UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE ENGENHARIA MECÂNICA E INSTITUTO DE GEOCIÊNCIAS PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS E ENGENHARIA DE PETRÓLEO

Samuel Ferreira de Mello

Estudo Sobre Simulação Composicional de Reservatórios de Petróleo com Injeção de CO₂

CAMPINAS 2011

Este exemplar corresponde à redação final da dissertação defendida por Samuel Ferreira de Mello pela Comissão julgadora em 28/02/2011. Orientador

UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE ENGENHARIA MECÂNICA E INSTITUTO DE GEOCIÊNCIAS PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS E ENGENHARIA DE PETRÓLEO

Estudo Sobre Simulação Composicional de Reservatórios de Petróleo com Injeção de CO₂

Autor: Samuel Ferreira de Mello Orientador: Prof. Dr. Denis José Schiozer

Curso: Ciências e Engenharia de Petróleo Área de Concentração: Reservatórios e Gestão

Dissertação de mestrado acadêmico apresentada à Comissão de Pós Graduação em Ciências e Engenharia de Petróleo da Faculdade de Engenharia Mecânica e Instituto de Geociências, como requisito para a obtenção do título de Mestre em Ciências e Engenharia de Petróleo.

> Campinas, 2011 SP – Brasil.

FICHA CATALOGRÁFICA ELABORADA PELA BIBLIOTECA DA ÁREA DE ENGENHARIA E ARQUITETURA - BAE -UNICAMP

	Mello, Samuel Ferreira de
M489e	Estudo sobre simulação composicional de reservatórios de petróleo com injeção de CO_2 / Samue Ferreira de MelloCampinas, SP: [s.n.], 2011.
	Orientador: Denis José Schiozer.
	Dissertação de Mestrado - Universidade Estadual de Campinas, Faculdade de Engenharia Mecânica e Instituto de Geociências.
	1. Equações de estado. 2. Camada pré-sal. 3 Simulação. 4. Reservatórios. 5. Poços de petróleo Reservatórios. I. Schiozer, Denis José. II. Universidade Estadual de Campinas. Faculdade de Engenharia Mecânica e Instituto de Geociências. III. Título.

Título em Inglês: Study of compositional simulation and injection of CO₂ over heterogeneous reservoirs

Palavras-chave em Inglês: Equations of state, Sub-salt layer, Simulation, Reservoirs, Oil wells - Reservoirs

Área de concentração: Reservatórios e Gestão

Titulação: Mestre em Ciências e Engenharia de Petróleo

Banca examinadora: Osvair Vidal Trevisan, Luis Glauber Rodrigues

Data da defesa: 28/02/2011

Programa de Pós Graduação: Ciências e Engenharia de Petróleo

UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE ENGENHARIA MECÂNICA E INSTITUTO DE GEOCIÊNCIAS PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS E ENGENHARIA DE PETRÓLEO

DISSERTAÇÃO DE MESTRADO ACADÊMICO

Estudo Sobre Simulação Composicional de Reservatórios de Petróleo com Injeção de CO₂

Autor: Samuel Ferreira de Mello Orientador: Prof. Dr. Denis José Schiozer

A Banca Examinadora composta pelos membros abaixo aprovou esta Dissertação: Prof. Dr. Denis José Schiozer Departamento de Engenharia de Petróleo- FEM -UNICAMP

Prof. Dr. Osvair Vidal Trevisan

autre

Departamento de Engenharia de Petróleo- FEM -UNICAMP

Vi que

Dr. Luis Glauber Rodrigues

PETROBRAS

in

Campinas, 28 de Fevereiro de 2011.

Dedicatória

Dedico esta dissertação à minha família e à minha companheira Luciana, a quem devo muito crescimento pessoal e espiritual. Sem o carinho e o apoio de todos vocês esse trabalho não teria sido possível. Outra pessoa a quem sou muito grato é o meu finado pai, Elias, que mesmo após falecer, me deixou uma estrutura de plenas condições para completar minha formação e alcançar meus objetivos. Também dedico minha dissertação aos meus inúmeros professores, mestres e educadores, que despertaram meu interesse pela ciência e pelo aprendizado.

Agradecimentos

Primeiramente, agradeco muito aos meus grandes amigos Artur, César, Gustavo, Bruno, Danilo, Valdir, e Maria Silvia Lopes pelo apoio e por me ajudarem de alguma forma a superar todos os momentos difíceis que passei nestes últimos três anos. Em segundo lugar, agradeço a todos os membros do grupo de pesquisa UNISIM com quem convivi durante meu mestrado, especialmente aos membros dessa comunidade que contribuíram de forma importante para esse trabalho. Agradeço principalmente ao meu orientador, Prof. Dr. Denis José Schiozer e a alguns pesquisadores: a Dra. Eliana Luci Ligero, o Dr. Célio Maschio, a Dra. Helena Finardi Álvares Scanavini, o Dr. Valmir Francisco Risso, o MSc. Eduin Orlando Muñoz Mazo e a Dra. Ana Teresa Ferreira da Silva Gaspar Ravagnani. Sou muito grato também ao Sr. Daniel Lopes de Carvalho, ao Sr. Paulo Soares Drummond, à Sra. Giselle A. Moreira Palermo e suas equipes por me terem prestado serviços inestimáveis de assistência técnica e processamento de dados. Gostaria de fazer um agradecimento especial a alguns docentes, pesquisadores, alunos e exalunos do DEP/FEM que de uma forma ou de outra também contribuíram com suas discussões, material ou ensinamentos para o desenvolvimento deste trabalho: agradeço ao Prof. Dr. Osvair Vidal Trevisan, ao Prof. MSc. Euclides José Bonet, à Prof. Dra. Rosângela Barros Zanoni Lopes Moreno, ao MSc. Ivan José Martins Costa, ao MSc. Juan Alberto Mateo Hernandez, ao MSc. Alexandre de Oliveira Parker, ao Dr. Nilo Ricardo Kim, ao Dr. Ronaldo Gonçalves Santos, ao MSc. Eduardo Ferreira Gaspari, ao Dr. Rogério Augusto Gasparetto Sé, à MSc. Lucia Ines Bonet Gonçalves, ao MSc. Manuel Gomes Correia, ao MSc. Guilherme Daniel Avansi, ao Eng. Henrique Araújo Cotrim e ao Eng. Rodrigo da Silva Carpio. Agradeço também a CAPES e ao CEPETRO pelo financiamento que possibilitou esse trabalho. Por último, agradeço todos os docentes, alunos do DEP e funcionários do CEPETRO que me foram excelentes colegas: Prof. Dr. Alexandre Campane Vidal, Prof. Antonio Carlos Bannwart, Prof. Dra. Maria Cristina Cunha, Prof Saul Suslick (in memoriam), Prof. Sergio de Pádua Iatchuk, Alice, Délcio, Fátima, Leandro, Luiz Benedicto Pompeo Neto, Michelle, Washington, Alexandre, André Damiani, Antonio Elias, Carlos Barreto, Darcy, David, Denis, Deolinda, Diogo, Felipe, Fernando, Guilherme, Hernani, João, Leonardo, Luciana, Luis, Márcio Sampaio, Marcos Henrique, Marcos Sebastião, Maurício, Njalo Sócrates, Paulo, Philipe, Rodrigo, Raphael, Sérgio, Thaís, Wânia e Zuzilene.

Resumo

MELLO, Samuel Ferreira, Estudo Sobre Simulação Composicional e Comportamento de Misturas de Petróleo e CO₂ em Reservatórios Heterogêneos, Campinas, Faculdade de Engenharia Mecânica, Universidade Estadual de Campinas, 2010. 200 p. Dissertação (Mestrado)

O aumento significativo do volume potencial de petróleo se deve às descobertas recentes de reservatórios de petróleo localizados em profundidades de camada pré-sal que contém CO₂, em alguns casos, em quantidade superior a 10% e frações voláteis, em condições de grande desvio do comportamento dos gases ideais. A literatura sugere que nesses casos é necessário o uso de modelos composicionais de simulação de reservatórios. Neste trabalho procurou-se através de estudos do comportamento de fluidos diagnosticar fatores decisivos do tratamento de fluidos para a aplicação confiável da simulação composicional em reservatórios de petróleo similares aos da camada pré-sal. Ênfase especial foi dada ao estudo do comportamento de fases e à simulação de método de recuperação melhorada de óleo baseados na injeção de CO₂. Para isto, foram obtidos da literatura um modelo geológico de reservatório heterogêneo, dados de permeabilidade relativa e dados PVT da caracterização de óleos leves (acima de 20° API de densidade) e ricos em CO₂ (3% a 20% da fração molar). Foi feita uma modelagem pelo ajuste termodinâmico de equações de estado aplicadas ao petróleo, onde foram testadas diferentes representações termodinâmicas (de 5 a 24 componentes), dois diferentes métodos de ajustes de equações de estado e dois modelos geológicos. Os resultados obtidos foram analisados e comparados em diferentes combinações para o estudo da sensibilidade de parâmetros críticos de fluido para a simulação composicional, como a escolha de pseudocomponentes, a escolha de equações de estado e a escolha de técnicas de ajuste de equações de estado. Os resultados ressaltam a importância não só da qualidade de dados experimentais adequados, como da escolha cautelosa de modelos teóricos termodinâmicos adequados, de técnicas de ajuste de dados experimentais e do uso cuidadoso da pseudoização. O estudo conclui que a alteração indiscriminada em qualquer uma destas variáveis pode comprometer a confiabilidade de um modelo de simulação de reservatórios. O estudo conclui que diferentes técnicas de regressão de equações de estado não são equivalentes e também mostra que a relação entre a pseudoização e a redução do tempo computacional não é direta. Os resultados deste trabalho são importantes para estudos futuros de simulação composicional.

Palavras Chave: Equações de Estado, Camada Pré-sal, Pseudoização, Pseudocomponentes, Simulação Composicional, Injeção de CO₂, Reservatórios Heterogêneos.

Abstract

MELLO, Samuel Ferreira, Study of Compositional Simulation and Injection of CO₂ Over Heterogeneous Reservoirs, Campinas, Faculty of Mechanical Engineering, Campinas State University, 2010, 200 p., M. Sc. Thesis.

The Brazilian expected oil potential has increased substantially after the discoveries of subsalt located deep oil reservoirs and they are regarded with huge economic importance for Brazil. Some of these fields contain above 10% molar CO₂ and volatile fractions, submitted to conditions that differ greatly from that described by ideal gas models. Compositional reservoir simulation is fundamental for the description of these phenomena. Although this technique improves the reservoir management, the modeling of fluid data is needed due to computational limitation and it adds uncertainties that affect the quality of the compositional simulation and are not studied very often. The objective of this work is to identify key factors in order to allow the reliable application of compositional simulation to petroleum reservoir analogous to the Brazilian subsalt reservoirs. Special highlighting was given to the phase behavior and simulation of enhanced oil recovery methods based on the CO₂ injection applied to heterogeneous reservoirs. This required the acquisition from literature of a heterogeneous reservoir geological model, of a singular set of relative permeability data and of several sets of PVT data characterizing light oils (over 20° API gravity) that are also CO₂ enriched (from 3% to 20% of molar fraction). From these PVT sets of data it was necessary to perform the thermodynamic match of equations of state applied to complex hydrocarbons mixtures. An oil with different extended and lumped thermodynamic versions was tested with two different equations of state matching methods from literature and two different geological models. The results obtained were analyzed and compared under different combinations for the sensitivity study of critical fluid parameters for the compositional simulation. This work emphasizes the importance not only of experimental data quality, but also of the equation of state choice, regression method choice and the careful use of lumping. The study concludes that the indiscriminate alteration in any of these variables may harm the model reliability of reservoir simulation. The study concludes that different PVT tuning techniques are not equivalent and also shows that the relation between lumping and computational time reduction is not direct. The results of this work are important for future compositional simulation studies.

Keywords: Equations of State (EOS), Sub-Salt Layer, Lumping, Pseudo-Components, CO₂ Flooding Enhanced Oil Recovery (EOR), Compositional Simulation, Heterogeneous Reservoirs

Índice

Lista de Figurasxvii
Lista de Tabelasxxix
1 Introdução1
1.1 Justificativa/Motivação2
1.2 Objetivos
2 Revisão Bibliográfica7
2.1 Simulação de Reservatórios7
2.2 Perfil de Reservatórios da Camada Pré-Sal 10
2.2.1 Exemplo de Características de Reservatório da Camada Pré-sal 12
2.2.2 Desafios de Perfuração de Reservatórios da Camada Pré-sal Brasileiros Comparados a seus Análogos de Outros Lugares do Mundo
2.3 Desafios Relacionados à Simulação e Otimização de Estratégias de Reservatórios Similares aos da Camada Pré-sal
2.3.1 Caracterização Pouco Conhecida da Rocha e Problemas de Molhabilidade 13
2.3.2 Modelagem Conceitual do Reservatório Pouco Conhecida 14
2.3.3 Principais Desafios Associados à Simulação Numérica de Reservatórios Carbonáticos
2.3.4 Principais Desafios Associados à Simulação Composicional de Óleos Leves
Ricos em CO ₂
2.4 Modelos Termodinâmicos Disponíveis nos Simuladores de Escoamento31
2.4.1 Equações de Estado Cúbicas Mais Importantes
2.5 Ajuste e Regressão de Equações de Estado (ou Tuning)
2.5.1 Técnicas para o Ajuste de EOS para Reprodução dos Dados PVT
Experimentais

2.5.3 Conceitos de Pseudoização de Fluidos para Otimização do Tempo
Computacional
2.6 Conceitos Básicos sobre Ensaios PVT
2.6.1 Destilação Fracionada TBP55
2.6.2 Cromatografia a Gás56
2.6.3 Liberação Diferencial
2.6.4 Expansão a Composição Constante
2.6.5 Expansão <i>Flash</i> ou Teste de Separador74
2.7 Pressão Mínima de Miscibilidade Termodinâmica (MMP)
2.7.1 Previsão da Pressão Mínima de Miscibilidade (MMP) na Injeção de CO ₂ 79
2.7.2 Efeito dos Mecanismos de Mistura em Pequena Escala no Desenvolvimento d
Miscibilidade da Injeção de CO ₂
2.7.3 Efeito da Molhabilidade da Rocha na Recuperação da Injeção por WAG 83
2.7.4 Modelos de Permeabilidade Relativa sob Condições Miscíveis
Metodologia
3.1 Etapa 1: PVT e Cálculo de Propriedades Críticas
3.2 Etapa 2: Pseudoização da Fração Pesada
3.3 Etapa 3: Pseudoização Final e Calibração da Equação de Estado
3.4 Etapa 4: Cálculo dos Envelopes de Fases
3.5 Etapa 5: Cálculo de MMP e Comparações para Julgar Qualidade do Ajuste93
3.6 Etapa 6: Aplicação, Simulação Composicional e Comparação Quantitativa 94
3.7 Etapa 7: Análise e Comparação de Resultados94
Aplicações

4.1 Aplicação 1: Reservatório Homogêneo, Alta Pressão	
4.2 Aplicação 2: Reservatório Homogêneo, Baixa Pressão	
4.3 Aplicação 3: Reservatório Heterogêneo, Alta Pressão	
4.4 Análises Empregadas para Comparação	
4.4.1 Escala de Reservatório	
4.4.2 Escala de Bloco	
5 Resultados e Discussões	
5.1 Propriedades Críticas Utilizadas por Fração	
5.2 Pseudoização da Fração Pesada	
5.3 Obtenção da Equação de Estado e Curvas de Calibração Experimento de Liberação Diferencial	da Regressão do
5.4 Curvas dos envelopes de fases	
5.5 Diferenças em Escala de Reservatório entre o Comportame Caracterizações de Fluidos, "Reservatório Homogêneo", Cenário "Baixa Pr	ento de Diferentes essão"111
5.6 Diferenças em Escala de Reservatório entre o Comportame Caracterizações de Fluidos, "Reservatório Homogêneo", Cenário "Alta Pres	ento de Diferentes ssão" 123
5.7 Diferenças em Escala de Bloco entre o Comportamen Caracterizações de Fluidos, Caso "Reservatório Homogêneo", "Baixa Press	to de Diferentes ão" 134
5.8 Diferenças em Escala de Reservatório entre o Comportame Caracterizações de Fluidos, Caso "Reservatório Heterogêneo", "Alta Pressã	ento de Diferentes
6 Conclusões/Recomendações	
6.1 Conclusões	
6.2 Trabalhos Futuros	
7 Bibliografia	
A. Apêndice	

A.1 Notas sobre o Perfil de Reservatórios da Camada Pré-sal para a Otimização de
Estratégias167
A.1.1 Produção de Reservatórios da Camada Pré-sal com Elevado Custo 167
A.1.2 Possibilidade de Formações Descontínuas e Falhas em Reservatórios da Camada Pré-sal
A.2 Principais Desafios Associados ao Gerenciamento de Reservatórios em Águas Profundas
A.3 Principais Desafios Associados à Produção de Reservatórios com Alto Teor de CO ₂ 170
A.3.1 Tecnologias Marítimas de Separação e Reciclo de CO ₂ 170
A.4 Modelos Termodinâmicos Disponíveis nos Simuladores de Escoamento, Continuação
A.4.1 Revisão Histórica sobre a Evolução das Equações de Estado 171
A.4.2 Equação de Estado de Zudkevitch-Joffe-Redlich-Kwong 172
A.4.3 Técnicas para a Estimativa das Propriedades Críticas das Frações174
B. Anexo: Curvas de Ajuste dos Dados PVT181
I. Método de Pedersen181
II. Método de Coats e Smart

Lista de Figuras

Figura 2.1: Mapa da província do Pré-sal brasileira. Fonte: (Formigli Filho, 2008)11
Figura 2.2: Exemplo de heterogeneidades do Pré-sal. Fonte: Formigli Filho, "Pré-sal e
seus Desafios", 2009
Figura 2.3: Diagrama de permeabilidade relativa bifásico ilustrando a histerese da água no
caso de reservatório molhável a óleo. Fonte: Jarrel et al., 2002
Figura 2.4: Diagrama de permeabilidade relativa bifásico ilustrando a histerese no caso de
dissolução de CO ₂ . Fonte: Jarrel et al., 2002
Figura 2.5: Comportamento de fases de uma mistura óleo-CO ₂ a 314,2K. Fonte: Metcalfe
e Yarborough, 197927
Figura 2.6: Analisando uma amostra de fundo de poço54
Figura 2.7: Obtenção de uma amostra de óleo de separador para análise TBP55
Figura 2.8: Representação esquemática de um experimento de depleção diferencial.
Fonte: Pedersen e Christensen, 2007
Figura 2.9: Fator B_o em função da pressão no experimento de liberação diferencial
(Pedersen e Christensen, 2007)
Figura 2.10: Fator R_s em função da pressão no experimento de liberação diferencial67
Figura 2.11: Esquema de um experimento de Expansão a Composição Constante. Fonte:
Pedersen e Christensen, 2007
Figura 2.12: Curva de dropout líquido (círculos, linha continua, escala no eixo vertical

Figura 2.13: Curva de *fator Y* (círculos, linha contínua, eixo vertical esquerdo) e curva de volume relativo (triângulos, linha pontilhada, eixo vertical direito) para experimento de expansão a massa constante na mistura de óleo da Tabela 2.20. *Fonte:* Pedersen e Christensen, 200774

Figura 2.14: Representação esquemática de um experimento de separador de três estágios
Figura 2.15: Locus crítico de um componente puro. Fonte: (Whitson e Brulé, 2000)82
Figura 3.1: Metodologia de obtenção de modelo termodinâmico por equação de estado .90
Figura 3.2: Metodologia de Ajuste da Equação de Estado91
Figura 3.3: Método de Pedersen (1989)92
Figura 3.4: Método de Coats e Smart (1984)93
Figura 3.5: Fluxograma de análise da sensibilidade da descrição do fluido95
Figura 4.1: Curva de permeabilidade relativa K _{ro} vs S _g 98
Figura 4.2: Curva de permeabilidade relativa K _{row} vs S _w 98
Figura 4.3: Mapa 3D logarítmico de permeabilidade horizontal (mD) do modelo heterogêneo de simulação do estudo101
Figura 5.1: Envelopes de fases, Método de Pedersen SRK (observação, os pontos sobre as curvas representam os pontos críticos dos respectivos envelopes de fase)105
Figura 5.2: Envelopes de fases, Método de Coats e Smart P-R108
Figura 5.3: Envelopes de fases, melhores ajustes para o Método de Coats e Smart e para o Método de Pedersen
Figura 5.4: Envelopes de fases, todos os ajustes para o Método de Coats e Smart e para o Método de Pedersen
Figura 5.5: Produção acumulada de óleo para diferentes pseudoizações do fluido, métodos de Pedersen versus Coats e Smart, "Reservatório Homogêneo", Cenário "Baixa Pressão"112
Figura 5.6: Produção de óleo instantânea (vazão) para diferentes pseudoizações, métodos de Pedersen versus Coats e Smart, "Reservatório Homogêneo", Cenário "Baixa Pressão"115
Figura 5.7: Tempo Computacional necessário para cada descrição do mesmo fluido em função do número de pseudocomponentes, "Reservatório Homogêneo", Cenário "Baixa Pressão"

Figura 5.12: Fator de Recuperação de óleo para diferentes pseudoizações do fluido, métodos de Pedersen versus Coats e Smart, caso "Homogêneo", "Alta Pressão"......125

Figura 5.14: Produção (vazão) de óleo instantânea para algumas pseudoizações do fluido, métodos de Pedersen versus Coats e Smart, caso "Homogêneo", "Alta Pressão"......127

Figura 5.15: Tempo Computacional necessário para cada descrição do mesmo fluido em função do número de pseudocomponentes utilizado, caso "Homogêneo", "Alta Pressão".......129

Figura 5.30: Produção acumulada de óleo para diferentes pseudoizações do fluido, métodos de Pedersen versus Coats e Smart, Caso "Reservatório Heterogêneo", "Alta Pressão"146

Figura 5.31: Produção de óleo instantânea (vazão) para todas pseudoizações do fluido, métodos de Pedersen versus Coats e Smart, Caso "Reservatório Heterogêneo", "Alta Pressão"147

Figura 5.33: Tempo Computacional necessário para cada descrição do mesmo fluido em função do número de pseudocomponentes utilizado, "Reservatório Heterogêneo", "Alta Pressão"

Figura 5.34: Número de Iterações do Solver necessário para cada descrição do mesmo fluido em função do número de pseudocomponentes utilizado, Caso "Reservatório Heterogêneo", Figura A.1: Comparação de tamanho: unidade de membranas versus unidade de amina. Fonte: Dortmundt e Doshi, 1999.....171 Figura B.1: R_s (descrita na legenda por GOR) calculada para o óleo, tratado pelo método de Pedersen, 5 componentes, e volume de óleo relativo (ROV) da célula de liberação diferencial. Figura B.2: R_s (descrita na legenda por GOR) calculada para o óleo, tratado pelo método de Pedersen, 5 componentes pesado, e volume de óleo relativo da célula de liberação diferencial. Figura B.3: R_s (descrita na legenda por GOR) calculada para o óleo, tratado pelo método de Pedersen, 6 componentes, e volume de óleo relativo (ROV) da célula de liberação diferencial. Figura B.4: R_s (descrita na legenda por GOR) calculada para o óleo, tratado pelo método de Pedersen, 6 componentes pesado, e volume de óleo relativo (ROV) da liberação diferencial. Figura B.5: R_s (descrita na legenda por GOR) calculada para o óleo, tratado pelo método de Pedersen, 7 componentes, e volume de óleo relativo (ROV) da célula de liberação diferencial. Figura B.6: R_s (descrita na legenda por GOR) calculada para o óleo, tratado pelo método de Pedersen, 7 componentes pesado, e volume de óleo relativo (ROV) da liberação diferencial184 Figura B.7: R_s (descrita na legenda por GOR) calculada para o óleo, tratado pelo método de Pedersen, 9 componentes, e volume de óleo relativo (ROV) da célula de liberação diferencial Figura B.8: R_s (descrita na legenda por GOR) calculada para o óleo, tratado pelo método de Pedersen, 11 componentes, e volume de óleo relativo (ROV) da célula de liberação diferencial

Figura B.9: R_s (descrita na legenda por GOR) calculada para o óleo, tratado pelo método de Pedersen, 15 componentes, e volume de óleo relativo (ROV) da célula de liberação diferencial Figura B.10: R_s (descrita na legenda por GOR) calculada para o óleo, tratado pelo método de Pedersen, 20 componentes, e volume de óleo relativo (ROV) da célula de liberação diferencial Figura B.11: R_s (descrita na legenda por GOR) calculada para o óleo, tratado pelo método de Pedersen, 24 componentes, e volume de óleo relativo (ROV) da célula de liberação diferencial Figura B.12: Densidade relativa calculada para o óleo (Oil SG) e densidade relativa para o gás (Gas SG), descrito pelo método de Pedersen, 5 componentes......187 Figura B.13: Densidade relativa calculada para o óleo (Oil SG) e densidade relativa para o gás (Gas SG), descrito pelo método de Pedersen, 5 componentes pesado......187 Figura B.14: Densidade calculada para o óleo (Oil SG) e densidade relativa para o gás Figura B.15: Densidade calculada para o óleo (Oil SG), descrito pelo método de Pedersen, Figura B.16: Densidade calculada para o óleo (Oil SG) e densidade relativa para o gás Figura B.17: Densidade calculada para o óleo (Oil SG) e densidade relativa para o gás (Gas SG), descrito pelo método de Pedersen, 7 componentes pesado......189 Figura B.18: Densidade calculada para o óleo (Oil SG) e densidade relativa para o gás

Figura B.19: Densidade calculada para o óleo (Oil SG) e densidade relativa para o gás

Figura B.21: Densidade calculada para o óleo (Oil SG) e densidade relativa para o gás
(Gas SG), descrito pelo método de Pedersen, 20 componentes
Figura B.22: Densidade calculada para o óleo (Oil SG) e densidade relativa para o gás
(Gas SG), descrito pelo método de Pedersen, 24 componentes
Figura B.23: Fator de compressibilidade do gás, descrito pelo método de Pedersen, 5 componentes
Figura B.24: Fator de compressibilidade do gás, descrito pelo método de Pedersen, 5 componentes pesado
Figura B.25: Fator de compressibilidade do gás, descrito pelo método de Pedersen, 6 componentes
Figura B.26: Fator de compressibilidade do gás, descrito pelo método de Pedersen, 6 componentes pesado
Figura B.27: Fator de compressibilidade do gás, descrito pelo método de Pedersen, 7 componentes
Figura B.28: Fator de compressibilidade do gás, descrito pelo método de Pedersen, 7 componentes pesado
Figura B.29: Fator de compressibilidade do gás, descrito pelo método de Pedersen, 9 componentes
Figura B.30: Fator de compressibilidade do gás, descrito pelo método de Pedersen, 11 componentes
Figura B.31: Fator de compressibilidade do gás, descrito pelo método de Pedersen, 15 componentes
Figura B.32: Fator de compressibilidade do gás, descrito pelo método de Pedersen, 20 componentes
Figura B.33: Fator de compressibilidade do gás, descrito pelo método de Pedersen, 24 componentes

Figura B.34: Viscosidade do óleo, descrito pelo método de Pedersen, 5 componentes...198

Figura B.46: R_s(GOR) calculada para o óleo, descrito pelo método de Coats e Smart, 5 componentes pesado, e volume de óleo relativo (ROV) da célula de liberação diferencial204

Figura B.48: R_s(GOR) calculada para o óleo, descrito pelo método de Coats e Smart, 6 componentes pesado, e volume de óleo relativo (ROV) da célula de liberação diferencial205

Figura B.50: $R_s(GOR)$ calculada para o óleo, descrito pelo método de Coats e Smart, 7 componentes pesado, e volume de óleo relativo (ROV) da célula de liberação diferencial206

Figura B.52: R_s(GOR) calculada para o óleo, descrito pelo método de Coats e Smart, 11 componentes, e volume de óleo relativo (ROV) da célula de liberação diferencial207

Figura B.63: Densidade relativa calculada para o óleo (Oil SG) e para o gás (Gas SG),

Figura B.65: Densidade relativa calculada para o óleo (Oil SG) e para o gás (Gas SG), descrito pelo método de Coats e Smart 20 componentes
desento pero metodo de Coars e Smart, 20 componentes
Figura B.66: Densidade relativa calculada para o óleo (Oil SG) e para o gás (Gas SG),
descrito pelo método de Coats e Smart, 24 componentes
Figura B.67: Fator de compressibilidade do gás, descrito pelo método de Coats e Smart, 5 componentes
Figura B.68: Fator de compressibilidade do gás, descrito pelo método de Coats e Smart, 5 componentes pesado
Figura B 69: Eator de compressibilidade do gás, descrito pelo método de Coats e Smart, 6
componentes
Figura B.70: Fator de compressibilidade do gás, descrito pelo método de Coats e Smart, 6
componentes pesado
Figura B.71: Fator de compressibilidade do gás, descrito pelo método de Coats e Smart, 7
componentes
Figura B.72: Fator de compressibilidade do gás, descrito pelo método de Coats e Smart, 7 componentes pesado
componentes pesado
Figura B.73: Fator de compressibilidade do gás, descrito pelo método de Coats e Smart, 9 componentes
Figura B 74: Fator de compressibilidade do gás, descrito pelo método de Coats e Smart
11 componentes
Figura B.75: Fator de compressibilidade do gás, descrito pelo método de Coats e Smart,
15 componentes
Figura B.76: Fator de compressibilidade do gás, descrito pelo método de Coats e Smart, 20 componentes
- Eisense D. 77. Estas de commenceibilidade de séculosesite este sufte de de C. (
Figura B. //: Fator de compressionidade do gas, desento pelo metodo de Coats e Smart,
24 componentes

Figura B.78: Viscosidade do óleo, descrito pelo método de Coats e Smart, 5 componentes
Figura B.79: Viscosidade do óleo, descrito pelo método de Coats e Smart, 5 componentes pesado
Figura B.80: Viscosidade do óleo, descrito pelo método de Coats e Smart, 6 componentes
Figura B.81: Viscosidade do óleo, descrito pelo método de Coats e Smart, 6 componentes
Figura B.82: Viscosidade do óleo, descrito pelo método de Coats e Smart, 7 componentes
Figura B.83: Viscosidade do óleo, descrito pelo método de Coats e Smart, 7 componentes
pesado
Figura B.85: Viscosidade do óleo, descrito pelo método de Coats e Smart, 11 componentes
Figura B.86: Viscosidade do óleo, descrito pelo método de Coats e Smart, 15 componentes
Figura B.87: Viscosidade do óleo, descrito pelo método de Coats e Smart, 20 componentes
Figura B.88: Viscosidade do óleo, descrito pelo método de Coats e Smart, 24 componentes

Lista de Tabelas

Tabela 2.1: Dados de composição de Óleo natural 42° API, RGO 132,9 m^3/m^3 (746 ft ³ /bbl), 3,55% de CO ₂
Tabela 2.2: Dados de Liberação Diferencial de Óleo natural 42° API, RGO 132,9 m ³ /m ³ (746 ft ³ /bbl), 3,55% de CO ₂ , realizado em T= 92,8° C
Tabela 2.3: Coeficientes de interação binários (BIP's) para a PR EOS e SRK EOS38
Tabela 2.4: Correlação de translação de volume para frações C ₇₊ com a PR EOS43
Tabela 2.5: Coeficientes de translação de volume para componentes puros para a PR EOS e SRK EOS
Tabela 2.6: Propriedades Generalizadas de grupos C ₆ + do petróleo53
Tabela 2.7: Exemplo de análise TBP 55
Tabela 2.8: Composição de amostra de gás determinada pela análise CG57
Tabela 2.9: Composição molar da amostra de gás da Tabela 2.12 com componentesindividuais agrupados em frações de número de carbono
Tabela 2.10: Composição molar da amostra de óleo do exemplo62
Tabela 2.11: Resultados do Experimento de Liberação Diferencial sobre o óleo deexemplo da Tabela 2.14
Tabela 2.12: Resultados principais de um experimento de liberação diferencial realizado sobre uma mistura de óleo
Tabela 2.13: Resultados principais de um experimento de expansão a composiçãoconstante realizado sobre uma mistura de óleo
Tabela 2.14: Composição molar da mistura de gás condensado Retrógrado do exemplo da Tabela 2.19
Tabela 2.19: Resultados do experimento de expansão a composição constante sobre o gás
condensado retrógrado de exemplo da Tabela 2.1870

Tabela 2.16: composição molar da mistura de gás condensado retrógrado do exemplo72
Tabela 2.17: Resultados do experimento de expansão a composição constante sobre o
óleo de exemplo da Tabela 2.16
Tabela 2.18: Resultados relatados de um experimento de teste de separador76
Tabela 2.19: Composição molar do óleo do exemplo de teste de separador76
Tabela 2.20: Resultados principais de um experimento de teste de separador77
Tabela 3.1: Conjunto de dados de viscosidade estimado por correlações (T=92,8 °C)87
Tabela 4.1: Parâmetros de operação dos poços, cenário "Alta Pressão"
Tabela 4.2: Parâmetros de operação dos poços, cenário "Baixa Pressão"100
Tabela 5.1: Propriedades Críticas de Substâncias Puras 103
Tabela 5.2: Pressão de bolha calculada por regressão em diferentes grupos de
pseudoização
Tabela 5.3: Produção acumulada para diferentes pseudoizações e tratamentos, caso
"Homogêneo", "Baixa Pressão"
Tabela 5.4: Resultado da MMP estimada para diferentes pseudoizações e tratamentos de
fluido
Tabela 5.5: Produção acumulada para diferentes pseudoizações e tratamentos, caso
"Homogêneo", "Alta Pressão"

Nomenclatura

- B_o: Fator volume de formação do óleo
- Bg: Fator volume de formação do gás

Bt: Fator volume de formação total

DF: Destilação fracionada (Fractionated Distillation), técnica analítica

EOS: Modelo de equação de estado (*Equation of State*)

EOR: Método de recuperação melhorada (Enhanced Oil Recovery)

GC: Cromatografia Gasosa, técnica analítica

MMP: Pressão mínima de miscibilidade (Minimum miscibility pressure)

pc: Pressão crítica

PVT: Dados experimentais de caracterização do petróleo utilizados na sua modelagem termodinâmica

RGO: Razão Gás-Óleo

TBP: (True-boiling point), variação específica da técnica analítica destilação fracionada

- T_c: Temperatura crítica
- vc: Volume crítica

ω: Fator acêntrico

 Ω_a : Coeficiente da equação de estado omega a

 Ω_b : Coeficiente da equação de estado omega b

1 Introdução

A expectativa de aumento significativo da produção de petróleo no Brasil se deve, dentre outros fatores, às descobertas recentes de imensos reservatórios de petróleo localizados em profundidades de camada pré-sal. Não apenas já foram confirmadas volumes expressivos nos Campos de Carioca, Franco, Iara, Tiro, Parque das Baleias, Lula (ex-Tupi) e Júpiter, como ainda há grandes campos em etapa de avaliação, Bem-te-vi, Caratinga, Caramba, Guará, Iracema, Libra, Ogum ou Azulão e Parati (Formigli Filho *et al.*, 2009; Jornal O Globo, 2010)

O desenvolvimento da produção a partir destes reservatórios promete grandes recompensas, mas enfrenta grandes desafios do ponto de vista científico, técnico e econômico. Os reservatórios da camada pré-sal brasileiros possuem, em geral, "óleo leve", com densidade acima de 26° API, e baixo teor de enxofre (Beltrão *et al.*, 2009), características atraentes economicamente, pelo rendimento em derivados de maior valor agregado, como gasolina e lubrificantes. Também possuem algum teor de CO_2 , em alguns casos superior a 10% molar.

Muitas desses volumes se situam, no entanto, em localizações marítimas muito distantes (a mais de 200 Km da costa), a grandes profundidades (acima de 2000 m), possuem grandes volumes de gás associado, requerem a perfuração da camada de sal mecanicamente instável e de reservatórios carbonáticos fraturados, exigem elevados investimentos e a sua produção enfrenta consideráveis obstáculos técnicos e de custos de tecnologia. Não há dúvida, portanto, que isso implicará em grande risco e em elevado investimento e custo de produção.

O sucesso na seleção de estratégias para a produção a partir destes reservatórios pré-sal é essencial e estratégico para o desenvolvimento do setor petrolífero do Brasil e da economia nacional em médio e longo prazo e depende da simulação de reservatórios confiável.

Particularmente no caso de campos do pré-sal, sabe-se que grande volume do óleo contém expressiva quantidade de gases CH₄, CO₂ e frações voláteis, em condições de grande desvio do comportamento dos gases ideais. Por isso, e por outros motivos a serem revisados a seguir, são necessários modelos físicos composicionais de simulação de reservatórios, os quais estão associados a um tratamento termodinâmico mais elaborado. A revisão bibliográfica trouxe evidências mais fortes sugerindo esta abordagem. O uso da simulação composicional é necessário para o sucesso da seleção de estratégias de produção e o sucesso na sua aplicação requer que

sejam respondidas uma série de questões a respeito da representação de fluidos e de como a modelagem de fluidos interage com a qualidade da simulação composicional.

Um reservatório de petróleo, contendo uma mistura complexa de hidrocarbonetos, não pode ser simulado de forma, simultaneamente, extremamente precisa, adequadamente rápida e computacionalmente barata usando os recursos computacionais de hoje. Isso implica que a tomada de decisões baseadas no uso simulação de composicional aplicada requer simplificações e abordagens de modelagem de fluidos e de reservatórios que podem ou não ser aceitáveis para a reprodução do comportamento físico do sistema mas que reduzam o tempo computacional para um patamar aceitável.

O foco dessa dissertação é estudar como a representação de frações do petróleo por pseudocomponentes, a escolha de modelos de equações de estado e o emprego de métodos de regressão de equações de estado são capazes de alterar a descrição do comportamento de uma amostra de óleo leve, com teor de CO_2 , submetida à injeção de CO_2 em um reservatório de alta pressão. Pretende-se explorar a influência das incertezas relativas aos fluidos na simulação melhorada por injeção de CO_2 e o comportamento em diferentes condições de operação em um reservatório homogêneo e em um reservatório altamente heterogêneos sob alta pressão, quando a pseudoização é aplicada a um óleo com CO_2 .

1.1 Justificativa/Motivação

A simulação de escoamento de reservatórios do pré-sal possui grande potencial para melhorias que tornem as previsões de produção mais confiáveis e, consequentemente, permitam melhores decisões nos estudos de seleção de estratégias de produção. Não há grande quantidade de aplicações atualmente disponíveis na literatura sobre a seleção de estratégias para a produção a partir de reservatórios pré-sal e o desenvolvimento disso depende de forma crítica do conhecimento da simulação composicional e do comportamento de fluidos. A proposta deste trabalho é a de aprofundar a compreensão do comportamento de fluidos relacionados à simulação composicional de reservatórios heterogêneos submetidos à elevada pressão (580 Kgf./cm²) contendo fluidos ricos em CO_2 sujeitos a métodos de recuperação melhorada.

Girão (1995) estudou o efeito que o uso de diferentes modelos teóricos para o cálculo de propriedades críticas causam no tratamento de frações pesadas e pseudocomponentes e concluiu

que eles são uma fonte de incertezas na modelagem do comportamento de fluidos. Este estudo analisa se a forma pela qual a pseudoização e o ajuste das equações de estado são feitos também é crítica e determinante na confiabilidade das simulações composicionais. A incerteza gerada pelo tratamento de fluidos é um fator pouco estudado na literatura e ocorre devido aos artifícios usados para a redução do tempo computacional.

Há grandes desafios no desenvolvimento de reservatórios do pré-sal, pois são várias as diferenças em relação aos reservatórios já estudados no mundo: grandes profundidades, presença de CO_2 em grande quantidade, reservatórios carbonáticos altamente heterogêneos de grandes dimensões, entre outros. Por estes motivos, são necessários estudos multidisciplinares para entender melhor o problema físico e as alternativas de produção.

Neste contexto, se coloca o presente trabalho. A primeira motivação é a necessidade de estudar bem o fluido e qual deve ser o detalhamento da modelagem composicional para representar adequadamente o fenômeno físico de escoamento de um fluido leve rico em CO_2 em reservatórios altamente heterogêneos, de grandes dimensões, sob alta pressão. A viabilidade deste estudo deve considerar o tempo computacional, pois o comportamento de uma mistura complexa de hidrocarbonetos como o petróleo não pode ser simulado simultaneamente de forma rápida e detalhada usando os recursos computacionais de hoje. Isso implica que o modelo composicional requer simplificações (como a pseudoização e o uso de modelos calibrados como equações de estado que representem misturas) que podem ou não ser aceitáveis para a reprodução do comportamento do sistema. Assim, a caracterização de fluidos passa a ser uma fonte importante de incertezas na simulação de reservatórios, não só devido a erros experimentais. O que ocorre é que a modelagem de dados PVT se trata de um problema inverso, no qual diferentes técnicas e combinações de parâmetros de ajuste, com diferentes equações de estado levam a um mesmo resultado. Estudos apresentados na literatura sugerem que o limite mínimo tolerável para aplicação da pseudoização é 6 componentes. Whitson e Brulé (2000) alegam que o uso de 5 a 8 pseudocomponentes é suficiente para representar o comportamento de fluidos de qualquer processo. Não se tem certeza que essa afirmação é de validade universal. Pedersen et al. (1989) já estudaram anteriormente os limites da pseudoização para um banco de dados de óleos do Mar do Norte e sugerem que o uso de apenas 6 pseudocomponentes é capaz de reproduzir satisfatoriamente o comportamento de uma mistura de petróleo. Entretanto, acredita-se que um novo padrão de variáveis, tais como: maior teor de gás carbônico (acima de 10%), elevadas

pressões e reservatórios heterogêneos pode reduzir a qualidade da simulação de um fluido pseudoizado de uma maneira desconhecida em reservatórios de óleos atípicos como o pré-sal. Isso pode trazer erros significativos numa pseudoização com apenas 6 pseudocomponentes. É necessário, então realizar estudos para verificar se há erros significativos no novo padrão de óleos do pré-sal, e se as conclusões de Pedersen et al. (1989) sobre a pseudoização feita para óleos do Mar do Norte podem ou não ser válidas para outros sistemas. É também necessário diagnosticar na descrição de um mesmo óleo se as escolhas de diferentes técnicas de ajuste de dados PVT, diferentes equações de estado e diferentes pseudoizações levam aos mesmos resultados. Essa análise possui impacto direto sobre o tempo de simulação de um cenário do pré-sal e sobre o retorno econômico da seleção de estratégias de produção. Outra motivação é a presença de CO₂ e a decisão de sua reinjeção por questões ambientais, com consequente necessidade de estudos sobre injeção de CO₂ para melhorar o desempenho da estratégia de produção. A reinjeção de um grande volume de CO₂ que de outra forma seria ventilado para atmosfera vem ganhando importância crescente no setor de petróleo devido a questões ambientais, uma vez que as crescentes emissões antropogênicas de gás carbônico e metano são as principais responsáveis pelo aquecimento global, ameaçam o futuro deste planeta e possuem grande potencial de danos econômicos das mais diversas naturezas nas próximas décadas (Gore, 2007; Stern, 2007).

1.2 Objetivos

O objetivo principal do presente trabalho foi estudar o comportamento de fluidos na produção de petróleos com presença de CO₂ para melhorar o processo de previsão da produção de campos de petróleo semelhantes ao do pré-sal. Outros objetivos secundários foram

- Elaborar um modelo sintético e obter um método para simulação do reservatório heterogêneo a ser empregado em trabalhos posteriores para a seleção de estratégias de produção de reservatórios similares aos da camada pré-sal brasileiros, com ênfase especial no tratamento de fluidos e na simulação composicional.
- Construir um modelo de simulação do tipo composicional com um modelo termodinâmico simples e satisfatório, balanceando o tempo computacional com a precisão dos resultados e a capacidade de convergência numérica.

- Fazer diferentes ajustes de fluidos de maneira estritamente documentada na literatura para a descrição do óleo e comparar diferentes formas de reduzir o tempo computacional. Investigar a confiabilidade e capacidade de reproduzir o comportamento físico de diferentes técnicas de ajuste.
- Utilizar modelos sintéticos de simulação para comparar a reprodução do comportamento físico de diferentes descrições de um óleo similar ao do pré-sal.

Foram necessárias três premissas principais para a realização deste trabalho:

- Foi considerado que a temperatura em que os dados PVT foram obtidos é a mesma do modelo de reservatório.
- 2- Foi também considerado que as equações de estado usadas, que foram calibradas para uma faixa de dados entre a pressão atmosférica e a pressão de bolha (26790 KPa), apresentaram comportamento satisfatório para extrapolações na pressão de até 56540 KPa, uma vez que em um dos estudos foi necessária a comparação qualitativa da diferença de comportamento de fluidos em condições acima da pressão de bolha.
- 3- Uma vez que não haviam dados experimentais de viscosidade disponíveis e se tratava de um estudo qualitativo, foram calculados dados de viscosidade a partir de uma correlação de viscosidade empregando o conjunto de dados PVT. Esse procedimento forneceu curvas de viscosidade idênticas para os mesmos dados, mesma correlação e diferentes descrições de fluido. Essa hipótese não comprometeu a comparação relativa de incertezas do modelo de fluido.

2 Revisão Bibliográfica

2.1 Simulação de Reservatórios

No gerenciamento de reservatórios de petróleo uma ferramenta extremamente útil é a simulação numérica de escoamento, cujo principal objetivo é estimar o comportamento de pressões, saturações e produções de uma jazida de hidrocarbonetos submetida às configurações alternativas de poços ou condições de produção.

Esta tecnologia encontra-se em constante evolução de modo a propiciar maior compatibilidade entre o modelo numérico e as características geológicas dos reservatórios. O ganho de qualidade é obtido a partir do desenvolvimento de simuladores mais completos (com um maior número de recursos), técnicas computacionais otimizadas, computadores mais rápidos, facilidades gráficas etc. (Pizarro, 1992).

Os modelos mais utilizados são os chamados Black-Oil, onde somente três componentes estão presentes: óleo, água e gás (Peaceman, 1977). Este modelo tem por hipóteses:

- Temperatura constante;
- Admitem-se apenas três fases, uma fase óleo, uma fase aquosa, e uma fase gasosa;
- Equilíbrio instantâneo entre as fases;
- Os componentes voláteis podem ser aproximados por um único componente gás próximo ao metano, esse que pode estar dissolvido na fase gasosa ou fase óleo;
- Não há transferência de massa entre a fase aquosa e as demais fases e
- Ausência de reações químicas.

Modelos menos utilizados são os modelos composicionais, devido ao maior esforço computacional, mas necessários em alguns problemas físicos onde o tratamento simplificado de fluidos por modelo Black-Oil não é suficiente para modelar o problema. Este é o caso de reservatórios de óleos leves com presença de CO_2 na sua composição e sujeitos a recuperação miscível ou onde uma ou mais das suposições acima não podem ser asseguradas, quando o efeito da fase volátil é importante.

8

O processo de simulação é composto, basicamente, das seguintes etapas (Mezzomo, 2001):

- Caracterização de reservatórios,
- Definição e construção do modelo de simulação,
- Ajuste do histórico de produção (quando há presença de dados de produção), e
- Previsão de comportamento (extrapolação).

A caracterização do reservatório é a fase inicial do estudo, na qual todas as informações disponíveis são utilizadas para conceber modelos geológicos e de escoamento que representem adequadamente a jazida. Com este objetivo, geram-se informações sobre a geometria do sistema, distribuições de permeabilidades e porosidades, propriedades dos fluidos (PVT) e de interação com a rocha (permeabilidades relativas e pressões capilares) assim como distribuições iniciais de pressões e saturações. A maneira como são tratadas as propriedades dos fluidos nesta etapa possui grande impacto na qualidade da simulação.

Com base na qualidade da caracterização e nos objetivos do estudo, define-se um modelo de simulação que incorpore adequadamente as características do reservatório. Parâmetros como número de blocos e de camadas, tipo de modelo (Black-Oil, composicional, etc.), geometria (retangular, radial, etc.) ou número de fases (monofásico, bifásico, trifásico, etc.) são definidos nesta etapa.

Particularmente no caso de reservatórios de óleo volátil sob injeção miscível em camada pré-sal, como o de Lula, o uso de modelos de simulação composicionais representa com mais exatidão seu comportamento físico e de escoamento de fluidos quando o CO_2 está presente (Jarrell *et al.*, 2002).

O método composicional deve ser aplicado neste caso, por haver:

- Grande variação na concentração e no número de componentes de cada fase.
- Estudos do processo de reinjeção de grande volume de CO₂ e técnicas de injeção miscível.
- Presença de óleos voláteis. Diversos pesquisadores (Lohrenz et al., 1963), (Reudelhuber e Hindis, 1957) demonstraram que o balanço de materiais composicional para a depleção de reservatórios de óleo voláteis podem prever de

2 a 4 vezes a mais a recuperação de líquido em superfície que seriam previstas por meio de balanço de materiais convencionais baseados em modelos de simulação Black-Oil.

- Grande volatilização de hidrocarbonetos leves devido à injeção de CO₂.
- Grandes quantidades de gases com parâmetros de iteração binários bem distintos dos hidrocarbonetos (como o CO₂) e em condições não ideais (alta pressão, baixa temperatura) e próximas de suas regiões críticas.
- Elevada descompressão dos gases do reservatório na condição do separador.
- Possível formação por reação química/deposição de subprodutos (que causam incrustação, como hidratos, parafinas e asfaltenos).

Segundo Garcia (2005), que avaliou tanto a simulação composicional quanto as simulações Black-Oil e Pseudo-Miscível para a reprodução do comportamento de um caso real de sequestro e injeção de CO_2 em um reservatório carbonático de óleo, o modelo de fluido composicional foi, com grandes diferenças, muito mais confiável para a avaliação de processos de recuperação melhorada por injeção de CO_2 que outros modelos. Garcia também concluiu que tanto o modelo pseudo-miscível quanto o modelo Black-Oil não são capazes de representar fielmente o processo miscível entre o CO_2 e o fluido de reservatório na formação estudada. Isso complementa a análise anterior e sugere fortemente que a simulação composicional deve receber prioridade no estudo de reservatórios para reservatórios heterogêneos submetidos a altas pressões e com grande presença de CO_2 .

A pressão de mínima miscibilidade termodinâmica (MMP) é a pressão acima da qual a injeção de um solvente causa o fenômeno de miscibilidade a múltiplos contatos. Segundo uma explicação clássica de Metcalfe e Yarborough (1979), o deslocamento miscível entre óleo cru e CO_2 é causado pela extração de hidrocarbonetos do óleo para o CO_2 e pela dissolução de CO_2 em óleo. O processo de miscibilidade a múltiplos contatos governa a mistura entre CO_2 e óleo começando com o CO_2 como uma fase e o óleo como uma fase líquida distinta. O CO_2 primeiro condensa no óleo, tornando-o mais leve e extraindo metano do banco de óleo. Os componentes mais leves do óleo então vaporizam na fase enriquecida em CO_2 , tornando-a mais densa, mais próxima ao óleo, e, portanto, mais facilmente solúvel no óleo. A transferência de massa continua
entre o CO_2 e o óleo até que as duas misturas se tornam indistinguíveis em termos de propriedades de fluido. Por causa deste mecanismo, a recuperação de óleo pode ocorrer em pressões altas o suficiente para atingir miscibilidade. O CO_2 precisa ser comprimido a altas pressões para alcançar uma densidade na qual ele se torna um solvente para as frações mais leves do óleo cru. Essa pressão é conhecida como "pressão mínima de miscibilidade" (MMP) e é a pressão mínima na qual miscibilidade a múltiplos contatos entre CO_2 e determinado óleo cru pode ocorrer.

Outras vantagens da simulação de reservatórios composicional foram mencionadas por Jarrel et al. (2002). Modelos composicionais oferecem vantagens distintas ao se lidar com correntes de injeção impuras durante os métodos de recuperação melhorada e permitem contabilizar as produções de gases naturais leves e H₂S. A MMP é um parâmetro importante para o sucesso da injeção miscível de CO₂ e crucial para o sucesso de métodos miscíveis em reservatórios com o perfil estudado. É a MMP que define o momento em que o CO₂ forma uma nova fase móvel através do processo de miscibilidade a múltiplos contatos. Nesse contexto, Jarrel et al. argumentaram que a simulação composicional é importante porque correntes de injeção impuras resultam da reciclagem de gás produzido na corrente de CO₂ injetado. Se as impurezas incluem metano ou nitrogênio em concentrações suficientemente elevadas, a MMP pode aumentar, e um simulador de reservatórios totalmente composicional é a única maneira de contabilizar a consequência deste efeito físico corretamente. Para ressaltar a importância dos argumentos de Jarrel et al. no caso particular estudado, em reservatórios com óleos de teor de CO₂ similar ao dos reservatórios pré-sal, o uso do método de recuperação melhorada por injeção de CO2 puro ou associado a gases leves é uma certeza no pré-sal brasileiro (Formigli Filho et al., 2009). Como já foi discutido, devido a fatores ambientais, o CO₂ armazenado em grandes concentrações em um reservatório do pré-sal contendo bilhões de metros cúbicos de óleo (e consequentemente bilhões de toneladas de CO₂) não deve ser ventilado para a atmosfera. Assim, o sucesso econômico de uma injeção de CO₂ demanda precisão na avaliação numérica da MMP para previsões confiáveis de recuperação pela injeção de CO₂.

2.2 Perfil de Reservatórios da Camada Pré-Sal

Os estudos preliminares determinaram que as rochas do pré-sal estendem-se, no mínimo, por uma área que vai do Estado do Espírito Santo ao Estado de Santa Catarina, com 800 km de

extensão e 200 km de largura, em lâmina d'água entre 2 e 3 mil metros de profundidade (Figura 2.1). Nessa profundidade de lâmina d'água, os reservatórios são classificados como ultraprofundos. Os reservatórios pré-sal brasileiros se encontram, em sua grande maioria, em reservatórios carbonáticos facilmente fraturáveis e a profundidades entre 5 mil e 7,5 mil metros a partir da superfície do mar (com média de cerca de 2000 m de camada sal).

Figura 2.1: Mapa da província do Pré-sal brasileira. Fonte: (Formigli Filho, 2008)

Em um período de 2007 a 2010, foram anunciadas descobertas de imensos reservatórios de petróleo localizados em profundidades de camada pré-sal. No entanto, há pouca literatura disponível sobre as características de reservatórios pré-sal em água ultra-profundas, pois esse tipo de exploração é recente, com muitos campos ainda em fase de estudo, assim como muitas das informações sobre o reservatório são consideradas informações estratégicas e confidenciais.

Ainda assim, existem alguns artigos em publicações internacionais já disponíveis a respeito do assunto, palestras internacionais da PETROBRAS, comunicações do departamento de relações institucionais com investidores da PETROBRAS e relatórios ao investidor de corretoras de ações. Essas fontes fornecem uma visão geral a respeito deste tema, especialmente dos desafios enfrentados na perfuração e produção a partir de reservatórios pré-sal em águas

profundas. A coleta de informações preliminares por estes meios, embora seja limitada, permite o levantamento de informações importantes para o desenvolvimento de técnicas de simulação de reservatórios pré-sal.

2.2.1 Exemplo de Características de Reservatório da Camada Pré-sal

O reservatório de Lula (ex-Tupi), possui as seguintes características, informadas pela PETROBRAS:

óleo leve, densidade entre 27 e 30 API; viscosidade esperada em torno de 1,14 cP; pressão inicial de reservatório de 580 Kgf /cm²; temperatura inicial de 64° C; grande percentual de gás carbônico, variando de 8% a 12%; grande volume de gás natural associado; baixo teor de enxofre; RGO de 220 a 240 m³/m³ (1237 a 1350 scf/bbl) (Nakano *et al.*, 2009).

A PETROBRAS programou uma avaliação desde agosto de 2009 até dezembro de 2010, para a obtenção de informações e planejou instalar um teste de longa duração (EWT) para a obtenção de informação dinâmica de dois reservatórios da área de Lula entre 2011 e 2012; a exploração comercial está prevista para 2013. A reserva da jazida está estimada entre 795 a 1272 milhões de m³ (5 a 8 bilhões de barris). Nakano *et al.* (2009) afirmaram ser prematura qualquer previsão precisa de fator de recuperação. O volume de produção, na etapa de estudo pode chegar a 13,5 mil m³ por dia e, em produção inicial, pode chegar a 15,9 mil m³ por dia. Analistas estimam que os poços poderiam gerar cinco vezes mais do que isso. Também se estima que Lula vá produzir até cerca de 3,8 milhões m³ de gás por dia (Nakano *et al.*, 2009).

A FPSO do teste piloto será capaz de processar 15,9 mil m³/d de óleo, 23,85 mil m³/d de líquido e 5 milhões m³/d de gás, também irá conter um sistema de injeção de tratamento de água de 15,9 mil m³/d. A água produzida será descartada com um teor máximo de 29 ppm de óleo. A unidade de tratamento de gás foi projetada para remover H₂S e CO₂ e a instalação de reinjeção de gás terá uma capacidade de 3 MM m³/d de mistura de CO₂ e gás (Nakano *et al.*, 2009).

Formigli Filho *et al.* (2009) declararam que, apesar da etapa de avaliação prever a queima de gás, a meta em longo prazo será não desperdiçar nenhum volume desse gás associado e confirmam que a destinação do gás natural é a de ser enviado por gasoduto para a plataforma de Mexilhão e o gás carbônico presente no reservatório sendo reinjetado após separação.

As formações carbonáticas brasileiras de reservatórios ultra-profundos pré-sal possuem grande potencial de produção confirmado a partir de testes de pressão, superando as expectativas de outras formações carbonáticas conhecidas, e sugerem a possibilidade de elevado índice de recuperação, uma vez superados os obstáculos técnicos e financeiros para a produção. Também possuem óleo leve, com densidade acima de 27º API e baixo teor de enxofre.

A experiência de campo sugere que o comportamento da camada de sal brasileira durante a perfuração é mais homogêneo e melhor compreendido mecanicamente que a de outros reservatórios pré-sal conhecidos ao redor do mundo, pela ausência de domos salinos, como no caso do sub-sal do golfo do México (Thurston, 2008; Whitson e McFadyen, 2001). Essa facilidade de perfuração faz com que os desafios tecnológicos não estejam tão associados à viabilidade da etapa de perfuração, propriamente dita, mas principalmente quanto ao custo de perfuração e produção. Não há dúvida, portanto, da viabilidade técnica da produção a partir de reservatórios pré-sal ultra-profundos brasileiros. (Alves *et al.*, 2009; Falcão, *et al.*, 2007)

2.3 Desafios Relacionados à Simulação e Otimização de Estratégias de Reservatórios Similares aos da Camada Pré-sal

Alguns aspectos tornam a simulação fiel de um reservatório da camada Pré-sal desafiadora. Dentre estes aspectos, devem-se mencionar aqueles relacionados às características geológicas que tornam os reservatórios carbonáticos heterogêneos, fraturados e de molhabilidade distinta de arenitos (esses últimos são molháveis a água); e aqueles associados à simulação composicional necessária para fluidos ricos em CO_2 . A otimização de estratégias de produção também enfrenta desafios sob o ponto de vista do desenvolvimento da produção ocorrer em águas profundas e devido aos desafios inerentes à produção de reservatórios com alto teor de CO_2 (por exemplo, sua reinjeção pode causar incrustações de carbonato de cálcio).

2.3.1 Caracterização Pouco Conhecida da Rocha e Problemas de Molhabilidade

As rochas carbonáticas do pré-sal possuem caracterização pouco conhecida. Foram observadas grandes heterogeneidades no perfil vertical. Além de grandes incertezas sobre a modelagem de variáveis petrofísicas como permeabilidade e porosidade, elas possuem

14

comportamento de molhabilidade variável e distinto de arenitos. Ao contrário dos arenitos, que são fortemente molháveis à água, os carbonatos possuem molhabilidade neutra, mista ou molhável ao óleo. Reservatórios com características de molhabilidade distinta de arenitos podem implicar em efeitos sobre a permeabilidade relativa da água, causando sua histerese (de maneira simplificada, as curvas de permeabilidade relativa da água não seguem o mesmo caminho, dependendo do histórico de embebição e drenagem). Assim, exige-se que uma avaliação cuidadosa da injeção de água e de outros métodos de recuperação melhorada, como a injeção de CO₂, seja feita. Um ponto importante a ser abordado é a razão de anisotropia vertical para horizontal, que é pouco conhecida. Outros efeitos pouco conhecidos incluem a modelagem da porosidade dos vúgulos ("cavernas" de porosidade, macroscópicas), grandes formações porosas altamente heterogêneas e a modelagem de camadas super-K, este um conceito utilizado por Phelps e Strauss (2002). Camadas super-K são encontradas em alguns reservatórios carbonáticos e heterogêneos, inclusive no pré-sal brasileiro, possuem elevadas permeabilidades, valores incomuns, de ordem de 10^3 mD ou superiores, pequenas espessuras, contrastadas com as grandes espessuras de outras camadas de baixa permeabilidade. Camadas super-K conseguem responder por uma produção expressiva do campo ocupando um volume ínfimo do reservatório (Phelps e Strauss, 2002). Acredita-se que camadas super-K podem causar a irrupção do fluido injetado de forma precoce.

2.3.2 Modelagem Conceitual do Reservatório Pouco Conhecida

Heterogeneidades dos reservatórios podem impactar decisivamente na produção primária, no desempenho da injeção de água e de outros métodos de recuperação melhorada. Um dos maiores desafios é o de representar as heterogeneidades mais importantes nos modelos de simulação de reservatório e se beneficiar deste conhecimento. Problemas de imageamento das heterogeneidades ocorrem devido a problemas de resolução sísmica causados pelos grandes intervalos de velocidade sônica nos carbonatos. Além disso, tanto complexidades estruturais no topo do sal ou complexidades estruturais internas dentro da camada de sal podem resultar em uma dispersão não-homogênea da energia sísmica através do reservatório pré-sal. A consequência disso pode ser uma iluminação não homogênea do reservatório. Isso tudo exige um esforço de aquisição e processamento sísmico para refinar o modelo conceitual do reservatório. Pouco se conhece também sobre a estrutura de fraturas e falhas e suas consequências (Beltrão *et al.*, 2009).

2.3.3 Principais Desafios Associados à Simulação Numérica de Reservatórios Carbonáticos.

Conforme foi citado anteriormente, os reservatórios do pré-sal possuem heterogeneidades diversas, de pequena e grande escala, além de fraturas, vúgulos, anisotropia, camadas singulares de alta permeabilidade, falhas estruturais e selantes, etc. Isso se deve ao fato de serem reservatórios carbonáticos e de grande suceptibilidade a fraturas, conhecidos como microbiolitos, estromatólitos e coquinas (Lucia, 2002). Para se entender a grande imprevisibilidade que esses reservatórios possuem e o conhecimento limitado sobre eles, a Figura 2.2 ilustra um exemplo de um afloramento análogo (esquerda da Figura 2.2) comparado a um testemunho (direita da Figura 2.2).

Figura 2.2: Exemplo de heterogeneidades do Pré-sal. Fonte: Formigli Filho, "Pré-sal e seus Desafios", 2009.

Pelo que se pode constatar, há a possibilidade de se encontrar dos mais diversos tipos de heterogeneidades e fraturas, inclusive causados por diagênese da rocha. Uma conclusão da discussão sobre a resolução sísmica já realizada é a possibilidade de ocorrerem falhas estruturais e estratigráficas não detectadas. Uma variedade tão grande de heterogeneidades tem influência no escoamento de fluidos e a representação computacional de fraturas enfrenta diversos obstáculos. As rochas carbonáticas encontradas nos reservatórios de óleo comumente apresentam fraturas naturais: ruptura de uma rocha de acordo com superfícies irregulares no que são planos com enlaces frágeis, devido a uma tensão que excede a resistência de ruptura da rocha. As fraturas

naturais podem ter um efeito positivo, neutro ou negativo no escoamento dos fluidos. Se o efeito das fraturas no processo de escoamento dos fluidos é desprezível, o reservatório pode ser considerado como um reservatório convencional (Hernandez, 2006). Porém, para reservatórios como os do pré-sal, considera-se que o reservatório não é convencional e acredita-se que as fraturas têm um efeito não-nulo, positivo ou negativo e é de essencial importância ter conhecimento da magnitude e da direção das tensões principais in situ, do azimute, do mergulho, do espaçamento, da abertura das fraturas, das porosidades da fratura e da matriz, da permeabilidade da fratura e da matriz e das saturações de fluidos da fratura e da matriz. Estes dados ajudam a distribuir no reservatório: (1) as reservas de hidrocarbonetos entre a matriz e a fratura e (2) a capacidade de produção e injeção dos poços. Os efeitos das heterogeneidades porosas no reservatório dependem da escala de porosidade envolvida e há uma discussão sobre isso no Item Erro! Fonte de referência não encontrada.. Tudo isso deve ser considerado orque a simulação precisa e detalhada do reservatório Pré-sal poderá ter que incluir modelos de dupla ou tripla porosidade, aumentando em muito o tempo computacional necessário e a complexidade do modelo. Em casos como esse é muito provável que se empregue simulações composicionais e levando-se em consideração o estado da arte da tecnologia computacional de hoje, o uso de pseudocomponentes e de simplificações no tratamento de fluidos será uma necessidade e a compreensão das incertezas de fluidos será importante.

2.3.4 Principais Desafios Associados à Simulação Composicional de Óleos Leves Ricos em CO₂

Os desafios relacionados à simulação composicional de óleos análogos ao Pré-sal podem ser divididos basicamente em:

- Os dados PVT são escassos na literatura, por ser um óleo atípico.
- Ocorrem singularidades do comportamento multifásico do óleo, ainda mais críticas no caso de baixas temperaturas, onde a formação de mais de duas fases líquidas não são previstas pelos simuladores de reservatório composicionais comerciais atuais. Isso torna necessário evitar operar em faixas onde esse fenômeno ocorra até que modelos mais sofisticados e capazes de modelar esse fenômeno sejam criados.

 Há necessidade de ajuste equações de estado para a reprodução confiável do comportamento termodinâmico e não há consenso na literatura sobre quais técnicas são mais adequadas a todas as situações.

2.3.4.1 Busca de Dados PVT de Óleos Leves Ricos em CO₂ Restrita

O óleo encontrado na camada pré-sal possui diversas particularidades que o tornam sua ocorrência natural incomum e que fazem com que a busca de dados PVT de óleos análogos na literatura seja limitada. Ele é um óleo leve, no caso de Lula, possui densidade acima de 27º API e possui um teor de gás carbônico muito elevado para um óleo de ocorrência natural com essas características. Dependendo do campo e da região do pré-sal brasileiro, podem-se encontrar óleos com ocorrência natural de CO₂ de até 12% molares. Segundo Costa (2008) esse teor é de 20% volumétrico na média para um reservatório do pré-sal brasileiro. Como a concentração de CO₂ dos novos campos está em fase de avaliação, existe a possibilidade de este valor ser maior em alguns poços. Estimativas apontam que somente em duas áreas com reservas delimitadas – os campos de Lula e Iara, onde há um acúmulo de até 12 bilhões de barris de óleo e gás - existam 3,1 bilhões de toneladas de CO₂, um dos gases que contribuem para o aquecimento do planeta (Folha de São Paulo, 2010). Alexandre Szklo (O Estado de São Paulo s.d.), professor de planejamento energético da COPPE, calcula que as emissões de CO₂ vão superar os 3 bilhões de toneladas somente com o carbono contido nos reservatórios. A conta considera o percentual de 10% a 15% molar de CO2 nos campos do Pré-sal, concentração bem maior do que os 5% das demais reservas do país. Esse teor de gás carbônico é encontrado de forma mais freqüente na literatura para gases condensados retrógrados, de densidades muito distintas da do óleo mencionado. Normalmente, não é comum se encontrar óleos na bibliografia com teores de CO₂ superiores a 4%, com a exceção de um artigo sobre o campo de El Trapial operado pela Chevron na Argentina, com concentrações de CO₂ superiores a 75% molar (Crott et al., 2007). A publicação mencionada, no entanto, não disponibilizou seus dados PVT singulares. Uma revisão mais apurada permitiu concluir que a fonte mais útil para se obter dados PVT de óleos análogos é a bibliografia de dissertações, livros e projetos de pesquisa realizados sobre o comportamento de fases de misturas sintéticas de óleo e CO₂. Nesses casos, um óleo, geralmente leve e candidato a uma injeção miscível é recombinado com teores de gás carbônico incomuns para uma ocorrência natural com a finalidade de se estudar o comportamento termodinâmico do óleo sob injeção de

18

 CO_2 ou o comportamento da injeção de CO_2 em um reservatório submetido a reciclo e reinjeção. Uma extensa revisão bibliográfica foi realizada em busca de dados PVT de ensaios de liberação diferencial, expansão a composição constante, testes de inchamento e caracterização composicional da amostra e da fração pesada. Foram consultadas na bibliografia dezenas de referências contendo dados PVT. Para citar alguns exemplos concretos: Joshi, 2003; Coats e Smart, 1986; Orr, 2002; Girão, 1995; e Pedersen *et al.*, 1989. Foram encontradas na bibliografia cinco referências relevantes por serem análogos aos óleos do Pré-sal. Destas cinco, uma foi descartada (Coats e Smart, 1986) devido ao óleo conter 7% de H₂S e outra foi descartada por conter apenas dados incompletos de testes de inchamento caracterizando o óleo de forma pseudoizada e não estendida (Orr, 2002).

Girão (1995) realizou um estudo detalhado do comportamento de fases de sistemas petróleo-CO₂. Nesse estudo, ele recombinou uma amostra de óleo (34° API) de um campo baiano da Petrobras com uma RGO de 217 ft³/bbl (0,9785 m³/ m³ std) e 38,5% molar de CO₂ em uma única amostra sintética, denominada amostra 7, de forma a obter para essa amostra sua composição detalhada de CO₂ até C₅ e a caracterização tanto cromatográfica quanto por destilação dos componentes C₆+ da fração residual. Para a mesma amostra, Girão obteve um ensaio de liberação diferencial dessa mistura a 226 °F (107,8° C) e entre 15 e 5000 psi (1,03 a 344,7 MPa), um ensaio de expansão a composição constante para a mesma temperatura e faixa de pressão até 5000 psi, o valor da pressão de saturação da mistura e a caracterização da fração pesada. Infelizmente, como a amostra de Girão levantou suspeitas sobre a consistência dos dados PVT, devido a desvios consideráveis entre a R_s experimental e a R_s calculada, seguindo a metodologia de validação de dados PVT de Pedersen e Christensen (2007), os dados não foram aprovados na avaliação, e decidiu-se não utilizá-los neste estudo.

Pedersen *et al.* (1989) publicaram dados PVT em um livro dedicado a propriedades de óleo e gases naturais onde a aplicação de métodos de regressão de equações de estado Soave-Redlich-Kwong foi analisada com dados de óleos do Mar do Norte. Neste livro consta a ocorrência natural de um óleo volátil com 3,55% molar de CO_2 e densidade 42° API. Os dados do fluido encontram-se na Tabela 2.1:

Componente	Amostra (%)	Massa Molecular	Densidade (g/cm ³) a 15°C, 1 atm
N_2	0,56		
CO_2	3,55		
C_1	45,34		
C_2	5,48		
C_3	3,70		
I-C ₄	0,70		
$N-C_4$	1,65		
I-C ₅	0,73		
N-C ₅	0,87		
C_6	1,33		
C_7	2,73	89,9	0,757
C_8	3,26	103,2	0,777
C ₉	2,14	117,7	0,796
C_{10}	1,94	133,0	0,796
C ₁₁	1,62	147,0	0,800
C ₁₂	1,47	160,0	0,815
C ₁₃	1,69	172,0	0,833
C_{14}	1,62	186,0	0,843
C ₁₅	1,59	200,0	0,849
C ₁₆	1,30	213,0	0,858
C ₁₇	1,11	233,0	0,851
C_{18}	1,26	247,0	0,856
C ₁₉	1,07	258,0	0,868
C ₂₀ +	13,29	421,0	0,914
Total	100		

Tabela 2.1: Dados de composição de Óleo natural 42º API, RGO 132,9 m³/m³ (746 ft³/bbl), 3,55% de

 CO_2

* A densidade e a massa molecular das frações até hexanos são substituídas por dados de propriedades críticas de substâncias puras e, portanto, não necessitam de determinação experimental.

Fonte: Pedersen et al. (1989)

Tabela 2.2: Dados de Liberação Diferencial de Óleo natural 42º API, RGO 132,9 m³/m³ (746 ft³/bbl), 3,55% de CO₂, realizado em T= 92,8º C

P (bar)	B _o (m ³ /m ³ STD)	Peso específico do óleo (g/cm ³)	Rs (m ³ std/m ³)	Z
267,9 [*]	1,396	0,718	132,9	
239,6	1,365	0,726	119,4	0,889
209,4	1,329	0,735	103,7	0,888

179,8	1,297	0,744	89,6	0,876
150	1,265	0,753	75,7	0,88
112,9	1,227	0,765	58,6	0,894
72,4	1,186	0,778	40,4	0,904
33,1	1,144	0,791	21,9	0,949
1	1,067	0,816		

20

*P_{sat}

Fonte: Pedersen et al. (1989)

2.3.4.2 Permeabilidade Relativa de Misturas Óleo-CO₂

Quando o CO₂ entra em contato com o óleo de reservatório em uma pressão igual ou superior à pressão mínima de miscibilidade inicia-se um deslocamento promovido pelo fenômeno de miscibilidade por múltiplos contatos. Isso dá origem à formação de uma fase adicional imiscível com as demais fases: uma fase composta de óleo e CO₂, de menor viscosidade que o óleo, maior mobilidade e permeabilidade relativa distinta do óleo, do gás e da água. Apesar de o simulador prever a formação de até uma nova fase líquida adicional (a fase rica em CO_2), o comportamento de permeabilidade relativa dessa nova fase necessita de um modelo de permeabilidade relativa trifásica para ser reproduzido fielmente por um simulador composicional. Ainda que existam modelos teóricos que reproduzam com sucesso essa permeabilidade relativa (como será discutido mais adiante), nem todos os simuladores de reservatório composicionais comerciais implementaram em suas rotinas de cálculo modelos criados para reproduzir de forma exata este comportamento de permeabilidade relativa. O que freqüentemente ocorre é que a permeabilidade relativa da nova fase de óleo dissolvido em CO₂ passa a ter sua permeabilidade relativa aproximada pela curva de permeabilidade relativa do óleo. Isso faz com que a reprodução do comportamento não seja completamente precisa. Duas discussões mais detalhadas desse tema foram realizadas por Stone (1973) e Blunt (2000).

2.3.4.3 Efeito da Histerese na Curva de Permeabilidade Relativa Multifásica

A prática de campo na injeção de CO_2 percebeu que a injetividade de água em um WAG passa por mudanças drásticas após o primeiro ciclo de injeção de CO_2 (Jarrel *et al.*, 2002). Essas mudanças estão relacionadas ao efeito que o CO_2 possui na permeabilidade relativa da água. Jarrel *et al.*, (2002) estudaram em seu trabalho mais profundamente arenitos. O efeito da permeabilidade relativa trifásica em um sistema óleo/água/CO₂ pode reduzir tanto a mobilidade

21

do CO_2 quanto a da água. Quantificar a mobilidade da água é necessário para a simulação significativa da injeção de CO_2 , pois a mobilidade da água afeta as taxas de injeção de água, que por sua vez afetam a taxa de produção de óleo e o período econômico de lucratividade do projeto (Jarrel *et al.*, 2002).

Da mesma forma que o CO_2 afeta a permeabilidade relativa da água, a água afeta a permeabilidade relativa da fase rica em CO_2 submetida a condições miscíveis. A mudança na permeabilidade relativa do CO_2 é importante porque afeta a taxa de produção de CO_2 , que por sua vez afeta os custos de investimento e operacionais das instalações de reciclo de CO_2 .

Permeabilidade relativa é um parâmetro petrofísico importante, assim como um parâmetro de entrada crítico para a simulação preditiva de injeções miscíves e inclui os efeitos das características de molhabilidade, heterogeneidade da rocha e fluidos do reservatório e saturações de fluido (Rogers *et al.*, 2000).

Durante uma injeção de CO_2 típica que inclui injetar água alternadamente com CO_2 para remediar problemas de varredura areal e vertical de uma injeção miscível pura, a saturação muda durante cada ciclo. Essas mudanças na saturação também resultam em mudanças na permeabilidade relativa da água.

Um dos problemas mais comuns associados com mudanças de permeabilidade relativa durante injeções WAG são as perdas de injetividade. A injetividade da água sofre mudanças significativas após o primeiro ciclo de CO₂ injetado. Essas mudanças estão relacionadas com o efeito que o CO₂ exerce na permeabilidade relativa da água. Uma compreensão quantitativa das curvas de permeabilidade relativa é importante porque é um parâmetro de entrada para simuladores de reservatório para prever o desempenho da injeção de CO₂. Estudos de simulação mostraram que uma redução brusca de injetividade no começo do ciclo de injeção de água pode ser associada com a redução de permeabilidade relativa próxima ao poço que pode experimentar uma tendência de injetividade decrescente através do resto do ciclo (Roper Jr *et al.*, 1992). Esse efeito anterior levou em conta efeitos de saturação na permeabilidade, mas não levou em conta efeitos de incrustação que se espera ocorrer em carbonatos. Acredita-se esses últimos serem capazes de potencializar ainda mais essas perdas de injetividade

Sugere-se que as mudanças de permeabilidade relativa sejam causadas pelo escoamento bifásico de gás e água inicialmente próximo ao poço; à medida que o ciclo prossegue, as saturações e as permeabilidades relativas mudam.

Experimentos reproduzidos em laboratório na tentativa de reproduzir a injeção de CO_2 experimentaram reduções apreciáveis da permeabilidade relativa da água após a injeção de CO_2 . Além disso, os dados mostraram efeitos de histerese significativos na permeabilidade relativa da água entre as curvas de embebição e drenagem. A saturação de água irredutível após os ciclos de drenagem foram de 15 a 20% maiores do que a saturação de água conata inicial. (Rogers *et al.*, 2000).

O termo histerese se refere ao fenômeno de saturação direcional exibido por muitas curvas de permeabilidade relativa e pressão capilar quando uma dada saturação de fase do fluido é aumentada ou diminuída. Esse fenômeno é ilustrado na Figura 2.3.

Figura 2.3: Diagrama de permeabilidade relativa bifásico ilustrando a histerese da água no caso de reservatório molhável a óleo. Fonte: Jarrel *et al.*, 2002.

A Figura 2.3 representa um teste de permeabilidade relativa bidirecional que ilustra a permeabilidade relativa da água e a injetividade da água. A permeabilidade relativa do óleo é 1 na saturação de água conata e decresce à medida que a injeção de água é realizada até que a

saturação residual de óleo seja alcançada (S_w crescente). Simultaneamente, a permeabilidade relativa da água aumenta até que um valor máximo seja atingido. Então, óleo é injetado até que a água pare de escoar (S_w decrescente).

Para um reservatório molhável a óleo, o óleo pode escoar de volta através dos mesmos poros que foram anteriormente esvaziados e a permeabilidade relativa do óleo pode aumentar através do mesmo caminho. A permeabilidade relativa da água, no entanto, apresenta histerese porque as curvas de drenagem (saturações decrescentes de óleo e crescentes de água) e embebição não seguem o mesmo caminho. Como resultado, o novo valor mínimo de saturação de água irredutível não retorna para a saturação de água conata original. O resultado da histerese de permeabilidade relativa da água em um reservatório molhável a óleo é que a injetividade pode ser reduzida severamente. Além disso, a permeabilidade relativa do óleo não pode retornar para 1 porque a saturação de água residual aumentada reduz a saturação de óleo máxima possível, consequentemente reduzindo a taxa de produção de óleo por recuperação melhorada.

Permeabilidade Relativa da Água Afetada pela Molhabilidade: a permeabilidade relativa do óleo em uma rocha molhável ao óleo é considerada uma função única da saturação de água. A permeabilidade relativa da água em uma rocha molhável ao óleo, no entanto, é mais complexa e é função tanto da saturação de água quanto do histórico de água anterior da rocha. A forma exata dessa curva de permeabilidade relativa pode ter um impacto grande na habilidade do CO₂ recuperar óleo. Ao contrário do óleo, a permeabilidade relativa da água em um reservatório molhável a óleo exibe histerese porque para uma saturação crescente de água a curva de permeabilidade relativa não segue necessariamente a curva da drenagem de água original. A histerese da água ocorre para uma rocha molhável ao óleo porque alguma água será aprisionada pelo mesmo mecanismo que aprisiona óleo em uma rocha molhável a água. O resultado da histerese da permeabilidade relativa da água em um reservatório molhável a óleo é que a injetividade de água pode ser drasticamente reduzida. Além disso, a permeabilidade relativa do óleo não pode retornar a 1 porque a saturação de água residual reduz a saturação de óleo máxima possível. Consequentemente, a histerese da água reduz o pico da taxa de produção de óleo por injeção de CO₂ numa rocha molhável a óleo, (Jarrel, et al., 2002), como as de reservatórios do pré-sal.

Permeabilidade Relativa da Água Afetada pela Solubilidade do CO₂: o aumento na permeabilidade relativa da água que ocorre à medida que a água dissolve CO₂ é outro fator que aumenta as taxas de injeção de água a partir dos valores baixos tipicamente observados após a injeção de CO₂.

Figura 2.4: Diagrama de permeabilidade relativa bifásico ilustrando a histerese no caso de dissolução de CO₂. Fonte: Jarrel et al., 2002.

A Figura 2.4 acima ilustra o efeito da solubilidade do CO_2 na permeabilidade relativa da água. Nessa ilustração o S_{or} é de 30% e o k_{rw} máximo de um teste de permeabilidade relativa é 0,4. A linha pontilhada fornece o k_{rw} após a água ter dissolvido uma parte da fase rica em CO_2 (solvente) e a saturação de água ter aumentado. Se água suficiente for injetada para dissolver todo o solvente e se S_{or} for zero, o k_{rw} alcançará o valor mínimo de 1 a 100% de água. Para se estimar k_{rw} a 100% de saturação de água, a permeabilidade da água medida a 100% de saturação de água deve ser dividida pela permeabilidade de água na saturação de água conata. Em termos práticos, a saturação de água no reservatório irá tender a (1- S_{om}) nas vizinhanças do poço de injeção apenas

após se injetar um grande volume de água de perseguição. S_{om} é a saturação de óleo residual sob condições miscíveis.

2.3.4.4 As singularidades do comportamento multifásico de misturas de óleo e CO₂

Além do problema da previsão da permeabilidade relativa da fase formada pela solubilização do CO_2 em óleo, existe um problema relevante à precisão dos simuladores comerciais composicionais para a previsão da injeção de CO_2 . Este é a formação de um envelope de fases de hidrocarbonetos anômalo com mais de três fases em temperaturas de reservatório inferiores a 120° F (48,9° C), (Metcalfe e Yarborough, 1979) que não é previsto originalmente pela maior parte dos simuladores composicionais comerciais. Isso acontece frequentemente porque a maioria dos simuladores comerciais utiliza rotinas de cálculos *flash* limitadas a apenas duas ou três fases por meio de métodos numéricos envolvendo equações de estado e curvas de permeabilidade relativa. Uma consequência desse fenômeno é que a simulação de injeção miscível de CO_2 não é confiável nessa faixa de temperatura inferior a 120° F (48,9° C). Isso está discutido adiante.

A região trifásica de misturas de hidrocarboneto e CO₂: adicionalmente à fase aquosa, duas ou três fases de hidrocarbonetos podem existir no reservatório durante o processo de inundação por CO₂. Saber quantas fases estão presentes é importante porque o número de fases afeta a permeabilidade relativa e as taxas de injeção e produção. Para óleos do Oeste do Texas submetidos a injeção miscível, em temperaturas acima de 120° F (48,9° C), CO₂ e óleo não formam mais do que duas fases de hidrocarbonetos líquidas (além da fase aquosa e gasosa) pelo contato inicial. Nesses casos, o comportamento de permeabilidade relativa e de escoamento são previsíveis e mais simples. O problema ocorre quando o reservatório se encontra a temperaturas inferiores a 120°F (48,9° C), porque um tipo diferente de comportamento de fases surge e são necessários modelos mais complexos para prever o comportamento da permeabilidade relativa na presença de mais de duas fases, como o de Blunt (2000). Isso torna necessário evitar operar em faixas onde esse fenômeno ocorra até que modelos mais sofisticados e capazes de modelar esse fenômeno sejam criados e implementados em programas de simulação de escoamento. Henry e Metcalfe (1983) observaram mobilidade reduzida durante inundação de testemunhos por CO₂ conduzidas em pressões que favorecem a formação de regiões trifásicas de hidrocarboneto, porque a nova fase de hidrocarbonetos reduz a injetividade. O problema de mobilidade reduzida piora quando água móvel está presente. Como se trata de uma temperatura consideravelmente incomum para um reservatório do pré-sal (abaixo de 49 °C, enquanto Lula, por exemplo, possui 64 °C), este efeito não será foco deste estudo. Deve-se ressaltar, no entanto, que qualquer estudo de simulação composicional em reservatórios com temperaturas inferiores a esse parâmetro deve ser validado com um estudo experimental de determinação de número de fases na faixa de operação de projeto ou deve ser realizado com simuladores composicionais customizados para rotinas de cálculo *flash* de mais de três fases. Acredita-se que a formação de mais fases de hidrocarbonetos do que o software composicional pode lidar é uma possibilidade no pré-sal, e portanto é digna de menção.

Muitos campos de petróleo no oeste do Texas, nos Estados Unidos, possuem temperaturas *in-situ* inferiores a 120°F (48,9° C) e frequentemente regiões líquidas trifásicas ocorrem em regiões na faixa de pressão entre 1000 e 1300 psia (6895 e 8963,5 KPa).

Metcalfe e Yarborough (1979) classificam o comportamento de fases de misturas de CO₂/fluido de reservatório em dois tipos gerais de acordo com as características do diagrama pressão-composição. Observe na Figura 2.5, o comportamento tipo I mostra apenas fases de hidrocarboneto líquido e vapor coexistindo na região multifásica do diagrama P-X, essa condição existe geralmente em temperaturas maiores do que cerca de 120°F (48,9° C). O comportamento de fases do tipo II ocorre relativamente próximo da temperatura crítica do CO₂, geralmente em temperaturas abaixo de 115 a 120°F (46,1 a 48,9° C). Sistemas do tipo II apresentam algumas misturas separando em fases de vapor de equilíbrio e líquido, enquanto alguns outros separam em duas fases líquidas coexistentes; e em uma pequena região do diagrama P-X, três fases de hidrocarbonetos coexistem, duas líquidas e uma gás. É exatamente neste caso que surge o problema, pois o simulador deve estar preparado para prever o comportamento de uma fase líquida e hidrocarbonetos, uma fase gasosa de hidrocarbonetos e duas fases líquidas adicionais surgidas da interação do óleo com o gás carbônico.

CO,-OIL A PHASE BEHAVIOR AT 314.2 K

Figura 2.5: Comportamento de fases de uma mistura óleo-CO₂ a 314,2K. Fonte: Metcalfe e Yarborough, 1979.

A temperatura de transição do comportamento de fases do tipo I para o tipo II depende da massa molecular do óleo, embora a forma exata dessa dependência não seja conhecida, segundo Orr *et al.* (1981). À medida que a massa molecular média do óleo aumenta, também aumenta a temperatura máxima para o comportamento do tipo II. Acredita-se que essa peculiaridade do comportamento de fases possa ocorrer no pré-sal.

A maior parte dos simuladores de reservatório composicional comerciais não possui rotina de cálculo flash de três fases, que é necessária para se calcular a região de hidrocarbonetos mencionada. Esses modelos possuem problemas de consistência quando uma rotina de cálculo flash de duas fases é usada para prever a composição das fases numa região onde três fases existem. Khan *et al.* (1992) desenvolveram uma rotina de flash de três fases e mostraram que a inclusão da região de hidrocarbonetos trifásica pode ter um efeito importante no desempenho de

inundação de CO_2 prevista. Se a região trifásica é extensa, o uso de uma rotina flash multifásica é recomendado.

2.3.4.5 A necessidade de ajuste equações de estado para a reprodução confiável do comportamento termodinâmico.

Foi visto anteriormente que as condições de baixas temperatura de reservatório podem promover inconsistências no cálculo do envelope de fases. Também foi visto que os dados PVT de óleos análogos aos do pré-sal são escassos. Existe uma dificuldade adicional em se simular reservatórios sintéticos: é necessário um ajuste realista das equações de estado com os dados PVT. Assegurar essa condição depende da etapa de ajuste (*tuning*), que é uma etapa bastante complexa e sujeita a interpretações subjetivas da literatura que tornam o ajuste de equações de estado (EOS) sensível e delicado. Para citar alguns desafios:

- Os dados PVT só permitem previsões de simulação composicional em regiões de temperatura e pressão medidas pelos dados PVT, ou seja, equações de estado (EOS) não fazem boas extrapolações na temperatura sem dados experimentais de ensaios PVT pertinentes obtidos na mesma temperatura de reservatório que se deseja simular e em faixas de pressão compatíveis com a faixa de pressão de simulação.
- Segundo Pedersen (1985), "não há razão a priori para se acreditar que parâmetros de equações de estado "ajustados" para dados PVT em uma composição, cobrindo uma região de temperatura e pressão limitada vão levar a previsões adequadas da razão molar líquido/vapor em outras temperaturas, pressões e composições". Uma vez que as pressões de reservatório da ordem de 55,16 MPa (pressão de reservatório de Lula) são bastante incomuns, mais rara ainda é a obtenção de dados PVT da literatura nessas pressões, assim, só pode-se simular sem aproximações um fluido da literatura em pressões de reservatórios pré-sal se os dados PVT originais cobrirem toda a faixa de pressões abaixo da pressão de saturação e se a pressão de reservatório estiver dentro ou acima desta faixa. Num caso ideal, portanto, quando a faixa de pressões de ensaios PVT da literatura sejam julgadas inadequadas, para se realizar a simulação composicional em pressões adequadas devem ser medidos dados de um fluido real ou dados PVT de uma amostra de fluido recombinada. Para fins de desenvolvimento do presente trabalho, considerou-se que o ajuste por

equações de estado era bem comportado para extrapolações qualitativas apenas em relação à pressão (pelas condições de temperatura e pressão estarem bem distantes do ponto crítico da mistura) e que extrapolações com base nesta poderiam ser usadas a partir de dados PVT obtidos numa faixa indo de metade da pressão de reservatório para a pressão de bolha e desta até a pressão atmosférica. Isso se justifica devido à dependência da literatura e devido à baixa disponibilidade de amostras de óleo e de recursos laboratoriais para ensaios PVT em alta pressão de óleos leves e ricos em CO₂. Embora essa consideração não seja particularmente frágil, ela precisa ter sua validade comprovada posteriormente por meio de ensaios PVT experimentais em condições mais extremas de pressão.

Dificilmente se encontram dados de medidas de viscosidade referentes aos mesmos . dados de ensaios PVT obtidos de uma referência da literatura, ou seja, quando se escolhe um dado PVT na literatura, geralmente não se encontra um dado experimental de viscosidade associado. Portanto, mesmo que se consiga uma boa regressão de todas as propriedades medidas pelos dados PVT, a modelagem de viscosidades fica comprometida pela falta de dados que proporcionariam o ajuste apurado dessa propriedade. Isso leva a empregar correlações desenvolvidas para bancos de dados de óleo, como a de Lohrenz-Bray-Clark (Lohrenz et al., 1964) que geram erros de estimativa de 14% ou mais para a simulação de escoamento nas vazões de produção e nas razões de mobilidade, gerando consequentemente incertezas nas previsões de produção, de eficiência de varrido areal e de recuperação final. Essas incertezas só podem ser eliminadas com a obtenção de dados experimentais de viscosidade correspondentes. As curvas de viscosidade obtidas por essa correlação a partir dos mesmos dados PVT para as diferentes descrições de fluido deste estudo são muito semelhantes. Para esse estudo, considerou-se que a modelagem experimental da viscosidade não foi necessária para diagnosticar desvios do comportamento de fluidos a partir do mesmo fluido, das mesmas correlações e dos mesmos dados PVT. Para estudos de caráter quantitativo e de natureza econômica, a não ser que um modelo sintético similar ao do Pré-sal disponha de dados PVT completos de propriedades como viscosidades, liberação diferencial, expansão flash, inchamento, razão gás-óleo, peso específico do óleo, fatores de compressibilidade, fatores formação de volume do gás e do óleo e medidas de pressão e de saturação de reservatório, as simulações e análises de sensibilidade possuem apenas natureza qualitativa e parcial e não podem levar a cálculos de funções-objetivo econômicas confiáveis, de forma a comprometer a confiabilidade da seleção de estratégias com base nessas simulações. Qualquer estudo de estratégias de produção de reservatórios precisa, portanto, de um estudo mais confiável de viscosidades. Isso necessariamente deve ser obtido e validado de forma experimental.

- O ajuste de equações de estado se baseia principalmente no ajuste da fração pesada, que é uma propriedade com grande incerteza experimental. A regressão adequada de uma equação de estado requer o ajuste por regressões apenas de parâmetros com incerteza experimental aceitável para a sua flexibilização, como, por exemplo, volume, pressão e temperatura crítica da fração pesada. A regressão não pode ser feita em relação a parâmetros aleatórios ou arbitrários nem em relação a todas frações sem haver fundamentação teórica. Por se tratar de um problema inverso, no qual uma mesma resposta de dados experimentais pode ser obtida por um número tão grande de soluções quanto o número de combinações de parâmetros de regressão diferentes, uma determinada regressão de equações de estado não pode ser considerada realista simplesmente porque reproduziu o comportamento de um conjunto de dados experimentais com boa precisão. Isso será discutido em detalhes mais adiante.
- Uma vez que uma mistura de hidrocarbonetos como o petróleo é composta por milhares de moléculas diferentes, por razões técnicas e financeiras, sua caracterização deve ser resumida apenas a um número finito de componentes mais um número arbitrário e limitado de pseudocomponentes. Isso ocorre devido a limitações experimentais e de tempo computacional, a representação da mistura complexa por um número limitado de componentes e pseudocomponentes deve representar termodinamicamente de forma correta e com erro aceitável o comportamento da mistura. A pseudoização (*lumping*) é a previsão das propriedades desses pseudocomponentes a partir das propriedades dos componentes constituintes conhecidos. Com exceção da fração pesada, a pseudoização requer o conhecimento

da composição detalhada de componentes e das propriedades críticas dos componentes constituintes. Quando isso não é possível (por exemplo, no caso da fração pesada) ou quando se dispõe de dados de destilação, conhecer as massas moleculares e densidades das frações desejadas torna possível prever as propriedades críticas dos pseudocomponentes desejados por meio de modelos teóricos. A forma pela qual a pseudoização e a regressão das equações de estado são feitas é crítica e determinante na confiabilidade das simulações composicionais. Existe uma série de testes que servem para a análise e controle da qualidade de um processo de pseudoização, que serão discutidos mais adiante, como a comparação de diagramas pressão temperatura e de históricos de produção entre a composição extendida e a composição resumida.

2.4 Modelos Termodinâmicos Disponíveis nos Simuladores de Escoamento

O engenheiro de reservatórios confia em relações pressão/volume/temperatura (PVT) para calcular reservas de gás e de óleo, fazer previsões de produção e prever a eficiência de métodos de recuperação melhorada de petróleo (EOR). A maior parte dos cálculos de engenharia de reservatórios requer propriedades PVT na temperatura de reservatório. Os cálculos de engenharia de petróleo geralmente são feitos em temperaturas de 15° C a 200° C e a pressões de 103,4 kPa a 103500 kPa (Whitson e Brulé, 2000).

Equações de Estado cúbicas (EOS) são equações simples relacionando pressão, volume e temperatura (PVT). Elas descrevem de maneira precisa o comportamento volumétrico e de fases de componentes puros e misturas, necessitando apenas das propriedades críticas e do fator acêntrico de cada componente. A mesma equação é usada para calcular as propriedades de todas as fases, desta forma garantindo a consistência em processos do reservatório que se aproximem de condições críticas (i.e. injeção de gás miscível e depleção de reservatórios de óleo volátil e gás condensado). Problemas envolvendo comportamento multifásico, como injeção de CO₂ a baixas temperaturas, se modelados apropriadamente, podem ser tratados com uma equação de estado e mesmo o comportamento de fases de água/hidrocarbonetos podem ser previstos de modo preciso com uma EOS cúbica (Whitson e Brulé 2000).

O comportamento volumétrico é calculado por meio da resolução de uma equação cúbica simples, geralmente expressa em termos de $Z = \frac{Pv}{RT}$,

$$Z^{3} + A_{2}Z^{2} + A_{1}Z + A_{0} = 0$$
 Equação 2.1

onde as constantes A_0 , A_1 e A_2 são funções da pressão, temperatura e composição das fases.

O equilíbrio de fases é calculado com uma EOS sob a condição de equilíbrio químico. Para um sistema bifásico, o potencial químico de cada componente na fase líquida $\mu_i(x)$ deve se igualar ao potencial químico de cada componente na fase gasosa $\mu_i(y)$, $\mu_i(x) = \mu_i(y)$. O potencial químico é geralmente expresso em termos de fugacidade, f_i , onde $\mu_i = RT \ln f_i + \lambda_i(T)$ e $\lambda_i(T)$ são termos constantes que são cancelados na maior parte dos problemas. É possível se demonstrar que a condição $\mu_i(x) = \mu_i(y)$ é satisfeita pela restrição de igualdade das fugacidades $f_{Li} = f_{Vi}$, onde a fugacidade é dada por:

$$\ln \phi_i = \ln \frac{f_i}{y_{ip}} = \frac{1}{RT} \int_{v}^{\infty} \left(\frac{\partial p}{\partial n_i} - \frac{RT}{V} \right) dV - \ln Z$$
 Equação 2.2

Um balanço material de componentes também é necessário para se resolver problemas de equilíbrio vapor/líquido: $z_i = F_v y_i + (1 - F_v) x_i$, onde $F_v =$ fração molar da fase vapor $= \frac{n_v}{n_v} + n_L$. Resolver uma EOS é um procedimento de tentativa e erro e requer cálculos consideráveis. Com a tecnologia de computadores de hoje, no entanto, essa tarefa é fácil e confiável. A precisão das previsões de EOS também melhorou consideravelmente ao longo das décadas de 80 e 90, tempo durante o qual foi dada ênfase na melhoria das previsões volumétricas dos líquidos e no tratamento da fração C₇+.

2.4.1 Equações de Estado Cúbicas Mais Importantes

Desde a introdução da primeira equação dos gases de van der Waals (1873), muitas equações de estado cúbicas (EOS) foram propostas, por exemplo: a Equação de Estado de Redlich-Kwong (1949) (RK EOS), a EOS de Peng-Robinson (1976) (PR EOS) e a EOS de Martin (1979), para mencionar algumas das mais importantes dentre dezenas de equações de

estado criadas (Whitson e Brulé, 2000). A maioria destas equações retém o termo repulsivo original de van der Waals RT/(v-b), modificando apenas o denominador no termo atrativo, $-\frac{a}{v^2}$ (vide Equação 2.3). A equação de Redlich Kwong foi a base mais usual para o desenvolvimento de novas EOS nas décadas de 70, 80 e 90. Outra tendência foi a de propor equações cúbicas generalizadas de três, quatro e cinco constantes que podem ser simplificadas para a PR EOS, RK EOS e outras correlações familiares.

A maior parte das aplicações da engenharia de petróleo emprega a PR EOS ou uma modificação da RK EOS. Diversas equações modificadas de Redlich-Kwong encontraram aceitação, sendo destas a modificação de Soave (1972) a mais simples e mais amplamente utilizada. Infelizmente a SRK EOS fornece estimativas de densidades de líquido pouco precisas. Zudkevitch e Joffe (1970) propuseram uma RK EOS modificada, a ZJRK EOS, onde ambas as constantes da EOS são corrigidas por funções dependentes da temperatura, resultando em previsões volumétricas melhoradas. Yarborough (1978) propôs uma forma generalizada da ZJRK EOS para misturas de reservatórios de petróleo. A PR EOS é comparável com a SRK EOS em simplicidade e forma. Peng e Robinson (1976) relatam que sua equação prevê densidades de líquidos de forma melhor que a SRK EOS, embora as densidades calculadas pela PR EOS sejam geralmente inferiores às calculadas pela ZJRK EOS. Uma vantagem distinta das equações de Peng-Robinson e Soave-Redlich-Kwong é a reprodutibilidade. Em ambas uma simples correção para o ajuste de densidades de líquido é utilizada para uma constante da EOS. A ZJRK EOS depende de tabelas ou funções complexas e não padronizadas para representar os termos de correção altamente não-lineares para as constantes da EOS.

O método de translação de volumes de Peneloux *et al.* (1982) modifica a equação cúbica de duas constantes de SRK por meio da introdução de uma terceira constante na EOS, c, sem alterar os cálculos de equilíbrio da equação original de duas constantes. O mesmo pode ser afirmado para o método de translação de volumes de Jhaveri e Youngren (1988), este aplicado a PR EOS. A constante de translação de volume c elimina a deficiência volumétrica inerente sofrida por todas as equações de duas constantes, e, para propósitos práticos, a translação de volumes torna qualquer EOS de duas constantes tão precisa quanto uma equação de três constantes.

2.4.1.1 Equação de van der Waals.

Em um trabalho pioneiro, van der Waals (1873) propôs a primeira EOS cúbica. A EOS de van der Waals fornece uma relação simples e quantitativamente precisa entre pressão, temperatura e volume molar.

$$p = \frac{RT}{v-b} - \frac{a}{v^2}$$
 Equação 2.3

onde a- parâmetro de atração, b-parâmetro de repulsão e R-constante universal dos gases. Comparando esta equação com a equação dos gases ideais ($p = \frac{RT}{\sqrt{v}}$), percebe-se que a equação de van der Waals oferece duas melhorias significativas. Primeiro, a previsão do comportamento líquido é mais precisa porque o volume tende a um valor limite, b, em pressões elevadas,

$$\lim_{p \to \infty} v(p) = b$$
 Equação 2.4

onde b é algumas vezes definido como o "covolume" (volume efetivo molecular).

O termo $\frac{RT}{v-b}$ governa o comportamento líquido e representa fisicamente o componente repulsivo da pressão em escala molecular.

A equação de van der Waals também melhora a descrição do comportamento de gás não-ideal, onde o termo $\frac{RT}{v-b}$ tende ao comportamento de gás ideal e o termo $\frac{a}{v^2}$ contabiliza o comportamento não-ideal. O termo $\frac{a}{v^2}$ reduz a pressão do sistema e tradicionalmente é interpretado como o componente atrativo da pressão.

Van der Waals também definiu o critério crítico que é usado para definir as duas constantes da EOS a e b. A primeira e segunda derivadas da pressão com respeito ao volume são iguais a zero no ponto crítico de um componente puro.

$$\left(\frac{\partial p}{\partial v}\right)_{p_c, T_c, v_c} = \left(\frac{\partial^2 p}{\partial v^2}\right)_{p_c, T_c, v_c} = 0$$
Equação 2.5

Martin e Hou (1955) demonstraram que essa restrição é equivalente a condição $(Z - Z_c)^3 = 0$ no ponto crítico. Impondo a Equação 2.5 sobre a Equação 2.3 e especificando p_c e T_c, as constantes a e b na equação de van der Waals são dadas por

$$a = \frac{27}{64} \frac{R^2 T_c^2}{p_c}$$
Equação 2.6
$$b = \frac{1}{8} \frac{RT_c}{p_c}$$
Equação 2.7

O volume crítico é dado por $v_c = \frac{3}{8} \frac{RT_c}{p_c}$, resultando em um fator de compressibilidade crítico constante.

$$Z_c = \frac{p_c v_c}{RT_c} = \frac{3}{8} = 0,375$$
 Equação 2.8

A equação de van der Waals também pode ser escrita em termos do fator $Z\left(Z = \frac{pv}{RT}\right)$.

$$Z^{3} - (B+1)Z^{2} + AZ - AB = 0$$
 Equação 2.9

onde

$$A = a \frac{p}{(RT)^2} = \frac{27}{64} \frac{p_r}{T_r^2}$$
Equação 2.10
$$B = b \frac{p}{RT} = \frac{1}{8} \frac{p_r}{T_r}$$
Equação 2.11

2.4.1.2 Equações de Redlich-Kwong(1949). A RK EOS é

$$p = \frac{RT}{v-b} - \frac{a}{v(v+b)}$$
 Equação 2.12

Ou, em termos do fator Z:

$$Z^{3} - Z^{2} + (A - B - B^{2})Z - AB = 0$$
Equação 2.13
$$Z_{c} = \frac{p_{c}v_{c}}{RT_{c}} = \frac{1}{3}$$
Equação 2.14
$$a = \Omega_{a}^{0} \frac{R^{2}T_{c}^{2}}{p_{c}} \alpha(T_{r})$$
Equação 2.15

Com as constantes da EOS definidas como:

onde $\Omega_a^0 = 0,42748$

$$b = \Omega_b^0 \frac{RT_c}{p_c} \alpha(T_r)$$
 Equação 2.16

onde $\Omega_b^0 = 0,08664$

 $A = a \frac{p}{(RT)^2} = \Omega_a^0 \frac{p_r}{T_r^2} \alpha(T_r)$ Equação 2.17

onde $\alpha(T_r) = T_r^{-0.5}$

$$B = b \frac{p}{RT} = \Omega_b^0 \frac{p_r}{T_r}$$
 Equação 2.18

A expressão do coeficiente de fugacidade para um componente puro é:

$$\ln\frac{f}{p} = \ln\phi = Z - 1 - \ln(Z - B) - \frac{A}{B}\ln\left(1 + \frac{B}{Z}\right)$$
 Equação 2.19

A equação cúbica do fator Z pode ser resolvida prontamente com uma abordagem analítica ou por tentativa e erro (Edminster e Lee, 1983). Uma ou três raízes reais podem existir, onde a menor raiz (assumindo ser maior do que B) é tipicamente escolhida para líquidos e a maior raiz é escolhida para vapores. A raiz intermediária é sempre descartada como um valor não físico. Para misturas, a escolha de uma raiz superior ou inferior não é conhecida *a priori* e a raiz correta é escolhida como aquela que possui a menor energia livre de Gibbs normalizada, g^*

$$g_{y}^{*} = \sum_{i=1}^{N} y_{i} \ln f_{i}(y)$$
 Equação 2.20

$$g_{x}^{*} = \sum_{i=1}^{N} x_{i} \ln f_{i}(x)$$
 Equação 2.21

onde $y_i e x_i$ = frações molares de vapor e líquido, respectivamente e f_i =fugacidade multicomponente dada (para a fase vapor) por:

$$\ln \frac{f_i}{y_i p} = \ln \phi_i = \frac{B_i}{B} (Z - 1) - \ln(Z - B) + \frac{A}{B} \left(\frac{B_i}{B} - \frac{2}{A} \sum_{j=1}^N y_j A_{ij} \right) \ln\left(1 + \frac{B}{Z}\right)$$
 Equação 2.22

A regra de mistura quadrática tradicional é usada para A e uma regra de mistura linear é usada para B. Para uma fase vapor com composição y_i , estes são dados por:

$$A = \sum_{i=1}^{N} \sum_{j=1}^{N} y_i y_j A_{ij}$$

$$B = \sum_{i=1}^{N} y_i B_i$$

e $A_{ij} = (1 - k_{ij}) \sqrt{A_i A_j}$
Equação 2.23

onde k_{ij} = coeficientes de interação binários, onde k_{ii} =0 e k_{ij} = k_{ji} . Geralmente k_{ij} =0 para a maior parte dos pares hidrocarboneto/hidrocarboneto (HC/HC), exceto talvez os pares C₁/C₇+.

Coeficientes de iteração binária não-hidrocarboneto/HC são geralmente não-nulos. O exemplo de coeficientes de interação binários mais comumente empregados está na tabela abaixo.

		PR EOS*			SRK EOS**	
	\mathbf{N}_2	CO ₂	H_2S	\mathbf{N}_2	CO ₂	H_2S
N_2	-	-	-	-	-	-
CO_2	0,000	-	-	0,000	-	-
H_2S	0,130	0,135	-	0,12†	0,120	-
C_1	0,025	0,105	0,070	0,020	0,120	0,080
C_2	0,010	0,130	0,085	0,060	0,150	0,070
C ₃	0,090	0,125	0,080	0,080	0,150	0,070
I-C ₄	0,095	0,120	0,075	0,080	0,150	0,060
N-C ₄	0,095	0,115	0,075	0,080	0,150	0,060
I-C ₅	0,100	0,115	0,070	0,080	0,150	0,060
N-C ₅	0,110	0,115	0,070	0,080	0,150	0,060
C ₆	0,110	0,115	0,055	0,080	0,150	0,050
C ₇₊	0,110	0,115	0,05‡	0,080	0,150	0,03‡

Tabela 2.3: Coeficientes de interação binários (BIP's) para a PR EOS e SRK EOS

*BIP's de não-hidrocarbonetos obtidos de Nagy e Shirkovskiy. Usadas tanto para a PR EOS original (1976) quanto para a modificada (1979)

**BIP's de não-hidrocarbonetos obtidos de Reid et al.

†Não declarado por Reid et al.

‡ Deve decrescer gradualmente com o aumento no número de carbono

Fonte: Whitson e Brulé (2000)

A RK EOS mostrou um comportamento interessante para a previsão de comportamento e foi a base para centenas de estudos que tentaram melhorar sua capacidade de previsão. Abbott (1978) reivindica que o sucesso da RK EOS resulta da excelente previsão do segundo coeficiente virial (assegurando bom desempenho em densidades baixas) e de suas previsões confiáveis para altas densidades na região supercrítica. Essa ultima observação resulta do ajuste balanceado de densidades na região próxima à crítica; todos os componentes possuem um fator de compressibilidade crítico de $Z_c = \frac{1}{3}$, quando, de fato, Z_c varia de 0,29 para o metano e para menos de 0,2 para frações pesadas C₇+. O valor de Redlich-Kwong $Z_c = 1/3$ é razoável para hidrocarbonetos mais leves, mas é insatisfatório para componentes mais pesados (Whitson e Brulé, 2000).

2.4.1.3 Soave- Redlich-Kwong.

Diversas tentativas foram feitas para melhorar as previsões do Equilíbrio Líquido Vapor pela RK EOS ao introduzir um termo de correção dependente de componente α para a constante

38

39

A da EOS. Soave (1972) usou pressões de vapor para determinar a relação funcional para o fator de correção usado na Equação 2.17.

$$\alpha = \left[1 + m\left(1 - T_r^{0.5}\right)\right]^2$$
 Equação 2.24

$$m = 0,480 + 1,574\omega - 0,176\omega^2$$
 Equação 2.25

onde ω é o fator acêntrico definido por Pitzer (1955) como:

$$\boldsymbol{\omega} \equiv -\log\left(\frac{p_v^*}{p_c}\right) - 1$$
 Equação 2.26

onde p_{v}^{*} = pressão de vapor na temperatura T=0,7T_c (T_r=0,7)

A equação de Soave-Redlich-Kwong (SRK EOS) é amplamente utilizada até o momento, ainda que ela superestime os volumes de líquido grosseiramente (e subestime densidades de líquido) para misturas de petróleo (Whitson e Brulé, 2000). O uso presente da SRK EOS resulta de razões práticas e históricas. Ela oferece uma excelente ferramenta de previsão para sistemas que requerem previsões apuradas de equilíbrio líquido-vapor (ELV) e propriedades do vapor. Translação de volumes (que será discutida mais adiante) é altamente recomendada, senão obrigatória, quando é necessário o uso de densidades de líquido a partir dessa EOS. O método de caracterização de Pedersen *et al.* (1989) é recomendado quando a SRK EOS é empregada.

2.4.1.4 Peng-Robinson (1976)

Em 1976, Peng e Robinson propuseram uma equação de duas constantes que criou grandes expectativas de previsões por EOS melhoradas e especialmente de previsões de densidades de líquido melhoradas. A PR EOS é dada por:

$$p = \frac{RT}{v-b} - \frac{a}{v(v+b)+b(v-b)}$$
 Equação 2.27

ou, em termos do fator Z:

$$Z^{3} - (1 - B)Z^{2} + (A - 2B - 3B^{2})Z - (AB - B^{2} - B^{3}) = 0$$
 Equação 2.28

$$Z_c = \frac{p_c v_c}{RT_c} = 0,3074$$
 Equação 2.29

As constantes da EOS são dadas por:

$$a = \Omega_a^0 \frac{R^2 T_c^2}{p_c} \alpha$$
 Equação 2.30

onde $\Omega_a^0 = 0,45724$

$$b = \Omega_b^0 \frac{RT_c}{p_c}$$
 Equação 2.31

onde $\Omega_b^0 = 0,07780$

$$\alpha = [1 + m(1 - T_r^{0.5})]^2$$
 Equação 2.32

$$m = 0.37464 + 1.54226\omega - 0.26992\omega^2$$
 Equação 2.33

Robinson *et al.* (1979) e Robinson e Peng (1978) propuseram uma expressão modificada para m que é recomendada para componentes mais pesados ($\omega > 0,49$).

$$m = 0.3796 + 1.485\omega - 0.1644\omega^2 + 0.01667\omega^3$$
 Equação 2.34

As expressões de fugacidade são dadas por

$$\ln \frac{f}{p} = \ln \phi = Z - 1 - \ln(Z - B) - \frac{A}{2\sqrt{2B}} \ln\left(\frac{Z + (1 + \sqrt{2})B}{Z - (1 - \sqrt{2})B}\right)$$
Equação 2.35
$$\ln \frac{f_i}{y_i p} = \ln \phi_i = \frac{B_i}{B}(Z - 1) - \ln(Z - B)$$
Equação 2.36
$$+ \frac{A}{2\sqrt{2B}} \left(\frac{B_i}{B} - \frac{2}{A} \sum_{j=1}^{N} y_j A_{ij}\right) \ln\left(\frac{Z + (1 + \sqrt{2})B}{Z - (1 - \sqrt{2})B}\right)$$

onde as regras de mistura tradicionais (Equação 2.23) são usadas na derivação da expressão de fugacidade multicomponente.

41

A PR EOS não calcula ELVs inferiores comparados com as equações RK EOS, e o termo de correção dependente da temperatura para a constante A da EOS é muito similar à correção de Soave. A maior melhoria oferecida pela PR EOS é um fator de compressibilidade crítico universal de 0,307, que é consideravelmente inferior ao valor de Redlich-Kwong de um terço e mais próximo aos valores experimentais de hidrocarbonetos mais pesados. A diferença das previsões volumétricas de líquidos entre a PR EOS e a SRK EOS podem ser substanciais, embora, em muitos casos, o erro nas densidades de óleo é inaceitável para ambas as equações. Existem indícios de que a PR EOS subestima a pressão de saturação de fluidos de reservatório quando comparada com a SRK EOS, portanto exigindo coeficientes de interação binários (BIPs) HC/HC (C_1/C_7 +) para a PR EOS.

Atualmente, as equações de Peng-Robinson e Soave-Redlich-Kwong são as duas EOS cúbicas mais amplamente usadas e as únicas dentre as discutidas empregadas em todos os simuladores composicionais. Elas fornecem a mesma precisão para previsões do ELV e previsões volumétricas satisfatórias para as fases vapor e líquida quando usadas em conjunto com a translação de volumes (Whitson e Brulé, 2000)

2.4.1.5 Translação de Volumes

Em 1979, Martin (1979) propôs um novo conceito em EOS cúbicas, a translação de volumes. Sua aplicação original era a de facilitar a comparação de sua EOS generalizada proposta com equações anteriormente publicadas. Em um estudo independente, Peneloux *et al.* (1982) usaram translação de volumes para melhorar as capacidades volumétricas da SRK EOS. A contribuição chave de Peneloux *et al.* foi a de mostrar que a mudança de volume não afeta os cálculos de equilíbrio para componentes puros e misturas e, portanto não afeta as capacidades originais de cálculo do ELV da SRK EOS. A translação de volumes funciona igualmente bem para qualquer EOS de duas constantes, como foi demonstrado por Jhaveri e Youngren (1988) para a equação de Peng-Robinson.

A translação de volumes resolve o principal problema das EOS de duas constantes, as previsões volumétricas de líquido ruins. Um termo de correção simples é aplicado para o volume molar calculado pela EOS:

$$v = v^{EOS} - c$$
 Equação 2.37

onde v= volume molar corrigido, v^{EOS} =volume calculado pela EOS e c=constante específica do componente. A mudança no volume é atualmente equivalente a adicionar uma terceira constante à EOS, mas é especial porque as condições de equilíbrio são inalteradas.

Peneloux *et al.* também mostraram que o ELV multicomponente é inalterado por meio da introdução do termo de correção como uma média por frações molares

$$v_{L} = v_{L}^{EOS} - \sum_{i=1}^{N} x_{i}c_{i}$$
Equação 2.38
$$v_{v} = v_{v}^{EOS} - \sum_{i=1}^{N} y_{i}c_{i}$$
Equação 2.39

onde v_L^{EOS} e v_V^{EOS} = volumes molares calculados pela EOS para líquido e vapor, respectivamente; x_i e y_i = composições do líquido e do vapor, respectivamente; e c_i = parâmetros de mudança de volume dependentes do componente.

Quando a mudança de volume é introduzida na EOS para misturas, as expressões resultantes para fugacidade são

$$(f_{vi})_{\text{modificado}} = (f_{vi})_{original} \exp\left(-c_i \frac{p}{RT}\right)$$

$$(f_{Li})_{\text{modificado}} = (f_{Li})_{original} \exp\left(-c_i \frac{p}{RT}\right)$$
Equação 2.40

Isso implica que as razões de fugacidade são inalteradas pela mudança de volumes

$$\left(\frac{f_{Li}}{f_{vi}}\right)_{\text{mod ificado}} = \left(\frac{f_{Li}}{f_{vi}}\right)_{original}$$
Equação 2.42

Peneloux *et al.* propõem que c_i seja determinado para cada componente separadamente igualando a densidade de líquido saturado em T_r=0,7. c_i na verdade pode ser determinado em se igualando a EOS a qualquer valor de densidade a uma pressão e temperatura específica. Jhaveri e

Youngren escrevem c_i como uma razão $s_i = c_i/b_i$, sugerindo a seguinte equação para as frações C₇+,

$$s_i = c_i / b_i = 1 - A_0 / M_i^{A_1}$$
 Equação 2.43

A

Tabela 2.4 fornece valores de A_0 e A_1 e a Tabela 2.5 fornece valores de s_i para componentes puros selecionados que foram determinados por se igualando a densidade de líquido saturada em T_r=0,7.

Tabela 2.4: Correlação de translação de volume para frações C7+ com a PR EOS

Família de Hidrocarbonetos	A_{θ}	A_1
Parafinas	2,258	0,1823
Naftênicos	3,004	0,2324
Aromáticos	2,516	0,2008

Fonte: Whitson e Brulé (2000)

Tabela 2.5: Coeficientes de translação de volume para componentes puros para a PR EOS e SRK

Componente	PR EOS	SRK EOS
N_2	-0,1927	-0,0079
CO_2	-0,0817	0,0833
H_2S	-0,1288	0,0466
C ₁	-0,1595	0,0234
C_2	-0,1134	0,0605
C ₃	-0,0863	0,0825
I-C ₄	-0,0844	0,0830
N-C ₄	-0,0675	0,0975
I-C ₅	-0,0608	0,1022
N-C ₅	-0,0390	0,1209
n-C ₆	-0,0080	0,1467
n-C ₇	0,0033	0,1554
n-C ₈	0,0314	0,1794
n-C ₉	0,0408	0,1868
n-C ₁₀	0,0655	0,2080

EOS

Fonte: Whitson e Brulé (2000)

2.5 Ajuste e Regressão de Equações de Estado (ou *Tuning*)

Algumas aplicações de comportamento de fases, inclusive a simulação composicional de reservatórios, requerem o uso de uma equação de estado (EOS) para prever propriedades de fluidos de reservatórios de petróleo. Diversas propriedades dos componentes em uma mistura são necessários para cálculos de EOS, como as propriedades críticas, fatores acêntricos, pesos moleculares, coeficientes de interação binários (BIP) e a composição da mistura. Como já foi mencionado anteriormente, a capacidade de previsão de uma caracterização por EOS depende fundamentalmente da sua calibração, ou seja, da disponibilidade, da quantidade e da qualidade de dados experimentais na mesma faixa de condições de pressão e temperatura que se deseja prever. Na ausência de dados na mesma faixa, as previsões não são confiáveis e podem gerar problemas de convergência numérica durante a simulação, uma vez que EOS não foram criadas para a finalidade de extrapolação do comportamento de misturas de hidrocarbonetos. Isso se torna especialmente sensível quando a faixa de pressão e temperatura a ser prevista está em uma região próxima ao ponto crítico da mistura do reservatório estudada. Com as técnicas de separação químicas existentes, geralmente não se consegue identificar as muitas centenas ou milhares de componentes encontrados em fluidos de reservatório. Mesmo se a separação precisa fosse possível, as propriedades críticas e outros parâmetros das EOS para compostos mais pesados do que aproximadamente C₄₀ não seriam conhecidas de maneira precisa. Uma vez que uma mistura de hidrocarbonetos como o petróleo é muito complexa, sua caracterização deve ser simplificada por limitações experimentais, de recursos e de tempo computacional apenas a um número finito de componentes mais um número arbitrário e limitado de pseudocomponentes, que representem termodinamicamente e com erro aceitável o comportamento da mistura.

2.5.1 Técnicas para o Ajuste de EOS para Reprodução dos Dados PVT Experimentais

A maior parte das caracterizações por EOS não são verdadeiramente preditivas porque erros na pressão de saturação (prevista versus experimental) são comumente $\pm 10\%$, os erros em densidades são $\pm 5\%$ e as composições de componentes chaves podem estar erradas por vários por cento molares (Pedersen e Christensen, 2007). Além disso, a EOS pode prever um ponto de orvalho incorretamente quando a condição de saturação medida é um ponto de bolha, ou vice versa. Esta deficiência de capacidade preditiva por uma EOS pode ser devido a dados

composicionais insuficientes para as frações C_7 +, coeficientes de interação binários inadequados, ou composição total incorreta (Whitson e Brulé, 2000).

A caracterização por EOS pode ser melhorada por um número de técnicas diferentes para reduzir erros de calibração não associados a erros experimentais e reproduzir o comportamento real. Primeiro, no entanto, os dados experimentais e composições de fluidos devem ser checados para consistência. Se os dados PVT parecerem consistentes e as composições de fluido forem consideradas representativas do material que foi analisado no laboratório PVT, será necessário modificar os parâmetros na EOS para melhorar a caracterização de fluidos. Muitas referências bibliográficas listadas aqui apresentam métodos para modificar a EOS cúbica de modo a ajustar a dados experimentais PVT. A maior parte destes métodos modifica as propriedades das frações constituintes da fração mais pesada (exemplo, C_{7+}) (T_c , p_c , ω , ou multiplicadores diretos das constantes da EOS Ω_a e Ω_b) e os coeficientes de interação binários (BIP) entre pares de hidrocarbonetos, entre o metano e a fração mais pesada. Quando um gás de injeção contendo quantidades significativas de não-hidrocarbonetos está sendo estudado, o k_{ij} entre o nãohidrocarboneto e a fração C_7 + também pode ser modificado.

Alguns métodos usam regressão não-linear para modificar os parâmetros da EOS automaticamente. Outros métodos tentam simplesmente fazer ajustes manuais aos parâmetros da EOS através de uma abordagem de tentativa e erro. A tendência agora é a de automatizar o procedimento de modificações através da regressão não-linear, incluindo grandes quantidades de dados PVT e composicionais (Zick, 1986). Este tipo de ferramenta é o mais comum encontrado em pacotes comerciais de ajuste de equações de estado para uso em simuladores comerciais de reservatórios de petróleo e foi priorizado neste estudo.

2.5.1.1 Método de Coats e Smart (PR EOS) (1986)

Coats e Smart (1986) recomendam cinco modificações padrão da EOS: $\Omega_a e \Omega_b$ do metano; $\Omega_a e \Omega_b$ da fração mais pesada e o k_{ij} entre o metano e a fração mais pesada. Parâmetros adicionais (Ω_a , $\Omega_b e k_{ij}$ de não-hidrocarbonetos) são usados para sistemas com quantidades significativas de componentes não-hidrocarbonetos. A abordagem deste método difere da de outros métodos no fato de eles não utilizarem translação de volumes. Como resultado disto, correções significativas do metano têm de ser aplicadas às constantes da EOS $\Omega_a e \Omega_b$. Usando este método com a PR EOS tipicamente resulta em multiplicadores das constantes da EOS Ω_a e
Ω_b variando de 1,2 a 1,5 para o metano e de 0,6 a 0,8 para a fração mais pesada; k_{ij} entre o metano e a fração C₇+ varia de 0 a 0,3. As correções de Ω podem ser interpretadas como modificações das propriedades críticas (Whitson e Brulé, 2000). Usando uma abordagem de regressão não-convencional, Coats e Smart (1986) minimizam a soma dos desvios absolutos ponderados usando programação linear. Eles sugerem fatores de peso de 40 para pressões de saturação, 10 para densidades na saturação e 1 para a maior parte dos outros dados. Segundo Whitson e Brulé (2000) seus resultados são notáveis, mostrando excelentes ajustes de fluidos em regiões próximas à região crítica, injeção de gases hidrocarbonetos ou não-hidrocarbonetos em óleos e sistemas condensados retrógrados, ou simples dados de depleção.

2.5.1.2 Método de Pedersen et al. (SRK EOS) (1989)

O método de Pedersen é usado com a SRK EOS. Ele consiste dos seguintes passos:

- Desdobrar (por splitting exponencial) a fração pesada C_n+ (preferencialmente, n>10) em frações de mesmo número de carbonos até C₈₀;
- 2. Calcular densidades das novas frações usando uma distribuição logarítmica;
- Calcular as propriedades críticas (ver Apêndice, Item 0 para mais detalhes) de T_c e P_c e V_c, usando as correlações de Cavett e Omega e o fator acêntrico ω usando a correlação de Lee-Kesler;
- 4. Agrupar as frações pesadas usando regras de mistura ponderadas pelo peso;
- 5. Pseudoizar os componentes necessários;
- Calcular parâmetros de translação de volume de Peneloux para ajustar as densidades de líquido;
- 7. Converter todos os coeficientes de iteração binários para zero
- 8. Ajustar a equação de estado

2.5.2 Técnicas para a Caracterização da Fração Pesada e Representação dos Componentes Pesados Desconhecidos por um ou mais Pseudocomponentes

Foi discutido anteriormente o problema de se representar uma mistura complexa de centenas a milhares de moléculas diferentes, sendo a maior parte delas desconhecida e uma

grande parte com propriedades críticas indeterminadas, ou seja, pertencente a uma fração mais pesada que C_{20} +. Essas moléculas possuem propriedades críticas e outros parâmetros de EOS desconhecidos. Por causa desse problema, a caracterização de fluidos deve ser resumida apenas a um número finito de componentes. Destes, um ou mais são pseudocomponentes que representam a soma de todas aquelas moléculas desconhecidas. Na prática, o problema mencionado é resolvido pela caracterização aproximada dos componentes mais pesados por meio de métodos experimentais e matemáticos. Tal procedimento é denominado de caracterização da fração pesada. A caracterização da fração heptanos-mais, C_{7+} , ou duodecanos-mais, C_{20+} , dependendo da definição de fração pesada, pode ser agrupada em três tarefas principais:

- 1. Caracterizar a amostra em um número de frações de composições molares conhecidas por meio de dados de ensaios de destilação e cromatografia, isso pode ser feito opcionalmente para a fração C_{n+} por meio de técnicas de particionamento (*splitting*) matemático, que não serão o foco deste estudo.
- 2. Definir o peso molecular, densidade e ponto de ebulição de cada fração acima de n-C₅.
- Estimar as propriedades críticas e o fator acêntrico de cada fração e cada BIP (coeficientes de interação binários) chave para a EOS específica que estiver sendo utilizada.

Esta seção apresenta métodos para desempenhar estas três tarefas e fornece princípios sobre quando cada método deve ser utilizado. Não existe uma única forma de caracterização para um dado fluido de reservatório. Por exemplo, diferentes propriedades de componentes são necessárias para EOS diferentes e mais de uma forma de caracterização pode levar a um mesmo resultado, dependendo de como a equação for ajustada; portanto, o engenheiro deve determinar a qualidade de uma dada caracterização por meio do teste das previsões do comportamento do fluido do reservatório quando comparadas aos dados medidos pressão-volume-temperatura (PVT) e deve usar o bom senso nas regressões não-lineares. O teor de C_{7+} tipicamente encontrado em fluidos de reservatório varia de 50mol% para óleos pesados até menos de 1 mol% para fluidos de reservatórios leves (Craft, Hawkins e Terry, 1991). As propriedades médias da fração C_{7+} também variam amplamente. Por exemplo, o peso molecular C_7+ pode variar entre 110 e mais de 300 e a densidade de 0,7 a 1,0. Porque a fração C_7+ é uma mistura de muitas centenas de compostos parafínicos, naftênicos, aromáticos e outros compostos orgânicos (McCain, 1990), a

48

A análise experimental fornece métodos para quantificar a fração C_{7+} em frações discretas. A destilação de ponto de bolha verdadeiro (TBP) fornece os dados necessários para a caracterização completa de C_{7+} , incluindo quantidades mássicas e molares e os dados principais de inspeção para cada fração (densidade, massa molecular e ponto de ebulição). Cromatografia a Gás (CG) é uma alternativa menos cara e mais rápida que a destilação TBP. No entanto, a análise por CG quantifica apenas a massa das frações muito pesadas; propriedades como densidade e ponto de ebulição não são fornecidas pela análise por CG e são obtidas ao invés disso da literatura e por meio de calibrações comparadas a destilações TBP e correções a respeito de outras características medidas da amostra. A CG tem a característica de ter problemas de volatilização e de retenção para componentes superiores a C_{40} , isso torna a cromatografia gasosa quantitativa num intervalo mais restrito que a destilação por ponto de bolha verdadeiro (DF TBP) e mais propensa a erros de estimativa que a DF TBP.

2.5.3 Conceitos de Pseudoização de Fluidos para Otimização do Tempo Computacional.

O custo e os recursos computacionais necessários para a simulação composicional de reservatórios aumentam substancialmente com o número de componentes usados para descrever o fluido de reservatório. Um compromisso entre precisão e o número de componentes deve ser feito de acordo com o processo simulado (i.e. de acordo com o efeito esperado do comportamento de fases sobre os resultados simulados). Por exemplo, uma descrição detalhada de 12 a 15 componentes pode ser necessária para simular a miscibilidade desenvolvida em um experimento *slim-tube*. Com a tecnologia computacional atual, no entanto, uma simulação de larga escala com fluidos exibindo comportamento de fases quase-crítico não é viável para uma mistura de 15 componentes (Pedersen e Christensen, 2007). As questões a seguir são comuns a respeito do agrupamento de componentes:

1. Quantos componentes devem ser usados?

48

- 2. De que forma os componentes devem ser escolhidos a partir da descrição de fluidos original?
- 3. De que maneira as propriedades dos pseudocomponentes deve ser calculada?

2.5.3.1 Recomendações de escolha de pseudoização (quantos e quais componentes agrupar)

O número de componentes usados para descrever um fluido de reservatório depende principalmente do processo a ser simulado. No entanto, a seguinte regra prática reduz o número de componentes para a maior parte dos sistemas: agrupar N_2 com CH₄, CO₂ com etano, isobutano com n-butano, iso-pentano com n-pentano. Caso se opte por agrupar um nãohidrocarboneto com um hidrocarboneto, o conteúdo de não hidrocarbonetos deverá ser inferior a poucos por cento tanto no fluido de reservatório quanto no gás de injeção.

Segundo Whitson e Brulé (2000), a escolha de até 8 pseudocomponentes (ou mais) deve ser suficiente para simular praticamente qualquer processo de reservatório, incluindo (1) depleção de reservatórios de óleo-volátil e gás-condensado retrógrado, (2) reciclo de gás acima e abaixo do ponto de orvalho de um reservatório de gás condensado, (3) condensação retrógrada próxima ao canhoneio de um poço produtor e (4) injeção de gás miscível e imiscível.

Lee *et al.* (1982) sugere que a fração pesada C_{7+} pode ser agrupada em dois pseudocomponentes de acordo com um fator de caracterização determinado pela média das tangentes das propriedades da fração M, γ e J_a plotadas versus o ponto de ebulição.

 $\label{eq:Whitson (1983) sugere que a fração pesada pode ser agrupada em N_{H} pseudocomponentes \\ dados por$

$$N_P = 1 + 3, 3log(N - 7)$$
 Equação 2.44

onde N= número de carbonos da fração mais pesada na descrição de fluidos original.

Li *et al.* (1984) sugere um método para agrupar componentes de uma descrição de fluidos original que usa valores K (razões molares de equilíbrio de uma mistura) de uma liberação *flash* em temperatura de reservatório e da pressão de operação "média". Li *et al.* (1984) também sugere o uso de diagramas de fase e simulação composicional para verificar a descrição de fluido agrupada (uma prática recomendada também por Whitson e Brulé, 2000). As classes de moléculas de uma caracterização vão desde os gases não-hidrocarbonetos, passando pelo metano,

até duodecanos, ou até C_{30} , mais a fração pesada de hidrocarbonetos residual. A tendência ao se pseudoizar uma equação de estado é a de se alterar o envelope dos pontos de bolha e orvalho e as constantes de equilíbrio K (que definem quanto da mistura original assume a fase líquida e quanto assume a fase vapor em resposta à mudança de pressão e temperatura), assim como o ponto crítico previsto para a mistura. Quando o teor de pseudoização influencia de maneira desprezível o comportamento da equação de estado, o envelope de fases pouco se altera. A influência é desprezível, por exemplo, quando ao se aproximar por um pseudocomponente uma combinação de constituintes com baixo teor molar total, há pouca influência numérica na EOS, ou seja, o envelope da melhor descrição possível é sobreposto ao envelope da descrição pseudoizada analisada e ambas as simulações de escoamento fornecem resultados idênticos.

Outros métodos de escolha de agrupamento de componentes na pseudoização foram propostos:

O método de Schlijper (1986) também trata do problema de recuperar informação composicional detalhada de componentes pseudoizados (agrupados). Behrens e Sandler (1986) sugerem um método de agrupamento para a fração pesada baseado na aplicação do método de quadratura gaussiana à termodinâmica contínua. Embora uma simples distribuição exponencial seja usada com apenas dois pontos de quadratura (i.e. a fração pesada é agrupada em dois pseudocomponentes), Whitson *et al.* (1989) mostra que o método é geral e pode ser aplicado para qualquer modelo de distribuição molar e para qualquer número de grupos da fração pesada.

De um modo geral, a maior parte dos autores concluiu que o agrupamento mais extenso da fração pesada como de C₇ a C₁₀, C₁₁ a C₁₅, C₁₆ a C₂₀ e C₂₁₊ é substancialmente melhor do que desdobrar as primeiras frações de baixo número de carbonos (exemplo: C₇, C₈, C₉ e C₁₀₊). A quadratura gaussiana é recomendada por Whitson e Brulé (2000) para a escolha dos pseudocomponentes em uma fração pesada; frações mássicas iguais ou a abordagem de Li *et al.* (1984) são alternativas válidas.

2.5.3.2 Métodos de cálculo de pseudocomponentes

Diversos métodos foram propostos para o cálculo de propriedades críticas de pseudocomponentes. A regra de mistura mais simples e mais comum é a regra de Kay e é ela que foi implementada no software Winprop da CMG:

$$\theta_I = \frac{\sum_{i \in I} z_i \theta_i}{\sum_{i \in I} z_i}$$
Equação 2.45

51

onde θ_i = qualquer propriedade (T_c, p_c, ω ou M) e z_i = fração molar original para os componentes (i=1,...,I) que compõem o pseudocomponente I.

A densidade média deve ser sempre calculada com a aproximação de mistura de soluções ideais:

$$\gamma_{I} = \frac{\sum_{i \in I} z_{i} M_{i}}{\sum_{i \in I} \left(z_{i} M_{i} / \gamma_{i} \right)}$$
Equação 2.46

Pedersen *et al.* e outros sugeriram o uso de fração mássica ao invés de fração molar. A abordagem empírica da regra de mistura de Wu e Batycky (1986) usa tanto a regra de mistura por média molar quanto a por média mássica e um fator proporcional, F, para calcular T_{cI} , $p_{cI} e \omega_{I}$

$$\theta_I = \sum_{i \in I} \phi_i \theta_i$$
 Equação 2.47

onde θ_I representa T_{cI}, p_{cI}, ω_I , e ϕ_i = média das frações molares e mássicas

$$\phi_i = F\theta_i z_i + (1 - F)\theta_i w_i \qquad \text{Equação } 2.48$$

$$w_i = \frac{z_i M_i}{\sum_{j=1}^N z_j M_j}$$
Equação 2.49

onde $0 \le F \le 1$.

Com base nos argumentos de Chueh e Prauznitz (1968), Lee-Kesler (1975) propuseram as seguintes regras de mistura:

$$v_{cI} = \frac{\left[\frac{1}{8}\sum_{i\in I}\sum_{j\in J} z_i z_j \left(v_{ci}^{1/3} + v_{cj}^{1/3}\right)^3\right]}{(\sum_{i\in I} z_i)^2}$$
Equação 2.50

$$T_{cI} = \frac{\left[\frac{1}{8v_{cI}}\sum_{i \in I}\sum_{j \in J} z_i z_j (T_{ci}T_{cj})^{1/2} (v_{ci}^{1/3} + v_{cj}^{1/3})^3\right]}{(\sum_{i \in I} z_i)^2}$$
Equação 2.51

$$\omega_{I} = \left(\sum_{i \in I} z_{i} w_{i}\right) / \left(\sum_{i \in I} z_{i}\right)$$
Equação 2.52

$$z_{cI} = 0,2905 - 0,085\omega_I$$
 Equação 2.53

$$z_{cI} = 0,2905 - 0,085\omega_I$$
 Equação 2.54

$$p_{cI} = \frac{Z_{cI}RT_{cI}}{v_{cI}}$$
 Equação 2.55

Lee *et al.* (1982) e Whitson (1983) consideram um método alternativo para calcular as propriedades da fração pesada baseado nas densidades e pontos de ebulição dos pseudocomponentes agrupados.

2.6 Conceitos Básicos sobre Ensaios PVT

Misturas de óleo e gás condensado consistem em milhares de componentes diferentes, o que torna quase impossível realizar uma análise de componentes completa. Ao invés disso, os componentes mais pesados que n-pentano são agrupados em frações de ponto de ebulição, freqüentemente referidas como *frações de número de carbono*. A Tabela 2.6 mostra as temperaturas de ponto de ebulição que separam as frações de número de carbono (Katz e Firozabadi, 1978). Os pontos de corte são determinados a partir do ponto de ebulição das n-parafinas.A fração C₇, por exemplo, consiste dos hidrocarbonetos com um ponto de ebulição de $0,5^{\circ}$ C acima do ponto de ebulição do $n-C_{6}$ até $0,5^{\circ}$ C acima do ponto de ebulição do $n-C_{6}$ até $0,5^{\circ}$ C acima do ponto de ebulição do $n-C_{7}$ até $0,5^{\circ}$ C acima daquele do $n-C_{7}$. A fração C₈ consiste dos hidrocarbonetos com ponto de ebulição do $n-C_{7}$ até $0,5^{\circ}$ C acima daquele do $n-C_{8}$ e assim em diante. A Tabela 2.6 também mostra densidades generalizadas e massas moleculares de cada fração de numero de carbono até C₄₅. Esses são baseados num estudo realizado por Bergman *et al.* (1975).

A maneira pela qual uma análise composicional é conduzida depende da maneira pela qual um fluido de reservatório é amostrado. Ou uma amostra de fundo do poço ou uma amostra de separador é adquirida. Amostras de fundo são obtidas do fundo do poço antes da produção, são pouco contaminadas e geralmente são monofásicas e portanto, são representativas do fluido do reservatório. Uma amostra de separador consiste de duas amostras, uma amostra de óleo e uma de gás do separador situado na cabeça do poço. Uma análise de separador correta é dependente da determinação correta da razão relativa correta das vazões volumétricas de gás e óleo do separador. Ele também requer que o equilíbrio seja estabelecido no separador e que a alimentação para o separador não varie com o tempo.

No laboratório as amostras sofrem expansão flash até as condições padrão (1,01325 bar e 15° C). As amostras de óleo e de gás destes *flashes* são analisadas separadamente, a massa molecular média é resolvida em se adicionando um determinado percentual em peso de óleo a um solvente puro como o tolueno. Isso reduz o ponto de congelamento para abaixo daquele do tolueno puro; essa redução (ou depressão do ponto de congelamento) será uma função da massa molecular média do óleo. Quão menor for a depressão do ponto de congelamento, maior será a massa molecular do óleo. Essa técnica não é particularmente precisa. Para um óleo típico estável contendo hidrocarbonetos de C₄ a cerca de C₂₀₀, a incerteza da massa molecular média pode ser tão alta quanto 20%.

Número de Carbonos	Ponto de Número de Ebulição Carbonos "Médio" (oC)		Massa Molecular
C ₆	63,9	0,685	85
C ₇	91,9	0,722	96
C_8	116,7	0,745	107
C_9	142,2	0,764	121
C ₁₀	165,8	0,778	134
C ₁₁	187,2	0,789	147
C ₁₂	208,3	0,800	161
C ₁₃	227,2	0,811	175
C ₁₄	246,4	0,822	190
C ₁₅	266	0,832	206
C ₁₆	283	0,839	222
C ₁₇	300	0,847	237
C ₁₈	313	0,852	251
C ₁₉	325	0,857	263
C ₂₀	338	0,862	275
C ₂₁	351	0,867	291
C ₂₂	363	0,872	305
C ₂₃	375	0,877	318
C ₂₄	386	0,881	331
C ₂₅	397	0,885	345
C ₂₆	408	0,889	359
C ₂₇	419	0,893	374
C ₂₈	429	0,896	388
C ₂₉	438	0,899	402
C ₃₀	446	0,902	416
C ₃₁	455	0,906	430

Tabela 2.6: Propriedades Generalizadas de grupos C₆+ do petróleo

Número de Carbonos	Ponto de Ebulição "Médio" (oC)	Densidade (g/cm3)	Massa Molecular
C ₃₂	463	0,909	444
C ₃₃	471	0,912	458
C ₃₄	478	0,914	472
C ₃₅	486	0,917	486
C ₃₆	493	0,919	500
C ₃₇	500	0,922	514
C ₃₈	508	0,924	528
C ₃₉	515	0,926	542
C_{40}	522	0,928	556
C ₄₁	528	0,930	570
C ₄₂	534	0,931	584
C ₄₃	540	0,933	598
C ₄₄	547	0,935	612
C ₄₅	553	0,937	626

Fonte: Dados de Katz e Firoozabadi (1978)

Figura 2.6: Analisando uma amostra de fundo de poço

Figura 2.7: Obtenção de uma amostra de óleo de separador para análise TBP

Duas técnicas padronizadas são usadas para a análise composicional, a destilação de ponto de bolha verdadeiro (DF TBP) e a cromatografia a gás (CG/GC).

2.6.1 Destilação Fracionada TBP

A análise DF TBP separa os componentes do óleo estável em cortes de ponto de ebulição. Os pontos de corte são dados pela Tabela 2.6. Cada corte de destilação contém material suficiente para medir a densidade e a massa molecular. Porque existe um intervalo limitado de massa molecular dentro de uma fração de número de carbono, sua massa molecular pode ser medida com maior precisão do que a massa molecular da amostra de óleo original como um todo. A incerteza na massa molecular das frações de número de carbono é de cerca de 2%, enquanto ela é de cerca de 5% para a fração residual. Um exemplo de dados de uma análise DF TBP é dado na Tabela 2.7. Até C_{10+} , a destilação foi conduzida na pressão atmosférica, de C_{10} até C_{19} a pressão foi de 26,6 mbar e, finalmente, as frações de C_{20} - C_{29} foram separadas com uma pressão de 2,66 mbar. A pressão é reduzida para evitar a decomposição (craqueamento). Muito embora destilação de C_{10} e frações mais pesadas ocorra em uma pressão atmosférica (2ª coluna da Tabela 2.7). As densidades da Tabela 2.7 estão em pressão atmosférica e 15° C (2ª coluna).

Tabela 2.7: Exemplo de análise TBP

Fração	Ponto de	Temperatura	Densidade	м	Peso P		
	Corte (°C)	Atual (°C)	(g/cm ³)	М	Peso %	Cumulativo%	

Enceño	Ponto de	Temperatura	Densidade	м	Dese Ø	Peso
Fraçao	Corte (°C)	Atual (°C)	(g/cm^3)	M	Peso %	Cumulativo%
Gás	-	-	-	33,5	0,064	0,064
<c<sub>6</c<sub>	36,5	36,5	0,598	62,5	3,956	4,020
C_6	69,2	69,2	0,685	82,0	2,016	6,036
C ₇	98,9	98,9	0,737	98,7	6,125	12,161
C_8	126,1	126,1	0,754	109,6	4,606	16,767
C ₉	151,3	151,3	0,774	121,9	5,046	21,813
C ₁₀	174,6	70,9	0,789	134,7	4,020	25,833
C ₁₁	196,4	88,7	0,794	150,3	3,953	29,786
C ₁₂	216,8	105,7	0,806	166,4	4,061	33,847
C ₁₃	235,9	121,8	0,819	181,4	3,800	37,647
C ₁₄	253,9	136,9	0,832	194,0	4,421	42,068
C ₁₅	271,1	151,2	0,834	209,4	3,765	45,833
C ₁₆	287,3	164,3	0,844	222,4	2,969	48,802
C ₁₇	303	178	0,841	240,9	3,800	52,602
C ₁₈	309	191	0,847	256,0	2,813	55,415
C ₁₉	331	203	0,860	268,2	3,364	58,779
C ₂₀	344	161	0,874	269,4	1,115	59,894
C ₂₁	357	172	0,870	282,5	2,953	62,847
C ₂₂	369	181	0,872	297,7	2,061	64,908
C ₂₃	381	191	0,875	310,1	1,797	66,705
C ₂₄	392	199	0,877	321,8	1,421	68,126
C ₂₅	402	208	0,881	332,4	2,083	70,209
C ₂₆	413	217	0,886	351,1	1,781	71,990
C ₂₇	423	226	0,888	370,8	1,494	73,484
C ₂₈	432	234	0,895	381,6	1,625	75,109
C ₂₉	441	241	0,898	393,7	1,233	176,342
C ₃₀₊	>441	-	0,935	612,0	23,658	100,000

Fonte: Pedersen e Christensen (2007)

2.6.2 Cromatografia a Gás

A técnica de CG é bem adequada para analisar amostra de gás. Uma pequena amostra de gás é injetada em uma coluna CG, através da qual é transportada a uma taxa que depende da estrutura molecular, tamanho e ponto de ebulição. Cada componente exibe um pico no

cromatograma, conforme a Figura 2.6. O número de componentes diferentes é delimitado e cada componente pode ser quantitativamente identificado.

Um exemplo de uma análise detalhada da fase gasosa é mostrado na Tabela 2.8 a seguir (Osjord e Malthe-Sørenssen, 1983). A composição relatada geralmente não é muito detalhada. Uma análise composicional padrão irá distinguir entre iso e normal C_4 e entre iso e normal C_5 , enquanto hidrocarbonetos mais pesados são agrupados em frações por número de carbonos. A última coluna da Tabela 2.8 mostra o componente ou número de carbonos associado a cada componente numa análise padrão. Alguns componentes não são classificados de acordo com seu número de carbonos. Este exemplo se aplica ao benzeno. Uma molécula de benzeno contém seis átomos de carbono, mas por causa do ponto de ebulição do benzeno pertencer ao corte de C_7 , benzeno é classificado como um componente C_7 .

Componente	Fórmula	Peso %	M (g/mol)	T _{eb} (°C)	Fração
Nitrogênio	N ₂	1,6542	28,013	-195,8	N_2
Dióxido de Carbono	CO_2	2,3040	44,010	-78,5	CO_2
Metano	CH_4	60,5818	16,043	-161,5	C_1
Etano	C_2H_6	15,5326	30,070	-88,5	C_2
Propano	C_3H_8	12,3819	44,097	-42,1	C_3
Iso-Butano	$C_{4}H_{10}$	2,0616	58,124	-11,9	iC_4
n-Butano	$C_{4}H_{10}$	3,2129	58,124	-0,5	nC_4
2,2-Dimetilpropano	$C_{5}H_{12}$	0,0074	72,151	9,5	iC ₅
2-Metilbutano	$C_{5}H_{12}$	0,7677	72,151	27,9	iC ₅
n-Pentano	$C_{5}H_{12}$	0,6601	72,151	36,1	nC ₅
Ciclopentano	$C_{5}H_{10}$	0,0395	70,135	49,3	C_6
2-2-Dimetilbutano	$C_{6}H_{14}$	0,0059	86,178	49,8	C_6
2,3-Dimetilbutano	$C_{6}H_{14}$	0,0212	86,178	58,1	C_6
2-Metilpentano	$C_{6}H_{14}$	0,1404	86,178	60,3	C_6
3-Metilpentano	$C_{6}H_{14}$	0,0603	86,178	63,3	C_6
n-Hexano	$C_{6}H_{14}$	0,1302	86,178	68,8	C_6
Metilciclopentano	$C_{6}H_{12}$	0,0684	84,162	71,9	C ₇
2,2-Dimetilpentano	$C_{7}H_{16}$	0,0001	100,205	79,3	C ₇
Benzeno	C_6H_6	0,0648	78,114	80,2	C ₇
3,3-Dimetilpentano	$C_{7}H_{16}$	0,0005	100,205	80,6	C ₇
Ciclohexano	C ₆ H ₁₂	0,0624	82,146	83,0	C ₇

Tabela 2.8: Composição de amostra de gás determinada pela análise CG

Componente	Fórmula	Peso %	M (g/mol)	$T_{eb} (^{o}C)$	Fração		
3,3-Dimetilpentano	C ₇ H ₁₆	0,0005	100,205	86,1	C ₇		
1,1-Dimetilciclopentano	C_7H_{14}	0,0025	98,189	87,9	C ₇		
2,3-Dimetilpentano	C ₇ H ₁₆	0,0045	100,205	89,8	C ₇		
2-Metilhexano	C ₇ H ₁₆	0,0145	100,205	90,1	C ₇		
3-Metilhexano	C ₇ H ₁₆	0,0060	100,205	91,9	C ₇		
1,cis-3-	C_7H_{14}	0,0060	98,189	-	C ₇		
Dimetilciclopentano							
1,trans-3-	$C_{7}H_{14}$	0,0094	98,189	-	C ₇		
Dimetilciclopentano							
1,trans-2-	C_7H_{14}	0,0290	98,189	91,9	C ₇		
Dimetilciclopentano							
n-Heptano	C ₇ H ₁₆	0,0565	100,205	98,5	C ₇		
Metilciclohexano	C_7H_{14}	0,0035	98,189	101,0	C_8		
Etilciclopentano	C_7H_{14}	0,0004	98,189	103,5	C_8		
1,trans-2,cis-4-	C ₈ H ₁₆	0,0002	112,216	-	C_8		
Trimetilciclopentano							
1,trans-2,cis-3-	C ₈ H ₁₆	0,0436	92,141	-	C_8		
Trimetilciclopentano							
Tolueno	C_7H_8	0,0039	114,232	110,7	C_8		
2-Metilheptano	C_8H_{18}	0,0025	114,232	117,7	C_8		
3-Metilheptano	C ₈ H ₁₈	0,0022	112,216	119,0	C_8		
1,trans-4-	C ₈ H ₁₆	0,0044	112,216	119,4	C_8		
Dimetilcilohexano							
1,cis-3-	C_8H_{16}	0,0099	114,232	123,5	C_8		
Dimetilciclohexano							
n-Octano	C_8H_{18}	0,0029	106,168	125,7	C_8		
m+p-Xileno	C_8H_{10}	0,0029	106,168	138,8	C ₉		
o-Xileno	C ₉ H ₂₀	0,0134	128,259	144,5	C ₉		
n-Nonano	C ₉ H ₂₀	0,0134	128,259	150,9	C ₉		
Decanos não	$(C_{10}H_{22})$	0,0081	(142,286)	(174,2)	(C ₁₀)		
identificados							
Fonte: Pedersen e Christensen, 2007							

Na Tabela 2.9 a composição por peso da Tabela 2.8 com os componentes individuais da fração C₆+ foram agrupados em frações de número de carbono e recalculados para uma composição molar.

Componente/ Fração	Percentagem Molar
N ₂	1,229
CO_2	1,090
C_1	78,588
C_2	10,75
C_3	5,844
iC_4	0,738
nC_4	1,150
iC ₅	0,224
nC_5	0,190
C_6	0,098
C_7	0,068
C_8	0,027
C ₉	0,003
C ₁₀₊	0,001

Tabela 2.9: Composição molar da amostra de gás da Tabela 2.8 com componentes individuaisagrupados em frações de número de carbono

Fonte: Pedersen e Christensen (2007)

A fração molar, z_i, do componente i é calculada em uma mistura de N componentes a partir da Equação 2.56:

$$z_i = \frac{\frac{w_i}{M_i}}{\sum_{j=1}^{N} \frac{w_j}{M_i}}$$
Equação 2.56

onde w representa a fração por peso, M a massa molecular e i e j são os índices dos componentes.

A CG é menos adequada para amostras de óleo, primeiramente porque o número de componentes aumenta rapidamente com o número de carbonos. Além disso, por causa dos hidrocarbonetos de alta massa molecular estarem presentes em menor concentração que os hidrocarbonetos de menor massa molecular, a identificação de componentes individuais se torna crescentemente mais difícil à medida que o número de carbonos aumenta. Uma análise de componentes completa pode ser desenvolvida para frações de até cerca de C₉. Uma análise de fase líquida para as frações C₂-C₉ pode ser encontrada em Osjord *et al.*, 1985. Esta referência

sugere de forma mais clara a complexidade de se desenvolver uma análise de componentes completa. Componentes mais pesados que C₉ geralmente não são identificados quantitativamente. Ao invés disso, os picos de n-parafinas no cromatrograma a gás são usados para separar uma fração de número de carbonos da próxima. Os picos entre eles por definição pertencem à fração de número de carbonos da n-parafina subsequente.

As composições medidas usando uma análise CG ou TBP são fornecidas em unidades de massa. Composições molares são necessárias para simulações PVT. Antes de reportar uma análise composicional, os laboratórios PVT convertem as composições mássicas para composições molares. Isso é feito usando a Equação 2.56 que mostra que a composição molar correta é dependente da massa molecular correta de todos os componentes e das frações por número de carbonos.

A CG é uma técnica não-preparativa, o que significa que as frações de ponto de ebulição não são coletadas das mesma forma que na análise TBP. Como é ilustrado na Tabela 2.7 e na tabela de Osjord *et al.*, 1985, é possível identificar quantitativamente os componentes C_7 - C_9 , o que permite que o peso molecular e a densidade de cada uma das frações de número de carbonos sejam calculadas por

$$M_{c_N} = \frac{w_{c_N}}{\sum_{i=1}^{N_{c_N}} \frac{w_i}{M_i}}$$

$$\rho_{c_N} = \frac{w_{c_N}}{\sum_{i=1}^{N_{c_N}} \frac{w_i}{M_i}}$$
Equação 2.58

onde w é a fração de peso e N_{c_N} é o número de componentes da fração de numero de carbonos.

Para frações mais pesadas do que C₉ não é possível identificar cada componente quantitativamente. Massas moleculares e densidades das frações individuais de mais de 10 carbonos reportadas por uma análise CG também serão valores *default*, embora as equações anteriores permitam que essas propriedades sejam quantificadas com base em dados de Cromatografia Gasosa analítica.

A partir de uma análise CG a massa molecular (M_+) e a densidade (ρ_+) da fração residual são calculadas pelas Equações 2.59 e 2.60:

$$M_{c_{N+}} = \frac{M_{\delta leo} w_{c_{N+}}}{1 - M_{\delta leo} \sum_{i=1}^{N_{c_N} - 1} \frac{w_i}{M_i}}$$
Equação 2.59

$$\rho_{c_N} = \frac{\rho_{\delta leo} w_{c_{N+}}}{1 - \rho_{\delta leo} \sum_{i=1}^{N_{c_N} - 1} \frac{w_i}{M_i}}$$
Equação 2.60

onde $M_{\delta leo}$ e $\rho_{\delta leo}$ são respectivamente a massa molecular média e a densidade média da amostra de óleo.

Uma comparação entre as massas moleculares e as densidades do C_7 - C_{29} obtido pela análise TBP da Tabela 2.7 com as massas moleculares e densidades *default* da Tabela 2.6 revela algumas diferenças especialmente nas massas moleculares. A massa molecular de C_{30} + de 715 g/mol poderia ser calculado usando a Equação 2.59, a partir das massas moleculares *default* da Tabela 2.6. Essa massa molecular do resíduo é 17% maior do que a massa molecular de 612 g/mol medida diretamente do resíduo TBP (ou fração C_{30} +). A incerteza da medida da massa molecular da amostra de óleo já é de 20%. Para uma composição CG essa incerteza é transferida para a massa molecular da fração residual, o qual geralmente constitui apenas uma fração menor do óleo total. A incerteza da massa molecular da fração residual de uma composição determinada por CG e a massa molecular relatada pode ser completamente irreal. A cromatografia a gás é uma técnica que permite análises composicionais de amostras de óleo até cerca de C₈₀+ (Curvers e van den Engel, 1989). Um exemplo de dado PVT analisado por esta técnica com uma composição de até C₈₀+ pode ser encontrado em Pedersen *et al.*(1992). Por esse motivo, optou-se trabalhar apenas com dados de destilação fracionada, para aumentar a confiabilidade deste estudo.

2.6.3 Liberação Diferencial

O experimento de liberação diferencial (ou depleção diferencial) está esquematizado na Figura 2.8. Ele é apenas realizado para misturas de óleo. O experimento é iniciado ao se transferir fluido de reservatório para uma célula mantida a temperatura constante, geralmente a temperatura do reservatório. Do mesmo modo que a célula de depleção a volume constante a ser descrita na seção 2.6.4 e esquematizada na Figura 2.9, a célula de liberação diferencial é equipada com uma válvula no topo que permite que o gás seja depletado durante o experimento. O experimento é iniciado na pressão de saturação ou acima dela. O volume é reduzido passo a passo e em cada estágio os valores correspondentes de pressão e volume são registrados. O ponto de saturação é alcançado quando uma quantidade incipiente de gás (uma bolha de gás) é visualizada se formando. A cada estágio de pressão abaixo da pressão de saturação, todo gás é depletado. O fator de compressibilidade (Equação 2.61) do gás em condições da célula é medido.

Figura 2.8: Representação esquemática de um experimento de depleção diferencial. *Fonte:* Pedersen e Christensen, 2007.

$$Z = \frac{PV}{RT}$$
 Equação 2.61

O propósito principal dos experimentos PVT é o de adquirir conhecimento sobre o comportamento de um fluido de reservatório sob condições de reservatório. O experimento de depleção diferencial possui um propósito secundário de gerar informação sobre as mudanças volumétricas que ocorrem com a corrente do poço quando produzida sob condições padrão.

A Tabela 2.11 mostra resultados de um experimento de liberação diferencial conduzido em uma mistura de óleo da Tabela 2.10.

Tabela 2.10: Composição molar da amostra de óleo do exemplo

Componente	Mol%	Densidade a 1,01 bar, 15 °C (g/cm ³)	Massa Molecular
N_2	0,39	-	-
CO_2	0,30	-	-
C ₁	40,20	-	-
C_2	7,61	-	-

Componente	Mol%	Densidade a 1,01 bar, 15 °C (g/cm ³)	Massa Molecular
C ₃	7,95	-	-
i-C ₄	1,19	-	-
n- C ₄	4,08	-	-
i-C ₅	1,39	-	-
n- C ₅	2,15	-	-
C ₆	2,79	-	-
C ₇	4,28	0,729	95
C ₈	4,31	0,749	106
C ₉	3,08	0,770	121
C ₁₀	2,47	0,786	135
C ₁₁	1,91	0,792	148
C ₁₂	1,69	0,804	161
C ₁₃	1,59	0,819	175
C ₁₄	1,22	0,833	196
C ₁₅	1,25	0,836	206
C ₁₆	1,00	0,843	224
C ₁₇	0,99	0,840	236
C ₁₈	0,92	0,846	245
C ₁₉	0,60	0,857	265
C ₂₀₊	6,64	0,918	453

63

Fonte: Dados de Pedersen e Christensen (2007)

Tabela 2.11: Resultados do Experimento de Liberação Diferencial sobre o óleo de exemplo da A Tabela 2.11 mostra resultados de um experimento de liberação diferencial conduzido em uma mistura de óleo da Tabela 2.10.

Tabela 2.10).
-------------	----

Pressão (bar)	B _o (m ³ /m ³ std)	$R_s (m^3/m^3 std)$	$\rho_{\acute{o}leo}(g/cm^3)$	B _g (m ³ /m ³ std)	Fator Z gás	d _{gás} (ar=1)
351,4	1,653	198,3	0,670	-	-	-
323,2	1,662	198,3	0,667	-	-	-
301,5	1,669	198,3	0,664	-	-	-
275,9	1,679	198,3	0,660	-	-	-
250,1	1,688	198,3	0,656	-	-	-
226,1	1,699	198,3	0,652	-	-	-
205,9	1,708	198,3	0,649	-	-	-
$200,0^{*}$	1,710	198,3	0,645	-	-	-

Pressão (bar)	B _o (m ³ /m ³ std)	$R_s (m^3/m^3 std)$	$\rho_{\acute{o}leo}(g/cm^3)$	B _g (m ³ /m ³ std)	Fator Z gás	d _{gás} (ar=1)
179,1	1,648	176,2	0,656	0,00610	0,844	0,791
154,6	1,588	154,3	0,668	0,00713	0,851	0,779
132,1	1,534	134,5	0,679	0,00839	0,857	0,764
109,0	1,483	115,5	0,691	0,01030	0,868	0,758
78,6	1,413	91,7	0,706	0,01440	0,882	0,772
53,6	1,367	72,8	0,719	0,02150	0,901	0,805
22,0	1,288	46,1	0,739	0,05280	0,933	0,953
1,0	1,077	0,0	0,778	-	-	2,022
1,01 (15°C)	1,000	0,0	0,838	-	-	-

* Ponto de Saturação

Fonte: Dados de Pedersen e Christensen (2007)

A densidade relativa do gás é definida como a massa molecular média do gás dividida pela massa molecular média do ar atmosférico: Equação 2.62. A massa molecular do ar atmosférico é geralmente adotada como 28,964 g/mol. Ao se expressar a massa molecular relativa àquela do ar atmosférico, a densidade relativa do gás torna-se uma medida de baixa pressão do gás relativa àquela do ar atmosférico.

$$Densidade \ Relativa \ do \ Gás = \frac{Massa \ Molecular \ do \ Gás}{Massa \ Molecular \ Média \ do \ Ar \ Atmosférico} \qquad Equação \ 2.62$$

O volume do gás liberado em condições padrão é medido. Isso permite o cálculo do fator volume de formação do gás, Bg: Equação 2.63

$$B_g = \frac{Volume \ do \ Gás \ nas \ Condições \ da \ Célula}{Volume \ do \ Gás \ nas \ Condições \ Padrão}$$
 Equação 2.63

As condições de célula referem-se à pressão e temperatura na célula no estágio de pressão no qual o gás foi depletado. A unidade SI para $B_g é m^3/STDm^3$. STD significa que o volume foi medido em condições padrão. O volume em condições padrão do gás liberado de um estágio N em um experimento de liberação diferencial será referido como $V_{std,N}^{gas}$.

Um experimento de depleção diferencial é geralmente conduzido decrescendo a pressão para a pressão atmosférica antes de resfriar a célula até 15° C (ou condições padrão). O volume do conteúdo da célula em condições atmosféricas (padrão) é relatado como o volume de óleo residual (ou padrão), V_{std}^{oleo} . Os volumes de líquido nos estágios remanescentes de pressão são relatados relativos ao volume de óleo residual através do fator volume de formação ou fator de encolhimento, B_o . Se o volume de óleo no estágio N é V_N^{oleo} , B_o para o estágio N é definido como Equação 2.64:

$$B_{o}(N) = \frac{V_{N}^{oleo}}{V_{std}^{oleo}}$$
Equação 2.64

A unidade SI para $B_o \notin m^3/STDm^3$. STD é nomeado devido às condições padrão e indica que o volume de óleo residual foi medido em condições padrão.

A razão gás/óleo de solução, R_s , é outra quantidade importante medida em um experimento de liberação diferencial. A razão gás/óleo do óleo em um dado estágio em um experimento de liberação diferencial é calculada ao se adicionar os volumes padrão do gás liberado em cada um dos estágios subseqüentes e então dividindo a soma dos volumes de gás pelo volume de óleo residual. Para o óleo em um estágio N em um experimento de liberação diferencial com um total de NST estágios de pressão, a R_s é dada por: Equação 2.65

$$R_{s}(N) = \frac{\sum_{n=N+1}^{NST} V_{std,n}^{gas}}{V_{std,n}^{\delta leo}}$$
Equação 2.65

Quando o gás sofre liberação flash até as condições padrão um pequeno *dropout* líquido geralmente é observado. Esse volume é adicionado ao volume de gás que entra na Equação 2.65 como o volume de gás equivalente (o volume que o líquido assumiria se ele estivesse na forma gasosa). O óleo em condições padrão é geralmente referido como *óleo estável* para indicar que ele pode ser transportado em condições padrão sem liberação adicional de gás. O fator B_o, definido pela Equação 2.64 é uma medida de quanto do óleo encolhe durante a produção. Se o volume de óleo em uma dada pressão de reservatório se iguala a VOL_x e o óleo na pressão P_x tem um fator B_o de B_{o,x}, o óleo terá um volume de VOL_x/B_{ox} após a depleção para condições atmosféricas. O fator B_o será em geral maior do que 1, expressando que o óleo encolhe durante a produção. Ele encolhe porque libera gás à medida que a pressão decresce e por causa da contração térmica com a redução de temperatura.

O fator B_g (ou fator volume de formação do gás) é uma medida de quanto o volume de gás aumenta das condições de reservatórios para as condições padrão. As mudanças no volume

de gás durante a produção são maiores do que as mudanças em volume de óleo. O volume de gás aumenta aproximadamente tanto quanto a pressão decresce.

A definição de razão gás óleo de solução, R_S tem seu ponto de partida em um elemento de volume de óleo em condições de reservatório. R_S expressa a razão entre o volume do gás nas condições padrão e o volume de óleo nas condições padrão produzidos deste elemento de volume particular.

A pressão de reservatório pode decrescer durante a produção. A partir do momento em que a pressão alcança a pressão de saturação, duas fases estarão presentes, uma fase óleo e uma fase gás. Devido à continua liberação de gás, a quantidade de gás dissolvida no óleo irá diminuir com o decréscimo da pressão. Isso irá resultar em fatores B_o e razões gás óleo decrescentes com o decréscimo da pressão. A Figura 2.9 mostra um gráfico do fator B_o do óleo da A Tabela 2.11 mostra resultados de um experimento de liberação diferencial conduzido em uma mistura de óleo da Tabela 2.10.

Tabela 2.10 em função da pressão. Os resultados estão tabulados na

Tabela 2.11. Pode se observar que o fator B_o aumenta com o decréscimo da pressão acima da pressão de saturação. Isso ocorre porque o óleo expande com o decréscimo da pressão até que ele comece a liberar gás.

Figura 2.9: Fator B_o em função da pressão no experimento de liberação diferencial (Pedersen e Christensen, 2007)

A Figura 2.10 mostra um gráfico de R_s do mesmo óleo. Acima do ponto de saturação, R_S é constante porque a composição do fluido de reservatório produzido é constante até que o ponto de saturação seja alcançado. Abaixo do ponto de saturação, R_S decresce com o decréscimo da pressão. O gás liberado do óleo logo abaixo do ponto de saturação consiste principalmente de componentes gasosos mais leves. À medida que a pressão diminui mais, o teor de componentes mais pesado no gás irá aumentar. Isso reflete em um aumento da densidade relativa do gás com o decréscimo da pressão, da forma que pode ser visto na Tabela 2.11. As quantidades medidas em um experimento de liberação diferencial estão listadas na Tabela 2.12.

Figura 2.10: Fator R_s em função da pressão no experimento de liberação diferencial

Tabela 2.12: Resultados principais de um experimento de liberação diferencial realizado sobre uma mistura de óleo

Bo	Fator volume de formação do gás, i.e., volume de óleo na pressão atual, dividido pelo volume
	de óleo residual em condições padrão
R _s	Razão gás/óleo de solução, i.e., volume padrão total de gás liberado a estágios de pressão
	inferior ao atual, dividido pelo volume de óleo residual em condições padrão

Densidade do óleo	Densidade da fase óleo em condições de célula		
$\mathbf{B}_{\mathbf{g}}$	Fator volume de formação do gás definido como volume de gás na pressão atual dividido pelo		
	volume do mesmo gás em condições padrão		
Fator Z do gás	Definido na Equação 2.61, refere-se ao gás depletado em condições da célula		
Densidade	Massa molecular do gás liberado dividida pela massa molecular do ar atmosférico (28,964)		
relativa do gás			

Fonte: Pedersen e Christensen (2007)

2.6.4 Expansão a Composição Constante

O experimento de expansão a composição constante está esquematizado na Figura 2.11 abaixo:

Figura 2.11: Esquema de um experimento de Expansão a Composição Constante. *Fonte:* Pedersen e Christensen, 2007

PVT Experiments

Uma quantidade fixa de um fluido de reservatório é transferida para uma célula fechada na qual a temperatura é mantida constante, usualmente na temperatura de reservatório. O volume da célula pode ser variado. Isso pode ser realizado, como ilustrado na Figura 2.11, ao se mover um pistão para cima e para baixo. O volume máximo de um pistão típico é de cerca de 400 cm³. Um experimento de expansão a composição constante fornece informação sobre a pressão de saturação na temperatura de reservatório e sobre as quantidades volumétricas relativas de gás e óleo no reservatório em várias etapas da vida útil do reservatório.

69

O experimento é iniciado a uma pressão superior que a do ponto de saturação. Para uma mistura de gás condensado retrógrado isso significa que o experimento é iniciado a uma pressão acima da pressão do ponto de orvalho e para uma mistura de óleo isso significa que o experimento é iniciado a uma pressão acima do ponto de bolha. O volume inicial da mistura é registrado. O volume de mistura é aumentado passo a passo. A cada passo o volume de mistura e a pressão da célula PVT são medidos. Além disso, o ponto de saturação é registrado. Esta é a pressão na qual uma fase adicional começa a se formar. Para um gás condensado essa fase adicional aparece como uma gota de líquido, e para um óleo ela será vista como uma bolha de gás. O termo V^{sat} é usado para o volume do ponto de saturação. A cada estágio do experimento o volume relativo é registrado, definido como a razão entre o volume atual e o volume na pressão de saturação.

$$V^{rel} = \frac{V^{tot}}{V^{sat}}$$
 Equação 2.66

Para uma mistura de gás condensado, o fator de compressibilidade da fase gás, Z (Equação 2.61) é registrado acima da pressão de saturação. Abaixo do ponto de orvalho, o volume de líquido V_{liq} , de um gás condensado é registrado com a porcentagem do volume de mistura no ponto de orvalho:

%Dropout Líquido =
$$100 \times \frac{V^{liq}}{V^{sat}}$$
 Equação 2.67

O volume de líquido é usualmente referido como o *dropout líquido*. A Tabela 2.13 lista os resultados principais de um experimento de expansão a composição constante realizado sobre uma mistura de gás condensado.

Tabela 2.13: Resultados principais de um experimento de expansão a composição constante
realizado sobre uma mistura de óleo

Volume Relativo	V^{tot}/V^{sat} , onde V^{tot} é o volume de fluido total e V^{sat} é o volume do ponto de orvalho (ou ponto
	de saturação)
Volume líquido	Porcentagem do volume líquido de V ^{sat}

Fator Z	Definido na Equação 2.61. Apenas relatado acima do ponto de saturação

Fonte: Pedersen e Christensen (2007)

A Tabela 2.14 mostra a composição de uma mistura de gás condensado e a Tabela 2.15 mostra os resultados de um experimento de expansão a composição constante realizado sobre este fluido. O volume relativo e o *dropout* líquido versus a pressão estão mostrados na Figura 2.12.

Componente	Mol%	Densidade a 1,01 bar, 15 °C (g/cm ³)	Massa Molecular
N ₂	0,60	-	-
CO ₂	3,34	-	-
C ₁	74,16	-	-
C ₂	7,90	-	-
C ₃	4,15	-	-
i-C ₄	0,71	-	-
n- C ₄	1,44	-	-
i-C ₅	0,53	-	-
n- C ₅	0,66	-	-
C ₆	0,81	-	-
C ₇	1,20	0,746	91
C ₈	1,15	0,770	104
C ₉	0,63	0,788	119
C ₁₀	0,50	0,795	133
C ₁₁	0,29	0,790	144
C ₁₂	0,27	0,802	155
C ₁₃	0,28	0,814	168
C ₁₄	0,22	0,824	181
C ₁₅	0,17	0,833	195
C ₁₆	0,15	0,836	204
C ₁₇	0,14	0,837	224
C ₁₈	0,09	0,839	234
C ₁₉	0,13	0,844	248
C ₂₀₊	0,47	0,877	362

Tabela 2.14: Composição molar da mistura de gás condensado Retrógrado do exemplo da Tabela

2	1	F
4.	I	.Э

Fonte: Dados de Pedersen e Christensen (2007)

Tabela 2.15: Resultados do experimento de expansão a composição constante sobre o gáscondensado retrógrado de exemplo da Tabela 2.14.

	Volume	Volume	
Pressão (bar)	Relativo	Líquido	Fator Z
1105540 (541)	(V/V^{sat})	(porcentagem	1 4001 22
	(,,,,)	de V ^{sat})	
597,1	0,8338	-	1,3729
577,8	0,8441	-	1,3450
560,9	0,8539	-	1,3208
540,5	0,8656	-	1,2902
519,5	0,8793	-	1,2596
495,1	0,8968	-	1,2244
479,8	0,9090	-	1,2027
462,7	0,9232	-	1,1779
449,9	0,9341	-	1,1589
434,8	0,9481	-	1,1367
412,0	0,9720	-	1,1043
393,0	0,9959	-	1,0793
$388,0^{*}$	1,0000	0,00	1,0740
385,1	1,0035	0,05	-
368,6	1,0299	0,75	-
345,1	1,0707	2,43	-
320,7	1,1200	4,52	-
300,5	1,1727	6,11	-
278,7	1,2411	7,75	-
255,6	1,3249	9,06	-
238,6	1,4021	9,89	-
229,3	1,4476	10,29	-
206,7	1,5843	11,03	-
183,7	1,7651	11,58	-
161,3	2,0047	11,80	-
146,2	2,1923	11,89	-

* Ponto de Saturação

Fonte: Dados de Pedersen e Christensen (2007)

O fator Y é uma medida da razão entre as mudanças relativas na pressão e o volume total numa região bifásica. À medida que o gás ganha mais volume que o líquido as mudanças volumétricas com o decréscimo da pressão serão maiores na região bifásica do que na região monofásica. Um óleo que libera muito gás com o decréscimo da pressão terá um pequeno fator Y, enquanto um óleo que somente libera pequenas quantidades de gás com o decréscimo da pressão terá um elevado fator Y. Um experimento de expansão a composição constante geralmente é encerrado em uma pressão com um valor dentro do intervalo de 50 a 100 bar.

Figura 2.12: Curva de *dropout* líquido (círculos, linha continua, escala no eixo vertical esquerdo) e curva de volume relativo (triângulos, linha pontilhada, eixo vertical direito) para experimento de expansão a composição constante na mistura de gás condensado retrógrado do exemplo. *Fonte:* Pedersen e Christensen, 2007

А

Tabela 2.17 mostra resultados da expansão a massa constante para a composição de óleo da Tabela 2.16. Os resultados estão na Figura 2.13.

Tabela 2.16: composição molar da mistura de gás condensado retrógrado do exemplo

Componente	Mol%	Densidade a 1,01 bar, 15 °C (g/cm ³)	Massa Molecular (g/mol)
N ₂	0,39	-	-

		Densidade a	Massa
Componente	Mol %	1,01 bar, 15 °C	Molecular
		(g/cm ³)	(g/mol)
CO_2	0,30	-	-
C_1	40,20	-	-
C_2	7,61	-	-
C ₃	7,95	-	-
i-C ₄	1,19	-	-
n- C ₄	4,08	-	-
i-C ₅	1,39	-	-
n- C ₅	2,15	-	-
C ₆	2,79	-	-
C ₇	4,28	0,729	95
C ₈	4,31	0,749	106
C ₉	3,08	0,770	121
C ₁₀	2,47	0,786	135
C ₁₁	1,91	0,792	148
C ₁₂	1,69	0,804	161
C ₁₃	1,59	0,819	175
C ₁₄	1,22	0,833	196
C ₁₅	1,25	0,836	206
C ₁₆	1,00	0,843	224
C ₁₇	0,99	0,840	236
C ₁₈	0,92	0,846	245
C ₁₉	0,60	0,857	265
C ₂₀₊	6,64	0,918	453

Fonte: Dados de Pedersen e Christensen (2007)

Tabela 2.17: Resultados do experimento de expansão a composição constante sobre o óleo de exemplo da Tabela 2.16.

Pressão (bar)	Volume Relativo (V/V ^{sat})	Compressibilidade (1/bar)	Fator Y
351,4	0,9765	0,000185	-
323,2	0,9721	0,000200	-
301,5	0,9762	0,000211	-
275,9	0,9818	0,000225	-
250,1	0,9874	0,000238	-
226,1	0,9933	0,000249	-
205,9	0,9986	0,000260	-
$200{,}0^*$	1,0000	0,000263	-

197,3	1,0043	-	3,07
189,3	1,0189	-	3,01
183,3	1,0313	-	2,95
165,0	1,0776	-	2,80
131,2	1,2136	-	2,51
108,3	1,3715	-	2,31
85,3	1,6343	-	2,11
55,6	2,3562	-	1,86

74

* Ponto de Saturação

Fonte: Dados de Pedersen e Christensen (2007)

Figura 2.13: Curva de *fator Y* (círculos, linha contínua, eixo vertical esquerdo) e curva de volume relativo (triângulos, linha pontilhada, eixo vertical direito) para experimento de expansão a massa constante na mistura de óleo da Tabela 2.16. *Fonte:* Pedersen e Christensen, 2007

2.6.5 Expansão Flash ou Teste de Separador

Um experimento de separador de três estágios está esquematizado na Figura 2.14. Experimentos de separador são realizados tanto para misturas de óleo quanto de gás condensado.

Figura 2.14: Representação esquemática de um experimento de separador de três estágios

O fluido de reservatório é colocado em uma célula fechada (denominada daqui em diante de *separador*) a uma pressão e temperatura um tanto abaixo da pressão e temperatura do reservatório. Condições típicas são de 70 bar e 50° C, nas quais a mistura de fluido separa-se em uma fase gasosa e uma líquida. O gás é retirado do separador através do topo e é transferido para condições padrão de temperatura e pressão, onde seu volume é medido. Assim como para o experimento de liberação diferencial, a redução do volume de líquido causada pelo gás é convertida em um volume de gás equivalente em condições padrão. O líquido do primeiro separador é conduzido até um segundo separador a uma pressão e temperatura menores que as do primeiro, condições nas quais mais gás será liberado. Da mesma forma que o gás do primeiro separador, o gás é transferido para condições padrão. O óleo do último separador em condições padrão é comumente denominado *stock tank oil* e o volume deste óleo é chamado de *volume STO*. O termo *stock tank* refere-se ao fato de o óleo poder ser armazenado em condições atmosférica sem liberar gás.

O propósito de um experimento flash é o de formar uma idéia inicial sobre as quantidades volumétricas relativas de gás e óleo produzidos de um reservatório de petróleo em particular.

A Tabela 2.18 mostra os resultados de um teste de separador de quatro estágios em um óleo com composição da Tabela 2.19. Os resultados do separador da tabela também incluem o fator B_o para o fluido de reservatório a 199,7 bar (ponto de saturação) e 97,8° C (temperatura de reservatório). Esse fator B_o expressa quanto óleo na temperatura do reservatório irá encolher através de uma separação de quatro estágios com as temperaturas e pressões de separação da Tabela 2.18. Os fatores B_o remanescentes da Tabela 2.18 expressam o encolhimento do óleo do estágio atual de separação até as condições padrão de armazenagem. A razão gás/óleo de separador iguala-se a razão entre o volume de gás liberado do estágio atual sob condições padrão e o volume do óleo do último estágio do separador, o qual está em condições padrão. A razão gás/óleo do separador para separador de número N pode ser expresso pela equação 2.68

$$Razão \ Gas \,/ \, \acute{O}leo \ Separador = \frac{V_{N,std}^{gas}}{V_{std}^{\acute{o}leo}}$$
Equação 2.68

A Tabela 2.20 fornece um resumo dos resultados relatados para um experimento de separador

	Pressão (bar)	Temperatura (°C)	Razão Gás/Óleo (m ³ std/ m ³ std)	Fator B _o (m ³ / m ³ std)
Ponto de saturação	199,7	97,8	-	1,605
Estágio 1	68,9	89,4	109,0	1,279
Estágio 2	22,7	87,2	33,7	1,182
Estágio 3	6,9	83,9	17,1	1,126
Estágio 4	2,0	77,2	12,3	1,053
Padrão	1,0	15,0	0,0	1,000

Tabela 2.18: Resultados relatados de um experimento de teste de separador

Fonte: Dados de Pedersen e Christensen (2007)

Componente	Mol%	Densidade a 1,01 bar, 15 °C (g/cm ³)	Massa Molecular (g/mol)
N_2	0,59	-	-
CO_2	0,36	-	-

Componente	Mol%	Densidade a 1,01 bar, 15 °C (g/cm ³)	Massa Molecular (g/mol)
C ₁	40,81	-	-
C_2	7,38	-	-
C_3	7,88	-	-
i-C ₄	1,20	-	-
n- C ₄	3,96	-	-
i-C ₅	1,33	-	-
n- C ₅	2,09	-	-
C_6	2,84	-	-
C_7	4,15	0,711	97
C_8	4,37	0,740	113
C ₉	3,40	0,763	129
C_{10}	2,52	0,780	144
C ₁₁	1,87	0,794	158
C ₁₂	1,66	0,806	171
C ₁₃	1,28	0,814	184
C_{14}	1,40	0,826	196
C ₁₅	1,24	0,834	210
C_{16}	0,90	0,841	223
C ₁₇	0,88	0,848	234
C_{18}	0,82	0,853	246
C ₁₉	0,82	0,858	257
C ₂₀₊	6,25	0,926	458

Fonte: Dados de Pedersen e Christensen (2007)

Tabela 2.20: Resultados principais de um experimento de teste de separador

Razão Gás/Óleo do Separador	Volume de gás do estágio do separador atual em condições padrão dividido pelo volume de óleo a partir do último estágio (em condições atmosféricas)	
Densidade do Gás	Massa molecular do gás do estágio de separador atual dividida pela massa molecular do ar atmosférico (28,964)	
B _o Separador	Fator volume de formação do óleo, i.e., volume de óleo no estágio de separador atual, dividido pelo volume de óleo do último estágio (em condições atmosféricas). Para misturas de óleo costuma-se também relatar B _o do óleo de reservatório saturado.	
Composições do Gás	Composição molar do gás de separador em cada estágio	

Fonte: Dados de Pedersen e Christensen (2007)

2.7 Pressão Mínima de Miscibilidade Termodinâmica (MMP)

Sustentar uma taxa de recuperação de óleo e recuperação de reservas ótimas depende muito fortemente de manter a MMP. Isso também depende de estimar com precisão a saturação de óleo recuperável e em manter eficiências de varrido padrão-por-padrão de injeção. A falta de atenção a qualquer uma dessas propriedades levará ao baixo retorno econômico. O sucesso de uma estratégia de produção que inclui a injeção de CO₂ depende fortemente de prever e atingir a MMP. Uma grande variação na faixa de pressão em que o reservatório se encontra, que cruze a MMP, por exemplo, também pode causar uma mudança drástica de regime, alterando o processo físico simulado de injeção miscível para injeção imiscível. Por essa razão, uma discussão mais detalhada a respeito de previsões de MMP será feita na seção seguinte.

No geral, a miscibilidade entre fluidos pode ser alcançada por meio de dois mecanismos: miscibilidade a primeiro contato e miscibilidade a múltiplos contatos. Quando dois fluidos se tornam completamente miscíveis, eles formam uma única fase; um fluido pode deslocar completamente o outro fluido, deixando nenhuma saturação residual. Uma pressão mínima é necessária para que os dois fluidos se tornem miscíveis.

Impurezas afetam a MMP porque afetam a solubilidade do CO_2 no óleo e a habilidade do CO_2 vaporizar os componentes do óleo. Isso faz com que a MMP aumente de maneira proporcionalmente direta à concentração de impurezas. Metano, hidrogênio e gás de queima geralmente possuem maior MMP com óleo que o CO_2 , embora em reservatórios de temperaturas muito elevadas, a MMP para o CO_2 , o metano e o nitrogênio possam ser similares.

A questão da MMP para o desenvolvimento da miscibilidade é complicada pela presença de heterogeneidades em pequena escala que podem impedir o desenvolvimento de miscibilidade e aumentar a MMP de modo significativamente superior a MMP prevista. Onde isso ocorrer, o processo de CO_2 será menos efetivo, embora ele ainda possa melhorar a recuperação de óleo. A MMP deve sempre ser considerada como o limite inferior da pressão de reservatório para uma injeção de CO_2 viável.

Outros fatores além da MMP influenciam na escolha da pressão de operação que assegura a miscibilidade da injeção de CO_2 . Um fator adicional que pode reduzir a recuperação de óleo é a perda de injetividade de água em um projeto de injeção por WAG (já discutido ao abordar um tópico do efeito da histerese na curva de permeabilidade relativa). Essa perda de injetividade pode diminuir a pressão média do reservatório durante o ciclo de injeção de água. Para se prevenir isso, recomenda-se que a pressão de reservatório seja mantida ao menos 3,45 MPa acima da MMP termodinâmica em projetos de injeção por WAG. Este valor de 3,45 MPa é o maior valor de decréscimo de pressão observado até 2002 em um projeto de injeção de CO₂ por WAG no oeste do Texas. Como este é apenas um exemplo localizado, a verdadeira diferença de pressão segura irá variar com as propriedades do reservatório e com a operação.

Assim, um simulador de reservatórios composicional deve ser a primeira escolha quando se estuda um projeto de injeção de CO_2 por WAG no qual a pressão de reservatório está muito próxima da MMP termodinâmica. Um modelo totalmente composicional pode ser útil para se entender a potencial perda e redesenvolvimento de miscibilidade.

2.7.1 Previsão da Pressão Mínima de Miscibilidade (MMP) na Injeção de CO₂

Como já foi citado, é de fundamental importância para a realização de um projeto de injeção de CO_2 o conhecimento da pressão mínima de miscibilidade da mistura petróleo- CO_2 e isso é buscado experimentalmente por meio de deslocamentos através de meios porosos. A definição de pressão mínima de miscibilidade obtida experimentalmente é bem variada e não há um consenso científico a respeito da definição de MMP obtida desses ensaios, que não são construídos nem interpretados de forma padronizada. A pressão de mínima miscibilidade é tão importante que vários pesquisadores desenvolveram a partir de banco de dados experimentais correlações para a sua previsão, de forma a substituir por meio de estimativas o uso de ensaios experimentais. Girão (1995) apresenta uma revisão bibliográfica bem detalhada dessas correlações. Uma correlação para prever MMP, além de considerar cada parâmetro que afeta esta propriedade, deve basear-se em algum conceito termodinâmico ou físico inerente aos mecanismos de uma injeção de CO_2 . Os principais parâmetros que influenciam a MMP são temperatura, densidade e composição do petróleo e dos contaminantes do CO_2 . As principais correlações mencionadas são:

- Correlação do NPI (instituto norte-americano nacional do petróleo) (NPI, 1976)considera o grau API e temperatura no cálculo da MMP, mas é apenas uma estimativa grosseira.
- Holm e Josendal (1974)- correlacionam a MMP com temperatura e peso molecular médio da fração C₅+ do petróleo.

- Mungan (1981)- extende o trabalho de Holm e Josendal para pesos moleculares maiores.
- Johnson e Pollin (1981)- correlacionam MMP empiricamente com temperatura crítica, pressão crítica, composição e peso molecular do gás injetado; temperatura de reservatório e grau API, peso específico e peso molecular médio do petróleo. Esta correlação pode ser usada quando o gás de injeção for uma mistura de CO₂/N₂ ou CO₂/CH₄.
- Danyushkin e Namiot (1981)- prevê a MMP como sendo a pressão crítica na temperatura de reservatório de um sistema binário CO₂-alcano normal, onde o alcano tem peso molecular equivalente ao da fração C₅+ do petróleo considerado.
- Instituto de Recuperação do Petróleo (Lee, 1979) propõe duas correlações: A primeira equaciona MMP com pressões de vapor extrapoladas de CO₂. A segunda correlaciona empiricamente MMP com temperatura, fazendo a correção anteriormente citada para ponto de bolha, quando necessário. Ambas as correlações ignoram efeitos da composição do petróleo.
- Holm e Josendal (1980) apresenta outra abordagem na qual a densidade requerida do CO₂ é empiricamente correlacionada com a porção do petróleo que pode ser extraída, (C₅-C₃₀)/C₅+. A MMP é então encontrada determinando a pressão requerida na temperatura do reservatório para obter aquela densidade.
- Orr e Taber (1984)- modifica a correlação anterior para considerar os efeitos de impurezas do CO₂, usando uma equação de estado para determinar a mudança requerida naquela pressão na presença de uma impureza para obter a densidade do CO₂ especificada pela correlação anterior.
- Silva, Taber e Orr (1989) também introduz uma modificação na correlação de densidade de Holm e Josendal, 1980. Um parâmetro ponderal da composição, baseado em coeficientes de partição, é usado para considerar a distribuição molecular da fração C₅+. Esta função é então relacionada à densidade requerida para um deslocamento miscível.

- Alston *et al.* (1983) correlaciona empiricamente MMP com temperatura de reservatório, composição do petróleo vivo e impurezas do CO₂.
- Sebastian *et al.* (1984) apresenta um fator de correção da MMP de um sistema contendo CO₂ impuro. Este fator é então multiplicado pela MMP do mesmo sistema apresentando CO₂ puro como fluido deslocante.

Determinação algorítmica da MMP termodinâmica: em adição a correlações empiricamente derivadas mencionadas por Girão (1995), métodos matemáticos que dependam do equilíbrio de fases podem ser usados para determinar a MMP e representam a última tendência da pesquisa em pressão mínima de miscibilidade. Johns e Orr (1996) e Wang e Orr (1998) desenvolveram uma abordagem generalizada do equilíbrio de fases de n-componentes de uma mistura para estimar a MMP termodinâmica para sistemas bifásicos, estendendo o uso de diagramas de equilíbrio de fases ternários para um número arbitrário de componentes. No trabalho deles, o óleo é caracterizado em um número arbitrário de hidrocarbonetos, incluindo pseudo-componentes para frações pesadas. Essa técnica é satisfatória se a EOS for ajustada de modo fino para reproduzir o comportamento de fases próximo ao locus crítico, ilustrado pela Figura 2.15 que é uma coleção de pontos críticos (um ponto crítico onde óleo e vapor são indistinguíveis, i.e., o ponto de bolha do líquido é o mesmo que o ponto de orvalho do vapor). A determinação da MMP por meio dos métodos de Johns e Orr (1996) e Wang e Orr (1998) foi implementada em forma de algoritmo por Jessen et al. (1998) e é o recurso mais usado por pacotes comerciais termodinâmicos para estimar de forma aproximada a pressão de mínima miscibilidade. A metodologia deste trabalho empregou o uso deste algoritmo para avaliar o comportamento de fluidos.

Figura: Esquemática 3D da superfície PVT de um componente puro

Figura 2.15: Locus crítico de um componente puro. Fonte: (Whitson e Brulé, 2000)

2.7.2 Efeito dos Mecanismos de Mistura em Pequena Escala no Desenvolvimento da Miscibilidade da Injeção de CO₂

O desenvolvimento da miscibilidade em reservatórios não depende apenas da MMP, mas também da distância percorrida pela golfada de injeção de CO_2 , devido a efeitos como a convecção dispersiva (Jarrel, 2002). A mistura em reservatórios ocorre tanto em larga quanto em pequena escala. Em pequena escala, a mistura resulta de variações localizadas na permeabilidade e afeta os contatos de equilíbrio entre o CO_2 e o óleo. O resultado é o espalhamento dos componentes através de varias fases, um fenômeno conhecido como convecção dispersiva. Em termos práticos, a mistura em pequena escala reduz a concentração de CO_2 efetiva que contata o óleo virgem e retarda o desenvolvimento da miscibilidade. Se a magnitude da mistura em pequena escala no reservatório for grande, o CO_2 pode não desenvolver miscibilidade mesmo que a pressão de reservatório esteja acima da MMP termodinâmica. O fato de o CO_2 ser capaz de vaporizar hidrocarbonetos quando a pressão excede a MMP fará com que se recupere mais óleo

do que se a pressão estivesse abaixo da MMP, mas não tanto quanto se não houvesse convecção dispersiva. Além da distância percorrida pela golfada ser insuficiente e da presença de variações de heterogeneidade, a presença de poros não-interconectados em carbonatos também contribui para o aumento do efeito da dispersividade, levando a perdas de recuperação.

2.7.3 Efeito da Molhabilidade da Rocha na Recuperação da Injeção de CO₂ por WAG

Em rochas molháveis a água, um fenômeno ocorre no qual a água protege os glóbulos de óleo residual do CO_2 . Esse efeito de "bloqueio pela água" pode impactar uma injeção de CO_2 em formações fortemente molháveis a água. Para entender este efeito, é necessário diferenciar o comportamento de formações molháveis a água e molháveis a óleo.

Antes de um reservatório de óleo se formar, a rocha contém apenas água. Em formações molháveis a óleo, o óleo desloca a água nos poros maiores e se liga às paredes da rocha. Os poros menores, tipicamente, permanecem preenchidos com água devido à pressão capilar ser muito elevada para o óleo entrar. Quando uma rocha molhável ao óleo é inundada por água, a água escoa facilmente através dos poros, empurrando o óleo adiante dele e gradualmente extraindo o óleo que permanece ligado à rocha. Portanto em uma rocha molhável ao óleo a permeabilidade relativa da água é relativamente alta. Isso favorece o método de injeção WAG em detrimento da injeção de CO2 puro.

Já em uma formação molhável à água, a rocha permanece preferencialmente ligada à água, e a saturação de água conata é geralmente maior. Nesse caso, quando o óleo entra os poros maiores por migração, ele não molha as paredes dos poros. Assim, após a inundação por água, o óleo residual permanece na forma de glóbulos que são muito grandes para serem espremidos através das pequenas gargantas de poro dos grandes corpos de poro. Em rochas molháveis a água, a permeabilidade relativa da água tende a ser baixa porque a água tem que se espremer através de glóbulos de óleo aprisionados ou escoar através de poros menores, onde a fase aquosa é contínua, mas a queda de pressão é maior.

Tiffin e Yelling (1985) descobriram que testemunhos fortemente molháveis a água exibiam recuperação de óleo reduzida quando submetidos à injeção simultânea de água e CO_2 e atribuíram esse efeito ao bloqueio pela água. Se a rocha é molhável a água e CO_2 é injetado no modo WAG, a saturação da fase enriquecida em CO_2 será limitada pela presença de água injetada, devido à menor permeabilidade relativa. Como resultado disso, a fase enriquecida em

 CO_2 não terá pressão capilar suficiente para invadir os poros contendo o óleo remanescente. Já se CO_2 for injetado continuamente, (no lugar do WAG) a água móvel poderá ser deslocada e óleo adicional pode ser contatado e recuperado. A conclusão a ser feita aqui é que no caso de formações fortemente molháveis à água, o mais prudente é empregar a injeção contínua de CO_2 . Como se desejava simplificar o modelo físico a ser estudado a ponto de detectar incertezas de fluido, a simplificação de considerar uma injeção em um reservatório molhável à água foi considerada aceitável para o estudo dessa dissertação. No entanto, um estudo mais preciso de reservatórios do pré-sal deve considerar modelos de simulação que incluam rochas molháveis ao óleo e estratégias de produção que considerem os métodos de recuperação melhorada por meio da injeção de água alternada com CO_2 (WAG).

2.7.4 Modelos de Permeabilidade Relativa sob Condições Miscíveis

Mesmo que medidas de permeabilidade relativa já tenham sido feitas para uma injeção de água precedente, elas podem não ser suficientes para se prever o desempenho de uma injeção de CO_2 . Isso acontece porque o processo com CO_2 pode levar à redução da saturação de água (após ter aumentado durante a inundação de água) e porque o reverso na saturação de água pode ser afetado pela histerese da curva de permeabilidade relativa se o reservatório for moderadamente molhável a óleo. Se um efeito de histerese da água ocorre, testes de permeabilidade relativa água/óleo bidirecionais devem ser feitos. Esses testes normalmente são conduzidos sob condições de regime permanente.

Um modelo trifásico é aplicável para a permeabilidade relativa do solvente (fase rica em CO₂) sob condições miscíveis e é originado do trabalho de Chopra *et al.* (1990). Existem modelos mais complexos, que não foram ainda implementados para pacotes de simuladores de reservatórios comerciais, como por exemplo, o modelo de Blunt (2000).

O modelo de Chopra *et al* (1990) é uma modificação do modelo II de permeabilidade relativa trifásica de Stone (1973). Chopra *et al.* assumem que a rocha é preferencialmente molhável ao óleo. A pressões acima da MMP termodinâmica, o modelo deles considera três fases: a fase rica em hidrocarbonetos (o óleo residual), que é o mais molhável à rocha; a fase rica em CO_2 (a fase intermediária), que é ligeiramente menos molhável que o óleo, mas mais molhável que a água, e a fase aquosa, que é a fase não molhável. A permeabilidade relativa da água pode aumentar à medida que a água dissolve CO_2 ao longo do tempo.

O modelo de permeabilidade relativa do solvente de Chopra *et al.* calcula a permeabilidade relativa do solvente (fase rica em CO_2) em um sistema trifásico, avaliado em S_{om} como:

$$k_{rCO2} = [k_{reo}(kro)] + [(k_{reo} - 1)(k_{rw})]$$
 Equação 2.69

onde:

 k_{rCO2} = a permeabilidade relativa do solvente (fase rica em CO2);

 k_{rgo} = a permeabilidade relativa do gás imiscível com óleo na saturação de água conata, avaliado na saturação de gás igual a 1- S_{om} - S_{wc} (após extrapolar a permeabilidade relativa do gás para um valor de 1 em uma saturação de gás igual a 1- S_{wc});

 k_{ro} = permeabilidade relativa de óleo obtida de um teste de permeabilidade relativa água/óleo, que se assume ser apenas uma função da saturação de óleo;

 k_{rw} =permeabilidade relativa da água obtida de um teste de permeabilidade relativa água/óleo, que se assume ser apenas uma função da saturação de água;

Som= saturação de óleo residual sob condições miscíveis

Swc= saturação de água conata

No modelo de Chopra *et al.* para a permeabilidade relativa do solvente, a permeabilidade relativa da fase de hidrocarbonetos líquidos contendo CO_2 é calculada de três formas distintas, dependendo da concentração de CO_2 :

- Se a fração mássica do CO₂ na fase (excluindo o óleo residual) for superior a 90%, o modelo usa a Equação 2.69 acima, porque essa fase é a fase rica em CO₂
- Se a fração mássica é inferior a 10%, o modelo usa a permeabilidade relativa do óleo (a quantidade limitada de CO₂ implica que a fase de hidrocarbonetos líquidos representa a fase óleo)
- Para frações mássicas entre 10 e 90%, o modelo computa a permeabilidade relativa usando um cálculo de pesos linearmente proporcionais entre a permeabilidade relativa da fase rica em CO₂ e a permeabilidade relativa da fase óleo

Existem, porém, duas limitações ao modelo de permeabilidade relativa do solvente de Chopra *et al.*. Primeiro, o modelo é correto apenas para deslocamentos *acima da MMP termodinâmica*, onde o CO_2 age como um solvente. Abaixo da MMP termodinâmica CO_2 é geralmente uma fase de vapor que é menos molhável que a água e o CO_2 também não irá vaporizar o óleo de forma significativa. Portanto, abaixo da MMP, permeabilidades relativas convencionais de gás (Jarrel *et al.*, 2002) devem ser usadas e quando três fases existirem, correlações trifásicas de permeabilidade relativa publicadas devem ser usadas. Segundo, o modelo de Chopra *et al.* não prevê a região de hidrocarbonetos trifásica discutida em reservatórios com a temperatura em torno de 48,9° C. Um modelo necessitaria de quatro fases para calcular de forma correta as taxas de injeção e de produção quando uma região de hidrocarbonetos trifásica existir.

3 Metodologia

Neste estudo foram comparados dez arranjos de pseudoização para o óleo encontrado na literatura, baseando-se nas recomendações de Whitson e Brulé, 2000. Para cada arranjo, duas técnicas de regressão de fluidos foram aplicadas e comparadas.

O estudo comparativo consistiu de sete etapas distintas. O tratamento dos dados até a simulação composicional e previsão de produção depende do método de regressão escolhido pelo engenheiro de reservatórios. Uma metodologia foi planejada para analisar o impacto desses métodos de regressão na previsão de produção de um reservatório. Alguns dos dados de entrada do óleo da literatura foram obtidos a partir de cromatografia gasosa, outros a partir de destilação fracionada TBP. Parâmetros de componentes puros da literatura são empregados, bem como correlações teóricas para a previsão de propriedades críticas. Segue a metodologia por etapas.

3.1 Etapa 1: PVT e Cálculo de Propriedades Críticas

Trata-se, fundamentalmente, da revisão bibliográfica e tratamento de dados.

Iniciou-se com a obtenção, da literatura, de dados PVT de óleos compatíveis com as informações possuídas do pré-sal: densidade acima de 27° API, teor de gás carbônico presente.

Os dados do óleo utilizado neste estudo encontram-se na Tabela 2.1. A viscosidade utilizada para calibrar todos os sistemas seguiu o modelo modificado dos estados correspondentes de Pedersen (1987), se encontra na Tabela 3.1 e foi estimada para o caso mais detalhado usando o mesmo modelo.

Pressão (kPa)	Viscosidade do Óleo (cP)
26805	0,767539
23960	0,856849
20940	0,943604
17980	1,051770
15000	1,195470
11290	1,454960
7240	1,931400
3310	2,852390

Tabela 3.1: Conjunto de dados de viscosidade estimado por correlações (T=92,8 °C)

87

A Etapa 1 possui duas variações, dependendo da natureza do dado utilizado: se o dado utilizado for a composição de frações leves determinadas por cromatografia gasosa (C.G.), usa-se um banco de dados para substâncias puras do Winprop, idêntico ao publicado por Katz e Firoozabadi (1978) e baseado em extensa revisão da literatura. Já se o dado utilizado for uma fração mais pesada que pentano, determinado por destilação fracionada TBP, usam-se correlações de propriedades críticas e calculam-se as propriedades a partir da densidade, massa molecular média e temperatura de ebulição da fração (Item A.4.3). As propriedades críticas foram calculadas com as correlações de Twu (1984) e o fator acêntrico foi calculado usando a correlação de Lee-Kesler (1975).

3.2 Etapa 2: Pseudoização da Fração Pesada

A definição da fração pesada é um fator crítico e deve ser feita em um processo separado. Agrupa-se a fração denominada "pesada", contendo os componentes mais pesados (resíduos) num único pseudocomponente, ou fração pesada residual, sendo esta a fração dos componentes mais pesados que eicosano (C_{20+}) ou heptano (C_{7+}), dependendo da informação fornecida pelo ensaio de composição. A fração residual foi calculada pelo uso das mesmas correlações da Etapa 1.

Se o método aplicado for o método de Pedersen, é realizado o desdobramento (ou *splitting*) exponencial da fração pesada até 80 carbonos. Em seguida, o experimento de liberação diferencial é calibrado e a curva é comparada para consistência antes de se fazer a pseudoização da fração pesada novamente.

3.3 Etapa 3: Pseudoização Final e Calibração da Equação de Estado

Esta é a etapa que se acredita ter maior influência na incerteza de fluidos.

Etapa 3.1

Escolhem-se os pseudocomponentes ou a pseudoização. A escolha seguiu as recomendações de Whitson e Brulé (2000):

24 Componentes: N₂; CH₄; CO₂; C₂H₆; C₃H₈; iso-butano; n-butano; iso-pentano;
 n-pentano; C₆; C₇; C₈; C₉; C₁₀; C₁₁; C₁₂; C₁₃; C₁₄; C₁₅, C₁₆, C₁₇, C₁₈, C₁₉, C₂₀₊.

- 20 Componentes: N₂; CH₄; CO₂; C₂H₆; C₃H₈; iso-butano; n-butano; iso-pentano;
 n-pentano; C₆; C₇; C₈; C₉; C₁₀; C₁₁ a C₁₅, C₁₆, C₁₇, C₁₈, C₁₉, C₂₀₊.
- 15 Componentes: N₂; CH₄; CO₂; C₂H₆; C₃H₈; iso-butano; n-butano; iso-pentano;
 n-pentano; C₆; C₇ a C₁₀; C₁₁ a C₁₅, C₁₆, C₁₇, C₁₈, C₁₉, C₂₀₊.
- 11 componentes: N₂ e CH₄; CO₂; C₂H₆; C₃H₈; iso-butano e n-butano; iso-pentano e n-pentano; C₆; C₇ a C₁₀; C₁₁ a C₁₅, C₁₆ a C₁₉, C₂₀₊.
- 9 componentes: N₂ e CH₄; CO₂; C₂H₆; C₃H₈; iso-butano e n-butano; iso-pentano e n-pentano; C₆; C₇ a C₁₇, C₁₈₊.
- 7 componentes: N₂ mais CH₄; CO₂; C₂H₆; C₃H₈; iso-butano mais n-butano; isopentano mais n-pentano; C₆₊.
- 7 componentes pesados: N₂ mais CH₄; CO₂ mais C₂H₆; C₃H₈ mais iso-butano mais n-butano; iso-pentano mais n-pentano mais C₆; C₇-C₁₀; C₁₁-C₁₅; C₁₆₊.
- 6 componentes: N₂ mais CH₄; CO₂ mais C₂H₆; C₃H₈; iso-butano mais n-butano; iso-pentano mais n-pentano; C₆₊.
- 6 componentes pesados: CO₂; N₂ mais CH₄ mais C₂H₆; C₃H₈ mais iso-butano mais n-butano mais iso-pentano mais n-pentano mais C₆; C₇-C₁₀; C₁₁-C₁₅; C₁₆+.
- 5 componentes: N₂ e CH₄; CO₂ mais C₂H₆; C₃H₈ mais iso-butano mais n-butano; iso-pentano mais n-pentano; C₆₊.
- 5 componentes pesados: CO₂; N₂ mais CH₄ mais C₂H₆; C₃H₈ mais iso-butano mais n-butano mais iso-pentano mais n-pentano mais C₆; C₇-C₁₀; C₁₁-C₁₅; C₁₆₊.

Por fim, ajustam-se os dados experimentais: obtenção da expressão matemática da equação de estado ajustada para os dados PVT que vai reproduzir o cálculo flash do simulador composicional (Figura 3.1).

Etapa 3.2

Regressão da equação de estado (Figura 3.2).

Método de regressão da equação de estado (escolhido entre um dos métodos da Figura 3.3 ou da Figura 3.4). O algoritmo utilizado na regressão não linear é o de Levenberg-Maarqdt (1963).

Figura 3.1: Metodologia de obtenção de modelo termodinâmico por equação de estado

Figura 3.2: Metodologia de Ajuste da Equação de Estado

Figura 3.3: Método de Pedersen (1989)

Figura 3.4: Método de Coats e Smart (1984)

3.4 Etapa 4: Cálculo dos Envelopes de Fases

Cálculo dos envelopes de fases (diagramas P-T, pontos de bolha, orvalho e pontos críticos) por cálculo *flash*.

3.5 Etapa 5: Cálculo de MMP e Comparações para Julgar Qualidade do Ajuste

Cálculo da pressão mínima de miscibilidade pelo algoritmo de Jessen *et al.* (1998) implementado no Winprop. A pressão mínima de miscibilidade é uma indicação quantitativa do fator de recuperação em relação à pressão e do comportamento da injeção miscível, é um fator importante para o equilíbrio de fases e é um valor que varia com a qualidade da descrição do

comportamento de fluidos. A MMP não é um parâmetro de entrada para o simulador composicional nem é o foco principal deste trabalho.

É feita a comparação das pressões mínimas de miscibilidade e do envelope de fases entre o cenário base (24 componentes) e os demais para determinar a sensibilidade da pseudoização (Figura 3.5).

3.6 Etapa 6: Aplicação, Simulação Composicional e Comparação Quantitativa

Execução da simulação de escoamento para um processo de recuperação melhorada do óleo, detalhada em cada cenário de simulação no Capítulo 0, de Aplicações. Os resultados a serem analisados na comparação quantitativa estão descritos no Item 4.4.

3.7 Etapa 7: Análise e Comparação de Resultados

Determinação do limite de pseudoização aceitável para o fluido e da reprodutibilidade do comportamento físico em função do tratamento dos fluidos empregado. Conforme foi mencionado, a literatura sugere que a pseudoização de pelo menos 5 componentes é aceitável para a reprodução do comportamento de um fluido. Whitson e Brulé (2000) alegam que o uso de 5 a 8 pseudocomponentes é suficiente para representar o comportamento de fluidos de qualquer processo. Pedersen (1989) reivindica que 6 componentes são capazes de descrever satisfatoriamente o comportamento de um fluido.

Figura 3.5: Fluxograma de análise da sensibilidade da descrição do fluido

4 Aplicações

Para comparação do comportamento de reservatório com diferentes tratamentos de fluidos foi realizada uma simulação composicional de injeção de CO₂, baseada numa modificação do modelo físico de reservatório tridimensional do 10° estudo comparativo do SPE, modelo 2 (Christie e Blunt, 2001). Do modelo geológico original, foram escolhidas, devido à importância na literatura (Chen *et al.*, 2003) e (Zhang *et al.*, 2008) e à maior heterogeneidade, as camadas 36 a 60 das 85 do modelo original, e escolheu-se a seção central de metade das células nas outras duas dimensões, reduzindo o espaço amostral numa malha com 30 por 110 por 24 células (79200 células no total). A dimensão de cada bloco foi dobrada a partir do modelo SPE10 para diminuir do tempo de computação (melhor convergência). As propriedades da água são $B_w=1,01$; $c_w=3$.10⁻⁶ psi⁻¹; e $\mu_w=0,3$ cP. O modelo da distribuição de porosidade original do modelo 2 SPE 10 era variável, e foi mudada para porosidade constante e igual a 30%. O volume de óleo *in situ* resultante é de aproximadamente 17 milhões de m³ de óleo.

A temperatura de reservatório simulada adotada em todos os casos foi de 92,8° C, uma temperatura compatível com os dados PVT. As curvas de permeabilidade relativa adotadas foram modificadas em relação às curvas originais do modelo 2 SPE 10, com a finalidade de representar um óleo sob injeção de CO_2 . As curvas adotadas foram as seguintes para todos os casos (Figura 4.1 e Figura 4.2):

Figura 4.1: Curva de permeabilidade relativa K_{ro} vs S_{g} .

Figura 4.2: Curva de permeabilidade relativa K_{row} vs S_w.

Foram empregados softwares de simulação comerciais de uso consagrado pela indústria de petróleo, o simulador composicional GEM, e o simulador termodinâmico PVT Winprop, da

98

CMG. Como se tratava se um estudo de incerteza de fluidos, a estratégia de produção escolhida foi mais simples, a de um padrão quarto de *five-spot*, com um poço injetor e um poço produtor, completado em todas as camadas do reservatório, produzindo por meio de uma injeção contínua de CO_2 puro com controle de pressões constante na cabeça dos poços injetor e produtor. O tempo simulado em todos os casos foi de um período de 5 anos.

Os modelos simulados foram advindos basicamente de duas técnicas de regressão de fluidos (detalhadas na Figura 3.3 e Figura 3.4), combinadas a 7 diferentes graus de pseudoização, sendo 10 arranjos de descrição distintos por modelo (detalhados, na Etapa 3 do Capítulo 3 anterior) com dois modelos físicos de simulação e duas condições de pressão de reservatório e operação. Gerando 60 modelos no total correspondentes à combinação de 20 descrições de fluido com 3 cenários de simulação.

4.1 Aplicação 1: Reservatório Homogêneo, Alta Pressão

Antes da comparação do comportamento de fluidos no modelo heterogêneo, foram averiguados se ocorriam diferenças significativas o suficiente entre diferentes descrições do fluido a ponto de evidenciar as diferenças quando simulados num reservatório homogêneo com permeabilidade de 300 mD e porosidade de 30%, representado por uma malha com número de blocos idênticos ao modelo heterogêneo.

Uma pressão de reservatório compatível com a do pré-sal foi adotada para o cenário denominado de agora em diante como "Alta Pressão", sendo a mesma pressão do reservatório de Lula, de 580 Kgf/cm² (56,9 MPa), com a finalidade de observar as discrepâncias do comportamento de fluidos nesta faixa de pressão (Formigli Filho *et al.*, 2009). Os parâmetros de operação de poço utilizados constam da Tabela 4.1.

Parâmetros do Produtor					
BHP mínimo *	W _{cut} máximo	R _s máximo	Vazão de Produção #		
26790	0,833	10000	636		
kPa	m³ água /m³ óleo	m³ gás /m³ óleo STD	m³ STD óleo/ d		

Tabela 4.1: Parâmetros de operação dos poços, cenário "Alta Pressão"

Parâmetros do Injetor				
BHP máximo**	Teor de CO ₂ na corrente de injeção	Vazão de injeção de gás máxima		
62529,66	100%	2,50E+06		
KPa	molar	m3 gás /d		
* <i>Obs: a P_{bolha} é 26790 kPa</i> e esse BHP mínimo é maior que a menor MMP calculada dentre as descrições # <i>Obs:</i> a vazão de produção foi determinada por teste de pressão em simulações preliminares				

**Obs: a Preservatório é 56900 kPa

4.2 Aplicação 2: Reservatório Homogêneo, Baixa Pressão

O mesmo modelo homogêneo do caso anterior foi adotado. Uma pressão de reservatório compatível com a da faixa de ensaio de PVT do óleo foi adotada para o cenário denominado de agora em diante como "Baixa Pressão", sendo a mesma pressão do reservatório a de bolha, 26790 kPa, com a finalidade de observar as discrepâncias do comportamento de fluidos nesta faixa de pressão. Os parâmetros de operação de poço utilizados constam da Tabela 4.2.

Tabela 4.2: Parâmetros de operação dos poços, cenário "Baixa Pressão"

Parâmetros do Produtor				
BHP mínimo*	W _{cut} máximo	R _s máximo	Vazão de produção	
16500	0,833	10000	636	
kPa	m ³ água /m ³ óleo	m ³ gás /m ³ óleo STD	m ³ STD óleo/ d	
	Pa	râmetros do Injetor		
BHP máximo**	Teor de CO ₂ na corrente de injeção	Vazão de injeção de gás máxima		
26790	100%	2,50E+06		
КРа	molar	m3 gás /d		

**Obs: a P_{bolha} é 26790 kPa* e esse BHP mínimo é maior que a menor MMP calculada dentre as descrições

**Obs: a P_{reservatório} é 26790 kPa

4.3 Aplicação 3: Reservatório Heterogêneo, Alta Pressão

A Figura 4.3 mostra uma ilustração do modelo de simulação heterogêneo. Os parâmetros de operação deste caso foram os mesmos listados na Tabela 4.1

Figura 4.3: Mapa 3D logarítmico de permeabilidade horizontal (mD) do modelo heterogêneo de simulação do estudo

4.4 Análises Empregadas para Comparação

4.4.1 Escala de Reservatório

Foram feitas comparações em escala de reservatório e em escala de bloco. Os parâmetros usados para a comparação em escala de reservatório foram Q_o, R_s, N_p, FR, W_{cut}, S_w, S_o, S_g, mapa de saturação, tempo de produção, mapa ternário de varredura no momento da irrupção. Outro parâmetro de análise em escala de reservatório foi o tempo computacional requerido para simular cada cenário. Em seguida se determinou quantitativamente os erros da estimativa de produção, FR, e tempo de produção em relação do caso de referência em relação ao caso menos pseudoizado.

4.4.2 Escala de Bloco

Já para a escala de bloco, com a finalidade de analisar as diferenças no comportamento de fluidos, foram escolhidos criteriosamente três blocos na camada 4 do modelo de reservatório descrito: um bloco na região do poço produtor, um na região do poço injetor e outro no meio do caminho, que a frente de varredura de gás carbônico alcançou em quatro meses de produção. Os blocos com as seguintes coordenadas foram escolhidos: bloco (1,1,4); bloco (2,5,4); e bloco

(30,110,4) e foram usados como parâmetro de controle para todas as análises. As seguintes variáveis foram analisadas em cada um desses blocos em função do tempo: Massa Molecular média do gás, Massa Molecular média do óleo, densidade mássica do óleo, saturação do óleo (S_o) , saturação do gás (S_g) , viscosidade do óleo (μ) e pressão no bloco.

5 Resultados e Discussões

5.1 Propriedades Críticas Utilizadas por Fração

Substâncias puras de fração acima de C₆ foram caracterizadas por destilação fracionada TBP e tiveram suas propriedades críticas calculadas usando as correlações de Twu (1984). O fator acêntrico foi calculado usando a correlação de Lee-Kesler (1975), que se encontram no Item A.4.3 do Apêndice. Os dados de substâncias puras até n-Pentano são apresentados na Tabela 5.1, de Perry e Green (1999).

Nome	Fórmula	CAS	MM	T _c	Pc	V _c	Zc	ω
				К	10 ⁻⁶ Pa	m ³ /Kmol		Fator Acêntrico
Metano	CH_4	74828	16,043	190,564	4,59	0,099	0,286	0,011
Etano	C_2H_6	74840	30,07	305,32	4,85	0,146	0,279	0,098
Propano	C_3H_8	74986	44,097	369,83	4,21	0,2	0,273	0,149
n-Butano	C_4H_{10}	106978	58,123	425,12	3,77	0,255	0,272	0,197
n-Pentano	C_5H_{12}	109660	72,15	469,7	3,36	0,315	0,271	0,251
2-Metil-propano	C_4H_{10}	75285	58,123	408,14	3,62	0,261	0,278	0,177
Hidrogênio	H_2	1333740	2,016	33,19	1,32	0,064	0,307	-0,215
Nitrogênio	N_2	7727379	28,014	126,2	3,39	0,089	0,288	0,037
Dióxido de Carbono	CO_2	124389	44,01	304,21	7,39	0,095	0,277	0,224

Tabela 5.1: Propriedades Críticas de Substâncias Puras

Fonte: Perry e Green (1999)

5.2 Pseudoização da Fração Pesada

A fração pesada de cada descrição de pseudoização foi calculada usando uma das combinações da etapa 3.1 do Capítulo 3 e a regra de Kay (1936), descrita no Item 2.5.3.2.

5.3 Obtenção da Equação de Estado e Curvas de Calibração da Regressão do Experimento de Liberação Diferencial

Primeiro, para o controle de qualidade da pseudoização, as equações de estado foram ajustadas por meio da metodologia descrita no Capítulo 3, gerando um desvio mínimo no valor da pressão de saturação, nas curvas de ajuste experimental dos dados PVT, e nas curvas da

liberação diferencial (R_s , densidade do óleo, fator volume de formação B_o , volume relativo do óleo). As pressões de saturação (ou de bolha) resultantes do cálculo da equação de estado ajustada tiveram desvios de até 2%, como pode se constatar pela Tabela 5.2:

Método	Número de Componentes	P _{sat} (kPa)	Desvio em relação a P _{sat} real (26790 kPa)
	24	26805,028	0,056%
	20	26794,42	0,016%
	15	26793,944	0,015%
	11	26802,814	0,048%
	9	26790,133	0,000%
Coats e	7	26790,463	0,002%
Smart	$7P^{\#}$	26793,062	0,011%
	6	26789,807	-0,001%
	6P [#]	26792,004	0,007%
	5	26789,678	-0,001%
	5P [#]	26791,53	0,006%
	24	26803,652	0,051%
	20	26758,041	-0,119%
	15	26203,863	-2,188%
	11	27488,276	2,606%
	9	27465,752	2,522%
Pedersen	7	26998,594	0,779%
	$7P^{\#}$	27347,815	2,082%
	6	26401,982	-1,448%
	6P [#]	26734,779	-0,206%
	5	26270,444	-1,939%
	5P [#]	26401,607	-1,450%

Tabela 5.2: Pressão de bolha calculada por regressão em diferentes grupos de pseudoização

Obs.: # P, corresponde a "pesado" e é a denominação da pseudoização em que o novo arranjo agrupa os componentes leves e abre os componentes pesados para o número de componentes dado.

5.4 Curvas dos envelopes de fases

Com as equações de estado obtidas, foram traçados por meio de um algoritmo *flash* do pacote termodinâmico comercial da CMG (WinProp) os envelopes de fase (diagramas P-T) das diferentes descrições aplicadas ao mesmo fluido, com o mesmo padrão de pseudoizações e as

duas diferentes técnicas de ajuste. A Figura 5.1 apresenta os envelopes de fase obtidos pelo método de regressão de Pedersen e equação de estado de SRK.

Figura 5.1: Envelopes de fases, Método de Pedersen SRK (observação, os pontos sobre as curvas representam os pontos críticos dos respectivos envelopes de fase)

Na regressão, os parâmetros com incerteza experimental relevante, como as propriedades críticas da fração pesada são ajustados. Quando um mesmo conjunto de dados PVT é usado na regressão de uma equação de estado e o desvio do ajuste é aceitável, então, independentemente da escolha de agrupamento da pseudoização, obtém-se curvas para a reprodução do experimento de liberação diferencial praticamente idênticas após o ajuste (no intervalo de ajuste dos dados). Para se obter a mesma curva de dados PVT, a explicação mais simples para as diferenças observadas nos envelopes é que dependendo do teor de pseudoização usado na descrição da amostra, os ajustes nos parâmetros da equação de estado podem ser tão mais diferentes entre si quanto maior o teor de pseudoização da equação de estado.

O caso limite e considerado de referência é onde a equação de estado é descrita o mais detalhadamente possível com base na caracterização, contendo todas as substâncias constituintes da mistura que são possíveis de se determinar experimentalmente (no caso estudado, 24 componentes).

Conforme já citado (página 28), a tendência ao se pseudoizar uma mistura ajustada por uma equação de estado é a de se alterar o envelope dos pontos de bolha e orvalho, e as constantes de valor K, assim como o ponto crítico previsto para a mistura. Quando o teor de pseudoização influencia de maneira desprezível o comportamento da mistura descrita pela equação de estado, o envelope de fases pouco se altera. A influência é desprezível, por exemplo, quando ao se aproximar por um pseudocomponente uma mistura de constituintes de baixo teor molar, há pouca influência numérica na equação de estado e consequentemente há sobreposição dos envelopes de duas descrições. Conforme será demonstrado pelos gráficos da simulação do reservatório homogêneo (Figura 5.5 a Figura 5.10), uma descrição mais detalhada do fluido (24 componentes) possui uma previsão de produção na simulação composicional tão mais similar à produção de uma amostra pseudoizada quanto mais similares entre si forem os diagramas P-T destas duas amostras.

Nota-se ao observar a curva (DF_Pedersen_24comp) da Figura 5.1, que é o envelope referente à descrição de 24 componentes por Pedersen, o seguinte: as descrições usando a escolha de "5 componentes pesados", as descrições de 11, 15 e 20 componentes alteram pouco o envelope de fases em relação à descrição de 24 componentes por Pedersen no intervalo de condições do reservatório. A Figura 5.1 sugere também que o teor de pseudoização não deteriora o comportamento do fluido de forma proporcional ao número de componentes para este método de regressão. Por exemplo, para esse método, uma descrição de 7 ou 6 componentes não é mais satisfatória que uma das descrições de 5 componentes. Uma das escolhas de descrição de 5 componentes ("5 componentes pesados") é melhor, outra (5 componentes) é pior, de forma que a escolha do agrupamento é mais importante do que o número de componentes.

Escolhas de agrupamentos de pseudoização entre 5 e 9 componentes não possuem, ao contrário do que se poderia supor, um comportamento proporcional ao teor de pseudoização, em alguns casos tornando a descrição mais ou menos confiável (em relação a 24 componentes), dependendo da escolha de agrupamentos. Isso ocorre porque a regressão da equação de estado é um problema inverso, onde uma infinidade de alterações distintas nos diversos parâmetros da equação de estado geram uma mesma curva de experimento de liberação diferencial. Conforme foi visto na revisão bibliográfica, a equação de estado não é uma função linear ou polinomial. Acredita-se, portanto, que mudanças pequenas em parâmetros de regressão podem gerar resultados bastante diferentes no envelope de fases final.

106

Ao se analisar os envelopes da Figura 5.1, suspeita-se a princípio que, nesse teor de gás carbônico e pressão estudados, o pressuposto de Pedersen *et al.*(1989) de que "6 componentes representam suficientemente bem o comportamento PVT de qualquer mistura de óleo representado por equações de estado" não é amplamente válido ao se aplicar o método de regressão de Pedersen à equação de estado se SRK, ou seja, que outras descrições próximas mais detalhadas, como "6 componentes pesados" não reproduzam de maneira satisfatória o comportamento do fluido, embora que "5 componentes pesados" reproduzam, pois o envelope de 6 pseudocomponentes possui um comportamento distinto do envelope de 24 componentes. Como não se pode ter certeza quantitativa dessa diferença, nesse caso, a hipótese de Pedersen *et al.* só pode ser corroborada experimentalmente e com dados de produção reais ou por um estudo quantitativo de simulação composicional.

Comparação de Métodos: Coats e Smart e Método de Pedersen

Na Figura 5.2, já se percebe uma diferença entre os métodos de regressão da equação de estado, ao verificar os envelopes de fases. Existe uma semelhança muito pequena entre a maior parte das pseudoizações na faixa de 5 a 11 componentes quando se ajusta os dados PVT pelo método de Coats e Smart. As pseudoizações que mais se assemelham à ideal (24 componentes) neste método são as de 6 componentes "pesados", 7 componentes "pesados", 11 componentes, 15 componentes e 20 componentes, e ao contrário do método de Pedersen, no caso de descrições mais pseudoizadas que 7 componentes" pesados", nenhum dos demais envelopes se sobrepõem ou assemelha. Isso sugere que a regressão pelo método de Coats e Smart gera desvios diferentes do método anterior ao se usar pseudoização. A Figura 5.2 também sugere que o método de Coats e Smart deteriora o comportamento de fluidos de maneira diretamente proporcional ao teor de pseudoização, ao contrário do método de Pedersen.

Figura 5.2: Envelopes de fases, Método de Coats e Smart P-R.

Os gráficos de reprodução do experimento de liberação diferencial apresentados anteriormente (Figura B.21 a Figura B.89) mostram a qualidade e a precisão do ajuste após a pseudoização. A reprodução do experimento de liberação diferencial é tão melhor quanto mais pseudocomponentes são usados, sendo a referência o caso de 24 componentes. Sabe-se que todas as curvas do experimento de liberação diferencial calculadas pela EOS ajustada através do método de Coats e Smart mostraram desvios iguais ou menores em relação ao valor experimental em todos os parâmetros ajustados. Foram observadas curvas mais precisas inclusive no caso do fator de compressibilidade Z (Figura B.68 a Figura B.78). Imediatamente, já se suspeita pela análise do envelope de fases que o pressuposto de Pedersen (que 6 componentes são suficientes) não possui validade geral, ou seja, independente do método. Se suspeita que o número de componentes adequado não é função apenas da quantidade de componentes usados na descrição

PVT feita pelo método de Coats e Smart, pois nesse caso não há nenhuma semelhança entre o envelope de fases de uma pseudoização feita com 6 componentes e uma descrição detalhada feita com 24 componentes. Um único envelope semelhante ao de 24 componentes foi o de "5 componentes pesados", e este não se sobrepôs em todo o intervalo.

109

A princípio, se poderia supor sem uma análise profunda que o método de Coats e Smart é superior ao método de Pedersen, não só por ter curvas experimentais melhor ajustadas, mas também por usar uma equação de estado (Peng-Robinson) comprovadamente capaz de gerar melhores ajustes de densidades de líquido que a equação usada por Pedersen (Soave-Redlich-Kwong). Outras hipóteses que poderiam surgir de maneira simplista, é que, para uma mesma quantidade de pseudocomponentes e mesmo esquema de pseudoização, se os métodos de regressão levam a curvas de liberação diferencial semelhantes, então os históricos de produção serão muito próximos, senão iguais, ou seja, o resultado da simulação não dependeria do método de regressão utilizado. A previsão de produção pela simulação de reservatórios foi usada para esclarecer essas hipóteses.

A Figura 5.3 mostra o envelope de fases dos casos considerados mais semelhantes. A Figura 5.4 mostra o envelope de fases de todos os casos. Fica evidente que descrições usando os mesmos dados, o mesmo número e a mesma escolha de pseudocomponentes quando submetidos a diferentes técnicas de regressão e diferentes equações de estado levam a envelopes de fases diferentes. Isso levanta a suspeita de que diferentes métodos de ajuste de equação de estado da literatura não geram resultados equivalentes. Essa análise reforça a necessidade de uma previsão de produção quantitativa pela simulação composicional de reservatórios.

Figura 5.3: Envelopes de fases, melhores ajustes para o Método de Coats e Smart e para o Método de Pedersen

Figura 5.4: Envelopes de fases, todos os ajustes para o Método de Coats e Smart e para o Método de Pedersen

A análise do envelope de fases será acompanhada pelas previsões realizadas pela simulação composicional, demonstrando que distintos envelopes de fases levam à previsões de produção diferentes.

5.5 Diferenças em Escala de Reservatório entre o Comportamento de Diferentes Caracterizações de Fluidos, "Reservatório Homogêneo", Cenário "Baixa Pressão".

Para se assegurar que nenhuma das conclusões fosse originada por causa de uma interferência devido ao emprego de extrapolação na pressão (que é questionável) e validar o uso desta, um cenário de novos parâmetros foi escolhido. Foi simulado um modelo homogêneo com permeabilidade de 300 mD e porosidade de 30% de malha idêntica ao modelo heterogêneo, com

uma pressão inicial e um conjunto de parâmetros de controle de pressão nos poços que mantivesse o regime de recuperação por miscibilidade a múltiplos contatos por injeção miscível de CO_2 acima da maior pressão mínima de miscibilidade estimada. Os parâmetros de controle de pressão foram escolhidos com cautela de forma que ao mesmo tempo se operasse dentro da faixa de pressão dos dados PVT usados para o ajuste (*tuning*) da equação de estado. Isso serviu para aferir mais adiante a interferência da faixa de pressão. A Figura 5.5 exibe os resultados da produção acumulada de óleo deste cenário.

Figura 5.5: Produção acumulada de óleo para diferentes pseudoizações do fluido, métodos de Pedersen versus Coats e Smart, "Reservatório Homogêneo", Cenário "Baixa Pressão"

A simulação do método de Coats de 20 componentes se apresentou particularmente problemática, e não foi exibida aqui. A previsão foi muito distinta e foram feitas diversas tentativas para se confirmar o resultado. A reprodutibilidade do resultado não foi possível, pois houve um conflito que impediu os poços de abrirem quando se inseriu os parâmetros da equação de estado importada do Winprop no simulador. Fica então registrado aqui um alerta, que dependendo da forma com que a equação de estado é gerada, isso pode gerar conflitos com o simulador composicional. As análises a seguir desconsideram esse caso atípico.

O que se percebe ao comparar diferentes comportamentos pelo método de Coats e Smart em uma faixa de pressão compatível com a faixa dos dados PVT de calibração é que em todos os casos em que se agruparam as frações mais leves e se desdobram as frações pesadas, as descrições de "5 pesados", "6 pesados", "7 pesados", 9, 11e 24 componentes não diferiram significativamente nos primeiros dois anos em comportamento de previsão recuperação acumulada final, apenas em intervalos de tempo maiores. Uma das escolhas de descrição de 5 componentes foi mais próximo da descrição completa, outra foi mais distante, de forma que a escolha de agrupamento foi mais importante do que o número de componentes. A descrição de "5 componentes pesados", no entanto, exibiu diferenças de comportamento significativamente maiores, quanto maior era o tempo de produção considerado, de forma a ser consideravelmente distinta (acima de 10%) após 2 anos de produção. Isso sugere que a pseudoização para a descrição de um óleo gera uma perturbação na reprodução do comportamento físico do óleo que é proporcional ao tempo de produção simulado.

No caso do método de Pedersen, (EOS SRK) as conclusões oriundas da comparação de envelopes se confirmaram, uma descrição de 7 ou 9 componentes não é tão satisfatória quanto a descrição "5 componentes pesados". Uma das escolhas de descrição de 5 componentes ("pesados") é melhor, outra é pior, de forma que a escolha de agrupamentos é mais importante do que o número de componentes ou do baixo teor molar da fração agrupada. Fica claro, para as escolhas de agrupamentos estudadas, que as pseudoizações entre 5 e 9 componentes não possuem um comportamento proporcional ao número de componentes, em alguns casos afastando ou aproximando o envelope do caso ótimo (24 componentes), dependendo da escolha de agrupamentos. Isso ocorre porque a regressão da equação de estado é um problema inverso. Confirma-se, portanto, que mudanças pequenas em parâmetros de regressão de uma equação de estado, apesar de gerar curvas de liberação diferencial similares podem gerar resultados bastante diferentes no envelope de fases e nas curvas de produção previstas pela simulação de escoamento.

A suspeita da análise de envelopes persiste, e não é possível se afirmar se nesse teor de gás carbônico e pressão estudados o pressuposto de Pedersen et al.(1989) é válido ao se aplicar o

método de regressão de Pedersen à equação de estado SRK, ou seja, ainda não é possível se afirmar que 6 pseudocomponentes reproduzem de maneira satisfatória o comportamento do fluido, pois o envelope de 6 componentes possui um comportamento distinto do envelope de 24 componentes. Como não se pode ter certeza quantitativa dessa diferença, nesse caso, a hipótese de Pedersen et al. só pode ser corroborada por um estudo quantitativo de simulação composicional de vazão instantânea e outras variáveis, experimentalmente ou com dados de produção reais de vazão instantânea e outras variáveis.

Aqui já se percebe uma diferença bastante significativa entre os métodos de regressão da equação de estado, ao verificar as curvas de produção acumulada. Existe uma semelhança muito pequena entre a maior parte das pseudoizações na faixa de 5 a 14 componentes quando se ajusta os dados PVT pelo método de Coats e Smart e quando se ajusta os mesmos dados da mesma forma pelo método de Pedersen. Ao contrário do método de Pedersen, no caso do método de Coats e Smart com descrições mais pseudoizadas que 15 componentes, nenhuma das curvas de produção das demais descrições do óleo se sobrepõem. Isso sugere que a regressão pelo método de Coats e Smart potencializa os desvios ao se usar pseudoização. A Figura 5.5 também sugere que o método de Coats e Smart deteriora o comportamento de fluidos de maneira diretamente proporcional ao teor de pseudoização, ao contrário do método de Pedersen, que não apresenta o mesmo padrão.

Nessa situação de menor pressão, foi constatada grande semelhança entre as descrições de 24 componentes pelo método de Pedersen e pelo método de Coats e Smart. Isso quer dizer, que em casos homogêneos, com um tempo suficientemente curto, diferentes técnicas e diferentes equações de estado pareceram não influenciar o comportamento do óleo antes de se aplicar a pseudoização. Porém, na presença de pseudoização, a descrição de Coats e Smart não foi equivalente à de Pedersen para uma mesma situação. Isso quer dizer que independentemente da faixa de pressão, uma pseudoização usando determinada escolha de pseudocomponente não foi equivalente entre um método e outro. A Figura 5.6 ilustra a vazão obtida para cada descrição neste cenário.

Figura 5.6: Produção de óleo instantânea (vazão) para diferentes pseudoizações, métodos de Pedersen versus Coats e Smart, "Reservatório Homogêneo", Cenário "Baixa Pressão"

Pode-se perceber que as previsões de produção entre os métodos de Pedersen e de Coats e Smart foram diferentes entre si para as mesmas escolhas de pseudoizações. Isso confirma a conclusão anterior que a escolha do método de ajuste dos dados PVT influencia de maneira tão importante quanto a escolha de pseudoizações na previsão de produção. Evidencia-se então a existência de uma fonte de incertezas importante na simulação composicional: o tratamento de fluidos empregado, uma variável de incerteza pouco estudada na literatura.

No caso do método de Coats e Smart, o uso da descrição "6 componentes pesados", foi capaz de reproduzir a vazão da descrição de 24 componentes para o poço produtor após o primeiro ano de produção, no entanto, descrições menos pseudoizadas, como 7 e 9 componentes, não foram igualmente capazes. A hipótese de Pedersen, de que no mínimo 6 componentes bastam não pode ser interpretada como de validade universal para qualquer método e qualquer equação de estado ou como uma simples função do número de componentes empregado. A realidade

parece ser mais complexa do que a simples escolha do número de pseudocomponentes, mesmo que essa escolha siga recomendações da literatura com base em similaridades de propriedades críticas e intermoleculares dos hidrocarbonetos. O que acontece de fato é que, independentemente do número de componentes com que se representa o fluido, a escolha equivocada de agrupamentos que não represente as frações mais pesadas leva a desvios ainda maiores (isso confirma uma conclusão de Whitson, 1987). O comportamento se estabiliza ao se usar 11 pseudocomponentes, a partir daí, a interferência na representação do comportamento do óleo é muito menor. Acredita-se, portanto, que o uso de 11 componentes é, sob todos os pontos de vista, o mais confiável neste caso, embora, especificamente na escolha de "6 componentes pesado", a pseudoização represente com fidelidade suficiente em qualquer um dos métodos.

No caso de "5 componentes pesados", o mesmo não foi válido para o método de Pedersen. O emprego de menos do que 11componentes, como o agrupamento de "5 componentes pesados" já não se comporta de maneira tão similar após um ano de simulação. Acredita-se que o tempo de simulação a ser empregado em uma simulação de larga escala (reservatório) seja tão importante quanto a escolha da pseudoização. Suspeita-se que não só o aumento do período de tempo simulado influencie a propagação da incerteza inserida pelo ajuste da equação de estado, não se sabe se o grau de heterogeneidade do reservatório, o aumento no teor de gás carbônico e pressões superiores de reservatório influenciam esse tipo de fenômeno.

A Figura 5.7 confirma que, dependendo da condição de convergência numérica causada pelo ajuste da equação de estado submetida a uma pseudoização, a redução no número de componentes não necessariamente reduz o tempo computacional.

No caso do método de Pedersen, vale destacar na Figura 5.7 as seguintes observações: a redução de 11 para 7 componentes não reduziu o tempo de simulação empregado, de fato até aumentou. Como o tamanho da matriz aumenta com o aumento do número de componentes, esse comportamento não esperado ocorre devido a problemas numéricos relacionados com a solução do sistema e convergência; o número de iterações ao invés de aumentar (isso pode ser verificado na Figura 5.8), diminuiu em alguns casos. Também no caso do método de Coats e Smart, o tempo computacional para 5, 6, 7 e 15 componentes foi praticamente constante. Ainda mais surpreendente foi no caso do método de Pedersen "5 componentes pesados". O que ocorreu foi que o tempo de simulação no caso do método de Pedersen foi o segundo maior das séries e o

116

número de cortes na iteração foi o maior da série. Isso sugere fortemente que o tempo de computação pode ter sua convergência piorada por determinadas escolhas de pseudoização associadas à configuração de controle numérico, de forma não só a piorar a previsão de produção além de um limite aceitável, mas também aumentar o tempo computacional requerido.

Isso mostra que o número de componentes não necessariamente é o parâmetro mais importante dentre os que influenciam no tempo computacional. Outra observação é que as simulações, com mesmas escolhas de pseudocomponentes, modelo de simulação e controle numérico, comportam-se de formas distintas, dependendo do tratamento de fluido (*tuning*) escolhido.

Figura 5.7: Tempo Computacional necessário para cada descrição do mesmo fluido em função do número de pseudocomponentes, "Reservatório Homogêneo", Cenário "Baixa Pressão"

Figura 5.8: Número de Iterações de Newton do algoritmo de resolução necessário para cada descrição do mesmo fluido em função do número de pseudocomponentes utilizado, "Reservatório Homogêneo", Cenário "Baixa Pressão"

As Figura 5.9 e Figura 5.10 mostram a vazão do produtor na simulação de injeção de CO_2 em um reservatório homogêneo em baixa pressão para as diferentes descrições de fluido. Nesse caso pode-se perceber que a hipótese de Pedersen prevaleceu para um dos métodos, pois o uso de 6 componentes com o método de Pedersen permitiu uma boa previsão de produção para os primeiros 6 meses e uma previsão aproximada no restante do período.

Figura 5.9: Produção de óleo do campo para diferentes pseudoizações- método de Coats e Smart,

"Reservatório Homogêneo", Cenário "Baixa Pressão"

Figura 5.10: Produção de óleo do campo para diferentes pseudoizações- método de Pedersen, "Reservatório Homogêneo", Cenário "Baixa Pressão"

A Tabela 5.3 mostra os resultados da previsão de recuperação final de óleo para cada descrição do óleo, e os desvios obtidos em relação à previsão com 24 componentes. ATabela 5.3 mostra que as descrições realizadas pelo método de Coats e Smart levaram a previsões muito distintas de suas pseudoizações equivalentes descritas pelo método de Pedersen.

Técnica	Caracterização	número de componentes	Produção Acumulada de Óleo (bbl)	Desvio Relativo
			$(x \ 10^{\circ})$	
	Destilação Fracionada	5	2,68	-18,09%
		5P	3,58	9,43%
		6	2,65	-18,82%
		6P	3,34	2,23%
~		7	2,43	-25,66%
Coats e Smart		7P	3,37	3,02%
		9	3,15	-3,75%
		11	3,13	-4,14%
		15	3,38	3,57%
		20	-	-
		24	3,27	0,00%
	Destilação Fracionada	5	2,93	-8,18%
Pedersen		5P	3,31	3,71%
		6	3,36	5,25%
		6P	3,15	-1,24%
		7	3,68	15,32%
		7P	3,60	12,79%
		9	3,52	10,31%
		11	3,16	-0,91%
		15	3,08	-3,47%
		20	3,15	-1,41%
		24	3,19	0.00%

Tabela 5.3: Produção acumulada para diferentes pseudoizações e tratamentos, caso "Homogêneo", "Baixa Pressão"

Produção Acumulada de Óleo Final: Diferentes Técnicas e Pseudoizações, caso homogêneo

Pode-se observar que o desvio da produção prevista entre as descrições pelo método de Pedersen com 6P e 24 componentes foi de +2,23%, pequeno, enquanto o tempo computacional empregado foi 26% menor. No caso do método de Coats e Smart, a mesma coisa, o desvio foi pequeno, de -1,24%, e o tempo computacional empregado foi praticamente idêntico. Isso até o momento confirma o pressuposto de Pedersen (6 componentes são satisfatórios) no caso do emprego do método de Pedersen tanto para a recuperação acumulada, quanto para a vazão instantânea. Outro resultado interessante é que houve um desvio de -2,23% entre a produção prevista pelo método de Coats e Smart e a previsão pelo método de Pedersen de 24 componentes (a descrição mais detalhada possível, considerada a mais confiável). Isso sugere que os métodos não são equivalentes para o mesmo número de pseudocomponentes.

A pressão mínima de miscibilidade (MMP) também foi estimada usando o método computacional mais preciso disponível, o algoritmo de Jessen (1998), para alguns dos envelopes, por causa da instabilidade do algoritmo, não foi possível obter a MMP de todas as descrições. Os resultados se encontram na Tabela 5.4. A MMP é uma indicação clara da resposta do comportamento de diferentes descrições do fluido em relação à variação da pressão do reservatório sob a injeção miscível. Também é uma forma de identificar quais descrições de fluido são semelhantes na resposta miscível a uma simulação composicional. O que pode se observar é que a hipótese de Pedersen não foi válida para a resposta da injeção miscível sob a variação da pressão (ou delimitação do regime de recuperação miscível a múltiplos contatos com o regime de recuperação imiscível). Acredita-se que a forma do envelope de fases influencia de forma indireta a resposta miscível em função da pressão para a temperatura de reservatório, uma vez que os envelopes se mostraram muito diferentes, não é surpreendente o fato das respostas miscíveis de cada descrição do mesmo fluido serem diferentes com a pressão.

Pressão Mínima de Miscibilidade: Miscibilidade a Múltiplos Contatos para fluido de Pedersen (Determinada a partir do algoritmo de Jessen)						
Técnica	Caracterização	Número de componentes	Pressão (10 ⁴ Kpa)			
	DF	6	1,73			
	DF	7	4,36			
Coats e Smart	DF	9	4,52			
	DF	11	2,92			
	DF	20	4,85			
	DF	5	1,65			
	DF	6	1,75			
Pedersen	DF	9	6,46			
	DF	11	4,97			
_	DF	20	4,69			

Tabela 5.4: Resultado da MMP estimada para diferentes pseudoizações e tratamentos de fluido

5.6 Diferenças em Escala de Reservatório entre o Comportamento de Diferentes Caracterizações de Fluidos, "Reservatório Homogêneo", Cenário "Alta Pressão".

Antes da comparação do comportamento de fluidos no modelo heterogêneo, foram averiguados se também ocorriam diferenças significativas o suficiente entre diferentes descrições do fluido a ponto de evidenciar as diferenças quando simulados num reservatório com permeabilidade de 300 mD e porosidade de 30% de malha homogênea idêntica ao modelo heterogêneo, considerando a influência de uma alta pressão, similar a do pré-sal. O resultado obtido pode ser observado na Figura 5.11:

Figura 5.11: Fator de Recuperação de óleo para todas as pseudoizações do fluido, métodos de Pedersen versus Coats e Smart, caso "Homogêneo", "Alta Pressão"

Novamente, o caso do método de Coats de 20 componentes se apresentou particularmente problemático, nele, a previsão foi muito distinta da esperada e foram feitas diversas tentativas para se confirmar o resultado. A reprodutibilidade do resultado não foi possível, pois houve um conflito que impediu os poços de abrirem quando se inseriu os parâmetros da equação de estado importada do winprop no simulador. Confirmou-se que, dependendo da forma com que a equação de estado é gerada, isso pode gerar conflitos com o simulador composicional. As análises a seguir desconsideram esse caso atípico.

Fica imediatamente claro que as descrições das mesmas pseudoizações não foram equivalentes entre as de Coats-Smart e as de Pedersen. No caso das pseudoizações de Pedersen, houve dificuldade de reproduzir o comportamento do óleo completo em relação as suas pseudoizações. As descrições de 9 componentes e de "5 componentes pesado" foram as únicas próximas da descrição de 24 componentes, mostrando que incertezas de fluido inseridas por

regressão comprometem a reprodução do comportamento físico de forma não proporcional ao teor de pseudoização. Isto é, as descrições de 11, 15 e 20 componentes de Pedersen não reproduziram da mesma forma o comportamento do óleo de 24 componentes como ocorreu com as descrições mais resumidas. Em alguns casos superestimou-se a recuperação final em 600 mil barris, mais de 10%. A Figura 5.12 a seguir mostra que o histórico de fator de recuperação segue tendências diferentes após um período de dois anos de produção, dependendo do método de ajuste escolhido, mesmo na ausência de pseudoização.

Figura 5.12: Fator de Recuperação de óleo para diferentes pseudoizações do fluido, métodos de Pedersen versus Coats e Smart, caso "Homogêneo", "Alta Pressão"

A Figura 5.13 mostra a vazão de óleo. Ao se analisar a vazão em função do tempo, confirma-se, que mesmo na extrapolação em alta pressão, o caso "5 componentes pesado" representa bem a descrição de 24 componentes.

Figura 5.13: Produção de óleo instantânea (vazão) para diferentes pseudoizações do fluido, métodos de Pedersen versus Coats e Smart, caso "Homogêneo", "Alta Pressão"

Outro problema que ilustra bem a vulnerabilidade de se fazer extrapolações na pressão foi que, ao se gerar descrições com pseudocomponentes que agrupam a fração pesada, , nos últimos três meses do período de simulação de 5 anos, algumas descrições apresentaram picos na produção inesperados. Ao se verificar os arquivos de saída, se percebeu que o controle do poço não mudou a condição de operação, levando à conclusão que esses picos são advindos da diferença da descrição da equação de estado.

Algumas das curvas da Figura 5.13 foram detalhadas na Figura 5.14.

Figura 5.14: Produção (vazão) de óleo instantânea para algumas pseudoizações do fluido, métodos de Pedersen versus Coats e Smart, caso "Homogêneo", "Alta Pressão"

Observa-se que o método de Pedersen não reproduz com 6 componentes a melhor descrição do fluido (24 componentes). O que se percebe é que as diferenças de fluidos se acentuam ao se fazer extrapolação na pressão. Pode-se observar no caso de "6 componentes pesados" uma considerável diferença na vazão no período da data inicial e durante todo o período (chegando a 300 bbl/dia, cerca de 10%). A descrição pseudoizada minimamente satisfatória nesse caso, e idêntica à descrição de 24 componentes, é a de "5 componentes pesados", a outra mais próxima é a de 9 componentes. Ao contrário do que se esperava, a descrição de 20 componentes de Pedersen não é tão semelhante quanto a de 5. Aqui, já se suspeita que o agrupamento de pseudocomponentes não deteriora de maneira proporcional o comportamento do óleo em relação ao grau de pseudoização, ou seja, algumas escolhas reproduzem de forma melhor o comportamento, outras o degradam. A realidade parece ser mais complexa do que a simples escolha do número de pseudocomponentes, mesmo que ela siga recomendações da literatura com

base em similaridades de propriedades críticas e intermoleculares das moléculas agrupadas. O que acontece de fato é que, independentemente do número de componentes com que se representa o fluido, a escolha equivocada de agrupamentos que não represente as frações mais pesadas leva a desvios ainda maiores.

Pode-se perceber que as previsões de produção entre os métodos de Pedersen e o de Coats e Smart foram diferentes para pseudoizações semelhantes. No caso da extrapolação de alta pressão, mesmo as descrições detalhadas de 24 componentes foram visivelmente diferentes. Isso leva à conclusão que a escolha do método de ajuste dos dados PVT influencia de maneira tão importante quanto à escolha de pseudoizações na previsão de produção.

A principal justificativa para o emprego da pseudoização na simulação composicional é a redução do tempo computacional. Isso a princípio faz sentido, pois o número de equações a serem resolvidas por célula numa simulação composicional aumenta de maneira quase exponencial e proporcional ao número de componentes utilizado. A Figura 5.15 mostra, no entanto, que, dependendo da condição de convergência numérica causada pelo ajuste da equação de estado, a redução no número de componentes não necessariamente diminui o tempo computacional.

A Figura 5.15 expressa o tempo computacional gasto por simulação e a Figura 5.16 expressa o número de iterações para a convergência. Analisando unicamente o controle numérico, uma vez que os ajustes de fluidos são equivalentes, observa-se que no caso do método de Pedersen, a redução de 11 para "7 componentes pesados" não reduziu o tempo de simulação empregado, de fato até aumentou. Acredita-se que isso ocorra devido a problemas de convergência numérica causados pela pseudoização e pelo ajuste, uma vez que o tempo computacional não aumentou de forma exponencial, o número de iterações ao invés de aumentar exponencialmente (isso pode ser verificado na Figura 5.16), reduziu em alguns casos, e todas as demais variáveis de simulação foram mantidas constantes. Também no caso do método de Coats e Smart, o tempo computacional para 20 e 7 componentes foi praticamente constante, e o tempo computacional de 11 componentes foi o maior da série daquele método. Ainda mais surpreendente foi no caso do método de Pedersen com 20 componentes. O que ocorreu foi que o tempo de simulação no caso do método de Pedersen foi o menor das séries e o número de cortes na iteração foi o menor da série. Isso sugere fortemente que o tempo de computação pode ter sua

convergência piorada por determinadas escolhas de pseudoização associadas à configuração de controle numérico, de forma não só a piorar a previsão de produção além de um limite aceitável, mas também aumentar o tempo computacional requerido. Talvez o uso excessivo de pseudoização não seja o único pré-requisito para assegurar um menor tempo computacional, ou seja, não se pode afirmar se em todas as vezes que a pseudoização for aplicada haverá um benefício em tempo computacional em troca da perda de precisão de uma descrição física de fluido pseudoizado. Também expõe que o número de componentes não necessariamente é o parâmetro mais importante dentre os que influenciam no tempo computacional. Outra observação é que as simulações, com mesmas escolhas de pseudocomponentes, modelo de simulação e controle numérico, reagem de formas distintas, dependendo do tratamento de fluido (*tuning*) escolhido.

Figura 5.15: Tempo Computacional necessário para cada descrição do mesmo fluido em função do número de pseudocomponentes utilizado, caso "Homogêneo", "Alta Pressão"

Figura 5.16: Número de Iterações devido a problemas de convergência numérica para cada descrição do mesmo fluido em função do número de pseudocomponentes utilizado, caso "Homogêneo", "Alta Pressão"

As Figura 5.17 e Figura 5.18 mostram as vazões de óleo do produtor obtidas nas simulações de injeção de CO_2 em um reservatório heterogêneo para as diferentes descrições de fluido. Nesse caso pode-se perceber que a validade da hipótese de Pedersen foi relativa, pois o uso de 6 componentes com o método de Pedersen não permitiu uma boa previsão de produção para os primeiros 2 anos. Aqui também fica claro que a alegação de Whitson e Brulé (2000) que o método de Coats e Smart é superior ao método de Pedersen é duvidosa e vulnerável. A Figura 5.14 mostra que as descrições realizadas pelo método de Coats e Smart levaram a previsões muito distintas tanto do fluido descrito mais detalhadamente quanto dos resultados do método de Pedersen.

Figura 5.17: Produção de óleo do campo para diferentes pseudoizações- método de Coats e Smart, caso "Homogêneo", "Alta Pressão"

131

Figura 5.18: Produção de óleo do campo para diferentes pseudoizações- método de Pedersen, caso "Homogêneo", "Alta Pressão"

A Tabela 5.5 a seguir compara a previsão de recuperação final de óleo para cada descrição do mesmo óleo.

Tabela 5.5: Produção acumulada para diferentes pseudoizações e tratamentos, caso "Homogêneo","Alta Pressão"

Técnica	Caracterização	Número de componentes	Produção Acumulada de Óleo (bbl)	Desvio Relativo
		5	(X 10) 7 22	13 71%
	Destilação Fracionada	5	6.52	2.600
Coats e Smart		5P	0,52	2,09%
		6	7,25	14,28%
		6P	6,48	2,14%
		7	6,35	0,13%
		7P	7,01	10,43%
		9	6,22	-2,02%
		11	6,72	5,88%
		15	6,31	-0,58%
		20	-	-
		24	6,35	0,00%
		5	6,10	4,07%
		5P	5,87	0,26%
		6	7,47	27,58%
		6P	6,73	14,91%
		7	7,14	21,87%
Pedersen		7P	7,75	32,41%
		9	6,03	2,95%
		11	6,77	15,52%
		15	6,68	14,05%
		20	6,77	15,59%
		24	5,86	0,00%

Produção Acumulada de Óleo Final: Diferentes Técnicas e Pseudoizações, caso homogêneo

Pode-se observar pelos dados da Tabela 5.5 que o desvio da produção prevista entre as descrições pelo método de Pedersen com 6P e 24 componentes foi de +2,14%, pequeno, enquanto o tempo computacional empregado foi praticamente idêntico. Isso até o momento confirma o pressuposto de Pedersen (6 componentes são satisfatórios) no caso do emprego do método de Pedersen para a recuperação acumulada, mas não para a vazão instantânea. Outro resultado interessante é que houve um desvio de +7,71% entre a produção prevista pelo método

de Coats e Smart e a previsão pelo método de Pedersen de 24 componentes (a descrição mais detalhada possível, considerada a mais confiável). Isso sugere que os métodos não são equivalentes para o mesmo número de pseudocomponentes.

5.7 Diferenças em Escala de Bloco entre o Comportamento de Diferentes Caracterizações de Fluidos, Caso "Reservatório Homogêneo", "Baixa Pressão"

Com a finalidade de confirmar se as diferenças da análise anterior ocorriam desde o início da simulação devido à diferença no comportamento de fluidos, ou se havia interferência da extrapolação na pressão, os mesmo blocos foram escolhidos para uma análise em pressão na faixa de dados calibrados compatíveis com o PVT: bloco (1,1,4); bloco (2,5,4); e bloco (30,110,4). A saturação de gás para o bloco do poço injetor foi analisada. Primeiramente foram observadas as respostas de pressão devido ao controle de pressão, do bloco injetor na Figura 5.19, do bloco de controle na Figura 5.20, e do bloco produtor na Figura 5.21:

Figura 5.19: Pressão no bloco do injetor em função do tempo para diferentes descrições de fluido,

"Reservatório Homogêneo", Cenário "Baixa Pressão"

Figura 5.20: Pressão no bloco do bloco de controle (2,5,4) em função do tempo para diferentes descrições de fluido, "Reservatório Homogêneo", Cenário "Baixa Pressão"

Figura 5.21: Pressão no bloco produtor em função do tempo para diferentes descrições de fluido, "Reservatório Homogêneo", Cenário "Baixa Pressão"

Pode-se confirmar que, independentemente da faixa de pressão, diferentes descrições do fluido geram históricos de pressão distintos em função do tempo desde o momento inicial, de maneira acentuadamente mais distinta no bloco injetor desde o início e menos distinta no bloco produtor. Não foi observada nenhuma anomalia no comportamento de pressão do bloco, ressaltando que as diferenças de simulação são exclusivamente originárias de diferenças nos parâmetros da simulação. Acredita-se que quanto mais avança a frente miscível, maior será essa diferença. A saturação de gás do bloco injetor foi analisada na Figura 5.22.

Figura 5.22: Saturação de gás no bloco injetor em função do tempo para diferentes descrições de fluido, "Reservatório Homogêneo", Cenário "Baixa Pressão"

Observa-se que usando os mesmos parâmetros de controle de poço, com mesmas condições iniciais e com diferentes tratamentos dos mesmos dados PVT, o histórico de saturação do bloco injetor para o mesmo modelo de simulação se comportou de forma visivelmente diferente desde o início. Isso mereceu então uma investigação aprofundada. A densidade do óleo do bloco injetor sob injeção de gás foi analisado na Figura 5.23.

Figura 5.23: Densidade do óleo no bloco injetor em função do tempo para diferentes descrições de fluido, "Reservatório Homogêneo", Cenário "Baixa Pressão"

A mesma diferença de comportamento na saturação de gás também pode ser observada na densidade de óleo do bloco injetor em função do tempo. De maneira mais acentuada do que para o bloco do poço injetor, algumas diferenças foram observadas após três meses para a saturação de gás do bloco de controle (2,5,4), na Figura 5.24 e para a densidade do óleo sob injeção do bloco de controle, na Figura 5.25. A densidade do óleo no bloco produtor também foi analisada na Figura 5.26.

Figura 5.24: Saturação de gás no bloco (2,5,4) em função do tempo para diferentes descrições de

140

fluido, "Reservatório Homogêneo", Cenário "Baixa Pressão"

Figura 5.25: Densidade do óleo no bloco (2,5,4) em função do tempo para diferentes descrições de fluido, "Reservatório Homogêneo", Cenário "Baixa Pressão"

Figura 5.26: Densidade do óleo no bloco produtor em função do tempo para diferentes descrições de fluido, "Reservatório Homogêneo", Cenário "Baixa Pressão"

Novamente, as diferentes descrições de óleo tiveram comportamento inicial muito semelhante entre si, e a mesma semelhança pôde ser observada na densidade do óleo do bloco produtor, onde o gás carbônico não conseguiu atingir durante o histórico da simulação. Pode-se observar na Figura 5.27 a saturação elevada de óleo no poço produtor, indicando que a frente ainda não alcançou este local.

Figura 5.27: Saturação do óleo no reservatório ao final de 5 anos para descrição de 24 componentes, Coats e Smart, "Reservatório Homogêneo", Cenário "Baixa Pressão"

A saturação do óleo no bloco produtor foi analisada para diferentes descrições do óleo na Figura 5.28. São visíveis, mesmo no bloco produtor antes da irrupção, as diferenças na saturação de óleo inicial desde o começo.

Figura 5.28: Saturação do óleo no bloco produtor em função do tempo para diferentes descrições de fluido, "Reservatório Homogêneo", Cenário "Baixa Pressão"

Na Figura 5.29 são apresentadas as curvas de viscosidade do óleo no bloco produtor. As diferentes descrições de óleo também tiveram na maior parte do tempo um comportamento de viscosidade muito semelhante entre si. Assim, as diferenças não podem ser atribuídas a alterações de condições iniciais ou de viscosidade, mas sim de diferenças das propriedades de fluidos que são função do ajuste da equação de estado. Isso sugere fortemente que há singularidades no comportamento microscópico e termodinâmico de fluidos desde o momento inicial e alerta para a sensibilidade que a simulação composicional sofre originada pela escolha da literatura do método de *tuning* de diferentes autores. As diferenças de viscosidades no primeiro trimestre de simulação provavelmente são numéricas, uma vez que convergem para o mesmo valor na maior parte da simulação.

Figura 5.29: Viscosidade do óleo no bloco injetor em função do tempo para diferentes descrições de fluido, "Reservatório Homogêneo", Cenário "Baixa Pressão"

5.8 Diferenças em Escala de Reservatório entre o Comportamento de Diferentes Caracterizações de Fluidos, Caso "Reservatório Heterogêneo", "Alta Pressão"

Todas as diferenças no comportamento de fluidos puderam ser constatadas para o caso homogêneo. Prosseguindo-se para a análise do modelo heterogêneo, acredita-se que a heterogeneidade acentue as diferenças de fluidos, devido a diferenças de volatilização e de perfis de pressão, potencializadas pela formação de canais preferenciais. Foram averiguados se ocorriam diferenças significativas o suficiente entre as descrições do fluido, a ponto de evidenciálas quando simulados num reservatório de modelo heterogêneo, do caso descrito pela metodologia, de porosidade homogênea. O resultado observado para a produção acumulada de óleo é apresentado na Figura 5.30.

Figura 5.30: Produção acumulada de óleo para diferentes pseudoizações do fluido, métodos de Pedersen versus Coats e Smart, Caso "Reservatório Heterogêneo", "Alta Pressão"

Novamente, o caso do método de Coats de 20 componentes se apresentou particularmente problemático, nele, a previsão foi muito distinta da esperada e foram feitas diversas tentativas para se confirmar o resultado. A reprodutibilidade do resultado não foi possível, pois houve um conflito que impediu os poços de abrirem quando se inseriu os parâmetros da equação de estado importada do Winprop no simulador. Confirmou-se que, dependendo da forma com que a equação de estado é gerada, isso pode gerar conflitos com o simulador composicional. As análises a seguir desconsideram esse caso atípico.

Da mesma forma que no caso homogêneo, pode-se observar a diferença entre duas descrições com mesmo número de pseudocomponentes e diferentes métodos de ajuste do mesmo óleo para a produção de óleo apresentada na Figura 5.31. Neste caso, a diferença entre a descrição de 6 componentes e uma mais detalhada é bem mais acentuada. Percebe-se que as previsões de produção entre os métodos de Pedersen e de Coats e Smart foram ainda mais

diferentes entre si para as mesmas pseudoizações. Isso confirma a conclusão anterior que a escolha do método de ajuste dos dados PVT influencia de maneira tão importante quanto a escolha de pseudoizações na previsão de produção.

Figura 5.31: Produção de óleo instantânea (vazão) para todas pseudoizações do fluido, métodos de Pedersen versus Coats e Smart, Caso "Reservatório Heterogêneo", "Alta Pressão"

Ao se analisar a produção em função do tempo, fica evidente que o método de Pedersen não reproduz de forma equivalente a melhor descrição do fluido (24 componentes) em relação ao método de Coats e Smart. Observa-se que as previsões de produção entre os métodos de Pedersen e de Coats e Smart foram diferentes entre si para pseudoizações de escolhas de componentes idênticas. Isso confirma a conclusão que a escolha do método de ajuste dos dados PVT influencia de maneira tão importante quanto à escolha de pseudoizações na previsão de produção.

Pode-se observar, na presença de heterogeneidades, uma considerável diferença na vazão de óleo em todo intervalo para uma mesma descrição ajustada por métodos de regressão

diferentes, que ao contrário do caso homogêneo, foi muito mais acentuada, inclusive no primeiro ano de produção. Tanto no caso do método de Coats e Smart quanto no caso do método de Pedersen, o uso da descrição "6 componentes pesados", foi capaz de reproduzir a vazão instantânea após o primeiro ano de produção; no entanto, descrições menos pseudoizadas, como 7 e 9 componentes, não foram igualmente capazes. A hipótese de Pedersen, que no mínimo 6 componentes bastam não pode ser interpretada simploriamente como um número fixo de componentes de validade universal para qualquer método e qualquer equação de estado ou como uma simples função do número de componentes empregado. A realidade parece ser mais complexa do que a simples escolha do número de pseudocomponentes, mesmo que sejam seguidas recomendações da literatura com base em similaridades de propriedades críticas e intermoleculares das moléculas agrupadas. O que acontece de fato é que, independentemente do número de componentes com que se representa o fluido, a escolha equivocada de agrupamentos que não represente as frações mais pesadas e os envelopes leva a desvios ainda maiores.

Figura 5.32: Produção de óleo instantânea (vazão) para diferentes pseudoizações do fluido, métodos de Pedersen versus Coats e Smart, Caso "Reservatório Heterogêneo", "Alta Pressão"

A Figura 5.33 mostra, novamente, que, dependendo da condição de convergência numérica causada pelo ajuste equação de estado, não necessariamente a redução no número de componentes diminui o tempo computacional. Veja o caso mais emblemático disso, comparando o desempenho do tempo computacional entre 9 e 15 componentes. A simulação com 15 componentes pelo método de Pedersen foi mais rápida, mesmo sendo mais precisa. Isso sugere que o tempo de computação pode ter sua convergência piorada por determinadas escolhas de pseudoização associadas à configuração de controle numérico, de forma não só a piorar a previsão de produção além de um limite aceitável, mas também aumentar o tempo computacional requerido. Acredita-se que isso ocorra devido a problemas de convergência numérica causados pela pseudoização e pelo ajuste, uma vez que o tempo computacional não aumentou de forma exponencial, o número de iterações ao invés de aumentar exponencialmente (isso pode ser verificado na Figura 5.34), reduziu em alguns casos, e todas as demais variáveis de simulação foram mantidas constantes. Isso não confirma se o uso excessivo de pseudoização realmente é capaz de assegurar um menor tempo computacional, ou seja, se realmente há um benefício em tempo computacional em troca da perda de precisão de uma descrição física de fluido causada por este agrupamento. Também expõe que o número de componentes não é necessariamente o parâmetro mais importante dentre os que influenciam no tempo computacional. Outra observação é que as simulações, com mesmas escolhas de pseudocomponentes, modelo de simulação e controle numérico, comportam-se de formas distintas, dependendo do tratamento de fluido (tuning) escolhido.

Figura 5.33: Tempo Computacional necessário para cada descrição do mesmo fluido em função do número de pseudocomponentes utilizado, "Reservatório Heterogêneo", "Alta Pressão"

Figura 5.34: Número de Iterações do Solver necessário para cada descrição do mesmo fluido em função do número de pseudocomponentes utilizado, Caso "Reservatório Heterogêneo", "Alta Pressão"

6 Conclusões/Recomendações

6.1 Conclusões

1- O uso de diferentes técnicas de pseudoização, ao contrário do que se esperava, não resultou em uma relação direta entre o número de componentes e o tempo de simulação pois alguns casos apresentaram dificuldades de convergência causadas por diferenças nos envelopes termodinâmicos e no comportamento matemático das equações de estado. Por isso, recomenda-se maior cautela na hora de calibrar a equação de estado, pois a curva do experimento de liberação diferencial não assegura sozinha comportamentos uniformes entre todas as descrições por pseudoização do mesmo óleo e dos mesmos dados PVT. Se houver a possibilidade de se usar um fluido não pseudoizado, deve-se fazer um estudo para verificar o real ganho computacional que isso pode trazer, para saber se isso justifica a pseudoização.

2- Acredita-se que a pseudoização possui um limite tolerável para a minimização do erro da simulação composicional que é dependente do ensaio de caracterização PVT e da composição fornecida e não pode ser usada de maneira indiscriminada no pré-sal ou em qualquer simulação composicional de injeção de CO₂, especialmente em altas pressões e interagindo com grande quantidade de CO₂. Nos casos estudados a pseudoização foi aceitável para 5 ou 6 componentes, desde que considerados os componentes corretos para agrupamento.

3- Uma maneira de detectar a melhor pseudoização é fazer uma triagem prévia analisando o envelope de fases e fazer um estudo comparativo para confirmar a reprodutibilidade do comportamento. O processo é mais complexo do que a simples escolha do número de pseudocomponentes. O que acontece de fato é que, independentemente do número de componentes com que se representa o fluido, a escolha equivocada de agrupamentos que não representem as frações mais pesadas leva a desvios ainda maiores. Acredita-se que para assegurar uma boa pseudoização, deve se calibrar tanto a curva de liberação diferencial, quanto o envelope de fases, de forma que eles se sobreponham da maneira mais fiel e próxima possível. Deve-se, sempre que possível, incluir a maior quantidade de dados de PVT validados possível, além de dados experimentais de viscosidade. 4- As incertezas relativas ao tratamento de fluidos, a "manipulação" (ajuste ou *tuning*) de dados PVT e o uso da pseudoização são importantes na modelagem da simulação composicional e se mostraram relevantes em um análogo sintético e simplificado do pré-sal, em mais de uma condição de pressão e heterogeneidade.

5- Há evidências de que há uma diferença no comportamento microscópico e termodinâmico de fluidos desde o momento inicial e de que há considerável sensibilidade da simulação quando submetida à escolha de métodos de regressão de dados PVT de diferentes autores. Não foi possível afirmar, com os exemplos estudados, qual método de regressão é melhor.

6- A escolha dos agrupamentos que formam os pseudocomponentes foi mais importante do que o número de componentes. As pseudoizações entre 5 e 9 componentes não apresentaram um comportamento proporcional ao teor de pseudoização, em alguns casos deteriorando ou aproximando o envelope do caso considerado ótimo (mais completo - 24 componentes), e depende da escolha de agrupamentos.

7- Não houve também uma relação direta do número de componentes e a qualidade dos resultados (em comparação com a opção de 24 componentes). Em um método isso ocorre, em outro não. As diferenças foram mais afetadas pelo método de regressão e da equação de estado empregados e da similaridade do envelope de fases e das curvas de PVT ajustados em relação à caracterização detalhada.

8- A hipótese de Pedersen (1987) (que 6 pseudocomponentes descrevem satisfatoriamente uma mistura, Item 5.4) é parcialmente válida para o método de ajuste de dados PVT desde que se escolha uma sequência de agrupamento de pseudocomponentes adequada. Recomenda-se cautela ao ajustar e pseudoizar o fluido, pois a falta de critério em relação à descrição de fluido pode comprometer a confiabilidade do estudo. Não se pode generalizar sobre a validade da hipótese de Pedersen para casos de óleo com teores de CO₂ superiores a 3% e em elevadas pressões. Nesse caso estudado seu emprego pode levar a envelopes de fase razoáveis e previsões de produção razoáveis, mas pode afetar de maneira considerável a previsão de vazão após dois anos e o comportamento do óleo sob injeção miscível em faixas de pressão de reservatórios que determinem a miscibilidade a múltiplos contatos. 9- A validade da hipótese de empregar 6 componentes no pré-sal pode ser vulnerável e depende da finalidade do estudo. O emprego de 6 pseudocomponentes não foi muito confiável para previsões de longo prazo de vazão e para estudos de desenvolvimento de miscibilidade ou com modelos complexos de grande heterogeneidade. Sempre que possível, recomenda-se representar de forma mais detalhada a fração pesada, seguindo a recomendação da Equação 2.44 de Whitson e Brulé (2000) e verificar o envelope de fases e as curvas de PVT após o ajuste e fazer testes comparativos de simulação/produção.

10- O uso da equação de Peng-Robinson não foi superior ao uso da equação de Soave-Redlich-Kwong. A reprodutibilidade da técnica de ajuste dos dados PVT é mais importante do que a escolha da equação de estado em si.

11- A ordem, a técnica e a forma como uma pseudoização é feita também pode alterar significativamente a reprodução do comportamento de fluidos. A escolha de pseudoização também depende do método de regressão de fluidos associado a ela tanto na determinação do tempo computacional empregado, quanto na qualidade da previsão.

6.2 Trabalhos Futuros

Foram investigadas somente duas técnicas e duas equações de estado. Acredita-se que essas conclusões precisam ser investigadas para outras equações de estado baseadas ou não em van der Waals, outras composições de óleo, outras técnicas de *tuning* e outros métodos de cálculos de pseudocomponentes.

Recomenda-se fazer as mesmas análises dos pressupostos de pseudoização e de outras incertezas de fluido com base em amostras de óleo com dados PVT determinadas experimentalmente para teores muito maiores de gás carbônico do que 3%, tendo em vista que a presença desta no pré-sal é de 20% volumétrico, 12% molar em média, possivelmente até mais em alguns casos. Espera-se que as conclusões sejam diferentes, devido às peculiaridades dessas condições. Recomenda-se também estudar se óleos de diferentes densidades, diferentes caracterizações e diferentes teores de fração pesada se comportam de mesma forma em relação ao ajuste PVT quando há gás carbônico presente a altas pressões.

Outras técnicas de caracterização de outros autores precisam ser testadas além das duas estudadas. Acredita-se que a escolha da técnica de caracterização exerce influência significativa

sobre a incerteza de fluidos e sobre a confiabilidade da simulação composicional. Deve-se investigar também se para uma mesma técnica há influência da escolha da equação de estado sobre essas incertezas e do método de desdobramento da fração pesada (*splitting*).

Outros pacotes termodinâmicos que utilizem métodos de cálculo de pseudocomponentes mais elaborados do que a Regra de mistura de Kay, ou a regra de mistura clássica de van der Waals, precisam ser testados e desenvolvidos, mesmo que eles não estejam disponíveis em softwares comerciais, de forma a investigar se isso afeta ou reduz a incerteza de fluidos.

A realização de ensaios PVT para um conjunto de óleos análogos aos óleos atípicos do pré-sal é uma grande necessidade, pois é o ponto de partida para o desenvolvimento da pesquisa na academia de dados PVT de óleos e de simulação composicional neste novo cenário.

Como forma de generalizar as conclusões de Garcia (2005) (que o modelo composicional é confiável, enquanto o modelo Black-oil não é) para um caso típico do pré-sal, uma comparação mais extensiva entre a reprodutibilidade do comportamento de simulações black oil e composicionais precisa ser feito.

O comportamento multifásico de óleos voláteis com diferentes concentrações de CO_2 precisa ser investigado, por se acreditar que a mudança em seu comportamento tenha grande influência na incerteza de fluidos. A mesma coisa precisa ser feita a modelos de permeabilidade relativa multifásica e da histerese tanto por molhabilidade quanto por dissolução de CO_2 .
Abbott, M.M. "Cubic Equations of State: An Interpretative Review." In *Equations of State in Engineering and Research*, por K.C. Chao e R.L. Robinson Jr., 182, 47-97. Washington, DC: ACS, 1978.

Aguilera, R. e K.H. van Poolen. "How to Evaluate Naturally Fractured Reservoir From Various Log." *Oil and Gas Journal*, Janeiro 1978.

Al-Ghamdi, Ali, Bo Chen, Hamid Behmanesh, Farhad Qanbari e Roberto Aguilera. "An Improved Triple Porosity Model for Evaluation of Naturally Fractured Reservoirs." *SPE Trinidad and Tobago Energy Resources Conference*. Port of Spain, Trinidad: SPE, 2010. SPE 132879.

Alston, R.B., G.P. Koklis e C.F. James. "CO₂ minimum miscibility pressure: a correlation for impure CO₂ streams and live oil systems." *SPE ATCE*. San Francisco, CL: SPE, 1983. SPE 14150.

Alves, I., *et al.* "Pre-Salt Santos Basin - Well Construction Learning Curve Acceleration." *Offshore Technology Conference.* Houston, TX, 2009.

Ambiente Brasil., 2010. http://noticias.ambientebrasil.com.br/clipping/2009/06/01/45947petrobras-estuda-sumir-com-co2-da-camada-pre-sal.html (accessed Maio 27, 2010).

API. Technical Data Book-Petroleum Refining. New York City: API, 1977.

Behrens, R.A. e S.I. Sandler. "The Use of Semicontinuous Description to Model the C₇+ Fraction in Equation of State Calculations." *SPE/DOE Symposium on EOR*. Tulsa, OK: SPE, 1986. SPE 14925.

Beltrão, R.L.C., *et al.* "Challenges and New Technologies for the Development of the Pre-Salt Cluster, Santos Basin, Brazil." *Offshore Technology Conference*. Houston, TX, 2009.

Benedict, M., G.B. Webb e L.C. Rubin. "An Empirical Equation for Thermodynamic Properties of Light Hydrocarbons and Their Mixtures, I. Methane, Ethane, Propane, and n-Butane." *J. Chem. Phy.*, 1940: 8, 334.

Bergman, D.F., M.R. Tek, e D.L. Katz. *Retrograde Condesation in Natural Gas Pipelines*. New York: American Gas Association, 1975. Blunt, M. J. "An Empirical Model for Three-Phase Relative Permeability." *SPE Journal*, Dezembro 2000.

Cavett, R.H. "Physical Data for Distillation Calculations- Vapor-Liquid Equilibria." *Proc.* 27 *th API Meeting*. San Francisco, CL, 1962. 351.

Chen, Y., Durlofsky, L., Gerritsen, M., & X.H., W. (2003). A coupled local-global upscaling approach for simulating flow in highly heterogeneous formations. *Advances in Water Resources*, pp. 26; 1041–1060.

Chopra, A.T., Stein M.H., e C.T. Dismuke. "Prediction of Performance of Miscible-Gas Pilots." *JPT*, Dezembro 1990: 1564.

Christie, M., & Blunt, M. (s.d.). Acessado 14 de Junho de 2010, Web site for the 10th SPE Comparative Solution Project: http://www.spe.org/csp/

Christie, M., & Blunt, M. (2001). Tenth SPE Comparative Solution Project: A Comparison of Upscaling Techniques. *SPE*, p. paper SPE 72469.

Chueh, P.I., e J.M. Prausnitz. "Calculation of High-Pressure Vapor-Liquid Equilibria." *Ind. Eng. Chem.*, 1968: 60, No 13.

Coalson, E. B., D.J. Hartmann, e J.B. Thomas. "Productive Characteristic of Common Type." *Bulletin of the South Texas Geological Society*, Fevereiro 1985: v.15, No 6, pp.35-51.

Coats, K.H. "An EOS Compositional Model." SPEJ, Outubro 1980: 363.

Coats, K.H. e Smart, G.T.. "Application of a Regression-Based EOS PVT Program to Laboratory Data." *SPERE*, Maio 1986: 277.

Costa, Isabela. "Análise do potencial técnico do seqüestro geológico de CO₂ no setor de petróleo no Brasil." In *Mudanças Climáticas, Sequestro e Mercado de Carbono*, by Marco Aurélio Ziliotto. Rio de Janeiro: Instituto Ecoclima, 2008.

Craft, B.C., M. Hawkins, e R.E. Terry. *Applied Petroleum Reservoir Engineering*. Englewood Cliffs, NJ: Prentice-Hall Inc., 1991.

Crott, M.A, Fernandez, G. e Terrado, M. "Improving Reserves and Production Using a CO₂ Fluid Model in El Trapial Field, Argentina." *SPE LACPEC*. Buenos Aires, AR: SPE, 2007. SPE 107732.

Curvers, J. e P. van den Engel. "Gas chromatographic method for simulated distillation up to a boiling point of 750 deg C using temperature programmed injection and high temperature fused silica wide-bore cloumns." *J. High Resolution Chromatogr.*, 1989: 20, 16-22.

Danyushkin, I.I. e A.Y. Namiot. "Mixing Conditions of oil with Carbon Dioxide." *Neft Khozyaistvo*, Março 1981: 56-61.

Dortmundt, D.; Doshi, K. *Recent Developments in CO*₂ *Removal Membrane Technology*. UOP LLC, 1999.

Edminster, W.C. Applied Hydrocarbon Thermodynamics, Part 4: Compressibility Factors and Equations of State. Pet Ref., 1958.

Edminster, W.C. e B.I. Lee. *Applied Hydrocarbon Thermodynamics*. Houston, TX: Gulf Publishing Co., 1983.

Escobar, Freddy H., Nestor F. Saavedra, Gerson D. Escorcia, e John H. Polania. "Pressure and Pressure Derivative Analysis without Type-Curve Matching for Triple Porosity Reservoirs." *SPE Asia Pacific Oil and Gas Conference and Exhibition*. Perth, AU: SPE, 2004. SPE 88556.

Ezekwe, J.N., e S.L. Filler. "Modelling Deepwater Reservoirs." *ATCE*. Dallas, TX: SPE, 2005.

F. M. Orr, Jr. *High Resolution Prediction of Gas Injection Process Performance for Heterogeneous Reservoirs*. Governamental Research Quarterly Report, Stanford University & DOE, 2002.

Falcão, José Luiz; Poiate Junior, E.; Costa, A. M.; Alves, I.A.S.; e de Eston, S.M. "Perfuração em formações salinas." *Boletim Técnico da Produção de Petróleo*, 2007: vol. 1, nº 2, pp. 293-307.

Formigli Filho, J.M. "Pré-sal e seus desafios." *Palestra realizada na UNICAMP*. Campinas, SP, Março 2009.

Formigli Filho, J.M., et al. "Santos Basin's Pre-Salt Reservoirs Development- The Way Ahead." Offshore Technology Conference. Houston, TX, 2009.

Garcia, R. G. Reservoir Simulation of CO₂ Sequestration and Enhanced Oil Recovery in the Tensleep Formation, Teapot Dome Field. Dissertação de Mestrado, Texas A&M University, 2005.

Gibbs, J.W. On the Equilibrium of Heterogeneous Substances. New Haven, CT: Yale U. Press, 1928.

Gibbs, J.W.. The Collected Works of J. Willard Gibbs. New Haven, CT: Yale U. Press, 1948.

Girão, J.H.S. *Estudo do Comportamento de Fases de sistemas Petróleo-CO*₂. Dissertação de Mestrado, Campinas: UNICAMP, 1995.

Globo, Jornal O. *http://oglobo.globo.com*. Maio 12, 2010. http://oglobo.globo.com/economia/mat/2010/05/12/anp-encontra-segunda-maior-reserva-depetroleo-do-brasil-no-pre-sal-do-supercampo-de-franco-916564237.asp (accessed Maio 26, 2010).

Gore, Al. An Inconvenient Truth: The Crisis of Global Warming. Viking Juvenile, 2007.

Gurpinar, O., J. Kalbus, e D. List. "Numerical Modeling of a Triple Porosity Reservoir." *SPE Asia Pacific Improved Oil Recovery Conference*. Kuala Lumpur, Malaysia: SPE, 1999. SPE 57277.

Hall, K.R., e L. Yarborough. "New, Simple Correlation for predicting Critical Volume." *Chemical Engineering*, 1971: 76.

Haman, S.E.M., *et al.* "Generalized Temperature Dependent Parameters of the Redlich-Kwong Equation of state for Vapor-Liquid Equilibrium Calculations." *Ind. & Eng. Chem. Proc. Des. Dev.*, 1977: 16, No 1.

Henry, R.L., e R.S. Metcalfe. "Multiple-Phase Generation During Carbon Dioxide Flooding." SPEJ, Agosto 1983: 595.

Hernandez, J. A. M. *Mecanismos de recuperação de óleos pesados durante a injeção de vapor num reservatório naturalmente fraturado*. Dissertação de Mestrado, Campinas: UNICAMP, 2006.

Holm, L.W. e V.A. Josendal. "Discussion of determination and prediction of CO₂ minimum miscibility pressures." *Journal of Petroleum Technology*, Maio 1980: 870-871.

Holm, L.W. e V.A. Josendal. "Mechanisms of Oil Displacement by Carbon Dioxide." *Journal of Petroleum Technology*, 1974: 26(12):1427-1438.

Jarrell, P. M. *et al. Practical Aspects of CO*₂ *flooding*. Richardson, TX: SPE Monograph Series, 2002.

Jessen, K., Michelsen, M. L. e Stenby, E. H. "Effective Algorithm for Calculation of Minimum Miscibility Pressure" *SPE*, Outubro 1998: SPE 50632

Jhaveri, B.S. e G.K. Youngren. "Three-parameter Modification of the Peng-Robinson Equation of state to Improve Volumetric Predictions." *SPERE*, Agosto 1988: 1033.

Joffe, J., G.M. Schroeder e D. Zudkevitch. "Vapor-Liquid Equilibria with the Redlich-Kwong Equation of State." *AIChE Journal*, Maio 1970: 496.

Johns, R.T. e F.M. Orr. "Miscible Gas Displacements of Multicomponent Oils." SPEJ, Março 1996: 39.

Johnson, J.P. e J.S. Pollin. "Measurements and Correlation of CO₂ miscibility pressures." *SPE*, Abril, 1981: SPE 9790.

Joshi, Rahul. *Production Performance Study of West Carney Field*. Dissertação de Mestrado, University of Tulsa, 2003.

Kasemi, H. "Pressure Transient Analysis of Naturally Fractured Reservoir with Uniform Fracture Distribution." *SPE Journal*, 1969: p. 451.

Katz, D.L. e A. Firoozabadi. "Predicting phase behavior of condensate/crude-oil systems using methane interaction coefficients." *J. Petroleum Technology*, 1978: 1649-1655.

Kay, W. (1936). Gases and vapors at high temperature and pressure—density of hydrocarbon. *Ind. Eng. Chem.*, pp. 28, 1014.

Kesler, M.G. e B.I. Lee. "Improve Predictions of Enthalpy of Fractions." *Hydro. Proc.*, Março 1976: 55, 153.

Kesler, M.G., B.I. Lee e S.I. Sandler. "A Third Parameter for Use in Generalized Thermodynamic Correlations." *Ind. Eng. Chem. Fund.*, 1979: 18, No1, 49.

Khan, S.A., G.A. Pope e K. Sephernoori. "Fluid Characterization of Three-Phase CO₂/Oil Mixtures." *SPE*, 1992: SPE 24130.

Lee, B.I. e M.G. Kesler. "A Generalized Thermodynamic Correlation Based on Three-Parameter Corresponding States." *AIChE Journal*, 1975: 21, 510.

Lee, J.I. *Effectiveness of carbon dioxide displacement under miscible and immiscible conditions*. Relatório de Pesquisa, Petroleum Recovery Institute, 1979.

Lee, S.T. *et al.* "Experiments and Theoretical Simulation on the Fluid Properties Required for the Simulation fo Thermal Processes." *SPEJ*, Outubro 1982: 535.

Levenberg, K. (1944). A Method for the Solution of Certain Problems in Least Squares. *Quart. Appl. Math.*, pp. 2, 164-168.

Li, Y.K., Nghiem L.X. e A. Siu. "Phase Behavior Computation for Reservoir Fluid Effects of Pseudo Component on Phase diagram and Simulation Results." *Petroleum Soc. of CIM Annual Meeting.* Calgary, 1984. CIM 84-35.

Lohrenz, J., B.G. Bray e C.R. Clark. "Calculating Viscosities of Reservoir Fluids from their Compositions." *JPT*, Outubro 1964: 1171.

Lohrenz, J., G.C. Clark e R.J. Francis. "A Compositional Material Balance for Combination Drive Reservoirs with Gas and Water Injection." *JPT*, Novembro 1963: 1233.

Lucia, F. Jerry. Carbonate Reservoir Characterization. Springer, 2002.

Marquardt, D. (1963). An Algorithm for Least-Squares Estimation of Nonlinear Parameters. *SIAM J. Appl. Math.*, pp. 11, 431-441.

Martin, A.J. *et al.* "Characterization of Petrophysical Flow Units in Carbonate Reservoir." *AAPG Bulletin*, Maio 1977: v .83, no 7,p.734-759.

Martin, J.J. "Cubic Equations of State- Which?" Ind. & Eng. Chem., 1979: 18, No 2, 81.

Martin, J.J., e Y.C. Hou. AIChE Journal, 1955: 1, 142.

McCain, W.D. Jr. *The Properties of Petroleum Fluids*. Tulsa, OK: Pennwell Publishing Co., 1990.

Metcalfe, R.S. e L. Yarborough. "Effect of Phase Equilibria on the CO₂ Displacement Mechanism." *SPEJ*, 1979: 242-252.

Mezzomo, C. C. *Otimização de Estratégias de Recuperação para Campos de Petróleo*. Dissertação de Mestrado, Campinas: UNICAMP, 2001.

Mungan, N. "Carbon Dioxide Flooding- Fundamentals." *Journal of Canadian Petroleum Technology*, 1981: 87-92.

Najurjeta, H.L. "A Theory for Pressure Transient Analysis in Naturally Fractured Reservoirs." *J. Pet Tech.*, 1980: p.1241.

Nakano, C. M. F. *et al.* "Pre-Salt Santos Basin - Extended Well Test and Production Pilot in the Tupi Area - The Planning Phase." *Offshore Technology Conference*. Houston, TX, 2009.

Nokay, R. "Estimate Petrochemical Properties." Chem. Eng., Fevereiro, 1959: 147.

NPI, National Petroleum Institute. Enhanced Oiil Recovery- An analysis of the potential for enhanced oil recovery from known fields in the United States, 1976-2000. Relatório Governamental, Washington D.C.: National Petroleum Council, 1976.

O Estado de São Paulo. Entrevista de Alexandre Szklo, UFRJ. www.estadao.com.br (accessed Dezembro 1, 2009).

Orr, F. e J. Taber. "Displacement of Oil by Carbon Dioxide." *Enhanced oil recovery and improved drilling technology*, Dezembro 1984.

Orr, F.M. Jr, A.D. Yu e C.L. Lein. "Phase Behavior of CO₂ and Crude Oil in Low Temperature Reservoirs." *SPEJ*, Agosto 1981: 480-92.

Osjord, E.H. e D. Malthe-Sorenssen. "Quantitative analysis of natural gas in a single run by the use of packed and capillary columns." *J. Chromatogr.*, 1983: 297, 219,224.

Peaceman, Donald W. Fundamentals of Numerical Reservoir Simulation. Elsevier, 1977.

Pedersen, K.S, A.L. Blilie e K.K. Meisingset "PVT calculations on petroleum reservoir fluids using measured and estimated compositional data for the plus fraction." *I&EC Research*, 1992: 1379-1384.

Pedersen, K.S. e P.L. Christensen. *Phase Behavior of Petroleum Reservoir Fluids*. Taylor & Francis, 2007.

Pedersen, K. S., Thomassen, P., & Fredenslund, a. (1985). "On the Dangers of "Tuning" Equation of State Parameters". *SPE*, p. SPE 014487.

Pedersen, K.S., A. Fredenslund e P. Thomassen. *Properties of Oils and Natural Gases*. Houston, TX: Gulf Publishing Co., 1989.

Pedersen, K.S., P. Thomassen e A. Fredenslund. "Thermodynamics of Petroleum Mixtures Containing Heavy Hydrocarbons. 3. Efficient Flash Calculation Procedures Using the SRK Equation of State" *Ind. Eng. Chem. Proc. Des. Dev.*, 1985: N^o 24, p. 948.

Pedersen, K.S., P. Thomassen e A. Fredenslund. "Characterization of Gas Condensate Mixtures." In *C*₇ *Fraction Characterization*, by L. G. Chorn and G.A. Mansoori. New York City: Taylor& Francis, 1989.

Peneloux, A., E. Rauzy e R. Freze. "A Consistent Correction for Redlich-Kwong-Soave Volumes." *Fluid Phase Equilibria*, 1982: 8, 7.

Peng, D.Y. e D.B. Robinson. "A New-Constant EOS." Ind & Eng. Chem. Fund., 1976: 15, No. 1, 59.

Perry, R. e Green, D. (1999). *Perry's Chemical Engineer Handbook 7th Ed.* McGraw Hill. *Petrobras.* www.petrobras.com.br (accessado Setembro, 2009).

Phelps, Robert E. e Jonathan E. Strauss. "Capturing Reservoir Behavior by Simulating Vertical Fracture and Super-K Zones in the Ghawar Field." *SPE Reservoir Evaluation and Engineering*, 2002.

Pires, L.C.G. Influência das Heterogeneidades Estruturais e Estratigráficas na Simulação de Fluxo: Um exemplo de afloramento, bacia de Taubaté-SP. Dissertação de Mestrado, Campinas: UNICAMP, 1999.

Pitzer, K.S. "Volumetric and thermodynamic properties of fluids. I. Theoretical basis and virial coefficients. ." *J Am. Chem. Soc.*, 1955: 77:3427–3433.

Pizarro, J. O. S., DEPRO/DICOP/SEPRO-NS. *Curso Básico de Simulação*. DEPRO/DICOP/SEPRO-NS, Petrobras, 1992.

Pollack, N.R., R.M. Enick e S.M. Klara. "Effect of CO₂ Solublity in Brine on Compositional Simulation of CO₂ floods." *SPERE*, Maio 1992: 253.

Redlich, O. e Kwong, J.N.S. "On the Thermodynamics of Solutions, V: An Equation of State, Fugacities of Gaseous Solutions." *Chem. Rev.*, 1949: 44, 233.

Reid, R.C., J.M. Prausnitz e B.E. Polling. *The Properties of Gases and Liquids*. New York City: McGraw-Hill Book co. Inc., 1968.

Reudelhuber, F.O. e R.F. Hindis. "Compositional Material Balance Method for Prediction of Recovery from Volatile Oil Depletion Drive Reservoirs." *JPT*, 1957: 19.

Riazi, M.R. e T.E. Daubert. "Simplify Properties Predictions." *Hydro. Proc.*, Março 1980: 115.

Robinson, D.B. e D.Y. Peng. *The Characterization of the Heptanes and Heavier Fractions*. Research Report 28, Tulsa, Oklahoma: Gas Producers Association, 1978.

Robinson, D.B., D.Y. Peng e H.Y. Ng. "Capabilities of the Peng Robinson Programs, Part 2: Three Phase and Hydrate Calculations." *Hydrocarbon Proc.*, 1979: 58, 269.

Roess, L.C. "Determination of Critical Temperature and Pressure of Petroleum fractions." *J. Inst. Pet Tech.*, Outubro 1936: 22, 1270.

Rogers, J.D., B. Reid e R.B. Grigg. "A Literature Analysis of the WAG Injectivity Abnormalities in the CO₂ Process." *SPE Improved Oil Recovery Symposium*. Tulsa, OK: SPE, 2000. SPE 59329.

Roper Jr., M.K., G.A. Pope e K. Sepehrnoori. "Analysis of Tertiary Injectivity of Carbon Dioxide." *SPE Permian Basin Oil and Gas Recovery Conference*. Midland, TX: SPE, 1992. SPE 23974.

Schlijper, A.G. "Simulation of Compositional Processes: The Use of Pseudocomponents in Equation of State Calculations." *SPERE*, Setembro 1986: 441.

Sebastian, H.M., R.S. Wenger e T.A. Renner. "Correlation of minimum miscibility pressure for impure CO₂ streams." *SPE EOR Simposium*. Tulsa, OK: SPE, 1984. SPE 12648.

Silva, M., J. Taber e F. Orr. "Effect of oil composition on minimum miscibility pressurepart 2: correlation." *SPE ATCE*. Las Vegas, NV: SPE, 1989. SPE 14150.

Soave, G. "Equilibrium Constantes from a Modified Redlich-Kwong EOS." *Chem. Eng. Sci.*, 1972: 27, No. 6, 1197.

Starling, K.E. "A New Approach for Determining Equation-of-State Parameters Using phase Equilibria Data." *SPEJ*, Dezembro 1966: 363.

Stern, Nicholas Herbert. *The economics of climate change : the Stern review*. Climatic changes, Cambridge, UK : Cambridge University Press, 2007.

Stone, H.L. "Estimation of Three-Phase Relative Permeability." Journal of Canadian Petroleum Technology, 1973.

Thurston, S. "Exploitation of Pre Salt Reservoirs: Technological and Economic Challenges. Sub-Salt Reservoirs: A Case Study from the Gulf of Mexico." *Rio Oil and Gas*. Rio de Janeiro, RJ, 2008.

Tiffin, D.L. e W.F. Yelling. "Effects of mobile Water on Multiple-Contact Miscible Gas Displacements." *SPEJ*, Junho 1985: 18, 340-348.

Twu, C. (1984). An Internally Consistent Correlation for Predicting the Critical Properties and Molecular Weights of Petroleum and Coal-Tar Liquids. *Fluid Phase Equilibria*, pp. No. 16, 137.

van der Waals, J.D. Continuity of the Gaseous and Liquid State of Matter. 1873.

Vang Golf-Racht, T. D. *Fundamentals of Fractured Reservoir Engineering*. Amsterdam, NL: Elsevier, 1982.

Wang, Y. e F.M. Jr. Orr. "Calculation of Minimum Miscibility Pressure." *SPE/DOE Improved Oil Recovery Symposium*. Tulsa, OK: SPE, 1998. SPE 39683.

Warren, J. E. e P.J. Root. "The Behavior of Naturally Fractured Reservoirs." *SPE Journal*, 1963: p 245.

164

Whitson, C. D. e M. K. McFadyen. "Lessons Learned in the Planning and Drilling of Deep, Subsalt Wells in the Deepwater." *SPE ATCE*. New Orleans, Lousiana: SPE, 2001. SPE 71363.

Whitson, C. H. e M.R. Brulé. Phase Behavior. Richardson, TX: SPE, 2000.

Whitson, C.H. "Characterizing Hydrocarbon Plus Fractions." SPEJ, Agosto 1983: 683.

Whitson, C.H. "Effect of C7+ Properties on Equation-of-State Predictions." SPEJ, Dezembro 1984: 685.

Whitson, C.H., T.F. Andersen e I. S Φ reide. "Characterization of Related Equilibrium Fluids Using the Gamma Distribution." In C7+ *Fraction Characterization*, by L.G. Chorn and G.A. Mansoori, 35-36. New York City: Taylor&Francis, 1989.

Wu, R.S. e J.P. Batycky. "Pseudocomponent Characterization for Hydrocarbon Miscible Displacement." *SPE ATCE*. New Orleans, LO: SPE, 1986. SPE 15404.

Wu, Yu-Shu *et al.* "A Triple-Continuum Pressure-Transient Model for a Naturally Fractured Vuggy Reservoir." *ATCE*. Anaheim, CL: SPE, 2007. SPE 110044.

Yarborough, L. "Application of a Generalized Equation of State to Petroleum Reservoir Fluids." In *Equations of State in Engineering and Research*, by K.C. Chao and R.L. Robinson Jr., 182, 386-439. Washington, D.C.: ACS, 1978.

Yelling, W.F. e R.S. Metcalfe. "The effect of phase equilibria on the CO₂ displacement mechanism." *SPE*, 1979: SPE 7061.

Young, L.C. e R.E. Stephenson. "A Generalized Compositional Approach for Reservoir Simulation." *SPEJ*, Outubro 1983: 727.

Zhang, P., G., P., & Christie, M. (5 de Dezembro de 2008). A New Practical Method for Upcaling in Highly Heterogeneous Reservoir Models . *SPE* , p. paper SPE 103760.

Zick, A.A. "A Combined Condensing/Vaporizing Mechanism in the Displacement of Oil by Enriched Gases." *SPE ATCE*. New Orleans: SPE, 1986. SPE 15493.

Zudkevitch, D. e J. Joffe. "Correlation and prediction of Vapor-liquid Equilibrium with the Redlich-Kwong Equation of State." *AIChE Journal*, 1970: 16.

A. Apêndice

A.1 Notas sobre o Perfil de Reservatórios da Camada Pré-sal para a Otimização de Estratégias

A.1.1 Produção de Reservatórios da Camada Pré-sal com Elevado Custo

O custo da perfuração e produção a partir dos reservatórios da camada pré-sal é elevado. É um fato que o principal custo de uma perfuração está associado ao tempo de perfuração, este que influencia diretamente o custo de locação da sonda. Falcão et al. (2007) fizeram uma revisão detalhada dos problemas de aprisionamento e perfuração que ocorrem na camada de sal devido ao comportamento de fluência do sal. Segundo o que foi discutido por Falcão, o comportamento de fluência do sal nas perfurações da camada de sal é uma das causas mais frequentes de aprisionamento de coluna, fechamento, desvio ou colapso de poço. Isso leva a atrasos de perfuração significativos e exigindo custos de tecnologia adicionais. Somando-se a isso o fato de que os poços do pré-sal se encontram em águas profundas e a grandes profundidades do leito marinho, o tempo de perfuração se torna bem superior a de um poço convencional. Pode-se, com base nesses argumentos, afirmar seguramente que o primeiro poço perfurado para a exploração do reservatório Lula, um dos poços de longa extensão na camada de sal bem sucedidos do pré-sal no Brasil, custou um valor bem acima da média de custos de outros campos marítimos. As lições aprendidas com essa primeira perfuração permitiram que o tempo de perfuração fosse reduzido para cerca de um quarto do tempo inicial para poços subsequentes com características equivalentes, gerando um custo ainda elevado para a média de custos marítimos. Por consequência deste custo elevado e do elevado risco subsequente, a estratégia de produção para esses reservatórios já implica em reduzido número de poços. No caso de Lula, sua exploração inicial será baseada apenas em 5 poços produtores, um poço de injeção de gás ou WAG e um de injeção de água (Formigli Filho et al., 2009).

A consequência principal disso para a simulação destes reservatórios é uma tendência de menor número de poços, sugerindo ser um parâmetro pouco flexível, uma vez que depende de avanços tecnológicos que reduzam o custo decorrente do aumento do numero de poços.

167

Levando-se em conta uma análise feita por Formigli Filho *et al.* (2009) do tamanho da estrutura e a quantidade de poços necessária para o desenvolvimento total do campo de Lula seria quase 20 vezes maior se fossem empregados os mesmo conceitos da Bacia de Campos. Levando-se em conta o custo sabidamente superior que estes poços terão, pode-se concluir que o uso dos mesmos conceitos de desenvolvimento da Bacia de Campos no desenvolvimento de Lula pode resultar em projetos sem viabilidade econômica. Dadas as características únicas da área de Lula (águas ultra-profundas, localização remota, reservatórios profundos, contaminantes nos fluidos de produção, alta RGO, alta salinidade), pode-se esperar diversos desafios técnicos e econômicos para o desenvolvimento do pré-sal.

A.1.2 Possibilidade de Formações Descontínuas e Falhas em Reservatórios da Camada Pré-sal

Não foi confirmado ainda se os reservatórios pré-sal possuem descontinuidades, essa é uma possibilidade bastante provável e a determinação deste fator se encontra atualmente em fase de estudo pela obtenção de testemunhos. As formações carbonáticas de reservatórios ultraprofundos em camada pré-sal podem possuir descontinuidades, fazendo com que diversos compartimentos formem a reserva do reservatório (Petrobras). A existência dessa característica associada ao forte caráter heterogêneo já conhecido e ao distinto comportamento de falhas possui um potencial de impacto considerável sobre a seleção de estratégias de produção. Para exemplificar o impacto dessas descontinuidades no comportamento do reservatório, um estudo realizado por Pires (1999) investigou a influência de heterogeneidades estruturais (compartimentos e falhas) nos resultados da simulação de um modelo de reservatório heterogêneo e chegou a diversas conclusões relevantes.

Uma conclusão de Pires (1999) foi que na presença de compartimentos estruturados e falhas selantes (de permeabilidade nula) modelos litofaciológicos heterogêneos tendem a ser mais pessimistas na recuperação final de hidrocarbonetos. Na ausência de compartimentos estruturados, a recuperação final tende a ser maior para o caso heterogêneo, ou seja, a presença de compartimentos diminuiu a recuperação final quando associado a outros tipos de falhas. Outra conclusão foi a de que reservatórios com falhas estruturais podem redirecionar o fluxo e antecipar a irrupção de água quando o reservatório é submetido à injeção de água, sem necessariamente prejudicar a recuperação final de hidrocarboneto. Essa conclusão implica que a presença de

168

compartimentos não só pode diminuir a recuperação final, mas possivelmente aumentar a RAO e diminuir a economicidade do projeto, devido ao volume de água adicional produzido e tratado para uma mesma produção de óleo. Pires concluiu também que a existência de falhas no reservatório e o tipo de comportamento associado alteram a importância da heterogeneidade litofaciológica do sistema. Assim, quando as falhas são selantes (de permeabilidade nula), o modelo heterogêneo possui menor fator de recuperação final. Nos modelos de falhas passivas (de permeabilidade não-nula), ao contrário, a versão heterogênea possui maior recuperação final de hidrocarbonetos

A.2 Principais Desafios Associados ao Gerenciamento de Reservatórios em Águas Profundas

Segundo Ezekwe e Filler (2005) existem cinco áreas críticas no gerenciamento de reservatórios que têm impacto na seleção de estratégias de produção em águas profundas: Modelagem geológica e geofísica, caracterização de reservatórios, modelagem de escoamento de reservatórios, instalações/garantia de escoamento e análise de risco e incertezas. Águas profundas oferecem maior risco exploratório e incertezas devido a altos custos de exploração, desenvolvimento e produção. Na área de simulação de reservatórios destacam-se:

- A modelagem geológica, que enfrenta problemas com a escassez de dados e a menor resolução sísmica que dificulta a modelagem de heterogeneidades;
- A modelagem de escoamento de reservatórios, que enfrenta dificuldades com a transferência de escala e requer a simulação de sistemas integrados com as instalações de processamento.
- A inclusão de incertezas, que consome grande tempo computacional.

Não se pretendeu neste trabalho explorar os efeitos de diferentes modelagens geológicas de um mesmo reservatório ou de transferências de escala na simulação de reservatórios e muito menos a simulação acoplada a sistemas de produção, pela escassez de dados confiáveis que permitam esses tipos de abordagem. Pretendeu-se explorar a influência das incertezas relativas aos fluidos na simulação composicional e como os métodos de recuperação melhorada por injeção de CO_2 se comportam em diferentes condições de operação em reservatórios heterogêneos submetidos à alta pressão, quando aplicados a óleos com teor significativo de CO_2 .

A.3 Principais Desafios Associados à Produção de Reservatórios com Alto Teor de CO₂

A presença de alto teor de CO_2 gera dois efeitos sobre a seleção de estratégias de produção: um efeito de aumento do investimento necessário causado pela seleção de materiais e de equipamentos com base na corrosão e resistência do material e outro efeito sobre a limitação operacional da separação, purificação e reciclo do CO_2 a partir da corrente de gás, capaz de inviabilizar a injeção miscível de correntes puras de CO_2 . A viabilidade da tecnologia de separação merece uma atenção especial porque ela é um fator determinante na possibilidade da injeção pura de CO_2 .

A.3.1 Tecnologias Marítimas de Separação e Reciclo de CO₂

Um desafio será a separação do CO_2 a partir do gás natural em condições marítimas, que pode não ser uma tarefa simples. Existem restrições de tamanho físico que encurtam o leque de tecnologias de separação que podem ser utilizadas a partir das opções existentes de tecnologias de separação de CO_2 . O desenvolvimento de uma unidade flutuante de processamento compacta será crítico para definir o futuro dos métodos de recuperação melhorada na camada pré-sal da bacia de Santos. Se essa planta de separação não for desenvolvida, CO_2 poderá ser injetado diretamente no reservatório junto com a corrente de gás natural. Por esse motivo, deve-se avaliar a estratégia de produção considerando não apenas a injeção de CO_2 , mas também a injeção combinada de CO_2 e gás natural (Formigli Filho *et al.*, 2009).

Diversas opções estão disponíveis no mercado para remoção de CO_2 , e a escolha de tecnologia irá depender principalmente do conteúdo de CO_2 da corrente de gás de entrada e da redução de CO_2 necessária na corrente de saída (Formigli Filho et al., 2009). As premissas de projeto para exportação de gás geralmente exigem a redução do teor de CO_2 no gás para 3 a 5%. Pode-se notar facilmente que o leito sólido e sequestro que são usados para baixos teores de CO_2 não são uma opção adequada se o fluido produzido apresentar um elevado teor de CO_2 . Mesmo o uso de aminas primárias, que é a tecnologia empregada normalmente para a remoção de CO_2 em plantas marítimas estaria no limite da tecnologia, para conteúdos de CO_2 acima de 20%, exigindo uma grande quantidade de espaço para os módulos, uma vez que o tamanho da planta é diretamente proporcional à quantidade de CO_2 que se necessita ser capturada.

Assim, o uso de membranas que são mais eficientes para grandes conteúdos de CO_2 fornece o benefício adicional de fornecer uma planta mais compacta comparada às aminas. A

Figura A.1 abaixo ilustra a comparação de tamanho de duas unidades de mesma capacidade, usando tecnologias de membrana e amina.

Figura A.1: Comparação de tamanho: unidade de membranas versus unidade de amina. Fonte: Dortmundt e Doshi, 1999

A.4 Modelos Termodinâmicos Disponíveis nos Simuladores de Escoamento, Continuação

A.4.1 Revisão Histórica sobre a Evolução das Equações de Estado

Segundo Whitson e Brulé (2000), Gibbs (1928) e van der Waals (1873) postularam a teoria básica de comportamento de fases no final do século XIX e começo do século XX. Eles formularam os conceitos e as relações matemáticas necessárias para descrever o comportamento de fases. Dados experimentais sobre fluidos de reservatório eram escassos até o final da década de 30, (Whitson e Brulé, 2000) quando Katz *et al.* da U. of Michigan, Sage e colaboradores do California Institute of Technology e Eilerts *et al.* do US Bureau of Mines (USBM) iniciaram programas de pesquisas significativos. Correlações de dados de comportamento de fases começaram a surgir na década de 40 (Whitson e Brulé, 2000).

Não foi antes de Redlich e Kwong (1949) introduzirem suas EOS cúbicas clássicas que se aceitou de forma geral que propriedades volumétricas poderiam ser previstas de maneira precisa pelo uso de modelos teóricos. Avanços consideráveis foram feitos na década de 50 na direção de correlacionar propriedades volumétricas de componentes puros com EOS's multiconstantes como a equação BWR de Benedict, Webb e Rubin (1940). No início da década de 60, ocorreu atividade considerável na aplicação de modelos termodinâmicos sofisticados para cálculos multicomponentes de ELV (equilíbrio líquido-vapor), embora a maior parte desta atividade esteja correlacionada com a engenharia de processos.

Nas décadas de 60 e 70, Starling (1966), Soave (1972) e Peng e Robinson (1976) propuseram diversas modificações importantes das equações de estado existentes. Aplicações de EOS na engenharia de petróleo começaram de maneira expressiva no final da década de 70 e início da década de 80, quando simuladores de reservatório composicionais baseados em EOS foram introduzidos (Coats, 1980; Young e Stephenson, 1983). Ao mesmo tempo, diversos métodos foram propostos para a caracterização de fluidos de reservatório para EOS, particularmente para heptanos e componentes mais pesados (Yarborough, 1978), (Whitson, 1983), (Pedersen *et al.*, 1989). Finalmente, nos anos 80, supercomputadores surgiram e técnicas especiais de solução foram desenvolvidas para simuladores composicionais, tornando possível a simulação composicional por EOS de campos inteiros de petróleo.

O tratamento padrão de hoje para o comportamento de fases em simulação de reservatórios é ainda baseado em fatores de formação de volume (B_o , B_g , B_t) e razão gás-óleo de superfície (R_s). Isso provavelmente se manterá verdade por muitos anos, em parte porque muitos problemas podem ser resolvidos adequadamente com uma formulação PVT simples e em parte porque muitos engenheiros de petróleo não estão familiarizados com modelos de EOS mais complexos (Whitson e Brulé, 2000).

A.4.2 Equação de Estado de Zudkevitch-Joffe-Redlich-Kwong

Zudkevitch e Joffe (1970) propuseram um procedimento inovador para melhorar as previsões volumétricas da RK EOS sem sacrificar as capacidades de previsão de ELV da equação original. Eles sugeriram que as constantes da EOS A e B deveriam ser corrigidas como funções da temperatura para igualar as densidades de líquido saturado e fugacidades de líquido. Eles demonstraram que as fugacidades do vapor e as razões de fugacidade (valores K) permaneciam

essencialmente inalterados e que o procedimento deles não afetava as densidades de vapor de forma significativa. Rapidamente após a modificação original surgir, Joffe *et al.* (1970) sugeriram que pressões de vapor fossem empregadas ao invés de fugacidades de líquido. Essa é a abordagem empregada hoje na EOS que é ainda referida como a modificação de Zudkevitch-

Haman *et al.* (1977) propuseram os termos de correção α e β para as constantes da EOS A e B na forma da equação para parafinas puras. Yarborough (1978) propôs cartas generalizadas para fluidos de reservatórios de petróleo que incluem as frações pesadas do petróleo. Segundo a definição de Haman, as novas constantes a e b são as da Equação A.1e Equação A.2:

Joffe-Redlich-Kwong, ou a ZJRK EOS.

$$a = \Omega_a^0 \frac{R^2 T_c^2}{p_c} T_r^{-0.5} \alpha(T_r, \omega)$$
 Equação A.1

$$b = \Omega_b^0 \frac{RT_c}{p_c} \beta(T_r, \omega)$$
 Equação A.2

Os novos valores de a e b corrigidos são substituídos na Equação 2.17 e na Equação 2.18, e a partir disso as raízes cúbicas são encontradas para a forma final da Equação 2.13 modificada. Infelizmente, as funções dependentes da temperatura para correção de A e B são complexas por serem representadas por polinômios de ordem mais elevada ou *Splines* cúbicas. O comportamento destas funções é altamente não linear próximo a $T_r=1$, e uma descontinuidade é introduzida ao se definir os fatores de correção $\alpha=\beta=1$ em $T_r\geq1$. Não existe na indústria de petróleo ou petroquímica um único conjunto padronizado de fatores de correção $\alpha = \beta$; isso torna a reprodução de resultados de uma versão para outra difícil. Por isso, preferencialmente, deve-se fornecer uma tabela de fatores de correção $\alpha = \beta$ utilizados ao se reportar uma caracterização de fluidos baseada em uma ZJRK EOS.

Duas modificações de Redlich-Kwong, a SRK EOS e a ZJRK EOS encontraram ampla aplicação em fluidos de reservatórios de petróleo. A equação de Soave é muita vezes preferida por causa de sua simplicidade e precisão geral (particularmente quando utilizada com translação de volumes). A ZJRK EOS é surpreendentemente precisa para ambas as estimativas de propriedades de líquido e vapor, onde sua principal desvantagem é a complexidade das funções usadas para representar as correções dependentes da temperatura para as constantes A e B da EOS. No entanto, ela não foi objeto do presente estudo, por não ser empregada na maioria dos simuladores composicionais comerciais e principalmente por ela depender de tabelas de correção que não são padronizadas.

A.4.3 Técnicas para a Estimativa das Propriedades Críticas das Frações

As técnicas de *splitting* da fração pesada e os ensaios experimentais mencionados fornecem meios de dividir a fração pesada em pseudocomponentes descritos por fração molar, massa molecular, densidade, e ponto de ebulição. Porém, para a caracterização do fluido, é necessário obter da literatura propriedades críticas dos componentes conhecidos e usar métodos para designar propriedades críticas para cada um dos pseudocomponentes a partir daquelas propriedades (por exemplo, para uma fração pseudocomponente obtida de um ensaio de destilação). A temperatura crítica (T_c), a pressão crítica (p_c), e o fator acêntrico (ω) de cada componente de uma mistura são exigidos pela maior parte das EOS's cúbicas. Volume crítico (v_c) é usado ao invés da pressão crítica na EOS BWR (Benedict, Webb e Rubin, 1940), e o volume molar crítico é usado com a correlação de viscosidade LBC (Lohrenz, Bray e Clark, 1964). O fator de compressibilidade crítico foi introduzido como um parâmetro em EOS cúbicas de três e quatro constantes. Esta seção discute as relações mais comumente usadas.

As unidades das equações dessa seção são T_b em °R, T_{bF} em °F= T_b -459,67, T_c em °R, p_c em psia, e v_c em ft³/lbmol. A densidade do óleo é denominada γ_{API} e é relacionada à densidade real por γ_{API} =141,5/ γ -131,5.

A.4.3.1 Correlações Baseadas nas Expansões de Perturbação, Propriedades das nparafinas, (alcanos)

Correlações para temperatura crítica, pressão crítica, volume crítico, e massa molecular foram desenvolvidas por Twu (1984) para frações de petróleo com um modelo de expansão da perturbação usando normal parafinas como o sistema de referência. Para se calcular a pressão crítica, por exemplo, a temperatura crítica, o volume crítico e a massa específica de uma parafina com o mesmo ponto de ebulição que a fração do petróleo devem ser calculados primeiro. Kesler *et al.* (1979) inicialmente utilizaram a expansão de perturbação (sendo n-alcanos como o fluido de referencia) para desenvolver um conjunto de correlações de propriedades críticas e correlações de fator acêntrico. Twu (1984) usou a mesma abordagem de Kesler para desenvolver um

conjunto de correlações para as propriedades críticas. Seguem as correlações para as n-parafinas, empregadas mais adiante nas correlações de propriedades críticas de Twu (1984).

Normal-parafinas (alcanos):

$$T_{cP} = T_{b} \begin{bmatrix} 0,533272 + (0,191017 \cdot 10^{-3})T_{b} + \\ (0,779681 \cdot 10^{-7})T_{b}^{2} - (0,284376 \cdot 10^{-10})T_{b}^{3} \\ + \frac{(0,959468 \cdot 10^{2})}{(0,01 \cdot T_{b})^{13}} \end{bmatrix}^{-1}$$
Equação A.3

$$P_{cP} = (3,83354 + 1,9629\alpha^{0.5} + 34,8888\alpha + 36,1952\alpha^2 + 104,193\alpha^4)^2$$
 Equação A.4

$$v_{cP} = \left[1 - \left(0,419869 - 0,505839\alpha - 1,5643\alpha^3 - 9481,7\alpha^{14}\right)\right]^{-8}$$
 Equação A.5

$$\gamma_{cP} = (0,843593 - 0,128624\alpha - 3,36159\alpha^3 - 13749,5\alpha^{12})$$
 Equação A.6

$$T_{b} = \exp \begin{bmatrix} 5,71419 + 2,71579\theta - 0,28659\theta^{2} + \\ 39,8544\theta^{-1} + 0,1224880\theta^{-2} \end{bmatrix} - 24,7522\theta + 35,3155\theta^{2}$$
 Equação A.7

$$\alpha = 1 - \frac{T_b}{T_{cP}}$$
 Equação A.8

$$\theta = \ln(M_p)$$
 Equação A.9

O peso molecular da parafina, M_p , não é explicitamente uma função de T_b, e as equações A.1 a A.7 devem ser resolvidas iterativamente, um chute inicial é dado por

$$M_p \approx \frac{T_b}{10,44 - 0.052T_b}$$
 Equação A.10

Twu (1984) alega que correlações de normal-parafinas eram válidas de C_1 a C_{100} , embora as propriedades de números de carbono mais elevados sejam apenas aproximadas, porque dados

de propriedades críticas para parafinas mais pesadas que aproximadamente C_{20} não existissem na época (Whitson e Brulé, 2000).

A.4.3.2 Temperatura Crítica.

A temperatura crítica (T_c) é talvez a propriedade crítica correlacionada de forma mais confiável para frações de petróleo. As seguintes correlações de temperatura crítica podem ser usadas para frações de petróleo.

Roess (1936) modificado por API (API, 1977):

$$T_c = 645,83 + 1,6667 [\gamma(T_{bF} + 100)] - (0,7127 \times 10^{-3}) [\gamma(T_{bF} + 100)]^2$$
 Equação A.11

Kessler-Lee (1976):

$$T_c = 341,7 + 811\gamma + (0,4244 + 0,1174\gamma)T_b + (0,4669 - 3,2623\gamma) \times 10^5 T_b^{-1}$$
 Equação A.12

Cavett (1962):

$$T_{c} = 768,07121 + 1,7133693T_{bF} - (0,10834003 \times 10^{-2})T_{bF}^{2}$$

$$- (0,89212579 \times 10^{-2})\gamma_{API}T_{bF} + (0,338890584 \times 10^{-6})T_{bF}^{3}$$

$$+ (0,5309492 \times 10^{-5})\gamma_{API}T_{bF}^{2} + (0,327116 \times 10^{-7})\gamma_{API}^{2}T_{bF}^{2}$$
Equação A.13

Riazi-Daubert (1980):

$$T_c = 24,27871T_b^{0.58848}\gamma^{0.3596}$$
 Equação A.14

Nokay(1959):

Twu(1984):

$$T_{c} = T_{cP} \left(\frac{1+2f_{T}}{1-2f_{T}}\right)^{2}$$
Equação A.16
$$f_{T} = \Delta \gamma_{T} \left[\frac{-0.362456}{T_{b}^{0.5}} + \left(0.0398285 - \frac{0.948125}{T_{b}^{0.5}}\right) \Delta \gamma_{T}\right]$$
Equação A.17
$$\Delta \gamma_{T} = \exp[5(\gamma_{p} - \gamma)] - 1$$
Equação A.18

A.4.3.3 Pressão Crítica

Correlações de p_c são menos confiáveis que correlações de T_c . As seguintes correlações de pressão crítica podem ser usadas para frações de petróleo.

Kessler-Lee (1976):

$$\ln p_{c} = 8,3634 - \frac{0,0566}{\gamma} - \left[\left(0,24244 + \frac{2,2898}{\gamma} + \frac{0,11857}{\gamma^{2}} \right) \times 10^{-3} \right] T_{b}$$

$$+ \left[\left(1,4685 + \frac{3,648}{\gamma} + \frac{0,47227}{\gamma^{2}} \right) \times 10^{-7} \right] T_{b}^{2} - \left[\left(0,42019 + \frac{1,6977}{\gamma^{2}} \right) \times 10^{-10} \right] T_{b}^{3}$$
Equação A.19

Cavett (1962):

$$\ln p_{c} = 2,8290406 + (0,94120109 \times 10^{-3})T_{bF} - (0,30474749 \times 10^{-5})T_{bF}^{2}$$

$$- (0,2087611 \times 10^{-4})\gamma_{API}T_{bF} + (0,15184103 \times 10^{-8})T_{bF}^{3}$$

$$+ (0,11047899 \times 10^{-7})\gamma_{API}T_{bF}^{2} + (0,48271599 \times 10^{-7})\gamma_{API}^{2}T_{bF}$$

$$+ (0,13949619 \times 10^{-9})\gamma_{API}^{2}T_{bF}^{2}$$
Equação A.20

Riazi-Daubert (1980):

$$p_c = (3,12281 \times 10^9) T_b^{-2,3125} \gamma^{2,3201}$$
 Equação A.21

Twu(1984):

$$p_{c} = p_{cP} \left(\frac{T_{c}}{T_{cP}} \right) \left(\frac{V_{c}}{V_{cP}} \right) \left(\frac{1+2f_{p}}{1-2f_{p}} \right)^{2}$$
Equação A.22
$$f_{p} = \Delta \gamma_{p} \left[\left(2,53262 - \frac{46,1955}{T_{b}^{0.5}} - 0,00127885T_{b} \right) + \left(-11,4277 + \frac{252,14}{T_{b}^{0.5}} + 0,00230535T_{b} \right) \Delta \gamma_{p} \right]$$

$$\Delta \gamma_{T} = \exp[0,5(\gamma_{p} - \gamma)] - 1$$
Equação A.24

A.4.3.4 Fator Acêntrico

Pitzer et. al. (1955) definiu o fator acêntrico como

$$\boldsymbol{\omega} \equiv -\log\left(\frac{p_v}{p_c}\right) - 1$$
 Equação A.25

onde p_v^* =pressão de vapor na temperatura T=0,7 T_c ($T_r = 0,7$). Na prática, o fator acêntricofornece uma medida da inclinação da curva de pressão de vapor desde $T_r = 0,7$ até $T_r = 1$, onde $\frac{p_v^*}{p_c} = 0,1$ para $\omega = 0$, e $\frac{p_v^*}{p_c} = 0,01$ para $\omega = 1$. Numericamente, $\omega \approx 0,01$ para metano, $\omega = 0,25$ para C₅, e $\omega = 0,5$ para C₈. ω aumenta para valores superiores a 1,0 no caso de frações de petróleo mais pesadas do que aproximadamente C₂₅.

A correlação para o fator acêntrico de Kesler-Lee (1976) (de $\frac{T_b}{T_c} > 0.8$) foi desenvolvida especificamente para frações de petróleo, enquanto a correlação de Lee-Kesler (1975) para $\frac{T_b}{T_c} < 0.8$ é baseada numa correlação de pressão de vapor precisa para compostos puros. A correlação de Edminster é limitada a hidrocarbonetos puros e não deve ser usada para frações C_{7+} . Seguem as três correlações. **Lee-Kesler (1975):** $\frac{T_b}{T_c} < 0.8$

$$\omega = \frac{-\ln(p_c/14.7) + A_1 + A_2 T_{br}^{-1} + A_3 \ln T_{br} + A_4 T_{br}^6}{A_5 + A_6 T_{br}^{-1} + A_7 T_{br} + A_8 T_{br}^6}$$
 Equação A.26

onde $A_1 = -5,92714$, $A_2 = 6.06648$, $A_3 = 1,28862$, $A_4 = -0,169347$, $A_5 = 15,2518$, $A_6 = -15,6875$, $A_7 = -13.4721$, $A_8 = 0,43577$

Kesler-Lee (1976): $\frac{T_b}{T_c} > 0.8$ $\omega = -7.904 + 0.1352K_w - 0.007465K_w^2 + 8.359T_{br}$ Equação A.27 $+ (1.408 + 0.01063K_w)T_{br}^{-1}$

Edminster (1958):

$$\omega = \frac{3 \log(p_c/14,7)}{7 [(T_c/T_b) - 1]} - 1$$
 Equação A.28

A.4.3.5 Volume Crítico

A correlação de Hall-Yarborough (1971) para o volume crítico é fornecida em termos de massa molecular e massa específica, enquanto a correlação de Riazi-Daubert (1980) usa o ponto normal de ebulição e a massa específica.

Hall-Yarborough (1971):

$$v_c = 0.025 M^{1.15} \gamma^{-0.7935}$$
 Equação A.29

O fator de compressibilidade crítico, Z_c , é definido como:

$$\omega = \frac{3 \log(p_c/14,7)}{7 [(T_c/T_b) - 1]} - 1$$
 Equação A.30

onde R- constante universal dos gases. Portanto, Z_c pode ser calculado diretamente da pressão crítica, volume crítico, e temperatura crítica. Reid *et al.* (1968) e Pitzer *et al.* (1955) fornecem uma relação aproximada para Z_c

$$Z_c \approx 0,291-0,08\omega$$
 Equação A.31

A Equação A.31 não é particularmente precisa (superestima grosseiramente Z_c para componentes mais pesados) e é usada apenas para cálculos aproximados.

Twu(1984):

$$p_{c} = p_{cP} \left(\frac{1+2f_{v}}{1-2f_{v}} \right)^{2}$$
Equação A.32
$$f_{v} = \Delta \gamma_{v} \left[\frac{0,466590}{T_{b}^{0.5}} + \left(-0,182421 + \frac{3,01721}{T_{b}^{0.5}} \right) \Delta \gamma_{v} \right]$$
Equação A.33
$$\Delta \gamma_{T} = \exp[4(\gamma_{p}^{2} - \gamma^{2})] - 1$$
Equação A.34

A.4.3.6 Massa Molecular

Twu(1984):

$$\ln M = \ln M_{p} \left(\frac{1+2f_{M}}{1-2f_{M}} \right)^{2}$$
Equação A.35
$$f_{M} = \Delta \gamma_{M} \left[|x| + \left(-0,0175691 + \frac{0,193168}{T_{b}^{0.5}} \right) \Delta \gamma_{M} \right]$$
Equação A.36
$$x = 0,012342 - \frac{0,328086}{T_{b}^{0.5}}$$
Equação A.37
$$\Delta \gamma_{M} = \exp[5(\gamma_{p} - \gamma)]$$
Equação A.38

B. Anexo: Curvas de Ajuste dos Dados PVT

I. Método de Pedersen

Com exceção da compressibilidade para uma descrição do método de Coats e Smart (20 componentes), cujo envelope já apresentou desvios, todas as curvas apresentaram bom coeficiente de correlação com os dados experimentais, com erros de até 2% em todos os casos.

A seguir são apresentados os gráficos de reprodução do experimento de liberação diferencial (Figura B.2 a Figura B.89), que mostram a qualidade e precisão do ajuste após a pseudoização, levando a modelos de fluido, a princípio, confiáveis. Pode-se perceber que a reprodução dos parâmetros R_s do experimento de liberação diferencial é melhor quando mais pseudocomponentes da fração pesada são usados. Se percebe que a reprodução dos parâmetros d_{rel} e viscosidade do experimento de liberação diferencial são praticamente idênticos, independente da calibração.

Figura B.2: R_s (descrita na legenda por GOR) calculada para o óleo, tratado pelo método de Pedersen, 5 componentes, e volume de óleo relativo (ROV) da célula de liberação diferencial.

Figura B.3: R_s (descrita na legenda por GOR) calculada para o óleo, tratado pelo método de Pedersen, 5 componentes pesado, e volume de óleo relativo da célula de liberação diferencial.

Figura B.4: R_s (descrita na legenda por GOR) calculada para o óleo, tratado pelo método de Pedersen, 6 componentes, e volume de óleo relativo (ROV) da célula de liberação diferencial.

Figura B.5: R_s (descrita na legenda por GOR) calculada para o óleo, tratado pelo método de Pedersen, 6 componentes pesado, e volume de óleo relativo (ROV) da liberação diferencial.

Figura B.6: R_s (descrita na legenda por GOR) calculada para o óleo, tratado pelo método de Pedersen, 7 componentes, e volume de óleo relativo (ROV) da célula de liberação diferencial.

Figura B.7: R_s (descrita na legenda por GOR) calculada para o óleo, tratado pelo método de Pedersen, 7 componentes pesado, e volume de óleo relativo (ROV) da liberação diferencial

Figura B.8: R_s (descrita na legenda por GOR) calculada para o óleo, tratado pelo método de Pedersen, 9 componentes, e volume de óleo relativo (ROV) da célula de liberação diferencial

Figura B.9: R_s (descrita na legenda por GOR) calculada para o óleo, tratado pelo método de Pedersen, 11 componentes, e volume de óleo relativo (ROV) da célula de liberação diferencial

Figura B.10: R_s (descrita na legenda por GOR) calculada para o óleo, tratado pelo método de Pedersen, 15 componentes, e volume de óleo relativo (ROV) da célula de liberação diferencial

Figura B.11: R_s (descrita na legenda por GOR) calculada para o óleo, tratado pelo método de Pedersen, 20 componentes, e volume de óleo relativo (ROV) da célula de liberação diferencial

Figura B.12: R_s (descrita na legenda por GOR) calculada para o óleo, tratado pelo método de Pedersen, 24 componentes, e volume de óleo relativo (ROV) da célula de liberação diferencial

Figura B.13: Densidade relativa calculada para o óleo (Oil SG) e densidade relativa para o gás (Gas SG), descrito pelo método de Pedersen, 5 componentes

Figura B.14: Densidade relativa calculada para o óleo (Oil SG) e densidade relativa para o gás (Gas SG), descrito pelo método de Pedersen, 5 componentes pesado

Figura B.15: Densidade calculada para o óleo (Oil SG) e densidade relativa para o gás (Gas SG), descrito pelo método de Pedersen, 6 componentes

Figura B.16: Densidade calculada para o óleo (Oil SG), descrito pelo método de Pedersen, 6 componentes pesado

Figura B.17: Densidade calculada para o óleo (Oil SG) e densidade relativa para o gás (Gas SG), descrito pelo método de Pedersen, 7 componentes

Figura B.18: Densidade calculada para o óleo (Oil SG) e densidade relativa para o gás (Gas SG), descrito pelo método de Pedersen, 7 componentes pesado

Figura B.19: Densidade calculada para o óleo (Oil SG) e densidade relativa para o gás (Gas SG), descrito pelo método de Pedersen, 9 componentes

Figura B.20: Densidade calculada para o óleo (Oil SG) e densidade relativa para o gás (Gas SG), descrito pelo método de Pedersen, 11 componentes

Figura B.21: Densidade calculada para o óleo (Oil SG) e densidade relativa para o gás (Gas SG), descrito pelo método de Pedersen, 15 componentes

Figura B.22: Densidade calculada para o óleo (Oil SG) e densidade relativa para o gás (Gas SG), descrito pelo método de Pedersen, 20 componentes

191

Figura B.23: Densidade calculada para o óleo (Oil SG) e densidade relativa para o gás (Gas SG), descrito pelo método de Pedersen, 24 componentes

Figura B.24: Fator de compressibilidade do gás, descrito pelo método de Pedersen, 5 componentes

192

Figura B.25: Fator de compressibilidade do gás, descrito pelo método de Pedersen, 5 componentes pesado

Figura B.26: Fator de compressibilidade do gás, descrito pelo método de Pedersen, 6 componentes

Figura B.27: Fator de compressibilidade do gás, descrito pelo método de Pedersen, 6 componentes pesado

Figura B.28: Fator de compressibilidade do gás, descrito pelo método de Pedersen, 7 componentes

Figura B.29: Fator de compressibilidade do gás, descrito pelo método de Pedersen, 7 componentes pesado

Figura B.30: Fator de compressibilidade do gás, descrito pelo método de Pedersen, 9 componentes

Figura B.31: Fator de compressibilidade do gás, descrito pelo método de Pedersen, 11 componentes

Figura B.32: Fator de compressibilidade do gás, descrito pelo método de Pedersen, 15 componentes

Figura B.33: Fator de compressibilidade do gás, descrito pelo método de Pedersen, 20 componentes

Figura B.34: Fator de compressibilidade do gás, descrito pelo método de Pedersen, 24 componentes

Figura B.35: Viscosidade do óleo, descrito pelo método de Pedersen, 5 componentes

Figura B.36: Viscosidade do óleo, descrito pelo método de Pedersen, 5 componentes pesado

Figura B.37: Viscosidade do óleo, descrito pelo método de Pedersen, 6 componentes

Figura B.38: Viscosidade do óleo, descrito pelo método de Pedersen, 6 componentes pesado

Figura B.39: Viscosidade do óleo, descrito pelo método de Pedersen, 7 componentes

Figura B.40: Viscosidade do óleo, descrito pelo método de Pedersen, 7 componentes pesado

Figura B.41: Viscosidade do óleo, descrito pelo método de Pedersen, 9 componentes

Figura B.42: Viscosidade do óleo, descrito pelo método de Pedersen, 11 componentes

Figura B.43: Viscosidade do óleo, descrito pelo método de Pedersen, 15 componentes

Figura B.44: Viscosidade do óleo, descrito pelo método de Pedersen, 20 componentes

Figura B.45: Viscosidade do óleo, descrito pelo método de Pedersen, 24 componentes

II. Método de Coats e Smart

Observa-se que as curvas de reprodução do experimento de liberação diferencial a partir da equação de estado ajustada são ainda mais próximas dos pontos experimentais para o Caso do método de Coats e Smart para os parâmetros R_s e Z da liberação diferencial. Pode-se perceber que a reprodução dos parâmetros R_s do experimento de liberação diferencial é melhor quando mais pseudocomponentes da fração pesada são usados. Se percebe que a reprodução dos parâmetros d_{rel} e viscosidade do experimento de liberação diferencial são praticamente idênticos, independente da calibração.

Figura B.46: R_s(GOR) calculada para o óleo, descrito pelo método de Coats e Smart, 5 componentes, e volume de óleo relativo (ROV) da célula de liberação diferencial

Figura B.47: R_s(GOR) calculada para o óleo, descrito pelo método de Coats e Smart, 5 componentes pesado, e volume de óleo relativo (ROV) da célula de liberação diferencial

Figura B.48: R_s(GOR) calculada para o óleo, descrito pelo método de Coats e Smart, 6 componentes, e volume de óleo relativo (ROV) da célula de liberação diferencial

Figura B.49: R_s(GOR) calculada para o óleo, descrito pelo método de Coats e Smart, 6 componentes pesado, e volume de óleo relativo (ROV) da célula de liberação diferencial

Figura B.50: R_s(GOR) calculada para o óleo, descrito pelo método de Coats e Smart, 7 componentes, e volume de óleo relativo (ROV) da célula de liberação diferencial

Figura B.51: R_s(GOR) calculada para o óleo, descrito pelo método de Coats e Smart, 7 componentes pesado, e volume de óleo relativo (ROV) da célula de liberação diferencial

Figura B.52: R_s(GOR) calculada para o óleo, descrito pelo método de Coats e Smart, 9 componentes, e volume de óleo relativo (ROV) da célula de liberação diferencial

Figura B.53: R_s(GOR) calculada para o óleo, descrito pelo método de Coats e Smart, 11 componentes, e volume de óleo relativo (ROV) da célula de liberação diferencial

Figura B.54: R_s(GOR) calculada para o óleo, descrito pelo método de Coats e Smart, 15 componentes, e volume de óleo relativo (ROV) da célula de liberação diferencial

Figura B.55: R_s(GOR) calculada para o óleo, descrito pelo método de Coats e Smart, 20 componentes, e volume de óleo relativo (ROV) da célula de liberação diferencial

Figura B.56: R_s(GOR) calculada para o óleo, descrito pelo método de Coats e Smart, 24 componentes, e volume de óleo relativo (ROV) da célula de liberação diferencial

Figura B.57: Densidade relativa calculada para o óleo (Oil SG) e para o gás (Gas SG), descrito pelo método de Coats e Smart, 5 componentes

Figura B.58: Densidade relativa calculada para o óleo (Oil SG) e para o gás (Gas SG), descrito pelo método de Coats e Smart, 5 componentes pesado

Figura B.59: Densidade relativa calculada para o óleo (Oil SG) e para o gás (Gas SG) descrito pelo método de Coats e Smart, 6 componentes

Figura B.60: Densidade relativa calculada para o óleo (Oil SG) e para o gás (Gas SG) descrito pelo método de Coats e Smart, 6 componentes pesado

Figura B.61: Densidade relativa calculada para o óleo (Oil SG) e para o gás (Gas SG), descrito pelo método de Coats e Smart, 7 componentes

Figura B.62: Densidade relativa calculada para o óleo (Oil SG) e para o gás (Gas SG), descrito pelo método de Coats e Smart, 7 componentes pesado

Figura B.63: Densidade relativa calculada para o óleo (Oil SG) e para o gás (Gas SG), descrito pelo método de Coats e Smart, 9 componentes

Figura B.64: Densidade relativa calculada para o óleo (Oil SG) e para o gás (Gas SG), descrito pelo método de Coats e Smart, 11 componentes

Figura B.65: Densidade relativa calculada para o óleo (Oil SG) e para o gás (Gas SG), descrito pelo método de Coats e Smart, 15 componentes

Figura B.66: Densidade relativa calculada para o óleo (Oil SG) e para o gás (Gas SG), descrito pelo método de Coats e Smart, 20 componentes

Figura B.67: Densidade relativa calculada para o óleo (Oil SG) e para o gás (Gas SG), descrito pelo método de Coats e Smart, 24 componentes

Figura B.68: Fator de compressibilidade do gás, descrito pelo método de Coats e Smart, 5 componentes

Figura B.69: Fator de compressibilidade do gás, descrito pelo método de Coats e Smart, 5 componentes pesado

Figura B.70: Fator de compressibilidade do gás, descrito pelo método de Coats e Smart, 6 componentes

Figura B.71: Fator de compressibilidade do gás, descrito pelo método de Coats e Smart, 6 componentes pesado

Figura B.72: Fator de compressibilidade do gás, descrito pelo método de Coats e Smart, 7 componentes

Figura B.73: Fator de compressibilidade do gás, descrito pelo método de Coats e Smart, 7 componentes pesado

Figura B.74: Fator de compressibilidade do gás, descrito pelo método de Coats e Smart, 9 componentes

Figura B.76: Fator de compressibilidade do gás, descrito pelo método de Coats e Smart, 15 componentes

Figura B.77: Fator de compressibilidade do gás, descrito pelo método de Coats e Smart, 20 componentes

Figura B.78: Fator de compressibilidade do gás, descrito pelo método de Coats e Smart, 24 componentes

Figura B.79: Viscosidade do óleo, descrito pelo método de Coats e Smart, 5 componentes

Figura B.80: Viscosidade do óleo, descrito pelo método de Coats e Smart, 5 componentes pesado

Figura B.81: Viscosidade do óleo, descrito pelo método de Coats e Smart, 6 componentes

Figura B.82: Viscosidade do óleo, descrito pelo método de Coats e Smart, 6 componentes pesado

Figura B.83: Viscosidade do óleo, descrito pelo método de Coats e Smart, 7 componentes

Figura B.84: Viscosidade do óleo, descrito pelo método de Coats e Smart, 7 componentes pesado

Figura B.85: Viscosidade do óleo, descrito pelo método de Coats e Smart, 9 componentes

Figura B.86: Viscosidade do óleo, descrito pelo método de Coats e Smart, 11 componentes

Figura B.87: Viscosidade do óleo, descrito pelo método de Coats e Smart, 15 componentes

Figura B.88: Viscosidade do óleo, descrito pelo método de Coats e Smart, 20 componentes

Figura B.89: Viscosidade do óleo, descrito pelo método de Coats e Smart, 24 componentes