Universidade Estadual de Campinas Faculdade de Engenharia Elétrica e de Computação

Método de Pontos Interiores Não-Linear para Otimização Determinística a Usinas Individualizadas do Planejamento da Operação Energética do Sistema Interligado Nacional com Restrições de Intercâmbio entre Subsistemas

Leonardo Silveira de Albuquerque Martins

Orientador: Secundino Soares Filho Co-orientador: Anibal Tavares de Azevedo

Tese de Doutorado apresentada à Faculdade de Engenharia Elétrica e de Computação como parte dos requisitos para obtenção do título de Doutor em Engenharia Elétrica.

Área de concentração: Energia Elétrica Aprovação em 04/12/2009

Comissão Julgadora: Prof. Dr. André Luís Marques Marcato – FE/UFJF Prof. Dr. Aurelio Ribeiro Leite de Oliveira – IMECC/UNICAMP Prof. Dr. Marcius Fabius Henriques de Carvalho – DGE/CTI Prof. Dr. Paulo Augusto Valente Ferreira – FEEC/UNICAMP Prof. Dr. Secundino Soares Filho (Presidente)

> Campinas, São Paulo 4 de dezembro de 2009

FICHA CATALOGRÁFICA ELABORADA PELA BIBLIOTECA DA ÁREA DE ENGENHARIA E ARQUITETURA - BAE - UNICAMP

Martins M366m Méte otimiza planejar interlig subsiste Martins	s, Leonardo Silveira de Albuquerque odo de pontos interiores não-linear para ção determinística a usinas individualizadas do nento da operação energética do sistema ado nacional com restrições de intercâmbio entre mas / Leonardo Silveira de Albuquerque s. – Campinas, SP: [s.n.], 2009.					
Orie Tavares Tese Campir Compu	Orientadores: Secundino Soares Filho, Anibal Tavares de Azevedo. Tese de Doutorado - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de Computação.					
1. Pr elétrica 4. Otim Soares I de. III. de Enge	rogramação não-linear 2. Sistemas de energia 3. Sistemas de energia elétrica - Planejamento. hização matemática. 5. Usinas hidrelétricas I. Filho, Secundino. II. Azevedo, Anibal Tavares Universidade Estadual de Campinas. Faculdade enharia Elétrica e de Computação. IV. Título.					
Título em Inglês:	Nonlinear interior-point method for optimal hydrothermal scheduling in the brazilian power system with power exchange constraints					
Palavras-chave em Inglês:	Nonlinear programming, Electric power systems, Electric power systems - Planning, Optimization (Mathematics), Hvdroelectric power plants					
Área de concentração: Titulação:	Energia Elétrica Doutor em Engenharia Elétrica					
Banca Examinadora:	André Luís Marques Marcato, Aurelio Ribeiro Leite de Oliveira, Marcius Fabius Henriques de Carvalho, Paulo Augusto Valente Ferreira					
Data da defesa:	04/12/2009					
Programa de Pós-Graduação:	Engenharia Elétrica					

COMISSÃO JULGADORA - TESE DE DOUTORADO

Candidato: Leonardo Silveira de Albuquerque Martins

Data da Defesa: 4 de dezembro de 2009

Título da Tese: "Método de Pontos Interiores Não-Linear para Otimização Determinística a Usinas Individualizadas do Planejamento da Operação Energética do Sistema Interligado Nacional com Restrições de Intercâmbio entre Subsistemas"

Prof. Dr. Secunding Spares Filho (Presidente); Secunding Spares -
Prof. Dr. André Luís Marques Marcato:
Dr. Marcius Fabius Henriques de Carvalho:
Prof. Dr. Aurélio Ribeiro Leite De Oliveira: Auelo Mucholico
Prof. Dr. Paulo Augusto Valente Ferreira: Prof. Dr. Paulo Augusto Valente Ferreira:

Resumo

A otimização determinística da operação de médio prazo de sistemas hidrotérmicos de potência é um problema não-linear de grande porte. Neste trabalho, ele é resolvido com a devida consideração das restrições de fluxo de intercâmbio energético entre os subsistemas em um único modelo. Para tanto, fez-se necessária a representação explícita do balanço energético, definido como a soma das gerações hidro e termelétrica e do intercâmbio líquido, tal que a demanda de carga seja atendida. As dificuldades algébricas e computacionais impostas pela formulação do problema são contornadas por meio de um método de pontos interiores primal-dual não-linear. Nele, é empregada busca unidimensional com filtro que, dada a implementação proposta, apesar de não garantir convergência global, mostrou-se eficaz em todas as instâncias de testes numéricos realizados, dispensando o uso de funções de mérito. A estrutura esparsa bloco-diagonal das restrições do problema é explorada com vistas à obtenção de melhor desempenho computacional. Resultados dos estudos de caso numéricos para dados reais do sistema elétrico brasileiro sob diferentes configurações são apresentados.

Palavras-chave: Programação não-linear, sistemas de energia elétrica – planejamento, otimização matemática, usinas hidrelétricas.

Abstract

This work presents the solution of the medium-term operation scheduling problem for hydrothermal power systems, a complex large-scale nonlinear problem, with consideration of power exchange between interconnected systems. This required the need to explicitly represent the power balance nonlinear equations, defined as the sum of hydro and thermal outputs, and net power imports such that load demand is attained. Algebraic and computational difficulties arisen by the problem formulation are overcome by the use of a nonlinear primal-dual interior-point line search filter method. A line search filter procedure is chosen for these are known to generally outperform penalty merit functions. Although the implementation proposed herein does not guarantee global convergence, it has shown to be very efficient for all numerical tests performed. In addition, the problem's block-constraint structure is exploited for means of improved computational efficiency. Results for diverse numerical tests applied to the Brazilian power system are shown.

Keywords: Nonlinear programming, electric power systems – planning, optimization, hydroelectric power plants. Aos meus pais e avós.

"It is a mistake to think you can solve any major problems just with potatoes." Douglas Adams

A realização deste trabalho fez-se possível com o suporte financeiro da Fundação de Apoio à Pesquisa do Estado de São Paulo.

Agradecimentos

A realização deste trabalho não teria sido possível sem a confiança, o apoio e a orientação sempre presentes dos professores Secundino Soares Filho e Anibal Tavares de Azevedo. Suas figuras me servirão sempre de modelos de disponibilidade, perseverança, humildade e profissionalismo na nobre tarefa do ensino e pesquisa. A eles, minha eterna gratidão por compartilharem, incondicionalmente, seu vasto conhecimento, e por ajudarem a moldar parte do meu caráter.

Ao amigo Adriano Thomaz, agradeço pelo suporte paciente na discussão das idéias seminais do modelo e confecção da tese. Sem a paciência, a dedicação e a onipresença dos meus amigos André Emílio Toscano, Makoto Kadowaki e Marcos de Almeida Leone Filho, este trabalho muito perderia em riqueza de dados e informações extraídas dos estudos de caso. A eles, também devo eterna gratidão pelo apoio em diferentes momentos que transcederam a vida diária no COSE. Outras pessoas do excelente grupo do qual tenho muito orgulho de fazer parte também foram importantes em diversos momentos, seja pela confiança ou pelas palavras de apoio: a Erinaldo dos Santos, Mônica Zambelli, Oderson de Mello, Sandra Uehara e Thaís Gama, meus mais sinceros agradecimentos.

Agradeço, ainda, ao professor Aurelio Ribeiro Leite de Oliveira, do IMECC/UNICAMP, pelas contribuições ao desenvolvimento da metodologia de solução com o compartilhamento de seu vasto e profundo conhecimento na área de métodos de pontos interiores. Também sou grato aos professores Paulo Augusto Ferreira Valente e Takaaki Ohishi, da FEEC/UNICAMP, por tudo o que, pacientemente e de forma exemplar, me ensinaram. A André Luís Marques Marcato, da FE/UFJF, e Marcius Fabius Henriques de Carvalho, do DGE/CTI, bem como a todos os membros da comissão julgadora, agradeço pelas inestimáveis contribuições à forma final deste trabalho.

Por último, e não menos importante, reservo minha gratidão a todos os paulistas pagadores de impostos, na figura da Fundação de Amparo à Pesquisa do Estado de São Paulo, pelo indispensável financiamento desta pesquisa. Agradeço, também, à Companhia Energética de São Paulo e à Duke Energy Brasil pelo apoio financeiro.

Sumário

Li	sta de	e Figura	35	xiii
Li	sta de	e Tabela	IS	xvii
Li	sta de	e Abrev	iaturas e Siglas	xix
1	Intr	odução		1
2	Mod	lelo ma	itemático	15
	2.1	Sistem	a hidrotérmico de potência	15
		2.1.1	Usina hidrelétrica	16
		2.1.2	Usina termelétrica	24
	2.2	Form	ulação do problema	26
		2.2.1	Variáveis de decisão	30
		2.2.2	Função-objetivo	31
		2.2.3	Balanço hidráulico	32
		2.2.4	Balanço energético	33
		2.2.5	Segunda Lei de Kirchhoff	34
	2.3	Consi	derações finais	34
3	Met	odolog	ia de solução	37
	3.1	Algor	itmo	39

Sumário

		3.1.1	Busca unidimensional com filtro	44
		3.1.2	Cálculo da direção de busca	47
		3.1.3	Parâmetro de barreira	49
		3.1.4	Critérios de convergência	50
		3.1.5	Solução inicial	51
	3.2	Detalh	es de implementação	51
		3.2.1	Parâmetros do algoritmo	52
		3.2.2	Estrutura matricial	54
		3.2.3	Cálculo da direção de busca em blocos	60
	3.3	Consic	lerações finais	64
4	Estu	dos de	caso	67
	4.1	Caso d	idático	69
	4.2	Caso p	adrão	75
	4.3	Caso r	eal	87
5	Con	clusão		103
Ap	pêndio	ce A D	erivadas parciais da função de geração hidrelétrica	107
	A.1	Deriva	das de primeira ordem	107
	A.2	Deriva	das de segunda ordem	108
Ap	pêndie	ce B Cá	álculo das reatâncias	111
Apêndice C Usinas hidrelétricas 11			113	
Apêndice D Usinas termelétricas 11			117	

Sumário

Apêndio	ce E Configuração do caso real	123
E.1	Demanda de carga	123
E.2	Inflexibilidade de geração	124
E.3	Condições de contorno	126
E.4	Vazão incremental afluente	127
Apêndio	ce F Resultados do caso real	133
F.1	Geração hidrelétrica	133
F.2	Variáveis hidráulicas	144
F.3	Intercâmbio entre subsistemas	170
Referên	cias	173

Lista de Figuras

1	Energia natural afluente dos subsistemas SE/CO e Sul entre os anos 2001 e 2009 .	4
2	Demanda de carga do SIN entre os anos 2001 e 2009	4
3	Desenho esquemático de funcionamento do controle preditivo	11
4	Representação esquemática de um sistema hidrotérmico de potência	16
5	Corte transversal esquemático de uma usina hidrelétrica	17
6	Polinômios do reservatório da UHE Furnas	18
7	Representação das vazões naturais e incrementais afluentes	19
8	Polinômio defluência × cota do canal de fuga da UHE Furnas	20
9	Função de produção hidráulica da UHE Furnas	23
10	Cortes da função de produção hidráulica da UHE Furnas	23
11	DET do SIN com aproximação linear do CMO	25
12	Rede hidro-topológica de uma hipotética cascata de usinas hidrelétricas	26
13	Expansão temporal da rede hidro-topológica	28
14	Rede eletro-topológica de um conjunto de subsistemas	29
15	Representação esquemática do balanço hidráulico	33
16	Estrutura da matriz de incidência de vazão defluída R_j	56
17	Estrutura da matriz de incidência hidráulica A	56
18	Estrutura das matrizes de incidência energética e de reatâncias	57
19	Estrutura da matriz normal dual D	58
20	Estrutura da matriz Jacobiana $ abla g(w)$	59

21	Estruturas da matriz E e sua fatoração LDL^T	60
22	Estruturas das matrizes $AD_x^{-1}A^T$ e de sua fatoração LDL^T	63
23	Estruturas das matrizes $CD_y C^T$ e de sua fatoração LDL^T	63
24	Estruturas das matrizes Υ e de sua fatoração LDL^T	64
25	Configuração dos subsistemas	68
26	Resultados da operação isolada para o MPI-F no caso didático	71
27	Trajetórias de volume no caso didático	72
28	Resultados da operação com intercâmbio livre para o MPI-F no caso didático	73
29	Resultados da operação do sistema no caso padrão	77
30	Resultados da operação por subsistema para o MPI-F no caso padrão	79
31	Intercâmbio entre subsistemas para o MPI-F no caso padrão	80
32	Desenho esquemático de algumas cascatas do SIN utilizadas neste trabalho	81
33	Resultados da operação da UHE Furnas no caso padrão	82
34	Resultados da operação da UHE Água Vermelha no caso padrão	82
35	Resultados da operação da UHE Sobradinho no caso padrão	83
36	Resultados da operação da UHE Itaparica no caso padrão	83
37	Resultados da operação da UHE Três Marias no caso padrão	84
38	Resultados da operação da UHE Serra da Mesa no caso padrão	85
39	Resultados da operação da UHE Lajeado no caso padrão	85
40	Resultados da operação da UHE Passo Fundo no caso padrão	86
41	Grafo correspondente à topologia de subsistemas com nó e arcos artificiais	91
42	Resultados da operação do SIN no caso real	92
43	Energia armazenada do sistema no caso real	92
44	Resultados da operação do subsistema SE/CO no caso real	94

45	Resultados da operação do subsistema Sul no caso real	94
46	Resultados da operação do subsistema NE no caso real	95
47	Resultados da operação do subsistema Norte no caso real	95
48	Energia armazenada nos subsistemas no caso real	96
49	Intercâmbio entre subsistemas no caso real	97
50	Resultados da operação da cascata do Paranaíba no caso real	98
51	Resultados da operação da cascata do Grande no caso real	99
52	Resultados da operação da cascata do São Francisco no caso real	99
53	Resultados da operação da cascata do Tocantins no caso real	100
54	Resultados da operação da cascata do Pelotas-Uruguai no caso real	100

Lista de Tabelas

1	Capacidade de geração do Brasil em 2009	2
2	Capacidade de geração termelétrica por combustível em 2009	3
3	Evolução da energia turbinável vertida no Brasil	7
4	Configuração do sistema no caso didático	70
5	Geração hidráulica e volume armazenado médios no caso didático	74
6	Resumo do processo de otimização do caso didático sem limites de intercâmbio	75
7	Configuração do sistema no caso padrão	76
8	Energia armazenada do sistema no caso padrão	78
9	Resumo do processo de otimização do caso padrão	87
10	Configuração do sistema no caso real	88
11	Configuração do intercâmbio entre subsistemas no caso real	88
12	Resumo do processo de otimização do caso real	101
13	Valores de reatância utilizados nos estudos de caso	111
14	Usinas hidrelétricas consideradas nos estudos de caso	113
15	Usinas termelétricas do subsistema SE/CO	117
16	Demanda de carga por subsistema	123
17	Geração termelétrica mínima por subsistema	124
18	Geração PCH por subsistema	125
19	Condições de contorno por usina	126
20	Vazão incremental afluente por usina	128

21	Resultados de geração hidrelétrica por usina	134
22	Resultados de volume armazenado por usina	145
23	Resultados de engolimento por usina	150
24	Resultados de vertimento por usina	160
25	Resultados de intercâmbio entre subsistemas	171

Lista de Abreviaturas e Siglas

Operador Nacional do Sistema Elétrico,	
Despacho Econômico Termelétrico,	p. 6
Programação Dinâmica Estocástica,	
Programação Dinâmica Estocástica Dual,	p. 9
Fluxo de Potência Hidrotérmica Ótimo,	p. 12
Usina Hidrelétrica,	p. 18
Custo Marginal de Operação,	p. 25
Subsistema Sudeste/Centro-Oeste,	p. 1
Método do Gradiente Reduzido com Fluxo em Redes,	p. 65
Método GRFR com Correção de Balanço e Intercâmbio,	p. 65
Subsistema Nordeste,	p. 1
Sistema Interligado Nacional,	p. 2
Potência ou energia média, a depender do contexto, em megawatts,	p. 2
Energia Natural Afluente,	p. 4
Média de Longo Termo,	p. 4
Planejamento da Expansão Energética,	
Planejamento da Operação Energética,	p. 5
	Operador Nacional do Sistema Elétrico, Despacho Econômico Termelétrico, Programação Dinâmica Estocástica, Programação Dinâmica Estocástica Dual, Fluxo de Potência Hidrotérmica Ótimo, Usina Hidrelétrica, Custo Marginal de Operação, Subsistema Sudeste/Centro-Oeste, Método do Gradiente Reduzido com Fluxo em Redes, Método GRFR com Correção de Balanço e Intercâmbio, Subsistema Nordeste, Sistema Interligado Nacional, Potência ou energia média, a depender do contexto, em megawatts, Energia Natural Afluente, Média de Longo Termo, Planejamento da Expansão Energética, Planejamento da Operação Energética,

1 Introdução

A geração de energia elétrica no Brasil é significativamente distinta, se comparada ao observado no resto do mundo, em razão de suas características naturais e geográficas muito peculiares. A disponibilidade de recursos hídricos abundantes, combinada com topografia favorável, ao longo de toda extensão territorial, permitiu ao país investir em projetos de grandes usinas hidrelétricas ao longo do século XX e início do século XXI, por meio de pesados investimentos públicos. Segundo dados do Operador Nacional do Sistema Elétrico (ONS), existiam no Brasil, em 2009, um total de 95 usinas hidrelétricas em operação com potência instalada acima de 100 MW, sendo que, dessas, vinte e quatro tinham capacidade de geração superior a 1 000 MW. Entre elas, destacase a usina hidrelétrica de Itaipu, construída pelo Estado brasileiro na fronteira com o Paraguai, com potência instalada de 14 000 MW. A predominância hidrelétrica do parque gerador brasileiro é evidenciada nos dados de geração para o ano de 2009, em que 93% da eletricidade produzida no Brasil naquele ano fora gerada em usinas hidrelétricas, demonstrando a importância da rede fluvial brasileira para a composição da matriz energética do país. De acordo com a Agência Nacional de Energia Elétrica (Aneel), ao final do ano de 2009, as usinas hidrelétricas respondiam por 73,7% da capacidade instalada no parque gerador do país.

O extenso território brasileiro impôs um distanciamento entre as usinas geradoras e seus centros consumidores, em razão da construção dos reservatórios acontecer em áreas tanto topográfica quanto economicamente viáveis. Esta característica obrigou o sistema elétrico brasileiro a desenvolver uma extensa rede de transmissão para que a energia elétrica gerada pudesse chegar às subestações distribuidoras e, por fim, aos centros urbanos e zonas rurais. Outra consequência de tal característica territorial foi o agrupamento do sistema gerador-consumidor em grandes subsistemas: Sudeste/Centro-Oeste (SE/CO); Sul; Nordeste (NE); e o Norte interligado, que abrange o leste do estado do Pará e a região da usina hidrelétrica de Tucuruí. Além desses, existem ainda os sistemas isolados que, em 2009, representavam pouco mais de 3% da geração total de energia

	Operação	Construção
Hidrelétrica	78.734,6	11.276,2
Termelétrica	25.500,0	5.912,6
Nuclear	2.007,0	_
Eólica	659,3	200,2
Total	106.900,9	17.388,8
T A 1		

Tabela 1: Capacidade de geração do Brasil em 2009. (MW)

Fonte: Aneel

elétrica no país. Esses sistemas são compostos por localidades isoladas na região amazônica como, por exemplo, as capitais daqueles estados. Aspectos geográficos e ambientais atrasaram a construção de grandes linhas de transmissão que ligassem esses sistemas isolados ao restante do Sistema Interligado Nacional (SIN).

O SIN foi constituído através das linhas de transmissão construídas no estado do Tocantins no começo da década, que interligam o subsistema SE/CO à subestação de Imperatriz, no Maranhão, o que possibilitou a ligação daquele subsistema ao Norte e NE. Essas linhas de transmissão, combinadas com aquelas que posteriormente vieram a interligar diretamente os subsistemas SE/CO e NE, possibilitaram tanto a transferência de energia elétrica para regiões com escassez de oferta temporária, quanto a melhor utilização de usinas geradoras com grande capacidade instalada, situadas em regiões de pouca demanda. Além disso, permitiram melhor exploração dos recursos em regiões com grande disponibilidade hidráulica e baixa demanda, possibilitando o abastecimento dos grandes centros consumidores a partir de usinas localizadas, muitas vezes, em regiões remotas do país. A Tabela 1 apresenta a capacidade de geração de energia elétrica ao final de 2009. Nela, resta evidente a opção pelas usinas hidrelétricas através de sua participação na capacidade instalada. Há, entretanto, uma tendência de crescimento da participação da geração termelétrica, representando 34% dos empreendimentos em construção, contra 23,8% daqueles já em operação.

Do total dos 106,8 GW de potência instalada no SIN ao final do ano de 2009, pouco mais de 26% era fornecida pelo parque termelétrico distribuído entre os subsistemas Sul, SE/CO e NE. A Tabela 2 apresenta a distribuição das usinas termelétricas no Brasil de acordo com o combustível utilizado naquele ano. Àquela época, 8,17 GW eram originários de contratos de importação com a Argentina, Paraguai, Uruguai e Venezuela.

Por representar 93% de toda a geração do SIN, atenção especial deve ser dispensada à geração

	Potência instalada (MW)
Gás Natural	12.055
Biomassa	6.170
Petróleo	5.732
Nuclear	2.007
Carvão	1.530
Importação	8.170

Tabela 2: Capacidade de geração termelétrica por combustível em 2009.

Fonte: Aneel

hidráulica de eletricidade, especialmente no tocante à disponibilidade de sua fonte primária de energia: a água. Assim como ocorre com outras fontes de energia renováveis, como as energias solar e eólica, os recursos fluviais disponíveis em uma determinada região estão sujeitos a um regime periódico com características estocásticas, o que dificulta a previsão de sua disponibilidade e, logo, por conseqüência, o planejamento de seu uso. A escassez de água em algum momento do ciclo hidrológico de uma região pode ocasionar diminuição da capacidade de geração de suas usinas hidrelétricas, fazendo-se necessária a adoção de medidas preventivas, como a construção de barragens com grandes reservatórios d'água, instalação de usinas termelétricas emergenciais, ou mesmo a interligação de parques geradores localizados em regiões com diferentes regimes hidrológicos. Geralmente, esses regimes, apresentam periodicidade anual e estão sujeitos à variabilidade das condições climáticas, não apenas regionais, mas também de outras partes do planeta.

O regime de chuvas em território brasileiro obedece a um padrão similar em quase toda sua extensão, com escassez entre os meses de maio e outubro, e considerável aumento das precipitações no verão e início do outono, entre novembro e abril. No sul do Brasil, entretanto, a distribuição de chuvas é mais homogênea, não havendo uma periodicidade que defina claramente as estações seca e chuvosa. A Figura 1 ilustra essas diferenças de disponibilidade hidráulica entre os subsistemas SE/CO e Sul, apresentando as curvas de energia natural afluente (ENA) nas duas regiões, para o período compreendido entre maio de 2001 e abril de 2009, calculada em relação à média de longo termo (MLT) para cada um dos meses do ano. No gráfico, é possível observar a estocasticidade associada às vazões afluentes, o que dificulta o planejamento da geração hidrelétrica devido às incertezas inerentes à disponibilidade hidráulica. Com o intuito de minimizar essas incertezas, grandes reservatórios são construídos – geralmente nas cabeceiras dos rios – para que as vazões sejam regularizadas à jusante. Outra forma de contingência consiste da construção e insta-

Figura 1: Energia natural afluente dos subsistemas SE/CO e Sul entre os anos 2001 e 2009. (Fonte: ONS)

Figura 2: Demanda de carga do SIN entre os anos 2001 e 2009. (Fonte: ONS)

lação de usinas termelétricas para atendimento do mercado em situações de baixa disponibilidade hidrelétrica.

Entretanto, não somente a disponibilidade de recursos energéticos e a topologia das redes de transmissão devem ser considerados na caracterização de um sistema elétrico. Além disso, deve-se considerar o mercado consumidor de eletricidade, caracterizado por demandas com características sazonais e, também, por sua sensibilidade a fatores econômicos. Isso faz com que, da mesma forma, o consumo de energia elétrica caracterize-se pela estocasticidade, porém com menor grau de imprevisibilidade. A Figura 2 apresenta a demanda de carga do SIN para o período compreendido entre maio de 2001 e abril de 2009.

1 Introdução

Apesar da inerente incerteza característica do setor elétrico, a geração e a transmissão de eletricidade devem ser cuidadosamente planejadas a fim de atender a demanda imediata do mercado e garantir o suprimento no futuro. Esse planejamento pode ser classificado em duas etapas distintas: expansão e operação.

O planejamento da expansão energética (PEE) lida com a definição de estratégias para a manutenção da disponibilidade futura de energia elétrica. Essas estratégias são compostas pelo redimensionamento do parque gerador e estruturas de transmissão (linhas e subestações) de acordo com as necessidades futuras de consumo previsto. A expansão do setor elétrico brasileiro é indicado pelo Plano Decenal de Expansão, preparado, anualmente, pelo Ministério de Minas e Energia em conjunto com a Empresa de Pesquisa Energética. Nele, diferentes cenários macro-econômicos são considerados com o intuito de melhor prever a demanda máxima futura. O estabelecimento de requisitos de reserva de potência para o caso de eventualidades imprevistas, como a manutenção de equipamentos e adversidades climáticas, por exemplo, constituem responsabilidade do ONS.

Já o planejamento da operação energética (POE) é responsável por estabelecer as políticas de operação das unidades geradoras do sistema para horizontes que vão de uma semana a alguns meses ou anos, bem como das linhas de transmissão. No Brasil, essas políticas de operação são estabelecidas por um órgão central independente: o ONS. É de sua responsabilidade, com base em informações de disponibilidade energética, restrições operativas, custos de operação e demanda de carga, determinar a meta de geração elétrica das diferentes unidades dos parques geradores que compõem o SIN.

Os objetivos do planejamento da operação estão condicionados às particularidades do parque gerador a ser analisado. A característica primária a ser observada consiste de sua composição. Em sistemas termelétricos, o objetivo principal do POE é a minimização dos custos de operação, diretamente proporcionais aos custos dos combustíveis utilizados pelas usinas envolvidas. As usinas escolhidas para geração são despachadas em ordem crescente de custo: o despacho por ordem de mérito, comumente chamado de despacho econômico termelétrico (DET), no qual o custo total para atendimento da demanda de carga deve ser mínimo.

Em sistemas exclusivamente hidrelétricos, a água, a princípio, não tem custo. Em alguns países, o custo envolvido pode estar apresentado na forma de cobrança de *royalties* pelo uso da água armazenada, ou penalizações pelo não cumprimento de metas de geração pré-estabelecidas. Entretanto, o planejamento da operação desses sistemas leva em consideração outros fatores além da minimização de custos, como as restrições operativas associadas ao uso da água (Fortunato et al. 1990).

Por sua vez, o planejamento da operação de sistemas hidrotérmicos apresenta maior complexidade devido a diversos fatores, entre os quais pode-se destacar:

- incorporação das funções de custo do DET ao planejamento da operação de sistemas hidrelétricos, fazendo com que os benefícios associados à geração de hidreletricidade sejam medidos em termos da economia obtida com o deslocamento da geração térmica acarretada pela diminuição do uso de combustíveis;
- maior número de restrições operativas a serem atendidas, entre elas a geração termelétrica mínima imposta por contratos de fornecimento de combustível e restrições de uso da água por parte das usinas hidrelétricas no que toca ao controle de cheias, navegação, irrigação e saneamento.

Além desses fatores, outros aspectos não menos importantes devem ser considerados. Eles estão associados às relações de compromisso temporal e espacial presentes na geração hidrelétrica desses sistemas hidrotérmicos. A primeira está relacionada ao uso da água ao longo do tempo. O estado de um reservatório em um dado momento depende das decisões de geração tomadas em momentos anteriores. A segunda relação de compromisso concerne à interdependência de reservatórios localizados numa mesma bacia hidrográfica. Neste caso, a depender da topologia presente, o estado de um reservatório está condicionado às decisões de geração tomadas nos reservatórios à montante.

No Brasil, observa-se a existência de um sistema hidrotérmico predominantemente hidráulico, amplamente regulado por órgãos de estado, e com despacho centralizado da transmissão e geração dos parques hidro e termelétrico. Além das dificuldades previamente citadas, estas características adicionais tornam o planejamento da operação um problema de grande porte. Outro fator complicador é dado pela heterogeneidade da distribuição geográfica das usinas em decorrência das diferenças nas características econômico-demográficas entre as regiões, o que provocou a saturação dos recursos hidrelétricos nas regiões mais desenvolvidas. Isso, somado ao constante crescimento da economia brasileira nos últimos anos e à dificuldade de realização de novos projetos de barragens, obrigou a construção de novas linhas de transmissão que possibilitassem o intercâmbio energético entre os diferentes subsistemas do SIN. Essas linhas, entretanto, apresen-

	ETV	Geração Térmica	ENA	Demanda
2002	984	3.571	48.282	48.862
2003	364	3.276	43.539	52.210
2004	1.103	3.785	55.910	55.269
2005	1.639	3.454	56.129	57.621

Tabela 3: Evolução da energia turbinável vertida no Brasil (MWmed)

Fontes: CNOS, ONS

tam limites operacionais que, combinados com a inflexibilidade dos contratos de fornecimento de energia termelétrica, instituíram características de operação bastante particulares.

Conforme ilustra a Tabela 3, outra característica do setor elétrico brasileiro é o desperdício, sendo constantemente necessário o vertimento de energia turbinável, revelando, assim, ineficiência no uso dos recursos energéticos disponíveis. Os principais fatores para esta ineficiência decorrem da baixa capacidade das linhas destinadas ao intercâmbio energético e da discrepância entre o tamanho do mercado consumidor e a potência hidrelétrica instalada. Nos últimos anos, entretanto, a capacidade das linhas de transmissão tem sido expandida. Por outro lado, alternativas à inflexibilidade termelétrica têm sido objetos de estudo na literatura (Marreco & Carpio 2006), sem, contudo, o vislumbramento de aplicação prática. Nota-se, também, a correlação positiva entre o desperdício e a disponibilidade dos recursos hidroenergéticos, como aponta a coluna referente à ENA média da Tabela 3. É possível observar que em 2003, ano com a menor quantidade de energia afluente entre os anos considerados, o desperdício foi 0,8%. Por outro lado, em 2005, apesar da disponibilidade energética ter sido 13% superior à observada em 2003, o desperdício observado foi de 2,9%, quase quatro vezes mais.

A consideração de todas as características dos sistemas hidrotérmicos, das incertezas inerentes às vazões naturais e curvas de demanda futuras, às restrições elétricas do sistema de transmissão, faz do planejamento da operação um problema de grande complexidade que, se não resolvido de maneira eficiente, pode acarretar sérias implicações sócio-econômicas e ambientais. Por sua complexidade, faz-se necessária, além do emprego de profissionais experientes, a utilização de ferramentas matemático-computacionais como instrumentos de suporte à decisão.

Contudo, mesmo com o uso de tais ferramentas, a complexidade do problema torna necessária a simplificação dos modelos com o objetivo de tornar viável sua solução computacional. Uma proposta bem recebida ao longo dos últimos anos consiste da decomposição temporal do planejamento da operação (Pereira 1985). A abordagem decomposta divide o horizonte de planejamento em períodos distintos, nos quais, em cada um deles, aspectos mais relevantes são considerados em detrimento de outros menos importantes ao período em questão. Nesta abordagem, os resultados de uma fase de prazo mais longo fornecem metas a serem atendidas pela fase de prazo imediatamente mais curto, como bem ilustram Fosso et al. (1999) para o caso norueguês. Por outro lado, há também trabalhos na literatura que consideram aspectos relevantes a diferentes fases do planejamento em um mesmo modelo, como os trabalhos de, Franco et al. (1994), Al-Agtash (2001) e Finardi & da Silva (2006).

O planejamento da operação de médio prazo compreende horizontes que variam de um a cinco anos discretizados em base mensal. Nesta fase do planejamento, as incertezas relacionadas à disponibilidade energética – na forma de vazões naturais às bacias – e demanda dos centros de carga - esta devida a alterações no cenário macro-econômico, são significativas. A estocasticidade das afluências pode ser diretamente incorporada aos modelos matemáticos desenvolvidos para a solução do planejamento de longo prazo. A técnica de programação dinâmica estocástica (PDE) tem sido amplamente utilizada nesta fase (Yeh 1985). Nesta abordagem, caracterizada como uma política de controle em malha fechada, uma tabela de decisões ótimas para cada possível estado do sistema é fornecida ao final do processo de otimização. Em razão da explosão combinatória de estados, algumas técnicas de redução do espaço de busca do problema foram propostos, como a agregação do parque hidrelétrico num único reservatório equivalente, por Arvanitidis & Rosing (1970), para a qual, segundo seus autores, seu emprego deve levar em conta a presença de homogeneidade hidrológica, além de considerável interligação elétrica do sistema, de forma a garantir o atendimento da carga a partir de qualquer usina constituinte. Yu et al. (1998) propõem, ainda, a agregação dos parques hidrelétrico e termelétrico como forma de reduzir a complexidade computacional do problema. Além das metodologias de agregação, pode-se encontrar na literatura outras técnicas que visam contornar a "maldição da dimensionalidade", como a de agregação e desagregação sucessivas em termos de valor marginal do parque gerador por rios e reservatórios individuais (Turgeon & Charbonneau 1998). Já Pereira (1989) apresenta uma aplicação da programação dinâmica estocástica dual (PDED), com a construção de uma aproximação linear por partes da função de custo futuro, e que não requer a discretização das variáveis de estado.

A principal desvantagem das técnicas de agregação, entretanto, é a desconsideração das particularidades das usinas do parque gerador, especialmente as relações não-lineares entre suas diferentes partes. Soares & Carneiro (1991) demonstram que características particulares das usinas,

1 Introdução

bem como sua posição na cascata, influenciam diretamente as curvas de operação ótima de seus reservatórios quando destinados à geração de eletricidade. Uma tentativa de amenizar os efeitos da agregação de reservatórios num modelo equivalente foi realizada por Cruz & Soares (1996), que estabeleceu regras de deplecionamento diferentes para reservatórios de montante e jusante, alterando-se o cálculo da altura de queda equivalente, o que resultou em economia de custos para o estudo de caso considerado.

Como alternativa à abordagem de malha fechada, Dagli & Miles (1980) propuseram um modelo de controle em malha aberta no qual as previsões de vazões naturais afluentes são atualizadas a cada estágio do horizonte de planejamento, sendo a estocasticidade das vazões, portanto, considerada de forma indireta. O estudo desses autores mostrou que a abordagem de controle em malha aberta, também conhecida como controle preditivo, apresentou resultados similares àqueles obtidos pelo controle em malha fechada, o que foi confirmado no trabalho de Martinez & Soares (2002) para uma aplicação a usinas do SIN, e por Boshier & Reed (1981), numa aplicação no sistema neozelandês. Philbrick & Kitanidis (1999) ressaltam a possibilidade de obtenção de bons resultados no POE com o uso do controle preditivo, dependendo das características do sistema considerado. Zambelli & Soares (2009) e Toscano (2009) apresentaram uma comparação entre as duas abordagens numa aplicação de grande porte ao SIN, com o controle preditivo obtendo melhores resultados. Outras comparações entre metodologias estocásticas e determinísticas para diferentes considerações foram apresentadas na literatura (Karamouz & Houck 1982, Araripe et al. 1985).

Por ser baseada em um modelo de otimização determinística, a técnica de controle preditivo permite a representação detalhada do parque hidrelétrico, bem como pode empregar diferentes metodologias de previsão das afluências e de mercado. A grande vantagem desta abordagem, portanto, reside em evitar as perdas por simplificação ocasionadas pela agregação de reservatórios, além de permitir o tratamento eficiente das incertezas de disponibilidade energética. Nesta estrutura, métodos de otimização determinística passam a representar um papel fundamental no planejamento da operação energética, haja vista que estes são dispensados da consideração de variáveis estocásticas, responsabilidade esta delegada à relação previsor-simulador.

Os bons resultados obtidos com o advento da otimização num contexto de controle preditivo (Zambelli & Soares 2009) tornam a fronteira entre o planejamento da operação de longo e médio prazos menos evidente, constituindo uma única fase, a de planejamento da operação energética. Diferentes abordagens de solução do problema com tratamento determinístico das vazões

naturais têm sido propostas nos últimos anos (Labadie 2004). Hanscom et al. (1980) aplicaram o método de gradiente reduzido ao sistema hidrotérmico da Hydro-Québec, no Canadá. Rosenthal (1981) também propôs o uso de um algoritmo de gradiente reduzido em fluxo em redes não-linear para minimização dos custos de complementação termelétrica, e introduziu aquilo que seria denominado matriz de defluência básica por Carvalho & Soares (1987). Neste trabalho, ainda, os autores apresentaram diferentes estratégias para seleção de variáveis básicas, buscando, assim, melhor desempenho computacional. Lyra & Tavares (1988) apresentaram uma extensão na qual a otimização é realizada apenas para os reservatórios mais importantes da cascata, e introduziram um passo no cálculo da direção de busca que leva em consideração a existência de pontos nãodiferenciáveis. Bissonnette et al. (1986) apresentam um algoritmo de primeira ordem para um modelo não-linear do problema. Oliveira & Soares (1995), com o objetivo de melhorar a taxa de convergência dos algoritmos com abordagem por fluxo em redes, apresentam uma extensão dos trabalhos supracitados que faz uso de informações de segunda ordem. Em outra frente, em busca de uma representação da estocasticidade através de técnicas otimização com a consideração de múltiplos cenários (Dembo 1991), Nabona (1993) e Escudero & Pietro (1996) apresentam algoritmos que fazem uso de fluxo em redes multiprodutos e análise de cenários com fluxo em sub-redes com restrições de acoplamento, respectivamente.

Outras metodologias foram, também, propostas na literatura ao longo dos últimos anos. Soares et al. (1980) apresentam um algoritmo de decomposição dual para minimização dos custos de geração termelétrica complementar com o emprego de técnicas de coordenação (Lasdon 1970). Soluções similares que fazem uso de relaxamento lagrangeano foram propostas por Luh et al. (1998), Salam et al. (1998), Ni et al. (1999), Zhang et al. (1999) e Ngundam et al. (2000).

O desenvolvimento de métodos de pontos interiores computacionalmente mais eficientes tem motivado sua aplicação no problema nos últimos anos. Medina et al. (1999) propuseram um algoritmo preditor-corretor para um modelo com linearização da função de geração hidráulica. Azevedo et al. (2009) introduziram um algoritmo primal-dual convexo que confirma o melhor desempenho dos modelos com representação não-linear. Métodos de pontos interiores, contudo, requerem exploração apropriada das estruturas esparsas das matrizes envolvidas na solução de sistemas de equações lineares de grande porte quando do cálculo das direções de Newton. Jabr (2004) e Azevedo (2006) abordam o tratamento da esparsidade no POE em suas diferentes fases.

Além das metodologias citadas, outras propostas para solução do POE com vazões naturais conhecidas foram apresentadas na literatura, especialmente com uso de meta-heurísticas como

Figura 3: Desenho esquemático do funcionamento de controle preditivo.

redes neurais artificiais (Liang 2000), (Naresh & Sharma 2000), algoritmos genéticos (Leite et al. 2002), busca tabu (Mantawy et al. 2002) e otimização nebulosa (Yamin 2005).

Todas essas propostas de solução do problema de POE caracterizam-se pela representação individualizada das usinas hidrelétricas. Suas diferenças, sejam na formulação da função-objetivo (se linear ou não-linear), ou na modelagem das variáveis de decisão e do conjunto de restrições consideradas, apesar de pontuais, têm no desempenho computacional e capacidade de fornecimento de boas soluções para instâncias de grande porte do problema, fatores determinantes para sua aplicabilidade no contexto de controle preditivo, a depender dos requisitos de planejamento.

A Figura 3 apresenta um desenho esquemático de funcionamento simplificado do controle preditivo no POE, ilustrando o papel de cada componente e suas relações. Ao simulador cabe representar, com o maior nível de detalhes possível, o sistema hidrotérmico de potência com todas suas partes constituintes, como os parques geradores hidro e termelétrico, os centros de carga, linhas de transmissão e topologia da rede, custos de operação, entre outros fatores. A cada estágio *j* da simulação do horizonte de planejamento, o estado atual a^j é informado ao otimizador determinístico, que, por sua vez, dados este estado atual e a previsão de disponibilidade energética $b'_{j,j}$ e demanda de carga $d'_{j,j}$ futuras, calcula a operação ótima q^*_{j+1} a ser realizada no próximo estágio. Assim, iterativamente, o simulador executa a operação calculada pelo otimizador para as condições verificadas b^* e d^* , informando, no próximo estágio, o estado real do sistema a^{j+1} resultante da operação sugerida, de volta ao otimizador, até que o planejamento para todo o horizonte seja realizado.

Posto isso, conclui-se que o algoritmo de otimização determinística deve ser incorporado ao controle preditivo de forma a fornecer soluções ótimas as mais próximas possíveis em acordo com as condições de simulação. Os modelos de otimização determinística apresentados na literatura até o momento não atendem as necessidades presentes do POE no âmbito do SIN de forma satisfatória, no contexto do controle preditivo. Em geral, eles não contemplam restrições pertinentes ao fluxo de intercâmbio entre subsistemas, o custo individual de operação das usinas térmicas ou, ainda, a não-linearidade da função de produção hidrelétrica em suas formulações. Esta última é devidamente considerada por Carvalho & Soares (1987), Oliveira & Soares (1995) e Azevedo et al. (2009), porém, sem suporte a limites de intercâmbio entre subsistemas. Outros trabalhos, como os de El-Hawary & Tsang (1986) e Habibollahzadeh et al. (1989), apresentam modelos para a solução do problema de fluxo de potência hidrotérmica ótimo (FPHO), com a devida representação das restrições de fluxo, porém com a linearização da produção hidráulica. El-Hawary & Ravindranath (1992) apresentam um modelo com altura de queda variável e representação das vazões turbinadas como uma função bi-quadrática simplificada da altura de queda efetiva e geração de potência ativa. Mais recentemente, Wei et al. (1998) e Wei et al. (2000) propuseram a aplicação de métodos de pontos interiores quadráticos com relaxação lagrangeana para solução do FPHO, com a mesma representação bi-quadrática da turbinagem. Todos esses trabalhos, entretanto, são direcionados para aplicação no planejamento da programação de curto prazo, não contemplando, por exemplo, a composição de usinas em subsistemas. Neste caso, Gorenstin et al. (1992) propôs um modelo com solução por PDED com consideração da estocasticidade das vazões. A metodologia de solução, bem como os resultados apresentados, entretanto, não são muito claros quanto à sua eficiência.

O objetivo deste trabalho consiste do desenvolvimento de um modelo de otimização determinística a usinas individualizadas para o planejamento da operação energética aplicado ao SIN, que minimize os custos de geração termelétrica e atenda a demanda de carga em cada subsistema de forma estrita, considerando a possibilidade de intercâmbio energético entre os subsistemas e seus respectivos limites de fluxo. Este modelo deve considerar, ainda, a não-linearidade da função de produção hidrelétrica das usinas e suas respectivas restrições operacionais.

A fim de solucionar o problema de otimização resultante do modelo desenvolvido, propõese a aplicação de um método de pontos interiores primal-dual não-linear com busca unidimensional com filtro. A formulação proposta impõe um grande número de restrições convexas e

1 Introdução

não-lineares que dificultam a solução do problema em termos numéricos. Para contornar essas dificuldades, são propostas heurísticas computacionais com o intuito de facilitar a convergência do algoritmo e, ao mesmo tempo, diminuir o esforço computacional necessário para solução do problema. O método é implementado em protótipo computacional com o objetivo de validar o modelo e, também, compará-lo à alternativa atual (Zambelli 2009) para uma instância de grande porte do problema aplicado ao SIN.

O restante deste trabalho está organizado como segue. O modelo matemático de sistemas hidrotérmicos de potência e a formulação do problema de otimização são apresentados no Capítulo 2. A metodologia de solução empregada é apresentada, juntamente com as considerações mais relevantes acerca de sua implementação computacional, no Capítulo 3. No Capítulo 4 são apresentados os resultados numéricos para três estudos de caso aplicados ao SIN, com comparações. Por último, o Capítulo 5 tece as conclusões finais resultantes do desenvolvimento deste trabalho, bem como estabelece um plano de trabalhos futuros.

2 Modelo matemático

Este capítulo é dedicado à formulação do modelo matemático para a solução do POE conforme proposto neste trabalho. A Seção 2.2 formula o problema de otimização resultante da modelagem sugerida. Para tanto, faz-se necessária uma apresentação das principais componentes que constituem um sistema hidrotérmico de potência: usinas hidro e termelétricas. A Seção 2.1.1 descreve as partes de uma usina hidrelétrica relevantes ao POE, como o reservatório, a barragem e o canal de fuga, e como eles se relacionam numericamente de forma a produzir eletricidade. A modelagem das usinas térmicas, como representadas no problema, é apresentada na Seção 2.1.2.

2.1 Sistema hidrotérmico de potência

Um sistema de potência é composto por unidades geradoras, sistemas de transmissão, distribuição e centros de carga. Ao ser produzida, a energia elétrica é conduzida através de um complexo sistema de linhas de transmissão e subestações elevadoras e rebaixadoras de tensão até chegar aos centros de carga, onde será consumida. Sua produção se dá a partir de outras fontes primárias potenciais, como na queima do carvão, petróleo, gás natural, bagaço de cana ou de óleos vegetais, assim como na fissão de núcleos de urânio ou no aproveitamento de quedas d'água. Essa produção de energia elétrica se dá em usinas devidamente coordenadas e conectadas ao sistema. Em um sistema hidrotérmico de potência (SHP), por definição, seu parque gerador é composto majoritariamente por usinas hidro e termelétricas. No SHP brasileiro, verifica-se significativa predominância hidráulica, daí a necessidade de uma representação mais detalhada dessas usinas. A Figura 4 ilustra um típico SHP.

Figura 4: Representação esquemática de um sistema hidrotérmico de potência.

2.1.1 Usina hidrelétrica

A água, quando utilizada de forma apropriada, apresenta-se como uma importante fonte de energia. A energia potencial hidráulica é aproveitada para geração de eletricidade em locais onde há quedas d'água naturais ou onde for possível, através da construção de barragens, estabelecer uma queda d'água artificial.

A geração de eletricidade é realizada pela transformação de energia potencial hidráulica em energia cinética, através da passagem da água nos condutos forçados até sua chegada à turbina, onde suas pás são acionadas de forma a rotacionar o eixo central. Essa energia cinética é conduzida por este eixo até o gerador onde, finalmente, é convertida em energia elétrica. Grandes transformadores localizados em subestações próximas às usinas são responsáveis pela elevação da tensão para que a energia elétrica produzida seja, então, transportada por grandes distâncias pelas linhas de transmissão até outras subestações próximas aos centros de carga, onde é rebaixada e distribuída aos consumidores.

Depois de ser aproveitada para o acionamento das turbinas, a água é conduzida até um canal de fuga retornando, assim, ao manancial hídrico. O estabelecimento de uma diferença de níveis entre o reservatório e o canal de fuga é o objetivo da barragem. Essa diferença é importante por determinar a capacidade de geração de eletricidade de uma usina, dada que sua produção é função, entre outras coisas, da altura de queda estabelecida por tal diferença.

Figura 5: Corte transversal esquemático de uma usina hidrelétrica.

2.1.1.1 Reservatório

O reservatório de uma usina hidrelétrica é responsável pelo armazenamento da água a ser utilizada na geração de eletricidade. Ele pode ser classificado quanto a sua capacidade de armazenamento. Os reservatórios de compensação têm volume suficiente para a regularização de descargas semanais ou diárias. Usinas com reservatórios de compensação são comumente chamadas de usinas a fio d'água. Por sua vez, os reservatórios de acumulação são capazes de regularizar vazões de alguns meses a alguns anos, dependendo de seu volume. Geralmente, esses reservatórios encontram-se nas cabeceiras de rios e são utilizados para atenuar a variação de disponibilidade de água. O volume de um reservatório pode ser classificado de acordo com sua utilização:

- volume útil é aquele armazenado entre os limites mínimo l_a e máximo u_a operativos e representa o volume total de água aproveitável para a geração de energia elétrica;
- volume morto a_m é aquele armazenado abaixo do limite mínimo e cuja água não pode ser aproveitada para a geração de eletricidade;
- volume de segurança é o volume vazio entre o volume máximo operativo u_a e o volume maximorum û_a > u_a do reservatório. Ele define uma faixa de segurança com o objetivo de reduzir o risco de comprometimento da barragem;
- há, ainda, o volume de espera û_a ∈ (l_a, u_a), definido por uma redução sazonal do volume útil com o objetivo de aumentar a capacidade de controle de cheias.

Figura 6: Polinômios do reservatório da UHE Furnas. (Fonte: ONS)

Para todo volume *a* de um reservatório, corresponde uma cota $b^{M}(a)$, em metros, em relação ao nível do mar. Para toda cota corresponde uma área calculada através de levantamento topográfico. A esta relação, associa-se funções que descrevem a área alagada em função da cota observada, dadas por um polinômio cota × área. A Figura 6a apresenta o polinômio cota × área da usina hidrelétrica (UHE) de Furnas.

Finalmente, integrando-se o polinômio cota × área, estabelece-se o polinômio volume × cota do reservatório, ilustrado na Figura 6b para a UHE Furnas.

A vazão afluente a um reservatório constitui uma das informações mais importantes para o POE, pois é ela que determinará, a despeito das características da usina, quanta energia elétrica poderá ser gerada ao longo do tempo. Essa vazão chega ao reservatório através do manancial hídrico (rios e lagos) e da área de drenagem da bacia hidrográfica, que atua na captura de água para o reservatório.

A classificação da vazão afluente pode ser feita em dois tipos: natural e incremental. A vazão afluente natural é a vazão total medida em uma seção transversal do manancial em um determinado intervalo de tempo. Por sua vez, a vazão afluente incremental (lateral) que passa entre seções transversais é aquela que adentra ao manancial pela área de drenagem entre as seções consideradas. A Figura 7 ilustra, esquematicamente, um manancial hídrico onde podem ser verificadas três seções de medição e suas respectivas vazões naturais aferidas.

Figura 7: Representação esquemática das vazões naturais e incrementais afluentes.

Baseado no conhecimento das vazões naturais em diferentes seções de um manancial hídrico, pode-se calcular a vazão incremental a uma usina *i* através da equação abaixo:

$$b_i = b_i^N - \sum b_j^N \qquad \forall j \in \Omega_i, \tag{2.1}$$

onde b_i é a vazão incremental afluente à usina i, b_i^N é a vazão natural afluente e Ω_i é o conjunto de todas as usinas imediatamente a montante da seção i. Por exemplo, a vazão incremental afluente à usina 3 da Figura 7 é dada por $b_3 = b_3^N - b_1^N - b_2^N$.

2.1.1.2 Barragem

Além de ser responsável pelo represamento da água, a barragem abriga ainda as unidades geradoras da usina. A água é transferida do reservatório até as turbinas através de condutos forçados. Essa água é dita turbinada (ou engolida) e está representada pela letra q na Figura 5. Para toda barragem existe um limite máximo u_q de turbinagem determinado pelas características físicas da barragem.

Durante a operação de uma usina hidrelétrica, existem situações onde é necessária a defluência de água sem que essa seja turbinada, ou seja, sem que haja a geração de eletricidade. À defluência de água sem a geração de eletricidade dá-se o nome de vertimento, representado pela letra v. Assim como ocorre com os condutos forçados, o vertimento máximo u_v de uma barragem é limitado pela capacidade dos vertedouros, grande o suficiente para dar vazão às cheias decamilenares de projeto, o que, na prática, significa que o vertimento jamais será limitado superiormente.

Figura 8: Polinômio defluência × cota do canal de fuga da UHE Furnas. (Fonte: ONS)

Conhecidas as formas de defluência da água armazenada, pode-se definir a vazão defluente total de uma usina como a soma das vazões turbinada e vertida, como expresso abaixo:

$$r = q + v. \tag{2.2}$$

O represamento da água pela barragem tem como um dos seus objetivos, estabelecer uma diferença de nível entre o reservatório e o canal de fuga, denominada altura de queda bruta, conforme é ilustrado na Figura 5. Essa altura de queda bruta é dada pela seguinte equação:

$$b^{B} = b^{M}(a) - b^{F}(r), (2.3)$$

onde $h^F(r)$ denota o polinômio defluência × cota do canal de fuga. A Figura 8 mostra a relação entre a defluência e a cota do canal de fuga para a usina hidrelétrica de Furnas.

No entanto, há uma perda de carga hidráulica relacionada com o atrito entre a água e o canal de adução ao longo de todo o percurso do reservatório até as turbinas, como bem elucida Fortunato et al. (1990). Essa perda de carga hidráulica é representada por uma perda em altura de queda, e é denotada por h^P . A altura de queda líquida é dada pela equação a seguir:

$$b = b^B - b^P, (2.4)$$

na qual h^p , nos modelos adotados pelo setor elétrico brasileiro, é geralmente estabelecido por um valor constante médio.

As unidades geradoras de uma usina podem estar divididas em diferentes conjuntos de acordo
com suas características. Cada unidade geradora é composta por um conjunto turbina/gerador, conforme ilustra a Figura 5. A cada conjunto turbina/gerador, corresponde um tipo de turbina – sendo mais comumente encontradas nas usinas brasileiras aquelas do tipo Francis, Kaplan, Pelton e, mais recentemente, Bulbo.

Para melhor compreender o comportamento das unidades geradoras como ilustrado anteriormente, é necessário entender como o processo de transformação da energia potencial em energia cinética, e sua posterior transformação em energia elétrica, afetam a produtividade de um conjunto turbina/gerador. Para tanto deve-se, inicialmente, definir a variação de energia potencial, expressa a seguir:

$$\delta E_p = \delta M \cdot G \cdot h,$$

onde δM é a variação da massa d'água armazenada e G é a aceleração da gravidade. Pode-se notar que a energia potencial é função da altura de queda em um determinando instante, que, por sua vez, é função do volume armazenado e vazão defluente.

Convertendo-se a variação da massa d'água em variação de volume armazenado, temos que:

onde ρ_A é o peso específico da água. No caso do sistema métrico, ρ_A é igual a 1 000 kg/m³. Essa variação de volume em um determinado instante de tempo pode ser convertida em vazão, expressa como:

$$q = \frac{\delta a}{\delta t} \quad \Rightarrow \quad \delta a = q \cdot \delta t.$$

Estabelecidas as conversões, a equação de variação de energia potencial pode ser reescrita em função da vazão turbinada:

$$\delta E_P = (\rho_A \cdot q \cdot \delta t) \cdot G \cdot b$$

Para que energia elétrica seja gerada, a energia potencial é, primeiramente, transformada em energia cinética. Essa transformação está sujeita ao rendimento da turbina. A energia cinética, então, é transformada em energia elétrica através do gerador, o qual também está sujeito a um rendimento. Assim, a geração de energia elétrica pode ser expressa da seguinte maneira:

$$E_E = \eta \cdot E_P,$$

na qual η é o rendimento composto do conjunto turbina/gerador, que varia em função da vazão

turbinada e altura de queda líquida. Entretanto, no POE realizado para o sistema elétrico brasileiro, considera-se um rendimento médio $\overline{\eta}$ (Fortunato et al. 1990). Logo, a equação da geração de energia elétrica pode ser reescrita da seguinte forma:

$$\delta E_E = \overline{\eta} \cdot \rho_A \cdot q \cdot \delta t \cdot G \cdot b$$

Para representar a eletricidade gerada em termos de potência produzida, faz-se necessária uma transformação. Sabe-se que a potência é o fluxo de energia em um determinando instante de tempo. Reescrevendo, portanto, a equação da geração de eletricidade em termos de potência produzida:

$$\frac{\delta E}{\delta t} = p,$$

obtém-se

$$p = \overline{\eta} \cdot \rho_A \cdot q \cdot G \cdot b,$$

onde $\overline{\eta}$, ρ_A e G são conhecidos, podendo ser agrupados em uma constante c. Logo, a função de produção hidráulica pode ser expressa como

$$p = c \cdot q \cdot b.$$

A constante $c = \overline{\eta} \rho_A G$ é comumente denominada produtibilidade específica. Seu valor pode ser calculado com uma simples substituição de ρ_A e G pelos valores do peso específico da água e aceleração da gravidade, respectivamente. Assim, obtém-se

$$c = 9,81 \cdot 10^{-6} \cdot \overline{\eta}$$
 MW/m³/s/m.

Segundo Fortunato et al. (1990), o rendimento médio calculado para grandes unidades geradoras situa-se no intervalo:

$$0,88 < \overline{\eta} \le 0,94,$$

fazendo com que a produtibilidade específica assuma valores entre:

$$0,00863 < c \le 0,00923$$

Expandindo-se a função de produção hidráulica, obtém-se a equação abaixo:

$$p = c \cdot q \cdot \left(h^{M}(a) - h^{F}(r) - h^{P}\right), \qquad (2.5)$$

Figura 9: Função de produção hidráulica da UHE Furnas.

Figura 10: Cortes da função de produção hidráulica da UHE Furnas.

onde pode ser observado que a geração hidrelétrica é uma função do volume armazenado e das vazões turbinada e vertida. A Figura 9 ilustra o comportamento da Equação (2.5) para a usina de Furnas.

A Figura 10 apresenta os cortes da Figura 9 em relação ao volume armazenado e vazão defluente total para diferentes faixas de valores. Nela, pode-se observar a diferença de sensibilidade na produção hidráulica entre vazão turbinada e altura de queda.

2.1.1.3 Canal de fuga

O papel do canal de fuga de uma usina é escoar a vazão defluída de volta ao curso d'água à jusante da barragem. Também, a variação da cota deste canal é considerada no cálculo da altura de queda. Deve-se atentar para os casos de usinas cuja vazão vertida não exerce influência na cota do canal de fuga, nas quais os vertedouros foram construídos de forma que a água vertida seja devolvida ao curso d'água em um ponto suficientemente distante do canal de fuga. Para essas usinas, a altura de queda é calculada como segue:

$$b = b^M(a) - b^F(q) - b^P.$$

2.1.2 Usina termelétrica

A geração de energia elétrica a partir da queima de combustíveis é a forma mais antiga de geração de eletricidade. A disseminação de usinas termelétricas nos países do hemisfério norte durante o final do século XIX e início do século XX, deveu-se a diversos fatores, entre eles o baixo custo de implantação, tecnologia acessível e, principalmente, alta disponibilidade de combustível.

Aquela época, com a ascensão da atividade industrial na Europa e nos Estados Unidos da América, o carvão logo despontou como o combustível mais adaptado às necessidades da nova burguesia industrial, o que se reflete, até os dias atuais, na matriz energética daqueles países. Entretanto, na segunda metade do século XX, outras fontes de energia termelétrica foram sendo descobertas, como o gás natural e o urânio enriquecido, dividindo com o carvão o emprego na geração de eletricididade. Apesar da diversidade de combustíveis, as usinas termelétricas são comumente classificadas em dois grupos: usinas convencionais, cujos combustíveis são fósseis, como carvão, óleo, gás natural e biomassa; usinas nucleares, que fazem uso de combustíveis físseis, como o urânio enriquecido.

As diferenças entre essas usinas estão relacionadas, além do combustível utilizado, ao modo como ele é queimado. Com relação ao processo de queima do combustível, pode-se classificar as usinas termelétricas quanto ao tipo de turbina utilizada: se a vapor; a gás; ou a combustão direta.

No primeiro tipo, o combustível é queimado com o intuito de aquecer uma caldeira com água armazenada. Ao ser aquecida, a água é transformada em vapor que, sob pressão, faz girar as pás da turbina. A energia cinética produzida é, então, transformada em energia elétrica através de um gerador, tal como nas usinas hidrelétricas. No segundo tipo, as pás da turbina são movidas

Figura 11: DET do SIN com aproximação linear do CMO.

mediante uma mistura de ar comprimido e gás resultante da queima do combustível primário. Finalmente, em usinas de combustão direta, utiliza-se motores a pistão alimentados por um combustível fóssil, geralmente o óleo diesel. Esses motores são acoplados a geradores elétricos e são largamente empregados em regiões remotas sem acesso à rede de distribuição de eletricidade, ou como geradores sobressalentes emergenciais em grandes e pequenas empresas, indústrias, hospitais e repartições públicas.

Como a geração de energia termelétrica está associada à aquisição de combustível primário, existe uma relação produção × custo para cada unidade geradora. Além dos custos com combustíveis, há ainda a incidência de custos operacionais, como mão-de-obra e manutenção de equipamentos. Em geral, as usinas termelétricas apresentam curvas de custo convexas e crescentes, sendo aproximadas por polinômios de segundo ou terceiro graus, com limites de geração mínima e máxima. Tais restrições estão associadas, respectivamente, desde imposições de contrato de fornecimento à manutenção da estabilidade do ciclo termodinâmico, e fatores de capacidade máxima e de disponibilidade das unidades geradoras.

No POE do sistema brasileiro, entretanto, o custo das usinas termelétricas é dado por uma função linear da geração. A Figura 11 apresenta o gráfico do DET do SIN com os custos marginais de operação (CMO) por MWh e a potência instalada de cada usina¹. Além disso, é mostrada uma aproximação linear do CMO para o DET para fins de ilustração.

¹Fonte: Programa mensal da operação (PMO), ONS, setembro de 2008.

Figura 12: Rede hidro-topológica de uma hipotética cascata de usinas hidrelétricas.

2.2 Formulação do problema

O planejamento da operação energética de sistemas hidrotérmicos de potência com restrições de intercâmbio entre subsistemas é realizado por meio de modelos matemáticos de fluxo em redes, que procuram representar as componentes mais relevantes envolvidas na geração e transmissão de energia elétrica. Como elucidado anteriormente, com o objetivo de simplificar a modelagem desses sistemas, o planejamento da operação é dividido de acordo com o horizonte de estudo em questão. Haja vista que o objetivo deste trabalho consiste do desenvolvimento de um modelo de otimização para o POE de médio prazo aplicado ao SIN, a formulação proposta desconsidera aspectos relevantes apenas à programação da operação de curto prazo, como: restrições de factibilidade elétrica; tempo de deslocamento da água entre reservatórios hidraulicamente acoplados; rendimento variável dos conjuntos geradores das usinas hidrelétricas; restrições de rampa e reserva girante; entre outras coisas.

Por sua vez, o acoplamento hidráulico entre usinas hidrelétricas constitui um dos aspectos centrais no POE de um SHP, sendo necessária uma modelagem precisa capaz de representar o balanço de massas entre usinas direta ou indiretamente acopladas hidraulicamente. A Figura 12 apresenta o desenho esquemático de uma cascata hipotética de usinas hidrelétricas na forma de um grafo direcionado.

Um grafo $\mathscr{G} = (\mathscr{N}, \mathscr{L})$ consiste de um conjunto \mathscr{N} de nós e um conjunto $\mathscr{L} : \mathscr{N} \times \mathscr{N}$ de pares de nós distintos, chamados de arcos. Um grafo é denominado direcionado se o arco (i, i') é entendido como um par ordenado de nós $(i, i') \neq (i', i)$. Do contrário, diz-se que o grafo é não-direcionado. Dado um arco (i, i'), diz-se que este é um arco de saída do nó i e um arco de

entrada do nó i'. Ambos os nós $i \in i'$ são nós terminais de (i, i'). Um arco (i, i') é incidente nos nós $i \in i'$.

Grafos são muito úteis em diversas áreas do conhecimento ao associar-se valores que representem fluxo a cada um de seus arcos. Esses valores são, geralmente, escalares que podem medir, por exemplo, o fluxo de carros em uma avenida ou de água em uma rede hidráulica. Na Figura 12, por exemplo, os nós representam as usinas hidrelétricas e os arcos $q_i \, e \, v_i$, as vazões turbinada e vertida na usina *i*, respectivamente. Dado um grafo $\mathscr{G} = (\mathscr{N}, \mathscr{L})$, um conjunto de fluxos $\{x_{i,i'} | (i,i') \in \mathscr{L}\}$ é representado por um vetor de fluxos *x*. Para todo vetor de fluxos *x*, existe um vetor de divergência *b* de $|\mathscr{N}|$ dimensões, cujas componentes podem ser expressas pela equação:

$$b_{i} = \sum_{\left\{i' \mid (i,i') \in \mathscr{L}\right\}} x_{i,i'} - \sum_{\left\{i' \mid (i',i) \in \mathscr{L}\right\}} x_{i',i} \qquad \forall i \in \mathscr{N},$$

$$(2.6)$$

na qual b_i é igual ao total de fluxo que sai menos o total de fluxo que chega ao nó *i*. A esse número dá-se o nome de divergência do nó. Um nó é denominado nó de oferta se $b_i > 0$, e nó de demanda se $b_i < 0$.

O conjunto de equações de conservação de fluxo de um grafo pode ser algebricamente representado por um sistema linear Ax = b, no qual A é a matriz de incidência nó-arco do grafo, xé o vetor de fluxos nos arcos e b é o vetor de divergências. Seja, por exemplo, $q = (i, i') \in \mathcal{A}$ um arco do grafo direcionado \mathcal{G} , a matriz de incidência nó-arco A é construída de forma que o elemento $A_{(i,i')} = 1, A_{i',i} = -1$, e assim sucessivamente para todo $l \in \mathcal{L}$. Os demais elementos da matriz são iguais a zero. Note que o número de linhas e colunas de A é igual ao número de nós e arcos do grafo correspondente, respectivamente. Os fluxos no grafo devem ser calculados tais que limites inferiores e superiores de x sejam respeitados na otimização de um critério qualquer estabelecido.

No POE, deve-se determinar a geração de cada usina de um dado sistema para todo o horizonte de planejamento, discretizado em intervalos de tempo. O plano de geração deve satisfazer a demanda com geração termelétrica complementar, respeitando a conservação de fluxo de energia em suas duas formas: hidráulica e elétrica. Na primeira forma, o balanço hidráulico está acoplado no tempo, haja vista que o uso da água em um instante, seja na forma de vazão turbinada ou vertida, reflete na disponibilidade hidráulica futura. A conservação de fluxo da Equação (2.6), neste caso, faz mais sentido, então, ao expandir-se temporalmente a rede hidro-topológica da Figura 12, como proposto por Rosenthal (1981). A Figura 13 ilustra um exemplo de expansão temporal da

Figura 13: Expansão temporal da rede hidro-topológica.

rede hidro-topológica de um sistema hipotético composto por três usinas hidrelétricas para o planejamento com horizonte discretizado em quatro intervalos. Note-se que um índice temporal j é adicionado à identificação de cada nó tal que o par (i, j) representa a usina i no intervalo j. Além disso, o estado de um reservatório em um dado intervalo, representado pelo volume armazenado $a_{i,j}$, pode ser entendido como uma função das vazões defluídas, na qual $a_{i,0}$ é o estado inicial do reservatório da usina i e $a_{i,4}$ é o volume armazenado ao final do horizonte de planejamento. Os arcos do grafo correspondente à expansão temporal que não possuem nós de destino são representados na matriz de incidência nó-arco como tal. A matriz resultante possui posto completo igual a $|\mathcal{N}|$, o que equivale ao produto do número de usinas pelo número de intervalos de tempo.

Os valores encontrados para as variáveis de decisão hidráulica a_i , q_i e v_i para um determinado intervalo j, quando da solução do problema de fluxo, determinam a geração hidrelétrica da usina i conforme a Equação (2.5).

A segunda forma de conservação de fluxo de energia no POE aplicado ao SIN se dá pelos fluxos de intercâmbio energético entre seus subsistemas. A Figura 14 ilustra uma topologia de subsistemas que mimetiza aquela do SIN. Para cada intervalo j do horizonte de planejamento, deve-se determinar a operação hidráulica $x^{i,j}$ para todas as usinas do parque gerador hidrelétrico \mathscr{I}_k que forneçam uma geração hidrelétrica $P_{k,j}$ para cada subsistema k. A essa geração, soma-se a complementação térmica $Q_{k,j}$, que é igual à soma da geração individual $z_{t,j}$ de cada usina do parque gerador termelétrico \mathscr{T}_k , e o intercâmbio $y_{(k',k),j}$, de forma que a demanda $d_{k,j}$ de cada subsistema seja atendida e os balanços hidráulico e energético sejam satisfeitos. Ainda, na Figura 14 está representado um subsistema fictício, sem centro de consumo ou parque gerador.

Diferentemente do balanço hidráulico, o energético apresenta separabilidade temporal. Esta característica implica que as decisões energéticas z e y de um intervalo j não podem ser escritas

Figura 14: Rede eletro-topológica de um conjunto de subsistemas.

como uma função das decisões de outro intervalo j'. Em termos espaciais, entretanto, em razão da possibilidade de haver acoplamento hidráulico entre usinas eletricamente conectadas a diferentes subsistemas, a decisão de operação de uma usina $i \in \mathscr{I}_k$ à montante da usina $i' \in \mathscr{I}_{k'}$ em um dado intervalo j pode influenciar os valores de $P_{k',j}$ e $Q_{k',j}$, e, por conseqüência, os fluxos de intercâmbio. Portanto, dadas essas características do problema, pode-se afirmar que o POE é composto por dois problemas de fluxo em redes fortemente acoplados em termos espaciais.

Dessa forma, pode-se formular o POE para o SIN como um problema de otimização nãolinear que procura minimizar os custos de complementação térmica, e que atenda, de maneira estrita, os balanços hidráulico e energético em todas as usinas e subsistemas, respectivamente, sujeitos às restrições operacionais de cada usina do parque gerador e aos limites de intercâmbio, ao longo de um horizonte de planejamento discretizado em $|\mathcal{J}|$ intervalos de tempo. Este modelo de planejamento individualizado por fluxo em redes (MPI-F) pode ser matematicamente descrito como a seguir:

$$\min_{x,y,z} f(z)$$
s.a $Ax = \tilde{b}$
 $By = P(x) + Q(z) - d$
 $Cy = 0$
 $l^x \le x \le u^x$
 $l^y \le y \le u^y$
 $l^z \le z \le u^z$,
$$(2.7)$$

tal que os vetores x, y e z representam variáveis reais de decisão hidráulica, fluxo de intercâmbio, e geração termelétrica, respectivamente, e são limitadas inferior e superiormente por restrições de operação l e u. Seus valores devem ser determinados segundo o critério de otimização estabelecido como o mínimo da função-objetivo f(z), tal que satisfaçam os sistemas de equações correspondentes aos balanços hidráulico e energético (Primeira Lei de Kirchhoff). Ainda, neste modelo, os fluxos de intercâmbio estão sujeitos à satisfação da Segunda Lei de Kirchhoff.

O restante da seção é dedicado à elucidação do MPI-F, conforme formulado em (2.7), descrevendo as variáveis de decisão do problema, a função-objetivo e os sistemas de equações que definem suas restrições.

2.2.1 Variáveis de decisão

A operação hidráulica $x \in \mathbb{R}^{n_x}$, onde $n_x = \mathbb{R}^{3|\mathcal{I}||\mathcal{I}|}$ é decomposta em vetores de estado de armazenamento dos reservatórios $a \in \mathbb{R}^{|\mathcal{I}||\mathcal{I}|}$, turbinagem $q \in \mathbb{R}^{|\mathcal{I}||\mathcal{I}|}$ e vertimento $v \in \mathbb{R}^{|\mathcal{I}||\mathcal{I}|}$, para os quais \mathcal{I} e \mathcal{I} descrevem, respectivamente, os conjuntos de usinas hidrelétricas e de intervalos de tempo considerados no problema. As componentes de x são dispostas da seguinte forma:

$$x = \begin{pmatrix} a \\ q \\ v \end{pmatrix}, \tag{2.8}$$

tal que:

$$l^a \leq a \leq u^a$$
, $l^q \leq q \leq u^q$, $l^v \leq v \leq u^v$.

Assim, tem-se, também, que:

$$x^{i,j} = \begin{pmatrix} a_{i,j} \\ q_{i,j} \\ v_{i,j} \end{pmatrix} \in \mathbb{R}^3,$$

onde $a_{i,j}$, $q_{i,j}$ e $v_{i,j}$ representam, respectivamente, o volume armazenado ao final do intervalo jna usina i (em hm³), e as vazões turbinada e vertida na mesma usina e intervalo (em m³/s). A escolha da representação explícita das vazões turbinada e vertida, em detrimento à representação implítica (Carvalho & Soares 1987, Oliveira & Soares 1995), se dá por possibilitar a alocação de vertimento turbinável necessário ao atendimento estrito do balanço energético em situações muito particulares de alta disponibilidade hidráulica e baixa demanda. Martins (2005) investiga o uso de uma heurística no cálculo da direção em algoritmos de gradiente reduzido com fluxo em redes na presença de arcos redundantes de turbinagem e vertimento. Azevedo (2006) apresenta resultados de uma extensiva comparação entre os dois modelos de representação para solução por métodos de pontos interiores.

O fluxo de intercâmbio entre os subsistemas é representado pelas variáveis $y \in \mathbb{R}^{n_y}$, onde $n_y = \mathbb{R}^{|\mathcal{L}||\mathcal{J}|}$ e \mathcal{L} é o conjunto das linhas de transmissão. A toda linha l estão associados dois subsistemas $k \in k'$ de origem e destino, respectivamente, tal que $y_{l,j} \in y_{(k,k'),j}$ são equivalentes e representam o fluxo (em MW) nesta linha em um dado intervalo j. Por definição, assume-se que valores negativos de $y_{(k,k'),j}$ indicam fluxo no sentido $k' \to k$.

A geração das usinas termelétricas é dada pelas variáveis $z \in \mathbb{R}^{n_z}$, onde $n_z = \mathbb{R}^{|\mathcal{T}||\mathcal{I}|}$, tal que $z_{t,j}$ indica a geração, também em MW, da usina t em um dado intervalo j. Tal representação da geração térmica permite associar a cada $z_{t,j}$ uma única usina termelétrica, ou mesmo um agregado delas.

2.2.2 Função-objetivo

No planejamento da operação energética do SIN, os custos de geração hidráulica e de transmissão são ignorados, restando à função-objetivo f(z) a ser minimizada, ser descrita por um somatório de funções de custo de geração termelétrica $\psi_{t,j} : \mathbb{R} \to \mathbb{R}$ para cada intervalo j do horizonte de planejamento, como definida pela Equação (2.9):

$$f(z) = \sum_{\forall j \in \mathscr{J}} \sum_{\forall t \in \mathscr{T}} \psi_{t,j}(z_{t,j}).$$
(2.9)

com isso, pode-se especificar uma função de custos por usina (ou agregado) e intervalo de tempo, permitindo estabelecer diferentes graus de detalhamento do parque térmico, bem como diferentes custos ao longo do horizonte.

2.2.3 Balanço hidráulico

A minimização dos custos de operação está sujeita às restrições operacionais $\mathscr{X}, \mathscr{Y} \in \mathscr{Z}$ das usinas hidrelétricas, que definem os limites mínimos e máximos das variáveis de decisão hidráulica, bem como ao atendimento das equações de balanço hidráulico. Este balanço é dado por um funcional linear do tipo $g^{\alpha} : \mathbb{R}^{n_{\chi}} \to \mathbb{R}^{m_{\alpha}}$ em x, onde $m_{\alpha} = |\mathscr{I}||\mathscr{I}|$, e é expresso pelo seguinte sistema de equações:

$$Ax = \tilde{b}, \tag{2.10}$$

no qual A é a matriz de incidência nó-arco do grafo correspondente à expansão temporal da rede que representa a topologia das cascatas onde estão encadeadas as usinas hidrelétricas a serem despachadas. O vetor de divergências $\tilde{b} \in \mathbb{R}^{m_{\alpha}}$ é dado pelas vazões incrementais afluentes b a cada usina i e intervalo j. A este vetor são somados os estados iniciais dos reservatórios a^0 . Assim, tem-se que:

$$\tilde{b} = b + \begin{bmatrix} a^{\circ} \\ 0 \end{bmatrix}, a^{\circ} \in \mathbb{R}^{|\mathscr{I}|}, 0 \in \mathbb{R}^{|\mathscr{I}|(|\mathscr{I}|-1)}.$$

Cada equação do sistema corresponde ao balanço hidráulico espaço-temporal de uma usina *i* em um intervalo *j*:

$$a_{i,j} = a_{i,j-1} + \frac{\Delta_j}{\mathcal{L}} \left[b_{i,j} + \sum_{\forall i' \in \Omega_i} \left(q_{i',j} + v_{i',j} \right) - q_{i,j} - v_{i,j} \right],$$
(2.11)

onde Ω_i é o conjunto das usinas imediatamente à montante de *i*. A conversão entre unidades de volume e vazão deve ser feita de maneira apropriada, levando-se em consideração a duração Δ_j de cada intervalo e unidades em questão. No caso das unidades escolhidas neste trabalho, tem-se que $\varrho = 10^6$.

Figura 15: Representação esquemática do balanço hidráulico.

2.2.4 Balanço energético

Para que fosse possível considerar as restrições de limites de intercâmbio entre subsistemas, fez-se necessária a representação explícita do balanço energético, fazendo dos fluxos de intercâmbio variáveis do problema, em contraponto à representação implícita do balanço global do sistema (Carvalho & Soares 1987, Oliveira et al. 2003, Azevedo et al. 2009).

O balanço energético é dado por um funcional não-linear do tipo $g^{\beta} : \mathbb{R}^n \to \mathbb{R}^{m_{\beta}}$ em x, ye z equivalente ao fluxo de potência em corrente contínua, onde $m_{\beta} = |\mathcal{K}||\mathcal{J}|$ e \mathcal{K} representa o conjunto de subsistemas da rede, e $n = n_x + n_y + n_z$, sendo expresso pelo seguinte sistema de equações:

$$By = P(x) + Q(z) - d,$$
 (2.12)

no qual B é a matriz de incidência nó-arco do grafo correspondente à expansão temporal da rede elétrica; $P(x) : \mathbb{R}^{n_x} \to \mathbb{R}^{m_\beta}$ é um funcional não-linear de mapeamento da geração hidráulica para todo subsistema da rede com parque gerador hidráulico; $Q(z) : \mathbb{R}^{n_z} \to \mathbb{R}^{m_\beta}$, um funcional linear da geração térmica análogo a P(x), para todo subsistema da rede com parque gerador térmico; e, por fim, o vetor d, dado, representa a demanda de carga para todo subsistema k e intervalo j.

O funcional P(x) é dado como segue:

$$P(x) = \left(\dots, P^{j-1}(x)^T, P^j(x)^T, P^{j+1}(x)^T, \dots \right)^T,$$

no qual:

$$P^{j}(x) = \left[\dots, P_{k-1,j}(x^{j})^{T}, P_{k,j}(x^{j})^{T}, P_{k+1,j}(x^{j})^{T}, \dots \right]^{T} \in \mathbb{R}^{|\mathscr{K}|}$$

e:

$$P_{k,j}(x^j) = \sum_{\forall i \in \mathscr{I}_k} p_i(x^{i,j}) \in \mathbb{R},$$

onde $p_i(x^{i,j})$ é igual à geração hidráulica de *i* no intervalo *j*, conforme dada pela Equação (2.5).

O funcional Q(z), por sua vez, é calculado de forma análoga, tal que:

$$Q_{k,j}(z^j) = \sum_{\forall t \in \mathscr{T}_k} z_{t,j}.$$

Cada equação de (2.12) corresponde ao balanço energético em um subsistema k em um dado intervalo j, sendo expressa da seguinte forma:

$$d_{k,j} = -\sum_{\forall k' \in \Theta_k} y_{(k,k'),j} + P_{k,j}(x^j) + Q_{k,j}(z^j),$$
(2.13)

onde Θ_k é o conjunto de subsistemas imediatamente conectados ao subsistema k. O sinal de $y_{(k,k'),j}$ é determinado pela direção do fluxo de intercâmbio: positivo, se o fluxo é concordante com a direção-referência; e negativo, se contrário.

2.2.5 Segunda Lei de Kirchhoff

Além do balanço energético, o fluxo de intercâmbio deve satisfazer, também, a Segunda Lei de Kirchhoff, representada por um funcional linear do tipo $g^{\gamma} : \mathbb{R}^{n_{\gamma}} \to \mathbb{R}^{m_{\gamma}}$, onde $m_{\gamma} = |\mathcal{O}| \cdot |\mathcal{J}|$ e \mathcal{O} corresponde ao conjunto de ciclos na rede, sendo expresso por:

$$Cy = \mathbf{0}.\tag{2.14}$$

Na Equação (2.14), cada linha da matriz de reatâncias *C* corresponde a um ciclo do grafo que representa a expansão temporal da rede elétrica. Aos coeficientes correspondentes aos arcos participantes do ciclo em questão são atribuídos os valores de reatância; àqueles não participantes, atribui-se valores nulos (Carvalho et al. 1988), (Oliveira et al. 2003).

2.3 Considerações finais

A formulação do problema de planejamento da operação energética a usinas individualizadas, como proposta neste trabalho, permite, através da indexação temporal da canalização das variáveis de decisão, considerar aspectos dinâmicos da configuração de sistemas hidrotérmicos de potência como, por exemplo, a entrada de novas usinas no parque gerador e o enchimento do volume morto de seus respectivos reservatórios; a repotenciação de unidades geradoras já existentes; e a recapacitação das linhas de transmissão. A consideração desses aspectos se dá pelo emprego apropriado dos limites inferiores e superiores das variáveis hidráulicas e de intercâmbio, estabelecendo-se valoers a cada intervalo de tempo que reflitam a reconfiguração do sistema.

Por sua vez, o uso das funções de mapeamento da geração hidro e termelétrica por subsistema permite a representação da rede elétrica em diferentes níveis de detalhes, não restringindo, portanto, sua representação apenas por intercâmbio entre subsistemas. A flexibilidade proporcionada pelo emprego dessas funções possibilita, por exemplo, a representação completa da rede elétrica.

3 Metodologia de solução

Ao longo dos últimos anos, métodos de pontos interiores têm se estabelecido como uma técnica de solução eficiente para problemas práticos de otimização. Inicialmente, eles despertaram maior interesse, a partir do trabalho seminal de Navendra Karmarkar, em 1984, como uma ferramenta alternativa e computacionalmente eficiente para a solução de problemas de otimização linear, área até então dominada pelo clássico método *simplex*, de George Dantzig. Apesar de se caracterizar como um problema de otimização contínua, a solução ótima de um problema de programação linear (PL) está sempre localizada em um dos vértices do politopo convexo formado pela interseção de suas restrições. Devido a essa característica, em que o número de vértices cresce exponencialmente em função das *n* variáveis e *m* restrições do problema, a busca pela solução ótima constitui um problema combinatorial. O amplo emprego do método simplex, contudo, se deveu à forma inteligente como os vértices são escolhidos, iterativamente, até que um vértice ótimo seja encontrado, sem que, para isso, seja necessário varrer todo o espaço de possíveis soluções. Entretanto, em razão da existência de instâncias de PL para as quais o método simplex requer um número exponencial de iterações para que a solução ótima seja encontrada, observou-se uma busca na literatura por algoritmos de complexidade polinomial.

Ye (1997) apresenta uma extensa análise teórica dos diferentes métodos de pontos interiores. Todos eles têm em comum o cálculo iterativo de soluções estritamente interiores ao politopo até a convergência à solução ótima, utilizando, para isso, informações sobre sua geometria como, por exemplo, informações de centralidade. Entretanto, eles se diferenciam, basicamente, na forma de cálculo das direções de busca.

Entre os diferentes métodos propostos na literatura, os algoritmos primal-dual têm sido objeto de intensa pesquisa, ao longo dos últimos quinze anos, em razão de suas "excelentes propriedades teóricas e bom desempenho prático", como afirma Wright (1997). Por isso, "têm sido empregados extensivamente em diversas classes de problemas de programação quadrática, programação semi-definida e até mesmo programação não-linear". Métodos primal-dual se caracterizam por calcular as direções de busca primal e dual do problema mediante variações do método de Newton aplicado às condições de Karush-Kuhn-Tucker (KKT) de forma a garantir que as variáveis não-negativas permaneçam estritamente positivas. Eles podem ser classificados como: algoritmos de redução potencial, nos quais a escolha do tamanho do passo é feita de forma a minimizar uma função de potencial que tende a $-\infty$ se e somente se as soluções calculadas iterativamente convergem a uma solução primal-dual; e algoritmos seguidores de caminho, que calculam soluções, a cada iteração, que sejam suficientemente próximas de um caminho central até sua convergência.

Recentemente, muitos trabalhos foram dedicados à aplicação de métodos de pontos interiores primal-dual a problemas de programação não-linear (Forsgren et al. 2002). O principal obstáculo à aplicação desses métodos em problemas de otimização não-linear reside na perda de convexidade e de garantia de convergência global. Por esta razão, o objetivo principal das propostas apresentadas na literatura consiste em aliar robustez e desempenho computacional razoável. Apesar de recentes, a maioria desses trabalhos são inspirados no trabalho seminal de Fiacco & McCormick (1968), que introduziu o uso de funções de barreira logarítmica no tratamento de restrições de não-negatividade.

El-Bakry et al. (1996) apresentam um algoritmo primal-dual com barreira e introduzem uma função de mérito que garante convergência sob condições de não-singularidade da matriz Jacobiana associada às condições KKT. Vanderbei & Shanno (1999) propõem o uso de uma função de mérito com parâmetro de penalização dinâmico e direções de busca modificadas a fim de garantir uma direção de descida a cada iteração. Por sua vez, Forsgren & Gill (1998) apresentam um algoritmo primal-dual com o emprego de barreira logarítmica aumentada por parâmetro de penalização equivalente a uma função de mérito. Também fazem uso de abordagens com função de mérito e penalização os trabalhos de Durazzi (2000) e Benson & Shanno (2008). Byrd et al. (2000) apresentam uma abordagem híbrida baseada em programação quadrática seqüencial, regiões de confiança e métodos de pontos interiores primal-dual. Fletcher & Leyffer (2002) introduzem a idéia de filtros em detrimento ao uso de funções de mérito na busca unidimensional para o cálculo de novas soluções. Benson et al. (2002) mostram que o uso de filtros proporciona maior eficiência computacional se comparados aos métodos de penalização. Ulbrich et al. (2004) propõem um método primal-dual com uso de filtro e parâmetros de controle de tamanho de passo inspirado em métodos de regiões de confiança a fim de garantir convergência global. Por sua vez, Wächter & Biegler (2005) propõem, para isso, o uso de filtro com técnicas de restauração de factibilidade.

O emprego de métodos de pontos interiores em problemas de sistemas de potência é recente e acompanha o desenvolvimento teórico dos métodos por serem caracterizados como problemas de grande porte. Quintana et al. (2000) apresentam uma revisão bibliográfica das aplicações desses métodos à área. No que concerne ao POE, Medina et al. (1999) apresenta um método preditorcorretor com barreira logarítmica para resolver o POE com função de geração hidráulica linear, e Azevedo et al. (2009) propõem um algoritmo primal-dual quadrático com tratamento de esparsidade, considerando funções de geração hidráulica não-lineares.

Este capítulo apresenta um método de pontos interiores primal-dual não-linear infactível com barreira logarítmica para solução do problema (2.7). Ele é constituído por uma extensão do método de Azevedo et al. (2009) para restrições não-lineares, com uma simplificação da implementação da busca unidimensional com filtro de Wächter & Biegler (2006), visando facilitar sua convergência na solução de problemas de POE como formulado em (2.7). A Seção 3.1 descreve o algoritmo. Aspectos de ordem computacional são apresentados na Seção 3.2.

3.1 Algoritmo

O problema (2.7) pode ser reescrito na forma a seguir:

$$\min_{w} f(w)$$
s.a $g(w) = 0$
 $l \le w \le u,$

$$(3.1)$$

onde $w = (x^T, y^T, z^T)^T$, e

$$g(w) \triangleq \begin{pmatrix} g^{\alpha}(x) \\ g^{\gamma}(y) \\ g^{\beta}(x, y, z) \end{pmatrix} = \mathbf{0} \in \mathbb{R}^{m}$$
(3.2)

representa os sistemas de equações que descrevem as restrições de balanço hidráulico e elétrico, e a Segunda Lei de Kirchhoff:

$$g^{\alpha}(x) = Ax - \tilde{b}$$

$$g^{\gamma}(y) = Cy$$

$$g^{\beta}(x, y, z) = By - P(x) - Q(z) + dz$$

Variáveis de folga s e t são adicionadas às desigualdades e, a fim de eliminar as restrições de não-negatividade impostas a elas, inclui-se uma função de barreira à função-objetivo original (Fiacco & McCormick 1968), resultando no seguinte problema:

$$\min_{\tilde{w}} \varphi_{\mu}(\tilde{w})$$
s.a $\tilde{g}(\tilde{w}) = 0,$

$$(3.3)$$

onde $\tilde{w} = (w^T, s^T, t^T)^T$, e:

$$\tilde{g}(\tilde{w}) \triangleq \begin{pmatrix} g(w) \\ w+s-u \\ w-t-l \end{pmatrix},$$

no qual s, t > 0 e:

$$\varphi_{\mu}(\tilde{w}) = f(w) - \mu\left(\sum_{i=1}^{n} \ln s_i + \ln t_i\right), \qquad (3.4)$$

onde μ é um escalar denominado parâmetro de barreira.

Uma vez eliminadas as desigualdades do problema, pode-se escrever seu Lagrangeano:

$$\ell_{\mu}(\tilde{w},\lambda,\pi,\zeta) = \varphi_{\mu}(\tilde{w}) + g(w)^{T}\lambda + (w+s-u)^{T}\pi + (t-w+l)^{T}\zeta, \qquad (3.5)$$

onde λ , π e ζ são as variáveis duais, também denominadas multiplicadores de Lagrange.

As condições de otimalidade de primeira ordem do problema (3.1) correspondem a um ponto estacionário do Lagrangeano e são atendidas quando o sistema primal-dual abaixo é satisfeito:

$$L_{\mu}(\tilde{w}, \lambda, \pi, \zeta) \triangleq \begin{pmatrix} \nabla f(w) + \nabla g(w)^{T} \lambda + \pi - \zeta \\ g(w) \\ w + s - u \\ t - w + l \\ \pi - \mu S^{-1}e \\ \zeta - \mu T^{-1}e \end{pmatrix} = 0$$
(3.6)

As duas últimas equações do sistema (3.6) descrevem as condições de complementaridade, e podem ser reescritas como dois sistemas de equações não-lineares:

$$S\Pi e = \mu e \tag{3.7}$$

$$TZe = \mu e \tag{3.8}$$

onde S, T, Π e Z são matrizes diagonais estritamente positivas associadas aos vetores s, t, π e ζ , respectivamente. As condições de complementaridade são perturbadas pelo parâmetro de barreira μ e implicam a não-negatividade de π e ζ , o que é consistente com o fato de que estes multiplicadores de Lagrange estão associados com o que, originalmente, eram restrições de desigualdade. Por fim, $e \in \mathbb{R}^n$ é um vetor unitário.

Para que uma solução do sistema (3.6) seja igual a uma solução ótima do problema original (3.1) na última iteração k^* , deve existir uma seqüência $\{\mu^{(k)}\} \rightarrow 0$ para pelo menos um $\mu^{(0)} > 0$ quando $k \rightarrow \infty$. A cada iteração k, calcula-se a direção de Newton que resolva o sistema de equações não-lineares (3.6)–(3.8) através da aproximação linear por série de Taylor em torno do ponto $(\tilde{w}^{(k)}, \lambda^{(k)}, \pi^{(k)}, \zeta^{(k)})$:

$$\Delta^{(k)} = -\left[\nabla L_{\mu^{(k)}}(\tilde{w}^{(k)}, \lambda^{(k)}, \pi^{(k)}, \zeta^{(k)})\right]^{-1} L_{\mu^{(k)}}(\tilde{w}^{(k)}, \lambda^{(k)}, \pi^{(k)}, \zeta^{(k)}),$$

resultando no seguinte sistema a ser resolvido:

$$\begin{bmatrix} H(w^{(k)},\lambda^{(k)}) & \nabla g(w^{(k)})^T & I & -I & 0 & 0 \\ \nabla g(w^{(k)}) & 0 & 0 & 0 & 0 & 0 \\ I & 0 & 0 & 0 & I & 0 \\ -I & 0 & 0 & 0 & 0 & I \\ 0 & 0 & S & 0 & \Pi & 0 \\ 0 & 0 & 0 & T & 0 & Z \end{bmatrix} \begin{pmatrix} \Delta w^{(k)} \\ \Delta \lambda^{(k)} \\ \Delta \pi^{(k)} \\ \Delta \zeta^{(k)} \\ \Delta s^{(k)} \\ \Delta t^{(k)} \end{pmatrix} = \begin{pmatrix} \sigma \\ \rho_{\lambda} \\ \rho_{\pi} \\ \rho_{\zeta} \\ x_{s} \\ x_{t} \end{pmatrix}$$

no qual:

$$H(w^{(k)},\lambda^{(k)}) = \nabla^2 f(w^{(k)}) + \sum_{i=1}^m \lambda_i^{(k)} \nabla^2 g_i(w^{(k)}).$$
(3.9)

e:

$$\sigma = \zeta^{(k)} - \nabla g(w^{(k)})^T \lambda - \nabla f(w^{(k)}) - \pi^{(k)}$$

$$\rho_{\lambda} = -g(w^{(k)})$$

$$\rho_{\pi} = u - s^{(k)} - w^{(k)}$$

$$\rho_{\zeta} = w^{(k)} - t^{(k)} - l$$

$$x_s = \mu^{(k)} e - S\Pi e$$

$$x_t = \mu^{(k)} e - TZe,$$

(3.10)

onde σ , ρ e x correspondem às violações das condições de otimalidade primal e dual, e complementaridades perturbadas, respectivamente. Ele pode, ainda, ser reduzido, eliminando-se as equações correspondentes às variáveis de folga e suas respectivas variáveis duais, tal que:

$$\Delta s^{(k)} = \rho_{\pi} - \Delta w^{(k)} \tag{3.11}$$

$$\Delta t^{(k)} = \Delta w^{(k)} + \rho_{\zeta} \tag{3.12}$$

$$\Delta \pi^{(k)} = S^{-1} \left(\varkappa_s - \Pi \Delta s^{(k)} \right)$$
(3.13)

$$\Delta \zeta^{(k)} = T^{-1} \left(\varkappa_t - Z \Delta t^{(k)} \right), \qquad (3.14)$$

e, fazendo-se as devidas subsistituições, obter o seguinte sistema reduzido:

$$\begin{bmatrix} D & \nabla g(w^{(k)})^T \\ \nabla g(w^{(k)}) & 0 \end{bmatrix} \begin{pmatrix} \Delta w^{(k)} \\ \Delta \lambda^{(k)} \end{pmatrix} = \begin{pmatrix} \sigma - S^{-1} \left(x_s + \Pi \rho_{\pi} \right) + T^{-1} \left(x_t - Z \rho_{\zeta} \right) \\ \rho_{\lambda} \end{pmatrix},$$
(3.15)

onde:

$$D = H(w^{(k)}, \lambda^{(k)}) + S^{-1}\Pi + T^{-1}Z.$$
(3.16)

Se $\nabla L_{\mu}(\tilde{w}^{(k)}, \lambda^{(k)}, \pi^{(k)}, \zeta^{(k)})$ é definida positiva, então a aproximação tem um único minimizador em $(\tilde{w}^{(k)}, \lambda^{(k)}, \pi^{(k)}, \zeta^{(k)}) + \Delta^{(k)}$. Entretanto, uma estratégia de globalização comum consiste da inclusão de uma busca linear tal que a solução na iteração k + 1 seja dada por:

$$\begin{aligned}
w^{(k+1)} &= w^{(k)} + \alpha_{p}^{(k)} \Delta w^{(k)} \\
s^{(k+1)} &= s^{(k)} + \alpha_{p}^{(k)} \Delta s^{(k)} \\
t^{(k+1)} &= t^{(k)} + \alpha_{p}^{(k)} \Delta t^{(k)} \\
\lambda^{(k+1)} &= \lambda^{(k)} + \alpha_{d}^{(k)} \Delta \lambda^{(k)} \\
\pi^{(k+1)} &= \pi^{(k)} + \alpha_{d}^{(k)} \Delta \pi^{(k)} \\
\zeta^{(k+1)} &= \zeta^{(k)} + \alpha_{d}^{(k)} \Delta \zeta^{(k)},
\end{aligned}$$
(3.17)

onde $\alpha_p^{(k)} \in (0,1]$ e $\alpha_d^{(k)} \in (0,1]$ são denominados tamanho do passo primal e dual, respectivamente. Esses tamanhos de passo devem, entretanto, estar limitados superiormente de forma que as variáveis não-negativas assim permaneçam na próxima iteração. Para tanto, eles são calculados a partir do menor comprimento máximo de passo entre todas as variáveis de folga, que constituem as variáveis restritas do problema (3.1), e as variáveis duais correspondentes às canalizações,

|--|

Passo 1	Fazer $k \leftarrow 0$.
	Calcular solução inicial ($\tilde{w}^{(0)}, \lambda^{(0)}, \pi^{(0)}, \zeta^{(0)}$) como em (3.41)–(3.42).
	Criar o filtro $F^{(0)}$ como em (3.27).
Passo 2	Calcular parâmetro de barreira $\mu^{(k)}$ de (3.34).
	Calcular infactibilidades (3.10).
Passo 3	Verificar critérios de convergência (3.36)-(3.40):
	Se todos os critérios são atendidos, então encerrar;
	do contrário, continuar no Passo 4.
Passo 4	Calcular direção de busca com correção de inércia como no Algoritmo 3.
Passo 5	Calcular tamanho dos passos máximos primal e dual (3.18)–(3.21).
Passo 6	Fazer busca unidimensional com filtro como no Algoritmo 2.
Passo 7	Calcular nova solução de (3.17).
Passo 8	Aumentar o filtro caso seja necessário:
	Se (3.25) ou (3.26) não são satisfeitas para $\tilde{w}^{(k+1)}$, aumentar o filtro (3.28);
	do contrário, fazer $F^{(k+1)} \leftarrow F^{(k)}$.
Passo 9	Fazer $k \leftarrow k + 1$.
	Voltar ao Passo 2.

como apresentado por Azevedo et al. (2009):

$$\tilde{\alpha}_{p}^{(k)} = \min\left\{\min_{i=1:n}\left\{\frac{-s_{i}^{(k)}}{\Delta s_{i}^{(k)}}:\Delta s_{i}^{(k)}<0\right\}, \min_{i=1:n}\left\{\frac{-t_{i}^{(k)}}{\Delta t_{i}^{(k)}}:\Delta t_{i}^{(k)}<0\right\}\right\}$$
(3.18)

$$\tilde{\alpha}_{d}^{(k)} = \min\left\{\min_{i=1:n}\left\{\frac{-\pi_{i}^{(k)}}{\Delta\pi_{i}^{(k)}}:\Delta\pi_{i}^{(k)}<0\right\}, \min_{i=1:n}\left\{\frac{-\zeta_{i}^{(k)}}{\Delta\zeta_{i}^{(k)}}:\Delta\zeta_{i}^{(k)}<0\right\}\right\}, \quad (3.19)$$

e, finalmente:

$$\overline{\alpha}_{p}^{(k)} = \min\left\{1, \tau_{\alpha} \widetilde{\alpha}_{p}^{(k)}\right\}$$
(3.20)

$$\overline{\alpha}_{d}^{(k)} = \min\left\{1, \tau_{\alpha} \tilde{\alpha}_{d}^{(k)}\right\}$$
(3.21)

onde o escalar constante $\tau_{\alpha} \in (0,1)$ é um fator de redução do passo utilizado para assegurar a estrita positividade das variáveis não-negativas.

O Algoritmo 1 apresenta o método de pontos interiores implementado neste trabalho. O restante desta seção está dedicado à descrição detalhada dos diferentes passos do Algoritmo 1, em especial os procedimentos de busca unidimensional com filtro e de cálculo da direção de busca.

3.1.1 Busca unidimensional com filtro

Uma vez calculados os tamanhos máximos dos passos primal e dual, realiza-se a busca unidimensional a fim de encontrar um tamanho de passo $\alpha_p^{(k)}$ que resolva (3.6). Usualmente, em problemas de otimização não-linear, um passo $\alpha_p^{(k)}$ é aceito se a solução $\tilde{w}^{(k+1)} = \tilde{w}^{(k)} + \alpha_p^{(k)} \Delta \tilde{w}^{(k)}$ reduz suficientemente uma função dada por uma combinação linear da função-objetivo e de uma medida de infactibilidade como, por exemplo, a norma ℓ^2 de $\tilde{g}(\tilde{w})$:

$$\theta(\tilde{w}) = \|\tilde{g}(\tilde{w})\|_2. \tag{3.22}$$

Nesses métodos, a cada iteração, a solução encontrada deve proporcionar uma redução suficiente tanto de $\varphi_{\mu^{(k)}}(\tilde{w}^{(k)})$ quanto de $\theta(\tilde{w}^{(k)})$, através de uma função de mérito que combina linearmente estes valores em um único problema de minimização, apesar de constituirem objetivos conflitantes. Haja vista que a solução ótima deve, impreterivelmente, satisfazer a condição $\tilde{g}(\tilde{w}) = 0$, a minimização de θ tem prioridade. Assim, um fator de penalização p > 0 é imposto às infactibilidades:

$$\varphi_{\mu}(\tilde{w}) + p\theta(\tilde{w}).$$

A desvantagem do uso de uma função de mérito reside na dificuldade de determinação de um limite inferior de p tal que a função tenha um mínimo na solução de (3.3). Um valor de p muito pequeno pode resultar em soluções de (3.3) infactíveis. Por outro lado, valores muito grandes de p anulam a influência da função-objetivo, resultando em lenta convergência quando a seqüência iterativa das soluções se aproxima dos limites da região factível. Por não ter seu valor ideal conhecido de antemão, algumas alternativas para sua escolha iterativa foram propostas na literatura (Vanderbei & Shanno 1999) sem, contudo, eliminar certas dificuldades numéricas resultantes do emprego da penalidade.

Alternativamente ao emprego de funções de mérito, Fletcher & Leyffer (2002) introduziram o conceito de filtro, que atua na classificação de soluções aceitáveis. Para tanto, uma nova solução deve promover a redução do valor da função-objetivo ou da medida de infactibilidade, ou de ambos. Em poucas palavras, um filtro é dado por uma lista de pares de valores escalares (θ, φ) tal que não haja qualquer par dominante na lista. Um par (θ_k, φ_k) é dominante se e somente se $\theta_k \leq \theta_l$ e $\varphi_k \leq \varphi_l$ para qualquer par (θ_l, φ_l). O emprego do filtro é vantajoso do ponto de vista computacional, por requerer reduzido esforço; e algébrico, por permitir certa não-monotonicidade (Fletcher & Leyffer 2002). A garantia de convergência global, até o presente, ainda é objeto de pesquisa, apesar de Wächter & Biegler (2005) terem proposto um algoritmo com busca unidimensional que, sob certas condições, tem sua convergência garantida.

Neste trabalho, entretanto, é empregada busca unidimensional com filtro como proposto por Wächter & Biegler (2006). O uso tão somente do filtro mostrou-se suficiente na promoção da convergência do algoritmo para os estudos de caso realizados.

Ainda, Wächter & Biegler (2006) fornecem uma definição formal do algoritmo de busca unidimensional com filtro, em que afirmam,

"(...) basicamente, [que] o conceito de filtro e seu uso no cálculo do tamanho do passo consiste em interpretar o problema (3.3) como um problema de dois objetivos a cada iteração: minimizar a função-objetivo $\varphi_{\mu^{(k)}}(\tilde{w})$ e a violação das restrições $\tilde{g}(\tilde{w})$. Assim, para todo k, verifica-se se $\tilde{w}^{(k+1)} = \tilde{w}^{(k)} + \alpha_p^{(k)} \Delta \tilde{w}^{(k)}$, para um tamanho de passo $\alpha_p^{(k)} \in [\underline{\alpha}_p^{(k)}, \overline{\alpha}_p^{(k)}] : \underline{\alpha}_p^{(k)} > 0$ e $\overline{\alpha}_p^{(k)} \in (\underline{\alpha}_p^{(k)}, 1]$, calculado durante o procedimento de busca unidimensional, estabelece progresso em direção a algum dos objetivos, o que corresponde ao atendimento de pelo menos uma das condições abaixo:

$$\theta(\tilde{w}^{(k+1)}) \leq (1 - \gamma_{\theta})\theta(\tilde{w}^{(k)})$$
(3.23)

$$\varphi_{\mu^{(k)}}(\tilde{w}^{(k+1)}) \leq \varphi_{\mu^{(k)}}(\tilde{w}^{(k)}) - \gamma_{\varphi}\theta(\tilde{w}^{(k)}),$$
 (3.24)

onde $\gamma_{\varphi}, \gamma_{\theta} \in (0, 1)$ são escalares constantes. Na implementação proposta neste trabalho, entretanto, as condições acima são substituídas por uma verificação de decréscimo da função-objetivo (3.4) sempre que $\theta(\tilde{w}^{(k)}) \leq \theta_{\min}$, para um $\theta_{\min} \in (0, \infty]$ constante, e as seguintes condições forem satisfeitas:

$$\nabla \varphi_{\mu^{(k)}}(\tilde{w}^{(k)})^T \Delta \tilde{w}^{(k)} < 0$$

$$\alpha_p^{(k)} \left(-\nabla \varphi_{\mu^{(k)}}(\tilde{w}^{(k)})^T \Delta \tilde{w}^{(k)} \right)^{\delta_{\varphi}} > \left(\theta(\tilde{w}^{(k)}) \right)^{\delta_{\theta}}$$
(3.25)

onde os escalares $\delta_{\varphi} \ge 1$ e $\delta_{\theta} > 1$ são constantes. Caso $\theta(\tilde{w}^{(k)}) < \theta_{\min}$ e as condições (3.25) sejam atendidas, $\tilde{w}^{(k+1)}$ deverá satisfazer a condição de Armijo:

$$\varphi_{\mu^{(k)}}(\tilde{w}^{(k+1)}) \leq \varphi_{\mu^{(k)}}(\tilde{w}^{(k)}) + \varsigma_{\varphi} \alpha_{p}^{(k)} \nabla \varphi_{\mu^{(k)}}(\tilde{w}^{(k)})^{T} \Delta \tilde{w}^{(k)}$$
(3.26)

ao invés das condições (3.23) e (3.24), para que seja considerada uma nova solução aceitável, onde $\varsigma_{\varphi} \in (0, 1/2)$ é um escalar constante".

O conjunto das condições de aceitabilidade (3.23)–(3.24) de uma solução primal $\tilde{w}^{(k+1)}$ constitui aquilo que (Fletcher & Leyffer 2002) denominaram filtro, descrito como um conjunto:

$$F^{(k)} \subseteq \{(\theta, \varphi) \in \mathbb{R}^2 : \theta \ge 0\},\$$

para toda iteração k, que contém pares de valores (θ, φ) não aceitáveis para uma dada solução $\tilde{w}^{(k+1)}$. Assim, se, durante a busca unidimensional para uma dada iteração k, tem-se que:

$$(\theta(\tilde{w}^{(k+1)}), \varphi(\tilde{w}^{(k+1)})) \in F^{(k)},$$

 $ilde{w}^{(k+1)}$ é rejeitado. Na inicialização do algoritmo, o filtro é criado da seguinte forma:

$$F^{(0)} \leftarrow \{(\theta, \varphi) \in \mathbb{R}^2 : \theta \ge \theta_{\max}\}$$
(3.27)

para um $\theta_{\rm max}$ > 0. Nas iterações seguintes, o filtro é aumentado segundo a regra abaixo:

$$F^{(k+1)} \leftarrow F^{(k)} \cup \left\{ (\theta, \varphi) \in \mathbb{R}^2 : \theta \ge (1 - \gamma_{\theta}) \theta(\tilde{w}^{(k)}) e \varphi \ge \varphi_{\mu^{(k)}}(\tilde{w}^{(k)}) - \gamma_{\varphi} \theta(\tilde{w}^{(k)}) \right\}.$$
(3.28)

após cada iteração na qual a solução $\tilde{w}^{(k+1)}$, para um dado $\alpha_p^{(k)}$, não satisfaça as condições (3.25) e (3.26). Do contrário, o filtro permanece inalterado para a próxima iteração.

Durante o processo de busca unidimensional, são verificados tamanhos de passo $\alpha_p^{(k)}$ decrescentes a partir do tamanho máximo de passo $\overline{\alpha}_p^{(k)}$. Na ocorrência de um passo $\alpha_p^{(k)}$ não ser aceito por restrição do filtro ou não atendimento das condições (3.23)–(3.26), faz-se $\alpha_p^{(k)} \leftarrow \beta_{\alpha} \alpha_p^{(k)}$, $\beta_{\alpha} \in (0, 1)$, e verifica-se se uma eventual nova solução para o novo tamanho de passo estabelece progresso suficiente ou atende às referidas condições, repetindo-se o processo, iterativamente, até que a busca seja bem sucedida ou $\alpha_p^{(k)} \leq \underline{\alpha}_p^{(k)}$. O tamanho mínimo de passo é definido como segue, onde $\gamma_{\alpha} \in (0, 1)$:

$$\underline{\alpha}_{p}^{(k)} = \gamma_{\alpha} \begin{cases} \min \left\{ \gamma_{\theta}, \frac{\gamma_{\varphi}\theta(\tilde{w}^{(k)})}{-\nabla\varphi_{\mu^{(k)}}(\tilde{w}^{(k)})^{T}\Delta\tilde{w}^{(k)}}, \frac{\left[\theta(\tilde{w}^{(k)})\right]^{\delta_{\theta}}}{\left[-\nabla\varphi_{\mu^{(k)}}(\tilde{w}^{(k)})^{T}\Delta\tilde{w}^{(k)}\right]^{\delta_{\varphi}}} \right\} \\ \operatorname{se} \nabla\varphi_{\mu^{(k)}}(\tilde{w}^{(k)})^{T}\Delta\tilde{w}^{(k)} < 0 \operatorname{e} \theta(\tilde{w}^{(k)}) \leq \theta_{\min} \\ \min \left\{ \gamma_{\theta}, \frac{\gamma_{\varphi}\theta(\tilde{w}^{(k)})}{-\nabla\varphi_{\mu^{(k)}}(\tilde{w}^{(k)})^{T}\Delta\tilde{w}^{(k)}} \right\} \\ \operatorname{se} \nabla\varphi_{\mu^{(k)}}(\tilde{w}^{(k)})^{T}\Delta\tilde{w}^{(k)} < 0 \operatorname{e} \theta(\tilde{w}^{(k)}) > \theta_{\min} \\ \gamma_{\theta} \\ \operatorname{do contrário.} \end{cases}$$
(3.29)

Algoritmo	2 Busca unidimensional com filtro.
Passo 6.1	Fazer $\alpha_{p}^{(k)} \leftarrow \overline{\alpha}_{p}^{(k)}$.
Passo 6.2	Calcular a nova possível solução $\tilde{w}^{(k+1)} = \tilde{w}^{(k)} + \alpha_{p}^{(k)} \Delta \tilde{w}^{(k)}$.
Passo 6.3	Se $(\theta(\tilde{w}^{(k+1)}), \varphi_{u^{(k)}}(\tilde{w}^{(k+1)})) \in F^{(k)}$, continuar no Passo 6.5.
Passo 6.4	Verificar se $\tilde{w}^{(k+1)}$ estabelece progresso suficiente:
	Caso A: $\theta(\tilde{w}^{(k+1)}) \leq \theta_{\min} \in (3.25)$ é satisfeita.
	Se (3.26) é atendida, aceitar $\tilde{w}^{(k+1)}$ e continuar no Passo 7;
	do contrário, continuar no Passo 6.5.
	Caso B: $\theta(\tilde{w}^{(k+1)}) > \theta_{\min}$ ou (3.25) não é satisfeita.
	Se (3.23) ou (3.24) são atendidas, aceitar $\tilde{w}^{(k+1)}$ e continuar no Passo 7;
	do contrário, continuar no Passo 6.5.
Passo 6.5	Fazer $\alpha_p^{(k)} \leftarrow \beta_{\alpha} \alpha_p^{(k)}$.
	Se $\alpha_p^{(k)} < \underline{\alpha}_p^{(k)}$, declarar o problema localmente infactível e finalizar;
	do contrário, voltar ao Passo 6.2.

3.1.2 Cálculo da direção de busca

Para calcular a direção de busca a partir da solução do sistema (3.15), é necessário que a matriz $\nabla L_{\mu^{(k)}}(\tilde{w}^{(k)}, \lambda^{(k)}, \pi^{(k)}, \zeta^{(k)})$ seja não-singular. Além disso, o procedimento de busca unidimensional com filtro requer que a matriz D, projetada no espaço nulo de $\nabla g(w^{(k)})^T$, seja definida positiva (Wächter & Biegler 2005). Essas condições são satisfeitas "caso a matriz tenha inércia (n, m, 0), ou em outras palavras, caso ela tenha exatamente n autovalores positivos, m negativos e nenhum nulo". Do contrário, o sistema é iterativamente modificado para escalares $\delta_D, \delta_0 \ge 0$ da seguinte forma:

$$\begin{bmatrix} D + \delta_D I & \nabla g(w^{(k)})^T \\ \nabla g(w^{(k)}) & -\delta_0 I \end{bmatrix} \begin{pmatrix} \Delta w^{(k)} \\ \Delta \lambda^{(k)} \end{pmatrix} = \begin{pmatrix} \sigma - S^{-1} \left(\varkappa_s + \Pi \rho_\pi \right) + T^{-1} \left(\varkappa_t - Z \rho_\zeta \right) \\ \rho_\lambda \end{pmatrix},$$
(3.30)

até que a inércia desejada seja obtida. Caso $\nabla g(w^{(k)})^T$ tenha posto completo, o que é verificado na experiência prática com diferentes estudos de caso numéricos realizados para o presente trabalho, a inércia (n, m, 0) será garantida para valores de δ_D suficientemente grandes. Do contrário, a matriz será singular para valores nulos de δ_0 . O Algoritmo 3 descreve o procedimento de correção de inércia como proposto por Wächter & Biegler (2006) e implementado neste trabalho.

Deve-se observar, entretanto, que, "se a projeção da matriz D no espaço nulo de $\nabla g(w^{(k)})^T$ for positiva definida, pode-se mostrar que as condições (3.25) são atendidas mesmo no caso de

Algoritmo 3 Cálculo da direção de busca com correção de inércia.

Passo 4.1	Fazer $\delta_D \leftarrow \delta_0 \leftarrow 0$. Tentar fatorar a matriz original do sistema (3.15). Se a matriz é não-singular e apresenta inércia $(n, m, 0)$, aceitar $(\Delta w^{(k)}, \Delta \lambda^{(k)})$ e continuar no Passo 5; do contrário, continuar no Passo 4.2.
Passo 4.2	Se a matriz possui autovalores nulos, fazer $\delta_0 \leftarrow \overline{\delta}_0 \mu^{(k)\chi_0}$; do contrário, fazer $\delta_0 \leftarrow 0$.
Passo 4.3	Se $\delta_D^l = 0$, fazer $\delta_D \leftarrow \overline{\delta}_D^0$; do contrário, fazer $\delta_D \leftarrow \max\left\{\overline{\delta}_D^{\min}, \chi_D^- \delta_D^l\right\}$.
Passo 4.4	Tentar fatorar a matriz modificada do sistema (3.30). Se agora a matriz apresenta inércia $(n, m, 0)$, aceitar $(\Delta w^{(k)}, \Delta \lambda^{(k)})$ resultante, fazer $\delta_D^l \leftarrow \delta_D$ e continuar no Passo 5; do contrário, continuar no Passo 4.5.
Passo 4.5	Se $\delta_D^l = 0$, fazer $\delta_D \leftarrow \overline{\chi}_D^+ \delta_D$; do contrário, fazer $\delta_D \leftarrow \chi_D^+ \delta_D$.
Passo 4.6	Se $\delta_D > \overline{\delta}_D^{max}$, declarar o problema localmente infactível; do contrário, voltar ao Passo 4.4.

uma solução factível, mas não ótima, ser encontrada". Por esta razão, seu método requer o atendimento da condição de Armijo (3.26) a fim de se evitar a convergência para tais soluções (Wächter & Biegler 2005).

No procedimento descrito, apesar de ser previsto o tratamento de ocorrências de autovalores nulos na matriz normal, a experiência prática deste trabalho tem mostrado que nem a matriz Hessiana projetada é singular, nem há deficiência de posto na matriz Jacobiana $\nabla g(w^{(k)})$. Por outro lado, quando a inércia (n, m, 0) não é obtida para o sistema original (3.15), realiza-se um procedimento de correção de inércia que leva em consideração eventuais correções feitas em iterações anteriores. Nele, Wächter & Biegler (2006) procuram minimizar a perturbação da matriz original e, ao mesmo tempo, evitar um número excessivo de fatorações. Os valores estabelecidos para os parâmetros do Algoritmo 3 são mostrados na Seção 3.2.1.2.

Utiliza-se, neste trabalho, fatoração LDL^{T} no cálculo da direção de busca primal-dual. Através da fatoração LDL^{T} é possível obter as informações de inércia da matriz como subproduto da fatoração (Vanderbei & Shanno 1999), sem a necessidade de um procedimento extra para tal como, por exemplo, o de Najafi & Solary (2008). 3.1 Algoritmo

Resolvendo-se a primeira equação do sistema (3.30), obtém-se a direção primal $\Delta w^{(k)}$:

$$\Delta w^{(k)} = \tilde{D}^{-1} (\sigma - S^{-1} (x_s + \Pi \rho_{\pi}) + T^{-1} (x_t - Z \rho_{\zeta}) - \nabla g(w^{(k)})^T \Delta \lambda^{(k)}), \qquad (3.31)$$

onde:

$$\tilde{D} = D + \delta_D I.$$

Substituindo-se (3.31) na segunda equação, obtém-se a direção dual $\Delta \lambda^{(k)}$:

$$\Delta \lambda^{(k)} = E^{-1} \left(\nabla g(w^{(k)}) \left[D + \delta_D I \right]^{-1} \left(\sigma - S^{-1} \left(x_s + \Pi \rho_\pi \right) + T^{-1} \left(x_t - Z \rho_\zeta \right) \right) - \rho_\lambda \right), \quad (3.32)$$

onde:

$$E = \nabla g(w^{(k)}) \tilde{D}^{-1} \nabla g(w^{(k)})^{T}.$$
(3.33)

Dessa forma, quando as direções primal e dual são calculadas separadamente, a inércia desejada (n, m, 0) é obtida quando a soma do número de autovalores positivos (negativos) das matrizes \tilde{D} e E é igual a n (m).

3.1.3 Parâmetro de barreira

O valor de μ é calculado a cada iteração como uma função das complementaridades e do número de variáveis. O papel do parâmetro de barreira consiste em garantir que as complementaridades convirjam a zero em uma taxa uniforme tal que $\{\mu^{(k)}\} \rightarrow 0$ quando $k \rightarrow \infty$. O cálculo de $\mu^{(k)}$ é, assim, dado pela expressão abaixo:

$$\mu^{(k)} = \frac{\gamma^{(k)}}{2n\sqrt{2n}},$$
(3.34)

onde $\gamma^{(k)}$ é igual à soma das complementaridades:

$$\gamma^{(k)} = s^{(k)T} \pi^{(k)} + t^{(k)T} \zeta^{(k)}.$$
(3.35)

3.1.4 Critérios de convergência

A convergência do algoritmo é testada, a cada iteração, tanto para a solução do problema primal quanto do dual. Os critérios de convergência primal são dados pelas infactibilidades primais (Azevedo et al. 2009), expressos como abaixo:

$$\frac{\|\rho_{\lambda}\|_{2}}{1+\|\hat{b}\|_{2}} \leq \epsilon_{p} \tag{3.36}$$

$$\frac{\|\rho_{\pi}\|_2}{\|u\|_2} \leq \epsilon_p \tag{3.37}$$

$$\frac{\|\rho_{\zeta}\|_2}{\|l\|_2} \leq \epsilon_p \tag{3.38}$$

onde $\hat{b} = (\tilde{b}^T, \mathbf{0}^T, -d^T)^T$ é dado pelo lado direito dos sistemas de equações de (2.7), e $\epsilon_p > 0$.

Os critérios de convergência dual, por sua vez, são dados pela infactibilidade dual e *gap* de dualidade (Azevedo et al. 2009):

$$\frac{\|\sigma\|_2}{1+\|\nabla f(w^{(k)})\|_2} \leq \epsilon_d \tag{3.39}$$

$$\frac{\left|f(w^{(k)}) - \phi(\lambda^{(k)}, \pi^{(k)}, \zeta^{(k)})\right|}{1 + \left|f(w^{(k)})\right|} \leq \epsilon_d$$
(3.40)

onde $\epsilon_d > 0$. O gap de dualidade pode, também, ser expresso como uma soma dos produtos internos entre as infactibilidades primais e variáveis duais associadas, e entre a infactibilidade dual e as variáveis primais do problema original. Isto pode ser obtido ao se observar que a função-objetivo dual é dada como a expansão de primeira ordem da série de Taylor do Lagrangeano correspondente ao problema original (3.1) (Benson & Shanno 2008):

$$\max_{\lambda,\pi,\zeta} \phi = f(w) + g(w)^T \lambda + (w - u)^T \pi + (l - w)^T \zeta + \dots + (\nabla f(w) + \nabla g(w)^T \lambda + \pi - \zeta)^T w$$

s.a 0 = $\nabla f(w) + \nabla g(w)^T \lambda + \pi - \zeta$
0 $\leq \pi, \zeta$,

tem-se, portanto, que:

$$f(w^{(k)}) - \phi(\lambda^{(k)}, \pi^{(k)}, \zeta^{(k)}) = \rho_{\zeta}^{T} \zeta^{(k)} - \rho_{\lambda}^{T} \lambda^{(k)} - \rho_{\pi}^{T} \pi^{(k)} - \sigma^{T} w^{(k)}.$$

3.1.5 Solução inicial

Métodos de pontos interiores requerem uma solução inicial estritamente positiva do ponto de vista das variáveis não-negativas. Além disso, é desejável que a solução inicial esteja próxima ao caminho central de forma a evitar que os valores de algumas variáveis de folga sejam inicializados muito próximos de zero, o que cria dificuldades de convergência numérica. Neste trabalho, utilizou-se a seguinte solução inicial:

$$\begin{aligned}
w_i^{(0)} &= \frac{1}{2} (u_i + l_i) \\
s_i^{(0)} &= \max \{ u_i - w_i^{(0)}, \vartheta \} \\
t_i^{(0)} &= \max \{ w_i^{(0)} - l_i, \vartheta \} \\
\pi_i^{(0)} &= \max \{ |w_i^{(0)}|, \vartheta \} \\
\zeta_i^{(0)} &= \max \{ |w_i^{(0)}|, \vartheta \}
\end{aligned}$$
(3.41)

onde $\vartheta > 0$.

A inicialização das variáveis duais λ é feita como proposto por Wächter & Biegler (2006). Nela, os valores de $\lambda^{(0)}$ são obtidos a partir da solução do sistema abaixo, associado à infactibilidade dual:

$$\begin{bmatrix} I & \nabla g(w^{(0)})^T \\ \nabla g(w^{(0)}) & \mathbf{0} \end{bmatrix} \begin{pmatrix} \boldsymbol{\varpi} \\ \boldsymbol{\lambda}^{(0)} \end{pmatrix} = -\begin{pmatrix} \nabla f(w^{(0)}) + \boldsymbol{\pi}^{(0)} - \boldsymbol{\zeta}^{(0)} \\ \mathbf{0} \end{pmatrix},$$

onde ϖ é descartado. Portanto, tem-se que:

$$\lambda^{(0)} = \left[\nabla g(w^{(0)}) \nabla g(w^{(0)})^T\right]^{-1} \nabla g(w^{(0)}) \left(\zeta^{(0)} - \pi^{(0)} - \nabla f(w^{(0)})\right), \quad (3.42)$$

se $\|\lambda^{(0)}\|_{\infty} \leq \lambda_{\max}$, $\lambda_{\max} > 0$. Do contrário, "se $\lambda^{(0)}$, obtido dessa forma, for muito grande, a solução do sistema é descartada e utiliza-se $\lambda^{(0)} = 0$. Na prática, este procedimento procura evitar estimativas ruins para $\lambda^{(0)}$ caso $\nabla g(w^{(0)})$ seja quase linearmente dependente".

3.2 Detalhes de implementação

As seções seguintes apresentam detalhes da implementação do método de pontos interiores para solução do problema de POE proposto neste trabalho. A Seção 3.2.1 descreve os valores dos diferentes parâmetros utilizados nos algoritmos 1–3. A Seção 3.2.2 apresenta a estrutura matricial

resultante da formulação do problema, bem como descreve como sua característica esparsidade pode ser explorada com fins de ganho de eficiência computacional. Por fim, uma descrição do cálculo das direções de busca primal e dual decompostas em blocos de suas componentes Δx , Δy , Δz , e $\Delta \lambda^{\alpha}$, $\Delta \lambda^{\beta}$ e $\Delta \lambda^{\gamma}$, respectivamente, é realizada na Seção 3.2.3.

3.2.1 Parâmetros do algoritmo

Em problemas de programação linear e quadrática, o tamanho do passo máximo é, geralmente, reduzido por um fator igual a 0,9995. Neste trabalho, entretanto, utilizou-se um fator de redução menor, dado por:

$$\tau_{\alpha} = 0,95,$$

em razão das restrições não-lineares de balanço energético, procurando, assim, evitar que as soluções calculadas estejam muito próximas do limite.

3.2.1.1 Busca unidimensional com filtro

Para o Algoritmo 2 de busca unidimensional com filtro, foram utilizados os mesmos valores propostos por Wächter & Biegler (2006):

$$\beta_{\alpha} = \frac{1}{2}$$

$$\delta_{\varphi} = 2,3$$

$$\delta_{\theta} = 1,1$$

$$\gamma_{\alpha} = 0,05$$

$$\gamma_{\varphi} = 10^{-5}$$

$$\gamma_{\theta} = 10^{-5}$$

$$\epsilon_{\varphi} = 10^{-4}$$

$$\theta_{\min} = 10^{-4} \max\left\{1,\theta(\tilde{w}^{(0)})\right\}$$

$$\theta_{\max} = 10^{4} \max\left\{1,\theta(\tilde{w}^{(0)})\right\}$$

não tendo sido feitos testes sistemáticos de avaliação de desempenho para valores diferentes.

3.2.1.2 Correção de inércia

Assim como para o procedimento de busca unidimensional, os parâmetros do procedimento de correção de inércia são dados como em (Wächter & Biegler 2006):

$$\begin{split} \delta_D^l &= 0, \text{ na inicialização do Algoritmo (1)} \\ \overline{\delta}_D^0 &= 10^{-4} \\ \overline{\delta}_D^{\min} &= 10^{-20} \\ \overline{\delta}_D^{\max} &= 10^{40} \\ \overline{\delta}_0 &= 10^{-8} \\ \chi_0 &= 1/4 \\ \chi_D^- &= 1/3 \\ \chi_D^+ &= 8 \\ \overline{\chi}_D^+ &= 10^2. \end{split}$$

3.2.1.3 Critérios de convergência

Os parâmetros de tolerância dos critérios de convergência da solução dos problemas primal e dual são dados por:

$$\epsilon_p = 10^{-5}$$

$$\epsilon_d = 10^{-5}.$$

Em alguns testes realizados para o desenvolvimento deste trabalho, entretanto, houve a necessidade de relaxamento do critério dual para valores até 10^{-4} .

3.2.1.4 Solução inicial

Os parâmetros do cálculo da solução inicial são dados por:

$$\vartheta = 10$$

 $\lambda_{\rm max} = 10^3.$

3.2.2 Estrutura matricial

Nesta seção estão descritas as estruturas das diferentes matrizes que resultam da modelagem do problema, bem como do método de solução. A importância da identificação dessas estruturas se dá pelo benefício computacional decorrente de uma representação compacta em memória, menor complexidade das operações algébricas, bem como a possibilidade de computação paralela dessas operações, e, até mesmo, maior estabilidade numérica. Diferentes problemas de planejamento de uso de recursos ao longo de um horizonte de tempo discretizado em intervalos, como é o caso do POE, compartilham uma característica em comum: estruturas matriciais bloco-diagonais. Para que ela seja explorada da melhor forma, as variáveis de decisão do problema devem ser indexadas corretamente.

No modelo proposto neste trabalho, indexou-se todas as variáveis em ordem crescente de tempo e recurso (Azevedo 2006), nesta ordem. Como ilustração, tome-se o conjunto das variáveis de decisão hidráulica x, definida em (2.8). Suas componentes a, $q \in v$ são dispostos da seguinte forma:

$$a = \begin{pmatrix} \vdots \\ a^{j-1} \\ a^{j} \\ a^{j+1} \\ \vdots \end{pmatrix}, \quad q = \begin{pmatrix} \vdots \\ q^{j-1} \\ q^{j} \\ q^{j+1} \\ \vdots \end{pmatrix}, \quad v = \begin{pmatrix} \vdots \\ v^{j-1} \\ v^{j} \\ v^{j+1} \\ \vdots \end{pmatrix} \in \mathbb{R}^{|\mathscr{I}||\mathscr{I}|},$$

onde:

$$a^{j} = \begin{pmatrix} \vdots \\ a_{i-1,j} \\ a_{i,j} \\ a_{i+1,j} \\ \vdots \end{pmatrix}, \quad q^{j} = \begin{pmatrix} \vdots \\ q_{i-1,j} \\ q_{i,j} \\ q_{i+1,j} \\ \vdots \end{pmatrix}, \quad v^{j} = \begin{pmatrix} \vdots \\ v_{i-1,j} \\ v_{i,j} \\ v_{i+1,j} \\ \vdots \end{pmatrix} \in \mathbb{R}^{|\mathscr{I}|}.$$

Também, as variáveis y e z são ordenadas por intervalo de tempo e subsistema (usina termelétrica no caso de z), de forma análoga às variáveis hidráulicas.

Dessa forma, tem-se que a matriz de incidência nó-arco do conjunto das variáveis hidráulicas correspondente à expansão temporal do grafo hidro-topológico é assim estruturada:

$$A = [X, R, R],$$

onde X corresponde à matriz de incidência nó-arco de volume da expansão temporal; e R é dada pela matriz de incidência nó-arco de vazão defluída para a mesma expansão, com topologia igual para as vazões turbinada e vertida.

A matriz X é uma matriz bi-diagonal inferior com a seguinte estrutura:

$$X = \begin{bmatrix} X_{1} & & & \\ -X_{2} & X_{2} & & \\ & \ddots & \ddots & \\ & & -X_{j} & X_{j} \\ & & & \ddots & \ddots \end{bmatrix},$$

onde:

$$X_j = \frac{1}{\Delta_j / \varrho} \operatorname{diag}(e)$$

é uma matriz diagonal cujos elementos são multiplicados por um fator de conversão de unidade de volume em unidade de vazão; Δ_j corresponde ao número de segundos do intervalo j e, no caso das unidades utilizadas neste trabalho, $\rho = 10^{-6}$; e $e \in \mathbb{R}^{\mathscr{I}}$ é o vetor unitário. Assim, em termos computacionais, é possível representar X como um conjunto de $|\mathscr{I}|$ escalares em memória.

Por sua vez, a matriz R possui uma estrutura bloco-diagonal da seguinte forma:

$$R = \begin{vmatrix} \ddots & & & & \\ & R_{j-1} & & & \\ & & R_{j} & & \\ & & & R_{j+1} & \\ & & & & \ddots \end{vmatrix},$$
(3.43)

onde:

$$R_1 = \ldots = R_{j-1} = R_j = R_{j+1} = \ldots = R_{|\mathcal{J}|}$$

A estrutura da matriz R permite sua representação compacta em memória com apenas uma matriz esparsa $R_j \in \mathbb{R}^{|\mathscr{I}| \times |\mathscr{I}|}$. Pode-se, além disso, como bem observa Azevedo (2006), explorar a relação de ordem no acoplamento hidráulico entre as usinas e obter uma matriz R_j triangular inferior, no caso de ordenação montante-jusante do índice das usinas, ou triangular superior, no caso inverso.

Figura 16: Estrutura da matriz de incidência de vazão defluída R_j .

Figura 17: Estrutura da matriz de incidência hidráulica A.

(a) Estrutura da matriz *B*.

(b) Estrutura da matriz C.

Figura 18: Estrutura das matrizes de incidência energética e de reatâncias.

A Figura 16 ilustra a estrutura da matriz R_j obtida para o estudo de caso numérico da Seção 4.3. A Figura 17, por sua vez, apresenta uma ilustração da matriz A para o mesmo estudo de caso.

A matriz B de incidência nó-arco correspondente à expansão temporal da rede energética apresenta a seguinte estrutura bloco-diagonal:

$$B = \begin{bmatrix} \ddots & & & & \\ & B_{j-1} & & & \\ & & B_{j} & & \\ & & & B_{j+1} & \\ & & & & \ddots \end{bmatrix}$$

onde:

$$B_1 = \ldots = B_{j-1} = B_j = B_{j+1} = \ldots = B_{|\mathscr{I}|}$$

As mesma observações a respeito da matriz R são válidas para a matriz B, incluindo os aspectos computacionais dos blocos B_j . A Figura 18a ilustra a matriz B para o referido o estudo de caso da Seção 4.3.

Similarmente, o mesmo se aplica à matriz de reatâncias C, cuja estrutura é bloco-diagonal, com blocos iguais para todo intervalo j. Uma ilustração da matriz C para o mesmo estudo de caso é mostrada na Figura 18b.

Figura 19: Estruturas da matriz normal dual D e de sua fatoração LDL^{T} .

Na solução do problema (3.1), os blocos da matriz normal do sistema (3.15) são construídos a partir da matriz D, dada pela soma da matriz Hessiana do Lagrangeano e das matrizes diagonais associadas às complementaridades, como descrito na Equação (3.16), e da matriz Jacobiana $\nabla g(w)$ e sua transposta.

A estrutura da matriz normal dual D é dominada por $H(w, \lambda)$, descrita pela Equação (3.9) e construída como abaixo:

$$H(w,\lambda) = \begin{bmatrix} -\nabla^2 P(x) & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \nabla^2 f(z) \end{bmatrix},$$

onde:

$$\nabla^2 P(x) = \sum_{j=1}^{|\mathscr{I}|} \sum_{k=1}^{|\mathscr{K}|} \lambda_{k,j}^{\beta} \nabla^2 P_{k,j}(x^j),$$

e $\nabla^2 P(x)$ apresenta a seguinte estrutura tridiagonal:

$$\nabla^2 P(x) = \begin{bmatrix} \nabla^2_{aa} P(x) & \nabla^2_{aq} P(x) & \mathbf{0} \\ \nabla^2_{aq} P(x)^T & \nabla^2_{qq} P(x) & \nabla^2_{qv} P(x) \\ \mathbf{0} & \nabla^2_{qv} P(x)^T & \nabla^2_{vv} P(x) \end{bmatrix}$$

A Figura 19a ilustra a matriz normal dual D para uma iteração do método na solução do

Figura 20: Estrutura da matriz Jacobiana $\nabla g(w)$.

estudo de caso da Seção 4.2. Ela apresenta uma estrutura bloco-diagonal com três blocos D_x , tri-diagonal, e D_y e D_z , diagonais.

Os blocos inferior-esquerdo e superior-direito da matriz normal do sistema (3.15) são formados, respectivamente, pela matriz Jacobiana $\nabla g(w)$ e sua transposta. Antes de analisar sua estrutura, pode-se reescrever o funcional g(w) na forma matricial abaixo:

$$g(w) = \begin{bmatrix} A & 0 & 0 \\ 0 & C & 0 \\ 0 & B & 0 \end{bmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} - \begin{pmatrix} b \\ 0 \\ P(x) + Q(z) - d \end{pmatrix}.$$

Sendo assim, pode-se definir $\nabla g(w)$ como uma matriz com a seguinte estrutura:

$$\nabla g(w) = \begin{bmatrix} A & 0 & 0 \\ 0 & C & 0 \\ -\nabla P(x) & B & -\nabla Q(z) \end{bmatrix}$$

tal que $\nabla P(x)$ é dada por:

$$\nabla P(x) = \left[\nabla_a P(x), \nabla_q P(x), \nabla_v P(x) \right],$$

(b) Estrutura de sua fatoração LDL^{T} .

Figura 21: Estruturas da matriz E e sua fatoração LDL^{T} .

onde $\nabla_a P(x)$, $\nabla_q P(x)$, $\nabla_v P(x)$ e $\nabla Q(z)$ são matrizes bloco-diagonais cuja construção depende da distribuição das usinas.

A matriz *E* aparece no cálculo da direção das variáveis duais livres $\Delta \lambda$ e é descrita na Equação (3.33) como um produto da matriz Jacobiana $\nabla g(w)$ e sua transposta, e a inversa da matriz normal dual *D*. Este produto estabelece à matriz *E* a seguinte estrutura bloco-angular:

$$E = \begin{bmatrix} AD_{x}^{-1}A^{T} & 0 & -AD_{x}^{-1}\nabla P(x)^{T} \\ 0 & CD_{y}^{-1}C^{T} & CD_{y}^{-1}B^{T} \\ -\nabla P(x)D_{x}^{-1}A^{T} & BD_{y}^{-1}C^{T} & \Xi \end{bmatrix},$$

onde:

$$\Xi = \nabla P(x) D_x^{-1} \nabla P(x)^T + B D_y^{-1} B^T + D_z^{-1}.$$

As figuras 21a e 21b apresentam as estruturas da matriz E e de sua fatoração, respectivamente, para uma iteração do método na solução do estudo de caso da Seção 4.2.

3.2.3 Cálculo da direção de busca em blocos

A solução do sistema (3.15), como apresentada na Seção 3.1.2, é realizada através do cálculo da direção primal-dual, eliminando-se, primeiro, Δw e, então, substituindo-a na segunda equação a fim de calcular-se a direção dual $\Delta \lambda$. Shanno & Vanderbei (2000) denominam esta forma de

solução do sistema de método de ordem primal. Segundo eles, tal ordem, entretanto, não é preferível quando D não é diagonal em razão do *fill-in* resultante de sua fatoração. No caso do presente trabalho, contudo, e apesar do bloco D_x ser dado por uma matriz tri-diagonal, verificouse que a fatoração de D é bem comportada, dada por um bloco bi-diagonal e dois diagonais, como ilustra a Figura 19b.

Esta observação motivou o emprego da ordem primal para a solução do sistema Newton reduzido, evitando-se a necessidade da manipulação das restrições de igualdade (Vanderbei 1998) como forma de se eliminar a matriz nula do bloco inferior direito da matriz de (3.15), que busca, assim, tornar possível o uso da ordem dual na solução do sistema. Como pode ser verificado na Figura 21, a ocorrência de *fill-in* é observada apenas no cálculo das direções duais $\Delta \lambda^{\beta}$ associadas às restrições de balanço energético. Para melhor compreender este comportamento, faz-se necessária, entretanto, a dedução do sistema (3.15) em blocos correspondentes às variáveis hidráulicas, de fluxo de intercâmbio e de geração termelétrica, e restrições de balanço hidráulico e energético, e Segunda Lei de Kirchhoff:

$$\begin{bmatrix} D_{x} & 0 & 0 & A^{T} & 0 & -\nabla P(x)^{T} \\ 0 & D_{y} & 0 & 0 & C^{T} & B^{T} \\ 0 & 0 & D_{z} & 0 & 0 & -\nabla Q(z)^{T} \\ A & 0 & 0 & 0 & 0 & 0 \\ 0 & C & 0 & 0 & 0 & 0 \\ -\nabla P(x) & B & -\nabla Q(z) & 0 & 0 & 0 \end{bmatrix} \begin{pmatrix} \Delta x \\ \Delta y \\ \Delta z \\ \Delta \lambda^{\alpha} \\ \Delta \lambda^{\gamma} \\ \Delta \lambda^{\beta} \end{pmatrix} = \begin{pmatrix} \sigma^{x} - c^{x} \\ \sigma^{y} - c^{y} \\ \sigma^{z} - c^{z} \\ \rho^{\alpha}_{\lambda} \\ \rho^{\gamma}_{\lambda} \\ \rho^{\beta}_{\lambda} \end{pmatrix} (3.44)$$

onde:

$$\begin{split} D_x &= -\sum_{i=1}^{m_{\beta}} \lambda_i^{\beta} \nabla^2 P_i(x) + S_x^{-1} \Pi_x + T_x^{-1} Z_x \\ D_y &= S_y^{-1} \Pi_y + T_y^{-1} Z_y \\ D_z &= \nabla^2 f(z) - \sum_{i=1}^{m_{\beta}} \lambda_i^{\beta} \nabla^2 Q_i(z) + S_z^{-1} \Pi_z + T_z^{-1} Z_z, \end{split}$$

e as infactibilidades duais e primais são dadas, respectivamente, por:

$$\sigma^{x} = \nabla P(x)^{T} \lambda^{\beta} - A^{T} \lambda^{\alpha} - \pi^{x} + \zeta^{x}$$

$$\sigma^{y} = \zeta^{y} - B^{T} \lambda^{\beta} - C^{T} \lambda^{\gamma} - \pi^{y}$$

$$\sigma^{z} = \nabla Q(z)^{T} \lambda^{\beta} - \nabla f(z) - \pi^{z} + \zeta^{z},$$

$$\rho_{\lambda}^{\alpha} = b - Ax$$

$$\rho_{\lambda}^{\gamma} = P(x) + Q(x) - d - By$$

$$\rho_{\lambda}^{\beta} = -Cy.$$

Além disso, tem-se que:

$$c^{x} = S_{x}^{-1} \left(\varkappa_{s}^{x} - \Pi_{x} \rho_{\pi}^{x} \right) - T_{x}^{-1} \left(\varkappa_{t}^{x} - Z_{x} \rho_{\zeta}^{x} \right)$$

$$c^{y} = S_{y}^{-1} \left(\varkappa_{s}^{y} - \Pi_{y} \rho_{\pi}^{y} \right) - T_{y}^{-1} \left(\varkappa_{t}^{y} - Z_{y} \rho_{\zeta}^{y} \right)$$

$$c^{z} = S_{z}^{-1} \left(\varkappa_{s}^{z} - \Pi_{z} \rho_{\pi}^{z} \right) - T_{z}^{-1} \left(\varkappa_{t}^{z} - Z_{z} \rho_{\zeta}^{z} \right).$$

Resolvendo-se o sistema através da eliminação das direções primais, tem-se que Δx , Δy e Δz são dadas pelas expressões abaixo:

$$\Delta x = D_x^{-1} \left(\sigma^x - c^x - A^T \Delta \lambda^{\alpha} + \nabla P(x)^T \Delta \lambda^{\beta} \right)$$
(3.45)

$$\Delta y = D_{y}^{-1} \left(\sigma^{y} - c^{y} - B^{T} \Delta \lambda^{\beta} - C^{T} \Delta \lambda^{\gamma} \right)$$
(3.46)

$$\Delta z = D_z^{-1} \left(\sigma^z - c^z + \nabla Q(z)^T \Delta \lambda^\beta \right)$$
(3.47)

onde pode-se verificar que a direção das variáveis primais são escritas como funções das direções correspondentes às restrições às quais essas variáveis estão associadas. Vale lembrar que o cálculo das direções primais pode ser feito muito eficientemente, haja vista que D_y e D_z são matrizes diagonais, e a fatoração de D_x é dada por uma matriz bi-diagonal.

Substituindo-se (3.45) e (3.46) na quarta e quinta equações do sistema (3.44), obtém-se as direções duais $\Delta \lambda^{\alpha}$ e $\Delta \lambda^{\gamma}$:

$$\Delta \lambda^{\alpha} = -\left[AD_{x}^{-1}A^{T}\right]^{-1} \left(\rho_{\lambda}^{\alpha} - AD_{x}^{-1}\left(\sigma^{x} - c^{x} + \nabla P(x)^{T}\Delta\lambda^{\beta}\right)\right)$$
(3.48)

$$\Delta \lambda^{\gamma} = -\left[CD_{\gamma}^{-1}C^{T}\right]^{-1} \left(\rho_{\lambda}^{\gamma} - CD_{\gamma}^{-1}\left(\sigma^{\gamma} - c^{\gamma} - B^{T}\Delta\lambda^{\beta}\right)\right), \qquad (3.49)$$

onde $AD_x^{-1}A^T$ e $CD_y^{-1}C^T$ são matrizes com estrutura bloco-diagonal, como ilustram as figuras 22 e 23. Observa-se, na Figura 22b, que a fatoração de $AD_x^{-1}A^T$ não produz *fill-in* significativo.

Por último, substituindo-se (3.45)–(3.47) na última equação, obtém-se a direção das variáveis duais correspondentes às restrições de balanço energético:

e:

Figura 22: Estruturas das matrizes $AD_x^{-1}A^T$ e de sua fatoração LDL^T .

Figura 23: Estruturas das matrizes CD_yC^T e de sua fatoração LDL^T .

$$\Delta\lambda^{\beta} = \Upsilon^{-1} \left(\rho_{\lambda}^{\beta} + \nabla P(x) D_{x}^{-1} A^{T} \left[A D_{x}^{-1} A^{T} \right]^{-1} \left(\rho_{\lambda}^{\alpha} - A D_{x}^{-1} (\sigma^{x} - c^{x}) \right) - \dots - B D_{y}^{-1} C^{T} \left[C D_{y}^{-1} C^{T} \right]^{-1} \left(\rho_{\lambda}^{\gamma} - C D_{y}^{-1} (\sigma^{y} - c^{y}) \right) + \dots + \nabla P(x) D_{x}^{-1} (\sigma^{x} - c^{x}) - B D_{y}^{-1} (\sigma^{y} - c^{y}) + \nabla Q(z) D_{z}^{-1} (\sigma^{z} - c^{z}) \right),$$
(3.50)

onde:

$$\Upsilon = \left[\nabla P(x)D_x^{-1}A^T \left[AD_x^{-1}A^T\right]^{-1}AD_x^{-1}\nabla P(x)^T + BD_y^{-1}C^T \left[CD_y^{-1}C^T\right]^{-1}CD_y^{-1}B^T - \dots\right]$$

Figura 24: Estruturas das matrizes Υ e de sua fatoração LDL^{T} .

$$-\nabla P(x)D_x^{-1}\nabla P(x)^T - BD_y^{-1}B^T - \nabla Q(z)D_z^{-1}\nabla Q(z)^T \bigg].$$

Nota-se, através da Figura 24, que Υ é uma matriz densa, o que explica sua fatoração nãoesparsa. Entretanto, em razão do pequeno número de restrições de balanço energético do estudo de caso analisado, a solução do sistema (3.15) é dominada pelo grande número de restrições de balanço hidráulico. Isso, porém, pode ser problemático se houver um acréscimo significativo do número de subsistemas considerados, implicando maior esforço computacional por iteração.

De forma análoga, no que concerne ao Algoritmo 3, a inércia (n, m, 0) do sistema é obtida quando a soma do número de autovalores positivos (negativos) de D_x , D_y , D_z , $AD_x^{-1}A^T$, CD_yC^T e Υ é igual a n (m).

3.3 Considerações finais

O método apresentado neste capítulo não toma todas as precauções necessárias para garantir convergência global sob certas condições, originalmente proposto por Fletcher et al. (2002), como, por exemplo, correção de segunda ordem e restauração de factibilidade, quando $\tilde{w}^{(k+1)}$ não satisfaz as restrições do filtro, resultando num tamanho de passo $\alpha_p^{(k)} < \underline{\alpha}_p^{(k)}$. A experiência com os estudos de caso numéricos, entretanto, mostra que a simples implementação da busca unidimensional com filtro é suficiente para permitir a convergência das instâncias de maior porte do problema de planejamento da operação energética.

A1 •. A	D 1	1	1
Algoritmo 4	Kelaxamento	dos	limites
	renannento	au	minite co.

 $\begin{aligned} \forall i = 1, \dots, n \\ & \text{Se } t_i < \varepsilon \, \mu^{(k)}, \\ & \text{fazer } l_i \leftarrow l_i - \left(\varepsilon^{3/4} \max\left\{1, |l_i|\right\}\right). \\ & \text{Se } s_i < \varepsilon \, \mu^{(k)}, \\ & \text{fazer } u_i \leftarrow u_i + \left(\varepsilon^{3/4} \max\left\{1, |u_i|\right\}\right). \end{aligned}$

Outra questão importante relativa à convergência do método diz respeito à ocorrência de variáveis limitadas superior e inferiormente pelo mesmo valor, logo, tornando-as constantes, como acontece, por exemplo, com variáveis de volume armazenado $a_{i,j}$ correspondentes a usinas fio d'água, para as quais $l^a = u^a$; e condições de contorno para as usinas com reservatório de acumulação, quando, geralmente, faz-se $l^a_{i,|\mathcal{J}|} \leftarrow u^a_{i,|\mathcal{J}|}$. Para esses casos, optou-se por um relaxamento do limite inferior da forma:

$$l^{a} = 0,999u^{a}$$
$$l^{a}_{i,|\mathcal{J}|} \leftarrow 0,999u^{a}_{i,|\mathcal{J}|}$$

Além disso, implementou-se o relaxamento iterativo proposto em (Wächter & Biegler 2006) com o intuito de facilitar a convergência numérica do método. Assim, para cada iteração k, o procedimento do Algoritmo 4 é realizado, onde ε é igual à precisão da máquina.

4 Estudos de caso

Neste capítulo, apresenta-se os resultados numéricos de diferentes estudos de caso seguidos de intervenções interpretativas. A realização desses estudos de caso objetiva a verificação da eficiência do modelo e metodologia propostos neste trabalho (MPI-F) na solução de problemas com dados reais, comparando-os a duas alternativas previamente apresentadas na literatura, em diferentes situações: o método de gradiente reduzido com fluxo em redes (GRFR), como empregado no modelo proposto por Carvalho & Soares (1987); e, por último, sua aplicação num contexto de simulação com heurística para correção de balanço e limites de intercâmbio (GRFR-HCBI), como introduzido por Zambelli (2009). No total, três estudos de caso são apresentados, de forma que, por cada um deles, diferentes propósitos são servidos.

O primeiro deles se dá pela compreensão da natureza da operação ótima do sistema sob diferentes condições de intercâmbio, desde sua ausência – o que implica a otimização da operação de sistemas isolados – até à anulação irrestrita das imposições de limites, o que, por analogia, confere aos diferentes sistemas um caráter singular e, portanto, particular ao caso geral, em que há tais limitações. No primeiro estudo, cujos resultados são apresentados na Seção 4.1, as diferentes condições de intercâmbio são analisadas da perspectiva de um caso de pequeno porte, composto por quatro usinas hidrelétricas – e igual número de termelétricas – dispostas em diferentes subsistemas com uma topologia que remete àquela observada no SIN.

O SIN é composto por quatro subsistemas com carga e parque gerador próprios, conectados entre si por linhas de transmissão de alta capacidade. Os subsistemas Norte e NE estão conectados através da subestação de Imperatriz, à qual também está ligado o subsistema SE/CO. Há, ainda, uma ligação entre os subsistemas NE e SE/CO, e entre este último e o subsistema Sul. Nos estudos de caso em que se faz presente, a usina hidrelétrica de Itaipu fez parte do subsistema SE/CO, desconsiderando-se, portanto, a subestação de Ivaiporã. A Figura 25 apresenta um desenho esquemático dos subsistemas do SIN, com seus parques geradores e centros de carga; a

Figura 25: Configuração dos subsistemas.

subestação de Imperatriz, e suas respectivas interligações. Nos estudos de caso deste trabalho, a subestação de Imperatriz é modelada como um subsistema fictício, sem centro de carga ou parque gerador.

No segundo estudo de caso, apresentado na Seção 4.2, é realizada uma comparação entre as metodologias do MPI-F e do GRFR para uma instância de grande porte do problema, composta por noventa e cinco usinas hidrelétricas. Apesar de considerarem modelos distintos, as condições fabricadas para o estudo de caso permitem que a comparação seja diretamente entre os métodos de otimização propostos por cada uma das abordagens, anulando-se eventuais efeitos que as escolhas de modelagem possam ter no resultado final.

Por fim, o terceiro e último estudo de caso, apresentado na Seção 4.3, compara ambos modelo e metodologia das duas abordagens para um caso real típico. Esse estudo contém o mesmo número de variáveis do anterior, diferenciando-se, entretanto, pelos dados de entrada referentes ao mercado, vazões naturais afluentes, limites de intercâmbio, estado inicial do sistema e custos reais de geração térmica. A partir desse estudo, é possível verificar as implicações decorrentes das distintas escolhas de modelagem de cada abordagem, especialmente no que toca à representação do balanço energético e consideração da Segunda Lei de Kirchhoff.

Para cada estudo realizado, são analisados os resultados da operação a partir de três diferentes perspectivas: o sistema como um todo; os subsistemas e suas relações de intercâmbio e particularidades próprias, como o mercado e parque gerador; e, por fim, a operação individualizada das usinas. A partir da perspectiva geral do sistema, interessa a análise de três valores: geração hidráulica total, energia armazenada e custo de operação. Na perspectiva dos subsistemas, juntam-se a estes valores, obviamente, agrupados por cada um dos subsistemas, a análise dos resultados de intercâmbio. Ao final da análise de cada estudo, apresenta-se os resultados de algumas usinas selecionadas, procurando-se, a partir da verificação dos valores ótimos das variáveis hidráulicas, interpretar os resultados globais, apontando sua relação com a natureza da solução ótima. Ainda, para cada estudo, é mostrado um resumo do processo de otimização do MPI-F contendo os principais indicadores de mensuração de desempenho do algoritmo.

Comparações de ordem computacional entre as metodologias não são apresentadas em função da heterogeneidade observadas entre as plataformas utilizadas para desenvolvimento. A implementação do GRFR e de sua extensão HCMI foi realizada em linguagem C++ para sistemas operacionais Microsoft Windows de 32 bits (Cicogna 2003). Por sua vez, o MPI-F tal como desenvolvido para este trabalho, fora implementado em linguagem MATLAB versão 64 bits para sistemas operacionais Linux. Portanto, todas as comparações apresentadas restringem-se à análise das soluções obtidas para diferentes critérios numéricos.

4.1 Caso didático

Para este estudo de caso, tomou-se como base um sistema hipotético composto por quatro usinas hidrelétricas distribuídas entre os quatro subsistemas da Figura 25. Apesar da finalidade didática do presente caso, faz-se relevante observar que o uso de um reservatório por subsistema já é adotado no planejamento da operação energética do SIN por meio do emprego de reservatórios equivalentes com solução por programação dinâmica estocástica dual. Ainda com relação ao parque gerador, considerou-se, para cada subsistema, a existência de uma usina termelétrica fictícia com função de custo quadrático em relação à geração $\frac{1}{2}z_{k,j}^2$, apesar de, no sistema real, não haver disponibilidade térmica no subsistema Norte. A demanda de carga, ou mercado, é constante ao longo do horizonte e igual a 85% da potência hidráulica instalada em cada subsistema. O horizonte é igual a um ano, discretizado mensalmente, a partir do início do período seco, no mês de maio. As vazões afluentes consideradas são iguais à média de longo termo (MLT) mensal para o período que compreende os anos de 1931 a 2006. O estado inicial dos reservatórios foi fixado em sua capacidade máxima para todas as usinas, assim como seus estados finais, estabelecendo, assim, uma condição de contorno que garanta disponibilidade máxima dos reservatórios para o próximo período de planejamento. Uma observação, contudo, deve ser feita com relação ao subsistema Sul. Diferentemente dos outros subsistemas, o período seco não tem início no mês de maio. Analisando-se, por exemplo, a MLT das vazões para a usina de Machadinho, localizada no rio Uruguai, pode-se observar que o primeiro quadrimestre do ano é aquele com menores valores de vazão afluente. No geral, entretanto, os perfis de vazão das usinas do Sul são bastante irregulares se comparados às usinas do restante do SIN. Por isso mesmo, é de se esperar que sob tal configuração de estado inicial e condição de contorno, as curvas de armazenamento das usinas localizadas naquele subsistema sejam diferentes. A Tabela 4 apresenta algumas informações básicas sobre as usinas hidrelétricas e a demanda de carga por subsistema.

No SIN, a usina de Serra da Mesa está eletricamente localizada no subsistema Sudeste/Centro-Oeste. Contudo, por razões de ordem prática sem efeitos na generalidade do caso e, aproveitandose o fato de esta usina estar hidraulicamente acoplada às usinas do subsistema Norte, no rio Tocantins, estabeleceu-se, para este estudo em particular, sua localização naquele subsistema.

Um total de três configurações de intercâmbio distintas foram testadas objetivando-se a compreensão do comportamento da operação ótima sob diferentes condições de disponibilidade de intercâmbio energético. Na primeira configuração, os subsistemas operam isoladamente entre si, sem a capacidade de importação e exportação de energia. Na segunda configuração, verificou-se a operação dos subsistemas quando a possibilidade de intercâmbio energético é ilimitada. Na terceira e última configuração, essas trocas são possíveis, porém limitadas.

Sob condições de indisponibilidade de intercâmbio energético, cada subsistema procura minimizar os custos da geração térmica complementar de acordo com sua própria disponibilidade hidráulica, tal que o problema de otimização torna-se um conjunto de quatro problemas independentes. Neste caso, as curvas de geração hidráulica e térmica são complementares entre si. Além disso, para os subsistemas com os maiores reservatórios, a complementação térmica é quase constante, o que se explica pelos custos quadráticos de geração, que impõem, na solução ótima, a

UHE	Subsistema	Vol. Útil (hm ³)	Potência (MW)	Demanda (MWm)
Furnas	SE/CO	17.217	1.312	1.115
Machadinho	Sul	1.056	1.140	969
Sobradinho	Nordeste	28.669	1.050	892
Serra da Mesa	Norte	43.250	1.275	1.084

Tabela 4: Configuração do sistema no caso didático.

Figura 26: Resultados da operação isolada para o MPI-F no caso didático.

mínima variação possível dos custos marginais em seu valor mínimo. No caso do subsistema Sul, em decorrência da pequena capacidade de regulação do reservatório da usina de Machadinho e, ainda, devido ao seu particular regime hidrológico, observa-se maior variação da geração térmica. Os resultados da operação isolada dos subsistemas são ilustrados na Figura 26.

A usina de Serra da Mesa, por apresentar o maior reservatório entre aqueles considerados, é aquela que consegue melhor regularização das vazões e, portanto, da geração, fornecendo a curva de armazenamento com menor variação. Assim, no subsistema Norte, tem-se uma complementação térmica com média igual a 236,8 MWm e desvio padrão de 13 MWm. Esta geração térmica média corresponde a 21,8% da demanda de carga do subsistema. Diferentemente, a usina de Machadinho foi aquela com maior irregularidade na operação, levando a uma complementação térmica média de 293,7 MWm, igual a 30,3% do mercado, com desvio padrão de 185,9 MWm.

Por sua vez, as usinas de Furnas e Sobradinho operaram com considerável regularidade, apresentando curvas de geração hidráulica semelhantes com um sensível acréscimo ao final do horizonte, porém mais acentuado na usina de Sobradinho. Este comportamento pode ser explicado em duas partes. Com as condições de contorno fixadas em 100% do volume útil de armazenamento, nos últimos meses do horizonte, após o deplecionamento dos reservatórios durante o período seco, deve ocorrer o enchimento dos mesmos, com conseqüente ganho de altura de queda. Além disso, o significativo aumento das vazões afluentes compensou a necessidade de ga-

Figura 27: Trajetórias de volume armazenado para as diferentes configurações de intercâmbio no caso didático.

nho de queda, permitindo a manutenção de altos valores de turbinagem. Na usina de Furnas, por exemplo, a vazão média do horizonte é igual a 918,5 m³/s; nos primeiros quatro meses, ela é de 565,9 m³/s e, nos quatro últimos, superior a 1 467,6 m³/s, resultando em um desvio padrão de 488,6 m³/s. A vazão turbinada, entretanto, com um desvio padrão de 51,9 m³/s e média de 915,4 m³/s para o horizonte, apresenta, no primeiro e último quadrimestres, médias iguais a 855,8 e 971,5 m³/s, respectivamente. As complementações termelétricas médias nos subsistemas SE/CO e NE foram iguais a 383,6 e 256,3 MW, respectivamente, o que corresponde a 34,4 e 28,7% de seus respectivos mercados.

A operação das usinas com reservatórios de grande capacidade baseia-se, portanto, na regularização das vazões afluentes, resultando, na solução ótima, em valores de vazão turbinada próximos aos valores de afluência média. Dessa forma, as usinas de Serra da Mesa, Sobradinho e Furnas, com vazões afluentes médias de 776, e 2 668 e 918 m³/s, operaram com turbinagem média de 771, e 2 660 e 915 m³/s, respectivamente. Tal regularização resulta em curvas de deplecionamento dos reservatórios como ilustrado na Figura 27. A perda de altura de queda na primeira metade do horizonte é compensada pelo aumento gradual das vazões turbinadas, tornado possível graças ao crescimento das vazões afluentes na segunda metade, beneficiando, também, neste período, a

Figura 28: Resultados da operação com intercâmbio livre para o MPI-F no caso didático.

recuperação dos valores de queda. A este comportamento denomina-se efeito queda (Soares & Carneiro 1993), caracterizado pelo leve e contínuo acréscimo da geração hidráulica ao longo do horizonte, mesmo quando são consideradas taxas de desconto de valor presente da complementação térmica.

Como contraponto à operação isolada dos subsistemas, verificou-se, também, sua operação quando o intercâmbio energético entre eles é livre. A Figura 28 ilustra os resultados obtidos para esta configuração. Nela, pode-se observar que em todos os subsistemas a geração hidráulica torna-se complementar ao intercâmbio, resultando em uma geração térmica mais regular e com média igual a 279,8 MWm em todos os subsistemas, dada a maior disponibilidade hidráulica resultante do intercâmbio liberado. É importante observar, ainda, que as curvas de geração hidráulica para a configuração livre são diferentes daquelas obtidas na configuração isolada. Mesmo assim, pela observação das curvas de complementação térmica levemente decrescentes no final do horizonte, pode-se perceber a ação do efeito cota. Para as usinas de Furnas e Sobradinho, a geração é mais baixa durante a primeira metade do ano e mais alta na última, ao passo que, para as usinas de Serra da Mesa e Machadinho, observa-se comportamento contrário. Isto se explica pelo fato de que o reservatório de Serra da Mesa tem a maior capacidade de regulação do sistema considerado. Logo, para esta usina, um acréscimo de geração nos primeiros seis meses do horizonte causa um pequeno decréscimo em seu armazenamento, como pode ser observado na Figura 27, e, portanto,

	Isolado		Livre		Limitado	
UHE	GH (MWm)	Vol. (%)	GH (MWm)	Vol. (%)	GH (MWm)	Vol. (%)
Furnas	731	84,2	739	91,4	740	92,0
Machadinho	675	84,6	693	100,0	693	99,7
Sobradinho	636	73,5	668	91,0	663	87,7
Serra da Mesa	847	91,7	841	88,6	843	89,5
Total	2.890		2.941		2.938	

Tabela 5: Geração hidráulica e volume armazenado médios no caso didático.

uma pequena redução em sua produtividade. Os outros subsistemas, por outro lado, beneficiamse da energia produzida por Serra da Mesa, reduzindo a regulação das vazões afluentes e deixando seus reservatórios mais cheios, gerando, assim, energia com maior produtividade. Já a usina de Machadinho, por ter o menor reservatório do sistema, manteve o volume armazenado constante ao longo de todo horizonte, operando com máxima eficiência, o que resultou num ganho de geração média superior a 2,6%. Na usina de Sobradinho, por sua vez, esse ganho foi ainda mais expressivo: 5%. Em Furnas, o acréscimo foi pouco superior a 1%. Contrariamente às outras usinas, Serra da Mesa apresentou um pequeno decréscimo de 0,7% na geração média.

O benefício global obtido pela configuração de intercâmbio livre pode ser estimado pelo aumento na geração hidráulica de todo o sistema, como elucida a Tabela 5. Comparando-se as configurações isolada e de intercâmbio livre, observa-se um aumento global de 1,8%. Por outro lado, em termos de custos de operação, o ganho na geração hidráulica resultou numa redução de 10,4% no valor da função-objetivo.

Na última configuração testada, o intercâmbio energético entre os subsistemas foi limitado de forma arbitrária. Para esta configuração, a solução é tão próxima quanto possível da solução livre. O volume armazenado nas usinas, como ilustrado na Figura 27, situou-se em posição intermediária em relação às outras configurações. Neste caso, o benefício do intercâmbio, em termos de geração hidráulica, foi limitado a um valor inferior àquele da solução livre: 1,7%.

A Tabela 6 apresenta um resumo do processo de otimização para a configuração com intercâmbio livre. Não foram verificadas diferenças significativas quanto à convergência do algoritmo sob as diferentes configurações. Digno de nota, entretanto, é o aumento no número de iterações entre a configuração livre e isolada. Nesta última, seis iterações adicionais foram necessárias para que os critérios de convergência fossem satisfeitos, com um acréscimo no tempo de processamento

Número de variáveis	1.380		
Primais	252		
Duais	624		
Folga	504		
Número de restrições	120		
Tempo	1,8s		
Número de iterações	23		
c/ aumento do filtro	12		
Passo médio			
Primal	0,66		
Dual	0,70		
Violação máxima			
Primal	$2,18 \times 10^{-4}$		
Dual	$1,31 \times 10^{-2}$		
Gap de dualidade	$1,01 \times 10^{-5}$		

Tabela 6: Resumo do processo de otimização do caso didático sem limites de intercâmbio.

inferior a meio segundo.

4.2 Caso padrão

O segundo estudo de caso deste trabalho consiste de uma extensão do problema com configuração de intercâmbio livre do caso didático. Àquelas quatro usinas hidrelétricas, foram adicionadas outras noventa e uma do SIN despachadas pelo ONS, para um total de 95 usinas distribuídas entre os quatro subsistemas de acordo com a Tabela 7. A demanda de carga neste caso é igual à potência hidráulica instalada em cada subsistema e, para cada um deles, atribuiu-se, novamente, um parque gerador termelétrico constituído por uma usina fictícia com capacidade igual ao mercado, e custo de operação quadrático igual para todas elas: $\frac{1}{2}z_{k,j}^2$. Mais uma vez, as condições de contorno foram estabelecidas em 100% do volume útil de cada reservatório com estado inicial no mesmo valor. As vazões naturais afluentes são iguais à MLT para cada usina.

O objetivo deste estudo de caso é fornecer uma comparação entre as soluções fornecidas pelo MPI-F, tal como proposto neste trabalho, e pelo método GRFR (Carvalho & Soares 1987, Cicogna 1999).

_	Número de usinas	Potência instalada (MW)
SE/CO	68	46.251
Sul	19	12.871
Nordeste	7	10.857
Norte	1	8.365
Total	95	78.344

Tabela 7: Configuração do sistema no caso padrão.

O GRFR é um método primal que resolve o seguinte problema de otimização:

$$\min_{x} \quad f(x) = \sum_{j=1}^{|\mathscr{I}|} \Psi_{j} \left(d - \sum_{i=1}^{|\mathscr{I}|} p_{i}(x^{i,j}) \right)$$
s.a $Ax - b = 0$

$$l^{x} \leq x \leq u^{x}$$

$$(4.1)$$

onde $\Psi_j(.)$ é uma função quadrática da diferença entre a demanda global do sistema e a geração hidráulica total, representando o custo total de operação para o intervalo *j*, e sua minimização está sujeita ao atendimento do balanço hidráulico espaço-temporal e restrições operativas. As variáveis hidráulicas no modelo empregado pelo GRFR representam o volume armazenado e a vazão defluída em cada usina e instante de tempo, não sendo explicitadas as parcelas turbinada e vertida da defluência.

No algoritmo GRFR, a escolha das variáveis básicas é feita heuristicamente, explorando a estrutura gráfica da rede, de forma a proporcionar melhor desempenho computacional no cálculo da árvore geradora quando da troca de base. Propostas para melhorar a convergência do algoritmo foram apresentadas posteriormente por Cicogna (1999). Ainda, por ser um algoritmo de gradiente reduzido, a solução inicial fornecida deve ser primal-factível. Neste método, estabelece-se a operação fio-d'água para todas as usinas ao longo de todo o horizonte como uma solução inicial prontamente disponível. Este procedimento, entretanto, requer disponibilidade suficiente de vazões afluentes que atendam, na operação fio-d'água, restrições de defluência mínima e condições de contorno.

Na formulação do problema (4.1), o balanço eletroenergético é representado implicitamente na função-objetivo. Esta representação foi empregada em outros trabalhos, como no fluxo em redes com cálculo de direção de segunda ordem de Oliveira & Soares (1995), e o método de pontos

Figura 29: Resultados da operação do sistema no caso padrão.

interiores primal-dual de Azevedo et al. (2009). A desvantagem dessa abordagem está na impossibilidade de se representar diferentes balanços eletroenergéticos com a presença de restrições de fluxo de intercâmbio entre subsistemas. Além disso, em situações com valores de mercado muito abaixo da potência hidráulica instalada, pode haver problemas de convergência em função da representação implícita do balanço eletroenergético e das vazões defluídas. No primeiro caso, por eventualmente expor o algoritmo à presença de mínimos locais no problema quando o mercado é inferior à geração hidráulica. No segundo, por limitar a representação do vertimento apenas como a vazão excedente ao engolimento máximo, não permitindo, assim, a alocação de vazões vertidas turbináveis necessárias ao atendimento estrito da carga quando esta é suficientemente baixa.

Portanto, pelas razões elucidadas acima, a comparação metodológica entre o MPI-F e o GRFR deve ser realizada sob condições de demanda de carga adequadamente majorada e intercâmbios ilimitados, conforme descritas anteriormente, de formar a garantir a convergência do algoritmo GRFR. Além disso, as duas soluções foram submetidas a um simulador (Cicogna 2003) visando uma comparação dos resultados em termos compatíveis.

4.2.1 Análise do sistema

A seguir, estão ilustrados os resultados resumidos da operação conjunta das 95 usinas do caso padrão para três critérios: geração hidráulica, custo de operação e energia armazenada.

A geração hidráulica total média obtida pelo MPI-F foi de 53 388 MWm, superando a geração

	GRFR (MWm)	MPI-F (MWm)	Diferença (%)
	262.888	262.888	-
maio	259.794	260.941	0,4
junho	249.604	250.426	0,3
julho	233.093	233.654	0,2
agosto	212.415	211.895	-0,2
setembro	192.251	191.040	-0,6
outubro	175.632	173.662	-1,1
novembro	163.368	161.494	-1,2
dezembro	167.836	165.652	-1,3
janeiro	194.352	191.445	-1,5
fevereiro	224.952	222.363	-1,1
março	252.202	253.112	0,4
abril	262.888	262.888	-
Média	219.329	218.574	-0,3

Tabela 8: Energia armazenada do sistema no caso padrão.

média da solução GRFR em 0,74%. A regularidade foi maior, também, no despacho da solução MPI-F, com um desvio padrão igual a 619,5 MWm, contra 1 208,7 MWm do GRFR. Além disso, para o MPI-F, observa-se uma solução com geração hidráulica crescente ao longo do horizonte, com média de 52 814 MWm nos primeiros quatro meses e acréscimos subseqüentes de 0,9% e 1,3% nos dois últimos quadrimestres, ao passo que este viés crescente não é observado na geração proposta pelo GRFR.

As diferenças nas curvas de geração hidráulica estão refletidas nas trajetórias de energia armazenada de cada abordagem. No primeiro mês do horizonte, o deplecionamento dos reservatórios foi menos acentuado na operação sugerida pelo MPI-F, resultando, assim, numa energia armazenada média 0,3% superior nos três primeiros meses. Isto resultou numa geração hidráulica 1,9% menor no mês de maio, como pode ser observado na Tabela 8. Esta decisão, entretanto, possibilitou a solução MPI-F operar com maior queda em diversas usinas nos meses seguintes, o que garantiu maior geração hidráulica até o mês de dezembro devido à maior quantidade de água disponível para turbinagem. Com isso, a diferença na energia armazenada do sistema entre as duas abordagens atingiu seu máximo no início da estação chuvosa, quando, em janeiro, a solução MPI-F registrou um total armazenado 1,5% inferior.

Os custos de operação das duas soluções apresentam perfis semelhantes à exceção do primeiro mês, com um custo total 3,31% mais barato em média na solução MPI-F.

Figura 30: Resultados da operação por subsistema para o MPI-F no caso padrão.

4.2.2 Análise por subsistema

A Figura 30 apresenta os resultados da operação sumarizados por subsistema, conforme obtidos pelo MPI-F. Nela, pode-se notar a característica de complementaridade entre a geração hidráulica e a importação de energia em cada subsistema, como observado nos resultados do caso didático. Outra observação direta diz respeito às curvas de suplementação térmica: média igual a 6 241 MWm em todos os subsistemas; baixo desvio padrão, igual a 180,2 MWm; e viés decrescente, com média 5,8% inferior no quadrimestre final em comparação aos quatro meses iniciais. Já com relação aos perfis das curvas de geração hidráulica, nota-se maior regularidade no subsistema SE/CO, resultado da maior capacidade de seus reservatórios. Por outro lado, a irregularidade no subsistema Sul é, também, observada aqui. As razões já elucidadas na Seção 4.1 também se aplicam no caso padrão de grande porte: diferente regime hidrológico e reservatórios com menor capacidade de regulação. Além disso, é importante ressaltar a semelhança entre a curva de geração hidráulica do subsistema Sul e aquela da usina de Machadinho ilustrada na Figura 28.

Na Figura 31 são mostrados os fluxos de intercâmbio nas cinco linhas consideradas. Na solução ótima, os subsistemas Norte e NE são exportadores de energia, como já ilustrado anteriormente na Figura 30, exportando, cada um 3 376 e 3 614 MWm em média, respectivamente.

Figura 31: Intercâmbio entre subsistemas para o MPI-F no caso padrão.

Todo o excendente é consumido no subsistema SE/CO, à exceção dos meses que compreendem a estação chuvosa no Sudeste e Centro-Oeste brasileiros, quando, em média, 758 MWm são repassados ao subsistema Sul a fim de compensar as vazões mais escassas na região meridional do Brasil, combinada, ainda, com a necessidade de ganho na energia armazenada para atendimento das condições de contorno. No restante do ano, entretanto, uma média de 2 305 MWm são exportados pelo subsistema Sul.

Na solução ótima, a geração termelétrica é mínima e igual em todos os subsistemas devido às suas funções de custo serem iguais. Dado que a geração hidrelétrica está condicionada à disponibilidade hidráulica para tal, todo superavit (deficit) em relação à demanda local, combinado à sua complementação térmica mínima, deve ser exportado (importado). Como exemplo, tome-se o subsistema NE. Com demanda igual a 10 857 MWm e a complementação térmica média de 6 241 MWm, o restante, ou 4 616 MWm, deve ser suprido com geração hidráulica ou importações. Como a geração média de suas usinas hidrelétricas é igual a 8 217 MWm, os pouco mais de 3 600 MWm excedentes devem ser exportados. De forma análoga, pode-se concluir, portanto, que, na média, o subsistema SE/CO deve importar 8 006 MWm dos outros subsistemas.

Figura 32: Desenho esquemático de algumas cascatas do SIN utilizadas neste trabalho.

4.2.3 Análise por usina hidrelétrica

Nesta seção, são analisados os resultados da operação individualizada de algumas usinas localizadas em diferentes cascatas, como aquelas do Rio Grande, no subsistema SE/CO; Rio Tocantins, no Norte; Rio São Francisco, no NE; e Rio Passo Fundo, no Sul. Espera-se, com essas análises individuais, melhor compreender como as diferenças observadas nos resultados agrupados, causadas pelas diferenças metodológicas, refletem a operação das usinas. A Figura 32 apresenta um desenho esquemático das cascatas onde se localizam as usinas analisadas para o presente estudo de caso e aquele da Seção 4.3.

A Figura 33 apresenta resultados da operação para a usina de Furnas, localizada no Rio Grande. Nela, pode-se comparar o despacho como fornecido pelas abordagens MPI-F e GRFR na forma de geração, vazão turbinada e volume armazenado. No caso da geração, a média obtida pela solução MPI-F é igual a 721,7 MWm, inferior àquela fornecida pelo GRFR em 0,63%, porém, mais regular. Esta regularidade na geração é resultado de uma trajetória de vazão turbinada com menor variância, como pode ser observado no gráfico correspondente. Em termos de média turbinada, as soluções são semelhantes, com 916,4 m³/s para o GRFR e 913,7 m³/s para o MPI-F.

Figura 33: Resultados da operação da UHE Furnas no caso padrão.

Figura 34: Resultados da operação da UHE Água Vermelha no caso padrão.

Na Figura 33b pode-se observar as trajetórias de volume armazenado das duas soluções. À parte as diferenças na taxa de deplecionamento entre elas, a produtividade média foi similar, tendo a usina operado com 0,1% menos produtividade na solução MPI-F. Essa operação levemente menos produtiva é resultado da melhor regulação para maior ganho de produtividade na cascata.

Como exemplo, tome-se a Figura 34, que ilustra os resultados da operação para a usina de Água Vermelha, localizada no final da cascata do Rio Grande. Nela, pode-se observar que, pelo MPI-F, Água Vermelha praticamente operou como uma usina a fio-d'água, como indica a aderência da curva de turbinagem à afluência na Figura 34a. Além disso, pode-se notar que a vazão afluente chega à usina de Água Vermelha melhor regulada, permitindo uma operação com maior altura de queda e produtividade maximizada, sendo esta 1,35% em média superior à da solução

Figura 35: Resultados da operação da UHE Sobradinho no caso padrão.

Figura 36: Resultados da operação da UHE Itaparica no caso padrão.

apresentada pelo GRFR. Com isso, a geração média foi 14,4 MWm maior, ou 1,37%.

Este comportamento foi observado ao longo de toda a cascata entre Furnas e Água Vermelha. Note-se que esta última, além da usina de Marimbondo à montante, tem suas vazões reguladas também pela usina de Graminha, localizada na cabeceira do Rio Pardo. O benefício da melhor regulação, pelo MPI-F, das vazões em Graminha e Furnas na geração média da cascata foi igual a 1,11%, o que equivale a mais de 53 MWm, sendo mais expressivo nas usinas de Jaguara e Peixoto, cujo ganho na geração em relação à solução GRFR foi, respectivamente, de 4,44% e 4,11%.

Os resultados da operação das usinas de Sobradinho, à montante, e Itaparica, à jusante, localizadas na cascata do Rio São Francisco, são apresentados, respectivamente, nas figuras 35 e 36. Assim como nas usinas do Rio Grande, diferenças na regulação das vazões nas usinas de cabeceira

Figura 37: Resultados da operação da UHE Três Marias no caso padrão.

foram observadas entre as soluções MPI-F e GRFR, resultando num despacho, por parte desta última, com menor produtividade nas usinas localizadas no final da cascata.

Na Figura 35a, nota-se uma geração média na solução MPI-F igual a 638,3 MWm, o que equivale a uma produção 0,64% menor em comparação à solução GRFR, ou 4,1 MWm. Entretanto, verifica-se novamente maior regularidade na operação da solução MPI-F. Essa diferença nos perfis das curvas de geração é um reflexo das diferentes trajetórias de volume armazenado e turbinagem. Como pode ser observado na Figura 35b, sob o GRFR, o deplecionamento da usina inicia-se no primeiro mês, ao passo que, sob o MPI-F, ele tem início apenas no segundo mês, fazendo com que Sobradinho opere com maior produtividade durante os seis primeiros meses do período. A maior produtividade nesses meses se deveu à afluência advinda da usina de Três Marias, a usina mais à cabeceira da cascata, ter sido 7% superior àquela do GRFR para o mesmo período. Nos últimos seis meses, a afluência média foi, por outro lado, 3,4% inferior, indicando melhor regularização, também, em Três Marias, apesar da menor capacidade de seu reservatório – equivalente a 53,2% do reservatório de Sobradinho.

A Figura 37 mostra os resultados da operação de Três Marias para as duas abordagens. Podese notar que a convergência do GRFR não foi suficiente para otimizar sua operação. Nela, a geração média sob o MPI-F foi 17,3% superior, uma diferença de 45,2 MWm. Na solução MPI-F, a otimalidade da operação está refletida na trajetória de turbinagem complementar à vazão afluente, característica nas usinas de cabeceira. Esta operação otimizada em Três Marias se reflete ao longo da cascata, como se pode notar na operação de Itaparica na Figura 36.

Figura 38: Resultados da operação da UHE Serra da Mesa no caso padrão.

Figura 39: Resultados da operação da UHE Lajeado no caso padrão.

Na solução MPI-F, apesar de seu reservatório de 3 549 hm³, Itaparica operou fio-d'água, como pode se observar na Figura 36a, turbinando toda a vazão afluente para, assim, manter produtividade máxima ao longo de todo o horizonte. Os reflexos da operação sub-ótima do GRFR são bem marcantes na operação desta usina, evidenciada pelo deplecionamento total do reservatório no mês de dezembro em uma usina com maiores vazões que aquelas à montante. Assim, a geração média pelo MPI-F foi 10,6 MWm superior, o que equivale a 0,85% de ganho.

Em termos de ganhos totais da cascata do São Francisco, a solução MPI-F conseguiu uma operação com geração média 0,57% maior, apesar de, na usina de Xingó e no complexo de Moxotó e Paulo Afonso, a geração média ter sido 0,1% inferior.

Figura 40: Resultados da operação da UHE Passo Fundo no caso padrão.

Os resultados da operação das usinas de Serra da Mesa e Lajeado, no Rio Tocantins, estão resumidos nas figuras 38 e 39, nas quais se pode notar, em conjunto, melhor regularização das vazões na solução MPI-F, a despeito da diferença na geração média de apenas 0,14%, equivalente a pouco mais de 1 MWm. A melhor regulação das vazões permitiu que a usina de Lajeado operasse com uma geração média de 758,1 MWm, 50,3 MWm a mais que na solução GRFR, equivalente a um ganho de 7,1%. Cabe ressaltar, ainda, um aspecto interessante sobre esta cascata: a regulação das vazões em Serra da Mesa, eletricamente associada ao subsistema SE/CO, influencia a operação da usina de Tucuruí, localizada na posição mais à jusante, que responde pela geração hidráulica no subsistema Norte. Sendo assim, a melhor regulação na solução GRFR: um ganho de 128,9 MWm.

Por fim, a Figura 40 mostra os resultados da operação para a usina de Passo Fundo, localizada no rio de mesmo nome, que opera hidraulicamente isolada no subsistema Sul. Os resultados para esta usina servem como um bom exemplo da dificuldade de análise da otimalidade da solução a partir da operação de uma única usina em particular. Neste caso isolado, a solução MPI-F forneceu uma geração média 0,55% inferior em comparação à solução GRFR, apesar da maior regularidade na operação. Observando-se a geração da usina de Passo Fundo, pode-se notar a similaridade com a curva de geração hidráulica total para o subsistema Sul, ilustrada na Figura 30: maior geração durante a primeira metade do horizonte, quando há exportação de energia para o subsistema SE/CO, e menor no final, quando, com a necessidade de ganho de altura de queda de seus reservatórios e menores vazões afluentes, ele se torna importador. No conjunto do subsistema, a solução MPI-F foi 0,4% superior.

Número de variáveis	18.852	
Primais	3.528	
Duais	8.268	
Folga	7.056	
Número de restrições	1.212	
Tempo	179,7s	
Número de iterações	49	
c/ aumento do filtro	34	
Passo médio		
Primal	0,35	
Dual	0,38	
Violação máxima		
Primal	$6,69 \times 10^{-7}$	
Dual	$1,60 \times 10^{-1}$	
Gap de dualidade	$2,22 \times 10^{-8}$	

Tabela 9: Resumo do processo de otimização do caso padrão.

Um resumo do processo de otimização do MPI-F para o caso padrão é apresentado na Tabela 9. Comparando-se com o caso didático, em que o número de variáveis é pouco mais de treze vezes menor, percebeu-se um acréscimo de 26 iterações: de 23 para 49. Pode-se relacionar este aumento com o menor tamanho de passo médio, o que é compreensível quando há um aumento na quantidade de restrições da ordem de dez vezes. O tempo computacional requerido, entretanto, foi quase cem vezes maior.

4.3 Caso real

Este estudo de caso é composto por uma reconfiguração do caso padrão no que diz respeito ao mercado, parque gerador termelétrico, limites de intercâmbio e vazões naturais afluentes. No caso das usinas hidrelétricas, entretanto, foram considerados o mesmo parque gerador e igual distribuição por subsistemas. Os dados da configuração do sistema utilizados neste caso foram obtidos do programa mensal da operação (PMO) do ONS para o mês de setembro de 2008. Assim como nos outros casos, o horizonte de planejamento considerado foi de um ano com discretização mensal, porém, com início em setembro. O cenário de vazões considerado corresponde às vazões

Subsistema	Mercado médio (MWm)	Energia Ar Inicial (%)	mazenada Final (%)
	()	()	()
SE/CO	33.773	67,0	66,8
Sul	8.746	59,0	95,4
NE	7.930	52,9	74,5
Norte	3.843	55,4	99,4

Tabela 10: Configuração do sistema no caso real.

Tabela 11: Configuração do intercâmbio entre subsistemas no caso real.

	Limites Médios		
Intercâmbio	Superior (MW)	Inferior (MW)	
$SE/CO \rightarrow NE$	592	-200	
$SE/CO \rightarrow Fict.$ Imperatriz	2.895	-3.012	
$SE/CO \rightarrow Sul$	6.079	-4.963	
$NE \rightarrow Fict.$ Imperatriz	1.827	-3.130	
Norte \rightarrow Fict. Imperatriz	3.944	-2.688	

observadas entre setembro de 1954 e agosto de 1955, um período com afluências muito baixas. Os mercados considerados são variáveis e correspondem às projeções do ONS para o referido PMO. A Tabela 10 apresenta um resumo da configuração do estudo de caso real agrupada por subsistema.

Com relação aos custos de complementação termelétrica considerados na função-objetivo do modelo, a função de custo quadrático em relação à geração térmica $\frac{1}{2}z_{k,j}^2$ foi mantida, com o intuito de simplificar a aproximação da curva de custos do DET do SIN. Para fins de contabilização dos custos de complementação térmica no ambiente do simulador, entretanto, considerou-se os valores reais estabelecidos para cada usina do parque gerador, bem como para os diferentes níveis de deficit, conforme fornecidos pelo ONS no referido PMO. Ao todo, o parque térmico considerado neste caso é composto por 97 usinas e 16 níveis de deficit. Além dos custos, outros dados da configuração do parque térmico foram obtidos do PMO, como geração mínima, fator de capacidade e taxa de indisponibilidade mensais.

Os fluxos de intercâmbio entre os subsistemas são limitados e seus valores foram obtidos do PMO. A Tabela 11 apresenta os limites médios das linhas para o horizonte em seus dois sentidos: valores negativos representam os limites máximos no sentido oposto à referência. O objetivo do presente caso consiste na avaliação dos benefícios obtidos com o emprego do MPI-F em situações típicas de planejamento da operação do SIN em comparação ao uso do GRFR, utilizando-se, para isso, dados reais empregados pelo ONS. A fim de possibilitar o emprego do GRFR no planejamento da operação energética do SIN, Zambelli (2009) apresenta um procedimento heurístico para correção de balanço e limites de intercâmbio (GRFR-HCBI), que permite calcular, a partir dos resultados do GRFR, fluxos de intercâmbio que respeitem os limites, atendendo os mercados em cada subsistema de maneira estrita, ainda que de maneira sub-ótima.

4.3.1 Heurística para correção de balanço e limites de intercâmbio

Conforme já observado, o modelo empregado pelo GRFR considera a defluência total como variável de decisão, representando, implicitamente, as vazões turbinada e vertida. Dessa forma, toda defluência menor que o engolimento máximo u_q é tratada como vazão turbinada e, somente aquela parcela superior a esse valor é considerado vertimento. Esse modelo, portanto, não é capaz de fornecer soluções quando as condições hidrológicas são favoráveis e o mercado é relativamente baixo, situação freqüentemente verificada na operação do SIN. Além do mais, esse modelo não considera os limites de transmissão entre subsistemas, restrição importante no caso do SIN. Com o objetivo de contornar essas limitações do modelo GRFR, fora desenvolvido o modelo GRFR-HCBI (Zambelli 2009), o qual consiste do emprego do método GRFR com mercado majorado igual à capacidade instalada do parque hidrelétrico, a fim de evitar a situações cuja alocação de vertimento turbinável é necessária. Posteriormente, emprega-se um procedimento heurístico, em fase de simulação, de correção do balanço energético global para adaptação da solução ao mercado real do SIN, bem como de estabelecimento de fluxos que atendam às restrições de intercâmbio entre os subsistemas.

Segundo esse procedimento, a solução do GRFR-HCBI é obtida por meio de uma simulação para o mesmo horizonte do problema de otimização e mesma hidrologia. Resolve-se, a cada estágio do processo de simulação, o problema (4.1) por GRFR para um período com início e final nos estágios em questão com demanda de carga majorada. A solução fornecida pelo GRFR para o primeiro intervalo, correspondente ao estágio atual da simulação, tem sua factibilidade verificada primeiramente em relação ao balanço energético do SIN. Se a geração hidráulica, em adição à geração térmica mínima, for superior ao mercado real do SIN, um processo de replecionamento dos reservatórios é realizado, iterativamente, transformando vazão turbinada em volume armazenamento até que a soma da geração hidráulica e térmica mínima atendam estritamente o mercado do SIN. Caso o armazenamento do sistema hidráulico atinja seu limite máximo e, ainda assim, a geração seja superior ao mercado, o excesso de turbinagem é, então, convertido em vertimento turbinável, proporcionalmente aos limites máximos de engolimento. Por outro lado, se a soma geração hidráulica e térmica mínima for inferior ao mercado real, a diferença será estritamente atendida por geração térmica despachada por ordem de mérito (DET).

Uma vez atendido o mercado do SIN, o procedimento heurístico dá início à análise dos intercâmbios implícitos na presente solução, calculados por meio da solução de um problema de programação linear (Marques 2006) da seguinte forma:

$$\min_{y^{j},y^{A}} \sum_{\substack{k=1\\ k=1}}^{|\mathscr{X}|} y_{k}^{A}$$

s.a $\tilde{B}_{j} \begin{pmatrix} y^{j} \\ y^{A} \end{pmatrix} = \begin{pmatrix} P^{j} + Z^{j} - d^{j} \\ 0 \end{pmatrix}$
 $l^{y,j} \leq y^{j} \leq u^{y,j}$
 $0 \leq y^{A}$ (4.2)

onde P^{j} e Z^{j} são constantes e dados como descrito anteriormente pelos procedimentos de cálculo da geração hidráulica e despacho térmico, totalizados por subsistema, respectivamente. A matriz \tilde{B}_{j} corresponde ao grafo da rede elétrica no intervalo j acrescentado de um nó artificial, o qual $|\mathcal{K}|$ arcos artificiais y_{k}^{A} conectam aos nós correspondentes aos subsistemas, como ilustra a Figura 41. Nele, não há o estabelecimento de custos para os fluxos nas diferentes linhas y.

Se o valor encontrado para a função-objetivo do problema (4.2) for maior que zero, indicando infactibilidade dos intercâmbios implícitos, um procedimento heurístico de correção da geração hidrelétrica é, então, realizado. Os valores do aumento (redução) da geração nos subsistemas envolvidos na infactibilidade são determinados pelos valores finais dos arcos artificiais introduzidos na formulação do problema, quando esses são diferentes de zero na solução final. Eles são adicionados (subtraídos) à geração calculada originalmente, que é, então, recalculada por meio de um procedimento de deplecionamento (replecionamento) dos reservatórios, como no caso do ajuste do mercado do SIN. Nos estudos de caso com dados reais apresentados pelo referido autor, conclui-se que as correções feitas por esse método heurístico são freqüentemente necessárias. Cabe ressaltar, também, que no problema (4.2) não estão formuladas as restrições associadas à Segunda Lei de Kirchhoff, afirmação que também se aplica aos modelos utilizados atualmente no planejamento da operação energética do SIN (Maceira et al. 2002).

Figura 41: Grafo correspondente à topologia de subsistemas com nó e arcos artificiais.

Os resultados apresentados a seguir pretendem mensurar os impactos econômicos causados por esta cadeia de procedimentos heurísticos, que visam compensar as deficiências da formulação do problema (4.1) quando da necessidade de atendimento do mercado real e do estabelecimento de fluxos de intercâmbio entre subsistemas sujeitos a restrições de capacidade. Para realizar a comparação entre as duas abordagens, os resultados obtidos pelo MPI-F são submetidos aos mesmos procedimentos de cálculo de geração hidráulica por volume médio armazenado, despacho econômico termelétrico e custos, tal como impostos à solução GRFR.

4.3.2 Análise do sistema

A Figura 42 apresenta os resultados da operação do SIN no caso real para as duas abordagens. Na Figura 42a, tem-se que a geração hidráulica da solução MPI-F também se mostrou mais regular, com desvio padrão igual 2 064 MWm para uma média de 35 761 MWm, contra 4 531 MWm de desvio e 35 194 MWm de média para a solução GRFR-HCBI. O benefício obtido com a solução MPI-F neste caso, em termos de geração hidráulica, foi de 1,61%. Pode-se observar, ainda, a evidência gráfica da otimalidade da solução MPI-F na aderência da curva de geração hidráulica à curva de demanda de carga, o que não ocorre com a solução GRFR-HCBI, cuja curva é significativamente crescente.

Com relação aos custos, contudo, o benefício hidráulico refletiu-se de forma bastante magnifi-

Figura 42: Resultados da operação do SIN no caso real.

Figura 43: Energia armazenada do sistema no caso real.

cada. Isso se deve às freqüentes ocorrências de deficit em todos os subsistemas, em decorrência dos valores muito baixos de afluência. A maior regularidade na geração hidráulica da solução MPI-F permitiu que o SIN operasse com deficit médio 21,85% menor, o que, em termos de custos, representa uma economia de 32,4% em comparação à solução GRFR-HCBI. Nela, como pode ser observado na Figura 42b, a manutenção de queda nos primeiros meses do horizonte com vistas à maior geração hidráulica nos meses finais não resultou numa compensação econômica significativa. Na primeira metade do período, a solução MPI-F forneceu uma geração média 9,4% maior, ao passo que, na segunda metade, ela foi inferior em 4,8%. Em termos de custos de operação, entretanto, o ganho nos primeiros seis meses foi superior a 40%, enquanto a diferença nos seis meses finais não foi superior a 8%.

Na Figura 43, tem-se ilustradas as trajetórias de energia armazenada para as duas abordagens.

Como pode-se notar, elas se diferem significativamente em termos de valores, apesar dos perfis semelhantes e estados inicial e final iguais. Conforme elucidado anteriormente, a configuração do sistema fora obtida a partir do PMO para o mês de setembro de 2008, sendo informada como dado de entrada na forma de volume inicial. As condições de contorno, por sua vez, definidas como o volume a ser armazenado no final do horizonte em cada reservatório, foram estabelecidas como o volume final fornecido pela solução GRFR-HCBI para o mês de agosto.

Para explicar o menor armazenamento verificado na solução MPI-F, a despeito da maior geração média, faz-se necessária uma breve digressão acerca do cálculo da energia armazenada no sistema, como utilizado pelo setor elétrico brasileiro¹. Este índice fornece uma estimativa da quantidade total de energia elétrica que poderia ser gerada num conjunto de usinas com um deplecionamento hipotético de toda água utilizável dos reservatórios de acumulação segundo uma política de operação estabelecida – no caso, a operação em paralelo, entre os estados inicial e final, desconsiderando-se novas afluências. O índice de energia armazenada pode, ainda, ser definido formalmente como "a soma dos produtos dos volumes úteis armazenados em cada reservatório por suas respectivas produtibilidades médias equivalentes, adicionadas às produtibilidades de todas as usinas à jusante do mesmo", podendo ser expressa como na Equação (4.3), para um dado sistema *k* em um intervalo *j*:

$$EA_{k,j} = \left(a_{i,j} - l_{i,j}^{a}\right) \left(\sum_{\forall i \in \mathcal{R}_{k}} c_{i} h_{i,j}^{eq} \sum_{\forall i' \in \Lambda_{i}k} c_{i'} h_{i',j}^{eq}\right), \quad \forall i \in \mathscr{I}_{k}$$
(4.3)

onde $a_{i,j}$ é o armazenamento corrente da usina $i \in l_{i,j}^a$, seu limite mínimo; R_k é o conjunto de todas usinas do sistema k com reservatório de acumulação; Λ_i é o conjunto de todas as usinas à jusante da usina i, inclusive; $c_{i'}$ é a produtibilidade específica da usina i'; e $h_{i',j}^{eq}$ representa a altura equivalente da usina i', definida como a altura de queda entre a cota de montante correspondente a um armazenamento de 65% do volume útil e a cota média do canal de fuga.

Posto isso, pode-se afirmar que a localização da água no sistema tem influência no valor de sua energia armazenada, com uma contribuição mais significativa quando armazenada nos reservatórios mais à montante nas cascatas. Observando-se a Figura 43, conclui-se que, na solução MPI-F, houve maior regulação das vazões nas usinas de cabeceira, com maior deplecionamento nesses reservatórios e, conseqüentemente, maior altura de queda nas usinas à jusante, obtida com maiores níveis de armazenamento no final da cascata. Logo, na solução ótima encontrada, o benefício da

¹Manual de Referência do Modelo NEWAVE, Centro de Pesquisas de Energia Elétrica (CEPEL), 2000.

Figura 44: Resultados da operação do subsistema SE/CO no caso real.

Figura 45: Resultados da operação do subsistema Sul no caso real.

geração hidrelétrica adicional foi conseguido mediante aumento de produtividade nas usinas de final de cascata.

4.3.3 Análise por subsistema

As figuras 44 e 45 apresentam os resultados da operação nos subsistemas SE/CO e Sul, respectivamente. Pode-se observar que, em função da forma como o DET é calculado pelo simulador e que, devido à heterogeneidade dos custos de geração das usinas termelétricas, bem como de sua distribuição entre os diferentes subsistemas, tem-se que as curvas de geração térmica não são complementares àquelas de geração hidráulica, como ocorre nos casos didático e padrão, nos quais

Figura 46: Resultados da operação do subsistema NE no caso real.

Figura 47: Resultados da operação do subsistema Norte no caso real.

se tem uma térmica fictícia no lugar do parque gerador real, que considera os custos de operação reais.

Por sua vez, as curvas de geração hidráulica para esse dois subsistemas no despacho fornecido pelo MPI-F confirmaram o padrão de maior regularidade observado nos outros casos, com desvios de 2 021 MWm e 1 225 MWm, respectivamente, contra 3 393 MWm e 2 248 MWm na solução GRFR-HCBI. A média é maior na solução MPI-F para o SE/CO e o Sul em 0,5% e 7,3%, o que equivale a diferenças de 94 MWm e 551 MWm médios. Com isso, são significativos os reflexos nos custos de operação em função dos diferentes níveis de deficit despachados por cada solução. Neste caso, o deficit médio foi inferior em 32,4% e 17,7%, respectivamente, em comparação à abordagem heurística.

Figura 48: Energia armazenada nos subsistemas no caso real.

Já as figuras 46 e 47 apresentam os resultados da operação nos subsistemas NE e Norte, respectivamente. Na solução MPI-F, a geração hidráulica média do subsistema NE foi igual a 4 639 MWm, ou 1,2% a mais que na solução GRFR-HCBI. Por sua vez, a geração média na usina de Tucuruí, que responde pelo subsistema Norte, foi 3,7% inferior. Essas diferenças se refletiram no despacho médio de deficit para cada solução: sendo 13,8% inferior no NE, e 97,3% superior no Norte, em comparação à abordagem heurística. Em termos de custos de operação, verificouse uma economia de 8% no primeiro, e uma perda de 188,2% no segundo. Esta perda, contudo, representa uma diferença média de apenas 273 MW, enquanto o benefício médio no âmbito do SIN é superior a 1 164 MW.

As curvas de energia armazenada para cada subsistema ao longo do horizonte são apresentadas na Figura 48. Nos subsistemas SE/CO, Sul e Norte, a energia armazenada na solução MPI-F é menor, refletindo a energia armazenada do SIN. Os valores médios para cada um deles foram de 66%, 60% e 71% da energia armazenável máxima, contra 72%, 74% e 82% da solução GRFR-HCBI, respectivamente. No subsistema SE/CO, os perfis das curvas são semelhantes, diferenciando-se apenas nos valores, como ocorre para o SIN. Esta semelhança se deve à maior capacidade hidráulica instalada presente naquele subsistema. No Sul, as trajetórias de energia armazenada das duas soluções se mostraram bastante próximas nos primeiros seis meses do ho-

Figura 49: Intercâmbio entre subsistemas no caso real.

rizonte, à exceção do mês de setembro, com maior descolamento no período correspondente à última metade do horizonte. Por sua vez, no subsistema Norte verifica-se soluções bastante distintas. Como o parque hidráulico do Norte é composto apenas pela usina de Tucuruí, as curvas de energia armazenada para aquele subsistema refletem as trajetórias de volume de seu reservatório. Por último, observa-se situação inversa no NE, com a solução MPI-F fornecendo uma trajetória de energia armazenada com média igual a 67% da máxima, o que corresponde a um armazenamento 13,5% superior àquele obtido com a abordagem heurística.

A Figura 49 mostra os fluxos de intercâmbio verificados em cada linha para ambas abordagens. Exceto pelas pequenas diferenças de magnitude no intercâmbio da linha SE/CO-Sul, que apresentou o subsistema Sul como exportador de energia no caso real, pode-se perceber diferenças significativas, tanto no sentido quanto na magnitude, dos fluxos nas outras linhas do SIN. Na solução MPI-F, o subsistema NE, assim como o Sul, é predominantemente exportador, fazendo uso da capacidade máxima da linha SE/CO-NE para fornecer energia para SE/CO. Por sua vez, nos meses de dezembro a junho, o subsistema Norte também se torna exportador para o subsistema SE/CO.

(a) Geração e armazenamento na UHE Emborcação.

(b) Geração e armazenamento na UHE São Simão.

Figura 50: Resultados da operação da cascata do Paranaíba no caso real.

4.3.4 Análise por usina hidrelétrica

Nesta seção são analisados os resultados da operação para diversas usinas de diferentes cascatas, procurando evidenciar, em especial, as diferenças nas decisões de despacho que resultaram em diferentes trajetórias de energia armazenada para as duas abordagens.

A Figura 50 ilustra as curvas de geração e volume armazenado para as usinas de Emborcação e São Simão, localizadas, respectivamente, na cabeceira e no final da cascata do Rio Paranaíba, no subsistema SE/CO. Pode-se observar que a operação da usina de Emborcação na solução MPI-F privilegiou maior regulação das vazões, deplecionando seu reservatório a um mínimo próximo de 1/5 do volume útil. O volume armazenado médio ao longo do horizonte foi de 38,6% do útil, contra 55,2% na solução GRFR-HCBI. Esta diferença na operação do reservatório refletiu-se na geração, com curvas bem distintas, registrando uma média de 433,8 MWm na solução MPI-F, ou 3,7% a menos em comparação à outra abordagem.

Este maior deplecionamento do reservatório, entretanto, permitiu que a usina de São Simão operasse, na solução MPI-F, com maior altura de queda e, conseqüentemente, maior produtividade, resultando numa geração média igual a 1 252 MWm, pouco mais de 1,1% superior à da solução GRFR-HCBI. O volume médio armazenado foi de 98,6% do útil naquela, contra 87,9%.

Na Figura 51, estão ilustrados os resultados da operação para as usinas de Furnas e Água Vermelha, no Rio Grande. Observa-se, também nesta cascata, o mesmo padrão acerca da maior regulação das vazões nos grandes reservatórios de acumulação à montante já observado na solução

(b) Geração e armazenamento na UHE A. Vermelha.

Figura 51: Resultados da operação da cascata do Grande no caso real.

Figura 52: Resultados da operação da cascata do São Francisco no caso real.

MPI-F para os outros estudos de caso. Aqui, Furnas operou com o reservatório mais vazio, com média de 75% do volume útil, ao passo que, pelo GRFR-HCBI, este valor foi pouco superior a 90%. Em termos de geração média, essa diferença resultou em um valor 15 MWm menor, ou 4%. Mais uma vez, a maior regulação na solução MPI-F permitiu maior altura de queda no final da cascata, com Água Vermelha operando com volume médio igual a 83% do útil, contra 75%, possibilitando uma geração média de 592 MWm, correspondente a 1% a mais.

No Rio São Francisco, a melhor regulação das vazões na usina de Três Marias resultou numa operação com maior altura de queda nas usinas de Sobradinho e Itaparica, como ilustra a Figura 52, com armazenamentos médios iguais a 63,6% e 96,9% do útil, contra 60,2% e 50%, e geração média superior em 3,7% e 4,3%, respectivamente.

(a) Geração e armazenamento na UHE Serra da Mesa.

(b) Volume armazenado na UHE Tucuruí.

Figura 53: Resultados da operação da cascata do Tocantins no caso real.

(a) Geração e armazenamento na UHE Barra Grande. (b) Geração e armazenamento na UHE Machadinho.

Figura 54: Resultados da operação da cascata do Pelotas-Uruguai no caso real.

Na Figura 53, tem-se a operação para as usinas de Serra da Mesa e Tucuruí, no Rio Tocantins. No caso da primeira, as curvas de armazenamento são semelhantes, com volume médio 3% menor na solução MPI-F. A menor altura de queda refletiu-se na geração, com média de 219 MWm, contra 224 MW na abordagem heurística, uma diferença de 2,1%.

Por fim, os resultados da operação para as usinas de Barra Grande, no Rio Pelotas, e Machadinho, à jusante, no Rio Uruguai, são ilustrados na Figura 54. Na solução MPI-F, ambas operaram, na média, com 21,5% menos armazenamento. Em termos de geração, entretanto, obteve-se valores superiores em 1,7% e 4,5%, com médias de 442 MWm e 727 MWm em Barra Grande e Machadinho, respectivamente.

Número de variáveis	18.852		
Primais	3.528		
Duais	8.268		
Folga	7.056		
Número de restrições	1.212		
Tempo	187,8s		
Número de iterações	50		
c/ aumento do filtro	30		
c/ correção de inércia	1		
Passo médio			
Primal	0,42		
Dual	0,38		
Violação máxima			
Primal	$1,05 \times 10^{-3}$		
Dual	4,47		
Gap de dualidade	$4,01 \times 10^{-9}$		

Tabela 12: Resumo do processo de otimização do caso real.

A Tabela 12 resume o processo de otimização do caso real pelo MPI-F. Em termos de esforço computacional, este caso requereu uma iteração extra e maior tempo de execução, com uma ocorrência de correção de inércia do sistema Newton na primeira iteração. Devido às diversas restrições de intercâmbio ativas, verificou-se maior dificuldade de convergência em comparação ao caso padrão. Em geral, entretanto, o algoritmo se comportou satisfatoriamente, mesmo sob condições mais restritas.

5 Conclusão

Este trabalho apresentou um método de pontos interiores primal-dual não-linear com busca unidimensional com filtro aplicado a um novo modelo de otimização determinística a usinas individualizadas para o planejamento da operação energética do Sistema Interligado Nacional, em que são consideradas restrições de fluxo de intercâmbio entre subsistemas, incluído aí o atendimento da Segunda Lei de Kirchhoff. A consideração dessas restrições requereu a representação explícita do balanço energético por subsistema, o que, em razão da não-linearidade da função de geração hidráulica, inseriu dificuldade adicional a um problema já caracterizado por sua complexidade e grande porte.

A explicitação do balanço energético possibilitou não somente a representação das variáveis de fluxo de intercâmbio, mas também da decisão de geração termelétrica. Com isso, torna-se possível obter soluções mais aderentes às condições estabelecidas em tempo de simulação no que tange, por exemplo, aos intercâmbios, bem como uma melhor avaliação econômica da operação ótima. Por exemplo, a possibilidade de se representar a decisão de geração termelétrica por usina permite considerar os custos de operação em termos individuais. Ou, ainda, pode-se variar o grau de representação do parque termelétrico visando, por exemplo, redução do espaço de variáveis. Outra vantagem da representação explícita do balanco energético está associada à possibilidade de se obter os custos marginais de operação, ao final do processo de otimização e para cada subsistema e intervalo do horizonte, diretamente dos multiplicadores de Lagrange correspondentes a essas restrições. Além disso, pode-se, também, estimar os benefícios operativos do aumento da capacidade de transmissão em linhas com limite ativo a partir das variáveis duais associadas às restrições de canalização. Outra forma de avaliação dos benefícios decorrentes do intercâmbio energético se dá pelo ganho de produtividade nas usinas hidrelétricas, como evidenciado pelos resultados apresentados no estudo de caso didático, que mostram aumento dos níveis de energia armazenada nas usinas quando o há acréscimo da disponibilidade de intercâmbio.

A maior complexidade advinda da representação mais detalhada do parque gerador e da rede de transmissão resultante da explicitação do balanço energético, entretanto, justificou o emprego de um método de pontos interiores primal-dual. Essa classe de algoritmos de otimização tem se mostrado bastante eficiente na solução de problemas de grande porte. Sua aplicação a problemas de otimização não-linear, contudo, é recente e ainda objeto de intensa pesquisa. O método apresentado neste trabalho faz uso de busca linear unidimensional com filtro a fim de contornar as dificuldades de convergência decorrentes de restrições não-lineares.

Os resultados obtidos a partir da realização de estudos de caso numéricos de grande porte são expressivos. Eles evidenciam a eficiência dos métodos de pontos interiores primal-dual e a eficácia da busca unidimensional com filtro. As soluções obtidas pelo MPI-F foram comparadas às soluções de duas alternativas propostas na literatura para diferentes casos com uso de dados reais do setor elétrico brasileiro, tendo se mostrado superior em todos eles ao fornecer curvas de operação com geração hidráulica em média 1% maior. Num caso especial, com baixa disponibilidade hidráulica, a qualidade superior das soluções, resultante da maior capacidade de convergência do método apresentado e da melhor representação do modelo, representou uma economia de 32% nos custos de operação do SIN.

A combinação de um modelo flexível com um método robusto abre possibilidades de novas aplicações e trabalhos futuros. Vislumbra-se, entre outras coisas, seu emprego num contexto de controle preditivo como forma de se avaliar os benefícios da abordagem individualizada em comparação à abordagem estocástica com modelo agregado, atualmente em uso no setor elétrico brasileiro. Uma representação mais detalhada do sistema também é desejada, com o intuito de melhor aderir a solução do modelo às condições de simulação.

Entre as formas de melhor representação do modelo, pode-se destacar a consideração, no balanço hidráulico, da evaporação da água armazenada nos reservatórios. O volume evaporado é expresso como uma função da área alagada que, por sua vez, é uma função não-linear da cota de montante. A taxa de evaporação em grandes espelhos d'água não é desprezada na operação real, logo, sua representação significará maior aderência às condições de simulação. Sua consideração, entretanto, introduz não-linearidade no balanço hidráulico, resultando numa maior complexidade do modelo. Deve-se destacar, também, o cálculo do limite máximo de turbinagem variável com a altura de queda como forma de melhor representar o modelo. Sua utilização impõe dificuldades adicionais ao se introduzir uma função não-linear à canalização das variáveis de engolimento. Por último, pode-se mencionar a representação completa da rede elétrica, com a consideração de todas as barras e linhas, bem como de particularidades específicas dos problemas de fluxo de potência.

Todas as possibilidades de trabalhos futuros abertas pelo vislumbramento de uma melhor representação do modelo, esbarram, contudo, nos acréscimos significativos de complexidade do problema e esforço computacional requerido para solucioná-lo. Apesar de não ter constituído objetivo deste trabalho a aferição sistemática do desempenho computacional do método apresentado, seu eventual emprego em situações reais de planejamento requerirá maior eficiência com vistas à redução do tempo necessário para a solução do problema. Como ocorre com todos os métodos de pontos interiores, a maior complexidade computacional reside no cálculo das direções de busca. A solução eficiente dos sistemas lineares resultantes requer uma exploração eficiente da estrutura matricial esparsa e dos recursos computacionais disponíveis. A exploração da estrutura em blocos das matrizes envolvidas no cálculo das direções passa, obrigatoriamente, pela possibilidade do emprego de computação paralela em diferentes níveis do algoritmo, desde operações matriciais básicas à fatoração das matrizes normais ou mesmo da solução em paralelo dos sistemas associados a direções de busca independentes.

Pretende-se, também, investigar o emprego da ordem dual na solução do sistema Newton reduzido com o intuito de reduzir o adensamento da matriz normal resultante do cálculo das direções de busca associadas às restrições de balanço energético. Sua redução constitui ponto crucial para aplicação do modelo proposto neste trabalho em problemas com representação detalhada da rede elétrica. Ademais, a fim de contribuir positivamente para as taxas de convergência do algoritmo, propõe-se a eliminação das variáveis de volume armazenado das usinas a fio-d'água, o que, além dos benefícios do ponto de vista do método de pontos interiores, reduz o espaço de incógnitas, acarretando menor esforço computacional.

APÊNDICE A Derivadas parciais da função de geração hidrelétrica

Seja a função de geração hidrelétrica p_i da Equação (2.5) para uma usina i em um dado intervalo j, suas derivadas parciais de primeira ordem e segunda ordem são apresentadas, respectivamente, nas seções A.1 e A.2.

A.1 Derivadas de primeira ordem

A derivada parcial de primeira ordem de p_i em relação ao volume armazenado $a_{i,j}$ é dada por:

$$\frac{\partial p_i(x)}{\partial a_{i,j}} = c_i q_{i,j} \left[b_i^{\prime M}(a_{i,j}) - \frac{\partial b_{i,j}^P}{\partial a_{i,j}} \right].$$
(A.1)

A derivada parcial de primeira ordem de p_i em relação à vazão turbinada $q_{i,i}$ é dada por:

$$\frac{\partial p_i(x)}{\partial q_{i,j}} = c_i \left\{ b_{i,j} - \left[b_i'^F(\tilde{r}_{i,j}) - \frac{\partial b_{i,j}^P}{\partial q_{i,j}} \right] q_{i,j} \right\}.$$
(A.2)

A derivada parcial de primeira ordem de p_i em relação à vazão vertida $v_{i,j}$ é dada por:

$$\frac{\partial p_i(x)}{\partial v_{i,j}} = -c_i q_{i,j} \left[h_i'^F(r_{i,j}) - \frac{\partial h_{i,j}^P}{\partial v_{i,j}} \right].$$
(A.3)

Note que, para algumas usinas i, entretanto, não há influência do vertimento na altura do

canal de fuga. Portanto, tem-se, nesses casos, que:

$$\frac{\partial p_i(x)}{\partial v_{i,j}} = 0. \tag{A.4}$$

A.2 Derivadas de segunda ordem

As derivadas parciais de segunda ordem de p_i em relação ao volume armazenado $a_{i,j}$ são dadas por:

$$\frac{\partial^2 p_i(x)}{\partial^2 a_{i,j}} = c_i q_{i,j} \left[b_i^{\prime\prime M}(a_{i,j}) - \frac{\partial^2 b_{i,j}^P}{\partial^2 a_{i,j}} \right],$$
(A.5)

$$\frac{\partial^2 p_i(x)}{\partial a_{i,j} \partial q_{i,j}} = c_i \left[b_i^{\prime M}(a_{i,j}) - \frac{\partial b_{i,j}^P}{\partial a_{i,j}} \right], \qquad (A.6)$$

$$\frac{\partial^2 p_i(x)}{\partial a_{i,j} \partial v_{i,j}} = 0.$$
(A.7)

As derivadas parciais de segunda ordem de p_i em relação à vazão turbinada $q_{i,j}$ são dadas por:

$$\frac{\partial^2 p_i(x)}{\partial^2 q_{i,j}} = -c_i \left\{ 2 \left[b_i'^F(\tilde{r}_{i,j}) - \frac{\partial b_{i,j}^P}{\partial q_{i,j}} \right] + \left[b_i''^F(\tilde{r}_{i,j}) - \frac{\partial^2 b_{i,j}^P}{\partial^2 q_{i,j}} \right] q_{i,j} \right\}, \quad (A.8)$$

$$\frac{\partial^2 p_i(x)}{\partial q_{i,j} \partial v_{i,j}} = -c_i \left\{ b_i'^F(r_{i,j}) - \frac{\partial b_{i,j}^P}{\partial v_{i,j}} + \left[b_i''^F(r_{i,j}) - \frac{\partial^2 b_{i,j}^P}{\partial q_{i,j} \partial v_{i,j}} \right] q_{i,j} \right\}.$$
(A.9)

A derivada parcial de segunda ordem de p_i em relação à vazão vertida $v_{i,j}$ é dada por:

$$\frac{\partial^2 p_i(x)}{\partial^2 v_{i,j}} = -c_i q_{i,j} \left[b_i^{\prime\prime F}(r_{i,j}) - \frac{\partial^2 h_{i,j}^P}{\partial^2 v_{i,j}} \right].$$
(A.10)

Se, para uma dada usina i, o vertimento não tem influência na altura de queda, então:

$$\frac{\partial^2 p_i(x)}{\partial q_{i,j} \partial v_{i,j}} = \frac{\partial^2 p_i(x)}{\partial^2 v_{i,j}} = 0.$$
(A.11)

A.2 Derivadas de segunda ordem

Por fim, a defluência condicional $\tilde{r}_{i,j}$ é dada pela expressão abaixo:

$$\tilde{r} = \begin{cases} q_{i,j} + v_{i,j} & \text{, se vertimento não influencia altura de queda} \\ q_{i,j} & \text{, do contrário.} \end{cases}$$
(A.12)

APÊNDICE B Cálculo das reatâncias

Para realizar os estudos de caso apresentados no Capítulo 4, calculou-se valores de reatância equivalentes para as composições das linhas reais que formam o ciclo na topologia dos subsistemas do SIN, com base nos dados sobre a rede elétrica em junho de 2006. As equações (B.1) e (B.2) descrevem as fórmulas utilizadas para o cálculo das reatâncias equivalentes para linhas em série e em paralelo, respectivamente:

$$r_{eq}^{s} = r_{1} + r_{2} + \ldots + r_{l}$$
 (B.1)

$$\frac{1}{r_{eq}^{p}} = \frac{1}{r_{1}} + \frac{1}{r_{2}} + \dots + \frac{1}{r_{l}}$$
(B.2)

Os valores calculados foram utilizados em todos os estudos de caso, conforme apresentados na Tabela 13. Uma discussão mais detalhada acerca dos efeitos do procedimento adotado nos resultados obtidos não constitui, entretanto, objetivo deste trabalho. Uma investigação futura que avalie o procedimento que melhor represente a simplificação das linhas para uso em modelos de POE de longo prazo, em que não pesem maiores detalhes da rede elétrica, entretanto, é recomendada.

	Reatância (P.U.)
$SE/CO \rightarrow NE$	0,027360
$SE/CO \rightarrow Fict.$ Imperatriz	0,002676
$NE \rightarrow Fict.$ Imperatriz	0,027360

Tabela 13: Valores de reatância utilizados nos estudos de caso.

APÊNDICE C Usinas hidrelétricas

Neste apêndice estão listadas as usinas hidrelétricas utilizadas nos estudos de caso apresentados no Capítulo 4. Para cada usina são apresentadas algumas informações básicas como potência instalada, engolimento máximo e volumes mínimo e máximo de armazenamento em seus respectivos reservatórios.

Estão listadas na Tabela 14 as sessenta e oito usinas do subsistema SE/CO consideradas neste trabalho, que totalizam mais de 46 GW de potência instalada, das quais trinta e oito são usinas fio-d'água; as dezenove usinas hidrelétricas do subsistema Sul, sendo oito usinas fio d'água, e seus quase 13 GW de potência instalada; as sete usinas do subsistema, com mais de 10 GW de potência instalada; e, por fim, a usina hidrelétrica de Tucuruí, localizada no subsistema Norte.

				Volum	e (hm ³)
Subsis.	UHE	Pot. Inst. (MW)	Eng. Máx. (m^3/s)	Mínimo	Máximo
SE/CO	Guaporé	120	84	21	21
	Serra da Mesa	1.275	1.215	11.150	54.400
	Cana Brava	472	1.212	2.300	2.300
	Peixe Angical	452	2.058	2.740	2.740
	Lajeado	903	3.400	5.193	5.193
	Três Marias	396	924	4.250	19.528
	Queimado	105	72	95	485
	Irapé	360	291	2.268	5.964

Tabela 14: Usinas hidrelétricas consideradas nos estudos de caso.

				Volume (hm ³)		
Subsis.	UHE	Pot. Inst. (MW)	Eng. Máx. (m^3/s)	Mínimo	Máximo	
	Santa Clara	60	132	150	150	
	Guilman Amorim	140	136	12	12	
	Salto Grande	102	132	78	78	
	Porto Estrela	112	248	66	99	
	Aimorés	330	1.368	185	185	
	Mascarenhas	181	981	22	22	
	Paraibuna	85	126	2.096	4.732	
	Santa Branca	58	126	131	438	
	Jaguari	28	66	443	1.236	
	Funil	222	378	283	885	
	Ilha dos Pombos	183	704	8	8	
	Emborcação	1.192	1.048	4.669	17.725	
	Nova Ponte	510	597	2.412	12.792	
	Miranda	408	675	974	1.120	
	Capim Branco I	240	495	240	240	
	Capim Branco II	210	540	879	879	
	Corumbá IV	127	208	2.937	3.624	
	Corumbá III	94	270	709	972	
	Corumbá I	375	570	472	1.496	
	Itumbiara	2.280	3.222	4.573	17.027	
	Cachoeira Dourada	658	2.570	519	519	
	São Simão	1.710	2.670	7.044	12.584	
	Camargos	46	220	120	792	
	Itutinga	52	236	11	11	
	Funil Grande	180	585	269	269	
	Furnas	1.312	1.692	5.733	22.950	
	Peixoto	478	1.328	1.540	4.040	
	Estreito	1.104	2.028	1.423	1.423	
	Jaguara	424	1.076	450	450	
	Igarapava	210	1.480	480	480	

Tabela 14 (continuação da página anterior)

Tabela 1	4 (continuaç	ão da página	anterior)

				Volume (hm ³)		
Subsis.	UHE	Pot. Inst. (MW)	Eng. Máx. (m^3/s)	Mínimo	Máximo	
	Volta Grande	380	1.584	2.244	2.244	
	Porto Colômbia	328	1.988	1.525	1.525	
	Graminha	80	94	51	555	
	Euclides da Cunha	109	148	13	13	
	Limoeiro	32	178	24	24	
	Marimbondo	1.488	2.944	890	6.150	
	Água Vermelha	1.396	2.958	5.858	11.028	
	Barra Bonita	140	756	569	3.136	
	Bariri	144	771	542	542	
	Ibitinga	131	705	981	981	
	Promissão	264	1.293	5.280	7.407	
	Nova Avanhandava	347	1.431	2.720	2.720	
	Ilha Solteira Eq.	4.252	10.397	25.467	34.432	
	Jupiá	1.551	7.476	3.354	3.354	
	Porto Primavera	1.540	7.978	15.708	20.002	
	Jurumirim	98	331	3.843	7.011	
	Pirajú	80	362	114	114	
	Chavantes	414	581	5.754	8.795	
	Ourinhos	44	486	21	21	
	Salto Grande	72	513	44	44	
	Canoas II	70	497	146	146	
	Canoas I	83	516	207	207	
	Capivara	640	1.563	4.822	10.551	
	Taquaruçu	554	2.572	677	677	
	Rosana	372	2.534	1.910	1.910	
	Jauru	118	127	17	17	
	Itiquira I	61	80	5	5	
	Itiquira II	95	82	1	1	
	Ponte de Pedra	176	81	106	106	
	Itaipu	14.000	13.140	29.408	29.408	

				Volum	e (hm ³)
Subsis.	UHE	Pot. Inst. (MW)	Eng. Máx. (m^3/s)	Mínimo	Máximo
Sul	Foz do Areia	1.676	1.376	1.974	5.779
	Segredo	1.260	1.268	2.559	2.942
	Santa Clara	120	156	169	431
	Salto Santiago	1.420	1.576	2.662	6.775
	Salto Osório	1.078	1.784	1.124	1.124
	Salto Caxias	1.240	2.100	3.573	3.573
	Manso	210	400	4.386	7.337
	Barra Grande	698	516	2.669	4.971
	Campos Novos	880	417	1.477	1.477
	Machadinho	1.140	1.311	2.283	3.339
	Itá	1.450	1.590	5.100	5.100
	Passo Fundo	226	104	184	1.589
	Quebra Queixo	120	114	111	137
	Capivari/Cachoeira	260	40	23	179
	Passo Real	158	412	289	3.646
	Jacuí	180	234	29	29
	Itaúba	500	620	620	620
	Dona Francisca	130	376	330	330
	Monte Claro	125	372	11	11
NE	Boa Esperança	225	592	3.173	5.085
	Sobradinho	1.050	4.278	5.448	34.117
	Itaparica	1.500	3.306	7.233	10.782
	Comp PAF-MOX	4.285	4.204	1.226	1.226
	Xingó	3.162	2.976	3.800	3.800
	Pedra do Cavalo	160	180	2.187	2.565
	Itapebi	475	682	1.634	1.634
Norte	Tucuruí	8.365	14.332	11.293	50.275

Tabela 14 (continuação da página anterior)

APÊNDICE D Usinas termelétricas

A Tabela 15 lista as 118 usinas termelétricas utilizadas no cálculo dos custos de operação dos estudos de caso real apresentados no Capítulo 4, organizadas por subsistema e ordenadas por CMO. Para cada usina são apresentadas algumas informações básicas como potência instalada, limites médios de geração mínima e máxima, e custo marginal de operação. A usina mais barata está localizada no subsistema SE/CO, com custo pouco superior a R\$6/MWh. O subsistema Norte, por sua vez, não possui parque termelétrico. Por esta razão, são listados apenas os patamares de deficit para aquele subsistema.

		Geração (MW)			
Subsis.	UHE	Pot. Inst. (MW)	Mínima	Máxima	CMO (R\$/MWh)
SE/CO	CUIABA G CC	529,0	0,0	89,0	6,3
	ANGRA 2	1.350,0	1.080,0	1.202,0	18,8
	ANGRA 1	657,0	385,0	485,0	20,2
	NORTEFLU-1	400,0	400,0	400,0	31,0
	COLORADO	38,0	14,0	17,0	36,0
	NORTEFLU-2	100,0	0,0	87,0	42,6
	NORTEFLU-3	200,0	0,0	175,0	74,4
	DO ATLANTICO	490,0	0,0	420,0	94,0
	NORTEFLU-4	169,0	0,0	74,0	108,0
	T LAGOAS L	386,0	0,0	20,0	108,8

Tabela 15: Usinas termelétricas do subsistema SE/CO.

		Geração (MW)			
Subsis.	UHE	Pot. Inst. (MW)	Mínima	Máxima	CMO (R\$/MWh)
	TERMORIO L	1.058,0	36,0	318,0	118,1
	COCAL	28,0	0,0	27,0	126,7
	T LAGOAS T	386,0	0,0	10,0	130,6
	TERMORIO T	1.058,0	37,0	37,0	137,3
	PIE-RP	28,0	0,0	25,0	137,8
	EBOLT T	386,0	0,0	8,0	139,2
	EBOLT TC	386,0	0,0	170,0	139,2
	JUIZ DE FORA	87,0	13,0	74,0	150,0
	STCRUZ NOVA	564,0	0,0	460,0	150,6
	CCBS L	250,0	0,0	199,0	159,3
	EBOLT L	386,0	0,0	49,0	161,3
	TERMORIO TC	1.058,0	24,0	107,0	214,5
	CCBS TC	250,0	0,0	196,0	222,2
	MACAE TC	923,0	0,0	850,0	253,8
	VIANA	171,0	0,0	164,0	291,6
	STCRUZ 12	168,0	0,0	116,0	310,4
	STCRUZ 34	440,0	0,0	344,0	310,4
	NOVA PIRAT	386,0	0,0	302,0	318,0
	PIRAT34 VAP	272,0	0,0	27,0	318,0
	PIRAT12 G	200,0	0,0	50,0	470,3
	PIRATINING34	272,0	0,0	229,0	470,3
	PALMEIRAS GO	174,0	0,0	133,0	515,8
	R.SILVEIRA	30,0	0,0	26,0	523,4
	DAIA	44,0	0,0	36,0	548,0
	IGARAPE	131,0	0,0	101,0	645,3
	GOIANIA II	140,0	0,0	129,0	662,1
	ST.CRUZ N,DI	564,0	0,0	435,0	730,5
	XAVANTES	54,0	0,0	48,0	794,5
	WARJONA	206,0	0,0	153,0	808,0
	CARIOBA	36,0	0,0	26,0	937,0

Tabela 15 (continuação da página anterior)

TT 1 1	1 -	/ · ·	~ 1		. • \
Labela	15	(confiniia)	cao da	naoina	anterior
rabera	10	(communication)	çuo au	pusmu	anterior
				1 0	

		Geração (MW)			
Subsis.	UHE	Pot. Inst. (MW)	Mínima	Máxima	CMO (R\$/MWh)
	FIC.DEFICIT 5%	1.671,0	0,0	1.671,0	944,5
	UTE BRASILIA	10,0	0,0	8,0	1.047,4
	FIC.DEFICIT 5%	1.671,0	0,0	1.671,0	2.037,6
	FIC.DEFICIT 10%	3.342,0	0,0	3.342,0	4.258,0
	FIC.DEFICIT 80%	26.738,0	0,0	26.738,0	4.838,7
Sul	XANXERE	30,0	0,0	27,0	35,0
	CANDIOTA 3	350,0	0,0	295,0	41,3
	ARGENTINA 1	1.018,0	0,0	1.018,0	43,0
	ARGENTINA 1B	60,0	0,0	60,0	53,1
	ARGENTINA 2A	400,0	0,0	400,0	53,1
	ARGENTINA 2B	200,0	0,0	200,0	53,1
	ARGENTINA 2C	400,0	0,0	400,0	53,1
	ARGENTINA 2D	100,0	0,0	100,0	53,1
	J.LACERDA C	363,0	250,0	316,0	105,4
	PMEDICI A	126,0	50,0	77,0	116,0
	PMEDICI B	320,0	98,0	165,0	116,0
	JLACERDA B	262,0	122,0	225,0	129,1
	JLACERDA A2	132,0	81,0	111,0	129,1
	URUGUAIANA	640,0	29,0	27,0	141,2
	CHARQUEADAS	72,0	30,0	59,0	143,3
	CISFRAMA	4,0	0,0	3,0	150,0
	JLACERDA A1	100,0	17,0	79,0	170,5
	FIGUEIRA	20,0	13,0	14,0	206,4
	ARAUCARIA	485,0	0,0	218,0	219,0
	SJERONIMO	20,0	5,0	14,0	249,0
	CANOAS	161,0	0,0	140,0	541,9
	ALEGRETE	66,0	0,0	49,0	564,6
	NUTEPA	24,0	0,0	17,0	780,0
	FIC.DEFICIT 5%	416,0	0,0	416,0	944,5
	FIC.DEFICIT 5%	416,0	0,0	416,0	2.037,6

		Geração (MW)			
Subsis.	UHE	Pot. Inst. (MW)	Mínima	Máxima	CMO (R\$/MWh)
	FIC.DEFICIT 10%	832,0	0,0	832,0	4.258,0
	FIC.DEFICIT 80%	6.654,0	0,0	6.654,0	4.838,7
NE	TERMOPE	533,0	195,0	214,0	70,2
	FORTALEZA	347,0	201,0	262,0	80,7
	TERMOBAHIA	186,0	0,0	125,0	101,0
	FAFEN	138,0	0,0	102,0	105,8
	MPX	700,0	0,0	631,0	106,3
	CEARA L	220,0	0,0	45,0	177,5
	CAMACARI G	347,0	0,0	263,0	200,1
	MARACANAU I	162,0	0,0	150,0	277,4
	MONTE PASCO	138,0	0,0	129,0	280,5
	TERMOCABO	50,0	0,0	47,0	284,4
	ITAPEBI	138,0	0,0	129,0	286,3
	TERMONE	171,0	0,0	156,0	287,3
	TERMOPB	171,0	0,0	156,0	287,3
	GLOBAL I	140,0	0,0	134,0	287,4
	GLOBAL II	148,0	0,0	139,0	287,4
	V.ACU FIC	368,0	0,0	231,0	287,8
	VALE DO ACU	368,0	0,0	271,0	287,8
	CAMPINA GDE	164,0	0,0	158,0	287,9
	MARACANAU II	70,0	0,0	65,0	299,5
	SUAPE II	356,0	0,0	345,0	311,8
	CAMACARI MI	148,0	0,0	139,0	429,1
	CAMACARI PI	148,0	0,0	139,0	429,1
	BAHIA I	32,0	0,0	29,0	430,2
	PETROLINA	136,0	0,0	119,0	470,7
	CEARA TC	220,0	0,0	129,0	492,3
	ALTOS	13,0	0,0	13,0	503,3
	ARACATI	11,0	0,0	11,0	503,3
	BATURITE	11,0	0,0	11,0	503,3

Tabela 15 (continuação da página anterior)

			Geraçã	o (MW)	
Subsis.	UHE	Pot. Inst. (MW)	Mínima	Máxima	CMO (R\$/MWh)
	CAMPO MAIOR	13,0	0,0	13,0	503,3
	CAUCAIA	15,0	0,0	14,0	503,3
	CRATO	13,0	0,0	13,0	503,3
	ENGUIA PECEM	15,0	0,0	14,0	503,3
	IGUATU	15,0	0,0	14,0	503,3
	JAGUARARI	102,0	0,0	98,0	503,3
	JUAZEIRO N	15,0	0,0	14,0	503,3
	MARAMBAIA	13,0	0,0	13,0	503,3
	NAZARIA	13,0	0,0	13,0	503,3
	POTIGUAR III	66,0	0,0	54,0	635,9
	POTIGUAR	53,0	0,0	51,0	635,9
	PAU FERRO I	94,0	0,0	94,0	705,0
	TERMOMANAUS	142,0	0,0	142,0	705,0
	CAMACARI D/G	347,0	1,0	307,0	834,4
	FIC.DEFICIT 5%	385,0	0,0	385,0	944,5
	FIC.DEFICIT 5%	385,0	0,0	385,0	2.037,6
	FIC.DEFICIT 10%	769,0	0,0	769,0	4.258,0
	FIC.DEFICIT 80%	6.154,0	0,0	6.154,0	4.838,7
Norte	FIC.DEFICIT 5%	188	0	188	944,51
	FIC.DEFICIT 5%	188	0	188	2.037,61
	FIC.DEFICIT 10%	375	0	375	4.257,97
	FIC.DEFICIT 80%	3.003	0	3.003	4.838,69

Tabela 15 (continuação da página anterior)

APÊNDICE E Configuração do caso real

Neste apêndice são apresentadas algumas informações acerca da configuração do estudo de caso da Seção 4.3, como demanda de carga por subsistema, inflexibilidade de geração termelétrica e de pequenas centrais hidrelétricas (PCH) por subsistema, condições de contorno dos reservatórios de regulação, e vazão incremental afluente por usina. As informações completas de todos os estudos de caso apresentados neste trabalho estão disponíveis em arquivos de dados em formato digital¹.

E.1 Demanda de carga

A Tabela 16 apresenta os valores de demanda de carga considerados para cada subsistema e mês do horizonte de planejamento em questão.

	Carga (MW)									
	SE/CO	Sul	NE	Norte						
Setembro	32.739,7	8.113,8	7.692,0	3.734,9						
Outubro	32.776,2	8.157,1	7.867,0	3.734,3						
Novembro	32.385,3	8.306,0	7.889,0	3.719,9						

Tabela 16: Demanda de carga por subsistema.

¹Os arquivos de dados estão disponíveis no seguinte endereço eletrônico de protocolo de transferência de hipertexto: http://www.leonardomartins.com/files/tese.tar.gz.

		F								
	SE/CO Sul NE Nor 31.873,7 8.470,0 7.850,0 3.678 33.990,8 9.176,0 8.160,0 3.904 34.960,1 9.372,1 8.111,0 3.892 35.372,9 9.456,8 8.129,0 3.889 34.683,3 9.070,0 8.057,0 3.859									
	SE/CO	Sul	NE	Norte						
Dezembro	31.873,7	8.470,0	7.850,0	3.678,1						
Janeiro	33.990,8	9.176,0	8.160,0	3.904,2						
Fevereiro	34.960,1	9.372,1	8.111,0	3.892,5						
Março	35.372,9	9.456,8	8.129,0	3.889,1						
Abril	34.683,3	9.070,0	8.057,0	3.859,6						
Maio	34.039,6	8.825,6	7.927,0	3.927,7						
Junho	33.928,2	8.757,6	7.782,0	3.935,8						
Julho	34.007,6	8.719,1	7.801,0	3.903,8						
Agosto	34.521,5	8.530,6	7.892,0	3.941,7						

Tabela 16 (continuação da página anterior)

E.2 Inflexibilidade de geração

As tabelas 17 e 18 apresentam os valores de inflexibilidade de geração termelétrica e PCH, respectivamente. Esses valores são abatidos da demanda de carga de seus respectivos subsistemas.

	Geração	termelé	trica mín	nima (MW)
	SE/CO	Sul	NE	Norte
Setembro	1.793,4	841,6	322,6	0,0
Outubro	1.821,4	803,5	322,6	0,0
Novembro	1.979,5	631,8	322,6	0,0
Dezembro	2.217,5	772,0	322,6	0,0
Janeiro	2.186,1	682,0	388,5	0,0
Fevereiro	2.186,2	682,0	388,5	0,0
Março	2.186,1	650,9	388,5	0,0
Abril	2.193,7	654,0	388,5	0,0

Tabela 17: Geração termelétrica mínima por subsistema.

E.2 Inflexibilidade de geração

	Geração termelétrica mínima (MW)										
	SE/CO	Sul	NE	Norte							
Maio	2.214,1	654,0	388,5	0,0							
Junho	2.279,2	654,0	388,5	0,0							
Julho	2.279,2	654,0	572,5	0,0							
Agosto	2.279,2	654,0	572,5	0,0							

Tabela 17 (continuação da página anterior)

Tabela	18:	Geração	PCH	por	subsistema.
--------	-----	---------	-----	-----	-------------

	Ger	ração PO	CH (MW	V)
	SE/CO	Sul	NE	Norte
Setembro	1.541,0	620,0	160,0	27,0
Outubro	1.803,0	632,0	275,0	28,0
Novembro	1.881,0	616,0	338,0	32,0
Dezembro	1.654,0	533,0	357,0	35,0
Janeiro	1.911,0	506,0	292,0	40,0
Fevereiro	2.092,0	512,0	301,0	51,0
Março	1.959,0	493,0	255,0	50,0
Abril	1.881,0	537,0	242,0	47,0
Maio	2.463,0	599,0	253,0	36,0
Junho	2.535,0	651,0	257,0	32,0
Julho	2.484,0	701,0	300,0	32,0
Agosto	2.465,0	731,0	348,0	29,0

E.3 Condições de contorno

As condições de contorno inicial e final dos reservatórios de regulação considerados no estudo de caso da Seção 4.3 são apresentadas na Tabela 19.

		Volume	Armazenado (hm ³)
Subsistema	UHE	Inicial	Final
SE/CO	Serra da Mesa	29.358,3	40.009,7
	Três Marias	17.037,7	18.985,5
	Queimado	353,8	162,5
	Irapé	4.467,1	4.367,9
	Porto Estrela	89,0	98,8
	Paraibuna	3.843,7	4.090,7
	Santa Branca	192,3	322,5
	Jaguari	1.097,2	1.230,9
	Funil	612,7	881,6
	Emborcação	12.672,3	10.428,1
	Nova Ponte	11.629,4	12.575,8
	Miranda	1.077,1	974,4
	Corumbá IV	3.095,5	2.936,6
	Corumbá III	711,4	709,0
	Corumbá I	1.214,7	666,3
	Itumbiara	12.904,7	5.866,1
	São Simão	11.576,0	12.554,8
	Camargos	614,6	673,4
	Furnas	20.384,7	21.974,9
	Peixoto	3.502,5	1.540,0
	Graminha	429,5	64,5
	Marimbondo	4.319,5	1.494,2
	Água Vermelha	8.662,8	10.145,7
	Barra Bonita	2.670,6	582,6
	Promissão	6.705,8	6.316,2

Tabela 19: Condições de contorno por usina.

		Volume Arr	mazenado (hm ³)
Subsistema	UHE	Inicial	Final
	Ilha Solteira Equivalente	30.218,5	34.384,2
	Porto Primavera	14.400,0	19.978,6
	Jurumirim	6.232,6	6.733,0
	Chavantes	8.125,1	7.166,6
	Capivara	10.356,8	10.014,0
Sul	Foz do Areia	4.622,3	5.591,4
	Segredo	2.904,6	2.942,4
	Santa Clara	373,1	418,3
	Salto Santiago	4.920,0	6.774,9
	Manso	6.369,1	7.227,8
	Barra Grande	3.549,4	4.712,0
	Machadinho	2.469,0	3.339,1
	Passo Fundo	896,8	1.557,7
	Quebra Queixo	127,0	136,6
	Capivari/Cachoeira	105,1	142,8
	Passo Real	2.823,5	3.576,4
NE	Boa Esperança	4.564,9	4.918,1
	Sobradinho	19.093,4	27.381,0
	Itaparica	10.782,0	9.339,5
	Pedra do Cavalo	2.565,3	2.563,3
Norte	Tucuruí	34.526,3	50.067,3

Tabela 19 (continuação da página anterior)

E.4 Vazão incremental afluente

No estudo de caso da Seção 4.3 foram considerados valores de vazão afluente correspondentes ao período do histórico com início em setembro de 1954 e final em agosto do ano seguinte. A Tabela 20 lista os valores de vazão incremental afluente a cada usina ao longo do horizonte.

		Vazão Incremental Afluente (m ³ /s)											
Subsis.	UHE	Set.	Out.	Nov.	Dez.	Jan.	Fev.	Mar.	Abr.	Mai.	Jun.	Jul.	Ago.
SE/CO	Guaporé	39	39	48	42	59	45	65	44	43	39	39	38
	Serra da Mesa	122	98	251	1.214	1.126	1.168	833	1.014	324	271	191	157
	Cana Brava	126	102	260	1.275	1.185	1.253	889	1.083	339	283	198	163
	Peixe Angical	252	228	486	2.118	2.083	2.252	1.638	2.091	628	462	342	286
	Lajeado	317	285	630	2.539	2.651	3.057	2.338	2.796	948	582	425	339
	Três Marias	108	105	389	439	953	570	522	561	216	183	136	107
	Queimado	30	24	68	94	143	70	58	88	37	38	35	32
	Irapé	19	36	295	231	272	102	105	79	32	30	23	21
	Santa Clara	25	24	81	95	76	53	26	57	29	32	24	21
	Guilman Amorim	33	32	46	75	144	77	62	63	46	43	35	31
	Salto Grande	140	132	224	318	295	243	199	141	51	47	36	33
	Porto Estrela	142	136	231	331	304	251	206	142	52	47	36	33
	Aimorés	460	521	836	1.287	1.446	1.046	850	616	337	322	246	210
	Mascarenhas	527	590	939	1.456	1.691	1.223	994	727	403	385	296	255
	Paraibuna	32	40	34	43	78	48	50	53	40	34	28	27
	Santa Branca	37	50	41	50	90	55	62	64	49	41	34	34
	Jaguari	11	16	11	20	33	23	30	22	17	15	12	13
	Funil	75	105	108	139	309	177	223	180	129	107	81	66
	Ilha dos Pombos	181	233	271	355	803	433	452	427	298	259	194	167
	Emborcação	90	73	380	531	683	634	484	677	280	217	162	116

T 1 1	0.0	/ ·	~ 1	<i>,</i> .	. • \
Labe	la 20	(continua	cao da	pagina	anterior)
		(3	P "D	

					1	Vazão In	crement	al Afluer	te (m^3/s)	;)			
Subsis.	UHE	Set.	Out.	Nov.	Dez.	Jan.	Fev.	Mar.	Abr.	Mai.	Jun.	Jul.	Ago.
	Nova Ponte	70	67	147	153	330	223	285	279	157	123	97	76
	Miranda	80	77	168	174	379	248	333	322	182	142	112	88
	Capim Branco I	82	79	171	177	386	250	340	328	186	145	115	89
	Capim Branco II	85	82	176	182	401	255	356	343	194	151	120	93
	Corumbá IV	24	23	61	170	221	164	120	146	84	60	38	29
	Corumbá III	30	29	76	212	274	204	149	182	104	74	47	35
	Corumbá I	81	80	208	581	752	560	408	500	286	204	129	97
	Itumbiara	284	261	864	1.521	2.111	1.684	1.396	1.724	862	646	459	342
	Cachoeira Dourada	297	273	897	1.599	2.188	1.765	1.470	1.802	905	678	482	358
	São Simão	482	450	1.214	2.175	2.904	2.354	1.941	2.409	1.246	974	751	583
	Camargos	39	54	93	115	241	127	108	92	68	61	52	54
	Itutinga	39	54	93	115	241	127	108	92	68	61	52	54
	Funil Grande	80	108	183	242	413	256	245	202	139	124	92	78
	Furnas	222	299	420	593	1.186	722	913	665	417	380	280	232
	Peixoto	250	338	474	665	1.325	827	1.040	758	472	434	319	263
	Estreito	256	345	484	678	1.349	852	1.064	777	483	446	327	270
	Jaguara	258	347	489	682	1.357	865	1.074	785	488	451	330	272
	Igarapava	265	355	501	697	1.383	899	1.103	808	501	465	340	280
	Volta Grande	280	373	529	732	1.448	966	1.165	857	530	494	360	297
	Porto Colômbia	317	419	598	822	1.621	1.110	1.315	967	606	556	411	336
	Graminha	13	15	12	36	63	36	61	57	30	26	19	17

		Vazão Incremental Afluente (m ³ /s)												
Subsis.	UHE	Set.	Out.	Nov.	Dez.	Jan.	Fev.	Mar.	Abr.	Mai.	Jun.	Jul.	Ago.	
	Euclides da Cunha	25	28	24	68	111	60	104	97	50	44	33	30	
	Limoeiro	26	29	24	70	112	61	106	99	51	45	34	31	
	Marimbondo	480	536	642	969	1.893	1.218	1.622	1.357	795	729	565	492	
	Água Vermelha	557	616	736	1.102	2.148	1.468	1.851	1.583	928	850	657	570	
	Barra Bonita	120	175	137	192	501	235	309	223	158	156	147	144	
	Bariri	134	193	156	213	558	261	347	249	177	175	164	156	
	Ibitinga	179	239	214	285	637	312	419	299	222	229	214	200	
	Promissão	198	258	255	313	742	347	512	372	241	262	247	225	
	Nova Avanhandava	203	257	258	312	760	355	526	375	242	264	251	227	
	Ilha Solteira Eq.	1.681	1.760	2.624	4.086	6.543	4.813	4.992	4.998	2.944	2.533	2.053	1.776	
	Jupiá	1.842	1.906	2.714	4.176	6.628	4.902	5.130	5.118	3.104	2.684	2.175	1.916	
	Porto Primavera	2.156	2.298	2.970	4.374	6.865	5.143	5.513	5.539	3.462	3.707	2.933	2.390	
	Jurumirim	108	148	91	90	187	120	207	180	127	127	141	118	
	Pirajú	111	151	95	92	192	122	213	185	130	130	145	120	
	Chavantes	191	255	166	163	285	186	320	293	214	228	253	207	
	Ourinhos	193	258	169	165	288	188	324	297	217	231	257	209	
	Salto Grande	266	327	230	241	372	251	412	393	279	313	323	274	
	Canoas II	271	332	236	247	378	255	418	401	284	319	328	278	
	Canoas I	283	343	247	260	392	265	433	417	294	332	339	287	
	Capivara	591	786	561	459	637	441	748	720	584	1.116	1.390	781	
	Taquaruçu	618	825	597	477	659	457	771	751	610	1.178	1.494	809	

Apêndice E Configuração do caso real

		Vazão Incremental Afluente (m ³ /s)													
Subsis.	UHE	Set.	Out.	Nov.	Dez.	Jan.	Fev.	Mar.	Abr.	Mai.	Jun.	Jul.	Ago.		
	Rosana	702	945	694	532	727	505	852	841	689	1.380	1.801	918		
	Itaipu	3.309	3.838	3.939	5.075	7.792	5.910	6.927	7.006	4.641	7.034	6.028	4.151		
	Jauru	74	74	84	76	104	81	112	92	80	73	70	67		
	Itiquira I	41	39	40	45	67	91	92	108	57	43	40	39		
	Itiquira II	41	39	40	45	67	91	92	108	57	43	40	39		
	Ponte de Pedra	66	64	62	65	74	72	81	85	78	71	66	61		
Sul	Foz do Areia	578	1.181	464	277	242	220	359	551	885	1.741	2.105	795		
	Segredo	765	1.381	535	335	299	261	405	640	1.010	2.000	2.291	895		
	Santa Clara	97	178	96	61	45	36	42	59	163	407	311	141		
	Salto Santiago	966	1.742	752	482	414	325	487	761	1.319	2.880	2.979	1.277		
	Salto Osório	981	1.819	816	506	437	336	493	784	1.372	3.040	3.128	1.344		
	Salto Caxias	1.435	2.449	1.088	818	630	435	614	1.039	1.745	3.934	3.833	1.749		
	Manso	84	88	156	129	371	244	320	351	136	109	93	84		
	Barra Grande	1.349	1.353	77	118	53	67	22	469	501	498	826	291		
	Campos Novos	811	1.041	332	112	94	147	149	288	377	378	823	317		
	Machadinho	2.575	3.082	546	273	190	232	177	938	990	1.064	2.092	745		
	Itá	3.880	4.519	720	486	312	359	281	1.269	1.470	1.726	3.043	1.039		
	Passo Fundo	211	260	50	53	19	21	16	53	77	102	114	58		
	Quebra Queixo	292	329	51	43	23	25	20	98	165	163	147	78		
	Capivari/Cachoeira	14	19	10	10	13	13	13	14	10	24	23	12		
	Passo Real	729	791	252	169	154	110	88	154	347	409	323	206		

_

		Vazão Incremental Afluente (m ³ /s)											
Subsis.	UHE	Set.	Out.	Nov.	Dez.	Jan.	Fev.	Mar.	Abr.	Mai.	Jun.	Jul.	Ago.
	Jacuí	736	799	255	171	155	111	89	155	351	413	326	208
	Itaúba	816	910	275	189	184	142	120	228	445	542	397	261
	Dona Francisca	898	1.022	295	207	213	173	152	302	541	673	468	314
	Monte Claro	1.189	557	82	54	21	77	65	476	528	274	466	353
NE	Boa Esperança	208	187	270	424	369	497	343	426	250	265	241	225
	Sobradinho	715	645	880	3.544	2.310	4.051	2.165	2.616	1.437	1.072	900	788
	Itaparica	728	652	815	3.412	2.533	4.180	2.272	2.662	1.576	1.087	916	802
	Comp PAF-MOX	733	654	797	3.316	2.608	4.157	2.313	2.624	1.633	1.093	922	806
	Xingó	733	654	797	3.316	2.608	4.157	2.313	2.624	1.633	1.093	922	806
	Pedra do Cavalo	28	13	58	556	191	200	45	54	26	17	58	39
	Itapebi	70	98	686	490	622	299	232	193	105	93	74	64
Norte	Tucuruí	1.464	1.269	1.999	8.249	8.339	14.264	12.922	13.512	9.827	5.046	3.023	2.103

APÊNDICE F Resultados do caso real

As soluções MPI-F e GRFR-HCBI para o estudo de caso da Seção 4.3 são apresentadas neste apêndice. Resultados de operação hidráulica e de geração hidrelétrica como sua conseqüência direta, bem como de intercâmbio entre subsistemas, estão listados na seções a seguir para as duas soluções. Os resultados completos de todos os estudos de caso apresentados neste trabalho estão disponíveis em arquivos de dados em formato digital¹.

F.1 Geração hidrelétrica

Os valores de geração hidrelétrica como uma função das variáveis de operação hidráulica estão listados na Tabela 21 para cada usina e mês do horizonte de planejamento, como obtidos pelas soluções MPI-F e GRFR-HCBI².

¹Os arquivos de dados estão disponíveis no seguinte endereço eletrônico de protocolo de transferência de hipertexto: http://www.leonardomartins.com/files/tese.tar.gz

²Os valores obtidos pela solução GRFR-HCBI são apresentados em *itálico* na linha inferior dos resultados correspondentes a cada usina.

		Geração Hidrelétrica Média (MW)											
Subsis.	UHE	Set.	Out.	Nov.	Dez.	Jan.	Fev.	Mar.	Abr.	Mai.	Jun.	Jul.	Ago.
SE/CO	Guaporé	55	55	68	59	83	64	91	62	61	55	55	54
		55	55	68	59	83	64	91	62	61	55	55	54
	Serra da Mesa	771	438	91	93	95	97	99	100	101	102	194	449
		293	428	149	94	96	198	175	101	104	338	384	328
	Cana Brava	327	193	45	67	66	77	65	70	48	46	81	180
		129	187	70	67	66	117	95	70	49	139	155	134
	Peixe Angical	66	60	126	506	506	504	409	506	162	120	89	75
		66	60	126	506	506	504	409	506	162	120	89	75
	Lajeado	350	231	170	482	544	652	538	620	254	147	151	217
		179	226	191	482	544	682	560	621	255	225	214	178
	Três Marias	311	198	97	26	104	150	193	168	105	97	95	115
		138	253	200	81	98	111	190	237	104	53	135	51
	Queimado	92	74	96	113	116	117	117	118	78	117	114	112
		69	66	113	114	116	118	96	118	113	96	106	105
	Irapé	110	70	74	65	149	184	217	169	176	210	234	283
		178	138	124	122	167	167	104	203	253	119	113	222
	Santa Clara	12	11	37	44	35	24	12	26	13	15	11	10
		12	11	37	44	35	24	12	26	13	15	11	10
	Guilman Amorim	34	33	47	77	139	79	64	65	47	44	36	32
		34	33	47	77	139	79	64	65	47	44	36	32
										(contin	iua na pi	róxima j	página)

		Geração Hidrelétrica Média (MW)											
Subsis.	UHE	Set.	Out.	Nov.	Dez.	Jan.	Fev.	Mar.	Abr.	Mai.	Jun.	Jul.	Ago.
	Salto Grande	130	130	129	129	129	129	130	130	51	47	36	33
		130	130	129	129	129	129	130	130	51	47	36	33
	Porto Estrela	64	65	110	118	118	118	98	68	25	22	17	16
		64	65	109	118	118	118	98	68	25	22	17	16
	Aimorés	122	139	217	326	344	268	221	163	91	87	67	57
		122	139	217	326	344	268	221	163	91	87	67	57
	Mascarenhas	103	114	170	164	158	170	176	137	81	78	61	53
		103	114	170	164	158	170	176	137	81	78	61	53
	Paraibuna	88	40	16	16	16	16	17	17	17	17	17	17
		33	43	23	19	20	27	25	23	20	22	23	20
	Santa Branca	15	24	16	10	10	12	14	13	12	12	13	25
		13	19	10	11	8	13	12	9	10	14	15	15
	Jaguari	34	17	4	4	4	4	4	4	4	4	4	6
		9	16	9	9	9	10	9	4	4	5	6	5
	Funil	33	61	61	66	121	79	101	79	60	52	45	58
		43	58	34	67	118	94	113	70	69	39	53	41
	Ilha dos Pombos	50	69	78	95	196	113	115	110	79	71	56	59
		56	70	66	96	195	119	122	106	85	65	60	51
	Emborcação	1099	958	433	211	343	486	489	468	375	193	76	76
		182	368	182	1104	1065	198	299	371	160	150	219	1106
	Nova Ponte	615	516	54	55	55	56	57	57	58	58	58	58

Tabela 21 (continuação da página anterior)
		Geração Hidrelétrica Média (MW) Set. Out. Nov. Dez. Ian. Fev. Mar. Abr. Mai. Jun. Jul. Ago.											
Subsis.	UHE	Set.	Out.	Nov.	Dez.	Jan.	Fev.	Mar.	Abr.	Mai.	Jun.	Jul.	Ago.
		168	249	96	160	185	201	205	123	92	94	112	81
	Miranda	365	327	73	39	43	51	65	61	65	56	41	39
		104	152	59	107	140	134	150	98	81	84	70	52
	Capim Branco I	41	40	86	89	190	124	168	162	93	73	58	45
		41	40	86	89	190	124	168	162	93	73	58	45
	Capim Branco II	35	34	71	74	160	103	143	137	79	61	49	38
		35	34	71	74	160	103	143	137	79	61	49	38
	Corumbá IV	51	14	36	100	74	105	123	86	50	36	23	17
		19	16	16	61	99	124	89	44	125	85	41	20
	Corumbá III	32	10	26	67	33	79	87	67	58	41	16	12
		13	12	14	47	47	81	64	39	89	80	27	14
	Corumbá I	130	78	88	292	390	390	342	344	240	196	180	137
		58	68	56	377	349	390	301	291	297	253	210	152
	Itumbiara	1417	1293	849	506	498	653	752	676	918	912	965	1022
		463	572	285	1493	979	1125	475	838	958	984	990	1095
	Cachoeira Dourada	531	493	344	226	218	271	301	272	349	353	387	444
		184	227	122	581	392	442	204	335	375	397	421	493
	São Simão	1375	1541	1200	1047	1125	1184	1187	1199	1232	1211	1293	1435
		596	787	1467	838	1616	1689	1161	1083	1308	1350	1397	1560
	Camargos	20	13	11	11	39	29	24	21	15	14	12	22
		8	9	8	28	49	31	29	15	17	13	8	20

	Geração Hidrelétrica Média (MW)												
Subsis.	UHE	Set.	Out.	Nov.	Dez.	Jan.	Fev.	Mar.	Abr.	Mai.	Jun.	Jul.	Ago.
	Itutinga	26	19	16	14	45	32	27	23	17	16	13	25
		10	11	9	31	56	34	33	18	20	16	10	24
	Funil Grande	50	44	53	63	122	89	85	70	48	43	32	42
		28	34	44	87	138	92	93	62	51	43	27	41
	Furnas	985	798	768	589	156	159	162	164	165	166	166	166
		412	418	221	212	220	593	915	418	347	277	315	275
	Peixoto	388	398	396	320	197	180	155	95	133	128	110	67
		307	202	101	112	101	116	436	228	301	265	157	106
	Estreito	603	603	601	488	314	302	273	173	239	244	223	141
		515	363	187	209	191	201	678	352	479	479	317	222
	Jaguara	442	442	442	360	235	229	206	132	179	183	166	106
		379	269	141	156	145	155	440	263	354	354	235	165
	Igarapava	164	164	164	135	91	89	80	52	68	70	63	40
		140	100	54	60	57	62	188	100	132	132	88	62
	Volta Grande	275	276	280	232	166	164	148	98	119	122	109	70
		236	170	96	108	111	119	327	178	226	226	151	107
	Porto Colômbia	203	206	212	181	149	142	131	89	98	97	86	56
		175	129	80	92	109	110	261	146	174	172	116	82
	Graminha	67	38	19	12	21	28	33	31	43	40	33	24
		37	14	17	21	25	31	32	37	67	48	43	39
	Euclides da Cunha	71	48	29	36	55	45	63	58	55	52	44	36

		Geração Hidrelétrica Média (MW) Sat Out Nav Daz Jan Fay Mar Ahr Mai Jun Jul Aga											
Subsis.	UHE	Set.	Out.	Nov.	Dez.	Jan.	Fev.	Mar.	Abr.	Mai.	Jun.	Jul.	Ago.
		43	22	24	43	57	45	59	61	74	58	52	51
	Limoeiro	21	14	9	11	17	14	19	18	16	16	13	11
		13	7	7	13	17	14	18	19	22	17	16	16
	Marimbondo	519	606	574	575	569	483	546	465	425	502	647	608
		487	458	290	233	309	397	821	662	695	691	644	717
	Água Vermelha	575	601	481	406	517	605	657	575	487	562	724	916
		443	547	359	325	292	391	654	801	718	771	727	1024
	Barra Bonita	103	53	23	12	23	29	37	36	42	43	46	41
		22	27	19	23	101	54	69	35	41	31	110	70
	Bariri	121	82	45	25	43	41	50	45	52	57	65	69
		25	30	23	26	107	57	74	39	44	34	123	106
	Ibitinga	136	96	60	42	62	54	68	59	64	71	80	82
		37	42	37	43	128	71	93	52	56	48	139	120
	Promissão	208	136	62	43	75	57	53	30	59	34	78	149
		52	47	39	38	122	104	107	95	45	56	149	217
	Nova Avanhandava	288	201	97	67	120	90	84	45	83	48	105	201
		72	65	55	52	166	139	144	125	60	74	193	286
	Ilha Solteira Equivalente	1406	1628	1393	1226	1415	1521	1570	1442	1404	1368	1599	1985
		1433	1020	1333	1136	1113	1417	1393	1203	1560	1657	1795	2252
	Jupiá	771	856	732	654	741	789	821	758	748	729	831	1007
		810	609	760	665	645	781	767	656	821	863	920	1122

F.1
Geração
hidrelétrica

TT 1 1 01	· ·	~ 1		• •
Tabela 21 (continu	acao di	a naoina	anterior)
1 abcia 21	continu	açao u	i pagina	ancentory

	Geração Hidrelétrica Média (MW)												
Subsis.	UHE	Set.	Out.	Nov.	Dez.	Jan.	Fev.	Mar.	Abr.	Mai.	Jun.	Jul.	Ago.
	Porto Primavera	528	702	747	662	752	798	854	801	780	881	929	1048
		662	567	550	712	605	721	762	725	803	1006	1013	1155
	Jurumirim	97	93	74	22	15	16	16	16	17	17	17	17
		25	36	32	29	30	23	33	55	55	29	67	41
	Pirajú	77	77	64	20	14	14	15	14	14	14	14	14
		21	29	26	23	24	18	26	42	41	22	51	31
	Chavantes	269	266	270	257	198	159	115	44	44	45	45	117
		83	119	59	82	156	120	103	187	172	272	245	279
	Ourinhos	40	40	41	39	32	26	20	8	8	8	8	19
		13	19	10	13	24	19	16	29	26	40	37	42
	Salto Grande	76	75	74	74	63	51	44	27	22	25	23	40
		32	40	24	32	50	39	39	59	51	77	70	78
	Canoas II	62	62	62	62	52	42	37	23	18	21	19	33
		27	33	21	27	42	32	33	50	42	62	58	62
	Canoas I	76	74	74	75	64	51	45	30	23	27	24	40
		33	41	26	33	51	40	40	61	51	75	70	75
	Capivara	424	383	301	228	223	241	245	199	262	287	488	387
		211	311	168	209	274	276	168	222	309	433	594	479
	Taquaruçu	238	220	175	129	126	134	138	115	149	170	283	216
		120	177	99	118	155	157	99	129	175	250	341	265
	Rosana	212	204	165	121	120	123	132	115	141	178	281	199

	Geração Hidrelétrica Média (MW) is UHF Set Out Nov Dez Jan Fey Mar Abr Mai Jun Jul Ago												
Subsis.	UHE	Set.	Out.	Nov.	Dez.	Jan.	Fev.	Mar.	Abr.	Mai.	Jun.	Jul.	Ago.
		119	170	104	111	144	142	101	127	162	240	323	237
	Itaipu	4894	5815	5383	4510	5062	5420	6113	5768	5658	7967	8238	7967
		5254	5020	4045	4876	4483	5179	5437	5431	5952	9077	9015	8854
	Jauru	68	68	77	70	96	75	103	85	74	67	65	62
		68	68	77	70	96	75	103	85	74	67	65	62
	Itiquira I	31	30	31	34	51	61	61	61	44	33	31	30
		31	30	31	34	51	61	61	61	44	33	31	30
	Itiquira II	48	45	47	52	78	95	95	95	66	50	47	45
		48	45	47	52	78	95	95	95	66	50	47	45
	Ponte de Pedra	145	141	136	143	163	158	178	178	171	156	145	134
		145	141	136	143	163	158	178	178	171	156	145	134
Sul	Foz do Areia	649	771	628	823	779	634	417	478	763	1113	1434	1065
		159	1031	876	316	595	462	597	571	250	1664	1674	1065
	Segredo	812	796	600	775	796	716	668	635	1000	1283	1310	1000
		315	928	820	335	617	431	751	599	373	1280	1301	1000
	Santa Clara	68	73	82	60	73	59	35	42	109	123	133	125
		63	95	97	69	37	51	40	58	100	125	133	125
	Salto Santiago	669	555	759	861	883	1088	1262	966	961	894	1361	1278
		105	921	1000	960	857	561	656	324	1267	992	1430	1278
	Salto Osório	437	372	544	586	600	742	920	798	857	792	1023	885
		85	654	703	675	641	433	506	255	1011	844	1075	885

		Geração Hidrelétrica Média (MW)											
Subsis.	UHE	Set.	Out.	Nov.	Dez.	Jan.	Fev.	Mar.	Abr.	Mai.	Jun.	Jul.	Ago.
	Salto Caxias	629	664	672	735	678	760	945	905	1031	1236	1234	1077
		349	876	824	821	717	464	546	389	1180	1235	1222	1077
	Manso	23	23	33	67	142	196	206	182	23	24	24	24
		23	16	23	71	125	146	184	135	105	24	50	67
	Barra Grande	659	699	287	490	434	417	27	563	601	538	24	566
		717	533	300	359	562	407	27	486	293	224	743	566
	Campos Novos	639	636	544	185	156	243	246	473	617	618	673	520
		674	475	544	185	156	243	246	473	617	618	673	520
	Machadinho	1089	1146	628	476	438	473	468	801	797	762	862	792
		1149	844	637	387	525	469	231	748	962	429	1181	792
	Itá	1389	1375	783	670	548	587	590	1216	1355	1463	1455	1054
		1431	995	792	582	634	583	329	1054	1456	1079	1438	1054
	Passo Fundo	179	174	236	235	234	232	230	117	4	4	5	5
		5	167	131	129	35	51	34	184	161	190	234	158
	Quebra Queixo	91	92	55	46	25	27	26	107	119	121	121	83
		120	86	55	46	25	27	21	113	119	121	121	83
	Capivari/Cachoeira	46	46	89	176	137	151	158	61	45	45	46	46
		46	32	46	60	71	89	104	66	65	196	99	167
	Passo Real	125	131	110	120	119	122	113	81	80	43	4	101
		170	121	126	124	104	115	73	41	45	66	140	101
	Jacuí	159	158	193	193	193	193	193	193	193	96	10	193

		Geração Hidrelétrica Média (MW) IHF Set. Out. Nov. Dez. Ian, Fey. Mar. Abr. Mai, Iun, Iul. Ago.											
Subsis.	UHE	Set.	Out.	Nov.	Dez.	Jan.	Fev.	Mar.	Abr.	Mai.	Jun.	Jul.	Ago.
		192	134	193	193	193	193	160	91	97	131	192	193
	Itaúba	452	445	226	244	259	279	278	251	268	201	69	235
		405	350	256	256	230	265	184	150	173	235	324	235
	Dona Francisca	94	93	101	108	117	126	126	127	127	127	53	115
		125	86	113	112	106	121	88	88	104	127	126	115
	Monte Claro	90	88	28	19	7	27	23	125	124	93	125	120
		117	88	28	19	7	27	23	125	124	93	125	120
NE	Boa Esperança	65	66	69	148	145	194	135	167	99	105	96	113
		77	76	91	132	133	172	173	130	105	100	100	101
	Sobradinho	327	333	320	357	306	354	386	416	381	385	369	248
		439	463	334	290	324	247	212	177	302	398	415	431
	Itaparica	660	678	634	671	700	730	755	770	740	694	671	682
		941	1043	989	811	700	398	433	341	216	591	580	995
	Comp PAF-MOX	1464	1500	1382	1386	1624	1591	1709	1663	1694	1540	1488	1538
		2088	2315	2220	1828	1790	941	1086	791	569	1354	1305	2244
	Xingó	1574	1613	1489	1492	1743	1707	1832	1784	1815	1655	1600	1652
		2227	2462	2364	1956	1916	1021	1174	860	621	1458	1407	2389
	Pedra do Cavalo	63	62	91	159	163	163	41	49	24	20	48	36
		71	6	142	159	163	163	114	60	3	3	5	30
	Itapebi	93	81	320	220	324	230	195	163	137	148	152	174
		128	117	346	249	334	223	143	181	177	105	93	144

		Geração Hidrelétrica Média (MW)											
Subsis.	UHE	Set.	Out.	Nov.	Dez.	Jan.	Fev.	Mar.	Abr.	Mai.	Jun.	Jul.	Ago.
Norte	Tucuruí	1286	1455	1470	3089	5137	5219	5464	5595	5763	3027	1904	1556
		1010	1200	1092	938	3976	7786	7409	7226	7506	1173	2074	1173

F.2 Variáveis hidráulicas

Os valores obtidos pelas soluções MPI-F e GRFR-HCBI³ para as variáveis de volume armazenado, e vazões turbinada e vertida, para cada usina e mês do horizonte de planejamento, são apresentados, respectivamente, nas tabelas 22, 23 e 24.

³Os valores obtidos pela solução GRFR-HCBI são apresentados em *itálico* na linha inferior dos resultados correspondentes a cada usina.

Tabala 22.	Doultadoa	do realizero o	annaranda	
Tabela 22:	Resultados	de volume	armazemado	por usina.

		Volume Armazenado ao Final do Mês (% do útil) Set Out Nov Dez Ian Fey, Mar, Abr, Mai, Iun, Iul, Ago,											
Subsis.	UHE	Set.	Out.	Nov.	Dez.	Jan.	Fev.	Mar.	Abr.	Mai.	Jun.	Jul.	Ago.
SE/CO	Serra da Mesa	38	36	37	44	50	56	60	66	67	68	68	67
		41	39	39	46	53	58	62	68	69	69	68	67
	Três Marias	74	68	71	77	90	94	96	100	100	100	99	96
		80	72	71	76	89	94	97	98	98	99	96	96
	Queimado	48	32	36	51	100	99	89	100	93	70	45	17
		58	45	43	58	100	99	99	100	78	64	42	17
	Irapé	56	55	72	85	98	97	95	93	87	79	69	57
		52	48	62	73	85	85	87	83	74	70	66	57
	Porto Estrela	100	100	100	100	100	100	100	100	100	100	100	99
		97	95	99	100	100	100	99	100	100	99	99	99
	Paraibuna	57	55	56	58	64	66	69	72	74	75	75	76
		65	63	63	65	70	71	72	74	76	76	76	76
	Santa Branca	94	100	90	93	100	100	100	100	100	100	96	62
		23	30	35	32	43	45	54	68	76	75	70	62
	Jaguari	65	59	60	64	73	78	86	91	94	97	98	99
		81	77	74	76	81	83	87	92	96	97	98	99
	Funil	87	100	100	96	100	100	100	100	100	100	100	99
		58	68	88	90	100	99	93	96	85	99	99	99
	Emborcação	42	24	22	29	35	38	38	43	41	41	43	44
		60	54	59	48	41	49	53	60	62	64	63	44

				Vol	ume Ai	rmazer	ado ao	Final c	lo Mês	(% do í	itil)		
Subsis.	UHE	Set.	Out.	Nov.	Dez.	Jan.	Fev.	Mar.	Abr.	Mai.	Jun.	Jul.	Ago.
	Nova Ponte	76	64	66	69	76	80	86	92	94	96	97	98
		87	82	84	84	88	89	91	95	97	<i>98</i>	<i>98</i>	98
	Miranda	100	100	20	39	98	93	89	87	38	2	0	0
		69	70	99	100	100	99	99	100	61	2	2	0
	Corumbá IV	0	0	0	0	38	34	0	0	0	0	0	0
		20	19	32	60	84	71	61	90	44	14	2	0
	Corumbá III	0	0	0	13	100	100	100	100	43	0	0	0
		1	0	0	2	83	99	99	100	76	2	2	0
	Corumbá I	59	48	66	100	100	100	100	100	100	91	54	19
		74	69	93	77	100	100	99	100	100	99	59	19
	Itumbiara	62	56	47	51	63	71	75	82	74	60	38	10
		62	60	61	56	70	62	71	70	57	41	21	10
	São Simão	100	100	100	100	100	100	100	100	100	100	100	99
		84	82	17	100	100	99	81	100	100	99	99	99
	Camargos	49	41	52	76	100	100	100	100	100	100	100	82
		73	77	99	95	100	97	87	96	92	92	<i>98</i>	82
	Furnas	71	60	50	46	61	68	79	86	89	92	93	94
		81	77	78	84	98	98	95	97	97	97	95	94
	Peixoto	100	100	100	100	80	61	47	48	32	16	1	0
		41	33	34	32	43	92	99	100	61	15	2	0
	Graminha	37	17	9	19	38	37	46	55	42	28	13	3

				Vol	ume A	rmazer	nado ac	Final of	do Mês	(% do 1	útil)		
Subsis.	UHE	Set.	Out.	Nov.	Dez.	Jan.	Fev.	Mar.	Abr.	Mai.	Jun.	Jul.	Ago.
		58	57	52	57	74	73	85	92	64	45	24	3
	Marimbondo	82	89	97	100	100	100	100	100	98	88	56	11
		75	72	68	78	91	90	99	96	91	83	60	11
	Água Vermelha	51	51	62	83	100	100	100	100	100	100	100	83
		62	55	52	48	61	71	99	96	100	99	99	83
	Barra Bonita	32	8	0	9	44	49	59	60	51	39	21	1
		82	86	90	98	98	95	91	96	92	92	42	1
	Promissão	27	0	0	0	1	0	19	44	50	76	84	49
		61	61	65	72	95	85	93	80	90	92	99	49
	Ilha Solteira Eq.	82	97	95	94	100	100	100	100	100	100	100	99
		14	18	16	0	35	51	66	97	100	99	99	99
	Porto Primavera	41	100	100	100	100	100	100	100	100	100	100	99
		0	12	76	55	66	83	94	85	100	99	99	99
	Jurumirim	57	42	27	27	39	44	56	67	73	79	86	91
		77	80	79	79	86	90	99	99	95	<i>98</i>	92	91
	Chavantes	77	79	72	49	34	23	21	29	35	42	50	46
		81	85	92	96	92	88	93	93	93	73	67	46
	Capivara	86	85	87	94	100	97	98	98	89	100	100	91
		97	95	98	94	89	78	86	93	87	97	99	91
Sul	Foz do Areia	66	100	97	68	35	8	0	0	0	40	100	95
		100	100	83	84	65	53	39	40	86	100	100	95

				Vol	ume Ai	mazen	ado ao	Final o	do Mês	(% do í	itil)		
Subsis.	UHE	Set.	Out.	Nov.	Dez.	Jan.	Fev.	Mar.	Abr.	Mai.	Jun.	Jul.	Ago.
	Segredo	58	100	100	100	100	100	0	0	0	100	100	100
		100	100	100	99	76	98	0	21	0	100	100	100
	Santa Clara	51	100	100	91	46	7	0	0	0	100	100	95
		100	100	82	58	57	31	20	0	27	100	100	95
	Salto Santiago	70	100	100	100	100	78	31	0	0	59	100	100
		78	100	98	62	44	35	37	60	1	80	100	100
	Manso	71	75	83	83	92	82	74	74	83	88	93	96
		71	75	85	84	96	94	91	100	94	100	100	96
	Barra Grande	66	100	87	60	28	0	0	0	0	6	100	89
		100	100	85	70	27	0	0	8	39	77	100	89
	Machadinho	79	100	100	100	100	100	11	0	0	20	100	100
		100	100	100	100	100	99	82	97	0	56	100	100
	Passo Fundo	70	100	90	80	64	50	33	33	47	66	87	98
		89	100	99	98	99	98	99	93	95	98	100	<i>98</i>
	Quebra Queixo	51	100	100	100	100	100	53	0	100	100	100	100
		100	100	100	100	100	99	99	0	100	100	100	100
	Capivari/Cachoeira	64	85	79	50	36	20	0	7	13	41	68	77
		64	85	90	91	95	94	89	96	96	86	100	77
	Passo Real	82	100	100	91	81	66	49	43	52	75	100	98
		100	100	97	87	80	66	58	62	80	100	100	98
NE	Boa Esperança	78	81	93	100	100	100	100	100	100	100	100	91

				Vol	ume Ai	mazer	nado ao	Final o	do Mês	(% do i	útil)		
Subsis.	UHE	Set.	Out.	Nov.	Dez.	Jan.	Fev.	Mar.	Abr.	Mai.	Jun.	Jul.	Ago.
		74	73	77	89	93	100	85	98	96	97	96	91
	Sobradinho	47	43	36	50	52	72	77	84	84	81	76	77
		38	28	21	39	39	62	73	90	94	89	85	77
	Itaparica	100	100	100	100	100	100	100	100	100	100	100	59
		97	95	50	0	0	15	8	0	57	72	97	59
	Pedra do Cavalo	72	31	0	100	100	100	100	100	100	97	100	99
		65	70	0	100	100	100	42	33	49	58	95	99
Norte	Tucuruí	59	53	48	58	42	63	80	100	100	100	100	99
		59	56	56	94	100	100	98	100	76	97	97	99

						Engo	olimento	Médio ((m^3/s)				
Subsis.	UHE	Set.	Out.	Nov.	Dez.	Jan.	Fev.	Mar.	Abr.	Mai.	Jun.	Jul.	Ago.
SE/CO	Guaporé	39	39	48	42	59	45	65	44	43	39	39	38
		39	39	48	42	59	45	65	44	43	39	39	38
	Serra da Mesa	813	466	97	97	97	97	97	97	97	97	185	430
		306	450	156	97	97	196	171	97	99	323	367	315
	Cana Brava	817	470	107	158	156	182	153	165	112	109	192	436
		310	454	165	158	156	281	227	166	114	335	374	321
	Peixe Angical	252	229	486	2058	2058	2058	1639	2058	628	462	342	286
		252	228	486	2058	2058	2058	1638	2058	628	462	342	286
	Lajeado	1008	656	477	1421	1622	1984	1605	1875	721	408	419	612
		501	637	535	1422	1622	2085	1676	1879	723	634	601	497
	Três Marias	687	446	219	58	224	316	402	347	216	198	194	237
		298	561	450	180	212	232	397	493	215	108	280	106
	Queimado	58	47	62	72	72	72	72	72	47	72	72	72
		43	42	72	72	72	72	58	72	69	59	67	68
	Irapé	76	48	50	43	96	118	140	109	114	138	157	194
		123	97	86	82	110	109	68	133	168	80	76	152
	Santa Clara	25	24	81	95	76	53	26	57	29	32	24	21
		25	24	81	95	76	53	26	57	29	32	24	21
	Guilman Amorim	33	32	46	75	136	77	62	63	46	43	35	31
		33	32	46	75	136	77	62	63	46	43	35	31

(continua na próxima página)

						Engo	olimento	Médio (m ³ /s)				
Subsis.	UHE	Set.	Out.	Nov.	Dez.	Jan.	Fev.	Mar.	Abr.	Mai.	Jun.	Jul.	Ago.
	Salto Grande	132	132	132	132	132	132	132	132	51	47	36	33
		132	132	132	132	132	132	132	132	51	47	36	33
	Porto Estrela	138	136	231	248	248	248	206	142	52	47	36	33
		139	136	230	248	248	248	206	142	52	47	36	33
	Aimorés	456	521	836	1287	1368	1046	850	616	337	322	246	210
		457	521	835	1287	1368	1046	850	616	337	322	246	210
	Mascarenhas	523	590	939	981	981	981	981	727	403	385	296	255
		524	590	938	981	981	981	981	727	403	385	296	255
	Paraibuna	126	58	23	23	23	23	23	23	23	23	23	23
		46	61	32	26	27	37	34	32	28	30	32	27
	Santa Branca	43	62	41	27	27	30	35	34	32	30	34	69
		47	64	33	36	27	42	36	27	27	39	43	43
	Jaguari	66	34	7	7	7	7	7	7	7	7	7	10
		16	29	17	16	17	18	17	7	7	9	11	9
	Funil	60	106	104	113	210	136	173	135	102	88	76	99
		83	109	61	117	207	161	196	121	121	67	90	69
	Ilha dos Pombos	166	234	267	329	704	392	402	382	271	240	189	200
		189	237	224	333	701	417	425	368	290	219	203	170
	Emborcação	1048	980	459	220	347	483	484	459	365	187	73	73
		166	340	168	1048	1044	189	281	344	145	135	197	1048
	Nova Ponte	597	515	53	53	53	53	53	53	53	53	53	53

Tabela 23 (continuação da página anterior)

						Engo	olimento	Médio ((m^3/s)				
Subsis.	UHE	Set.	Out.	Nov.	Dez.	Jan.	Fev.	Mar.	Abr.	Mai.	Jun.	Jul.	Ago.
		157	236	90	150	174	188	191	113	83	86	102	73
	Miranda	590	525	119	64	70	81	103	97	105	93	69	65
		168	245	95	171	223	214	239	156	130	138	117	86
	Capim Branco I	82	79	171	177	386	250	340	328	186	145	115	89
		82	79	171	177	386	250	340	328	186	145	115	89
	Capim Branco II	85	82	176	182	401	255	356	343	194	151	120	93
		85	82	176	182	401	255	356	343	194	151	120	93
	Corumbá IV	85	23	61	170	124	174	208	146	84	60	38	29
		32	26	25	99	159	201	144	69	203	141	69	33
	Corumbá III	92	29	76	199	92	214	237	182	160	117	47	35
		38	33	40	140	132	223	174	104	247	230	78	41
	Corumbá I	197	122	136	438	570	570	496	500	342	281	272	231
		84	100	81	570	521	570	435	419	429	363	315	255
	Itumbiara	2094	1932	1283	764	733	940	1069	947	1295	1321	1472	1716
		668	834	413	2250	1437	1646	682	1201	1402	1503	1613	1925
	Cachoeira Dourada	2107	1944	1316	842	810	1021	1143	1025	1338	1353	1495	1732
		681	846	446	2328	1514	1727	756	1279	1445	1535	1636	1941
	São Simão	1903	2121	1633	1418	1526	1610	1614	1632	1679	1649	1764	1968
		811	1077	2150	1186	2230	2338	1596	1485	1786	1847	1916	2151
	Camargos	103	75	63	55	182	127	108	92	68	61	52	98
		40	45	36	125	220	136	132	69	78	61	37	94

						Engo	limento	Médio (m^3/s)				
Subsis.	UHE	Set.	Out.	Nov.	Dez.	Jan.	Fev.	Mar.	Abr.	Mai.	Jun.	Jul.	Ago.
	Itutinga	103	75	63	55	182	127	108	92	68	61	52	98
		40	45	36	125	228	136	132	69	78	61	37	94
	Funil Grande	144	129	153	182	354	256	245	202	139	124	92	122
		81	99	126	252	400	265	269	179	149	124	77	118
	Furnas	1247	1028	1007	780	204	204	204	204	204	204	204	204
		515	526	278	265	271	728	1129	513	425	339	386	338
	Peixoto	1068	1067	1061	852	531	508	456	285	409	418	384	241
		909	636	319	354	311	329	1186	602	838	838	552	384
	Estreito	1074	1074	1071	865	555	533	480	304	420	430	392	248
		915	643	329	367	335	354	1210	621	849	850	560	391
	Jaguara	1076	1076	1076	869	563	546	490	312	425	435	395	250
		917	645	334	371	343	367	1076	629	854	855	563	393
	Igarapava	1083	1084	1088	884	589	580	519	335	438	449	405	258
		924	653	346	386	369	401	1249	652	867	869	573	401
	Volta Grande	1098	1102	1116	919	654	647	581	384	467	478	426	274
		939	671	374	421	434	468	1311	701	896	898	593	418
	Porto Colômbia	1135	1148	1185	1009	827	791	731	494	543	540	478	313
		976	717	443	511	607	612	1461	811	972	960	644	457
	Graminha	87	53	27	17	28	37	44	40	55	54	47	36
		46	17	21	27	31	37	39	44	83	62	58	58
	Euclides da Cunha	99	66	39	49	76	61	87	80	75	72	61	49

						Engo	olimento	Médio ((m^3/s)				
Subsis.	UHE	Set.	Out.	Nov.	Dez.	Jan.	Fev.	Mar.	Abr.	Mai.	Jun.	Jul.	Ago.
		58	30	33	59	79	61	82	84	103	80	72	71
	Limoeiro	100	67	39	51	77	62	89	82	76	73	62	50
		59	31	33	61	80	62	84	86	104	81	73	72
	Marimbondo	1023	1168	1088	1078	1064	900	1021	867	792	948	1286	1363
		966	901	569	454	589	750	1567	1248	1324	1334	1284	1603
	Água Vermelha	1173	1230	975	801	993	1150	1250	1093	925	1069	1378	1770
		894	1104	730	665	593	779	1271	1534	1372	1470	1386	1986
	Barra Bonita	617	406	212	107	162	181	220	207	247	272	320	343
		116	137	99	114	502	267	344	173	205	155	625	538
	Bariri	631	424	231	129	219	207	258	233	266	291	337	355
		130	155	118	135	559	293	382	199	224	174	642	550
	Ibitinga	676	470	289	201	297	258	330	283	311	345	387	399
		175	201	176	207	638	344	454	249	269	228	692	594
	Promissão	1021	706	330	229	396	300	274	150	284	162	356	702
		242	223	183	176	559	471	484	429	205	251	669	1017
	Nova Avanhandava	1026	705	335	228	413	308	288	153	285	164	360	704
		247	222	186	175	577	479	498	432	206	253	673	1019
	Ilha Solteira Eq.	3536	4010	3402	2994	3454	3705	3826	3509	3416	3327	3897	4856
		3744	2711	3549	3052	2954	3661	3538	2977	3806	4042	4387	5526
	Jupiá	3697	4156	3492	3084	3539	3794	3964	3629	3576	3478	4019	4996
		3905	2857	3639	3142	3039	3750	3676	3097	3966	4193	4509	5666

						Engo	olimento	Médio ((m^3/s)				
Subsis.	UHE	Set.	Out.	Nov.	Dez.	Jan.	Fev.	Mar.	Abr.	Mai.	Jun.	Jul.	Ago.
	Porto Primavera	2827	3602	3748	3282	3776	4035	4347	4050	3934	4501	4777	5479
		3714	3051	2838	3680	3094	3698	3878	3661	4091	5229	5275	6128
	Jurumirim	331	331	273	82	55	55	55	55	55	55	55	55
		83	117	105	95	96	73	104	174	172	89	213	130
	Pirajú	334	334	277	84	60	57	61	60	58	58	59	57
		86	120	109	97	101	75	110	179	175	92	217	132
	Chavantes	424	420	427	413	324	264	192	73	73	73	73	188
		129	185	91	126	240	186	158	288	265	426	389	451
	Ourinhos	426	423	430	415	327	266	196	77	76	76	77	190
		131	188	94	128	243	188	162	292	268	429	393	453
	Salto Grande	499	492	491	491	411	329	284	173	138	158	143	255
		204	257	155	204	327	251	250	388	330	511	459	513
	Canoas II	497	497	497	497	417	333	290	181	143	164	148	259
		209	262	161	210	333	255	256	396	335	497	464	497
	Canoas I	516	508	508	510	431	343	305	197	153	177	159	268
		221	273	172	223	347	265	271	412	345	516	475	516
	Capivara	1066	973	761	569	547	592	602	488	650	711	1208	963
		518	768	413	515	684	699	425	555	775	1088	1486	1198
	Taquaruçu	1093	1012	797	587	569	608	625	519	676	773	1312	991
		545	807	449	533	706	715	448	586	801	1150	1590	1226
	Rosana	1177	1132	894	642	637	656	706	609	755	975	1619	1100

						Engo	olimento	Médio ((m^3/s)				
Subsis.	UHE	Set.	Out.	Nov.	Dez.	Jan.	Fev.	Mar.	Abr.	Mai.	Jun.	Jul.	Ago.
		629	927	546	588	774	763	529	676	880	1352	1897	1335
	Itaipu	4455	5329	4917	4093	4613	4952	5615	5285	5179	7422	7690	7422
		4795	4573	3659	4437	4068	4723	4969	4963	5460	8528	8466	8305
	Jauru	74	74	84	76	104	81	112	92	80	73	70	67
		74	74	84	76	104	81	112	92	80	73	70	67
	Itiquira I	41	39	40	45	67	80	80	80	57	43	40	39
		41	39	40	45	67	80	80	80	57	43	40	39
	Itiquira II	41	39	40	45	67	82	82	82	57	43	40	39
		41	39	40	45	67	82	82	82	57	43	40	39
	Ponte de Pedra	66	64	62	65	74	72	81	81	78	71	66	61
		66	64	62	65	74	72	81	81	78	71	66	61
Sul	Foz do Areia	564	645	507	689	711	649	469	551	885	1157	1250	865
		132	837	720	263	508	411	554	543	219	1376	1376	865
	Segredo	793	775	578	747	768	690	658	640	1010	1268	1268	965
		304	898	791	323	598	417	740	601	374	1268	1268	965
	Santa Clara	83	88	96	70	89	78	49	59	156	156	156	146
		75	111	115	84	46	64	52	79	136	156	156	146
	Salto Santiago	756	597	795	903	927	1171	1470	1251	1319	1104	1500	1352
		116	995	1054	1049	993	669	791	374	1576	1191	1576	1352
	Salto Osório	691	586	859	927	950	1182	1476	1274	1372	1264	1649	1419
		131	1050	1118	1073	1016	680	797	397	1629	1351	1784	1419

						Engo	olimento	Médio (m^3/s)				
Subsis.	UHE	Set.	Out.	Nov.	Dez.	Jan.	Fev.	Mar.	Abr.	Mai.	Jun.	Jul.	Ago.
	Salto Caxias	1061	1121	1131	1239	1143	1281	1597	1529	1747	2100	2100	1824
		585	1488	1390	1385	1209	779	918	652	2002	2100	2100	1824
	Manso	44	44	62	127	269	374	400	355	44	44	44	44
		44	31	44	134	236	274	349	254	196	44	93	125
	Barra Grande	491	492	197	348	325	334	22	469	501	445	18	388
		516	366	206	253	418	327	22	400	230	163	516	388
	Campos Novos	396	395	332	112	94	148	149	288	377	378	417	317
		417	295	332	112	94	147	149	288	377	378	417	317
	Machadinho	1271	1272	666	503	462	499	525	985	990	928	969	842
		1311	929	675	408	555	496	245	805	1103	502	1311	842
	Itá	1551	1550	840	716	584	626	629	1316	1472	1590	1590	1136
		1590	1127	849	621	677	623	349	1136	1583	1164	1590	1136
	Passo Fundo	80	77	104	104	104	104	104	53	2	2	2	2
		2	74	57	57	15	23	15	81	71	84	103	70
	Quebra Queixo	87	87	51	43	23	25	24	103	114	114	114	78
		114	81	51	43	23	25	20	108	114	114	114	78
	Capivari/Cachoeira	7	7	14	27	21	23	25	10	7	7	7	7
		7	5	7	9	11	14	16	10	10	30	15	25
	Passo Real	321	317	252	278	287	309	308	233	230	112	9	232
		412	292	290	292	251	292	192	108	113	154	323	232
	Jacuí	196	195	234	234	234	234	234	234	234	116	12	234

						Engo	olimento	Médio (m^3/s)				
Subsis.	UHE	Set.	Out.	Nov.	Dez.	Jan.	Fev.	Mar.	Abr.	Mai.	Jun.	Jul.	Ago.
		234	166	234	234	234	234	193	109	117	158	234	234
	Itaúba	562	553	275	298	317	341	340	307	328	245	83	287
		499	439	313	312	281	324	224	182	211	287	397	287
	Dona Francisca	285	283	295	316	346	372	372	376	376	376	154	340
		376	266	333	330	310	355	256	256	307	376	376	340
	Monte Claro	285	265	82	54	21	77	65	372	372	274	372	353
		372	264	82	54	21	77	65	372	372	274	372	353
NE	Boa Esperança	169	169	176	377	369	497	343	426	250	265	241	287
		198	198	236	341	340	441	447	332	267	253	252	258
	Sobradinho	1417	1462	1438	1586	1294	1453	1528	1623	1464	1489	1437	951
		1989	2228	1648	1357	1457	1033	829	657	1118	1501	1590	1689
	Itaparica	1430	1469	1373	1454	1517	1582	1635	1669	1603	1504	1453	1504
		2042	2268	2194	1888	1679	946	1023	813	501	1321	1274	2196
	Comp PAF-MOX	1436	1471	1355	1358	1592	1559	1676	1631	1660	1510	1459	1507
		2047	2270	2176	1792	1754	923	1064	775	558	1327	1280	2200
	Xingó	1436	1471	1355	1358	1592	1559	1676	1631	1660	1510	1459	1507
		2047	2270	2176	1792	1754	923	1064	775	558	1327	1280	2200
	Pedra do Cavalo	70	70	104	180	180	180	45	54	26	22	53	40
		79	7	160	180	180	180	127	68	4	3	6	33
	Itapebi	127	110	441	302	446	315	267	223	187	201	208	237
		174	159	477	341	460	306	195	247	241	143	127	195

						Eng	olimento	o Médio	(m^3/s)				
Subsis.	UHE	Set.	Out.	Nov.	Dez.	Jan.	Fev.	Mar.	Abr.	Mai.	Jun.	Jul.	Ago.
Norte	Tucuruí	2220	2544	2613	5605	9723	9819	9739	9513	9600	4872	3017	2454
		1735	2079	1896	1544	6519	13251	12588	12256	13089	1888	3312	1845

						Vertin	nento	Médio (m^3/s)							
Subsis.	UHE	Set. Out. Nov. Dez. Jan. Fev. Mar. Abr. Mai. Jun. Jul. Ago 0														
SE/CO	Guaporé	0	0	0	0	0	0	0	0	0	0	0	0			
		0	0	0	0	0	0	0	0	0	0	0	0			
	Serra da Mesa	0	0	0	0	0	0	0	0	0	0	0	0			
		0	0	0	0	0	0	0	0	0	0	0	0			
	Cana Brava	0	0	0	0	0	0	0	0	0	0	0	0			
		0	0	0	0	0	0	0	0	0	0	0	0			
	Peixe Angical	0	0	0	59	25	194	0	32	0	0	0	0			
		0	0	0	60	25	194	0	33	0	0	0	0			
	Lajeado	0	0	0	0	0	0	0	0	0	0	0	0			
		0	0	0	0	0	0	0	0	0	0	0	0			
	Três Marias	0	0	0	0	0	0	0	0	0	0	0	0			
		0	0	0	0	0	0	0	0	0	0	0	0			
	Queimado	0	0	0	0	0	0	0	0	0	0	0	0			
		0	0	0	0	10	0	0	14	0	0	0	0			
	Irapé	0	0	0	0	0	0	0	0	0	0	0	0			
		0	0	0	0	0	0	0	0	0	0	0	0			
	Santa Clara	0	0	0	0	0	0	0	0	0	0	0	0			
		0	0	0	0	0	0	0	0	0	0	0	0			
	Guilman Amorim	0	0	0	0	8	0	0	0	0	0	0	0			
		0	0	0	0	8	0	0	0	0	0	0	0			

						Vertin	nento	Médio ((m^3/s)				
Subsis.	UHE	Set.	Out.	Nov.	Dez.	Jan.	Fev.	Mar.	Abr.	Mai.	Jun.	Jul.	Ago.
	Salto Grande	8	0	92	186	163	111	67	9	0	0	0	0
		8	0	92	186	163	111	67	9	0	0	0	0
	Porto Estrela	0	0	0	83	56	3	0	0	0	0	0	0
		0	0	0	83	56	3	0	0	0	0	0	0
	Aimorés	0	0	0	0	78	0	0	0	0	0	0	0
		0	0	0	0	78	0	0	0	0	0	0	0
	Mascarenhas	0	0	0	475	710	242	13	0	0	0	0	0
		0	0	0	475	710	242	13	0	0	0	0	0
	Paraibuna	0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0	0
	Santa Branca	0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0	0
	Jaguari	0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0	0
	Funil	0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0	0
	Ilha dos Pombos	0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0	0
	Emborcação	0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0	0
	Nova Ponte	0	0	0	0	0	0	0	0	0	0	0	0

						Vertin	nento	Médio ((m^3/s)				
Subsis.	UHE	Set.	Out.	Nov.	Dez.	Jan.	Fev.	Mar.	Abr.	Mai.	Jun.	Jul.	Ago.
		0	0	0	0	0	0	0	0	0	0	0	0
	Miranda	0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0	0
	Capim Branco I	0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0	0
	Capim Branco II	0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0	0
	Corumbá IV	0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0	0
	Corumbá III	0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0	0
	Corumbá I	0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	9	0	0	0	0	0	0
	Itumbiara	0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0	0
	Cachoeira Dourada	0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0	0
	São Simão	0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0	0
	Camargos	0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	8	0	0	0	0	0	0	0

						Vertin	nento	Médio ((m^3/s)				
Subsis.	UHE	Set.	Out.	Nov.	Dez.	Jan.	Fev.	Mar.	Abr.	Mai.	Jun.	Jul.	Ago.
	Itutinga	0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0	0
	Funil Grande	0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0	0
	Furnas	0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0	0
	Peixoto	0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0	0
	Estreito	0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0	0
	Jaguara	0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	144	0	0	0	0	0
	Igarapava	0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0	0
	Volta Grande	0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0	0
	Porto Colômbia	0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0	0
	Graminha	0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0	0
	Euclides da Cunha	0	0	0	0	0	0	0	0	0	0	0	0

						Vertin	nento	Médio ((m^3/s)				
Subsis.	UHE	Set.	Out.	Nov.	Dez.	Jan.	Fev.	Mar.	Abr.	Mai.	Jun.	Jul.	Ago.
		0	0	0	0	0	0	0	0	0	0	0	0
	Limoeiro	0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0	0
	Marimbondo	0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0	0
	Água Vermelha	0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0	0
	Barra Bonita	0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0	0
	Bariri	0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0	0
	Ibitinga	0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0	0
	Promissão	0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0	0
	Nova Avanhandava	0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0	0
	Ilha Solteira Equivalente	0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0	0
	Jupiá	0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0	0

						Vertin	nento	Médio ((m^3/s)				
Subsis.	UHE	Set.	Out.	Nov.	Dez.	Jan.	Fev.	Mar.	Abr.	Mai.	Jun.	Jul.	Ago.
	Porto Primavera	0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0	0
	Jurumirim	0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0	0
	Pirajú	0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0	0
	Chavantes	0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0	0
	Ourinhos	0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0	0
	Salto Grande	0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0	5
	Canoas II	7	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	20	0	25
	Canoas I	0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	14	0	15
	Capivara	0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0	0
	Taquaruçu	0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0	0
	Rosana	0	0	0	0	0	0	0	0	0	0	0	0

						Vertin	nento	Médio ((m^3/s)				
Subsis.	UHE	Set.	Out.	Nov.	Dez.	Jan.	Fev.	Mar.	Abr.	Mai.	Jun.	Jul.	Ago.
		0	0	0	0	0	0	0	0	0	0	0	0
	Itaipu	0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0	0
	Jauru	0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0	0
	Itiquira I	0	0	0	0	0	11	12	28	0	0	0	0
		0	0	0	0	0	11	12	28	0	0	0	0
	Itiquira II	0	0	0	0	0	9	10	26	0	0	0	0
		0	0	0	0	0	9	10	26	0	0	0	0
	Ponte de Pedra	0	0	0	0	0	0	0	4	0	0	0	0
		0	0	0	0	0	0	0	4	0	0	0	0
Sul	Foz do Areia	61	59	0	0	0	0	0	0	0	0	0	0
		0	344	0	0	0	0	0	0	0	165	729	0
	Segredo	67	68	0	0	0	0	0	0	0	0	168	0
		0	483	0	0	0	0	0	0	0	384	1023	0
	Santa Clara	41	42	0	0	0	0	0	0	7	150	155	0
		0	67	0	0	0	0	0	0	0	177	155	0
	Salto Santiago	98	93	0	0	0	0	0	0	0	0	0	0
		0	409	0	0	0	0	0	0	0	0	1103	0
	Salto Osório	179	181	0	0	0	0	0	0	0	0	0	0
		0	432	0	0	0	0	0	0	0	0	1044	0

						Vertin	nento	Médio ((m^3/s)					
Subsis.	UHE	Set.	Out.	Nov.	Dez.	Jan.	Fev.	Mar.	Abr.	Mai.	Jun.	Jul.	Ago.	
	Salto Caxias	263	275	0	0	0	0	0	0	0	57	254	0	
		0	624	0	0	0	0	0	0	0	145	1433	0	
	Manso	0	0	0	0	0	0	0	0	0	0	0	0	
		0	13	0	0	0	0	0	0	0	0	0	0	
	Barra Grande	609	572	0	0	0	0	0	0	0	0	0	0	
		284	987	0	0	0	0	0	0	0	0	112	0	
	Campos Novos	416	645	0	0	0	0	0	0	0	0	405	0	
		394	746	0	0	0	0	0	0	0	0	406	0	
	Machadinho	805	1437	0	0	0	0	0	0	0	0	0	0	
		380	2153	0	0	0	0	0	0	0	0	409	0	
	Itá	1831	2595	0	0	0	0	0	0	0	0	328	0	
		1406	3392	0	0	0	0	0	0	0	0	1081	0	
	Passo Fundo	28	24	0	0	0	0	0	0	0	0	0	0	
		0	130	0	0	0	0	0	0	0	0	0	0	
	Quebra Queixo	206	237	0	0	0	0	0	0	41	49	33	0	
		174	248	0	0	0	0	0	0	41	49	33	0	
	Capivari/Cachoeira	0	0	0	0	0	0	0	0	0	0	0	0	
		0	2	0	0	0	0	0	0	0	0	0	0	
	Passo Real	321	251	0	0	0	0	0	0	0	0	0	0	
		0	499	0	0	0	0	0	0	0	0	0	0	
	Jacuí	453	382	21	46	54	76	75	0	0	0	0	0	

						Vertin	nento	Médio ((m^3/s)				
Subsis.	UHE	Set.	Out.	Nov.	Dez.	Jan.	Fev.	Mar.	Abr.	Mai.	Jun.	Jul.	Ago.
		185	633	59	60	18	59	0	0	0	0	92	0
	Itaúba	167	134	0	0	0	0	0	0	0	0	0	0
		0	471	0	0	0	0	0	0	0	0	0	0
	Dona Francisca	526	516	0	0	0	0	0	5	48	0	0	0
		205	756	0	0	0	0	0	0	0	42	92	0
	Monte Claro	904	292	0	0	0	0	0	104	156	0	94	0
		817	293	0	0	0	0	0	104	156	0	94	0
NE	Boa Esperança	0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0	0
	Sobradinho	0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0	0
	Itaparica	0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0	0
	Comp PAF-MOX	0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0	0
	Xingó	0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0	0
	Pedra do Cavalo	0	0	0	235	11	20	0	0	0	0	0	0
		0	0	0	235	11	20	0	0	0	0	0	0
	Itapebi	0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0	0

						Vertin	nento	Médio ((m^3/s)				
Subsis.	UHE	Set.	Out.	Nov.	Dez.	Jan.	Fev.	Mar.	Abr.	Mai.	Jun.	Jul.	Ago.
Norte	Tucuruí	0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0	0

F.3 Intercâmbio entre subsistemas

A Tabela 25 lista os resultados de intercâmbio entre subsistemas para as soluções MPI-F e GRFR-HCBI⁴ para cada mês do horizonte de planejamento.

⁴Os valores obtidos pela solução GRFR-HCBI são apresentados em *itálico* na linha inferior dos resultados correspondentes a cada usina.

	Intercâmbio Médio (MW)											
Intercâmbio	Set.	Out.	Nov.	Dez.	Jan.	Fev.	Mar.	Abr.	Mai.	Jun.	Jul.	Ago.
$SE/CO \rightarrow NE$	-145	-99	152	215	381	644	680	670	-200	-200	-200	-200
	354	353	359	356	710	710	0	-200	-200	-29	-200	-200
SE/CO \rightarrow Fict. Imperatriz	2.578	2.638	2.884	2.921	2.236	329	-2.706	-2.908	-2.923	-1.178	553	373
	2.794	2.180	3.124	3.132	2.647	2.459	-2.199	-2.923	-2.923	-113	-392	-486
$SE/CO \rightarrow Sul$	-1.694	-1.688	-3.168	-2.183	210	1.043	1.781	3.964	2.854	1.331	922	-340
	-1.717	-1.711	-4.701	-1.823	276	2.983	2.041	4.177	3.852	1.044	650	-1.119
$NE \rightarrow Fict.$ Imperatriz	-101	-151	-411	-474	-568	-639	-392	-364	460	298	138	155
	-2.058	-408	-901	-1.139	-3.132	-2.875	-20	418	-183	0	1.735	1.632
Norte \rightarrow Fict. Imperatriz	-2.476	-2.487	-2.473	-2.447	-1.668	310	3.099	3.273	2.463	880	-691	-528
	-737	-1.771	-2.223	-1.993	486	416	2.219	2.505	3.106	113	-1.343	-1.146

Tabela 25: Resultados de intercâmbio entre subsistemas.
Referências

- Al-Agtash, S. (2001), 'Hydrothermal scheduling by augmented lagrangian: consideration of transmission constraints and pumped-storage units', *IEEE Transactions on Power Systems* 16(4), 750–756.
- Araripe, T. A., Cotia, C. B., Pereira, M. V. F. & Kelman, J. (1985), Comparison of stochastic and deterministic approaches in hydrothermal generation scheduling, *in* 'Proc. IFAC Intl. Symposium on Planning and Operation of Electric Energy Systems', Rio de Janeiro, Brasil.
- Arvanitidis, N. V. & Rosing, J. (1970), 'Composite representation of a multireservoir hydroelectric power system', *IEEE Transactions on Power Apparatus and Systems* **PAS-89**(2), 319–326.
- Azevedo, A., Oliveira, A. & Soares, S. (2009), 'Interior point method for long-term generation scheduling of large-scale hydrothermal systems', *Annals of Operations Research* 169(1), 55–80.
- Azevedo, A. T. (2006), Métodos de pontos interiores aplicados em sistemas de potência modelados por fluxo em redes, Tese de doutorado, Faculdade de Engenharia Elétrica e de Computação, Universidade Estadual de Campinas, Campinas, Brasil.
- Benson, H. Y. & Shanno, D. F. (2008), 'Interior-point methods for nonconvex nonlinear programming: regularization and warmstarts', *Computational Optimization and Applications* 40, 143–189.
- Benson, H. Y., Shanno, D. F. & Vanderbei, R. J. (2002), 'Interior-point methods for nonconvex nonlinear programming: filter methods and merit functions', *Computational Optimization and Applications* 23(2), 257–272.
- Bissonnette, V., Lafond, L. & Côté, G. (1986), 'A hydro-thermal scheduling model for the Hydro-Québec production system', *IEEE Transactions on Power Systems* **PWRS-1**(2), 204–210.
- Boshier, J. & Reed, E. (1981), Stochastic single reservoir models for long-term scheduling of hydrothermal power systems, Relatório Técnico, New Zealand Ministry of Energy.
- Byrd, R. H., Gilbert, J. C. & Nocedal, J. (2000), 'A trust region method based on interior point techniques for nonlinear programming', *Mathematical Programming, Series A* 89, 149–185.
- Carvalho, M. F. & Soares, S. (1987), 'An efficient hydrothermal scheduling algorithm', *IEEE Transactions on Power Systems* **PWRS-2**(3), 537–542.

- Carvalho, M. F., Soares, S. & Ohishi, T. (1988), 'Optimal active power dispatch by network flow approach', *IEEE Transactions on Power Systems* **3**(4), 1640–1647.
- Cicogna, M. A. (1999), Modelo de planejamento da operação energética de sistemas hidrotérmicos a usinas individualizadas orientado por objetos, Dissertação de mestrado, Faculdade de Engenharia Elétrica e de Computação, Universidade Estadual de Campinas, Campinas, Brasil.
- Cicogna, M. A. (2003), Sistema de suporte à decisão para o planejamento e programação da operação de sistemas de energia elétrica, Tese de doutorado, Faculdade de Engenharia Elétrica e de Computação, Universidade Estadual de Campinas, Campinas, Brasil.
- Cruz, G. & Soares, S. (1996), 'Non-uniform composite representation of hydroelectric systems for long-term hydrothermal scheduling', *IEEE Transactions on Power Systems* 11(2), 702–707.
- Dagli, C. H. & Miles, J. F. (1980), 'Determining operating policies for a water resource system', Journal of Hydrology 47, 297-306.
- Dembo, R. (1991), 'Scenario optimization', Annals of Operations Research 30(1), 63-80.
- Durazzi, C. (2000), 'On the newton interior-point method for nonlinear programming problems', *Journal of Optimization Theory and Applications* 104(1), 73–90.
- El-Bakry, A. S., Tapia, R. A., Tsuchiya, T. & Zhang, Y. (1996), 'On the formulation and theory of the newton interior-point method for nonlinear programming', *Journal of Optimization Theory and Applications* **89**(3), 507–541.
- El-Hawary, M. E. & Ravindranath, K. M. (1992), 'Hydro-thermal power flow scheduling accounting for head variations', *IEEE Transactions on Power Systems* 7(3), 1232–1238.
- El-Hawary, M. E. & Tsang, D. H. (1986), 'The hydrothermal optimal load flow, a practical formulation and solution techniques using Newton's approach', *IEEE Transactions on Power Systems* 1(3), 157–166.
- Escudero, L. & Pietro, F. (1996), 'Hydropower generation management under uncertainty via scenario analysis and parallel computation', *IEEE Transactions on Power Systems* 11(2), 683–689.
- Fiacco, A. V. & McCormick, G. P. (1968), Nonlinear programming: sequential unconstrained minimization techniques, John Wiley & Sons.
- Finardi, E. & da Silva, E. (2006), 'Solving the hydro unit commitment problem via dual decomposition and sequential quadratic programming', *IEEE Transactions on Power Systems* 21(2), 835–844.
- Fletcher, R., Gould, N., Leyffer, S., Toint, P. & Wächter, A. (2002), 'Global convergence of a trust-region SQP-filter algorithm for general nonlinear programming', *SIAM Journal on Optimization* 13(3), 635–659.

- Fletcher, R. & Leyffer, S. (2002), 'Nonlinear programming without a penalty function', *Mathematical Programming*, *Series A* 91, 239–269.
- Forsgren, A. & Gill, P. E. (1998), 'Primal-dual interior methods for nonconvex nonlinear programming', *SIAM Journal of Optimization* 8(4), 1132–1152.
- Forsgren, A., Gill, P. E. & Wright, M. H. (2002), 'Interior methods for nonlinear optimization', SIAM Review 44(4), 525–597.
- Fortunato, L. A., Araripe, T., Albuquerque, J. C. R. & Pereira, M. V. F. (1990), *Introdução ao planejamento da expansão e operação de sistemas de produção de energia elétrica*, EDUFF, Niterói.
- Fosso, O. B., Gjelsvik, A., Haugstad, A., Mo, B. & Wangensteen, I. (1999), 'Generation scheduling in a deregulated system: the norwegian case', *IEEE Transactions on Power Systems* 14(1), 75-81.
- Franco, P. E. C., Carvalho, M. F. & Soares, S. (1994), 'A network flow model for short-term hydro-dominated hydrothermal scheduling problems', *IEEE Transactions on Power Systems* 9(2), 1016–1022.
- Gorenstin, B., Campodonico, N., Costa, J. & Pereira, M. (1992), 'Stochastic optimization of a hydro-thermal system including network constraints', *IEEE Transactions on Power Systems* 7(2), 791–797.
- Habibollahzadeh, H., Luo, G. X. & Semlyen, A. (1989), 'Hydrothermal optimal power flow based on a combined linear and nonlinear programming methodology', *IEEE Transactions* on Power Systems 4(2), 530–537.
- Hanscom, M., Lafond, L., Lasdon, L. & Provonost, G. (1980), 'Modelling and resolution of the deterministic mid-term energy production problem for the hydro-quebec system', *Management Science* 26, 695–668.
- Jabr, R. A. (2004), 'Exploiting special structure in interior-point algorithms for power generation dispatching', *Electrical Power & Energy Systems* **65**(1), 65–71.
- Karamouz, M. & Houck, M. H. (1982), 'Annual and monthly reservoir operating rules generated by deterministic optimization', *Water Resources Research* 18(5), 1337–1344.
- Labadie, J. W. (2004), 'Optimal operation of multireservoir systems: state-of-the-art review', *Journal of Water Resources Planning and Management* **130**(2), 93–111.
- Lasdon, L. S. (1970), Optimization Theory for Large Systems, MacMillan.
- Leite, P. T., Carneiro, A. A. F. M. & Carvalho, A. C. P. L. F. (2002), 'Energetic operation planning using genetic algorithms', *IEEE Transactions on Power Systems* 17(1), 173–179.
- Liang, R.-H. (2000), 'A noise annealing neural network for hydroelectric generation scheduling with pumped-storage units', *IEEE Transactions on Power Systems* **15**(3), 1008–1013.

- Luh, P. B., Zhang, D. & Tomastik, R. N. (1998), 'An algorithm for solving the dual problem of hydrothermal scheduling', *IEEE Transactions on Power Systems* 13(2), 593–600.
- Lyra, C. & Tavares, H. (1988), 'A contribution to the midterm scheduling of large scale hydrothermal power systems', *IEEE Transactions on Power Systems* 3(3), 852–857.
- Maceira, M. E., Terry, L. A., Damazio, J. M., Costa, F. S. & de Melo, A. C. G. (2002), Chain of optimization models for setting the energy dispatch and spot price in the brazilian system, *in* 'Proc. Power Systems Computation Conference', Sevilla, Espanha.
- Mantawy, A. H., Soliman, S. A. & El-Hawary, M. E. (2002), A new tabu search algorithm for the long-term hydro scheduling problem, *in* 'Proc. IEEE Large Engineering Conference on Power Engineering', Vol. 1, Halifax, pp. 29–34.
- Marques, T. C. (2006), Uma política operativa a usinas individualizadas para planejamento da operação energética do Sistema Interligado Nacional, Tese de doutorado, Faculdade de Engenharia Elétrica e de Computação, Universidade Estadual de Campinas, Campinas, Brasil.
- Marreco, J. M. & Carpio, L. G. T. (2006), 'Flexibility valuation in the brazilian power system: a real options approach', *Energy Policy* **34**(18), 3749–3756.
- Martinez, L. & Soares, S. (2002), 'Comparison between closed-loop and partial open-loop feedback control policies in long term hydrothermal scheduling', *IEEE Transactions on Power* Systems 17(2), 330–336.
- Martins, L. S. A. (2005), Modelo não-linear por fluxo em redes para o planejamento da operação energética de sistemas hidrotérmicos de potência, Dissertação de Mestrado, Escola de Engenharia Elétrica e de Computação, Universidade Federal de Goiás, Goiânia, Brasil.
- Medina, J., Quintana, V. H. & Conejo, A. J. (1999), 'A clipping-off interior-point technique for medium-term hydro-thermal coordination', *IEEE Transactions on Power Systems* 14(1), 266– 273.
- Nabona, N. (1993), 'Multicommodity network flow model for long-term hydro generation optimization', *IEEE Transactions on Power Systems* 8(2), 395–404.
- Najafi, H. S. & Solary, M. S. (2008), 'A new algorithm for computing the inertia of eigenproblems', *Applied Mathematics and Computation* 201, 138–148.
- Naresh, R. & Sharma, J. (2000), 'Hydro system scheduling using ANN approach', *IEEE Transactions on Power Systems* 15(1), 388–395.
- Ngundam, J. M., Kenfack, F. & Tatietse, T. T. (2000), 'Optimal scheduling of large-scale hydrothermal power systems using the lagrangian relaxation technique', *Electrical Power and Energy Systems* 22(4), 237–245.
- Ni, E., Guan, X. & Li, R. (1999), 'Scheduling hydrothermal power systems with cascaded and head-dependent reservoirs', *IEEE Transactions on Power Systems* 14(3), 1127–1132.

- Oliveira, A. R. L., Soares, S. & Nepomuceno, L. (2003), 'Optimal active power dispatch combining network flow and interior point approaches', *IEEE Transactions on Power Systems* 18(4), 1235–1240.
- Oliveira, G. G. & Soares, S. (1995), 'A second-order network flow algorithm for hydrothermal scheduling', *IEEE Transactions on Power Systems* 10(3), 1635–1641.
- Pereira, M. V. F. (1985), Optimal scheduling of hydrothermal systems an overview, *in* 'Proc. IFAC Intl. Symposium on Planning and Operation of Electric Energy Systems', Rio de Janeiro, Brasil.
- Pereira, M. V. F. (1989), 'Optimal stochastic operations scheduling of large hydroelectric systems', *Electrical Power and Energy Systems* 11(3), 161–169.
- Philbrick, C. R. & Kitanidis, P. (1999), 'Limitations of deterministic optimization applied to reservoir operations', *Journal of Water Resources Planning and Management* 125(3), 135– 142.
- Quintana, V. H., Torres, G. L. & Medina-Palomo, J. (2000), 'Interior-point methods and their applications to power systems: classification of publications and software codes', *Operations Research* 29(4), 763–785.
- Rosenthal, R. E. (1981), 'A nonlinear network flow algorithm for maximization of benefits in a hydroelectric power system', *Operations Research* 29(4), 763–785.
- Salam, S., Nor, K. M. & Hamdan, A. R. (1998), 'Hydrothermal scheduling based lagrangian relaxation approach to hydrothermal coordination', *IEEE Transactions on Power Systems* 13(1), 226–235.
- Shanno, D. F. & Vanderbei, R. J. (2000), 'Interior-point methods for nonconvex nonlinear programming: orderings and higher-order methods', *Mathematical Programming, Series B* 87, 303–316.
- Soares, S. & Carneiro, A. A. F. M. (1991), 'Optimal operation of reservoirs for electric generation', *IEEE Transactions on Power Delivery* 6(3), 1101–1107.
- Soares, S. & Carneiro, A. A. F. M. (1993), Reservoir operation rules for hydroelectric power system optimization, *in* 'Proc. of the 1993 Athen IEEE/NTVA Power Tech', Vol. 2, Athens, Greece, pp. 965–969.
- Soares, S., Lyra, C. & Tavares, H. (1980), 'Optimal generation scheduling of hydrothermal power systems', *IEEE Transactions on Power Apparatus and Systems* **PAS-99**(3), 1107–1118.
- Toscano, A. E. (2009), Comparação entre os modelos NEWAVE e ODIN no planejamento energético do Sistema Interligado Nacional, Dissertação de Mestrado, Faculdade de Engenharia Elétrica e de Computação, Universidade Estadual de Campinas, Campinas, Brasil.
- Turgeon, A. & Charbonneau, R. (1998), 'An aggregation-disaggregation approach to long-term reservoir management', *Water Resources Research* 34(12), 3585–3594.

- Ulbrich, M., Ulbrich, S. & Vicente, L. N. (2004), 'A globally convergent primal-dual interiorpoint filter method for nonlinear programming', *Mathematical Programming, Series A* 100, 379-410.
- Vanderbei, R. J. (1998), LOQO: An interior point code for quadratic programming, Relatório técnico, Princeton University.
- Vanderbei, R. J. & Shanno, D. F. (1999), 'An interior-point algorithm for nonconvex nonlinear programming', *Computational Optimization and Applications* 13, 231–252.
- Wei, H., Sasaki, H. & Kubokawa, J. (1998), 'A decoupled solution of hydro-thermal optimal power flow problem by means of interior point method and network programming', *IEEE Transactions on Power Systems* 13(2), 286–293.
- Wei, H., Sasaki, H., Kubokawa, J. & Yokoyama, R. (2000), 'Large scale hydrothermal optimal power flow problems based on interior point nonlinear programming', *IEEE Transactions* on Power Systems 15(1), 396–403.
- Wright, S. J. (1997), Primal-dual interior-point methods, SIAM.
- Wächter, A. & Biegler, L. T. (2005), 'Line search filter methods for nonlinear programming: motivation and global convergence', *SIAM Journal of Computing* 16(1), 1-31.
- Wächter, A. & Biegler, L. T. (2006), 'On the implementation of an interior-point filter linesearch algorithm for large-scale nonlinear programming', *Mathematical Programming, Series* A 106(1), 25–57.
- Yamin, H. Y. (2005), 'Fuzzy self-scheduling for gencos', *IEEE Transactions on Power Systems* 20(1), 503-505.
- Ye, Y. (1997), Interior point algorithms: theory and analysis, John Wiley & Sons.
- Yeh, W. (1985), 'Reservoir management and operations models: a state of the art review', *Water Resources Research* 21(12), 1797–1818.
- Yu, Z., Sparrow, F. T. & Nderitu, D. (1998), 'Long-term hydrothermal scheduling using composite thermal and composite hydro representations', *IEE Proceedings on Generation*, *Transmission and Distribution* 145(2), 210–216.
- Zambelli, M. S. (2009), Planejamento da operação energética do Sistema Interligado Nacional, Tese de doutorado, Faculdade de Engenharia Elétrica e de Computação, Universidade Estadual de Campinas, Campinas, Brasil.
- Zambelli, M. & Soares, S. (2009), A predictive control approach for long term hydrothermal scheduling, *in* 'Proc. IEEE Power Systems Conference & Exposition', Seattle, WA.
- Zhang, D., Luh, P. B. & Zhang, Y. (1999), 'A bundle method for hydrothermal scheduling', *IEEE Transactions on Power Systems* 14(4), 1355–1361.