Liz Rosana Alvarez Ferreira

Modelo de Simulação em Base Horária da Vazão na Estação Fluviométrica da Régua-11

Simulation Model in Hourly Basis of the Flow at the Fluviometric Station R-11

Campinas 2012

Universidade Estadual de Campinas Faculdade de Engenharia Elétrica e de Computação

Liz Rosana Alvarez Ferreira

Modelo de Simulação em Base Horária da Vazão na Estação Fluviométrica da Régua-11

Simulation Model in Hourly Basis of the Flow at the Fluviometric Station R-11

Dissertação de mestrado apresentada à Faculdade de Engenharia Elétrica e de Computação como parte dos requisitos exigidos para a obtenção do título de Mestre em Engenharia Elétrica. Área de concentração: Energia Elétrica.

Master's thesis presented to the School of Electrical and Computer Engineering in partial fulfillment of the requirements for the degree of Master in Electrical Engineering. Concentration area: Electric Power Systems.

Orientador: Prof. Dr. Secundino Soares Filho Tutor: Professor Secundino Soares Filho

Este exemplar corresponde à versão final da tese defendida pela aluna Liz Rosana Alvarez Ferreira, e orientada pelo Prof. Dr. Secundino Soares Filho

Campinas 2012

FICHA CATALOGRÁFICA ELABORADA PELA BIBLIOTECA DA ÁREA DE ENGENHARIA E ARQUITETURA - BAE - UNICAMP

AL86m

Alvarez Ferreira, Liz Rosana, 1980

Modelo de simulação em base horária da vazão na estação fluviométrica da régua-11 / Liz Rosana Alvarez Ferreira. --Campinas, SP: [s.n.], 2012.

Orientador: Secundino Soares Filho.
Dissertação de Mestrado - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de Computação.

Simulação por computador.
 Previsão de vazões.
 Soares Filho, Secundino, 1949-. II. Universidade
 Estadual de Campinas. Faculdade de Engenharia Elétrica e de Computação. III. Título.

Título em Inglês: Simulation model in hourly basis of the flow at the fluviometric station R-11

Palavras-chave em Inglês: Simulation by computer, Prediction of flows

Área de concentração: Energia Elétrica Titulação: Mestra em Engenharia Elétrica

Banca examinadora: Anastacio Sebastián Arce Encina, Paulo Sérgio Franco Barbosa

Data da defesa: 31-08-2012

Programa de Pós Graduação: Engenharia Elétrica

COMISSÃO JULGADORA - TESE DE MESTRADO

Candidata: Liz Rosana Alvarez Ferreira

Data da Defesa: 31 de agosto de 2012

Título da Tese: "Modelo de Simulação em Base Horária da Vazão na Estação Fluviométrica da Régua-11"

Prof. Dr. Secundino Soares Filho (Presidente): Accurd

Dr. Anastacio Sebastián Arce Encina:

Prof. Dr. Paulo Sérgio Franco Barbosa:

Dedico com muito carinho este trabalho à toda minha familia, sem eles nenhum sonho seria possível ou valeria a pena.

Agradecimentos

à Deus, por ter-me permitido chegar até aqui, por me amparar nos momentos difíceis, me dar força interior para superar as dificuldades.

ao meu orientador, Dr. Secundino Soares Filho, por ter me dado à oportunidade de ser a sua orientada, pela confiança e disponibilidade. Meu respeito e profunda admiração.

aos professores Takaaki Ohishi, Anastasio Sebastián Arce Encina, Paulo Sergio Franco Barbosa e Marcius Fabius Henriques de Carvalho, por aceitar participar de minha banca de defesa.

ao Dr. Anastasio Sebastián Arce Encina, pela confiança em mim depositada, pela disponibilidade, constante apoio e incentivo.

à colaboração inestimável das seguintes pessoas: José Rivarola, Lizandra Martinez, Celso Eduardo Fukasawa, Homero Buba, Adroaldo Goulart de Oliveira.

à toda minha família, em especial à meus pais Adolfo e María e meus ermãos Diana, Dina e Gustavo pelo apoio, e amor incondicionais durante toda a minha vida.

à meus grandes amigos Luis Barrientos, Sergio Morel, Eliana e Inês Contharteze pela força e apoio, sempre que precisei.

à meu cunhado e amigo Cristopher, pela ajuda sempre que foi necessário.

à todos os colegas do laboratório COSE, obrigada por tudo.

à Fundación Parque Tecnológico Itaipú pelo apoio financeiro.

à todos que direta e indiretamente contribuíram para a conclusão deste trabalho.

Não é a força do gotejar da água que fura a pedra, mas sim a persistência incansável desta ação.

Resumo

A jusante da confluência dos rios Paraná, Iguaçu, Acaray e Monday situa-se a estação fluviométrica da Régua 11 ou simplesmente R-11, localizada no rio Paraná a aproximadamente 20 km da central de Itaipu, na fronteira entre Brasil, Argentina e Paraguai. Esta região está sujeita a restrições impostas por acordos internacionais, como o cumprimento do Acordo Tripartite assinado pelo três países em outubro de 1979, segundo o qual as variações do nível do rio Paraná, neste ponto, não devem superar meio metro de uma hora para outra, ou dois metros de um dia para outro, impondo desta forma restrições operacionais para a usina de Itaipu. O atendimento às restrições hidráulicas decorrentes do Acordo Tripartite é de responsabilidade da Itaipu Binacional, no que depender da operação da usina. Neste trabalho apresenta-se um modelo de simulação que determina a variação horária e diária dos níveis da cota do rio Paraná no posto R-11. O simulador calcula os níveis neste ponto utilizando a curva de propagação de König para determinar o impacto ocorrido no nível do Rio Paraná em R-11, devido às variações da defluência em Itaipu, como consequência das alterações nas vazões vertida e turbinada na central hidrelétrica. Além da influência da operação de Itaipu no nível do posto R-11, o simulador considera também a influência da vazão do rio Iguaçu através do método de propagação de vazões Muskingum-Cunge, ao longo do trecho entre a usina de Salto Caxias e o posto de medição Hotel Cataratas, no rio Iguaçu. Os resultados apresentados mostraram uma boa aderência aos valores verificados, já que não foram consideradas todas as vazões incrementais laterais do trecho em estudo, e as vazões dos rios Acaray e Monday foram considerados constantes em 200 $[m^3/s]$ devido à indisponibilidade de dados.

Palavras-chave: Simulação por computador, Previsão de vazões.

Abstract

The fluviometric station of rule 11, or simply R-11, is situated downstream from the confluence of the Paraná, Iguaçu, Acaray and Monday rivers, about 20 km away from Itaipu Hydroelectric Power Plant on the border between Brazil, Paraguay and Argentina. This region is subject to restrictions imposed by international agreements such as the implementation of the Tripartite Agreement signed by the three countries in October 1979, which states that variations in the level of the Paraná River at this point should not exceed half a meter per hour, or two meters per day, thus imposing operating restrictions for the Itaipu plant. Itaipu is responsible of the fulfillment of the hydraulic constraints of Tripartite Agreement which are dependent on the plant's operation. This work presents a simulation model on hourly basis of the flow at the fluviometric station R-11, to determine the hourly and daily variation levels of the Paraná River at this station. The simulator calculates levels at the point using the König propagation curve to determine the impact occurred at the level of the Paraná River in R-11, due to variations in the flow release in Itaipu, as a consequence of alterations in turbine discharge and spillage in the hydroelectric. Besides Itaipu operation influence on the level of the post R-11, the simulator also considers the influence of the Iguaçu River flow using the Muskingum-Cunge routing method, along the stretch between the Salto Caxias Hydroelectric Power Plant and the fluviometric station of Hotel Cataratas in Iguaçu River. The results showed an adequate representation of the values observed, since not all incremental water inflow of stretch in study was considered. The flow of the river Acaray and Monday were considered constant at 200 $[m^3/s]$ due to data unavailability.

Key-words: Simulation by computer, Prediction of flows.

Lista de Figuras

1.1	Esquema topológico da vizinhança do posto R-11	3
2.1	Perfil longitudinal e Seção transversal	5
2.2	Passagem de uma onda de cheia no trecho considerado	12
2.3	Relação entre vazão e armazenamento em reservatórios	17
2.4	Grelha numérica discretizando o plano x-t para a solução numérica das	
	equações de Saint-Venant por diferenças finitas	17
2.5	Aproximação por diferença finita para a função $u(x)$	20
2.6	Interpretação do parâmetro X	23
2.7	Regiões de validade dos parâmetros do Modelo Muskingum	24
2.8	Determinação dos parâmetros X e k do método de Muskingum por processo	
	gráfico	25
2.9	Rede espaço-tempo em diferenças finitas para a solução da equação de Musking	um-
	Cunge.	26
3.1	Seção transversal do rio Iguaçu na estação Hotel Cataratas	37
3.2	Seção transversal do rio Iguaçu na estação Porto Capanema	37
3.3	Perfil longitudinal UHE Salto Caxias até a confluência com o rio Paraná	40
3.4	Propagação da vazão - Hidrograma de saída resultante correspondente a	
	cada sub-trecho	42
3.5	Hidrogramas de entrada e saída	42
3.6	Resultado obtido na simulação ao aplicar o método Muskingum-Cunge	42
4.1	Curva de König	47
4.2	Exemplo	48
4.3	Resultados de erro quadrático médio obtido na calibração do modelo de pro-	
	pagação de Itaipu	49
4.4	Resultado obtido na simulação de R-11 sem considerar o tempo de viagem	
	entre Hotel Cataratas e R-11	50
4.5	Resultado obtido na simulação de R-11 considerando o tempo de viagem de	
	oito horas entre Hotel Cataratas e R-11	50
5.1	Resultado obtido na simulação da régua 11 calculado através do método de	
	propagação de vazões Muskingum-Cunge e o método de König	52
5.2	Comparação.	53
5.3	Curva chave R-11	54

17/08/2011 e 23/08/2011	56
17/08/2011 e 23/08/2011	56
Variação horária dos níveis da cota do rio Paraná no posto R-11, no período 17/08/2011 e 23/08/2011, considerando uma vazão constante no posto Ho-	57
Variação diária dos níveis da cota do rio Paraná no posto R-11, no período 17/08/2011 e 23/08/2011, considerando vazão constante no posto Hotel	
Variação horária dos níveis da cota do rio Paraná no posto R-11, no período	57 58
Variação diária dos níveis da cota do rio Paraná no posto R-11, no período 30/05/2011 e 06/06/2011	58
Área de Implantação dos modelos hidrodinâmicos - Fonte: Itaipu Binacional.	73
UHE Itaipu/UHE Salto Caxias até Pto. El Dorado	75
Encontro dos Rios Iguaçu e Paraná, na chamada "Tríplice Fronteira" Placa de identificação na estação R-11	77 78 79 80 81 82
Rio Iguaçu inmediatamente ajusante da UHE Salto Caxias	84
Rio Iguaçu (vista sobre a ponte). Solo do rio Iguaçu. Ilha no rio Iguaçu. Parque Nacional do Iguaçu.	85 85 86 86
Rio Cotegipe afluente do Rio Iguaçu pela margem esquerda, a jusante da Barragem e do Reservatório de Salto Caxias	87 87 88 88
	Variação horária dos níveis da cota do rio Paraná no posto R-11, no período 17/08/2011 e 23/08/2011, considerando uma vazão constante no posto Hotel Cataralas. Variação diária dos níveis da cota do rio Paraná no posto R-11, no período 17/08/2011 e 23/08/2011, considerando vazão constante no posto Hotel Cataralas. Variação horária dos níveis da cota do rio Paraná no posto R-11, no período 30/05/2011 e 06/06/2011. Variação diária dos níveis da cota do rio Paraná no posto R-11, no período 30/05/2011 e 06/06/2011. Årea de Implantação dos modelos hidrodinâmicos - Fonte: Itaipu Binacional. UHE Itaipu/UHE Salto Caxias até Pto. El Dorado Encontro dos Rios Iguaçu e Paraná, na chamada "Tríplice Fronteira". Placa de identificação na estação R-11. Régua limnimétrica instaladas na estação R-11. Monitoramento de níveis por leitura de régua limnimétrica e sensor de nível. Sensor de nível na estação R-11. Estação R-11. Estação R-11. Rio Iguaçu immediatamente ajusante da UHE Salto Caxias. Ponte sobre o Rio Iguaçu da Rodovia PR-182, facilita a ligação entre Capitão Leônidas Marquez e Realeza no estado do Paraná. Rio Iguaçu (vista sobre a ponte). Solo do rio Iguaçu. Parque Nacional do Iguaçu. Parque Nacional do Iguaçu. Parque Nacional do Rio Capanema no rio Iguaçu. Desembocadura do Rio Capanema no rio Iguaçu. Rio Capanema perto da desembocadura com o Rio Iguaçu. Desembocadura do Rio Capanema no rio Iguaçu. Rio Andrade, afluente do rio Iguaçu pela margem dereita.

Lista de Tabelas

2.1	Valores para a computação do coeficiente de rugosidade de Manning	33
3.1	Rede a partir da UHE Salto Caxias até a confluência com o rio Paraná - Fonte: Itaipu Binacional	40
4.1	Tabela de König - Fonte: [1], [2]	46
5.1	Curva Chave - Fonte: [2]	54

Lista de Símbolos

```
A
                   Seção ou área molhada [m^2];
B
                  Largura superficial [m];
                  Profundidade do escoamento [m];
y
P
                  Perímetro molhado [m];
R
                  Raio hidráulico [m];
                  Cota do fundo ou do leito [m];
z
Z
                  Cota da superfície livre, nível d'água ou cota fluviométrica [m];
S_{o}
                  Declividade de fundo do rio [m/m];
                  Declividade da linha d'água [m/m];
                  Declividade da linha de energia [m/m];
                  Vazão [m^3/s];
Q
                  Profundidade do escoamento [m];
V
                   velocidade média do escoamento [m/s];
                   aceleração da gravidade [m/s^2];
F_{pd} e F_{pe}
                   forças hidrostáticas de pressão atuantes no escoamento [Pa];
                   ângulo formado entre o plano horizontal e o fundo do canal [graus];
F_q
                   Força da gravidade na direção do fluxo [N];
                  Força de resistência no fundo [N];
t
                  tempo [s];
                  Discretização temporal [s];
\Delta t
                  Distância longitudinal [m];
\boldsymbol{x}
                  Discretização espacial [m];
\Delta x
                  Celeridade da onda cinemática [m/s];
c_k
C
                  Coeficiente de Courant ou razão da celeridade;
D
                  Coeficiente ou razão da difusão;
                  Vazão de referência [m^3/s];
Qo
                  Vazão de pico do hidrograma [m^3/s];
Qp
                  Tempo de pico do hidrograma de entrada;
tp
                  Coeficiente de rugosidade de Manning;
n
X
                  Fator de ponderação adimensional que introduz o efeito de amortecimento;
                  Tempo de percurso da onda de cheia ao longo do trecho considerado [s];
C_0, C_1, C_2, C_3
                  Parâmetros do modelo Muskingum;
                  Número de sub-trechos;
                  Vazão de entrada ou hidrograma de entrada [m^3/s];
I(t)
                  Vazão de saída ou hidrograma de saída [m^3/s];
O(t)
                   Vazão de contribuição lateral [m^3/s].
q_l
```


Sumário

Lista de Figuras				xvi	
Li	sta d	le Tab	elas	xix	
Li	sta d	le Síml	bolos	xx	
1	I Introdução Geral				
In	trod	ução C	Geral	1	
2	Pre	limina	res e Definições	5	
	2.1	Propri	iedades geométricas dos cursos d'água	. 5	
		2.1.1	Seção transversal	. 5	
		2.1.2	Propriedades longitudinais dos cursos d'água	. 7	
	2.2	Escoar	mentos em rios e canais.	. 7	
	2.3	Equaç	ões de Saint-Venant	. 9	
	2.4	Model	os de escoamentos	. 11	
		2.4.1	Modelo da onda difusiva e cinemática	. 12	
		2.4.2	Celeridade da onda cinemática	. 13	
		2.4.3	Modelos de armazenamento	. 15	
	2.5	Aprox	imação por diferenças finitas	. 17	
2.6 Propagação em rios e canais		gação em rios e canais	. 20		
		2.6.1	Método de Muskingum	. 20	
		2.6.2	Obtenção dos parâmetros k e X a partir de informação de campo,		
			pelo método da laçada	. 25	
		2.6.3	Método Muskingum-Cunge	. 26	
3	Mo	delo de	e propagação da vazão da UHE Salto Caxias	35	
	3.1	Calibr	ação do modelo de propagação da vazão da UHE Salto Caxias	. 35	
		3.1.1	Rios afluentes laterias existentes no trecho entre a UHE Salto Caxias	. 35	
		219	e o posto de medição Hotel Cataratas	. əe	
		3.1.2	Dados batimétricos considerados para referenciar a largura do rio Iguaçu	. 36	
		3.1.3	Vazão de referência	. 38	

xxiv SUMÁRIO

		3.1.4	Dados correspondentes ao perfil longitudinal do rio para referenciar a distância e a declividade do fundo do rio entre a UHE Salto Caxias		
		3.1.5 3.1.6	e o posto de medição Hotel Cataratas no rio Iguaçu	38 40 41	
4	Mo	delo de	e propagação de Itaipu	45	
	4.1		lação matemática para a parcela da vazão correspondente a Itaipu	45	
		em K- 4.1.1	11	45 45	
		4.1.2	Princípios básicos da Curva de König	45	
	4.2		ação do tempo de viagem d'água entre o trecho Posto Hotel Cataratas	49	
5	Cálculos dos níveis do Rio Paraná no posto R-11				
	5.1		no posto R-11	51	
	5.2		chave:	53	
	5.3	5.2.1 Difere	Curva chave da R-11:	54 55	
6	Cor	ıclusõe	s	59	
Re	eferê	ncias b	oibliográficas	60	
\mathbf{A}				63	
В				73	
\mathbf{C}				7 5	
D				77	
${f E}$				83	
\mathbf{F}				87	

Capítulo 1

Introdução Geral

O controle de variações dos níveis do rio Paraná no posto fluviométrico da régua 11 (R-11 Monday) é de fundamental importância, não só para a geração de energia elétrica na usina de Itaipu por influenciar sua cota de jusante, mas também para o atendimento do Acordo Tripartite referente à variação máxima horária e diária. Esse controle também é importante para salvaguardar a segurança das pessoas, principalmente em situações de cheia, já que na região há áreas críticas sujeitas a inundações em ambas as margens do rio, vazões acima de 51000 $[m^3/s]$, no posto fluviométrico R-11, provocam inundações na usina paraguaia de Acaray, localizada no Rio Acaray apoximadamente a 5 km da Central de Itaipu, o controle de niveis é importante para evitar prejuízos a atividades relacionadas ao uso múltiplo da água como, por exemplo, navegação, pesca e recreação.

Este trabalho apresenta um modelo de simulação em base horária da vazão na estação fluviométrica da régua 11 que determina a variação horária e diária dos níveis da cota do rio Paraná no posto R-11. O simulador calcula os níveis neste ponto utilizando a curva de propagação de König para determinar o impacto ocorrido no nível do Rio Paraná em R-11, devido às variações da defluência em Itaipu, como consequência das alterações nas vazões vertida e turbinada na central hidrelétrica decorrentes da sua programação de geração.

Além da influência da operação de Itaipu no nível do posto R-11, o simulador considera a influência da vazão do rio Iguaçu através da aplicação do modelo de propagação de vazões Muskingum-Cunge linear para o cálculo do fluxo ao longo do trecho entre a última usina do rio Iguaçu, a UHE Salto Caxias, e o posto de medição Hotel Cataratas. Para calibração e teste deste modelo foram considerados dados de hidrogramas correspondentes a cheia de agosto de 2011.

A jusante da confluência dos rios Paraná, Iguaçu, Acaray e Monday situa-se o posto de medição fluviométrica da régua 11, ou simplesmente R-11, localizado no rio Paraná aproximadamente 20 km a jusante da central de Itaipu, na fronteira entre Brasil, Argentina e Paraguai. Este posto está sujeito a restrições impostas por acordos internacionais, como o cumprimento do Acordo Tripartite assinado pelo três países em outubro de 1979, segundo o qual as variações do nível do rio Paraná, neste posto, não devem superar meio metro de uma hora para outra, ou dois metros de um dia para outro, impondo desta forma

restrições operacionais à usina de Itaipu [3].

O atendimento às restrições hidráulicas decorrentes do Acordo Tripartite é de responsabilidade da Itaipu Binacional, no que depender da sua operação. Para tanto, esta empresa realiza um monitoramento sistemático das condições hidrológicas na bacia do rio Paraná e da operação hidráulica dos aproveitamentos situados nesta bacia [4].

A coleta dos dados que orientam os processos de previsão, supervisão e controle da operação hidroenergética da Itaipu Binacional ocorre nas estações hidrológicas, de medição de níveis de rio e de chuva, e nas estações meteorológicas, parte destes dados é obtida por meio de estações automáticas, que lêem as informações dos sensores e as transmitem para a usina, via satélite e internet. Este modelo é chamado de Sistema Telemetria Hidrometeorológica (STH), o restante das informações é obtido por telefone e rádio com os operadores das estações. Cabe a Telemetria o trabalho de aquisição e transporte de dados, via satélite para uma base onde vão ser analisadas. Das 13 estações que atendem à Itaipu, como por exemplo as estações Ivinheima, São José, Porto Paraíso do Norte, Porto Caiuá, Florida, Estação do Iguatemi, Guaíra, Balsa Santa Maria, Itaipu, R-11, Hotel Cataratas, Capanema, dez pertencem à própria usina. Outras três são da Agência Nacional de Energia Elétrica (Aneel) ¹.

A supervisão hidrometeorológica fica a cargo da Divisão de Estudos Hidrológicos e Energéticos (OPSH.DT) da Superintendência de Operação de Itaipu e responde pelo acompanhamento das áreas e rios de interesse da Itaipu, em termos de chuva, vazão e nível da água. Os boletins hidrológicos enviados diariamente pela Itaipu são de enorme relevância para os sistemas de alerta de diferentes repartições oficiais, que os utilizam para considerar os possíveis efeitos de níveis altos dos rios em zonas habitadas próximas da usina ².

A Figura 1.1 a seguir representa o esquema topológico da região, apresentando à última usina hidrelétrica do rio Iguaçu, a usina hidrelétrica de Salto Caxias, a usina hidrelétrica Acaray no rio Acaray e a usina hidrelétrica de Itaipu no rio Paraná. O termo U_{ita} corresponde à vazão à jusante de Itaipu, U_{igua} a vazão próxima a foz do Rio Iguaçu, mais precisamente no posto Hotel Cataratas, e o termo U_{R11} corresponde a vazão no posto R-11, as quais serão utilizadas em algumas expressões descritas posteriormente.

No apêndice D podem ser observadas fotografias registradas no posto de medição R-11.

¹http://www.itaipu.gov.br/energia/estacoes-hidrometeorologicas

²http://www.itaipu.gov.br/energia/supervisao-hidrometeorologica

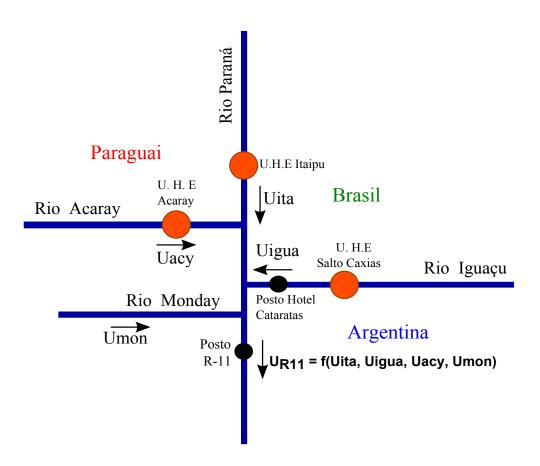


Figura 1.1: Esquema topológico da vizinhança do posto R-11.

Capítulo 2

Preliminares e Definições

2.1 Propriedades geométricas dos cursos d'água.

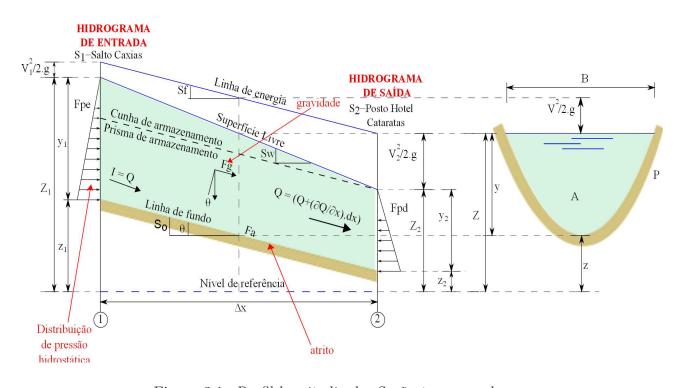


Figura 2.1: Perfil longitudinal e Seção transversal.

Fonte: [5]

2.1.1 Seção transversal.

A propriedade geométrica mais utilizada como referência de um curso d'água é sua seção transversal. Esta seção é obtida pela interseção da calha do rio com o plano perpendicular à direção principal de escoamento [6].

Ao contrário dos canais artificiais, as seções transversais dos rios têm formas irregulares que podem variar com o tempo devido aos processos morfológicos naturais ou induzidos pelo homem.

As características geométricas das seções transversais podem variar continuamente ao longo do rio o que faz com que eles sejam genericamente classificados como canais não-prismáticos. Só excepcionalmente, em trechos onde estas variações não sejam significativas, ou em trechos canalizados, pode-se adotar a hipótese de canais prismáticos [6].

A seção transversal de um rio é caracterizada através de um conjunto de propriedades geométricas sendo as mais importantes definidas a seguir:

Seção ou área molhada (A): parte da seção transversal que é ocupada pelo liquido. A seção molhada pode corresponder à parte ou a totalidade da seção transversal como no caso da vazão de margens plenas, e inclusive ultrapassar as margens da calha principal ocupando a planície de inundação em eventos de cheias [6]. A área desta seção é por sua vez denominada de área molhada (A).

Largura superficial (B): largura da superfície em contato com a atmosfera.

Profundidade do escoamento (y): altura do líquido acima do fundo do canal, é a distância vertical do rio até a superfície livre. Quando esta distância é medida perpendicularmente à direção do escoamento, é denominada de profundidade da seção molhada. Nos problemas práticos utiliza-se freqüentemente uma profundidade média definida como a média das profundidades em diferentes verticais numa mesma seção, sempre perpendicularmente ao fundo.

Perímetro molhado (P): é a porção do perímetro da seção molhada, que se encontra em contato com o leito, excluindo por tanto a superfície livre.

Raio hidráulico (R): é a relação entre a área molhada e o perímetro molhado, $R = \frac{A}{P}$. Trata-se de uma grandeza que não pode ser medida diretamente, mas é de grande importância para o escoamento.

Seção equivalente: é a seção geométrica conhecida, retangular, trapezoidal, triangular ou circular, tomada como representação de uma seção irregular.

Cota do fundo ou do leito (z): altura do ponto mais baixo ou ponto de referência da base da seção transversal, em relação a uma referência de nível.

Cota da superfície livre, ou cota fluviométrica (Z): altura da superfície da água acima de uma determinada referência de nível. Ela é equivalente à soma da cota do leito com a profundidade do escoamento em relação à mesma referência, de modo que temos por definição:

$$Z = y + z;$$

2.1.2 Propriedades longitudinais dos cursos d'água.

Declividade de fundo do rio (S_o) : Trata-se de uma propriedade fundamental para caracterização do perfil longitudinal de um rio, pois representa a relação entre o desnível do rio e o seu comprimento para um determinado trecho. Ela é definida a partir do ângulo formado por um plano correspondente ao leito do rio pelo eixo do rio com um plano horizontal de referência [6]. A tangente do ângulo θ é a medida desta declividade e o seu valor é determinado pela diferença entre as cotas do leito z_1 e z_2 da duas seções consecutivas, dividida pela distância L entre elas, de forma que:

$$S_o = tg\theta = \frac{z_1 - z_2}{L}$$

Declividade da linha d'água (S_w) : Esta propriedade define o perfil longitudinal da linha d'água. Ela é representada pelo quociente da diferença das cotas fluviométricas, Z_1 e Z_2 , em duas seções consecutivas pela distancia L entre elas, de modo que:

$$S_w = \frac{Z_1 - Z_2}{L}$$

A variação longitudinal destas declividades define o perfil da superfície livre Z(x).

2.2 Escoamentos em rios e canais.

As propriedades hidráulicas dos canais naturais em sua maioria são bastante irregulares. Os escoamentos em canais podem ter parâmetros que variam no espaço e no tempo, isto e, características hidráulicas como área molhada, raio hidráulico podem variar no espaço, de seção para seção, e no tempo.

Tempo como referência

Quando avaliados pelo tempo, os escoamentos podem ser:

Escoamentos permanentes: são aqueles que em um ponto qualquer do escoamento a velocidade permanece invariável no tempo. Portanto, os demais parâmetros hidráulicos de uma mesma seção molhada como profundidade, vazão, área molhada etc. são constantes e, entre as diversas seções do canal, existe uma "continuidade de vazão".

Escoamentos não permanentes: se a velocidade em um certo ponto varia com o passar do tempo. Nesse caso não existe uma continuidade de vazão e as características do escoamento dependem do momento e do ponto considerado.

Espaço como referência

Ao se analisar a variabilidade espacial, os escoamentos podem ser:

Escoamento uniforme: Para que o escoamento seja classificado como uniforme a profundidade da água, a área da seção transversal, as distribuições das velocidades em todas as seções transversais ao longo do canal devem permanecer invariáveis. A linha d'água deve ser paralela ao fundo do canal. Só se estabelece o regime uniforme em canais muito longos e em trechos distantes de suas extremidades. São condições especiais, muito difíceis de se obter na prática.

Escoamentos variados: quando as trajetórias não são paralelas entre si, a declividade da linha d'água não é paralela à declividade de fundo e os elementos característicos do escoamento variam de uma seção para outra. O escoamento variado se divide em gradualmente e rapidamente variado.

Escoamento gradualmente variado: os parâmetros característicos do escoamento variam gradual e lentamente, de seção para seção.

Escoamento rápidamente variado: ocorre uma variação brusca da altura d'água e demais parâmetros numa distância comparativamente pequena.

O escoamento em rios e canais pode ser classificado em duas classes mais importantes: Permanente gradualmente variado e não permanente gradualmente variado.

O regime não permanente é o mais comum dos regimes de escoamento em Hidráulica Fluvial. Estes movimentos, nos quais as grandezas variam no espaço e no tempo apresentando numa mesma seção um período de ascensão seguido de um período de recessão, e entre seus exemplos mais importantes podemos destacar as ondas geradas pela operação de usinas hidrelétricas também conhecidas como ondas de despacho, resultam da liberação de descargas dos reservatórios das UHE's para geração de energia ou atendimento a outros usos da água a jusante [6].

As situações mais comuns na natureza, entretanto, correspondem ao escoamento não permanente gradualmente variado. Nesse caso, o escoamento pode ser representado pelo conjunto de equações de Saint Venant (equação da continuidade e da quantidade de movimento) na sua forma completa ou simplificada. Esse conjunto de equação representa, além de outros, os principais componentes do escoamento em rios e canais, a translação da onda de cheia (efeito de advecção), o amortecimento (efeito de dispersão) e os efeitos de jusante [7].

2.3 Equações de Saint-Venant

Desde o final do século XIX é conhecido um conjunto de equações diferenciais parciais que descrevem o escoamento em rios, na condição que considera escoamento unidimensional e baixa declividade, entre outras simplificações. Estas equações são conhecidas como equações de Saint-Venant, em homenagem ao seu formulador Barré Saint Venant, e são apresentadas a seguir.

Equação da continuidade (conservação da massa):

$$\frac{\partial A}{\partial t} + \frac{\partial Q}{\partial x} = 0 \tag{2.1}$$

Equação dinâmica (quantidade de movimento):

Forma conservativa:

$$\frac{\partial Q}{\partial t} + \frac{\partial}{\partial x} \frac{Q^2}{A} + gA \frac{\partial y}{\partial x} = gAS_o - gAS_f \tag{2.2}$$

Forma não conservativa:

$$\frac{\partial V}{\partial t} + V \frac{\partial V}{\partial x} + g \frac{\partial y}{\partial x} = g(S_o - S_f) \tag{2.3}$$

A Figura 2.1, ilustra as principais variáveis utilizadas nas equações de Saint Venant, onde:

Q - vazão $[m^3/s]$;

t - tempo [s];

 \boldsymbol{x} - distância linear ao longo do rio [m];

A - área molhada da seção transversal $[m^2]$;

y - nível da água na superfície em relação a um referencial (nível médio do mar) [m];

z - cota do fundo ou do leito [m];

Z - cota da superfície livre [m];

 ${\cal V}$ - velocidade média do escoamento [m/s];

g - aceleração da gravidade $[m/s^2];$

 F_{pd} e F_{pe} - forças hidrostáticas de pressão atuantes no escoamento [Pa];

 θ - ângulo formado entre o plano horizontal e o fundo do canal [graus];

 S_w - Declividade da linha d'água [m/m];

 F_g - Força da gravidade na direção do fluxo [N];

 F_a - Força de resistência no fundo [N];

 $\frac{V^2}{2g}$ - carga cinética, sendo V a velocidade média da secção e g a aceleração local de gravidade;

Prisma de armazenamento: Linha d'água paralela ao fundo;

Cunha de armazenamento: Declividade da linha d'água diferente da declividade de fundo;

 S_f - declividade da linha de energia [m/m], é usualmente calculada através da fórmula de Manning:

$$S_f = \frac{n^2 |Q| Q}{R^{4/3} A^2} \tag{2.4}$$

A equação (2.1) corresponde à equação da continuidade aplicada a um trecho infinitesimal do rio, enquanto a equação (2.3) corresponde à equação da quantidade de movimento para o mesmo trecho infinitesimal.

Na equação (2.3), os primeiros dois termos correspondem aos termos de inércia, enquanto o terceiro, quarto e quinto termos correspondem aos termos de pressão, gravidade e atrito, respectivamente, de modo que esta equação pode ser escrita como:

$$\widehat{S}_{f} = \widehat{S}_{o} - \widehat{\frac{\partial y}{\partial x}} - \underbrace{\frac{\text{inércia}}{V \cdot \partial V}}_{\text{g} \cdot \partial x} - \underbrace{\frac{\partial V}{g \cdot \partial V}}_{\text{g} \cdot \partial x} - \underbrace{\frac{\partial V}{g \cdot \partial V}}_{\text{g} \cdot \partial t}$$
(2.5)

Na equação de continuidade:

 $\frac{\partial A}{\partial t}$: representa a variação de armazenamento devido à variação temporal da área molhada em uma seção, também denominada de armazenamento em prisma [6].

 $\frac{\partial Q}{\partial x}$: representa a variação de armazenamento devido à variação da vazão entre duas seções consecutivas, também conhecida como armazenamento em cunha [6].

Na equação da quantidade de movimento, na sua forma não conservativa:

 $g.\frac{\partial y}{\partial x}$: representa a diferença das pressões hidrostáticas atuantes na fronteira do volume de controle e é proporcional à variação da profundidade do escoamento ao longo do canal;

- $g.S_o$: representa a ação da gravidade e é proporcional ao declive do fundo do canal.
- $g.S_f$: representa a ação do atrito com o fundo e as margens do canal.
- $V.\frac{\partial V}{\partial x}$: aceleração convectiva do escoamento, que descreve a mudança da quantidade de movimento devido a alterações espaciais da velocidade $(\frac{V}{g}\frac{\partial V}{\partial x})$. São responsáveis pela formação de vórtices, e o seu efeito é mais importante quanto maior for o número de Reynolds. Na presença de altas velocidades ou viscosidade pequena, e do ponto de vista matemático são os responsáveis pela não linearidade do sistema de equações.

 $\frac{\partial V}{\partial t}$: aceleração local do escoamento, a qual descreve a mudança da quantidade de movimento devido a alterações da velocidade com relação ao tempo. Representam a variação da velocidade com relação ao tempo num ponto fixo.

As equações de continuidade e quantidade de movimento foram deduzidas por Saint Venant para aplicações em grande escala. Estas equações constituem a base dos chamados modelos fisicamente fundamentados, ou modelos hidrodinâmicos.

2.4 Modelos de escoamentos

Enquanto todos os modelos de solução das equações de Saint-Venant utilizam de maneira similar a equação de continuidade, diferentes grupos de modelos podem ser distinguidos de acordo com os números de termos considerados na equação dinâmica.

Aqueles que retêm todos os termos são denominados "Modelos Hidrodinâmicos Completos". A última possibilidade de simplificação do sistema de Saint Venant corresponde à utilização apenas da equação de continuidade, baseando-se na hipótese de que todos os termos da equação dinâmica têm ordem de grandeza desprezível. Chega-se assim aos modelos hidrológicos, centrados não mais na mecânica de escoamento, mas sim em considerações conceituais globais, relativas ao armazenamento [8].

Os modelos hidrológicos são baseados no conceito de prisma de armazenamento e cunha de armazenamento que ocorrem no trecho considerado durante a passagem de uma onda de cheia.

Então, através das equações de Saint Venant podem ser deduzidos modelos que são classificados como: (i) hidrodinâmicos, que utilizam as equações em sua forma mais completa; (ii) de difusão, que não consideram os termos de inércia; (iii) de onda cinemática, que não consideram os termos de inércia, nem os termos de pressão; (iv) e de armazenamento, que levam em conta apenas os efeitos de armazenamento do escoamento.

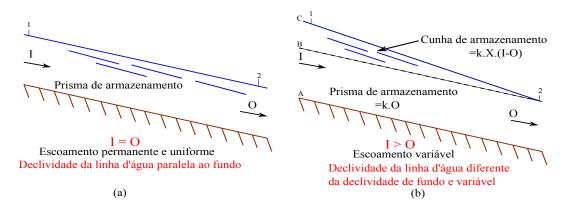


Figura 2.2: Passagem de uma onda de cheia no trecho considerado. Fonte: [9]

2.4.1 Modelo da onda difusiva e cinemática.

Por razões práticas, os hidrólogos ainda estão interessados em usar modelos hidrodinâmicos simplificados, tais como os cinemáticos ou difusivos, derivados das equações (2.1) e (2.2).

O modelo da onda difusiva utiliza a equação de continuidade concentrada (2.6) e a equação dinâmica, na equação dinâmica considera desprezíveis os termos de inércia, ou seja, considera apenas os efeitos referentes às forças de atrito, gravidade e pressão. Este modelo é definido pelas seguintes equações:

$$\frac{\partial Q}{\partial x} + \frac{\partial A}{\partial t} = 0 \tag{2.6}$$

$$S_f = S_o - \frac{\partial y}{\partial x} \tag{2.7}$$

Ambos os modelos podem ser apresentados através de uma fórmula geral comum, tendo esta equação a forma de uma equação de transporte convecção-difusão:

Equação da onda difusiva.

$$\frac{\partial Q}{\partial t} + c_k \cdot \frac{\partial Q}{\partial x} - D \cdot \frac{\partial^2 Q}{\partial x^2} = 0 \tag{2.8}$$

onde c_k é a celeridade cinemática, e D é a difusividade hidráulica.

Para um canal longo, retangular, com declividade da linha de energia igual à declividade do fundo do canal, a difusividade hidráulica pode ser expressa como:

$$D = \frac{Q}{2.B.S_o} \tag{2.9}$$

A equação (2.8) com D=0 torna-se um modelo de onda cinemática.

Equação da onda cinemática:

$$\frac{\partial Q}{\partial t} + c_k \cdot \frac{\partial Q}{\partial x} = 0 \tag{2.10}$$

A teoria das ondas cinemática e difusiva são bem conhecidas e amplamente divulgadas.

2.4.2 Celeridade da onda cinemática.

Uma onda é uma variação do fluxo, tal como uma elevação da superfície d'água, e a celeridade da onda é a velocidade com a qual esta variação viaja ao longo do canal. No modelo da onda cinemática os termos de pressão e inércia da equação (2.5) são desprezíveis, de modo que o movimento da onda é descrita principalmente pela equação de continuidade [10].

Neste tipo de modelo considera-se que a declividade da linha d'água é igual à declividade de fundo do rio, ou seja os termos de gravidade e de atrito são iguais. Este tipo de modelo não considera os efeitos de jusante, causado em rios ou canais próximos a lagos ou mar, por exemplo modelos desse tipo representam apenas a translação da onda de cheia [7].

O modelo de onda cinemática é definido pelas seguintes equações.

$$\frac{\partial Q}{\partial x} + \frac{\partial A}{\partial t} = q_l \tag{2.11}$$

$$S_o = S_f \tag{2.12}$$

onde q_l é a vazão de contribuição lateral.

A área da seção transversal pode ser expressa como uma função da vazão Q utilizando a fórmula de Manning considerando $S_o = S_f$ e R = A/P da seguinte forma:

$$A = \alpha . Q^{\beta} \tag{2.13}$$

$$Q = \frac{S^{1/2} \cdot R^{2/3} \cdot A}{n} = \frac{S_o^{1/2}}{n \cdot P^{2/3}} \cdot A^{5/3}$$
 (2.14)

que ao deixar em evidencia a área da seção transversal A, resulta:

$$A = \left(\frac{n.P^{2/3}}{S_o^{1/2}}\right)^{3/5}.Q^{3/5} \tag{2.15}$$

Comparando as equações (2.13) e (2.15) tem-se:

$$\alpha = \left(\frac{n.P^{2/3}}{S_o^{1/2}}\right)^{3/5} \tag{2.16}$$

$$\beta = 5/3 \tag{2.17}$$

A equação (2.11) contém duas variáveis dependentes, $A \in Q$, mas A pode ser eliminado através da diferenciação da equação (2.13). A derivada parcial da área com o tempo pode ser expressa por:

$$\frac{\partial A}{\partial t} = \alpha \cdot \beta \cdot Q^{\beta - 1} \left(\frac{\partial Q}{\partial t} \right) \tag{2.18}$$

e substituindo $\frac{\partial A}{\partial t}$ na equação (2.11) obtem-se:

$$\frac{\partial Q}{\partial x} + \alpha \cdot \beta \cdot Q^{\beta - 1} \left(\frac{\partial Q}{\partial t} \right) = q_l \tag{2.19}$$

As ondas cinemáticas resultam da variação da vazão Q. A vazão depende de x e t, e sua derivada total é:

$$dQ = \frac{\partial Q}{\partial x}.dx + \frac{\partial Q}{\partial t}.dt \tag{2.20}$$

Dividindo esta equação por dx e reorganizando obtem-se:

$$\frac{\partial Q}{\partial x} + \frac{dt}{dx} \cdot \left(\frac{\partial Q}{\partial t}\right) = \frac{dQ}{dx} \tag{2.21}$$

as equações (2.19) e (2.21) são idênticas se:

$$\frac{dQ}{dx} = q_l \tag{2.22}$$

е

$$\frac{dx}{dt} = \frac{1}{\alpha \cdot \beta \cdot Q^{\beta - 1}} \tag{2.23}$$

Diferenciando a equação (2.13) e reorganizando obtem-se:

$$\frac{dQ}{dA} = \frac{1}{\alpha.\beta.Q^{\beta-1}} \tag{2.24}$$

comparando as equações (2.23) e (2.24) pode ser visto que elas são iguais, ou seja:

$$\frac{dx}{dt} = \frac{dQ}{dA} \tag{2.25}$$

então:

$$c_k = \frac{dQ}{dA} = \frac{dx}{dt} = \frac{1}{\beta \cdot (\alpha \cdot Q^{\beta - 1})}$$
 (2.26)

onde c_k é a celeridade da onda cinemática. Isto implica que um observador movendo-se a uma velocidade $\frac{dx}{dt} = c_k$ veria que existe uma variação crescente da vazão a uma razão de $\frac{dQ}{dx} = q_l$ [11]. Se $q_l = 0$, o observador veria que $\frac{dQ}{dx} = 0$, ou seja, que a vazão é constante e que não existe frente de onda já que os níveis evoluem uniformemente no espaço.

A celeridade da onda cinemática pode também ser expressa em termos de profundidade y como:

$$c_k = \frac{1}{B} \cdot \frac{dQ}{dy} \tag{2.27}$$

onde: dA = B.dy

2.4.3 Modelos de armazenamento.

Nestes modelos despreza-se a equação dinâmica do sistema de Saint Venant, considerando-se apenas a equação da continuidade, que está relacionada com a capacidade de armazena-mento do curso d'água. Tais modelos têm sido bastante utilizados em hidrologia devido ao relativamente pequeno conjunto de dados requeridos, bem como a formulação matemática mais simplificada do que os demais modelos.

Multiplicando os membros da equação (2.1), por um incremento dx e reescrevendo-a de forma que o trecho seja considerado como um elemento de controle, com área molhada A e comprimento dx, teremos, de acordo com a Figura 2.1:

$$\frac{\partial}{\partial t}(Adx) + \left[\left(Q + \frac{\partial Q}{\partial x} . dx \right) - Q \right] = 0 \tag{2.28}$$

Chamando as vazões de entrada ou hidrograma de entrada de I(t), as vazões de saída ou hidrograma de saída de O(t), e o volume de água armazenado de S, teremos:

$$I(t) = Q$$

$$O(t) = Q + \frac{\partial Q}{\partial x} dx$$

$$S = Adx$$

Assim, substituindo na equação (2.28), pode-se escrever a equação em termos globais para o trecho considerado ou equação da continuidade:

$$\frac{dS}{dt} = I(t) - O(t) \tag{2.29}$$

Para um sistema hidrológico, o hidrograma de entrada I(t), o hidrograma de saída O(t), e o armazenamento S(t) estão relacionados pela equação de continuidade. Esta equação por si só e insuficiente para resolver o problema, tendo em vista o número de variáveis desconhecidas $(S \in O)$. Assim, a utilização de tal equação tem de ser completada por uma relação adicional, função do volume armazenado, que relacione as grandezas S, I e O [12]. No caso geral, a função do volume armazenado pode ser descrita por uma função arbitrária de I e de O e das suas derivadas em relação ao tempo [10], [12]:

$$S = f\left(I, \frac{dI}{dt}, \frac{d^{2}I}{dt^{2}}, \dots, O, \frac{dO}{dt}, \frac{d^{2}O}{dt^{2}}, \dots\right)$$
(2.30)

Um método de diferenças finitas é aplicado nas duas equações. O horizonte de tempo é dividido em intervalos finitos, e a equação de continuidade (2.29) é resolvida de forma

recursiva a partir de um ponto de tempo para o próximo usando a função de armazenamento (2.30) para calcular o valor do armazenamento em cada ponto de tempo. A equação (2.30) admite formulações diferentes em função das características do corpo d'água no qual a propagação ocorre, como por exemplo, um canal, um rio, um reservatório, uma bacia hidrográfica.

Quando o hidrograma de cheia se propaga ao longo de um corpo d'água com grande capacidade de armazenamento (profundo e com extensa superfície de inundação), como um reservatório ou um lago, a velocidade de escoamento é muito pequena. Pode-se, portanto, aproximar a zero a declividade da linha d'água ao longo do escoamento. Nesse caso, a vazão de saída do reservatório fica como função da altura, H, do nível d'água do reservatório, em relação a um nível arbitrário de referência, sendo o volume armazenado apenas função dessa altura, da qual também depende a vazão de saída. Combinando-se as duas funções, a saber, a curva cota-volume , S = f(H), e a curva cota descarga, O = f(H), pode se reescrever a equação (2.30) como uma função única da vazão de saída do reservatório [8] :

$$S = f(O) \tag{2.31}$$

Assim, existe uma relação biunívoca e invariável entre o volume armazenado S, e a vazão de saída O, fazendo corresponder a cada valor de O um único valor de S e reciprocamente, como mostrado a Figura 2.3

A Figura 2.3 a mostra que o pico do hidrograma de saída ocorre no ponto de interseção desse hidrograma com o hidrograma de entrada. Esse também é o ponto de máximo armazenamento. Tal se explica pelo fato de que o máximo da função S=f(O) ocorre justamente quando:

$$\frac{dS}{dt} = I - O = 0 \tag{2.32}$$

A equação (2.32) é a equação da continuidade expressa em função do volume armazenado ou equação de armazenamento.

Quando a propagação do hidrograma de cheia se dá em corpos d'água estreitos e longos, como no caso de canais, rios e de alguns lagos e reservatórios, a declividade da linha d'água, ao longo do escoamento, é significativamente diferente de zero. Essa declividade reflete um efeito de remanso ao longo do trecho considerado.

O efeito de remanso influi no volume armazenado e é, por sua vez, dependente tanto da vazão de saída como da vazão de entrada. Esses efeitos combinados se traduzem numa histerese observada na relação vazão-armazenamento. Os pontos de máximo armazenamento e de máxima vazão de saída não são mais coincidentes. O efeito de remanso faz com que o pico do hidrograma de saída ocorra após a interseção entre os dois hidrogramas [8].

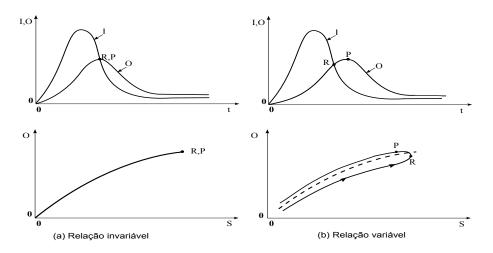


Figura 2.3: Relação entre vazão e armazenamento em reservatórios Fonte: [10]

2.5 Aproximação por diferenças finitas.

As equações de Saint-Venant para modelos distribuídos não são passíveis de solução analítica, exceto em alguns casos simples especiais. Eles são equações diferenciais parciais que, em geral, devem ser resolvidos usando métodos numéricos.

O método de diferenças finitas é um dois mais antigos aplicados na obtenção da solução numérica de equações diferenciais parciais. Para utilização deste método é gerada uma malha ou grelha no plano x-t. A grelha x-t é uma rede de pontos definido por distâncias incrementais de comprimento Δx e incrementos de tempo Δt .

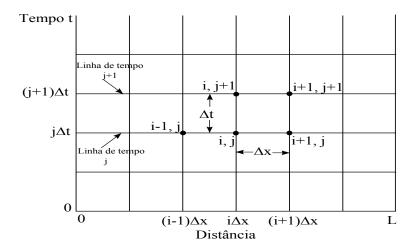


Figura 2.4: Grelha numérica discretizando o plano x-t para a solução numérica das equações de Saint-Venant por diferenças finitas.

Fonte: [10]

Como mostra a Figura 2.4, os pontos de distância são denotados pelo índice i e os

pontos de tempo pelo índice j.

Os esquemas numéricos transformam as equações diferenciais parciais em um conjunto de equações algébricas de diferencias finitas, que pode ser linear ou não linear. As equações de diferenças finitas representam as derivadas espaciais e temporais em termos de variáveis desconhecidas. A solução da equação de Saint-Venant avança de uma linha de tempo para outra.

Diferenças finitas.

Um dos primeiros passos para estabelecer um esquema de diferenças finitas para a solução de uma equação diferencial parcial é a substituição do domínio continuo do problema original por uma malha ou grelha de diferenças finitas.

A ideia do método de diferenças finitas é simples. Como exemplo, considere a derivada de uma função u(x), suposta ser diferenciável, no ponto x_i , que é definida pela equação (2.33)

$$\frac{du}{dx}(x_i) = \lim_{\Delta x \to 0} \frac{u(x_i + \Delta x) - u(x_i)}{\Delta x}$$
 (2.33)

Se a distância Δx (finita) for suficientemente pequena, o resultado da equação (2.33) é uma aproximação para o valor de $u'(x_i)$.

A forma mais comum para a definição de aproximações para as derivadas é a série de Taylor. Através dessa, uma aproximação do valor de $u'(x_i)$ pode ser obtida através da expansão em série de Taylor de $u(x_i + \Delta x)$ em torno do ponto x_i , (equação 2.34), ou ainda, a expansão da série de Taylor de $u(x_i - \Delta x)$ em torno do ponto x_i , equação (2.35) [13].

$$u(x_i + \Delta x) = u(x_i) + (\Delta x) \cdot \frac{\partial u}{\partial x} \bigg|_{x_i} + \frac{(\Delta x)^2}{2!} \cdot \frac{\partial^2 u}{\partial x^2} \bigg|_{x_i} + \frac{(\Delta x)^3}{3!} \cdot \frac{\partial^3 u}{\partial x^3} \bigg|_{x_i} + \dots$$
 (2.34)

$$u(x_i - \Delta x) = u(x_i) - (\Delta x) \cdot \frac{\partial u}{\partial x} \bigg|_{x_i} + \frac{(\Delta x)^2}{2!} \cdot \frac{\partial^2 u}{\partial x^2} \bigg|_{x_i} - \frac{(\Delta x)^3}{3!} \cdot \frac{\partial^3 u}{\partial x^3} \bigg|_{x_i} + \dots$$
 (2.35)

Uma aproximação para a derivada primeira da função $u(x_i)$ no ponto x_i , pode ser obtida isolando o termo $u'(x_i)$ nas equações (2.34) e (2.35). Dessa forma, essas equações podem ser reescritas pelas equações (2.36) e (2.37) respectivamente. Observa-se que nas equações (2.36) e (2.37) o erro de truncamento é de ordem $O(\Delta x)$. Esse erro aparece devido à existência de um número infinito de termos na série de Taylor. Como é computacionalmente impraticável o emprego de um número infinito de termos, é necessário que

a série seja truncada, pode-se dizer também que o erro de truncamento é a diferença entre a derivada parcial e sua representação como diferença finita. Nas equações (2.36) e (2.37) a série foi truncada a partir da derivada de segunda ordem [13].

$$\left. \frac{\partial u}{\partial x} \right|_{x_i} = \frac{u(x_i + \Delta x) - u(x_i)}{\Delta x} + O(\Delta x) \tag{2.36}$$

$$\left. \frac{\partial u}{\partial x} \right|_{x} = \frac{u(x_i) - u(x_i - \Delta x)}{\Delta x} + O(\Delta x) \tag{2.37}$$

As equações (2.36) e (2.37) podem ser reescritas como as equações (2.38) e (2.39), respectivamente.

$$\left. \frac{\partial u}{\partial x} \right|_{i} = \frac{u_{i+1} - u_{i}}{\Delta x} + O(\Delta x) \tag{2.38}$$

$$\left. \frac{\partial u}{\partial x} \right|_{i} = \frac{u_{i} - u_{i-1}}{\Delta x} + O(\Delta x) \tag{2.39}$$

A equação (2.38) é considerada uma aproximação por diferenças progressivas, enquanto a equação (2.39) é considerada uma aproximação por diferenças regressivas.

Para obter a aproximação de $O(\Delta x)^2$ para a primeira derivada de $u(x_i)$, basta fazer a subtração entre as equações (2.34) e (2.35). Como deseja-se uma aproximação de $O(\Delta x)^2$, é necessário combinar essas equações de forma a eliminar a segunda derivada de $u(x_i)$. Eliminando-se essa derivada obtem-se a equação (2.40)

$$\left. \frac{\partial u}{\partial x} \right|_{i} = \frac{u_{i+1} - u_{i-1}}{2.\Delta x} + O(\Delta x)^{2} \tag{2.40}$$

A equação (2.40) é considerada uma aproximação por diferenças centradas.

As aproximações podem ser visualizadas na Figura 2.5.

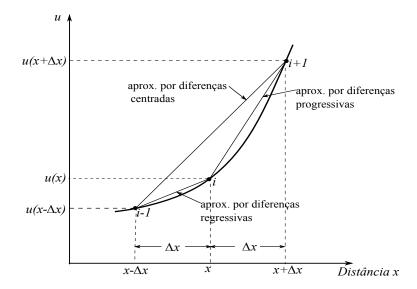


Figura 2.5: Aproximação por diferença finita para a função u(x). Fonte: [10]

2.6 Propagação em rios e canais

2.6.1 Método de Muskingum

Um dos métodos hidrológicos mais utilizados para o cálculo da propagação de vazões é o método Muskingum, desenvolvido por McCarthy em 1939 e aplicado pela primeira vez no rio Muskingum nos Estados Unidos [8]. Ele é um método hidrológico baseado exclusivamente na equação de continuidade, e relações aproximadas entre o armazenamento na calha e as vazões de entrada I e saída O. A equação de continuidade, em forma de diferenças finitas, aplicada ao volume de controle da Figura 2.2 b é escrita como:

$$\frac{\Delta S}{\Delta t} = I - O \tag{2.41}$$

Tanto I como O variam com o tempo, então, para um dado intervalo de tempo Δt , podem ser aproximados pela media aritmética dos valores no início e no final do intervalo. Por outro lado, a variação no armazenamento ΔS , pode ser expressa como a diferença dos armazenamentos no final e no início do intervalo. Assim, a equação pode ser discretizada como [9]:

$$\frac{S_{t+1} - S_t}{\Delta t} = \frac{I_t + I_{t+1}}{2} - \frac{O_t + O_{t+1}}{2} \tag{2.42}$$

Conhecendo-se o hidrograma de entrada do trecho do curso d'água, ou seja os valores de I, e as demais variáveis da equação (2.42) no instante t, a obtenção de S_{t+1} e de O_{t+1} pode ser feita, desde que se disponha de uma relação suplementar entre armazenamento e vazão de saída.

No caso de canais e cursos d'água naturais, geralmente o armazenamento pode ser assimilado a uma "cunha"entre as seções de entrada e saída, sendo descrito como uma função linear das vazões de entrada e de saída do trecho em estudo, como por exemplo:

$$S = X.S_I + (1 - X).S_O (2.43)$$

onde S é a média ponderada por X entre o armazenamento devido às contribuições de entrada S_I e o armazenamento devido às contribuições de saída S_O . A equação (2.43) fornece, assim, a relação suplementar necessária ao calculo da propagação, desde que S_I e S_O sejam conhecidos [8].

O elemento de controle é um trecho da calha fluvial onde são conhecidas as relações entre vazão e profundidade nas seções limites [14]. No caso de escoamentos em regime permanente, é possível escrever (relações cota-vazão):

$$I = a.h_I^n (2.44)$$

$$O = a.h_O^n (2.45)$$

onde a e n são coeficientes empíricos, h_I e h_O são as profundidades que ocorreriam no trecho considerado se a vazão fosse apenas a vazão de montante I(t) ou a vazão de jusante O(t).

Como não se conhece a curva cota x volume do elemento de controle, considera-se que os volumes de armazenamentos podem ser representados em função das profundidades escritas da seguinte forma, onde os índices I e O correspondem às profundidades de montante e de jusante (relações cota-volume):

$$S_I = b.h_I^m (2.46)$$

$$S_O = b.h_O^m (2.47)$$

onde b e m são coeficientes empíricos.

Combinando as equações (2.44) à (2.47) são obtidas as relações volume-vazão:

$$S_I = b. \left(\frac{I}{a}\right)^{m/n} \tag{2.48}$$

$$S_O = b. \left(\frac{O}{a}\right)^{m/n} \tag{2.49}$$

substituindo na equação (2.43) as expressões (2.48) e (2.49) dos volumes parciais é obtida:

$$S = X.b. \left(\frac{1}{a}\right)^{m/n} . I^{m/n} + (1 - X).b. \left(\frac{1}{a}\right)^{m/n} . O^{m/n}$$
 (2.50)

e introduzindo as seguintes relações:

$$k = b. \left(\frac{1}{a}\right)^{m/n} \tag{2.51}$$

$$r = \frac{m}{n} \tag{2.52}$$

é obtido então a seguinte expressão:

$$S = X.k.I^r + (1 - X).k.O^r (2.53)$$

Substituindo a equação (2.53) na equação (2.29):

$$X.k.r.I^{r-1}\frac{dI}{dt} + (1-X)k.r.O^{r-1}\frac{dO}{dt} = I(t) - O(t)$$
(2.54)

De acordo com a fórmula de Manning, a descarga em um canal varia com uma potência 5/3 da profundidade, ou seja, n=5/3, em quanto o volume armazenado num trecho da calha varia com a primeira potência, ou seja, m=1, portanto, r=0,6. Em rios naturais o valor de m tende a ser maior que a unidade, o que conduziria a valores de r maiores que 1. Todavia, segundo experiências compiladas pelo United States Geological Survey, o coeficiente r, pode ser aproximado na pratica por um valor próximo da unidade [6].

O método de Muskingum assume, entretanto, r=m/n=1, ou seja, uma resposta linear do armazenamento com relação às contribuições de entrada e saída. Então, a equação (2.54) pode-se escrever como:

$$O + (1 - X).k.\frac{dO}{dt} = I - X.k.\frac{dI}{dt},$$
 (2.55)

e a equação (2.53) como:

$$S = k[X.I + (1 - X).O] = k.O + k.X.(I - O)$$
(2.56)

O parâmetro k têm unidades de tempo e deve ser expresso nas mesmas unidades de Δt . O valor de k pode ser estimado pelo tempo de viagem do pico da cheia do inicio ao final do trecho de rio. Quanto maior o valor de k, mais afastados no tempo ficam os picos de vazão na entrada e saída do trecho considerado [15].

O parâmetro X é um fator de ponderação adimensional que introduz o efeito de amortecimento da onda durante a propagação no trecho considerado, este parâmetro assume valores de 0 a 0,5. Dependendo do valor de X ocorre mais ou menos amortecimento da onda de cheia. Para um valor de X igual a 0,5 não ocorre amortecimento, quando X é

igual a zero o amortecimento é máximo, não existe cunha, e, portanto, não existe curva de remanso [15]. Por exemplo, os trechos de canais naturais com grandes planícies de inundação podem ser aproximados do comportamento de um reservatório linear (S=k.O), já que X é relativamente pequeno. Nos trechos estreitos e profundos de canais naturais, S é mais dependente das contribuições de entrada e X assume valores mais elevados [8].

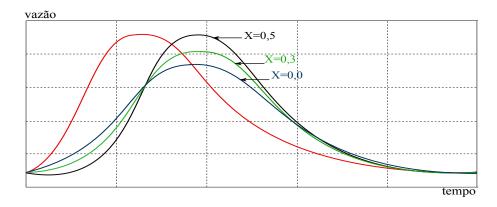


Figura 2.6: Interpretação do parâmetro X. Fonte: [12]

Na equação (2.56) o armazenamento prismático é dado pelo caudal efluente do trecho multiplicado pelo tempo de percurso no trecho, ou seja, k.O. O armazenamento em cunha é dado por uma diferença ponderada entre os caudais afluente na secção de montante do trecho e efluente na de jusante, diferença também multiplicada pelo tempo de percurso no trecho, ou seja, k.X(I-O) [12]. O armazenamento total é dado pela soma das duas componentes.

De acordo com a equação (2.56), pode-se escrever:

$$S_{t+1} = k \left[X.I_{t+1} + (1 - X).O_{t+1} \right]$$
(2.57)

$$S_t = k [X.I_t + (1 - X).O_t]$$
(2.58)

Levando-se as equações (2.57) e (2.58) na equação (2.42), obtem-se:

$$\frac{k.\left[X.I_{t+1} + (1-X).O_{t+1} - X.I_t - (1-X).O_t\right]}{\Delta t} = \frac{I_t + I_{t+1}}{2} - \frac{O_t + O_{t+1}}{2}$$
(2.59)

Resolvendo esta equação para O_{t+1} , obtem-se:

$$O_{t+1} = C_0 I_{t+1} + C_1 I_t + C_2 O_t (2.60)$$

onde:

$$C_0 = \frac{\left(\frac{\Delta t}{k}\right) - 2.X}{2.(1 - X) + \left(\frac{\Delta t}{k}\right)} \tag{2.61}$$

$$C_1 = \frac{\left(\frac{\Delta t}{k}\right) + 2.X}{2.(1 - X) + \left(\frac{\Delta t}{k}\right)} \tag{2.62}$$

$$C_2 = \frac{2.(1-X) - (\frac{\Delta t}{k})}{2.(1-X) + (\frac{\Delta t}{k})}$$
 (2.63)

sendo:

$$C_0 + C_1 + C_2 = 1 (2.64)$$

Os coeficientes C_0 , C_1 e C_2 devem por sua vez satisfazer as seguintes relações:

$$C_0, C_2 > 0$$
 (2.65)

$$0 \le X \le \frac{1}{2} \tag{2.66}$$

Para que não haja possibilidade da vazão estimada O_{t+1} ser negativa, a relação entre os parâmetros k, X e o intervalo de tempo, Δt , deve satisfazer a seguinte condição:

$$2.X \le \frac{\Delta t}{k} \le 2.(1 - X) \tag{2.67}$$

 C_0 é negativo quando $\Delta t/k$ é menor que 2.X, ou seja que a distância entre as seções é muito grande produzindo um valor elevado de k. Para evitar vazões negativas é necessário subdividir o trecho, o que reduzirá o valor de k para cada subtrecho. Quando C_2 é negativo $\Delta t/k$ é maior que 2.(1-X) o que indica que o intervalo de tempo é muito grande, e pode produzir valores negativos de vazão, sento portanto é recomendável que o intervalo de tempo seja reduzido [16].

A Figura 2.7 mostra a região de validade dos parâmetros.

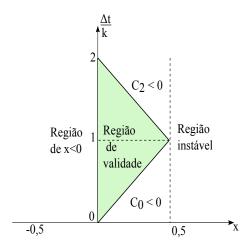


Figura 2.7: Regiões de validade dos parâmetros do Modelo Muskingum. Fonte: [6], [16].

2.6.2 Obtenção dos parâmetros k e X a partir de informação de campo, pelo método da laçada.

Os parâmetros do modelo Muskingum, podem ser determinados a partir de hidrogramas observados simultaneamente à entrada e à saída do trecho de canal em estudo, utilizando a seguinte metodologia:

- 1. São assumidos vários valores de X.
- 2. Utilizando a informação das vazões de entrada e saída, são calculados os valores do numerador (volume acumulado), e denominador (vazão ponderada) da seguinte expressão de k.

$$k = \frac{\sum S}{X.I + (1 - X).O} = \frac{\frac{\Delta t}{2}.[(I_{t+1} + I_t) - (O_{t+1} + O_t)]}{X.(I_{t+1} - I_t) + (1 - X).(O_{t+1} - O_t)}$$
(2.68)

3. O volume acumulado ΣS é grafado contra a vazão ponderada, X.I + (1-X).O, para vários valores de X, e o gráfico que mais se aproximar de uma função linear é o que provê o melhor valor de X [9].

Dessa forma, adota-se um processo de tentativa e erro para determinar o valor de X para o qual a menor laçada, ou seja a curva que mais se aproxima do caso particular de uma reta, é obtida. A declividade da reta que se ajusta a tal curva fornece o valor de k.

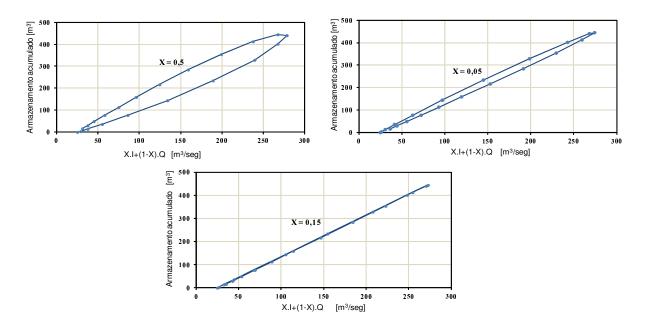


Figura 2.8: Determinação dos parâmetros X e k do método de Muskingum por processo gráfico.

Fonte: [17]

Uma vez determinados X e k, bem como C_0 , C_1 e C_2 , o cálculo das vazões de saída é realizado iterativamente, para cada intervalo de tempo Δt , através da equação (2.60).

2.6.3 Método Muskingum-Cunge

O método de Muskingum para propagação em rios e canais, descrito anteriormente, baseia-se na equação da continuidade e na equação do armazenamento, ponderando os efeitos da vazão de entrada e saída no trecho simulado [18]. Com o tempo, o modelo Muskingum foi passando por algumas modificações. Apesar desta modificação ser baseada na formulação inicial do modelo Muskingum, para determinar a sua nova formulação Cunge baseou-se nas equações de Saint Venant adotando algumas simplificações.

O caráter cinemático do Modelo Muskingum, bem como a natureza numérica do processo de atenuação das ondas foi descoberto por Cunge em 1969 [19]. Cunge demonstrou que, considerando uma relação biunívoca entre a vazão e o armazenamento, a equação do modelo de Onda Cinemática e de Armazenamento fica [18]:

$$\frac{\partial Q}{\partial t} + c_k \cdot \frac{\partial Q}{\partial x} = 0 \tag{2.69}$$

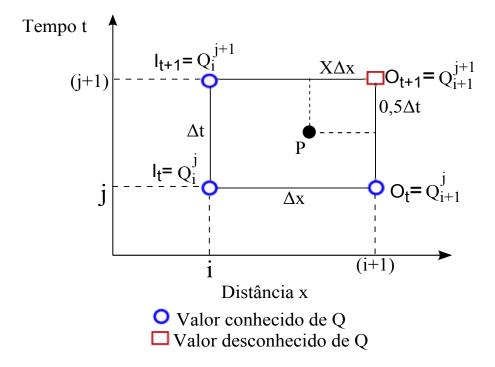


Figura 2.9: Rede espaço-tempo em diferenças finitas para a solução da equação de Muskingum-Cunqe.

Fonte: [20]

A Figura 2.9 mostra o esquema de diferenças finitas proposto por Cunge. As derivadas de $\frac{\partial Q}{\partial t}$ e $\frac{\partial Q}{\partial x}$ no ponto P são expressos em termos dos quatro valores adjacentes de Q. Na figura X é um fator de ponderação. As derivadas em forma numérica são expressas como [20]:

$$\frac{\partial Q}{\partial t} \cong \frac{X. \left(Q_i^{j+1} - Q_i^j\right) + (1 - X). \left(Q_{i+1}^{j+1} - Q_{i+1}^j\right)}{\Delta t}
\frac{\partial Q}{\partial x} \cong \frac{1/2. \left(Q_{i+1}^{j+1} - Q_i^{j+1}\right) + 1/2. \left(Q_{i+1}^j - Q_i^j\right)}{\Delta x}$$
(2.70)

que substituídas na equação (2.69), e obtida:

$$\frac{\Delta x}{c_k} \cdot \left[\frac{X \cdot Q_i^{j+1} + (1-X) \cdot Q_{i+1}^{j+1} - X \cdot Q_i^j - (1-X) \cdot Q_{i+1}^j}{\Delta t} \right] = \frac{Q_i^j + Q_i^{j+1}}{2} - \frac{Q_{i+1}^j + Q_{i+1}^{j+1}}{2}$$
(2.71)

Resolvendo para Q_{i+1}^{j+1} ,

$$Q_{i+1}^{j+1} = C_0 \cdot Q_i^{j+1} + C_1 \cdot Q_i^j + C_2 \cdot Q_{i+1}^j$$
(2.72)

onde:

$$k = \frac{\Delta x}{c_k} \tag{2.73}$$

$$C_0 = \frac{\left(\frac{\Delta t}{k}\right) - 2.X}{2.(1 - X) + \left(\frac{\Delta t}{k}\right)} \tag{2.74}$$

$$C_1 = \frac{\left(\frac{\Delta t}{k}\right) + 2.X}{2.(1 - X) + \left(\frac{\Delta t}{k}\right)} \tag{2.75}$$

$$C_2 = \frac{2.(1-X) - (\frac{\Delta t}{k})}{2.(1-X) + (\frac{\Delta t}{k})}$$
 (2.76)

e:

$$C_0 + C_1 + C_2 = 1 (2.77)$$

Comparando as equações (2.59) à (2.64) do Modelo Muskingum com as equações (2.71) à (2.77), observa-se que estas equações são idênticas se $I_t = Q_i^j$, $I_{t+1} = Q_i^{j+1}$, $O_t = Q_{i+1}^j$, $O_{t+1} = Q_{i+1}^{j+1}$ e $k = \frac{\Delta x}{c_k}$.

Na equação (2.72):

 Q_i^j é a vazão de entrada no trecho de rio no tempo j $[m^3/s]$;

 Q_i^{j+1} é a vazão de entrada no trecho de rio no tempo j+1 $[m^3/s];$

 Q_{i+1}^{j} é a vazão de saída no trecho de rio no tempo j $[m^{3}/s]$;

 Q_{i+1}^{j+1} é a vazão de saída no trecho de rio no tempo j+1 $[m^3/s]$;

A diferença básica nos dois modelos é que no método Muskingum os parâmetros k e X são calibrados utilizando dados observados de vazão nos extremos de montante e jusante do trecho do rio em estudo. Eles não têm qualquer significado físico das propriedades do rio. Por outro lado, no método Muskingum-Cunge, os parâmetros podem ser calculados a partir do hidrograma de entrada e das características físicas do rio (seção, declividade de fundo e comprimento).

A modificação do hidrograma, à medida que se desloca para jusante, é devido à variação das seções do rio e dos efeitos das forças dinâmicas envolvidas. Os modelos tipo armazenamento e onda cinemática desprezam os efeitos das forças de pressão e inércia, o que resulta em que o hidrograma propagado pela equação (2.69) se deforma somente devido as variações de seção. Para um canal de seção constante, o hidrograma simulado por este método não se deforma [16].

A solução da equação (2.69) por métodos numéricos gera um amortecimento artificial devido à discretização. Para demonstrar isso, Cunge substituiu as equações (2.70) na equação (2.69) e expandiu os termos numéricos com base na equação de Taylor com aproximação de segunda ordem, obtendo dessa forma a seguinte equação:

$$\frac{\partial Q}{\partial t} + \frac{\Delta x}{k} \cdot \frac{\partial Q}{\partial x} = \left(\frac{1}{2} - X\right) \cdot \frac{\Delta x^2}{k} \frac{\partial^2 Q}{\partial x^2} \tag{2.78}$$

$$\frac{\partial Q}{\partial t} + c_k \cdot \frac{\partial Q}{\partial x} = D_n \cdot \frac{\partial^2 Q}{\partial x^2} \tag{2.79}$$

onde:

$$Dn = \left(\frac{1}{2} - X\right) . c_k . \Delta x \tag{2.80}$$

Comparando a equação (2.79) com a (2.69) verifica-se que o termo da direita equação (2.79) aparece devido a discretização numérica. Para que o mesmo desapareça é necessário que $D_n = 0$ e X = 0, 5. Este termo é denominado de difusão numérica e é responsável pelo amortecimento da onda simulada.

Para que o modelo Muskingum não tenha amortecimento numérico é necessário que $D_n = 0$, mas para que o modelo referido simule uma equação de difusão, Cunge igualou a difusão numérica à difusão hidráulica (real). Utilizando os coeficientes da equação linearizada, o ponderador X pode ser obtido com base nas características do trecho considerado.

$$\frac{Q}{2.B.S_o} = \left(\frac{1}{2} - X\right).c_k.\Delta x \tag{2.81}$$

$$X = \frac{1}{2} \cdot \left(1 - \frac{Q}{B \cdot S_o \cdot c_k \cdot \Delta x} \right) = \frac{1}{2} \cdot (1 - D)$$
 (2.82)

Na equação (2.82), Q é a vazão de referência, B é a largura média da superfície livre, S_o é a declividade do fundo do rio, c_k é a celeridade cinemática, Δx é a discretização espacial e D é o coeficiente de Courant.

Assim, para o valor de X dado pela equação (2.82), as equações (2.72) à (2.77) constituem uma aproximação para a equação de difusão.

Cunge mostrou que para que exista estabilidade numérica da solução no esquema de diferenças finitas utilizado, é necessário que $0 \le X \le 1/2$.

No modelo Muskingum-Cunge, os valores C_0 , C_1 e C_2 podem ser reescritos em termos do número de Courant e na Difusão [21], [22]:

$$C_0 = \frac{-1 + C + D}{1 + C + D} \tag{2.83}$$

$$C_1 = \frac{1 + C - D}{1 + C + D} \tag{2.84}$$

$$C_2 = \frac{1 - C + D}{1 + C + D} \tag{2.85}$$

onde:

$$C = c_k \cdot \frac{\Delta t}{\Delta x} = \frac{\Delta t}{k} \tag{2.86}$$

$$D = \frac{Q}{S_o.B.c_k.\Delta x} \tag{2.87}$$

C é o coeficiente de Courant ou razão da celeridade, e D é o coeficiente ou razão da difusão.

No modelo Muskingum-Cunge linear os parâmetros k e X são calculados no início da simulação, com base em uma vazão de referência que é considerada fixa, essa vazão de referência é geralmente 70% da vazão de pico [7],[15]. Após a quantificação dessa referência,

calcula-se a celeridade, e outros parâmetros necessários para a obtenção do hidrograma de saída.

$$c_k = \frac{5}{3} \cdot \frac{Q}{A} = \frac{5}{3} \cdot \left(\frac{Q}{B.y}\right) = \frac{5}{3} \cdot \left(\frac{Q^{0,4} \cdot S_o^{0,3}}{n^{0,6} \cdot B^{0,4}}\right)$$
(2.88)

Onde n é o coeficiente de rugosidade de Manning.

O intervalo de tempo de cálculo ideal deve ser relativamente pequeno se comparado ao tempo de pico do hidrograma de entrada.

$$\Delta t < tp/5 \tag{2.89}$$

onde tp é o tempo de pico do hidrograma de entrada.

Com base na celeridade e no intervalo de tempo de cálculo é possível estimar o valor do comprimento máximo do trecho Δx . Se o valor de Δx for próximo do comprimento total do trecho (L), é adotado em lugar do Δx calculado o comprimento total do trecho. Caso o valor do Δx calculado seja bastante inferior ao comprimento total do trecho (L), o trecho deve ser dividido em sub-trechos [15].

$$\Delta x = \frac{c_k \cdot \Delta t}{2} \cdot \left[1 + \left(1 + \left(1, 5 \cdot \frac{Q}{B \cdot S_o \cdot c_k^2 \cdot \Delta t} \right) \right)^{0.5} \right]$$
 (2.90)

O número de sub-trechos necessários para atingir o Δx ideal é:

$$N = \frac{L}{\Delta x} \tag{2.91}$$

O cálculo da propagação de vazão pelo modelo Muskingum-Cunge, é realizado utilizando a equação (2.72), trecho a trecho desde a seção inicial a montante, até a seção final de saída. Assim, para um trecho qualquer, conhecidos C e D, as expressões (2.83) e (2.84) à (2.85) dos coeficientes C_0 , C_1 , e C_2 permitem calcular a propagação da vazão no trecho considerado. Se as vazões Q_i^j e Q_{i+1}^j ao inicio do intervalo de tempo são conhecidos (condições iniciais), a vazão no extremo jusante Q_{i+1}^{j+1} ao final do intervalo de tempo, pode ser calculado si se tem a vazão no extremo a montante Q_i^{j+1} (condição limite). Pode ser observado que só e necessário uma condição de limite no extremo a montante: o hidrograma de entrada. Procedendo desta maneira avança-se trecho a trecho, até obter a vazão no extremo a jusante [17].

Quando existe contribuição lateral, é acrescentado um coeficiente C_3 ficando a expressão (2.72) da seguinte maneira [21]:

$$Q_{i+1}^{j+1} = C_0 \cdot Q_i^{j+1} + C_1 \cdot Q_i^j + C_2 \cdot Q_{i+1}^j + C_3 \cdot Q_l$$
(2.92)

A variável Q_l representa a vazão lateral do rio, e o coeficiente C_3 é dado pela seguinte expressão:

$$C_3 = \frac{2.C}{1 + C + D} \tag{2.93}$$

Determinação do coeficiente de rugosidade de Manning

Uma das dificuldades da aplicação do método reside na determinação do parâmetro de rugosidade (coeficiente de Manning) já que não existe uma metodologia exata para selecionar o valor de n. A estimativa do coeficiente de rugosidade de Manning requer perícia. A rugosidade é estimada com base em observações locais, fotografias e informações sobre material de leito. O uso de tabelas publicadas na literatura assim como analogias com registros fotográficos feitos por Chow em 1959 tem sido a regra neste particular, mas tem levado a erros consideráveis. A habilidade para estimar os coeficientes de rugosidade deve ser desenvolvida através da experiência e análise criteriosa de situações similares e tornando-se familiarizado com a aparência de alguns canais típicos cujos coeficientes de rugosidades são conhecidos [23].

O uso da tecnologia do mapeamento a laser é bastante recente no Brasil, e diversas aplicações encontram-se, no momento, em estudo [23].

Na literatura, Ven Te Chow [5] oferece uma ampla discussão sobre os factores que afetam o coeficiente de rugosidade de Manning, sendo esse coeficiente altamente variável e influenciado por um grande número de fatores, incluindo:

Rugosidade da superfície: Representada pelo tamanho e forma dos grãos do material que forma o perímetro molhado e que produzem efeito de retardo no escoamento. Em geral, os grãos finos resultam em um valor relativamente baixo de n e os grãos mais grossos dão lugar a um valor alto de n.

Vegetação: Pode ser visto como uma espécie de rugosidade da superfície. Este efeito depende principalmente da altura, a distribuição, rigidez e tipo de vegetação. Efeito de sazonalidade do crescimento de plantas aquáticas, gramas, ervas daninhas, salgueiro e arvores dentro de canais.

Irregularidade da superfície (depressões, elevações): Refere-se a variações nas secções transversais dos canais, da forma e do perímetro molhado ao longo do seu eixo longitudinal. Em geral, uma mudança gradual e uniforme na secção transversal ou no seu tamanho e forma não produzem efeito significativo sobre o valor de n, mas as alterações abruptas exigem o uso de um valor maior de n.

Obstruções: queda de árvores, pedras, pontes e bloqueio por troncos, podem ter um impacto significativo sobre o valor de n. O grau dos efeitos de tais obstruções depende do número e tamanho dos mesmos.

Alinhamento do canal (sinuosidade): A resistência ao escoamento pode ser aumentada quando a sinuosidade do canal aumenta.

Nível e vazão: Na maior parte dos escoamentos o valor de n diminui com o aumento do nível da água e da vazão visto que, quando a lâmina d'água é baixa, as irregularidades do fundo do canal estão expostas, aumentando o efeito da rugosidade, porém, alguns rios apresentam padrão inverso, ou seja, valor de n maior no período de cheia.

A explicação para esta tendência se deve ao fato de que, quando o nível de água é mais alto, a calha do curso d'água atinge áreas com maior cobertura vegetal ou que sejam mais rugosas e, quando a vazão é muito alta, o rio pode transbordar e parte do escoamento acontecer em uma planície inundada. Em geral, o valor de n para planícies inundadas é muito maior que a do curso em si e sua magnitude depende das condições da superfície dessas planícies.

A seguir, exemplifica-se a estimativa do coeficiente através do método de incrementação ou método de Cowan. Para calcular n, Ven Te Chow propôs a seguinte expresão:

$$n = (n_0 + n_1 + n_2 + n_3 + n_4).m_5$$

Onde: n_0 é o valor básico de n para um canal reto, uniforme e liso, livre de materiais naturais envolvidos, n_1 é o valor adicional a n_0 para correção dos efeitos das irregularidades da superfície, n_2 é um valor para variações na forma e tamanho do canal através da seção, n_3 é o valor para obstruções, n_4 é o valor para a vegetação e condições de escoamento, e m_5 é um fator de correção das sinuosidades do canal. Os valores definidos para os diversos fatores são mostrados na tabela.

Condições do canal			Valores		
	Terra		0,020		
Material	Rocha		0,025		
Envolvido	Cascalho Fino	n_0	0,024		
	Cascalho Grosso		0,028		
	Liso		0,000		
Grau de	Insignificante		0,005		
Irregularidade	Moderado	n_1	0,010		
	Severo		0,020		
Variações na	es na Gradual		0,000		
seção	Alternado Ocasionalmente n_2		0,005		
transversal	Alternado Frequentemente 0,0		0,010 - 0,015		
	Desprezível		0,000		
Efeito Relativo	elativo Insignificante		0,010 - 0,015		
das obstruções	s Apreciável n_3 0,02		0,020 - 0,030		
	Severo		0,040 - 0,060		

Continua na seguinte página.

Condições do canal			Valores		
	Baixa		0,005 - 0,010		
Vegetação	Média		0,010 - 0,025		
	Alta	n_4	0,025 - 0,050		
	Muito Alta		0,050 - 0,100		
	Insignificante		1,000		
Grau de	Apreciável		1,150		
sinuosidade	Severa 1,30		1,300		

Tabela 2.1: Valores para a computação do coeficiente de rugosidade de Manning.

A Tabela 2.1 mostra os valores para a computação do coeficiente de rugosidade de Manning pelo método de Cowan [24].

Capítulo 3

Modelo de propagação da vazão da UHE Salto Caxias

O objetivo do método de propagação de vazões em rios e canais Muskingum-Cunge é determinar um hidrograma em uma seção transversal do rio a jusante tendo em consideração um hidrograma conhecido a montante e as características físicas do trecho de rio em estudo.

Para fazer o cálculo da propagação da vazão defluente da última usina do rio Iguaçu, a usina hidrelétrica Salto Caxias, até o posto de medição denominado Hotel Cataratas, localizado a montante das Cataratas do Iguaçu, onde é feita à última medição da vazão do rio Iguaçu, foi utilizado o método Muskingum-Cunge linear.

3.1 Calibração do modelo de propagação da vazão da UHE Salto Caxias.

Para fazer a calibração dos parâmetros do modelo Muskingum-Cunge, foram utilizados, dados verificados de vazões defluentes da UHE Salto Caxias (hidrograma de entrada), correspondente ao período entre 16/08/2011 e 30/08/2011 no qual foi observada uma grande cheia do rio Iguaçu, tendo sido escolhido um hidrograma que apresenta variações bruscas de vazões para avaliar o impacto em R-11.

A continuação são descritos alguns dados utilizados na calibração do modelo.

3.1.1 Rios afluentes laterias existentes no trecho entre a UHE Salto Caxias e o posto de medição Hotel Cataratas.

Observa-se nos apêndices B e C que existem varios rios afluentes em ambas as margens do rio no trecho entre a UHE Salto Caxias e o posto de medição Hotel Cataratas, alguns

desses rios são citados a continuação:

Afluentes do rio Iguaçu na margem dereita:

Rio Andrade.

Rio Monteiro.

Rio Gonçalves Dias.

Rio Floriano.

Rio Benjamin Constant.

Afluentes do rio Iguaçu na margem esquerda:

Rio Capanema.

Rio Siemens.

Rio Santo Antônio, servindo de fronteira entre Brasil e Argentina.

Rio Cotegipe, situa-se a jusante do Reservatório da UHE Salto Caxias.

Foi considerada a série horária de vazões correspondente ao período entre 16/08/2011 e 30/08/2011 da estação Ponte de Capanema, situada sobre o Rio Capanema, afluente do rio Iguaçu.

O rio Capanema é considerado um dos principais rios afluentes do rio Iguaçu. Neste trabalho não foram consideradas todas as vazões incrementais do trecho em estudo devido à indisponibilidade de dados.

No apêndice F podem ser observadas fotografias de alguns rios afluentes do rio Iguaçu citados anteriormente.

3.1.2 Dados batimétricos considerados para referenciar a largura do rio Iguaçu.

A batimetria da seção transversal do rio consiste em um levantamento detalhado da superfície da terra em uma região submersa [25]. A batimetria também mostra o grau de irregularidade do fundo do rio.

Foram utilizados dados batimétricos da seção transversal das estações Hotel Cataratas e Porto Capanema, para referenciar a largura do rio Iguaçu.

A Figura 3.1 mostra o resultado do levantamento batimétrico realizado na estação Hotel Cataratas localizado aproximadamente a 187,33 [km] a jusante da UHE Salto Caxias, onde é feita à última medição do rio Iguaçu, nesta estação a largura da seção transversal do rio é de aproximadamente 881 [m].

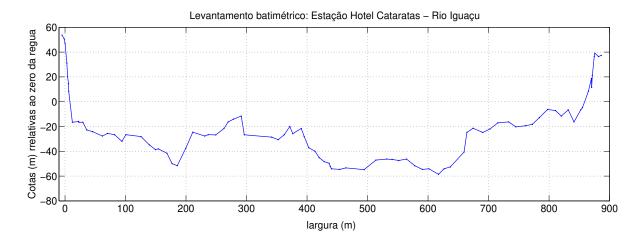


Figura 3.1: Seção transversal do rio Iguaçu na estação Hotel Cataratas. Fonte: Itaipu Binacional.

A Figura 3.2 mostra o resultado do levantamento batimétrico realizado na estação denominada Porto Capanema situado no rio Iguaçu aproximadamente a 82,30 [km] a jusante da UHE Salto Caxias, onde a seção transversal do rio tem uma largura aproximada de 868 [m].

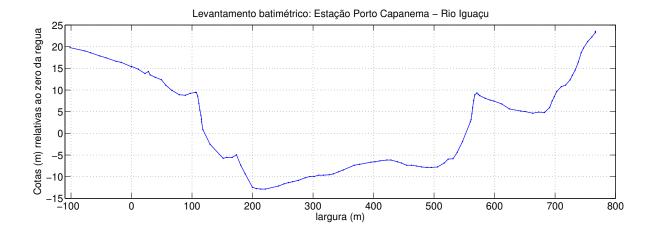


Figura 3.2: Seção transversal do rio Iguaçu na estação Porto Capanema. Fonte: Itaipu Binacional.

O trecho do rio em estudo tem uma largura variável, aumentando à medida que vai aproximando-se às Cataratas. A largura média da seção transversal do rio correspondente ao trecho UHE Salto Caxias - posto de medição Hotel Cataratas foi considerada igual a $860\ [m]$.

3.1.3 Vazão de referência

No apêndice A é apresentada uma tabela contendo os dados das vazões utilizadas na calibração do modelo. A primeira coluna da tabela contém a data e a hora em que foram observadas as vazões, a segunda coluna contém os dados das vazões defluentes da UHE Salto Caxias, e a quarta coluna contém os dados das vazões do rio Capanema.

No modelo Muskingum-Cunge linear, os parâmetros são fixados em função de uma única vazão de referência. Observa-se na segunda coluna da tabela que a vazão de pico do hidrograma de entrada é igual a 13328 $[m^3/s]$, tendo sido considerada uma vazão de referência igual a 9996 $[m^3/s]$, correspondendo a 75 % da vazão máxima.

3.1.4 Dados correspondentes ao perfil longitudinal do rio para referenciar a distância e a declividade do fundo do rio entre a UHE Salto Caxias e o posto de medição Hotel Cataratas no rio Iguaçu

A Tabela (3.1) mostra em forma detalhada os valores de distância e cota do fundo do rio Iguaçu correspondente ao trecho entre a UHE Salto Caxias até a confluência com o rio Paraná.

Segundo os dados da tabela, correspondente ao perfil longitudinal do rio, a cota do fundo do rio Iguaçu onde está localizada a UHE Salto Caxias é igual a 257,3~[msnm], e a cota do fundo do rio Iguaçu onde está localizado o posto de medição Hotel Cataratas é igual a 174,2~[msnm]. Observa-se também na tabela que o posto de medição Hotel Cataratas está localizado a 187330~[m] a jusante da usina Salto Caxias. Então a declividade do fundo do rio é igual a:

$$S_o = \frac{z_1 - z_2}{L} = \frac{(257, 3 - 174, 2)m}{187330m} = 44,3602 \ cm \text{ por } km.$$

onde S_o é a declividade do fundo do rio, z_1 e z_2 são as cotas do leito e L é a distância entre as duas seções ou comprimento total do rio correspondente ao trecho em estudo.

			COTA	DISTÂI	NCIA	Progressiva
NÓ	SEÇÃO	LOCAL	FONDO	PARCIAL	ACUM.	desde confl.
			(msnm)	(m)	(km)	(km)
CAN	CANAL DO RIO IGUAÇU ATÉ SALTO CATARATAS					
1	CAXIAS	UHE SALTO CAXIAS	257,3	2500	0,00	226,98
2	S16		237,3	3800	2,50	225,78
3	S15		251,7	7000	6,30	223,48
4	S14		242,4	5100	13,30	221,98
5	S13	Mermelândia	231,6	5700	18,40	218,98

Continua na seguinte página.

			COTA	DISTÂI	NCIA	Progressiva
NÓ	SEÇÃO	LOCAL	FONDO	PARCIAL	ACUM.	desde confl.
	,		(msnm)	(m)	(km)	(km)
6	S12		231,0	4750	24,10	212,98
7	S11	Conf. Rio Capanema	222,7	200	28,85	208,98
7	S11		222,7	6400	29,05	199,88
8	S10		221,6	5500	35,45	196,13
9	S09		215,6	4150	40,95	187,33
10	S08		211,6	4700	45,10	179,33
11	S07		210,8	3700	49,80	176,53
12	S06		198,7	4800	53,50	171,43
13	S05		201,4	4700	58,30	166,13
14	S04		211,5	4500	63,00	159,28
15	S03		199,8	5200	67,50	155,38
16	S02		211,3	4400	72,70	147,88
17	S01	ESTREITO	211,7	5200	77,10	144,03
18	S00	PORTO CAPANEMA	198,7	2000	82,30	139,83
19	CONTROL		211,3	5000	84,30	134,43
20	S01A	PORTO LUPION	202,9	3800	89,30	129,43
21	S02A		199,0	5050	93,10	123,78
22	S03A		207,1	4950	98,15	116,68
23	S04A		203,8	4850	103,10	112,78
24	S05A		206,0	4830	107,95	107,95
25	S06A		201,7	3900	112,78	103,10
26	S07A		202,0	7100	116,68	98,15
27	S08A		193,9	5650	123,78	93,10
28	S09A		196,7	5000	129,43	89,30
29	S10A		190,6	5400	134,43	84,30
30	S11A		191,0	4200	139,83	82,30
31	S12A		188,0	3850	144,03	77,10
32	S13A		191,1	7500	147,88	72,70
33	S14A		188,2	3900	155,38	67,50
34	S15A		186,1	6850	159,28	63,00
35	S16A		182,6	5300	166,13	58,30
36	S17A		177,4	5100	171,43	53,50
37	S18A		173,7	2800	176,53	49,80
38	S19A		173,0	8000	179,33	45,10
39	S20A	HOTEL CATARATAS	174,2	8800	187,33	40,95
		SALTO CATARATAS	88,0	3750	196,13	35,45
	SI01		88,0	9100	199,88	29,05
	SI02		83,7	4000	208,98	28,85
	SI03		80,0	6000	212,98	24,10
	SI04		82,0	3000	218,98	18,40
	SI05		83,4	1500	221,98	13,30

Continua na seguinte página.

			COTA	DISTÂI	NCIA	Progressiva
NÓ	SEÇÃO	LOCAL	FONDO	PARCIAL	ACUM.	desde confl.
			(msnm)	(m)	(km)	(km)
	SI06		81,0	2300	223,48	6,30
	SI07		81,0	1200	225,78	2,50
46	SI08	CONF. RIO PARANÁ	78,1	1000	226,98	0,00

Tabela 3.1: Rede a partir da UHE Salto Caxias até a confluência com o rio Paraná - Fonte: Itaipu Binacional..

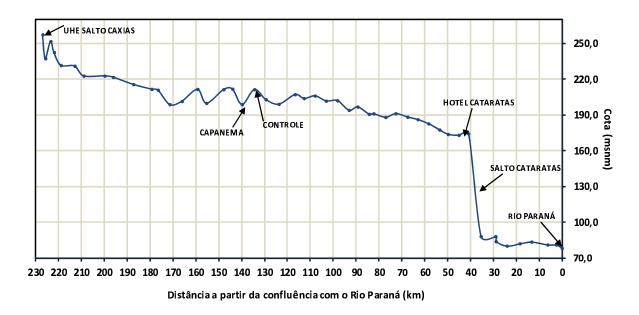


Figura 3.3: Perfil longitudinal UHE Salto Caxias até a confluência com o rio Paraná. Fonte: Itaipu Binacional.

3.1.5 Coeficiente de rugosidade de Manning

Como foi mensionado no capítulo 1, o coeficiente de rugosidade de Manning, é altamente variável e é influenciado por um grande número de fatores, incluindo: altura, distribuição e tipo de vegetação, ilhas, irregularidade da superfície (depressões, elevações), obstruções tais como pedras, pontes, sinuosidade, nível e vazão, entre outros.

No apêndice E podem ser observadas algumas fotografias registradas no rio Iguaçu, como por exemplo a ponte que atravessa o Rio Iguaçu que facilita a ligação entre os municípios Capitão Leônidas Marquez e Realeza no estado do Paraná. A ponte situa-se à jusante da UHE Salto Caxias. Capanema encontra-se a uns quilômetros à frente e à

jusante. O Parque Nacional do Iguaçu começa, também rio abaixo, a partir da desembocadura do Rio Gonçalves Dias, também podem ser observadas no apêndice E fotografias da vegetação e do solo.

Nos vales e nos leitos do rio Iguaçu, a rocha está exposta continuamente, o solo possui textura argilosa de cor avermelhada.

No rio Iguaçu, no trecho entre a UHE Salto Caxias e posto de medição Hotel Cataratas existem varias ilhas, como por exemplo a Ilha do Coco, situada próxima à margem esquerda, em frente à foz do Córrego Barrinha.

No trabalho foi considerado un coeficiente de rugosidade de Manning uniforme ao longo do trecho de rio igual a 0,05.

3.1.6 Cálculos realizados considerando os dados

Com base nos dados de vazão de referência, declividade, coeficiente de rugosidade de Manning e largura média da seção tranversal do trecho de rio em estudo, foi calculada a celeridade da onda cinemática c_k , cujo valor resultante foi igual a 2,64 [m/s].

Segundo os dados da tabela do apêndice A, o intervalo de tempo em que existem dados observados é de uma hora, tendo sido adotado então o valor da discretização temporal igual a $3600 \ [s]$.

Logo, com base na celeridade e na discretização temporal foi possível estimar o valor da discretização espacial Δx igual a 12384,2884 [m]. Este valor resultante foi bastante inferior ao comprimento total do trecho, tendo sido necessário dividir o trecho em 15 subtrechos para atingir o Δx ideal.

$$N = \frac{L}{\Delta x} = \frac{187330}{12384,2884} = 15$$
 sub-trechos.

A Figura 3.4 mostra a vazão de saída ou hidrograma de saída de cada sub-trecho calculado através do método Muskingum-Cunge.

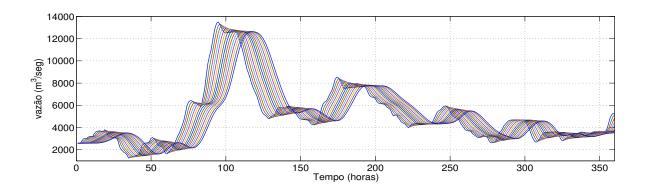


Figura 3.4: Propagação da vazão - Hidrograma de saída resultante correspondente a cada sub-trecho.

A Figura 3.5 mostra o hidrograma de entrada observado (defluência da Usina Salto Caxias) e o hidrograma de saída calculado (vazão no posto Hotel Cataratas), observa-se nesta figura que ocorre atenuação e translação da vazão de pico do hidrograma de entrada.

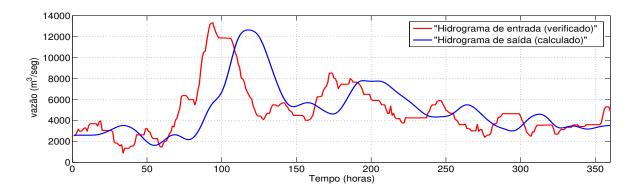


Figura 3.5: Hidrogramas de entrada e saída.

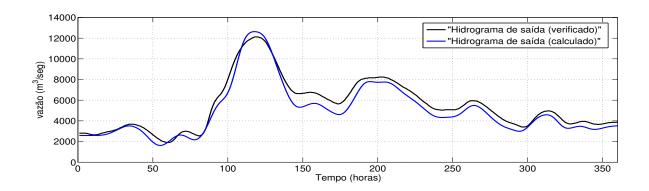


Figura 3.6: Resultado obtido na simulação ao aplicar o método Muskingum-Cunge.

Com relação à vazão de pico e ao tempo de pico em que acontecem as vazões máximas

pode-se observar:

O hidrograma de entrada tem uma vazão máxima de 13328 $[m^3/s]$ e ocorre no día 19 de agosto às 21 horas. O hidrograma de saída verificado tem uma vazão máxima de 12122 $[m^3/s]$ e ocorre no día 20 de agosto às 21 horas. O hidrograma de saída calculado tem uma vazão máxima de 12633,6889 $[m^3/s]$ e ocorre na día 20 de agosto às 21 horas.

Observa-se na Figura 3.6 que o comportamento do hidrograma de saída verificado e simulado são semelhantes, porém, o hidrograma de saída calculado a maior parte do tempo se manteve por embaixo do hidrograma de saída observado, com exceção da ponta. Com esses sintomas seria muito interessante ouvir a opinião de um especialista, embora saibamos que existem dados muitos precários em relação aos afluentes.

Capítulo 4

Modelo de propagação de Itaipu

4.1 Formulação matemática para a parcela da vazão correspondente a Itaipu em R-11.

A distância entre Itaipu e a fronteira tripartite é de aproximadamente 20 km, sendo que a propagação no tempo das variações da descarga de Itaipu apresenta um atraso de até 24 horas. Devido a este atraso, a avaliação do impacto no nível da R-11 decorrente da operação de um dia, por exemplo, deve considerar a superposição de todas as variações da descarga ocorridas no dia anterior.

4.1.1 Curva de Propagação da defluência de Itaipu em R-11:

A curva de propagação de vazão, desenvolvido pelo Eng. König, chamada popularmente na UHE Itaipu de Curva de König, determina o impacto ocorrido no nível do Rio Paraná em R-11, devido às variações da defluência em Itaipu, como consequência das alterações nas vazões vertida e turbinada na central hidrelétrica.

4.1.2 Princípios básicos da Curva de König.

- 1. A variação do nível em R-11 numa hora t, resultante de uma variação de descarga em Itaipu, é definida por uma proporção fixa de variação total que ocorreria se a nova descarga na central fosse mantida constante [1], [2].
- 2. É valida a superposição de efeitos de variações de níveis. Assim, a variação resultante de várias alterações de descarga na central pode ser considerada como a soma de cada uma das variações consideradas isoladamente [1], [2].

König estabeleceu um valor de proporção fixo com a consideração do efeito total ocorrendo em 24 horas, e que é apresentada a seguir:

Propagação em R-11			
Curva de König			
Tempo	Variação		
(Horas)	Acumulada (%)		
0	0		
1	10		
2	21		
3	30		
4	37		
5	44		
6	50		
7	56		
8	62		
9	67		
10	72		
11	77		
12	81		
13	85		
14	88		
15	91		
16	92		
17	93		
18	94		
19	95		
20	96		
21	97		
22	98		
23	99		
24	100		

Tabela 4.1: Tabela de König - Fonte: [1], [2].

A Tabela 4.1 foi usada para o desenvolvimento da curva mostrada na Figura 4.1

Para fazer o cálculo das componentes de vazões de Itaipu que chegam em R-11, pela curva de König, por exemplo, para um horizonte de 336 horas é necessário conhecer 360 valores de vazões defluentes de Itaipu, dos quais os primeiros 24 valores $U_{ita}(0)$, $U_{ita}(-1)$,...., $U_{ita}(-23)$ correspondem à dados de vazões defluentes verificados nas 24 horas anteriores ao inicio do período da simulação, e os restantes 336 valores de vazões defluentes $U_{ita}(1)$, $U_{ita}(2)$,...., $U_{ita}(336)$ correspondem a leituras posteriores a hora atual, ou seja, vazões defluentes de horas futuras.

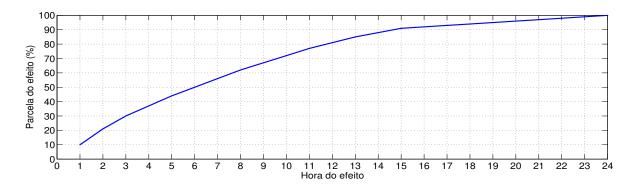


Figura 4.1: Curva de König.

O vetor "p"contém os valores da proporção fixa correspondente à variação acumulada, apresentada anteriormente na Tabela 4.1. Assim, temos que $p = [0.1 \ 0.21 \ 0.30 \ 0.37 \ 0.44 \ 0.50 \ 0.56 \ 0.62 \ 0.67 \ 0.72 \ 0.77 \ 0.81 \ 0.85 \ 0.88 \ 0.91 \ 0.92 \ 0.93 \ 0.94 \ 0.95 \ 0.96 \ 0.97 \ 0.98 \ 0.99 \ 1].$

O termo $U_{itR11}(t)$ representa a parcela da vazão correspondente a Itaipu que chega ao posto R-11 na hora t, e o termo $U_{ita}(t)$ representa a vazão defluente total de Itaipu (vertida +turbinada) na hora t.

Para t=1,...,336.

$$U_{itR11}(t) = \sum_{i=1}^{23} \left[U_{ita}(t-i) - U_{ita}(t-(i+1)).p(i) \right] + U_{ita}(t-24).p(24)$$
 (4.1)

A parcela da vazão correspondente a Itaipu que chega ao posto R-11 na hora t calculada pelo método de König, está composto pela vazão defluente de Itaipu correspondente à hora (t-24), ou seja, a vazão que foi descarregada em Itaipu 24 horas antes ao inicio do período da simulação, mais 10 por cento da diferença entre as vazões defluentes de Itaipu correspondente à hora (t-1) e a hora (t-2), mais 21 por cento da diferença entre as vazões defluentes de Itaipu correspondente à hora (t-2) e a hora (t-3), assim sucessivamente considerando todos os valores da proporção fixa correspondente à variação acumulada em porcentagem, apresentada anteriormente na Tabela 4.1 correspondente à curva de König.

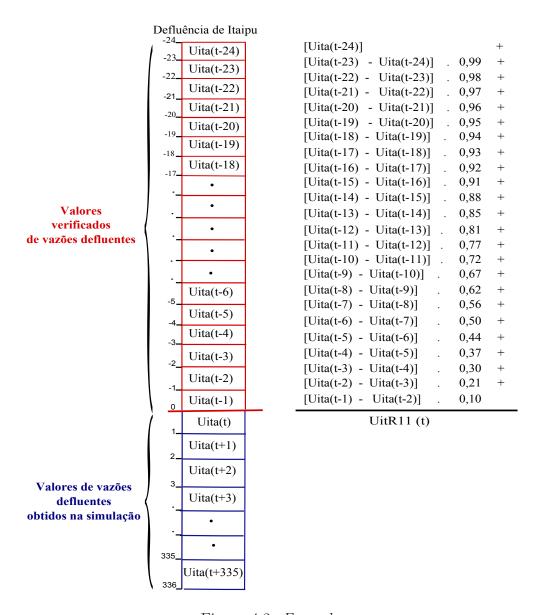


Figura 4.2: Exemplo.

4.2 Calibração do tempo de viagem d'água entre o trecho Posto Hotel Cataratas - R11

Na calibração do tempo de viagem d'água entre o trecho Posto Hotel Cataratas - R11, foram considerados 360 valores verificados de vazões defluentes da UHE de Itaipu e 360 valores de vazões verificadas no posto de medição Hotel Cataratas correspondente ao período 16/08/2011 e 30/08/2011, com o objetivo de avaliar o impacto ocorrido no rio Paraná em R-11 devido as variações das defluências de Itaipu. Foi utilizado um parâmetro R, cujo valor foi variado durante as simulações para encontrar o valor de tempo de viagem d'água mais apropriado para a chegada da vazão do rio Iguaçu em R-11, sendo a calibração referente ao valor ótimo desse tempo de viagem.

$$U_{R11}(t) = U_{itR11}(t) + U_{HC}(t - R)$$
(4.2)

onde: $U_{R11}(t)$ representa a vazão que chega ao posto R-11 na hora t, $U_{itR11}(t)$ representa a parcela da vazão correspondente a Itaipu que chega ao posto R-11 na hora t e $U_{HC}(t-R)$ representa a vazão verificada no posto de medição Hotel Cataratas na hora (t-R).

O valor mais apropriado para as condições hidrológicas simuladas foi R=8, que corresponde a um atraso de 8 horas para que a vazão que passa pelo posto de medição Hotel Cataratas chegue ao posto R-11, este valor de tempo de viagem apresentou o melhor resultado, ou seja, foi o tempo de viagem da água que acarretou o menor erro quadrático médio entre vazão simulada e verificada. A Figura 4.3 contém os resultados de erro quadrático médio obtido na calibração do modelo de propagação de Itaipu.

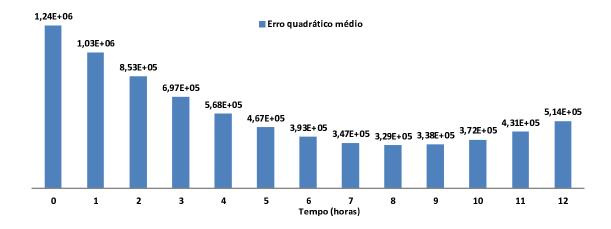


Figura 4.3: Resultados de erro quadrático médio obtido na calibração do modelo de propagação de Itaipu.

A Figura 4.4 mostra o resultado da simulação para o cálculo da vazão em R-11, ao aplicar o Método de König, sem acréscimo de tempo de viagem da vazão correspondente

ao trecho posto de medição Hotel Cataratas no rio Iguaçu até o posto de medição fluviométrica R-11.

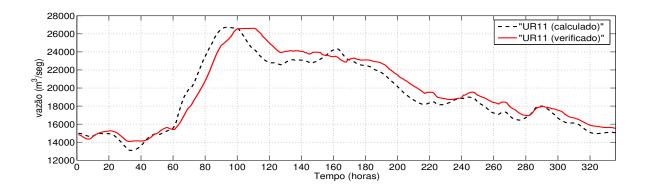


Figura 4.4: Resultado obtido na simulação de R-11 sem considerar o tempo de viagem entre Hotel Cataratas e R-11.

A Figura 4.5 mostra o resultado da simulação para o cálculo da vazão no posto R-11, ao aplicar o Método de König, acrescentado o tempo de viagem da água igual a oito horas entre o trecho Hotel Cataratas e o posto R-11.

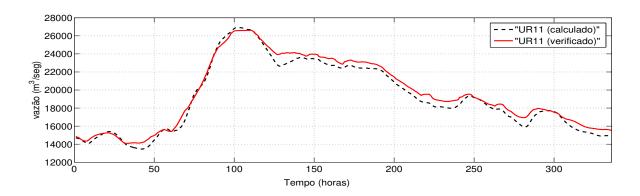


Figura 4.5: Resultado obtido na simulação de R-11 considerando o tempo de viagem de oito horas entre Hotel Cataratas e R-11.

Capítulo 5

Cálculos dos níveis do Rio Paraná no posto R-11

5.1 Vazão no posto R-11.

Uma vez obtido o valor da variável $U_{itR11}(t)$, que representa a parcela da vazão correspondente a Itaipu que chega ao posto R-11, calculado pelo método de König, e o valor da variável $U_{igua}(t)$ que representa a vazão no posto Hotel Cataratas, calculado pelo método de Muskingum-Cunge, é feito o cálculo das vazões em R-11, $U_{R11}(t)$. Observa-se na Figura 1.1 que as vazões no posto Hotel Cataratas ainda levarão algum tempo para chegar a R-11. Esse pequeno trecho foi modelado de forma simples, foi utilizado um parâmetro R, cujo valor foi variado durante as simulações para encontrar o tempo de viagem d'água mais apropriado para a chegada da vazão do rio Iguaçu em R-11.

Na equação (5.1), $U_{R11}(t)$ representa a vazão que chega ao posto R-11 na hora t, U_{acy} e U_{mon} representam a vazões do rio Acaray e do rio Monday respectivamente, que foram consideradas constantes em 200 $[m^3/s]$ cada uma por falta de dados verificados no período de calibração do modelo.

Assim, tem-se que:

$$U_{R11}(t) = U_{itR11}(t) + U_{igua}(t-8) + U_{acy} + U_{mon}$$
(5.1)

para t=1,...,168.

As informações de vazão em R-11 são necessárias para calcular os níveis do rio Paraná no posto R-11, através de uma das três funções não lineares correspondentes à curva chave de R-11.

A Figura 5.1 mostra o resultado da simulação, implementando os dois métodos de propagação de vazões, o Método Muskingum- Cunge, e o Método de König, para obter os níveis no posto R-11, considerando um acréscimo de tempo de viagem igual a oito horas

da vazão entre o trecho Hotel Cataratas - R-11.

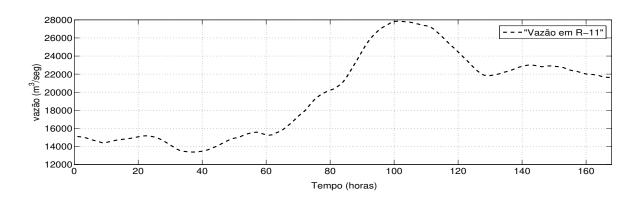


Figura 5.1: Resultado obtido na simulação da régua 11 calculado através do método de propagação de vazões Muskingum-Cunge e o método de König.

No trabalho titulado "Consideração das restrições de controle de nível na estação fluviométrica da régua 11 na programação da operação do sistema elétrico brasileiro"[26], detalha-se a implementação no modelo DESSEM-PAT, desenvolvido pelo CEPEL para a programação da operação do sistema brasileiro, de algumas das restrições do Acordo Tripartite relacionadas à estação fluviométrica da régua 11.

Os autores do artigo mencionam que segundo dados fornecido pela Itaipu, a vazão U_{R11} em R-11 é avaliada a partir das vazões a jusante de Itaipu e na Foz do Rio Iguaçu, pela seguinte expressão:

$$U_{R11} = K_{PR}.Q_{PR} + K_{IG}.Q_{IG} (5.2)$$

onde, os termos Q_{PR} e Q_{IG} correspondem às vazões à jusante de Itaipu e na Foz do Rio Iguaçu, respectivamente, o valor de K_{PR} foi considerado constante em 1,03 e o valor de K_{IG} em 1,17.

A vazão U^t_{R11} em R-11, em cada intervalo de tempo t, é obtida a partir da operação energética calculada pelo modelo DESSEM-PAT, pela expressão:

$$U_{R11}^{t} = 1,03. \left(Q_{it}^{t} + S_{it}^{t} \right) + 1,17. \left(Q_{scx}^{t} + S_{scx}^{t} \right)$$
(5.3)

onde os termos Q representam as vazões turbinadas e S representam as vazões vertidas das usinas hidroelétricas, it e scx indicam, respectivamente, os índices das usinas de Itaipu e Salto Caxias [26].

Observa-se na equação (5.2), que para realizar o cálculo da vazão em R-11 não foi utilizado nenhum método de propagação de vazões entre o trecho UHE Itaipu - R-11, e o trecho UHE Salto Caxias - R-11, simplesmente a defluência de Itaipu foi multiplicada por

5.2 Curva chave:

um valor constante igual a 1,03 e a defluência da UHE Salto Caxias foi multiplicada por um valor constante igual a 1,17.

Com o objetivo de fazer a verificação da equação utilizada no modelo DESSEMP, foram considerados 168 vazões defluentes verificadas na UHE Itaipu e 168 vazões defluentes verificadas na UHE Salto Caxias, os valores defluentes destas usinas foram substituídas na equação (5.2), logo foi feita uma comparação entre o resultado de vazão em R-11 obtido utilizando a equação (5.2) e as vazões verificadas no posto R-11.

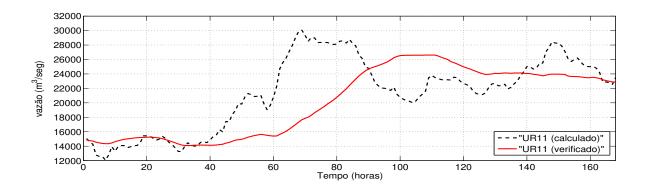


Figura 5.2: Comparação.

Observa-se na Figura 5.2 que utilizando a equação (5.2) é obtido um resultado de vazão em R-11 completamente diferente ao valor verificado.

É importante destacar que todos os dados de vazões utilizados neste analises foram fornecidos pela UHE Itaipu e no artigo foi mencionado que a equação (5.2) foi fornecido pela UHE Itaipu, porem existe uma grande diferença entre o valor simulado e verificado.

5.2 Curva chave:

As medições de vazão são realizadas com o objetivo de determinar a relação entre o nível da água do rio em uma seção e a sua vazão. Esta relação entre o nível (ou cota) e a vazão é denominada curva-chave de uma seção. Com a curva-chave é possível transformar medições horárias de cota em medições horárias de vazão [15].

Para gerar uma curva-chave representativa é necessário medir a vazão do rio em situações de vazões baixas, médias e altas. A curva chave é uma equação ajustada aos dados de medição de vazão [15].

As curvas chaves ajustadas para as seções monitoradas nos rios são de grande importância, pois fornecem informações utilizadas na elaboração de estudos hidrológicos que orientam diversos processos de tomada de decisão [25].

5.2.1 Curva chave da R-11:

O nível no posto R-11 é função da vazão em R-11, ou seja, $N_{R11} = f(U_{R11})$, onde N_{R11} e U_{R11} correspondem ao nível e a vazão em R-11 respectivamente.

A Tabela 5.1 mostra a representação da curva chave do posto R-11, compreendida entre as seções inferior, intermediária e superior, conforme informação fornecida por Itaipu. Seção inferior, função compreendida entre os níveis $(72,00 \le N_{R11} < 89,50)$ Seção intermediária, função compreendida entre os níveis $(89,50 \le N_{R11} \le 127)$ Seção superior, função compreendida entre os níveis $(127 < N_{R11} \le 145,50)$

Seção	Equação
Inferior	$N_{R11}(t) = [(3,634845.10^{-1}.U_{R11}(t) + 2,592462.10^{3})^{1/2} - 6,817622.10] + 89,26$
Intermediária	$N_{R11}(t) = [(4,709260.10^{-2}.U_{R11}(t) - 1,919908.10^{2})^{1/2} - 8,623921] + 89,26$
Superior	$N_{R11}(t) = \left(\frac{U_{R11}(t)}{2,270235.10^2}\right)^{6,737069.10^{-1}} + 89,26$

Tabela 5.1: Curva Chave - Fonte: [2]

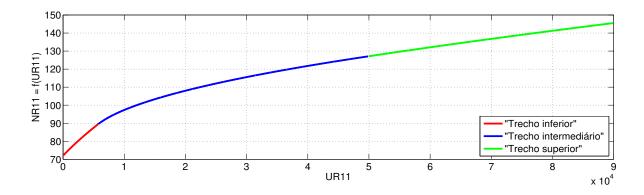


Figura 5.3: Curva chave R-11.

A relação entre a cota N_{R11} e a vazão Q_{R11} também pode ser dada através de um único

polinômio.

$$U_{R11}(t) = 7,01514936.10^{4} - 5,2535121.10^{2}.N_{R11}(t) - 2.2702358.10^{1}.N_{R11}^{2}(t) + 2,9623555.10^{-1}.N_{R11}^{3}(t) - 7,4791788.10^{-4}.N_{R11}^{4}(t)$$
(5.4)

Invertendo esta relação, obtém-se a curva chave de R-11.

5.3 Diferença horária e diária entre os níveis do posto R-11.

Para obter a diferença horária entre os níveis do rio Paraná no posto R-11 nas 168 horas do horizonte de simulação, é necessário conhecer 169 valores de níveis neste posto, dos quais o primeiro valor $N_{R11}(0)$ corresponde ao valor verificado na última hora anterior ao inicio do período da simulação, e os seguintes 168 valores de níveis $N_{R11}(1)$, ..., $N_{R11}(168)$ correspondem ao resultado da simulação.

Para obter as 168 diferenças diárias entre os níveis do rio Paraná no posto R-11, é necessário conhecer 192 valores de níveis neste posto, dos quais os primeiros 24 valores $N_{R11}(0)$, $N_{R11}(-1)$,..., $N_{R11}(-23)$ correspondem aos dados de níveis verificados anteriormente ao período da simulação, e os seguintes 168 valores de níveis $N_{R11}(1)$, ..., $N_{R11}(168)$ correspondem ao resultado da simulação.

$$dR11_k(t) = N_{R11}(t) - N_{R11}(t-k)$$
(5.5)

para t = 1,....,168, onde k = 1 para as diferenças horárias e k = 24 para diferenças diárias.

A Figura 5.4 mostra o resultado da simulação correspondente ao período entre 17/08/2011 e 23/08/2011, onde observa-se que a variação da cota do rio Paraná, no posto R-11, não atingiu o limite da variação horária.

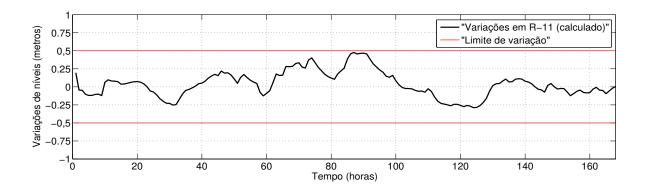


Figura 5.4: Variação horária dos níveis da cota do rio Paraná no posto R-11, no período 17/08/2011 e 23/08/2011.

Os resultados mostram que as variações diárias de níveis no posto R-11 correspondente ao período 17/08/2011 e 23/08/2011 são mais significativas que as variações horárias de níveis para o mesmo período.

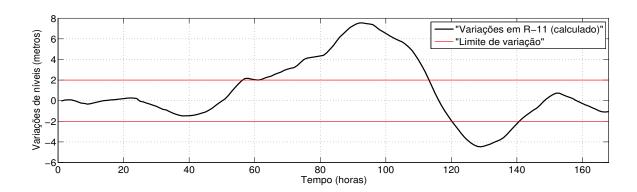


Figura 5.5: Variação diária dos níveis da cota do rio Paraná no posto R-11, no período 17/08/2011 e 23/08/2011.

Observa-se na Figura 5.5 que a variação diária de níveis no posto R-11 superou o limite de dois metros, porem não caracteriza violação do Acorde Tripartite, já que trata se da cheia do rio Iguaçu, não podendo ser atribuída à operação de Itaipu as variações de níveis observadas nessa cheia.

Com o objetivo de avaliar a responsabilidade referente à violação do limite de variação máxima diária ocorrida no período entre 17/08/2011 e 23/08/2011, foram consideradas todas as vazões defluentes de Itaipu ocorridas nessa data, também foram consideradas as vazões dos rios Acaray e Monday e um valor constante de vazão igual a 2836,6 [m^3/s] no posto de medição Hotel Cataratas, logo foi aplicado o método de König para avaliar o impacto ocorrido no rio Paraná no posto R-11. Observa-se nas figuras 5.6 e 5.7 que considerando um valor de vazão constante no posto de medição Hotel Cataratas, o limite

de variação horária e diária não são atingidas.

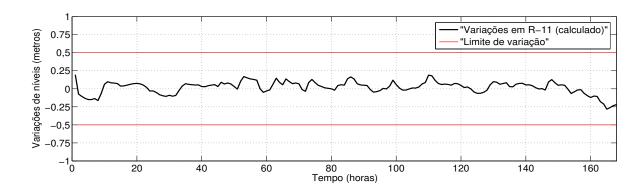


Figura 5.6: Variação horária dos níveis da cota do rio Paraná no posto R-11, no período 17/08/2011 e 23/08/2011, considerando uma vazão constante no posto Hotel Cataratas.

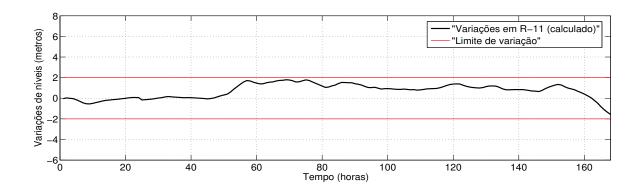


Figura 5.7: Variação diária dos níveis da cota do rio Paraná no posto R-11, no período 17/08/2011 e 23/08/2011, considerando vazão constante no posto Hotel Cataratas.

Também foram considerados dados correspondentes ao período entre 31/05/2011 e 06/06/2011, a vazão de pico do hidrograma de entrada, ou seja, a vazão máxima da defluencia da UHE Salto Caxias foi igual a $2108.9 \ [m^3/s]$, tendo sido considerada uma vazão de referência igual a $1581.7 \ [m^3/s]$.

A celeridade da onda cinemática resultante foi igual a 1,263 [m/s], foi adotada uma discretização temporal igual a 3600 [s] e discretização espacial Δx igual a 5561 [m], o trecho foi dividido em 34 subtrechos para atingir o Δx ideal.

A Figura 5.8 mostra o resultado da simulação correspondente ao período entre 30/05/2011 e 06/06/2011, onde pode-se observar que a variação da cota do rio Paraná, no posto R-11, não atingiu o limite da variação horária.

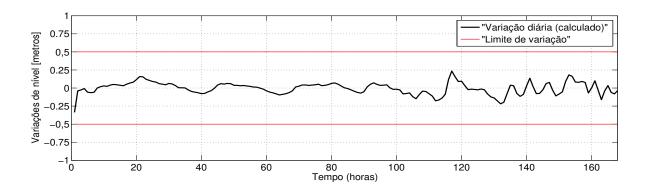


Figura 5.8: Variação horária dos níveis da cota do rio Paraná no posto R-11, no período 30/05/2011 e 06/06/2011.

Observa-se na Figura 5.9 que no período 30/05/2011 e 06/06/2011, a variação diária não superou o limite de dois metros.

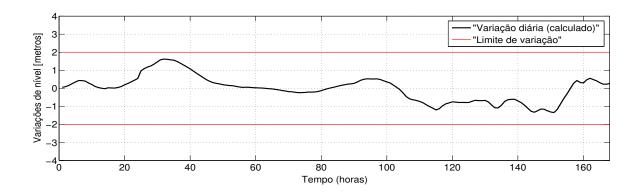


Figura 5.9: Variação diária dos níveis da cota do rio Paraná no posto R-11, no período 30/05/2011 e 06/06/2011.

Capítulo 6

Conclusões

No presente trabalho foi apresentado um modelo de simulação em base horária da vazão na estação fluviométrica da régua 11. Foi aplicado o método de König para determinar o impacto ocorrido no nível do Rio Paraná em R-11, devido às variações da defluência em Itaipu. Além da influência da operação de Itaipu no nível do posto R-11, foi considerada a influência da vazão do rio Iguaçu através da aplicação do modelo de propagação de vazões Muskingum-Cunge linear para o cálculo da vazão ao longo do trecho entre a última usina do rio Iguaçu, a UHE Salto Caxias, e o posto de medição Hotel Cataratas.

Também foi calculado o tempo de viagem d'água mais apropriado para a chegada da vazão do rio Iguaçu em R-11.

O resultado obtido na aplicação do método Muskingum-Cunge para o cálculo da vazão do rio Iguaçu apresentou uma boa aderência aos valores verificados, já que não foram consideradas todas as vazões laterais existentes no trecho entre a UHE Salto Caxias e o posto de medição Hotel Cataratas, no trabalho só foi considerada a vazão do rio Capanema devido à indisponibilidade de dados.

Também devido à indisponibilidade de dados às vazões dos rios Monday e Acaray foram considerados constantes em 200 $[m^3/s]$.

Os resultados mostram que as variações diárias de níveis no rio Paraná no posto R-11 são mais significativas que as variações horárias de níveis.

Na eventualidade de ocorrência de violações no acordo tripartite, uma proposta interessante para a continuidade deste trabalho seria desenvolver um procedimento de redespacho de geração na usina de Itaipu via simulação para eliminar essas violações.

60 Conclusões

Referências Bibliográficas

- [1] Ramón Daniel Benitez Godoy. Sistema de Previsión de Niveles del Rio Paraná en el Puente de la Amistad y R11, para el Despacho de Carga de Itaipu. Monografia, Itaipu Binacional, 2006.
- [2] Departamento de Operación del Sistema. Documento de Referencia de las Magnitudes Hidroenergéticas. Monografia, Itaipu Binacional, 2006.
- [3] Anastacio Sebastián Arce Encina, Julio César Duarte Gill,. Evaluación del impacto de la Central Hidroeléctrica de Corpus en la Operación Hidroenergética de Itaipu. XIII ERIAC Décimo Tercer Encuentro Regional Iberoamericano de Cigré, maio 2009.
- [4] Diretoria de Planejamento Programação da Operação. Diretrizes para as regras de operação de controle de cheias bacia do Rio Iguaçu (ciclo 2010-2011). Monografía, Operador Nacional do Sistema Elétrico ONS, 2011.
- [5] Ven Te Chow. Hidráulica de los canales abiertos. 1982.
- [6] Rui Carlos Vieira da Silva, Flavio Cesar Borba Mascarenhas, Marcelo Gomes Miguez. Hidráulica Fluvial, volume 1. 2007.
- [7] Paulo Rógenes Monteiro Pontes. Comparação de Modelos Hidrodinâmicos Simplificados de Propagação de Vazão em rios e canais. Tese de mestrado, Instituto de Pesquisas Hidráulicas IPH, UFRGS, 2011.
- [8] Márcio Baptista, Nilo Nascimento. Propagação de cheias.
- [9] Rodrigo de Melo Porto. Hidráulica Básica. 2006.
- [10] Ven Te Chow, David R. Maidment, Larry W. Mays. *Applied Hydrology*. McGraw-Hill series in water resources and environmental engineering. 1988.
- [11] Rui Miguel Madeira Lança. Contribuição para o Estudo de Cheias recorrendo a um Modelo Distribuido. Tese de mestrado, Departamento de Engenharia Rural Universidade de Évora, 2000.
- [12] Maria Manuela Portela. Modelação Hidrológica. Tese de mestrado, Instituto Superior Técnico, 2005-2006.

- [13] André Luis Martinotto. Resolução de Sistemas de Equações lineares através de Métodos de Decomposição de Domínio. Tese de mestrado, Instituto de Informática, UFRGS, 2004.
- [14] Márcio Benedito Baptista, Márcia Maria Lara Pinto Coelho, José Almir Cirilo, Flávio César Borba Mascarenhas. *Hidráulica Aplicada*. 2003.
- [15] Walter Collischonn, Rutinéia Tassi. Introduzindo Hidrologia. Monografia, Instituto de Pesquisas Hidráulicas IPH, UFRGS.
- [16] Carlos E. M. Tucci. Modelos Hidrológicos. 2005.
- [17] Jose Luis Ayuso Muñoz. Circulación de flujos. 1990.
- [18] Nicolás Failache Gallo. Avaliação do Método de Muskingum Cunge não Linear com Conservaçãon de Volume para Propagação de Cheias em Rios. Revista Eletrônica de Recursos Hídricos, 1(1):63–68, 2004.
- [19] Dariusz Gasiorowski. Flood Routing by the Non-Linear Muskingum Model: Conservation of Mass and Momentum. *Hydro-Engineering and Environmental Mechanics*, 56(3-4):121–137, 2009.
- [20] Ram S. Gupta. Hydrology and Hydraulic Systems. 2001.
- [21] Victor Miguel Ponce, Adolph Lugo. Modeling Looped Ratings in Muskingum-Cunge Routing. *Journal of Hydrologic Engineering*, ASCE, 6(2):119–124, Março Abril 2001.
- [22] V.M. Ponce, A.K. Lohani, C. Scheyhing. Analytical verification of Muskingum-Cunge routing. *Journal of Hydrology*, 174:235–241, 1996.
- [23] Cristiane Lourencetti Burmester. Uso do Perfilador a Laser na Estimativa da Rugosidade em Planícies de Inundação. Tese de mestrado, Engenharia de Recursos Hídricos e Ambiental - UFPR, 2005.
- [24] Artur José Soares Matos, André Pioltine, Frederico Fábio Mauad, Alexandre Augusto Barbosa. Metodologia para a Caracterização do Coeficiente de Manning Variando na Seção Transversal e ao Longo do Canal Estudo de Caso Bacia do Alto Sapucaí-MG. Revista Brasileira de Recursos Hídricos, 16(4):21–28, Outubro 2011.
- [25] Clodoaldo Melchior. Comparativo de resultados de medição de vazão pelos métodos: Convencional e acústico. Trabalho final de graduação, União Dinamica de Facultades Cataratas UDC, 2006.
- [26] André Luiz Diniz Souto Lima, Tiago Norbiato dos Santos. Consideração das restrições de controle de nível na estação fluviométrica da régua 11 na programação da operação do sistema elétrico brasileiro. XVII Simpósio Brasileiro de Recursos Hídricos, pages 1–20.

Apêndice A

Data/Hora		Hidrograma de entrada (I)	Vazões verificadas no Posto de	Vazão lateral	Defluência
,		Defluência U.H.E	medição	(Ponte de	U.H.E Itaipu
		Salto Caxias	Hotel Cataratas	Capanema)	
16/08/2011	00:00	2586	2809,2292476707	22,5958614850	11045
16/08/2011	01:00	2533	2809,2292476707	22,5958614850	10527
16/08/2011	02:00	2844	2809,2292476707	21,9851514470	11232
16/08/2011	03:00	3160	2809,2292476707	21,9851514470	10872
16/08/2011	04:00	2966	2809,2292476707	21,9851514470	11274
16/08/2011	05:00	2968	2782,0118246856	21,3679696084	11450
16/08/2011	06:00	3119	2754,9079190489	21,3679696084	11725
16/08/2011	07:00	3269	2701,0442118375	21,3679696084	11090
16/08/2011	08:00	3269	2674,2861862712	20,7439841776	11510
16/08/2011	09:00	2976	2647,6452300701	20,7439841776	11791
16/08/2011	10:00	3525	2647,6452300701	20,7439841776	11858
16/08/2011	11:00	3689	2647,6452300701	20,3223821406	11927
16/08/2011	12:00	3687	2674,2861862712	20,3223821406	12022
16/08/2011	13:00	3686	2701,0442118375	20,3223821406	12089
16/08/2011	14:00	3685	2754,9079190489	19,9219386184	11940
16/08/2011	15:00	3685	2809,2292476707	19,9219386184	12061
16/08/2011	16:00	3456	2836,5593000000	19,9219386184	12165
16/08/2011	17:00	3873	2864,0010936693	19,5228543486	12147
16/08/2011	18:00	3950	2919,2163530111	19,5228543486	12132
16/08/2011	19:00	3044	2946,9880426752	19,5228543486	12073
16/08/2011	20:00	3055	2974,8679216625	19,1251476397	12084
16/08/2011	21:00	3036	3002,8551019688	19,1251476397	11916
16/08/2011	22:00	3036	3030,9486955899	19,1251476397	11749
16/08/2011	23:00	3034	3087,4515707597	19,1251476397	11464
17/08/2011	00:00	3034	3115,8590763000	18,7288373661	11166
17/08/2011	01:00	3036	3172,9817832704	18,7288373661	10749
17/08/2011	02:00	2936	3230,5088313992	18,7288373661	10512
17/08/2011	03:00	1939	3317,5420031909	18,3339429962	10194

Data/Hora		Hidrograma de entrada (I)	Vazões verificadas no Posto de	Vazão lateral	Defluência
		Defluência U.H.E	medição	(Ponte de	U.H.E Itaipu
		Salto Caxias	Hotel Cataratas	Capanema)	
17/08/2011	04:00	1831	3376,0488240687	18,3339429962	10143
17/08/2011	05:00	1831	3434,9351219873	18,3339429962	10126
17/08/2011	06:00	1686	3523,9605482432	18,3339429962	9795
17/08/2011	07:00	1563	3583,7644586168	17,9404846215	10631
17/08/2011	08:00	1681	3613,7998376519	17,9404846215	11618
17/08/2011	09:00	873	3674,1330033977	17,9404846215	11918
17/08/2011	10:00	1337	3674,1330033977	17,5484829884	12035
17/08/2011	11:00	1343	3674,1330033977	17,5484829884	12150
17/08/2011	12:00	1343	3674,1330033977	17,5484829884	12136
17/08/2011	13:00	1343	3643,9229819136	17,1579595324	11874
17/08/2011	14:00	1516	3613,7998376519	17,1579595324	11805
17/08/2011	15:00	1560	3553,8177328125	17,1579595324	11871
17/08/2011	16:00	1560	3523,9605482432	17,1579595324	11922
17/08/2011	17:00	1903	3464,5183548264	17,1579595324	11939
17/08/2011	18:00	2623	3376,0488240687	16,7689364140	12002
17/08/2011	19:00	2622	3317,5420031909	16,7689364140	12008
17/08/2011	20:00	2622	3201,6952086921	16,7689364140	11969
17/08/2011	21:00	2622	3115,8590763000	16,7689364140	11682
17/08/2011	22:00	2615	3002,8551019688	16,3814365576	11411
17/08/2011	23:00	2616	2891,5537406744	16,3814365576	11581
18/08/2011	00:00	3200	2782,0118246856	16,3814365576	11267
18/08/2011	01:00	3225	2647,6452300701	16,3814365576	10952
18/08/2011	02:00	2948	2542,2698590017	16,3814365576	10774
18/08/2011	03:00	2887	2438,8386381125	15,9954836935	10533
18/08/2011	04:00	2460	2312,3701536000	15,9954836935	10567
18/08/2011	05:00	2266	2238,0359759469	15,9954836935	10300
18/08/2011	06:00	2267	2140,7781992081	15,9954836935	10310
18/08/2011	07:00	2267	2045,6919017237	15,9954836935	10994
18/08/2011	08:00	2269	1998,9808177859	15,9954836935	11471
18/08/2011	09:00	1680	1952,8339157625	16,3814365576	11852
18/08/2011	10:00	1465	1907,2582996871	18,3339429962	11927
18/08/2011	11:00	1466	1907,2582996871	27,8441796130	11967
18/08/2011	12:00	1847	1907,2582996871	32,2110924380	12007
18/08/2011	13:00	1990	1952,8339157625	40,8327162944	11939
18/08/2011	14:00	2028	2045,6919017237	45,1232100951	11758
18/08/2011	15:00	2349	2164,8912872232	48,8112008839	11753
18/08/2011	16:00	2742	2312,3701536000	53,2786523386	11778
18/08/2011	17:00	2893	2490,3076777679	57,6088149990	11832
18/08/2011	18:00	3446	2647,6452300701	62,2343916373	11892

Data/Hora		Hidrograma de entrada (I)	Vazões verificadas no Posto de	Vazão lateral	Defluência
,		Defluência U.H.E	medição	(Ponte de	U.H.E Itaipu
		Salto Caxias	Hotel Cataratas	Capanema)	
18/08/2011	19:00	3372	2782,0118246856	67,9406851052	11692
18/08/2011	20:00	4013	2891,5537406744	73,0816019451	12357
18/08/2011	21:00	4211	2946,9880426752	79,2277378425	12062
18/08/2011	22:00	4716	2974,8679216625	85,5666557553	12463
18/08/2011	23:00	5198	3002,8551019688	91,3745993757	12496
19/08/2011	00:00	6272	2974,8679216625	97,0463372363	12201
19/08/2011	01:00	6377	2946,9880426752	102,2520995936	12008
19/08/2011	02:00	6378	2891,5537406744	106,6840197698	12982
19/08/2011	03:00	6372	2809,2292476707	110,7141637152	13430
19/08/2011	04:00	6228	2754,9079190489	115,3471801677	13442
19/08/2011	05:00	5980	2674,2861862712	119,9109838482	13476
19/08/2011	06:00	5979	2621,1222312384	124,7291394188	13502
19/08/2011	07:00	5978	2568,4336577000	129,4780331981	13662
19/08/2011	08:00	5981	2542,2698590017	135,0914413517	12498
19/08/2011	09:00	5483	2594,7180777803	142,4421401420	12270
19/08/2011	10:00	5933	2674,2861862712	152,0265440210	12340
19/08/2011	11:00	6853	2864,0010936693	163,4083293406	12385
19/08/2011	12:00	7473	3144,3694431383	175,9005862088	13096
19/08/2011	13:00	8874	3523,9605482432	190,5179593014	13912
19/08/2011	14:00	10075	4043,1064510253	206,3078260502	13400
19/08/2011	15:00	10516	4551,6804601949	222,9355920393	13486
19/08/2011	16:00	10643	5042,7490000064	239,6060875993	14267
19/08/2011	17:00	11601	5443,4921046272	256,8213099183	13991
19/08/2011	18:00	12420	5781,5962007112	273,6112615687	14095
19/08/2011	19:00	13151	6020,0039064593	289,3248119526	14113
19/08/2011	20:00	13269	6225,2249762999	311,6368086494	14105
19/08/2011	21:00	13328	6396,7106090304	357,8005823503	13324
19/08/2011	22:00	12842	6534,1255708928	401,6730006876	13130
19/08/2011	23:00	12423	6740,4922391864	444,9128323514	14098
20/08/2011	00:00	12125	6981,3948037877	485,8404127895	14371
20/08/2011	01:00	11880	7256,5255882829	529,0740275542	14029
20/08/2011	02:00	11876	7633,7014784256	570,1131959181	14042
20/08/2011	03:00	11873	8012,4518499597	616,6854554739	14056
20/08/2011	04:00	11869	8422,9813286187	665,5963566987	14045
20/08/2011	05:00	11861	8841,5916552571	714,2715638295	13916
20/08/2011	06:00	11855	9268,2016911973	758,3212446786	13796
20/08/2011	07:00	11850	9623,1418359494	792,8103937314	13864
20/08/2011	08:00	11843	9983,3435581226	821,1043596116	14263
20/08/2011	09:00	11840	10307,9075724954	841,2851859377	14277

Data/Hora		Hidrograma de entrada (I)	Vazões verificadas no Posto de	Vazão lateral	Defluência
		Defluência U.H.E	medicão	(Ponte de	U.H.E Itaipu
		Salto Caxias	Hotel Cataratas	Capanema)	
20/08/2011	10:00	11542	10595,2638488023	855,8904479648	14337
20/08/2011	11:00	11099	10844,0530145097	863,2528387549	15333
20/08/2011	12:00	10458	11053,1202599687	866,2089790925	15524
20/08/2011	13:00	10166	11263,7652928580	864,7301093379	15511
20/08/2011	14:00	9399	11433,4131672367	858,8306147651	15136
20/08/2011	15:00	9054	11604,0637429087	851,4921570021	15118
20/08/2011	16:00	8056	11732,7078398629	842,7385562584	15140
20/08/2011	17:00	7978	11818,7823140993	831,1560035379	15008
20/08/2011	18:00	7705	11905,1057403858	818,2466680599	14429
20/08/2011	19:00	7081	11991,6777421302	804,0526439452	14156
20/08/2011	20:00	6720	12078,4979449543	788,6203540318	14112
20/08/2011	21:00	6474	12122,0010053780	774,7548738710	14056
20/08/2011	22:00	6177	12122,0010053780	758,3212446786	14364
20/08/2011	23:00	6071	12122,0010053780	742,1099929899	14385
21/08/2011	00:00	5390	12078,4979449543	726,1198444581	14963
21/08/2011	01:00	5033	12035,0568417200	707,7424169922	15799
21/08/2011	02:00	4635	11948,3606927760	689,6621641134	15307
21/08/2011	03:00	4418	11818,7823140993	671,8770475972	15123
21/08/2011	04:00	4420	11689,7640780597	651,9099698533	14883
21/08/2011	05:00	4422	11475,9819290718	632,3226478002	14681
21/08/2011	06:00	4202	11221,5103614858	610,7370161083	14844
21/08/2011	07:00	4073	10969,3036777828	588,4645475113	14790
21/08/2011	08:00	4312	10677,9394420885	565,5827377362	14788
21/08/2011	09:00	4622	10389,6899811752	543,2722973611	14950
21/08/2011	10:00	4677	10104,5730781529	519,3834838200	15257
21/08/2011	11:00	4677	9782,5843223956	495,1313274473	15659
21/08/2011	12:00	5169	9464,7386572260	470,6022094711	16912
21/08/2011	13:00	5477	9151,0646506121	446,8566016878	16894
21/08/2011	14:00	5477	8803,2044080975	422,0039341414	16596
21/08/2011	15:00	5479	8498,4936625135	398,0445286762	16456
21/08/2011	16:00	5376	8198,0490869785	374,0942933034	16422
21/08/2011	17:00	5366	7906,5827756288	351,0769699512	16421
21/08/2011	18:00	5518	7667,8898561057	329,7792805290	16252
21/08/2011	19:00	5623	7428,1889435784	307,7784639660	16088
21/08/2011	20:00	5675	7222,1596195008	295,7964001934	16427
21/08/2011	21:00	5679	7015,8053151000	289,5568760751	16328
21/08/2011	22:00	5419	6878,1499546568	283,0321885501	16158
21/08/2011	23:00	5284	6774,9037808231	276,4502271307	16020
22/08/2011	00:00	5002	6671,6802584000	269,5702386332	16181

Data/H	ora	Hidrograma de entrada (I) Defluência U.H.E Salto Caxias	Vazões verificadas no Posto de medição Hotel Cataratas	Vazão lateral (Ponte de Capanema)	Defluência U.H.E Itaipu
22/08/2011	01:00	4893	6637,2815952587	262,8640198196	16078
22/08/2011	02:00	4782	6637,2815952587	256,0925903168	15591
22/08/2011	03:00	4469	6637,2815952587	249,0073143301	15602
22/08/2011	04:00	4471	6637,2815952587	242,0934035266	15466
22/08/2011	05:00	4471	6671,6802584000	235,3551003423	15444
22/08/2011	06:00	4475	6671,6802584000	228,2894178496	15695
22/08/2011	07:00	4471	6706,0841023773	221,1402028408	16427
22/08/2011	08:00	4469	6740,4922391864	214,4226623538	16890
22/08/2011	09:00	4471	6740,4922391864	207,3615965192	16934
22/08/2011	10:00	4354	6774,9037808231	200,4752065602	16772
22/08/2011	11:00	4019	6740,4922391864	193,7684200555	17140
22/08/2011	12:00	4015	6740,4922391864	187,2464312746	17355
22/08/2011	13:00	4015	6706,0841023773	180,9147127982	16716
22/08/2011	14:00	4107	6671,6802584000	174,4982116446	16840
22/08/2011	15:00	4233	6602,8890009576	168,5609265207	17170
22/08/2011	16:00	4517	6534,1255708928	163,1202858051	17218
22/08/2011	17:00	5111	6465,3970722392	157,9020624419	17261
22/08/2011	18:00	5757	6362,3853607283	153,5033499666	17056
22/08/2011	19:00	6251	6293,7752707497	149,3545355144	17193
22/08/2011	20:00	6257	6225,2249762999	145,7634989566	17172
22/08/2011	21:00	6259	6122,5271913152	143,0481818177	16851
22/08/2011	22:00	6334	6054,1574658344	140,6181373584	16875
22/08/2011	23:00	6849	5985,8724000000	138,7851608023	16959
23/08/2011	00:00	7098	5917,6790978456	137,5580881305	16687
23/08/2011	01:00	7257	5815,5767415875	136,9430014321	18022
23/08/2011	02:00	7648	5747,6439287801	136,6350669315	18193
23/08/2011	03:00	8519	5713,7208137984	136,6350669315	17946
23/08/2011	04:00	8516	5645,9656067000	136,9430014321	17767
23/08/2011	05:00	8514	5645,9656067000	137,5580881305	17793
23/08/2011	06:00	8083	5679,8277437703	138,7851608023	17877
23/08/2011	07:00	7978	5781,5962007112	140,3132699838	17277
23/08/2011	08:00	7660	5883,6190781589	142,1387542396	16647
23/08/2011	09:00	7041	6020,0039064593	143,9554325293	16972
23/08/2011	10:00	7278	6225,2249762999	146,3643064780	16995
23/08/2011	11:00	7452	6396,7106090304	148,4598575848	16974
23/08/2011	12:00	7452	6602,8890009576	151,1378579316	16454
23/08/2011	13:00	7451	6809,3178392832	154,0925712962	16006
23/08/2011	14:00	7454	7050,2121272063	157,0260534716	15829
23/08/2011	15:00	7455	7256,5255882829	160,5191774325	15808

Data/Hora		Hidrograma de entrada (I)	Vazões verificadas no Posto de	Vazão lateral	Defluência
		Defluência U.H.E	medição	(Ponte de	U.H.E Itaipu
		Salto Caxias	Hotel Cataratas	Capanema)	
23/08/2011	16:00	7483	7462,4821008851	163,9838425039	15816
23/08/2011	17:00	8001	7667,8898561057	167,9913759825	14950
23/08/2011	18:00	7868	7804,4287739261	171,9631447328	14513
23/08/2011	19:00	7654	7906,5827756288	175,9005862088	13495
23/08/2011	20:00	7651	8012,4518499597	180,0826983953	13531
23/08/2011	21:00	7651	8049,4365963570	184,2284687968	13445
23/08/2011	22:00	7603	8086,4887575114	188,3393208399	13263
23/08/2011	23:00	7470	8123,6082690496	191,8748420936	14325
24/08/2011	00:00	7260	8127,7900000000	195,3859440721	14515
24/08/2011	01:00	6970	8165,00000000000	198,3383715510	14702
24/08/2011	02:00	6490	8165,00000000000	201,0080713012	14682
24/08/2011	03:00	6490	8165,00000000000	203,3994071363	14484
24/08/2011	04:00	6490	8165,00000000000	205,2520202674	13967
24/08/2011	05:00	6490	8165,00000000000	206,8349645600	14010
24/08/2011	06:00	6490	8202,2900000000	207,8877241834	14033
24/08/2011	07:00	6000	8202,2900000000	208,6759750161	13966
24/08/2011	08:00	5910	8239,6300000000	208,9384755590	14108
24/08/2011	09:00	5910	8239,6300000000	208,6759750161	14199
24/08/2011	10:00	5910	8239,6300000000	208,4133497900	14185
24/08/2011	11:00	5910	8239,6300000000	207,3615965192	14191
24/08/2011	12:00	5910	8202,2900000000	206,5714587656	14230
24/08/2011	13:00	5760	8165,00000000000	204,9877486532	14048
24/08/2011	14:00	5490	8127,7900000000	203,1342288279	14028
24/08/2011	15:00	5490	8053,5600000000	201,2743037921	14001
24/08/2011	16:00	5490	7979,6000000000	199,1406982136	14013
24/08/2011	17:00	5060	7906,5700000000	196,7300290432	14380
24/08/2011	18:00	4670	7838,4900000000	194,0383603847	14251
24/08/2011	19:00	4660	7736,1900000000	191,3325249102	14275
24/08/2011	20:00	5360	7667,8800000000	188,6121691197	14009
24/08/2011	21:00	4480	7565,2600000000	185,6025652106	13855
24/08/2011	22:00	4680	7462,4700000000	182,5744282823	13996
24/08/2011	23:00	4260	7359,5500000000	179,2492306628	13590
25/08/2011	00:00	4160	7256,5200000000	176,1805543976	12920
25/08/2011	01:00	4180	7187,7700000000	172,8097249632	13117
25/08/2011	02:00	4180	7119,0000000000	169,4138935664	13365
25/08/2011	03:00	3880	7015,8000000000	166,2783286053	13108
25/08/2011	04:00	3750	6946,9700000000	162,8320501762	13070
25/08/2011	05:00	3750	6843,7300000000	159,6486069252	13315
25/08/2011	06:00	4270	6740,4800000000	156,1481961760	12984

Data/H	ora	Hidrograma de entrada (I) Defluência U.H.E Salto Caxias	Vazões verificadas no Posto de medição Hotel Cataratas	Vazão lateral (Ponte de Capanema)	Defluência U.H.E Itaipu
25/08/2011	07:00	4240	6637,2700000000	152,9132737979	12820
25/08/2011	08:00	4240	6534,1200000000	149,6523119694	13105
25/08/2011	09:00	4240	6431,0400000000	146,6643613152	13116
25/08/2011	10:00	4240	6293,7700000000	143,3508393998	13154
25/08/2011	11:00	4240	6156,7300000000	140,6181373584	13196
25/08/2011	12:00	4240	6054,1500000000	137,5580881305	13262
25/08/2011	13:00	4240	5917,6700000000	134,4721266071	13018
25/08/2011	14:00	4240	5815,5700000000	131,6717375689	12988
25/08/2011	15:00	4240	5713,7200000000	128,8486857790	13244
25/08/2011	16:00	4240	5612,1300000000	126,3195718110	13221
25/08/2011	17:00	4250	5477,1400000000	123,7711993421	13282
25/08/2011	18:00	4250	5376,2800000000	121,2028669381	13184
25/08/2011	19:00	4250	5275,7700000000	118,6138262164	13196
25/08/2011	20:00	4250	5208,9700000000	116,3308007580	12940
25/08/2011	21:00	4710	5142,3400000000	114,0307374112	12914
25/08/2011	22:00	4890	5109,1000000000	112,0452340842	12929
25/08/2011	23:00	5340	5075,9000000000	109,7118862506	13274
26/08/2011	00:00	5490	5075,9000000000	107,6968716106	13702
26/08/2011	01:00	5490	5042,7400000000	105,6675256259	13867
26/08/2011	02:00	5490	5042,7400000000	103,9651062439	13882
26/08/2011	03:00	5790	5042,7400000000	102,2520995936	13862
26/08/2011	04:00	5880	5075,9000000000	100,5281924006	13648
26/08/2011	05:00	5880	5075,9000000000	98,7930544503	12924
26/08/2011	06:00	5880	5075,9000000000	97,3966244005	11887
26/08/2011	07:00	5530	5075,9000000000	95,6403796083	12398
26/08/2011	08:00	5300	5075,9000000000	94,2265775892	12843
26/08/2011	09:00	4980	5075,9000000000	92,8047234358	12845
26/08/2011	10:00	4900	5075,9000000000	91,3745993757	12904
26/08/2011	11:00	4760	5075,9000000000	89,9359768950	13006
26/08/2011	12:00	4680	5142,3400000000	88,4886159587	12912
26/08/2011	13:00	4680	5175,6400000000	87,3972092947	12797
26/08/2011	14:00	4680	5275,7700000000	86,3006341854	12796
26/08/2011	15:00	4160	5376,2800000000	84,8302933978	12805
26/08/2011	16:00	4030	5477,1400000000	84,0915106789	12919
26/08/2011	17:00	3900	5578,3300000000	82,6065333491	12989
26/08/2011	18:00	3600	5713,7200000000	81,8602606757	12897
26/08/2011	19:00	3600	5815,5700000000	80,7360075456	12792
26/08/2011	20:00	3590	5883,6100000000	79,6058144142	12785
26/08/2011	21:00	3590	5951,7600000000	78,4695324795	12851

Data/Hora		Hidrograma de entrada (I)	Vazões verificadas no Posto de	Vazão lateral	Defluência U.H.E Itaipu
		Defluência U.H.E	medição	(Ponte de	U.H.E Itaipu
		Salto Caxias	Hotel Cataratas	Capanema)	
26/08/2011	22:00	3650	5951,7600000000	77,7085519799	12783
26/08/2011	23:00	3240	5951,7600000000	76,9447484749	13215
27/08/2011	00:00	3220	5917,6700000000	75,7936416758	14166
27/08/2011	01:00	3180	5917,6700000000	75,0225612578	13869
27/08/2011	02:00	3000	5849,5800000000	73,8602932732	13863
27/08/2011	03:00	3000	5781,5900000000	73,0816019451	13933
27/08/2011	04:00	3000	5713,7200000000	71,9076510716	13909
27/08/2011	05:00	3000	5612,1300000000	71,1209864479	13843
27/08/2011	06:00	3610	5510,8400000000	69,9347857915	13382
27/08/2011	07:00	2960	5409,8700000000	69,1397534893	12452
27/08/2011	08:00	3120	5309,2400000000	68,3412557316	12700
27/08/2011	09:00	3120	5175,6400000000	67,5392211450	13045
27/08/2011	10:00	2670	5075,9000000000	66,3293749831	13101
27/08/2011	11:00	2390	4943,5700000000	65,5181682026	13124
27/08/2011	12:00	2520	4844,8600000000	65,1111417888	13133
27/08/2011	13:00	2600	4713,9900000000	64,2941905611	13032
27/08/2011	14:00	2600	4616,4200000000	63,4733025505	13015
27/08/2011	15:00	2770	4487,17000000000	62,6483879660	13007
27/08/2011	16:00	3400	4390,9000000000	61,8193532947	12983
27/08/2011	17:00	3670	4295,2100000000	61,4032606305	12999
27/08/2011	18:00	3670	4168,5800000000	60,5678617882	13362
27/08/2011	19:00	3750	4105,7000000000	59,7280912608	13576
27/08/2011	20:00	4310	4011,9200000000	59,3065329128	13257
27/08/2011	21:00	4310	3949,7800000000	58,4600000000	13169
27/08/2011	22:00	4427	3887,9600000000	58,0349964618	15008
27/08/2011	23:00	4640	3826,4500000000	57,1814402768	14254
28/08/2011	00:00	4640	3795,8200000000	56,7528566002	14284
28/08/2011	01:00	4640	3734,8100000000	55,8919977289	14174
28/08/2011	02:00	4640	3704,4300000000	55,4596892306	13494
28/08/2011	03:00	4640	3643,9200000000	54,5912277753	12497
28/08/2011	04:00	4630	3583,7600000000	54,1550389931	12339
28/08/2011	05:00	4650	3523,9600000000	53,7175202038	12403
28/08/2011	06:00	4630	3464,5200000000	53,2786523386	12703
28/08/2011	07:00	4650	3405,4400000000	52,3967906197	12918
28/08/2011	08:00	4640	3405,4400000000	51,9537560856	12216
28/08/2011	09:00	4640	3405,4400000000	51,5092910747	12112
28/08/2011	10:00	4640	3434,9300000000	51,0633738551	12202
28/08/2011	11:00	4390	3523,9600000000	50,6159820984	12215
28/08/2011	12:00	4000	3643,9200000000	50,1670928557	12248

Data/Hora		Hidrograma de entrada (I)	Vazões verificadas no Posto de	Vazão lateral	Defluência
,		Defluência U.H.E	medição	(Ponte de	U.H.E Itaipu
		Salto Caxias	Hotel Cataratas	Capanema)	
28/08/2011	13:00	3720	3795,8200000000	49,7166825331	12221
28/08/2011	14:00	3360	3949,7800000000	49,2647268644	12172
28/08/2011	15:00	2880	4137,1000000000	48,8112008839	12202
28/08/2011	16:00	2720	4295,2100000000	48,3560788968	12424
28/08/2011	17:00	2550	4422,9200000000	47,8993344479	12919
28/08/2011	18:00	2490	4584,0200000000	47,4409402888	13458
28/08/2011	19:00	2910	4681,4100000000	47,4409402888	14137
28/08/2011	20:00	2900	4779,3100000000	46,9808683436	14095
28/08/2011	21:00	3320	4844,8600000000	46,5190896720	13922
28/08/2011	22:00	3540	4910,6200000000	46,0555744302	13317
28/08/2011	23:00	3540	4943,5700000000	45,5902918299	12979
29/08/2011	00:00	3540	4943,5700000000	45,1232100951	13161
29/08/2011	01:00	3540	4976,5800000000	45,1232100951	12631
29/08/2011	02:00	3540	4943,5700000000	44,6542964150	12306
29/08/2011	03:00	3550	4910,6200000000	44,1835168954	12286
29/08/2011	04:00	3560	4844,8600000000	44,1835168954	12281
29/08/2011	05:00	3560	4779,3100000000	43,7108365063	12455
29/08/2011	06:00	3560	4648,8900000000	43,7108365063	12057
29/08/2011	07:00	3560	4519,3900000000	43,2362190260	12952
29/08/2011	08:00	3560	4390,9000000000	42,7596269823	12644
29/08/2011	09:00	3220	4263,4500000000	42,7596269823	12550
29/08/2011	10:00	2700	4105,7000000000	42,2810215890	12655
29/08/2011	11:00	2690	3980,8100000000	41,8003626787	12810
29/08/2011	12:00	2690	3857,1700000000	41,3176086307	12772
29/08/2011	13:00	2960	3795,8200000000	41,3176086307	12187
29/08/2011	14:00	3130	3734,8100000000	40,8327162944	11887
29/08/2011	15:00	3130	3704,4300000000	40,8327162944	11925
29/08/2011	16:00	3130	3704,4300000000	40,3456409067	11879
29/08/2011	17:00	3250	3734,8100000000	40,3456409067	11851
29/08/2011	18:00	3350	3765,2700000000	39,8563360039	11960
29/08/2011	19:00	3340	3795,8200000000	39,8563360039	12108
29/08/2011	20:00	3340	3826,4500000000	39,3647533269	11886
29/08/2011	21:00	3340	3887,9600000000	39,3647533269	11671
29/08/2011	22:00	3560	3918,8300000000	39,3647533269	11634
29/08/2011	23:00	3560	3949,7800000000	39,3647533269	11431
30/08/2011	00:00	3560	3949,7800000000	39,8563360039	11078
30/08/2011	01:00	3590	3949,7800000000	39,8563360039	10978
30/08/2011	02:00	3420	3918,8300000000	39,8563360039	10988
30/08/2011	03:00	3420	3887,9600000000	40,3456409067	10954

Data/Hora		Hidrograma de entrada (I) Defluência U.H.E Salto Caxias	Vazões verificadas no Posto de medição Hotel Cataratas	Vazão lateral (Ponte de Capanema)	Defluência U.H.E Itaipu
30/08/2011	04:00	3420	3826,4500000000	40,3456409067	10910
30/08/2011	05:00	3420	3795,8200000000	40,3456409067	10917
30/08/2011	06:00	3450	3734,8100000000	40,3456409067	11032
30/08/2011	07:00	3590	3704,4300000000	40,3456409067	11117
30/08/2011	08:00	3590	3674,1300000000	40,3456409067	11265
30/08/2011	09:00	3590	3674,1300000000	40,8327162944	11324
30/08/2011	10:00	3590	3643,9200000000	40,8327162944	11357
30/08/2011	11:00	3600	3674,1300000000	41,3176086307	11436
30/08/2011	12:00	3590	3674,1300000000	41,8003626787	11312
30/08/2011	13:00	3590	3704,4300000000	42,2810215890	11186
30/08/2011	14:00	3590	3734,8100000000	42,7596269823	11203
30/08/2011	15:00	3590	3765,2700000000	42,7596269823	11241
30/08/2011	16:00	3590	3795,8200000000	43,2362190260	11247
30/08/2011	17:00	3790	3826,4500000000	44,1835168954	11307
30/08/2011	18:00	4470	3826,4500000000	44,1835168954	11429
30/08/2011	19:00	5070	3857,1700000000	44,6542964150	11217
30/08/2011	20:00	5300	3857,1700000000	44,6542964150	11035
30/08/2011	21:00	5300	3857,1700000000	44,6542964150	10924
30/08/2011	22:00	5290	3857,1700000000	44,6542964150	10879
30/08/2011	23:00	4850	3887,9600000000	44,1835168954	11028

Apêndice B

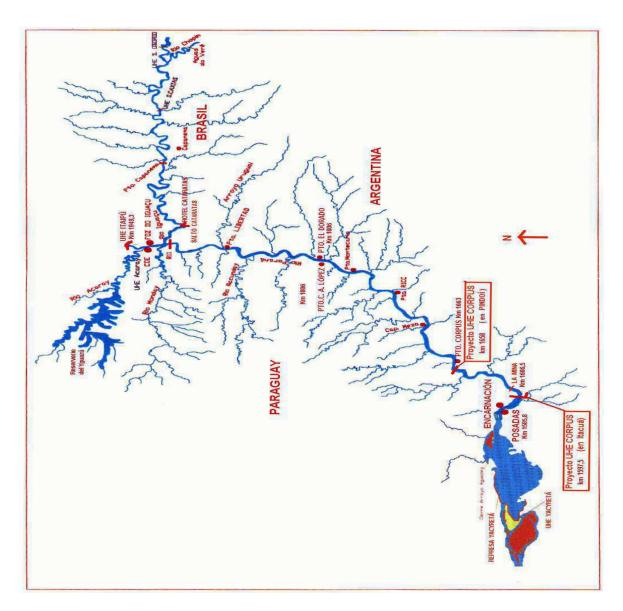


Figura B.1: Área de Implantação dos modelos hidrodinâmicos - Fonte: Itaipu Binacional.

Apêndice C

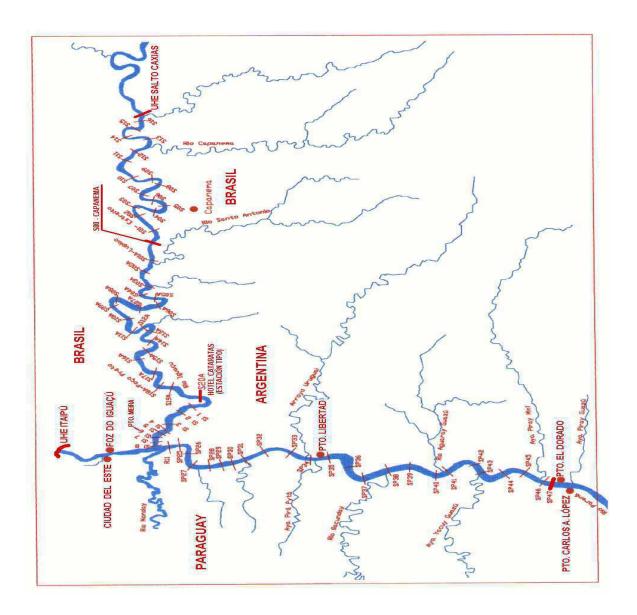


Figura C.1: $UHE\ Itaipu/UHE\ Salto\ Caxias\ at\'e\ Pto.\ El\ Dorado$ Fonte: Itaipu Binacional.

Apêndice D

Figura D.1: Encontro dos Rios Iguaçu e Paraná, na chamada "Tríplice Fronteira".

Fonte: 1

Fotografias registradas no posto de medição R-11 Monday.

Figura D.2: Placa de identificação na estação R-11.

 $^{^{1}} http://jp\text{-}viagense caminhos.blogspot.com/2011/07/puerto\text{-}iguazu\text{-}argentina.html}$

Para se obter os dados do nível de água, utiliza-se o linímetros, mais conhecidos por réguas limnimétricas ou linígrafos. Uma régua limnimétrica é uma escala graduada esmaltada, que é fixada verticalmente na maioria das vezes em colunas de madeira ou metálicas, ou mesmo pintada sobre uma superfície vertical [25].

As leituras de uma régua limnimétrica estão sujeitas a uma série de erros, além de dificuldades naturais na leitura durante cheias devido à oscilação do nível dos rios, também acontecem erros grosseiros resultantes da negligência ou imperícia do observador. Para contornar esse tipo de problema, costuma-se instalar em estações fluviométricas com variações rápidas de nível, aparelhos registradores contínuos do nível de água, denominados linígrafos de bóia ou de pressão [25].

Figura D.3: Régua limnimétrica instaladas na estação R-11.

 $\label{eq:control_problem} \mbox{Figura D.4: } \textit{Monitoramento de níveis por leitura de régua limnimétrica e sensor de nível.}$

Figura D.5: Sensor de nível na estação R-11.

Figura D.6: Estação R-11.

Figura D.7: Estação R-11.

Apêndice E

Fotografias registradas ao longo do Rio Iguaçu.

Figura E.1: Rio Iguaçu inmediatamente ajusante da UHE Salto Caxias.

Figura E.2: Ponte sobre o Rio Iguaçu da Rodovia PR-182, facilita a ligação entre Capitão Leônidas Marquez e Realeza no estado do Paraná.

 $\label{eq:Figura E.3: Rio Iguaçu (vista sobre a ponte).}$

Figura E.4: Solo do rio Iguaçu.

Figura E.5: *Ilha no rio Iguaçu*.

Fonte: 1

Figura E.6: Parque Nacional do Iguaçu.

Fonte: 2

 $^{{}^{1}}http://www.panoramio.com/photo/12725997} \\ {}^{2}http://www.maisturismo.net/parque-nacional-do-iguacu-foz-do-iguacu/parque-nacional-13-rio-parque-nacional-10-rio-parque-nacional-13-rio-parque-nacion$ iguacu/

Apêndice F

Afluentes do rio Iguaçu.

Figura F.1: Rio Cotegipe afluente do Rio Iguaçu pela margem esquerda, a jusante da Barragem e do Reservatório de Salto Caxias.

Figura F.2: Rio Capanema perto da desembocadura com o Rio Iguaçu.

Figura F.3: Desembocadura do Rio Capanema no rio Iguaçu.

 $\label{eq:Figura F.4: Rio Andrade, afluente do rio Iguaçu pela margem dereita.}$

Figura F.5: Rio Santo Antônio, afluente do rio Iguaçu pela margem esquerda, servindo de fronteira entre Brasil e Argentina.

Fonte: 1

 $^{10^{-1} \}rm http://www.ugo.cn/photo/BR/en/125640.htm$