
i

RAFAEL ASSATO ANDO

BLIND SOURCE SEPARATION IN THE CONTEXT OF POLYNOMIAL MIXTURES

SEPARAÇÃO CEGA DE FONTES NO CONTEXTO DE MISTURAS POLINOMIAIS

CAMPINAS

2013

ii

iii

UNIVERSIDADE ESTADUAL DE CAMPINAS

FACULDADE DE ENGENHARIA ELÉTRICA E DE COMPUTAÇÃO

RAFAEL ASSATO ANDO

BLIND SOURCE SEPARATION IN THE CONTEXT OF POLYNOMIAL MIXTURES

SEPARAÇÃO CEGA DE FONTES NO CONTEXTO DE MISTURAS POLINOMIAIS

Orientador: Prof. Dr. Romis Ribeiro de Faissol Attux
Coorientador: Prof. Dr. Leonardo Tomazeli Duarte

Dissertação de Mestrado apresentada ao Programa de Pós-Graduação em Engenharia Elétrica da
Faculdade de Engenharia Elétrica e de Computação da Universidade Estadual de Campinas para
obtenção do título de Mestre em Engenharia Elétrica, na área de Engenharia de Computação.

Master dissertation presented to the Electrical Engineering Postgraduation Program of the

School of Engineering Electrical of the University of Campinas to obtain the M.Sc. grade in En-

gineering Electrical, in field of Computer Engineering.

Este exemplar corresponde à versão final da dissertação
defendida pelo aluno RAFAEL ASSATO ANDO
e orientada pelo Prof. Dr. ROMIS RIBEIRO DE FAISSOL ATTUX

CAMPINAS

2013

iv

v

vi

vii

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude:

To my parents, Satoshi and Kio, and my sister, Tania, for their support, encouragement

and comprehension.

To my supervisor, Prof. Romis Ribeiro de Faissol Attux, for his dedicated support for my

research, his aptitude to motivate and for being a great teacher since graduation.

To my co-supervisor, Prof. Leonardo Tomazeli Duarte, for his help with the research, his

well appreciated suggestions and for acting as a valuable liaison between the researchers from

France and us.

To Prof. Diogo Coutinho Soriano, for his help on dynamic systems, analysis of local sta-

bility and chaotic theory.

To Profs. Yannick Deville and Christien Jutten, for contributing to my research with their

comprehensive knowledge on the subject of blind source separation.

To my fellow researchers and friends from DSPCom, for welcoming me to a pleasant and

inspiring work environment.

To my friends from Unicamp and École Centrale de Nantes, for their support and incen-

tive.

To the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), and to the

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), for the financial sup-

port.

viii

To the members of the dissertation defense committee, Prof. Diogo Coutinho Soriano and

Prof. Ricardo Suyama, for their encouraging words of appreciation, as well as their invaluable

corrections and suggestions to the dissertation.

ix

RESUMO

Neste trabalho, estudamos o problema de BSS no contexto de misturas polinomiais sob

três perspectivas: uma teórica - voltada ao estudo de separabilidade estrutural -, uma ligada à

proposta de novas abordagens - especialmente como extensões de metodologias baseadas em

redes recorrentes – e uma relacionada ao tratamento de problemas práticos como redução do efei-

to show-through na digitalização de documentos.

A primeira dessas perspectivas levou à proposta de uma nova abordagem do problema de

separação não-linear baseada numa formulação do problema instantâneo de inversão como uma

tarefa de solução de um sistema de equações algébricas não-lineares. Essa abordagem levou à

proposição de novos métodos para lidar com o problema LQ e também pode ser aplicada a outros

modelos de mistura. A segunda perspectiva levou à construção de um arcabouço para tratamento

do problema LQ baseado numa rede imunológica artificial, o qual trouxe uma menor demanda

por informação a priori sobre o problema e provê maior robustez em termos de convergência glo-

bal. Por fim, a aplicação do ferramental desenvolvido a problemas práticos de tratamento de ima-

gens levou a um desempenho bastante satisfatório, encorajando a extensão futura para outros

cenários de teste (como sensores químicos).

Palavras-chave: Processamento de sinais, Separação cega de fontes, Sistemas não-

lineares, Análise de componentes independentes, Algoritmos evolutivos.

x

xi

ABSTRACT

In this work, the BSS problem in the context of polynomial mixtures will be studied under

three perspectives: a theoretical one, regarding the structural separability analysis; another related

to the proposal of new methodologies – especially as extensions of algorithms based on recurrent

networks – and finally, one regarding the solutions to real world problems, such as the reduction

of the show-through effect produced by digitally scanning documents.

The first such perspectives led to the proposal of a new approach to the nonlinear BSS

problem, based on a formulation to the instantaneous inversion problem as the solution of a non-

linear algebraic equation system. This approach led to the proposal of new methods to deal with

the LQ problem, which may also be applied to other mixing models.

The second perspective led to the development of an algorithm based on artificial immune

system (AIS) to solve the LQ model, requiring less a priori information about the problem and

providing better robustness in terms of global convergence. Finally, the application of the pro-

posed methods to the practical problem of image treatment presented a very satisfactory perfor-

mance, encouraging the possible extension to other test scenarios in the future, such as chemical

sensors.

Keywords: Signal processing, Blind Source Separation, Nonlinear systems, Independent

component analysis, Evolutionary Algorithm.

xii

xiii

LIST OF FIGURES

Figure 2.1 - Separating structure used in the Hérault-Jutten algorithm 6

Figure 2.2 - PNL model scheme ... 11

Figure 2.3 - Recurrent network for general additive-target mixtures 19

Figure 2.4 - Recurrent network for LQ model .. 19

Figure 2.5 - Recurrent network for LQ model, extended version 21

Figure 3.1 - Generic recurrent network structure.. 25

Figure 3.2 - Bifurcation diagram and Lyapunov exponent graphs 32

Figure 3.3 - Bifurcation diagram and largest Lyapunov exponent for Newton based

algorithm .. 41

Figure 3.4 - Results of simulation for basic DH network and variable step size 42

Figure 3.5 - Second simulation for basic DH network and variable step size 43

Figure 3.6 - Simulation results comparing the extended DH and Newton-based networks

 ... 44

Figure 3.7 - Source estimates along with the frontier where the Jacobian changes sign (in

red) ... 45

Figure 3.8 - Simulation with source amplitude 10 .. 46

Figure 3.9: Simulation representing sinusoidal wave over time 47

Figure 3.10 - Newton-based method for 3 sources .. 48

Figure 3.11 – Original sources for the simulation with n=9 ... 49

Figure 3.12 – Mixtures obtained for simulation with n=9. ... 49

Figure 3.13 – Estimates obtained by Newton-based algorithm .. 50

Figure 4.1 - Estimates obtained using opt-aiNet + ML-based cost 62

Figure 4.2 - Original sources and estimates for a Laplacian distribution 65

Figure 4.3 - Source estimates for different methods; quasi-uniform distribution 66

Figure 4.4 - Simulation results for random mixing parameters .. 68

Figure 4.5 - Estimates for simulation with Laplacian distribution 70

Figure 4.6 - Estimates for simulation with nonzero mean source distribution 72

xiv

Figure 4.7 - Scanned images for handwritten text for show-through simulation 74

Figure 4.8 - Separated sources for show-trough simulation .. 74

Figure 4.9 - Scanned images for show-through simulation .. 75

Figure 4.10 - Separated images from show-through simulation 76

Figure 4.11 - Original images used on the show-through simulation 76

Figure 4.12 - Image with brightness lowered, multiplying by 70% 77

xv

LIST OF TABLES

Table 3.1 - Comparison between basic DH and the Variable step size networks 44

Table 3.2 - Comparison between extended DH and Newton-based networks 45

Table 3.3 - Comparison between methods for source amplitude 10 46

Table 4.1 - opt-aiNet parameters used in the simulations ... 61

Table 4.2 - Comparison between fitness functions ... 63

Table 4.3 - Comparison between methods of mutual information estimation 64

Table 4.4 - Comparison for a Laplacian distribution .. 64

Table 4.5 - Error, time and cost for each method; quasi-uniform distribution 67

Table 4.6 - Mixing parameters obtained for each method; quasi-uniform distribution 67

Table 4.7 - Error, time and cost for each method; random mixing parameters 69

Table 4.8 - Mixing parameters obtained for each method .. 69

Table 4.9 - Error, time and cost for each method; Laplacian distribution 70

Table 4.10 - Mixing parameters obtained for each method; Laplacian distribution 71

Table 4.11 - Error, time and cost for each method; nonzero mean source distribution 72

Table 4.12 - Mixing parameters obtained for each method; nonzero mean source

distribution ... 73

xvi

xvii

LIST OF ABBREVIATIONS AND ACRO-

NYMS

aiNet Artificial immune network
AIS Artificial Immune System
ATM Additive target mixtures
BSS Blind source separation
DH Deville-Hosseini [network]
GGD Generalized Gaussian distribution
ICA Independent component analysis
LQ Linear quadratic
MI Mutual Information
ML Maximum likelihood
MSE Mean-squared error
opt-aiNet Optimization artificial immune network
pdf Probability density function
PNL Post nonlinear
RMS Root mean square
Unicamp Universidade Estadual de Campinas

xviii

xix

SUMMARY

1 INTRODUCTION ... 1

2 SOURCE SEPARATION MODELS .. 3

2.1 BASIC CONCEPTS OF SOURCE SEPARATION .. 3

2.2 LINEAR SOURCE SEPARATION.. 5

2.2.1 The Hérault-Jutten Algorithm .. 6

2.2.2 Independent Component Analysis .. 8

2.3 THE NONLINEAR CASE ... 10

2.3.1 Post Nonlinear Models .. 11

2.3.2 The Linear Quadratic Model .. 13

2.3.3 Invertibility of the LQ Model ... 14

2.4 SOLUTIONS FOR LINEAR QUADRATIC MODELS ... 15

2.4.1 Analytical Solution for Two Sources .. 16

2.4.2 The Basic Deville-Hosseini (DH) Recurrent Network 18

2.4.3 The Stabilized Deville-Hosseini Network ... 20

2.4.4 Estimation of the Mixing Parameters .. 22

3 ON THE STRUCTURE OF THE SOURCE SEPARATION PROBLEM 25

3.1 A NEW APPROACH TO THE PROBLEM OF SYSTEM INVERSION IN BSS 25

3.2 APPLICATION TO THE LINEAR-QUADRATIC CASE ... 27

3.2.1 Reinterpretation of the Basic Deville-Hosseini Algorithm 28

3.3 ON THE USE OF A VARIABLE STEP-SIZE FACTOR ... 29

3.3.1 Selecting the Value of the Variable ... 29

3.3.2 Local Instability / Chaotic Behavior .. 30

3.3.3 Reinterpretation of the Stabilized Deville-Hosseini Method 32

3.3.4 Local Stability of First-Order Algorithms ... 34

3.4 SECOND-ORDER RECURRENT NETWORK ... 37

3.4.1 Local Stability of the Algorithm Based on Newton’s Method / Existence of
Chaos .. 38

3.5 SIMULATIONS AND RESULTS .. 41

3.5.1 Simulations on Variable Step Size Strategy... 42

xx

3.5.2 Simulations on Newton-based Algorithm .. 44

3.5.3 Simulation – Newton-Based Algorithm with 3 Sources 48

4 ON THE ESTIMATION OF THE MIXING PARAMETERS 51

4.1 MAXIMUM LIKELIHOOD ESTIMATION .. 51

4.1.1 Problems with the ML Approach ... 54

4.2 EVOLUTIONARY ALGORITHMS .. 54

4.2.1 The opt-aiNet Algorithm .. 56

4.2.2 Defining a Fitness Function .. 58

4.3 MUTUAL INFORMATION .. 58

4.4 ESTIMATION OF THE SOURCE PDF .. 59

4.5 SIMULATIONS AND RESULTS ... 61

4.5.1 Comparing Different Fitness Functions .. 62

4.5.2 Estimating the Mutual Information ... 63

4.5.3 Simulation with Artificial Data: Comparison Between Methods 65

4.5.3.1 Quasi-Uniform Distribution ... 66

4.5.3.2 Quasi-Uniform with Random Mixing Parameters .. 67

4.5.3.3 Laplacian Distribution ... 69

4.5.3.4 Nonzero Mean Quasi-Uniform Distribution ... 71

4.5.4 Simulation with Real Data: Show-Through Image ... 73

5 CONCLUSION ... 79

6 REFERENCES ... 83

1

CHAPTER 1

1 INTRODUCTION

The blind source separation (BSS) problem can be considered an important cornerstone of

unsupervised signal processing theory. Although this problem has been traditionally studied un-

der the assumption of linear mixing models, having to deal with applications in which such mod-

els are not sufficient led to the extension of the BSS theory to also include analysis on nonlinear

functions.

While the general nonlinear problem can be considered theoretically unsolvable, it is pos-

sible to study specific models that can be solved and are of great practical importance, among

which we can include polynomial models such as the linear quadratic (LQ) model and the post

nonlinear (PNL) model.

In this dissertation, the study of the BSS problem in the context of polynomial mixtures

will be analyzed according to the following outline. In chapter 2, we will briefly explain the basic

ideas regarding the BSS problem. Initially, the main concepts for the case of linear mixtures will

be presented, due to their historical importance and as the basis of the theory used to solve the

more complex, nonlinear case. We will subsequently present the existing algorithms for nonlinear

models, and more specifically, for the LQ case.

In chapter 3, a new perspective on the separation problem will be established, based on a

reinterpretation of the problem as the solution of a nonlinear algebraic equation system. This al-

lows us to use new methodologies to develop a different class of networks based on numerical

root-finding algorithms.

By formulating the problem under the new approach, a specific algorithm based on the

Newton-Raphson’s method will be proposed, and a comparison to the original networks will

show promising results. As will be explained, the proposed solution presents an improvement in

terms of stability and convergence rate, as well as a simple strategy to generalize the proposed

algorithms for different mixing models and number of sources.

In chapter 4, we will analyze the current methods presented in the literature to estimate

the mixing parameters in the case of blind separation for the LQ model, and develop techniques

2

that might be able to improve them. One of the ideas is to use an evolutionary algorithm based on

the artificial immune system (AIS), which is able to provide better robustness in terms of global

convergence and does not require a priori knowledge about the source distribution.

We will also propose a different optimization strategy based on mutual information be-

tween the sources, which is able to mitigate some of the existing problems of the cost function

based on maximum likelihood (ML), as originally proposed by Deville and Hosseini [14].

Moreover, we will show simulations in which the proposed networks were able to be test-

ed on a real world application that can be modeled by LQ mixtures: the removal of the show-

through effect on scanned images. The simulation results show satisfactory results, with the algo-

rithm being able to successfully separate the images.

Finally, in chapter 5 we will briefly summarize all of the improvements proposed in this

work, and conclude with some remarks on the nonlinear BSS problem.

3

CHAPTER 2

2 SOURCE SEPARATION MODELS

In this chapter, we will explain the basic concepts of blind source separation (BSS), as

well as the fundamentals of some key algorithms for solving it. It will be seen that, for the linear

case, it is possible to separate the sources - given the hypotheses that the sources are mutually

independent and have a non-Gaussian distribution1 - using a tool called independent component

analysis (ICA). We will also explain why this tool cannot be used for a general nonline-

ar case and present some of the main scenarios and approaches to deal with specific

nonlinear formulations.

2.1 BASIC CONCEPTS OF SOURCE SEPARATION

We will start by explaining the basic concepts of the BSS problem. Simply put, the prob-

lem can be defined in the following way: given a set of N sources () [() ()] ,

there exists a mixing model that somehow combines them, thereby engendering a set of M mix-

tures () [() ()] [()], where and [] is a general mixing func-

tion. The aim is then to obtain the source values from the mixtures and some sort of additional

information regarding either the sources or the mixing model.

The above description is quite abstract, as the function that is responsible for mixing the

sources can have several different natures. Since there is no solution for the most general case,

the model has to be analyzed according to a case-by-case basis. A useful taxonomy can be built

in terms of the following characteristics of the model:

1 Actually, in strict terms, as will be seen in section 2.2.2, it is acceptable that a single source be Gaussian.

4

Linear or Nonlinear: The mixture is said to be linear if and only if:

 [() ()] [()] [()] (2.1)

and it is said to be nonlinear otherwise. It should be mentioned that linear mixtures can be repre-

sented in terms of the following expression if the mixing model is instantaneous:

 [()] () (2.2)

where is a mixing matrix.

Underdetermined, Determined or Overdetermined: When M = N, the BSS problem is

said to be determined, and it is well-posed from the standpoint of information recovery. If , the mixture is said to be overdetermined, providing additional information that can be used to

better estimate the mixture parameters and the sources [41]. Finally, if the process can be

referred to as underdetermined – in which case there is a lack of information caused by the inher-

ently non-invertible character of the mixing model. This may cause the problem to become un-

solvable unless additional information about the sources and/or the mixing process is available

(the use of sparsity, discussed in [5], is a promising possibility in this sense).

Blind or Non-Blind: The source separation problem can be defined as non-blind if there

is a priori knowledge about the parameters of the mixing model; it is said to be blind if this is not

the case.

The study of non-blind mixing models, in spite of their more restrictive nature, is certainly

important. Firstly, it is possible that, sometimes, in real world applications, at least some of the

mixing model coefficients are known; secondly, even if that is not the case, it might be possible

to create an external set of known source-mixture pairs that would allow this knowledge to be

obtained in a deterministic fashion [6]. Finally, as will be seen later in this work, understanding

the non-blind separation case can be an essential step towards solving the blind case.

5

Stochastic or Deterministic: The mixing function can be considered stochastic if differ-

ent outputs can be obtained from the same input, in consonance with a certain probability model.

Conversely, in the case of deterministic models, the same input will always produce the same

output.

Time-invariant or Time-variant: The system can be defined as time-invariant if its in-

put-output response is not modified by a time shift, and it is otherwise called time-variant. In

mathematical terms, a time-invariant system must satisfy:

 [()] () [()] () (2.3)

Memoryless or with Memory: As briefly mentioned earlier, the mixing system can be

said to be memoryless (or instantaneous) if its output depends only on the current value of the

input, and it is said to have memory if the output possesses some kind of dependence with respect

to previous input values.

In this dissertation, the focus will be on mixing models that are nonlinear, determined,

time-invariant, memoryless and deterministic. However, before the nonlinear case be addressed,

it is important to discuss the linear case in view of its historical background and of its associated

simple and elegant framework.

2.2 LINEAR SOURCE SEPARATION

The classical BSS scenario is defined by a linear, determined and instantaneous mixing

model [9]. In that case, the mixing model can be, as anticipated in (2.2), described by:

 () () (2.4)

where is a full-rank N x N mixing matrix. If the mixing matrix is known a priori, solving the

problem is straightforward – all one must do to recover the sources is to make use of its inverse:

6

 () () (2.5)

A more thorough approach to the problem will be necessary for the blind case, as the co-

efficients of will be unknown and additional information will be essential to handle it. This

leads us to the analysis of methods for effectively performing ICA in the linear and instantaneous

case. The discussion will begin with the pioneering formulation by Hérault, Jutten and Ans – to

be revisited later in terms of original results presented in this dissertation - and will, in the follow-

ing, cover the standard approach to the problem, based on the notion of independent component

analysis (ICA) [7, 9, 22].

2.2.1 The Hérault-Jutten Algorithm

A pioneering effort in solving the linear BSS problem is the Hérault-Jutten algorithm [9,

42], which based on a neurocomputing theoretical framework [6]. The separating structure for the

two-source (N = M = 2) case can be seen in Fig. 2.1.

Figure 2.1 - Separating structure used in the Hérault-Jutten algorithm

In the structure presented in Fig. 2.1, (), i = 1, 2, are the mixtures and (), j = 1, 2,

are the source estimates. If the time index is omitted for the sake of simplicity, the structure in-

put-output relationship can be expressed as:

 ()

 ()

 ()

 ()

7

 (2.6)

where is the matrix containing the weights , and is such that its diagonal terms are zero. By

isolating in (2.6), one obtains:

 () (2.7)

The goal of the algorithm is, then, to estimate the weight matrix . Hérault, Jutten and

Ans used the following update term [9, 26]:

 () () (2.8)

The rationale of (2.8) is based on the concept of nonlinear cross-correlation. If it is as-

sumed that the sources are mutually independent, it can be shown that [9]:

 { () ()} (2.9)

where () and () are suitable odd nonlinear functions that satisfy { ()} { ()} { }. The Hérault-Jutten algorithm then estimates { () ()} as () (),

using this stochastic estimate in a gradient-like method to obtain , as shown in (2.8).

The nonlinear cross-correlation was selected as a computationally simple measure of in-

dependence between the variables. While { } (uncorrelatedness) is a necessary condition

for independence, it is not sufficient. As explained in [26], by choosing appropriate nonlinear

functions () and (), condition (2.9) implies not only uncorrelatedness, but also that higher

order product-moments { } be zero, making a much stronger case for independence. The

functions () and () must be odd and different, but otherwise a broad range of functions can

be used. In their paper, successful simulations were performed using () , and () as

either , () or .

8

Gaussian distributions can be tricky in the sense that their higher order product-moments

can be zero, and yet the variables can still be independent. As a result, the algorithms should be

used when at most one of the variables presents a Gaussian distribution.

When convergence is reached, each () should ideally correspond to a source. The al-

gorithm converges only under certain circumstances [9, 22], but was, notwithstanding, an im-

portant step towards the creation of independent component analysis theory, which is, as already

mentioned, the canonical method for solving the linear BSS problem. The adoption of recurrent

networks to iteratively solve a BSS task was also of great importance to the development of a

family of solutions to the nonlinear BSS case, as will be seen in chapter 3.

2.2.2 Independent Component Analysis

In simple terms, independent component analysis (ICA) is a statistical method to discover,

in a certain set of samples of multivariate data, mutually independent components or factors that

are representative of the underlying information content. In order to do so, it is necessary to ini-

tially define a way to quantify the degree of independence between signals and variables.

Let us now assume the validity of the linear and instantaneous model presented in (2.4),

and consider that all sources are mutually independent. In view of the fact that all mixtures that

form () are linear combinations of the same set of sources, they, in general, will no longer be

independent. Hence, it is natural to speculate on the possibility that, by recovering the independ-

ence condition that is inherent to the source set, one will also obtain a suitable separating matrix that will play the role of an inverse to the mixing matrix . This ICA-based BSS approach is

indeed sound, as shown by Comon [6], given the following assumptions:

9

Separability Conditions – Linear and Instantaneous Model - ICA:

1. The mixing model is invertible (i.e., the mixing matrix is non-singular)

2. The sources are mutually independent.

3. Among the sources there is at most one source with a Gaussian distribution.

In other words, given the validity of these conditions, if a matrix is obtained such that

the signals () () are also mutually independent, this matrix will necessarily be of the

form , where is a permutation matrix and is a diagonal matrix. The latter ma-

trix accounts for the fact that the use of ICA leads to estimates of the sources in any order – as a

permutation does not alter the independence between random variables – whereas the matrix

indicates that the sources can be recovered up to general scale factors.

In the context of linear and instantaneous BSS, two of the most widespread methods to

measure independence are [7, 22]:

Non-Gaussianity: according to the central limit theorem [27], the limit of a sum of inde-

pendent random variables tends towards a Gaussian variable. Intuitively, this reveals that a linear

mixture of sources is “more Gaussian” than any of the sources – as a consequence, the more

“Gaussian-like” a signal yi(n) is, the less it will correspond to the estimate of a signal of interest.

Some ways to quantify non-Gaussianity includes the use of kurtosis [28] and negentropy [22].

Mutual Information: considering the set of source estimates () [() ()] , it is possible to define mutual information (MI) as:

 (()) ∑ (())
 (()) (2.10)

where () is Shannon’s differential entropy [29, 30]:

10

 () ∫ () ()
 (2.11)

and () is the pdf of the random variable – or, in the case of a set of variables as (), the

joint pdf distribution.

Two properties of the MI will be very important for its use in ICA: a) it is always

nonnegative and b) it is null if, and only if, the random variables are statistically independent

[30]. These properties justify the use of this metric to quantify independence: the closer to zero (()) is, the “more independent” the associated variables are.

In summary, these two ICA formulations can be employed to build a criterion to deter-

mine the separating matrix such that () () contains maximally-independent compo-

nents. The underlying cost function can, in this case, be described as a contrast function. A con-

trast function () is any non-linear function which is invariant to permutation and scaling ma-

trices, and achieves its global minimum when the components of its input are mutually independ-

ent.

The process of optimizing this function is typically iterative, generating a class of ICA-

based BSS algorithms like the FastICA [28] and the Infomax algorithms [31], only to mention a

few.

2.3 THE NONLINEAR CASE

Despite the facts that the linear model is undoubtedly useful and has been extensively

studied over the last years, there are situations in which nonlinear models are imperative to

properly represent the necessary physical quantities and relationships. In contrast with the well-

posed linear case, in a nonlinear scenario, even for non-blind source separation problems, the

inversion of the mixing function can be difficult to achieve and sometimes even analytically im-

possible, similarly to the problem presented by underdetermined linear models.

It should be noted that, for the linear case, even when the coefficients of the mixing ma-

trix are unknown, if the presented separability conditions are respected, ICA methods can ensure

12

does not “mix the signals further” (that is, () does not depend on , etc.). This formulation is

interesting to model, for example, the nonlinear effects of amplifying stages and sensors over

linear signal superposition [11].

A natural way to invert a PNL model is to cancel off the nonlinear functions and, then, to

perform standard linear BSS. Hence, a separating system can be as shown in equation (2.13):

 () [()] (2.13)

where [()] [(()) (()) (())]T should be such that the components of [()] be a linear mixture of the original sources. The PNL model has been studied along the

last decade, and the separability conditions for this model, assuming the use of ICA, have been

found to be [11, 23]:

Separability Conditions - PNL Model - ICA:

1. The mixing matrix is invertible and effectively mixes the sources – in other words,

each row and column of this matrix contains at least two non-zero elements.

2. The functions [] and [] are monotonic (and, as a result, so is ()[]).
3. At most one of the sources has a Gaussian distribution.

4. The joint pdf of the sources is of class – that is, it is differentiable and its derivative

is continuous.

Much like in the case of linear BSS, methods for performing ICA-based separation for

PNL models are generally based on the direct use of mutual information, as the adoption of a

limited set of moments can be misleading [20, 21]. Algorithms based on nonlinear optimization

methods and also on bio-inspired algorithms are reported in the literature, and different strategies

can be selected to handle the aspects of modeling of [] and of probability density function es-

timation. The interested reader is referred to [11, 20, 21, 23] for more details on the subject.

13

2.3.2 The Linear Quadratic Model

Another nonlinear mixing model that can be considered of particular importance both in

theoretical and practical terms [12] is the linear quadratic (LQ) model. A general mixture associ-

ated with this model can be described as follows:

 () ∑ ()
 ∑ ∑ () ()

 (2.14)

What equation (2.14) basically means is that each mixture is composed of a linear part

and a quadratic part based on cross products of different sources. For the sake of clarity, we will

initially study the simpler case of LQ models with two sources and two mixtures (N = M = 2):

 () () () () () () () () () ()

(2.15)

Since we consider solutions that are different only up to permutation and scaling factors

as equally valid, it is possible to assume that the sources to be recovered are () ()

and () (), and, instead, write the model as:

 () () () () () () () () () ()

(2.16)

where , and (). For the sake of simplicity, we will hence-

forth refer to these new values of the sources as () and () again.

Equations (2.15) and (2.16) ultimately represent the same mixing process (in the sense

that the solutions are equivalent up to scaling factors), but the latter is defined in terms of 4 pa-

rameters (instead of 6), which will be very attractive from the standpoint of model identification

in the context of the BSS algorithms discussed later [13].

14

An interesting point to notice is that for the linear case, modifying the sources by offsets

and scaling factors merely cause the mixtures to be offset or scaled respectively. Since these

modified sources effectively represent the same solution, we can scale and offset the mixtures as

we see fit, before applying BSS algorithms to it. This initial operation is called preprocessing.

For nonlinear models as a whole, preprocessing cannot be done. Sources that differ by

scaling factors and offsets still represent the same solution, but they cannot be easily translated to

a similar change in the mixtures due to the nonlinearities present in the model.

2.3.3 Invertibility of the LQ Model

As an important remark, it should be noticed that the conditions for the separability of the

LQ model are still a subject of active research. While it is known that independence is not enough

for coping with general nonlinear mixtures [10], experimental results suggest that, for the LQ

model, it might be sound [10, 13].

Similarly to the case of linear mixtures, the invertibility of the mixing model has to be a

part of the separability prerequisites that have to be satisfied. Since the mixing model is no longer

straightforwardly invertible from a purely analytical standpoint, though, the actual meaning of

this invertibility needs to be reinterpreted.

Knowing that the LQ model represents a second-order polynomial system, it is natural for

it to have two solutions. As will be shown in section 2.4.1, these two solutions are actually equiv-

alent – in the sense that they will differ only by order, scaling factor and a constant offset. The

solutions can be written in the form of (2.17):

 () () (2.17)

where is the determinant of the Jacobian of the system, and are constants that will be de-

fined the next section.

When an algorithm to separate the sources is applied, either of the solutions is considered

to be acceptable. However, it is important to always choose the same sign, in order to avoid mix-

ing these two equivalent, but different solutions when estimating the source as a whole.

15

One problem that will become apparent in section 2.4.1, though, is that we will only be

able to estimate from the parameters and the mixtures, from which we can estimate , but not . Hence, the invertibility condition that has to be satisfied is [13, 14]:

Invertibility of the LQ model:

The Jacobian of the mixing system does not change sign throughout all points on the data

set:

 () () { } (2.18)

where () () () () ()
2.4 SOLUTIONS FOR LINEAR QUADRATIC MODELS

In this section, we will present the methods for solving non-blind LQ source separation

problem presented in the literature and also discuss some of their features and drawbacks. As-

suming a priori knowledge about the mixing model coefficients, or if we are able to estimate

them from a set of known source-mixtures pairs, the source separation problem will amount, es-

sentially, to non-analytical system inversion. In the context of BSS, the problem will be tackled

based on the following general method:

16

General Procedure for Performing BSS in the Context of a Nonlinear Model:

1. Start with random mixing parameters.

2. Using the current mixing parameters estimates, solve the problem as if it were non-

blind.

3. Using the source estimates obtained on Step 2, use an algorithm to estimate a better set

of values for the mixing parameters.

4. Repeat steps 2 and 3 until convergence (if the procedure does not converge, start again

from step 1).

For the linear case, step 2 is trivial, in which case the success of the whole algorithm de-

pends on step 3, as we have seen in section 2.2. When dealing with a nonlinear mixture, however,

separating the sources can be difficult even when the coefficients are available – hence the need

for recurrent network-based approach to step 2. In this dissertation, chapter 3 will propose solu-

tions to the problem in step 2, while chapter 4 will address the problem in the next step.

In sections 2.4.1 to 2.4.3 we will present the canonical methods for solving the non-blind

problem under LQ mixtures, while section 2.4.4 will introduce an algorithm for estimating the

mixing parameters of the model (step 3) in the non-blind case.

2.4.1 Analytical Solution for Two Sources

In the simple case of two sources, as shown in (2.16), we can actually obtain an analytical

solution for inversion in the non-blind case [13]. To do so, we initially rewrite equation (2.16) as:

 () () () () () (2.19)

 () () () () () (2.20)

By calculating () (), we can cancel out the cross product terms and

obtain a relation between () and ():

17

 () () () (() ()) (2.21)

We can then use (2.21) in (2.19), and obtain:

 () () (() ()) () (() ())

(2.22)

The same thing can be done by isolating and replacing (), to obtain:

 () () (() ()) () (() ())

(2.23)

By solving both quadratic equations we can obtain an analytical solution to the problem:

 () (√ √) (2.24)

where:

 () () () () () () () ()

We can also check that () , where () is the system Jacobian given in

(2.17). As was discussed in section 2.3.3 the system will always have two different solutions,

depending on the sign selected in (2.24). One of the solutions is () (); while the

other is

18

 () () (2.25)

The solution presented in (2.25) is equivalent to the first solution, except for a permuta-

tion, a scaling factor, and an offset [13, 14]. Because both solutions are equivalent, either of them

is acceptable, as long as points from different sets are not mixed.

As explained in section 2.3.3, if the sign of the Jacobian remains constant throughout the

data set of the sources, it is possible to ensure that points from the same solution set are always

chosen [14]. If the sign of the Jacobian changes, though, in order to obtain a consistent solution

we would sometimes need to apply the positive sign on (2.23), and sometimes the negative sign,

depending on the Jacobian sign, which unfortunately cannot be estimated.

2.4.2 The Basic Deville-Hosseini (DH) Recurrent Network

The analytical solution is certainly effective and easy to calculate, but it only works for

two sources. So, a different kind of algorithm is required to hand the more general case. The dif-

ficulty for obtaining an analytical solution suggested to Hosseini and Deville [13] the adoption of

a recurrent network that iteratively converges to the desired solution.

The first algorithm of this kind was proposed in [13], and it presented a significant simi-

larity with respect to the Hérault-Jutten structure presented in section 2.2.1. However, it was ap-

plied to a class of nonlinear mixtures termed additive target-mixtures (ATMs) [13]. ATMs form a

class of nonlinear mixtures that satisfy equation (2.26) below, and the LQ model is a member of

this class.

 () [()] [()] { } (2.26)

where [] and [] are defined as the target and interfering terms; or, in other words, they are

the mixture components that would be interesting to keep and remove, respectively, from the

outputs of the separating system. The same separating network (which will be referred to as

Deville-Hosseini or DH network) can be used for dealing with any ATM model - it is illustrated

in Fig. 2.3:

19

Figure 2.3 - Recurrent network for general additive-target mixtures

A comparison between Fig. 2.3 and Fig. 2.1 stresses the similarity between the DH net-

work is similar to that associated with the Hérault-Jutten algorithm, with the addition of a cross-

multiplied component required to cancel the nonlinear terms. When specifically applied to the

LQ model [13], we obtain:

Figure 2.4 - Recurrent network for LQ model

20

which can be represented, in mathematical terms, in the form:

 () () () () () () () () () () (2.27)

In (2.27), the DH algorithm iterates through while keeping constant. This can be

done because since the model is considered to be instantaneous, we can solve one point at a time

independently. The variables () represent estimates of the sources, and ideally, they should

converge to either (), or to the alternative proposed in (2.25) The iteration presented by

(2.27) uses only two sources, but it is possible to generalize it to any amount [13].

The basic algorithm, though, only converges for some values of source amplitudes and

mixing parameters, as can be shown by a theoretical analysis on the local stability, as well as by

simulations presented in chapter 3.

2.4.3 The Stabilized Deville-Hosseini Network

To help solve the stability problem, Hosseini and Deville proposed an extended version of

their network, which includes a self-feedback loop that stabilizes the algorithm [13], resulting in

the following network:

21

Figure 2.5 - Recurrent network for LQ model, extended version

which can also be described by the iterations:

 () () () () () () () () () () () () (2.28)

where the terms are associated with the aforementioned self-feedback strategy. Unlike the

basic network, the terms and presented in (2.28) are not the mixture coefficients – instead,

they are different constants based on the mixture parameters and the self-feedback parameters

according to the following rules [13]:

(2.29)

22

As a drawback, the stabilized DH network is also limited to two sources; or, more precise-

ly, in the way it was proposed in [13], it is difficult to generalize the implementation to encom-

pass more than two sources.

2.4.4 Estimation of the Mixing Parameters

For the blind case, Hosseini and Deville used a maximum likelihood (ML) approach to

generate a cost function that can be used to estimate the mixing parameters [14]. The ML princi-

ple is a general method for estimating parameters in a statistical model, in which a likelihood val-

ue can be assigned for each set of parameters estimate, depending on how likely it would be for

the parameters in question to generate the observed data set. The likelihood function can be ex-

pressed as:

 () () (2.30)

that is, as the probability (or, in the continuous case, as the pdf value) of obtaining the observed

data, given that the parameters of the model are .

The application of the likelihood function to the particular model we are studying, as well

as the actual calculation the cost function obtained using this method can be found in chapter 4

and in their paper [14]. The expression of the cost function obtained is:

 [∑ (̂)
] [| ̂|] (2.31)

where [] is the time average operator, () is the pdf of source , and is the estimate of the

Jacobian of the equation system. The algorithm proposed by Hosseini and Deville then uses the

gradient method to minimize the cost function in (2.31), which in turn demands knowledge of the

derivatives of the cost function [14]. For the simplest case of two sources, the gradient can be

calculated as [14]:

23

 ̂ [̂ ̂ ̂ ̂] (2.32)

where () () is the score function, ̂ is the estimate of the parameter

vector, and:

 (̂)(̂ ̂) ̂ (̂ ̂ ̂)((̂) ̂) [(̂ ̂ ̂)(̂ ̂) (̂ ̂ ̂)(̂ ̂ ̂)] ̂ ̂ (2.33)

 (̂)(̂ ̂) ̂ (̂ ̂ ̂)((̂) ̂) [(̂ ̂ ̂)(̂ ̂) (̂ ̂ ̂)(̂ ̂ ̂)] ̂ ̂ (2.34)

 [(̂)(̂ ̂) (̂)(̂ ̂ ̂)] ̂ ̂ ̂ ̂ ̂ [(̂ ̂ ̂)(̂ ̂) (̂ ̂ ̂)(̂ ̂ ̂)] ̂ ̂ ̂ (2.35)

 [(̂)(̂ ̂) (̂)(̂ ̂ ̂)] ̂ ̂ ̂ ̂ ̂ [(̂ ̂ ̂)(̂ ̂) (̂ ̂ ̂)(̂ ̂ ̂)] ̂ ̂ ̂ (2.36)

A potential problem of the method is that it requires either a priori knowledge of the dis-

tribution of the sources or a reliable way to estimate their derivatives from the data. While meth-

ods for estimating such derivatives exist [17], they are not always accurate enough. Additionally,

if the sources have distributions that cannot be differentiated in all points (for example, a uniform

distribution), there will be potential difficulties related to gradient calculation.

Another problem is that, unlike in equation (2.31), where we can see the cost function

has a general expression that is valid for any number of sources (and even for different mixing

model functions), the gradient would have to be explicitly calculated on a case-by-case basis,

depending on the number of sources and the mixing model. The resulting expression would have

to be hardcoded on the algorithm, making it impractical for general use. The gradient expression

can also be seen to be increasingly more complex for a greater number of sources, which can

quickly render the method intractable.

24

As we will see in chapter 4, we will be able to circumvent this requirement by using a bio-

inspired algorithm that will not require gradient estimation, as well as a different cost function

that requires less prior information on the sources.

25

CHAPTER 3

3 ON THE STRUCTURE OF THE SOURCE SEPARATION PROBLEM

In this chapter, we will present a first set of contributions associated with this work, which

are related to structural aspects of nonlinear source separation. Throughout this exposition, it will

be assumed that the problem to be dealt with is non-blind, with the discussion of proposals and

applications related to the blind case left to chapter 4. This division is useful from the standpoint

of clarity of exposition, but it is also relevant because, as outlined in section 2.4, the non-blind

separation task will be a stage of the analyzed blind methods.

3.1 A NEW APPROACH TO THE PROBLEM OF SYSTEM INVERSION IN BSS

As discussed in chapter 2, the canonical strategies to solve the non-blind part of the LQ

source separation [14] problem can be understood in terms of neural networks with an interesting

conceptual similarity with respect to the emblematic structure proposed by Hérault, Jutten and

Ans [26]. In other words, the use of a recurrent network like that shown in Fig. 3.1 has been part

of the modus operandi of the separating algorithms, and weights, connections and feedback loops

have to be adapted to suit each kind of mixing model and number of sources, in such a way that

the recurrent algorithm be able to yield the separated sources upon convergence.

Figure 3.1 - Generic recurrent network structure

26

In order to understand this state of things from a mathematical point of view, let us re-

member the basic definition of the BSS problem. Our goal is to obtain the set of sources (),

given a nonlinear function [] and the set of mixtures () satisfying:

 () [()] (3.1)

Consider that the mixing function [] is complex enough that we cannot analytically invert it

(an inverse exists, but cannot be found in closed form and may or may not be unique). The stand-

ard approach that has been used is to create an algorithm that effectively behaves as an estimate

of the function [] such that:

 () [()] (3.2)

Essentially, the canonical methods are based on [], which is an actual inverse of [] (if there

is more than one, any is acceptable). For that to be possible, we need to know a priori how the

general structure of the inverse should be, because the structure of the recurrent network is based

on this function. Even for simple cases like the LQ model, for a higher number of sources, know-

ing the structure of the inverse can already be difficult.

In this dissertation, we will propose a different approach to the problem, which is concep-

tually simple and very general in its scope, both with respect to the mixing models and to the

number of sources. As will be seen later, the new approach will also give rise to recurrent net-

works, but they will not arise as ad hoc solutions.

Instead of designing a specific structure whose equilibrium points are equivalent to in-

verse solutions to a predetermined system, we will rewrite equation (3.1) as:

 [()] [()] () (3.3)

and then directly solve the new equation system []. In other words, the process of inverting the

mixing system will be treated simply as an iterative method for solving a system of nonlinear

algebraic equations. This perspective has the advantage of simplifying the problem formulation –

27

it is reduced to the much more broadly studied problem of solving a nonlinear system - and raises

the possibility of using several well-established iterative general-purpose algorithms [16, 33].

It is also important to notice that, in spite of the fact that most of the results presented in

the rest of the dissertation focus on the LQ model, this new approach is not restricted to this par-

ticular model: any known mixing model and with any amount of sources can be formulated from

this perspective, and can be numerically solved via standard root-finding algorithms.

3.2 APPLICATION TO THE LINEAR-QUADRATIC CASE

Applying equation (2.14) to (3.3), it is possible to obtain a representation of [] (the sys-

tem whose roots we want to find) for the specific case of LQ models. For the case of two sources

(N = M = 2), we obtain:

 [()] [() () () () () () () () () ()] (3.4)

Firstly, we will demonstrate that the algorithms presented in chapter 2 can be derived as

particular cases of first-order root-finding algorithms applied to the LQ model. In this context, the

expression first-order algorithm is used to indicate a method that converges with linear speed

[24], that is:

 () () (3.5)

where ()
Likewise, we can define a higher-order method as having rate of convergence if the

method satisfies:

 () () () () (3.6)

28

3.2.1 Reinterpretation of the Basic Deville-Hosseini Algorithm

If we revisit the Deville-Hosseini (DH) algorithm, discussed in section 2.4.2, it is possible

to see that (2.24) can also be written as [15]:

 () () [()] (3.7)

where () is the estimate of (). If the algorithm converges, then () () and [] , as desired. This can be viewed as a simple fixed-point method to find the roots of [],
but it suffers from the concrete menace of instability. Another way of interpreting it would be as

a simplified version of the gradient descent method [16] – a first-order optimization algorithm –

to minimize the cost function given by:

 [()] [()] (()) (()) (3.8)

The basic gradient descent method has the following form:

 () () [()] (3.9)

where , as the aim is to minimize the cost function. Since [()] [()], equation

(3.7) can be seen as a simplified version of (3.9), where . It is known that the gradient de-

scent method converges linearly, so the basic DH network can be classified as a first-order algo-

rithm according to the above definition.

The simplest improvement that can be suggested with respect to this algorithm is to treat in (3.9) as a time-variant value by allowing it to be potentially modified on an iterative basis,

being the choice guided by the idea of obtaining minimizing steps from the standpoint of [()] - equation (3.8). Notice how, under the new interpretation to the problem, the idea of

implementing this improvement arises naturally as a stabilizing factor and convergence accelera-

tion factor, whereas, in the original interpretation of a DH network, its purpose is not prima facie

29

so straightforward. The idea of employing a variable step size will be further discussed in the

next section.

3.3 ON THE USE OF A VARIABLE STEP-SIZE FACTOR

The implementation of a variable step size is an extension to the basic DH network that

arises in a natural way from the use of a gradient descent method. According to the proposed

framework, the inclusion of this variable gives rise to the following update expression:

 () () () [()] (3.10)

For the case with N = M = 2, this leads to the following equations:

 () (()) () ()(() () () ()) () (()) () ()(() () () ())
(3.11)

Notice that, on each iteration, () is a weighted average between (), the current value

of , and the value that would be assumed by it in the original DH recurrent network, discussed

in section 2.4.2. The performance of this strategy will be now analyzed.

3.3.1 Selecting the Value of the Variable

One way to implement the use of the variable step size algorithm is to select, for each

iteration, the value of that leads to the “most minimizing” step with respect to the cost function.

This establishes a line search task [16] that can be computationally demanding when real-time

applications are considered, hence the algorithm that will be discussed in the following is a sim-

pler version that, instead of seeking the optimal solution, accepts a value that is, according to a

predetermined threshold, close enough. While the usage of suboptimal values of might lead to

more iterations until the estimate of the sources converge, this is compensated by the fact that

30

each iteration will be simpler, due to the less expensive version of the line-search algorithm im-

plemented.

The idea can be summarized in terms of the algorithm described below:

Algorithm for Selecting the Value of ():

1. Start with () (a “large value”).

2. Calculate the cost function [()].
3. Slightly reduce the value of () (for example, by multiplying it by 0.99, or some

other rate).

4. Recalculate [()].
5. Repeat steps 3 and 4 until the cost either stabilizes, or starts increasing.

After the above algorithm concludes its execution, a value of () will have been ob-

tained that, while not necessarily optimal, can be found relatively easily and should have a satis-

factory performance.

3.3.2 Local Instability / Chaotic Behavior

In order to verify whether a variable step-size really improves the local stability of the DH

algorithm, we selected a scenario with mixing parameters and source values that, in the literature,

were known to cause the basic network to be unstable [13]. The mixing parameters in this simula-

tion were , , and the source values were . In the

algorithm, the initial estimate was () () , and the value of was kept constant on

all iterations, but varied on different instances of the same simulation, ranging from to .

The obtained results can be seen in Fig. 3.2. In the upper graph, we can see the value ob-

tained for – the estimate of –, depending on the value of . The values of have only

started to be recorded after 50 iterations in order to avoid the transient associated with the initial

iterations. In the lower graph, the value of the largest Lyapunov exponent of the system [25, 35]

is represented. The largest Lyapunov exponent characterizes the rate of separation of infinitesi-

31

mally close trajectories in a dynamical system in such a way that () , or, more

precisely:

 () (3.12)

For fixed point iterations described by (), equation (3.12) becomes:

 ∑ ()
 (3.13)

The value of this exponent is very important to characterize the dynamic behavior of the

iterative method. When it has a negative value, the system steady-state behavior will be of peri-

odic character – convergence towards an equilibrium point or a limit cycle [34]. On the other

hand, a positive value, in the absence of divergence towards infinity, is a sound indicative of the

existence of chaos. Additionally, the greater the magnitude of the Lyapunov exponent, the faster

the dynamic system will converge (in case of negative exponent) or diverge (for positive expo-

nent). In simple terms, if the focused system operates in a chaotic regime, it will show a pattern

characterized by aperiodicity and sensitive dependence with respect to the initial conditions [35].

The upper graph, which is termed a bifurcation diagram, is a very useful tool to study

modifications in the stability of limit sets [35]. It shows that the proposed separating system will

have a proper operation (recovering the correct source sample) for all values of in the interval

between 0 and 0.8. For values of slightly above 0.8, the system starts to present periodic oscil-

lations, and a cascade of period-doubling bifurcations takes place when is further increased.

After this cascade, the system presents chaotic behavior (visually identifiable in the zones with an

expressive point density) with periodicity windows. The behavior, which is duly confirmed by

the analysis of the largest Lyapunov exponent, appears often in scenario for discrete-time dynam-

ical systems (also called maps), and is known as a Feigenbaum bifurcation diagram [25, 34, 35,

36].

32

In our example, we can notice that the fastest convergence happens at , at which

point the Lyapunov exponent in minimal. However, as seen in the bifurcation diagram, at this

point the system does not converge to the correct solution – instead, it converges to a limit cycle.

Therefore, the ideal value of in our case would be approximately , when we can see the

minimum value of the Lyapunov exponent in the interval that converges to the correct solution.

Figure 3.2 - Bifurcation diagram and Lyapunov exponent graphs

This analysis, albeit preliminary, clearly reveals the complexity of possible behaviors aris-

ing from recurrent networks with a DH structure and also indicates the importance of using con-

trol strategies like the adoption of a variable step-size, or, alternatively, the self-feedback exten-

sion presented in 2.4.3.

3.3.3 Reinterpretation of the Stabilized Deville-Hosseini Method

In this section, we will show that the stabilized DH algorithm is, in fact, equivalent to the

basic network with the implementation of a general (albeit fixed) step-size. The stabilized net-

work given at section 2.4 can be described in terms of the following expressions:

33

 () () () () () () () () () () () () (3.14)

By considering and , we can apply (2.27) to (3.14) to obtain the equivalent

form:

 () () () () () () () () () () () () () ()
(3.15)

Multiplying both sides of the first and second equations by and , respectively, and

by making , and , we can rewrite (3.13) as:

 () () () (() () () ()) () () () (() () () ())
(3.16)

It should be noted that the solution () is equivalent to (), since it only differs by scal-

ing factors. Equations (3.16) are very similar to (3.13), which are the equations for the basic DH

algorithm, with the addition of a general step-size. The difference is that, instead of using a single

parameter , the extended DH network has two parameters for the step-size, one for each source.

Another way of writing the expression of interest is:

 () () [] [()] (3.17)

which, again, is similar to (3.10). Therefore, we can see that the stabilized DH network is, ac-

cording to the new interpretation to the problem, similar to the root-finding algorithm presented

in section 3.2.

If , then the step will not follow the direction given by the gradient. Since this

vector indicates the local direction with the greatest rate of variation of the cost function [] to

be minimized, to use seems justifiable. In fact, in their paper [13], Deville and Hosseini

34

themselves made this choice in their own simulations. In that case, the extended DH network

would be exactly the same as the gradient descent method described in the beginning of the sec-

tion, under the constraint that () be fixed.

Another interesting fact regarding this new interpretation is that, while it was not evident

in the literature how to extend the stabilized DH recurrent network to accommodate more than

two sources [13], using the gradient method makes the extension quite direct. It should also be

remarked that it would also be direct to generalize the model for different mixing models.

3.3.4 Local Stability of First-Order Algorithms

In this section, we will analyze the local stability of the first-order algorithm presented in

(3.10). A classical way to perform this analysis is to study the behavior of a linearized version of

the system of interest in the vicinity of an equilibrium point, which leads to the criterion de-

scribed below:

Verification of Local Stability:

1. Write the iterative system in the form:

 () [()] (3.18)

2. Calculate [], the Jacobian of the [] applied to the equilibrium point . The

equilibrium point is such that [].
3. Calculate the eigenvalues of [].
4. The iterative system is said to be locally stable around if, and only if, all of the ei-

genvalues satisfy .

Since the gradient method encompasses the stabilized DH network, when , we

can use the stability analysis already done by Deville and Hosseini in [13], at least for the case of

35

two sources. In their paper, they show that, in order to have local stability, the following condi-

tions have to be satisfied:

 √

 √
(3.19)

where:

 [()√]

 [()√] [] ()

(3.20)

Note that, as long as () is constant, all the variables at (3.20) are actually con-

stant, depending only on the mixing parameters and the mixtures. We are interested in studying

the stability particularly under the interpretation of the algorithm as a form of gradient-descent

method, so we will assume (we shall use , since was already used by

Deville and Hosseini). We can then rewrite the conditions given at (3.19):

 √ () (3.21)

 √ () (3.22)

36

Equation (3.22) can be solved to give:

 √ (3.23)

And (3.21) then becomes:

 √ (3.24)

which can also be written as:

 () √ (3.25)

If √ , then (3.25) is always satisfied, and the only condition that has to be sat-

isfied is (3.23). Otherwise, we obtain:

 √ √ (3.26)

Equations (3.23) and (3.26) yield:

 √(√)
 (3.27)

where is the positive part of ; that is, { .

If , then the basic DH network would have failed to converge. Additionally, as

long as , there always exists a value of that satisfies (3.27), so the algorithm is at least

37

guaranteed to locally converge by including the variable step size (or equivalently, the stabilized

DH network). If , even the stabilized network would have failed to converge.

For the example analyzed in section 3.3.2, where the mixing parameters were and , we can apply equations (3.20) to obtain , and .

The mixture values are and , from which we can then calculate √ , , and , from equations (3.20). √ , therefore, should be

calculated by expression (3.26) and gives , as observed by the simulation.

3.4 SECOND-ORDER RECURRENT NETWORK

After discussing a new perspective on nonlinear BSS problems and showing how the ca-

nonical methods can be interpreted as gradient descent methods, the next step will be to investi-

gate the use of methods that have a better rate of convergence than that of gradient descent ap-

proaches. A promising possibility, both for its simplicity and quadratic rate of convergence, is

Newton’s method [16]. When applied to an equation system of the form [()] , the method

can be described as:

 () () () [()] [()] (3.28)

where [] is the Jacobian of [], and () is the estimate that, ideally, converges to ().

Since the algorithm requires the use of [], it can only be used if the Jacobian is non-singular –

which is in consonance with the invertibility conditions discussed in section 2.3.3.

Aside from the use of a step-size variable , a way to improve the performance of the al-

gorithm is to avoid the explicit calculation of the inverse of the Jacobian in (3.28) by solving the

following linear system:

 [()] () () [()] (3.29)

38

The structure of the proposed method can be seen below:

Algorithm Based on Netwon’s Method:

1. Initialize () randomly and set ()
2. Use the same method described in section 3.3 to select the value of (). For each (), when solving the system, use (3.29).

3. Having obtained (), calculate () () ().

4. Repeat steps 2 and 3 until () converges.

3.4.1 Local Stability of the Algorithm Based on Newton’s Method / Existence of Chaos

In order to analyze the local stability of the second-order algorithm presented in this sec-

tion, we will resort again to local stability analysis explained in section 3.3.4. In this section, the

analysis will be carried out exclusively for the case of two sources. The iterative system [] is:

 () [()] () [()] [()] (3.30)

Let [()] [(()) (())]. The Jacobian of [] can be then calculated as:

 [()] [] (3.31)

where . Therefore:

 [] (3.32)

where is the determinant of the Jacobian. Replacing (3.32) in (3.30) yields:

39

 [] [() ()] [() ()] (3.33)

The Jacobian of the fixed point system [] is then:

 [] [
]

 (3.34)

Let us calculate each of the four partial derivatives in (3.34) individually. For the first one,

we obtain:

 (() ()) (3.35)

Since we want to calculate the eigenvalues of [] when applied to the equilibrium

point , we have [] [] . Thus, equation (3.35) can be simplified to:

 (())

 () ()

(3.36)

40

The second derivative can be calculated as follows:

 (() ())

 (())

 ()

(3.37)

Likewise, we can calculate the remaining two derivatives to obtain and . Using these derivatives in (3.34) yields:

 [] [] (3.38)

The eigenvalues of [] are then , and, in order to obtain , we need to

satisfy .

Unlike the first-order algorithm analyzed in the previous section, we can see that the con-

dition that has to be satisfied so that the algorithm can be considered locally stable does not de-

pend on the values of the mixtures or the sources, or even on the mixing parameters. In fact, it

doesn’t even depend on the mixing model, which are represented by the functions and –

with a different model we would achieve the same conclusion, as long as the functions are differ-

entiable.

Another interesting fact is that, when using , the system is always locally conver-

gent. Therefore, the use of the variable step size strategy is not required to ensure stability when

using an algorithm based on the Newton’s Method.

When applying the Newton-based algorithm to the same simulation scenario described in

section 3.3.4, we obtain different patterns for the associated bifurcation diagram and the largest

Lyapunov exponent, as shown in Fig. 3.3.

41

Figure 3.3 - Bifurcation diagram and largest Lyapunov exponent for Newton based algorithm

The bifurcation diagram, shown in the upper graph of Fig. 3.3, reveals that, for , the algorithm converges to the correct solution and for we see the chaotic behavior. This

can be verified by the lower graph as well, showing that the largest Lyapunov exponent is posi-

tive for
As expected, the algorithm converges for . Not only that, but the convergence rate

for that step size is maximal – which is represented by the minimum value of the Lyapunov ex-

ponent. This suggests that, for the second-order algorithm based on the Newton’s method, the use

of a variable step-size strategy would not be needed, as shown by the theoretical analysis.

3.5 SIMULATIONS AND RESULTS

In this section, we will show the results of simulations to gauge the accuracy and efficien-

cy of the algorithms presented in this chapter. All the simulations were done in on a Dual Core

2.26 GHz computer running Windows 7, on MATLAB R2010a.

42

3.5.1 Simulations on Variable Step Size Strategy

This simulation intends to show a comparison between the basic DH network and the

first-order algorithm using the variable step size strategy.

In our first simulation, we used the following mixing parameters: , , and the sources are uniformly distributed in the [] interval. As suggested

in [13], these parameters are such that the basic DH network does not always converge. The re-

sults are shown in Fig. 3.4.

Figure 3.4 - Results of simulation for basic DH network and variable step size

In Fig. 3.4, we can see the original joint source distribution, where the data is plotted on a () graph, as well as the mixture distribution (). The graph on the lower left, represent-

ing the source estimates obtained by the basic DH network, shows that, for many points, the algo-

rithm diverged, as expected. In the figure, we can see the locus of the points where ,

from equation (3.27), after which we expect the algorithm will diverge.

Finally, on the last graph, we plot the source estimates obtained by the variable step size

strategy, and the result can be seen to be more accurate. For the basic DH network, we obtained a

mean-squared error (MSE) of for source 1, and for source 2, consider-

43

ing only the points that converged. Additionally, we have also verified that of the points

converged. After implementing the variable step size, we obtain convergence rate, and the

MSE is reduced to and for sources 1 and 2 respectively.

In a subsequent simulation, we used , , and . The

sources had a uniform distribution in the interval []. The obtained results can be seen in Fig.

3.5.

Figure 3.5 - Second simulation for basic DH network and variable step size

In this simulation, we can see that neither of the algorithms could fully separate the

sources, but we can again see that the method with a variable step size obtained a better result.

The basic network can fail to converge for two reasons – either the algorithm is not locally stable

(which is represented by the red line); or because the LQ model does not satisfy the invertibility

condition (represented by the green line). As can be seen, the variable step network is able to

converge in the first case, similarly to the results presented in the previous simulation.

Table 3.1 summarizes the results:

44

Table 3.1 - Comparison between basic DH and the Variable step size networks

 MSE () Convergence rate

Basic DH network ()

Variable Step Size network ()

In both simulations, the variable step size clearly proved to be a successful strategy to in-

crease the stability of the algorithm, as expected from section 3.3.4.

3.5.2 Simulations on Newton-based Algorithm

Our next simulation intends to compare the second-order network based on the Newton’s

method with the variable step size network – which, as shown in 3.3.3, is equivalent to the ex-

tended DH network.

The mixing parameters used were and . The sources

were uniformly distributed in the [] interval. The results obtained can be seen in Fig. 3.6.

Figure 3.6 - Simulation results comparing the extended DH and Newton-based networks

As we can see, both methods present a good result. A more thorough analysis can be seen

in Table 3.2.

45

Table 3.2 - Comparison between extended DH and Newton-based networks

 MSE () Convergence rate Elapsed time (ms)

Extended DH network ()

Newton-based network ()

As shown by the MSE values, the second-order algorithm is more accurate, but at the cost

of additional elapsed time. This was expected, since the algorithm is computationally more ex-

pensive. If the application requires real-time source separation, the Newton-based network might

not be suitable – however, for other applications where the response time is not essential, the

proposed algorithm should obtain better results.

While the simulation shows a convergence rate of 100%, we can see that some points on

the upper left portion of the graph could not be reached. We can conclude, thus, that the mixtures

corresponding to these source points converged, but not to the correct solution. This happened

because one of the separability conditions given in 2.3.3 was violated – namely, the condition

about the Jacobian sign invariance. In fact, if we plot the line at which the Jacobian is zero (and

hence change signs) on the same graph, we obtain Fig. 3.7, where this effect can be clearly seen.

Figure 3.7 - Source estimates along with the frontier where the Jacobian changes sign (in red)

46

Another interesting test is to verify the effect of an increase in the amplitude range of the

sources – if the sources are uniformly distributed in the interval [-10; 10], the obtained results are

summarized in Fig. 3.8.

Figure 3.8 - Simulation with source amplitude 10

Table 3.3 - Comparison between methods for source amplitude 10

 MSE () Convergence rate Elapsed time (ms)

Extended DH network ()

Newton-based network ()

In this simulation, we can see that even on the right side of the line, the first-order

network does not necessarily converge to the correct solution, as can be seen on the upper portion

of the graph. Neither of them performs well on the left side of the line, but that was expected,

since it violates the separability conditions.

The MSE for both methods were very high, though that could be expected with ampli-

tudes as high as 10 and a significant portion of the set converging to the wrong solution.

47

3.5.3 Simulation – Signals Represented over Time

In the next simulation, we decided to represent the signal over time. The first source, plot-

ted on Fig. 3.9, is a sinusoidal wave, while the second one will be random noise. The mixing pa-

rameters were , , the same parameters for the unstable mixture

from simulation 3.5.1.

Figure 3.9: Simulation representing sinusoidal wave over time

In the simulation, we can clearly see that the Newton-based algorithm obtained a much

better estimate than the one obtained by the extended network, especially when the signal value

was above , where presumably the network is no longer locally stable. The MSE obtained

for source 1 was for the Newton approach, and for the extended DH network.

48

3.5.4 Simulation – Newton-Based Algorithm with More than Two Sources

In this section of the simulations, we will check how the Newton-based algorithm per-

forms when separating three sources. The sources were uniformly distributed in the interval [], and the mixing coefficients were randomly selected in []. The simulation was

run several times, and the algorithm was always able to obtain good source estimates. One of the

performed simulations can be seen in Fig. 3.10.

Figure 3.10 - Newton-based method for 3 sources

In the above simulation, the MSE was 0.008 and the elapsed time was 539 ms.

Since it is difficult to visualize more than two sources when plotted in the source space,

we can plot each source individually over time. In the next simulation, we used 9 sources and

random mixing parameters selected from the interval []. One of the sources was a random

noise, and the remaining 8 sources were random sinusoidal waves, with amplitudes, periods and

phases uniformly distributed in the ranges [], [] and [] respectively. The results

can be seen in Figs. 3.11 to 3.13.

49

Figure 3.11 – Original sources for the simulation with n=9

Figure 3.12 – Mixtures obtained for simulation with n=9.

50

Figure 3.13 – Estimates obtained by Newton-based algorithm

As we can see, the source estimates obtained by the proposed algorithm presents very ac-

curate results. The waveforms obtained have different amplitudes, which is acceptable in the par-

adigm of source separation problems. After appropriately normalizing the estimates to be the

same as that of the sources, the RMS obtained ranged from to , showing the results

were very precise.

51

CHAPTER 4

4 ON THE ESTIMATION OF THE MIXING PARAMETERS

In chapter 3, we analyzed how we can use recurrent networks to solve the non-blind part

of the source separation problem. In this chapter, we will focus on the other part of the problem –

the estimation of the mixing parameters. As mentioned in chapter 2, both strategies complement

each other when solving the blind source separation problem.

4.1 MAXIMUM LIKELIHOOD ESTIMATION

We will start by presenting in more detail the original algorithm proposed by Hosseini and

Deville [14], where they applied a maximum likelihood (ML) principle in order to devise an al-

gorithm capable of estimating the mixing parameters. In their algorithm, they assumed the fol-

lowing:

1. The mixture is determined – that is, the number of sources and mixtures are equal.

2. Each source is independent and identically distributed (i.i.d.) with pdf (). As the

sources are statistically independent, the joint pdf satisfies () ∏ () .

Let us denote the mixing parameters vector by . If the source pdfs () are known, then

the mixture distribution depends only on , and we can denote it by (() ()). Con-

sidering that the source samples are obtained independently, the likelihood function can be de-

fined as:

 () ∏ (() ())
 (4.1)

52

If we assume the mixing model to be invertible, the sources can be obtained by the inverse

of the mixing system:

 () [()] (4.2)

which leads to:

 () ∏ (() ())

 ∏ (̂ () ̂ ())| ̂|

 ∏∏ (̂ ()) | ̂|

(4.3)

where ̂ are the estimates of the sources, and ̂ is the estimate of the Jacobian of the mixing sys-

tem []. The basic principle of the ML strategy is to find the parameters that maximize the

likelihood of the mixture set, as given by equation (4.3).

Maximizing the likelihood function () is equivalent to minimizing the function () (), which can also be written in the form:

 () [∑ (̂)
] [̂] (4.4)

where [] is the time average operator.

53

Let us define the score function as:

 () () (4.5)

In order to obtain the mixing parameters that minimize the cost function given in (4.4), Hos-

seini and Deville used the gradient method [14], which ideally yields a parameter vector ̂ that

makes the derivative of vanish:

 ̂ (∑ [(̂) ̂ ̂]
) [̂ ̂ ̂] (4.6)

When applied specifically to the LQ model for two sources, [] and

(4.6) can be rewritten in terms of equations (4.7) to (4.11):

 ̂ [̂ ̂ ̂ ̂] (4.7)

where:

 (̂)(̂ ̂) ̂ (̂ ̂ ̂)((̂) ̂) [(̂ ̂ ̂)(̂ ̂) (̂ ̂ ̂)(̂ ̂ ̂)] ̂ ̂ (4.8)

 (̂)(̂ ̂) ̂ (̂ ̂ ̂)((̂) ̂) [(̂ ̂ ̂)(̂ ̂) (̂ ̂ ̂)(̂ ̂ ̂)] ̂ ̂ (4.9)

 [(̂)(̂ ̂) (̂)(̂ ̂ ̂)] ̂ ̂ ̂ ̂ ̂ [(̂ ̂ ̂)(̂ ̂) (̂ ̂ ̂)(̂ ̂ ̂)] ̂ ̂ ̂ (4.10)

54 [(̂)(̂ ̂) (̂)(̂ ̂ ̂)] ̂ ̂ ̂ ̂ ̂ [(̂ ̂ ̂)(̂ ̂) (̂ ̂ ̂)(̂ ̂ ̂)] ̂ ̂ ̂ (4.11)

The actual calculation for obtaining equations 4.7 to 4.11 is quite lengthy, being the inter-

ested reader referred to [14].

4.1.1 Problems with the ML Approach

One of the limitations of the ML approach described in section 4.1 is that it requires the

derivatives of the pdf of the sources to be known. When that is not the case, the pdfs can be esti-

mated by histograms [33], or by more advanced methods (for example, [17, 37]); however, esti-

mating the derivative is much less reliable [17].

Another drawback of the method described on section 4.1 is that the cost function ()

can have multiple local optima, which means that the gradient method might not converge to the

globally best solution. These points will be addressed in the following.

4.2 EVOLUTIONARY ALGORITHMS

In an attempt to mitigate the problems described in section 4.1.1, we propose the use of an

evolutionary optimization algorithm, which, unlike the gradient method, does not require

knowledge of the derivatives of the source pdfs. Furthermore, the algorithm presents a global

search potential that should allow the likelihood cost function to be more thoroughly explored,

thereby increasing the possibility of convergence to the ideal parameter configuration [2].

Evolutionary algorithms can be defined, in simple terms, as populational metaheuristics

that apply the biological principles of evolution (e.g. natural selection, random mutations and

strategies of reproduction) as means of obtaining optimal “individuals” (i.e. solutions) according

to a specific fitness function [2]. From a pragmatic standpoint, the main aspects of the application

of evolutionary algorithms are [2]:

55

1. Individual: in an evolutionary algorithm, each individual is a vector containing all the

relevant parameters to the problem. A set of individuals is defined as a population, and the popu-

lation existing at a given iteration is called a generation.

2. Fitness function: the fitness function quantifies how well the individual responds to

the optimization problem to be solved. Similarly to what happens in evolutionary biology, an

individual with higher fitness has a better chance of surviving and reproducing.

3. Reproduction: an individual may reproduce sexually and/or asexually, depending on

the evolutionary algorithm being used. Asexual reproduction essentially amounts to cloning the

individual, while sexual reproduction creates a new offspring with combined characteristics of its

parent individuals. The methods on how to combine the traits also depend on the algorithm.

4. Mutation: any individual may randomly undergo a mutation from one generation to the

next. When that happens, one or more of its traits are altered, in a manner that depends on the

implementation of the algorithm. A mutation does not necessarily lead to fitness improvement.

5. Natural selection: from one generation to the next, the population changes as individu-

als reproduce, mutate or die. It might also include the addition of completely new individuals to

increase variability. Because the strategies of reproduction and survival are based on the fitness

of each individual, we can expect that, over time, the individuals of each population become

closer and closer to the optimal solution.

A general evolutionary algorithm can be summarized as follows [2]:

56

Pseudo-code for general evolutionary algorithm:

1. Randomly generate the individuals of the initial population.

2. Evaluate the fitness of all individuals.

3. Perform a reproduction step. The actual reproduction strategy depends on each algo-

rithm implementation, and it can be such that individuals with higher fitness have a better chance

of reproducing.

4. Individuals may randomly experience mutations.

5. If necessary, remove some individuals from the population. Individuals with lower fit-

ness should be more likely to be removed.

6. Repeat steps 2 to 5 until the stopping criteria are met.

4.2.1 The opt-aiNet Algorithm

For our particular problem, we decided to use a specific evolutionary algorithm called

opt-aiNet [3]. It is an optimization version of an important immune-inspired algorithm designed

for pattern recognition, called aiNet [4], which is based on the immune network theory and on the

clonal selection principle. One of the advantages of the opt-aiNet is its good performance for

optimization of multi-modal functions [3], which can be very useful for problems with nonlinear /

multivariate functions like ours.

In the context of this algorithm, each individual will be referred to as a network cell or

simply as a cell. The Euclidean distance between two cells will be defined as the affinity between

the cells. A pseudo-code for the opt-aiNet can be described as follows [3]:

57

Pseudo-code for the opt-aiNet:

1. Randomly generate the individuals of first population.

2. While the stopping criteria are not met, do:

2.1 Evaluate the fitness of all cells, calculate the average and normalize the fitness

vector.

2.2 Generate clones of each cell.

2.3 Mutate each clone according to the fitness of the parent, and keep the parent cell.

The mutation should follow equation (4.12):

 () (4.12)

where is the mutated cell, is the parent cell, () (), is a constant, is the

normalized fitness, and () is a vector of the same dimension as , and where each element

is independently chosen according to a Gaussian random variable with and .

2.4 Determine the fitness of all individuals.

2.5 For each parent cell, select the clone with the highest fitness (including the par-

ent itself) and calculate the average fitness of the newly obtained population.

2.6 Repeat steps 2.1 to 2.5 until the average fitness can be considered, according to a

predefined threshold, to be stable.

2.7 Determine the affinities of all cell pairs in the network. If an affinity is below the

suppression threshold , delete the least fit cell of the pair.

2.8 Introduce random cells in the population. The amount of added cells is a percent-

age of the current population size.

3. End While (step 2).

4. The fittest cell of the population is the estimate of the solution to the optimization

problem.

58

4.2.2 Defining a Fitness Function

One of the questions that might be posed when implementing the opt-aiNet algorithm is

how to define a suitable fitness function. The modus operandi of the algorithm is such that a

global optimum of the fitness function will ideally be found, and, since the algorithm is being

used to minimize a cost function (), it is necessary to use a function that maps the maxi-

mum value of the fitness () to the minimum value of ().

Because the mutation on the cloned cells is proportional to (), we decided to

avoid negative values for the fitness, hence preventing excessively large mutations from happen-

ing. Since the cost might reach values close to , it is also important to avoid functions of the

form of (). Some of the possibilities we tested were:

1. () (()) . () (())

3. () ()

As will be shown in section 4.5, in the simulations, the actual choice of the fitness func-

tion did not significantly affect the performance of the algorithm i.e. all choices proved them-

selves to be viable.

4.3 MUTUAL INFORMATION

When the maximum likelihood principle was applied in section 4.1, we adopted the hy-

pothesis that the sources are independent to be able to separate () into ∏ () .

However, instead of trying to find the parameters that maximize the likelihood function, we could

use mutual information (MI) to search for the parameters that maximize the degree of independ-

ence between sources, resorting more straightforwardly to the notion of ICA.

59

The primary advantage of using an MI based cost function instead of the one proposed in

the literature is that we will require less a priori information on the sources distribution, as will

be explained in the following section.

Mutual information is also a more accurate way to measure the degree of dependence be-

tween two variables – that is, () if and only if and are independent. The mutual

information is also nonnegative, so, in order to obtain sources that are as independent as possible,

it is necessary to minimize their mutual information. The mutual information between two ran-

dom variables can be described by the following equation [30]:

 () ∫ ∫ () (() () ()) (4.13)

Equation (4.13) essentially measures the Kullback-Leibler divergence [30] between the

joint pdf and the product of the marginal ones, which can be denoted by:

 () (()‖ () ()) (4.14)

Another way of calculating the mutual information is using the signal entropies [30]:

 () () () (4.15)

where () ∫ () () is the differential entropy [30]. The extension to multiple

random variables follows the definition given in equation (2.10).

4.4 ESTIMATION OF THE SOURCE PDF

The strategy based on mutual information has essentially the same problem as the one uti-

lizing the ML – it requires the a priori knowledge of the source pdfs (but not the derivatives).

The cost function can be defined either by equation (4.4), using the maximum likelihood princi-

60

ple, or using mutual information. Regardless of which method we use to define a cost function,

though, the pseudo-code for solving our BSS problem can be described as follows:

Pseudo-code for BSS using opt-aiNet:

1. Start with a randomly generated parameter vector .

2. Solve the problem as if it were non-blind (as described in chapters 2 and 3).

3. Calculate the current value of the cost function.

4. Estimate a better parameter vector using the opt-aiNet algorithm (as described in sec-

tion 4.2).

5. Repeat steps 2 to 4 until a stopping criterion is met (e.g.: cost function stabilizes, max-

imum number of iterations reached, parameter vector stabilizes, etc.).

In the algorithms requiring the mutual information, it can be estimated by histograms [33]

(if the sample size is big enough) or by an adaptive partitioning method [37].

For the original algorithm presented by Deville and Hérault [14], the iterations use the pdf

derivatives, which is more difficult to accurately estimate than the distribution. In their paper,

they used sources with generalized Gaussian distributions on the simulations. A generalized

Gaussian random variable has the following pdf [38]:

 () () (()) (4.16)

where () ∫ is the Gamma function. Using the generalized Gaussian distribu-

tion, we obtain a score function of the form:

 () ()

(4.17)

61

The generalized Gaussian is a very flexible distribution that can, depending on the values

of the parameter, be leptokurtic (super Gaussian) - as the Laplace distribution - or platykurtic

(sub Gaussian), like quasi-uniform distributions. In our simulations, we generated the sources as

having generalized Gaussian distributions, and, for the original algorithm presented in [14], we

assumed that the parameters were known.

4.5 SIMULATIONS AND RESULTS

In this section, we will present simulations for the BSS problem with two sources, using

the evolutionary algorithm to optimize the parameter search. We also compared it with the origi-

nal algorithm presented by Deville and Hosseini in [14] – which, however, required the source

pdfs to be known. Because the original algorithm benefitted from “more a priori information”

about the sources, the proposed solutions were not expected to perform better in the simulations.

Since these simulations will only measure the performance of the parameter estimation

stage, we used the analytical solution for the non-blind portion of the algorithm. In a real-life

application with more than two sources, or with nonlinear models other than the LQ, that would

not be possible – however, the algorithm for solving a general BSS problem is very modular, and

the module pertaining to the non-blind solution was already discussed in chapters 2 and 3.

In our simulations, different values of the parameters were tested, and the values that were

selected to obtain a balance between performance and computational cost can be seen in Table

4.1.

Table 4.1 - opt-aiNet parameters used in the simulations

Parameter Value Description Initial number of cells Number of clones created per cell on each iteration Suppression threshold Percentage of newcomers added on each iteration Mutation constant Maximum number of iterations

62

4.5.1 Comparing Different Fitness Functions

In this first test, we are only interested in choosing which model of fitness function we

will use, among those presented in section 4.2.2. Therefore, we assumed that the source pdfs

were known to minimize the interference from errors on the estimation (which shall be discussed

in section 4.5.2).

We used a quasi-uniform distribution (generalized Gaussian distribution (GGD) with pa-

rameters { } { }), mixing parameters , , and source

amplitude further normalized to after being generated (since the sources are post-normalized,

the parameter of the GGD actually is not relevant). The post-normalization of the sources was

done to guarantee the invertibility of the model.

The simulation results were satisfactory for all three versions of the fitness function map-

ping, and, in all cases, the results were similar to those shown in Fig. 4.1.

Figure 4.1 - Estimates obtained using opt-aiNet + ML-based cost

63

Because the result was good in all cases, not much can be concluded from the figures

themselves, so we will use the root mean square (RMS) error and the elapsed time on each case

to establish grounds for comparison. These values can be seen in Table 4.2.

Table 4.2 - Comparison between fitness functions

fitness RMS () Elapsed time (s) (()) ()

 ()

It can be seen that the last model, by being computationally simpler, converges faster, but

ends up with higher RMS. If the running time is the most important aspect, then this should clear-

ly be the choice. On the other hand, if time is not essential, the first two models offer similar

times but lower RMS, with the exponential as the better choice. For our simulations, we decided

to implement (()).

4.5.2 Estimating the Mutual Information

In order to use the MI-based cost function, we decided to compare two different MI-

estimators. The simplest one is to estimate the source pdfs by their histogram, by dividing the set

of points into several bins and assuming the distribution is discrete. We can then estimate the

mutual information using the equation:

 () ∑∑ () () () () (4.18)

A second method would be to directly estimate the mutual information without resorting to the

source pdfs, by using an adaptive partitioning of the observation space [37].

64

We tested the algorithm with both methods of mutual information estimate and compared

the errors and elapsed time to see which was better. In our tests, we had points, and the

sources were distributed according to a quasi-uniform distribution. The results obtained can be

seen in the Table 4.3.

Table 4.3 - Comparison between methods of mutual information estimation

Method RMS Elapsed time (s)

Histogram

Adaptive Partitioning

As we can see, the simpler, histogram-based method produced a more accurate and faster

result. It is possible that the histogram-based estimate be more suited for uniform-like distribu-

tions, so we decided to carry out a second test with a Laplacian distribution. The obtained results

are in Table 4.4.

Table 4.4 - Comparison for a Laplacian distribution

Method RMS Elapsed time (s)

Histogram

Adaptive Partitioning

In this case, we can see that a histogram-based estimate is still significantly faster, but for

a Laplacian distribution it is less accurate. The plots obtained for this case can be seen in Fig. 4.2.

65

Figure 4.2 - Original sources and estimates for a Laplacian distribution

One possible explanation is that, for the histogram estimate, the source domain is divided

into identical bins; however, because the Laplace distribution generates points that are too une-

venly distributed, the bins farther from the center give too little information, while the bins closer

to the center could give a more detailed estimate of the distribution if they were further separated

into multiple, smaller sized, bins. In essence, the idea of using differently sized intervals in order

to optimize the estimate is the main concept behind the adaptive partitioning algorithm [37],

which might be why the method obtains more accurate estimates for unevenly distributed

sources.

For our simulations, since most of our tests were done with evenly distributed sources, we

decided to use the histogram-based distribution.

4.5.3 Simulation with Artificial Data: Comparison Between Methods

In this section, we will compare the three algorithms presented in this chapter: the one

based on the gradient method, the opt-aiNet using an ML-based cost function and the opt-aiNet

using an MI-based cost function. For the first two algorithms (based on the ML principle), the

source pdfs were assumed to be known, and, for the MI-based method, the pdfs will be estimated

via histograms. Even though the comparison is “unfair”, in the sense that the MI-based algorithm

66

has less a priori information about the sources than the ML ones, the comparison will be able to

show that the MI algorithm can still provide competitive, and in some cases better, results.

4.5.3.1 Quasi-Uniform Distribution

Our first simulation was made using a quasi-uniform distribution (()), Note

that we cannot use a truly uniform distribution because its pdf is discontinuous and, as a result, its

derivatives would not exist in all points.

The source estimate graphs for all three methods can be seen in Fig. 4.3, and the output

data can be found on Tables 4.5 and 4.6.

Figure 4.3 - Source estimates for different methods; quasi-uniform distribution

67

Table 4.5 - Error, time and cost for each method; quasi-uniform distribution

Algorithm RMS Elapsed time (s) Estimated cost

Gradient + ML

opt-aiNet + ML

opt-aiNet + MI

Table 4.6 - Mixing parameters obtained for each method; quasi-uniform distribution

Algorithm Obtained parameters

Real Parameters ()

Gradient + ML ()

opt-aiNet + ML ()

opt-aiNet + MI ()

In the simulation, we can see that both ML-based methods converge to an estimated cost

close to the real sources ML cost, which is theoretically the minimum of the cost function. In the

“estitmated cost” column of Table 4.5, the ML cost obtained for the real sources can be seen

listed on the right. For the MI-based cost function, the theoretical minimum always equals to ze-

ro.

4.5.3.2 Quasi-Uniform with Random Mixing Parameters

In the next simulation, the mixing parameters were randomly chosen from the interval []. The source amplitudes were further adjusted so that the invertibility of the model is

guaranteed, according to the following equation:

68

 (4.19)

If the source amplitude does not exceed , it is easy to verify that the Jacobian () () never changes sign, which is one of the condi-

tions for invertibility of the model for the case of two sources. The results obtained in the simula-

tion can be seen on Fig. 4.4 and Tables 4.7 and 4.8.

Figure 4.4 - Simulation results for random mixing parameters

69

Table 4.7 - Error, time and cost for each method; random mixing parameters

Algorithm RMS Elapsed time (s) Estimated cost

Gradient + ML

opt-aiNet + ML

opt-aiNet + MI

Table 4.8 - Mixing parameters obtained for each method

Algorithm Obtained parameters

Real Parameters ()

Gradient + ML ()

opt-aiNet + ML ()

opt-aiNet + MI ()

We can see in this simulation that the gradient-based method did not converge to the cor-

rect solution, and the estimated cost was significantly far from the desired value (instead of). The most likely explanation is that it has converged to a local minimum. As already men-

tioned, due to the nature of the gradient method, once the algorithm finds any local minimum it

will converge to it. In contrast, evolutionary algorithms can avoid it by keeping multiple individ-

uals on each iteration, and evolving them in different paths in parallel using a stochastic mutation

operator.

4.5.3.3 Laplacian Distribution

In the next simulation, we utilized a Laplacian source distribution. A similar test with a

Gaussian distribution was performed, and the results obtained were similar. The graphs and out-

put data are shown in Fig. 4.5 and Tables 4.9 and 4.10.

70

Figure 4.5 - Estimates for simulation with Laplacian distribution

Table 4.9 - Error, time and cost for each method; Laplacian distribution

Algorithm RMS Elapsed time (s) Estimated cost

Gradient + ML

opt-aiNet + ML

opt-aiNet + MI

71

Table 4.10 - Mixing parameters obtained for each method; Laplacian distribution

Algorithm Obtained parameters

Real Parameters ()

Gradient + ML ()

opt-aiNet + ML ()

opt-aiNet + MI ()

As we can see, the opt-aiNet algorithm using the MI-based cost function presents a slight-

ly higher error, and also a higher elapsed time than both ML-based methods. However, it must be

kept in mind that the MI algorithm does not require a priori knowledge of the source pdfs.

4.5.3.4 Nonzero Mean Quasi-Uniform Distribution

For our final simulation, we used sources that had a distribution with nonzero mean. For

the linear mixing model, an offset to the sources mean would only cause an offset to the mixture

mean. Depending on the application, constant offsets might not be important, and, as a result, it

might be easier to simply ignore offsets and pre-treat the data, centering the offset at the origin

[9].

However, for general nonlinear models, an offset to the sources mean result in a non-

constant change to the mixtures, so its effect cannot be ignored. Fig.4.6 and Tables 4.11 and 4.12

present the results for this simulation:

72

Figure 4.6 - Estimates for simulation with nonzero mean source distribution

Table 4.11 - Error, time and cost for each method; nonzero mean source distribution

Algorithm RMS Elapsed time (s) Estimated cost

Gradient + ML

opt-aiNet + ML

opt-aiNet + MI

73

Table 4.12 - Mixing parameters obtained for each method; nonzero mean source distribution

Algorithm Obtained parameters

Real Parameters ()

Gradient + ML ()

opt-aiNet + ML ()

opt-aiNet + MI ()

As we can see, for the nonzero mean simulation the method relying on mutual information

achieved a better performance. This result, moreover, was achieved without knowledge of the

source pdfs.

4.5.4 Simulation with Real Data: Show-Through Image

For the simulation with real data, we used images subject to the so-called show-through

effect [39]. In these images, a thin paper is digitally scanned on both sides, and, for each scan,

there is an interference originated from the image on the other side. One of the images was mir-

rored to make it such that the two scans overlap the same images.

If we define the original images on each side as the sources, then the scans are the mix-

tures and they can be modeled by an LQ model [39]. The reason why this mixture is not linear is

because lighter pixels can be thought of as being “more vulnerable” to interference from the re-

verse image than darker ones. This nonlinear interference can be modeled by a cross-product of

both pixels’ brightness [39], which results in a LQ modeling of the problem.

In our first simulation, we used images of a handwritten text on each side, as can be seen

on Fig. 4.7. The images can be found in [40].

74

Figure 4.7 - Scanned images for handwritten text for show-through simulation

In order to solve the BSS problem in this case, we initially transformed each image into a

vector of pixels on the interval []. Because the source pdfs are unknown, we used the opt-

aiNet algorithm with cost function based on MI.

After separating the sources and converting them to images again, we obtain Fig. 4.8.

Figure 4.8 - Separated sources for show-trough simulation

75

The images were pixels, resulting in a vector with points. When ob-

serving the images, we can still see some traces of the image on the back, but it is fair to consider

that the algorithm successfully separated the images. After appropriately processing the estimates

to obtain the same mean and amplitude that the original sources, we can obtain an RMS of 0.055.

The total elapsed time for the separation process was 133s, much longer than the times

measured for the simulations with artificial data previously realized. The longer time can be ex-

plained by the fact that the images were vectors with points, instead of the usual data with points on the simulation.

In our second simulation, we used scanned images of real photographs, which can be seen

at Fig. 4.9. These images were obtained at [39]. Unlike the scans of the handwritten text, which

were mostly sparse, these images show a dense distribution of points and might end up being

more difficult to separate. The image size was pixels.

Figure 4.9 - Scanned images for show-through simulation

After running the separation algorithm we obtain the estimates shown at Fig. 4.10:

77

Figure 4.12 - Image with brightness lowered, multiplying by 70%

We can see that Fig. 4.12, now with its brightness lowered, is very similar to the one obtained by

the algorithm. As explained in chapter 2, two signals that only differ by a scalar factor can essen-

tially be considered as equivalent, which shows that the algorithm is able to successfully separate

mixtures generated by the show-through problem. After appropriately scaling and offsetting the

mean to comply with the original images, we obtain an RMS of

The total elapsed time for this separation process was 758s – which is not suitable for re-

al-time applications, but might be useful for offline applications where time is not an essential

constraint.

78

79

CHAPTER 5

5 CONCLUSION

In this dissertation, we started by introducing the subject of blind source separation and

explaining the basic algorithms that can be used to solve the problem. We initially studied source

separation problems with linear mixing models, but eventually moved to nonlinear models – and

particularly, the linear quadratic model.

We first analyzed the structure of the recurrent networks used to separate the sources un-

der the LQ model, and tried to improve upon it by studying the problem under a new interpreta-

tion of the process. Instead of trying to create a recurrent network based on the inverse of the

function, we approached the problem from a new perspective and tried to solve the problem di-

rectly, without having to find the inverse of the function.

Under this new strategy, we are able to use standard root-finding algorithms to develop

viable recurrent networks that are able to solve the source separation problem. Using the Newton-

Raphson method as the basis for our algorithm, we proposed a new structure for solving the prob-

lem. After comparing the proposed algorithm with the previously existing ones, we were able to

assert that the Newton-based algorithm is more accurate and stable. It can also be generalized to

solve the separation problem for any amount of sources, or even different mixing models.

The previously existing algorithm, proposed by Deville and Hosseini [13], was specifical-

ly designed for the LQ model, and could not easily be extended to accommodate for more than

two sources; as a result, the Newton-based algorithm can be extremely useful. Due to its more

computationally expensive iterations, this second-order algorithm is slower than the DH network,

but, for applications where the elapsed time is not essential, its advantages can be of paramount

importance.

Another aspect that we analyzed in this dissertation was the algorithm to estimate the mix-

ing parameters of the model, in order to be able to solve the blind aspect of the problem. In the

original algorithm proposed by Deville and Hosseini [14], a cost function was generated based on

the ML principle, and this function is then optimized through gradient-descent method.

80

One possible improvement of the method would be to optimize the cost function not

through a gradient-descent method, but using an evolutionary algorithm. The idea is that, while

bio-inspired algorithms are computationally more expensive, they are able to successfully opti-

mize multimodal functions, unlike the gradient-based networks that can become trapped in local

minima. Additionally, evolutionary algorithms are able to optimize a function without resorting

to its derivative, which can be useful when optimizing cost functions that are not continuous, or

whose derivatives are not easy to be estimated.

In case of the ML-based cost function, the main strategy is to find the parameters that best

fit the sources pdfs, assuming they are known a priori. For many applications, it could be unreal-

istic to suppose that the sources pdfs are known, so, in order to avoid that requirement, we were

able to establish a different cost function, based on the mutual information of the sources. Using

this MI-based strategy, we were able to successfully separate sources without a priori knowledge

of the pdfs.

It is also important to mention that the structure of the ML-based cost function is strongly

related to the mixing model and the number of sources – so, while the same strategy might be

used for different mixing models and amount of sources, a completely different cost function

would have to be developed for each case. Conversely, for the MI based cost function, only the

interaction between the source estimates is taken into account, so the same cost function can be

used for any mixing model and number of sources.

One real-world application where our proposed algorithm was tested was the problem of

removing show-through images that appear on scanned images, and except for the significantly

longer time required for the network to converge, the results were very satisfactory. The longer

elapsed time was expected, since all of the aforementioned improvements increased the computa-

tional cost of the algorithm, in exchange for better stability, accuracy and reducing the require-

ments on the information to solve the problem. For offline applications where a real-time re-

sponse is not necessary, the improvements are certainly promising.

Finally, as long as the minimum separability prerequisites of the mixture are satisfied, all

of the proposed improvements – the reinterpretation of the BSS structure, the use of bio-inspired

algorithms and the use of an optimization strategy based on mutual information – can be easily

generalized to any kind of mixing model and for any amount of sources and mixtures. Together

with the fact that the techniques presented can increase the robustness of the method, and require

81

less prior information on the sources, the techniques and algorithms proposed in this dissertation

can be an invaluable contribution to the study of nonlinear BSS problems.

82

83

REFERENCES

6 REFERENCES

 [1] Duarte, L. T., Suyama, R., Attux, R., Deville, Y., Romano, J. M., & Jutten, C. (2010).

Blind source separation of overdetermined linear-quadratic mixtures. In Latent Variable Analysis

and Signal Separation (pp. 263-270). Springer Berlin Heidelberg.

[2] Back, T., Fogel, D. B., & Michalewicz, Z. (1997). Handbook of evolutionary computa-

tion. IOP Publishing Ltd.

[3] De Castro, L. N., & Timmis, J. (2002, May). An artificial immune network for multi-

modal function optimization. In Evolutionary Computation, 2002. CEC'02. Proceedings of the

2002 Congress on (Vol. 1, pp. 699-704). IEEE.

[4] De Castro, L. N., & Von Zuben, F. J. (2001). aiNet: an artificial immune network for

data analysis. Data mining: a heuristic approach, 1, 231-259.

[5] Bofill, P., & Zibulevsky, M. (2001). Underdetermined blind source separation using

sparse representations. Signal processing, 81(11), 2353-2362.

[6] Comon, P. (1989). Séparation de mélanges de signaux. In 12° Colloque sur le

traitement du signal et des images, FRA, 1989. GRETSI, Groupe d’Etudes du Traitement du

Signal et des Images.

[7] Comon, P. (1992). Independent component analysis. Higher-Order Statistics, 29-38.

[8] Hosseini, S., & Deville, Y. (2004). Blind maximum likelihood separation of a linear-

quadratic mixture. In Independent Component Analysis and Blind Signal Separation (pp. 694-

701). Springer Berlin Heidelberg.

[9] Comon, P., & Jutten, C. (2010). Handbook of Blind Source Separation: Independent

component analysis and applications. Academic press.

[10] Jutten, C., & Karhunen, J. (2003, April). Advances in nonlinear blind source separa-

tion. In Proc. of the 4th Int. Symp. on Independent Component Analysis and Blind Signal Separa-

tion (ICA2003) (pp. 245-256).

[11] Taleb, A., & Jutten, C. (1999). Source separation in post-nonlinear mixtures. Signal

Processing, IEEE Transactions on, 47(10), 2807-2820.

84

[12] Hosseini, S., & Deville, Y. (2003). Blind separation of linear-quadratic mixtures of

real sources using a recurrent structure. In Artificial Neural Nets Problem Solving Methods (pp.

241-248). Springer Berlin Heidelberg.

[13] Deville, Y., & Hosseini, S. (2009). Recurrent networks for separating extractable-

target nonlinear mixtures. Part I: Non-blind configurations. Signal Processing, 89(4), 378-393.

[14] Hosseini, S., & Deville, Y. (2012). Recurrent networks for separating extractable-

target nonlinear mixtures. Part II: Blind configurations. Signal Processing.

[15] Ando, R. A., Duarte, L. T., Soriano, D. C., Attux, R., Suyama, R., Deville, Y., & Jut-

ten, C. (2012) Recurrent Source Separation Structures as Iterative Methods for Solving Nonlinear

Equation Systems. XXX Simpósio Brasileiro de Telecomunicações.

[16] Press, WH; Teukolsky, SA; Vetterling, WT; Flannery, BP (2007). "Chapter 9. Root

Finding and Nonlinear Sets of Equations Importance Sampling". Numerical Recipes: The Art of

Scientific Computing (3rd ed.). New York: Cambridge University Press.

[17] Parzen, E. (1962). On estimation of a probability density function and mode. The an-

nals of mathematical statistics, 33(3), 1065-1076.

[18] De Castro, L. N., & Von Zuben, F. J. (2002). Learning and optimization using the

clonal selection principle. Evolutionary Computation, IEEE Transactions on, 6(3), 239-251.

[19] Merrikh-Bayat, F., Babaie-Zadeh, M., & Jutten, C. (2011). Linear-quadratic blind

source separating structure for removing show-through in scanned documents.International

Journal on Document Analysis and Recognition (IJDAR), 14(4), 319-333.

[20] Suyama, R. (2007). Proposta de métodos de separação cega de fontes para misturas

convolutivas e não-lineares.

[21] Duarte, L. T. (2006). Um Estudo sobre Separação Cega de Fontes e Contribuições ao

Caso de Misturas Não-lineares.

[22] Hyvärinen, A., Karhunen, J. & Oja, E. (2001). Independent Component Analysis.

Wiley.

[23] S. Achard and C. Jutten. Identifiability of post-nonlinear mixtures. IEEE Signal Pro-

cessing Letters, 12(5):423–426, May 2005

[24] Schatzman, M. (2002). Numerical Analysis: a Mathematical Introduction. Clarendon

Press, Oxford.

[25] Fiedler-Ferrara, N., Prado, C.P.C.: Caos Uma Introdução. Edgard Blücher (1994)

85

[26] Jutten, C., Hérault, J. (1991). Blind separation of sources, part I: An adaptive algo-

rithm based on neuromimetic architecture. Signal processing, 24(1), 1-10.

[27] Billingsley, Patrick (1995), Probability and Measure (3rd ed.), John Wiley & sons

[28] Hyvärinen, A., & Oja, E. (2000). Independent component analysis: algorithms and

applications. Neural networks, 13(4), 411-430.

[29] Hazewinkel, Michiel, ed. (2001), "Differential entropy", Encyclopedia of Mathemat-

ics, Springer.

[30] Cover, T. M., & Thomas, J. A. (2012). Elements of information theory. Wiley-

interscience.

[31] Cardoso, J. F. (1997). Infomax and maximum likelihood for blind source separa-

tion. Signal Processing Letters, IEEE, 4(4), 112-114.

[32] Watanabe, S. (1960). Information theoretical analysis of multivariate correlation.IBM

Journal of research and development, 4(1), 66-82.

[33] Scott, D. W. (2009). Multivariate density estimation: theory, practice, and visualiza-

tion (Vol. 383). Wiley. com.

[34] Fiedler, B., & Gedeon, T. (1998). A class of convergent neural network dyna-

mics. Physica D: Nonlinear Phenomena, 111(1), 288-294.

[35] Monteiro, L. H. A. (2006). Sistemas dinâmicos. Editora Livraria da Física.

[36] Feigenbaum, M. J. "The Metric Universal Properties of Period Doubling Bifurcations

and the Spectrum for a Route to Turbulence." Ann. New York. Acad. Sci. 357, 330-336, 1980.

[37] Darbellay, G. A., & Vajda, I. (1999). Estimation of the information by an adaptive

partitioning of the observation space. Information Theory, IEEE Transactions on, 45(4), 1315-

1321.

[38] Nadarajah, S. (2005). A generalized normal distribution. Journal of Applied Statis-

tics, 32(7), 685-694.

[39] http://www.site.uottawa.ca/~edubois/documents/

[40] Almeida, L. B. (2005). Separating a real-life nonlinear image mixture. arXiv preprint

cs/0505044.

[41] (overdetermined)

[42] Hérault, J., Jutten, C., & Ans, B. (1985). Détection de grandeurs primitives dans un

message composite par une architecture de calcul neuromimétique en apprentissage non supervi-

http://www.site.uottawa.ca/~edubois/documents/

86

sé. In 10° Colloque sur le traitement du signal et des images, FRA, 1985. GRETSI, Groupe

d’Etudes du Traitement du Signal et des Images.

