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Abstract

In this thesis we study the spatial throughput of interference-limited wireless networks from differ-
ent perspectives, considering that the spatial distribution of nodes follows a 2-dimensional homoge-
neous Poisson point process and transmitters employ Gaussian point-to-point codes. To carry out
this analysis, we model the interrelations between network elements using concepts from stochastic
geometry, communication theory and information theory. We derive closed-form equations to com-
pute/approximate the performance metric that is chosen to evaluate the system for each given specific
scenario. Our first contribution is an investigation about whether it is preferable to have a large num-
ber of short single-hop links or a small number of long hops in multi-hop wireless networks, using
a newly proposed metric denominated aggregate multi-hop information efficiency. For single-hop
systems, we revisit the transmission capacity framework to study medium access protocols that use
asynchronous transmissions and allow for packet retransmissions, showing when a carrier sensing
capability is more suitable than synchronous transmissions, and vice-versa. We also cast the effective
link throughput and the network spatial throughput optimization problems to find the combination
of medium access probability, coding rate and maximum number of retransmissions that maximize
each metric under packet loss and queue stability constraints, evincing when they do (and do not)
have the same solution. Furthermore we analyze the expected maximum achievable sum rates over
a given area - or spatial capacity - based on the capacity regions of Gaussian point-to-point codes
for two decoding rules, namely (i) treating interference as noise (IAN) and (ii) jointly detecting the
strongest interfering signals treating the others as noise (OPT), proving the advantages of the second.
We additionally demonstrate that, when the same decoding rule and network density are considered,
the spatial-capacity-achieving scheme always outperforms the spatial throughput obtained with the
best predetermined fixed rate strategy. With those results in hand, we discuss general guidelines on
the construction of ad hoc adaptive algorithms that would improve the information flow throughout
the interference network, respecting the nodes’ internal and external constraints.

Keyword: Wireless communication system
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Resumo

Nesta tese, nds estudamos a vazao espacial de redes sem fio limitadas por interferéncia em difer-
entes perspectivas, considerando que a distribuicdo espacial dos nos segue um processo pontual de
Poisson homogéneo e em duas dimensdes, € os transmissores empregam codigos gaussianos ponto-a-
ponto. Para conduzir essa andlise, n6s modelamos as inter-relagdes entre os elementos da rede usando
conceitos de geometria estocéstica, teoria da comunicagdo e teoria da informagdo. Nos derivamos
equagoes em formula fechada para computar/aproximar a métrica de desempenho que ¢ escolhida
para avaliar o sistema para um dado cenario especifico. Nossa primeira contribui¢do ¢ uma investi-
gacdo sobre se ¢ preferivel ter um grande nimero de saltos curtos ou um pequeno numero de saltos
longos em uma rede sem fio de multiplos saltos, usando uma métrica proposta que ¢ denominada efi-
ciéncia da informag@o em multiplos saltos agregada. Para sistemas de saltos simples, nds revisitamos
a abordagem da capacidade de transmissdo para estudar protocolos de acesso ao meio que usam trans-
missOes assincronas e permitem retransmissoes de pacote, mostrando quando a habilidade de sentir
a portadora ¢ mais vantajosa que transmissdes sincronas, e vice-versa. NoOs também formulamos o
problema de otimizagdo da vazdo efetiva de um enlace e a vazao espacial da rede para encontrar a
combinagdo da probabilidade de acesso ao meio, taxa de cddigo e nimero maximo de retransmissoes
que maximiza cada métrica sobre restricdes de perda de pacotes e estabilidade de fila, evidenciando
quando elas tem (ou ndo) a mesma solu¢ao. Além disso, nos analisamos o valor esperado da soma
das taxas maximas atingiveis sobre uma dada area - ou capacidade espacial - baseados nas regides de
capacidade dos codigos gaussianos ponto-a-ponto para duas regras de decodificagdo: (i) tratar inter-
feréncia como ruido (IAN) e (ii) detectar conjuntamente os sinais interferentes mais fortes tratando
os outros como ruido (OPT), provando as vantagens da segunda. Nés adicionalmente demonstramos
que, quando as mesmas regras de decodificacao e densidade da rede sdao consideradas, o esquema que
atinge a capacidade espacial sempre tem um melhor desempenho que a estratégia da melhor taxa pré-
determinada (abordagem mais usual). Com esses resultados em mao, nés discutimos linhas gerais
para a construcao de algoritmos ad hoc adaptativos que melhorariam os fluxos de informagao pela
rede de interferéncia, respeitando as restricdes internas e externas dos nos.

Palavra-chave: Sistema de comunicagdo sem fio
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Society does not consist of individuals, but expresses the sum of interrelations, the
relations within which these individuals stand.

Karl Marx, Grundrisse (1857)
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Chapter 1

Introduction

In the end of the 70’s, wireless ad hoc networks attracted a vivid attention from from the telecom-
munications community due to their cheap and flexible implementation [1]. During that time, how-
ever, the deployment of practical systems applying such a concept was limited by the available tech-
nology, which also constrained further research developments [2]. In the middle 90’s, the increasing
processing power of hardware and the widespread use of personal computers as well as other mo-
bile devices provided the technological basis needed for real-life ad hoc networks, stimulating once
again studies on this subject. Thereafter, important issues regarding the design of such networks have
been addressed, including medium access control algorithms, routing protocols, energy consumption,
amongst others [3].

We can also identify many features of the ad hoc concept in the upcoming generations of cellular
systems, where fully centralized systems are unable to provide the efficiency required by high data
rate applications. The main idea behind such systems is to build a multi-layer network where macro-
base-stations coexist with a great number of smaller cells, which in turn operate in a more distributed
fashion (e.g. the concept of femto-cell networks [4] or more general heterogeneous networks [5]).

Despite their practical appeal and unquestionable technological evolution, the fundamental limits
of ad hoc wireless networks still remain elusive and constitute an active research area [6, 7]. One of
the main research challenges is the characterization of the co-channel interference since the behavior
and the operating parameters of each transmit node may affect other concurrent transmissions.

Situating in this context, this thesis targets those issues by statistically assessing the aggregate
network throughput under different conditions. Specifically we attempt to answer when and how the
network operator should employ specific communication strategies such as packet retransmissions,
closest neighbor routing or carrier sensing multiple access (CSMA) protocol. To do so, we study
wireless networks whose nodes are statistically described with a Poisson point processes (PPP), then
apply recently developed methods of stochastic geometry [8, 9, 10, 11, 12, 13].

But before we go deeper into our results, we will first present a historical perspective of the ca-
pacity/throughput analysis for ad hoc networks, followed by an informal statement of the interference
network problem, the focus of this thesis, and discuss some possible ways to cope with it.



2 Introduction

1.1 Literature review

In this section we introduce the most important results concerning the capacity/throughput of ad
hoc, interference-limited wireless networks. Particularly we classify these contributions according to
the analytical approach used: statistical-based, deterministic or information-theoretic. The expected
forward progress metric - introduced in Section 1.1.1 - can be cited as an example of a statistical ap-
proach. Another example of a statistical-based metric is the transmission capacity, which is presented
in Section 1.1.2. We also describe in Section 1.1.3 another branch of the statistical analysis based on
spatial densities. A deterministic way to evaluate the throughput of wireless networks is introduced in
Section 1.1.4, while the most relevant information-theoretic contributions to the interference channel
(where ad hoc networks are a special case) are reviewed in Section 1.1.5. Aside from these results,
we also discuss other relevant works in Section 1.1.6, where we overview the literature of timing
channels, scheduling policies, stability issues and delay analysis in the context of wireless networks.

1.1.1 Expected forward progress and subsequent metrics

In the late 70’s, Kleinrock and Silvester published one of the first key results about the statistical
performance evaluation of wireless networks [14], where they investigated the relationship between
throughput and transmission range in multi-hop systems operating under ALOHA protocol. In [15],
Takagi and Kleinrock further developed that framework by considering CSMA protocols. Specifically
both works were based on a metric referred to as expected forward progress (EFP), measured in [m]
and defined in such a way to capture the trade-off between the one-hop normalized throughput and
the average one-hop length. Mathematically the EFP is defined as

EFP = d* (1 — P,), (1.1)

where d*, measured in [m], is the distance that a packet travels towards its final destination and P, is
the single-hop link outage (packet error) probability such that 1 — P, measures the normalized link
throughput.

Nelson and Kleinrock generalized in [16] these previous contributions considering scenarios
where the transmission range and the capture range (distance that defines whether a node can cause
collision) are different. Another extension was proposed in [17], where Hou and Li introduced the
concept of hopping strategy — a policy used by the transmitters to determine which node in a pool of
potential receivers should be selected to relay their packets based on their EFP. In 1987, Kleinrock
and Silvester published a reference tutorial [18] containing all these and other important results found
until then.

The aforementioned results, despite their great importance, are based on a simple physical layer
modeling, where packet collisions are unrelated to relevant aspects of the transmission system de-
sign as, for example, the spread spectrum (SS) scheme, the modulation technique and/or the error-
correcting code that are used by the communication links. Knowing this limitation, Sousa and Sil-
vester incorporated in the previous studies a more realistic characterization of outage events (packet
collisions) [19], evaluated then the optimal transmission range for networks whose links employ a
direct sequence spread spectrum (DSSS) technique. Their main contribution was to associate the
outage events with the required signal-to-interference-plus-noise ratio (SINR) threshold defined by
the SS scheme considered. Following this line, the EPF analysis can be extended to more realistic
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channel characterizations as in [20], where Zorzi and Pupolin studied the network performance in the
presence of fast-fading and shadowing.

In any case, the advantages of setting modulations with high cardinality or powerful error-correcting
codes had not been captured by those contributions since the EPF is built upon the normalized
throughput. To extend the EPF idea to understand the trade-offs involving modulation-coding schemes,
Subbarao and Hughes introduced the concept of information efficiency (IE), measured in [(bits-m)/s/Hz]
and defined as the product of the EFP and the link rate (spectral efficiency) [21], yielding

IE=EFP R=d* (1- P,) R, (1.2)

where R, measured in [bits/s/Hz], is the link rate determined by the modulation cardinality and the
coding rate of the error-correcting code.

In other words, to go from the EFP formulation to the IE, the normalized throughput metric
(1 — P,) was refined by considering that every link is transmitting with rate (spectral efficiency) R
defined by the modulation-coding scheme. The authors then applied this idea to assess networks
whose communication links employ M -ary quadrature amplitude modulation (M -QAM) with Reed-
Solomon (RS) correcting codes. Following this approach, several other studies have been carried
out to evaluate the performance of different strategies as, for example, frequency hopping (FH) [22],
direct sequence mobile networks [23], direct sequence code-division multiple access (CDMA) with
channel-adaptive routing [24] and coded multiple-input-multiple-output (MIMO) FH-CDMA [25].

It should be noted that, from the perspective of the whole network, the IE of a link does not
tell much about how efficiently the radio channel is being spatially reused. Bearing this aspect in
mind, the authors extended in [26] the IE concept by considering the network aggregate information
efficiency (AIE), measured in [(bits-m)/s/Hz/m?] and defined as the sum of the IE of all active links di-
vided by the area under analysis. This metric reflects the spatial density of the active links throughout
the network area' and it is mathematically defined as follows:

1 *
AIE = ZIE,:M (1-P,) R, (1.3)
€A
where A is the set of concurrent transmissions and \ [active links/m?] refers to the spatial density of
active links over the network area. The last equality holds in the symmetric case so that all links have
the same statistical characterization.

Using this approach, the authors studied transmission systems using M/-QAM and RS correcting
codes together with automatic repeat query (ARQ) retransmission scheme, providing insights on the
best design setting for single-hop ad hoc networks. In [27], the same framework has been applied
to assess the effects of outage events on the AIE. Following this line, a generalization of the AIE
idea is proposed in Chapter 3 to compare the performance of different hopping strategies in multi-
hop scenarios. The AIE metric is also related to the transmission capacity and other spatial density
metrics, which are our focus in the next two sections.

1.1.2 Transmission capacity

The transmission capacity (TmC), measured in [bits/s/Hz/m?], was firstly introduced in 2005 to
evaluate how efficiently the information bits are transmitted in the time, frequency and spatial domains

Iwe will come back to this later in Section 1.1.3
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[28]. Particularly in this first work, the authors defined the TmC as the highest spatial throughput -
sum of the throughputs of all successful links normalized by the network area - achieved when the
network is in its optimal contention density, while an outage constraint, i.e. a maximum outage
(packet error) probability, is required. Mathematically, the TmC is defined for the symmetric case as

TmC = \* (1 —¢€) R, (1.4)

where \* is the optimal contention density in [active links/m?] and ¢ is the outage constraint. To find
A*, the probability P, that an outage event occurs during the packet reception should be analyzed
as a function of both the density of active links A\ and the SINR threshold required for a successful
detection. In [28], the authors have considered that the link rate R and the SINR threshold assume
constant values and therefore they cannot be optimized.

Using this definition, lower and upper bounds of the TmC have been derived for single-hop net-
works whose links employ FH-CDMA and direct sequence CDMA techniques, and nodes are spa-
tially distributed following a 2-dimensional (2-D) homogeneous Poisson point process (PPP). Inter-
estingly the authors made use of stochastic geometry concepts for modeling the spatial distribution of
nodes over different network realizations, which will be discussed later in Chapter 2.

After this first contribution, the TmC approach has been extensively applied to evaluate well-
known communication strategies as, for instance, interference cancellation [29], threshold transmis-
sions [30], channel inversion [30], bandwidth partitioning [31], fractional power control [32], MIMO
systems [33] and directional antennas [33]. In [34], Weber et al. presented a monograph containing
these and other results.

Besides, other extensions of the TmC framework have been proposed to incorporate other aspects
of ad hoc networks such as multi-hop transmissions and more general spatial distributions. In [35]
Andrews et al. proposed the random access transport capacity (RA-TpC) to capture the particularities
of networks where communication over multiple hops is allowed, and obtained the the optimal num-
ber of hops for the scenario under analysis. In [36] Vaze further extended the RA-TpC framework by
considering a bounded number of packet retransmissions and correlation between the spatial events.
Ganti et al. adapted the TmC approach to incorporate general classes of fading and spatial distribu-
tions in the high signal-to-interference ratio (SIR) regime [37]. Multicast transmissions in multi-hop
scenarios are analyzed in [38], while spectrum-sharing schemes where primary and secondary users
coexist are the focus of [39].

In this thesis, the TmC approach is also further developed to incorporate packet retransmissions,
contention-based MAC protocols and queue stability. Such results are presented in Chapters 4 and 5.

1.1.3 Spatial density metrics

In 2003 Bacelli et al. presented at the Allerton conference a work, whose journal version was
afterwards published in [40], that provided the basis for a different framework to analyze upon they
built a different framework to analyze distributed wireless networks. In the development of their
approach, the authors also introduced metrics with the same nature of the ones previously described.
Here we will devote our attention to the history of such a branch, making the necessary parallels
accordingly.

As mentioned before, the authors in [40] introduced a sophisticated treatment of what they called
density of successful transmissions, defined as the mean number of transmissions per unit area and
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measured in [1/m?]. Based on this definition and considering the slotted-ALOHA access mechanism,
they quantified the trade-off between spatial reuse (density of active links) and the successful trans-
missions (probability that the communication in the active links are successful) based on properties of
Poisson point processes and stochastic geometry. Interestingly, they derived an elegant closed-form
equation to the success probability as a function of the density of nodes ), finding then the optimal
density of active links \*, proceeding similarly to the transmission capacity optimization.

In this same paper, they also slightly modified their scenario to assess the trade-off involving hop
length, density of active links and success probability. Employing a metric named density of progress,
they proposed an approximation to better understand the optimal progress in multi-hop scenarios. In
this case, the proposed metric quantifies how the packets are progressing per units of area, measuring
it in [(packets-m)/m?].

Breaking the packets using Shannon capacity formula (as when going from EFP to IE), the den-
sity of progress can be converted to the density of transport [41], evaluating the performance in
[(bits-m)/s/Hz/m?]. From this perspective, the authors derived the optimal transmission distance d*
for given density A and slotted-ALOHA access probability p. As one can notice, this metric resembles
the AIE presented in equation (1.3) and they indeed have the same physical meaning. In our point
of view, such different nomenclatures have arisen from the path that the authors took to develop their
analyses, emphasizing the aspects they found more valuable.

Following the same line of thought, the authors also described in [41] the density of throughput
as the sum rate (also obtained by breaking the packets using Shannon formula) per unit of area,
measured thus in [bits/s/Hz/m?]. As before, the density of throughput has the same physical meaning
as the spatial throughput described in the previous section.

For a didactic exposition of these spatial density metrics, one can refer to [41, Sec. III]; the
monographs [10, 11] provide a complete presentation of such a research line. All results presented in
the following chapters of this thesis are also built on it.

1.1.4 Deterministic approach

Gupta and Kumar introduced in [42] a deterministic way to characterize throughput capacity of
ad hoc networks, where they evaluated the relation between the achievable transmission rates and
the source-destination distances by using the transport capacity (TpC), measured in [bits-m]. They
applied such a methodology to quantify how many bit-meters can be sustained by the network when
the number of nodes grows to infinity, showing the scaling laws or asymptotic capacity of the network
for distinct scenarios based on geometric arguments.

Following this approach, many authors have investigated the TpC for a great variety of scenarios.
For example, Liang and Kumar [43] discussed cooperative strategies that are able to improve the
TpC scaling laws, while Xue et al. studied the network capacity in fading environments [44]. The
effects of path-loss on the asymptotic behavior of the network is analyzed in [45]. In 2006, Xue and
Kumar published a reference tutorial [46] presenting these and other contributions that use the TpC
framework.

In [47], Grossglauser and Tse introduced an innovative scheme to improve the TpC when mobility
is allowed. They showed that, in a scenario with mobile nodes operating under a two-hop relaying
transmission strategy, the per-node throughput capacity remains constant as the number of nodes
in the network increases, at the cost of unbounded packet delay. This important result motivated
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other researchers to further investigate the trade-off between throughput capacity and delay in mobile
wireless networks [48, 49, 50].

The asymptotic behavior of the network has been further studied under other different perspectives
such as in [51, 52, 53]. We also highlight here two other works [54, 55] that use an unconventional
perspective to derive some fundamental properties of wireless networks relying on established meth-
ods of electrodynamic and electromagnetic theories. Even though these lines of work are still active,
the deterministic approach to quantify the capacity of wireless networks is out of the scope of this
thesis.

1.1.5 Information-theoretic results

The interference channel problem was first described using the information-theoretic approach by
Shannon in 1961 [56]. Nevertheless, it was only after fourteen years of this exposition that a relevant
work regarding the interference channel was published, when Carleial presented a scenario where
the communication links under strong interference can achieve rates as high as in the case without
interference [57]. Based on that, Carleial further generalized the interference channel problem in
[58], obtaining many insights on its capacity region. After this milestone, other contributions have
been presented over the years, for example: [59, 60, 61, 62, 63, 64, 65, 66].

Despite all efforts, the capacity region of the interference channel is still unknown and a fruitful
research topic [67], where some promising ideas have been recently proposed. For instance, the
interference alignment strategy was introduced by Cadambe and Jafar [68] to determine the degrees
of freedom of the K -user interference channel, showing how every link can get “half of the cake”.
In 2011, Berry and Tse dealt with the interference channel combining information theory and game
theory [69]. We can refer to a recent book by El Gamal and Kim as a comprehensive survey of the
most important results and challenges on the field [70].

The contribution to the interference channel studies that is the most relevant for the study carried
out in this thesis was proposed by Baccelli et al. in [71]. There the authors derived the capacity region
of the interference channel when many pairs using Gaussian point-to-point (G-ptp) codes, showing
the decoding rule used to achieve it.

We will review the coding-decoding scheme that achieves this capacity region in Chapter 2, while
in Chapter 6 we will investigate the effects of the capacity-achieving strategy on the network spatial
throughput. In Chapter 7 we will also discuss the feasibility of employing such a scheme.

1.1.6 Other related works

In the seminal paper [72], Ephremides and Hajek stated many issues regarding the “unconsum-
mated union” between information theory and communication networks. The authors provided a
detailed description of the main problems that involve the information-theoretic approach to analyze
communication networks using the open system interconnection (OSI) layer division framework. For
instance, they cited protocol overhead, multiple access schemes and routing as higher layers’ as-
pects that play an important role in the network performance that have been already the target of
information-theorists. In fact, they successfully indicated in 1998 which direction the research in
wireless networks would go and, nowadays, the most part of their comments are still valid.
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One particular aspect from communications networks that is worth mentioning is the bursty be-
havior of data sources that generate information according to a given (stochastic) process. Gallager
first introduced in [73] the idea of timing channel, where the author analyzed the communication
between a source-destination pair considering packet arrivals that follow a Poisson process. In 1996,
Anantharam and Verdu derived important bounds of the Shannon capacity when bits that arrive in the
system are queued before being served [74] . In addition to such works, we can cite, amongst others,
[75, 76, 77, 78] as examples that have provided insights on the theory of timing channels.

An interesting detail is that those works applied several analytical tools firstly developed for con-
trol theory. Ephremides and Verdu stated already in 1989 the importance of control and optimization
theory in the analysis of communication networks [79]. From this perspective, Tassioulas published
a series of papers [80, 81, 82] devoted to study stability issues of queuing systems while the network
throughput is optimized. The idea behind these contributions is to find the best way to dynamically
allocate the network resources to the nodes/links during the access and routing procedures, stimu-
lating the development of admission control and scheduling policies. One important practical result
that came from these studies is the back-pressure algorithm [80] used to perform resource allocation
in multi-hop networks. Following this line of research, a wide range of works addressing stabil-
ity, resource allocation and scheduling have been proposed in the literature of wireless networks, as
summarized in [83, 84].

In the context of this thesis, we can cite the recent works by Haenggi and its group that attempt
to include aspects of queuing theory into the stochastic-geometric analysis of wireless networks.
Specifically in [85], Stamatiou and Haenggi gave the first step towards the combination of the PPP
framework and queuing theory in order to study single-hop ad hoc networks, evaluating their stability
and average delay. This work was also extended to other scenarios [86]. In a recently accepted
publication [87], Haenggi further developed the framework presented in [85] by assessing the local
delay for several configurations of Poisson networks. Other contributions regarding delay aspects in
Poisson networks can be found in [88, 89, 90, 91, 92]

In Chapter 5 we apply some of those concepts to cast throughput optimization problems where
queue stability is guaranteed for all communication links in the network.

1.2 Informal statement: chatting in a party problem

We introduce the problem of people talking at a party as an illustration of the interference network
that we will work in this thesis. Our goal with this informal statement is to provide some intuition and
show how we, humans, attempt to cope with it, imagining some possible decisions and their effects
on the network. Whenever we believe appropriate, we indicate which communication engineering
strategy is associated to our informal statement.

Let us consider a couple going to a party.. When they arrive, there are only few people around
talking to each other. In this situation, our reference couple can successfully have a chat; the others
are talking in an acceptable intensity (transmit power is limited); they are most probably far from
each other (randomly distributed over the area) and the background music (noise) is the main limiting
factor of the conversation (noise-limited scenario). After an hour, however, more people have arrived
and thus more people are chatting, increasing the interference level throughout the party place. More-
over, persons are getting closer and closer to our reference couple, which consequently starts facing
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problems to communicate. The others start suffering the same problem as well. What should each
person do to improve his/her own performance that is affected by external factors? If everyone does
the same, is the network still functional or, in other words, are people able to chat in the party?

A straightforward decision when the interference from people in concurrent conversations is dis-
turbing the couple under analysis is to speak louder (power control). This is in fact an optimal solution
for a single couple; yet, everyone speaking louder harms the performance of the network and at the
end of the day it is completely useless. This is easy to visualize in parties and restaurants when ev-
eryone is screaming when talking. So, even if it is optimal for one pair for a given fixed condition of
the network, this is not a good decision for the network as whole because other people will also take
the same decision of speaking louder. What else can be done then?

Another possible solution is to provide feedback regarding the success of what has been said
(ARQ protocol); if the message was not clearly understood by the listener, he would inform the
other who will repeat whatever he said before. This would work, but allowing for many repetitions
would be inefficient since a successful communication might require many trials. Even worse, if the
speaker has a lot to say (arrival process) and stays repeating the same thing for long periods, he would
probably forget something (buffer overflow, unstable queues).

A different strategy that could be used by our reference speaker is to say things slowly (lower cod-
ing rates). This increases the chances of a successful understanding by her listener while it does not
affect the others’ chatting. A drawback of this is that when many people are talking at the same time,
the speaker should talk very slow, which in turn negatively affect their communication efficiency.

We just listed some possible strategies that help people chat in a party when the number of con-
current conversations increases. As we can see, none of them alone can provide a successful answer
for network variations, which also depends on personal limitations on forgetting things before saying
or losing information after some communication attempts. Nevertheless, if we think how humans
react in a real situation, they use combinations of the possible strategies and they are normally able
to talk. Which strategies are employed and how to apply them are abilities learned and acquired from
previous experiences.

From Chapter 3 to 6 we mathematically analyze some of the communication strategies informally
described before, but considering a wireless network setting. We then discuss in Chapter 7 some
implications of those results, indicating guidelines on how distributed (ad hoc) adaptive algorithms
should be designed based on the network situation perceived by each node. In other words, we iden-
tify under which circumstances the strategies should be used and how to properly set the parameters
so that the information flow is efficient throughout the whole network.

1.3 Contributions and outline of the thesis

The work presented in this thesis is fully concentrated on the statistical evaluation of the spatial
throughput of wireless networks with Poisson distributed nodes. In the following, we outline this
thesis, providing the main contributions contained in each chapter.

* Chapter 2: We present the mathematical background of this thesis. First we review the capacity
region of Gaussian point-to-point codes for interference networks. We then revisit some of the
main properties of stochastic geometry and point process theory that are applied in wireless
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network modeling with focus on Poisson point processes (PPPs). Finally we investigate how
the coding-decoding scheme and the PPPs determine together the system performance.

» Chapter 3: We introduce the aggregate multi-hop information efficiency metric to quantify
the spatial throughput in networks that allows for multi-hop transmissions, evincing when the
closest-neighbor hopping strategy is preferable to the furthest-neighbor, and vice-versa.

* Chapter 4: We redefine the TmC metric to incorporate packet retransmissions and asyn-
chronous MAC protocols. Based on that, we find the number of retransmissions that optimize
the TmC for unslotted ALOHA, slotted ALOHA, CSMA with sensing at the transmitter and
CSMA with sensing at the receiver. We also compare the optimal solutions for each of those
MAC protocols, showing the conditions when one is preferable to the others.

* Chapter 5: We study the throughput optimization problem under packet loss and queue stabil-
ity constraints. We analytically derive the combination of medium access probability (slotted
ALOHA), coding rate, and maximum number of retransmissions that maximizes the spatial
throughput, considering that packets arrive at the transmitters following a geometrical distribu-
tion. We also discuss when the per-link throughput optimization does or does not provide the
optimal solution in terms of the network spatial throughput.

* Chapter 6: We analyze the expected maximum spatial throughput based on the capacity re-
gions of Gaussian point-to-point codes under two decoding rules, namely (i) treating interfer-
ence as noise, and (ii) jointly detecting the strongest interfering signals, treating the others as
noise. We also compare these results to the ones obtained for a scenario where transmitters
code their messages at predetermined fixed rates that are tuned to optimize the average spatial
throughput (this is the approach used in the previous chapters), regardless of particular real-
izations of the network. We analytically show that, when the same decoding rule and network
density are considered, the spatial-capacity-achieving scheme always outperforms the spatial
throughput obtained with the best predetermined fixed rate strategy.

* Chapter 7: We discuss the results presented in the other chapters and state several claims about
the optimal design setting as a function of the network condition. Based on these claims, we
indicate how an adaptive ad hoc algorithm should be designed so as to improve the system
performance.

» Chapter 8: We conclude the thesis and provide some possible future directions based on this
work.

It is important to note that the core of our mathematical results are found from Chapter 3 to
Chapter 6. In each of them, we model the network and use the performance metric in such a way
that the effects of the communication mechanisms under analysis are properly captured. Hence,
even though the essence of the network modeling is the same, each chapter is based on different
assumptions, which are justified therein. As mentioned before, we discuss the implications of those
results in a more general setting in Chapter 7.
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1.4 Author’s publications related to the thesis

This thesis is based on two published international journal papers [93, 94], one accepted journal
[95] (conference version [96]) and one submitted journal [97] (conference version [98]), in which the
author had the main responsibility in the analytical derivations and the writing procedure.

Besides, the author published another journal [99] and other seven related conference papers
[100, 101, 102, 103, 104, 105, 106] that are not covered by this thesis. The author also partially
contributed in the preparation of a survey concerning the different ways to measure capacity in ad
hoc networks [107], which served as the basis of a tutorial presentation [108].

At the time that this thesis was finished, the author was working on two other related publications:
one magazine paper targeting a complexity science view of the interference network problem, and
one journal paper (in collaboration with Jeffrey Wildman and Prof. Steven Weber) attempting to
characterize and optimize the spatial throughput when directive antennas are employed.



Chapter 2

Definitions and mathematical background

2.1 Coding-decoding scheme

This section reviews the capacity region of Gaussian point-to-point (G-ptp) codes for an arbitrary
number of communication pairs, which was firstly stated by Baccelli et al. in [71, Sec. II] and is the
basis of the coding-decoding scheme used in this thesis.

For convenience let us assume a network with area A, measured in [m?], where K + 1 transmitter-
receiver pairs (also called source-destination pairs) coexist!. Each source node i € [0, K] wants to
transmit an independent message M, € [1, 2"Ri] to its respective destination ¢ at rate R; measured
in [bits/s/Hz], where n is the codeword length. Let X; be the complex signal transmitted by source
j € [0, K] and let Z; ~ CN(0, 1) be the complex circularly symmetric Gaussian random variable
that represents the noise effect at receiver i. The detected signal Y; at receiver ¢ is then:

K
Y; :Zginj+Zi7 (2.1)

J=0

where g;; are the complex channel gains between transmitter j (TX;) and receiver ¢ (RX;). We assume
that every transmitted signal is subject to the same power constraint of (), measured in [W/Hz], so
the received signal between TX; and RX; is given by P;; = |g;;]*Q.

Each transmitter node uses a G-ptp code with a set of randomly and independently generated
codewords z!"(m;) = (x;1, ..., T ) (m;) following i.i.d. CN(0, 0?) sequences such that 0 < 0% < Q,
where m; € [1, 2"fi] | i € [0, K]. RX; receives a signal y;" over the interference channel given
by (2.1) and then estimates the transmitted message as m;(y}") € [1, 2"Ri}. An error event during
decoding happens when the transmitted message differs from the estimated one. Therefore the error
probability of the G-ptp code is:

Po= > > Pr[M; # M, (22)

where Pr[-] represents the probability that a given event occurs.
Next we use (2.2) to define the achievable rates and the capacity region for G-ptp codes.

'Tt is important to keep in mind that when A = R?, then K — oo.

11
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Definition 2.1 (achievable rates and capacity region). Let p,, be the average of the error probability
pn over G-ptp codes where n is the codeword length. Then, a rate tuple R = (R, ..., Ri) is said
to be achievable if p,, — 0 when n — oo. In addition, the capacity region using G-ptp codes is the
closure of the set of achievable tuple rates R.

This definition is important in our context because the spatial-capacity-achieving setting always
requires achievable rates, as we will discuss later. But before that, we apply Definition 2.1 to establish
the the capacity region of G-ptp codes.

Theorem 2.1 (capacity region from [71]). Let A be the set of all K + 1 transmitters in the network.
Let A; denote a subset of A that contains TX; with i € [0, K| and A; its complement. RX; then
observes a multiple access channel whose capacity region H,; is computed as

> P

keA;
4=
1+ > Py

JEA;

Hi=<{R: Y Ry<log, |1
keA;

VACAS. (2.3)

The capacity region H of the Gaussian interference channel with G-ptp codes is the intersection
of the capacity regions H; of all TX;-RX; links with i € [0, K], i.e.

M= M (24)
i=0
Proof. The proof of this theorem is found in?, [71, Sec. II]. ]

The capacity region stated above requires a decoder that treats some of the interferers as noise,
while others have their messages jointly decoded with the desired one. This result is the basis of the
optimal (OPT) decoder for G-ptp codes strategy. Next we present a corollary that states the achievable
rates for OPT.

Corollary 2.1 (achievable rates for OPT decoder). Assuming that the noise is Gaussian and the TXs
employ G-ptp codes, then the rate Ry, associated with a given link TX},-RX}, is said to be achievable
when the OPT decoder is employed if, and only if, the following inequality holds:

> DPri

i€ A%
Rk < 1Og2 1+ 1_5# - Z RZ', (25)
kj S
jEA ! ie A7 \{k}

where Aj represents the subset of transmitters whose messages are decoded by receiver k and A, U
» = Ais the set of all active transmitters throughout the network.

Proof. To obtain (2.5), we proceed with a simple manipulation of equation (2.3) in order to isolate
the rate Ry, related to TX,-RX}, link, considering the subsets .A; that lead to achievable rates. ]

2This theorem is a generalization of the Ahlswede’s theorem [109] proposed for the two sender-two receiver case.
More information about MAC and interference channels analyses can be found in [70, Chs. 4, 6]
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Another possibility of decoder is simply treat all interfering signals as noise, denoting this strategy
as interference-as-noise (IAN) decoding rule. This strategy is the one used in most chapters of this
thesis as well as in the available literature in the field>. Based on Theorem 2.1 we can state the
achievable rates under the IAN rule as follows.

Corollary 2.2 (achievable rates for AN decoders). Assuming the noise is Gaussian and considering
that TXs employ G-ptp codes, the rate Ry, associated with a given link TX-RX}, is achievable when
IAN decoders are used if, and only if, the following inequality holds:

Pkk

+—,
1+ > B
JEA\{k}

Ry <log, | 1 (2.6)

where A represents the set of active transmitters.

Proof. This is a special case of (2.3) assuming that RX;, only decodes the message of TX;, while the
other TXs are treated as noise. H

We are now able to say whether a rate is achievable when IAN or OPT decoding rules are em-
ployed, given the SINR experienced by the receiver under analysis. In the next section, we introduce
some basic properties of PPPs and how to apply them to statistically characterize the SINR distribu-
tion and outage events in wireless networks based on G-ptp codes described here.

2.2 Poisson point processes

Wireless ad hoc networks are generally composed of a random number of devices, whose posi-
tions are also random. This characteristic suggests that stochastic geometry can be a powerful tool
for modeling and analyzing such networks [8, 9, 10, 11, 12, 13, 110]. In particular spatial point pro-
cess theory provides the background necessary to characterize random patterns of points distributed
in high dimensional spaces [111]. Specifically we consider here that the spatial distribution of nodes
over the network area follows a Poisson point process (PPP).

In this section, we revisit the main properties of PPPs and apply them to study how the nodes
affect each other based on the coding-decoding scheme and the channel modeling assumed (i.e. what
is the power level of a signal emitted by a given node at any other node in the network?).

2.2.1 Basic properties

We introduce here the formal definition of PPPs and some of their fundamental properties. The
mathematical formalism used here follows the notes presented in [111].

Definition 2.2 (general Poisson process). Let S be a space and A a measure on S. A given point
process is defined as a Poisson point process on S if the following properties hold.

* For every compact set D C S, the count N (D) has a Poisson distribution with mean A(D).

3A detailed discussion about when it is worth using IAN or OPT is presented in Chapters 6 and 7.
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* If Dy, ..., D, are disjoint compact sets, then N(D1), ..., N(D,,) are independent.

Directly from this general definition, we can state the specific case used in this thesis, namely
2-dimensional (2-D) PPP.

Definition 2.3 (2-D PPP). 4 2-D PPP is obtained when S = R* and A(D) = [, \(z,y) dzdy, where
N, y) > 0 is the intensity function of the spatial process and (x,vy) € R2

More specifically, we can define the case where a 2-D PPP is homogeneously distributed through-
out the Euclidean space as follows.

Definition 2.4 (2-D homogeneous PPP). 4 2-D PPP is called homogeneous when A(D) = NA(D),
where the intensity of the process \ > 0 is constant throughout R* and A(D) denotes the area over
D.

We now use the definition presented above to state some interesting properties of 2-D homoge-
neous PPP, whose proofs can be found in [110], [111, Ch.1].

Property 2.1 (probability distribution [111]). Let us consider a 2-D homogeneous PPP in D € R?
with density \. Let n denote the number of points contained in D. Then,

AA(D))"
Pr[n in D] = M e MD) (2.7)
n!
Property 2.2 (Euclidean distance to nth neighbor [110]). Let us consider a 2-D homogeneous PPP
in R? with density \. Let x, be the distance from a given point to its nth neighbor and f(x,) its
probability density function (pdf). Then,

2

2 ()\ﬂ-xi)n €_>\7Tm". (28)

Tp(n —1)!

f(xn) =

Property 2.3 (Euclidean distance to the furthest neighbor in a sector within a given maximum dis-
tance [110]). Let us consider a 2-D homogeneous PPP in R? with density \. Let ¢ denote the angle
that defines the sector of interest and dp,, be the maximum distance considered. If x represents the
distance between a given reference point and its furthest neighbor in the sector ¢ within the maximum
distance dp,y, then the pdf of x, referred as to f(x), is

Aoz e~ A0 /2

f([lf) = W. (29)

Property 2.4 (superposition transformation [111]). Let &, and ®, be two independent homogeneous
PPP with intensities N\ and )Xo, respectively. Then, a superposition between this two processes,
denoted ©1 U O, is still a homogeneous PPP and it has intensity Ay + \o.

Property 2.5 (independent thinning transformation [111]). Let ®q be a homogeneous PPP with inten-
sity \g. Considering that each point of ®( has an independent probability p to be active (or probability
1 — p to be deleted), we can then establish a new point process ®, with intensity \, to characterize
the active elements of ©(. This transformation from ®q to O, is called independent thinning such that
b, is still a homogeneous PPP and it has intensity A\, = p)\o.
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Here we present two theorems of point process theory that will be fundamental in the derivations
presented in this thesis. Their proofs are found in [8, Ap. A].

Theorem 2.2 (Campbell formula [8]). Let ® be a 2-D homogeneous PPP in R? with intensity \. If
the set A denotes the points of a realization of ®, then

E [Z f(z')] = A/R2f(g:) dr, (2.10)

icA
where f(-) represents a measurable function f(z) : R* — [0, 00).

This theorem tells us that it is possible to compute the expected value (over different network
realizations) of the sum of a function of the points of the process as the integral of the same function
in R,

Theorem 2.3 (Mecke-Slivnyak [8]). Let the reduced Palm distribution be the distribution of a point
process conditioning on the existence of a point located at x, but not counting it. Then, for a homo-
geneous PPP, the reduced Palm distribution is equal to the distribution of the PPP .

In other words, Theorem 2.3 allows us to include a point in a homogeneous PPP without affecting
the distribution of the other points.

2.2.2 Applying PPPs to model wireless networks

We now focus on the application of the concepts previously stated to model wireless ad hoc
networks. Let us consider an infinite network (i.e. R?) composed by a random set A of nodes
that are actively transmitting information to their respective receivers at some time during a specific
observation period related to a packet transmission using G-ptp codes*. We then associate such a
period to a realization of a 2-D homogeneous PPP denoted by ®, whose density (intensity) is A
[nodes/m?]. We also assume the high mobility random walk model [10] so each observation period
can be analyzed an independent realization of ® (refer to the application of the displacement theorem
in [10, Ex. 1.3.10] for more details).

As the channel model, we consider a composition between a deterministic distance-dependent
path-loss with exponent @ > 2 and a channel gain (either random or fixed) [113] so the detected
power P;; at RX; due to TX; is P;; = |¢;5]°Q = hi;jd;;*@Q, where d;; and h;; denote the distance and
the channel gain® between these nodes, and () is the power constraint.

Assuming that all nodes transmit using omni-directional antennas over the same frequency chan-
nel with bandwidth (narrow-band), we can compute the signal-to-interference-plus-noise ratio (SINR)
experienced by RX;, when TX,, is its associated transmitter and IAN is the decoding rule employed®

4This observation period is considered to be large enough to sustain rates arbitrarily close to the channel capacity,
which implies that the code length goes to infinity. The effect of finite-length codes on the error probability in spatial
wireless networks is studied in [112].

3This is in fact a simplified model that may lead to meaningless results for z;; < 1. As pointed in [114], modified
versions of this model just increase the complexity of the analysis without providing significant differences.

“We can define the SINR when OPT is used in a similar way. For simplicity, we prefer to present in this section only
results regarding the IAN rule. The mathematical treatment of OPT is provided in Chapter 6.
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as
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SINR},;, = 2.11)

where A is the set of active transmitters (interferers) that disturb the reference link.

Clearly, the SINR is a random variable which depends on random distances, (random) channel
gains and the Gaussian noise. The computation of the SINR probability distribution, though, is
usually a very hard task, many times impossible, and closed-form equations can be found only for
few specific cases (e.g. [9, 115, 116, 117, 118, 119, 120, 121]).

Knowing this, we have decided to use in this thesis two of the simplest SINR modeling found
in the literature, namely path loss only using the closest interferer approximation and i.i.d. Rayleigh
fading channels. For simplicity, we further assume an interference-limited system so the effects of
the Gaussian noise can be neglected’. In this case, our goal is to associate the signal-to-interference
ratio (SIR) to outage events that will determine the link performance. But before that, we need to
define an outage event as follows.

Definition 2.5 (outage event). A given link TX;-RX}, is said to be in outage if the coding rate Ry, is not
achievable during any period of the message transmission. In other words, an outage event occurs
whenever S1 Ry < [k, where B is the SIR threshold of RX. determined by the channel capacity.

We can now relate the outage event to both the coding-decoding scheme that yields 3 and the
nodes’ positions in a given network realization. The following two propositions state the outage
probability for the two cases mentioned before, assuming the high mobility random walk modeling,
the IAN decoding rule and the bipolar model® introduced by Baccelli et al.[10].

Definition 2.6 (dominant interferer). A transmitter is said to be a dominant interferer of a given
receiver RXy, if, and only if, such a transmitter is able to cause alone an outage event in the TX-RXj,
transmission.

Proposition 2.1 (outage probability for dominant interferer approximation [34]). Let ® be a 2-D
homogeneous PPP in R? with intensity X\ > 0 [transmitters/m®*] that characterizes the transmitter
positions in a wireless network following the bipolar model. Assuming that the channel gains h;;
between transmitter TX; and receiver RX; are fixed (i.e. h;; = h and the channel modeling reduces
to the distance-dependent path loss), we can approximate the outage probability, denoted by P,, of a
typical link TXy-RX, using the dominant interferer approximation as

d_a —_\rd2p2/ e
P, =Pr SIROOZZd_a<6 A~ — e AT (2.12)
0i
icA
where d is the transmitter-receiver distance, dy; is distance between the reference receiver and its ith
interfering node, A is the set of active transmitters, and o > 2 is the path loss exponent.

"We can cite [30] as an example when the thermal noise is considered.

81n this model, the transmitters are generated by the point process and each of them is associated with one receiver,
located at a fixed distance d from it in a random orientation, to establish a communication link. By this definition the
receivers are not part of the generating point process.
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Proposition 2.2 (outage probability for Rayleigh fading [10]). Let ® be a 2-D homogeneous PPP in
R? with intensity X > 0 [transmitters/m?] that characterizes the transmitter positions in a wireless
network following the bipolar model. Assuming that the channel gains h;; between transmitter TX;
and receiver RX; are independent exponentially distributed random variables with unity mean (i.e.
independent Rayleigh fading channel), we can compute the outage probability, denoted by P,, of a
typical link TXy-RX, as

hood_a _M\kd2p2/a
P,=Pr|SIRpp= —— < f| =1— B (2.13)
> hoidy”
jeA 0

where k = wI'(1 + 2/a)l'(1 — 2/«) with I'(-) being the Euler Gamma function, d is the transmitter-
receiver distance, dy; is distance between the reference receiver and its ith interfering node, A is the
set of active transmitters, and o > 2 is the path loss exponent.

The proof of these propositions can be found in the references [34, 10], respectively. To give
an idea on how they are derived, both cases apply the Mecke-Slivnyak Theorem (Theorem 2.3) to
include a typical link in the PPP and Campbell Theorem (Theorem 2.2) to compute the expected
value of the aggregate interference at the typical receiver over different spatial realizations of the
network to then compute outage probability. In the first case, the proof is based on the existence of a
dominant interferer by associating the SIR threshold 3 to a circle within which no other transmitter
may reside, or outage occurs. In the second case, the proof is based on computing the aggregate
interference statistics using Laplace transforms.

Despite the mathematical details behind the proofs, these propositions show elegant closed-form
equations to evaluate the probability that a typical link of the network is in outage. In the following
chapters, we use some variations of those propositions’ to compute the outage probability in the
scenario under analysis. It is worth noting that the only difference between (2.12) and (2.13) is the
factor  in the exponential term, which only depends on the path-loss exponent. Hence the behavior
of the curves are similar when the same « is assumed and the use of one model over the other will
depend on the convenience of the scenario under study. In any case, we argue that the lessons learned
from the results obtained using one model can be extended to the other one.

9We present proofs of our new propositions whenever they are necessary.
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Chapter 3

Analysis of hopping strategies

In this chapter we investigate whether it is preferable to have a large number of short single-hop
links or a small number of long single-hops in a multi-hop wireless network. We derive analytical
expressions to compute the proposed metric aggregate multi-hop information efficiency (AMIE) un-
der different hopping strategies, and analyze the trade-off involving robustness of single-hop links,
co-channel interference and hopping strategy. Our results show that, the best hopping strategy is
closely related to the relation involving the reliability of single-hop links and the interference caused
by multiple transmissions of the same packet in a multi-hop link. For instance, as we will see later, if
the spectral efficiency of single-hop links is high, meaning that we have less robust links, the highest
AMIE is achieved when short single-hops are used, even though this may lead to a larger number
of hops and, consequently, higher interference levels. Conversely, when links with low spectral effi-
ciency are used, the best hopping strategy is to transmit to the furthest neighbor. It should be noted
that our analysis does not focus on the optimum number of hops, which is not a design parameter in
our framework, but rather a consequence of the hopping strategy adopted.

3.1 Aggregate multi-hop information efficiency

The aggregate multi-hop information efficiency (AMIE) is proposed here as an extension for
multi-hop scenarios of the metrics transmission capacity and information efficiency (cf. Chapter
2). Let d,, and Ry, be the separation distance between source and destination nodes measured in
[m], and the spectral efficiency of multi-hop links measured in [bits/s/Hz], respectively. Also, let A,
measured in [links/m?] denote the density of successful transmissions over multiple hops. Then, the
AMIE metric is defined as follows.

Definition 3.1 (AMIE). The aggregate multi-hop information efficiency of a wireless network, de-
noted by M, is defined as

M = )\s dmh Rmha (31)
with M measured in [(bits-m)/s/Hz/m?].

It is important to point out that AMIE and the transport capacity (cf. Section 1.1.4) have a similar
purpose, namely to quantify the effects of the progress of information bits on the efficiency of the

19
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network. Nevertheless, while the latter metric was built to be a deterministic physical limit of the net-
work when its density grows to infinity (asymptotic analysis), the former is a statistical quantification
of the network efficiency under specific strategies and more realistic scenarios. Since our objective
is to provide guidelines on how a network designer should choose the appropriate hopping strategy
to statistically guarantee higher efficiencies, the transport capacity is therefore not the best choice of
metric to evaluate the scenario studied here. In this case, the AMIE metric has the same purpose of
the spatial density of transport (cf. Section 1.1.3), assessing the network in a statistical manner.

If the average transmitter-receiver separation distance in single-hop links is dg,, then the average
number of hops & between source and destination can be bounded as k > d/ds,. Equality in this
expression is only valid when the route connecting those nodes is a straight line. We consider here
such routing and thus the transmission of a packet requires on average k = dy,,/dg, channel usages. If
we further assume that all single-hop links have the same spectral efficiency Ry, the overall spectral
efficiency Ry, of a multi-hop link is R, = Rg,/k, and the product d,, Ry can be written as

dmh Rmh = dsh Rsh- (32)

The multi-hop spectral efficiency Ry, is used here to allow us to compare the spectral efficiency
of multi-hop links with different number of hops, assuming that only one single-hop (transmitter-
receiver pair) of a given multi-hop link can be active during packet transmission (regenerative for-
warding).

Now, let A\, and P, denote the density of active single-hop links and the single-hop outage prob-
ability (i.e., probability that a packet is not successfully transmitted over a single-hop link), respec-
tively. Assuming independence between hops' and that packets detected in error are not retransmitted,
the density of successful multi-hop links s can be evaluated as

A = A (1= Py~ (3.3)

Inserting (3.2) and (3.3) into (3.1), we can rewrite the AMIE as a function of single-hop link
parameters and the average number of hops as

M =dg N\ (1 = P)* Ry, (3.4)

It is important to remind that this equation is only valid for the case when routes connecting
sources to destinations are straight lines, implying that & = d,;,/dg,. If actual routes deviate from
these perfect routes, then k > d,/dg, and, consequently, equation (3.4) can be viewed as an upper
bound on the AMIE.

In the next section, we will present the network modeling used in our analysis and derive expres-
sions for the parameters needed to evaluate equation (3.4).

3.2 Network modeling

Let us consider an infinite network composed by nodes with packets to be transmitted (potential
transmitters) and nodes capable of receiving those packets (potential receivers) so they can interact

IThis assumption will be justified later in Section 3.2.
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Fig. 3.1: Tllustrative example of the neighborhood set A; of a transmitter ¢, defined by the angle
¢ = zm and the transmission range d,,.x. The white-colored circles represent potential receivers, and
belong to ;. The potential receivers r; and r, are the furthest and the closest neighbors, respectively.

in time slot basis to form communication links. These two sets are modeled as two different 2-D
homogeneous PPPs with densities \; and )\,. We also assume the high mobility random walk model
(cf. [10]) such that each time slot can be viewed as an independent realization of both point processes,
which guarantees the independence between hops.

Using the distance-dependent path loss as our channel modeling such that the detected power P;;
ata given RX; is F;; = hdi_jo‘, where d;; 1s the distance between RX; and TX; that emitted the signal,
and h is a fixed channel gain determined by the transmit power (we do not consider fading channels
in this chapter). We assume that all nodes use the same transmit power that is equal to 1 without loss
of generality, and all receivers operate with the same sensitivity level P;,, which defines a necessary
condition for decoding. From this, we can obtain the transmission range of a transmitter, denoted by

dmax and measured in [m], as
1
1 \ao
Amax = ) .
<P min) (3 5)

By symmetry, the reception range of a receiver - the maximum separation distance between the
transmitter and receiver such that packets can be correctly received - is also equal to d.x. Note
that transmission and reception ranges are defined from receiver sensitivity perspective only, assum-
ing that interference is not present. In other words, the transmitter-receiver distance being smaller
than d,,.x 1s necessary for successful communication, but it is not sufficient since outage events may
still happen. Based on the definition of transmission and reception ranges, we can now define the
neighborhood sets of a node.

Definition 3.2 (neighborhood sets). The neighborhood set N of a transmitter t is defined as the
set of potential receivers located within the circular sector centered at t, with radius equals to the
transmission range dy.x of t and angle ¢ = zm, with 0 < z < 1 (refer to Fig. 3.1). On the other hand,
the neighborhood set N,. of a receiver r is the set of potential transmitters located within the circular
region centered at r, with radius equals to its reception range dy,x.
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Note that the angle that defines the neighborhood of a transmitter must be smaller than 7 in order
to guarantee that packets are forwarded toward their destinations [17], as illustrated in Fig. 3.1.

Next, we describe a simple medium access scheme that operates based on the relative distances
between transmitters and their neighbors.

3.2.1 Medium access procedure and hopping strategies

We assume that packets are transmitted on a time slot basis and that transmitters select their cor-
responding receiver among the nodes in their neighborhood sets based on their respective distances.
Three selection criteria, or hopping strategies, will be considered: closest neighbor, furthest neigh-
bor and random selection. In the event that two or more transmitters select the same node as their
associate receiver, one of those transmitters is randomly chosen to effectively pair up with that node,
while the others will be turned off during that time slot.

If neighborhood set V; of transmitter ¢ is empty during a given time slot, ¢ will be inactive during
that time slot and, consequently, it will be disconnected from the network. In the next time slots,
new realizations of the point processes that define the spatial distribution of potential transmitters and
receivers are considered and, thus, nodes disconnected during a given time slot may be connected in
subsequent ones.

Here it is important to mention that the hopping strategy assessed in this chapter is fixed, opposing
to the opportunistic strategies introduced in [11, Ch. 17], [41]. In that case, the transmitters select,
at each time slot, their respective receivers that maximize the packet effective progress. As one can
expect, this adaptive strategy will outperform any of the fixed rule policies that are the focus of this
chapter. Nevertheless, the benefits of the opportunistic strategy are obtained at the expense of more
complex computations when maximizing the packet progress in each time slot.

3.2.2 Network parameters

In this section, we derive the expressions needed for evaluating the parameters used to calculate
the AMIE, considering the three hopping strategies previously mentioned.

Proposition 3.1 (single-hop distance). Let r* denote the receiver selected by a given transmitter t.
The average TX-RX separation distance dg, between t and r* for the furthest neighbor, the closest
neighbor and the random selection hopping strategies are given by

1 2d\/ Nz M | erfi(v/ Az dmax)

gt = 3.6
CaEW/ v 1~ endi G.6)
1 2dpax vV Az — e erf(v/ Az dmax)
dghe = = (3.7)
4 2 1— e)xrzwdmdx
2
dsh,r - g dmax; (38)

where erf(x) f Ii e v dy and exfi(z) = —/—1 erf(z\/—1) are the standard and imaginary
error functions, respectively.



3.2 Network modeling 23

Proof. The average distances in expressions (3.6)-(3.8) can be determined from the corresponding
pdfs of the distance d* between ¢t and 7* with 0 < d* < d,.x for each hopping strategy. The derivation
of such pdfs is based on Properties 2.2 and 2.3, considering the area of the circular sector instead
of the complete circumference and assuming that the neighborhood set \; is not empty. Then, the
pdf of d*, denoted as f(x), for the furthest neighbor, closest neighbor and random neighbor hopping
strategies are given by:

Az
ff(l’) = 2)\rZ7TZIZ' m, (39)
A2z
fc<$) = 2)\rZ7T.Z’ m, (310)
2

max

where 0 < 7 < dax.
We hence obtain the expressions (3.6)-(3.8) by evaluating the expected value of each one of the
distributions above. O

Proposition 3.2 (density of active links). The density of active links \, can be approximated for the
three hopping strategies studied in this chapter as

Ao & <1 — exp (—)\)\; (1- exp(—)\rzﬂdfmx))>> Ar- (3.12)

Proof. Let us recall that each active receiver pairs up with only one transmitter to form a link. Then
the number of active links is equal to the number of active receivers so the density of active links A\,
can be expressed as

)\a = Pr,act )\r = (1 - Pr,act) )\ra (313)

where P, . is the probability that a (typical) receiver r is active, and Fnact is its complement.

In order to obtain an expression for Fnact, let us first denote by P, the probability that a receiver
r is chosen by a transmitter ¢ in the neighborhood set N; of t. Next, we will assume that the processes
of selecting a receiver performed by transmitters are independent of each other. Clearly, this is a sim-
plification, as the selection processes are independent only if the neighborhood sets N; of transmitters
are disjoint. As we will show later, this independence assumption leads to good approximation for A,
regardless of the hopping strategy considered.

Let us consider a receiver r, whose neighborhood set N, has cardinality x;, which is a Poisson
random variable with mean \rd?_, . Therefore, the probability that 7 is not selected by any t € N,
can be approximated by

Praa = E[(1 — B )®) = e~ Podimdi (3.14)

where E[-] denotes expectation taken over the distribution of .

To determine P, ;, we apply Theorems 2.2 and 2.3 as follows. Let us consider a transmitter ¢ and
a typical potential receiver 7 included in the initial point process in the neighborhood set N; of t.
The probability that r is the selected receiver depends on its distance d to ¢ and the hopping strategy
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Fig. 3.2: Density of active links ), as a function of the node density A (density of potential transmit-
ters \; plus density of potential receivers ;) for the furthest neighbor, closest neighbor and random
selection hopping strategies. The analytical curve was obtained from equation (3.12) and the points
were computed via Monte-Carlo simulation assuming A\, = A\, = \/2 and d,p,x = 4 [m].

adopted. Let us first consider the closest neighbor strategy. In this case, P, ; is the probability that no
other receiver is closer to ¢ than rq. Thus,

1— e_ArZﬂ-dglax

P,=E [e—x,zndg] - (3.15)

max

2

- ax (uniform

where the expectation is taken over the density function of dy, given by f4,(z) = 2z/d
distribution of a point inside a circumference with radio day).

Following the same procedure for the furthest neighbor strategy and random selection, we can
shown that the corresponding probabilities P, have exactly the same expression as (3.15). To con-
clude this proof, we insert (3.15) into (3.14) and then the resulting expression into (3.13), yielding

(3.12). N

Fig. 3.2 presents density of active links A, as a function of the sum A; + J\;, denoted by A, for the
three hopping strategies studied here. We can see a good agreement between the approximated ex-
pression (3.12) and numerical results obtained via Monte-Carlo simulation, regardless of the hopping
strategy considered.

Proposition 3.3 (single-hop outage probability). Let 3 be the SIR threshold related to the coding-
decoding scheme. Considering the outage event definition presented in Definition 2.5 and the domi-
nant interferer approximation in Definition 2.6, the single-hop outage probability P, for the furthest
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neighbor, closest neighbor and random selection hopping strategies can be approximated by
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Proof. Let us consider the dominant interferer approximation. Then we can apply the outage proba-
bility stated in Proposition 2.1, but considering here that the transmitter-receiver distance d in equation
(2.12) is now a random variable whose density function depends on the hopping strategy considered.
Then the average probability of occurrence of outage event is given by

Pr[SIR < §] — /Pr SIR < 8 2] f(x) da, (3.19)

where f(-) is the probability density functions of the transmitter-receiver distance d*, determined
according to the hopping strategy considered. Using each one of the pdfs given in (3.9), (3.10) and
(3.11), we can obtain the single-hop outage probability for each hopping strategy. ]

Remark 3.1. The outage probability approximations stated above are lower bounds of the actual out-
age probabilities and hence the AMIE obtained with by them are upper bounds. As commented after
Proposition 2.1, this approximation does not affect the exponential behavior of the outage probability
if compared to the actual outage probability when Rayleigh fading is assumed (cf. Proposition 2.2).
For this reason and due to the geometric nature of our proof (which is more intuitive), we prefer to
use here the dominant interferer approximation. One can refer to [34] for a more detailed discussion
of this approximation, the tightness of this bound for the hopping strategies used in this chapter can
be found in [103].

Note that the evaluation of the outage probability just presented still requires the SIR threshold S
related to the coding-decoding scheme. We assume here a Gaussian point-to-point code and the IAN
decoding rule as described in Section 2.1 such that Corollary 2.2 can be used to determine whether a
rate is achievable.

Let us assume here that all transmitters use the same fixed coding rate Ry, to send their messages
and the receivers employ the IAN decoding rule described in the previous chapter. Therefore, the
target spectral efficiency of a single-hop link is also Ry, and can be related to the threshold 3 by
computing the SIR required to achieve the channel capacity (upper bound in equation (2.6)), yielding

B =2fn —1, (3.20)

or, in other words, if the application requires a spectral efficiency of Rg,, then the SIR threshold that
a packet is successfully received is 2% — 1,

If we consider a fixed multi-hop distance d,,,;,, then the aggregate multi-hop information efficiency
M given by (3.4) can be evaluated using equations (3.6)-(3.8) for the average single-hop TX-RX
separation distance, equation (3.12) for the density of active links, equations (3.16)-(3.18), together
with (3.20), for the outage probability and finally applying k& = d.n/dg, (perfect routing assumption)
to compute the number of hops.
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3.3 Numerical results

In this section, we apply the aggregate multi-hop information efficiency to investigate the spatial
throughput of a wireless network for the three hopping strategies analyzed in this section. Table 3.1
shows the parameter values used to obtain the numerical results, except when otherwise stated. It
is worth noting that the relative values between such values are more important than their absolute
numbers themselves.

We first study the effects of the single-hop spectral efficiency on the AMIE by means of curves M
versus Rg,, which are shown in Fig. 3.3. We can see that, regardless of the hopping strategy adopted,
the curve M versus Ry, can be split into two regions: for small Ry, where M is an increasing
function of Ry,, and for large Ry,, where M is a decreasing function of Rg,. When Ry, is small, the
required threshold  for correct reception is also small, since the communication links are robust,
and outage events are unlikely to occur. Hence the AMIE of the network increases as Ry, increases.
Since links are robust against interference when Ry, is small, single-hop links are allowed to have
large TX-RX separation distances, reducing the number of hops &k and decreasing the multi-hop error
probability. When Ry, is small, the best hopping strategy is then to select the furthest neighbor, as
evinced by Fig. 3.3.

When Ry, is large, the threshold S is large, and error events are more frequent since the links
are now more vulnerable to interference. As Ry, increases, outages are more and more frequent,
and M becomes a decreasing function of Ry,. Note that, if single-hop links are more vulnerable to
interference, transmitter-receiver separation distance d* should be made as small as possible, even if
a small d* leads to a large number of hops £. In fact, Fig. 3.3 shows that, when Ry, is large, the best
hopping strategy is to select the closest neighbour.

Next, we investigate how the AMIE is affected by traffic intensity, measured in terms of the
density of potential transmitters )\;. Fig. 3.4 shows curves M versus )\ for Ry, = 2 [bits/s/Hz]
and different hopping strategies. All curves in Fig. 3.4 are similar to those presented in Fig. 3.3,
and can be split into two different regions, now according to the traffic intensity. For small density
of transmitters (i.e., low traffic intensity), the level of interference in the network is low, and the
AMIE is not limited by interference, being an increasing function of the density of transmitters.
Furthermore, since the level of interference is low, single-hop links can have large transmitter-receiver
separation distances, reducing the number of hops and, consequently, decreasing the multi-hop outage
probability. Therefore, as shown in Fig. 3.4, when the density of transmitters is small, the highest
AMIE is obtained with the furthest neighbour hopping strategy.

Tab. 3.1: Parameter values used in the numerical analysis.

Parameter Description Value
o Path loss exponent 4

dmn Multi-hop distance 3m
Amax Transmission range Im

Ar Density of receivers 1 RX/m?
o Sector angle /2
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Fig. 3.3: AMIE M vs. the required spectral efficiency Ry, for \; = 0.05 [TXs/m?], considering the
furthest, the closest and a random neighbor hopping strategies. The curves have been obtained using

equations (3.4), (3.6)-(3.8), (3.12) and (3.16)-(3.18).
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Based on the preceding discussion, we can conclude that the existence of two regions of behavior
in Figs. 3.3 and 3.4 can help the network operator to assess whether a network is operating with its
spatial throughput limited by interference for a given density of transmitters and single-hop spectral
efficiency. For instance, according to the results shown in Fig. 3.4, a network operating with single-
hop spectral efficiency Ry, = 2 [bits/s/Hz] has its performance limited by interference if the density
of transmitters exceeds 0.04 — 0.05 [nodes/m?]. However, this scenario can be changed if the single-
hop spectral efficiency (coding rate) is carefully reduced, resulting in more robust links and therefore
higher AMIE, as suggested by the curves in Fig. 3.3.

3.4 Summary

In this chapter we have studied the performance of multi-hop wireless networks operating un-
der different hopping strategies. We proposed here a metric called aggregate multi-hop information
efficiency (AMIE) such that the efficiency of the information flow throughout the network can be
assessed capturing the effect of communication in multiple hops.

Specifically three hopping strategies have been considered: furthest neighbor, closest neighbor
and random selection. We derived closed-form equations to approximate several network param-
eters used to compute the AMIE, which include the average number of hops between source and
destination, single-hop outage probability and single-hop spectral efficiency. Using our proposed
formulation, we identified the network operating conditions under which a given hopping strategy
outperforms the other options, providing guidelines on the optimal design setting for a given network
condition.



Chapter 4

Analysis of packet retransmissions for
different MAC protocols

In this chapter we investigate the transmission capacity (TmC) of a wireless network when packet
retransmissions are allowed. We consider here a network operating under different MAC protocols,
namely unslotted and slotted ALOHA, and CSMA with carrier sensing at the transmitter and with
carrier sensing at the receiver. We then derive analytical expressions to compute the maximum al-
lowed number of retransmissions attempts that leads to the optimal TmC. Numerical results show that
CSMA with carrier sensing at the receiver (asynchronous transmissions) reaches the highest maxi-
mum transmission capacity when the traffic intensity is low, while slotted ALOHA (synchronous
transmissions) is the best choice when the traffic intensity is high.

4.1 Network modeling

Let us assume a single-hop ad hoc network where transmitters (TXs) are located according to
a 2-D homogeneous PPP & with density A [TXs/m?]. Every transmitter is associated with only
one receiver that is located d [m] away in a random orientation following the bipolar model [10].
Packets of constant size associated with the time length 7' [s] arrive at the transmitters to be sent to
their respective receivers according to independent Poisson processes with mean i [packets/s/TX].
Applying the same approach described in [122], the spatial density )\, [packets/m?] active at some
time during a given time period 7" is
Aa=AuT. 4.1)

In this chapter we apply the same coding-decoding strategy as Chapter 3, where transmitters use
G-ptp codes and receivers employ the IAN decoding rule introduced in Section 2.1. Considering that
all transmitters code their messages using the same rate i, measured in [bits/s/Hz], we can apply the
outage event stated in Definition 2.5, where the SIR threshold required for a successful reception [ is
computed based on the channel capacity, yielding

p=2%—1. (4.2)

We assume here two variations of the ALOHA, and the CSMA MAC protocols, which will be
described later. In addition, packets that are not successfully decoded during a transmission attempt

29
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can be retransmitted up to m times. If this limit of retransmissions is reached without success, the
packet is then lost. The signaling between a transmitter and its receiver for retransmission requests
occurs over an orthogonal error-free control channel, and the delay introduced by these requests is
assumed to be negligible compared to the packet length.

We also assume a very dynamic network such that, at each retransmission attempt, the network
topology changes and the spatial correlation between successive packet retransmissions can be ne-
glected (high mobility random walking [10]). It is important to mention that, if the network is (quasi-
)static, such an independence assumption does not hold and therefore spatial correlations [117, 123]
plays a role in events under analysis (outage, retransmission and carrier sensing). In that case, it is
hard or even impossible to obtain closed-form solutions to the optimal design setting. We argue that
our results, even though relying on a somehow unrealistic modeling, are still valid and provide useful
insights on the trade-offs that determine the network performance. In Chapter 7, we will come back
to this point and compare the designing choices when the network is highly mobile or (quasi-)static.

In the next section, we redefine the TmC concept targeting the network analyzed in this chapter.
We then cast an optimization problem to determine the maximum number of retransmission m* that
maximizes the TmC for a given maximum acceptable packet loss probability € and density A,.

4.2 Optimizing the transmission capacity

Let us start this section by redefining the TmC metric to incorporate the specificities of the sce-
nario studied in this chapter.

Definition 4.1 (transmission capacity). Let Py be the packet loss probability after all retransmissions
attempts. Then, the transmission capacity, denoted by T and measured in [bits/s/Hz/m?], is defined

as
R
T =X (1= Po) 3 (4.3)
where m is the average number of retransmissions.

In the following subsections, we apply this definition to find the maximum number of retransmis-
sions that leads to the optimal transmission capacity for different MAC protocols. As in the previous
chapter, we use here the dominant interferer approximation and the distance dependent path loss
channel modeling (refer to Section 2.2.2 for more details).

4.2.1 Slotted ALOHA protocol

When ALOHA protocol is used, packets are transmitted regardless of the channel status (busy
or idle). In the slotted version of ALOHA, packet transmission begins at the first time slot after
the packet arrival. If the packet is detected in error and not yet counted to be in outage, it waits an
exponential distributed time according to the arrival process to be retransmitted in the first time slot
after such random time (this maintains the proprieties of the Poisson distribution). We assume here
that the time slot length 7" is equal to the packet duration.

It is important to mention that this assumption simplifies our analysis since the outage event in the
packet reception can be related to the outage event in only one time slot. If, conversely, we assume
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that a packet length is greater than one slot, then the success of a packet transmission will be related to
reception errors in other slots, which makes assessment more complicated. In any case, our approach
can be followed in this more realistic scenario.

In the following, we derive an expression for the allowed number of retransmissions m* that
maximizes the TmC for the slotted ALOHA protocol.

Proposition 4.1 (slotted ALOHA). The maximum number of retransmissions m”* that results in the
optimal transmission capacity for the slotted ALOHA protocol when the target packet loss probability
is € is given by

1
x 1 o[ l1—€Fm 1 1
m” = max (1—51+L>10g2 1+d < T« )\aﬂln(l_glﬁrn)) . (4.4)

Proof. The idea behind this proof is to write the TmC expression given by (4.3)) in terms of m. We
begin with the packet loss probability, remembering that a packet is lost if all 1 + m transmission
attempts (one transmission and m retransmissions) have failed (outage events). Hence we can relate
the target packet loss probability € and the probability P, that a packet is transmitted through a link
in outage during a transmission attempt using the following expression:

NIl

€= pPrtm (4.5)

We now turn our attention to the average number of transmission attempts 1 4+ m. Since a new
transmission attempt occurs with probability 7, (i.e. an outage event occurred and the packet need to
be retransmitted), we can write

1—PHm 1—¢
1+m= Z = - (4.6)

1 —etm

To compute the TmC, we still need to write an expression for the spectral efficiency R in terms
of m. As already mentioned, the SIR required /3 to achieve an outage probability P, is related to R
by the channel capacity formula (4.2). To obtain an expression for 3, we begin by noting that packet
retransmissions increase the interference level throughout the network, which can be modeled as an
increase in the density of nodes in the network. Therefore, the apparent average density of nodes, as
far as the effect of packet retransmission attempts on interference is concerned, can be written as

Aapp = (1477) A, (4.7)

If we consider here the dominant interferer approximation' and the distance dependent path loss
channel modeling (cf. Section 2.2.2), we can apply Proposition 2.1 to state the following relation:

P, =1 — ¢ dwmd?8e (4.8)

!'As discussed in the previous chapters, it is worth remarking that this approximation is a lower bound on the actual
outage probabilities. For more details, refer to [34]. The tightness of our approximation for the scenarios described in this
paper can be found in [104, 122].
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Inserting (2.12), (4.6) and (4.7) into (4.8), we have after some manipulation:

e

1—emm 1 1 2
— 1 ) 4.
g ( 1—e Amd? n<1_61+1m)> #9)

Here we insert expressions (4.5), (4.6), (4.2) and (4.9) into (4.3) to obtain the desired expression
for TmC as a function of m:

1
1 o[ 1—eFm 1 1
T(m):)\a (1—51+m>log2 1+d ( 1< )\aﬂln<1_€1+lm)> . (4.10)

Finally, we take the value of m that maximizes TmC to conclude the proof. ]

e

Remark 4.1. In the preceding equation:

* One can easily show that (4.10) is a concave function in term of m so there always exists a
m € N that leads to the maximum TmC;

* The maximum number of retransmissions m is a natural number and typically small. Thus the
search for the maximum TmC is computationally simple;

» If m is assumed to be a real number, it is possible to obtain the derivative of (4.10) in closed
form and, then, compute m* by solving 7'(m) = 0.

4.2.2 Unslotted ALOHA protocol

When the unslotted version of the ALOHA protocol is used, transmissions begin as soon as pack-
ets arrive and, in case of reception error, the packet waits an exponential distributed time according to
the arrival process to be retransmitted (if retransmission is still possible). Therefore, a packet trans-
mission initiated at time ¢, is interfered by transmissions initiated within the interval [t, — T, ¢ty + T').
Based on this observation, we derive a proposition that gives the maximum number of retransmission
for the unslotted ALOHA case.

Proposition 4.2 (unslotted ALOHA). The maximum number of retransmissions m* that results in the
optimal transmission capacity for the unslotted ALOHA protocol is given by given by

m* = ma (1 %) log, [ 1+d (1= i 1 1 ! ' @.11)
— X — € m n . .
me N 82 1—e 2)\m 1 — ¢itm

Outline of proof. The proof of this theorem basically follows the same steps as the proof of Proposi-
tion 4.1, with the difference that we now consider interfering transmissions in the interval [T, T').

Therefore, the density of transmissions assumed in the unslotted ALOHA case 1S Aunsioted = 2Aslotted =
2. [
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4.2.3 CSMA with carrier sensing at the transmitter

When CSMA is used, packet transmissions occur only when the channel is assumed to be idle.
The key mechanism of CSMA is the carrier sensing performed before each transmission attempt. If
the channel is considered busy, i.e. if the SIR measured at the decision-making node (which can
be either the transmitter or the receiver) is lower than a given threshold [, then that transmission
is backed off for an exponential distributed time period related to the arrival process. Otherwise,
when the channel is considered idle, the packet transmission begins immediately. We will assume
here that the back-off procedure may be repeated as many times as needed until the node finds the
channel free and the packet is eventually transmitted, i.e. there is no constraint on the number of
back-offs; this assumption can be easily relaxed [122] at expanse of more complicated mathematical
formulation. Note that after a transmission begins, the receiver may experience SIR< [, leading to
an outage event. We will also assume that the back-off procedure performed in each transmission
attempts are independent of each other. As in the ALOHA protocol case, packets detected in error
can be retransmitted up to m times before being dropped. If retransmission is required, the packet
waits an exponential distributed time related to the arrival process to start the access procedure once
again.

The channel sensing can be performed either at the transmitter node or at the receiver node. The
former case is more usual and natural, as carrier sensing is typically triggered by packet arrivals at the
transmitter. In this subsection, we will consider CSMA with carrier sensing at the transmitter side,
while CSMA with carrier sensing at the receiver is considered in the next subsection.

Based on the transmission mechanism described above, we state the following proposition.

Proposition 4.3 (CSMA with carrier sensing at the transmitter). The maximum number of retrans-
missions m* that results in the optimal transmission capacity for the CSMA protocol with sensing at
the transmitter is given by

1 d—“
m* = max (1 — em> log, (1 + —) , (4.12)

me N S;la

where s, is the sensing range required to achieve the required packet loss probability € for a given
m. The value of s,, is the s that is solution to the following equation:

1 — emm 11— emm 1
As | 1+ exp )\a7€1+71'$2 = — < In - , (4.13)
1—e€ Aa 1—c€ 1 — ¢Tim

where A, is the area of the shaded region (portion of a disk of radius s centered at the receiver) shown
in Fig. 4.1, and given by

752 ;S

Ay = 2
s d* d
ms? +dy[s? — — —2s*cosT' | — ) ;s
4 2s

Proof. The proofis based on analyzing the transmission of a reference packet that begins att = 0. Let
&1 and &, be the outage events associated with the interference caused by packets whose transmissions

IN

(4.14)

V
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RXi O

Fig. 4.1: Illustration of CSMA protocol with carrier sensing at the transmitter, where TX-RX 1is the
reference link and TXi-RXi is an interferer link. An error event occurs whenever an active interfering
transmitter lies inside the shaded area.

begin in the intervals [—7",0) and [0, T'), respectively. Thus, the outage probability P, can be defined
as
Po=Pr[& U (EN&E)] =Py + (1= Poi) Poo. (4.15)

In this case, F,; is the probability that there exists at least one active transmitter inside the area
A (shaded area in Fig. 4.1) whose packet transmission initiated within interval [—T",0), while P, 5
is the probability that at least one transmitter inside area A, begins its transmission within interval
[0,7"). Considering two distinct set of transmitters related, namely the set of active transmitters of
density A, and the set of transmitters that are trying to access the channel of density Acgma, We can
compute the probabilities F,; and F, 5 based on Proposition 2.1 as

Py =1 — e At (4.16)
PO,Z — 1 _ 6_>\csmaAs‘ (4.17)

Intuitively, the density of active links is equal to the density of transmitters trying to access the
network that have not been backed off, i.e.

)\act = (1 - Pb) )\csmaa (418)

where P, is the back-off probability. The back-off event corresponds to the event of having at least
one active transmitter within the circular region of radius s centered at the transmitter. Therefore, B
is given by

Py=1— ¢ hms’, (4.19)

The set of transmitters trying to access the network includes backed off links as well as links in
retransmission mode. Thus, the density Ay, 1S given by

1 - phHm &

Z. 1—pm ]
1-P D R=X

1-P, 1-PF

Acsma = Aa (4.20)
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Next, we insert (4.18), (4.20), (4.19), (4.16) and (4.17) into (4.15) and, then, we apply (4.5) to
obtain (4.12) after some manipulations. The area A, is computed using geometric arguments, which
completes this proof. 0]

4.2.4 CSMA with carrier sensing at the receiver

In [122] the authors proposed a variant of CSMA in which the carrier sensing is performed at the
receiver such that it senses the channel and reports to its associate transmitter whether the channel is
busy or not. The communication between receiver and transmitter regarding the channel condition is
over a control channel, assumed error-free. Based on this, we can state the following proposition.

Proposition 4.4 (CSMA with carrier sensing at the receiver). The maximum number of retransmis-
sions m* that results in the optimal transmission capacity for the CSMA with carrier sensing at the
receiver is given by

d—a
m* = max (1 — eﬁ) log, (1 + _) , (4.21)
S (03

me N m

where s, is the sensing range required to achieve the required packet loss probability € for a given
m. The value of s, is the s that is solution to the equation:

1 1
1 —ettm 1 1—et4m 1
I exp )\a;ﬂsz = — € In — |, (4.22)
1—e¢ Aa 1—c€ 1 — e¢Tim

where I is given by

2m
/ / (1 o _COS—1< r242d2—s2 —2rdcos¢)) r dgbd’f’ 'S S d
2d\/r2+d2 2rd cos ¢

, (4.23)
—1f r2+2d>—s%—2rdcos ¢ .
/ d/ (1——005 <2d\/r2+d2 Zrdww))?“dédr 15 >d
such that ) )
2ds —
U — cos— (W) . (4.24)

Proof. The proof of this theorem is similar to the proof of Proposition 4.3, with some key differences,
as commented next. Firstly, note that the interference caused by transmissions that begin within the
interval [—7,0) is completely avoided when carrier sensing is performed at the receiver. During the
interval [0, T"), however, interfering transmitters may still be present inside the sensing region (disk
of radius s center at the receiver). This will happen if interfering transmissions begin within such
interval and if the transmitter of the reference link is not located inside the sensing region of the
interfering link (otherwise, the carrier sensing at the receiver of the interfering link would detect the
transmission of the reference link).

Fig. 4.2 shows an example of such an event, where we can see that the occurrence of this event
depends on a particular combination of relative positions (distance and angle) between the nodes
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Fig. 4.2: Illustration of CSMA protocol with receiver sensing, where TX-RX is the reference link
and TXi-RXi is an interferer link. An outage event occurs whenever an active interfering transmitter
lies inside the area inside the dashed circumference and the reference transmitter is out of the range
determined by the solid circle. The parameters ¢ and r are the integration variables.

of the reference link and the interfering link. The non-homogeneous Poisson process of interferers
by-product of this sensing procedure has density \(r, ¢), which is computed as

A(r, @) = Aesma Prfactive| (r, ¢)]. (4.25)

Here we use the fact that the outage probability can be obtained in the non-homogeneous case as
1 — e El# of interferers] 11997 'we can use Definition 2.3 to find the expected number of nodes in the area
based on the intensity function \(r, ¢) and then

Py=1—exp (— H (7, ) rdrd¢>
R
—1—exp (-Acm U Pr[active| (r, ¢)]r drdgb) , (4.26)
D

where the integration region D and the probability Pr[active| (7, ¢)] are computed based on the ge-
ometry of the sensing procedure (see Fig. 4.2).
Now, we denote [[,, Prlactive| (r, ¢)]r drd¢ as I, to finalize this proof®. O

2Refer to [122, Th. 7] for further details in the geometrical analysis of the sensing procedure.
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4.3 Numerical results

In this section, we present a numerical analysis of the transmission capacity based on the expres-
sions derived in the previous sections. We consider a network with transmitter-receiver separation
distance equals to d = 1 [m], path-loss exponent o = 4 and required packet loss probability e = 0.02.

Fig. 4.3 shows the transmission capacity TmC as a function of the maximum number of retrans-
missions m, for all four MAC protocols studied in this chapter, and for spatial density A, = 0.05
[packets/m?]. We can see that all curves present the same behavior as the maximum number of re-
transmissions increases, regardless of the medium access scheme. Using a larger maximum number
of retransmissions m allows for a larger outage probability P, needed to achieve the required packet
loss probability € (as there will be more chances to transmit a packet until it is received without error).
This higher outage probability means that information can be coded at higher rates R and thus the
TmC increases.

On the other hand, a higher F, leads to a larger average number of retransmissions m, increasing
the network traffic and reducing its efficiency since more channel usages are needed to eventually
transmit a packet without error. The combination of these opposite effects explains the curve behavior
as the maximum number of retransmission increases. Our analytical formulation provides the value
of the maximum number of retransmissions that maximizes the TmC.

Next, using the proposition stated in the previous section, we analyze the optimal TmC obtained
by setting of the maximum number of retransmission m*. Fig. 4.4 shows the optimal TmC versus
the packet density for all four MAC protocols investigated. We note that the both CSMA protocols
outperform slotted ALOHA for lower \,, while the opposite happens when )\, is large. For lower
densities of packets, the contention resolution capability of CSMA protocols provides a considerable
gain in the system efficiency (specially when carrier sensing is performed at the receiver?), evincing
the benefits of carrier sensing and back-off procedures

When )\, is further increased, clearly the traffic intensity throughout the network increases, re-
gardless of the MAC protocol, causing more packet errors and backed off transmissions (for CSMA
protocols). These in turn lead to a larger number of links trying to access the network (packets to be
retransmitted and backed off), worsening the interference problem. Then, at higher levels of packet
density, the synchronous nature of transmissions in the slotted ALOHA becomes a relevant feature
for interference control. Consequently, such protocol has the highest transmission capacity when A,
increases.

3Intuitively, CSMA with carrier sensing at the receiver performs better than that with carrier sensing at the transmitter,
because interference is harmful at the receiver side.
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Fig. 4.4: Optimal transmission capacity 7* computed using Propositions 4.1 to 4.4 versus packet
density A, for slotted and unslotted ALOHA, and CSMA with sensing at transmitter and at the re-
ceiver.
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4.4 Summary

In this chapter we investigated the effects of packet retransmission on a revisited version of the
transmission capacity (TmC) metric using the maximum number of allowed retransmission as the key
parameter. Specifically, the formulation proposed here captures the trade-offs involving spectral ef-
ficiency, traffic intensity and transmission robustness, which will determine the system performance.
Based on this new TmC definition, we derived analytical expressions to evaluate the maximum num-
ber of possible retransmissions that maximizes the TmC in networks operating under different varia-
tions of CSMA and ALOHA protocols.

Our numerical results show the traffic operating regions where the sensing capability of the CSMA
protocol is preferable to the synchronous nature of the slotted ALOHA, and vice-versa. Specifically,
when low packet densities are considered, the highest maximum transmission capacity is achieved by
the CSMA protocol, while slotted ALOHA provides the best results for denser networks.
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Chapter 5

Throughput optimization with queue
stability and packet loss constraints

In this chapter, we extend the spatial throughput framework by studying single-hop networks with
Poisson field of interferers and a limited number of retransmissions under a maximum packet loss
probability and queue stability constraint. This provides another step towards a combined approach
for addressing the longtime unconsumed union between information and networking theory [72].
Specifically, constrained maximization problems for the effective link throughput and the network
spatial throughput of a random access network are cast, in which transmitters are located according
to a PPP, packet inter-arrival time is geometrically distributed, and there is a limited number of re-
transmissions. In both optimization problems, we are interested in determining the operating points
- access probability, coding rate and maximum number of retransmissions - that lead to the highest
performance subjected to those constraints, given the packet arrival process and the density of trans-
mitters in the network. Closed-form approximate solutions are then derived to both design settings as
well as upper bounds of their highest achievable values based on the unconstrained optimization.

Our results show the effect of the network density and arrival rate on the network performance,
indicating under which network parameters the optimal constrained performance converges to its un-
constrained solution. Necessary conditions so that either effective link throughput or spatial through-
put is achievable under the stability and packet loss constraints are also provided. Finally, we make
evident the effect of selfish and collective decisions on the network efficiency, showing when self-
ish link optimization solutions can be also the best choice in terms of network-wide sum throughput
performance.

5.1 System modeling and baseline definitions

5.1.1 Network modeling

We consider a single-hop ad hoc wireless network, in which the spatial locations of transmitters
(TXs) at each time-slot t € N, are distributed according to a homogeneous Poisson point process
®, C R? with non-null intensity Ay [TXs/m?]. Each TX is associated with one receiver (RX) follow-
ing a bipolar model [10] and packets arrive at the buffer of TX,, k € Ay, according to a stochastic

41
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arrival process Xy (t), where A, denotes the set of all TXs generated by ®. The arrival process to
transmitter TX}, is assumed to be stationary with an average rate ji;, packets/slot. We assume buffers
of infinite capacity and time is slotted with slot duration equal to the packet duration.

At the end of each time slot ¢, the locations of the nodes are shuffled following a high mobility
random walk as proposed in [85]. Due to this mobility model, the displacement theorem can be
applied [10, Sec. 1.3.3] and hence the TXs’ locations in each time slot ¢ are generated as a different
sample of the point process (. This assumption results in independence between the nodes’ positions
across time slots.

It is important to say that the high mobility random walk is somehow an artificial mobility model
and practical scenarios should consider correlation between events that occur in different time slots
[117, 123]. Nevertheless, such an approach is hard or impossible to lead to closed-form, analytical
expressions due to the coupling between service rate and interference process. For that, in this work,
we employ the high mobility random walk model in order to derive neat closed-form expressions,
which in turn are still able to provide valuable and crisp insights on the network performance. We
will further discuss these aspects related to mobility in Chapter 7.

Once again we assume that each TX;, employs Gaussian point-to-point (G-ptp) codes and its
corresponding receiver RX;, employs the IAN decoding rule introduced in Section 2.1. We also apply
Definition 2.5 to assess whether a given communication between TX;-RX. is in outage during a
packet transmissions at time slot . Assuming that the noise power is negligible in comparison to the
interference and a channel modeling composed by a deterministic distance-dependent path loss with
exponent o > 2 and random channel gains h, we can rewrite equation (2.11) for time slot ¢ as

hkk(t)d_a
> hu(t)(dy (1))

JeA\{k}

SIR(t) = — 2> B, (5.1)

where d is the transmitter-receiver distance in [m], d,,(¢) and h,, () are the distance and the random
channel gain between TX, and RX,, during a given time slot ¢, and A(t) C A refers to the subset of
active TXs in t. The SIR threshold 3, required by RXj. to successfully decode the packets is a system
parameter that depends on the coding rate Ry, [bits/s/Hz] employed by each TXy. As in the previous
chapters we can related the SIR threshold and the coding rate using the channel capacity, yielding
Rk = 10g2<1 + 51@)

Likewise Chapter 4 we consider the ARQ retransmission protocol such that the success or failure
(outage) of the packet detection at RX is reported back to TX through an error- and delay-free control
channel. In that case, the undelivered packet returns to the head-of-line of the queue, waiting to be
retransmitted in the next medium access. Assuming that a packet can be retransmitted through the
TX,—RX} link at most my, times, then there are two possible outcomes for packet departure from
the queue of TX,, namely (i) it is either correctly received or (ii) it is not successfully received after
1 + my, attempts and then dropped from the queue, declaring a packet loss event. Hence, the packet
loss probability for TX;—RX,, denoted Py, is a function of the number of allowed retransmissions
and the outage probability, i.e. Py = f(F%k, my), Where the outage probability is given by F, ;, =
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5.1.2 Queue stability

Assuming here a single-server discrete-time queuing system, the backlog Q) (%) (queue length)
for TX}, is evolving for t € {0,1,2,...} as [84]:

Qr(t + 1) = max|[Qx(t) — Yi(t), 0] + Xk (1), (5.2)

where { X, (¢)},2, and {Y}(¢)},2, are the arrival and the server process at TX, in time slot ¢ and the
initial queue lengths {Q(0)} are chosen independently across TXs according to some probability
distribution. Note that packet arrival and channel access events are independent across sources and
slots.

For the definition of queue stability, we resort to [124].

Definition 5.1 (stability). A multidimensional stochastic process (not necessarily Markovian) Q(t) =

(Q1(t),...,Q1(t)) is stable if for x € N)! the following holds
tli)m PrQ(t) < x| = F(x) and lim F(x) =1, (5.3)

X—00

where F(X) is the limiting distribution function and x — oo means that x;, — oo, Vk. If a weaker
condition holds, namely,

lim liminf Pr[Q(¢) < x] =1, (5.4)

X—00 1—00

then the process is called substable (tight or bounded in probability).

The queue stability evidently depends on both { X (¢) };=, and {Y}(¢)},2,. While the former is an
input parameter that the network operator cannot always control, the latter is determined by the MAC
protocol, the retransmission policy, and the probability that a packet is successfully received during
a transmission attempt. Such a success probability is in fact a physical layer figure, which in turn is
related to the decoding strategy, co-channel interference, noise power, and desired signal strength.

5.1.3 Performance metrics

Based on the system model presented above, we define next the performance measures of interest,
which are the effective throughput of a point-to-point link and the spatial throughput of the network.

Definition 5.2 (effective link throughput). Given that the network is in a steady state, the effective
link throughput of a given link TX;—RXy, denoted by R and measured in [bits/s/Hz], is defined as

Ry,
1—|—mk’

Ri = (1 — Poxek) Pk Pk (5.5)

where py, is the probability that the queue of TX}, is not empty in a given time slot, py. is the probability
that TX}, is granted to access the radio channel in a given time slot, and my, is the average number of
packet retransmissions.
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Definition 5.3 (network spatial throughput). Given that the network is in a steady state, the spatial
throughput, denoted by S and measured in [bits/s/Hz/m?], is defined as the sum of the effective link
throughputs Ry, ¥V k € Ay divided by the total network area A [m*] where the points of process are
distributed, i.e.

1
S= > Ri (5.6)
keAg

In the following sections, we use these definitions to assess and optimize the performance of
decentralized networks where the transmitters’ locations are spatially distributed according to a 2-
D homogeneous PPP. Specifically, in Section 5.2, we study how the typical link tunes selfishly its
access probability, its maximum number of retransmissions, and the SIR target as a mean of maxi-
mizing its own individual effective link throughput. In Section 5.3, on the other hand, we take on a
different approach by considering the spatial network throughput, formulating a network-wide opti-
mization problem, and showing under which conditions the selfish (local) behavior also maximizes
the aggregate throughput.

5.2 Effective link throughput optimization

In this section, we aim at computing the maximum effective throughput that a link can support
such that the packet loss probability is bounded by given maximum value and queue stability is
guaranteed. Specifically, we show which design parameters achieve the maximum performance and
then analyze how the effective throughput is related to the network density and the arrival rate.

5.2.1 Scenario description

Let @, be a homogeneous Poisson point process of intensity Ao [TXs/m?] distributed over the
infinite plane, i.e. the point process @y is analyzed in R? and therefore the number K of TXs over
the network tends to infinity. For convenience, we describe here a scenario in which there are i TXs
distributed over the network area but always keeping in mind that X' — oo.

Let us assume that at the beginning of each time slot ¢ every TX; with k € A is granted access
to the network with probability p, independently of other nodes (slotted ALOHA) and to its queue
state. We define a vector p = (p1,...,px) € [0, I]K associated with the (constant) channel access
probability of TX, k = 1,..., K with K = | Ag|. Furthermore, if the queue system of all TXs is
in the steady state, we can compute the probability that TX; does not have any packet to send in its
buffer as 1 — py, for k € Aj, and then we can similarly define the vector p = (p1, ..., px) € [0,1]%.
The probability py is related to the offered load of TX}, queue, as discussed next.

Let us consider that every TX}, is subject to independent geometrical arrivals withrate 0 < g, < 1,
allowing us to define the set of arrival rates p = (pq, ..., ux) € [0, 1]K. If the server process has
finite average E[Y}(¢)] = 6, < 1, which is a function of the access probability, the outage probability
and number of allowed retransmissions, i.e. 0x = f(pk, Pox, M), the non-empty state probability, or
the load of the queue system, p;, is defined as [125]

pp 2 % (5.7)
k
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From this, we can clearly see that p is a function of p. In the steady state, the probabilities given
by the vector p are also fixed regardless of which TXs are granted to access the network in a specific
time slot. Once again it is important to remember that we consider here the high mobility random
walk such that the nodes’ position in every time slot can be viewed as a different and independent
realization of the point process ®,. Therefore, we can identify two independent events related to
every TXy in a given time slot ¢ assuming that the network has already reached its steady state: (i)
access the network with a fixed probability p; and (ii) have an empty queue with probability 1 — py.

Based on the above facts and the homogeneity of the PPP ®,, we can characterize the point pro-
cess of the active TXs in network (i.e. the nodes that are awarded to access the network and have
a packet to transmit in its queue) after the steady state is achieved applying two thinning transfor-
mations (cf. Property 2.5) associated to the events described above. Let us denote by ®, the point
process byproduct of a thinning transformation of @ related to the network access defined by vector
of probabilities p. Hence we use Theorems 1.3 and 2.3 from [111] to verify that ®, also forms a
homogeneous PPP of intensity \, = p Ao, where = = ||x||, /K with x|, being the L'-norm of a
vector x. It is important to note that p can be interpreted as the average access probability that the
TXs have.

Note that, in the steady state, the probability that an empty queue event occurs in a given slot ¢
for every TXy, Vk € Ay, is independent of the event of TX;, being granted to access the network in
that slot, even though the probability p;. is a function of p,. Knowing this, we can characterize the
process of the actual concurrent transmissions ®, which is also a homogeneous PPP, as a thinning
transformation of ®, in accordance with the probabilities characterized by p. Then, we proceed as
before to evaluate the intensity of the process ® as A = p p .

5.2.2 Analytical results

We focus on a typical link TX,—RX such that RX, is placed at the origin of &, and TX|, is located
at fixed distance d from it. Packets arrive at TX, queue system with rate j, following a geometric
distribution. We calculate the access probability pg, the coding rate R, and the maximum number of
retransmissions g, which lead to the maximum effective stable throughput (cf. Definition 5.2) for
the typical link TX(—RX.

We consider here that the small-scale fading channel gains h,, (t) between TX, and RX,, are i.i.d.
(across time and space) random variables with constant during time slot ¢. From these assumptions,
we can rewrite the SIR equation (5.1) for the reference link as:

hoo (t) d—“
22 hoj(t) (doj(t))=

JEA(t)

SIR(t) =

(5.8)

such that the success probability is then given by Pr [SIRg > ], where [, is the SIR threshold
required by TX;—RX, in order to sustain a rate of Ry = log,(1 + ) with arbitrarily low error
probability using G-ptp codes and IAN decoding rule.

We assume in this chapter the outage probability for the Rayleigh fading case for exposition
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convenience, i.e. h is an exponential random variable with unit mean'. Besides the time index is
dropped whenever the quantities and the results are independent of the time slot ¢, i.e. in the steady
state. From these assumptions, we can propose a variation of Proposition 2.2 for the scenario studied
in this chapter as follows.

Proposition 5.1. Given that all TXs have stable queue systems and the network is in the steady state,
the outage probability F, , experienced by TXo—RX, is given by

_ 2/a
Pyg=1— e PPlord5 (5.9)

where k = wI'(1 + 2/a)l(1 — 2/«). In addition, if the maximum acceptable packet loss probability
is bounded by a threshold ¢, the following inequality has to be satisfied:

Pm™ <e. (5.10)

Outline of proof. The proof of (5.9) follows the results presented in [10], noting that p and p are
constants when all TXs have stable queues and the network is in its steady state. To prove (5.10), we
use the fact that packets not successfully decoded by RX,, can be retransmitted up to my times before
being dropped and that the outage events are independent across time slots, yielding that the packet
loss probability is Py o = Polbi-mo. (]

We proceed now with obtaining the probability that the buffer of a typical TX, is empty using
similar arguments as in [85], under the assumption that a high mobility random walk model is con-
sidered and that the point process @ is studied in R?. Consider that the system is in steady state and
recall that the queue of the typical TX is subject to i.i.d. packet arrivals with probability sy and i.i.d.
departures with probability 6, the offered load is then py = 119/6y. Using elements from the theory
of G/G/1 queues, the probability that the queue is empty is shown to be max[0, 1 — po] [125]. Fur-
thermore, from the definition of p, and assuming stable queues for all TXs, we provide the following
result.

Proposition 5.2 (service rate). Given that all TXs have stable queues and the network is in steady
state, then the service rate 0 of a typical link is given by

_ 2
o—P P dor A28/

“ 1+mg *
1- (1 _ PP hor 267/ )

Proof. We first recall that the medium access process is independent of the outage events, which are
independent across time slots. Therefore, we have that
90 - poﬁ 5
]_ + mo
where 1 + ™ is the average number of transmission attempts available for a packet arriving at TX,
given by

fo = po (5.11)

(5.12)

mo 1 o Pla—mo
1+m0:1+Po,0+P02,0+---+P(T00:;Pok,o:1_15070' 613
Applying the sequence of equations (5.9) — (5.13) — (5.12), the proof is concluded. 0

'Our results can be easily extended to either other general fading distributions or to the dominant interferer approxi-
mation used in the previous chapters.
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The above proposition provided the server rate at TX, assuming that its queue is stable. We derive
now a sufficient condition that guarantees queue stability at TX,.

Proposition 5.3 (queue stability). Given that all TXs excluding TX, have stable queue systems and
that the network is in steady state, a sufficient condition for stability in the queue system of TX is

given by
—1

1 mo 1+m0 41 B Ao (i—1)kd? 2/
Lo < Po Z ( . )(_1)2+ e~ P o(i—1)rd* B, ) (5.14)

- 2
=1

Proof. To provide a sufficient condition for stability in the queuing system of TX,, we first assume
the worst case scenario for interference, namely all TXs granted access the network transmit packets
regardless of their backlog state (cf. dominant network [126]). In other words, transmitters with
empty queues make dummy transmissions, yielding p = 1 and that the density of active transmitters
is A = DAo. Let 6y 4om denote the server rate of TX for the dominant network configuration. Based
on the fact that the arrival and server processes are jointly ergodic and stationary (refer to [85] for
more details), we can use the inequality 1y < 6y 4om as a sufficient condition for the stability of the
typical link [125]. Then, applying the statements presented above into (5.11) yields

AL a2

o 14+mg *
1— <1 — e phon @B/ )

o < 0o.dom = Po (5.15)

To obtain equation (5.14), we manipulate the binomial expansion of the denominator of (5.15), which
concludes this proof. O

Ho

Remark 5.1. Following Definition 5.1, we can say that, when py = 0
0

— 1, the queue of TX, is in
the boundary of stability.

Before presenting the optimization problem that is the main target of this section, we rewrite the
effective link throughput formulation stated in Definition 5.2 as:

Ry
Ro = (1-P
0 ( pkt,o) Do pPo 1+,
Ry (1 —P,y)
_ 1+m, 0 0,0
= <1_Po,0 0>p0 Po 1—P01’—0’_m0
= po po logy(1+ o) e PPAom A (5.16)

Combining the above propositions with (5.16), we formulate the optimization problem which
provides the highest effective link throughput the typical link TX,—RXj can achieve while its packet
loss probability is bounded by a maximum value € and its queue is stable as follows?:

21t is interesting to say that in some applications there is a requirement of minimum coding rate R, and then an
additional constraint regarding the threshold Sy must be included. Clearly a different optimization formulation for this
new scenario might be found, but in any case it will never outperform the solution without the minimum rate constraint,
which in fact provides an upper bound to the new problem.
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2/a

max  po po logy(1+ By) e PPAo% 5o

(Po,Bo.mo)
__ 2/a 1+mg
S.t. (1 — e—p;l))\olf dQBO ) S €,
o—P P ok d283/"
0o = po — RN EvTTE
1— (1 _ PP hor 25 )
14+mg —1
]_ ‘I‘ ™m : = . 2/
0o > no Z < Z 0) (_l)z—i-l e P Xo(i—1)kd? g ] > [ig-
i=1

The above optimization problem is non-convex in general, hence it is hard to obtain an analytical
solution. In order to gain some insight, we propose an approximate closed-form solution to determine
the maximum constrained effective link throughput R by observing some properties of the problem.

Proposition 5.4 (highest constrained effective link throughput). Given that all TXs excluding TX,
have stable queues, the packet loss constraint € has a small value and the system reached a steady
state, and assuming that the number of retransmissions my is a non negative real number, the highest
effective throughput 'R{; achieved by the typical link TXo—RX, under queue stability and bounded
packet loss can be approximated by

a/2
R~ o (1 — €) log, (1 + <_ln(“° (1= 6))) ) : (5.17)

PP )\QK, d?

where the system parameters (p, By, mg) that lead to the approximated optimal effective rate R are
given by

po = 1,

o (I (1)
& _< DD Mok d2 ) ’
. 1

my =

log (1 — po(1 —¢€))

Proof. The optimal values or functions of them are denoted below using *. Note first that the optimal
solution should be in the boundary of stability (i.e. p§ = /10 — 1), indicating that whenever TX,,
is granted access to the medium, it has a packet to transmit. As the packet loss constraint € is a small
number, we can make the following approximation P , = P; g)+m’6 ~ ¢ for the optimal solution (i.e.
Py 1s approximated to its maximum acceptable value). From these observations, using equations
(5.12) and (5.13), we have the following relation:

* * 1- €T%6 * e
o = 05 = py . TP (1—61“"0) ~ po(l — €). (5.18)
1
We also manipulate the outage constraint (5.10) knowing that Py, = ¢'*™0, which yields

*2/a

€~ (1 _ 6—5? Ao & d? B >1+m3 . (5]9)
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1
Then we can combine (5.18) and (5.19) by isolating the term 1 — ¢'*™ to obtain the following
relation:
Po

Y

from where, after an algebraic manipulation, we compute the SIR threshold /; that leads to our
approximation to the highest effective throughput as

. (In(ph) = In(uo(1 — €)\*/*
ﬁo~< 5D Aopid? ) : (5.20)

Recalling that R = log, (1 + ), we then apply (5.18) and (5.20) into (5.16), which results in

* o2
R~ pio (1 — €) log, <1 + (hl(po} — Infpo(1 = E))) ) . (5.21)

ﬁ ]_9 )\0 kd?

In order to optimize (5.21), the access probability p should be made as large as possible, resulting
in p; = 1, which proves (5.17). To conclude the proof, we apply p; = 1 into (5.20) and (5.18),
obtaining then the design parameters that maximize our approximated . U

From the equations presented in Proposition 5.4, we can state interesting properties of our pro-
posed approximation to the optimal link effective throughput as follows.

Corollary 5.1. The link throughput R and the system parameters (pg, 55, m¢) stated in Proposition
5.4 have the following properties:

* R is a concave function of 1y € [0, 1] and a monotonically decreasing function of Ay > 0,
p€[0,1] andp € [0,1];

e the arrival rate 1, € [0, 1] that maximizes of R}, can be found as the iy € [0, 1] that is solution’
to the derivative equation: dR{/duy = 0;

* pg has a constant value regardless of 11y € [0,1], \o > 0, p € [0,1] and p € [0, 1],
* (% is a monotonically decreasing function of g € [0,1], \g > 0, p € [0, 1] and p € [0, 1].

* my is a monotonically decreasing function of 1y € [0, 1] and not affected by Ny > 0, p € [0, 1]
and p € [0, 1].

The proof for this corollary is straightforward by inspection of equations (5.17) and (5.18), and
for this reason it is omitted here. Further discussions of such properties will be provided when an-
alyzing the numerical results in Section 5.2.3. Next we obtain other important results derived from
Proposition 5.4.

3Note that closed form solution is not possible in this case, but we can always resort to numerical procedures to find
such a maximum.
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Proposition 5.5 (upper bound of the effective link throughput). An upper bound of effective link
throughput R stated in Proposition 5.4 is given by

2/a
up

Ry < Roup = logy(1+ Byp) e PP Ao r & fu” (5.22)

where (3, is found as the value of 3 that is the solution to

Bo=25D ok d® By (1+ Bo) In(1+ fo). (5.23)

Proof. We first use the fact that the effective throughput obtained by the unconstrained optimization
of eq. (5.16) is always an upper bound of the constrained optimization given by (5.17). The uncon-
strained objective function (cf. eq. (5.16)) is maximized for po = 1 and py — 1. Furthermore, it
can be easily shown that (5.16) is a concave function of 5, with 3, > 0, hence taking the derivative
dRy/df, and after some manipulations, its optimal value is given by (5.23). To conclude the proof,
we put this optimal value into (5.16), which yields (5.22). (|

Theorem 5.1 (necessary condition for effective link throughput). Given that all TXs except TX), have
stable queues, the packet loss constraint € has a small value and the network is in the steady state, a
necessary condition so that the effective throughput Ry, k € Ay, is achievable with bounded packet
loss probability and queue stability is given by

af
—In 1-—
R < i (1— ) log, | 14 [ =l ;)>d2 : (5.24)
Pao\{k}P A\ {k} NOF

where iy, is the arrival rate at TX;, and the subindex 4\ (1y indicates that the averages p and p do not
take into account link k.

Proof. First, we use the fact that, in the steady state, the stochastic processes that determine the
network behavior are stationary and isotropic over the time slots and links. Then, we apply Theorems
2.2 and 2.3 to evaluate the statistical proprieties of every link TX;—RX;. with k& € A, based on one
typical link TX,—RX, added in the generating point process so that the index 0 can be exchanged
by k in (5.17) to obtain the maximum effective throughput R; supported by TX;—RXj, that satisfies
the stability and packet loss constraints. Note that the averages p and p are related to the interfering
TXs that are active in a given network realization and therefore the node in study, i.e. TX}, should
be excluded from the computation of such averages. Moreover, p and p have constant values since
the network is assumed to have reached its steady state and all potential interfering TXs are assumed
to have stable queues. To conclude this proof, we use the fact that R}, is by definition the highest
possible effective throughput under the packet loss and queue stability constraints and then every
throughput R, that is subject to the same constraints should be lower than that maximum value. []

Remark 5.2. It is worth noting that the theorem states a necessary condition, but not sufficient.
This means that it is possible to have effective throughputs R, < R; when the queue system of
TX; is unstable and/or the packet loss probability exceeds €. Moreover, this maximum value R;, is
surprisingly only a function of the arrival rate ;. at TX), and the network characteristics, and it does
not depend on the specific system parameters employed to achieve it. In other words, R, can be view
as a limit of the system and the design setting says how to achieve it.
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Finally, we provide some consequent results for a system operating with optimal system parame-
ters.

Corollary 5.2. If all TX;—RX. links with k € Ay employ the optimal strategy given by Proposition
5.4, then p 4\ ey — 1 and p 4\ py = 1, reducing the necessary condition given by Theorem 5.1 to

- - a/2
Ri < e (1 —¢€) log, (1 n < log(;;i; (dlz 6))) ) . (5.25)

Corollary 5.3. Let each design choice (py, B, my) be the individual strategy profile of a game
amongst the k € Ay links (players or agents) distributed over the network and effective link through-
put Ry, be the utility function of each link TX;—RX}. Then, if all k links employ the optimal individual
design described in Proposition 5.4, the game is in a strict Nash equilibrium [127], i.e. an individual
change cannot increase its own utility function when the other links continue using the same strategy.

Corollary 5.4. If a zero packet loss probability is required, i.e. € = 0, then the maximum number of
retransmissions m;, — oo, Yk € A,.

Corollary 5.5 (network spatial throughput of the optimal individual setting). If all TX,—RX}, links
with k € Ay employ the optimal strategy described in Proposition 5.4 and all TXs are subject to
the same arrival rates j, = p Vk € Ay (symmetric case), then the spatial throughput S, for this
scenario is computed as

o B a/2
“a = Aot (1€ log, <1+< bgff,f; E))) ) (5.26)

The proofs of these corollaries are straightforward and they are omitted here.

5.2.3 Numerical results

In this section, we use the analytical expressions previously derived to provide numerical results
that help us to have a better understanding of the effective link throughput behavior as a function
of the network parameters. These results also serve to illustrate the properties of the approximated
solution to the link throughput optimization previously derived as well as assess the tightness of our
approximation®.

The design setting parameters employed by the typical link in order to maximize its effective
throughput (cf. Proposition 5.4) are shown in Table 5.1 for different pairs of network densities A,
and arrival rates 119, which are the input parameters. Table 5.1 also contains such the optimal values
computed using Proposition 5.4 and its upper bound as stated in Proposition 5.5.

4The numerical analysis carried out here can be extended to any link of the network, as previous argued.



52 Throughput optimization with queue stability and packet loss constraints

Tab. 5.1: Optimal effective throughput design setting of TXg—RX, forp =1,p - L, a =4,d =1
[m] and € = 0.02.

(o, o) (p5, Rg, 1+ mg) Ry Ro,up
(0.1,0.2) (1,3.57,17.9) 0.700 0.865
(0.1,0.8) (1,0.31,2.6) 0.246 0.865
(0.5,0.2) (1,0.52,17.9) 0.102 0.102
(0.5,0.8) (1,0.014,2.6) 0.011 0.102

First, we analyze the scenario where \y = 0.1 [TXs/m?] and iy = 0.2. To achieve the highest
effective throughput under packet loss and queue stability constraints, TX, should set its rate equal to
R} = 3.57 [bits/s/Hz] and m§ = |16.9] possible retransmission attempts. These numbers show that
TX, communicates with high coding rates, which increases the chance that the transmitted packet
is not correctly decoded by RX,, (outage event), thus a very large number of retransmissions should
be allowed so that the packet loss constraint is not violated. By employing this setting, TX,—RXj
can reach an effective throughput of Rj; = 0.700 [bits/s/Hz], which is relatively close to its upper
bound Ry, = 0.865 [bits/s/Hz], indicating some flexibility for the possible feasible solutions of our
constrained optimization problem.

Second, we turn our attention to the scenario where the arrival rates are more frequent, namely
1o = 0.8, still considering Ay = 0.1. From Table 5.1, one can clearly see that the effective throughput
R, decreases almost 65% as compared to the case where 1y = 0.2, while the upper bound remains
the same. This effective throughput is achieved when both coding rate and number of retransmissions
heavily decrease, indicating that the combination of 1) and m/ is limited by the queue stability. In
other words, when p is large, the outage events need to happen less frequently, decreasing the rate
as well as the possible number of retransmissions so that both stability and packet loss requirements
are respected.

In contrast, when the network has a density \y = 0.5 and TX, experiences an arrival rate of
to = 0.2, the effective link throughput R achieves its upper bound R ,. This indicates that low
values of jy do not impose a strict restriction to the feasible design options for the density \q. Hence
the highest possible effective throughput can be reached by decreasing the coding rate R while the
number of retransmissions can be still high, without violating the stability constraint. In any case,
even though the effective throughput R is very close to its upper bound when Ay = 0.5, its value is
much lower when Ay = 0.1, which evinces the harmful effects of the co-channel interference, i.e. the
higher the density of active links, the lower the TX;—RXj effective throughput.

Finally we study the case where a dense network with high rate of arrivals is considered, verifying
the substantial loss of the effective throughput Rj. As expected, the value of R presents a significant
gap to its upper bound R ,,, indicating that the TX,—RX, performance is severely limited by both the
interference level observed by RXj, and the restricting choice of feasible solutions due to the stability
constraint. It is worth noticing that some of these facts have been already predicted by Corollary 5.1
and Table 5.1 helps us to visualize them.

Now in order to better assess the performance, we present in Fig. 5.1 how the arrival rates
affect the effective throughputs R for different values of p.

First we observe that when the same arrival rate is considered, the higher the p, the lower the R.
This behavior is indeed intuitive since p is related to the number of active links in the network and
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thus it determines the interference experienced by RX.

We also see that the effective throughput R is a concave function of 1 (this statement can
be easily proved from equation (5.17), considering 0 < o < 1). For low rate of arrivals, the
design setting used to reach R should hold the packets more time in the queue in order to make
po — 1. We also infer that low values of j also limit R due to its low value since the optimal
design choice surprisingly yields a high outage probability in order to maintain the load of the queue
close to one. Increasing o, on the other hand, the effect of this limitation diminishes and thus
the effective throughput R} also increases until it reaches its maximum. After this inflection point,
any increase of ;o degrades the link performance, indicating that high arrival rates are shrinking the
feasible designing options, as discussed before.

Now, to study that maximum value, we present in Fig. 5.2 the effective throughput R} and its
upper bound Ry, as a function of yy when p = 1. From the curves, we can verify that the maximum
R reaches its upper bound® given by (5.22), showing that, under certain circumstances, it is possible
to obtain the unconstrained effective throughput R, even assuming strong requirements of queue
stability and bounded packet loss probability.

In addition, we present in this figure together with the curves obtained using our analytical approx-
imation the actual optimal values of R{; which are computed using standard numerical procedures of
Mathematica software, namely NMaximize. As one can clearly verify, our approximation provides a
good matching with the exact numerical solution®, evincing that the assumptions used to derive Propo-
sition 5.4 are fairly reasonable. Nevertheless, it is worth pointing out that our approximation works
properly for small values of e. When this condition is relaxed, the approximation P = P: %)erg /€
does not hold anymore and consequently our result becomes weaker.

Figs. 5.1 and 5.2 also evince a necessary condition for achieving the effective throughput. Theo-
rem 5.1 states that all effective throughputs above the Rj curves cannot be achievable under the sta-
bility and packet loss constraints, determining then the boundary of stability for effective throughputs
that the typical link TX,—RX, can achieve with bounded packet loss for a given network specification.
In other words, if any effective throughput R is stably achievable and the packet loss probability is
at most ¢, then the inequality Ry < R holds.

SEven though Fig. 5.2 only shows the results for p = 1, the same analysis is still valid when other values of P are
considered.

%To maintain the quality of the figures, we present the points obtained through numerical optimization only in some
plots. In any case, the same good match is seen for other different network conditions.
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Fig. 5.1: Optimal effective link throughput R of the typical link TX,—RX, (cf. Proposition 5.4)
versus its arrival rate i for different p and considering p — 1, \g = 0.5 [TXs/m?],« = 4, d = 1 [m]

and € = 0.02.
0.12
0.107 g ;
| ,,, s.\\ —_ Analytical Ry, up
oosl ’/ Q\ -_— Analytical R |
o (Y
I’I . ® Numerical Rj
S8 *
¥ 0.06
L
]
| &,
0.04 -9 L N |
i N
H "
I & ]
0.02{. ..,
i L 2%
r "’-
‘ ‘ | ‘ | . | -~
0.2 0.4 0.6 0.8 1.0
Ho

0.00 :
0.0

Fig. 5.2: Optimal effective link throughput R; of the typical link TX,—RX and its upper bound R,
(cf. Proposition 5.5) as a function of the arrival rate 1o considering Ay = 0.5 [TXs/m?],p=1,p — 1,

a =4,d = 1[m]and € = 0.02. The optimal throughput R, is analytically assessed using Proposition

5.4 and via numerical optimization NMaximize using Wolfram Mathematica.
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5.3 Spatial throughput optimization

In this section, we analyze the aggregate performance of the network using the spatial throughput
metric introduced in Definition 5.3, i.e. stable achievable spatial throughput, such that the packet
loss probability is bounded for all links. Specifically we consider the Poisson random network de-
scribed in the previous section and formulate an optimization problem in order to maximize the spatial
throughput under queue stability and bounded packet loss probability for all links. Note that the infi-
nite Poisson network model is equivalent in distribution to the limit of a sequence of finite networks
with a fixed density as the area increases to infinity. Using similar steps to the proof of Proposition
5.4, we derive an approximated closed-form solution for such a problem, which allows us to compare
the optimal spatial throughput to the spatial throughput byproduct of the optimal individual decisions
given by Corollary 5.5.

5.3.1 Analytical Results

We consider the symmetric case where all TX;,—RXj, Vk € Ay are subject to the same arrival
rates ¢ and employ the same design parameters, namely access probability p, rate R, and maximum
number of retransmissions of packets decoded in error m, resulting in the server rate 6. Recalling that
the set A refers to all TXs generated by the homogeneous PPP @ with density \y, we can rewrite
the spatial throughput definition given by equation (5.6) as follows:

R

S=X\ (I_Ppkt)ppﬁv (5.27)

where p = /0, Py is the packet loss probability and 7 is the average number of retransmissions.
To define the constrained spatial throughput maximization problem, we focus again on the typical
link TX,—RX,, which characterizes the performance of any link TX;—RX,, k € Aq (cf. Theorems 2.2
and 2.3). The constraints given by Propositions 5.1, 5.2, and 5.3 are applied, noticing though that in
the symmetric case p = py = pand p = pg = pas well as 6y = 0, 5y = 3 and my = m. Furthermore,
recall that 1 +m = 1_16 ";)m ,where P, = 1 — ¢7? § 20 = d®5** anq that By« = P}™™. Then the spatial
throughput optimization problem under stability and packet loss constraints is formulated as follows:

max Ao p n log,(1 + B) e7P & don 6%/
(p.5.m) 4

14+m
—_pk 232/
(1o

eP G Aok d2B

0= P )
1-— <1 —e PG ﬁd262/“>1+m
1+m -1
1 , , o
0>p | > ( tm)(—l)’“ el e ] > [
=1

The above problem seems more intricate than the one in Section 5.2 as the parameters p and p
are now variables, creating higher interdependence between the design parameters and the network
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performance. Yet, to derive a closed-form approximate solution, we proceed in a similar way as
before.

Proposition 5.6 (highest constrained spatial throughput). Given that the network is in the steady
state and and assuming that m is a non-negative real number, the highest spatial throughput S* such
that every TXy, Vk € Ay, has stable queue and the packet loss probability of every TX;,—RXj, link is
bounded by €, which has a small value, can be approximated by

( 1 /2
Ao (1 —¢) log, <1+ (M)\o =0 n @ e) >f0r p(l—e) <et
S / . (528
a/2
Ao (1—¢) log, (1 + <_log)\(:/€(1p_ 6))) ) Jor u(1—e€) >e!

where the optimal design parameters (p*, 5*, m*) used to achieve the approximated S* when (1 —
€) < e~ ! are given by

p* = ,U(].—E)6,
/2
1
5* = 2 ’
pwro(l—e)rd?e
1
e 1
m log. (1 —e1) ’

while (p*, B*, m*) for u(1 — €) > e~* are computed as

p =1

5* _ - log(,uo (1 - 6)) o/
)\0 K d? '

m* = L — 1.

log (1 — p(1 —¢€))

Proof. We apply similar steps as for the proof of Proposition 5.4 recalling that * refers either to
the optimal parameter choice or to a function of it. We first use the fact that the optimal solution
is achieved when all TXs’ probability (in steady state) that their backlog is empty tends to 0, i.e.
p* — 1 (boundary of stability). In addition, we consider that the packet loss constraint is low enough

so that to achieve the spatial throughput &* the packet loss probability reaches its maximum value,
ie. Py, = Pr'™™ = e Thus,

1
1- P 1 — et

Using this relation and recalling that in the optimal configuration the following equality should
hold1 — Pr = e P A% @67/ " 3* can be computed as

. (log(p*) —log(u(1 — )\
[* = ( ok P ) . (5.30)
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Manipulating the spatial throughput (5.27) based on the arguments stated above yields
* * * * R*
S = Ao(l_Ppkt)pp 1+ m*
= Mp"R(1-F))
log(p*) — log(pu(1 — €))\*/*
43 (1 &) log, <1 . ( og(p") — log e>>) ) | 531)

p* Ao Kk d?

Q

where R* = log,(1 + %).
Note that the only design parameter in (5.31) is p*, which can be thus computed as

log(z) —log(p(1 —¢))
T Ao k d?

p* = arg max = min(u(l —€)e, 1), (5.32)

where 1 < x < 1.
Placing (5.32) in (5.31) results in (5.28), and in order to obtain the optimal design parameters, we
apply (5.32) into (5.30) so as to obtain $* and then manipulate (5.29) to find m*. 0J

The solution to the optimization problem stated above provides the highest achievable spatial
throughput constrained by queue stability and bounded packet loss requirements for all links. Simi-
larly to the previous section, the following corollaries follow from properties of the above result.

Corollary 5.6. The spatial throughput S* and the system parameters (pg, 5, mg) stated in Proposi-
tion 5.6 have the following properties:

» §* is a concave function of 1 € [0, 1] and Ay > 0;

* The arrival rate i* € [0, 1] that maximizes of S* can be found as the 1 € [0, 1] that is solution
to the derivative equation: dS*/du = 0;

 The network density Ao > 0 that maximizes of S* can be found as the \y > 0 that is solution to
the derivative equation: dS*/d\y = 0,

* p* is a monotonically increasing function of | and is not affected by \g > 0,
* [(* is a monotonically decreasing function of . € [0, 1] and \g > 0.
* m* is a monotonically decreasing function of 1 € [0, 1] and \g > 0.

The proof of this corollary comes directly from the analysis of the function stated in Proposition
5.6 and therefore it is not presented here.

Proposition 5.7 (upper bound of highest spatial throughput). 4n upper bound for the highest spatial
throughput S* given by Proposition 5.6 S,y is given by

Ao logy (1 + %) . o
eMo 52d2 g2/ for * < (Aokd?) /
ST<Sy = | 539

log, (1 + 3%) y —a/2
w2 e, Jor B> Qond)
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where [3* is found as the value of [3 that is the solution to

<§ Ao i d® (14 ) log(1 + 5)) T for B< (Aord?) ™

8= , (5.34)

—14 M(-Fe ) g for B> (Agwd?) ™

where W, (-) is the principal branch of the Lambert W function defined as x = Wy (x)e"®) such that
x> —e tand Wy(z) > —1.

Proof. To solve the unconstrained optimization, we first assume that the dominant network in which
TXs have always packets to transmit (i.e. p — 1). We then compute the values of the access prob-
ability p* and the SIR threshold 3* that lead to a feasible equilibrium point, noting that the spatial
throughput given by S = Agplog,(1 + B)e Por*8** is a concave function of both 3 and p. From
the derivative equations, we find the relation between p* and S* at the equilibrium point as

1
pr=——p. (5.35)
Xo K d2 B*a
Note that since 0 < p < 1 some equilibrium points given by (5.35) may not lie in the feasibility
region of the problem, thus whenever p* > 1, we set p* = 1 and manipulate the equations accordingly.
After some algebraic manipulations using (5.35), we obtain (5.33) and (5.34), concluding the proof’.
(]

Theorem 5.2 (necessary condition for spatial throughput). Given that the network is in steady state,
a necessary condition so that any spatial throughput S is achievable with bounded packet loss prob-
ability and queue stability for all TXs is

S <S8, (5.36)

where S* is given by Proposition 5.6.

The proof of Theorem 5.2 is similar to the proof of Theorem 5.1 from the previous section and
thus it will be omitted. Next we provide two important corollaries that identify how S* is related to
the spatial throughput S;;; reached when all links use the best individual design parameters stated in
Corollary 5.5.

Corollary 5.7 (network optimal vs. per-link optimal spatial throughputs). Given that the network is
in steady state, then in the symmetric case

na < S°, (5.37)

*

where S8* is given by Proposition 5.6 and S by Corollary 5.5. Equality in (5.37) happens whenever
p* =1

Corollary 5.8 (tragedy of the commons). Given that the network is in steady state, then in the sym-
metric case the best individual design setting derived in Section 5.2 is not globally optimal for the
aggregate network performance when (1 —€) < e~1. In other words, the selfish behavior of the TXs
leads to a poor use of the network resources, degrading its spatial throughput. This degradation in
the aggregate performance due to selfish per-link decisions can be seen as a tragedy of the commons
class of problem [128].

"Note that the computation of Syp involves a simple numerical procedure to solve the first equation in (5.34).
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Remark 5.3. The ratio between Sy and S* can be directly obtained from equations (5.26) and
(5.28). From such ratio, one can verify that Si,y = S* when (1 — €) > e™!, exactly when the access
probability p* that leads to S* becomes 1. It is also interesting to note that the range of arrival
rates where selfish decisions are not optimal is j1(1 — €) < e\, As our basic assumption is that the
maximum acceptable packet loss probability € is small, one can see that |1 determines the feasibility
region of our optimization regardless of the design setting used to achieve the optimal performance.
In other words, by increasing i, the probability p* that is the spatial rate S* optimizer monotonically
increases up to p* = 1, independently of other system variables (c.f. Corollary 5.6). Once p* is
determined, the other parameters must be optimally tuned in accordance with the system constraints.

The proofs of these corollaries are straightforward and thus they are omitted.

5.3.2 Numerical Results

In this section, we provide numerical results in order to verify the aforementioned analytical re-
sults. Let us start presenting in Table 5.2 the design setting (p*, 5*, m*) that leads to the highest spatial
throughput achieved when stability and packet loss constraints are required for all links, considering
different combinations of the input parameters \y and p.

From Table 5.2, it is verified that in scenarios with low values of i, e.g. © = 0.2, the access
probability p* is about 0.5, whereas when ;1 = 0.8, it approaches the value of the link optimization
case, i.e. p* = 1. These facts indicate that, when the network is not limited by high arrival rates, it is
important to have some kind of medium access control so that the effects of co-channel interference
are weakened. On the other hand, increasing the arrival rates, the stability constraint makes the
optimal access probability p* become higher, reaching 1. This reflects that, in scenarios where the
queue stability restriction is the dominant factor, the optimal link decisions are also optimal for the
network point of view, i.e. §* = & ;. In any case, when p* = 1, §* is remarkably lower than its
upper bound S, given in Proposition 5.7.

Fig. 5.3 shows the spatial throughput S* together with S, and S, versus the arrival rate®. As
argued before, we deduce that for lower values of i, the performance gap between the spatial through-
puts §* and S;j; is big, reaching 100% for some values of p. This gap closes for increasing arrival
rates ;. More interestingly, we can see from Fig. 5.3 that the constrained spatial throughput &* can
achieve values very close to its upper bound given by the unconstrained spatial throughput optimiza-
tion.

Tab. 5.2: Optimal spatial throughput design setting for « = 4, d = 1 [m] and € = 0.02.

(o, 1) (p*, R*, 1+ m") ind S Sup

(0.1,0.2) (0.53,3,95,8.5)  0.070 0.077 0.0865
(0.1,0.8) (1,0.31,2.6) 0.025 0.025 0.0865
(0.5,0.2) (0.51,0.66,8.5)  0.051 0.065 0.0865
(0.5,0.8) (1,0.014,2.6)  0.005 0.005 0.0865

80nce again we can see the good matching between our approximation and the results obtained via numerical opti-
mization.
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Fig. 5.3: Optimal spatial throughput S*, its upper bound S, (cf. Proposition 5.7) and the spa-
tial throughput Sj;; obtained with the best individual choice versus the arrival rate 1 for Ay = 0.5
[TXs/m?], « = 4,d = 1[m] and € = 0.02. S* and S}, are analytically assessed using Proposition 5.5
and Corollary 5.5, and numerically solved via the NMaximize function from Wolfram Mathematica.
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Fig. 5.4: Optimal spatial throughput S* (cf. Proposition 5.6) and its upper bound S, (cf. Proposition
5.7) versus the arrival rate p for different densities Ay, considering & = 4, d = 1 [m] and € = 0.02.
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Fig. 5.5: Optimal spatial throughput S* (cf. Proposition 5.6) and its upper bound S, (cf. Proposition
5.7) versus the network density A, for different arrival rates p, considering & = 4, d = 1 [m] and
e = 0.02.

As discussed in Section 5.2.3, to reach the optimal performance under queue stability constraint,
all TXs must transmit with high probability when the arrival rate increases. When the unconstrained
optimization problem is considered, however, the opposite happens: the optimal performance is
achievable by decreasing the access probability, thus controlling the interference level by contention
(see equation (5.35)). In other words, increasing the arrival rates p, the stability constraint makes the
access probability be far away from its optimal unconstrained value. Nevertheless, S* can still reach
the unconstrained spatial throughput for some specific combinations of 1 and )¢, as shown by Figs.
54 and5.5.

Fig. 5.4 presents how S* behaves as a function of the arrival rates u for different values of density
Ao. For low values of 1, §* increases as j increases until it reaches S,,. At lower densities, Ay can be
viewed as the limiting factor of S* due to the poor spatial reuse and, therefore, such an inflection point
is reached at higher arrival rates p for lower densities ). After its maximum value, $* decreases as y
increases, approaching zero when y goes to 1, regardless of the density considered. This once again
corroborates the intuition that high arrival rates degrade the network efficiency.

In Fig. 5.5 we see that increasing the node density ), the values of S* and S, increase up to a
maximum, which indicates that the network is limited by the low spatial density of TXs. Conversely,
once such maximum point is reached, which is at lower densities \q for higher arrival rates x4 (justified
by the same arguments used before), S* becomes a decreasing function of Ay while S, is able to
maintain its best performance regardless of Ay due to contention, reflecting that the interference from
the concurrent transmissions starts dominating the network performance when the constraints are
imposed.

Interestingly, for lower values of \g, S* is very close to its upper bound S, when arrival rates
p = 0.5 and p = 0.7 are considered, while the network has poorer performance for ;1 = 0.2. These
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facts indicate that a sparse network subject to low traffic conditions operate below its limit, which
is achievable when the arrival rates are higher. On the other hand, when denser network scenarios
are considered, ;1 = 0.2 leads to higher §* than the other arrival rates studied here. All in all, these
facts reinforce our argument that, under certain conditions, it is possible to achieve the unconstrained
performance via a suitable parameter design, even though strong requirements in terms of packet loss
and stability are imposed.

5.4 Summary

In this chapter, we investigated the performance of random spatial networks in terms of effective
link throughput and the network-wide spatial throughput under queue stability constraint and bounded
packet loss probability. Considering an ad hoc network in which transmit nodes are located according
to a Poisson point process and are subjected to geometric packet arrivals, we showed under which
conditions it is possible to achieve the unconstrained throughput performance and also established a
necessary condition so that both throughputs are achievable under the above constraints. Furthermore,
we proved that the link design parameters that lead to the highest effective link throughput are not
always a wise choice for maximizing the network spatial throughput and we also identified when the
solutions of both optimization problems coincide.



Chapter 6

Spatial throughput under different decoding
rules

In this chapter we deal with the problem of characterizing the highest spatial throughput — or spa-
tial capacity — of wireless single-hop ad hoc networks for the two decoding rules presented in Section
2.1: treating interference as noise — the IAN rule — and joint detection of the strongest interferers’
messages and treating the others as noise' —the OPT rule. It is important to say that we do not assume
any interference cancellation (IC) technique as in [34], [129, 130, 131] since the OPT rule used in
this paper always performs better than IC, as discussed in [71, 132]; we will return to this topic later
in this chapter. Besides no kind of strong coordination between the active links is considered so that
interference alignment [68] is unfeasible; a detailed discussion about it can be found in [71].

We then use Theorems 2.2 and 2.3 to obtain approximations and bounds of the highest approxi-
mate achievable spatial throughput for the IAN and OPT rules based on the performance of a typical
link for a given network density, naming this maximum value as spatial capacity. For comparison pur-
poses, we also evaluate the highest approximate spatial throughputs achieved when all links use fixed
(symmetric) coding rates (which is the most usual approach in the literature, also used in the previ-
ous chapters). We then proceed with an unconstrained optimization of the average spatial throughput
over different spatial realizations, where the optimization variable is the rate that the transmitters code
their messages.

Differently from the spatial-capacity-achieving scenario where the coding rates are tuned to be the
highest achievable rates given the relative nodes’ positions for each spatial realization, the fixed rate
scheme only cares about the average behavior of the network, resulting in decoding errors (outage
events) for links whose capacity is below that predetermined rate. We prove that, under the same
assumptions, such a strategy performs worse than the spatial-capacity-achieving one. Our numerical
results illustrate this difference as well as the advantages of using OPT instead of IAN. We then
discuss the feasibility of the decoding rules and optimization strategies for different mobility patterns:
for (quasi-)static topologies, the spatial capacity can be achieved; for highly mobile topologies, it
cannot and the fixed rate optimization with IAN turns out to be the most appropriate choice.

IThis rule splits the set of interferers into two mutually exclusive subsets: one contains the strongest interferers whose
messages will be joint decoded with the desired one, and the other contains the transmitters with weaker detected power
that will be treated as noise.
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6.1 Spatial capacity of Poisson networks
Before we start, let us first define the spatial throughput metric.

Definition 6.1 (spatial throughput). Let A [m?] be the network area. Then the spatial throughput,
denoted by S and measured in [bits/s/Hz/m?], is defined as

1 K
S= > R (6.1)

1=0

Now, based on this definition and the capacity region stated in Theorem 2.1, we can define the
spatial capacity as the highest achievable spatial throughput such that all rates are achievable.

Definition 6.2 (spatial capacity of a given spatial realization). The spatial capacity, denoted by S*,
is defined as the maximum spatial throughput of the network such the rate tuple is achievable —
R = (Ry, ..., Rk) € H. Then,

S§" =max S. (6.2)
ReH

The spatial capacity reflects the highest sum of achievable rates over a given area and it may
have a huge variation depending on the network topology (i.e. the number and/or position of the
transmitter—receiver pairs). To deal with this issue, we opt for studying Poisson distributed networks
that are analytically tractable, allowing us to derive approximate expressions for the expected spatial
capacity &* (over different spatial realizations).

Now let ® be a 2-D homogeneous PPP with density A [nodes/m?] that characterizes the spatial
distribution of transmitters (TXs) over R?. We assume that each TX is associated with one receiver
(RX) located at a fixed distance d [m] from it in a random orientation following the bipolar modeling
[10]. In addition, we consider that all TXs transmit information to their intended RXs using the G-ptp
codes described in Section 2.1.

For each realization of ®, the network may have a different capacity region H and consequently
a different spatial capacity S*. Even worse, when the network area is the infinite plane (i.e. R?), the
capacity region given by equation (2.4) becomes impossible to be computed. Knowing these limita-
tions, we define the average spatial capacity as the expected value of the highest achievable spatial
throughputs, which allows us to approximate the performance of infinite networks over different spa-
tial realizations of ® based on a typical link.

Definition 6.3 (average spatial capacity). Let R = (Ry, ..., Rx) be a tuple rate and H be the capacity
region for a given network realization, then the average spatial capacity C is defined as

max . (6.3)

K
1
—E[S]=E ~ Y g,
C [S7] [max iZORZ

We can now apply properties from the point process theory to compute an approximation to the
spatial capacity of this class of Poisson networks as follows.



6.2 IAN decoding rule 65

Proposition 6.1 (average approximate spatial capacity). The average spatial capacity C can be ap-
proximate for the Poisson network described here as

C ~ AE[R7], (6.4)

where R* is the random variable that characterizes the spatial-capacity achievable rates of a typical
link over the different network realizations.

Proof. Reminding that the spatial process ® takes place in R?, then A — oo, K — oo and R =
(Ro, Ry, ...). Therefore:

1 K
c-F [f;s% dm g 2 ©)
“E | lim ZK:R* (6.6)
A—oco A 0 vl
2\ E[RY). (6.7)

Specifically, equality (@) considers the value of R* = (R, R7, ...) € H that leads to the maximum
spatial throughput for a given network realization, resulting in the spatial capacity S*. Since the PPP
under analysis is homogeneous, we can apply Theorem 2.3 to determine the statistical proprieties of
any node in ¢ over different spatial realizations based on a typical link (receiver node added at the
origin, whose transmitter node is d meters away from it). Denoting the optimal coding rate employed
by such a transmitter as R*, we can make the approximation (b) by multiplying the network density
A and R*, which concludes this proof. 0J

Remark 6.1. Equality in (b), instead of approximation in equation (6.7), is not possible since we can-
not guarantee that the limit in equation (6.6) exists. It is also worth saying that, in this case, neither
the spatial ergodic theorem nor the Campbell’s theorem can be applied due to the interdependence
between the elements of the optimal rate set R* in each specific spatial realization. As presented
in the following sections, we are still able to assess the performance of a typical link over different
realizations of the network based on closed-form expressions, which, we believe, makes valid our
proposed approximation (6.4).

From equation (6.4), one can see that the main problem is now to derive the distribution of the
spatial-capacity achievable rates R*, which is our focus in the next two sections. We would like to
mention that Baccelli and Blaszczyszyn have presented in [11, Sec. 16.2.3] a general closed-form
solution to the average rate of the typical link using Laplace transforms. Nevertheless, we argue
that our forthcoming derivations also contribute to the field due to their geometric appeal, where we
explicitly compute an approximate pdf of the Shannon rates of the typical link solely based on the
distance from the typical receiver to its closest interferer treated as noise.

6.2 IAN decoding rule

In this section we assess the spatial capacity using the decoding rule where the receivers treat the
interference as noise — or IAN decoders. The following corollary shows its achievable rates.
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TX,

Fig. 6.1: Illustrative example of the typical link TX,—RX, employing the IAN decoding rule, where
TX; represents the closest interferer to RXy. To reach the highest achievable rate Rj, the relation

L . . .
r1 = df,* must be respected such that r; is the random variable that denotes the distance between
RX, and TX;.

Let us apply Corollary 2.2 to the scenario described in Section 6.1 to assess the spatial capacity
of Poisson networks when receivers use IAN decoders. We consider as a channel modeling only the
distance-dependent path-loss modeling with exponent v > 2 so the channel gain between TX; and
RX; is proportional to z;.%, where z;; denotes the distance between them. We also assume the noise
power is negligible in comparison to the interference power (interference-limited regime) and the
dominant interferer approximation (cf. Definition 2.6) so that the aggregate interference experienced
by RX}, can be approximated by power P, o, related to its closest interferer. Mathematically we have:
14 Z ij ~ Pk,clo-

JEA\{k}

Based on these assumptions, we can derive an approximation of the probability density function

(pdf) of the spatial-capacity-achieving rates for IAN decoders as presented next.

* *

Proposition 6.2 (approximate pdf of the spatial-capacity-achieving rates for IAN). Let R* = (R}, Rj, ...

‘H be the rate tuple that achieves the spatial capacity for the network described in Section 6.1. The
pdfof R;, ¥ i € A over the different spatial realizations is equivalent to the pdf fr-(x) of a typical
rate R*, which is approximated by

Qv

x 2 (9x
2°Amd® (2" — 1)\ peron)2 (6.8)

fre(x) ~1n4d o2 —1) e ,

where x > 0.

Proof. Let us analyze a typical link TX(,—RX, added to the PPP ®. From Theorem 2.3, this inclusion
does not affect the distribution of ®. Without loss of generality, we assume that the origin of the plane
is located at RX,, and label the interferers TX; accordingly to their distances to RXj, i.e. TX; is the
closest, TXj is the second closest and so on. From our assumptions, we have 1 + 220:1 P, ~ P,. We

) €
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then apply the path-loss model to the IAN decoder presented in equation (2.6), considering that the
distances from TX, and TX; to RX are respectively d > 0 and r; > 0, resulting in

d—a
Ry <log, (1 + _a> ) (6.9)
T

1
where r; 1s a random variable.

To compute the pdf of r;, we use the definition of contact zone [111] (the distance between a
typical point and its first neighbor) to obtain the pdf of r, resulting in (cf. Property 2.2):

fr (@) = 2Amme ™ (6.10)

such that z > 0. Defining 55 = d~*/r;® such that inequality (6.9) still holds, then we have the

following relation r, = dﬁga (see Fig. 6.1). We now apply this variable transformation to (6.10) and
hence the pdf of 3; > 0 can be obtained as
2)\7sz$% —>\7Td21‘%
= e

fog(x) = — : 6.11)

ax

To conclude this proof, we proceed with the transformation R = log,(1 + ;) remembering that
PPPs are stationary so we can characterize any node of the network based on a typical node, dropping
the index 0. ]

The result just stated provides us an approximation? of pdf of the spatial-capacity-achieving rates
using AN decoders over an infinite plane and over different spatial realizations of the process ®.
Then, we apply (6.8) to approximate the spatial capacity given by (6.4), resulting in

CIAN ~ A / .TfR* (.CL’) d.ﬁ(}, (612)
0

which does not have a closed-form solution and a numerical integration is required. For this reason,
next we derive some proprieties® of (6.12) that help us to understand the Cjan behavior.

Property 6.1 (concavity of the spatial capacity). 4 function f(-) is said to be quasi concave if, and
only if, f (pr1+ (1 — p)xe) > min{ f(z1), f(x2)}, where 0 < p < 1. Considering that the rate that
leads to the spatial capacity, R*, is a function of the density X (i.e. R* = f(\)), then Cian given by
(6.12) is quasi concave in terms of \, where R* is a random variable characterized by the pdf (6.8).

Proof. Let us first consider two different network densities A; and A, such that A\; < A,. Then,
defining that A = pA; + (1 — p) Ay with 0 < p < 1, we proceed with the following manipulation

Cian(A) = (pA1 + (1 = p)A2) E[f (pAr + (1 = p)A2)] (6.13)
(;;) A E[f (pA1+ (1 —p)A2)] (6.14)
(2 )\1 E[f()q)] — CIAN()\1> (615)
(é) )\2 E[f()\g)] — CIAN()\Q). (616)

2We discuss the tightness of the closest interferer approximation later in Section 6.5.
3Such properties rely on the closest interferer approximation that will be discussed later on. For simplicity we hereafter
refer to the approximate average spatial capacity as spatial capacity.
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Inequality (a) comes from the fact that A\; < pA; + (1 — p)A\s whereas equality (b) is obtained
by setting p = 1 since the first inequality holds for all 0 < p < 1. This proves the quasi concavity
of the analyzed function when \E[f(A;)] < AE[f(\2)]. Finally, inequality (c) is straight when
ME[f(A1)] > A2E[f(A2)], which concludes this proof. [

Property 6.2 (highest spatial capacity). The network density \* that leads to the highest spatial
capacity given by (6.12) is obtained as the density X > 0 which is solution to the following equation:

zaogy(1+ e_’\”d%%d:c = [zt (Ard?ze — 1) logy(1 + z e‘”d%%dx. 6.17
82 &2 ( )
0 0
Proof. Let us first rewrite the spatial capacity formulation using the pdf fsz(x) given by (6.11),
yielding
Cian = A / logy (1 + z) fa+(x) du. (6.18)
0

Then, we recall that the Cjan is quasi-concave in terms of A (Property 6.1) to find its maximum
value based on the derivative equation dCian/d\ = 0. After some algebraic manipulation, we obtain
(6.17), which concludes this proof. O

Property 6.3 (lower bound). 4 lower bound of the spatial capacity given by (6.12) is computed as
2
Cian > )\ye_MdQQy_l)aa (6.19)
where y > 0.
Proof. To prove this property, we apply the Markov inequality as presented below:

E[R*]

2
PrR" >3] < - = E[R"] > ye -7, (6.20)
)
where Pr[R* > y| =1 — [/ fr-(z) dzand 2¢ — 1 > 0.
Then, we multiply both sides by A, resulting in (6.19). ]

Property 6.4 (upper bound). An upper bound of the spatial capacity given by (6.12) is computed as

1 2 «
< _
Cian < Alog, <1+<Md2) r(1+2>>. 6.21)

where I'(+) is the Euler gamma function.

Proof. Let us apply Jensen’s inequality based on the concavity of (6.12) (refer to Property 6.1), yield-
ing

Cian = A E[R'] (6.22)
@ X\ Ellogy(1 + 8*)] (6.23)
< X Togy(1+ E[F)), (6.24)

where equality (a) comes from the fact that R* = log,(1 + (*) and inequality (b) is the Jensen
inequality for quasi-concave functions. Then, we compute the expectation of the random variable 5*
using (6.11), which proves (6.21). ]



6.2 IAN decoding rule 69

Property 6.5 (asymptotic equivalence). Let ~ denote asymptotic equivalence of two functions, then

Cian ~ ¢ A\ 72, (6.25)

when A — oo and ¢ = L 2F<1—l-a)
-\ ra? 2/

Proof. To prove that two functions f(z) and g(x) are asymptotically equivalent, i.e. f(z) ~ g(x),
we should show that lim f(x)/g(z) = 1. Let us first consider the behavior of the random variable
T—00

(%, characterized by (6.11) when A — oo, yielding
lim fs-(x) = d(x), (6.26)
A—00

where () is the Dirac impulse function.
This indicates that the random variable 5* tends to have the value 0 with high probability when
the network density increases. Now, let us consider that 5* — 0, then we have the following limit

ogy(14 57 _ 1
e T e (6.27)

Using these limits, we can manipulate the expression of the spatial capacity Cian as follows.

. o A — fio y B8]
/\11_{1010 Cian = )\h_)n;lo)\ Ellog,(1+ 8%)] = )\11_{1;10)\ o (6.28)
Proceeding similarly with the upper bound, we have
: N _ oy BB
/\h_}rgo)\ logy(1 + E[87]) = ,\h—{go)\ R (6.29)

Now, we recall that the division of limits is the limit of the division, then

. AE[logy(1+8%)]
A S g, (1 L EF]) - (6.30)

From this fact, we can state

1 2 «
Ciax ~ Mlog, <1+<Md2) r<1+§)>, 6.31)

when A — oo.

1 2
Finally we verify that ( 3 d2) r (1 + %) — 0 when A — oo and apply the approximation
T

log(1 + x) &~ z, valid when = << 1, into (6.31) yielding (6.25). O

Fig. 6.2 illustrates the behavior of the spatial capacity Cian and its proposed bounds as a function
of the network density \. Firstly, one can notice that the spatial capacity has a maximum point which
is expected from its concavity stated in Property 6.1 and the density A\* that achieves the optimal is
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Fig. 6.2: Actual values, lower and upper bounds of the spatial capacity, Cian, versus the network
density A for « = 4 and d = 1 [m]. The lower bound is obtained using y = 1 in equation (6.19). The
actual values and upper bound are computed using equations (6.12) and (6.21), respectively.

given by equation (6.17)*. When densities lower than this maximum are considered, the network
is spatially not saturated and the spatial capacity of the network is still not in its highest value. In
this situation, any increase of A leads to an increase of Cjan until such an inflexion point is achieved.
After that point, on the other hand, the network spatial throughput degrades due to the proximity of
the interferers, strongly reducing the average of the link rates R*. Consequently, Cjan becomes a
decreasing function of \.

From Fig. 6.2, we can also evaluate the proposed upper and lower bounds of the spatial capacity.
As one can notice the lower bound proposed in Property 6.3 is loose, regardless of A. In fact, the
main use for this bound is to prove the relation between the spatial capacity and the maximum spatial
throughput achieved with fixed rates, as discussed later on. Regarding the upper bound introduced in
Property 6.4, when )\ increases, the upper bound become tighter and tighter, as predict by Property
6.5. In other words, the upper bound has the same value as the spatial capacity Ciay when A — oo as
shown in Fig. 6.2.

Next we apply the same approach used here to derive the approximate spatial capacity and its
properties when OPT decoders are employed.

6.3 OPT decoding rule

In this section we deal with OPT decoders, described Section 2.1. As before, we focus on the
statistical characterization of the achievable rates, which are stated in Theorem 2.1, over different

4A closed-form solution is unknown for this equation but standard numerical methods solve it. In our case, we use
FindRoot from Wolfram Mathematica.
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spatial realizations using the OPT decoding rule. We then assess the average approximate spatial
capacity of the network described in Section 6.1, which is given by equation (6.3).

For the scenario used throughout this section, though, the analysis is more complicated since
the receiver node should choose the subset of messages that will be jointly decoded and then ver-
ify whether the coding rate of its own transmitter is achievable, given all other coding rates. By
construction, all receivers proceed in the same way and hence the analysis becomes a very intricate
combinatorial problem. For this reason, in order to derive the pdf of the achievable rates for the OPT
decoders, we resort to some approximations that will be justified afterwards.

Before we start, we believe that is important to discuss about successive interference cancellation
(SIC) strategies, under which the strongest interefers are successively subtracted from the desired
signal, and why we do not consider them in this chapter. For example, in [34, Sec.5.2], Weber and
Andrews described their SIC model, also considering challenges of the physical layer issues of the
receiver designing (e.g. imperfect channel estimation and signal reconstruction, processing delays
etc), dividing the interferers as partially cancellable nodes and uncancellable nodes. In [132], Blomer
and Jindal have explicitly assessed the differences between joint decoding (JD) and SIC strategies
in wireless networks, evincing the advantages of the first due to its coding-decoding construction.
The scheme of JD presented therein is the basis of the OPT rule presented in [71], where the authors
illustrate in an elegant way both the capacity region plots (cf. [71, Fig.1]) and the detection boundary
regions using AN, SIC, JD and OPT (cf. [71, Sec. V]), evincing how OPT outperforms SIC and the
pure JD.

As in the previous section, we only consider the deterministic path-loss and that the sum of the
interfering signals observed by RX, that are treated as noise can be approximated by the signal from
the closest interferer amongst them, whose power is denoted P j,. If the noise power is negligible
compared to P g0, then 14+ >~ Fy; ~ P oo. Based on these assumptions, we can state the following

jeAx
proposition. Y
Proposition 6.3 (approximate pdf of the spatial-capacity-achievable rates for OPT). Let us denote
the rate tuple that achieves the spatial capacity for the network described in Section 6.1 as R* =
(R, Ry, ...) € H. Then, the pdf of R;,¥ k € A follows the pdf of a typical rate R*, denoted by
fr-(z) and approximated as

frol) 2 S “;T(‘f))l e f (el = ) (6:32)
=0

where fr-n(x|n) is the pdf of R* given that 1 + n messages are jointly decoded and is approximated
by

2
2 2 (I+n)z _ | @
9(1+n)x \ ]2 9(l+n)e _ 1\ @ L —Ard ((Hn) —1>
fR*‘n(x|n) ~ In4 < ) e \ (6.33)
1+n
such that v > mgl(%n)

Proof. Let us first deal with the typical link TX(,—RX,. Without loss of generality, we place the origin
of the Cartesian plane at RX, and assume that all nodes that are closer to RX, than TX; have their
messages jointly decoded with TX, message (see Fig. 6.3). From the distance-dependent path-loss
modeling, the closer the TX, the higher the power, and then this choice of the subset Aj is justified.
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TX,

Fig. 6.3: Illustrative example of the typical link TX,—RX, employing the OPT decoding rule. The
blue TX has its message jointly decoded with TX, message and TX is the closest interferer to RX
whose signal is treated as noise. The random variable 7; denotes the distance between RX, and TX;
such that r; > d.

For each network spatial realization, we consider that a number n associated with the transmitters
whose messages are decoded by RX, is known, which yields the following inequality

1 P, P =
log (1 + Hmoo) < log (1 Lot i By ) . (6.34)
PO,clo PO,clo
One can see from (2.5) and (6.34) that rate tuples that satisfy Ry + . | R; < log (1 + %)

are always achievable. Defining 35 = Fyo/Fp 10, We use similar steps to the ones used in the proof of
Proposition 6.2, but considering now that r; > d to compute the pdf fg: () as

2.2 2
frpla) = AT e (xF1), (6.35)
ax

where x > 1 and fs;: (v) = 0 when z < 1.
Then, we assume that Ry + >, R; ~ (1 + n)Ry to obtain (1 + n)R§ = log (1 + (1 + n)5).
By applying such a transformation, we can find the pdf of R given n. Here we use Theorem 2.3 and
then the index 0 can be dropped, resulting in equation (6.33). To unconditioned the pdf fz«|,,(z|n),
we apply the definition of Poisson process to compute the probability that n = ¢ points lie in the area
7d?, concluding this proof. O

Remark 6.2. In addition to the closest interferer treated as noise approximation, this proposition
is based on other two main assumptions: (i) the detected power at RX, related to the 1 + n jointly
decoded messages is equal to (1 + n) Py and (ii) the sum rate associated with those messages is
given by (1 + n)Ry. In assumption (i), we use the lower bound given by (6.34), which indicates
that we underestimate the aggregate power, while in (ii) we approximate the sum of 1 + n random
variables that follows the same distribution by one random variable multiplied by 14+n. We argue that
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the underestimation byproduct of assumption (i) leaves us some room for variations in the sum rate
approximation used in (ii). In addition, due to the homogeneity of the spatial process, Ry+) | R; ~
(14n) Ry leads to a reasonable approximation. Simulations results are presented in Section 6.5 where
we discuss such approximations.

Here we can compute the approximate average spatial capacity® Copr when the OPT decoding
rule is employed as

Corr ~ A / o fn (x) da, (6.36)
0

where fr-(z) is given in Proposition 6.3.
The integral in (6.36) is analytically unsolvable (we can rely on numerical solutions, though). To
gain more insights on the system performance, we next derive some properties of the spatial capacity.

Property 6.6 (concavity). Considering that the rate R* is a function of the network density )\, then
Copr given by (6.36) is quasi concave in terms of A\, where R* is a random variable given by (6.32).

Property 6.7 (lower bound). A lower bound of the spatial capacity given by (6.36) is computed as

N (ATd?) e (20
COPT 2 )\ Z ( F(Z)) ye ( + ) , (637)
i=0

where y > logQ 2+Z ) forall i > 0.

Property 6.8 (upper bound). 4 upper bound of the spatial capacity given by (6.36) is computed as

2)i €—>\7Td2

ROREER A

2
1 \= 2
x log, (1 + (1 +1) (mﬁ) r (1 += )\7rd2) e“d2> , (6.38)

where I(-, -) is the incomplete Gamma function, which is defined as I'(z, a) f t*~tet dt.

= (\rd
Corr < A Z< ;
1=0

Property 6.9 (asymptotic equivalence). Let ~ denote asymptotic equivalence of two functions, then

)\7Td2) —)\7rd2
Corr ~ A Z T(i) 14
. 1 % 2 2 Amd?
X logy | 14 (1 +1) e d? i1+ o Amd” | e , (6.39)

when A\ — o0.

3As in the previous section we use the term spatial capacity to refer to the approximate average spatial capacity.
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The proofs of these properties follow the same principles used before so we omit them here. It is
worth pointing out that the proofs of (6.37)-(6.39) begin by assuming that the number 1 + n of jointly
decoded messages is known. Then, we use the fact that the unconditioned spatial capacity is a linear
combination of the conditioned capacities with weights given by the Poisson probabilities such that
n = i nodes lie in a area of 7d? computed as (A;r Cf)l g=
Next, we present a proposition that states that the OPT decoding rule always leads to a better

performance than the IAN rule.

Proposition 6.4 (Copr vs. Cian). For any given network density )\,
Copt > Cian. (6.40)

Proof. To prove this proposition, we first use the identity alog,(1 + z) < log,(1 + ax) V a > 1 to
verify that

o0 1 1 1 2 > rd?(za -
/ x%—l Og2( i'__ﬁ + n)x) 6—>\7rd2xa dr > / x%_l log2(1 + 1’)6 A d2< 1> dx, (6.41)
1 n 0

where n € N represents the number of jointly decoded messages by the typical link TXy-RX,. Re-
calling that all TXs that are located closer to RX, than TX, have their messages jointly decoded
by RX, then the number n follows a Poisson distribution over an area of wd?. Using this fact and
multiplying both sides of (6.41) by %, we have the following inequality:

f: ()\Wd2)i€_>\7rd2 00 fOPT(x) logy(1+ (1 +1i)z) dr >

“ T(i) . P 147
i 2\% 00
> Z ()\;{'(d)) ¢ A fN(z) logy(1 4 ) dx, (6.42)
- 7 0
1=0
where fgFT(z) and fi2N(x) are given by (6.35) and (6.11), respectively.
Finally we multiply both sides of (6.42) by A, obtaining then (6.40). ]

In Fig. 6.4, we present the spatial capacity Copr given by (6.36) as a function of A together with
its proposed upper and lower bounds. One can observe that the lower bound given by Property 6.7 is
very loose for the value of the constant y that was arbitrarily chosen (y = 2). This bound, however,
can be improved by tuning the constant y in accordance to the number of jointly decoded messages.
Such an improvement in the proposed bound will be discussed in the next section when we apply it
to analytically assess the performance of networks where predetermined fixed rates are imposed.

Turning your attention to the values of Copr given by (6.36), one can easily see that it is an increas-
ing function of \. For lower densities, Copr increases faster since the probability that an interfering TX
has its message jointly decoded is also low and, consequently, the rate is constrained by the interferers
that are treated as noise, indicating that Copr is limited by the low spatial reuse. When A increases,
on the other hand, more messages from interfering TXs start being jointly decoded, which diminishes
the Copr rate of increase. Furthermore, we can observe that the upper bound proposed in Property 6.8
is a good approximation to Copr for all densities A especially when A — oo, corroborating Property
6.9.

By comparing the results shown in Fig. 6.2 (IAN) and Fig. 6.4 (OPT), one can see that the OPT
decoding rule provides higher spatial capacities, regardless of the network density, as predicted by
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Fig. 6.4: Actual values, lower and upper bounds of the spatial capacity, Copr, versus the network
density A for &« = 4 and d = 1 [m]. The lower bound is obtained using y = 2 in equation (6.37). The
actual values and upper bound are computed using equations (6.36) and (6.38), respectively.

Proposition 6.4. The performance gain obtained with the OPT decoder in comparison with the IAN
decoder indicates that the mechanism of joint detection used here is a good way to deal with the
strongest interferers. A more detailed comparative analysis between OPT and IAN decoding rules is
presented later.

In the following section, we compare the results obtained so far with the most usual approach
found in the literature (e.g. [34]): coding rates are fixed for a given network density and set to
optimize the average spatial throughput regardless of a specific network topology, leading to outage
events (i.e. some pairs use coding rates above their channel capacity).

6.4 Spatial throughput optimization using predetermined fixed
rates

We now focus our attention on scenarios where TXs set their coding rates to the fixed values that
leads to the highest average spatial throughput, given that the TXs are aware of how many messages
are jointly decoded by their RXs. Using this scheme, groups of TXs use the same fixed coding
rates and then an optimization problem is formulated to find these rates such that the average spatial
throughput is maximized. As a consequence the optimal choice of coding rates, as discussed later on,
is not in the network capacity region, stated in Theorem 2.1, leading to outage events for some links.
Next, we present the definition of the aforementioned optimization problem.

Definition 6.4 (highest spatial throughput). The spatial throughput optimization problem for a net-
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work where TXs have fixed coding rates is defined as®:

T = max E[S], (6.43)

where T is the maximum spatial throughput, R = (Ry, Ry, ...) represents the set of fixed coding rates
R; used by the TXs such that 1 is the number of jointly decoded messages in addition to the desired
one, and S is the spatial throughput given by (6.1), where only the successful transmissions are taking
into account.

When the IAN decoding rule is used, there is no jointly decoded message and then the optimiza-
tion is only related to one fixed coding rate’. We now present two propositions that state the highest
spatial throughputs for IAN and OPT decoders applying the network modeling used before®.

Proposition 6.5 (highest spatial throughput for IAN). The highest spatial throughput Tian achieved
when IAN decoders are used is given by

2
Tian = Aog, (1 4 §*)e 0 (6.44)

where B* is the value of B > 0, which is solution of

[e3

8= <§Awd2(1 + 4)In(1 + 5)) o (6.45)

Proof. Let us write the spatial throughput given by (6.1) for this scenario as
S=X1-PF)R, (6.46)

where R is the fixed coding rate used by all TXs and F, is the outage probability associated with R
(cf. Definition 2.5).

We proceed here similarly to the proof of Proposition 6.2 and then apply the relation R = log,(1+
Ard2Ba

3), where R, 5 > 0. From Proposition 2.12, we can write P, = 1 — ¢ and hence:

S = Alogy (1 + B)e P (6.47)

which is a concave function of 3. We compute 3* as the solution of the derivative equation dS/df =
0, resulting after some manipulation in (6.45). To conclude this proof, we use 5* into equation (6.47),
obtaining (6.44). (|

Proposition 6.6 (highest spatial throughput for OPT). The highest spatial throughput Topr achieved
when OPT decoders are used is given by

00 . 2
(Ard?)t e~ 7’ _ —Ard? (ﬁja_1>
= 1 1 1 ! 4
Torr =0 DTG g w1+ (0 ¢ (6.48)
where, for each 1 = 0,1,2, ..., B} is found as the value of 3; > 1, which is solution of
2 a3
= ——— Ard*(1+ (1+9)B) In(1+ (1 +14)6; : 6.49
5= (e M+ (1408) L+ (14 05)) (6.49)

®This can be also viewed as the transmission capacity without outage constraint.

"This is the usual approach as in [34] or in the previous chapters of this thesis.

80nce again we use the closest intereferer treated as noise approximation. Besides, the term highest spatial throughput
refers to the highest approximate spatial throughput.
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Fig. 6.5: The highest spatial throughputs 7 using fixed coding rates given by (6.44) and (6.48), and
the spatial capacities C given by (6.12) and (6.36) as a function of the network density A for [AN and
OPT decoding rules, d = 1 [m] and o = 4.

Outline of proof. To prove this proposition, we follow the same steps used in the proof of Proposition
6.5, considering these basic differences: 5; = d~/r;“ > 1 (since messages from TXs closer to a
given RX than its own TX are jointly decoded and then r; > d) and the optimization is proceeded for
each i = 0,1, 2, ... which yields (6.49). To conclude this outline, we average the spatial throughputs
by the Poisson probabilities that i nodes lie in the area wd?, resulting in (6.48). ]

Here we apply Properties 6.3 and 6.7 to obtain an analytical relation between the spatial capacity
C and the highest spatial throughput 7 using fixed rates for either decoding rules.

Proposition 6.7 (C vs. T). For a given density \ and assuming that all links use the same decoding
rule (either IAN or OPT), then
C>T. (6.50)

Proof. This statement is a consequence of Property 6.3, when we set the constant y = log(1 + 5*) in
(6.19), yielding (6.44). Similarly, we use Property 6.7, applying for each different © € N a different
log(1+(1+14)3F

constant y in (6.37) such that y; = T)’ which yields (6.48), concluding this proof. ]

Fig. 6.5 shows the maximum spatial throughput following the formulation derived in this section.
As proved in Proposition 6.7, T is always lower than or equal to C for the same density and the same
decoding rule. This is justified by the methodology used to derive the spatial capacity, which allows
for a coding rate setting based on the relative positions of the nodes for each different realization of
the spatial process. When fixed rates are used, the transmitters code their messages using a fixed rate
that depends only on the number of other messages that are jointly decoded by their own receivers.
By optimizing based only on the average behavior of the network, some RXs cannot successfully
decode their messages for specific topologies, which decreases the spatial throughput. Therefore, the
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spatial-capacity-achieving strategy has always a better performance. Besides given the decoding rule
employed, the curves of 7 and C have a similar shape.

Fig. 6.5 also shows that the spatial capacity obtained when OPT is used has a huge gain if
compared with the AN option. As predicted by Proposition 6.4, this result reflects that the OPT rule
is able to avoid the strongest interferers by jointly decoding their messages.

When A is low, both OPT and IAN decoders have approximately the same performance since the
probability that a interferer is closer to a given RX than its own TX is very low. Increasing A, such
a probability also increases and then the differences between the strategies become apparent as the
closest interferer is the limiting factor for AN, while such node may have its message jointly decoded
when OPT is used, what decreases the effects of the nearby interferers.

6.5 Discussion

So far we have showed that, for same network density, (i) OPT decoders outperform AN, and (i1)
the spatial-capacity-achieving strategy outperforms the average spatial throughput optimization when
receivers employ the same decoding rule. Nevertheless we still need to discuss some possible limi-
tations of our finds, namely the tightness of our approximations and the feasibility of each decoding
rule for practical implementations. In the following subsections we deal with both aspects, identify-
ing why our results are important even when our approximation is poor and for which circumstances
the design setting that provides the worst performance is more suitable than the optimal.

6.5.1 Tightness of our approximation

Here we discuss the validity of the “closest interferer treated as noise approximation” used to
derive the approximate performance of both decoding rules. Fig. 6.6 shows the average spatial
capacity C computed using our analytical approximation and Monte Carlo simulation as a function of
the network density \ for both decoders’. For both IAN and OPT, the lower the density is, the better
our approximation works. Conversely, increasing the density, our approximate spatial capacity gets
looser and looser.

The closest interferer approximation is in fact a lower bound of the aggregate interference [34],
leading then to an upper bound of the actual spatial capacity. This bound have been proved to be
asymptotically equivalent to the actual values when A — 0 [129, 34]'°. For higher densities, the
closest interferer treated as noise tends to contribute less to the aggregate interference experienced by
the receivers, worsening our approximation.

Yet, the comparison between the IAN and OPT decoders is fair since the results presented in
Sections 6.2 and 6.3 rely on the same approximation!!. We further argue that our approximation has
no effect in the trade-off analysis done in this chapter and Fig. 6.6 illustrates this fact by showing that

The results for the highest average spatial throughput presented in Section 6.4 follows the same trends and thus we
exclude them from this thesis.

19Tn our point of view this asymptotic analysis is unsuitable for the study carried out here; we assume an interference-
limited network, which opposes the idea of very low density of interferers. When A — 0, we see the network in its
noise-limited regime.

"We can argue in the same way to say that the analysis presented in Section 6.4 is also fair.
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Fig. 6.6: Spatial capacities C for IAN and OPT as a function of the network density A , d = 1 [m] and
o = 4. Approximate results given by equations (6.12) and (6.36), and simulations.

the OPT always outperforms IAN in similar scales: the ratios Cjan/Copr Obtained via simulation or via
our approximations have similar values when considering the same A. As the proposed formulation
provides a much simpler way to assess the network performance than numerical simulations, we
reinforce the contribution of this paper even when our approximations provide poor bounds.

All in all, we believe that our main messages — OPT is better than IAN, and spatial-capacity
achieving strategy is better than the best fixed rate one — are unaffected by our approximations. De-
spite of these facts, the optimal strategy is many times unfeasible for practical implementation as
discussed in the following.

6.5.2 Design setting and mobility pattern

Throughout this chapter we have shown that the best design option in terms of spatial throughput
is to employ OPT decoders and apply the spatial-capacity achieving scheme. This solution, however,
has drawbacks: (i) RXs require the knowledge of the codebooks of the jointly decoded messages and
(i1) OPT decoders are computationally more complex than IAN.

Knowing them, we argue that the use of either/both OPT and/or spatial-capacity achieving strategy
is unfeasible for (highly) mobile topologies. Under this topology, the neighbors of any given receiver
vary very fast, making impossible the joint decoding procedure. Shopping malls and streets where
people frequently come and go can exemplify this scenario. If this is the case, even though the design
setting employing IAN decoders with fixed rate optimization is far from the optimal performance, it
is a more suitable choice.

Conversely, when (quasi-)static networks are considered, the optimal strategy becomes possible.
In this case, receiver nodes must known the codebooks of their strongest interfering nodes and jointly
decode their messages. In addition, the links must coordinate their coding rates to be in the network
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capacity region. Smart homes, industry plants and other kind of machine-to-machine communications
can exemplify this mobility pattern.

Besides, there are other aspects that may be prohibitive for OPT. For instance, many applications
require secrecy and then the codebook knowledge makes OPT unfeasible even for static topologies.
Other applications need fast processing time, which is also unfeasible when many interfering mes-
sages are jointly decoded. Anyway, this dependence on the topology must be taken into account
when the network is designed. Furthermore, the mobility pattern of the network can also change over
time — for example, offices during the night are quasi-static, while highly dynamic during parts of the
working hours. We will return to this discussion once again in the next chapter, also including other
results presented throughout this thesis.

6.6 Summary

In this chapter we studied the spatial throughput of interference networks using Gaussian point-to-
point codes for two different decoding rules: (i) treating all interfering messages as noise — IAN, and
jointly decoding the messages whose detected power is higher than the desired message power while
treating the others as noise — OPT. We proposed an approximation of the highest spatial throughput
for Poisson distributed networks such that all links work in their capacity region (spatial-capacity
achieving strategy). We then stated several properties of our approximation using either decoders and
prove that, when the same network density is assumed, (i) the OPT always outperforms IAN, and (ii)
the spatial-capacity-achieving strategy is always better than the predetermined fixed rate optimization,
where transmitters code their messages in order to optimize the average spatial throughput.



Chapter 7

Discussion

In this section we discuss how the lessons learned from Chapter 3 to 6 can be put together. First we
are going to identify which are the internal and external factors to each node that may affect the overall
system performance for two different cases, namely quasi-static network and highly mobile network.
For each case, we will make claims about how the communication system should be designed to
improve its efficiency. Finally, we apply those claims to make a guideline on the implementation of
an adaptive algorithm that each node should run in an ad hoc fashion.

7.1 Internal and external factors

Let us start by defining internal and external factors for the ad hoc network under analysis as
follows. Internal factors are the constraints that each network element has to satisfy due to its own
quality requirement. We can cite as example of possible internal factors a minimum coding rate
or spectral efficiency, a bounded outage probability, a minimum required effective throughput, a
maximum packet loss probability after back-offs and retransmissions, queue stability and so on.

In a similar way we can relate the external factors to the constraints imposed by the network.
For example, we can list the fairness of the medium access across different links (i.e. nodes should
have similar opportunities of access the medium), a maximum transmit power used by transmitters
in order to control the interference level and a floor level of spatial throughput. It is important noting
that, differently from the internal factors, the items listed above are not controlled by the link or any
other entity, but rather they are product of the interactions among links that in turn are subject to their
own internal factors.

Clearly, how to cope with such interactions while preserving the overall network requirements and
at the same time satisfying the internal factors of each individual link can be viewed as the biggest
design challenge that engineers should deal with. To complicate even more this picture, the network
should be robust enough to variations of the scenario itself. For example, traffic conditions can vary
during the day, mobility of nodes causes changes in the network topology etc; even under these wide
range of different, many times unpredictable, external conditions, the system should work properly.

To understand how our results indicate the basis of a robust adaptive communication system for
ad hoc networks, we present next two scenarios where the conditions of mobility are extreme - highly
mobile and quasi-static topologies. Then we will make claims regarding how the system should be
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designed to improve the information flow based on the analysis carried out in this thesis. Using those
claims, we will discuss the construction of ad hoc procedures that should be functional, working
similarly to intelligent humans in the “chatting in a party problem” presented in Section 1.2.

7.2 Network design

As mentioned before, we assess in this section ad hoc networks under two extreme mobility
conditions, namely quasi-static and high-mobile. For each one of these scenarios, we will make
claims regarding the design setting looking at the network conditions, and the internal and external
factors that its nodes face. Here it is worth pointing out that we are not going to present formal proofs
of the claims, which are in fact conclusions that one can infer from the previous chapters as well as
other works available in the literature such as [34, 71].

7.2.1 Quasi-static network

Let us assume here a network where the elements are either quasi-static or static, which indicates
its topology changes very slow. Examples of this can be an office with desktop computers, electro-
electronics devices in a house or machines in an industrial plant. For this scenario, we consider that
the channel gains are dominated by the distance-dependent path loss (i.e. channel gains related to
slow and fast fading are neglected) and that all transmitters are subject to the same power constraint
imposed by the network. Based on these mild assumptions and considering that all transmitters are
able to estimate the distances between its own receiver and the interfering nodes, we can make the
following claims.

Claim 7.1 (achievable rate). The transmitters can individually code their messages such that the
coding rate is achievable for (quasi-)static topology regardless of the decoding rule used (refer to
Corollaries 2.1 and 2.2).

Claim 7.2 (decoding rules). If the network is sparsely populated (lower densities), IAN and OPT
decoders perform similarly in terms of spatial throughput. Conversely, if the network is densely
populated, OPT significantly outperforms IAN.

Remark 7.1. The advantage of OPT is obtained at expanse of computationally complex decoder. In
addition, to jointly decode some messages, the receivers must know the codebook of other interfering
transmitters, which is not always feasible or desirable.

Claim 7.3 (access protocol and retransmissions). The design choices conditioned by the network
conditions are stated below.

 If all nodes are able to transmit with achievable rates (i.e. the network operates within its
capacity region given by Theorem 2.1) and there is no minimum coding rate requirement, there
is no need for retransmissions or medium access protocols.

 If there exist a minimum required coding rate, then distributed time-division (synchronous
transmissions) should be used to achieve such a rate.
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o If'the network is densely populated, then distributed time-division (synchronous transmissions)
should be used to increase the spatial throughput.

* Ifthe traffic conditions are heavy and there is no minimum required coding rate, the transmitters
should find the best coding rate for the time-division employed such that each transmitter is able
to maintain the stability of its own queue system.

* When a feasible combination does not exist for such heavy traffic conditions, the network will
operate outside its capacity region. Therefore, distributed time-division schemes should be
implemented together with a limited number of retransmissions, allowing for a bounded packet
loss probability.

* In multi-hop systems, the nodes should act as a relay if its own traffic condition allows, i.e. this
new incoming traffic can be introduced without causing instability.

» Ifanode is acting as a relay, it should choose the next relay node based on the relative distance,
the coding rate used and the density of the network. For dense networks, links should be more
robust against interference so that lower coding rates together to closest-neighbor hopping
strategy (more hops) increase the network efficiency. Conversely, sparsely populated networks
allow for higher coding rates and furthest-neighbor hopping strategy (less hops).

All these claims provide us some intuition of the design setting that static or quasi-static ad hoc
networks should have under different conditions. It is important to mention that these claims hold only
when every network element has the knowledge of: (i) the distances to the other transmitters, (ii) its
own traffic conditions and (iii) network density. Therefore, all transmitters must have the capability of
sensing the available signals to then compute estimations of the network state and traffic conditions.
With these estimations of the external conditions in hand, the elements must find solutions that satisfy
their own internal and external factors. But before going further into implementation issues, which
will be our focus later on Section 7.3, we still need to analyze highly mobile topologies as presented
next.

7.2.2 Highly mobile network

Here we consider a network where its elements are highly mobile such that their positions change
very fast so properties of Poisson point process can be applied using tools of stochastic geometry
based on the high mobility random walking model (cf. Section 2.2). We can see such a situation
in shopping malls, streets, coffee houses or wherever place with intense flux of people using mobile
devices. We assume that channel gains are a composition of distance-dependent path loss and fast
fading'. As before, all transmitters are subject to the same power constraint imposed by the network.
Then, we can make the following claims considering that every transmitter knows the distance to its
own receiver as well as the density of interfering nodes.

'Tt is worth remembering here the last paragraph of Chapter 2, where we point out that the distance-dependent path
loss using the dominant-interferer and the Rayleigh fast fading cases have a similar formulation. In this way, the results
obtained using one modeling can be extended to the other.



84 Discussion

Claim 7.4 (achievable rate). Every transmitter can individually code its messages so that the outage
probability given by Definition 2.5 can be bounded.

Remark 7.2. Due to the high mobility of the nodes, the network is always working out of its capacity
region. Yet, it is possible to bound the link outage probability by properly setting the coding rate.

Claim 7.5 (decoding rules). The OPT decoder is an unfeasible option for highly mobile networks,
while IAN is still functional under such conditions.

Remark 7.3. A necessary condition to the OPT decoding rule is the knowledge of the coding book
of other transmitters. As the network topology changes very fast, it is not feasible to have such a
knowledge. Moreover, when transmitters move during the transmissions, the subset of messages that
are jointly decoded and treated as noise may also change. All in all, it is very difficult, or even
impossible, to employ OPT decoders in highly mobile scenarios.

Claim 7.6 (access protocol and retransmissions). The design choices conditioned by the network
conditions are stated below.

* A limited number of retransmissions for packets detected in error improves the system perfor-
mance regardless of the medium access procedure.

» The only kind of distributed time-division for highly mobile networks (synchronous transmis-
sions) is slotted ALOHA.

* If'the network is sparsely populated, then random access protocols that employ carrier sensing
(e.g. CSMA) tend to outperform slotted ALOHA schemes.

* If the network is densely populated and the traffic conditions are not heavy, the synchronous
transmissions required by the slotted ALOHA improve both individual link and spatial through-
puts.

* [f'the traffic conditions are heavy and the network is densely populated, the transmitters should
find the best combination of access probability under slotted ALOHA protocol, coding rate and
number of allowed retransmissions per packet such that every transmitter is able to maintain
the stability of its own queue system and have a bounded packet loss probability.

* In multi-hop systems, the nodes should act as a relay if its own traffic condition allows, i.e. this
new incoming traffic can be introduced without causing instability.

» If a node is acting as a relay, it should choose the next relay node based on the relative dis-
tance (if it is possible estimate), the coding rate used and the density of the network. For dense
networks, links should be more robust against interference so that lower coding rates together
to closest-neighbor hopping strategy (more hops) increase the network efficiency. Conversely,
sparsely populated networks allow for higher coding rates and furthest-neighbor hopping strat-
egy (less hops).

Here, once again, one can see that every network element must be able to sense and estimate the
network and traffic conditions, using them to assess the feasibility of possible design setting based
on their internal and external pressures. Using these claims and the ones proposed in the previous
section, we will discuss in the following how a robust ad hoc adaptive algorithm that allows should
be designed for interference networks under different conditions of density, traffic and mobility.
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7.3 Implementation aspects

In the previous subsections we stated several claims describing how the design of ad hoc networks
should be for two extreme mobility scenarios based on the results obtained in this thesis. In any
case, we still have a small understanding of the deployment of more practical scenarios where the
network condition varies (i.e. during some time the network can be high mobile while during some
other periods it can be quasi-static or neither one). We can visualize this condition in, for instance,
smart homes where there are equipments communicating that are static and there might be people
using other communication devices as well; sometimes there is no one around or people are sleeping
and then only machines communicate. In contrast, during other periods they are awake using their
wireless devices, walking around and generating traffic.

Our aim here is to guide the design of a possible adaptive algorithm to improve the network
efficiency while the constraints associated to internal and external factors can be satisfied.

7.3.1 Variable to be optimized

In Chapter 5 we indicated that if all links optimize their own effective throughput given by Def-
inition 5.2 in a selfish way, then the common resource might be overused, leading to similar effects
to the tragedy of the commons problem [128]. There, we also showed that if all links optimize the
network spatial throughput given by Definition 5.3, then they can reach link effective throughputs at
least as high as in the selfish optimization case.

The reason of this is the following. While the former procedure optimizes the link performance
for a given network state which is in turn considered independent of its own decision, the latter
assumes that the designing choice of every transmitter affects the others and then also modifies the
actual network state. Therefore, by optimizing the network spatial throughput assuming that all links
proceed in the same way, the setting that is the optimal for the network is also the optimal for each
individual link. Motivated by this result, we argue that the spatial throughput is the measure to
be optimized by the most efficient algorithms designed for interference networks since it provides
incentives to collaborative behavior, avoiding then prisoner dilemma kind of loses [133].

7.3.2 Variables required to proceed with the optimization

Now that the maximization target is defined, we should determine what each network element
should know to optimize its performance. First of all, they should assess their own internal factors
as their basic constraints. For example, every transmitter should infer its arrival process, which is an
external factor, to determine the conditions that guarantee its own queue stability and therefore it will
be able to determine the feasibility of possible solutions.

Then they should also estimate the mobility pattern of the network to evaluate how its topology
changes?. Once the mobility pattern is identified, the nodes should quantify the network density
and/or the distances from each other using procedures as the ones presented in [134] and [135],
respectively. Clearly, it is important that all nodes assume in their calculations that the external
factors experienced by other nodes are similar (e.g. the same power constraint).

2If the node is moving itself, it will see a mobile network around it and will decide to design its communication system
accordingly.
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Given that such elements locally estimate those information about the network state, they can
start optimizing their own design setting based on the claims stated before. In other words, given the
internal and external factors, the mobility pattern and the knowledge of the distances and/or the net-
work spatial density, each node will set, for example, the coding rate employed, the decoding rule, the
medium access procedure and the maximum number of packet retransmissions that jointly maximize
the network spatial throughput, which is locally computed from the estimated network state, while
all constraints are satisfied. If the link starts facing problems in satisfying its own constraints or after
a given period of time, the procedure should be repeated to adapt its setting to the new state of the
network.

As one can notice, this algorithm somehow mimics the way that humans solve the chatting in a
party problem defined in Section 1.2. It is also worth saying that we choose here to not go into the
specificities of algorithms or signal processing schemes; rather we prefer to provide more general
guidelines on the algorithm design.



Chapter 8

Conclusions

In this thesis, we studied the spatial throughput of wireless ad hoc networks from different per-
spectives using concepts of stochastic geometry, communication theory and information theory. Par-
ticularly, we applied a statistical-based analysis to quantify how efficiently the information bits are
transmitted through communication links that are spatially distributed over a given area.

We showed that the aggregate performance of the network is closely related to the trade-offs
involving density of concurrent transmissions, co-channel interference, required quality of service,
link robustness and traffic conditions. In the following sections, we first summarize the contributions
of this thesis chapter by chapter and then indicate possible research directions that the work done in
this thesis can take.

8.1 Contributions

» Chapter 2: We introduced the capacity region of Gaussian point-to-point codes for interference
networks, which is the basis of the coding-decoding strategy employed in this thesis. We also
reviewed some properties of Poisson point processes that are applied together with the coding-
decoding scheme to model wireless ad hoc networks, assessing then their performance.

* Chapter 3: We extended the information efficiency metric to incorporate the aspects of multi-
hopping, proposing a new metric denominated aggregate multi-hop information efficiency (AMIE).
We then used it to investigate under which conditions transmitting to the closest-neighbor (more
hops; more reliable links) or to the furthest-neighbor (less hops; less reliable links) is the most
adequate hopping strategy in multi-hop transmissions. Our results indicated that such a deci-
sion is closely related to the interference level of the network and the link spectral efficiency,
which jointly determine the reliability of the links.

* Chapter 4: We modified the transmission capacity framework to allow for MAC protocols
that use asynchronous transmissions and packet retransmissions. We derived the maximum
number of allowed retransmissions such that the transmission capacity metric is optimized for
unslotted and slotted ALOHA, and CSMA with carrier sensing at the transmitter and with
carrier sensing at the receiver. Using this formulation, we also showed that, under mild traffic
conditions, the CSMA protocol outperforms ALOHA. On the other hand, when the network is
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facing high traffic conditions, our results evince that the synchronous nature of slotted ALOHA
is preferable than the sensing capability of CSMA.

* Chapter 5: We analyzed two different throughput optimization problems under packet loss
and queue stability constraints. Particularly we computed a closed-form approximation of the
setting access probability (slotted ALOHA), coding rate, and maximum number of retransmis-
sions that maximizes the effective link throughput and the spatial throughput, considering that
packets arrive at the transmitters following a geometrical distribution. We also discuss when,
and when not, the per-link throughput optimization also provides the optimal solution in terms
of the network spatial throughput.

* Chapter 6: We studied the expected maximum spatial throughput, or spatial capacity, of ad hoc
networks based on two decoding rules, namely (i) treating interference as noise, and (ii) jointly
detecting the strongest interfering signals, treating the others as noise. We then compared these
results against a system where transmitters code their messages at fixed rate set to optimize
the average spatial throughput regardless of particular realizations of the network. We proved
that, for the same decoding rule and network density, the spatial-capacity-achieving strategy
achieves values of spatial throughputs higher than when the fixed rate strategy is employed.

* Chapter 7: We arose some lessons that can be learned from the analytical results derived in
the other chapters. More specifically we stated some claims about the design setting that each
node should follow to improve the information flow throughout the network based on internal
and external factors as well as the network conditions. We also applied these claims to discuss
the implementation of adaptive ad hoc algorithms to improve the network performance and
robustness.

8.2 Future directions and final remarks

We can identify many possible future directions for the work carried out during this thesis. For
example, the results about queue stability presented in Chapter 5 only deals with slotted-ALOHA,
while in Chapter 4 we have completely neglected the existence of queues to assess the performance
of different MAC protocols. Hence one can extend those results by looking at a scenario where both
aspects are incorporated.

We can also take multi-hopping into account. In this case, relay packets insert additional traffic
flows in the network, increasing the arrival rates in the queues. Clearly this adds another variable in
the throughput optimization when stability constraints are required. Besides, for this new scenario,
are the finds about different hopping strategies presented in Chapter 3 still valid? And when different
MAC protocols are considered? Which are the trade-offs involved now? Answering these questions
is another possible future direction of our work.

Another option is to make use of the discussion presented in Chapter 7 to design an adaptive
algorithm to build functional interference networks that may be subject to dynamical conditions of
mobility and traffic. In this context, a possible future work is to further develop those ideas employing
tools from complexity science [136], which, we believe, provides powerful tools to better understand
cognitive radio networks [137].
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All in all, we are sure that the work presented in this thesis has a great potential to be extended in
different lines, considering either mathematical insights of optimal designing choices or algorithmic
implementations of cognitive solutions.
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