

MAURO FERNANDO BRAGANTINI

ESTUDO DE UMA BOMBA CENTRÍFUGA SUBMERSA OPERANDO COMO TURBINA

CAMPINAS 2012

UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE ENGENHARIA MECÂNICA E INSTITUTO DE GEOCIÊNCIAS

MAURO FERNANDO BRAGANTINI

ESTUDO DE UMA BOMBA CENTRÍFUGA SUBMERSA OPERANDO COMO TURBINA

Orientador: Prof. Dr. Antonio Carlos Bannwart

Dissertação de Mestrado apresentada ao Programa de Pós-Graduação em Ciências e Engenharia de Petróleo da Faculdade de Engenharia Mecânica e Instituto de Geociências da Universidade Estadual de Campinas para obtenção do título de Mestre em Ciências e Engenharia de Petróleo na área de Explotação.

Este exemplar corresponde à versão final da dissertação defendida pelo aluno Mauro Fernando Bragantini e orientada pelo Prof. Dr. Antonio Carlos Bannwart.

Orientador

CAMPINAS 2012

FICHA CATALOGRÁFICA ELABORADA PELA BIBLIOTECA DA ÁREA DE ENGENHARIA E ARQUITETURA - BAE - UNICAMP

٦

B73e	Bragantini, Mauro Fernando Estudo de uma bomba centrífuga submersa operando como turbina / Mauro Fernando BragantiniCampinas, SP: [s.n.], 2012.
	Orientador: Antonio Carlos Bannwart. Dissertação de Mestrado - Universidade Estadual de Campinas, Faculdade de Engenharia Mecânica e Instituto de Geociências.
	1. Bombas centrifugas. 2. Turbinas. 3. Petroleo em terras submersas. I. Bannwart, Antonio Carlos, 1955 II. Universidade Estadual de Campinas. Faculdade de Engenharia Mecânica e Instituto de Geociências. III. Título.

Título em Inglês: Study of a bore-hole submersible pump running as turbine Palavras-chave em Inglês: Centrifugal pumps, Turbines, Petroleum in submerged lands Área de concentração: Explotação

Titulação: Mestre em Ciências e Engenharia de Petróleo Banca examinadora: Antonio Carlos Bannwart, José Tomaz Vieira Pereira, Valdir Estevam, Augusto Nelson Carvalho Viana Data da defesa: 14-12-2012 Programa de Pós Graduação: Ciências e Engenharia de Petróleo

UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE ENGENHARIA MECÂNICA E INSTITUTO DE GEOCIÊNCIAS

DISSERTAÇÃO DE MESTRADO ACADÊMICO

ESTUDO DE UMA BOMBA CENTRÍFUGA SUBMERSA OPERANDO COMO TURBINA

Autor: Mauro Fernando Bragantini Orientador: Prof. Dr. Antonio Carlos Bannwart

A banca examinadora composta pelos membros abaixo aprovou esta dissertação:

Prof. Dr. José Tomaz Vieira Pereira, Presidente NIPE/UNICAMP

Valdin Ertera

Dr. Valdir Estevam PETROBRAS/RJ

Prof. Dr. Augusto Nelson Carvalho Viana

Prof. Dr. Augusto Nelson Carvalho Viana UNIFEI/ITAJUBA

Campinas, 14 de dezembro de 2012

DEDICATÓRIA

Dedico este trabalho à minha família, da qual abdiquei muitas horas de convívio, devido esta longa jornada, mas manteve-se sempre serena e incentivadora, mesmo nos momentos mais críticos.

AGRADECIMENTOS

À KSB Bombas Hidráulicas SA, na figura do seu Diretor Industrial, Sr. Roque Zanatta, que permitiu meu breve retorno à vida acadêmica, em paralelo às minhas atividades profissionais.

Ao Prof. Dr. Antonio C. Bannwart, que me aceitou como seu orientado, a despeito de toda sua carga de atividades.

A todo corpo docente e funcionários do DEP, que foram sempre compreensivos e gentis nas suas aulas e atitudes.

A todos da KSB e do LabPetro, que me auxiliaram na execução do experimento deste trabalho.

E, em especial, aos colegas especiais, William, Jorge, Gustavo, Rogério, Taís, Carol, Denis, Fernando, Nara, Samuel e tantos outros, que fiz nestes anos de estudos.

RESUMO

BRAGANTINI, Mauro Fernando, *Estudo de uma bomba centrífuga submersa operando como turbina*. Campinas, Faculdade de Engenharia Mecânica, Universidade Estadual de Campinas, 2012. 85 p. Dissertação de Mestrado.

As bombas centrífugas submersas (BCS) são largamente empregadas para elevação artificial de petróleo, sendo, na sua configuração básica, acionadas por motores elétricos. Os motores elétricos são o elo mais sensível deste equipamento, apresentando baixo MTBF (*Mean Time Between Failure*), ocasionando intervenções custosas para o seu reparo e/ou substituição nas plataformas *off-shore* de produção de petróleo. O acionamento da BCS por outro meio é uma alternativa para aumento deste MTBF e a utilização de uma turbina hidráulica como força motriz uma possibilidade já viabilizada tecnicamente. Os produtos existentes no mercado, neste arranjo, BCS+Turbina, são denominados de HSP (*Hydraulic Submersible pump*). Devido às características construtivas da BCS, múltiplos estágios em série, diâmetro externo reduzido e acoplamento direto com o acionador, o projeto da turbina deve ser alinhado com estes requisitos. Este trabalho investiga a definição da carga de certa BCS bombeando óleo, analisa os diferentes métodos de predição do comportamento desta mesma BCS funcionando como turbina como opção de acionamento, estabelece as condições de projeto deste arranjo, o constrói, o ensaia e compara os resultados com as metolodogias de predição pesquisadas.

Palavras-Chave

Elevação Artificial, BCS, Bomba Centrífuga Submersa.

ABSTRACT

BRAGANTINI, Mauro Fernando, Study of a bore-hole submersible pump running as turbine. Campinas, Faculdade de Engenharia Mecânica, Universidade Estadual de Campinas, 2012. 85 p. Master Science dissertation.

Bore-hole electrical submersible pumps (ESP) are largely used as oil artificial lift alternative. Electrical motor is the most sensitive component of this equipment presenting low MTBF (*Mean Time Between Failure*) causing high cost operations to fit or replace it on oil production off-shore platforms. ESP driving by another mean is an alternative to increase MTBF and a hydraulic turbine as driver is a technical possibility already available. Market existing products on this arrangement are called HSP (Hydraulic Submersible pump). Due to ESP constructive characteristics like multiple stages, reduced bore-hole diameter and direct coupled to the driver the turbine design should meet these requirements. This work investigates certain SP (Submersible Pump) load when pumping oil and the different prediction methods of this same SP running as turbine as drive option, also establishes the design conditions of this arrangement, builds it, tests it and compares the results against the researched prediction methodologies.

Key words

Artificial Lift, Hydraulic Submersible Pump, ESP, Electrical Submersible Pump.

SUMÁRIO

LISTA DE FIGURAS xix
LISTA DE TABELAS xxi
LISTA DE NOMENCLATURAS xxiii
1. INTRODUÇÃO 1
2. REVISÃO BIBLIOGRÁFICA 5
2.1. Diferenças entre uma bomba e uma turbina7
2.1.1. Teoria Básica
2.2. Metodologias de seleção de BFT 12
2.2.1 Stepanoff (1957) 15
2.2.2 Sharma – Williams (1994) 15
2.2.3 Viana – Nogueira (2002)
2.2.4 Chapallaz (1992) 16
2.2.5 Alatorre-Frenk (1994)
2.2.6 Derakhshan e Nourbakhsh (2008) 17
2.2.7 Comentários sobre as metodologias de seleção de BFT 18
2.3. Curvas características da BFT esperadas com os testes
2.4. Estimativa das curvas características de uma BFT
3. Desenvolvimento Experimental
3.1. Definição das condições operacionais da BCS23
3.1.1 Correção teórica das curvas características da BCS
3.1.2 Estimativa das condições operacionais da BFT no BEP 30

3.2.	Construção do equipamento	33
3.2	2.1 Empuxo axial	33
3.2	2.2 Selagem do eixo	38
3.2	2.3 Proteção contra desprendimento dos rotores do eixo	38
3.2	2.4 Mancal radial	38
3.3.	Adaptação da bancada de teste do LabPetro	38
4.	Resultados do experimento	43
4.1.	Avaliação comparativa do desempenho da BCSFT	43
4.2.	Comparação do desempenho da BCSFT	49
4.3.	Comparação do desempenho da BCS	53
4.4.	Análise global do equipamento quanto a eficiência e desempenho	56
4.5.	Comparativo financeiro	57
5.	Conclusões e Recomendações	59
REFER	ÊNCIAS	61
Anexo A	A – Teste BCS no fabricante com correção da rotação	63
Anexo l	B – Teste BCS (posterior BFT) no fabricante com correção da rotação	66
Anexo (C – Teste BCS no fabricante sem correção da rotação	69
Anexo l	D – Teste BCS (posterior BFT) no fabricante sem correção da rotação	72
Anexo l	E – Curva Viscosidade x Temperatura do óleo utilizado no teste	75
Anexo l	F – Folha de Dados do Torquímetro	76
Anexo (G – Modelo do selo mecânico utilizado	77
Anexo I	H – desenho do arranjo da BCSFT e BCS	78
Anexo l	I – Curvas publicadas da bomba <i>booster</i> BB-2	79
Anexo J	J – Dados "brutos" de teste com BCS bombeando óleo xvi	80

Anexo K – Dados "brutos" de teste com BCS bombeando água	81
Anexo L – Análise de Incertezas	82
Anexo M – Planilha de Comparativo Financeiro	85

LISTA DE FIGURAS

Figura 2.1- Arranjo da bomba
Figura 2.2 - Arranjo da Bomba Funcionando como Turbina (BFT) 5
Figura 2.3 - Sistemas aberto e fechado
Figura 2.4 - Reprodução da Figura 3.2 de Gülich (2007). Adequada para a pá de uma BCS, vista pelo lado sucção
Figura 2.5 - Reprodução da Figura 12.1 de Gülich (2007). Adequada para a pá de uma BFT vista pelo lado descarga
Figura 2.6 - Reprodução parcial da Figura 12.3 de Gülich (2007) 11
Figura 2.7 - Reprodução da Figura 3.17 de Chapallaz (1992) e Audísio (2010) 12
Figura 2.8 – Diagrama Altura, Potência e Rendimento em função da Vazão, reprodução da Fig. 3.15 de Chapallaz (1992) e Audisio (2010)
Figura 2.9 - Curvas características esperadas para uma BFT à rotação constante.
Reprodução da figura A.6, pág. 42 da revista World Pumps (Maio – 2011) 19
Figura 2.10 - Curva Q-H de uma BFT. Reprodução da Figura 12.5 de Gülich (2007) 19
Figura 3.1 - Diagrama de potências do conjunto 30
Figura 3.2 - Distribuição de pressão em um rotor fechado. Reprodução da fig. 1.3.5.2.1a de HI (2009)
Figura 3.3 - Dimensões para o calculo do empuxo axial. Reprodução da fig. 1.3.5.2.1c de
HI (2009)
Figura 3.4 - Reprodução da Fig. 2 de KSB (1990)
Figura 3.5 - Fluxograma da bancada do LabPetro para testes

Figura 3.6 – Bomba + BFT sobre o <i>skid</i> e parte da instalação 39
Figura 3.7 - Tela de computador do programa desenvolvido para coleta de dados 42
Figura 4.1 - Desempenho da BCSFT – Vazão versus Potência de eixo 45
Figura 4.2 - Desempenho da BCSFT – Vazão versus Rotação 45
Figura 4.3 - Desempenho da BCSFT – Vazão versus Altura de queda total
Figura 4.4 - Desempenho da BCSFT –Vazão versus Eficiência
Figura 4.5 - Desempenho expandido da BFT – Vazão versus Rotação
Figura 4.6 - Desempenho expandido da BFT – Vazão versus Altura de queda total 50
Figura 4.7 - Desempenho expandido da BFT – Vazão versus Eficiência 50
Figura 4.8 - Desempenho expandido da BFT – Vazão versus Potência 51
Figura 4.9 - Desempenho Comparativo da Bomba – Altura de elevação versus Vazão 54
Figura 4.10 - Desempenho Comparativo da Bomba – Eficiência versus Vazão 54
Figura 4.11 - Curvas comparativas Q-H da BCS bombeando óleo 55
Figura 4.12 - Curvas comparativas Q-Eficiência da BCS bombeando óleo

LISTA DE TABELAS

Tabela 2.1 – Abordagem por autores. 14
Tabela 3.1 – Valores médios de testes das BCS's
Tabela 3.2 – Cálculo da potência absorvida no eixo da BCS, conforme ISO (2005) 26
Tabela 3.3 – Reprodução da tabela 6.2 de Amaral (2007) 27
Tabela 3.4 – Reprodução da tabela 6.3 de Amaral (2007) 27
Tabela 3.5 – Comparativo entre as normas HI
Tabela 3.6 – Valores recalculados para o BEP a partir da tabela 3.2
Tabela 3.7 – Influência da viscosidade nas condições de operação da bomba no BEP 29
Tabela 3.8 – Resumo dos cálculos teóricos pelas diferentes metodologias
Tabela 3.9 – Lista dos equipamentos utilizados nos experimentos 40
Tabela 4.1 – Resultados dos testes da BCSFT com a BCS bombeando óleo ou água 44
Tabela 4.2 – Comparativo da tabela 3.8 com os resultados extrapolados das curvas 4.5 a 4.8 51
Tabela 4.3 – Resultados dos testes da BCSFT com a BCS bombeando água e respectivas
predições pelo método de Alatorre-Frenk (1994) 52

LISTA DE NOMENCLATURAS

Letras romanas

c	Velocidade absoluta	[m/s]
Н	Altura total de elevação no caso de bomba ou	[m]
	Altura de queda total no caso de turbina	
g	Aceleração da gravidade	$[m/s^2]$
М	Momento ou torque	[N.m]
n	Rotação	[rpm]
n _q	Velocidade específica (conforme notação e unidades para	
	calculo, usadas na Europa)	
n_{qA}	Velocidade específica adimensional	
p	Pressão	[Pa]
Р	Potência	[kW]
Q	Vazão	[m ³ /h]
V	Velocidade média de escoamento	[m/s]
u	Velocidade tangencial	[m/s]
W	Velocidade relativa	[m/s]
Z	Altura de localização do transdutor	[m]

Letras gregas

α	Ângulo entre os vetores das velocidades absoluta e tangencial	[rad]
β	Ângulo entre os vetores da velocidade relativa e a direção	[rad]

negativa do vetor de velocidade tangencial

η	Rendimento ou eficiência	[%]
μ	Viscosidade dinâmica	[cP]
ν	Viscosidade cinemática	[cSt]
ρ	Massa específica	[kg/m ³]

Subscritos

1	Borda de ataque da pá do rotor (baixa pressão)
2	Borda de fuga da pá do rotor (alta pressão)
А	Adimensional
abs	Absorvida
В	Com letras gregas refere-se ao ângulo da pá (Blade)
В	Com letras romanas, refere-se à Bomba
BEP	Ponto de melhor eficiência (Best Efficiency Point)
BFT	Bomba Funcionando como Turbina
e	Entrada
S	Saída
th	Teórica
u	Componente tangencial
vis	Ref. líquido viscoso

Siglas

BCS	Bombas Centrífuga Submersa
BCSFT	Bombas Centrífuga Submersa Funcionando como Turbina
BEP	Best Efficiency Point
BFT	Bomba Funcionando como Turbina
CFD	Computational Fluid Dynamics
HI	Hydraulic Institute
HSP	Hydraulic Submersible Pump
HPRT	Hydraulic Power Recovery Turbine
MTBF	Mean Time Between Failure

1. INTRODUÇÃO

As bombas centrífugas submersas (BCS) são largamente empregadas para elevação artificial de petróleo, sendo, na sua configuração básica, acionadas por motores elétricos.

Os motores elétricos são o elo mais sensível deste equipamento, apresentando baixo MTBF (*Mean Time Between Failure*), ocasionando intervenções custosas para o seu reparo e/ou substituição nas plataformas *off-shore* de produção de petróleo.

O acionamento da BCS por outro meio é uma alternativa para aumento deste MTBF e a utilização de uma turbina hidráulica como força motriz uma possibilidade já viabilizada tecnicamente.

Os produtos existentes no mercado, neste arranjo, BCS + Turbina, são denominados de HSP (*Hydraulic Submersible Pump*).

Manson (1986) no desenvolvimento de uma HSP estabeleceu três objetivos principais:

- maior confiabilidade de operação;

- maior flexibilidade de operação;

- compactação do equipamento.

Neste mesmo trabalho, Manson (1986) reconhece, além das vantagens alcançadas com os objetivos acima, ser a HSP uma alternativa viável, para a elevação artificial de óleos pesados.

Também, Harden e Downie (2001) evidenciaram algumas outras diferenças técnicas conceituais da HSP em relação às BCS's acionadas por motor elétrico:

- não necessidade de cabeamento elétrico dentro do poço;

- operação a rotações em torno de duas vezes da usual de uma BCS.

Devido às características construtivas da BCS, múltiplos estágios em série, diâmetro externo reduzido e acoplamento direto com o acionador, o projeto da turbina deve ser alinhado com estes requisitos.

A forma construtiva de uma turbina de reação 50% foi adotada no projeto do acionador no trabalho de Manson (1986) e, o que este trabalho investiga, é o uso de uma BFT (Bomba Funcionando como Turbina), como opção de acionamento.

No seu uso normal uma bomba transfere energia ao fluído, mas uma bomba centrífuga pode transformar a energia líquida em energia motriz, se as direções de fluxo e rotação são invertidas, que é o caso de uma BFT, onde o líquido entra com energia de pressão, rotaciona o rotor no sentido reverso e sai com baixa pressão.

O uso de BFT's é mais frequente em micro recursos hidroenergéticos (até 500 kW), conforme Chapallaz (1992), em substituição as turbinas convencionais como Pelton, Francis e de hélices, estando normalmente acopladas a geradores de indução para geração de energia elétrica.

Sendo a aplicação de BFT não tão usual, os fabricantes de bombas não publicam ou disponibilizam curvas características, neste modo de operação e, ao longo dos anos, vários autores desenvolveram trabalhos no sentido de predizer o comportamento nesta forma de uso.

Para o caso específico de bombas submersas, como já citava Williams em seu trabalho de 1988 "há uma falta de informação nas características como turbina para pequenas bombas submersas". Desde este comentário, não encontramos mais trabalhos com esta especificidade.

Neste contexto, este trabalho possuiu os seguintes objetivos:

 Verificar se a utilização de uma hidráulica habitual de uma bomba tipo submersa de múltiplos estágios, na situação de BFT, poderia fornecer a potência necessária para acionamento;

 Verificar a validade das diferentes abordagens de seleção de BFT, quando aplicadas à uma bomba submersa;

• Verificar a influência do bombeio de dois fluidos de viscosidade diferentes, no desempenho da BFT;

• Verificar a viabilidade econômica do arranjo proposto.

Para tanto, realizou-se:

• Construção de um equipamento para teste no LabPetro da Unicamp, composto de uma BCS padrão de mercado com projeto hidráulico existente e consolidado há mais de 50 anos, cuja força motriz foi uma BFT com a mesma hidráulica da BCS, apenas montada de forma oposta à BCS, assim a saída normal de fluxo da BCS passou a ser a entrada da BFT, ocasionando uma inversão de rotação, que permitiu que a BCS fosse acionada, tornando este projeto o mais simples possível;

• Testes com o equipamento construído nos dois meios de viscosidade diferentes;

• Análise dos resultados obtidos e comparação com as diferentes metodologias de predição para BFT;

• Estudo financeiro simplificado.

Os capítulos subsequentes Revisão Bibliográfica; Desenvolvimento Experimental; Resultados do Experimento; Conclusões e Recomendações; e Anexos, detalham o desenvolvimento desta dissertação.

2. REVISÃO BIBLIOGRÁFICA

As Figuras 2.1 e 2.2 mostram o arranjo normal de bombas funcionando como bomba e na situação funcionando como turbina, respectivamente.

"Rotor visto por X"

Figura 2.1- Arranjo da bomba

Rotor visto por "Y"

Figura 2.2 - Arranjo da Bomba Funcionando como Turbina (BFT)

Distingüe-se duas grandes categorias de aplicações para as BFT's: geração de energia ou recuperação de energia hidráulica (HPRT – *Hydraulic Power Recovery Turbine*).

Destas, a mais usual é a geração de energia em micro-hidrelétricas, devido as vantagens de menor custo, maior disponibilidade e construção mais simples, conforme Chapallaz (1992).

Para seu funcionamento e geração de potência de eixo, as BFT's necessitam de uma fonte que proporcione vazão e pressão as mesmas. No caso de geração de energia isto é proporcionado pelos reservatórios e quedas d'água.

Nas HSP's esta fonte de vazão e pressão é feita pelos denominados sistema de completação ou sistema *booster*.

Há duas possibilidades para o sistema de completação da BFT, sistemas aberto ou fechado, conforme indica a Figura 2.3.

Figura 2.3 - Sistemas aberto e fechado

As flechas em vermelho representam o liquido bombeado, já as azuis representam o fluido de potência utilizado para passar pela BFT. A Bt é a bomba *booster* utilizada para pressurizar o fluido de potência, antes de passar pela turbina.

No sistema aberto, o fluido de potência, ao sair da turbina, se mistura com o fluido produzido, sendo necessária sua separação posteriormente.

Este sistema é bastante vantajoso no caso da elevação artificial de óleos pesados, pois pode utilizar um fluido de potência a alta temperatura ou quimicamente tratado, que misturado ao fluido produzido torna a tarefa de elevação facilitada, devido à redução de viscosidade do mesmo.

Já no sistema fechado, existe um circuito separado para o fluido de potência e outro circuito para o fluido produzido. Não há mistura de fluidos neste caso.

Mais adiante no capítulo 4, foi verificada a eficiência global deste sistema, mas de uma maneira geral a eficiência isolada de uma BFT como já afirmava Chapallaz em 1992 é "que as eficiências das BFT's podem ser as mesmas quando funcionando como bomba, mas frequentemente são menores (3 a 5%), quando na mesma rotação".

Apesar da teoria dos fluidos ideais predizer que o desempenho da bomba funcionando como turbina seria a mesma que quando funcionando como bomba, sem exceção, a vazão e a pressão no ponto de melhor rendimento no modo turbina é maior do que no modo bomba. A razão principal para esta diferença está relacionada com as perdas hidráulicas da máquina, devido à inversão do escoamento e mudança no triângulo de velocidades e é melhor detalhada no item 2.1.1 deste texto.

Como a aplicação de BFT não é tão usual, a disponibilidade de curvas características ocorre apenas no modo normal (bomba), havendo necessidade de se utilizar algum método para se predizer o comportamento nesta forma de uso.

Nenhum dos métodos desenvolvidos é preciso, como será visto mais adiante no item 2.2 e vários autores investigaram o comportamento hidráulico das BFT's definindo critérios de seleção, alguns teóricos, outros experimentais e mais recentemente por métodos computacionais.

2.1. Diferenças entre uma bomba e uma turbina

As máquinas de fluxo rotacionais são completamente reversíveis, pois a teoria hidrodinâmica é a mesma para ambas as máquinas, porém o comportamento real do fluxo do fluido, incluindo a fricção e a turbulência, resulta diferente, em alguns aspectos, para o projeto da bomba e da turbina.

Estas diferenças particulares são:

 Condições de operação: as bombas são projetadas para um ponto de operação com condições fixas de vazão, pressão e rotação coincidente com o ponto de máxima eficiência, enquanto as turbinas operam com condições variáveis de vazão e pressão.

- Projeto hidrodinâmico: para as bombas a energia cinética entregue deve ser transformada em pressão, implicando em uma desaceleração gradual do fluido na saída do rotor e escoamento pela voluta, ao passo que para as turbinas o fluxo é acelerado e o contato com o rotor deve ser reduzido, para reduzir as perdas por fricção e aumentar a eficiência.

 Localização do equipamento – cavitação: se a altura de sucção de uma bomba é demasiada alta, pode ocasionar o fenômeno da cavitação. Nas turbinas as perdas na linha de sucção aumenta a contrapressão, tornando-as menos sensíveis à cavitação.

Portanto, as diferenças acima denotam as diferenças de projeto entre uma bomba e uma turbina e mostram que, quando se utiliza uma BFT as desvantagens técnicas são compensadas pelo baixo custo comparado com as turbinas convencionais, principalmente nas situações de baixas vazões, quando poderia se utilizar bombas *standard* de mercado, desde que fossem disponíveis curvas características de desempenho no modo BFT ou algum método de seleção apropriado.

2.1.1. Teoria Básica

Pela teoria unidimensional de máquinas hidrodinâmicas pode se fazer considerações sobre o fluxo de um líquido, através das passagens de um rotor de uma bomba centrífuga girando a uma velocidade angular constante e obter os triângulos de velocidades da entrada e saída do rotor, conforme mostrado na figura 2.4.

Figura 2.4 - Reprodução da Figura 3.2 de Gülich (2007). Adequada para a pá de uma BCS, vista pelo lado sucção

Na operação como turbina ocorre uma inversão nos triângulos de velocidade e têm-se a Figura 2.5.

Figura 2.5 - Reprodução da Figura 12.1 de Gülich (2007). Adequada para a pá de uma BFT vista pelo lado descarga

A Fig. 2.5 retrata a situação do fluido, após ter cedido a quantidade de movimento que possuía na saída do difusor, ao rotor.

Da equação fundamental de Euler para turbinas, obtemos a equação (2.1) para a altura de queda líquida teórica.

$$H_{th} = \frac{1}{g} \left(u_2 \cdot c_{u2} - u_1 \cdot c_{u1} \right)$$
(2.1)

E, utilizando-se o triângulo de velocidades da Figura 2.2, a equação (2.1) pode ser modificada para:

$$H_{th} = \frac{1}{g} \left(u_2 \cdot c_{m2} \cdot \cot g \alpha_2 - u_1^2 + c_{m1} \cdot \cot g \beta_1 \right)$$
(2.2)

O ângulo de fluxo α_2 é influenciado diretamente pela geometria da voluta (ou no nosso caso, pela geometria do difusor), enquanto o ângulo β_1 difere do ângulo de saída do rotor β_{1B} , já que não se espera um fluxo uniforme na saída da BFT, tornando estes ângulos praticamente independentes da vazão.

Isto torna a altura de queda líquida teórica da equação 2.5 diretamente proporcional à vazão, através das velocidades absolutas (c) nas suas componentes meridionais (subscrito m).

Entende-se que até atingir determinada vazão a velocidade de entrada no rotor c_2 não fica no ângulo quase perpendicular à pá, como mostrado na fig. 2.5 e sim quase tangenciando o contorno da pá, ou seja, como vetorialmente $\vec{c} = \vec{u} + \vec{w}$, nesta condição \vec{u} é praticamente 0 (zero), sendo insuficiente para vencer a inércia de todo o conjunto e iniciar a rotação do rotor e gerar torque.

À medida que a vazão aumenta; vetorialmente a velocidade de entrada no rotor c_2 "tocaria" as pás do rotor em um ângulo α_2 muito próximo daquele de saída do difusor, ocorrendo localmente, um violento choque de entrada, que gera perdas elevadas, mas que permite que o fluido se acomode no canal do rotor de forma que a pressão agindo ao longo das pás. proporcione a impulsão do rotor pelo fluido.

A altura de queda total real é maior que a líquida teórica, devido às perdas hidráulicas relacionadas ao atrito entre fluido e os componentes envolvidos e, perdas dinâmicas (choques e recirculações).

A figura 2.6 apresenta a curva característica da altura de queda líquida teórica e real de uma BFT.

Figura 2.6 - Reprodução parcial da Figura 12.3 de Gülich (2007)

Audísio (2010) repete Chapallaz (1992) e explica a influência da geometria da bomba e das perdas hidráulicas reais nos dois modos de operação (como bomba e como BFT) através da observação, que no modo BFT o ângulo de entrada do fluxo é mais próximo do ângulo fixo da voluta α_2 , do que o ângulo de saída de fluxo β_2 no modo bomba o é do ângulo da pá do rotor β_{2B} conclui que no BEP a vazão e altura no modo BFT são maiores que no modo bomba. A figura 2.7, detalha isto.

Figura 2.7 - Reprodução da Figura 3.17 de Chapallaz (1992) e Audísio (2010)

2.2. Metodologias de seleção de BFT

A seleção de uma BFT deveria ser tão simples como a seleção de uma bomba, porém na literatura comercial dos fabricantes de bombas centrífugas não são disponibilizadas as curvas características, quando a bomba funciona como turbina (BFT).

Chapallaz (1992) colocou estas curvas de desempenho em uma mesma figura e Audísio (2010) ressaltou as diferenças, assinalando:

- Vazão: diminui à medida que aumenta a altura de elevação para bombas e aumenta continuamente para BFT, quando se aumenta a altura de queda.

- Potência: bombas de fluxo radial demandam potência mínima no ponto de máxima altura. Como BFT, necessitam de uma vazão mínima para gerar potência. A potência entregue é aumentada progressivamente ultrapassando a altura nominal como bomba e o ponto de funcionamento ótimo é maior, que o como bomba.

- Rendimento: como bomba o rendimento cresce a partir de zero com o aumento da vazão até um valor máximo e depois decresce a partir deste ponto. Como BFT o rendimento é incrementado a partir de zero na vazão mínima e cresce até um valor máximo, que vai se reduzindo lentamente quando se aumenta a vazão.

Figura 2.8 – Diagrama Altura, Potência e Rendimento em função da Vazão, reprodução da Fig. 3.15 de Chapallaz (1992) e Audisio (2010)

Nota-se claramente na figura 2.8, que o ponto de melhor eficiência (BEP – *Best Efficiency Point*) é diferente nos modos de operação como bomba ou BFT não permitindo utilizar diretamente as curvas de bomba como BFT.

Abordagens teóricas ou empíricas foram desenvolvidas por alguns autores, que permitem calcular/estimar as condições operacionais da BFT no BEP.

Algumas destas abordagens utilizam a velocidade específica como critério para definição dos coeficientes de cálculo.

A velocidade específica é definida como um índice adimensional de projeto, que identifica a semelhança geométrica de bombas. É calculada no ponto de melhor eficiência e com o rotor no diâmetro máximo, pela fórmula:

$$n_{q} = \frac{n \cdot Q^{0.5}}{H^{0.75}}$$
(2.3)

Onde:

 $n-rotação \mbox{ em rpm}; \mbox{ } Q-vazão \mbox{ em m}^3/s \mbox{ e } H-altura total \mbox{ de elevação por estágio em m}.$

A tabela 2.1 mostra algumas metodologias existentes, a aplicabilidade de cada uma e suas limitações e na sequência detalha-se cada uma das abordagens por autor.

	Autor					
	Stepanoff (1957)	Sharma – Williams (1994)	Viana – Nogueira (2002)	Chapallaz (1992)	Alatorre- Frenk (1994)	Derakhshan (2008)
Metodologia	Teórica	Teórica e empírica	Empírica	Empirica	Heurística	Numérica
Quant. total de testes de BFT's avaliados	Não aplicável	35	4	> 80	57	1
Quant. de BFT's testadas pelo autor	Não aplicável	4	2	Não informado	0 (zero)	1
Coeficientes de cálculo relacionados à:	Efic. bruta da bomba no BEP (η _B)	Eficiência bruta da bomba no BEP (η _B)	Veloc. espec. BFT (n _{q BFT})	Veloc. espec. da bomba (n _{q B})	Veloc. espec. (n_{qB}) , efic. da bomba e geometria da voluta	Carac. geométricas e hidráulicas da bomba
Quant. de estágios das BFT's testadas	Não aplicável	1 e 2 [vide Williams (1988)]	1	1	1, 2 (em 2 testes), 3 e 6 (em um teste, cada)	1
Faixadevelocidadeespecífica (n_q)	Não aplicável	12,7 – 183,3	13,3 – 66,5	10 - 100	até aprox. 100	23,5
Faixa de vazão nominal (m ³ /h)	Não indicada	Não indicada	Não indicada	15 – 36000	Não indicada	432

Tabela 2.1 – Abordagem por autores

2.2.1 Stepanoff (1957)

Propôs um método que dependia da eficiência da bomba e seu trabalho teórico. Para a mesma rotação da bomba e BFT, além da mesma eficiência, dizia ser possível declarar, que a vazão e a altura de queda atendiam as relações:

$$Q_{BEP BFT} = \frac{Q_{BEP B}}{\eta_{B}^{0.5}}$$
(2.4)

$$H_{BEP BFT} = \frac{H_{BEP B}}{\eta_B}$$
(2.5)

2.2.2 Sharma – Williams (1994)

Williams (1994) comparou oito métodos de predição de resultados usando os resultados de teste de 35 BFT's. Concluiu que nenhum dos métodos apresentou resultados acurados para todas as BFT's, porém um (o método de Sharma) pode ser recomendado como primeira estimativa.

As 35 bombas possuíam velocidade específica $(n_{q B})$ variando de 12,7 a 183,3, sendo procedentes de vários fabricantes de bombas, com tamanhos diversos, configurações horizontal, vertical, submersa e outras, além de serem de tipo de fluxo radial, misto e com sucção simples e dupla, ou seja, um universo bastante abrangente.

A combinação do método de Sharma, que também pressupõe a eficiência da BFT sendo igual à da bomba, com as equações desenvolvidas por Stepanoff (1957), resultou nas relações abaixo:

$$Q_{BEP BFT} = \frac{Q_{BEP B}}{\eta_B^{0,8}}$$
(2.6)

$$H_{BEP BFT} = \frac{H_{BEP B}}{\eta_B^{1,2}}$$
(2.7)

2.2.3 Viana – Nogueira (2002)

Viana, em sua dissertação de mestrado de 1987, estudou o comportamento de bombas funcionando como turbinas hidráulicas, com potências inferiores a 50 kW, realizando um estudo

teórico, onde considera a BFT como uma turbina Francis, para efeito de equacionamento, em função de alguns parâmetros geométricos do rotor da bomba.

Nesta mesma dissertação fez uma análise experimental de uma bomba de fabricação nacional e baseado nestes resultados de teste e de outros autores, propôs coeficientes experimentais de altura e vazão para a BFT em função da velocidade específica n_q .

Em seu trabalho de pesquisa com Nogueira em 1990, obteve resultados experimentais com duas bombas de fabricação nacional e, somado aos dados retirados dos trabalhos de outros autores, levantaram os coeficientes de vazão e altura em função da velocidade específica da BFT ($n_{q BFT}$) na faixa de 13,3 a 66,5, conforme publicado no artigo de Viana-Nogueira (2002).

2.2.4 Chapallaz (1992)

Chapallaz (1992) utilizou-se dos dados de desempenho medidos, de mais de 80 máquinas, funcionando tanto como bomba como BFT, onde também obteve coeficientes de vazão e altura em função da velocidade específica e eficiência hidráulica da bomba.

A metodologia de Chapallaz (1992) abrange uma faixa maior da rotação específica da bomba $(n_{q B})$, de 10 a 100.

Quando os dados de desempenho da bomba não são disponíveis, para predição do comportamento da BFT, recomenda o uso de um método baseado nas características geométricas do rotor da bomba.

2.2.5 Alatorre-Frenk (1994)

Em sua tese de doutorado Alatorre-Frenk (1994) revisou os diversos métodos de predição de uma BFT, alguns baseados na geometria e curva de desempenho na operação como bomba, outros baseados exclusivamente na performance como bomba e propôs um novo método empírico de predição não usando exclusivamente a performance do modo bomba.

Este método heurístico utilizava os parâmetros de velocidade específica e rendimento no modo bomba, mas considerava adicionalmente a informação relevante ao tipo ou forma geométrica do corpo espiral ou voluta. Foram coletados dados de testes de 57 bombas funcionando tanto como bomba, como BFT, para obtenção das regressões lineares de ajuste a estes dados. Para melhor ajuste das regressões, certos dados de testes referentes às bombas abaixo foram descartados:

- bombas pequenas, ineficientes e de baixa velocidade específica (n_q) ;

- bombas com muito alta velocidade específica (n_q);
- bombas com aspectos particulares, tais como bombas submersas e submersíveis;
- bombas com qualidade de dados duvidosos.

As formulações para predição desenvolvidas para bombas tipo *end suction* (bomba horizontal com flange de sucção frontal e flange de recalque na vertical), mostradas logo abaixo, foram as mais consistentes, visto terem utilizado dados de 39 testes, incluso também algumas bombas multiestágios.

O próprio Alatorre-Frenk (1994) reconhece a necessidade de se desenvolver formulações mais apropriadas para bombas multiestágios, mas devido a pequena quantidade de testes, apenas conclui "que algumas BFT's multiestágio podem ter um rendimento menor que o previsto".

Peres (2011) obteve boa aderência dos seus resultados às formulações abaixo, quando aplicadas à uma BCS de um estágio funcionando como turbina.

$$\frac{Q_{BEPBFT}}{Q_{BEPB}} = 1,21. \eta_{B}^{-0.6}$$
(2.8)

$$\frac{H_{BEPBFT}}{H_{BEPB}} = 1,21. \eta_{B}^{-0.8} \left[1 + \left(0,6 + \ln n_{qA}\right)^{2} \right]^{0.3}$$
(2.9)

$$\frac{\eta_{BFT}}{\eta_{B}} = 0.95. \, \eta_{B}^{-0.3} \Big[1 + \big(0.5 + \ln n_{qA} \big)^{2} \Big]^{-0.25}$$
(2.10)

2.2.6 Derakhshan e Nourbakhsh (2008)

Em seu trabalho, Derakhshan e Nourbakhsh estabeleceram um método teórico para predição do comportamento de uma BFT no seu BEP, utilizando como ponto de partida a equação de Euler citada no item 2.1.1 e estimativas de perdas a partir do modo bomba.

Obtiveram assim, equações teóricas para cálculo da vazão, pressão e rendimento de uma BFT no seu BEP.

Também neste mesmo trabalho fizeram uma simulação numérica por CFD (*Computational Fluid Dynamics*) e teste de bancada, para comparação dos três métodos, onde constataram que os métodos teórico e numérico tiveram grande divergência na predição da vazão do BEP da BFT utilizada.

Somando-se a divergência acima ao fato de ter sido realizado apenas um teste em uma bomba tipo *end-suction* e as análises numéricas efetuadas terem sido parciais, pois não consideraram em seu modelo o espaço entre o cubo/paredes do rotor e voluta e nem a região de selagem (estas perdas hidráulicas foram deduzidas dos resultados obtidos pelo CFD), optou-se por não considerar este método nas análises subsequentes deste trabalho.

2.2.7 Comentários sobre as metodologias de seleção de BFT

Os trabalhos pesquisados, resumidos na tabela 2.1, mostraram a pequena quantidade de bombas de múltiplos estágios funcionando como BFT avaliadas e a existência de apenas um trabalho com bombas tipo BCS, vide Williams (1988), porém sendo esta com um diâmetro externo de 8" e com somente dois estágios.

Portanto, este trabalho é inédito, no sentido que testa uma BCS com mais de dois estágios, apropriada para poço de 6" de diâmetro, funcionando como turbina.

2.3. Curvas características da BFT esperadas com os testes

Uma das expectativas deste trabalho era obter as curvas Q - H, $Q - P e Q - \eta$ que caracterizassem a BFT à semelhança da Figura 2.9 e/ou Figura 2.10.

Figura 2.9 - Curvas características esperadas para uma BFT à rotação constante. Reprodução da figura A.6, pág. 42 da revista World Pumps (Maio – 2011).

Figura 2.10 - Curva Q-H de uma BFT. Reprodução da Figura 12.5 de Gülich (2007).
A Figura 2.10 extraída de Gülich (2007) apresenta as curvas de altura de queda total de uma certa BFT em função da vazão, a rotação constante, e mostra também as chamadas curvas de *runaway speed* ou velocidade de disparo e *locked rotor* ou rotor bloqueado. Nesta figura H_A é a curva característica da altura de queda livre da instalação; H_B a altura de queda da turbina na rotação de 2500 rpm ; H_L a altura de queda, quando M=0 e H_W é a altura de queda na situação de rotor bloqueado.

A *runaway speed* ou velocidade de disparo é a rotação máxima que alcança a BFT, quando opera sem fornecer Torque ou Momento (M=0) e Potência (P=0), devido a ausência de carga ou inércia. O próprio Gülich (2007) comenta que a curva de *runaway speed* seria bastante baixa quando a turbina movimentasse uma bomba, a não ser que a bomba não estivesse escorvada ou girando sem líquido.

Para obtenção da curva de velocidade de disparo são conectados todos os pontos de altura de queda em função da vazão - H(Q), que ocorrem para M=0 a várias rotações.

Neste trabalho, desacoplou-se a BFT da BCS e se verificou as rotações obtidas na BFT para determinadas vazões da bomba *booster* da BFT, com o único objetivo de comparação quando acoplada à carga (BCS).

Os métodos usuais para controle da rotação de disparo são: limitar a velocidade diretamente no eixo e/ou através de uma válvula na linha de pressão.

A situação de *locked rotor* (n=0) ou rotor bloqueado é aquela em que rotação é zero, mesmo havendo uma disponibilidade de pressão na entrada da BFT.

Com esta condição certa quantidade de fluido passa pela BFT, dependendo da resistência ao fluxo da mesma.

Gülich (2007) ainda declara que para máquinas radiais a curva característica de *runaway* (M=0), para uma dada vazão, está acima da curva de resistência (n=0) como mostrado na Figura 2.10.

2.4. Estimativa das curvas características de uma BFT

A maioria dos trabalhos citados pesquisados não estima a predição do comportamento da BFT fora do BEP, impossibiltando a estimativa de curvas características completas.

Gülich (2007) comentou "desde que nem as perdas hidráulicas na BFT, nem as curvas características de *runaway* e de resistência podem ser previstas dos princípios básicos, estas são frequentemente estimadas de correlações estatísticas, se nenhum dado de teste é disponível. A aplicação destas correlações apresenta uma larga variação de resultados".

Em seu trabalho, Gülich (2007) listou uma série destas correlações e indicou um roteiro para determinação das curvas características, porém ressaltou as "incertezas consideráveis" deste método.

Ao negligenciar os efeitos das perdas mecânicas e por vazamento nas curvas características de torque e altura no BEP, Alatorre-Frenk (1994) as aproximou da forma quadrática e com isto definiu cinco coeficientes, que as caracterizariam.

As curvas características, fora do BEP, poderiam ser obtidas encontrando os valores destes coeficientes e ele alcançou isto adicionando aos valores do BEP, dois parâmetros adimensionais.

Obtendo os valores dos coeficientes por regressão linear múltipla variável, para cada teste de BFT realizado, Alatorre-Frenk (1994) conseguiu boa aderência de resultados na correlação para a curva característica de altura e razoável para o torque, conforme declarou. Ressalte-se que, como já escrito no item 2.2.5, estas correlações eram válidas para bombas do tipo *end suction*.

3. DESENVOLVIMENTO EXPERIMENTAL

A construção do experimento esteve relacionada com os objetivos abaixo:

- investigar o uso de uma BCS com mais de 2 estágios como BFT;

- comprovar que uma BFT de múltiplos estágios poderia efetivamente acionar uma BCS;

- obter dados, que permitissem a comparação entre o desempenho efetivo da BFT e os métodos de predição do item 2.2;

- comparar o desempenho da BCS bombeando óleo com a predição feita pela literatura existente;

- ser uma construção modular, que permitisse novos trabalhos com geometrias modificadas de BFT, visando performances mais eficientes.

Para atingir estes objetivos, o desenvolvimento experimental desenvolveu-se nas etapas:

3.1. Definição das condições operacionais da BCS

Para correto dimensionamento e verificação da possibilidade de uso da instalação existente, bancada de ensaio de BCS do LabPetro – CEPETRO Unicamp, em primeira instância definiu-se as condições de carga (de operação) teóricas da bomba BCS que seria movida pela BFT.

Inicialmente tencionava-se testar a BCS somente com óleo e a correção das curvas de desempenho foi necessária, pois as curvas disponibilizadas pelos fabricantes de bombas são para bombeio de água.

Os diversos modelos de correção do bombeamento de fluidos viscosos foram detalhadamente estudados por Amaral (2007), que propõe em seu trabalho um modelo para bombas tipo BCS.

O Comitê Técnico ISO/TC 115 preparou o *Technical Report* (2005), que também apresenta coeficientes de correção para todos os tipos de projeto convencionais de bombas centrífugas e

verticais, na faixa normal de operação, com rotores abertos ou fechados, de sucção simples ou dupla, para bombeio de fluidos Newtonianos.

O *Hydraulic Institute* tem a norma ANSI/HI 9.6.7 (2010) como guia para determinação dos coeficientes de correção e é essencialmente igual ao *Technical Report* (2005).

Consideramos estas duas abordagens (Amaral e ISO), na determinação da potência requerida pela BCS.

A BCS era uma bomba do fabricante KSB modelo UPB 271 com 4 estágios, com diâmetro externo apropriado para poços de 6", cujas curvas características foram obtidas, através de testes realizados na bancada do fabricante, com água limpa e são mostradas nos anexos A, B, C e D. Os resultados dos testes A e B são apresentados com correção da rotação do motor elétrico e os dos testes C e D sem correção.

Foram testadas duas bombas iguais, de mesmo modelo e número de estágios, com o mesmo motor elétrico, na mesma bancada de testes, que posteriormente foram desmontadas e tiveram suas peças remontadas na nova configuração BCS – BFT.

A tabela 3.1 mostra os valores médios dos resultados dos testes, no BEP (*Best Efficiency Point*) dos anexos A-B e C-D.

	Ar	iexos	
	A-B	C-D	
Vazão (Q _{BEP B}) =	35,2	35,5	m³/h
H _{BEP} por estágio =	10,8	11,0	m
n° estágios =	4	4	
H _{BEP B} =	43,2	44,0	m
Rotação =	3458	3491	rpm
Rendimento hidráulico =	62,0%	62,0%	

Tabela 3.1 - Valores médios de testes das BCS's

Calculando-se a velocidade específica n_q com estes valores médios, conforme a fórmula (2.3):

$$n_{q} = \frac{n \cdot Q^{0.5}}{H^{0.75}}$$

Obtém-se $n_q = 57,4$, tanto com a rotação corrigida (anexos A-B), quanto não (anexos C-D).

Pelo valor obtido de n_q e geometria do rotor da BCS, pode-se classificar esta bomba, como sendo do tipo semi-axial, conforme Gülich (2007) tabela 2.3 e Chapallaz (1992) tabela 2.6.

Como os valores médios obtidos, com ou sem a correção da rotação do motor elétrico, eram bastante próximos, como demonstrado na tabela 3.1, para os próximos cálculos adotou-se os sem correção de rotação como base e no próximo item efetuou-se as correções adequadas para o bombeio de óleo.

3.1.1 Correção teórica das curvas características da BCS

O experimento utilizou-se no início dos testes, de um óleo de viscosidade dinâmica de aproximadamente 120 cP a 28 °C para ser bombeado, e, a partir desta definição, estimou-se o desempenho corrigido da BCS. A curva de viscosidade do óleo utilizado em função da temperatura foi levantada e é apresentada no anexo E.

Para obtenção do °API deste óleo foi utilizada a formulação de Standing, equação (3.1) abaixo, baseada nas curvas de correlação de Beal, citada em Rosa (2006).

$$\mu = \left(0,32 + \frac{1,8.10^{7}}{^{\circ}\text{API}^{4,53}}\right) \left(\frac{360}{\text{T}(^{\circ}\text{F}) + 200}\right)$$
(3.1)

Para cálculo da densidade utilizamos a equação (3.2) bastante usada na indústria do petróleo.

$$d = \frac{141,5}{^{\circ}API + 131,5}$$
(3.2)

Assim podemos obter a viscosidade cinemática, que é fundamental no cálculo dos fatores de correção de vazão, pressão e eficiência do desempenho de bombas centrífugas, conforme as normas ISO/TR 17766 (2005) ou ANSI/HI 9.6.7 (2010).

Cabe ressaltar que estas normas recomendam a utilização de seus fatores de correção para bombas essencialmente de rotores radiais com a rotação específica $(n_q) \le 60$.

Apesar da caracterização desta BCS, como semi-axial, devido a geometria do rotor, mesmo assim utilizamos as normas ISO (2005) e ANSI/HI (2010), pois seu n_q é inferior a 60.

Os resultados corrigidos para o BEP da BCS, na rotação de 3500 rpm, foram calculados conforme planilha simples de cálculo desenvolvida e as saídas estão compiladas na tabela 3.2 abaixo.

Tabela 3.2 – Saídas de programa para cálculo da potência absorvida no eixo da BCS, conforme ISO (2005)

Como comentado, os fatores de correção tanto da ISO/TR 17766 (2005) quanto do ANSI/HI 9.6.7 (2010) são recomendados, para bombas convencionais mono ou múltiplos estágios, de rotores radiais, com a velocidade específica $(n_q) \le 60$.

Amaral (2007) em seu trabalho com BCS's de 2 e 3 estágios, observou uma razoável dispersão nos resultados de seus testes em relação ao HI (1983), conforme demonstram as tabelas 3.3 e 3.4, abaixo.

μ [cP]	Experin	nental	HI	Erro [%]
	Q [BPD]	5761,0	7051,7	22,4
60	H [pé]	86,8	89,4	2,9
	Ef. [%]	43,3	49,5	14,3
	Q [BPD]	5021,0	6433,8	28,1
270	H [pé]	78,7	82,5	4,9
	Ef. [%]	31,3	33,0	5,5
	Q [BPD]	4456,0	5355,1	20,2
720	H [pé]	73,5	73,9	0,5
	Ef. [%]	23,9	17,9	-25,3
	Q [BPD]	4300,0*	4688,3	9,0
1020	H [pé]	69,5*	69,4	-0,1
	Ef. [%]	19,2*	12,4	-35,6

-

Obs.: o * significa valores extrapolados.

Tabela 3.3 – Reprodução da tabela 6.2 de Amaral (2007)

μ [cP]	Experi	mental	HI	Erro [%]
	Q [BPD]	10543,0	12120	15
60	H [pé]	156,8	157	0,1
	Ef. [%]	56,4	59	4,6
	Q [BPD]	9173,0	11209	22,2
270	H [pé]	143,4	146	1,8
	Ef. [%]	39,2	41	4,6
	Q [BPD]	7772,0*	9641	24,1
720	H [pé]	141,0*	133	-5,6
	Ef. [%]	30,0*	24	-20
	Q [BPD]	7445,0*	8679	16,6
1020	H [pé]	118,0*	126	6,8
	Ef. [%]	27,0*	18	-33,3

Obs.: o * significa valores extrapolados.

Tabela 3.4 – Reprodução da tabela 6.3 de Amaral (2007)

A tabela 3.3 refere-se à BCS modelo Reda GN7000 ($n_q = 74,5$) de 3 estágios, enquanto a tabela 3.4 à BCS modelo Reda J350N ($n_q = 47,8$) de 2 estágios e em ambas, observou-se um erro de 15 a 22% para mais na vazão, para a viscosidade mais baixa, de 60 cP.

O HI (1983), usado por Amaral (2007), difere da edição mais atual HI (2010), pois apresentava gráficos de correção de performance com valores médios obtidos em testes de bombas mono-estágios convencionais, de tamanhos 1" e menores e de 2 a 8", bombeando óleos derivados do petróleo. A tabela 3.5 apresenta um comparativo da evolução da norma HI para uso com líquidos viscosos.

HI edição	1983	2000	2007	2010
Faixa de viscosidade (cSt)	4,3 a 3300	4,3 a 3300	1 a 3000	1 a 3000
Faixa de vazão no BEP (m ³ /h)	3 a 2000	3 a 2000	3 a 260	3 a 410
Faixa de altura no BEP por estágio (mca)	2 a 200	2 a 200	6 a 130	6 a 130
n _q máximo	não informa	não informa	60	60

Tabela 3.5 – Comparativo entre as normas HI

Analisando a tabela acima, observa-se que nas edições de 1983 e 2000 foram mantidas as faixas de aplicação para obtenção dos fatores de correção e, a formulação dos cálculos, que se utilizam destes fatores, permaneceu a mesma.

Estas edições também apresentam recomendações mais genéricas para uso das suas formulações, limitando-se a recomendar o "uso somente para bombas de projeto hidráulico convencional na faixa de operação normal, com rotores abertos ou fechados e não usar para bombas de fluxo misto ou axial".

A edição 2007 mencionava o uso da ISO/TR (2005), que informava uma "expansão na quantidade de dados em relação à edição anterior (2000), os quais resultaram em uma modificação nos fatores de correção, havendo um acréscimo nos fatores de altura e vazão e uma diminuição para o fator referente à potência. Estes novos fatores foram influenciados pelo tamanho da bomba, rotação e velocidade específica. As mudanças mais significativas ocorreram nas vazões menores que 25 m³/h e $n_q < 15$."

Já a edição 2010 apenas corrige a edição anterior (2007), quanto à faixa de vazão e altura, mantendo a mesma metodologia de cálculos.

O importante destas duas últimas edições foi a introdução da rotação específica como fator inicial, para aplicação do procedimento, para se estimar os efeitos de bombeio com um líquido viscoso. Por outro lado, esta introdução limita a aplicação do HI a uma faixa menor que as edições anteriores.

Entretanto, a utilização da norma HI mais atual (2010), no trabalho de Amaral (2007), implicaria em dispersões ainda maiores.

Baseado nesta constatação, considerou-se prudente reavaliar os resultados indicados na tabela 3.2, calculados conforme ISO/TR (2005), em relação aos resultados obtidos por Amaral (2007) com bombas tipo BCS.

Nesta reavaliação observou-se que nas tabelas acima 3.3 e 3.4, extraídas de Amaral (2007), o erro na vazão medida experimentalmente variou de 15 a 28,1% para as viscosidades de 60 a 270 cP, para a altura de elevação a variação foi 0,1 a 4,9% e para a eficiência de 4,6 a 14,3% na comparação com a norma HI (1983).

Considerando que neste trabalho havia uma maior similaridade com o trabalho de Amaral (2007), pois utiliza uma BCS com 4 estágios bombeando óleo com uma viscosidade de aproximadamente 120 cP, foi decidido "corrigir-se" os resultados da tabela 3.2 com valores médios, baseados nas diferenças encontradas por Amaral (2007) citadas no parágrafo acima, adotando-se a redução de 20% para vazão, 0% para a altura e 10% para o rendimento hidráulico, modificando-os para:

Tabela 3.6 – Valores recalculados para o BEP a partir da tabela 3.2

Com os valores da tabela 3.6, a potência absorvida no eixo foi recalculada e na tabela 3.7 compara-se este valor de potência com os valores iniciais obtidos, conforme as referências (2005) e (2010) para óleo e tabela 3.2.

Meio	Água	Óleo (valores tab. 3.2)	Óleo (valores tab. 3.6)
$H_{BEP}(mcl)$	44,0	39,0	39,0
Q_{BEP} (m ³ /h)	35,5	31,4	26,2
η_{BEP} (%)	62,0	38,0	34,7
P _{abs-BEP} (kW)	6,9	8,1	7,5

Tabela 3.7 - Influência da viscosidade nas condições de operação da bomba no BEP

Observa-se que os valores obtidos para a potência absorvida no eixo não diferem muito, porém é esperada uma grande diminuição da vazão e eficiência, relativa "as maiores perdas hidráulicas e pelo atrito de disco, devido ao incremento da viscosidade do fluido", conforme Gülich (1999). O valor da potência absorvida no eixo da bomba mais outros como, potência consumida pelos selos mecânicos da bomba e BFT, pelos acoplamentos e pelo torquímetro é na sua soma, o valor que tem de ser fornecido pela BFT, na sua ponta de eixo, para bombear o óleo como desejado, pois, como afirma Chapallaz (1992), as condições de fluxo da BFT são determinadas pela potência requerida da máquina movida.

A Figura 3.1 mostra de forma esquemática as potências envolvidas em cada um dos componentes do sistema. Para a BCS adotou-se o valor calculado, conforme a coluna 3 da tabela 3.7 acima.

As potências absorvidas pelo torquímetro e acoplamentos 1 e 2 foram estimadas como sendo de 0,10 kW e 0,05 kW, respectivamente.

Potência absorvida total = 7,5 + 0,10 + 0,05 + 0,05 = 7,7 kW

Figura 3.1 - Diagrama de potências do conjunto

Portanto, teoricamente, para uma rotação de 3500 rpm, a BFT teria que gerar uma potência de 7,7 kW para movimentar a BCS com um óleo de 120 cP a 28 °C no seu BEP.

No capítulo 4 será visto que as limitações de bancada conduziram a valores bem menores de teste e os valores obtidos de potência foram consideravelmente menores.

3.1.2 Estimativa das condições operacionais da BFT no BEP

A potência teórica necessária para a BCS bombeando óleo, obtida na tabela 3.6 do item 3.1.1, foi o ponto de partida para se verificar a quantidade de estágios necessários na BFT,

utilizando as metodologias descritas no item 2.2., já que desde a concepção deste trabalho, ficou estabelecido como premissa, que a BFT teria a mesma hidráulica da BCS.

Valores de eficiência da BFT (η_{BFT}) foram estimados, para uso nos métodos de Stepanoff (1957), Sharma-Williams (1994), Viana-Nogueira (2002) e Chapallaz (1992) e com os valores calculados de vazão e pressão (altura) apresentados por estas diferentes metodologias apresentadas no item 2.2, obtive-se a potência de eixo da BFT, que deveria ser igual ou superior à necessária para mover a bomba BCS.

Como o método de Alatorre-Frenk (1994) prediz o rendimento da BFT, não foi necessária nenhuma estimativa deste valor, para este método.

A potência de eixo da BFT, em kW, foi calculada pela equação:

$$P_{BFT} = g. H_{BFT}. Q_{BFT}. \eta_{BFT}$$
(3.3)

A tabela 3.8 apresenta o resumo dos cálculos efetuados e rotação igual à das bombas testadas com motor elétrico, ou seja, 3491 rpm.

	Stepanoff	Sharma-Williams	Viana-Nogueira	Chapallaz	Alatorre
Pressão (H _{BFT-bep}), mca =	106,5	97,6	80	69,5	90,0
Vazão (Q _{BFT-bep}), m³/h=	45,1	52,0	58,6	55,7	57,2
η _{BFT} , %=	58%	58%	58%	58%	61,4%
nº estágios	6	5	6	4	4
Pmotriz, kW=	7,6	8,0	7,7	6,1	8,6

Tabela 3.8 - Resumo dos cálculos teóricos pelas diferentes metodologias

Os resultados de cada método da tabela 3.8 são abaixo comentados.

No método de Stepanoff (1957) os cálculos para obtenção da vazão e pressão (altura total de elevação) da BFT são diretos e baseados nos valores destas características (vazão e pressão) como bomba no BEP, porém seriam necessários 6 estágios na BFT para obter-se a potência mínima necessária ou próxima da indicada na Figura 3.1.

Já com o método de Sharma-Williams (1994), que é também direto, 5 estágios seriam suficientes.

Como o método de Viana-Nogueira (2002) baseia-se no n_q da BFT e parte da premissa da existência de condições disponíveis de vazão e pressão, realizou-se um cálculo inverso da

condição normal, ou seja, estimou-se os valores de vazão e altura (pressão) da BFT, para obter-se a potência motriz necessária, sendo considerada a rotação idêntica à da bomba e calculada a sua velocidade específica, de forma a obter os coeficientes de vazão e altura indicados na referência (2002), os quais permitem calcular os valores de pressão e vazão da bomba a ser utilizada. Com estes valores comparou-se com as curvas dos anexos C e D e verificou-se quantos estágios seriam necessários, na bomba. Por este método, seriam necessários 6 estágios na BFT.

Quase o mesmo ocorre com relação ao método de Chapallaz (1992), o qual, entretanto, é baseado no n_q da bomba e também parte da premissa da existência de condições disponíveis de vazão e pressão para a BFT. Neste caso, devido os coeficientes de vazão e altura basearem-se na velocidade específica da bomba, os cálculos são diretos e mais simples de se efetuar, porém os ábacos desta referência não eram os ideais para o n_{qB} (57,4) obtido e rendimentos estimados, sendo os coeficientes de vazão e altura extrapolados com bastante incerteza.

Como já dito, o método de Alatorre-Frenk (1994) foi o único, dos citados neste trabalho, que predizia o valor do rendimento da BFT e resultou no maior valor calculado da potência motriz.

Foi observado, que no uso das equações (2.7), (2.8) e (2.9) reproduzidas do trabalho de Alatorre-Frenk (1994), estas eram muito sensitivas ao rendimento da bomba no BEP e os valores cresceram a medida que este rendimento diminuía. Comparativamente com os métodos de Stepanoff (1957) e Sharma-Williams (1994), que também se utilizam do rendimento da bomba nas suas predições, viu-se que ocorria o mesmo apenas na predição da pressão da BFT, porém a vazão se reduzia à medida que o rendimento diminuía.

A tabela 3.8 mostrou uma divergência razoável nos resultados, mas todos os métodos indicaram uma vazão e altura (pressão) maiores do BEP da BFT em relação ao da bomba BCS, quando na sua função normal.

Devido estas diferenças, os métodos não convergiram quanto ao número de estágios necessários na BFT, para obtenção da potência necessária para mover a BCS.

Para decisão da quantidade de números de estágios a adotar para a BFT, considerou-se o método de Alatorre-Frenk (1994), apesar de não ser específico para bombas BCS, pois:

- era o único trabalho que predizia o rendimento da BFT e isto foi julgado relevante para a escolha,

- no trabalho de Peres (2011), realizado com uma BCS de um estágio, teve boa aderência aos resultados de teste.

Portanto, decidiu-se pela construção da BFT com o mesmo número de estágios da BCS, ou seja, 4 estágios.

3.2. Construção do equipamento

A BCS adaptada para este experimento foi projetada há mais de 50 anos e tem seu maior uso em aplicações de bombeio de água de poços artesianos, sendo movida por um motor elétrico.

Neste trabalho, adaptou-se o projeto da mesma, de forma a tornar-se uma BCS movida por uma BFT, com a mesma hidráulica.

Pode-se criar uma nova abreviatura, BCSFT (Bomba Centrifuga Submersa Funcionando como Turbina), que descreveria melhor este conceito.

As considerações mais relevantes de projeto estão analisadas e pormenorizadas nos próximos tópicos.

3.2.1 Empuxo axial

"As pressões geradas pelas bombas centrífugas exercem forças, tanto nas partes móveis quanto nas partes estacionárias. O esforço axial hidráulico é o somatório das forças não balanceadas agindo na direção axial do rotor", como cita Mattos (1989).

Há várias maneiras de se contrabalancear hidraulicamente este empuxo axial, sendo as mais usuais: a inserção de furos de balanceamento nos rotores, ou inclusão de pás na região posterior do rotor, rotores com dupla sucção, arranjo balanceado dos estágios, inclusão de tambores (pistão) de balanceamento, ou discos de balanceamento e uma solução que combina o sistema de tambor e disco.

Nenhuma das soluções hidráulicas acima é aplicável às BCS convencionais, devido à limitação de espaço deste equipamento, sendo que para estes equipamentos o empuxo axial é normalmente suportado pelo mancal axial nos motores elétricos acoplados a estas bombas.

A BFT, devido a sua configuração ser o de uma bomba girando em sentido invertido, também gera um empuxo axial, em sentido contrário da BCS, porém como no arranjo deste trabalho a BFT estava montada de forma oposta à BCS, o sentido do empuxo axial era o mesmo para ambos os equipamentos.

Como neste trabalho não houve um motor elétrico e respectivo mancal axial, calculou-se inicialmente a magnitudade deste empuxo axial para estudar-se uma solução para o problema.

- Cálculo do empuxo axial

Foram utilizadas duas formulações, HI (2009) e KSB (1990) para o cálculo de empuxo axial no eixo da bomba.

Para realizar este cálculo, consideramos:

Adoção da mesma formulação para cálculo do empuxo axial em BFT's, devido não ter sido encontrada nenhuma formulação teórica para esta situação de operação;

A metodologia de cálculo utilizada é válida para um rotor, a qual foi depois multiplicada pelo número de rotores total (bomba e BFT);

Folga diametral na região frontal do rotor e corpo difusor dentro da faixa de 0,25 a 0,50 mm;

Aproximação da forma semi-axial do rotor da BCS para a forma radial, no caso da formulação do HI (2009);

Aplicação da metodologia do HI (2009), mesmo sabendo que a mesma era válida para bombas mono-estágios com rotação específica na faixa de 10 a 67.

A diferença da distribuição de pressão nas paredes frontal e traseira do rotor, mostrada na Figura 3.2, mais a força do "momentum" devido à mudança da direção do fluxo, geram o empuxo axial.

Figura 3.2 - Distribuição de pressão em um rotor fechado. Reprodução da fig. 1.3.5.2.1a de HI (2009)

Para bombas sem anel de desgaste traseiro, que é o caso das BCS's, a Figura 3.3 indica as dimensões básicas para uso no cálculo, conforme HI (2009).

Figura 3.3 - Dimensões para o calculo do empuxo axial. Reprodução da fig. 1.3.5.2.1c de HI (2009)

Os valores de empuxo axial são para uma faixa de vazão entre 25% e 125% do BEP e o valor máximo do empuxo axial está dentro desta faixa e foi determinado por:

$$F_{A} = \left(H_{max} \cdot g \cdot \rho\right) \left[\left(\overline{K_{B}} \cdot A_{B}\right) - \left(\overline{K_{F}} \cdot A_{F}\right)\right] - 1000 \cdot p_{S} \cdot A_{h}$$

$$(3.4)$$

 F_A - Força axial total

H_{máx} - Pressão máxima em m

g - Aceleração da gravidade

 ρ - densidade do fluido

 $\overline{K_B}$ - Fator médio atrás do rotor (= (K_{A2} + K_{AH})/2)

 $K_{\scriptscriptstyle A_2}$ - Fator da força axial relativo ao diâmetro D₂

 $K_{\rm \scriptscriptstyle A_{\rm H}}$ - Fator da força axial relativo ao diâmetro $\rm D_{\rm H}$

 A_B - Área exposta à pressão atrás do rotor

 $\overline{K_F}$ - Fator médio na frente do rotor (= (K_{A2}+K_{ARF})/2)

 $K_{A_{RF}}$ - Fator da força axial relativo ao diâmetro D_{RF}

 A_F - Área exposta à pressão na frente do rotor

ps - pressão de sucção

 A_h – Área do eixo

Os valores dos fatores de força axial K_A - K_{A2} , K_{ARB} e K_{AH} foram obtidos da figura 1.3.5.2.1b de HI (2009).

A formulação de cálculo do empuxo axial pela KSB (1990) é específica para rotores fechados sem furos de equilíbrio, aplicando-se perfeitamente a BCS.

A eq. (3.5) apresenta este cálculo e a Figura 3.4 mostra como o D_{2m} é determinado para um rotor semi-axial típico.

Figura 3.4 - Reprodução da Fig. 2 de KSB (1990).

$$F_A = \alpha. g. \rho. H. D_{2m}^2. \frac{\pi}{4}$$

A eq. (3.6) é aplicável para bombas com 6 < n_q < 130.

O valor de α é obtido pela eq. 3.6.

$$\alpha = 0.5. \left(\frac{D_{sp}}{D_{2m}}\right)^3 + 0.09$$

Usando os métodos acima, foi calculado o empuxo axial apenas para o ponto de melhor eficiência (BEP) da BCS e dobrou-se este resultado, como forma de considerar também o empuxo axial gerado pela BFT.

Com a eq. (3.4) do HI (2009) foi obtido um valor de empuxo axial total de 2,3 kN, enquanto que pela eq. (3.5) de KSB (1990) aproximadamente 2,0 kN.

Devido à existência de um torquímetro entre a BFT e BCS fez-se a seleção e aquisição de um modelo, que satisfizesse tanto o aspecto do torque envolvido, quanto a absorção do empuxo axial gerado pela BCS e BFT.

A folha de dados deste torquímetro está no anexo F e sua força axial limite é de 5,3 kN, sendo portanto capaz de suportar o empuxo axial gerado.

3.2.2 Selagem do eixo

Em BCS's convencionais a selagem do eixo é feita no motor elétrico e, na bomba em si, não há necessidade desta vedação, visto que a bomba realiza a sucção do fluido axialmente pelo primeiro rotor e o mesmo flui pelo difusor e estágios subsequentes até sair pelo último difusor em direção da tubulação de descarga.

Neste projeto, devido à adoção do sistema fechado mostrado na Figura 2.3, e consequente separação da BCS e BFT, fez-se necessário adaptar-se um selo mecânico simples em cada eixo, como elemento de vedação do líquido ao meio externo.

O anexo G mostra um desenho típico do selo utilizado.

3.2.3 Proteção contra desprendimento dos rotores do eixo

Foi adaptado em cada extremidade roscada dos eixos, um sistema de porca e contra porca, para melhor fixação e prevenção em caso de rotação reversa à esperada.

3.2.4 Mancal radial

Uma BCS está normalmente na posição vertical dentro do poço e as cargas radiais hidráulicas geradas, devido ao funcionamento e as relativas ao peso próprio dos rotores, eixo e luvas são minimizadas. Quando na posição horizontal, caso deste trabalho, estas cargas radiais têm mais relevância e para contornar esta condição, foram previstos mancais de deslize, lubrificados pelo próprio líquido nos corpos difusores das extremidades.

Com as considerações acima, o projeto da bomba BCSFT e BFT deste experimento foi executado, resultando no equipamento mostrado em corte, no anexo H.

3.3. Adaptação da bancada de teste do LabPetro

Para realização da parte experimental deste trabalho, foi necessária uma adaptação significativa da bancada do LabPetro.

O fluxograma da Figura 3.5 mostra os equipamentos principais utilizados, com respectivos tag's e variáveis monitoradas entre parênteses.

Figura 3.5 - Fluxograma da bancada do LabPetro para testes

A Figura 3.6 mostra uma foto em detalhe do equipamento BCS-BFT na instalação.

Figura 3.6 – Bomba + BFT sobre o skid e parte da instalação

A intenção foi utilizar ao máximo os equipamentos, painéis e tubulações existentes na bancada outrora usada no trabalho de Gilmar (2007), mesmo que esta decisão implicasse em certa limitação nos experimentos, conforme verificado e descrito no item 4.1.

A tabela 3.9 relaciona os equipamentos principais mostrados na Figura 3.5, com respectiva denominação e fabricante, quando aplicável.

LINHA BOMBA (ÓLEO)

ITEM	DESCRIÇÃO	TAG		MODELO/DIMENSÃO/CARACTERÍSTICAS	FABRICANTE/FORNECEDOR	QTDE
1	Tanque	TQ-1		2 m ³		1
2	Bomba Booster	BB-1		ITAP 65-330/2 / 20 CV, 1760 rpm	Imbil	1
3	Medidor de vazão	MV-1	Qo	Micromotion F200S/2"/0 - 43200 kg/h	EMERSON	1
4	Válvula de controle	VC-1		Globo 2"		1
5	Inversor de frequência	IF-1	no	NXL 00315	Vacon	1
6	Viscosímetro	VIS	μο, Το	MIVI 8001	Sofraser Instruments	1
7	Transm. pressão - linha sucção	PT-1S	Pso			1
8	Transm. pressão - linha recalque	PT-1R	Pro			1

LINHA BFT (ÁGUA)

ITEM	DESCRIÇÃO	TAG		MODELO/DIMENSÃO/CARACTERÍSTICAS	FABRICANTE/FORNECEDOR	QTDE
9	Tanque	TQ-2		6 m ³		1
10	Bomba Booster	BB-2		ME-FE 33300/156C/34,5 - 50,9 m ³ /h, 100 -	Schneider	1
11	Medidor de vazão	MV-2	Qa	DS300 H203SU/3"/1800 - 90000 kg/h	EMERSON	1
12	Válvula de controle	VC-2		Globo 3"		1
13	Inversor de frequência	IF-2	na	CFW090045T3848PSZ - 30 CV - 380V - 60Hz	WEG	1
14	Transm. pressão - linha sucção	PT-2S	Psa			1
15	Transm. pressão - linha recalque	PT-2R	Pra			1

NOVO

ITEM	DESCRIÇÃO	TAG		DIMENSÃO/MODELO FABRICANTE/FORNECED	OR QTDE
16	Torquímetro	TOR	T, n	T20WN/50NM hbm	1
	T 1 1 2 0 I	• .	1	• • • • • •	

Tabela 3.9 – Lista dos equipamentos utilizados nos experimentos.

A bomba *booster* BB-2 era a bomba crítica do sistema, pois era a responsável pela provisão de vazão e pressão à BFT.

O anexo I apresenta as curvas características teóricas deste equipamento (considerar curva verde – diâmetro do rotor 156 mm), obtidas através dos dados de plaqueta do equipamento item 10, indicado na tabela 3.9.

Durante os testes verificou-se que a limitação de corrente elétrica, máxima de 32 A, na linha de proteção do painel da bomba *booster* BB-2, impediu atingir-se as vazões preestabelecidas para o BEP da BFT, conforme indicado na tabela 3.8.

Os testes foram realizados variando a vazão de água (fluido motriz) da bomba *booster* (BB-2 da Figura 3.5) da BCSFT, através da alteração de rotação do motor acoplado a esta *booster*. No lado da BCS foram utilizados, separadamente, dois líquidos para bombeio, água e óleo, este com uma viscosidade dinâmica inicial em torno de 120 cP, ambos à temperatura ambiente. Uma amostra do óleo foi coletada e avaliada, quanto as suas curvas de viscosidade e densidade, em função da temperatura. A curva de viscosidade do óleo é apresentada no anexo E.

A densidade do óleo foi avaliada em laboratório no densímetro Anton Paar AMA 4500 e variou minimamente, de 0,90784 a 0,90154 g/cm³ entre as temperaturas de 25 a 35 °C.

As curvas de desempenho da BCS foram levantadas, regulando-se a abertura da válvula VC-1, permanecendo a válvula VC-2, da linha de sucção da BCSFT, inicialmente totalmente aberta. A fim de evitar cavitação na sucção da BCS foi utilizada a bomba *booster* BB-1 nesta linha. A medição do torque gerado pela BCSFT foi realizada através de torquímetro (TOR) instalado entre a BCSFT e a BCS. Posteriormente, variou-se também a abertura da válvula na sucção da BCSFT, com o intuito de se levantar as curvas de desempenho da mesma e aumentar a rotação do conjunto, através do aumento da rotação da *booster* da BCSFT. Esta prática foi adotada, devido ao limite de corrente da instalação.

Com as condições acima foram coletados aproximadamente 1000 dados (apresentados nos anexos J e K), em programa específico desenvolvido em plataforma Labview da National Instruments, cuja tela de entrada de dados é mostrada na Figura 3.7.

Figura 3.7 - Tela de computador do programa desenvolvido para coleta de dados.

4. **RESULTADOS DO EXPERIMENTO**

O experimento realizado permitiu diferentes avaliações, a saber:

4.1. Avaliação comparativa do desempenho da BCSFT, quando a BCS bombeou óleo ou água,

4.2. Comparação dos métodos de predição para desempenho da BCSFT com os resultados experimentais,

4.3. Comparação do desempenho da BCS quando bombeando óleo ou água,

4.4. Análise global do equipamento quanto à eficiência e desempenho.

4.1. Avaliação comparativa do desempenho da BCSFT

Os dados "brutos" coletados, apresentados nos Anexos J e K foram posteriormente, separados, conforme a sequência dos testes para as mesmas condições de rotação da bomba *booster* BB-2 da BFT e da bomba *booster* BB-1 da linha de sucção da BCS.

Entenda-se por dados "brutos", os dados diretamente coletados pelo programa Labview, os quais foram posteriormente agrupados pela sequência dos testes, e recalculados conforme as formulações apresentadas, sendo assim obtido dez condições diferentes de sequência de testes com óleo sendo bombeado e seis outras com água sendo bombeada, pela BCS.

A Tabela 4.1 mostra a vazão, altura de queda total (H) e eficiência médias da BCSFT em função da rotação da *booster* BB-2, para os dois diferentes fluidos bombeados. O termo "médio" refere-se à média dos valores obtidos na sequência de testes, quando variando as condições de carga da BCS.

Α	В	с		D		E	F	G	н	I
						Des	empenho	o médio da	BFT	
Sequência de	Rot. booster BFT	Abert. Válv.			Com óleo na BCS				_	
Teste	(rpm)	VC-2	Rot	tação (rpm)	Q (r	n³/h)	H (mcl	μ (cP)	η	Potência (kW)
1	1800	100%		1356	30),57	13,19	124,0	58,6%	0,64
2	2400	100%		2039	40),65	29,03	115,1	50,7%	1,63
3	3200	100%		2973	53	3,95	49,64	104,3	54,6%	3,98
4	3200	69%		1846	37	7,00	24,39	94,5	50,0%	1,23
5	3700	69%		2207	41	.,92	31,32	89,2	52,9%	1,89
6	2400	69%		1249	27	7,99	14,71	87,3	43,8%	0,49
7	1800	69%		768	21	.,07	9,11	86,4	32,7%	0,17
8	3200	44%		1015	23	8,96	11,33	87,3	41,4%	0,31
9	3700	39%		1030	24	1,37	14,92	87,1	33,0%	
10	4100	38%		1161	26	5,18	16,44	86,2	35,5%	
11	3500	90%								
12	3500	68%								
13	3700	68%								
Α	В	С		J			К	L	М	Ν
						De	sempen	no médio c	la BFT	
Sequência d	le Rot. booster B	FT Abert. V	álv.				Com á	gua na BC	S	
Teste	(rpm)	VC-2		Rotação (r	pm)	Q (n	n³/h)	H (mcl)	η	Potência (kW)
1	1800	100%	,	1638		30	,62	20,22	40,4%	0,68
2	2400	100%	,	2169		40	,79	32,19	47,1%	1,69
3	3200	100%	,	2954		54	,05	53,06	52,1%	4,07
4	3200	69%								
5	3700	69%								
6	2400	69%								
7	1800	69%								
8	3200	44%								
9	3700	39%								
10	4100	38%								
11	3500	90%		2913		53	,49	52,25	52,6%	4,01

Tabela 4.1 – Resultados dos testes da BCSFT com a BCS bombeando óleo (parte superior) ou água (parte inferior da tabela)

2195

2294

40,31

42,44

32,19

34,93

47,9%

49,0%

1,69

1,98

68%

68%

3500

3700

12

13

Para a análise comparativa do desempenho da BCSFT, quando a BCS bombeava os dois fluidos utilizados, descartou-se os dados das sequências de testes 9 e 10, devido serem relativos a apenas uma medição, e também excluiu-se os dados do teste 1, primeiro teste realizado com óleo, que apresentou resultados destoantes dos demais, pois entendeu-se que a coleta destes dados médios foi efetuada sem a devida estabilização dos equipamentos e sistema.

As Figuras 4.1 e 4.2 mostram os resultados desta comparação, em termos da potência de eixo e rotação versus vazão na BCSFT. Convém notar que durante a execução dos testes a viscosidade dinâmica do óleo variou de 115 a 86 cP.

Figura 4.1 - Desempenho da BCSFT – Vazão versus Potência de eixo

Figura 4.2 - Desempenho da BCSFT - Vazão versus Rotação

Os resultados mostrados nas Figuras 4.1 e 4.2 indicam que, apesar da diferença de viscosidade entre os líquidos bombeados pela BCS o desempenho da BCSFT é praticamente o mesmo, ou seja, a carga da BCS diretamente acoplada ao seu eixo não influencia o desempenho da BCSFT, indicando que esta "enxerga" apenas a potência requerida pela BCS, não importando qual o líquido que está sendo bombeado. Ressalte-se que a limitação de corrente da bancada impediu que rotações mais elevadas fossem alcançadas, pois não era possível aumentar a rotação da bomba *booster* da BFT acima de certo limite, sem que a instalação fosse "desarmada", devido à corrente elétrica ter ultrapassado o valor de 32 A.

Informe-se que as curvas de tendências inclusas nestas figuras 4.1 e 4.2 são polinômios de segunda e primeira ordem, respectivamente.

A Figura 4.3 mostra os resultados do desempenho da BCSFT em termos da altura de queda total em função da vazão na mesma.

Figura 4.3 - Desempenho da BCSFT – Vazão versus Altura de queda total

A Altura de queda total (H) foi obtida por:

$$H = \frac{p_s - p_e}{\rho_{agua} g} + \frac{v_s^2 - v_e^2}{2 g} + z_s - z_e$$
(4.1)

E reduzida a

$$H = \frac{p_s - p_e}{\rho_{agua} g} + z_s - z_e$$
(4.2)

pois os diâmetros de saída e entrada das tubulações eram os mesmos (no caso, 3") e consequentemente, as velocidades de saída e entrada do fluído eram as mesmas.

Observa-se uma diferença, aproximadamente constante, em torno de 3 mca, nas medições médias, quando água estava sendo bombeada pela BCS, em relação às medições quando óleo era bombeado pela BCS.

Atribui-se esta diferença razoável à:

- desmontagem e remontagem do equipamento, devido mudança dos meios bombeados na BCS. O desempenho de bombas de múltiplos estágios é influenciável pelo posicionamento dos rotores em relação aos corpos difusores e acredita-se se passar o mesmo na situação funcionando como turbina, onde um pequeno deslocamento do conjunto girante da BFT modificaria a curva da altura de queda total, devido aumento das perdas hidráulicas, conforme explicado teoricamente no item 2.1.1 e figura 2.6.

- incertezas das medições, conforme calculado no Anexo L,

- mudança na viscosidade do óleo bombeado, que não se manteve estritamente constante.

A Figura 4.4 mostra a eficiência hidráulica da BCSFT em função da sua vazão.

Figura 4.4 - Desempenho da BCSFT – Vazão versus Eficiência

A eficiência foi obtida através da expressão:

$$\eta_{\text{BCSFT}} = \frac{\text{n T}}{\rho_{agua} \,\text{Q H}} \tag{4.3}$$

Os valores de rotação (n), torque (T), vazão (Q) foram obtidos diretamente dos instrumentos de medição utilizados (conf. Tabela 3.9), enquanto o valor da altura de queda (H) foi calculado conforme a equação (4.2). Para referência apenas, colocamos neste gráfico, em verde, o resultado obtido com o teste 1, que foi descartado, devido à falta de estabilização do sistema.

A diferença nos resultados é atribuída, em parte, às incertezas das medições, mostradas no anexo M, porém a maior parcela é devido a diferença na altura de queda total da Fig. 4.3, conforme explicado no item anterior, visto que a potência obtida foi praticamente equivalente (vide Fig. 4.1).

Nestas figuras 4.3 e 4.4 também se utilizou um polinômio de segunda ordem para as curvas de tendências.

4.2. Comparação do desempenho da BCSFT

Para comparação do desempenho da BCSFT com os métodos de predição apresentados no item 2.2 e com os resultados teóricos calculados na tabela 3.8, estendeu-se as figuras 4.2, 4.3, 4.4 e 4.1 para maiores valores de vazão e as novas curvas são apresentadas abaixo. Foram utilizados os mesmos polinômios das curvas anteriores (4.1 a 4.4), apenas expandidos a vazões maiores.

Figura 4.5 - Desempenho expandido da BFT - Vazão versus Rotação

Figura 4.6 - Desempenho expandido da BFT – Vazão versus Altura de queda total

Figura 4.7 - Desempenho expandido da BFT - Vazão versus Eficiência

Figura 4.8 - Desempenho expandido da BFT - Vazão versus Potência

Pela figura 4.5 obtive-se a vazão extrapolada de aproximadamente 62 m^3/h , considerandose a rotação de 3491 rpm usada nas predições da tabela 3.8. Com esta vazão na figura 4.6, verifica-se uma altura de queda total de aproximadamente 65 mca.

Da figura 4.7, estima-se um rendimento da BCSFT em torno de 53% para a vazão de 62 m^3/h e da figura 4.8 uma potência gerada, em torno de 6 kW.

Para melhor comparação, a tabela 4.2 repete os valores da tabela 3.8 e inclui os dados extrapolados do descrito acima.

	Stepanoff	Sharma-Williams	Viana-Nogueira	Chapallaz	Alatorre	Teste extrapol.
Altura (H _{BFT-bep}), mca =	106,5	97,6	80	69,5	90,0	65,0
Vazão (Q _{BFT-bep}), m ³ /h=	45,1	52,0	58,6	55,7	57,2	62,0
η _{BFT} , %=	58%	58%	58%	58%	61,4%	53,0%
nº estágios	6	5	6	4	4	4
Pmotriz, kW=	7,6	8,0	7,7	6,1	8,6	6,0

Tabela 4.2 – Comparativo da tabela 3.8 com os resultados extrapolados das curvas 4.5 a 4.8

Na tabela 4.3 abaixo extraiu-se os dados das colunas A, J, K, L e M da tabela 4.1 relativos aos resultados da BCSFT, quando a BCS bombeava água e incluiu-se as predições (para pontos de operação fora do BEP) calculadas utilizando-se correlação desenvolvida por Alatorre-Frenk (1994), para os valores de altura (H) e eficiência (η), em função das entradas de rotação e vazão; nas colunas O e P.

Devido à ausência de uma formulação específica para bombas tipo BCS no trabalho de Alatorre-Frenk (1994), optou-se pela utilização das formulações desenvolvidas para bombas de sucção frontal (ES – *end-suction*), de forma similar ao realizado por Peres (2011), pois eram as que possuíam um maior universo de testes. Somente os testes com água foram confrontados, devido ser este o fluido utilizado nas curvas publicadas de bombas.

Α	J	К	L	М	0	Р
		Desem	penho médio d	la BFT	Alatorre - ES	(baseado nas
Sequência		Com água	na BCS		curvas de	e bomba)
de Teste	Rotação (rpm)	Q (m3/h)	H (m)	η	H (m)	η
1	1638	30,62	20,22	40,4%	25,75	60,0%
2	2169	40,79	32,19	47,1%	45,71	59,9%
3	2954	54,05	53,06	52,1%	80,15	60,4%
11	2913	53,49	52,25	52,6%	78,51	60,3%
12	2195	40,31	32,19	47,9%	44,59	60,3%
13	2294	42,44	34,93	49,0%	49,44	60,2%

Tabela 4.3 – Resultados dos testes da BCSFT com a BCS bombeando água e respectivas predições pelo método de Alatorre-Frenk (1994)

No confronto dos valores previstos pela citada correlação com os resultados obtidos no experimento, colunas K e L versus O e P, observou-se uma discrepância bastante grande, atribuída ao fato deste método não ter uma formulação definida para bombas tipo BCS.

Na análise da tabela 4.2, a comparação da tabela 3.9 com a coluna "Teste extrapol." constata que as divergências se mantém também para o BEP em termos da vazão, pressão, rendimento e consequentemente potência gerada.

4.3. Comparação do desempenho da BCS

As Figuras 4.9 e 4.10 apresentam o desempenho comparativo da BCS, quando bombeando água e óleo, para os testes 2 e 3, pois nestes testes as condições operacionais de rotação das bombas *booster* da BCSFT (BB-2) e do circuito de óleo (BB-1) e abertura da válvula de controle VC-2 eram as mesmas para ambos os fluidos. Ressalte-se que na sequência dos testes 2 a 3 a temperatura do óleo variou em 1 °C apenas, ou seja, sem mudança significativa em sua viscosidade média.

Adicionalmente nas Figuras 4.9 e 4.10 estão representadas as curvas de teste com água feitas pelo fabricante da BCS, corrigida por similaridade, para as mesmas rotações dos pontos obtidos nas sequências de teste 2 e 3.

Observou-se uma aproximação grande entre os resultados do ganho de pressão nos testes realizados com as curvas de teste do fabricante, porém o mesmo não ocorre quando comparamos as curvas de eficiência (Fig. 4.10).

As curvas de testes realizadas no fabricante foram a rotações mais elevadas que as obtidas neste experimento e na elaboração da Fig. 4.10 foram corrigidas as vazões obtidas nestes testes para as rotações menores aplicando-se as leis de similaridade, entretanto não existe uma lei de similaridade, para correção da eficiência quando há variação da rotação implicando que as perdas hidráulicas normalmente maiores a rotações maiores foram assumidas as mesmas para estas rotações menores, sendo em parte responsável por estas diferenças nos resultados encontrados na Fig. 4.10, afora o acúmulo de incertezas das medições, nos diversos instrumentos utilizados.

Embora não fosse objetivo primeiro deste trabalho investigar o desempenho da BCS, fica confirmada a influência da maior viscosidade do óleo na redução dos valores de vazão, ganho de pressão, eficiência aumentado assim, a potência consumida.

Figura 4.9 - Desempenho Comparativo da Bomba – Altura de elevação versus Vazão

Figura 4.10 - Desempenho Comparativo da Bomba - Eficiência versus Vazão

As Figuras 4.11 e 4.12 comparam as curvas de desempenho obtidas nos testes 1, 2 e 3 com a BCS bombeando óleo contra as curvas de teste obtidas pelo fabricante, conforme anexo A, aplicando-se nestas as correções propostas pelo HI (2009) e Amaral (2007).

Para os fatores de correção de vazão, pressão e rendimento conforme Amaral (2007) utilizamos os gráficos das figuras 6.10 a 6.12 do seu trabalho, para a viscosidade de 115 cP.

O trabalho de Amaral (2007) com BCS's de 2 e 3 estágios já mostrava uma diferença razoável com a metodologia de correção do HI (1983), a qual foi acentuada quando correlacionamos os dados obtidos naquele trabalho com este, BCS de 4 estágios.

A análise destas figuras deve ser criteriosa, principalmente a 4.12, pois foram empregadas as leis de semelhança para obtenção das curvas a diferentes rotações das de testes, porém em uma análise qualitativa nota-se que o aumento do número de estágios tende a diminuir tanto a pressão obtida quanto o rendimento hidráulico.

Figura 4.11 - Curvas comparativas Q-H da BCS bombeando óleo

Figura 4.12 - Curvas comparativas Q-Eficiência da BCS bombeando óleo

4.4. Análise global do equipamento quanto a eficiência e desempenho

Neste item comparamos, hipoteticamente, o desempenho do conjunto proposto neste trabalho em relação ao arranjo convencional.

Na análise da eficiência global do arranjo bomba *booster* + BCSFT + BCS comparativamente ao arranjo convencional BCS + motor elétrico, temos quatro componentes para o primeiro sistema e dois para o convencional, listados a seguir com suas eficiências esperadas:

 $\eta_{\text{m-bo}} = 0.92 \text{ (motor elétrico da$ *booster* $)}$

 $\eta_{\rm bo} = 0,75$ (bomba *booster*)

 $\eta_{\rm BCS} = 0,62$

 $\eta_{\mathrm{BCSFT}} = 0,58$

 $\eta_{\text{m-BCS}} = 0,80 \text{ (motor elétrico da BCS)}$

Logo:

$$\eta_{\text{m-bo}} \eta_{\text{bo}} \eta_{\text{BCSFT}} \eta_{\text{BCS}} = 0,25 \quad versus \quad \eta_{\text{m-BCS}} \eta_{\text{BCS}} = 0,50$$

Entretanto, a possibilidade de uso da BCSFT em rotações mais elevadas que a dos motores elétricos (normalmente em 2 pólos ~ 3600 rpm, em 60 Hz), desde que dentro dos limites de projeto tanto da BCSFT como do motor e bomba *booster*, permitiria a obtenção de vazões e pressões de recalque maiores, devido ao aumento direto da vazão e ao quadrado do ganho de pressão da BCS.

Em um cálculo hipotético de uma rotação da BCSFT, 25% maior que a convencional, haveria a possibilidade de usar uma BCS com 80% da vazão da bomba normal e 64% do número de estágios, significando o uso de uma bomba menor tanto em diâmetro, quanto em comprimento e consequentemente com menor custo.

4.5. Comparativo financeiro

Baseado no último parágrafo do item anterior 4.4, este item aborda um comparativo de viabilidade financeira simplificada entre um arranjo convencional e o proposto.

Não é pretensão deste trabalho uma análise aprofundada e detalhista do estudo dos custos indicados, entretanto pretende demonstrar a vantagem do uso de rotações maiores que as convencionais implicando em maiores vazões de produção e conseqüente ganhos superiores, devido captação antecipada do faturamento, a despeito do maior consumo de energia e investimento inicial.

Para esta análise foram efetuadas verificações com duas vazões diferentes para a BCS, sempre comparando o arranjo convencional com o arranjo proposto neste trabalho.

O primeiro comparativo verificou um conjunto no arranjo convencional BCS com motor elétrico de 2 pólos - 60 Hz, de potência aproximada de 195 kW, para elevação de uma vazão de aproximadamente 3.000 bpd (ou std/d) a 2.000 m de pressão contra o arranjo proposto neste trabalho (*booster* + BCSFT + BCS) rotacionando em velocidade 25% superior.

No segundo comparativo apenas a vazão era maior, de 15.000 bpd (ou std/d), com as demais condições de comparação mantidas, quando aplicáveis.

Nestes comparativos estimaram-se os custos de aquisição inicial dos equipamentos; as eficiências dos mesmos para cálculo do custo de energia; o tempo de depletação dos poços e o lucro obtido nos diferentes arranjos.

O anexo M apresenta os dados de entrada e os resultados da planilha desenvolvida para estes cálculos.

Como resultado final obtém-se um VPL (Valor Presente Líquido), do arranjo proposto neste trabalho, de 7,2 a 9,6 % superior ao tradicional, para as duas vazões averiguadas.

5. CONCLUSÕES E RECOMENDAÇÕES

Este trabalho consistiu na realização de um estudo experimental do comportamento de uma bomba centrífuga submersa operando como turbina (BCSFT).

Visando a representar uma situação em que, em lugar de um motor elétrico, a BCSFT acionaria a BCS, foram realizados testes do conjunto BCSFT-BCS, nos quais a BCSFT foi acionada por água proveniente de uma bomba *booster* e a BCS bombeou dois fluidos distintos (água e óleo de viscosidade média 100 cP).

O procedimento experimental consistiu em operar esse conjunto a diferentes rotações da BCSFT, medindo-se as vazões e ganhos de pressão em ambas as máquinas, além do torque no eixo de acoplamento BCSFT-BCS. Com isto, foram determinados os parâmetros de desempenho tanto da BCSFT quanto da BCS.

O estudo empregou máquinas idênticas, de 4 estágios, para a BCSFT e para a BCS, colocadas uma frontalmente à outra, de modo que a BCSFT consistiu na própria BCS operando em rotação reversa.

Com este arranjo atingiu o primeiro objetivo, que este trabalho se propôs, ou seja, o do funcionamento de uma BCS através de um meio alternativo de força motriz, no caso a própria BCS funcionando como turbina, com um desempenho bastante razoável, ainda que as limitações descritas da instalação não permitiram atingir o BEP esperado.

Mostrou também que as metodologias existentes não são adequadas para uma predição de desempenho de uma BCS funcionando como turbina, indicando a necessidade de uma quantidade maior de ensaios neste arranjo, para criação de uma metodologia específica.

Os resultados dos testes com a BCS bombeando óleo mostraram que as correções propostas pelo HI, devido a viscosidade do fluido, não se confirmaram, porém se aproximaram mais dos resultados obtidos por Amaral (2007).

Na análise comparativa do equipamento construído com o estado da arte atual, BCS acionada por motor elétrico, os experimentos realizados demonstraram ser tecnicamente viável a operação do arranjo booster + BCSBFT + BCS, sendo as vantagens deste arranjo:

• flexibilidade de operação adaptável à carga do sistema,

simplicidade de construção da BCSFT quando comparada com o motor elétrico da BCS,

 possibilidade de uso de fluidos indesejáveis no processo de extração de petróleo, como água produzida ou CO₂ líquido, como fluido motriz,

- menor peso e tamanho,
- melhor dimensionamento do equipamento no caso do bombeio de óleos pesados,

• possibilidade de uso de fluídos de potência aquecidos ou quimicamente tratados, beneficiando a elevação de óleos pesados.

A desvantagem de ter uma eficiência global em torno de 50% inferior ao arranjo convencional é compensada pelas vantagens descritas acima e pela possibilidade de operação em altas rotações aumentando a vazão da elevação de petróleo e antecipando ganhos.

Como sugestão de continuidade dos estudos aqui apresentados, recomenda-se:

 ampliar a capacidade da bancada de testes do LabPetro para poder realizar estudos a rotações mais elevadas;

 início de estudos para criar método de predição de BCSFT usando outros modelos de bombas submersas, com outras hidráulicas e diferentes números de estágios;

• projetar, simular em CFD, construir e testar na mesma bancada, uma nova BCSFT com modificação hidráulica visando obter maior eficiência;

 sensibilização de algum fabricante para projeto e construção de um protótipo, para realização de teste de campo.

REFERÊNCIAS

ALATORRE-FRENK, C. "Cost Minimization in Micro-hydro Systems Using Pumps-as-Turbines". Ph.D.M.E. Thesis, University of Warwick, 1994.

AMARAL, G. D. L. "Modelagem do escoamento monofásico em bomba centrífuga submersa operando com fluidos viscosos", 2007.

ANSI/HI 1.3 – 2000.

ANSI/HI 1.3 – 2007.

ANSI/HI 1.3 - 2009.

ANSI/HI 9.6.7. "Effects of liquid viscosity on rotodynamic (centrifugal and vertical) pump performance", 2010.

AUDISIO, O. A. Arquivo: "Bombas utilizadas como turbinas" de http://fainweb.uncoma.edu.ar/centraleshidraulicas/archivos. Arquivo de 5 de maio de 2010.

CHAPALLAZ, J., EICHENBERGER, P., FISCHER, G. "Manual on pumps used as turbines". GTZ Gmbh, Eschborn, 1992.

DERAKHSHAN, S., NOURBAKHSH, A. "Theoretical, numerical and experimental investigation of centrifugal pumps in reverse operation". Experimental Thermal and Fluid Science 32, 2008, pp. 1620 – 1627.

GÜLICH, J. F. "Pumping highly viscous fluids with centrifugal pumps". World Pumps, 395-396. Aug/Sep, 1999.

GÜLICH, J. F. "Centrifugal Pumps". 3rd edition, 2007.

HARDEN, W. G., DOWNIE, A. A. "Field trial and subsequent large-scale deployment of a novel multiphase Hydraulic Submersible Pump in the Captain Field." OTC 13197, 2001.

Hydraulic Institute Standards for Centrifugal, Rotary and Reciprocating Pumps. 14 ed., 1983.

ISO/TR 17766. "Centrifugal pumps handling viscous liquids – Performance corrections", 2005.

KSB, "Centrifugal Pump Lexicon", 3rd edition, 1990.

MANSON, D. M. "Artificial lift by hydraulic turbine-driven downhole pumps: its development, application, and selection". SPE 14134, 1986.

MATTOS, E. E. et al. "Bombas Industriais". Ed. Técnica Ltda. Rio de Janeiro, 1989.

PERES, G. S. "Estudo experimental de uma bomba operando como turbina para acionamento de bombas centrífugas submersas". Dissertação de Mestrado, Unicamp, Jul. 2011.

ROSA, A. J. et al. "Engenharia de Reservatórios de Petróleo". Editora Interciência, 2006.

STEPANOFF, J. A. "Centrifugal and Axial Flow Pumps". 2nd edition, 1957.

VIANA, A. N. C., NOGUEIRA, F. J. H. "Bombas de fluxo operando como turbinas – procedimento de seleção". In Procedings of the 4th Encontro de Energia no Meio Rural, 2002, Campinas (SP).

WILLIAMS A. A. *et al.* "Characteristics of a submersible pump unit for use as a microhydropower generator". 23rd Universities Conference on Power Engineering, Trent Polytechnic, Nottingham, September 1988, Sec. 5a.

WILLIAMS A. A. "The turbine performance of centrifugal pumps: a comparison of prediction methods". IMechE Vol. 208, 1994.

Anexo A – Teste BCS no fabricante com correção da rotação - folha 1/3

PROTOCOLO DE PERFORMANCE						
№ OP	002396	Teste	А	Nº Estágios	4	
Bomba	BPD 271/4					
Cliente	UNICAMP					
Referência	MAURO BRAGANTINI					

DADOS OPERACIONAIS					
Líquido bombeado	ÁGUA	Tenperatura	20 °C		
Viscosidade	N.I	Pêso específico	1.000 Kg/m		
Vazão		Altura	NL		
Rendimento	N.I.	Rotação	3.458 rpm		
Potência	0,00 cv	Potência motor	8,00 cv		
NPSH-D	0,00 m	NPSH-R	0,00 m		
Perdas mecânicas	N.E.	Perdas hidráulicas	N.E.		
Pres. sucção	N.L	Diâm. rotor original	%mm		
Diâmetro 1º rotor	% mm	Diâm. demais rotores	%mm		
HMT de shut off	N.L				

DADOS DA INSTALAÇÃO DE TESTE					
Motor:	8	Redutor	N.Aplicável		
ø Tubo de sucção	N Existente	ø Tubo de recalque	71,0 mm		
1º Medidor de vazão. Nº	11.234	$2^oMedidor$ de vazão. N^o .	11.234		
Const. placa orifício	N.I.	Manometro de sucção. Nº	NI		
Manometro recalque. Nº	11.172	Rend. redutor	NA %		
Torquímetro. №	N.A.	Perdas hidráulicas	N.E.		
Const. watimetro	5,00				
Perdas mecânicas	N E.				
Pressão atm	690,00 mmHg	Tenperatura	25 °C		
Norma de teste	ISO 9906 GRAU B	Tacômetro. №	11.817		

PDF created with pdfFactory Pro trial version www.pdffactory.com

Anexo A – folha 2/3

№ OP	002396	Te	ste A Nº	Estágios	4	
Bomba	BPD 271/4					
Cliente	UNICAMP					
Referência	MAURO BR	AGANTINI				
Vazão (m²/h)	Recalque (m)	Surção (m)	Perda hidr. (m)	En cinétira (m)	h(m)	HMT
0,00	58.36	0,00	0,00	0,00	2,09	60.4
17.81	54.00	0.00	0.00	0.08	2.09	56.1
26,62	48,33	0,00	0.00	0,18	2,09	50,0
35,42	42,19	0,00	0,00	0,31	2,09	44,
44,21	32,34	0,00	0,00	0,49	2,09	34,9
53,84	20,48	0,00	0,00	0,73	2,09	25,2
00,00	0,14	0,00	0,00	0,90	2,09	11,
A h(mmHg)	Potencia 1 (W)	Potencia 2 (W)	Potencia ABS(KW)	Rent. motor (%)	BHP (cv)	Rotação (rp
0,00	301,00	810,00	2,29	80,09	0,08	303
0.00	449.00	1 017.00	733	81.09	8.08	350
0,00	496,00	1.095.00	7,95	80,81	8,74	350
0,00	552,00	1.171,00	8,61	80,16	9,39	349
0,00	560,00	1.219,00	8,90	79,76	9,65	348
0,00	558,00	1.191,00	8,74	79,98	9,51	348
0,00	512,00	1.115,00	8,14	80,67	8,92	349
I	RESULTADOS	- VALORES	RECALCULA	DOS P/ ROTAÇ.	ÃO 3458 rpm	
		Fatores de	Correção para a V	/iscosidade		
	cQ: 1,0	000	cH: 1,000	0 cN:	1,0000	
	0.00	58.88	570	570	Kendmento (%)	
	8,73	58,33	6.78	6.78	27,81	
	17,56	54,61	7,75	7,75	45,86	
	26,29	49,36	8,42	8,42	57,08	
	35,07	43,70	9,11	9,11	62, 30	
	43,89	34,42	9,44	9,44	59,25	
	59,36	10,90	8,64	8,64	27,73	
Resultado	Aprovado			RNC		
Data	20/07/11					
Land	20/0 // 11					

PDF created with pdfFactory Pro trial version www.pdffactory.com

Anexo A – folha 3/3

PDF created with pdfFactory Pro trial version www.pdffactory.com

Anexo B – Teste BCS (posterior BFT) no fabricante com correção da rotação - folha 1/3

PROTOCOLO DE PERFORMANCE						
№ OP	002396	Teste	В	Nº Estágios	4	
Bomba	BFT 271/4					
Cliente	UNICAMP					
Referência	MAURO BRAGANTINI					

DADOS OPERACIONAIS					
Líquido bombeado	ÁGUA	Temperatura	20 °C		
Viscosidade	N.I	Pêso específico	1.000 Kg/m ³		
Vazão		Altura	NL		
Rendimento	N.L	Rotação	3.458 rpm		
Potência	0,00 cv	Potência motor	8,00 cv		
NPSH-D	0,00 m	NPSH-R	0,00 m		
Perdas mecânicas	N.E.	Perdas hidráulicas	N.E.		
Pres. sucção	N.L	Diâm. rotor original	% mm		
Diâmetro 1º rotor	% mm	Diâm. demais rotores	% mm		
HMT de shut off	N.L				

DADOS DA INSTALAÇÃO DE TESTE					
Motor:	8	Redutor	N.Aplicável		
ø Tubo de sucção	N Existente	ø Tubo de recalque	71,0 mm		
1º Medidor de vazão. Nº	11.234	2º Medidor de vazão. № .	11.234		
Const. placa orifício	N.L	Manometro de sucção. №	NL		
Manometro recalque. Nº	11.172	Rend. redutor	NA %		
Torquímetro. Nº	N.A	Perdas hidráulicas	N.E.		
Const. watimetro	5,00				
Perdas mecânicas	N.E.				
Pressão atm	690,00 mmHg	Temperatura	28 °C		
Norma de teste	ISO 9906 GRAU B	Tacômetro. №	11.817		

PDF created with pdfFactory Pro trial version www.pdffactory.com

Г

Anexo B – folha 2/3

№ OP	002396	Tes	te B Nº	Estágios	4	
Bomba	BFT 271/4					
Cliente	IDICAMP					
Cacine	UNICAMI					
Referencia	MAURO BR	AGANTINI				
Vazão (m?/h)	Recalque (m)	Surção (m)	Perdas hidr. (m)	En cinética (m)	h(m)	HMT
0,00	59,50	0,00	0,00	0,00	2,10	61.0
1781	53.90	0,00	0,00	0.02	2,10	56 1
26.64	48 18	0.00	0.00	0.18	2 10	50.4
35,61	41.08	0.00	0,00	0,32	2,10	43,5
44,20	29,84	0,00	0,00	0,49	2,10	32,4
53,01	18,70	0,00	0,00	0,71	2,10	21,5
58,30	9,80	0,00	0,00	0,85	2,10	12,7
A h(mmHg)	Potincia 1 (W)	Potincia 2 (W)	Potencia ABS(KW)	Rend. motor (%)	BHP (cv)	Rotação (19
0,00	2/3,00	774,00	5,24	19,57	0,00	150
0.00	425.00	985.00	7.05	80,07	777	151
0.00	482.00	1073.00	7.78	80.93	8.55	350
0.00	543.00	1164.00	8,53	80.26	9.31	348
0.00	569,00	1.204,00	8,86	79,81	9,62	348
0,00	549,00	1.177.00	8,63	80,14	9,40	348
0,00	523,00	1.131,00	8,27	80,55	9,06	348
F	RESULTADOS	- VALORES	RECALCULA	DOS P/ ROTAÇ.	ÃO 3458 rpm	
	-0. 1.0	Fatores de	Correção para a V	iscosidade	1 0000	
	Vazio (m/h)	HMT (m)	BHP(cv)	BHP(Rho)(cv)	Rendimento (%)	
Г	0,00	58,85	5,28	5,28	0,00	
	8,64	58,68	6,32	6,32	29,70	
	17,54	54,43	7,42	7,42	47,63	
	26,27	49,06	8,20	8,20	58,23	
	30,30	42,75	9,07	9,07	01,02	
	43,84	21,91	9,39	9,59	22, 19	
	57,85	12,55	8,85	8,85	30, 39	
Resultado Observação	Aprovado			RNC		
Data	21/07/11					

PDF created with pdfFactory Pro trial version www.pdffactory.com

Anexo B – folha 3/3

PDF created with pdfFactory Pro trial version www.pdffactory.com

Anexo C – Teste BCS no fabricante sem correção da rotação – folha 1/3

PROTOCOLO DE PERFORMANCE					
Nº OP	002396	Teste	A	№ Estágios	4
Bomba	BPD 271/4				
Cliente	UNICAMP				
Referência	MAURO BRAGANTIN				

DADOS OPERACIONAIS					
Líquido bombeado	ÁGUA	Temperatura	20 °C		
Viscosidade	N.I	Pêso específico	1.000 Kg/m ³		
Vazão		Altura	NI		
Rendimento	N.L	Rotação	3.458 rpm		
Potência	0,00 cv	Potência motor	8,00 cv		
NPSH-D	0,00 m	NPSH-R	0,00 m		
Perdas mecânicas	N.E.	Perdas hidráulicas	N.E.		
Pres. sucção	N.L	Diâm. rotor original	%mm		
Diâmetro 1º rotor	% mm	Diâm. demais rotores	% mm		
HMT de shutoff	N.L				

DADOS DA INSTALAÇÃO DE TESTE					
Motor:	8	Redutor	N.Aplicável		
ø Tubo de sucção	N. Existente	ø Tubo de recalque	71,0 mm		
1º Medidor de vazão. Nº	11.234	2^o Medidor de vazão. N^o .	11.234		
Const. placa orifício	N.L	Manometro de sucção. №	NI		
Manometro recalque. Nº	11.172	Rend. redutor	NA %		
Torquímetro. №	N.A	Perdas hidráulicas	N.E.		
Const. watimetro	5,00				
Perdas mecânicas	N.E.				
Pressão atm	690,00 mmHg	Temperatura	25 °C		
Norma de teste	ISO 9906 GRAU B	Tacômetro.№	11.817		

PDF created with pdfFactory Pro trial version www.pdffactory.com

Г

Anexo C – folha 2/3

№ OP	002396	Tes	te A Nº	Estágios	4	
Bomba	. BPD 271/4					
Cliente	UNICAMP					
Referência	MAURO BRA	GANTINI				
Vazão (m²/h)	Recalque (m)	Sucção (m)	Perdas hidr. (m)	En cinética (m)	<u>h(m)</u>	HMT(r
0,00	59,37	0,00	0,00	0,00	2,09	61,46
17.81	54.00	0.00	0,00	0,02	2,09	60,47
26,62	48,33	0.00	0,00	0,18	2,09	50,60
35,42	42,19	0,00	0,00	0,31	2,09	44,59
44,21	32,34	0,00	0,00	0,49	2,09	34,92
53,84 60,00	20,48 8,14	0,00	0,00	0,90	2,09	23, 30
A h(mmHg)	Potencia 1 (W)	Potincia 2 (W)	Potencia ABS(KW)	Rend. motor (%)	EHP (cv)	Rotação (spa
0,00	301,00	816,00	5,59	80,09	6,08	3533
0.00	380,00	921.00	0.51	80,94	7,10	5521
0.00	496.00	1.095.00	7,95	80.81	8,74	3501
0,00	552,00	1.171,00	8,61	80,16	9,39	3493
0,00	560,00	1.219,00	8,90	79,76	9,65	3483
0,00	558,00	1.191,00	8,74	79,98	9,51	3487
0,00	512,00	1.115,00	0,14	80,07	8,92	3493
),	RESULTADOS			
	cO: 1.000	Fatores de	Correção para a V cH: 1.0000	iscosidade) cN:	1 0000	
_	Vazão (m²/h)	HMT (m)	BHP (cv)	BHP(Rho) (cv)	Rendimento (%)	
	0,00	61,46	6,08	6,08	0,00	
	17.81	5617	8.08	2,10	45.86	
	26,62	50,60	8,74	8,74	57,08	
	35,42	44,59	9,39	9,39	62, 30	
	44,21	34,92	9,65	9,65	59,25	
	53,84	25,50	9,51	9,51	48,80	
	00,00	11,15	0,92	0,92	41,13	
Resultado	Aprovado			RNC		
Data	20/07/11					
L'CD De	nak na TE duán K a	a. C. A	8	T	ter (CE ante	

PDF created with pdfFactory Pro trial version www.pdffactory.com

Anexo C – folha 3/3

PDF created with pdfFactory Pro trial version www.pdffactory.com

Anexo D – Teste BCS (posterior BFT) no fabricante sem correção da rotação – folha 1/3

				KSB b.
PRO	TOCOL	LODI	E PERFORMANCE	
Nº OP 002396	Teste	В	Nº Estágios 4	
Bomba BFT 271/4				
Cliente UNICAMP				
Referência MAURO BRAGANTINI				
	DADO	S OPI	ERACIONAIS	
Líquido bombeado	ÁGUA	8	Temperatura	20 °C
Viscosidade	NI		Pêso específico	1.000 Kg/m ³
Vazão			Altıra	NL
Rendimento	N.L		Rotação	3.458 rpm

Potência motor

-

8.00 cv

Potencia	0,00 CV	Potencia motor	8,00 CV
NP\$H-D	0,00 m	NPSH-R	0,00 m
Perdas mecânicas	NE	Perdas hidráulicas	N.E.
Pres. sucção	N.L	Diâm. rotor original	% mm
Diâmetro 1º rotor	% mm	Diâm. demais rotores	% mm
HMT de shutoff	NI		
	DADOS DA INSTAL	AÇÃO DE TESTE	
Motor:	8	Redutor	N.Aplicável
ø Tubo de sucção	N Existente	ø Tubo de recalque	71,0 mm
1º Medidor de vazão. Nº	11.234	$2^oMedidor$ de vazão. N^o .	11.234
Const. placa orifício	N.I.	Manometro de sucção. Nº	NI
Manometro recalque. Nº	11.172	Rend. redutor	NA %
Torquímetro. №	N.A.	Perdas hidráulicas	N.E.
Const. watimetro	5,00		
Perdas mecânicas	N.E.		
Pressão atm	690,00 mmHg	Temperatura	28 °C
Norma de teste	ISO 9906 GRAU B	Tacômetro. Nº	11.817

PDF created with pdfFactory Pro trial version www.pdffactory.com

Anexo D – folha 2/3

	PRO	TOCOLO DE ENSAL	IO-LEITURA I	DE TESTE	
₩ OP	. 002396	Teste B	Nº Estágios	s 4	
Bomba	BFT 271/4				
Cliente	UNICAMP				
Referência	. MAURO BR	AGANTINI			
Vazão (m?/h)	Recalque (m)	Surção (m) Perdas I	hidr. (m) En. ciné	tra(m) 1(m) HMT(
8,81	58,96	0,00	0,00	0,02 2,1	0 61,0
17,81	53,93	0,00	0,00	0,08 2,1	0 56,1
35,61	41,08	0,00	0,00	0,32 2,1	0 43,5
44,20	29,84	0,00	0,00	0,49 2,1	0 32,4
58,30	9,80	0,00	0,00	0,85 2,1	0 12,7
∆ h(nunHg)	Potencia 1 (W)	Potencia 2 (W) Potencia Al	BS(KW) Rend. mo	ter (%) BHP(e	v) Rotação (np
0,00	347.00	\$76.00	5,24	79,57 5,0 80,67 67	0 353 1 352
0,00	425,00	985,00	7,05	81,11 7,7	7 351
0.00	482,00	1.164.00	8,53	80,95 8,5	348
0,00	569,00	1.204,00	8,86	79,81 9,6	2 348
0,00	549,00 523,00	1.177,00	8,63 8,27	80,14 9,4 80,55 9,0	0 348 6 348
		RESUL	TADOS		
		Fatores de Correção	para a Viscosidade		
	cQ: 1,0 Vazão (m?/h)	00 cH: HMT(m) I	1,0000 BHP(rv) BHP(R	cN: 1,0000	(%)
	0,00	61,60	5,66	5,66 0,	00
	17,81	55,11	7,77	7,77 47,	63
	26,64	50,46	9.31	8,55 58, 9,31 61	23 62
	44,20	32,43	9,62	9,62 55,	19
	53,01 58,30	21,51 12,75	9,40 9,06	9,40 44, 9,06 30,	93 39
Resultado	Aprovado			RNC	
Observação	- provides				
Data	21/07/11				

PDF created with pdfFactory Pro trial version www.pdffactory.com

Anexo D – folha 3/3

PDF created with pdfFactory Pro trial version www.pdffactory.com

Anexo E – Curva Viscosidade x Temperatura do óleo utilizado no teste

Anexo F – Folha de Dados do Torquímetro

Specifications T20WN												1
EME(Emission) (EN55011)											_	
RFI-Voltage						C	lass B				/	
Field strength						C	lass B				/	
Degree of protection according to EN 60529							P40				1	
Weight, approx.	kg			0.17				0.34		V	0.6	
Nominal (rated) torque M _{ncm}	N-m	0.1	0.2	0.5	1	2	5	10	20	50	100	200
for reference only	ft-lb	0.075	0.15	0.375	0.75	1.5	3.75	7.5	15	37.5	75	150
Nominal (rated) temperatule range	°C [°F]					+5 [41	+45	[113]				
Service temperature range	°C [°F]					0 [32]	+60 [140]				
Storage temperature range	°C [°F]					-5 [23]	+70	[158]				_
Impact resistance, test severity level to IEC 68; part 2-27; IEC 68-2-27-1987												
Number of impacts	n						1000					
Duration	ms						3					
Acceleration (half-sine)	m/s ²						650					
Vibration resistance, test severity level to IEC 68, part 2-6; IEC 68-2-6-1982												
Frequency range	Hz					1	565					-
Duration	h						1.5					/
Acceleration (amplitude)	m/s ²						50				1	
Nominal (rated) speed	rpm					1	D 000 0				1	
Load limits 1)											/	
Limit torque, related to Mnom	%						2002)				/	
Breaking torque, related to Mnom	96						> 280			K		
Axia limit force	kN	0.2	0.2	0.2	0.34	0.5	1.1	1.75	2.75	5.3	7.6	12.5
Lateral limit force	N	3.6	3.6	3.6	5.7	8.3	18.2	29	46	88	127	207
Bending limit moment	Nm	0.12	0.12	0.12	0.23	0.4	0.93	1.9	3.7	10	17	36
Osci∥ation bandwidth according to DIN 50100 (peak-to-peak) ³⁾	%						80					
Mechanical values												
Torsional stiffness C _T	kN-m / rad	0.03	0.03	0.03	0.05	0.07	0.91	1.9	3.25	14	21.9	32.6
Torsion angle at M _{nom}	degree	0.2	0.38	0.96	1.1	1.7	0.32	0.3	0.35	0.2	0.26	0.35
Max.limits for relative shalt vibration (peak-to- peak) ⁴⁾	μm					Sr	nax = 4	<u>1500</u> √n				
Rms value for the vibration velocity of the housing according to VDI 2056	mm/s					,	eff =	/n 3				
Mass moment of inertia of the rotor (around the axis of rotation) with speed mesuring system $(\times 10^{-3})$	gm ²	0.06	0.06	0.06	0.063	0.068	6.1	6.13	6.23	53.7	54.6	57.2
Balance quality-level per DIN ISO 1940	~						663					

 Balance quality-level per DN ISO 1940
 =
 G.6.3

 ¹⁾ Each type of irregular stress can only be permitted with its given statistic load limit values (bending moment, lateral or axial load, exceeding the nominal (rated) torque) innore of the others can occur. Otherwise the limit values must be reduced. If for instance 30 % of the bending limit moment and also 30 % of the lateral limit force are present, only 40 % of the axial limit force are permitted, provided that the nominal (rated) torque is not exceeded. With the permitted bending noments, axial and lateral limit forces, measuring errors of about 1 % of the nominal (rated) torque can occur.

 ²⁾ Please observe the coupling's maximum torque (T_{Knax}).

 ³⁾ The rominal (rated) torque must not be exceeded.

4) Relative undulations within the range of the adapter flange in accordance with DIN 45670/VDI 2059.

B0673-8.0 en

3

HBM

	-	-								-										-	4	L	inha H	idráulie
			۲																					1
	TIPO 0	1																		12 m/s	-	► 12	2 bar	-
		P				Charles of the second s			A A A A		0	En	Costo	Ope	lional	0 3/4						R.		Partes Metá clastomeros face Rotativ face Estacio
				_	_	C	DDIFI	CAÇ	ĂO	005	ELO	2												4
				I Nitrilica	E.P.D.M.	Viton®	Grafite Injetado	Grafite Usinado	Carbeto de Silicio	Carbeto de Tungstênio	Aço Carbono	Aço Inox 304	Aço Inox 316	t Cerâmica	Carbeto de Silicio	Carbeto de Tungstênio	0							
	tem	Tipo & eixo	Conjunto Rotativo	-	Elastômero	2	6	U.	race notativa	F	0	Partes Metálicas 4	9	E	Sede Estacionária	-	Conjunto Estacionári	D Eixo	0 A (mm) = 0.05	0 B (mm) ± 0,05	Ø C (mm) ± 0,5	D (mm) ± 0,2	E (mm) ± 0,2	Aplicação
	1	0107	s														5	7/16"	11,11	30,00	22,22	20,64	6,10	
	2	0107	5														L	7/16"	11,11	25,40	22,22	20,64	7,40	
	3	0107	s														M C	7/16"	11,11	24,00	22,22	20,64	9.70	
	5	0108	5														c	1/2*	12,70	25,40	22.22	20,64	7,40	
-	6	0110	A														D	5/8*	15,87	29,36	27,00	30,16	7,93	
	7	0110	A														5	5/8*	15,87	31,75	27,00	22,22	10,32	
	8	0110	F														5	5/8*	15,87	31,75	27,00	27,00	10,32	
	9	0110	S														5	5/8"	15,87	31,75	27,00	22,22	10,32	-
	10	0110	M														P	5/8*	15,87	29 36	26.50**	39,70	7.93	
	12	0110	S														w	5/8*	15,37	34,93	27,00	22,22	10,32	
		0110	D														5	5/8*	15,87	31,75	27,00	22,22	10,32	
	13		A														D	3/4*	19,05	32,38	30,16	22,22	7,30	
	13 14	0112		8	B			t	J			4			R		5	3/4*	19,05	34,93	30,16	22,22	10,32	
	13 14 15	0112 0112	K;	9													A	3/4*	19,05	34,93	30,16	19,05	10,32	
	13 14 15 16	0112 0112 0112	<i>K</i> , c											1			D	3/4*	19,05	32,38	30,16	19,05	7,30	
	13 14 15 16 17	0112 0112 0112 0112	<i>K</i> , c c																10.75		and the second se	2.2	-	
	13 14 15 16 17 18	0112 0112 0112 0112 0112 0112	<i>X</i> , c c c c	5													T	2/4	10.05	34,38	30,16	22,22	7,30	
	13 14 15 16 17 18 19 20	0112 0112 0112 0112 0112 0112 0112 0112	A, C C C C C C C D														T S S	3/4"	19,05	34,93 34,93	30,16 30,16 30,16	22,22 19,05 19,05	7.30 10,32 10.32	
	13 14 15 16 17 18 19 20 21	0112 0112 0112 0112 0112 0112 0112 0112	A, c c c c c c s														T S S A	3/4" 3/4" 3/4"	19,05 19,05 19,05	34,93 34,93 34,93 34,93	30,16 30,16 30,16 30,16	22,22 19,05 19,05 22,22	7,30 10,32 10,32 10,32	
	13 14 15 16 17 18 19 20 21 21 22	0112 0112 0112 0112 0112 0112 0112 0112	A, c c c c c c s s														T S S A S	3/4" 3/4" 3/4" 3/4"	19,05 19,05 19,05 19,05 19,05	34,93 34,93 34,93 34,93 34,93	30,16 30,16 30,16 30,16 30,16	22,22 19,05 19,05 22,22 22,22	7,30 10,32 10,32 10,32 10,32	

Anexo G – Modelo do selo mecânico utilizado

Anexo H – desenho do arranjo da BCSFT e BCS

Lado BCSFT

Lado BCS

Anexo I – Curvas publicadas da bomba booster BB-2

- Desempeño hidráulico de acuerdo a la ISO 9906 anexo "A"

- Hydraulc performance according to ISO 9906 annex A

LabVIEW Measurement													
Writer Version	2												
Reader Version	-												
Reader_version													
Separator	Tab												
Decimal_Separator	,												
Multi_Headings	No												
X_Columns	No												
Time_Pref	Absolute												
Operator	Laplabp04												
Date	31/12/1903												
Time	21:00:00	h											
End of Header	21.00.00												
Channels													
Channels	14												
Samples	1	1	. 1	1	1	1	. 1	. 1	1	1	1	1	1
Date	26/01/2012	26/01/2012	31/12/1903	26/01/2012	2 31/12/1903	31/12/1903	31/12/1903	31/12/1903	31/12/1903	31/12/1903	31/12/1903	31/12/1903	31/12/1903
Time	09:18,0	0 09:18,0	21:00:00	09:18,0	21:00:00	21:00:00	21:00:00	21:00:00	21:00:00	21:00:00	21:00:00	21:00:00	21:00:00
Y Unit Label	kg/min	kg/min	rpm	N.m	bar	bar	bar	bar	°C	°C	N.m	cP	rpm
X Dimension	Time	Time	Time	Time	Time	Time	Time	Time	Time	Time	Time	Time	Time
XO	0.00E+00	0.00E+00	0.00F+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Dolta X	0,002100	0.01	1	0,002100	1	1	1 0,002.00	1	0,002.000	0,002.00	1	0,002100	1
beild_A	0,01	0,01		0,01					1	-		1	1
Freed_of_Header													
X_Value													
vazão água (Arith. Mean)	vazão óleo (Arith. Mean)	rotação torquímetro	torque (Arith. Mean)	dP BFT	Ps BCS	Pe BCS	Pe HSP	Temperatura Entrada	Temperatura Saída	Torque visor	Viscosidade	booster óleo	booster água
1,049514	0,376883	0	0,862966	0,078102	-0,048761	-0,021831	0,079384	23,463115	23,45242	0	0	0	0
331,770787	9,745543	0	-1,961019	0,125738	0,077868	0,10648	0,598666	27,482195	27,435152	0	0	0	0
333.475508	10.177536	590	-1.918309	0.137081	0.121323	0.067118	0.739029	27.319835	27.386701	2.3	17	0	1190
312,503432	6.580972	495	-1.726581	0.128864	0.110321	0.085679	0.690173	27,205214	27,26438	2.13	18	0	1190
201 752252	2 645409	404	-1 4772	0 121292	0.111661	0.097904	0.674726	27 147929	27 106602	1 92	10	1 0	1190
251,/52252	5,045406	404	-1,4775	0,131262	0,111001	0,000010	0,074736	27,147020	27,190092	1,00	10	0	1190
284,946247	5,/558/	353	-1,363675	0,124655	0,10777	0,099018	0,652289	27,072292	27,294979	1,/3	18	0	1190
511,479401	145,663972	1338	-4,6137	0,195924	0,731361	0,274195	1,51332	27,418162	27,338947	4,99	16	895	1800
511,015754	127,176421	1344	-4,603076	0,195929	0,973059	0,433023	1,518817	27,539974	27,512813	5	16	895	1800
509,986859	107,986348	1346	-4,564244	0,193385	1,164185	0,599997	1,51685	27,582149	27,54326	4,96	18	895	1800
507.316598	89.295841	1360	-4.512991	0.198764	1.168747	0.574744	1.528573	27.644641	27.601295	4.9	14	895	1800
507 950535	45 398105	1390	-4 39628	0 196684	1 34295	0.712016	1 516963	27 648735	27.63097	4 78	14	895	1800
677 225529	192 405008	2012	-7.695105	-0 277125	1,01665	0 149295	2 602409	29,229702	29 429221	9.05	12	805	2400
676 260 404	132,405008	2013	-7,000100	-0,277135	1,01005	-0,140303	2,003408	20,333702	20,430321	0,05	13	005	2400
676,368494	1/3,4/6215	2023	-1,/3/92/	-0,289689	1,356131	0,07141	2,588769	28,468656	28,578078	8,15	11	895	2400
675,988886	142,132275	2016	-7,750281	-0,268797	1,791276	0,345339	2,580356	28,543527	28,641619	8,14	11	895	2400
679,660073	116,985683	2043	-7,632484	-0,280847	1,823026	0,337162	2,625378	28,603101	28,711424	8,02	11	895	2400
677,165695	49,465298	2043	-7,430451	-0,274135	2,813081	1,036104	2,598982	28,590274	29,084976	7,85	11	895	2400
678,468954	50,040269	2100	-7,416683	-0,272797	2,818335	1,039814	2,589096	28,658039	29,361302	7,82	10	895	2400
898.089428	231.927444	3008	-11.624551	-0.419175	1.227376	-0.542197	4.481681	29.211107	29.518882	12	13	895	3200
898 129772	191 140665	2905	-12 240275	-0.409421	2 11666	0.072507	4 426762	20 694909	20.027127	12.62	9	905	2200
000,024762	131,140005	2000	-13,240373	-0,400421	3,11000	-0,073307	4,420703	25,004808	30,037137	13,03	,	005	3200
898,934763	137,879034	2949	-12,909589	-0,403415	3,885288	0,418/18	4,488526	29,939964	30,43667	13,33	9	895	3200
901,184178	53,112645	3040	-12,38846	-0,422431	5,025954	0,923273	4,524743	30,004356	31,9285	12,82	8	895	3200
618,550688	198,440615	1806	-6,498714	-0,240397	0,929057	-0,034275	2,16576	31,308374	31,346511	6,88	6	895	3200
616,403005	164,54531	1804	-6,532251	-0,242231	1,401419	0,268632	2,186219	31,515628	31,5602	6,89	5	895	3200
608,403539	112,183206	1856	-6,338436	-0,242315	1,962262	0,68054	2,184589	31,636894	31,695909	6,72	8	895	3200
623,627255	45,03709	1916	-6,117614	-0,239018	2,608915	1,070763	2,180085	31,573012	32,121564	6,5	4	895	3200
700.571526	227,590678	2170	-8.394553	-0.287318	1.099392	-0.275212	2 824584	32,106452	32,212336	8.78	7	895	3700
695 917107	192 029626	2140	-8 424581	-0.28936	1 710966	0.035981	2 852925	32 274847	32 395665	8.83	4	895	3700
605 5107	142,623020	2140	9 224565	0,203616	2,219226	0,0333381	2,052525	22,274047	32,555005	8,65	4	805	3700
705 750714	142,437307	2157	-6,22103	-0,295010	2,518520	0,447281	2,709711	32,595697	32,334761	0,02	4	005	3700
/05,/59/11	102,/98815	2229	-8,10/513	-0,29032	2,7308	U,/455/1	2,796006	32,56/335	32,/16/68	8,49	5	695	3700
695,541532	32,039223	2297	-7,790307	-0,289697	3,429385	1,163993	2,802134	32,441936	33,321445	8,2	3	895	3700
467,619129	163,542876	1221	-3,874827	-0,172951	0,699833	0,332869	1,299577	32,77962	32,714369	4,25	3	895	2400
471,562467	122,859758	1237	-3,844438	-0,181455	1,093952	0,620854	1,296386	32,893891	32,844785	4,22	3	895	2400
466,07364	83,890131	1253	-3,721989	-0,178161	1,437407	0,877588	1,30981	32,941782	32,804847	4,08	3	895	2400
460.947769	45.507696	1283	-3.596838	-0.167319	1.695274	1.066759	1.279287	32.927314	32.882943	3.96	2	895	2400
350,460275	138.057411	755	-2.120518	-0.14262	0.568386	0.545838	0.770793	33,054201	32,895404	2.5	4	895	1800
350 912083	121 67875	758	-2 149054	-0.140621	0.713652	0.64824	0 787322	33 1267	32 983642	2.5	4	895	1800
351,020572	121,07875	730	-2,145054	-0,140021	0,715055	0,04024	0,707323	33,1207	32,585042	2,5	4	005	1000
331,039373	33,407114	//1	-2,155414	-0,142851	0,910372	0,799018	0,789404	55,150061	33,008489	2,31	4	895	1800
352,114	46,021292	/89	-2,100438	-0,139992	1,278867	1,08154	0,778206	33,066194	32,82497	2,46	2	895	1800
243,540804	121,598732	360	-0,846059	-0,112991	0,501432	0,630225	0,477543	32,718656	32,608492	1,2	5	895	1800
329,487939	132,824913	680	-1,853863	-0,130677	0,552018	0,561183	0,698265	32,782173	32,649279	2,23	6	895	2400
402,634184	150,826532	1025	-3,054469	-0,158507	0,638278	0,438698	1,027029	32,834472	32,70036	3,43	4	895	3200
402,115769	110,591474	991	-2,871741	-0,157003	0,973484	0,704412	0,979157	32,928397	32,662669	3,25	5	895	3200
396,975197	81.073265	1005	-2.843365	-0.151159	1.21526	0.884001	0.96646	32,958029	32,795095	3.22	3	895	3200
395.382485	46.168009	1037	-2.753415	-0.149656	1.464768	1.087273	0.973903	33.01451	32,892154	3.11	2	895	3200
307 880601	133 520022	650	1 644334	0,130707	0.540476	0.594971	0,573303	22 15 2701	32,001059	3,02	2	805	3700
200,003001	100,020000	000	-1,0442.54	-0,150/9/	0,5404/6	0,5040/1	0,004512	33,133/01	33,001036	2,05	-	033	3700
289,53575	128,059798	570	-1,422207	-0,276565	0,52746	0,59678	0,711777	32,872305	32,69889	1,8	5	895	3700
406,223152	151,627203	1030	-3,028301	-0,311855	0,638416	0,442353	1,1804	32,964993	32,784491	3,41	4	895	3700
321,125387	135,826658	797	-1,895167	-0,29404	0,576834	0,529931	0,953045	33,035091	32,861735	2,56	4	895	4100
436,338851	159,21406	1161	-3,421657	-0,321452	0,67477	0,383667	1,320171	33,101631	32,994401	3,83	4	895	4100
2,443011	101,104359	1091	0,659515	-0,318574	0,902413	0,597447	1,23816	33,282843	33,145496	3,83	4	895	4100
482,490166	4,04408	2751	0,359634	-0,3691	0,039989	0,105805	1,94198	32,9742	32,707016	0	0	0	1800
569,867268	4.759397	3092	0.361585	-0.417118	0.037435	0.105793	2.451045	32,805228	32,613213	0	0	0	2100
659 136813	4 394502	3573	0.360954	-0.46927	0.036765	0.105805	3.0161	32 371773	32 269756	0	0	0	2400
761 474105	3,545705	3006	0.264925	0.412040	0.040653	0.105005	3,0101	21 02227	21 92095	0			2400
/61,4/4195	3,045795	3906	0,304835	-0,412946	0,040653	0,105805	3,143129	31,92337	31,83085	U	U	0	2/00
/56.11116/	3.962498	3906	0.360896	-0.523004	0.036765	0.105062	3.436986	31.868146	31./65/	0	0	0	2/00

Anexo J – Dados "brutos" de teste com BCS bombeando óleo

LabVIEW Measurement	t												
Writer Version	2												
Reader Version	2												
Separator	Tab												
Decimal Separator													
Multi Headings	No												
X Columns	No												
Time Pref	Absolute												
Operator	Lanlahn04												
Date	31/12/1003												
Time	21.00.00												
End of Header	21.00.00												
cita_oi_neadei													
Channels	14												
Samples	1	1	1	1	1	1	1	1	1	1	1	1	1
Date	26/01/2012	26/01/2012	31/12/1903	26/01/2012	31/12/1903	31/12/1903	31/12/1903	31/12/1903	31/12/1903	31/12/1903	31/12/1903	31/12/1903	31/12/1903
Time	09.18.0	09.18.0	21:00:00	09:18.0	21:00:00	21.00.00	21.00.00	21:00:00	21.00.00	21:00:00	21:00:00	21:00:00	21.00.00
Y Unit Label	kg/min	kg/min	rnm	N m	har	har	har	har	°C	°C	N m	cP	rnm
Y Dimension	Time	Time	Time	Time	Time	Time	Time	Time	Time	Time	Time	Time	Time
Y0	0.005±00	0.005+00	0.00E±00	0.00E±00	0.005+00	0.005+00	0.005+00	0.005+00	0.005+00	0.00E±00	0.005+00	0.00F±00	0.005+00
Dolto V	0,002100	0,002100	0,002100	0,002100	0,002100	0,002100	0,002100	0,002100	0,002100	0,002100	0,002100	0,002100	0,002100
End of Header	0,01	0,01	-	0,01	-	-			-				
V Value													
A_value	nzão áloo (Arith Monr	ntação torquímet	orguo (Arith Moon	dD PET	De PCS	Do PCS		omnoratura Entrad	Tomporatura Saída	Torquovicor	Viccosidado	hoostor áloo	hoostor água
207 850444	112 770442	o o o	1 14262	0.275642	0.220065	0 100 27	0.760292	20 OF 144E	20 60195	o o	viscosidade	Dooster bleb	DOOSLEF agua
150.867008	115,770442	202	-1,143502	-0,275643	0,220965	-0,10927	0,760383	29,051445	29,00185	0.33	0	0	575
159,867908	4,009082	302	0,084309	-0,246606	0,079582	0,054146	0,382926	29,05554	29,604479	-0,22	0	0	5/5
508,002780	296,037779	1038	-3,948332	-0,343376	1,410003	0,50159	1,682802	30,18/505	30,843130	-4,33	0	896	1800
512,648925	252,254996	1641	-3,938786	-0,344296	1,804157	0,788912	1,662395	30,245931	30,908887	-4,31	0	896	1800
509,764533	200,895081	1045	-3,964461	-0,342293	2,096432	1,03308	1,672601	30,294093	30,966826	-4,35	0	896	1800
511,640064	152,437836	1639	-3,996002	-0,35005	2,334218	1,203009	1,655912	30,377664	31,060351	-4,38	0	896	1800
509,274738	317,82/4/3	1028	-4,028362	-0,345051	1,072087	0,248073	1,059574	31,06/108	31,/22210	-4,4	0	896	1800
691 710022	317,330438	2190	-7,4493330	-0,433508	1,430830	=0,223710	2,770333	31,143283	31,613131	-7,84	0	890	2400
681,719033	317,650571	2191	-7,440090	-0,42748	1,969496	0,143277	2,772055	31,24272	31,047104	-7,80	0	896	2400
680,128923	293,03/115	21/3	-7,546842	-0,42894	1,97406	0,141791	2,724152	31,296542	31,975850	-7,95	0	896	2400
680,284253	236,661939	2157	-7,525934	-0,431195	2,829875	0,829454	2,763463	31,331264	32,035129	-7,94	0	896	2400
678,318828	200,901159	2154	-7,379904	-0,415585	3,083776	0,974943	2,/55858	31,372559	32,089992	-7,78	0	896	2400
6/9,155/0/	164,164422	2145	-7,17369	-0,421304	3,363433	1,10///4	2,75728	31,418805	32,16/762	-7,61	0	896	2400
899,322436	317,009754	2930	-13,402207	-0,577151	2,595557	-0,510832	4,658855	31,670304	32,349774	-13,78	U	1190	3200
901,861565	317,603119	2942	-13,29992	-0,566804	3,299455	-0,049976	4,650628	31,//6339	32,458506	-13,/1	0	1190	3200
903,106412	317,698779	2949	-13,20331/	-0,553281	3,/88/19	0.075647	4,001396	31,87/427	32,56/009	-13,63	0	1190	3200
900,039224	317,039094	29/0	-13,095419	-0,57501	4,384904	1 542202	4,031803	32,023932	32,/39323	-13,5	0	1190	3200
899,192345	297,470407	29/1	-12,81480/	-0,588/99	3,337,342	1,043262	4,083/4	32,13294	32,907109	-13,22	0	1490	3200
890.036176	219 512002	2037	12 110022	-0,387834	3,000158	0,21013	4,363367	22,003210	33,42088	-13,07	0	1400	3500
889,920170	318,512903	2910	-13,110933	-0,505515	3,09/151	0,740996	4,504394	32,937991	33,546795	-13,52	0	1480	3500
888,936959	319,083443	2910	-13,11539/	-0,57821	4,035579	0,931033	4,524192	33,018378	33,614612	-13,52	U	1486	3500
691,103/36	318,81904/	2933	-13,002572	-0,580843	4,995271	1,0033/1	4,592855	33,229221	33,828214	-13,42	0	1480	3500
6/7,499641	317,59711	2233	-/,203328	-0,422485	4,/356/8	2,/3/538	2,764316	33,550038	34,100132	-/,64	U	1486	3500
007,041165	318,518/15	2186	-7,414097	-0,424781	3,045/66	1,008045	2,753864	33,042899	34,162827	-7,82	0	1486	3500
6/0,422/85	318,683503	216/	-7,428525	-0,431/12	2,697866	1,201217	2,756929	33,/935/2	34,321353	-/,83	U	1486	3500
669,11/185	318,35292	21/6	-7,415519	-0,422154	2,391469	1,14/66/	2,/16/12	33,915849	34,445172	-7,81	U	1486	3500
710,849027	318,940534	2288	-8,27596	-0,451677	2,479203	0,940518	3,033/51	34,310494	34,839891	-8,66	0	1486	3700
704,702000	319,188433	2289	-8,244137	-0,453421	1,903924	0,233310	3,021494	24,403919	34,930906	-8,00	0	1190	3700
/00,540521	313,19739/	2300	-0,109142	-0,438//3	1,2023/9	-0,302328	2,9/0015	34,430/08	34,98983	-6,5/	1 0	894	3/00

Anexo L – Análise de Incertezas

Para a análise de incertezas foi utilizado o Guia ABNT- Inmetro, 2003.

Este guia estima a incerteza em um determinado resultado considerando as incertezas nas medidas diretas e indiretas.

Definições:

<u>Incerteza de medida direta</u>: incerteza associada a uma medição direta. É avaliada como a composição de dois tipos de incerteza: tipo A (avaliação estatística de uma série de observações) e tipo B (avaliação por outros meios que não a estatística de uma série de observações). A combinação dos tipos A e B dá a chamada incerteza padrão, a partir de medidas diretas.

Exemplos de aplicação neste trabalho: incerteza da vazão, da rotação, do torque.

<u>Incerteza de medida indireta</u>: incerteza obtida para medidas calculadas a partir de outras grandezas. É baseada na incerteza das grandezas que, indiretamente, originam a grandeza considerada. Pode-se, assim, dizer que a incerteza de medidas indiretas provém de incertezas de medidas diretas, e até mesmo de outras incertezas indiretas.

Exemplos de aplicação neste trabalho: incerteza da altura e do rendimento.

Seja, um certo resultado R função das variáveis independentes x1, x2,..., xn e escrito como:

 $R = R(x_1, x_2, ..., x_n)$ (A.1)

E w_r a incerteza no resultado com w_{x1} , w_{x2} ,..., w_{xn} sendo as incertezas nas variáveis independentes e estas apresentadas para uma mesma probabilidade, logo a incerteza combinada no resultado é:

$$w_{r} = \left[\left(\frac{\partial R}{\partial \mathbf{x}_{1}} w_{x1} \right)^{2} + \left(\frac{\partial R}{\partial \mathbf{x}_{2}} w_{x2} \right)^{2} + \dots + \left(\frac{\partial R}{\partial \mathbf{x}_{n}} w_{xn} \right)^{2} \right]^{1/2}$$
(A.2)

A incerteza referente ao cálculo da altura manométrica H (eq. 1a) é escrita como:

$$w_{H} = \left[\left(\frac{\partial H}{\partial P_{\rm s}} w_{P_{\rm s}} \right)^{2} + \left(\frac{\partial H}{\partial P_{\rm e}} w_{P_{e}} \right)^{2} + \left(\frac{\partial H}{\partial z_{\rm s}} w_{z_{\rm s}} \right)^{2} + \left(\frac{\partial H}{\partial z_{\rm e}} w_{z_{e}} \right)^{2} \right]^{1/2}$$
(A.3)

$$w_{H} = \left[\left(\frac{w_{P_{s}}}{\rho \cdot g} \right)^{2} + \left(\frac{w_{P_{e}}}{\rho \cdot g} \right)^{2} + \left(w_{Z_{s}} \right)^{2} + \left(w_{Z_{e}} \right)^{2} \right]^{1/2}$$
(A.4)

2. Incerteza do rendimento da BCSFT

A incerteza referente ao cálculo da eficiência hidráulica η_{BCSFT} (eq. 2) é escrita como:

$$w_{\eta_{BCSFT}} = \left[\left(\frac{\partial \eta}{\partial n} w_n \right)^2 + \left(\frac{\partial \eta}{\partial T} w_T \right)^2 + \left(\frac{\partial \eta}{\partial Q} w_Q \right)^2 + \left(\frac{\partial \eta}{\partial H} w_H \right)^2 \right]^{1/2}$$
(A.5)

$$w_{\eta_{BCSFT}} = \left[\left(\frac{T}{\rho.Q.H} w_n \right)^2 + \left(\frac{n}{\rho.Q.H} w_T \right)^2 + \left(\frac{-n.T}{Q^2.\rho.H} w_Q \right)^2 + \left(\frac{-n.T}{H^2.\rho.Q} w_H \right)^2 \right]^{1/2}$$
(A.6)

A tabela A.T.1 apresenta as incertezas para os parâmetros de rotação, vazão, pressão e eficiência referente aos resultados obtidos na BCSFT, quando dos testes 2 a 8 indicados na tabela 4.1, na situação que a BCS bombeava óleo e que foram apresentados nas Fig. 4.1 a 4.4.

Teste	Rotação BCSFT	Incerteza Rotação	Q (m ³ /h)	Incerteza Q (m ³ /h)	H (mca)	Incerteza H (mca)	η (%)	Incerteza η (%)
		(rpm)						
2	2039	2,28	40,65	0,69	29,03	0,32	50,7	0,76
3	2973	4,39	53,95	0,69	49,64	0,32	54,6	0,89
4	1846	3,74	37,00	0,69	24,39	0,32	50,0	1,20
5	2207	2,99	41,92	0,69	31,32	0,32	52,9	0,88
6	1249	2,42	27,99	0,69	14,71	0,32	43,8	1,18
7	768	2,02	21,07	0,69	9,11	0,32	32,7	1,35
8	1015	2,18	23,96	0,69	11,33	0,32	41,4	1,33

Tabela A.T.1 - Teste da BCSFT com a BCS bombeando óleo

A tabela A.T.2 também apresenta as incertezas para os parâmetros de rotação, vazão, pressão e eficiência referente aos resultados obtidos na BCSFT, quando dos testes 1 a 3 e 11 a 13 indicados na tabela 4.1, na situação que a BCS bombeava água e que foram apresentados nas figuras 4.1 a 4.4.

Tabela A.T.2 - Teste da BCSFT com a BCS bombeando água

Teste	Rotação BCSFT	Incerteza Rotação (rpm)	Q (m ³ /h)	Incerteza Q (m ³ /h)	H (mca)	Incerteza H (mca)	η (%)	Incerteza η (%)
1	1638	1 79	30.62	0.69	20.22	0.33	40.4	0.76
2	2169	1,86	40,79	0,69	32,19	0,39	47,1	0,57
3	2954	1,93	54,05	0,69	53,06	0,42	52,1	0,43
11	2913	2,69	53,49	0,69	52,25	0,53	52,6	0,55
12	2195	4,17	40,31	0,69	32,19	0,32	47,9	1,00
13	2294	2,10	42,44	0,69	34,93	0,45	49,0	0,59

A calibração de todos os instrumentos utilizados nos testes foi considerada aquela realizada pelos seus respectivos fabricantes.

Referência:

Guia para a Expressão da Incerteza de Medição ABNT- Inmetro, 3ª edição, 2003.

Volume Recuperável=	3.000.000	20.000.000	m ³ std
Volume Recuperável=	18.867.925	125.786.164	std
Q poco =	20	100	m ³ std/h
Q poco =	3.019	15.094	std/d
H poco=	2000	2000	m
Fator cresc, curva sist =	1.05	1.05	
	.,	.,	
\$/kWh=	0.05	0.05	USD
\$ Lucro/barril=	5	5	USD
Taxa atratividade anual=	6,0%	6,0%	
1. BCS convencional			
nBCS=	3600	3600	rpm
Hest BCS=	20	20	m
nº est BCS=	100	100	
Eff BCS=	70.0%	70.0%	
Eff_Motor BCS=	80.0%	80.0%	
Pot=	194.6	973.2	k\//
BCS \$=	40,000,00	400,000,00	חפו
Motor BCS \$=	40.000,00	400.000,00	
	80,000,00	800.000.00	
\$ Pot/b=	0.73	48.66	
\$ Fourie	9,73	40,00	
p Pol lotal= Temps de depletesão de pese =	1.409.621,43	9.732.142,80	050
Tempo de depletação do poço =	17	23	anos
	85.254	420.200	
\$ Valor atual Pot=	897.000,91	5.226.134,46	USD
\$ Iotal Lucro/ano =	5.509.433,96	27.547.169,81	USD
		337 737 157 15	
	57.907.002,30	007.704.102,40	000
\$ VPL _{BCS conv.} =	56.990.861,45	331.708.017,99	USD
\$ Valor atual lucro = \$ VPL _{BCS conv} .=	56.990.861,45	331.708.017,99	USD
\$ Valor attain litero = \$ VPL BCS conv.= 2. Booster+BCSFT+BCS	56.990.861,45	331.708.017,99	USD
\$ Valor attain litero = \$ VPL BCS conv.= 2. Booster+BCSFT+BCS nBooster=	56.990.861,45 3600	331.708.017,99 3600	USD
\$ Valor attain litero = \$ VPL BCS conv.= 2. Booster+BCSFT+BCS nBooster= nBFT=	56.990.861,45 3600 4500	331.708.017,99 3600 4500	USD rpm rpm
\$ valor attain litero = \$ VPL BCS conv.= 2. Booster+BCSFT+BCS nBooster= nBFT= nBFT= nBCS=	56.990.861,45 3600 4500 4500	3600 3600 4500 3500	rpm rpm
\$ Valor attain licero = \$ VPL BCS conv. = 2. Booster+BCSFT+BCS nBooster= nBFT= nBCS= Eff. Booster=	56.990.861,45 3600 4500 4500 75,0%	3600 4500 75,0%	rpm rpm rpm
\$ Valor attain locro = \$ VPL BCS conv.= 2. Booster+BCSFT+BCS nBooster= nBFT= nBCS= Eff. Booster= Eff. Motor Booster=	3600 3600 4500 4500 75,0% 92,0%	3600 3600 4500 4500 75,0% 92,0%	rpm rpm rpm
\$ Valor attain locro = \$ VPL BCS conv.= 2. Booster+BCSFT+BCS nBooster= nBFT= nBCS= Eff. Booster= Eff. Motor Booster= Eff. BFT=	3600 3600 4500 4500 75,0% 92,0% 60,0%	331.708.017,99 331.708.017,99 3600 4500 4500 75,0% 92,0% 60,0%	rpm rpm rpm
\$ VAIO AUGI INCO = \$ VPL BCS conv.= 2. Booster+BCSFT+BCS nBooster= nBFT= nBCS= Eff. Booster= Eff. Motor Booster= Eff. BFT= Eff. BCS=	3600 3600 4500 4500 75,0% 92,0% 60,0% 70,0%	331.708.017,99 331.708.017,99 3600 4500 4500 75,0% 92,0% 60,0% 70,0%	rpm rpm rpm
\$ VPL BCS conv.= 2. Booster+BCSFT+BCS nBooster= nBFT= nBCS= Eff. Booster= Eff. Motor Booster= Eff. BFT= Eff. BCS= Pot booster=	3600 3600 4500 4500 75,0% 92,0% 60,0% 70,0% 376,1	331.708.017,99 331.708.017,99 3600 4500 4500 75,0% 92,0% 60,0% 70,0% 1880,6	rpm rpm rpm
\$ VPL BCS conv.= 2. Booster+BCSFT+BCS nBooster= nBFT= nBCS= Eff. Booster= Eff. Motor Booster= Eff. BFT= Eff. BCS= Pot booster= Booster \$=	3600 3600 4500 4500 75,0% 92,0% 60,0% 70,0% 376,1 60.000,00	331.708.017,99 331.708.017,99 3600 4500 4500 75,0% 92,0% 60,0% 70,0% 1880,6 600.000,00	rpm rpm rpm USD
\$ VAIO attain for 0 = \$ VPL BCS conv.= 2. Booster+BCSFT+BCS nBooster= nBFT= nBCS= Eff. Booster= Eff. Motor Booster= Eff. BFT= Eff. BCS= Pot booster= Booster \$= QBCS=	56.990.861,45 56.990.861,45 3600 4500 4500 75,0% 92,0% 60,0% 70,0% 376,1 60.000,00 25	331.708.017,99 331.708.017,99 3600 4500 4500 75,0% 92,0% 60,0% 70,0% 1880,6 600.000,00 125	rpm rpm rpm USD m ³ /h
\$ VAIO attain for 0 = \$ VPL BCS conv. = 2. Booster+BCSFT+BCS nBooster= nBFT= nBCS= Eff. Booster= Eff. Motor Booster= Eff. BFT= Eff. BCS= Pot booster= Booster \$= QBCS= HestBCS=	56.990.861,45 56.990.861,45 3600 4500 4500 75,0% 92,0% 60,0% 70,0% 376,1 60.000,00 25 31,25	331.708.017,99 331.708.017,99 3600 4500 4500 75,0% 92,0% 60,0% 70,0% 1880,6 600.000,00 125 31,25	USD rpm rpm rpm USD m ³ /h m
\$ VPL BCS conv.= \$ VPL BCS conv.= 2. Booster+BCSFT+BCS nBooster= nBFT= nBCS= Eff. Booster= Eff. Motor Booster= Eff. BFT= Eff. BCS= Pot booster= Booster \$= QBCS= HestBCS= n° est BCS=	3600 3600 4500 4500 75,0% 92,0% 60,0% 70,0% 376,1 60.000,00 25 31,25 68	331.708.017,99 331.708.017,99 3600 4500 4500 75,0% 92,0% 60,0% 70,0% 1880,6 600.000,00 125 31,25 68	USD rpm rpm rpm USD m ³ /h m
\$ VPL BCS conv.= \$ VPL BCS conv.= 2. Booster+BCSFT+BCS nBooster= nBFT= nBCS= Eff. Booster= Eff. Motor Booster= Eff. BFT= Eff. BFT= Eff. BCS= Pot booster= Booster \$= QBCS= HestBCS= n° est BCS= BCS \$=	37.907.802,36 56.990.861,45 3600 4500 4500 75,0% 92,0% 60,0% 70,0% 376,1 60.000,00 25 31,25 68 27.200,00	331.708.017,99 331.708.017,99 3600 4500 4500 75,0% 92,0% 60,0% 70,0% 1880,6 600.000,00 125 31,25 68 272.000,00	USD rpm rpm rpm USD m ³ /h m
\$ VPL BCS conv.= \$ VPL BCS conv.= 2. Booster+BCSFT+BCS nBooster= nBFT= nBCS= Eff. Booster= Eff. Motor Booster= Eff. BFT= Eff. BCS= Pot booster= Booster \$= QBCS= HestBCS= n° est BCS= BCS \$= BFT \$=	37.907.802,36 56.990.861,45 3600 4500 4500 75,0% 92,0% 60,0% 70,0% 376,1 60.000,00 25 31,25 68 27.200,00 27.200,00	331.708.017,99 331.708.017,99 3600 4500 4500 75,0% 92,0% 60,0% 70,0% 1880,6 600.000,00 125 31,25 68 272.000,00 272.000,00	USD rpm rpm rpm USD USD USD
\$ VPL BCS conv.= \$ VPL BCS conv.= 2. Booster+BCSFT+BCS nBooster= nBFT= nBCS= Eff. Booster= Eff. Motor Booster= Eff. BFT= Eff. BCS= Pot booster= Booster \$= QBCS= HestBCS= n° est BCS= BCS \$= BFT \$= \$ Inicial =	37.907.802,36 56.990.861,45 3600 4500 4500 75,0% 92,0% 60,0% 70,0% 376,1 60.000,00 25 31,25 68 27.200,00 27.200,00 114.400,00	331.708.017,99 331.708.017,99 3600 4500 4500 75,0% 92,0% 60,0% 70,0% 1880,6 600.000,00 125 31,25 68 272.000,00 272.000,00 1.144.000,00	USD rpm rpm rpm USD USD USD USD
\$ VPL BCS conv.= 2. Booster+BCSFT+BCS nBooster= nBFT= nBCS= Eff. Booster= Eff. Motor Booster= Eff. BFT= Eff. BFT= Eff. BCS= Pot booster= Booster \$= QBCS= HestBCS= n° est BCS= BFT \$= \$ Inicial = \$ Pot/h=	3600 3600 4500 4500 75,0% 92,0% 60,0% 70,0% 376,1 60.000,00 25 31,25 68 27.200,00 27.200,00 114.400,00 18,81	331.708.017,99 331.708.017,99 3600 4500 4500 75,0% 92,0% 60,0% 70,0% 1880,6 600.000,00 125 31,25 68 272.000,00 272.000,00 1.144.000,00 94,03	USD rpm rpm rpm USD USD USD USD USD USD
\$ VPL BCS conv.= \$ VPL BCS conv.= 2. Booster+BCSFT+BCS nBooster= nBFT= nBCS= Eff. Booster= Eff. BFT= Eff. BFT= Eff. BCS= Pot booster= Booster \$= QBCS= HestBCS= n° est BCS= BFT \$= \$ Inicial = \$ Pot total=	56.990.861,45 56.990.861,45 3600 4500 4500 75,0% 92,0% 60,0% 70,0% 376,1 60.000,00 25 31,25 68 27.200,00 27.200,00 114.400,00 18,81 2.820.910,97	331.708.017,99 331.708.017,99 33600 4500 4500 75,0% 92,0% 60,0% 70,0% 1880,6 600.000,00 125 31,25 68 272.000,00 272.000,00 1.144.000,00 94,03 18.806.073,15	USD rpm rpm rpm USD USD USD USD USD USD USD
\$ Valor attain toro = \$ VPL BCS conv.= 2. Booster+BCSFT+BCS nBooster= nBCS= Eff. Booster= Eff. Booster= Eff. Booster= Eff. Booster= Eff. BCS= Pot booster= Booster \$= QBCS= HestBCS= n° est BCS= BFT \$= \$ Inicial = \$ Pot /h= \$ Pot total= Tempo de depletação do poço =	56.990.861,45 56.990.861,45 3600 4500 4500 75,0% 92,0% 60,0% 70,0% 376,1 60.000,00 25 31,25 68 27.200,00 27.200,00 114.400,00 18,81 2.820.910,97 14	331.708.017,99 331.708.017,99 33600 4500 4500 75,0% 92,0% 60,0% 70,0% 1880,6 600.000,00 125 31,25 68 272.000,00 272.000,00 272.000,00 1144.000,00 94,03 18.806.073,15 18	USD rpm rpm rpm USD USD USD USD USD USD USD USD USD USD
\$ Valor attain toro = \$ VPL BCS conv.= 2. Booster+BCSFT+BCS nBooster= nBFT= nBCS= Eff. Booster= Eff. Booster= Eff. Booster= Eff. Boster= Eff. Boster= Eff. BCS= Pot booster= Booster \$= QBCS= HestBCS= n° est BCS= BCS \$= BFT \$= \$ Inicial = \$ Pot total= Tempo de depletação do poço = \$ Pot total/ano =	56.990.861,45 56.990.861,45 3600 4500 4500 75,0% 92,0% 60,0% 70,0% 376,1 60.000,00 25 31,25 68 27.200,00 27.200,00 114.400,00 18,81 2.820.910,97 14 205.927	331.708.017,99 331.708.017,99 3600 4500 4500 75,0% 92,0% 60,0% 70,0% 1880,6 600.000,00 125 31,25 68 272.000,00 272.000,00 272.000,00 1.144.000,00 94,03 18.806.073,15 18 1.029.633	USD rpm rpm rpm USD USD USD USD USD USD USD USD USD USD
\$ Valor attain toro = \$ VPL BCS conv.= 2. Booster+BCSFT+BCS nBooster= nBFT= nBCS= Eff. Booster= Eff. Booster= Eff. Booster= Eff. Boster= Eff. Booster= Eff. BCS= Pot booster= Booster \$= QBCS= HestBCS= n° est BCS= BCS \$= BFT \$= \$ Inicial = \$ Pot total= Tempo de depletação do poço = \$ Pot total/ano = \$ Valor atual Pot=	56.990.861,45 56.990.861,45 3600 4500 4500 75,0% 92,0% 60,0% 70,0% 376,1 60.000,00 25 31,25 68 27.200,00 27.200,00 114.400,00 18,81 2.820.910,97 14 205.927 1.887.190.82	331.708.017,99 331.708.017,99 3600 4500 4500 75,0% 92,0% 60,0% 70,0% 1880,6 600.000,00 125 31,25 68 272.000,00 272.000,00 272.000,00 1.144.000,00 94,03 18.806.073,15 18 1.029.633 11.240.518,54	USD rpm rpm rpm USD WSD USD USD USD USD USD USD USD USD USD U
\$ Valor attain toro = \$ VPL BCS conv.= 2. Booster+BCSFT+BCS nBooster= nBFT= nBCS= Eff. Booster= Eff. Motor Booster= Eff. BCS= Pot booster= Booster \$= QBCS= HestBCS= n° est BCS= BCS \$= BFT \$= \$ Inicial = \$ Pot/h= \$ Pot total= Tempo de depletação do poço = \$ Vot total/ano = \$ Votal/ano = \$ Votal Pot= \$ Total lucro/ano = \$ Votal lucro/ano = \$ Total lucro/ano = \$ Total lucro/ano = \$ Total lucro/ano =	37.987.882,38 56.990.861,45 3600 4500 4500 75,0% 92,0% 60,0% 70,0% 376,1 60.000,00 25 31,25 68 27.200,00 27.200,00 27.200,00 114.400,00 18,81 2.820.910,97 14 205.927 1.887.190,82 6.886,792,45	331.708.017,99 331.708.017,99 33600 4500 4500 75,0% 92,0% 60,0% 70,0% 1880,6 600.000,00 125 31,25 68 272.000,00 272.000,00 1.144.000,00 94,03 18.806.073,15 18 1.029.633 11.240.518,54 34.433.962.26	USD rpm rpm rpm USD WSD USD USD USD USD USD USD USD USD USD U
\$ Valor attal lucro = \$ VPL BCS conv.= 2. Booster+BCSFT+BCS nBooster= nBFT= nBCS= Eff. Booster= Eff. Motor Booster= Eff. BCS= Pot booster= Booster \$= QBCS= HestBCS= n° est BCS= BCS \$= BFT \$= \$ Incial = \$ Pot/h= \$ Pot total= Tempo de depletação do poço = \$ Pot total/ano = \$ Valor atual Pot= \$ Total lucro/ano = \$ Valor atual lucro =	3600 3600 4500 4500 4500 75,0% 92,0% 60,0% 70,0% 376,1 60.000,00 25 31,25 68 27.200,00 27.200,00 27.200,00 114.400,00 18,81 2.820.910,97 14 205.927 1.887.190,82 6.886.792,45 63,113,253,65	331.708.017,99 331.708.017,99 331.708.017,99 4500 4500 75,0% 92,0% 60,0% 70,0% 1880,6 600.000,00 125 31,25 68 272.000,00 272.000,00 272.000,00 1.144.000,00 94,03 18.806.073,15 18 1.029.633 11.240.518,54 34.433.962,26 375,916.251.03	USD rpm rpm rpm USD m ³ /h m USD USD USD USD USD USD USD USD USD USD
\$ VPL BCS conv.= 2. Booster+BCSFT+BCS nBooster= nBFT= nBCS= Eff. Motor Booster= Eff. Motor Booster= Eff. BCS= Pot booster= Booster \$= QBCS= HestBCS= n° est BCS= BCS \$= BFT \$= \$ Inicial = \$ Pot/h= \$ Pot total= Tempo de depletação do poço = \$ Valor atual Pot= \$ Total lucro/ano = \$ Valor atual lucro = \$ Valor atual lucro =	56.990.861,45 56.990.861,45 3600 4500 4500 75,0% 92,0% 60,0% 70,0% 376,1 60.000,00 25 31,25 68 27.200,00 27.200,00 27.200,00 114.400,00 18,81 2.820.910,97 14 205.927 1.887.190,82 63.113.253,65 63.113.253,65 61.111.662.83	331.708.017,99 331.708.017,99 331.708.017,99 4500 4500 75,0% 92,0% 60,0% 70,0% 1880,6 600.000,00 125 31,25 68 272.000,00 272.000,00 272.000,00 1.144.000,00 94,03 18.806.073,15 18 1.029.633 11.240.518,54 34.433.962,26 375.916.251,03 363.531.732.49	USD rpm rpm rpm USD m ³ /h m USD USD USD USD USD USD USD USD USD USD
\$ VPL BCS conv.= 2. Booster+BCSFT+BCS nBooster= nBFT= nBCS= Eff. Motor Booster= Eff. Motor Booster= Eff. BST= Eff. BCS= Pot booster= Booster \$= QBCS= HestBCS= n° est BCS= BCS \$= BFT \$= \$ Inicial = \$ Pot/h= \$ Pot/h= \$ Pot total= Tempo de depletação do poço = \$ Total lucro/ano = \$ Valor atual Pot= \$ Valor atual lucro = \$ Valor atual lucro =	56.990.861,45 56.990.861,45 3 600 4 500 4 500 75,0% 92,0% 60,0% 70,0% 376,1 60.000,00 25 31,25 68 27.200,00 27.200,00 27.200,00 27.200,00 114.400,00 18,81 2.820.910,97 14 205.927 1.887.190,82 6.886.792,45 63.113.253,655 61.111.662,83	331.708.017,99 331.708.017,99 331.708.017,99 4500 4500 75,0% 92,0% 60,0% 70,0% 1880,6 600.000,00 125 31,25 68 272.000,00 272.000,00 272.000,00 1.144.000,00 94,03 18.806.073,15 18 1.029.633 11.240.518,54 34.433.962,26 375.916.251,03 36.531.732,49	USD rpm rpm rpm USD m ³ /h m USD USD USD USD USD USD USD USD USD USD
\$ VPL BCS conv.= 2. Booster+BCSFT+BCS nBooster= nBFT= nBCS= Eff. Booster= Eff. Booster= Eff. Booster= Eff. Booster= Eff. Booster= Eff. Booster= BGCS= Pot booster= Booster \$= QBCS= HestBCS= n° est BCS= BCS \$= BFT \$= \$ Inicial = \$ Pot/h= \$ Pot total= Tempo de depletação do poço = \$ Valor atual Pot= \$ Total lucro/ano = \$ Valor atual lucro = \$ VPL BOOSTER*BCSFT+BCS=	56.990.861,45 56.990.861,45 3600 4500 4500 75,0% 92,0% 60,0% 70,0% 376,1 60.000,00 25 31,25 68 27.200,00 27.200,00 27.200,00 114.400,00 18,81 2.820.910,97 14 205.927 1.887.190,82 6.886.792,45 63.113.253,65 61.111.662,83 107.2%	331.708.017,99 331.708.017,99 331.708.017,99 4500 4500 75,0% 92,0% 60,0% 70,0% 1880,6 600.000,00 125 31,25 68 272.000,00 272.000,00 272.000,00 1.144.000,00 94,03 18.806.073,15 18 1.029.633 11.240.518,54 34.433.962,26 375.916.251,03 363.531.732,49 109.6%	USD rpm rpm rpm rpm USD WSD USD USD USD USD USD USD USD USD USD U

Anexo M – Planilha de Comparativo Financeiro