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Abstract

In this dissertation we discuss high-resolution coherence functions for the estimation of the stack-

ing parameters in seismic signal processing. We focus on the MUltiple SIgnal Classification (MU-

SIC) algorithm, which uses the eigendecomposition of the seismic data to measure the coherence.

MUSIC can outperform the traditional semblance in cases of close or interfering reflections. Our

main contribution is to propose several simplifications to the implementation of MUSIC. First, we

show how to compute MUSIC coherence measure in terms of the signal subspace of seismic data,

which has lower dimension than the one currently used, the noise subspace. After that, we show

how to obtain the signal subspace, iteratively, with the power method. We called this technique of

Power Method MUSIC (PM-MUSIC). We also propose a new way to obtain the MUSIC spectrum,

based on the eigendecomposition of the temporal correlation matrix of the seismic data. This is in

contrast to the algorithms in the literature, which are based on the spatial correlation. Complexity

reductions are obtained and discussed with the use of Power Method for both spatial and temporal

variant of MUSIC. Finally, we propose a new normalization function for MUSIC, which we called

semblance weighting. This function takes into account semblance coefficient and deals with high dy-

namic range in MUSIC velocity spectrum. We compared spatial and temporal correlation matrices,

implemented with PM-MUSIC. Numerical examples with synthetic and real seismic data indicated

that PM-MUSIC outperforms semblance and that the temporal variant of PM-MUSIC can present the

same high-resolution as its spatial counterpart. Moreover, temporal PM-MUSIC is particularly useful

when dealing with correlated signals.

Keywords: Signal processing, Correlation (statistics), Eigenvalues, Eigenvectors, Geophysical

processing.
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Resumo

Nesta dissertação, nós discutimos o cálculo de funções de coerência de alta resolução para a es-

timação dos parâmetros de empilhamento em processamento de sinais sísmicos. Nosso foco é o

algoritmo de estimação por Classificação de Sinais Múltiplos (MUSIC, do inglês MUltiple SIgnal

Classification). Este pode superar a tradicional função de coerência semblance em casos em que há

reflexões próximas ou interferentes. Nossa principal contribuição é a proposta de diversas simpli-

ficações para sua implementação. Primeiro, mostramos como obter os valores da função MUSIC a

partir do subespaço de sinais do dado sísmico, que possui dimensão menor do que o subespaço de

ruído, usualmente empregado. Depois disso, mostramos como obter o subespaço de sinais a partir

do método da potência. Chamamos esta técnica de MUSIC com Método da Potência (PM-MUSIC).

Também propusemos uma nova maneira de obtenção do espectro de MUSIC, baseada na decom-

posição em autovalores e autovetores da matriz de correlação temporal do dado sísmico. Este método

contrasta com os algoritmos presentes na literatura, que se baseiam na correlação espacial. A partir

do uso do Método da Potência, obtivemos reduções de complexidade tanto para a variante espacial

quanto para a temporal do algoritmo MUSIC. Finalmente, também propusemos uma nova função de

normalização para o cálculo de MUSIC, a qual chamamos de ponderação por semblance. Esta função

leva em conta o espectro de velocidades obtido com a função de coerência semblance e lida com a alta

variação dinâmica produzida pelo espectro de velocidades calculado com MUSIC. Nós comparamos

a implementação de PM-MUSIC, a partir das correlações temporal e espacial. Exemplos numéricos

com dados sísmicos sintéticos e de levantamentos reais demonstraram que o algoritmo PM-MUSIC

supera o semblance e que sua variante temporal possui alta resolução, assim como sua variante es-

pacial. Além disso, PM-MUSIC obtido a partir da correlação temporal mostrou-se extremamente

robusto ao lidar com sinais correlacionados.

Palavras-chave: Processamento de sinais, Correlação (Estatiística), Autovalores, Autovetores,

Processamento geofisico.
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Chapter 1

Introduction

Seismic data acquisition is performed in shot-receiver coordinate (s, g) [Yilmaz, 2001]. Fig-

ure 1.1(a) illustrates the recording geometry and ray paths associated with a horizontal reflector. In

this case the recorded data will form a common-shot gather with the same shot recorded at different

receivers (traces). For processing seismic data we can sort the recorded traces in different ways. In

figure 1.1(b) a common-midpoint (CMP) geometry is illustrated, also with the ray paths associated

with a horizontal reflector, where all the reflections come from the same depth point. The CMP gather

is generated by putting the recorded seismic traces with the same midpoint, y, between the shot and

receiver locations associated with that trace in a gather [Yilmaz, 2001]. The coordinates of the CMP

gather are the midpoint and half offset (y, h), with the half offset being half the distance between

source and receiver. The (y, h) coordinates are defined in terms of (s, g) by: y = (g + s)/2 and

h = (g − s)/2.

The traveltime of the traces in the CMP configuration in figure 1.2 is called normal moveout

(NMO). We let hi be the half-offset between the source and the receiver i, if we assume a homoge-

neous medium with a single horizontal reflector we can estimate the stacking velocity, vk, with the

NMO traveltime, defined in Dix [1955], which is given by

t2(hi) = τ 20 +
4h2

i

v2k
. (1.1)

In equation (1.1) τ0 is the two-way zero-offset (ZO) traveltime, which represents the time the seismic

wave takes to propagate from the shot to the reflector and reflect back to the receiver, if both the source

and receiver were at the midpoint position of the CMP being analyzed, known as the ZO position.

The stacking velocity is the velocity that presents a better curve fitting of a reflection in the equation

presented in Dix [1955]. This equation is exact for a single horizontal reflector under a homogeneous

medium, as in figure 1.2, and can be obtained by simple geometry [Yilmaz, 2001]. For a generic

1
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Figure 1.1: (a) Common shot and (b) common-midpoint geometries.

Surface

Reflector

Figure 1.2: NMO geometry for a single horizontal reflector.

reflector and also for more than one reflector equation (1.1) is still a good approximation [Yilmaz,

2001]. In figure 1.3 we show an example of traces in a CMP gather, in which there is a single

reflection.

We can sum the traces from the same CMP gather along the traveltime curve from equation (1.1),

which will result in a trace with increased signal-to-noise ratio (SNR). This operation is called stack-

ing and if performed for several CMP gathers, with different midpoint coordinates, will generate a

stacked section. The stacked trace can be viewed as a simulated ZO trace, where we say that each

trace was produced by the virtual experiment of shooting and receiving a seismic shot at the same

point. For stacking the traces from a CMP gather, we must estimate the stacking parameters from

equation (1.1), which is done by means of a velocity analysis applied directly to the CMP data. The
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Figure 1.3: Seismogram sorted in CMP gathers, with one reflection.

velocity analysis procedure consists in, for each τ0, to design several traveltime curves using equa-

tion (1.1) with possible stacking velocities, vk, and to choose the vk that results in a maximum value

of a coherence function, which measures the similarity between the samples of the traces along that

curve [Yilmaz, 2001].

The standard coherence function is a second-order energy measure, called semblance [Neidell and

Taner, 1971]. Semblance is computed for windows of Nt samples taken from traces at Nr receivers.

Each window follows the moveout defined by the parameters being estimated, and consists of a few

samples before and after the window center. Given the n-th time sample of data di(n), at the i-th

receiver, the semblance is defined as

Sc =

l=k+(Nt−1)/2
∑

l=k−(Nt−1)/2

∣
∣
∣
∣
∣

Nr∑

i=1

di(n)

∣
∣
∣
∣
∣

2

Nr

l=k+(Nt−1)/2
∑

l=k−(Nt−1)/2

Nr∑

i=1

∣
∣di(n)

∣
∣
2

. (1.2)

Still within the framework of velocity analysis, Biondi and Kostov [1989] and Kirlin [1992]

showed that eigenstructure methods for velocity (coherence) analysis can lead to parameter estima-

tions (in this case velocity spectra) with higher resolution than semblance. One of most commonly

used high-resolution methods is MUltiple SIgnal Classification (MUSIC), introduced by Schmidt

[1986], which is based in some properties of the eigendecomposition of the seismic data. Recently,

MUSIC has been used in Asgedon et al. [2011] for estimating the common-reflection-surface (CRS)

attributes.

The implementation of MUSIC-based velocity spectra is the main focus of this work. We propose

a number of improvements, namely:
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1. To reduce its computational complexity, we compute the MUSIC coherence measure based

on a single eigenvector, the one associated to the largest eigenvalue, which will be referred

to as the largest eigenvector. As a consequence, the full eigenvalue decomposition is not re-

quired. Moreover, the largest eigenvector can be efficiently computed by means of the power

method [Golub and Van Loan, 1996].

2. To obtain further computational savings, we propose a coherence function based on the eigen-

decomposition of the temporal correlation matrix of seismic data. This matrix presents lower

dimension when compared to the spatial correlation matrix, currently used in the literature

[Biondi and Kostov, 1989, Kirlin, 1992]. In consequence, it is simpler to compute its eigenvec-

tors.

3. As a byproduct, the use of this lower-dimensional matrix seems to improve the performance of

the method when dealing with correlated wavefronts, as indicated by numerical experiments.

4. In order to reduce the arbitrary amplitude values from the eigendecomposition-based velocity

spectra [Asgedon et al., 2011, Abbad and Ursin, 2012] we propose a normalization function

that we called semblance weighting.

The remainder of the dissertation is organized in this way:

• Chapter 2: We present the basics of high-resolution eigendecomposition methods applied to

velocity analysis in seismic parameter estimation. In this chapter we outline how the Direction

of Arrival (DOA) techniques are mapped to seismic CMP gathers.

• Chapter 3: In this chapter, we describe the windowing operation, applied to standard high-

resolution seismic methods.

• Chapter 4: Here, we present our methodology. Based on seismic windowing, we develop an

implementation of high-resolution coherence functions.

• Chapter 5: In this chapter, we present the numerical examples we did to test the proposed

method and compare it to methods in the literature.

• Chapter 6: We present the general conclusions and prospects involving our work in this chap-

ter.

During the period of the master, the following article was published:

• T. Barros, R. Lopes, M. Tygel, J.M.T. Romano, “Implementation Aspects of Eigenstructure-

based Velocity Spectra", Proceedings of the 74-th EAGE Conference & Exhibition, 2012,

Copenhagen.



Chapter 2

Eigendecomposition-based high-resolution

velocity spectra

2.1 Overview

Eigendecomposition-based algorithms have been widely used for high-resolution parameter es-

timation [Van Trees, 2002]. In seismic, one of its first use was in Key et al. [1987]. This method

was later extended in Key and Smithson [1990], where the eigenvalues from the seismic data co-

variance matrix calculated for data windowed around hyperbolic normal moveout (NMO) trajectories

were used for the estimation of stacking parameters. A higher resolution was obtained in Biondi

and Kostov [1989], by the use of subspace partition of the data covariance matrix, in accordance to

the methods of direction of arrival (DOA) estimation, traditionally applied to sensor arrays [Krim

and Viberg, 1996]. The same higher resolution subspace-based methods were analyzed in Kirlin

[1992], where the windowing properties are discussed and the semblance coherence function is writ-

ten in terms of the covariance matrices. Later, in Asgedon et al. [2011], those methods were used

for estimating parameters from a different moveout equation, the common-reflection-surface (CRS)

moveout.

In this chapter we show a little of the history of the application of high-resolution DOA estimation

methods in seismic stacking parameters estimation. In section 2.2 we illustrate the model assumptions

for the application of these methods for seismic velocity spectra computation. In section 2.3 we

introduce the correlation matrix and some of its properties. Finally, in section 2.4 we introduce

the MUltiple SIgnal Classification (MUSIC) method applied to seismic velocities estimation, which

makes use of the eigendecomposition of the correlation matrix.

5
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2.2 The model for eigendecomposition-based velocity spectra

A classical estimation problem is to determine parameters of a signal, from the observation of

this signal in the presence of additive white noise [Haykin, 1989]. In array signal processing, a finite

number of sensors (e.g., antennas, hydrophones, geophones), named the array, is arranged, typically

linearly and uniformly spaced, to record a propagating wave. The processing of the recorded signal

can provide estimates of the desired parameters.

A common-midpoint (CMP) gather is a type of array, from which we can determine the velocities

and zero-offset (ZO) traveltimes from the different reflections.

The seismic data from a CMP gather that contains Nr seismic traces can be modeled as a combi-

nation of Ns reflections of the wavefront source, caused by rock interfaces at the subsurface. At the

time instant t and at the i-th receiver, the recorded data can be described as

xi(t) =
Ns∑

k=1

sk(t− τk(i)) + ni(t), (2.1)

where sk(t) is the k-th observed ZO reflection from the source s(t) arriving at τ0, ni(t) represents an

additive noise supposed to be white with zero mean and variance σ2
n and τk(i) is the time difference,

referred to as moveouts (delays), between the wavefronts arrivals at i-th receiver and the ZO traveltime

τ0, for the k-th reflection.

Equation (2.1) describes a signal continuous in time impinging on the receivers. In practice,

the receivers take uniform samples from the signal, with a fixed sampling period T . The sampled

version of the signal xi(t), at the time instant t = nT , would result in a recorded discrete-time signal

xi(n) = xi(nT ), for n = 1, 2, . . . , NT , where NT is the total number of samples.

The moveouts in equation (2.1), can be approximated by the hyperbolic moveout equation of Dix

[1955]

τk(i) =

√

τ 20 +
4h2

i

v2k
− τ0, (2.2)

where hi is the half-offset between the i-th pair of source and receiver and vk is the stacking velocity

of the k-th reflection.

In order to apply most of the classical DOA techniques, including in this group the eigenstructure-

based methods, to estimate velocities vk, we assume that the model described in (2.1) is governed by

the following assumptions [Haykin, 1989, Biondi and Kostov, 1989]:

1. The reflections from the source are uncorrelated.

2. The additive white noise ni(t) is uncorrelated with each reflection component from the received
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signal.

3. The propagating waves are narrow-band, which means adequately characterization by a single

frequency ω.

4. The number of receivers, Nr, is larger than the number of reflections, Ns.

5. The number of reflections, Ns, from the source, is known.

For seismic wave propagation, many of the above assumptions are not true, but there are some

ways of dealing with this fact.

Regarding the assumption number 1, seismic reflections are indeed correlated. As will be dis-

cussed further, correlated reflections can generate a singular spatial covariance matrix, what can cause

the method to loose its ability to distinguish different events. A spatial smoothing of the covariance

matrix [Shan et al., 1985] can be applied used to overcome this issue of correlated signals, as will be

discussed later.

Seismic signals are also wide-band, which goes against assumption number 3. Biondi and Kos-

tov [1989] perform a frequency domain coherence computation, in which case time delays can be

approximated by phase shifts.

The moveout parameters may vary rapidly with time, i.e., seismic signals are highly non-stationary,

which implies that when processing seismic data only a few samples can be used for the estimation of

the covariance matrix. This contradicts assumption number 4 and may result in a bad conditioning of

the covariance matrix. Forward-backward (FB) averaging [Willians et al., 1988] technique together

with the spatial smoothing Shan et al. [1985] of the covariance matrix can be used in the attempt to

overcome this situation. In Kirlin [1991], an analysis about the effects of non-idealness of temporal

wide-band and temporal stationarity assumptions has been made. It is shown that non-stationary sig-

nals may present high correlation values, even when they are not correlated, decreasing the rank of

the correlation matrix whenever the signals are coherent.

Usually the number of reflections is not known, but it can be estimated [Wax and Kailath, 1985,

Wang and Kaveh, 1985] to satisfy the assumption number 5.

Returning to the data model from equation (2.1), using the assumption that the source reflec-

tions sk(t) are narrow-band, with center frequency ω, the moveouts can be approximated as phase

shifts [Biondi and Kostov, 1989], so the data can be expressed as

xi(t) =
Ns∑

k=1

sk(t)e
jωτk(i) + ni(t). (2.3)
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In order to simplify data manipulations, equation (2.3) can be written in matrix notation, consid-

ering a subset1 of NT ′ time samples, from the total amount of NT samples:

X = A(Θ)S+N, (2.4)

where X and N are Nr ×NT ′ data and noise matrices, S is a Ns ×NT ′ source matrix, and A(Θ) is a

Nr ×Ns matrix formed by the Ns steering vectors:

A(Θ) =
[

a1(θ1) · · · ak(θk) · · · aNs
(θNs

)
]

. (2.5)

Given that θk , 1/vk and that τk(i) and θk are related by equation (2.2), we can form the Nr × 1

columns of A(Θ) by the wavefront arrival delays at each receiver

ak(θk) =
1√
Nr









ejωτk(1)

ejωτk(2)

...

ejωτk(Nr)









, (2.6)

where the normalization factor is to ensure steering vectors with unitary norm.

2.3 Correlation matrix

The eigenstructure-based methods for velocity spectra calculation are based on the spatial covari-

ance matrix of the seismic data. If we look at the seismic digital data xi(n) at the i-th receiver and

n-th time sample we can define the vectors

x(n) = [x1(n) x2(n) · · · xNr
(n)]H . (2.7)

Assuming that the reflections are zero-mean random process, that the noise is uncorrelated with the

source and that the signals are spatially and temporally stationary, the covariance matrix, in this case

1A small number of samples for the computation of the covariance matrix can soften the temporal non-stationarity of
seismic signals.
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also called correlation matrix, is defined as

R = E{x(n)xH(n)} (2.8a)

=









E{x1(n)x
∗
1(n)} E{x1(n)x

∗
2(n)} . . . E{x1(n)x

∗
Nr
(n)}

E{x2(n)x
∗
1(n)} E{x2(n)x

∗
2(n)} . . . E{x2(n)x

∗
Nr
(n)}

...
...

. . .
...

E{xNr
(n)x∗

1(n)} E{xNr
(n)x∗

2(n)} . . . E{xNr
(n)x∗

Nr
(n)}









(2.8b)

where E{} is the expectation operator and the superscripts H and ∗ denote matrix Hermitian and

complex conjugate. Note that R is an Nr×Nr matrix. For stationary signals, the correlation function

Rx(p,m, n, k) = E{xp(n)x
H
m(k)}, for n = k, can be written in terms of the difference l = m−p, i.e.,

Rx(p,m, n, k) = Rx(l, 0) , Rx(l). Since Rx(l) = Rx(−l), the correlation matrix can be written,

then, as

R =









Rx(0) Rx(1) . . . Rx(Nr − 1)

Rx(1) Rx(0) . . . Rx(Nr − 2)
...

...
. . .

...

Rx(Nr − 1) Rx(Nr − 2) . . . Rx(0)









. (2.9)

With a few manipulations of equations (2.4) and (2.8a), and recalling that the signal and noise are

uncorrelated, the correlation matrix can also be written as

R = A(Θ)RsA
H(Θ) + σ2

nI, (2.10)

where Rs is the source spatial correlation diagonal matrix, σ2
n is the noise variance and I is the identity

matrix. Note that the last expansion should not be confused with the orthogonal similarity transfor-

mation. In general, the diagonal elements of Rs are not the eigenvalues of A(Θ)RsA
H(Θ). On the

other hand, the structure of equation (2.10) can be used to give an insight into the eigendecomposition

of R, as will be discussed next.

2.3.1 Eigendecomposition of the correlation matrix

Let λ1 ≥ . . . ≥ λNr
and ν1 ≥ . . . ≥ νNr

be the eigenvalues of R and A(Θ)RsA
H(Θ), respec-

tively. From equation (2.10), these eigenvalues are related by

λi = νi + σ2
n, i = 1, · · · , Nr. (2.11)
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The columns of A(Θ) are linearly independent and if we assume Ns wavefronts arriving at the

array, with different velocities and ZO times, it will imply that A(Θ) will have rank Ns. As a

consequence, the (Nr − Ns) smallest eigenvalues of A(Θ)RsA
H(Θ) are equal to zero, so we may

write,

νNs+1 = · · · = νNr
= 0. (2.12)

By comparing equations (2.11) and (2.12), we can see that

λNs+1 = · · · = λNr
= σ2

n. (2.13)

Equation (2.13) states that the smallest eigenvalues of the correlation matrix R are equal to σ2
n with

multiplicity (Nr −Ns).

Now, let vi denote the eigenvector of the correlation matrix, R, associated with the eigenvalue λi.

By definition,

Rvi = λivi, i = 1, · · · , Nr. (2.14)

For the eigenvectors associated with the (Nr − Ns) smallest eigenvalues2 of R, it follows that

λi = σ2
n. Then, equation (2.14) can be written as

(R− σ2
n)vi = 0, i = Ns + 1, · · · , Nr. (2.15)

By combining equations (2.10) and (2.15), we can write

A(Θ)RsA
H(Θ)vi = 0, i = Ns + 1, · · · , Nr. (2.16)

The columns of A(Θ) are linearly independent and considering the Ns wavefronts uncorrelated

Rs is a full-rank diagonal matrix, which implies that equation (2.16) can be satisfied if,

A
H(Θ)vi = 0, i = Ns + 1, · · · , Nr. (2.17)

Using (2.5), we can write equation (2.17) as

a
H
k (θk)vi = 0, k = 1, · · · , Ns, i = Ns + 1, · · · , Nr. (2.18)

From equation (2.18), we can state that the set of Ns steering vectors, {a1(θ1), · · · , aNs
(θNs

)},

2In order to simplify our explanations, we will commit an abuse of notation and refer to the eigenvector associate to
the smallest eigenvalue as the smallest eigenvector, and vice-versa.
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from A(Θ), is orthogonal to the set of (Nr −Ns) smallest eigenvectors, {vNs+1, · · · ,vNr
} from the

correlation matrix R. It is also important to note that, since the eigenvectors of R form a complete

basis, the set of eigenvectors {v1, · · · ,vNs
} is orthogonal to {vNs+1, · · · ,vNr

}.

The matrix V = [v1 · · ·vNr
] can be formed with the Nr eigenvectors of R. The set of all those

eigenvectors is called the vector space R
Nr . The properties of the eigenvectors suggest the partition

of the space R
Nr into two subspaces, which are the orthogonal complement of each other:

1. A signal subspace that is spanned by the eigenvectors v1, · · · ,vNs
associated with the Ns

largest eigenvalues from R.

2. A noise subspace that is spanned by the eigenvectors vNs+1, · · · ,vNr
associated with the small-

est eigenvalues from R, with multiplicity (Nr −Ns).

In this case, the eigendecomposition of R can be written as [Kirlin, 1992]

R = VΛV
H (2.19a)

= VsΛsV
H
s +VnΛnV

H
n , (2.19b)

where Λ = diag(λ1, . . . , λNr
) is a diagonal matrix that contains the eigenvalues of R. We assume that

λ1 ≥ . . . ≥ λNr
. Λs contains the Ns largest eigenvalues and Λn contains the smallest eigenvalues

of R, all equal to σ2
n. The matrix Vn spans the noise subspace, which is orthogonal to the image

of A(Θ), and the matrix Vs spans the signal subspace. Finally, V is a unitary matrix that can be

decomposed as V = [Vs Vn].

Since the noise subspace is orthogonal to the steering vectors that constitute the signal, we may

search for all the possible steering vectors and measure how orthogonal they are to Vn. Then, we

may estimate the parameters Θ as those that yield the steering vectors with the smallest projection

onto the noise subspace.

2.4 MUltiple SIgnal Classification

In order to estimate the parameters θk and τ0, the MUltiple SIgnal Classification (MUSIC) [Schmidt,

1986] algorithm can be used. It consists of a search that tests the projection of several steering vectors

ak(θk) onto the noise subspace of matrix R. All the tested values form the MUSIC spectrum, which

can be defined, for each tested value, as

PMU(θk) =
a
H
k (θk)ak(θk)

aH
k (θk)Pnak(θk)

, (2.20)
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where ak(θk) is a candidate steering vector and Pn is the projection matrix onto the noise subspace,

given by Pn = VnV
H
n . When the candidate steering vector and noise subspaces are orthogonal, the

denominator in (2.20) tends to zero. Thus, large values of PMU(θk) will generally correspond to the

actual steering vectors, in other words, to the index k of the true parameters.

For the application of MUSIC, recorded seismic data are assumed to be complex-valued and

narrow-band, with central frequency ω. Actually, the seismic signal is real-valued and wide-band, but

it can be transformed into an analytic and narrow-band signal, by the use of a Hilbert transform and a

band-pass filter [Biondi and Kostov, 1989].

The subspace decomposition of the spatial correlation matrix has been widely used in the literature

for the calculation of high resolution velocity spectra coherence functions [Biondi and Kostov, 1989,

Key and Smithson, 1990, Kirlin, 1992, Sacchi, 1998, Asgedon et al., 2011]. In practice, the spatial

correlation matrix must be estimated from the data. The usual approach to estimate it is by the

computation of the sample correlation matrix3
R̂

R̂ =
1

Nt

XX
H , (2.21)

where it is assumed, implicity, stationarity along the snapshots that compose the data set X.

In order to use a spectrum search algorithm for parameter estimation it is mandatory to know

the number of parameters (in this case, reflections) to be estimated. Wax and Kailath [1985] have

proposed two criteria for estimating the number of wavefronts, based on the application of the infor-

mation theoretic criteria for model selection, introduced by Akaike [1973] and by Schwartz [1978]

and Rissanen [1978].

Both criteria tend to overestimate the number of signals when few time samples are used in the

estimate of the spatial correlation matrix. For the seismic case, however, the maximum number of

wavefronts can usually be set to a low number, because the need to detect more than two or three

interfering wavefronts is not common [Biondi and Kostov, 1989].

2.4.1 Correlated wavefronts

Seismic signals are strongly correlated, as they are reflections of the same signal source at different

layers of the earth’s subsurface. If two correlated wavefronts are being analyzed at the same window,

the source correlation matrix Rs tends to be ill-conditioned and in the extreme case of coherent

signals it will be rank deficient, causing in both cases a mix between signal and noise subspaces. The

eigenstructure methods will then fail to resolve the correlated events in the coherence spectra.

3We can subtract the mean from the data before calculating the expression in (2.21), which will result in the estimation
of the sample covariance matrix [Kirlin, 1992].
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Figure 2.1: Spatial smoothing with K subarrays, each with Nr −K + 1 receivers

To deal adequately with correlated signals, a method called spatial smoothing in the correlation

matrix is used [Shan et al., 1985]. Spatial smoothing consists in dividing the original array of Nr

receivers into K overlapping subarrays of (Nr − K + 1) receivers, as illustrated in Figure 2.1. A

correlation matrix R̂
k can be computed for each subarray. The spatial smoothed correlation matrix,

R̂
K , will be the average from the K correlation matrices from each subarray

R̂
K =

1

K

K∑

k=1

R̂
k. (2.22)

Spatial smoothing has two main drawbacks. First, it reduces the effective number of sensors in

the array from Nr to (Nr − K + 1), reducing the resolution of the eigenstructure methods. It also

increases the computational complexity to determine the estimated correlation matrix.

When dealing with correlated signals, we can also apply to the spatial smoothed correlation ma-

trix another operation called forward-backward (FB) averaging. FB averaging consists on averaging

forward and backward correlation matrices, in order to increase the array aperture [Willians et al.,

1988]. We can assume that the forward correlation matrix, Rf , is equal to the matrix R̂, or its spatial

smoothed version. In that sense, the backward correlation matrix is defined as

R
b , J(Rf )HJ, (2.23)

where J is the exchange matrix

J ,









0 0 · · · 0 1

0 0 · · · 1 0
...

... . .
. ...

...

1 0 · · · 0 0









. (2.24)
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Therefore, FB averaging of the correlation matrix, R̃, can be computed as

R̃ =
R

f +R
b

2
. (2.25)

2.4.2 Wide-band signals

The narrow-band methods for DOA estimation can not be directly applied to seismic data, since

seismic data is wide-band. Biondi and Kostov [1989] propose to decompose the data in frequency

components, either by Fourier transform or by filtering with a bank of filters, in order to estimate its

parameters with an algorithm like MUSIC.

The number of wavefronts and stacking parameters remain the same in the frequency domain,

for all frequencies. This gives rise to a search for different ways to estimate those parameters, once

we do not need to use all the frequencies components to estimate them. The frequency domain

methods for parameters estimation can either use the average of the final estimates of the coherence

spectrum [Wax et al., 1984], for different frequencies, or use the averages of the spatial correlation

matrices of the different components [Wang and Kaveh, 1985]. The later method can use techniques

that linearly transform the correlation matrices of different frequencies, in order to make them approx-

imately coherent to each other. Those techniques are known by coherent signal subspace approach

and employ focusing matrices for wide-band array processing [Hung and Kaveh, 1988, Doron and

Weiss, 1992]. The main advantage of focusing matrices is the increase of the statistical robustness of

the estimates, but the number of correlation matrices combined must be carefully chosen, since they

are only approximately coherent to each other.

The frequency-domain method proposed by Biondi and Kostov [1989], applied to MUSIC spec-

trum, could be summarized by:

1. Correct the data by a time moveout τk(i), where the parameters vk and τ0 have been previously

chosen;

2. Decompose the time-corrected data into few Nω wide frequency bands, by using a bank of

band-pass filters;

3. Obtain the correlation matrices in frequency domain, by focusing and averaging several corre-

lation matrices for each of the Nω frequency bands;

4. Determine the number of wavefronts, Ns, impinging in the array of receivers, by minimizing,

for each of the Nω frequency bands, some of the criteria presented in Wax and Kailath [1985].
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5. Obtain the MUSIC coherence spectrum by averaging the parameter spectra of all frequency

bands, as in equation (2.26):

PMU(θk) =
1

Nω

Nω∑

l=1

PMU(θk, ωl) =
1

Nω

Nω∑

l=1

a
H
k (θk, ωl)ak(θk, ωl)

aH
k (θk, ωl)Pn(ωl)ak(θk, ωl)

. (2.26)

Now, ak(θk, ωl) and Pn(ωl) are the tested steering vector and the noise subspace projection at

the l-th frequency ωl.



Chapter 3

The windowing method for velocity spectra

computation

3.1 Overview

In this chapter we focus in the seismic data windowing method applied to velocity spectra com-

putation. In the eigendecomposition-based methods presented in chapter 2 a correlation matrix is

computed with a large number of time samples and several steering vectors are tested, in order to

estimate the seismic velocities and two-way ZO traveltime. The main difference in the windowed

eigendecomposition-based methods is that, for each tested velocity and two-way ZO traveltime, a

different correlation matrix, commonly refereed to as the steered correlation matrix [Kirlin, 1991],

is computed and a fixed vector is tested to determine the right set of parameters. One important ad-

vantage of the windowing-based methods is that, as the correlation matrix is computed with a small

number of samples, we do not need to estimate the number of wavefronts, because we assume that

there is only one event with the right pair of parameters being tested per window.

In section 3.2 we show how the windowing of the seismic data is performed, operation in which

our proposed method is also based on. Then, in section 3.3 we introduce the windowed spatial

correlation matrix and in sections 3.4 and 3.5 we explain how this matrix is related with MUSIC and

show an interpretation of writing semblance in terms of the windowed seismic data, respectively.

3.2 Windowed data

As discussed in chapter 1, coherence is computed on a window of data centered at some time τk(i),

where k corresponds to a given value of the parameters being tested and i corresponds to the receiver.

The value of τk(i) depends on some parameters to be estimated. We assume a hyperbolic moveout, so

16
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that τk(i) depends on the normal moveout (NMO) velocity vk and the two-way zero-offset traveltime

τ0. For each τ0, the data X from equation (2.4) is windowed with windows of Nt samples1 centered

at the hyperbolic traveltime given by τ0 and vk. Each window corresponds to a matrix D(θk). The

dimension of D(θk) is Nr×Nt, where Nt is the number of samples in the window, Nr is the number of

receivers (traces) considered and θk = 1/vk. In figure 3.1, we illustrate how the windowing operation

is applied in seismic data. Note, however, that the rows of D(θk) appear as vertical lines on the right

of figure 3.1.
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Figure 3.1: Non windowed and windowed data with the right (a) and wrong (b) velocity. The window
forms the transpose seismic data matrix, DH(θk).

The hyperbolic windowing can also be used for eigenstructure-based coherence calculation. In

section 2.2, we have explained the theory behind eigenstructure and MUSIC-based velocity spectra

computation.

As will be discussed now, for each τ0, different values of θk result in different windows, and

1Usually the number of samples used for the windowing of seismic data is very small compared to the number of
receivers.
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thus in different data matrices. Thus, to each θk corresponds a different spatial correlation matrix.

Indeed, when a window with correct values of τ0 and vk is applied, the windowed data matrix will

be represented as in figure 3.2. In other words, the data contains several repetitions of the reflection,

all arriving at the same time instant at all the receivers, plus noise terms. This is the first difference

between the windowed method and the one in the previous chapter. In this case, the data can be

written as

D(θk) = 1s
H +N, (3.1)

where s is a Nt×1 vector that contains the samples from the reflected wavelet, 1 is a Nr×1 vector of

ones, N is an Nr ×Nt noise matrix independent of s, which may also contain interfering reflections,

and the superscript H refers to the transpose conjugate operation.

D(θk) = ≈








1
1
...
1







×

︸ ︷︷ ︸

s
H

+N

Figure 3.2: For the window that fits a wavefront, the seismic data matrix is a repetition of the souce
wavelet in every trace. It can be written as a multiplication between the vector 1 and the source
wavelet.

3.3 The windowed spatial correlation matrix

Assuming that the seismic digital data di(n), at the i-th receiver and n-th time sample, has already

been windowed around the hyperbola centered in τ0, with velocity vk, with Nt/2 samples above and

below the window center, as in figure 3.1, we can write the estimated windowed correlation matrix in

terms of the vectors

d(n) = [d1(n) d2(n) · · · dNr
(n)]H . (3.2)

The windowed spatial correlation matrix would be, then,

R(θk) = E{d(n)dH(n)}. (3.3)



3.3 The windowed spatial correlation matrix 19

The estimated spatial sample correlation matrix is given by

R̂(θk) =
1

Nt

D(θk)D
H(θk), (3.4a)

≈ ||s||2
Nt

11
T + σ2

nI, (3.4b)

where σ2
n is the noise variance, I is the identity matrix of appropriate dimension and the superscript

T indicates the matrix transpose operation. Note that we disregard the cross terms resulting from

D(θk)D
H(θk), because we assume that the noise is zero-mean and uncorrelated with the signal. In

figure 3.3 we illustrate the correlation matrix in terms of seismic windowed data matrix. The sample

correlation matrix is related with the correlation matrix as R(θk) = E{R̂(θk)}.

R̂(θk) =
1
Nt

×

Figure 3.3: View of the spatial correlation matrix in terms of seismic data matrix.

We can now develop an intuition about the eigendecomposition of the windowed data. Assume

that λ1 is the largest eigenvalue of R̂(θk), associated with the eigenvector v1. We can write, then,

R̂(θk)v1 = λ1v1. (3.5)

If we combine equations (3.4b) and (3.5), and if we right-multiply R̂(θk) by (1/
√
Nr)1, with

dimension Nr × 1, we will have

1

Nt

||s||2 1√
Nr

11
T
1+ σ2

nI
1√
Nr

1 ≈ λ1
1√
Nr

1, (3.6a)

Nr

Nt

||s||2 1√
Nr

1+ σ2
n

1√
Nr

1 ≈ λ1
1√
Nr

1, (3.6b)

where 1
T
1 = Nr and ||s||2 is the energy of the wavelet at one receiver (trace). From equation (3.6b),
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clearly, the largest eigenvalue of R̂(θk) is

λ1 ≈
Nr

Nt

||s||2 + σ2
n, (3.7)

associated with the eigenvector v1 ≈ 1√
Nr

1. Any vector orthogonal to 1 is also an eigenvector, with

eigenvalue σ2
n.

3.4 The windowed spatial correlation matrix and MUSIC

The matrix R(θk) in equation (3.3) computes the correlation between traces at different receivers,

and so is referred to as the spatial correlation matrix. The MUSIC-based methods in the literature are

based on R(θk), so they will be called spatial, or S-MUSIC [Wang et al., 2001]. Essentially, they can

be seen as an attempt to answer the question: “Is 1 proportional to the largest eigenvector or R̂(θk)?”

If this answer is positive, then we may assume that R̂(θk) was formed from a window that contains a

reflection. The S-MUSIC spectrum is a coherency measure that presents large values when 1 is close

to the largest eigenvector of R̂(θk):

PS(θk) =
1
T
1

1TVn(θk)VH
n (θk)1

, (3.8a)

=
Nr

|1TVn(θk)|2
. (3.8b)

As discussed in section 2.2, Vn(θk)V
H
n (θk) in equation (3.8a) is the projection matrix on the so-called

noise subspace, consisting of the subspace spanned by the eigenvectors associated to the smallest

eigenvalues of R(θk). The S subscript on PS(θk) refers to the S-MUSIC computation for the win-

dowed spatial correlation matrix.

If the windowed data contains an event, the average of the smallest (Nr−1) eigenvalues, λ2, . . . , λNr
,

of the estimated correlation matrix R̂(θk) will be equal to σ2
n:

σ2
n =

1

(Nr − 1)

Nr∑

i=2

λi. (3.9)

For this case, the largest eigenvector of R̂(θk), v1, that spans the signal subspace, will also be orthog-

onal to the remaining ones, v2, . . . ,vNr
, that span the noise subspace.

We now show a reason for choosing 1 as an eigenvector of R̂(θk), for windowed data. Assume that

we have flattened a wavefront in the window, by the selection of the right pair of parameters (vk, τ0).

All the wavefronts will arrive in the traces at the same time instant, as illustrated in figure 3.1, with
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all the relative delays, τk(i), being equal to zero. The steering vector defined in equation (2.6), for the

windowed data, becomes, then,

ak(θk) =
1√
Nr









ejωτk(1)

ejωτk(2)

...

ejωτk(Nr)









=
1√
Nr









1

1
...

1









. (3.10)

Some advantages of the windowing operation have been discussed in Kirlin [1992]. Perhaps one

of the main advantages, from the point of view of this work, is that, when searching for events with

zero delay, the methods apply to both wide-band and narrow-band signals. This can be confirmed

if we analyze the data model from equation (2.1), since in this case sk(t − τk(i)) = sk(t) ∀ω if

τk(i) = 0.

3.4.1 Signal subspace dimension

The signal subspace dimension is an important parameter for eigendecomposition-based algo-

rithms [Biondi and Kostov, 1989, Kirlin, 1992]. As discussed in Kirlin [1992], if the number of

wavefronts in the windowed data is greater than one, even with one wavefront perfectly flat, the vec-

tor 1 will not be proportional to an eigenvector of R̂(θk). We can, then, assume that the wavefronts

have similar but slightly different parameter values, which will make only one wavefront to be flat-

tened by the window based on its parameters. In this case, the other reflections will still appear in the

windows, but as slightly incoherent interference. In consequence, we may assume that the dimension

of the signal subspace of R̂(θk), Vs(θk), is one, so that it consists only of the largest eigenvector of

the correlation matrix. This is the second difference between the windowed method and the one in

the previous chapter.

Note that, if the wavefronts are similar, as might happen when there is a multiple interfering with a

primary, even eigenstructure methods may not resolve the two different events. Eigenstructure-based

velocity spectra methods have higher resolution than methods like semblance, which are based on

energy measures, but we must know, or estimate, as in Biondi and Kostov [1989], the number of

wavefronts. If we overestimate or underestimate the signal subspace dimension, MUSIC coherence

method will fail to estimate the right parameters. However, the assumption of a single event in each

window seems reasonable, as indicated the numerical results in chapter 5.
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3.5 The windowed spatial correlation matrix and semblance

In this section we show an interpretation of semblance in terms of writing seismic data in matrix

notation. We have seen that seismic data is windowed in order to get aligned events, but we still need

to measure coherence (alignment) of traces. Intuitively, we know that if there is an event, s (the signal

that repeats in all the traces, as illustrated in figure 3.2) is “large” and if there is no event, s is “small”.

So, a good coherence function would present large or small values in the presence or absence of an

event.

Consider again the case of a window with correct parameters, resulting in a data matrix, also

illustrated in figure 3.2, which can be approximated as D(θk) = 1s
H + N, where s is the Nt × 1

vector that contains the samples from the reflected wavelet. As before, if the noise is zero-mean and

uncorrelated with s, the spatial correlation matrix can be estimated by R̂(θk) ≈ ‖s‖2
Nt

11
T + σ2

nI, as

shown in equation (3.4b).

As illustrated in Kirlin [1992], the semblance coherence function from equation (1.2) can be

written in terms of the estimated spatial correlation matrix as

Sc =
1
T
R̂(θk)1

Nr Tr[R̂(θk)]
, (3.11)

where Tr[R̂(θk)] is the trace of the spatial correlation matrix and can be written in terms of its eigen-

values as

Tr[R̂(θk)] =
Nr∑

i=1

λi. (3.12)

The total energy of R̂(θk), in the denominator of (3.11), can also be written, with a few manipu-

lations, as

Tr[R̂(θk)] = Nr

( ||s||2
Nt

+ σ2
n

)

. (3.13)

By replacing equation (3.4b) in the numerator of equation (3.11), we have that

1
T
R̂(θk)1 =

||s||2N2
r

Nt

+ σ2
nNr. (3.14)

If we now replace equations (3.14) and (3.13) in equation (3.11), we can write semblance coeffi-

cient as

Sc ≈

||s||2
Nt

+
σ2
n

Nr

||s||2
Nt

+ σ2
n

. (3.15)
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From the analysis of equation (3.15), we can see that the extreme cases for semblance coefficient

would be:

1. The absence of event, where ||s||2 = 0, resulting in Sc ≈ 1
Nr

.

2. The presence of event, where ||s||2 ≫ σ2
n, which gives Sc ≈ 1.

In that sense, semblance is a “good” coherence function, since it presents large values in the

presence of a coherent signal and small ones when there is only noise. It is interesting to note that the

lower value of semblance can be decreased by increasing of the number of traces.



Chapter 4

Proposed method

4.1 Overview

The implementation of MUSIC-based velocity spectra is the main focus of this work, for which we

propose a number of improvements, presented in this chapter. In section 4.2 we apply the assumption

of a single event in the seismic windowed data and compute S-MUSIC from equation (3.8b) with

the signal subspace, as in Biondi and Kostov [1989] and Kirlin and Done [1999]. We then define a

new way of computing MUSIC for seismic data, in terms of the temporal correlation matrix, namely

T-MUSIC, in section 4.3. In section 4.4 we show how to compute iteratively S- and T-MUSIC with

the power method and, finally, in section 4.5 we outline the importance of searching for MUSIC

normalization functions and propose a new one, which we called semblance weighting MUSIC.

4.2 Signal and noise subspaces

We begin the simplification of MUSIC by noting that V(θk) is unitary, so that

1
T
V(θk)V

H(θk)1 = 1
T
1 = Nr. (4.1)

On the other hand, V(θk) = [Vs(θk)Vn(θk)], so that

1
T
V(θk)V

H(θk)1 = 1
T
Vs(θk)V

H
s (θk)1+ 1

T
Vn(θk)V

H
n (θk)1. (4.2)

Now, recall that Pn(θk) = Vn(θk)V
H
n (θk) is the projection matrix onto the noise subspace. If we

24
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let Ps(θk) = Vs(θk)V
H
s (θk) be the projection matrix onto the signal subspace, then (4.2) yields

1
T
Pn(θk)1+ 1

T
Ps(θk)1 = Nr. (4.3)

We can, therefore, modify the MUSIC equation (3.8b), in order to use the signal subspace pro-

jection instead of the noise one [Biondi and Kostov, 1989, Kirlin and Done, 1999]. Recalling that the

signal subspace is spanned by the largest eigenvector of R̂(θk), Vs(θk) = v1, we have

PS(θk) =
Nr

Nr − 1Tv1v
H
1 1

, (4.4a)

=
Nr

Nr − |1Tv1|2
. (4.4b)

The benefit of using the signal subspace projection is that the dimension of the signal subspace is

smaller than the noise one (specially for the windowed data) and, due to that, the eigendecomposition

that obtains the signal subspace has lower complexity than the one used to obtain the noise sub-

space. Computing, for the windowed correlation matrices, 1T
Ps(θk)1 is also simpler than computing

1
T
Pn(θk)1, whenever that the signal subspace is smaller than the noise one.

4.3 The windowed temporal correlation matrix

Assuming that the digital seismic data dp(n) at the p-th receiver and n-th time sample has been

windowed with the parameter θk, we can base the eigenstructure methods for parameter estimation in

the temporal correlation matrix. If now, for the p-th receiver, we define the vector

dp = [dp(1) dp(2) · · · dp(Nt)], (4.5)

with dimension 1×Nt, we can define the temporal correlation matrix as

r(θk) = E{dH
p dp} (4.6a)

=









E{d∗p(1)dp(1)} E{d∗p(1)dp(2)} . . . E{d∗p(1)dp(Nt)}
E{d∗p(2)dp(1)} E{d∗p(2)dp(2)} . . . E{d∗p(2)dp(Nt)}

...
...

. . .
...

E{d∗p(Nt)dp(1)} E{d∗p(Nt)dp(2)} . . . E{d∗p(Nt)dp(Nt)}









. (4.6b)
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The dimension of r(θk) is Nt ×Nt, and it contains the correlation between different time samples of

the windowed data. Recall that Nt is the number of samples in the window, which is usually smaller

than the number of receivers, Nr. Thus, the dimension of r(θk) is usually smaller than that of R(θk).

Assuming spatially and temporally stationary signals within the window, the temporal correlation

function defined as rd(p,m, n, k) = E{d∗p(n)dm(k)}, for p = m, can also be written in terms of the

difference l = n − k, resulting in rd(p,m, n, k) = rd(0, l) , rd(l). For writing r(θk) in terms of

rd(l), we also use the fact that rd(l) = rd(−l), which results in

r =









rd(0) rd(1) . . . rd(Nt − 1)

rd(1) rd(0) . . . rd(Nt − 2)
...

...
. . .

...

rd(Nt − 1) rd(Nt − 2) . . . rd(0)









. (4.7)

The temporal correlation matrix can also be estimated in terms of the sample correlation matrix

as

r̂(θk) =
1

Nr

D
H(θk)D(θk), (4.8)

which can be viewed in terms of the seismic windowed data matrix as in figure 4.1. Using the same

reasoning as in section 3.2, the estimated temporal correlation matrix can be approximated as

r̂(θk) ≈ ss
H + σ2

I. (4.9)

Now, σ2 is the noise variance for the temporal correlation matrix, not necessarily equal to σ2
n from

the spatial correlation matrix. Note that we also disregard the cross terms from the multiplication,

because of the assumption that the noise is zero-mean and uncorrelated with s and that the time

snapshots are independent.

r̂(θk) =
1
Nr

×

Figure 4.1: View of temporal correlation matrix in terms of seismic data matrix.
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Now, the spatial correlation matrix is estimated as R̂(θk) =
1
Nt
D(θk)D

H(θk). We now show that

both r̂(θk) and R̂(θk) have the same number of non-zero eigenvalues. In order to check how the eigen-

vectors and eigenvalues of r̂(θk) and R̂(θk) are related we can write, for i = 1, · · · ,min(Nr, Nt),

R̂(θk)vi = λivi, (4.10a)
1

Nt

D(θk)D
H(θk)vi = λivi. (4.10b)

Now, if we right-multiply both sides of equation (4.10b) by (1/Nr)D
H(θk), we will have

1

Nr

D
H(θk)D(θk)D

H(θk)vi =
Nt

Nr

λi D
H(θk)vi, (4.11a)

r̂(θk)D
H(θk)vi =

Nt

Nr

λi D
H(θk)vi. (4.11b)

Clearly, the eigenvalues, κi, and eigenvectors, ui, of r̂(θk) are related to the eigenvalues, λi, and

eigenvectors, vi, of R̂(θk) by ui = D
H(θk)vi and κi = (Nt/Nr)λi. We expect that 1 is the largest

eigenvector from R̂(θk) and, therefore, that DH(θk)1 is the largest eigenvector from r̂(θk).

In the absence of noise, we have, from equation (3.1), that s = 1
Nr

D
H(θk)1. In the presence of

noise, we may have a good estimative of the wavelet s if we compute ŝ = 1
Nr

D
H(θk)1. The vector ŝ

can also be viewed as the mean value of the traces in a window, as illustrated in figure 4.2.

ŝ =
1
Nr

D
H(θk)1 = 1

Nr

∑

Figure 4.2: Diagram of the estimated seismic wavelet. The summation is done along the receivers
dimension, for each column of the figure.

Now, for windowed seismic data, r̂(θk) will have the largest eigenvalue κ1 = (Nt/Nr)λ1 ≈
||s||2+σ2 associated with eigenvector u1 ≈ s/||s||. The average of the (Nt−1) remaining eigenvalues

will be equal to σ2 and they will be associated with eigenvectors orthogonal to s. Therefore, instead

of testing whether the all-ones vector, 1, is the largest eigenvector of R̂(θk), as is done in the usual

S-MUSIC, we may test whether ŝ = 1
Nr

D
H(θk)1 is the largest eigenvector of r̂(θk). The advantage

is that, in the second case, we have to compute the eigenvectors of a smaller matrix. We have, then,

that for each window formed with the parameters τ0 and vk, we will test, using an eigenstructure-

based coherence measure, if ŝ is aligned to the largest eigenvector from matrix r̂(θk). The MUSIC

spectrum, based on the temporal correlation matrix, known as T-MUSIC [Wang et al., 2001], can be
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obtained as

PT (θk) =
ŝ
H
ŝ

ŝHUn(θk)UH
n (θk)ŝ

, (4.12a)

=
||ŝ||2

|ŝHUn(θk)|2
, (4.12b)

where, now, we have that Un(θk) is the matrix formed with the eigenvectors that span the noise

subspace of r̂(θk). We can also use the eigenvector that spans the signal subspace and write the

MUSIC coherence function as

PT (θk) =
ŝ
H
ŝ

ŝH ŝ− ŝHUs(θk)UH
s (θk)ŝ

, (4.13a)

=
||ŝ||2

||ŝ||2 − |ŝHu1|2
. (4.13b)

The benefit of writing T-MUSIC in terms of the signal subspace is that, as for S-MUSIC, we only

need to compute one eigenvector to obtain the coherence function. In the next section we will intro-

duce a method to estimate the largest eigenvector from both the spatial and the temporal correlation

matrices.

4.4 Power Method

One of the most well-known methods to calculate the largest eigenvalues and eigenvectors of

a matrix is the power method [Golub and Van Loan, 1996]. It starts with an initial vector, and

iteratively updates this vector, until it converges to the largest eigenvector of the matrix. The main

benefit of using a coherence function, as in equations (4.4b) and (4.13b), based on the signal subspace

of seismic windowed data, is that, as we assume that the signal subspace has dimension one, we only

need to estimate the largest eigenvector of R̂(θk) and r̂(θk). In that way, the power method (PM)

suits perfectly the problem. Next, we will discuss how to initialize the PM and to use its result for

S-MUSIC and T-MUSIC computation.

4.4.1 MUSIC with Power Method for the windowed spatial correlation matrix

As mentioned before, if we use a coherence measure based on the signal subspace of the spatial

correlation matrix, as in equation (4.4b), we only need to estimate the largest eigenvector v = v1 of

the correlation matrix. As we suspect that this eigenvector should be proportional to 1, we initialize
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the power method with the vector v(0) = 1. For the n-th iteration, the estimated eigenvector will be:

v
(n) =

R̂(θk)v
(n−1)

||R̂(θk)v(n−1)||
(4.14)

The stopping criterion for the power method is based on the difference between consecutive esti-

mates of the eigenvector, v(n). We say that v̂ = v
(n) is the desired eigenvector if

||v(n) − v
(n−1)|| < ξ, (4.15)

where ξ is a threshold value, which controls the desired precision of the algorithm. For the right pa-

rameters, the proposed initialization yields that usually only one iteration is enough for convergence,

as indicated in simulations.

The S-MUSIC spectrum, combined with the power method (PM-S-MUSIC) can be written as:

PS(θk) =
Nr

Nr − |1T v̂|2 (4.16)

PM-S-MUSIC has lower complexity than the conventional S-MUSIC from equation (3.8b), since

S-MUSIC requires a full eigendecomposition, with the computation of Nr − 1 eigenvectors, which

results in a complexity of order O(N3
r ). Its complexity, however, is larger than that of semblance.

This is illustrated in Table 4.1, where we show the approximate number of calculations needed for

the semblance and PM-S-MUSIC algorithms. In this Table, n represents the number of iterations of

the power method. In general, the convergence of PM-S-MUSIC is very fast (as will be illustrated by

simulations, in chapter 5), which implies that Nr ≫ n and Nt ≫ n. By considering only the number

of multiplications from Table 4.1, we can see that, asymptotically, PM-S-MUSIC has order O(N2
r ),

while semblance has order O(NrNt). Because Nt < Nr, semblance is faster

4.4.2 MUSIC with Power Method for the windowed temporal correlation ma-

trix

For the temporal correlation matrix, we know that, when there is an event in the window, the

largest eigenvector is approximately aligned with 1
Nr

D
H(θk)1, so a good initialization for PM-T-

MUSIC is u
(0) = ŝ = 1

Nr
D

H(θk)1. The n-th iteration of PM-T-MUSIC will give the estimated

eigenvector:

u
(n) =

r̂(θk)u
(n−1)

||r̂(θk)u(n−1)|| . (4.17)
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Table 4.1: Number of Operations for semblance and PM-MUSIC Algorithms
Algorithm Additions Multiplications Complexity

Semblance 2[(Nr − 1) +Nt] NrNt O(NrNt)

S-MUSIC O(N3
r )

T-MUSIC O(N3
t
)

PM-S-MUSIC n(N2
r + 2Nr) +Nr n(N2

r + 2Nr) +Nr O(N2
r )

PM-T-MUSIC NrNt + n(N2
t
+ 2Nt) +Nt NrNt + n(N2

t
+ 2Nt) + 2N2

t
O(NrNt)

We assume the same convergence criterion as PM-S-MUSIC, i.e., û = u
n if

||u(n) − u
(n−1)|| < ξ. (4.18)

After convergence, the PM-T-MUSIC is computed as

PT (θk) =
||ŝ||2

||ŝ||2 − |ŝHû|2 . (4.19)

For the temporal correlation matrix, T-MUSIC requires the computation of Nt − 1 eigenvectors,

resulting in a complexity of order O(N3
t ). Besides the computational savings obtained by using only

one eigenvector, we obtain further savings because the dimension of r̂(θk) is usually smaller than the

one of R̂(θk), in other words, usually Nt < Nr. Since we assume this condition, the number of mul-

tiplications of PM-T-MUSIC, presented in Table 4.1 will be dominated by the term NrNt, resulting

in a complexity of O(NrNt), also illustrated in Table 4.1. Thus, both semblance and PM-T-MUSIC

have complexities of same order. T-MUSIC also has the advantage of requiring less processing than

S-MUSIC, since it does not require the computation of spatial smoothing and FB averaging.

4.5 Velocity spectra normalization

One of the main complains about MUSIC-based velocity spectra is that it yields arbitrary ampli-

tude values, since it is a measure of the orthogonality between two vectors from orthogonal subspaces.

Such behavior makes the simple replacement of semblance with MUSIC as a coherency measure, for

example, in standard velocity analysis, not adequate, even though MUSIC presents a higher resolu-

tion.

On the other hand, semblance is a very robust coherence function and produces normalized val-

ues between 0 and 1. It would be very interesting to develop a type of normalization which combines

semblance and MUSIC values, in an attempt to get a velocity spectrum without those arbitrary am-

plitude values. For instance, we may get events with coherency measures differing by several orders
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of magnitude, which makes visualizing the spectrum very difficult.

To that end, we present, in this section, two normalization functions, which make use of sem-

blance coefficient and can be used either for S- and T-MUSIC. The first one, proposed by Asgedon

et al. [2011] and called semblance balancing, uses the energy of both semblance and MUSIC. The

second one, named semblance weighting, is a proposal of this work and uses the concept of coherence

multiplication, as presented in Abbad and Ursin [2012].

4.5.1 Semblance Balancing

In Asgedon et al. [2011], a normalization function that makes use of semblance, named semblance

balancing, is proposed. It assumes the knowledge of the velocity spectra, computed with both MUSIC

and semblance, and balances the MUSIC coefficient according to the semblance and the MUSIC

energies, in a given time window. We can obtain semblance-balanced MUSIC by assuming, for a

given CMP location, the possession of semblance and MUSIC coherence values for Nτ zero-offset

time samples, and Nv trial velocities. If we denote mi,j and si,j as the coherence values obtained from

MUSIC and semblance, respectively, for the i-th ZO time sample and j-th trial velocity, semblance-

balanced MUSIC, m̂i,j , will be given by

m̂i,j =

√

As,i

Am,i

mi,j, (4.20)

where, for a window with an odd number of L ZO time samples,

As,i =

i+(L−1)/2
∑

l=i−(L−1)/2

Nv∑

k=1

s2lk, Am,i =

i+(L−1)/2
∑

l=i−(L−1)/2

Nv∑

k=1

m2
lk. (4.21)

Application of the above conditioning makes sure that the amplitude anomalies inherent to the

original MUSIC velocity spectrum are balanced according to the energy level of semblance.

4.5.2 Semblance Weighting

In Abbad and Ursin [2012], a high-resolution bootstrapped differential semblance coherence func-

tion is presented, which uses the multiplication of several coherence functions. This idea can be used

to combine MUSIC and semblance measures, so as to map the MUSIC values to a well-defined range,

while keeping its resolution. This can be accomplished with the use of a weighting of the MUSIC

coherence function (mi,j) by semblance (si,j). First, we normalize the MUSIC measure, ensuring

that, for each τ0, its maximum value is one. To that end, we define a new coherence function, m(1)
i,j ,
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by dividing mi,j by its maximum value, for the i-th ZO time:

m
(1)
i,j =

mi,j

max{mi,j}Nv

j=1

. (4.22)

The normalized function, m(1)
i,j , has a disadvantage of amplifying the noise, since there will be a

coherence value equal to 1 for each τ0, even when there is no event. Now, if we use semblance as

a weighting factor, we can decrease the amplified noise and still maintain some of the robustness of

semblance. The semblance weighting normalization of MUSIC can be written, then, as

m
(2)
i,j = si,j ×m

(1)
i,j . (4.23)

As will be shown in chapter 5, semblance weighting presents amplitude values between 0 and 1,

without the amplitude anomalies found in MUSIC.



Chapter 5

Numerical examples

5.1 Overview

In this chapter we present the numerical examples that we performed for comparison between

MUSIC-based velocity spectra calculated from spatial and temporal correlation matrices and also to

evaluate the velocity spectra computed with the power method and normalized with both semblance

weighting and semblance balancing functions. In section 5.2 we present simulations with a simple

synthetic CMP gather, containing two reflections. In section 5.3 we present a numerical example with

real marine data set from the Jequitinhonha Basin, in Brazil. Finally, we show, for synthetic data, a

stacking example for velocities obtained with different coherence functions, in section 5.4.

5.2 Synthetic CMP data with two reflections

In this section we compare the use of spatial and temporal correlation matrices to obtain high-

resolution velocity spectra for a synthetic data. We use the semblance coherence function as a bench-

mark. We also show high-resolution velocity spectra obtained with the power method, for both spatial

and temporal correlation matrices.

In the simulations, we used a simple synthetic model with two reflections, generated by equa-

tion (1.1). The first one has a zero offset traveltime of 1 s and a velocity of 4000m/s; the second one

has a zero offset traveltime of 1.06 s and a velocity of 4500m/s. Both reflections are modeled by a

zero-phase Ricker wavelet, with a dominant frequency of 25Hz and are fully correlated. The CMP

section contains 64 receivers. The offset of the first one is 80m and the distance between them is also

80m. The sample period is 2ms and white Gaussian noise was added to the data. The CMP section

can be viewed in figure 5.1.

33
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Figure 5.1: Synthetic CMP section.

5.2.1 Comparison of the methods

Figures 5.2, 5.3 and 5.4 show velocity spectra calculated with semblance from equation (1.2)

and MUSIC from equations (4.4b) and (4.13b), using spatial and temporal correlation matrices, re-

spectively. The figures show both the full three-dimensional spectrum and a zoom into the two-

dimensional spectrum part close to the actual values of the parameters. The window size used was

Nt = 19 samples and velocities were tested from 3000m/s to 6000m/s, in increments of 10m/s. We

have assumed that the signal subspace has rank one, i.e., it is formed by a single signal. For the spa-

tial correlation matrix, we performed spatial smoothing, described in 2.4.1, using 47 subarrays, each

consisting of 18 receivers. We have also used forward-backward averaging, described in 2.4.1, in the

spatially smoothed version of the spatial correlation matrix.

The white squares in the velocity spectra indicate the true location of the parameters and the

MUSIC velocity spectra in figures 5.3 and 5.4 are normalized with respect to the largest coherence

value of the corresponding spectrum. The results in the figures clearly show that both MUSIC algo-

rithms outperform semblance in terms of resolution, resulting in more precise velocity estimates. It

is possible to observe a large spreading in semblance function, a small spreading in S-MUSIC and

almost no spreading in T-MUSIC. These results indicate that MUSIC with the temporal correlation
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Figure 5.2: Semblance velocity spectrum in 3D (a) and in 2D close view (b).
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Figure 5.3: S-MUSIC velocity spectrum in 3D (a) and in 2D close view (b).

may present even better resolution than the spatial correlation one, in time and velocity, despite its

lower complexity.

5.2.2 Power Method

Figures 5.5 and 5.6 show, for the same CMP section of the previous example, velocity spectra

calculated with PM-MUSIC for spatial and temporal correlation matrices, normalized with respect to

the largest coherence value of the corresponding spectrum. Clearly, the use of the power method has

no impact on the results, when compared to figures 5.3 and 5.4. However, S-MUSIC measurements

seem to be noisier with the power method, especially in the areas with no events.

In figure 5.7, we show the histogram of the number of iterations needed for PM-MUSIC conver-

gence, for both spatial and temporal correlation matrices example. We used ξ = 0.3 in the simula-

tions. As seen in figure 5.7(a), for the spatial correlation matrix, in 84.71% of the cases the power
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Figure 5.4: T-MUSIC velocity spectrum in 3D (a) and in 2D close view (b).
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Figure 5.5: S-MUSIC velocity spectrum computed with power method in 3D (a) and in 2D close
view (b).
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Figure 5.6: T-MUSIC velocity spectrum computed with power method in 3D (a) and in 2D close
view (b).
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Figure 5.7: Histogram of number of iterations for convergence of PM-MUSIC applied on spatial (a)
and temporal (b) correlation matrices.
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Figure 5.8: Images with the number of iterations of PM-MUSIC for velocity spectra obtainment with
spatial (a) and temporal (b) correlation matrices.

method converged in a single iteration. For the temporal correlation matrix, figure 5.7(b) shows that

PM-MUSIC converged in one iteration in 76.53% of the cases. Both figures illustrate that the power

method converges quickly, hardly ever requiring more than three iterations.

In figure 5.8, we show images with the number of iterations performed by PM-MUSIC, for each

point of the velocity spectra. It is possible to see that when we are close to the true stacking parameters

the number of iterations is small.
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Figure 5.9: CMP 1801 from marine data set.

5.3 Real data set: Jequitinhonha Basin

For the numerical examples presented in this section, we used the real marine data set, acquired

in the Jequitinhonha Basin and provided by PETROBRAS1. It consists of 981 shots with a distance

of 25m between consecutive shots. For each shot there are 120 receivers displaced with intervals of

25m. The data has a sample period of 4ms and the total time of recording was 7 s.

In figure 5.9 we show the pre-processed2 CMP gather 1801, which was used in the numerical

examples presented in this section. This CMP gather contains 30 receivers. Figure 5.10 illustrates

the velocity spectrum computed with semblance coefficient, using a window of Nt = 15 samples.

Semblance function was computed for each time sample, with velocities going from 1000m/s to

3000m/s, increased of 20m/s.

5.3.1 Comparison of the methods

Figure 5.11 illustrates the velocity spectra obtained with S-MUSIC and T-MUSIC, both computed

with a window of Nt = 15 samples, using semblance weighting normalization function. In figure 5.12

1Line 214-2660 - azimuth 50
◦ N, acquired towards the NE.

2This data was pre-processed with band-pass filters, geometrical amplitude corrections, deconvolution, etc.
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we also show S-MUSIC and T-MUSIC velocity spectra, also computed with Nt = 15 samples, but

normalized with semblance balancing, applied for a window of L = 3 samples. For S-MUSIC, we

performed FB averaging and spatial smoothing of the correlation matrix using 15 subarrays of 16

receivers.

We can see that, for this data, semblance weighting normalization has a better preservation of the

coherence. We can also see that both S- and T-MUSIC present higher resolution than semblance.

However, the spectra computed with T-MUSIC seem a little noisier than the ones computed with

S-MUSIC. The cause of that might be the equally averaging of the traces in the estimative of the

tested eigenvector, as illustrated in figure 4.2. A possible improvement of T-MUSIC could be a better

estimative of this eigenvector, taking into account the different amplitudes and shapes of the wavelets

along the traces.

5.3.2 Power Method

In figures 5.13 and 5.14 we show S- and T-MUSIC normalized with semblance weighting and

semblance balancing functions and computed with the power method, for the same window of Nt =

15 samples. When comparing these figures with figures 5.11 and 5.12 we can see that power method

maintains the high-resolution property of MUSIC, with the benefit of presenting lower computation

complexity, as illustrated in Table 4.1.

Figure 5.15 presents the histogram of the number of iterations needed for PM-MUSIC conver-

gence, for both spatial and temporal correlation matrices example. We also used ξ = 0.3. In this

example, for the spatial correlation matrix, in 47% of the cases the power method converged in a sin-

gle iteration. For the temporal correlation matrix, the PM-MUSIC converged in one iteration in 89%

of the cases. In figure 5.16, we show images with the number of iterations performed by PM-MUSIC,

for each point of the velocity spectra.

5.4 Stacking of synthetic data

In this section we present the stacking results of the synthetic data3 generated with the velocity

model from figure 5.17(a). The velocity values in figure 5.17 vary from 1500m/s to 3500m/s. This

example demonstrates how the high-resolution coherence functions affect the stacking of regions with

pinch-outs, as the one illustrated in the red box of figure 5.17(a).

The data contains 179 shots with 180 receivers, displaced at intervals of 10m. The distance

between the source and the first receiver is 10m. The first shot was performed at the offset of 10m

3The data was generated by a ray-tracing program kindly provided by Prof Hervé Perroud, from the Université de Pau
et des Pays de l’Adour.
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Figure 5.15: Histogram of number of iterations for convergence of PM-MUSIC applied on spatial (a)
and temporal (b) correlation matrices.
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Figure 5.16: Images with the number of iterations of PM-MUSIC for velocity spectra obtainment
with spatial (a) and temporal (b) correlation matrices.
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and the last one at 1790m. Each shot was increased of 10m in relation to the last one. The data

has a sample period of 2ms and the total time of recording was 2 s. We stacked 101 CMP gathers,

going from offset 1600m to 2000m. The fold of the CMP’s is of 90 receivers. In the coherence

computations, we tested 151 velocities, going from 1000m/s to 4000m/s, with a window of Nt = 15

samples. We performed FB averaging and spatial smoothing with 61 sub-arrays of 30 receivers for

S-MUSIC. We added white Gaussian noise to the data. For the stacking operation, we used, for each

time sample, the velocity which presented the highest coherency value.

Figures 5.18, 5.19 and 5.20 illustrate the CMP’s located at the midpoints of 1600 m, 1800 m and

1950 m (the last one being the exact location of the pinch-out, where there are more than one re-

flection superposed arriving around 0.3 s) with different velocity spectra computed with semblance,

PM-S-MUSIC and PM-T-MUSIC with and without normalization functions. For a better visualiza-

tion, the non-normalized PM-S-MUSIC and PM-T-MUSIC spectra were clipped, respectively, for

coherence values larger than 300 and 700 in figure 5.18, 250 and 300 in figure 5.19 and 300 and

500 in figure 5.20. It is possible to see, in 5.18(c) and 5.18(f), that both PM-S- and PM-T-MUSIC

can resolve the two reflections from the interfaces with velocities 2000 m/s and 2500 m/s, arriving

around 0.3 s and 0.4 s. In 5.19(c) and 5.19(f), only PM-T-MUSIC can resolve these two reflections

and in 5.20(c) and 5.20(f) neither PM-S- and PM-T-MUSIC are capable to resolve it. This behavior

influences the stacking results, as shown in figures 5.21, 5.22, 5.23 and 5.24.

In figure 5.21 we show a close view of the stacking performed with the velocities provided by

semblance coherence function. In figures 5.22, 5.23 and 5.24 we show the results of the stacking

performed with velocities obtained with PM-MUSIC for spatial and temporal correlation matrices

without normalization and normalized with semblance weighting and semblance balancing. We ob-

serve from the results that the stacking performed with the velocities estimated from PM-T-MUSIC

have a better definition of the layers close to the pinch-out than the ones performed with semblance

and PM-S-MUSIC. Moreover, the stacking from semblance balancing normalization seem to present

a better resolution near the pinch-out than the ones from semblance weighting. After the pinch-out,

the stacking with the best alignment are the ones with the velocities estimated with semblance and

with semblance weighting normalization. We show the velocities used for stacking the data, esti-

mated with semblance and with the different types of PM-S- and PM-T-MUSIC, in figure 5.25. It is

possible to see several arbitrary values in most of the spectra. These values appear due to the auto-

matic algorithm we used for choosing the velocities: when there were no reflections at the τ0 being

analyzed, the algorithm simply picked out the velocity which resulted in the highest coherence value.

This has no impact in the stacking result because as there is no event in that τ0 it does not matter the

velocity used for stacking the data. It is possible to see, from figures 5.25(e), 5.25(f) and 5.25(g) ,

that PM-T-MUSIC presents better estimative of the velocities near the pinch-out.
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Figure 5.17: Velocity model (a) and close view of the region inside the red box, for stacking compar-
ison (b).
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Figure 5.18: CMP gather at the midpoint position of 1600m (a) and velocity spectra computed with
semblance (b), PM-S-MUSIC (c) and PM-T-MUSIC (f) without normalization and normalized with
semblance balancing (d) and (g) and semblance weighting (e) and (h).
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Figure 5.19: CMP gather at the midpoint position of 1800m (a) and velocity spectra computed with
semblance (b), PM-S-MUSIC (c) and PM-T-MUSIC (f) without normalization and normalized with
semblance balancing (d) and (g) and semblance weighting (e) and (h).
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Figure 5.20: CMP gather at the midpoint position of 1950m (a) and velocity spectra computed with
semblance (b), PM-S-MUSIC (c) and PM-T-MUSIC (f) without normalization and normalized with
semblance balancing (d) and (g) and semblance weighting (e) and (h).
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Figure 5.21: Stacking result close view for semblance.
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Figure 5.22: Stacking result close view for PM-MUSIC, without normalization, computed for spa-
tial (a) and temporal (b) correlation matrices.
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Figure 5.23: Stacking result close view for PM-MUSIC, normalized with SW and computed for
spatial (a) and temporal (b) correlation matrices.
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Figure 5.24: Stacking result close view for PM-MUSIC, normalized with SB and computed for spa-
tial (a) and temporal (b) correlation matrices.
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Figure 5.25: Stacking velocities estimated with semblance (a), PM-S-MUSIC (b), SB PM-S-
MUSIC (c), SW PM-S-MUSIC (d), PM-T-MUSIC (e), SB PM-T-MUSIC (f) and SB PM-S-
MUSIC (g). The criterium was to choose, for each τ0, the velocity corresponding to the highest
coherence value.



Chapter 6

Conclusions

In this dissertation, we discussed stacking parameters estimation in seismic signal processing. The

focus of our discussion was on the high-resolution method known as MUSIC, which produces bet-

ter estimates of the parameters in comparison with the classical semblance. The standard version of

MUSIC is based on the eigendecomposition of the spatial correlation matrix, computed from seismic

data, and we refer to it as S-MUSIC. We presented an iterative method to perform this eigendecom-

position and coherency calculation, which we named PM-S-MUSIC. When compared to S-MUSIC,

PM-S-MUSIC algorithm allows a reduction of complexity, due to the fact that it is based only on the

iterative estimation of the eigenvector related to the largest eigenvalue (signal subspace) from spa-

tial correlation matrix, unlike S-MUSIC, which is based on the estimation of all the other remaining

eigenvectors (noise subspace). We presented a new way to perform eigenstructure-based velocity

spectra calculation, based on eigendecomposition of the temporal correlation matrix. We called this

method T-MUSIC. We also presented the temporal variant of PM-S-MUSIC, which we named of

PM-T-MUSIC.

The numerical examples, shown in chapter 5, indicated that PM-S-MUSIC outperforms sem-

blance and that its temporal variant, PM-T-MUSIC, can present the same high-resolution as its spatial

counterpart. Moreover, PM-T-MUSIC is particularly useful when dealing with correlated signals, as

we do not need to use spatial smoothing together with forward-backward averaging for conditioning

of the correlation matrix. We have seen, however, that the estimative of the tested eigenvector in

PM-T-MUSIC could be improved by taking into account the different amplitudes and shapes of the

wavelets along the traces. This appears to be a natural continuation of the method proposed in this

work.

The complexity orders for the semblance and for the spatial and temporal versions of MUSIC

and PM-MUSIC were presented in chapter 4. From that analysis, we verify that temporal versions

of MUSIC and PM-MUSIC leads to computation savings when compared to its spatial counterparts,
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mainly due to the fact that usually the window size is smaller than the number of traces in a seismic

data.

We have also proposed, in chapter 4, a different normalization function that makes use of sem-

blance coefficient (semblance weighting) in order to deal with high dynamic range in the produced

velocity spectra for both S-MUSIC and T-MUSIC coherence functions. We compared that normal-

ization function with a different one, which can be found in the literature (semblance balancing).

Based on the numerical examples presented in this dissertation, and others that we did not show here,

we observe that semblance weighting tends to generate better coherency spectra in cases that the

semblance coherence function already presents a reasonable spectrum. On the other hand, when the

spectra obtained from semblance are not good semblance balancing tends to generate better results.
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