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Resumo

Useche Vivero, Jairo Francisco, Andlise pelo Método dos Elementos de Contorno de Placas
de Reissner Trincadas e Reparadas com Compdsitos Colados, Campinas,: Faculdade
de Engenharia Mecéanica, Universidade Estadual de Campinas, 2007. 181 p. Tese

(Doutorado).

O objetivo deste projeto é o desenvolvimento de uma ferramenta computacional para a
analise e projeto de estruturas aeronduticas trincadas e reparadas por placas de materiais
compositos laminadas coladas. As placas metdlicas isotropicas da estrutura aerondutica serao
modeladas pelo método dos elementos de contorno considerando a presenca de tensoes de
cisalhamento nos planos normais a superficie das placas (formulacao de Reissner-Mindlin). No
modelamento do reparo serd usada uma formulagao por elementos de contorno para placas
anisotropicas sem considerar a presenca de tensoes de cisalhamento nos planos normais a
superficie da placa (formulacao do Kirchhoff-Love). A andlise sera validada com resultados
analiticos, numéricos e experimentais disponiveis na literatura e com modelos desenvolvidos

pelo método dos elementos finitos.

Palavras Chave
Placas de Reissner trincadas, Reparos Aeronauticos em Materiais Compositos, Placas de

Kirchhoff Anisotrépicas, Método dos Elementos de Contorno, Mecédnica da Fratura
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Abstract

Useche Vivero, Jairo Francisco, Boundary FElement Analysis of Cracked Reissner’s Plates
Repaired with Adhesively Composite Patches, Campinas,: Faculdade de Engenharia

Mecéanica, Universidade Estadual de Campinas, 2007. 181 p. Tese (Doutorado).

The objective of this project is the development of a computational tool for the analy-
sis and design of cracked aeronautical structures repaired by adhesively bonded laminated
composites. The isotropic metallic plates of the aeronautical structure will be modeled by
the boundary element method considering the presence of shear stresses in planes that are
normal to the surface of the plates (formulation of Reisner-Mindlin). In order to model the
repair, a boundary element formulation for anisotropic plates will be used neglecting the
presence of shear stresses in planes that are normal to the surface of the plate (formulation of
Kirchhoff-Love). The analysis will be validated with analytical, numerical and experimental

results avalilable in the literature and with finite element models.

Keywords
Cracked Reissner’s plates, Aeronautic Composite Repairs, Anisotropic Kirchhoff’s Plates,

Boundary Element Method, Fracture Mechanics
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Chapter 1

Introducao

1.1 Reparos de compésitos colados

As estruturas aeronduticas sdo constituidas geralmente por painéis e reforcadores metalicos
(figura 1). Um painel trincado é freqiientemente reparado colando, rebitando ou parafu-
sando um remendo metdlico na area trincada. A vida em fadiga e as tensoes residuais no
painel reparado é dependente da eficiéncia da transferéncia de carga do painel trincado para
o reparo. Os reparos colados tém sido usados na industria aerondutica e sdo aceitos como
solucgoes eficientes para o reparo de danos em paneis metélicos. A principal vantagem quando
comparado aos reparos parafusados ou rebitados é que fornecem transferéncia da carga rel-
ativamente uniforme entre os componentes estruturais que sao ligados (figura 2). Os furos
requeridos no caso de reparos parafusados ourebitados agem como concentradores de tensao
o que reduz a vida 1til do painel aerondutico. Adicionalmente, os reparos rebitados sao feitos
geralmente de placas de aluminio ou do mesmo material que compoe a estrutura reparada.
No entanto os reparos colados admitem o uso de materiais mais avancados como sao os ma-

teriais compositos.

Entre os materiais usados na engenharia, os compdsitos apresentam a menor relacao



Moo de e Ipion de cone

Figure 1.1: Reparo de compdsito colado na estrutura do aviao. Este tipo de reparo gera um
campo de tensoes mais uniforme. (Tomado de www.wallpaper.net.au/wallpaperaviationl.php, AFRL

Monthy Accomplishment Report, http://www.afrl.af.mil/accomprpt/jan04/accompjan04.htm and Lourengo
et al., 2003)

rigidez-densidade, também chamada rigidez especifica. Adicionalmente, alguns compdésitos
apresentam um bom desempenho térmico, alcancando temperaturas similares aos materiais
comumente utilizados em projetos de engenharia. Devido a grande variedade das combinacoes
e arranjos das fibras e das matrizes, os engenheiros tém materiais disponiveis para um grande
numero de projetos que exigem caracteristicas especificas, tais como: rigidez, resisténcia, den-

sidade, condutividade térmica ou elétrica ou outras propriedades do material.

O método dos elementos finitos (MEF) foi usado extensivamente para a andlise de prob-
lemas de fratura em estruturas aeronduticas, principalmente devido a sua generalidade. No
caso de estruturas laminadas o MEF é implementado baseado nas teorias de Kirchhoff ou de
Reissner-Mindlin. Entretanto, esta generalidade poderia introduzir custos computacionais
elevados, principalmente nos problemas que envolvem singularidades no campo de tensoes
(como aqueles encontrados préximo a ponta de uma trinca) que requer uma discretizagao

mais fina ao redor do ponto de singularidade. O método dos elementos de contorno (MEC)



¢ uma alternativa numérica atrativa para tratar problemas da mecanica linear da fratura,
principalmente devido a sua habilidade para modelar de forma continua os gradientes eleva-
dos do campo de tensdes sem a necessidade de discretizar o dominio (desconsiderando forgas
de corpo). Adicionalmente, os problemas de propagacao de trincas podem ser analisados
com técnicas simples que requerem unicamente elementos de contorno adicionais na ponta
da trinca e algoritmos de solugao incrementais. O uso deste método na analise de estruturas
aumentou fortemente desde os anos oitenta (Brebbia and Dominguez, 1989). Por sua vez, o
comportamento de estruturas laminares trincadas e reparadas com a aplicacao de compdsitos

colados usando o MEC exige ainda muito trabalho de pesquisa.

1.2 Revisao bibliografica

Os primeiros trabalhos que analisaram reparos isotrépicos em estruturas foram apresentados
nos anos setenta por Ratawani, 1979, e Erdogan and Arin, 1972. Estes trabalhos apresen-
tam o estudo de reparos colados em chapas infinitas com trincas !. Eles usaram solucoes
analiticas para a deformacao e consideraram a compatibilidade dos deslocamentos entre a

chapa trincada e o reparo.

Mitchell, Wooley and Chwiruth, 1975, usaram o MEF para estudar o reforgo de placas
induzido pela aplicagao de reparos. Eles usaram uma formulacao de elementos finitos bidi-
mensionais com tensoes constantes e acoplaram a placa e o reparo através dos nés onde as
condicoes de compatibilidade de deslocamentos foram impostas. Eles analisaram também a
presenca de uma trinca na placa. Entretanto, o trabalho nao considerou a singularidade no
campo de tensoes na ponta da trinca e também nao avaliaram os fatores de intensidade de

tensao.

INeste trabalho, o termo chapa (sheet) refere-se a corpos submetidos a carregamento no plano (estado de
tensao plana). No entanto o termo placa (plate) refere-se a corpos submetidos a flexao.



Figure 1.2: Reparo parafusado na estrutura do aviao. Este tipo de reparo gera a concentragao
se tensoes nos furos dos parafusos .(Fonte: BOJCAS Project, http://www.smr.ch/bojcas/index.html
and Murata Mechinary LTD., http://www.muratec.net)

Nos trabalhos de Jones and Callinan, 1977, Jones and Callinan, 1979 and Jones and Cal-
linan, 1981, usaram o MEF para a andlise de placas metdlicas reparadas com uma camada
de material compdsito. Eles desenvolveram uma matriz de rigidez para acoplar a placa, a
camada adesiva e o reparo de material compdsito. Esta matriz foi acoplada com um modelo

do MEF da placa metélica e, na ponta da trinca, eles usaram elementos singulares especiais.

Young et al., 1988 modelaram a chapa trincada e o reparo usando o método dos elementos
de contorno. As tensoes de cisalhamento na camada adesiva asim como as forgas de corpo
agindo sobre & placa e o reparo foram modeladas. No trabalho eles usaram uma fungao de
Green especial para modelar dominios com trincas retas, o qual limita a aplicabilidade do

modelo.

Tarn and Shek, 1991 estudaram o problema de chapas trincadas reparadas com materiais
compositos colados. Um modelo de mola foi usado para acoplar o modelo da placa trincada

com o modelo do reparo. O reparo foi modelado usando o MEF e a trinca usando do MEC.



Young, 1987 modelou a forga distribuida de interagdo entre a chapa e o reparo, dis-
cretizando a area de contato entre o reparo e a placa usando celulas internas numa formulagao

MEC.

Salgado and Aliabadi, 1997 usaram o método dos elementos de contorno dual para mod-
elar chapas metdlicas trincadas e o método direto dos elementos do contorno para modelar
o reparo. A forga distribuida entre a chapa e o reparo foi modelada utilizando o método
dos elementos de contorno de reciprocidade dual. Esta formulacao foi aplicada por Salgado
and Aliabadi, 1998 na analise de chapas finas metdlicas reforcadas com reparos isotrépicos
colados. A chapa reforcada foi modelada usando o método dos elementos de contorno de
reciprocidade dual (DRBEM). As tensoes de cisalhamento na camada adesiva foram mode-

ladas como forcas de corpo.

Lourengo, 2000 analisou chapas metélicas isotrépicas com reparos adesivos e carregamento
no plano usando o DRBEM para modelar as forcas de interagao entre a placa e o reparo como
forgas de corpo distribuidas. Esta formulagao foi estendida por Lourenco et al., 2003 para
a analise de reparos anisotropicos com reforco estrutural de placas metalicas submetidas a

carregamento estatico no plano da chapa.

O trabalho de Dirgantara and Aliabadi, 1999 apresenta uma nova formulagao mista de el-
ementos de contorno para resolver problemas de deflexdo em cascas metalicas isotrépicas
considerando deformagao de cisalhamento (formulacao de Reissner). Os termos de cur-
vatura da formulacao da casca foram rearranjados junto com os termos de forcas externas
na equacao governante. Foi acoplada uma formulacdo por elementos de contorno para pla-
cas considerando a deformagao por cisalhamento com uma formulagdo do MEC para tensao

elastica plana, completando assim o modelo de casca metalica com deformagcao por cisal-



hamento e deformacao elastica no plano.

Nos trabalhos de Wen, 2000; Wen, 2000 foram analisadas cascas metélicas isotrépicas com
deformagao por cisalhamento usando o MEC. Novas equacgoes integrais foram desenvolvidas
usando o principio do reciprocidade de Betti, e foram acopladas as formulagoes de elementos
de contorno para placas com deformagao por cisalhamento e tensao eldstica no plano. Estes
autores utilizaram duas técnicas para transformar as integrais do dominio em integrais de
contorno: o método direto dos elementos de contorno (MDEC) e o método de reciprocidade

dual.

Dirgantara and Aliabadi, 2001 desenvolveram uma formulagdo inovadora do MEC para
analise de cascas metalicas isotropicas trincadas considerando as deformagoes devidas ao es-
forco cortante. Eles desenvolveram uma equacao integral hipersingular de contorno usando
uma formulacao de reciprocidade dual, aplicando uma equagao integral de forga de superficie

em uma das superficies da trinca e equagoes integrais de deslocamento na outra.

Widagdo and Aliabadi, 2001 apresentam uma formulacao do MEC para a anélise de pla-
cas metdlicas reparadas por materiais compdsitos parafusados. A chapa trincada é modelada
usando uma formulacao de reciprocidade dual. Os parafusos sao modelados como molas
lineares cujas forcas sao tratadas como forgas pontuais. O reparo é modelado usando uma

formulagdo MEC bidimensional para chapas anisotrépicas.

Recentemente, Wen et al., 2003 desenvolveram uma formulagao do MEC para a analise
de painéis metélicos curvos com trincas e reparos adesivos isotropicos. O efeito da camada
adesiva foi modelada considerando forcas distribuidas. Uma formulagao integral para a placa
com tensao de cisalhamento acoplada com uma formulacao integral para tensao plana foi

usada para determinar os momentos fletores e as forcas de membrana no reparo adesivo.



1.3 Descripgao do trabalho

O objetivo deste projeto é o desenvolvimento de uma ferramenta computacional para a analise
e desenho de estruturas aeronauticas trincadas e reparadas utilizando compdsitos laminados
colados. As placas metalicas isotrdpicas da estrutura aerondutica sdo modeladas pelo método
dos elementos de contorno considerando a presenca de cisalhamento em planos normais &
superfcie das placas (formulagao de Reissner-Mindlin). A fim de modelar o reparo, uma
formulagao por elementos de contorno de trés parametros, baseada na teoria de Kirchhoff
para placas laminadas simetricas é desenvolvida. A Interaccdo entre as forcas e momentos da
placa trincada e reparada foi modelada como cargas distribuidas. Equacées de acoplamento,
baseadas em consideracoes de compatibilidade cinematica e de equilibrio para a camada do
adesivo, sdo estabelecidas. Um modelo de rigidez cortante transversal é proposto a fim de
modelar a resposta mecéanica do adesivo. Os Fatores de intensificagdo de tensoes sao calcu-
lados utilizando o método de apertura da trinca e extrapolacao de deslocamentos. A andlise

validada com resultados analiticos, numéricos e experimentais disponiveis na literatura.

As contribuicoes principais do presente trabalho podem-se classificadas no que diz respeito
ao grupo de pesquisa em Modelagem de Materiais Compdsitos e Biomédicos do Departamento
de Mecanica Computacional da Unicamp, e no que diz respeito ao avanco do conhecimento
na analise de placas trincadas e reparadas com materiais compositos colados, utilizando o

método dos elementos de contorno.

No que diz respeito ao grupo de pesquisa, a principal contribuicao encontra-se na geracao
de conhecimento e no desenvolvimento de programas computacionais para a analise de placas
de Reissner trincadas utilizando o método dual de elementos de contorno. Estes programas
permitirao o desenvolvimento de novos trabalhos na area de mecéanica da fratura em estru-

turas.



Por outro lado, a contribuicao do trabalho ao conhecimento na area de analise pelo método
de elementos de contorno de placas espessas trincadas e reparadas com compdsitos colados

encontra-se representado nos seguintes avancgos:

- Desenvolvimento e implementagao computacional de uma formulacdo do método dos
elementos de contorno de placas anisotrépicas laminadas simétricas baseadas na teoria

de Kirchhoff, utilizando trés parametros cinematicos.

- Desenvolvimento e implementagao computacional de uma formulagao dual do método
dos elementos de contorno para andlise de placas isotropicas espessas trincadas e

reparadas com compositos colados utilizando laminados simétricos.



Chapter 2

Two-dimensional elastostatics

2.1 Introduction

This chapter shows the boundary element formulation for two-dimensional elastostatics prob-
lems used to describe the in-plane mechanical behavior of isotropic elastic plates. First part
of this chapter presents a general definition of plane stress problems in linear elasticity devel-
oping governing differential equations for isotropic elastic materials. Kelvin’s fundamental

solution for an infinite elastic plane is presented.

2.2 Plane stress elasticity

Thin flat objects (like the ones showed in figure 2.1), loaded in their plane, generates a plane
stress state in the body. This situation is often referred to as membrane or in-plane type
of action, and plane stress analysis is therefore also sometimes called membrane or in-plane

analysis. The basic assumptions for the plane stress are (see Brebbia and Dominguez, 1989):

- The body is thin, i.e., h is small in comparison to the representative dimensions along

I Or Top.
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Figure 2.1: Plane stress definition

- There are no tractions acting at the end surfaces, i.e., at x3 = £h/2, t; = 0, where h

is thickness and ¢, are traction components acting on boundary I';.

- Body forces acts on x; — x5 planes and are independent of z3, i.e. f3 =0 and f; and
fo are functions of coordinates x; and z, only, where f; are the components of body

force vector acting on the domain Q.

- Forces acting on the body are planar and independent of x3 coordinate, i.e., t3 = 0 and

t1 and t, are functions of the x; and z5 coordinates.

Under these assumptions, it is assumed that the components o3, of the stress tensor are
all small in comparison with the components 0,4 and that the variation of the latter with
respect to coordinate z3 are negligible (figure 10.4). Hence, one assumes: o3, = 0, and o,p
are functions of the coordinates x, only. This ability of thin objects to freely strain in the
third dimension is exactly what puts them in a state where all components of the stress
tensor in direction 3 are zero. It should be noted however that although these assumptions
are reasonable in engineering practice, they are only approximation as they violate the com-

patibility equations.
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Figure 2.2: Strain definition

2.2.1 Strain-displacement relationships

In linear elasticity, the gradient of displacement vector is consider as infinitesimal order.

Then, the strain tensor €,4 is given by (figure 2.2):

8u1

£ = B, (2.1)
0
€99 = a—zz (22)
. 8u1 8u2
€12 = 8—1‘2 + a—xl (23)

where u, are the displacements components along of x; and zs coordinate axis. Indicial
notation is used throughout this work. Greek index will vary from 1 to 2 and Roman index
from 1 to 3. The partial derivative of any function with respect to the coordinate x, will be

denoted by comma subscript.

To ensure the uniticity of the displacement field, when the components of strain tensor has

been arbitrary assigned, compatibility conditions between displacement components should

11
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Figure 2.3: Stress components in plane-stress problems

be established. In two-dimensional problems the condition is given by the equation:
0 (9 | O (Oem) _ O (Oen (2.4)
a$2 a(EQ (9()31 8:1:1 8I1 8332

2.2.2 Equilibrium equations

Considering figure 10.4, the static equilibrium equation for a differential element at a con-

tinuum body under plane stress condition can be written as (see Kane, 1994):

6011 8012

8I1 8x2

+ =0 (2.5)

80'21 80'22

8z1 81‘2

evaluated in €2, which usually have to satisfy the following conditions:
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ta = Ea in Ft (28)

where 0,4 represents the Cauchy stress tensor. I, is a portion of the boundary I" where known
displacements are imposed. Finally, the traction vector, t, at any point of the boundary T’
with normal ng is given by:

ta = OapNp (29)

2.3 Isotropic elasticity

As discussed above, the object in a state of plane stress is free to contract or expand in the
third direction. All components of the traction vector in direction 3 are equal to zero. Then,

the stress-strain relationship based on Hooke’s law for plane-stress can be written as:

20G
o117 = )\+2G€11 +2G€11 (210)
20\G
099 = )\—i——2G522 + QGEQQ (211)
o2 = 2Gep (2.12)

where A = 2vG/(1 —2v), G is the elastic shear modulus, v is the Poisson’s modulus and d,4

is the Kronneker’s delta. In plane stress the strain £33 component can be obtained as:

A
_ AN, 2.1
T T 26)” (2.13)
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2.4 Isotropic fundamental solution

The formulation of the boundary integral equations for elastostatics require the knowledge
of the solution of the elastic problem with the same material properties as the body under
consideration, but corresponding to an infinite domain loaded with a concentrated unit point
load. If the equilibrium equations are expressed in terms of the displacements components,

we obtains the Navier’s equations for two-dimensional elastostatics:

(3/\+2G
"

m) Ua,03 + GUﬁ’fw + fﬂ =0 (214)

Kelvin solution is obtained from this equation when a unit concentrated load is applied at a

point ¢, in the direction of the unit vector eg:
fﬂ = Ai(Eg (215)

Expressing the displacements terms through the Galerkin’s vector, G, we obtain:

1

T y)_G’B’aﬁ (2.16)

Ua = Gopp —
Substituting equations (2.16) and (2.15) into equation (2.14) and solving for G, gives:

1, /1
o = —=r 1In( =) eadq 2.1
Gap G n(r>e s (2.17)

Gap is the o component of the Galerkin’s vector at any point when a unit load is applied at
point « in the § direction. The displacement at any point in the domain, considering each

direction as independent is written as:

uy, = uj,es (2.18)
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where u}, ;5 represents the displacement at any point in the § direction when a unit load is
applied at point ”i” in the « direction. In accordance to the definition of equation (2.16),
one can now write:

: )Ga%ﬁv (2.19)

* Ga -
uaﬁ By 2 (1 Yy

Substituting equations (2.17) into equation (2.19), we obtain the fundamental solution for

the two dimensional plane stress problem:

Uss = m [(3 —47)In (%) S+ r,ar,ﬁ} (2.20)

where v =v/(1 +v).

Finally, the fundamental traction vector on any surface with normal n, due to a concen-

trated load can be derived from equation (2.4):

1
= — 20 — 20 — 21
Top Ar(1—3)r [rn [(1 = 20) bap + 2rarp] + (1 = 20) (ngr o — narg)] (2.21)

15



Chapter 3

Anisotropic plane elasticity

3.1 Introduction

This chapter presents constitutive equations for anisotropic materials in two-dimensional
elastostatics and the fundamental solutions for infinite anisotropic planes. Chapter begins
defining basic stress-strain relationships for anisotropic elastic materials represented by the
general elastic constant tensor. The stress tensor and expression for displacements compo-
nents are establish, based on the Airy’s stress function defined for bi-dimensional anisotropic
problems. As a special case of orthotropic laminae, stress-strain relationships are presented
in order to obtain the basis for obtains the general stress-strain relations for composite lami-
nates. Finally, fundamental solutions for displacements and tractions for infinite anisotropic

plane is presented.

3.1.1 Anisotropic elasticity

In the anisotropic elasticity, the stress-strain relationship can be written in a general form as
(see Lekhnitskii, 1968):

0ag = CapypEqp (3.1)
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where Cyg, is a fourth-order tensor known as elastic constants tensor with 81 components.

Because of symmetry restrictions and the existence of a strain energy function, the following

conditions are required:

Cijit = Cjirt,  Cijir = Cijie

Cijit = Chaji

(3.2)

The symmetry of stresses and strains and the existence of a strain energy density function,

reduces the number of elastic constant from 81 to 21. In general, principal direction of stress

tensor do not have same direction of principal direction of the strain tensor. So only 18 out of

21 elastic constants are independents. Considering only 21 elastic constants, equation (3.1)

can be written in a matrix form as:

011

022

033

023

013

012

Cllll
C(1122
C11133
01123
C(1113
C'1112

01122

C(2222
02233
02223
C(2213

C(2212

Cl 133

C’2233
C(3333
C3323
C’3313

C(3312

Alternatively, equation (3.2) can be written as:

C'1123

02223
C(3323
02323
C2313
C(2312

€ij = OijkiOkl

17

Clll?)
C’2213
CY3313
C’2313
C’1313
C’1312

C'1112
C’2212
C’3312
C'2312
C’1312
C’1212

€11
€22
€33
2¢€93
2e13

2812

(3.3)

(3.4)



where, S;;i; is a four order tensor named as flexibility tensor, and similar to tensor Cj;; has

only 18 independent constants. Equation (3.4) can be written as:

€11
€22
€33
2e93

2613

2812

Sllll

51122

51133

251123

251113

2‘91112

Stize Stuiss
Sozze  Sao33
Sozzz  S3333
2852993 253323
252913 253313
259212 253312

251123

252223

253323

455393

455313

452312

251113
259213
253313
459313
451313

451312

251112
252212
253312
452312
45(1312

451212

011

022

033

023

013

012

(3.5)

Using the reduced tensorial notation proposed by Lekhnitskii, this equation can be written

as:

where:

€1

€2

€3

€4

€5

€6

11

@12

13

14

15

16

a2
22
23
24
25

26

€1
€2
€3
254
255

266

@13

23

as3

34

a35

a3e

18

14

a24

34

Q44

A45

Q46

€11
€22
€33
2e93
2¢e13

2612

a15

a25

a3s

45

55

Q56

16

Q26

a3e

Q46

Q56

Q66

01

02

g3

04

05

06



and,

01 011
02 022
g3 033
= (3.8)
04 023
%] 013
O¢ 012

The elastic coefficients can be expressed in terms of engineering constants as:

aj; = 1/E1 a1z = U12/E1 = —U12/E2

a13 = —013/E1 = —U13/E3 14 = 7723,1/E1 = ?71,23/G23

als = 773271/E1 = 771,32/G23 Q16 = 7712,1/E1

ag = 1/E, Qg3 = V3p/ By = —vy3/ 3

A24 = 7723,1/E2 = 7723,3/G23 Q25 = 7731,2/E2 = 772,31/G13

A26 = 771272/E2 = 772,12/G12 a33 = 1/E3 (3-9)
azs = N33/ F3 = 1323/ Ga3 azs = M31,1/ B3 = 1m3,31/G13

a3ze = 7712,3/E3 = ?73,12/G12 Q44 = 1/G23

Ayg5 = C32,23/G23 = C23,31/G13 Q46 = §12,23/G23 = §23,12/G12

as55 = 1/G13 56 = §12,31/G13 = §31,12/G12

age = 1/G12

were F, are the Young modulus referenced to axis xy, G;; are the shear modulus or Coulomb’s
modulus for planes defined by axis z;xj. Constants v;; are the Poisson’s coefficients. 7, are
the first-kind mutual influence coefficients, that characterize the principal strains generated
by shear stresses acting at principal planes. The constants 7, ;. are the second-kind mutual
influence coefficients that characterize shear strains at principal planes generated by normal

stresses acting on this plane. Finally, ¢;; 1 are the Chentsov’s coefficients, that characterize
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the shear strain acting at principal planes, generated by shear stresses acting in this planes.

In a plane-stress state (03 = 04 = 05 = 0), any material can be expressed using only six

independent elastic constants. In this way, equation (3.6) can be written as:

€1 a1 A1z Qe o1
€2 = | a2 Q22 Qg6 02 (3~10)
€3 Q16 A26 Qo6 O6

Finally, substituting equations (2.3) and (3.1) into equation (2.6) the equilibrium equation

for a general anisotropic elastostatic problems in term of displacements is obtained as:

Cijriug i+ fi =0 (3.11)

3.2 The Airy’s stress function

In anisotropic elasticity, the stress-tensor can be written in function of the Airy’s stress

function F(x1,x9) given by (Lekhnitskii, 1968):

on = Fau+ 7T
oy = Fu+7T

O12 = —Elg (312)

where T is a potential function with the property: T, = f;. Substituting equations (3.12)

into constitutive equation (3.10) and then into compatibility equation (2.4), we obtains the
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differential equation for the stress function F'(z1, z5):

a1 F o290 — 2a16F 1200 + (2012 + aee) Fi122 — 2a26F 1112 + a2 F 1111 =

— (a12 + ag2) V11 + (a1e + age) V12 — (a11 + a1z) ¥ 2o

The special case of f; = 0, the above equation can be written as:

a11F,2222 - 2a16F,1222 + (2@12 + GGG) F,1122 - 2a26F,1112 + (l22F,1111 =0

Defining the differential operator:

Applying this operator on stress function F'(xq, ), we can write:

A1A2A3A4F =0

Expanding this equation we have:

Fl9999 — (1 peopespis) Fi299 + (p1pio + o prgpor fra + pofis + flofis + H3jis) Fi122

— (papiopts + popropis + paptspta + propispis) Fivie + (papeptspta) Frin =0

Equations (3.14) and (3.17) will be equal if p1 ,u9 ,u3 .44 are roots of the equation:

anp’ — 2a161° + (2a12 + age) 1 — 2az6p + aze = 0

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

Roots of equation (3.18) are complex or pure imaginary roots, occurring in pairs (u; and fiy,)

as showed by Lekhnitskii, 1968.
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Defining the variable z; as:
Za = X1+ flaT2 (3.19)

we have:

0 0 d
Ay = 3—962 - Mk(?_:ﬂl = d_zk (3.20)

Defining F'(z1,x2) as a real function, we have:
F (.’L’l, 1‘2) = 2Re [Fl (Zl) + FQ (ZQ)] (321)

and introducing the notation:
de

= Uy () (3.22)

where the summation convention is applied for k, and replacing equation (3.21) into equation

(3.12), we obtain the components of the stress tensor:

o1 = 2Re [u%\llgl) (21) + ,@\PS) (22)} (3.23)
o = 2Re U1 (z1) + UL (29))] (3.24)
o1z = —2Re [Ml‘l’gl) (21) + M?‘I/él) (22” (3.25)

where w,(gl) represents the first derivative of ..

Replacing the above equation into equation (3.25) and then into equation (3.11) and

integrating, we obtain:

up = 2Re [(In‘I’l (21) + q12¥ (2’2)] (3-26)
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u = 2R, [Qm\lll (21) + q22¥o (22)} <3~27)

where:

2
anpg + a2 — aip

Jap = (3.28)
aiaftg + 22/ g — Ggg

are known as the complex parameter matrix.

If the boundary condition are established, the stress function given by equations (3.12)
(with the condition : T, = f;) can be defined to satisfy this conditions. In this way the

displacements and stress fields, given by equations (3.27) and (3.25) can be founded.

3.3 Constitutive equations for a laminae

An orthotropic laminae has the next stress-strain relationship given by:

011 Qll Q12 0 €11
o2 (= @iz Q2 0 €22 (3.29)
019 0 0 2@66 €12
where @);; are the components of the stiffness tensor, i.e:
Qu = El/ (1 - U1QU21) Q22 = E2/ (1 - U12U21)
Qs = G12 Q16 = Q26 =0 (3.30)

Q2 = U21E1/ (1 - U12U21) = U12E2/ (1 - U121)21)

Since laminae is orthotropic (figure 3.1), it is totally characterized by four elastic con-
stants: the Young modulus F; and Es in the directions 1 and 2, respectively, the transversal

shear modulus G5 and the Poisson ratio, vi. The fifth elastic constant vy, is determinated
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Fibra

Figure 3.1: Orthotropic laminae

by the constitutive relationship:

Va1 By = vip By (3.31)

In many situations the principal axis of the laminae (z123) are not coincident with the
laminate axis (Z172). In this case, the constitutive relationship for each laminae should be
transformed to the laminated reference axis (figure 3.2) and then the constitutive relationship
can be defined. This transformation is performed multiplying the stress and strain tensors

by a matrix transformation:

0.5 = Toas

€np = Teag (3.32)

/ ! . . . .
where 0,5 and €, 45 are the stress and strain tensor, respectively, referenced to laminated axis.

Transformation matrix T is given by:

T = n*  m? —2mn (3.33)

—mn mn mQ —n
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Figure 3.2: Laminae coordinate system
with: m = cos(f) and n = sin(f). Then, the constitutive equation is written as:

/ ’

011 €1
’ . —1 —1 ! /
022 - T Q (T ) 522 (334)
0/12 5/12
that can be written as:
‘7/11 @11 @12 @16 6/11
0,22 = | Qu Q Qa6 5/22 (3.35)

012 Qs Qo Qo €12

where:

Q, = Qu1cos*0+2(Q1a + 2Qss) sin? 0 cos? § + Qaysin* 0

Ry = Qn sin®f +2 (Q12 + 2Q¢s) sin’ # cos® 6 + Qas cos™ 6
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Qry = (Qu1 + Qo — 4Q¢s) sin® O cos® 0 + Q1o (sin4 6 + cos® 0)
6 = (Qu1+ Qan —2Q12 — 2Qs) sin? # cos® 0 + Qes (sin4 0 + cos? 9) (3.36)

16 — (Qll — ng — 2@66) SiD9C0S3 0 + (le - Q22 + 2@66) Sin3 0 cos 0 (337)

3.4 Symmetric laminates

A symmetric laminate has both, geometric and material property symmetric about the mid-
dle surface (see Gibson, 1992). That is, the lamina material, lamina orientation, and lamina
thickness at a positive distance z from the middle surface are identical to the the correspond-

ing values at an equal negative distance z from the middle surface.

This imply that bending-stretching coupling will not be present in such laminates. Con-
sequently, in-plane loads will not generate bending and twisting curvatures that causes out-
of-plane warping, and bending or twisting moments will not produce an extension of the

middle surface.

Components of the tensor stress tensor acting at any laminate are obtained integrating

these components that act in any lamina through the thickness of the laminate:

1 +hl/2 ’
Oij = E/—hw 0,;;dxs (3.38)

!/ . . . . o« e . .
where o;; is the stress tensor acting in any individual laminae and o;; is the mean tensor

stress acting in the laminate.

Consider now the laminate as composed by N orthotropic laminae, as show in figure 3.3.

Forces acting in the middle plane of this laminate can be obtained replacing the continuous

26



X2

Plano médio

,,,,,,,,,,,,,,,,,

X

Figure 3.3: Symmetric laminate

integral by the summatory of integrals each laminae:

011 011
JREAR )
o2 (T Z/h -1 2 (408
1=1""M
’
012 019

011 Qn Q12 @16 €11
1 X hy _

O22 (= h Z /h L Q2 Qo Qo €22
=1 o

012 Q15 Qa6 Qgs €12

X

(3.39)

(3.40)

Since Q, and ¢;; are constants through the thickness & (as principal hypothesis in this work),
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equation (3.43) can be re-written as:

011 N @11 @12 @16 €11
1 -

02 (T3 lz Qur Qu Qo | (hi=him1)| § ex (3.41)
=1

012 Q16 @26 Q66 ; €12

where:
_ 1[N
Q.=+ {Z Q: (h — hz—1)} (3.42)
=1

In many cases is necessary to transform the tensor Q to another coordinate system. In this

case, a similar transformation procedure applied to equations (3.35) is used:

a/ll = apy cos’ 0 + (2a19 + agg) sin? 0 cos® 6 + agy sin @
+ (a16 oS 0 + agg sin® 9) sin 260 (3.43)
alzz = apysin® 0 + (2a12 + agg) sin® 0 cos® 0 + agy cos 0
— (a1 08?0 + az sin” ) sin 20 (3.44)
aly = iy + (a11 + ag — 2419 — agg) sin® 6 cos? 0
1
+ 5 (CL26 — alﬁ) sin 26 cos 260 (345)
’ . 2 2 1 .
ags = |@g28in” 6 — aqy cos™ 6 + 3 (a12 — agg) cos 20| sin 20
+ ajgcos’f ((:052 6 — 3sin? (9) + agg sin? 6 (3 cos® ) — sin? 9) (3.46)
, , 1 ,
(e = |Gg2c0s” 0 — aqpsin” 6 + 3 (2a12 + agg) cos 20| sin 260
+ ajgsin?é (3 cos? 0 — sin? (9) + asg cos? 0 (Cos2 0 — 3sin? 9) (3.47)
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Figure 3.4: Transformation of the coordinate system

’ . . . ! / .
where a;; represents the elastic constants matrix represented in the z;z, coordinate system

and a;; is the same matrix but related to coordinate system zz2 (see figure 3.4).

Roots of characteristic equation can be written with reference to the new coordinate
system by:
© g cost —sind

S LA — 3.48
He cos 0 + fuy; sin 6 (3.48)

!’ . .
where p, are roots expressed in the new coordinate system.

3.5 Anisotropic fundamental solutions

Defining complex variables:

2 Ty 4 p;
N D (3.49)
2 Ty + Moy
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and

z T+ p1x
s - o 1T H1T2 (3.50)

29 T + 2T

where 33/1 and 33'2 are the source point coordinates (point of application of the concentrated

unit load) and x; and x5 are the field point coordinates.

Considering a closed boundary around the source point and using the traction surface

forces defined by equation (2.8) and stresses defined by equation (3.25), we have:

/tldF = 2Re [Ml‘;—["l + MQ\IJQ] = _5041 (351)
s
/ tydl = 2Re [V + Us] = dpo (3.52)
e

For a loaded point in the direction z;, the Airy stress function can be represented by ¥,3.

These equations can be satisfied for any closed boundary path z’ if we take:

Uog = Aupln(z —2') (3.53)

Replacing (3.52) into (3.53) and considering In (z — z') = 27i two equations for the unknows

constants A,g are obtained as:

Aot — Aa1 + Aaa — Aay = a2/ (2mi)

1 Aat — T Aat + f12Ane — TisAna = —0a1/(271) (3.54)

Another two equations are necessary to compute A,3. These equations are obtained from the
condition of uniques for displacements. Solving for A,s, using equation (3.53) and replacing

into displacements equations (3.27), we obtain the displacement fundamental solution for
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anisotropic plane-stress problems (see Albuquerque, 2001):
Uaﬁ = 2Re {q,ﬁlAal In (21 — le) + qagAﬁQ In (22 — Z;)} (355)

Finally, the fundamental traction vector on any surface with normal n, can be derived as:

1 1
Tag = 2Re ﬁgal (Mml — nz) Aﬁ1 + ﬁgag (,UQTLl — ng) ABQ (356)

21—21 22_2:2
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Chapter 4

Boundary element method for plane

elastostatics

4.1 Introduction

In this chapter, the boundary element method (BEM) is applied to solve two-dimensional
elasticity problems. For that, boundary integral equations are obtained using the weighted
residual method applied to equilibrium equation in elastostatics, which is equivalent to the
Betti’s reciprocity theorem in solid mechanics. Initially, the boundary integral formulation
(based on Somigliana’s identity) is obtained. This formulation is discretizated using bound-
ary elements and using fundamental solutions as weighted functions and then matrix equa-
tions of the BEM are established. In this work, two types of boundary element are used:
continuous and discontinuous quadratic elements to discretizate the boundary. The continu-
ous elements are used to approximate elements geometry and discontinuous to approximate
the displacement and traction field in the elements. Finally, numerical examples considering
isotropic and anisotropic material response are showed. Preliminary conclusions are pre-

sented.
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4.2 Boundary integral formulation

The governing integral equations for elastostatics will be deduced using the weighted residual
method. The weighted formulation of equations (2.6) can be written as (see for example

Brebbia and Dominguez, 1989):
[ @ap+ fa)uwzd2 =0 (4.1
Q

where v, is the displacement weight function according to boundary conditions given by
equations (2.2) and (2.3). Integrating by parts the first term of equation (4.1) and grouping

the corresponding terms, we find the following expression:

/ Ol ) + / fautd) = — / tauldT (4.2)
Q Q T

Integrating by parts again we finds the adjoint of the equation (4.2):

/ 07 g1 + / fauidQ = — / towtdl + / £ D (4.3)
Q Q r r

This expression corresponds to Betti’s reciprocal theorem which will be used as the start-
ing point for the boundary integral formulation in this work. Using as weighting function

fundamental solutions for displacement and traction and considering the Dirac’s property,
/ SastiadS) = u, (4.4)
Q

we have:

1
U + / T (%', %) ugdl = / Uas (X, %) tadl — 5 / Uns (X', %) f3dA (4.5)
I I A
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Figure 4.1: Source point placed at boundary and enclosed by a semi-circular region

where d€2 = hdA, h = the plate thickness. In this way, fs represents a distributed body force
per unit area'. This equation represents the Somigliana’s identity for generalizated plane

stress problems. This equation is the basis of the boundary element method.

4.3 Singular boundary integrals

When the source point is taken to the boundary, integrals have a singularity. If we consider
that the boundary is smooth at source point, one can suppress it by a circle with center at

this point and small radius € which will afterward be taken to the limit (see figure 4.1).

There are two types of boundary integrals in equation (4.5). Consider first the one on

R.H.S. and write it in function of I'.:

e—0

[ Ut () dr = limy { [ Uasts ) dr} +lim { [ Uasts ) dI‘} (4.6)
T I'—T¢ €— e

Lif bg represents a distributed body force per unit of volume, this force can be written as: bg = 1/(hdA)bg =
1/hfs
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The first integral on the R.H.S. of (4.6) will simply become as integral on the whole boundary

I' when € — 0. The second integral can be written as:

£ (x hm{/ Uﬁdr} (4.7)

Since the fundamental solution is of order 1/e and the boundary integral in (4.7) will tend

to zero as € — 0, we obtain:

lim{ Uagdl“} —0 (4.8)
I'e

e—0

The L.H.S. integral in equation (4.5) however behaves differently. It can be written as:

/ TagU5 dF = ll_f)I(l) {/1‘71" TQ/BUg( } + hm {/ TagUg } (49)

The limit of the last integral can be written as:

lim { / Tosus (X)) dr} = ug (x) lim { / Taﬁdr} (4.10)
e— T. e—

The values T,5 are now of order 1/¢* while the terms from integration over the boundary
are of order €2. Hence integral (4.10) does not vanish when € — 0 but produces a free term.

Integrating over I', one finds:

1
I / T, dF} _ 15 411
EIL%{ o Tos 508 (4.11)

Hence the L.H.S. integral (4.9) can be written in the limit as:

/T gu/g dF — —(5 gu,g / T, 5“5 dF — ua( ) (4.12)

where the integral on I' is defined in the sense of Cauchy Principal Value. Therefore, for
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boundary points, equation (4.5) transform into:

1
Caplp (X/) + / Tag (X/, X) Ugdr = / Uaﬁ (XI, X) tgdr + E / Uag (X/, X) f@dA (4.13)
r r A

where the integrals are in the sense of Cauchy principal value and where I' is smooth at

source point, cag = %5a5.

4.4 Internal stresses

For an isotropic medium, the internal stresses can be computed by differentiating the dis-
placements at internal points and introducing the corresponding strains and the stress-strain
relationships into equation (4.13). After carrying out the derivatives inside the integral equa-
tions and taking the corresponding derivatives of the fundamental solution, it can be written

as:

1
O‘Qﬁ = /Damtadf — /SaﬁvuaanL E/Daﬁ»yfadA (414>
T T A

where the second order tensor components D,g, and S,z are:

1

Daﬁ'y = m {(]. — 2'1}) {(50457'77 + (5@77”5 — (5@//”’(1} + 27”7a’r’)ﬁ7"77} (415)
2G
Sagy = m {2r,, [(1 —20) 0470 + v (0gaTy + 0yal ) — YT g7~  (4.16)

+ 20 (ngr,ra +nrare)

+ (1 —2v) (2nargry 4+ nydga + 1g0y) — (1 —4v) nadgy }

4.5 Boundary element discretization

In order to solve the integral equation (4.13), the boundary will be discretized into a series

of elements over which displacements and tractions are written in terms of their values at a
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series of nodal points. In this way, a system of algebraic equations is obtained and conse-
quently an approximated solution to the boundary value problem is obtained (see Brebbia

and Dominguez, 1989).

In matrix form, the displacement, u,, and the traction vector, t, at any point on the

boundary I'. can be written as:

u=ouw (4.17)

t = ot/ (4.18)

where the interpolation function matrix ® is an array 2 x ND array of shape functions:

®— o1 0 ¢2 0 ¢35 O (4.19)

0 ¢ 0 @2 0 ¢3

The body forces at any point on the domain 2 can also be expressed in a vector form. The

fundamental solution coefficients can be expressed as,

Ty The
T = (4.20)
Toy T
and, )
Uy U
U= 11 Uiz (4.21)
U Uz

With this notation, equation (4.13) can be written as follows:

c(x’)u(x’)—{—F/T(x’,x) udF:F/U(x’,x) tdF+%ﬂ/U(x’,x) fdA (422)
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Figure 4.2: Continuous and dis-continuous quadratic elements

Discretizing the boundary, we obtaining the following equation for a nodal point:

NE NE
c(x)ux)+Y / T(K,x)®dlbw/ = 3 / U(x,x)®d0 bt/ (4.23)
Jj=1 T, Jj=1 T,
M 1
+ 3 E/U(x’,x)fdA
s=1 A,

where NE is the number of element on the boundary and I'; is the domain of j element, u

and tJ are the nodal displacements and tractions, respectively, in the element ;.

In equation (4.22) the body force integral has been treated using the cell method where

the domain was divided into M internal cells over which these integral forces are computed.

4.6 Spatial integration

In this work, quadratic continuous and discontinuous interpolation functions (shape func-

tions) are used (see figure 4.2). Continuous functions are used to modeling the geometry,
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and discontinuous functions are used to approximate the displacement and traction fields at

the boundary elements. Typically:

Uy

Ug

t o3}

to

where discontinuous shape functio

h1

o
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o1 0 ¢ 0 93 O @

0 ¢ 0 ¢ 0 ¢ qu)
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e

0 ¢ 0 ¢35 0 || P

0 ¢1 0 ¢

— PtV
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15

ns ¢ are given by:
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Here € is a parametric coordinate. Geometry is represented by continuous quadratic elements

as (figure 4.2):

o)
o)
(2)
< T _ Vi 0 ¢ 0 93 0 3712 ) (4.29)
75 0 ¢ 0 v 0 %y || ad
o
o)
where:
1
b= FEE-1) (4.30
Yo = (1-¢(1+¢) (4.31)
1
Py = §§(§+1) (4.32)

In this way, boundary integrals in equation (4.22) can be written as:

c(x’)u(x’)—l—Z{/T(x',x)@de}uj - {/Ux x)q>Jd§}tf (4.33)

Jj=

DI'—‘

%{/U x| x bGdgdn}

where |J| is the modulus of Jacobian matrix for a uni-dimensional transformation:

ar [ (dn\? (de)\?)
[J| = i (Tg) +<%> (4.34)
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And |G| is the modulus of Jacobian matrix for a bi-dimensional transformation:

03@1 81'2 81'2 8171
_ _ 1 4.
< g don 0§ In (435)

Applying numerical integration to the above formula we obtains:

NE

c(K)ulx) + Z{Zwk w), m}uﬂ
- ;{zwk w3}

+ %Z{Z U (x',x)¥), |G|} (4.36)

where NG is the number of integration points on the element and wy are the weight at those

points. This equation correspond to a particular node and once integrated can be written as:

N N M
c(xX)ux)+Y Hiw =3 Gt/ + 5 B* (4.37)
j=1 j=1 s=1

where N is the number of nodes, u/ and t/ are the displacements and tractions at node j.

The influence matrices H and G are:

i = Z/U x',x) ¥ ,dl (4.38)
t I

G”—Z/T X', x) W, dl (4.39)
i Iy

where the summation extends to all the elements to which node 5 belongs and ¢ is the number

of order of the node j within element ¢. Additionally:

Bis — 2 [ U %) taa (4.40)
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Calling HY = HY if i # j and HY = HY + ¢ (x/) if i = j, equation (4.37) becomes,
N .. . N .. . M .
> H7W =) Gt/ +> B” (4.41)

The contribution for all 7 nodes can be written together in matrix form to give the global
system equations:

Hu=Gt+B (4.42)

Vectors u and t represent all values of displacements and tractions before applying boundary

conditions.

Singular integrals with order O(in r) are evaluated using Logarithmic quadrature devel-
oped by Stroud and Secrest, 1996. According to this method, terms that includes logarithmic

singularities can be integrated by:

1= ['m (%) £ (€) de = gwif (©) (4.43)

Integration points &; and the weights can be found in the literature. Strong singularity with

order O(1/r) are threated using rigid body considerations.

4.7 Numerical examples

4.7.1 Isotropic plate with central square hole

A 1.4 m x 1.4 m square plate with a central square hole of 0.1 m x 0.1 m is loaded at bound-
ary with a uniform traction load of 0.1 MPa. Considering the symmetry of the plate, only
one-quarter of its geometry will be discretized as shown in figure 4.3. The Young modulus

and Poisson coefficient are £ = 210 MPa and v = 0.33. The thickness of the plate is 0.01 m.
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Figure 4.3: Isotropic plate with square hole under uniform traction load

Verification of the results consist to compare the displacements obtained with BEM model
with those encountered using a finite element model of the plate. The norm of error proposed

to compare the numerical solutions is given by:

1/2
HUBEM - UFEMH = (/ |UBEM - UFEM|2 dQ) (4'44>
Q

Figure 4.4 shows the BEM model proposed for the analysis. A convergence analysis was per-
formed varing the number of boundary element between 5 and 43. In this way the number

of nodes at boundary variated between 15 and 129.

The number of elements was uniform distributed along the edges of the plate. Figure 4.5
shows the variation in the norm of error given by equation (4.44) for total displacements as
function of number of boundary nodes. Rapid convergence for displacements is obtained as
figure shown. The difference in displacements using the BEM model and the FEM model

was error less than 0.1% reached with 100 nodes.
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Figure 4.4: Boundary element model of square plate with central hole

Figure (4.6) shows the distribution of total displacement in the domain of the plate. For
this, a uniform internal points was distributed in the domain. The components of displace-
ments have been calculated using equation (4.36). A calculation of internal stresses can be

performed using a discretizated version of equation (4.14), but is not presented here.

4.5

20 40 60 80 100 120 140
Number of boundary nodes

Figure 4.5: Convergence analysis for displacements
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Figure 4.6: Total displacement distribution at plate domain

4.7.2 Orthotropic square plate with circular hole

A square orthotropic plate with edges of 0.4 m containing a circular hole with radius of 0.1
m, loaded with a traction of 100 MPa, is considered now. The mechanical properties are: F;
= 220 GPa, Fy = 118 Gpa, G1o = 77GPa and v, = 0.4286. The thickness of the plate is

0.001 m. Again, symmetry considerations has been applied.

This problem is analyzed using the MATLAB program named ’'composite’ developed by
Albuquerque, 2001. This program performs static and dynamic two-dimensional analysis
of composite plates and has been used to model the in-plane static response of composite
patches in this work. Various papers reporting the performance of this program can be found
in the literature (see: Albuquerque and Sollero, 1998; Albuquerque et al., 1999; Albuquerque
et al., 1999). A total of 21 boundary elements were used and 160 internal points were
used to calculate internal displacements and stresses were used. As representative numerical
results, the stress distribution in direction y is showed in figure 4.7. Good agreement with
the theoretical values for the stresses are obtained when comparing this results with that

reported in literature (see Albuquerque, 2001).
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Figure 4.7: Normal stress distribution in y-axis direction
4.8 Conclusions

The displacement boundary integral formulation of two-dimensional equilibrium equations
was presented. The discretizated version of this formulation is obtained from the boundary
element method applied to plane-stress elastostatics problems. The integral equation for
internal stresses has been obtained differentiating the displacement boundary integral formu-
lation with respect to spacial variables. Continuous and discontinuous quadratic boundary
elements were used to approximate the boundary geometry and to interpolate the displace-
ments and traction fields in the boundary elements. Numerical results showing a representa-
tive plane-stress problems were presented and their numerical results were analyzed. Good
agreement of results is obtained when compared with results from finite element models and

those reported in literature.
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Chapter 5

Boundary element formulation for

Reissner plates

5.1 Introduction

This chapter presents the direct boundary element formulation of isotropic Reissner plates.
The Reissner plate theory and governing equations for shear deformable plates are presented.
Based in these equations, the boundary integral formulation is developed. Fundamental
solutions, developed by Vander Weeén, 1982, for displacements and tractions for infinite
elastic plane under transversal loads and in-plane bending moments are presented. Boundary
element method is applied to discretizate the integral boundary equation. Procedures for
treatment of the singular integrals are showed. Finally, numerical examples are showed and

results are discussed. Preliminary conclusions are established.

5.2 Reissner plate theory

Both, the Kirchhoff’s plate theory and the Reissner/Mindlin shear deformable plates theory

are based on the following assumptions:
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Figure 5.1: Thick plate geometry

- Plane section remains plane after the deformation, which implies the transverse normal

strains are zeros.
- The displacements are small enough for changes in geometry to be negligible.

Therefore, the theory of plates can be regarded as an extension of small strain theory of

elasticity, in particular, plane stress problems (see Dirgantara, 2000).

Plate theories are mainly simplified two-dimensional model of the original three-dimensional
structure. The basic idea of the plate theories in general is to assume either stress distri-
bution through the thickness as in the stress-based theories (such as the Reissner theory)
or to assume displacement distribution through the thickness as in the displacement-based

theories (such as Kirchhoff theory).

5.2.1 Internal stress resultants

Consider an arbitrary plate of thickness, h, as shown in figure 5.1 with a domain 2 and
boundary I in the x; space. The x1 — x5 plane is assumed to be located at the middle surface
x3 = 0. The generalized displacements are denoted as w;, where w, denotes rotations (¢,

and ¢,2) and w3 denotes the transverse deflection w (see Rashed, 1999).
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Figure 5.2: Equilibrium of differential plate element

The stress resultants at any internal point x’€ €2 which are the bending moments M,z
and the shearing forces (), can be defined as follows:

h/2

Mag: /.ﬂ?gUaﬁdxg (51)
—h/2

h/2
Qo = / T3003dx3 (5.2)

—h/2

with o, 8 = 1,2. 0, are the three-dimensional components of the normal stresses through the
plate thickness and .3 are the components of the transverse shear stresses. The generalized

tractions at a boundary point x € I' can be defined as:

o = Mqygng

q3 = Qana (53)

where ng are the components of the outward normal vector to the plate boundary I'.
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5.2.2 Equilibrium equations

The equilibrium equations can be formed by considering the equilibrium of a typical differ-
ential element shown in figure 5.2. This element has dimensions of dx; X dzo X h and under
uniform load ¢ (per unit area), as regarded positive when applied in the x3 direction. The
equilibrium of moments about the x; and x5 coordinate axis and the equilibrium of forces in

the x5 direction can be written as follows:

8{‘;&1 i aé\ﬁl —Q1=0 (5.4)
aaz\zzz aaj\f _0s=0 (5.5)
ggll + gfj +q=0 (5.6)
g;% - g;% +q¢=0 (5.7)
(5.8)

These equations represent the governing equations in the differential form. It has to be noted
that they contain five unknows, however they are three equations. The required additional
equations to define the problem will be setup via the stress-displacement relationships and

the application of suitable boundary conditions.

5.2.3 Stress resultant-strain relationships

For shear deformable plate bending, the normal stresses due to bending and twisting moments

0qp vary linearly and the transverse shear stresses o,3 vary parabolically over the thickness.
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Hence the stress components can be expressed via the following relationships:

12

o = 2 (2)]e. o0

The stress resultant-strain relationships are derived using the basic minimum principle for
the stresses as presented in Reissner, 1947. The resultant tensor moment M,z and the normal

shear vector @), are given by:

1—w 2v
Ma,@ = D 2 <2X045 + EX776QB> (511)

1—w

Qu = N0 (5.12)

where:

2onﬁ = Weq,p + wg,«

Yo = Wa + W30 (5.13)

where y,s is the curvature tensor and 1, are the transversal shear strains. Equation (5.12)
represents the generalized Hooke’s law. This equation together with equation (5.13) presents

the stress-resultant-displacement relationships. Constants C, C), and D are given by:

ER3
D = ——— 14
12 (1 — ?) (5.14)
5 Eh
c, = 2= 5.15
£ (5.15)
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C, = th (5.16)

Replacing these constants into equation (5.12) we obtain:

1—w
2

2v vq
<wa,ﬁ T Wpa T Uw%75aﬂ> + W&m

M,g = D
A 1—w

1—
Qo = DTUAQ (Wa + W3.0) (5.17)

where D = Eh?/12(1 — v?) is the flexural rigity of the plate and A = v/10 is called the shear

factor.

5.3 Governing equations

The generalized governing equations for Reissner plates (Naiver equations)can be formed by

substituting equation (5.17) into the equilibrium equations (5.8) to give:

DV2w1+§(1+v)ai@(—g—2+g—ﬁ)—Cwl—CZ—IZ’ =0 (5.18)
12)(1—%1))821(—(;1:21—i-gtjf)—i—DVsz—sz—CgZ}j =0 (5.19)
Cv2w3+cg—2+cg—$+q3 = 0 (5.20)

BV?u; + g(l + v)ai%(—g—x + g—z?) +¢ = 0 (5.21)

where C' = D(1 —v)/2\%
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5.4 Boundary integral formulation

The integral equation can be derived by considering the integral representation of the gov-

erning equations (5.8) via the following integral identity:

[ [(Mass = Qu) Wi + (Qua + @) W3] d2 = 0 (5.22)
Q

where W} (i = «a,3) are weighting functions. Integrating by parts and making use of the

relationships in equation (5.3), it gives:
/ij*dF—i—/qW*dQ—i- /Qa (Wi +W;,) d2 + /Maﬁ A9 = 0 (5.23)

where j = «,3. Replace the stress resultants (M,s and @Q,) with the generalized displace-
ments and its derivatives using equation (5.17) and applying the Green’s second identity for

the M, integral gives:

/pJW ar + /Qa (e + wsa) dOY

. (1—w) 2v
/Wa 8 { (wang + wWaNy + mwvn,},éaﬁ) } dr’

D(1—-v)
2

(waWa’ﬁﬂ + w/jWaﬁa + mw,y a’575a5> dI’

|
T—

* q
+ / {qW Ry ﬁ}da (5.24)
Q

The second integral on the left hand side of above equation can be decomposed using Green’s

second identity and making use of the relationships in equation (5.3) as follows:

/ Qu (o + w3,) 2 = / pawsdl + / (Qquwa — Q5 quws) dO (5.25)
Q T Q
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Substituting this equation into last equation and grouping it gives:

* * * v *
I1/ (W] pj — Pj wj) dF + Q/ |:W3 + mWM] qu

+ / Mgs5— ) Waq + Q;aw3} dQ=0 (5.26)
0

This equation represents a generalized Betti’s reciprocal theorem for Reissner plates; It has
to be noted that the weighting functions can be chosen to represents arbitrarily state. This
state is defined for concentrated generalized loads: two bending moments (i = « = 1,2) and
one concentrated shear force (i = 3) at an arbitrary point x’ € Q. Then equation (5.26) can

be rewritten after introducing the direction of the load ¢ as follows:

/W*xx /P*xx i (x)dl’
+ Q/ [W{S (x',x) + (1_1}1}))\2W£,@ (X/ax)}qdﬂ
(M (%) = Qi (80| wa (x) d2
+ /Qfaﬂ (x',x) ws (x) dQ (5.27)

By choosing the weighting function as:

szﬂ,ﬂ (Xl> X) - Qfa (Xlﬂ X) = —0 (le X) dia

Qine (X', x) = —0(x',x) 03 (5.28)
and making use of the Dirac delta property:

/ 5 (x', %) w; (x) d2 =w; (x') (5.29)
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then equation (5.27) can be written for an internal source point x’ as:
/P*Xxw] )dl' = /W*xx (x) dl
(W) - e Wi (K0%) ) g (x) 40 (5.30)
2 (1—v)A2 '

where W} (x',x) and Pj; (x',x) are the two-point fundamental solution kernels for the dis-
placements and the tractions respectively. It represents the displacement or the tractions at
the point x in the direction 7 due to unit load applied at x” at the direction i. The expressions

for these kernels are given by Vander Weeén, 1982 as follows:

= sy (BB - (1= 2h(E) - ]s,

Wh o= Wi = S;D (210 (z) = 1) rra
. = m (1= ) 22 (In () = 1) — 81n(2)] (5.31)
and
- ﬁ (44 (2) + 22K, (2) + 1 = 0) (Bagrn + 705
+ (dAR)+1+0v)r ng —2(8A(2) + 22K (2) + 1 —0) 10T 47 0]
Py = B, - A
e (;W_ v) [(28 i Z; In(z) - 1) Mo + zr,ar,n]
P = %r,n (5.32)
where
A(2) = Ko () + i [m (2) i] (5.33)



B(:)= Ko () + - [K (2) - ] (5.34)

in which Ky(z) and K;(z) are modified Bessel functions, z = Ar, r is the absolute distance
between the source and the field points, 7, = r,/r where r, = 2,(X) =24 (X") and 7, = r 4Nq.
Equation (5.30) represents the generalized Somigliana’s identity for Reissner plates. As can
be demonstrate, A(z) is a smooth function, whereas B(z) is a weakly singular O(In(r)).

Therefore W} is a weakly singular and P; has a strong (Cauchy principal value) singularity

O(1/r).

In other hands, by taking the point x’ to the boundary at the position x' € T', and
assuming that the displacements w; satisfy Holder continuity, equation (5.30) can be written

as follows:

¢ (X w; (x') + /P;; (x',x) w; (x')dl’ = /W;; (x',x) p; (x)dl

—i—ﬂ/ ( 5 (X, x) — ﬁW:‘aa (X/,X))qu (5.35)

Integral at left hand side is a Cauchy principal value integral; x’,x € T" are source and field
points respectively, and ¢;;(x’) are the jump terms arising from the terms of O(1/r) in the
kernel P;. Equation (5.35) represent three integral equations (two (i=1, 2) for rotations and

one (i = 3) for deflection).
The domain integral in equation (5.35) can be transferred to the boundary (by applying
the divergence theorem), in the case of a uniform load (¢ = constant) to give:

* / v * /
/ (Wi?) (X ,X) - mWia’a (X ,X))qu =
Q
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Local coordinates

Figure 5.3: General quadratic element

v

qF/ (Vi,a (x',x) — mWL (x’,x))nadf (5.36)

where V;* are the particular solutions of the equation V%, = Wj. According with Mindlin,

(3 (2

the term: v/((1 — v)A?) has negligible contribution to the results. For the sake of simplicity,

this term will be ignored in this work. The expressions for Vs are given as follows:

7,,2

o = Togep (A (2) = 5) das +2(4In(2) = 3)7arg] (5.37)

Vi, = 128@‘8"{ R 32(2In(2) — 1) = 22 (1 —v) (4ln(2) = 5)]  (5.38)

5.5 Boundary element discretization

The analytical solution of the integral equations (5.35) is difficult even for a simple plate
problem. Therefore, the numerical solution can be considered. In this work, the boundary
has to be discretized into N, elements, over which the unknows are approximated to vary

quadratically using quadratic discontinuous elements.
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After the discretization, equation (5.35) can be rewritten as:

(5.39)

where J is the jacobian of the transformation and ® is the element shape function, as pre-

sented in chapter 4. For a general quadratic element we as shown in figure 5.3 we have:

P! = = —
() 5(5_5)5(5 £)
1 _
P2(6) = = (£ — -
() g(5 ¢ (6-¢)
R
£(€-¢)
and
T(6) = axgég)axggg)
1 0x5 ()

Na (f)zm e o

(5.40)

(5.41)

(5.42)

(5.43)

(5.44)

where €,433 is the permutation symbol. After performing the collocation process, equation

(5.44) can be written as follows:

Hw =Gp+Q
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5.6 Treatment of the singularities

The influence matrix G and the load vector Q contains weakly singular kernels, which can
be canceled using a non-linear coordinate transformation (see Telles, 1987). In addition, for
better numerical accuracy a suitable number of element sub-divisions (see Kane, 1994) along

with the non-linear transformation will be used in this work.

The influence matrix H, on the other hand, contains a strongly singular kernel, which can
be evaluated indirectly be expressing that the free stress problem admits non-trivial solutions

which are arbitrary combinations of three basic rigid-body displacements (see Vander Weeén,

1982):
w; = C,wy =0,w3=-Cr;
w; = O,UJQ = C, w3 = —07”1
w; = 0, Wy — O,w3 =C (546)

where C' is an arbitrary constant. In this way one obtains:

cp(x) = = [ [P (X, %)+ 15Ps (%, %)] dT

cis (X)) = — / Py (x', %) dl (5.47)

5.7 Internal stress resultants

The stress resultants at domain point X’ can be evaluated from equations (5.35), by using

relationships the resultant stress-displacement relationships:
Mg (x') = /W;ﬂk (x',x) ppdl’ — /P;,@k (x', x) wydl
r r
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Wiss (%, %) gzd<

Q
0. — / S (X, %) prdl — /Pgﬁk X', x) wydl
I
/ 35 (X, %) g9 (5.48)
Q

In the case of a uniform load, the domain integral can be transferred to boundary integral,

be applying the divergence theorem, to give:
[ Wi (%) 4592 = 45 [ Q3 (%) T (5.49)
Q r

The kernels W, P, and @5, are linear combination of the first derivatives of W7, P

and V%3, are given by:

. 1
o = [(4A (2) + 22K (2) + 1 — v) (0470 + 0oy )
— 2(8A(2) + 22K, (2) + 1 —v)rorpr, + (4A(2) + 22K (2) + 1 — v) dapr -]
e () (1+v) B
aBf3 = . 2 (1 — U) In (,Z) 1 505 +2rarp
. 1
363 = 27rrr’5
P = D(1-v) A K ) )
afy — W{M (2) + 22K (2) + 1 —0) (6yam8 + ,574)
+ (4A(2) + 14 30) dapny — (164 (2) + 62K, (2) + 22 Ko (2) +2 — 20)
. D (1 —v)\?
i = 20104 () 120 () (rna +rany)

— 2(4A(2) + 2K (2)) T ar grn + 2A(2) dapT

Pigy = % [(ZQB (2) + 1) ng — (22A (2) + 2) ’I"’B’I"’n}

Qy = % (41n (2) = 3) [(1 = v) (7 gn0 + 7 ang) + (1 + 30) Sapr ]

+ 4[(1—v)rarg+vias|rn}
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Figure 5.4: Simply supported thin plate

1
Qi = . [(2In(2) — 1) ng + 2r gr,) (5.50)

5.8 Numerical examples

5.8.1 Simply supported thin square plate

A clamped thick square plate of 4m side simply supported from all sides is considered (see
figure 5.4). The BEM analysis is performed using the Reissner plate theory. The Young
modulus was taken to be 0.1 MPa and the Poisson’s ratio is 0.33. Thickness of the plate is
take to be Im. A uniform pressure of 102Pa is applied over the plate domain. Boundary
plate was meshing using discontinuous quadratic boundary element. Figure 5.6 shows the
BEM used for the analysis. Was found that 16 element boundary mesh generate an error of
0.02% in the internal forces when compared with analytic solution using the Kirchhoff plate
theory. Figure 5.5 shows the transversal displacement component ws distribution. Table
5.1 presents the internal bending moments at points A, B and C. Good correlations when

comparing with analytic solution are obtained.
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Figure 5.5: Boundary element mesh for simply supported thin plate

Figure 5.6: Transversal displacements for simply supported thin plate

5.8.2 Timoshenko beam

A Timoshenko beam of length 10m having a cross section of 3m depth x 1m width, showed
in figure 5.7 is considered. The following material properties are considered: v = 0.2 and F =
2 x10%/m?. The beam is fixed from one end and left free as cantilever. A concentrated load

of P =1 ton is applied at the free end of the beam. A boundary element mesh of 20 elements
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Table 5.1: Bending moments and shear forces at internal points for thin square plate

Point My (tf.m/m) Mo (tfom/m) Moo (tf.m/m)

BEM Exact | BEM | Exact | BEM Exact
Point A | -0.4904 | -0.4905 | 0.0000 | 0.0000 | -0.4905 | -0.4904
Point B | -0.3766 | 0.3770 | 0.0814 | 0.0815 | -0.3766 | -0.3770
Point C | -0.1143 | -0.1142 | 0.2521 | 0.2522 | -0.1142 | -0.1143

along the beam length and 4 elements along the beam width is used to model the beam. Fig-
ure 5.8 compares the numerical results for the beam deflection with those obtained using the

using the Euler-Berboulli beam theory and the BEM solution obtained by Rashed et al., 1998.

>,
/

[
B

1 tot

/\/e

10m

\/

Figure 5.7: Timoshenko beam

5.9 Conclusions

The displacement boundary element method applied to analysis of isotropic shear deformable
plates has been presented. Three boundary integral formulation involving three generalized
displacements (two rotations and one deflection) and three generalized forces (two moments
and one shear force), has been established. In addition, boundary integral equations for
internal forces (bending moments and shear forces), were established. Fundamental solu-
tions for displacements and tractions as given by Vander Weeén, 1982, are presented. Weak

singular integrals integrals were threated using the Telles transformation and element subdi-
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Figure 5.8: Transversal deflection along central axis of the Timoshenko beam

vision. Strong singular integrals were threated through rigid body considerations. Numerical

examples were presented and good results correlations have been obtained.
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Chapter 6

Boundary element formulation for

anisotropic plates

6.1 Introduction

Chapter presents the boundary element method applied to the analysis of anisotropic Kirch-
hoff plates. The boundary element formulation developed in this chapter will be used for
the modeling of the repair’s bending response. Basic hypothesis of Kirchhoff theory are pre-
sented and the differential governing equation for anisotropic thin plates is developed. The
boundary integral formulation for these equations are established and fundamental solutions
for displacements, bending moments and shear forces are showed. Numerical examples and

preliminary conclusions are presented.

6.2 Differential governing equation for anisotropic plates

A plate is a structural element defined by two flat parallel surfaces where loads are trans-
versely applied, as explained in chapter 5. The distance between these two surfaces defines

the thickness of the plate, which is small when compared to other plate dimensions.
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Considering its material properties, a plate can be either anisotropic, with different prop-
erties in different directions, or isotropic, with equal properties in all directions. Depending
on its thickness, a plate can be considered either a thin or a thick plate. In this work, for-
mulations will be developed for anisotropic thin plates, based on the Kirchhoff’s plate theory
(see Kirchhoff, 1850).

The theory of anisotropic thin plates bending is based on the following assumptions (see

Lekhnitskii, 1968):

1. Straight sections, which in the undeformed state are normal to its middle surface,

remain straight and normal to the deformed middle surface after loading.

2. Normal stress o, in cross sections parallel to the middle plane is small if compared with

stresses in the transverse cross section, i.e., 0, 0y, Tay-

Consider a plate element following the assumptions previously defined. The equilibrium

equation for this plate element is given by (see Timoshenko and Woinowski-Krieger, 1959):

*m *m *m
S R - 1
0x? + 0xdy + 0y? g (6.1)

The rotation of element ang, initially placed in vertical position, is equal to g—’: (Figure
6.1). So, the displacement of a point in x direction, at a distance z from middle surface can
be written as:

ow

- 2 2
u Zo (6.2)

Following similar procedure, the displacement of a point in y direction is given by:
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/
ow
dx \/‘:__ ax
Figure 6.1: Rotation definition for Kirchhoff plates

Substituting equations (6.2) and (6.3) into strain-displacement equations (2.3), we can write:

N
c oz?’
0w
BT g
9w

The constitutive equations for symmetric laminated plate can be obtained using equation

(3.10) (see Lekhnitskii, 1968) !:

€x = 0110z + G120y + A16Txy,
Ey = Q1204 + 220 + 26 Txy,
Yoy = @160z + U260y + U66Tay- (6.5)

'In this work only symmetric laminated composite repairs will be considered.
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Substituting equations (6.4) into equations (6.5), we obtain:

0w 0w 0*w
z = B B 2B ,
o (1182+ 1282+ 1688y>
9w 9w 0*w
Oy = —Z (Blg 2 +BQQ ayQ + 2 2681’6 > y
0w 0w 0*w
Tey = —Z (Blﬁ 8302 + BQG ayQ + 2B668:[—ay> y (66)
where B;; are constants given by:
By = i (a22a66 - CL2>) By = i (CL11G66 - 02‘)
A 26/ > A 16 ) »
1 1 2
By = Z (alﬁazﬁ - a12a66) ) Bgg = Z (a11a22 - a12) ) (6-7)
Bis = + ( ), Ba= )
16 = A Q12026 — A22016) , 26 = A G12016 — A11026) ,
and
@11 Q12 Q16
A=|ap axn axy |- (6.8)

Q16 A26 Qo6

Substituting equation (6.6) into bending moments equations (5.2) and integrating, we have:

O*w 0w O*w
my = <D1182+D1282+2D168 ay)’
D*w 9w 0w
= D D 2D :
my ( 1255 + 25 + 268x8y) (6.9)
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0w 0w 0w
Mgy = — <D168 5 T Dews—— 02 +2D668 3y)
where
t3
Dy = By (6.10)

Substituting equation (6.10) into shear force equations given by (5.8), we can write:

@ = Du?;l;} + 3D16% + (D12 + 21766)%;;2 + DQﬁ%: ;
qy = -D16 (Zzg + (D12 + 2D66)aiglgy + 3Das 383;;2 + Dy (23@:
_ (6.11)
Equation (6.1) can be rewritten using equations (6.10) as
Dugﬁj + 4D16£¥y +2(Dys + D%)aa:;’ o+ 41)268845”3 + Day ?:f —g.  (6.12)

General solution to w in equation (6.12) depends on py, s, fi1, and fip roots of characteristic

equation given by:

Dagopt* + 4Dgspi® + 2(D1g + 2Dgs) pi* + 4D + Dyy = 0. (6.13)

Roots of this equation, as shown by Lekhnitskii, 1968, are always complex for homogeneous
material. The complex roots pu; = di +e17 and s = dy + et are known as deflection complex

parameters. In general, these roots are different complex numbers.

A general expression for the deflection has the form:
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1. in case of different complex parameters (p # p2):

w = w, + 2Re[w; (21) + wa(22)]. (6.14)

2. in case of equal complex parameters (13 = fio):

w = w, + 2Re[wq(z1) + Zwa(21)]. (6.15)

where w, is a particular solution of equation (6.12) that depends on the distributed load ¢
in the plate surface, wi(z1) and wy(z2) are arbitrary analytic functions of complex variable

z1 =x + iy and 2o = T + pgy.

Based on equations (6.10) and (6.11), general expressions for forces and moments can be

obtained as (for the case p; # ps):

my = mg - 2Re[p1w”(zl) +p2w"(z2)],
my = my — 2Re[qiw”(21) + g (22)],
May = My, — 2Re[riw” (21) + raw” (22)],

G = ¢ — 2Re[u131wm(21) + ,LLQSQU/H(ZQ)],

a@ = g, —2Re[siw”(z1) + saw"” (22)]. (6.16)

o
xT?

o

where m o

my, mg,, ¢, and ¢, are moments and shear forces corresponding to function w,
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computed from equations (6.10) and (6.11). The other constants are given in Albuquerque,

2001.

6.2.1 Bending stiffness in an arbitrary direction

Considering that stiffness bending constants of a plate in a x, i, z coordinate system are given
by D;; (i,j =1,2,6) and in a 2, y/, 2’ coordinate system, rotated a with respect to the first
coordinate system, are given by Dj; (i,j = 1,2, 6), the equation relating these constants, as

shown by Lekhnitskii, 1968, are given by:

D', = Dy cos* ¢ + 2(Dyy + 2Dgg) sin® ¢ cos? ¢ + Dy sin® ¢ +

2(D1 cos® ¢ + Dog sin” ¢) sin 2¢, (6.17)

DIQQ = D11 sin4 Qb + 2(D12 -+ 2D66) Sin2 gaCOS2 Qb -+ D22 COS4 §Z5 +

2(D1gsin® ¢ + Dog cos® ¢) sin 2¢, (6.18)

D}y = D13+ [D11 + Dy — 2(D13 + 2Dgg)] sin® ¢ cos® ¢ +

(Dag — D1g) cos 2¢ sin 2¢, (6.19)

Dgs = Des + [D11 + Doy — 2(Dya + 2Dgg)] sin® ¢ cos® ¢ +
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(D9 — Di) cos 2¢sin 2, (6.20)
Dig = %[DQQ sin® ¢ — Dy cos® ¢ + (D1 + 2Dgg) cos 2¢)] sin 2¢) +

D1 cos® ¢(cos® ¢ — 3sin® ¢) 4 Dag sin® ¢(3 cos® ¢ — sin? ¢), (6.21)
Dy = %[Dgg cos® ¢ — Dy sin® ¢ + (Dyy + 2Dgg) cos 2¢)] sin 2¢ +

Dsgsin® ¢(cos® ¢ — 3sin® @) + Dag cos® ¢(3 cos® ¢ — sin® ¢). (6.22)

The stress components o, and 7,,, normal and shear stress, respectively, are related with

stress o, 0y, and 7, by:

0, = 0,C08°a+ oy sin? o + 27,y sin a cos (6.23)

Tos = (0, — 0,)sinacosa + 7,y (cos® a — sin® a). (6.24)

The components of moment, initially written considering axis z and ¥, can now be rewritten
in a generic coordinate system n, s (see Paiva, 1987). The bending moments referring to

directions n and s are given by:

m, = mycosia+ my sin? o + 2my, sin o cos a, (6.25)

Mps = (my, —m,)sinacosa + my,(cos® a — sin® a). (6.26)
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Similarly, g,, the shear force in the n axis, can be written as:

Gnds = qzds cos a + gydssin a, (6.27)

or

0n = Qs COS @ + gy sin a. (6.28)

In order to solve the plate differential equation (6.12), it is necessary to impose boundary
conditions to displacement w and its derivative Ow/dn. Kirchhoff, 1850 has shown that the
boundary conditions of shear force g,, and twisting moment m,,, can be written as one single

boundary condition given by:
OMypg

Vn:n
q+8s

(6.29)

The other loading boundary condition is the moment m,.

6.3 Boundary element method for anisotropic plates

Using Betti theorem, we can relate two states of stress-deformation of a linear material as:

/QO':jéfide:/QO'ijE:de. (630)

Writing the right hand side of equation (6.29) in von Karman’s notation, we have:
[ o = [ (008s + 0,8} + 026t + Ty + T F ) AR (631)

Neglecting stresses normal to the plate, equation (6.31) is given by:

/Q 01l Q) = /Q (8% + 0,5 + Tyt ) AL (6.32)
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Substituting equations (6.4) and (6.5) into equation (6.32), we can write the first term of the

integral in the right hand side of equation (6.32) as

92w ow\ [ uw
/axs d) = / V (BH s+ By, +23168x0y> ( W) dz} ). (6.33)

Integrating (6.33) throughout the thickness of the plate, we have:

0w 0w 0w
/QO’ES dQ) = / (Dn +D128 3 —|—2D16m> agjz /mxa 2 (634)

In order to obtain equations of the boundary element method, it is necessary to transform

domain integrals into boundary integrals.

Consider two functions f(z) and g(z). The derivative of their product can be written as:

—[f()g()) = L g w) + L f ) (6.35)

Using the derivative property (6.35) in equation (6.34), we can write:

.1y 0 ow* ow* Omy,
/Q Gpetd) = — /Q {% <m - ) - ] dQ. (6.36)

Using Green theorem, equation (6.36) can be written as:

ow™ Omy,
/Q petd) = — / m, CosadF+ / . (6.37)

Applying the derivative property (6.35) in the second right hand side term of equation (6.37),

we have:

/m dQ = — /m cosadF+/ [ (w*(?mz> —w*%] dsQ. (6.38)
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After using Green theorem, we can write:

ow* om, *my
/ﬂaze;dQ:/r<—mza—1; cosa + w* g; Cosa) dF—/Qw* 8;2 dsd. (6.39)
Following similar procedure, we can show that:
ow* 0 0?
/Qayee:dQ = /F (—mya—lz sina + w* g;y sin a) dl’ — /Qw* a;ydﬂ, (6.40)

and

QTxy%y = ) My 9y COS Qv — Mgy O sin o + w o sin «

Oy *m
«IMay r— [ 2w, A1
w By cosa)d 2w Gxayd (6.41)

Thus, equation (6.32) is written as:

/ * dO) / ow* N ow* | N ow* n
oiErd = — My —— COS O + My —— Sin & + My ——— COS (v
7Y r ox Y oy Y oy

macyaa% sina) dF+/Fw* [(Cosoeagzx + ag;f) (sinaag;y + %)} dl’ —

*m *m ?m
* T2 e Yl dr. 42
/Fw ( Ox? + 0x0y + 0y? > (6.42)

Substituting equations for shear forces given by (5.8) and using equation (6.28), equation
(6.42) can be written as:

* * *

/ “ 40 / w +m, 2% sina+ +
0ijerdQ = — My~ COS Q¢ + My~ SIN @ + Mgy —=— COS v
o 7Y r ox Y Oy Y oy
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*

mmyaa% sin oz) ar —i—/Fw*qndF + /ng*dQ. (6.43)

From the relation between two coordinate systems (z,y) and (n, s), we have:

ow* B ow* B ow* .
% = on cos s sin a,
ow*  Ow* ow*
_ ~ . 44
o 5, Sipat+ o - cosa (6.44)

Substituting equations (6.44) into equation (6.43), we have:

* *

/ -»*dQ——/ ow _Owr N
QO-UEU = - m, COS & an COS @ as S1n &

mysina(;; sin o + s cosa) —l—mgcycosoz(&n sin v + s cosa) +
ow* ow*

Mgy Sin o Y cosa— ——sina dF—l—/w*qndF—i—/gw*dQ. (6.45)
on 0s r Q

After some algebraic manipulations, equation (6.45) can be rewritten as:

" ow* 2 o :
/Qaijside =— /F {871 (mgc cos” av + My, sin” a 4 2my,, sin o cos a) +

88% [mzy (6052 o — sin? a) + (m, — my,) sin a cos a} } dl’ +
[ wqudr + [ gurag. (6.46)
r Q
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Substituting equations (6.25) and (6.26) into equation (6.46), we have:
ow* ow*
/ 0j€5;d82 = —/ Mo 4 Mg — guw™ | dl’ +/ gqu*dS. (6.47)
Q J r s Q

Computing the second term of the first integral in the right hand side of equation (6.47), we

have:

r
? OMips

r Os

/ e 22T = w*dl (6.48)
r Js

I

where I'; and I'y are coordinates of ends of the boundary where the integration is being
carried out. In the case of a closed boundary without corner, i.e., the function that describes
the boundary curve and its derivative are continuous, the first term in the right hand side of

equation (6.48) vanishes. In the case where there are corners, equation (6.48) can be written

as:
ow* Ne om
/rm 0s ; e r Jds v ( )
where
R., = m; — M, (6.50)

and the terms w,,, m;, , m_ . are values of displacements and twisting moments after and

ns;? ns;

before the i corner of the plate, N. are the total number of boundary corners (see Paiva,
1987).

From equation (6.47) and (6.49), we can write:

* * aw* amns * ak * *
/Qaijfide :/F<qnw —mn%%— P ) dF+;Rciwci +/ng Q. (6.51)

From equations (6.51) and (6.29), we have:

* * aw* e * *
/Qo—ijeijdgz:/F (Vnw —mna—n> dl“+i:leciwci +/ng ds) (6.52)
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Following a similar procedure to that used to obtain equation (6.52), the left hand side of

equation (6.30) can be written as:

ow*

Ne
/Q o i = /F (v;w - mn%> dr + ; R w,, + /ﬂ grwdS. (6.53)

Substituting equations (6.52) and (6.53) into equation (6.30), we can write:

/ Vot — a2V ar - S° R R R
r\ " " on T 09 B

*

/ Vrw — my 2 dP+§R*w +/ “wd() (6.54)
r\ " " on e o ' '

Equation (6.54) relates two states of an elastic material. In order to apply this equation to
solve bending problems, we need to consider one of states as known and other as the state
which stands for the problem which we want to analyze. To obtain a boundary integral

equation, the known state is chosen so that the domain integral given by:

/Q gwdQ (6.55)

vanishes. Using the properties of Dirac delta function §(x’, x), so that integral ¢* = §(x/, x),
integral (6.55) is written as:

/Q 5(x, x)w(x)dx) = w(x') (6.56)

The state corresponding to a linear material under loading of a Dirac delta function is known
as fundamental state and the variables of equation (6.54) related to this state (w*, V,* and
m;) are known as fundamental solutions which are computed analytically from the differen-

tial equation (6.12).
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Considering the state ”*” as the fundamental state, equation (6.54) can be written as:

cut) + [ [V w0 = 00,50 2500 a4 37 e () ) -

/F [Vn(x)w*(x’, X) — mn(x)%(x', X):| dl + i R, (x)w], (x',x) +

/Q g(x)w* (x', x)dQ2. (6.57)

The constant c¢ is introduced in order to consider that the Dirac delta function can be applied
in the domain, in the boundary, or outside the domain. If the Dirac delta function is applied

in a point where the boundary is smooth, than ¢ = 1/2.

Variables of equation (6.57) are displacements w(x), rotations Ow(x)/dn, moments m,,(x),
and loads V,,(x). For a given boundary condition, some of these variables are known. In or-
der to have an equal number of equations and unknown variables, it is necessary to write
an integral equation corresponding to the derivative of displacement w(x’) in relation to a
cartesian coordinate system fixed in the source point, i.e., the point where the Dirac delta of
the fundamental state is applied. The axis directions of this coordinate system are coincident

with normal and tangent to the boundary directions in the source point.

For a particular case where the of the source point is placed in a point where the boundary

is smooth, the boundary equation is given by:

10w (X/) ov* ) am; I S
2 ony /1“ [anl (x', x)w(x) — o (x', X)an(x)} dl’ +

Ne aRZ / 8'10* ) a 8w* I

; ony (X >X)wci(x) = /l:‘ {Vn(x) on, (X ,X) - 'rnn(X)a—n1 [%(X ,X):| } dr’ +
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Je awzl / aw* /
> Re(x) 5 (x) + [ 905 (¢ x)d0 (6.58)

=1

Its important to say that it is possible to use only equation (6.57) in a boundary element
formulation by using as source points the boundary nodes and an equal number of points

external to the domain of the problem.

6.3.1 Fundamental solutions for anisotropic plates

The transversal displacement plate bending fundamental solution is computed by placing the
non-homogeneous term of the differential equation (6.12) equal to a concentrated force given

by a Dirac delta function §(x’, x)), i.e.,

AAw* (x',x) = §(x', x) (6.59)

where AA(.) is the differential operator:

_Dud'() , D d() , 2Du+2Dw) 9'()
N DQQ 01’4 D22 838y D22 81:28;(;2
(D 90 0'()
Doy 00y Oy*

AA()

(6.60)

As shown by Shi and Bezine, 1988, the transversal displacement fundamental solution is

given by:
1
w*(p,0) = o {C1R1(p,0) + CaRy(p, 0) + C3[S1(p, 0) — S2(p, 0)]} (6.61)
where

p =[x =)+ (y = yo)""? (6.62)
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x and y are the coordinates of the field point x, x, and y, are the coordinates of source point

0 = arctan L% (6.63)
T — T,

_ 2 (.2 2

(dy — do)” + (€] — €3)

Cy GHey , (6.65)
4(dy — dy)
Cy = —— 6.66
3 CH (6.66)
G = (di—dy)*+ (e1 + e2)?, (6.67)
H = (dl — d2>2 + (61 — 62)2 (668)
Ry = p? [(cos@ + d;sin0)* — €2 sin” 9} X
{log [p2 ((0039 + d;sin0)* + 2 sin? 9)] - 3} —
a? ! E
4p*e;sin B (cos O + d; sin §) arctan __Gsinb (6.69)
pe ‘ cos + d;sinf '
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and

S; = p?e;isind (cosf + d;sinf) x
P2
{10g [? ((COSH + d; sin@)2 + €7 sin? 0)} — 3} +

e;sinf

2 . qi 2 _ e2gin? P T )
P [(COS 0+ d;sinf)” — e sin 6} arctan cosf + d;sind

(6.70)

The repeated index ¢ in the terms of R; and S; does not imply summation. The coefficient

a is an arbitrary constant taken as a = 1.

Other fundamental solutions are given by:

*

2,k 2 % 2 %
_( 0-“w 0“w 8w>’ (6.71)

fl—a:][:2 + f2(9x8y + f3 02

R, =

Cq

B ( o*w* O*w* 8210*)

— 72
T o2 T 0xdy T3 0y? (6.72)

Pw* Pw* Pw* Pw*
VY = —|hi——=+h h h, -
" ( Y O3 + 28m28y + 383:83;2 i oy? )

h h
Ox? + 6(9:E6y+ ’ oy?

1 2, % 2, % 2, %
<h58 w 0“w 0" w > (6.73)

where R is the curvature radius at a smooth point of the boundary I'. Other constants can
be obtained from Albuquerque, 2001. As it can be seen, derivatives of R; and S; present weak
(log7), strong (1/r), and hyper (1/r?) singularities that will need special attention during

their integration in boundary element kernels.
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6.4 Numerical examples

In order to assess the accuracy of the proposed formulation some numerical problems are

analyzed and their results compared with some results available in literature.

6.4.1 Orthotropic simply supported square plate

The first problem is a single lamina square plate of side length @ = 1 m and thickness
h = 0.01 m. The material is orthotropic and its material properties are: £, = 2.068 x 10!
Pa, E, = E,/15, vy, = 0.3, G4, = 6.055 x 10® Pa. The plate is under a uniformly distributed
load ¢ = 1 10* Pa applied along its domain (Figure 6.2) and simply supported along its four
edges. This problem was analyzed by Shi and Bezine, 1988 using boundary element method

and domain integration to treat the distributed load.

The problem is solved using different meshes and the results for transversal displacements
at point A and at point B are compared with series solution for point A and for point B
given by w,. = 8.1258 x 1072 m and w,,, = 4.5211 x 1072 m, respectively. Table 6.1 shows
transversal displacements computed by the present BEM technique using different meshes
and their respective errors compared to Timoshenko and Woinowski-Krieger, 1959 series so-
lution. It can be seen that a very poor agreement is obtained when 12 elements (3 elements
per side) are used. However, the convergence to the series solutions is obtained as the num-
ber of elements is increased. When 48 boundary elements are used (Figure 6.3), transversal

displacements in both points present errors below 1% when compared with series solutions.

6.4.2 Cross-laminate graphite-epoxy composite square plate

The second problem that has been analyzed in this work is a simply supported symmetric

laminate [0°/90°/0°/90°/0°]s of side length ¢ = 1 m under a uniformly distributed load
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Figure 6.2: Square plate with simply-supported edges under uniformly distributed load

Table 6.1: Accuracy of transversal displacements obtained by BEM for the orthotropic square
plate with simply supported edges under uniformly distributed loads.

Number of || Transversal displacements [107¢ m)] Errors [%]

elements || Point A Point B Point A | Point B
12 -0.7985 -0.4415 1.7310 | 2.3545
24 -0.8014 -0.4430 1.3806 2.0100
48 -0.8081 -0.4481 0.5513 | 0.8875
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single lamina orthotropic plate. This solution is given by:

g = 6.9 x 10® Pa. The properties of each lamina of a high modulus graphite-epoxy composite
material used in this analysis are: E, = 2.07 x 10° Pa, E, = 5.17 x 10° Pa, G,, = 3.10 x 10°
Pa, and v,, = 0.25. The total thickness of the laminate is taken as h = 0.01 m. All layers
have equal thickness. This problem was analyzed by Lakshminarayana and Murthy, 1984
using finite element method. A series solution for the transversal displacement in the center

of the plate was presented by Noor and Mathers, 1975 by treating the plate as an equivalent
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Figure 6.3: Boundary element mesh with 48 constant boundary elements

an. Eash®
Do 220 108 = 4.4718 (6.74)
qa

The center point transversal displacement obtained by the proposed formulation is com-
pared in Table 6.2 with the finite element solution, presented by Lakshminarayana and
Murthy, 1984, and with the analytical solution presented by Noor and Mathers, 1975. As it

can be seen, it is obtained the same accuracy of the finite element results.

Table 6.2: Accuracy of transversal displacement obtained by BEM and FEM for the cross-
laminate graphite-epoxy composite square plate with simply supported edges under uniformly
distributed loads.

Numerical || Transversal displacements and errors

methods | wEy»h®/(qa*) x 103 Errors [%]
BEM 4.4507 0.47
FEM 4.4508 0.47

6.5 Conclusions

In this chapter, the boundary element method applied to analysis of anisotropic Kirchhoff
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plates under static load conditions, was presented. Fundamental solutions for displacements
and generalized forces (bending moments and shear forces) are established. Numerical ex-
amples was presented and results are compared with those reported in the literature. Good

agreement, was found.
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Chapter 7

Dual boundary element method for

plate fracture mechanics

7.1 Introduction

Some special techniques have been developed to treat problems in fracture mechanics using
the boundary element method. Among these, the most important are: the crack Green’s
function method, the displacement discontinuity method, the subregions method and the
dual boundary element method (see Portela and Aliabadi, 1992). The crack Green’s function
method is limited to problems with a single straight traction-free crack. The displacement
discontinuity method introduces higher order singularities into the boundary integrals. The
subregions method introduces artificial boundaries into the body. The dual boundary ele-
ment method overcomes these drawbacks and, at present, is consider an effective technique for
the treatment of problems in fracture mechanics, specifically in the boundary element analy-

sis of cracked plates repaired with adhesively bonded isotropic patches (see Wen et al., 2003).

This chapter presents the Dual Boundary Element Method applied to plate fracture anal-

ysis considering membrane, bending moments and shear forces. In the first part, the hyper-
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singular equations for plane elasticity and Reissner plate bending are developed obtaining
the traction equations for these cases. Types of singularities that appears in these equations
and their treatment using the Taylor series expansion methodology. The dual boundary el-
ement method is presented for the treatment of fracture mechanics problems and a general
methodology is exposed. Finally, the stress intensity factors for plane elasticity and bending
problems are defined. Numerical examples are presented and preliminary conclusions are

established.

7.2 Hypersingular equations for plane elastostatics

The boundary integral representation of the displacement components u;, at collocation point

x', is given by equation (4.13) (Dirgantara, 2000):
1
Caplio + / T (X, %) updl = / U (3, 3) tgdl = / Uns (X, %) fsdA  (7.1)
r r A

The stress components o;; are obtained by differentiation of equation (7.1), followed by the
application of the Hooke’s law, as given by equation (4.14):

| / Dy (¥, %) frdA (7.2)
A

1
Oup + /Sz]k (X/, X) ’LLde = /Dijk (X/, X) tde — E
T r

In this equation, S;jx(x’,x) and D;;;(x’, x) are linear combinations of derivatives of T,5(x’, x)
and U,p(x’,x) respectively, as explained in chapter 4. The integrals in equation (7.2) are
regular, provided r # 0. As the internal point approaches the boundary, that is as x’ — x,
the distance r tends to zero and Sy (x/,x) exhibits a hypersingularity of the order 1/r?
while D;jj, (x’,x) exhibits a strong singularity of the order 1/r. Assuming continuity of both
strains and tractions at x’, the limiting process produces improper integrals and jumps terms

in strains and tractions, in the first and second integrals of equation (7.2), respectively. For a
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point on a smooth boundary, these jump terms are equivalent to boundary stresses. Hence,

equation above equation can now be written as:
1 1
50'&5 + /Sijk (X/, X) ude = /Dz]k (X/, X) tkdl“ — ﬁ /D”k (X,, X) fde (73)
r r A

where the first integral stands for the Hadamard principal value integral and the second
integral stands for the Cauchy principal value integral. On a smooth boundary, the traction

components ¢;, are given by:

;t( ")+ ni(x /S”k x', x) updl = n;(x )/D”k (x/,x) tdl’ — n;(x l/ ik (X, %) frdA

J h
(7.4)

Above equation is known as hypersingular integral equation for plane elasticity. Equations

(7.1) and (7.4) constitutes the basis of the dual Boundary element method (DBEM).

On a traction-free crack, for example, these equations are simplified; the displacement

and the traction equations are given by:

i (X ug + /Taﬁ (x/,x) ugdl’ = —i/Uag (x',x) fadA
r A
1
x') / Sige (¢, %) wdl = =ma(x) / Dy (¥, %) frdA (7.5)
r A

where the line integrals are evaluated at the crack boundary.

7.2.1 Treatment of finite-part integrals

The improper integrals, that arise in the dual integral equations, are easily handled by the
classical singularity-subtraction method (see Aliabadi, 1997). In the vicinity of a collocation

node the regular part of the integrand is expressed as a Taylor’s expansion. If a sufficient
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number of terms of the expansion are subtracted from the original improper integral and
then added back, the singularity can be isolated. The original improper integral is thus
transformed into the sum of a regular integral and an integral of the singular function. This
latter integral is then evaluated analytically, while standard Gaussian quadrature is used for

numerical integration of the regular integral.

Consider a discontinuous quadratic boundary element of general shape, I',, that contains
the collocation node. The local parametric co-ordinate £ is defined in the range —1 < ¢ <1
and the collocation node £’ is mapped onto X', via the continuous element shape functions,
as presented in chapter 5. The displacement components u;, are approximated in the local
co-ordinate by means of the nodal values, v}, and the discontinuous element shape functions.
The first-order finite-part integral of equation (7.5) can be expressed in the local co-ordinate

as:
+1

/Taﬁ (x',x) u; (x)dl’ = u?/

-1

fap (€)
§—¢

de (7.6)

where [} " (£) is a regular function, given by the product of the fundamental solution, a shape
function and the Jacobian of the co-ordinate transformation, multiplied by the term & — ¢£'.
The integral of the right hand side of equation (7.6) can be transformed with the aid of the

first term of a Taylor’s expansion of the function 3(5) around the collocation node, to give:

+1

aﬂ (61 df +

(7.7)

Now, the first integral of the right hand side is regular and the second one can be integrated

analytically to give:
g
g
¢

1-¢
n
1+¢

T ‘ (7.8)

In equation (7.6), the existence of the finite-part integral requires the Holder continuity of
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i1, at the collocation node. For the discontinuous element, this requirement is automatically

satisfied, because the nodes are internal points of the element, where f: is continuously dif-

1]

ferentiable.

The second order finite-part integral of equation (7.7) can be expressed in the local para-

metric co-ordinate as:

[ i (%) i (x) dr = it (?}_’“S))ng (7.9)

where g?jk(f ) is a regular function, given by the product of the fundamental solution, a shape
function and the Jacobian of the co-ordinate transformation, multiplied by the term (£ —¢')%.
The integral on the right hand side of equation (7.9) can be transformed with the aid of the
first and second terms if a Taylor’s expansion of the density function g, in the neighborhood

of the collocation node, to:

+1 n +1 n n / n(1) / /
Qi'k(f) gi'k(f)—gi'k(f) Yijk (f)(f—f)
J de = J J J d
/1@—5')“ / (E-¢)? ¢
+1 d +1
+© [ e [ 2 (7.10)
]

where qu) denotes the first derivative of gj,. At the collocation node the function g is
required to have continuity of its second derivative or, at least, a Hdlder-continuous first
derivative, for the finite-part integrals to exist. This requirement is automatically satisfaced
by the discontinuous element, since the nodes are internal points of the element. Now, in
equation (7.10), the first integral on the right hand side is regular and the third integral is

identical with one given in equation (7.8). The second integral on the right hand side of
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equation (7.10) can be integrated analytically to give:

+1

i1 1
/(5—5'>2__1+5'_1—5' (7.11)

-1

For piece-wise flat cracks, all the integrals in equation (7.6) and (7.9) are most effectively
carried out by direct analytic integration. Consider a flat discontinuous quadratic boundary
element. The shape functions of this element are given by equations (5.42) and presented

here again:

= efle-
o= -0+ 2
vs = €(56+3) (7.12)

For this element, the integral of equation (7.6) is represented by
+1
[ T (%) 0 ()T = [ T (€1,€) 0 (6) 7 (€) d = hu” (7.13)
I 1

where u™ denotes the nodal displacement components and J(&) is the Jacobian of the co-
ordinate transformation. Because of the assumed flatness of the element, J = [./2, where [,

represents the element length and the matrix h® is given by

Cod—2w |0 1|y,
4 (1 —v) 100 |4 €€

h" de¢ (7.14)

The first-order finite-part integrals are integrated analytically to give:

+1 ! ! /
[0 e - 3(5 (35—2)111‘1—5
Je-¢ 4 2 1+¢

+3§’—2)
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_ 1((35'—2)(3§'+2)1n‘1+§’
2

_ 95’)

+
/1 3 2 1-¢
+1
3 (B3¢ +2), |1-¢ ,
= = 1 2 1
{ 4( | (7.15)
The integral of equation (7.9) is represented by:
/Sijk (x',x) uy (x) dl’ = UZ/Sz‘jk (&,6) N (§) J (&) dl = E?jun (7.16)
Te Ie
where the matrix h™ is given by
+1
1+ E 2 wn
h" = —S' d 7.1
wi-L ) e-a® T

The matrix S’ is given by:

+ny (2n3 +1) —ng (—2n3 +1)
S'= | 4n, (202 —1) —ny(—2n2 —1) (7.18)

—ny (2n? —1) +ny (—2n3+1)

where n; and ny are the components of the unit outward normal to the element. The second-

order finite-part integrals of equation (7.11) are integrated analytically to give:

+1 '

" 3 1-¢| 662923
lff—ef%'_ 1( S T )
+1 '

o 1 14+¢ 1852—13>

de = = [o¢ _

l@—eff 2( L—e e
v 3 1—¢| 66242 —3
/(51035/)2‘1’5 - Z(35 + 1)1 '1+§' + 55,?:_51 ) (7.19)
21
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7.3 Hypersingular formulation for Reissner plates

The stress resultant boundary integral equations are formed by considering the behavior of
equations (5.48) as x’ approaches to boundary I'. A semi-circular domain with boundary I'*,
similar to that showed in figure 4.1, is constructed around the point x’. Taking the limit as

x" tends to I' equations (5.48) can be written as follows:

Mys (x') + lim [ Py (X', x)w, (x)dl + lirr(l)/P;‘ﬂg (x',x) w3 (x) dT’

e—0 By
F*
= lim [ W, (¥, %) py (x )dF+11m/ aps (X', %) ps (x) dT
F*
1 *
+ E/WaﬂS (x',x) g3dA (7.20)
A

and,

Qs(x) + lim [ Py (x, %) w, (x)dl + lim / Py (X', %) ws (x) dT
F*

F*

= lim / W3y (x.%) py (x) I + lim / Wiy (', %) ps () dT
* F*

1
+ 5 / Wiy (x,X) gsd A (7.21)
A

where: I'" = T' — I, + I';. In the limits, the kernels exhibits different order of singularity.
The terms P}, Piss are hypersingular of O(1/r? 4 In(r)), while P, Pss., Wi, Wiy are

strong singular of O(1/r). Other remaining terms, namely W5, Wy are weakly singular.

To satisfy continuity requirements, the point x’ is assumed to be on a smooth boundary.
In the limiting process, some integrals in above equations lead to a jump on the stress
resultants. Taking into account all the limits and the jump terms, as ¢ — 0, for a source

point on a smooth boundary, stress resultant integral equations are obtained as follows (see
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Dirgantara, 2000):

Mz (X)) + / Pra (X', x) wy (x dr+/P353XX)’LU3()dF
:/ Was, (X', x) py (x dF+/Waﬂ3xx)p3( )dr’

+ / ) gsd A (7.22)
h
and,

-Qp(xX) + /Pg‘m (x',x) w, (x)dl" + /Pgﬂ?) (x',x) w3 (x) dl’
r r
— /VV;m (x',x) py (x)dI" + / Wi (x',x) p3 (x) dT’
r r
1
+ ﬁ/Wg‘m (x',x) g3dA (7.23)
A

Multiplying equations (7.22) and (7.23) by the outward normal ng at the source point x’,

the traction integral equations for shear deformable plates are obtained:

1
SPa (X) / gy (3. %) w, (%) d + g () / Py (%) wy (x) dT
= / oy (X', %) py (%) dI + g (x / s (X', %) p3 (x) dT
1
+ —na /I/Voéﬁ3 x',x) g3dA (7.24)
and,
1

529 () () [ Py (X, %) wy (%) T+ o (%) [ Py (%) s (x) T

= Ny (X) / Wis, (x',x) py (%) dT" + ng (X') / W3 (x',x) p3 (x) dT’
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1
+ o () / Wi (X, %) gsd A (7.25)
A

The first integrals at left hand side of these equations are evaluated in the sense of

Haddamard principal value and seconds are evaluated in the Cauchy principal value.

7.3.1 Treatment of singularities

In the traction integral equations, the singularity order is higher than the displacement inte-
gral equations. In the [H] matrix, the kernels Pj; and Pj5 are strongly singular, whereas,

the kernels P;; and Pjgy are hypersingular. In the off-diagonal sub-matrices, the shape

y
functions will reduce the order of singularity by one. This means that, elements entries in
[H] matrix corresponding to the kernels P33 and Py, become smooth, whereas, elements of

the kernels Py5 and Pjgy still remain strongly singular (Dirgantara, 2000).

In [G] matrix, the off-diagonal sub-matrices are smooth again due to the shape functions
reducing the order of singularity. The diagonal matrices, on the other hand, contain the
kernels W7 55 and W35, which are weakly singular and the W, and W3s, which are strongly

«

singular.

The singular integrals mentioned above are treated individually based on their order of
singularity. The weak singularity is treated using a nonlinear coordinate transformation as in
Telles, 1987. The strong-singular and the hypersingular integrals are evaluated using Taylor

series expansion around the singular point as presented in section 7.2.1.

A special type of singularity of O(1/r? + In(r)) if observed in the P,s, kernel. This type
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of hypersingular integrals can be solved as follows:

/ 1 (€,6) 0 (€) T (€) de

- [ ow @i - Ea IO el

J (€ —¢)

Wy g
+ an (©) [ ¢ g ©) 52, o

| d 7.26
= /n|§ ¢ld (7.26)

where gis., (&) = Pus, (£,6) @™ (€) J (€) (€ — €')? on which P, (€,€) are part of the kernels
which contain 1/7%. The term hly (§) = Pi3, (£,€) @™ (€) J(f)/ln € =&, and P33 (£,€)
are part of the kernels which contain In [§ — &'[. The functions g5, (§) and hy s, (§) are reg-
ular and can be expanded in terms of a Taylor series expansion about the singular point &

as before.

The first integral on the right hand side of equation (7.26) us now regular, the second
integral on the right hand side which is hypersingular can be solve analytically using equation
(7.11), the third integral is identical with the one given in equation (7.7). The last integral
on the right hand side which is weakly singular can be integrated analytically to give:

é’/
é‘l

/hllf ¢'lde =In (¢ - 5)(«5+£)|—§ln -2 (7.27)

Detailed derivation of f3s, (£), gag, (§) and hys, (§) can be found in Dirgantara, 2000.

7.4 The dual boundary element method

The necessary conditions for the existence of principal-value integrals, assumed in the deriva-
tion of the dual boundary integral equations, impose special restrictions on the crack mod-

eling.
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Consider that collocation is always done at the boundary element nodes. Under this
circumstance, the finite-part integral of first order, in the displacement equations, requires
continuity of the displacement components at the nodes: any continuous or discontinuous
boundary element satisfies this requirement. In the tractions, the finite-part integral of second
order requires continuity of the displacement derivatives at the nodes, on a smooth boundary:
discontinuous quadratic boundary elements implicitly have the necessary smoothness, since

the nodes are internal points of element.

For the sake of simplicity of the standard boundary elements, the present work uses
discontinuous quadratic flat elements for the crack modeling. The general modeling strategy
implemented in this work is based closely to that used by Dirgantara, 2000, and can be

summarized as follows:

e (i) The crack boundaries are modeled with discontinuous quadratic flat elements.

(ii) The displacement equations is applied for collocation on one of the crack surfaces

(iii) The traction equations is applied for collocation on the opposite surface.

(iv) discontinuous quadratic flat elements are used along the remaining boundary of

the body.

7.5 Stress intensity factor evaluation

In this thesis the opening crack displacement extrapolation method is used to calculate the
stress intensity factors (SIF’s). The presence of distributed body forces in the region of the
repair, turns the J-integral method unsuitable for the SIF’s calculation. For plate problems

in combine bending and plane tension, the stress intensity factors can be represented by
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Figure 7.1: Crack tip element

superposition of five stress intensity factors, two due to membrane loads and three due to

bending and shear loads. In this work, the stress resultant intensity factors for modes I, II

and III are denoted by K7, K5 and K3, respectively. Subscript m is added for stress intensity

factors due to membrane loads, and subscript b is added for stress intensity factors due to

bending and shear loads.

The displacements on the crack surfaces near the crack tip can be obtained as:

48 [or
Eh3\ =

48 [2r
En3V =

0

A,
P Ay
Ws
Ug
Uy
0
0
24(1+v) for
5Eh ™

$2
P1
w3
Uz

Uy

0=180°

03
o1
w3
Uz

Uy

0=—180°

Kap (7.28)

The stress resultant intensity factors can then be written in terms of displacements on
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the crack surfaces as,

(K} = %C {Aw) (7.29)
where,
Ky Agps
Ky, Ad
K={ Ky ¢ MMwy={ wy (7.30)
Kin, U2
Ko Uy
and, ) )
L 0 0 0
s 0 0 0
C= 0 554?3:}3’) \/§ 0 0 (7.31)
0 0 0 Ehor 0
0 0 0 0 Eor

When discontinuous elements are used for modeling crack surfaces, then at crack tip elements

the distance of every node to the crack tip is given in (see figure 7.1). Hence,
ax_ |6 A A
(K™ = \/;c ()" — fw})

(K} = ﬁc ({w}? = {w}™) (7.32)

Then, SIF values are extrapolated to the crack tip using relationship (Dirgantara, 2000):

{K }tip _ raa

\BB _ BB KAA’)
TAa —TBB ({ I AA’{ J

. (7.33)
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Figure 7.2: Sheet with border crack

7.6 Numerical examples

7.6.1 Square sheet with border crack

Consider a rectangular plate, with a single border crack as showed in figure (7.2). The crack
length is noted by a, the width of the plate is b and the height is a. The plate is subjected to
the action of a uniform traction ¢, symmetrically applied at ends. Five cases were considered,
with a/w = 0.2, 0.3, 0.4, 0.5 and 0.6, respectively. Figure 7.3 shows a boundary element
mode used. Table 10.1 shows the stress intensity factors in mode I obtained with a converged
mesh containing 57 boundary elements, in which the crack was discretized with 7 quadratic
discontinuous boundary elements on each surface. In this table, SIFs are compared with
those reported by Portela and Aliabadi, 1992. Good agreement is obtained for a/w relations
of 0.3, 0.4 and 0.5 when using the extrapolation technique for evaluate the Ky factor. Figure

7.3 shows the deformed geometry of the plate.
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20
Figure 7.3: Boundary element mesh for border crack problem and deformed geometry

Table 7.1: KI stress intensity factor for square sheet with border crack
a/w K;/(t.y/ma) - Useche Ki/(t.\/ma) - Portela % error

0.2 1.607 1.618 0.68
0.3 2.016 2.014 0.10
0.4 2.511 2.537 1.02
0.5 3.275 3.292 0.52
0.6 4.528 4.558 0.66

7.6.2 Square sheet with central slant crack

A central slant crack in a rectangular plate is presented in figure 7.4. The plate is loaded with
a uniform traction ¢, symmetrically applied at the ends. The ratio between the height and
width of the plate is given by h/w = 2. The crack has the length 2a and makes an angle of
© = 45° with the horizontal direction. A boundary element converged mesh of 50 quadratic
elements was set up, in which 10 discontinuous elements were used on each side of the crack
with ratios 0.2 to 0.6 (see in figure 7.5). The results obtained are presented in tables 7.2 and
7.3. As can be seen, high percentual errors for K; and Kj; were obtained when compared

with theoretical values given by Portela and Aliabadi, 1992.
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Figure 7.5: DBEM model for rectangular sheet with central slant crack

7.6.3 Plate with a center crack loaded by bending and tension

A rectangular plate with a central crack loaded by edge bending and tension is analyzed (see
figure 7.6. The properties of the plate are: b/h = 2; ¢/b = 2; M, = 1.0; t = 1.0,E = 210000
and v = 0.3. For DBEM analysis, 32 boundary elements for plate border and 16 discontinuous
quadratic elements for each faces of the crack has been used (see figure 7.7). Table 7.4 shows
SIF for K7, factor for different a/b relations. The DBEM results show good agreement when
compared with those obtained by Dirgantara, 2000. Bending deflection distribution is showed

in figure 7.7.
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Table 7.2: KI stress intensity factor for square sheet with central slant crack
a/w K;/(t.y/7a) - Useche K;/(t.A/7a) - Portela % error

0.2 0.529 0.531 0.377
0.3 0.552 0.554 0.361
0.4 0.586 0.588 0.340
0.5 0.630 0.632 0.316
0.6 0.686 0.686 0.000

Table 7.3: KII stress intensity factor for square sheet with central slant crack
a/w Kir/(t.\/ma) - Useche Kir/(t.\/ma) - Portela % error

0.2 0517 0.519 0.335
0.3 0.526 0.528 0.380
0.4 0.539 0.541 0.370
05 0.556 0.558 0.360
0.6 0.577 0.579 0.345
rrrrre -
T n
2¢c
9‘ 2a ‘e
(0
SN A
o h=b/2

Figure 7.6: Rectangular plate with central crack

Table 7.4: Ky, stress intensity factor for rectangular plate with central crack

a/b Ki,/M,y/ma - Useche Ki,/M,\/ma - Dirgantara % error

0.1 0.993 0.995 0.20
0.2 0.992 0.990 0.20
0.4 0.845 0.850 0.59
0.6 0.095 0.100 0.50
0.8 0.134 0.135 0.74
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Figure 7.7: DBEM model for rectangular plate with central crack

7.6.4 Square plate with a center crack: uniform pressure

A simply supported square plate with a central crack loaded by uniform pressure p, = 1.0 is
analyzed. The properties of the plate are: b = 1; b/h = 2; £ = 1000 and v = 0.3. DBEM
contains 4 elements per side of the plate and 16 elements for each crack surface as shown
in figure 7.8. Table 7.5 shows SIF for K7y, factor for different a/b relations. DBEM results
show good agreement when compared with those obtained by Dirgantara, 2000. Bending
deflection distribution is showed in figure 7.9 and figure 7.10 compares bending deflection

along y—axis with deflection calculated using the Kirchhoff plate theory without crack.

Table 7.5: Ky, stress intensity factor for square plate with central crack
a/b K1/p.b*y/ma - Useche K1y /pob?y/Ta - Dirgantara % error

0.1 0.149 0.150 0.67
0.2 0.139 0.138 0.72
0.4 0.120 0.119 0.84
0.6 0.099 0.098 1.02
0.8 0.061 0.060 1.67
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Figure 7.9: Displacement distribution for a square plate with a central crack

7.7 Conclusions

The Dual Boundary Element Method applied to plate fracture analysis considering mem-
brane, bending moments and shear forces was presented. The hypersingular equations for
plane elasticity and Reissner plate bending were establish for in-plane and plate bending

problems. Types of singulars appearing in the traction equations has been identify and the
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Figure 7.10: Displacement along y-axis (z = 0) for a square plate with a central crack

Taylor series expansion methodology has been presented to threated it. A general methodol-
ogy for application of the dual boundary element method was presented. Numerical examples

shows a good agreement for SIF’s calculated with those reported in the literature.
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Chapter 8

Mechanics of Bonded repairs

8.1 Introduction

This chapter presents the mechanics of bonded repairs, with emphasis in those analytical
models used at present to design and evaluation of composite repairs. Due to the laminate
structure of bonded repairs, which involve bonding orthotropic composite patches to cracked
plates using polymeric adhesives, the stress states that exists in a bonded repair are very
complex (see Rose and Wang, 2002). Their primary function is to sufficiently reduce the
stress-intensity factor of the crack being repaired so that (1) the residual strength has been
restored to an acceptable level, and (2) the growth rate of the crack under fatigue condition
is sufficiently slow to ensure and an acceptable residual life. Therefore, the stress-intensity
factor of a repaired is a predominant variable in design and evaluation of repairs. Since a
bonded repair may fail in a number of modes, such as failure of the adhesive layer, failure of
the plate near the termination of the patch, and failure of the patch, analytical formulas for
stress-intensity factor calculation and the maximum shear stress in the adhesive are estab-

lished in this chapter.
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Figure 8.1: Repair configurations and coordinates. (a) Plan view, (b) Cross section along
zy-plane, (c) one-side repair, (d) plate without crack with repair

8.2 Mechanics of the repair

The problem to be considered in this work, is a cracked plate with a patch adhesively bonded
(see figure 8.1). The plate, which has a thickness of ¢, contains a through-thickness crack
of length 2a. The thickness of the patch and the adhesive layer are respectively tg and 4.
The cross sections in the yz and xz planes are depicted in figures 7.2(b) and (c¢). The Young
modulus and the Poisson’s ratio of each individual layer are denoted as E and v; Here and in
the following subscripts P, R and A refers to distinguish properties pertaining respectively
to the plate, the reinforcement and the adhesive layer. In addition, the shear modulus of the
adhesive will be denoted as p4. The crack is along the line segment |a| < a,y = 0, and patch

is over an elliptical region defined by,
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which completely covers the crack (A > a). After this repair, the plate is subjected to a

remote stress specified by,

ob =o0% of =Xo® 18 =7° (22+1® — o) (8.2)

From a geometrical consideration, bonded repairs fall into two categories: two-sided (sym-
metric) and one-sided (asymmetric) (Rose and Wang, 2002). In the former case two identical
reinforcements are bonded on the two surfaces of a cracked plate. This symmetric arrange-
ment ensures that there is no out-of-plane deflection over the repaired region, provided that
the cracked plate is subjected to extensional loads. In actual repairs, however, one-side repair

is often adopted in which composite patches are applied to only one side of the plate.

The displacement of two coincident points at the plate and the patch have to be compati-
ble with the shear deformation of the attachment ( Salgado, 1998). Two different approaches
have been used for the evaluation of the attachment shear flexibility. The first, which is the
most widely used, is to neglect the shear deformation of the sheet and patch and assume the
shear deformation of the adhesive layer to be uniform through its thickness, as showed in
figure (8.2). The second approach is to assume that the sheet and patch deform linearly in
shear and that this deformation contributes to the shear flexibility of the bonded structure.
Considering that the shear deflection takes place predominantly in the adhesive layer and
that the shear deflection of the sheet and patch is only significant near the interfaces, in this

work, the shear deflection of the sheet and patch are neglected.
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Figure 8.2: Left: Constant shear deformation approach. Right: Linear variation shear defor-
mation approach

8.3 Load transfer of bonded reinforcement for plane

stress problems

8.3.1 Uncracked sheet with isotropic patch

Consider the simple reinforcement configuration shown in figure (8.3), in which a reinforcing
strip of length 2B and thickness tg bonded to an infinite strip of thickness tp; both strips
are under plane strain conditions. The stresses and displacements in this reinforced can be
calculated explicitly using the conventional 1D theory of bonded joints, which is based on

the following assumptions:
1. Sheet and patch is treated as an elastic continuum whose deformation under plane

strain conditions is specified by longitudinal displacement « and a longitudinal tensile stress

0> (see figure (8.3)). The stress-displacement relations for the plate and the reinforcement

111



respectively are:

E, du,
- v2 dy
ER duR

= — 8.3

IR 1—v% dy (8.3)

2. The adhesive layer acts as shear spring with the adhesive shear stress 74 given by:

UR — Up

ha

TA = UA (84)

3. The shear traction exerted by the adhesive on the plate and the reinforcement ca be

replaced by an equivalent body force of Y, and Y, respectively:

TA
Y = —
P hp
TA
Yp = -4 .
R I (8.5)

In the present case, using the above equations, the equilibrium equation for the shear

stress can be written as:

A>T
Mj—ﬁmzo (8.6)
where:
o pal-vp  1-—vj
== .7
ﬁ hA |:Ephp + ERhR ( )

The solution of this equation is given by (Rose and Wang, 2002):

o (=)ma
T4 =—0 GhiFr cosh (95) sinh (5y) (8.8)
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Figure 8.3: Load transfer of bonded reinforcement in uncracked sheet

This results reveals that for B <<1, the adhesive shear stress decays exponentially from
ends (y = £B) of the overlap, as showed in figure 8.3; i.e., the load transfer effectively occurs

over a length of order 57! at the ends of the overlap.

8.3.2 Load transfer in cracked sheet

Once the stress at the prospective crack location in known, one can proceed to cut the sheet
along the line segment (|z| < a,y = 0) and a pressure equal to og is applied internally to
the faces of this cut to make these faces stress-free. Provided that the load transfer to the
reinforcement under this condition takes place in the intermediate neighborhood of the crack,

the reinforcement may be assumed to be infinite extent. Using this condition, the solution
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to the equation (7.4) is given by:
74 = Bhpoge” ¥ (8.9)

For symmetric repairs or when the repaired structure is supported against out-of-plane bend-
ing, oy is given by:

1 B _A B B\ .

where:

Z=31+8572+201+5)(B/A+ A/B+vS)+1—1v25 (8.11)

It is important to recall that the idealization used to find o relies on 3~! and considering

that the repair has elliptical form.

Finally, the stress intensity factor limit for cracked sheet with semi-infinite crack is ob-

tained using the strain-energy release rate Gi,¢ as Rose and Wang, 2002 shown:

oo go
Ko=—=——— 12
. = (8.12)
(1+8)(1-02)

For the crack with finite size, K, depends on the crack length and varies between the
lower-bound Ky = 0¢y/ma and the upper bound K., = ¢/ Vk. In general the stress-intensity

factor K, can be expressed as,

K, = Fogy/ma (8.13)

The reduction factor F' depends strongly on the parameter k£ and to a lesser extent on the

stiffness ratio S. The following interpolation function is proposed by Rose and Wang, 2002:

wka 1+ Bnka

F (ka) = [L tanh (W—k“ﬂ v (8.14)
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where constant B takes value of 3.0 for balanced repairs (S = 1.0) and 0.1 for infinitely-rigid

patch (S — o0).

8.3.3 Cracked sheet with orthotropic patch

Similar to the previous case, the problem of estimating the reduction in the crack extension

force when a cracked sheet is repaired by reinforcing orthotropic patches, starting with an

uncracked plate and finding the prospective stress at the crack’s location. In a second step,

a crack is introduced into reduced stress field and a new stress field is founded. Similar

equations to the previous ones are obtained for orthotropic repairs, to calculate shear stress

distribution and K., as presented in Rose and Wang, 2002. Since this formulation is very

involved, an approximate solution for K, is proposed:

where,

Ko =ooVTA

UEptp
P
0 (Eptp + Ertr)
A = PUSE Y
p (1 T ERtR)
ta tr tp
g = (& + s + 57)
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8.4 Bonded reinforcement for plate bending problems

8.4.1 Uncracked plate analysis

The preceding analysis is valid only when the tendency of out-of-plane bending is neglected
as in the case of symmetric repairs or one-side repairs to fully supported structures (Rose

and Wang, 2002).

For the case of unsupported one-side repairs, stress distribution in the plate and the
reinforcement can be determinated using the conventional theory of cylindrical bending of
plates. The position of the neutral plane of the composite plate consisting of the plate and

rigidly-bonded reinforcement is denoted by Zz (see figure 8.4):

_ S(tp+tr+2ty)
zZ= 20+ 35) (8.19)

The moment of inertia of the reinforced region I; is,

Ep

Li=Ip+1 8.20
t=1p+ RE;) (8.20)
where E’ refers to the plane-strain Young’s modulus (£’ = E/(1 — v?)), and,
b,
Ip = 41,2 (8.21)
t?l’% tR(tp+tR—22)2
In = (8.22)

12 4

The stress distribution in the patched plate is assumed to be linear in the thickness

direction, so that it can be specified in terms of the membrane force Ny and a bending
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Figure 8.4: Stress distribution in an uncracked plate reinforced with a patch
moment My per unit length in the direction z, as showed in figure 8.5:

o>®tp  0%t37?

N, 8.23

0 1+5 I, (8.23)
o>®thz

24

0 121, (8.24)

First equation shows that the plate in a one-side repair is transferring more membrane stress
than in an equivalent two-sided repairs. In addition, there is a bending moment acting on the
prospective crack faces (see Rose and Wang, 2002). Consequently, due to the shift neutral
plane, one-side repairs would experience not only an increase in the net force that the plate
is transmitting, but also a secondary bending moment; both contributing to a considerable

increase in stress-intensity factor (see figure 8.5).

8.4.2 Cracked plate analysis

The analysis of the stress-intensity factor for a cracked plate requires the use of the shear

deformation theory, which yields that this factor varies linearly through the plate thickness:

2
K@:&W+mi (8.25)
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Figure 8.5: One-sided patch subjected to membrane tension and bending moment

where Keqn and K denotes the membrane and bending stress intensity factors, respectively.
As in the case of plane stress problems, these factors can be founded using the strain-energy

release rate approach, to obtain:

Kyms (a) = li——vaaF (k*a) (8.26)
where k* = k/w?, with:
3tp 3ﬁtp tp 3tp EQtp
fa Mo W () g (o, By :
w + oty + in + . +(1+95)(2+ 2in) T, (8.27)
3 ( tp) Ztp (32 )
1+9)— (14— ——1 8.28
+ ( * ) K + tR tRIt tp ( )
and,
3E, [ 1 1
4 A
= 7 7 8.29
" ta [Ept?i? i ERt?I’J ( )
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K,ms is the root-mean-square stress-intensity factor, that is related to K,eqn and Ky, as,

1
K  =KZ2 . +-K; (8.30)

™ms mean 3

Finally, the root-mean-square stress-intensity factor Krars+ is given by:

Koo rus = (8.31)

8.5 Conclusions

In this chapter, the mechanics of bonded repairs and the analytical models used to design
and evaluation of composite repairs was presented. Kinematic models, for coupling actions
between plate and repairs, through the mechanical analysis of adhesive layer were showed.
Formulas for the calculation of shear stress distribution in the adhesive layer and the upper
bound for stress intensity factor for cracked plates repaired with isotropic and orthotropic

adhesive repairs, considering in-plane and out-of-plane problems, were presented.
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Chapter 9

Boundary element analysis of cracked
sheets repaired with bonded

anisotropic patches

9.1 Introduction

A boundary element formulation for the analysis of isotropic cracked sheets, repaired with
adhesively bonded anisotropic patches is presented. The sheet and the patch are modeled
using the boundary element method. The crack in the isotropic sheet is modeled using the
dual boundary element method. The interaction between the isotropic sheet and the patch is
modeled considering shear body forces uniformly distributed on the interaction zone using a
linear elastic relationship. Two different techniques are used in the present boundary element
implementation to treat the domain integrals that arise in the formulation due to shear
interaction forces. These techniques are the cell domain integration and the dual reciprocity
boundary element method. The current work analyze a composite repair patch adhesively
bonded in a metallic cracked sheet. The DBEM is used to model the isotropic cracked sheet

and the BEM is used to model the anisotropic composite patch. The interaction loading
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Figure 9.1: Cracked sheet repaired with adhesive patch

between the sheet and the patch is modeled considering the shear forces in the adhesive
layer uniformly distributed using a linear elastic relationship. Two different techniques are
used to treat domain the integrals that arise in the formulation due to the interaction shear
forces: the cell domain integration and the DRBEM. Numerical examples of the adhesive
stress analysis in cracked plate, repaired with a circular and rectangular composite patches,

are presented.

9.2 Boundary element formulation

Figure 9.1 presents a finite isotropic sheet, containing an inner crack and an adhesive patch.
In this case, the interaction forces can be treated as unknown body forces exchanged by the
sheet and the patch in the attachment sub-region. Considering that the sheet and the patch
remain flat after deformation, the two-dimensional elasticity theory can be used to model
this problem. In this case, displacements at the sheet and at the patch have to be compatible

with the shear deformation of the adhesive layer connecting them.

When the sheet is deformed due to applied loads on its boundaries, interaction forces
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occur between the sheet, with contour I's, and the repair patch, with contour I'g. In this
two-dimensional case, interaction forces in the plate directly underneath the repair patch,
and in the patch itself, can be treated as unknown body forces (action-reaction pair). As
presented in chapters 3 and 4, for plane elasticity the boundary integral equation for the

displacement of a source point x’ on the sheet is given by:

FS FS
1 *
JUP ) (0d =12 (9.1)
5.
where cS is a coefficient which depends on the position of the source point in relation to the

boundary of the sheet I's; Uy (x',x) and T};°(x’,x) are the Kelvin’s isotropic fundamental
solutions for displacements and tractions, respectively, for the two-dimensional sheet media;
uf and tf are the displacements and tractions vectors at the boundary of the sheet; fjs are

the interaction forces exchanged between the sheet and the patch in the domain Qg of the

patch; and hg is the thickness of the sheet.

Similarly, the displacement of a source point x’ on the repair is given by (see chapters 3

and 4):
o (x) +/T*Rxx R (x') dl = /U*R(x %)t (x') dT" +
r
1 *
i~ Uin (x',x) bf (x') d2 ij=1,2 (9.2)
Ry
where cf} is a coefficient which depends on the position of the source point in relation to the

boundary of the sheet I'g; U (x',x) and T;;%(x’,x) are anisotropic fundamental solutions

for the two-dimensional composite repair; uf and tf are the displacements and tractions

vectors at the boundary of the repair; bf are the interaction forces exchanged between the
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sheet and the patch in the domain Qg of the patch; and hg is the thickness of the sheet.

The crack in the isotropic sheet was modeled using the DBEM. The traction integral
equation is applied in one of the crack faces and the displacement integral equation is applied

in the other crack face. As showed in chapter 7, the traction integral equation is given by:

1
§t] )+ ni (x / i ( ( )dl =n; ( /Dl]k : (x) al' +

/ ngk (x) dQr i,j=1,2 (9.3)

where S7(x/,x) and D} (x',x) are linear combinations of derivatives of fundamentals so-
lutions for traction and displacement TZR(X/ ,x) and U;}R(X’ ,X), respectively, and n; are the

components of a unit vector outward to the boundary in the collocation point.

Now, considering a uniform shear deformation through the adhesive thickness, as proposed
by Salgado and Aliabadi, 1998, and neglecting shear deformations in the sheet and in the
patch, the body force f;(x’), that is equal to the shear stress in the adhesive 7;(x’), can
be written as a function of the difference Au; between the displacements u]S of a point x’

(x" € Qgr) on the sheet and uf of a corresponding point on the repair patch, as:
L) =7 ()= = {uf () —uff ()} =12 (9-4)

where h4 is the thickness of the adhesive layer, G 4 is the transversal stiffness modulus of the

adhesive material.
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9.3 Domain integral techniques

As can be seen, equations (9.1) and (9.2) require the calculation of domain integrals. Differ-
ent techniques has been proposed to treat these integrals. Among them, the cell integration
method and the dual reciprocity boundary element method (DRBEM) are the most used (see
Patridge et al., 1992). Recently, Albuquerque, 2001 develop the Radial Integration Method
(RIM) to treat domain integrals. In this method, the body force term is approximated with
the use of radial basis functions, as in the dual reciprocity boundary element method. The
transformation of domain integrals into boundary integrals is based on pure mathematical
treatments. Although the proposed method is more time-consuming, it presents some ad-
vantages over the dual reciprocity boundary element method as accuracy and the absence of

particular solutions in the formulation.

In this work, two different techniques were used and compared to treat the domain in-
tegrals that arise in the formulation due to the shear interaction forces. These techniques
are the cell domain integration method and the dual reciprocity boundary element method

(DRBEM).

9.3.1 Cell domain integration

In the cell domain technique, the attachment region g between the plate and the patch was
subdivided in elementary cells. The distribution of the shear stress, 7;(x’) in the adhesive
in this area is described in terms of nodal values associates to each cell. In this work two
types of cells were used. Since there exist two coincident nodes at any one crack elements,
these nodes can’t be used as collocation points because no coincident nodes can not exist in
the patch. Then, constants cells with a central node has been used to approximate the shear

stress distribution at neighborhood of the crack. Nine node quadrilateral isoparametric cells
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were used to approximate the variation of the adhesive’s shear stress in the remaining attach

area.

Then, in the cell integration method the domain integral in the equation (9.1) can be

expressed as (see Salgado and Aliabadi, 1997):

ncells

/ U5 (x',x) f; (x) 0 = — U5 (x',x) f; (x) d (9.5)
hs = o
k

and the integration is carried out on each cell. Using equation (9.4) and the bi-quadratic

isoparametric approximation proposed in this work we can write:

1 ncells

1 ncells
/ U5 £ () A = — Y / U'NdQy, | a (9.6)

S k=1

T
where, N is the matrix of bi-quadratic Lagrange shape functions and a; = {uds , uR} is the

vector of nodal displacements at cell k. In this vector, uj refers to sheet displacement at
Qr and u® refers to repair displacements. Similar expression can be obtained for domain

integrals at equations (9.2) and (9.3).

In this work the integral at right hand side of equation (9.6) is evaluate using ten-point
Gaussian quadrature. However, when the source point x’ is placed within the cell, this
integral becomes weakly singular which will cause numerical error if Gaussian quadrature
is used directly. In this case the integrand in (9.6) can be regularized at singular point by
subtracting suitable singular term, which may be treated separately as follow (Young and
Rooke, 1992):

1 -1

/ U5 Njpd, = / / U Ny — Ayl (R) J ydédn

-1-1
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1 -1

N T / / In (R) dedn (9.7)

where, R = \/ (& —&)%+ (n —mn,)? . The second integral at right hand side may be evaluated

analytically. The constant \;; is given by:
Aij = =704 (9.8)
5

where (g is the shear modulus of the sheet.

9.3.2 DRBEM integration technique

In the dual reciprocity boundary element method (Patridge et al., 1992), interaction forces
are approximated as a sum of unknown coefficients a¢ multiplied by approximating functions
J (X', %), so that:

fi(x) = dz_: aif]fik (x"l7 x) (9.9)

The coefficients af have no physical meaning. But they are related to attachment shear

forces through equation (9.4):
uf () —ulff (x) = ==Y adfh (xhx) =12 (9.10)
In this work a linear approximation function ffk (x',x) was used for the isotropic sheet:
i (x4 x) = (1=7)4; (9.11)

For the anisotropic patch, an approximation function given by Albuquerque and Sollero, 1998
was used:

;ik = Cjitm [c1 (7 m7 i0uk + OimOue)] (9.12)
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Finally, domain integral at equation (9.5) can be expressed as:

/U*S x',x) f; (x )dQR—__Zak[CZJ< )“ZJ( d>+

Sd1

[ 7 o xpadarn = [ U5 (< %) fgjdrR} (9.13)

I'r I'r

where ﬁﬁj and fgj are particular solutions for displacements and tractions corresponding to
a pre-defined function f,‘fj for the sheet. A similar approach was used to model body forces

in the patch.

9.4 Matrix formulation

9.4.1 Cell integration technique

In matrix form, equation (9.6) can be write as:

- / U Nd | a = FSu$ — FSu® (9.14)
QU .
Discretizing the boundary, the equations for isotropic sheet (including traction equation) can

be write in compact form as:

Hou® = G55 + Fiul — Fiu®

C

Iuj + Hju? = Gjt7 + Fjuj — Fju" (9.15)

where subindex ¢ and d identify boundary and domain collocation points on the sheet. The
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matrix of influence coefficients H® and G° are defined as:

nelem

H' = Y [T,
e=1 I,

nelem

G =Y / U5 6T, (9.16)

e=1 I,

Here, ¢; are the shape functions for the elements. In this work, quadratic discontinuous
elements are used to interpolate the displacement and traction variations in the boundaries

of the plate and the repair.

In a similar way, matrix equations for repair can be write as (without consider traction
forces applied at boundary repair):

R..R _ nR,,R R__P
ﬂuc*Ecu _Ecud

C

Luf + Hfu' = Fju® — Fju” (9.17)

In this case, similar significance has the H and G matrices as those in the sheet case. In
the general case, when the sheet and the patch are made of different materials, the F° and

F® matrices in equations (9.15) and (9.17) are not equals.

After some mathematical manipulation the coupling equations for the sheet and the repair

using the cell integration technique can be written as:

MS ES uS gStS
- (9.18)
MR QR uR 0

where M?, M and QR matrices involving the F matrices for sheet and repair.
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9.4.2 DRBEM integration technique

In DRBEM integration technique, equation (9.13) can be write in matrix form as:

/ Ui (%) f; (x) d = (HSOS — G5T%) o (9.19)
Qr
In this equation, the influence matrices H® and G* are those defined in equation (9.16) if
functions ﬁgj and fgj are approximate within each boundary element by using interpolation

functions and nodal values as done for 3 (x) and ¢7 (x) in equation (9.15).

Discretizing the boundary, equations for the sheet (including traction equation) can be
write in compact form as:

Hiu? — GJt] = AZo®

C

Iuj + Hjud = ASa° (9.20)

where matrix A® is given by: A° = ﬂsﬂs et TS. In similar way, the equations for repair

are:

R._R RiR __ R_R
H u. _gctc _Aca

C

Iuf + Hfuf = Ao (9.21)

Now, equation (9.10) can be write in matrix form for the sheet and the repair as:

h

ug _uf = G_zES s
h

uf —uf = AR (9.22)
Ga

Finally, the coupling equations for the sheet and the repair using the DRBEM integration
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Figure 9.2: Model of uncracked sheet repaired with adhesive isotropic patch. Left: cell model.
Right: DRM model

technique are:

= (9.23)

9.4.3 Coupled DRM and DBEM modeling considerations

If the sheet contains a crack which is overlaid by a patch, the attachment region boundary
includes the corresponding region of the crack boundary, which contains nodes with the same
coordinates in opposite crack surfaces (see Salgado and Aliabadi, 1998). As a consequence,

the direct application of the formulation presented leads to a series of difficulties as:

- Two nodes with the same coordinate produces two identical displacement compatibility

equations.

- Each point where displacement compatibility is enforced is used as DRBEM colloca-
tion point. This means having coinciding points at crack boundaries, producing DRM
coeflicient matrix become singular and requires explicit treatment and identical values

for the attachment forces at points in opposite crack surfaces.
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Salgado, 1998 shows that it is not necessary to include the crack boundary in the at-
tachment boundary region, because the contribution of the integration over this boundary
to DRM matrix coefficients is equal to zero. In this case the above difficulties are eliminated
as the exclusion of the crack boundaries from the attachment boundary, meaning that nei-
ther displacement compatibility nor DRM collocations points will be created at the crack
boundary. The absence of those points can be compensated by placing internal points in the
vicinity of the crack boundaries. Same considerations applies when cell integration method

is used.

9.5 Numerical examples

9.5.1 Circular composite patch over uncracked square sheet

A square sheet with edge of 200mm is subjected to constant tension of 0y = 1 GPa in the
direction of the y-axis. The sheet has a thickness of 1.5mm. Sheet have a Young modulus of
70G Pa and Poisson modulus of 0.3. A circular isotropic patch of radius of 30 mm thickness
of 1.5 mm is bonded at the center of sheet using an adhesive with 0.15 mm of thickness and

shear modulus of G=0.6 GPa.

This problem was analyzed to test the BEM formulation proposed in this chapter, using
the cell and the DRBEM methodologies proposed. To model the isotropic repair a quase-
isotropic formulation was used with E; = 7T0GPa, Ey = 70.0001GPa, G1o = 26.92G Pa and
v = 0.3. Figure 9.2 shows the cell and the DRBEM model used. Figure 9.3 shows the
shear stress distribution map at the adhesive layer. This graphic shows that shear stress is
zero at center of repair area and maximum at repair border as expected. Figure 9.4 shows
a convergence analysis for normalized shear stress (7/0¢) as function of normalized distance

y/R along y-axis. Both cell and DRM methods shows a rapid convergence to analytical
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Figure 9.3: Normalized shear stress map at adhesive layer for quase-isotropic patch

solution given by Rose (see previous chapter).

9.5.2 Circular composite patch over cracked square sheet

A square sheet whose edge length is 200 mm is subjected to a uniform constant tension of
1 GPa in the direction of the y-axis. A central crack of length 2 = 30 mm in the sheet is
considered. The sheet has a thickness of 1.5 mm. A circular anisotropic repair of radius equal
to 30 mm and thickness of 1.5 mm is bonded at the center of the sheet using an adhesive
with 0.15 mm of thickness and shear modulus G = 0.6 GPa. Properties of the sheet and the
patch are given in Table 9.1.

The problem was analyzed using the method of cells and the DRBEM. In both cases, the
mesh comprises of 28 discontinuous quadratic elements on the edge of the plate and on the
edge of the repair. As shown in Figure 9.5, quadratic continuum cells with nine nodes were

used to discretize the load transfer domain between the sheet and the patch except in crack’s
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Figure 9.4: Convergence analysis for normalized shear stress (7/0¢) as function of normalized
distance y/R along y-axis.

Table 9.1: Mechanical properties of the sheet and the composite patch

Sheet Patch

Young modulus (F) = 72400 Mpa E, = 25000 MPa

Poissons ratio(v) = 0.3 Ey = 208000 MPa
G12 = 72400 MPa
v1o = 0.02

neighborhood, where constants cells were used. Ten-point Gauss quadrature rule was used

to evaluate the domain’s integral at quadratics cells.

DRBEM collocations points have been concentrated near the crack and toward bound-
ary repair. The shear stress distribution in the adhesive layer obtained using the DRBEM
is shown in Figure 9.6. As was expected, shear stress gradients appear near crack’s border
where the difference between sheet and repair displacements is higher. The shear distribution

obtained in the model with cells is similar and it’s not show here.
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Figure 9.5: Model of cracked sheet repaired with bonded adhesively patch using bi-quadratic
interpolation cells. Left: cell model. Right: DRBEM model

The resultant for the shear stress in the adhesive is showed in the Figure 9.7 normalized
with respect to the sheet far field stresses (i.e. 1 GPa). This stresses has been obtained using
the equation:

. 1

T = . T2, + 72, (9.24)

where oy is the far stresses applied in the y-axis, 7, and 7, are shear stresses in the  and
y-axis directions. As can be seen in this figure the convergence of the solution is obtained
as the number of internal points increases. Further refining in the boundary mesh hasn’t
significantly affects the results. Obtained results are compared with analytical solution given
by Rose Rose and Wang, 2002 for an infinity orthotropic patches bonded to an infinity

orthotropic sheet for patch with elliptic (circular) geometry:

7 (y) = ooAte"AWD (9.25)
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Figure 9.6: Normalized shear stress force in the adhesive

Again, oy is the stress applied in the y-axis (i.e. 1 GPa) and the parameter A is given by:
-1 -1
A% = (Ga/ha) { (EShs) " + (Blhz) } (9.26)

It can be seen that good agreement was obtained even for relatively coarse internal points
grids when the DRBEM were used. Slower convergence to Rose’s solution was found with

cell method.

Figure 9.8 presents the variation of the stress intensity factor K; according to the crack
length. It is noted the asymptotic behavior that is in agreement with analysis of Rose Rose,
1981, as presented in previous chapter. In this case, the asymptotic value K., predicted by

equation 8.15, was 206.6 M Pa.m'/?. Curves in figure 9.8 tends to this asymptotic value.
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Figure 9.7: Normalized shear stress in the adhesive layer
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Figure 9.8: Variation of K Stress intensity factor with crack length
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Figure 9.9: BEM model for square sheet with rectangular patch

9.5.3 Rectangular orthotropic patch over square sheet
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Consider a thin aluminum sheet with height H, = of 254mm, width W, = 254 mm, thickness

of 5 mm with a central crack of length @ = 13 mm. repaired with boron-epoxi patch having

dimensions: W, = 130 mm; H, = 75 mm. The sheet is subjected to a remote uniaxial tensile

load of ¢ = 70 MPa, plane stress condition are assumed. The material properties of the

plate, patch and adhesive are showed in table 9.2.

Table 9.2: Mechanical properties of the sheet and the composite patch

Sheet Patch

Young modulus (E) = 72000 Mpa E, = 19600 MPa

Poissons ratio(v) = 0.33 E5 = 210000 MPa
G12 = 5460 MPa
v = 0.3

The problem was analyzed using the cell method. The mesh comprises of 28 discontinu-

ous quadratic elements on the edge of the plate. A convergence analysis for shear stress in

the adhesive layer as function of number of cells and elements at boundary of the repair was

performed. Figure 9.9(left) shows the model used.
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The shear stress distribution in the adhesive layer obtained is shown in figure 9.9. Again,
shear stress gradients appear near crack’s border where the difference between sheet and
repair displacements is higher. Similar to circular patch, shear stress concentration appears
at the patch border and, in this case, at patch corners, has can be seen. The magnitude of

shear stress in these corners is similar to those encountered near crack’s border.

To compare the behavior of the total shear stress normalized with respect to the sheet
far field stresses in the adhesive at © = 0 mm, with those encountered in the case of circular
anisotropic patch, figure 9.10 was generated. This figure shows that the normalized shear
stress variation in direction of y-axis is similar to that case. That is, a high gradients near
crack’s border and patch border is presented with low values of the shear stress in the ad-
hesive in regions far away from this borders. This behavior is generated by the geometric

discontinuity between sheet and repair.

Figure 9.11 presents the variation of the stress intensity factor K; according to the crack
length. Again, is noted the asymptotic behavior that is in agreement with analysis of Bel-
houari et al., 2004. In this case, the asymptotic value K., predicted by equation 8.15, was
18.66 M Pa.m'/?. BEM model sub-estimate the asymptotic behavior of K; as shown in this

figure, bringing an asymptotic value of 13.65 M Pa.m'/? approximately.

9.6 Special cells

Additionally to the constant cells used in the neighbourhood of the crack, four different types
of special discontinuous cells were developed to approximate the displacement field into the

cells, trying to capture in a better way the high stress gradient near the crack border. Fig-
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Figure 9.11: Variation of K; Stress intensity factor with crack length
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Figure 9.12: Types of special cells. (a) Semi-discontinuous quadratic cells. (b) Discontinuos
quadratic cells

ure 9.12-a shows three different types of special bi-quadratics cells where nodes located on
crack borders were dislocated 2/3 away from the crack. Similarly, another type of special
discontinuous cells, where all nodes used to describe the displacement field into the cells were

moved 2/3 towards interior of the cells were showed in figure 9.12-b.

Unfortunately, the use of those special cells do not improved the results as figure 9.13
shown. This figure compares the normalized shear stress distribution along y-axis obtained
using special cells with those results obtained for the circular composite patch over cracked

square sheet problem. Little differences between results were found.
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Figure 9.13: Normalized shear stress in the adhesive layer x=0 and 0 < y < R < 1 for
differents types of cells for the circular composite patch over cracked square sheet problem

9.7 Conclusions

A boundary element formulation for modeling cracked sheets repaired with composite patches
was developed. The cracked sheet was modeled with the DBEM and the patch was modeled
with the BEM. The interaction between the isotropic sheet and the patch was modeled
considering shear body forces uniformly distributed on the interaction zone using a linear
elastic relationship. The cell domain integration and the dual reciprocity have been used to
treat the domain integrals that arise in the formulation due to shear interaction forces. The
DRBEM method showed faster convergence to analytical solution than the cell method. It
can be concluded that the new formulation can be used with reasonable accuracy to study
the mechanical behavior of adhesively bonded repairs, but more research work must be done

to explain discrepancy in the stress intensity factors founded.
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Chapter 10

Boundary element analysis of cracked
plates repaired with bonded

anisotropic patches

10.1 Introduction

In this chapter, a boundary integral formulation to describe the mechanical behavior of
cracked isotropic thick plates repaired with adhesively bonded composite patch using the
Reissner and Kirchhoff plate theories, is presented. To model the isotropic crack plate, the
dual boundary element formulation proposed by Dirgantara, 2000 is used. A three parameter
boundary integral formulation for anisotropic plates is proposed to model the mechanical
response of the composite repair. Integral equations for the problem under consideration
are established. Coupling equations based on kinematic compatibility of isotropic plate and
anisotropic repair displacements and rotations and equilibrium of forces and moments acting
in the adhesive, are showed. In this way a general system of equations for the problem is

developed. Numerical examples and preliminary conclusions are presented.
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Figure 10.1: Schematic representation of the cracked plate repaired problem

10.2 Boundary integral formulation for isotropic plates

10.2.1 Displacement integral formulation for plane stress

Figure 10.1 shows a schematic representation of the problem. A cracked isotropic plate with
arbitrary geometry (but represented here as rectangular ones) is loaded with in-plane forces
(membrane forces), bending moments and distributed pressure, is repaired using adhesively

bonded composited patch. This work do not consider any kind of forces acting over this patch.

The two dimensional boundary integral equation for displacements at the boundary point

x’ € ' that describes membrane effects can be written as showed in chapter 4:

b () ug (x) = / UL, (x, %) tydl' — / TP, (%, %) updl” + hi / UL, (x',%) fadA  (10.1)
r r Pa
where o, 6 =1, 2 and cg(x’ ) is a function of the geometry at the collocation points that can
be determinated by considering rigid body movements. The boundary displacements and
tractions for the sheet are denoted by w, and t,(= ngoag), respectively; displacement and
traction fundamental solutions for the plane stress condition are UZ;(x',x) and T1,(x',x)
respectively, fz(x) denote two-dimensional body forces by unit area over a region A of patch

and hy, is the thickness of the plate. In this work no others in-plane body forces will be
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considered.

10.2.2 Two-dimensional traction integral formulation

In order to modeling cracked plates, the Dual Boundary Element Method (DBEM) will be
used. In this method, the displacement integral formulation is written for source points on one
crack surface and the traction integral equation on the other surface. Then, using the stress
and strain relationships for plane stress, the traction integral equation for two-dimensional

problems in a smooth boundary can be derived as presented in chapter 7:

1
§ta (x) / gy (X, %)t dl — ng (x / wgy (X, %) uydl

g (x / UL, (X, %) fadA (10.2)

where ng(x’) is the normal to the boundary evaluated at collocation point. UL, (x’,x) and

TP

sy (X, %) are the traction fundamental solution for two-dimensional problems.

10.2.3 Displacement integral equation for plate bending

If w, are defined as rotations in the z, direction, ws is the deflection of the plate along x3
as shown in figure 10.2, ¢¥ and ¢l are the distribution of body forces in moment and the
out-of-plane body force per unit area, respectively, in the patch area A and p, is the pressure
force applied in the domain of the plate € (considered constant in this work); the boundary

integrals for the plate bending problem can be obtained as (see chapter 5):

ch (x') wy (x) /VVZk x', x) prdl’ — /sz x', X) wdequO/VVZ3 x',x) dQ)

/ P (x',x) gl dA (10.3)
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Figure 10.2: Definition of boundary and distributed body forces and moments at isotropic
plate

where k = 1...3. W[i(x/,x) and PI;(x’,x) are the fundamental solutions for Reissner’s
plate model and p, = M,gng, p3 = Qsng. Constant cl; has a similar significance with those

at in-plane displacement problem.

10.2.4 Traction integral equation for plate bending

In a similar way, fracture mechanics problems involving plate bending can be modeled using

DBEM. In this case, the traction equation can be written as:

—pi (X)) = ng(x) /Wigk (x',x) ppdl’ — ng (x') /Pf;k (x',x) widl

+7”Lg po/ iB3 X , X dQ+ng / Bk X X qy. PdA (104)

where W (x,x) and Pj; (x,x) are the traction fundamental solution for Reissner’s plate,

as showed in chapter 7.
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Figure 10.3: Definition of boundary and distributed body forces and moments at repair

10.3 Boundary integral equation for anisotropic repair

10.3.1 Displacement integral formulation for plane stress

Similarly to the isotropic case, the in-plane displacements of a point x’ in the anisotropic

patch are given by (see chapter 3):
uﬂ+/TR x', x) g’dF— / (x',x f (10.5)

where Ta (x',x) and U, 5(x x) are the traction and displacements fundamental solutions for
anisotropic plane elasticity problems and hg represents the repair thickness. Others variables
have similar meaning to the isotropic case. In this work, loads acting over the boundary of
the repair are not consider. Because of this, the integral term containing traction boundary

forces wasn’t included into equation 10.5.

10.3.2 Displacement integral formulation for bending plate

In this work, the plate bending response of the repair is modeled using the Kirchhoff’s plate

theory as presented in chapter 6.

From the generalized Rayleigh-Green identity, if we choose wf(x) as the deflection of the
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plate under consideration, and W (x’, x) as the fundamental solution and making the use of
the properties of Dirac d-function, the following integral representation is obtained (see Shi

and Bezine, 1988):

D (x) = = [ {Va (¢, 3) w () = My (,30) w0l (x) + W () 0 ()

W (x',x) v, (x)} dT" + Em: {T, ¥, x)w(x) =W (x',x)t, (x)}, (10.6)

=1

where wZ(x) is the tangential rotation, v,(x) and m,(x) are the shear force and the tangen-
tial moment, respectively, and ¢,(x) is the normal moment. V,,(x/,x), M, (x/,x), W(x/, x),
T,(x',x) and W, (x/,x) are the fundamental solutions for Kirchhoff plate. The last term at
right hand side represents corner effects, where m represents the number of corner points of

the boundary.

For a plate bending problem, there always two unknows at any point of the boundary (see
figure 10.3). Consequently a second boundary integral equation is obtained by differentiating
last equation with respect to point x’ in the direction of the outward unit normal ng at

collocation point:

%D22w,no (x') + F/ [ano (x',x) w' (x) dl' — My, 5, (x',x) w,]fz (x) + Wgn (x',x) my, (x) —
W, (X', %) v, (x)] dT + Z [ oy (X x) 0 (%) — W, (%, %) 1, (X)L =(00.7)

10.4 Three parameter formulation for Kirchhoff plates

A drawback appears trying to coupling above formulation with Reissner’s plate, to model the
interaction between plate and repair. In fact, this formulation has two cinematic unknows

variables. i.e., w and w,, (deflection and tangential rotation) at every point, whereas Reiss-
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ner’s plate model has three: w, w,; and w49, i.e., deflection and two rotations. In this way,

Kirchhoff plate and the Reissner plate models are kinematically incompatibles.
An alternative boundary integral formulation for Kirchhoff plate’s model with three un-
knows at every point can be establish considering the original form of the Betti’ theorem for

the Kirchhoff plate given in chapter 6.

From the equilibrium of forces and moments, we can write (see chapter 6):

OM,y  OM,, B
o + ay Qz+my =0
oM., OM,, B
ax + 8—y - Qy + my =0
0Q, | 0Qy
S — T pr— 1 .
O + By Q:+q=0 (10.8)

The relation between internal moments and resultants of moments acting in a plane with
normal 77 is given by:

Mz sz M;ty Ny
- (10.9)
M, My, My, Ty

In a similarly, the relationship between internal shear force and a shear force acting at a

plane with normal 77 is:

Using Betti theorem, we can relate two states of stress-deformation of a linear material as:

/O'ijﬁjde = / O';-;Eide (1011)

Q Q
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For Kirchhoff plate theory we have:

0w

Exx = — R 7 o5
Ox?

0w

8 _— —_—
9y ayz
0*w

vy = —2
Ty Z@x@y

Replacing these expressions on the left hand side of eqn. 10.11 we have:

* 8210* 82111* 82w*
/Uz'jEide = —Z/ {am (W) o (8—y2> A (ax—ayﬂ dQ
0

Q

Considering the resultant of moments:

t/2
M, / 203,02

—t/2

t/2

M :/ 20y A2
vy )2 Oyy

t/2
M,, = / 2Tpyd2
y T

Integrating throughout the thickness of the plate equation (10.13), we have:

. aQw* t/2 aQw* t/2
Q/Jijsijdﬂ = —A/{< 922 > (/t/2 chmdz) + ( B ) (/t/Q zayydz>

O*w* t/2
+ 2 (&an) </ o ZTgﬁydz) } dA
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then,

*w* O*w* d*w*
o O — - - M, | —— 2M,, | ——— A 10.1
/a”s”dg /“M ( - > + M,, ( 5y ) +2M,, (awyﬂd (10.16)

Q

The right-hand-side of above equation can be rewritten considering that:

d*w* 0 ow* OM,., Ow*
Mm(@:ﬁ) B %(Mm&:)_ or Oz

02w* 0 ow* oM, Ow*
= - M _ yy
Myy < dy? ) dy ( oy > dy Oy

OPw* 0 ow* oM, ow* 0 ow* oMy, Ow*
My | —— ] = — (M, - — (M, — ———{10.17
Y (89581/) oy ( Y 0w > oy Oz + ox ( Y oy > or dy )
Replacing into equation (10.16):
0 ow* OMy, Ow* 0 ow* oM, Ow*
ed= — [ | L (M - e Y —w
Q/ 7% Z [8x ( 7 Ox > ox Ox + dy ( oy ) dy Oy

0 ow* oMy, ow* 0 ow* oMy, Ow*
— | M, — 2l — | M, — 2l 40.18
+ 8y( y@x) oy 8x+8x( y@y) ox Gy}do )

Now considering the Gauss-Green theorem applied to terms 1, 3, 5 and 7 of the R.H.S. of

above equation:
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/% (szaa—f> dA = /MI *nIdF
A

Substituting into equation (10.18):

ow* ow*
/aus A= — / (anm+szny)a—ii+(Mmynw+Myyny) 52} dr
A rt
[(OM,, OM,,\ Ow* oM,  OM,,\ ow*
A (10.1
+A/_(8x+0y>8x+<8y+8x ayd(og)

Considering the equations (10.8) and (10.9), the R.H.S. of equation (10.19) can be write as:

ow* ow* ow* ow*
[t (Mm% ’ My%) e+ (Qﬂ% ¥ @y@) i

A r
ow* ow*

The second integral at R.H.S. can be re-written as:

ow* ow* . 0 % 0 a@m 8@ *
Ot O T B R

(10.21)

Applying the Gauss-Green theorem to the first integral at R.H.S and considering the third

equation at equations (10.8) applied to the second integral at R.H.S., we have:
ow* ow* . «
/ Qm an—y dA = /(anx + Qyny) w dF+/qw dA (10.22)
r A

Finally, substituting equation (10.10) into above equation and substituting this equation into

equation (10.20) we obtain:

/aws A = —/ 2 2 o dF+/qw*dA
oz oy 4

A r
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/mz dA / (10.23)

In a similar way the R.H.S. of equation (10.11) can be written as:

/ ei0,dA = / <M;;gw n M*Zw + Q;w) dr + / ¢*wdA
A T A

/ SodA - / —dA (10.24)

Replacing equations (10.23) and (10.24) into equation (10.11) we obtain finally, the Somigliana’s

identity for the Kirchhoff’s plate problem:

—/<Mx%+My%—f+Qn )dFJr/qw*dA /m 9w 14— /mya dA =
T
/(M*—+M*Z—+Q w> dr+/q wdA — /m I ga - / dA(lO 25)

The above equation relates two states of an elastic material. In order to apply this equation
to solve bending problems, we need to consider one of states as known and other as the
state which stands for the problem which we want to analyze. To obtain a boundary integral
equation, the known state is chosen so that the domain’s integrals given by the last three
integrals at R.H.S. of equation (10.25) vanishes. Using the properties of Dirac delta function

to represents ¢* and considering m; = 0 and my = 0, these integrals are written as:
/q*wdA = /5(X',X) wdA = w (x')
A

A/ wg—idA -0
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/ w24 — (10.26)
A

where x’ is the point where the load is applied, known as source point, and x is the point where
the deflection is observed, known as field point. The state corresponding to a linear material
under loading of a Dirac delta function is known as fundamental state and the variables of
equation (10.25) related to this state (w*, Q;, M, M;) are known as fundamental solutions
which are computed analytically. Considering the state ” =7 as the fundamental state,
equation (10.25) can be written as:

cw (x') — / <M; (x',x) w + M, (x', %) gw

/ g ay—i—Qn(x,x)w)dF—

a * / a * /

r

ox oy

+ /qw* (x',x) dA—/mmaw(X’x)dA—/myaw(X’x)dA (10.27)
A A A

Alternatively, the boundary integrals at equation (10.27) can be expressed in terms of normal

and tangent moments M,, and M,,, using the following relation:

M:r = Mnnl + Mnssl

My = Mnng + MnsSQ (1028)

where n; and s; are the unit-normal and unit-tangent vectors at boundary evaluation point.

Replacing into equation (10.27) and simplifying we obtain:

0 0
cw (x') — / (Mn* (x',x) % + M}, (X', %) % +Q; (X, %) w) dl' =
r
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= [ (g, 2Dy X)) )
on Os

+/qw* (x',x)dA — /mzaw*a(;(/’X)dA — /myaw*(X/’X)dA (10.29)
A
Variables this equation are displacements w, rotations dw/0n, moments M, and M,,, and
loads @),,. For a given boundary condition, some of these variables are known. In order
to have an equal number of equations and unknown variables, it is necessary to write an
integral equation corresponding to the derivative of displacement w in relation to a cartesian
coordinate system fixed in the source point, i.e., the point where the Dirac delta of the
fundamental state is applied. The axis directions of this coordinate system are coincident

with normal and tangent to the boundary directions in the source point:

on, on, Mo on,

0 |ow* (x,x) J |ow* (x',x) a . ..,
_F/ (Mna—no [T} +Mnsa—no [T} +Qn87 [w (X,X)]) dF

ow , , oMy, ow OMp,  , Ow 0Q; B
C (X)_F/( (X’x)8n+ B (x',x) 83+ (x,x)w)df‘_

o

N /q@w %) g4 /mx {J] aa— [m, 0 [%y)] dA (10.30)
A o
and
ow , , oM ow  OM;, ow 0Q; B
C@so(x) F/(880( )8_+ D5, (x',x >8s+830 (x/, x)w)dl“

(52 R [ o )

ow* (x',x) 0 [ Ow* (x',x) B 0 [ Ow* (x',x)
+/[an0 dA A/mma% {81‘ dA A/my@so S| dA (1031

154



a Adnhesive layer

)
_Y
ha

z t

fif .
qs Isotropic plate
Lx R

Figure 10.4: Forces and moments at x; — z plane for equilibrium equation

Since, neither normal or tangent vectors can be defined at any internal point (as defined for
points at the boundary), the "normal” direction for internal points will be defined to have

the z-axis direction.

Using equations (10.29) through (10.31) we have a formulation kinematically compatible

with the Reissner plate model.

10.5 Coupling equations

Isotropic plate equations has fifteen unknowns variables: five displacements (or tractions) at
boundary and five unknowns displacements and five interaction body forces at any point in
the repair region. In addition, ten unknows appears at repair: five displacements (at bound-
ary and domain) and five interaction body forces (at domain). In this way we have twenty

five unknows in the problem.

Boundary integral equations for isotropic plate and the anisotropic repair presented, repre-
sents fifteen equations and twenty five unknows. Ten additional equations must be provided.
Additional equations can be written if kinematic compatibility between plate’s and repair
and the equilibrium conditions at adhesive layer, are considered. In this way a total of twenty

five equations could be written.
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| Isotropic plate

Figure 10.5: Displacements components at adhesive interfaces for shear stress definition

10.5.1 Equilibrium conditions at adhesive layer

The components of forces and moments acting in the z — x plane, the equilibrium of the

adhesive layer can be written as (see figure 10.4):

NF, = f{f+ff=0
SF, = ¢ 4+4¢'=0
S, - qf+q§+fﬁ<hA+

hp + h
M) =0 (10.32)

2
Where h, represents the thickness of the adhesive. In a similar way, equilibrium equations
can be written for x — y and y — z planes. In vector form, equations above can be expressed

as:

foa + 1 =0
g5 +a5 =0
he +h
af +af + IF <hA + %) = (10.33)
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10.5.2 Cinematic compatibility equations

The shear force 74, acting at interior of adhesive layer can be written as:

Tio = fa = HaVa (10.34)

where 114 is the shear modulus of the adhesive and 3, is the shear deformation in the «a

direction that can be write as (see figure 10.5):

U —U3 1 r_hr g P, he p
Y3a = T = H { (ua — 7’(1}& — Ua + 711)& (1035)

Substituting into equation (10.34) we have:
h h h
AR = (uf - wa) - <u§ + wa) (10.36)

Finally, we can consider that deflection and rotation angles at coincident points at plate and

repair are related by:

wf = wf
¢ = C(wh-wl) (10.37)

where C' = D(1 —v)A?/2. In this way equations (10.31) through (10.37) represents ten addi-
tional equations obtained by considering equilibrium and cinematic compatibility conditions

in the adhesive layer.
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10.6 Boundary element equations for the plate

10.6.1 In-plane equations

Using the boundary element method as described in chapter 5, the discretized boundary
equations for in-plane elasticity (designed as m) for the isotropic plate p, collocations can be

written in matrix form as:

PH™ 0 u? PG "B™ P£0
‘ = {tP} + {7} + (10.38)
PH? 1 u PG "B P£9

where sub-index ¢ and d refers boundary and domain collocation points respectively. Above

equation can be write in compact form as (without considering body forces f°):

PHMyP — PGM¢P | PRMgP (10.39)

Using the cell method, the matrix "B is given by:
Ncell
JUSfPdY=| Y [ UjNidQean| f£="BYEP kE=1...ND (10.40)
Q =1 Qcell

where ND and NC' are the number of collocation points at domain and boundary of the

isotropic plate, respectively.

10.6.2 Bending equations

Bending equations (identify by (b)) for the isotropic plate are given by:

PHY 0 | | w? 'Gy "B ’q,
= {p"}+ {d’} + (10.41)
PHy 1| | wg Gy "Bj Pdg
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In compact form this equation can be write as:

PHBuP _ PGBtP + PBBfP + qO

where vector q° represents pressure forces acting on the plate.

10.6.3 Isotropic plate equations

(10.42)

The complete boundary element method equations for the isotropic plate can be write in

matrix form, considering equations (10.38) and (10.41) as:

_pH? o 0 0] u? _pG;” 0 | _PB?
PH? T 0 0 u PGT 0 tP "B
0 0 PH® O wP - 0 PrG? p’ ’ 0
0 0 PHY I wh 0 PG 0

In compact form, this equation can be written as:

PHxP = PGy” + PBz” + °F

PRY

c

pBg

fP

p£O
p£0

fd
0
0

Pqy
(10.43)

(10.44)

Considering that vector z”” will be an unknown vector always, equation (10.44) can by re-

written as:

{ Py _PR } — PGy 4 oF
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Expanding we have:

PH™ 0 0 0 —PB™
PH? 1 0 0 —B7
0 0 P*H' 0 O

(&

0 0PH} I O

0

0

_prRY

c

_pBZ

pCIm

Gc

pCIm
G

0
0
sz

pGZ

tP

p£0
fc
p£O
fd
0

0
Pqy

10.7 Boundary element equations for the repair

(10.46)

In a similar way as the case of isotropic plate, boundary element equations for the repair are:

RHm 0
Rm |

0
0
RHb

RHIC)Z

_RBZL
—RB?
0
0

0
0

_RBI;

—RBZ

(10.47)

Considering that all collocation points of the repair are coupled with the domain’s collocation

points of the plate, the above equation can be written as:

RHm

0
RHb

_RBm

_RBb
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where,
FH™ 0 FHY 0

‘ . FH = ‘ (10.49)
EHT 1 EHY T

RHm —

10.8 Equilibrium equations for the adhesive layer

First equation in (10.33) can be written in matrix form as:

£ 1 0

£r £ 0

SR D S = P11 =0 (10.50)
fXn fXn 0

Second and third equations in (10.33) can be written in compact form as:

ar aff £t 0
P R R

q q f 0
S SR SEE o 1Y R = Iq" +Iq" + CifF =0  (10.51)

qu QﬁD fJI\?D 0

where, ) i
1
1
0
hp + h
C, = <hA + P;FR> 1 (10.52)
1
0
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10.9 Kinematic compatibility equations for displace-

ments

Equation (10.36) can be write in matrix form as:

R P R P

u; Ujq w1 Wid

R P R P

U Uyq hr cr W3 hp cr Wod

- -5 Y1 -5 Y
2 2
R P R P
Uxp U(NDyd WND W(ND)d
or,
hr hr ha
A

Finally, equations (10.37) can be written as:
C (WR - de) =q°

where, C is an incidence matrix.

10.10 Plate-repair coupling equations

Substituting equation (10.50) into (10.51) we have:

Iq” + I — CP =0

=0

3!

R
fND

(10.53)

(10.54)

(10.55)

(10.56)

In similar way, replacing equations (10.50) and (10.55) into equation (10.54) we obtain:

TIu® — Tu} — Coq” — CTwl + Af" =0
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where the constant 1/2(hg + hp) was included into matrix CT, Cy = (hg/2)C:"C~! and

A = hs/G4l. Replacing equations (10.50) and (10.55) into equation (10.48) we obtain:

EH™ 0

rgm 0

(10.58)

Finally, considering equations (10.46) and (10.56) through (10.58) we obtain the complete

equations system for the problem:

_ PH 0 0 0
PHP I 0 0
0 0 *H. 0O
0 0 PHY I
0 0 0 0

0 0 o FH
0 0 0 0

o -1 Cc, -CT

—"B™ 0
—PB7 0
0o B!
0o -rBY
Em™ 0
0 0
-C, I
A 0
_pGT
p(;g%
0
0
0
0
0
0
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Figure 10.6: Left: BEM model. Right: Shear stress at adhesive layer

10.11 Numerical examples

10.11.1 Plate with adhesively bonded isotropic circular patch

To test the formulation developed here a square isotropic plate with adhesively bonded
isotropic circular patch modeled (using the Reissner plate theory) will be analyzed and shear
stress distribution in the repair zone will be compared with the theoretical solution given by
Rose and Wang, 2002 for isotropic sheet repaired with isotropic repair. The wide of the plate
is 90mm, thickness 1.5mm and it is subject to in-plane load oy. The material constants are
chosen as £ = 7T0GPa, v = 0.3. A circular isotropic patch of radius R = 30mm is bonded
to the sheet over the region A{z? + x3}. The patch has the same material as the plate with
thickness hy = 1.5mm. The adhesive layer has thickness h, = 0.15mm and shear modulus
G, = 0.6GPa. The boundary of the plate is subdivided into 25 quadratic discontinuous
elements and 24 elements at boundary patch (see figure 10.6). 56 continuous and constant
bi-quadratic cells has been used. Simply supported conditions are applied to the plate. Fig-
ure 10.6 shows the shear stress distribution in the adhesive layer and figure 10.7 presents

the normalized shear stress in the adhesive along y-axis obtained compared with analytic
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Figure 10.7: Shear stress distribution in the adhesive layer along y-axis

solution given by Rose and Wang, 2002 for the two-dimensional case .

10.11.2 Plate with adhesively bonded anisotropic circular patch

The same problem is analyzed but now considering an anisotropic patch. Mechanical prop-
erties considered are: Fy = 256G Pa, Fs = 208G Pa, G193 = 72.4GPa and v = 0.02. Twelve
boundary element was used to discretized the plate border and 24 quadratic discontinuous
boundary elements in the repair boundary (see figure 10.8). Similar boundary conditions and

loads were applied.

Figure 10.8(right) shows the normalized shear stress distribution in the adhesive layer.

A similar distribution with that encountered for the isotropic repair is observed. Figure

ISince do not exist analytic solution for thick plates repaired with isotropic patch, the shear stress dis-
tribution along y-axis in the adhesive layer, was compared with the analytic solution given by Rose for the
two-dimensional problem. Furthermore, in this problem the bending effect on the response of the plate is
neglectible.
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Figure 10.8: Left: DBEM model. Right: Normalized shear stress map in the adhesive Center:
Normalized Shear stress in the adhesive layer along y-axis

10.8(center) shows the normalized shear stress in the adhesive along y-axis compared with
analytic solution given by Rose and Wang, 2002 for two-dimensional isotropic repair. Since
do not exist analytic solution for the case of thick plate repaired with composite patch, the
shear stress distribution along y-axis in the adhesive layer, was compared with the analytic
solution given by Rose for the two-dimensional isotropic patch problem. In this problem, we

can note the effect the bending effect on the shear stress in the adhesive layer.
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10.11.3 Cracked plate with bonded anisotropic circular patch

A Square isotropic cracked plate with adhesively bonded anisotropic circular patch is an-
alyzed. The length of the crack is 2a = 15mm. The wide of the plate is 100mm, thick-
ness 1.5mm and it is subject to in-plane load oy, along of y = +50mm. The material
constants are chosen as F = 70GPa, v = 0.3. A circular orthotropic patch with radius
R = 30mm is bonded to the plate. The material properties are: Fy = 25G Pa, F5 = 208G Pa,
Gy = 72.4GPa and v = 0.02, with thickness of 1.5mm. The adhesive layer has thickness

h, = 0.15mm and shear modulus G, = 0.6G Pa.

A similar BEM model used in the example 8.5.2. Seven boundary element was used to
discretized the plate border and 24 quadratic discontinuous boundary elements in the repair
boundary (see figure 10.9). Plate’s border at y = +50mm are simply supported. Figure
10.9(right) shows the shear stress distribution in the adhesive layer. A similar distribution
with that encountered for the isotropic repair is observed. Figure 10.9(center) shows the
normalized shear stress in the adhesive along y-axis compared with solution obtained for the
two-dimensional problem. As can be seen the shear stress in adhesive is lower than those
obtained for the two-dimensional problem because the presence of bending effect in the plate.
Additional verification is presented in this figure. The anisotropic formulation proposed in
this chapter is verified using an quase-isotropic model for the repair and solution is compared

with the fully isotropic patch. Good correlation is obtained.

Finally, figure 10.10 shows the Kgys (given by equation (8.30)) as function of crack
length. As in two-dimensional problems an asymptotic behavior is founded. The asymptotic
analytical value for infinite crack predicted by equation (8.31) is 355.6M Pa.m'/2. A good
asymptotic behavior of the Kryrs predicted by the BEM model is observed if we consider

that equation 8.30 only apply for plates with infinite crack.
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10.11.4 Rectangular cracked plate repaired with bonded patch

The boundary element analysis of a rectangular isotropic fracture plate repaired with adhe-
sively bonded anisotropic circular patch is presented. The plate is 248mm x 118mm, thickness
hp = 2.0mm and it is subject to in-plane load oy = 79.4M Pa. The material constants are
chosen as F = 72.39GPa, v = 0.33. A circular anisotropic patch of radius R = 25mm and
thickness hg = 3.2mm is bonded to the plate (see figure 10.11). The mechanical properties
are of patch are: Fy = 37.35GPa, Ey = 11.38GPa, G135 = 5.97GPa and v = 0.38. The
adhesive layer has thickness h, = 0.1mm and shear modulus G, = 0.44G Pa. This analysis
was performed using a combined boundary element method and finite element method for-
mulation as presented by Sekine et al., 2005, where the cracked plate is modeled using a 3D

BEM model and the repair a plate model.

A total of 28 quadratic discontinuous boundary elements were used to discretize the
boundary of the isotropic cracked plate. Meshes from 4 to 16 quadratic discontinuous bound-
ary elements were used to discretize the crack faces. Patch domain was discretized using 128
cells and 24 quadratic discontinuous elements has been used. Simply supported conditions
were applied to all sides. The resultant shear stress distribution in the adhesive layer ob-

tained is showed in Figure 10.11.

Table 10.1 compares values for the maximum stress intensity factor: Kpnee = Kpn +

6/h%KY calculated along plate thickness with those K reported in Sekine et al., 2005.
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Table 10.1: Stress intensity factors for cracked plate repaired with composite patch
z(mm) Krmaz(M Pam'/?) BEM K;(M Pam'/?)-Sekine error

0.40 13.82 12.60 4.32%
0.80 11.56 11.09 4.24%
1.20 9.89 9.52 3.89%
1.60 8.15 7.84 3.95%

10.12 Conclusions

A boundary element method formulation for the analysis of cracked isotropic thick plates
repaired with symmetrical laminate composite plates, was developed. The equations for the
repair is based on boundary integral formulation considering three parameters, based on the
theory of plates of Kirchhoff as a generalization of the integral formulation of thin plates
traditionally used. The isotropic model linear proposed for the adhesive was extended to
consider shear forces and bending moments acting on it. This way, equations for kinematic
coupling for displacements and rotations, as well as a system of equations that describe the
equilibrium of forces and moments that act on the adhesive, were established. Domains
integrals containing forces and moments in the repair’s area are threated with using the cell
method. A special type of semi-discontinuous bi-quadratic cells was used in the edge of the
repair, used altogether with constant and continuous bi-quadratic cells. In the analysis of
problems involving isotropic repairs it was observed that the shear stress in the adhesive are
comparable with those in the literature. Results obtained for the problem with anisotropic
repair are similar with those encountered in the case of isotropic repair, but needs to be

validated yet.
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Chapter 11

Conclusions

11.1 Final Conclusions

This work was developed a boundary element method formulation for the analysis of cracked

plates repaired with symmetrical laminate composite materials.

A revision of the theory elasticity applied to bi-dimensional problems involving isotropic
and anisotropic materials, as well as the theories of Kichhoff for anisotropic thin plate bend-
ing and the theory of Reissner for isotropic thick plates, was presented. For anisotropic
materials, was used the theory of symmetrical laminates to obtain the mechanical properties
of the plate from the mechanical properties of the laminate components. Also, the five stress
intensity factors (two in-plane response and three accounting bending effects) were presented.

The application of the extrapolation method for calculate these factors was showed.

The direct boundary element method for bi-dimensional elasticity problems for isotropic
and anisotropic materials, was presented. Also, the dual boundary element method for the
analysis of fracture mechanics problems in isotropic plane elasticity and thick plate bending.

The domains integrals containing in-plane distributed body forces and those containing pres-
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sure forces acting on the isotropic plate were transformed to boundary integral ones using
the divergence theorem. Singular and hypersingular integrals were treated using rigid body
considerations and exact integration, in the case of plane elasticity. For thick plate bending,
expansion by Taylor’s series for the treatment of strong and hypersingular integrals, along
with element subdivision and cubic Telles transformation for strong and weakly singularities
were used. Good correlation of the results were obtained, when compared with those reported
in the literature. But, the stress intensity factors calculated here do not show satisfactory

results in all the cases. More research work must be done to improve this results.

Based on formulations presented, a boundary element method formulation for the anal-
ysis of cracked isotropic sheet repaired with symmetrical laminate composite materials, was
presented. For this, an isotropic linear elastic response and a shear deformational state in the
adhesive is considered. In this way, coupling equations based on compatibility kinematics and
forces balance considerations between displacements and the body forces in the repair area.
Domain’s integrals containing these interaction forces were threated by means of the cell
method, using for it constant cells in the fracture neighborhood and continuous bi-quadratic
cells for the rest of the region. This way, a general system of equations for the problem was

established.

For the analyzed cases comparable results were obtained for shear stress in the adhesive
when compared with the theoretical solutions and other numerical results. Differences be-
tween results could become from the poor interpolation capacity of the constant cells in the
proximity of the crack, due to the high stress gradient that appears in this zone. In some
cases, the stress intensity factors obtained differs with those reported in the literature. These
differences could be originated in the use of cells, the DRBEM collocations points distribution

or by the extrapolation method used.
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Finally, a boundary element method formulation for the analysis of cracked isotropic thick
plates repaired with symmetrical laminate composite plates, was developed. The equations
for the repair is based in an boundary integral formulation considering three parameters,
based on the theory of plates of Kirchhoff as a generalization of the integral formulation of
thin plates traditionally used. The isotropic model linear proposed for the adhesive it was
extended to consider shear forces and bending moments acting on it. This way, equations
for kinematic coupling for displacements and rotations, as well as a system of equations that
describe the equilibrium of forces and moments that act on the adhesive, were established.
Domains integrals containing forces and moments in the repair’s area are threated with using
the cell method. A special type of semi-discontinuous bi-quadratic cells was used in the edge
of the repair, used altogether with constant and continuous bi-quadratic cells. In the analysis
of problems involving isotropic repairs it was observed that the shear stress in the adhesive are
comparable with those in the literature. Results obtained for the problem with anisotropic
repair are similar with those encountered in the case of isotropic repair, including the stress
intensity factors calculated. But more research work must be done to improve the formulation

proposed in this work.

11.2 Future work

The future work proposed are:

- Boundary element analysis of cracked stiffened panels repaired with adhesively composite
patchs.

- Boundary element analysis of cracked assembled plate-structures repaired with adhe-
sively composite patchs.

- Fiber direction optimization of adhesively composite patchs.

- Crack propagation analysis in cracked stiffened panels repaired with adhesively compos-

ite patchs.
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