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“I’m just one hundred and one, five months and a day.” 

“I can’t believe that!,” said Alice. 

“Can’t you?,” the Queen said in a pitying tone. “Try again: draw a long breath, and shut 

your eyes.” 

Alice laughed. “There’s no use trying,” she said: “one can’t believe impossible things.” 

“I daresay you haven’t had much practice,” said the Queen. “When I was your age, I always 

did it for half-an-hour a day. Why, sometimes I’ve believed as many as six impossible things 

before breakfast.” 

Lewis Carroll’s “Alice’s Adventures in Wonderland” 

 

 

 

So I hope you can accept Nature as She is – absurd. 

I’m going to have fun telling you about this absurdity, because I find it delightful… and I 

hope you will be as delighted as I am when we’re through. 

Richard Feynman’s “QED: The Strange Theory of Light and Matter” 
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Abstract 

 

This work presents new models to describe the time-harmonic behavior of rigid and flexible 

circular plates embedded in layered media. Deep embedments of the plates are represented by bi-

material viscoelastic transversely isotropic interfaces. Shallow embedments are represented by 

multilayered viscoelastic transversely isotropic media. The models of surrounding media are 

derived according to classical models available in the literature, which are in cylindrical 

coordinates. The method used to derive these models involves Hankel transforms, in order to 

bring the equations of motion to a domain in which they can be dealt with algebraically. A few 

functions of interest are expanded in Fourier series, in order to describe quantities such as 

displacements, stresses and loadings in terms of axisymmetric or antisymmetric components. In 

the model of rigid plate, the embedded plate is described by considering that a circular surface 

within the surrounding medium is rigid. A set of coupled integral equations, which relate the 

displacements and the unknown tractions across this surface, is solved by discretizing the surface 

into concentric annular disc elements. Kirchhoff theory of thin elastic plates is used to describe 

the flexible plate. A trial function to describe the deflection profile of the plate is defined in terms 

of a power series. An energy functional is established, which involves the strain energy of the 

plate and of its surrounding medium. The minimization of this functional, under the restriction 

that is must satisfy the boundary conditions at the plate edge, results in the deflection profile of 

the embedded plate. The models of embedded plates are compared with previous results from the 

literature for the case of different embedments in isotropic media. New research results are 

provided for the case of shallow and deep embedments in layered viscoelastic transversely 

isotropic media, under time-harmonic vertical and transverse loads and rocking moments. The 

results of this work contribute to the study of embedded foundations and anchors in layered soil. 

Keywords 

Soil-Foundation Interaction, Rigid Plates, Flexible Plates, Transversely Isotropic Media. 
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Resumo 

 

Este trabalho apresenta novos modelos para descrever o comportamento harmônico de 

placas rígidas e flexíveis incrustadas em meios estratificados. Incrustações profundas das placas 

são representadas por interfaces bi-materiais de meios viscoelásticos transversalmente 

isotrópicos. Incrustações rasas são representadas por meios estratificados viscoelásticos 

transversalmente isotrópicos. Os modelos de meios circundantes são obtidos com base em 

modelos clássicos disponíveis na literatura, que estão em coordenadas cilíndricas. O método 

usado para obter esses modelos envolve transformadas de Hankel, com o objetivo de obter as 

equações de movimento em um domínio no qual elas possam ser manipuladas algebricamente. 

Algumas funções de interesse são expandidas em séries de Fourier, para decompor grandezas 

como deslocamentos, tensões e carregamentos em termos axissimétricos e antissimétricos. No 

modelo de placa rígida, a incrustação da placa é descrita assumindo que uma superfície circular 

do meio circundante é rígida. Um conjunto de equações integrais acopladas, que relaciona 

deslocamentos e força de superfície atuantes nesta superfície, é resolvido por meio de 

discretização da superfície em discos anulares concêntricos. A teoria de Kirchhoff para placas 

finas é usada como modelo de placa flexível. Uma tentativa de solução para o perfil de deflexão 

da placa é definido em termos de série de potência. Uma função envolvendo as energias de 

deformação da placa e do meio é definida, cuja minimização, sob as restrições impostas pelas 

condições de contorno da placa, resulta no perfil de deflexão da placa incrustada. Os modelos de 

placa rígida e flexível incrustadas são comparados com resultados da literatura para incrustações 

em meios isotrópicos. Novos resultados são fornecidos para os casos de incrustações rasas ou 

profundas em meios viscoelásticos estratificados transversalmente isotrópicos, sob a ação de 

forças harmônicas verticais e transversais, assim como momentos. Os resultados deste trabalho 

contribuem para o estudo de fundações e âncoras em solos estratificados. 

Palavras-chave 

Interação Solo-Fundação, Placas Rígidas, Placas Flexíveis, Meios Transversalmente Isotrópicos 
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1 INTRODUCTION 

 

Scientific methodology involves the construction and analysis of models of the subjects of 

physics under study. As Baran and Sweezy (1968) accurately pointed out, the purpose of such 

models is not to provide a mirror image of nature’s reality, nor to comprise every single element 

of it in their sizes and proportions, but rather to single out and to provide an intensive 

comprehension of those elements which are decisive. Creation of models implies necessarily the 

abstraction of non-essential parts of reality, in order to furnish a deeper, unobstructed insight of 

the quantity of interest. “A model is […] unrealistic in the sense in which the word is most 

commonly used. Nevertheless, paradoxically […] it provides the key to understanding reality”. 

Baran and Sweezy (1968) were talking about modern capitalism when they provided this 

justification for the use of models, but their justification holds just as fine for engineering 

analysis. 

In real-world engineering analysis, it is rarely possible to fully understand the influence of 

all the variables involved in the behavior of an object of study. This is especially true for 

geotechnical engineering analysis (Wood, 1990). Soil materials, which are one of the objects of 

study of geotechnical engineering analysis, largely differ from continuum media because they are 

made up of discrete particles, the size of which varies considerably (Wood, 1990). A significant 

proportion of the volume of a soil material is made up of voids. These voids may be filled with 

fluids, such as oil and natural gas, and water. When a soil material is deformed, considerable and 

often irreversible changes in volume may occur as the relative position of the soil particles 

changes (Wood, 1990; Mitchell and Soga, 2005). 

On the other hand, most geotechnical structures are large in comparison with the scale of 

the soil particles, and stress and strain quantities can be considered as averaged over volumes of 

soil containing many particles. This hypothesis holds especially for geotechnical analysis 

involving large wavelengths, and it allows the soil to be modeled as a continuum medium (Wood, 

1990; Mitchell and Soga, 2005). 

Different models of continua have been presented in the last century. The models 
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comprising the behavior of unbounded continua (full-spaces), unbounded continua possessing a 

free surface (half-spaces) and laterally unbounded layers of finite thickness provide 

representations of wave propagation in soil media. Section 1.1 presents a review of some models 

of full- and half-spaces and layers developed in the past decades.  

1.1 Literature review 

A representative portion of the models of full- and half-spaces has been produced by the 

research group in which the author of this thesis in enrolled, of the Department of Computational 

Mechanics of Unicamp. The first work of the group was presented by Mesquita (1989), which 

comprised non-singular auxiliary states for two- and three-dimensional viscoelastic isotropic 

half-spaces under time-harmonic loads. The corresponding solution for the displacement and 

stress fields of a two-dimensional isotropic full-space was provided by Romanini (1995). 

Romanini (1995) also studied the case of a layer over a rigid surface and a layer over an elastic 

half-space. Solutions for two-dimensional isotropic media under distributed linear, quadratic or 

singular loadings were derived by Barros and Mesquita (1999b) and Barros and Mesquita (2000). 

Efficient computation of these solutions in the frequency domain, together with Fourier 

transforms, allowed Mesquita et al. (2002) and Thomazo (2004) to obtain solutions of the 

transient response of two-dimensional isotropic half-spaces. An extension to the case of a layer 

over a rigid base was presented by Mesquita et al. (2003). After the development of these 

computationally efficient two-dimensional solutions, the group started investigating the three-

dimensional problems. Mesquita, Romanini and Labaki (2012) provided an extension of the 

solution presented by Romanini (1995) for the three-dimensional case. The solutions comprise 

the displacement fields of a three-dimensional isotropic viscoelastic full-space. Time-harmonic 

loading uniformly distributed on a rectangular area within the full-space were considered. Double 

Fourier transforms were used in the solution. The resulting implementation, however, has proved 

to be very computationally expensive (Labaki, Romanini and Mesquita, 2012). An analogous 

solution has been presented by Adolph in his Ph.D. thesis (Adolph, 2006; Adolph et al, 2007), in 

which Radon transforms were used. All the above mentioned solutions correspond to the case of 

isotropic media. However, because of the way sedimentary soil is formed, the most accurate 

models to represent it are the ones which represent transverse anisotropic continua (Mitchell and 

Soga, 2005). This group of research has also derived solutions for anisotropic media, as shown 
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later on. 

The study of elastic wave propagation in anisotropy materials is quite complicated. 

Fundamental studies on the wave propagation in media possessing general anisotropy were done 

by Barnett and Lothe (1974) and Chadwick and Smith (1977). Anisotropic materials possessing a 

plane of isotropy are called transversely isotropic materials (Lekhnitskii, 1963) (Section 2.1). 

Early studies on the elastostatics and elementary stress analysis of such media were presented by 

Elliot (1948), Hu (1954), Eubanks and Sternberg (1954), Lekhnitskii (1963) and Green and Zerna 

(1968). However, the earliest research work concerned with the elastic wave propagation in 

transversely isotropic media, which is a problem of higher interest to the present study, was done 

by Stoneley (1924) (Rajapakse and Wang, 1993). State-of-the-art reviews on the wave 

propagation in anisotropic media are provided by Crampin, Chesnokov and Hipkin (1984) and 

Payton (1983), and in the references therein. More recently, Barros (1997) presented solutions for 

the time-harmonic behavior of three-dimensional viscoelastic transversely isotropic full- and 

half-spaces under time-harmonic loads. Later on, Barros and Mesquita (1999) presented a 

solution in which the plane of isotropy of the medium does not necessarily correspond to the free-

surface of the half-space. A rectangular coordinate system has been used in both cases. Of most 

interest to the present study is the solution derived by Wang in his PhD thesis (Wang, 1992), 

which resulted in the paper by Rajapakse and Wang (1993). These authors derived three-

dimensional elastodynamic Green’s functions for a transversely isotropic full-space and half-

space, respectively. A cylindrical coordinate system was used (r,θ,z). The equation of equilibrium 

for time-harmonic motions were solved by introducing three potential functions, which were 

expanded in Fourier series, as introduced by Muki (Muki, 1960; Barros, 2006). Because of the 

cylindrical coordinate system that was adopted, Hankel transforms were used in the solution. 

Analytical solutions for Green’s functions were derived by considering buried circular ring loads 

acting on the radial (r), circumferential (θ) and vertical directions (z). 

Regardless of its anisotropy, any accurate model of unbounded media must take into 

consideration the Sommerfeld’s radiation condition (Sommerfeld, 1949), which establishes that 

the energy that is radiated from the sources must scatter to infinity, i.e., the model must comply 

with the physical observation that no energy is radiated back from infinity into the field. 

Moreover, Christensen’s elastic-viscoelastic correspondence principle holds for anisotropic 
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media (Christensen, 2010). It states that the viscoelasticity of a medium can be introduced by 

defining its material properties as complex-valued variables involving the damping factor of the 

medium. An extensive review of attenuation models is presented by Gaul (1999). 

Different techniques have been presented over the past decades to model layered media. 

The most successful ones, the thin-layer method and the exact stiffness method, resemble a finite 

element analysis. A stiffness matrix of the layered medium is assembled from the stiffness 

matrices of the layers in the same fashion as the stiffness matrix of a structure is assembled from 

the elementary stiffness matrices of its components. This method has been used by Wass (1972), 

Wass (1980), Kausel and Peek (1982), Mesquita and Romanini (1992) and Romanini (1995) to 

model multilayered isotropic media. Only a few results have been presented regarding the 

dynamics of multilayered anisotropic media. The most important ones to the present study are by 

Seale and Kausel (1989), Wang (1992) and Marques de Barros (2001). The first paper presented 

an extension of the thin-layer method to study the elastodynamics of a multilayered transversely 

isotropic half-space due to point loads. Wang (1992) and Marques de Barros (2001) used an exact 

stiffness method to derive solutions for two-dimensional transversely isotropic layered media 

under time-harmonic loads in cylindrical and rectangular coordinates, respectively. 

On a distinct course of study, other researchers have investigated different models for the 

extensional and flexural deformation of plates. Kirchhoff (1850) improved the equations of 

equilibrium and free vibrations derived by Poisson and Cauchy (Van der Heijden, 1976) by 

establishing that two boundary conditions are sufficient for the complete determination of the 

deflection of the plate. Kirchhoff’s model of plate is widely used, and it is based on three 

hypothesis: (a) there is a surface at the middle of the plate where there is no deformation: this 

middle surface remains neutral during bending; (b) lines that are initially normal to the middle 

flat surface of the plate remain normal to the middle bent surface of the plate after bending and 

(c) on the unstretched middle surface, the normal state of stress can be disregarded. Under these 

assumptions, Kirchhoff (1850) was able to derive an expression for the potential energy of the 

deflected plate in terms of the curvature of its middle surface. The principle of virtual work was 

used to obtain the equations of motion of the plate. A century later, Friedrichs (1950) showed that 

the Kirchhoff’s boundary conditions are rigorously valid for plates. An extensive review on the 

boundary conditions of models of plate is presented by Van der Heijden (1976). The 
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corresponding equations of motion of plates are described in details in a book by Timoshenko 

and Woinowsky-Krieger (1964). 

A third branch of study makes use of the theories of plates and the models of elastic media 

to investigate the behavior of embedded plates. Selvadurai (1980) and Selvadurai and Singh 

(1984) have derived analytical solutions for the problem of rigid disc inclusions at isotropic full-

spaces under the effect of static vertical and transverse point loads, as well as an eccentric point 

load, the resulting effect of which is that of a moment applied on the transverse axis of the plate. 

As for the dynamic case, the most relevant developments related to the present research work 

were done by Bycroft (1956) and Arnold, Bycroft and Warburton (1955), who modeled the 

behavior of a massless rigid plate by considering that a region of the elastic medium surrounding 

the plate was rigid. Luco and Westmann (1971) presented solutions for the transverse and rocking 

vibrations of rigid plates resting on the surface of an isotropic half-space. Lysmer (1965) 

introduced a significant improvement to the representation of the rigid plate by introducing a 

discretization to the model of plate. The plate is discretized by a number of concentric annular 

disc elements and by imposing that the displacement of all of them is the same. Lysmer’s method 

has been used to describe vertical, transverse, torsional and rocking vibrations of rigid plates 

embedded in a number of different models of surrounding media (Zeng and Rajapakse, 1999; 

Senjuntichai and Sapsathiarn, 2003, Wu et al., 2006). Zeng and Rajapakse (1999) and 

Senjuntichai and Sapsathiarn (2003) have derived solutions for the vertical vibrations of rigid 

plates at arbitrary embedments inside a poroelastic half-space and multilayered poroelastic 

system, respectively. Wu et al. (2006) presented solutions for the torsional vibration of the rigid 

plate on a transversely isotropic half-space. A solution for the vertical, twisting, transverse and 

rocking motion of a rigid cylindrical foundation embedded in transversely isotropic media has 

been presented by Barros (2006). On the other hand, Pak and Gobert (1991) used a finite 

difference energy method for the discretization of the rigid plate to describe the vertical 

vibrations of the plate within a multilayered isotropic system. 

The case of elastic plates has been treated by a few different methods. The book by 

Selvadurai (1979a) contains a detailed review of the various methods which have been used to 

deal with such problem. According to Rajapakse (1988), the variational method presented by 

Selvadurai (1979b, 1979c and 1980b) is the most suitable to solve the problem of interaction 
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between an elastic plate and its surrounding medium. One drawback of the variational method is 

the difficulty of obtaining an explicit representation of the traction field acting across the surface 

of the plate in response to the displacement field which is established. The integral equation 

system corresponding to the mixed boundary value problem only has an explicit solution for the 

case of the plate resting on the surface of the half-space or buried infinitely deep inside it 

(Rajapakse, 1988). Rajapakse (1988) derived a solution for the case of the elastic plate embedded 

at a finite depth inside an isotropic half-space. In Rajapakse’s formulation, the deflection profile 

of the plate is described by a power series together with a term corresponding to a concentrated 

load derived according to the classical plate theory. The coefficients of the power series are 

determined through the minimization of a constrained energy functional involving the strain 

energy of the plate and of the surrounding medium and the potential energy of the external loads. 

The resulting system of equations from the constrained energy functional is presented in a 

convenient matrix form, resembling the classical finite element method, and it has some 

advantages over the direct explicit variational scheme. The results from his paper considered the 

case of embedment in a three-dimensional isotropic half-space. 

Very few research works have dealt with the problem of rigid and flexible plates embedded 

in non-homogeneous transversely isotropic layered media. Very recently, Eskandari-Ghadi, 

Mirzapour and Ardeshir-Behrestaghi (2011), presented the solution of rocking vibrations of a 

rigid disc at the interface of two transversely isotropic half-spaces. Their solution, however, 

disregarded the coupled behavior between the rocking and transverse behaviors of such problem. 

1.2 Objectives of this work 

The literature review presented above indicates that models of the interaction of rigid and 

flexible circular foundations with the soil represented by a layered transversely isotropic medium 

are yet to be developed. The aim of this research work is to present such models. The objective is 

to use bi-material unbounded media and layered transversely isotropic half-spaces to model the 

media that surrounds the plate. The plate itself is described by either a rigid surface or a thin 

elastic body. Time-harmonic concentrated and distributed vertical and transverse loads and 

rocking moments are to be considered as excitations to the plates. 
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1.3 Organization of the text 

The formulations and numerical results in this work are organized as follows. 

In Chapter 2, the classical Green’s function of transversely isotropic three-dimensional full-

spaces presented by Wang (1992) is reviewed. An extension for the bi-material case is provided, 

as well as simplified particularizations of the main solution for the axisymmetric and 

antisymmetric cases. The chapter presents a detailed description of distributed and concentrated 

axisymmetric and antisymmetric ring loads, and it shows how a concentrated moment can be 

represented by an antisymmetric vertical load. 

Next, Chapter 3 reviews the formulation presented by Wang (1992) for the behavior of a 

two-dimensional multilayered medium, each layer of which consists of a transversely isotropic 

material. The model presented in that chapter is an extension of the Wang’s formulation for the 

three-dimensional case. The stiffness-matrix approach is used. An example is provided, which 

emphasizes the resemblance of the method to the finite element approach in structural analysis. 

In Chapter 4, the model or rigid plate presented by Lysmer (1965) is reviewed. A rigid 

massless plate is represented by considering a rigid surface of the surrounding media. The 

tractions acting across this surface can be accurately computed by discretizing it, on each 

discretized part of which the traction field is assumed to be uniformly distributed. The chapter 

presents a comparison of results obtained with the present implementation with results from the 

literature. It also presents original research results of the vertical, transverse and rocking 

vibrations of rigid plates in bi-material and multilayered transversely isotropic media. The 

physical effect that the transverse and rocking responses of inclusions in bi-material interfaces are 

coupled is carefully incorporated to the present model. 

Finally, Chapter 5 presents the model of elastic plate derived by Selvadurai (1979b, 1979c 

and 1980b) and improved by Rajapakse (1988). A trial solution for the linear partial differential 

equation that describes the plate is established in terms of a power series. A variational problem 

is established, in which an energy functional involving the strain energy of the plate and of its 

surrounding medium is minimized according to the principle of minimum potential energy. The 

chapter presents a comparison of the present implementation with results from the literature, as 
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well as original research results of the vertical flexure of plates within bi-material and 

multilayered transversely isotropic media. 
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2 GREEN’S FUNCTION FOR TRANSVERSELY ISOTROPIC MEDIA 

 

The dynamic response of transversely isotropic media is presented in this chapter. A brief 

general introduction on the properties of transversely isotropic materials is presented, along with 

a few examples. The chapter then describes a classical formulation of Green’s Function for three-

dimensional transversely isotropic infinite continua, which is conveniently written in cylindrical 

coordinates. Next, a particular case of this Green’s Function is presented, in which two bonded 

semi-infinite media are considered, each made of a different transversely isotropic material. 

Finally, the chapter provides an extensive description of concentrated and distributed ring loads. 

2.1 Transversely isotropic materials 

A transversely isotropic material is one that possesses equivalent elastic material properties 

in one plane, called “plane of isotropy”, and different properties in the direction normal to that 

plane. 

Some soil materials are formed by a sedimentation process. Sedimentation formation 

pertains to processes by which accumulated sediments are densified, altered in composition, and 

converted into rock (Mitchell and Soga, 2005). The resulting material presents layered-like 

property distribution, in which each layer has approximately the same properties length-wise but 

different properties through the thickness. Because of this process in which sedimentary soil 

materials are formed, it is reasonable to model them as transversely isotropic materials. These 

models are especially accurate for problems involving long wavelengths, in which other soil 

material effects such as plasticity and porosity play a less relevant role (Wood, 1990; Mitchell 

and Soga, 2005). 

Transversely isotropic three dimensional continua are fully described by five independent 

material properties: Young’s modulus E on the plane of isotropy, Young’s modulus EZ normal to 

the plane of isotropy, transverse modulus of elasticity GZX, Poisson’s ratio ν between 

deformations in two orthogonal directions contained in the plane of isotropy and Poisson’s ratio 

νZX between deformations in the plane of isotropy and in the plane normal to it (Payton, 1983). 
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Deformations are related to stresses in a transversely isotropic medium according to 

Hooke’s constitutive equation. Consider a transversely isotropic, linear elastic, three-dimensional, 

unbounded medium. A cylindrical coordinate system O(r, θ, z) is adopted, the z-axis of which is 

perpendicular to the material’s plane of isotropy (Fig. 2.1). In Fig. 2.1, ur, uθ and uz denote the 

displacements of the point P of coordinates (r,θ,z) in the r, θ and z directions, respectively. 

 
Figure 2.1 Illustration of the coordinate system and the state of stress of a point P(r,θ,z). 

 

Hooke’s constitutive equation is given for this medium, in cylindrical coordinates, by 

(Lekhnitskii, 1963): 

rr 11 rr 12 13 zzc c cθθσ = ε + ε + ε  (2.1) 

12 rr 11 13 zzc c cθθ θθσ = ε + ε + ε  (2.2) 

zz 13 rr 13 33 zzc c cθθσ = ε + ε + ε  (2.3) 

( )r 11 12 rc cθ θσ = − ε  (2.4) 

z 44 z2cθ θσ = ε  (2.5) 

rz 44 rz2cσ = ε  (2.6) 

In the nomenclature of Hooke’s constitutive equation, the five independent material 

properties are written as (Lekhnitskii, 1963): 
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( )2
11 zrc E 1 n / a= − ν  (2.7) 

( )2
12 zrc E n / a= ν + ν  (2.8) 

( )13 zrc E 1 / a= ν + ν  (2.9) 

( )2
33 zc E 1 / a= − ν  (2.10) 

44 zrc G=  (2.11) 

In Eqs. 2.7 to 2.11,  

zn E / E=  (2.12) 

( )( )2
zra 1 1 2n= + ν − ν − ν  (2.13) 

The requirement that the strain energy of a medium be positive definite subjects the 

material constants to the following constraints (Payton, 1983): 

11 12c c> ; ( ) 2
11 12 33 13c c c 2c+ > ; 44c 0>  (2.14) 

A classical set of nondimensional parameters used in the modeling of transversely isotropic 

media is (Wang, 1992): 

33

44

c

c
α =  (2.15) 

11

44

c

c
β =  (2.16) 

( )13 44

44

c c

c

+
κ =  (2.17) 
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21γ = + αβ − κ  (2.18) 

( )11 12

44

c c

2c

−
ς =  (2.19) 

Other classical set of nondimensional parameters is useful when dealing with transversely 

isotropic media in order to identify how far their behavior deviates from that of an isotropic 

material. These parameters are called anisotropy indices and one definition for them was 

presented by Anderson (1961): 

1 33 11n c c=  (2.20) 

( )2 11 12 44n c c 2c= −  (2.21) 

( )3 11 44 13n c 2c c= −  (2.22) 

Table 2.1 illustrates how the material properties are affected by n1, for example. In these 

results, c44=1, ν=0.25 and n2=n3=1. All materials from this table satisfy the constraints 

established in Eq. 2.14. 

Table 2.1 Effect of the anisotropy index on the properties of transversely isotropic materials. 

n1 n2 n3 c11 c12 c13 c33 E Ez νννν ννννzx 

1.0 1.0 1.0 3.0000 1.0000 1.0000 3.0000 2.5 2.5000 0.25 0.2500 

1.5 1.0 1.0 2.8284 0.8284 0.8284 4.2426 2.5 3.8673 0.25 0.2265 

2.0 1.0 1.0 2.7749 0.7749 0.7749 5.5497 2.5 5.2114 0.25 0.2183 

2.5 1.0 1.0 2.7481 0.7481 0.7481 6.8703 2.5 6.5502 0.25 0.2140 

3.0 1.0 1.0 2.7321 0.7321 0.7321 8.1962 2.5 7.8868 0.25 0.2113 

3.5 1.0 1.0 2.7213 0.7213 0.7213 9.5245 2.5 9.2223 0.25 0.2095 

4.0 1.0 1.0 2.7136 0.7136 0.7136 10.8543 2.5 10.5572 0.25 0.2082 

 

Table 2.2 brings a few selected examples of real transversely isotropic soil materials, and 

one example of an isotropic one with E=2.5 and ν=0.25 taken from the work of Wang and 

Rajapakse (1994). Their corresponding anisotropy indices are also shown. The layered soil in this 

table is a limestone-sandstone system. 
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Table 2.2 Examples of transversely isotropic materials. Units of cij: 10
10

 N/m
2
. 

Material c11 c12 c13 c33 c44 n1 n2 n3 

Silty Clay 5.70 1.16 1.27 6.97 2.70 1.22 0.84 0.24 

Beryl rock 4.13 1.47 1.01 3.62 1.00 0.88 1.33 2.11 

Layered soil 6.24 2.18 1.74 4.56 1.40 0.73 1.45 1.98 

Clay 0.047 0.017 0.012 0.033 0.01 0.70 1.50 2.25 

Ice (257K) 1.35 0.65 0.52 1.45 0.32 1.07 1.09 1.36 

Isotropic 3.0 1.0 1.0 3.0 1.0 1.00 1.00 1.00 

 

2.2 Transversely isotropic three-dimensional full-space 

Consider a three-dimensional transversely isotropic full-space, with a cylindrical coordinate 

system O(r, θ, z) positioned in such a way that its z axis is orthogonal to the material’s plane of 

isotropy (Fig. 2.1). In the absence of body forces, the equations of motion are expressed by 

(Slaughter, 2002): 

( )
2

rr r rz rr r2

1 1
u

r r z r t
θ θθ

∂ ∂ ∂ ∂
σ + σ + σ + σ − σ = ρ

∂ ∂θ ∂ ∂
 (2.23) 

2

r z r 2

1 2
u

r r z r t
θ θθ θ θ θ

∂ ∂ ∂ ∂
σ + σ + σ + σ = ρ

∂ ∂θ ∂ ∂
 (2.24) 

2

rz z zz rz z2

1 1
u

r r z r t
θ

∂ ∂ ∂ ∂
σ + σ + σ + σ = ρ

∂ ∂θ ∂ ∂
 (2.25) 

On the other hand, the strain-displacement relations in cylindrical coordinates are 

(Slaughter, 2002): 

rr ru
r

∂
ε =

∂
 (2.26) 

r
1

u u
r

θθ θ
∂ 

ε = + 
∂θ 

 (2.27) 
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zz zu
z

∂
ε =

∂
 (2.28) 

r r
1 1 1

u u u
2 r r

θ θ θ
∂ ∂ 

ε = + − 
∂θ ∂θ 

 (2.29) 

z z
1 1

u u
2 z r

θ θ
∂ ∂ 

ε = + 
∂ ∂θ 

 (2.30) 

rz r z
1

u u
2 z r

∂ ∂ 
ε = + 

∂ ∂ 
 (2.31) 

The substitution of Eqs. 2.1 to 2.6 into Eqs. 2.23 to 2.25, in view of Eqs. 2.26 to 2.31, 

yields the equations of motion for the transversely isotropic full-space in terms of the 

displacement components: 

( )

2 2 2
r 11 12

11 r r r 44 r2 2 2 2 2

2 2 2
11 12

11 13 44 z r2 2 2

u c c1 1
c u u u c u

r r 2r r r z

c c 1 1 1
u u 2c u c c u u

2 r r r zr r t
θ θ θ

  −∂ ∂ ∂ ∂
+ − + + 

 ∂∂ ∂θ ∂ 

 + ∂ ∂ ∂ ∂ ∂
+ + − + + = ρ 

 ∂ ∂θ ∂θ ∂θ ∂ ∂ ∂ 

 (2.32) 

( )

2 2 2
11 12

11 442 2 2 2 2

2 2 2
11 12

r r 11 r 13 44 z2 2 2

uc c 1 1
u u c u c u

2 r rr r r z

c c 1 1 1 1
u u 2c u c c u u

2 r r r zr r t

θ
θ θ θ θ

θ

 − ∂ ∂ ∂ ∂
+ − + + 

 ∂∂ ∂θ ∂ 

 + ∂ ∂ ∂ ∂ ∂
+ − + + + = ρ 

 ∂ ∂θ ∂θ ∂θ ∂θ∂ ∂ 

 (2.33) 

( )

2 2 2

44 z z z 33 z2 2 2 2

2 2 2

13 44 r z z2

1 1
c u u u c u

r rr r z

1 1
c c u u u u

r z r z r z t
θ

 ∂ ∂ ∂ ∂
+ + + 

 ∂∂ ∂θ ∂ 

 ∂ ∂ ∂ ∂
+ + + + = ρ 

 ∂ ∂ ∂ ∂θ∂ ∂ 

 (2.34) 

In Eqs. 2.32 to 2.34, ρ is the density of the medium and cij are elastic constants of the 

transversely isotropic material, while ur, uθ and uz denote the displacements of the full-space in 
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the r, θ and z directions, respectively (Fig. 2.1). 

Wang (1992) derived a solution for this coupled equation system. His solution is based on 

the definition of three potential functions ψ, φ and χ such that: 

r
1

u
r r

∂ ∂
= φ + ψ

∂ ∂θ
 (2.35) 

1
u

r r
θ

∂ ∂
= φ − ψ

∂θ ∂
 (2.36) 

zu
z

∂
= χ

∂
 (2.37) 

Substitution of Eqs. 2.35 to 2.37 into Eqs. 2.32 to 2.34 yields: 

2 2
2 2 2 2

2 2
0

z z

 ∂ ∂
κ∇ χ + β∇ + + δ ∇ φ = 

 ∂ ∂ 
 (2.38) 

2 2 2
2 2 2

2 2 2
0

z z z

 ∂ ∂ ∂
κ∇ φ + ∇ + α + δ χ = 

 ∂ ∂ ∂ 
 (2.39) 

2
2 2 2

2
0

z

 ∂
ς∇ + + δ ∇ ψ = 
 ∂ 

 (2.40) 

Equations 2.38 and 2.39 form a set of equations with coupled potential functions φ and χ. 

Equation 2.40 describes the uncoupled behavior of the potential function ψ. The nondimensional 

material parameters shown in Eqs. 2.38 to 2.40 have been defined in Eqs. 2.15 to 2.19. The 

Laplace differential operator ∇2
 and the parameter δ are defined as: 

2 2
2

2 2 2

1 1

r rr r

∂ ∂ ∂
∇ = + +

∂∂ ∂θ
 (2.41) 

2 2
44cδ = ρω  (2.42) 
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The solution presented by Wang (1992) involves a Fourier series expansion of the potential 

functions ψ, φ and χ. This Fourier expansion, with respect to θ, was proposed by Muki (1960): 

( ) ( ) ( ) ( ) ( )*
m m

m 0

r, , z r, z cos m r, z sin m
∞

=

 χ θ = χ θ + χ θ
 ∑  (2.43) 

( ) ( ) ( ) ( ) ( )*
m m

m 0

r, , z r, z cos m r, z sin m
∞

=

 φ θ = φ θ + φ θ
 ∑  (2.44) 

( ) ( ) ( ) ( ) ( )*
m m

m 0

r, , z r, z sin m r, z cos m
∞

=

 ψ θ = ψ θ − ψ θ
 ∑  (2.45) 

In Eqs. 2.43 to 2.45, ψm, φm and χm correspond to deformations that are symmetric with 

respect to θ=0 for the m
th

 harmonic, while their counterparts ψ*m, φ*m and χ*m correspond to 

antisymmetric deformations (Muki, 1960). In this work, only the symmetric components ψm, φm 

and χm are considered, without loss of generality (Muki, 1960; Wang, 1992). 

The potential functions ψ, φ and χ undergo a transformation of space so that they can be 

dealt with algebraically. A natural choice of transform for these equations, which are in 

cylindrical coordinates, is the Hankel transform in the radial coordinate: 

( ) ( ){ } ( ) ( )m m m m m0
, z r, z r, z J r r dr

∞
χ λ = χ = χ λ∫
⌣

 (2.46) 

( ) ( ){ } ( ) ( )1
m m m m m0

r, z , z , z J r d
∞−χ = χ λ = χ λ λ λ λ∫

⌣ ⌣
 (2.47) 

In Eqs. 2.46 and 2.47, m and 
−1

m represent, respectively, the Hankel transform of order 

m and its inverse, Jm represents Bessel functions of the first kind and order m (Abramowitz and 

Stegun, 1965) and λ is the Hankel space variable. Analogous definitions hold for ψ and φ. 

Hankel transform is applied to Eqs. 2.38 to 2.40, which yields: 
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( )
2 2

2 2
m m m2 2

d d
0

dz dz
κ χ + φ − βλ − δ φ =

⌣ ⌣⌣
 (2.48) 

( )
2

2 2 2
m m m2

d
0

dz
−κλ φ + α χ − λ − δ χ =

⌣ ⌣ ⌣
 (2.49) 

( )
2

2 2
m m2

d
0

dz
ψ − ςλ − δ ψ =
⌣ ⌣

 (2.50) 

In Eqs. 2.48 to 2.50, mχ
⌣

, mφ
⌣

 and mψ
⌣

are the m
th

 symmetric components of the Fourier 

series expansion (Eqs. 2.43 to 2.45), in the transformed domain. 

The coupled behavior between the functions φ and χ, which was observed in Eqs. 2.38 and 

2.39, remains in Eqs. 2.48 and 2.49 after the application of the Hankel transform. Equation 2.50 

describes the uncoupled behavior of the potential function ψ in the transformed domain. One 

solution to the coupled equations 2.48 and 2.49 is obtained by assuming that: 

z
m Peδξφ =
⌣

 and z
m Qeδξχ =
⌣

 (2.51) 

Substitution of Eq. 2.51 into 2.48 and 2.49 yields: 

( )2 2 21 P Q 0ξ −βζ + + κξ =  (2.52) 

( )2 2 21 Q P 0αξ − ζ + − κζ =  (2.53) 

in which ζ=λ/δ. For a non-trivial solution of Eqs. 2.52 and 2.53, the parameter ξ must 

satisfy: 

( ) ( )
1
22

1,2
1

1
2

ξ ζ = γζ − − α ± Φ
α

 (2.54) 

and 
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( ) ( ) ( )
2

2 4 2 21 4 1Φ ζ = γζ − − α − α βζ −βζ − ζ +  (2.55) 

Finally, a solution for the third and uncoupled Eq. 2.50 is obtained by assuming that: 

z
m Ceδξψ =
⌣

 (2.56) 

Substitution of Eq. 2.56 into 2.50 yields: 

 ( )2 2 1 0ξ − ςζ − =  (2.57) 

from which it comes: 

2
3 1ξ = ± ςζ −  (2.58) 

From the solutions of ξi (i=1,2,3) from Eqs. 2.54 and 2.58, and in view of the assumed 

forms of the potential functions established in Eqs. 2.51 and 2.56, general solutions for the m
th

 

symmetric component of these potential functions in the Hankel transformed domain are 

obtained: 

1 1 2 2
z z z z

m 1 m 1 m 2 m 2 mA e B e C e D e−δξ δξ −δξ δξφ = ϑ + ϑ + ϑ + ϑ
⌣

 (2.59) 

3 3
z z

m m mE e F e
−δξ δξψ = +

⌣
 (2.60) 

1 1 2 2
z z z z

m m m m mA e B e C e D e−δξ δξ −δξ δξχ = + + +
⌣

 (2.61) 

in which, 

2 2
1,2

1,2 2

1αξ − ζ +
ϑ =

κζ
 (2.62) 

In Eqs. 2.59 to 2.61, Am, Bm, Cm, Dm, Em and Fm are arbitrary functions to be determined 

according to the boundary conditions of a given problem.  
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The corresponding solutions to ψ, φ and χ in the physical domain are achieved upon 

integration of Eqs.  2.59 to 2.61 according to Eq. 2.47. Substitution of these potential functions 

into Eqs. 2.35 to 2.37 results in the m
th

 symmetric Fourier component of displacement of the 

three-dimensional transversely isotropic full-space (Wang, 1992) in the physical domain: 

*
im im0

u u d , i r, , z
∞

= λ λ = θ∫  (2.63) 

in which 

λ = δ⋅ζ  (2.64) 

and 

*
m m m m mmrm 1 1 2 2 3 3u a A a B a C a D a E a F= + + + + +  (2.65) 

( )*
m m m m mmm 4 4 5 5 6 6u a A a B a C a D a E a Fθ = − + + + + +  (2.66) 

( )*
m m mmzm 7 7 8 8u a A a B a C a D= − − + −  (2.67) 

The corresponding stress solutions are given by: 

*
ijm ijm0

d , i, j r, , z
∞

σ = σ λ λ = θ∫  (2.68) 

in which: 

( )*
m m m m mmrrm 44 11 11 12 12 13 13c b A b B b C b D b E b Fσ = + + + + +  (2.69) 

( )*
m m m m mmm 44 61 61 62 62 13 13c b A b B b C b D b E b Fθθσ = + + + − −  (2.70) 

( )*
m m mmzzm 44 21 21 22 22c b A b B b C b Dσ = + + +  (2.71) 

( )*
m m m m mmr m 44 31 31 32 32 33 33c b A b B b C b D b E b Fθσ = + + + + +  (2.72) 
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( )*
m m m m mmzm 44 41 41 42 42 43 43c b A b B b C b D b E b Fθσ = − + − + −  (2.73) 

( )*
m m m m mmrzm 44 51 51 52 52 53 53c b A b B b C b D b E b Fσ = − − + − + −  (2.74) 

In Eqs. 2.65 to 2.67 and 2.69 to 2.74, 

1
z

m mA A e
−δξ= , 1

z
m mB B e

+δξ= , 2
z

m mC C e
−δξ=  (2.75) 

2
z

m mD D e
+δξ= , 3

z
m mE E e

−δξ=  and 3
z

m mF F e
+δξ=  (2.76) 

and 

( ) ( ) ( ) ( )

( ) ( )

i
1i m 1 m 1

2 2 2 2
i i m

b m 1 J r m 1 J r
2r

1 J r

− +
ςϑ δζ

= − δζ − + δζ  

 − δ ζ βϑ − κ − δ ξ δζ
 

, i=1,2 (2.77) 

( )
( ) ( ) ( ) ( )13 3i 33

m 1 m 1
2 2 2i

b 2b 2b
m 1 J r m 1 J r

1 r / 2m
− += = = − δζ − + δζ  ς ςϑ δζ  + δ ζ ςδζ  

; i=1,2 (2.78) 

( ) ( ) ( ) ( )

( ) ( )

i
6i m 1 m 1

2 2 2 2
i i m

b m 1 J r m 1 J r
2r

1 J r

− +
ςϑ δζ

= − − δζ − + δζ  

 − δ ζ βϑ − κ − δ ξ δζ
 

; i=1,2 (2.79) 

( ) ( )2 2 2 2
2i i i mb 1 J r = αδ ξ − κ − δ ζ ϑ δζ

 
, i=1,2 (2.80) 

( )7 8
m

1 2

a a
J r= = δζ

δξ δξ
 (2.81) 

( )
( ) ( )5 534 4i

3 m 1 m 1
1 2 i i 3

a ba b
a J r J r

1 2
− +

δζ
= = = = = δζ + δζ  ϑ ϑ + ϑ δξ δξ

, i=1,2 (2.82) 

( )
( ) ( )5i 431 2

6 m 1 m 1
1 2 i i 3

b ba a
a J r J r

1 2
− +

δζ
= = = = = δζ − δζ  ϑ ϑ + ϑ δξ δξ

, i=1,2 (2.83) 



21 

 

In this section general solutions for the behavior or three-dimensional transversely isotropic 

full-spaces have been presented. Expressions for the m
th

 symmetric Fourier component of the 

displacement (Eq. 2.63) and stress field (Eq. 2.68) in the physical domain were also obtained. 

These solutions are written in terms of arbitrary functions Am, …,Fm that depend on the boundary 

conditions of a problem. The next two sections will present two different boundary-value 

problems from which specific values of these functions are obtained. 

2.3 Elastodynamic three-dimensional bi-material interface 

Consider two transversely isotropic elastic half-spaces perfectly bonded along their plane of 

isotropy. A cylindrical coordinate system O(r, θ, z) is adopted, the z-axis of which is orthogonal 

to their material plane of isotropy (Fig. 2.2). The origin of the coordinate system is placed at the 

interface of the two media. In this section, boundary-value problems corresponding to distributed 

annular loads acting at that bi-material interface (z=0) are considered. 

 
Figure 2.2 Definition of coordinate system, domains and loading area. 

 

The first two loading cases treated in this work represent vertical and transverse loads 

uniformly distributed over an annular area of inner and outer radii s1 and s2 (Figs. 2.3a and 2.3b). 

The third case represents a vertical load whose intensity varies linearly along the x-axis (Fig. 

2.3c). In the third case, the configuration of the loading is such that it represents a net moment 

about the y-axis. The subsequent formulation assumes that both concentrated and distributed 
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loads can be applied in all three cases. Section 2.4 brings a detailed description of these three 

types of loading configuration. Figures 2.3a and 2.3b illustrate the case of uniformly distributed 

vertical and transverse loads, respectively. Figure 2.3c illustrates the case in which an 

antisymmetric vertical load is applied to a ring of radius r, resulting in a net moment about the y-

axis. In the case shown in Fig. 2.3c, the load is considered to be applied in a concentrated way to 

a ring of radius r. Notice how the intensity of the load presents a cosine variation about the angle 

θ. 

 
(a) 

 
(b) 

 

 

 

 
(c) 

Figure 2.3 Internal loading configurations considering (a) vertical loads, (b) transverse loads 

along x and (c) varying vertical load representing a concentrated moment about the y-axis. 

 

Each of the two media d=1 (−∞<z≤0) or d=2 (0≤z<+∞) has its own particular expressions 

for displacements and stresses u
(d)

im(r,z) and σ(d)
ijm(r,z) (i,j=r,θ,z), which are distinguished by the 

upper index d.  

Consider for example the component uθm(r,z) (Eqs. 2.63 and 2.66). The arbitrary constants 

Am, Bm, Cm, Dm, Em and Fm must be selected so that Sommerfeld’s radiation condition is satisfied 

(Sommerfeld, 1949). Since the domains d=1 and d=2 are respectively −∞<z≤0 (z is always 

negative) and 0≤z<+∞ (z is always positive), the expressions of u
(d)

θm(r,z), d=1,2 for each domain 

are: 
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( ) ( )
(1) (1)(1) (1) (1) (1)

31 2
(1) (1) (1) (1) zz z(1) (1) (1)

m m m5m 4 60
u r, z a B e a D e a F e d

∞ δ ξδ ξ δ ξ
θ = − + + λ λ∫  (2.84) 

( ) ( )
(2 ) ( 2)( 2) ( 2) ( 2) (2)

31 2
(2) (2) (2) (2) zz z(2) (2) (2)

m m m5m 4 60
u r, z a A e a C e a E e d

∞ −δ ξ−δ ξ −δ ξ
θ = − + + λ λ∫  (2.85) 

Notice that the material constants and other parameters also depend on the respective 

medium and are identified by an appropriate superscript (for example, a
(d)

4 and ξ(d)
1). The same 

particularization holds for the stress components. 

2.3.1 Displacement boundary conditions 

Under the hypothesis that the two half-spaces are perfectly bonded together along their 

interface (z=0), the kinematic continuity condition for all loading cases is that 

( ) ( )(1) (2)
im im

u r,0 u r,0= ; i=r,θ,z (2.86) 

The stress boundary conditions, on the other hand, vary according to each load 

configuration. 

2.3.2 Stress boundary conditions 

In this section, the stress boundary conditions are derived for the three loading 

configurations presented in Fig. 2.3. For each of the three cases, depending on whether the 

problem presents axisymmetry or not, particularized expressions for the displacement and stress 

components are derived, i.e., particular expressions for Eqs. 2.65 to 2.67 (displacement 

components) and Eqs. 2.69 to 2.74 (stress components). Then the stress boundary conditions are 

introduced, using these particularized expressions. 

For the axisymmetric case of vertical load shown in Fig. 2.3a, in view of axial symmetry, 

m=0. In this work, only symmetric components are used in the Fourier series expansion (Eqs. 

2.43 to 2.45). Therefore, in the case of axisymmetric vertical loads, the solutions do not depend 

on the parameter θ. Subsection 2.3.2.1 begins with the particularization of the expressions of 

displacement and stress (Eqs. 2.65 to 2.74) for the case of m=0 and no θ dependence, then 

introduces the respective boundary conditions using these particularized expressions. 
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Conversely, in the case of antisymmetric loads presented in Figs. 2.3b and 2.3c, it is 

necessary to account for the antisymmetric behavior of the displacement and stress components 

as well. To comply with this, a θ-dependence is introduced in the Fourier expansion of the 

displacement and stress components according to Eqs. 2.43 to 2.45 (m=1). Subsection 2.3.2.2 

begins with the particularization of the expressions of displacement and stress (Eqs. 2.65 to 2.74) 

for the case of m=1 and with θ-dependence, then introduces the boundary conditions 

corresponding to the transverse load shown in Fig. 2.3b. In Subsection 2.3.2.3, these same 

particularized expressions for m=1 are used for the case of the antisymmetric vertical load shown 

in Fig. 2.3c. 

2.3.2.1 Vertical load 

Consider the problem of a dynamic vertical load uniformly distributed on an annular area, 

such as depicted in Fig. 2.3a. In view of axial symmetry, m=0. Consider also the following 

property of the Bessel function (Abramowitz and Stegun, 1965): 

( ) ( ) ( )J r 1 J r
ν

−ν ν= −  (2.87) 

For the case in which m=0, considering Eq. 2.87, the parameters defined in Eqs. 2.77 to 

2.83 become, for i=1,2: 

( ) ( ) ( )2 2 2 2i
1i 1 i i 0b J r 1 J r

r

ςϑ δζ  = − δζ − δ ζ βϑ − κ − δ ξ δζ
 

 (2.88) 

( )
( ) ( )13 3i 33

1 1
2 2 2i

b 2b 2b
J r J r 0

1 r / 2m
−= = = − δζ − δζ =  ς ςϑ δζ  + δ ζ ςδζ  

 (2.89) 

( ) ( )2 2 2 2
6i i i 0b 1 J r = − δ ζ βϑ − κ − δ ξ δζ

 
 (2.90) 

( ) ( )2 2 2 2
2i i i 0b 1 J r = αδ ξ − κ − δ ζ ϑ δζ

 
 (2.91) 

( )7 8
0

1 2

a a
J r= = δζ

δξ δξ
 (2.92) 
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( )
( ) ( )5 534 4i

3 1 1
1 2 i i 3

a ba b
a J r J r 0

1 2
−

δζ
= = = = = δζ + δζ =  ϑ ϑ + ϑ δξ δξ

 (2.93) 

( )
( ) ( ) ( )5i 431 2

6 1 1 1
1 2 i i 3

b ba a
a J r J r J r

1 2
−

δζ
= = = = = δζ − δζ = −δζ δζ  ϑ ϑ + ϑ δξ δξ

 (2.94) 

In Eqs. 2.88 to 2.94, the upper index d indicating the medium d=1,2 was omitted for 

conciseness. 

Based on these results, the expression of displacements and stresses for the case of m=0 

are: 

(d) *(d)
i0 i00

u u d
∞

= λ λ∫ ; i=r,z; d=1,2 (2.95) 

(d) *(d)
ij0 ij00

d
∞

σ = σ λ λ∫ ; i=r,z; d=1,2 (2.96) 

in which, 

(d)λ = δ ⋅ζ  (2.97) 

For medium d=1, 

(1) (1) (1) (1)

1 2
*(1) (1) (1) (1) (1)z z
r0 1 0 2 0u a B e a D eδ ξ δ ξ= +  (2.98) 

( )
(1) (1) (1) (1)

1 2
*(1) (1) (1) (1) (1)z z

7z0 0 8 0u a B e a D eδ ξ δ ξ= − − −  (2.99) 

( )
(1) (1) (1) (1)

1 2
*(1) (1) (1) (1) (1) (1)z z
rr0 44 11 0 12 0c b B e b D eδ ξ δ ξσ = + +  (2.100) 

( )
(1) (1) (1) (1)

1 2
*(1) (1) (1) (1) (1) (1)z z
zz0 44 21 0 22 0c b B e b D eδ ξ δ ξσ = + +  (2.101) 

( )
(1) (1) (1) (1)

1 2
*(1) (1) (1) (1) (1) (1)z z
rz0 44 51 0 52 0c b B e b D eδ ξ δ ξσ = − − −  (2.102) 
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For medium d=2, 

(1) (1) (1) (1)

1 2
*(2) (2) (2) (2) (2)z z
r0 1 0 2 0u a A e a C e−δ ξ −δ ξ= +  (2.103) 

( )
(1) (1) (1) (1)

1 2
*(2) (2) (2) (2) (2)z z

7z0 0 8 0u a A e a C e−δ ξ −δ ξ= − +  (2.104) 

( )
(1) (1) (1) (1)

1 2
*(2) (2) (2) (2) (2) (2)z z
rr0 44 11 0 12 0c b A e b C e−δ ξ −δ ξσ = +  (2.105) 

( )
(1) (1) (1) (1)

1 2
*(2) (2) (2) (2) (2) (2)z z
zz0 44 21 0 22 0c b A e b C e−δ ξ −δ ξσ = +  (2.106) 

( )
(1) (1) (1) (1)

1 2
*(2) (2) (2) (2) (2) (2)z z
rz0 44 51 0 52 0c b A e b C e−δ ξ −δ ξσ = − +  (2.107) 

Notice that, since the terms b13, b31, b32, b33, b41, b42 and b53, and a3, a4 and a5 are all zero 

for m=0, the antisymmetric components of displacement and stress uθ, σθθ, σrθ and σθz are all 

zero. The arbitrary functions E0 and F0, which come from the antisymmetric potential function ψ 

(Eq. 2.60), also vanish. 

The continuity at the interface (z=0) established in Eq. 2.86 results in: 

(1) (1) (1) (1) (1) (2) (2) (2) (2) (2)
r0 1 0 2 0 r0 1 0 2 00 0

u a B a D d u a A a C d
∞ ∞   = + λ λ = = + λ λ
   ∫ ∫  (2.108) 

(2) (2) (1) (1) (2) (2) (1) (1)
1 0 1 0 2 0 2 0a A a B a C a D 0− + − =  (2.109) 

( ) ( )(1) (1) (1) (1) (1) (2) (2) (2) (2) (2)
7 7z0 0 8 0 z0 0 8 00 0

u a B a D d u a A a C d
∞ ∞   = − − − λ λ = = − + λ λ
      ∫ ∫  (2.110) 

(2) (1) (2) (1)(2) (1) (2) (1)
m m m m7 7 8 8a A a B a C a D 0+ + + =  (2.111) 

On the other hand, the traction discontinuity at the interface (z=0) due to the axisymmetric 

vertical load shown in Fig. 2.3a is, for this case of m=0, in the physical domain: 
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(1) (2)
0z0 z0p p+ =℘ɶ  (2.112) 

(1) (2)
r0 r0p p 0+ =  (2.113) 

 
Figure 2.4 Definitions and sign conventions for tractions, stresses and external loads, 

considering the normal vectors at the free surfaces of each medium. The subscript m is 

omitted for conciseness. 

 

In Eqs. 2.112 and 2.113, pz0 and pr0 indicate axisymmetric tractions acting at the interface 

(z=0) in the vertical and radial directions, respectively. In this work, the term ℘m with a tilde is 

used to represent axisymmetric (m=0) or antisymmetric (m=1) distributed loads in the physical 

domain. A further discussion on the mathematical description of the diverse loading 

configurations is given in Section 2.4. 

Notice that the stress components at the surface of medium 2 have opposite directions to 

the traction vectors acting on that surface (Fig. 2.4). Taking that into consideration, then Eqs. 

2.112 and 2.113 can be written in terms of stresses, in the physical domain: 

( ) ( )(1) (2)
0zz0 zz0r,0 r,0σ −σ =℘ɶ  (2.114) 

( ) ( )(1) (2)
rz0 rz0r,0 r,0 0σ −σ =  (2.115) 
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Substitution of Eqs. 2.100 to 2.107 into Eqs. 2.114 yields: 

( ) ( )
{ }{ } { } ( )

(1) (2)
zz0 zz0

(1) (1) (1) (1) (1) (2) (2) (2) (2) (2)
44 21 0 22 0 44 21 0 22 00 0

1
0 0 0 0 0 0 00

c b B b D d c b A b C d

J r d

∞ ∞

∞−

σ − σ

   = + + λ λ − + λ λ
      

=℘ = ℘ = ℘ λ λ λ

∫ ∫

∫ɶ ɶ ɶ

 (2.116) 

{ } ( )(2) (2) (2) (1) (1) (1) (2) (2) (2) (1) (1) (1)
0 0 044 21 0 44 21 0 44 22 0 44 22 0c b A c b B c b C c b D J r− + − + = ℘ λɶ  (2.117) 

in which m and 
−1

m represent respectively the Hankel transform of order m and its 

inverse, and Jm represents Bessel functions of order m (Abramowitz and Stegun, 1965). This is 

explained in detail in Section 2.4. 

Substitution of Eqs. 2.100 to 2.107 into Eqs. 2.115 yields: 

( ) ( )

(1) (2)
rz0 rz0

(1) (1) (1) (1) (1) (2) (2) (2) (2) (2)
44 51 0 52 0 44 51 0 52 00 0

c b B b D d c b A b C d 0
∞ ∞

σ − σ

   = − − − λ λ − − + λ λ =
      ∫ ∫

 (2.118) 

(2) (2) (2) (1) (1) (1) (2) (2) (2) (1) (1) (1)
44 51 0 44 51 0 44 52 0 44 52 0c b A c b B c b C c b D 0+ + + =  (2.119) 

Equations 2.109, 2.111, 2.117 and 2.119 result in the following set of four linear equations, 

from which the values of A0, B0, C0 and D0 are obtained: 

(2) (1) (2) (1) (2)
1 1 2 2 0

(2) (1) (2) (1) (1)
7 7 8 8 0

(2) (2) (1) (1) (2) (2) (1) (1) (2)
0

44 21 44 21 44 22 44 22 0

(2) (2) (1) (1) (2) (2) (1) (1) (1)
44 51 44 51 44 52 44 52 0

a a a a A 0

a a a a B 0

c b c b c b c b C

c b c b c b c b D

   − −
   
    
  = 
 − −  
   
      

ɶ{ } ( )0 0J r

0

 
 
 
 

℘ λ 
  

 (2.120) 

The solution of Eq. 2.120 results in the specific values of A0, B0, C0 and D0 corresponding 

to the case of an axisymmetric vertical load at the interface of the two media. A closed-form 

solution of 2.120 is too long to be shown here, but it is achievable with the help of some 
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mathematical software. This equation can also be solved numerically. The functions A0, B0, C0 

and D0 involved in Eq. 2.120 are functions of the Hankel space variable λ; so are the 

displacement and stress components resulting from them. The substitution of these values of A0, 

B0, C0 and D0 into Eqs. 2.98 to 2.107 results in the expressions of displacements and stresses at 

points of media d=1,2 due to axisymmetric vertical loads. Their counterparts in the physical 

domain are achieved upon their integration according to Eq. 2.95 and 2.96. 

For convenience, an extra index is added to the displacement and stress components to 

indicate the direction of load they refer to. In this work, uiz denotes the displacements in the i-

direction (i=r,z) due to vertical loads, while σijz denotes the ij component of stress (i,j=r,z) due to 

vertical loads. 

2.3.2.2 Transverse load 

Consider the problem of a transverse load in the x-direction, ℘x, uniformly distributed on 

an annular area, such as depicted in Fig. 2.3b. This load can be decomposed into an axisymmetric 

component ℘0 acting on the radial direction and an antisymmetric component ℘1 acting on the 

θ-direction. The component loads ℘0 and ℘1, as well as the resulting horizontal load ℘x are 

illustrated in Fig. 2.5. 

 
Figure 2.5 Decomposition of the transverse load ℘x into an axisymmetric term℘0 in the 

radial direction and an antisymmetric term ℘1 in the θ-direction. 
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This decomposition is stated mathematically as: 

( )0 x cos℘ =℘ θ  and ( )1 x sin℘ = −℘ θ  (2.121) 

Figure 2.6 illustrates this decomposition for a sample part of ℘x acting on a point of 

coordinates (r,θ). 

 
Figure 2.6 Decomposition of the transverse load ℘x into an axisymmetric term℘0 in the 

radial direction and an antisymmetric term ℘1 in the θ-direction. 

 

It is worth mentioning that the decomposition stated in Eq. 2.121 is not the only way in 

which the components℘0 and ℘1 can be combined. Barros (2006), proposed another 

combination which results in a distorting load ℘d (Fig. 2.7). Distorting loads, however, are 

disregarded in the present work.  

The traction discontinuities at the interface (z=0) due to the transverse load, in the absence 

of vertical loads, is: 

( )(1) (2)
0 xr1 r1p p cos+ =℘ =℘ θɶ ɶ  (2.122) 

( )(1) (2)
1 x1 1p p sinθ θ+ =℘ = −℘ θɶ ɶ  (2.123) 
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(1) (2)
z1 z2p p 0+ =  (2.124) 

Figure 2.7 Decomposition of the distorting load ℘d into an axisymmetric term℘0 in the 

radial direction and an antisymmetric term ℘1 in the θ-direction. 

 

In Eqs. 2.122, 2.123 and 2.124, pr1, pθ1 and pz1 indicate tractions acting at the interface 

(z=0) in the r-, θ- and vertical directions, respectively.  

In terms of the stress components, in view of the sign conventions established in Fig. 2.4, 

these traction discontinuities are written as: 

( )
( )

( )
( )

(1) (2)
rz1 rz1

x

r, 0 r,0

cos cos

σ σ
− =℘

θ θ
ɶ  (2.125) 

( )
( )

( )
( )

(1) (2)
z1 z1

x

r, 0 r,0

sin sin

θ θσ σ
− = −℘

θ θ
ɶ  (2.126) 

( ) ( )(1) (2)
zz1 zz1r,0 r,0 0σ −σ =  (2.127) 

Summation of Eqs. 2.125 and 2.126 yields: 

( )
( )

( )
( )

( )
( )

( )
( )

( )
(1) (2)(1) (2)

z1 z1rz1 rz1
x x

r,0 r,0r,0 r,0
0

cos cos sin sin

θ θ
   σ σσ σ
  − + − =℘ + −℘ =

   θ θ θ θ
   

ɶ ɶ  (2.128) 
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Subtraction of Eq. 2.126 from 2.125 yields: 

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

(1) (2)(1) (2)
z1 z1 0rz1 rz1

x x x

r,0 r,0r,0 r,0
2 2

cos cos sin sin cos

θ θ
   σ σσ σ ℘
  − − − =℘ − −℘ = ℘ =

   θ θ θ θ θ
   

ɶ
ɶ ɶ ɶ  (2.129) 

The continuity boundary conditions are given by: 

( ) ( )(1) (2)
r1 r1u r,0 u r,0 0− =  (2.130) 

( ) ( )(1) (2)
1 1u r,0 u r,0 0θ θ− =  (2.131) 

( ) ( )(1) (2)
z1 z1u r,0 u r,0 0− =  (2.132) 

Antisymmetric terms of displacement and stress are involved in this boundary value 

problem. To comply with this antisymmetry, the θ-dependence is introduced in the Fourier 

expansion of the displacement and stress components by making m=1 in Eqs. 2.43 to 2.45. A 

particularization of the displacement and stress fields for the case of antisymmetric loads (m=1) 

is derived, so that the boundary conditions expressed in the previous equations can be applied. 

Equations 2.43 to 2.45 become, for m=1: 

( ) ( ) ( ) ( ) ( )m 1r, , z r, z cos m r,z cosχ θ = χ θ = χ θ  (2.133) 

( ) ( ) ( ) ( ) ( )m 1r, , z r, z cos m r, z cosφ θ = φ θ = φ θ  (2.134) 

( ) ( ) ( ) ( ) ( )m 1r, , z r, z sin m r, z sinψ θ = ψ θ = ψ θ  (2.135) 

From Eqs. 2.35 to 2.37, it comes: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )r1 1 1 1 1
1 1

u r,z cos r, z sin r,z cos r, z cos
r r r r

∂ ∂ ∂
= φ θ + ψ θ = φ θ + ψ θ

∂ ∂θ ∂
 (2.136) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1 1 1
1 1

u r,z cos r,z sin r,z sin r,z sin
r r r r

θ
∂ ∂ ∂

= φ θ − ψ θ = − φ θ − ψ θ
∂θ ∂ ∂

 (2.137) 
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( ) ( )z1 1u r, z cos
z

∂
= χ θ

∂
 (2.138) 

( )
( ) ( )r1

1 1
u 1

r, z r, z
cos r r

∂
= φ + ψ

θ ∂
 (2.139) 

( )
( ) ( )1

1 1
u 1

r, z r, z
sin r r

θ ∂
= − φ − ψ

θ ∂
 (2.140) 

( )
( )z1

1
u

r, z
cos z

∂
= χ

θ ∂
 (2.141) 

A particular solution for the potential functions φ1, ψ1 and χ1 for the case of antisymmetric 

loads (m=1) is obtained following the development from Eqs. 2.46 to 2.62. Substitution of those 

solutions into Eqs. 2.139 to 2.141 results in the particularized expressions of displacement and 

stress components for this antisymmetric case. The resulting expressions for displacement and 

stresses in the physical domain in this case are: 

(d) *(d)
i1 i10

u u d
∞

= λ λ∫ ; i=r,θ,z; d=1,2 (2.142) 

(d) *(d)
ij1 ij10

d
∞

σ = σ λ λ∫ ; i=r,θ,z; d=1,2 (2.143) 

in which, 

(d)λ = δ ⋅ζ  (2.144) 

For medium d=1, 

( ) ( )
(1) (1)(1) (1) (1) (1)

31 2
*(1) (1) (1) (1) (1) (1) (1) zz z
r1 1 1 2 1 3 1u a B e a D e a F e cosδ ξδ ξ δ ξ= + + θ  (2.145) 

( ) ( )
(1) (1)(1) (1) (1) (1)

31 2
*(1) (1) (1) (1) (1) (1) (1) zz z

51 4 1 1 6 1u a B e a D e a F e sinδ ξδ ξ δ ξ
θ = − + + θ  (2.146) 
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( ) ( )
(1) (1) (1) (1)

1 2
*(1) (1) (1) (1) (1)z z

7z1 1 8 1u a B e a D e cosδ ξ δ ξ= − − − θ  (2.147) 

( ) ( )
(1) (1)(1) (1) (1) (1)

31 2
*(1) (1) (1) (1) (1) (1) (1) (1) zz z
rr1 44 11 1 12 1 13 1c b B e b D e b F e cosδ ξδ ξ δ ξσ = + + + θ  (2.148) 

( ) ( )
(1) (1)(1) (1) (1) (1)

31 2
*(1) (1) (1) (1) (1) (1) (1) zz z

131 44 61 1 62 1 1c b B e b D e b F e cosδ ξδ ξ δ ξ
θθσ = + − θ  (2.149) 

( ) ( )
(1) (1) (1) (1)

1 2
*(1) (1) (1) (1) (1) (1)z z
zz1 44 21 1 22 1c b B e b D e cosδ ξ δ ξσ = + + θ  (2.150) 

( ) ( )
(1) (1)(1) (1) (1) (1)

31 2
*(1) (1) (1) (1) (1) (1) (1) (1) zz z
r 1 44 31 1 32 1 33 1c b B e b D e b F e sinδ ξδ ξ δ ξ
θσ = + + θ  (2.151) 

( ) ( )
(1) (1)(1) (1) (1) (1)

31 2
*(1) (1) (1) (1) (1) (1) (1) (1) zz z

z1 44 41 1 42 1 43 1c b B e b D e b F e sinδ ξδ ξ δ ξ
θσ = − − − θ  (2.152) 

( ) ( )
(1) (1)(1) (1) (1) (1)

31 2
*(1) (1) (1) (1) (1) (1) (1) (1) zz z
rz1 44 51 1 52 1 53 1c b B e b D e b F e cosδ ξδ ξ δ ξσ = − − − − θ  (2.153) 

For medium d=2, 

( ) ( )
( 2) ( 2)(2) ( 2) ( 2) ( 2)

31 2
*(2) (2) (2) (2) (2) (2) (2) zz z
r1 1 1 2 1 3 1u a A e a C e a E e cos−δ ξ−δ ξ −δ ξ= + + θ  (2.154) 

( ) ( )
(2 ) (2)( 2) ( 2) (2 ) (2)

31 2
*(2) (2) (2) (2) (2) (2) (2) zz z

51 4 1 1 6 1u a A e a C e a E e sin−δ ξ−δ ξ −δ ξ
θ = − + + θ  (2.155) 

( ) ( )
( 2) ( 2) ( 2) ( 2)

1 2
*(2) (2) (2) (2) (2)z z

7z1 1 8 1u a A e a C e cos−δ ξ −δ ξ= − + θ
 

(2.156)
 

( ) ( )
(2 ) (2)( 2) (2 ) (2 ) (2)

31 2
*(2) (2) (2) (2) (2) (2) (2) (2) zz z
rr1 44 11 1 12 1 13 1c b A e b C e b E e cos−δ ξ−δ ξ −δ ξσ = + + θ  (2.157) 

( ) ( )
( 2) ( 2)( 2) (2 ) (2 ) (2)

31 2
*(2) (2) (2) (2) (2) (2) (2) (2) zz z

1 44 61 1 62 1 13 1c b A e b C e b E e cos−δ ξ−δ ξ −δ ξ
θθσ = + − θ

 (2.158)
 

( ) ( )
( 2) (2) (2 ) ( 2)

1 2
*(2) (2) (2) (2) (2) (2)z z
zz1 44 21 1 22 1c b A e b C e cos−δ ξ −δ ξσ = + θ  (2.159) 



35 

 

( ) ( )
(2) ( 2)( 2) (2 ) (2) ( 2)

31 2
*(2) (2) (2) (2) (2) (2) (2) (2) zz z
r 1 44 31 1 32 1 33 1c b A e b C e b E e sin−δ ξ−δ ξ −δ ξ
θσ = + + θ

 (2.160) 

( ) ( )
( 2) ( 2)( 2) ( 2) (2 ) (2 )

31 2
*(2) (2) (2) (2) (2) (2) (2) (2) zz z

z1 44 41 1 42 1 43 1c b A e b C e b E e sinδ ξδ ξ δ ξ
θσ = + + θ

 (2.161)
 

( ) ( )
( 2) ( 2)(2 ) (2) ( 2) ( 2)

31 2
*(2) (2) (2) (2) (2) (2) (2) (2) zz z
rz1 44 51 1 52 1 53 1c b A e b C e b E e cos−δ ξ−δ ξ −δ ξσ = − + + θ  (2.162) 

Consider the following properties of the Bessel functions (Debnath and Bhatha, 2006): 

( ) ( ) ( )1 1
2n

J r J r J r
r

ν+ ν ν−λ = λ − λ
λ

 (2.163) 

( ) ( ) ( )2 1 0
2

J r J r J r
r

∴ δζ = δζ − δζ
δζ

 (2.164) 

In view of these properties, the parameters defined in Eqs. 2.77 to 2.83 become as shown in 

Eqs. 2.165 to 2.171. In Eqs. 2.165 to 2.171, the upper index d indicating the medium d=1,2 is 

omitted for conciseness. 

( ) ( ) ( )2 2 2 2i
1i 2 i i 1b J r 1 J r

r

ςϑ δζ  = − δζ − δ ζ βϑ − κ − δ ξ δζ
 

, i=1,2 (2.165) 

( )
( )13 3i 33

2
2 2 2i

b b b
J r

2 1 r / 2
= = = − δζ

ς ςϑ δζ  + δ ζ ςδζ  

, i=1,2 (2.166) 

( ) ( ) ( )2 2 2 2i
6i 2 i i 1b J r 1 J r

r

ςϑ δζ  = + δζ − δ ζ βϑ − κ − δ ξ δζ
 

, i=1,2 (2.167) 

( ) ( )2 2 2 2
2i i i 1b 1 J r = αδ ξ − κ − δ ζ ϑ δζ

 
, i=1,2 (2.168) 

( )7 8
1

1 2

a a
J r= = δζ

δξ δξ
 (2.169) 

( )
( )5 534 4i

3 1
1 2 i i 3

a ba b 1
a J r

1 r
= = = = = δζ

ϑ ϑ + ϑ δξ δξ
, i=1,2 (2.170) 
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( )
( ) ( )5i 431 2

6 0 1
1 2 i i 3

b ba a 1
a J r J r

1 r
= = = = = δζ δζ − δζ

ϑ ϑ + ϑ δξ δξ
, i=1,2 (2.171) 

Substitution of Eqs. 2.142 and 2.143 into the continuity conditions in Eqs. 2.130 to 2.132 

yields: 

( ) ( )

( ) ( )

(1) (1) (1) (1) (1) (1) (1)
r1 1 1 2 1 3 10

(2) (2) (2) (2) (2) (2) (2)
r1 1 1 2 1 3 10

u r,0 a B a D a F cos d

u r,0 a A a C a E cos d

∞

∞

 = + + θ λ λ
 

 = = + + θ λ λ
 

∫

∫
 (2.172) 

(2) (2) (1) (1) (2) (2) (1) (1) (2) (2) (1) (1)
1 1 1 1 2 1 2 1 3 1 3 1a A a B a C a D a E a F 0− + − + − =  (2.173) 

( ) ( ) ( )

( ) ( ) ( )

(1) (1) (1) (1) (1) (1) (1)
51 4 1 1 6 10

(2) (2) (2) (2) (2) (2) (2)
51 4 1 1 6 10

u r,0 a B a D a F sin d

u r,0 a A a C a E sin d

∞

θ

∞

θ

 = − + + θ λ λ
  

 = = − + + θ λ λ  

∫

∫
 (2.174) 

(2) (2) (1) (1) (2) (2) (1) (1) (2) (2) (1) (1)
5 54 1 4 1 1 1 6 1 6 1a A a B a C a D a E a F 0− + − + − =  (2.175) 

( ) ( ) ( )

( ) ( ) ( )

(1) (1) (1) (1) (1)
7z1 1 8 10

(2) (2) (2) (2) (2)
7z1 1 8 10

u r,0 a B a D cos d

u r,0 a A a C cos d

∞

∞

 = − − − θ λ λ
  

 = = − + θ λ λ  

∫

∫
 (2.176) 

(2) (2) (1) (1) (2) (2) (1) (1)
7 71 1 8 1 8 1a A a B a C a D 0+ + + =  (2.177) 

Substitution of Eqs. 2.142 and 2.143 into the stress boundary conditions in Eqs. 2.127 to 

2.129 yields: 

( ) ( ) ( ) ( )

( ) ( )

(1) (2) (1) (1) (1) (1) (1)
zz1 zz1 44 21 1 22 10

(2) (2) (2) (2) (2)
44 21 1 22 10

r,0 r,0 c b B b D cos d

c b A b C cos d 0

∞

∞

 σ − σ = + + θ λ λ
  

 − + θ λ λ =  

∫

∫
 (2.178) 
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(2) (2) (2) (1) (1) (1) (2) (2) (2) (1) (1) (1)
44 21 1 44 21 1 44 22 1 44 22 1c b A c b B c b C c b D 0− + − =  (2.179) 

( )
( )

( )
( )

( )
( )

( )
( )

( )

( )

(1) (2)(1) (2)
z1 z1rz1 rz1

(1) (1) (1) (1) (1) (1) (1)
44 51 1 52 1 53 10

(2) (2) (2) (2) (2) (2) (2)
44 51 1 52 1 53 10

(1) (1)
44 41

r,0 r,0r,0 r,0

cos cos sin sin

c b B b D b F d

c b A b C b E d

c b

θ θ

∞

∞

   σ σσ σ
  − + −

   θ θ θ θ
   

 = − − − − λ λ
  

 − − + + λ λ
  

+ −

∫

∫

( )

( )

(1) (1) (1) (1) (1)
1 42 1 43 10

(2) (2) (2) (2) (2) (2) (2)
44 41 1 42 1 43 10

B b D b F d

c b A b C b E d 0

∞

∞

 − − λ
  

 − + + λ =
  

∫

∫

 (2.180) 

( ) ( ) ( )
( ) ( ) ( )

(2) (2) (2) (2) (1) (1) (1) (1) (2) (2) (2) (2)
44 51 41 1 44 51 41 1 44 52 42 1

(1) (1) (1) (1) (2) (2) (2) (2) (1) (1) (1) (1)
44 52 42 1 44 53 43 1 44 53 43 1

c b b A c b b B c b b C

c b b D c b b E c b b F 0

− + − + −

+ − + − + − =
 (2.181) 

( )
( )

( )
( )

( )
( )

( )
( ) ( )

( )

( )

(1) (2)(1) (2)
z1 z1 0rz1 rz1

(1) (1) (1) (1) (1) (1) (1)
44 51 1 52 1 53 10

(2) (2) (2) (2) (2) (2) (2)
44 51 1 52 1 53 10

(
44

r,0 r,0r,0 r,0
2

cos cos sin sin cos

c b B b D b F d

c b A b C b E d

c

θ θ

∞

∞

   σ σσ σ ℘
  − − − =

   θ θ θ θ θ
   

 = − − − − λ λ
  

 − − + + λ λ
  

−

∫

∫

ɶ

( )

( )

1) (1) (1) (1) (1) (1) (1)
41 1 42 1 43 10

(2) (2) (2) (2) (2) (2) (2)
44 41 1 42 1 43 10

b B b D b F d

c b A b C b E d

∞

∞

 − − − λ
  

 + + + λ
  

∫

∫

 (2.182) 

( ) ( ) ( )
( ) ( ) ( )

( )
{ } ( )

(2) (2) (2) (2) (1) (1) (1) (1) (2) (2) (2) (2)
44 51 41 1 44 51 41 1 44 52 42 1

(1) (1) (1) (1) (2) (2) (2) (2) (1) (1) (1) (1)
44 52 42 1 44 53 43 1 44 53 43 1

0 0 0

c b b A c b b B c b b C

c b b D c b b E c b b F

2
J r

cos

+ + + + +

+ + + + + +

= ℘ λ
θ

ɶ

 (2.183) 

Equations 2.173, 2.175, 2.177 and 2.179, 2.181 and 2.183 form a set of six linear equations, 
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from which the values of A1, B1, C1, D1, E1 and F1 are obtained: 

(2) (2) (1) (1) (2) (2) (1) (1) (2) (2) (1) (1)
1 1 1 1 2 1 2 1 3 1 3 1a A a B a C a D a E a F 0− + − + − =  (2.173) 

(2) (2) (1) (1) (2) (2) (1) (1) (2) (2) (1) (1)
5 54 1 4 1 1 1 6 1 6 1a A a B a C a D a E a F 0− + − + − =  (2.175) 

(2) (2) (1) (1) (2) (2) (1) (1)
7 71 1 8 1 8 1a A a B a C a D 0+ + + =  (2.177) 

(2) (2) (2) (1) (1) (1) (2) (2) (2) (1) (1) (1)
44 21 1 44 21 1 44 22 1 44 22 1c b A c b B c b C c b D 0− + − =  (2.179) 

( ) ( ) ( )
( ) ( ) ( )

(2) (2) (2) (2) (1) (1) (1) (1) (2) (2) (2) (2)
44 51 41 1 44 51 41 1 44 52 42 1

(1) (1) (1) (1) (2) (2) (2) (2) (1) (1) (1) (1)
44 52 42 1 44 53 43 1 44 53 43 1

c b b A c b b B c b b C

c b b D c b b E c b b F 0

− + − + −

+ − + − + − =
 (2.181) 

( ) ( ) ( )
( ) ( ) ( )

( )
{ } ( )

(2) (2) (2) (2) (1) (1) (1) (1) (2) (2) (2) (2)
44 51 41 1 44 51 41 1 44 52 42 1

(1) (1) (1) (1) (2) (2) (2) (2) (1) (1) (1) (1)
44 52 42 1 44 53 43 1 44 53 43 1

0 0 0

c b b A c b b B c b b C

c b b D c b b E c b b F

2
J r

cos

+ + + + +

+ + + + + +

= ℘ λ
θ

ɶ

 (2.183) 

This system of equations is too long to be shown here in the form of a matrix equation such 

as Eq. 2.120, but it nevertheless comprises an analogous result: the solution of this system results 

in the specific values of A1, B1, C1, D1, E1 and F1 corresponding to the case of a transverse load at 

the interface of the two media. A closed-form solution of these equations is too long to be shown 

here, but it is achievable with the help of some mathematical software. These equations can also 

be solved numerically. The functions A1, B1, C1, D1, E1 and F1 involved in these equations are 

functions of the Hankel space variable λ; so are the displacement and stress components resulting 

from them. The substitution of these values of A1, B1, C1, D1, E1 and F1 into Eqs. 2.145 to 2.162 

results in the expressions of displacements and stresses at points of media d=1,2 due to 

antisymmetric transverse loads. Their counterparts in the physical domain are achieved upon their 

integration according to Eq. 2.142 and 2.143. 
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For convenience, an extra index is added to the displacement and stress components to 

indicate the direction of load they refer to. In this work, uix denotes the displacements in the i-

direction (i=r,θ,z) due to transverse loads, while σijx denotes the ij component of stress (i,j=r,θ,z) 

due to transverse loads. 

2.3.2.3 Pure moment loading  

Consider the problem of an antisymmetric vertical load distributed on an annular area, the 

intensity of which varies with θ, as illustrated in Fig. 2.3c. The traction discontinuities at the 

interface (z=0) due to this vertical load, in the absence of transverse loads, in the physical 

domain, is 

(1) (2)
r1 r1p p 0+ =  (2.184) 

(1) (2)
1 1p p 0θ θ+ =  (2.185) 

(1) (2)
1z1 z2p p+ =℘ɶ  (2.186) 

In Eqs. 2.184 to 2.186, pr1, pθ1 and pz1 indicate tractions acting at the interface (z=0) in the 

r-, θ- and vertical directions, respectively. The tilde on top of ℘1 in Eq. 2.186 indicates 

distributed loads. 

In terms of the stress components, in view of the sign conventions established in Fig. 2.4, 

these traction discontinuities are written as: 

( ) ( )(1) (2)
rz1 rz1r,0 r,0 0σ −σ =  (2.187) 

( ) ( )(1) (2)
z1 z1r,0 r,0 0θ θσ −σ =  (2.188) 

( ) ( )(1) (2)
1zz1 zz1r,0 r,0σ −σ =℘ɶ  (2.189) 

Substitution of Eqs. 2.142 and 2.143 into Eqs. 2.187 to 2.189 yields: 
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( ) ( ) ( ) ( )

( ) ( )

(1) (2) (1) (1) (1) (1) (1) (1) (1)
rz1 rz1 44 51 1 52 1 53 10

(2) (2) (2) (2) (2) (2) (2)
44 51 1 52 1 53 10

r,0 r,0 c b B b D b F cos d

c b A b C b E cos d 0

∞

∞

 σ − σ = − − − − θ λ λ
  

 − − + + θ λ λ =
  

∫

∫
 (2.190) 

(2) (2) (2) (1) (1) (1) (2) (2) (2) (1) (1) (1) (2) (2) (2) (1) (1) (1)
44 51 1 44 51 1 44 52 1 44 52 1 44 53 1 44 53 1c b A c b B c b C c b D c b E c b F 0+ + + + + =  (2.191) 

( ) ( ) ( ) ( )

( ) ( )

(1) (2) (1) (1) (1) (1) (1) (1) (1)
z1 z1 44 41 1 42 1 43 10

(2) (2) (2) (2) (2) (2) (2)
44 41 1 42 1 43 10

r,0 r,0 c b B b D b F sin d

c b A b C b E sin d 0

∞

θ θ

∞

 σ − σ = − − − θ λ λ
  

 − + + θ λ λ =
  

∫

∫
 (2.192) 

(2) (2) (2) (1) (1) (1) (2) (2) (2) (1) (1) (1) (2) (2) (2) (1) (1) (1)
44 41 1 44 41 1 44 42 1 44 42 1 44 43 1 44 43 1c b A c b B c b C c b D c b E c b F 0+ + + + + =  (2.193) 

( ) ( ) ( ) ( )

( ) ( )

(1) (2) (1) (1) (1) (1) (1)
zz1 zz1 44 21 1 22 10

(2) (2) (2) (2) (2)
144 21 1 22 10

r,0 r,0 c b B b D cos d

c b A b C cos d

∞

∞

 σ − σ = + + θ λ λ
  

 − + θ λ λ =℘  

∫

∫ ɶ

 (2.194) 

( )
{ } ( )(2) (2) (2) (1) (1) (1) (2) (2) (2) (1) (1) (1)

1 1 144 21 1 44 21 1 44 22 1 44 22 1

1
c b A c b B c b C c b D J r

cos
− + − = − ℘ λ

θ
ɶ  (2.195) 

The continuity boundary conditions are given by Eqs. 2.130 to 2.132. Substitution of Eqs. 

2.142 and 2.143 into the continuity conditions yields: 

(2) (2) (1) (1) (2) (2) (1) (1) (2) (2) (1) (1)
1 1 1 1 2 1 2 1 3 1 3 1a A a B a C a D a E a F 0− + − + − =  (2.196) 

(2) (2) (1) (1) (2) (2) (1) (1) (2) (2) (1) (1)
5 54 1 4 1 1 1 6 1 6 1a A a B a C a D a E a F 0− + − + − =  (2.197) 

(2) (2) (1) (1) (2) (2) (1) (1)
7 71 1 8 1 8 1a A a B a C a D 0+ + + =  (2.198) 

Equations 2.191, 2.193, 2.195 and 2.196 to 2.198 form a set of six linear equations, from 

which the values of A1, B1, C1, D1, E1 and F1 are obtained: 
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(2) (1) (2) (1) (2) (1)
1 1 2 2 3 3

(2) (1) (2) (1) (2) (1)
5 54 4 6 6

(2) (1) (2) (1)
7 7 8 8

(2) (2) (1) (1) (2) (2) (1) (1) (2) (2) (1) (1)
44 51 44 51 44 52 44 52 44 53 44 53

(2) (2) (1) (1) (2) (2) (
44 41 44 41 44 42 44

a a a a a a

a a a a a a

a a a a 0 0

c b c b c b c b c b c b

c b c b c b c

− − −

− − −

{ } ( )
( )

(2)
1

(1)
1

(2)
1

(1)
1

1) (1) (2) (2) (1) (1) (2)
1 1 142 44 43 44 43 1

(2) (2) (1) (1) (2) (2) (1) (1) (1)
44 21 44 21 44 22 44 22 1

0A

0B
0

C
0

D 0

b c b c b E J r

cosc b c b c b c b 0 0 F

     
     
     
     
     

=     
    
    
  ℘ λ  

−    
θ− −      

ɶ









 (2.199) 

The solution of this algebraic equation system results in the specific values of A1, B1, C1, 

D1, E1 and F1 corresponding to the case of an antisymmetric vertical load at the interface of the 

two media. A closed-form solution of these equations is too long to be shown here, but it is 

achievable with the help of some mathematical software. This equation can also be solved 

numerically. The functions A1, B1, C1, D1, E1 and F1 involved in these equations are functions of 

the Hankel space variable λ; so are the displacement and stress components resulting from them. 

The substitution of these values of A1, B1, C1, D1, E1 and F1 into Eqs. 2.142 and 2.143 results in 

the expressions of displacements and stresses at points of media d=1,2 due to antisymmetric 

vertical loads. Their counterparts in the physical domain are achieved upon their integration 

according to Eq. 2.142 and 2.143. 

For convenience, a little change of notation of the displacement and stress components is 

introduced to indicate the type of load they refer to. In this work, viz denotes the displacements in 

the i-direction (i=r,θ,z) due to antisymmetric vertical loads, while ςijz denotes the ij component of 

stress (i,j=r,θ,z) due to antisymmetric vertical loads. The letters v and ς are used instead of u and 

σ to emphasize that these displacements and stresses result from antisymmetric vertical loads, 

rather than axisymmetric vertical loads (see the end of Subsection 2.3.2.1). 

2.4 Description of the loadings 

Let ℘m represent axisymmetric and antisymmetric loads in the physical domain. The index 

m is used to emphasize that the axisymmetry or antisymmetry of these loads can be described in 

the same form of the Fourier series expansion that is shown in Eq. 2.43. ℘0 (m=0) denotes 

axisymmetric loads, the intensity of which does not depend on the variable θ (Eq. 2.43 for m=0 
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and Fig. 2.3a). ℘1 (m=1) denotes antisymmetric loads, the intensity of which vary with the 

cosine of θ (Eq. 2.43 for m=1 and Fig. 2.3c).  

One way of expressing these loads is by using Hankel transforms: 

{ }{ } { } ( )1
m m m m m m m0

J r d
∞−℘ = ℘ = ℘ λ λ λ∫  (2.200) 

in which m and 
−1

m represent respectively the Hankel transform of order m and its 

inverse, and Jm represents Bessel functions of order m (Abramowitz and Stegun, 1965). 

Consider an axisymmetric load of intensity p0 applied as a ring of radius s, ℘0=p0δ(r−s). 

The representation of this load in the transformed domain is given by Eq. 2.201. Based on this 

result, an expression for an analogous load distributed on an annular area with inner and outer 

radii s1 and s2 in the transformed domain can be derived (Eq. 2.202). The symbol ℘ with a tilde 

in Eq. 2.202 stands for distributed loads. 

{ } ( ) ( ) ( )0 0 0 0 0 00
p r s J r r dr p s J s

∞
℘ = δ − λ = ⋅ λ∫  (2.201) 

{ } ( ) ( ) ( )2

1

s

0 0 0 0 2 1 2 1 1 1 0s

1
p s J s ds s J s s J s p℘ = ⋅ λ = λ − λ  λ∫ɶ  (2.202) 

Consider now loading configurations in which the amplitude of the load is not uniformly 

distributed on the ring of radius s. In the first case (Fig. 2.8a), the amplitude varies with the angle 

θ, but not with the radius s (see also Figs. 2.8c and 2.8d). Because this is an antisymmetric 

problem with respect to θ, m=1. 

The concentrated load on the ring is ℘1=p0δ(r−s)cos(θ) and its representation in the 

transformed domain is given by Eq. 2.203. Equation 2.204 describes this load when it is 

distributed on an annular area with inner and outer radii s1 and s2 in the transformed domain. 

{ } ( ) ( ) ( ) ( ) ( )1 1 0 1 0 10
p r s cos J r r dr p s J s cos

∞
℘ = δ − θ λ = ⋅ λ θ∫  (2.203) 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 2.8 Load configurations for antisymmetric vertical loads that vary only with θ and not 

with r (a, c and d) and that vary linearly with x (b, e and f). 

 

{ } ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2

1

s 2
1 1 0 1 1 2 0 2 0 2 1 2 0s

1
1 1 0 1 0 1 1 1 0

s
p sJ s cos ds J s H s J s H s p cos

2

s
J s H s J s H s p cos

2

π
℘ = λ θ = λ λ − λ λ θ  λ

π
− λ λ − λ λ θ  λ

∫ɶ

  

 (2.204) 

In Eq. 2.204, Hν represents Struve functions of order ν (Abramowitz and Stegun, 1965). 

Figures 2.8a and 2.8d show a physical interpretation of the distributed load resulting from 

the integration of ℘1=p0δ(r−s)cos(θ). 

A simpler case which does not involve Struve functions is obtained by considering that the 

amplitude of the concentrated load on the ring of radius s varies linearly with its distance x from 

the y-axis (Fig. 2.8e). The expression of the concentrated load is ℘1=p0δ(r−s)x, with x=r⋅cos(θ), 

and its representation in the transformed domain is given by Eq. 2.205. Its corresponding 

distributed expression is shown in Eq. 2.206. 
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{ } ( ) ( ) ( ) ( ) ( )2
1 1 0 1 0 10

p r s r cos J r r dr p s J s cos
∞

℘ = δ − θ λ = ⋅ λ θ∫  (2.205) 

{ } ( ) ( ) ( ) ( ) ( )2

1

s 2 2 2
1 1 0 1 2 2 2 1 2 1 0s

1
p s J s cos ds s J s s J s p cos ℘ = λ θ = λ − λ θ

 λ∫ɶ  (2.206) 

Figures 2.8b and 2.8f show a physical interpretation of the distributed load resulting from 

the integration of ℘1=p0δ(r−s)⋅r⋅cos(θ). 

 

This chapter presented Green’s functions to describe the behavior of transversely isotropic 

media under the effect of different configurations of dynamic loads. Infinite homogeneous three-

dimensional full-spaces were considered, as well as bi-material half-space interfaces. In the next 

chapter, a different technique will be used to describe layered half-spaces. Each layer within the 

layered system is a finite transversely isotropic medium, the behavior of which is modeled in this 

present chapter. 
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3 EXACT STIFFNESS METHOD FOR MULTILAYERED MEDIA 

 

In this chapter, the stiffness-matrix approach is used to compute displacements and stresses 

of a multilayered transversely isotropic elastic half-space under time-harmonic oscillations. Exact 

stiffness matrices are obtained for each layer, based on the solutions presented in the preceding 

chapter. The global stiffness matrix describing the layered system is assembled by considering 

traction continuity conditions at the interface between adjacent layers of the system. 

Consider the three-dimensional multilayered medium shown in Fig. 3.1. Each of the N 

layers and the underlying half-space is made of a homogeneous transversely isotropic elastic 

material, the behavior of which is described by Eqs. 2.63 and 2.68. The material constants, mass 

density and thickness of the n
th

 layer are denoted by c
(n)

ij, ρ
(n)

 and hn, respectively. 

 
Figure 3.1 Geometry and notation of a multilayered system. 

 

The stiffness-matrix approach is a classical technique for analyzing the behavior of such 

media. This approach is the same that is used in structural analysis: a stiffness matrix of the 

layered medium is assembled from the stiffness matrices of the layers and the underlying half-

space in the same fashion as the stiffness matrix of a structure is assembled from the elementary 

stiffness matrices of its components (Gucunski and Peek, 1993; Wang, 1992).  
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Let u
*(n)

im1 denote the i
th

 displacement component at the top surface of the n
th

 layer (z=zn), 

and u
*(n)

im2 denote the i
th

 displacement component at the bottom surface of the n
th

 layer (z=zn+1). 

The * superscript indicate a transformed domain. The index m denotes axisymmetric (m=0) or 

antisymmetric problems (m=1) with respect to θ. For example, in view of Eq. 2.66 this yields: 

( n ) ( n ) ( n ) ( n ) ( n ) ( n )

1 n 1 n 2 n

( n ) ( n ) ( n ) ( n )( n ) ( n )

3 n 3 n2 n

*(n) (n) (n) (n)z z z(n) (n) (n)
m m mrm1 1 1 2

(n) (n) (n)z zz(n) (n) (n)
m m m2 3 3

u a A e a B e a C e

a D e a E e a F e

−δ ξ δ ξ −δ ξ

−δ ξ δ ξδ ξ

= + +

+ + +
 (3.1) 

( n ) ( n ) ( n ) ( n ) ( n ) ( n )

1 n 1 1 n 1 2 n 1

( n ) ( n ) ( n ) ( n )( n ) ( n )

3 n 1 3 n 12 n 1

*(n) (n) (n) (n)z z z(n) (n) (n)
m m mrm2 1 1 2

(n) (n) (n)z zz(n) (n) (n)
m m m2 3 3

u a A e a B e a C e

a D e a E e a F e

+ + +

+ ++

−δ ξ δ ξ −δ ξ

−δ ξ δ ξδ ξ

= + +

+ + +
 (3.2) 

The three displacement components from Eqs. 2.65 to 2.67 can be combined in one matrix 

equation: 

*(n) (n) (n)
m m mu G a=  (3.3) 

where 

T
*(n) *(n) *(n) *(n) *(n) *(n)*(n)

m rm1 m1 zm1 rm2 m2 zm2u u u u u u uθ θ=  (3.4) 

T
(n) (n) (n) (n) (n) (n) (n)
m m m m m m ma A B C D E F=  (3.5) 

1 1 1 1 1 1
1 1,n 1 1,n 2 2,n 2 2,n 3 3,n 3 3,n

1 1 1 1 1 1
4 1,n 4 1,n 5 2,n 5 2,n 6 3,n 6 3,n

1 1 1 1
7 1,n 7 1,n 8 2,n 8 2,n(n)

m 1 1 1 1 1
1 1,n 1 1 1,n 1 2 2,n 1 2 2,n 1 3 3,n 1 3 3,

a e a e a e a e a e a e

a e a e a e a e a e a e

a e a e a e a e 0 0
G

a e a e a e a e a e a e

− + − + − +

− + − + − +

− + − +

− + − + −
+ + + + +

− − − − − −

− − −
=

1
n 1

1 1 1 1 1 1
4 1,n 1 4 1,n 1 5 2,n 1 5 2,n 1 6 3,n 1 6 3,n 1

1 1 1 1
7 1,n 1 7 1,n 1 8 2,n 1 8 2,n 1

a e a e a e a e a e a e

a e a e a e a e 0 0

+
+

− + − + − +
+ + + + + +

− + − +
+ + + +

 
 
 
 
 
 
 
 
 
− − − − − − 
 
− −  

 (3.6) 
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where  

(n)(n)
ji z1

i, je e , i 1,2; j 1,2, , N 1
±δ ξ± = = = +  (3.7) 

The upper index (n) in the parameters ai, i=1,8, is omitted in Eq. 3.6 for conciseness. 

Analogously, let σ*(n)
ijm1 denote the ij

th
 stress component at the top surface of the n

th
 layer 

(z=zn), and σ*(n)
ijm2 denote the ij

th
 stress component at the bottom surface of the n

th
 layer (z=zn+1). 

The * superscript indicates a transformed domain. The index m denotes axisymmetric (m=0) or 

antisymmetric problems (m=1) with respect to θ. The corresponding matrix equation can be 

obtained from Eqs. 2.71, 2.73 and 2.74 as: 

*(n) (n) (n)
m m mF aσ =  (3.8) 

where 

T
*(n) *(n) *(n) *(n) *(n) *(n)*(n)

m rzm1 zm1 zzm1 rzm2 zm2 zzm2θ θσ = −σ −σ −σ σ σ σ  (3.9) 

1 1 1 1 1 1
51 1,n 51 1,n 52 2,n 52 2,n 53 3,n 53 3,n

1 1 1 1 1 1
41 1,n 41 1,n 42 2,n 42 2,n 43 3,n 43 3,n

1 1 1 1(n)
21 1,n 21 1,n 22 2,n 22 2,nm

1 1 1
44 51 1,n 1 51 1,n 1 52 2,n 1

b e b e b e b e b e b e

b e b e b e b e b e b e

b e b e b e b e 0 0F

c b e b e b e

− + − + − +

− + − + − +

− + − +

− + −
+ + +

− − −

− − −

− − − −
=

− − 1 1 1
52 2,n 1 53 3,n 1 53 3,n 1

1 1 1 1 1 1
41 1,n 1 41 1,n 1 42 2,n 1 42 2,n 1 43 3,n 1 43 3,n 1

1 1 1 1
21 1,n 1 21 1,n 1 22 2,n 1 22 2,n 1

b e b e b e

b e b e b e b e b e b e

b e b e b e b e 0 0

+ − +
+ + +

− + − + − +
+ + + + + +

− + − +
+ + + +

 
 
 
 
 
 
 − 
 

− − − 
 
  

 (3.10) 

Depending on whether the stresses are being observed on the top or bottom surface of a 

layer and because of the direction of the normal vector to each surface, the signs of the stress 

components may differ from those of their corresponding traction components (Fig. 3.2). After a 

careful consideration of this difference, an expression for the traction vector is obtained:  
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T
*(n) *(n) *(n) *(n) *(n) *(n)*(n) *(n)

m mrm1 m1 zm1 rm2 m2 zm2p p p p p p pθ θ= = σ  (3.11) 

where p*(n)
im1 denotes the traction acting at the top surface of the nth layer in the ith 

direction, and p*(n)
im2 denotes the traction acting at the bottom surface of the nth layer in the ith 

direction. In this work, the terms of the traction vector were chosen to be positive, while the 

corresponding corrections of signs were introduced to the stress components (Eq. 3.9). It is 

convenient that all the terms of Eq. 3.11 are positive while interpreting the traction boundary 

conditions. This will be detailed later on. 

 
(a) 

 
(b) 

Figure 3.2 Directions of stresses and tractions at the nth interface from the point of view of 

the (a) top and (b) bottom surfaces of the nth layer when the normal vector to each surface is 

considered. 

 

3.1 Underlying half-space 

Consider the half-space shown in Fig. 3.1 (“layer” N+1). For the particular case of this 

semi-infinite medium, only the terms A(N+1)
m, C(N+1)

m and E(N+1)
m are involved in the formulation, 

in order to satisfy Sommerfeld’s radiation condition (Sommerfeld, 1949). This results in a 

reduced form of Eqs. 3.3 and 3.8: 

*(N 1) (N 1) (N 1)
m m mu G a+ + +=  (3.12) 

 

 



49 

 

where 

T
*(N 1) *(N 1) *(N 1)*(N 1)

m rm1 m1 zm1u u u u
+ + ++

θ=  (3.13) 

T
(N 1) (N 1) (N 1) (N 1)
m m m ma A C E+ + + +=  (3.14) 

1 1 1
1 1,N 1 2 2,N 1 3 3,N 1

(N 1) 1 1 1
m 4 1,N 1 5 2,N 1 6 3,N 1

1 1
7 1,N 1 8 2,N 1

a e a e a e

G a e a e a e

a e a e 0

− − −
+ + +

+ − − −
+ + +

− −
+ +

 
 
 = − − −
 
 − −  

 (3.15) 

and 

*(N 1) (N 1) (N 1)
m m mF a+ + +σ =  (3.16) 

where 

T
*(N 1) *(N 1) *(N 1)*(N 1)

m rzm1 zm1 zzm1
+ + ++

θσ = −σ −σ −σ  (3.17) 

1 1 1
51 1,N 1 52 2,N 1 53 3,N 1

(N 1)
1 1 1m

41 1,N 1 42 2,N 1 43 3,N 1
44

1 1
21 1,N 1 22 2,N 1

b e b e b e

F
b e b e b e

c

b e b e 0

− − −
+ + +

+
− − −

+ + +

− −
+ +

 
 
 = − − −
 
 − −  

 (3.18) 

3.2 Stiffness matrix of the layers and half-space 

Consider the vector a
(n)

m involved in Eqs. 3.3 and 3.8, which contains the arbitrary 

functions A
(n)

m, B
(n)

m, C
(n)

m, D
(n)

m, E
(n)

m and F
(n)

m. The vector a
(n)

m is common to the expressions 

of displacements (Eq. 3.3) and stresses of each layer (Eq. 3.8). Equations 3.3 and 3.8 can be 

combined into: 
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( )
1

*(n) (n) (n) (n) (n) *(n) (n) *(n)
m m m m m m m mF a F G u K u

−
σ = = = ;   n=1,2,…,N (3.19) 

In Eq. 3.19, the matrix K
(n)

m is the stiffness matrix of the layer n. 

An analogous definition holds for the half-space. The vector a
(N+1)

m involved in Eqs. 3.12 

and 3.16 contains the arbitrary functions A
(N+1)

m, B
(N+1)

m, C
(N+1)

m and D
(N+1)

m, and it is common to 

the expressions of displacements (Eq. 3.3) and stresses of the half-space (Eq. 3.8). Equations 3.12 

and 3.16 can be combined into: 

( )
1

*(N 1) (N 1) (N 1) (N 1) (N 1) *(N 1) (N 1) *(N 1)
m m m m m m m mF a F G u K u

−+ + + + + + + +σ = = =  (3.20) 

In Eq. 3.20, the matrix K
(N+1)

m is the stiffness matrix of the half-space (“layer” N+1). 

Matrices K
(n)

m depend on the material properties of the layer n (n=1,2,…,N,N+1) and its 

thickness, on the frequency of excitation and on the Hankel space variable λ. The expression of 

K
(n)

m is rather long and has to be determined numerically. 

3.3 Stiffness matrix of the multilayered medium 

Let ℘n
im denote the external concentrated or distributed load applied at the n

th
 interface of 

two layers, in the direction of i (i=r,θ,z), such as described in Section 2.4. In view of the sign 

convention established in Fig. 3.3, the following equation describes the traction discontinuity at 

that interface: 

{ } *(n 1) *(n) *(n 1) *(n)n
m im im2 im1 im2 im1

p p
− −℘ = + = σ − σ ; i=r,θ,z (3.21) 

Additionally, the kinematic continuity condition at the interface of any two layers is given 

mathematically by: 

*(n 1) *(n)
im2 im1

u u
− = ; i=r,θ,z (3.21) 
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Equation 3.21 is applied together with Eqs. 3.19 and 3.20 for all the layers n=1,2,…,N,N+1 

to form the following global stiffness matrix of the multilayered medium: 

* *
m m mK u℘ =  (3.22) 

 

 
Figure 3.3 Definitions and sign conventions for tractions, stresses and external loads, 

considering the normal vectors at the free surfaces of each layer. The subscript m is omitted 

for conciseness. 

 

In Eq. 3.22, ℘*m=℘*m(λ) is the vector of external loads applied at the layer interfaces, 

given by Eq. 3.23; u*m=u*m(λ) is the vector of resulting displacements of points of the interfaces, 

given by Eq. 3.24, and Km=Km(λ) is the global stiffness matrix of the medium, given by Eq. 3.25. 

All these terms are in the Hankel transformed domain, and depend on the Hankel space parameter 

λ. 

T
*(N 1)* *1 *1 *1 *(N 1) *(N 1)

m rm m zm rm zmm
++ +

θ θ℘ = ℘ ℘ ℘ ℘ ℘ ℘  (3.23) 

( ) ( ) ( ) ( ) ( ) ( )
T

* * * * * * *
m rm 1 m 1 zm 1 rm N 1 m N 1 zm N 1u u r, z u r, z u r, z u r, z u r, z u r, zθ + θ + +=  (3.24) 
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 (3.25) 

When Eq. 3.22 is assembled, the continuity of displacements at the interfaces, which states 

that u
*(n−1)

im2=u
*(n)

im1, is implicitly guaranteed. In the next section, the global stiffness matrix is 

assembled for an example of three layers plus a half-space. The condition of continuity at the 

interfaces is explicitly stated, and the resulting stiffness matrix is precisely as shown in Eq. 3.25. 

The solution of displacements from Eq. 3.22 must be integrated along λ as described in Eq. 

2.63 to obtain the displacements at the layer interfaces in the physical domain. 

3.4 Example 

Consider the example of multilayered system depicted in Fig. 3.4. The system contains 

N=3 transversely isotropic layers plus an underlying half-space. Only axisymmetric vertical and 

radial external loads are considered (m=0). The index m will be omitted in the formulation of this 

example for conciseness. The * superscript will also be omitted: all displacement, stress, external 

load and traction components in this example are in the transformed domain. 

In the example of Fig. 3.4, there are 14 unknowns to be determined: A
(1)

, B
(1)

, C
(1)

, D
(1)

 for 

layer 1 and A
(2)

, B
(2)

, C
(2)

, D
(2)

 for layer 2, A
(3)

, B
(3)

, C
(3)

, D
(3)

 for layer 3 and A
(4)

, C
(4)

 for the 

half-space – “layer” 4. 

Fourteen boundary conditions or continuity conditions are known. At the free surface 

(“interface” 1, z=z1), 
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(1) 1
rr1p =℘  (3.26) 

(1) 1
zz1p =℘  (3.27) 

 
Figure 3.4 Layer and interface numbering, tractions and external forces, for a reduced 

example of N=3 layers plus an underlying infinite half-space. 

 

At interface 2 (z=z2): 

(1) (2) 2
rr2 r1p p+ =℘  (3.28) 
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(1) (2) 2
zz2 z1p p+ =℘  (3.29) 

( ) ( )(1) (2)(1) (2)
r 2 r 2r2 r1u u r,z u u r,z= = =  (3.30) 

( ) ( )(1) (2)(1) (2)
z 2 z 2z2 z1u u r,z u u r,z= = =  (3.31) 

At interface 3 (z=z3): 

(2) (3) 3
rr2 r1p p+ =℘  (3.32) 

(2) (3) 3
zz2 z1p p+ =℘  (3.33) 

( ) ( )(2) (3)(2) (3)
r 3 r 3r2 r1u u r,z u u r,z= = =  (3.34) 

( ) ( )(2) (3)(2) (3)
z 3 z 3z2 z1u u r,z u u r,z= = =  (3.35) 

At interface 4, corresponding to the surface of the half-space (z=z4): 

(3) (4) 4
rr2 r1p p+ =℘  (3.36) 

(3) (4) 4
zz2 z1p p+ =℘  (3.37) 

( ) ( )(3) (4)(3) (4)
r 4 r 4r2 r1u u r,z u u r,z= = =  (3.38) 

( ) ( )(3) (4)(3) (4)
z 4 z 4z2 z1u u r,z u u r,z= = =  (3.39) 

Equation 3.19 is applied for each layer n=1,4. For layer n=1, 

(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
11 r1 12 z1 13 r2 14 z2 rz1 r1k u k u k u k u p+ + + = −σ =  (3.40) 

(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
21 r1 22 z1 23 r2 24 z2 zz1 z1k u k u k u k u p+ + + = −σ =  (3.41) 
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(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
31 r1 32 z1 33 r2 34 z2 rz2 r2k u k u k u k u p+ + + = σ =  (3.42) 

(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
41 r1 42 z1 43 r2 44 z2 zz2 z2k u k u k u k u p+ + + = σ =  (3.43) 

For layer n=2, 

(2) (2) (2) (2) (2) (2) (2) (2) (2) (2)
11 r1 12 z1 13 r2 14 z2 rz1 r1k u k u k u k u p+ + + = −σ =  (3.44) 

(2) (2) (2) (2) (2) (2) (2) (2) (2) (2)
21 r1 22 z1 23 r2 24 z2 zz1 z1k u k u k u k u p+ + + = −σ =  (3.45) 

(2) (2) (2) (2) (2) (2) (2) (2) (2) (2)
31 r1 32 z1 33 r2 34 z2 rz2 r2k u k u k u k u p+ + + = σ =  (3.46) 

(2) (2) (2) (2) (2) (2) (2) (2) (2) (2)
41 r1 42 z1 43 r2 44 z2 zz2 z2k u k u k u k u p+ + + = σ =  (3.47) 

For layer n=3, 

(3) (3) (3) (3) (3) (3) (3) (3) (3) (3)
11 r1 12 z1 13 r2 14 z2 rz1 r1k u k u k u k u p+ + + = −σ =  (3.48) 

(3) (3) (3) (3) (3) (3) (3) (3) (3) (3)
21 r1 22 z1 23 r2 24 z2 zz1 z1k u k u k u k u p+ + + = −σ =  (3.49) 

(3) (3) (3) (3) (3) (3) (3) (3) (3) (3)
31 r1 32 z1 33 r2 34 z2 rz2 r2k u k u k u k u p+ + + = σ =  (3.50) 

(3) (3) (3) (3) (3) (3) (3) (3) (3) (3)
41 r1 42 z1 43 r2 44 z2 zz2 z2k u k u k u k u p+ + + = σ =  (3.51) 

And for the half-space, “layer” n=4, Eq. 3.20 results in: 

(4) (4) (4) (4) (4) (4)
11 r1 12 z1 rz1 r1k u k u p+ = −σ =  (3.52) 

(4) (4) (4) (4) (4) (4)
21 r1 22 z1 zz1 z1k u k u p+ = −σ =  (3.53) 
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The boundary conditions from Eqs. 3.26 to 3.39 are applied into Eqs. 3.40 to 3.53. The 

application of Eqs. 3.26 and 3.27 into Eqs. 3.40 and 3.41 yield: 

(1) (1) (1) (1) (1) (1) (1) (1) 1
r11 r1 12 z1 13 r2 14 z2k u k u k u k u+ + + =℘  (3.54) 

(1) (1) (1) (1) (1) (1) (1) (1) 1
z21 r1 22 z1 23 r2 24 z2k u k u k u k u+ + + =℘  (3.55) 

Then Eqs. 3.42 and 3.44 into 3.28, in view of Eqs. 3.30 and 3.31 yield Eq. 3.56, while Eqs. 

3.43 and 3.45 into 3.29, in view of Eqs. 3.30 and 3.31 yield Eq. 3.57. 

( ) ( )(1) (1) (1) (1) (1) (2) (2) (1) (2) (2) (2) (2) (2) (2) 2
r31 r1 32 z1 33 11 r1 34 12 z1 13 r2 14 z2k u k u k k u k k u k u k u+ + + + + + + =℘  (3.56) 

( ) ( )(1) (1) (1) (1) (1) (2) (2) (1) (2) (2) (2) (2) (2) (2) 2
z41 r1 42 z1 43 21 r1 44 22 z1 23 r2 24 z2k u k u k k u k k u k u k u+ + + + + + + =℘  (3.57) 

Equations 3.46 and 3.48 into 3.32, in view of Eqs. 3.34 and 3.35 yield Eq. 3.58, while Eqs. 

3.47 and 3.49 into 3.33, considering also 3.34 and 3.35 yield Eq. 3.59. 

( ) ( )(2) (2) (2) (2) (2) (3) (3) (2) (3) (3) (3) (3) (3) (3) 3
r31 r1 32 z1 33 11 r1 34 12 z1 13 r2 14 z2k u k u k k u k k u k u k u+ + + + + + + =℘  (3.58) 

( ) ( )(2) (2) (2) (2) (2) (3) (3) (2) (3) (3) (3) (3) (3) (3) 3
z41 r1 42 z1 43 21 r1 44 22 z1 23 r2 24 z2k u k u k k u k k u k u k u+ + + + + + + =℘  (3.59) 

Equations 3.60 and 3.62 into 3.36, in view of Eqs. 3.38 and 3.39 yield Eq. 3.60, while Eqs. 

3.61 and 3.63 into 3.37, in view of Eqs. 3.38 and 3.39 yield Eq. 3.61. 

( ) ( )(3) (3) (3) (3) (3) (4) (4) (3) (4) (4) 4
r31 r1 32 z1 33 11 r1 34 12 z1k u k u k k u k k u+ + + + + =℘  (3.60) 

( ) ( )(3) (3) (3) (3) (3) (4) (4) (3) (4) (4) 4
z41 r1 42 z1 43 21 r1 44 22 z1k u k u k k u k k u+ + + + + =℘  (3.61) 
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Equations 3.54 to 3.61 are assembled in the following matrix form: 

(1) (1) (1) (1)
11 12 13 14

(1) (1) (1) (1)
21 22 23 24

(1) (1) (1) (2) (1) (2) (2) (2)
31 32 33 11 34 12 13 14

(1) (1) (1) (2) (1) (2) (2) (2)
41 42 43 21 44 22 23 24

(2) (2) (2) (3) (2) (3)
31 32 33 11 34 12

k k k k 0 0 0 0

k k k k 0 0 0 0

k k k k k k k k 0 0

k k k k k k k k 0 0

0 0 k k k k k k

+ +

+ +

+ +

1
r

1
z

2
r

2
z

(3) (3) 3
r13 14

(2) (2) (2) (3) (2) (3) (3) (3) 3
z41 42 43 21 44 22 23 24

(3) (3) (3) (4) (3) (4)
r31 32 33 11 34 12

(3) (3) (3) (4) (3) (4)
41 42 43 21 44 22

u

u

u

u

k k u

u0 0 k k k k k k k k

u0 0 0 0 k k k k k k

0 0 0 0 k k k k k k

 
 
 
 
 
 
 
 
 
 

+ + 
 

+ + 
 

+ +  

1
r

1
z

2
r

2
z

3
r

3
z

4 4
r

4 4
z zu

   ℘
   
   ℘
   
   ℘
   

℘   
=   

℘   
   

℘   
   

℘   
   

℘   

 (3.62) 

The solution of Eq. 3.62 results in radial and vertical displacements u
(n)

r(r,zn) and u
(n)

z(r,zn) 

(n=1,4) of points of the interfaces of the example depicted in Fig. 3.4 in response to the radial and 

vertical loads ℘(n)
r and ℘(n)

z to which it is subjected. The continuity conditions at the interfaces 

are stated explicitly, and the resulting global stiffness matrix matches that generalized expression 

shown in Eq. 3.25. 

The displacements involved in Eq. 3.62 are function of the Hankel space variable λ. Their 

counterparts in the physical domain are achieved upon their integration according to Eq. 2.63. 

 

This chapter presented a method to compute displacements and stresses of a multilayered 

transversely isotropic elastic half-space. The loadings to which the layered medium is subjected 

are arbitrary. Time-harmonic concentrated and distributed loads are described in the previous 

chapter. In the next chapters, the formulation of two different models of circular foundations will 

be presented. These models will be used with this and the previous chapter’s influence functions 

to study the behavior of rigid and flexible plates embedded in three-dimensional transversely 

isotropic bi-material and layered systems. 
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4 MODEL OF AN EMBEDDED RIGID CIRCULAR PLATE 

 

This chapter presents the formulation of a model of rigid circular plates. A set of coupled 

integral equations, which relates the displacements and the unknown tractions across an arbitrary 

rigid circular surface inside an elastic medium, is used to describe the embedded disc. These 

integral equations involve the influence functions corresponding to vertical and transverse 

displacements, due to unit axisymmetric vertical or antisymmetric transverse and vertical loads, 

the derivation of which was presented in the previous chapters. This chapter presents a strategy to 

solve these coupled integral equations by discretizing the circular surface into concentric annular 

disc elements, on which the traction fields are assumed to vary according to a known shape. The 

results of vibration of the embedded rigid disc are compared with results from the literature. 

Original research results of the problem are also presented. 

4.1 Problem statement 

Consider the time-harmonic excitation of a rigid massless disc of thickness h=0 and radius 

a embedded in the interface of two elastic unbounded three-dimensional media as shown in Fig. 

4.1a.  

 
(a) 

 
(b) 

Figure 4.1 (a) Circular plate of radius a buried in the interface of two media and (b) reference 
surface S of radius a within the interface. 
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The plate is under the effect of time-harmonic, axisymmetric, either concentrated or 

distributed vertical ring loads, such as depicted in Fig. 2.3a; or transverse loads (Fig. 2.3b); or 

antisymmetric vertical loads, which correspond to a net moment about the y-axis (Fig. 2.3c).  

The objective of this chapter is to provide a mathematical description of the problem of the 

rigid plate, which can be used together with the models of transversely isotropic media presented 

in chapters 2 and 3 to model the problem of the plate embedded in such media.  

4.2 Governing equations 

Since the disc is massless and h=0, its behavior can be modeled solely by considering that a 

circular surface of the medium, corresponding to the area of the plate, is rigid (Fig. 4.1b). 

The displacements wi of a circular surface S of radius a inside an elastic medium can be 

related to the interface contact traction tj through the following integral equation: 

( ) ( ) ( )
s a

ij j is 0
u r, , z 0,s, t s, , z 0, ds w r, , z 0,

=

=
θ = ω θ = ω = θ = ω∫ , i,j=r,θ,z. (4.1) 

In Eq. 4.1, uij(r,θ,z=0,s,ω) denotes the displacement of the point P of coordinates (r,θ,z=0) 

in the i-direction. It is due a unit ring load in the j-direction concentrated on a ring of radius s. 

The ring load is dynamic with circular frequency ω. For the case of transversely isotropic 

interfaces, these displacement components are obtained according to Eq. 2.63. The ring loads that 

actually act on the surface S are not necessarily unitary as the term uij(r,θ,z=0,s,ω) considers, but 

they have unknown intensities denoted by tj (j=r,θ,z), the distribution of which on the surface S is 

also unknown. The term wi(r,θ,z=0,ω) (i=r,θ,z) denotes the resulting displacement of S at the 

point P in the i-direction. It is obtained after weighting the displacements uij(r,θ,z=0,s,ω) due to 

unitary loads by the actual loads tj which are acting on the whole surface of S (0≤s≤a). Equation 

4.1 expresses the most general coupled behavior, in which displacements in any direction i=r,θ,z 

may occur due to a load in j=r,θ,z. The indices in this equation must be interpreted according to 

Einstein’s summation convention. 

Note that for a surface subjected to a vertical load all field components in Eq. 4.1 are 

independent of θ. In the case of a surface subjected to a horizontal load in the x-direction or a 
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moment about the y-axis, the θ-dependence of all field variables in the radial and vertical 

directions is represented by cos(θ) and in the θ-direction by sin(θ) (Eqs. 2.145 to 2.162). 

A solution to Eq. 4.1 by analytical methods is not feasible due to the complexity of the 

integrand function. A numerical solution is obtained by considering that the surface S is made up 

of M concentric annular disc elements of inner and outer radii s1k and s2k (k=1,M). Figure 4.2 

shows an example of this discretization for M=4 annular disc elements. The tractions tj acting on 

each annular disc element are assumed to be constant in the cases of vertical and transverse loads 

(Fig. 2.3a and 2.3b). However, for moment loading, the traction in the z-direction is assumed to 

vary with r and θ across an annular disc element (Figs. 2.3c and 2.8). 

 
Figure 4.2 Discretization of the region S into concentric annular disc elements for the case of 

M=4. 
 

4.3 Vertical load 

Consider a circular surface S inside the material interface shown in Fig. 4.1b, subjected to 

axisymmetric vertical loads. It is assumed that the influence of radial traction on the vertical 

displacement of the rigid surface is negligible (Rajapakse, 1988). The radial traction is therefore 

neglected in the analysis of a vertically loaded surface. Equation 4.1 can be expressed in the 

following form for a rigid disc under a vertical load by using a set of M concentric annular disc 

elements:  
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( ) ( ) ( )
M

zz i 1k 2k z k z i
k 1

u r ,s ,s , t r , w r
=

ω ω =∑ ; i=1,M (4.2) 

The term uzz(ri,s1k,s2k,ω) of Eq. 4.2 is defined as follows: in the set of M annular surfaces, 

consider the one represented by the index k (k=1,M), the inner and outer radii of which are s1k 

and s2k (Fig. 4.3). This surface is subjected to a distributed unit vertical load. The displacement of 

a point of coordinates ri (s1i ≤ ri=(s1i+s2i)/2 ≤ s2i) is denominated uzz(ri,s1k,s2k,ω) in Eq. 4.2. This 

displacement is considered to represent the displacement of all the points of the annular surface i 

(i=1,M) in which ri is contained. 

 
Figure 4.3 Discretization of the region S, showing the annular disc elements i and k. 

 

The derivation of this displacement component uzz(ri,s1k,s2k,ω) was described in the 

previous chapter (Eqs. 2.63 and 2.67). 

The vertical load to which the element k is subjected is not necessarily unitary, as the term 

uzz(ri,s1k,s2k,ω) considers, but it has an unknown value denoted by tz(rk) in Eq. 4.2. To obtain the 

displacement wz(ri) that each annular surface i (i=1,M) actually experiences, the displacements of 

it due to loads in all other annular surfaces k must be taken into consideration, after being 

weighed by their respective unknown traction jumps tz(rk). 
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Equation 4.2 results in the actual displacement wz(ri) of an arbitrary annular disc element i 

and presents M unknown tractions tz(rk). Equation 4.2 can be repeated for all annular discs i=1,M 

resulting in the set of M linear equations shown in Eq. 4.3. From the hypothesis that the entire 

circular surface S behaves like a rigid disc, the vertical displacement of all annular disc elements 

is the same, e.g., wz(ri)=w0z=1 (i=1,M). 

( )

( )

( )

( )

( )

( )

1,1 1,2 1,M
zz zz zz z 1 z 1 0z
2,1 2,2 2,M

z 2 z 2 0zzz zz zz

M,2 M,2 M,M z M z M 0z
zz zz zz

u u u t r , w r , w 1

t r , w r , w 1u u u

t r , w r , w 1u u u

  ω ω = =   
     

ω ω = =     
=    

    
     ω ω = =    

⋮ ⋮⋱
 (4.3) 

in which 

( )i,k
zz zz i 1k 2ku u r ,s ,s ,= ω , i,k=1,M (4.4) 

Equation 4.3 is solved for the vertical traction jumps acting on each disc element. The total 

force acting on the circular surface S is given by  

( ) ( ) ( ) ( )
M M

2 2
z k z k 2k 1k z k

k 1 k 1

F A t r , s s t r ,
= =

ω = ω = π − ω∑ ∑  (4.5) 

In Eq. 4.5, Ak is the area of the annular disc element k. 

The dynamic vertical compliance of the system comprising the buried rigid surface and its 

surrounding medium, for each frequency, is defined by: 

( ) ( )ZZ 0z zC w aE / Fω = ω  (4.6) 

In Eq. 4.6, E is the Young’s modulus of one of the two materials of the interface (Fig. 4.1), 

and a is the outer radius of the rigid surface S. w0z is the displacement of each of its annular disc 

elements, which in this work is set to be unitary (Eq. 4.3). Fz(ω) is the total dynamic force (Eq. 

4.5) acting on the surface S, in the vertical direction, which causes the annular disc elements to be 

displaced by w0z. CZZ(ω) represents the non-dimensional dynamic vertical compliance 
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corresponding to the vertical displacement of the surface S, in response to axisymmetric vertical 

loads applied on the surface of S. 

4.4 Transverse and moment loading 

Consider the rigid circular surface S shown in Figs. 4.1b and 4.4a, within the interface of 

two transversely isotropic unbounded media. The surface is subjected to non-axisymmetric 

transverse loads or concentrated moment about the y-axis.  

 
Figure 4.4 (a) Undisturbed media and rigid surface S, (b) pure transverse displacement of the 

surface S, (c) pure rotation and (d) combined translation and rotation. 
 

If both media 1 and 2 have equal geometrical and material properties, then the transverse 

displacement of the surface S due to the transverse load is uncoupled from the rotation and vice-

versa (Selvadurai and Singh, 1984; Selvadurai; 1980). Transverse loads along the x-direction 

result in transverse displacements wx only (Fig. 4.4b), while moments about the y-axis result in 

rotations φy only (Fig. 4.4c).  For a more general case in which the two media have different 

material properties or geometrical configurations (such as the case of a plate resting on the 

surface of a half-space), the surface S undergoes coupled translation and rotation (Luco and 

Westman, 1971; Luco, 1974; Mesquita, 1989). Pure transverse loads along the x-direction will 

cause the surface S to be displaced horizontally (wx) and tilt about the y-axis (φy) (Fig. 4.4d). 

Pure moments about the y-axis will correspondingly produce an analogous coupled kinematic 

response. 
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In order to describe the horizontal displacement wx and the rotation φy of the rigid surface 

S, it is necessary to define a few terms. First, consider a discretization of the surface S into M 

concentric annular disc elements. In the set of M annular surfaces, consider the one represented 

by the index k (k=1,M), the inner and outer radii of which are s1k and s2k (Fig. 4.5). This surface 

is subjected to a uniformly distributed transverse load of unit intensity in the x direction. 

Consider another annular disc element i (i=1,M). The displacements of the central radius of i 

(ri=(s1i+s2i)/2) are taken to represent the whole element i. Due to this unit transverse load applied 

in the element k, the element i undergoes the combined effect of a transverse displacement 

denominated uxx(ri,s1k,s2k,ω) and a vertical displacement denominated uzx(ri,s1k,s2k,ω) (Fig. 4.5). 

 
Figure 4.5 Illustration of the terms of transverse and vertical displacement uxx and uzx due to 

a uniformly distributed transverse load of unit intensity. 
 

On the other hand, consider that the surface of the element k is subjected to a non-

axisymmetric vertical load, the intensity of which varies as illustrated in Fig. 2.8, while 

presenting unit intensity at the point of coordinates (x=s2k, y=0). Due to this antisymmetric 

vertical load applied in the element k, the element i undergoes the combined effect of a transverse 
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displacement denominated vxz(ri,s1k,s2k,ω) and a vertical displacement denominated 

vzz(ri,s1k,s2k,ω) (Fig. 4.6). 

 
Figure 4.6 Illustration of the terms of transverse and vertical displacement vxz and vzz due to a 

non-axisymmetric vertical load. 
 

In this work, the letter v is used instead of u in the notation vpz(ri,s1k,s2k,ω) (p=x,z) to 

emphasize that these displacements are due to a vertical load that is antisymmetric, as opposed to 

the displacements uzz(ri,s1k,s2k,ω) in Eq. 4.2, which are due to a vertical load that is axisymmetric. 

The derivation of all these displacement components is described in the previous chapter. 

The transverse displacements uxx(ri,s1k,s2k,ω) and vxz(ri,s1k,s2k,ω) for y=0 correspond to the radial 

displacements urz(ri,s1k,s2k,ω) and vrz(ri,s1k,s2k,ω) from Eqs. 2.63 and 2.65 for θ=0. 

The vertical and transverse loads to which the element k is subject in a given problem are 

not necessarily unitary, but they may have unknown values denoted by tx(rk) and tz(rk). In order to 

obtain the displacement and rotation wx(ri) and φy(ri) that each annular surface i actually 

experiences, the displacements and rotations upx and vpz (p=x,z) due to unit loads in all other 
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annular surfaces k (k=1,M) must be taken into consideration, after weighed by their respective 

unknown traction jumps tx(rk) and tz(rk). This is stated mathematically as: 

( ) ( ) ( ) ( )
M

x x
zx i 1k 2k x k z i y i i

k 1

u r ,s , s , t r , w r r r
=

ω ω = = φ ⋅∑  (4.7) 

( ) ( ) ( ) ( )
M

y y
zz i 1k 2k z k z i y i i

k 1

v r ,s ,s , t r , w r r r
=

ω ω = = φ ⋅∑  (4.8) 

( ) ( ) ( )
M

x
xx i 1k 2k x k x i

k 1

u r ,s ,s , t r , w r
=

ω ω =∑  (4.9) 

( ) ( ) ( )
M

y
xz i 1k 2k z k x i

k 1

v r ,s , s , t r , w r
=

ω ω =∑  (4.10) 

In Eqs. 4.7 to 4.10, it is assumed that the problem has symmetry about the x-z plane, which 

implies that the resulting moment acts about the y-axis. 

For small rotations of each annular disc element i, its vertical displacement wz(ri) can be 

written in terms of its rotation about the y-axis φy as shown in Eqs. 4.7 and 4.8. In Eqs. 4.7 and 

4.8, φ
x

y(ri) and φ
y

y(ri) denote the rotation of the annular disc i (i=1,M) due respectively to the 

horizontal traction field tx(rk) and antisymmetric vertical traction field tz(rk). The total rotation 

φy(ri) of the annular disc i is a combination of φx
y(ri) and φy

y(ri). In Eqs. 4.9 and 4.10, wx
x(ri) and 

wy
x(ri) denote the horizontal displacement of the annular disc i (i=1,M) due respectively to tx(rk) 

and tz(rk). The resulting horizontal displacement wx(ri) of the annular disc i is a combination of 

wx
x(ri) and wy

x(ri). 

Equations 4.7 to 4.10 result in the uncoupled displacements and rotations wx
x(ri) and wy

x(ri) 

and φx
y(ri) and φy

y(ri) of an arbitrary annular disc element i. They present M unknown tractions 

tx(rk) and tz(rk), which are the traction jumps in the transverse and vertical direction acting on all 

annular disc elements k (k=1,M). Equations 4.7 to 4.10 can be repeated for all annular discs 

i=1,M resulting in four sets of M linear equations shown in Eqs. 4.11 to 4.14. From the 

hypothesis that the entire circular surface S behaves like a rigid disc, the horizontal displacements 
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and the rotations of all annular disc elements are the same, e.g., wx
x(ri)=wx

0x=1 and φy
y(ri)=φ

y
0y=1  

(i=1,M). 

( )

( )

( )

( )

( )

( )

x x1,1 1,2 1,M y 1 1 0y 1 1zx zx zx x 1
x x2,1 2,2 2,M

x 2 y 2 2 0y 2 2zx zx zx

M,2 M,2 M,M x xx M
zx zx zx y M M 0y M M

r , r r ru u u t r ,

t r , r , r r ru u u

t r ,u u u r , r r r

 φ ω = φ ⋅ =  ω        ω  φ ω = φ ⋅ =   
=    

    
     ω  φ ω = φ ⋅ =    

⋮⋱ ⋮

 (4.11) 

( )

( )

( )

( )

( )

( )

yy
1,1 1,2 1,M y 1 1 1 10yzz zz zz z 1

yy2,1 2,2 2,M
z 2 y 2 2 2 20yzz zz zz

M,2 M,2 M,M yyz M
zz zz zz y M M M M0y

r , r r rv v v t r ,

t r , r , r r rv v v

t r ,v v v r , r r r

 φ ω = φ ⋅ =  ω        
ω  φ ω = φ ⋅ =   

=    
    
     ω  φ ω = φ ⋅ =    

⋮⋱ ⋮

 (4.12) 

( )

( )

( )

( )

( )

( )

x x1,1 1,2 1,M
x 1 0xxx xx xx x 1
x x2,1 2,2 2,M

x 2 x 2 0xxx xx xx

x xM,2 M,2 M,M x M
x M 0xxx xx xx

w r , w 1u u u t r ,

t r , w r , w 1u u u

t r , w r , w 1u u u

   ω = =ω 
    
 ω  ω = = 

=    
    
     ω  ω = =   

⋮ ⋮⋱
 (4.13) 

( )

( )

( )

( )

( )

( )

yy1,1 1,2 1,M
x 1xz xz xz 0xz 1

yy2,1 2,2 2,M
z 2 x 2xz xz xz 0x

yyM,2 M,2 M,M z M
x Mxz xz xz 0x

w r , w 1v v v t r ,

t r , w r , w 1v v v

t r , w r , w 1v v v

   ω = =ω        ω  ω = =   
=    

    
     ω  ω = =    

⋮ ⋮⋱
 (4.14) 

in which 

( )i,k
px px i 1k 2ku u r ,s ,s ,= ω , p=x,z; i,k=1,M (4.15) 

and 

( )i,k
pz pz i 1k 2kv v r ,s ,s ,= ω , p=x,z; i,k=1,M (4.16) 
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Equations 4.11 to 4.14 are solved for the horizontal and antisymmetric vertical traction 

jumps acting on each disc element. The total horizontal force acting on the circular surface S is 

given by: 

( ) ( ) ( ) ( )
M M

2 2
x k x k 2k 1k x k

k 1 k 1

F A t r , s s t r ,
= =

ω = ω = π − ω∑ ∑  (4.17) 

in which Ak is the area of the annular disc element k. 

As for the expression of the total moment acting on the circular surface S, recall that the 

intensity of the distributed antisymmetric vertical traction jump tz(r,θ) was assumed to vary 

linearly with the x-coordinate (Fig. 2.8d). Its intensity is tz0 in the outermost radius a of the disc, 

i.e., 

( ) ( )z z0 z0t r, t x / a t r cos / aθ = ⋅ = ⋅ θ  (4.18) 

 
Figure 4.7 Scheme of forces and moments resulting from the antisymmetric traction tz. 
 

The application of this traction on an infinitesimal annular area dA results in an 

infinitesimal force dFz, which in turn results in an infinitesimal moment dMy acting about the y-

axis (Fig. 4.7): 

( ) ( ) ( )y z z zdM dF x t r, dA x t r, dA r cos= ⋅ = θ ⋅ = θ ⋅ θ            (4.19) 
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Consider one annular disc element k (k=1,M) with inner and outer radii s1k and s2k. The 

intensity of tz(r,θ) is tz(rk,ω) and it comes from the solution of Eq. 4.12 in the case of unit rigid 

rotation or from Eq. 4.14 in the case of  unit horizontal displacement. Let the point of coordinate 

rk=(s1k+s2k)/2 be taken to represent this element k. Then, from Eq. 4.18, it comes 

( ) ( ) ( )1k 2k
z z k

s s
t r, t r , cos / a

2

+ 
θ = θ θ 

 
 (4.20) 

The total moment Myk acting on the element k about the y-axis is obtained upon integration 

of Eq. 4.19 over the area of the annular disc element: 

( ) ( ) ( )

( )
( ) ( ) ( )

k k

2 k

1k

1k 2k
yk yk z k kA A

2 sz k 2 2 21k 2k 1k 2k
2k 1k z k0 s

s s
M dM t r , cos / a r cos dA

2

t r , s s s s
r cos dr d s s t r ,

a 2 2a 2

π

 +  
= = ω θ θ     

  

ω + +π   
= θ θ = − ω   

   

∫ ∫

∫ ∫

 (4.21) 

The total moment acting on the entire circular surface S is obtained by considering the 

contribution of each annular disc element: 

( ) ( ) ( ) ( )
M

2 2
y 2k 1k 2k 1k z k

k 1

M s s s s t r ,
4a

=

π
ω = + − ω∑  (4.22) 

The transverse and rocking dynamic compliances of the system comprising the two media 

and the embedded rigid surface are defined for each frequency as: 

( ) ( )x
XX 0x xC w a / Fω = µ ω  (4.23) 

( ) ( )x 2
XM 0x yC w a / Mω = µ ω  (4.24) 

( ) ( )x 2
MX 0y xC a / Fω = φ µ ω  (4.25) 

( ) ( )y 3
MM y0yC a / Mω = φ µ ω  (4.26) 

 



70 
 

In Eqs. 4.23 and 4.24, CXX(ω) and CXM(ω) are compliances which correspond to the 

kinematic effect of rigid horizontal displacements due to horizontal loads and rocking moments, 

respectively. Conversely, in Eqs. 4.25 and 4.26, CMX(ω) and CMM(ω) are compliances which 

correspond to the kinematic effect of rigid rotations due to horizontal loads and rocking moments, 

respectively. φx
0y and φy

0y are the rotations of each of the annular disc elements, which is these 

particular kinematic problems are all set to be unitary (Eqs. 4.11 and 4.12). wx
0x and wy

0x are the 

displacement of each of the annular disc elements, which are all set to be unitary (Eqs. 4.13 and 

4.14). Fx(ω) is the total dynamic force (Eq. 4.17) acting on the surface S, in the horizontal 

direction, which causes the annular disc elements to be displaced by wx
0x=1 or rotate by  φx

0y=1. 

My(ω) is the total rocking moment (Eq. 4.22) acting on the surface S, about the y-axis, which 

causes the annular disc elements to be displaced by wy
0x=1 or rotate by  φ

y
0y=1. All four 

compliance terms in this work are defined in their normalized form. In Eqs. 4.23 to 4.26, µ is 

Lamé’s constant of one of the two materials of the interface (Fig. 4.1), and a is the outer radius of 

the rigid surface S. 

CXX(ω) and CMM(ω) are known as direct compliance terms, since they relate horizontal 

displacements to horizontal loads and rotations to rocking moments. On the other hand, CXM(ω) 

and CXM(ω) are known as cross compliance terms, because they relate horizontal displacements 

with rocking moments and vice-versa. It has been observed that cross compliances are symmetric 

quantities, i.e., CXM(ω)=CMX(ω) (Mesquita, 1989; Barros, 2006). In a problem in which both 

media 1 and 2 (Fig. 4.1) have the same geometry and material properties, the traction fields on 

the top and bottom faces of the surface S are balanced. In that case, the only nonzero compliance 

terms are the direct ones, CXX(ω) and CMM(ω). In any case, the resulting displacement wx(ω) and 

rotation φy(ω) of the surface under horizontal forces Fx(ω) and rocking moments My(ω) are: 

( ) ( )

( ) ( )

( )

( )

( )

( )
x xXX XM

y yMX MM

F wC C

MC C

ω ω   ω ω     
=    

ω φ ωω ω         
 (4.27) 

The vibratory response of embedded plates is sometimes presented in terms of the stiffness 

of the problem, such as shown in Eqs. 4.28. The cross stiffness terms KXM(ω) and KMX(ω) are 

symmetric as well. 
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( )

( )
( ) ( )

( ) ( )

( )

( )
( ) ( )

( ) ( )

( )

( )

1
x x xXX XM XX XM

y y yMX MM MX MM

F w wK K C C

M K K C C

−
ω ω ω     ω ω ω ω        

= =        
ω φ ω φ ωω ω ω ω             

 (4.28) 

Table 4.1 summarizes the compliance terms presented in sections 4.3 and 4.4. A brief 

summary of the compliance terms defined in these sections, as well as of the assumed physical 

hypotheses is: 

a) CZZ(ω) is the vertical dynamic compliance, corresponding to axisymmetric vertical 

displacements in response to axisymmetric vertical loads; 

b) CXX(ω) is the direct transverse dynamic compliance, corresponding to horizontal 

displacements in response to horizontal loads; 

c) CMM(ω) is the direct rocking compliance, corresponding to rotations in response to 

concentrated moments; 

d) The cross compliance terms CXM(ω) and CMX(ω) correspond respectively to 

horizontal displacements due to concentrated moments, and rotation due to horizontal 

loads; 

e) In this work, it is assumed that the axisymmetric vertical displacement due to 

horizontal and antisymmetric vertical loads (concentrated moment) is negligible, hence the 

cross compliance terms CZX(ω) and CZM(ω) are zero; 

f) Correspondingly, because of the symmetry that is observed in cross compliance 

terms, the cross compliances CXZ(ω) and CMZ(ω) are also zero; 

g) In the particular case in which the media on top and bottom faces of the rigid 

surface S have equal geometrical and material properties, all cross compliance terms are 

zero, including CMX(ω) and CXM(ω). 
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Table 4.1 Summary of the terms of direct and cross compliance presented in this chapter. 

Kinematic 

response 

Axisymmetric vertical 

loads Transverse loads Concentrated moments 

wz ( )
( )

0z
ZZ

z

w aE
C

F
ω =

ω
 CZX(ω)=0 CZM(ω)=0 

wx CXZ(ω)=0 ( )
( )

x
0x

XX
x

w a
C

F

µ
ω =

ω
 ( )

( )

x 2
0x

XM
y

w a
C

M

µ
ω =

ω
 

φφφφy CMZ(ω)=0 ( )
( )

x 2
0y

MX
x

a
C

F

φ µ
ω =

ω
 ( )

( )

y 3
0y

MM
y

a
C

M

φ µ
ω =

ω
 

 

4.5 Validation 

In the present chapter, the behavior of rigid circular plates under time-harmonic excitations 

is studied. Excitations in the vertical and transverse directions are considered, as well as rocking 

moments about the y-axis. Deep embedment of the rigid plate can be modeled by considering that 

the plate is placed within two unbounded transversely isotropic half-spaces. The model of such 

bi-material interfaces has been derived in Chapter 2. Shallow embedments of the plate can be 

represented by considering that the plate is placed within a layered transversely isotropic half-

space. The model of layered media has been presented in Chapter 3. 

In this section, the model of embedded rigid plates presented in this chapter is compared 

with existing solutions available in the literature. Pak and Gobert (1992) presented results 

comprising the vertical vibration of rigid plates at different embedments on isotropic half-spaces. 

Luco and Westmann (1971) presented solutions for the transverse and rocking vibrations of rigid 

plates resting on the surface of an isotropic half-space. There are presently no solutions available 

regarding transverse and rocking vibrations of rigid plates on full-spaces, which is why the 

present solutions can be compared only qualitatively with those of Luco and Westmann (1971). 

Besides these sources, the static solutions provided by Selvadurai and Singh (1984) and 

Selvadurai (1980) are used to study the convergence of the present solutions with increasing 

discretization. 
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4.5.1 Numerical implementation and convergence 

The hardest computational task which arises in the solution of the embedded plate comes 

from the numerical integration of uij (i,j=r,θ,z) from Eq. 2.63. The same holds for the model of 

flexible plate formulated in the next chapter. Synge (1957) studied the propagation of Rayleigh 

waves in transversely isotropic media and proved that Rayleigh waves exist only if the free 

surface of the material is parallel or perpendicular to the material plane of isotropy. Since this is 

the case in the present construction of bi-material interface (Fig. 2.2), in which the two 

unbounded half-spaces are bonded through their plane of isotropy, the configurations of 

interfacing unbounded half-spaces in this work are characterized by the existence of Rayleigh 

waves, which possess a finite number of singularities to be integrated (Graff, 1974). Moreover, 

according to Stoneley (1924), the configuration of two interfacing layers of finite thickness (Fig. 

3.1) is characterized by the existence of interface waves, which possess an infinite number of 

singularities to be integrated (Graff, 1974). In the present implementation, however, no special 

attention is given to the implementation of integration methods or to the behavior of the 

integrand. A numerical solver of improper integrals, based on globally adaptive quadratures, 

which is freely available in numerical packages of the Fortran programming language, is used for 

this purpose (Piessens, Doncker-Kapenga and Überhuber, 1983). The issue of the singularities is 

avoided by the inclusion of a small damping in all the material constants according to 

Christensen’s elastic-viscoelastic principle (Christensen, 2010). Equation 4.29 shows an example 

of the inclusion of the damping factor η in the material parameter c11 of a given medium. All 

other material parameters are defined in an analogous way. The same damping factor η is used in 

all material parameters. 

( )*
11 11c c 1 i= + ⋅η  (4.29) 

In this work, a hysteretic damping model is implemented, in which the damping factor η is 

not frequency-dependent (Gaul, 1999). 

Pak and Gobert (1992) presented an analytical solution for the static vertical compliance 

C’ZZ of a rigid circular plate buried in an isotropic full-space (Fig 4.8). The corresponding 
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solutions for the transverse and rocking case, C’XX and C’MM, were presented by Selvadurai 

(1980) and Selvadurai and Singh (1984). Their solutions are given by: 

( )
'
ZZ

0z

3 4
C

64 1 w a

− ν
=

− ν µ⋅
 (4.30) 

( )
'
XX

0x

7 8
C

64 1 w a

− ν
=

− ν µ⋅
 (4.31) 

( )

( )
'
MM 3

0y

3 3 4
C

64 1 a

− ν
=

− ν µ⋅φ
 (4.32) 

In Eqs. 4.30 to 4.32, ν and µ are respectively the Poisson’s ratio and Lamé’s constant of the 

isotropic medium, w0z and w0x are longitudinal displacements of the rigid plate in the z- and x-

direction, respectively, while φ0y is its rotation about the y-axis, and a is the outer radius of the 

plate. 

 
(a) 

 
(b) 

 
(c) 

Figure 4.8 Illustrations of a rigid plate inside an isotropic full-space under (a) vertical, (b) 
transverse and (c) moment static loads. 

 

Table 4.2 shows the error between these analytical solutions and the ones obtained by the 

present program, as well as the convergence of the present solution with increasing discretization 

M. In these results, the analytical solutions expressed by C’ZZ, C’XX and C’MM were calculated 

from Eqs. 4.30 to 4.32 based on a homogeneous isotropic full-space with µ=1 and ν=0.25 

containing a model of disc with a=1 and w0z=w0x=φ0y=1. The corresponding numerical solutions 

expressed by CZZ(ω=0), CXX(ω=0) and CMM(ω=0) were calculated according to Eqs. 4.6, 4.23 

and 4.26 for the static case (ω=0). 
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Table 4.2 Comparison of results with analytical solutions for the static problem. 

M CZZ(ωωωω=0)/C’ZZ CXX(ωωωω=0)/C’XX CMM(ωωωω=0)/C’MM 

5 1.03493353664750 1.034255919578913 0.99506657933933 
10 1.01678531868697 1.015344450609305 1.00408812350261 
20 1.00834989295149 1.006348607114810 1.00221378107221 
35 1.00404587193815 1.001912669708005 1.00220942181645 
50 1.00227108618090 1.000454275559764 1.00159966342978 

 

The discretization of M=20 disc is chosen throughout this thesis, because it is enough to 

allow an error of less than 1% in comparison with the analytical solution.  

4.5.2 Bi-material interface 

4.5.2.1 Vertical vibrations 

Figure 4.9 shows the solution of the normalized vertical compliance CZZ(ω)/CZZ(0) of a 

rigid plate obtained with the present implementation. The plate is placed at the interface of two 

isotropic half-spaces with Young’s modulus E=2.5 and Poisson’s ratio ν (Fig. 4.8a). These 

solutions are in agreement with the ones presented by Pak and Gobert (1992) for the embedment 

of a rigid plate at an infinite depth in an isotropic full-space. 
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(b) 

Figure 4.9 Normalized vertical compliance of a rigid plate on an isotropic full-space. 
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4.5.2.2 Transverse and rocking vibrations 

The accuracy of the present implementation on the solution of the transverse and rocking 

vibration of the plate can be observed in Table 4.2 for the static case.  

Figures 4.11 and 4.12 show the direct dynamic transverse and rocking compliance of a rigid 

plate the interface of two infinite isotropic half-spaces (Figs. 4.8b and 4.8c). The plate is 

discretized by M=20 annular disc elements and its outer radius is a=1. Its surrounding medium 

has material properties E=2.5 and ν=0.25. The direct compliances CXX and CMM 4.11 and 4.12 

are shown in terms of the normalized frequency a0=a⋅ω(ρ/c44)
½.  

 

 

 
(a) 

 
(b) 

 

Figure 4.10 Configuration investigated by Luco and Westmann (1971) – rigid plate resting on 
the surface of an isotropic half-space under (a) transverse load and (b) rocking moment. 
 

These results can be compared only qualitatively with those of a plate resting on the surface 

of an isotropic half-space provided by Luco and Westmann (1971) (Fig. 4.10). 
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Figure 4.11 Normalized transverse compliance of a rigid plate on an isotropic full-space. 
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Figure 4.12 Normalized rocking compliance of a rigid plate on an isotropic full-space. 
 

Eskandari-Ghadi, Mirzapour and Ardeshir-Behrestaghi (2011), in their study of the 

problem of rocking vibration of a rigid plate within bi-material interfaces, disregarded the fact 

that the transverse and rocking response of such plate is a coupled problem. Since this is a 

different hypothesis than the one used in this work (see Section 4.4), their results cannot be used 

as validation source of the cross compliance terms CXM(ω) and CMX(ω) formulated in the present 

work. 

4.5.3 Multilayered medium 

The present solution of rigid plates embedded in multilayered media can also make use of 

the work of Pak and Gobert (1992) as validation source. 

Figure 4.13a illustrates the case of a rigid plate resting on the surface of an isotropic half-

space, on top of which two layers of unit thickness h1=h2=1 are placed. The two layers and the 

underlying half-space have material properties E=2.5 and ν=0.25. The plate is rigid and has unit 

outer radius (a=1). The normalized vertical dynamic compliance of this system is shown in Fig. 

4.14. A discretization of M=20 annular disc elements was adopted in these results. 

These results agree with the ones presented by Pak and Gobert (1992) regarding the vertical 

vibration of a rigid circular plate embedded at a depth H/a=2 inside an isotropic half-space (Fig. 

4.13b). 

 



78 
 

 

 
(a) 

 
(b) 

 

Figure 4.13 Configurations of a rigid plate subjected to vertical loads (a) between a half-space 
and two layers of the same material and (b) at an arbitrary embedment H inside a half-space. 

 

The compliance shown in Fig. 4.14 is normalized by the vertical static compliance of a 

plate resting on the surface of the half-space, C0
Z(ω=0), whose closed-form solution was derived 

by Pak and Gobert (1992). 
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Figure 4.14 Normalized vertical dynamic compliance of a rigid plate between two isotropic 

layers of unit thickness and an isotropic half-space. 
 

4.6 Numerical results 

This section presents original results on the behavior of circular rigid plates obtained in this 

work. The influence of the inner radius in the vertical, transverse and rocking dynamic 

compliance of a rigid plate is presented. To isolate the effect of the inner radius, the plate is 

considered to be buried inside an isotropic full-space. The influence of the composition of bi-

material interfaces on the behavior of the plate is also considered. The vertical, transverse and 

rocking compliances of a rigid plate are presented. Using the formulation of layered media 

presented in Chapter 3, the problem of a rigid plate at arbitrary embedments inside transversely 
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isotropic layered half-spaces is also studied. The last part of the section presents a study on the 

influence of the damping of the surrounding medium. 

4.6.1 Influence of the inner radius 

Consider the rigid annular plate depicted in Fig. 4.15, embedded at the interface of two 

infinite isotropic half-spaces. Both media 1 and 2 have Young’s modulus E=2.5 and Poisson’s 

ratio ν=0.25. The inner and outer radii of the plate are b and a, respectively. Figures 4.16, 4.17 

and 4.18 show respectively the vertical, transverse and rocking dynamic compliances of this plate 

for different ratios b/a. The compliances in these figures are calculated according to Eqs. 4.6, 

4.23 and 4.26, and are normalized by the static compliances of each case (Cii(ω=0); i=Z,X,M). In 

all cases, the plate has been discretized by M=20 concentric annular disc elements. 

 
Figure 4.15 Annular plate embedded at the interface of two infinite half-spaces. 
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Figure 4.16 Influence of the inner radius b in the normalized compliance of the disc for the 

case of vertical load. 
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The case of solid disc (b=0) presented in Fig. 4.16 is the same as the one presented in Fig. 

4.9, corresponding to the case of a solid disc buried in an unbounded isotropic medium with 

material properties E=2.5 and ν=0.25. It can be seen from Fig. 4.16 that as the surface of the 

annular plate gets thinner (as b increases), the shape of the curve of normalized compliance 

differs significantly from that of the solid disc.  
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Figure 4.17 Influence of the inner radius b in the normalized compliance of the disc for the 

case of transverse load. 
 

Both real and imaginary parts of the normalized transverse compliance CXX(ω), however, 

suffer a visibly smaller influence of the inner radius than the vertical compliance CZZ(ω). This is 

observed comparing Figs. 4.16 and 4.17. Finally, it can be seen from Fig. 4.18 that the rocking 

compliance CMM(ω) is the one that suffers the most the influence of the inner radius b. 
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Figure 4.18 Influence of the inner radius b in the normalized compliance of the disc for the 

case of rocking moment. 
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4.6.2 Bi-material interface  

This section investigates the effect of different bi-material configurations on the vibratory 

behavior of the rigid plate. Figure 4.19 illustrates the problems. The transversely isotropic 

materials used in these simulations are taken from Table 2.1, unless stated otherwise. The 

transverse isotropy of the materials are obtained by varying the anisotropy index n1 while keeping 

n2=n3=1, c44=1 and ν=0.25 (Table 2.1). In all cases, the material of medium 2 has n1=n2=n3=1, 

c44=1 and ν=0.25, which corresponds to an isotropic material (Table 2.1). All materials for 

medium 1 are picked from Table 2.1. The mass density of all materials is ρ=1 in all cases. 

 
(a) 

 
(b) 

 
(c) 

Figure 4.19 Illustration of different bi-material configurations with an embedded rigid plate 
subjected to (a) vertical and (b) transverse loads and (c) rocking moments. 

 

Figures 4.20, 4.21 and 4.22 show respectively the direct vertical compliance CZZ(ω), the 

direct transverse compliance CXX(ω) and the direct rocking compliance CMM(ω). These 

compliances are determined according to Eqs. 4.6, 4.23 and 4.26, respectively. In all cases, a 

discretization of M=20 concentric annular disc elements was used. 
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Figure 4.20 Vertical dynamic compliance of the rigid plate for different bi-material 

constructions. Medium 1 has anisotropy indices n2=n3=1. 
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It can be observed from Figs. 4.20 and 4.22 that increasing the anisotropy index n1 of one 

of the materials of the bi-material interface has a very significant influence on the vertical and 

rocking compliances of the system. 

It can be seen from Table 2.1 that if only the anisotropy index n1 is changed, only the 

Young’s modulus normal to the plane of isotropy, EZ, and the Poisson’s ratio νZX are influenced. 

These are material properties related to the direction normal do the plane of isotropy of the 

transversely isotropic media. In the present problems, this direction corresponds to the vertical 

direction, since media 1 and 2 interface through their plane of isotropy (Figs. 4.15 and 4.19). The 

vertical and rocking compliances are intrinsically related to these material properties, because 

they involve respectively axisymmetric and antisymmetric displacements and loads in the vertical 

direction (Eqs. 4.6 and 4.26), which is the direction in which the material properties EZ and νZX 

change. Hence, these compliances are significantly influenced by changes in the index n1, even 

though n2=n3=1. Moreover, it can be observed that, as the increase of n1 corresponds to a 

stiffening of medium 1 vertically by increasing EZ, larger values of n1 correspond to smaller 

amplitudes of these compliance terms (Figs. 4.20 and 4.22). This behavior is physically 

consistent. 
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Figure 4.21 Transverse dynamic compliance of the rigid plate for different bi-material 

constructions. Medium 1 has anisotropy indices n2=n3=1. 
 

Conversely, the direct transverse compliance CXX(ω), shown in Fig. 4.21, presents 

negligible influence from the anisotropy index n1, for the case in which n2=n3=1. This happens 

because this compliance term relates pure transverse displacements on the plane of isotropy of 
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the transversely isotropic materials, with transverse loads applied on the same plane (Eq. 4.23). 

Since the material properties of that plane (E and ν) do not change with n1 (Table 2.1), it is 

natural that the compliance CXX(ω) is not influenced by changes solely in n1. 
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Figure 4.22 Rocking dynamic compliance of the rigid plate for different bi-material 
constructions. Medium 1 has anisotropy indices n2=n3=1. 

 

In order to show this more clearly, consider a different bi-material configuration, in which 

not only n1, but all the anisotropy indices of medium 1 vary according to n1=n2=n3, while c44=1 

and ν=0.25 (Table 4.3). The material properties of medium 2 are n1=n2=n3=1, c44=1 and ν=0.25 

(isotropic material). All materials from Table 4.3 satisfy the constraints of Eq. 2.14. 

Table 4.3 Transversely isotropic materials used in the results of Figs. 4.23 to 4.25. 

n1 n2 n3 c11 c12 c13 c33 E Ez νννν ννννzx 

1 1 1 3.0000 1.0000 1.0000 3.0000 2.5 2.5000 0.25 0.2500 
2 2 2 5.6254 1.6254 1.8127 11.2508 5.0 10.3444 0.25 0.2500 
3 3 3 8.1727 2.1727 2.0576 24.5180 7.5 23.6996 0.25 0.1989 
4 4 4 10.7784 2.7784 2.1946   43.1135  10.0 42.4030  0.25 0.1619 
 

Figures 4.23 to 4.25 show the corresponding direct compliance terms. Notice that now, in 

these cases in which the material properties on the plane of isotropy (E and ν) also vary, there is a 

significant influence on the direct transverse compliance CXX(ω) (Fig. 4.24). The curve in Fig. 

4.24 corresponding to the isotropic material (n1=1) evidently matches that from Fig. 4.21, and can 

be used as a reference. The direct vertical and rocking compliances CZZ(ω) and CMM(ω) (Figs. 
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4.23 and 4.25) also present different results than those that were observed in Figs. 4.20 and 4.22. 

However, it is not easy to make a general remark regarding the specific influence of each of these 

anisotropy indices on the compliance terms, since their influence on the material properties of the 

medium vary so much. It is straightforward to see that an increase in the anisotropy index n1 

physically means that the material gets stiffer vertically than it is horizontally. This physical 

interpretation is lost when changes in the other anisotropy indices are made simultaneously. 
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Figure 4.23 Vertical dynamic compliance of the rigid plate for different bi-material 

constructions. Medium 1 has anisotropy indices n1=n2=n3. 
 

0 1 2 3 4
-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

Frequency ωωωω

R
e

[C
X

X
]

 

 

n
1
=1

n
1
=2

n
1
=3

 
0 1 2 3 4

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

Frequency ωωωω

-I
m

[C
X

X
]

 

 

n
1
=1

n
1
=2

n
1
=3

 
Figure 4.24 Transverse dynamic compliance of the rigid plate for different bi-material 

constructions. Medium 1 has anisotropy indices n1=n2=n3. 
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Figure 4.25 Rocking dynamic compliance of the rigid plate for different bi-material 

constructions. Medium 1 has anisotropy indices n1=n2=n3. 
 

Consider again the bi-material configurations described earlier, in which medium 1 has 

material properties c44=1 and ν=0.25, while its anisotropy indices are n2=n3=1 (Table 2.1). 

Medium 2 has material properties c44=1 and ν=0.25, while n1=n2=n3=1 (isotropic material). These 

material properties are the same ones used in Figs. 4.20 to 4.22, and it was observed that the 

anisotropy index n1 has negligible influence on the direct transverse compliance CXX(ω) of the 

system rigid plate – surrounding medium. Observe, however, the influence of this anisotropy 

index on the cross compliance terms CMX(ω) and CXM(ω), which are shown in Figs. 4.26 and 

4.27. 
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Figure 4.26 Cross compliance CMX(ω) of the rigid plate for different bi-material 

constructions. Medium 1 has anisotropy indices n2=n3=1. 
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Figure 4.27 Cross compliance CXM(ω) of the rigid plate for different bi-material 

constructions. Medium 1 has anisotropy indices n2=n3=1. 
 

Consider the case of the cross compliance term CMX(ω) (Fig. 4.26). It comprises the 

influence of transverse loads to rigid rotations (Eq. 4.25). Such transverse loads are applied on 

the plane of isotropy. The material properties on the plane of isotropy are E and ν, which do not 

vary in the two cases shown in Fig. 4.26. Nevertheless, there is a significant difference in the two 

curves of CMX(ω). This difference comes from the fact that the transverse and rocking behaviors 

of the embedded plate, in this bi-material case, are coupled, and it is a reasonable justification of 

why the cross compliance terms must also be taken into consideration in the cases of bi-material 

interfaces. An analogous but somewhat more complicated interpretation holds for the cross 

compliance term CXM(ω) (Fig. 4.27). 

Notice that the amplitudes of the cross compliance terms CMX(ω) and CXM(ω) are much 

smaller than their direct compliance counterparts CXX(ω) and CMM(ω). This happens simply 

because the horizontal displacement of the plate due to a unit horizontal load (CXX) is much 

larger than its rotation due to a unit horizontal load (CMX). Analogously, the rotation of the plate 

due to a unit concentrated moment (CMM) is much larger than its horizontal displacement due to a 

unit concentrated moment (CXM). 

4.6.3 Multilayered system 

In this section, the problem of vertical vibrations of a rigid plate embedded in layered 

media is studied. Three different layered systems are considered (Fig. 4.28 and Tables 4.4 and 
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4.5). In all cases, the plate is embedded between two layers of thickness hi (i=1,2) and a half-

space. In all cases, the layers and the half-space have c44=1 and ν=0.25, while their other 

properties are obtained by varying the anisotropy index n1. The other anisotropy indices are 

n2=n3=1. The material of the layers and their thicknesses in each case are shown in Table 4.4. The 

material properties of materials m1, m2 and m3 are shown in Table 4.5. The mass density of all 

materials is ρ=1 in all cases. 

Table 4.4 Multilayered media configurations used in this section. 

Layer Case A Case B Case C 

1 Material m1; h1=0.5 Material m3; h1=0.5 Material m3; h1=0.3 
2 Material m1; h2=0.5 Material m2; h2=0.5 Material m2; h2=0.7 

half-space Material m1; h3=∞ Material m1; h3=∞ Material m1; h3=∞ 
 

Table 4.5 Material properties used in this section. 

Material n1 n2 n3 c11 c12 c13 c33 E EZ ννννZ 

m1 1.0 1.0 1.0 3.0000 1.0000 1.0000 3.0000 2.5 2.5000 0.2500 
m2 1.5 1.0 1.0 2.8284 0.8284 0.8284 4.2426 2.5 3.8673  0.2265 
m3 2.0 1.0 1.0 2.7749 0.7749 0.7749 5.5497 2.5 5.2114  0.2183 
(*) for all materials, c44=1.0, ν=0.25 and ρ=1. 

 

 
(Case A) 

 
(Case B) 

 
(Case C) 

Figure 4.28 Illustration of different layered system configurations with an embedded plate 
subjected to vertical loads. 

 

It can be observed from Fig. 4.29 that, for the material configurations chosen, there is a 

significant change in the vertical compliance of the system when the materials of the layers are 
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changed altogether (Case A versus Cases B and C). The difference is less noticeable when the 

relative thickness of the layers changes, but the material composition of the layers is the same 

(Case B versus Case C). 
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Figure 4.29 Vertical dynamic compliance of the rigid plate for three layered systems. 
 

4.6.4 Influence of the damping 

In this section the influence of the damping coefficient of the surrounding medium on the 

dynamic transverse and rocking compliance of the embedded plates is presented. In this work, a 

model of hysteretic damping is introduced in the formulation according to the elastic-viscoelastic 

correspondence principle (Christensen, 2010) (Section 4.5.1).  
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Figure 4.30 Influence of the damping coefficient on the frequency behavior of the rigid plate. 
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Bi-material constructions shown in Figs. 4.19b and 4.19c are considered. In all cases, both 

media have c44=1 and ν=0.25, and for medium 1, n1=n2=n3=4, while n1=n2=n3=2 for medium 2 

(Table 4.3). The damping coefficient of both media is varied between η=0.01 and η=0.2, which 

are introduced in the material properties of the media according to Eq. 4.29. 

Figure 4.30 shows the direct transverse and rocking compliances of the system rigid plate – 

bi-material interface. 

Higher damping coefficients stiffen the surrounding domain and cause an overall decrease 

in the displacement amplitude compared to the ones with smaller damping coefficients. This 

amplitude decay is supported by Gaul (1999). These results indicate that the strategy adopted in 

this work to represent the material attenuation in the transversely isotropic materials produces 

physically consistent results. 

 

In this chapter, a model of rigid circular plates was presented. A discretized relation of 

traction and displacements was used to represent the rigid plate. The present implementation 

shows convergence with increasing discretization, as well as good agreement with previous 

results for both static and dynamic problems in different loading configurations. The influence of 

the inner radius in the vertical, transverse and rocking compliance of a rigid plate was studied. 

The vertical, transverse and rocking vibration of rigid plates in different transversely isotropic bi-

material interfaces was presented. It was shown that the cross compliance terms cannot be 

disregarded in the cases of bi-material interfaces, because of the fact that the transverse and 

rocking behavior of such media is coupled. The corresponding case of a rigid plate embedded in a 

multilayered medium was presented in terms of the vertical compliance of the system plate – 

surrounding medium. Finally, a study was presented on the influence of the damping factor 

introduced to the media. The results indicate that the methodology of inclusion of the damping 

factor in the material constants produces physically consistent results. In the next chapter, a 

variational formulation is used to model the flexure of an elastic plate.  
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5 MODEL OF AN EMBEDDED ELASTIC CIRCULAR PLATE 

 

This chapter presents the formulation of a model of flexible circular plates. Kirchhoff 

theory of thin plates under small deflections is adopted. A trial function for the deflection profile 

of the plate is described by power series, each term of which is multiplied by an in principle 

unknown generalized coordinate. An extra term is included in the deflection profile to comply 

with the effect of a concentrated load. An energy functional is established. This energy functional 

includes the strain energy of the flexible plate, which is obtained by considering the deflection 

profile defined previously. It also includes the strain energy of the medium in which the plate is 

embedded, which is obtained by considering the traction field that arises from the deflection of 

the plate. The energy functional finally includes the potential energy of the concentrated and 

distributed loads that are applied on the plate. The minimization of this energy functional 

according to the principle of minimum potential energy, under the constraint that it must satisfy 

the boundary conditions at the plate edge, results in the generalized coordinates which correspond 

to the deflection profile of the plate. The results of static flexure and vertical vibrations of the 

embedded flexible plate are compared with results from the literature. Original research results of 

the problem are presented. 

5.1 Problem statement 

 
Figure 5.1 Elastic solid circular plate of radius a and thickness h buried in the interface of 

two transversely isotropic media. 
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Consider an elastic, solid circular plate, with outer radius a, thickness h, Young’s modulus 

Ep, Poisson ratio νp, embedded at the interface of two transversely isotropic media, such as 

depicted in Fig. 5.1. 

Figure 5.2 Elastic solid circular plate under the effect of distributed and/or concentrated 

vertical loads. 

 

The plate is under the effect of time-harmonic axisymmetric concentrated and/or distributed 

vertical loads, such as depicted in Fig. 5.2. 

The objective of this chapter is to provide a mathematical description of the problem of 

elastic plate, which can be used together with the models of transversely isotropic media 

presented in chapters 2 and 3 to model the problem of the plate embedded in those media.  

5.2 Governing equations and boundary conditions 

The model of elastic plate adopted in this work comes from the classical plate theory, or 

Kirchhoff theory. This model is based on hypotheses similar to those used in the thin beam theory 

– or Euler-Bernoulli beam theory. It considers that the thickness h of the plate is small, compared 

with its radius a, and that the plate undergoes small deflections (Timoshenko and Woinowsky-

Krieger, 1964). In the Kirchhoff theory, it is assumed that: 

a) the middle surface remains undeformed during bending (Fig 5.3); 

b) points lying initially on a normal to the middle flat surface of the plate remain 

normal to the middle bent surface of the plate after bending (Fig. 5.3) and 

c) the state of normal stresses on the middle surface can be disregarded. 
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Figure 5.3 Deflection pattern assumed by the Kirchhoff theory: (a) undeformed plate and (b) 

deformed plate, showing the undeformed middle surface and that normals to it remain 

normals after deflection. 

 

Under these assumptions, all stress components can be expressed by the deflection w(r) of 

the plate (0≤r≤a). The deflection must satisfy the linear partial differential equation presented in 

Eq. 5.1, together with the boundary conditions of the problem. If there are forces acting on the 

middle plane of the plate, the first hypothesis does not hold anymore, and additional terms must 

be included in Eq. 5.1 to take into account the effect of these forces. The consequence is that this 

theory of plates works only for loads applied perpendicularly to the surface of the plate. Notice 

that the mass of the plate is not taken into account. 

The linear partial differential equation that relates the deflection w(r) of the plate and the 

loading q(r) applied on it is (Timoshenko and Woinowsky-Krieger, 1964): 

( ) ( )4
D w r q r∇ = ; 0≤r≤1 (5.1) 

in which 

( )3 2
p pD E h 12 1 = − ν  

 (5.2) 

and 

4 3 2
4

4 3 2 2 3

2 1 1

r rr r r r r

∂ ∂ ∂ ∂
∇ = + − +

∂∂ ∂ ∂
 (5.3) 
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In Eq. 5.1, q(r) in an arbitrary axisymmetric load applied perpendicularly to the surface of 

the plate. The term D in Eq. 5.2 is known as the bending (or flexural) rigidity of the plate. The 

term ∇4
 is known as biharmonic operator. In the present case of axisymmetric bending, it 

involves only derivatives with respect to the variable r. In a more general case of bending, it 

would also involve derivatives with respect to θ. 

From the classical plate theory, Mr(r), which is the bending moment that acts along the 

circumferential section of the plate, and Q(r), which is the shear force acting on the cylindrical 

section of radius r, for an arbitrary deflection profile w(r), are given by Eqs. 5.4 and 5.5 

(Timoshenko and Woinowsky-Krieger, 1964). 

 

  

(a) (b) 

 
(c) 

Figure 5.4 Illustration of the moment Mr(r) and the shear force Q(r) acting on an arbitrary 

section of the elastic plate. Part (a) shows the surface of the whole plate, part (b) shows an 

arbitrary cross-section which passes through the center of the plate and part (c) shows an 

element of the body of the plate. 



94 
 

( ) ( ) ( )
2

p
r 2

d d
M r D w r w r

r drdr

 ν
= − + 

  
 (5.4) 

( ) ( ) ( ) ( )
3 2

3 2 2

d 1 d 1 d
Q r D w r w r w r

r drdr dr r

 
= + − 

  
 (5.5) 

Figure 5.4 gives a physical interpretation of these quantities and the sign convention 

adopted in the present work. The sign convention established in Fig. 5.4 implies that positive 

moments Mr(r) and positive shear forces Q(r) result in positive deflections w(r) (Eq. 5.1). Positive 

deflections correspond to bending the plate towards positive values of the z-coordinate 

(downward in Fig. 5.4b). 

 
Figure 5.5 Different boundary conditions at the plate edge, showing (a) clamped edge, (b) 

simply supported edge and (c) free edge. 

 

Figure 5.5 shows some of the possible configurations (boundary conditions) that a circular 

plate can present. Figure 5.5a corresponds to the case of the plate clamped all around. This 

configuration is mathematically described by: 
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( )w r 1 0= =  (5.6) 

( )
r 1

d
w r 0

dr =

=  (5.7) 

Figure 5.5b corresponds to the case of a simply supported edge, the mathematical 

description of which is: 

( )w r 1 0= =  (5.8) 

( )rM r 1 0= =  (5.9) 

Finally, Fig. 5.5c represents the configuration of a plate with free edge, whose 

corresponding boundary conditions are: 

( )rM r 1 0= =  (5.10) 

( )Q r 1 0= =  (5.11) 

Rajapakse (1988), Wan (2003), Selvadurai (1979c) and others investigated extensively the 

representation of an embedded plate with different sets of boundary conditions. The configuration 

of free edge is capable of representing accurately the case of an elastic plate resting on the surface 

of a half-space (Rajapakse, 1988). On the other hand, it is difficult to specify the exact boundary 

conditions that correspond to the case of a plate buried in an elastic medium, such as the case 

shown in Fig. 5.1. The precise condition depends on the way in which the plate edge is bonded to 

the surrounding medium (Rajapakse, 1988). The boundary conditions expressed in Eqs. 5.10 and 

5.11 (Fig. 5.5c) correspond to the most relaxed case. The most extreme case corresponds to the 

configuration of the plate clamped all around (Eqs. 5.6 and 5.7 and Fig. 5.4a). According to 

Rajapakse (1988), the boundary conditions corresponding to the case of clamped plate are 

inappropriate to represent the buried plate. While Selvadurai (1979) described the buried plate 

without imposing boundary conditions on the plate edge, Rajapakse (1988)] concluded that there 

is negligible difference in the representation of this problem if Kirchhoff boundary conditions are 
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imposed. Kirchhoff boundary conditions correspond to a free edge of the plate (Fig. 5.4c and Eqs. 

5.10 and 5.11) (Timoshenko and Woinowsky-Krieger, 1964; Kirchhoff, 1850; Rajapakse, 1988). 

5.3 Variational formulation 

A methodology of solution for the deflection profile w(r) from Eq. 5.1, based on the 

boundary conditions established in Eqs. 5.10 and 5.11 was proposed by Rajapakse (1988). It 

consists in a variational formulation, which involves establishing an energy functional 

comprising the strain energy of the flexible plate and of its surrounding medium. In order to 

determine the strain energy of the plate, a trial solution of its deflection profile is created. 

Consider a solid circular elastic plate with unit radius a=1 and thickness h, Young’s 

modulus Ep and Poisson’s ratio νp (Fig. 5.1). The plate is under the effect of a vertical 

concentrated load of intensity P0 and of a uniformly distributed vertical load of intensity q0 (Fig. 

5.2). A trial solution for the deflection profile of the plate due to these loads can be described by: 

( ) ( ) ( ) ( )
N N

* 2 2n
n 0 n

n 0 n 0

w r w r w r a r log r r

= =

= + = + α∑ ∑ ; 0≤r≤1 (5.12) 

in which 

( )0 0a P 8 D= π  (5.13) 

( )3 2
p pD E h 12 1 = − ν  

 (5.14) 

The summation in Eq. 5.12 comprises an approximation for the deflection of the plate by 

power series. Each power profile r
2n

 is weighted by a generalized coordinate αn (n=0,N). The 

term outside the summation is incorporated to cover the effect of singular stress due to the 

concentrated load P0. 

Figure 5.6a illustrates a few terms of the power series involved in Eq. 5.12. They are the 

profiles given by w*(r)=a0r
2
log(r) and wn(r)=αnr

2n
 obtained if a0=αn=1 (n=0,N). Figure 5.6b 

shows the resulting deflection profile obtained with the summation of all the terms shown in Fig. 
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5.6a according to Eq. 5.12. Any deflection profile can be approximated by changing the values of 

the generalized coordinates αn. The values of αn that result in the actual deflection of the plate 

depend on some physical condition which represents the problem of embedded plate. 
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Figure 5.6 (a) Each of the terms of the power series involved in Eq. 5.12, for the case of 

a0=αn=1 (n=0,N), and (b) the resulting deflection profile from the summation of all these 

terms. 

 

In view of the deflection profile established by Eq. 5.12, the expressions of bending 

moment Mr(r) and shear force Q(r) presented in Eqs. 5.4 and 5.5 become: 

( ) ( ) ( ) ( )
N

2n 2
r 0 p p n p

n 1

M r D a 3 2log r 2 log r 2n 2n 1 2n r −

=

     = − + + ν + ν + α − + ν    
  

∑  (5.15) 

( ) ( )
N

2 2n 30
n

n 1

4a
Q r D 4n 2n 2 r

r

−

=

 
= + − α 

  
∑  (5.16) 

Substitution of the first boundary conditions of free edge (Eq. 5.10) in Eq. 5.15 yields: 

( ) ( )
N

r 0 p n p
n 1

M 1 D a 3 2n 2n 1 2n 0

=

     = − + ν + α − + ν =    
  

∑  (5.17) 

( ) ( )
N

n p 0 p
n 1

2n 2n 1 2n a 3

=

 α − + ν = − + ν ∑  (5.18) 
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Substitution of the second boundary condition of free edge (Eq. 5.11) in Eq. 5.16 yields: 

( ) ( )
N

2
0 n

n 1

Q 1 D 4a 4n 2n 2 0

=

 
= + − α = 

  
∑  (5.19) 

( )
N

2
n 0

n 1

4n 2n 2 4a

=

− α = −∑  (5.20) 

Equations 5.18 and 5.20 can be combined in a matrix equation involving a 2×(N+1) matrix 

[B] and a 2×1 vector {R} such that: 

[ ]{ } { }B Rα =  (5.21) 

in which 

11 12 22B B B 0= = =  (5.22) 

( )21 PB 2 1= + ν  (5.23) 

( ) ( )( )2
1j pB 4 j 1 2 1 j 1 = − − − ν −  

; 3≤j≤(N+1) (5.24) 

( ) ( )2
2 jB 4 j 1 2j 4= − − ; 3≤j≤(N+1) (5.25) 

( )
T

0 p 0R a 3 4a= − + ν −  (5.26) 

{ } T
1 2 Nα = α α α⋯  (5.27) 
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5.3.1 Strain energy of the flexible plate 

The strain energy Up of a thin elastic circular plate under flexural deformations is given by 

Eq. 5.28 (Timoshenko and Woinowsky-Krieger, 1964; Rajapakse, 1988).  

( ) ( )
( )

( ) ( )
2

2 2
1 p

p 2 20

2 1d 1 d d d
U D w r w r w r w r r dr

r dr r drdr dr

 − ν  = π + −   
   

∫  (5.28) 

In view of the deflection profile w(r) from Eq. 5.12, this strain energy can be expressed in a 

matrix form involving the generalized coordinates  α, as shown in Eq. 5.29. 

( ) { } { } { }T2 p p
p p 0U D 3 a Q K = π + ν + α + α α

 
 (5.29) 

In Eq. 5.29, 〈Qp〉 is a (N+1)×1 vector and [K
p
] an (N+1)×(N+1) matrix, the terms of which 

are: 

p
1Q 0=  (5.30) 

( )p
0 pi

Q 4 Da 3i 5 i 1 = π − + − ν  ; 2≤i≤(N+1) (5.31) 

p p
1j j1

K K 0= =  (5.32) 

( ) ( )
( ) ( ) ( ) ( )p

pij

4 i 1 j 1 D
K 4 i 1 j 1 2 1 2i 3

2i 2 j 6

− − π  = − − − − ν − + −
; 2≤i,j≤(N+1) (5.33) 

5.3.2 Strain energy of the surrounding medium 

The strain energy Uh of an elastic medium of volume V is given by (Fung, 1965): 

1
h ij ij2 V

U dV= σ ε∫  (5.34) 

Any interface within such elastic medium is subjected to contact tractions to resist the 

external loads that are applied to it. Consider vertical loads applied on the surface of a circular 
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plate of unit radius a=1 within the medium, in such a way that the resulting deflection of the plate 

is described by Eq. 5.12. Let tz(r) represent the resulting traction field due to these loads. It is 

assumed that the influence of radial tractions on the vertical displacement of the plate is 

negligible (Rajapakse, 1988). Then Eq. 5.34 results in (Fung and Tong, 2001; Fung, 1965): 

( ) ( )
11

h z2 0
U 2 r t r w r dr= π ⋅∫  (5.35) 

The strain energy of the elastic medium shown in Eq. 5.35 is a general expression that in 

principle has no relation with the particular deflection profile established in Eq. 5.12. However, it 

can be determined what is the traction field tz(r) in Eq. 5.35 that results in the deflection profile 

from Eq. 5.12. 

Let t*(r) represent the portion of tz(r) responsible for vertical displacements of the form 

w*(r)=a0r
2
log(r) (Fig. 5.6a), which is the parcel of the displacement profile that is outside the 

summation in Eq. 5.12. Then, let tnz(r) be responsible for each term wn(r)=αnr
2n

 of the power 

series inside the summation in Eq. 5.12 (Fig. 5.6a). There are evidently N+1 different terms of 

tnz(r) (n=0,N), each corresponding to a term of the power series. Figure 5.6a shows six different 

terms of that power series. There is one traction profile tnz(r) corresponding to each of them, 

hence the index n in tnz(r).  An expression for the traction field tz(r) evidently involves all these 

terms:  

( ) ( ) ( )
N

*
z nz

n 0

t r t r t r

=

= + ∑  (5.36) 

A solution to Eq. 5.36 by analytical methods is not feasible due to the complexity of each 

of the terms t*(r) and tnz(r). A numerical solution is obtained by considering that the plate is made 

up of M concentric annular discs elements of inner and outer radii s1k and s2k (k=1,M). Figure 4.3 

shows an example of this discretization for M=5 annular disc elements. The tractions t*(rk) and 

tnz(rk) acting on each annular disc element are assumed to be uniformly distributed. This same 

strategy was used in Section 4.3 when dealing with the problem of the rigid plate under vertical 

load. In that section, the traction field involved in Eq. 4.1 was also unknown. A discretized 

version of that equation was presented in Eq. 4.2. In Eq. 4.2, it is stated that the displacement of 
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all the annular disc elements is the same, w0z, since the plate was rigid. For the present problem 

of flexible plate, the displacement of each element varies across the plate. 

Recall that the traction field t*(r) is responsible for displacements of the form 

w*(r)=a0r
2
log(r). For the discretized plate, the following expression holds for this traction field: 

( ) ( ) ( ) ( )
M

* * 2
zz i 1k 2k k i 0 i i

k 1

u r ,s ,s , t r , w r a r log r

=

ω ω = =∑ ; i=1,M (5.37) 

The term uzz(ri,s1k,s2k,ω) in Eq. 5.37 is defined in Section 4.3. Equation 5.37 results in the 

deflection profile w*(ri)=a0ri
2
log(ri) of the annular disc element i (i=1,M) and involves M 

unknown traction components t*(rk) (k=1,M). Equation 5.37 can be repeated for all annular disc 

elements i=1,M resulting in a set of M linear equations: 

( )

( )

( )

( ) ( )

( ) ( )

( ) ( )

* * 21,1 1,2 1,M
1 1 0 1 1zz zz zz

* * 22,1 2,2 2,M
2 2 0 2 2zz zz zz

* * 2M,2 M,2 M,M
M M 0 M Mzz zz zz

t r , w r , a r log ru u u

t r , w r , a r log ru u u

t r , w r , a r log ru u u

     ω ω =
    
     ω ω =

=    
    
    

ω ω =     

⋮ ⋮⋱
 (5.38) 

Or, solving for t*(rk), 

( )

( )

( )

( )

( )

( )

( )

( )

( )

1* * 21,1 1,2 1,M
1 1 1 1zz zz zz

* * 22,1 2,2 2,M
2 2 2 2zz zz zz

0 0

* * 2M,2 M,2 M,M
M M M Mzz zz zz

t r , T r , r log ru u u

t r , T r , r log ru u u
a a

t r , T r , r log ru u u

−
      ω ω
      
      ω ω

= =      
      
      

ω ω       

⋮ ⋮ ⋮⋱
 (5.39) 

in which 

( )i,k
zz zz i 1k 2ku u r ,s ,s ,= ω , i,k=1,M (5.40) 

Another way of presenting Eq. 5.39 is: 

( ) ( ) ( ) ( )* * 2
k 0 k 0 zz i 1k 2k i it r , a T r , a k r ,s ,s , r log rω = ω = ω ⋅  (5.41) 
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in which kzz(ri,s1k,s2k,ω) are the coefficients of the inverse matrix of uzz(ri,s1k,s2k,ω), i.e., 

1
1,1 1,2 1,M 1,1 1,2 1,M
zz zz zz zz zz zz

2,1 2,2 2,M 2,1 2,2 2,M
zz zz zz zz zz zz

M,2 M,2 M,M M,2 M,2 M,M
zz zz zz zz zz zz

k k k u u u

k k k u u u

k k k u u u

−
   
   
   

=   
   
   
   

⋱ ⋱
 (5.42) 

Equation 5.39 is solved for the vertical traction jumps t*(rk) acting on each disc element 

k=1,M, involving the term a0. 

Recall that the traction field tnz(r) is responsible for displacements of the form wn(r)=αnr
2n

. 

For the discretized plate, Eq. 5.43 holds for the traction field tnz(r). Now, a different expression of 

tnz(r) is obtained for each n, corresponding to the generalized coordinate αn (n=0,N). 

( ) ( ) ( )
M

2n
zz i 1k 2k nz k n i n i

k 1

u r ,s ,s , t r , w r r

=

ω ω = = α∑ ; i=1,M; n=0,N (5.43) 

Equation 5.43 results in the deflection profile wn(ri)=αnri
2n

 of the annular disc element i 

(i=1,M) and it involves M unknown traction components tnz(rk) (k=1,M). Equation 5.43 can be 

repeated for all annular disc elements i=1,M, thus resulting in a set of M linear equations: 

( )
( )

( )

( )

( )

( )

2n1,1 1,2 1,M
n 1 n 1zz zz zz nz 1

2n2,1 2,2 2,M
nz 2 n 2 n 2zz zz zz

2nM,2 M,2 M,M nz M
n M n Mzz zz zz

w r , ru u u t r ,

t r , w r , ru u u

t r , w r , ru u u

   ω = αω        ω  ω = α 
=    

    
     ω  ω = α   

⋮ ⋮⋱
 (5.44) 

Or, solving for tnz(rk), 

( )
( )

( )

( )
( )

( )

1
1,1 1,2 1,M 2n
zz zz zz 1nz 1 nz 1

2,1 2,2 2,M 2n
nz 2 nz 2 zz zz zz 2

n n

M,2 M,2 M,M 2nnz M nz M
zz zz zz M

u u u rt r , T r ,

t r , T r , u u u r

t r , T r ,
u u u r

−
   ω ω          

ω ω       
= α = α      

      
      ω ω       

⋮ ⋮ ⋱ ⋮
 (5.45) 
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Another way of representing Eq. 5.45 is: 

( ) ( ) ( ) 2n
nz k n nz k n zz i 1k 2k it r , T r , k r ,s ,s , rω = α ω = α ω  (5.46) 

For example, the traction field t0z(rk), responsible for the parcel w0(ri)=α0ri
2⋅0

 of the 

deflection profile is obtained from (n=0): 

( )
( )

( )

( )

( )

( )

2 01,1 1,2 1,M
0 1 0 1 0zz zz zz 0z 1

2 02,1 2,2 2,M
0z 2 0 2 0 2 0zz zz zz

2 0M,2 M,2 M,M 0z M
0 M 0 M 0zz zz zz

w r , ru u u t r ,

t r , w r , ru u u

t r , w r , ru u u

⋅

⋅

⋅

   ω = α = αω        ω  ω = α = α 
=    

    
     ω  ω = α = α   

⋮ ⋮⋱
 (5.47) 

Or, solving for t0z(rk), 

( )
( )

( )

( )
( )

( )

1
1,1 1,2 1,M 2 0
zz zz zz 10z 1 0z 1

2,1 2,2 2,M 2 0
0z 2 0z 2 zz zz zz 2

0 0

M,2 M,2 M,M 2 00z M 0z M
zz zz zz M

u u u r 1t r , T r ,

t r , T r , u u u r 1

t r , T r ,
u u u r 1

−
⋅

⋅

⋅

   =ω ω          
ω ω    =   

= α = α      
      
      ω ω    =   

⋮ ⋮ ⋱ ⋮
 (5.48) 

The traction field t1z(rk), responsible for the parcel w1(ri)=α1ri
2⋅1

 of the deflection profile is 

obtained from (n=1): 

( )
( )

( )

( )

( )

( )

2 11,1 1,2 1,M
1 1 1 1zz zz zz 1z 1

2 12,1 2,2 2,M
1z 2 1 2 1 2zz zz zz

2 1M,2 M,2 M,M 1z M
1 M 1 Mzz zz zz

w r , ru u u t r ,

t r , w r , ru u u

t r , w r , ru u u

⋅

⋅

⋅

   ω = αω        ω  ω = α 
=    

    
     ω  ω = α   

⋮ ⋮⋱
 (5.49) 

Or, solving for t1z(rk), 
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( )
( )

( )

( )
( )

( )

1
1,1 1,2 1,M 2 1
zz zz zz 11z 1 1z 1

2,1 2,2 2,M 2 1
1z 2 1z 2 zz zz zz 2

1 1

M,2 M,2 M,M 2 11z M 1z M
zz zz zz M

u u u rt r , T r ,

t r , T r , u u u r

t r , T r ,
u u u r

−
⋅

⋅

⋅

   ω ω          
ω ω       

= α = α      
      
      ω ω       

⋮ ⋮ ⋱ ⋮
 (5.50) 

and so on up to n=N. 

The dependence of the traction fields t*(r) and tnz(r) on the composition of the elastic 

medium (whether it is a homogeneous full-space or a bimaterial interface or a multilayered 

system) is encompassed by the kernel function uzz(ri,s1k,s2k,ω). 

From Eq. 5.36, it holds, for each ring k (k=1,M), that 

( ) ( ) ( )
N

*
z k k nz k

n 0

t r , t r , t r ,

=

ω = ω + ω∑ ; k=1,M (5.51) 

( ) ( ) ( )
N

*
z k 0 k n nz k

n 0

t r , a T r , T r ,

=

ω = ω + α ω∑ ; k=1,M (5.52) 

( ) ( ) ( ) ( )
N

2 2n
z k 0 zz i 1k 2k i i n zz i 1k 2k i

n 0

t r , a k r , s ,s , r log r k r ,s , s , r

=

ω = ω + α ω∑ ; k=1,M (5.53) 

The substitution of the traction field tz(r) from Eq. 5.53 into Eq. 5.35, yields after a 

laborious simplification, the strain energy of the elastic medium Uh represented in terms of 

generalized coordinates (Rajapakse, 1988): 

{ } { } { } ( ) ( )
M

T h h 2 2
h k k 0 k k k

k 1

U K Q r T r a r log r r∗

=

 = α α + α + π ∆
  ∑  (5.54) 

In Eq. 5.54, ∆rk=s2k-s1k is the width of each annular disc element. [K
h
] is an (N+1)×(N+1) 

matrix and 〈Qh〉 an (N+1)×1 vector, the terms of which are respectively given by: 
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( )
M

2 j 1h
ij (i 1)z k k k

k 1

K T r r r
−

−
=

= π∆ ⋅∑ ; 1≤i,j≤(N+1) (5.55) 

( ) ( ) ( ) ( ) ( )
M

2 i 1h 3
i k 0 k k k k 0i 1 zk

k 1

Q T r r a r log r T r r a
−∗

−
=

 = + π ∆  ∑ ; 1≤i≤(N+1) (5.56) 

5.3.3 Variational formulation of the embedded plate 

Let Ep and Eq denote respectively the potential energy of the centrally applied concentrated 

force P0 and of the uniformly distributed loading q0. Equations 5.57 and 5.58 describe Ep and Eq 

in terms of generalized coordinates (Rajapakse, 1988). 

p 0 0E P= α  (5.57) 

( )
N

q 0 n
n 0

E 2 q 2n 2

=

= π α +∑  (5.58) 

Consider the strain energy of an elastic medium, Uh (Eq. 5.54), and of a flexible plate, Up 

(Eq. 5.29), derived in the previous subsections. The total potential energy function U of the 

system comprising the flexible plate and its surrounding medium, under the effect of P0 and/or q0 

is given by: 

h p p qU U U E E= + − −  (5.59) 

Or, in terms of generalized coordinates:

 { } { } { } { } { } { }

( ) ( ) ( )

T Th p h p

M N
* 2 2

j zj 0 j j p 0 0 0 0 n

j 1 n 0

U K K Q Q

r T a log r r D 3 a P 2 q 2n 2

= =

   = α α + α α + α + α
   

+ π ∆ + π + ν − α − π α +∑ ∑
 (5.60) 

The principle of minimum potential energy can be used to determine the generalized 

coordinates involved in Eq. 5.60. The specific values of these coordinates that correspond to the 
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plate with free edge boundary conditions (Eq. 5.21) can be obtained by establishing the following 

minimization problem: 

Problem P: 
( ) ( )

( ) [ ]{ } { } ( )
f U

g B R 0

Minimize Eq. 5.60

subject to Eq. 5.21

α =


α = α − =
 

According to classical mathematical programming, this problem can be put as the following 

penalized problem PP (Nash, 2010): 

Problem PP: Minimize ( ) ( )U f h= α + λ ⋅ α  

in which h(α) is a penalty function and λ is the penalty parameter. A common choice for 

the penalty function is the quadratic form (Rajapakse, 1988; Nash, 2010), h(α)=½⋅g2
(α). The 

constrained energy functional to be minimized then becomes: 

[ ]{ } { } [ ]{ } { }
T1

2
U U B R B R   = + λ α − α −     (5.61) 

The value of λ must be such that the constraints are satisfied as its value increases. 

Rajapakse (1988) has investigated the influence of the parameter λ on the numerical stability of 

this energy functional and concluded that, for a particular but representative model of rigid and 

flexible plates embedded in an isotropic half-space, values of λ within the fairly wide range 

1≤λ≤10
5
 provide stable expressions of Eq. 5.61. 

The generalized coordinates αn (n=0,N) which satisfy the boundary conditions at the plate 

edge arise upon application of the problem PP into Eq. 5.61: 

n

U 0
∂

=
∂α

; n=0,N (5.62) 

The substitution of Eq. 5.61 into Eq. 5.62 yields the equation system in Eq. 5.63. This 

system is written in a convenient matrix form for numerical implementation: 

{ } { }s
K F  α =
 

 (5.63) 
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in which 

[ ] [ ]
T T Ts p p h hK K K K K B B         = + + + + λ

         
 (5.64) 

{ } [ ] { }
T TT T T p h

0 0 1iF q i P B R Q Q= π + δ + λ − −  (5.65) 

In Eqs. 5.63 to 5.65, [K
h
] is an (N+1)×(N+1) matrix and 〈Qh〉 an (N+1)×1 vector, which 

come from the description of the strain energy of the elastic medium, such as given by Eqs. 5.55 

and 5.56. [K
p
] an (N+1)×(N+1) matrix and 〈Qp〉 is an (N+1)×1 vector, which come from the 

description of the strain energy of the elastic plate, such as given by Eqs. 5.30 to 5.33. [B] is a 

2×(N+1) matrix and {R} is a 2×1 vector, which contain a description of the boundary conditions 

of the plate, such as given by Eqs. 5.22 to 5.26. P0 and q0 are respectively the point load and the 

uniformly distributed load that are applied on the surface of the plate. In Eq. 5.65, δij is the 

Krönecker delta, δij=1 if i=j and δij=0 otherwise.  

The numerical solution of Eq. 5.63, which depends on the material properties and 

configuration of the system of elastic plate and its surrounding medium, results in the generalized 

coordinates αn (n=0,N), from which the deflection profile of the plate is obtained (Eq. 5.12). 

5.4 Implementation 

The present formulation of flexible plate has been presented in a convenient matrix form in 

order to allow a straightforward numerical implementation. A basic algorithm for solving Eq. 

5.63, which was implemented in the present work, is: 

a) Consider the Green’s function describing the behavior of a material interface. For 

instance, the previous chapters presented solutions for the vertical displacement of bi-

material and layered media under distributed axisymmetric vertical loads. For the case of a 

bi-material interface, this displacement is given by Eqs. 2.95 and 2.104, after solving Eq. 

2.120. For the case of a multilayered system, this displacement is given by Eq. 3.22; 

b) Consider a circular surface at that interface, discretized by M concentric annular 

disc elements; 
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c) Determine uzz(ri,s1k,s2k,ω) for all these elements, which is the vertical displacement 

of the point of coordinates ri due to an axisymmetric vertical load distributed on the area 

which goes from s1k to s2k (i,k=1,M). It is convenient to assemble these results in an M×M 

matrix, such as shown in Eqs. 5.38 and 5.44; 

d) Using this matrix and Eq. 5.39, determine the traction vector T*(rk), k=1,M, which 

is one vector of length M. The radii ri (i=1,M) in the right-hand-side of Eq. 5.39 are the 

central coordinate of each annular disc element (Fig. 4.3); 

e) Using the same matrix and Eq. 5.45, determine the traction vectors Tnz(rk), k=1,M, 

n=0,N. It is necessary to apply Eq. 5.45 N+1 times (such as Eqs. 5.48 and 5.50), each of 

them resulting in a different vector Tnz(rk), each of length M; 

f) Using T*(rk) and Tnz(rk), determine [K
h
] and 〈Qh〉 according to Eqs. 5.55 and 5.56;  

g) Determine vector 〈Qp〉 from Eqs. 5.30 and 5.31; 

h) Determine matrix [K
p
] from Eqs. 5.32 and 5.33;  

i) Determine matrix [B] from Eqs. 5.22 to 5.25; 

j) Determine vector {R} from Eq. 5.26; 

k) Choose a penalty parameter λ; 

l) Assemble matrix [K
s
] according to Eq. 5.64; 

m) Assemble vector {F} according to Eq. 5.65; 

n) Solve Eq. 5.63 for the vector {α}; 

o) Determine the deflection profile w(r) by substituting {α} into Eq. 5.12, or if 

necessary, the moment Mr(r) and shear force Q(r) from Eqs. 5.15 and 5.16. 

5.5 Validation 

In the present chapter, the behavior of a flexible circular plate under time-harmonic vertical 

excitations is studied. Deep embedment of the plates is modeled by bonded transversely isotropic 

half-spaces (Chapter 2), while shallow embedments are represented by layered transversely 

isotropic half-spaces (Chapter 3). 

In this section, the models of embedded flexible plates developed in this work are 

compared with existing solutions available in the literature. The main validation source is the 
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results provided by Rajapakse (1988). Rajapakse (1988) studied the static flexure of flexible 

plates at different depths of embedment on isotropic half-spaces. 

5.5.1 Convergence 

The influence functions uij (i,j=r,θ,z), used in Eqs. 5.38 and 5.44, come from the solution of 

the bi-material interface or the layered system, such as presented in Chapters 2 and 3. These 

functions are exactly the same ones used in the implementation of the rigid plate (Chapter 4), and 

their convergence with increasing discretization has been presented in Table 4.2. The 

discretization of M=20 discs is chosen throughout this thesis, because, according to Table 4.2, it 

enables an error of less than 1% with the analytical solution in the representative model of rigid 

plates.  

5.5.2 Bi-material interface 

Figures 5.8 and 5.9 show solutions from the present implementation for cases of flexible 

plates. Figure 5.8 presents results of deflection of a flexible plate due to a centrally applied 

concentrated load of intensity P0 (Fig. 5.7a). In Fig. 5.9, a uniformly distributed load of intensity 

q0 is considered (Fig. 5.7b).  

 

 
(a) 

 
(b) 

 

Figure 5.7 Illustrations of a flexible plate inside an isotropic full-space under (a) concentrated 

and (b) distributed static vertical loads. 

 

These results are shown in terms of the dimensionless central displacement w*(r=0), 

differential deflection w*d, normalized moment acting at the center of the plate M*r(r=0) and 

relative rigidity Kr, defined by (Rajapakse, 1988): 
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 ( )
( )

( )
s*

2
0 s

a w r E
w r

P 1

⋅
=

− ν
 or ( )

( )

( )
s*

2
0 s

w r E
w r

a q 1
=

⋅ − ν
 (5.66) 

( )
( )r*

r 2
0

M r
M r

q a
=

⋅
 (5.67) 

( ) ( )

( )
s*

d 2
0 s

aE w 0 w 1
w

p 1

−  =
− ν

 (5.68) 

( )
3

p2
r s

s

E h
K 1

E a

 
= − ν  

 
 (5.69) 

In Eqs. 5.66 to 5.69, Ep and νp are the Young’s modulus and Poisson’s ratio of the elastic 

plate, and h and a are its thickness and outer radius. Es and νs are the Young’s modulus and 

Poisson’s ratio of the surrounding medium. The non-normalized deflection w(r) and the moment 

Mr(r) come respectively from Eqs. 5.12 and 5.15. 
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Figure 5.8 Normalized displacement and differential deflection of a flexible plate under 

concentrated load. 

 

The results in Figs. 5.8 and 5.9 obtained with the present implementation consider a plate of 

νp=0.3, discretized by M=20 discs, in the interface of two isotropic half-spaces with Es=2.5 and 

νs=0.25. N=6 generalized coordinates are used for the deflection profile (Eq. 5.12), since this 

number guarantees accurate computation of the stress resultants on the plate (Rajapakse, 1988). 
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These results agree with the ones presented by Rajapakse (1988) for the behavior of a flexible 

plate at infinite depth within an isotropic half-space. 
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Figure 5.9 Normalized displacement and moment of a flexible plate under uniformly 

distributed load. 

 

5.5.3 Multilayered medium 

The behavior of an elastic plate embedded at different depths within an isotropic half-space 

is shown in Figs. 5.11 and 5.12.  

 

 
(a) 

 
(b) 

 

Figure 5.10 Configurations of a flexible plate subjected to (a) concentrated and (b) distributed 

vertical loads between a half-space and two layers of the same material. 

 

Figure 5.11 presents the normalized central displacement and differential displacement of a 

flexible circular plate under the effect of a centrally applied concentrated static force P0 (Fig. 

5.10a). The plate has unit outer radius a=1 and Poisson’s ratio νp=0.3. The normalizations in 

these results are defined in Eqs. 5.66 to 5.69. A discretization of M=20 annular disc elements and 

N=6 generalized coordinates are used in this analysis. The different depths of embedment H/a are 
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obtained by piling layers of unit thickness on top of the plate, i.e., an embedment at a depth 

H/a=L is obtained by placing the plate between a half-space and L layers of unit thickness. All 

the L layers and the underlying half-space have material properties Es=2.5 and νs=0.25. These 

results are supported by Rajapakse (1988), who studied the bending of a plate embedded in an 

arbitrary depth within an isotropic half-space. 
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Figure 5.11 Behavior of an elastic plate at different embedments within an isotropic half-

space, due to a centrally applied point load P0. 

 

The results for the analogous case of a flexible plate under the effect of a uniformly 

distributed load q0 (Fig. 5.10b) are presented in Fig. 5.12.  
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Figure 5.12 Behavior of an elastic plate at different embedments within an isotropic half-

space, due to a uniformly distributed load q0. 
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In this section, the presented formulations of elastic plates embedded at bi-material 

interfaces and multilayered systems were compared with similar problems from the literature, to 

which it has shown good agreement. 

5.6 Numerical results 

This section presents original results of the behavior of embedded elastic plates obtained in 

this work. The influence of the composition of bi-material interfaces (Chapter 2) on the static and 

dynamic flexure of the plate is considered. Using the formulation of layered media presented in 

Chapter 3, the problem of flexible plates at arbitrary embedments inside transversely isotropic 

layered half-spaces is also studied. A brief investigation on the ability of the present formulation 

to comply with the boundary conditions of the plate is presented. 

5.6.1 Bi-material interface  

This section shows the effect of different bi-material configurations on the static and 

dynamic flexure of the flexible plates. Figure 5.13 illustrates the problem. The transversely 

isotropic materials used in these simulations are taken from Table 2.1. The transverse isotropy of 

the materials are obtained by varying the anisotropy index n1 while keeping n2=n3=1, c44=1 and 

ν=0.25 (Table 2.1). In all cases, the material of medium 2 (Fig. 5.1) has n1=n2=n3=1, c44=1 and 

ν=0.25, which corresponds to an isotropic material (Table 2.1). All materials for medium 1 are 

picked from Table 2.1. The mass density of all materials is ρ=1 in all cases. 

 
Figure 5.13 Illustration of different bi-material configurations with an embedded flexibe plate 

subjected to a uniformly distributed vertical load. 

 

Figure 5.14 shows the deflection profile of the plate for the frequencies ω=0.2 and ω=1.0, 

while Fig. 5.15 shows results for the frequencies ω=2.0 and ω=4.0. All four cases consider a 
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uniformly distributed vertical load on the surface of the plate. The plate material has Young’s 

modulus E=2.5 and Poisson’s ratio ν=0.25. It has thickness h=0.001 and outer radius a=1. The 

bi-material configurations considered are the same as the ones used in Figs. 5.6 to 5.8. The plate 

is discretized by M=20 concentric annular disc elements. N=6 generalized coordinates are used 

(Eq. 5.12). 

 
-1 -0.5 0 0.5 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

radius r

|w
(r

, ωω ωω
=

0
.2

)|

 

 

n
1
=1

n
1
=2

n
1
=3

  
-1 -0.5 0 0.5 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

radius r

|w
(r

, ωω ωω
=

1
.0

)|
 

 

n
1
=1

n
1
=2

n
1
=3

 
Figure 5.14 Deflection profile of a flexible plate for different bi-material constructions for 

the frequencies ω=0.2 and ω=1.0, for the case of a uniformly distributed load. 
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Figure 5.15 Deflection profile of a flexible plate for different bi-material constructions for 

the frequencies ω=2.0 and ω=4.0, for the case of a uniformly distributed load. 

 

The deflection of the plate for four different frequencies is presented in the same scale in 

Figs. 5.14 and 5.15. An increase in the anisotropy index n1 stiffens medium 1 vertically by 

increasing the Young’s modulus EZ (Table 2.1), i.e., an increase in n1 stiffens medium 1 
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vertically. Therefore, it is physically consistent that an increase in n1 corresponds to a decrease in 

the deflection of the plate, which is observed in all these results. 

From Figs. 5.14 and 5.15, it can also be seen that different frequencies of excitation have a 

larger influence on the amplitude of the deflection of the plate than they have on the shape of its 

deflection. Figures 5.14 to 5.15 also show that an increase on the frequency of excitation 

corresponds to an overall decrease of the amplitude of displacement, which is physically 

consistent. This is shown more clearly in Fig. 5.16. The results of Fig. 5.16 correspond to the 

same bi-material constructions that were used in Figs. 5.14 and 5.15. An elastic plate with 

thickness h=0.001 and outer radius a=1 is used. The figure shows how the central displacement 

w(r=0) of the plate varies with the frequency of excitation. 
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Figure 5.16 Central deflection of a flexible plate for different bi-material constructions, for 

the case of a uniformly distributed load. 

 

In all the cases of flexible plate in the present and in the succeeding section, it was 

necessary to minimize the energy functional involving the strain energy of the plate and its 

surrounding medium (Eq. 5.51). The penalized energy functional involves a penalty factor λ, in 

order to guarantee that the boundary conditions at the plate edge are satisfied (Eq. 5.21). It was 

observed that, in all the cases of flexible plate in this chapter, the value of λ has very little 

influence on the accuracy and numerical stability of the solution of the constrained minimization 

problem. This has also been observed by Rajapakse (1988) for the case of different depths of 

embedment of the plate within an isotropic half-space. The value λ=10
4
 was used in all the 

experiments presented in this chapter. 
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5.6.2 Multilayered system 

In this section, the bending of an elastic plate embedded in layered media is studied. Three 

different layered systems are considered (Fig. 5.17 and Tables 5.1 and 5.2). In all cases, the plate 

is embedded between two layers of thickness hi (i=1,2) and a half-space. In all cases, the layers 

and the half-space have c44=1 and ν=0.25, while their other properties are obtained by varying the 

anisotropy index n1. The other anisotropy indices are n2=n3=1. The material of the layers and 

their thicknesses in each case are shown in Table 5.1. The material properties of the materials m1, 

m2 and m3 are shown in Table 5.2. The mass density of all materials is ρ=1 in all cases. 

Table 5.1 Multilayered media configurations used in this section. 

Layer Case A Case B Case C 

1 Material m1; h1=0.5 Material m3; h1=0.5 Material m3; h1=0.3 

2 Material m1; h2=0.5 Material m2; h2=0.5 Material m2; h2=0.7 

half-space Material m1; h3=∞ Material m1; h3=∞ Material m1; h3=∞ 

 

Table 5.2 Multilayered media configurations used in this section. 

Material

* 

n1 n2 n3 c11 c12 c13 c33 E EZ ννννZ 

m1 1.0 1.0 1.0 3.0000 1.0000 1.0000 3.0000 2.5 2.5000 0.2500 

m2 1.5 1.0 1.0 2.8284 0.8284 0.8284 4.2426 2.5 3.8673  0.2265 

m3 2.0 1.0 1.0 2.7749 0.7749 0.7749 5.5497 2.5 5.2114  0.2183 

(*) for all materials, c44=1.0, ν=0.25 and ρ=1. 

 
(Case A) 

 
(Case B) 

 
(Case C) 

Figure 5.17 Illustration of different layered system configurations with an embedded plate 

subjected to vertical loads. 
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Figures 5.18, 5.19 and 5.20 show respectively the deflection profile w(r) of the plate, the 

circumferential moment Mr(r) and the shear force Q(r) acting on it, for the frequencies ω≈0.0 and 

ω=4.0. The deflection w(r), the moment Mr(r) and the shear force Q(r) are determined according 

to Eqs. 5.12, 5.15 and 5.16. All cases consider a uniformly distributed vertical load on the surface 

of the plate. The plate material has Young’s modulus E=2.5 and Poisson’s ratio ν=0.25. It has 

thickness h=0.001 and outer radius a=1. The plate is discretized with M=20 concentric annular 

disc elements. N=6 generalized coordinates are used in the deflection profile (Eq. 5.12). The 

same behavior observed in the case of the embedded rigid plate (Section 4.6.3) is also observed 

in these results, i.e., that the change in material composition has a more significant influence in 

the behavior of the plate than a change in the relative thickness of the layers, for the present 

configurations of embedment. This difference becomes more pronounced for a larger frequency. 
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(b) 

Figure 5.18 Deflection profile of a flexible plate for different layered systems for the 

frequencies (a) ω≈0.0 and (b) ω=4.0. 

-1 -0.5 0 0.5 1
0

0.5

1

1.5

2

2.5

x 10
-10

radius r

|M
r(r

, ωω ωω
=

0
.0

)|

 

 

Case A

Case B

Case C

 
-1 -0.5 0 0.5 1
0

0.5

1

1.5

2

2.5

x 10
-10

radius r

|M
r(r

, ωω ωω
=

4
.0

)|

 

 

Case A

Case B

Case C

 
Figure 5.19 Moment Mr(r) acting on a flexible plate for different layered systems for the 

frequencies ω≈0.0 and ω=4.0. 
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For these layered system configurations, there is little change in the shear force acting on 

the plate (Fig. 5.20). 
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Figure 5.20 Shear force Q(r) acting on a flexible plate for different layered systems for the 

frequencies ω=0.0 and ω=4.0. 

 

Notice that in all cases the moment Mr(r) and the shear force Q(r) satisfy the boundary 

conditions of free edge established in Eqs. 5.10 and 5.11. Moreover, the deflections of the plates 

shown in Figs. 5.14, 5.15 and 5.18 are different from zero at the plate edges (w(r=1)≠0), which 

physically agrees with the boundary conditions of free edge (Fig. 5.5c). 

Figure 5.18b enables an interesting physical interpretation of the problem. It is 

straightforward to identify, from that figure, that the most flexible layered problem (Case A) 

results in the largest displacement amplitudes. In cases B and C, the two layers on top of the plate 

are stiffer than those in Case A (Fig. 5.17). It can be seen that the displacement amplitude in both 

cases is smaller for these cases than for Case A, as expected (Fig 5.18b). Moreover, from Case B 

to Case C, the only difference is that the relative thickness of the layers changes toward the most 

flexible medium (layer 2). That is, the layered system in Case C is less stiff than in Case B. 

Consequently, Case C results in a larger displacement amplitude of the plate than Case B (Fig. 

5.18b). This behavior is physically consistent and it holds for all results in this section, even 

though it is more clearly seen in Fig. 5.18b. 
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In this chapter, a model of thin elastic plates under small deflections was presented. It was 

shown that the flexible plate can be accurately represented by establishing a variational problem, 

in which an energy functional involving the strain energy of the plate and of its surrounding 

medium is minimized according to the principle of minimum potential energy.  The influence 

functions from Chapters 2 and 3 were used to represent transversely isotropic bi-material and 

layered media in which the plate is considered to be embedded. The present implementation has 

been validated with a representative source from the literature. The deflection profile of the 

embedded flexible plate was studied for different bi-material configurations. For the case of a 

layered system, three different constructions were considered. The behavior of a flexible plate 

embedded in such media was presented in terms of the deflection, moment and shear force across 

the plate. It was observed that the present results satisfy the boundary conditions established for 

the plate. 
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6 CONCLUDING REMARKS 

 

This chapter shows a summary of what has been presented in this research work. It reviews 

the main findings, achievements and conclusions of this study. 

In the first chapter, it was seen that there are well-established solutions for the displacement 

and stress fields of different models of continua. Different methods have been used successfully 

to obtain these solutions corresponding to two- and three-dimensional unbounded domains (full-

spaces), and semi-infinite domains possessing a free-surface (half-spaces). Solutions exist for the 

cases of isotropic or transversely isotropic media, in rectangular or cylindrical coordinates. Some 

methods to obtain such solutions involve a space transform such as Hankel transforms, together 

with other techniques such as expanding in Fourier series some specific variables of interest 

which are involved in the formulation. On the other hand, another group of methods have arisen, 

which describe the behavior of rigid and flexible circular plates under different types of loadings. 

These models and the abovementioned solutions have been used to describe the behavior of 

plates embedded within isotropic and transversely isotropic full- and half-spaces. Little concern 

has been given to the case of plates embedded in bi-material transversely isotropic media, as well 

as layered half-spaces, especially the dynamic cases. These are the problems investigated in this 

study. 

In Chapter 2, a classical Green’s function of transversely isotropic full-spaces was 

reviewed. An extension for the bi-material case was provided, as well as simplified 

particularizations of the main solution for the axisymmetric and antisymmetric cases. It was 

shown that stress boundary conditions for the case of non-axisymmetric transverse loads can be 

established based solely on axisymmetric loads (Section 2.3.2.2), and that a case of concentrated 

moment can be described as an antisymmetric vertical load. It was observed that all loading cases 

result in equation systems with lengthy analytical solutions. A convenient alternative is to solve 

these systems numerically. The solution of the displacement fields in these media involves 

numerical integration of singular integrands, a problem that was successfully averted by 

including a small damping in the material parameters. 
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The corresponding solution for a two-dimensional layered half-space was also derived by 

Wang (1992). In Chapter 3, an extension of his work to the three-dimensional case has been 

presented. At the end of the chapter, an example was provided, which emphasizes the 

resemblance of the method to the finite element approach to structural analysis. The example was 

also useful to understand that the preceding general solution implicitly guarantees the continuity 

of displacements between the layers. 

In Chapter 4, a model or rigid circular plate was introduced. It was seen that a rigid 

massless plate can be represented by considering a rigid circular surface of the surrounding 

medium. The tractions acting across this surface can be accurately computed by discretizing it, on 

each discrete part of which the tractions are assumed to be constant. The chapter showed that the 

present solution is capable of reproducing accurately previous results from the literature, in which 

rigid plates embedded in isotropic full-spaces and half-spaces had been considered. Some original 

research results were presented. It was seen that the aspect ratio of the outer and inner radius of a 

plate have a significant influence on its behavior, and that the way in which it affects each of the 

different types of vibration is not obvious a priori. It was seen that the transverse isotropy of the 

media influences each type of vibration differently. Even though one type of transverse isotropy 

may not influence a specific type of direct compliance term, in a bi-material interface it may 

influence its cross compliance counterpart. This happens because, in a bi-material interface, the 

transverse and rocking behaviors of the rigid plate are coupled, and this shows that cross 

compliance terms must be taken into consideration for a proper analysis of bi-material interfaces. 

From all the studies, it was observed that a discretization of M=20 concentric annular disc 

elements is enough to provide accurate computation of the traction fields across the plate. 

In Chapter 5, a model of elastic plate was presented. Kirchhoff theory of thin plates under 

small deflections was adopted. A trial solution for the linear partial differential equation which 

describes the deflection of plate was defined in terms of a power series. In order to obtain the 

actual deflection of the plate, a variational problem was established. An energy functional 

involving the strain energy of the plate and of its surrounding medium was defined.  The 

minimization of this functional, under the constraint that it must satisfy the boundary conditions 

at the plate edge, results in the deflection profile of the plate. The chapter showed that the present 

solution is capable of reproducing accurately previous results from the literature, in which the 
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vertical flexure of elastic plates embedded in isotropic full-spaces and half-spaces had been 

considered. It was observed from the numerical results that the strategy of describing the flexible 

plate as a variational problem is also capable of producing physically consistent descriptions of 

the problem also for the cases of transversely isotropic bi-material and layered constructions. The 

formulation is capable of complying with the imposed boundary conditions. The fairly large 

range of input data in which the formulation is stable makes it apt to be used in practical 

engineering problems. For the case of the flexible plate, N=6 generalized coordinates was 

observed to be enough to provide an accurate description of the deflection profile of the plate. 

When minimizing the energy functional involving the strain energy of the plate and its 

surrounding medium, it was seen that the convergence of the minimization problem has a 

negligible dependence of the penalty factor λ, which is responsible for ensuring that the boundary 

conditions at the plate edge are satisfied. This observation holds for all material constructions that 

were used in this work.  

From Chapters 4 and 5, it was observed that the present models are capable of reproducing 

accurately physical behaviors of embedded plates in elastic media, such as: 

a) stiffening the surrounding medium results in smaller amplitudes of displacement 

of the plates; 

b) larger frequencies result in a decay in the amplitude of displacement of the plates; 

c) higher damping coefficients stiffen the media and cause an overall decrease in the 

displacement amplitude compared to the ones with smaller damping coefficients; 

d) in a layered system, changing the relative thickness of the layers so that the stiffer 

medium is thicker results in an overall stiffer layered medium, which ultimately results in 

smaller amplitudes of displacement of the plate embedded in it. 

Briefly, this work has presented reliable models to study the vertical, transverse and 

rocking dynamic response of rigid massless circular plates embedded at the interface of two 

transversely isotropic, three-dimensional, linear viscoelastic half-spaces, or embedded at an 

arbitrary depth within a multilayered transversely isotropic, three-dimensional, linear viscoelastic 

half-space. This work also provided a model to study the behavior of elastic circular foundations 
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embedded in such media. The models that were created in this work are illustrated in Table 6.1. 

In Table 6.1, the cells containing figures indicate the cases which were formulated and 

implemented in this work. The cells marked by “Requires implementation” correspond to models 

that can be obtained after a careful computational implementation of the formulation that was 

described in this work. The cells marked by “Requires formulation” correspond to models that 

require a totally different formulation than the ones presented in this work. The models used here 

to describe the vertical vibrations are based on the theory of plates, the hypotheses of which 

disregard transverse and rocking behaviors (see hypothesis in Section 5.2). A model of boundary 

elements would be adequate to treat those cases. 

Table 6.1 Models of embedded plates which have been presented in the present work 

 Vertical load Transverse load Rocking moment 

B
i-

m
a

te
ri

a
l 

R
ig

id
 p

la
te

 

   

F
le

x
ib

le
 

P
la

te
 

 

Requires formulation. Requires formulation. 

M
u

lt
il

a
y

er
 

R
ig

id
 P

la
te

 

 

Requires implementation. Requires implementation. 

F
le

x
ib

le
 P

la
te

 

 

Requires formulation. Requires formulation. 

 

Since transversely isotropic media provide reasonably good models of soil materials, the 

presented solutions contribute to the study and design of rigid and flexible circular foundations 
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and anchors embedded in layered soil. The bi-material solution can be used as an approximation 

to the case of deeply buried foundations, while the layered system can be used to model 

foundations at arbitrary embedments, or even resting on the surface of the soil. Different layered 

constructions involving rocks, clays, ice and other soil materials can be used, and their material 

attenuation can be included in the model as well. The present model enables practical 

investigations of the vertical, transverse and rocking vibrations of the foundation embedded in 

such media. 

6.1 Further developments 

It is straightforward to see that an immediate development of this work involves the 

implementation of the cases of coupled transverse and rocking vibrations of the rigid plate in the 

layered half-space. 

An important improvement on the model of flexible plate would be the introduction of a 

dynamic model of the plate, which takes the mass of the plate into consideration, in order to 

allow the study of its vibration modes and resonance, for instance. A new set of Ansatz functions 

to the deflection profile of the plate (Eq. 5.2), aiming to model annular plates, would also be of 

interest to practical applications. 

Further attention could be given to the implementation in order to make it more 

computationally cost-effective. 

If the material attenuation turns out to be a major concern when modeling a practical 

problem, it would be interesting to introduce an improved damping model. The hysteretic model, 

which was introduced in the formulation primarily to bypass the problem of the singularities in 

the integrands, has the pay-off of introducing non-causal responses into the problem. 
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