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da tese defendida pelo aluno, e orientada

pelo Professor Michel Daoud Yacoub.

Campinas
2012

i







Acknowledgments

I would like to thank everyone who helped making this work possible, in special to

Professor Michel Yacoub, my advisor, for the all the precious guidance provided;

my friend Guilherme Rabelo, whose recommendation was the starting point of this journey;

my friends Tiago Ricciardi and Rafael Ando, for all the valuable conversations;

my other friends, for all the good moments together;

my family, my mother Dilva, my father Natal, my brother Victor and my sister Larissa, for the
support;

the School of Electrical and Computer Engineering/University of Campinas (FEEC/UNICAMP),
for the very good infrastructure;

all the professors whose classes I had the pleasure to attend to, for the great courses that were
offered;

the members of the examining committee, professors Ugo Dias and José Candido, for the sug-
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Abstract

This thesis concerns some important results regarding the phase statistics of the

kappa-mu fading model. In particular, the phase crossing rate is obtained in an

exact manner. In addition, in order to circumvent the intricacy of the exact for-

mulations, approximate solutions for the following statistics are proposed: phase

crossing rate and probability density function of the phase. Furthermore, a simula-

tion methodology is developed so as to validate the formulations. Finally, field data

obtained by measurements conducted elsewhere are used to fit the phase statistics

for both kappa-mu and generalized Nakagami-m models.

Key-words: Fading models, kappa-mu, Nakagami-m, phase statistics.
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Resumo

Esta tese apresenta alguns resultados importantes das estat́ısticas de fase do modelo

de desvanecimento kappa-mu. Em particular, a taxa de cruzamento de fase é obtida

de maneira exata. Adicionalmente, para evitar a complexidade das formulações

exatas, foram propostas soluções aproximadas para as seguintes estat́ısticas: taxa

de cruzamento de fase e função densidade de probabilidade de fase. Além disso, uma

metodologia de simulação foi desenvolvida para validar as formulações. Finalmente,

dados de campo obtidos através de medidas conduzidas por outros pesquisadores

foram usados para adequar as estat́ısticas de fase, tanto para o modelo kappa-mu

quanto para Nakagami-m generalizado.

Palavras-chave: Modelo de desvanecimento, kappa-mu, Nakagami-m, estat́ısticas de

fase.
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Introduction

The Mobile Radio Channel

The modeling of the wireless channel is a rather intricate problem. The wireless signal is

subjected to various phenomena, such as shadowing and multiple reflections, caused by obstacles

in the propagation path. The signal transmitted to and received by mobile stations is affected

by a Doppler shift related to the relative velocity between the transmitter and receiver. In

addition, changes in the environment greatly affect the wireless transmissions, this occurring

with an intensity greater than that in guided communications such as wired and fiber optics

transmissions. In this sense, an accurate modeling of the propagation channels is needed for a

better system design and performance analysis.

Accounting for all of the interactions suffered by the wireless signal is an impossible task.

Hence, the wireless channel is often modeled statistically, with the phase and the envelope of

the signal being represented by random variables (RV). The fading process is usually divided

in two types: the slow fading, caused by shadowing, and the fast fading, caused by multipath

propagation. The envelope of a signal undergoing slow fading is generally well represented by

the log-normal distribution [1], whereas several different distributions model the fast fading.

Some of those distributions are Rayleigh, Rice, Nakagami-m and κ-µ. As their names imply,

the time scale of signal strength variation in the slow fading case is much greater than that of

the fast fading.

The Phase Crossing Rate

In order to have a better understanding of the dynamics of the fading process some second

order statistics are studied. Such an investigation was pioneered by Rice in his classical paper [2],

in which he studied the click noise in FM systems. The second order statistics take in account

not only the distribution of the envelope and phase, but also how the signal changes with

respect to the time. To compute those statistics, a detailed description of the physical processes

is required.

In several fading models, such as Rayleigh, Rice, Nakagami-m, κ-µ and others, the physical

process is modeled as the sum of squared gaussian variables. Those Gaussians in turn are

modeled as the sum of an infinitude of sinusoidal waves, representing the scattered waves received

by the mobile station. Each sinusoidal wave has a phase that is related to the distance traveled

1



Introduction 2

by the wave before arriving at the receiver, and a shift in frequency due to the Doppler effect,

which is related to its angle of arrival and the velocity of the station [3]. With the signal

physically modeled, it is possible to compute the derivatives of the envelope and phase with

respect to the time.

One important second order statistics is the phase crossing rate (PCR). It measures the

average number of crossings in a single direction (upward or downward) of a given phase. The

study of the phase behavior is useful, for instance, for the design of optimal carrier recovery

schemes needed in the synchronization subsystem of coherent receivers [4].

Fading Models

The fading models comprised in this work are described next. The main contribution is

relative to the phase statistics of the κ-µ model, which in turn requires some understanding of

its particular cases, namely Nakagami-m, Rice and Rayleigh [5]. The Generalized Nakagami-m

model [6], which isn’t a particular case of the κ-µ model, is adjusted to experimental data, so a

brief introduction to this model is also given.

Nakagami-m

The Nakagami-mmodel is one of the most used fading models for modeling the fast fading [7].

It has a wide range of applicability and has been found to fit very well to measurements of the

mobile radio channel [8]. While it was first inferred by inspection over measured data [7], a

physical model that obtained the exact expression was proposed in [9]. A generalized version

is discussed in [6], with the addition of a phase parameter p that models a power imbalance

between the in-phase and quadrature components.

Rayleigh

The Rayleigh fading is a fast fading model in which the envelope of the wireless signal follows

a Rayleigh distribution. It is well suited for studying non-line-of-sight (NLoS) propagation

conditions, in which the received signal is scattered by a large number of objects [10]. It is a

special case of both the Nakagami-m and Rice models.

Rice

The Ricean fading models a propagation condition in which the energy of the direct com-

ponent is larger than that of the scattered components. It adequately models the fast fading

under line-of-sight (LoS) propagation [11], yielding better fits under this condition than the

Nakagami-m model.

κ-µ

The κ-µ distribution is a general fading distribution that represents the small-scale variations

of the fading signal under a LoS condition [5]. As its name implies, it is written in terms of

two physical parameters: κ and µ. The parameter κ > 0 concerns the ratio between the total
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power of the dominant components and the total power of the scattered waves, whereas the

parameter µ > 0 is related to the multipath clustering. It encompasses several important fading

distributions as special cases, including Nakagami-m and Rice. Its flexibility renders it suitable

to better fit field measurements data in a variety of scenarios, both for low- [5] and high-order

statistics [12]. Although several first and second order statistics of the envelope of the κ-µ model

have been derived [5,12], the phase crossing rate of this model remains unknown. Furthermore,

no closed-form expression has been found for the probability density function (PDF) of the

phase [13]. This hinders the practicality of using the κ-µ for studying phase related phenomena.

Contributions

The contributions of this thesis are many-fold:

❼ The PCR of the κ-µ fading model is found in an exact manner;

❼ a simple approximation for the κ-µ PCR and phase probability density function is pro-

posed, which yields results that are very close to the exact expression, but that are much

faster to compute;

❼ a simulation methodology to validate the results is presented;

❼ the PCR is fitted to field data, for both the κ-µ and the Nakagami-m models.

Structure

In the first chapter the κ-µ, Generalized Nakagami-m, Rice and Rayleigh models are revisited.

The results presented there are important for the derivations that follow. The second chapter

details the derivation of the PCR of the κ-µ model. The third chapter presents the method

used to find the approximate function and the proposed approximation for the κ-µ PCR and

phase PDF. The fourth chapter comprises a discussion regarding the simulation of the phase of

the κ-µ process with some simulated results. Finally, in the fifth chapter the PCR of the κ-µ

and Nakagami-m models is adjusted to field data obtained elsewhere.



Chapter 1
Fading Models Revisited

In this chapter, the κ-µ, Rice and Generalized Nakagami-m models are revisited. The main

characteristics of these models are discussed. The physical modeling of each fading model is

given, along with the mathematical expression of some important statistics. The relationships

between these models are also explored.

1.1 The κ-µ fading model

The κ-µ envelope is defined as [5]

R2 =

µ
∑

i=1

(Xi + pi)
2 +

µ
∑

i=1

(Yi + qi)
2, (1.1)

in which Xi and Yi are the independent Gaussian random variables resulting from the processes

Xi =
√
2σ

N
∑

j=1

cos(ωijt− φij) (1.2)

and

Yi =
√
2σ

N
∑

j=1

sin(ωijt− φij). (1.3)

In Equations (1.2) and (1.3), φij is the phase, ωij is the Doppler shift and N is the number

of scatterers in an isotropic environment [3]. Note that E(Xi) = E(Yi) = 0 and E(X2
i ) =

E(Y 2
i ) = σ2. Each Xi and Yi component can be viewed as a sample of a stochastic process,

with auto-correlation [3, 14]

R(τ) = J0(2πfdτ), (1.4)

in which J0(x) is the zeroth-order Bessel function of the first kind, fd is the maximum Doppler

shift and τ is the time delay. The maximum Doppler shift is found as v/λ, with vt,r being the

velocity of the transmitter relative to the receiver and λ being the wavelength of the signal. The

theoretical power spectrum of such a stochastic process is

S(f) =
1

πfd
√

1− (f/fd)2
, (1.5)

4



Chapter 1. Fading Models Revisited 5

in which f is the frequency in Hertz.

The in-phase and quadrature parts of the signal are given, respectively, as

X2 =

µ
∑

i=1

(Xi + pi)
2 (1.6)

and

Y 2 =

µ
∑

i=1

(Yi + qi)
2. (1.7)

The terms pi and qi are the mean values of the in-phase and quadrature components of the

multipath cluster i. The power of the in-phase and quadrature components are given as

p2 =

µ
∑

i=1

p2i and q2 =

µ
∑

i=1

q2i , (1.8)

and the total power of the dominant components is

d2 =

µ
∑

i=0

(

p2i + q2i
)

. (1.9)

The parameter κ is the ratio of the total power of the dominant components and the power

of the scattered waves,

κ = d2/2µσ2. (1.10)

The variance of the Gaussian processes can be written as a function of the parameters κ and

µ and the root mean square (RMS) value of the envelope r̂ =
√

E[R2],

σ2 =
r̂2

2µ(1 + κ)
. (1.11)

In [15], a phase parameter φ , arg(p + jq) was introduced. It allows the terms p and q to

be written as a function of κ, µ and φ,

p =

√

κ

1 + κ
r̂ cos(φ) (1.12)

and

q =

√

κ

1 + κ
r̂ sin(φ). (1.13)

Denote X or Y by Z and p or q by λ as required. The PDF of Z is given as [15]

fZ(z) =
|z|µ2 exp

(

− (z−λ)2

2σ2

)

Iµ
2
−1

(

|λz|
σ2

)

2σ2|λ|µ2−1 cosh
(

λz
σ2

) . (1.14)

Observe that although the probability distribution of the in-phase or quadrature components

is known, the complex envelope is not. Equation (1.14) was achieved by combining the PDF of

|Z|, the absolute value of the RV Z, with the knowledge of the PDF of Z at a particular case.
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More details on this derivation are found in [15]. The joint PDF of the normalized envelope P

and the phase Θ of the κ-µ model is given as [15]

fP,Θ(ρ, θ) =
1

2
µ2κ1−

µ
2 (1 + κ)

µ+2
2 ρµ+1| sin 2θ|µ2 | sin 2φ|1−µ

2

× exp
(

−µ(1 + κ)ρ2 − κµ+ 2µ
√

κ(1 + κ)ρ cos(θ − φ)
)

×Iµ
2
−1

(

2µ
√

κ(1 + κ)ρ| cos θ cosφ|
)

sech
(

2µ
√

κ(1 + κ)ρ cos θ cosφ
)

×Iµ
2
−1

(

2µ
√

κ(1 + κ)ρ| sin θ sinφ|
)

sech
(

2µ
√

κ(1 + κ)ρ sin θ sinφ
)

,

(1.15)

ρ ≥ 0, −π < θ ≤ π.

In this work P denotes the envelope normalized by its RMS value, rather than the scaled

version found in [15]. Two particular cases of the joint envelope were also presented in [15], for

φ = ±nπ and for φ = ± (2n+1)π
2

. They are

fP,Θ(ρ, θ)|φ=±nπ =
1

Γ
(

µ
2

)µ1+µ
2 κ

1
2
−µ

4 (1 + κ)
1
2
+ 3µ

4 ρ
3µ
2 | sin θ|µ−1| cos θ|µ2

× exp
(

−µ(1 + κ)ρ2 − κµ+ 2µ
√

κ(1 + κ)ρ cos θ cosφ
)

×Iµ
2
−1

(

2µ
√

κ(1 + κ)ρ| cos θ|
)

sech
(

2µ
√

κ(1 + κ)ρ cos θ
)

(1.16)

and

fP,Θ(ρ, θ)|φ=± (2n+1)π
2

=
1

Γ
(

µ
2

)µ1+µ
2 κ

1
2
−µ

4 (1 + κ)
1
2
+ 3µ

4 ρ
3µ
2 | cos θ|µ−1| sin θ|µ2

× exp
(

−µ(1 + κ)ρ2 − κµ+ 2µ
√

κ(1 + κ)ρ sin θ sinφ
)

×Iµ
2
−1

(

2µ
√

κ(1 + κ)ρ| sin θ|
)

sech
(

2µ
√

κ(1 + κ)ρ sin θ
)

,

(1.17)

in which Γ(·) is the complete gamma function [16]. The PDF of the normalized envelope P

can be found by integrating (1.15) with respect to Θ from −π to π or it can be derived in a

straightforward fashion as shown in [5]. It is given as

fP (ρ) =
2µ(1 + κ)

µ+1
2

κ
µ−1
2 exp(µκ)

ρµ exp
[

−µ(1 + κ)ρ2
]

Iµ−1

[

2µ
√

κ(1 + κ)ρ
]

, (1.18)

ρ ≥ 0.

The phase PDF is found by integrating either one of Equations (1.15), (1.16) and (1.17)

with respect to ρ from 0 to ∞. No closed-form expression was found for this integral and it can

only be calculated numerically.

1.2 The Generalized Nakagami-m model

The envelope of the generalized Nakagami-m model [6] is calculated as

R2 =

mX
∑

i=1

X2
i +

mY
∑

i=1

Y 2
i , (1.19)
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in which Xi and Yi are Gaussian random variables with the same variance and zero mean and

mX and mY are the number of multipath clusters in the in-phase and quadrature components.

The phase parameter −1 < p < 1 measures the phase imbalance and is given as

p =
mX −mY

mX +mY

, (1.20)

in which mX and mY relates to the m parameter of the original Nakagami-m model by

2m = mX +mY . (1.21)

The fading is said to be balanced if p = 0, in which case the generalized Nakagami-m model

reverts back to its classical formulation. With this condition, it is a special case of the κ-µ

model when κ→ 0.

The generalized joint phase-envelope PDF is given as [6]

fR,Θ(r, θ) =
mm| sin θ cos θ|m−1r2m−1

ΩmΓ
(

1+p
2
m
)

Γ
(

1−p
2
m
)

| tan θ|pm
exp

(

−mr
2

Ω

)

, (1.22)

r ≥ 0, −π < θ ≤ π. The parameter Ω is the mean value of the square of the envelope,

Ω = E[R2]. (1.23)

The envelope is given as

fR(r) =
2mmr2m−1

ΩmΓ(m)
exp

(

−mr
2

Ω

)

. (1.24)

The phase PDF is

fΘ(θ) =
Γ(m)

2mΓ
(

1+p
2
m
)

Γ
(

1−p
2
m
)

| sin 2θ|m−1

| tan θ|pm . (1.25)

The PCR of the generalized Nakagami-m model is also found in an exact manner [6] as

NΘ(θ) =

√
πfd| sin 2θ|m−1| tan θ|−pmΓ

(

m− 1
2

)

2m+ 1
2Γ
(

1+p
2
m
)

Γ
(

1−p
2
m
)

. (1.26)

1.3 Rice

The complex envelope of the Ricean process is given as

Z = (X + p) + j(Y + q), (1.27)

in which X and Y are Gaussian variates with zero mean and variance σ2. Note that the Rice

process is a particular case of the κ-µ process when µ = 1 and κ = k. The phase-envelope joint

PDF of Rice is obtained by substituting µ = 1 in (1.15)

fP,Θ(ρ, θ) =
1 + k

π
ρ exp

(

−(1 + k)ρ2 + 2
√

k(1 + k)ρ cos(θ − φ)− k
)

, (1.28)
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ρ ≥ 0, −π < θ ≤ π. As in (1.15), ρ denotes the RV obtained by normalizing the envelope r by

its RMS value, r̂.

The normalized envelope PDF can be calculated directly by substituting µ = 1 in (1.18)

fP (ρ) = 2(1 + k)ρ exp
[

−(1 + k)ρ2 − k
]

I0

[

2
√

k(1 + k)ρ
]

, (1.29)

ρ ≥ 0.

The phase PDF is calculating by integrating (1.28) with respect to ρ from −∞ to ∞,

fΘ(θ) =
exp(−k)

2π
(1 +

√
kπ exp(k cos2(θ − φ)) cos(θ − φ)[1 + erf(

√
k cos(θ − φ))]), (1.30)

−π < θ ≤ π, in which k = (p2 + q2)/(2σ2) and erf(·) denotes the error function [17].

The PCR of the Rice fading model is [18]

N(θ) =
fd

2
√
2
exp

(

−d
2 sin2(θ − φ)

2σ2

)[

1 + erf

(

d cos(θ − φ)√
2σ

)]

, (1.31)

in which d is defined as

d2 , p2 + q2. (1.32)

1.4 Rayleigh

The Rayleigh distribution is a particular case of the κ-µ, Nakagami-m and Rice distributions.

It is obtained by setting κ = 0 and µ = 1 in the κ-µ model, m = 1 and p = 0 in the generalized

Nakagami-m model and k = 0 in the Rice fading model. The complex envelope of the Rayleigh

distribution is given as

Z = X + jY , (1.33)

in which X and Y are Gaussian variates with zero mean and variance σ2. In the Rayleigh

distribution, the phase and the envelope are independent. The PDF of the normalized Rayleigh

envelope is

fP (ρ) = 2ρ exp(−ρ2), (1.34)

r ≥ 0, and the phase PDF is constant in the (−π, π] interval,

fΘ(θ) =
1

2π
, (1.35)

−π < θ ≤ π. The PCR of Rayleigh is

NΘ(θ) =
fd

2
√
2
. (1.36)

All the expressions for Rayleigh can be obtained by making the corresponding substitutions in

the expressions of either the κ-µ, Nakagami-m or Rice models.



Chapter 2
The κ-µ Phase Crossing Rate

The PCR is a second order statistics that measures the average number of upward (or

downward) crossings per second of a given phase θ. The PCR of a continuous process is given

as

NΘ(θ) =

∞
∫

0

θ̇fθ,θ̇(θ, θ̇)dθ̇. (2.1)

In which θ is the phase of the process and θ̇ the time derivative of the phase. In order to

obtain the PCR, it is thus necessary to know the joint distribution fθ,θ̇(θ, θ̇).

2.1 Derivation of the κ-µ PCR

The derivation of the PCR first involves the derivation of fΘ,Θ̇(θ, θ̇). This can be accom-

plished in three steps. First the joint distribution of fX,Y,Ẋ,Ẏ (x, y, ẋ, ẏ) is found. Then, the

Cartesian X, Y, Ẋ, Ẏ variables are changed to the polar coordinates R, Ṙ,Θ, Θ̇. To simplify the

notation, the joint distribution fR,Ṙ,Θ,Θ̇(r, ṙ, θ, θ̇) is normalized with respect to the RMS values

of R and Ṙ, yielding the joint distribution fP,Ṗ ,Θ,Θ̇(ρ, ρ̇, θ, θ̇). Finally, the resulting expression is

integrated over the domains of P and Ṗ , resulting in fΘ,Θ̇(θ, θ̇). Unfortunately, no closed-form

expression of the latter was found and hence an intermediate step was introduced, in which

NΘ(θ, ρ) is found, so that NΘ(θ) =
∫∞
0
NΘ(θ, ρ)dρ. This will be further explained in the next

subsections.

2.1.1 Proof that Z and Ż are independent

In this section, Z denotes either X or Y and λ denotes either p or q, as required. The PDF

of Z is given in Equation (1.14). From Equations (1.6) or (1.7),

Z2 =

µ
∑

i=1

(Zi + λi)
2. (2.2)

By differentiating both sides of (2.2) with respect to time and rearranging the terms, it is

9
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possible to write

Ż =

∑µ
i=1(Zi + λi)Żi

Z
. (2.3)

Let Ż|Z represent the random variable Ż conditioned on the value of all Zi , i = 1, ..., µ.

In [1], it is shown that, for an isotropic environment, Żi is a Gaussian random variable with

zero mean and variance

σ̇2 = 2π2f 2
dσ

2. (2.4)

Because Ż|Zi is the sum of µ Gaussian random variables, it is itself a Gaussian random variable,

and its PDF can be fully characterized by its first and second moments. The moments of each

individual Gaussian component Żi are

E[Żi] = 0 (2.5)

and

E[ŻiŻj] =

{

σ̇2 if i = j

0 elsewise
. (2.6)

The mean value of Ż|Z is

E[Ż|Z] =

µ
∑

i=1

(Zi + λi)E[Żi]

Z
= 0, (2.7)

and its second moment is

E[Ż2|Z] =

µ
∑

i=1

µ
∑

j=1

(Zi + λi)(Zj + λj)E[ŻiŻj]

Z2
=

µ
∑

i=1

(Zi + λi)
2E[Żi

2
]

Z2
= σ̇2.

(2.8)

The PDF of Ż|Z is then

fŻ|Z(ż|z) =
1√
2πσ̇2

exp

(

− ż2

2σ̇2

)

. (2.9)

Since fŻ|Z(ż|z) is not a function of z, fŻ|Z(ż, z) = fŻ(ż), which means that Z is independent

of Ż.

2.1.2 Joint PDF of X, Ẋ, Y, Ẏ

Because X and Y are independent processes and because X is independent of Ẋ and Y

is independent of Ẏ , the variables X, Ẋ, Y, Ẏ are jointly independent. The joint PDF can be

calculated by simply multiplying the marginal distributions in (1.14) and (2.9), substituting X

or Y for Z and Ẋ or Ẏ for Ż, as required. That is,

fX,Ẋ,Y,Ẏ (x, ẋ, y, ẏ) =

|xy|
µ
2

8πσ4σ̇2|pq|
µ
2 −1

exp
(

− (x−p)2+(y−q)2

2σ2

)

exp
(

− ẋ2+ẏ2

2σ̇2

)

Iµ
2
−1

(

|px|
σ2

)

Iµ
2
−1

(

|qy|
σ2

)

sech
(

px
σ2

)

sech
(

qy
σ2

)

.

(2.10)
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2.1.3 Joint PDF of P, Ṗ ,Θ, Θ̇

In this section, P denotes the normalized envelope. First, a variable transformation is made

from the Cartesian coordinates (X, Y ) to the polar coordinates (R,Θ). The transformation is

fR,Ṙ,Θ,Θ̇(r, ṙ, θ, θ̇) = |J |fX,Ẋ,Y,Ẏ (x, ẋ, y, ẏ), (2.11)

in which J is the Jacobian of the transformation. X and Y can be written as functions of R

and Θ,

x = r cos θ, (2.12)

y = r sin θ. (2.13)

Therefore

ẋ = ṙ cos θ − rθ̇ sin θ, (2.14)

ẏ = ṙ sin θ + rθ̇ cos θ. (2.15)

The Jacobian of this transformation is easily found to be |J | = r2. Thus

fR,Ṙ,Θ,Θ̇(r, ṙ, θ, θ̇) =

rµ+2| sin 2θ|
µ
2

23+
µ
2 πσ4σ̇2|pq|

µ
2 −1

exp
(

− r2−2r(p cos θ+q sin θ)+p2+q2

2σ2

)

exp
(

− ṙ2+r2θ̇2

2σ̇2

)

×Iµ
2
−1

(

|pr cos θ|
σ2

)

Iµ
2
−1

(

|qr sin θ|
σ2

)

sech
(

pr cos θ
σ2

)

sech
(

qr sin θ
σ2

)

.

(2.16)

The expression (2.16) contains the variances σ2 and σ̇2, which is an inconvenience. Ideally, this

expression should be given only in terms of the parameters κ, µ and φ. It is possible to get rid

of this unwanted terms by normalizing the envelope r with respect to its RMS value r̂. The

normalized envelope is

ρ =
r

r̂
, (2.17)

in which the term r̂ is defined in (1.11). This transformation is performed in a similar fashion as

(2.11), with the Jacobian being |J | = r̂2. After making the necessary algebraic manipulations,

the desired joint PDF is obtained

fP,Ṗ ,Θ,Θ̇(ρ, ρ̇, θ, θ̇) =
κ1−

µ
2µ3

4π3f 2
d

ρµ+2

×| sin 2θ|µ2 | sin 2φ|1−µ
2 exp

(

−µ(1+κ)

2π2f2
d

(ρ̇2 + ρ2θ̇2)
)

× exp
(

−µ(1 + κ)ρ2 − κµ+ 2µ
√

κ(1 + κ)ρ cos(θ − φ)
)

×Iµ
2
−1

(

2µ
√

κ(1 + κ)ρ| cos θ cosφ|
)

sech
(

2µ
√

κ(1 + κ)ρ| cos θ cosφ|
)

×Iµ
2
−1

(

2µ
√

κ(1 + κ)ρ| sin θ sinφ|
)

sech
(

2µ
√

κ(1 + κ)ρ| sin θ sinφ|
)

.

(2.18)
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2.1.4 The Phase Crossing Rate

The next step in the derivation of the PCR would be finding fΘ,Θ̇(θ, θ̇), which is obtainable by

integrating (2.18) with respect to ρ and ρ̇. However, this integration does not produce a closed-

form expression, which means that the PCR can only be achieved by numerical calculation. To

reduce the number of integrations, as an intermediate step the PCR is calculated as a function

of ρ and θ, i.e.

NΘ(ρ, θ) ,

∫

Θ̇

∫

Ṗ

θ̇fP,Ṗ ,Θ,Θ̇(ρ, ρ̇, θ, θ̇)dρ̇dθ̇, (2.19)

for which there is a closed-form expression,

NΘ(ρ, θ) =

√
πfd

2
√
2
µ3/2κ1−

µ
2 (1 + κ)

µ+1
2 ρµ| sin 2θ|µ2 | sin 2φ|1−µ

2

× exp
(

−µ(1 + κ)ρ2 − κµ+ 2µ
√

κ(1 + κ)ρ cos(θ − φ)
)

×Iµ
2
−1

(

2µ
√

κ(1 + κ)ρ| cos θ cosφ|
)

sech
(

2µ
√

κ(1 + κ)ρ| cos θ cosφ|
)

×Iµ
2
−1

(

2µ
√

κ(1 + κ)ρ| sin θ sinφ|
)

sech
(

2µ
√

κ(1 + κ)ρ| sin θ sinφ|
)

.

(2.20)

Finally, the PCR is found by integrating NΘ(ρ, θ) over the domain of ρ,

NΘ(θ) =

∞
∫

0

NΘ(ρ, θ)dρ. (2.21)

2.2 Special Cases

As discussed before, the κ-µ distribution encompasses several other distributions, including

Nakagami-m and Rice. This section shows the compatibility of Equation (2.20) with those

models.

2.2.1 Rice

The Rice fading model is obtained from the κ-µ fading model by setting µ = 1. After using

the identity

I− 1
2
(x) =

√

2/(πx) cosh(x) (2.22)

in (2.20) and making the necessary algebraic manipulations, we arrive at

NΘ(ρ, θ) =
fd√
2π

√
1 + κ

× exp
(

−(1 + κ)ρ2 − κ+ 2
√

κ(1 + κ)ρ cos(θ − φ)
)

.
(2.23)

Integrating Equation (2.23) with respect to ρ leads to

NΘ(θ) =
fd

2
√
2
exp

(

−κ sin2(θ − φ)
) [

1 + erf
(√

κ cos(θ − φ)
)]

. (2.24)

After substituting (1.10) in (2.24) Equation (1.31) is obtained.
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2.2.2 Nakagami-m

The Nakagami-m model is a special case of the κ-µ model when κ → 0. It can be shown

that

lim
x→0

(

x
1
2
−m

4 Iµ
2
−1(ax

1/2)
)

=
(a/2)

m
2
−1

Γ
(

m
2

) . (2.25)

Using Equation (2.25), the limit of 2.20 when κ→ 0

NΘ(ρ, θ) = lim
κ→0

NΘ(ρ, θ)κ−µ (2.26)

can be calculated as

NΘ(ρ, θ) =

√
πfd2

1
2
−µ

Γ2
(

µ
2

) µµ− 1
2ρ2µ−2| sin 2θ|µ−1 exp(−µρ2). (2.27)

After performing the integration we arrive at the expression

NΘ(θ) =

√
πfd| sin 2θ|µ−1Γ

(

µ− 1
2

)

2µ+
1
2Γ2

(

µ
2

)
, (2.28)

which is the exact PCR of the Nakagami-m fading process [19], with µ = m.

2.3 Sample plots of the κ-µ PCR

In this section some sample plots of this new statistics are presented. They should provide

the reader some familiarity with the general shape of the PCR, which is very similar to the

κ-µ phase PDF, as in [15]. In Figure 2.1 it can be seen that as κ increases the PCR becomes

more impulsive. Figure 2.2 shows how the PCR changes with varying µ. In particular, if µ > 1

the PCR is always zero at integer multiples of π/2, whereas if µ < 1 the PCR goes to infinity

at those points. This means that when µ 6= 1 the PCR can be divided in four different lobes.

As shown in Figure 2.3, the parameter φ determines where the global maximum or minimum

will occur. If φ is an integer multiple of π/2, the PCR will be symmetric in relation to φ. If

φ is an odd multiple of π/4 the maximum will occur at θ = φ. Otherwise, the maximum will

generally occur in the neighborhood of φ, except in the cases in which φ is very close to nπ/2.

This behavior is depicted in Figure 2.4.
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Figure 2.1: Sample plots of the PCR of the κ-µ model for changing κ.
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Figure 2.2: Sample plots of the PCR of the κ-µ model for changing µ.
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Figure 2.3: Sample plots of the PCR of the κ-µ model for changing φ.
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2.4 Conclusions

The main contribution of this chapter is the derivation of the κ-µ PCR. A proof of the

independence of the in-phase or quadrature components of the κ-µ process and its corresponding

time derivative is also provided. Moreover, sample plots of the κ-µ PCR illustrate how the

parameters κ, µ and φ change the shape of the curves.



Chapter 3
Approximations to the κ-µ PCR and Phase PDF

In many applications, some statistics of the model used to study the signal propagation

needs to be evaluated several times. For instance, finding an optimal set of parameters to fit

experimental data is a non-linear optimization problem that requires multiple evaluations of the

statistics being considered. The lack of a closed-form expression for the PCR and the phase

PDF of the κ-µ model hinders the practicality of its use to study phase related phenomena. A

suitable simpler approximation can therefore make the model more readily usable. This chapter

presents the derivation of such an approximation for the PCR, which is then refined. A similar

approach also provides an useful approximation to the phase PDF.

3.1 Approximate PCR

In general, it is possible to approximate a function by truncating its Taylor series expan-

sion [20]. Since the PCR, given by Equation (2.21), is in an integral form, the terms of its

Taylor expansion will themselves be in an integral form, which does not reduce the complex-

ity as desired. Instead, if the integrand is expanded and truncated prior to the integration, a

more suitable approximation is found, with the terms of the expansion having a closed-form

expression. Unfortunately it was not possible to find an analytic solution to that integral.

A workaround to address this problem is discussed here. First, the interval of integration is

changed, as follows

NΘ(θ) =

∫ 1

0

NP,Θ(x, θ)dx+

∫ ∞

1

NP,Θ(x, θ)dx. (3.1)

Next, the variable x of the second integral is changed to y = 1/x, so that y = 0 when x = ∞,

y = 1 when x = 1 and dx = −dy
y2
. Accordingly,

NΘ(θ) =

∫ 1

0

NP,Θ(x, θ)dx+

∫ 1

0

NP,Θ

(

1
y
, θ
)

y2
dy. (3.2)

The dummy variable y is then changed back to x and both integrals are regrouped under a

single integral from 0 to 1.

NΘ(θ) =

∫ 1

0

(

NP,Θ(x, θ) +
NP,Θ

(

1
x
, θ
)

x2

)

dx. (3.3)

17
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Finally, the integrand can be approximated by a truncated Taylor series around x, with θ fixed.

When this method is applied to Equation (2.20) an analytic solution if found. Equation (3.4)

shows the result of that approximation for the Taylor polynomial of degree 1 around ρ0 = 1.

NΘ(θ)app1 =
3fd

√
π

2
√
2

(1 + κ)
1+µ
2

κ
µ
2
−1

µ
3
2 | sin 2θ|µ2 | sin 2φ|1−µ

2

× exp
(

−µ(1 + 2κ) + 2µ
√

κ(1 + κ) cos(θ − φ)
)

×Iµ
2
−1

(

2µ
√

κ(1 + κ)| cos θ cosφ|
)

sech
(

2µ
√

κ(1 + κ)| cos θ cosφ|
)

×Iµ
2
−1

(

2µ
√

κ(1 + κ)| sin θ sinφ|
)

sech
(

2µ
√

κ(1 + κ)| sin θ sinφ|
)

(3.4)

Numerical simulations have shown that although the shape of Equation (3.4) is very similar

to the shape of the exact PCR, the resulting curves are scaled by an unknown factor. By

multiplying (3.4) by a conveniently chosen factor, a very good approximation can be found.

Define N∗(θ) as

N∗
Θ(θ) =

| sin 2θ|µ2 | sin 2φ|1−µ
2 exp

(

2µ
√

κ(1 + κ) cos(θ − φ)
)

×Iµ
2
−1

(

2µ
√

κ(1 + κ)| cos θ cosφ|
)

sech
(

2µ
√

κ(1 + κ)| cos θ cosφ|
)

×Iµ
2
−1

(

2µ
√

κ(1 + κ)| sin θ sinφ|
)

sech
(

2µ
√

κ(1 + κ)| sin θ sinφ|
)

.

(3.5)

Note that Equation (3.5) is Equation (3.4) multiplied by a function of κ and µ. We want a

scalar value C∗ so that C∗ · N∗
max = Nmax. Since the shape of N∗

Θ(θ) is closely related to the

shape of NΘ(θ), the maximum of both functions will occur at approximately the same argument

and we can use θmax ≈ θ∗max. The approximate PCR is found by the following method:

1. Find θ∗max = argmax {N∗
Θ(θ)}

2. Use θ∗max to compute NΘ(θ
∗
max) numerically as an approximation for max {NΘ(θ)}

3. Compute C∗ = NΘ(θ∗max)

max{N∗

Θ(θ)}
4. The approximate PCR is NΘ(θ)app = C∗ ·N∗

Θ(θ)

This approximation will only work if µ ≥ 1. If µ < 1, the PCR admits no point of maximum,

as it goes to infinity as θ approaches nπ/2, for n integer. Instead, in this case the approximation

can be alternatively normalized by the points of minimum.

The advantage of the approximation is that it requires the computation of just one numerical

integral for each curve, instead of one for each point used in the exact solution.

If µ 6= 1 the PCR will have four lobes, going either to 0 or ∞ as θ approaches nπ/2. This

suggests one enhancement to the approximation: by normalizing the PCR in a piecewise manner,

a tighter fit can be achieved. The PCR is divided in the following four intervals: (−π,−π/2],
(−π/2, 0], (0, π/2] and (π/2, π]. Within each interval, the approximation previously described

is used, using the local maximum or minimum to normalize the approximate PCR. The trade-

off is some added complexity, as this enhanced approximation demands the evaluation of four

numerical integrals instead of one.
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3.1.1 Sample Plots of the Approximate PCR

Figures 3.1-3.4 show samples curves of the approximation resulting from the normalization

with respect global maximum or minimum, plotted with the exact PCR. In comparison, Figures

3.5-3.8 show the plots of the piecewise approximation. The advantage of using the piecewise

approximation is evident for low values of κ, specially when µ < 1, as illustrated by Figures 3.1,

3.3, 3.5 and 3.7. In this case, the piecewise approximation provides very good fits, even if the

normalization by the global extremum is insufficient.

Approximation by Global Extremum Normalization
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Figure 3.1: Comparison between exact (solid line) and approximate (dashed line) PCR of the
κ-µ fading channel.



Chapter 3. Approximations to the κ-µ PCR and Phase PDF 20

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

θ

N
Θ

(θ
)/

f d
 a

n
d

 N
* Θ

(θ
)/

f d

 

 

−π −π

2
0 π

2

π

κ = 0, µ = 4, φ = π/4

κ = 0.01, µ = 4, φ = π/4

κ = 0.1, µ = 4, φ = π/4

Figure 3.2: Comparison between exact (solid line) and approximate (dashed line) PCR of the
κ-µ fading channel.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

θ

N
Θ

(θ
)/

f d
 a

n
d
 N

* Θ
(θ

)/
f d

 

 

−π −π

2
0 π

2

π

κ = 0.1, µ = 0.9, φ = π/6

κ = 0.1, µ = 1.5, φ = π/6

κ = 0.1, µ = 2, φ = π/6

κ = 0.1, µ = 4, φ = π/6
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Approximation by Piecewise Normalization
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Figure 3.5: Comparison between exact (solid line) and approximate (dashed line) PCR of the
κ-µ fading channel.
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Figure 3.6: Comparison between exact (solid line) and approximate (dashed line) PCR of the
κ-µ fading channel.
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Figure 3.7: Comparison between exact (solid line) and approximate (dashed line) PCR of the
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Figure 3.8: Comparison between exact (solid line) and approximate (dashed line) PCR of the
κ-µ fading channel.

3.2 Approximate Phase PDF

The numerical integral needed to evaluate the phase PDF of the κ-µ model is very similar to

the one needed to evaluate the PCR, as it can be recognized from expressions (1.15) and (2.20).
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This suggests that an approximation of the phase PDF can be achieved in a similar manner.

However, since this case deals with a probability density function, the approximation will need

to satisfy some constraints, as it will be discussed.

First the same method used to achieve (3.4) is followed, by substituting fΘ(θ) for NΘ(θ) and

fP,Θ(ρ, θ) for NΘ(ρ, θ), which results in

g(θ) =
3

2
µ2κ1−

µ
2 (1 + κ)1+

µ
2 | sin 2θ|µ2 | sin 2φ|1−µ

2

× exp
(

−µ(1 + 2κ) + 2µ
√

κ(1 + κ) cos(θ − φ)
)

×Iµ
2
−1

(

2µ
√

κ(1 + κ)| cos θ cosφ|
)

sech
(

2µ
√

κ(1 + κ) cos θ cosφ
)

×Iµ
2
−1

(

2µ
√

κ(1 + κ)| sin θ sinφ|
)

sech
(

2µ
√

κ(1 + κ) sin θ sinφ
)

.

(3.6)

By definition, a continuous probability density function is a non-negative function that

integrates to unitary area over its domain [21]. In order to be a PDF, Equation (3.6) needs to

be multiplied by some scaling constant to normalize its area to one. Hence, the terms that are

not function of θ can be dropped. The simplified version of g(θ) is given by (3.7).

g∗(θ) = κ1−
µ
2 | sin 2θ|µ2 exp

(

2µ
√

κ(1 + κ) cos(θ − φ)
)

×Iµ
2
−1

(

2µ
√

κ(1 + κ)| cos θ cosφ|
)

sech
(

2µ
√

κ(1 + κ) cos θ cosφ
)

×Iµ
2
−1

(

2µ
√

κ(1 + κ)| sin θ sinφ|
)

sech
(

2µ
√

κ(1 + κ) sin θ sinφ
)

.

(3.7)

The term κ1−
µ
2 was maintained because otherwise the indeterminacy obtained by setting

κ→ 0 cannot be resolved. For µ ≥ 0, g∗(θ) is always positive. Let S(κ, µ, φ) =
(

∫ π

−π
g∗(θ)dθ

)−1

.

The approximate PDF is found by multiplying (3.7) by S(κ, µ, φ). Denote by O the random

variable with such PDF. Then,

fO(θ) = S(κ, µ, φ)| sin 2θ|µ2 exp
(

2µ
√

κ(1 + κ) cos(θ − φ)
)

×Iµ
2
−1

(

2µ
√

κ(1 + κ)| cos θ cosφ|
)

×Iµ
2
−1

(

2µ
√

κ(1 + κ)| sin θ sinφ|
)

× sech
(

2µ
√

κ(1 + κ) cos θ cosφ
)

× sech
(

2µ
√

κ(1 + κ) sin θ sinφ
)

.

(3.8)

This approximation is similar to the one found for the PCR. In this case, however, no

information of the exact PDF is needed. Equation (3.8) is a stand-alone function and is the

description of a new probability density function.

3.2.1 Special Cases

As it was discussed, the κ-µ distribution encompasses several other distributions, including

Nakagami-m and Rice. In this section, the behavior of the approximate expression for those

two special cases is explored.
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Rice

The approximate phase PDF for Rice is obtained by setting µ = 1 in (3.8). Surprisingly,

this leads to a rather simple and closed-form expression, given by (3.9).

f ∗
Θ(θ)Rice =

exp
(

2
√

κ(1 + κ) cos(θ − φ)
)

2πI0(2
√

κ(1 + κ))
. (3.9)

The expression (3.9) is the PDF of the Von Mises distribution, which can be viewed as a

circular analog of the normal distribution [22]. This result shows that the Von Mises distribution

can be used to approximate the Ricean phase distribution, by substituting the κ parameter of

the Von Mises distribution by 2
√

κ(1 + κ).

Nakagami-m

Nakagami-m is a particular case of the κ-µ distribution with κ → 0. Its phase distribution

was derived in [23] and is given by

fΘ(θ)nak−m =
| sin 2θ|m−1Γ(µ)

2µΓ2(µ/2)
. (3.10)

Obtaining the approximate expression for the Nakagami-m case is more complicated, since

setting κ = 0 leads to an indeterminacy. To solve the indeterminacy, the limit (2.25) is used in

(3.6) and then the resulting expression is scaled to unitary area. The approximation of the phase

PDF of the Nakagami-m model obtained this way reduces to the exact Nakagami-m phase PDF.

This is an interesting result that shows one particular case in which the proposed approximate

phase PDF reduces to the exact phase PDF.

3.2.2 Sample Plots of the Approximate Phase PDF

In this section, exact and approximate solutions of the phase PDF are compared, over a

selected range of parameters. Figures 3.9-3.12 show some plots of the general case, whereas

Figure 3.13 show a comparison of the Ricean and Von Mises distributions. In this last case, the

parameter φ only shifts the distributions horizontally. In all cases the approximate solution is

very close to the exact solution
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3.2.3 Comparison between approximate and exact solutions

To evaluate how well the proposed new O RV approximates the κ-µ phase PDF the solutions

can be compared to each other. In particular, two measures of the efficiency of the approxima-

tion are explored: the error between exact and approximate solutions and the time needed to

compute each formulation. These two aspects are important to quantify the usefulness of the

approximation. Whereas the latter shows the main advantage of using an approximation, the

former reveals the quality of the fit between the curves.

The error was measured as the energy of the difference between the two probability density

functions, as given in (3.11). Figures (3.14 - 3.16) show how the error behaves as each parameter

is changed. It reaches its maximum value at κ = 1 and µ = 1, and it goes down as κ and µ

increase. In relation to φ, the error is periodic with period π/2, reaching its lowest value at odd

multiples of π/4.

total squared error =

∫ π

−π

[fκ−µ(θ)− fO(θ)]
2 dθ (3.11)
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Figure 3.14: Total squared error between exact and approximate solutions of the PDF of the
phase of the κ-µ process as a function of κ (φ = 0).

The CPU time was measured with assistance from the Mathematica software [24]. All the

times were measured on the same computational system. Figure 3.17 shows the time needed

to map the exact and approximate solutions as a function of the number of points used. As

it can be seen, the time needed to numerically evaluate the exact expression is around two

orders of magnitude greater than the time needed to calculate the approximation, for the same

restrictions on the precision of the results.
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3.3 Conclusions

In this chapter, two approximations are described, one for the PCR and one for the phase

PDF of the κ-µ model. These approximations will help make the κ-µ model more attractive

to the study of the phase of wireless signals, as they require significantly less computational

resources than the exact expressions. Whereas the expression of the approximate PCR requires

the knowledge of the value of the exact PCR at some points, a stand-alone random variable

that approximates the phase PDF is described. This new RV, denoted by O, reduces to the

Von Mises distribution when µ = 1 and to the Nakagami-m phase distribution when κ → 0.

Finally, a comparison is made between the PDF of O and the exact phase PDF of the κ-µ

model, which shows the overall quality of the fit and the superiority of the approximation in

terms of computational performance.
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1
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(4.1)

in which kd = ⌊fdN⌋.
The κ-µ model imposes only one constraint over the terms pi and qi, given in Equation (1.8).

There are infinite many partitions of p1, p2, ..., pµ and q1, q2, ..., qµ that satisfy the constraints.

One of such partitions is to divide them equally among the µ Gaussian processes, so that

pi = p/
√
µ and qi = q/

√
µ. (4.2)

The terms pi and qi can be expressed in terms of the κ-µ parameters for the normalized

envelope (r̂ = 1) using Equation (4.2) in (1.12) and (1.13), so that

pi =

√

κ

µ(1 + κ)
cos(φ) (4.3)

and

qi =

√

κ

µ(1 + κ)
sin(φ). (4.4)

The time series of the envelope is then obtained by

|R[k]| =
√

X[k]2 + Y [k]2. (4.5)

The simulation of the phase is more complicated. So far, the sign of the processes X[k] and

Y [k] have not been considered, as they are not needed to simulate the envelope. Let sX [k] and

sY [k] denote respectively the sign of the in-phase and quadrature components. The complex

envelope of the κ-µ model is given as

R[k] = sX [k]|X[k]|+ jsY [k]|Y [k]|. (4.6)

The terms sX [k] and sY [k] are not defined by the κ-µ model and their physical description

remains an open problem. This makes the simulation of the κ-µ phase specially problematic,

which in turn makes it difficult to validate the theoretical expressions for the phase statistics.

One solution is to estimate those terms, leading to an approximate simulation. In the next

sections, two different approaches to this estimation are discussed.
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4.1 Sign Estimation

In the simulation model used in [13], the signs were estimated as

sX [k] = sign

(

µ
∑

i=1

Xi[k] + pi

)

and sY [k] = sign

(

µ
∑

i=1

Yi[k] + qi

)

. (4.7)

This is an interesting approach that reduces exactly to the simulation of the Ricean process

when µ = 1. It also provides an excellent fit when the theoretical curve is symmetric, for both

the PCR and phase PDF, being almost exact in the Nakagami-m case, when pi = qi = 0. The

fit deteriorates as the curves become asymmetric.

One particularity of this model is that there are discrete jumps in the simulated phase for

integer µ > 1. These jumps exist because the estimations sX and sY may change sign, even

if the envelope is non zero. The terms sX and sY are the sign of a sum of Gaussian variables,

which is itself a Gaussian variable with mean
√
µp or

√
µq. They are, in fact, the sign of Ricean

processes, which have a non zero probability of crossing any angle as evidenced by the PCR of

Rice. On the other hand, the PCR of the κ-µ model is zero at the angles θ = nπ/2, which means

that those angles are crossed, in average, zero times per second. Therefore, to be computed in

finite time, any practical simulation of the κ-µ model will have to introduce phase jumps in

some way. Figure 4.2 illustrate this behavior.
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Figure 4.2: Simulation of the κ-µ phase. The phase jumps are highlighted by the dashed ellipses.

4.1.1 Simulation Results - Sign Estimation

Figure 4.3 shows the simulation and exact PCR for the Ricean case, which has an excellent

fit, as expected. Figure 4.4 shows the Nakagami-m case, which has also a very good fit. For
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µ > 1, the PCR is symmetric in relation to φ when φ = nπ/2. That is, when either p or q

is equal to zero. In this case, the process sX or sY will be the sign of a zero mean Gaussian

variable, which is also symmetric, providing a very good fit, as evidenced in Figure 4.5. Even

in this case, though, the fit deteriorates when κ is near zero, as shown in Figure 4.6. The fit is

also not perfect when the PCR is asymmetric, as shown if Figures 4.7-4.8. This is an expected

result, given that the unknown exact sign of the κ-µ in-phase and quadrature components has a

different nature from the estimation used. The correlated Gaussian time sequences used in the

simulation were 106 points long, with maximum Doppler shift fd = 1Hz and sampling frequency

Fs = 100Hz.
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Figure 4.3: Simulation of the PCR of the κ-µ model, Ricean case.
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Figure 4.4: Simulation of the PCR of the κ-µ model, Nakagami-m case.
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Figure 4.5: Simulation of the PCR of the κ-µ model, symmetric case.
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Figure 4.6: Simulation of the PCR of the κ-µ model, symmetric case with low κ.
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Figure 4.7: Simulation of the PCR of the κ-µ model, asymmetric case.
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Figure 4.8: Simulation of the PCR of the κ-µ model, asymmetric case with low κ.
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4.2 Alternative approach

So far, the new expression proposed for the κ-µ PCR could not be perfectly validated via

simulation. Although the good approximate simulation results allied to the fact that the PCR

deteriorates to the exact Ricean and Nakagami-m cases are good indication that the expres-

sion found is indeed the correct one, an exact simulation would help to consolidate the PCR

expression. In this section, an alternative approach is presented, for which an exact simulation

is possible.

4.2.1 The Ψ phase variable

The problem in simulating the phase of the κ-µ model is that its complex envelope is an

open problem, which, in turn, demands the estimation of the signs sX and sY . This problem

can be avoided if the simulation is constrained to the first quadrant, so that the signs never

change. This is achieved by defining a new phase variable Ψ, that is obtained from Θ by the

following transformation:

Ψ =



























π +Θ, if − π < Θ < −π/2,
−Θ, if − π/2 < Θ < 0,

Θ, if 0 < Θ < π/2,

π −Θ, if π/2 < Θ < π.

(4.8)

The transformation from Θ to Ψ is non-injective, so there is an inherent loss of information

in this transformation. However, since Ψ is constrained to the first quadrant, it can be easily

simulated.

4.2.2 Relationship between the statistics of Ψ and Θ

The simulation of Ψ cannot be directly compared to the κ-µ model. In order to obtain a

meaningful comparison, the theoretical statistics of Ψ must be obtained in an exact manner.

These statistics can be calculated in relation to those of Θ by using the transformation in (4.8)

and some results from the Probability Theory.

Represent Ψ as Ψ = g(Θ). g(Θ) is a piecewise function with a support that consists of a

union of four intervals. Let gi(Θ), i = 1, ..., 4 be g(Θ) in each of these intervals. Then [26],

fΨ(ψ) =
4
∑

i=1

fΘ(g
−1
i (ψ))

∣

∣

∣

∣

dg−1
i (ψ)

dψ

∣

∣

∣

∣

, (4.9)

which leads to

fΨ(ψ) = fΘ(ψ − π) + fΘ(−ψ) + fΘ(ψ) + fΘ(π − ψ), 0 < ψ < π/2. (4.10)

From (4.8), the relationship between Θ̇ and Ψ̇ can be derived.



Chapter 4. Simulation 41

Ψ̇ =







Θ̇ if − π < Θ < 0 or 0 < Θ < π/2,

−Θ̇ if − π/2 < Θ < 0 or π/2 < Θ < π.
(4.11)

Since the PDF of Θ̇ is an even function, it follows

fΨ̇(ψ) = fΘ̇(θ). (4.12)

With Equations (4.8) and (4.12) the joint distribution of Ψ and Ψ̇ can be calculated, and is

given as

fΨ,Ψ̇(ψ, ψ̇) = fΘ,Θ̇(ψ−π, ψ̇)+fΘ,Θ̇(−ψ, ψ̇)+fΘ,Θ̇(ψ, ψ̇)+fΘ,Θ̇(π−ψ, ψ̇), 0 < ψ < π/2. (4.13)

The PCR of Ψ is given by

NΨ(ψ) =

∫ ∞

0

ψ̇fΨ,Ψ̇(ψ, ψ̇)dψ̇. (4.14)

Using (4.13) in (4.14) the relation between NΨ and NΘ is finally found to be

NΨ(ψ) = NΘ(ψ − π) +NΘ(−ψ) +NΘ(ψ) +NΘ(π − ψ), 0 < ψ < π/2. (4.15)

4.2.3 Simulation Results - PCR of Ψ

Figures (4.9 - 4.12) show the PCR of the simulation of the Ψ RV of the κ-µ model. The

theoretical PCR is the solid line, whereas the markers represent the simulated values. The

simulation agrees excellently to the theoretical fit, over all range of parameters. As in the

plots of the simulation of Dias’s model, the correlated Gaussian time sequences used in the

simulation were 106 points long, with maximum Doppler shift fd = 1Hz and sampling frequency

Fs = 100Hz.
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4.3 Conclusions

In this chapter, an efficient simulation method for the generation of correlated Gaussian

RV was revisited. It was seen that the absence of a theoretical model of the complex envelope

presents a challenge to the phase simulation. Two alternatives were presented to facilitate

such a simulation. The first one used an approximation of the complex envelope, resulting in

plots that are compatible with the theoretical PCR but are not exact. The second alternative

used a variable transformation that made an exact simulation possible, resulting in an excellent

agreement between the theory and simulation. The trade-off in this case was a loss of information

in the transformation that generated this RV. These two approaches combined help validate the

theoretical expression obtained for the κ-µ PCR.
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The data collected by Cotton and Scanlon were used so as to test the validity of the formula-

tions for the κ-µ PCR developed here. In some cases, the data were also fitted to the generalized

Nakagami-m distribution. To the best of the author’s knowledge this is the first time that field

data have been used to support this theoretical model. To find an optimal fit, first a non-linear

search of the parametric space was performed. In addition to the parameters κ,µ and φ, the

maximum Doppler shift fd appears as a multiplicative term in the PCR expression and is also a

degree of freedom to be considered in the search. Using the parameters found by the non-linear

optimization as a starting point, a manual search was used to refine the fit. The goal of this

optimization was to find theoretical curves that well represented the features of the PCR of

the experimental data, while maintaining a tight fit. The measure of tightness that was used

was the energy of the error, as shown in Equation (3.11). To aid the manual search, a graphic

interface was developed. This interface is shown in Appendix A. Both the manual search and

the non-linear optimization were implemented in MATLAB [28]. The maximum Doppler shift

fd was estimated as the multiplicative constant that minimizes the error between the data field

and the theoretical curves. To find a better fit, the phase reference of the experimental data

was shifted as needed.

5.1 Adjusted κ-µ PCR

This section shows the plots of the PCR of the data fitted to the exact κ-µmodel. Figures 5.2-

5.8 show the measures from the reverberation chamber and Figures 5.9-5.15 show the measures

from the anechoic chamber. In many cases, the optimum µ is close to one, which suggests Ricean

fading. Even then, the extra degrees of freedom allowed by the κ-µ model make it possible to

find tighter adjustments with this model.

In the reverberation chamber all the estimated κ were low, always below the unity. This is

in accordance with the κ-µ model, suggesting that in this scenario the energy of the scattered

components is greater than the energy of the LoS component, as expected. In contrast, in the

anechoic chamber, some sensors had a clear LoS to the transmitter, as evidenced in Figures

5.10, 5.12 and 5.14. In these cases, the high κ denotes that most energy came from the direct

component.
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Figure 5.2: PCR of the κ-µ model fitted to field data obtained in WBAN experiments.
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Figure 5.4: PCR of the κ-µ model fitted to field data obtained in WBAN experiments.
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Figure 5.5: PCR of the κ-µ model fitted to field data obtained in WBAN experiments.
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Figure 5.6: PCR of the κ-µ model fitted to field data obtained in WBAN experiments.
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Figure 5.7: PCR of the κ-µ model fitted to field data obtained in WBAN experiments.
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Figure 5.8: PCR of the κ-µ model fitted to field data obtained in WBAN experiments.
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Figure 5.9: PCR of the κ-µ model fitted to field data obtained in WBAN experiments.
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Figure 5.10: PCR of the κ-µ model fitted to field data obtained in WBAN experiments.
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Figure 5.11: PCR of the κ-µ model fitted to field data obtained in WBAN experiments.
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Figure 5.12: PCR of the κ-µ model fitted to field data obtained in WBAN experiments.
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Figure 5.13: PCR of the κ-µ model fitted to field data obtained in WBAN experiments.
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Figure 5.14: PCR of the κ-µ model fitted to field data obtained in WBAN experiments.
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Figure 5.15: PCR of the κ-µ model fitted to field data obtained in WBAN experiments.
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5.2 Adjusted Generalized Nakagami-m PCR

Three cases were found to adjust well to the Nakagami-m model. Two of these cases were

measures from the reverberation chamber, as shown in Figures 5.16 and 5.17, and one from the

anechoic chamber, as shown in Figure 5.18. Unsurprisingly, all of theses cases had a very low κ

estimated in the κ-µ fitting. The best fit was obtained for the ankle receiver in the reverberation

chamber, as shown in Figure 5.17. The measured PCR shows two main lobes, which are well

modeled with the generalized Nakagami-m PCR but not with the classical Nakagami-m PCR.

In the classical case, there are always four main lobes.
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Figure 5.16: PCR of the Generalized Nakagami-m model fitted to field data obtained in WBAN
experiments.
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Figure 5.17: PCR of the Generalized Nakagami-m model fitted to field data obtained in WBAN
experiments.
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Figure 5.18: PCR of the Generalized Nakagami-m model fitted to field data obtained in WBAN
experiments.

5.3 Conclusions

This chapter concerns the adjustment of the κ-µ and Nakagami-m PCRs to field data. The

parameters were estimated using a non-linear optimization algorithm, that searched for the
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parameters that gave an optimum fit. Overall, very good agreement with the theoretical κ-

µ PCR was obtained. The generalized Nakagami-m model also provided a good fit in some

scenarios. These results indicate that there are practical propagation conditions that can be

physically described by those fading models.



Chapter 6
Conclusions and Further Work

This work presented important results regarding the phase statistics of the κ-µ fading chan-

nel. It provided the derivation of a higher-order phase statistic, the PCR, in an exact manner.

This theoretical expression was later validated through simulations. Tight approximations of

the exact expressions of both PCR and phase PDF of the κ-µ model were proposed. Finally,

field data were adjusted with the κ-µ and generalized Nakagami-m PCRs.

The main contribution of this work was to deepen the knowledge of the κ-µ phase related

processes. This goal was achieved by working in three different fronts: firstly, a previously un-

known phase statistics was derived in an exact manner; secondly, the approximations derived for

the PCR and the phase PDF demand significantly less computational resources to be evaluated

than their exact counterparts, which facilitates the use of the model; thirdly and finally, it was

shown that there exist indeed real world fading conditions in which the phase of the received

signal can be well represented by the κ-µ model. In that sense, this work also contributed to

the generalized Nakagami-m model.

Further work remains to be done concerning the simulation of the κ-µ phase process. A

theoretical model of the complex envelope would greatly simplify such simulations. Other

approaches can also be explored, such as the rank-matching approach that was proposed to

simulate Nakagami-m channels [29]. Other possible area of interest is to further investigate the

proposed O random variable. Specifically, the calculation of some kind of estimator for that RV

would help in the process of fitting data.
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Appendix A
MATLAB User Interface

In order to aid the fitting of data to both the κ-µ and Nakagami-m models two graphical

interfaces were created, which are shown in Figures A.1 and A.2. They were created as a

MATLAB GUI with the aid of GUIDE, the graphical user interface development environment

of MATLAB. Their usage is explained below.

κ-µ

In Figure A.1 the graphical interface created to aid the fitting of κ-µ curves is shown. Three

drop-down menus are used to select the curve to be adjusted, which are located in the top left

part of the interface. The top one selects the nature of the measurement being adjusted, which

can be either the PCR or the phase PDF. The middle one selects between the kind of scenario,

either the Anechoic Chamber or the Reverberation Chamber. The bottom one selects one of

the seven receivers used in the Cotton and Scanlon experiments: Ankle, Chest, Elbow, Head,

Knee, Waist or Wrist. The selected curve is loaded from a MATLAB variable containing the

corresponding data.

The parameters can be adjusted either by moving one of the four sliders in the bottom

part of the user interface or by editing the associated text box. The top three sliders select

the parameters, namely κ, µ and φ and the bottom slider shifts the phase reference of the

experimental curve. The κ and µ parameters are adimensional, while φ and delta theta are

measured in radians. When a parameter is changed, the plot is updated in real time. The mean

squared error between the experimental and theoretical points is shown in the bottom left part

of the interface, after ”MSE:”, and is also updated in real time. It is a useful measure to guide

the manual adjustments.

The adjusted parameters can be saved and loaded by using the two buttons in the top right

part of the interface. A set of parameters to load is chosen by selecting the desired set in the

”Parameters” radio button group and then pressing the ”Load”button. Likewise, the parameters

can be saved by selecting the desired option and then pressing the ”Save” button. There are

three possibilities to choose from when loading: ”Min. Square”, ”Manual” and ”Manual Delta”.

The ”Min. Square” option loads the parameters from the non-linear optimization, which can

be used as a starting point. There are two sets of manual adjustments to choose from, via the
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Figure A.1: Graphical interface created to manually adjust the experimental data to the κ-µ
PCR and phase PDF.

”Manual” and ”Manual Delta” radio buttons. The difference between them is that the ”Manual

Delta” option allows the user to save and load the parameters with a shift in the reference of

the phase (delta theta), which is not allowed by the ”Manual” option. In the latter, the slider

delta theta is always loaded as zero. When saving the parameters the user must first choose the

desired radio button. If the radio button ”Min. Square” is selected, the parameters are saved to



Appendix A. MATLAB User Interface 61

the ”Manual” variable.

Generalized Nakagami-m

The graphical interface created to aid the fitting of generalized Nakagami-m curves is shown

in Figure A.2. It is very similar to the one created to fit the κ-µ curves. It was made to fit only

the PCR curves, so it does not have the PCR - PDF drop down menu. It does not allow a shift

in the reference of the phase, so neither the ”delta theta” slider nor the ”Manual Delta” option in

the ”Parameters” radio button group are present. The generalized Nakagami-m distribution has

only two parameters, the adimensional ”m”and ”p”, which can be adjusted by the corresponding

sliders and text boxes.
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Figure A.2: Graphical interface created to manually adjust the experimental data to the gener-
alized Nakagami-m PCR.



Appendix B
MATLAB code

This appendix presents the scritps used to generate the graphic interface.

B.1 κ-µ M-Files

B.1.1 Graphical Interface

function varargout = km_manual_search(varargin)

% KM_MANUAL_SEARCH M−file for km_manual_search.fig

% KM_MANUAL_SEARCH, by itself, creates a new KM_MANUAL_SEARCH or raises the existing

% singleton*.

%

% H = KM_MANUAL_SEARCH returns the handle to a new KM_MANUAL_SEARCH or the handle to

% the existing singleton*.

%

% KM_MANUAL_SEARCH('CALLBACK',hObject,eventData,handles,...) calls the local

% function named CALLBACK in KM_MANUAL_SEARCH.M with the given input arguments.

%

% KM_MANUAL_SEARCH('Property','Value',...) creates a new KM_MANUAL_SEARCH or raises the

% existing singleton*. Starting from the left, property value pairs are

% applied to the GUI before km_manual_search_OpeningFcn gets called. An

% unrecognized property name or invalid value makes property application

% stop. All inputs are passed to km_manual_search_OpeningFcn via varargin.

%

% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one

% instance to run (singleton)".

%

% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help km_manual_search

% Last Modified by GUIDE v2.5 23−Jul−2012 19:24:21

% Begin initialization code − DO NOT EDIT

gui_Singleton = 1;

gui_State = struct('gui_Name', mfilename, ...

'gui_Singleton', gui_Singleton, ...

'gui_OpeningFcn', @km_manual_search_OpeningFcn, ...

'gui_OutputFcn', @km_manual_search_OutputFcn, ...

'gui_LayoutFcn', [] , ...

'gui_Callback', []);

if nargin && ischar(varargin{1})

gui_State.gui_Callback = str2func(varargin{1});

end

if nargout
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[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});

else

gui_mainfcn(gui_State, varargin{:});

end

% End initialization code − DO NOT EDIT

% −−− Executes just before km_manual_search is made visible.

function km_manual_search_OpeningFcn(hObject, eventdata, handles, varargin)

% This function has no output args, see OutputFcn.

% hObject handle to figure

% eventdata reserved − to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% varargin command line arguments to km_manual_search (see VARARGIN)

% Choose default command line output for km_manual_search

handles.output = hObject;

set(hObject,'toolbar','figure');

% Update handles structure

guidata(hObject, handles);

% UIWAIT makes km_manual_search wait for user response (see UIRESUME)

% uiwait(handles.figure1);

% −−− Outputs from this function are returned to the command line.

function varargout = km_manual_search_OutputFcn(hObject, eventdata, handles)

% varargout cell array for returning output args (see VARARGOUT);

% hObject handle to figure

% eventdata reserved − to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure

varargout{1} = handles.output;

% −−− Executes on selection change in popupmenu_chamber.

function popupmenu_chamber_Callback(hObject, eventdata, handles)

% hObject handle to popupmenu_chamber (see GCBO)

% eventdata reserved − to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: contents = cellstr(get(hObject,'String')) returns popupmenu_chamber contents as cell array

% contents{get(hObject,'Value')} returns selected item from popupmenu_chamber

load_parameters(handles);

[theta y th_y] = get_curve_plots(handles);

plot_function(theta,y,th_y,handles);

% −−− Executes during object creation, after setting all properties.

function popupmenu_chamber_CreateFcn(hObject, eventdata, handles)

% hObject handle to popupmenu_chamber (see GCBO)

% eventdata reserved − to be defined in a future version of MATLAB

% handles empty − handles not created until after all CreateFcns called

% Hint: popupmenu controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

% −−− Executes on selection change in popupmenu_position.

function popupmenu_position_Callback(hObject, eventdata, handles)

% hObject handle to popupmenu_position (see GCBO)

% eventdata reserved − to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: contents = cellstr(get(hObject,'String')) returns popupmenu_position contents as cell array

% contents{get(hObject,'Value')} returns selected item from popupmenu_position

load_parameters(handles);

[theta y th_y] = get_curve_plots(handles);

plot_function(theta,y,th_y,handles);

% −−− Executes during object creation, after setting all properties.
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function popupmenu_position_CreateFcn(hObject, eventdata, handles)

% hObject handle to popupmenu_position (see GCBO)

% eventdata reserved − to be defined in a future version of MATLAB

% handles empty − handles not created until after all CreateFcns called

% Hint: popupmenu controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

% −−− Executes on button press in pushbutton_load.

function pushbutton_load_Callback(hObject, eventdata, handles)

% hObject handle to pushbutton_load (see GCBO)

% eventdata reserved − to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

load_parameters(handles);

[theta y th_y] = get_curve_plots(handles);

plot_function(theta,y,th_y,handles);

%guidata(hObject,handles);

% −−− Executes on slider movement.

function slider_kappa_Callback(hObject, eventdata, handles)

% hObject handle to slider_kappa (see GCBO)

% eventdata reserved − to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'Value') returns position of slider

% get(hObject,'Min') and get(hObject,'Max') to determine range of slider

input = get(handles.slider_kappa,'Value');

handle_slider = handles.slider_kappa;

handle_text = handles.edit_kappa;

change_parameters(handle_slider, handle_text, handles, input);

plot_curve(handles);

% −−− Executes during object creation, after setting all properties.

function slider_kappa_CreateFcn(hObject, eventdata, handles)

% hObject handle to slider_kappa (see GCBO)

% eventdata reserved − to be defined in a future version of MATLAB

% handles empty − handles not created until after all CreateFcns called

% Hint: slider controls usually have a light gray background.

if isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor',[.9 .9 .9]);

end

function edit_kappa_Callback(hObject, eventdata, handles)

% hObject handle to edit_kappa (see GCBO)

% eventdata reserved − to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit_kappa as text

% str2double(get(hObject,'String')) returns contents of edit_kappa as a double

input = str2double(get(handles.edit_kappa,'String'));

if isempty(input)||isnan(input) input = get(handles.slider_kappa,'Value'); end

handle_slider = handles.slider_kappa;

handle_text = handles.edit_kappa;

change_parameters(handle_slider, handle_text, handles, input);

plot_curve(handles);

% −−− Executes during object creation, after setting all properties.

function edit_kappa_CreateFcn(hObject, eventdata, handles)

% hObject handle to edit_kappa (see GCBO)

% eventdata reserved − to be defined in a future version of MATLAB

% handles empty − handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end
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% −−− Executes on slider movement.

function slider_mu_Callback(hObject, eventdata, handles)

% hObject handle to slider_mu (see GCBO)

% eventdata reserved − to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'Value') returns position of slider

% get(hObject,'Min') and get(hObject,'Max') to determine range of slider

input = get(handles.slider_mu,'Value');

handle_slider = handles.slider_mu;

handle_text = handles.edit_mu;

change_parameters(handle_slider, handle_text, handles, input);

plot_curve(handles);

% −−− Executes during object creation, after setting all properties.

function slider_mu_CreateFcn(hObject, eventdata, handles)

% hObject handle to slider_mu (see GCBO)

% eventdata reserved − to be defined in a future version of MATLAB

% handles empty − handles not created until after all CreateFcns called

% Hint: slider controls usually have a light gray background.

if isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor',[.9 .9 .9]);

end

function edit_mu_Callback(hObject, eventdata, handles)

% hObject handle to edit_mu (see GCBO)

% eventdata reserved − to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit_mu as text

% str2double(get(hObject,'String')) returns contents of edit_mu as a double

input = str2double(get(handles.edit_mu,'String'));

if isempty(input)||isnan(input) input = get(handles.slider_mu,'Value'); end

handle_slider = handles.slider_mu;

handle_text = handles.edit_mu;

change_parameters(handle_slider, handle_text, handles, input);

plot_curve(handles);

% −−− Executes during object creation, after setting all properties.

function edit_mu_CreateFcn(hObject, eventdata, handles)

% hObject handle to edit_mu (see GCBO)

% eventdata reserved − to be defined in a future version of MATLAB

% handles empty − handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

% −−− Executes on slider movement.

function slider_phi_Callback(hObject, eventdata, handles)

% hObject handle to slider_phi (see GCBO)

% eventdata reserved − to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'Value') returns position of slider

% get(hObject,'Min') and get(hObject,'Max') to determine range of slider

input = get(handles.slider_phi,'Value');

handle_slider = handles.slider_phi;

handle_text = handles.edit_phi;

change_parameters(handle_slider, handle_text, handles, input);

plot_curve(handles);

% −−− Executes during object creation, after setting all properties.

function slider_phi_CreateFcn(hObject, eventdata, handles)

% hObject handle to slider_phi (see GCBO)
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% eventdata reserved − to be defined in a future version of MATLAB

% handles empty − handles not created until after all CreateFcns called

% Hint: slider controls usually have a light gray background.

if isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor',[.9 .9 .9]);

end

function edit_phi_Callback(hObject, eventdata, handles)

% hObject handle to edit_phi (see GCBO)

% eventdata reserved − to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit_phi as text

% str2double(get(hObject,'String')) returns contents of edit_phi as a double

input = str2double(get(handles.edit_phi,'String'));

if isempty(input)||isnan(input) input = get(handles.slider_phi,'Value'); end

handle_slider = handles.slider_phi;

handle_text = handles.edit_phi;

change_parameters(handle_slider, handle_text, handles, input);

plot_curve(handles);

% −−− Executes during object creation, after setting all properties.

function edit_phi_CreateFcn(hObject, eventdata, handles)

% hObject handle to edit_phi (see GCBO)

% eventdata reserved − to be defined in a future version of MATLAB

% handles empty − handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

% −−− Executes on slider movement.

function slider_delta_theta_Callback(hObject, eventdata, handles)

% hObject handle to slider_delta_theta (see GCBO)

% eventdata reserved − to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'Value') returns position of slider

% get(hObject,'Min') and get(hObject,'Max') to determine range of slider

input = get(handles.slider_delta_theta,'Value');

handle_slider = handles.slider_delta_theta;

handle_text = handles.edit_delta_theta;

change_parameters(handle_slider, handle_text, handles, input);

plot_curve(handles);

% −−− Executes during object creation, after setting all properties.

function slider_delta_theta_CreateFcn(hObject, eventdata, handles)

% hObject handle to slider_delta_theta (see GCBO)

% eventdata reserved − to be defined in a future version of MATLAB

% handles empty − handles not created until after all CreateFcns called

% Hint: slider controls usually have a light gray background.

if isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor',[.9 .9 .9]);

end

function edit_delta_theta_Callback(hObject, eventdata, handles)

% hObject handle to edit_delta_theta (see GCBO)

% eventdata reserved − to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit_delta_theta as text

% str2double(get(hObject,'String')) returns contents of edit_delta_theta as a double

input = str2double(get(handles.edit_delta_theta,'String'));

if isempty(input)||isnan(input) input = get(handles.slider_delta_theta,'Value'); end

handle_slider = handles.slider_delta_theta;

handle_text = handles.edit_delta_theta;

change_parameters(handle_slider, handle_text, handles, input);
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plot_curve(handles);

% −−− Executes during object creation, after setting all properties.

function edit_delta_theta_CreateFcn(hObject, eventdata, handles)

% hObject handle to edit_delta_theta (see GCBO)

% eventdata reserved − to be defined in a future version of MATLAB

% handles empty − handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

% −−− Executes on button press in pushbutton_save.

function pushbutton_save_Callback(hObject, eventdata, handles)

% hObject handle to pushbutton_save (see GCBO)

% eventdata reserved − to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

%newFolder = 'C:\Users\Iury\Documents\My Dropbox\MATLAB\workspace\Mestrado\Body Area Network\Data';

newFolder = 'D:\Dropbox\MATLAB\workspace\Mestrado\Body Area Network\Data';

oldFolder = cd(newFolder);

curve = get(handles.popupmenu_curve,'Value');

chamber = get(handles.popupmenu_chamber,'Value');

pos = get(handles.popupmenu_position,'Value');

[~, ~, ~, prmtrs, dt] = get_curve_plots(handles);

rb = get_parameters_radiobutton(handles);

switch curve

case 1 %PDF

switch rb

case {1,2}

load BAN_km_pdf_parameters_manual;

case 3

load BAN_km_pdf_parameters_manual_delta_theta;

end

switch chamber

case 1 %anechoic

delta_theta_ane(pos) = dt;

km_pdf_par_ane(:,pos) = prmtrs';

case 2 %reverberation

delta_theta_rev(pos) = dt;

km_pdf_par_rev(:,pos) = prmtrs';

end

switch rb

case {1,2}

save('BAN_km_pdf_parameters_manual','km_pdf_par_ane','km_pdf_par_rev',...

'delta_theta_ane','delta_theta_rev');

case 3

save('BAN_km_pdf_parameters_manual_delta_theta','km_pdf_par_ane',...

'km_pdf_par_rev','delta_theta_ane','delta_theta_rev');

end

case 2 %PCR

switch rb

case {1,2}

load BAN_km_parameters_manual;

case 3

load BAN_km_parameters_manual_delta_theta;

end

switch chamber

case 1 %anechoic

delta_theta_ane(pos) = dt;

km_par_ane(:,pos) = prmtrs';

case 2 %reverberation

delta_theta_rev(pos) = dt;

km_par_rev(:,pos) = prmtrs';

end

switch rb

case {1,2}

save('BAN_km_parameters_manual','km_par_ane','km_par_rev',...

'delta_theta_ane','delta_theta_rev');

case 3
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save('BAN_km_parameters_manual_delta_theta','km_par_ane',...

'km_par_rev','delta_theta_ane','delta_theta_rev');

end

end

cd(oldFolder);

% −−− Executes on selection change in popupmenu_curve.

function popupmenu_curve_Callback(hObject, eventdata, handles)

% hObject handle to popupmenu_curve (see GCBO)

% eventdata reserved − to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: contents = cellstr(get(hObject,'String')) returns popupmenu_curve contents as cell array

% contents{get(hObject,'Value')} returns selected item from popupmenu_curve

load_parameters(handles);

[theta y th_y] = get_curve_plots(handles);

plot_function(theta,y,th_y,handles);

% −−− Executes during object creation, after setting all properties.

function popupmenu_curve_CreateFcn(hObject, eventdata, handles)

% hObject handle to popupmenu_curve (see GCBO)

% eventdata reserved − to be defined in a future version of MATLAB

% handles empty − handles not created until after all CreateFcns called

% Hint: popupmenu controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function change_parameters(handle_slider, handle_text, handles, input)

slider_max = get(handle_slider,'Max');

slider_min = get(handle_slider,'Min');

if input>slider_max

input = slider_max;

elseif input<slider_min

input = slider_min;

end

set(handle_slider,'Value',input);

set(handle_text,'String',num2str(input));

%[theta y th_y] = get_curve_plots(handles);

%plot_function(theta,y,th_y,handles);

function plot_curve(handles)

[theta y th_y] = get_curve_plots(handles);

plot_function(theta,y,th_y,handles);

function load_parameters(handles)

curve = get(handles.popupmenu_curve,'Value');

chamber = get(handles.popupmenu_chamber,'Value');

pos = get(handles.popupmenu_position,'Value');

rb = get_parameters_radiobutton(handles);

%load BAN_data

switch curve

case 1 %PDF

switch rb

case 1 %msd

load BAN_km_pdf_parameters;

case 2 %manual

load BAN_km_pdf_parameters_manual;

case 3

load BAN_km_pdf_parameters_manual_delta_theta;

end

if chamber == 1 %anechoic

prmtrs = km_pdf_par_ane;

else %reverberation

prmtrs = km_pdf_par_rev;

end

case 2 %PCR

switch rb



Appendix B. MATLAB code 70

case 1 %msd

load BAN_km_parameters;

case 2 %manual

load BAN_km_parameters_manual;

case 3

load BAN_km_parameters_manual_delta_theta;

end

if chamber == 1 %anechoic

dt = delta_theta_ane(pos);

prmtrs = km_par_ane;

else %reverberation

dt = delta_theta_rev(pos);

prmtrs = km_par_rev;

end

end

if rb ~= 3

dt = 0;

end

prmtrs = prmtrs(:,pos);

kappa = prmtrs(1);

mu = prmtrs(2);

phi = prmtrs(3);

change_parameters(handles.slider_kappa, handles.edit_kappa, handles, kappa);

change_parameters(handles.slider_mu, handles.edit_mu, handles, mu);

change_parameters(handles.slider_phi, handles.edit_phi, handles, phi);

change_parameters(handles.slider_delta_theta, handles.edit_delta_theta, handles, dt);

plot_curve(handles);

function [theta y th_y prmtrs delta_theta] = get_curve_plots(handles)

load BAN_data;

curve = get(handles.popupmenu_curve,'Value');

chamber = get(handles.popupmenu_chamber,'Value');

pos = get(handles.popupmenu_position,'Value');

switch curve

case 1 %PDF

switch chamber

case 1 %anechoic

y = pdf_ane;

case 2 %reverberation

y = pdf_rev;

end

case 2 %PCR

switch chamber

case 1 %anechoic

y = pcr_ane;

case 2 %reverberation

y = pcr_rev;

end

end

kappa = get(handles.slider_kappa,'Value');

mu = get(handles.slider_mu,'Value');

phi = get(handles.slider_phi,'Value');

delta_theta = get(handles.slider_delta_theta,'Value');

theta = theta;

y = y(:,pos);

y = shift_y(theta, y, delta_theta)';

switch curve

case 1 %PDF

th_y = km_ppdf(theta, [kappa mu phi])';

prmtrs = [kappa mu phi];

case 2 %PCR

th_y = km_pcr(theta, [kappa mu phi])';

[th_y omega] = bestfit(th_y,y);

prmtrs = [kappa mu phi omega];

end

function y_shifted = shift_y(theta,y,delta_theta)

delta_theta = delta_theta + pi;

if delta_theta > 2*pi || delta_theta < 0

delta_theta = rem(delta_theta ,2*pi);

end
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delta_theta = delta_theta − pi;

N = numel(theta);

N_shift = floor(N*delta_theta/2/pi);

y_index = 0:N−1;
y_index_shifted = rem(y_index−N_shift+N,N)+1;
y_shifted(y_index+1) = y(y_index_shifted);

function plot_function(theta,y,th_y,handles)

axes(handles.axes1);

y_variation = max(y) − min(y);

%ymin = min(y) − 0.1*y_variation;

ymin = 0;

ymax = max(y) + 0.1*y_variation;

plot(theta,y,'k');

axis([−pi pi ymin ymax]);

hold on;

plot(theta,th_y);

hold off;

mse = mean((th_y − y).^2); %mean squared error

set(handles.text_mse,'String',['MSE: ' num2str(mse)]);

%guidata(hObject,handles);

function [w a] = bestfit(X, Y)

% Try to find a that best fit (minimum squares): X * a = Y

% Returns a and w = X * a;

m = size(X,1);

n = size(X,2);

if n>m

a = Y * pinv(X);

w = a * X;

else

a = pinv(X) * Y;

w = X * a;

end

function rb = get_parameters_radiobutton(handles)

if get(handles.radiobutton_msd,'Value') == 1

rb = 1; %minimum square distance parameters selected

elseif get(handles.radiobutton_manual,'Value') == 1

rb = 2; %manual parameters selected

else

rb = 3;

end

function edit9_Callback(hObject, eventdata, handles)

% hObject handle to edit_delta_theta (see GCBO)

% eventdata reserved − to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit_delta_theta as text

% str2double(get(hObject,'String')) returns contents of edit_delta_theta as a double

% −−− Executes during object creation, after setting all properties.

function edit9_CreateFcn(hObject, eventdata, handles)

% hObject handle to edit_delta_theta (see GCBO)

% eventdata reserved − to be defined in a future version of MATLAB

% handles empty − handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

B.1.2 κ-µ PCR

function [ y ] = km_pcr( theta, parameters )

%pcr for f_d = 1, in which f_d is the maximum Doppler shift in Hz
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K = parameters(1);

M = parameters(2);

P = parameters(3);

y = zeros(size(theta));

rho = linspace(0.01,15,100);

f = nrt(rho,theta,K,M,P);

y = sum(f,1)*(rho(2)−rho(1));
end

function [ f ] = nrt(rho, theta, kappa, mu ,phi)

%KM_NRT returns N(rho, theta), which if integrated from 0 to infinity in

%respect to rho yelds the PCR of the kappa−mu distribution.

rho = rho(:); % rho is a column vector

theta = theta(:)'; %theta is a row vector

f_const = (2*pi)*(1/sqrt(32*pi))*(mu^(3/2))*(kappa^(1−mu/2))*((1+kappa)^(1/2 + mu/2))*exp(−kappa*mu);
f_rho = (rho.^mu).*exp(−mu*(1+kappa)*rho.^2);
f_theta = ((abs(sin(2.*theta)).^(mu./2))./(abs(sin(2.*phi))).^((mu./2)−1));
f_rho_theta = ...

exp(2*mu*sqrt(kappa*(1+kappa))*rho*cos(theta−phi)).*k_func((mu./2)−1,2.*mu.*sqrt(kappa.*(1+kappa)).*rho*abs(cos(theta).
f = f_const*(f_rho*f_theta).*f_rho_theta; %[size_rho x size_theta]

end

B.1.3 κ-µ Phase PDF

function [ y ] = km_ppdf( theta, parameters )

K = parameters(1);

M = parameters(2);

P = parameters(3);

theta = theta(:)';

st = numel(theta);

rho = linspace(0.005,1.0,200);

rho_inv = 1./rho;

rep_rho = repmat(rho, st,1)'; %[sr x st]

s = rho(2) − rho(1);

w1 = pdf_rt(rho,theta, K, M, P);

w2 = pdf_rt(rho_inv,theta, K, M, P)./(rep_rho.^2);

y = sum(w1+w2)*s;

t = isnan(y)|isinf(y);

y(t) = 0;

end

function [ f ] = pdf_rt(rho, theta, K, M ,P)

%PDF_RT returns the phase−enveloppe joint distribution f(rho, theta) for

%the kappa−mu model

%let size(theta) = [1 x st] and size(rho) = [1 x sr]

st = numel(theta);

sr = numel(rho);

b = exp(−K*M)*(1/(((2*K*M)^M)*8))/((abs(sin(2.*P))).^((M./2)−1)); %b is a multiplying constant

rep_theta = repmat(theta,sr,1); %size(f1) = [sr x st]

rep_rho = repmat(rho,st,1)';%size(f1) = [sr x st]

f1 = (abs(sin(2*rep_theta)).^(M./2)); % size(f1) = [sr x st];

f2 = (rep_rho.^(M+1)); %size(f2) = [sr x st]

f3 = exp(−(rep_rho.^2)/(4*K*M)+ rho'*cos(theta−P)); %size(f3) = [sr x st]

f4 = k_func((M/2)−1,rho'*abs(cos(theta)*cos(P))).*k_func((M/2)−1,rho'*abs(sin(theta)*sin(P))); ...

%size(f4) = [sr x st]

f = b*f1.*f2.*f3.*f4;%size(f) = [sr x st]

end
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B.2 Generalized Nakagami-m M-Files

B.2.1 Graphical Interface

function varargout = nakm_manual_search(varargin)

% NAKM_MANUAL_SEARCH M−file for nakm_manual_search.fig

% NAKM_MANUAL_SEARCH, by itself, creates a new NAKM_MANUAL_SEARCH or raises the existing

% singleton*.

%

% H = NAKM_MANUAL_SEARCH returns the handle to a new NAKM_MANUAL_SEARCH or the handle to

% the existing singleton*.

%

% NAKM_MANUAL_SEARCH('CALLBACK',hObject,eventData,handles,...) calls the local

% function named CALLBACK in NAKM_MANUAL_SEARCH.M with the given input arguments.

%

% NAKM_MANUAL_SEARCH('Property','Value',...) creates a new NAKM_MANUAL_SEARCH or raises the

% existing singleton*. Starting from the left, property value pairs are

% applied to the GUI before nakm_manual_search_OpeningFcn gets called. An

% unrecognized property name or invalid value makes property application

% stop. All inputs are passed to nakm_manual_search_OpeningFcn via varargin.

%

% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one

% instance to run (singleton)".

%

% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help nakm_manual_search

% Last Modified by GUIDE v2.5 15−Dec−2011 17:22:13

% Begin initialization code − DO NOT EDIT

gui_Singleton = 1;

gui_State = struct('gui_Name', mfilename, ...

'gui_Singleton', gui_Singleton, ...

'gui_OpeningFcn', @nakm_manual_search_OpeningFcn, ...

'gui_OutputFcn', @nakm_manual_search_OutputFcn, ...

'gui_LayoutFcn', [] , ...

'gui_Callback', []);

if nargin && ischar(varargin{1})

gui_State.gui_Callback = str2func(varargin{1});

end

if nargout

[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});

else

gui_mainfcn(gui_State, varargin{:});

end

% End initialization code − DO NOT EDIT

% −−− Executes just before nakm_manual_search is made visible.

function nakm_manual_search_OpeningFcn(hObject, eventdata, handles, varargin)

% This function has no output args, see OutputFcn.

% hObject handle to figure

% eventdata reserved − to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% varargin command line arguments to nakm_manual_search (see VARARGIN)

% Choose default command line output for nakm_manual_search

handles.output = hObject;

set(hObject,'toolbar','figure');

% Update handles structure

guidata(hObject, handles);

% UIWAIT makes nakm_manual_search wait for user response (see UIRESUME)

% uiwait(handles.figure1);
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% −−− Outputs from this function are returned to the command line.

function varargout = nakm_manual_search_OutputFcn(hObject, eventdata, handles)

% varargout cell array for returning output args (see VARARGOUT);

% hObject handle to figure

% eventdata reserved − to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure

varargout{1} = handles.output;

% −−− Executes on selection change in popupmenu_chamber.

function popupmenu_chamber_Callback(hObject, eventdata, handles)

% hObject handle to popupmenu_chamber (see GCBO)

% eventdata reserved − to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: contents = cellstr(get(hObject,'String')) returns popupmenu_chamber contents as cell array

% contents{get(hObject,'Value')} returns selected item from popupmenu_chamber

load_parameters(handles);

[theta pcr th_pcr] = get_pcr_plots(handles);

plot_function(theta,pcr,th_pcr,handles);

% −−− Executes during object creation, after setting all properties.

function popupmenu_chamber_CreateFcn(hObject, eventdata, handles)

% hObject handle to popupmenu_chamber (see GCBO)

% eventdata reserved − to be defined in a future version of MATLAB

% handles empty − handles not created until after all CreateFcns called

% Hint: popupmenu controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

% −−− Executes on selection change in popupmenu_position.

function popupmenu_position_Callback(hObject, eventdata, handles)

% hObject handle to popupmenu_position (see GCBO)

% eventdata reserved − to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: contents = cellstr(get(hObject,'String')) returns popupmenu_position contents as cell array

% contents{get(hObject,'Value')} returns selected item from popupmenu_position

load_parameters(handles);

[theta pcr th_pcr] = get_pcr_plots(handles);

plot_function(theta,pcr,th_pcr,handles);

% −−− Executes during object creation, after setting all properties.

function popupmenu_position_CreateFcn(hObject, eventdata, handles)

% hObject handle to popupmenu_position (see GCBO)

% eventdata reserved − to be defined in a future version of MATLAB

% handles empty − handles not created until after all CreateFcns called

% Hint: popupmenu controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

% −−− Executes on button press in load_button.

function load_button_Callback(hObject, eventdata, handles)

% hObject handle to load_button (see GCBO)

% eventdata reserved − to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

load_parameters(handles);

[theta pcr th_pcr] = get_pcr_plots(handles);

plot_function(theta,pcr,th_pcr,handles);

guidata(hObject,handles);

% −−− Executes on slider movement.

function slider_m_Callback(hObject, eventdata, handles)
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% hObject handle to slider_m (see GCBO)

% eventdata reserved − to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'Value') returns position of slider

% get(hObject,'Min') and get(hObject,'Max') to determine range of slider

input = get(hObject,'Value');

change_slider_m(input,handles);

guidata(hObject,handles);

% −−− Executes during object creation, after setting all properties.

function slider_m_CreateFcn(hObject, eventdata, handles)

% hObject handle to slider_m (see GCBO)

% eventdata reserved − to be defined in a future version of MATLAB

% handles empty − handles not created until after all CreateFcns called

% Hint: slider controls usually have a light gray background.

if isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor',[.9 .9 .9]);

end

% −−− Executes on slider movement.

function slider_p_Callback(hObject, eventdata, handles)

% hObject handle to slider_p (see GCBO)

% eventdata reserved − to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'Value') returns position of slider

% get(hObject,'Min') and get(hObject,'Max') to determine range of slider

input = get(hObject,'Value');

change_slider_p(input,handles);

guidata(hObject,handles);

% −−− Executes during object creation, after setting all properties.

function slider_p_CreateFcn(hObject, eventdata, handles)

% hObject handle to slider_p (see GCBO)

% eventdata reserved − to be defined in a future version of MATLAB

% handles empty − handles not created until after all CreateFcns called

% Hint: slider controls usually have a light gray background.

if isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor',[.9 .9 .9]);

end

function edit_p_Callback(hObject, eventdata, handles)

% hObject handle to edit_p (see GCBO)

% eventdata reserved − to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit_p as text

% str2double(get(hObject,'String')) returns contents of edit_p as a double

input = str2double(get(hObject,'String'));

%checks to see if input is empty. if so, default input1_editText to zero

if (isempty(input))

set(hObject,'String','0')

end

change_slider_p(input,handles);

guidata(hObject, handles);

% −−− Executes during object creation, after setting all properties.

function edit_p_CreateFcn(hObject, eventdata, handles)

% hObject handle to edit_p (see GCBO)

% eventdata reserved − to be defined in a future version of MATLAB

% handles empty − handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');
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end

function edit_m_Callback(hObject, eventdata, handles)

% hObject handle to edit_m (see GCBO)

% eventdata reserved − to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit_m as text

% str2double(get(hObject,'String')) returns contents of edit_m as a double

input = str2double(get(hObject,'String'));

%checks to see if input is empty. if so, default input1_editText to zero

if (isempty(input))

set(hObject,'String','0')

end

change_slider_m(input,handles);

guidata(hObject, handles);

% −−− Executes during object creation, after setting all properties.

function edit_m_CreateFcn(hObject, eventdata, handles)

% hObject handle to edit_m (see GCBO)

% eventdata reserved − to be defined in a future version of MATLAB

% handles empty − handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function change_slider_m(input,handles)

slider_max = get(handles.slider_m,'Max');

slider_min = get(handles.slider_m,'Min');

if input>slider_max

input = slider_max;

elseif input<slider_min

input = slider_min;

end

set(handles.slider_m,'Value',input);

set(handles.edit_m,'String',num2str(input));

[theta pcr th_pcr] = get_pcr_plots(handles);

plot_function(theta,pcr,th_pcr,handles);

function change_slider_p(input,handles)

slider_max = get(handles.slider_p,'Max');

slider_min = get(handles.slider_p,'Min');

if input>slider_max

input = slider_max;

elseif input<slider_min

input = slider_min;

end

set(handles.slider_p,'Value',input);

set(handles.edit_p,'String',num2str(input));

[theta pcr th_pcr] = get_pcr_plots(handles);

plot_function(theta,pcr,th_pcr,handles);

function prmtrs = load_parameters(handles)

rb = get_parameters_radiobutton(handles);

switch rb

case 1 %msd

load BAN_nakm_parameters;

case 2 %manual

load BAN_nakm_parameters_manual;

end

chamber = get(handles.popupmenu_chamber,'Value');

pos = get(handles.popupmenu_position,'Value');

switch chamber

case 1

prmtrs = nakm_par_ane;
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case 2

prmtrs = nakm_par_rev;

end

prmtrs = prmtrs(:,pos);

m = prmtrs(1);

p = prmtrs(2);

change_slider_m(m,handles);

change_slider_p(p,handles);

function [theta pcr th_pcr prmtrs] = get_pcr_plots(handles)

load BAN_data;

chamber = get(handles.popupmenu_chamber,'Value');

pos = get(handles.popupmenu_position,'Value');

switch chamber

case 1

pcr = pcr_ane;

case 2

pcr = pcr_rev;

end

m = get(handles.slider_m,'Value');

p = get(handles.slider_p,'Value');

theta = theta;

pcr = pcr(:,pos);

th_pcr = nakmp_pcr(theta,m,p);

[th_pcr omega] = bestfit(th_pcr,pcr);

prmtrs = [m p omega];

function plot_function(theta,pcr,th_pcr,handles)

axes(handles.axes1);

pcr_variation = max(pcr) − min(pcr);

ymin = min(pcr) − 0.1*pcr_variation;

ymax = max(pcr) + 0.1*pcr_variation;

plot(theta,pcr,'k');

axis([−pi pi ymin ymax]);

hold on;

plot(theta,th_pcr);

hold off;

mse = mean((th_pcr − pcr).^2); %mean squared error

hObject = handles.text_mse;

set(hObject,'String',['MSE: ' num2str(mse)]);

guidata(hObject,handles);

function [w a] = bestfit(X, Y)

% Try to find a that best fit (minimum squares): X * a = Y

% Returns a and w = X * a;

m = size(X,1);

n = size(X,2);

if n>m

a = Y * pinv(X);

w = a * X;

else

a = pinv(X) * Y;

w = X * a;

end

% −−− Executes on button press in pushbutton_save.

function pushbutton_save_Callback(hObject, eventdata, handles)

% hObject handle to pushbutton_save (see GCBO)

% eventdata reserved − to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

%newFolder = 'C:\Users\Iury\Documents\My Dropbox\MATLAB\workspace\Mestrado\Body Area Network\Data';

newFolder = 'D:\Dropbox\MATLAB\workspace\Mestrado\Body Area Network\Data';

oldFolder = cd(newFolder);

load BAN_data;

load BAN_nakm_parameters_manual;

chamber = get(handles.popupmenu_chamber,'Value');

pos = get(handles.popupmenu_position,'Value');

[~, ~, ~, prmtrs] = get_pcr_plots(handles);

switch chamber

case 1

nakm_par_ane(:,pos) = prmtrs';
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case 2

nakm_par_rev(:,pos) = prmtrs';

end

save('BAN_nakm_parameters_manual','nakm_par_ane','nakm_par_rev');

cd(oldFolder);

function rb = get_parameters_radiobutton(handles)

if get(handles.radiobutton_msd,'Value') == 1

rb = 1; %minimum square distance parameters selected

else

rb = 2; %manual parameters selected

end

B.2.2 Generalized Nakagami-m PCR

function [ f ] = nakmp_pcr( theta, m,p )

f = (sqrt(pi)*(abs(sin(2*theta)).^(m−1)).*(abs(tan(theta)).^(−p*m)).*...
gamma(m−1/2))/((2^(m+(1/2)))*gamma((1+p)*m/2)*gamma((1−p)*m/2));

end

B.2.3 Generalized Nakagami-m Phase PDF

function [ f ] = nakmp_pdf( phase, m , p )

f = (gamma(m)/((2^m)*gamma((1+p)*m/2)*gamma((1−p)*m/2)))*...
(abs(sin(2*phase)).^(m−1))./(abs(tan(phase)).^(p*m));

end
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