

Roddy Elky Ramos Gonzales

Técnica para Controlar o Comprimento de Onda da Dispersão Zero de uma Fibra Microestruturada

Campinas 2013

Roddy Elky Ramos Gonzales

Técnica para Controlar o Comprimento de Onda da Dispersão Zero de uma Fibra Microestruturada

Orientador: Prof. Dr. Hugo Enrique Hernandez Figueroa

Tese de Doutorado apresentada ao Programa de Pós Graduação em Engenharia Elétrica da Faculdade de Engenharia Elétrica e de Computação da Universidade Estadual de Campinas como parte dos requisitos exigidos para a obtenção do título de Doutor em Engenharia Elétrica.

Área de concentração: Telecomunicações e Telemática.

Este exemplar corresponde à versão final da tese defendida pelo aluno Roddy Elky Ramos Gonzales e orientada pelo Prof. Dr. Hugo Enrique Hernandez Figueroa.

Campinas 2013

FICHA CATALOGRÁFICA ELABORADA PELA BIBLIOTECA DA ÁREA DE ENGENHARIA E ARQUITETURA - BAE - UNICAMP

R147t		
	Orientador: Hugo Enrique Hernandez Figueroa.	
	1. Método dos elementos finitos. 2. Dispersão. 3. Fotônica. 4. Fibras óticas microestruturadas. 5. Fibras óticas - Aplicações Industriais. I. Hernandez-Figueroa, Hugo Enrique, 1959 II. Universidade Estadual de Campinas. Faculdade de Engenharia Elétrica e de Computação. III. Título.	
Título em Inglês: Technique to control the zero-dispersion wavelength of microstructured optical fiber Palavras-chave em Inglês: Finite element method, Dispersion, Photonics, Microstructured optical fibers, Optical fibers - Industrial Applications		
Área de concentração: Telecomunicações e Telemática		
Titulação: D	outor em Engenharia Elétrica	

а

Banca examinadora: Vitaly Félix Rodríguez Esquerre, José Patrocinio da Silva, Luiz Carlos Barbosa, Michel Zamboni Rached

Data da defesa: 28-02-2013

Programa de Pós Graduação: Engenharia Elétrica

COMISSÃO JULGADORA - TESE DE DOUTORADO

Candidato: Roddy Elky Ramos Gonzales

Data da Defesa: 28 de Fevereiro de 2013

Título da Tese: "Técnica para Controlar o Comprimento de Onda da Dispersão Zero de uma Fibra Microestruturada"

Allin .
Prof. Dr. Hugo Enrique Hernandez Figueroa (Presidente):
Prof. Dr. Vitaly Félix Rodríguez Esquerre:
Prof. Dr. Jose Patrocinio da Silva:
Prof. Dr. Luiz Carlos Barbosa:
Prof. Dr. Michel Zamboni Rached:

A mi querida esposa Carla Juliana

A mis queridos padres Ynes Gonzáles Arnao y Vidal Ramos Pando

AGRADECIMENTOS

A mi orientador, profesor Dr. Hugo Figueroa, por aceptarme para realizar esta tesis doctoral bajo su dirección. Por su orientación segura, dedicación, amistad, incentivo y comprensión en todo momento que enriqueció mi formación. Muchas Gracias.

Ao professor Dr. Luiz Carlos Barbosa pela sua ajuda e amizade nos momentos que mais precisei.

A mis padres por haberme apoyado en todo momento, por sus consejos, sus valores, por la motivación constante que me ha permitido ser una persona de bien. Por los ejemplos de perseverancia y constancia que los caracterizan y que me han infundado siempre, por el valor mostrado para salir adelante, por su amor, pero más que nada, porque nunca desistieron.

A minha amada esposa Carla por tudo, TUDO, principalmente a sua paciência.

A mis hermanos, Liz Molly y Jack Grimm, por apoyarme siempre, los quiero mucho.

A mis hijos, Mônica Taisa, Tommy Liam y Sofia Amber (que ya está llegando), quienes han sido mis motivaciones para nunca rendirme en los estudios y poder llegar a ser un ejemplo para ellos.

Agradecimiento especial a mi AMIGO, Dr. Enver Fernandez Chillcce, por el constante apoyo incondicional en todos los momentos; por haberme ayudado a realizar y elaborar esta tesis.

A José Ciro Quispe, que nos apoyamos mutuamente en nuestra formación universitaria y que hasta ahora, seguimos siendo AMIGOS.

A los maestros, aquellos que marcaron cada etapa de mi camino universitario, y que me ayudaron en asesorías y dudas presentadas durante mi formación académica.

A los AMIGOS que siempre me incentivaron a continuar y terminar esta tesis.

A todos aquellos familiares y amigos que no recordé al momento de escribir esto. Ustedes saben quiénes son.

A la FEEC por haberme abierto las puertas y por la oportunidad de continuar estudiando en el Brasil.

A la CAPES por el apoyo financiero para realizar esta tesis.

"Ama Sua, Ama Llulla, Ama Quella"

Dito popular da Cultura INCA, no idioma *Quechua*. "Não Roube, Não Mintas, Não sejas Preguiçoso"

"Só existem dois dias no ano que nada pode ser feito. Um se chama ontem e o outro se chama amanhã, portanto hoje é o dia certo para amar, acreditar, fazer e principalmente viver".

Dalai Lama

RESUMO

Propor uma técnica eficiente para controlar o Comprimento de Onda da Dispersão Zero (ZDW – *Zero Dispersion Wavelength*) de uma Fibra Óptica Microestruturada (MOF – *Microstructured Optical Fiber*).

Esta técnica baseia-se na variação do índice de refração linear e na variação da espessura de um filme fino que cobre as superfícies interiores dos buracos da MOF.

Foi utilizado um código potente e preciso baseado na formulação do Método dos Elementos Finitos (FEM – *Finite Element Method*) totalmente vetorial em conjunto com Camadas Perfeitamente Casadas (PMLs – *Perfectly Matched Layers*).

É demonstrado um deslocamento máximo do ZDW de 570 nm.

Este filme fino pode ser incluído durante ou após a fabricação da MOF, isso significa que a Dispersão Zero (ZD – *Zero Dispersion*) da fibra pode ser adaptada conforme a necessidade.

Palavras-chave: Método dos elementos finitos, Dispersão, Fotônica, Fibras óticas microestruturadas, Fibras óticas - Aplicações Industriais.

ABSTRACT

An efficient technique to control the zero-dispersion wavelength (ZDW) of a microstructured optical fiber (MOF) is proposed and numerically demonstrated in this work.

This technique is based on the variation of the linear refractive index and the thickness of a thin film covering the microstructured optical fiber holes' inner surfaces.

A powerful and accurate code based on a full-vector finite-element method formulation in conjunction with perfectly matched layers was used.

A maximum of 570-nm zero-dispersion wavelength displacement is demonstrated.

This thin film can be included after the microstructured optical fiber has been fabricated, and that means the zero dispersion of such fiber can be tailored as needed.

Key words: Finite element method, Dispersion, Photonics, Microstructured optical fibers, Optical fibers – Industrial Applications.

SUMÁRIO

INTRODUÇÃO. 1 1.1 CONSIDERAÇÕES INICIAS. 2 1.2 OBJETIVO DESTA TESE. 4 1.3 ORGANIZAÇÃO DA TESE. 4 1.4 CONTRIBUIÇÃO DESTA TESE. 6 1.5 BIBLIOGRAFIA. 7 Capitulo 2 9 MÉTODO DOS ELEMENTOS FINITOS. 9 2.1 INTRODUÇÃO. 10 2.2 EQUAÇÃO DE ONDA. 12 2.3 DISCRETIZAÇÃO. 16 2.4 MÉTODO DE GALERKIN 18 2.5 INTEGRAIS ELEMENTARES. 24 2.6 DOMÍNIO COMPUTACIONAL 27 2.7 ANÁLISE MODAL 29 2.8 CONCLUSÕES. 30 2.9 BIBLIOGRAFIA. 31 Capítulo 3. 32 2.1 INTRODUÇÃO 33 3.2 GEOMETRIA REGULAR. 34 3.2.1 GUIA ÓPTICO CIRCULAR. 36 3.2.2 GEOMETRIA INTEIRA. 37 3.2.3 METADE DA GEOMETRIA INTEIRA. 37 3.2.3 VIRTODUÇÃO. 33 3.3.4 INTRODUÇÃO. 31 3.3.5 FIBRA MONOMODO. 44 3.3.1 INTRODUÇÃO. 51 3.3.3 INÁLISE DOS RESULTADOS. <td< th=""><th>Capítulo 1</th><th>1</th></td<>	Capítulo 1	1																																																																																																															
1.1 CONSIDERAÇÕES INICIAS. 2 1.2 OBJETIVO DESTA TESE. 4 1.3 ORGANIZAÇÃO DA TESE. 4 1.4 CONTRIBUIÇÃO DESTA TESE. 6 1.5 BIBLIOGRAFIA. 7 Capitulo 2. 9 MÉTODO DOS ELEMENTOS FINITOS. 9 0.1 INTRODUÇÃO. 10 2.2 EQUAÇÃO DE ONDA. 12 2.3 DISCRETIZAÇÃO. 16 2.4 MÉTODO DE GALERKIN 18 2.5 INTEGRAIS ELEMENTARES. 24 2.6 DOMÍNIO COMPUTACIONAI. 27 2.7 ANÁLISE MODAL. 29 2.8 CONCLUSÕES 30 2.9 BIBLIOGRAFIA. 31 Capítulo 3. 32 2.4 LIDAÇÃO DE RESULTADOS. 32 3.1 INTRODUÇÃO. 33 3.2 GEOMETRIA REGULAR. 34 3.2.1 GUIA ÓPTICO CIRCULAR. 36 3.2.2 GOMETRIA REGULAR. 37 3.2.3 METADE DA GEOMETRIA INTEIRA. 37 3.2.4 MÉTADE DA GEOMETRIA INTEIRA. 41 3.2.5 ANÁLISE DOS RESULTADOS. 49 3.3 FIBRA ÓPTICA. 51 3.3.1 INTRODUÇÃO. 54 3	INTRODUÇÃO																																																																																																																
1.2 OBJETIVO DESTA TESE. 4 1.3 ORGANIZAÇÃO DA TESE. 4 1.4 CONTRIBUÇÃO DESTA TESE. 6 1.5 BIBLIOGRAFIA. 7 Capitulo 2 9 MÉTODO DOS ELEMENTOS FINITOS. 9 METODO LOS ELEMENTOS FINITOS. 9 2.1 INTRODUÇÃO. 10 2.2 EQUAÇÃO DE ONDA. 12 2.3 DISCRETIZAÇÃO. 16 2.4 MÉTODO DE GALERKIN 18 2.5 INTEGRAIS ELEMENTARES. 24 2.6 DOMÍNIO COMPUTACIONAL 27 2.7 ANÄLISE MODAI. 29 2.8 CONCLUSÕES. 30 2.9 BIBLIOGRAFIA. 31 Capítulo 3. 32 VALIDAÇÃO DE RESULTADOS. 32 3.1 INTRODUÇÃO. 33 3.2 GEOMETRIA INTEIRA. 37 3.2.3 METADE DA GEOMETRIA INTEIRA. 37 3.2.3 METADE DA GEOMETRIA INTEIRA. 41 3.2.4 UM QUARTO DA GEOMETRIA INTEIRA. 41 3.2.5 ANÁLISE MODAL 51 3.3.1 INTRODUÇÃO. 51 3.3.2 FIBRA MONOMODO. 54 3.3.3 ANÉLISE MODAL 54 3.	1.1 CONSIDERAÇÕES INICIAS	2																																																																																																															
1.3 ORGANIZAÇÃO DA TESE. 4 1.4 CONTRIBUIÇÃO DESTA TESE. 6 1.5 BIBLIOGRAFIA 7 Capitulo 2. 9 MÉTODO DOS ELEMENTOS FINITOS 9 2.1 INTRODUÇÃO. 10 2.2 EQUAÇÃO DE ONDA. 12 2.3 DISCRETIZAÇÃO. 16 2.4 MÉTODO DE GALERKIN. 18 2.5 INTEGRAIS ELEMENTARES. 24 2.6 DOMÍNO COMPUTACIONAL 27 2.7 ANÁLISE MODAL. 29 2.8 CONCLUSÕES. 30 2.9 BIBLIOGRAFIA 31 Capítulo 3. 32 VALIDAÇÃO DE RESULTADOS. 32 3.1 INTRODUÇÃO 33 3.2 GEOMETRIA REGULAR. 34 3.2.1 GUIA ÓPTICO CIRCULAR. 36 3.2.2 GEOMETRIA INTEIRA. 31 3.2.3 MÉTADE DA GEOMETRIA INTEIRA. 41 3.2.4 UM QUARTO DA GEOMETRIA INTEIRA. 41 3.2.4 UM QUARTO DA GEOMETRIA INTEIRA. 41 3.2.5 ANÁLISE DOS RESULTADOS. 49 3.3.1 INTRODUÇÃO. 51 3.3.2 FIBRA ÓPTICA. 51 3.3.1 INTRODUÇÃO. 51	1.2 OBJETIVO DESTA TESE	4																																																																																																															
1.4 CONTRIBUIÇÃO DESTA TESE	1.3 ORGANIZAÇÃO DA TESE	4																																																																																																															
1.5 BIBLIOGRAFIA.	1.4 CONTRIBUIÇÃO DESTA TESE																																																																																																																
Capitulo 2. 9 MÉTODO DOS ELEMENTOS FINITOS. 9 2.1 INTRODUÇÃO. 10 2.2 EQUAÇÃO DE ONDA. 12 2.3 DISCRETIZAÇÃO. 16 2.4 MÉTODO DE GALERKIN. 18 2.5 INTEGRAIS ELEMENTARES. 24 2.6 DOMÍNIO COMPUTACIONAL. 27 2.7 ANÁLISE MODAL. 29 2.8 CONCLUSÕES. 30 2.9 BIBLIOGRAFIA. 31 Capítulo 3. 32 VALIDAÇÃO DE RESULTADOS. 32 3.1 INTRODUÇÃO. 33 3.2 GEOMETRIA REGULAR. 34 3.2.1 GUIA ÓPTICO CIRCULAR. 36 3.2.2 GEOMETRIA INTEIRA. 37 3.2.3 METADE DA GEOMETRIA INTEIRA. 41 3.2.4 UM QUARIO DA GEOMETRIA INTEIRA. 41 3.2.3 ANÁLISE DOS RESULTADOS. 49 3.3 FIBRA ÓPTICA. 51 3.3.1 INTRODUÇÃO. 51 3.3.1 INTRODUÇÃO. 51 3.3.1 INTRODUÇÃO. 51 3.3.2 FIBRA MONOMODO 54 3.3 ANÁLISE MODAL. 62 3.4 INTRODUÇÃO. 62 3.4.1 INTRODUÇÃO.	1.5 BIBLIOGRAFIA	7																																																																																																															
Capitulo 2.9MÉTODO DOS ELEMENTOS FINITOS.92 1 INTRODUÇÃO.102 2 EQUAÇÃO DE ONDA.122 3 DISCRETIZAÇÃO.162 4 MÉTODO DE GALERKIN.182 5 INTEGRAIS ELEMENTARES.242 6 DOMÍNIO COMPUTACIONAL272 7 ANÁLISE MODAL292 8 CONCLUSÕES.302 9 BIBLIOGRAFIA.31Capítulo 3.32VALIDAÇÃO DE RESULTADOS.323 1 INTRODUÇÃO.333 2 GEOMETRIA REGULAR.343 2.1 GUIA ÓPTICO CIRCULAR.363 2.2 GEOMETRIA REGULAR.363 2.3 METADE DA GEOMETRIA INTEIRA.373 2.3 METADE DA GEOMETRIA INTEIRA.413.4 UM QUARIO DA GEOMETRIA INTEIRA.413.2.4 UM QUARIO DA GEOMETRIA INTEIRA.413.2.5 ANÁLISE DOS RESULTADOS.493.3 FIBRA ÓPTICA.513.3 1 INTRODUÇÃO.513.3 2 FIBRA MONOMODO.543.4 ANÁLISE MODAL.623.4.1 INTRODUÇÃO.623.4.2 ANALOGIA COM FIBRAS DEGRAU.673.4.3 ANÁLISE MODAL.713.5 CONCLUSÕES.753.6 BIBLIOGRAFIA.713.5 CONCLUSÕES.753.6 BIBLIOGRAFIA.76Capítulo 4.78TÉCNICA PARA CONTROLAR O ZDW.784.1 INTRODUÇÃO.794.1 INTRODUÇÃO.794.1 INTRODUÇÃO.704.1 INTRODUÇÃO.784.1 INTRODUÇÃO.784.2 INTRODUÇÃO.78 <tr <t<="" td=""><td></td><td></td></tr> <tr><td>ME IODO DOS ELEMENTOS FINITOS 9 2.1 INTRODUÇÃO. 10 2.2 EQUAÇÃO DE ONDA. 12 2.3 DISCRETIZAÇÃO. 16 2.4 MÉTODO DE GALERKIN. 18 2.5 INTEGRAIS ELEMENTARES. 24 2.6 DOMÍNIO COMPUTACIONAL. 27 2.7 ANÁLISE MODAL 29 2.9 BIBLIOGRAFIA. 30 2.9 BIBLIOGRAFIA. 31 Capítulo 3. 32 VALIDAÇÃO DE RESULTADOS. 32 3.1 INTRODUÇÃO 33 3.2 GEOMETRIA REGULAR. 34 3.2.1 GUIA ÓPTICO CIRCULAR. 36 3.2.2 GEOMETRIA INTEIRA. 37 3.2.3 METADE DA GEOMETRIA INTEIRA. 37 3.2.4 UM QUARTO DA GEOMETRIA INTEIRA. 41 3.4 UM QUARTO DA GEOMETRIA INTEIRA. 45 3.2.5 ANÁLISE DOS RESULTADOS. 49 3.3 FIBRA ÓPTICA. 51 3.3.1 INTRODUÇÃO. 51 3.3.2 FIBRA MONOMODO. 54 3.3.3 ANÁLISE MODAL. 66 3.4 FIBRA ÓPTICA. 62 3.4.1 INTRODUÇÃO. 62 3.4.2 ANALOGIA COM FIBRAS DEGRAU. 67 <td>Capítulo 2</td><td></td></td></tr> <tr><td>21 INTRODUÇÃO. 10 22 EQUAÇÃO DE ONDA. 12 23 DISCRETIZAÇÃO. 16 24 MÉTODO DE GALERKIN 18 25 INTEGRAIS ELEMENTARES. 24 26 DOMÍNIO COMPUTACIONAL. 27 27 ANÁLISE MODAL. 29 28 CONCLUSÕES. 30 29 BIBLIOGRAFIA. 31 Capítulo 3. 32 VALIDAÇÃO DE RESULTADOS. 32 3.1 INTRODUÇÃO. 33 3.2 GEOMETRIA REGULAR. 34 3.2.1 GUIA ÓPTICO CIRCULAR 36 3.2.2 GEOMETRIA REGULAR. 34 3.2.3 METADE DA GEOMETRIA INTEIRA. 37 3.2.3 METADE DA GEOMETRIA INTEIRA. 41 3.2.4 UM QUARTO DA GEOMETRIA INTEIRA. 45 3.2.5 ANÁLISE DOS RESULTADOS. 49 3.3 I INTRODUÇÃO. 51 3.3.2 FIBRA MONOMODO. 54 3.3 JI INTRODUÇÃO. 51 3.3.2 FIBRA MONOMODO. 54 3.3 INTRODUÇÃO. 51 3.3.2 FIBRA MONOMODO. 54 3.3 ANÁLISE MODAL. 56 3.4.1 INTRODUÇÃO. 51 3.5 CONCLUSÕ</td><td>METODO DOS ELEMENTOS FINITOS</td><td></td></tr> <tr><td>22 EQUAÇÃO DE ONDA 12 23 DISCRETIZAÇÃO. 16 24 MÉTODO DE GALERKIN 18 25 INTEGRAIS ELEMENTARES. 24 26 DOMÍNIO COMPUTACIONAL 27 27 ANÁLISE MODAL. 29 28 CONCLUSÕES. 30 29 BIBLIOGRAFIA. 31 Capítulo 3. 32 VALIDAÇÃO DE RESULTADOS. 32 3.1 INTRODUÇÃO. 33 3.2 GEOMETRIA REGULAR. 34 3.2.1 GUIA ÓPTICO CIRCULAR 36 3.2.2 GEOMETRIA INTEIRA. 37 3.2.3 METADE DA GEOMETRIA INTEIRA. 37 3.2.4 UM QUARTO DA GEOMETRIA INTEIRA. 49 3.3 FIBRA ÓPTICA. 51 3.3.1 INTRODUÇÃO. 51 3.3.2 FIBRA MONOMODO. 54 3.3 ANÁLISE MODAL 56 3.4 FIBRA ÓPTICA MICROESTRUTURADA. 62 3.4.1 INTRODUÇÃO. 62 3.4.2 ANALOGIA COM FIBRAS DEGRAU. 67 3.4 DISPERSÃO CROMÁTICA. 69 3.4 JIBRE MODAL 76 3.4 JIBRA ÓPTICA MICROESTRUTURADA. 62 3.4.1 INTRODUÇÃO. 78</td><td>2.1 INTRODUÇAO</td><td></td></tr> <tr><td>2.3 DISCRE ILZAÇÃO. 16 2.4 MÉTODO DE GALERKIN. 18 2.5 INTEGRAIS ELEMENTARES. 24 2.6 DOMÍNIO COMPUTACIONAL. 27 2.7 ANÁLISE MODAL. 29 2.8 CONCLUSÕES. 30 2.9 BIBLIOGRAFIA. 31 Capitulo 3. 32 VALIDAÇÃO DE RESULTADOS. 32 3.1 INTRODUÇÃO. 33 3.2 GEOMETRIA REGULAR. 34 3.2.1 GUIA ÓPTICO CIRCULAR. 36 3.2.2 GEOMETRIA INTEIRA. 37 3.2.3 METADE DA GEOMETRIA INTEIRA. 41 3.2.4 UM QUARTO DA GEOMETRIA INTEIRA. 41 3.2.5 ANÁLISE DOS RESULTADOS. 49 3.3 TIBRA ÓPTICA. 51 3.3.1 INTRODUÇÃO. 51 3.3.2 FIBRA MONOMODO. 54 3.3.3 ANÁLISE MODAL. 56 3.4 FIBRA ÓPTICA MICROESTRUTURADA. 62 3.4.1 INTRODUÇÃO. 51 3.3.2 FIBRA MONOMODO. 54 3.4.1 INTRODUÇÃO. 62 3.4.2 ANALOGIA COM FIBRAS DEGRAU. 67 3.4.3 DISPERSÃO CROMÁTICA. 69 3.4.4 ANÁLISE MODAL 71</td><td>2.2 EQUAÇÃO DE ONDA</td><td></td></tr> <tr><td>2.4 METODO DE GALERKIN. 18 2.5 INTEGRAIS ELEMENTARES. 24 2.6 DOMÍNIO COMPUTACIONAL 27 2.7 ANÁLISE MODAL. 29 2.8 CONCLUSÕES. 30 2.9 BIBLIOGRAFIA. 31 Capítulo 3. 32 VALIDAÇÃO DE RESULTADOS. 32 3.1 INTRODUÇÃO. 33 3.2 GEOMETRIA REGULAR. 34 3.2.1 GUIA ÓPTICO CIRCULAR. 36 3.2.2 GEOMETRIA INTEIRA. 34 3.2.1 GUIA ÓPTICO CIRCULAR. 36 3.2.2 GEOMETRIA INTEIRA. 37 3.2.3 METADE DA GEOMETRIA INTEIRA. 41 3.2.4 UM QUARTO DA GEOMETRIA INTEIRA. 45 3.2.5 ANÁLISE DOS RESULTADOS. 49 3.3 FIBRA ÓPTICA. 51 3.3.1 INTRODUÇÃO. 51 3.3 FIBRA MONOMODO. 54 3.3 S ANÁLISE MODAL 56 3.4 FIBRA ÓPTICA MICROESTRUTURADA. 62 3.4.1 INTRODUÇÃO. 51 3.3.2 FIBRA MONOMODO. 54 3.3 ANÁLISE MODAL 56 3.4 FIBRA ÓPTICA MICROESTRUTURADA 62 3.4.2 ANALOGIA COM FIBRAS DEGRAU.</td><td>2.3 DISCRETIZAÇÃO</td><td></td></tr> <tr><td>2.5 INTEGRAIS ELEMENTARES 24 2.6 DOMÍNIO COMPUTACIONAL 27 2.7 ANÁLISE MODAL 29 2.8 CONCLUSÕES 30 2.9 BIBLIOGRAFIA 31 Capítulo 3. 32 VALIDAÇÃO DE RESULTADOS. 32 3.1 INTRODUÇÃO 33 3.2 GEOMETRIA REGULAR. 34 3.2.1 GUIA ÓPTICO CIRCULAR. 36 3.2.2 GEOMETRIA INTEIRA. 37 3.2.3 METADE DA GEOMETRIA INTEIRA. 41 3.2.4 UM QUARTO DA GEOMETRIA INTEIRA. 41 3.2.5 ANÁLISE DOS RESULTADOS. 49 3.3 FIBRA ÓPTICA. 51 3.3.1 INTRODUÇÃO. 51 3.3.2 FIBRA MONOMODO. 54 3.3.3 ANÂLISE MODAL 56 3.4.1 INTRODUÇÃO. 62 3.4.2 ANALOGIA COM FIBRAS DEGRAU. 67 3.4.2 ANALOGIA COM FIBRAS DEGRAU. 67 3.4.2</td><td>2.4 METODO DE GALERKIN</td><td></td></tr> <tr><td>2.6 DOMINIO COMPUTACIONAL 27 2.7 ANÁLISE MODAL 29 2.8 CONCLUSÕES 30 2.9 BIBLIOGRAFIA 31 Capítulo 3. 32 VALIDAÇÃO DE RESULTADOS 32 3.1 INTRODUÇÃO. 33 3.2 GEOMETRIA REGULAR. 34 3.2.1 GUIA ÓPTICO CIRCULAR. 36 3.2.2 GEOMETRIA REGULAR. 34 3.2.3 METADE DA GEOMETRIA INTEIRA 37 3.2.3 METADE DA GEOMETRIA INTEIRA 41 3.2.4 UM QUARTO DA GEOMETRIA INTEIRA 45 3.2.5 ANÁLISE DOS RESULTADOS. 49 3.3 FIBRA ÓPTICA. 51 3.3.1 INTRODUÇÃO 51 3.3.2 FIBRA MONOMODO 54 3.3.3 ANÁLISE MODAL 56 3.4 FIBRA ÓPTICA MICROESTRUTURADA 62 3.4.1 INTRODUÇÃO 62 3.4.2 ANALOGIA COM FIBRAS DEGRAU 67 3.4.3 DISPERSÃO CROMÁTICA 69 3.4.4 ANÁLISE MODAL 71 3.5 CONCLUSÕES 75 3.6 BIBLIOGRAFIA 76 3.6 BIBLIOGRAFIA 76 3.7 CONCLUSÕES 75 3.</td><td>2.5 INTEGRAIS ELEMENTARES</td><td></td></tr> <tr><td>2.7 ANALISE MODAL 29 2.8 CONCLUSÕES. 30 2.9 BIBLIOGRAFIA 31 Capítulo 3. 32 VALIDAÇÃO DE RESULTADOS. 32 3.1 INTRODUÇÃO. 33 3.2 GEOMETRIA REGULAR. 34 3.2.1 GUIA ÓPTICO CIRCULAR. 36 3.2.2 GEOMETRIA INTEIRA 36 3.2.3 METADE DA GEOMETRIA INTEIRA 37 3.2.3 METADE DA GEOMETRIA INTEIRA 41 3.2.4 UM QUARTO DA GEOMETRIA INTEIRA 45 3.2.5 ANÁLISE DOS RESULTADOS. 49 3.3 FIBRA ÓPTICA 51 3.3.1 INTRODUÇÃO. 51 3.3.2 FIBRA MONOMODO 54 3.3 ANÁLISE MODAL 56 3.4 FIBRA MONOMODO 54 3.3 ANÁLISE MODAL 62 3.4.1 INTRODUÇÃO 62 3.4.1 INTRODUÇÃO 62 3.4.2 ANALOGIA COM FIBRAS DEGRAU 67 3.4.4 ANÁLISE MODAL 71</td><td>2.6 DOMINIO COMPUTACIONAL</td><td></td></tr> <tr><td>2.8 CONCLUSOES</td><td>2./ ANALISE MODAL</td><td></td></tr> <tr><td>2.9 BIBLIOGRAFIA 31 Capítulo 3. 32 VALIDAÇÃO DE RESULTADOS. 32 3.1 INTRODUÇÃO. 33 3.2 GEOMETRIA REGULAR. 34 3.2.1 GUIA ÓPTICO CIRCULAR. 36 3.2.2 GEOMETRIA INTEIRA. 36 3.2.3 METADE DA GEOMETRIA INTEIRA. 37 3.2.3 METADE DA GEOMETRIA INTEIRA. 41 3.2.4 UM QUARTO DA GEOMETRIA INTEIRA. 41 3.2.5 ANÁLISE DOS RESULTADOS. 49 3.3 FIBRA ÓPTICA. 51 3.3.1 INTRODUÇÃO. 51 3.3.2 FIBRA MONOMODO. 54 3.3 ANÁLISE MODAL 56 3.4 FIBRA ÓPTICA MICROESTRUTURADA. 62 3.4.1 INTRODUÇÃO. 62 3.4.2 ANALOGIA COM FIBRAS DEGRAU 67 3.4.3 DISPERSÃO CROMÁTICA. 69 3.4.4 ANÁLISE MODAL 71 3.5 CONCLUSÕES. 75 3.6 BIBLIOGRAFIA. 76 Capítulo 4. 78 <td< td=""><td>2.8 CUNCLUSUES</td><td></td></td<></td></tr> <tr><td>Capítulo 3. 32 VALIDAÇÃO DE RESULTADOS. 32 3.1 INTRODUÇÃO. 33 3.2 GEOMETRIA REGULAR. 34 3.2.1 GUIA ÓPTICO CIRCULAR. 36 3.2.2 GEOMETRIA INTEIRA. 37 3.2.3 METADE DA GEOMETRIA INTEIRA. 41 3.2.4 UM QUARTO DA GEOMETRIA INTEIRA. 41 3.2.5 ANÁLISE DOS RESULTADOS. 49 3.3 FIBRA ÓPTICA. 51 3.3.1 INTRODUÇÃO. 51 3.3.2 FIBRA MONOMODO. 54 3.3.3 ANÁLISE MODAL 56 3.4 FIBRA ÓPTICA MICROESTRUTURADA. 62 3.4.1 INTRODUÇÃO. 62 3.4.2 ANALOGIA COM FIBRAS DEGRAU 67 3.4.3 DISPERSÃO CROMÁTICA. 69 3.4.4 ANÁLISE MODAL. 71 3.5 CONCLUSÕES. 75 3.6 BIBLIOGRAFIA. 76 Capítulo 4. 78 TÉCNICA PARA CONTROLAR O ZDW. 78 4.1 INTRODUÇÃO. 79 4.2 FIBRA MICROESTRUTURADA MOF-01P. 80 4.2.1 INTRODUÇÃO. 79</td><td>2.9 BIBLIOGRAFIA</td><td></td></tr> <tr><td>VALIDAÇÃO DE RESULTADOS.323.1 INTRODUÇÃO.333.2 GEOMETRIA REGULAR.343.2.1 GUIA ÓPTICO CIRCULAR.363.2.2 GEOMETRIA INTEIRA.373.2.3 METADE DA GEOMETRIA INTEIRA.373.2.4 UM QUARTO DA GEOMETRIA INTEIRA.413.2.5 ANÁLISE DOS RESULTADOS.493.3 FIBRA ÓPTICA.513.3.1 INTRODUÇÃO.513.3.2 FIBRA MONOMODO.543.3.3 ANÁLISE MODAL563.4 FIBRA ÓPTICA MICROESTRUTURADA.623.4.1 INTRODUÇÃO.623.4.2 ANALOGIA COM FIBRAS DEGRAU.673.4.3 DISPERSÃO CROMÁTICA693.4.4 ANÁLISE MODAL713.5 CONCLUSÕES.753.6 BIBLIOGRAFIA.76Capítulo 4.78TÉCNICA PARA CONTROLAR O ZDW.784.1 INTRODUÇÃO.794.2 FIBRA MICROESTRUTURADA MOF-01P.804.2.1 INTRODUÇÃO.80</td><td>Capítulo 3</td><td>32</td></tr> <tr><td>3.1 INTRODUÇÃO</td><td>VALIDAÇÃO DE RESULTADOS</td><td></td></tr> <tr><td>3.2 GEOMETRÍA REGULAR. 34 3.2.1 GUIA ÓPTICO CIRCULAR. 36 3.2.2 GEOMETRIA INTEIRA. 37 3.2.3 METADE DA GEOMETRIA INTEIRA. 41 3.2.4 UM QUARTO DA GEOMETRIA INTEIRA. 45 3.2.5 ANÁLISE DOS RESULTADOS. 49 3.3 FIBRA ÓPTICA. 51 3.3.1 INTRODUÇÃO. 51 3.3.2 FIBRA MONOMODO. 54 3.3 ANÁLISE MODAL 56 3.4 FIBRA ÓPTICA MICROESTRUTURADA 62 3.4.1 INTRODUÇÃO. 62 3.4.2 ANALOGIA COM FIBRAS DEGRAU. 67 3.4.3 DISPERSÃO CROMÁTICA. 69 3.4.4 ANÁLISE MODAL 71 3.5 CONCLUSÕES 75 3.6 BIBLIOGRAFIA. 76 Capítulo 4. 78 TÉCNICA PARA CONTROLAR O ZDW. 78 4.1 INTRODUÇÃO. 79 4.2 FIBRA MICROESTRUTURADA MOF-01P. 80 4.2.1 INTRODUÇÃO. 80 4.2.1 INTRODUÇÃO. 80</td><td>3.1 INTRODUCÃO</td><td></td></tr> <tr><td>3.2.1 GUIA ÓPTICO CIRCULAR</td><td>3.2 GEOMETRIA REGULAR</td><td></td></tr> <tr><td>3.2.2 GEOMETRIA INTEIRA373.2.3 METADE DA GEOMETRIA INTEIRA413.2.4 UM QUARTO DA GEOMETRIA INTEIRA453.2.5 ANÁLISE DOS RESULTADOS493.3 FIBRA ÓPTICA513.3.1 INTRODUÇÃO513.2 FIBRA MONOMODO543.3 ANÁLISE MODAL563.4 FIBRA ÓPTICA MICROESTRUTURADA623.4.1 INTRODUÇÃO623.4.2 ANALOGIA COM FIBRAS DEGRAU673.4.3 DISPERSÃO CROMÁTICA693.4.4 ANÁLISE MODAL713.5 CONCLUSÕES753.6 BIBLIOGRAFIA76Capítulo 478TÉCNICA PARA CONTROLAR O ZDW784.1 INTRODUÇÃO794.2 FIBRA MICROESTRUTURADA MOF-01P804.1 INTRODUÇÃO80</td><td>3.2.1 GUIA ÓPTICO CIRCULAR</td><td></td></tr> <tr><td>3.2.3 METADE DA GEOMETRIA INTEIRA.413.2.4 UM QUARTO DA GEOMETRIA INTEIRA453.2.5 ANÁLISE DOS RESULTADOS493.3 FIBRA ÓPTICA.513.3.1 INTRODUÇÃO.513.2 FIBRA MONOMODO.543.3 ANÁLISE MODAL563.4 FIBRA ÓPTICA MICROESTRUTURADA.623.4.1 INTRODUÇÃO.623.4.2 ANALOGIA COM FIBRAS DEGRAU.673.4.3 DISPERSÃO CROMÁTICA.693.4.4 ANÁLISE MODAL.713.5 CONCLUSÕES.753.6 BIBLIOGRAFIA.76Capítulo 4.78TÉCNICA PARA CONTROLAR O ZDW.784.1 INTRODUÇÃO.794.2 FIBRA MICROESTRUTURADA MOF-01P.804.2 I INTRODUÇÃO.80</td><td>3.2.2 GEOMETRIA INTEIRA</td><td></td></tr> <tr><td>3.2.4 UM QUARTO DA GEOMETRIA INTEIRA</td><td>3.2.3 METADE DA GEOMETRIA INTEIRA</td><td></td></tr> <tr><td>3.2.5 ANÁLISE DOS RESULTADOS</td><td>3.2.4 UM QUARTO DA GEOMETRIA INTEIRA</td><td></td></tr> <tr><td>3.3 FIBRA ÓPTICA</td><td>3.2.5 ANÁLISE DOS RESULTADOS</td><td></td></tr> <tr><td>3.3.1 INTRODUÇÃO.513.3.2 FIBRA MONOMODO.543.3.3 ANÁLISE MODAL.563.4 FIBRA ÓPTICA MICROESTRUTURADA.623.4.1 INTRODUÇÃO.623.4.2 ANALOGIA COM FIBRAS DEGRAU.673.4.3 DISPERSÃO CROMÁTICA.693.4.4 ANÁLISE MODAL.713.5 CONCLUSÕES.753.6 BIBLIOGRAFIA.76Capítulo 4.78TÉCNICA PARA CONTROLAR O ZDW.784.1 INTRODUÇÃO.794.2 FIBRA MICROESTRUTURADA MOF-01P.804.2.1 INTRODUÇÃO.804.2.1 INTRODUÇÃO.80</td><td>3.3 FIBRA ÓPTICA</td><td></td></tr> <tr><td>3.3.2 FIBRA MONOMODO.543.3.3 ANÁLISE MODAL563.4 FIBRA ÓPTICA MICROESTRUTURADA.623.4.1 INTRODUÇÃO.623.4.2 ANALOGIA COM FIBRAS DEGRAU.673.4.3 DISPERSÃO CROMÁTICA693.4.4 ANÁLISE MODAL.713.5 CONCLUSÕES.753.6 BIBLIOGRAFIA.76Capítulo 4.78TÉCNICA PARA CONTROLAR O ZDW.784.1 INTRODUÇÃO.794.2 FIBRA MICROESTRUTURADA MOF-01P.804.2.1 INTRODUÇÃO.80</td><td>3.3.1 INTRODUÇÃO</td><td>51</td></tr> <tr><td>3.3.3 ANÁLISE MODAL563.4 FIBRA ÓPTICA MICROESTRUTURADA623.4.1 INTRODUÇÃO623.4.2 ANALOGIA COM FIBRAS DEGRAU673.4.3 DISPERSÃO CROMÁTICA693.4.4 ANÁLISE MODAL713.5 CONCLUSÕES753.6 BIBLIOGRAFIA76Capítulo 478TÉCNICA PARA CONTROLAR O ZDW784.1 INTRODUÇÃO794.2 FIBRA MICROESTRUTURADA MOF-01P804.2.1 INTRODUÇÃO80</td><td>3.3.2 FIBRA MONOMODO</td><td>54</td></tr> <tr><td>3.4 FIBRA ÓPTICA MICROESTRUTURADA.623.4.1 INTRODUÇÃO.623.4.2 ANALOGIA COM FIBRAS DEGRAU.673.4.3 DISPERSÃO CROMÁTICA.693.4.4 ANÁLISE MODAL.713.5 CONCLUSÕES.753.6 BIBLIOGRAFIA.76Capítulo 4.78TÉCNICA PARA CONTROLAR O ZDW.784.1 INTRODUÇÃO.794.2 FIBRA MICROESTRUTURADA MOF-01P.804.2.1 INTRODUÇÃO.80</td><td>3.3.3 ANÁLISE MODAL</td><td></td></tr> <tr><td>3.4.1 INTRODUÇÃO623.4.2 ANALOGIA COM FIBRAS DEGRAU673.4.3 DISPERSÃO CROMÁTICA693.4.4 ANÁLISE MODAL713.5 CONCLUSÕES753.6 BIBLIOGRAFIA76Capítulo 478TÉCNICA PARA CONTROLAR O ZDW784.1 INTRODUÇÃO794.2 FIBRA MICROESTRUTURADA MOF-01P804.2.1 INTRODUÇÃO80</td><td>3.4 FIBRA ÓPTICA MICROESTRUTURADA</td><td></td></tr> <tr><td>3.4.2 ANALOGIA COM FIBRAS DEGRAU.673.4.3 DISPERSÃO CROMÁTICA.693.4.4 ANÁLISE MODAL.713.5 CONCLUSÕES.753.6 BIBLIOGRAFIA.76Capítulo 4.78TÉCNICA PARA CONTROLAR O ZDW.784.1 INTRODUÇÃO.794.2 FIBRA MICROESTRUTURADA MOF-01P.804.2.1 INTRODUÇÃO.804.2.1 INTRODUÇÃO.80</td><td>3.4.1 INTRODUÇÃO</td><td></td></tr> <tr><td>3.4.3 DISPERSÃO CROMÁTICA693.4.4 ANÁLISE MODAL713.5 CONCLUSÕES753.6 BIBLIOGRAFIA76Capítulo 478TÉCNICA PARA CONTROLAR O ZDW784.1 INTRODUÇÃO794.2 FIBRA MICROESTRUTURADA MOF-01P804.2.1 INTRODUÇÃO80</td><td>3.4.2 ANALOGIA COM FIBRAS DEGRAU</td><td></td></tr> <tr><td>3.4.4 ANÁLISE MODAL</td><td>3.4.3 DISPERSÃO CROMÁTICA</td><td></td></tr> <tr><td>3.5 CONCLUSÕES</td><td>3.4.4 ANÁLISE MODAL</td><td>71</td></tr> <tr><td>3.6 BIBLIOGRAFIA</td><td>3.5 CONCLUSÕES</td><td></td></tr> <tr><td>Capítulo 4</td><td>3.6 BIBLIOGRAFIA</td><td></td></tr> <tr><td>TÉCNICA PARA CONTROLAR O ZDW</td><td>Capítulo 4</td><td>78</td></tr> <tr><td>4.1 INTRODUÇÃO</td><td>ΤΈΩΝΙΟΑ ΡΑΡΑ CONTROLAR Ο ΖΟΨ</td><td>/ ۵</td></tr> <tr><td>4.2 FIBRA MICROESTRUTURADA MOF-01P. 80 4.2.1 INTRODUÇÃO. 80</td><td>4.1 INTRODUCÃO</td><td></td></tr> <tr><td>4.2.1 INTRODUÇÃO</td><td>4.2 FIBRA MICROFSTRUTURADA MOF-01P</td><td>79. ۱۹</td></tr> <tr><td></td><td>4.21 INTRODUCÃO</td><td></td></tr> <tr><td>4.2.2 ANALISE MODAL PARA MOF-01P 83</td><td>4.2.2 ANÁLISE MODAL PARA MOF-01P</td><td></td></tr>			ME IODO DOS ELEMENTOS FINITOS 9 2.1 INTRODUÇÃO. 10 2.2 EQUAÇÃO DE ONDA. 12 2.3 DISCRETIZAÇÃO. 16 2.4 MÉTODO DE GALERKIN. 18 2.5 INTEGRAIS ELEMENTARES. 24 2.6 DOMÍNIO COMPUTACIONAL. 27 2.7 ANÁLISE MODAL 29 2.9 BIBLIOGRAFIA. 30 2.9 BIBLIOGRAFIA. 31 Capítulo 3. 32 VALIDAÇÃO DE RESULTADOS. 32 3.1 INTRODUÇÃO 33 3.2 GEOMETRIA REGULAR. 34 3.2.1 GUIA ÓPTICO CIRCULAR. 36 3.2.2 GEOMETRIA INTEIRA. 37 3.2.3 METADE DA GEOMETRIA INTEIRA. 37 3.2.4 UM QUARTO DA GEOMETRIA INTEIRA. 41 3.4 UM QUARTO DA GEOMETRIA INTEIRA. 45 3.2.5 ANÁLISE DOS RESULTADOS. 49 3.3 FIBRA ÓPTICA. 51 3.3.1 INTRODUÇÃO. 51 3.3.2 FIBRA MONOMODO. 54 3.3.3 ANÁLISE MODAL. 66 3.4 FIBRA ÓPTICA. 62 3.4.1 INTRODUÇÃO. 62 3.4.2 ANALOGIA COM FIBRAS DEGRAU. 67 <td>Capítulo 2</td> <td></td>	Capítulo 2		21 INTRODUÇÃO. 10 22 EQUAÇÃO DE ONDA. 12 23 DISCRETIZAÇÃO. 16 24 MÉTODO DE GALERKIN 18 25 INTEGRAIS ELEMENTARES. 24 26 DOMÍNIO COMPUTACIONAL. 27 27 ANÁLISE MODAL. 29 28 CONCLUSÕES. 30 29 BIBLIOGRAFIA. 31 Capítulo 3. 32 VALIDAÇÃO DE RESULTADOS. 32 3.1 INTRODUÇÃO. 33 3.2 GEOMETRIA REGULAR. 34 3.2.1 GUIA ÓPTICO CIRCULAR 36 3.2.2 GEOMETRIA REGULAR. 34 3.2.3 METADE DA GEOMETRIA INTEIRA. 37 3.2.3 METADE DA GEOMETRIA INTEIRA. 41 3.2.4 UM QUARTO DA GEOMETRIA INTEIRA. 45 3.2.5 ANÁLISE DOS RESULTADOS. 49 3.3 I INTRODUÇÃO. 51 3.3.2 FIBRA MONOMODO. 54 3.3 JI INTRODUÇÃO. 51 3.3.2 FIBRA MONOMODO. 54 3.3 INTRODUÇÃO. 51 3.3.2 FIBRA MONOMODO. 54 3.3 ANÁLISE MODAL. 56 3.4.1 INTRODUÇÃO. 51 3.5 CONCLUSÕ	METODO DOS ELEMENTOS FINITOS		22 EQUAÇÃO DE ONDA 12 23 DISCRETIZAÇÃO. 16 24 MÉTODO DE GALERKIN 18 25 INTEGRAIS ELEMENTARES. 24 26 DOMÍNIO COMPUTACIONAL 27 27 ANÁLISE MODAL. 29 28 CONCLUSÕES. 30 29 BIBLIOGRAFIA. 31 Capítulo 3. 32 VALIDAÇÃO DE RESULTADOS. 32 3.1 INTRODUÇÃO. 33 3.2 GEOMETRIA REGULAR. 34 3.2.1 GUIA ÓPTICO CIRCULAR 36 3.2.2 GEOMETRIA INTEIRA. 37 3.2.3 METADE DA GEOMETRIA INTEIRA. 37 3.2.4 UM QUARTO DA GEOMETRIA INTEIRA. 49 3.3 FIBRA ÓPTICA. 51 3.3.1 INTRODUÇÃO. 51 3.3.2 FIBRA MONOMODO. 54 3.3 ANÁLISE MODAL 56 3.4 FIBRA ÓPTICA MICROESTRUTURADA. 62 3.4.1 INTRODUÇÃO. 62 3.4.2 ANALOGIA COM FIBRAS DEGRAU. 67 3.4 DISPERSÃO CROMÁTICA. 69 3.4 JIBRE MODAL 76 3.4 JIBRA ÓPTICA MICROESTRUTURADA. 62 3.4.1 INTRODUÇÃO. 78	2.1 INTRODUÇAO		2.3 DISCRE ILZAÇÃO. 16 2.4 MÉTODO DE GALERKIN. 18 2.5 INTEGRAIS ELEMENTARES. 24 2.6 DOMÍNIO COMPUTACIONAL. 27 2.7 ANÁLISE MODAL. 29 2.8 CONCLUSÕES. 30 2.9 BIBLIOGRAFIA. 31 Capitulo 3. 32 VALIDAÇÃO DE RESULTADOS. 32 3.1 INTRODUÇÃO. 33 3.2 GEOMETRIA REGULAR. 34 3.2.1 GUIA ÓPTICO CIRCULAR. 36 3.2.2 GEOMETRIA INTEIRA. 37 3.2.3 METADE DA GEOMETRIA INTEIRA. 41 3.2.4 UM QUARTO DA GEOMETRIA INTEIRA. 41 3.2.5 ANÁLISE DOS RESULTADOS. 49 3.3 TIBRA ÓPTICA. 51 3.3.1 INTRODUÇÃO. 51 3.3.2 FIBRA MONOMODO. 54 3.3.3 ANÁLISE MODAL. 56 3.4 FIBRA ÓPTICA MICROESTRUTURADA. 62 3.4.1 INTRODUÇÃO. 51 3.3.2 FIBRA MONOMODO. 54 3.4.1 INTRODUÇÃO. 62 3.4.2 ANALOGIA COM FIBRAS DEGRAU. 67 3.4.3 DISPERSÃO CROMÁTICA. 69 3.4.4 ANÁLISE MODAL 71	2.2 EQUAÇÃO DE ONDA		2.4 METODO DE GALERKIN. 18 2.5 INTEGRAIS ELEMENTARES. 24 2.6 DOMÍNIO COMPUTACIONAL 27 2.7 ANÁLISE MODAL. 29 2.8 CONCLUSÕES. 30 2.9 BIBLIOGRAFIA. 31 Capítulo 3. 32 VALIDAÇÃO DE RESULTADOS. 32 3.1 INTRODUÇÃO. 33 3.2 GEOMETRIA REGULAR. 34 3.2.1 GUIA ÓPTICO CIRCULAR. 36 3.2.2 GEOMETRIA INTEIRA. 34 3.2.1 GUIA ÓPTICO CIRCULAR. 36 3.2.2 GEOMETRIA INTEIRA. 37 3.2.3 METADE DA GEOMETRIA INTEIRA. 41 3.2.4 UM QUARTO DA GEOMETRIA INTEIRA. 45 3.2.5 ANÁLISE DOS RESULTADOS. 49 3.3 FIBRA ÓPTICA. 51 3.3.1 INTRODUÇÃO. 51 3.3 FIBRA MONOMODO. 54 3.3 S ANÁLISE MODAL 56 3.4 FIBRA ÓPTICA MICROESTRUTURADA. 62 3.4.1 INTRODUÇÃO. 51 3.3.2 FIBRA MONOMODO. 54 3.3 ANÁLISE MODAL 56 3.4 FIBRA ÓPTICA MICROESTRUTURADA 62 3.4.2 ANALOGIA COM FIBRAS DEGRAU.	2.3 DISCRETIZAÇÃO		2.5 INTEGRAIS ELEMENTARES 24 2.6 DOMÍNIO COMPUTACIONAL 27 2.7 ANÁLISE MODAL 29 2.8 CONCLUSÕES 30 2.9 BIBLIOGRAFIA 31 Capítulo 3. 32 VALIDAÇÃO DE RESULTADOS. 32 3.1 INTRODUÇÃO 33 3.2 GEOMETRIA REGULAR. 34 3.2.1 GUIA ÓPTICO CIRCULAR. 36 3.2.2 GEOMETRIA INTEIRA. 37 3.2.3 METADE DA GEOMETRIA INTEIRA. 41 3.2.4 UM QUARTO DA GEOMETRIA INTEIRA. 41 3.2.5 ANÁLISE DOS RESULTADOS. 49 3.3 FIBRA ÓPTICA. 51 3.3.1 INTRODUÇÃO. 51 3.3.2 FIBRA MONOMODO. 54 3.3.3 ANÂLISE MODAL 56 3.4.1 INTRODUÇÃO. 62 3.4.2 ANALOGIA COM FIBRAS DEGRAU. 67 3.4.2 ANALOGIA COM FIBRAS DEGRAU. 67 3.4.2	2.4 METODO DE GALERKIN		2.6 DOMINIO COMPUTACIONAL 27 2.7 ANÁLISE MODAL 29 2.8 CONCLUSÕES 30 2.9 BIBLIOGRAFIA 31 Capítulo 3. 32 VALIDAÇÃO DE RESULTADOS 32 3.1 INTRODUÇÃO. 33 3.2 GEOMETRIA REGULAR. 34 3.2.1 GUIA ÓPTICO CIRCULAR. 36 3.2.2 GEOMETRIA REGULAR. 34 3.2.3 METADE DA GEOMETRIA INTEIRA 37 3.2.3 METADE DA GEOMETRIA INTEIRA 41 3.2.4 UM QUARTO DA GEOMETRIA INTEIRA 45 3.2.5 ANÁLISE DOS RESULTADOS. 49 3.3 FIBRA ÓPTICA. 51 3.3.1 INTRODUÇÃO 51 3.3.2 FIBRA MONOMODO 54 3.3.3 ANÁLISE MODAL 56 3.4 FIBRA ÓPTICA MICROESTRUTURADA 62 3.4.1 INTRODUÇÃO 62 3.4.2 ANALOGIA COM FIBRAS DEGRAU 67 3.4.3 DISPERSÃO CROMÁTICA 69 3.4.4 ANÁLISE MODAL 71 3.5 CONCLUSÕES 75 3.6 BIBLIOGRAFIA 76 3.6 BIBLIOGRAFIA 76 3.7 CONCLUSÕES 75 3.	2.5 INTEGRAIS ELEMENTARES		2.7 ANALISE MODAL 29 2.8 CONCLUSÕES. 30 2.9 BIBLIOGRAFIA 31 Capítulo 3. 32 VALIDAÇÃO DE RESULTADOS. 32 3.1 INTRODUÇÃO. 33 3.2 GEOMETRIA REGULAR. 34 3.2.1 GUIA ÓPTICO CIRCULAR. 36 3.2.2 GEOMETRIA INTEIRA 36 3.2.3 METADE DA GEOMETRIA INTEIRA 37 3.2.3 METADE DA GEOMETRIA INTEIRA 41 3.2.4 UM QUARTO DA GEOMETRIA INTEIRA 45 3.2.5 ANÁLISE DOS RESULTADOS. 49 3.3 FIBRA ÓPTICA 51 3.3.1 INTRODUÇÃO. 51 3.3.2 FIBRA MONOMODO 54 3.3 ANÁLISE MODAL 56 3.4 FIBRA MONOMODO 54 3.3 ANÁLISE MODAL 62 3.4.1 INTRODUÇÃO 62 3.4.1 INTRODUÇÃO 62 3.4.2 ANALOGIA COM FIBRAS DEGRAU 67 3.4.4 ANÁLISE MODAL 71	2.6 DOMINIO COMPUTACIONAL		2.8 CONCLUSOES	2./ ANALISE MODAL		2.9 BIBLIOGRAFIA 31 Capítulo 3. 32 VALIDAÇÃO DE RESULTADOS. 32 3.1 INTRODUÇÃO. 33 3.2 GEOMETRIA REGULAR. 34 3.2.1 GUIA ÓPTICO CIRCULAR. 36 3.2.2 GEOMETRIA INTEIRA. 36 3.2.3 METADE DA GEOMETRIA INTEIRA. 37 3.2.3 METADE DA GEOMETRIA INTEIRA. 41 3.2.4 UM QUARTO DA GEOMETRIA INTEIRA. 41 3.2.5 ANÁLISE DOS RESULTADOS. 49 3.3 FIBRA ÓPTICA. 51 3.3.1 INTRODUÇÃO. 51 3.3.2 FIBRA MONOMODO. 54 3.3 ANÁLISE MODAL 56 3.4 FIBRA ÓPTICA MICROESTRUTURADA. 62 3.4.1 INTRODUÇÃO. 62 3.4.2 ANALOGIA COM FIBRAS DEGRAU 67 3.4.3 DISPERSÃO CROMÁTICA. 69 3.4.4 ANÁLISE MODAL 71 3.5 CONCLUSÕES. 75 3.6 BIBLIOGRAFIA. 76 Capítulo 4. 78 <td< td=""><td>2.8 CUNCLUSUES</td><td></td></td<>	2.8 CUNCLUSUES		Capítulo 3. 32 VALIDAÇÃO DE RESULTADOS. 32 3.1 INTRODUÇÃO. 33 3.2 GEOMETRIA REGULAR. 34 3.2.1 GUIA ÓPTICO CIRCULAR. 36 3.2.2 GEOMETRIA INTEIRA. 37 3.2.3 METADE DA GEOMETRIA INTEIRA. 41 3.2.4 UM QUARTO DA GEOMETRIA INTEIRA. 41 3.2.5 ANÁLISE DOS RESULTADOS. 49 3.3 FIBRA ÓPTICA. 51 3.3.1 INTRODUÇÃO. 51 3.3.2 FIBRA MONOMODO. 54 3.3.3 ANÁLISE MODAL 56 3.4 FIBRA ÓPTICA MICROESTRUTURADA. 62 3.4.1 INTRODUÇÃO. 62 3.4.2 ANALOGIA COM FIBRAS DEGRAU 67 3.4.3 DISPERSÃO CROMÁTICA. 69 3.4.4 ANÁLISE MODAL. 71 3.5 CONCLUSÕES. 75 3.6 BIBLIOGRAFIA. 76 Capítulo 4. 78 TÉCNICA PARA CONTROLAR O ZDW. 78 4.1 INTRODUÇÃO. 79 4.2 FIBRA MICROESTRUTURADA MOF-01P. 80 4.2.1 INTRODUÇÃO. 79	2.9 BIBLIOGRAFIA		VALIDAÇÃO DE RESULTADOS.323.1 INTRODUÇÃO.333.2 GEOMETRIA REGULAR.343.2.1 GUIA ÓPTICO CIRCULAR.363.2.2 GEOMETRIA INTEIRA.373.2.3 METADE DA GEOMETRIA INTEIRA.373.2.4 UM QUARTO DA GEOMETRIA INTEIRA.413.2.5 ANÁLISE DOS RESULTADOS.493.3 FIBRA ÓPTICA.513.3.1 INTRODUÇÃO.513.3.2 FIBRA MONOMODO.543.3.3 ANÁLISE MODAL563.4 FIBRA ÓPTICA MICROESTRUTURADA.623.4.1 INTRODUÇÃO.623.4.2 ANALOGIA COM FIBRAS DEGRAU.673.4.3 DISPERSÃO CROMÁTICA693.4.4 ANÁLISE MODAL713.5 CONCLUSÕES.753.6 BIBLIOGRAFIA.76Capítulo 4.78TÉCNICA PARA CONTROLAR O ZDW.784.1 INTRODUÇÃO.794.2 FIBRA MICROESTRUTURADA MOF-01P.804.2.1 INTRODUÇÃO.80	Capítulo 3	32	3.1 INTRODUÇÃO	VALIDAÇÃO DE RESULTADOS		3.2 GEOMETRÍA REGULAR. 34 3.2.1 GUIA ÓPTICO CIRCULAR. 36 3.2.2 GEOMETRIA INTEIRA. 37 3.2.3 METADE DA GEOMETRIA INTEIRA. 41 3.2.4 UM QUARTO DA GEOMETRIA INTEIRA. 45 3.2.5 ANÁLISE DOS RESULTADOS. 49 3.3 FIBRA ÓPTICA. 51 3.3.1 INTRODUÇÃO. 51 3.3.2 FIBRA MONOMODO. 54 3.3 ANÁLISE MODAL 56 3.4 FIBRA ÓPTICA MICROESTRUTURADA 62 3.4.1 INTRODUÇÃO. 62 3.4.2 ANALOGIA COM FIBRAS DEGRAU. 67 3.4.3 DISPERSÃO CROMÁTICA. 69 3.4.4 ANÁLISE MODAL 71 3.5 CONCLUSÕES 75 3.6 BIBLIOGRAFIA. 76 Capítulo 4. 78 TÉCNICA PARA CONTROLAR O ZDW. 78 4.1 INTRODUÇÃO. 79 4.2 FIBRA MICROESTRUTURADA MOF-01P. 80 4.2.1 INTRODUÇÃO. 80 4.2.1 INTRODUÇÃO. 80	3.1 INTRODUCÃO		3.2.1 GUIA ÓPTICO CIRCULAR	3.2 GEOMETRIA REGULAR		3.2.2 GEOMETRIA INTEIRA373.2.3 METADE DA GEOMETRIA INTEIRA413.2.4 UM QUARTO DA GEOMETRIA INTEIRA453.2.5 ANÁLISE DOS RESULTADOS493.3 FIBRA ÓPTICA513.3.1 INTRODUÇÃO513.2 FIBRA MONOMODO543.3 ANÁLISE MODAL563.4 FIBRA ÓPTICA MICROESTRUTURADA623.4.1 INTRODUÇÃO623.4.2 ANALOGIA COM FIBRAS DEGRAU673.4.3 DISPERSÃO CROMÁTICA693.4.4 ANÁLISE MODAL713.5 CONCLUSÕES753.6 BIBLIOGRAFIA76Capítulo 478TÉCNICA PARA CONTROLAR O ZDW784.1 INTRODUÇÃO794.2 FIBRA MICROESTRUTURADA MOF-01P804.1 INTRODUÇÃO80	3.2.1 GUIA ÓPTICO CIRCULAR		3.2.3 METADE DA GEOMETRIA INTEIRA.413.2.4 UM QUARTO DA GEOMETRIA INTEIRA453.2.5 ANÁLISE DOS RESULTADOS493.3 FIBRA ÓPTICA.513.3.1 INTRODUÇÃO.513.2 FIBRA MONOMODO.543.3 ANÁLISE MODAL563.4 FIBRA ÓPTICA MICROESTRUTURADA.623.4.1 INTRODUÇÃO.623.4.2 ANALOGIA COM FIBRAS DEGRAU.673.4.3 DISPERSÃO CROMÁTICA.693.4.4 ANÁLISE MODAL.713.5 CONCLUSÕES.753.6 BIBLIOGRAFIA.76Capítulo 4.78TÉCNICA PARA CONTROLAR O ZDW.784.1 INTRODUÇÃO.794.2 FIBRA MICROESTRUTURADA MOF-01P.804.2 I INTRODUÇÃO.80	3.2.2 GEOMETRIA INTEIRA		3.2.4 UM QUARTO DA GEOMETRIA INTEIRA	3.2.3 METADE DA GEOMETRIA INTEIRA		3.2.5 ANÁLISE DOS RESULTADOS	3.2.4 UM QUARTO DA GEOMETRIA INTEIRA		3.3 FIBRA ÓPTICA	3.2.5 ANÁLISE DOS RESULTADOS		3.3.1 INTRODUÇÃO.513.3.2 FIBRA MONOMODO.543.3.3 ANÁLISE MODAL.563.4 FIBRA ÓPTICA MICROESTRUTURADA.623.4.1 INTRODUÇÃO.623.4.2 ANALOGIA COM FIBRAS DEGRAU.673.4.3 DISPERSÃO CROMÁTICA.693.4.4 ANÁLISE MODAL.713.5 CONCLUSÕES.753.6 BIBLIOGRAFIA.76Capítulo 4.78TÉCNICA PARA CONTROLAR O ZDW.784.1 INTRODUÇÃO.794.2 FIBRA MICROESTRUTURADA MOF-01P.804.2.1 INTRODUÇÃO.804.2.1 INTRODUÇÃO.80	3.3 FIBRA ÓPTICA		3.3.2 FIBRA MONOMODO.543.3.3 ANÁLISE MODAL563.4 FIBRA ÓPTICA MICROESTRUTURADA.623.4.1 INTRODUÇÃO.623.4.2 ANALOGIA COM FIBRAS DEGRAU.673.4.3 DISPERSÃO CROMÁTICA693.4.4 ANÁLISE MODAL.713.5 CONCLUSÕES.753.6 BIBLIOGRAFIA.76Capítulo 4.78TÉCNICA PARA CONTROLAR O ZDW.784.1 INTRODUÇÃO.794.2 FIBRA MICROESTRUTURADA MOF-01P.804.2.1 INTRODUÇÃO.80	3.3.1 INTRODUÇÃO	51	3.3.3 ANÁLISE MODAL563.4 FIBRA ÓPTICA MICROESTRUTURADA623.4.1 INTRODUÇÃO623.4.2 ANALOGIA COM FIBRAS DEGRAU673.4.3 DISPERSÃO CROMÁTICA693.4.4 ANÁLISE MODAL713.5 CONCLUSÕES753.6 BIBLIOGRAFIA76Capítulo 478TÉCNICA PARA CONTROLAR O ZDW784.1 INTRODUÇÃO794.2 FIBRA MICROESTRUTURADA MOF-01P804.2.1 INTRODUÇÃO80	3.3.2 FIBRA MONOMODO	54	3.4 FIBRA ÓPTICA MICROESTRUTURADA.623.4.1 INTRODUÇÃO.623.4.2 ANALOGIA COM FIBRAS DEGRAU.673.4.3 DISPERSÃO CROMÁTICA.693.4.4 ANÁLISE MODAL.713.5 CONCLUSÕES.753.6 BIBLIOGRAFIA.76Capítulo 4.78TÉCNICA PARA CONTROLAR O ZDW.784.1 INTRODUÇÃO.794.2 FIBRA MICROESTRUTURADA MOF-01P.804.2.1 INTRODUÇÃO.80	3.3.3 ANÁLISE MODAL		3.4.1 INTRODUÇÃO623.4.2 ANALOGIA COM FIBRAS DEGRAU673.4.3 DISPERSÃO CROMÁTICA693.4.4 ANÁLISE MODAL713.5 CONCLUSÕES753.6 BIBLIOGRAFIA76Capítulo 478TÉCNICA PARA CONTROLAR O ZDW784.1 INTRODUÇÃO794.2 FIBRA MICROESTRUTURADA MOF-01P804.2.1 INTRODUÇÃO80	3.4 FIBRA ÓPTICA MICROESTRUTURADA		3.4.2 ANALOGIA COM FIBRAS DEGRAU.673.4.3 DISPERSÃO CROMÁTICA.693.4.4 ANÁLISE MODAL.713.5 CONCLUSÕES.753.6 BIBLIOGRAFIA.76Capítulo 4.78TÉCNICA PARA CONTROLAR O ZDW.784.1 INTRODUÇÃO.794.2 FIBRA MICROESTRUTURADA MOF-01P.804.2.1 INTRODUÇÃO.804.2.1 INTRODUÇÃO.80	3.4.1 INTRODUÇÃO		3.4.3 DISPERSÃO CROMÁTICA693.4.4 ANÁLISE MODAL713.5 CONCLUSÕES753.6 BIBLIOGRAFIA76Capítulo 478TÉCNICA PARA CONTROLAR O ZDW784.1 INTRODUÇÃO794.2 FIBRA MICROESTRUTURADA MOF-01P804.2.1 INTRODUÇÃO80	3.4.2 ANALOGIA COM FIBRAS DEGRAU		3.4.4 ANÁLISE MODAL	3.4.3 DISPERSÃO CROMÁTICA		3.5 CONCLUSÕES	3.4.4 ANÁLISE MODAL	71	3.6 BIBLIOGRAFIA	3.5 CONCLUSÕES		Capítulo 4	3.6 BIBLIOGRAFIA		TÉCNICA PARA CONTROLAR O ZDW	Capítulo 4	78	4.1 INTRODUÇÃO	ΤΈΩΝΙΟΑ ΡΑΡΑ CONTROLAR Ο ΖΟΨ	/ ۵	4.2 FIBRA MICROESTRUTURADA MOF-01P. 80 4.2.1 INTRODUÇÃO. 80	4.1 INTRODUCÃO		4.2.1 INTRODUÇÃO	4.2 FIBRA MICROFSTRUTURADA MOF-01P	79. ۱۹		4.21 INTRODUCÃO		4.2.2 ANALISE MODAL PARA MOF-01P 83	4.2.2 ANÁLISE MODAL PARA MOF-01P	
ME IODO DOS ELEMENTOS FINITOS 9 2.1 INTRODUÇÃO. 10 2.2 EQUAÇÃO DE ONDA. 12 2.3 DISCRETIZAÇÃO. 16 2.4 MÉTODO DE GALERKIN. 18 2.5 INTEGRAIS ELEMENTARES. 24 2.6 DOMÍNIO COMPUTACIONAL. 27 2.7 ANÁLISE MODAL 29 2.9 BIBLIOGRAFIA. 30 2.9 BIBLIOGRAFIA. 31 Capítulo 3. 32 VALIDAÇÃO DE RESULTADOS. 32 3.1 INTRODUÇÃO 33 3.2 GEOMETRIA REGULAR. 34 3.2.1 GUIA ÓPTICO CIRCULAR. 36 3.2.2 GEOMETRIA INTEIRA. 37 3.2.3 METADE DA GEOMETRIA INTEIRA. 37 3.2.4 UM QUARTO DA GEOMETRIA INTEIRA. 41 3.4 UM QUARTO DA GEOMETRIA INTEIRA. 45 3.2.5 ANÁLISE DOS RESULTADOS. 49 3.3 FIBRA ÓPTICA. 51 3.3.1 INTRODUÇÃO. 51 3.3.2 FIBRA MONOMODO. 54 3.3.3 ANÁLISE MODAL. 66 3.4 FIBRA ÓPTICA. 62 3.4.1 INTRODUÇÃO. 62 3.4.2 ANALOGIA COM FIBRAS DEGRAU. 67 <td>Capítulo 2</td> <td></td>	Capítulo 2																																																																																																																
21 INTRODUÇÃO. 10 22 EQUAÇÃO DE ONDA. 12 23 DISCRETIZAÇÃO. 16 24 MÉTODO DE GALERKIN 18 25 INTEGRAIS ELEMENTARES. 24 26 DOMÍNIO COMPUTACIONAL. 27 27 ANÁLISE MODAL. 29 28 CONCLUSÕES. 30 29 BIBLIOGRAFIA. 31 Capítulo 3. 32 VALIDAÇÃO DE RESULTADOS. 32 3.1 INTRODUÇÃO. 33 3.2 GEOMETRIA REGULAR. 34 3.2.1 GUIA ÓPTICO CIRCULAR 36 3.2.2 GEOMETRIA REGULAR. 34 3.2.3 METADE DA GEOMETRIA INTEIRA. 37 3.2.3 METADE DA GEOMETRIA INTEIRA. 41 3.2.4 UM QUARTO DA GEOMETRIA INTEIRA. 45 3.2.5 ANÁLISE DOS RESULTADOS. 49 3.3 I INTRODUÇÃO. 51 3.3.2 FIBRA MONOMODO. 54 3.3 JI INTRODUÇÃO. 51 3.3.2 FIBRA MONOMODO. 54 3.3 INTRODUÇÃO. 51 3.3.2 FIBRA MONOMODO. 54 3.3 ANÁLISE MODAL. 56 3.4.1 INTRODUÇÃO. 51 3.5 CONCLUSÕ	METODO DOS ELEMENTOS FINITOS																																																																																																																
22 EQUAÇÃO DE ONDA 12 23 DISCRETIZAÇÃO. 16 24 MÉTODO DE GALERKIN 18 25 INTEGRAIS ELEMENTARES. 24 26 DOMÍNIO COMPUTACIONAL 27 27 ANÁLISE MODAL. 29 28 CONCLUSÕES. 30 29 BIBLIOGRAFIA. 31 Capítulo 3. 32 VALIDAÇÃO DE RESULTADOS. 32 3.1 INTRODUÇÃO. 33 3.2 GEOMETRIA REGULAR. 34 3.2.1 GUIA ÓPTICO CIRCULAR 36 3.2.2 GEOMETRIA INTEIRA. 37 3.2.3 METADE DA GEOMETRIA INTEIRA. 37 3.2.4 UM QUARTO DA GEOMETRIA INTEIRA. 49 3.3 FIBRA ÓPTICA. 51 3.3.1 INTRODUÇÃO. 51 3.3.2 FIBRA MONOMODO. 54 3.3 ANÁLISE MODAL 56 3.4 FIBRA ÓPTICA MICROESTRUTURADA. 62 3.4.1 INTRODUÇÃO. 62 3.4.2 ANALOGIA COM FIBRAS DEGRAU. 67 3.4 DISPERSÃO CROMÁTICA. 69 3.4 JIBRE MODAL 76 3.4 JIBRA ÓPTICA MICROESTRUTURADA. 62 3.4.1 INTRODUÇÃO. 78	2.1 INTRODUÇAO																																																																																																																
2.3 DISCRE ILZAÇÃO. 16 2.4 MÉTODO DE GALERKIN. 18 2.5 INTEGRAIS ELEMENTARES. 24 2.6 DOMÍNIO COMPUTACIONAL. 27 2.7 ANÁLISE MODAL. 29 2.8 CONCLUSÕES. 30 2.9 BIBLIOGRAFIA. 31 Capitulo 3. 32 VALIDAÇÃO DE RESULTADOS. 32 3.1 INTRODUÇÃO. 33 3.2 GEOMETRIA REGULAR. 34 3.2.1 GUIA ÓPTICO CIRCULAR. 36 3.2.2 GEOMETRIA INTEIRA. 37 3.2.3 METADE DA GEOMETRIA INTEIRA. 41 3.2.4 UM QUARTO DA GEOMETRIA INTEIRA. 41 3.2.5 ANÁLISE DOS RESULTADOS. 49 3.3 TIBRA ÓPTICA. 51 3.3.1 INTRODUÇÃO. 51 3.3.2 FIBRA MONOMODO. 54 3.3.3 ANÁLISE MODAL. 56 3.4 FIBRA ÓPTICA MICROESTRUTURADA. 62 3.4.1 INTRODUÇÃO. 51 3.3.2 FIBRA MONOMODO. 54 3.4.1 INTRODUÇÃO. 62 3.4.2 ANALOGIA COM FIBRAS DEGRAU. 67 3.4.3 DISPERSÃO CROMÁTICA. 69 3.4.4 ANÁLISE MODAL 71	2.2 EQUAÇÃO DE ONDA																																																																																																																
2.4 METODO DE GALERKIN. 18 2.5 INTEGRAIS ELEMENTARES. 24 2.6 DOMÍNIO COMPUTACIONAL 27 2.7 ANÁLISE MODAL. 29 2.8 CONCLUSÕES. 30 2.9 BIBLIOGRAFIA. 31 Capítulo 3. 32 VALIDAÇÃO DE RESULTADOS. 32 3.1 INTRODUÇÃO. 33 3.2 GEOMETRIA REGULAR. 34 3.2.1 GUIA ÓPTICO CIRCULAR. 36 3.2.2 GEOMETRIA INTEIRA. 34 3.2.1 GUIA ÓPTICO CIRCULAR. 36 3.2.2 GEOMETRIA INTEIRA. 37 3.2.3 METADE DA GEOMETRIA INTEIRA. 41 3.2.4 UM QUARTO DA GEOMETRIA INTEIRA. 45 3.2.5 ANÁLISE DOS RESULTADOS. 49 3.3 FIBRA ÓPTICA. 51 3.3.1 INTRODUÇÃO. 51 3.3 FIBRA MONOMODO. 54 3.3 S ANÁLISE MODAL 56 3.4 FIBRA ÓPTICA MICROESTRUTURADA. 62 3.4.1 INTRODUÇÃO. 51 3.3.2 FIBRA MONOMODO. 54 3.3 ANÁLISE MODAL 56 3.4 FIBRA ÓPTICA MICROESTRUTURADA 62 3.4.2 ANALOGIA COM FIBRAS DEGRAU.	2.3 DISCRETIZAÇÃO																																																																																																																
2.5 INTEGRAIS ELEMENTARES 24 2.6 DOMÍNIO COMPUTACIONAL 27 2.7 ANÁLISE MODAL 29 2.8 CONCLUSÕES 30 2.9 BIBLIOGRAFIA 31 Capítulo 3. 32 VALIDAÇÃO DE RESULTADOS. 32 3.1 INTRODUÇÃO 33 3.2 GEOMETRIA REGULAR. 34 3.2.1 GUIA ÓPTICO CIRCULAR. 36 3.2.2 GEOMETRIA INTEIRA. 37 3.2.3 METADE DA GEOMETRIA INTEIRA. 41 3.2.4 UM QUARTO DA GEOMETRIA INTEIRA. 41 3.2.5 ANÁLISE DOS RESULTADOS. 49 3.3 FIBRA ÓPTICA. 51 3.3.1 INTRODUÇÃO. 51 3.3.2 FIBRA MONOMODO. 54 3.3.3 ANÂLISE MODAL 56 3.4.1 INTRODUÇÃO. 62 3.4.2 ANALOGIA COM FIBRAS DEGRAU. 67 3.4.2 ANALOGIA COM FIBRAS DEGRAU. 67 3.4.2	2.4 METODO DE GALERKIN																																																																																																																
2.6 DOMINIO COMPUTACIONAL 27 2.7 ANÁLISE MODAL 29 2.8 CONCLUSÕES 30 2.9 BIBLIOGRAFIA 31 Capítulo 3. 32 VALIDAÇÃO DE RESULTADOS 32 3.1 INTRODUÇÃO. 33 3.2 GEOMETRIA REGULAR. 34 3.2.1 GUIA ÓPTICO CIRCULAR. 36 3.2.2 GEOMETRIA REGULAR. 34 3.2.3 METADE DA GEOMETRIA INTEIRA 37 3.2.3 METADE DA GEOMETRIA INTEIRA 41 3.2.4 UM QUARTO DA GEOMETRIA INTEIRA 45 3.2.5 ANÁLISE DOS RESULTADOS. 49 3.3 FIBRA ÓPTICA. 51 3.3.1 INTRODUÇÃO 51 3.3.2 FIBRA MONOMODO 54 3.3.3 ANÁLISE MODAL 56 3.4 FIBRA ÓPTICA MICROESTRUTURADA 62 3.4.1 INTRODUÇÃO 62 3.4.2 ANALOGIA COM FIBRAS DEGRAU 67 3.4.3 DISPERSÃO CROMÁTICA 69 3.4.4 ANÁLISE MODAL 71 3.5 CONCLUSÕES 75 3.6 BIBLIOGRAFIA 76 3.6 BIBLIOGRAFIA 76 3.7 CONCLUSÕES 75 3.	2.5 INTEGRAIS ELEMENTARES																																																																																																																
2.7 ANALISE MODAL 29 2.8 CONCLUSÕES. 30 2.9 BIBLIOGRAFIA 31 Capítulo 3. 32 VALIDAÇÃO DE RESULTADOS. 32 3.1 INTRODUÇÃO. 33 3.2 GEOMETRIA REGULAR. 34 3.2.1 GUIA ÓPTICO CIRCULAR. 36 3.2.2 GEOMETRIA INTEIRA 36 3.2.3 METADE DA GEOMETRIA INTEIRA 37 3.2.3 METADE DA GEOMETRIA INTEIRA 41 3.2.4 UM QUARTO DA GEOMETRIA INTEIRA 45 3.2.5 ANÁLISE DOS RESULTADOS. 49 3.3 FIBRA ÓPTICA 51 3.3.1 INTRODUÇÃO. 51 3.3.2 FIBRA MONOMODO 54 3.3 ANÁLISE MODAL 56 3.4 FIBRA MONOMODO 54 3.3 ANÁLISE MODAL 62 3.4.1 INTRODUÇÃO 62 3.4.1 INTRODUÇÃO 62 3.4.2 ANALOGIA COM FIBRAS DEGRAU 67 3.4.4 ANÁLISE MODAL 71	2.6 DOMINIO COMPUTACIONAL																																																																																																																
2.8 CONCLUSOES	2./ ANALISE MODAL																																																																																																																
2.9 BIBLIOGRAFIA 31 Capítulo 3. 32 VALIDAÇÃO DE RESULTADOS. 32 3.1 INTRODUÇÃO. 33 3.2 GEOMETRIA REGULAR. 34 3.2.1 GUIA ÓPTICO CIRCULAR. 36 3.2.2 GEOMETRIA INTEIRA. 36 3.2.3 METADE DA GEOMETRIA INTEIRA. 37 3.2.3 METADE DA GEOMETRIA INTEIRA. 41 3.2.4 UM QUARTO DA GEOMETRIA INTEIRA. 41 3.2.5 ANÁLISE DOS RESULTADOS. 49 3.3 FIBRA ÓPTICA. 51 3.3.1 INTRODUÇÃO. 51 3.3.2 FIBRA MONOMODO. 54 3.3 ANÁLISE MODAL 56 3.4 FIBRA ÓPTICA MICROESTRUTURADA. 62 3.4.1 INTRODUÇÃO. 62 3.4.2 ANALOGIA COM FIBRAS DEGRAU 67 3.4.3 DISPERSÃO CROMÁTICA. 69 3.4.4 ANÁLISE MODAL 71 3.5 CONCLUSÕES. 75 3.6 BIBLIOGRAFIA. 76 Capítulo 4. 78 <td< td=""><td>2.8 CUNCLUSUES</td><td></td></td<>	2.8 CUNCLUSUES																																																																																																																
Capítulo 3. 32 VALIDAÇÃO DE RESULTADOS. 32 3.1 INTRODUÇÃO. 33 3.2 GEOMETRIA REGULAR. 34 3.2.1 GUIA ÓPTICO CIRCULAR. 36 3.2.2 GEOMETRIA INTEIRA. 37 3.2.3 METADE DA GEOMETRIA INTEIRA. 41 3.2.4 UM QUARTO DA GEOMETRIA INTEIRA. 41 3.2.5 ANÁLISE DOS RESULTADOS. 49 3.3 FIBRA ÓPTICA. 51 3.3.1 INTRODUÇÃO. 51 3.3.2 FIBRA MONOMODO. 54 3.3.3 ANÁLISE MODAL 56 3.4 FIBRA ÓPTICA MICROESTRUTURADA. 62 3.4.1 INTRODUÇÃO. 62 3.4.2 ANALOGIA COM FIBRAS DEGRAU 67 3.4.3 DISPERSÃO CROMÁTICA. 69 3.4.4 ANÁLISE MODAL. 71 3.5 CONCLUSÕES. 75 3.6 BIBLIOGRAFIA. 76 Capítulo 4. 78 TÉCNICA PARA CONTROLAR O ZDW. 78 4.1 INTRODUÇÃO. 79 4.2 FIBRA MICROESTRUTURADA MOF-01P. 80 4.2.1 INTRODUÇÃO. 79	2.9 BIBLIOGRAFIA																																																																																																																
VALIDAÇÃO DE RESULTADOS.323.1 INTRODUÇÃO.333.2 GEOMETRIA REGULAR.343.2.1 GUIA ÓPTICO CIRCULAR.363.2.2 GEOMETRIA INTEIRA.373.2.3 METADE DA GEOMETRIA INTEIRA.373.2.4 UM QUARTO DA GEOMETRIA INTEIRA.413.2.5 ANÁLISE DOS RESULTADOS.493.3 FIBRA ÓPTICA.513.3.1 INTRODUÇÃO.513.3.2 FIBRA MONOMODO.543.3.3 ANÁLISE MODAL563.4 FIBRA ÓPTICA MICROESTRUTURADA.623.4.1 INTRODUÇÃO.623.4.2 ANALOGIA COM FIBRAS DEGRAU.673.4.3 DISPERSÃO CROMÁTICA693.4.4 ANÁLISE MODAL713.5 CONCLUSÕES.753.6 BIBLIOGRAFIA.76Capítulo 4.78TÉCNICA PARA CONTROLAR O ZDW.784.1 INTRODUÇÃO.794.2 FIBRA MICROESTRUTURADA MOF-01P.804.2.1 INTRODUÇÃO.80	Capítulo 3	32																																																																																																															
3.1 INTRODUÇÃO	VALIDAÇÃO DE RESULTADOS																																																																																																																
3.2 GEOMETRÍA REGULAR. 34 3.2.1 GUIA ÓPTICO CIRCULAR. 36 3.2.2 GEOMETRIA INTEIRA. 37 3.2.3 METADE DA GEOMETRIA INTEIRA. 41 3.2.4 UM QUARTO DA GEOMETRIA INTEIRA. 45 3.2.5 ANÁLISE DOS RESULTADOS. 49 3.3 FIBRA ÓPTICA. 51 3.3.1 INTRODUÇÃO. 51 3.3.2 FIBRA MONOMODO. 54 3.3 ANÁLISE MODAL 56 3.4 FIBRA ÓPTICA MICROESTRUTURADA 62 3.4.1 INTRODUÇÃO. 62 3.4.2 ANALOGIA COM FIBRAS DEGRAU. 67 3.4.3 DISPERSÃO CROMÁTICA. 69 3.4.4 ANÁLISE MODAL 71 3.5 CONCLUSÕES 75 3.6 BIBLIOGRAFIA. 76 Capítulo 4. 78 TÉCNICA PARA CONTROLAR O ZDW. 78 4.1 INTRODUÇÃO. 79 4.2 FIBRA MICROESTRUTURADA MOF-01P. 80 4.2.1 INTRODUÇÃO. 80 4.2.1 INTRODUÇÃO. 80	3.1 INTRODUCÃO																																																																																																																
3.2.1 GUIA ÓPTICO CIRCULAR	3.2 GEOMETRIA REGULAR																																																																																																																
3.2.2 GEOMETRIA INTEIRA373.2.3 METADE DA GEOMETRIA INTEIRA413.2.4 UM QUARTO DA GEOMETRIA INTEIRA453.2.5 ANÁLISE DOS RESULTADOS493.3 FIBRA ÓPTICA513.3.1 INTRODUÇÃO513.2 FIBRA MONOMODO543.3 ANÁLISE MODAL563.4 FIBRA ÓPTICA MICROESTRUTURADA623.4.1 INTRODUÇÃO623.4.2 ANALOGIA COM FIBRAS DEGRAU673.4.3 DISPERSÃO CROMÁTICA693.4.4 ANÁLISE MODAL713.5 CONCLUSÕES753.6 BIBLIOGRAFIA76Capítulo 478TÉCNICA PARA CONTROLAR O ZDW784.1 INTRODUÇÃO794.2 FIBRA MICROESTRUTURADA MOF-01P804.1 INTRODUÇÃO80	3.2.1 GUIA ÓPTICO CIRCULAR																																																																																																																
3.2.3 METADE DA GEOMETRIA INTEIRA.413.2.4 UM QUARTO DA GEOMETRIA INTEIRA453.2.5 ANÁLISE DOS RESULTADOS493.3 FIBRA ÓPTICA.513.3.1 INTRODUÇÃO.513.2 FIBRA MONOMODO.543.3 ANÁLISE MODAL563.4 FIBRA ÓPTICA MICROESTRUTURADA.623.4.1 INTRODUÇÃO.623.4.2 ANALOGIA COM FIBRAS DEGRAU.673.4.3 DISPERSÃO CROMÁTICA.693.4.4 ANÁLISE MODAL.713.5 CONCLUSÕES.753.6 BIBLIOGRAFIA.76Capítulo 4.78TÉCNICA PARA CONTROLAR O ZDW.784.1 INTRODUÇÃO.794.2 FIBRA MICROESTRUTURADA MOF-01P.804.2 I INTRODUÇÃO.80	3.2.2 GEOMETRIA INTEIRA																																																																																																																
3.2.4 UM QUARTO DA GEOMETRIA INTEIRA	3.2.3 METADE DA GEOMETRIA INTEIRA																																																																																																																
3.2.5 ANÁLISE DOS RESULTADOS	3.2.4 UM QUARTO DA GEOMETRIA INTEIRA																																																																																																																
3.3 FIBRA ÓPTICA	3.2.5 ANÁLISE DOS RESULTADOS																																																																																																																
3.3.1 INTRODUÇÃO.513.3.2 FIBRA MONOMODO.543.3.3 ANÁLISE MODAL.563.4 FIBRA ÓPTICA MICROESTRUTURADA.623.4.1 INTRODUÇÃO.623.4.2 ANALOGIA COM FIBRAS DEGRAU.673.4.3 DISPERSÃO CROMÁTICA.693.4.4 ANÁLISE MODAL.713.5 CONCLUSÕES.753.6 BIBLIOGRAFIA.76Capítulo 4.78TÉCNICA PARA CONTROLAR O ZDW.784.1 INTRODUÇÃO.794.2 FIBRA MICROESTRUTURADA MOF-01P.804.2.1 INTRODUÇÃO.804.2.1 INTRODUÇÃO.80	3.3 FIBRA ÓPTICA																																																																																																																
3.3.2 FIBRA MONOMODO.543.3.3 ANÁLISE MODAL563.4 FIBRA ÓPTICA MICROESTRUTURADA.623.4.1 INTRODUÇÃO.623.4.2 ANALOGIA COM FIBRAS DEGRAU.673.4.3 DISPERSÃO CROMÁTICA693.4.4 ANÁLISE MODAL.713.5 CONCLUSÕES.753.6 BIBLIOGRAFIA.76Capítulo 4.78TÉCNICA PARA CONTROLAR O ZDW.784.1 INTRODUÇÃO.794.2 FIBRA MICROESTRUTURADA MOF-01P.804.2.1 INTRODUÇÃO.80	3.3.1 INTRODUÇÃO	51																																																																																																															
3.3.3 ANÁLISE MODAL563.4 FIBRA ÓPTICA MICROESTRUTURADA623.4.1 INTRODUÇÃO623.4.2 ANALOGIA COM FIBRAS DEGRAU673.4.3 DISPERSÃO CROMÁTICA693.4.4 ANÁLISE MODAL713.5 CONCLUSÕES753.6 BIBLIOGRAFIA76Capítulo 478TÉCNICA PARA CONTROLAR O ZDW784.1 INTRODUÇÃO794.2 FIBRA MICROESTRUTURADA MOF-01P804.2.1 INTRODUÇÃO80	3.3.2 FIBRA MONOMODO	54																																																																																																															
3.4 FIBRA ÓPTICA MICROESTRUTURADA.623.4.1 INTRODUÇÃO.623.4.2 ANALOGIA COM FIBRAS DEGRAU.673.4.3 DISPERSÃO CROMÁTICA.693.4.4 ANÁLISE MODAL.713.5 CONCLUSÕES.753.6 BIBLIOGRAFIA.76Capítulo 4.78TÉCNICA PARA CONTROLAR O ZDW.784.1 INTRODUÇÃO.794.2 FIBRA MICROESTRUTURADA MOF-01P.804.2.1 INTRODUÇÃO.80	3.3.3 ANÁLISE MODAL																																																																																																																
3.4.1 INTRODUÇÃO623.4.2 ANALOGIA COM FIBRAS DEGRAU673.4.3 DISPERSÃO CROMÁTICA693.4.4 ANÁLISE MODAL713.5 CONCLUSÕES753.6 BIBLIOGRAFIA76Capítulo 478TÉCNICA PARA CONTROLAR O ZDW784.1 INTRODUÇÃO794.2 FIBRA MICROESTRUTURADA MOF-01P804.2.1 INTRODUÇÃO80	3.4 FIBRA ÓPTICA MICROESTRUTURADA																																																																																																																
3.4.2 ANALOGIA COM FIBRAS DEGRAU.673.4.3 DISPERSÃO CROMÁTICA.693.4.4 ANÁLISE MODAL.713.5 CONCLUSÕES.753.6 BIBLIOGRAFIA.76Capítulo 4.78TÉCNICA PARA CONTROLAR O ZDW.784.1 INTRODUÇÃO.794.2 FIBRA MICROESTRUTURADA MOF-01P.804.2.1 INTRODUÇÃO.804.2.1 INTRODUÇÃO.80	3.4.1 INTRODUÇÃO																																																																																																																
3.4.3 DISPERSÃO CROMÁTICA693.4.4 ANÁLISE MODAL713.5 CONCLUSÕES753.6 BIBLIOGRAFIA76Capítulo 478TÉCNICA PARA CONTROLAR O ZDW784.1 INTRODUÇÃO794.2 FIBRA MICROESTRUTURADA MOF-01P804.2.1 INTRODUÇÃO80	3.4.2 ANALOGIA COM FIBRAS DEGRAU																																																																																																																
3.4.4 ANÁLISE MODAL	3.4.3 DISPERSÃO CROMÁTICA																																																																																																																
3.5 CONCLUSÕES	3.4.4 ANÁLISE MODAL	71																																																																																																															
3.6 BIBLIOGRAFIA	3.5 CONCLUSÕES																																																																																																																
Capítulo 4	3.6 BIBLIOGRAFIA																																																																																																																
TÉCNICA PARA CONTROLAR O ZDW	Capítulo 4	78																																																																																																															
4.1 INTRODUÇÃO	ΤΈΩΝΙΟΑ ΡΑΡΑ CONTROLAR Ο ΖΟΨ	/ ۵																																																																																																															
4.2 FIBRA MICROESTRUTURADA MOF-01P. 80 4.2.1 INTRODUÇÃO. 80	4.1 INTRODUCÃO																																																																																																																
4.2.1 INTRODUÇÃO	4.2 FIBRA MICROFSTRUTURADA MOF-01P	79. ۱۹																																																																																																															
	4.21 INTRODUCÃO																																																																																																																
4.2.2 ANALISE MODAL PARA MOF-01P 83	4.2.2 ANÁLISE MODAL PARA MOF-01P																																																																																																																

4.2.3 ANÁLISE MODAL PARA MOF-01P-DN	
4.2.4 EXPERIMENTAL MOF-01P-DN	
4.3 FIBRA MICROESTRUTURADA MOF-03H	
4.3.1 INTRODUÇÃO	
4.3.2 ANÁLISE MODAL PARA MOF-03H	
4.3.3 ANÁLISE MODAL PARA MOF-03H-DN	
4.4 CONCLUSÕES	
4.5 BIBLIOGRAFIA	117
Capítulo 5	
CONCLUSÕES E TRABALHOS FUTUROS	
5.1 CONCLUSÕES	
5.2 TRABALHOS FUTUROS	120
APÊNDICES	
Apêndice A	
CONDICÕES DE CONTORNO	
A.1 INTERFACE NATURAL	
A.2 INTERFACE LIVRE DE FONTES	
A.3 PAREDE ELÉTRICA PERFEITA	
A.4 PAREDE MAGNÉTICA PERFEITA	
A.5 GUIA DE ONDA	125
Apêndice B	
INTEGRAIS DE LINHA	
B.1 INTRODUÇÃO	
B.2 INTEGRAL L 1	129
B.2.1 ARESTA EXTERNA	129
B.2.2 ARESTA INTERNA	130
B.3 INTEGRAL L 3	132
B.3.1 ARESTA EXTERNA	133
B.3.2 ARESTA INTERNA	135
Apêndice C	136
MATRIZAÇÃO	136
C.1 INTEGRAL DE LINHA	
C.2 INTEGRAIS DE SUPERFÍCIE	137
C.3 MATRIZES GLOBAIS	139
Apêndice D	143
ELEMENTOS TRIANGULARES	143
D.1 ELEMENTO TRIANGULAR LINEAR	143
D.2 ELEMENTO TRIANGULAR QUADRÁTICO	145
D.3 TRANSFORMAÇÃO DO SISTEMA GLOBAL AO SISTEMA LOCAL	148
Apêndice E	151
INTEGRAIS ELEMENTARES DE LINHA	151
E.1 INTRODUÇÃO	151
E.2 LADO 1–2	151

E.3 LADO 2–3	
E.4 LADO 3–1	154
Apêndice F	157
MATRIZES ELEMENTARES	157
F1 ELEMENTO TRIANGULAR LINEAR	157
F.2 ELEMENTO TRIANGULAR QUADRÁTICO	
Apêndice G	
EQUAÇÃO DE SELLMEIER	
Apêndice H	
FIBRAS AFUNILADAS	
H.1 INTRODUÇÃO	
H.2 ANÁLISE MODAL	
H.3 FIBRA AFUNILADA	
H.4 FIBRA AFUNILADA – SENSOR	
H.5 ACOPLAMENTO	
H.5.1 FIBRA MICROESTRUTURADA PCF07	
H.5.2 ACOPLADOR – FIBRA AFUNILADA	
H.5.3 ACOPLAMENTO TA-PCF07	
H.5.4 ACOPLAMENTO TX-PCF07	
H.5.5 ACOPLAMENTO TY-PCF07	
H.6 CONCLUSÕES	
H.7 BIBLIOGRAFIA	
PUBLICAÇÕES ASSOCIADAS À TESE	100

LISTA DE FIGURAS

Fig. 1-1. Esquema do Método dos Elementos Finitos	2
Fig. 1–2. Esquema da Tese	5
Fig. 2–1. Descrição esquematizada do método dos elementos finitos.	11
Fig. 2–2. (a) Seção do guia de onda imerso em um meio dielétrico, com domínio S, numa janela	
computacional. As cores mostram os diferentes materiais. (b) A malha é a discretização	do
guia de onda por elementos triangulares.	
Fig. 2–3. Seção transversal do guia de onda rodeado por PMLs e paredes PEC e/ou PMC	28
Fig. 3–1. Janelas de simulação, onde o centro do guia óptico coincide com o centro do sistema de	
coordenadas XY. Combinações possíveis de PEC e PMC, para geometria inteira (1), pa	ra
metade da geometria $(\frac{1}{2})$ e para um quarto de geometria $(\frac{1}{4})$.	34
Fig. 3–2. Guia óptico circular. Material 1 é o núcleo com diâmetro 2a e material 2 é a casca	36
Fig. 3–3. Janela computacional para geometria inteira do guia óptico circular. Desenho do guia e m	alha
com a configuração para esta geometria	37
Fig. 3–4. Para o guia óptico circular, utilizando a geometria inteira. (a) Parte real do índice efetivo	e (b)
Fração de potência no núcleo, dos dezesseis modos de propagação encontrados	
Fig. 3–5. Distribuição espacial do campo Hy ² normalizado, para cinco modos calculados, usando	a
geometria inteira do guia circular para o comprimento de onda $\lambda = 1,55 \mu\text{m}$	39
Fig. 3-6. Janela computacional para metade da geometria inteira do guia óptico circular. Desenho o	lo
guia e malha com a configuração para esta geometria	41
Fig. 3–7. Para o guia circular, utilizando metade da geometria inteira, para a configuração PMh. (a))
Parte real do índice efetivo e (b) Fração de potência no núcleo, dos modos de propagaç	ão
encontrados	42
Fig. 3–8. Distribuição espacial do campo Hy ² normalizado, dos modos calculados, usando a meta	le da
geometria do guia circular óptico para o comprimento de onda $\lambda = 1,55 \ \mu\text{m}$. Foi usado	a
configuração PMh	44
Fig. 3–9. Janela computacional para um quarto da geometria inteira do guia optico circular. Desenl	10 do
guia e a malha para esta geometria.	45
Fig. 3–10. Parte real do indice efetivo dos modos encontrados. Utilizando um quarto da geometria	N /
inteira do guia circular. (a) Para configuração PMIN-PEV e (b) para configuração PMIN-P	INIV.
Fig. 2, 11 Distribuição aspecial do compo Hul ² normalizado dos modos calculados, usando um qu	40 arto
rig. 5–11. Distribuição espacial do campo $ riy $ normalizado dos modos calculados, usando um qu da geometria inteira do guia circular para o comprimento de onda $\lambda = 1.55$ µm. Usando	
configurações PMh-PEV e Pmh-PMV	as 48
Fig. 3–12 Comparação das partes reais dos índices efetivos (n _{err} analítico e n _{err} numérico das três	40
rig. 5 12. Comparação das partes reals dos indices cienvos (n_{EFF} analítico) em função dos geometrias) e o seus erros absolutos (comparando com o n _{EFF} analítico) em função dos	,
cinco modos calculados para o guia circular em $\lambda = 1.55$ µm	50
Fig 3–13 Seção transversal de uma fibra óptica típica, onde o material 1 é o púcleo, o material 2 é	90 . a
casca e os materiais 3 e 4 são os revestimentos	51
Fig. 3–14. Corte longitudinal da fibra óptica mostrando o fenômeno de reflexão total interna.	51
Fig. 3–15. Índice degrau para uma fibra óptica, onde n_{NUC} é n_{SU} são os índices de refração do núcle	o e
da casca respectivamente.	53
Fig. 3–16. (a) Seção transversal de um quarto da fibra monomodo usado para a análise modal. (b)	
Malha de elementos finitos para esta geometria.	56
Fig. 3-17. (a) Parte real do índice efetivo calculado numericamente e analítico. (b) Índice de grupo	do

modo fundamental da fibra monomodo	.57
Fig. 3–18. Distribuição espacial do campo $ HY ^2$ normalizado do modo HE_{11}^{Y} considerando o	
comprimento de onda λ . (a) Para $\lambda = 0,4 \mu m$ e (b) para $\lambda = 1,8 \mu m$.58
Fig. 3–19. Fração de potência do modo fundamental no núcleo e na casca	.59
Fig. 3–20. Área efetiva e diâmetro efetivo da fibra monomodo	.60
Fig. 3–21. Dispersão cromática calculada por simulação e experimentalmente	.60
Fig. 3–22. Fotografia SEM de uma MOF de sílica, composta por um núcleo sólido rodeado por sete	
anéis de buracos. A estrutura está formado por um arranjo triangular periódico de buracos	3
de ar sobre o material da casca	.62
Fig. 3–23. Índice de refração efetivo n _{FSM} de uma estrutura triangular de buracos de ar, como função de	do
comprimento de onda. O índice da Sílica pura esta denotada pela linha preta	.64
Fig. 3–24. Exemplos de MOFs de sílica que guiam pelo núcleo. Fotografías SEM das seções	
transversais das fibras com estruturas triangulares	.65
Fig. 3–25. Frequência efetiva V _{eff} em função do comprimento de onda	.67
Fig. 3–26. Dispersão do material para a sílica pura em função do comprimento de onda	.69
Fig. 3–27. (a) Estrutura da MOF de sílica e ar que será modelada e, (b) a malha utilizada onde os	
resultados são comparados com os de outras simulações	.71
Fig. 3–28. Distribuição espacial dos campos normalizados para $ Hx ^2 e Hy ^2$, de acordo com o campo	0
dominante, dos modos 2, 3 e 7, respectivamente, que pertencem as três primeiras ordens,	da
MOF simulada considerando o comprimento de onda $\lambda = 1,45 \ \mu m$.72
Fig. 3–29. Tabela de comparação dos índices efetivos n _{eff} para os primeiros dez modos da MOF,	
calculados por diferentes métodos [34], para $\lambda = 1,45 \ \mu m$.73
Fig. 3–30. Erro absoluto do índice efetivo entre a solução obtida – modelo <i>full-vector nodal</i> FEM – e	a
obtida por outros métodos [32, 33, 34] para os primeiros dez modos da MOF para $\lambda = 1,4$	15
μm	.74
Fig. 4–1. Esquemas da seções transversais das fibras microestruturadas propostas. (a) A MOF-01P pa	ara
a fibra sem o filme. (b) A MOF-03H para a fibra com filme	.79
Fig. 4–2. Esquema da seção transversal da fibra microestruturada proposta. (a) A MOF-01P para a fil	ora
sem o filme. (b) A MOF-01P-DN para a fibra com filme cobrindo as paredes internas dos	5
buracos	.81
Fig. 4–3. Malha de elementos finitos e a seção transversal de um quarto da fibra usado nesta análise.	
Localização das paredes PEC e PMC	.82
Fig. 4–4. Parte real do índice efetivo Re[n _{EFF}]. (b) Fração de potência no núcleo e área efetiva.	
Comportamentos do modo fundamental HE ₁₁ ^Y para a fibra MOF-01P em função do	
comprimento de onda	.83
Fig. 4–5. (a) Dispersão cromática para o modo fundamental HE_{11}^{Y} em função do comprimento de ono	da.
(b) Distribuição espacial do campo $ HY ^2$ normalizado do modo fundamental HE_{11}^{Y} da fib	ora
MOF-01P considerando o comprimento de onda $\lambda = 1.55 \ \mu m$.84
Fig. 4-6. Distribuições espaciais para os campos HY ² e HX ² normalizados, de acordo com o campo	Э
dominante, dos modos de ordem superior, de 2ª até 9ª ordem, da fibra MOF-01P	
considerando o comprimento de onda $\lambda = 1,55 \ \mu m$.86
Fig. 4–7. Partes reais dos índices efetivos dos modos, no núcleo, de ordem superior em função do	
comprimento de onda, para a fibra MOF-01P	.87
Fig. 4–8. Parte real do índice efetivo e fração de potência no núcleo, do modo HE_{11}^{Y} , em função do	
comprimento de onda e de diferentes valores de n_{FIL} . Para espessuras do filme de (a) e (b)
50 nm e, (c) e (d) 100 nm.	.89
Fig. 4–9. Parte real do índice efetivo e fração de potência no núcleo, do modo HE_{11}^{Y} , em função do	
comprimento de onda e de diferentes valores de n _{FIL} . Para espessuras do filme de (a) e (b)

200 nm e, (c) e (d) 500 nm	0
Fig. 4–10. Perfis normalizados para $ HY ^2$ do modo principal. Neste caso d _{FIL} = 50 nm, o comprimento	
de onda é $\lambda = 1.55 \mu\text{m}$, e foram considerados quatro valores para o índice do filme: (a) n _{FIL}	
= 1,32, (b) n_{FIL} = 2,50, (c) n_{FIL} = 3,00, e (d) n_{FIL} = 3,50	1
Fig. 4–11. Perfis normalizados para $ HY ^2$ do modo principal. Neste caso d _{FIL} = 100 nm, o índice do	
filme é n _{FIL} = 2,00 e foram considerados quatro valores para o comprimento de onda: (a) λ =	=
$0,4 \ \mu\text{m}, (b) \ \lambda = 0,8 \ \mu\text{m}, (c) \ \lambda = 1,2 \ \mu\text{m}, e(d) \ \lambda = 1,8 \ \mu\text{m}.$	2
Fig. 4–12. Curvas da dispersão cromática em função do comprimento de onda. A linha tracejada	
vertical indica o ZDW da fibra fotônica sem o filme. Comportamento da dispersão (a) para	
$d_{FIL} = 50 \text{ nm e } n_{FIL} = 1,32, 2,10, 2,30, 2,50, 2,75 \text{ e } 3,00;$ (b) para $d_{FIL} = 100 \text{ nm e } n_{FIL} = 1,32,$	
1,75, 2,00 e 2,10; (c) para $d_{FIL} = 200 \text{ nm e } n_{FIL} = 1,32, 1,50, 1,60, 1,70, 1,75 \text{ e } 1,80; \text{ e } (d)$	
para $d_{FIL} = 500 \text{ nm e } n_{FIL} = 1,32, 1,50, 1,52, 1,53, 1,54 \text{ e } 1,5593$	3
Fig. 4–13. Curvas da dispersão cromática em função do comprimento de onda. A linha tracejada	
vertical indica o ZDW da fibra fotônica sem o filme. Comportamento da dispersão para	
diferentes valores de d _{FIL} e (a) para $n_{FIL} = 2,00$, e (b) para $n_{FIL} = 2,10$	5
Fig. 4–14. Dispersão cromática em função do comprimento de onda. (a) Curvas de sensibilidade para	
$d_{FIL} = 50 \text{ nm e } n_{FIL} = 2,72, 2,73, 2,74, 2,75, 2,76, 2,77 \text{ e } 2,78.$ (b) Curvas de sensibilidade	
para $n_{FIL} = 2,75$ e $d_{FIL} = 47, 48, 49, 50, 51, 52$ e 53 nm	6
Fig. 4–15. Parte real do índice para os modos do núcleo em função de comprimento de onda. Curvas	
(a) para $d_{FIL} = 50 \text{ nm e } n_{FIL} = 2,10$; (b) para $d_{FIL} = 50 \text{ nm e } n_{FIL} = 3,00$; (c) para $d_{FIL} = 100 \text{ nm}$	Ĺ
$e n_{FIL} = 2,10 e;$ (d) para $d_{FIL} = 500 nm e n_{FIL} = 1,5419'$	7
Fig. 4–16. (Esquerda) Esquema da preforma de uma fibra microestruturada, formada por dois tipos de	
vidro. (Direita) Esquema da injeção dos QDs na fibra99	9
Fig. 4–17. (a) Imagem de microscopia de varredura (SEM) da fibra microestruturada de sílica MOF-	
01P. Fotografia do campo para o modo fundamental em 473 nm100	0
Fig. 4–18. (a) Fotografia da luminescência dos QDs de CdSe/ZnS na fibra MOF-01P quando é	
bombeada em 473nm (laser azul). (b) Espectro de fotoluminescência dos QDs de CdSe/ZnS	5
QDs na fibra MOF-01P10	1
Fig. 4–19. Esquema da seção transversal da fibra microestruturada proposta. (a) A MOF-03H para a	
fibra sem o filme. (b) A MOF-03H-DN para a fibra com filme cobrindo as paredes internas	
dos buracos102	2
Fig. 4–20. Malha de elementos finitos e a seção transversal da metade da fibra MOF-03H usada nesta	
análise. Localização das paredes PEC e PMC	4
Fig. 4–21. (a) Parte real do índice efetivo Re[n_{EFF}]. (b) Fração de potência no núcleo e área efetiva.	
Comportamentos do modo fundamental HE_{11} ⁺ para a fibra MOF-03H em função do	_
comprimento de onda	5
Fig. 4–22. (a) Dispersão cromática para o modo fundamental HE_{11}^{-1} em função do comprimento de	
onda. (b) Seção transversal da metade da fibra MOF-03H usada nesta analise. (c)	
Distribuição espacial do campo $ HY ^2$ normalizado do modo fundamental HE_{11}^{-1} da fibra	~
MOF-03H considerando o comprimento de onda $\lambda = 1.55 \mu\text{m}$	b
Fig. 4–23. Distribuições espaciais para os campos HY ² normalizados dos modos de ordem superior da	
fibra MOF-03H considerando o comprimento de onda $\lambda = 1,55 \mu\text{m}10^{\circ}$	/
Fig. 4–24. Parte real do indice efetivo e fração de potência no núcleo, do modo HE_{11} , em função do	
comprimento de onda e de diferentes valores de n_{FIL} . Para espessuras do filme de (a) e (b)	^
SU INT E, (C) E (a) 100 Nm	J
rig. 4–25. rarie real do indice eletivo e iração de potencia no nucleo, do modo HE ¹¹¹ , em função do	
comprimento de onda e de diferentes valores de n_{FIL} . Para espessuras do filme de (a) e (b)	1
100 nm e, (c) e(a) 500 nm11	1

Fig. 4–26. Perfis normalizados para $ HY ^2$ do modo principal. Neste caso d _{FIL} = 50 nm, o comprimento de onda é λ = 1,55 µm, e foram considerados quatro valores para o índice do filme: (a) n _{FIL} = 1.45 (b) n _{FIL} = 2.50 (c) n _{FIL} = 2.80 e (d) n _{FIL} = 3.00 112
Fig. 4–27. Perfis normalizados para $ HY ^2$ do modo principal. Neste caso n _{FIL} = 2,00, o comprimento de onda é λ = 1,55 µm e foram considerados quatro valores para a espessura do filme: (a) d _{FIL} = 50 nm, (b) d _{FIL} = 100 nm, (c) d _{FIL} = 200 nm, e (d) d _{FIL} = 500 nm
Fig. 4–28. Curvas da dispersão cromática em função do comprimento de onda. A linha tracejada vertical indica o ZDW da fibra fotônica sem o filme. Comportamento da dispersão (a) para $d_{FIL} = 50$ nm e $n_{FIL} = 2,00, 2,30, 2,50, 2,70, e 2,74$; (b) para $d_{FIL} = 100$ nm e $n_{FIL} = 1,80, 1,90, 2,00, 2,10 e 2,14$; (c) para $d_{FIL} = 200$ nm e $n_{FIL} = 1,50, 1,70, 1,75, 1,77, e 1,78$; e (d) para $d_{FIL} = 500$ nm e $n_{FIL} = 1,45, 1,50, 1,52, 1,54, e 1,55$
Fig. A-1. Interface entre dois meios.122Fig. A-2. Seção transversal de um guia de onda em um meio dielétrico.124
Fig. B–1. Esquema das linhas, arestas internas L ie e arestas externas L we , numa malha arbitrária formada de elementos triangulares quadráticos (seis nós para cada elemento cuja numeração está em verde)
 Fig. B–2. Meio dielétrico de permissividade ε e permeabilidade μ₀ rodeado de paredes condutoras perfeitas. Campos E e H nas paredes (a) PEC – condutor elétrico perfeito - vertical e horizontal e (b) PMC – condutor magnético perfeito - vertical e horizontal
 Fig. B–3. Esquema de arestas internas L_{ie} numa malha arbitrária formada de elementos triangulares vizinhos (e_i, e_j) de meios diferentes. As setas indicam o sentido de integração das integrais de linha
Fig. C–1. Elemento triangular
Fig. D–1. Elemento triangular linear
 Fig. D–3. Mudança 1 κ do elemento triangular inicar do sistema de coordenadas giobais X 1 para o sistema de coordenadas locais ξ η
 Fig. D–5. Funções de base N_{eA} e N_{eD} para elementos triangulares quadráticos. O nó A esta no vértice e nó D esta no ponto médio do lado
o sistema de coordenadas locais $\xi \eta$
Fig. E–1. Mudança T _K do elemento triangular linear do sistema de coordenadas globais XY para o sistema de coordenadas locais ξ n 151
Fig. E–2. Elemento triangular linear no sistema de coordenadas globais XY
Fig. G-1. Parte real do índice de refração para a sílica pura usando a formulação de Sellmeier163
 Fig. H–1. Desenho de uma fibra óptica convencional a diferentes escalas
 Fig. H–3 (a). Distribuição espacial do campo HY ² normalizado do modo HE₁₁^Y da fibra monomodo reduzida SMF-XX % .Para SMF-100 % (4,1; 62,5) μm; SMF-75 % (3,075; 46,875) μm e SMF-50 % (2,050; 31,25) μm. Os pares ordenados indicam os raios do núcleo e da fibra respectivamente.

Fig. H–3 (b). Distribuição espacial do campo HY ² normalizado do modo HE ₁₁ ^Y da fibra monomodo reduzida SMF-XX % Para SMF-25 % (1 025: 15 625) µm e SMF-10 % (0 41: 6 25) µm
Os pares ordenados indicam os raios do núcleo e da fibra respectivamente
Fig H-4 (a) Área efetiva e (b) Dispersão cromática do modo para diferentes escalas da fibra
monomodo 169
Fig H-5 (a) Esquema de fabricação da fibra com o diâmetro reduzido (b) Equipamento para fabricar
a fibra afunilada
Fig. H–6. Fotografías da fabricação da fibra afunilada usando uma fibra comercial monomodo. A
sequência está em números173
Fig. H–7. Fotografias de microscópio óptico numa fibra afunilada multimodo. Sem sinal e com sinal de
uma fonte de luz branca174
Fig. H–8. Potência transmitida das fibras afuniladas com cintura d _{NN}
Fig. H–9. Fibra afunilada monomodo utilizada como sensor. Montagem de medição. O material fica na
região colorida176
Fig. H–10. Potência transmitida da fibra afunilada de cintura d = $9,3 \mu m$ com diferentes materiais177
Fig. H–11. Potência transmitida normalizada da fibra afunilada de cintura d = 14 μ m com diferentes
materiais178
Fig. H–12. Potência transmitida da fibra afunilada – sensor de cintura d = 14 μ m com diferentes
materiais179
Fig. H–13. Intensidade dos dois picos da transmitância para uma fibra afunilada – sensor com cintura
de 14 µm. Dados extraídos da Figura H–12180
Fig. H–14. Acoplamento de dois guias de onda
Fig. H–15. (a) Fotografia SEM da fibra microestruturada PCF07. (b) Distribuição espacial dos modos
de 1 ^a e 2 ^a ordem da PCF07 para o comprimento de onda $\lambda = 0,98 \mu m$
Fig. H–16. (a) Malha de elementos finitos usado para a análise modal da fibra microstruturada PCF07.
(b) Ampliação da malha refinada próximo do núcleo183
Fig. H–17. Parte real do índice efetivo e área efetiva do modo fundamental da fibra PCF07184
Fig. H–18. Distribuição espacial do campo HY ² normalizado dos modos calculados da fibra PCF07
para o comprimento de onda $\lambda = 0.98 \ \mu m$
Fig. H–19. Comparação entre fibra microestruturada PCF07 e fibra monomodo -escala 3.6%. Parte real
do índice efetivo e área efetiva do modo fundamental
Fig. H–20. (a) Possíveis clivagens na fibra afunilada. Resultados da clivagem, dois acopladores: (b)
Acoplador-afunilada TXnn, (c) Acoplador-afunilada TYnn186
Fig. H–21. (a) Processo de "fabricação" do acoplador TAnn na fibra afunilada. (b) Acopladores TAnn.
Fig. H–22. (a) Acoplamento de TA01 com a fibra fotônica PCF07. (b) Potência transmitida para os
acoplamentos das fibras afuniladas TAnn e fibra normal T00188
Fig. H–23. Fotografias dos acoplamentos para TXnn com a fibra microestruturada PCF07190
Fig. H–24. Potência transmitida através dos acoplamentos TX–PCF07191
Fig. H–25. Fotografias dos acoplamentos para TYnn com a fibra microestruturada PCF07192
Fig. H–26. Potência transmitida através dos acoplamentos TY–PCF07193
Fig. H–27. Potência ganha no acoplamento utilizando as fibras afuniladas TYnn193

LISTA DE TABELAS

Tabela 2–1. Descrição dos parâmetros relativos às PMLs	
Tabela 3-1. Parte real dos índices efetivos dos 16 modos encontrados para o guia óptico circula	ar com
geometria inteira no comprimento de onda de 1,55 µm	
Tabela 3–2. Parte real dos indices efetivos dos modos encontrados para o guia optico circular c	OM
Tabala 2, 2 Darta real des índices efetives des modes encentrades pars e quis éntice circular e	PIVIN. 43
rabeia 5-5. Parte real dos indices eletivos dos indicos encontrados para o guia opuco circular c	om um
PEv e PMh-PMy	25 F MIII-
Tabela 3–4 - Comparação entre partes reais dos índices efetivos para o comprimento de onda i	
1.55 µm. dos modos do guia circular.	49
Tabela 3–5. Especificações ópticas e geométricas para uma fibra óptica monomodo comercial S	SMF-
28e	54
Tabela 3–6 Índices efetivos – parte real e imaginária – e atenuação dos dez primeiros modos	
calculados da MOF (Figura 3–27) para $\lambda = 1,45 \ \mu m$	73
Tabela 4–1. Parâmetros para análise modal da fibra MOF-01P-DN	
Tabela 4–2. Deslocamentos de ZDW tendo com referência $\lambda_{ZDW0} = 1,15 \mu\text{m}$	94
Tabela 4–3. Parâmetros para análise modal da fibra MOF-03H-DN	
Tabela 4–4. Deslocamentos de ZDW tendo com referência $\lambda_{ZDW0} = 1,19 \ \mu m$	
Tabela H–1. Variação da transmitância normalizada obtida para um sensor de fibra afunilada	
monomodo, Figura H–11, para misturas de água e isopropanol	
Tabela H-2. Variação da transmitância obtida para um sensor de fibra afunilada monomodo, Fi	gura H–
12, para misturas de água e etanol	179

LISTA DE ACRÔNIMOS

ZDW	- Zero Dispersion Wavelength	_	Comprimento de onda da Dispersão Zero.
MOF	- Microstructured Optical Fiber	_	Fibra Óptica Microestruturada.
FEM	- Finite Element Method	_	Método dos Elementos Finitos.
PML	- Perfectly Matched Layer	_	Camada Perfeitamente Casada.
PEC	- Perfect Electric Conductor	_	Condutor Elétrico Perfeito.
PMC	- Perfect Magnetic Conductor	_	Condutor Magnético Perfeito.
LED	- Light Emitting Diode	_	Diodo Emissor de Luz.
SMF	– Single Mode Fiber	_	Fibra Monomodo.
PCF	- Photonic Crystal Fiber	_	Fibra Fotônica.
PBG	- Photonic Band Gap	_	Banda Proibida Fotônica.
FDM	- Finite Difference Method	_	Método das Diferenças Finitas.
ABC	- Adjustable Boundary Conditions	_	Condições de Contorno Absorventes.
QD	– Quantum Dots	_	Pontos Quânticos.
SWIR	- Short Wavelength Infrared	_	Infravermelho de Ondas Curtas.
NIR	– Near Infrared	_	Infravermelho Próximo.
ITU	- International Telecommunication	Union	

- União Internacional de Telecomunicações.

ITU-T - ITU Telecommunication Standardization Sector

- Setor de Normatização das Telecomunicações da ITU.

G652 – Recommendation of the ITU-T – Recomendação da ITU-T.

ABNT – Associação Brasileira de Normas Técnicas.

NBR – Norma da ABNT.

Capítulo 1

INTRODUÇÃO

1.1 CONSIDERAÇÕES INICIAS

Há muitos anos que as ferramentas teóricas necessárias ao uso dos métodos numéricos são conhecidas, sendo que o seu uso efetivo deu-se somente na década de 60 quando apareceram os primeiros computadores científicos. Com o desenvolvimento dos computadores, tem-se técnicas numéricas cada vez mais sofisticadas em uso, tais como Transformada Rápida de Fourier (FFT – *Fast Fourier Transform*) [1, 2, 3], Diferenças Finitas (FD – *Finite Difference*) [4, 5] e Elementos Finitos (FE – *Finite Element*) [6, 7].

Os métodos numéricos já conseguem simular problemas eletromagnéticos e dispositivos mais complexos. O método dos elementos finitos (FEM – *Finite Element Method*) é um deles; este método prevê a divisão do domínio de integração, contínuo, em um número finito de pequenas regiões denominadas elementos finitos, tornando o meio contínuo em discreto. A essa divisão do domínio dá-se o nome de malha de elementos finitos. A malha desse reticulado pode ser aumentada ou diminuída variando o tamanho dos elementos finitos. Os pontos de intersecção das linhas dessa malha são chamados nós.

A Figura 1–1 mostra o esquema utilizado no FEM, onde o problema eletromagnético é levado da situação contínua (Equação Diferencial \rightarrow Equação Integral) para situação discreta (Equação Matricial) onde é resolvido na solução numérica com autovalores (índice efetivo n_{EFF}) e autovetores (campos H_x e H_y). Começa com a dedução da equação de onda, logo é feita a discretização para aplicar o método de Galerkin; posteriormente é realizada a mudança do sistema global para o sistema local;

Fig. 1–1. Esquema do Método dos Elementos Finitos.

assim chega-se até as matrizes elementares e na solução da equação de onda.

A dispersão cromática é um fenômeno que é um fator importante para as comunicações de fibra óptica [8, 9, 10, 11]. É o resultado de comprimentos de onda, de um feixe de luz, que chega ao seu destino em tempos ligeiramente diferentes. O resultado é um espalhamento, ou dispersão, dos pulsos pontuais de luz que transmitem informação digital. Devem ser tomadas medidas, cuidados especiais, para compensar esta dispersão, de modo que a fibra óptica proporcione sua máxima capacidade.

Esta dispersão ocorre porque os diferentes comprimentos de onda agem de forma ligeiramente diferente quando passam através de um meio, tal como o vidro. Em sistemas baseados em fibra óptica, constituída pelo núcleo e casca com diferentes índices de refracção, inevitavelmente faz com que alguns comprimentos de onda viajem mais lentos ou mais rápidos do que os outros. Seu efeito é essencialmente "esticar ou achatar" os sinais, os pulsos binários da informação digital, inicialmente definidas com nitidez de informação. Esta degradação faz com que os sinais (binário: 1 e 0) sejam mais difíceis de distinguir uma da outra na outra extremidade da fibra. O resultado é que, em qualquer comprimento da fibra óptica, a capacidade de informação pode ser reduzida significativamente.

A dispersão cromática se torna uma consideração importante e deve ser contabilizada no desenvolvimento ou implantação de equipamentos de fibra óptica para uso em telecomunicações, televisão a cabo, ou outras redes ópticas de alta velocidade. Felizmente, têm sido desenvolvidas técnicas que ajudam a compensar os efeitos negativos da dispersão cromática [12, 13, 14, 15]. Um desses métodos requer o uso de fibras ópticas de compensação de dispersão no final do comprimento da fibra para corrigir ou reverter a dispersão do sinal [16, 17, 18, 19, 20, 21, 22]. Como resultado, essas técnicas são largamente utilizadas para ajudar a resolver o problema da dispersão cromática.

O comprimento de onda da dispersão zero é o comprimento de onda em que a dispersão é zero [23]. O funcionamento de um sistema de telecomunicação em torno do comprimento de onda da dispersão zero reduz a ampliação dispersiva do sinal. Ao mesmo tempo, no entanto, o sinal torna-se relativamente sensível às não linearidades ópticas da fibra. Assim, não é sempre vantajoso operar neste regime, uma melhor abordagem é o gerenciamento da dispersão utilizando fibras com dispersão diferente.

Fibras ópticas microestruturadas, podem exibir dispersão de guia de onda particularmente forte, o comprimento de onda da dispersão zero pode ser deslocado, por exemplo na região espectral visível, isto é, a dispersão é obtida na região do comprimento de onda visível, permitindo, por exemplo, o sóliton de transmissão. Alguns modelos de fibras microestruturadas podem apresentar dois ou até três diferentes comprimentos de onda da dispersão zero.

3

1.2 OBJETIVO DESTA TESE

Esta tese apresenta uma técnica eficiente para controlar o comprimento de onda da dispersão zero de uma fibra óptica microestruturada. Esta técnica baseia-se na variação do índice de refração e na variação da espessura de um filme fino que cobre as superfícies interiores dos buracos da fibra óptica microestruturada.

É realizada uma análise numérica da dispersão cromática usando esta técnica. Os resultados numéricos provenientes da simulação qualificam a técnica utilizada.

As simulações numéricas são feitas com ajuda da formulação em elementos finitos, usa-se o modelo *full-vector nodal*. Esta formulação é usada para analisar as fibras ópticas microestruturadas e é baseada na equação de onda vetorial em termos das componentes transversais do campo magnético (H_x , H_y) com a inserção implícita da relação do divergente nulo, $\nabla \cdot H = 0$, que possibilita a eliminação dos modos espúrios.

Foram utilizados dois tipos de fibras ópticas microestruturadas, de geometrias simples, para serem realizadas as simulações e suas respectivas análises modais, entre elas a dispersão cromática.

Também, foi analisada experimentalmente a fibra afunilada, fabricada duma fibra monomodo convencional. Foi observado as seguintes aplicações: como sensor de líquidos e como acoplador em fibras ópticas microestruturadas. Os resultados experimentais obtidos qualificam estas duas aplicações.

1.3 ORGANIZAÇÃO DA TESE

Esta tese esta organizada da seguinte maneira, Figura 1–2:

O **Capítulo 2** apresenta aspectos fundamentais do método dos elementos finitos. Este método é uma técnica numérica para obtenção de soluções aproximadas para problemas de valores de contorno em física e matemática. Consiste em subdividir o domínio do problema eletromagnético em um número finito de subdomínios conhecidos nos quais atuam as funções simples. Em geral, tais funções são lineares e as incógnitas do problema original, são seus coeficientes. Desta forma obtém-se um sistema de equações que pode ser expresso e resolvido na forma matricial.

Uma característica muito importante do processo é a subdivisão do domínio, também conhecido como discretização do domínio, ou seja, divide-se a região delimitada pelo domínio em uma grande

4

quantidade de elementos, que neste caso são os elementos triangulares.

De forma resumida pode-se definir os seguintes passos utilizados para a solução do problema com uso de elementos finitos:

- Discretizar e subdividir o domínio;
- Solucionar as funções de interpolação;
- Formular o sistema de equações e;
- Solucionar o sistema de equações.

Os **Apêndices B** – **F**, no final da tese, apresentam alguns detalhes específicos do método dos elementos finitos empregados neste trabalho. Apresentam o desenvolvimento da formulação tornando a compreensão fácil e mais completo.

Neste capítulo é mostrado, também, uma visão detalhada do domínio computacional com o uso das paredes perfeitamente casadas – PMLs e das paredes condutoras perfeitas, PEC e PMC, nas fronteiras deste domínio. Estas paredes estão melhor detalhadas no **Apêndice A**, no final da tese.

Também, neste capítulo, são apresentados os parâmetros utilizados nas análises modais realizadas nos guias ópticos usados neste trabalho.

O **Capítulo 3** discute a validação do código nodal totalmente vetorial descrito no capítulo anterior. Faz uma análise modal quando o guia de onda tem uma geometria regular (em Geometria do guia). Dependendo disso, pode-se utilizar apenas a metade ou até um quarto da sua geometria total.

Verifica-se a exatidão dos resultados numéricos simulados, para uma fibra óptica monomodo

Fig. 1–2. Esquema da Tese.

convencional (em SMF) e para uma fibra óptica microestruturada de sílica pura (em MOF), comparando com resultados experimentais e teóricos já conhecidos.

O **Capítulo 4** apresenta a nova técnica para deslocar o comprimento de onda da dispersão zero de uma fibra microestruturada (ZDW – *Zero Dispersion Wavelength*). Foi aplicada para duas fibras ópticas microestruturadas de sílica pura com geometrias bem simples, um anel de buracos de ar ao redor de um núcleo sólido; na primeira fibra microestruturada o anel é composta por seis buracos e, na segunda fibra microestruturada o anel é composta por três buracos de ar.

A técnica consiste em colocar um filme nas paredes interiores dos buracos.

Com ajuda do código formulado em FEM, descrito e validado nos capítulos anteriores, é realizado a análise modal com ênfases na dispersão cromática.

Os resultados numéricos das simulações mostram o funcionamento desta técnica, conseguindo deslocar o comprimento de onda da dispersão zero das fibras microestruturadas.

O **Capítulo 5** apresenta as conclusões deste trabalho e são apontadas algumas sugestões para trabalhos futuros nesta área.

No, final da tese, foram incluídos apêndices (A – H). O **Apêndice H** apresenta duas formas de aplicação para uma fibra afunilada de sílica. Os resultados experimentais mostram que a fibra afunilada pode ser aplicada como sensor de líquidos e como acoplador de fibra óptica microestruturada.

1.4 CONTRIBUIÇÃO DESTA TESE

São contribuições resultantes da presente tese:

- Nova técnica de controlar o comprimento de onda da dispersão zero de uma fibra óptica microestruturada, colocando um filme nas paredes internas dos buracos da fibra óptica microestruturada e variando o índice de refração e a espessura deste filme consegue-se deslocar o comprimento de onda da dispersão zero para a região do infravermelho.
- Aplicação como sensor de líquidos da fibra afunilada.
- Aplicação como acoplador de fibra microestruturada da fibra afunilada.

1.5 BIBLIOGRAFIA

- W. T. Cochran, James W. Cooley, D. L. Favin, H. D. Helms, R. Kaenel, W. W. Lang, G. C. Jr. Maling, D. E. Nelson, C. M. Rader and Peter D. Welch; "*What is the Fast Fourier Transform?*"; IEEE Trans. Audio and Electroacustics, vol. 15, no. 2, pp. 45-55, (1967).
- 2 J. W. Cooley, P. A. W. Lewis and P. D. Welch; "*The Fast Fourier Transform and its Applications*"; IEEE Trans. on Education, vol. 12, pp. 27-34, (1969).
- 3 W. H. Press, B. P. Flannry, S. A. Teukolsky and W. T. Vetterling; "*Numerical Recipes*", Cambridge University Press, (1986).
- 4 Károly Jordán; "Calculus of finite differences"; Chelsea Publishing, (1965).
- 5 G. Mur; "Absorbing Boundary Conditions for the Finite-Difference Approximation of the Time-Domain Electromagnetic-Field Equations"; IEEE Transactions on Electromagnetic Compatibility, vol. EMC-23, no. 4, pp.377-382, (1981).
- 6 Jianming Jin; "*The finite element method in electromagnetics*"; John Wiley and Sons, Inc. (1993).
- 7 M. Koshiba; "*Optical waveguide theory by the finite element method*"; Kluwer Academic Publishers, London, (1992).
- 8 Chinlon Lin, H. Kogelnik and L. G. Cohen; "Optical-pulse equalization of low-dispersion transmission in single-mode fibers in the 1.3–1.7-μm spectral region"; Optics Letters, vol. 5, no. 11, pp. 476-478, (1980).
- 9 G. Cohen, W. L. Mammel and H. M. Presby; "Correlation between numerical predictions and measurements of single-mode fiber dispersion characteristics"; Applied Optics, vol. 19, no. 12, pp. 2007-2010, (1980).
- 10 D. Marcuse; "*Equalization of dispersion in single-mode fibers*"; Applied Optics, vol. 20, no. 4, pp. 696-700, (1981).
- 11 Rajiv Ramaswami and Kumar N. Sivarajan; "*Optical Networks: A Practical Perspective*"; Academic Press: London, (1998).
- 12 Ashish M. Vengsarkar and W. A. Reed; "Dispersion-compensating single-mode fibers: efficient designs for first- and second-order compensation"; Optics Letters, vol. 18, no. 11, pp. 924-926, (1993).
- 13 Maciej Wojtkowski, Vivek Srinivasan, Tony Ko, James Fujimoto, Andrzej Kowalczyk and Jay Duker, "*Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation*"; Opt. Express, vol. 12, no. 11, pp. 2404-2422, (2004).

- Jiayu Liu and Shiuh Chao; "Simple Design Method for Third-Order Dispersion Compensation with a Thin-Film Dispersion Compensator"; Applied Optics, vol. 43, no. 17, pp. 3442-3448, (2004).
- 15 J. Vojtech, M. Karásek and J. Radil; "*Experimental comparison of all-optical methods of chromatic dispersion compensation in long haul transmission at speeds of 10 Gbit/s*"; Journal of Optical Networking, vol. 6, no. 12, pp. 1340-1348, (2007).
- 16 Ezra Ip, Alan Pak Tao Lau, Daniel J. F. Barros and Joseph M. Kahn; "Coherent detection in optical fiber systems"; Optics Express, vol. 16, no. 2, pp. 753-791, (2008).
- 17 Federica Poli, Annamaria Cucinotta, Matteo Fuochi, Stefano Selleri, and Luca Vincetti; "Characterization of microstructured optical fibers for wide-band dispersion compensation"; JOSA A, vol. 20, no. 10, pp. 1958-1962, (2003).
- 18 Torkel Engeness, Mihai Ibanescu, Steven Johnson, Ori Weisberg, Maksim Skorobogatiy, Steven Jacobs and Yoel Fink; "Dispersion tailoring and compensation by modal interactions in OmniGuide fibers"; Optics Express, vol. 11, no. 10, pp. 1175-1196, (2003).
- Xia Zhang, Xiaomin Ren, Yongzhao Xu, Zinan Wang, Yongqing Huang and Xue Chen;
 "Broadband dispersion compensation using microstructure fibers"; Chinese Optics Letters, vol. 5, no. 1, pp. 11-13, (2007).
- 20 Chin-Ping Yu, Jia-Hong Liou, Sheng-Shuo Huang, and Hung-Chun Chang; "Tunable dual-core liquid-filled photonic crystal fibers for dispersion compensation"; Optics Express, vol. 16, no. 7, pp. 4443-4451, (2008).
- 21 D. C. Zografopoulos, C. Vázquez, E. E. Kriezis and T. V. Yioultsis; "Dual-core photonic crystal fibers for tunable polarization mode dispersion compensation"; Optics Express, vol. 19, no. 22, pp. 21680-21691, (2011).
- 22 Ganbin Lin and Xiaopeng Dong; "Design of broadband LP01↔LP02 mode converter based on special dual-core fiber for dispersion compensation"; Applied Optics, vol. 51, no. 19, pp. 4388-4393, (2012).
- 23 Rüdiger Paschotta; "Encyclopedia of Laser Physics and Technology"; Wiley-VCH, Berlin, (2008).

Capítulo 2

MÉTODO DOS ELEMENTOS FINITOS

2.1 INTRODUÇÃO

O método dos elementos finitos – FEM [1, 2] é um método numérico utilizado na resolução de equações diferenciais parciais em domínios finitos. Através de uma discretização de domínios originais contínuos de problemas físicos, obtêm-se sistemas de equações lineares, que, em geral, são esparsos e que podem ser resolvidos utilizando técnicas eficientes.

A esparsidade das matrizes geradas é uma das principais vantagens do FEM, porque o sistema a ser resolvido é esparso e, portanto, de fácil resolução. Uma outra vantagem é sua versatilidade para a análise de estruturas com geometrias complexas. Em outras palavras, o FEM pode ser utilizado em domínios com características não-homogêneas de formatos quaisquer.

Assim, por exemplo, em regiões onde existe muita variação e/ou alta intensidade do campo eletromagnético, usam-se malhas mais refinadas do que nas outras regiões onde a variação do campo e/ou a intensidade são menores; esta situação é, em geral, difícil ou às vezes impossível de ser tratada eficientemente com outros métodos, como, por exemplo, o método das diferencias finitas.

Neste capítulo, será apresentada o método dos elementos finitos em duas dimensões. Inicialmente apresenta-se a formulação da equação de onda de Helmholtz, assim como o modelo matemático usado para um guia de onda de seção transversal arbitrária, constante ao longo de seu eixo longitudinal. Considera-se que o guia está imerso em um meio dielétrico.

O procedimento consiste na discretização do domínio em análise, usando-se o FEM, obtido a partir do método residual de Galerkin [1]. Este método é usado devido à sua simplicidade.

Para limitar o domínio computacional, adota-se uma técnica bastante utilizada, chamada de Camadas Perfeitamente Casadas – PMLs [3], nas regiões adjacentes às paredes que limitam o domínio. Conseguem absorver completamente as ondas incidentes nas fronteiras, sem permitir reflexões de volta para o domínio computacional com ajuda de paredes condutoras perfeitas.

O guia de onda, bidimensional, em análise é posicionado em um sistema de coordenadas retangulares, de tal forma que o eixo do guia tenha a mesma direção do eixo z. A equação de onda vetorial é expressa em termos das componentes transversais do campo magnético, por meio da inclusão implícita da condição do divergente do campo magnético igual a zero, que, também, garante a eliminação dos modos espúrios [4].

A análise é feita para o campo H porque este tem componentes contínuas nas interfaces dielétricas (Apêndice A – A5), o que não ocorre com as componentes descritas em termos da campo elétrico E.

Fig. 2–1. Descrição esquematizada do método dos elementos finitos.

Na Figura 2-1 apresenta-se uma descrição esquematizada deste método. Primeiramente, uma situação contínua, onde é formulada a equação diferencial (ou equação de onda) que é levada para sua representação integral equivalente. Aplicando um método sem interpretação física (método de Galerkin) porém, mais direto, que utiliza o critério de pesos residuais. Uma maneira de implementar este método é discretizando. Discretizando o domínio (construção da malha em elementos bidimensionais), logo aproxima-se cada elemento por uma combinação linear de funções de base particulares, visando matrizes esparsas (equação matricial) e obtendo a solução numérica.

2.2 EQUAÇÃO DE ONDA

Para analisar a propagação da onda em um meio isotrópico começa-se com um resumo das equações de Maxwell:

$$\nabla \times \overline{E}(\overline{r}, t) = -\frac{\partial}{\partial t} \overline{B}(\overline{r}, t)$$

$$\nabla \times \overline{H}(\overline{r}, t) = \frac{\partial}{\partial t} \overline{D}(\overline{r}, t) + \overline{J}(\overline{r}, t) \qquad \dots (Eq. \ 01)$$

$$\nabla \cdot \overline{D}(\overline{r}, t) = \rho(\overline{r}, t)$$

$$\nabla \cdot \overline{B}(\overline{r}, t) = 0$$

onde, nas relações acima, as quantidades representam: *E*: campo elétrico; *H*: campo magnético; *D*: deslocamento elétrico; *B*: deslocamento magnético; *J*: densidade de corrente; ρ : densidade de carga fonte e; *r*: vetor posição em coordenadas cartesianas (*x*, *y*, *z*). Todas estas quantidades são funções da posição e do tempo.

Estas relações (Equação 01) são as formas diferenciais das equações de Maxwell, conhecidas como lei de Faraday-Lenz, lei de Ampère, lei de Gauss e a lei de Gauss magnético, respectivamente.

A equação da lei de Faraday evidencia que um campo magnético variável no tempo produz um campo elétrico que é rotacional a ele. O sinal negativo exprime a lei de Lenz, que estabelece que o campo elétrico induzido tende a se opor às variações do campo magnético.

A equação da lei de Ampère mostra que um campo elétrico variável no tempo e/ou elementos de corrente geram um campo magnético rotacional aos elementos geradores. A equação da lei de Gauss mostra que cargas elétricas geram um deslocamento elétrico divergente a elas. A equação da lei de Gauss magnético está associada à inexistência de monopolos magnéticos e impõe que o fluxo magnético é conservativo.

Tem-se também uma relação auxiliar, chamada de equação de continuidade, que relaciona a densidade de corrente e as cargas fontes:

$$\nabla \cdot \overline{J}(\overline{r},t) + \frac{\partial}{\partial t}\rho(\overline{r},t) = 0$$

assim, nas relações (em Equação 01) têm-se que:

$$\nabla \cdot (\nabla \times \overline{E}(\overline{r}, t)) = 0$$
$$\nabla \cdot (\nabla \times \overline{H}(\overline{r}, t)) = 0$$

Pode-se supor os campos com dependência harmônica no tempo, expresso por $exp(i\omega t)$, onde ω é a frequência angular,

$$\begin{split} \overline{E}(\overline{r},t) &\equiv \overline{E}(\overline{r}) \cdot e^{i\omega t} \quad , \quad \overline{H}(\overline{r},t) &\equiv \overline{H}(\overline{r}) \cdot e^{i\omega t} \\ \overline{D}(\overline{r},t) &\equiv \overline{D}(\overline{r}) \cdot e^{i\omega t} \quad , \quad \overline{B}(\overline{r},t) &\equiv \overline{B}(\overline{r}) \cdot e^{i\omega t} \end{split}$$

assim, as equações de Maxwell podem ser reescritas da seguinte forma:

onde, os campos passam a ser funções somente da posição. Eles estão relacionados através das relações constitutivas:

$$\overline{D}(\overline{r}) = \overline{\overline{\varepsilon(\overline{r})}} \overline{E}(\overline{r}) = \varepsilon_0 \overline{\overline{\varepsilon_r(\overline{r})}} \overline{E}(\overline{r})$$
$$\overline{B}(\overline{r}) = \overline{\overline{\mu(\overline{r})}} \overline{H}(\overline{r}) = \mu_0 \overline{\overline{\mu_r(\overline{r})}} \overline{H}(\overline{r})$$

onde, $\overline{\varepsilon_r}$ é o tensor da permissividade relativa, $\overline{\mu_r}$ é o tensor da permeabilidade relativa e, ε_0 e μ_0 são permissividade e permeabilidade no espaço livre, respectivamente.

No caso de anisotropia elétrica e magnética, os tensores são representados como:

$$\overline{\overline{\varepsilon_r(\overline{r})}} = \begin{pmatrix} \varepsilon_{xx} & \varepsilon_{xy} & \varepsilon_{xz} \\ \varepsilon_{yx} & \varepsilon_{yy} & \varepsilon_{yz} \\ \varepsilon_{zx} & \varepsilon_{zy} & \varepsilon_{zz} \end{pmatrix} \qquad \overline{\mu_r(\overline{r})} = \begin{pmatrix} \mu_{xx} & \mu_{xy} & \mu_{xz} \\ \mu_{yx} & \mu_{yy} & \mu_{yz} \\ \mu_{zx} & \mu_{zy} & \mu_{zz} \end{pmatrix}$$

Considerando materiais sem fontes, isto é densidades de carga nulas e densidades de corrente nulas ($\rho = 0$ e J = 0), as equações de Maxwell ficam:

$$\nabla \times \overline{E}(\overline{r}) = -i\omega \mu_0 \overline{\mu_r(\overline{r})} \overline{H}(\overline{r})$$

$$\nabla \times \overline{H}(\overline{r}) = i\omega \varepsilon_0 \overline{\overline{\varepsilon_r(\overline{r})}} \overline{E}(\overline{r})$$

$$\nabla \cdot \varepsilon_0 \overline{\overline{\varepsilon_r(\overline{r})}} \overline{E}(\overline{r}) = 0$$

$$\nabla \cdot \mu_0 \overline{\overline{\mu_r(\overline{r})}} \overline{H}(\overline{r}) = 0$$
.....(Eq. 03)

Das duas primeiras Equações (01 e 02), na Equação 03, é obtida a equação de onda para o campo magnético H. Também é conhecida como equação de duplo rotacional ou equação de Helmholtz:

$$\nabla \times \left[\frac{1}{\overline{\varepsilon_r(\overline{r})}}\nabla \times \overline{H}(\overline{r})\right] = \omega^2 \varepsilon_0 \mu_0 \overline{\overline{\mu_r(\overline{r})}} \overline{H}(\overline{r}) \qquad \dots (Eq. 04)$$

esta é a equação geral de onda livre de fontes.

Considerando materiais dielétricos (tensor $\overline{\mu}_r = \overline{1}$) a equação de onda pode ser escrita como

segue:

$$\nabla \times \left[\overline{\overline{k(\overline{r})}} \nabla \times \overline{H}(\overline{r})\right] = k_0^2 \,\overline{H}(\overline{r}) \qquad \dots (Eq. \, 05)$$

onde, k_0 é o número de onda no espaço livre, dado por:

$$k_0 = \omega \sqrt{\mu_0 \varepsilon_0}$$

e o tensor $\overline{\overline{k}}$ é o inverso do tensor permissividade relativa:

$$\overline{\overline{k(\overline{r})}} = \frac{1}{\overline{\overline{\varepsilon_r(\overline{r})}}}$$

também, a quarta relação da Equação 03, para *H*, fica da forma seguinte:

$$\nabla \cdot \overline{H}(\overline{r}) = 0 \qquad \dots (Eq. \ \theta 6)$$

Assim, resumindo, fica-se com duas equações, Equação 05 e Equação 06, respectivamente:

$$\nabla \times \left[\overline{\overline{k(\overline{r})}} \nabla \times \overline{H}(\overline{r}) \right] = k_0^2 \, \overline{H}(\overline{r})$$

e

$$\nabla \cdot \overline{H}(\overline{r}) = 0$$

Assume-se o campo H com componente axial H_z e componente transversal H_t :

$$\bar{H}(\bar{r}) = \bar{H}(x, y) e^{-i\gamma k_0 z} = \left[\bar{H}_t(x, y) + \bar{H}_z(x, y) \right] e^{-i\gamma k_0 z} \qquad \dots (Eq. \ 07)$$

onde a variação rápida do campo magnético é removida escrevendo a dependência axial da forma:

$$e^{-i\gamma k_0 z}$$

onde γ é o índice de refração de referência e o campo magnético da envoltória, ou porção de variação lenta é:

$$\bar{H}_{t}(x, y) = H_{x}(x, y) \hat{u}_{x} + H_{y}(x, y) \hat{u}_{y}$$

e

$$\overline{H}_z(x,y) = H_z(x,y)\,\hat{u}_z$$

fazendo também para o tensor permissividade:

$$\stackrel{=}{\varepsilon} = \begin{bmatrix} \overline{\varepsilon}_{t} & 0\\ 0 & \varepsilon_{zz} \end{bmatrix} \Rightarrow \stackrel{=}{k} = \frac{1}{\varepsilon} = \begin{bmatrix} \overline{k}_{t} & 0\\ 0 & k_{zz} \end{bmatrix}$$

onde a componente transversal é:

$$= \begin{bmatrix} \varepsilon_{xx} & \varepsilon_{xy} \\ \varepsilon_{yx} & \varepsilon_{yy} \end{bmatrix} \Rightarrow = \begin{bmatrix} k_{xx} & k_{xy} \\ k_{yx} & k_{yy} \end{bmatrix}$$

Também, tem-se que o operador pode ser definido como:

$$\nabla = \nabla_t + \frac{\partial}{\partial z} \hat{u}_z$$

onde a componente transversal é:

$$\nabla_{t} = \frac{\partial}{\partial x}\hat{u}_{x} + \frac{\partial}{\partial y}\hat{u}_{y}$$

Assim, na Equação 06:

$$\left(\nabla_{t} + \frac{\partial}{\partial z}\hat{u}_{z}\right) \cdot \left(\overline{H}_{t}(x, y) + \overline{H}_{z}(x, y)\right) e^{-i\gamma k_{o} z} = 0$$

tem-se:

$$H_{z} = \frac{\nabla_{t} \cdot \overline{H}_{t}}{i \gamma k_{0}} \qquad \dots (Eq. \ 08)$$

Substituindo na Equação 05, tem-se:

$$\nabla \times \left[\overline{k(\overline{r})} \cdot \left(\nabla \times \overline{H}(\overline{r}) \right) \right] = e^{-i\gamma k_0 z} \left[\nabla_t \times \overline{k_t} \cdot \overline{F_{trans}} + \nabla_t \times k_{zz} \cdot \nabla_t \times \overline{H_t} - i\gamma k_0 \hat{u}_z \times \overline{k_t} \cdot \overline{F_{trans}} \right] \qquad \dots (Eq. \ 09)$$

onde,

$$\overline{F}_{trans} = -i\gamma k_0 \hat{u}_z \times \overline{H}_t + (\nabla_t \times \overline{H}_z)$$

Para esta expressão (Equação 09) observa-se a componente transversal:

$$e^{-i\gamma k_0 z} \left[\nabla_t \times k_{zz} \nabla_t \times \overline{H}_t - i\gamma k_0 \hat{u}_z \times \overline{k_t} \bullet \overline{F}_{trans} \right]$$

e a componente axial:

$$e^{-i\gamma k_0 z} \left[\nabla_t \times \overline{\overline{k_t}} \bullet \overline{F_{trans}} \right]$$

Então, da Equação 09 e da Equação 07, na Equação 05:

$$e^{-i\gamma k_0 z} \left[\nabla_t \times \overline{\overline{k_t}} \bullet \overline{F_{trans}} + \nabla_t \times k_{zz} \nabla_t \times \overline{H_t} - i\gamma k_0 \hat{u_z} \times \overline{\overline{k_t}} \bullet \overline{F_{trans}} \right] = k_0^2 e^{-i\gamma k_0 z} \left[\overline{H_t} + \overline{H_z} \right]$$

a equação anterior pode ser separada em uma componente transversal e outra componente axial.

Assim, tem-se a equação transversal:

$$\nabla_{t} \times k_{zz} \nabla_{t} \times \overline{H}_{t} - i\gamma k_{0} \hat{u}_{z} \times \overline{\overline{k}_{t}} \cdot \overline{F}_{trans} - k_{0}^{2} \overline{H}_{t} = 0 \qquad \dots (Eq. 10)$$

e a equação axial:

$$\nabla_{t} \times \overline{\overline{k_{t}}} \cdot \overline{F_{trans}} - k_{0}^{2} \overline{H_{z}} = 0 \qquad \dots (Eq. 11)$$

MÉTODO DOS ELEMENTOS FINITOS

Substituindo, F_{trans} , na Equação 10, tem-se que:

$$\nabla_{t} \times k_{zz} \nabla_{t} \times \overline{H}_{t} - i\gamma k_{0} \hat{u}_{z} \times \overline{\overline{k}_{t}} \cdot \left[-i\gamma k_{0} \hat{u}_{z} \times \overline{H}_{t} + (\nabla_{t} \times \overline{H}_{z}) \right] - k_{0}^{2} \overline{H}_{t} = 0$$

e da Equação 08:

$$H_z = \frac{\nabla_t \cdot \overline{H}_t}{i \gamma k_0}$$

tem-se:

$$\nabla_{t} \times k_{zz} \nabla_{t} \times \overline{H}_{t} + (i\gamma k_{0})^{2} (\hat{u}_{z} \times \overline{k_{t}}) \cdot (\hat{u}_{z} \times \overline{H}_{t}) - i\gamma k_{0} \hat{u}_{z} \times \overline{\overline{k_{t}}} \cdot \left(\nabla_{t} \times \frac{\nabla_{t} \cdot \overline{H}_{t}}{i\gamma k_{0}} \hat{u}_{z} \right) - k_{0}^{2} \overline{H}_{t} = 0$$

Fazendo:

$$\underbrace{\nabla_{t} \times \left(k_{zz} \nabla_{t} \times \overline{H}_{t}\right)}_{Q_{1}} - \gamma^{2} \underbrace{k_{0}^{2} \hat{u}_{z} \times \left[\overline{k_{t}} \cdot \left(\hat{u}_{z} \times \overline{H}_{t}\right)\right]}_{Q_{2}} - \underbrace{\hat{u}_{z} \times \left[\overline{k_{t}} \cdot \nabla_{t} \times \hat{u}_{z} \left(\nabla_{t} \cdot \overline{H}_{t}\right)\right]}_{Q_{3}} - \underbrace{k_{0}^{2} \overline{H}_{t}}_{Q_{4}} = 0 \qquad \dots (Eq. 12)$$

onde,

$$Q_{1} = \nabla_{t} \times \left(k_{zz} \nabla_{t} \times \overline{H}_{t} \right)$$

$$Q_{2} = k_{0}^{2} \hat{u}_{z} \times \left[\overline{\overline{k}_{t}} \cdot \left(\hat{u}_{z} \times \overline{H}_{t} \right) \right]$$

$$Q_{3} = \hat{u}_{z} \times \left[\overline{\overline{k}_{t}} \cdot \nabla_{t} \times \hat{u}_{z} \left(\nabla_{t} \cdot \overline{H}_{t} \right) \right]$$

$$Q_{4} = k_{0}^{2} \overline{H}_{t}$$
.....(Eq. 13)

Para resolver esta equação, deixa-se ela na forma de equação de autovalores-autovetores:

$$\tilde{T} \cdot \overline{v} = -\gamma^2 \tilde{R} \cdot \overline{v} \quad \rightarrow \qquad \tilde{T} \cdot \overline{h_t} = -\gamma^2 \tilde{R} \cdot \overline{h_t}$$

Assim, tem-se a equação transversal dividida em 4 partes, Q_1 , Q_2 , Q_3 e Q_4 :

$$-[Q_1 - Q_3 - Q_4] = \gamma^2 [-Q_2] \qquad \dots (Eq. 14)$$

2.3 DISCRETIZAÇÃO

Para poder obter a solução numérica da equação de onda (equação 14) e minimizar o problema, divide-se o domínio *S*, onde está inserido o guia de onda a ser analisado, Figura 2–2a, em pequenos subdomínios e utilizando as funções–peso, também conhecidas como funções de base, ($\Psi_i e \Psi_j$) definidas apenas sobre cada um dos subdomínios. Deste modo, estas funções são muito mais simples pois, tendo os subdomínios dimensões muito pequenas, a variação da função é muito menos drástica sobre cada um desses elementos.

Como primeiro passo, para este trabalho, é dividir o domínio em elementos bidimensionais, o

Fig. 2–2. (a) Seção do guia de onda imerso em um meio dielétrico, com domínio S, numa janela computacional. As cores mostram os diferentes materiais, (b) A malha é a discretização do guia de onda por elementos triangulares.

elemento escolhido foi elemento triangular, Figura 2–2b, que é a mais utilizada porque é de fácil adaptação às formas mais complexas. Para realizar esta divisão é tido em consideração:

- Evitar elementos com ângulos internos pequenos, pois o erro é inversamente proporcional ao seno dos ângulos internos;
- Os elementos só podem se conectar pelos vértices, não pode haver conexão entre um vértice e um lado de outro elemento e;
- Não deve existir superposição nem buracos entre elementos.

Uma vez feito a discretização do domínio, aproxima-se a função desconhecida dentro de cada elemento.

Utilizando elementos triangulares, as superfícies curvas podem ser aproximadas como uma série de arestas retas e geometrias bastante complicadas podem ser representadas com boa precisão. Dentro de um elemento de um problema de elementos finitos, a variação de potencial pode ser linear (ordem *ie* = 3), quadrática (ordem *ie* = 6), cúbica ou de ordem mais elevada, se necessário.

As estruturas mais simples dos elementos são os triângulos lineares.

Desta forma, a componente do campo transversal H_t é expandida, isto é, pode ser expressada

como uma somatória:

$$\overline{H}_{t}(x, y) = H_{x}(x, y) \hat{u}_{x} + H_{y}(x, y) \hat{u}_{y}$$

$$\overline{H}_{t} = \sum_{i=1}^{ie} \left(h_{xi} \overline{\Psi}_{xi} + h_{yi} \overline{\Psi}_{yi} \right) \qquad \dots (Eq. 15)$$

onde, *ie* é o número de nós dos elementos em que o domínio foi subdividido, os coeficientes h_{xi} e h_{yi} são os campos desconhecidos em cada nó e, as funções são:

$$\overline{\Psi}_{xi} = \Psi_{xi} \, \hat{u}_x \quad ; \quad \overline{\Psi}_{yi} = \Psi_{yi} \, \hat{u}_y \qquad \dots \dots (Eq. \ 16)$$

2.4 MÉTODO DE GALERKIN

A complexidade do modelo matemático que representa o comportamento de muitos problemas levou ao desenvolvimento de métodos aproximados para sua solução, podendo-se destacar dois tipos de métodos: os variacionais e os dos resíduos ponderados [1].

Dentre os primeiros, podem ser citados os métodos de Kantorovich, de Trefftz e de Rayleigh-Ritz. Os segundos compreendem os métodos dos mínimos quadrados, da colocação, do subdomínio e de Galerkin. Os métodos de Rayleigh-Ritz e de Galerkin são os mais conhecidos e deles originaram o método dos elementos finitos [5,6,7].

O método de Galerkin utiliza diretamente a equação diferencial que descreve matematicamente o problema a ser analisado. Para resolver um sistema de equações diferenciais, ou uma equação diferencial pelo método de Galerkin, substitui-se nele, ou nela, uma ou mais funções aproximadoras que devem satisfazer as condições de contorno.

Como a função aproximadora, ou as funções aproximadoras, não é, ou não são, a solução exata da equação diferencial, ou do sistema de equações diferenciais, tem-se um ou mais resíduos que devem ser ponderados através de funções ponderadoras, e o produto entre a função residual e cada função ponderadora é suposto igual a zero no domínio da integração, determinando condição de ortogonalidade.

Um problema típico, de valores de contorno, pode ser descrito por uma equação diferencial da forma:

$$L u = f \qquad \dots (Eq. 17)$$

aplicada no domínio *S*, juntamente com as condições de fronteira, que limita o domínio *S*. Da Equação 17 tem-se que L é um operador linear e auto-adjunto da equação de onda, *f* é uma função excitação e u

é a função a ser determinada que satisfaz as condições de contorno. Em problemas eletromagnéticos, a equação anterior varia desde a equação de Poisson até complicadas equações vetoriais, cuja solução analítica torna-se inviável.

Admite-se uma função aproximadora \bar{u} para u da forma:

$$\overline{u} = \sum_{i=1}^{n} a_i w_i \qquad \dots (Eq. \ 18)$$

onde w_i são funções-peso que satisfazem as condições de contorno do problema, tal que $w_i \in S$.

Substituindo u por \bar{u} , a Equação (17) não mais se verifica, havendo, então, um erro dado por:

$$\varepsilon r = L\overline{u} - f \qquad \dots (Eq. 19)$$

A melhor aproximação para a solução u será aquela que minimiza a função resíduo εr em todos os pontos do domínio *S*.

O método de Galerkin exprime a condição de ortogonalidade entre a função resíduo εr e as funções ponderadoras w_i , resultando:

$$\int_{V} (L\bar{u} - f) w_{i} \, dV = 0; i = 1, 2, \cdots, n \qquad \dots \quad (Eq. \ 20)$$

Os coeficientes a_i provêm da solução do sistema de *n* equações representado pela Equação 20. Os coeficientes a_i são determinados, então, de modo que os resíduos se anulem em cada integração ponderada.

Voltando ao problema, Equação 14. O campo magnético transversal é substituído pelas Equações (15) e (16) na equação transversal (Equação 12), dividido em quatro partes (Equação 13): Q 1, Q 2, Q 3 e Q 4. Aplicando o método de Galerkin:

PARTE Q₁:

$$Q_{1} = \int \nabla_{t} \times \left(k_{zz} \nabla_{t} \times \overline{H}_{t} \right) \cdot \overline{w}$$

$$\rightarrow Q_{1} = \int_{S} \nabla_{t} \times \left(k_{zz} \nabla_{t} \times \overline{\Psi}_{vj} \right) \cdot \overline{\Psi}_{ui} dS \quad \begin{cases} u = x, y \\ v = x, y \end{cases}$$

Fazendo:

$$\overline{F} = k_{zz} \nabla_{t} \times \overline{\Psi}_{vj} \quad ; \quad \overline{G} = \overline{\Psi}_{ui}$$

e das propriedades:

$$\nabla_{t} \bullet (\overline{F} \times \overline{G}) = \overline{G} \bullet \nabla_{t} \times \overline{F} - \overline{F} \bullet \nabla_{t} \times \overline{G}$$
$$\int_{S} \nabla_{t} \bullet (\overline{F} \times \overline{G}) dS = \oint \overline{F} \times \overline{G} \bullet \hat{n} dl$$

tem-se que:

$$Q_{1} = \oint k_{zz} \nabla_{t} \times \overline{\Psi}_{vj} \times \overline{\Psi}_{ui} \cdot \hat{n} \, dl + \int_{S} k_{zz} \left(\nabla_{t} \times \overline{\Psi}_{vj} \right) \cdot \nabla_{t} \times \overline{\Psi}_{ui} \, dS$$

da propriedade:

$$\overline{A} \times \overline{B} \bullet \overline{C} = \overline{A} \bullet \overline{B} \times \overline{C}$$

$$\rightarrow \nabla_{t} \times \overline{\Psi}_{vj} \times \overline{\Psi}_{ui} \bullet \hat{n} = \nabla_{t} \times \overline{\Psi}_{vj} \bullet \overline{\Psi}_{ui} \times \hat{n}$$

logo tem-se:

$$Q_{1} = \underbrace{\oint k_{zz} \nabla_{t} \times \overline{\Psi}_{vj} \cdot \overline{\Psi}_{ui} \times \hat{n} \, dl}_{L_{1}} + \underbrace{\int k_{zz} \left(\nabla_{t} \times \overline{\Psi}_{vj} \right) \cdot \nabla_{t} \times \overline{\Psi}_{ui} \, dS}_{S_{1}}$$

onde, a integral Q_1 é desdobrada em duas, uma integral de linha L_1 e uma integral de superfície S_1 .

Da análise feita no Apêndice B, a integral de linha L $_1$ = 0. Assim, Q $_1$ tem só contribuição da integral de superfície S $_1$.

Assim,

$$Q_{1} = \underbrace{\int_{S} k_{zz} \left(\nabla_{t} \times \overline{\Psi}_{vj} \right) \cdot \nabla_{t} \times \overline{\Psi}_{ui} \, dS}_{S_{1}} \qquad \dots \dots (Eq. \ 21)$$

PARTE Q₂:

$$Q_{2} = k_{0}^{2} \int \hat{u}_{z} \times \left[\overline{\overline{k_{t}}} \cdot (\hat{u}_{z} \times \overline{H_{t}})\right] \cdot \overline{w}$$

$$\rightarrow Q_{2} = k_{0}^{2} \int_{S} \hat{u}_{z} \times \left[\overline{\overline{k_{t}}} \cdot (\hat{u}_{z} \times \overline{\Psi}_{vj})\right] \cdot \overline{\Psi}_{ui} dS \begin{cases} u = x, y \\ v = x, y \end{cases}$$

da propriedade:

$$\overline{A} \times \overline{B} \cdot \overline{C} = -\overline{B} \cdot \overline{A} \times \overline{C}$$

$$\rightarrow \hat{u}_{z} \times \left[\overline{\overline{k_{t}}} \cdot (\hat{u_{z}} \times \overline{\Psi}_{vj})\right] \cdot \overline{\Psi}_{ui} = -\left[\overline{\overline{k_{t}}} \cdot (\hat{u_{z}} \times \overline{\Psi}_{vj})\right] \cdot \hat{u}_{z} \times \overline{\Psi}_{ui}$$

tem-se que:

$$Q_{2} = -\underbrace{k_{0}^{2} \int_{S} \left[\overline{k_{i}} \cdot (\hat{u}_{z} \times \overline{\Psi}_{vj}) \right] \cdot \hat{u}_{z} \times \overline{\Psi}_{ui} \, dS}_{S_{2}} \qquad \dots \dots (Eq. \ 22)$$

onde, Q₂ tem uma integral de superfície S₂.

PARTE Q₃:

$$Q_{3} = \int \hat{u}_{z} \times \left[\overline{k_{t}} \cdot \nabla_{t} \times \hat{u}_{z} (\nabla_{t} \cdot \overline{H_{t}})\right] \cdot \overline{w}$$

$$\rightarrow Q_{3} = \int_{S} \hat{u}_{z} \times \left[\overline{k_{t}} \cdot \nabla_{t} \times \hat{u}_{z} (\nabla_{t} \cdot \overline{\Psi_{vj}})\right] \cdot \overline{\Psi}_{ui} dS \begin{cases} u = x, y \\ v = x, y \end{cases}$$

da propriedade:

$$\overline{A} \times \overline{B} \bullet \overline{C} = -\overline{A} \times \overline{C} \bullet \overline{B}$$

$$\rightarrow \hat{u}_{z} \times \left[\overline{\overline{k_{t}}} \bullet \nabla_{t} \times \hat{u}_{z} (\nabla_{t} \bullet \overline{\Psi}_{vj})\right] \bullet \overline{\Psi}_{ui} = -\hat{u}_{z} \times \overline{\Psi}_{ui} \bullet \left[\overline{\overline{k_{t}}} \bullet \nabla_{t} \times \hat{u}_{z} (\nabla_{t} \bullet \overline{\Psi}_{vj})\right]$$

e fazendo:

$$\overline{L} = \hat{u}_z \times \overline{\Psi}_{ui}, \overline{D} = \nabla_t \times \hat{u}_z (\nabla_t \cdot \overline{\Psi}_{vj})$$

utilizando as propriedades de vetores e tensores:

$$\overline{L} = \sum_{i} L_{i} \hat{u}_{i}, \overline{D} = \sum_{j} D_{j} \hat{u}_{j}$$
$$\overline{\overline{k}_{t}} = \sum_{i} \sum_{j} k_{ij} \hat{u}_{i} \otimes \hat{u}_{j}$$

tem-se que:

$$\overline{L} \cdot \left(\overline{\overline{k_t}} \cdot \overline{D}\right) = \left[\left(\overline{\overline{k_t}}\right)^{T} \cdot \overline{L}\right] \cdot \overline{D}$$

Assim, em:

$$\rightarrow -\hat{u}_{z} \times \overline{\Psi}_{ui} \bullet \left[\overline{k_{t}} \bullet \nabla_{t} \times \hat{u}_{z} (\nabla_{t} \bullet \overline{\Psi}_{vj})\right] = -\left(\left(\overline{k_{t}}\right)^{T} \bullet \hat{u}_{z} \times \overline{\Psi}_{ui}\right) \bullet \nabla_{t} \times \hat{u}_{z} (\nabla_{t} \bullet \overline{\Psi}_{vj})$$

então:

$$\Rightarrow Q_3 = -\iint_{S} \left(\left(\overline{\overline{k_t}} \right)^T \cdot \hat{u}_z \times \overline{\Psi}_{ui} \right) \cdot \nabla_t \times \hat{u}_z (\nabla_t \cdot \overline{\Psi}_{vj}) \, dS$$

Fazendo:

$$\overline{F} = \hat{u}_z (\nabla_t \cdot \overline{\Psi}_{vj}) \quad ; \quad \overline{G} = \left(\overline{\overline{k}_t}\right)^T \cdot \hat{u}_z \times \overline{\Psi}_{ui}$$

das propriedades:

$$\nabla_{t} \bullet (\overline{F} \times \overline{G}) = \overline{G} \bullet \nabla_{t} \times \overline{F} - \overline{F} \bullet \nabla_{t} \times \overline{G}$$
$$\int_{S} \nabla_{t} \bullet (\overline{F} \times \overline{G}) dS = \oint \overline{F} \times \overline{G} \bullet \hat{n} dl$$

tem-se que:

MÉTODO DOS ELEMENTOS FINITOS

$$Q_{3} = -\underbrace{\oint \left(\hat{u}_{z}(\nabla_{t} \cdot \overline{\Psi}_{vj}) \times \left(\overline{\overline{k_{t}}}\right)^{T} \cdot \hat{u}_{z} \times \overline{\Psi}_{ui}\right) \cdot \hat{n} dl}_{L_{3}} - \underbrace{\int _{S} \hat{u}_{z}(\nabla_{t} \cdot \overline{\Psi}_{vj}) \cdot \nabla_{t} \times \left(\left(\overline{\overline{k_{t}}}\right)^{T} \cdot \hat{u}_{z} \times \overline{\Psi}_{ui}\right) dS}_{S_{3}}$$

onde, a integral Q₃ é desdobrada em duas, uma integral de linha L₃ e uma integral de superfície S₃.

Da análise feita no Apêndice B, a integral de linha L_3 vai depender dos meios dielétricos em que os elementos estão (arestas internas) e do tipo de paredes condutoras (arestas externas).

$$Q_{3} = - \oint \left(\hat{u}_{z} (\nabla_{t} \cdot \overline{\Psi}_{vj}) \times \left(\overline{\overline{k_{t}}}\right)^{T} \cdot \hat{u}_{z} \times \overline{\Psi}_{ui} \right) \cdot \hat{n} \, dl - \underbrace{\int_{L_{3}} \hat{u}_{z} (\nabla_{t} \cdot \overline{\Psi}_{vj}) \cdot \nabla_{t} \times \left(\overline{\overline{k_{t}}}\right)^{T} \cdot \hat{u}_{z} \times \overline{\Psi}_{ui} \right) dS}_{S_{3}} \qquad \dots (Eq. 23)$$

PARTE Q₄:

$$Q_{4} = k_{0}^{2} \int \overline{H}_{t} \bullet \overline{w}$$

$$\rightarrow Q_{4} = k_{0}^{2} \int_{S} \overline{\Psi}_{vj} \bullet \overline{\Psi}_{ui} dS \quad \begin{cases} u = x, y \\ v = x, y \end{cases}$$

então:

$$Q_4 = k_0^2 \int_{S} \overline{\Psi}_{vj} \cdot \overline{\Psi}_{ui} \, dS$$

$$(Eq. 24)$$

onde, Q $_4$ tem uma integral de superfície S $_4$.

Assim, resumindo temos:

$$Q_1 = S_1$$

$$Q_2 = -S_2$$

$$Q_3 = -L_3 - S_3$$

$$Q_4 = S_4$$

Na Equação 14 tem-se:

$$[S_1 + L_3 + S_3 - S_4] = -\gamma^2 S_2 \qquad \dots (Eq. 25)$$

onde, a integral de linha (Equação 23) é:

$$\begin{bmatrix}
L_3:\\ = \oint \left(\hat{u}_z (\nabla_t \cdot \overline{\Psi}_{vj}) \times \left(\overline{\overline{k_t}}\right)^T \cdot \hat{u}_z \times \overline{\Psi}_{ui} \right) \cdot \hat{n} \, dl \\ \dots \quad (Eq. 26)$$

e as integrais de superfície (Equações 21, 23 e 24) são:

$$S_{1} + S_{3} - S_{4} :$$

$$= \int_{S} k_{zz} \left(\nabla_{t} \times \overline{\Psi}_{vj} \right) \cdot \nabla_{t} \times \overline{\Psi}_{ui} \, dS +$$

$$\int_{S} \hat{u}_{z} \left(\nabla_{t} \cdot \overline{\Psi}_{vj} \right) \cdot \nabla_{t} \times \left(\left(\overline{k_{t}} \right)^{T} \cdot \hat{u}_{z} \times \overline{\Psi}_{ui} \right) \, dS - k_{0}^{2} \int_{S} \overline{\Psi}_{vj} \cdot \overline{\Psi}_{ui} \, dS$$
..... (Eq. 27)

e (Equação 22):

$$S_{2}:$$

$$= k_{0}^{2} \int_{S} \left[\overline{\overline{k}_{t}} \bullet (\hat{u}_{z} \times \overline{\Psi}_{vj}) \right] \bullet \hat{u}_{z} \times \overline{\Psi}_{ui} dS \qquad \dots (Eq. 28)$$

das funções:

$$\overline{\Psi}_{xi} = \Psi_{i} \hat{u}_{x}, \ \overline{\Psi}_{yi} = \Psi_{i} \hat{u}_{y}$$

$$\overline{\Psi}_{xj} = \Psi_{j} \hat{u}_{x}, \ \overline{\Psi}_{yj} = \Psi_{j} \hat{u}_{y}$$

e do operador ∇_t e da normal n :

$$\nabla_{t} = \frac{\partial}{\partial x}\hat{u}_{x} + \frac{\partial}{\partial y}\hat{u}_{y} \equiv \partial_{x}\hat{u}_{x} + \partial_{y}\hat{u}_{y}$$
$$\hat{n} = n_{x}\hat{u}_{x} + n_{y}\hat{u}_{y}$$

também do tensor $\overline{\overline{k_t}}$:

$$\overline{\overline{k_t}} = \begin{bmatrix} k_{xx} & k_{xy} \\ k_{yx} & k_{yy} \end{bmatrix} \rightarrow (\overline{\overline{k_t}})^T = \begin{bmatrix} k_{xx} & k_{yx} \\ k_{xy} & k_{yy} \end{bmatrix}$$

fazendo a matrização da Equação 25, feito no Apêndice C, é obtido:

$$\tilde{T} \cdot \overline{h_t} = -\gamma^2 \tilde{R} \cdot \overline{h_t} \qquad \dots \quad (Eq. \ 29)$$

onde,

$$\tilde{T} \equiv \begin{bmatrix} L_3 + S_1 + S_3 - S_4 \end{bmatrix} \equiv \begin{bmatrix} T_{xx} & T_{xy} \\ T_{yx} & T_{yy} \end{bmatrix} \qquad \dots (Eq. 30)$$

e

$$\tilde{R} = \begin{bmatrix} S_2 \end{bmatrix} = \begin{bmatrix} R_{xx} & R_{xy} \\ R_{yx} & R_{yy} \end{bmatrix} \qquad \dots (Eq. 31)$$

as componentes estão no Apêndice C (Equações C14 – C21), onde têm-se as integrais elementares superficiais para o sistema global (Equação C13):

$$\mathfrak{T}_{1} = \int_{S} \partial_{x} \Psi_{i} \partial_{x} \Psi_{j} dS$$

$$\mathfrak{T}_{2} = \int_{S} \partial_{y} \Psi_{i} \partial_{y} \Psi_{j} dS$$

$$\mathfrak{T}_{3} = \int_{S} \partial_{y} \Psi_{i} \partial_{x} \Psi_{j} dS$$

$$\mathfrak{T}_{3}^{T} = \int_{S} \partial_{y} \Psi_{j} \partial_{x} \Psi_{i} dS$$

$$\mathfrak{T}_{4} = \int_{S} \Psi_{i} \Psi_{j} dS$$

e as integrais elementares de linha para o sistema global (Equação C12):

$$\mathcal{Z}_{1} = \oint_{L} \Psi_{i} \partial_{x} \Psi_{j} dl$$

$$\mathcal{Z}_{2} = \oint_{L} \Psi_{i} \partial_{y} \Psi_{j} dl$$
.....(Eq. 33)

onde, L é o contorno (perímetro) e S é a área do elemento triangular.

2.5 INTEGRAIS ELEMENTARES

INTEGRAIS ELEMENTARES SUPERFICIAIS

Da transformação de sistemas, global \rightarrow local:

$$\Psi_{i,j} \equiv \Psi_{i,j}(x,y) - \xrightarrow{T_K} \hat{\Psi}_{i,j}(\xi,\eta) \equiv \varphi_{i,j}(\xi,\eta) \equiv \varphi_{i,j}(\xi,\eta) \equiv \varphi_{i,j}(\xi,\eta)$$

Na Equação D29:

$$\partial_{x} \Psi = \frac{1}{2 \cdot A^{e}} \cdot \left[\left(-y_{1} + y_{3} \right) \partial_{\xi} \varphi - \left(-y_{1} + y_{2} \right) \partial_{\eta} \varphi \right] \dots (Eq. 34)$$

$$\partial_{y} \Psi = \frac{1}{2 \cdot A^{e}} \cdot \left[-\left(-x_{1} + x_{3} \right) \partial_{\xi} \varphi + \left(-x_{1} + x_{2} \right) \partial_{\eta} \varphi \right]$$

Para as integrais de superfície:

$$\int_{S} F(\Psi, \partial_{x}\Psi, \partial_{y}\Psi) dS = \int_{\hat{S}} F(\varphi, \partial_{x}\varphi, \partial_{y}\varphi) \cdot |J| d\xi d\eta \qquad \dots (Eq. 35)$$

Das Equações (35) e (34) em (32–a):

Das Equações (35) e (34) em (32–b):

Das Equações (35) e (34) em (32–c):

$$\Im_{3} = -\left|J\right|^{-1} \left\{ \left(-x_{1} + x_{3}\right)\left(-y_{1} + y_{3}\right)\int_{\hat{S}} \partial_{\xi} \varphi_{i} \partial_{\xi} \varphi_{j} d\xi d\eta - \left(-x_{1} + x_{3}\right)\left(-y_{1} + y_{2}\right)\int_{\hat{S}} \partial_{\xi} \varphi_{i} \partial_{\eta} \varphi_{j} d\xi d\eta - \left(-x_{1} + x_{2}\right)\left(-y_{1} + y_{3}\right)\int_{\hat{S}} \partial_{\eta} \varphi_{i} \partial_{\xi} \varphi_{j} d\xi d\eta + \left(-x_{1} + x_{2}\right)\left(-y_{1} + y_{2}\right)\int_{\hat{S}} \partial_{\eta} \varphi_{i} \partial_{\eta} \varphi_{j} d\xi d\eta \right\} \dots (Eq. 38)$$

Das Equações (35) e (34) em (32–d):

$$\mathfrak{S}_{3}^{T} = -\left|J\right|^{-1} \left\{ \left(-x_{1}+x_{3}\right)\left(-y_{1}+y_{3}\right)\int_{\hat{S}} \vartheta_{\xi} \varphi_{i} \vartheta_{\xi} \varphi_{j} d\xi d\eta - \left(-x_{1}+x_{3}\right)\left(-y_{1}+y_{2}\right)\int_{\hat{S}} \vartheta_{\eta} \varphi_{i} \vartheta_{\xi} \varphi_{j} d\xi d\eta - \left(-x_{1}+x_{2}\right)\left(-y_{1}+y_{3}\right)\int_{\hat{S}} \vartheta_{\xi} \varphi_{i} \vartheta_{\eta} \varphi_{j} d\xi d\eta + \left(-x_{1}+x_{2}\right)\left(-y_{1}+y_{2}\right)\int_{\hat{S}} \vartheta_{\eta} \varphi_{i} \vartheta_{\eta} \varphi_{j} d\xi d\eta \right\} \dots (Eq. 39)$$

Das Equações (35) e (34) em (32–e):

$$\mathfrak{T}_{4} = |J| \int_{\hat{S}} \varphi_{i} \varphi_{j} d\xi d\eta \qquad \dots (Eq. 40)$$

Das Equações (36) – (40), observa-se as integrais elementares superficiais (sistema local):

$$\mathbf{s}_{1} = \int_{\hat{S}} \partial_{\xi} \varphi_{i} \partial_{\xi} \varphi_{j} d\xi d\eta$$

$$\mathbf{s}_{2} = \int_{\hat{S}} \partial_{\eta} \varphi_{i} \partial_{\eta} \varphi_{j} d\xi d\eta$$

$$\mathbf{s}_{3} = \int_{\hat{S}} \partial_{\eta} \varphi_{i} \partial_{\xi} \varphi_{j} d\xi d\eta$$

$$\dots (Eq. 41)$$

$$\mathbf{s}_{3}^{T} = \int_{\hat{S}} \partial_{\xi} \varphi_{i} \partial_{\eta} \varphi_{j} d\xi d\eta$$

$$\mathbf{s}_{4} = \int_{\hat{S}} \varphi_{i} \varphi_{j} d\xi d\eta$$

assim, as Equações (36) – (40) ficam:

$$\begin{split} & \mathfrak{S}_{1} = \left|J\right|^{-1} \left\{ \left(-y_{1} + y_{3}\right)^{2} \mathbf{s}_{1} - \left(-y_{1} + y_{2}\right) \left(-y_{1} + y_{3}\right) \left[\mathbf{s}_{3} + \mathbf{s}_{3}^{T}\right] + \left(-y_{1} + y_{2}\right)^{2} \mathbf{s}_{2} \right\} \\ & \mathfrak{S}_{2} = \left|J\right|^{-1} \left\{ \left(-x_{1} + x_{3}\right)^{2} \mathbf{s}_{1} - \left(-x_{1} + x_{2}\right) \left(-x_{1} + x_{3}\right) \left[\mathbf{s}_{3} + \mathbf{s}_{3}^{T}\right] + \left(-x_{1} + x_{2}\right)^{2} \mathbf{s}_{2} \right\} \\ & \mathfrak{S}_{3} = -\left|J\right|^{-1} \left\{ \left(-x_{1} + x_{3}\right) \left(-y_{1} + y_{3}\right) \mathbf{s}_{1} - \left(-x_{1} + x_{3}\right) \left(-y_{1} + y_{2}\right) \mathbf{s}_{3}^{T} - \left(-x_{1} + x_{2}\right) \left(-y_{1} + y_{3}\right) \mathbf{s}_{3} + \left(-x_{1} + x_{2}\right) \left(-y_{1} + y_{2}\right) \mathbf{s}_{2} \right\} \\ & \ldots (Eq. \ 42) \\ & \mathfrak{S}_{3}^{T} = -\left|J\right|^{-1} \left\{ \left(-x_{1} + x_{3}\right) \left(-y_{1} + y_{3}\right) \mathbf{s}_{1} - \left(-x_{1} + x_{3}\right) \left(-y_{1} + y_{2}\right) \mathbf{s}_{3} - \left(-x_{1} + x_{2}\right) \left(-y_{1} + y_{3}\right) \mathbf{s}_{3}^{T} + \left(-x_{1} + x_{2}\right) \left(-y_{1} + y_{2}\right) \mathbf{s}_{2} \right\} \\ & \mathfrak{S}_{4} = \left|J\right| \mathbf{s}_{4} \end{split}$$

INTEGRAIS ELEMENTARES DE LINHA

Da transformação de sistemas, global \rightarrow local, feito no Apêndice E, as integrais de linha, Equações E35 e E36, têm a forma :

$$\mathcal{Z}_{1} = \frac{1}{|J|} \left\{ h_{12} \left[\left(-y_{1} + y_{3} \right) LL_{1} - \left(-y_{1} + y_{2} \right) LL_{2} \right] + h_{23} \left[\left(-y_{1} + y_{3} \right) LL_{3} - \left(-y_{1} + y_{2} \right) LL_{4} \right] + \dots (Eq. \ 43) + h_{31} \left[\left(-y_{1} + y_{3} \right) LL_{5} - \left(-y_{1} + y_{2} \right) LL_{6} \right] \right\}$$

e

$$\mathcal{L}_{2} = \frac{1}{|J|} \Big\{ h_{12} \Big[-(-x_{1} + x_{3}) LL_{1} + (-x_{1} + x_{2}) LL_{2} \Big] + h_{23} \Big[(x_{1} - x_{3}) LL_{3} + (-x_{1} + x_{2}) LL_{4} \Big] + \dots (Eq. 44) \\ h_{31} \Big[(x_{1} - x_{3}) LL_{5} + (-x_{1} + x_{2}) LL_{6} \Big] \Big\}$$

onde têm as integrais elementares, Equações E32, E33 e E34:

$$LL_{1} = \int_{0}^{0} \varphi_{i} \partial_{\xi} \varphi_{j} \Big|_{\eta = 0} d\xi$$

$$LL_{2} = \int_{0}^{1} \varphi_{i} \partial_{\eta} \varphi_{j} \Big|_{\eta = 0} d\xi$$

$$LL_{3} = \int_{0}^{1} \varphi_{i} \partial_{\xi} \varphi_{j} \Big|_{\eta = 1-\xi} d\xi$$

$$LL_{4} = \int_{0}^{1} \varphi_{i} \partial_{\eta} \varphi_{j} \Big|_{\xi = 1-\eta} d\eta$$

$$LL_{5} = \int_{0}^{1} \varphi_{i} \partial_{\xi} \varphi_{j} \Big|_{\xi = 0} d\eta$$

$$LL_{6} = \int_{0}^{1} \varphi_{i} \partial_{\eta} \varphi_{j} \Big|_{\xi = 0} d\eta$$

1

Das Equações E04, E15 e E24, obtêm-se as seguintes relações:

$$n_{x} = \frac{(y_{2} - y_{1})}{h_{12}} , \quad n_{y} = \frac{(x_{2} - x_{1})}{h_{12}}$$
$$n_{x} = \frac{(y_{3} - y_{2})}{h_{23}} , \quad n_{y} = \frac{(x_{3} - x_{2})}{h_{23}}$$
$$n_{x} = \frac{(y_{1} - y_{3})}{h_{31}} , \quad n_{y} = \frac{(x_{1} - x_{3})}{h_{31}}$$

2.6 DOMÍNIO COMPUTACIONAL

Camadas perfeitamente casadas, do tipo PMLs [3, 8, 9, 10], são usadas para evitar reflexões e limitar o domínio computacional, Figura 2–3. O uso das PMLs contribui para redução do esforço computacional já que possibilita uma redução considerável do domínio computacional. Elas conseguem absorver completamente as ondas incidentes nas fronteiras, sem permitir reflexões de volta para o domínio computacional.

Nesta região, PML, o operador ∇ é definido como:

$$\nabla = \alpha_x \frac{\partial}{\partial x} \hat{u}_x + \alpha_y \frac{\partial}{\partial y} \hat{u}_y + \alpha_z \frac{\partial}{\partial z} \hat{u}_z$$

Fig. 2–3. Seção transversal do guia de onda rodeado por PMLs e paredes PEC e/ou PMC.

onde α_x , α_y e α_z , representam parâmetros relativos às PMLs.

Como a propagação ocorre ao longo da direção *Z*, o parâmetro α_z é igual à unidade e os outros parâmetros da PML têm que ser determinados de tal forma, que a impedância da onda possa ser contínua através das interfaces formadas entre o meio interno do domínio computacional e a PML. Segundo [3] e [8], os parâmetros da PML são especificados a partir de um parâmetro dado por:

$$PML = 1 - i \frac{3c}{2\omega_0 nd} \left(\frac{\rho}{d}\right)^2 Ln\left(\frac{1}{R}\right)$$
$$= 1 - i \frac{3}{2k_0 nd^3} \rho^2 Ln\left(\frac{1}{R}\right)$$

onde ω_0 é a frequência angular, *d* é a espessura da PML, *n* é o índice de refração do meio adjacente, ρ é a distância da parede interna da interface da PML, *R* é o coeficiente de reflexão, *c* é a velocidade da luz no espaço livre e k_0 é o número de onda. A Tabela 2–1. descreve os parâmetros.

Para as regiões fora da PML, ou seja, as regiões internas ao domínio computacional, mas que não pertencem às regiões consideradas PMLs, os parâmetros α_x e α_y são iguais à unidade.

É possível aplicar uma PML diretamente sobre uma parede dura ou metálica, Figura 2–3, parede PEC (Apêndice A – A3) e/ou parede PMC (Apêndice A – A4), com reflexão total da onda e ajustandose a espessura da PML pode-se fazer com que muito pouco da onda incidente seja refletida para o meio original.

α_x	α_y	Localização
PML	1	Normal à direção X
1	PML	Normal à direção Y
PML	PML	Nas quinas

Tabela 2–1. Descrição dos parâmetros relativos às PMLs.

2.7 ANÁLISE MODAL

A análise modal ajuda na compreensão do comportamento de um guia de onda, propicia a obtenção de autovalores – autovetores reais ou complexos (Equação 29), que definem o comportamento modal dos guias de onda.

Todas as simulações, feitas neste trabalho, foram precedidas de uma análise modal e realizadas através de um programa computacional desenvolvida pelo grupo de pesquisa [4, 11, 12], ao qual o autor desta tese de doutorado está vinculado.

A solução da Equação 29, equação matricial:

$$\tilde{T} \cdot \begin{cases} h_x \\ h_y \end{cases} = -\gamma^2 \tilde{R} \cdot \begin{cases} h_x \\ h_y \end{cases} \qquad \dots \quad (Eq. \ 45)$$

produz autovetores, que contem valores do campo magnético (h_x , h_y), e autovalores ($-\gamma^2$). Onde, γ representa a constante de propagação modal. As partes real e imaginaria do índice de refração efetivo n_{eff} do modo guiado são obtidos por:

$$n_{eff} = \gamma / k_0 \qquad \dots (Eq. \ 46)$$

onde, k_0 é o número de onda no espaço livre.

Também, tem-se que o índice de grupo, n_g , é:

$$n_g = n_{eff} - \lambda \cdot \left[\frac{d \operatorname{Re}[n_{eff}]}{d\lambda}\right] \qquad \dots (Eq. \ 47)$$

onde, $\operatorname{Re}[n_{eff}]$ é a parte real do índice efetivo e λ é o comprimento de onda. A dispersão cromática também é calculada da parte real do índice efetivo de acordo com a seguinte expressão [14, 15]:

$$D = -(\lambda/c) \cdot \left[\frac{d^2 \operatorname{Re}[n_{eff}]}{d\lambda^2}\right] \qquad \dots (Eq. \ 48)$$

A perdas por confinamento, atenuação, é deduzido da parte imaginária do índice efetivo [14, 16, 17]:

Atenuação
$$\left[\frac{dB}{cm}\right] = 2 \cdot 10^5 \cdot Log_{10}[e] \cdot \frac{2\pi}{\lambda_0} \cdot Imag[n_{eff}] \qquad \dots (Eq. 49)$$

A área efetiva do modo é calculada com [14]:

Area_{eff} =
$$\frac{\left(\iint |H|^2 dx dy\right)^2}{\iint |H|^4 dx dy} \qquad \dots (Eq. 50)$$

MÉTODO DOS ELEMENTOS FINITOS

Os cálculos, da primeira e segunda derivada, foram realizados por derivadas numéricas [18], foram utilizadas as fórmulas de sete pontos para calcular a derivada de um ponto.

A estratégia numérica para o cálculo da Análise Modal é constituída por três etapas:

- (1) Pré–Processamento, realizado no programa GiD® [19], é feita a geração da malha onde a geometria do guia é discretizada, escolhe-se o tipo de elementos (triangulares), a ordem deles (lineares ou quadráticos), a espessura das PMLs e que paredes PEC e/ou PMC são aplicadas no domínio computacional;
- (2) Processamento, realizado no programa MATLAB® [20], é feita a simulação e a solução da equação de onda para o guia de onda, Equação 45, os autovalores e autovetores são calculados pelo código robusto e preciso baseado na formulação do FEM totalmente vetorial (explicado neste capítulo); e
- (3) Pós–Processamento, também realizado no MATLAB®, aqui são calculados os parâmetros da análise modal (Equações 46–50) assim, como a distribuição espacial do campo $|Hy|^2$ ou $|Hx|^2$ normalizado.

2.8 CONCLUSÕES

Neste capítulo, foi apresentada a formulação por elementos finitos para analisar estruturas fotônicas em 2D. Como as matrizes resultantes são esparsas o custo computacional é reduzido dando a possibilidade de modelar geometrias mais complexas tendo assim, vantagens sobre os métodos tradicionais.

A aplicação e validação desta formulação é realizada no próximo capítulo.

2.9 BIBLIOGRAFIA

- 1 Jianming Jin, "*The finite element method in electromagnetics*"; John Wiley and Sons, Inc., 2002.
- 2 M. Koshiba; "Optical waveguide theory by the finite element method"; Kluwer Academic Publishers, London, 1992.
- 3 J. P. Berenger; "*A perfectly matched layer for the absorption of electromagnetics waves*"; J. Compt. Phys., vol. 114, no. 10, pp. 185-200, (1994).
- 4 H. F. Pinheiro; "*Método vetorial da propagação de feixes ópticos baseado em elementos finitos*"; Tese de doutorado, UNICAMP, Brasil, Fevereiro 2000.
- 5 A. Ern and Jean-Luc Guermond; "Theory and practice of finite elements", Springer, 2004.
- 6 S. Brenner and R. L. Scott, "The Mathematical Theory of Finite Element Methods", 2nd edition, Springer, 2005.
- 7 P. G. Ciarlet, "The Finite Element Method for Elliptic Problems", North-Holland, 1978.
- 8 M. Koshiba, Y. Tsuji and M. Hikari; "*Finite element beam propagation method with perfectly matched layers boundary conditions*"; IEEE Transactions on Magnetics, vol. 35, no. 3, pp. 1482-1485, (1999).
- 9 Z. S. Sacks, D. M. Kingsland, R. Lee and J. F. Lee; "A perfectly matched anisotropic absorber for use as an absorbing boundary condition"; IEEE Trans. Antennas and Propagation, vol. 43, no. 12, pp. 1460–1463, 1995.
- 10 C. M. Rappaport; "Perfectly matched absorbing boundary conditions based on anisotropic lossy mapping of space"; IEEE Microwave and Guided Wave Lett., vol. 5, no. 3, pp. 90–92, 1995.
- 11 H. E. Hernández-Figueroa, F. A. Fernández, Y. Lu and J. B. Davies; "Vectorial finite element modeling of 2D leaky waveguides"; IEEE Trans. Magn., vol. 33, no. 4, pp. 1710–1713, (1995).
- 12 J. Patrocínio da Silva; "Simulação por elementos finitos da propagação de feixes ópticos em estruturas fotônicas"; Tese de doutorado, UNICAMP, Brasil, Abril 2003.
- 13 G. Agrawal; "Nonlinear Fiber Optics", 4th ed., Academic Press, October 2006.
- 14 K. Saitoh, M. Koshiba, T. Hasegawa and E. Sasaoka; "Chromatic dispersion control in photonic crystal fibers: Aplication to ultra-flattened dispersion"; Optics Express, vol. 11, no. 8, pp. 843–852, (2003).
- 15 L. P. Shen, W. P. Huang and S. S. Jian; "Design of photonic crystal fibers for dispersion related aplications"; Journal of Lightwave Technology, vol. 21, no. 7, pp. 1644–1651, (2003).
- 16 T. P. White, R. C. McPhedran, C. M. de Sterke, L. C. Botten and M. J. Steel; "Confinement losses in microstructured optical fibers", Optics Letters, vol.26, pp. 1660–1662, (2001).
- 17 K. Saitoh and M. Koshiba; "*Leakage loss and group velocity dispersion in air-core photonic bandgap fibers*", Optics Express, vol. 11, no. 23, pp. 3100 3109, (2003).
- 18 Numerical Derivatives, "Numerical Recipes The Art of Scientific Computing"; 3rd Edition, 2007.
- 19 Página web do GiD®: http://gid.cimne.upc.es/.
- 20 Página web do MATLAB®: http://www.mathworks.com/products/matlab/.

Capítulo 3

VALIDAÇÃO DE RESULTADOS

3.1 INTRODUÇÃO

Neste capítulo é realizada a validação do código, usa-se o modelo *full-vector nodal*, baseado na formulação do FEM, explicado no capítulo anterior e desenvolvido pelo grupo de pesquisa na linguagem FORTRAN [1, 2, 3]. Neste trabalho, o código foi escrito inteiramente em MATLAB®, por tal motivo foi necessário realizar este capítulo com as validações dos resultados.

Primeiramente, é realizado a simulação de um guia de onda circular. Aproveitando a regularidade desta geometria é feita a seguinte análise, compara-se a parte real dos índices efetivos $(\text{Re}[n_{EFF}])$ dos modos de até 5^a ordem para a geometria inteira, metade e um quarto da geometria total do guia de onda circular. Também são comparados com resultados analíticos obtidos na literatura.

Outra validação de resultados é realizada com uma fibra óptica monomodo convencional. Usando as características geométricas de uma fibra típica comercial é feita uma análise modal onde, são calculados: Parte real do índice efetivo ($\text{Re}[n_{EFF}]$), índice de grupo (n_G), área efetiva (A_{EFF}) e a dispersão cromática (D) para o modo fundamental. Estes resultados numéricos são comparados com os experimentais fornecidos pelo fabricante desta fibra comercial. Durante a realização desta análise modal, foi observado que se a geometria da fibra monomodo convencional fosse reduzida, isto é, fosse afunilada, os parâmetros da análise modal da fibra – fibra afunilada – mudam. Isto levou a realizar simulações numéricas para esta fibra afunilada (Apêndice H) e resultados experimentais demonstram duas aplicações para este tipo de fibra.

Uma fibra óptica microestrutura composta por um núcleo sólido e um anel de seis buracos foi usado também para validar os resultados. Os índices efetivos (n_{EFF}) e a atenuação (Att) dos modos de até 3^a ordem foram comparados com os resultados numéricos calculados por outros métodos.

Em todas as simulações deste capítulo, foram desenhadas malhas com elementos triangulares feitas no programa GiD®. Para o domínio computacional foi escolhida uma espessura igual a 2 µm para a região dos PML, com paredes PEC e/ou PMC de acordo com a análise desejada.

3.2 GEOMETRIA REGULAR

Quando a seção transversal (por convenção no plano *XY*) de um guia óptico for regular (apresenta simetrias), é possível utilizar só uma parte dessa geometria para realizar a simulação numérica. Com isso, consegue-se diminuir o número de incógnitas utilizadas nas matrizes para resolver a equação de onda e, assim, calcular os modos de propagação de uma forma mais eficiente.

A janela de simulação ou domínio computacional vai depender da geometria do guia óptico. Se for simétrico utiliza-se metade ou até um quarto da geometria inteira. Com ajuda das paredes PEC e/ou PMC, pode-se obter todos os modos de propagação do guia óptico com a geometria inteira. Com metade da geometria têm-se duas combinações para observar todos os modos de propagação calculados com a geometria inteira. Já com um quarto da geometria têm-se quatro combinações para observar todos os modos de propagação.

A Figura 3–1 mostra as possíveis janelas de simulação para um guia óptico. Utiliza-se a notação de 1, $\frac{1}{2}$, e $\frac{1}{4}$ para denotar a geometria inteira, a metade da geometria e um quarto da geometria, respectivamente. Em todos os casos o centro do guia óptico coincide com o centro do sistema de coordenadas *XY*.

Na geometria inteira, faze-se com que o centro do sistema de coordenadas XY coincida com o

Fig. 3–1. Janelas de simulação, onde o centro do guia óptico coincide com o centro do sistema de coordenadas XY. Combinações possíveis de PEC e PMC, para geometria inteira (1), para metade da geometria (½) e para um quarto de geometria (¼).

centro da janela de simulação. Usa-se paredes PEC como limite para as janelas de simulação (paredes externas). Obtêm-se os mesmos resultados para paredes PMC. Tem-se, assim, quatro paredes PEC. Com esta configuração obtêm-se N modos de propagação para o guia óptico no comprimento de onda escolhido λ_4 .

Se a geometria do guia óptico permite, usa-se a metade da geometria. Fazendo coincidir o centro do sistema de coordenadas *XY* com a metade do eixo de simetria do guia óptico (eixo *X*), como é mostrado na Figura 3-1 em (½). Têm-se assim, duas configurações:

- Parede PMC na horizontal, no eixo $X \rightarrow$ PMh.
- Parede PEC na horizontal, no eixo $X \rightarrow$ PEh.

Com a configuração PMh obtêm-se N_1 modos, e com a configuração PEh obtêm-se N_2 modos, onde, $N_1 + N_2 = N$ no comprimento de onda escolhido λ_A . Se N fosse um número par temos que $N_1 = N_2$ = N/2, assim, com cada configuração obtém-se a metade dos modos.

Se a geometria do guia óptico for mais regular, usa-se um quarto da geometria inteira, fazendo coincidir o centro do sistema de coordenadas *XY* com os eixos de simetria, como é mostrado na Figura $3-1 \text{ em } (\frac{1}{4})$. Assim, têm-se quatro configurações:

- Parede PMC na horizontal, no eixo X (PMh) e
 Parede PEC na vertical, no eixo Y (PEv) → PMh-PEv.
- Parede PMC na horizontal, no eixo X (PMh) e
 Parede PMC na vertical, no eixo Y (PMv) → PMh-PMv.
- Parede PEC na horizontal, no eixo X (PEh)
 Parede PEC na vertical, no eixo Y (PEv) → PEh-PEv.
- Parede PEC na horizontal, no eixo X (PEh) e
 Parede PMC na vertical, no eixo Y (PMv) → PEh-PMv.

Para o comprimento de onda escolhido λ_A : Com a configuração PMh-PEv obtêm-se N_{II} modos e com PMh-PMv têm-se N_{I2} modos, onde $N_{II} + N_{I2} = N_I$. Com a configuração PEh-PEv obtêm-se N_{2I} modos e com PEh-PMv têm-se N_{22} modos, onde, $N_{2I} + N_{22} = N_2$ e sabe-se que $N_I + N_2 = N$. Se N fosse um número par tem-se que $N_I = N_2 = N/2$.

Para entender melhor, escolhe-se um guia óptico cuja geometria seja regular, como por exemplo um guia óptico circular. A geometria deste guia óptico permite usar até um quarto dela. Assim, compara-se a parte real dos índices efetivos ($\text{Re}[n_{EFF}]$) dos modos de até 5^a ordem para os três tipos de geometrias do guia óptico: inteira, metade e um quarto.

3.2.1 GUIA ÓPTICO CIRCULAR

A Figura 3–2 mostra o guia óptico circular composto por dois materiais isotrópicos, 1 e 2, com permeabilidade magnética uniforme ($\mu_1 = \mu_2 = \mu_0$) e com índices de refração igual a $n_1 e n_2$, respectivamente.

O núcleo do guia óptico tem um diâmetro (2*a*) de 8 μ m e considera-se seus índices de refração independentes do comprimento de onda λ , isto é, constantes na região de análise de 1,0 μ m a 1,8 μ m. Os valores escolhidos foram $n_1 = 1,480$ e $n_2 = 1,444$. Com isso, o material 1 é o núcleo e consequentemente o material 2 é a casca do guia óptico circular.

A análise modal feita para este guia foi o cálculo: do índice efetivo, da fração de potência no núcleo e da distribuição espacial do campo $|H_Y|^2$ normalizado dos primeiros dezesseis modos de

Fig. 3–2. Guia óptico circular. Material 1 é o núcleo com diâmetro 2a e material 2 é a casca.

propagação do guia (modos até 5ª ordem). O campo dominante escolhido para todos os casos foi o campo H_Y.

Calculam-se de três maneiras: para a geometria inteira, para metade da geometria e para um quarto da geometria do guia óptico. Mantem-se as mesmas condições para todos os cálculos e comparase também com o resultado analítico.

3.2.2 GEOMETRIA INTEIRA

Para esta configuração escolhe-se as quatro paredes PEC, trocando por paredes PMC obtém-se os mesmos resultados.

A Figura 3–3 mostra o desenho e a malha do guia óptico circular com a geometria inteira. O centro do guia óptico coincide com o centro do sistema de coordenadas *XY*. A janela computacional é de 24 μ m (horizontal) x 24 μ m (vertical). A malha está composta por aproximadamente 69.000 elementos triangulares e foi utilizada uma região de PML com espessura de 2 μ m. Fazendo a malha mais refinada na região do núcleo. Esta malha foi elaborada no programa GiD®.

Dos parâmetros do guia óptico circular $(n_1, n_2, 2a)$ foram encontrados e analisados os modos de

Fig. 3–3. Janela computacional para geometria inteira do guia óptico circular. Desenho do guia e malha com a configuração para esta geometria.

propagação de até 5^{a} ordem (LP₀₁, LP₁₁, LP₂₁, LP₀₂ e LP₃₁) fazendo um total de dezesseis modos de propagação. Estão classificados em:

- 1^a ordem LP₀₁ HE₁₁ (2 modos);
- 2^{a} ordem LP₁₁ (4 modos);
- 3^a ordem LP₂₁ (4 modos);
- 4^a ordem LP₀₂ (2 modos) e;
- 5^{a} ordem LP₃₁ (4 modos).

As Figuras 3–4 mostram a parte real do índice efetivo $\text{Re}[n_{EFF}]$ e suas respectivas frações de potência no núcleo do guia óptico, dos 16 modos encontrados quando é usado a geometria inteira do guia óptico circular.

Fig. 3–4. Para o guia óptico circular, utilizando a geometria inteira. (a) Parte real do índice efetivo e (b) Fração de potência no núcleo, dos dezesseis modos de propagação encontrados.

A Figura 3–4a mostra o comportamento da parte real dos índices efetivos dos modos em função do comprimento de onda λ , que decresce quando o λ aumenta. O campo dominante dos modos exibidos é o H_Y. Eles são comparados com os índices de refração do núcleo e da casca do guia óptico circular. Para $\lambda = 1,50$ µm temos modos de até 5^a ordem, já para um $\lambda = 1,70$ µm temos só modos de até 4^a ordem.

A Figura 3–4b mostra o comportamento da fração de potência no núcleo dos modos do guia óptico (Potência no núcleo/Potência total [%]) em função do comprimento de onda λ . A fração de potência diminui quando o λ aumenta, o modo de propagação começa a penetrar na casca do guia. O modo principal LP₀₁ – HE₁₁ encontra-se mais de 95% no núcleo do guia em toda a região da análise. Já

Modos	Índice Efetivo Re[<i>n_{EFF}</i>]	Campo Dominante
1 ^a ordem	1,47474465	$H_{Y} \approx 2 H_{X}$
LP ₀₁	1,47474465	$H_{X} \approx 2 \ H_{Y}$
	1,46690129	$H_X \approx H_Y$
2 ^a ordem	1,46676189	$H_{Y} \approx H_{X}$
LP_{11}	1,46679403	$H_{Y} \approx H_{X}$
	1,46679404	$H_{\rm X}\approx H_{\rm Y}$
	1,45676041	$H_{Y} \approx H_{X}$
3 ^a ordem	1,45676040	$H_X \approx H_Y$
LP_{21}	1,45662910	$H_{Y} \approx H_{X}$
	1,45662910	$H_{\rm X}\approx H_{\rm Y}$
4 ^a ordem	1,45369631	$H_{Y} \approx 7 H_{X}$
LP_{02}	1,45369629	$H_X\approx 7~H_Y$
	1,44514002	$H_X \approx H_Y$
5 ^a ordem	1,44514035	$H_{\rm Y} \approx H_{\rm X}$
LP_{31}	1,44487507	$H_X \approx H_Y$
	1,44487426	$H_{Y} \approx H_{X}$

Tabela 3–1. Parte real dos índices efetivos dos 16 modos encontrados para o guia óptico circular com geometria inteira no comprimento de onda de 1,55 μm.

o modo LP₃₁ encontra-se 93 % para $\lambda = 1,00 \mu m$ e 70 % para $\lambda = 1,55 \mu m$ no núcleo do guia óptico.

A Tabela 3–1 mostra os índices efetivos dos dezesseis modos encontrados de até 5ª ordem, para

Fig. 3–5. Distribuição espacial do campo $|Hy|^2$ normalizado, para cinco modos calculados, usando a geometria inteira do guia circular para o comprimento de onda $\lambda = 1,55 \ \mu m$.

 $\lambda = 1,55 \ \mu\text{m}$, assim como o campo dominante característico para cada um deles H_x ou H_y. Para os modos LP₀₁ o campo dominante é maior em magnitude igual a 2, isto é, o dobro (H_y/H_x ou H_x/H_y). Para os modos LP₀₂ o campo dominante é maior em magnitude igual a 7 (H_y/H_x ou H_x/H_y). Já para outros modos (LP₁₁, LP₂₁ e LP₃₁) o campo dominante é maior em 1,001 (H_y/H_x ou H_x/H_y).

A Figura 3–5 mostra a distribuição espacial do campo $|H_Y|^2$ normalizado de cinco modos com o campo dominante H_Y . A escala, para visualizar melhor, é de [-5, 5] µm para o eixo *X* e de [-5, 5] µm para o eixo *Y*. O núcleo do guia óptico circular se encontra na região de [-4, 4] µm no eixo *X* e de [-4,

3.2.3 METADE DA GEOMETRIA INTEIRA

Para esta configuração escolhe-se três paredes PEC externas (aquelas que não estão nos eixos) e uma parede PEC ou parede PMC no eixo *X*. Trocando as paredes PEC externas por paredes PMC externas obtêm-se os mesmos resultados.

A Figura 3–6 mostra o desenho e a malha do guia óptico circular da metade da geometria inteira. O centro do guia óptico coincide com o centro do sistema de coordenadas *XY*. A janela computacional é de 24 μ m (horizontal) x 12 μ m (vertical). A malha está composta por aproximadamente 34.000 elementos triangulares e foi utilizada uma região de PML com espessura de 2 μ m. Fez-se a malha mais refinada na região do núcleo. Usa-se a configuração PMh, isto é, uma parede PMC no eixo *X*. Esta malha foi elaborada no programa GiD®.

Fig. 3–6. Janela computacional para metade da geometria inteira do guia óptico circular. Desenho do guia e malha com a configuração para esta geometria.

Dos parâmetros do guia circular (n_1 , n_2 , 2a) foram encontrados e analisados os modos de até 5^a ordem (LP₀₁, LP₁₁, LP₂₁, LP₀₂ e LP₃₁) que no total foram oito modos de propagação. Estão classificados em:

- 1^{a} ordem LP₀₁ HE₁₁ (1 modo);
- 2^{a} ordem LP₁₁ (2 modos);
- 3^{a} ordem LP₂₁ (2 modos);
- 4^{a} ordem LP₀₂ (1 modo) e;
- 5^{a} ordem LP₃₁ (2 modos).

Utiliza-se a configuração PEh, com uma parede PEC no eixo X, encontra-se os outros oito modos, assim, com as duas configurações (PMh e PEh) consegue-se os dezesseis modos de propagação

Fig. 3–7. Para o guia circular, utilizando metade da geometria inteira, para a configuração PMh.
(a) Parte real do índice efetivo e (b) Fração de potência no núcleo, dos modos de propagação encontrados.

da geometria inteira.

A Figura 3–7 mostra a parte real do índice efetivo e suas respectivas frações de potências no núcleo do guia óptico circular, dos modos encontrados usando a metade da geometria inteira do guia óptico circular na configuração PMh.

A Figura 3–7a mostra o comportamento das partes reais dos índices efetivos dos modos em função do comprimento de onda λ , que decresce quando o λ aumenta, isto é, o modo de propagação penetra na casca do guia para λ maiores. O campo dominante dos modos exibidos é o campo H_Y. Eles são comparados com os índices de refração do núcleo e da casca. Comparando as partes reais destes

índices efetivos com os índices efetivos da geometria inteira (Figura 3–4a) têm-se os seguintes erros relativos Δn_{EFF} :

- Para LP₀₁, o Δn_{EFF} é da ordem de 1x10⁻⁸, exatidão até a sétima casa decimal;
- Para LP₁₁, o Δn_{EFF} é da ordem de 1x10⁻⁷, exatidão até a sexta casa decimal;
- Para LP₂₁, o Δn_{EFF} é da ordem de 1x10⁻⁷, exatidão até a sexta casa decimal;
- Para LP₀₂, o Δn_{EFF} é da ordem de 1x10⁻⁸, exatidão até a sétima casa decimal e;
- Para LP₃₁, o Δn_{EFF} é da ordem de 1x10⁻⁷, exatidão até a sexta casa decimal.

A Figura 3–7b mostra o comportamento da fração de potência no núcleo dos modos do guia óptico (Potência no núcleo/Potência total [%]) em função do comprimento de onda λ . A fração de potência no núcleo diminui quando o λ aumenta. Comparando estes resultados com os da geometria inteira (Figura 3–4b) estes são iguais.

A Tabela 3–2 mostra as partes reais dos índices efetivos para os oito modos calculados até a 5^a ordem para $\lambda = 1,55 \mu m$, assim como o campo dominante característico para cada um dos modos, o campo H_x ou campo H_y. Estes valores foram calculados usando a configuração PMh. Para os modos LP₀₁ e LP₀₂ o campo dominante é maior em até uma ordem de 10⁶ (H_y/H_x). Já para outros modos (LP₁₁, LP₂₁ e LP₃₁) o campo dominante é maior em uma ordem 1,01 (H_y/H_x ou H_x/H_y).

A Figura 3–8 mostra a distribuição espacial do campo $|H_Y|^2$ normalizado dos modos com o campo dominante H_Y . A escala para melhor visualização é de [-5, 5] µm para o eixo X e de [0, 5] µm para o eixo Y. O núcleo do guia óptico circular encontra-se na região de [-4, 4] µm no eixo X e de [0, 4] µm no eixo Y. Observa-se os perfis característicos "cortados na metade" em y = 0 de cinco modos

Modos	Índice Efetivo Re[<i>n_{EFF}</i>]	Campo Dominante
1^a ordem \mathbf{LP}_{01}	1,47474460	H _Y
2 ^a ordem LP ₁₁	1,46679392 1,46676178	$\begin{array}{l} H_{X}\approx H_{Y} \\ H_{Y}\approx H_{X} \end{array}$
3^{a} ordem \mathbf{LP}_{21}	1,45676025 1,45662894	$\begin{array}{l} H_{\mathrm{Y}} \approx H_{\mathrm{X}} \\ H_{\mathrm{X}} \approx H_{\mathrm{Y}} \end{array}$
4 ^a ordem LP ₀₂	1,45369626	H_{Y}
5 ^a ordem LP ₃₁	1,44514020 1,44487494	$ \begin{array}{l} H_{Y} \approx H_{X} \\ H_{X} \approx H_{Y} \end{array} $

Tabela 3–2. Parte real dos índices efetivos dos modos encontrados para o guia óptico circular com metade da geometria inteira e no comprimento de onda de 1,55 µm. Configuração PMh.

Fig. 3–8. Distribuição espacial do campo $|Hy|^2$ normalizado, dos modos calculados, usando a metade da geometria do guia circular óptico para o comprimento de onda $\lambda = 1,55 \ \mu m$. Foi usado a configuração PMh.

encontrados para $\lambda = 1,55 \mu m$, todos confinados no núcleo do guia.

Então, usando-se a metade da geometria do guia óptico circular, pode-se confiar nos resultados numéricos desta simulação.

3.2.4 UM QUARTO DA GEOMETRIA INTEIRA

Para esta configuração escolhe-se dois paredes PEC externas (aquelas que não estão nos eixos), uma parede PEC ou parede PMC no eixo *X* e uma parede PEC ou parede PMC no eixo *Y*. Trocando-se as paredes externas PEC por paredes PMC obtém-se os mesmos resultados.

A Figura 3–9 mostra o desenho e a malha do guia óptico circular para um quarto da geometria inteira. O centro do guia óptico coincide com o centro do sistema de coordenadas *XY*. A janela computacional é de 12 μ m (horizontal) x 12 μ m (vertical). A malha está composta por aproximadamente 17.000 elementos triangulares e foi utilizada uma região de PML com espessura de 2 μ m. Fez-se a malha mais refinada na região do núcleo. Usa-se duas configurações, a Pmh-PEv (parede

Fig. 3–9. Janela computacional para um quarto da geometria inteira do guia óptico circular. Desenho do guia e a malha para esta geometria.

PMC no eixo *X* e parede PEC no eixo *Y*) e a Pmh-PMv (parede PMC no eixo *X* e parede PMC no eixo *Y*). Esta malha foi elaborada no programa GiD.

Dos parâmetros do guia circular (n_1 , n_2 , 2a) foram encontrados e analisados os modos de até 5^a ordem (LP₀₁, LP₁₁, LP₂₁, LP₀₂ e LP₃₁) que no total foram oito modos de propagação. Para configuração PMh-PEv foram quatro modos:

- 1^{a} ordem LP₀₁ HE₁₁ (1 modo);
- 3^a ordem LP₂₁ (2 modos) e
- 4^{a} ordem LP₀₂ (1 modo).

Para configuração PMh-PMv foram quatro modos:

• 2^{a} ordem LP₁₁ (2 modos) e

• 5^{a} ordem LP₃₁ (2 modos).

Utilizando as configurações PEh-PMv e PEh-PEv encontra-se os outros oito modos de propagação, assim consegue-se os dezesseis modos da geometria inteira.

A Figura 3–10 mostra a parte real do índice efetivo dos modos encontrados usando um quarto da geometria inteira do guia óptico circular. Esta figura mostra o comportamento da parte real dos índices efetivos em função do comprimento de onda λ , que decresce quando o λ aumenta, o modo de propagação penetra na casca do guia óptico.

A Figura 3-10a mostra as partes reais dos índices efetivos dos modos obtidos usando a

GEOMETRIA (1/4) : PMh - PEv

Fig. 3–10. Parte real do índice efetivo dos modos encontrados. Utilizando um quarto da geometria inteira do guia circular. (a) Para configuração PMh-PEv e (b) para configuração PMh-PMv.
configuração PMh-PEv, os modos para três ordens (LP₀₁, LP₂₁ e LP₀₂). O campo dominante dos modos exibidos é o campo H_Y. Eles são comparados com os índices de refração do núcleo e da casca. Compara-se estas partes reais dos índices efetivos com as dos índices efetivos da geometria inteira (Figura 3–4a) tem-se os seguintes erros relativos Δn_{EFF} :

- Para LP₀₁, o Δn_{EFF} é da ordem de 1x10⁻⁶, exatidão até a quinta casa decimal;
- Para LP₂₁, $o \Delta n_{EFF}$ é da ordem de 1x10⁻⁷, exatidão até a sexta casa decimal e;
- Para LP₀₂, o Δn_{EFF} é da ordem de 1x10⁻⁶, exatidão até a quinta casa decimal.

A Figura 3–10b mostra as partes reais dos índices efetivos dos modos obtidos usando a configuração PMh-PMv, os modos para duas ordens (LP₁₁ e LP₃₁). O campo dominante dos modos exibidos é o campo H_Y. Eles são comparados com os índices de refração do núcleo e da casca. Compara-se estas partes reais dos índices efetivos com as dos índices efetivos da geometria inteira (Figura 3–4a) tem-se os seguintes erros relativos Δn_{EFF} :

- Para LP₁₁, o Δn_{EFF} é da ordem de 1x10⁻⁶, exatidão até a quinta casa decimal e;
- Para LP₃₁, o Δn_{EFF} é da ordem de 1x10⁻⁸, exatidão até a sétima casa decimal.

Para esta geometria, a fração de potência no núcleo do guia óptico dos modos é igual ao da geometria inteira (Figura 3–4b).

A Tabela 3–3 mostra as partes reais dos índices efetivos dos oito modos encontrados de até 5^a ordem para $\lambda = 1,55 \mu m$, assim como o campo dominante característico para cada um deles campo H_x ou campo H_y. Estes foram calculados usando as configurações já mencionadas. Para o modo LP₀₁ o campo dominante é maior em magnitude na ordem de 10⁶ (H_y/H_x). Para o modo LP₀₂ o campo

Modos	Índice Efetivo Re[<i>n_{EFF}</i>]	Campo Dominante	
1 ^a ordem LP ₀₁	1,47474567	H_{Y}	
2 ^a ordem	1,46679405	$H_X \approx H_Y$	
LP ₁₁	1,46676622	$H_{Y} \approx H_{X}$	
3 ^a ordem	1,45676078	$H_{Y} \approx H_{X}$	
LP ₂₁	1,45662910	$H_X \approx H_Y$	
4 ^a ordem LP ₀₂	1,45370601	$H_{\rm Y}$	
5 ^a ordem	1,44514045	$H_{Y} \approx H_{X}$	
LP_{31}	1,44487515	$H_{\rm X}\approx H_{\rm Y}$	

Tabela 3–3. Parte real dos índices efetivos dos modos encontrados para o guia óptico circular com um quarto da geometria inteira para o comprimento de onda de 1,55 μm. Configurações PMh-PEv e PMh-PMv.

dominante é maior em magnitude na ordem de 10^5 (H_Y/H_X). Já para outros modos (LP₁₁, LP₂₁ e LP₃₁) o campo dominante é maior em uma ordem 1,01 (H_Y/H_X ou H_X/H_Y).

A Figura 3–11 mostra a distribuição espacial do campo $|H_Y|^2$ normalizado dos modos com o campo dominante H_Y . A escala para melhor visualização é de [0, 5] µm para o eixo X e de [0, 5] µm para o eixo Y. O núcleo do guia óptico circular se encontra na região de [0, 4] µm no eixo X e de [0, 4] µm no eixo X e de [0, 4] µm no eixo Y. Observa-se os perfis característicos "cortados na quarta parte" em x = 0 e em y = 0 de cinco modos do guia óptico encontrados para $\lambda = 1,55$ µm, todos eles confinados no núcleo do guia óptico.

Fig. 3–11. Distribuição espacial do campo $|Hy|^2$ normalizado dos modos calculados, usando um quarto da geometria inteira do guia circular para o comprimento de onda $\lambda = 1,55 \ \mu m$. Usando as configurações, PMh-PEv e Pmh-PMv.

Então, usando-se um quarto da geometria do guia óptico circular, pode-se confiar nos resultados numéricos desta simulação.

3.2.5 ANÁLISE DOS RESULTADOS

Para comparar as partes reais dos índices efetivos dos modos $\text{Re}[n_{EFF}]$ calculados numericamente com o valor analítico, usa-se a equação de autovalores dos modos para um guia óptico circular [4]:

$$U \frac{J_{l}(U)}{J_{l\neq 1}(U)} = \pm W \frac{K_{l}(W)}{K_{l\neq 1}(W)} \qquad \dots (Eq. \ 01)$$

onde a dupla notação de signos é usada para diferenciar os modos HE (signo superior) dos modos EH (signo inferior). Esta identificação é valida também para os subscritos nas funções de Bessel J_l e K_l .

Para os modos HE_{lM} (l > 2) e EH_{lM} (l > 1) usa-se uma equação de autovalores alternativa:

$$U \frac{J_{l\neq2}(U)}{J_{l\neq1}(U)} = \mp W \frac{K_{l\neq2}(W)}{K_{l\neq1}(W)} \qquad \dots (Eq. \ 02)$$

onde os parâmetros normalizados U e W são:

$$U^{2} + W^{2} = a^{2}k_{0}^{2}(n_{1}^{2} - n_{2}^{2})$$

$$U^{2} = a^{2}k_{0}^{2}(n_{1}^{2} - n_{EFF}^{2})$$

$$W^{2} = a^{2}k_{0}^{2}(n_{EFF}^{2} - n_{2}^{2})$$

.....(Eq. 03)

Assim, usando os parâmetros para o guia óptico circular (a = 4 μ m, n₁ = 1,480 e n₂ =1,444) calcula-se os Re[n_{EFF}] analíticos para os modos de até 5^a ordem.

Na Tabela 3–4 tem-se uma comparação das partes reais dos índices efetivos de cinco modos entre as três geometrias (–inteira, metade– e um quarto–) e a analítica, para o comprimento de onda $\lambda = 1,55 \mu m$.

Na Figura 3-12 é possível observar melhor essa comparação entre as partes reais dos índices efetivos, assim como o erro absoluto da comparação com os valores analíticos. Para o modo

Modos	Geometria INTEIRA	Geometria METADE	Geometria QUARTO	ANALÍTICO
LP ₀₁	1,47474465	1,47474460	1,47474567	1,47478952
LP ₁₁	1,46679403	1,46679392	1,46679405	1,46691250
LP ₂₁	1,45676041	1,45676025	1,45676078	1,45684425
LP ₀₂	1,45369631	1,45369626	1,45370601	1,45382095
LP ₃₁	1,44514035	1,44514020	1,44514045	1,44518081

Tabela 3–4. Comparação entre partes reais dos índices efetivos, para o comprimento de onda igual a 1,55 µm, dos modos do guia circular.

Fig. 3–12. Comparação das partes reais dos índices efetivos (n_{EFF} analítico e n_{EFF} numérico das três geometrias) e o seus erros absolutos (comparando com o n_{EFF} analítico) em função dos cinco modos calculados para o guia circular em $\lambda = 1,55 \ \mu m$.

fundamental tem-se uma exatidão até a quarta casa decimal, para as três geometrias calculadas.

Estes resultados mostram que os índices efetivos calculados numericamente para um quarto da geometria estão dentro da região do erro aceitável. Com isso, pode-se confiar nos resultados numéricos destas simulações.

3.3 FIBRA ÓPTICA

3.3.1 INTRODUÇÃO

Fibra óptica é um guia de onda dielétrico cilíndrico feito de materiais de baixa perda tal como o vidro sílica. Tem um núcleo central no qual a luz é guiada, envolvida por uma casca externa de índice de refração menor. A Figura 3–13 mostra a seção transversal de uma fibra óptica onde o núcleo tem um

Fig. 3–13. Seção transversal de uma fibra óptica típica, onde o material 1 é o núcleo, o material 2 é a casca e os materiais 3 e 4 são os revestimentos.

diâmetro Φ_N e um índice de refração n_l ; já a casca tem um diâmetro Φ_C e um índice de refração n_2 ($n_2 < n_l$).

Os raios de luz que incidem na interface núcleo – casca em ângulos maiores que o ângulo crítico experimentam a reflexão total interna e são guiados através do núcleo sem refração. Raios de maior inclinação ao eixo da fibra perdem parte da sua potência, na casca, a cada reflexão e não são guiados, isto é, fora do cone de aceitação, como é mostrado na Figura 3–14.

Fig. 3–14. Corte longitudinal da fibra óptica mostrando o fenômeno de reflexão total interna.

Uma característica importante que torna a fibra óptica indispensável em muitas aplicações é o fato de não ser suscetível à interferência eletromagnética, pela razão de que não transmite pulsos elétricos, como ocorre com outros meios de transmissão que empregam os fios metálicos, como o cobre. Pode-se encontrar aplicações do uso de fibra óptica na medicina (endoscopias por exemplo) como também em telecomunicações em substituição aos cabos coaxiais de cobre como meio de transmissão para ondas eletromagnéticas que, com isso, revolucionaram as comunicações.

Em virtude das suas características, as fibras ópticas apresentam muitas vantagens sobre os sistemas elétricos como:

- Dimensões reduzidas;
- Capacidade para transportar grandes quantidades de informação (dezenas de milhares de conversações numa fibra);
- Atenuação muito baixa, que permite grandes espaçamentos entre repetidores, com distância entre repetidores superiores em algumas centenas de quilômetros;
- Imunidade às interferências eletromagnéticas;
- Matéria-prima muito abundante.

Com relação ao núcleo classificam-se em índice degrau e índice gradual. O índice degrau (Figura 3–15) apresenta apenas um nível de reflexão entre o núcleo e a casca, já o índice gradual apresenta vários níveis de reflexão entre o núcleo e a casca.

As fibras ópticas podem ser basicamente de dois tipos:

- <u>MONOMODO</u>: Sua fabricação requer equipamentos muito complexos. As dimensões típicas que comercialmente adota-se são de Φ_N = 8,2 µm para o núcleo e de Φ_C = 125 µm para a casca. Como as dimensões de núcleo são muito pequenas, isto permite a incidência de raios de luz em um único ângulo e, assim, possui só um modo de propagação cuja capacidade de transmissão é superior à fibra multimodo. Permite o uso de apenas um sinal de luz pela fibra; tem dimensões menores que os outros tipos de fibras, uma maior banda passante por ter menor dispersão e geralmente é usado laser como fonte de geração de sinal.
- <u>MULTIMODO</u>: Nesta fibra óptica as dimensões do núcleo podem ser relativamente grandes; isso permite a incidência de raios de luz em vários ângulos, com isso esta fibra possui vários modos de propagação. As dimensões para o núcleo variam de 50 até 200 µm; comercialmente adota-se o núcleo de $\Phi_N = 62,5$ µm e para a casca de 125 até 240 µm, comercialmente adota-se à casca de $\Phi_C = 125$ µm. É relativamente fácil de fabricar. Permite o uso de outras fontes luminosas tais como LEDs (mais baratas). Seu diâmetro grande facilita o acoplamento de fontes

Fig. 3–15. Índice degrau para uma fibra óptica, onde n_{NUC} é n_{SIL} são os índices de refração do núcleo e da casca respectivamente.

luminosas e requere pouca precisão nos conectores. É muito usado para curtas distâncias pelo baixo preço e facilidade de implementação, pois a longa distância tem muita perda.

As fibras ópticas também são usadas como sensores, desde termômetros até giroscópios. Seu potencial de aplicação neste campo não tem limites; a luz transmitida pelas fibras é sensível a numerosas variações ambientais, entre eles a pressão, as ondas de som e a deformação, ao calor e movimento.

3.3.2 FIBRA MONOMODO

A fibra monomodo do tipo índice de casca casado, foi desenvolvida para se obter menor dispersão a 1,55 µm. As aplicações típicas são redes tronco urbanas e interurbanas e serviços de dados e voz, podendo operar com sistemas em 1,31 µm ou 1,55 µm.

Por exemplo, um sistema de 2,5 Gbit/s pode operar com distância de 80 km entre repetidores. Todas as suas características geométricas e de transmissão estão de acordo com a especificação ABNT NBR 13488 e recomendação G652 do ITU-T.

As fibras monomodo são fabricadas com casca de sílica pura e núcleo de sílica dopada com germânio, para obtenção das características desejadas. Apresentam um revestimento primário, composto de dupla camada de acrilato foto-curável por ultravioleta. A camada interna apresenta baixo módulo de elasticidade, que garante boa aderência ao vidro, mesmo em ambiente úmido. A camada externa apresenta alto módulo de elasticidade, que garante um baixo coeficiente de atrito e elevada

PROPRIEDAI	DES ÓPTICAS	
Fibra óptica monomodo para	operar em 1,31 µm e	1,55 μm.
Perfil do índice de ref	ração: índice gradual.	
CARACTERÍST	TICAS ÓPTICAS	
Diâmatra da compo model o	1,31 µm	$9{,}2\pm0{,}4~\mu m$
	1,55 μm	$10{,}4\pm0{,}8~\mu m$
Dispersão Cromática:		
• em 1,550 μm	[ps/(nm·km)]	\leq 18,0
• em 1,625 μm		\le 22,0
Inclinação da curva de dispersão (S_0)	[ps/(nm ² ·km)]	≤ 0.089
Comprimento de onda de dispersão zero	[um]	≥ 1,302
(λ_0)	[µm]	≤ 1,322
Índias da rafração da aruna:	em 1,31 µm	1,4677
indice de refração de grupo.	em 1,55 μm	1,4682
CARACTERÍSTICA	AS GEOMÉTRICAS	
Diâmetro do núcleo	[µm]	8,2
Diâmetro da casca	[µm]	125,0
Abertura numérica	em 1,31 µm	0,14
Diferença de índice de refração	0,36	

 Tabela 3–5. Especificações ópticas e geométricas para uma fibra óptica monomodo comercial

 SMF-28e.

resistência à abrasão, assim como maior facilidade de pintura. Para a realização de emendas, o revestimento primário pode ser removido quimicamente com a utilização de solventes apropriados.

Na Tabela 3–5 estão as propriedades ópticas e as características ópticas e geométricas para uma fibra óptica monomodo típica comercial SMF-28e. Estes resultados experimentais foram usados para comparar com os dados numéricos destas simulações.

Para comparar o índice efetivo n_{eff} do modo utiliza-se a seguinte equação de autovalores [5, 6, 7] para calcular os modos da fibra:

$$\left[\frac{J_{m}'(pa)}{pJ_{m}(pa)} + \frac{K_{m}'(qa)}{qK_{m}(qa)}\right] \left[\frac{J_{m}'(pa)}{pJ_{m}(pa)} + \frac{n_{2}^{2}}{n_{1}^{2}}\frac{K_{m}'(qa)}{qK_{m}(qa)}\right] = \frac{m^{2}}{a^{2}} \left[\frac{1}{p^{2}} + \frac{1}{q^{2}}\right] \left[\frac{1}{p^{2}} + \frac{n_{2}^{2}}{n_{1}^{2}}\frac{1}{q^{2}}\right] \qquad \dots (Eq. \ 04)$$

esta foi deduzida da equação de onda depois de consideráveis detalhes algebraicos.

Da fórmula analítica temos que:

- J_m e K_m são funções de Bessel, onde ' indica a diferenciação com respeito ao argumento.

- n_1 é o índice de refração do núcleo.
- n_2 é o índice de refração da casca.
- m é o modo da fibra, m = 1 para o modo fundamental, fibra monomodo.
- *a* é o raio do núcleo.
- *p* e *q* são parâmetros normalizados definidos por:

$$p = (n_1^2 k_0^2 - \beta^2)^{1/2} , \quad q = (\beta^2 - n_2^2 k_0^2)^{1/2}$$
$$\beta = n_{eff} k_0 , \quad k_0 = 2\pi / \lambda_0$$

- β é a constante de propagação.
- k_0 é o número de onda.
- λ_0 é o comprimento de onda da propagação.

Para um conjunto de parâmetros k_0 , a, n_1 e n_2 , a equação analítica pode ser resolvida numericamente para determinar a constante de propagação, assim, o modo é determinado.

Logo, compara-se o n_{eff} calculado numericamente usando elementos finitos com o n_{eff} analítico.

3.3.3 ANÁLISE MODAL

Na análise modal da fibra monomodo calcula-se a parte real do índice efetivo Re[n_{EFF}], o índice de grupo n_G , a área efetiva A_{EFF} e a dispersão cromática D do modo fundamental HE₁₁ - LP₀₁. Para esta análise considera-se a fibra monomodo típica comercial SMF-28e, com perfil de índice degrau onde $\Delta n = n_{NUC} - n_{CAS} = 0,36\%$ (Figura 3–15 e Tabela 3–5).

Para o índice de refração da casca, considerada de sílica pura, foi usada a fórmula de Sellmeier (Apêndice G), $n_{CAS} = n_{SIL}(\lambda)$ onde o índice de refração depende do comprimento de onda. A fibra tem um diâmetro igual a 125 µm e um núcleo com diâmetro 8,2 µm.

A região de simulação escolhida foi de 1,2 µm a 1,6 µm. Como a geometria da fibra monomodo é regular usa-se só um quarto da geometria para realizar a simulação e a análise modal.

Fig. 3–16. (a) Seção transversal de um quarto da fibra monomodo usado para a análise modal. (b) Malha de elementos finitos para esta geometria.

A Figura 3–16a mostra um quarto da seção transversal da fibra monomodo onde as três regiões típicas (o núcleo, a casca e o ar) foram consideradas. O centro da fibra coincide com a origem do sistema de coordenadas *XY*, por convenção as direções *X* e *Y* são transversais e *Z* é a direção de propagação. O raio do núcleo é de 4,1 µm e o raio da fibra é de 62,5 µm. Como condições de contorno (paredes externas) foram utilizadas três paredes PEC e uma parede PMC. A configuração usada foi PMh-PEv. Como o modo fundamental $HE_{11} - LP_{01}$ é degenerado (duas vezes), com esta configuração analisa-se só o modo HE_{11}^{Y} .

A janela computacional usada é de 75 μm (direção X) x 75 μm (direção Y) com uma região PML

Fig. 3–17. (a) Parte real do índice efetivo calculado numericamente e analítico. *(b)* Índice de grupo do modo fundamental da fibra monomodo.

de espessura igual a 2 µm.

A Figura 3–16b mostra a malha de elementos finitos composta por aproximadamente 20.000 elementos triangulares quadráticos. Na região do núcleo a malha é mais fina.

A Figura 3–17a mostra o comportamento da parte real do índice efetivo n_{eff} e dos índices de refração do núcleo n_{NUC} e da casca n_{SIL} em função do comprimento de onda λ . Como era de prever n_{eff} do modo fundamental (HE₁₁^Y) encontra-se entre ambos índices, $n_{SIL} < n_{eff} < n_{NUC}$. Na região da análise, n_{eff} diminui quando λ aumenta. Para λ menores o valor de n_{eff} esta mais perto do valor n_{NUC} e para λ maiores o valor de n_{eff} esta próximo do n_{SIL} . Compara-se as partes reais do índice efetivo calculado numericamente com o analítico obtém-se um erro absoluto da ordem de 10⁻⁷, isto é, tem-se uma precisão até a sétima casa decimal.

Fig. 3–18. Distribuição espacial do campo $|H_Y|^2$ normalizado do modo HE_{II}^Y considerando o comprimento de onda λ . (a) Para $\lambda = 0,4 \ \mu m \ e$ (b) para $\lambda = 1,8 \ \mu m$.

comprimento de onda. Na região de análise, para $\lambda < 1,297 \ \mu\text{m}$ o n_G diminui quando λ aumenta e para $\lambda > 1,297 \ \mu\text{m}$, n_G aumenta quando λ aumenta. Assim, n_G tem um valor mínimo em 1,297 μm . O n_G foi calculado (Equação 47 do Capítulo 2) a partir dos dados obtidos numericamente da parte real do índice efetivo n_{eff} mostrados na Figura 3–17a.

Compara-se estes dados com os da fibra SMF-28e (Tabela 3–5) para $\lambda = 1,31 \mu m e \lambda = 1,55 \mu m$, onde obtém-se uma precisão na quarta e quinta casa decimal, respectivamente.

A Figura 3–18 mostra a distribuição espacial do campo $|H_Y|^2$ normalizado do modo HE_{11}^Y . A escala necessária para visualizar o modo na sua totalidade é de [0, 8] µm para o eixo *X* e de [0, 8] µm para o eixo *Y*. O núcleo da fibra se encontra na região de [0, 4,1] µm no eixo *X* e de [0, 4,1] µm no eixo *Y*. Para $\lambda = 0,4$ µm (Figura 3–18a) pode-se observar que o modo esta confinado no núcleo, já para $\lambda = 1,8$ µm (Figura 3–18b) o modo começa a ser propagado também pela casca. Isto também pode ser visto na Figura 3–19.

A Figura 3–19 mostra a fração de potência (%) do modo HE_{11}^{Y} em função do comprimento de onda λ . Compara-se a fração de potência do modo no núcleo (Potência no núcleo/Potência total [%]) com a fração de potência do modo na casca (Potência na casca/Potência total [%]). Quando λ aumenta a fração de potência do modo no núcleo diminui o que leva com que a fração de potência do modo na casca aumente. Na região da análise a fração de potência do modo encontra-se 100% na fibra, onde acima de 70% está no núcleo.

A Figura 3–20 mostra a área efetiva A_{eff} do modo em função do comprimento de onda λ . Quando λ aumenta a A_{eff} também aumenta. Para poder comparar com o diâmetro do campo modal fornecido

FIBRA MONOMODO SMF - 28e

Fig. 3–19. Fração de potência do modo fundamental no núcleo e na casca.

Fig. 3–20. Área efetiva e diâmetro efetivo da fibra monomodo.

pelo fabricante calcula-se o diâmetro efetivo a partir da área efetiva ($d_{eff}^2 = 4 \cdot A_{eff}/\pi$). Dos cálculos numéricos, tem-se que $d_{eff} = 8,9$ µm para $\lambda = 1,31$ µm e $d_{eff} = 9,9$ µm para $\lambda = 1,55$ µm. Estes valores encontram-se dentro da região de erro para o diâmetro do campo modal (Tabela 3–5).

A dispersão cromática D foi calculado (Equação 48 do Capítulo 2) a partir dos dados obtidos para o índice efetivo n_{eff} mostrados na Figura 3–17a.

A Figura 3–21 mostra o comportamento da dispersão cromática D em função do comprimento de onda λ . A dispersão cromática aumenta quando o λ aumenta. Os dados experimentais foram obtidos medindo aproximadamente 4 km de fibra comercial SMF-28e usando um aparelho "*Dispersion*

Fig. 3–21. Dispersão cromática calculada por simulação e experimentalmente.

Chromatic" no laboratório de Novos Materiais Vítreos do Departamento de Eletrônica Quântica – DEQ do Instituto de Física Gleb Wataghin – IFGW da Universidade Estadual de Campinas – UNICAMP.

Observa-se que os dados calculados numericamente diferem do experimental em até um máximo de 3 ps/(nm·km). Os dados experimentais confirmam os dados fornecidos pelo fabricante.

O comprimento de onda para dispersão zero λ_0 calculado numericamente difere do experimental em 15 nm e está dentro na região de erro que o fabricante fornece (Tabela 3–5).

A inclinação da curva de dispersão calculada na região de 1,302 μ m $\leq \lambda \leq$ 1,322 μ m foi de 0,082 ps/(nm²·km) já o experimental vai de 0,089 a 0,085 ps/(nm²·km).

3.4 FIBRA ÓPTICA MICROESTRUTURADA

3.4.1 INTRODUÇÃO

Fibras ópticas microestruturadas (MOFs – *Microstructured Optical Fibers*) são uma nova classe de guias de onda ópticas que foram mencionadas primeiro por Knight em 1996 [8]. As MOFs têm muitas propriedades as quais fazem delas ter um enorme interesse para muitas aplicações.

As MOFs têm um perfil de índice de refração microestruturado na seção transversal da fibra. A estrutura da casca desta fibra contém um número de buracos de ar que vão ao longo do comprimento da fibra. Quando estes buracos de ar estão arranjados periodicamente, as fibras são chamadas de fibras fotônicas (PCFs – *Photonic Crystal Fibers*) ou fibras perfuradas (*HF* – *Holey Fibers*) [9].

Tipicamente essas fibras são feitas de sílica, com um núcleo também de sílica pura. A estrutura da casca da MOF consiste de múltiplos materiais (onde o ar é considerado como material), com diferentes índices de refração.

A Figura 3–22 mostra um exemplo de uma MOF (especificamente uma PCF) observa-se a estrutura da casca com um arranjo triangular periódico de buracos de ar sobre o material da casca, de sílica. Os dois parâmetros fundamentais que definem esta estrutura estão indicados: A distância entre dois buracos de ar vizinhos, o *pitch*, denotado por Λ e, o diâmetro de buracos de ar é denotado por d. Tipicamente o valor normalizado, d/Λ é usado para especificar o tamanho do buraco.

Fig. 3–22. Fotografia SEM de uma MOF de sílica, composta por um núcleo sólido rodeado por sete anéis de buracos. A estrutura está formado por um arranjo triangular periódico de buracos de ar sobre o material da casca.

Esta estrutura vai ao longo do comprimento inteiro da MOF. O perfil do índice de refração da MOF é então invariante ao longo desta direção, por convenção, é definido como direção z.

Redes triangulares, como mostrado na fotografia feita no Microscópio de Varredura (SEM – *Scanning Electron Microscope*), Figura 3–22, são as estruturas mais usadas, mas outras possibilidades tais como redes quadradas [10], redes hexagonais [11] ou outras distribuições para buracos tem sido publicados [12]. Também, fibras tipicas de ar/sílica podem ser acrescentadas com regiões dopados no núcleo e/ou casca [13], ou a microestrutura pode ser feita somente pela dopagem, desse modo anula-se os buracos de ar [14]. Esta MOF foi fabricada no laboratório de Novos Materiais Vítreos do DEQ–IFGW–UNICAMP.

O período da rede é da mesma ordem de magnitude do que o comprimento de onda da luz. Essas pequenas estruturas significam que o material da casca pode ser visto como um material simples, com o valor do índice de refração aproximadamente entre os valores dos índices de refração das componentes dos materiais separadamente (tipicamente sílica e ar).

Este índice de refração médio é determinado pela propagação da luz no material composto e encontrando as frequências e constantes de propagação dos modos permitidos na estrutura. Um índice efetivo, conhecido das fibras ópticas convencionais, é definido por $n_{eff} = \beta / k_0$, onde β é a constante de propagação, e k_0 é o número de onda no vácuo. O índice efetivo do material é definido pelo modo permitido com o índice efetivo maior, também conhecido como modo *fundamental space-filling* (FSM) da estrutura da casca [15].

Os índices efetivos de tais materiais microestruturados são altamente dependentes do comprimento de onda. No limite de baixa frequência ou de comprimentos de onda maiores, a solução converge para ondas planas, e o índice efetivo se torna uma média ponderada do índice de refração dos materiais constituintes. Expressões analíticas para este índice efetivo, pode, para certas geometrias, ser encontrado [16].

No limite de altas frequências ou de comprimentos de onda menores, os modos podem ser completamente confinados no material de alto índice, e o índice efetivo irá convergir para o índice de refração maior da estrutura.

A Figura 3–23 mostra o índice efetivo n_{FSM} para uma estrutura triangular simples, como mostrado na Figura 3–22, em função do comprimento de onda λ . Pode-se ver a forte dependência do λ com o n_{FSM} o que facilita as propriedades únicas da dispersão cromática das MOFs. Esta figura mostra o n_{FSM} para três tamanhos diferentes de buracos de ar ($d / \Lambda = 0,25, 0,5 e 0,9$).

Para o ar é utilizado o índice de refração invariante com o comprimento de onda igual a 1,0. É

Fig. 3–23. Índice de refração efetivo n_{FSM} de uma estrutura triangular de buracos de ar, como função do comprimento de onda. O índice da Sílica pura esta denotada pela linha preta.

fácil obter uma análise intuitiva imediata para o comportamento qualitativo das curvas do n_{FSM} . Para comprimentos de onda maiores, a luz se espalha para os buracos resultando em um baixo índice efetivo n_{FSM} . Para comprimentos de onda menores, a luz é confinada nas áreas de alto índice de refração.

Os valores numéricos calculados para o n_{FSM} foram determinados por simulações numéricas baseadas no método de elementos finitos usando o modelo *full-vector nodal*. O material escolhido para a casca foi a sílica pura cujo índice de refração é dado pela formula de Sellmeier (Apêndice G).

Quanto maior é o diâmetro do buraco a dependência do n_{FSM} com o comprimento de onda aumenta. Para comprimentos de onda maiores, o n_{FSM} de uma estrutura com buracos de diâmetros maiores ($d / \Lambda = 0,9$) tende mais rapidamente para o índice dos buracos de ar do que para uma estrutura com buracos de diâmetros menores ($d / \Lambda = 0,25$).

Quebrando localmente a simetria na rede periódica é criada uma região, com diferentes soluções modais, comparado com a região não perturbada. Isto pode ser usado para criar o núcleo na MOF. O método mais simples e amplamente usado, é de omitir um simples buraco de ar, com isso cria-se uma região com alto índice comparado com a região da casca devido a presença dos buracos de ar.

A luz pode assim ser guiada pela região do núcleo, desde que o índice efetivo da casca seja menor do que índice de refração no núcleo. Tais fibras são conhecidas como MOFs que guiam pelo índice (*index-guiding* MOFs). O mecanismo de guiamento é o de reflexão total interna que é bem conhecido na óptica convencional, como, por exemplo, as fibras ópticas convencionais.

Fig. 3–24. Exemplos de MOFs de sílica que guiam pelo núcleo. Fotografias SEM das seções transversais das fibras com estruturas triangulares.

A Figura 3–24 mostra quatro exemplos de MOFs de sílica que guiam pelo núcleo (*index-guiding*). Todas essas fibras foram fabricadas utilizando o método "*stack–and–draw*" [17] (empilhar e puxar) uma preforma, que consiste em bastões e/ou tubos capilares de sílica pura empilhadas formando uma estrutura desejada. Os tubos capilares da preforma formam os buracos de ar na estrutura depois que ela foi puxada. A preforma é aquecida num forno a alta temperatura, estando mole, logo é puxada formando assim a MOF.

O número dos buracos de ar é contado pela quantidade de anéis que rodeiam o núcleo da MOF, assim, por exemplo temos MOFs de um anel com seis buracos, de cinco anéis com noventa buracos, de sete anéis com cento e sessenta e oito buracos e, de dez anéis com duzentos e setenta buracos. As imagens de SEM mostram as seções transversais das MOFs com estruturas triangulares na casca, onde todos os núcleos foram formados pela remoção de um simples buraco de ar, que na fabricação da preforma, o tubo capilar central foi trocado por um bastão sólido.

As MOFs de sílica, Figura 3–24, foram fabricadas no laboratório de Novos Materiais Vítreos do DEQ–IFGW–UNICAMP.

As MOFs podem também guiar a luz por um mecanismo fundamentalmente diferente, conhecido como efeito de banda proibida fotônica (PBG – *Photonic Band Gap*) onde a luz é guiada

pelo núcleo ôco da MOF onde o índice de refração é menor que o índice da casca. Neste caso as fibras são chamadas de fibras PBG [18, 19]. O comportamento destas fibras é muito diferente do que uma fibra convencional.

A banda proibida fotônica pode ser vista como uma analogia óptica com o banda proibida eletrônica em materiais semicondutores [20]. Para ter um modo confinado na região do núcleo, o índice efetivo do modo deve ser menor do que o índice efetivo do núcleo. Isto significa que para confinar a luz em um núcleo de índice baixo, é necessário ter uma banda proibida que estenda-se abaixo do índice de refração da região do núcleo, tipicamente ar com índice igual a 1,0. O núcleo destas fibras é feito tipicamente removendo um número de capilares centrais de sílica, tipicamente o tamanho do núcleo corresponde à remoção das sete capilares centrais.

Assim, dentro das vantagens das MOFs têm-se:

- Controle dos efeitos ópticos não-lineares [21, 22];
- Uma larga faixa de comprimentos de onda como fibra monomodo [15, 23];
- Dispersão cromática ajustável [19, 24];
- Ajuste da área efetiva [25], entre outros.

3.4.2 ANALOGIA COM FIBRAS DEGRAU

Numa MOF que guia pelo núcleo (*index-guiding*), a luz guiada tem um índice efetivo n_{eff} que satisfaz a condição:

$$n_{co} > n_{eff} = \beta / k_0 > n_{FSM}$$
 (Eq. 05)

onde, β é a constante de propagação ao longo do eixo da fibra, n_{co} é o índice do núcleo, e n_{FSM} é o índice efetivo da casca do modo *space-filling*. No caso da MOF de sílica pura, o n_{co} é reduzido ao índice da sílica pura.

O parâmetro V (frequência normalizada) é usado para desenhar as fibras de índice degrau convencionais e é dado por:

$$V = \frac{2\pi}{\lambda} a \sqrt{n_{co}^2 - n_{cl}^2} \qquad \dots (Eq. \ 06)$$

que deve ser menor do que 2,045 para que a fibra seja monomodo, onde λ é o comprimento de onda, *a* é o raio do núcleo, n_{co} é o índice do núcleo, e n_{cl} é o índice da casca.

Foi reportado que propriedades fundamentais das MOFs que guiam pelo núcleo podem ser facilmente calculados sem a necessidade de pesados cálculos numéricos computacionais, só pela definição apropriada do parâmetro V [24, 26].

Pela analogia com as fibras degrau, o parâmetro V efetivo Vef para MOFs pode ser definido

Fig. 3–25. Frequência efetiva V_{eff} *em função do comprimento de onda.*

como:

$$V_{eff} = \frac{2\pi}{\lambda} a_{eff} \sqrt{n_{co}^2 - n_{FSM}^2} \qquad \dots (Eq. \ 07)$$

onde, a_{eff} é o raio efetivo do núcleo. Para adaptar o conceito do parâmetro V para PCFs, o valor de a_{eff} foi determinado de acordo com a literatura [26, 27]. Com $a_{eff} = \Lambda / \sqrt{3}$, a condição de corte é dado por $V_{eff} = 2,405$, como nas fibras degrau convencionais, assim este parâmetro (Equação 07) pode ser usado para desenhar MOFs.

A Figura 3–25 mostra o parâmetro V_{eff} , calculado para os mesmos parâmetros mostrados na Figura 3–23, onde o índice de refração do núcleo é o da sílica pura. As MOFs suportam multimodos quando a frequência efetiva é maior que 2,405, que esta indicado pela linha reta preta. Se o tamanho normalizado do buraco d / Λ é aproximadamente menor a 0,43 só um modo é guiado indiferentemente do comprimento de onda, isto é, encontra-se na região monomodo. Este é o caso para $d / \Lambda = 0,25$ na Figura 3–25. Tais fibras são conhecidas como fibras continuamente monomodos (*endlessly singlemode fibers*) [15] que é um conceito único para MOFs.

3.4.3 DISPERSÃO CROMÁTICA

A dispersão cromática *D* determina quanto um pulso óptico pode ser alargado na sua propagação pela fibra.

A dispersão *D* tem duas contribuições, a dispersão do material D_M e a dispersão de guia de onda D_W , $D = D_M + D_W$. A dispersão do material acontece devido ao índice de refração do material utilizado na fabricação da fibra que depende do comprimento de onda. A origem desta dispersão esta relacionada às frequências de ressonância características em que o material absorve a radiação eletromagnética. No caso das fibras de sílica, o material em questão é a sílica cujo índice de refração é bem aproximada pela formula de Sellmeier (Apêndice G).

A Figura 3–26 mostra a dispersão do material para a sílica pura. A D_M é igual 0 em λ_{ZD} = 1,272 µm que é chamado de comprimento de onda da dispersão zero. A D_M é negativa abaixo do λ_{ZD} e positiva acima dela.

A contribuição da dispersão de guia de onda D_W depende dos parâmetros da fibra. Assim é possível fabricar a fibra óptica sob medida, por exemplo, pode-se deslocar o λ_{ZD} das fibras na região de interesse da janela óptica, este processo é chamado de fibras ópticas com a dispersão deslocada. Também pode-se fazer com que a dispersão total D seja relativamente pequena conhecida como fibras ópticas de dispersão plana, ou para compensar a dispersão onde, a dispersão total é negativa na região

Fig. 3–26. Dispersão do material para a sílica pura em função do comprimento de onda.

de interesse. Ressaltando que estas mudanças da dispersão são feitas durante a fabricação da fibra.

As MOFs possuem a propriedade atrativa de um bom controle da dispersão cromática. O perfil da dispersão cromática pode ser facilmente controlado pela variação do diâmetro do buraco d e pelo *pitch* Λ . O controle da dispersão cromática em MOFs é muito importante para aplicações práticas em sistemas de comunicações ópticas, compensação de dispersão e óptica não linear. Até agora, MOFs com propriedades de dispersão notáveis tem sido investigados tanto experimental como numericamente [28, 29, 30, 31]. A dispersão cromática D de uma MOF é facilmente calculado do índice efetivo do modo n_{eff} (Equação 48 do capítulo 2). Aqui já estão incluídas as duas contribuições, do material e do guia de onda, no índice efetivo do modo.

3.4.4 ANÁLISE MODAL

A maioria das MOFs apresentam um arranjo hexagonal de buracos de ar na casca. Uma MOF tradicional de núcleo sólido de sílica, Figura 3–27, será analisada. Os resultados numéricos são comparados com outros modelos [32, 33, 34]. Devido à geometria regular da fibra é tomado em conta só um quarto da geometria total. Como condições de contorno foram utilizadas paredes PEC e/ou PMC nas paredes externas. Usando a combinação destas paredes é que consegue-se simular os dez primeiros modos que equivalem aos modos de 1^a, 2^a e 3^a ordem – LP₀₁, LP₁₁ e LP₂₁ respectivamente.

O diâmetro dos buracos de ar é d = 5 μ m e o *pitch* Λ = 6,75 μ m. O índice de refração da sílica utilizado é n_{síLICA} = 1,45 e o índice de refração dos buracos é n_{AR} = 1,0. O comprimento de onda usado para a simulação é 1,45 μ m.

O domínio computacional foi discretizado numa malha, Figura 3–27 –b, com aproximadamente

(b)

Fig. 3–27. (a) Estrutura da MOF de sílica e ar que será modelada e, (b) a malha utilizada onde os resultados são comparados com os de outras simulações.

26.000 elementos triangulares lineares e 13.000 nós. A janela computacional usada é de 16 μ m (direção *X*) x 16 μ m (direção *Y*) com uma região PML de espessura igual a 2 μ m. A malha foi refinada no "núcleo" e nas interfaces sílica – ar (buracos) onde a diferencia do índice de refração é maior.

A Figura 3–28 mostra a distribuição espacial do campo dominante normalizado para três dos dez modos simulados (modo 2, modo 3 e modo 7 respectivamente) da MOF desenhada na Figura 3–27. Pode-se observar que representam só um quarto da geometria total, comparada com as representações das distribuições espaciais de intensidade conhecidas [35].

A Figura 3–29 mostra uma tabela de comparação [34] dos índices efetivos – parte real e parte imaginária – para uma MOF (com as mesmas características descritas acima) calculados por diferentes

Fig. 3–28. Distribuição espacial dos campos normalizados para $|Hx|^2 e |Hy|^2$, de acordo com o campo dominante, dos modos 2, 3 e 7, respectivamente, que pertencem as três primeiras ordens, da MOF simulada considerando o comprimento de onda $\lambda = 1,45 \ \mu m$.

Mode	Present FEM Scheme (1648 triangular elements)		Multipole Method (5 multipole moments) (White <i>et al.</i>)		Vector FDM-ABC (70 azimuthal, 54 radial terms) (Issa & Poladian)		
	$\operatorname{Re}(n_{\text{eff}})$	$-\text{Im}(n_{\text{eff}})$	Att. (dB/cm)	$\operatorname{Re}(n_{eff})$	$-\text{Im}(n_{\text{eff}})$	$\operatorname{Re}(n_{\text{eff}})$	$-\text{Im}(n_{\text{eff}})$
HE_{11}^{a} -like	1.4453935	4.11E-8	0.0155	1.4453953	3.15E-8	1.4453954	3.07E-8
$H\!E_{11}^b$ -like	1.4453931	4.12E-8	0.0155				
TE ₀₁ -like	1.4385760	3.97E-7	0.1493	1.4385858	4.99E-7	1.4385890	5.43E-7
HE_{21}^{a} -like	1.4384419	7.13E-7	0.2684	1.4384458	9.93E-7	1.4384442	9.62E-7
HE_{21}^{b} -like	1.4384376	7.11E-7	0.2674				
TM ₀₁ -like	1.4383622	1.03E-6	0.3865	1.4383667	1.37E-6	1.4383643	1.38E-6
$H\!E_{31}^b$ -like	1.4303848	2.25E-5	8.4687	1.430175	2.22E-5	·	
EH_{11}^{a} -like	1.4299517	1.67E-5	6.2762	1.4299694	1.58E-5		
EH_{11}^{b} -like	1.4299459	1.68E-5	6.3246				
$H\!E_{31}^a$ -like	1.4292608	9.17E-6	3.4507	1.4292553	9.34E-6	-	

Table 1. Computational results of the structure with 6 circular holes and their comparison with other methods.

Fig. 3–29. Tabela de comparação dos índices efetivos n_{eff} para os primeiros dez modos da MOF, calculados por diferentes métodos [34], para $\lambda = 1,45 \mu m$.

métodos como o Método Multipolo [32], o Método Vetorial das Diferenças Finitas – ABC [33] e o Método de Elementos Finitos [34].

Na Tabela 3–6 estão a parte real e imaginária do índice efetivo calculados para os dez primeiros modos da MOF. Também foi calculada a atenuação a partir da parte imaginária do índice efetivo (Equação 49 do capítulo 2).

Os valores numéricos calculados da atenuação não variam muito comparando com os da Figura

Mode	0	Real (n _{eff})	Imag (n _{eff})	Atenuação [dB / cm]
1° ordem	1	1,4453839	3,2228 x10 ⁻⁸	0,0123
LP ₀₁	2	1,4453803	1,3577 x10 ⁻⁸	0,0051
2° ordem	3	1,4385399	3,9509 x10 ⁻⁷	0,1487
	4	1,4384025	4,1424 x10 ⁻⁷	0,1559
	5	1,4384008	8,0117 x10 ⁻⁷	0,3015
	6	1,4383393	1,9394 x10 ⁻⁶	0,7299
3° ordem	7	1,4302659	1,7753 x10 ⁻⁵	6,682
	8	1,4298620	1,4039 x10 ⁻⁵	5,284
	9	1,4298600	1,0116 x10 ⁻⁵	3,807
	10	1,4298088	8,3779 x10 ⁻⁶	3,153

Tabela 3–6.- Índices efetivos – parte real e imaginária – e atenuação dos dez primeiros modos calculados da MOF (Figura 3–27) para $\lambda = 1,45 \ \mu m$.

Fig. 3–30. Erro absoluto do índice efetivo entre a solução obtida – modelo fullvector nodal FEM – e a obtida por outros métodos [32, 33, 34] para os primeiros dez modos da MOF para $\lambda = 1,45 \ \mu m$.

3–29 [34]; pode-se dizer que estão dentro do erro aceitável, assim como a parte imaginária do índice efetivo comparado com os outros três casos.

Para a parte real do índice efetivo é observado que para os seis primeiros modos (1^a e 2^a ordem) tem-se uma exatidão de até a quarta casa decimal (Figura 3–30). Para o primeiro modo a exatidão chega até a quinta casa decimal.

3.5 CONCLUSÕES

Neste capítulo, com o objetivo de validar o modelo *full-vector nodal* FEM escrito em *MATLAB*®, foram analisados vários guias de onda. Primeiramente, foi analisado um guia de onda circular, através da sua geometria simétrica. Em seguida, foi feita a análise modal da fibra monomodo convencional. Finalmente, a análise modal de uma fibra microestruturada que guia pelo núcleo sólido.

Os resultados numéricos obtidos confirmam que o modelo usado para realizar a análise modal têm boa concordância com resultados, experimentais e analíticos, provenientes da literatura. Também, que não é necessário analisar a geometria inteira do guia de onda. Dependendo da simetria da seção transversal do guia, a análise modal pode ser feita só de uma parte dela.

Confirmou-se, o perfeito funcionamento das condições de contorno, usando regiões PMLs com paredes PEC e/ou PMC.

3.6 BIBLIOGRAFIA

- 1 H. F. Pinheiro; "*Método vetorial da propagação de feixes ópticos baseado em elementos finitos*"; Tese de doutorado, UNICAMP, Brasil, Fevereiro 2000.
- 2 H. E. Hernández-Figueroa, F. A. Fernández, Y. Lu and J. B. Davies; "Vectorial finite element modeling of 2D leaky waveguides"; IEEE Trans. Magn., vol. 33, no. 4, pp. 1710–1713, (1995).
- 3 J. Patrocínio da Silva; "Simulação por elementos finitos da propagação de feixes ópticos em estruturas fotônicas"; Tese de doutorado, UNICAMP, Brasil, Abril 2003.
- 4 Allan W. Snyder; "Asymptotic expressions for eigenfunctions and eigenvalues of a dielectric or optical waveguide"; IEEE Trans., MTT-17; pp. 1130-1138; (1969).
- 5 D. Marcuse; Theory of Dielectric Optical Waveguides, 2nd ed., academic Press., San Diego, CA, 1991.
- 6 G. Cacellieri, Single-Mode Optical Fibers, Pergamon Press, Elmsford, NY, 1991.
- 7 J. A. Buck, Fundamentals of Optical Fibers, Wiley, NY, 1995.
- 8 J. C. Knight, T. A. Birks, P. St. Russell and D. M. Atkin; "All silica single-mode optical fiber with photonic crystal cladding"; Optics Letters, 21, pp. 1547, (1996).
- 9 J. C. Knight; "Photonic crystal fibres"; Nature, vol. 424, pp. 847-851, (2003).
- 10 P. Szarniak, W. Saj, R. Buczynski, D. Pysz, R. Stepien and T. Szoplik; "*Modeling of highly birefringent photonic fiber with rectangular air holes in square lattice*"; Transparent Optical Networks. Proceedings of 5th International Conference on, 1: pp. 216-219, vol. 1, (2003).
- 11 S. E. Barkou, J. Broeng and A. Bjarklev; "Silica-air photonic crystal fiber design that permits waveguiding by a true photonic bandgap effect"; Optics Letters, 24 (1), pp. 46-48, (1999).
- 12 T. M. Monro, P. J. Bennett, N. G. R. Broderick and D. J. Richardson; "*Holey fibers with random cladding distributions*"; Optics Letters, 25 (4), pp. 206-208, (2000).
- 13 K. P. Hansen; "Dispersion flattened hybrid-core nonlinear photonic crytal fiber"; Optics Express, 11 (13), pp. 1503-1509, (2003).
- 14 Jesper Riishede, Jesper Laegsgaard, Jes Broeng and Anders Bjarklev; "*All-silica photonic bandgap fibre with zero dispersion and a large mode area at 730nm*"; Journal of Optics A: Pure and Applied Optics, 6 (7), pp. 667-670, (2004).
- 15 T. A. Birks, J. C. Knight and P. St. J. Russell; "*Endlessly singlemode photonic crystal fiber*"; Optics Letters, 22 (13), pp. 961-963, (1997).
- 16 B. Scaife; Principles of dielectrics; Clarendon Press, 1989.
- 17 S. Arismar Cerqueira, Jr., "Recent progress and novel applications of photonic crystal fibers", Rep. Prog. Phys. 73(2), 024401 (2010).
- 18 R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks and P. St. J. Russell; "Single-mode photonic band gap guidance of light in air"; Science, vol. 285, pp. 1537–1539, (1999).
- 19 J. Broeng, D. Mogilevstev, S. E. Barkou and A. Bjarklev; "*Photonic crystal fibers: A new class of optical waveguides*"; Optical Fiber Techology, vol. 5, pp. 305–330, (1999).
- 20 T. A. Birks, P. J. Roberts, P. S. J. Russell, D. M. Atkin and T. J. Shepherd; "*Full 2D photonic bandgaps in silica/ar structures*", Electronics Letters, 31 (22), pp. 1941-1943, (1995).
- 21 G. P. Agrawal; "Fiber-Optic communication systems"; 2^a ed., John Wiley, (1992).
- 22 F. Poli, A. Cucinotta, M. Fuochi, S. Selleri and L. Vincetti; "*Characterization of microstructured optical fibers for wideband dispersion compensation*"; JOSA A, vol. 20, no. 10, pp. 1958–1962, (2003).
- 23 T. F. Krauss and R. M. De La Rue; "Photonic crystal in the optical regime past, present and future"; Progress in Quantum Electronics, vol. 23, no. 2, pp. 51–96, (1999).
- 24 K. Saitoh and M. Koshiba; "Empirical relations for simple design of photonic crystal fibers";

Optics Express, Vol. 13, No. 1, pp. 267-274, (2005).

- 25 N. A. Mortensen; "Effective area of photonic crystal fibers"; Optics Express, vol. 10, no. 7, pp. 341-348 (2002).
- 26 M. Koshiba and K. Saitoh; "*Applicability of classical optical fiber theories to holey fibers*"; Opt. Lett., vol. 29, no. 15, pp. 1739-1741, (2004).
- 27 M. Koshiba; "*Full-vector analysis of photonic crystal fibers using the finite element metod*"; IEICE Trans. Electron., vol. 85-C, no. 4, pp. 881-888, (2002).
- 28 J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth and P. S. J. Russell; *"Anomalous dispersion in photonic crystal fiber"*; IEEE Photon. Technol. Lett., vol. 12, no.7, pp. 807-809, (2000).
- 29 D. Ouzounov, D. Homoelle, W. Zipfel, J. C. Fajardo and K. W. Koch; "Dispersion measurements of microstructured fibers using femtosecond laser pulses"; Opt. Commun., vol. 192, no. 3-6, pp. 219-223, (2001).
- 30 A. Ferrando, E. Silvestre, J. J. Miret and P. Andrés; "Nearly zero ultra-flattened dispersion in photonic crystal fibers"; Opt. Lett., vol. 25, no. 11, pp. 790-792, (2000).
- 31 W. H. Reeves, J. C. Knight, P. S. J. Russell and P. J. Roberts; "*Demonstration of ultra-flattened dispersion in photonic crystal fibers*"; Opt. Express, vol. 10 (14), pp. 609-613, (2002).
- 32 T. P. White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. Martijn de Sterke and L. C. Botten; "*Multipole method for microstructured optical fibers. I. Formulation*"; J. Opt. Soc. Am. B., vol. 19, no. 10, pp. 2322-2330, (2002).
- 33 N. A. Issa and L. Poladian; "Vector wave expansion method for leaky modes of microstructured optical fibers"; J. Lightwave Technol. Vol. 21, pp. 1005-1012, (2003).
- 34 H. P. Uranus and H. J. W. M. Hoekstra1; "Modelling of microstructured waveguides using a finite-element-based vectorial mode solver with transparent boundary conditions"; Optics Express, vol. 12, no. 12, pp. 2795-2809, (2004).
- 35 Chin-Lin Chen; "Foundations for guided-wave optics Chapter 9: Transmission characteristics of step-index optical fibers"; John Wiley & Sons, Inc., Publication; (2007).

Capítulo 4

TÉCNICA PARA CONTROLAR O ZDW

4.1 INTRODUÇÃO

Este capítulo visa propor e demonstrar numericamente uma técnica eficiente para controlar o comprimento de onda da dispersão zero – ZDW de uma fibra microestruturada – MOF.

Esta técnica é baseada na variação do índice de refração linear e da espessura de um filme que cobre as paredes internas dos buracos da fibra microestruturada. Este filme pode ser incluído depois da fabricação da MOF, assim, o ZDW pode ser controlado de acordo com a necessidade.

Foram escolhidas duas geometrias simples para a MOF (Figura 4–1); a primeira fibra composta de seis buracos de ar ao redor de um núcleo sólido como é mostrado na Figura 4–1a e, a segunda fibra composta só por três buracos de ar ao redor de um núcleo sólido, Figura 4–1b.

Fig. 4–1. Esquemas da seções transversais das fibras microestruturadas propostas. (a) A MOF-01P para a fibra sem o filme. (b) A MOF-03H para a fibra com filme.

4.2 FIBRA MICROESTRUTURADA MOF-01P

4.2.1 INTRODUÇÃO

Foi escolhida uma geometria simples para uma MOF de sílica pura, a estrutura esta formada por seis buracos de ar ao redor de um núcleo sólido.

A Figura 4–2 mostra a seção transversal da fibra sem o filme (MOF-01P) e com o filme (MOF-01P-DN). As direções *X* e *Y* são transversais e *Z* é a direção de propagação.

A Figura 4–2a mostra a MOF-01P de sílica pura, formada pelo núcleo com um diâmetro igual a 10 μ m. A microestrutura tem um diâmetro de 30 μ m formada pelos seis buracos de ar e pelas pontes de sílica pura com uma espessura de 0,5 μ m.

A fibra MOF-01P-DN, Figura 4–2b, é a fibra MOF-01P com o filme fino nas paredes internas dos buracos. As características do filme, índice de refração n_{FIL} e espessura d_{FIL} , analisadas neste capítulo são:

- O índice n_{FIL} é considerado independente do comprimento de onda, isto é, constante. Na região de simulação, de 1,0 μm a 1,8 μm, os valores para este índice de refração variam de 1,32 a 3,50;
- Os diferentes valores usados para a espessura d_{FIL} foram de 50 nm, 75 nm, 100 nm, 200 nm, 300 nm, 400 nm e 500 nm.

Experimentalmente, este filme pode ser colocado nos buracos da fibra microestruturada de duas maneiras:

- A primeira maneira, durante a fabricação da fibra microestruturada, pode-se usar dois materiais vítreos de propriedades mecânicas similares mas com diferentes índices de refração.
- A segunda maneira, depois da fabricação da fibra microestruturada, os buracos de ar podem ser cobertos por um filme que encontra-se em estado líquido ou diluído em outro material.

As fibras MOF-01P e MOF-01P-DN têm as mesmas dimensões geométricas no núcleo e nas pontes, já que não ficam alteradas. O tamanho dos buracos diminui de acordo com a espessura do filme.

Aproveitando a boa simetria da geometria da fibra MOF-01P utiliza-se só um quarto dela, assim conseguimos reduzir o número de incógnitas e, com isso, pode-se melhorar as malhas, isto é, uma malha fina.

80

Fig. 4–2. Esquema da seção transversal da fibra microestruturada proposta. (a) A MOF-01P para a fibra sem o filme. (b) A MOF-01P-DN para a fibra com filme cobrindo as paredes internas dos buracos.

Aproveitando o máximo da capacidade do sistema (programa + computador) as malhas têm aproximadamente 75.000 elementos triangulares. Para evitar o erro devido ao uso de malhas diferentes, é utilizado só duas malhas para fazer toda a análise modal nesta técnica. Uma malha para as fibras MOF-01P-DN com espessura de filme $d_{FIL} = 50$ nm até 100 nm e outra malha para espessura $d_{FIL} = 100$ nm até 500 nm. Em ambas malhas, a região próxima do filme é mais refinada como é mostrado na Figura 4–3.

Para as paredes externas das malhas foram utilizadas como condições de contorno as PECs e/ou PMCs, as configurações usadas nesta técnica foram duas, PMh-PEv e PMh- PMv, que são mostradas na Figura 4–3. O modo principal HE₁₁ é degenerado em dois modos HE₁₁^X e HE₁₁^Y. Com a configuração PMh-PEv consegue-se observar o modo HE₁₁^Y (Capítulo 3.2.4.). Assim, esta configuração foi utilizada

Fig. 4–3. Malha de elementos finitos e a seção transversal de um quarto da fibra usada nesta análise. Localização das paredes PEC e PMC.

nos cálculos para determinar o modo fundamental das fibras microestruturadas.

A janela computacional usada é de 20 μ m (direção X) x 20 μ m (direção Y), a região de PML tem uma espessura de 2 μ m.

Na Figura 4–3 pode-se observar o esquema da fibra microestruturada usada, como principalmente é interessante o modo fundamental do núcleo, não é preciso de desenhar o resto da casca externa, só uma parte dela é suficiente para os cálculos numéricos.

O centro da fibra microestruturada coincide com a origem de sistema de coordenadas XY usado; com isso, o raio do núcleo é de 5 μm e o raio da estrutura é de 15 μm.
4.2.2 ANÁLISE MODAL PARA MOF-01P

Realizando a análise modal (índice efetivo n_{EFF} , área efetiva A_{EFF} , fração de potência no núcleo, dispersão cromática D e distribuição espacial do campo dominante dos modos) para a fibra microestruturada sem o filme, MOF-01P.

A Figura 4-4a mostra o comportamento da parte real do índice efetivo $Re[n_{EFF}]$ do modo

(b)

Fig. 4–4. (a) Parte real do índice efetivo $Re[n_{EFF}]$. **(b)** Fração de potência no núcleo e área efetiva. Comportamentos do modo fundamental HE_{II}^{Y} para a fibra MOF-01P em função do comprimento de onda.

fundamental HE_{11}^{Y} em função do comprimento de onda λ na região de 1,0 a 1,8 µm, onde pode-se comparar com o índice de refração do núcleo de sílica pura, calculado pela fórmula de Sellmeier (Apêndice G). O Re[n_{EFE}] decai quando λ aumenta.

A Figura 4–4b mostra a fração de potência no núcleo do modo HE_{11}^{Y} em função do comprimento de onda, o modo encontra-se no núcleo, a fração de potência decai para comprimentos de onda maiores.

Fig. 4–5. (a) Dispersão cromática para o modo fundamental HE_{II}^{Y} em função do comprimento de onda. (b) Distribuição espacial do campo $|H_Y|^2$ normalizado do modo fundamental HE_{II}^{Y} da fibra MOF-01P considerando o comprimento de onda $\lambda = 1.55 \ \mu m$.

Também foi calculado (Equação 50 do Capítulo 2) a área efetiva em função do comprimento de onda, que como era de esperar é maior quando o comprimento de onda aumenta. Esta área é menor comparando com a área efetiva de uma fibra monomodo convencional (aproximadamente entre 50 μ m² e 90 μ m², Figura 3–20) dentro da região de análise.

A Figura 4–5a mostra a dispersão cromática para o modo fundamental HE_{11}^{Y} calculado (Equação 48 do Capítulo 2) a partir da parte real do índice efetivo (Figura 4–4a). Nela observa-se que o ZDW ou λ_{ZD} para este modo HE_{11}^{Y} (fibra MOF-01P sem filme) é igual a 1,15 µm. Este será o ponto de comparação para poder ver o deslocamento do λ_{ZD} quando o filme (parâmetros n_{FIL} e d_{FIL}) seja inserido nos buracos da fibra microestruturada.

O deslocamento do ZDW vai acontecer para a direita da região do comprimento de onda, isto é, o comprimento de onda da dispersão zero λ_{ZD} vai ser deslocada para dentro da região do infravermelho IR, especificamente do NIR (*Near-Infrared*) para SWIR (*Short-wavelength Infrared*). Assim, o λ_{ZD} vai ficar maior (> 1,15 µm).

A Figura 4–5b mostra a distribuição espacial do campo $|Hy|^2$ normalizado do modo fundamental HE_{11}^{Y} para $\lambda = 1,55 \ \mu$ m. Pode-se observar que o modo está confinado no núcleo. A escala usada para ver o modo foi de 8 μ m (direção *X*) x 8 μ m (direção *Y*) com o que permite apreciar o modo na sua totalidade. Esta escala vai ser usada para a análise das distribuições espaciais dos modos em toda esta técnica.

Devido à geometria da fibra MOF-01P, o núcleo também suporta modos de ordem superior. A Figura 4–6 mostra as distribuições espaciais dos campos $|Hx|^2$ ou $|Hy|^2$ normalizados dos modos para essas ordens superiores, especificamente da segunda até a nona ordem. Nelas está em destaque o campo dominante (Hx ou Hy) para cada modo.

Devido a que foi escolhido só duas configurações, $\frac{1}{4}$ da geometria, para as paredes externas das malhas, só mostra a metade do número total de modos, isto é, só um modo para LP₀₁ e dois modos LP₁₁ quando no total são dois e quatro modos, respectivamente (explicado no Capítulo 3), como mostram as Figuras 4–6 e 4–7.

Os modos estão classificados de acordo com a nomenclatura dos modos linearmente polarizados LP. No total têm-se: 1^a ordem $LP_{01} - HE_{11}$ (2 modos), 2^a ordem LP_{11} (4 modos), 3^a ordem LP_{21} (4 modos), 4^a ordem LP_{02} (2 modos), 5^a ordem LP_{31} (4 modos), 6^a ordem LP_{12} (4 modos), 7^a ordem LP_{41} (4 modos), 8^a ordem LP_{22} (4 modos), 9^a ordem LP_{03} (2 modos) e, etc.

Dos cálculos numéricos, todos eles estão confinados no núcleo (acima de 98%). Assim, posteriormente pode-se analisar o efeito do filme nesses modos de ordem superior.

Fig. 4–6. Distribuições espaciais para os campos $|H_Y|^2 e |H_X|^2$ normalizados dos modos de ordem superior, de 2^a até 9^a ordem, da fibra MOF-01P considerando o comprimento de onda $\lambda = 1,55 \ \mu m$.

Fig. 4–7. Partes reais dos índices efetivos dos modos, no núcleo, de ordem superior em função do comprimento de onda, para a fibra MOF-01P.

A Figura 4–7 mostra as partes reais dos índices efetivos dos modos até da 13^a ordem, do núcleo da fibra MOF-01P, em função do comprimento de onda. Esta figura mostra o comportamento das partes reais dos índices efetivos onde pode-se ver as suas respectivas degenerações. Até o modo LP₁₃ têm-se no total 46 modos.

4.2.3 ANÁLISE MODAL PARA MOF-01P-DN

Fazendo a análise modal (índice efetivo, fração de potência no núcleo, distribuições espaciais para o campo dominante normalizado e dispersão cromática) para as fibras microestruturadas MOF-01P-DN com o filme nas superfícies dos buracos.

Esta análise está focalizada na dispersão cromática do modo fundamental HE_{11} , especificamente no ZDW.

Da configuração escolhida o modo analisado foi o modo HE_{11}^{Y} . Foram escolhidos os parâmetros mostrados na Tabela 4–1.

As Figuras 4–8 e 4–9 mostram o comportamento das partes reais dos índices efetivos do modo fundamental HE_{11}^{Y} e suas respectivas frações de potência no núcleo da MOF-01P-DN para diversos índices de refração do filme, de 1,32 a 3,50, quando a espessura do filme é 50, 100, 200 e 500 nm.

Para ter certeza de que o modo HE₁₁^Y está confinado no núcleo da fibra microestrutura, calcula-

Parâmetro	Valores	
$\mathbf{d}_{\mathrm{FIL}}$	50, 100, 200 e 500 nm	
$\mathbf{n}_{\mathrm{FIL}}$	1,32 a 3,50	
λ	1,0 a 1,8 µm	

 Tabela 4–1. Parâmetros para análise modal da fibra MOF-01P-DN.

se o índice efetivo juntamente com a fração de potência no núcleo para este modo. Escolhe-se o valor de 80% como mínimo para esta fração de potência, com isso o modo encontra-se "dentro" do núcleo da fibra MOF-01P-DN.

Nas Figuras 4–8a, 4–8c, 4–9a e 4–9c mostra-se que a parte real do índice efetivo decresce quando o comprimento de onda aumenta; também são observados que a parte real do índice efetivo aumenta quando o índice de refração do filme aumenta. Este comportamento é o mesmo para todas as espessuras analisadas, 50 nm, 100 nm, 200 nm e 500 nm.

Nessas figuras, algumas curvas estão truncadas devido a que só foram considerados as partes reais dos índices efetivos cuja fração de potência no núcleo foi maior o igual a 80%; isso pode ser observado nas Figuras 4–8b, 4–8d, 4–9b e 4–9d, respectivamente, onde é mostrado o comportamento da fração de potência do modo fundamental HE_{11}^{Y} para diversos índices de refração do filme que variam de 1,32 a 3,50 em função do comprimento de onda.

A fração de potência no núcleo (Potência no núcleo/Potência total [%]) do modo HE₁₁^Y cai

rapidamente dependendo do índice de refração do filme.

Se o modo HE_{11}^{Y} passa do núcleo para o filme, tem-se assim, um modo superficial que aparece para comprimentos de onda e/ou índices de filme específicos.

Da Figura 4–8a e 4–8b, para uma espessura de 50 nm, o modo HE_{11}^{Y} existe para comprimentos de onda λ maiores:

- $\lambda \ge 1,41 \ \mu m \ para \ n_{FIL} = 3,00;$
- $\lambda \ge 1,19 \ \mu m \ para \ n_{FIL} = 2,75;$
- para $n_{FIL} \le 2,50$ o modo HE_{11}^{Y} existe em toda a região de análise, $1,8 \ \mu m \ge \lambda \ge 1,0 \ \mu m$.

Da Figura 4–7c e 4–7d, para uma espessura de 100 nm, o modo HE_{11}^{Y} existe para comprimentos de onda λ maiores:

- $\lambda \ge 1,40 \ \mu m \ para \ n_{FIL} = 2,10;$
- $\lambda \ge 1,20 \ \mu m \ para \ n_{FIL} = 2,00;$
- para $n_{FIL} \le 1,75$ o modo HE_{11}^{Y} existe em toda a região de análise, $1,8 \ \mu m \ge \lambda \ge 1,0 \ \mu m$.

Fig. 4–8. Parte real do índice efetivo e fração de potência no núcleo, do modo HE_{11}^{Y} , em função do comprimento de onda e de diferentes valores de n_{FIL} . Para espessuras do filme de **(a)** e **(b)** 50 nm e, **(c)** e **(d)** 100 nm.

Da Figura 4–9a e 4–9b, para uma espessura de 200 nm, o modo HE_{11}^{Y} existe para comprimentos de onda λ maiores:

- $\lambda \ge 1,57 \ \mu m \ para \ n_{FIL} = 1,80;$
- $\lambda \ge 1,38 \ \mu m \ para \ n_{FIL} = 1,75;$
- $\lambda \ge 1,18 \ \mu m \ para \ n_{FIL} = 1,70;$
- para n_{FIL} ≤ 1,60 o modo HE₁₁^Y existe em toda a região de análise, 1,8 μm ≥ λ ≥ 1,0 μm.
 Da Figura 4–9c e 4–9d, para uma espessura de 500 nm, o modo HE₁₁^Y existe para comprimentos

de onda λ maiores:

- $\lambda \ge 1,60 \ \mu m \ para \ n_{FIL} = 1,55;$
- $\lambda \ge 1,48 \ \mu m \ para \ n_{FIL} = 1,54;$
- $\lambda \ge 1,36 \ \mu m \text{ para } n_{\text{FIL}} = 1,53;$
- $\lambda \ge 1,22 \ \mu m \text{ para } n_{\text{FIL}} = 1,52;$

Fig. 4–9. Parte real do índice efetivo e fração de potência no núcleo, do modo HE_{II}^{Y} , em função do comprimento de onda e de diferentes valores de n_{FIL} . Para espessuras do filme de **(a)** e **(b)** 200 nm e, **(c)** e **(d)** 500 nm.

Como conclusão tem-se que a existência do modo HE_{11}^{Y} vai depender dos parâmetros do filme. Já que foi demonstrado que a espessura e o índice do filme tem influência na fração de potência no núcleo. Uma variação pequena do n_{FIL} afeta mais o modo, confinado no núcleo da fibra microestruturada, com um filme grosso do que um filme fino.

As Figuras 4–10 e 4–11 mostram as distribuições espaciais do campo |Hy|² normalizadas para os modos principais, onde os contornos da distribuição de intensidade estão espaçados uniformemente. Em todos estes casos mostrados, o campo dominante do modo principal é o campo Hy.

As Figuras 4–10a e 4–10b mostram o perfil normalizado de $|Hy|^2$ que é quase circular no núcleo da fibra, considerando uma espessura de 50 nm e n_{FIL} = 1,32 e 2,50, respectivamente. Nestas figuras os parâmetros do filme não tem influência no perfil do modo (Figura 4–5b).

A Figura 4–10c mostra um perfil normalizado distorcido que esta começando a localizar-se próximo do filme (para $n_{FIL} = 3,00$). Para estes três primeiros casos o modo fundamental é o modo $HE_{11}^{Y} (d_{FIL} = 50 \text{ nm}, \lambda = 1,55 \text{ } \mu\text{m} \text{ e } n_{FIL} \leq 3,00).$

Para n_{FIL} = 3,50 e maiores, o perfil do modo está localizado no filme, Figura 4–10d. Neste caso,

Fig. 4–10. Perfis normalizados para $|H_Y|^2$ do modo principal. Neste caso $d_{FIL} = 50$ nm, o comprimento de onda é $\lambda = 1,55 \ \mu m$, e foram considerados quatro valores para o índice do filme: (a) $n_{FIL} = 1,32$, (b) $n_{FIL} = 2,50$, (c) $n_{FIL} = 3,00$, e (d) $n_{FIL} = 3,50$.

este é um modo superficial que aparece para índices de refração do filme específicos ($n_{FIL} = 3,50$).

Então, para este caso, um filme com espessura igual a 50 nm e o comprimento de onda igual a 1,55 μ m, o modo HE₁₁^Y existe para índices de refração do filme n_{FIL} \leq 2,50.

As Figuras 4–11a e 4–11b mostram o perfil normalizado de $|Hy|^2$ localizado num filme de 100 nm, considerando um índice de refração do filme igual a 2,00 e para os comprimentos de onda em 0,4 µm e em 0,8 µm, respectivamente. Nestes casos, este é um modo superficial que aparece para comprimentos de onda específicos ($\lambda < 1,2$ µm).

Para $\lambda = 1,2 \mu m$, Figura 4–11c, o perfil do modo cobre o núcleo e parte do filme e das pontes.

Para $\lambda = 1,8 \mu m$, o perfil do modo é circular (Figura 4–11d), e está confinado no núcleo da fibra. Para estes dois últimos casos o modo principal é o modo HE₁₁^Y (Figura 4–5b).

Então, para este caso, um filme com espessura igual a 100 nm e índice de refração igual a 2,00, o modo HE_{11}^{Y} existe para comprimentos de onda $\lambda \ge 1,2 \ \mu\text{m}$.

Para calcular a dispersão cromática (Equação 48 do Capítulo 2), considera-se as partes reais dos índices efetivos do modo HE_{11}^{Y} calculados numericamente e mostrados nas Figuras 4–8a, 4–8c, 4–9a e

Fig. 4–11. Perfis normalizados para $|H_Y|^2$ do modo principal. Neste caso $d_{FIL} = 100$ nm, o índice do filme é $n_{FIL} = 2,00$ e foram considerados quatro valores para o comprimento de onda: (a) $\lambda = 0,4 \ \mu$ m, (b) $\lambda = 0,8 \ \mu$ m, (c) $\lambda = 1,2 \ \mu$ m, e (d) $\lambda = 1,8 \ \mu$ m.

4–9c.

A Figura 4–12 mostra os comportamentos da dispersão cromática, do modo HE_{11}^{Y} , em função do comprimento de onda para diferentes espessuras do filme (50, 100, 200 e 500 nm) e valores de índice de refração do filme (de 1,32 a 3,00).

Todas essas figuras mostram o mesmo comportamento para o ZDW, mantendo a mesma espessura e aumentando o n_{FIL} , o ZDW desloca-se para a região do infravermelho.

Das Figuras 4–12a a 4–12d, pode ser observado que para combinações diferentes de d_{FIL} e n_{FIL} produz-se amplos deslocamentos de ZDW, tendo como referência a fibra sem o filme, MOF-01P, cujo ZDW acontece em $\lambda_{ZDW0} = 1,15 \mu m$, e a sua localização é mostrada em todas as figuras de dispersão por uma linha tracejada vertical.

Para o mesmo deslocamento de ZDW, a maior espessura d_{FIL} o índice n_{FIL} é menor. Por exemplo, para obter um deslocamento de 570 nm, d_{FIL} e n_{FIL} são 50 nm e 3,00, respectivamente, ver Figura 4–12a. Para aproximadamente o mesmo deslocamento, 560 nm, d_{FIL} e n_{FIL} são 500 nm e 1,54, respectivamente,

Fig. 4–12. Curvas da dispersão cromática em função do comprimento de onda. A linha tracejada vertical indica o ZDW da fibra fotônica sem o filme. Comportamento da dispersão (a) para $d_{FIL} = 50$ nm e $n_{FIL} = 1,32, 2,10, 2,30, 2,50, 2,75$ e 3,00; (b) para $d_{FIL} = 100$ nm e $n_{FIL} = 1,32, 1,75, 2,00$ e 2,10; (c) para $d_{FIL} = 200$ nm e $n_{FIL} = 1,32, 1,50, 1,60, 1,70, 1,75$ e 1,80; e (d) para $d_{FIL} = 500$ nm e $n_{FIL} = 1,32, 1,50, 1,52, 1,53, 1,54$ e 1,55.

ver Figura 4-12d.

Na região analisada (1,8 μ m $\geq \lambda \geq 1,0 \mu$ m), com um filme de espessura (d₁) e índice de refração (n₁) pode-se obter o mesmo deslocamento do ZDW que com um filme de espessura maior (d₂ > d₁) e índice de refração menor (n2 < n1).

A Tabela 4–2 mostra os deslocamentos, comparados com λ_{ZDW0} , obtidos com a variação de d_{FIL} e n_{FIL} mostrados na Figura 4–12. O máximo deslocamento encontrado foi de 570 nm, lembrando sempre que este é para a "direita", o ZDW é deslodado para comprimentos de onda maiores.

Dos dados da Tabela 4–2, quando o índice de refração do filme $n_{FIL} = 1,45$ (\approx índice da sílica para 1,8 μ m $\geq \lambda \geq 1,0 \mu$ m – Apêndice G) isso quer dizer que as dimensões dos buracos diminuem. Para filmes com $d_{FIL} \leq 200$ nm estas dimensões não influenciam no comportamento da dispersão cromática pois o deslocamento do ZDW é menor que 10 nm. Já para um $d_{FIL} = 500$ nm o deslocamento do ZDW é de ~ 90 nm.

A Figura 4–13 mostra o comportamento da dispersão cromática do modo HE_{11}^{Y} em função do comprimento de onda, foram obtidos deslocamentos do ZDW quando é fixado o valor do índice de

d _{FIL} [nm]	n _{FIL}	Deslocamento ZDW [nm]
50	1,32	~ 5
	1,45	~6
	2,10	~ 10
	2,30	~ 20
	2,50	~ 80
	2,75	~ 290
	3,00	~ 570
	1,32	~ 5
	1,45	~ 6
100	1,75	~ 10
	2,00	~ 220
	2,10	~ 420
200	1,32	~ 5
	1,45	~8
	1,50	~ 10
	1,60	~ 30
	1,70	~ 250
	1,75	~ 440
500	1,32	~ 10
	1,45	~90
	1,50	~ 120
	1,52	~ 330
	1,53	~ 440
	1,54	~ 560

Tabela 4–2. Deslocamentos de ZDW tendo com referência $\lambda_{ZDW0} = 1,15 \mu m$.

refração n_{FIL} e variando a espessura d_{FIL}.

A Figura 4–13a mostra a dispersão cromática para $n_{FIL} = 2,00$ e $d_{FIL} = 50$ nm e 100 nm. O deslocamento do ZDW obtido para $d_{FIL} = 50$ nm e 100 nm foi de 10 nm e 220 nm, respectivamente.

A Figura 4–13b mostra a dispersão cromática para $n_{FIL} = 2,10$ e $d_{FIL} = 50$ nm, 75 nm e 100 nm. Aqui, o deslocamento do ZDW obtido com $d_{FIL} = 50$ nm, 75 nm e 100 nm foi de 10 nm, 80 nm e 420 nm, respectivamente. Assim, para um mesmo índice n_{FIL} , quando a espessura do filme d_{FIL} aumenta o deslocamento do ZDW também aumenta, sempre para a região do infravermelho.

A Figura 4-14 mostra a sensibilidade, na dispersão cromática, para n_{FIL} e d_{FIL} em função do

Fig. 4–13. Curvas da dispersão cromática em função do comprimento de onda. A linha tracejada vertical indica o ZDW da fibra fotônica sem o filme. Comportamento da dispersão para diferentes valores de d_{FIL} e (a) para $n_{FIL} = 2,00$, e (b) para $n_{FIL} = 2,10$.

comprimento de onda.

A Figura 4–14a mostra as curvas de sensibilidade para $d_{FIL} = 50$ nm e valores de n_{FIL} que variam de 2,72 a 2,78. Observa-se que para cada variação de 0,01 do n_{FIL} o ZDW é deslocado em 10 nm. Assim, para um filme de 50 nm, o ZDW para $n_{FIL} = 2,78$ está deslocado 60 nm mais do que o ZDW para $n_{FIL} = 2,72$.

A Figura 4–14b mostra as curvas de sensibilidade para $n_{FIL} = 2,75$ e valores de d_{FIL} que variam de 47 nm a 53 nm. Para cada variação de 1 nm do d_{FIL} o ZDW é deslocado em 30 nm. Assim, para um filme com $n_{FIL} = 2,75$, o ZDW para $d_{FIL} = 53$ nm está deslocado 180 nm mais do que o ZDW para $d_{FIL} = 53$

Fig. 4–14. Dispersão cromática em função do comprimento de onda. (a) Curvas de sensibilidade para $d_{FIL} = 50$ nm e $n_{FIL} = 2,72, 2,73, 2,74, 2,75, 2,76, 2,77$ e 2,78. (b) Curvas de sensibilidade para $n_{FIL} = 2,75$ e $d_{FIL} = 47, 48, 49, 50, 51, 52$ e 53 nm.

47 nm.

Também foi feito a análise dos modos, no núcleo, de ordem superior em relação com o filme. Na Figura 4–7 calcula-se até os modos de ordem 13 (46 modos) para o fibra sem o filme.

A Figura 4–15 mostra o índice efetivo dos modos de ordem superior, em função do comprimento de onda, para diferentes combinações dos parâmetros do filme, n_{FIL} e d_{FIL} . Para todos esses casos, foram considerados os modos cujas frações de potências no núcleo do modo seja maior a 80%.

Na Figura 4–15a temos os modos para o filme com $d_{FIL} = 50$ nm e $n_{FIL} = 2,10$; aqui encontra-se modos de até 13^a ordem, teve pouca variação. Com isso conclui-se que o filme não teve influência nos modos de ordens superiores, dentro da região de análise.

A Figura 4–15b, para um filme com $d_{FIL} = 50$ nm e $n_{FIL} = 3,00$; mostra os modos de até 5^a ordem. Devido a influência do filme é possível obter modos no núcleo e não modos superficiais para $\lambda > 1,45$ µm. Para $\lambda > 1,60$ µm é que podemos ver os modos de até 5^a ordem.

Na Figura 4–15c têm-se os modos para o filme com $d_{FIL} = 100$ nm e $n_{FIL} = 2,10$; aqui encontra-

Fig. 4–15. Parte real do índice efetivo para os modos do núcleo em função de comprimento de onda. Curvas (a) para $d_{FIL} = 50$ nm e $n_{FIL} = 2,10$; (b) para $d_{FIL} = 50$ nm e $n_{FIL} = 3,00$; (c) para $d_{FIL} = 100$ nm e $n_{FIL} = 2,10$ e; (d) para $d_{FIL} = 500$ nm e $n_{FIL} = 1,541$.

se os modos de até 7^a ordem. O filme tem influência nos modos do núcleo; só é possível ver os modos para $\lambda > 1,35 \mu m$.

A Figura 4–15d mostra os modos para o filme com parâmetros $d_{FIL} = 500$ nm e $n_{FIL} = 1,541$; neste caso dentro da região de análise pode-se observar modos de até 4^a ordem. Por influência do filme, é que só pode-se observar os modos no núcleo da fibra para $\lambda > 1,43 \mu$ m,.

Como conclusão, tem-se uma maneira efetiva para controlar a dispersão-zero da fibra microestruturada MOF-01P.

4.2.4 EXPERIMENTAL MOF-01P-DN

Experimentalmente, esta técnica pode ser aplicada de duas maneiras isto é, a fabricação do filme nos buracos da fibra microestruturada.

Primeira maneira, é a fabricação do filme junto com a fibra microestruturada. Existem vidros com propriedades mecânicas semelhantes, o que permite que durante o puxamento da preforma da fibra não exista problemas na estrutura, como por exemplo colapsamento (fechamento) dos buracos. Entre os tipos de vidro estão a sílica, os silicatos alcalinos, os sodo-cálcicos, os vidros ao chumbo, os borossilicatos, os alumino- borossilicatos, teluritos, etc.

A vantagem é um bom controle na obtenção do filme isto é, espessura regular nas paredes dos buracos. A desvantagem é que devido às propriedades mecânicas dos vidros a diferença entre os índices de refração do núcleo e do filme não é grande.

A Figura 4–16a mostra um esquema da preforma de uma fibra microestruturada formada por bastões e capilar do vidro 1 para formação do núcleo sólido e da casca, respectivamente. Para os buracos e o filme foram utilizados capilares do vidro 2. Ambos tipos de vidro, 1 e 2, possuem propriedades mecânicas semelhantes com índices de refração diferentes. Assim, com as dimensões dos capilares (espessura do capilar) consegue-se, depois do puxamento, a espessura do filme desejado com índice de refração do vidro 2.

Segunda maneira, é a fabricação do filme depois da fabricação da fibra microestruturada. A Figura 4–16b mostra o esquema em que, com ajuda da pressão, líquidos podem ser injetados nos buracos da fibra microestruturada. Entre esses líquidos estão os *quantum dots* (QD's) [1, 2, 3, 4]

Fig. 4–16. (a) Esquema da preforma de uma fibra microestruturada, formada por dois tipos de vidro. *(b)* Esquema da injeção dos QDs na fibra.

principalmente de semicondutores como CdSe/ZnS, estes QD's estão diluídos em tolueno [5, 6, 7]. Devido ao seu tamanho nanométrico e propriedades ópticas, são ideais para formação do filme. A vantagem é a ampla gama de QD's de tamanhos (2 a 20 nm) e índices de refração (até 3,5) variados.

Utilizando uma geometria simples, núcleo sólido rodeado por seis buracos, foi fabricada a fibra microestruturada MOF-01P (Figura 4–17) utilizando o método "*stack–and–draw*" [8], no laboratório de Novos Materiais Vítreos do DEQ–IFGW–UNICAMP. A fibra está composto de um núcleo de ~ 10 μ m de diâmetro e uma estruturada de ~30 μ m de diâmetro.

Foi observado, utilizando um laser de 473 nm, a distribuição de intensidade do primeiro modo (Figura 4–17) onde, o modo encontra-se confinado no núcleo da fibra microestruturada.

Fig. 4–17. Imagem de microscopia de varredura (SEM) da fibra microestruturada de sílica MOF-01P. Fotografia do campo para o modo fundamental em 473 nm.

Utilizando a técnica acima descrita (Figura 4–16b) foram injetados os *quantum dots* coloidais de CdSe/ZnS (Emissão = 560 nm e Absorção = 545 nm).

Para ver qualitativamente se os QDs foram depositados nos buracos da fibra, com ajuda de um espectrômetro de alta resolução e um laser em 473 nm, foi medida a luminescência dos QDs ao longo da fibra (Figura 4–18a). Como conclusão, para este comprimento de onda, 473 nm, o modo consegue-se propagar pelo núcleo e uma parte pelo filme (pelos QD's), por isso, a presença da luminescência de cor "verde".

No espectro de fotoluminescência (Figura 4–18b) em função do comprimento de onda é observado dois picos intensos onde, um é da luminescência "verde" em ~560 nm típico dos QD's de

FIBRA PCF01P - DN LASER FILME 473 nm FOTOLUMINESCÊNCIA [a.u.] QD: CdSe / ZnS Emissão do QD 550nm FWHM = 36 nm 0.3 0.4 0.5 0.6 0.7 0.8 0.9 COMPRIMENTO DE ONDA [µm] **(b)**

Fig. 4–18. (a) Fotografia da luminescência dos QDs de CdSe/ZnS na fibra MOF-01P quando é bombeada em 473nm (laser azul). (b) Espectro de fotoluminescência dos QDs de CdSe/ZnS QDs na fibra MOF-01P.

CdSe/ZnS e o outro é do laser em 473 nm. Isto confirma a presença dos QD's de CdSe/ZnS nos buracos da fibra microestruturada.

A falta de uniformidade na estrutura da fibra, irregularidade dos buracos, faz com que a "fabricação" do filme seja difícil, também os parâmetros da técnica utilizada como pressão, tempo de injeção, viscosidade dos QD's, fazem com que seja complicado obter um filme regular por este método.

4.3 FIBRA MICROESTRUTURADA MOF-03H

4.3.1 INTRODUÇÃO

Foi escolhida outra geometria simples para uma MOF, três buracos de ar ao redor de um núcleo sólido de sílica pura.

A Figura 4–19 mostra a seção transversal da fibra sem filme MOF-03H e com o filme MOF-03H-DN. As direções X e Y são transversais e Z é a direção de propagação.

A Figura 4–19a mostra a MOF-03H de sílica pura, formada pelo núcleo sólido com um diâmetro, igual ao dos buracos de ar, de 5 μm.

Fig. 4–19. Esquema da seção transversal da fibra microestruturada proposta. (a) A MOF-03H para a fibra sem o filme. (b) A MOF-03H-DN para a fibra com filme cobrindo as paredes internas dos buracos.

A fibra MOF-03H-DN, Figura 4–19b, é a fibra microestruturada MOF-03H com o filme fino. As características do filme, índice de refração n_{FIL} e espessura d_{FIL} , que foram analisadas são:

- O índice de refração n_{FIL} é considerado independente do comprimento de onda, isto é, constante. Na região de simulação, de 1,0 μm a 1,8 μm, os valores para este índice de refração variam de 1,45 a 3,00;
- Os diferentes valores usados para a espessura do filme d_{FIL} foram de 50 nm, 100 nm, 200 nm, e 500 nm.

Experimentalmente, este filme pode ser colocado nos buracos da fibra microestruturada de duas maneiras:

- A primeira, durante a fabricação, pode-se usar dois materiais vítreos de propriedades mecânicas similares mas com diferentes índices de refração.
- A segunda, depois da fabricação, os buracos de ar podem ser cobertos por um filme que encontra-se em estado líquido ou diluído em outro material.

As fibras MOF-03H e MOF-03H-DN têm as mesmas dimensões geométricas no núcleo. O tamanho dos buracos de ar é que diminuem de acordo com a espessura do filme.

Aproveitando a boa simetria da geometria da fibra MOF-03H utiliza-se só a metade dela para realizar a análise modal, assim consegue-se reduzir o número de incógnitas e, com isso, pode-se melhorar as malhas, isto é, uma malha mais fina.

Aproveitando o máximo da capacidade do sistema (programa + computador) a malha tem aproximadamente 96.000 elementos triangulares. Para evitar o erro devido ao uso de malhas diferentes, é utilizado só uma malha para fazer toda a análise modal nesta técnica. A região próxima do filme é mais refinada como é mostrado na Figura 4–20.

Para as paredes externas das malhas foram utilizadas como condições de contorno as PECs e/ou PMCs, a configuração usada nesta técnica foi a PMh, parede PMC na horizontal isto é, no eixo X. O modo principal HE_{11} é degenerado em dois modos HE_{11}^{X} e HE_{11}^{Y} . Com a configuração PMh conseguese observar o modo HE_{11}^{Y} (Capítulo 3.2.3.). Assim, esta configuração foi utilizada nos cálculos para determinar o modo fundamental das fibras microestruturadas, MOF-03H e MOF-03H-DN.

A janela computacional usada é de 28 μ m (direção *X*) x 14 μ m (direção *Y*), a região de PML tem uma espessura de 2 μ m.

Na Figura 4–20 pode-se observar o esquema da fibra microestruturada usada, como principalmente é interessante o modo fundamental do núcleo, não é preciso de desenhar o resto da casca externa, só uma parte dela é suficiente para os cálculos numéricos.

Fig. 4–20. Malha de elementos finitos e a seção transversal da metade da fibra MOF-03H usada nesta análise. Localização das paredes PEC e PMC.

O centro das fibras microestruturadas, MOF-03H e MOF-03H-DN, coincidem com a origem de sistema de coordenadas *XY* usado.

4.3.2 ANÁLISE MODAL PARA MOF-03H

Realizando a análise modal (índice efetivo n_{EFF} , área efetiva A_{EFF} , fração de potência no núcleo, dispersão cromática D e distribuição espacial do campo dominante dos modos) para a fibra microestruturada sem o filme, MOF-03H.

A Figura 4–21a mostra o comportamento da parte real do índice efetivo Re[nEFF] do modo fundamental HE₁₁^Y em função do comprimento de onda λ na região de 1,0 a 1,8 µm, onde pode-se

(b)

Fig. 4–21. (a) Parte real do índice efetivo $Re[n_{EFF}]$. **(b)** Fração de potência no núcleo e área efetiva. Comportamentos do modo fundamental HE_{II}^{Y} para a fibra MOF-03H em função do comprimento de onda.

comparar com a o índice de refração do núcleo de sílica pura, calculado pela fórmula de Sellmeier (Apêndice G). O $\text{Re}[n_{EFF}]$ decai quando λ aumenta.

A Figura 4–4b mostra a fração de potência no núcleo do modo HE_{11}^{Y} em função do comprimento de onda, o modo encontra-se no núcleo, a fração de potência decai para comprimentos de onda maiores.

Também foi calculado (Equação 50 do Capítulo 2) a área efetiva em função do comprimento de onda, que como era de esperar é maior quando o comprimento de onda aumenta. Comparando com a área efetiva de uma fibra monomodo convencional (aproximadamente entre 50 μ m² e 90 μ m², Figura 3–20) esta área efetiva está mais próxima, dentro da região de análise.

(a)

Fig. 4–22. (a) Dispersão cromática para o modo fundamental HE_{11}^{Y} em função do comprimento de onda. (b) Seção transversal da metade da fibra MOF-03H usada nesta análise. (c) Distribuição espacial do campo $|H_Y|^2$ normalizado do modo fundamental HE_{11}^{Y} da fibra MOF-03H considerando o comprimento de onda $\lambda = 1.55 \ \mu m$.

A Figura 4–22a mostra a dispersão cromática para o modo fundamental HE_{11}^{Y} calculado (Equação 48 do Capítulo 2) a partir da parte real do índice efetivo (Figura 4–21a). Nela observa-se que o ZDW ou λ_{ZD} para este modo HE_{11}^{Y} (fibra MOF-03H sem filme) é igual a 1,19 µm. Este será o ponto de comparação para poder ver o deslocamento do λ_{ZD} quando o filme (parâmetros n_{FIL} e d_{FIL}) seja inserido nos buracos da fibra microestruturada MOF-03H.

O deslocamento do ZDW vai acontecer para a direita da região do comprimento de onda, isto é, o comprimento de onda da dispersão zero λ_{ZD} vai ser deslocada para dentro da região do infravermelho IR, especificamente do NIR (*Near-Infrared*) para SWIR (*Short-wavelength Infrared*). Assim, o λ_{ZD} vai ficar maior (> 1,19 µm).

A Figura 4–22b mostra o esquema da fibra estruturada, com a ubicação dos buracos de ar ao redor do núcleo. A escala usada para ver o modo fundamental foi de 24 μ m (direção *X*) x 12 μ m (direção *Y*) com o que é possível apreciar o modo calculado. Esta escala vai ser usada para a análise das distribuições espaciais dos modos das fibras MOF-03H e MOF-03H-DN em toda esta técnica.

A Figura 4–22c mostra a distribuição espacial do campo $|Hy|^2$ normalizado do modo fundamental HE_{11}^{Y} para $\lambda = 1,55$ µm. Pode-se observar que o modo está confinado no núcleo,

Fig. 4–23. Distribuições espaciais para os campos $|H_Y|^2$ normalizados dos modos de ordem superior da fibra MOF-03H considerando o comprimento de onda $\lambda = 1,55 \ \mu m$.

comparando com seção transversal da metade da fibra MOF-03H da Figura 4-22b.

Devido à geometria da fibra MOF-03H, o núcleo de ~ 5 μ m de diâmetro também suporta modos de ordem superior. A Figura 4–23 mostra as distribuições espaciais dos campos |Hy|² normalizados dos modos para essas ordens superiores, de 2^a até 4^a ordem para o comprimento de onda de 1,55 μ m. Dos cálculos numéricos, todos eles estão confinados no núcleo (acima de 50%) que pode ser comparado com a seção transversal da metade da fibra MOF-03H da Figura 4–22b.

4.3.3 ANÁLISE MODAL PARA MOF-03H-DN

Fazendo a análise modal (índice efetivo, fração de potência no núcleo, distribuições espaciais para o campo dominante normalizado e dispersão cromática) para as fibras microestruturadas MOF-03H-DN com o filme nas superfícies dos buracos.

Esta análise está focalizada na dispersão cromática do modo fundamental HE_{11} , especificamente no ZDW. Da configuração escolhida o modo analisado foi o modo HE_{11}^{Y} . Foram escolhidos os parâmetros mostrados na Tabela 4–3.

As Figuras 4–24 e 4–25 mostram o comportamento das partes reais dos índices efetivos do modo fundamental HE_{11}^{Y} e suas respectivas frações de potência no núcleo da MOF-01P-DN para diversos índices de refração do filme, de 1,45 a 3,00, quando a espessura do filme é 50, 100, 200 e 500 nm.

Para ter certeza de que o modo HE₁₁^Y está confinado no núcleo da fibra microestrutura, calcula-

Parâmetro	Valores		
$\mathbf{d}_{\mathrm{FIL}}$	50, 100, 200 e 500 nm		
$\mathbf{n}_{\mathrm{FIL}}$	1,45 a 3,00		
λ	1,0 a 1,8 µm		

 Tabela 4–3. Parâmetros para análise modal da fibra MOF-03H-DN.

se a parte real do índice efetivo juntamente com a fração de potência no núcleo para este modo. Escolhe-se o valor de 80% como mínimo para esta fração de potência, com isso o modo encontra-se "dentro" do núcleo da fibra MOF-03H-DN.

Nas Figuras 4–24a, 4–24c, 4–25a e 4–25c mostra-se que a parte real do índice efetivo decresce quando o comprimento de onda aumenta; também é observado que a parte real do índice efetivo aumenta quando o índice de refração do filme aumenta. Este comportamento é o mesmo para todas as espessuras analisadas, 50 nm, 100 nm, 200 nm e 500 nm.

Nessas figuras, algumas curvas estão truncadas devido a que só foram considerados as partes reais dos índices efetivos cuja fração de potência no núcleo foi maior o igual a 80%; isso pode ser observado nas Figuras 4–24b, 4–24d, 4–25b e 4–25d, respectivamente, onde é mostrado o comportamento da fração de potência do modo fundamental HE_{11}^{Y} para diversos índices de refração do filme que variam de 1,45 a 3,00 em função do comprimento de onda.

A fração de potência no núcleo (Potência no núcleo/Potência total [%]) do modo HE₁₁^Y cai

rapidamente dependendo do índice de refração do filme.

Se o modo HE_{11}^{Y} passa do núcleo para o filme, tem-se assim, um modo superficial que aparece para comprimentos de onda e/ou índices de filme específicos.

Da Figura 4–24a e 4–24b, para uma espessura de 50 nm, o modo HE_{11}^{Y} existe para comprimentos de onda λ maiores:

- $\lambda \ge 1,34 \ \mu m \text{ para } n_{FIL} = 2,74;$
- $\lambda \ge 1,29 \ \mu m \ para \ n_{FIL} = 2,70;$
- $\lambda \ge 1,08 \ \mu m \text{ para } n_{\text{FIL}} = 2,50;$
- para $n_{FIL} < 2,50$ o modo HE_{11}^{Y} existe em toda a região de análise, 1,8 μ m $\geq \lambda \geq 1,0 \mu$ m.

Da Figura 4–24c e 4–24d, para uma espessura de 100 nm, o modo HE_{11}^{Y} existe para comprimentos de onda λ maiores:

- $\lambda \ge 1,35 \ \mu m \ para \ n_{FIL} = 2,14;$
- $\lambda \ge 1,28 \ \mu m \text{ para } n_{\text{FIL}} = 2,10;$

Fig. 4–24. Parte real do índice efetivo e fração de potência no núcleo, do modo HE_{II}^{Y} , em função do comprimento de onda e de diferentes valores de n_{FIL} . Para espessuras do filme de **(a)** e **(b)** 50 nm e, **(c)** e **(d)** 100 nm.

- $\lambda \ge 1,10 \ \mu m \ para \ n_{FIL} = 2,00;$
- para $n_{FIL} \le 1,90$ o modo HE_{11}^{Y} existe em toda a região de análise, $1,8 \ \mu m \ge \lambda \ge 1,0 \ \mu m$.

Da Figura 4–25a e 4–25b, para uma espessura de 200 nm, o modo HE_{11}^{Y} existe para comprimentos de onda λ maiores:

- $\lambda \ge 1,35 \ \mu m \ para \ n_{FIL} = 1,78;$
- $\lambda \ge 1,31 \ \mu m \text{ para } n_{\text{FIL}} = 1,77;$
- $\lambda \ge 1,25 \ \mu m \ para \ n_{FIL} = 1,75;$
- $\lambda \ge 1,08 \ \mu m \ para \ n_{FIL} = 1,70;$
- para $n_{FIL} < 1,70$ o modo HE_{11}^{Y} existe em toda a região de análise, $1,8 \ \mu m \ge \lambda \ge 1,0 \ \mu m$.

Da Figura 4–25c e 4–25d, para uma espessura de 500 nm, o modo HE_{11}^{Y} existe para comprimentos de onda λ maiores:

- $\lambda \ge 1,33 \ \mu m \text{ para } n_{\text{FIL}} = 1,55;$
- $\lambda \ge 1,23 \ \mu m \text{ para } n_{\text{FIL}} = 1,54;$

Fig. 4–25. Parte real do índice efetivo e fração de potência no núcleo, do modo HE_{II}^{Y} , em função do comprimento de onda e de diferentes valores de n_{FIL} . Para espessuras do filme de **(a)** e **(b)** 200 nm e, **(c)** e **(d)** 500 nm.

- $\lambda \ge 1,02 \ \mu m \text{ para } n_{\text{FIL}} = 1,52;$
- para nFIL < 1,52 o modo HE11Y existe em toda a região de análise, 1,8 μ m $\geq \lambda \geq 1,0 \mu$ m

Como conclusão tem-se que a existência do modo HE_{11}^{Y} vai depender dos parâmetros do filme. Já que foi demonstrado que a espessura e o índice do filme tem influência na fração de potência no núcleo. Uma variação pequena do n_{FIL} afeta mais o modo, confinado no núcleo da fibra microestruturada, com um filme grosso do que um filme fino.

As Figuras 4–26 e 4–27 mostram as distribuições espaciais do campo |Hy|² normalizadas para os modos principais, onde os contornos da distribuição de intensidade estão espaçados uniformemente. Em todos estes casos mostrados, o campo dominante do modo principal é o campo Hy.

As Figuras 4–26a e 4–26b mostram o perfil normalizado de $|Hy|^2$ que na sua totalidade encontra-se no núcleo da fibra, considerando uma espessura de 50 nm e n_{FIL} = 1,45 e 2,50, respectivamente. Nestas figuras os parâmetros do filme não tem influência no perfil do modo (Figura 4 –22c). Para estes dois primeiros casos o modo fundamental é o modo HE₁₁^Y (d_{FIL} = 50 nm, λ = 1,55 µm e n_{FIL} ≤ 2,50).

Fig. 4–26. Perfis normalizados para $|H_Y|^2$ do modo principal. Neste caso $d_{FIL} = 50$ nm, o comprimento de onda é $\lambda = 1,55$ µm, e foram considerados quatro valores para o índice do filme: (a) $n_{FIL} = 1,45$, (b) $n_{FIL} = 2,50$, (c) $n_{FIL} = 2,80$, e (d) $n_{FIL} = 3,00$.

A Figura 4–26c mostra um perfil normalizado distorcido que esta começando a localizar-se próximo do filme (para $n_{FIL} = 2,80$).

Para $n_{FIL} = 3,00$ e maiores, o perfil do modo está localizado no filme, Figura 4–26d. Neste caso, este é um modo superficial que aparece para índices de refração do filme específicos ($n_{FIL} = 3,00$).

Então, para este caso, um filme com espessura igual a 50 nm e comprimento de onda igual a 1,55 μ m, o modo HE₁₁^Y existe para índices de refração do filme n_{FIL} \leq 2,50.

As Figuras 4–27a e 4–27b mostram o perfil normalizado de $|Hy|^2$ do modo fundamental da fibra MOF-03H-DN para o comprimento de onda em 1,55 µm onde o filme tem o índice de refração igual a 2,00 e espessuras d_{FIL} de 50 nm e 100 nm, respectivamente. Nestes casos, o perfil do modo fundamental está confinado no núcleo da fibra. Para estes dois casos o modo principal é o modo HE₁₁^Y (Figura 4–22c)

Para $d_{FIL} = 200$ nm e $d_{FIL} = 500$ nm, Figuras 4–27c e 4–27d respectivamente, o perfil do modo fundamental está localizado no filme. Este é um modo superficial que aparece para espessuras específicas ($n_{FIL} = 2,00$, $\lambda = 1,55$ µm, $d_{FIL} \ge 200$ nm).

Fig. 4–27. Perfis normalizados para $|H_Y|^2$ do modo principal. Neste caso $n_{FIL} = 2,00$, o comprimento de onda é $\lambda = 1,55 \ \mu m$ e foram considerados quatro valores para a espessura do filme: (a) $d_{FIL} = 50 \ nm$, (b) $d_{FIL} = 100 \ nm$, (c) $d_{FIL} = 200 \ nm$, e (d) $d_{FIL} = 500 \ nm$.

Para calcular a dispersão cromática (Equação 48 do Capítulo 2), considera-se as partes reais dos índices efetivos do modo HE_{11}^{Y} calculados numericamente e mostrados nas Figuras 4–24a, 4–24c, 4–25a e 4–25c.

A Figura 4–28 mostra os comportamentos da dispersão cromática, do modo HE_{11}^{Y} , em função do comprimento de onda para diferentes espessuras do filme (50, 100, 200 e 500 nm) e valores de índice de refração do filme (de 1,45 a 3,00).

Todas essas figuras mostram o mesmo comportamento para o ZDW, mantendo a mesma espessura e aumentando o n_{FIL} , o ZDW desloca-se para a região do infravermelho.

Das Figuras 4–28a a 4–28d, pode ser observado que para combinações diferentes de d_{FIL} e n_{FIL} produz-se amplos deslocamentos de ZDW, tendo como referência a fibra sem o filme, MOF-03H, cujo ZDW acontece em $\lambda_{ZDW0} = 1,19 \mu m$, e a sua localização é mostrada em todas as figuras de dispersão por

Fig. 4–28. Curvas da dispersão cromática em função do comprimento de onda. A linha tracejada vertical indica o ZDW da fibra fotônica sem o filme. Comportamento da dispersão (a) para $d_{FIL} = 50$ nm e $n_{FIL} = 2,00, 2,30, 2,50, 2,70, e 2,74$; (b) para $d_{FIL} = 100$ nm e $n_{FIL} = 1,80, 1,90, 2,00, 2,10$ e 2,14; (c) para $d_{FIL} = 200$ nm e $n_{FIL} = 1,50, 1,70, 1,75, 1,77, e 1,78$; e (d) para $d_{FIL} = 500$ nm e $n_{FIL} = 1,45, 1,50, 1,52, 1,54, e 1,55$.

uma linha tracejada vertical.

Para o mesmo deslocamento de ZDW, a maior espessura d_{FIL} o índice n_{FIL} é menor. Por exemplo, para obter um deslocamento de 545 nm, dFIL e n_{FIL} são 50 nm e 2,74, respectivamente, ver Figura 4–28a. Para aproximadamente o mesmo deslocamento, 520 nm, dFIL e n_{FIL} são 500 nm e 1,55, respectivamente, ver Figura 4–28d.

Na região analisada (1,8 μ m $\geq \lambda \geq 1,0 \mu$ m), com um filme de espessura (d₁) e índice de refração (n₁) pode-se obter o mesmo deslocamento do ZDW que com um filme de espessura maior (d₂ > d₁) e índice de refração menor (n2 < n1).

A Tabela 4–4 mostra os deslocamentos, comparados com λ_{ZDW0} , obtidos com a variação de d_{FIL} e n_{FIL} mostrados na Figura 4–28. O máximo deslocamento encontrado foi de 560 nm, lembrando sempre que este é para a "direita", o ZDW é deslodado para comprimentos de onda maiores.

Dos dados da Tabela 4–4, quando o índice de refração do filme $n_{FIL} = 1,45$ (\approx índice da sílica para 1,8 μ m $\geq \lambda \geq 1,0 \mu$ m – Apêndice G) isso quer dizer que as dimensões dos buracos diminuem. Para filmes com $d_{FIL} \leq 200$ nm estas dimensões não influenciam no comportamento da dispersão cromática pois o deslocamento do ZDW é menor que 10 nm. Já para um $d_{FIL} = 500$ nm o deslocamento do ZDW é de ~ 15 nm.

d _{FIL} [nm]	n _{FIL}	Deslocamento ZDW [nm]
50	2,00	~ 6
	2,30	~ 60
	2,50	~ 235
	2,70	~ 490
	2,72	~ 515
	2,74	~ 545
	1,80	~ 20
	1,90	~ 90
100	2,00	~ 260
	2,10	~ 470
	2,14	~ 560
	1,50	~ 8
	1,70	~ 240
200	1,75	~ 425
	1,77	~ 505
	1,78	~ 545
500	1,45	~ 15
	1,50	~ 70
	1,52	~ 220
	1,54	~ 420
	1,55	~ 520

Tabela 4–4. Deslocamentos de ZDW tendo com referência $\lambda_{ZDW0} = 1,19 \ \mu m$.

4.4 CONCLUSÕES

Com ajuda da formulação, descrita no Capítulo 2, uma nova técnica foi usada para controlar o comprimento de onda da dispersão zero – ZDW de uma fibra microestruturada – MOF. Esta técnica é baseada na variação do índice de refração linear e da espessura de um filme que cobre as paredes internas dos buracos da MOF. Foram escolhidas duas geometrias simples para a MOF. Os resultados das simulações apresentadas neste capítulo demonstram numericamente que esta técnica é eficiente para controlar o ZDW de uma MOF.

4.5 BIBLIOGRAFIA

- 1 A. I. Ekimov, A. A. Onushchenko; "Quantum size effect in three-dimensional microscopic semiconductor crystals"; JETP Lett., vol. 34, pp. 345–349, (1981).
- 2 D. J. Norris; "Measurement and Assignment of the Size-Dependent Optical Spectrum in Cadmium Selenide (CdSe) Quantum Dots", Ph.D. thesis, MIT, (1995).
- 3 C. B. Murray, C. R. Kagan, M. G. Bawendi; "Synthesis and Characterization of Monodisperse Nanocrystals and Close-Packed Nanocrystal Assemblies"; Annual Review of Materials Research, vol. 30, no. 1, pp. 545–610, (2000).
- 4 E. F. Chillce, R. E. Ramos-Gonzáles, C. M. B. Cordeiro, L. Gutierrez-Rivera, H. L. Fragnito, C. H. de Brito Cruz, A. C. Bordonalli, H. E. Hernández-Figueroa, R L. Braga, and L. C. Barbosa, "Luminescence of PbS quantum dots spread on the core surface of a silica microstructured optical fiber"; Journal of Non Criytalline Solids; vol. 356, no. 44, pp. 2397–2401; October (2010).
- 5 X. Brokmann, G. Messin, P. Desbiolles, E. Giacobino, M. Dahan and J. P. Hermier; "*Colloidal CdSe/ZnS quantum dots as single-photon sources*"; New J. Phys., vol. 6, no. 1, pp. 99, (2004).
- 6 Ma Hong, Ma Guo-Hong, Wang Wen-Jun, Gao Xue-Xi and Ma Hong-Liang; "Size-dependent optical properties and carriers dynamics in CdSe/ZnS quantum dots"; Chinese Phys. B, vol. 17, no. 4, pp. 1280, (2008).
- 7 Wang Zhi-Bing, Zhang Jia-Yu, Cui Yi-Ping and Ye Yong-Hong; "*Effect of Electrical Field on Colloidal CdSe/ZnS Quantum Dots*"; Chinese Phys. Lett., vol. 25, no. 12, pp. 4435, (2008).
- 8 S. Arismar Cerqueira, Jr., "*Recent progress and novel applications of photonic crystal fibers*", Rep. Prog. Phys. 73(2), (2010).

Capítulo 5

CONCLUSÕES E TRABALHOS FUTUROS
5.1 CONCLUSÕES

Com ajuda de uma metodologia numérica eficiente e robusta, descrita no Capítulo 2 e validada no Capítulo 3, para a análise modal de guias de onda através do método dos elementos finitos, foi possível desenvolver esta técnica eficiente para controlar o comprimento de onda da dispersão zero de uma fibra microestruturada.

Esta técnica pode ser implementada durante ou depois da fabricação da fibra microestruturada. Consiste num filme localizado nas paredes internas dos buracos que fazem parte da estrutura. Tendo só como parâmetros de controle o índice de refração e a espessura do filme.

Os resultados numéricos apresentados demostram que o controle do comprimento de onda da dispersão zero é possível. Foi alcançado um deslocamento de até 570 nm dentro da região de análise do comprimento de onda, de 1,0 µm até 1,8 µm.

As conclusões deste trabalho são ressumidas a seguir:

No Capítulo 2 foi realizada uma revisão da metodologia numérica, o algoritmo do código, para a simulação de guias ópticos bidimensionais incluindo PMLs utilizando o método dos elementos finitos. Como as matrizes resultantes são esparsas o custo computacional é reduzido dando a possibilidade de modelar geometrias mais complexas tendo assim, vantagens sobre os métodos tradicionais. Este capítulo mostra os parâmetros utilizados pela análise modal em todas as simulações feitas nos guias ópticos.

No Capítulo 3 foi realizada a validação deste código escrito em MATLAB® usando o modelo *full-vector nodal*. Foi feita a simulação e análise modal em um guia óptico circular, uma fibra monomodo convencional e uma fibra microestruturada.

Com a análise do guia circular foi concluído que, dependendo da simetria do guia óptico este pode ser simulado usando apenas metade ou até só um quarto da geometria total.

Os resultados obtidos para as fibras, monomodo convencional e microestruturada, apresentam excelente concordância com os resultados analíticos e experimentais publicados na literatura especializada. Confirmou-se, o perfeito funcionamento das condições de contorno, usando regiões PMLs com paredes PEC e/ou PMC.

No Capítulo 4 foi apresentada a técnica de controlar o comprimento de onda da dispersão zero para uma fibra óptica microestruturada. Tendo uma fibra microestruturada cujo comprimento de onda da dispersão zero não é o desejado, através desta técnica ele poderia ser "corrigido", sem a necessidade

de ter que fabricar outra fibra.

Esta técnica foi aplicada em duas fibras microestruturadas de geometrias bem simples, um anel de buracos de ar ao redor de um núcleo sólido. Os únicos parâmetros usados para controlar a dispersão da fibra foram a espessura e o índice de refração do filme.

Os resultados numéricos mostram que é possível controlar a dispersão da fibra na região do comprimento de onda de 1,0 μ m a 1,8 μ m.

A técnica proposta aqui pode ser usada para otimizar o controle da dispersão da fibra, e pode encontrar aplicações importantes em telecomunicações e óptica linear, como por exemplo, fibras para compensação da dispersão.

Também, no Apêndice H, foram apresentados resultados experimentais e numéricos para duas aplicações diferentes, a de acoplador e de sensor de líquidos, para a fibra afunilada fabricada duma fibra monomodo convencional de sílica.

5.2 TRABALHOS FUTUROS

Como trabalhos futuros, realizar novas simulações para fibras ópticas com estruturas mais complexas, como por exemplo, fibras microestruturadas com dois e três anéis de buracos de ar ao redor de um núcleo sólido ou de um núcleo oco.

Sugere-se a implementação experimental desta técnica. Otimizar os parâmetros do filme (melhor controle na fabricação) especificamente a espessura, para que seja uniforme em toda a estrutura dos buracos. Dos resultados experimentais obtidos neste trabalho, chegou-se à conclusão que, é melhor fabricar o filme junto com a fabricação da fibra óptica microestruturada.

Também, requer uma montagem especial para poder medir experimentalmente a dispersão em fibras ópticas microestruturadas. Assim, poder comparar o modelo teórico com o modelo experimental.

Realizar novas análises experimentais para as aplicações, estudadas nesta tese, da fibra afunilada. Estudar a fibra afunilada como sensor para outros tipos de líquido, ou novas misturas. Também, como acoplador para outras fibras microestruturadas.

APÊNDICES

Apêndice A

CONDIÇÕES DE CONTORNO

A.1 INTERFACE NATURAL

As equações de Maxwell não podem ser resolvidas sem a especificação das condições de fonteira requeridas em interfaces de materiais. Essas condições podem ser derivadas diretamente das equações de Maxwell na forma integral. Lembrando que:

$$\overline{D}(\overline{r}) = \overline{\varepsilon(\overline{r})} \ \overline{E}(\overline{r}) = \varepsilon_0 \overline{\varepsilon_r(\overline{r})} \ \overline{E}(\overline{r})$$
$$\overline{B}(\overline{r}) = \overline{\overline{\mu(\overline{r})}} \ \overline{H}(\overline{r}) = \mu_0 \overline{\overline{\mu_r(\overline{r})}} \ \overline{H}(\overline{r}) \qquad \dots (Eq. A01)$$

Assim, tem-se as condições:

$$\hat{n}_1 \times (\overline{E}_1 - \overline{E}_2) = -\overline{M}_{iS} \qquad \dots (Eq. A02)$$

$$\hat{n}_1 \bullet (\overline{\overline{E}_1} \bullet \overline{E}_1 - \overline{\overline{E}_2} \bullet \overline{E}_2) = \rho_s \qquad \dots (Eq. A03)$$

$$\hat{n}_1 \times (\bar{H}_1 - \bar{H}_2) = \bar{J}_S \qquad \dots (Eq. A04)$$

$$\hat{n}_1 \bullet (\overline{\overline{\mu}_1} \cdot \overline{H}_1 - \overline{\overline{\mu}_2} \cdot \overline{H}_2) = \rho_{ms} \qquad \dots (Eq. A05)$$

onde:

- n_1 é o vetor unitário normal ao ponto da interface do meio 1 ao meio 2, Figura A-1;
- M_{is} é a densidade de corrente superficial magnética impressa;
- ρ_s é a densidade de carga superficial elétrica;
- J_s é a densidade de corrente superficial elétrica impressa;
- ρ_{mS} é a densidade de carga magnética superficial fictícia.

Fig. A-1. Interface entre dois meios.

A.2 INTERFACE LIVRE DE FONTES

Assumindo que não existem correntes superficiais ($M_{iS} = 0$ e $J_S = 0$) nem cargas superficiais ($\rho_S = 0$ e $\rho_{mS} = 0$) na interface. Assim tem-se uma interface livre de fontes entre os dois meios, meio 1 e meio 2, os campos devem de satisfazer as quatro condições, dados por:

$$\hat{i}_1 \times (\overline{E}_1 - \overline{E}_2) = \overline{0} \qquad \dots (Eq. A06)$$

$$\hat{n}_1 \bullet (\overline{\overline{\varepsilon}_1} \bullet \overline{E}_1 - \overline{\overline{\varepsilon}_2} \bullet \overline{E}_2) = 0 \qquad \dots (Eq. \ A07)$$

$$\hat{n}_1 \times (\overline{H}_1 - \overline{H}_2) = \overline{0} \qquad \dots (Eq. A08)$$

$$\hat{n}_1 \bullet (\overline{\overline{\mu}_1} \cdot \overline{H}_1 - \overline{\overline{\mu}_2} \cdot \overline{H}_2) = 0 \qquad \dots (Eq. A09)$$

A.3 PAREDE ELÉTRICA PERFEITA

Quando o meio 2 é um condutor elétrico perfeito PEC.

PEC é um material que é considerado que apresenta uma condutividade eléctrica infinita, por conseguinte, ele não produz perdas. Embora este material é uma idealização, é muito útil para modelar materiais condutores muito bons. Outra explicação necessária, é que materiais PEC podem ser simulados muito mais rápido do que materiais "reais" com condutividade finita.

Assim, tem-se $E_2 = H_2 = 0$. Também, ignorando a carga magnética ($\rho_{mS} = 0$) e a corrente magnética fictícia ($M_{iS} = 0$) nas condições de contorno (Equações A02 – A05) têm-se:

$$\hat{n}_1 \times (\overline{E}_1) = \overline{0} \qquad \dots (Eq. A10)$$
$$\hat{n}_1 \cdot (\overline{\overline{\varepsilon}_1} \cdot \overline{E}_1) = \rho_s \qquad \dots (Eq. A11)$$

$$\hat{n}_1 \times (H_1) = J_s \qquad \dots (Eq. A12)$$

$$\hat{n}_1 \bullet (\overline{\overline{\mu_1}} \cdot \overline{\overline{H}_1}) = 0 \qquad \dots (Eq. A13)$$

No caso de isotropia magnética:

$$\overline{\mu_1} = \mu_0$$

tem-se que para paredes PEC:

$$\hat{n}_1 \times \overline{E}_1 = \overline{0} \\
 \hat{n}_1 \cdot \overline{H}_1 = 0
 \dots \quad (Eq. A14)$$

Generalizando, para o sistema NTZ, onde: N é a normal à parede; T é a tangencial à parede e Z é a longitudinal (Figura A–2), tem-se, da Equação A14:

$$(\hat{u}_n, 0, 0) \times (E_n, E_t, E_z) = (0, 0, 0)$$

 $\Rightarrow E_t = 0, E_z = 0$

e

CONDIÇÕES DE CONTORNO

Fig. A-2. Seção transversal de um guia de onda em um meio dielétrico.

$$(\hat{u}_n, 0, 0) \bullet (H_n, H_t, H_z) = 0$$

$$\Rightarrow H_n = 0$$

Então, tem-se que o campo na interface com uma parede PEC é:

$$\overline{H}_{PEC} = (0, H_{I}, H_{z})$$
$$\overline{E}_{PEC} = (E_{n}, 0, 0)$$

Também, da equação de Maxwell tem-se:

$$\nabla \times \overline{H}(\overline{r}) = i\omega \varepsilon_0 \overline{\varepsilon_r(\overline{r})} \overline{E}(\overline{r})$$
$$(\partial_n, \partial_i, \partial_z) \times (0, H_i, H_z) = i\omega \varepsilon_0 \overline{\varepsilon_r(\overline{r})} (E_n, 0, 0)$$

considerando uma anisotropia elétrica transversal ($\varepsilon_{nz} = \varepsilon_{tz} = \varepsilon_{zn} = \varepsilon_{zt} = 0$) tem-se:

$$\begin{pmatrix} \partial_t H_z \\ -\partial_n H_z \\ \partial_n H_t \end{pmatrix} = i\omega \varepsilon_0 \begin{pmatrix} \varepsilon_{nn} & \varepsilon_{nt} & 0 \\ \varepsilon_{tn} & \varepsilon_{tt} & 0 \\ 0 & 0 & \varepsilon_{zz} \end{pmatrix} \cdot \begin{pmatrix} E_n \\ 0 \\ 0 \end{pmatrix}$$
$$\Rightarrow \ \partial_n H_t = 0$$

A.4 PAREDE MAGNÉTICA PERFEITA

Quando o meio 2 é um condutor magnético perfeito PMC (análogo ao PEC, com condutividade magnética infinita) então $E_2 = H_2 = \theta$. Também ignorando a carga elétrica ($\rho_s = \theta$) e a corrente elétrica ($J_s = \theta$) nas condições de contorno (Equações A02 – A05) tem-se:

$$\hat{n}_1 \times \overline{E}_1 = -\overline{M}_{iS} \qquad \dots \dots (Eq. A15)$$

$$\hat{n}_1 \bullet (\overline{\varepsilon_1} \bullet \overline{E_1}) = 0$$
 (Eq. A16)

$$\hat{n}_1 \times \overline{H}_1 = \overline{0} \qquad \dots \dots (Eq. A17)$$

$$\hat{n}_1 \bullet (\overline{\overline{\mu}_1} \bullet \overline{\overline{H}_1}) = \rho_{mS} \qquad \dots \dots (Eq. A18)$$

Para paredes PMC e no caso de anisotropia magnética:

$$\begin{array}{c}
\hat{n}_{1} \cdot (\overline{\varepsilon_{1}} \cdot \overline{E_{1}}) = 0 \\
\hat{n}_{1} \times \overline{H_{1}} = \overline{0} \\
\end{array} \qquad \dots \qquad (Eq. \ A19)$$

Generalizando, para o sistema NTZ, onde: N é a normal à parede; T é a tangencial à parede e Z é a longitudinal (Figura A–2). Assim, considerando uma anisotropia elétrica transversal ($\varepsilon_{nz} = \varepsilon_{tz} = \varepsilon_{zn} = \varepsilon_{zt} = 0$) tem-se:

$$(\hat{u}_n, 0, 0) \bullet \left[\begin{pmatrix} \varepsilon_{nn} & \varepsilon_{nt} & 0 \\ \varepsilon_{tn} & \varepsilon_{tt} & 0 \\ 0 & 0 & \varepsilon_{zz} \end{pmatrix} \bullet \begin{pmatrix} E_n \\ E_t \\ E_z \end{pmatrix} \right] = 0$$

$$\Rightarrow \quad \varepsilon_{nn} E_n + \varepsilon_{nt} E_t = 0$$

e

$$(\hat{u}_n, 0, 0) \times (H_n, H_t, H_z) = (0, 0, 0)$$

 $\Rightarrow H_t = 0, H_z = 0$

Então, tem-se que o campo na interface com uma parede PMC é:

$$\overline{H}_{PMC} = (H_n, 0, 0)$$
$$\overline{E}_{PMC} = (E_n, E_t, E_z)$$

A.5 GUIA DE ONDA

Seja um guia de onda com propagação na direção Z composta por um meio dielétrico 1 de permissividade ε_1 e permeabilidade μ_0 , rodeada de um meio dielétrico de permissividade ε_2 e permeabilidade μ_0 .

Da Figura A–2 tem-se o sistema NTZ, para um ponto P pertencente à interface: n é a normal, t é a tangente e z é o eixo de propagação:

$$\hat{n} = (1,0,0)$$

 $\hat{t} = (0,1,0)$
 $\hat{z} = (0,0,1)$

Assim, os campos podem ser decompostos no sistema NTZ em:

$$Meio 1: \begin{cases} \overline{\overline{\varepsilon}_{1}}, \mu_{0} \\ \overline{H}_{1} = (H_{1N}, H_{1T}, H_{1Z}) \\ \overline{E}_{1} = (E_{1N}, E_{1T}, E_{1Z}) \end{cases} Meio 2: \begin{cases} \overline{\overline{\varepsilon}_{2}}, \mu_{0} \\ \overline{H}_{2} = (H_{2N}, H_{2T}, H_{2Z}) \\ \overline{E}_{2} = (E_{2N}, E_{2T}, E_{2Z}) \end{cases}$$

CONDIÇÕES DE CONTORNO

Considerando um guia de onda cuja interface é livre de fontes. Das condições de contorno (Equações A06 – A09), no ponto P, tem-se:

- Para o campo elétrico:

de (A06):

$$\hat{n}_1 \times (\overline{E}_1 - \overline{E}_2) = \overline{0}$$

 $E_{1T} = E_{2T}$ e $E_{1Z} = E_{2Z}$ (Eq. A20)

de (A07): $\hat{n}_1 \cdot (\overline{\varepsilon}_1 \cdot \overline{E}_1 - \overline{\varepsilon}_2 \cdot \overline{E}_2) = 0$

onde, as permissividades são:

$$= \left(\begin{array}{ccc} \mathcal{E}_{nn}^{(i)} & \mathcal{E}_{nt}^{(i)} & \mathcal{E}_{nz}^{(i)} \\ \mathcal{E}_{in}^{(i)} & \mathcal{E}_{tt}^{(i)} & \mathcal{E}_{tz}^{(i)} \\ \mathcal{E}_{zn}^{(i)} & \mathcal{E}_{zt}^{(i)} & \mathcal{E}_{zz}^{(i)} \end{array} \right)$$

Assim, tem-se:

$$\left(\varepsilon_{nn}^{(1)} E_{1n} - \varepsilon_{nn}^{(2)} E_{2n}\right) + \left(\varepsilon_{nt}^{(1)} - \varepsilon_{nt}^{(2)}\right) E_{1t} + \left(\varepsilon_{nz}^{(1)} - \varepsilon_{nz}^{(2)}\right) E_{1z} = 0 \qquad \dots (Eq. \ A21)$$

se:

$$\varepsilon_{nz}^{(1)} = \varepsilon_{nz}^{(2)} = 0$$

$$\Rightarrow \left(\varepsilon_{nn}^{(1)} E_{1n} - \varepsilon_{nn}^{(2)} E_{2n} \right) + \left(\varepsilon_{nt}^{(1)} - \varepsilon_{nt}^{(2)} \right) E_{1t} = 0$$

e se:

$$\begin{aligned} \varepsilon_{nt}^{(1)} &= \varepsilon_{nt}^{(2)} \\ \Rightarrow \left(\varepsilon_{nn}^{(1)} E_{1n} - \varepsilon_{nn}^{(2)} E_{2n} \right) = \mathbf{0} \end{aligned}$$

- Para o campo magnético:

de (A08):

$$\hat{n}_1 \times (\bar{H}_1 - \bar{H}_2) = \bar{0}$$

 $H_{1T} = H_{2T}$ e $H_{1Z} = H_{2Z}$ (Eq. A22)

de (A09):
$$\hat{n}_1 \cdot (\overline{\mu_1} \cdot \overline{H_1} - \overline{\mu_2} \cdot \overline{H_2}) = 0$$
 e de: $\overline{\mu_1} = \overline{\mu_2} = \mu_0$
 $H_{1N} = H_{2N}$ (Eq. A23)

Como conclusão, observa-se que o campo H (para as condições acima descritas) é contínuo na interface do guia de onda.

Apêndice B

INTEGRAIS DE LINHA

B.1 INTRODUÇÃO

Realiza-se uma análise minuciosa e precisa, devido à necessidade de ter um refinamento local apropriado. Analisando as integrais de linha:

$$L_{1} = \oint_{C} k_{zz} \nabla_{t} \times \overline{\Psi}_{vj} \cdot \overline{\Psi}_{ui} \times \hat{n} dl$$
$$L_{3} = \oint_{C} \left(\hat{u}_{z} (\nabla_{t} \cdot \overline{\Psi}_{vj}) \times \left(\overline{\overline{k_{t}}}\right)^{T} \cdot \hat{u}_{z} \times \overline{\Psi}_{ui} \right) \cdot \hat{n} dl$$

A aproximação por elementos finitos pode ser formulado localmente, um elemento por vez e cada elemento independente dos outros, e logo uma aproximação global pode ser obtida das simples transformações das equações locais. Colocando atenção sobre um elemento *e* com contorno C_e pode-se assumir que o tensor de permissividade ε no elemento é constante.

A resolução das integrais pode ser resolvida da seguinte maneira:

$$\oint_C [\dots \circ \dots] dl = \sum_{e=1}^{Nele} \oint_{C_e} [\dots \circ \dots] dl$$

onde N_{ele} é o número de elementos, o contorno C_e consiste em um número de linhas (3 arestas para

Fig. B–1. Esquema das linhas, arestas internas L^i_e e arestas externas L^w_e , numa malha arbitrária formada de elementos triangulares quadráticos (seis nós para cada elemento cuja numeração está em verde).

elementos triangulares) que podem ser classificadas em dois tipos, dependendo da localização do elemento na malha, Figura B-1, e *C* é o contorno da malha:

- Linha exterior.- Aresta L^{w}_{e} ou parede externa, faz parte do contorno da malha: $L^{w}_{e} \subset C$;

- Linha interior.- Aresta L_e^i ou interface, localizada nas interfaces entre elementos.

Assim, tem-se as seguintes combinações:

$$L_{e}^{w} + L_{e}^{i_{1}} + L_{e}^{i_{2}} = C_{e}$$

quando o elemento tem duas arestas internas e uma aresta externa ou;

$$L_{e}^{i_{1}} + L_{e}^{i_{2}} + L_{e}^{i_{3}} = C_{e}$$

quando o elemento tem suas três arestas internas ou;

$$L_{e}^{w_{1}} + L_{e}^{w_{2}} + L_{e}^{i} = C_{e}$$

quando o elemento tem duas arestas externas e uma aresta interna.

Logo, a integral para um elemento triangular de contorno C_e :

$$\oint_{C_e} [\dots \circ \dots] dl =$$

$$= \int_{L_e^{w_1}} [\dots \circ \dots] dl + \int_{L_e^{w_2}} [\dots \circ \dots] dl + \int_{L_e^{l_e}} [\dots \circ \dots] dl = I_e^{w_1} + I_e^{w_2} + I_e^{l_e}$$

$$= \int_{L_e^{w_1}} [\dots \circ \dots] dl + \int_{L_e^{l_1}} [\dots \circ \dots] dl + \int_{L_e^{l_2}} [\dots \circ \dots] dl = I_e^{w_1} + I_e^{l_1} + I_e^{l_2}$$

$$= \int_{L_e^{l_1}} [\dots \circ \dots] dl + \int_{L_e^{l_2}} [\dots \circ \dots] dl + \int_{L_e^{l_2}} [\dots \circ \dots] dl = I_e^{w_1} + I_e^{l_2} + I_e^{l_3}$$

Assim, generalizando para a malha inteira:

$$\oint_C [\dots \circ \dots] dI = \sum_{e=1}^{Nele} \left[\sum_{q=1}^{Nq} I_e^{w_q} + \sum_{p=1}^{Np} I_e^{i_p} \right]$$
$$N_p + N_q = 3 \cdot N_{ele}$$

onde:

- I_{e}^{w} é a contribuição da(s) aresta(s) externa(s) do elemento e;

- I_e^i é a contribuição da(s) aresta(s) interna(s) do elemento e;

- N_q é o número total de arestas sobre as paredes e;

- N_p é o número total de arestas interface elemento-elemento, que é um número devido a que este tipo de aresta faz parte de dois elementos.

B.2 INTEGRAL L₁

$$L_{1} = \oint_{C} k_{zz} \nabla_{t} \times \overline{\Psi}_{vj} \cdot \overline{\Psi}_{ui} \times \hat{n} \, dl$$

Como Ψ é a função base, ela é proporcional a H_t :

$$\overline{\Psi}_{vj} \, \alpha \, \overline{H}_t$$
 , $\overline{\Psi}_{ui} \, \alpha \, \overline{H}_t$

Assim,

$$L_{1} \alpha \quad \oint_{C} k_{zz} \left(\nabla_{t} \times \overline{H}_{t} \right) \bullet \left(\overline{H}_{t} \times \hat{n} \right) dl$$

de

$$\nabla_{t} \times \overline{H}_{t} \equiv \left(\partial_{x} \hat{u}_{x} + \partial_{y} \hat{u}_{y}\right) \times \left(H_{x} \hat{u}_{x} + H_{y} \hat{u}_{y}\right)$$
$$= \left(\partial_{x} H_{y} - \partial_{y} H_{x}\right) \hat{u}_{z}$$

e

$$\begin{aligned} \overline{H}_{t} \times \hat{n} &\equiv \left(H_{x} \hat{u}_{x} + H_{y} \hat{u}_{y} \right) \times \left(n_{x} \hat{u}_{x} + n_{y} \hat{u}_{y} \right) \\ &= \left(H_{x} n_{y} - H_{y} n_{x} \right) \hat{u}_{z} \end{aligned}$$

tem-se que:

$$L_{1} \alpha \oint_{C} k_{zz} \left(\partial_{x} H_{y} - \partial_{y} H_{x} \right) \left(H_{x} n_{y} - H_{y} n_{x} \right) dl$$

analisando para arestas externas (paredes) e arestas internas (interfaces):

 $L_1 = L_{1-ext}$ (arestas externas) + L_{1-int} (arestas internas)

B.2.1 ARESTA EXTERNA

Como trata-se do contorno da malha, tem-se que as arestas externas são paredes condutoras perfeitas, PEC ou PMC, que são horizontais e verticais, Figura B–2. Para isso, lembra-se das condições de fronteira (Apêndice A) onde tem-se que:

Parede PEC:
$$\begin{cases} E_t = 0, E_z = 0\\ H_n = 0\\ \partial_n H_t = 0 \end{cases}$$

e

Parede PMC:
$$\begin{cases} H_t = 0, \ H_z = 0\\ \varepsilon_{11} E_n + \varepsilon_{12} E_t = 0 \end{cases}$$

INTEGRAIS DE LINHA

- **PEC Vertical.**- para esta parede, Figura B–2, tem-se:

$$H_x = 0$$
, $\hat{n} = \hat{u}_x$, $n_y = 0$, $\partial_x H_y = 0$

Assim, a contribuição desta parede é:

 $\Rightarrow L_{1-ext} = 0$

- **PEC Horizontal.**- para esta parede, Figura B–2, tem-se:

$$H_y = 0$$
 , $\hat{n} = \hat{u}_y$, $n_x = 0$, $\partial_y H_x = 0$

a contribuição desta parede é:

 $\Rightarrow L_{1-ext} = 0$

- PMC Vertical.- para esta parede, Figura B-2, tem-se:

$$H_y = 0$$
, $\hat{n} = \hat{u}_y$, $n_x = 0$

a contribuição desta parede é:

$$\Rightarrow L_{1-ext} = 0$$

- PMC Horizontal.- para esta parede, Figura B-2, tem-se:

 $H_{\rm r} = 0$, $\hat{n} = \hat{u}_{\rm r}$, $n_{\rm v} = 0$

a contribuição desta parede é:

$$\Rightarrow L_{1-ext} = 0$$

Como conclusão, a contribuição das arestas externas nesta integral é nula. Logo:

$$L_{1-ext} = 0$$

B.2.2 ARESTA INTERNA

A Figura B–3 mostra os elementos triangulares vizinhos onde os meios dielétricos são diferentes ($\varepsilon_1 \neq \varepsilon_2$). As setas indicam o sentido da integração para as integrais de linha, os elementos e_i e e_j compartilham a mesma aresta (para o elemento *i* é a aresta P_3P_1 e para o elemento *j* é a aresta P_1P_3).

Sabendo que H_t é contínuo na interface que separa os dois elementos e aplicando a integral L_t na aresta que pertence aos dois elementos, tem-se as seguintes expressões:

Fig. B–2. Meio dielétrico de permissividade ε e permeabilidade μ_0 rodeado de paredes condutoras perfeitas. Campos E e H nas paredes (a) PEC – condutor elétrico perfeito - vertical e horizontal e (b) PMC – condutor magnético perfeito - vertical e horizontal.

onde:

$$k_{zz1} = \frac{1}{\varepsilon_{zz1}}$$
, $k_{zz2} = \frac{1}{\varepsilon_{zz2}}$

é o inverso da permissividade transversal, para cada meio, em zz.

Somando as duas contribuições (integrais) pertencente à mesma aresta:

$$\begin{bmatrix} P_{1} \\ \int_{P_{3}}^{P_{1}} k_{zz1} + \int_{P_{1}}^{P_{3}} k_{zz2} \\ \int_{P_{3}}^{P_{1}} k_{zz1} - \int_{P_{3}}^{P_{1}} k_{zz2} \end{bmatrix} \left(\partial_{x} H_{y} - \partial_{y} H_{x} \right) \left(H_{x} n_{y} - H_{y} n_{x} \right) dl$$
$$= \begin{bmatrix} P_{1} \\ \int_{P_{3}}^{P_{1}} k_{zz1} - \int_{P_{3}}^{P_{1}} k_{zz2} \end{bmatrix} \left(\partial_{x} H_{y} - \partial_{y} H_{x} \right) \left(H_{x} n_{y} - H_{y} n_{x} \right) dl$$
$$= \int_{P_{3}}^{P_{1}} \left(k_{zz1} - k_{zz2} \right) \left(\partial_{x} H_{y} - \partial_{y} H_{x} \right) \left(H_{x} n_{y} - H_{y} n_{x} \right) dl$$

Assim, quando os dois elementos pertencem ao mesmo meio dielétrico ($e_i \subset \varepsilon \ e_j \subset \varepsilon$) ou se as permissividades transversais em *zz* são iguais ($\varepsilon_{zz1} = \varepsilon_{zz2}$) a soma das duas integrais, aplicadas na aresta comum, é nula.

Como todas as arestas internas pertencem a dois elementos, a contribuição total delas depende

se cada aresta é uma interface entre dois meios diferentes.

No caso de anisotropia em que o ε_{zz} é continuo para todos os meios (1, 2, 3,...) tem-se que:

$$k_{zz1} = k_{zz2} = k_{zz3} = \dots = k_{zz}$$

Como conclusão, a contribuição das arestas internas nesta integral é nula:

$$L_{1-\text{ int}} = 0$$

Resumindo, a contribuição da integral L_1 é nula:

$$L_1 = \oint_C k_{zz} \nabla_i \times \overline{\Psi}_{vj} \cdot \overline{\Psi}_{ui} \times \hat{n} \, dl = 0$$

Fig. B–3. Esquema de arestas internas L_e^i numa malha arbitrária formada de elementos triangulares vizinhos (e_i , e_j) de meios diferentes. As setas indicam o sentido de integração das integrais de linha.

B.3 INTEGRAL L₃

$$L_{3} = \oint_{C} \left(\hat{u}_{z} (\nabla_{t} \cdot \overline{\Psi}_{vj}) \times \left(\overline{\overline{k_{t}}} \right)^{T} \cdot \hat{u}_{z} \times \overline{\Psi}_{ui} \right) \cdot \hat{n} \, dl$$

Como Ψ é a função base, ela é proporcional a H_t :

$$\overline{\Psi}_{vj} \alpha \overline{H}_{t}$$
 , $\overline{\Psi}_{ui} \alpha \overline{H}_{t}$

Assim,

$$L_3 \ \alpha \ \oint_C \left(\hat{u}_z (\nabla_i \cdot \overline{H}_i) \times \left(\overline{\overline{k}_i}\right)^T \cdot \hat{u}_z \times \overline{H}_i \right) \cdot \hat{n} \, dl$$

Da Equação 8 do Capítulo 2:

$$\nabla_t \bullet \overline{H}_t = i\gamma k_0 H_z$$

$$\hat{u}_{z} \times \overline{H}_{t} = -H_{y} \hat{u}_{x} + H_{x} \hat{u}_{y}$$

$$\rightarrow \left(\overline{\overline{k_{t}}}\right)^{T} \cdot \hat{u}_{z} \times \overline{H}_{t} = \begin{bmatrix} k_{xx} & k_{yx} \\ k_{xy} & k_{yy} \end{bmatrix} \cdot \begin{bmatrix} -H_{y} \\ H_{x} \end{bmatrix}$$

$$= \begin{bmatrix} -k_{xx} H_{y} + k_{yx} H_{x} \\ -k_{xy} H_{y} + k_{yy} H_{x} \end{bmatrix}$$

Assim,

$$\begin{pmatrix} \hat{u}_{z} (\nabla_{t} \cdot \overline{H}_{t}) \times \left(\overline{k}_{t}\right)^{T} \cdot \hat{u}_{z} \times \overline{H}_{t} \end{pmatrix} =$$

$$i\gamma \ k_{0} \ H_{z} \ \hat{u}_{z} \times \begin{bmatrix} -k_{xx} \ H_{y} + k_{yx} \ H_{x} \\ -k_{xy} \ H_{y} + k_{yy} \ H_{x} \end{bmatrix} =$$

$$i\gamma \ k_{0} \ H_{z} \begin{bmatrix} k_{xy} \ H_{y} - k_{yy} \ H_{x} \\ -k_{xx} \ H_{y} + k_{yx} \ H_{x} \end{bmatrix} \equiv i\gamma \ k_{0} \ H_{z} \begin{bmatrix} -k_{yy} \ k_{xy} \\ k_{yx} \ -k_{xx} \end{bmatrix} \cdot \begin{bmatrix} H_{x} \\ H_{y} \end{bmatrix}$$

Portanto:

$$L_{3} \alpha \quad i\gamma \ k_{0} \oint_{C} \left(H_{z} \underbrace{\begin{bmatrix} -k_{yy} & k_{xy} \\ k_{yx} & -k_{xx} \end{bmatrix}}_{\overline{k_{a}}} \bullet \overline{H}_{t} \right) \bullet \hat{n} \ dl$$
$$L_{3} \alpha \quad i\gamma \ k_{0} \oint_{C} H_{z} \Big(\overline{\overline{k_{a}}} \bullet \overline{H}_{t} \Big) \bullet \hat{n} \ dl$$

ou:

$$L_{3} \alpha i\gamma k_{0} \oint_{C} H_{z} \Big[\Big(-k_{yy} H_{x} + k_{xy} H_{y} \Big) \cdot n_{x} + \Big(k_{yx} H_{x} - k_{xx} H_{y} \Big) \cdot n_{y} \Big] dl$$

analisando para arestas externas (paredes) e arestas internas (interfaces):

 $L_3 \equiv L_{3-ext}$ (arestas externas)+ L_{3-int} (arestas internas)

B.3.1 ARESTA EXTERNA

Como trata-se do contorno da malha, as arestas externas são paredes condutoras perfeitas, PEC ou PMC, que são horizontais e verticais, Figura B–2. Para isso, lembrar que das condições de fronteira (Apêndice A) têm-se que:

e

Parede PEC:
$$\begin{cases} E_t = 0, E_z = 0\\ H_n = 0\\ \partial_n H_t = 0 \end{cases}$$

e

Parede PMC:
$$\begin{cases} H_t = 0, \ H_z = 0\\ \varepsilon_{11} E_n + \varepsilon_{12} E_t = 0 \end{cases}$$

$$H_x = 0$$
, $\hat{n} = \hat{u}_x$, $n_y = 0$

Assim, a contribuição desta parede é

$$\Rightarrow L_{3-ext} = i\gamma k_0 \oint_C H_z k_{xy} H_y dl$$

- PEC Horizontal.- para esta parede, Figura B–2, tem-se:

 $H_y = 0$, $\hat{n} = \hat{u}_y$, $n_x = 0$

a contribuição desta parede é:

$$\Rightarrow L_{3-ext} = i\gamma k_0 \oint_C H_z k_{yx} H_x dl$$

- PMC Vertical.- para esta parede, Figura B-2, tem-se:

$$H_{z} = 0$$

a contribuição desta parede é:

 $\Rightarrow L_{3-ext} = 0$

- PMC Horizontal.- para esta parede, Figura B-2, tem-se:

$$H_z = 0$$

a contribuição desta parede é:

$$\Rightarrow L_{3-ext} = 0$$

Como conclusão, a contribuição das arestas externas é:

PEC:
$$L_{3-ext} \equiv i\gamma k_0 \oint_C H_z \left(\overline{\overline{k_a}} \cdot \overline{H_t}\right) \cdot \hat{n} dl$$

PMC: $L_{3-ext} \equiv 0$

B.3.2 ARESTA INTERNA

A Figura B–3 mostra os elementos triangulares vizinhos onde os meios dielétricos são diferentes ($\varepsilon_1 \neq \varepsilon_2$). As setas indicam o sentido da integração para as integrais de linha, os elementos e_i e e_j compartilham a mesma aresta (para o elemento *i* é a aresta P_3P_1 e para o elemento *j* é a aresta P_1P_3).

Sabendo que H_t é contínuo na interface que separa os dois elementos e aplicando a integral L_3 na aresta que pertence aos dois elementos, tem-se as seguintes expressões:

$$e_{i}: L_{3} \equiv i\gamma \ k_{0} \int_{P_{3}}^{P_{1}} H_{z} \Big[\Big(-k_{yy2} \ H_{x} + k_{xy2} \ H_{y} \Big) \cdot n_{x} + \Big(k_{yx2} \ H_{x} - k_{xx2} \ H_{y} \Big) \cdot n_{y} \Big] \ dl$$

$$e_{j}: L_{3} \equiv i\gamma \ k_{0} \int_{P_{1}}^{P_{3}} H_{z} \Big[\Big(-k_{yy1} \ H_{x} + k_{xy1} \ H_{y} \Big) \cdot n_{x} + \Big(k_{yx1} \ H_{x} - k_{xx1} \ H_{y} \Big) \cdot n_{y} \Big] \ dl$$

onde:

$$\overline{\overline{k_{t1}}} = \frac{1}{\overline{\varepsilon_{t1}}} = \begin{bmatrix} k_{xx1} & k_{xy1} \\ k_{yx1} & k_{yy1} \end{bmatrix} , \quad \overline{\overline{k_{t2}}} = \frac{1}{\overline{\varepsilon_{t2}}} = \begin{bmatrix} k_{xx2} & k_{xy2} \\ k_{yx2} & k_{yy2} \end{bmatrix}$$

é o inverso da permissividade transversal, para cada meio.

D

Somando as duas contribuições (integrais) pertencente à mesma aresta:

$$= i\gamma k_{0} \cdot \int_{P_{3}}^{P_{1}} \left\{ - \left(k_{yy2} - k_{yy1} \right) H_{x} n_{x} + \left(k_{xy2} - k_{xy1} \right) H_{y} n_{x} + \left(k_{yx2} - k_{yx1} \right) H_{x} n_{y} - \left(k_{xx2} - k_{xx1} \right) H_{y} n_{y} \right\} \cdot H_{z} dl$$

Assim, quando os dois elementos pertencem ao mesmo meio dielétrico ($e_i \subset \varepsilon \ e_j \subset \varepsilon$) a soma das duas integrais, aplicadas na aresta comum, é nula. Como todas as arestas internas pertencem a dois elementos, a contribuição total delas depende se cada aresta é uma interface entre dois meios diferentes. Como conclusão, a contribuição das arestas internas nesta integral é:

Meios diferentes :
$$L_{3-int} \equiv i\gamma k_0 \oint_C H_z \left(\overline{k_a} \cdot \overline{H_t} \right) \cdot \hat{n} dl$$

Meios iguais : $L_{3-int} \equiv 0$

Resumindo, a contribuição da integral L_3 vai depender dos meios dielétricos e do tipo da parede condutora:

$$L_{3} = \oint_{C} \left(\hat{u}_{z} (\nabla_{t} \cdot \overline{\Psi}_{vj}) \times \left(\overline{\overline{k_{t}}} \right)^{T} \cdot \hat{u}_{z} \times \overline{\Psi}_{ui} \right) \cdot \hat{n} \, dl$$

Apêndice C

MATRIZAÇÃO

Das funções:

$$\overline{\Psi}_{xi} = \Psi_{i} \hat{u}_{x}, \ \overline{\Psi}_{yi} = \Psi_{i} \hat{u}_{y}$$
$$\overline{\Psi}_{xj} = \Psi_{j} \hat{u}_{x}, \ \overline{\Psi}_{yj} = \Psi_{j} \hat{u}_{y}$$

do operador ∇_t , da normal n:

$$\nabla_{t} = \frac{\partial}{\partial x}\hat{u}_{x} + \frac{\partial}{\partial y}\hat{u}_{y} \equiv \partial_{x}\hat{u}_{x} + \partial_{y}\hat{u}_{y}$$
$$\hat{n} = n_{x}\hat{u}_{x} + n_{y}\hat{u}_{y}$$

e do tensor k_t :

$$\overline{\overline{k_t}} = \begin{bmatrix} k_{xx} & k_{xy} \\ k_{yx} & k_{yy} \end{bmatrix} \rightarrow (\overline{\overline{k_t}})^T = \begin{bmatrix} k_{xx} & k_{yx} \\ k_{xy} & k_{yy} \end{bmatrix}$$

C.1 INTEGRAL DE LINHA

Resolvendo L₃ (Equação 28) na forma matricial:

$$L_{3} = \oint_{C} \left(\hat{u}_{z} (\nabla_{t} \cdot \overline{\Psi}_{vj}) \times \left(\overline{\overline{k_{t}}}\right)^{T} \cdot \hat{u}_{z} \times \overline{\Psi}_{ui} \right) \cdot \hat{n} dl$$
$$L_{3} \equiv \begin{bmatrix} L_{3}|_{xx} & L_{3}|_{xy} \\ L_{3}|_{yx} & L_{3}|_{yy} \end{bmatrix}$$

onde as componentes tangenciais são:

- Em XX:

$$L_{3}|_{xx} = \oint \left(\hat{u}_{z} (\nabla_{t} \cdot \overline{\Psi}_{xj}) \times \left(\overline{\overline{k}_{t}}\right)^{T} \cdot \hat{u}_{z} \times \overline{\Psi}_{xi} \right) \cdot \hat{n} dl$$
$$= \oint \partial_{x} \Psi_{j} \Psi_{i} \left(-k_{yy} n_{x} + k_{yx} n_{y} \right) dl$$

- Em XY:

$$L_{3}|_{xy} = \oint \left(\hat{u}_{z} (\nabla_{t} \cdot \overline{\Psi}_{xj}) \times \left(\overline{\overline{k_{t}}}\right)^{T} \cdot \hat{u}_{z} \times \overline{\Psi}_{yi} \right) \cdot \hat{n} dl$$
$$= \oint \partial_{x} \Psi_{j} \Psi_{i} \left(k_{xy} n_{x} - k_{xx} n_{y} \right) dl$$

- Em YX:

MATRIZAÇÃO

$$L_{3}|_{yx} = \oint \left(\hat{u}_{z} (\nabla_{t} \cdot \overline{\Psi}_{yj}) \times \left(\overline{\overline{k_{t}}}\right)^{T} \cdot \hat{u}_{z} \times \overline{\Psi}_{xi} \right) \cdot \hat{n} dl$$
$$= \oint \partial_{y} \Psi_{j} \Psi_{i} \left(-k_{yy} n_{x} + k_{yx} n_{y} \right) dl$$

- Em YY:

$$L_{3}|_{yy} = \oint \left(\hat{u}_{z} (\nabla_{t} \cdot \overline{\Psi}_{yj}) \times \left(\overline{\overline{k_{t}}}\right)^{T} \cdot \hat{u}_{z} \times \overline{\Psi}_{yi} \right) \cdot \hat{n} dl$$
$$= \oint \partial_{y} \Psi_{j} \Psi_{i} \left(k_{xy} n_{x} - k_{xx} n_{y} \right) dl$$

C.2 INTEGRAIS DE SUPERFÍCIE

Resolvendo S $_1$ + S $_3$ - S $_4$ (Equação 27 do Capítulo 2) na forma matricial:

$$S_{1} + S_{3} - S_{4} :$$

$$= \int_{S} k_{zz} \left(\nabla_{t} \times \overline{\Psi}_{vj} \right) \cdot \nabla_{t} \times \overline{\Psi}_{ui} \, dS +$$

$$\int_{S} \hat{u}_{z} \left(\nabla_{t} \cdot \overline{\Psi}_{vj} \right) \cdot \nabla_{t} \times \left(\left(\overline{\overline{k_{t}}} \right)^{T} \cdot \hat{u}_{z} \times \overline{\Psi}_{ui} \right) \, dS - k_{0}^{2} \int_{S} \overline{\Psi}_{vj} \cdot \overline{\Psi}_{ui} \, dS$$

$$S_{1} + S_{3} - S_{4} \equiv \begin{bmatrix} S_{1} + S_{3} - S_{4} |_{xx} & S_{1} + S_{3} - S_{4} |_{xy} \\ S_{1} + S_{3} - S_{4} |_{yx} & S_{1} + S_{3} - S_{4} |_{yy} \end{bmatrix}$$

e S₂ (Equação 28 do Capítulo 2) na forma matricial:

$$S_{2}:$$

$$= k_{0}^{2} \int_{S} \left[\overline{k_{t}} \cdot (\hat{u}_{z} \times \overline{\Psi}_{yj}) \right] \cdot \hat{u}_{z} \times \overline{\Psi}_{ui} dS$$

$$S_{2} \equiv \begin{bmatrix} S_{2}|_{xx} & S_{2}|_{xy} \\ S_{2}|_{yx} & S_{2}|_{yy} \end{bmatrix}$$

onde as componentes tangenciais são:

- Em XX:

$$S_{1} + S_{3} - S_{4}|_{xx} = \int_{S} k_{zz} \left(\nabla_{t} \times \overline{\Psi}_{xj} \right) \cdot \nabla_{t} \times \overline{\Psi}_{xi} \, dS +$$

$$\int_{S} \hat{u}_{z} \left(\nabla_{t} \cdot \overline{\Psi}_{xj} \right) \cdot \nabla_{t} \times \left(\left(\overline{k_{t}} \right)^{T} \cdot \hat{u}_{z} \times \overline{\Psi}_{xi} \right) dS - k_{0}^{2} \int_{S} \overline{\Psi}_{xj} \cdot \overline{\Psi}_{xi} \, dS$$

$$= \int_{S} k_{zz} \partial_{y} \Psi_{j} \partial_{y} \Psi_{i} \, dS + \int_{S} \partial_{x} \Psi_{j} \partial_{x} (k_{yy} \Psi_{i}) \, dS$$

$$- \int_{S} \partial_{x} \Psi_{j} \partial_{y} (k_{yx} \Psi_{i}) \, dS - k_{0}^{2} \int_{S} \Psi_{j} \Psi_{i} \, dS$$

e

$$S_{2}|_{xx} = k_{0}^{2} \int_{S} \left[\overline{k_{t}} \cdot (\hat{u}_{z} \times \overline{\Psi}_{xj}) \right] \cdot \hat{u}_{z} \times \overline{\Psi}_{xi} \, dS$$
$$= k_{0}^{2} \int_{S} k_{yy} \Psi_{j} \Psi_{i} \, dS$$

- Em XY:

$$S_{1} + S_{3} - S_{4}|_{xy} = \int_{S} k_{zz} \left(\nabla_{t} \times \overline{\Psi}_{xj} \right) \cdot \nabla_{t} \times \overline{\Psi}_{yi} \, dS + \int_{S} \hat{u}_{z} \left(\nabla_{t} \cdot \overline{\Psi}_{xj} \right) \cdot \nabla_{t} \times \left(\left(\overline{k_{t}} \right)^{T} \cdot \hat{u}_{z} \times \overline{\Psi}_{yi} \right) \, dS - k_{0}^{2} \int_{S} \overline{\Psi}_{xj} \cdot \overline{\Psi}_{yi} \, dS = -\int_{S} k_{zz} \, \partial_{y} \Psi_{j} \, \partial_{x} \Psi_{i} \, dS - \int_{S} \partial_{x} \Psi_{j} \, \partial_{x} (k_{xy} \Psi_{i}) \, dS + \int_{S} \partial_{x} \Psi_{j} \, \partial_{y} (k_{xx} \Psi_{i}) \, dS - k_{0}^{2} \int_{S} 0 \, dS$$

e

$$S_{2}|_{xy} = k_{0}^{2} \int_{S} \left[\overline{k_{t}} \cdot (\hat{u}_{z} \times \overline{\Psi}_{xj}) \right] \cdot \hat{u}_{z} \times \overline{\Psi}_{yi} \, dS$$
$$= -k_{0}^{2} \int_{S} k_{xy} \Psi_{j} \Psi_{i} \, dS$$

- Em YX:

$$S_{1} + S_{3} - S_{4}|_{yx} = \int_{S} k_{zz} \left(\nabla_{t} \times \overline{\Psi}_{yj} \right) \cdot \nabla_{t} \times \overline{\Psi}_{xi} \, dS + \int_{S} \hat{u}_{z} \left(\nabla_{t} \cdot \overline{\Psi}_{yj} \right) \cdot \nabla_{t} \times \left(\left(\overline{k_{t}} \right)^{T} \cdot \hat{u}_{z} \times \overline{\Psi}_{xi} \right) \, dS - k_{0}^{2} \int_{S} \overline{\Psi}_{yj} \cdot \overline{\Psi}_{xi} \, dS = -\int_{S} k_{zz} \, \partial_{x} \Psi_{j} \, \partial_{y} \Psi_{i} \, dS + \int_{S} \partial_{y} \Psi_{j} \, \partial_{x} \left(k_{yy} \Psi_{i} \right) \, dS - \int_{S} \partial_{y} \Psi_{j} \, \partial_{y} \left(k_{yx} \Psi_{i} \right) \, dS - k_{0}^{2} \int_{S} 0 \, dS$$

e

$$S_{2}|_{yx} = k_{0}^{2} \int_{S} \left[\overline{k_{t}} \cdot (\hat{u}_{z} \times \overline{\Psi}_{yj}) \right] \cdot \hat{u}_{z} \times \overline{\Psi}_{xi} \, dS$$
$$= -k_{0}^{2} \int_{S} k_{yx} \Psi_{j} \Psi_{i} \, dS$$

- Em YY:

$$S_{1} + S_{3} - S_{4}|_{yy} = \int_{S} k_{zz} \left(\nabla_{t} \times \overline{\Psi}_{yj} \right) \cdot \nabla_{t} \times \overline{\Psi}_{yi} \, dS +$$

$$\int_{S} \hat{u}_{z} \left(\nabla_{t} \cdot \overline{\Psi}_{yj} \right) \cdot \nabla_{t} \times \left(\left(\overline{k_{t}} \right)^{T} \cdot \hat{u}_{z} \times \overline{\Psi}_{yi} \right) \, dS - k_{0}^{2} \int_{S} \overline{\Psi}_{yj} \cdot \overline{\Psi}_{yi} \, dS$$

$$= \int_{S} k_{zz} \, \partial_{x} \Psi_{j} \, \partial_{x} \Psi_{i} \, dS - \int_{S} \partial_{y} \Psi_{j} \, \partial_{x} (k_{xy} \Psi_{i}) \, dS +$$

$$\int_{S} \partial_{y} \Psi_{j} \, \partial_{y} (k_{xx} \Psi_{i}) \, dS - k_{0}^{2} \int_{S} \Psi_{j} \Psi_{i} \, dS$$

e

$$S_{2}|_{yy} = k_{0}^{2} \int_{S} \left[\overline{k_{t}} \cdot (\hat{u}_{z} \times \overline{\Psi}_{yj}) \right] \cdot \hat{u}_{z} \times \overline{\Psi}_{yi} \, dS$$
$$= k_{0}^{2} \int_{S} k_{xx} \Psi_{j} \Psi_{i} \, dS$$

C.3 MATRIZES GLOBAIS

De:

$$\widetilde{T} \cdot \overline{v} = -\gamma^2 \widetilde{R} \cdot \overline{v} \qquad \dots \dots (Eq. \ C01)$$

temos

$$\widetilde{T} \cdot \overline{v} \equiv \begin{bmatrix} L_3 + S_1 + S_3 - S_4 \end{bmatrix} \equiv \begin{bmatrix} T_{xx} & T_{xy} \\ T_{yx} & T_{yy} \end{bmatrix}$$
 (Eq. C02)

e

$$\begin{bmatrix} \tilde{R} \cdot \overline{v} \equiv \begin{bmatrix} S_2 \end{bmatrix} \equiv \begin{bmatrix} R_{xx} & R_{xy} \\ R_{yx} & R_{yy} \end{bmatrix}$$
 (Eq. C03)

onde, das relações anteriores, as componentes são:

<u>Para XX</u>:

$$T_{xx} = \oint \partial_x \Psi_j \Psi_i \left(-k_{yy} n_x + k_{yx} n_y \right) dl + \int_S k_{zz} \partial_y \Psi_j \partial_y \Psi_i dS + \dots (Eq. \ C04)$$
$$\int_S \partial_x \Psi_j \partial_x (k_{yy} \Psi_i) dS - \int_S \partial_x \Psi_j \partial_y (k_{yx} \Psi_i) dS - k_0^2 \int_S \Psi_j \Psi_i dS$$

Fig. C–1. Elemento triangular.

e

$$R_{xx} = k_0^2 \int_{S} k_{yy} \Psi_{j} \Psi_{i} \, dS \qquad \dots \dots (Eq. \ C05)$$

Para XY:

$$T_{xy} = \oint \partial_x \Psi_j \Psi_i \left(k_{xy} n_x - k_{xx} n_y \right) dl - \int_S k_{zz} \partial_y \Psi_j \partial_x \Psi_i dS - \dots (Eq. \ C06)$$
$$\int_S \partial_x \Psi_j \partial_x \left(k_{xy} \Psi_i \right) dS + \int_S \partial_x \Psi_j \partial_y \left(k_{xx} \Psi_i \right) dS$$

e

$$R_{xy} = -k_0^2 \int_{S} k_{xy} \Psi_{j} \Psi_{i} \, dS \qquad \dots (Eq. \ C07)$$

Para YX:

$$T_{yx} = \oint \partial_{y} \Psi_{j} \Psi_{i} \left(-k_{yy} n_{x} + k_{yx} n_{y} \right) dl - \int_{S} k_{zz} \partial_{x} \Psi_{j} \partial_{y} \Psi_{i} dS + \int_{S} \partial_{y} \Psi_{j} \partial_{x} (k_{yy} \Psi_{i}) dS - \int_{S} \partial_{y} \Psi_{j} \partial_{y} (k_{yx} \Psi_{i}) dS \qquad \dots (Eq. \ C08)$$

e

$$R_{yx} = -k_0^2 \int_{S} k_{yx} \Psi_{j} \Psi_{i} \, dS \qquad \dots (Eq. \ C09)$$

<u>Para YY</u>:

e

$$R_{yy} = k_0^2 \int_{S} k_{xx} \Psi_{j} \Psi_{i} \, dS \qquad \dots (Eq. \ C11)$$

Considerando a permissividade ε independente da posição (*x*,*y*) tem-se que:

$$\begin{pmatrix} k_{xx} & k_{xy} \\ k_{yx} & k_{yy} \end{pmatrix} e k_{zz}$$

também são independentes da posição.

Fazendo uma análise para as integrais de linha, elas são feitas para todo o contorno L do elemento e:

$$\oint_{L} \left[\begin{array}{c} dl \\ dl \end{array} \right] = \int_{1}^{2} \left[\begin{array}{c} dl \\ dl \end{array} \right] + \int_{2}^{3} \left[\begin{array}{c} dl \\ dl \end{array} \right] + \int_{3}^{1} \left[\begin{array}{c} dl \\ dl \end{array} \right] dl$$

onde o elemento é formado pelos pontos 1, 2 e 3 (Figura C–1). Da Figura C–1 é possível observar os elementos vizinhos que a sua vez:

Lado 1- 2
$$\Rightarrow$$
 Vizinho 1: $\varepsilon_{v1} \rightarrow k_{xx1}$, k_{xy1} , k_{yx1} , k_{yy1}
Lado 2- 3 \Rightarrow Vizinho 2: $\varepsilon_{v2} \rightarrow k_{xx2}$, k_{xy2} , k_{yx2} , k_{yy2}
Lado 3- 1 \Rightarrow Vizinho 3: $\varepsilon_{v3} \rightarrow k_{xx3}$, k_{xy3} , k_{yx3} , k_{yy3}

Assim, quando a integral é analisada no lado 1–2, por exemplo, vai ter que considerar as propriedades (ε_{v1}) do vizinho 1 com o quem faz fronteira nesse lado. Logo, as componentes de k_t são avaliadas e como não dependem da posição elas ficam de fora da integral, assim, as componentes da normal referente à interface (lado) são as mesmas para os dois elementos:

$$\oint_{L} \partial_{x} \Psi_{j} \Psi_{i} \left(-k_{yy} n_{x} + k_{yx} n_{y} \right) dl =$$

$$= \int_{1}^{2} \left(-k_{yy} n_{x} + k_{yx} n_{y} \right) \partial_{x} \Psi_{j} \Psi_{i} dl + \dots$$

$$= \left[-\left(k_{yy} - k_{yy1} \right) n_{x} + \left(k_{yx} - k_{yx1} \right) n_{y} \right] \int_{1}^{2} \partial_{x} \Psi_{j} \Psi_{i} dl + \dots$$

Assim, as equações anteriores (C04 – C11) tem as seguintes integrais elementares (sistema global) de linha:

$$\mathcal{Z}_{1} = \oint_{L} \Psi_{i} \partial_{x} \Psi_{j} dl \qquad \mathcal{Z}_{2} = \oint_{L} \Psi_{i} \partial_{y} \Psi_{j} dl \qquad \dots (Eq. \ C12)$$

e as integrais elementares (sistema global) de superfície:

$$\mathfrak{T}_{1} = \int_{S} \partial_{x} \Psi_{i} \partial_{x} \Psi_{j} dS \qquad \mathfrak{T}_{2} = \int_{S} \partial_{y} \Psi_{i} \partial_{y} \Psi_{j} dS$$

$$\mathfrak{T}_{3} = \int_{S} \partial_{y} \Psi_{i} \partial_{x} \Psi_{j} dS \qquad \mathfrak{T}_{3}^{T} = \int_{S} \partial_{y} \Psi_{j} \partial_{x} \Psi_{i} dS \qquad \dots (Eq. \ C13)$$

$$\mathfrak{T}_{4} = \int_{S} \Psi_{i} \Psi_{j} dS$$

Assim, substituindo das equações (C12) e (C13) em (C04 - C11) tem-se:

<u>Para XX</u>:

$$T_{xx} = \left[- \left(k_{yy} - k_{yy} \right) n_x + \left(k_{yx} - k_{yx} \right) n_y \right] \mathcal{Z}_1 + k_{zz} \mathcal{S}_2 + k_{yy} \mathcal{S}_1 - k_{yx} \mathcal{S}_3 - k_0^2 \mathcal{S}_4 \qquad \dots \quad (Eq. \ C14)$$

$$R_{xx} = k_0^2 k_{yy} \mathfrak{S}_4 \qquad \dots (Eq. \ C15)$$

<u>Para XY</u>:

$$T_{xy} = \left[\left(k_{xy} - k_{xy} V_{iz} \right) n_x - \left(k_{xx} - k_{xx} V_{iz} \right) n_y \right] \mathcal{Z}_1 - k_{zz} \mathfrak{I}_3^T - k_{xy} \mathfrak{I}_1 + k_{xx} \mathfrak{I}_3 \qquad \dots \qquad (Eq. \ C16)$$

e

e

$$R_{xy} = -k_0^2 k_{xy} \mathfrak{F}_4 \qquad \dots (Eq. \ C17)$$

<u>Para YX</u>:

$$T_{yx} = \left[-\left(k_{yy} - k_{yy}V_{iz}\right)n_x + \left(k_{yx} - k_{yx}V_{iz}\right)n_y \right] \mathcal{Z}_2 - k_{zz} \mathcal{S}_3 + k_{yy} \mathcal{S}_3^T - k_{yx} \mathcal{S}_2 \quad \dots \quad (Eq. \ C18)$$

e

$$R_{yx} = -k_0^2 k_{yx} \mathfrak{Z}_4 \qquad \dots (Eq. \ C19)$$

<u>Para YY</u>:

$$T_{yy} = \left[\left(k_{xy} - k_{xy} V_{iz} \right) n_x - \left(k_{xx} - k_{xx} V_{iz} \right) n_y \right] \mathcal{L}_2 + k_{zz} \mathcal{S}_1 - k_{xy} \mathcal{S}_3^T + k_{xx} \mathcal{S}_2 - k_0^2 \mathcal{S}_4 \qquad \dots \quad (Eq. \ C20)$$

e

$$R_{yy} = k_0^2 k_{xx} \mathfrak{I}_4 \qquad \dots \dots (Eq. \ C21)$$

Apêndice D

ELEMENTOS TRIANGULARES

É analisado para os dois tipos mais comuns deste elemento bidimensional, linear e quadrático.

D.1 ELEMENTO TRIANGULAR LINEAR

Neste tipo de elemento, a função desconhecida, ϕ , dentro de cada elemento triangular, pode ser aproximada como:

$$\phi^{e}(x, y) = a^{e} + b^{e}x + c^{e}y$$
 (Eq. D01)

onde *a*^{*e*}, *b*^{*e*} e *c*^{*e*} são coeficientes a serem determinados e *e* é o número do elemento. Em elementos finitos têm-se três nós localizados nos vértices dos triângulos, Figura D–1. Os nós são numerados em

Fig. D-1. Elemento triangular linear.

sentido anti-horário com os números 1, 2 e 3, com os correspondentes valores de ϕ denotados por:

$$\phi_{1}^{e} = a^{e} + b^{e} x_{1}^{e} + c^{e} y_{1}^{e}$$

$$\phi_{2}^{e} = a^{e} + b^{e} x_{2}^{e} + c^{e} y_{2}^{e}$$

$$\phi_{3}^{e} = a^{e} + b^{e} x_{3}^{e} + c^{e} y_{3}^{e}$$

.....(Eq. D02)

Resolvendo este sistema para os coeficientes constantes a^e , b^e e c^e em termos de ϕ_j^e , e substituindo na Equação D01, tem-se:

$$\phi^{e}(x,y) = \sum_{j=1}^{3} N_{j}^{e}(x,y) \cdot \phi_{j}^{e}$$
 (Eq. D03)

onde $N_{j}^{e}(x,y)$ representa as funções de base ou de interpolação e são dadas por:

$$N_{j}^{e}(x,y) = \frac{1}{2A^{e}} \left(a_{j}^{e} + b_{j}^{e} \cdot x + c_{j}^{e} \cdot y \right) ; \quad j = 1, 2, 3 \qquad \dots \dots (Eq. \ D04)$$

onde A^e é a área do elemento e.

Os demais parâmetros são dados por:

$$a_{1}^{e} = x_{2}^{e} \cdot y_{3}^{e} - y_{2}^{e} \cdot x_{3}^{e} , \quad b_{1}^{e} = y_{2}^{e} - y_{3}^{e} , \quad c_{1}^{e} = x_{3}^{e} - x_{2}^{e}$$

$$a_{2}^{e} = x_{3}^{e} \cdot y_{1}^{e} - y_{3}^{e} \cdot x_{1}^{e} , \quad b_{2}^{e} = y_{3}^{e} - y_{1}^{e} , \quad c_{2}^{e} = x_{1}^{e} - x_{3}^{e}$$

$$\dots \quad (Eq. \ D05)$$

$$a_{3}^{e} = x_{1}^{e} \cdot y_{2}^{e} - y_{1}^{e} \cdot x_{2}^{e} , \quad b_{3}^{e} = y_{1}^{e} - y_{2}^{e} , \quad c_{3}^{e} = x_{2}^{e} - x_{1}^{e}$$

e

$$A^{e} = \frac{1}{2} \begin{vmatrix} 1 & x_{1}^{e} & y_{1}^{e} \\ 1 & x_{2}^{e} & y_{2}^{e} \\ 1 & x_{3}^{e} & y_{3}^{e} \end{vmatrix} = \frac{1}{2} \left(b_{1}^{e} \cdot c_{2}^{e} - b_{2}^{e} \cdot c_{1}^{e} \right) \qquad \dots (Eq. \ D06)$$

nas expressões anteriores, x_j^e , y_j^e (j = 1, 2, 3) denotam os valores das coordenadas do j-ésimo nó no elemento e.

É facilmente demostrado que as funções de base têm a seguinte propriedade:

$$N_{i}^{e}(x_{j}^{e}, y_{j}^{e}) = \delta_{ij} = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases} i, j = 1, 2, 3 \\ \dots (Eq. \ D07) \end{cases}$$

e, como resultado disto, no nó *i*, ϕ^e na Equação D03 reduz-se ao valor nodal ϕ_i^e .

Outra característica importante das funções de base $N^{e_j}(x,y)$ é que elas desaparecem quando o ponto de observação (x,y) está sobre o lado oposto ao nó *j*. Por esse motivo, os valores de ϕ^{e} , sobre um lado do elemento, não estão relacionadas ao valor de ϕ sobre o nó oposto, mas, sim, são determinados pelos valores nos dois nós que estão associados a esse lado. Esta importante característica garante a continuidade da solução através dos lados dos elementos.

A Figura D–2 mostra o comportamento das funções de base para o elemento triangular linear e cujos nós são $A, B \in C$. A função de base sobre os nós é:

$$N_{A}^{e}(x_{A}^{e}, y_{A}^{e}) = 1$$
$$N_{A}^{e}(x_{B}^{e}, y_{B}^{e}) = 0$$
$$N_{A}^{e}(x_{C}^{e}, y_{C}^{e}) = 0$$

Fig. D–2. Função de base N^{e_A} para elementos triangulares lineares.

Fig. D–3. Mudança T_K do elemento triangular linear do sistema de coordenadas globais XY para o sistema de coordenadas locais $\xi\eta$.

cumprindo com a propriedade da Equação D07.

A Figura D–3 mostra a transformação do elemento triangular linear do plano XY para o plano ξ η :

$$XY \xrightarrow{I_K} \xi\eta$$

$$(x_1, y_1) \rightarrow (0, 0)$$

$$(x_2, y_2) \rightarrow (1, 0)$$

$$(x_3, y_3) \rightarrow (0, 1)$$

. ..

assim, para um ponto (x, y) pertencente ao elemento triangular:

$$x = \sum_{j=1}^{3} x_{j} \cdot S_{j}(\xi, \eta) \qquad \dots \qquad (Eq. \ D08)$$
$$y = \sum_{j=1}^{3} y_{j} \cdot S_{j}(\xi, \eta)$$

onde as funções de base S_j são:

$$S_{1}(\xi,\eta) = 1 - \xi - \eta$$

$$S_{2}(\xi,\eta) = \xi$$

$$\dots (Eq. D09)$$

$$S_{3}(\xi,\eta) = \eta$$

que satisfazem a propriedade:

$$S_{i}(\xi_{j}, \eta_{j}) = \delta_{ij} = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases} \dots (Eq. D10)$$

D.2 ELEMENTO TRIANGULAR QUADRÁTICO

Um elemento triangular quadrático tem seis nós, três nos vértices e os outros três nos pontos médios dos três lados, que são numerados em sentido anti-horário. Os números 1, 2 e 3 estão nos vértices e 4, 5 e 6 estão nos pontos médios dos lados, como é mostrado na Figura D–4.

A função desconhecida ϕ , dentro de cada elemento triangular, pode ser aproximada por:

Fig. D-4. Elemento triangular quadrático.

$$\phi^{e}(x, y) = a^{e} + b^{e}x + c^{e}y + d^{e}x^{2} + e^{e}xy + f^{e}y^{2} \qquad \dots (Eq. D11)$$

onde a^{e} , b^{e} , c^{e} , d^{e} , e^{e} e f^{e} são coeficientes a serem determinados usando a Equação D11. Para os seis nós em termos de ϕ_{j}^{e} , obtém-se:

$$\phi^{e}(x,y) = \sum_{j=1}^{6} N_{j}^{e}(x,y) \phi_{j}^{e} \qquad \dots (Eq. \ D12)$$

onde $N_{j}^{e}(x,y)$ representa as funções de base ou de interpolação e são dadas por:

$$N_{1}^{e}(x,y) = \left(2L_{1}^{e}-1\right) \cdot L_{1}^{e} ; N_{2}^{e}(x,y) = \left(2L_{2}^{e}-1\right) \cdot L_{2}^{e} ; N_{3}^{e}(x,y) = \left(2L_{3}^{e}-1\right) \cdot L_{3}^{e}$$
$$N_{4}^{e}(x,y) = L_{1}^{e} \cdot L_{2}^{e} ; N_{5}^{e}(x,y) = L_{2}^{e} \cdot L_{3}^{e} ; N_{6}^{e}(x,y) = L_{3}^{e} \cdot L_{1}^{e}$$
$$\dots (Eq. D13)$$

onde $L^{e_{j}}$ é dado por:

$$L_{j}^{e}(x,y) = \frac{1}{2A^{e}} \left(a_{j}^{e} + b_{j}^{e} \cdot x + c_{j}^{e} \cdot y \right) ; j = 1, 2, 3 \qquad \dots (Eq. \ D14)$$

onde a_i^e , b_i^e , c_j^e e A^e estão definidos pelas Equações D05 e D06.

Obviamente, as funções quadráticas N^{e}_{i} satisfazem:

$$N_{i}^{e}(x_{j}^{e}, y_{j}^{e}) = \delta_{ij} = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases} i, j = 1, 2, 3, 4, 5, 6 \\ \dots (Eq. D15) \end{cases}$$

A Figura D–5 representa as funções de base, $N_{A}^{e} e N_{D}^{e}$, quando A, B e C estão nos vértices e D, E e F estão nos pontos médios dos lados do elemento triangular. A função de base N_{A}^{e} sobre os nós é:

$$N_{A}^{e}(x_{A}^{e}, y_{A}^{e}) = 1 ; \quad N_{A}^{e}(x_{B}^{e}, y_{B}^{e}) = 0 ; \quad N_{A}^{e}(x_{C}^{e}, y_{C}^{e}) = 0$$
$$N_{A}^{e}(x_{D}^{e}, y_{D}^{e}) = 0 ; \quad N_{A}^{e}(x_{E}^{e}, y_{E}^{e}) = 0 ; \quad N_{A}^{e}(x_{F}^{e}, y_{F}^{e}) = 0$$

A função de base N^{e_D} sobre os nós é:

$$N_{D}^{e}(x_{A}^{e}, y_{A}^{e}) = 0 ; \quad N_{D}^{e}(x_{B}^{e}, y_{B}^{e}) = 0 ; \quad N_{D}^{e}(x_{C}^{e}, y_{C}^{e}) = 0$$
$$N_{D}^{e}(x_{D}^{e}, y_{D}^{e}) = 1 ; \quad N_{D}^{e}(x_{E}^{e}, y_{E}^{e}) = 0 ; \quad N_{D}^{e}(x_{F}^{e}, y_{F}^{e}) = 0$$

Fig. D–5. Funções de base $N^{e}{}_{A}$ e $N^{e}{}_{D}$ para elementos triangulares quadráticos. O nó A esta no vértice e nó D esta no ponto médio do lado.

cumprindo com a propriedade da Equação D15.

A Figura D–6 mostra a transformação do elemento triangular quadrático do plano XY para o plano $\zeta \eta$:

Fig. D–6. Mudança T_{κ} do elemento triangular quadrático do sistema de coordenadas globais XY para o sistema de coordenadas locais $\xi\eta$.

$$XY - \frac{T_{K}}{} \rightarrow \xi\eta$$

$$(x_{1}, y_{1}) \rightarrow (0, 0) \quad ; \quad (x_{2}, y_{2}) \rightarrow (1, 0) \quad ; \quad (x_{3}, y_{3}) \rightarrow (0, 1)$$

$$(x_{4}, y_{4}) \rightarrow (\frac{1}{2}, 0) \quad ; \quad (x_{5}, y_{5}) \rightarrow (\frac{1}{2}, \frac{1}{2}) \quad ; \quad (x_{6}, y_{6}) \rightarrow (0, \frac{1}{2})$$

assim, para um ponto (x,y) pertencente ao elemento triangular:

$$x = \sum_{j=1}^{6} x_{j} \cdot S_{j}(\xi, \eta)$$

$$y = \sum_{j=1}^{6} y_{j} \cdot S_{j}(\xi, \eta)$$

.....(Eq. D16)

onde as funções de base S_i são:

$$S_{1}(\xi,\eta) = (1 - 2\xi - 2\eta)(1 - \xi - \eta)$$

$$S_{2}(\xi,\eta) = (2\xi - 1)\xi$$

$$S_{3}(\xi,\eta) = (2\eta - 1)\eta \qquad \dots (Eq. D17)$$

$$S_{4}(\xi,\eta) = 4(1 - \xi - \eta)\xi$$

$$S_{5}(\xi,\eta) = 4\xi\eta$$

$$S_{6}(\xi,\eta) = 4(1 - \xi - \eta)\eta$$

que satisfazem a propriedade:

$$S_{i}(\xi_{j}, \eta_{j}) = \delta_{ij} = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

D.3 TRANSFORMAÇÃO DO SISTEMA GLOBAL AO SISTEMA LOCAL

Em geral, é necessário estabelecer relações que permitam as derivadas da função g expressadas com respeito às coordenadas globais x e y em termos das coordenadas locais ξ e η . Assim,

$$g \equiv g(x, y)$$
, $\hat{g} \equiv g(\xi, \eta)$: $g \Rightarrow T_K \Rightarrow \hat{g}$

usando a configuração para:

$$\frac{\partial \hat{g}}{\partial \xi} \equiv \partial_{\xi} \hat{g} \quad , \quad \frac{\partial \hat{g}}{\partial \eta} \equiv \partial_{\eta} \hat{g} \qquad \dots \dots (Eq. \ D18)$$

e para:

$$\frac{\partial g}{\partial x} \equiv \partial_x g \quad , \quad \frac{\partial g}{\partial y} \equiv \partial_y g \qquad \dots (Eq. D19)$$

as derivadas parciais são:

$$\partial_{\xi} \hat{g} = \partial_{x} g \cdot \partial_{\xi} x + \partial_{y} g \cdot \partial_{\xi} y \qquad \dots (Eq. D20) \partial_{\eta} \hat{g} = \partial_{x} g \cdot \partial_{\eta} x + \partial_{y} g \cdot \partial_{\eta} y$$

que pode ser expressada em forma matricial:

$$\begin{bmatrix} \partial_{\xi} \hat{g} \\ \partial_{\eta} \hat{g} \end{bmatrix} = \begin{bmatrix} \partial_{\xi} x & \partial_{\xi} y \\ \partial_{\eta} x & \partial_{\eta} y \end{bmatrix} \cdot \begin{bmatrix} \partial_{x} g \\ \partial_{y} g \end{bmatrix} \dots (Eq. D21)$$
$$\equiv \begin{bmatrix} J \end{bmatrix} \cdot \begin{bmatrix} \partial_{x} g \\ \partial_{y} g \end{bmatrix}$$

onde [J] é a matriz jacobiana da transformação de coordenadas. A inversa de [J] é dada por:

$$[J]^{-1} = \frac{1}{|J|} \begin{bmatrix} \partial_{\eta} y & -\partial_{\xi} y \\ -\partial_{\eta} x & \partial_{\xi} x \end{bmatrix} \qquad \dots (Eq. D22)$$

onde a determinante de J é:

$$|J| = \partial_{\xi} x \cdot \partial_{\eta} y - \partial_{\eta} x \cdot \partial_{\xi} y \qquad \dots \quad (Eq. \ D23)$$

Assim,

$$\begin{bmatrix} \partial_{x} g \\ \partial_{y} g \end{bmatrix} = \frac{1}{|J|} \begin{bmatrix} \partial_{\eta} y & -\partial_{\xi} y \\ -\partial_{\eta} x & \partial_{\xi} x \end{bmatrix} \cdot \begin{bmatrix} \partial_{\xi} \hat{g} \\ \partial_{\eta} \hat{g} \end{bmatrix} \qquad \dots (Eq. D24)$$

Das Equações (D08) e (D16):

$$x: \sum_{j=1}^{3} x_{j} \cdot S_{j}(\xi, \eta) \equiv \sum_{j=1}^{6} x_{j} \cdot S_{j}(\xi, \eta)$$
$$y: \sum_{j=1}^{3} y_{j} \cdot S_{j}(\xi, \eta) \equiv \sum_{j=1}^{6} y_{j} \cdot S_{j}(\xi, \eta)$$

como é igual para os dois casos (linear e quadrático) é escolhido, por simplicidade, o caso do elemento linear, onde da Equação D09:

$$\begin{array}{c} S_{1} = 1 - \xi - \eta \\ S_{2} = \xi \\ S_{3} = \eta \end{array} \end{array} \left\{ \begin{array}{c} \partial_{\xi} S_{1} = -1 & \partial_{\eta} S_{1} = -1 \\ \partial_{\xi} S_{2} = 1 & \partial_{\eta} S_{2} = 0 \\ \partial_{\xi} S_{3} = 0 & \partial_{\eta} S_{3} = 1 \end{array} \right. \dots (Eq. D25)$$

Assim, das Equações (D08) e (D25):

$$\begin{aligned} x &= x_1 \cdot S_1 + x_2 \cdot S_2 + x_3 \cdot S_3 \\ \Rightarrow & \partial_{\xi} x = -x_1 + x_2 \\ \Rightarrow & \partial_{\eta} x = -x_1 + x_3 \end{aligned} \qquad \dots (Eq. \ D26)$$

e

$$y = y_1 \cdot S_1 + y_2 \cdot S_2 + y_3 \cdot S_3$$

$$\Rightarrow \ \partial_{\xi} \ y = -y_1 + y_2 \qquad \dots (Eq. \ D27)$$

$$\Rightarrow \ \partial_{\eta} \ y = -y_1 + y_3$$

substituindo em (D23):

$$|J| = (-x_1 + x_2)(-y_1 + y_3) - (-x_1 + x_3)(-y_1 + y_2)$$

= $x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)$ (Eq. D28)
= 2. Area elemento triangular = 2. A^e

também, substituindo na Equação (D24):

$$\partial_{x}g = \frac{1}{2 \cdot A^{e}} \cdot \left[\left(-y_{1} + y_{3} \right) \cdot \partial_{\xi} \hat{g} - \left(-y_{1} + y_{2} \right) \cdot \partial_{\eta} \hat{g} \right]$$

$$\partial_{y}g = \frac{1}{2 \cdot A^{e}} \cdot \left[-\left(-x_{1} + x_{3} \right) \cdot \partial_{\xi} \hat{g} + \left(-x_{1} + x_{2} \right) \cdot \partial_{\eta} \hat{g} \right]$$

..... (Eq. D29)

Apêndice E

INTEGRAIS ELEMENTARES DE LINHA

E.1 INTRODUÇÃO

Esta integração é feita no contorno do elemento, isto é, nos lados do elemento, como é usado elementos triangulares – três lados, serão analisados em três integrais, Figura E–1. Seja qual fosse a ordem dos elementos (linear ou quadrática) a análise dá no mesmo resultado, por simplicidade, é escolhido elementos lineares.

Fig. E–1. Mudança T_K do elemento triangular linear do sistema de coordenadas globais XY para o sistema de coordenadas locais $\xi\eta$.

Sejam as integrais elementares, Equação 35:

$$\mathcal{Z}_{1} = \bigoplus_{L} \Psi_{i} \partial_{x} \Psi_{j} dl \qquad \mathcal{Z}_{2} = \bigoplus_{L} \Psi_{i} \partial_{y} \Psi_{j} dl \qquad \dots (Eq. E01)$$

onde L é o perímetro do elemento triangular, assim:

$$\oint_{L} \left[\begin{array}{c} dl \\ dl \end{array} \right] = \int_{1}^{2} \left[\begin{array}{c} dl \\ dl \end{array} \right] + \int_{2}^{3} \left[\begin{array}{c} dl \\ dl \end{array} \right] + \int_{3}^{1} \left[\begin{array}{c} dl \\ dl \end{array} \right] dl \qquad \dots (Eq. E02)$$

com isso,

$$\mathcal{Z}_{1} = \oint_{L} \Psi_{i} \partial_{x} \Psi_{j} dl = \int_{P_{1}}^{P_{2}} \Psi_{i} \partial_{x} \Psi_{j} dl + \int_{P_{2}}^{P_{3}} \Psi_{i} \partial_{x} \Psi_{j} dl + \int_{P_{3}}^{P_{1}} \Psi_{i} \partial_{x} \Psi_{j} dl$$
$$\mathcal{Z}_{2} = \oint_{P} \Psi_{i} \partial_{y} \Psi_{j} dl = \int_{P_{1}}^{P_{2}} \Psi_{i} \partial_{y} \Psi_{j} dl + \int_{P_{2}}^{P_{3}} \Psi_{i} \partial_{y} \Psi_{j} dl + \int_{P_{3}}^{P_{1}} \Psi_{i} \partial_{y} \Psi_{j} dl$$

E.2 LADO 1–2

Da Figura E–2, o vetor:

$$\overline{P}_{12} = (x_2 - x_1) \hat{u}_x + (y_2 - y_1) \hat{u}_y \qquad \dots (Eq. \ E03)$$

Fig. E-2. Elemento triangular linear no sistema de coordenadas globais XY.

e a normal:

$$\hat{n}_{12} = n_x \hat{u}_x - n_y \hat{u}_y = \frac{(y_2 - y_1)}{h_{12}} \hat{u}_x - \frac{(x_2 - x_1)}{h_{12}} \hat{u}_y \qquad \dots \text{ (Eq. E04)}$$

onde:

$$h_{12} = |\overline{P}_{12}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$
 (Eq. E05)

Seja um ponto (x,y) sobre o lado 1–2 que tem um comprimento l (usando como referência o ponto 1):

$$l = \sqrt{(x - x_1)^2 + (y - y_1)^2} \qquad \dots (Eq. \ E06)$$

Da Equação D09:

$$S_{1}(\xi, \eta) = 1 - \xi - \eta$$

$$S_{2}(\xi, \eta) = \xi$$

$$S_{3}(\xi, \eta) = \eta$$

.....(Eq. E07)

tem-se:

Lado
$$1-2: \begin{cases} \eta = 0\\ \xi: 0 \to 1 \end{cases} \Rightarrow \begin{cases} \varphi_1 = 1-\xi\\ \varphi_2 = \xi\\ \varphi_3 = 0 \end{cases}$$
 (Eq. E08)

na Equação D08:

$$x = \sum_{j=1}^{3} x_{j} \cdot \varphi_{j}(\xi, 0) = x_{1} + (x_{2} - x_{1})\xi$$

$$y = \sum_{j=1}^{3} y_{j} \cdot \varphi_{j}(\xi, 0) = y_{1} + (y_{2} - y_{1})\xi$$

.....(Eq. E09)

da Equação E09, substituindo na Equação E06, em l:

$$\Rightarrow l = h_{12} \xi \rightarrow dl = h_{12} d\xi \qquad \dots (Eq. E10)$$

Sabendo que, Equação 36:

$$\partial_{x} \Psi = \frac{1}{2 \cdot A^{e}} \cdot \left[\left(-y_{1} + y_{3} \right) \partial_{\xi} \varphi - \left(-y_{1} + y_{2} \right) \partial_{\eta} \varphi \right] \qquad \dots (Eq. \ E11)$$

$$\partial_{y} \Psi = \frac{1}{2 \cdot A^{e}} \cdot \left[-\left(-x_{1} + x_{3} \right) \partial_{\xi} \varphi + \left(-x_{1} + x_{2} \right) \partial_{\eta} \varphi \right]$$

Logo, das Equações E10 e E11 em:

$$\mathcal{Z}_{1(P_1 \rightarrow P_2)} = \int_{P_1}^{P_2} \Psi_i \partial_x \Psi_j dl \quad e \quad \mathcal{Z}_{2(P_1 \rightarrow P_2)} = \int_{P_1}^{P_2} \Psi_i \partial_y \Psi_j dl$$

Assim,

$$\mathcal{Z}_{1\ (P_{1} \to P_{2})} \equiv \frac{h_{12}}{|J|} \left[\left(-y_{1} + y_{3} \right) \underbrace{\int_{0}^{1} \varphi_{i} \partial_{\xi} \varphi_{j} \Big|_{\eta = 0}}_{\mathcal{U}_{1}} d\xi - \left(-y_{1} + y_{2} \right) \underbrace{\int_{0}^{1} \varphi_{i} \partial_{\eta} \varphi_{j} \Big|_{\eta = 0}}_{\mathcal{U}_{2}} d\xi \right] \qquad \dots (Eq. \ E12)$$

e

$$\mathcal{Z}_{2(P_{1} \to P_{2})} \equiv \frac{h_{12}}{|J|} \left[-(-x_{1} + x_{3}) \underbrace{\int_{0}^{1} \varphi_{i} \partial_{\xi} \varphi_{j}|_{\eta=0}}_{\mathcal{L}_{1}} d\xi + (-x_{1} + x_{2}) \underbrace{\int_{0}^{1} \varphi_{i} \partial_{\eta} \varphi_{j}|_{\eta=0}}_{\mathcal{L}_{2}} d\xi \right] \qquad \dots (Eq. E13)$$

E.3 LADO 2-3

Da Figura E–2, o vetor:

$$\overline{P}_{23} = (x_3 - x_2) \hat{u}_x + (y_3 - y_2) \hat{u}_y \qquad \dots \quad (Eq. \ E14)$$

e a normal:

$$\hat{n}_{23} = n_x \hat{u}_x - n_y \hat{u}_y = \frac{(y_3 - y_2)}{h_{23}} \hat{u}_x - \frac{(x_3 - x_2)}{h_{23}} \hat{u}_y \qquad \dots \quad (Eq. \ E15)$$

onde:

$$h_{23} = |\overline{P}_{23}| = \sqrt{(x_3 - x_2)^2 + (y_3 - y_2)^2}$$
 (Eq. E16)

Seja um ponto (x,y) sobre o lado 2–3 que tem um comprimento l (usando como referência o ponto 2):

$$l = \sqrt{(x - x_2)^2 + (y - y_2)^2} \qquad \dots (Eq. \ E17)$$

Da Equação E07, tem-se:

Lado 2-3:
$$\begin{cases} \eta = 1 - \xi \\ \xi : 1 \to 0 \Rightarrow \\ \eta : 0 \to 1 \end{cases} \begin{cases} \varphi_1 = 0 \\ \varphi_2 = \xi \\ \varphi_3 = \eta = 1 - \xi \end{cases} \dots (Eq. \ E18)$$

na Equação D08:

$$x = \sum_{j=1}^{3} x_{j} \cdot \varphi_{j}(\xi, \eta) = x_{3} + (x_{2} - x_{3})\xi = x_{2}\xi + x_{3}\eta$$

$$y = \sum_{j=1}^{3} y_{j} \cdot \varphi_{j}(\xi, \eta) = y_{3} + (y_{2} - y_{3})\xi = y_{2}\xi + y_{3}\eta$$

.....(Eq. E19)

de E19, substituindo na Equação E17, em l:

$$\Rightarrow l = h_{23} (1 - \xi) = h_{23} \eta \rightarrow dl = -h_{23} d\xi = h_{23} d\eta \qquad \dots (Eq. E20)$$

Da Equação E11 e E20 em:

$$\mathcal{Z}_{1(P_2 \to P_3)} = \int_{P_2}^{P_3} \Psi_i \partial_x \Psi_j dl \quad e \quad \mathcal{Z}_{2(P_2 \to P_3)} = \int_{P_2}^{P_3} \Psi_i \partial_y \Psi_j dl$$

assim,

$$\mathcal{Z}_{1 \ (P_{2} \to P_{3})} = \frac{h_{23}}{|J|} \left[\left(-y_{1} + y_{3} \right) \underbrace{\int_{0}^{1} \varphi_{i} \, \partial_{\xi} \varphi_{j} \Big|_{\eta = 1 - \xi}}_{\mathcal{L}_{3}} d\xi - \left(-y_{1} + y_{2} \right) \underbrace{\int_{0}^{1} \varphi_{i} \, \partial_{\eta} \varphi_{j} \Big|_{\xi = 1 - \eta}}_{\mathcal{L}_{4}} d\eta \right] \dots (Eq. \ E21)$$

e

$$\mathcal{I}_{2(P_{2} \rightarrow P_{3})} \equiv \frac{h_{23}}{|J|} \left[\left(x_{1} - x_{3} \right) \underbrace{\int_{0}^{1} \varphi_{i} \partial_{\xi} \varphi_{j} \Big|_{\eta = 1 - \xi}}_{\mathcal{L}_{3}} d\xi + \left(-x_{1} + x_{2} \right) \underbrace{\int_{0}^{1} \varphi_{i} \partial_{\eta} \varphi_{j} \Big|_{\xi = 1 - \eta}}_{\mathcal{L}_{4}} d\eta \right] \dots (Eq. E22)$$

E.4 LADO 3-1

Da Figura E–2, o vetor:

$$\overline{P}_{31} = (x_1 - x_3) \hat{u}_x + (y_1 - y_3) \hat{u}_y \qquad \dots \quad (Eq. \ E23)$$

e a normal:

$$\hat{n}_{31} = n_x \hat{u}_x - n_y \hat{u}_y = \frac{(y_1 - y_3)}{h_{31}} \hat{u}_x - \frac{(x_1 - x_3)}{h_{31}} \hat{u}_y \qquad \dots \quad (Eq. \ E24)$$
onde:

$$h_{31} = |\overline{P}_{31}| = \sqrt{(x_1 - x_3)^2 + (y_1 - y_3)^2}$$
 (Eq. E25)

Seja um ponto (x,y) sobre o lado 3–1 que tem um comprimento l (usando como referência o ponto 3):

$$l = \sqrt{(x - x_3)^2 + (y - y_3)^2} \qquad \dots (Eq. \ E26)$$

Da Equação E07, tem-se:

Lado
$$3-1: \begin{cases} \xi = 0\\ \eta : 1 \to 0 \end{cases} \Rightarrow \begin{cases} \varphi_1 = 1 - \eta\\ \varphi_2 = 0\\ \varphi_3 = \eta \end{cases} \qquad \dots (Eq. \ E27)$$

na Equação D08:

$$x = \sum_{j=1}^{3} x_{j} \cdot \varphi_{j}(0,\eta) = x_{1} + (x_{3} - x_{1})\eta$$

$$y = \sum_{j=1}^{3} y_{j} \cdot \varphi_{j}(0,\eta) = y_{1} + (y_{3} - y_{1})\eta$$

..... (Eq. E28)

de E28, substituindo na Equação E26, em l:

$$\Rightarrow l = h_{31} (1 - \eta) \rightarrow dl = -h_{31} d\eta \qquad \dots (Eq. E29)$$

Da Equação E11 e E29 em:

$$\mathcal{Z}_{1(P_3 \to P_1)} = \int_{P_3}^{P_1} \Psi_i \partial_x \Psi_j dl \quad e \quad \mathcal{Z}_{2(P_3 \to P_1)} = \int_{P_3}^{P_1} \Psi_i \partial_y \Psi_j dl$$

assim,

$$\mathcal{Z}_{1(P_{3} \to P_{1})} = \frac{h_{31}}{|J|} \left[(-y_{1} + y_{3}) \underbrace{\int_{0}^{1} \varphi_{i} \partial_{\xi} \varphi_{j} \Big|_{\xi = 0}}_{LL_{5}} d\eta - (-y_{1} + y_{2}) \underbrace{\int_{0}^{1} \varphi_{i} \partial_{\eta} \varphi_{j} \Big|_{\xi = 0}}_{LL_{6}} d\eta \right] \dots (Eq. E30)$$

$$\mathcal{I}_{2(P_{3} \rightarrow P_{1})} \equiv \frac{h_{31}}{|J|} \left[\left(x_{1} - x_{3} \right) \underbrace{\int_{0}^{1} \varphi_{i} \partial_{\xi} \varphi_{j} \Big|_{\xi = 0}}_{\mathcal{U}_{5}} d\eta + \left(-x_{1} + x_{2} \right) \underbrace{\int_{0}^{1} \varphi_{i} \partial_{\eta} \varphi_{j} \Big|_{\xi = 0}}_{\mathcal{U}_{6}} d\eta \right] \dots (Eq. E31)$$

Das equações anteriores (E12 e E13), (E21 e E22) e (E30 e E31), tem-se as integrais elementares de linha:

$$LL_{1} = \int_{0}^{1} \varphi_{i} \partial_{\xi} \varphi_{j} \Big|_{\eta=0} d\xi \quad , \quad LL_{2} = \int_{0}^{1} \varphi_{i} \partial_{\eta} \varphi_{j} \Big|_{\eta=0} d\xi \qquad \dots \quad (Eq. \ E32)$$

INTEGRAIS ELEMENTARES DE LINHA

$$LL_{3} = \int_{0}^{1} \varphi_{i} \partial_{\xi} \varphi_{j} \Big|_{\eta = 1-\xi} d\xi \quad , \quad LL_{4} = \int_{0}^{1} \varphi_{i} \partial_{\eta} \varphi_{j} \Big|_{\xi = 1-\eta} d\eta \qquad \dots \quad (Eq. \ E33)$$

$$LL_{5} = \int_{0}^{1} \varphi_{i} \partial_{\xi} \varphi_{j} \Big|_{\xi=0} d\eta \quad , \quad LL_{6} = \int_{0}^{1} \varphi_{i} \partial_{\eta} \varphi_{j} \Big|_{\xi=0} d\eta \qquad \dots \quad (Eq. \ E34)$$

assim,

$$\mathcal{Z}_{1(P_1 \to P_2)} = \frac{h_{12}}{|J|} \Big[(-y_1 + y_3) LL_1 - (-y_1 + y_2) LL_2 \Big]$$
$$\mathcal{Z}_{2(P_1 \to P_2)} = \frac{h_{12}}{|J|} \Big[- (-x_1 + x_3) LL_1 + (-x_1 + x_2) LL_2 \Big]$$

e

$$\mathcal{Z}_{1 (P_{2} \rightarrow P_{3})} = \frac{h_{23}}{|J|} \Big[(-y_{1} + y_{3}) LL_{3} - (-y_{1} + y_{2}) LL_{4} \Big]$$
$$\mathcal{Z}_{2 (P_{2} \rightarrow P_{3})} = \frac{h_{23}}{|J|} \Big[(x_{1} - x_{3}) LL_{3} + (-x_{1} + x_{2}) LL_{4} \Big]$$

e

$$\mathcal{Z}_{1 (P_{3} \rightarrow P_{1})} = \frac{h_{31}}{|J|} \Big[(-y_{1} + y_{3}) LL_{5} - (-y_{1} + y_{2}) LL_{6} \Big]$$
$$\mathcal{Z}_{2 (P_{3} \rightarrow P_{1})} = \frac{h_{31}}{|J|} \Big[(x_{1} - x_{3}) LL_{5} + (-x_{1} + x_{2}) LL_{6} \Big]$$

logo em E02:

$$\mathcal{Z}_{1} = \frac{1}{|J|} \left\{ \begin{array}{l} h_{12} \left[\left(-y_{1} + y_{3} \right) LL_{1} - \left(-y_{1} + y_{2} \right) LL_{2} \right] + \\ h_{23} \left[\left(-y_{1} + y_{3} \right) LL_{3} - \left(-y_{1} + y_{2} \right) LL_{4} \right] + \\ h_{31} \left[\left(-y_{1} + y_{3} \right) LL_{5} - \left(-y_{1} + y_{2} \right) LL_{6} \right] \right\} \\ e \\ \mathcal{Z}_{2} = \frac{1}{|J|} \left\{ \begin{array}{l} h_{12} \left[-\left(-x_{1} + x_{3} \right) LL_{1} + \left(-x_{1} + x_{2} \right) LL_{2} \right] + \end{array} \right\}$$

$$\begin{cases} J \\ h_{23} \end{bmatrix} \begin{pmatrix} x_1 - x_3 \end{pmatrix} LL_3 + \begin{pmatrix} -x_1 + x_2 \end{pmatrix} LL_4 \end{bmatrix} + \dots (Eq. E36) \\ h_{31} \begin{bmatrix} (x_1 - x_3) LL_5 + (-x_1 + x_2) LL_6 \end{bmatrix} \}$$

Apêndice F

MATRIZES ELEMENTARES

Tem-se as integrais elementares:

$$\mathbf{s}_{1} = \int_{\hat{S}} \partial_{\xi} \varphi_{i} \partial_{\xi} \varphi_{j} d\xi d\eta \qquad \mathbf{s}_{2} = \int_{\hat{S}} \partial_{\eta} \varphi_{i} \partial_{\eta} \varphi_{j} d\xi d\eta$$
$$\mathbf{s}_{3} = \int_{\hat{S}} \partial_{\eta} \varphi_{i} \partial_{\xi} \varphi_{j} d\xi d\eta \qquad \mathbf{s}_{3}^{T} = \int_{\hat{S}} \partial_{\xi} \varphi_{i} \partial_{\eta} \varphi_{j} d\xi d\eta$$
$$\mathbf{s}_{4} = \int_{\hat{S}} \varphi_{i} \varphi_{j} d\xi d\eta$$

e

$$LL_{1} = \int_{0}^{1} \varphi_{i} \partial_{\xi} \varphi_{j} \Big|_{\eta=0} d\xi \qquad LL_{2} = \int_{0}^{1} \varphi_{i} \partial_{\eta} \varphi_{j} \Big|_{\eta=0} d\xi$$
$$LL_{3} = \int_{0}^{1} \varphi_{i} \partial_{\xi} \varphi_{j} \Big|_{\eta=1-\xi} d\xi \qquad LL_{4} = \int_{0}^{1} \varphi_{i} \partial_{\eta} \varphi_{j} \Big|_{\xi=1-\eta} d\eta$$
$$LL_{5} = \int_{0}^{1} \varphi_{i} \partial_{\xi} \varphi_{j} \Big|_{\xi=0} d\eta \qquad LL_{6} = \int_{0}^{1} \varphi_{i} \partial_{\eta} \varphi_{j} \Big|_{\xi=0} d\eta$$

dependendo da ordem do elemento triangular (3 – linear ou 6 – quadrático) as integrais elementares serão matrizes elementares lineares ou quadráticos com nove ou trinta e seis elementos, respectivamente.

F.1 ELEMENTO TRIANGULAR LINEAR

Sejam as funções para o elemento triangular linear:

$$\varphi_1(\xi,\eta) = 1 - \xi - \eta$$

$$\varphi_2(\xi,\eta) = \xi$$

$$\varphi_3(\xi,\eta) = \eta$$

assim, as matrizes elementares para elementos triangulares são:

$$\begin{split} \mathbf{s}_{1} &= \int_{\hat{S}} \partial_{\xi} \varphi_{i} \partial_{\xi} \varphi_{j} d\xi d\eta \equiv f(1, i, j) \Rightarrow & \begin{array}{l} f(1, 1, 1) = 0.5; \\ f(1, 1, 2) = -0.5; \\ f(1, 2, 1) = -0.5; \\ f(1, 2, 2) = 0.5; \\ f(1, 2, 2) = 0.5; \\ f(2, 1, 1) = 0.5; \\ f(2, 1, 3) = -0.5; \\ f(2, 3, 1) = -0.5; \\ f(2, 3, 3) = 0.5; \\ f(2,$$

$$\begin{split} \mathbf{s}_{3} &= \int_{S}^{2} \vartheta_{\eta} \varphi_{i} \vartheta_{\xi} \varphi_{j} d\xi d\eta \equiv f(3, i, j) \Rightarrow \begin{array}{l} f(3, 1, 1) = 0.5; \\ f(3, 2, 1) = -0.5; \\ f(3, 3, 2) = 0.5; \\ \mathbf{s}_{3}^{T} &= \int_{S}^{2} \vartheta_{\xi} \varphi_{i} \vartheta_{\eta} \varphi_{j} d\xi d\eta \equiv f(3, j, i) \Rightarrow \begin{array}{l} f(3, 1, 1) = 0.5; \\ f(3, 3, 2) = 0.5; \\ f(3, 1, 2) = -0.5; \\ f(3, 2, 2) = 0.5; \\ f(3, 3, 2) = 0.5; \\ f(4, 1, 2) = 1./24; ; \\ f(4, 2, 2) = 1./24; ; \\ f(4, 2, 2) = 1./24; ; \\ f(4, 2, 2) = 1./24; ; \\ f(4, 3, 2) = 1./24; ; \\ f(5, 2, 2) = .5; \\ LL_{2} &= \int_{0}^{1} \varphi_{i} \vartheta_{i} \varphi_{j} \Big|_{q=0} d\xi \equiv f(5, i, j) \Rightarrow \begin{array}{l} f(5, 1, 1) = -.5; \\ f(5, 2, 2) = .5; \\ f(5, 2, 3) = .5; \\ LL_{3} &= \int_{0}^{1} \varphi_{i} \vartheta_{i} \varphi_{j} \Big|_{q=1, \zeta} d\xi \equiv f(7, i, j) \Rightarrow \begin{array}{l} f(7, 1, 1) = -.5; \\ f(7, 3, 1) = -.5; \\ f(7, 3, 2) = .5; \\ f(7, 3, 2) = .5; \\ LL_{4} &= \int_{0}^{1} \varphi_{i} \vartheta_{i} \varphi_{j} \Big|_{\xi=1, \eta} d\eta \equiv f(8, i, j) \Rightarrow \begin{array}{l} f(8, 1, 1) = -.5; \\ f(8, 1, 3) = .5; \\ f(8, 3, 3) = .5; \\ LL_{5} &= \int_{0}^{1} \varphi_{i} \vartheta_{i} \varphi_{j} \Big|_{\xi=0} d\eta \equiv f(9, i, j) \Rightarrow \begin{array}{l} f(9, 2, 1) = -.5; \\ f(9, 2, 2) = .5; \\ f(10, 2, 3) = .5; \\ f(10, 2, 3) = .5; \\ LL_{6} &= \int_{0}^{1} \varphi_{i} \vartheta_{\eta} \varphi_{j} \Big|_{\xi=0} d\eta \equiv f(10, i, j) \Rightarrow \begin{array}{l} f(10, 2, 3) = -.5; \\ f(10, 2, 3) = .5; \\ f(10, 2, 3) = .5; \\ f(10, 3, 3) = .5; \end{array}$$

F.2 ELEMENTO TRIANGULAR QUADRÁTICO

Sejam as funções para o elemento triangular quadrático:

$$\begin{split} \varphi_{1}(\xi,\eta) &= (1 - 2\xi - 2\eta)(1 - \xi - \eta) \\ \varphi_{2}(\xi,\eta) &= (2\xi - 1)\xi \\ \varphi_{3}(\xi,\eta) &= (2\eta - 1)\eta \\ \varphi_{4}(\xi,\eta) &= 4(1 - \xi - \eta)\xi \\ \varphi_{5}(\xi,\eta) &= 4\xi\eta \\ \varphi_{6}(\xi,\eta) &= 4(1 - \xi - \eta)\eta \end{split}$$

f(1,1,1) = 0.5; f(1,1,2) = 1./6.;

assim, as matrizes elementares para elementos triangulares são:

$$\begin{split} \mathbf{s}_{1} &= \int_{\hat{S}} \partial_{\xi} \varphi_{i} \, \partial_{\xi} \varphi_{j} \, d\xi \, d\eta \equiv f(1, i, j) \Rightarrow \\ \mathbf{s}_{1} &= \int_{\hat{S}} \partial_{\xi} \varphi_{i} \, \partial_{\xi} \varphi_{j} \, d\xi \, d\eta \equiv f(1, i, j) \Rightarrow \\ \mathbf{s}_{1} &= \int_{\hat{S}} \partial_{\xi} \varphi_{i} \, \partial_{\xi} \varphi_{j} \, d\xi \, d\eta \equiv f(1, i, j) \Rightarrow \\ \mathbf{s}_{2} &= \int_{\hat{S}} \partial_{\eta} \varphi_{i} \, \partial_{\eta} \varphi_{j} \, d\xi \, d\eta \equiv f(2, i, j) \Rightarrow \\ \mathbf{s}_{2} &= \int_{\hat{S}} \partial_{\eta} \varphi_{i} \, \partial_{\eta} \varphi_{j} \, d\xi \, d\eta \equiv f(2, i, j) \Rightarrow \\ \mathbf{s}_{2} &= \int_{\hat{S}} \partial_{\eta} \varphi_{i} \, \partial_{\eta} \varphi_{j} \, d\xi \, d\eta \equiv f(2, i, j) \Rightarrow \\ \mathbf{s}_{2} &= \int_{\hat{S}} \partial_{\eta} \varphi_{i} \, \partial_{\eta} \varphi_{j} \, d\xi \, d\eta \equiv f(2, i, j) \Rightarrow \\ \mathbf{s}_{2} &= \int_{\hat{S}} \partial_{\eta} \varphi_{i} \, \partial_{\eta} \varphi_{j} \, d\xi \, d\eta \equiv f(2, i, j) \Rightarrow \\ \mathbf{s}_{2} &= \int_{\hat{S}} \partial_{\eta} \varphi_{i} \, \partial_{\eta} \varphi_{j} \, d\xi \, d\eta \equiv f(2, i, j) \Rightarrow \\ \mathbf{s}_{2} &= \int_{\hat{S}} \partial_{\eta} \varphi_{i} \, \partial_{\eta} \varphi_{j} \, d\xi \, d\eta \equiv f(2, i, j) \Rightarrow \\ \mathbf{s}_{2} &= \int_{\hat{S}} \partial_{\eta} \varphi_{i} \, \partial_{\eta} \varphi_{j} \, d\xi \, d\eta \equiv f(2, i, j) \Rightarrow \\ \mathbf{s}_{2} &= \int_{\hat{S}} \partial_{\eta} \varphi_{i} \, \partial_{\eta} \varphi_{j} \, d\xi \, d\eta \equiv f(2, i, j) \Rightarrow \\ \mathbf{s}_{2} &= \int_{\hat{S}} \partial_{\eta} \varphi_{i} \, \partial_{\eta} \varphi_{j} \, d\xi \, d\eta \equiv f(2, i, j) \Rightarrow \\ \mathbf{s}_{2} &= \int_{\hat{S}} \partial_{\eta} \varphi_{i} \, \partial_{\eta} \varphi_{j} \, d\xi \, d\eta \equiv f(2, i, j) \Rightarrow \\ \mathbf{s}_{3} &= \int_{\hat{S}} \partial_{\eta} \varphi_{i} \, \partial_{\eta} \varphi_{j} \, d\xi \, d\eta \equiv f(2, i, j) \Rightarrow \\ \mathbf{s}_{3} &= \int_{\hat{S}} \partial_{\eta} \varphi_{i} \, \partial_{\eta} \varphi_{j} \, d\xi \, d\eta \equiv f(2, i, j) \Rightarrow \\ \mathbf{s}_{3} &= \int_{\hat{S}} \partial_{\eta} \varphi_{i} \, \partial_{\eta} \varphi_{j} \, d\xi \, d\eta \equiv f(2, i, j) \Rightarrow \\ \mathbf{s}_{3} &= \int_{\hat{S}} \partial_{\eta} \varphi_{i} \, \partial_{\eta} \varphi_{j} \, d\xi \, d\eta \equiv f(2, i, j) \Rightarrow \\ \mathbf{s}_{3} &= \int_{\hat{S}} \partial_{\eta} \varphi_{i} \, \partial_{\eta} \varphi_{j} \, d\xi \, d\eta \equiv f(2, i, j) \Rightarrow \\ \mathbf{s}_{3} &= \int_{\hat{S}} \partial_{\eta} \varphi_{i} \, \partial_{\eta} \varphi_{j} \, d\xi \, d\eta \equiv f(2, i, j) \Rightarrow \\ \mathbf{s}_{3} &= \int_{\hat{S}} \partial_{\eta} \varphi_{i} \, \partial_{\eta} \varphi_{j} \, d\xi \, d\eta \equiv f(2, i, j) \Rightarrow \\ \mathbf{s}_{3} &= \int_{\hat{S}} \partial_{\eta} \varphi_{i} \, \partial_{\eta} \varphi_{j} \, d\xi \, d\eta \equiv f(2, i, j) \Rightarrow \\ \mathbf{s}_{3} &= \int_{\hat{S}} \partial_{\eta} \varphi_{i} \, \partial_{\eta} \varphi_{j} \, d\xi \, d\eta \equiv f(2, i, j) \Rightarrow \\ \mathbf{s}_{3} &= \int_{\hat{S}} \partial_{\eta} \varphi_{i} \, \partial_{\eta} \varphi_{j} \, d\xi \, d\eta \equiv f(2, i, j) \Rightarrow \\ \mathbf{s}_{3} &= \int_{\hat{S}} \partial_{\eta} \varphi_{i} \, \partial_{\eta} \varphi_{j} \, d\xi \, d\eta \equiv f(2, i, j) \Rightarrow \\ \mathbf{s}_{3} &= \int_{\hat{S}} \partial_{\eta} \varphi_{i} \, \partial_{\eta} \varphi_{j} \, d\xi \, d\eta \equiv f(2, i, j) \Rightarrow \\ \mathbf{s}_{3} &= \int_{\hat{S}} \partial_{\eta} \varphi_{j} \, \partial_{\eta} \varphi_{j} \,$$

MATRIZES ELEMENTARES

$$\begin{split} \mathbf{s}_{3} &= \int_{\hat{S}} \partial_{\eta} \varphi_{i} \, \partial_{\xi} \varphi_{j} \, d\xi \, d\eta \equiv f(3, i, j) \Rightarrow \\ & \mathbf{s}_{3} = \int_{\hat{S}} \partial_{\eta} \varphi_{i} \, \partial_{\xi} \varphi_{j} \, d\xi \, d\eta \equiv f(3, i, j) \Rightarrow \\ & \mathbf{s}_{3} = \int_{\hat{S}} \partial_{\eta} \varphi_{i} \, \partial_{\xi} \varphi_{j} \, d\xi \, d\eta \equiv f(3, i, j) \Rightarrow \\ & \mathbf{s}_{3} = \int_{\hat{S}} \partial_{\eta} \varphi_{i} \, \partial_{\xi} \varphi_{j} \, d\xi \, d\eta \equiv f(3, i, j) \Rightarrow \\ & \mathbf{s}_{3} = \int_{\hat{S}} \partial_{\eta} \varphi_{i} \, \partial_{\xi} \varphi_{j} \, d\xi \, d\eta \equiv f(3, i, j) \Rightarrow \\ & \mathbf{s}_{3} = \int_{\hat{S}} \partial_{\eta} \varphi_{i} \, \partial_{\xi} \varphi_{j} \, d\xi \, d\eta \equiv f(3, i, j) \Rightarrow \\ & \mathbf{s}_{3} = \int_{\hat{S}} \partial_{\xi} \varphi_{i} \, \partial_{\eta} \varphi_{j} \, d\xi \, d\eta \equiv f(3, j, i) \Rightarrow \\ & \mathbf{s}_{3}^{T} = \int_{\hat{S}} \partial_{\xi} \varphi_{i} \, \partial_{\eta} \varphi_{j} \, d\xi \, d\eta \equiv f(3, j, i) \Rightarrow \\ & \mathbf{s}_{3}^{T} = \int_{\hat{S}} \partial_{\xi} \varphi_{i} \, \partial_{\eta} \varphi_{j} \, d\xi \, d\eta \equiv f(3, j, i) \Rightarrow \\ & \mathbf{s}_{3} = \int_{\hat{S}} \partial_{\xi} \varphi_{i} \, \partial_{\eta} \varphi_{j} \, d\xi \, d\eta \equiv f(3, j, i) \Rightarrow \\ & \mathbf{s}_{3} = \int_{\hat{S}} \partial_{\xi} \varphi_{i} \, \partial_{\eta} \varphi_{j} \, d\xi \, d\eta \equiv f(3, j, i) \Rightarrow \\ & \mathbf{s}_{3} = \int_{\hat{S}} \partial_{\xi} \varphi_{i} \, \partial_{\eta} \varphi_{j} \, d\xi \, d\eta \equiv f(3, j, i) \Rightarrow \\ & \mathbf{s}_{3} = \int_{\hat{S}} \partial_{\xi} \varphi_{i} \, \partial_{\eta} \varphi_{j} \, d\xi \, d\eta \equiv f(3, j, i) \Rightarrow \\ & \mathbf{s}_{3} = \int_{\hat{S}} \partial_{\xi} \varphi_{i} \, \partial_{\eta} \varphi_{j} \, d\xi \, d\eta \equiv f(3, j, i) \Rightarrow \\ & \mathbf{s}_{3} = \int_{\hat{S}} \partial_{\xi} \varphi_{i} \, \partial_{\eta} \varphi_{j} \, d\xi \, d\eta \equiv f(3, j, i) \Rightarrow \\ & \mathbf{s}_{3} = \int_{\hat{S}} \partial_{\xi} \varphi_{i} \, \partial_{\eta} \varphi_{j} \, d\xi \, d\eta \equiv f(3, j, i) \Rightarrow \\ & \mathbf{s}_{3} = \int_{\hat{S}} \partial_{\xi} \varphi_{i} \, \partial_{\eta} \varphi_{j} \, d\xi \, d\eta \equiv f(3, j, i) \Rightarrow \\ & \mathbf{s}_{3} = \int_{\hat{S}} \partial_{\xi} \varphi_{i} \, \partial_{\eta} \varphi_{j} \, d\xi \, d\eta \equiv f(3, j, i) \Rightarrow \\ & \mathbf{s}_{3} = \int_{\hat{S}} \partial_{\xi} \varphi_{i} \, \partial_{\eta} \varphi_{j} \, d\xi \, d\eta \equiv f(3, j, i) \Rightarrow \\ & \mathbf{s}_{3} = \int_{\hat{S}} \partial_{\xi} \varphi_{i} \, \partial_{\eta} \varphi_{j} \, d\xi \, d\eta \equiv f(3, j, i) \Rightarrow \\ & \mathbf{s}_{3} = \int_{\hat{S}} \partial_{\xi} \varphi_{i} \, \partial_{\eta} \varphi_{j} \, d\xi \, d\eta \equiv f(3, j, i) \Rightarrow \\ & \mathbf{s}_{3} = \int_{\hat{S}} \partial_{\xi} \varphi_{i} \, \partial_{\eta} \varphi_{j} \, d\xi \, d\eta \equiv f(3, j, i) \Rightarrow \\ & \mathbf{s}_{3} = \int_{\hat{S}} \partial_{\xi} \varphi_{i} \, \partial_{\eta} \varphi_{j} \, d\xi \, d\eta \equiv f(3, j, i) \Rightarrow \\ & \mathbf{s}_{3} = \int_{\hat{S}} \partial_{\xi} \varphi_{i} \, \partial_{\eta} \varphi_{j} \, d\xi \, d\eta \equiv f(3, j, i) \Rightarrow \\ & \mathbf{s}_{3} = \int_{\hat{S}} \partial_{\xi} \varphi_{i} \, \partial_{\eta} \varphi_{j} \, d\xi \, d\eta \equiv f(3, j, i) \Rightarrow \\ & \mathbf{s}_{3} = \int_{\hat{S}} \partial_{\xi} \varphi_{i} \, \partial_{\eta} \varphi_{j} \, d\xi \, d\eta \equiv f(3, j, i) \Rightarrow \\ & \mathbf{s}_{3} = \int_{\hat{S}} \partial_{\xi} \varphi_{i} \, \partial_{\eta} \varphi_{j} \, d\xi \, d\eta \equiv f(3, j, i) \Rightarrow \\ & \mathbf{s}_{3}$$

f(3,5,6)=-2./3.; f(3,6,6) = 2./3.;

 ${\bf s}_{3}^{T}$ =

$$\begin{split} & \left[(4,1,1) = 1, (60; \\ f(4,1,2) = -1, (30); \\ f(4,1,2) = -1, (30); \\ f(4,2,1) = -1, (30); \\ f(4,2,1) = -1, (30); \\ f(4,2,3) = -1, (30); \\ f(4,2,3) = -1, (30); \\ f(4,3,2) = -1, (30); \\ f(4,3,2) = -1, (30); \\ f(4,3,3) = -1, (50); \\ f(4,3,3) = -1, (50); \\ f(4,3,3) = -1, (50); \\ f(4,4,3) = -1, (50); \\ f(4,4,3) = -1, (50); \\ f(4,4,3) = -1, (50); \\ f(4,4,4) = -1, (50); \\ f(4,5,4) = -2, (45); \\ f(4,5,5) = -2, (45); \\ f(4,5,5) = -2, (45); \\ f(4,5,5) = -2, (45); \\ f(4,6,6) = -2, (45); \\ f(5,2,2) = -5; \\ f(5,2,2) = -5; \\ f(5,2,2) = -5; \\ f(5,2,2) = -2, (3); \\ f(5,4,2) = -2, (3); \\ f(5,4,2) = -2, (3); \\ f(6,4,4) = -2, (3); \\ f(6,4,6) = -2, (3); \\ f(7,6,4) = -2, (3); \\ f(7,6,4) = -2, (3); \\ f(7,6,4) = -2, (3); \\ f(7,6,6) = -2, (3); \\ f$$

$$\begin{split} LL_4 &= \int\limits_0^1 \varphi_i \, \partial_\eta \, \varphi_j \Big|_{\xi = 1 - \eta} \ d\eta \ \equiv \ f(8, i, j) \ \Rightarrow \ \begin{array}{c} & f(8, 1, 1) = -.5; \\ f(8, 3, 1) &= 1./6.; \\ f(8, 6, 1) = -2./3.; \\ f(8, 1, 3) = -1./6.; \\ f(8, 3, 3) = .5; \\ f(8, 6, 3) = 2./3.; \\ f(8, 1, 6) = 2./3.; \\ f(8, 3, 6) = -2./3.; \end{split}$$

$$\begin{split} LL_5 &= \int_0^1 \varphi_i \, \partial_\xi \varphi_j \Big|_{\xi=0} \, d\eta \, \equiv \, f(9,i,j) \, \Rightarrow \, \begin{split} &\stackrel{f(9,2,1)}{=} \, \frac{1./6.;}{f(9,2,2)} \, = \, \frac{1./2.;}{f(9,2,4)} \, = \, -\frac{2./3.;}{f(9,3,1)} \, = \, \frac{1./6.;}{f(9,3,2)} \, = \, -\frac{1./6.;}{f(9,3,5)} \, = \, \frac{2./3.;}{f(9,3,6)} \, = \, -\frac{2./3.;}{f(9,5,1)} \, = \, \frac{2./3.;}{f(9,5,2)} \, = \, \frac{2./3.;}{f(9,5,4)} \, = \, -\frac{4./3.;}{f(9,5,5)} \, = \, \frac{4./3.;}{f(9,5,5)} \, = \, \frac{4./$$

$$LL_{6} = \int_{0}^{1} \varphi_{i} \partial_{\eta} \varphi_{j} \Big|_{\xi=0} d\eta = f(10, i, j) \Rightarrow$$

$$f(9,5,6) = -4./3.;$$

$$f(10,2,1) = 1./6.;$$

$$f(10,2,3) = -1./6.;$$

$$f(10,2,4) = -2./3.;$$

$$f(10,2,5) = 2./3.;$$

$$f(10,3,1) = 1./6.;$$

$$f(10,3,3) = 1./2.;$$

$$f(10,3,6) = -2./3.;$$

$$f(10,5,1) = 2./3.;$$

$$f(10,5,3) = 2./3.;$$

$$f(10,5,4) = -4./3.;$$

$$f(10,5,5) = 4./3.;$$

Apêndice G

EQUAÇÃO DE SELLMEIER

A componente real do índice de refração $\text{Re}[n_{EFF}]$ apresenta uma dependência em relação ao comprimento de onda λ (ou energia). Esta dependência, conhecida como curva de dispersão do índice de refração, pode ser descrita a partir de uma equação empírica, válida para qualquer material, com parâmetros obtidos do ajuste de dados experimentais.

Na região de energia menor que o *gap* (região de transparência), este ajuste é obtido a partir da equação de Sellmeier [I. H. Malitson; "*Interspecimen comparison of the refractive index of fused silica*"; JOSA, vol. 55, no. 10, pp. 1205–1209, (1965)]. Para a sílica pura:

$$n_{SIL}(\lambda) = \sqrt{1 + \frac{A_0 \lambda^2}{\lambda^2 - \lambda_1^2} + \frac{B_0 \lambda^2}{\lambda^2 - \lambda_2^2} + \frac{C_0 \lambda^2}{\lambda^2 - \lambda_3^2}}$$

onde, A_0 , B_0 e C_0 são parâmetros de ajuste da equação; λ_1 , λ_2 e λ_3 são os comprimentos de onda de ressonância e; λ o comprimento de onda no qual é calculado o índice de refração. Os valores para estes parâmetros são:

$$A_0 = 0.69616630 , \lambda_1 = 0.0684043$$
$$B_0 = 0.40794260 , \lambda_2 = 0.1162414$$
$$C_0 = 0.89747940 , \lambda_3 = 9.8961610$$

Fig. G-1. Parte real do índice de refração para a sílica pura usando a formulação de Sellmeier.

lembrando que as unidades para o comprimento de onda é em micrômetros (µm).

A Figura G–1 mostra o comportamento da parte real do índice de refração para a sílica pura em função do comprimento de onda. Os dados foram obtidos a partir da equação de Sellmeier, descrita acima. Neste trabalho, a região de análise utilizada para o comprimento de onda é 1,0 μ m < λ < 1,80 μ m, assim, a parte real do índice de refração para a sílica pura vai variar, 1,44 < Re[n_{EFF}] < 1,45.

Apêndice H

FIBRAS AFUNILADAS

H.1 INTRODUÇÃO

Quando as dimensões duma fibra monomodo SMF convencional são reduzidas, Figura H–1, as propriedades dela mudam. Para saber como, usa-se o método dos elementos finitos FEM para fazer a análise modal da fibra reduzida. Utiliza-se o modelo *full-vector nodal* elaborado em MatLab, descrito no Capítulo 2.

Escolhe-se a região de simulação de 1,2 µm a 1,6 µm. As simulações são realizadas mudando a escala da malha de elementos finitos, a mesma utilizada no Capítulo 3, Figura 3–16, um quarto da geometria da fibra monomodo convencional.

Considerando que quando a fibra monomodo é reduzida ela mantém algumas especificações ópticas–geométricas (Tabela 3–5 do Capítulo 3), como os valores dos índices de refração do núcleo e da casca, a diferença de índices de refração continua em 0,36%, a concentricidade núcleo–casca, a geometria circular do núcleo e da casca, isto é, os diâmetros do núcleo e da casca mantêm-se circulares, sendo Φ_N e Φ_C , respectivamente.

Escolhe-se as seguintes fibras (escalas) para comparar suas propriedades:

- SMF-100%, onde $\Phi_N = 8,20 \,\mu\text{m} \,\text{e} \,\Phi_C = 125 \,\mu\text{m};$
- SMF-75%, onde $\Phi_N = 6,15 \,\mu\text{m}$ e $\Phi_C = 93,75 \,\mu\text{m}$;
- SMF-50%, onde $\Phi_N = 4,10 \,\mu\text{m}$ e $\Phi_C = 62,50 \,\mu\text{m}$;
- SMF-25%, onde Φ_N = 2,05 µm e Φ_C = 31,25 µm e;
- SMF-10%, onde $\Phi_N = 0.82 \ \mu m \ e \ \Phi_C = 12.50 \ \mu m$.

Fig. H–1. Desenho de uma fibra óptica convencional a diferentes escalas.

H.2 ANÁLISE MODAL

Nesta análise modal, calcula-se a parte real do índice efetivo $\text{Re}[n_{EFF}]$, a fração de potência no núcleo P_N , a área efetiva A_{EFF} e a dispersão cromática D para o modo fundamental LP_{01} - $\text{HE}_{11}^{\text{Y}}$.

A Figura H–2 mostra a parte real do índice efetivo e a fração de potência no núcleo do modo HE_{11}^{Y} para diferentes fibras monomodos reduzidas – escalas reduzidas.

A Figura H–2a mostra o comportamento da parte real do índice efetivo, $Re[n_{EFF}]$, em função do

(b)

Fig. H–2. (a) Parte real do índice efetivo $Re[n_{EFF}]e$ (b) Fração de potência no núcleo P_N do modo fundamental para diferentes escalas da fibra monomodo.

comprimento de onda λ e é comparado com os índices de refração do núcleo e da casca. O Re[n_{EFF}] decresce quando λ aumenta. Quando o diâmetro da fibra diminui o Re[n_{EFF}] também diminui. Reduzindo o diâmetro da fibra em até 50 % (SMF-50%) o valor do Re[n_{EFF}] "ainda" encontra-se entre os valores dos índices de refração do núcleo e da casca.

Para as fibras SMF-25% e SMF-10% o valor do $\text{Re}[n_{EFF}]$ é menor que o valor do índice de refração da casca. Isto sugere que o modo HE_{11}^{Y} encontra-se na casca e no núcleo, a fração de potência

Fig. H–3 (a). Distribuição espacial do campo $|H_Y|^2$ normalizado do modo HE_{II}^Y da fibra monomodo reduzida SMF-XX % .Para SMF-100 % (4,1; 62,5) µm; SMF-75 % (3,075; 46,875) µm e SMF-50 % (2,050; 31,25) µm. Os pares ordenados indicam os raios do núcleo e da fibra respectivamente.

na casca é maior do que a fração de potência no núcleo.

A Figura H–2b mostra o comportamento da fração de potência do modo no núcleo, P_N (Potência no núcleo/Potência total [%]), em função do comprimento de onda λ . A P_N decresce quando λ aumenta. Quando o diâmetro da fibra diminui a P_N também diminui.

Para SMF-100% e SMF-75% o modo está no núcleo com uma fração de potência acima de 50%. Para SMF-50% o modo se encontra mais de 50% na casca, por exemplo para $\lambda = 1,6 \,\mu\text{m}$ o modo se encontra 82% na casca. No caso de SMF-25% e SMF-10% o modo HE₁₁^Y se encontra mais de 95% na casca, propaga-se por toda a seção transversal da fibra. Na região de análise, o diâmetro do núcleo da SMF-10% ($\Phi_N = 0.82 \,\mu\text{m}$) é menor que o λ .

As Figuras H–3a e H–3b mostram a distribuição espacial do campo $|H_Y|^2$ normalizado do modo HE_{11}^Y para diferentes fibras SMF-XX% nos comprimentos de onda $\lambda = 0,4$ µm e 1,8 µm. É observado como o modo HE_{11}^Y se comporta quando o diâmetro da fibra diminui.

Para $\lambda = 0,4 \mu m$ o modo é confinado a uma área cada vez mais pequena, quando o diâmetro da fibra diminui; isto acontece de SMF-100% até SMF-25%. Já em SMF-10% o modo é expandido pelo

Fig. H–3 (b). Distribuição espacial do campo $|H_Y|^2$ normalizado do modo HE_{11}^Y da fibra monomodo reduzida SMF-XX % .Para SMF-25 % (1,025; 15,625) µm e SMF-10 % (0,41; 6,25) µm. Os pares ordenados indicam os raios do núcleo e da fibra respectivamente.

núcleo e casca. Para $\lambda = 1,8 \ \mu m$ o modo é expandido cada vez mais quando o diâmetro da fibra diminui, de SMF-100% até SMF-25%. Já em SMF-10% o modo é confinado a uma área pequena, neste caso área da fibra.

A Figura H–4 mostra a área efetiva e a dispersão cromática do modo HE_{11}^{Y} para diferentes fibras SMF-XX%.

A Figura H–4a mostra o comportamento da área efetiva do modo, A_{EFF} , em função do comprimento de onda λ , calculada da Equação 50 do Capítulo 2. Na região de análise, o valor da A_{EFF}

COMPRIMENTO DE ONDA [µm]

Fig. H–4. (a) Área efetiva e (b) Dispersão cromática do modo para diferentes escalas da fibra monomodo.

aumenta quando o λ aumenta. Quando o diâmetro da fibra diminui, A_{EFF} depende da escala XX% e do λ . Observa-se que para SMF-100%, SMF-75% e SMF-10% o valor de A_{EFF} varia pouco com o λ ($\Delta A_{EFF} \approx$ 40 µm²). Com SMF-25% tem-se uma variação de $\Delta A_{EFF} \approx$ 70 µm² e com SMF-25% tem-se ~ 180 µm² de variação da A_{EFF} na região de análise. Para este último, a variação é mais critica, a geometria do modo HE¹¹_Y muda rapidamente com a A_{EFF} .

A Figura H–4b mostra o comportamento da dispersão cromática D em função do comprimento de onda λ , calculado (Equação 48 do Capítulo 2) a partir da parte real do índice efetivo (Figura H–2a). Na região de análise, o valor da D aumenta quando o λ aumenta.

Observa-se que em geral as curvas de dispersão só estão deslocadas, variando assim o comprimento de onda para dispersão zero ZDW (λ_0). Calcula-se este valor para SMF-100% – λ_0 = 1,298 µm, SMF-75% – λ_0 = 1,382 µm, SMF-50% – λ_0 = 1,474 µm, SMF-25% – λ_0 =1,272 µm e SMF-10% – $\lambda_0 < 1,2$ µm. Até uma redução de 50% o λ_0 é deslocado para a região SWIR (*short wavelength infrared*); já para uma redução menor (< 25%), λ_0 é deslocado para a região NIR (*near infrared*).

Como conclusão, reduzindo o diâmetro da fibra monomodo consegue-se mudar o desempenho da fibra, especialmente a parte real do índice efetivo e a área efetiva que são os principais parâmetros a ser utilizados posteriormente. Uma maneira experimental de mudar o diâmetro da fibra é através da fabricação da fibra afunilada.

H.3 FIBRA AFUNILADA

Fibra afunilada é uma fibra óptica com diâmetro variável na forma de um cone. Geralmente consiste em peças de diferentes espessura, regiões de transição, onde o diâmetro da fibra diminui gradualmente até o valor da cintura, principal qualidade desta fibra afunilada como é mostrado na Figura H–5a.

Não existe um acordo geral sobre como esses elementos ópticos são chamados, diferentes grupos preferindo enfatizar diferentes propriedades destas fibras usam termos diferentes. Os nomes em uso são:

- Subwavelength Waveguide [1];
- Subwavelength Optical Wire [2];
- Subwavelength-Diameter Silica Wire [3];
- Subwavelength Diameter Fibre Taper [4, 5];
- (Photonic) Wire Waveguide [6, 7];
- Photonic Wire [8, 9, 10];
- Photonic Nanowire [11, 12, 13];
- Optical Nanowires [14];
- Optical Fibre Nanowires [15];
- Tapered (Optical) Fibre [16, 17, 18, 19];
- Fibre Taper [20];
- Submicron-Diameter Silica Fibre [21, 22];
- Ultra-Thin Optical Fibres [23];
- Optical Nanofibre [24];
- Optical Microfibres [25];
- Submicron Fibre Waveguides [26].

A principal peculiaridade de uma fibra afunilada é que na região da cintura, uma parte significativa da potência da luz se propaga fora da fibra. A rigor, o que decorre da aplicação de equações de Maxwell para uma guia óptico com secção circular [27]. De maneira simplificada, isso pode ser explicado pelo seguinte. A luz é guiada em guias de onda de reflexão interna total que ocorrem na interface entre o condutor de ondas e meios envolventes. Durante a reflexão interna total, a

intensidade da luz não cai para zero imediatamente na interface, mas decresce exponencialmente (desaparece) no meio de lado (o campo de luz de fora do guia óptico é chamado de campo evanescente). A profundidade de penetração da luz durante a reflexão interna total depende da configuração exata, mas geralmente é maior ou da ordem do comprimento de onda da luz.

A propagação da luz em uma fibra com diâmetro submícron é regida pelas equações de propagação diferentes do que em uma fibra óptica habitual [28, 29].

Neste trabalho, a região de análise, o comprimento de onda λ varia entre 0,4 μ m e 1,7 μ m.

A Figura H–5 mostra o esquema de fabricação da fibra afunilada e o equipamento VYTRAN – *Filament Fusion Splicing System*, *Model* FFS-2000, onde fabricam-se as fibras afuniladas.

Uma fibra óptica geralmente consiste de um núcleo, uma casca e um revestimento de proteção. O revestimento é removido, sendo geralmente acrilato. Em seguida, a fibra nua é fixada em dois extremos, um fixo e outro móvel, no equipamento para puxar (Figura H–5).

No meio da fibra é aquecido pelo calor produzido por uma resistência elétrica (filamento), ao mesmo tempo o extremo se move em direção oposta. O vidro esquenta e a fibra é puxada, para que seu diâmetro diminua. Sendo extremamente fina, a fibra afunilada é extremamente frágil. Portanto, é montado em uma estrutura imediatamente depois de puxar e nunca dissociada dessa montagem.

Outra questão é que as partículas de poeira podem adsorver à superfície de uma fibra afunilada.

Fig. H–5. (a) Esquema de fabricação da fibra com o diâmetro reduzido. *(b)* Equipamento para fabricar a fibra afunilada.

Se a energia do laser é acoplada significativamente na fibra as partículas de poeira, devido à dispersão da luz no campo evanescente, aquecem e termicamente podem destruir a cintura. Para evitar isso, a fibra afunilada é puxada e utilizada em ambientes livres de poeira.

Assim, com ajuda do equipamento é que fabrica-se fibras afuniladas com cinturas menores a 10 µm. Para dimensões menores obteve-se muitas dificuldades devido à sua fragilidade. Elas quebraram no momento da montagem ou da caracterização, independentemente da forma do afunilado.

A Figura H–6 mostra, em sequência, o processo de como uma fibra óptica comercial monomodo (Inicial: $00 - d_{NN} = 125 \mu m$) é transformada em uma fibra afunilada (Final: $15 - d_{NN} = 9,3 \mu m$). As fotografías foram feitas pelo próprio equipamento que também permite medir as dimensões da fibra afunilada, especificamente a cintura. Observa-se a "deformação" da fibra no processo, o extremo esquerdo da fibra permanece fixo enquanto o extremo direito é puxado até a dimensão final ou desejada. Nesse exemplo, em quinze passos (puxadas) obteve-se uma fibra afunilada com $d_{NN} = 9,3 \mu m$.

Durante a fabricação das fibras afuniladas foi feito a medição do sinal através da fibra, foi medido a potência transmitida nela, isto com ajuda de uma fonte de luz branca e um analisador de espectro óptico.

00	01	02	03
04	05	06	07
08	09	10	11
12	13	14	15

Fig. H–6. Fotografias da fabricação da fibra afunilada usando uma fibra comercial monomodo. A sequência está em números.

Fig. H–7. Fotografias de microscópio óptico numa fibra afunilada multimodo. Sem sinal e com sinal de uma fonte de luz branca.

A Figura H–7 mostra a fibra afunilada multimodo (convencional) quando é inserida luz através dela. O efeito da redução da fibra no sinal, observa-se que uma porção de luz é emitida para fora da fibra multimodo. No caso de uma fibra monomodo este efeito é menor.

A Figura H–8 mostra o comportamento da potência transmitida através da fibra afunilada monomodo para diferentes tamanhos de cintura d_{NN} em função do comprimento de onda λ .

Os valores de d_{NN} estão em forma decrescente, $d_{00} > d_{01} > ... > d_{08} > d_{09}$, sendo que a medida inicial foi $d_{00} = 125 \ \mu\text{m}$, isto é, uma fibra monomodo comercial. Os valores para d_{NN} foram: $d_{01} = 60,1 \ \mu\text{m}$, $d_{02} = 53,3 \ \mu\text{m}$, $d_{03} = 47,1 \ \mu\text{m}$, $d_{04} = 40,9 \ \mu\text{m}$, $d_{05} = 34,7 \ \mu\text{m}$, $d_{06} = 27,9 \ \mu\text{m}$, $d_{07} = 22,3 \ \mu\text{m}$, $d_{08} = 16,7 \ \mu\text{m}$ e $d_{09} = 9,3 \ \mu\text{m}$.

Observa-se que, para $d_{00} \ge d_{NN} \ge d_{05}$, o comportamento da potência transmitida é semelhante. Isto é, que quando o diâmetro da fibra é reduzida até um quarto do seu tamanho a transmissão da luz através dela, em função do λ , tem o mesmo comportamento só que com intensidade menor.

Já para d_{06} até d_{08} o comportamento começa a variar com o λ , não tendo um padrão para isso. Para d_{09} o comportamento da potência é de oscilações. A potência tem dois picos (duas caídas) na intensidade, que claramente são os dois picos de absorção da água, em aproximadamente 1,24 µm e 1,38 µm.

Todos estas medições da potência foram feitas tendo como meio o ar ao redor da fibra

Fig. H–8. Potência transmitida das fibras afuniladas com cintura d_{NN} .

afunilada, especificamente na cintura. Este comportamento da fibra afunilada faz com que ela possa ser usada como um sensor, especificamente para líquidos.

H.4 FIBRA AFUNILADA – SENSOR

A Figura H–9 mostra a fibra afunilada monomodo sendo aplicada como sensor. Aproveitando as dimensões da sua cintura, um material líquido é colocado na região da sua cintura (algumas gotas conseguem cobrir suficientemente essa região) assim, pode-se medir o que acontece com o sinal que é guiado através da fibra afunilada. O sistema para fazer essas medições foi uma fonte estável de luz branca e como detector foi utilizado um espectrômetro de fibra óptica que detecta perto do infravermelho e um analisador de espectro óptico.

Fig. H–9. Fibra afunilada monomodo utilizada como sensor. Montagem de medição. O material fica na região colorida.

A diferença de meios (líquido e fibra monomodo de sílica) fazem com que o sinal (intensidade de transmitância) diminua ou aumente, dependendo do índice de refração do líquido para determinados comprimentos de onda.

A Figura H–10 mostra o comportamento da potência transmitida em função do comprimento de onda, quando é usado três meios diferentes (água, álcool metilol e *quantum dots* de PbS diluídos em tolueno – QDs PbS) ao redor da fibra afunilada monomodo, especificamente na cintura $d_{NN} = 9,3 \mu m$.

Observa-se que o comportamento da potência, quando é colocado água, é parecido com a do álcool metilol com a única diferença de que com água o pico, caída em $\lambda = 1,38$ µm, é mais

Fig. H–10. Potência transmitida da fibra afunilada de cintura $d = 9,3 \mu m$ com diferentes materiais.

pronunciada do que com o álcool metilol.

Quando é colocado QDs PbS, na região da cintura, já o comportamento é diferente. Na região de 1,3 μ m a 1,6 μ m a potência é quase constante, observa-se uma caída em aproximadamente $\lambda = 1,5$ μ m que é devido ao pico de absorção dos QDs PbS localizado em 1,474 μ m. A potência de transmissão aqui é menor devido a que é "absorvido" mais do que com os outros líquidos.

Foi utilizado a mesma fibra afunilada monomodo para todas as medições. Depois de cada medição a fibra afunilada foi limpa com álcool isopropílico. A potência de transmissão do ar, sem líquido, medido no inicio do experimento foi usado como padrão e comparado cada vez que a fibra foi limpa, em dois dos três casos obteve-se o mesmo espectro ou comportamento.

Só depois de colocar os QDs PbS é que a fibra afunilada não pode ser limpa, devido a que os QDs ficaram na fibra afunilada e não tinha como remover eles sem prejudicar a cintura frágil da fibra afunilada.

Assim, dependendo de como a fibra afunilada reage com o líquido é que tem-se que fabricar novas fibras afuniladas para serem analisadas como sensor.

A Figura H–11 mostra o comportamento da transmitância normalizada (referência é o ar) em função do comprimento de onda quando é usado um sensor de fibra afunilada monomodo, com cintura de 14 µm. Foi usado cinco líquidos: etanol, água, isopropanol e duas misturas de água–isopropanol. Para todas as medições foi utilizado o mesmo sensor de fibra afunilada monomodo. Depois de cada

Fig. H–11. Potência transmitida normalizada da fibra afunilada de cintura $d = 14 \mu m$ com diferentes materiais.

medição o sensor foi limpo com álcool isopropílico. A intensidade da transmitância foi normalizada tomando como referência o ar, isto é, o sensor sem líquido.

Na Figura H–11a tem-se o comportamento para uma região de 0,4 µm até 1,65 µm. Observa-se o mesmo comportamento para os cinco líquidos só que com variações na intensidade.

Na Figura H–11b tem-se um "*zoom*" na região monomodo da fibra (1,25 μ m a 1,65 μ m), é possível observar uma relação entre as intensidades da transmitância e os líquidos para certos comprimentos de onda, por exemplo 1,30 μ m e 1,55 μ m, como é mostrado na Tabela H–1.

Na Tabela H–1 é observada a variação da transmitância em dois comprimentos de onda λ , quando a porcentagem de isopropanol aumenta na mistura água–isopropanol. Em $\lambda = 1,30 \mu m$, a intensidade aumenta e em 1,55 μm a intensidade diminui com a porcentagem. Para $\lambda = 1,55 \mu m$, é possível dizer que com o aumento de isopropanol na mistura o índice de refração dela aumenta

	Comprimento de onda [µm]	
	1,30	1,55
Líquido	Transmitância normalizada [u. a.]	
Água	1,16	0,91
Água (50 %) – Isopropanol (50 %)	1,19	0,87
Água (17 %) – Isopropanol (83 %)	1,39	0,76
Isopropanol	1,49	0,68

 Tabela H–1. Variação da transmitância normalizada obtida para um sensor de fibra afunilada monomodo, Figura H–11, para misturas de água e isopropanol.

Fig. H–12. *Potência transmitida da fibra afunilada* – *sensor de cintura d* = $14 \mu m$ *com diferentes materiais.*

também, com isso a diferença de índices entre os meios (mistura e fibra afunilada) diminui e devido a isso a transmitância na fibra afunilada diminui.

A Figura H–12 mostra o comportamento da transmitância em função do comprimento de onda quando é usado um sensor de fibra afunilada monomodo, com cintura de 14 µm. Foi usado 7 líquidos com misturas diferentes de etanol e água.

Na Figura H–12a é observado o comportamento na região infravermelha de 1,0 μ m até 2,4 μ m. Observa-se o mesmo comportamento para os sete líquidos. Na Figura H–12b tem-se um "*zoom*" na região de 2,0 μ m a 2,2 μ m, é possível observar uma relação entre os espectros da transmitância e as porcentagens de mistura dos líquidos para certos comprimentos de onda, como é mostrado na Tabela H–2.

	Comprimento de onda [µm]	
	2,02	2,09
Mistura Etanol – Água	Transmitância [u. a.]	
Etanol (00 %) – Água (100 %)	1,25	0,60
Etanol (17 %) – Água (83 %)	1,08	0,60
Etanol (33 %) – Água (67 %)	0,76	0,48
Etanol (50 %) – Água (50 %)	0,59	0,29
Etanol (67 %) – Água (33 %)	0,43	0,17
Etanol (83 %) – Água (17 %)	0,15	0,05
Etanol (100 %) – Água (00 %)	0,11	0,04

Tabela H–2. Variação da transmitância obtida para um sensor de fibra afunilada monomodo, Figura H–12, para misturas de água e etanol.

Fig. H–13. Intensidade dos dois picos da transmitância para uma fibra afunilada – sensor com cintura de 14 µm. Dados extraídos da Figura H–12.

Na Tabela H–2 tem-se a variação da transmitância para diferentes misturas de etanol com água para dois comprimentos de onda, 2,02 µm e 2,09 µm. Em ambos casos, com aumento da concentração do etanol na mistura a intensidade da transmitância diminui. Com isso, conclui-se que com o etanol o sinal é mais "absorvido" do que com água.

O que é importante na análise de um sinal no espectro não é a sua altura, mas a área subentendida pelo pico. Estas áreas, quando medidas com exatidão, estão entre si na mesma razão que o sinal que o provocou.

A Figura H–13 mostra o valor da intensidade dos dois picos calculado das áreas abaixo dos dois picos $(2,02 \ \mu m \ e \ 2,09 \ \mu m)$ da transmissão obtidos da Figura H–12; assim, é possível observar claramente a dependência da transmitância com a concentração de etanol, para esses dois comprimentos de onda. Em ambos casos a diferença de índice diminui com o aumento da concentração de etanol, por isso a transmitância da fibra afunilada diminui.

Com as variações no espectro da transmissão tem-se como conclusão de que a fibra afunilada pode ser utilizada como sensor para líquidos.

H.5 ACOPLAMENTO

A abordagem formal para estudar a propagação da luz no acoplamento é de escrever as equações de Maxwell nas diferentes regiões e utilizar as condições de contorno. Uma análise exata é difícil. No entanto, para o acoplamento fraco, uma versão simplificada da teoria aproximada, conhecida como a teoria de acoplamento de modos, é geralmente satisfatória [30, 31, 32].

A teoria de acoplamento óptico pressupõe que os modos de cada um dos guias de onda, na ausência do outro, são aproximadamente os mesmos, digamos Ψ_1 (*r*) e Ψ_2 (*r*), do contrário não existe acoplamento. Então:

$$\Psi_1(\vec{r}) \approx \Psi_2(\vec{r})$$

onde o modo $\Psi(\mathbf{r})$ depende da sua distribuição espacial transversal u(x,y) e sua constante de propagação β :

Fig. H-14. Acoplamento de dois guias de onda.

$$u_1(x, y) \cdot Exp(-i\beta_1 z) \approx u_2(x, y) \cdot Exp(-i\beta_2 z)$$

onde tem-se que:

$$u_i(x, y) \to A_{EFF-i}$$

$$\beta_i \to n_{EFF-i}$$

com isso, os índices efetivos dos guias ópticos n_{eff} tem que ser aproximadamente iguais assim como as áreas efetivas A_{eff} .

Uma maneira de comprovar isso é acoplando duas fibras, escolhe-se uma fibra óptica microestruturada como exemplo. Acoplando essa fibra com uma fibra monomodo com diferentes diâmetros, aproveitando que assim pode-se variar o índice efetivo e área efetiva desta fibra.

H.5.1 FIBRA MICROESTRUTURADA PCF07

A fibra PCF07 é uma fibra microestruturada de sílica pura composta por sete anéis de buracos de ar ao redor de um núcleo sólido. A Figura H–15a mostra a fotografia da PCF07 feita no microscópio de varredura SEM onde observa-se o arranjo triangular periódico dos buracos de ar. Os diâmetros do núcleo e dos buracos são de ~ 3,5 μ m e ~ 3,0 μ m, respectivamente. Esta fibra tem um diâmetro externo de ~ 125 μ m.

(a)

Fig. H–15. (a) Fotografia SEM da fibra microestruturada PCF07. *(b)* Distribuição espacial dos modos de 1^a e 2^a ordem da PCF07 para o comprimento de onda $\lambda = 0.98 \ \mu m$.

(b)

Esta fibra foi fabricada pela técnica denominada "*stack–and–draw*" no laboratório de Novos Materiais Vítreos do DEQ–IFGW–UNICAMP.

Na Figura H–15b observa-se dois modos (1^a e 2^a ordem) de propagação no núcleo da fibra PCF07 para o comprimento de onda igual a 0,98 μ m. Com ajuda de um laser e uma câmera infravermelha obteve-se os perfis normalizados em 2D e 3D para os dois modos. Esses perfis são típicos dos modos LP₀₁ e LP₁₁. Como era de prever o modo fundamental é o mais intenso da fibra microestruturada, foi utilizado filtros para poder obter a imagem na câmera infravermelha. Observa-se que este modo está confinado no núcleo da fibra.

Com ajuda do método de elementos finitos FEM é feito a análise modal desta fibra PCF07, especificamente para o modo fundamental LP₀₁. É calculado a parte real do índice efetivo Re[$n_{EFF-PCF07}$], a área efetiva $A_{EFF-PCF07}$, e a distribuição espacial do modo. Usa-se o modelo *full-vector nodal* elaborado em MatLab para realizar as simulações.

A Figura H–16 mostra a malha de elementos finitos. A Figura H–16a mostra a malha inteira onde tem-se toda a estrutura da fibra microestruturada, o tamanho dos elementos é mais refinado próximo do núcleo. A malha tem aproximadamente 41.000 elementos triangulares. Foi utilizado paredes PECs como condições de contorno da malha.

A janela computacional usada é de 70 μ m (direção horizontal) x 70 μ m (direção vertical), a região de PML tem uma espessura de 3 μ m. O centro da fibra microestruturada coincide com a origem de sistema de coordenadas *XY*, isto é, no centro da janela computacional.

A Figura H–16b mostra uma ampliação da malha, onde tem-se o núcleo de sílica pura, o primeiro anel de buracos de ar e a casca de sílica pura. Esta ampliação tem como dimensões [-4, 4] µm

Fig. H–16. (a) Malha de elementos finitos usado para a análise modal da fibra microstruturada PCF07. (b) Ampliação da malha refinada próximo do núcleo.

Fig. H–17. Parte real do índice efetivo e área efetiva do modo fundamental da fibra PCF07.

no eixo *X* e [-4, 4] μ m no eixo *Y*. A região de análise para o comprimento de onda foi 0,8 μ m até 1,8 μ m. Como o modo LP₀₁ é degenerado, só é analisado o modo LP₀₁^Y onde o campo dominante é o H_Y.

A Figura H–17 mostra os comportamentos da parte real do índice efetivo Re[$n_{EFF-PCF07}$] e da área efetiva $A_{EFF-PCF07}$ do modo LP₀₁ da fibra PCF07 em função do comprimento de onda λ . O Re[$n_{EFF-PCF07}$] decresce quando o λ aumenta. Já a $A_{EFF-PCF07}$ aumenta quando o λ aumenta. Comparando os valores com os da fibra monomodo, Re[$n_{EFF-SMF}$] (Figura 3–17a) e $A_{EFF-SMF}$ (Figura 3–20), observa-se que são menores.

A Figura H–18 mostra as distribuições espaciais do campo de $|H_Y|^2$ normalizado calculados para os modos LP_{01}^Y e LP_{11}^Y em $\lambda = 0,98 \mu m$, em ambos casos o campo dominante é H_Y . Observa-se que ambos modos se encontram confinados no núcleo. No primeiro modo observa-se uma levíssima

Fig. H–18. Distribuição espacial do campo $|H_Y|^2$ normalizado dos modos calculados da fibra *PCF07 para o comprimento de onda \lambda = 0,98 \ \mu m.*

Fig. H–19. Comparação entre fibra microestruturada PCF07 e fibra monomodo -escala 3.6%. Parte real do índice efetivo e área efetiva do modo fundamental.

influência do primeiro anel de buracos já que ele não é circular. Para o segundo modo a influência dos buracos já é um pouco maior, observado no contorno do modo LP_{11}^{Y} que está distorcido.

Agora, comparando Re[$n_{EFF-PCF07}$] e $A_{EFF-PCF07}$ com as partes reais dos índices efetivos e áreas efetivas, respectivamente, de uma fibra monomodo reduzida SMF-XX% encontra-se que esses valores são equivalentes para XX% = 3,6% isto é, SMF-3,6% cujo diâmetro é de 4,5 µm, mostrados na Figura H–19.

Então, teoricamente-numericamente, a fibra PCF07, da Figura H–15a, é melhor acoplada com uma fibra monomodo de diâmetro igual a 4,5 μ m do que com uma fibra monomodo de 125 μ m de diâmetro.

H.5.2 ACOPLADOR – FIBRA AFUNILADA

Observa-se que a partir da fibra afunilada pode-se fabricar um acoplador, acoplador de fibra afunilada.

A Figura H–20a mostra que clivando na região de transição, onde está localizada a cintura da fibra afunilada, tem-se 3 possibilidades de fabricar os acopladores. Clivando nas posições 1 ou 3 tem-se como resultado dois tipos de acopladores TXnn e TYnn. Já se a clivagem é na posição 2 tem-se um (ou dois) acopladores desejados.

O acoplador TXnn (d_{NN} ; d_{XY}), mostrado na Figura H–20b, é aquele cujo diâmetro tem duas variações significativas, a primeira vem de $d_{00} = 125 \ \mu\text{m}$ até a cintura $d_{NN} (d_{00} \rightarrow d_{NN})$ e a segunda até um diâmetro final $d_{XY} (d_{NN} \rightarrow d_{XY})$: $d_{00} > d_{XY} > d_{NN}$.

O acoplador TYnn (d_{XY}), mostrado na Figura H–20c, é aquele cujo diâmetro tem uma variação significativa, vem de d_{00} até o diâmetro final d_{XY} ($d_{00} \rightarrow d_{XY}$): $d_{00} > d_{XY}$.

O acoplador desejado é aquele cujo diâmetro vai de d_{00} até a cintura d_{NN} ($d_{00} \rightarrow d_{NN}$): $d_{00} > d_{NN}$.

Experimentalmente clivar uma fibra cujo diâmetro é menor a 10 μ m é difícil, devido as dimensões e fragilidade da fibra que não o permitem. O único jeito de clivar é movendo a fibra afunilada do aparelho, com isso limitamos a cintura d_{NN} para algumas dezenas de mícrons. Clivar na posição 2 é uma questão de "sorte".

A Figura H-21a mostra a "fabricação" de um acoplador TAnn. Na fabricação, quando o

Fig. H–20. (a) Possíveis clivagens na fibra afunilada. Resultados da clivagem, dois acopladores: (b) Acoplador-afunilada TXnn, (c) Acoplador-afunilada TYnn.

Fig. H–21. (a) Processo de "fabricação" do acoplador TAnn na fibra afunilada. (b) Acopladores TAnn.

diâmetro chega próximo do limite (muito fino) a fibra quebra, já que não suporta mais uma "puxada". Devido ao calor (produzido pelo filamento do aparelho), as pontas quebradas sofrem com o aquecimento deixando-as arredondadas, em forma de bolhas, parecendo pequenas lentes convexas. Assim, dependendo onde quebra, temos duas pontas, geralmente uma fina e uma grossa, Figura H–21b.

Com isso, temos três tipos de acopladores que consegue-se fabricar aproveitando as fibras afuniladas.

Com ajuda de uma fonte de luz branca e um analisador de espectro óptico foi feito as medições da potência transmitida através do acoplamento com a fibra microestruturada PCF07. Medindo esta potência, pode-se dizer que acoplamento (TX-PCF07, TY-PCF07 ou TA-PCF07) é melhor ou não do que acoplado a uma fibra monomodo normal (125 µm). Utilizando o aparelho VYTRAN consegue-se aproximar o acoplador–fibra afunilada com a fibra PCF07 em deslocamentos nas três direções, uma longitudinal e duas na transversal, com resolução de até 1 µm. A região de análise foi de 0,4 µm até 1,7 µm,

No extremo do acoplador (TX, TY ou TA), a fibra é normal (125 μ m), e consegue-se acoplar o modo LP₀₁ com a fonte de luz. Este modo é acoplado na fibra PCF07 e no outro extremo é medido a potência transmitida no analisador óptico. Todos os acopladores têm o mesmo comprimento e é mantido as mesmas condições em todos os casos, isto é, fabricados a partir duma fibra monomodo convencional. Com ajuda de um microscópio óptico, no final da fibra PCF07, observa-se o modo e, assim, tem-se certeza de que o modo LP₀₁ foi acoplado e não outro modo.

H.5.3 ACOPLAMENTO TA-PCF07

A Figura H–22a mostra o acoplamento do acoplador – fibra afunilada TA01 (Figura H–21b) com a fibra microestruturada PCF07 de sílica pura (Figura H–15a), é possível observar e diferenciar a estrutura da casca na fibra PCF07. Na esquerda das duas fotos observa-se o perfil do acoplador TA01.

O acoplamento deste tipo de acoplador tem que ser cuidadoso, já que devido à sua geometria ela acopla melhor a uma distância da fibra PCF07, como se fosse o ponto focal de uma lente. É possível observar o sinal sendo espalhado na ponta do acoplador TA01.

A Figura H–22b mostra o comportamento da potência transmitida medida para os dois TAnn (Figura H–21b) em função do comprimento de onda λ , onde é comparada com a da fibra monomodo convencional T00 (normal 125 µm). Observa-se uma caída em $\lambda = 1.38$ µm (pico de absorção típica da

Fig. H–22. (a) Acoplamento de TA01 com a fibra fotônica PCF07. *(b)* Potência transmitida para os acoplamentos das fibras afuniladas TAnn e fibra normal T00.

água). O acoplamento não foi melhor na região de análise. Em algumas regiões a potência transmitida é igual à da fibra normal T00.

Pode-se concluir que com este tipo de acopladores não consegue-se melhorar o acoplamento. Outra coisa que impossibilita é a fabricação deste acoplador já que não dá para reproduzir a geometria devido a que é aleatória a região em que o "rompimento" da fibra afunilada acontece.

H.5.4 ACOPLAMENTO TX-PCF07

A Figura H–23 mostra os perfis dos acopladores TXnn (d_{NN} ; d_{XY}) assim como da fibra microestruturada PCF07 de sílica pura (Figura H–15a), mostrado no lado direito das fotos. Na esquerda das fotos observa-se os diferentes perfis dos acopladores, no momento do acoplamento. Também é mostrado o perfil do T00 (fibra normal 125 µm). Estas fotografias foram obtidas pela câmera do aparelho VYTRAN.

Duma fibra monomodo convencional foram fabricados os acopladores TX:

- TX01 (63 μm; 113 μm),
- TX02 (60 μm; 99 μm),
- TX03 (29 μm; 74 μm),
- TX04 (32 μm; 69 μm) e,
- TX05 (22 μm; 47 μm).

Fig. H-23. Fotografias dos acoplamentos para TXnn com a fibra microestruturada PCF07.

A Figura H–24 mostra o comportamento da potência transmitida (P_{TXnn}), em função do comprimento de onda λ , para cada acoplador TXnn (Figura H–23) onde é comparado com a potência transmitida (P_{T00}) da fibra normal. Observa-se em todos os espectros a caída em $\lambda = 1,38 \mu m$ que é devido ao pico de absorção típico da água.

O acoplamento com a fibra PCF07 foi melhor na região de 0,4 µm a 1,1 µm quando é acoplado com TX01, TX02, TX03 e TX04. O ganho máximo de acoplamento obtido foi de 3 dB ($\equiv P_{TX04} / P_{T00} =$ 2,0) com TX04 em $\lambda = 0.88$ µm, isto é, o dobro.

Fig. H-24. Potência transmitida através dos acoplamentos TX-PCF07.

Na região das janelas de comunicação, o melhor acoplamento é obtido foi de 1,9 dB ($\equiv P_{TX05} / P_{T00} = 1,54$) em $\lambda > 1,65 \mu$ m para o acoplador TX05.

Como o objetivo é obter um melhor acoplamento conclui-se que este tipo de acopladores não são os adequados para este objetivo.

H.5.5 ACOPLAMENTO TY-PCF07

A Figura H–25 mostra os perfis dos acopladores TYnn (d_{XY}) assim como da fibra microestruturada PCF07 de sílica pura (Figura H–15a), mostrado no lado direito das fotos. Na esquerda das fotos observa-se os diferentes perfis dos acopladores, no momento do acoplamento. Também é mostrado o perfil do T00 (fibra normal 125 µm). Estas fotografias foram obtidas pela câmera do aparelho VYTRAN.

Duma fibra monomodo convencional foram fabricados os acopladores TY:

- TY01 (113 μm),
- TY02 (99 μm),
- TY03 (74 μm),
- TY04 (69 µm) e,
- TY05 (47 μm).

Fig. H-25. Fotografias dos acoplamentos para TYnn com a fibra microestruturada PCF07.

A Figura H–26 mostra o comportamento da potência transmitida (P_{TYnn}), em função do comprimento de onda λ , para cada acoplador TYnn fabricado (Figura H–25) e é comparado com a potência transmitida (P_{T00}) da fibra normal. Observa-se em todos os espectros a caída em $\lambda = 1,38 \mu m$ que é devido ao pico de absorção típica da água.

Para todos os casos, observa-se uma potência transmitida maior do que com T00. O valor maior acontece para o acoplador TY05.

Comparando estes dados, com os da Figura H-24, observa-se que com este tipo de acoplador

Fig. H-26. Potência transmitida através dos acoplamentos TY-PCF07.

obteve-se melhores resultados, isto é, o acoplamento foi melhor. Por isso, a partir destes dados foi calculado a potência ganha (P_{TYnn} - P_{T00}) dos acopladores TYnn.

A Figura H-27 mostra a potência ganha dos acopladores TYnn em função do comprimento de

ACOPLAMENTO: Taper SMF - PCF07

Fig. H-27. Potência ganha no acoplamento utilizando as fibras afuniladas TYnn.

onda λ . Os acoplamentos com a fibra PCF07 foram melhores na região de 0,6 µm a 1,1 µm para os cinco casos analisados. Na região de análise, o mínimo de acoplamento foi de 3 dB o que da o dobro (2 P_{T00}) e o máximo foi de 6 dB que é equivalente a quatro vezes (4 P_{T00}) do que com a fibra normal.

Para TY01 tem-se um máximo de 3,2 dB ($P_{TY01} / P_{T00} = \sim 2$) em $\lambda = 0.97 \mu m$.

Para TY02 tem-se um máximo de 3,9 dB ($P_{TY02} / P_{T00} = \sim 2$) em $\lambda = 0,99 \ \mu$ m.

Para TY03 tem-se um máximo de 2,9 dB ($P_{TY03} / P_{T00} = \sim 2$) em $\lambda = 0,97 \mu m$.

Para TY04 tem-se um máximo de 4,1 dB ($P_{TY04} / P_{T00} = \sim 2,5$) em $\lambda = 0,98 \mu m$.

Para TY05 tem-se um máximo de 5,9 dB ($P_{TY05} / P_{T00} = \sim 3$) em $\lambda = 0,86 \mu m$.

Como conclusão dos resultados, tem-se que este tipo de acoplador é o mais adequado. E que os resultados concordam com a teoria de acoplamento.

H.6 CONCLUSÕES

Neste apêndice foram apresentados resultados experimentais e numéricos de duas aplicações diferentes, sensor de líquidos e acoplador, para a fibra afunilada fabricada duma fibra monomodo convencional.

Como sensor de líquidos, os resultados experimentais do espectro de transmitância mostram que a fibra afunilada pode ser utilizada para medir as diferentes concentrações de misturas de líquidos. Escolhendo o comprimento de onda adequado, este sensor pode ser uma boa escolha, como por exemplo, etanol-água.

Como acoplador, os resultados numéricos e experimentais mostram que a fibra afunilada obteve um acoplamento melhor com uma fibra microestruturada, composta de sete anéis ao redor do núcleo sólido de sílica pura, do que com a fibra convencional normal.

H.7 BIBLIOGRAFIA

- 1 Mark A. Foster and Alexander L. Gaeta; "*Ultra-low threshold supercontinuum generation in sub-wavelength waveguides*"; Opt. Express, Vol. 12, No. 14, pp. 3137- 3143, (2004).
- 2 Yongmin Jung, Gilberto Brambilla and David J. Richardson; "*Broadband single-mode operation of standard optical fibers by using a sub-wavelength optical wire filter*"; Opt. Express Vol. 16, No. 19, pp. 14661–14667, (2008).
- 3 Limin Tong, Rafael R. Gattass, Jonathan B. Ashcom, Sailing He, Jingyi Lou, Mengyan Shen, Iva Maxwell and Eric Mazur; "Subwavelength-diameter silica wires for low-loss optical wave guiding"; Nature, Vol. 426, pp. 816 – 819, (2003).
- 4 E. C. Mägi, L. B. Fu, H. C. Nguyen, M. R. E. Lamont, D. I. Yeom and B. J. Eggleton; *"Enhanced Kerr nonlinearity in sub-wavelength diameter As*₂Se₃ chalcogenide fiber tapers";
 Opt. Express, Vol. 15, No. 16, pp. 10324 10329, (2007).
- 5 Lei Zhang, Fuxing Gu, Jingyi Lou, Xuefeng Yin and Limin Tong, "Fast detection of humidity with a subwavelength-diameter fiber taper coated with gelatin film", Opt. Express Vol. 16, No. 17, pp. 13349-13353, (2008).
- 6 T. K. Liang, L. R. Nunes, T. Sakamoto, K. Sasagawa, T. Kawanishi and M. Tsuchiya; "Ultrafast all-optical switching by cross-absorption modulation in silicon wire waveguides"; Opt. Express, Vol. 13, No. 19, pp. 7298 7303, (2005).
- Richard L. Espinola, Jerry I. Dadap, Richard M. Osgood Jr., Sharee J. McNab and Yurii A. Vlasov; "*C-band wavelength conversion in silicon photonic wire waveguides*"; Opt. Express Vol. 13, No. 11, pp. 4341 4349, (2005).
- 8 Yannick K. Lizé, Eric C. Mägi, Vahid G. Ta'eed, Jeremy A. Bolger, Paul Steinvurzel, and Benjamin J. Eggleton; "*Microstructured optical fiber photonic wires with subwavelength core diameter*"; Opt. Express, Vol. 12, No. 14, pp. 3209 – 3217, (2004).
- 9 Aleksei Zheltikov, "*Gaussian-mode analysis of waveguide-enhanced Kerr-type nonlinearity of optical fibers and photonic wires*"; J. Opt. Soc. Am. B, Vol. 22, No. 5, pp. 1100 1104, (2005).
- 10 S. O. Konorov, D. A. Akimov, E. E. Serebryannikov, A. A. Ivanov, M. V. Alfimov, K. V. Dukel'skii, A. V. Khokhlov, V. S. Shevandin, Yu. N. Kondrat'ev and A. M. Zheltikov; "*High-order modes of photonic wires excited by the Cherenkov emission of solitons*", Laser Phys. Lett. 2, No. 5, pp. 258 -261, (2005).
- 11 Mark A. Foster, Amy C. Turner, Michal Lipson and Alexander L. Gaeta; "Nonlinear optics in photonic nanowires"; Opt. Express, Vol. 16, No. 2, pp. 1300 – 1320, (2008).

- 12 N. A. Wolchover, F. Luan, A. K. George and J. C. Knight; "*High nonlinearity glass photonic crystal nanowires*", Opt. Express, Vol. 15, No. 3, pp. 829 833, (2007).
- 13 Limin Tong, Lili Hu, Junjie Zhang, Jianrong Qiu, Qing Yang, Jingyi Lou, Yonghang Shen, Jinglei He and Zhizhen Ye; "Photonic nanowires directly drawn from bulk glasses"; Opt. Express Vol. 14, No. 1, pp. 82 – 87, (2006).
- 14 G. A. Siviloglou, S. Suntsov, R. El-Ganainy, R. Iwanow, G. I. Stegeman and D. N. Christodoulides; "Enhanced *third-order nonlinear effects in optical AlGaAs nanowires*", Opt. Express, Vol. 14, No. 20, pp. 9377 – 9384, (2006).
- 15 Optical Fibre Nanowires and Related Devices Group, Optoelectronics Research Centre, University of Southampton; www.orc.soton.ac.uk/ofnrd.html.
- 16 P. Dumais, F. Gonthier, S. Lacroix, J. Bures, A. Villeneuve, P. G. J. Wigley and G. I. Stegeman; "Enhanced *self-phase modulation in tapered fibres*", Opt. Lett., Vol. 18, No. 23, pp. 1996 – 1998, (1993).
- 17 C. M. B. Cordeiro, W. J. Wadsworth, T. A. Birks and P. St. J. Russell, "Engineering the dispersion of tapered fibers for supercontinuum generation with a 1064 nm pump laser", Opt. Lett., Vol. 30, No. 15, pp. 1980 – 1982, (2005).
- 18 J. M. Dudley and S. Coen; "Numerical simulations and coherence properties of supercontinuum generation in photonic crystal and tapered optical fibers", IEEE J. Sel. Top. Quantum Electron., Vol. 8, 651 – 659, (2002).
- 19 M. Kolesik, E. M. Wright and J. V. Moloney; "Simulation of femtosecond pulse propagation in sub-micron diameter tapered fibers"; Appl. Phys. B, Vol. 79, No. 3, pp. 293 – 300, (2004).
- 20 William J. Wadsworth, Arturo Ortigosa-Blanch, Jonathan C. Knight, Tim A. Birks, T.-P. Martin Man and Phillip St. J. Russell; "Supercontinuum generation in photonic crystal fibers and optical fiber tapers: a novel light source", J. Opt. Soc. Am. B, Vol. 19, No. 9, pp. 2148 – 2155, (2002).
- 21 Lei Shi, Xianfeng Chen, Hongjuan Liu, Yuping Chen, Zhiqing Ye, Weijun Liao and Yuxing Xia; *"Fabrication of submicron-diameter silica fibers using electric strip heater"*; Opt. Express Vol. 14, No. 12, pp. 5055 5060, (2006).
- 22 Rafael R. Gattass, Geoffry T. Svacha, Limin Tong and Eric Mazur; "Supercontinuum generation in submicrometer diameter silica fibers"; Opt. Express, Vol. 14, No. 20, pp. 9408 9414, (2006).
- 23 G. Sagué, A. Baade and A. Rauschenbeutel, "Blue-detuned evanescent field surface traps for

neutral atoms based on mode interference in ultra-thin optical fibres"; New J. Phys., Vol. 10, 113008, 18 pp., (2008).

- 24 K. P. Nayak, P. N. Melentiev, M. Morinaga, Fam Le Kien, V. I. Balykin and K. Hakuta; "Optical nanofiber as an efficient tool for manipulating and probing atomic fluorescence", Opt. Express, Vol. 15, No. 9, pp. 5431 – 5438, (2007).
- 25 Fei Xu, Peter Horak and Gilberto Brambilla, "*Optical microfiber coil resonator refractometric sensor*", Opt. Express Vol. 15, No. 12, pp. 7888-7893, (2007).
- 26 S. G. Leon-Saval, T. A. Birks, W. J. Wadsworth and P. St.J. Russell; "Supercontinuum generation in submicron fibre waveguides"; Opt. Express Vol. 12, No. 13, pp. 2864 2869, (2004).
- 27 A. W. Snyder and J. D. Love; "Optical Waveguide Theory"; Kluwer Academic Publishers, 1983.
- 28 Truong X. Tran and Fabio Biancalana; "An accurate envelope equation for light propagation in photonic nanowires: new nonlinear effects"; Opt. Express, Vol. 17, No. 20, pp. 17934 17949, (2009).
- 29 F. Biancalana, Tr. X. Tran, S. Stark, M. A. Schmidt, and P. S. Russell, "Emergence of geometrical optical nonlinearities in photonic crystal fiber nanowires", Physical Review Letters 105, 093904, (2010).
- 30 Allan W. Snyder; "Coupled-Mode Theory for Optical Fibers"; J. Opt. Soc. Am., Vol. 62, No. 11, pp. 1267 1277, (1972).
- 31 H. A. Haus, W. P. Huang, S. Kawakami and N. A. Whitaker; "*Coupled-Mode Theory for Optical Waveguides*"; Journal of Lightwave Technology, Vol. LT-5, No. 1, pp. 16 23, (1987).
- 32 Wei-Ping Huang; "Coupled-Mode Theory for Optical Waveguides: an overview"; J. Opt. Soc. Am. A, Vol. 11, No. 3, pp. 963 983, (1994).

PUBLICAÇÕES ASSOCIADAS À TESE

- Roddy E. Ramos-Gonzáles, Enver Fernandez-Chillcce, Luiz C. Barbosa and Hugo E. Hernández-Figueroa; "*Efficient Technique to Control the Zero-Dispersion Wavelength of a Microstructured Optical Fiber*"; Fiber and Integrated Optics; vol. 31, no. 3, pp. 186–195; (2012).
- Roddy E. Ramos Gonzáles, Enver F. Chillcce and Luiz C. Barbosa; "*Micro-size tapered silica fibers for sensing applications*"; Proceedings SPIE vol. 8120, Photonic Fiber and Crystal Devices: Advances in Materials and Innovations in Device Applications V; San Diego, California; September 07, 2011.
- E. F. Chillce, R. E. Ramos-Gonzáles, C. M. B. Cordeiro, L. Gutierrez-Rivera, H. L. Fragnito, C. H. de Brito Cruz, A. C. Bordonalli, H. E. Hernández-Figueroa, R L. Braga, and L. C. Barbosa, "Luminescence of PbS quantum dots spread on the core surface of a silica microstructured optical fiber"; Journal of Non Criytalline Solids; vol. 356, no. 44, pp. 2397– 2401; October (2010).
- 4. Roddy E. Gonzales, Enver F. Chillcce, Luiz C. Barbosa and Hugo E. Figueroa; "Zero-Dispersion Wavelength Displacement of a Photonic Crystal Fiber"; Tech. Digest of the Latin America Optics & Photonics Conference (LAOP-2010); Paper TuB2 (2010); Recife, Brazil; September 26-30, (2010).
- 5. Enver. F. Chillcee, Roddy R. Gonzales and Luiz C. Barbosa; "*Micro-size Tapered Silica Fibers for Sensing Applications*", Book of abstract of XXII International Congress on Glass; Paper 0432, pp. 156; Bahia, Brazil; September 20–25, (2010).
- 6. Roddy E. R. Gonzales, Enver. F Chillce and Luiz C. Barbosa; "*Cadmium Selenide/Zinc Sulfide Quantum Dots in Microstructured Optical Fibers*", Book of abstract of XXII International Congress on Glass, Paper 0438, pp. 157; Bahia, Brazil; September 20–25, (2010).