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“If you want to build a ship, don’t drum up the men to gather wood, divide the work and give 
orders. Instead, teach them to yearn for the vast and endless sea.” 

 
(Antoine de Saint-Exupery) 
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RESUMO 

 Este trabalho aborda um problema de planejamento tático em empresas de transporte 

marítimo de carga que coletam e entregam as demandas contratadas por seus clientes. As viagens 

associadas a estas demandas são obrigatórias, mas a empresa pode também atender a demandas 

spot associadas com viagens opcionais para aumentar seu lucro durante um horizonte de tempo 

de médio prazo. O problema de otimização é formulado como um modelo de programação inteira 

mista que é definido em um grafo orientado em que nós representam viagens obrigatórias e 

opcionais. As decisões do modelo são determinar o número e tipo de navios que compõem a 

frota, designar um navio a um conjunto de viagens obrigatórias e opcionais, definir as rotas de 

cada navio e estipular os tempos de início de atendimento nos portos para cada viagem. Um 

algoritmo de busca tabu com uma lista de candidatos e um conjunto de soluções de elite é 

proposto para resolver instâncias do problema. Os resultados computacionais da busca tabu são 

comparados com as soluções ótimas e sub-ótimas encontradas pelo CPLEX para o modelo de 

programação inteira mista. 

 

Palavras-chave: logística, transporte marítimo, programação inteira, metaheurística, busca tabu. 
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ABSTRACT 

 

 

 We address a tactical planning problem faced by many liner shipping companies that have 

committed contractual voyages while trying to serve optional spot voyages to increase its revenue 

over the medium-term horizon. The optimization problem is formulated as a mixed integer 

programming model that is defined on a directed graph whose nodes represent contractual and 

spot voyages. The decisions include the number and type of vessels deployed the assignment of 

vessels to contractual and spot voyages and the determination of vessel routes and schedules in 

order to maximize the profit. A tabu search algorithm with a candidate list and a pool of elite and 

diverse solutions is proposed in order to solve a set of benchmark instances of the problem. The 

results obtained by tabu search are compared to optimal and suboptimal solutions yielded by the 

CPLEX solver to the mixed integer programming formulation of the problem. 

 
Keywords: logistics, maritime transportation, integer programming, metaheuristic, tabu search. 
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 Maritime transportation is the backbone of international trade and has been experiencing a 

rapid growth over the past decades. The volume of transported cargo is estimated to have reached 

more than 9 billion tons of loaded cargo in 2012 (UNCTAD, 2012)1. Figure 1 shows that the sea 

born trade has more than doubled since 1980, with a significant growth in the five major bulks 

(iron ore, grain, coal, bauxite/alumina and phosphate), other dry cargo and containerized cargo. 
 

 

Figure 1. International seaborne trade in millions of tons loaded, UNCTAD (2012) 

 Ships are extremely expensive resources and the cost of single newly built ship ranges 

from US$ 10 million (a 500 TEU2 container ship) to US$ 208 million (an LNG – Liquefied 

Natural Gas – carrier of 160.000 m3), as shown in Table 1. When a company invests in a fleet of 

ships, either newly build or second-hand ships, the company expects high fleet utilization and 

occupation in order to increase its revenue. Thus, the need of an effective use of the fleet, either 

owned by the company or hired through short or long term contracts, compels planner 

professionals of the shipping companies to search for optimized fleet sizing, routing and 

scheduling solutions. In addition, since ship investments reach around the millions of dollars and 

                                                 
1 United Nations Conference on Trade and Development 
2 Twenty-foot equivalent unit, for example, a standard container with 6.10 meters long x 2.44 meters wide x 2.59 
meters high. 
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ship daily costs amounts to tens of thousands of dollars, a relatively small percentage 

improvement in the projected costs of a ship route may result in very large financial gains. 

Table 1. Average price of a newly built ship in millions of US$, UNCTAD (2011) 

 

 The benefits that may be captured by the potential saving opportunities in maritime 

transport have attracted the attention to better decision making supported by operations research 

algorithms and decision support systems. These benefits have also encouraged the development 

of this present study. 

 A common classification of shipping companies in modes of maritime transportation is 

liner, tramp and industrial operations (Lawrence, 1972). A liner shipping company operates 

similar to a bus line, following a determined and published route. The liner company pickups and 

delivers client cargoes, e.g. containers, along the route analogous to the hop-on and hop-off of 

passengers in a bus line. A tramp shipping company does not have a predefined route to follow, 

the route is constructed and executed as new transport demands, such as dry bulk, gas or 

chemicals arrive. The analogy here is that a tramp company operates like a taxicab, picking up 

and delivering passengers while it is on the way. The tramp shipping operation may be full 

shipload, as of a taxicab with a single passenger, or parcel loads, as of a shared taxicab. The 

industrial operation is common for a verticalized company, such as mining companies that own 

or control both the cargo and the ships. The goal of the industrial shipping company is to move its 
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own cargo to determined destinations at a minimum cost with its own or dedicated hired fleet. 

Table 2 presents additional information on liner, tramp and industrial operations. 

Table 2. Description of the liner, tramp and industrial operations 

 Liner Tramp Industrial 

Business 
model 

The company establishes trade 
routes and frequency of service 
(similar to bus itineraries) 
The regional offices sell 
available capacity to shippers, 
usually yearly contracts, with a 
few months in advance. These 
contracts, once accepted, are 
mandatory to be served and may 
represent from 80% to 95% of the 
liner company’s business 
The company attempts to fill 
idleness with spot demand 

The company (usually) owns a 
small or a medium fleet of ships 
and sells its capacity in two-ways: 
Contracts of affreightment: 
commitment to move a certain 
amount of cargo from Port ‘A’ to 
Port ‘B’ within a determined time 
window. May require one or  more 
voyages and could be full or parcel 
shipload 
Spot voyages: commitment to 
serve a voyage from Port ‘A’ to 
Port ‘B’ (similar to a taxi cab, 
usually full shipload) 

An industrial company has a 
high volume of liquid or dry bulk 
cargo to transport, such as oil, 
chemicals, minerals or grains 
Because of the high volume, the 
company decides to own or 
control a fleet of ships, including 
decisions of ship design, number 
of ships, routes and scheduling 
The company often faces supply 
chain decisions, considering the 
integrated planning of production, 
inventory and port operations   

Cargo 
owner 

Shipper 
(client of the liner company) 

Shipper 
(client of the tramp company) 

Industrial company 

Ship 
owner 

Liner company 
May hire in other ships (time 
charter contract) if profitable or if 
necessary to fulfill mandatory 
contracts 
May charter out, lay-up or scrap 
excess ships 

Tramp company 
May hire in (time charter 
contract) if profitable to accept 
contracts of affreightment or to 
accommodate a peak of spot 
voyages demand 
May charter out, lay-up or scrap 
excess ships  

Industrial company 
If possible, the company sizes 
the number of ships below its 
long term needs and hire in (time 
charter contract from tramp 
companies) to accommodate peak 
demand 

Financial 
objective 

To maximize profit To maximize profit 
To minimize overall supply chain 
and transportation costs  

Key 
decisions 

Trade routes and itinerary 
Transshipment of containers 
Positioning of empty containers 
Fleet mix and deployment 
Scheduling of spot voyages 
Balanced ship loading 

Fleet mix and deployment 
Ship routing and scheduling 
Mix between contracts of 
affreightment and spot voyages 
(decision mainly depends on the 
estimate of the future price of the 
spot voyage market) 

Fleet mix and deployment 
Ship scheduling 
Integrated supply chain planning 
Inventory and environmental 
routing to fulfill the supply chain 
plan (e.g. avoid product stock-
out) 

Type of 
ships and 

cargo 

Containers 
General cargo (e.g. packaged 
goods in ship’s hold or deck) 
Refrigerated loads 
Roll-on-Rool-off (Ro-Ro ramps 
for trucks/cars) 

Dry bulk (e.g. grain, coal, iron ore 
and other minerals) 
Tankers (crude oil, liquids in 
bulk) 
Liquefied gas 
Refrigerated ships  

Dry bulk 
Tankers 
Liquefied gas 
Specialized cargo with specific 
packaging and/or handling 
equipment 

Size and 
frequency 

of 
shipments 

Parcel shiploads: large number 
of port calls and clients per 
voyage (e.g. container shipment) 
Routes may be served weekly 
(or daily) and through more than 
one ship (e.g. a traderoute with a 
4 week duration and a weekly 
frequency requires at least 4 
ships) 

Full shipload: a pick-up and 
delivery from a single port of 
origin to a single port of 
destination 
Parcel shipload: few clients and 
port calls per voyage 
Frequency depends on the volume 
of the contracts of affreightment  

Full shipload (usually): a pick-up 
and delivery from a single port of 
origin to a single port of 
destination 
Frequency depends of the 
integrated supply chain planning 

    

These three operations face common and specific planning problems which vary 

according to the length of the planning horizon, to the commitment created by the decision 
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making process and to the uncertainty about the future. Table 3, inspired on the list of problems 

of Christiansen et al. (2007), shows some of the main problems in the planning of maritime 

transport and suggests a relative importance of each problem to each maritime operation, namely, 

liner, tramp, industrial. The relative importance should be interpreted as an ordinary indication 

for a general case and may be changed according to one company specific environment. 

Table 3. Summary of maritime problems and relative importance 

 Example of problems Liner Tramp Industrial 

Strategic 

Market and trade selection 
Which markets and geographies should be serviced? 

+++ +++ ++ 

Ship design 
What is the optimal size of the ship? 
What on board loading/unloading equipment are needed? 

++ ++ +++ 

Network and transportation system design 
Are hubs and transshipment ports desirable? 
Are there intermodal (rail, road, barge) integrated services? 
Fixed route/itinerary determination (e.g. trade routes) 
What are the port calls and frequency of service of each trade route? 

+++ - ++ 

Fleet size and mix decisions 
How many ships, and of which type, should be on the fleet? 
Should excess ships be scrapped? 

+++ +++ +++ 

Contract evaluation 
Which long term contracts should be taken? 
How can a company be hedged against spot market price change? 

++ +++ - 

Port/terminal location, size and design 
Supply chain planning 
How is shipping affected by, and how it affects, production, inventory and 
other integrated processes of the supply chain? 

- - +++ 

Tactical 

Fleet size and mix decisions 
Are changes on current fleet size/mix desirable? 
 Which hired and/or chartered contracts should be engaged? 

+++ +++ +++ 

Contract evaluation 
Which short term (spot) contracts should be taken? 

++ +++ - 

Fleet deployment 
How many and which ships should serve which trade routes? 

+++ - - 

Ship routing 
What is the best sequence of port calls for each ship? 

++ +++ + 

Ship scheduling 
When should each ship start/end service at each port call? 

+++ +++ +++ 

Ship refueling 
When and in which port should each ship be refueled? 

++ +++ ++ 

Inventory ship routing 
What should the ship route and scheduling be so to maintain inventory 
levels within the desired interval? 

- + +++ 

Operatio-
nal 

Cruising speed selection 
What is the optimum speed that minimizes fuel consumption and also 
services all port calls within time windows? 

++ ++ ++ 

Ship loading 
How should the cargo (e.g. containers) be placed inside the hold of the ship 
and also above the deck to maintain balance? 

+++ + + 

Environmental routing 
How should the routes be constructed considering waves, tides, currents 
and bad weather forecasting? 

++ + +++ 

Problem relative importance: - Practically none + Low ++ Medium +++ High 
 Problems approached in this work  
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 It is also worthwhile to highlight the main differences between vehicle routing problems 

and maritime problems. For instance, Ronen (1983, 1993) and Christiansen et al. (2004) mention 

that ship problems differ from vehicle problems in the following aspects: 

 There is no depot and ships do not necessarily return to their origin; 

 Ships are operated around the clock while vehicles are operated, usually, only during the day. 

Therefore, maritime operations do not have a time buffer to withstand delays, whereas delays in 

road transportation could be compensated through a shorter night break; 

 Because of the longer duration of the voyages, there is more uncertainty in the scheduling of 

ships than that of vehicles; 

 Ships are different from each other in their cost structure not only because of different 

capacities, equipment and sailing speed, but also because of fluctuations in the ship and time 

charter markets; 

 Ships pay port fees and operate mostly in international trade. 

 This work proposes a mixed integer programming (MIP) formulation and a tabu search 

for the Fleet Size and Mix Routing Tactical Problem (FSMRTP) in liner shipping that could also 

be extended to tramp shipping operations. For the medium term planning horizon, for example 

from six months to a year, fleet size decisions determine the necessary number of ships and select 

the types of ships to use, including the evaluation of the following alternatives: to lay-up a ship, 

i.e., to moor it in a protected anchorage or berth with most onboard systems shut down to reduce 

costs, to hire or to charter that means hiring a ship from another company or renting a ship to 

another company, respectively, for a determined period of time and price. Therefore, the 

objective of the FSMRTP is to maximize profit through the determination of: (i) the number and 

type of its own ships, as well as the number and type of laid-up and hired and chartered ships, (ii) 

the set of spot voyages to be served during the planning horizon and (iii) the ship routes and 

schedules. 

 The robustness of the solution of the FSMRTP depends on the level of uncertainty of 

future demands and of the future price of the charter market. Since the uncertainty is proportional 

to the length of the planning horizon, the planning horizon for the FSMRTP should not exceed, 

for example, one year. The next section presents the detailed description of the FSMRTP. 
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1.1. PROBLEM DESCRIPTION 

 The FSMRTP consists of the deployment of ships to trade routes, the routing of 

contractual and spot voyages, and the scheduling of the ships.  Changes in fleet size and mix are 

allowed, such as to hire a ship to accommodate a peak of demand or to charter a ship for the 

remaining of the year if the overall fleet utilization is too low. A solution of the FSMRTP is 

feasible if all contractual voyages of the planning horizon are served without exceeding ship's 

capacity and violating voyages time window constraints. Spot voyages may be served if feasible 

and profitable. A solution of the FSMRTP is optimal if it is feasible and if it maximizes overall 

profit, which is defined as the sum of total revenues (charter, contractual and spot voyages 

revenues) minus the sum of total costs (fixed, variable, lay-up, hire and operating costs). 

 Four problem models, presented in Table 4, are proposed to address the FSMRTP. The 

SIMPLE problem models only consider owned or controlled ships and these ships may not be 

either laid-up or chartered. There are two models of SIMPLE, one that serves only contractual 

voyages (SIMPLE.Cv) and one that serves contractual voyages and may serve spot voyages 

(SIMPLE.CvSv). The FULL problem models consider owner’s ships that may be laid-up and/or 

chartered, and hired ships. There are also two models of FULL, one that serves only contractual 

voyages (FULL.Cv) and one that serves contractual voyages and may serve spot voyages 

(FULL.CvSv).  

Table 4. Problem models 

Model 
Voyages Ships 

Contractual Spot Lay-up Charter  Hire  
SIMPLE.Cv      

SIMPLE.CvSv      
FULL.Cv      

FULL.CvSv      

1.1.1. Ships and voyages 

 Ships have different capacities and may transport different cargo types. Sailing, loading 

and unloading times may vary among ships and according to the assignment of ships to cargoes. 

Ships with similar characteristics, such as cargo type, loading/unloading equipment and sailing 

time, define a ship class. 
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 Usually, there is a predetermined frequency of service for each trade route, such as daily, 

twice a week, weekly, and regional offices of the shipping company sell the transportation 

capacity to clients with yearly contracts. After the contracts have been signed, the shipping 

company knows the start and end date of voyages and has an estimate of how much cargo must 

be loaded and unloaded at each port. The certainty of this estimate varies according to the type of 

clients and of the length of the planning horizon. 

 Thus, a trade route with a defined time window and the volume of each cargo type is a 

voyage. Following the example of Figure 2, the shipping company would first determine that a 

ship will start this trade route between May 1 and May 3 and that this ship will reach the 

Hamburg port no later than June 4. At this time, the trade route becomes a voyage and a ship 

must be assigned to this voyage. 

 There may be restrictions on the assignment of ships to voyages, for example: 

a) Type of ships: some cargoes cannot be assigned to certain type of ships; 

b) Port restrictions: draft constraints and requirements of loading/unloading equipment; 

c) Contractual obligations: client contracts can determine the type and size of ships that may 

transport the cargo. 

 After client contracts have been signed for a specific voyage, other spot voyages with a 

single port to load cargo and another port to unload cargo (e.g. to transport 5.000 tons from 

Santos to Rotterdam) may be accepted by the shipping company if the overall profit is increased 

and if there is enough capacity at the ship. Spot voyages revenue may represent about 5% to 30% 

of the total revenues of the shipping company. 

1.1.2. Costs and revenues 

 The shipping company may operate with own and/or hired ships and may also charter 

additional ships. A different cost structure occurs in each case. 

 A fixed cost is incurred if the owner’s ship is used during the planning horizon to serve at 

least one voyage or if an own ship is chartered. Depending on the charter market, the charter 

revenue may be smaller or larger than this fixed cost. To charter a ship is similar to renting an 

asset, in which there is a minimum and maximum renting time, a fixed rent income which 

contributes to cover the fixed costs, and a variable renting income proportional to the amount of 

the renting time. The duration of the charter contracts is limited to given lower and upper bounds 
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for the contract period and can be at most as large as the whole planning horizon period. In 

addition, it is assumed that each ship may be engaged into at most two non-simultaneous charter 

contracts during the planning horizon (e.g. for two different companies). In the case in which 

more than two contracts are needed to be modeled, the lower and upper bounds for the contract 

period could be changed to accommodate a larger period of time of multiple contracts.  

If the shipping company has no use for some of its ships for a long period of time, an 

option is to lay-up ships to reduce the fixed cost. Lay-up is to moor a ship at a protected 

anchorage or berth for a period of time of at least 5-6 months with most onboard systems shut 

down. This operation decreases fixed and insurance costs, reduces wear and tear of the ship and 

of the machinery, and may be also combined with maintenance operations. Because of the 

financial and time commitment of laying-up a ship, the options of laying-up and chartering are 

considered mutually exclusive for the same ship. 

 The shipping company may also hire ships to complement its own fleet. A ship could be 

hired in for a period of time between given lower and upper bounds of the duration of the 

contract. A fixed cost and variable cost proportional to the hire period is incurred. It is assumed 

that only a single hire contract may be settled for each ship during the planning horizon. Similar 

to the charter assumptions, longer hire periods may be modeled by changing the bounds. 

 In summary, the costs associated to ships are: 

 Fixed costs ($/year): personnel, supplies, equipment, maintenance, repair, administration (e.g. 

insurance, office overhead, agency fees), cost of capital (e.g. financing, leasing), make ready to 

sail costs and all other running costs associated to keep the ship operational that do not depend 

on the distance travelled; 

 Lay-up costs ($/year): administration, cost of capital and lay-up service and maintenance costs; 

 Hire fixed costs ($/contract)  and variable costs ($/day or $/hour): renting costs to cover 

administration, cost of capital and profit of the owner of the ship; 

 Variable costs: 

– Daily running costs at ports ($/hours in port): port charges and fuel to maintain ships at port; 

– Fuel costs ($/nautical mile):  fuel for ballast, parcel and full shipload sailing. 

 Although fuel cost is approximately proportional to the third power of the speed and, 

sometimes, even to the amount of cargo on the ship, this study considers that ships have different 
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speeds and that the speed of each ship is fixed and given. This seems as a reasonable assumption 

for strategic and tactical planning problems. 

 Table 5 summarizes the options that a shipping company has for own and hired ships and 

the associated costs and revenues of each decision. 

Table 5. Costs and revenues associated with each ship mix decision 

Does the 
shipping 
company 
own the 

ship? 

Was the 
ship 

used to 
serve the  
voyages? 

Decision during the 
planning horizon 

Associated Costs Associated Revenues 

Yes 

Yes Use the ship Fixed Variable Voyages 
No Charter out the ship Fixed Charter out fixed and variable 

Yes 
Both use and 

charter out the ship 
Fixed Variable 

Voyages 
Charter out fixed and variable 

No Lay-up the ship Lay-up costs - 
No Do not use the ship Nonea - 

No 
Yes Hire in the ship Hire in fixed and variable costs Voyages 
No Do not use the ship - - 

a
If the company has a fixed cost for a certain unused ship, this cost could be set as a lay-up cost. 

1.1.3. Simplifying assumptions 

 This research encompasses most of real-life parameters, constraints and objectives. Still, 

some simplifying assumptions are considered to reduce combinatorial complexity. The 

assumptions below may be further addressed to bring problem solutions closer to reality. 

a) Ships sail on a fixed speed and no slow steaming is allowed: since fuel consumption per 

nautical mile increases with speed, a ship could operate at lower speeds to reduce variable 

costs; 

b) Ballast, full load and restricted water speeds are the same for each ship during the whole 

voyage: in reality, these speeds are different and total sailing time is a composition of the 

number of nautical miles sailed on each speed; 

c) Ships have a single capacity constraint (e.g. one single compartment): some ships have several 

compartments with different capacities each; 

d) Ships are available during the whole planning horizon with no interruption for maintenance: 

maintenance and out-of-service times are scheduled in advance for each ship and usually some 

ship will not be available during the whole planning horizon. This may be modeled as a 

“dummy” port call; 



13 

e) Inventory costs of goods in transit are not considered: each day that the cargo is on board has a 

cost for the company that owns the cargo. Thus, the price of a voyage could be a function of 

the voyage duration.  

 The next section presents how these assumptions were applied to create the set of test 

problems. 

1.1.4. Set of test problems 

 A random test problem generator that considers real-life assumptions and parameters was 

developed to create a set of 14 test problems for each problem model of Table 4, totaling 56 test 

problems. Most of the assumptions are based on information available on ship carriers' websites 

and the report of UNCTAD (2011). 

 The number of ships ranges from 18 to 50 owner’s ships plus 6 to 32 hired ships, resulting 

in a total of 24 to 82 ships. Each ship belongs to a ship class, which determines most of ships 

parameters such as capacity, sailing speed and costs. Table 6 shows the 6 classes of ships that 

were considered in the data set. 

Table 6. Types and capacities of ships 

Ship class Capacity (net tonnage) 
Handysize1 10,000 
Handysize2 20,000 
Supramax 30,000 
Panamax 40,000 
Capesize1 70,000 
Capesize2 90,000 

 

 The test problems were created with at least one ship of each ship class of Table 6. In the 

majority of the test problems, Supramax, Panamax and Capesize are the predominant ship classes 

of the fleet. 

 Each ship has a sailing speed and fixed and variable operating costs which are randomly 

selected according to the parameters of Table 7. 
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Table 7. Sailing speed and costs of ships 

Class 

Sailing Speed 

Fixed costs 
(US$ if own ship is used 

during the next year) 

Variable costs 
(US$/nautical 

mile) 

From To From To From To 
Handysize1 15 16 3,000,000 4,500,000 20 30 

Handysize2 15 16 4,200,000 5,000,000 20 30 

Supramax 14 16 4,800,000 6,000,000 25 35 

Panamax 14 15 5,200,000 6,400,000 25 35 

Capesize1 13 15 8,500,000 10,000,000 30 40 

Capesize2 12 15 9,500,000 11,500,000 30 40 

 

 If a ship is laid-up, the costs of Table 8 are applied. Table 9 shows the conditions of the 

charter and hire contracts. 

Table 8. Ship lay-up costs 

Class Lay-up fixed costs (US$ if the ship is laid-up for the whole year) 

 From To 
Handysize1 300,000 1,800,000 
Handysize2 420,000 2,000,000 
Supramax 480,000 1,800,000 
Panamax 520,000 1,920,000 
Capesize1 850,000 2,500,000 
Capesize2 950,000 2,875,000 

 

Table 9. Charter and hire contracts assumptions 

Ship Class 

Fixed profit 
(US$ if the ship is 

chartered or hired) 
Variable profit 

(US$/day) 
Minimum number 
of days of contract 

Maximum 
number of days 

of contract 

From To From To From To From To 

Handysize1 381,819 2,127,273 6,384 17,736 60 120 150 300 

Handysize2 534,546 2,363,637 8,928 19,704 60 120 150 300 

Supramax 610,910 2,836,364 10,200 23,640 60 120 150 300 

Panamax 661,819 3,025,455 11,040 25,224 60 120 150 300 

Capesize1 1,081,819 4,727,273 18,048 39,408 60 120 150 300 

Capesize2 1,209,091 5,436,364 20,160 45,312 60 120 150 300 

 

 Ships are available for the planning horizon at different times, because each ship must 

conclude the current service before it receives a new route assignment. The time at which an 
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owner’s ship and hired ships are available for planning are chosen randomly between 0 and 20 

days and between 0 and 150 days, respectively. 

 A set of 53 worldwide ports is used to create the set of demands. A distance matrix 

between ports was created based on ports latitude and longitude. In addition, for each pair ‘port x 

ship class’, a service time, loading/unloading rate and running costs were determined randomly, 

as shown in Table 10. 

Table 10.  Service time, loading/unloading rate and running costs of port calls per ship class 

Ship Class 
Service Time of each 

port call (hours) 
Loading/unloading 

rate (tons/hour) 
Running Costs 

(US$/hour) 

From To From To From To 
Handysize1 5 24 200 300 22 45 
Handysize2 5 24 230 300 22 45 
Supramax 8 36 250 600 23 75 
Panamax 8 36 300 800 27 100 
Capesize1 12 48 350 900 31 110 
Capesize2 12 48 400 1000 35 115 

 

 The location of the ship at the time the ship is available is a port selected randomly from 

the set of 53 ports. 

 It may not be possible for a certain port to serve all types of ship class. For instance, a port 

may not be able to accommodate a large ship or the port may not have the adequate 

loading/unloading equipment. To simulate this constraint, service time is set to a maximum limit 

for some ‘port x ship class’ pairs (approximately 2% of all 318 pairs). 

 Each test problem has a set with 5 to 12 trade routes and each trade route has a maximum 

number of port calls between 15 and 30. The paths of the trade routes were based on the itinerary 

published at Saga Forest Carries website (SAGA, 2013) and are shown in Table 11.  

 Each problem of the data set has between 30 and 110 contractual voyages and between 10 

and 34 spot voyages (around a 75 % ratio of contractual and spot voyages). The amount of cargo 

at each port call and voyages time window, duration and revenue are selected randomly following 

the parameters shown in Table 12. 
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Table 11. Set of trade routes and maximum number of port calls of each trade route 

# 
Trade Route Path Maximum 

number of 
port calls From To 

1 Europe East coast of North America 15 
2 Europe East coast of South America 16 
3 West coast of North America Europe 15 
4 East coast of South America Europe 16 
5 Far east West coast of North America 26 
6 Far east East coast of South America 29 
7 East coast of North America Far east 28 

8 East coast of South America 
Far east 

(through the Atlantic ocean) 
30 

9 East coast of South America 
Far east 

(through the Pacific ocean) 
29 

10 East coast of South America West coast of North America 17 
11 East coast of North America East coast of South America 18 
12 West coast of North America East coast of North America 17 

 

Table 12. Cargo of port calls, voyages time window, duration and revenue 

 Contractual Voyages Spot Voyages 
Amount of cargo loaded/unloaded at each port 

call 
from 400 to 30,000 tons 

from 1,000 to 10,000 
tons 

Time window to start the voyage 3 to 10 days 5 to 15 days 
Voyage duration 

(% of the time the slowest ship would take to 
complete the voyage) 

between 95% and 115%  between 95% and 
130%  

Revenue if the voyage is served 
from US$ 30/ton to US$ 

100/ton 
from US$ 40/ton to 

US$ 150/ton 
 

 An amount of cargo to load and to unload is assigned to each port call. This amount of 

cargo is chosen randomly in such a way that, in the end, the total amount of loaded cargo equals 

to the total amount of unloaded cargo.  

 Spot voyages have a single port call to load and a single port call to unload the cargo. The 

origin and destination port calls are chosen randomly from the set of 53 ports.  

 A voyage may not be served by all classes of ships (e.g. product incompatibility or 

commercial constraints). To simulate this constraint, there is a uniform probability of 4% of each 

ship class not serving each contractual or spot voyage. To guarantee the feasibility of serving a 

contractual voyage, the Capesize ship classes are always allowed to serve contractual voyages. 

 At last, the earliest time to start each voyage is chosen randomly so that the latest time is 

within the planning horizon. 
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1.2. SUMMARY OF PAPERS 

 The main part of this thesis is the result of two papers produced by the author and his PhD 

supervisor Vinícius Amaral Armentano. The first paper, ‘Fleet Deployment Optimization in Liner 

Shipping with Spot Voyages’, was submitted to the European Journal of Operational Research 

and presents the MIP model and the CPLEX results of the 4 problem models of the FSMRTP 

presented in Table 4. The second paper, ‘Tabu search for fleet deployment and routing in liner 

shipping’, was submitted to the Computers and Operations Research journal and describes the 

tabu search method applied to the same problems models. 

The contribution of the first paper relies on a novel mixed integer programming model 

based on a direct graph with the minimum set of three types of non-dominated nodes. Then, exact 

and approximated methods are applied to the mathematical formulations of the 4 problem 

models. The formulations also include up to two charter contracts (or one hire contract) per ship 

and the revenues (or costs) of the contracts are proportional to their duration. 

 The research of the first paper started as a suggestion of Professor Vinícius Amaral 

Armentano from Unicamp. Two invited professors from the Norwegian University of Science 

and Technology, Kjetil Fagerholt and Lars Magnus Hvattum, contributed with a suggestion of 

reference papers and also with the distance matrix data between the 53 worldwide ports described 

in the previous section. Prof. Armentano presented the partial results of this paper at IFORS 2011 

conference in Melbourne and MSc Branchini presented additional results at ISMP 2012 in Berlin. 

 The concept of the second paper began when the proposed MIP models proved to be 

inefficient to solve large instances of the problem. Therefore, the authors decided to implement 

heuristics methods such as tabu search. The proposed tabu search algorithm has several of the 

components described in Glover and Laguna (1997) and explores infeasible regions through 

insertion and exchange neighborhoods. The outline of the exploration of infeasible solutions is 

inspired on the application of another tabu search method, which was implemented by the authors 

in 2012, to the generalized assignment problem (Armentano and Branchini, 2013). Other 

contributions of this paper are the use of a candidate list to restrict the neighborhood size, the 

diversification through a tree search method and the improvement and management of a pool of 

elite solutions. 

 The remainder of this thesis is organized as follows. Next, section 1.3 presents some of 

the implementation issues concerning the programming of the MIP model and of the data 
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structure. Section 1.4 contains the complete list of references. Subsequently, the first paper is 

presented in section 2 and the second paper is given in section 3. 

1.3. IMPLEMENTATION ISSUES 

 This section describes some of the principles and ideas that were put into practice to 

improve the efficiency of the programming code. The majority of the comments presented here 

refer to data structures and considerations on how to insert the MIP model into CPLEX. 

 Some data structures were implemented to rapidly access the data that are stored in the 

memory. For example, the information associated with the MIP model variables is stored in a 

vector of variable objects. Since the models of the large test problems have more than one million 

variables, the computational time to search the information about a certain set of variables in a 

vector is very high. Therefore, the variables were classified into types, such as flow variables, 

time window variables, etc., and matrices were implemented to return the respective list of 

pointers to the variable objects. For instance, one matrix returns the list of pointers to the variable 

objects for every pair ‘ship x type of variables’ and another matrix returns the list of pointers for 

every pair ‘node x type of variables’. 

 Numerical issues were encountered when implementing the MIP model. Such as, the 

CPLEX solver would label the test problem as infeasible when, in fact, the test problem was 

feasible. The numerical imprecision problems were solved with three main guidelines: 

a) On every occasion that a large number, such as Big Ms, must be inserted into the model, the 

smallest valid large number is used. This avoided numerical errors especially when the large 

numbers are the coefficients of binary variables.  

b) The tightest lower and upper bounds are always calculated and informed to the CPLEX model 

for the continuous variables. 

c) The CPLEX tolerances, such as the tolerances to consider a number as an integer and to 

consider a constraint as violated, were manually adjusted. 

Some values of the test problems have large magnitude such as millions or hundreds of 

thousands of dollars associated with voyages revenues and fixed costs of ships. It was also tested 

to insert these values in the mathematical model as millions of dollars, instead of dollars, to avoid 

large coefficients of the binary variables. However, this modification did not affect the overall 

performance. In this case, the default setting of the scaling parameter ScaInd of CPLEX 
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guaranteed that the rows that contained such financial information were properly scaled by 

multiplying the rows of the model by suitable constants. 

 Whenever possible, the most frequent feasibility tests are executed only once and the 

results of these tests are stored in data structures to avoid repetitive computation. For example, 

the information on whether a ship may serve a contractual or spot voyage and on whether two 

contractual voyages may be served in sequence by each ship are stored in two vectors and one 

three dimensional matrix. The algorithms of both papers make use of these data structures. 

 In the tabu search algorithm, unnecessary repetitive calculations were also avoided with 

the use of memory and data structures related to the neighborhood moves. For example, the 

moves of the insertion, exchange and swap neighborhoods are stored, respectively, in three 

matrices: ‘contractual voyage x ship’, ‘contractual voyage x contractual voyage’ and ‘ship x ship’. 

Each matrix returns a pointer to a movement object that contains the absolute differences in 

profit, sailed distance, time window violation, and other information associated with the move, 

between the current solution and the resulting solution after the move. Therefore, the information 

on the quality and feasibility impact of the execution of a move is readily accessed. In addition, 

once a move is executed, only the movement objects associated with the affected ships and routes 

are recalculated. 

 At last, a particular attention was put on the testing of the algorithms. Routines were 

specially designed and implemented to test the consistency of the data structures, the behavior of 

the algorithms and the accuracy of the reported results. Because of the neighborhood data 

structures of the tabu search and the complexity of the MIP model, especially the combinatorial 

nature of the node model, a slower debug version of the algorithms, in which the test procedures 

are activated, was tested on a set of test problems of smaller size. 
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Fleet Deployment Optimization in Liner Shipping with Spot Voyages 

 

Abstract 

We address a tactical planning problem faced by many liner shipping companies that have 

committed contractual voyages while trying to serve optional spot voyages to increase its revenue 

over the medium-term horizon. The optimization problem is formulated as a mixed integer 

programming model that is defined on a directed graph whose nodes represent contractual and 

spot voyages. The decisions include the number and type of vessels deployed, the assignment of 

vessels to contractual and spot voyages and the determination of vessel routes and schedules in 

order to maximize profit. Computational results are reported. 

Keywords: Logistics, maritime transportation, liner shipping, routing, integer programming. 

  

1. Introduction 

 Maritime transportation is the backbone of international trade and has been experiencing a 

rapidly growth over the past decades. The volume of transported cargo is estimated to have 

reached almost 9 billion tons of loaded cargo in 2011 (UNCTAD3, 2011). Ships are extremely 

expensive resources, and the cost of a single newly built ship may range from US$ 10 million 

(e.g. a 500 TEU container ship) to US$ 208 million, such as a Liquefied Natural Gas vessel of 

160.000 m3 (UNCTAD, 2011). When a company invests in either newly built or second-hand 

ships,  it expects high fleet utilization and occupation to obtain a higher revenue.  Thus, the need 

of an effective use of the fleet, either owned by the company or hired/chartered through short or 

long term contracts, compels planner professionals of the shipping companies to search for 

optimized fleet sizing, routing and scheduling solutions. In addition, since ship investments reach 

around the millions of dollars and ship daily costs ranges tens of thousands of dollars, a relatively 

small percentage improvement in the projected costs of a ship route may result in large financial 

gains. 

 A common classification of shipping companies in modes of maritime transportation is 

liner, tramp and industrial operations (Lawrence, 1972). A liner shipping company operates 

similar to a bus line, following a determined and published route. The liner company pickups and 

delivers client cargoes, e.g. containers, along the route analogous to the hop-on and hop-off of 

                                                 
3 United Nations Conference on Trade and Development. 
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passengers in a bus line. A tramp shipping company does not have a predefined route to follow, 

the route is constructed and executed as new transport demands, such as dry bulk, gas or 

chemicals arrive. The analogy here is that a tramp company operates like a taxi cab, picking up 

and delivering passengers while it is on the way. The tramp shipping operation may be full 

shipload, as of a taxi cab with a single passenger, or parcel loads, as of a shared taxi cab. The 

industrial operation is common on a verticalized company, such as mining companies that own or 

controls both the cargo and the ships. The goal of the industrial shipping company is to move its 

own cargo to determined destinations at a minimum cost with its own or dedicated hired in fleet. 

Table A.1 of Appendix A presents additional information on liner, tramp and industrial 

operations. 

 These three operations face common and planning problems, which vary according to the 

length of the planning horizon, to the commitment created by the decision making process and to 

the uncertainty about the future. Table A.2 of Appendix A, inspired on the list of problems of 

Christiansen et al. (2007), shows some of the main problems in the planning of maritime 

transport and suggests relative importance of each problem to each maritime operation, namely, 

liner, tramp, industrial. The relative importance should be interpreted as an ordinary indication 

for a general case and may be changed according to one company environment. 

 This work proposes a mixed integer programming (MIP) formulation for the Fleet Size 

and Mix Routing Tactical Problem (FSMRTP) in liner shipping which consists of committed 

contractual voyages. Optional spot voyages may also be served to increase the revenue over the 

medium term planning horizon of a few months up to one year. A voyage is a sequence of port 

calls with four attributes: time duration, profit, earliest and latest time to start the service and 

available capacity for the ship to serve the voyage.  

Fleet size decisions determine the necessary number of ships and select the types of ships 

to use, including the evaluation of the following alternatives: to lay-up a ship, i.e., to moor it in a 

protected anchorage or berth with most onboard systems shut down to reduce costs, to hire a ship 

from another company or to charter a ship to another company, respectively, for a determined 

period of time and price. Therefore, the objective of the FSMRTP is to maximize profit through 

the determination of (i) the number and type of its own ships, as well as the number and type of 

laid-up, hired and chartered ships, (ii) the set of spot voyages to be served during the planning 

horizon and (iii) the ship routes and schedules. 
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The robustness of the solution of the FSMRTP depends on the level of uncertainty of 

future demands and the future price of the charter market. Since the uncertainty is proportional to 

the length of the planning horizon, the planning horizon for the FSMRTP should not exceed, for 

example, one year. 

The main contribution of the proposed MIP model lies in a graph-based construction 

where nodes represent contractual and spot voyages, and routes corresponds to sets of arcs. The 

key point is to create the smallest set of feasible and non-dominated nodes with respect to the 

four attributes mentioned above. Dominated nodes are discarded, thereby eliminating poor 

quality feasible solutions of the problem.  An approximated model that only considers the most 

promising nodes is also presented. In addition, the flexibility of the structure of the proposed MIP 

model is explored to address four different types problems in liner shipping. Another contribution 

is the manner in which the model handles the fixed and variable costs of the charter and hire 

contracts. For example, an own ship may be used to serve voyages and also may be chartered up 

to two contracts during the planning horizon. Also, the revenue and costs associated with the 

chartered and hired ships are proportional to the duration of the charter or hire contracts.  

 The remainder of the paper is organized as follows. Section 2 presents a literature review 

and Section 3 contains a detailed description of the problem. Section 4 shows the construction of 

nodes that represent contractual and spot voyages in a directed graph with arcs denoting 

sequences of voyages. Section 5 presents mixed integer programming models for four variants of 

the FSMRTP. Section 6 describes the computational experiments and, finally, conclusions are 

discussed in Section 7. 

2. Literature review 

 This section presents some of the approaches used to model maritime fleet planning 

problems. There is a broad collection of models in the literature and each model emphasizes on 

different aspects of the problem. Moreover, some of these models have already been 

implemented into Decision Support Systems (DSS).  

 The first two surveys of Ronen (1983, 1993) deal with ship routing and scheduling, and 

related problems, such as fleet deployment, inventory routing and optimal cruising speed. In both 

articles, the author stresses the scarcity of published work in this area. The survey of Christiansen 

et al. (2004) divides the literature according to strategic, tactical and operational problems, and 

the three modes of operation in shipping: liner, tramp and industrial. The increasing research in 
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maritime transportation is reflected in a much higher number of references, with the majority of 

problems based on real applications.  

The work of Christiansen et al. (2007) is a comprehensive introduction to several aspects 

of maritime transportation, including the dependence of the world economy on worldwide trade 

and maritime characteristics, such as types of ships and cargo. In addition, the work discusses 

several planning problems and mathematical optimization models with an emphasis on ship 

routing and scheduling models. 

 Christiansen et al. (2012) provide a review on the research on ship routing and scheduling 

and also present four basic mathematical models: (i) network design and (ii) fleet deployment for 

liner shipping, (iii) cargo routing and scheduling and (iv) maritime inventory routing for tramp 

and industrial shipping. One of the main concluding remarks is the economic importance of the 

optimization of the network design and fleet deployment problems for a liner shipping company. 

Operational and demand uncertainties are mentioned as important obstacles when dealing with 

such problems. 

 The reduction of fuel consumption has always been a major concern of ship carriers. 

Christiansen et al. (2009) report that transport fuel efficiency has improved from 0.025 kg of fuel 

to transport one container one nautical mile on the voyage from Asia to Europe in 2007, 

compared to 0.200 kg in 1970. However, the research for improvements on fuel efficiency is still 

very important for the optimization of the cruising speed of ships. Psarafatis and Kontovas (2013) 

point out that speed is a key variable and provide a taxonomy and survey of speed models for 

energy-efficient maritime transportation. Increasing fuel prices, depressed market conditions and 

environmental issues associated with the contribution of international shipping of CO2 emission 

of 2.7% of the global emission, has increased the emphasis on the optimization of ship speed. 

 Fagerholt (2001) formulates the ship scheduling problem with soft time windows and also 

calculates the optimal speed of each route in order to minimize soft time windows penalties and 

operating costs. The results show that controlled time window violation produces better schedules 

and lower overall costs.  

 Cho and Perakis (1996) develop a fleet size and route optimization model for a liner 

container shipping company. A number of candidate routes are generated a priori and then the 

problem is solved as a linear programming model. A mixed integer programming model is 

presented to assess investments to expand fleet capacity. 
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 Agarwal and Ergun (2008) present an integrated model to solve simultaneously the 

network design, referred in the paper as ship scheduling, and the cargo routing problem for liner 

shipment, including the alternative of transshipment of containers which involves moving a cargo 

from one ship to another at an intermediate port. Three algorithms are developed: a greedy 

heuristic, a column generation-based algorithm and a Benders decomposition-based algorithm. 

Computational tests show that the greedy heuristic is fast and produces good quality solutions for 

small problems, and the column generation-based algorithm is suitable for medium problems, and 

the Benders decomposition-based algorithm is more robust and produces high quality solutions 

for large problems. 

 Besbes and Savin (2009) address the joint route selection and refueling problem for liner 

and tramp shipping considering a single ship. The liner refueling problem is formulated as a long 

term average stochastic dynamic program and the authors prove that the optimal refueling policy 

has a capacitated price-dependent buy-up-to form. The tramp refueling problem is combined with 

the route selection problem in the cases of uniform and non-uniform fuel prices. The authors 

present numerical results for a real-life problem of a tramp ship and three ports and suggest 

expanding the solution approach to a multiple-ship problem as a future work. 

 Yan et al. (2009) apply a Lagrangian-based algorithm to solve the ship scheduling and 

container shipment planning problem. The algorithm is tested in a major Taiwanese shipping 

company and produced results that are 16.69% better than those obtained manually. 

 Decision support systems and methodology have been developed to aid professionals of 

the maritime industry. For instance, Kim and Lee (1997) present the prototype MoDiSS (Model-

based DSS in Ship Scheduling) for bulk trade companies. Fagerholt (2004) and later Christiansen 

et al. (2009) present Turborouter, a flexible decision support system that helps the planner to 

assign ships to cargoes. In addition to the optimization heuristics, the work focus on user 

interfaces and reports in order to help the planner to modify and interact with the presented 

solution. 

 Fagerholt et al. (2010) present a decision support methodology for strategic planning, 

including contract analysis and fleet mix and size decisions, in tramp and industrial shipping. To 

ensure good long term strategic decisions, the authors also consider a significant amount of 

details regarding short term decisions, such as ship routing and scheduling according to a rolling 

horizon. The methodology consists of an integrated simulation and optimization of four main 
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processes: (i) determine a set of strategic decisions, (ii) create a set of scenarios, (iii) use 

simulation to evaluate each strategic decision for each scenario and (iv) analyze results to 

determine the effects of each strategic decision. To simulate process (iii), the optimization tool 

Turborouter is used together with Ms-Excel spreadsheets, see Fagerholt (2004). The methodology 

is applied to a case study of a Norwegian shipping company and the results of the computational 

experiments provided valuable decision support information, such as whether the company 

should negotiate a longer notice time of the contracts of affreightment. 

 Gelareh and Meng (2010) approach the fleet deployment problem of liner shipping 

operations within a short-term planning horizon. The authors present a mixed nonlinear 

programming formulation that includes the optimization of the speed in which each ship sails in 

each link between two port calls. The nonlinear problem is linearized and then solved through 

standard commercial solvers such as CPLEX. A solution of this problem assign ships (own or 

hired in) to cyclic routes to meet the predetermined service frequency of each route for the 90 

working days planning horizon. Excess capacity may be chartered and the possibility of changing 

the service frequency of each route is tested.  More recently, Meng et al. (2012) propose a two-

stage stochastic integer programming model for a liner shipping planning problem with container 

transshipment and demand uncertainty. The solution approach, based on  dual decomposition and 

Lagrangian relaxation, is applied to a real world example of eight ship routes and 36 ports.  

 Hennig et al. (2012) address the split pickup and split delivery problem for maritime crude 

oil transportation. The authors introduce a path flow model, in which paths represent pre-

generated ship routes, to solve six realistic oil tanker routing and scheduling test problems for a 

fleet between 2 and 6 ships. The proposed model finds feasible solutions in a short time, but only 

small instances can be solved to proven optimality during the optimization time of 24 hours. 

3. Problem description 

 The FSMRTP consists of the deployment of ships to trade routes, the routing of 

contractual and spot voyages, and the scheduling of the ships.  Changes in fleet size and mix are 

allowed, such as to hire a ship to accommodate a peak of demand, or to charter  a ship for the 

remaining of the year if the overall fleet utilization is too low. A solution of the FSMRTP is 

feasible if all contractual voyages of the planning horizon are served without exceeding ships 

capacity and violating voyages time window constraints. Spot voyages may be served if feasible 

and profitable. A solution of the FSMRTP is optimal if it is feasible and if it maximizes overall 
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profit, which is defined as the sum of total revenues (charter, contractual and spot voyages 

revenues) minus the sum of total costs (fixed, variable, lay-up, hiring and operating costs). 

 Four problem models, presented in Table 1, are proposed to address the FSMRTP. The 

SIMPLE problem models only consider owned or controlled ships, and these ships may not be 

either laid-up or chartered. There are two models of SIMPLE, one that serves only contractual 

voyages (SIMPLE.Cv), and one that serves contractual voyages and may serve spot voyages 

(SIMPLE.CvSv). The FULL problem models consider owner’s ships that may be laid-up, 

chartered and hired during the planning horizon ships. There are also two models of FULL, one 

that serves only contractual voyages (FULL.Cv) and one that serves contractual voyages and may 

serve spot voyages (FULL.CvSv).  

Table 1. Problem models 

Model Voyages Ships 
Contractual Spot Laid-up Chartered Hired 

SIMPLE.Cv      
SIMPLE.CvSv      

FULL.Cv      
FULL.CvSv      

3.1. Ships and voyages 

 Ships have different capacities and may transport different cargo types. Sailing, loading 

and unloading times may vary among ships and according to the assignment of ships to cargoes. 

Ships with similar characteristics, such as cargo type, loading/unloading equipment and sailing 

time, define a ship class. 

 To solve any of the four problem models, ships must be assigned to voyages. A voyage is 

defined as a: 

a) number of port calls to pick up cargoes; 

b) number of port calls to deliver cargoes; 

c) fixed quantity of cargo to be picked up and delivered in each port call; 

d) time window to start the first port call; 

e) time window to finish the last port call which can be based on an estimate of the duration of 

the voyage. 

 Each port call has a queue and loading/unloading times. To evaluate if a ship has started 

service at a port within the time window constraint, the queue time is added to the arrival time to 





35 

Hamburg port no later than June 4. At this time, the trade route becomes a voyage and a ship 

must be assigned to this voyage. 

 There may be restrictions in the assignment of ships to voyages, for example: 

a) Type of ships: some cargoes cannot be assigned to certain types of ships; 

b) Port restrictions: draft constraints and requirements of loading/unloading equipment; 

c) Contractual obligations: client contracts can determine the type and size of ships that may 

transport the cargo. 

 After client contracts have been signed for a voyage, other spot voyages with a single port 

to load cargo and another port to unload cargo (e.g. to transport 5.000 ton from Santos to 

Rotterdam) may be accepted by the shipping company if the overall profit increases and if there 

is enough capacity at the ship. Spot voyages revenue may represent from 5% to 30% of the total 

revenues of the shipping company. 

3.2. Costs and revenues 

 The shipping company may operate with own and/or hired ships and may also charter 

excess ships. A different cost structure occurs in each case. 

 A fixed cost during the planning horizon is incurred if the owner’s ship is used to serve at 

least one voyage or if an own ship is chartered. Depending on the charter market, the charter out 

revenue may be smaller or larger than this fixed cost. Chartering a ship is similar to renting an 

asset for a minimum and a maximum time, a fixed rent income which contributes to cover the 

fixed costs, and a variable renting income proportional to the amount of the renting time. The 

duration of the charter contracts is limited to given lower and upper bounds for the contract 

period and can be at most as large as the whole planning horizon period. In addition, it is 

assumed that each ship may be engaged into at most two non-simultaneous charter contracts 

during the planning horizon. In the case in which more than two contracts are needed to be 

modeled, the lower and upper bounds for the contract period could be changed to accommodate a 

larger period of time of multiple contracts.  

If the shipping company has no use for some of its ships for a long period of time, an 

option is to lay-up ships to reduce the fixed cost. Lay-up is to moor a ship at a protected 

anchorage or berth for a period of time of at least 5-6 months with most onboard systems shut 

down. This operation decreases fixed, and insurance costs, reduces wear and tear of the ship and 

machinery, and may be also combined with maintenance operations. Because of the financial and 



36 

time commitment, the options of laying up and chartering are considered mutually exclusive for 

the same ship. 

 The shipping company may also hire ships to complement its own fleet. A ship could be 

hired for a period of time between given lower and upper bounds of the duration of the contract. 

A fixed cost and variable cost proportional to the hire period are incurred. It is assumed that only 

a single hire a contract may be settled for each ship during the planning horizon. Similar to the 

charter assumptions, longer hire periods may be modeled by changing the bounds. 

 In summary, the costs associated to ships are: 

 Fixed costs ($/year): personnel, supplies, equipment, maintenance, repair, administration (e.g. 

insurance, office overhead, agency fees), cost of capital (e.g. financing, leasing), make ready to 

sail costs and all other running costs that do not depend on the distance travelled; 

 Lay-up costs ($/year): administration, cost of capital and lay-up service and maintenance costs; 

 Hire fixed costs ($/contract)  and variable costs ($/day or $/hour): renting costs to cover 

administration, cost of capital and profit of the owner of the ship; 

 Variable costs: 

­ Daily running costs at ports ($/hours at port): port charges and fuel to maintain ships at port; 

­ Fuel costs ($/nautical mile):  fuel for ballast, parcel and full shipload sailing. 

 Although fuel cost is approximately proportional to the third power of the speed and, 

sometimes, even to the amount of cargo at the ship, this study considers that ships have different 

speeds and that the speed of each ship is fixed and given. This seems as a reasonable assumption 

for strategic and tactical planning problems. 

 Table 2 summarizes the options that a shipping company has for own and hire  ships and 

the associated costs and revenues of each decision. 
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Table 2. Costs and revenues associated with each ship mix decision 

Does the 
shipping 

company own 
the ship? 

Was the 
ship used to 

serve 
voyages? 

During the 
planning 

horizon, the 
ship was... 

Associated Costs Associated Revenues 

Yes 

Yes used Fixed Variable Voyages 
No chartered Fixed Charter fixed and variable 

Yes 
used and 
chartered 

Fixed Variable 
Voyages 

Charter fixed and variable 
No laid-up Laid-up - 
No not used Nonea - 

No 
Yes hired Hire fixed and variable Voyages 
No not used - - 

a
If the company has other fixed costs associated with an unused ship, these costs could be set as lay-up costs. 

3.3. Simplifying assumptions 

 This research encompasses most of real-life parameters, constraints and objectives. Still, 

some simplifying assumptions are considered to reduce combinatorial complexity. The 

assumptions below may be further addressed to bring problem solutions closer to reality. 

a) Ships sail at a fixed speed; a ship could operate at lower speeds to reduce variable costs, but 

this is not taken into account here; 

b) Ballast, full load and restricted waters speeds are the same for each ship during the whole 

voyage: in reality, these speeds are different and total sailing time is a composition of the 

number of nautical miles sailed on each speed; 

c) Ships are available during the whole planning horizon with no interruption for maintenance: 

maintenance and out-of-service times are scheduled in advance for each ship and usually some 

ship will not be available during the whole planning horizon. This may be modeled as a 

“dummy” port call; 

d) Inventory costs of goods in transit are not considered: each day that the cargo is onboard has a 

cost for the company that owns the cargo. Thus, the price of a voyage could be a function of 

the voyage duration. 

4. Graph representation 

 In this section, we show the procedures that define contract and spot voyages as nodes of 

a directed graph with arcs denoting underlying sequences of voyages. 

4.1. Sets 

 Consider the following sets: V as the set of ships, VOV as the set of  owner’s ships, 

VHI={V-VO} as the set of hired ships, VLUVO as the set of ships that may be laid-up, 
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VCO={VO-VLU} as the set of ships that may be chartered, P as the set of ports, CV as the set of 

contractual voyages, and SV as the set of spot voyages. 

4.2. Ship parameters 

 A ship vV has a net tonnage of NTv, a sailing speed of SPv knots, a fixed cost of FCv 

US$/year, a cost of VCv US$/nautical mile and a running cost at port pP of RCvp US$/hour. 

Loading and unloading time of ship vV at port pP is LUTvp hours/ton. Each ship vV is 

available for the first voyage of the planning horizon on time TAv at port PAv. 

 Each ship vV has a waiting time in a queue at port pP of Qvp hours just before the start 

of service at each port call.  If two or more subsequent port calls occur in the same port (e.g. the 

first port call is of a contractual voyage at port p and the second port call is of a spot voyage at 

the same port p), the ship waits a time Qvp in a queue only once, before the first port call p. The 

distance in nautical miles between port pP and qP is DPpq. 

 If a ship vluVLU is not used during the planning horizon, the shipping company pays a 

lay-up cost of LUCvlu US$/year. 

 If a ship vcoVCO is chartered, the shipping company receives a fixed revenue of RCOvco 

US$ for each time (up to twice during the planning horizon) that vco is chartered. Also, if 

vcoVCO is chartered, each chartered period must be within the time period [BCOvco, ECOvco] in 

hours and the shipping company receives a variable income of VRCOvco US$ per chartered hour. 

 If a ship vhiVHI is hired, the shipping company pays a fixed cost of FHIvhi US$ and a 

cost of VCHIvhi US$/hour that vhi is hired. In addition, if vhiVHI is hired, the hire period must 

be within the time period [BHIvhi, EHIvhi] in hours. 

4.3. Contractual and spot voyages parameters 

 After the queue waiting time at the first port call, service of a contractual voyage iCV 

must start between the time interval [BCVi, ECVi] and must not end after time TCVi.  The 

contractual voyage iCV produces a revenue for the shipping company of RCVi US$ if the 

company serves the whole set of CVPi P port calls. The revenue RCVi is net of any specific port 

fees associated with each port call. Service must follow the sequence order of ports of the set 

CVPi. For a contractual voyage iCV, let oi(a), a{1,...,|CVPi|}, represents the port call in 

position a of the ordered set CVPi. At each port call pCVPi, the ship must unload UCVip and 

load LCVip tons of cargo. 
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 Also, consider the combinations of contractual and spot voyages as nodes of type 3. Each 

type 3 node must have at least one port call of a spot voyage served within a contractual voyage. 

Figure 3 illustrates the combination of both nodes previously shown on Figure 2. 

Type 3 node 
Contractual voyage + Spot Voyage Node Representation 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 3. Example of a type 3 node 

 The resulting combination of the contractual and spot voyage is one type 3 node 

(Itajai→Santos→Suape→SANTANA→Rotterdam→Hamburg) and another type 2 node 

(unloading port call of the spot voyage at Brake). For simplicity purposes, the type 3 node 

representation on the right, which shows only the loading (L) or unloading (U) images of spot 

voyage port calls, is used by the authors for the rest of this document. 

4.5. Sequence and combination of nodes of types 1, 2 and 3 

 The possible combinations of contractual and spot voyages depend on the positions of the 

port calls (loading and unloading) of the spot voyage between the first and last port calls of the 

contractual voyages. For instance, for a single spot voyage there are four possible positions: both 

port calls inside a contractual voyage, both outside, loading inside and unloading outside and 

vice-versa. Figure 4 shows the possible combinations of a single spot voyage to a number of 

contractual voyages between 1 and 3. 
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voyage rSV usually has a time limit TSVr between 15 and 90 days to be completed and the 

duration of a contractual voyage usually ranges from 7 to 45 days, it would be unusual, in 

practice, to combine a spot voyage to more than 3 contractual voyages. 

 If all contractual and spot voyages are represented through nodes, as well as the 

combinations of contractual and spot voyages, the mathematical problem may be formulated as 

the assignment of a sequence of nodes to each ship. A similar node model could be created for 

tramp shipping operations. For example, a type 1 node could contain a tramp shipping contractual 

voyage with a single port of origin and a single port of destination. Then, types 2 and 3 nodes 

could be constructed in a similar manner of Figure 5. 

 Since all contractual voyages must be served, the assignment of nodes to ships must 

guarantee that the selected set of type 1 and 3 nodes exactly covers all contractual voyages. Spot 

voyages, on the other hand, are optional. Thus, there are feasible solutions in which no nodes of 

types 2 and 3 are assigned to any ships.  

4.6. Procedures to create the set of nodes and arcs 

 Three procedures construct the set of nodes of types 1, 2 and 3. This section presents the 

notation and the outcomes of these procedures. Refer to Appendix B for a detailed description on 

how each set of node type is created. 

 Let N be the set of voyage nodes and let typen{1, 2, 3} be the type of a voyage node n  

N. For a voyage node n  N, let the set BCn contain the indexes of the contractual voyages iCV 

and the set BSn contain the indexes of the spot voyages rSV that are served by voyage node n. 

 Let the set Portsn contain the ordered sequence of port calls of voyage node n and let 

on(a), a{1,...,|Portsn|}, represents the port call in position a of the ordered set Portsn. 

 Also, let Demandn be the net number of tons that node n loads (positive number) or 

unloads (negative number) to a ship and let CapMinn be the minimum idle capacity a ship must 

have to be able to serve node n. 

 For a ship vV and voyage node n  N, let TotalTimevn be the total time in hours spent by 

ship v during voyage node n and Profitvn be the total profit if ship v serves voyage node n. 

Finally, let [BTvn, ETvn] be the time window to start service at voyage node n for ship vV. 

 As a result, the following node attributes are calculated: 

 Total time spent by a ship in the node: queue, loading, unloading and traveling time between 

two consecutive ports; 
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 Acquired profit (or loss) if a ship serves the node; 

 Earliest and latest time a ship may start service in the node to guarantee time window 

feasibility; 

 Minimum requirement of idle capacity of ship just before service at the node. 

In the procedure that creates the type 3 nodes, some feasible sequences of port calls are 

dominated by another sequence when considering Profitvn, CapMinn, TotalTimevn and [BTvn, 

ETvn] values, which are the attributes of the nodes. In this case, the dominated feasible sequences 

are discarded. A sequence of a node a is dominated by a sequence of a node b if Profita≤Profitb 

and CapMina≥CapMinb and TotalTimea≥TotalTimeb and ETa≤ETb and 

BTa+TotalTimea≥BTb+TotalTimeb, and there exists at least one strict inequality. 

 With the parameters of Sections 4.2 and 4.3 and the results of the calculations of the 

procedures, (see Appendix B) it is possible to present the mathematical formulation of the four 

models described in Table 1. 

5. Mathematical formulation 

 Based on the nodes and parameters defined in the previous section, we present mixed 

integer programming formulations for the four variants of the FSMRTP shown in Table 1 

(SIMPLE.Cv, SIMPLE.CvSv, FULL.Cv and FULL.CvSv). 

5.1. Decision variables  

 Consider the following decision variables: 

zv = 1 if ship v V is used during the planning horizon, 0 otherwise; 

xfirstvn = 1 if voyage node n  N is the first node of ship v  V, 0 otherwise; 

xlastvn = 1 if voyage node n  N is the last node of ship v  V, 0 otherwise; 

xvmn = 1 if ship v  V services voyage node m  N just before voyage node n  N, 0 otherwise; 

stvn R+ = start time of ship v  V at voyage node n  N; 

startTimev R+ = start time of the first port call of ship v  VCO; 

endTimev R+ = end time of the last port call of ship v  VCOVHI; 

cophv = 1 if ship v  VCO is chartered for the whole planning horizon, 0 otherwise; 

cobv = 1 if ship v  VCO is chartered before startTimev, 0 otherwise; 

coav = 1 if ship v  VCO is chartered after endTimev, 0 otherwise; 
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capvn R+ = available net tonnage capacity of ship v  V  just before starting service at voyage 

node n  N;  

 The mathematical formulation of each problem is presented next. 

5.2. SIMPLE.Cv 

 The set N in the SIMPLE.Cv mathematical formulation contains only type 1 nodes and 

VCO=VHI=VLU=. 
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NmV,v                                                               xlastvm  },1,0{  (9) 

Vv                                                                       zv  },1,0{  (10) 

 The objective function maximizes total profit, which is the sum of each voyage node 

profit, minus the sum of fixed costs of the used ships, minus the sum of variable costs of the 
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distance sailed before the first voyage node and between each pair of voyage nodes, minus the 

running costs associated to queue times of the first voyage node and between voyage nodes. 

 Constraints (1) guarantee that every contractual voyage is served exactly once. A 

contractual voyage i is served if a node m that contains this contractual voyage (iBCm) is visited 

by a ship v. In a sequence of nodes of a ship v, node m is either before some other node n (xvmn=1) 

or node m is the last node of the route (xlastvm=1). Thus, if node m is visited by ship v, the 

expression   xlastx
mnNn

vmvmn



,

must be equal to 1. There are mathematical formulations, such as 

those in Christiansen et al. (2007), which use artificial origin and destination nodes to avoid the 

notation of the variables xfirst and xlast. Either approach is valid since both models have the 

same total number of variables. 

 Constraints (2) determine that if a ship v is used, ship v must exactly have one first node m 

(xfirstvm=1). Constraints (3) are the flow constraints. These constraints balance the input and 

output flow of every voyage node. Note that the right hand side of the constraints (





mnNn

vmvmn xlastx
,

) is at most equal to 1 because of constraints (1). Thus, the left hand side (





mnNn

vnmvm xxfirst
,

) is also either equal to zero or to 1. 

 Constraints (4) and (5) calculate the start time of each voyage node for each ship. 

Constraints (4) calculate the start time for the first node and constraints (5) for the subsequent 

nodes. In addition, time window constraints for each voyage node are represented by (6). 

 M1 and M2 are large numbers that assure that if either xfirstvm or xvmn is zero, the right hand 

side of constraints (4) and (5) will be at most BTvm and BTvn respectively. Appendix C presents 

additional information on the calculation of all large numbers of the mathematical models. 

 The SIMPLE.Cv and FULL.Cv models do not require capacity constraints because 

Demandn = 0, n  N, since all cargo loaded on a type 1 node is unloaded within the same node. 

Constraints (7) to (10) define the domain of the variables. 

5.3. SIMPLE.CvSv 

 The set N in the SIMPLE.CvSv mathematical formulation contains nodes of types 1, 2 

and 3 and VCO=VHI=VLU=. The SIMPLE.CvSv model consists of the objective function and 

all of the constraints of the SIMPLE.Cv model with the addition of following spot voyages 

constraints (11), (12), (13) and capacity constraints (14), (15). 
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 Constraints (11) ensure that spot voyages are served at most once. A spot voyage r may be 

served either through a type 2 unloading node m (in which Portsm=UPSVr) or through a type 3 

node n that contains the unloading port call of r (UPSVr Portsn). Therefore, constraints (11) 

guarantee that the unloading port call of spot voyage r may be served at most once by a ship v. 

 If the unloading port call of spot voyage r is served by ship v, constraints (12) ensure that 

the correspondent loading port call of spot voyage r must also be served exactly once by the same 

ship v. Thus, constraints (11) and (12) together guarantee that if a cargo of a spot voyage is 

loaded, then this cargo must be unloaded by the same ship.  

 Constraints (13) ensure that the start time of the unload port call of spot voyage r is 

greater than or equal to the earliest time that it would be possible to start unloading the cargo of 

spot voyage r. For example, consider the infeasible sequence of three nodes 

[U1]-[L2]-[C3-L1], where L1 and U1 are, respectively, the loading and unloading port calls of spot 

voyage 1, L2 is the loading port call of spot voyage 2, and C3 is the first port call of contractual 

voyage 3. This sequence might occur if the time window of a spot voyage 1 is too wide, however, 

this case did not arise in the computational experiments.  

 Net tonnage capacity constraints are represented by (14). These constraints calculate the 

ship available capacity to serve node n just after node m if xvmn is equal to 1. Constraints (15) 

establish that every ship must have enough idle capacity to serve a node. 

5.4. FULL.Cv 

 The set N in the FULL.Cv mathematical formulation contains only type 1 nodes. In this 

model there are ships that may be laid-up, chartered and/or hired. Also, let the variables 
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}1,0{,, vvv cophcoacob  determine, respectively, whether ship Vv is chartered before, after 

or for the whole planning horizon. 
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NmV,v                                                               xlastvm  },1,0{  (31) 

Vv                                                                       zv  },1,0{  (32) 

Vv                                                                       cobv  },1,0{  (33) 

Vv                                                                       coav  },1,0{  (34) 

Vv                                                                       cophv  },1,0{  (35) 

 The objective function of FULL.Cv has additional elements when compared with the 

objective function of SIMPLE.Cv. Each additional expression is explained in Table 3. 

Table 3. Additional expressions present on the FULL.Cv objective function 

Additional element of the FULL.Cv 
objective function 

Description 





VLUv

vv zLUC )1(  Fixed lay-up cost if the ship v is not used during the planning 
horizon. 


VCOv

vvcophFC

 

Fixed cost if the ship v is chartered for the whole planning horizon. 
This cost is the same as in the situation in which the ship is used to 
serve voyages. 

 



VCOv

vvv coacobRCO  
Fixed charter revenue if the ship v is chartered before (cobv=1) 
and/or after (coav=1) the period of time that the ship was used. If 
the ship is not used, it may be also chartered up to two times 
(cobv=coav=1). 

 



VCOv

vvv TAstartTimeVRCO  Variable charter revenue if the ship v is chartered before (cobv must 
be equal to 1). If the ship v is not chartered before (cobv=0), 
constraints (17) and (18) guarantee that startTimev = TAv. 

  endTimelatestTimeVRCO
VCOv

vv




 

Variable charter revenue if the ship v is chartered after (coav must 
be equal to 1). If the ship v is not chartered after (coav=0), 
constraints (20) and (21) guarantee that endTimev = latestTime. 


VHIv

vv zHIF  Fixed cost of hiring the ship v. 

 



VHIv

vvv TAendTimeVCHI  Variable cost of hiring the ship v. The cost is proportional to the 
period of time that the ship was used. If the ship v was not hired 
(zv=0), constraints (23) and (24) guarantee that endTimev = TAv. 

 Constraints (16) establish the limit for each variable startTimev of ship v  VCO to be the 

start time of the very first port call of ship v at node m (when xfirstvm=1). M4 is a large number 

that guarantees that startTimev is only limited if xfirstvm=1. 

 Constraints (17) and (18) guarantee that the amount of chartered time before is within the 

time interval [BCOv, ECOv]. If the ship is not chartered before, startTimev = TAv, resulting in no 

variable charter revenue in the objective function. 

 Constraints (19) establish the limit for each variable endTimev of ship v VCOVHI to be 

the end time of the last port call of ship v at node m (when xlastvm=1). M5 is a large number that 

guarantees that endTimev is only limited if xlastvm=1.  
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 Constraints (20) and (21) ensure that the amount of chartered time after is within the time 

interval [BCOv, ECOv]. If the ship is not chartered after, endTimev = latestTime, resulting in no 

variable charter revenue in the objective function. 

 Constraints (22) assure that endTimev is always greater than or equal to startTimev 

vVCO. Although constraints (22) may seem redundant, they are necessary when a ship 

vVCO is chartered both before and after (cobv = coav = 1) and ship v is not used to serve any 

voyages (zv=0). In this case, startTimev and endTimev are bounded by (17), (18), (20) and (21) 

and, depending of the values of TAv, BCOv and ECOv, endTimev could assume values lower than 

startTimev (for an example of this situation, see Appendix C).   

 Constraints (23) and (24) guarantee that the amount of hired in time is within the time 

interval [BHIv, EHIv]. If the ship is not hired, endTimev = TAv, resulting in no variable hire cost in 

the objective function. 

 Constraints (25) and (26) impose the bounds of startTimev and endTimev to the time 

interval [TAv, latestTime]. 

 Constraints (27) and (28) ensure that cophv=1 if zv=0 and either cobv=1 or coav=1 or both 

cobv=coav=1. These constraints guarantee that the fixed cost of ship v  VCO is subtracted in the 

objective function in the case that zv=0 and the ship v is used to be chartered at least once. 

Finally, constraints (33) to (35) define the domain for the charter variables. 

5.5. FULL.CvSv 

 The set N in the FULL.CvSv mathematical formulation contains nodes of types 1, 2 and 3. 

As in the SIMPLE.CvSv mathematical model, the variant FULL.CvSv requires the additional 

spot voyages and capacity constraints (11-15).  

6. Computational experiments 

 Computational experiments were executed with two solution approaches, MIP exact 

(MIPE) and MIP best nodes (MIPBN). MIPE constructs a graph based on the three types of 

voyage nodes and then creates the mixed integer programming (MIP) model. Subsequently, the 

MIP model is solved with the commercial solver software CPLEX. MIPBN is similar to the 

MIPE. However, the graph of MIPBN contains only a selected number of best (top) nodes. 

MIPBN does not guarantee the existence of an optimal solution since not all nodes are inserted 

into the graph. The smaller number of nodes in the graph implies that the mathematical model has 

fewer variables and constraints and may be solved by CPLEX in a shorter computational time. 
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 Figure 6 describes the MIPBN solution method and how best nodes are selected using two 

parameters, top1 and top2. Top1 represents the number of best type 3 nodes to select in each triplet 

“contractual voyage x subset of spot voyages x ship” and top2 the number of best type 3 nodes to 

select in each pair “contractual voyage x ship”. 

1. Create the nodes of types 1, 2 and 3. 
2. Keep only the best top1 type 3 nodes of the set N: 

2.1. For each contractual voyage i   CV and each subset S  SV of spot voyages, do: 
2.1.1. Create the set ST3 = {n  N : typen = 3, i = BCn, S = BSn} 
2.1.2. Create the sets ST3v  ST3 for each ship v  V that may serve the nodes of set ST3. 
2.1.3. Sort the elements of set ST3v in list1 considering two hierarchical criteria: (i) the decreasing 

order of total EstimatedProfitvn = Profitvn + revenues and costs associated with the loading 
(unloading) spot voyages port calls just before (after) node n, (ii) the increasing order of 
TotalTimevn. 

2.1.4. Remove from the set N the nodes m  ST3v that are not in the top1 nodes of list1. 
3. Keep only the best top2 type 3 nodes: 

3.1. For each contractual voyage i   CV, do: 
3.1.1. Create the set ST3v of type 3 nodes n in which i = BCn and node n may be served by ship v 

 V. 
3.1.2. Sort the elements of the set ST3v in list2 considering the same two hierarchical criteria of 

step 2.1.3. 
3.1.3. Remove from the set N the nodes m  ST3v that are not in the top2 nodes of list2. 

4. Create a graph with the set of feasible arcs connecting the nodes of all types 
5. Create the MIP model (variables, objective function and constraints) 
6. Solve the MIP model using CPLEX  
7. Return the best feasible solution found by CPLEX 

Figure 6. MIPBN solution method 

 The same set of spot voyages may be combined with a single contractual voyage in 

different manners depending on the positioning of the spot voyage port calls within the 

contractual voyage. Therefore, for every triplet “contractual voyage x subsets of spot voyages x 

ship”, step 2 of Figure 6 creates a set of type 3 nodes with different sequences of port calls and 

stores this set of nodes in the ordered list list1. To sort the nodes of list1, a node A is considered to 

be better than another node B, when both nodes are served by the same ship vV, if 

EstimatedProfitvA>EstimatedProfitvB,
 or, if EstimatedProfitvA= EstimatedProfitvB and 

TotalTimevA<TotalTimevB. For any type 3 node nN, EstimatedProfitvn is defined as the total 

profit if ship v  V serves node n  N and also serves all the other required spot voyage port calls 

to ensure to ensure route feasibility, either loading or unloading port calls. For example, suppose 

that node n contains the loading port call of a spot voyage r  SV. A route with node n would 

only be feasible if the unloading port call of spot voyage r is served sometime after node n. Since 

there may be more than one route in which the unloading port call of spot voyage r is served after 
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node n, EstimatedProfitvn is an estimate in which the unloading port call of spot voyage r occurs 

immediately after node n. The second comparison TotalTimevA<TotalTimevB ranks first nodes that 

consume less time, and consequently fewer resources, of ship v to serve the same set of 

contractual and spot voyages. 

After all feasible combinations have been implemented and filtered by step 2 considering 

the triplet “contractual voyage x subsets of spot voyages x ship”, step 3 sorts out the best nodes, 

using the same criteria of the previous step, for every pair “contractual voyage x ship”. In other 

words, at the end of step 3 only the top2 type 3 best nodes of every pair “contractual voyage x 

ship” are kept in set N. Steps 4, 5, 6 and 7 creates the graph, the MIP model and solve the 

problem with CPLEX. 

 In the computational study, two variations of MIPBN were tested. For the first variant, 

MIPBN00, the parameters top1 and top2 were set to zero which means that no type 3 nodes are 

inserted into the graph. The second variant, MIPBN15, the parameters top1 and top2 were set, 

respectively, to one and five. Larger values of top1 and top2 were also tested, for example, top1=3 

and top2=10. However, in this case the number of nodes was still large, almost the same number 

of nodes of MIPE, which resulted in an experiment, regarding both solution quality and 

computational time, similar to the one of MIPE. 

6.1. Set of test problems 

 A random test problem generator that considers real world assumptions and parameters 

was developed to create a set of 56 test problems (14 test problems for each one of the 4 models 

of Table 1). Although the test problems do not reflect a particular liner operation, the parameters 

of each problem were defined within a range of values that could represent practical ship routing 

operations.  

 The number of ships of a company ranges from 18 to 50 ships plus 6 to 32 hire ships, 

resulting in a total of 24 to 82 ships. Each ship belongs to a ship class, such as Handysize (two 

types of Handysize), Supramax, Panamax and Capesize (also two types of Capesize), which 

determines most of ships parameters such as capacity, sailing speed and costs. Ships are available 

for the planning horizon at different times because each ship must conclude current service 

before it receives a new route assignment. The time at which a ship becomes available for 

planning is chosen randomly between 0 and 20 days and the time of availability of hire ships is 

chosen between 0 and 150 days.  
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 A set of 53 worldwide ports has been used to create the set of demands, and their latitude 

and longitude define a distance matrix among ports. In addition, for each pair ‘port x ship class’, 

a service time, loading/unloading rate and running costs were randomly determined within real 

world assumptions. Also, the location of the ship at the time the ship is available is a port 

randomly selected from the set of 53 ports. 

 It may not be possible for a certain port to serve all types of ship class. For instance, a port 

may not be able to accommodate a large ship or the port may not have the adequate 

loading/unloading equipment. To simulate this constraint, the loading and unloading time LUTvp 

is set to a maximum limit for some ‘port x ship class’ pairs (approximately 2% of all 53 x 6 =318 

pairs).   

 Each problem of the data set has between 30 and 110 contractual voyages and between 10 

and 34 spot voyages (ratio of contractual and spot voyages around 75%). The amount of cargo at 

each port call, the duration and time windows of voyages, and revenue are selected randomly. In 

addition, contractual voyages were constructed based on a set of 12 trade routes with a number of 

port calls between 15 and 30.  

 Spot voyages have a single port call to load and a single port call to unload the cargo. The 

origin and destination port calls are chosen randomly from the set of 53 ports.  

 A voyage may not be served by all classes of ships (e.g. product incompatibility or 

commercial constraints). To simulate this constraint, there is a uniform probability of 4% of each 

ship class not serving each contractual or spot voyage. At last, the earliest time to start each 

voyage is chosen randomly so that the latest time is within the planning horizon. 

6.2. Computational results 

 The graph and MIP models were implemented in C++ and computational tests were 

executed in a Intel Xeon 2.83 GHz, 8Gb RAM computer with Ubuntu operating system. CPLEX 

12.4 was used to solve the MIP problems with the optimization time limit set at 24 hours. The 

summary of the results of the computational experiments is shown below (see Appendix D for the 

complete results):  

 MIPE solved 100% of the 14 SIMPLE.Cv test problems to optimality within a maximum 

computational time of 17 minutes; 
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 MIPE also solved eleven FULL.Cv test problems (79%) to optimality within a maximum 

computational time of 12 hours. The maximum optimality gap among the three test problems 

that were not solved to optimality by MIPE is 4.2%; 

 Six SIMPLE.CvSv test problems (43%) were solved to optimality by MIPE. Most of the 

remaining problems were best solved by MIPBN15; 

 MIPE efficiently solved only the three smallest FULL.CvSv test problems. Although MIPBN00 

performed best for most of the other FULL.CvSv test problems, the quality of the feasible 

solutions found by MIPBN00 for the largest FULL.CvSv test problems are inferior to that of 

the best solutions found for the respective test problems without spot voyages. In addition, no 

solution method was able to find a feasible solution for the largest FULL.CvSv test problem n. 

Thus, the proposed MIP models proved to be inappropriate to solve large FULL.CvSv 

problems (e.g. fleet between 40 and 80 ships); 

 The profit obtained by the proposed MIP models in the FULL problems is always (at least 

50%) better than those obtained in the SIMPLE problems. The greater profit of the FULL 

models derives from the additional charter revenues and also from the option of using cheaper 

hire ships.  

7. Conclusions 

 This research presented a generic mixed integer mathematical programming model to 

tackle planning problems faced by liner shipping companies in maritime logistics. Computational 

tests were executed on a proposed set of 56 test problems that were based on real world data. Test 

results suggest that exact methods were able to solve small to medium problems. However, the 

ability to obtain feasible and high quality solutions with such methods is reduced as problem size 

increases. In this case, models based on incomplete and smaller graphs showed more adequate. 

 Although the computational time required by the MIPE and MIPBN methods are high for 

some medium sized test problems, the optimization process could be stopped after about 5 to 8 

hours of CPU time if there is no need to find the optimal solution nor to prove that the incumbent 

solution is optimal. For larger problems, even the time limit of 24 hours was not enough to close 

the gap between the best node and the incumbent solution. Therefore, heuristic approaches, such 

as tabu search, may be the best option in situations in which only a short period of computational 

time is available. 

 Finally, the following topics of future work related to this research are presented. 



54 

 Implement rounding and local search heuristics to find feasible solutions earlier in the branch-

and-bound tree. These heuristics could support CPLEX to reduce overall computational time. 

 Investigate new policies for the selection of the next variable for branching (and to which 

branching direction). For example, the profit estimate information could be used to increase 

the priority of variables related to high profitable contractual and spot voyages after a feasible 

solution has been found. 

 Include transshipment into the MIP model. Transshipment is the possibility of moving a cargo 

from one ship to another at an intermediate port and could be included in the model in an 

approximately manner. For example, extra type 3 nodes, each one with a complete or partial 

route of feasible transshipments, could be added. It may be impossible to add all feasible 

transshipment operations because of the large number of combinations, but it may be 

reasonable to add the most promising ones. 

 Use other types of nodes to include to the model additional maritime operations, such as 

refueling, maintenance or extra charter contracts, in a similar manner to the modeling of 

contractual and spot voyages. These operations need to be ship specific and to occur at pre-

determined ports. Also, the operations may be mandatory or optional, may have service time 

windows and may produce either revenues or costs. 

 Test the proposed solution methods on problems that have many voyages with a small number 

(e.g. one) of pickup and deliver port calls. These types of voyages, common to tramp 

operations, may further increase the combinatorial complexity because of the larger number of 

feasible routes. 
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Appendix A – Additional information on liner, tramp and industrial operations 

Table A.1. Description of the liner, tramp and industrial operations 

 Liner Tramp Industrial 

Business 
model 

The company establishes trade 
routes and frequency of service 
(similar to bus itineraries) 
The regional offices sell 
available capacity to shippers, 
usually yearly contracts, with a 
few months in advance. These 
contracts, once accepted, are 
mandatory to be served and may 
represent from 80% to 95% of the 
liner company’s business 
The company attempts to fill 
idleness with spot demand 

The company (usually) owns a 
small or a medium fleet of ships 
and sells its capacity in two-ways: 
Contracts of affreightment: 
commitment to move a certain 
amount of cargo from Port ‘A’ to 
Port ‘B’ within a determined time 
window. May require one or  more 
voyages and could be full or parcel 
shipload 
Spot voyages: commitment to 
serve a voyage from Port ‘A’ to 
Port ‘B’ (similar to a taxi cab, 
usually full shipload) 

An industrial company has a 
high volume of liquid or dry bulk 
cargo to transport, such as oil, 
chemicals, minerals or grains 
Because of the high volume, the 
company decides to own or 
control a fleet of ships, including 
decisions of ship design, number 
of ships, routes and scheduling 
The company often faces supply 
chain decisions, considering the 
integrated planning of production, 
inventory and port operations   

Cargo owner Shipper 
(client of the liner company) 

Shipper 
(client of the tramp company) 

Industrial company 

Ship owner 

Liner company 
May hire other ships (time 
charter contract) if profitable or if 
necessary to fulfill mandatory 
contracts 
May charter, lay-up or scrap 
excess ships 

Tramp company 
May hire other ships (time charter 
contract) if profitable to accept 
contracts of affreightment or to 
accommodate a peak of spot 
voyages demand 
May charter, lay-up or scrap 
excess ships  

Industrial company 
If possible, the company sizes 
the number of ships below its 
long term needs and hire other 
ships (time charter contract from 
tramp companies) to 
accommodate peak demand 

Financial 
objective 

To maximize profit To maximize profit 

To minimize overall supply chain 
and transportation costs of 
moving all cargo within the 
planning horizon  

Key 
decisions 

Trade routes and itinerary 
Transshipment of containers 
Positioning of empty containers 
Fleet mix and deployment 
Scheduling of spot voyages, 
which are usually accepted if 
there is enough capacity 
Balanced ship loading 

Fleet mix and deployment 
Ship routing and scheduling 
Mix between contracts of 
affreightment and spot voyages 
(decision mainly depends on the 
estimate of the future price of the 
spot voyage market) 

Fleet mix and deployment 
Ship scheduling 
Integrated supply chain planning 
Inventory and environmental 
routing to fulfill the supply chain 
plan (e.g. avoid product stock-
out) 

Type of ships 
and cargo 

Containers 
General cargo (e.g. packaged 
goods in ship’s hold or deck) 
Refrigerated loads 
Roll-on-Rool-off (Ro-Ro ramps 
for trucks/cars) 

Dry bulk (e.g. grain, coal, iron ore 
and other minerals) 
Tankers (crude oil, liquids in 
bulk) 
Liquefied gas 
Refrigerated ships  

Dry bulk 
Tankers 
Liquefied gas 
Specialized cargo with specific 
packaging and/or handling 
equipment 

Size and 
frequency of 

shipments 

Parcel shiploads: large number 
of port calls and clients per 
voyage (e.g. container shipment) 
Routes may be served weekly 
(or even daily) and through more 
than one ship (e.g. a traderoute 
with a 4 week duration and a 
weekly frequency requires at least 
4 ships) 

Full shipload: a pick-up and 
delivery from a single port of 
origin to a single port of 
destination 
Parcel shipload: few clients and 
port calls per voyage 
Frequency depends on the volume 
of the contracts of affreightment  

Full shipload (usually): a pick-up 
and delivery from a single port of 
origin to a single port of 
destination 
Frequency depends of the 
integrated supply chain planning 
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 The tactical problems approached by this study are outlined by the gray shaded cells of 
Table A.2.  

Table A.2. Summary of maritime problems and relative importance 

 Example of problems Liner Tramp Industrial 

Strategic 

Market and trade selection 
Which markets and geographies should be serviced? 

+++ +++ ++ 

Ship design 
What is the optimal size of the ship? 
What on board loading/unloading equipment are needed? 

++ ++ +++ 

Network and transportation system design 
Are hubs and transshipment ports desirable? 
Are there intermodal (rail, road, barge) integrated services? 
Fixed route/itinerary determination (e.g. trade routes) 
What are the port calls and frequency of service of each trade route? 

+++ - ++ 

Fleet size and mix decisions 
How many ships, and of which type, should be on the fleet? 
Should excess ships be scrapped? 

+++ +++ +++ 

Contract evaluation 
Which long term contracts should be taken? 
How can a company be hedged against spot market price change? 

++ +++ - 

Port/terminal location, size and design 
Supply chain planning 
How is shipping affected by, and how it affects, production, inventory and 
other integrated processes of the supply chain? 

- - +++ 

Tactical 

Fleet size and mix decisions 
Are changes on current fleet size/mix desirable? 
 Which hired and/or chartered contracts should be engaged? 

+++ +++ +++ 

Contract evaluation 
Which short term (spot) contracts should be taken? 

++ +++ - 

Fleet deployment 
How many and which ships should serve which trade routes? 

+++ - - 

Ship routing 
What is the best sequence of port calls for each ship? 

++ +++ + 

Ship scheduling 
When should each ship start/end service at each port call? 

+++ +++ +++ 

Ship refueling 
When and in which port should each ship be refueled? 

++ +++ ++ 

Inventory ship routing 
What should the ship route and scheduling be so to maintain inventory 
levels within the desired interval? 

- + +++ 

Operatio-
nal 

Cruising speed selection 
What is the optimum speed that minimizes fuel consumption and also 
services all port calls within time windows? 

++ ++ ++ 

Ship loading 
How should the cargo (e.g. containers) be placed inside the hold of the ship 
and also above the deck to maintain balance? 

+++ + + 

Environmental routing 
How should the routes be constructed considering waves, tides, currents 
and bad weather forecasting? 

++ + +++ 

Problem relative importance: - Practically none + Low ++ Medium +++ High 
 Problems approached in this work  
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Appendix B – Procedure to create nodes of types 1, 2 and 3 

 Let the assignment constraints of ships vV to contractual voyages iCV and to spot 

voyages rSV be represented by ACVvi and ASVvr, respectively: 

ACVvi  =     1 if ship v may be assigned to contractual voyage i; 

        0 otherwise. 

ASVvr =        1 if ship v may be assigned to spot voyage r; 

        0 otherwise. 

 

 Figures B.1, B.2 and B.3 present the procedures to create the set of nodes of type 1, 2 and 

3. 

 

1. Let N =  and n = 0; 
2. For each contractual voyage iCV, do: 

2.1. Let n = n + 1 and N = N{n} 
2.2. Let typen = 1; BCn = {i}; BSn = ; Portsn = CVPi; Demandn = 0;  
2.3. Calculate CapMinn: 

2.3.1. Let CapMinn = 0 and tonnage = 0; 
2.3.2. For each port call p Portsn, do: 

 2.3.2.1. Let tonnage = tonnage – UCVip +  LCVip 
 2.3.2.2. If tonnage > CapMinn, then CapMinn = tonnage 

2.4. For each ship vV, do: 
2.4.1. If ACVvi =1 and NTv ≥ CapMinn, then 

   















||

2

)()1(
)(

||

1
)()()(

i

ii

i

i

iii

CVP

a v

aoao

avo

CVP

a

aioaioavovn
SP

DP
QUCVLCVLUTTotalTime  

else vnTotalTime  
 

2.4.2. If BCVi + TotalTimevn <= TCVi then 
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else vnProfit   
 

2.4.3. Let BTvn = BCVi; ETvn = min(ECVi, TCVi – TotalTimevn) 
 

Figure B.1. Procedure to create voyage nodes of type 1 
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 Steps 1 to 2.2 initialize sets N, BCn, BSn and Portsn and variables n, typen and Demandn. 

Demandn = 0 because all cargo loaded on a type 1 node is unloaded within the same node. Steps 

2.3 to 2.3.2.2 calculate the maximum tonnage a ship will carry if it serves the node. This 

information also determines whether the ship has enough capacity to serve the node.  If a ship v 

may serve node n (condition of step 2.4.1 is satisfied), TotalTimevn stores the sum of the queue, 

loading, unloading and traveling times of ship v serving node n. If ship v cannot serve node n, 

TotalTimevn assumes a very large number and Profitvn assumes a negative number on step 2.4.2. 

Step 2.4.2 calculates the profit when ship v serves node n. Finally, step 2.4.3 establishes the 

earliest and latest time ship v may begin service at node n to guarantee the time window 

feasibility. 

 The procedure of Figure B.2 has two blocks (1.1 and 1.2) that break down a single spot 

voyage into two type 2 nodes. The steps of block 1 constitute the loading port call of spot voyage 

r into a type 2 loading node (Demandn > 0) and the steps of block 2 create another type 2 node 

from the unloading port call of the same spot voyage r (Demandn < 0). Each block executes 

similar calculations of those of procedure of Figure B.1 to compute the values of TotalTimevn and 

Profitvn. 
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1. For each spot voyage rSV, do: 
  1.1. Type 2 loading node: 

1.1.1. Let n = n + 1; N = N{n}; typen = 2; 
1.1.2. Let BCn = ; BSn = {r}; Portsn = {LPSVr}; Demandn = LSVr; 
1.1.3. Let CapMinn = LSVr; 
1.1.4. For each ship vV, do: 

1.1.4.1. If ASVvr =1 and NTv ≥ CapMinn, then rvLPSVvn LSVLUTTotalTime
r

  

else vnTotalTime  
1.1.4.2. If 
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1.2. Type 2 unloading node: 
1.2.1. Let n = n + 1; N = N{n}; typen = 2; 
1.2.2. Let BCn=; BSn ={r}; Portsn = {UPSVr}; Demandn= –LSVr;  
1.2.3. Let CapMinn = 0; 
1.2.4. For each ship vV, do: 

1.2.4.1. If ASVvr =1 then rvUPSVvn LSVLUTTotalTime
r

 , else vnTotalTime  

1.2.4.2. If BSVr +
r

rr

r vUPSV

v

UPSVLPSV

vLPSVr Q
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DP
LUTLSV  + TotalTimevn <= TSVr, 

            then    rvUPSVvUPSVvn LSVLUTRCProfit
rr

  

            else vnProfit  

1.2.4.3. Let BTvn = BSVr + 
r

rr

r vUPSV

v

UPSVLPSV

vLPSVr Q
SP

DP
LUTLSV   and       

  let ETvn = TSVr - TotalTimevn 
 

Figure B.2. Procedure to create voyage nodes of type 2 
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1. Let T2 = {nN : typen = 2}; 
2. For each contractual voyage iCV, do: 

2.1. For each subset ST2  T2 do: 
2.1.1. If it is feasible to create a sequence of port calls CVPi }{ 2 kSTk Ports  such that the 

first port call is )1(io  and the last port call is )( ii CVPo , then: 

2.1.1.1. Let n = n + 1 and N = N{n} 
2.1.1.2. Let typen = 3; BCn = {i}; BSn = }{ 2 kSTk BS   ; Portsn = CVPi }{ 2 kSTk Ports ; 

2.1.1.3. Let 



2STk

kn DemandDemand ; 

2.1.1.4. Let CapMinn = 0 and tonnage = 0; 
2.1.1.5. For each port call p Portsn, do: 

2.1.1.5.1. If pCVPi then let tonnage = tonnage – UCVip +  LCVip 
else find k such that p {Portsk : k  ST2} and let tonnage = tonnage + Demandk 
2.1.1.5.2. If tonnage > CapMinn, then CapMinn = tonnage 

2.1.1.6. For each ship vV, do: 
2.1.1.6.1. If ACVvi = 1 and ASVvr = 1 for each r  BSn and  

NTv ≥ CapMinn, then let TotalTimevn be the sum of the queue (except for )1(voiQ ), 

loading/unloading and travelling times of the sequence of port calls of Portsn; 
else let TotalTimevn = . 
2.1.1.6.2. Let BTvn = BCVi 
2.1.1.6.3. If BTvn + TotalTimevn <= TCVi then let Profitvn be the sum of the profits of the 
contractual and spot voyages (the revenue of a spot voyage is computed in the loading port 
call);  else let Profitvn = -. 
2.1.1.6.4. Let ETvn = min(ECVi, TCVi – TotalTimevn) 

 
Figure B.3. Procedure to create voyage nodes of type 3 

 

 The procedure of Figure B.3 merges one contractual voyage i with one or more spot 

voyages (subset ST2) into a type 3 node.  The resulting type 3 node will always begin and end 

with the first and last port calls of contractual voyage i.  Other spot voyages port calls may be 

linked before and/or after the type 3 node, as the examples shown in Figure 5. 

 Step 2.1.1 tests the feasibility of combining the contractual and spot voyages regarding 

time constraints [BTvn, ETvn] and physical constraints (one should load before unloading). If 

feasible, the steps 2.1.1.1 to 2.1.1.3 create the type 3 node and steps 2.1.1.4 to 2.1.1.5.2 calculate 

the minimum capacity that a ship must have to be able to serve the node. Step 2.1.1.6.1 computes 

TotalTimevn and step 2.1.1.6.2 sets the minimum start time of service (BTvn) of the new type 3 

node. Profitvn is calculated in step 2.1.1.6.3 if it is feasible for ship v to serve node n. At last, step 
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2.1.1.6.4 evaluates the latest time window in which ship v may begin service at node n. The 

following points should be stressed about the procedure of Figure B.3: 

 It is not necessary to test the feasibility of all subsets of step 2.1.1. For example, if there is not a 

feasible sequence of port calls with an element k  ST2, all subsets that contain k will also be 

infeasible; 

 There may be more than one feasible sequence of the same set of port calls on step 2.1.1. If 

more than one feasible sequence was found, a type 3 node should be created for each feasible 

sequence. For example, let cv1, cv2 and cv3 be the sequence of port calls of a contractual voyage 

cv and L be the loading port call of a spot voyage s. Two type 3 nodes may be created, [cv1-L-

cv2-cv3] and [cv1-cv2-L-cv3], each one with different Profitvn, CapMinn, TotalTimevn and ETvn 

values; 

 The time feasibility test BTvn + TotalTimevn <= TCVi of step 2.1.1.6.3 should be complemented 

with the time feasibility test of each spot voyage of the type 3 node, regarding both loading and 

unloading time constraints. Nodes that fail to satisfy the time feasibility test of each spot 

voyage are eliminated; 

 Because time window constraints of both contractual and the spot voyages have to be satisfied 

in the type 3 node n, ETvn of step 2.1.1.6.4 may be further restricted when also considering the 

time window constraints of each spot voyage merged into node n. For example, consider the 

route depicted in Figure 3 in which there is an unloading port call of a spot voyage in Brake. 

Suppose now that if a vessel starts service in Itajaí (the first port call of the contractual voyage) 

at the latest possible time of the contractual voyage time window, the vessel would finish 

service at Brake after the time window TSVr of the spot voyage. In this case, ETvn must be 

reduced to ensure that the vessel arrives at Brake with enough time to finish service before 

TSVr. 
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Appendix C – Additional information on the mathematical models 

 For each vV and m, nN, mn, M1 is calculated as: 

   NmV,v                                               BTQ
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v

oPA

v

vo

v

oPA

vvm

vo

v

oPA

vvm

vmvo

v

oPA

vvm

m

mv

m

mv

m

mv

m

mv









,

,

,

),1(

)1(
)1(

1

)1(
)1(

1

1)1(
)1(

1)1(
)1(

  

 M2 is given by: 
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 Since the maximum value of stvm is ETvm, the inequality below guarantees a valid M2: 
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 The real number M3 is a large number that can be calculated for a ship vV as follows: 

nmN,nm,V,v                          DemandcapNTM

nmN,nm,V,v                          MDemandcapNT

nmN,nm,V,v            xMDemandcapNT

mvmv

mvmv

vmnmvmv





,

,

),1(

3

3

3

 

 The minimum value that the variable capvm may assume is CapMinm. Therefore, the 

following produces a valid inequality for M3. 
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nmN,nm,V,v                          DemandCapMinNTM

nmN,nm,V,v                          DemandCapMinNTM

mmv

mmv


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 A valid M4 is calculated below. 

NmVCO,v                                                                   ststartTimeM

NmVCO,v                                                                   MststartTime

NmVCO,v                                              xfirstMststartTime

vmv

vmv

vmvmv
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),1(

4

4
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 The maximum value of startTimev is latestTime and the minimum value of stvm is BTvm. 

Thus, the following produces a valid M4. 

NmVCO,v                                                                   BTlatestTimeM vm  ,4

  

 A valid M5 is calculated below. 

NmVHI},VCOv                                TotalTimestendTimeM

NmVHI},VCOv                                MTotalTimestendTime

NmVHI},VCOv               xlastMTotalTimestendTime

vmvmv
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vmvmvmv
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 The minimum value of endTimev is TAv and the maximum value of stvm is ETvm. Thus, the 

following produces a valid M5. 

NmVHI},VCOv                                TotalTimeETTAM vmvmv  {,5  
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 The following illustrates the requirement of constraints (22) for the model FULL.Cv with 

an example in which constraints (17), (18), (20) and (21) do not guarantee that endTimev ≥ 

startTimev. Suppose the case in which TAv = BCOv =0 and latestTimeECOv 4
3

 . Replacing TAv = 

BCOv =0 and latestTimeECOv 4
3

  in the expressions (17), (18), (20) and (21) results in: 

VCOv                                                                             startTimev  ,0  

VCOv                                                             latestTimestartTimev  ,
4
3

 

VCOv                                                           endTimelatestTime v  ,0  

VCOv                                             latestTimeendTimelatestTime v  ,
4
3

 

Hence, 0 ≤ startTimev ≤ latestTime
4
3

, and, latestTime
4
1 ≤ endTimev ≤ latestTime . 

Therefore, if startTimev= latestTime
4
3

 and endTimev = latestTime
4
1

, endTimev ≤ startTimev. 
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Appendix D – Computational parameters and results 

 CPLEX was used with most of its parameters set to the default values (it was not the 

objective of this research to find the best CPLEX parameters to solve the mathematical models). 

However, for some test problems with a large number of variables and nodes, CPLEX was either 

unable to solve the root node because of lack of memory or unable to find the first feasible 

solution. In these cases, additional parameters were introduced, such as: 

a) to limit cut passes to 4 (less cuts may reduce memory consumption); 

b) to consider, at the beginning of the search, the variables xfirstvm, xlastvm and xvmn related spot 

voyages as zero (reduces the total number of variables while searching for the first feasible 

solution); 

c) to increase the priority of selecting the variables xfirstvm, xlastvm and xvmn related to contractual 

voyages for branching and to set the preferable branching direction of these variables to 1 (also 

attempts to increase the probability of finding feasible solutions). 

 Since a feasible solution to a problem without spot voyages (e.g. FULL.Cv) is also 

feasible to a problem with spot voyages (e.g. FULL.CvSv), the parameters (b) and (c) encourage 

the method to branch down (toward zero) variables related to spot voyages and to branch up 

(toward one) variables related to contractual voyages. 

 Table D.1 presents the results of MIPE for the SIMPLE.Cv and SIMPLE.CvSv test 

problems and Table D.3 shows the results of MIPE for the FULL.Cv and FULL.CvSv test 

problems.  

 The first three columns of Table D.1 (Problem size columns) show, respectively, the total 

number of ships and the number of contractual and spot voyages of each test problem. The next 

three columns (Fleet deployment) present the summary of the fleet deployment plan of the best 

solution found: number of ships used, number of spot voyages served and the average number of 

port calls/ship. The following three columns (Solution Quality) contain the profit of the best 

feasible solution, the upper bound found by the branch-and-cut method and the solution gap as a 

percentage. A gap of 0.0% means that the optimal solution was found and a gap larger than 0.0%, 

for instance the gap of 4.3% for test problem SIMPLE.CvSv f means that there could be a 

solution better than the best feasible solution found (84420932), and this better solution would be 

at most 4.3% above the value of the best feasible solution: (88033541-

84420932)/84420932=3612609/84420932=4.3%. The next four columns present the time (in 
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seconds) to create the graph model, to create the MIP model, the time spent by the branch-and-

cut method and finally the total time, which is the sum of the three previous columns. The 

incumbent columns present the time to find the best feasible solution (incumbent) and also the 

percentage of this time with respect to the total time. The final four columns show the total 

number of types 1, 2 and 3 nodes and also the total number of nodes. 

Although there is a relationship between the number of nodes and number of ships and 

voyages, not every node is created because of the capacity and time window constraints. For 

example, one type 1 node may be created for each ship and contractual voyage. Therefore, for 

test problem SIMPLE.Cv a, which has 18 ships and 30 contractual voyages, there are, at most,  

18 x 30 = 540 type 1 nodes. Table D.1 shows that, in this case, only 306 of the 540 type 1 nodes 

were created. 

Table D.1. MIPE results – SIMPLE.Cv and SIMPLE.CvSv 

 

 For the SIMPLE.Cv test problems, MIPE was able to find the optimal solutions for all 

problems in at most 1048 seconds (roughly 17 minutes). However, for the SIMPLE.CvSv test 

Ships Cvs Svs

# 

ships 

used

# 

Svs

Avg 

port 

calls/ 

ship Profit

Upper 

Bound

Gap 

%

Node 

model

MIP 

model Opt. Total

Time 

to find 

(sec.)

% of 

total 

time Type 1 Type 2 Type 3 Total

a 18 30 0 8 0 43 3343742 3343742 0.0% 0.0 0.0 0.2 0.2 0.0 0% 306 0 0 306

b 21 30 0 7 0 52 5410819 5410819 0.0% 0.0 0.0 0.7 0.7 0.6 87% 285 0 0 285

c 28 35 0 7 0 66 40605550 40605550 0.0% 0.0 0.1 0.6 0.7 0.0 0% 524 0 0 524

d 30 40 0 9 0 57 42236708 42236708 0.0% 0.0 0.1 1.6 1.7 1.6 96% 766 0 0 766

e 34 45 0 10 0 52 18653004 18653004 0.0% 0.0 0.2 1.7 1.8 0.0 0% 1282 0 0 1282

f 36 50 0 10 0 65 77698997 77705519 0.0% 0.0 0.2 2.7 2.9 2.7 94% 1383 0 0 1383

g 36 60 0 12 0 65 44916802 44916802 0.0% 0.0 0.2 6.9 7.2 0.0 0% 1504 0 0 1504

h 38 60 0 10 0 76 63535859 63535859 0.0% 0.0 0.3 9.8 10.2 9.8 97% 1667 0 0 1667

i 38 60 0 12 0 61 62623784 62623784 0.0% 0.0 0.3 3.8 4.0 3.7 92% 1572 0 0 1572

j 46 90 0 14 0 84 119112213 119123772 0.0% 0.1 1.3 61.7 63.1 61.5 98% 3256 0 0 3256

k 46 90 0 16 0 72 113205382 113211803 0.0% 0.1 1.2 22.5 23.7 0.0 0% 2972 0 0 2972

l 46 90 0 14 0 81 124150596 124150596 0.0% 0.1 1.3 61.3 62.7 0.0 0% 3253 0 0 3253

m 50 110 0 18 0 78 137673738 137687309 0.0% 0.1 2.0 1046 1048 880 84% 3862 0 0 3862

n 50 110 0 13 0 108 179342678 179358961 0.0% 0.1 1.9 257 259 247 96% 3663 0 0 3663

a 18 30 10 8 7 45 5826461 5826461 0.0% 0.2 0.2 5.2 5.6 4.9 88% 441 205 899 1545

b 21 30 10 7 5 53 7796802 7796802 0.0% 0.1 0.1 7.1 7.3 5.2 72% 456 276 394 1126

c 28 35 13 7 12 69 47185046 47185046 0.0% 2.1 0.5 38.2 40.8 0.0 0% 854 408 1207 2469

d 30 40 13 9 11 59 47688363 47693054 0.0% 10.9 1.2 352 364 151 42% 1076 492 3008 4576

e 34 45 16 10 15 55 25903562 25903562 0.0% 1.6 1.6 2505 2508 2478 99% 1758 835 3316 5909

f 36 50 16 10 12 67 84420932 88033541 4.3% 7.1 2.8 86439 86449 86449 100% 1933 936 6318 9187

g 36 60 19 12 15 68 50760146 56193535 10.7% 433 6.5 86330 86770 52764 61% 2076 947 16089 19112

h 38 60 19 10 10 78 68175652 70130569 2.9% 3.9 3.7 86740 86748 31639 36% 2134 684 6967 9785

i 38 60 19 12 16 64 68806103 68807958 0.0% 86.3 4.0 1331 1421 1294 91% 2243 987 5816 9046

j 46 90 28 om om om 120747447 130231788 7.9% 48.1 23.9 om om 31805 om 4262 1619 21320 27201

k 46 90 28 16 20 74 118862181 120006501 1.0% 107 14.5 86259 86381 71181 82% 4061 1672 17977 23710

l 46 90 28 om om om om om om 95.8 23.9 om om om om 4309 1779 32797 38885

m 50 110 34 om om om om om om 831 42.9 om om om om 5147 2028 41181 48356

n 50 110 34 om om om om om om 34.9 27.7 om om om om 5102 2589 25768 33459
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om: execution stopped because the program ran out of memory.
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problems, MIPE only found the optimal solution for six problems (a, b, c, d, e and i). For the rest 

of the test problems, there is no guarantee that the feasible solutions that were found are optimal 

since gaps range between 1% and 11%. Test problems j, l, m and n were not completed solved 

because there was not enough memory to store the minimum branch and bound tree. 

Nevertheless, CPLEX heuristics found a feasible solution for test problem j before the process 

was killed due to the excess of memory consumption. The analysis of these four test problems 

suggests that memory problems start to appear when the total number of nodes is around 30,000. 

 The results of Table D.1 also show that the profit of the SIMPLE.CvSv is greater than that 

of SIMPLE.Cv for all test problems from a to k. On average, the profit of the test problems with 

spot voyages are 21% greater than the profit of the test problems without spot voyages. The main 

cause of the greater profit of the SIMPLE.CvSv test problems is that the additional spot voyages 

revenues are captured with a small increase of the overall costs. Table D.2 illustrates this 

situation for the test problem e. 

Table D.2. Revenues and costs of test problem e - SIMPLE.Cv and SIMPLE.CvSv 

 

The first two columns of Table D.2 show the financial information of the optimal 

solutions of test problems e SIMPLE.Cv and SIMPLE.CvSv. The last column presents the 

percentage difference between the previous two columns. The interesting conclusion extracted 

from the data of the last column is that the eight percentage increase in revenue, caused by the 

additional spot voyage revenue of SIMPLE.CvSv, produces a profit increase of 39%.  

For the FULL.Cv MIPE found the optimal solutions for the first 11 test problems and for 

the FULL.CvSv the optimal solution was found for only the first three problems (Table D.3). 

When the optimal solution was not found (or proven), the execution of MIPE stopped at the time 

limit of 24 hours (86400 seconds). The largest solution gaps were 4.2% for the FULL.Cv set of 

test problems and 48.9% for the FULL.CvSv test problems. 

  

Simple.Cv
(A)

Simple.CvSv
(B)

D (%):
[(B)-(A)]/(A)

Revenue 108827782 117621304 8%
Cv 108827782 108827782 0%
Sv 0 8793522 -

(-) Costs 90174778 91717742 2%

(=) Profit 18653004 25903562 39%
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Table D.3. MIPE results – FULL.Cv and FULL.CvSv 

 

 Memory problems were severe for the FULL.CvSv. It was not possible to create a 

complete branch and bound tree for 5 of the 14 test problems because of the lack of CPU 

memory. Also, it was only possible to find feasible solutions for problems e to i and k if the limit 

of cut passes was set to 4 (to save memory) and if the warm startup and priority values were set 

to variables xfirstvm, xlastvm and xvmn. 

 For FULL.Cv, test problems j, l, m and n were the ones with the highest time to find the 

incumbent. Figure D.1 analyses the impact on the solution quality if the time limit of 24 hours is 

reduced.  

Ships Cvs Svs

# 

ships 

used

# 

Svs

Avg 

port 

calls/ 

ship Profit

Upper 

Bound

Gap 

%

Node 

model

MIP 

model Opt. Total

Time 

to find 

(sec.)

% of 

total 

time Type 1 Type 2 Type 3 Total

a 24 30 0 9 0 39 51592988 51596819 0.0% 0.0 0.0 41.3 41.3 40.2 97% 377 0 0 377

b 25 30 0 12 0 30 107105606 107114390 0.0% 0.0 0.0 25.8 25.8 25.0 97% 400 0 0 400

c 34 35 0 10 0 46 109397725 109397725 0.0% 0.0 0.1 33.6 33.7 3.5 10% 615 0 0 615

d 42 40 0 16 0 32 125692600 125692600 0.0% 0.0 0.1 55.3 55.4 53.5 97% 970 0 0 970

e 41 45 0 13 0 40 103860019 103860019 0.0% 0.0 0.2 64.9 65.1 64.9 100% 1447 0 0 1447

f 56 50 0 15 0 43 165357931 165374463 0.0% 0.0 0.3 1576 1577 1486 94% 1859 0 0 1859

g 48 60 0 21 0 37 160483860 160498539 0.0% 0.0 0.3 368 368 366 99% 1871 0 0 1871

h 49 60 0 17 0 45 141380920 141395010 0.0% 0.0 0.4 1661 1661 1591 96% 2066 0 0 2066

i 60 60 0 19 0 39 202918389 202938679 0.0% 0.0 0.5 30222 30223 20714 69% 2308 0 0 2308

j 70 90 0 23 0 51 256347098 256372708 0.0% 0.1 2.0 42407 42409 41121 97% 5015 0 0 5015

k 70 90 0 23 0 50 239460694 239484284 0.0% 0.1 1.8 17903 17905 17905 100% 4608 0 0 4608

l 70 90 0 24 0 47 248715239 257872382 3.7% 0.1 2.1 86381 86383 86383 100% 5009 0 0 5009

m 82 110 0 24 0 59 319890971 333177392 4.2% 0.1 3.0 86395 86398 82045 95% 6114 0 0 6114

n 82 110 0 26 0 54 304723251 309550597 1.6% 0.1 2.8 86397 86400 85999 100% 5616 0 0 5616

a 24 30 10 9 6 40 53797761 53803140 0.0% 0.2 0.3 13548 13549 11895 88% 555 274 1178 2007

b 25 30 10 10 5 37 110047995 110058947 0.0% 0.1 0.1 8867 8867 8566 97% 602 316 493 1411

c 34 35 13 10 9 48 114180627 114191978 0.0% 2.7 0.7 16672 16675 16155 97% 1017 498 1469 2984

d 42 40 13 15 10 35 129245081 143149306 10.8% 15.5 1.5 86504 86521 84262 97% 1400 681 3834 5915

e* 41 45 16 13 2 40 102681169 127234425 23.9% 1.8 1.8 86725 86729 40938 47% 2013 984 3730 6727

f* 56 50 16 14 12 48 133105070 198208257 48.9% 9.3 3.7 86417 86430 60454 70% 2699 1355 8406 12460

g* 48 60 19 20 3 40 145243552 197463349 36.0% 542 8.0 86446 86996 85585 98% 2635 1247 20292 24174

h* 49 60 19 15 2 51 122450002 175585155 43.4% 5.3 4.8 86430 86441 4017 5% 2677 880 9025 12582

i* 60 60 19 18 6 42 189643988 236600657 24.8% 107 5.7 86416 86529 5227 6% 3360 1556 8638 13554

j 70 90 28 om om om om om om 69.8 35.9 om om om om 6542 2488 31742 40772

k* 70 90 28 om om om 216051861 284444149 31.7% 150 22.4 om om 50740 om 6266 2553 28090 36909

l 70 90 28 om om om om om om 149 36.0 om om om om 6604 2713 48995 58312

m 82 110 34 om om om om om om 1235 61.9 om om om om 8219 3306 60054 71579

n 82 110 34 om om om om om om 52.1 41.1 om om om om 7975 4216 38926 51117

om: execution stopped because the program ran out of memory.

*: feasible solution was only found when the limit of cut passes was set to 4 and when warm startup and priorities values were set for 

the variables xfirst vm , xlast vm  and x vmn .
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criteria. The last 3 columns show the percentage difference between MIPE without and with 

dominance criteria regarding total number of nodes, profit and total CPU time. 

Table D.4. Comparison of the results of MIPE with and without dominance criteria 

 
om: execution stopped because the program ran out of memory 

na: not available because the program ran out of memory 
 

Table D.4 presents that 11 test problems that are solved with the dominance criteria are 

not solved without dominance criteria. The explanation for this result is the greater number of 

nodes of the models without dominance criteria. For example, the model of test problem 

SIMPLE.CvSv d without dominance criteria has about 5.000% more nodes than that with 

dominance criteria.  The following conclusions are drawn for the other 8 test problems that are 

solved without dominance criteria: 

 For the four SIMPLE.CvSv test problems that were solved to optimality, the increase of the 

total CPU time ranges from 46% to 14305% ; 

Total # 

of 

nodes Profit

Upper 

Bound Gap %

Total CPU 

Time 

(sec.)

Total # of 

nodes Profit

Upper 

Bound Gap %

Total CPU 

Time 

(sec.)

Total # of 

nodes Profit

Total CPU 

Time 

(sec.)

a 1545 5826461 5826461 0.0% 5.6 3236 5826461 5826461 0.0% 35.1 109% 0.0% 526%

b 1126 7796802 7796802 0.0% 7.3 2142 7796802 7796802 0.0% 10.6 90% 0.0% 45.7%

c 2469 47185046 47185046 0.0% 40.8 15198 47185046 47187296 0.0% 5882 516% 0.0% 14305%

d 4576 47688363 47693054 0.0% 364 240447 om om om om 5155% na na

e 5909 25903562 25903562 0.0% 2508 15987 25903562 25903562 0.0% 4109 171% 0.0% 63.8%

f 9187 84420932 88033541 4.3% 86449 45654 om om om om 397% na na

g 19112 50760146 56193535 10.7% 86770 1317681 om om om om 6795% na na

h 9785 68175652 70130569 2.9% 86748 71283 om om om om 628% na na

i 9046 68806103 68807958 0.0% 1421 123302 om om om om 1263% na na

j 27201 120747447 130231788 7.9% om 162348 om om om om 497% na na

k 23710 118862181 120006501 1.0% 86381 516750 om om om om 2079% na na

l 38885 om om om om 352097 om om om om 805% na na

m 48356 om om om om 4897736 om om om om 10028% na na

n 33459 om om om om 152315 om om om om 355% na na

a 2007 53797761 53803140 0.0% 13549 4217 53259580 57780618 8.5% 86472 110% -1.0% 538%

b 1411 110047995 110058947 0.0% 8867 2633 109824156 120032230 9.3% 9060 87% -0.2% 2.2%

c 2984 114180627 114191978 0.0% 16675 19189 109356934 122818349 12.3% 86857 543% -4.2% 421%

d 5915 129245081 143149306 10.8% 86521 312501 om om om om 5183% na na

e 6727 102681169 127234425 23.9% 86729 17926 91779546 129052988 40.6% 86580 166% -10.6% -0.2%

f 12460 133105070 198208257 48.9% 86430 62979 om om om om 405% na na

g 24174 145243552 197463349 36.0% 86996 1678706 om om om om 6844% na na

h 12582 122450002 175585155 43.4% 86441 96177 om om om om 664% na na

i 13554 189643988 236600657 24.8% 86529 164474 om om om om 1113% na na

j 40772 om om om om 237381 om om om om 482% na na

k 36909 216051861 284444149 31.7% om 734118 om om om om 1889% na na

l 58312 om om om om 528436 om om om om 806% na na

m 71579 om om om om 7059335 om om om om 9762% na na

n 51117 om om om om 222082 om om om om 334% na na

D%: (B-A)*100/A
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 For the four FULL.CvSv test problems, the profit of the best feasible solution of the model 

without dominance criteria is always worse than that with dominance criteria. The worst 

profit difference is -10.6% for test problem e; 

 The computational time without dominance criteria for the FULL.CvSv test problems a and 

c is at least 400% greater than that with dominance criteria. The time increase for test 

problem b is only 2.2% because CPLEX aborted the optimization of the model without 

dominance criteria when the size of the branch-and-bound exceeded the limit of 12Gb. 

 To overcome the memory problems and also to investigate if good quality solutions could 

be found in a shorter time, especially for the FULL.CvSv, the MIPBN00 and MIPBN15 model 

variants, which make use of a graph with a smaller number of nodes, were tested on 

SIMPLE.CvSv and FULL.CvSv test problems. Table D.5 compares the results of these methods 

to those of MIPE. 

 The Gap % column of Table D.5 shows the gap between the value of the best feasible 

solution found by MIPBN00 and MIPBN15 and the best solution found by MIPE (Tables D.1 

and D.3). The last three columns of Table D.5 present the profit difference, in percentage, 

between each method of the column (MIPE, MIPBN00 and MIPBN15) and the profit of the best 

feasible solution (second column of the group of 4 columns of Best Feasible Solution). 

For SIMPLE.CvSv, MIPE and MIPBN15 produce the best results (except for test problem 

j in which the best result was found by MIPBN00). As a general rule, MIPE is the preferred 

choice for smaller problems (a to i) and MIPBN15 for larger problems (k to n). For FULL.CvSv, 

MIPE produces the best results only to very small problems, such as a to c. For the larger 

FULL.CvSv test problems, MIPBN00 usually generates better results than MIPBN15.  

The results of Tables D.3 and D.5 also show that the best profit obtained in Table D.5 for 

the FULL.CvSv test problems a to i is, on average, 2.3% greater than that of the respective test 

problems of the FULL.Cv of Table D.3. However, the results of the FULL.Cv test problems j to n 

of Table D.3 (without spot voyages) are still better than those of Table D.5 (with spot voyages). 

This suggests that large FULL.CvSv problems (e.g. fleet between 40 and 80 ships) are too 

complex for the proposed MIP models. 
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Table D.5. Comparison of results between MIPE, MIPBN00 and MIPBN15 

 

  

Table D.6 shows the fleet composition of the best results of the FULL problems. The sum 

of each row of the six columns of Table D.6 that present the number of ships per type is equal to 

the number of ships of the first column. The comparison between FULL.Cv and SIMPLE.Cv and 

between FULL.CvSv and SIMPLE.CvSv shows that FULL results are always (at least 50%) 

better than the SIMPLE results. These results are explained by the use of cheaper hired ships 

(instead of own ships) and the capture of additional charter revenues, as show in the last columns 

of Table D.6.  

  

Ships Cvs Svs Methods Profit Gap %

Time to 

find MIPE MIPBN00 MIPBN15

a 18 30 10 MIPE,MIPBN15 5826461 0.0% 4.9 0.0% -16.6% 0.0%

b 21 30 10 MIPE,MIPBN15 7796802 0.0% 5.2 0.0% -15.6% 0.0%

c 28 35 13 MIPE 47185046 0.0% 0.0 0.0% -1.8% 0.0%

d 30 40 13 MIPE 47688363 0.0% 151 0.0% -0.5% 0.0%

e 34 45 16 MIPE 25903562 0.0% 2478 0.0% -4.0% -0.2%

f 36 50 16 MIPBN15 84430337 4.3% 64292 0.0% -1.6% 0.0%

g 36 60 19 MIPBN15 51399688 9.3% 84891 -1.2% -1.6% 0.0%

h 38 60 19 MIPE 68175652 2.9% 31639 0.0% -2.5% -0.2%

i 38 60 19 MIPE 68806103 0.0% 1294 0.0% -2.2% -0.1%

j 46 90 28 MIPBN00 126615871 2.9% 62265 -4.6% 0.0% -2.0%

k 46 90 28 MIPBN15 119226796 0.7% 78989 -0.3% -0.9% 0.0%

l 46 90 28 MIPBN15 132634885 na 75466 na -4.6% 0.0%

m 50 110 34 MIPBN15 147522566 na 58385 na -0.1% 0.0%

n 50 110 34 MIPBN15 184565356 na 20039 na -0.9% 0.0%

a 24 30 10 MIPE,MIPBN15 53797761 0.0% 11895 0.0% -1.0% 0.0%

b 25 30 10 MIPE,MIPBN15 110047995 0.0% 8566 0.0% -1.8% 0.0%

c 34 35 13 MIPE 114180627 0.0% 16155 0.0% -2.1% -0.1%

d 42 40 13 MIPBN15 130331112 9.8% 86123 -0.8% -0.8% 0.0%

e 41 45 16 MIPBN00 105426295 20.7% 77557 -2.6% 0.0% -1.5%

f 56 50 16 MIPBN00 166037720 19.4% 82503 -19.8% 0.0% -7.7%

g 48 60 19 MIPBN00 163554256 20.7% 84094 -11.2% 0.0% -7.6%

h 49 60 19 MIPBN00 142974298 22.8% 80390 -14.4% 0.0% -5.5%

i 60 60 19 MIPBN00 204197546 15.9% 84267 -7.1% 0.0% -5.3%

j 70 90 28 MIPBN00 203134480 na 34037 na 0.0% na

k 70 90 28 MIPBN00 223514635 27.3% 53044 -3.3% 0.0% -3.0%

l 70 90 28 MIPBN00 199436913 na 86383 na 0.0% na

m 82 110 34 MIPBN00 277146850 na 86414 na 0.0% na

n 82 110 34 na na na na na na na

Best Feasible Solution D % of best feasible solution
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na: not available because the program ran out of memory or because no feasible solution was found.



75 

Table D.6. Fleet composition of the best results of the FULL problems 

 
 

 

 

  

Ships Cvs Svs Methods Profit

Not

chartered Chartered Chartered Laid-up Used

Not 

used

a 24 30 0 MIPE 51592988 5 4 2 7 0 6 76947721

b 25 30 0 MIPE 107105606 3 8 2 8 1 3 150331360

c 34 35 0 MIPE 109397725 3 7 0 18 0 6 110866161

d 42 40 0 MIPE 125692600 3 12 1 14 1 11 148617663

e 41 45 0 MIPE 103860019 4 8 0 22 1 6 159854582

f 56 50 0 MIPE 165357931 7 8 3 18 0 20 189569764

g 48 60 0 MIPE 160483860 5 12 1 18 4 8 201890128

h 49 60 0 MIPE 141380920 6 9 0 23 2 9 164556026

i 60 60 0 MIPE 202918389 4 12 1 21 3 19 223794786

j 70 90 0 MIPE 256347098 6 14 1 25 3 21 246767070

k 70 90 0 MIPE 239460694 5 15 0 26 3 21 211544899

l 70 90 0 MIPE 248715239 5 15 1 25 4 20 241468064

m 82 110 0 MIPE 319890971 4 17 0 29 3 29 279192082

n 82 110 0 MIPE 304723251 5 17 0 28 3 29 237124483

a 24 30 10 MIPE,MIPBN15 53797761 5 4 2 7 0 6 76947721

b 25 30 10 MIPE,MIPBN15 110047995 3 6 4 8 1 3 146317712

c 34 35 13 MIPE 114180627 3 7 0 18 0 6 110871249

d 42 40 13 MIPBN15 130331112 3 12 1 14 1 11 150218828

e 41 45 16 MIPBN00 105426295 4 8 0 22 2 5 159854582

f 56 50 16 MIPBN00 166037720 7 7 4 18 1 19 189607342

g 48 60 19 MIPBN00 163554256 5 12 1 18 5 7 205071906

h 49 60 19 MIPBN00 142974298 7 9 0 22 1 10 165133666

i 60 60 19 MIPBN00 204197546 3 11 2 22 4 18 223304700

j 70 90 28 MIPBN00 203134480 2 15 0 29 4 20 184164240

k 70 90 28 MIPBN00 223514635 3 15 0 28 2 22 182385710

l 70 90 28 MIPBN00 199436913 2 15 1 28 4 20 180883411

m 82 110 34 MIPBN00 277146850 2 17 0 31 4 28 225707274

n 82 110 34 na na na na na na na na na
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na: not available because the program ran out of memory or because no feasible solution was found.
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Tabu search for fleet deployment in liner shipping  

Abstract 

We address a tactical planning problem faced by many liner shipping companies that have 

committed contractual voyages while trying to serve optional spot voyages to increase its revenue 

over the medium-term horizon. The decisions include the number and type of vessels deployed, 

the assignment of vessels to contractual and spot voyages and the determination of vessel routes 

and schedules in order to maximize profit. A tabu search algorithm with a candidate list, a tree 

search and a pool of elite and diverse solutions is proposed in order to solve a set of benchmark 

instances of the problem. The results obtained by tabu search are compared to optimal and 

suboptimal solutions yielded by the CPLEX solver to mixed integer programming formulations of 

the problem. 

Keywords: Logistics, maritime transportation, liner shipping, routing, heuristics, tabu search. 

1. Introduction 

 A common classification of shipping companies in modes of maritime transportation is 

liner, tramp and industrial operations (Lawrence [19]). A liner shipping company operates similar 

to a bus line, following a determined and published route. The liner company pickups and 

delivers client cargoes, e.g. containers, along the route analogous to the hop-on and hop-off of 

passengers in a bus line. A tramp shipping company does not have a predefined route to follow, 

the route is constructed and executed as new transport demands, such as dry bulk, gas or 

chemicals arrive. The analogy here is that a tramp company operates like a taxicab, picking up 

and delivering passengers while it is on the way. The tramp shipping operation may be full 

shipload, as of a taxicab with a single passenger, or parcel loads, as of a shared taxicab. The 

industrial operation is common on a verticalized company, such as mining companies that own or 

control both the cargo and the ships. 

 This work deals with the Fleet Size and Mix Routing Tactical Problem (FSMRTP) in liner 

shipping that could also be extended to tramp shipping operations. For the medium term planning 

horizon, for example, from six months to a year, fleet size decisions determine the necessary 

number of ships and select the types of ships to use, including the evaluation of the following 

alternatives: to lay-up a ship, i.e., to moor it in a protected anchorage or berth with most onboard 

systems shut down to reduce costs, to hire or to charter that means hiring a ship from another 

company or renting a ship to another company, respectively, for a determined period of time and 
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price. Therefore, the objective of the FSMRTP is to maximize profit through the determination of 

(i) the number and type of its own ships, as well as the number and type of laid-up and hired  and 

charter ships, (ii) the set of spot voyages to be served during the planning horizon and (iii) the 

ship routes and schedules. The FSMRTP is modeled in four problem variants shown in Table 1. 

Table 1. Problem models 

Model Voyages Ships 
Contractual Spot Laid-up Chartered Hired 

SIMPLE.Cv      
SIMPLE.CvSv      

FULL.Cv      
FULL.CvSv      

 
 The SIMPLE problem models only consider owned or controlled ships, and these ships 

may not be either laid-up or chartered. There are two models of SIMPLE, one that serves only 

contractual voyages (SIMPLE.Cv) and one that serves contractual voyages and may serve spot 

voyages (SIMPLE.CvSv). The FULL problem models consider owner’s ships that may be laid-up 

and/or chartered, and hired ships. There are also two models of FULL, one that serves only 

contractual voyages (FULL.Cv)  and one that serves contractual voyages and may serve spot 

voyages (FULL.CvSv).  

 The remainder of the paper is organized as follows. Section 2 presents a literature review 

and Section 3 describes the problem. The tabu search algorithm is given in Section 4. The 

description of the test problems and the results of the computational experiments are shown in 

Section 5. Finally, conclusions and suggestions for future work are discussed in Section 6. 

2. Literature review 

 This section presents the related work to the FSMRTP and also the research that has 

applied heuristics to other maritime problems such as tramp shipping. For a thorough review on 

the optimization of maritime problems, we refer to Ronen [22,23], Christiansen et al. [7,8] and, 

more recently, Christiansen et al. [10]. 

 Brønmo et al. [4] present a multi-start local search heuristic for the tramp shipping 

scheduling problem. The heuristic searches for a maximum profit solution that solves the pickup 

and delivery problem of bulk cargo in the tramp market. The voyage of a ship may consist of 

more than one pickup or delivery points and may be executed by own or hired ships. Spot 

voyages are accepted if feasible and profitable. The authors consider a heterogeneous fleet with 
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different cost structures and load capacities. In addition, the fleet size and mix is given and 

remains unchanged during the planning horizon. The search may use up to 2 intra-route 

neighborhoods (1-resequence and 2-resequence) and 3 inter-route neighborhoods (reassign, 2-

interchange and 3-interchange). The heuristic solutions are compared to the set partition 

benchmarks and the result was a less than 2.2% average optimality gap. 

 More recently, Norstad et al. [20] introduce a mathematical formulation of the tramp ship 

routing and scheduling problem with speed optimization and use a multi-start local search 

heuristic, based on Brønmo et al. [4], to solve it. After each new route is constructed, the speed 

optimization subproblem is solved by one of the two exact algorithms presented: discretizing 

arrival times that may be applied to any fuel consumption function, including functions that 

depend on shipload, and a recursive smoothing algorithm which is only applied to convex fuel 

consumption functions. The authors conclude that speed optimization increases profit because it 

makes possible for the shipping company to accept more spot cargoes, increasing the speed as 

needed, and reducing fuel consumption per distance by lowering the speed when possible. 

 Fagerholt et al. [12] apply a multi-start local search heuristic adapted from Brønmo et al. 

[4] to a case study of the fleet deployment problem for a liner shipping company that provides ro-

ro vehicle transportation services. The objective is to assign a set of owned and hired ships to a 

set of voyages considering the time window of each voyage. The cargo of each voyage is not 

explicitly considered, such as how many vehicles to load and unload in each port call, because 

this information is unknown for the whole planning horizon. Therefore, for each pair “ship x 

voyage” an estimate of cost and service time is associated. The multi-start local search heuristic 

was embedded in a decision support system and produced an improvement between 2% and 10% 

of the manual planning solutions of the transportation company.    

 Genetic algorithms and large neighborhood search have been applied to maritime 

problems. Karlaftis et al. [15] use a genetic algorithm for the route scheduling problem of a 

homogeneous fleet of containerships performing short-distance pickups and deliveries between 

hub-and-spoke ports. The problem is inspired on the supply network between Greece mainland 

and islands, including the pickup cargo from islands and time deadlines in ship arrivals. The 

genetic algorithm is tested for routing a  small fleet with 6-7 ships that operates in the ports of 

Piraeus and the ports of other 25 islands, and produces optimal routes in a low (2 to 3 minutes) 

execution time. Christiansen et al. [9] develop a constructive heuristic and a genetic algorithm to 
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approach the maritime inventory routing problem of a major Norwegian cement producer. The 

company has two factories which produce up to 10 cement grades products, and 28 consumption 

ports. Each consumption port may have up to 5 different silos, and each product must be stored 

separately of each other in different silos. The company controls a heterogeneous fleet of 5 ships 

through long term contracts and determines the ships routes and schedules in 2 weeks planning 

horizon. The solution method must determine the ships routes and the loading and unloading 

quantities at each port, considering the inventory lower and upper limits of each silo, customer 

demands and transportation costs. The results were compared with those obtained manually by 

the company, and they proved to be of better quality. 

 Korsvik et al. [18] propose a large neighborhood search heuristic for the tramp ship 

routing and scheduling problem with split loads. This problem admits that the demand, 

corresponding to the total amount of cargo to be transported from the port of origin to the port of 

destination, may be served by more than one ship and voyage. The objective is to maximize 

profit and to serve all mandatory demands. Spot cargo may be served if feasible and profitable. 

The large neighborhood search consists of a descent local search with four local operators – 

reassign, interchange, 1-split or merge and 2-split or merge – followed by a destroy and repair 

algorithm. The last two operators of the DLS are particularly designed to deal with split loads. 

The authors conclude that the introduction of split loads increases the fleet capacity utilization 

and, consequently, produces more profit. 

 Korsvik et al. [17] propose a tabu search heuristic for the ship routing and scheduling 

problem with a similar structure of the tabu search developed by Cordeau et al. [11] for the 

vehicle routing problem with time windows. The method considers infeasible solutions during the 

search, which violate capacity and/or time window constraints, and also penalizes the objective 

function when a cargo is not served (mandatory and/or optional cargoes).  A periodic intra-route 

move is performed to improve the current solution. In a final intensification phase, a descent local 

search with move operators suggested in Brønmo et al. [4] is employed. The results show that the 

tabu search produces much better solutions than those of Brønmo et al. [4], particularly for the 

large and tightly constrained test cases. 

 Another tabu search heuristic is presented in Korsvik and Fagerholt [16] to deal with the 

ship routing and scheduling problem with flexible cargo quantities. This problem is also found in 

Brønmo et al. [5] and is common among tramp shipping companies transporting bulk products. 
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The tabu search penalizes the objective function when a mandatory and/or optional cargo is not 

served, and when a cargo is served outside the feasible quantity interval. A solution of the tabu 

search is defined as a set of pairs “ship x cargo” assignments and the neighborhood of the 

solution is defined as any solution that can be found through the following two moves: 

reassignment of a cargo to another ship and interchange of one cargo of each ship with one 

another. Once a cargo i is removed from a ship v, the cargo i is forbidden to be assigned again to 

ship v for some of the following iterations of the search. To employ a diversification strategy, the 

objective function is penalized when a pair “ship x cargo” has been inserted into the solutions too 

frequently. Another diversification strategy is used after each w iterations: the best non-tabu 

reassignment move is applied to the pair “ship x cargo” that has been present in the solution for 

the most consecutive number of iterations. Intra-route moves are also performed as an 

intensification tool at every k iterations or whenever a new incumbent solution has been found. 

Computational tests show that the tabu search produces high quality solutions in significantly less 

time compared with the column generation approaches of Brønmo et al. [6]. 

 Álvarez [1] presents a mixed integer programming model and an algorithm to tackle the 

fleet deployment and routing problem in liner shipping. The objective is to minimize the 

operating expenses of the liner company over a tactical planning horizon. The solution approach 

is separated into two tiers. The higher tier is governed by a tabu search algorithm that determines 

the number of ships assigned to each run, which is a combination of ship type, speed and service. 

The lower tier is a pure multi-commodity flow problem which is solved by the commercial solver 

CPLEX. Computational tests show that good quality solutions are obtained in a short 

computational time. 

 Tirado et al. [25] develop heuristics for the dynamic and stochastic routing problem in 

industrial shipping. A discrete event simulation reproduces the planning environment in which 

new cargo requests arrive over time and, whenever a replanning action is scheduled, heuristics 

are run to produce solutions consistent with currently available information. Three heuristics are 

developed:  (i) a dynamic heuristic that does not use stochastic information, (ii) a multiple 

scenario approach with consensus based on Bent and Van Henteryck [2] and (iii) a branch-and-

regret heuristic based on Hvattum et al. [14]. Both heuristics (ii) and (iii) use an adaptation of the 

Korsvik et al. [17] tabu search to solve sampled scenarios, but the heuristics differ on the criteria 

of how to update the current solution which consist of the selection of the best scenario based on 
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a consensus function versus an iterative branch-and-regret procedure to determine the assignment 

of cargoes to ships. Computational experiments show that the inclusion of stochastic information 

when solving the routing problem, such as in heuristics (ii) and (iii), produces savings for the 

shipping company. 

3. Problem description 

This section presents a concise description of the FSMRTP. For a thorough description 

and mathematical formulations of the four problem models of Table 1, see Branchini and 

Armentano [3]. 

 The FSMRTP consists of the deployment of ships to trade routes, the routing of 

contractual and spot voyages, and the scheduling of the ships.  Changes in fleet size and mix are 

allowed, such as to hire a ship to accommodate a peak of demand or to charter a ship for the 

remaining of the year if the overall fleet utilization is too low. A solution of the FSMRTP is 

feasible if all contractual voyages of the planning horizon are served without exceeding ships 

capacity and violating voyages time window constraints. Spot voyages may be served if feasible 

and profitable. A solution of the FSMRTP is optimal if it is feasible and if it maximizes overall 

profit, which is defined as the sum of total revenues (charter, contractual and spot voyages 

revenues) minus the sum of total costs (fixed, variable, lay-up, hire and operating costs). 

3.1. Ships and voyages 

 Ships have different capacities and may transport different cargo types. Sailing, loading 

and unloading times may vary among ships and according to the assignment of ships to cargoes. 

Ships with similar characteristics, such as cargo type, loading/unloading equipment and sailing 

time, define a ship class. 

 To solve any of the four problem models, ships must be assigned to voyages. A voyage is 

defined as a: 

a)  number of port calls to pick up cargoes; 

b)  number of port calls to deliver cargoes; 

c)  fixed quantity of cargo to be picked up and delivered in each port call; 

d)  time window to start the first port call; 

e)  time window to finish the last port call which can be based on an estimate of the duration of 

the voyage. 
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increased and if there is enough capacity at the ship. Spot voyages revenue may represent from 

5% to 30% of the total revenues of the shipping company. 

3.2. Costs and revenues 

 The shipping company may operate with own and/or hired ships and may also charter 

excess ships. A different cost structure occurs in each case. 

 A fixed cost is incurred if the owner’s ship is used during the planning horizon to serve at 

least one voyage or if an owned ship is chartered. Depending on the charter market, the charter 

revenue may be smaller or larger than this fixed cost. To charter a ship is similar to renting an 

asset, in which there is a minimum and maximum renting time, a fixed rent income which 

contributes to cover the fixed costs, and a variable renting income proportional to the amount of 

the renting time. The duration of the charter contracts is limited to given lower and upper bounds 

for the contract period and can be at most as large as the whole planning horizon period. In 

addition, it is assumed that each ship may be engaged into at most two non-simultaneous charter 

contracts during the planning horizon. In the case in which more than two contracts are needed to 

be modeled, the lower and upper bounds for the contract period could be changed to 

accommodate a larger period of time of multiple contracts.  

If the shipping company has no use for some of its ships for a long period of time, an 

option is to lay-up ships to reduce the fixed cost. Lay-up is to moor a ship at a protected 

anchorage or berth for a period of time of at least 5-6 months with most onboard systems shut 

down. This operation decreases fixed and insurance costs, reduces wear and tear of the ship and 

of the machinery, and may be also combined with maintenance operations. Because of the 

financial and time commitment of laying-up a ship, the options of laying-up and chartering are 

considered mutually exclusive for the same ship. 

 The shipping company may also ships to complement its own fleet. A ship could be hired 

for a period of time between given lower and upper bounds of the duration of the contract. A 

fixed cost and a variable cost proportional to the hire period are incurred. It is assumed that only a 

single hire contract may be settled for each ship during the planning horizon. Similar to the 

charter assumptions, longer hire periods may be modeled by changing the bounds. 

 In summary, the costs associated to ships are: 
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 Fixed costs ($/year): personnel, supplies, equipment, maintenance, repair, administration (e.g. 

insurance, office overhead, agency fees), cost of capital (e.g. financing, leasing), make ready to 

sail costs and all other running costs that do not depend on the distance travelled; 

 Lay-up costs ($/year): administration, cost of capital and lay-up service and maintenance costs; 

 Hire fixed costs ($/contract)  and variable costs ($/day or $/hour): renting costs to cover 

administration, cost of capital and profit of the owner of the ship; 

 Variable costs: 

­ Daily running costs at ports ($/hours at port): port charges and fuel to maintain ships at port; 

­ Fuel costs ($/nautical mile):  fuel for ballast, parcel and full shipload sailing. 

 Although fuel cost is approximately proportional to the third power of the speed and, 

sometimes, even to the amount of cargo on the ship, this study considers that ships of distinct 

classes have different speeds and that the speed of each ship is fixed and given. This seems as a 

reasonable assumption for strategic and tactical planning problems. 

 Table 2 summarizes the options that a shipping company has for own and hire ships and 

the associated costs and revenues of each decision. 

Table 2. Costs and revenues associated with each ship mix decision 

Does the 
shipping 

company own 
the ship? 

Was the 
ship used to 

serve 
voyages? 

During the 
planning 

horizon, the 
ship was... 

Associated Costs Associated Revenues 

Yes 

Yes used Fixed Variable Voyages 
No chartered Fixed Charter fixed and variable 

Yes 
used and 
chartered 

Fixed Variable 
Voyages 

Charter fixed and variable 
No laid-up Laid-up - 
No not used Nonea - 

No 
Yes hired Hire fixed and variable Voyages 
No not used - - 

a
If the company has other fixed costs associated with an unused ship, these costs could be set as lay-up costs. 

 
4. Tabu search 

 Tabu search (TS) is a metaheuristic that guides a local search heuristic procedure by using 

characteristics of the current solution and the history of search in order to explore the solution 

space beyond local optimality. Short and long term memories are used to store a selective history 

of the search. In the short term memory, selected attributes that occur in recently visited solutions 

and tabu activation rules define tabu-active attributes that are stored in a tabu list. Solutions that 

contain tabu-active attributes are called tabu. This prevents the visit to recent solutions and other 



88 

solutions that share the tabu-active attributes. This feature prevents cycling and forces the 

exploration of other regions. The long term memory contains a selective history of complete 

solutions and attributes of solutions visited during the search. Such elements are used to 

implement diversification and intensification strategies (Glover and Laguna [13]). 

 TS is very flexible and there are many ways to define an algorithm for a given problem. 

We first present the short and long term components of our implementation and the algorithm is 

presented at the end of this section. 

4.1. Objective function, infeasibility and stop criterion 

The profit of a solution is evaluated by the calculation of the profit of each  route r  R, in 

which R is the set of ship routes. Thus, the total profit of a solution is defined as 





Rr

ritroute_profrofitSolution_P , in which route_profitr represents the profit of route r  R. 

We allow infeasible solutions relative to time window constraints in order to improve the 

reachability of regions of feasible solutions which are disconnected or not accessible by simple 

moves restricted to the feasible region. Therefore, a solution in which a route violates time 

windows constraints is not discarded and is evaluated by the penalized function 

rrr meExceededTiPenprofititroute_prof  , such that Pen is a non-negative parameter 

and ExceededTimer is the sum of all time window violations of route r. 

 TS stops after a total number of calls of the procedure that calculates route_profitr is 

greater than a predetermined limit parameter (totalCalcs). The use of this type of stopping 

criterion produces a fair comparison among the different variants of the TS algorithm that were 

implemented. In addition, TS also stops if the pool of solutions (explained in section 4.8) is not 

updated during 100 iterations. 

4.2. Constructive heuristic 

 The constructive heuristic is inspired by the I1 heuristic of Solomon [24] for the vehicle 

routing problem with time windows constraints. The goal is to quickly generate a reasonable start 

solution which may be infeasible with respect to the time windows. The constructive heuristic has 

three steps: 

1. Sort all contractual voyages by ascending order of the latest time of the time window; 

2. Sort all vessels by ascending order of net tonnage capacity; 
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3. Starting from the beginning of the list of step 1, insert each contractual voyage into the best 

feasible position of the route of the ship with the smallest slack capacity (list of step 2). If 

there is no feasible insertion, the voyage is inserted into the infeasible position that maximizes 

overall profit by assigning Pen=0. 

 Step 1 creates a chronological order to select which contractual voyage is inserted first: 

the earlier a voyage must be served, the earlier this voyage will be selected.  Step 2 prioritizes the 

selection of smaller, and probably cheaper ships, and also saves larger ships to serve larger 

demands if needed. Finally, step 3 assigns each contractual voyage to a position in a route in 

which the profit is maximized. 

4.3. Neighborhoods 

 Three neighborhoods are considered: Insertion, Exchange and Swap. Insertion consists of 

all neighboring solutions that may be reached by moving a single contractual voyage from one 

ship route to another. Exchange is equivalent to two subsequent insertion moves, one from a  

route i to another route j and another insertion from route j to route i. Swap is the exchange of all 

voyages of a route i with the voyages of another route j. 

 The Swap neighborhood was implemented with the objective of reaching, with a single 

move, a neighboring solution in which the routes of a pair of ships are completely exchanged. In 

other words, Swap is an extension of the Exchange neighborhood because Swap exchanges more 

than one pair of voyages at a time. However, many times it is not possible to execute the Swap 

move because it is infeasible to assign one or more voyages of one ship to another. For example, 

suppose that ship va serves route ra and ship vb serves route rb. The greater the number of 

contractual voyages in route ra (or rb), the less likely that it is feasible for ship vb (or va) to serve 

route ra (or rb), because of incompatibilities between each swapped voyage and ship capacity, 

ship location and ‘ship x voyage’ assignment constraints. Therefore, the Swap(a1, a2) variant was 

also implemented, which indicates that a1 voyages of the first route are swapped with a2 voyages 

of the second route, while the remaining  voyages of routes 1 and 2 that differ from those in a1 

and a2 are inserted into other routes. Thus, in the end, route 1 will only have voyages of route 2, 

and route 2 will only have voyages of route 1. In addition, in an attempt to reduce the fleet size, 

the remaining a1 and a2 voyages may be inserted into other routes. For example, route 2 would be 

eliminated if it is feasible and profitable to insert all a1 voyages into other routes. Figure 2 

describes the Swap(a1, a2) neighborhood. 
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 Swap(a1, a2) was implemented for the following values of the parameters of a1 and a2: 

{(0,2); (0,3); (1,2); (1,3); (2,0); (2,1); (2,2); (2,3); (3,0); (3,1); (3,2); (3,3)}. 

 Since both neighborhoods Swap and Swap(a1, a2) are computationally expensive to 

calculate, especially when the search is in the infeasible region because of a larger number of 

neighboring solutions, they are disregarded when the search is in the infeasible region. 
 

1. For each consecutive sequence of a1 voyages of route 1 and consecutive sequence of a2 

voyages of route 2, do: 
1.1. Remove a1 voyages of route 1; 
1.2. Remove a2 voyages of route 2; 
1.3. Let success = true; 
1.4. For each of the remaining voyages of route 1, do while success=true: 

1.4.1. Select a voyage i at random of route 1 and find the best feasible insertion position 
of i in another route r≠1 and r≠2. If a feasible insertion position is found, execute 
the insertion, otherwise, let success = false. 

1.5. For each of the remaining voyages of route 2, do while success=true: 
1.5.1. Select a voyage i at random of route 2 and find the best feasible insertion position 

of i in another route r≠1 and r≠2. If a feasible insertion position is found, execute 
the insertion, otherwise, let success = false. 

1.6. If success=true (now both routes 1 and 2 are empty): 
1.6.1. Insert a1 voyages into route 2; 
1.6.2. Insert a2 voyages into route 1; 
1.6.3. For each voyage of route 1, do (attempt to eliminate route 1): 

1.6.3.1. Select a voyage i at random of route 1 and find the best feasible and 
profitable insertion position of i in another route r≠1 and r≠2. If an 
insertion position is found, execute the insertion. 

1.6.4. For each voyage of route 2, do (attempt to eliminate route 2): 
1.6.4.1. Select a voyage i at random of route 2 and find the best feasible and 

profitable insertion position of i in another route r≠1 and r≠2. If an 
insertion position is found, execute the insertion. 

 

Figure 2. Swap(a1, a2) neighborhood 
 

4.4. Candidate list for insertion and exchange moves 

 A candidate list, as described in Glover and Laguna [13], is applied to the neighborhoods 

of insertion and exchange moves when the search is either in the feasible or infeasible region. 

The goal of a candidate list is to restrict the set of neighbor solutions to those which are most 

promising. 

 For every insertion and exchange move we compute the value of delta_distance = 

total_distance_after_move - total_distance_before_move. If delta_distance < 0, the move reduces 

the total sailed distance and, maybe increases profit. On the other hand, a move with a large 
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positive value of delta_distance increases sailing costs and is probably not a promising move. 

Since it is much faster to calculate delta_distance than solution_profit, it is advantageous to 

evaluate  insertion and exchange moves that lead to low values of delta_distance. Therefore, a list 

of candidates based on a delta_distance_max measure is created containing solutions s with 

delta_distances ≤ delta_distance_max. 

 A parameter dist_perc(0%, 100%], which is the percentage of the number of 

neighboring solutions that must be evaluated, is used to compute the value of 

delta_distance_max. For example, let us suppose that the number of neighbors of a current 

solution is 10 and that dist_perc=60%. In this situation, delta_distance_max would be set to the 

value that results in a total number of 6 neighbors of the current solution. Because 

delta_distance_max is a function of the current set of solution neighbors, delta_distance_max 

varies at each iteration. However, to avoid the computational effort of calculating the exact value 

of delta_distance_max at every iteration, we update the value of delta_distance_max each time 

the search enters or leaves the feasible region as shown next.    

4.5. Search in the infeasible region 

 As discussed in section 4.1, the profit of each route is given by the expression

rrr meExceededTiPenprofititroute_prof  . If Pen equals to a very large positive 

number, the search is guided to the feasible region. On the other hand, if Pen equals to a low 

positive number, infeasible solutions may be selected if these solutions have high profit. 

Therefore, the search may be guided either to the feasible region by increasing the value of Pen 

or to the infeasible region by reducing the value of Pen. 

 The search begins with Pen equals to a large number to either maintain the search in the 

feasible region or to find the first feasible solution of the problem when the constructive heuristic 

is unable to find a feasible solution. Then, the search switches between the feasible and infeasible 

regions as depicted in Figure 3. 

 Steps 1 to 4 initialize variables and parameters. The parameter maxIter is an estimate of 

the maximum number of TS iterations, which is proportional to the fleet size and number of 

contractual voyages (see Table 3). The start values of PenMin=5000 and Pen=50000 were 

determined empirically, but they are automatically adjusted in step 7 if these values are too low 

or high. Step 5 guides the search to the infeasible region and step 6 guides the search to the 

feasible region. Step 7 is the adaptive adjustment of Pen and PenMin. If there are too many 
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feasible solutions (countFeasible > totalNumberOfShips in Step 7.1), Pen is divided by 100. 

Therefore, more infeasible solutions should be evaluated. The variable countFeasible  is 

compared with the parameter totalNumberOfShips in Step 7.1 because totalNumberOfShips is 

proportional to the problem size. The larger the problem size, the more feasible solutions are 

evaluated before dividing Pen by 100. 

 It is desirable for the search to stay in the infeasible region just a sufficient number of 

iterations to guide the search to explore another solution region. In other words, excessive 

iterations in the infeasible region may be a waste of computing resources. Thus, if there are too 

many infeasible solutions (Step 7.2), Pen is increased by 50% for each infeasible route. For 

example, if there are 3 infeasible routes in the solution, Pen is multiplied by 2.5 

 5.235.00.1  . This expression (Step 7.2.2) stimulates the search to move back to the 

feasible region in a faster pace if there are too many infeasible routes. 

1. Let iterLastSwitch=0; 

2. Let iterToSwitch=maxIter/10; (estimate of 10 feasible/infeasible switches during TS run) 
3. Let PenMin=5000; Pen=50000; 
4. Let infeasibleRegion=false, countFeasible=0; countInfeasible=0; 

[Tabu search procedure...] 
5. If infeasibleRegion=false AND currentIter - iterLastSwicth > itersToSwitch AND 

 currentIter - iterIncumbentWasFound > itersToSwitch THEN (goes to the infeasible region) 
5.1. infeasibleRegion=true; 
5.2. iterLastSwicth = currentIter; 
5.3. Pen=max(100, PenMin/100); 
5.4. countFeasible=countInfeasible=0; 

6. If infeasibleRegion=true AND currentIter - iterLastSwicth > itersToSwitch THEN 
(goes to the feasible region) 

6.1. infeasibleRegion=false; 
6.2. iterLastSwicth = currentIter; 
6.3. Pen=50000; 

7. If infeasibleRegion= true THEN (frequently crosses the feasibility border) 
7.1. If countFeasible > totalNumberOfShips  THEN (too many feasible solutions, reduces Pen) 

7.1.1. Pen = max(100, Pen/100); 
7.1.2. countFeasible=countInfeasible=0; 

7.2. If countInfeasible > 10 THEN (too many infeasible solutions, increases Pen) 
7.2.1. PenMin = Pen; (stores at PenMin the last value of Pen in the infeasible region) 
7.2.2. Pen = Pen x (1.0 + 0.5 x numberOfInfeasibleRoutes); 
7.2.3. countFeasible=countInfeasible=0; 

 

Figure 3. Procedure to guide the search into the feasible or infeasible regions 
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4.6. Tabu attribute and tenure 

 The attribute of a solution used in the short term memory is given by the contractual 

voyages that are assigned to a given ship. Three tabu activation rules are used:  

i) if a contractual voyage i is moved from ship a to ship b, voyage i must remain on ship b for at 

least t1 iterations; 

ii) if a contractual voyage i is moved from ship a to ship b, voyage i must not return to ship a for 

at least t2 iterations (t2 > t1); 

iii) if an exchange move is executed between two voyages i and j, both rules (i) and (ii) apply to 

voyages i and j; 

iv) if a swap move is executed between ships a and b, another swap move between ships a and b 

may only occur after t3 iterations. 

 The tabu tenure values of t1, t2 and t3 are randomly selected from a range of [min, max] 

values at each executed move. The values of min and max are related to the test problem size and 

were determined empirically. Details on the definition of min and max and all other TS 

parameters are shown in Table 3 at the end of this section. 

 Even though min and max are related to the test problem size, this range of tabu tenure 

values may not be adequate for the entire search space. Since the number of neighbors in the 

feasible region is much smaller than the number of neighbors in the infeasible region, the tabu 

range is adaptively adjusted in both regions by introducing another tabu tenure variable 

tabuTenureToAdd that is a function of the current number of solution neighbors. Then, for 

example, t1 is calculated as a random number between [min, max] plus the value of 

tabuTenureToAdd. 

 Let minNumberOfNeighbors and maxNumberOfNeighbors be two parameters 

proportional to the test problem size and currentNumberOfNeighbors be the total number of 

neighbors of the current iteration. Figure 4 illustrates how tabuTenureToAdd is calculated. 

 Steps 2.1 to 2.3 of Figure 4 reduce the value of tabuTenureToAdd by two units in such a 

manner that the value of tabuTenureToAdd is set within the range [-2, -10]. If even with 

tabuTenureToAdd= -10 the search stalls (there are no feasible non-tabu moves to execute), 

infeasibleRegion is automatically set to true to increase the number of non-tabu neighbors. On the 

other hand, Steps 3.1 to 3.3 increase the value of tabuTenureToAdd by two units and set the value 

of tabuTenureToAdd within the range [2, 10]. 
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1. Let tabuTenureToAdd=0; 
[Tabu search procedure...] 

2. If currentNumberOfNeighbors  < minNumberOfNeighbors THEN 
2.1. tabuTenureToAdd = min(tabuTenureToAdd, 0); 
2.2. tabuTenureToAdd = tabuTenureToAdd - 2; 
2.3. tabuTenureToAdd = max(tabuTenureToAdd, -10); 
3. If currentNumberOfNeighbors  > maxNumberOfNeighbors THEN 
3.1. tabuTenureToAdd = max(tabuTenureToAdd, 0); 
3.2. tabuTenureToAdd = tabuTenureToAdd  + 2; 
3.3. tabuTenureToAdd = min(tabuTenureToAdd, 10); 

 

Fi      . Ev l   i    f v  i  l  ‘tabuTenureToAdd’ 

 Finally, the tabu list is emptied, i.e., all neighbors are considered non-tabu each time a 

new incumbent solution is found. In this case, the search behaves, at least for some iterations, as 

an ordinary local search procedure, i.e., a simple intensification strategy in the region of the new 

incumbent solution.  

4.7. Selection of neighboring solutions and aspiration criterion 

 In general, the best neighbor of all neighborhoods (Insertion, Exchange and Swap) is 

selected at each iteration: 

 If the best neighbor is feasible and has a greater profit than the best feasible solution found so 

far, this best neighbor is selected regardless of the tabu list of section 4.6 (aspiration criterion). 

In this situation, the incumbent solution is updated; 

 Otherwise: 

– If infeasibleRegion=true, the non-tabu neighbor with the greatest profit is selected; 

– If infeasibleRegion=false, the best non-tabu neighbor is selected considering the following 

hierarchical objectives: (i) least number of ships and (ii) greatest profit. 

 If infeasibleRegion=true, it is expected that the search visits high profit solutions, which 

may or may not have the same number of ships. Many times, the number of ships is reduced. On 

the other hand, if infeasibleRegion=false, there are two hierarchical objectives. Objective (i) is 

introduced because the search space of solutions with fewer ships produces, normally, solutions 

with higher profits. Thus, it is expected that the search first reduces the number of ships and then 

seeks solutions of high profit. 

4.8. Pool of solutions and distance among solutions 

 High quality and diverse solutions found during the search are stored in a pool. The 

solution pool has two main objectives, namely, to give to the planner of the shipping company 
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more alternatives of high quality solutions to be implemented, and to use the information of high 

quality solutions to find other high quality solutions. 

 Up to two solutions pools are managed during the search: the first pool contains solutions 

without spot voyages and the second pool contains solutions with spot voyages. The first pool 

(without spot voyages) is used by the tabu search components of sections 4.3 to 4.8 for the four 

problem models. These components are computationally intensive and they were designed to 

effectively address the set of contractual voyages. The second pool (with spot voyages) is used 

for the SIMPLE.CvSv and FULL.CvSv problem models and by the components ‘Use of pool 

information to guide the search’ and ‘Greedy insertion heuristic for spot voyages’, which are 

explained after this section. 

Both pools have a maximum number of poolMax solutions and a solution is inserted into 

the pool only if it is different from all other solutions that are already in the pool. To maintain a 

minimum diversity among the solutions of the pool, two variants of pool management were 

implemented, a pool based on fleet composition and a pool based on distance among the 

solutions. 

a) Pool management based on fleet composition (PMF): 

 A new solution is inserted into the pool if it is better than the worst solution of the pool or 

the pool has less than poolMax solutions. In addition, either one of the following statements must 

occur: 

 The set of ships of the new solution is different from the set of ships of all other solutions in the 

pool; in this case the new solution replaces the worst solution; 

 The set of ships of the new solution is equal to the set of ships of a solution sipool and the 

profit of the new solution is greater than the profit of si; in this case the new solution replaces si. 

Therefore, PMF focuses on storing high quality solutions with different fleets. This is 

useful because it gives the planner a set of poolMax solutions with the greatest profit found for 

each fleet composition. 

  



96 

b) Pool management based on distance (PMD): 

 This pool stores a new solution according to a measure of distance among solutions that 

considers the attributes of fleet composition and assignment of contractual voyages to ships4. The 

distance dist(s1,s2) between two solutions s1 and s2 if given by 

 
CV

vsPerShipavgNumberCShipsnumberDiffntsCvAssignmenumberDiff
dist ss1




2,
 

in which: 

numberDiffCvAssignments = the total number of contractual voyages of solution s1 that are 

assigned to a different ship in solution s2;  

numberDiffShips = the total number of ships used in s1 that is not used in s2, plus the total number 

of ships used in s2 that is not used in s1; 

CV = the set of contractual voyages; 













21 ss edShipsnumberOfUs

CV

edShipsnumberOfUs

CV
maxvsPerShipavgNumberC , . 

 This measure is symmetrical, dist(s1,s2)=dist(s2,s1), and if solution s1 is equal to s2, 

dist(s1,s2)=0. The more different the assignment of contractual voyages are between solutions s1 

and s2, the greater the value of dist(s1,s2). In addition, different fleet compositions are included in 

the measure with a weight proportional to the average number of contractual voyages per ship. 

Because of this inclusion, dist(s1,s2) may assume values greater than 1.  

 A new solution s is inserted into the pool if it satisfies one of the following criteria, testing 

each criterion according to the order presented next: 

1. If the number of solutions of the pool is less than poolMax, s is inserted into the pool if s is 

better than the incumbent solution sbest or if s has at least a distance measure of 0.1 among all 

other solutions of the pool,      1.0:,  poolsdistmindist iss,pools i
. The parameter 0.1 was 

determined empirically after testing values within the range [0.05, 0.30]. 

2. If the pool has poolMax solutions, s is inserted into the pool replacing the worst solution sw of 

the pool if the profit of s is greater than the profit of sw  and if the distance measure between s and 

all other solutions, except sw is greater than or equal to 0.1, 

   1.0:  wiiss, s spool,sdistmin
i

, and if the percentage difference between the profit of sw 

                                                 
4 Other types of distance measures may be applied, such as a distance measure that also considers the sequence of 
voyages in a route (e.g. the information about sequence of voyages in a route is used in the next tabu component of 
section 4.9). Because one of the main goals of TS is fleet deployment, a distance measure focused on fleet 
composition and assignment of contractual voyages to ships is used. 
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and the profit of sbest is greater than a percentage parameter threshold, such as 

%41000.1 











best

w

s

s

Profit

Profit
. The parameter 4% guides the profit range of the solutions of the 

pool so that the profit difference between the solution with the highest quality (sbest) and the 

solution with the lowest quality (sw) is around 4%.  

3. If the pool has poolMax solutions and criterion (2) is not met, s is inserted into the pool 

replacing a solution ps pool, if either of the following conditions (3.1) or (3.2) occurs: 

3.1. s is better than the best solution of the pool. In this case, s replaces a solution ps pool in 

the following order: 

3.1.1. if    1.0:  piiss, s spool,sdistmin
i

 and the replacement of sp by s either increases 

the maximum distance      pools sspool,sdistmindistmaxdistMax ijijs,spools jii
 :, , 

or, maintains the maximum distance but increases the average distance 

 

 1
,

,

-poolMaxpoolMax

dist

distAvg
jipool,ss

ss

ji

ji





 , s replaces sp; 

3.1.2. if (3.1.1) does not hold, s replaces the solution sp that is closest to s. If there is a tie 

among two or more solutions that belong to the set of the closest solutions to s, the solution 

with the worst profit of this set is replaced. 

3.2. s replaces a solution ps pool if s is better than the worst solution of the pool and 

   1.0:  piiss, s spool,sdistmin
i

 and:  

3.2.1. s increases the maximum distance among the solutions of the pool, or,  

3.2.2. s maintains the maximum distance but increases the average distance of the pool, or, 

3.2.3. s maintains the maximum and average distance and has greater profit than ps . 

 Thus, criterion (1) creates a pool of poolMax solutions respecting, whenever possible, the 

minimum distance measure of 0.1 among the solutions. After the pool has poolMax solutions, 

criteria (2) and (3) may update the solutions of the pool whenever a solution s with profit larger 

than that of sw is found. If the percentage difference between the profits of sw and sbest is greater 

than 4% and all other criteria of (2) hold, s replace sw. Otherwise, criterion (3.1) updates the pool 

whenever the profit of s is better than the profit of sbest and criterion (3.2) uses the measures 

distMax and distAvg to test if s may replace a solution sp of the pool considering three goals: (i) to 
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have solutions that are very diverse (maximize distMax), (ii) to maximize the average 

diversification (maximize distAvg) and, (iii) to improve the solutions quality (maximize profit).  

 Simpler rules for pool management were implemented and tested, but it was the set of the 

previous rules that produced, at the end, a pool with an adequate balance between quality and 

diversification. For instance, the following problems were encountered when only simpler rules, 

such as the sole maximization of the maximum distance, were used: 

 If TS finds, for example, three new incumbent solutions in a sequence or within a short 

number of iterations, very common in local search based methods such as TS, these three 

solutions are probably similar to each other and would be inserted into the pool, also in a 

sequence, reducing the pool diversity. This problem is solved with the inclusion of the 

ordering rules (3.1.1) and, in particular, (3.1.2) for selecting which solution sp would leave the 

pool; 

 Once a very diverse solution is found and inserted into the pool, the pool is seldom updated 

because the search rarely finds other solutions that increase the maximum distance and, at the 

same time, are better than the worst solution of the pool. In this case, the pool is usually 

updated when TS finds a new incumbent solution. Therefore, the resulting pool often contains 

two groups of solutions, one group with many solutions similar to the incumbent solution and 

another group with few diverse solutions. This problem was solved with the inclusion of 

criteria (2), (3.1.1), (3.2.2) and (3.2.3). 

4.9. Use of pool information to guide the search 

 After several insertions of solutions into the pool, the pool contains poolMax high quality 

and diverse solutions. The information of these solutions may be combined to guide the search to 

find new and, hopefully, better solutions. 

 When the component ‘4.9. Use of pool information to guide the search’ is activated, the 

information of the pool without spot voyages (for the SIMPLE.Cv and FULL.Cv problem 

models) and of the pool with spot voyages (for the SIMPLE.CvSv and FULL.CvSv problem 

models) are used to prioritize moves that approximate the structure of the current solution to that 

of the solutions of the pool. 

 To gather information about the structure of the solutions of the pool, the vector 

voyageIsTheFirstOfRoute(i), of |CV| positions, is used to store the number of times each voyage 

iCV is the first voyage of a route in any solution of the pool. The matrix 
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voyage2AfterVoyage1(i,j), of |CV| by |CV| positions, stores the number of times voyage jCV is 

served immediately after voyage iCV in any solution of the pool. In addition, let 

     j,iCV,jierVoyage1voyage2AftuteeFirstOfRovoyageIsThmaxcymaxFrequen ji,i  ,,, and 

let frequencyr equals to the sum of the corresponding values of voyageIsTheFirstOfRoute(i) and 

voyage2AfterVoyage1(i,j) of a given route r. Also, let maxPositiveProfitIncrease be the maximum 

non-negative profit increase between two iterations during the past 20 iterations. 

 Finally, to use the information extracted from the pool to bias the search, the route_profitr 

expression is modified as follows: 

.
cymaxFrequen

frequency
reaseeProfitIncmaxPositivmeExceededTiPenprofititroute_prof r

rrr   

 Hence, the more similar the sequence of voyages of a route r is to the sequence of 

voyages of the routes of the pool, the greater is the value of the expression route_profitr. 

4.10. Greedy insertion heuristic for spot voyages 

 A greedy insertion heuristic was implemented to insert spot voyages before, during and 

after contractual voyages. This heuristic is executed when the pool of solutions is updated and, 

also, may be executed at each iteration. 

 This is a simple and fast heuristic that, given a set of routes of contractual voyages, inserts 

the greatest number of spot voyages into routes to increase overall profit. 

 The first step is to calculate the profit increase of the best feasible insertion positions of 

the loading and unloading port calls of all spot voyages. Then, the insertion that produces the 

largest profit increase is executed, and the set of the next possible insertions is updated. This 

process is repeated while it is profitable to insert spot voyages. 

4.11. Tabu Search variants 

 Figure 5 shows the framework associated with the implementation of TS that consists of 

an orderly combination its components.  

 Phase 1 uses all tabu components except for ‘4.9. Use of pool information to guide the 

search’. The component ‘4.10. Greedy insertion heuristic for spot voyages’ is used only when a 

solution is inserted into the pool. The objective of Phase 1 is to find the first set of feasible 

solutions. 
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a
Applicable if problem type is SIMPLE.CvSv or FULL.CvSv. 

Figure 5. TS framework 

  Phase 2 is a diversification procedure that consists of a restricted tree search, which 

resembles the filtered beam search heuristic developed by Ow and Morton [21]. This phase starts 

from the best solution of Phase 1 and sorts the routes with their respective ships in ascending 

order of profit, so that the ships at the top of the list are those with the least profit that are used to 

control which ships are available for the constructive heuristic and TS. Then, each of the top 5 

ships in the list is considered to be forbidden for the constructive and TS heuristics. This 

corresponds to the branching of the root node  into 5 nodes of a tree, each node with a distinct 

forbidden ship. If one of the five runs of the TS produces a solution with greater profit than the 

incumbent obtained in the root node, the process is repeated, forbidding the use of the ship of the 

first level tree and the next 5 ships of the current list, yielding 5 nodes in the second level tree. 

The search is stopped if it is not possible to find better solutions from all tree nodes. In addition, 

to avoid excessive search time in similar nodes of the tree, each ship may be forbidden at most 3 

times. Each TS run of Phase 2 is executed for approximately 400 iterations and the result of this 

phase is a pool of diverse solutions regarding fleet composition and also distance measure if 

PMD is applied. 

 Phase 3 improves each solution of the pool by the restart of TS associated with the 

cleaning of all short term memory. If applicable, the component ‘4.10. Greedy insertion heuristic 

Phase 
1:

Initialization:
Constructive heuristic and TS.
Greedy insertion of SVs only when
pool is updateda.

Phase 
2:

Diversification (tree search):
Forbids the use of least profitable ships 
during constructive heuristic and TS.
Greedy insertion of SVs only when
pool is updateda.

Results

First pool of 
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solutions 

inserted into 
pool

Phase 
3:

Improvement:
Restart from solutions of the pool (all ships 
are used).
Greedy insertion of SVs at every iterationa.

Improvement 
of pool 

solutions

Phase 
4:

Intensification:
Restart from solutions of the pool.
Use of pool information.
Greedy insertion of SVs at every iterationa.

Improvement 
of pool 

solutions
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for spot voyages’ is employed at each iteration of TS. First, pool solutions are sorted by 

descending order of profit, and starting from the top solution of the pool, TS is executed for about 

700 iterations. If a new solution is found and inserted into the pool, this solution is also a 

candidate for the restarting procedure. After TS is finished, the next solution of the pool list is 

used for the restarting process. Phase 3 stops when there are no new solutions to restart with or 

when the number of restarts equals to the parameter phase3_max_restarts. The result of this 

phase is the quality improvement of pool solutions. 

 Phase 4 is very similar to Phase 3. The difference is that the component ‘4.9. Use of pool 

information to guide the search’ is activated in Phase 4. This phase also attempts to further 

improve the quality of pool solutions for at most phase4_max_restarts. 

 The parameters of TS are shown in Table 3. Most parameters are proportional to the size 

of the problem, which is the product of the cardinality of the set V of ships and the set CV of 

contractual voyages. The expressions and values of Table 3 are the result of computational 

experiments dedicated to the parameter setting of the tabu search. These tests were executed on a 

reduced set of 24 test problems extracted from the complete set of 56 test problems presented in 

the next section. 

 The first four parameters of Table 3 limit the total number of iterations of each phase of 

TS. First, the parameter maxIter is calculated accordingly to the upper bound of each TS phase 

and then maxIter is used to compute the parameter totalCalcs for the TS stop criterion. PoolMax 

determines the size of the pool of solutions (either 5 or 10 solutions). The next two parameters 

define the minimum and maximum number of neighboring solutions to update the value of the 

variable tabuTenureToAdd (Figure 4). The last three parameters calculate the tabu tenure values 

t1, t2 and t3 described in section 4.6. The expressions tiLB and tiUB, i{1,2,3}, refer to the lower 

and upper bounds of parameter ti, i{1,2,3}. 
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Table 3. TS parameters 

TS 
Parameter 

Description Expression Lower 
bound (LB) 

Upper 
bound (UB) 

maxIter 

(phase 1) 
Estimate of the maximum 
number of iterations of TS  CVV 40  0 2000 

maxIter 

(phase 2) 
Estimate of the maximum 
number of iterations of TS  CVV 40  0 400 

maxIter 

(phases 3 
and 4) 

Estimate of the maximum 
number of iterations of TS  CVV 40  0 700 

totalCalcs 

Stop criterion: maximum 
number of calls to the 
procedure that calculates 
route_profit 

 CVVmaxIter 6  0  

poolMax 
Maximum number of solutions 
in the pool 

na 5 10 

minNumber

OfNeighbors 

If the number of neighboring 
solutions is less than this value,  
tabuTenureToAdd is reduced 

 CVV 8  0  

maxNumber

OfNeighbors 

If the number of neighboring 
solutions is greater than this 
value,  tabuTenureToAdd is 
increased 

fNeighborsminNumberO4  0  

tabu tenure t1 

If a contractual voyage i is 
moved from ship a to ship b, 
voyage i must remain on ship b 
for at least t1 iterations 

 














 

ToAddtabuTenure

t1,t1random
2

t1

max UBLB

LB ,  









 

3

CVV  

and bounded 
by [5, 12] 

 











5

,5.1

LB

LB

t1

t1
max

 

tabu tenure t2 

If a contractual voyage i is 
moved from ship a to ship b, 
voyage i must not return to 
ship a for at least t2 iterations 

 














 

ToAddtabuTenure

t2,t2random
2

t2

max UBLB

LB ,  






 
2

UBLB t1t1

 

 LBt2. 51  

tabu tenure t3 

If a swap move is executed 
between ships a and b, another 
swap move between ships a 
and b may only occur after t3 
iterations 

 














 

ToAddtabuTenure

t3,t3random
2

t3

max UBLB

LB ,  
UBt2   LBt3. 51  

 

 Finally, six variants of the TS algorithm were implemented considering the tabu 

components and phases as shown in Table 4. 

Table 4. Implementations of TS variants 

TS 
variation 

List of 
candidates? 

Pool 
management 

phase3_ 
max_restarts 

Apply Phase 4?  
(phase4_max_restarts) 

TSNone No PMF 4 x poolMax no 
TSPMF No PMF 2 x poolMax yes, (2 x poolMax) 
TSPMD No PMD 2 x poolMax yes, (2 x poolMax) 

TSlcNone yesa PMF 4 x poolMax no 
TSlcPMF yesa PMF 2 x poolMax yes, (2 x poolMax) 
TSlcPMD yesa PMD 2 x poolMax yes, (2 x poolMax) 

a
With dist_perc set to 70% for the feasible region and to 50% for the infeasible region. 



103 

 The TS variations with ‘None’ have no Phase 4, but the Phase 3 of these variations has at 

most 4 x poolMax restarts. The ‘PMF’ and ‘PMD’ variations have Phase 4 with, respectively, 

PMF and PMD pool management. All variations with ‘lc’ make use of the list of candidates for 

the insertion and exchange neighborhoods. 

 The six variants of TS (Table 4) were tested with poolMax= 5 and poolMax=10, resulting 

in a total of 12 TS tests: TSNone5, TSPMF5, TSPMD5, TSlcNone5, TSlcPMF5, TSlcPMD5 and 

TSNone10, TSPMF10, TSPMD10, TSlcNone10, TSlcPMF10, TSlcPMD10. 

5. Computational study 

 The TS variants of Table 4 were implemented in C++ and computational tests were 

executed in an Intel Xeon 2.83 GHz, 8 GB RAM computer with the Ubuntu operating system. 

The results of the TS variants are compared to those obtained in Branchini and Armentano [3], 

which used CPLEX 12.4 to solve the related MIP problems of the same data set. 

5.1. Set of test problems 

 A random test problem generator that considers real world assumptions and parameters 

was developed to create a set of 56 test problems, 14 test problems for each one of the 4 models 

of Table 1. Although the test problems do not reflect a specific liner operation, the parameters of 

each problem were defined within a range of values that could represent practical ship routing 

operations.  

 The number of ships of a company ranges from 18 to 50 ships plus 6 to 32 hire ships, 

resulting in a total of 24 to 82 ships. Each ship belongs to a ship class named Handysize (two 

types), Supramax, Panamax and Capesize (also two types), which determine most of ships 

parameters such as capacity, sailing speed and costs. 

 A set of 53 worldwide ports is used to create the set of demands. A distance matrix among 

ports was created based on ports latitude and longitude. In addition, for each pair ‘port x ship 

class’, a service time, loading/unloading rate and running costs were determined randomly within 

real world assumptions. Also, the location of the ship at the time it is available is a port selected 

randomly from the set of 53 ports. 

 Each problem of the data set has between 30 and 110 contractual voyages and between 10 

and 34 spot voyages, which corresponds to a ratio of contractual and spot voyages around 75%. 

The amount of cargo at each port call, the voyages’ time windows, duration and revenue are 

randomly selected. 
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 Contractual voyages were constructed based on a set of 12 trade routes with a number of 

port calls between 15 and 30. Spot voyages have a single port call to load and a single port call to 

unload the cargo. The origin and destination port calls are chosen randomly from the set of 53 

ports.  

5.2. Computational results 

 This section presents the summary of the computational results. For the complete results 

tables of the TS variants and a detailed discussion of the computational experiments refer to 

Appendix A. Moreover, Appendix B presents the results of the constructive heuristic. 

 Table 5 compares the performance of the 12 variants of TS considering the 4 problem 

models of Table 1. The results of the three MIP based solution methods of Branchini and 

Armentano [3] are also included in Table 5. These three MIP based methods are: 

1) MIP Exact (MIPE): CPLEX implementation of the mixed integer programming model that is 

defined on a directed graph whose nodes represent contractual and spot voyages. All feasible ship 

routes are constructed through sets of arcs of this graph. If CPLEX is able to find the optimal 

solution of the MIPE model during the computational time of 24 hours, this optimal solution is 

the best feasible solution of the problem. 

2) MIP Best Nodes without the nodes that combine contractual and spot voyages into a single 

node (MIPBN00): CPLEX implementation of the mixed integer programming model of a 

reduced graph that does not represent all feasible solutions of the original problem. Thus, there is 

no guarantee that the best feasible solution found by CPLEX for MIPBN00 is the optimal 

solution of the problem.  

3) MIP Best Nodes with some nodes that combine contractual and spot voyages (MIPBN15): 

CPLEX implementation of the mixed integer programming model of a reduced graph in which 

there are some5 nodes that combine contractual and spot voyages into a single node. The number 

of nodes of the graph optimized in the MIPBN15 is larger than that of MIPBN00, however, the 

graph still does not represent all feasible solutions of the original problem. Hence, there is no 

guarantee that the best feasible solution found by CPLEX for MIPBN15 is the optimal solution of 

the problem.  

                                                 
5 The label ‘15’ of  MIPBN15 means that the best (top ‘1’) node of each triplet “contractual voyage x subsets of spot 
voyages x ship” is selected and that, afterwards, the top ‘5’ nodes of each pair “contractual voyage x ship” are 
introduced into the graph (details in Branchini and Armentano [3]). 
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 Table 5 presents six rows for each problem model (SIMPLE.Cv, SIMPLE.CvSv, 

FULL.Cv and FULL.CvSv). The first row contains the number of best solutions (solutions with 

the largest profit) that each  has found considering the 14 test problems of each problem model. 

The second row contains the number of optimal solutions found by each method. A solution is 

only considered to be optimal if its profit is equal to the profit of the best feasible solution found 

by MIPE that was proved to be optimal by CPLEX. The next three rows show, respectively, the 

minimum, average and maximum percentage between the profit found by each method and the 

best profit when considering the results of all fifteen columns. The greater the percentage value, 

the better the performance of the method (maximum difference is 0.0%). The fifth row shows the 

average computational time, in seconds, that each method required to solve one test problem of 

each problem model. The MIP methods and TS variants that produced the best results for each 

problem model are highlighted with a gray background. 

The following conclusions are obtained from the computational results of Table 5: 

 MIPE solved to optimality all 14 SIMPLE.Cv test problems in a short computational time; 

 MIPBN15 and TSPMD10 are the best average performers for the SIMPLE.CvSv test problems. 

The average computational time of TSPMD10 is about 87% lower than that of MIPBN15; 

 FULL.Cv test problems are also solved by MIPE. However, the average computational time for 

large problems is also high. If high quality feasible solutions are required in a shorter 

computational time, TSlcPMD10, or even TSlcPMD5 and TSPMD5, should be applied; 

 Only the smallest FULL.CvSv test problems may be solved by MIP based methods. MIPBN00 

was selected as the best MIP based method for the FULL.CvSv because it was the only MIP 

based method that was able to find feasible solutions for 13 out of the 14 test problems (MIPE 

and MIPBN15 were only able to find feasible solutions for 10 test problems). In general, 

TSlcPMD5 and TSlcPMD10 have the smallest average difference from the best solutions and 

are the best choice for these problems; 

 The average computational time of TS variants ranges from 20 minutes (TSNone5) to 3.7 hours 

(TSlcPMD10). On the other hand, MIP based methods have a much larger computational time. 

Except for the SIMPLE.Cv test problems, the average computational time for the MIP based 

methods ranges from 7 hours to 17 hours. 
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Table 5. Summary of the computational results 

 
a
MIPE was unable to find a feasible solution for 3 of the 14 SIMPLE.CvSv test problems. 

b
MIPE and MIPBN15 were unable to find a feasible solution for 4 of the 14 FULL.CvSv test problems. 

c
MIPBN00 did not find a feasible solution for one FULL.CvSv test problem. 

na: the MIPBN00 and MIPBN15 methods are not applied to the SIMPLE.Cv and FULL.Cv problem 

models, since these models do not have spot voyages.  

  

 Further conclusions are drawn from the results of Table 5 and also the discussion of 

Appendix A: 

 In general, the results of the TS variants with poolMax=10 are better than the results of TS 

variants with poolMax=5. Also, the computational time of the TS variants with poolMax=10 is 

about twice as large as the computational time of TS variants with poolMax=5; 

 There is not a significant difference between the quality of the solutions found by TS variants 

with candidate list, and that of TS variants without candidate list; 

 The pool solutions of the TS variants with pool management based on distance (PMD) are more 

diverse than that of the TS variants with pool management based on fleet composition (PMF); 
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 Phase 4 significantly increases the total computational time, and it yields a marginal 

improvement in the quality of the solutions. 

6. Conclusions and future work 

 This research presented a tabu search to tackle planning problems faced by liner shipping 

companies in maritime logistics. Computational tests were executed on a proposed set of 56 test 

problems that were based on real world data. Although exact methods, such as MIPE, were able 

to solve small to medium problems, the ability to obtain feasible and high quality solutions with 

such methods is reduced as problem size increases. In this case, implementations of variants of 

tabu search showed more adequate. 

 A constructive heuristic and twelve variants of tabu search were proposed. These variants 

make use of insertion, exchange and swap neighborhoods, and infeasible regions are explored by 

the insertion and exchange neighborhoods. A short term memory, based on three tabu tenure 

policies, was implemented to avoid cycling and a long term memory, based on the frequency of 

attributes found in a pool of high quality and diverse solutions, was used to further improve the 

search.  A pool of high quality solutions also adds flexibility for the planner of the shipping 

company to choose which plan should be put into practice. 

 The application of pool information to guide the search (Phase 4) further enhanced 

solution quality and the use of a distance measure proved to be a more efficient to manage the 

pool of solutions. In addition, pools with 10 solutions generated better results than pools with 5 

solutions. 

 Finally, the following topics of future work related to this research are presented. 

 Build a TS neighborhood specifically for spot voyages. A custom build TS neighborhood for 

spot voyages would probably yield better results than the greedy heuristic of section 4.10. The 

challenge is to add this neighborhood without requiring a large computational effort. 

 Implement a parallel computing version of TS. Since TS is based on creating and maintaining 

a pool of high quality and diverse solutions, different variants (and even variants with different 

parameters, e.g. tabu tenure) could be executed simultaneously on several CPU processors. 

Every time a new solution is found by a process, the same pool management criteria would be 

applied. Parallelization could be implemented from the beginning of the method and 

throughout the 4 Phases of TS. This could drastically reduce the computational time of TS. 
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 Apply other solution recombination and improvement procedures, such as path relinking 

(Glover and Laguna [13]), to all solutions of the pool of TS. In this case, other types of 

distance measures, such as a measure that also considers the sequence of voyages in routes, 

may be used to control the diversity of the solutions of the pool. 

 Modify the model and TS to optimize a set of spot voyages scenarios instead of a single 

scenario. This multiple scenario approach yields solutions that are more robust, especially 

when the information regarding voyages revenue, set of ports and cargo are highly uncertain. 
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Appendix A – TS computational results 

 Tables A.1 and A.2 show the solution quality comparison among TS variants without a 

candidate list and Tables A.4 and A.5 present the comparison among TS variants with a candidate 

list (section 4.4). 

 

Table A.1. Solution quality of TS without candidate list – SIMPLE.Cv and SIMPLE.CvSv 

 

 

TSNone5 TSPMF5 TSPMD5 TSNone10 TSPMF10 TSPMD10

a
TSNone5,TSPMF5,TSPMD5,TSNo

ne10,TSPMF10,TSPMD10
3343742 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

b
TSNone5,TSPMF5,TSPMD5,TSNo

ne10,TSPMF10,TSPMD10
5410819 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

c
TSNone5,TSPMF5,TSPMD5,TSNo

ne10,TSPMF10,TSPMD10
40605550 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

d TSNone10,TSPMF10,TSPMD10 42236708 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

e TSPMD5 18653004 0.0% 0.0% 0.0% 0.0% -0.7% -0.7% 0.0%

f TSPMD10 77597740 -0.1% -0.7% -0.7% -0.1% -0.7% -0.1% 0.0%

g TSPMD10 44883988 -0.1% -2.0% -0.3% -1.0% -1.0% -0.2% 0.0%

h TSPMD5 62898464 -1.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

i TSPMD10 62549573 -0.1% -0.2% -0.2% -0.1% 0.0% 0.0% 0.0%

j TSPMF5 114999045 -3.5% -2.5% 0.0% -0.1% -0.1% -0.1% 0.0%

k TSPMD10 112859379 -0.3% -0.1% -0.1% -0.1% -0.1% -0.1% 0.0%

l TSPMF10 123339799 -0.7% -0.5% 0.0% -0.5% -0.3% 0.0% -0.5%

m TSPMF10 132682800 -3.6% -1.2% -1.1% -1.0% -1.1% 0.0% -0.1%

n
TSNone5,TSPMF5,TSPMD5,TSNo

ne10,TSPMF10,TSPMD10
172773817 -3.7% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

a
TSPMF5,TSPMD5,TSNone10,TSP

MF10,TSPMD10
5826461 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

b
TSPMD5,TSNone10,TSPMF10,TS

PMD10
7796802 0.0% -0.3% -0.3% 0.0% 0.0% 0.0% 0.0%

c TSPMD10 47171237 0.0% -0.6% -0.6% -0.6% -0.6% -0.6% 0.0%

d TSPMD5 47558677 -0.3% -0.1% -0.1% 0.0% -0.1% -0.1% -0.1%

e TSPMD10 25898928 0.0% -3.3% -3.1% -1.1% -2.8% -2.1% 0.0%

f TSPMD10 83464896 -1.1% -0.5% -0.3% -0.2% -0.2% -0.2% 0.0%

g TSPMF5 51915539 1.0% 0.0% 0.0% -4.1% -4.0% -3.7% -3.8%

h TSPMF10 67595230 -0.9% -0.3% -0.3% -0.9% -0.3% 0.0% -0.7%

i TSPMF10 68507222 -0.4% -0.4% -0.2% 0.0% -0.1% 0.0% -0.1%

j TSPMD5 125279120 -1.1% -2.1% -2.1% 0.0% -2.2% -2.2% -0.6%

k TSPMD5 118302835 -0.8% -0.3% -0.2% 0.0% -0.1% 0.0% -0.2%

l TSNone10,TSPMF10 131944443 -0.5% -0.2% -0.1% -0.1% 0.0% 0.0% -0.1%

m TSPMD10 144854899 -1.8% -1.9% -1.8% -1.1% -1.8% -1.7% 0.0%

n TSNone10 184196388 -0.2% -0.1% -0.1% -0.3% 0.0% 0.0% -0.1%

-3.7% -3.3% -3.1% -4.1% -4.0% -3.7% -3.8%

-0.7% -0.6% -0.4% -0.4% -0.6% -0.4% -0.2%

1.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
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The first three columns of these tables contain, correspondingly, the name of the variants 

that found the best feasible solution, the profit of the best solution and the % difference of this 

profit with the best profit found by any MIP model solution approach of Branchini and 

Armentano [3]. The cells of these three columns are highlighted with a gray background 

whenever the profit of the solution found by TS is greater than the profit of the solution found by 

the MIP model solution approach (e.g. test problem SIMPLE.CvSv g of Table A.1). The 

following 6 columns present the profit percentage difference of the profit found by each TS 

method and the profit of the best solution found by all 6 TS variants. The last 4 rows present, 

respectively, the minimum, average and maximum percentage, and the number of times the TS 

method found a solution equal to or better than the best solution of all 6 variants. 

 For TS variants without candidate list, TSPMD10 usually produced the best results for 

SIMPLE.Cv and SIMPLE.CvSv (15 out of 28 test problems of Table A.1, about 54%). In 

addition, TSPMF5 improved the best known solution of test problem SIMPLE.CvSv g by 1.0%. 

TSPMF10 and TSPMD5 were the variants that produced, respectively, the second and third best 

results when considering the total number of best solutions found by each method. 

For the FULL.Cv and FULL.CvSv test problems (Table A.2), TSPMD10, TSPMD5 and 

TSPMF10 variants produced the best results. Also, 9 out of the 14 best known solutions of the 

FULL.CvSv test problems were improved, including the solution of test problem n, to which the 

MIP models approach was not able to find a feasible solution.  

 As shown in Table A.2, TSPMD10 generated an average result of -0.2%, which is slightly 

greater than the result of -0.3% of TSPMF10. The profit difference between these two variants is 

more significant for larger problems, such as FULL test problems j to n. This indicates that pool 

management based on distance yields, on average, solutions with marginally higher profits. 
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Table A.2. Solution quality of TS without candidates list – FULL.Cv and FULL.CvSv 

 
na: not available because no MIPx method found a feasible solution for test problem FULL.CvSv n 

 

 Additionally, because of the pool management based on distance, pool solutions of PMD 

variants are more diverse than those of PMF variants. For example, both TSPMF10 and 

TSPMD10 variants found the same best solution for test problem FULL.Cv i. However, as shown 

in Figure A.1, the pool of TSPMD10 is more diverse than the pool of TSPMF10 for this test 

problem. Figure A.1 presents, for each solution out of the 10 solutions of the pool of each 

method, the profit percentage difference of a solution and the best solution (y-axis) and the 

minimum distance between the solution and all other solutions of the pool (x-axis). 

TSNone5 TSPMF5 TSPMD5 TSNone10 TSPMF10 TSPMD10

a
TSNone5,TSPMF5,TSPMD5,TSNo

ne10,TSPMF10,TSPMD10
51221275 -0.7% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

b TSPMF5,TSPMF10 106088307 -0.9% -0.5% 0.0% -0.1% -0.5% 0.0% -0.1%

c TSPMD5 108775879 -0.6% -1.1% 0.0% 0.0% -0.1% -0.1% -0.4%

d
TSNone5,TSPMF5,TSPMD5,TSNo

ne10,TSPMF10
123653652 -1.6% 0.0% 0.0% 0.0% 0.0% 0.0% -0.1%

e TSPMD10 103789092 -0.1% -0.2% -0.2% -0.2% -0.1% -0.1% 0.0%

f TSNone5,TSPMF5,TSPMD5 164734090 -0.4% 0.0% 0.0% 0.0% -0.1% -0.1% -0.1%

g TSPMD5 156880611 -2.2% -0.9% -0.9% 0.0% -0.9% -0.9% -0.9%

h TSNone10,TSPMF10 139261461 -1.5% -0.1% -0.1% -0.1% 0.0% 0.0% -0.1%

i TSPMD5 200550529 -1.2% -0.3% -0.2% 0.0% -0.2% -0.2% -0.2%

j TSPMD10 253292488 -1.2% -1.1% -1.1% -0.6% -1.1% -1.1% 0.0%

k TSNone10,TSPMF10 235517853 -1.6% -0.2% -0.2% -0.1% 0.0% 0.0% -0.1%

l TSPMD10 246213385 -1.0% -0.8% -0.8% -0.8% -0.8% -0.8% 0.0%

m TSPMD10 317861144 -0.6% -0.9% -0.9% -0.6% -0.9% -0.9% 0.0%

n TSPMD5,TSPMD10 301293459 -1.1% -0.8% -0.8% 0.0% -0.1% -0.1% 0.0%

a
TSNone5,TSPMF5,TSPMD5,TSNo

ne10,TSPMF10,TSPMD10
53402178 -0.7% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

b TSPMF10 108857004 -1.1% -0.5% -0.2% -0.5% -0.5% 0.0% -0.5%

c TSNone10,TSPMF10 112587365 -1.4% -0.1% -0.1% 0.0% 0.0% 0.0% -0.1%

d TSPMD10 127920763 -1.8% -0.2% -0.2% 0.0% -0.2% -0.2% 0.0%

e TSPMD5 106158453 0.7% -0.5% -0.5% 0.0% -0.1% -0.1% -0.2%

f TSPMD5,TSNone10,TSPMF10 170224077 2.5% -0.5% -0.5% 0.0% 0.0% 0.0% -0.2%

g TSNone5,TSPMF5,TSPMD5 163035362 -0.3% 0.0% 0.0% 0.0% -2.1% -2.1% -2.1%

h
TSNone5,TSPMF5,TSNone10,TSP

MF10
143935991 0.7% 0.0% 0.0% -0.1% 0.0% 0.0% -0.2%

i TSPMD10 205689641 0.7% -0.1% -0.1% -0.1% -0.1% -0.1% 0.0%

j TSPMF10 259737301 27.9% -0.6% -0.6% -0.9% -0.4% 0.0% -0.2%

k TSPMD10 238066869 6.5% -0.1% -0.1% -0.3% -0.1% -0.1% 0.0%

l TSPMD10 253667953 27.2% -0.7% -0.6% -1.1% -1.1% -1.1% 0.0%

m TSPMD10 326642027 17.9% -0.4% -0.4% -0.2% -0.4% -0.4% 0.0%

n TSPMD10 309827504 na -0.1% -0.1% -0.4% -0.1% -0.1% 0.0%

-2.2% -1.1% -1.1% -1.1% -2.1% -2.1% -2.1%

2.4% -0.4% -0.3% -0.2% -0.4% -0.3% -0.2%

27.9% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
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(                                                                     )  The last four columns show the same information for the 

FULL.Cv and FULL.CvSv test problems.  

Table A.3. Ratio of the computational time between poolMax=10 and poolMax=5 variants 

 

 Table A.3 shows that TSNone5 has a computational time between 100 seconds and 2.6 

hours and that the computational time of poolMax=10 variants is, on average, around twice the 

computational time of poolMax=5 variants. 

 Therefore, the combined analysis of Tables A.1, A.2 and A.3 shows that the results of 

method TSPMF5 of Table A.1 and the results of variants TSPMF5 and TSPMD5 of Table A.2 

are very competitive when compared with those of TSPMD10. TSPMD10 requires about the 

TSNone TSPMF TSPMD TSNone TSPMF TSPMD

a 100 1.5 1.7 1.9 a 156 1.7 1.8 2.0

b 145 1.6 1.7 1.6 b 291 1.4 1.5 3.6

c 249 1.9 2.1 1.9 c 554 2.7 1.9 1.4

d 379 1.5 1.7 1.8 d 517 1.6 1.6 2.0

e 370 1.7 1.6 1.9 e 769 1.8 2.3 1.8

f 582 1.3 1.4 1.7 f 874 1.9 1.9 2.4

g 821 1.3 1.8 1.9 g 1,396 1.4 1.6 1.3

h 868 1.4 1.2 2.0 h 1,777 1.4 1.7 2.3

i 916 1.4 1.6 2.1 i 2,173 1.6 1.8 2.2

j 1,555 1.6 1.5 1.8 j 4,617 1.7 1.8 2.7

k 1,764 1.4 1.5 1.9 k 4,439 2.2 2.4 1.5

l 2,193 1.5 1.6 2.2 l 5,318 1.9 2.0 2.6

m 2,846 1.3 1.4 2.0 m 9,238 1.9 1.8 2.1

n 2,918 1.6 1.7 1.8 n 9,305 2.1 1.9 2.3

a 135 1.9 1.6 1.6 a 214 1.3 1.5 1.9

b 228 2.0 1.9 1.9 b 229 1.6 1.6 1.5

c 455 1.5 1.8 2.3 c 532 2.1 2.0 2.0

d 529 3.0 1.8 1.9 d 446 1.8 1.9 2.3

e 984 1.3 1.6 1.9 e 608 2.4 2.0 2.0

f 1,150 2.2 1.7 1.6 f 903 1.7 1.8 2.6

g 1,822 1.2 1.7 1.7 g 1,070 1.3 1.6 1.3

h 2,010 1.1 1.8 1.8 h 1,399 2.1 2.1 2.6

i 1,054 2.1 1.9 1.6 i 1,691 1.5 2.0 1.7

j 4,464 1.0 1.8 2.0 j 4,296 1.9 2.3 2.1

k 3,299 1.6 1.8 1.8 k 3,652 1.8 1.8 2.7

l 3,161 1.6 2.0 2.2 l 6,489 1.7 1.5 2.1

m 5,415 2.3 1.8 1.9 m 9,300 1.4 1.5 1.4

n 7,384 2.0 2.1 1.9 n 9,259 1.9 2.0 1.6

100 1.0 1.2 1.6 Minimum 156 1.3 1.5 1.3

1,707 1.6 1.7 1.9 Average 2,911 1.8 1.8 2.1

7,384 3.0 2.1 2.3 Maximum 9,305 2.7 2.4 3.6

SIMPLE

TSNone5 

(sec)

Ratio RatioTSNone5 

(sec)FULL

Minimum

Average

Maximum

C
v

C
v

S
v
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double of the computational time of these variants with poolMax=5 to achieve marginal 

improvements in the quality of the solutions. 

 The results with candidate list, presented in Tables A.4 and A.5, reveal that TSlcPMD10 

produced the best results among all variants. TSlcPMD10 generated the best results in 18 out of 

the 28 SIMPLE.Cv and SIMPLE.CvSv (64%) and in 17 out of the 28 FULL.Cv and FULL.CvSv 

test problems (61%). Table A.5 also shows that TS variants with candidate list improved the best 

known results of the same 9 FULL.CvSv test problems of Table A.2. 

Table A.4. Solution quality of TS with candidate list – SIMPLE.Cv and SIMPLE.CvSv 

 

TSlcNone5 TSlcPMF5 TSlcPMD5 TSlcNone10 TSlcPMF10 TSlcPMD10

a
TSlcNone5,TSlcPMF5,TSlcPMD5,TSlc

None10,TSlcPMF10,TSlcPMD10
3343742 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

b
TSlcNone5,TSlcPMF5,TSlcPMD5,TSlc

None10,TSlcPMF10,TSlcPMD10
5410819 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

c
TSlcNone5,TSlcPMF5,TSlcPMD5,TSlc

None10,TSlcPMF10,TSlcPMD10
40605550 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

d TSlcPMD10 42217121 0.0% -0.6% -0.1% -0.2% -0.6% -0.1% 0.0%

e TSlcPMD10 18648579 0.0% -0.6% -0.6% -0.8% -0.6% -0.5% 0.0%

f TSlcNone10,TSlcPMF10 77686919 0.0% -0.8% -0.8% -0.2% 0.0% 0.0% -0.2%

g TSlcPMD10 44916802 0.0% -3.6% -0.1% 0.0% -3.6% -3.6% 0.0%

h TSlcPMD10 62898464 -1.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

i TSlcPMD5 62481329 -0.2% -0.2% -0.1% 0.0% 0.0% 0.0% -0.2%

j TSlcPMD10 114953417 -3.5% -1.5% -1.5% 0.0% -1.5% -1.5% 0.0%

k TSlcPMD10 113017701 -0.2% -0.3% -0.3% -0.3% 0.0% 0.0% 0.0%

l TSlcPMD10 123263787 -0.7% -0.3% -0.3% -0.3% -0.3% -0.3% 0.0%

m TSlcPMD10 133446774 -3.1% -0.9% -0.9% -0.3% -1.0% -0.9% 0.0%

n TSlcNone5,TSlcPMF5 172713985 -3.7% 0.0% 0.0% -0.3% -0.3% -0.1% 0.0%

a TSlcPMD5,TSlcPMD10 5826461 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

b TSlcPMD10 7796802 0.0% -0.3% -0.3% -0.3% -0.3% -0.3% 0.0%

c
TSlcPMF5,TSlcNone10,TSlcPMF10,TS

lcPMD10
46901316 -0.6% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

d TSlcNone10,TSlcPMF10,TSlcPMD10 46604329 -2.3% -0.3% -0.2% -0.2% 0.0% 0.0% 0.0%

e TSlcPMD10 25702817 -0.8% -1.6% -0.4% -1.9% -1.8% -1.6% 0.0%

f TSlcPMD10 83388381 -1.2% -0.6% -0.6% -1.4% -0.7% -0.5% 0.0%

g TSlcNone5,TSlcPMF5 50022639 -2.7% 0.0% 0.0% -0.4% -0.6% -0.6% -0.6%

h TSlcNone5,TSlcPMD10 68003256 -0.3% 0.0% -0.2% -0.9% -0.4% -0.4% 0.0%

i
TSlcNone5,TSlcPMF5,TSlcPMD5,TSlc

None10,TSlcPMF10
68402550 -0.6% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

j TSlcNone10,TSlcPMF10 122834707 -3.0% -0.3% -0.2% -0.6% 0.0% 0.0% -0.4%

k TSlcPMD5 118350049 -0.7% -0.2% -0.1% 0.0% -0.3% -0.3% -0.1%

l TSlcPMF10 132244571 -0.3% -0.2% -0.2% -0.2% -0.1% 0.0% -0.2%

m TSlcPMD5 144248865 -2.2% -0.3% -0.3% 0.0% -0.4% -0.4% -0.4%

n TSlcPMF5 184291330 -0.1% -0.1% 0.0% -0.4% -0.2% -0.2% -0.2%

-3.7% -3.6% -1.5% -1.9% -3.6% -3.6% -0.6%

-1.0% -0.5% -0.3% -0.3% -0.5% -0.4% -0.1%

0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
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 However, when considering the additional computational time of variants with 

poolMax=10 over variants with poolMax=5, TSlcPMF5 is the best alternative to the SIMPLE 

problem models (average result of -0.3%, minimum of -1.5%) and TSlcPMD5 is the best option 

for the FULL problem models (average result of -0.2%, minimum of -1.0%).  

Table A.5. Solution quality of TS with candidate list – FULL.Cv and FULL.CvSv 

 
na: not available because no MIPx method found a feasible solution for test problem FULL.CvSv n 

 

 Next, Figure A.2 compares the percentage of the best solutions, which is the number of 

best solutions found by the method divided by the total number of test problems (56 test 

problems), of variants with poolMax=5 and poolMax=10. 

TSlcNone5 TSlcPMF5 TSlcPMD5 TSlcNone10 TSlcPMF10 TSlcPMD10

a
TSlcNone5,TSlcPMF5,TSlcPMD5,TSlc

None10,TSlcPMF10,TSlcPMD10
51221275 -0.7% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

b TSlcPMD5,TSlcNone10,TSlcPMF10 106088307 -0.9% -0.4% -0.1% 0.0% 0.0% 0.0% -0.1%

c TSlcPMF10 108691411 -0.6% -1.0% -1.0% -0.4% 0.0% 0.0% -0.2%

d TSlcNone10,TSlcPMF10,TSlcPMD10 123679184 -1.6% 0.0% 0.0% -0.4% 0.0% 0.0% 0.0%

e TSlcPMD5 103741420 -0.1% -0.4% -0.4% 0.0% -0.1% -0.1% 0.0%

f TSlcPMD10 164678230 -0.4% 0.0% 0.0% -0.2% 0.0% 0.0% 0.0%

g TSlcPMD5,TSlcPMD10 157052409 -2.1% -0.1% -0.1% 0.0% -0.1% -0.1% 0.0%

h TSlcPMD10 140609739 -0.5% -0.6% -0.6% -0.6% -0.6% -0.6% 0.0%

i TSlcNone5,TSlcPMF5,TSlcPMD5,TSlcN 199835329 -1.5% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

j TSlcNone10,TSlcPMF10 253829401 -1.0% -0.7% -0.7% -0.8% 0.0% 0.0% -0.2%

k TSlcPMD5 235337241 -1.7% -0.6% -0.6% 0.0% -0.6% -0.6% -0.1%

l TSlcPMD10 245407642 -1.3% -1.0% -1.0% -1.0% -1.0% -1.0% 0.0%

m TSlcPMD5 316908357 -0.9% -0.6% -0.6% 0.0% -0.1% -0.1% -0.1%

n TSlcPMD10 301246527 -1.1% -0.3% -0.3% -0.3% -0.3% -0.3% 0.0%

a
TSlcNone5,TSlcPMF5,TSlcPMD5,TSlc

None10,TSlcPMF10,TSlcPMD10
53402178 -0.7% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

b TSlcPMF10 108287065 -1.6% -0.6% -0.1% 0.0% -0.5% 0.0% -0.2%

c TSlcNone10,TSlcPMF10 112631656 -1.4% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

d TSlcPMD10 128296392 -1.6% -0.6% -0.6% -0.4% 0.0% 0.0% 0.0%

e
TSlcNone5,TSlcPMF5,TSlcPMD5,TSlc

None10,TSlcPMF10,TSlcPMD10
106294800 0.8% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

f
TSlcNone5,TSlcPMF5,TSlcPMD5,TSlc

None10,TSlcPMF10,TSlcPMD10
170337072 2.6% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

g TSlcPMD10 162895067 -0.4% -1.7% -1.7% -0.4% -1.7% -1.7% 0.0%

h TSlcPMD10 144343250 1.0% -0.6% -0.6% -0.5% -0.6% -0.6% 0.0%

i
TSlcNone5,TSlcPMF5,TSlcNone10,TSl

cPMF10,TSlcPMD10
205491512 0.6% 0.0% 0.0% -0.1% 0.0% 0.0% 0.0%

j TSlcPMD5 258821202 27.4% -0.3% -0.3% 0.0% -0.3% -0.3% -0.1%

k TSlcPMF10 238135783 6.5% -0.4% -0.4% -0.2% -0.1% 0.0% -0.3%

l TSlcPMD5 253208233 27.0% -0.9% -0.9% 0.0% -1.4% -0.9% -0.6%

m TSlcPMD10 324897560 17.2% -0.1% -0.1% 0.0% 0.0% 0.0% 0.0%

n TSlcPMD10 310174265 na -0.3% -0.3% -0.2% -0.2% -0.2% 0.0%

-2.1% -1.7% -1.7% -1.0% -1.7% -1.7% -0.6%

2.3% -0.4% -0.4% -0.2% -0.3% -0.2% -0.1%

27.4% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
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Figure A.2. Percentage of best solutions of variants with poolMax=5 and poolMax=10 

 

 Figure A.2 shows that the percentage of best solutions of variants with poolMax=10 is 

always higher than that of variants with poolMax=5. The figure also reveals that the TSPMD10 

and TSlcPMD10 variants were the best performers with a percentage of the best solutions of 38% 

and 36%, respectively. 

 Another conclusion drawn from Figure A.2 is that, except for TSNone10, the use of a 

candidate list did not enhance the overall performance of TS. Table A.6 presents the detailed 

results of the best TS variants, TSPMD10 (without candidate list) and TSlcPMD10 (with 

candidate list), and highlights when the use of a candidate list demonstrated to be advantageous. 

 The first two columns of Table A.6 show, for the SIMPLE.Cv and SIMPLE.CvSv test 

problems, the profit of TSPMD10 and TSlcPMD10, respectively. The third column is the 

percentage difference between the profit of TSlcPMD10 and TSPMD10. When the profit of 

TSlcPMD10 is greater than the profit of TSPMD10, the percentage is greater than zero, and the 

table cell is highlighted with a gray background. The fourth column is the ratio of the 

computational time, which is equal to 
TSPMD10 of time nalcomputatio

TSlcPMD10 of time nalcomputatio . The last four columns 

present the same information for the FULL.Cv and FULL.CvSv test problems. 

 Table A.6 shows that, out of the 56 test problems, the use of a candidate list improved the 

results of 23 test problems, reached the same results in 7 test problems, and performed worse in 

26 problems. In addition, the average difference is between -0.1% and 0.1%, which suggests that 

it is not possible to find a significant difference between the quality of the solutions found by 

each method. Moreover, since both TS variants use the same stop criterion, which is based on the 
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total number of calls of the procedure that calculates route_profitr, as described in section 4.1, the 

average computational times of both variants are likely to be close, as shown by the columns 

‘Comp. time ratio’. 

Table A.6. Comparison of the results of TSPMD10 and TSlcPMD10 

 

 Table A.6 also shows that the profits of all test problems with spot voyages (.CvSv) are 

larger than the profits without spot voyages (.Cv). On average, the profits of the SIMPLE.CvSv 

test problems are 18% larger than that of SIMPLE.Cv and the profits of the FULL.CvSv test 

problems are 3% larger than that of FULL.Cv. The profits of the FULL test problems are also 

TSPMD10 TSlcPMD10 D % TSPMD10 TSlcPMD10 D %
a 3,343,742 3,343,742 0.000% 1.0 a 51,221,275 51,221,275 0.000% 0.8

b 5,410,819 5,410,819 0.000% 1.2 b 105,980,205 106,007,202 0.025% 0.7

c 40,605,550 40,605,550 0.000% 1.0 c 108,311,888 108,450,882 0.128% 1.2

d 42,236,708 42,217,121 -0.046% 0.8 d 123,588,565 123,679,184 0.073% 0.8

e 18,645,007 18,648,579 0.019% 0.9 e 103,789,092 103,725,208 -0.062% 1.3

f 77,597,740 77,497,131 -0.130% 1.1 f 164,623,229 164,678,230 0.033% 0.7

g 44,883,988 44,916,802 0.073% 1.2 g 155,396,780 157,052,409 1.065% 1.3

h 62,897,844 62,898,464 0.001% 1.0 h 139,162,956 140,609,739 1.040% 1.0

i 62,549,573 62,376,115 -0.277% 1.0 i 200,110,023 199,835,329 -0.137% 0.9

j 114,998,250 114,953,417 -0.039% 1.0 j 253,292,488 253,387,454 0.037% 0.7

k 112,859,379 113,017,701 0.140% 1.3 k 235,191,798 235,048,211 -0.061% 0.9

l 122,746,937 123,263,787 0.421% 0.9 l 246,213,385 245,407,642 -0.327% 1.1

m 132,498,081 133,446,774 0.716% 1.2 m 317,861,144 316,486,209 -0.433% 0.9

n 172,773,817 172,644,406 -0.075% 1.4 n 301,293,459 301,246,527 -0.016% 0.9

a 5,826,461 5,826,461 0.000% 1.2 a 53,402,178 53,402,178 0.000% 1.0

b 7,796,802 7,796,802 0.000% 1.0 b 108,312,075 108,098,179 -0.197% 1.3

c 47,171,237 46,901,316 -0.572% 0.9 c 112,450,273 112,589,445 0.124% 1.2

d 47,514,281 46,604,329 -1.915% 1.0 d 127,920,763 128,296,392 0.294% 0.9

e 25,898,928 25,702,817 -0.757% 1.0 e 105,986,419 106,294,800 0.291% 1.0

f 83,464,896 83,388,381 -0.092% 1.0 f 169,889,570 170,337,072 0.263% 1.0

g 49,928,732 49,704,871 -0.448% 1.1 g 159,689,986 162,895,067 2.007% 1.7

h 67,129,373 68,003,256 1.302% 1.1 h 143,626,732 144,343,250 0.499% 0.8

i 68,445,444 68,400,202 -0.066% 1.0 i 205,689,641 205,491,512 -0.096% 1.0

j 124,551,066 122,290,939 -1.815% 0.9 j 259,160,648 258,553,001 -0.234% 0.9

k 118,075,399 118,237,740 0.137% 1.0 k 238,066,869 237,341,285 -0.305% 0.8

l 131,758,581 132,015,086 0.195% 1.0 l 253,667,953 251,793,075 -0.739% 0.9

m 144,854,899 143,662,116 -0.823% 0.8 m 326,642,027 324,897,560 -0.534% 1.4

n 184,041,563 183,946,208 -0.052% 1.1 n 309,827,504 310,174,265 0.112% 0.8

-1.915% 0.8 -0.739% 0.7

-0.147% 1.0 0.102% 1.0
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always larger than the profits of the respective SIMPLE test problems (at least 68% larger). 

These results are explained by the use of cheaper hired ships instead of owned ships, and the 

capture of additional charter revenues, as detailed in the last columns of Table A.7 for the 

FULL.CvSv test problems.  

Table A.7. Fleet composition of the best results of the FULL.CvSv problems 

 

 Table A.7 shows the fleet composition of the best results of the FULL.CvSv problems. 

The sum of each row of the six columns of Table A.7 that present the number of ships per type is 

equal to the number of ships of the first column. The next two columns, ‘Cvs’ and ‘Svs’, present, 

respectively, the total number of contractual and spot voyages of each test problem. The TS 

variants showed in the gray shaded cells improved the best known profit of 9 FULL.CvSv 

problems (e, f and h to n). 

 To investigate the individual contribution to the solution quality improvement of each TS 

phase of Figure 5, Figures A.3, A.4 and A5 show, respectively, the performance of the 

TSPMF10, TSPMD10 and TSlcPMD10 variants for the SIMPLE.CvSv and FULL.CvSv test 

problems. The set of the 28 SIMPLE.CvSv and FULL.CvSv test problems was selected because 

this is the set in which the results yielded by TS variants are competitive when compared with the 

results obtained by MIPE considering either the solution quality or the computational time 

criteria. The y-axis shows the % relative improvement of the solution quality between two 

subsequent phases and the x-axis shows the percentage of the total time that was required to 

Ships Cvs Svs Methods Profit

No

charter out

With 

charter out Charter out Lay-up Used

Not 

used

a 24 30 10 MIPE,MIPBN15 53797761 5 4 2 7 0 6 76947721

b 25 30 10 MIPE,MIPBN15 110047995 3 6 4 8 1 3 146317712

c 34 35 13 MIPE 114180627 3 7 0 18 0 6 110871249

d 42 40 13 MIPBN15 130331112 3 12 1 14 1 11 150218828

e 41 45 16

TSlcNone5-10, 

TSlcPMF5-10, 

TSlcPMD5-10 106294800 4 8 0 22 1 6 159827501

f 56 50 16

TSlcNone5-10, 

TSlcPMF5-10, 

TSlcPMD5-10 170337072 7 8 3 18 0 20 189707023

g 48 60 19 MIPBN00 163554256 5 12 1 18 5 7 205071906

h 49 60 19 TSlcPMD10 144343250 7 9 0 22 1 10 164890712

i 60 60 19 TSPMD10 205689641 3 11 2 22 5 17 224543497

j 70 90 28 TSPMF10 259737301 8 11 4 23 0 24 242567005

k 70 90 28 TSlcPMF10 238135783 8 15 0 23 1 23 212883723

l 70 90 28 TSPMD10 253667953 7 15 1 23 2 22 240363177

m 82 110 34 TSPMD10 326642027 6 17 0 27 3 29 282268534

n 82 110 34 TSlcPMD10 310174265 8 16 1 25 2 30 244090608

Number of 

hired in ships Chartered 

out 

revenue

Used to serve voyages Not used to serve voyages
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u

ll
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v
S

v

Problem size Best Feasible Solution
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achieve the result at the end of each phase. The figures show three lines, one for the average 

quality of pool solutions and another two lines for the worst and best solutions of the pool. For 

example, the phase 2 of TSPMF10 (Figure A.3) improved, on average, the solution quality of the 

pool by 33.36%. This result is obtained at about 13% of the total time. Then, phase 3 improved 

the average quality of the pool solutions found by phase 2 by an additional 2.95%. To achieve 

this result, phases 1, 2 and 3 required 61% of the total time. Lastly, phase 4 improved the latter 

result by 0.53%.  

 
Figure A.3. TSPMF10 performance, per TS phase, for the SIMPLE.CvSv and FULL.CvSv 

test problems 
 

Phases Time Best Avg Worst
From 1 to 2 13% 0.48% 33.36% 29.61%
From 2 to 3 61% 1.29% 2.95% 5.67%
From 3 to 4 100% 0.12% 0.53% 0.95%
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Figure A.4. TSPMD10 performance, per TS phase, for the SIMPLE.CvSv and FULL.CvSv 

test problems 

 

 

Figure A.5. TSlcPMD10 performance, per TS phase, for the SIMPLE.CvSv and 
FULL.CvSv test problems 

 

These three figures show that phase 2 spends around 10% of the total computational time, 

and is responsible for a significant improvement in the quality of the worst solution, as well as in 

Phases Time Best Avg Worst
From 1 to 2 10% 0.47% 5.62% 14.82%
From 2 to 3 61% 1.41% 1.55% 2.71%
From 3 to 4 100% 0.22% 0.14% 0.25%
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Phases Time Best Avg Worst
From 1 to 2 10% 0.62% 7.64% 17.31%
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0%
2%
4%
6%
8%

10%
12%
14%
16%
18%
20%

0% 20% 40% 60% 80% 100%

Best

Avg

Worst



122 

the average quality of the pool solutions. In this phase, however, the best solution is only 

improved around 0.5%. Subsequently, phase 3 is responsible for the greatest improvement of the 

best solution of the pool. This improvement is between 1.27% and 1.41% and is completed at 

roughly 60% of the total computational time. Finally, except for the improvement of 0.95% of the 

worst solution of TSPMF10 shown in Figure A.3, phase 4 marginally improves the quality of 

pool solutions. 

In spite of the fact that the results presented in Figures A.3, A.4 and A.5 are restricted to 

the SIMPLE.CvSv and FULL.CvSv test problems and to the TSPMF10, TSPMD10 and, 

TSlcPMD10 variants, similar conclusions are obtained from the analysis of results generated by 

the other variants when applied to the remaining set of test problems without spot voyages. 
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Appendix B – Computational results of the constructive heuristic 

 Although TS does not need a feasible solution to start with, the constructive heuristic of 

section 4.2 was able to find feasible solutions for all 56 test problems in a computational time of a 

few seconds, as shown in Table B.1.  

Table B.1. Constructive heuristic results 

 

 The left part of Table B.1 shows the constructive heuristic results for the SIMPLE.Cv and 

SIMPLE.CvSv test problems and the right part of the table presents the results for the FULL.Cv 

S
IM

P
LE

Feasible? Profit

% of 

best 

profit

CPU 

Time 

(sec.) FU
LL

Feasible? Profit

% of 

best 

profit

CPU 

Time 

(sec.)

a yes -18509348 -654% 0.02 a yes 8157268 -84% 0.03

b yes -14456821 -367% 0.02 b yes 56455606 -47% 0.02

c yes 6376424 -84% 0.05 c yes 65446443 -40% 0.05

d yes -2921990 -107% 0.08 d yes 80738614 -35% 0.09

e yes -30448861 -263% 0.16 e yes 34592507 -67% 0.16

f yes 40425327 -48% 0.22 f yes 87999259 -47% 0.23

g yes -19243640 -143% 0.28 g yes 82981455 -47% 0.30

h yes -10650212 -117% 0.29 h yes 75200651 -47% 0.32

i yes 5747933 -91% 0.27 i yes 139400061 -30% 0.30

j yes 64136634 -44% 1.03 j yes 166861711 -34% 1.17

k yes 51822020 -54% 0.89 k yes 125748114 -47% 1.04

l yes 49143616 -60% 1.00 l yes 183042690 -26% 1.17

m yes 41686988 -69% 1.56 m yes 160025021 -50% 1.73

n yes 108851083 -37% 1.49 n yes 176167802 -42% 1.66

a yes -18509348 -418% 0.02 a yes 8157268 -85% 0.03

b yes -14456821 -285% 0.02 b yes 56455606 -48% 0.02

c yes 6376424 -86% 0.05 c yes 65446443 -42% 0.06

d yes -2921990 -106% 0.08 d yes 80738614 -37% 0.09

e yes -30448861 -218% 0.16 e yes 34592507 -67% 0.16

f yes 40425327 -52% 0.22 f yes 87999259 -48% 0.23

g yes -19243640 -137% 0.28 g yes 82981455 -49% 0.30

h yes -10650212 -116% 0.29 h yes 75200651 -48% 0.31

i yes 5747933 -92% 0.27 i yes 139400061 -32% 0.30

j yes 64136634 -49% 1.02 j yes 166861711 -36% 1.18

k yes 51822020 -56% 0.88 k yes 125748114 -47% 1.08

l yes 49143616 -63% 1.03 l yes 183042690 -28% 1.20

m yes 41686988 -71% 1.56 m yes 160025021 -51% 1.75

n yes 108851083 -41% 1.48 n yes 176167802 -43% 1.66

-654% 0.02 -85% 0.02

-140% 0.53 -47% 0.59

-37% 1.56 -26% 1.75
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and FULL.CvSv test problems. The column ‘% of best profit’ is the percentage profit difference, 

between the profit found by the constructive heuristic and the best profit found by all TS variants.  

 The constructive heuristic found feasible solutions for all 56 test problems. Solution 

quality was poor, especially for the SIMPLE.Cv and SIMPLE.CvSv test problems. In these 

problems, the profit percentage of the solution found by the constructive heuristic could be from -

654% to -37% worse than the best solution found by TS variants. Nonetheless, the constructive 

heuristic is very fast, with the execution time of at most 1.75 seconds. 

 Despite the poor quality of the solutions generated by the constructive heuristic, it 

achieved the goal of constructing, in a very short period of time, a starting solution for TS.    

 

 

  

 

 

 


