∂x1

(2.3)

where uα are the displacements components along of x1 and x2 coordinate axis. Indicial

notation is used throughout this work. Greek index will vary from 1 to 2 and Roman index

from 1 to 3. The partial derivative of any function with respect to the coordinate xα will be

denoted by comma subscript.

To ensure the uniticity of the displacement field, when the components of strain tensor has

been arbitrary assigned, compatibility conditions between displacement components should
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be established. In two-dimensional problems the condition is given by the equation:

∂

∂x2

(

∂ε11

∂x2

)

+
∂

∂x1

(

∂ε22

∂x1

)

=
∂

∂x1

(

∂ε12

∂x2

)

(2.4)

2.2.2 Equilibrium equations

Considering figure 10.4, the static equilibrium equation for a differential element at a con-

tinuum body under plane stress condition can be written as (see Kane, 1994):

∂σ11

∂x1

+
∂σ12

∂x2

+ f1 = 0 (2.5)

∂σ21

∂x1

+
∂σ22

∂x2

+ f2 = 0 (2.6)

evaluated in Ω, which usually have to satisfy the following conditions:

uα = ūα in Γu (2.7)
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tα = t̄α in Γt (2.8)

where σαβ represents the Cauchy stress tensor. Γu is a portion of the boundary Γ where known

displacements are imposed. Finally, the traction vector, tα at any point of the boundary Γt

with normal nβ is given by:

tα = σαβnβ (2.9)

2.3 Isotropic elasticity

As discussed above, the object in a state of plane stress is free to contract or expand in the

third direction. All components of the traction vector in direction 3 are equal to zero. Then,

the stress-strain relationship based on Hooke’s law for plane-stress can be written as:

σ11 =
2λG

λ + 2G
ε11 + 2Gε11 (2.10)

σ22 =
2λG

λ + 2G
ε22 + 2Gε22 (2.11)

σ12 = 2Gε12 (2.12)

where λ = 2νG/(1− 2ν), G is the elastic shear modulus, ν is the Poisson’s modulus and δαβ

is the Kronneker’s delta. In plane stress the strain ε33 component can be obtained as:

ε33 = − λ

(λ + 2G)
εαα (2.13)
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2.4 Isotropic fundamental solution

The formulation of the boundary integral equations for elastostatics require the knowledge

of the solution of the elastic problem with the same material properties as the body under

consideration, but corresponding to an infinite domain loaded with a concentrated unit point

load. If the equilibrium equations are expressed in terms of the displacements components,

we obtains the Navier’s equations for two-dimensional elastostatics:

μ

(

3λ + 2G

λ + 2G

)

uα,αβ + Guβ,γγ + fβ = 0 (2.14)

Kelvin solution is obtained from this equation when a unit concentrated load is applied at a

point i, in the direction of the unit vector eβ:

fβ = Δieβ (2.15)

Expressing the displacements terms through the Galerkin’s vector, Gα, we obtain:

uα = Gα,ββ − 1

2 (1 − ν)
Gβ,αβ (2.16)

Substituting equations (2.16) and (2.15) into equation (2.14) and solving for Gα, gives:

Gαβ =
1

8πG
r2 ln

(

1

r

)

eαδαβ (2.17)

Gαβ is the α component of the Galerkin’s vector at any point when a unit load is applied at

point α in the β direction. The displacement at any point in the domain, considering each

direction as independent is written as:

u∗
α = u∗

βαeβ (2.18)
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where u∗
αβ represents the displacement at any point in the β direction when a unit load is

applied at point ”i” in the α direction. In accordance to the definition of equation (2.16),

one can now write:

u∗
αβ = Gαβ,γγ −

1

2 (1 − ν)
Gαγ,βγ (2.19)

Substituting equations (2.17) into equation (2.19), we obtain the fundamental solution for

the two dimensional plane stress problem:

Uαβ =
1

8πμ (1 − ν̄)

[

(3 − 4ν̄) ln
(

1

r

)

δαβ + r,αr,β

]

(2.20)

where ν̄ = ν/(1 + ν).

Finally, the fundamental traction vector on any surface with normal nα due to a concen-

trated load can be derived from equation (2.4):

Tαβ = − 1

4π (1 − v̄) r
[r,n [(1 − 2v̄) δαβ + 2r,αr,β] + (1 − 2v̄) (nβr,α − nαr,β)] (2.21)
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Chapter 3

Anisotropic plane elasticity

3.1 Introduction

This chapter presents constitutive equations for anisotropic materials in two-dimensional

elastostatics and the fundamental solutions for infinite anisotropic planes. Chapter begins

defining basic stress-strain relationships for anisotropic elastic materials represented by the

general elastic constant tensor. The stress tensor and expression for displacements compo-

nents are establish, based on the Airy’s stress function defined for bi-dimensional anisotropic

problems. As a special case of orthotropic laminae, stress-strain relationships are presented

in order to obtain the basis for obtains the general stress-strain relations for composite lami-

nates. Finally, fundamental solutions for displacements and tractions for infinite anisotropic

plane is presented.

3.1.1 Anisotropic elasticity

In the anisotropic elasticity, the stress-strain relationship can be written in a general form as

(see Lekhnitskii, 1968):

σαβ = Cαβγρεγρ (3.1)

16



where Cαβγρ is a fourth-order tensor known as elastic constants tensor with 81 components.

Because of symmetry restrictions and the existence of a strain energy function, the following

conditions are required:

Cijkl = Cjikl, Cijkl = Cijlk

Cijkl = Cklji (3.2)

The symmetry of stresses and strains and the existence of a strain energy density function,

reduces the number of elastic constant from 81 to 21. In general, principal direction of stress

tensor do not have same direction of principal direction of the strain tensor. So only 18 out of

21 elastic constants are independents. Considering only 21 elastic constants, equation (3.1)

can be written in a matrix form as:
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(3.3)

Alternatively, equation (3.2) can be written as:

εij = Sijklσkl (3.4)
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where, Sijkl is a four order tensor named as flexibility tensor, and similar to tensor Cijkl has

only 18 independent constants. Equation (3.4) can be written as:
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(3.5)

Using the reduced tensorial notation proposed by Lekhnitskii, this equation can be written

as:
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where:
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and,
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(3.8)

The elastic coefficients can be expressed in terms of engineering constants as:

a11 = 1/E1 a12 = v12/E1 = −v12/E2

a13 = −v13/E1 = −v13/E3 a14 = η23,1/E1 = η1,23/G23

a15 = η32,1/E1 = η1,32/G23 a16 = η12,1/E1

a22 = 1/E2 a23 = v32/E2 = −v23/E3

a24 = η23,1/E2 = η23,3/G23 a25 = η31,2/E2 = η2,31/G13

a26 = η12,2/E2 = η2,12/G12 a33 = 1/E3

a34 = η23,3/E3 = η3,23/G23 a35 = η31,1/E3 = η3,31/G13

a36 = η12,3/E3 = η3,12/G12 a44 = 1/G23

a45 = ς32,23/G23 = ς23,31/G13 a46 = ς12,23/G23 = ς23,12/G12

a55 = 1/G13 a56 = ς12,31/G13 = ς31,12/G12

a66 = 1/G12

(3.9)

were Ek are the Young modulus referenced to axis xk, Gij are the shear modulus or Coulomb’s

modulus for planes defined by axis xixj. Constants vij are the Poisson’s coefficients. ηjk,l are

the first-kind mutual influence coefficients, that characterize the principal strains generated

by shear stresses acting at principal planes. The constants ηl,jk are the second-kind mutual

influence coefficients that characterize shear strains at principal planes generated by normal

stresses acting on this plane. Finally, ςij,kl are the Chentsov’s coefficients, that characterize
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the shear strain acting at principal planes, generated by shear stresses acting in this planes.

In a plane-stress state (σ3 = σ4 = σ5 = 0), any material can be expressed using only six

independent elastic constants. In this way, equation (3.6) can be written as:
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(3.10)

Finally, substituting equations (2.3) and (3.1) into equation (2.6) the equilibrium equation

for a general anisotropic elastostatic problems in term of displacements is obtained as:

Cijkluk,jl + fi = 0 (3.11)

3.2 The Airy’s stress function

In anisotropic elasticity, the stress-tensor can be written in function of the Airy’s stress

function F (x1, x2) given by (Lekhnitskii, 1968):

σ11 = F,22 + Υ

σ22 = F,11 + Υ

σ12 = −F,12 (3.12)

where Υ is a potential function with the property: Υ,i = fi. Substituting equations (3.12)

into constitutive equation (3.10) and then into compatibility equation (2.4), we obtains the
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differential equation for the stress function F (x1, x2):

a11F,2222 − 2a16F,1222 + (2a12 + a66) F,1122 − 2a26F,1112 + a22F,1111 =

− (a12 + a22) ϑ,11 + (a16 + a26) ϑ,12 − (a11 + a12) ϑ,22

(3.13)

The special case of fi = 0, the above equation can be written as:

a11F,2222 − 2a16F,1222 + (2a12 + a66) F,1122 − 2a26F,1112 + a22F,1111 = 0 (3.14)

Defining the differential operator:

Δk =
∂

∂x2

− μk
∂

∂x1

(3.15)

Applying this operator on stress function F (x1, x2), we can write:

Δ1Δ2Δ3Δ4F = 0 (3.16)

Expanding this equation we have:

F,2222 − (μ1μ2μ3μ4) F,1222 + (μ1μ2 + μ1μ3μ1μ4 + μ2μ3 + μ2μ4 + μ3μ4) F,1122

− (μ1μ2μ3 + μ1μ2μ4 + μ1μ3μ4 + μ2μ3μ4) F,1112 + (μ1μ2μ3μ4) F,1111 = 0 (3.17)

Equations (3.14) and (3.17) will be equal if μ1 ,μ2 ,μ3 ,μ4 are roots of the equation:

a11μ
4 − 2a16μ

3 + (2a12 + a66) μ2 − 2a26μ + a22 = 0 (3.18)

Roots of equation (3.18) are complex or pure imaginary roots, occurring in pairs (μk and μk)

as showed by Lekhnitskii, 1968.
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Defining the variable zk as:

zα = x1 + μαx2 (3.19)

we have:

Δk =
∂

∂x2

− μk
∂

∂x1

=
d

dzk

(3.20)

Defining F (x1, x2) as a real function, we have:

F (x1, x2) = 2Re [F1 (z1) + F2 (z2)] (3.21)

and introducing the notation:

dFk (zk)

dzk

= Ψk (zk) (3.22)

where the summation convention is applied for k, and replacing equation (3.21) into equation

(3.12), we obtain the components of the stress tensor:

σ11 = 2Re
[

μ2
1Ψ

(1)
1 (z1) + μ2

2Ψ
(1)
2 (z2)

]

(3.23)

σ22 = 2Re
[

Ψ
(1)
1 (z1) + Ψ

(1)
2 (z2)

]

(3.24)

σ12 = −2Re
[

μ1Ψ
(1)
1 (z1) + μ2Ψ

(1)
2 (z2)

]

(3.25)

where ψ
(1)
k represents the first derivative of ψk.

Replacing the above equation into equation (3.25) and then into equation (3.11) and

integrating, we obtain:

u1 = 2Re [q11Ψ1 (z1) + q12Ψ2 (z2)] (3.26)
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u2 = 2Re [q21Ψ1 (z1) + q22Ψ2 (z2)] (3.27)

where:

qαβ =

⎡

⎢

⎢

⎣

a11μ
2
β + a12 − a16μβ

a12μβ + a22/μβ − a26

⎤

⎥

⎥

⎦

(3.28)

are known as the complex parameter matrix.

If the boundary condition are established, the stress function given by equations (3.12)

(with the condition : Υ,i = fi) can be defined to satisfy this conditions. In this way the

displacements and stress fields, given by equations (3.27) and (3.25) can be founded.

3.3 Constitutive equations for a laminae

An orthotropic laminae has the next stress-strain relationship given by:
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(3.29)

where Qij are the components of the stiffness tensor, i.e:

Q11 = E1/ (1 − v12v21) Q22 = E2/ (1 − v12v21)

Q66 = G12 Q16 = Q26 = 0

Q12 = v21E1/ (1 − v12v21) = v12E2/ (1 − v12v21)

(3.30)

Since laminae is orthotropic (figure 3.1), it is totally characterized by four elastic con-

stants: the Young modulus E1 and E2 in the directions 1 and 2, respectively, the transversal

shear modulus G12 and the Poisson ratio, v12. The fifth elastic constant v12 is determinated
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Figure 3.1: Orthotropic laminae

by the constitutive relationship:

v21E1 = v12E2 (3.31)

In many situations the principal axis of the laminae (x1x2) are not coincident with the

laminate axis (x1x2). In this case, the constitutive relationship for each laminae should be

transformed to the laminated reference axis (figure 3.2) and then the constitutive relationship

can be defined. This transformation is performed multiplying the stress and strain tensors

by a matrix transformation:

σ
′

αβ = Tσαβ

ε
′

αβ = Tεαβ (3.32)

where σ
′

αβ and ε
′

αβ are the stress and strain tensor, respectively, referenced to laminated axis.

Transformation matrix T is given by:

T =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

m2 n2 2mn

n2 m2 −2mn

−mn mn m2 − n2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(3.33)

24



Figure 3.2: Laminae coordinate system

with: m = cos(θ) and n = sin(θ). Then, the constitutive equation is written as:
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(3.34)

that can be written as:
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⎢

⎢

⎢

⎢

⎢

⎢
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Q11 Q12 Q16
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⎥

⎥

⎥
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(3.35)

where:

Q11 = Q11 cos4 θ + 2 (Q12 + 2Q66) sin2 θ cos2 θ + Q22 sin4 θ

Q22 = Q11 sin4 θ + 2 (Q12 + 2Q66) sin2 θ cos2 θ + Q22 cos4 θ
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Q12 = (Q11 + Q22 − 4Q66) sin2 θ cos2 θ + Q12

(

sin4 θ + cos4 θ
)

Q66 = (Q11 + Q22 − 2Q12 − 2Q66) sin2 θ cos2 θ + Q66

(

sin4 θ + cos4 θ
)

(3.36)

Q16 = (Q11 − Q12 − 2Q66) sin θ cos3 θ + (Q12 − Q22 + 2Q66) sin3 θ cos θ (3.37)

3.4 Symmetric laminates

A symmetric laminate has both, geometric and material property symmetric about the mid-

dle surface (see Gibson, 1992). That is, the lamina material, lamina orientation, and lamina

thickness at a positive distance z from the middle surface are identical to the the correspond-

ing values at an equal negative distance z from the middle surface.

This imply that bending-stretching coupling will not be present in such laminates. Con-

sequently, in-plane loads will not generate bending and twisting curvatures that causes out-

of-plane warping, and bending or twisting moments will not produce an extension of the

middle surface.

Components of the tensor stress tensor acting at any laminate are obtained integrating

these components that act in any lamina through the thickness of the laminate:

σij =
1

h

∫ +hl/2

−hl/2

σ
′

ijdx3 (3.38)

where σ
′

ij is the stress tensor acting in any individual laminae and σij is the mean tensor

stress acting in the laminate.

Consider now the laminate as composed by N orthotropic laminae, as show in figure 3.3.

Forces acting in the middle plane of this laminate can be obtained replacing the continuous
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Figure 3.3: Symmetric laminate

integral by the summatory of integrals each laminae:
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l

dx3 (3.39)

Replacing equation (3.34) into (3.39), we obtain:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

σ11

σ22

σ12

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎭

=
1

h

N
∑

l=1

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

∫ hl

hl−1

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Q11 Q12 Q16

Q12 Q22 Q26

Q16 Q26 Q66

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

l

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ε11

ε22

ε12

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎭

dx3

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎭

(3.40)

Since Ql and εij are constants through the thickness h (as principal hypothesis in this work),
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equation (3.43) can be re-written as:
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(3.41)

where:

QL =
1

h

[

N
∑

l=1

Ql (hl − hl−1)

]

(3.42)

In many cases is necessary to transform the tensor Q to another coordinate system. In this

case, a similar transformation procedure applied to equations (3.35) is used:

a
′

11 = a11 cos4 θ + (2a12 + a66) sin2 θ cos2 θ + a22 sin4 θ

+
(

a16 cos2 θ + a26 sin2 θ
)

sin 2θ (3.43)

a
′

22 = a11 sin4 θ + (2a12 + a66) sin2 θ cos2 θ + a22 cos4 θ

−
(

a16 cos2 θ + a26 sin2 θ
)

sin 2θ (3.44)

a
′

12 = a12 + (a11 + a22 − 2a12 − a66) sin2 θ cos2 θ

+
1

2
(a26 − a16) sin 2θ cos 2θ (3.45)

a
′

66 =
[

a22 sin2 θ − a11 cos2 θ +
1

2
(a12 − a66) cos 2θ

]

sin 2θ

+ a16 cos2 θ
(

cos2 θ − 3 sin2 θ
)

+ a26 sin2 θ
(

3 cos2 θ − sin2 θ
)

(3.46)

a
′

26 =
[

a22 cos2 θ − a11 sin2 θ +
1

2
(2a12 + a66) cos 2θ

]

sin 2θ

+ a16 sin2 θ
(

3 cos2 θ − sin2 θ
)

+ a26 cos2 θ
(

cos2 θ − 3 sin2 θ
)

(3.47)
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Figure 3.4: Transformation of the coordinate system

where a
′

ij represents the elastic constants matrix represented in the x
′

1x
′

2 coordinate system

and aij is the same matrix but related to coordinate system x1x2 (see figure 3.4).

Roots of characteristic equation can be written with reference to the new coordinate

system by:

μ
′

k =
μk cos θ − sin θ

cos θ + μk sin θ
(3.48)

where μ
′

k are roots expressed in the new coordinate system.

3.5 Anisotropic fundamental solutions

Defining complex variables:

z′ =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

z
′

1

z
′

2

⎫

⎪

⎪

⎬

⎪

⎪

⎭

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

x
′

1 + μ1x
′

2

x
′

1 + μ2x
′

2

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(3.49)

29



and
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(3.50)

where x
′

1 and x
′

2 are the source point coordinates (point of application of the concentrated

unit load) and x1 and x2 are the field point coordinates.

Considering a closed boundary around the source point and using the traction surface

forces defined by equation (2.8) and stresses defined by equation (3.25), we have:

∫

Γt

t1dΓ = 2Re [μ1Ψ1 + μ2Ψ2] = −δα1 (3.51)

∫

Γt

t2dΓ = 2Re [Ψ1 + Ψ2] = δα2 (3.52)

For a loaded point in the direction x1, the Airy stress function can be represented by Ψαβ.

These equations can be satisfied for any closed boundary path z’ if we take:

Ψαβ = Aαβ ln (z − z′) (3.53)

Replacing (3.52) into (3.53) and considering ln (z − z′) = 2πi two equations for the unknows

constants Aαβ are obtained as:

Aα1 − Aα1 + Aα2 − Aα2 = δα2/(2πi)

μ1Aα1 − μ1Aα1 + μ2Aα2 − μ2Aα2 = −δα1/(2πi) (3.54)

Another two equations are necessary to compute Aαβ. These equations are obtained from the

condition of uniques for displacements. Solving for Aαβ, using equation (3.53) and replacing

into displacements equations (3.27), we obtain the displacement fundamental solution for
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anisotropic plane-stress problems (see Albuquerque, 2001):

Uαβ = 2Re
[

qβ1Aα1 ln
(

z1 − z
′

1

)

+ qα2Aβ2 ln
(

z2 − z
′

2

)]

(3.55)

Finally, the fundamental traction vector on any surface with normal nα can be derived as:

Tαβ = 2Re

⎡

⎣

1
(

z1 − z
′

1

)gα1 (μ1n1 − n2) Aβ1 +
1

(

z2 − z
′

2

)gα2 (μ2n1 − n2) Aβ2

⎤

⎦ (3.56)
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Chapter 4

Boundary element method for plane

elastostatics

4.1 Introduction

In this chapter, the boundary element method (BEM) is applied to solve two-dimensional

elasticity problems. For that, boundary integral equations are obtained using the weighted

residual method applied to equilibrium equation in elastostatics, which is equivalent to the

Betti’s reciprocity theorem in solid mechanics. Initially, the boundary integral formulation

(based on Somigliana’s identity) is obtained. This formulation is discretizated using bound-

ary elements and using fundamental solutions as weighted functions and then matrix equa-

tions of the BEM are established. In this work, two types of boundary element are used:

continuous and discontinuous quadratic elements to discretizate the boundary. The continu-

ous elements are used to approximate elements geometry and discontinuous to approximate

the displacement and traction field in the elements. Finally, numerical examples considering

isotropic and anisotropic material response are showed. Preliminary conclusions are pre-

sented.
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4.2 Boundary integral formulation

The governing integral equations for elastostatics will be deduced using the weighted residual

method. The weighted formulation of equations (2.6) can be written as (see for example

Brebbia and Dominguez, 1989):

∫

Ω

(σαβ,β + fα) u∗
αdΩ = 0 (4.1)

where u∗
α is the displacement weight function according to boundary conditions given by

equations (2.2) and (2.3). Integrating by parts the first term of equation (4.1) and grouping

the corresponding terms, we find the following expression:

∫

Ω

σαβε∗αβdΩ +
∫

Ω

fαu∗
αdΩ = −

∫

Γ

tαu∗
αdΓ (4.2)

Integrating by parts again we finds the adjoint of the equation (4.2):

∫

Ω

σ∗
αβuαdΩ +

∫

Ω

fαu∗
αdΩ = −

∫

Γ

tαu∗
αdΓ +

∫

Γ

t∗αuαdΓ (4.3)

This expression corresponds to Betti’s reciprocal theorem which will be used as the start-

ing point for the boundary integral formulation in this work. Using as weighting function

fundamental solutions for displacement and traction and considering the Dirac’s property,

∫

Ω

δαβuαdΩ = uα (4.4)

we have:

uα +
∫

Γ

Tαβ (x′,x) uβdΓ =
∫

Γ

Uαβ (x′,x) tβdΓ − 1

h

∫

A

Uαβ (x′,x) fβdA (4.5)
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Γε

Γε
∗

Γ

ε

Figure 4.1: Source point placed at boundary and enclosed by a semi-circular region

where dΩ = hdA, h = the plate thickness. In this way, fβ represents a distributed body force

per unit area1. This equation represents the Somigliana’s identity for generalizated plane

stress problems. This equation is the basis of the boundary element method.

4.3 Singular boundary integrals

When the source point is taken to the boundary, integrals have a singularity. If we consider

that the boundary is smooth at source point, one can suppress it by a circle with center at

this point and small radius ǫ which will afterward be taken to the limit (see figure 4.1).

There are two types of boundary integrals in equation (4.5). Consider first the one on

R.H.S. and write it in function of Γǫ:

∫

Γ
Uαβtβ (x′) dΓ = lim

ǫ→0

{∫

Γ−Γǫ

Uαβtβ (x′) dΓ
}

+ lim
ǫ→0

{∫

Γǫ

Uαβtβ (x′) dΓ
}

(4.6)

1if bβ represents a distributed body force per unit of volume, this force can be written as: bβ = 1/(hdA)bβ =
1/hfβ
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The first integral on the R.H.S. of (4.6) will simply become as integral on the whole boundary

Γ when ǫ → 0. The second integral can be written as:

tβ (x′) lim
ǫ→0

{∫

Γǫ

UαβdΓ
}

(4.7)

Since the fundamental solution is of order 1/ǫ and the boundary integral in (4.7) will tend

to zero as ǫ → 0, we obtain:

lim
ε→0

{∫

Γε

UαβdΓ
}

≡ 0 (4.8)

The L.H.S. integral in equation (4.5) however behaves differently. It can be written as:

∫

Γ
Tαβuβ (x′) dΓ = lim

ε→0

{∫

Γ−Γε

Tαβuβ (x′) dΓ
}

+ lim
ε→0

{∫

Γε

Tαβuβ (x′) dΓ
}

(4.9)

The limit of the last integral can be written as:

lim
ε→0

{∫

Γε

Tαβuβ (x′) dΓ
}

= uβ (x′) lim
ε→0

{∫

Γε

TαβdΓ
}

(4.10)

The values Tαβ are now of order 1/ǫ2 while the terms from integration over the boundary

are of order ǫ2. Hence integral (4.10) does not vanish when ǫ → 0 but produces a free term.

Integrating over Γǫ one finds:

lim
ε→0

{∫

Γε

TαβdΓ
}

= −1

2
δαβ (4.11)

Hence the L.H.S. integral (4.9) can be written in the limit as:

∫

Γ
Tαβuβ (x′) dΓ − 1

2
δαβuβ (x′) =

∫

Γ
Tαβuβ (x′) dΓ − uα (x′) (4.12)

where the integral on Γ is defined in the sense of Cauchy Principal Value. Therefore, for
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boundary points, equation (4.5) transform into:

cαβuβ (x′) +
∫

Γ
Tαβ (x′,x) uβdΓ =

∫

Γ
Uαβ (x′,x) tβdΓ +

1

h

∫

A
Uαβ (x′,x) fβdA (4.13)

where the integrals are in the sense of Cauchy principal value and where Γ is smooth at

source point, cαβ = 1
2
δαβ.

4.4 Internal stresses

For an isotropic medium, the internal stresses can be computed by differentiating the dis-

placements at internal points and introducing the corresponding strains and the stress-strain

relationships into equation (4.13). After carrying out the derivatives inside the integral equa-

tions and taking the corresponding derivatives of the fundamental solution, it can be written

as:

σαβ =
∫

Γ

DαβγtαdΓ −
∫

Γ

SαβγuαdΓ +
1

h

∫

A

DαβγfαdA (4.14)

where the second order tensor components Dαβγ and Sαβγ are:

Dαβγ =
1

4πr (1 − v)
{(1 − 2v) {δαβr,γ + δβγr,β − δβγr,α} + 2r,αr,βr,γ} (4.15)

Sαβγ =
2G

4πr2 (1 − v)
{2r,n [(1 − 2v) δβγr,α + v (δβαr,γ + δγαr,β) − γr,αr,βr,γ] (4.16)

+ 2v (nβr,γr,α + nγr,βr,α)

+ (1 − 2v) (2nαr,βr,γ + nγδβα + nβδγα) − (1 − 4v) nαδβγ}

4.5 Boundary element discretization

In order to solve the integral equation (4.13), the boundary will be discretized into a series

of elements over which displacements and tractions are written in terms of their values at a
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series of nodal points. In this way, a system of algebraic equations is obtained and conse-

quently an approximated solution to the boundary value problem is obtained (see Brebbia

and Dominguez, 1989).

In matrix form, the displacement, uα, and the traction vector, tα at any point on the

boundary Γe can be written as:

u = Φuj (4.17)

t = Φtj (4.18)

where the interpolation function matrix Φ is an array 2 × ND array of shape functions:

Φ =

⎡

⎢

⎢

⎣

φ1 0 φ2 0 φ3 0

0 φ1 0 φ2 0 φ3

⎤

⎥

⎥

⎦

(4.19)

The body forces at any point on the domain Ω can also be expressed in a vector form. The

fundamental solution coefficients can be expressed as,

T =

⎡

⎢

⎢

⎣

T11 T12

T21 T22

⎤

⎥

⎥

⎦

(4.20)

and,

U =

⎡

⎢

⎢

⎣

U11 U12

U21 U22

⎤

⎥

⎥

⎦

(4.21)

With this notation, equation (4.13) can be written as follows:

c (x′)u (x′) +
∫

Γ

T (x′,x)udΓ =
∫

Γ

U (x′,x) tdΓ +
1

h

∫

Ω

U (x′,x) fdA (4.22)
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Figure 4.2: Continuous and dis-continuous quadratic elements

Discretizing the boundary, we obtaining the following equation for a nodal point:

c (x′)u (x′) +
NE
∑

j=1

⎧

⎪

⎨

⎪

⎩

∫

Γj

T (x′,x)ΦdΓ

⎫

⎪

⎬

⎪

⎭

uj =
NE
∑

j=1

⎧

⎪

⎨

⎪

⎩

∫

Γj

U (x′,x)ΦdΓ

⎫

⎪

⎬

⎪

⎭

tj (4.23)

+
M
∑

s=1

⎧

⎪

⎨

⎪

⎩

1

h

∫

As

U (x′,x) fdA

⎫

⎪

⎬

⎪

⎭

where NE is the number of element on the boundary and Γj is the domain of j element, uj

and tj are the nodal displacements and tractions, respectively, in the element j.

In equation (4.22) the body force integral has been treated using the cell method where

the domain was divided into M internal cells over which these integral forces are computed.

4.6 Spatial integration

In this work, quadratic continuous and discontinuous interpolation functions (shape func-

tions) are used (see figure 4.2). Continuous functions are used to modeling the geometry,
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and discontinuous functions are used to approximate the displacement and traction fields at

the boundary elements. Typically:

u =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

u1

u2

⎫

⎪

⎪

⎬

⎪

⎪

⎭

=

⎡

⎢

⎢

⎣

φ1 0 φ2 0 φ3 0

0 φ1 0 φ2 0 φ1

⎤

⎥

⎥

⎦

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

u
(1)
1

u
(1)
2

u
(2)
1

u
(2)
2

u
(3)
1

u
(3)
2

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

= Φu(j) (4.24)

t =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

t1

t2

⎫

⎪

⎪

⎬

⎪

⎪

⎭

=

⎡

⎢

⎢

⎣

φ1 0 φ2 0 φ3 0

0 φ1 0 φ2 0 φ1

⎤

⎥

⎥

⎦

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

t
(1)
1

t
(1)
2

t
(2)
1

t
(2)
2

t
(3)
1

t
(3)
2

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

= Φt(j) (4.25)

where discontinuous shape functions φ(i) are given by:

φ1 =
3

4
ξ
(

3

2
ξ − 1

)

(4.26)

φ2 =
(

1 − 3

2
ξ
)(

1 +
3

2
ξ
)

(4.27)

φ1 =
3

4
ξ
(

3

2
ξ + 1

)

(4.28)
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Here ξ is a parametric coordinate. Geometry is represented by continuous quadratic elements

as (figure 4.2):

x =

⎧

⎪
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⎨

⎪

⎪
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⎪

⎪

⎪

⎪
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⎪
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⎪
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⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

= Φx(j) (4.29)

where:

ψ1 =
1

2
ξ (ξ − 1) (4.30)

ψ2 = (1 − ξ) (1 + ξ) (4.31)

ψ3 =
1

2
ξ (ξ + 1) (4.32)

In this way, boundary integrals in equation (4.22) can be written as:

c (x′)u (x′) +
NE
∑

j=1

⎧

⎪

⎨

⎪

⎩

∫

Γj

T (x′,x)Φ |J| dξ

⎫

⎪

⎬

⎪

⎭

uj =
NE
∑

j=1

⎧

⎪

⎨

⎪

⎩

∫

Γj

U (x′,x)Φ |J| dξ

⎫

⎪

⎬

⎪

⎭

tj (4.33)

+
1

h

M
∑

s=1

⎧

⎪

⎨

⎪

⎩

∫

As

U (x′,x)b |G| dξdη

⎫

⎪

⎬

⎪

⎭

where |J| is the modulus of Jacobian matrix for a uni-dimensional transformation:

|J| =
dΓ

dξ
=

⎧

⎨

⎩

(

dx1

dξ

)2

+

(

dx2

dξ

)2
⎫

⎬

⎭

1/2

(4.34)
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And |G| is the modulus of Jacobian matrix for a bi-dimensional transformation:

|G| =
∂x1

∂ξ

∂x2

∂η
− ∂x2

∂ξ

∂x1

∂η
(4.35)

Applying numerical integration to the above formula we obtains:

c (x′)u (x′) +
NE
∑

j=1

{

NG
∑

k=1

wk (T (x′,x)Ψ)k |J|
}

uj

=
NE
∑

j=1

{

NG
∑

k=1

wk (U (x′,x)Ψ)k |J|
}

tj

+
1

h

M
∑

s=1

⎧

⎨

⎩

NG
∑

p=1

wp (U (x′,x)Ψ)p |G|
⎫

⎬

⎭

(4.36)

where NG is the number of integration points on the element and wk are the weight at those

points. This equation correspond to a particular node and once integrated can be written as:

c (x′)u (x′) +
N
∑

j=1

Ĥijuj =
N
∑

j=1

Ĝijtj +
M
∑

s=1

Bis (4.37)

where N is the number of nodes, uj and tj are the displacements and tractions at node j.

The influence matrices H and G are:

Ĥij =
∑

t

∫

Γt

U (x′,x)ΨqdΓ (4.38)

Gij =
∑

t

∫

Γt

T (x′,x)ΨqdΓ (4.39)

where the summation extends to all the elements to which node j belongs and q is the number

of order of the node j within element t. Additionally:

Bis =
1

h

∫

Ωs

U (x′,x) fdA (4.40)
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Calling Hij = Ĥij if i �= j and Hij = Ĥij + c (x′) if i = j, equation (4.37) becomes,

N
∑

j=1

Hijuj =
N
∑

j=1

Gijtj +
M
∑

s=1

Bis (4.41)

The contribution for all i nodes can be written together in matrix form to give the global

system equations:

Hu = Gt + B (4.42)

Vectors u and t represent all values of displacements and tractions before applying boundary

conditions.

Singular integrals with order O(ln r) are evaluated using Logarithmic quadrature devel-

oped by Stroud and Secrest, 1996. According to this method, terms that includes logarithmic

singularities can be integrated by:

I =
∫ 1

0
ln

(

1

ξ

)

f (ξ) dξ ∼=
NG
∑

i=1

wif (ξ) (4.43)

Integration points ξi and the weights can be found in the literature. Strong singularity with

order O(1/r) are threated using rigid body considerations.

4.7 Numerical examples

4.7.1 Isotropic plate with central square hole

A 1.4 m x 1.4 m square plate with a central square hole of 0.1 m x 0.1 m is loaded at bound-

ary with a uniform traction load of 0.1 MPa. Considering the symmetry of the plate, only

one-quarter of its geometry will be discretized as shown in figure 4.3. The Young modulus

and Poisson coefficient are E = 210 MPa and v = 0.33. The thickness of the plate is 0.01 m.
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ο = 0.1 MPaσ

σο = 0.1 M

P

Figure 4.3: Isotropic plate with square hole under uniform traction load

Verification of the results consist to compare the displacements obtained with BEM model

with those encountered using a finite element model of the plate. The norm of error proposed

to compare the numerical solutions is given by:

‖uBEM − uFEM‖ =

⎛

⎝

∫

Ω

|uBEM − uFEM |2 dΩ

⎞

⎠

1/2

(4.44)

Figure 4.4 shows the BEM model proposed for the analysis. A convergence analysis was per-

formed varing the number of boundary element between 5 and 43. In this way the number

of nodes at boundary variated between 15 and 129.

The number of elements was uniform distributed along the edges of the plate. Figure 4.5

shows the variation in the norm of error given by equation (4.44) for total displacements as

function of number of boundary nodes. Rapid convergence for displacements is obtained as

figure shown. The difference in displacements using the BEM model and the FEM model

was error less than 0.1% reached with 100 nodes.
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Figure 4.4: Boundary element model of square plate with central hole

Figure (4.6) shows the distribution of total displacement in the domain of the plate. For

this, a uniform internal points was distributed in the domain. The components of displace-

ments have been calculated using equation (4.36). A calculation of internal stresses can be

performed using a discretizated version of equation (4.14), but is not presented here.
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Figure 4.5: Convergence analysis for displacements
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Figure 4.6: Total displacement distribution at plate domain

4.7.2 Orthotropic square plate with circular hole

A square orthotropic plate with edges of 0.4 m containing a circular hole with radius of 0.1

m, loaded with a traction of 100 MPa, is considered now. The mechanical properties are: E1

= 220 GPa, E2 = 118 Gpa, G12 = 77GPa and v12 = 0.4286. The thickness of the plate is

0.001 m. Again, symmetry considerations has been applied.

This problem is analyzed using the MATLAB program named ’composite’ developed by

Albuquerque, 2001. This program performs static and dynamic two-dimensional analysis

of composite plates and has been used to model the in-plane static response of composite

patches in this work. Various papers reporting the performance of this program can be found

in the literature (see: Albuquerque and Sollero, 1998; Albuquerque et al., 1999; Albuquerque

et al., 1999). A total of 21 boundary elements were used and 160 internal points were

used to calculate internal displacements and stresses were used. As representative numerical

results, the stress distribution in direction y is showed in figure 4.7. Good agreement with

the theoretical values for the stresses are obtained when comparing this results with that

reported in literature (see Albuquerque, 2001).
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Stress in y direction
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Figure 4.7: Normal stress distribution in y-axis direction

4.8 Conclusions

The displacement boundary integral formulation of two-dimensional equilibrium equations

was presented. The discretizated version of this formulation is obtained from the boundary

element method applied to plane-stress elastostatics problems. The integral equation for

internal stresses has been obtained differentiating the displacement boundary integral formu-

lation with respect to spacial variables. Continuous and discontinuous quadratic boundary

elements were used to approximate the boundary geometry and to interpolate the displace-

ments and traction fields in the boundary elements. Numerical results showing a representa-

tive plane-stress problems were presented and their numerical results were analyzed. Good

agreement of results is obtained when compared with results from finite element models and

those reported in literature.
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Chapter 5

Boundary element formulation for

Reissner plates

5.1 Introduction

This chapter presents the direct boundary element formulation of isotropic Reissner plates.

The Reissner plate theory and governing equations for shear deformable plates are presented.

Based in these equations, the boundary integral formulation is developed. Fundamental

solutions, developed by Vander Weeën, 1982, for displacements and tractions for infinite

elastic plane under transversal loads and in-plane bending moments are presented. Boundary

element method is applied to discretizate the integral boundary equation. Procedures for

treatment of the singular integrals are showed. Finally, numerical examples are showed and

results are discussed. Preliminary conclusions are established.

5.2 Reissner plate theory

Both, the Kirchhoff’s plate theory and the Reissner/Mindlin shear deformable plates theory

are based on the following assumptions:
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Figure 5.1: Thick plate geometry

- Plane section remains plane after the deformation, which implies the transverse normal

strains are zeros.

- The displacements are small enough for changes in geometry to be negligible.

Therefore, the theory of plates can be regarded as an extension of small strain theory of

elasticity, in particular, plane stress problems (see Dirgantara, 2000).

Plate theories are mainly simplified two-dimensional model of the original three-dimensional

structure. The basic idea of the plate theories in general is to assume either stress distri-

bution through the thickness as in the stress-based theories (such as the Reissner theory)

or to assume displacement distribution through the thickness as in the displacement-based

theories (such as Kirchhoff theory).

5.2.1 Internal stress resultants

Consider an arbitrary plate of thickness, h, as shown in figure 5.1 with a domain Ω and

boundary Γ in the xi space. The x1−x2 plane is assumed to be located at the middle surface

x3 = 0. The generalized displacements are denoted as wi, where wα denotes rotations (φx1

and φx2) and w3 denotes the transverse deflection w (see Rashed, 1999).
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Figure 5.2: Equilibrium of differential plate element

The stress resultants at any internal point x’∈ Ω which are the bending moments Mαβ

and the shearing forces Qα can be defined as follows:

Mαβ =

h/2
∫

−h/2

x3σαβdx3 (5.1)

Qα =

h/2
∫

−h/2

x3σα3dx3 (5.2)

with α, β = 1, 2. σαβ are the three-dimensional components of the normal stresses through the

plate thickness and σα3 are the components of the transverse shear stresses. The generalized

tractions at a boundary point x ∈ Γ can be defined as:

qα = Mαβnβ

q3 = Qαnα (5.3)

where nβ are the components of the outward normal vector to the plate boundary Γ.
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5.2.2 Equilibrium equations

The equilibrium equations can be formed by considering the equilibrium of a typical differ-

ential element shown in figure 5.2. This element has dimensions of dx1 × dx2 × h and under

uniform load q (per unit area), as regarded positive when applied in the x3 direction. The

equilibrium of moments about the x1 and x2 coordinate axis and the equilibrium of forces in

the x3 direction can be written as follows:

∂M11

∂x1

+
∂M21

∂x2

− Q1 = 0 (5.4)

∂M22

∂x2

+
∂M12

∂x1

− Q2 = 0 (5.5)

∂Q1

∂x1

+
∂Q2

∂x2

+ q = 0 (5.6)

∂Q2

∂x1

+
∂Q1

∂x2

+ q = 0 (5.7)

(5.8)

These equations represent the governing equations in the differential form. It has to be noted

that they contain five unknows, however they are three equations. The required additional

equations to define the problem will be setup via the stress-displacement relationships and

the application of suitable boundary conditions.

5.2.3 Stress resultant-strain relationships

For shear deformable plate bending, the normal stresses due to bending and twisting moments

σαβ vary linearly and the transverse shear stresses σα3 vary parabolically over the thickness.
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Hence the stress components can be expressed via the following relationships:

σαβ =
12x3

h3
Mαβ (5.9)

σα3 =
3

2h

[

1 −
(

2x3

h

)2
]

Qα (5.10)

The stress resultant-strain relationships are derived using the basic minimum principle for

the stresses as presented in Reissner, 1947. The resultant tensor moment Mαβ and the normal

shear vector Qα are given by:

Mαβ = D
1 − v

2

(

2χαβ +
2v

1 − v
χγγδαβ

)

(5.11)

Qα =
1 − v

2
λ2ψα (5.12)

where:

2χαβ = wα,β + wβ,α

ψα = wα + w3,α (5.13)

where χαβ is the curvature tensor and ψα are the transversal shear strains. Equation (5.12)

represents the generalized Hooke’s law. This equation together with equation (5.13) presents

the stress-resultant-displacement relationships. Constants Cs, Cn and D are given by:

D =
Eh3

12 (1 − v2)
(5.14)

Cn =
5

6

Eh

v
(5.15)
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Cs =
5

6
Gh (5.16)

Replacing these constants into equation (5.12) we obtain:

Mαβ = D
1 − v

2

(

wα,β + wβ,α +
2v

1 − v
wγ,γδαβ

)

+
vq

(1 − v) λ2
δαβ

Qα = D
1 − v

2
λ2 (wα + w3,α) (5.17)

where D = Eh3/12(1− v2) is the flexural rigity of the plate and λ =
√

10 is called the shear

factor.

5.3 Governing equations

The generalized governing equations for Reissner plates (Naiver equations)can be formed by

substituting equation (5.17) into the equilibrium equations (5.8) to give:

D∇2w1 +
D

2
(1 + v)

∂

∂x2

(−∂w1

∂x2

+
∂w2

∂x1

) − Cw1 − C
∂w3

∂x1

= 0 (5.18)

D

2
(1 + v)

∂

∂x1

(−∂w1

∂x2

+
∂w2

∂x1

) + D∇2w2 − Cw2 − C
∂w3

∂x2

= 0 (5.19)

C∇2w3 + C
∂w1

∂x1

+ C
∂w2

∂x2

+ q3 = 0 (5.20)

B∇2u1 +
B

2
(1 + v)

∂

∂x2

(−∂u1

∂x2

+
∂u2

∂x1

) + q1 = 0 (5.21)

where C = D(1 − v)/2λ2.
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5.4 Boundary integral formulation

The integral equation can be derived by considering the integral representation of the gov-

erning equations (5.8) via the following integral identity:

∫

Ω

[(Mαβ,β − Qα) W ∗
α + (Qα,α + q) W ∗

3 ] dΩ = 0 (5.22)

where W ∗
i (i = α, 3) are weighting functions. Integrating by parts and making use of the

relationships in equation (5.3), it gives:

∫

Γ

pjW
∗
j dΓ +

∫

Ω

qW ∗
3 dΩ +

∫

Ω

Qα

(

W ∗
α + W ∗

3,α

)

dΩ +
∫

Ω

MαβW ∗
α,βdΩ = 0 (5.23)

where j = α, 3. Replace the stress resultants (Mαβ and Qα) with the generalized displace-

ments and its derivatives using equation (5.17) and applying the Green’s second identity for

the Mαβ integral gives:

∫

Γ

pjW
∗
j dΓ +

∫

Ω

Qα (wα + w3,α) dΩ

−
∫

Γ

W ∗
α,β

{

D (1 − v)

2

(

wαnβ + wβnα +
2v

(1 − v)
wγnγδαβ

)}

dΓ

−
∫

Γ

D (1 − v)

2

(

wαW ∗
α,ββ + wβW ∗

α,βα +
2v

(1 − v)
wγW

∗
α,βγδαβ

)

dΓ

+
∫

Ω

[

qW ∗
3 +

vq

(1 − v) λ2
δαβW ∗

α,β

]

dΩ (5.24)

The second integral on the left hand side of above equation can be decomposed using Green’s

second identity and making use of the relationships in equation (5.3) as follows:

∫

Ω

Qα (wα + w3,α) dΩ =
∫

Γ

p3w3dΓ +
∫

Ω

(

Q∗
αwα − Q∗

α,αw3

)

dΩ (5.25)
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Substituting this equation into last equation and grouping it gives:

∫

Γ

(

W ∗
j pj − P ∗

j wj

)

dΓ +
∫

Ω

[

W ∗
3 +

v

(1 − v) λ2
W ∗

θ,θ

]

qdΩ

+
∫

Ω

[(

M∗
αβ,β − Q∗

α

)

wα + Q∗
α,αw3

]

dΩ = 0 (5.26)

This equation represents a generalized Betti’s reciprocal theorem for Reissner plates; It has

to be noted that the weighting functions can be chosen to represents arbitrarily state. This

state is defined for concentrated generalized loads: two bending moments (i = α = 1, 2) and

one concentrated shear force (i = 3) at an arbitrary point x′ ∈ Ω. Then equation (5.26) can

be rewritten after introducing the direction of the load i as follows:

∫

Γ

W ∗
ij (x′,x) pj (x) dΓ −

∫

Γ

P ∗
ij (x′,x) wj (x) dΓ

+
∫

Ω

[

W ∗
i3 (x′,x) +

v

(1 − v) λ2
W ∗

iθ,θ (x′,x)

]

qdΩ

+
∫

Ω

[(

M∗
iαβ,β (x′,x) − Q∗

iα (x′,x)
)]

wα (x) dΩ

+
∫

Ω

Q∗
iα,α (x′,x) w3 (x) dΩ (5.27)

By choosing the weighting function as:

M∗
iαβ,β (x′,x) − Q∗

iα (x′,x) = −δ (x′,x) δiα

Q∗
iα,α (x′,x) = −δ (x′,x) δi3 (5.28)

and making use of the Dirac delta property:

∫

Ω

δ (x′,x) wi (x) dΩ =wi (x
′) (5.29)
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then equation (5.27) can be written for an internal source point x’ as:

wj (x′) +
∫

Γ

P ∗
ij (x′,x) wj (x) dΓ =

∫

Γ

W ∗
ij (x′,x) pj (x) dΓ

+
∫

Ω

(

W ∗
i3 (x′,x) − v

(1 − v) λ2
W ∗

iα,α (x′,x)

)

q (x) dΩ (5.30)

where W ∗
ij (x′,x) and P ∗

ij (x′,x) are the two-point fundamental solution kernels for the dis-

placements and the tractions respectively. It represents the displacement or the tractions at

the point x in the direction j due to unit load applied at x′ at the direction i. The expressions

for these kernels are given by Vander Weeën, 1982 as follows:

W ∗
αβ =

1

8πD (1 − v)
{[8B (z) − (1 − v) (2 ln (z) − 1)] δαβ

− [8A (z) − 2 (1 − v)] r,αr,β}

W ∗
α3 = −W ∗

3α =
1

8πD
(2 ln (z) − 1) rr,α

W ∗
αβ =

1

8πD (1 − v) λ2

[

(1 − v) z2 (ln (z) − 1) − 8 ln (z)
]

(5.31)

and

P ∗
αβ = − 1

4πr
[(4A (z) + 2zK1 (z) + 1 − v) (δαγr,n + r,αnγ)

+ (4A (z) + 1 + v) r,γnα − 2 (8A (z) + 2zK1 (z) + 1 − v) r,αr,γr,n]

P ∗
γ3 =

λ2

2π
[B (z) nγ − A (z) r,γr,n]

P ∗
3α =

− (1 − v)

8π

[(

2
(1 + v)

(1 − v)
ln (z) − 1

)

nα + 2r,αr,n

]

P ∗
33 =

−1

2πr
r,n (5.32)

where

A (z) = K0 (z) +
2

z

[

K1 (z) − 1

z

]

(5.33)
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B (z) = K0 (z) +
1

z

[

K1 (z) − 1

z

]

(5.34)

in which K0(z) and K1(z) are modified Bessel functions, z = λr, r is the absolute distance

between the source and the field points, r,α = rα/r where rα = xα(x)−xα(x′) and r,n = r,αnα.

Equation (5.30) represents the generalized Somigliana’s identity for Reissner plates. As can

be demonstrate, A(z) is a smooth function, whereas B(z) is a weakly singular O(ln(r)).

Therefore W ∗
ij is a weakly singular and P ∗

ij has a strong (Cauchy principal value) singularity

O(1/r).

In other hands, by taking the point x′ to the boundary at the position x′ ∈ Γ, and

assuming that the displacements wi satisfy Hölder continuity, equation (5.30) can be written

as follows:

cij (x′) wj (x′) +
∫

Γ

P ∗
ij (x′,x) wj (x′) dΓ =

∫

Γ

W ∗
ij (x′,x) pj (x′) dΓ

+
∫

Ω

(

W ∗
i3 (x′,x) − v

(1 − v) λ2
W ∗

iα,α (x′,x)

)

qdΩ (5.35)

Integral at left hand side is a Cauchy principal value integral; x′,x ∈ Γ are source and field

points respectively, and cij(x
′) are the jump terms arising from the terms of O(1/r) in the

kernel P ∗
ij. Equation (5.35) represent three integral equations (two (i=1, 2) for rotations and

one (i = 3) for deflection).

The domain integral in equation (5.35) can be transferred to the boundary (by applying

the divergence theorem), in the case of a uniform load (q = constant) to give:

∫

Ω

(

W ∗
i3 (x′,x) − v

(1 − v) λ2
W ∗

iα,α (x′,x)

)

qdΩ =
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Γ

Local coordinates

Figure 5.3: General quadratic element

q
∫

Γ

(

Vi,α (x′,x) − v

(1 − v) λ2
W ∗

iα (x′,x)

)

nαdΓ (5.36)

where V ∗
i are the particular solutions of the equation V ∗

i,θθ = W ∗
i3. According with Mindlin,

the term: v/((1− v)λ2) has negligible contribution to the results. For the sake of simplicity,

this term will be ignored in this work. The expressions for V ∗
i,β are given as follows:

V ∗
α,β =

r2

128πD
[(4 ln (z) − 5) δαβ + 2 (4 ln (z) − 3) r,αr,β] (5.37)

V ∗
3,β =

−rr,β

128πD (1 − v) λ2

[

32 (2 ln (z) − 1) − z2 (1 − v) (4 ln (z) − 5)
]

(5.38)

5.5 Boundary element discretization

The analytical solution of the integral equations (5.35) is difficult even for a simple plate

problem. Therefore, the numerical solution can be considered. In this work, the boundary

has to be discretized into Ne elements, over which the unknows are approximated to vary

quadratically using quadratic discontinuous elements.
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After the discretization, equation (5.35) can be rewritten as:

cij (x′) wi (x
′) +

Ne
∑

j=1

3
∑

m=1

wm
j

+1
∫

−1

P ∗
ij (x′,x (ξ)) Φm (ξ) Jj (ξ) dξ

=
Ne
∑

j=1

3
∑

m=1

pm
j

+1
∫

−1

W ∗
ij (x′,x (ξ)) Φm (ξ) Jj (ξ) dξ

+q
Ne
∑

j=1

+1
∫

−1

V ∗
i,α (x′,x (ξ)) nα (ξ) Jj (ξ) dξ (5.39)

where J is the jacobian of the transformation and Φ is the element shape function, as pre-

sented in chapter 4. For a general quadratic element we as shown in figure 5.3 we have:

Φ1 (ξ) =
1

ξ
(

ξ − ξ
)ξ
(

ξ − ξ
)

(5.40)

Φ2 (ξ) =
1

ξξ

(

ξ − ξ
) (

ξ − ξ
)

(5.41)

Φ3 (ξ) =
1

ξ
(

ξ − ξ
)ξ
(

ξ − ξ
)

(5.42)

and

J (ξ) =

√

∂xθ (ξ)

∂ξ

∂xθ (ξ)

∂ξ
(5.43)

nα (ξ) =
1

J (ξ)

∂xβ (ξ)

∂ξ
ǫαβ3 (5.44)

where ǫαβ3 is the permutation symbol. After performing the collocation process, equation

(5.44) can be written as follows:

Hw = Gp + Q (5.45)
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5.6 Treatment of the singularities

The influence matrix G and the load vector Q contains weakly singular kernels, which can

be canceled using a non-linear coordinate transformation (see Telles, 1987). In addition, for

better numerical accuracy a suitable number of element sub-divisions (see Kane, 1994) along

with the non-linear transformation will be used in this work.

The influence matrix H, on the other hand, contains a strongly singular kernel, which can

be evaluated indirectly be expressing that the free stress problem admits non-trivial solutions

which are arbitrary combinations of three basic rigid-body displacements (see Vander Weeën,

1982):

w1 = C,w2 = 0, w3 = −Cr1

w1 = 0, w2 = C,w3 = −Cr1

w1 = 0, w2 = 0, w3 = C (5.46)

where C is an arbitrary constant. In this way one obtains:

ciβ (x′) = −
∫

Γ

[

P ∗
iβ (x′,x) + rβPi3 (x′,x)

]

dΓ

ci3 (x′) = −
∫

Γ

Pi3 (x′,x) dΓ (5.47)

5.7 Internal stress resultants

The stress resultants at domain point x′ can be evaluated from equations (5.35), by using

relationships the resultant stress-displacement relationships:

Mαβ (x′) =
∫

Γ

W ∗
αβk (x′,x) pkdΓ −

∫

Γ

P ∗
αβk (x′,x) wkdΓ
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+
∫

Ω

W ∗
αβ3 (x′,x) q3dΩ

Qα =
∫

Γ

W ∗
3βk (x′,x) pkdΓ −

∫

Γ

P ∗
3βk (x′,x) wkdΓ

+
∫

Ω

W ∗
3β3 (x′,x) q3dΩ (5.48)

In the case of a uniform load, the domain integral can be transferred to boundary integral,

be applying the divergence theorem, to give:

∫

Ω

W ∗
3β3 (x′,x) q3dΩ = q3

∫

Γ

Q∗
iβ (x′,x) dΓ (5.49)

The kernels W ∗
iβk, P

∗
iβk and Q∗

iβ, are linear combination of the first derivatives of W ∗
ij, P

∗
ij

and V ∗
i,β, are given by:

W ∗
αβγ =

1

4πr
[(4A (z) + 2zK1 (z) + 1 − v) (δβγr,α + δαγr,β)

− 2 (8A (z) + 2zK1 (z) + 1 − v) r,αr,βr,γ + (4A (z) + 2zK1 (z) + 1 − v) δαβr,γ]

W ∗
αβ3 =

− (1 − v)

8π

[(

2
(1 + v)

(1 − v)
ln (z) − 1

)

δαβ + 2r,αr,β

]

W ∗
3β3 =

1

2πr
r,β

P ∗
αβγ =

D (1 − v)

4πr2
{(4A (z) + 2zK1 (z) + 1 − v) (δγαnβ + δγβnα)

+ (4A (z) + 1 + 3v) δαβnγ −
(

16A (z) + 6zK1 (z) + z2K0 (z) + 2 − 2v
)

P ∗
αβ3 =

D (1 − v) λ2

4πr
[(2A (z) + zK1 (z)) (r,βnα + r,αnβ)

− 2 (4A (z) + zK1 (z)) r,αr,βr,n + 2A (z) δαβr,n

P ∗
3β3 =

D (1 − v) λ2

4πr2

[(

z2B (z) + 1
)

nβ −
(

z2A (z) + 2
)

r,βr,n

]

Q∗
αβ =

−r

64π
{(4 ln (z) − 3) [(1 − v) (r,βnα + r,αnβ) + (1 + 3v) δαβr,n]

+ 4 [(1 − v) r,αr,β + vδαβ] r,n}
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Figure 5.4: Simply supported thin plate

Q∗
3β =

1

8π
[(2 ln (z) − 1) nβ + 2r,βr,n] (5.50)

5.8 Numerical examples

5.8.1 Simply supported thin square plate

A clamped thick square plate of 4m side simply supported from all sides is considered (see

figure 5.4). The BEM analysis is performed using the Reissner plate theory. The Young

modulus was taken to be 0.1 MPa and the Poisson’s ratio is 0.33. Thickness of the plate is

take to be 1m. A uniform pressure of 102Pa is applied over the plate domain. Boundary

plate was meshing using discontinuous quadratic boundary element. Figure 5.6 shows the

BEM used for the analysis. Was found that 16 element boundary mesh generate an error of

0.02% in the internal forces when compared with analytic solution using the Kirchhoff plate

theory. Figure 5.5 shows the transversal displacement component w3 distribution. Table

5.1 presents the internal bending moments at points A, B and C. Good correlations when

comparing with analytic solution are obtained.
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Figure 5.5: Boundary element mesh for simply supported thin plate
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Figure 5.6: Transversal displacements for simply supported thin plate

5.8.2 Timoshenko beam

A Timoshenko beam of length 10m having a cross section of 3m depth × 1m width, showed

in figure 5.7 is considered. The following material properties are considered: ν = 0.2 and E =

2 ×106t/m2. The beam is fixed from one end and left free as cantilever. A concentrated load

of P = 1 ton is applied at the free end of the beam. A boundary element mesh of 20 elements
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Table 5.1: Bending moments and shear forces at internal points for thin square plate

Point M11(tf.m/m) M12(tf.m/m) M22(tf.m/m)
BEM Exact BEM Exact BEM Exact

Point A -0.4904 -0.4905 0.0000 0.0000 -0.4905 -0.4904
Point B -0.3766 0.3770 0.0814 0.0815 -0.3766 -0.3770
Point C -0.1143 -0.1142 0.2521 0.2522 -0.1142 -0.1143

along the beam length and 4 elements along the beam width is used to model the beam. Fig-

ure 5.8 compares the numerical results for the beam deflection with those obtained using the

using the Euler-Berboulli beam theory and the BEM solution obtained by Rashed et al., 1998.

10m

1m

3m

1 ton

Figure 5.7: Timoshenko beam

5.9 Conclusions

The displacement boundary element method applied to analysis of isotropic shear deformable

plates has been presented. Three boundary integral formulation involving three generalized

displacements (two rotations and one deflection) and three generalized forces (two moments

and one shear force), has been established. In addition, boundary integral equations for

internal forces (bending moments and shear forces), were established. Fundamental solu-

tions for displacements and tractions as given by Vander Weeën, 1982, are presented. Weak

singular integrals integrals were threated using the Telles transformation and element subdi-
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Figure 5.8: Transversal deflection along central axis of the Timoshenko beam

vision. Strong singular integrals were threated through rigid body considerations. Numerical

examples were presented and good results correlations have been obtained.
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Chapter 6

Boundary element formulation for

anisotropic plates

6.1 Introduction

Chapter presents the boundary element method applied to the analysis of anisotropic Kirch-

hoff plates. The boundary element formulation developed in this chapter will be used for

the modeling of the repair’s bending response. Basic hypothesis of Kirchhoff theory are pre-

sented and the differential governing equation for anisotropic thin plates is developed. The

boundary integral formulation for these equations are established and fundamental solutions

for displacements, bending moments and shear forces are showed. Numerical examples and

preliminary conclusions are presented.

6.2 Differential governing equation for anisotropic plates

A plate is a structural element defined by two flat parallel surfaces where loads are trans-

versely applied, as explained in chapter 5. The distance between these two surfaces defines

the thickness of the plate, which is small when compared to other plate dimensions.
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Considering its material properties, a plate can be either anisotropic, with different prop-

erties in different directions, or isotropic, with equal properties in all directions. Depending

on its thickness, a plate can be considered either a thin or a thick plate. In this work, for-

mulations will be developed for anisotropic thin plates, based on the Kirchhoff’s plate theory

(see Kirchhoff, 1850).

The theory of anisotropic thin plates bending is based on the following assumptions (see

Lekhnitskii, 1968):

1. Straight sections, which in the undeformed state are normal to its middle surface,

remain straight and normal to the deformed middle surface after loading.

2. Normal stress σz in cross sections parallel to the middle plane is small if compared with

stresses in the transverse cross section, i.e., σx, σy, τxy.

Consider a plate element following the assumptions previously defined. The equilibrium

equation for this plate element is given by (see Timoshenko and Woinowski-Krieger, 1959):

∂2mx

∂x2
+ 2

∂2mxy

∂x∂y
+

∂2my

∂y2
= −g. (6.1)

The rotation of element an1, initially placed in vertical position, is equal to ∂w
∂x

(Figure

6.1). So, the displacement of a point in x direction, at a distance z from middle surface can

be written as:

u = −z
∂w

∂x
. (6.2)

Following similar procedure, the displacement of a point in y direction is given by:

v = −z
∂w

∂y
. (6.3)
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Figure 6.1: Rotation definition for Kirchhoff plates

Substituting equations (6.2) and (6.3) into strain-displacement equations (2.3), we can write:

εx = −z
∂2w

∂x2
,

εy = −z
∂2w

∂x2
,

γxy = −2z
∂2w

∂x∂y
. (6.4)

The constitutive equations for symmetric laminated plate can be obtained using equation

(3.10) (see Lekhnitskii, 1968) 1:

εx = a11σx + a12σy + a16τxy,

εy = a12σx + a22σy + a26τxy,

γxy = a16σx + a26σy + a66τxy. (6.5)

1In this work only symmetric laminated composite repairs will be considered.
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Substituting equations (6.4) into equations (6.5), we obtain:

σx = −z

(

B11
∂2w

∂x2
+ B12

∂2w

∂y2
+ 2B16

∂2w

∂x∂y

)

,

σy = −z

(

B12
∂2w

∂x2
+ B22

∂2w

∂y2
+ 2B26

∂2w

∂x∂y

)

,

τxy = −z

(

B16
∂2w

∂x2
+ B26

∂2w

∂y2
+ 2B66

∂2w

∂x∂y

)

, (6.6)

where Bij are constants given by:

B11 =
1

Δ

(

a22a66 − a2
26

)

, B22 =
1

Δ

(

a11a66 − a2
16

)

,

B12 =
1

Δ
(a16a26 − a12a66) , B66 =

1

Δ

(

a11a22 − a2
12

)

, (6.7)

B16 =
1

Δ
(a12a26 − a22a16) , B26 =

1

Δ
(a12a16 − a11a26) ,

and

Δ =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a11 a12 a16

a12 a22 a26

a16 a26 a66

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (6.8)

Substituting equation (6.6) into bending moments equations (5.2) and integrating, we have:

mx = −
(

D11
∂2w

∂x2
+ D12

∂2w

∂y2
+ 2D16

∂2w

∂x∂y

)

,

my = −
(

D12
∂2w

∂x2
+ D22

∂2w

∂y2
+ 2D26

∂2w

∂x∂y

)

, (6.9)
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mxy = −
(

D16
∂2w

∂x2
+ D26

∂2w

∂y2
+ 2D66

∂2w

∂x∂y

)

,

where

Dij = Bij
t3

12
. (6.10)

Substituting equation (6.10) into shear force equations given by (5.8), we can write:

qx =

[

D11
∂3w

∂x3
+ 3D16

∂3w

∂x2∂y
+ (D12 + 2D66)

∂3w

∂x∂y2
+ D26

∂3w

∂y3

]

,

qy =

[

D16
∂3w

∂x3
+ (D12 + 2D66)

∂3w

∂x2∂y
+ 3D26

∂3w

∂x∂y2
+ D22

∂3w

∂y3

]

.

(6.11)

Equation (6.1) can be rewritten using equations (6.10) as:

D11
∂4w

∂x4
+ 4D16

∂4w

∂x3∂y
+ 2(D12 + D66)

∂4w

∂x2∂y2
+ 4D26

∂4w

∂x∂y3
+ D22

∂4w

∂y4
= g. (6.12)

General solution to w in equation (6.12) depends on μ1, μ2, μ̄1, and μ̄2 roots of characteristic

equation given by:

D22μ
4 + 4D26μ

3 + 2(D12 + 2D66)μ
2 + 4D16μ + D11 = 0. (6.13)

Roots of this equation, as shown by Lekhnitskii, 1968, are always complex for homogeneous

material. The complex roots μ1 = d1 +e1i and μ2 = d2 +e2i are known as deflection complex

parameters. In general, these roots are different complex numbers.

A general expression for the deflection has the form:
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1. in case of different complex parameters (μ1 �= μ2):

w = wo + 2Re[w1(z1) + w2(z2)]. (6.14)

2. in case of equal complex parameters (μ1 = μ2):

w = wo + 2Re[w1(z1) + z̄1w2(z1)]. (6.15)

where wo is a particular solution of equation (6.12) that depends on the distributed load q

in the plate surface, w1(z1) and w2(z2) are arbitrary analytic functions of complex variable

z1 = x + μ1y and z2 = x + μ2y.

Based on equations (6.10) and (6.11), general expressions for forces and moments can be

obtained as (for the case μ1 �= μ2):

mx = mo
x − 2Re[p1w

′′(z1) + p2w
′′(z2)],

my = mo
y − 2Re[q1w

′′(z1) + q2w
′′(z2)],

mxy = mo
xy − 2Re[r1w

′′(z1) + r2w
′′(z2)],

qx = qo
x − 2Re[μ1s1w

′′′(z1) + μ2s2w
′′′(z2)],

qy = qo
y − 2Re[s1w

′′′(z1) + s2w
′′′(z2)]. (6.16)

where mo
x, mo

y, mo
xy, qo

x, and qo
y are moments and shear forces corresponding to function wo
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computed from equations (6.10) and (6.11). The other constants are given in Albuquerque,

2001.

6.2.1 Bending stiffness in an arbitrary direction

Considering that stiffness bending constants of a plate in a x, y, z coordinate system are given

by Dij (i, j = 1, 2, 6) and in a x′, y′, z′ coordinate system, rotated α with respect to the first

coordinate system, are given by D′
ij (i, j = 1, 2, 6), the equation relating these constants, as

shown by Lekhnitskii, 1968, are given by:

D′
11 = D11 cos4 φ + 2(D12 + 2D66) sin2 φ cos2 φ + D22 sin4 φ +

2(D16 cos2 φ + D26 sin2 φ) sin 2φ, (6.17)

D′
22 = D11 sin4 φ + 2(D12 + 2D66) sin2 φ cos2 φ + D22 cos4 φ +

2(D16 sin2 φ + D26 cos2 φ) sin 2φ, (6.18)

D′
12 = D12 + [D11 + D22 − 2(D12 + 2D66)] sin

2 φ cos2 φ +

(D26 − D16) cos 2φ sin 2φ, (6.19)

D′
66 = D66 + [D11 + D22 − 2(D12 + 2D66)] sin

2 φ cos2 φ +

71



(D26 − D16) cos 2φ sin 2φ, (6.20)

D′
16 =

1

2
[D22 sin2 φ − D11 cos2 φ + (D12 + 2D66) cos 2φ] sin 2φ +

D16 cos2 φ(cos2 φ − 3 sin2 φ) + D26 sin2 φ(3 cos2 φ − sin2 φ), (6.21)

D′
26 =

1

2
[D22 cos2 φ − D11 sin2 φ + (D12 + 2D66) cos 2φ] sin 2φ +

D16 sin2 φ(cos2 φ − 3 sin2 φ) + D26 cos2 φ(3 cos2 φ − sin2 φ). (6.22)

The stress components σn and τns, normal and shear stress, respectively, are related with

stress σx, σy, and τxy by:

σn = σx cos2 α + σy sin2 α + 2τxy sin α cos α, (6.23)

τns = (σy − σx) sin α cos α + τxy(cos2 α − sin2 α). (6.24)

The components of moment, initially written considering axis x and y, can now be rewritten

in a generic coordinate system n, s (see Paiva, 1987). The bending moments referring to

directions n and s are given by:

mn = mx cos2 α + my sin2 α + 2mxy sin α cos α, (6.25)

mns = (my − mx) sin α cos α + mxy(cos2 α − sin2 α). (6.26)
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Similarly, qn, the shear force in the n axis, can be written as:

qnds = qxds cos α + qyds sin α, (6.27)

or

qn = qx cos α + qy sin α. (6.28)

In order to solve the plate differential equation (6.12), it is necessary to impose boundary

conditions to displacement w and its derivative ∂w/∂n. Kirchhoff, 1850 has shown that the

boundary conditions of shear force qn and twisting moment mns can be written as one single

boundary condition given by:

Vn = qn +
∂mns

∂s
. (6.29)

The other loading boundary condition is the moment mn.

6.3 Boundary element method for anisotropic plates

Using Betti theorem, we can relate two states of stress-deformation of a linear material as:

∫

Ω
σ∗

ijεijdΩ =
∫

Ω
σijε

∗
ijdΩ. (6.30)

Writing the right hand side of equation (6.29) in von Karman’s notation, we have:

∫

Ω
σijε

∗
ijdΩ =

∫

Ω

(

σxε
∗
x + σyε

∗
y + σzε

∗
z + τxyγ

∗
xy + τxzγ

∗
xz + τyzγ

∗
yz

)

dΩ. (6.31)

Neglecting stresses normal to the plate, equation (6.31) is given by:

∫

Ω
σijε

∗
ijdΩ =

∫

Ω

(

σxε
∗
x + σyε

∗
y + τxyγ

∗
xy

)

dΩ. (6.32)
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Substituting equations (6.4) and (6.5) into equation (6.32), we can write the first term of the

integral in the right hand side of equation (6.32) as:

∫

Ω
σxε

∗
xdΩ =

∫

Ω

[

∫

z

(

B11
∂2w

∂x2
+ B12

∂2w

∂y2
+ 2B16

∂2w

∂x∂y

)(

z
∂2w

∂x2

)

dz

]

dΩ. (6.33)

Integrating (6.33) throughout the thickness of the plate, we have:

∫

Ω
σxε

∗
xdΩ =

∫

Ω

(

D11
∂2w

∂x2
+ D12

∂2w

∂y2
+ 2D16

∂2w

∂x∂y

)

∂2w

∂x2
dΩ = −

∫

Ω
mx

∂2w

∂x2
dΩ. (6.34)

In order to obtain equations of the boundary element method, it is necessary to transform

domain integrals into boundary integrals.

Consider two functions f(x) and g(x). The derivative of their product can be written as:

∂

∂x
[f(x)g(x)] =

∂f(x)

∂x
g(x) +

∂g(x)

∂x
f(x). (6.35)

Using the derivative property (6.35) in equation (6.34), we can write:

∫

Ω
σxε

∗
xdΩ = −

∫

Ω

[

∂

∂x

(

mx
∂w∗

∂x

)

− ∂w∗

∂x

∂mx

∂x

]

dΩ. (6.36)

Using Green theorem, equation (6.36) can be written as:

∫

Ω
σxε

∗
xdΩ = −

∫

Γ
mx

∂w∗

∂x
cos αdΓ +

∫

Ω

∂w∗

∂x

∂mx

∂x
dΩ. (6.37)

Applying the derivative property (6.35) in the second right hand side term of equation (6.37),

we have:

∫

Ω
σxε

∗
xdΩ = −

∫

Γ
mx

∂w∗

∂x
cos αdΓ +

∫

Ω

[

∂

∂x

(

w∗∂mx

∂x

)

− w∗∂
2mx

∂x2

]

dΩ. (6.38)
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After using Green theorem, we can write:

∫

Ω
σxε

∗
xdΩ =

∫

Γ

(

−mx
∂w∗

∂x
cos α + w∗∂mx

∂x
cos α

)

dΓ −
∫

Ω
w∗∂

2mx

∂x2
dΩ. (6.39)

Following similar procedure, we can show that:

∫

Ω
σyε

∗
ydΩ =

∫

Γ

(

−my
∂w∗

∂y
sin α + w∗∂my

∂y
sin α

)

dΓ −
∫

Ω
w∗∂

2my

∂y2
dΩ, (6.40)

and

∫

Ω
τxyγ

∗
xydΩ =

∫

Γ

(

−mxy
∂w∗

∂y
cos α − mxy

∂w∗

∂x
sin α + w∗∂mxy

∂x
sin α+

w∗∂mxy

∂y
cos α

)

dΓ −
∫

Ω
2w∗∂

2mxy

∂x∂y
dΩ. (6.41)

Thus, equation (6.32) is written as:

∫

Ω
σijε

∗
ijdΩ = −

∫

Γ

(

mx
∂w∗

∂x
cos α + my

∂w∗

∂y
sin α + mxy

∂w∗

∂y
cos α+

mxy
∂w∗

∂x
sin α

)

dΓ +
∫

Γ
w∗

[(

cos α
∂mx

∂x
+

∂mxy

∂y

)(

sin α
∂my

∂y
+

∂mxy

∂x

)]

dΓ −

∫

Γ
w∗

(

∂2mx

∂x2
+ 2

∂2mxy

∂x∂y
+

∂2my

∂y2

)

dΓ. (6.42)

Substituting equations for shear forces given by (5.8) and using equation (6.28), equation

(6.42) can be written as:

∫

Ω
σijε

∗
ijdΩ = −

∫

Γ

(

mx
∂w∗

∂x
cos α + my

∂w∗

∂y
sin α + mxy

∂w∗

∂y
cos α+
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mxy
∂w∗

∂x
sin α

)

dΓ +
∫

Γ
w∗qndΓ +

∫

Ω
gw∗dΩ. (6.43)

From the relation between two coordinate systems (x, y) and (n, s), we have:

∂w∗

∂x
=

∂w∗

∂n
cos α − ∂w∗

∂s
sin α,

∂w∗

∂y
=

∂w∗

∂n
sin α +

∂w∗

∂s
cos α. (6.44)

Substituting equations (6.44) into equation (6.43), we have:

∫

Ω
σijε

∗
ijdΩ = −

∫

Γ

[

mx cos α

(

∂w∗

∂n
cos α − ∂w∗

∂s
sin α

)

+

my sin α

(

∂w∗

∂n
sin α +

∂w∗

∂s
cos α

)

+ mxy cos α

(

∂w∗

∂n
sin α +

∂w∗

∂s
cos α

)

+

mxy sin α

(

∂w∗

∂n
cos α − ∂w∗

∂s
sin α

)]

dΓ +
∫

Γ
w∗qndΓ +

∫

Ω
gw∗dΩ. (6.45)

After some algebraic manipulations, equation (6.45) can be rewritten as:

∫

Ω
σijε

∗
ijdΩ = −

∫

Γ

{

∂w∗

∂n

(

mx cos2 α + my sin2 α + 2mxy sin α cos α
)

+

∂w∗

∂s

[

mxy

(

cos2 α − sin2 α
)

+ (my − mx) sin α cos α
]

}

dΓ +

∫

Γ
w∗qndΓ +

∫

Ω
gw∗dΩ. (6.46)
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Substituting equations (6.25) and (6.26) into equation (6.46), we have:

∫

Ω
σijε

∗
ijdΩ = −

∫

Γ

(

mn
∂w∗

∂n
+ mns

∂w∗

∂s
− qnw

∗

)

dΓ +
∫

Ω
gw∗dΩ. (6.47)

Computing the second term of the first integral in the right hand side of equation (6.47), we

have:
∫

Γ
mns

∂w∗

∂s
dΓ = mnsw

∗

∣

∣

∣

∣

∣

Γ2

Γ1

−
∫

Γ

∂mns

∂s
w∗dΓ (6.48)

where Γ1 and Γ2 are coordinates of ends of the boundary where the integration is being

carried out. In the case of a closed boundary without corner, i.e., the function that describes

the boundary curve and its derivative are continuous, the first term in the right hand side of

equation (6.48) vanishes. In the case where there are corners, equation (6.48) can be written

as:
∫

Γ
mns

∂w∗

∂s
dΓ = −

Nc
∑

i=1

Rci
w∗

ci
−
∫

Γ

∂mns

∂s
w∗dΓ (6.49)

where

Rci
= m+

nsi
− m−

nsi
(6.50)

and the terms wci
, m+

nsi
, m−

nsi
are values of displacements and twisting moments after and

before the i corner of the plate, Nc are the total number of boundary corners (see Paiva,

1987).

From equation (6.47) and (6.49), we can write:

∫

Ω
σijε

∗
ijdΩ =

∫

Γ

(

qnw
∗ − mn

∂w∗

∂n
+

∂mns

∂s
w∗

)

dΓ +
Nc
∑

i=1

Rci
w∗

ci
+
∫

Ω
gw∗dΩ. (6.51)

From equations (6.51) and (6.29), we have:

∫

Ω
σijε

∗
ijdΩ =

∫

Γ

(

Vnw
∗ − mn

∂w∗

∂n

)

dΓ +
Nc
∑

i=1

Rci
w∗

ci
+
∫

Ω
gw∗dΩ (6.52)
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Following a similar procedure to that used to obtain equation (6.52), the left hand side of

equation (6.30) can be written as:

∫

Ω
σ∗

ijεijdΩ =
∫

Γ

(

V ∗
n w − mn

∂w∗

∂n

)

dΓ +
Nc
∑

i=1

R∗
ci
wci

+
∫

Ω
g∗wdΩ. (6.53)

Substituting equations (6.52) and (6.53) into equation (6.30), we can write:

∫

Γ

(

Vnw
∗ − mn

∂w∗

∂n

)

dΓ +
Nc
∑

i=1

Rci
w∗

ci
+
∫

Ω
gw∗dΩ =

∫

Γ

(

V ∗
n w − mn

∂w∗

∂n

)

dΓ +
Nc
∑

i=1

R∗
ci
wci

+
∫

Ω
g∗wdΩ. (6.54)

Equation (6.54) relates two states of an elastic material. In order to apply this equation to

solve bending problems, we need to consider one of states as known and other as the state

which stands for the problem which we want to analyze. To obtain a boundary integral

equation, the known state is chosen so that the domain integral given by:

∫

Ω
g∗wdΩ (6.55)

vanishes. Using the properties of Dirac delta function δ(x′,x), so that integral g∗ = δ(x′,x),

integral (6.55) is written as:

∫

Ω
δ(x′,x)w(x)dΩ(x) = w(x′) (6.56)

The state corresponding to a linear material under loading of a Dirac delta function is known

as fundamental state and the variables of equation (6.54) related to this state (w∗, V ∗
n and

m∗
n) are known as fundamental solutions which are computed analytically from the differen-

tial equation (6.12).
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Considering the state ”*” as the fundamental state, equation (6.54) can be written as:

cw(x) +
∫

Γ

[

V ∗
n (x′,x)w(x) − m∗

n(x′,x)
∂w(x)

∂n

]

dΓ +
Nc
∑

i=1

R∗
ci
(x′,x)wci

(x) −

∫

Γ

[

Vn(x)w∗(x′,x) − mn(x)
∂w∗

∂n
(x′,x)

]

dΓ +
Nc
∑

i=1

Rci
(x)w∗

ci
(x′,x) +

∫

Ω
q(x)w∗(x′,x)dΩ. (6.57)

The constant c is introduced in order to consider that the Dirac delta function can be applied

in the domain, in the boundary, or outside the domain. If the Dirac delta function is applied

in a point where the boundary is smooth, than c = 1/2.

Variables of equation (6.57) are displacements w(x), rotations ∂w(x)/∂n, moments mn(x),

and loads Vn(x). For a given boundary condition, some of these variables are known. In or-

der to have an equal number of equations and unknown variables, it is necessary to write

an integral equation corresponding to the derivative of displacement w(x′) in relation to a

cartesian coordinate system fixed in the source point, i.e., the point where the Dirac delta of

the fundamental state is applied. The axis directions of this coordinate system are coincident

with normal and tangent to the boundary directions in the source point.

For a particular case where the of the source point is placed in a point where the boundary

is smooth, the boundary equation is given by:

1

2

∂w(x′)

∂n1

+
∫

Γ

[

∂V ∗

∂n1

(x′,x)w(x) − ∂m∗
n

∂n1

(x′,x)
∂w

∂n
(x)

]

dΓ +

Nc
∑

i=1

∂R∗
ci

∂n1

(x′,x)wci
(x) =

∫

Γ

{

Vn(x)
∂w∗

∂n1

(x′,x) − mn(x)
∂

∂n1

[

∂w∗

∂n
(x′,x)

]}

dΓ +
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Nc
∑

i=1

Rci
(x)

∂w∗
ci

∂n1

(x′,x) +
∫

Ω
g(x)

∂w∗

∂n1

(x′,x)dΩ (6.58)

Its important to say that it is possible to use only equation (6.57) in a boundary element

formulation by using as source points the boundary nodes and an equal number of points

external to the domain of the problem.

6.3.1 Fundamental solutions for anisotropic plates

The transversal displacement plate bending fundamental solution is computed by placing the

non-homogeneous term of the differential equation (6.12) equal to a concentrated force given

by a Dirac delta function δ(x′,x)), i.e.,

ΔΔw∗(x′,x) = δ(x′,x) (6.59)

where ΔΔ(.) is the differential operator:

ΔΔ(.) =
D11

D22

∂4(.)

∂x4
+ 4

D16

D22

∂4(.)

∂3∂y
+

2(D12 + 2D66)

D22

∂4(.)

∂x2∂y2
+

4
D26

D22

∂4(.)

∂x∂y3
+

∂4(.)

∂y4
. (6.60)

As shown by Shi and Bezine, 1988, the transversal displacement fundamental solution is

given by:

w∗(ρ, θ) =
1

8π
{C1R1(ρ, θ) + C2R2(ρ, θ) + C3 [S1(ρ, θ) − S2(ρ, θ)]} (6.61)

where

ρ = [(x − xo)
2 + (y − yo)

2]1/2 (6.62)
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x and y are the coordinates of the field point x, xo and yo are the coordinates of source point

x′,

θ = arctan
y − yo

x − xo

(6.63)

C1 =
(d1 − d2)

2 − (e2
1 − e2

2)

GHe1

, (6.64)

C2 =
(d1 − d2)

2 + (e2
1 − e2

2)

GHe2

, (6.65)

C3 =
4(d1 − d2)

GH
(6.66)

G = (d1 − d2)
2 + (e1 + e2)

2, (6.67)

H = (d1 − d2)
2 + (e1 − e2)

2 (6.68)

Ri = ρ2
[

(cos θ + di sin θ)2 − e2
i sin2 θ

]

×

{

log

[

ρ2

a2

(

(cos θ + di sin θ)2 + e2
i sin2 θ

)

]

− 3

}

−

4ρ2ei sin θ (cos θ + di sin θ) arctan
ei sin θ

cos θ + di sin θ
(6.69)
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and

Si = ρ2ei sin θ (cos θ + di sin θ) ×

{

log

[

ρ2

a2

(

(cos θ + di sin θ)2 + e2
i sin2 θ

)

]

− 3

}

+

ρ2
[

(cos θ + di sin θ)2 − e2
i sin2 θ

]

arctan
ei sin θ

cos θ + di sin θ
(6.70)

The repeated index i in the terms of Ri and Si does not imply summation. The coefficient

a is an arbitrary constant taken as a = 1.

Other fundamental solutions are given by:

m∗
n = −

(

f1
∂2w∗

∂x2
+ f2

∂2w∗

∂x∂y
+ f3

∂2w∗

∂y2

)

, (6.71)

R∗
ci

= −
(

g1
∂2w∗

∂x2
+ g2

∂2w∗

∂x∂y
+ g3

∂2w∗

∂y2

)

, (6.72)

V ∗
n = −

(

h1
∂3w∗

∂x3
+ h2

∂3w∗

∂x2∂y
+ h3

∂3w∗

∂x∂y2
+ h4

∂3w∗

∂y3

)

−

1

R̄

(

h5
∂2w∗

∂x2
+ h6

∂2w∗

∂x∂y
+ h7

∂2w∗

∂y2

)

. (6.73)

where R̄ is the curvature radius at a smooth point of the boundary Γ. Other constants can

be obtained from Albuquerque, 2001. As it can be seen, derivatives of Ri and Si present weak

(log r), strong (1/r), and hyper (1/r2) singularities that will need special attention during

their integration in boundary element kernels.
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6.4 Numerical examples

In order to assess the accuracy of the proposed formulation some numerical problems are

analyzed and their results compared with some results available in literature.

6.4.1 Orthotropic simply supported square plate

The first problem is a single lamina square plate of side length a = 1 m and thickness

h = 0.01 m. The material is orthotropic and its material properties are: Ex = 2.068 × 1011

Pa, Ey = Ex/15, νxy = 0.3, Gxy = 6.055×108 Pa. The plate is under a uniformly distributed

load q = 1 104 Pa applied along its domain (Figure 6.2) and simply supported along its four

edges. This problem was analyzed by Shi and Bezine, 1988 using boundary element method

and domain integration to treat the distributed load.

The problem is solved using different meshes and the results for transversal displacements

at point A and at point B are compared with series solution for point A and for point B

given by wse. = 8.1258 × 10−3 m and wse. = 4.5211 × 10−3 m, respectively. Table 6.1 shows

transversal displacements computed by the present BEM technique using different meshes

and their respective errors compared to Timoshenko and Woinowski-Krieger, 1959 series so-

lution. It can be seen that a very poor agreement is obtained when 12 elements (3 elements

per side) are used. However, the convergence to the series solutions is obtained as the num-

ber of elements is increased. When 48 boundary elements are used (Figure 6.3), transversal

displacements in both points present errors below 1% when compared with series solutions.

6.4.2 Cross-laminate graphite-epoxy composite square plate

The second problem that has been analyzed in this work is a simply supported symmetric

laminate [0o/90o/0o/90o/0o]s of side length a = 1 m under a uniformly distributed load
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Figure 6.2: Square plate with simply-supported edges under uniformly distributed load

Table 6.1: Accuracy of transversal displacements obtained by BEM for the orthotropic square
plate with simply supported edges under uniformly distributed loads.

Number of Transversal displacements [10−6 m] Errors [%]
elements Point A Point B Point A Point B

12 -0.7985 -0.4415 1.7310 2.3545
24 -0.8014 -0.4430 1.3806 2.0100
48 -0.8081 -0.4481 0.5513 0.8875

q = 6.9×103 Pa. The properties of each lamina of a high modulus graphite-epoxy composite

material used in this analysis are: Ex = 2.07× 109 Pa, Ey = 5.17× 109 Pa, Gxy = 3.10× 109

Pa, and νxy = 0.25. The total thickness of the laminate is taken as h = 0.01 m. All layers

have equal thickness. This problem was analyzed by Lakshminarayana and Murthy, 1984

using finite element method. A series solution for the transversal displacement in the center

of the plate was presented by Noor and Mathers, 1975 by treating the plate as an equivalent

single lamina orthotropic plate. This solution is given by:
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Figure 6.3: Boundary element mesh with 48 constant boundary elements

wan.E22h
3

qa4
× 103 = 4.4718 (6.74)

The center point transversal displacement obtained by the proposed formulation is com-

pared in Table 6.2 with the finite element solution, presented by Lakshminarayana and

Murthy, 1984, and with the analytical solution presented by Noor and Mathers, 1975. As it

can be seen, it is obtained the same accuracy of the finite element results.

Table 6.2: Accuracy of transversal displacement obtained by BEM and FEM for the cross-
laminate graphite-epoxy composite square plate with simply supported edges under uniformly
distributed loads.

Numerical Transversal displacements and errors
methods wE22h

3/(qa4) × 103 Errors [%]
BEM 4.4507 0.47
FEM 4.4508 0.47

6.5 Conclusions

In this chapter, the boundary element method applied to analysis of anisotropic Kirchhoff
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plates under static load conditions, was presented. Fundamental solutions for displacements

and generalized forces (bending moments and shear forces) are established. Numerical ex-

amples was presented and results are compared with those reported in the literature. Good

agreement was found.
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Chapter 7

Dual boundary element method for

plate fracture mechanics

7.1 Introduction

Some special techniques have been developed to treat problems in fracture mechanics using

the boundary element method. Among these, the most important are: the crack Green’s

function method, the displacement discontinuity method, the subregions method and the

dual boundary element method (see Portela and Aliabadi, 1992). The crack Green’s function

method is limited to problems with a single straight traction-free crack. The displacement

discontinuity method introduces higher order singularities into the boundary integrals. The

subregions method introduces artificial boundaries into the body. The dual boundary ele-

ment method overcomes these drawbacks and, at present, is consider an effective technique for

the treatment of problems in fracture mechanics, specifically in the boundary element analy-

sis of cracked plates repaired with adhesively bonded isotropic patches (see Wen et al., 2003).

This chapter presents the Dual Boundary Element Method applied to plate fracture anal-

ysis considering membrane, bending moments and shear forces. In the first part, the hyper-
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singular equations for plane elasticity and Reissner plate bending are developed obtaining

the traction equations for these cases. Types of singularities that appears in these equations

and their treatment using the Taylor series expansion methodology. The dual boundary el-

ement method is presented for the treatment of fracture mechanics problems and a general

methodology is exposed. Finally, the stress intensity factors for plane elasticity and bending

problems are defined. Numerical examples are presented and preliminary conclusions are

established.

7.2 Hypersingular equations for plane elastostatics

The boundary integral representation of the displacement components ui, at collocation point

x′, is given by equation (4.13) (Dirgantara, 2000):

cαβuα +
∫

Γ

Tαβ (x′,x) uβdΓ =
∫

Γ

Uαβ (x′,x) tβdΓ − 1

h

∫

A

Uαβ (x′,x) fβdA (7.1)

The stress components σij are obtained by differentiation of equation (7.1), followed by the

application of the Hooke’s law, as given by equation (4.14):

σαβ +
∫

Γ

Sijk (x′,x) ukdΓ =
∫

Γ

Dijk (x′,x) tkdΓ − 1

h

∫

A

Dijk (x′,x) fkdA (7.2)

In this equation, Sijk(x
′,x) and Dijk(x

′,x) are linear combinations of derivatives of Tαβ(x′,x)

and Uαβ(x′,x) respectively, as explained in chapter 4. The integrals in equation (7.2) are

regular, provided r �= 0. As the internal point approaches the boundary, that is as x′ → x,

the distance r tends to zero and Sijk (x′,x) exhibits a hypersingularity of the order 1/r2,

while Dijk (x′,x) exhibits a strong singularity of the order 1/r. Assuming continuity of both

strains and tractions at x′, the limiting process produces improper integrals and jumps terms

in strains and tractions, in the first and second integrals of equation (7.2), respectively. For a

88



point on a smooth boundary, these jump terms are equivalent to boundary stresses. Hence,

equation above equation can now be written as:

1

2
σαβ +

∫

Γ

Sijk (x′,x) ukdΓ =
∫

Γ

Dijk (x′,x) tkdΓ − 1

h

∫

A

Dijk (x′,x) fkdA (7.3)

where the first integral stands for the Hadamard principal value integral and the second

integral stands for the Cauchy principal value integral. On a smooth boundary, the traction

components tj, are given by:

1

2
tj(x

′) + ni(x
′)
∫

Γ

Sijk (x′,x) ukdΓ = ni(x
′)
∫

Γ

Dijk (x′,x) tkdΓ − ni(x
′)

1

h

∫

A

Dijk (x′,x) fkdA

(7.4)

Above equation is known as hypersingular integral equation for plane elasticity. Equations

(7.1) and (7.4) constitutes the basis of the dual Boundary element method (DBEM).

On a traction-free crack, for example, these equations are simplified; the displacement

and the traction equations are given by:

cij(x
′)uα +

∫

Γ

Tαβ (x′,x) uβdΓ = −1

h

∫

A

Uαβ (x′,x) fβdA

ni(x
′)
∫

Γ

Sijk (x′,x) ukdΓ = −ni(x
′)

1

h

∫

A

Dijk (x′,x) fkdA (7.5)

where the line integrals are evaluated at the crack boundary.

7.2.1 Treatment of finite-part integrals

The improper integrals, that arise in the dual integral equations, are easily handled by the

classical singularity-subtraction method (see Aliabadi, 1997). In the vicinity of a collocation

node the regular part of the integrand is expressed as a Taylor’s expansion. If a sufficient
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number of terms of the expansion are subtracted from the original improper integral and

then added back, the singularity can be isolated. The original improper integral is thus

transformed into the sum of a regular integral and an integral of the singular function. This

latter integral is then evaluated analytically, while standard Gaussian quadrature is used for

numerical integration of the regular integral.

Consider a discontinuous quadratic boundary element of general shape, Γe, that contains

the collocation node. The local parametric co-ordinate ξ is defined in the range −1 ≤ ξ ≤ 1

and the collocation node ξ′ is mapped onto x′, via the continuous element shape functions,

as presented in chapter 5. The displacement components uj, are approximated in the local

co-ordinate by means of the nodal values, un
j , and the discontinuous element shape functions.

The first-order finite-part integral of equation (7.5) can be expressed in the local co-ordinate

as:
∫

Γe

Tαβ (x′,x) uj (x) dΓ = un
j

+1
∫

−1

fn
αβ (ξ)

ξ − ξ′
dξ (7.6)

where fn
ij(ξ) is a regular function, given by the product of the fundamental solution, a shape

function and the Jacobian of the co-ordinate transformation, multiplied by the term ξ − ξ′.

The integral of the right hand side of equation (7.6) can be transformed with the aid of the

first term of a Taylor’s expansion of the function fn
ij(ξ) around the collocation node, to give:

+1
∫

−1

fn
αβ (ξ)

ξ − ξ′
dξ =

+1
∫

−1

fn
αβ (ξ) − fn

αβ (ξ′)

ξ − ξ′
dξ + fn

αβ (ξ′)

+1
∫

−1

dξ

ξ − ξ′
(7.7)

Now, the first integral of the right hand side is regular and the second one can be integrated

analytically to give:
+1
∫

−1

dξ

ξ − ξ′
= ln

∣

∣

∣

∣

∣

1 − ξ′

1 + ξ′

∣

∣

∣

∣

∣

(7.8)

In equation (7.6), the existence of the finite-part integral requires the Hölder continuity of
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fn
ij, at the collocation node. For the discontinuous element, this requirement is automatically

satisfied, because the nodes are internal points of the element, where fn
ij is continuously dif-

ferentiable.

The second order finite-part integral of equation (7.7) can be expressed in the local para-

metric co-ordinate as:

∫

Γe

Sijk (x′,x) uk (x) dΓ = un
k

+1
∫

−1

gn
ijk (ξ)

(ξ − ξ′)2dξ (7.9)

where gn
ijk(ξ) is a regular function, given by the product of the fundamental solution, a shape

function and the Jacobian of the co-ordinate transformation, multiplied by the term (ξ−ξ′)2.

The integral on the right hand side of equation (7.9) can be transformed with the aid of the

first and second terms if a Taylor’s expansion of the density function gn
ijk, in the neighborhood

of the collocation node, to:

+1
∫

−1

gn
ijk (ξ)

(ξ − ξ′)2dξ =

+1
∫

−1

gn
ijk (ξ) − gn

ijk (ξ′) − g
n(1)
ijk (ξ′) (ξ − ξ′)

(ξ − ξ′)2 dξ

+gn
ijk (ξ′)

+1
∫

−1

dξ

(ξ − ξ′)2 + g
n(1)
ijk (ξ′)

+1
∫

−1

dξ

ξ − ξ′
(7.10)

where g
n(1)
ijk denotes the first derivative of gn

ijk. At the collocation node the function gn
ijk is

required to have continuity of its second derivative or, at least, a Hölder-continuous first

derivative, for the finite-part integrals to exist. This requirement is automatically satisfaced

by the discontinuous element, since the nodes are internal points of the element. Now, in

equation (7.10), the first integral on the right hand side is regular and the third integral is

identical with one given in equation (7.8). The second integral on the right hand side of
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equation (7.10) can be integrated analytically to give:

+1
∫

−1

dξ

(ξ − ξ′)2 = − 1

1 + ξ′
− 1

1 − ξ′
(7.11)

For piece-wise flat cracks, all the integrals in equation (7.6) and (7.9) are most effectively

carried out by direct analytic integration. Consider a flat discontinuous quadratic boundary

element. The shape functions of this element are given by equations (5.42) and presented

here again:

ψ1 = ξ
(

9

8
ξ − 3

4

)

ψ2 = ξ
(

1 − 3

2
ξ
)(

1 +
3

2
ξ
)

ψ3 = ξ
(

9

8
ξ +

3

4

)

(7.12)

For this element, the integral of equation (7.6) is represented by

∫

Γe

Tαβ (x′,x) uj (x) dΓ = un
j

+1
∫

−1

Tαβ (ξ′, ξ) ψn (ξ) J (ξ) dξ = hn
i u

n (7.13)

where un denotes the nodal displacement components and J(ξ) is the Jacobian of the co-

ordinate transformation. Because of the assumed flatness of the element, J = le/2, where le

represents the element length and the matrix hn is given by

hn =
1 − 2v

4π (1 − v)

⎡

⎢

⎢

⎣

0 −1

+1 0

⎤

⎥

⎥

⎦

+1
∫

−1

ψn

ξ − ξ′
dξ (7.14)

The first-order finite-part integrals are integrated analytically to give:

+1
∫

−1

ψ1

ξ − ξ′
dξ =

3

4

(

ξ′ (3ξ′ − 2)

2
ln

∣

∣

∣

∣

∣

1 − ξ′

1 + ξ′

∣

∣

∣

∣

∣

+ 3ξ′ − 2

)
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+1
∫

−1

ψ2

ξ − ξ′
dξ =

1

2

(

(3ξ′ − 2) (3ξ′ + 2)

2
ln

∣

∣

∣

∣

∣

1 + ξ′

1 − ξ′

∣

∣

∣

∣

∣

− 9ξ′
)

+1
∫

−1

ψ3

ξ − ξ′
dξ =

3

4

(

ξ′ (3ξ′ + 2)

2
ln

∣

∣

∣

∣

∣

1 − ξ′

1 + ξ′

∣

∣

∣

∣

∣

+ 3ξ′ + 2

)

(7.15)

The integral of equation (7.9) is represented by:

∫

Γe

Sijk (x′,x) uk (x) dΓ = un
k

∫

Γe

Sijk (ξ′, ξ) Nn (ξ) J (ξ) dΓ = h̄n
iju

n (7.16)

where the matrix h̄n is given by

h̄n =
E

4π (1 − v2)

2

le
S′

+1
∫

−1

ψn

(ξ − ξ′)
dξ (7.17)

The matrix S′ is given by:

S′ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

+n1 (2n2
2 + 1) −n2 (−2n2

2 + 1)

+n1 (2n2
1 − 1) −n2 (−2n2

1 − 1)

−n2 (2n2
1 − 1) +n1 (−2n2

2 + 1)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(7.18)

where n1 and n2 are the components of the unit outward normal to the element. The second-

order finite-part integrals of equation (7.11) are integrated analytically to give:

+1
∫

−1

ψ1

(ξ − ξ′)2 dξ =
3

4

(

(3ξ′ − 1) ln

∣

∣

∣

∣

∣

1 − ξ′

1 + ξ′

∣

∣

∣

∣

∣

+
6ξ

′2 − 2ξ − 3

ξ′2 − 1

)

+1
∫

−1

ψ2

(ξ − ξ′)2 dξ =
1

2

(

9ξ′ ln

∣

∣

∣

∣

∣

1 + ξ′

1 − ξ′

∣

∣

∣

∣

∣

− 18ξ
′2 − 13

ξ′2 − 1

)

+1
∫

−1

ψ3

(ξ − ξ′)2 dξ =
3

4

(

(3ξ′ + 1) ln

∣

∣

∣

∣

∣

1 − ξ′

1 + ξ′

∣

∣

∣

∣

∣

+
6ξ

′2 + 2ξ − 3

ξ′2 − 1

)

(7.19)
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7.3 Hypersingular formulation for Reissner plates

The stress resultant boundary integral equations are formed by considering the behavior of

equations (5.48) as x’ approaches to boundary Γ. A semi-circular domain with boundary Γ∗,

similar to that showed in figure 4.1, is constructed around the point x′. Taking the limit as

x′ tends to Γ equations (5.48) can be written as follows:

Mαβ (x′) + lim
ε→0

∫

Γ∗

P ∗
αβγ (x′,x) wγ (x) dΓ + lim

ε→0

∫

Γ∗

P ∗
αβ3 (x′,x) w3 (x) dΓ

= lim
ε→0

∫

Γ∗

W ∗
αβγ (x′,x) pγ (x) dΓ + lim

ε→0

∫

Γ∗

W ∗
αβ3 (x′,x) p3 (x) dΓ

+
1

h

∫

A

W ∗
αβ3 (x′,x) q3dA (7.20)

and,

Qβ (x′) + lim
ε→0

∫

Γ∗

P ∗
3βγ (x′,x) wγ (x) dΓ + lim

ε→0

∫

Γ∗

P ∗
3β3 (x′,x) w3 (x) dΓ

= lim
ε→0

∫

Γ∗

W ∗
3βγ (x′,x) pγ (x) dΓ + lim

ε→0

∫

Γ∗

W ∗
3β3 (x′,x) p3 (x) dΓ

+
1

h

∫

A

W ∗
3β3 (x′,x) q3dA (7.21)

where: Γ∗ = Γ − Γε + Γ∗
ε. In the limits, the kernels exhibits different order of singularity.

The terms P ∗
αβγ , P

∗
3β3 are hypersingular of O(1/r2 + ln(r)), while P ∗

αβ3, P
∗
3βγ ,W

∗
αβγ ,W

∗
3β3 are

strong singular of O(1/r). Other remaining terms, namely W ∗
αβ3,W

∗
3βγ are weakly singular.

To satisfy continuity requirements, the point x′ is assumed to be on a smooth boundary.

In the limiting process, some integrals in above equations lead to a jump on the stress

resultants. Taking into account all the limits and the jump terms, as ǫ → 0, for a source

point on a smooth boundary, stress resultant integral equations are obtained as follows (see
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Dirgantara, 2000):

1

2
Mαβ (x′) +

∫

Γ

P ∗
αβγ (x′,x) wγ (x) dΓ +

∫

Γ

P ∗
3β3 (x′,x) w3 (x) dΓ

=
∫

Γ

W ∗
αβγ (x′,x) pγ (x) dΓ +

∫

Γ

W ∗
αβ3 (x′,x) p3 (x) dΓ

+
1

h

∫

A

W ∗
αβ3 (x′,x) q3dA (7.22)

and,

1

2
Qβ (x′) +

∫

Γ

P ∗
3βγ (x′,x) wγ (x) dΓ +

∫

Γ

P ∗
3β3 (x′,x) w3 (x) dΓ

=
∫

Γ

W ∗
3βγ (x′,x) pγ (x) dΓ +

∫

Γ

W ∗
3β3 (x′,x) p3 (x) dΓ

+
1

h

∫

A

W ∗
3β3 (x′,x) q3dA (7.23)

Multiplying equations (7.22) and (7.23) by the outward normal nβ at the source point x′,

the traction integral equations for shear deformable plates are obtained:

1

2
pα (x′) + nα (x′)

∫

Γ

P ∗
αβγ (x′,x) wγ (x) dΓ + nα (x′)

∫

Γ

P ∗
3β3 (x′,x) w3 (x) dΓ

= nα (x′)
∫

Γ

W ∗
αβγ (x′,x) pγ (x) dΓ + nα (x′)

∫

Γ

W ∗
αβ3 (x′,x) p3 (x) dΓ

+
1

h
nα (x′)

∫

A

W ∗
αβ3 (x′,x) q3dA (7.24)

and,

1

2
p3 (x′) + nα (x′)

∫

Γ

P ∗
3βγ (x′,x) wγ (x) dΓ + nα (x′)

∫

Γ

P ∗
3β3 (x′,x) w3 (x) dΓ

= nα (x′)
∫

Γ

W ∗
3βγ (x′,x) pγ (x) dΓ + nα (x′)

∫

Γ

W ∗
3β3 (x′,x) p3 (x) dΓ
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+
1

h
nα (x′)

∫

A

W ∗
3β3 (x′,x) q3dA (7.25)

The first integrals at left hand side of these equations are evaluated in the sense of

Haddamard principal value and seconds are evaluated in the Cauchy principal value.

7.3.1 Treatment of singularities

In the traction integral equations, the singularity order is higher than the displacement inte-

gral equations. In the [H ] matrix, the kernels P ∗
αβγ and P ∗

3βγ are strongly singular, whereas,

the kernels P ∗
αβγ and P ∗

3β3 are hypersingular. In the off-diagonal sub-matrices, the shape

functions will reduce the order of singularity by one. This means that, elements entries in

[H ] matrix corresponding to the kernels P ∗
αβ3 and P ∗

3βγ become smooth, whereas, elements of

the kernels P ∗
αβγ and P ∗

3β3 still remain strongly singular (Dirgantara, 2000).

In [G] matrix, the off-diagonal sub-matrices are smooth again due to the shape functions

reducing the order of singularity. The diagonal matrices, on the other hand, contain the

kernels W ∗
αβ3 and W ∗

3βγ which are weakly singular and the W ∗
αβγ and W ∗

3β3 which are strongly

singular.

The singular integrals mentioned above are treated individually based on their order of

singularity. The weak singularity is treated using a nonlinear coordinate transformation as in

Telles, 1987. The strong-singular and the hypersingular integrals are evaluated using Taylor

series expansion around the singular point as presented in section 7.2.1.

A special type of singularity of O(1/r2 + ln(r)) if observed in the Pαβγ kernel. This type
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of hypersingular integrals can be solved as follows:

∫

Γe

P ∗
αβγ (ξ′, ξ) Φn (ξ) J (ξ) dξ

=

+1
∫

−1

[

P ∗
αβγ (ξ′, ξ) Φn (ξ) J (ξ) − gn

αβγ (ξ′) + gn′

αβγ (ξ′) (ξ − ξ′)

(ξ − ξ′)2 − hn
αβγ (ξ′) ln |ξ − ξ′|

]

dξ

+ gn
αβγ (ξ′)

+1
∫

−1

dξ

(ξ − ξ′)2 + gn′

αβγ (ξ′)

+1
∫

−1

dξ

ξ − ξ′
+ hn

αβγ (ξ′)

+1
∫

−1

ln |ξ − ξ′| dξ (7.26)

where gn
αβγ (ξ) = P ∗1

αβγ (ξ′, ξ) Φn (ξ) J (ξ) (ξ − ξ′)2 on which P ∗1
αβγ (ξ′, ξ) are part of the kernels

which contain 1/r2. The term hn
αβγ (ξ) = P ∗2

αβγ (ξ′, ξ) Φn (ξ) J (ξ)
/

ln |ξ − ξ′|, and P ∗2
αβγ (ξ′, ξ)

are part of the kernels which contain ln |ξ − ξ′|. The functions gn
αβγ (ξ) and hn

αβγ (ξ) are reg-

ular and can be expanded in terms of a Taylor series expansion about the singular point ξ′

as before.

The first integral on the right hand side of equation (7.26) us now regular, the second

integral on the right hand side which is hypersingular can be solve analytically using equation

(7.11), the third integral is identical with the one given in equation (7.7). The last integral

on the right hand side which is weakly singular can be integrated analytically to give:

+1
∫

−1

ln |ξ − ξ′| dξ = ln |(ξ − ξ′) (ξ + ξ′)| − ξ′ ln

∣

∣

∣

∣

∣

1 − ξ′

1 + ξ′

∣

∣

∣

∣

∣

− 2 (7.27)

Detailed derivation of fn
αβγ (ξ), gn

αβγ (ξ) and hn
αβγ (ξ) can be found in Dirgantara, 2000.

7.4 The dual boundary element method

The necessary conditions for the existence of principal-value integrals, assumed in the deriva-

tion of the dual boundary integral equations, impose special restrictions on the crack mod-

eling.
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Consider that collocation is always done at the boundary element nodes. Under this

circumstance, the finite-part integral of first order, in the displacement equations, requires

continuity of the displacement components at the nodes: any continuous or discontinuous

boundary element satisfies this requirement. In the tractions, the finite-part integral of second

order requires continuity of the displacement derivatives at the nodes, on a smooth boundary:

discontinuous quadratic boundary elements implicitly have the necessary smoothness, since

the nodes are internal points of element.

For the sake of simplicity of the standard boundary elements, the present work uses

discontinuous quadratic flat elements for the crack modeling. The general modeling strategy

implemented in this work is based closely to that used by Dirgantara, 2000, and can be

summarized as follows:

• (i) The crack boundaries are modeled with discontinuous quadratic flat elements.

• (ii) The displacement equations is applied for collocation on one of the crack surfaces

• (iii) The traction equations is applied for collocation on the opposite surface.

• (iv) discontinuous quadratic flat elements are used along the remaining boundary of

the body.

7.5 Stress intensity factor evaluation

In this thesis the opening crack displacement extrapolation method is used to calculate the

stress intensity factors (SIF’s). The presence of distributed body forces in the region of the

repair, turns the J-integral method unsuitable for the SIF’s calculation. For plate problems

in combine bending and plane tension, the stress intensity factors can be represented by
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Figure 7.1: Crack tip element

superposition of five stress intensity factors, two due to membrane loads and three due to

bending and shear loads. In this work, the stress resultant intensity factors for modes I, II

and III are denoted by K1, K2 and K3, respectively. Subscript m is added for stress intensity

factors due to membrane loads, and subscript b is added for stress intensity factors due to

bending and shear loads.

The displacements on the crack surfaces near the crack tip can be obtained as:
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(7.28)

The stress resultant intensity factors can then be written in terms of displacements on
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the crack surfaces as,
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and,
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When discontinuous elements are used for modeling crack surfaces, then at crack tip elements

the distance of every node to the crack tip is given in (see figure 7.1). Hence,

{K}AA′

=

√

6

5l
C
(

{w}A − {w}A′
)

{K}BB′

=

√

2

l
C
(

{w}B − {w}B′
)

(7.32)

Then, SIF values are extrapolated to the crack tip using relationship (Dirgantara, 2000):

{K}tip =
rAA′

rAA′ − rBB′

(

{K}BB − rBB′

rAA′

{K}AA′

)

(7.33)
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Figure 7.2: Sheet with border crack

7.6 Numerical examples

7.6.1 Square sheet with border crack

Consider a rectangular plate, with a single border crack as showed in figure (7.2). The crack

length is noted by a, the width of the plate is b and the height is a. The plate is subjected to

the action of a uniform traction t, symmetrically applied at ends. Five cases were considered,

with a/w = 0.2, 0.3, 0.4, 0.5 and 0.6, respectively. Figure 7.3 shows a boundary element

mode used. Table 10.1 shows the stress intensity factors in mode I obtained with a converged

mesh containing 57 boundary elements, in which the crack was discretized with 7 quadratic

discontinuous boundary elements on each surface. In this table, SIFs are compared with

those reported by Portela and Aliabadi, 1992. Good agreement is obtained for a/w relations

of 0.3, 0.4 and 0.5 when using the extrapolation technique for evaluate the KI factor. Figure

7.3 shows the deformed geometry of the plate.
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Figure 7.3: Boundary element mesh for border crack problem and deformed geometry

Table 7.1: KI stress intensity factor for square sheet with border crack

a/w KI/(t.
√

πa) - Useche KI/(t.
√

πa) - Portela % error
0.2 1.607 1.618 0.68
0.3 2.016 2.014 0.10
0.4 2.511 2.537 1.02
0.5 3.275 3.292 0.52
0.6 4.528 4.558 0.66

7.6.2 Square sheet with central slant crack

A central slant crack in a rectangular plate is presented in figure 7.4. The plate is loaded with

a uniform traction t, symmetrically applied at the ends. The ratio between the height and

width of the plate is given by h/w = 2. The crack has the length 2a and makes an angle of

Θ = 45◦ with the horizontal direction. A boundary element converged mesh of 50 quadratic

elements was set up, in which 10 discontinuous elements were used on each side of the crack

with ratios 0.2 to 0.6 (see in figure 7.5). The results obtained are presented in tables 7.2 and

7.3. As can be seen, high percentual errors for KI and KII were obtained when compared

with theoretical values given by Portela and Aliabadi, 1992.
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Figure 7.4: Rectangular sheet with central slant crack

Figure 7.5: DBEM model for rectangular sheet with central slant crack

7.6.3 Plate with a center crack loaded by bending and tension

A rectangular plate with a central crack loaded by edge bending and tension is analyzed (see

figure 7.6. The properties of the plate are: b/h = 2; c/b = 2; Mo = 1.0; t = 1.0,E = 210000

and ν = 0.3. For DBEM analysis, 32 boundary elements for plate border and 16 discontinuous

quadratic elements for each faces of the crack has been used (see figure 7.7). Table 7.4 shows

SIF for K1b factor for different a/b relations. The DBEM results show good agreement when

compared with those obtained by Dirgantara, 2000. Bending deflection distribution is showed

in figure 7.7.
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Table 7.2: KI stress intensity factor for square sheet with central slant crack

a/w KI/(t.
√

πa) - Useche KI/(t.
√

πa) - Portela % error
0.2 0.529 0.531 0.377
0.3 0.552 0.554 0.361
0.4 0.586 0.588 0.340
0.5 0.630 0.632 0.316
0.6 0.686 0.686 0.000

Table 7.3: KII stress intensity factor for square sheet with central slant crack

a/w KII/(t.
√

πa) - Useche KII/(t.
√

πa) - Portela % error
0.2 0.517 0.519 0.385
0.3 0.526 0.528 0.380
0.4 0.539 0.541 0.370
0.5 0.556 0.558 0.360
0.6 0.577 0.579 0.345

2c

2b

2a

h=b/2

Figure 7.6: Rectangular plate with central crack

Table 7.4: K1b stress intensity factor for rectangular plate with central crack

a/b K1b/Mo

√
πa - Useche K1b/Mo

√
πa - Dirgantara % error

0.1 0.993 0.995 0.20
0.2 0.992 0.990 0.20
0.4 0.845 0.850 0.59
0.6 0.095 0.100 0.50
0.8 0.134 0.135 0.74
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Figure 7.7: DBEM model for rectangular plate with central crack

7.6.4 Square plate with a center crack: uniform pressure

A simply supported square plate with a central crack loaded by uniform pressure po = 1.0 is

analyzed. The properties of the plate are: b = 1; b/h = 2; E = 1000 and ν = 0.3. DBEM

contains 4 elements per side of the plate and 16 elements for each crack surface as shown

in figure 7.8. Table 7.5 shows SIF for K1b factor for different a/b relations. DBEM results

show good agreement when compared with those obtained by Dirgantara, 2000. Bending

deflection distribution is showed in figure 7.9 and figure 7.10 compares bending deflection

along y−axis with deflection calculated using the Kirchhoff plate theory without crack.

Table 7.5: K1b stress intensity factor for square plate with central crack

a/b K1b/pob
2
√

πa - Useche K1b/pob
2
√

πa - Dirgantara % error
0.1 0.149 0.150 0.67
0.2 0.139 0.138 0.72
0.4 0.120 0.119 0.84
0.6 0.099 0.098 1.02
0.8 0.061 0.060 1.67
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Figure 7.8: DBEM for Simply supported square plate with a central crack
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Figure 7.9: Displacement distribution for a square plate with a central crack

7.7 Conclusions

The Dual Boundary Element Method applied to plate fracture analysis considering mem-

brane, bending moments and shear forces was presented. The hypersingular equations for

plane elasticity and Reissner plate bending were establish for in-plane and plate bending

problems. Types of singulars appearing in the traction equations has been identify and the
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Figure 7.10: Displacement along y-axis (x = 0) for a square plate with a central crack

Taylor series expansion methodology has been presented to threated it. A general methodol-

ogy for application of the dual boundary element method was presented. Numerical examples

shows a good agreement for SIF’s calculated with those reported in the literature.
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Chapter 8

Mechanics of Bonded repairs

8.1 Introduction

This chapter presents the mechanics of bonded repairs, with emphasis in those analytical

models used at present to design and evaluation of composite repairs. Due to the laminate

structure of bonded repairs, which involve bonding orthotropic composite patches to cracked

plates using polymeric adhesives, the stress states that exists in a bonded repair are very

complex (see Rose and Wang, 2002). Their primary function is to sufficiently reduce the

stress-intensity factor of the crack being repaired so that (1) the residual strength has been

restored to an acceptable level, and (2) the growth rate of the crack under fatigue condition

is sufficiently slow to ensure and an acceptable residual life. Therefore, the stress-intensity

factor of a repaired is a predominant variable in design and evaluation of repairs. Since a

bonded repair may fail in a number of modes, such as failure of the adhesive layer, failure of

the plate near the termination of the patch, and failure of the patch, analytical formulas for

stress-intensity factor calculation and the maximum shear stress in the adhesive are estab-

lished in this chapter.
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Figure 8.1: Repair configurations and coordinates. (a) Plan view, (b) Cross section along
zy-plane, (c) one-side repair, (d) plate without crack with repair

8.2 Mechanics of the repair

The problem to be considered in this work, is a cracked plate with a patch adhesively bonded

(see figure 8.1). The plate, which has a thickness of tp contains a through-thickness crack

of length 2a. The thickness of the patch and the adhesive layer are respectively tR and tA.

The cross sections in the yz and xz planes are depicted in figures 7.2(b) and (c). The Young

modulus and the Poisson’s ratio of each individual layer are denoted as E and v; Here and in

the following subscripts P , R and A refers to distinguish properties pertaining respectively

to the plate, the reinforcement and the adhesive layer. In addition, the shear modulus of the

adhesive will be denoted as μA. The crack is along the line segment |a| ≤ a, y = 0, and patch

is over an elliptical region defined by,

(

x

A

)2

+
(

y

B

)2

≤ 1 (8.1)
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which completely covers the crack (A > a). After this repair, the plate is subjected to a

remote stress specified by,

σP
yy = σ∞, σP

xx = λσ∞, τP
xy = τ∞, (x2 + y2 → ∞) (8.2)

From a geometrical consideration, bonded repairs fall into two categories: two-sided (sym-

metric) and one-sided (asymmetric) (Rose and Wang, 2002). In the former case two identical

reinforcements are bonded on the two surfaces of a cracked plate. This symmetric arrange-

ment ensures that there is no out-of-plane deflection over the repaired region, provided that

the cracked plate is subjected to extensional loads. In actual repairs, however, one-side repair

is often adopted in which composite patches are applied to only one side of the plate.

The displacement of two coincident points at the plate and the patch have to be compati-

ble with the shear deformation of the attachment ( Salgado, 1998). Two different approaches

have been used for the evaluation of the attachment shear flexibility. The first, which is the

most widely used, is to neglect the shear deformation of the sheet and patch and assume the

shear deformation of the adhesive layer to be uniform through its thickness, as showed in

figure (8.2). The second approach is to assume that the sheet and patch deform linearly in

shear and that this deformation contributes to the shear flexibility of the bonded structure.

Considering that the shear deflection takes place predominantly in the adhesive layer and

that the shear deflection of the sheet and patch is only significant near the interfaces, in this

work, the shear deflection of the sheet and patch are neglected.
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Figure 8.2: Left: Constant shear deformation approach. Right: Linear variation shear defor-
mation approach

8.3 Load transfer of bonded reinforcement for plane

stress problems

8.3.1 Uncracked sheet with isotropic patch

Consider the simple reinforcement configuration shown in figure (8.3), in which a reinforcing

strip of length 2B and thickness tR bonded to an infinite strip of thickness tP ; both strips

are under plane strain conditions. The stresses and displacements in this reinforced can be

calculated explicitly using the conventional 1D theory of bonded joints, which is based on

the following assumptions:

1. Sheet and patch is treated as an elastic continuum whose deformation under plane

strain conditions is specified by longitudinal displacement u and a longitudinal tensile stress

σ∞ (see figure (8.3)). The stress-displacement relations for the plate and the reinforcement
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respectively are:

σp =
Ep

1 − v2
p

dup

dy

σR =
ER

1 − v2
R

duR

dy
(8.3)

2. The adhesive layer acts as shear spring with the adhesive shear stress τA given by:

τA = μA
uR − up

hA

(8.4)

3. The shear traction exerted by the adhesive on the plate and the reinforcement ca be

replaced by an equivalent body force of Yp and YR, respectively:

YP =
τA

hp

YR = − τA

hR

(8.5)

In the present case, using the above equations, the equilibrium equation for the shear

stress can be written as:

d2τA

dx2
− β2τA = 0 (8.6)

where:

β2 =
μA

hA

[

1 − v2
P

EP hP

+
1 − v2

R

ERhR

]

(8.7)

The solution of this equation is given by (Rose and Wang, 2002):

τA = −σ∞

(

1 − v2
p

)

μA

βhAEP cosh (βB)
sinh (βy) (8.8)
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Figure 8.3: Load transfer of bonded reinforcement in uncracked sheet

This results reveals that for βB <<1, the adhesive shear stress decays exponentially from

ends (y = ±B) of the overlap, as showed in figure 8.3; i.e., the load transfer effectively occurs

over a length of order β−1 at the ends of the overlap.

8.3.2 Load transfer in cracked sheet

Once the stress at the prospective crack location in known, one can proceed to cut the sheet

along the line segment (|x| ≤ a, y = 0) and a pressure equal to σ0 is applied internally to

the faces of this cut to make these faces stress-free. Provided that the load transfer to the

reinforcement under this condition takes place in the intermediate neighborhood of the crack,

the reinforcement may be assumed to be infinite extent. Using this condition, the solution
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to the equation (7.4) is given by:

τA = βhP σ0e
−βy (8.9)

For symmetric repairs or when the repaired structure is supported against out-of-plane bend-

ing, σ0 is given by:

σ0 =
1

Z

[

4 + 2
B

A
+ 2

A

B
+ S

(

3 + v + 2
B

A

)

+ Sλ
(

1 − v − 2v
B

A

)]

σ∞ (8.10)

where:

Z = 3 (1 + S)2 + 2 (1 + S) (B/A + A/B + vS) + 1 − v2S2 (8.11)

It is important to recall that the idealization used to find σ0 relies on β−1 and considering

that the repair has elliptical form.

Finally, the stress intensity factor limit for cracked sheet with semi-infinite crack is ob-

tained using the strain-energy release rate Ginf as Rose and Wang, 2002 shown:

K∞ =
σ0

k
=

σ0
√

Sβ

(1+S)(1−v2
p)

(8.12)

For the crack with finite size, Kr depends on the crack length and varies between the

lower-bound K0 = σ0

√
πa and the upper bound K∞ = σ0/

√
k. In general the stress-intensity

factor Kr can be expressed as,

Kr = Fσ0

√
πa (8.13)

The reduction factor F depends strongly on the parameter k and to a lesser extent on the

stiffness ratio S. The following interpolation function is proposed by Rose and Wang, 2002:

F (ka) =

[

1

πka
tanh

(

πka

1 + Bπka

)]1/2

(8.14)
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where constant B takes value of 3.0 for balanced repairs (S = 1.0) and 0.1 for infinitely-rigid

patch (S → ∞).

8.3.3 Cracked sheet with orthotropic patch

Similar to the previous case, the problem of estimating the reduction in the crack extension

force when a cracked sheet is repaired by reinforcing orthotropic patches, starting with an

uncracked plate and finding the prospective stress at the crack’s location. In a second step,

a crack is introduced into reduced stress field and a new stress field is founded. Similar

equations to the previous ones are obtained for orthotropic repairs, to calculate shear stress

distribution and K∞, as presented in Rose and Wang, 2002. Since this formulation is very

involved, an approximate solution for K∞ is proposed:

K∞ = σ0

√
πλ (8.15)

where,

σ0 =
σEP tP

(EP tP + ERtR)
(8.16)

πλ =

√

√

√

√

EP tP

β
(

1 + EP tP
ERtR

) (8.17)

β =

(

tA
GA

+ tR
3GR

+ tP
3GP

)

(

tA
GA

+ 3tR
8GR

+ 3tP
8GP

)2 (8.18)
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8.4 Bonded reinforcement for plate bending problems

8.4.1 Uncracked plate analysis

The preceding analysis is valid only when the tendency of out-of-plane bending is neglected

as in the case of symmetric repairs or one-side repairs to fully supported structures (Rose

and Wang, 2002).

For the case of unsupported one-side repairs, stress distribution in the plate and the

reinforcement can be determinated using the conventional theory of cylindrical bending of

plates. The position of the neutral plane of the composite plate consisting of the plate and

rigidly-bonded reinforcement is denoted by z̄ (see figure 8.4):

z̄ =
S (tP + tR + 2tA)

2 (1 + S)
(8.19)

The moment of inertia of the reinforced region It is,

It = IP + IR
E

′

R

E ′

p

(8.20)

where E ′ refers to the plane-strain Young’s modulus (E ′ = E/(1 − ν2)), and,

IP =
t3P
12

+ tpz̄
2 (8.21)

IR =
t3R
12

+
tR (tP + tR − 2z̄)2

4
(8.22)

The stress distribution in the patched plate is assumed to be linear in the thickness

direction, so that it can be specified in terms of the membrane force N0 and a bending
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Figure 8.4: Stress distribution in an uncracked plate reinforced with a patch

moment M0 per unit length in the direction x, as showed in figure 8.5:

N0 =
σ∞tP
1 + S

+
σ∞t2P z̄2

It

(8.23)

M0 =
σ∞t4P z̄

12It

(8.24)

First equation shows that the plate in a one-side repair is transferring more membrane stress

than in an equivalent two-sided repairs. In addition, there is a bending moment acting on the

prospective crack faces (see Rose and Wang, 2002). Consequently, due to the shift neutral

plane, one-side repairs would experience not only an increase in the net force that the plate

is transmitting, but also a secondary bending moment; both contributing to a considerable

increase in stress-intensity factor (see figure 8.5).

8.4.2 Cracked plate analysis

The analysis of the stress-intensity factor for a cracked plate requires the use of the shear

deformation theory, which yields that this factor varies linearly through the plate thickness:

K (z) = Kmean + Kb
2z

tP
(8.25)
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where Kmean and Kb denotes the membrane and bending stress intensity factors, respectively.

As in the case of plane stress problems, these factors can be founded using the strain-energy

release rate approach, to obtain:

Krms (a) =
σ∞

1 + S

√
πaF (k∗a) (8.26)

where k∗ = k/w2, with:

w2 ≈ 2 +
3tP
2tR

+
3βtP
κtR

(

1 +
tP
tR

)

+ (1 + S)
(

2 +
3tP
2tR

)

z̄2tP
It

(8.27)

+ (1 + S)
β

κ

(

1 +
tP
tR

)

z̄3tP
tRIt

(

3z̄

tP
− 1

)

(8.28)

and,

κ4 =
3E

′

A

tA

[

1

E
′

P t3P
+

1

E
′

Rt3R

]

(8.29)
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Krms is the root-mean-square stress-intensity factor, that is related to Kmean and Kb, as,

K2
rms = K2

mean +
1

3
K2

b (8.30)

Finally, the root-mean-square stress-intensity factor KRMS∞ is given by:

K∞,RMS =
σ∞

1 + S

w√
k

(8.31)

8.5 Conclusions

In this chapter, the mechanics of bonded repairs and the analytical models used to design

and evaluation of composite repairs was presented. Kinematic models, for coupling actions

between plate and repairs, through the mechanical analysis of adhesive layer were showed.

Formulas for the calculation of shear stress distribution in the adhesive layer and the upper

bound for stress intensity factor for cracked plates repaired with isotropic and orthotropic

adhesive repairs, considering in-plane and out-of-plane problems, were presented.
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Chapter 9

Boundary element analysis of cracked

sheets repaired with bonded

anisotropic patches

9.1 Introduction

A boundary element formulation for the analysis of isotropic cracked sheets, repaired with

adhesively bonded anisotropic patches is presented. The sheet and the patch are modeled

using the boundary element method. The crack in the isotropic sheet is modeled using the

dual boundary element method. The interaction between the isotropic sheet and the patch is

modeled considering shear body forces uniformly distributed on the interaction zone using a

linear elastic relationship. Two different techniques are used in the present boundary element

implementation to treat the domain integrals that arise in the formulation due to shear

interaction forces. These techniques are the cell domain integration and the dual reciprocity

boundary element method. The current work analyze a composite repair patch adhesively

bonded in a metallic cracked sheet. The DBEM is used to model the isotropic cracked sheet

and the BEM is used to model the anisotropic composite patch. The interaction loading

120



Patch

Boundary plate node

Plate

Am

m

Boundary patch node and internal 

plate node

Internal patch node and internal 

plate node

Figure 9.1: Cracked sheet repaired with adhesive patch

between the sheet and the patch is modeled considering the shear forces in the adhesive

layer uniformly distributed using a linear elastic relationship. Two different techniques are

used to treat domain the integrals that arise in the formulation due to the interaction shear

forces: the cell domain integration and the DRBEM. Numerical examples of the adhesive

stress analysis in cracked plate, repaired with a circular and rectangular composite patches,

are presented.

9.2 Boundary element formulation

Figure 9.1 presents a finite isotropic sheet, containing an inner crack and an adhesive patch.

In this case, the interaction forces can be treated as unknown body forces exchanged by the

sheet and the patch in the attachment sub-region. Considering that the sheet and the patch

remain flat after deformation, the two-dimensional elasticity theory can be used to model

this problem. In this case, displacements at the sheet and at the patch have to be compatible

with the shear deformation of the adhesive layer connecting them.

When the sheet is deformed due to applied loads on its boundaries, interaction forces
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occur between the sheet, with contour ΓS, and the repair patch, with contour ΓR. In this

two-dimensional case, interaction forces in the plate directly underneath the repair patch,

and in the patch itself, can be treated as unknown body forces (action-reaction pair). As

presented in chapters 3 and 4, for plane elasticity the boundary integral equation for the

displacement of a source point x’ on the sheet is given by:

cS
ij (x′) uS

j (x′) +
∫

ΓS

T ∗S
ij (x′,x) uS

j (x) dΓ =
∫

ΓS

U∗S
ij (x′,x) tSj (x) dΓ +

1

hS

∫

ΩR

U∗S
ij (x′,x) fS

j (x) dΩR i, j = 1, 2 (9.1)

where cS
ij is a coefficient which depends on the position of the source point in relation to the

boundary of the sheet ΓS; U∗S
ij (x′,x) and T ∗S

ij (x′,x) are the Kelvin’s isotropic fundamental

solutions for displacements and tractions, respectively, for the two-dimensional sheet media;

uS
j and tSj are the displacements and tractions vectors at the boundary of the sheet; fS

j are

the interaction forces exchanged between the sheet and the patch in the domain ΩR of the

patch; and hS is the thickness of the sheet.

Similarly, the displacement of a source point x′ on the repair is given by (see chapters 3

and 4):

cR
ij (x′) uR

j (x′) +
∫

Γ

T ∗R
ij (x′,x) uR

j (x′) dΓ =
∫

Γ

U∗R
ij (x′,x) tRj (x′) dΓ +

1

hR

∫

ΩR

U∗R
ij (x′,x) bR

j (x′) dΩR i, j = 1, 2 (9.2)

where cR
ij is a coefficient which depends on the position of the source point in relation to the

boundary of the sheet ΓR; U∗R
ij (x′,x) and T ∗R

ij (x′,x) are anisotropic fundamental solutions

for the two-dimensional composite repair; uR
j and tRj are the displacements and tractions

vectors at the boundary of the repair; bR
j are the interaction forces exchanged between the
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sheet and the patch in the domain ΩR of the patch; and hR is the thickness of the sheet.

The crack in the isotropic sheet was modeled using the DBEM. The traction integral

equation is applied in one of the crack faces and the displacement integral equation is applied

in the other crack face. As showed in chapter 7, the traction integral equation is given by:

1

2
tSj (x′) + ni (x

′)
∫

ΓS

S∗S
ijk (x′,x)uS

j (x) dΓ = ni (x
′)
∫

ΓS

D∗S
ijk (x′,x) tSj (x) dΓ +

1

hS

∫

ΩR

D∗S
ijk (x′,x) bS

j (x) dΩR i, j = 1, 2 (9.3)

where S∗S
ijk(x

′,x) and D∗S
ijk(x

′,x) are linear combinations of derivatives of fundamentals so-

lutions for traction and displacement T ∗R
ij (x′,x) and U∗R

ij (x′,x), respectively, and ni are the

components of a unit vector outward to the boundary in the collocation point.

Now, considering a uniform shear deformation through the adhesive thickness, as proposed

by Salgado and Aliabadi, 1998, and neglecting shear deformations in the sheet and in the

patch, the body force fj(x
′), that is equal to the shear stress in the adhesive τj(x

′), can

be written as a function of the difference Δuj between the displacements uS
j of a point x′

(x′ ∈ ΩR) on the sheet and uR
j of a corresponding point on the repair patch, as:

fj (x′) = τj (x′) =
GA

hA

{

uS
j (x′) − uR

j (x′)
}

j = 1, 2 (9.4)

where hA is the thickness of the adhesive layer, GA is the transversal stiffness modulus of the

adhesive material.
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9.3 Domain integral techniques

As can be seen, equations (9.1) and (9.2) require the calculation of domain integrals. Differ-

ent techniques has been proposed to treat these integrals. Among them, the cell integration

method and the dual reciprocity boundary element method (DRBEM) are the most used (see

Patridge et al., 1992). Recently, Albuquerque, 2001 develop the Radial Integration Method

(RIM) to treat domain integrals. In this method, the body force term is approximated with

the use of radial basis functions, as in the dual reciprocity boundary element method. The

transformation of domain integrals into boundary integrals is based on pure mathematical

treatments. Although the proposed method is more time-consuming, it presents some ad-

vantages over the dual reciprocity boundary element method as accuracy and the absence of

particular solutions in the formulation.

In this work, two different techniques were used and compared to treat the domain in-

tegrals that arise in the formulation due to the shear interaction forces. These techniques

are the cell domain integration method and the dual reciprocity boundary element method

(DRBEM).

9.3.1 Cell domain integration

In the cell domain technique, the attachment region ΩR between the plate and the patch was

subdivided in elementary cells. The distribution of the shear stress, τj(x
′) in the adhesive

in this area is described in terms of nodal values associates to each cell. In this work two

types of cells were used. Since there exist two coincident nodes at any one crack elements,

these nodes can’t be used as collocation points because no coincident nodes can not exist in

the patch. Then, constants cells with a central node has been used to approximate the shear

stress distribution at neighborhood of the crack. Nine node quadrilateral isoparametric cells
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were used to approximate the variation of the adhesive’s shear stress in the remaining attach

area.

Then, in the cell integration method the domain integral in the equation (9.1) can be

expressed as (see Salgado and Aliabadi, 1997):

1

hS

∫

ΩR

U∗S
ij (x′,x) fj (x) dΩR

∼= 1

hS

ncells
∑

k=1

∫

Ωk

U∗S
ij (x′,x) fj (x) dΩk (9.5)

and the integration is carried out on each cell. Using equation (9.4) and the bi-quadratic

isoparametric approximation proposed in this work we can write:

1

hS

ncells
∑

k=1

∫

Ωk

U∗S
ij fj (x) dΩk

∼= 1

hS

ncells
∑

k=1

⎡

⎢

⎣

∫

Ωk

U∗NdΩk

⎤

⎥

⎦ ak (9.6)

where, N is the matrix of bi-quadratic Lagrange shape functions and ak =
{

uS
d ,uR

}T
is the

vector of nodal displacements at cell k. In this vector, uS
d refers to sheet displacement at

ΩR and uR refers to repair displacements. Similar expression can be obtained for domain

integrals at equations (9.2) and (9.3).

In this work the integral at right hand side of equation (9.6) is evaluate using ten-point

Gaussian quadrature. However, when the source point x′ is placed within the cell, this

integral becomes weakly singular which will cause numerical error if Gaussian quadrature

is used directly. In this case the integrand in (9.6) can be regularized at singular point by

subtracting suitable singular term, which may be treated separately as follow (Young and

Rooke, 1992):

∫

Ωk

U∗S
ij NjkdΩk =

1
∫

−1

−1
∫

−1

{

U∗S
ij NjkJ − λij ln (R) J

}

dξdη
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+λijJ

1
∫

−1

−1
∫

−1

ln (R) dξdη (9.7)

where, R =
√

(ξ − ξo)2 + (η − ηo)2 . The second integral at right hand side may be evaluated

analytically. The constant λij is given by:

λij = − 1

16π

(3 − v)

GS

δij (9.8)

where GS is the shear modulus of the sheet.

9.3.2 DRBEM integration technique

In the dual reciprocity boundary element method (Patridge et al., 1992), interaction forces

are approximated as a sum of unknown coefficients αd
k multiplied by approximating functions

fd
jk(x

′,x), so that:

fj (x) =
D
∑

d=1

αd
kf

d
jk

(

xd,x
)

(9.9)

The coefficients αd
k have no physical meaning. But they are related to attachment shear

forces through equation (9.4):

uS
j (x′) − uR

j (x′) =
hA

GA

D
∑

d=1

αd
jf

d
jk

(

xd,x
)

j = 1, 2 (9.10)

In this work a linear approximation function fd
jk(x

′,x) was used for the isotropic sheet:

fd
jk

(

xd,x
)

= (1 − r) δjk (9.11)

For the anisotropic patch, an approximation function given by Albuquerque and Sollero, 1998

was used:

fd
jk = Cjilm [cr (r,mr,iδlk + δimδlk)] (9.12)
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Finally, domain integral at equation (9.5) can be expressed as:

∫

ΩR

U∗S
ij (x′,x) fj (x) dΩR = − 1

hS

D
∑

d=1

αd
k

[

cij

(

xd
)

ûd
kj

(

xd
)

+

∫

ΓR

T ∗S
ij (x′,x) ûd

kjdΓR −
∫

ΓR

U∗S
ij (x′,x) t̂dkjdΓR

]

(9.13)

where ûd
kj and t̂dkj are particular solutions for displacements and tractions corresponding to

a pre-defined function fd
kj for the sheet. A similar approach was used to model body forces

in the patch.

9.4 Matrix formulation

9.4.1 Cell integration technique

In matrix form, equation (9.6) can be write as:

1

hS

ncells
∑

k=1

⎛

⎜

⎝

∫

Ωk

U∗ · NdΩk

⎞

⎟

⎠

k

ak = FS
c u

S
d − FS

c u
S (9.14)

Discretizing the boundary, the equations for isotropic sheet (including traction equation) can

be write in compact form as:

HS
c u

S
c = GS

c t
S
c + FS

c u
S
d − FS

c u
R

IuS
d + HS

du
S
c = GS

d t
S
c + FS

du
S
d − FS

du
R (9.15)

where subindex c and d identify boundary and domain collocation points on the sheet. The
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matrix of influence coefficients HS and GS are defined as:

HS =
nelem
∑

e=1

∫

Γe

T ∗S
ij φjdΓe

GS =
nelem
∑

e=1

∫

Γe

U∗S
ij φjdΓe (9.16)

Here, φj are the shape functions for the elements. In this work, quadratic discontinuous

elements are used to interpolate the displacement and traction variations in the boundaries

of the plate and the repair.

In a similar way, matrix equations for repair can be write as (without consider traction

forces applied at boundary repair):

HR
c uR

c = FR
c uR − FR

c uP
d

IuR
d + HR

d uR
c = FR

d uR − FR
d uP (9.17)

In this case, similar significance has the HR and GR matrices as those in the sheet case. In

the general case, when the sheet and the patch are made of different materials, the FS and

FR matrices in equations (9.15) and (9.17) are not equals.

After some mathematical manipulation the coupling equations for the sheet and the repair

using the cell integration technique can be written as:

⎡

⎢

⎢

⎣

MS FS

MR QR

⎤

⎥

⎥

⎦

⎧

⎪

⎪

⎨

⎪

⎪

⎩

uS

uR

⎫

⎪

⎪

⎬

⎪

⎪

⎭

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

GStS
c

0

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(9.18)

where MP , MR and QR matrices involving the F matrices for sheet and repair.
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9.4.2 DRBEM integration technique

In DRBEM integration technique, equation (9.13) can be write in matrix form as:

∫

ΩR

U∗S
ij (x′,x) fj (x) dΩR =

(

HSÛS − GST̂S
)

αS (9.19)

In this equation, the influence matrices HS and GS are those defined in equation (9.16) if

functions ûd
kj and t̂dkj are approximate within each boundary element by using interpolation

functions and nodal values as done for uS
j (x) and tSj (x) in equation (9.15).

Discretizing the boundary, equations for the sheet (including traction equation) can be

write in compact form as:

HS
c u

S
c − GS

c t
S
c = AS

c αS

IuS
d + HS

du
S
c = AS

d αS (9.20)

where matrix AS is given by: AS = HSÛS −GST̂S. In similar way, the equations for repair

are:

HR
c uR

c − GR
c tR

c = AR
c αR

IuR
d + HR

d uR
c = AR

d αR (9.21)

Now, equation (9.10) can be write in matrix form for the sheet and the repair as:

uS
d − uR =

hA

GA

FSαS

uR − uS
d =

hA

GA

FRαR (9.22)

Finally, the coupling equations for the sheet and the repair using the DRBEM integration
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Figure 9.2: Model of uncracked sheet repaired with adhesive isotropic patch. Left: cell model.
Right: DRM model

technique are:
⎡

⎢

⎢

⎣

(

H − AF−1
)S (

AF−1
)S

(

H − AF−1
)R (

AF−1
)R

⎤

⎥

⎥

⎦

⎧

⎪

⎪

⎨

⎪

⎪

⎩

uS

uR

⎫

⎪

⎪

⎬

⎪

⎪

⎭

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

GStS

0

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(9.23)

9.4.3 Coupled DRM and DBEM modeling considerations

If the sheet contains a crack which is overlaid by a patch, the attachment region boundary

includes the corresponding region of the crack boundary, which contains nodes with the same

coordinates in opposite crack surfaces (see Salgado and Aliabadi, 1998). As a consequence,

the direct application of the formulation presented leads to a series of difficulties as:

- Two nodes with the same coordinate produces two identical displacement compatibility

equations.

- Each point where displacement compatibility is enforced is used as DRBEM colloca-

tion point. This means having coinciding points at crack boundaries, producing DRM

coefficient matrix become singular and requires explicit treatment and identical values

for the attachment forces at points in opposite crack surfaces.
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Salgado, 1998 shows that it is not necessary to include the crack boundary in the at-

tachment boundary region, because the contribution of the integration over this boundary

to DRM matrix coefficients is equal to zero. In this case the above difficulties are eliminated

as the exclusion of the crack boundaries from the attachment boundary, meaning that nei-

ther displacement compatibility nor DRM collocations points will be created at the crack

boundary. The absence of those points can be compensated by placing internal points in the

vicinity of the crack boundaries. Same considerations applies when cell integration method

is used.

9.5 Numerical examples

9.5.1 Circular composite patch over uncracked square sheet

A square sheet with edge of 200mm is subjected to constant tension of σ0 = 1 GPa in the

direction of the y-axis. The sheet has a thickness of 1.5mm. Sheet have a Young modulus of

70GPa and Poisson modulus of 0.3. A circular isotropic patch of radius of 30 mm thickness

of 1.5 mm is bonded at the center of sheet using an adhesive with 0.15 mm of thickness and

shear modulus of G=0.6 GPa.

This problem was analyzed to test the BEM formulation proposed in this chapter, using

the cell and the DRBEM methodologies proposed. To model the isotropic repair a quase-

isotropic formulation was used with E1 = 70GPa, E2 = 70.0001GPa, G12 = 26.92GPa and

v12 = 0.3. Figure 9.2 shows the cell and the DRBEM model used. Figure 9.3 shows the

shear stress distribution map at the adhesive layer. This graphic shows that shear stress is

zero at center of repair area and maximum at repair border as expected. Figure 9.4 shows

a convergence analysis for normalized shear stress (τ/σ0) as function of normalized distance

y/R along y-axis. Both cell and DRM methods shows a rapid convergence to analytical
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Figure 9.3: Normalized shear stress map at adhesive layer for quase-isotropic patch

solution given by Rose (see previous chapter).

9.5.2 Circular composite patch over cracked square sheet

A square sheet whose edge length is 200 mm is subjected to a uniform constant tension of

1 GPa in the direction of the y-axis. A central crack of length 2a = 30 mm in the sheet is

considered. The sheet has a thickness of 1.5 mm. A circular anisotropic repair of radius equal

to 30 mm and thickness of 1.5 mm is bonded at the center of the sheet using an adhesive

with 0.15 mm of thickness and shear modulus G = 0.6 GPa. Properties of the sheet and the

patch are given in Table 9.1.

The problem was analyzed using the method of cells and the DRBEM. In both cases, the

mesh comprises of 28 discontinuous quadratic elements on the edge of the plate and on the

edge of the repair. As shown in Figure 9.5, quadratic continuum cells with nine nodes were

used to discretize the load transfer domain between the sheet and the patch except in crack’s
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Figure 9.4: Convergence analysis for normalized shear stress (τ/σ0) as function of normalized
distance y/R along y-axis.

Table 9.1: Mechanical properties of the sheet and the composite patch

Sheet Patch
Young modulus (E) = 72400 Mpa E1 = 25000 MPa
Poissons ratio(v) = 0.3 E2 = 208000 MPa

G12 = 72400 MPa
ν12 = 0.02

neighborhood, where constants cells were used. Ten-point Gauss quadrature rule was used

to evaluate the domain’s integral at quadratics cells.

DRBEM collocations points have been concentrated near the crack and toward bound-

ary repair. The shear stress distribution in the adhesive layer obtained using the DRBEM

is shown in Figure 9.6. As was expected, shear stress gradients appear near crack’s border

where the difference between sheet and repair displacements is higher. The shear distribution

obtained in the model with cells is similar and it’s not show here.
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Figure 9.5: Model of cracked sheet repaired with bonded adhesively patch using bi-quadratic
interpolation cells. Left: cell model. Right: DRBEM model

The resultant for the shear stress in the adhesive is showed in the Figure 9.7 normalized

with respect to the sheet far field stresses (i.e. 1 GPa). This stresses has been obtained using

the equation:

τ ∗ =
1

σ0

√

τ 2
zx + τ 2

zy (9.24)

where σ0 is the far stresses applied in the y-axis, τzx and τzy are shear stresses in the x and

y-axis directions. As can be seen in this figure the convergence of the solution is obtained

as the number of internal points increases. Further refining in the boundary mesh hasn’t

significantly affects the results. Obtained results are compared with analytical solution given

by Rose Rose and Wang, 2002 for an infinity orthotropic patches bonded to an infinity

orthotropic sheet for patch with elliptic (circular) geometry:

τ (y) = σ0Λte(−Λ|y|) (9.25)
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Figure 9.6: Normalized shear stress force in the adhesive

Again, σ0 is the stress applied in the y-axis (i.e. 1 GPa) and the parameter Λ is given by:

Λ2 = (GA/hA)
{

(

EShS

)−1
+
(

ER
y hR

)−1
}

(9.26)

It can be seen that good agreement was obtained even for relatively coarse internal points

grids when the DRBEM were used. Slower convergence to Rose’s solution was found with

cell method.

Figure 9.8 presents the variation of the stress intensity factor KI according to the crack

length. It is noted the asymptotic behavior that is in agreement with analysis of Rose Rose,

1981, as presented in previous chapter. In this case, the asymptotic value K∞, predicted by

equation 8.15, was 206.6 MPa.m1/2. Curves in figure 9.8 tends to this asymptotic value.
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Figure 9.7: Normalized shear stress in the adhesive layer x=0 and 0 ≤ y ≤ R ≤ 1
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Figure 9.8: Variation of KI Stress intensity factor with crack length
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Figure 9.9: BEM model for square sheet with rectangular patch

9.5.3 Rectangular orthotropic patch over square sheet

Consider a thin aluminum sheet with height Hs = of 254mm, width Ws = 254 mm, thickness

of 5 mm with a central crack of length a = 13 mm. repaired with boron-epoxi patch having

dimensions: Wr = 130 mm; Hr = 75 mm. The sheet is subjected to a remote uniaxial tensile

load of σ = 70 MPa, plane stress condition are assumed. The material properties of the

plate, patch and adhesive are showed in table 9.2.

Table 9.2: Mechanical properties of the sheet and the composite patch

Sheet Patch
Young modulus (E) = 72000 Mpa E1 = 19600 MPa
Poissons ratio(v) = 0.33 E2 = 210000 MPa

G12 = 5460 MPa
ν12 = 0.3

The problem was analyzed using the cell method. The mesh comprises of 28 discontinu-

ous quadratic elements on the edge of the plate. A convergence analysis for shear stress in

the adhesive layer as function of number of cells and elements at boundary of the repair was

performed. Figure 9.9(left) shows the model used.
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The shear stress distribution in the adhesive layer obtained is shown in figure 9.9. Again,

shear stress gradients appear near crack’s border where the difference between sheet and

repair displacements is higher. Similar to circular patch, shear stress concentration appears

at the patch border and, in this case, at patch corners, has can be seen. The magnitude of

shear stress in these corners is similar to those encountered near crack’s border.

To compare the behavior of the total shear stress normalized with respect to the sheet

far field stresses in the adhesive at x = 0 mm, with those encountered in the case of circular

anisotropic patch, figure 9.10 was generated. This figure shows that the normalized shear

stress variation in direction of y-axis is similar to that case. That is, a high gradients near

crack’s border and patch border is presented with low values of the shear stress in the ad-

hesive in regions far away from this borders. This behavior is generated by the geometric

discontinuity between sheet and repair.

Figure 9.11 presents the variation of the stress intensity factor KI according to the crack

length. Again, is noted the asymptotic behavior that is in agreement with analysis of Bel-

houari et al., 2004. In this case, the asymptotic value K∞, predicted by equation 8.15, was

18.66 MPa.m1/2. BEM model sub-estimate the asymptotic behavior of KI as shown in this

figure, bringing an asymptotic value of 13.65 MPa.m1/2 approximately.

9.6 Special cells

Additionally to the constant cells used in the neighbourhood of the crack, four different types

of special discontinuous cells were developed to approximate the displacement field into the

cells, trying to capture in a better way the high stress gradient near the crack border. Fig-
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Figure 9.12: Types of special cells. (a) Semi-discontinuous quadratic cells. (b) Discontinuos
quadratic cells

ure 9.12-a shows three different types of special bi-quadratics cells where nodes located on

crack borders were dislocated 2/3 away from the crack. Similarly, another type of special

discontinuous cells, where all nodes used to describe the displacement field into the cells were

moved 2/3 towards interior of the cells were showed in figure 9.12-b.

Unfortunately, the use of those special cells do not improved the results as figure 9.13

shown. This figure compares the normalized shear stress distribution along y-axis obtained

using special cells with those results obtained for the circular composite patch over cracked

square sheet problem. Little differences between results were found.
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9.7 Conclusions

A boundary element formulation for modeling cracked sheets repaired with composite patches

was developed. The cracked sheet was modeled with the DBEM and the patch was modeled

with the BEM. The interaction between the isotropic sheet and the patch was modeled

considering shear body forces uniformly distributed on the interaction zone using a linear

elastic relationship. The cell domain integration and the dual reciprocity have been used to

treat the domain integrals that arise in the formulation due to shear interaction forces. The

DRBEM method showed faster convergence to analytical solution than the cell method. It

can be concluded that the new formulation can be used with reasonable accuracy to study

the mechanical behavior of adhesively bonded repairs, but more research work must be done

to explain discrepancy in the stress intensity factors founded.
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Chapter 10

Boundary element analysis of cracked

plates repaired with bonded

anisotropic patches

10.1 Introduction

In this chapter, a boundary integral formulation to describe the mechanical behavior of

cracked isotropic thick plates repaired with adhesively bonded composite patch using the

Reissner and Kirchhoff plate theories, is presented. To model the isotropic crack plate, the

dual boundary element formulation proposed by Dirgantara, 2000 is used. A three parameter

boundary integral formulation for anisotropic plates is proposed to model the mechanical

response of the composite repair. Integral equations for the problem under consideration

are established. Coupling equations based on kinematic compatibility of isotropic plate and

anisotropic repair displacements and rotations and equilibrium of forces and moments acting

in the adhesive, are showed. In this way a general system of equations for the problem is

developed. Numerical examples and preliminary conclusions are presented.
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Figure 10.1: Schematic representation of the cracked plate repaired problem

10.2 Boundary integral formulation for isotropic plates

10.2.1 Displacement integral formulation for plane stress

Figure 10.1 shows a schematic representation of the problem. A cracked isotropic plate with

arbitrary geometry (but represented here as rectangular ones) is loaded with in-plane forces

(membrane forces), bending moments and distributed pressure, is repaired using adhesively

bonded composited patch. This work do not consider any kind of forces acting over this patch.

The two dimensional boundary integral equation for displacements at the boundary point

x′ ∈ Γ that describes membrane effects can be written as showed in chapter 4:

cP
ij (x′) uβ (x′) =

∫

Γ

UP
αβ (x′,x) tβdΓ −

∫

Γ

T P
αβ (x′,x) uβdΓ +

1

hp

∫

A

UP
αβ (x′,x) fβdA (10.1)

where α, β = 1, 2 and cP
ij(x

′) is a function of the geometry at the collocation points that can

be determinated by considering rigid body movements. The boundary displacements and

tractions for the sheet are denoted by uα and tα(= nβσαβ), respectively; displacement and

traction fundamental solutions for the plane stress condition are UP
αβ(x′,x) and T P

αβ(x′,x)

respectively, fβ(x) denote two-dimensional body forces by unit area over a region A of patch

and hp is the thickness of the plate. In this work no others in-plane body forces will be
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considered.

10.2.2 Two-dimensional traction integral formulation

In order to modeling cracked plates, the Dual Boundary Element Method (DBEM) will be

used. In this method, the displacement integral formulation is written for source points on one

crack surface and the traction integral equation on the other surface. Then, using the stress

and strain relationships for plane stress, the traction integral equation for two-dimensional

problems in a smooth boundary can be derived as presented in chapter 7:

1

2
tα (x′) = nβ (x′)

∫

Γ

UP
αβγ (x′,x) tγdΓ − nβ (x′)

∫

Γ

T P
αβγ (x′,x) uγdΓ

+nβ (x′)
1

hp

∫

A

UP
αβγ (x′,x) fβdA (10.2)

where nβ(x′) is the normal to the boundary evaluated at collocation point. UP
αβγ(x

′,x) and

T P
αβγ(x

′,x) are the traction fundamental solution for two-dimensional problems.

10.2.3 Displacement integral equation for plate bending

If wα are defined as rotations in the xα direction, w3 is the deflection of the plate along x3

as shown in figure 10.2, qP
α and qP

3 are the distribution of body forces in moment and the

out-of-plane body force per unit area, respectively, in the patch area A and po is the pressure

force applied in the domain of the plate Ω (considered constant in this work); the boundary

integrals for the plate bending problem can be obtained as (see chapter 5):

cP
ik (x′) wk (x′) =

∫

Γ

W P
ik (x′,x) pkdΓ −

∫

Γ

P P
ik (x′,x) wkdΓ + po

∫

Ω

W P
i3 (x′,x) dΩ

+
∫

A

W P
ik (x′,x) qP

k dA (10.3)
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plate

where k = 1 . . . 3. W P
αβ(x′,x) and P P

αβ(x′,x) are the fundamental solutions for Reissner’s

plate model and pα = Mαβnβ, p3 = Qβnβ. Constant cP
ik has a similar significance with those

at in-plane displacement problem.

10.2.4 Traction integral equation for plate bending

In a similar way, fracture mechanics problems involving plate bending can be modeled using

DBEM. In this case, the traction equation can be written as:

1

2
pi (x

′) = nβ (x′)
∫

Γ

W P
iβk (x′,x) pkdΓ − nβ (x′)

∫

Γ

P P
iβk (x′,x) wkdΓ

+nβ (x′) po

∫

Ω

W P
iβ3 (x′,x) dΩ + nβ (x′)

∫

A

W P
iβk (x′,x) qP

k dA (10.4)

where W P
iβγ(x

′,x) and P P
iβγ(x

′,x) are the traction fundamental solution for Reissner’s plate,

as showed in chapter 7.
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10.3 Boundary integral equation for anisotropic repair

10.3.1 Displacement integral formulation for plane stress

Similarly to the isotropic case, the in-plane displacements of a point x′ in the anisotropic

patch are given by (see chapter 3):

cR
αβ (x′) uR

β +
∫

ΓR

TR
αβ (x′,x) uR

β dΓ =
1

hR

∫

A

UR
αβ (x′,x) fR

β dA (10.5)

where TR
αβ(x′,x) and UR

αβ(x′,x) are the traction and displacements fundamental solutions for

anisotropic plane elasticity problems and hR represents the repair thickness. Others variables

have similar meaning to the isotropic case. In this work, loads acting over the boundary of

the repair are not consider. Because of this, the integral term containing traction boundary

forces wasn’t included into equation 10.5.

10.3.2 Displacement integral formulation for bending plate

In this work, the plate bending response of the repair is modeled using the Kirchhoff’s plate

theory as presented in chapter 6.

From the generalized Rayleigh-Green identity, if we choose wR(x) as the deflection of the
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plate under consideration, and W (x′,x) as the fundamental solution and making the use of

the properties of Dirac δ-function, the following integral representation is obtained (see Shi

and Bezine, 1988):

cRD22w
R (x′) = −

∫

Γ

{

Vn (x′,x) wR (x) − Mn (x′,x) wR
,n (x) + W,n (x′,x) mn (x)

−W (x′,x) vn (x)} dΓ +
m
∑

i=1

{Tn (x′,x) w (x) − W (x′,x) tn (x)}i (10.6)

where wR
n (x) is the tangential rotation, vn(x) and mn(x) are the shear force and the tangen-

tial moment, respectively, and tn(x) is the normal moment. Vn(x′,x), Mn(x′,x), W (x′,x),

Tn(x′,x) and W,n(x′,x) are the fundamental solutions for Kirchhoff plate. The last term at

right hand side represents corner effects, where m represents the number of corner points of

the boundary.

For a plate bending problem, there always two unknows at any point of the boundary (see

figure 10.3). Consequently a second boundary integral equation is obtained by differentiating

last equation with respect to point x′ in the direction of the outward unit normal n0 at

collocation point:

1

2
D22w,no (x′) +

∫

Γ

[

Vn,no (x′,x) wR (x) dΓ − Mn,no (x′,x) wR
,n (x) + W,non (x′,x) mn (x) −

W,no (x′,x) vn (x)] dΓ +
m
∑

i=1

[

Ts,no (x′,x) wR (x) − W,no (x′,x) ts (x)
]

i
= 0(10.7)

10.4 Three parameter formulation for Kirchhoff plates

A drawback appears trying to coupling above formulation with Reissner’s plate, to model the

interaction between plate and repair. In fact, this formulation has two cinematic unknows

variables. i.e., w and w,n (deflection and tangential rotation) at every point, whereas Reiss-
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ner’s plate model has three: w, w,x1 and w,x2, i.e., deflection and two rotations. In this way,

Kirchhoff plate and the Reissner plate models are kinematically incompatibles.

An alternative boundary integral formulation for Kirchhoff plate’s model with three un-

knows at every point can be establish considering the original form of the Betti’ theorem for

the Kirchhoff plate given in chapter 6.

From the equilibrium of forces and moments, we can write (see chapter 6):

∂Mxx

∂x
+

∂Myx

∂y
− Qx + mx = 0

∂Mxy

∂x
+

∂Myy

∂y
− Qy + my = 0

∂Qx

∂x
+

∂Qy

∂y
− Qx + q = 0 (10.8)

The relation between internal moments and resultants of moments acting in a plane with

normal �n is given by:
⎧

⎪

⎪

⎨

⎪

⎪

⎩

Mx

My

⎫

⎪

⎪

⎬

⎪

⎪

⎭

=

⎡

⎢

⎢

⎣

Mxx Mxy

Myx Myy

⎤

⎥

⎥

⎦

⎧

⎪

⎪

⎨

⎪

⎪

⎩

nx

ny

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(10.9)

In a similarly, the relationship between internal shear force and a shear force acting at a

plane with normal �n is:

Qn = Qxnx + Qyny (10.10)

Using Betti theorem, we can relate two states of stress-deformation of a linear material as:

∫

Ω

σijε
∗
ijdΩ =

∫

Ω

σ∗
ijεijdΩ (10.11)
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For Kirchhoff plate theory we have:

εxx = −z
∂2w

∂x2

εyy = −z
∂2w

∂y2

γxy = −2z
∂2w

∂x∂y
(10.12)

Replacing these expressions on the left hand side of eqn. 10.11 we have:

∫

Ω

σijε
∗
ijdΩ = −z

∫

Ω

[

σxx

(

∂2w∗

∂x2

)

+ σyy

(

∂2w∗

∂y2

)

+ 2τxy

(

∂2w∗

∂x∂y

)]

dΩ (10.13)

Considering the resultant of moments:

Mxx =
∫ t/2

−t/2
zσxxdz

Myy =
∫ t/2

−t/2
zσyydz

Mxy =
∫ t/2

−t/2
zτxydz (10.14)

Integrating throughout the thickness of the plate equation (10.13), we have:

∫

Ω

σijε
∗
ijdΩ = −

∫

A

{(

∂2w∗

∂x2

)(

∫ t/2

−t/2
zσxxdz

)

+

(

∂2w∗

∂y2

)(

∫ t/2

−t/2
zσyydz

)

+ 2

(

∂2w∗

∂x∂y

)(

∫ t/2

−t/2
zτxydz

)}

dA (10.15)
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then,

∫

Ω

σijε
∗
ijdΩ = −

∫

A

[

Mxx

(

∂2w∗

∂x2

)

+ Myy

(

∂2w∗

∂y2

)

+ 2Mxy

(

∂2w∗

∂x∂y

)]

dA (10.16)

The right-hand-side of above equation can be rewritten considering that:

Mxx

(

∂2w∗

∂x2

)

=
∂

∂x

(

Mxx
∂w∗

∂x

)

− ∂Mxx

∂x

∂w∗

∂x

Myy

(

∂2w∗

∂y2

)

=
∂

∂y

(

Myy
∂w∗

∂y

)

− ∂Myy

∂y

∂w∗

∂y

2Mxy

(

∂2w∗

∂x∂y

)

=
∂

∂y

(

Mxy
∂w∗

∂x

)

− ∂Mxy

∂y

∂w∗

∂x
+

∂

∂x

(

Mxy
∂w∗

∂y

)

− ∂Mxy

∂x

∂w∗

∂y
(10.17)

Replacing into equation (10.16):

∫

Ω

σijε
∗
ijdΩ = −

∫

A

[

∂

∂x

(

Mxx
∂w∗

∂x

)

− ∂Mxx

∂x

∂w∗

∂x
+

∂

∂y

(

Myy
∂w∗

∂y

)

− ∂Myy

∂y

∂w∗

∂y

+
∂

∂y

(

Mxy
∂w∗

∂x

)

− ∂Mxy

∂y

∂w∗

∂x
+

∂

∂x

(

Mxy
∂w∗

∂y

)

− ∂Mxy

∂x

∂w∗

∂y

]

dA(10.18)

Now considering the Gauss-Green theorem applied to terms 1, 3, 5 and 7 of the R.H.S. of

above equation:

∫

A

∂

∂x

(

Mxx
∂w∗

∂x

)

dA =
∫

Γ

Mxx
∂w∗

∂x
nxdΓ

∫

A

∂

∂y

(

Myy
∂w∗

∂y

)

dA =
∫

Γ

Myy
∂w∗

∂y
nydΓ

∫

A

∂

∂y

(

Mxy
∂w∗

∂x

)

dA =
∫

Γ

Mxy
∂w∗

∂x
nydΓ
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∫

A

∂

∂x

(

Mxy
∂w∗

∂y

)

dA =
∫

Γ

Mxy
∂w∗

∂y
nxdΓ

Substituting into equation (10.18):

∫

A

σijε
∗
ijdΩ = −

∫

Γ

[

(Mxxnx + Mxyny)
∂w∗

∂x
+ (Mxynx + Myyny)

∂w∗

∂y

]

dΓ

+
∫

A

[(

∂Mxx

∂x
+

∂Mxy

∂y

)

∂w∗

∂x
+

(

∂Myy

∂y
+

∂Mxy

∂x

)

∂w∗

∂y

]

dA (10.19)

Considering the equations (10.8) and (10.9), the R.H.S. of equation (10.19) can be write as:

∫

A

σijε
∗
ijdΩ = −

∫

Γ

(

Mx
∂w∗

∂x
+ My

∂w∗

∂y

)

dΓ +
∫

A

(

Qx
∂w∗

∂x
+ Qy

∂w∗

∂y

)

dA

−
∫

A

(

mx
∂w∗

∂x
+ my

∂w∗

∂y

)

dA (10.20)

The second integral at R.H.S. can be re-written as:

∫

A

(

Qx
∂w∗

∂x
+ Qy

∂w∗

∂y

)

dA =
∫

A

(

∂

∂x
(Qxw

∗) +
∂

∂y
(Qyw

∗)

)

dA −
∫

A

[(

∂Qx

∂x
+

∂Qy

∂y

)

w∗

]

dA

(10.21)

Applying the Gauss-Green theorem to the first integral at R.H.S and considering the third

equation at equations (10.8) applied to the second integral at R.H.S., we have:

∫

A

(

Qx
∂w∗

∂x
+ Qy

∂w∗

∂y

)

dA =
∫

Γ

(Qxnx + Qyny) w∗dΓ +
∫

A

qw∗dA (10.22)

Finally, substituting equation (10.10) into above equation and substituting this equation into

equation (10.20) we obtain:

∫

A

σijε
∗
ijdA = −

∫

Γ

(

Mx
∂w∗

∂x
+ My

∂w∗

∂y
+ Qnw∗

)

dΓ +
∫

A

qw∗dA

151



−
∫

A

mx
∂w∗

∂x
dA −

∫

A

my
∂w∗

∂y
dA (10.23)

In a similar way the R.H.S. of equation (10.11) can be written as:

∫

A

εijσ
∗
ijdA = −

∫

Γ

(

M∗
x

∂w

∂x
+ M∗

y

∂w

∂y
+ Q∗

nw

)

dΓ +
∫

A

q∗wdA

−
∫

A

m∗
x

∂w

∂x
dA −

∫

A

m∗
y

∂w

∂y
dA (10.24)

Replacing equations (10.23) and (10.24) into equation (10.11) we obtain finally, the Somigliana’s

identity for the Kirchhoff’s plate problem:

−
∫

Γ

(

Mx
∂w∗

∂x
+ My

∂w∗

∂y
+ Qnw

∗

)

dΓ +
∫

A

qw∗dA −
∫

A

mx
∂w∗

∂x
dA −

∫

A

my
∂w∗

∂y
dA =

−
∫

Γ

(

M∗
x

∂w

∂x
+ M∗

y

∂w

∂y
+ Q∗

nw

)

dΓ +
∫

A

q∗wdA −
∫

A

m∗
x

∂w

∂x
dA −

∫

A

m∗
y

∂w

∂y
dA(10.25)

The above equation relates two states of an elastic material. In order to apply this equation

to solve bending problems, we need to consider one of states as known and other as the

state which stands for the problem which we want to analyze. To obtain a boundary integral

equation, the known state is chosen so that the domain’s integrals given by the last three

integrals at R.H.S. of equation (10.25) vanishes. Using the properties of Dirac delta function

to represents q∗ and considering m∗
x = 0 and m∗

y = 0, these integrals are written as:

∫

A

q∗wdA =
∫

A

δ (x′,x) wdA = w (x′)

∫

A

m∗
x

∂w

∂x
dA = 0
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∫

A

m∗
y

∂w

∂y
dA = 0 (10.26)

where x′ is the point where the load is applied, known as source point, and x is the point where

the deflection is observed, known as field point. The state corresponding to a linear material

under loading of a Dirac delta function is known as fundamental state and the variables of

equation (10.25) related to this state (w∗, Q∗
n, M∗

x , M∗
y ) are known as fundamental solutions

which are computed analytically. Considering the state ” ∗ ” as the fundamental state,

equation (10.25) can be written as:

cw (x′) −
∫

Γ

(

M∗
x (x′,x)

∂w

∂x
+ M∗

y (x′,x)
∂w

∂y
+ Q∗

n (x′,x) w

)

dΓ =

−
∫

Γ

(

Mx
∂w∗ (x′,x)

∂x
+ My

∂w∗ (x′,x)

∂y
+ Qnw

∗ (x′,x)

)

dΓ

+
∫

A

qw∗ (x′,x) dA −
∫

A

mx
∂w∗ (x′,x)

∂x
dA −

∫

A

my
∂w∗ (x′,x)

∂y
dA (10.27)

Alternatively, the boundary integrals at equation (10.27) can be expressed in terms of normal

and tangent moments Mn and Mns, using the following relation:

Mx = Mnn1 + Mnss1

My = Mnn2 + Mnss2 (10.28)

where ni and si are the unit-normal and unit-tangent vectors at boundary evaluation point.

Replacing into equation (10.27) and simplifying we obtain:

cw (x′) −
∫

Γ

(

M∗
n (x′,x)

∂w

∂n
+ M∗

ns (x′,x)
∂w

∂s
+ Q∗

n (x′,x) w

)

dΓ =
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−
∫

Γ

(

Mn
∂w∗ (x′,x)

∂n
+ Mns

∂w∗ (x′,x)

∂s
+ Qnw

∗ (x′,x)

)

dΓ

+
∫

A

qw∗ (x′,x) dA −
∫

A

mx
∂w∗ (x′,x)

∂x
dA −

∫

A

my
∂w∗ (x′,x)

∂y
dA (10.29)

Variables this equation are displacements w, rotations ∂w/∂n, moments Mn and Mns, and

loads Qn. For a given boundary condition, some of these variables are known. In order

to have an equal number of equations and unknown variables, it is necessary to write an

integral equation corresponding to the derivative of displacement w in relation to a cartesian

coordinate system fixed in the source point, i.e., the point where the Dirac delta of the

fundamental state is applied. The axis directions of this coordinate system are coincident

with normal and tangent to the boundary directions in the source point:

c
∂w

∂no

(x′) −
∫

Γ

(

∂M∗
n

∂no

(x′,x)
∂w

∂n
+

∂M∗
ns

∂no

(x′,x)
∂w

∂s
+

∂Q∗
n

∂no

(x′,x) w

)

dΓ =

−
∫

Γ

(

Mn
∂

∂no

[

∂w∗ (x′,x)

∂n

]

+ Mns
∂

∂no

[

∂w∗ (x′,x)

∂s

]

+ Qn
∂

∂no

[w∗ (x′,x)]

)

dΓ

+
∫

A

q
∂w∗ (x′,x)

∂no

dA −
∫

A

mx
∂

∂no

[

∂w∗ (x′,x)

∂x

]

dA −
∫

A

my
∂

∂no

[

∂w∗ (x′,x)

∂y

]

dA (10.30)

and

c
∂w

∂so

(x′) −
∫

Γ

(

∂M∗
n

∂so

(x′,x)
∂w

∂n
+

∂M∗
ns

∂so

(x′,x)
∂w

∂s
+

∂Q∗
n

∂so

(x′,x) w

)

dΓ =

−
∫

Γ

(

Mn
∂

∂so

[

∂w∗ (x′,x)

∂n

]

+ Mns
∂

∂so

[

∂w∗ (x′,x)

∂s

]

+ Qn
∂

∂so

[w∗ (x′,x)]

)

dΓ

+
∫

A

q
∂w∗ (x′,x)

∂so

dA −
∫

A

mx
∂

∂so

[

∂w∗ (x′,x)

∂x

]

dA −
∫

A

my
∂

∂so

[

∂w∗ (x′,x)

∂y

]

dA (10.31)
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Figure 10.4: Forces and moments at x1 − z plane for equilibrium equation

Since, neither normal or tangent vectors can be defined at any internal point (as defined for

points at the boundary), the ”normal” direction for internal points will be defined to have

the x -axis direction.

Using equations (10.29) through (10.31) we have a formulation kinematically compatible

with the Reissner plate model.

10.5 Coupling equations

Isotropic plate equations has fifteen unknowns variables: five displacements (or tractions) at

boundary and five unknowns displacements and five interaction body forces at any point in

the repair region. In addition, ten unknows appears at repair: five displacements (at bound-

ary and domain) and five interaction body forces (at domain). In this way we have twenty

five unknows in the problem.

Boundary integral equations for isotropic plate and the anisotropic repair presented, repre-

sents fifteen equations and twenty five unknows. Ten additional equations must be provided.

Additional equations can be written if kinematic compatibility between plate’s and repair

and the equilibrium conditions at adhesive layer, are considered. In this way a total of twenty

five equations could be written.
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Figure 10.5: Displacements components at adhesive interfaces for shear stress definition

10.5.1 Equilibrium conditions at adhesive layer

The components of forces and moments acting in the z − x plane, the equilibrium of the

adhesive layer can be written as (see figure 10.4):

∑

Fx1
= fP

1 + fR
1 = 0

∑

Fx3
= qP

3 + qR
3 = 0

∑

Mx2
= qP

1 + qR
1 + fR

1

(

hA +
hP + hR

2

)

= 0 (10.32)

Where hA represents the thickness of the adhesive. In a similar way, equilibrium equations

can be written for x− y and y − z planes. In vector form, equations above can be expressed

as:

fP
α + fR

α = 0

qP
3 + qR

3 = 0

qP
α + qR

α + fR
α

(

hA +
hP + hR

2

)

= 0 (10.33)
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10.5.2 Cinematic compatibility equations

The shear force τA
3α, acting at interior of adhesive layer can be written as:

τA
3α = fR

α = μAγ3α (10.34)

where μA is the shear modulus of the adhesive and γ3α is the shear deformation in the α

direction that can be write as (see figure 10.5):

γ3α =
UR

α − UP
α

hA

∼= 1

hA

{(

uR
α − hR

2
wR

α

)

−
(

uP
α +

hP

2
wP

α

)}

(10.35)

Substituting into equation (10.34) we have:

hA

GA

fR
α =

(

uR
α − hR

2
wR

α

)

−
(

uR
α +

hR

2
wR

α

)

(10.36)

Finally, we can consider that deflection and rotation angles at coincident points at plate and

repair are related by:

wP
3 = wR

3

qP
α = C

(

wR
,α − wP

α

)

(10.37)

where C = D(1− ν)λ2/2. In this way equations (10.31) through (10.37) represents ten addi-

tional equations obtained by considering equilibrium and cinematic compatibility conditions

in the adhesive layer.
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10.6 Boundary element equations for the plate

10.6.1 In-plane equations

Using the boundary element method as described in chapter 5, the discretized boundary

equations for in-plane elasticity (designed as m) for the isotropic plate p, collocations can be

written in matrix form as:

⎡

⎢

⎢

⎣

pHm
c 0

pHm
d I

⎤

⎥

⎥

⎦

⎧

⎪

⎪

⎨

⎪

⎪

⎩

up
c

up
d

⎫

⎪

⎪

⎬

⎪

⎪

⎭

=

⎡

⎢

⎢

⎣

pGm
c

pGm
d

⎤

⎥

⎥

⎦

{tp} +

⎡

⎢

⎢

⎣

pBm
c

pBm
d

⎤

⎥

⎥

⎦

{tp} +

⎧

⎪

⎪

⎨

⎪

⎪

⎩

pf0
c

pf0
d

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(10.38)

where sub-index c and d refers boundary and domain collocation points respectively. Above

equation can be write in compact form as (without considering body forces f0):

PHMuP = PGMtP + PBM fP (10.39)

Using the cell method, the matrix PBM is given by:

∫

Ω
U∗

ijf
P
i dΩ =

[

Ncell
∑

i=1

∫

Ωcell
U∗

ijNkjdΩcell

]

fP
i = PBM fP k = 1 . . . ND (10.40)

where ND and NC are the number of collocation points at domain and boundary of the

isotropic plate, respectively.

10.6.2 Bending equations

Bending equations (identify by (b)) for the isotropic plate are given by:

⎡

⎢

⎢

⎣

pHb
c 0

pHb
d I

⎤

⎥

⎥

⎦

⎧

⎪

⎪

⎨

⎪

⎪

⎩

wp
c

wp
d

⎫

⎪

⎪

⎬

⎪

⎪

⎭

=

⎡

⎢

⎢

⎣

pGb
c

pGb
d

⎤

⎥

⎥

⎦

{pp} +

⎡

⎢

⎢

⎣

pBb
c

pBb
d

⎤

⎥

⎥

⎦

{qp} +

⎧

⎪

⎪

⎨

⎪

⎪

⎩

pq0
c

pq0
d

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(10.41)

158



In compact form this equation can be write as:

PHBuP = PGBtP + PBBfP + q0 (10.42)

where vector q0 represents pressure forces acting on the plate.

10.6.3 Isotropic plate equations

The complete boundary element method equations for the isotropic plate can be write in

matrix form, considering equations (10.38) and (10.41) as:

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

pHm
c 0 0 0

pHm
d I 0 0

0 0 pHb
c 0

0 0 pHb
d I

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

up
c

up
d

wp
c

wp
d

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

pGm
c 0

pGm
d 0

0 pGb
c

0 pGb
d

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎧

⎪

⎪

⎨

⎪

⎪

⎩

tp

pp

⎫

⎪

⎪

⎬

⎪

⎪

⎭

+

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

pBm
c 0

pBm
d 0

0 pBb
c

0 pBb
d

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎧

⎪

⎪

⎨

⎪

⎪

⎩

fp

qp

⎫

⎪

⎪

⎬

⎪

⎪

⎭

+

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

pf0
c

pf0
d

pq0
c

pq0
d

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

(10.43)

In compact form, this equation can be written as:

PHxP = PGyP + PBzP + q0P (10.44)

Considering that vector zP will be an unknown vector always, equation (10.44) can by re-

written as:
[

PH −PB

]

⎧

⎪

⎪

⎨

⎪

⎪

⎩

xP

zP

⎫

⎪

⎪

⎬

⎪

⎪

⎭

= PGyP + q0P (10.45)
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Expanding we have:

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

pHm
c 0 0 0 −pBm

c 0

pHm
d I 0 0 −pBm

d 0

0 0 pHb
c 0 0 −pBb

c

0 0 pHb
d I 0 −pBb

d

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

up
c

up
d

wp
c

wp
d

fP

qP

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

pGm
c 0

pGm
d 0

0 pGb
c

0 pGb
d

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎧

⎪

⎪

⎨

⎪

⎪

⎩

tp

pp

⎫

⎪

⎪

⎬

⎪

⎪

⎭

+

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

pf0
c

pf0
d

pq0
c

pq0
d

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

(10.46)

10.7 Boundary element equations for the repair

In a similar way as the case of isotropic plate, boundary element equations for the repair are:

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

RHm
c 0 0 0 −RBm

c 0

RHm
d I 0 0 −RBm

d 0

0 0 RHb
c 0 0 −RBb

c

0 0 RHb
d I 0 −RBb

d

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

uR
c

uR
d

wR
c

wR
d

fR

qR

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

Rf0
c

Rf0
d

Rq0
c

Rq0
d

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

(10.47)

Considering that all collocation points of the repair are coupled with the domain’s collocation

points of the plate, the above equation can be written as:

⎡

⎢

⎢

⎣

RHm 0 −RBm 0

0 RHb 0 −RBb

⎤

⎥

⎥

⎦

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

uR

wR

fR

qR

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Rf0

Rq0

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(10.48)
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where,

RHm =

⎡

⎢

⎢

⎣

RHm
c 0

RHm
d I

⎤

⎥

⎥

⎦

; RHb =

⎡

⎢

⎢

⎣

RHb
c 0

RHb
d I

⎤

⎥

⎥

⎦

(10.49)

10.8 Equilibrium equations for the adhesive layer

First equation in (10.33) can be written in matrix form as:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

fP
1

fP
2

...

fP
ND

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

+

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

fR
1

fR
2

...

fR
ND

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

0

0

...

0

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

⇒ IfP + IfR = 0 (10.50)

Second and third equations in (10.33) can be written in compact form as:
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R = 0 (10.51)

where,

C1 =

(

hA +
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10.9 Kinematic compatibility equations for displace-

ments

Equation (10.36) can be write in matrix form as:
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or,

IuR − IuP
d − hR

2
CT

1 wR − hR

2
CT

1 wP
d − hA

GA

fR = 0 (10.54)

Finally, equations (10.37) can be written as:

C
(

wR − wP
d

)

= qP (10.55)

where, C is an incidence matrix.

10.10 Plate-repair coupling equations

Substituting equation (10.50) into (10.51) we have:

IqP + IqR − C1fP = 0 (10.56)

In similar way, replacing equations (10.50) and (10.55) into equation (10.54) we obtain:

IuR − IuP
d − C2q

P − CT
1 wP

d + AfP = 0 (10.57)
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where the constant 1/2(hR + hP ) was included into matrix CT
1 , C2 = (hR/2)C1

TC−1 and

A = hA/GAI. Replacing equations (10.50) and (10.55) into equation (10.48) we obtain:
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Finally, considering equations (10.46) and (10.56) through (10.58) we obtain the complete

equations system for the problem:
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Figure 10.6: Left: BEM model. Right: Shear stress at adhesive layer

10.11 Numerical examples

10.11.1 Plate with adhesively bonded isotropic circular patch

To test the formulation developed here a square isotropic plate with adhesively bonded

isotropic circular patch modeled (using the Reissner plate theory) will be analyzed and shear

stress distribution in the repair zone will be compared with the theoretical solution given by

Rose and Wang, 2002 for isotropic sheet repaired with isotropic repair. The wide of the plate

is 90mm, thickness 1.5mm and it is subject to in-plane load σ0. The material constants are

chosen as E = 70GPa, ν = 0.3. A circular isotropic patch of radius R = 30mm is bonded

to the sheet over the region A{x2
1 + x2

2}. The patch has the same material as the plate with

thickness h1 = 1.5mm. The adhesive layer has thickness ha = 0.15mm and shear modulus

Ga = 0.6GPa. The boundary of the plate is subdivided into 25 quadratic discontinuous

elements and 24 elements at boundary patch (see figure 10.6). 56 continuous and constant

bi-quadratic cells has been used. Simply supported conditions are applied to the plate. Fig-

ure 10.6 shows the shear stress distribution in the adhesive layer and figure 10.7 presents

the normalized shear stress in the adhesive along y-axis obtained compared with analytic
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Figure 10.7: Shear stress distribution in the adhesive layer along y-axis

solution given by Rose and Wang, 2002 for the two-dimensional case 1.

10.11.2 Plate with adhesively bonded anisotropic circular patch

The same problem is analyzed but now considering an anisotropic patch. Mechanical prop-

erties considered are: E1 = 25GPa, E2 = 208GPa, G12 = 72.4GPa and ν = 0.02. Twelve

boundary element was used to discretized the plate border and 24 quadratic discontinuous

boundary elements in the repair boundary (see figure 10.8). Similar boundary conditions and

loads were applied.

Figure 10.8(right) shows the normalized shear stress distribution in the adhesive layer.

A similar distribution with that encountered for the isotropic repair is observed. Figure

1Since do not exist analytic solution for thick plates repaired with isotropic patch, the shear stress dis-
tribution along y-axis in the adhesive layer, was compared with the analytic solution given by Rose for the
two-dimensional problem. Furthermore, in this problem the bending effect on the response of the plate is
neglectible.
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Figure 10.8: Left: DBEM model. Right: Normalized shear stress map in the adhesive Center:
Normalized Shear stress in the adhesive layer along y-axis

10.8(center) shows the normalized shear stress in the adhesive along y-axis compared with

analytic solution given by Rose and Wang, 2002 for two-dimensional isotropic repair. Since

do not exist analytic solution for the case of thick plate repaired with composite patch, the

shear stress distribution along y-axis in the adhesive layer, was compared with the analytic

solution given by Rose for the two-dimensional isotropic patch problem. In this problem, we

can note the effect the bending effect on the shear stress in the adhesive layer.
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10.11.3 Cracked plate with bonded anisotropic circular patch

A Square isotropic cracked plate with adhesively bonded anisotropic circular patch is an-

alyzed. The length of the crack is 2a = 15mm. The wide of the plate is 100mm, thick-

ness 1.5mm and it is subject to in-plane load σ0, along of y = ±50mm. The material

constants are chosen as E = 70GPa, ν = 0.3. A circular orthotropic patch with radius

R = 30mm is bonded to the plate. The material properties are: E1 = 25GPa, E2 = 208GPa,

G12 = 72.4GPa and ν = 0.02, with thickness of 1.5mm. The adhesive layer has thickness

ha = 0.15mm and shear modulus Ga = 0.6GPa.

A similar BEM model used in the example 8.5.2. Seven boundary element was used to

discretized the plate border and 24 quadratic discontinuous boundary elements in the repair

boundary (see figure 10.9). Plate’s border at y = ±50mm are simply supported. Figure

10.9(right) shows the shear stress distribution in the adhesive layer. A similar distribution

with that encountered for the isotropic repair is observed. Figure 10.9(center) shows the

normalized shear stress in the adhesive along y-axis compared with solution obtained for the

two-dimensional problem. As can be seen the shear stress in adhesive is lower than those

obtained for the two-dimensional problem because the presence of bending effect in the plate.

Additional verification is presented in this figure. The anisotropic formulation proposed in

this chapter is verified using an quase-isotropic model for the repair and solution is compared

with the fully isotropic patch. Good correlation is obtained.

Finally, figure 10.10 shows the KRMS (given by equation (8.30)) as function of crack

length. As in two-dimensional problems an asymptotic behavior is founded. The asymptotic

analytical value for infinite crack predicted by equation (8.31) is 355.6MPa.m1/2. A good

asymptotic behavior of the KRMS predicted by the BEM model is observed if we consider

that equation 8.30 only apply for plates with infinite crack.
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10.11.4 Rectangular cracked plate repaired with bonded patch

The boundary element analysis of a rectangular isotropic fracture plate repaired with adhe-

sively bonded anisotropic circular patch is presented. The plate is 248mm×118mm, thickness

hP = 2.0mm and it is subject to in-plane load σ0 = 79.4MPa. The material constants are

chosen as E = 72.39GPa, ν = 0.33. A circular anisotropic patch of radius R = 25mm and

thickness hR = 3.2mm is bonded to the plate (see figure 10.11). The mechanical properties

are of patch are: E1 = 37.35GPa, E2 = 11.38GPa, G12 = 5.97GPa and ν = 0.38. The

adhesive layer has thickness ha = 0.1mm and shear modulus Ga = 0.44GPa. This analysis

was performed using a combined boundary element method and finite element method for-

mulation as presented by Sekine et al., 2005, where the cracked plate is modeled using a 3D

BEM model and the repair a plate model.

A total of 28 quadratic discontinuous boundary elements were used to discretize the

boundary of the isotropic cracked plate. Meshes from 4 to 16 quadratic discontinuous bound-

ary elements were used to discretize the crack faces. Patch domain was discretized using 128

cells and 24 quadratic discontinuous elements has been used. Simply supported conditions

were applied to all sides. The resultant shear stress distribution in the adhesive layer ob-

tained is showed in Figure 10.11.

Table 10.1 compares values for the maximum stress intensity factor: KImax = KIm +

6/h2
P Kb

I calculated along plate thickness with those KI reported in Sekine et al., 2005.
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Table 10.1: Stress intensity factors for cracked plate repaired with composite patch

z(mm) KImax(MPam1/2) BEM KI(MPam1/2)-Sekine error
0.40 13.82 12.60 4.32%
0.80 11.56 11.09 4.24%
1.20 9.89 9.52 3.89%
1.60 8.15 7.84 3.95%

10.12 Conclusions

A boundary element method formulation for the analysis of cracked isotropic thick plates

repaired with symmetrical laminate composite plates, was developed. The equations for the

repair is based on boundary integral formulation considering three parameters, based on the

theory of plates of Kirchhoff as a generalization of the integral formulation of thin plates

traditionally used. The isotropic model linear proposed for the adhesive was extended to

consider shear forces and bending moments acting on it. This way, equations for kinematic

coupling for displacements and rotations, as well as a system of equations that describe the

equilibrium of forces and moments that act on the adhesive, were established. Domains

integrals containing forces and moments in the repair’s area are threated with using the cell

method. A special type of semi-discontinuous bi-quadratic cells was used in the edge of the

repair, used altogether with constant and continuous bi-quadratic cells. In the analysis of

problems involving isotropic repairs it was observed that the shear stress in the adhesive are

comparable with those in the literature. Results obtained for the problem with anisotropic

repair are similar with those encountered in the case of isotropic repair, but needs to be

validated yet.
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Chapter 11

Conclusions

11.1 Final Conclusions

This work was developed a boundary element method formulation for the analysis of cracked

plates repaired with symmetrical laminate composite materials.

A revision of the theory elasticity applied to bi-dimensional problems involving isotropic

and anisotropic materials, as well as the theories of Kichhoff for anisotropic thin plate bend-

ing and the theory of Reissner for isotropic thick plates, was presented. For anisotropic

materials, was used the theory of symmetrical laminates to obtain the mechanical properties

of the plate from the mechanical properties of the laminate components. Also, the five stress

intensity factors (two in-plane response and three accounting bending effects) were presented.

The application of the extrapolation method for calculate these factors was showed.

The direct boundary element method for bi-dimensional elasticity problems for isotropic

and anisotropic materials, was presented. Also, the dual boundary element method for the

analysis of fracture mechanics problems in isotropic plane elasticity and thick plate bending.

The domains integrals containing in-plane distributed body forces and those containing pres-
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sure forces acting on the isotropic plate were transformed to boundary integral ones using

the divergence theorem. Singular and hypersingular integrals were treated using rigid body

considerations and exact integration, in the case of plane elasticity. For thick plate bending,

expansion by Taylor’s series for the treatment of strong and hypersingular integrals, along

with element subdivision and cubic Telles transformation for strong and weakly singularities

were used. Good correlation of the results were obtained, when compared with those reported

in the literature. But, the stress intensity factors calculated here do not show satisfactory

results in all the cases. More research work must be done to improve this results.

Based on formulations presented, a boundary element method formulation for the anal-

ysis of cracked isotropic sheet repaired with symmetrical laminate composite materials, was

presented. For this, an isotropic linear elastic response and a shear deformational state in the

adhesive is considered. In this way, coupling equations based on compatibility kinematics and

forces balance considerations between displacements and the body forces in the repair area.

Domain’s integrals containing these interaction forces were threated by means of the cell

method, using for it constant cells in the fracture neighborhood and continuous bi-quadratic

cells for the rest of the region. This way, a general system of equations for the problem was

established.

For the analyzed cases comparable results were obtained for shear stress in the adhesive

when compared with the theoretical solutions and other numerical results. Differences be-

tween results could become from the poor interpolation capacity of the constant cells in the

proximity of the crack, due to the high stress gradient that appears in this zone. In some

cases, the stress intensity factors obtained differs with those reported in the literature. These

differences could be originated in the use of cells, the DRBEM collocations points distribution

or by the extrapolation method used.
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Finally, a boundary element method formulation for the analysis of cracked isotropic thick

plates repaired with symmetrical laminate composite plates, was developed. The equations

for the repair is based in an boundary integral formulation considering three parameters,

based on the theory of plates of Kirchhoff as a generalization of the integral formulation of

thin plates traditionally used. The isotropic model linear proposed for the adhesive it was

extended to consider shear forces and bending moments acting on it. This way, equations

for kinematic coupling for displacements and rotations, as well as a system of equations that

describe the equilibrium of forces and moments that act on the adhesive, were established.

Domains integrals containing forces and moments in the repair’s area are threated with using

the cell method. A special type of semi-discontinuous bi-quadratic cells was used in the edge

of the repair, used altogether with constant and continuous bi-quadratic cells. In the analysis

of problems involving isotropic repairs it was observed that the shear stress in the adhesive are

comparable with those in the literature. Results obtained for the problem with anisotropic

repair are similar with those encountered in the case of isotropic repair, including the stress

intensity factors calculated. But more research work must be done to improve the formulation

proposed in this work.

11.2 Future work

The future work proposed are:

- Boundary element analysis of cracked stiffened panels repaired with adhesively composite

patchs.

- Boundary element analysis of cracked assembled plate-structures repaired with adhe-

sively composite patchs.

- Fiber direction optimization of adhesively composite patchs.

- Crack propagation analysis in cracked stiffened panels repaired with adhesively compos-

ite patchs.
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