Universidade Estadual de Campinas Faculdade de Engenharia Elétrica e de Computação

Departamento de Semicondutores, Instrumentos e Fotônica

Ruído Elétrico em um *LED* Branco de Alta Eficiência em Frequências acima da Região do Ruído *Flicker*

Candidata: Diana Patricia Otálora Buitrago Orientador: Prof. Dr. Carlos Alberto dos Reis Filho

Dissertação de Mestrado apresentada à Faculdade de Engenharia Elétrica e de Computação como parte dos requisitos para obtenção do título de Mestre em Engenharia Elétrica. Área de concentração: Eletrônica, Microeletrônica e Optoeletrônica.

Comissão Examinadora:

Prof. Dr. Carlos Alberto dos Reis Filho - UNICAMP

Prof. Dr. Galdenoro Botura Junior - UNESP/Câmpus de Sorocaba

Prof. Dr. Edson Moschim - UNICAMP

Campinas, SP 2012

FICHA CATALOGRÁFICA ELABORADA PELA BIBLIOTECA DA ÁREA DE ENGENHARIA E ARQUITETURA - BAE - UNICAMP

Ot1r	Otálora Buitrago, Diana Patricia Ruído elétrico em um LED branco de alta eficiência em frequências acima da região do ruído Flicker / Diana Patricia Otálora BuitragoCampinas, SP: [s.n.], 2012.
	Orientador: Carlos Alberto dos Reis Filho. Dissertação de Mestrado - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de Computação.
	1. Diodos emissores de luz. 2. Ruído elétrico. 3. Ruído. 4. Supercondutores de alta temperatura. I. Reis Filho, Carlos Alberto dos. II. Universidade Estadual de Campinas. Faculdade de Engenharia Elétrica e de Computação. III. Título.

 Título em Inglês: Measurements of electrical noise in a high-efficiency LED beyond the Flicker noise region
 Palavras-chave em Inglês: Light emitting diodes, Electric noise, Noise, High temperature superconductors
 Área de concentração: Eletrônica, Microeletrônica e Optoeletrônica
 Titulação: Mestre em Engenharia Elétrica
 Banca examinadora: Galdenoro Botura Junior, Edson Moschim
 Data da defesa: 13-07-2012
 Programa de Pós Graduação: Engenharia Elétrica

COMISSÃO JULGADORA - TESE DE MESTRADO

Candidata: Diana Patricia Otálora Buitrago

Data da Defesa: 13 de julho de 2012

Título da Tese: "Ruído Elétrico em um LED Branco de Alta Eficiência em Frequências Acima da Região do ruído Flicker"

Prof. Dr. Carlos Alberto dos Reis Filho (Presidente):	
Prof. Dr. Galdenoro Botura Junior:	
Prof. Dr. Edson Moschim:	

Resumo

Este trabalho descreve os procedimentos experimentais e as justificativas que levaram à determinação de uma relação entre a densidade de tensão de ruído em altas frequências e a temperatura da junção de um LED branco de alta eficiência. As medições da densidade de tensão de ruído foram realizadas polarizando o LED com correntes na faixa de $1\mu A$ até 326mA e temperaturas de junção desde $24^{\circ}C$ até $120^{\circ}C$.

A realização deste trabalho, que é de cunho exploratório, foi motivada pela busca de mecanismos que permitam a avaliação contínua da temperatura da junção de um LED em operação, tendo em vista sua grande influência na durabilidade do LED. A crescente expansão do uso do LED em lugar das lâmpadas incandescentes e fluorescentes está mudando a indústria da iluminação, trazendo com isto novos desafios. Um destes desafios está na melhoria dos circuitos de acionamento (drivers e fontes de alimentação), que hoje respondem por 59% das falhas nos LEDs. Pesa na confiabilidade destes circuitos a falta do controle da temperatura de junção.

Os resultados deste trabalho, apesar de restritos à caracterização de apenas duas amostras de um LED branco de alta eficiência, mostraram nitidamente a presença de um ruído de excesso cuja amplitude tem forte correlação com a temperatura da junção.

Foi constatado, nas duas amostras caracterizadas, que a densidade de tensão de ruído medida é equivalente ao que produz um resistor de aproximadamente $13K\Omega$.

Palavras-chave: Diodos emissores de luz, LED, Ruído Térmico, Ruído Shot, Temperatura de junção, Medição por tensão direta.

Abstract

This paper describes the experimental procedures and the reasons that led to determining a relationship between the high-frequencies noise voltage density and the junction temperature of a highefficiency white LED. the measurements of noise voltage density were performed biasing the LED with currents in the range of $1\mu A$ up to 326mA and temperatures junction from $24^{\circ}C$ to $120^{\circ}C$. This work, which is exploratory, was motivated by the search for mechanisms that allow to continually assess the junction temperature of an LED in operation, given its great influence on the lifetime of the LED. The growing expansion of the use of LEDs instead of incandescent and fluorescent bulbs is changing the lighting industry, bringing with it new challenges. One of these challenges is the improvement of the power supplies and driver circuits, which now account for 59% of failures in LEDs. The lack of control of the LED junction temperature in these circuits is one of the issues that respond to their reduces reliability.

The outcome of the herein presented work, although only restricted to the characterization of two samples of a high-efficiency white LED, clearly showed the presence of an excess noise whose amplitude has strong correlation with the junction temperature. It was found from the two tested samples, that the measure noise voltage density is equivalent to what is produced by a resistor of approximately $13K\Omega$.

Keywords: Light emitting diodes, LED, Thermal noise, Shot noise, Junction temperature, Forward voltage measurement.

Aos meus pais, irmãos, sobrinhos e meu namorado Juan Camilo que são a melhor parte da minha vida.

Agradecimentos

Ao meu orientador, Prof. Carlos A. Reis, pela orientação e apoio prestado no desenvolvimento da dissertação.

Ao meu namorado Juan Camilo, pelo apoio incondicional desde há sete anos em meus estudos e nas decisões importantes da minha vida.

Aos meus pais, que são a motivação de cada dia da minha vida, por ter me apoiado sempre e por ter estado ao meu lado incondicionalmente. A minha família por fazer de minha vida momentos agradáveis.

Às minhas duas amigas Mayer e Carolina por ser exemplo de vida e de motivação para seguir crescendo cada dia.

Ao meu Sen-Sei Jorge Adames por ter me ensinado uma nova forma de vida que é a motivação para melhorar todos os dias.

Aos meus amigos Cecília, Glauco e Luiz Eduardo por ter feito de minha estadia no Brasil momentos inesquecíveis e importantes da minha vida.

Aos meus colegas do laboratório LPM, por ter sido uma boa companhia nos dias de trabalho.

Ao engenheiro de aplicações da empresa Future Electronics, Alexandre Penna, pelo fornecimento das amostras do LED e informações que contribuíram no direcionamento deste trabalho.

Finalmente, ao CNPq, pelo apoio financeiro.

"Everything should be made as simple as possible, but not simpler." (Alber Einstein)

Sumário

Li	sta de	e Figuras	X
Li	sta de	e Tabelas	xiii
G	lossár	io	xiv
Li	sta de	e Símbolos	xvi
1	Intr	odução	1
	1.1	Motivação	1
	1.2	Conceitos Básicos	2
2	Rev	isão bibliográfica	5
	2.1	Introdução	5
	2.2	Breve Histórico	5
	2.3	Características elétricas e ópticas dos LEDs	6
		2.3.1 Características de corrente e tensão	6
		2.3.2 Propriedades ópticas	7
		2.3.3 Desvios do gráfico ideal Corrente em relação à Tensão	8
	2.4	Eficiência luminosa e tempo de vida dos LEDs	10
	2.5	Conclusões	13
3	Tem	peratura de junção de diodos emissores de luz	14
	3.1	Introdução	14
	3.2	Temperatura de junção	14
	3.3	Técnicas de medição da temperatura de junção dos LEDs	15
		3.3.1 Temperatura de portador e declive de alta energia do espectro	15
		3.3.2 Temperatura de junção e pico de emissão de comprimento de onda	16
		3.3.3 Medição de temperatura de junção utilizando a tensão direta	18
		3.3.4 Medição de temperatura de junção utilizando o modelo de resistência térmica	22
	3.4	Conclusões	24
4	Clas	sses de ruído e proposta de medição de ruído branco dos LEDs.	26
	4.1	Introdução	26
	4.2		26

SUMÁRIO

		4.2.1 Tipos de ruído	27
		4.2.2 Características de ruído	30
	4.3	Medições do ruído térmico de resistências e diodos comuns	31
	4.4	Proposta e metodologia de medição da temperatura de junção e ruído branco dos LEDs	35
	4.5	Conclusões	36
5	Resu	iltados Experimentais	37
	5.1	Introdução	37
	5.2	Implementação e resultados dos métodos de medição	37
		5.2.1 Medição da temperatura de junção utilizando tensão direta	37
		5.2.2 Medição de densidade de tensão de ruído branco do LED	41
	5.3	Análises de dados	44
	5.4	Conclusões	49
6	Con	clusões	52
Re	ferên	cias bibliográficas	54
A	Roti	nas de medições elaboradas no LABview TM	58
B	Tabe	elas de dados	69

Lista de Figuras

2.1	Junção p-n (a) sem tensão direta e (b) com tensão direta aplicada [1]	7
2.2	Recombinação de elétrons e lacunas e emissão de fótons [1]	7
2.3	Dependência da intensidade de luz com a temperatura [1].	8
2.4	(a) Efeito de resistências em série e paralelas. (b) Efeito do sub-threshold turn $on[1]$.	9
2.5	Corrente direta em relação a tensão direta do LED LXML-PWC1-0090 da Philips-	10
26		10
2.0	Qualidade de liuminação vs. tempo de operação para diversos tipos de lampadas [3].	11
2.1	Tempo de vida dos LEDs em relação à Temperatura de junção [4]	12
2.0	temperatura de junção [5]	12
		12
3.1	Temperaturas de portador obtidas a partir do declive de alta energia de emissão de	
	espectro para (a) LED azul de GaInN e (b) LED vermelho de AlGaInP[6]	16
3.2	(a) Pico de emissão de comprimento de onda em relação à temperatura do forno de	
	um LED AlGaN UV, para correntes pulsadas com 0.1% de ciclo útil. (b) Emissão de	
	espectro e temperatura da junção para diferentes correntes DC [7]	17
3.3	Temperatura de junção inferida da energia do pico de emissão como função da injeção	
. .	de corrente DC para um LED UV emittindo a 295nm [7]	17
3.4	Energia fundamental bandgap do GaN, GaP, GaAs, InP, Si, e Ge como função da	10
25		19
3.5	Corrente em relação a tensão do LED de GaAsP/GaAs de cor vermeina, medido a 106% C = 22% C [1]	20
26	-190° C e 22° C [1]	20
5.0	(a) Flocedimento de canolação puisante, que estabelece V_f em felação a T_j e (b) determinação de temperatura de junção para diferentes correntes contínuas DC [0]	20
37	(a) Medição de calibração pulsada e (b) temperatura de junção versus corrente DC	20
5.7	nara um LED <i>UV</i> de AlGaN [9]	21
3.8	Temperatura de junção e de portador de dispositivos LED como função da corrente	21
0.00	DC [6]	22
3.9	LED de alta potência com base de resfriamento [10]	23
3.10	Modelo térmico compacto obtido da estrutura da função cumulativa para o cálculo	
	das resistências térmicas R_{thjc} e R_{thja} [10]	23
3.11	Modelo mixto do LED: domínio elétrico, óptico e térmico [10]	24
<i>A</i> 1	Distribuição Gaussiana da amplitude dos ruídos tármiços e shot [11]	30
4.1	Distributção Gaussiana da amplitude dos ruídos termicos e silor [11]. \ldots \ldots	50

4.2 4.3	Ruídos <i>flicker</i> , térmico e <i>shot</i> [11]	31 32
4.4	Comparação entre dados teóricos e experimentais para o ruído de uma resistência	33
4.5	Simulação da densidade de tensão de ruído de saída para um resistor de $90M\Omega + 42pF$	34
4.6	Dados experimentais de ruído de diodos comuns em relação à corrente	35
5.1	Forno de temperatura controlada	38
5.2	Foto de forno de temperatura	38
5.3 5.4	Rotina do LABview [™] para medir temperatura	39
	LED	39
5.5 5.6	Sistema de medição de tensão do LED alimentado por pulsos de corrente Rotina do LABview TM para a medição da tensão do LED energizado por pulsos de	40
	corrente.	41
57	Curva característica de tensão em relação à temperatura para baixas correntes	42
5.8	Curva característica de tensão em relação à temperatura para altas correntes	42
59	Fonte de corrente de baixo ruído utilizada nos experimentos	43
5.10	Sistema de medição de ruído	44
5.11	Rotina do LABview TM para a aquisição de dados de ruído \dots	44
5.12	Rotina do LABview TM para calcular o valor do ruído RMS do LED \ldots	45
5.13	Curva característica densidade de tensão de ruído em relação à temperatura para o	
	LED1	46
5.14	Curva característica de densidade de tensão de ruído em relação à temperatura para o LED2	46
5.15	Curva de densidade de tensão de ruído em relação à corrente para um diodo comum	
	e um LED de alta eficiência	47
5.16	Modelos de suma de ruídos térmico e <i>shot</i>	48
5.17	Resistência Calculada em relação à Corrente para os LEDs 1 e 2	49
5.18	Linearização do ruído térmico em relação à temperatura para o LED1 com ponto de interseção em $0^{\circ}K$	50
5.19	Linearização do ruído térmico em relação à temperatura para o LED2 com ponto de interseção em $0^{\circ}K$	50
5.20	Linearização do ruído térmico em relação à temperatura para os LEDs 1 e 2 com ponto de interseção em $0^{\circ}K$	51
5.21	Erro absoluto de experimentação	51
A.1	Fluxograma para a leitura de dados de temperatura da RTD conectada a um multímetro digital HP34401A no software LABview TM $\dots \dots \dots$	59
A.2	Fluxograma para o controle do gerador de pulsos HP8116A no software LABview TM .	60
A.3	Fluxograma para o controle do conversor ADC de 16 bits no software LABview TM .	61
A.4	Fluxograma para o controle do sistema integrado de geração de pulsos, medição de tensão e medição de temperatura no software LABview TM Parte 1	62
A.5	Fluxograma para o controle do sistema integrado de geração de pulsos, medição de tensão e medição de temperatura no software LABview TM Parte 2	63

A.6	Fluxograma para o controle de medição de ruído do HP3561A no software LAB-	
	view TM Parte 1	64
A.7	Fluxograma para o controle de medição de ruído do HP3561A no software LAB-	
	view TM Parte 2	65
A.8	Fluxograma para o controle de medição de ruído do HP3561A no software LAB-	
	view TM Parte 3	66
A.9	Fluxograma para o controle de medição de ruído do HP3561A no software LAB-	
	view TM Parte 4	67
A.10	Fluxograma para o cálculo do ruído do LED no software LABview TM	68
D 1	Dedas taéricos a avrenimentais aktidos nore a Lock In Annelifor SD520a	70
D.1	Dados teoricos e experimentais oblidos para o Lock-in Amplijter SK550C	70
B.2	Primeiros 50 dados obtidos pelo pulso de corrente a baixascorrentes	71
B.3	Primeiros 50 dados obtidos pelo pulso de corrente a altas correntes	72
B.4	Dados de ruído para cada corrente, temperatura e resistência calculada	73

Lista de Tabelas

1.1	Comprimento de onda, tensão limiar e mistura de semicondutores para as diferentes cores de LEDs	4
2.1 2.2	Vida útil típica das fontes de luz [3] Eficiência típica de luminosidade para diferentes fontes de luz	10 11
3.1	Valores do modelo compacto dinâmico [10]	24
4.1 4.2	Medição de ruído de resistores de precisão com o DSA 3561A	33 35
5.1	Comparação entre as resistências médias calculadas e as resistências calculadas por declive.	48

Glossário

Alloy-broadening	Efeito de ampliação da liga em um semicondutor.
Bandgap	Energia liberada por um elétron que passa da banda de condução para
	a banda de valência em um diodo.
LED	Diodo emissor de luz (acrônimo de Light Emitting Diode). Diodo se-
	micondutor que quando é energizado emite luz visível.
MOSFET	Transistor de efeito de campo metal-óxido-semicondutor (acrônimo de
	Metal-Oxide-Semiconductor Field-Effect Transistor).
Região de depleção	Região conformada por impurezas doadoras e aceptoras ionizadas.
RMS	Valor quadrático médio ou valor eficaz (acrônimo de Root Mean
	Square).
RTD	Termorresistência (acrônimo de Resistance Temperature Detector).
	Instrumento que permite conhecer a temperatura do meio ambiente,
	recorrendo à relação entre a resistência elétrica de um material e a sua
	temperatura.
Ruído intrínseco	Ruído essencial que sempre vai estar presente.
Ruído shot	Fenômeno de flutuações de corrente.
Ruído térmico	Fenômeno de flutuação de energia.
Shunt	Resistência em paralelo.
Tensão de difusão	Potencial produzido por íons doadores no lado tipo-n e os aceptores no
	lado tipo-p de um diodo.
Tensão threshold	Valor no qual a corrente do diodo incrementa exponencialmente.
UV	Luz ultravioleta (acrônimo de Ultraviolet). Radiação eletromagnética
	com um comprimento de onda menor que a da luz visível e maior que
	a dos raios X (380nm a 1nm).
Varshni	Fórmula que descreve a dependência da energia gap de um semi-
	condutor com a temperatura.

Lista de Símbolos

α	-	Parâmetro de Varshni
β	-	Parâmetro de Varshni
Δf	-	Largura de banda
f	-	Freqüência
h	-	Constante de Planck
I_D	-	Corrente do diodo
i_{dc}	-	Corrente contínua do LED
i_n	-	Corrente de ruído
I_S	-	Corrente de saturação
K	-	Constante de Boltzmann
m	-	Declive
η	-	Fator de idealidade
P_D	-	Potência do diodo
P_{el}	-	Potência elétrica
P_{opt_int}	-	Potência óptica interna
P_R	-	Potência da resistência
q	-	Carga do elétron
R	-	Resistência
T	-	Temperatura absoluta
T_C	-	Temperatura do portador
T_j	-	Temperatura de junção
T_0	-	Ponto de intercepção
V	-	Tensão direta
v_n	-	Tensão de ruído RMS
V_T	-	Tensão térmica

Capítulo 1

Introdução

1.1 Motivação

Diodos emissores de luz (LEDs) são parte de uma tecnologia limpa e eficiente. Oferecendo 80% de eficiência e uma longa vida operacional, esses dispositivos estão substituindo as tradicionais lâmpadas incandescentes, contudo, ainda existem muitas questões sobre o desempenho desses dispositivos, existindo assim grande interesse pela pesquisa e desenvolvimento nessa área de investigação.

Um dos assuntos de maior relevância no tema dos LEDs é o comportamento da temperatura de junção quando o dispositivo encontra-se em funcionamento. O desconhecimento da temperatura exata na qual o LED está operando impossibilita o controle da mesma causando a redução do tempo de vida e degradação do encapsulamento do LED. Por esse motivo, na industria há uma grande demanda para conhecer com exatidão a temperatura de junção dos LEDs associada a sua tensão de alimentação, porém, atualmente os métodos de medição são escassos e demandam de grandes aparatos de medição. O procedimento que oferece o menor erro de medição na atualidade é a medição da temperatura de junção utilizando polarização direta. Com esse método é possível obter, sob uma determinada corrente de operação, a relação que existe entre esses dois parâmetros para um LED. Existe, porém, uma dificuldade para utilizar essa técnica em escala industrial, pois, a tensão direta em relação à temperatura de junção é diferente para cada LED e para cada corrente.

Em contrapartida, os ruídos térmico e *shot* são fenômenos de flutuação de energia e de flutuações de corrente, respectivamente. Tanto o ruído térmico quanto o ruído *shot* são características inerentes a dispositivos semicondutores, pois, os mesmos se relacionam diretamente com a temperatura e corrente de operação dos mesmos. Desta forma, o objetivo principal deste trabalho é encontrar a relação que existe entre a temperatura de junção do LED e o ruído branco do mesmo, relacionando dados de ruído obtidos experimentalmente, quando o dispositivo é energizado com uma *corrente contínua* (também conhecida por suas siglas em inglês como corrente DC) conhecida, com dados de tempe-

ratura correspondentes ao mesmo nível de corrente obtidos a partir da medição da temperatura de junção utilizando polarização direta.

1.2 Conceitos Básicos

Durante os últimos anos, LEDs de cor branca têm incrementado suas aplicações significativamente, sendo parte dos últimos avanços da tecnologia em iluminação. Esses dispositivos semicondutores, robustos e confiáveis, não têm filamentos ou outras peças mecânicas sujeitas à quebra ou falhas. São considerados elementos ecológicos pelo fato de não conter mercúrio, por sua longa duração e pelo baixo consumo de potência devido à capacidade de converter até 80% da energia consumida em luz. Essas características dos LEDs permitem uma enorme redução nos custos de manutenção e iluminação.

Quando um LED é polarizado diretamente, *elétrons* e *lacunas* que fluem pela junção com diferentes níveis de tensões, se recombinam liberando energia em forma de *fótons*. O efeito é conhecido como *eletroluminescência* e se diferencia principalmente da incandescência ¹ porque ocorre à temperatura ambiente. Em essência, o LED consiste em um dispositivo de materiais semicondutores dopados com impurezas para obter uma junção PN e, da mesma forma que os diodos comuns, uma corrente flui facilmente do *anodo* (lado *p*) ao *cátodo* (lado *n*). O comprimento de onda e a cor da luz emitida dependem da energia de *band gap* dos materiais que formam a junção. Essa característica torna possível a obtenção de energias com diferentes comprimentos de onda tais como: luz infravermelha, visível ou ultravioleta [1]

Na tabela 1.1 se indicam os materiais semicondutores utilizados para obter diferentes cores de luminescência em LEDs, assim como o comprimento de onda e a queda de tensão correspondentes.

LEDs de luz branca, em especial, têm revolucionado nos últimos anos a industria da iluminação. Existem dois modos principais de produzir LEDs de luz branca de alta intensidade: o primeiro é utilizar LEDs individuais que emitam as três cores primarias (amarela, azul e vermelha) e após misturar todas as cores [15]; o segundo método é utilizar o elemento fósforo (P) para converter a luz monocromática de um LED azul ou ultravioleta ao branco [16].

Uma das últimas inovações industriais são *LEDs orgânicos* conhecidos como *OLEDs (Organic light emitting diodes)*. Nesses elementos utilizam-se materiais orgânicos semicondutores que podem ser pequenas moléculas orgânicas em uma fase cristalina ou polímeros. As potenciais vantagens dos OLEDs incluem: telas de baixo custo com baixa tensão de operação, amplo ângulo de visão, alto contraste e gama de cores. Além disso, os mesmos possuem o benefício de serem utilizados em telas

¹O efeito de incandescência (ou *heat glow* em inglês) é a radiação eletromagnética visível emitida por um material aquecido a altas temperaturas.

flexíveis. Atualmente, OLEDs são utilizados em telas de dispositivos eletrônicos portáveis tais como: celulares, câmeras digitais e reprodutores portáteis de música. No entanto, futuras inovações podem ampliar as aplicações dos OLEDs à iluminação e televisores [17][18].

Cor	Comprimento	Tensão limiar	Material semicondutor
	de onda [nm]	$[\Delta V]$	
Infravermelho	<i>λ</i> >760	$\Delta V < 1.9$	Arseneto de gálio (GaAs)
			Alumínio arseneto de gálio (AlGaAs)
Vermelho	610<λ<760	1.63<∆V<2.03	Alumínio arseneto de gálio (AlGaAs)
			Fosfeto de arsenieto de gálio (GaAsP)
			Alumínio gálio fosfeto de índio (AlGaInP)
			Gálio (III) fosforeto (GaP)
Laranja	590<λ<610	2.03<∆V<2.10	Fosfeto de arsenieto de gálio (GaAsP)
			Alumínio gálio fosfeto de índio (AlGaInP)
			Gálio (III) fosforeto (GaP)
Amarelo	570<λ<590	2.10<∆V<2.18	Fosfeto de arsenieto de gálio (GaAsP)
			Alumínio gálio fosfeto de índio (AlGaInP)
			Gálio (III) fosforeto (GaP)
Verde	500<λ<570	$1.9 < \Delta V < 4.0$	Índio nitreto de gálio (InGaN)
			Gálio (III) fosforeto (GaP)
			Alumínio gálio fosfeto de índio (AlGaInP)
			Alumínio fosfeto de gálio (AlGaP)
Azul	450<λ<500	2.48<∆V<3.7	Selenieto de zinco (ZnSe)
			Índio nitreto de gálio (InGaN)
			Carboneto de silício (SiC) como substrato
			Silício (Si) como substrato (em desenvolvimento)
Violeta	400< <i>λ</i> <450	2.76<∆V<4.0	Índio nitreto de gálio (InGaN)
Roxo	Vários tipos	$2.48 < \Delta V < 3.7$	Dupla de LEDs azul/vermelho
	-		Azul com vermelho de fósforo
			Branco com roxo plástico
Ultravioleta	<i>λ</i> <400	3.1<∆V<4.4	Diamante (235 nm)[12]
			Nitreto de boro (215 nm)[13]
			Nitreto de alumínio (AlN) (210 nm)[14]
			Alumínio nitreto de gálio (AlGaN)
			Alumínio Nitreto de índio e gálio (AlGaInN)
Branco	Espectro amplo	$\Delta V < 3.5$	Diodo Azul/UV com fósforo amarelo

Tabela 1.1: Comprimento de onda, tensão limiar e mistura de semicondutores para as diferentes cores de LEDs

Capítulo 2

Revisão bibliográfica

2.1 Introdução

Neste capítulo é apresentado um breve histórico dos LEDs, seguido de uma revisão das propriedades elétricas e ópticas dos LEDs. Além disso, são mencionadas as vantagens dos LEDs sobre outros dispositivos de iluminação, destacando-se as previsões de tempo de vida. Ao final do capítulo, são apresentadas as conclusões, ressaltando as deficiências na teoria dos LEDs, particularmente a modelagem de ruído e sensibilidade térmica.

2.2 Breve Histórico

A primeira pesquisa conhecida de *light-emitting solid-state diode* foi feita em 1907 pelo britânico Henry Joseph Round (1881-1966). Ele considerou a possibilidade de utilizar os cristais de SiC (carbeto de silício) como detectores (retificadores) de estado solido (*rectifying solid-state detectors*), depois chamados "cristais detectores"(ou *crystal detectors* em inglês). Desse modo, seus primeiros dispositivos emissores de luz tinham características de corrente e tensão retificada, obtendo assim diodos emissores de luz ou LEDs. Neste dispositivo a luz era produzida pelo contato do cristal de SiC com eletrodos metálicos, formando um contato *Schottky* retificador, porém, desde seu descobrimento não foi desenvolvido um uso prático por décadas [1][19].

Paralelamente, Oleg Vladimirovich Losev (1903-1942) publicou um artigo intitulado "*Luminous carborundum [[silicon carbide]] detector and detection with crystals*"na revista russa *Wireless Telegraphy and Telephony*, na qual se reporta a emissão de luz proveniente de um material de estado sólido causada por uma fonte de potência elétrica (fenômeno conhecido como eletroluminescência). Infelizmente, esse trabalho feito em 1927 também não foi desenvolvido por décadas. [1][20].

O primeiro LED prático de espectro visível foi inventado por Nick Holonyak, Jr., em 1962 quando

trabalhava na General Electric em Siracusa, Nova York. O dispositivo de junção de GaAsP (fosfeto de arseneto de gálio) de cor vermelha, tornou-se comercial ao final da mesma década e foi usado primeiramente como luz indicadora, displays de sete segmentos e displays alfanuméricos em equipamentos de alto custo utilizados para testes eletrônicos em laboratórios. Posteriormente também foi utilizado em outras aplicações como televisores, rádios, telefones, calculadoras e relógios. Os LEDs vermelhos não produziam o brilho suficiente para iluminar uma área, razão pela qual serviam somente como indicadores.

Na década de 1970, surgem os LEDs de cores verde, amarela e laranja ampliando seu uso na indústria. No começo dos anos 80, LEDs de melhor qualidade são desenvolvidos com novas tecnologias, sendo mais eficientes, consumindo menos energia e gerando dez vezes mais luz do que as gerações anteriores. Nos anos 90 um grupo de pesquisadores liderados pelos japoneses Shuji Nakamura e Takashi Mukai, contribuíram na indústria dos LEDs desenvolvendo dispositivos emissores de luz compostos de GaN (nitreto de gálio). Suas contribuições incluem os primeiros LED de luz verde e azuis de GaInN (índio nitreto de gálio), assim como *lasers*. Posteriormente também contribuíram com LEDs de luz branca, revolucionando a indústria com fontes de luz de alta eficiência, vida longa e consumo energético reduzido.

Considerados a iluminação do futuro, os LEDs têm um enorme potencial não só na área de iluminação, mas também na optoeletrônica e no armazenamento de dados. Foram desenvolvidas muitas aplicações a partir da criação dos LEDs de cor azul e branca, como por exemplo os LEDs de luz ultravioleta que permitem a esterilização de água potável, o laser azul mediante o qual é possível obter a tecnologia *blu-ray* e, portanto, quintuplicar o volume de informação armazenada em dispositivos como o DVD [1][21].

2.3 Características elétricas e ópticas dos LEDs

2.3.1 Características de corrente e tensão

Seguindo a teoria de materiais semicondutores, a região de depleção, denominada desse modo pela ausência de portadores livres, é composta por impurezas *doadoras* e *aceitadoras* ionizadas, criando um espaço de carga. Assim, os íons doadores no lado *tipo-n* e os aceitadores no lado *tipo-p*, produzem um potencial denominado *tensão de difusão*, que representa a barreira que portadores livres devem superar para atingir a região do tipo oposto. Uma representação da tensão de difusão é mostrada na figura 2.1

Deste modo, quando um LED é polarizado diretamente, os portadores se recombinam. Assim, um elétron que passa da banda de condução para a banda de valência perde energia (conhecida como

Figura 2.1: Junção p-n (a) sem tensão direta e (b) com tensão direta aplicada [1].

bandgap), incrementando o fluxo de corrente e emitindo um fóton, cuja representação se pode observar na figura 2.2

Figura 2.2: Recombinação de elétrons e lacunas e emissão de fótons [1]

Na teoria, a relação entre tensão e corrente em um LED é a mesma que rege um diodo semicondutor, sendo esta relação conhecida como a equação de Shockley 2.1

$$I_D = I_S \left(e^{V/\eta V_T} - 1 \right) \to V_T = \frac{KT}{q}$$

$$\tag{2.1}$$

sendo I_D a corrente do diodo, I_S a corrente de saturação reversa, V a tensão sobre o diodo, η o fator de idealidade, V_T a tensão térmica, K a constante de Boltzmann, T a temperatura de operação e q a carga do elétron.

Sob condições de polarização direta, a corrente é incrementada exponencialmente conforme aumenta a tensão do diodo [1].

2.3.2 Propriedades ópticas

A região ativa de um LED ideal emite um fóton por cada elétron injetado, assim a eficiência interna quântica ideal é unitária. Igualmente, todos os fótons emitidos pela região ativa seriam emitidos ao espaço livre, desse modo o LED teria uma eficiência de extração unitária. Em um LED real, no entanto, a potência na região ativa não é emitida em sua totalidade ao espaço livre. Nem todos os fótons são emitidos para o exterior, devido a alguns fatores de perdas. Por exemplo, a luz emitida pela região ativa pode ser reabsorvida pelo substrato do LED, assumindo que o substrato absorve à emissão do comprimento de onda emitido. Além disso, o fenômeno de "reflexão total interna"reduz à habilidade da luz para sair do semicondutor [22].

Muitos semicondutores têm um alto índice de reflexão em relação ao ar, portanto os fótons são emitidos em forma de cones conformados por um ângulo de incidência. Um fóton não pode penetrar o semicondutor em um ângulo maior do que o máximo de incidência, assim o fóton é refletido no meio do interior do cristal do semicondutor e do exterior da superfície do cristal. A incorporação de lentes de Fresnel, que é uma estrutura multifacetada no próprio cristal, tem incrementado a luz de saída dos LEDs permitindo que a luz seja emitida perpendicularmente [23].

A intensidade de emissão de luz dos LEDs diminui com o incremento da temperatura. Na figura 2.3 se observam os resultados de um experimento que mostra a dependência da intensidade da luz com a temperatura a uma corrente constante para um LED azul de GaInN/GaN, um verde de GaInN/GaN, e um vermelho de AlGaInP (alumínio gálio fosfeto de índio)/GaAs [1].

Figura 2.3: Dependência da intensidade de luz com a temperatura [1].

2.3.3 Desvios do gráfico ideal Corrente em relação à Tensão

A equação de Shockley 2.1 descreve às características teóricas esperadas para uma junção PN. Para um diodo ideal, o fator de idealidade tem valor unitário. Frequêntemente um diodo tem resis-

tências parasitas indesejáveis que são a causa de diversos desvios da gráfica ideal de I vs. V de um diodo ideal mostrado na figura 2.4.

Figura 2.4: (a) Efeito de resistências em série e paralelas. (b) Efeito do sub-threshold turn on[1].

O efeito de resistência em série pode ser causado por um contato resistivo excessivo ou por resistências das regiões neutras. Um diodo com uma resistência em série mostra um desvio do comportamento exponencial a altas correntes diretas. De acordo com a *Lei de tensões de Kirchhoff*, as tensões através do diodo e da resistência se somam [24].

O resultado de resistências em paralelo (ou *shunt*) pode ser originado por regiões defeituosas na junção PN ou por imperfeições na superfície que causam canais que atravessam a junção PN. Obedecendo a *Lei de correntes de Kirchhoff*, as correntes dentro do diodo e do resistor se somam. Esse efeito gera uma "corcunda"que é mais visível no gráfico semi-logarítmico de corrente em relação à tensão, conforme mostrado na figura 2.4 [1].

Quando um diodo é energizado, sua ativação está distribuída em uma faixa de tensões e não ocorre abruptamente como se esperaria no caso ideal. O efeito é conhecido como *acesso prematuro* (ou *sub-treshold turn on* em inglês). A corrente *sub-threshold* pode ser causada pela mobilidade de portadores por estados de superfície ou níveis profundos no *bulk* do semicondutor. O gráfico real de um LED [2], mostrado na figura 2.5, não pode ser modelado com estes efeitos em sua totalidade e, teoricamente, não é conhecida nenhuma outra equação confiável que descreva o comportamento deste elemento em relação à tensão, corrente e temperatura.

Figura 2.5: Corrente direta em relação à tensão direta do LED LXML-PWC1-0090 da Philips-Lumileds [2]

2.4 Eficiência luminosa e tempo de vida dos LEDs

Um LED devidamente controlado tem uma vida útil que perdura mais do que a vida nominal de fontes de luz convencionais. A tabela 2.1 mostra a comparação entre a vida útil típica dos LEDs e das fontes convencionais de luz [3].

Fonte de luz	Faixa típica (Horas)
Incandescente	750 - 2000/vida média
Incandescente halógena	2000 - 4000/vida média
CFL (lâmpada fluorescente compacta)	8000 - 10000/vida média
Iodetos metálicos	7500 - 20000/vida média
Fluorescente linear	20000 - 30000/vida média
LED luz branca	35000 - 50000/vida útil

Tabela 2.1: Vida útil típica das fontes de luz [3]

A eficiência típica de luminosidade (tabela 2.2) permite ter outro ponto de comparação nas fontes de energia. Geralmente circuitos projetados para o acionamento dos LEDs oferecem 80% de eficiência, mas também são encontrados *drivers* disponíveis que oferecem 85% de eficiência [25].

A taxa de depreciação, chamada "*Lumen depreciation*"é a medida de diminuição da intensidade na saída, em *lúmen*, que ocorre com o passar do tempo de funcionamento da lâmpada. A qualidade de

Fonte de luz	Faixa de eficiência típica de
	luminosidade (lm/W)
Incandescente (sem balastro)	10 - 18
Halógena (sem balastro)	15 - 20
CFL (incluindo balastro)	35 - 60
Fluorescente linear (incluindo balastro)	50 - 100
Iodetos metálicos (incluindo balastro)	50 - 90
LED branco frio (incluindo driver)	60 - 92
LED branco cálido (incluindo driver)	27 - 54

Tabela 2.2: Eficiência típica de luminosidade para diferentes fontes de luz

iluminação muda de acordo com a taxa de depreciação de cada lâmpada, dada pela composição desta, o tempo de operação e, no caso específico dos LEDs, com o calor gerado na junção. No caso das lâmpadas fluorescentes, a degradação fotoquímica da camada de fósforo e acumulação de depósitos de absorção de luz, causam a diminuição de qualidade luminosa [3]. A depreciação para diferentes tipos de lâmpadas é mostrada na figura 2.6.

Figura 2.6: Qualidade de iluminação vs. tempo de operação para diversos tipos de lâmpadas [3]

A eficiência quântica interna dos LEDs e o tempo de vida dependem diretamente da temperatura de junção. O gráfico mostrado na figura 2.7 demonstra a relação de tempo de vida de um LED com a corrente de alimentação e a temperatura do mesmo. Por exemplo, o tempo de vida médio do LED é 60.000 horas quando se tem uma temperatura média de junção de $100^{\circ}C$ e uma temperatura ambiente de $85^{\circ}C$. Um incremento de $10^{\circ}C$ na junção resulta em uma diminuição de 10.000 horas de vida ou ainda, para um incremento de $1^{\circ}C$ uma perda de 1.000 horas de vida [4].

O tempo de vida também diminui consideravelmente quando a temperatura de junção excede um limite para diferentes correntes como é mostrado na figura 2.8. O gráfico mostra que ao energizar o LED a uma corrente de 350mA precisa-se manter a temperatura de junção a $160^{\circ}C$ ou a uma tem-

peratura inferior para manter a expectativa de vida de 60.000 horas. Se o dispositivo for energizado a uma corrente maior, como por exemplo 700mA, a temperatura de junção deve manter-se inferior a $140^{\circ}C$. Quando a temperatura de junção excede o limite estabelecido para cada corrente, o tempo de vida diminui de 60.000 a 40.000 ou 30.000 horas para um incremento de $10^{\circ}C$ [5].

Figura 2.7: Tempo de vida dos LEDs em relação à Temperatura de junção [4]

Figura 2.8: Tempo de vida esperado dos LEDs energizados a diferentes correntes em relação à temperatura de junção [5].

2.5 Conclusões

A modelagem mais próxima ao funcionamento real dos LEDs é dada pelo desempenho dos diodos. Está claro, contudo, que esses dispositivos semicondutores têm um comportamento ligeiramente diferente que não pode ser modelado com a equação do diodo ideal 2.1, mas tem se uma aproximação com as variações que se podem obter com as resistências parasitas. Os LEDs, no entanto, são objetos de estudo pois estão revolucionando a tecnologia da iluminação. O longo tempo de vida dos mesmos, o baixo consumo de energia e a boa qualidade luminosa que possuem são as principais vantagens que os LEDs têm sobre outros tipos de lâmpadas. Ainda assim, esses aspectos têm uma grande dependência com a temperatura de junção do LED, o que mostra a necessidade da elaboração de um método de medição de temperatura da junção do LED, não invasivo e com alta precisão para obter uma estimativa confiável destes aspectos.

Capítulo 3

Temperatura de junção de diodos emissores de luz

3.1 Introdução

Neste capítulo são apresentadas as razões da importância de conhecer com exatidão a temperatura de junção dos LEDs e os diferentes métodos de medição que existem. São identificadas quatro técnicas principais:

- Temperatura de portador e declive de alta energia do espectro
- Temperatura de junção e pico de emissão de comprimento de onda
- Medição de temperatura de junção usando tensão direta
- Medição de temperatura de junção usando o modelo de resistência térmica

Ao final do capítulo, explanam-se os aportes que oferecem cada um desses métodos e as características necessárias para propor um novo método de medição de temperatura dos LEDs.

3.2 Temperatura de junção

A temperatura da região ativa, mais conhecida como *temperatura de junção* (ou *junction temperature* em inglês), é um parâmetro crítico por três principais razões:

- 1. A eficiência térmica quântica depende da temperatura de junção.
- 2. Uma alta temperatura de operação reduz o tempo de vida do LED.

3. O encapsulamento se pode ver degradado por uma alta temperatura no dispositivo.

Por estas razões, é importante conhecer a temperatura de junção em função da corrente direta. Com baixos níveis de corrente, a fonte de calor dominante é a região ativa, sendo que o calor é gerado pela recombinação não radiativa. Sob altas correntes, a contribuição das resistências parasitas incrementa notoriamente em relação à região ativa, podendo inclusive tornar-se dominante [1].

A medição ideal da temperatura de junção seria monitorar a temperatura do LED o mais perto possível de sua fonte de calor. A corrente que flui pela junção do semicondutor produz o aquecimento que depois é conduzida da junção até o exterior do dispositivo. Um método que pode ser implementado é a colocação de um sensor de temperatura o mais próximo possível à junção do LED e a resultante medição da sinal de saída. Assim como o calor flui para a área exterior do LED, o sensor poderia detectar o incremento de temperatura. Essa simples metodologia tem limitações físicas causadas pelo tamanho atual dos sensores de temperatura, pois, na maioria de casos o sensor é maior do que o dispositivo semicondutor a ser medido. Essa técnica não é usada na maioria das aplicações, pois, a exatidão se reduz quando se tem uma grande massa térmica adicional no sistema [26].

Existem diferentes métodos, a maior parte indiretos, que calculam a temperatura de junção a partir de um parâmetro simples de medir. Os métodos são: espectroscopia micro-Raman [27], tensão limiar [28], refletância foto-térmica microscópica [29], eletroluminescência [30], fotoluminescência [31] e o método de não contato baseado na relação de pico de uma fonte dicromática [32].

3.3 Técnicas de medição da temperatura de junção dos LEDs.

A seguir são discutidos os quatro procedimentos com maior relevância; o primeiro é o método pelo qual é possível medir a temperatura do portador mediante o declive de alta energia da emissão do espectro. O segundo método é baseado na alteração do pico de emissão de comprimento de onda com a temperatura. O terceiro método é baseado na variação da tensão direta do LED com a temperatura. Finalmente, apresenta-se e o procedimento pelo qual é calculada a resistência térmica do LED como ferramenta de cálculo da temperatura de junção.

3.3.1 Temperatura de portador e declive de alta energia do espectro

A distribuição de Boltzmann de portadores, aplicável à parte de alta energia da emissão de espectro, resulta em uma dependência exponencial com a intensidade de emissão de energia 3.1.

$$I \propto \exp\left[-h\nu/\left(KT_c\right)\right] \to \frac{d\left(lnI\right)}{d(h\nu)} \propto \frac{-1}{KT_c}$$
(3.1)

sendo que T_c é a temperatura do portador. Assim, a temperatura do portador pode ser diretamente inferida a partir do declive. Devido ao fato que a temperatura do portador é geralmente maior do que a temperatura de junção, este método dá um limite superior para a real temperatura de junção.

Na figura 3.1 se mostra o cálculo da temperatura do portador da emissão de espectro de um LED de GaInN e de AlGaInP [6]. A baixos níveis de correntes, a temperatura do portador do dispositivo de GaInN é de $221^{\circ}C$ e do elemento de AlGaInP é de $212^{\circ}C$. A altas correntes, a temperatura do portador incrementa a $415^{\circ}C$ e a $235^{\circ}C$ para o GaInN e o AlGaInP, respectivamente.

Figura 3.1: Temperaturas de portador obtidas a partir do declive de alta energia de emissão de espectro para (a) LED azul de GaInN e (b) LED vermelho de AlGaInP[6]

Com esse método também é revelado que a temperatura do portador aumenta juntamente com o nível de corrente. Contudo, o cálculo da temperatura do portador com este procedimento é excessivo devido ao efeito de *alloy-broadening* (ampliação da liga) nos semicondutores ternários e quaternários. Assim, essa metodologia é melhor para compostos binários, como por exemplo o GaAs ou o InP, pois, os mesmos não possuem efeitos como a flutuação estática da composição química nestes metais em estes semicondutores [1].

3.3.2 Temperatura de junção e pico de emissão de comprimento de onda

Esse método faz uso da dependência da energia de *bandgap* e, portanto, do pico de emissão de comprimento de onda com a temperatura. A técnica consiste em uma medida de calibração e medição da temperatura de junção. Na medição de calibração, o pico de energia é medido em diferentes temperaturas ambientes, geralmente na faixa de $20^{\circ}C$ a $120^{\circ}C$, colocando-se o dispositivo em um forno com temperatura controlada. O dispositivo é polarizado com uma gama de correntes pulsadas com um ciclo útil « 1 para minimizar o aquecimento adicional.

Como consequência, a temperatura do ar dentro do forno e a temperatura da junção podem ser assumidas como idênticas. A medida de calibração estabelece a relação da temperatura de junção em relação à energia de pico de emissão para uma série de correntes. Após a calibração, a energia do pico de emissão é medida em função da injeção de corrente contínua a temperatura ambiente. A temperatura de junção para cada nível atual pode ser determinada utilizando os dados de calibração.

Figura 3.2: (a) Pico de emissão de comprimento de onda em relação à temperatura do forno de um LED AlGaN UV, para correntes pulsadas com 0.1% de ciclo útil. (b) Emissão de espectro e temperatura da junção para diferentes correntes DC [7].

Figura 3.3: Temperatura de junção inferida da energia do pico de emissão como função da injeção de corrente DC para um LED UV emittindo a 295nm [7].

A figura 3.2 (a) mostra os dados de calibração para um LED *UV* e a figura 3.2 (b) exibe a emissão de espectro do LED *UV* para diferentes injeções de correntes [7]. As temperaturas de junção inferidas da medição de calibração se apresentam na figura 3.3.

A precisão do método é limitada pela capacidade de determinar o pico do comprimento de onda. Como regra geral, a barra de erro do pico do comprimento de onda é aproximadamente de 5-10% da largura à meia altura da linha de luminescência. Efeitos de *alloy-broadening* também estabelecem uma limitação na precisão do método. A emissão de energia é modificada com a variação da temperatura, devido à dependência que tem a energia da banda proibida (*bandgap*) com a temperatura (dE_g/dT). A variação da energia *bandgap* pode ser calculada pelos parâmetros α e β da equação de *Varshni*, conforme mostrado na seção 3.3.3.1 [1].

3.3.3 Medição de temperatura de junção utilizando a tensão direta

3.3.3.1 Teoria da dependência da temperatura de junção com a corrente direta do LED

O gráfico ideal de corrente em relação à tensão de um diodo de junção PN ideal é dado pela equação de Shockley 2.1 que pode ser reescrita como 3.2

$$J = J_S(exp^{eV_f/(\eta_{ideal}KT)} - 1)$$
(3.2)

sendo J_S é a densidade da corrente de saturação. Para semicondutores não degenerativos sob condições de tensão direta, temos que $V_f >> kT/q$, obtendo assim 3.3

$$\frac{dV_f}{dT} = \frac{d}{dT} \left[\frac{\eta_{ideal} KT}{q} ln\left(\frac{J_f}{J_S}\right) \right]$$
(3.3)

A densidade da corrente de saturação depende das constantes de difusão e dos tempos de vida dos elétrons e das lacunas, da densidade efetiva de estados bandas de condução e de valência e da energia de *bandgap*, todos os quais dependem da temperatura de junção. O tempo de vida dos portadores minoritários pode decrescer ou aumentar com a temperatura, quando não tem recombinação e quando se recombina, respectivamente. Devido a esta incerteza, é assumido que o tempo de vida desses portadores é independente da temperatura. Usando as dependências na equação 3.3 e resolvendo as derivada se tem 3.4

$$\frac{dV_f}{dT} = \frac{qV_f - E_g}{qT} + \frac{1}{q}\frac{dE_g}{dT} - \frac{3K}{q}$$
(3.4)

A equação 3.4 descreve a dependência fundamental da tensão direta com a temperatura. Os três termos ao lado direto da equação decorrem da dependência da temperatura da concentração intrínseca de portadores, da energia de *bandgap* e da densidade efetiva de estados, respectivamente.

O segundo termo da equação 3.4 é devido às trocas na energia de *bandgap*. Assim, como as temperaturas aumentam, a energia de *bandgap* dos semicondutores geralmente decresce. A dependência da energia *bandgap* de um semicondutor com a temperatura pode ser expressada pela equação de *Varshni* 3.5 [8].

$$E_g = E_g|_{T=0K} - \frac{\alpha T^2}{T+\beta}$$
(3.5)

sendo que α e β são conhecidos como os parâmetros de *Varshni*. A energia de *bandgap* em relação à temperatura para diferentes semicondutores é mostrada na figura 3.4 com os respectivos valores de α e β .

Figura 3.4: Energia fundamental bandgap do GaN, GaP, GaAs, InP, Si, e Ge como função da temperatura [8].

A dependência da temperatura para LEDs de GaPAs/GaAs se pode observar na figura 3.5, que representa o gráfico de corrente em relação à tensão a $77K (-196^{\circ}C)$ e a temperatura ambiente $(22^{\circ}C)$. No gráfico pode se observar que quando o LED se esfria, a tensão de limiar e a resistência em série aumentam. As tensões limiares são de 2.0 e 1.6V a 77K e 300K, respectivamente [1].

3.3.3.2 Metodologia da técnica de medição de temperatura de junção utilizando a tensão direta do LED

A técnica consiste em realizar uma medida de calibração da tensão direta (V_f) sob polarização de pulsos de corrente, na qual se estabelece a tensão direta em relação à temperatura de junção $(V_f \text{ vs.} T_j)$, e uma medição da tensão direta sob polarização de corrente DC. As duas medidas são ilustradas na figura 3.6.

Figura 3.5: Corrente em relação à tensão do LED de GaAsP/GaAs de cor vermelha, medido a $-196^{\circ}C$ e $22^{\circ}C$ [1].

Figura 3.6: (a) Procedimento de calibração pulsante, que estabelece V_f em relação à T_j e (b) determinação de temperatura de junção para diferentes correntes contínuas DC [9].

Na medição de calibração, o dispositivo de teste está localizado em um forno com temperatura controlada, de modo que a temperatura do dispositivo e da junção é conhecida; a temperatura varia tipicamente de $20^{\circ}C$ a $120^{\circ}C$. A medição de calibração é realizada em um modo pulsado com um ciclo útil muito pequeno (por exemplo 0,1%), de modo que o calor gerado pela polarização de corrente se tornará desprezível e a tensão direta é medida em cada temperatura para os níveis de corrente de interesse. A medição de calibração estabelece a relação entre a tensão direta e a temperatura de junção para os níveis I_F de interesse.
Posteriormente, o dispositivo exposto à temperatura ambiente da câmara climática é submetido a uma série de correntes diretas e as tensões diretas são medidas uma vez que o estado estacionário térmico seja atingido. A medida de tensões diretas e os dados de medição de calibração são utilizados para determinar a temperatura de junção para diferentes níveis de corrente. Na figura 3.7 observa-se a medida de calibração e a medida de temperatura para um LED *UV* de AlGaN [9].

Figura 3.7: (a) Medição de calibração pulsada e (b) temperatura de junção versus corrente DC para um LED *UV* de AlGaN [9].

É possível assumir o comportamento linear na relação temperatura de junção em relação à tensão direta para a maioria dos materiais. A não linearidade pode ser determinada experimentalmente medindo a tensão direta em altas temperaturas. Esta relação pode ser expressada através da equação 3.6

$$T_j = m \cdot V_f + T_0 \tag{3.6}$$

sendo que T_j é a temperatura de junção, m é o declive em °C/V, V_f é a tensão direta ou queda de tensão e T_0 a interseção. Assim, para uma temperatura de junção T_j , o semicondutor terá uma queda de tensão V_f . Portanto, ao medir V_f a duas temperaturas diferentes, é possível calcular o declive me a interseção T_0 , para uma junção em particular. Como a relação é linear, a equação 3.6 pode ser utilizada para calcular a temperatura de junção sob diferentes condições de tensão direta [26].

O método de "tensão direta"(VF) tem uma precisão de alguns graus e também é mais preciso do que o método do pico de comprimento de onda. O último método é limitado pela incerteza no pico de comprimento de onda, que é difícil determinar com precisão para o comprimento das bandas de emissão. Além disso, a temperatura de portador calculada pelo declive de alta energia de espectro é afetada pelo efeito de *alloy-broadening*, que diminui o declive de alta energia e portanto aumenta aparentemente a temperatura do portador. Esses efeitos se observam na figura 3.8, a qual mostra a temperatura de junção para diferentes dispositivos como o LED vermelho (AlGaInP, $\lambda = 625nm$),

verde (GaInN, $\lambda = 525nm$), azul (GaInN, $\lambda = 460nm$), e UV (Ga-InN, $\lambda = 370nm$) [1] [6].

Figura 3.8: Temperatura de junção e de portador de dispositivos LED como função da corrente DC [6].

3.3.4 Medição de temperatura de junção utilizando o modelo de resistência térmica

Em dispositivos optoeletrônicos a potência aplicada se dissipa em forma de calor e de luz paralelamente. Não é simples calcular a resistência térmica R_{th} dos mesmos. Portanto, o primeiro objetivo desse método é caracterizar, neste caso, LEDs de potência, realizando medições fotométricas e térmicas.

Investigações do comportamento do transiente térmico em LEDs de alta potência permitiram estruturar um método de caracterização do calor e o cálculo das resistências térmicas da junção até o encapsulamento. LEDs de alta potência são compostos por uma pasta térmica de diferentes materiais junto a um substrato de cobre visando refrigerar o dispositivo, como se observa na figura 3.9.

Os transientes térmicos são gravados em diferentes níveis de potência, primeiro energizando um LED a uma determinada corrente contínua (400mA), depois a corrente é diminuída a um nível menor (10mA) e em seguida é capturada a tensão direta. Com um fator de sensibilidade medido em uma calibração prévia, é possível medir, em °*C*, a elevação da tensão direta correspondente ao resfriamento.

Figura 3.9: LED de alta potência com base de resfriamento [10]

A seguir, é usado um *software* de avaliação para remover os distúrbios iniciais elétricos e para converter os transientes em funções de estrutura cumulativa e diferencial. As funções de estrutura cumulativa são uma representação gráfica do RC térmico equivalente do sistema de medição, portanto, valores de resistência térmica e de capacitância podem ser deduzidas. Com a função cumulativa e a estrutura diferencial é possível identificar as diferentes estruturas do dispositivo. Tendo uma boa repetibilidade é possível identificar a resistência térmica da junção até a cápsula Rth_{JC} e a resistência térmica da junção até o ambiente Rth_{JA} .

Partindo das funções cumulativa e diferencial é possível obter um modelo discreto e, portanto, construir um modelo compacto utilizando ferramentas de *software*. Aplicando este método a um LED, conforme reportado em [10], foi obtido o modelo da figura 3.10 com os valores da tabela 3.1.

Figura 3.10: Modelo térmico compacto obtido da estrutura da função cumulativa para o cálculo das resistências térmicas R_{thjc} e R_{thja} [10]

O circuito mostrado na figura 3.10 é a base para construir uma metodologia para produzir modelos de transientes térmicos. A modelagem básica do LED consta de um diodo com uma resistência em série, portanto, a potência elétrica P_{el} do dispositivo é mostrada na equação 3.7, sendo que P_R é a potência da resistência e P_D é a potência do diodo. Parte da energia elétrica da P_D é convertida em fótons, o que leva à definição de P_{opt_int} no domínio óptico do dispositivo.

$$P_{el} = P_R + P_D \tag{3.7}$$

Deste modo, é possível a obtenção de um modelo que contém os três domínios: elétrico, óptico

R_{th}	[K/W]	\sum	R_{th}	C_{th} [mWs/k]				
				C 0	Small			
R1	1.25			C1	0.105			
R2	0.918			C2	0.189			
R3	4.88			C3	0.606			
R4	1.648			C4	17.5			
R5	1.126	R_{thjc}	9.82	C5	164			
RA	2.2	R_{thja}	12.02					

Tabela 3.1: Valores do modelo compacto dinâmico [10].

e térmico. O modelo pode ser utilizado em simulações termo-elétricas. Esse modelo é mostrado na figura 3.11 [10].

Figura 3.11: Modelo mixto do LED: domínio elétrico, óptico e térmico [10].

Após a obtenção dos valores de resistência térmica, é possível calcular a temperatura da junção do LED a partir da fórmula 3.8, na qual se considera a potência óptica e se representa a potência elétrica pelo produto da corrente e a tensão direta [33].

$$T_j = T_{ref} + R_{threal} \cdot (I_F \times V_F - P_{opt})$$
(3.8)

3.4 Conclusões

A medição da temperatura de junção dos LEDs é um tópico de grande interesse, mas de grande complexidade. A medição direta não é uma opção plausível devido aos erros inerentes ao processo.

Para a medição indireta da temperatura, foram apresentados diferentes métodos reportado na literatura, tais como: a medição de temperatura do portador; a relação da temperatura de junção com o comprimento de onda; a medição da temperatura de junção por tensão direta e o cálculo da temperatura de junção mediante o modelo de resistência térmica. O primeiro método impõe um limite máximo para a temperatura de junção mas não é possível obter um valor correto da temperatura desejada. O segundo método apresenta a relação da temperatura de junção com a energia de pico de emissão para uma série de correntes, mas sua precisão está limitada pela capacidade de determinar o comprimento de pico de onda. O método de tensão direta é o que oferece maior fiabilidade; enquanto que o último método está baseado em um modelo de sistema térmico do LED e suas limitações correspondem à capacidade e projeto do *software* utilizado.

O método de medição da temperatura de junção por tensão direta é caracterizado por ser um dos mais simples e por fornecer uma boa exatidão em comparação com os outros mencionados anteriormente. Devido à relação da temperatura de junção com a tensão direta que é aproximadamente linear, é possível caracterizar um LED para diferentes temperaturas ou quedas de tensão com facilidade. Com base nesse método é possível fornecer novas metodologias para a medição da temperatura de junção dos LEDs.

Capítulo 4

Classes de ruído e proposta de medição de ruído branco dos LEDs.

4.1 Introdução

Neste capítulo são apresentadas as definições e principais características das classes de ruídos em componentes semicondutores. Posteriormente, é feita uma comparação entre os resultados experimentais e os valores teóricos para a medição de densidade de tensão de ruído de resistências de precisão e de diodos comuns com a finalidade de conseguir um método adequado de medição de ruído para qualquer circuito. Ao final do capítulo, é apresentado o método de medição do ruído branco de um LED operando a diferentes níveis de corrente direta e a técnica utilizada para obter a temperatura de junção correspondente, para assim cumprir com a proposta deste trabalho que é encontrar uma relação entre a densidade de tensão de ruído medida com a temperatura da junção do LED.

4.2 Teoría de ruído

Os primeiros pesquisadores que estudaram o ruído, relacionaram as flutuações espontâneas de corrente e tensão em circuitos com o *movimento browniano*. Assim, o ruído elétrico mostrou-se como um problema significativo para projetar amplificadores sensíveis; o limite para a sensibilidade de um circuito elétrico é definido pelo ponto no qual a relação sinal-ruído cai abaixo de limites aceitáveis. Em 1928, J.B. Johnson afirmou que "A flutuação estática da carga elétrica existe em todos os condutores, produzindo uma variação aleatória de potencial entre as extremidades do elemento. As cargas elétricas em um condutor encontram-se em um estado de agitação térmica, em equilíbrio termodinâmico com o movimento de calor dos átomos do condutor. A manifestação do fenômeno é uma flutuação da diferencia de potencial entre os terminais do condutor"[34].

4.2.1 Tipos de ruído

Na teoria de ruído de circuitos eletrônicos é possível identificar cinco fontes comuns de ruído:

- Ruído térmico ou thermal noise
- Ruído shot
- Ruído flicker
- Ruído de ruptura ou burst noise
- Ruído de avalanche

Os parâmetros de ruído podem ser especificados em densidade espectral de tensão ou de corrente sobre raiz de hertz, sendo V/\sqrt{Hz} ou A/\sqrt{Hz} . As equações características que identificam as fontes de ruído sempre se encontram integradas pela frequência, indicando que a densidade espectral é a forma natural para expressar fontes de ruído [11].

4.2.1.1 Ruído térmico

O ruído térmico é causado pela agitação térmica das cargas (elétrons ou lacunas) em um condutor. Este ruído se encontra presente em todos os elementos resistivos passivos e tem a característica de ser plano ao longo do espectro tendo uma densidade de potência uniforme.

H. Nyquist, em 1928, formulou um resistor ideal como um gerador de tensão causando uma *emf* ("*electromotive force*") nos terminais à qualquer temperatura maior do que 0°K, obtendo a equação 4.1

$$\overline{v_n^2} = 4RKT\Delta f \tag{4.1}$$

sendo que v é a tensão dada em V, R a resistência do condutor em Ω , K a constante de Boltzmann¹, T a temperatura absoluta em Kelvins² e Δf a largura de banda do instrumento de medição [36]. No mesmo ano, J.B. Johnson verificou a dependência da tensão do ruído térmico na resistência [34], assim o ruído térmico também é referido ao ruído Johnson ou Nyquist. O ruído térmico (também conhecido como ruído "branco" ou "white" noise em inglês) não depende do material do resistor

¹A constante de Boltzmann é a constante física que relaciona temperatura e energia de moléculas. O seu valor experimental é $K = 1.3806504x10 - 23 J/^{\circ}K$ [35].

²Para converter de graus Celsius (°C) a graus Kelvin (°K) se utiliza a expressão: $T_K = 273.15^{\circ}C + T_C$, sendo que T_C é a temperatura em graus Celsius.

e é constante até frequências de microondas³; em frequências mais altas a energia quântica hf das oscilações é comparável com KT, necessitando assim uma modificação na fórmula de Nyquist.

Em um condutor, o ruído térmico pode ser modelado como tensão ou corrente. Quando se modela como tensão, representa-se em série com um resistor sem ruído e quando é modelado como corrente, o resistor é colocado em paralelo. Para essa última representação, é utilizada a equação 4.2 [11].

$$\overline{i_n^2} = \frac{4KT}{R} \Delta f \tag{4.2}$$

sendo que os parâmetros são igualmente definidos como na equação 4.1 e a expressão i_n está dada em A.

4.2.1.2 Ruído shot

O ruído *shot* está sempre associado ao fluxo de corrente. Esta classe de ruído é o resultado de cargas que atravessam uma barreira de potencial, como em uma junção PN, sendo um evento puramente aleatório. Assim, a corrente instantânea *i* está composta de um grande número aleatório de impulsos independentes de corrente com um valor médio i_D . O ruído *shot* geralmente é expresso em termos de variação de raiz quadrada ao redor do valor médio. O ruído *shot* é representado por $\overline{i_n}$ (A/\sqrt{Hz}) na equação 4.3

$$\overline{i_n^2} = 2qi_{dc} \tag{4.3}$$

sendo que q é a carga do elétron⁴, i_{dc} a corrente dc que flui pelo diodo e Δf a largura de banda do instrumento de medição [38]. Esse tipo de ruído, assim como o ruído térmico, é constante ao longo do espectro, pois tem uma densidade de potência uniforme, mas tem a importante característica que, ao contrario do ruído de uma resistência, é independente da temperatura [11].

Além disso, enquanto o ruído de uma resistência representa diretamente uma potência, o ruído shot é apenas uma flutuação em corrente que pode corresponder a alguma potência unicamente quando flui por uma impedância. Essa impedância é definida como o inverso da transcondutância do modelo de pequeno sinal ou resistência incremental em uma junção PN, dada por KT/qI_{dc} . Assim, a densidade espectral de tensão de ruído shot também pode ser expresso em V/\sqrt{Hz} , pois com a definição anterior, tem se que a densidade espectral do ruído shot é o produto do ruído da corrente e a resistência (equação 4.4) [39].

 $^{^{3}}$ As microondas estão definidas como ondas de rádio com comprimentos de onda equivalentes às frequências entre 300MHz (0.3GHz) = 300GHz [37]

⁴A carga do elétron é de q = 1.602176565x10 - 19 C [35].

$$\overline{v_{Shot}} = \frac{KT}{qi_{dc}}\sqrt{2qI_{dc}} = KT\sqrt{\frac{2}{qI_{dc}}}$$
(4.4)

4.2.1.3 Ruído flicker

Em baixas frequências domina o ruído 1/f ou *flicker* (também referido a *pink noise* ou *excess noise*), que está presente em todos os dispositivos ativos e pode ser causado por diferentes motivos. Uma das explicações para esse tipo de ruído, no caso dos MOSFET, é que algumas cargas ficam aleatoriamente presas e posteriormente liberadas por estados de energias devido à movimentação destas na interface entre o óxido do *gate* e o substrato de silício em um MOSFET, introduzindo o ruído *flicker* na corrente de dreno.

Além disso, este tipo de ruído também é encontrado em resistências de composição de carbono aparecendo em adição ao ruído térmico, no entanto, desde que o ruído *flicker* seja proporcional à corrente DC no dispositivo, mantendo uma corrente o suficientemente baixa, o ruído térmico predominará e o tipo de resistor não vai mudar o ruído no circuito.

A raiz quadrada da tensão do ruído 1/f é dado por a equação 4.5

$$\overline{v} = \sqrt{AR^2 i^2 \frac{\Delta f}{f}} \tag{4.5}$$

sendo que A é uma constante adimensional (10-11 para carbono), R é a resistência, I a corrente, Δf a largura de banda do equipamento de medição, e f a freqüência à que o equipamento se encontra sintonizado [40].

4.2.1.4 Ruído de ruptura

O ruído de ruptura (ou em inglês *burst noise*), também conhecido como *popcorn noise*, encontrase relacionado com as imperfeições no material do semicondutor e implantes de íons pesados. Esse ruído pode produzir um "estalo"em frequências menores que 100Hz quando são reproduzidas em um alto-falante. O ruído de ruptura pode ser reduzido significativamente quando se tem um processamento limpo do dispositivo [11].

4.2.1.5 Ruído de avalanche

O ruído de avalanche é criado quando uma junção PN é operada no sentido inverso. Sob a influência de um forte campo elétrico no sentido inverso dentro da região de depleção na junção, os elétrons têm energia cinética suficiente que, quando colidem com os átomos da rede cristalina, são formados pares adicionais de elétron-lacuna. Estas colisões são puramente aleatórias e produzem pulsos de corrente aleatórios similares ao ruído *shot*, mas com maior intensidade [11].

4.2.2 Características de ruído

Neste trabalho os ruídos de maior relevância são o **térmico** e o *shot*, pois, os mesmos se encontram diretamente relacionados com a temperatura e a corrente de operação em altas frequências. Esses ruídos, diferentemente dos outros descritos anteriormente, apresentam características similares, que são fundamentais para realizar uma medida de ruído. Assim, observando a figura 4.1 tem-se que a distribuição para a largura de banda do ruído no domínio do tempo é *Gaussiana* e não depende da frequência desde uns poucos kHz até centenas de MHz. Como as fontes de ruído têm amplitudes que mudam aleatoriamente no tempo, somente podem ser especificadas por uma função de densidade de probabilidade. Portanto, usando a distribuição normal ou Gaussiana⁵, é possível estimar o ruído pico a pico utilizando um desvio padrão adequado.

Figura 4.1: Distribuição Gaussiana da amplitude dos ruídos térmicos e shot [11].

O cálculo do valor RMS (equação 4.6) do ruído é simplesmente o mesmo valor calculado do desvio padrão (equação 4.7) quando a média é zero, implicando que não existe nenhum componente DC; neste caso, os sinais de ruído são Gaussianos com média igual a zero. Nas duas equações apresentadas a continuação x_i é a amostragem de dados, n o número de amostras e μ a média de todas as amostras [11].

⁵Na distribuição Gaussiana, os eventos mais extremos são menos prováveis de que os eventos intermediários (mais próximos do ponto central). Em um desvio padrão σ , encontram-se cerca de 68% dos valores a partir da média, cerca de 95% dos valores encontram-se dentro de dois desvios padrão e cerca de 99,7% são dentro de três desvios padrão [41]

$$RMS = \sqrt{\frac{1}{n} \sum_{i=1}^{n} x_i^2} \tag{4.6}$$

$$\sigma = \sqrt{\sigma^2} = \sqrt{\frac{1}{n} \sum_{i=1}^n (x_i - \mu)}$$
(4.7)

Por último, as fontes de ruído mencionadas anteriormente e descritas na figura 4.2, também são definidas como uma variação de outras fontes de ruído do espectro eletromagnético, conhecidas como fundamentais ou fontes de ruído intrínseco. Ruído das linhas de tensão e seus harmônicos, estações de rádio AM, FM, TV, microondas, etc., se denominam como "interferência"ou fontes de ruído não essenciais porque podem ser minimizadas em práticas de laboratório [42].

Figura 4.2: Ruídos *flicker*, térmico e *shot* [11].

4.3 Medições do ruído térmico de resistências e diodos comuns

Seguindo a equação 4.1, o ruído térmico teórico de um resistor ideal é constante ao longo do espectro de frequências para uma mesma temperatura. Na prática, um resistor pode ser modelado como uma fonte de tensão que representa o valor da densidade de tensão do ruído térmico desse em série com um resistor ideal em paralelo com um capacitor. Para conhecer ditos valores de um resistor, pode ser utilizada uma ponte de impedâncias, neste caso se utilizou o equipamento 4284A (*Precision LCR Meter*).

Para medir a densidade de tensão do ruído térmico de um resistor experimentalmente, foi utilizado primeiramente um *Lock-In Amplifier* SR530c, que tem uma impedância de entrada de $100M\Omega + 25pF$. A principal vantagem que oferece este equipamento é que para uma freqüência central de medição se pode escolher uma largura de banda de 1Hz ou 10Hz com a função ENBW (*Equivalent*)

Noise Bandwidth). Neste caso foi escolhida a opção de 1Hz para ter uma medição mais exata do ruído em uma freqüência central e foi determinado que não se utilizaria nenhum filtro. Assim, foi medida a densidade de tensão do ruído de um resistor de $90M\Omega + 42pF$, caracterizado pela ponte de impedâncias. O circuito é mostrado na figura 4.3.

Figura 4.3: Circuito de medição do ruído de um resistor

Em toda medição de ruído, o circuito em análise deve ser isolado adequadamente para evitar a entrada de ruídos indesejados (interferências). Nas medições descritas neste trabalho, o circuito encontra-se dentro de uma caixa metálica perfeitamente fechada com conectores BNC que permitem a saída do sinal do circuito mediante cabos coaxiais que vão diretamente ao equipamento de medição. Assim, foram obtidos dados experimentais do resistor, caracterizado anteriormente com o *Lock-In Amplifier* para frequências desde 2Hz até 10KHz e foram comparados com os dados de simulação. A figura 4.4 mostra os dados obtidos no experimento. É possível observar que se descreve uma boa semelhança entre a experimentação e os valores esperados. As tabelas de dados se encontram no anexo B.

Assim, é possível deduzir facilmente que o circuito comporta-se como um filtro passa-baixas, portanto para um valor de resistência maior tem-se que a impedância do circuito aumenta e, deste modo, a frequência de corte é menor. Igualmente foi feita a mesma avaliação em outro instrumento de medição de ruído, o *Dynamic Signal Analyser* 3561A, com diferentes valores de resistores de precisão a temperatura ambiente controlada $(27^{\circ}C)$; os dados foram comparados com os teóricos obtidos pela equação 4.1, obtendo que, até a frequência de corte, o analisador de sinais consegue um valor de ruído muito próximo ao teórico, com um *span* de 40Hz, como se mostra na tabela 4.1. A altas frequências, o valor de ruído é diminuído por causa do filtro passa-altos conformado pelo circuito de medição.

Os distintos valores de medição foram obtidos com diferentes valores de resistências de precisão em série, assim para os três primeiros dados foram utilizados uma, três e cinco resistências de $1M\Omega$ e para os últimos dados resistências de $10M\Omega$. Ao trabalhar com esta configuração, o valor teórico

Figura 4.4: Comparação entre dados teóricos e experimentais para o ruído de uma resistência.

do ruído de resistências em série tem que seguir a equação 4.8, pois a soma destas fontes de ruído é dada pela raiz quadrada da soma dos quadrados dos ruídos de cada resistência.

$$v_{Tresistencias} = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2}$$
 (4.8)

Neste caso, devido ao fato que as resistências utilizadas são do mesmo valor e se encontram à mesma temperatura, o valor da densidade de tensão de ruído para essa configuração é o mesmo de uma resistência equivalente à soma dos valores de cada resistência utilizada.

Resistência			Ruído	(nV/\sqrt{Hz})		
$(M\Omega)$	Teórico	10-50Hz	70-110Hz	130-170Hz	1100-1140Hz	10KHz-10040Hz
1	128.75	130.8	130.1	128.9	120.4	42.45
3.0	223.00	221.9	220.7	217.8	153.4	31.76
5.0	287.89	282.7	272.5	282	146.5	36.36
10	407.14	400.6	372.0	351.1	119.7	47.05
28.7	689.73	608.7	483.6	414.1	94.6	32.30
48	891.99	719.2	488.7	372.3	80.0	46.20

Tabela 4.1: Medição de ruído de resistores de precisão com o DSA 3561A.

A vantagem do analisador dinâmico de sinais é que o mesmo permite a obtenção de medições de densidade de tensão de ruído ao longo do espectro de frequências com diferentes larguras de banda,

permitindo assim conseguir medições de ruído com maior facilidade, pois, há uma visão mais geral do que está acontecendo com o circuito em uma faixa de frequências extensa. As medições feitas com o analisador de sinais foram primeiramente amplificadas com um *Low-Noise Preamplifier* SR560 sintonizado em acoplamento AC, com um ganho de 100 vezes e não foram utilizados filtros.

A ferramenta de simulação de circuitos TINA da Texas Instruments, permite avaliar o ruído dos circuitos. Neste caso, analisou-se o ruído de saída do circuito descrito na figura 4.3, a temperatura ambiente de 22, 5 graus centigrados, mostrando o comportamento de um filtro passa-baixos. A análise se mostra na figura 4.5.

Figura 4.5: Simulação da densidade de tensão de ruído de saída para um resistor de $90M\Omega + 42pF$

De modo similar, foi medida a densidade de tensão de ruído de diodos comuns, com a intenção de utilizar um elemento similar ao LED. O ruído destes elementos é puramente *shot*, portanto seguindo a equação 4.4, a densidade de tensão de ruído diminui quando a corrente aumenta [43]. Assim, foram escolhidas baixas correntes da faixa de $1\mu A$ até $100\mu A$ de alimentação do diodo para conseguir medir o ruído destes elementos na faixa de frequências de 14KHz até 24KHz à temperatura ambiente (23, 85°C). Os dados da tabela 4.2, correspondentes à figura fig:RuidoDiodos, foram obtidos com o procedimento realizado para medir o ruído branco dos LEDs, explanado em 5.2.2

Com os resultados obtidos é possível afirmar que se verificou o bom funcionamento dos equipamentos de medição e se conseguiu um procedimento aceitável para poder adquirir dados de ruído de um circuito mais complexo, sendo que a densidade de tensão de ruído mínima que o sistema consegue medir são $2nV/\sqrt{Hz}$. Deste modo, a seguir apresenta-se a metodologia proposta para medir o ruído branco do LED.

-	- 4 - 1		4		4		•		1	~	-	4		4		•	•	~			1		тт		
		Proi	nacta	\mathbf{n} m	nta	ani	nni	n d	\mathbf{n} mod	004	^	n tai	mna	roti	IPO /	n n	nnn	nn i	0 PIII	A A	hronco	d OC			•
-			UUSLA	СШ	CLU		UצL	a u	с шсч	1.4		a .c.			11 a 1			au			пансо	11115	1	 	,
_							~ =				· •										~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~			 	۰.

		Ruído	(nV/\sqrt{Hz})	
Corrente μA	Teórico	1N4148	1N4006	1N4007
1	14.488	15.86	15.26	15.80
5	6.479	6.35	6.77	6.47
20	3.240	3.44	3.62	3.43
44	2.184	2.21	2.19	2.17
54	1.972	2.14	2.15	2.13
100	1.449	2.12	2.17	2.15

Tabela 4.2: Medição de ruído de diodos comuns com o DSA 3561A.

Figura 4.6: Dados experimentais de ruído de diodos comuns em relação à corrente

4.4 Proposta e metodologia de medição da temperatura de junção e ruído branco dos LEDs

O objetivo do trabalho é encontrar uma relação entre a densidade de tensão de ruído em altas frequências do LED com a temperatura da sua junção. Assim, primeiramente decidiu-se reproduzir a técnica de medição de temperatura de junção utilizando a tensão direta do LED descrita em 3.3.3.2, para cada um dos dispositivos de teste em diferentes níveis de corrente com o fim de conhecer a temperatura de junção para um nível de corrente fixo de operação.

Por outro lado, é necessário obter somente o valor do ruído branco do LED. Para conseguir este segundo propósito, é necessário construir uma fonte de corrente de baixo ruído para energizar o LED

durante as medições, que vai operar às mesmas correntes de alimentação durante a medição descrita anteriormente. Inicialmente será medida unicamente o ruído da fonte, posicionando no lugar do LED uma resistência de 10Ω . O valor do ruído desta resistência é muito pequeno em comparação com o ruído da fonte de corrente e do LED ($0, 4nv_{RMS}$ seguindo a equação 4.1). Posteriormente, será medido o ruído da fonte com o LED em operação e este valor será denominado "ruído total". Assim, seguindo a equação 4.9 é possível obter a tensão RMS de ruído para o LED para uma determinada corrente de alimentação, tensão e, portanto, temperatura de junção.

$$v_{LED} = \sqrt{v_{Total}^2 - v_{Fonte}^2} \tag{4.9}$$

Finalmente, ao realizar medições com diferentes níveis de corrente, é possível obter a curva característica da densidade de tensão de ruído medida do LED em função da temperatura da sua junção. Os dois parâmetros são obtidos separadamente pela medição de ruído acima da região do ruído *flicker* e pelo método de medição de polarização direta, respectivamente.

4.5 Conclusões

O ruído térmico e o ruído *shot* são fenômenos que se apresentam nos semicondutores e estão diretamente relacionados com a temperatura e com a corrente que flui pelo dispositivo, respectivamente. Por essa razão, é possível pensar que projetando um método para medir o ruído branco do dispositivo, é possível encontrar uma relação entre esse parâmetro com a temperatura de junção do LED.

O sistema de medição proposto para medir a densidade de tensão de ruído dos LEDs foi avaliado com medições de resistores e diodos, obtendo o ruído térmico e *shot* para cada dispositivo, respectivamente. Assim, também foi possível estabelecer que o limite mínimo de medição de tensão de ruído do sistema é $2nV/\sqrt{Hz}$.

Capítulo 5

Resultados Experimentais

5.1 Introdução

Seguindo os objetivos da proposta descritos em 4.4, a seguir se apresentam os procedimentos que foram praticados para obter os dados de temperatura de junção. Da mesma forma, são explicados na mesma ordem os experimentos praticados com o objetivo de conseguir medições de densidade de tensão de ruído do LED. Ao final, é obtida a curva característica de tensão de ruído em função da temperatura de junção dos LEDs de teste e a seguir o análise correspondente.

5.2 Implementação e resultados dos métodos de medição

5.2.1 Medição da temperatura de junção utilizando tensão direta

5.2.1.1 Implementação

Para utilizar o método, descrito em 3.3.3.2, é necessário dispor de um forno com temperatura controlada. Neste caso o forno consiste em uma caixa metálica circular, revestida em seu interior com uma manta isolante de fibra de vidro, contendo de igual forma oito resistências de alta potência de 8.2Ω e 10W em configuração série, dispostas em forma circular. Assim, é possível posicionar o LED no centro do forno, junto com um sensor de temperatura do tipo RTD (*resistance temperature detector*) de 500Ω . O forno construído é mostrado nas figuras 5.1 e 5.2.

Para obter os dados de temperatura dentro do forno, a medição da temperatura do RTD é adquirida através de um multímetro digital (HP34401A) o qual é monitorado por uma rotina do LABview[™], mostrada na figura 5.3. Os fluxogramas para essa e as outras rotinas do LABview[™] que são apresentados à seguir, são mostradas no anexo A.

Figura 5.2: Foto de forno de temperatura

Assim, quando os resistores do forno são energizados por uma fonte de alimentação de 0 a 26V, obtém-se temperaturas desde $20^{\circ}C$ até $120^{\circ}C$. Para cada medida da temperatura, se realizam dez medições das quais é calculado o valor médio. Portanto, para estes testes é importante que o aquecimento do forno ocorra pausadamente para garantir que a temperatura de junção do LED seja a mesma deste.

Figura 5.3: Rotina do LABviewTM para medir temperatura

Por outro lado, foi necessário projetar um circuito que forneça ao LED pulsos de corrente de ciclo útil pequeno para evitar o aquecimento adicional do dispositivo durante as medições. No circuito mostrado na figura 5.4, a resistência R3 é variável e permite controlar o nível de corrente desejado. Esse circuito utiliza um gerador de pulsos (HP 8130A), que vai controlar diretamente o transistor T1 com um sinal de 2Vdc que gera pulsos invertidos a 0V e de duração de $100\mu s$ a cada 30s durante o teste (este gerador é controlado por uma rotina do LABviewTM mostrada no anexo A). Assim, a corrente sempre poderá fluir pelo circuito, passando pelo transistor T1 quando este se encontra ativo e cruzando o LED quando o transistor estiver na região de corte.

Figura 5.4: Circuito de geração de pulsos com ciclo útil curto e formato do pulso se corrente no LED

Durante os testes foram utilizados dois LEDs da mesma referência (LXML-PWC1-0090) descritos em [2]. A máxima corrente permitida nestes LEDs de alta eficiência é de 350mA, portanto foram escolhidas baixas correntes de 70mA, 107mA e 175mA e altas correntes de 215mA, 272mAe 326mA para realizar os testes.

Para medir a tensão sobre o LED foi utilizado um conversor analógico-digital (ADC *analog-digital converter*) de 16 bits, que foi sincronizado com o gerador de pulsos e com o multímetro digital responsável da medida da temperatura. A implementação desta medição é mostrada na figura 5.5.

Figura 5.5: Sistema de medição de tensão do LED alimentado por pulsos de corrente

A sincronização de todos estes equipamentos foi implementada em uma rotina do LABview[™], mostrada na figura 5.6, utilizando as portas de comunicação GPIB (IEEE 488) dos equipamentos. Essa última combina as rotinas projetadas para todos os equipamentos mencionados anteriormente. Como é possível observar na figura 5.6, o conversor AD permite obter nove dados de tensão do LED durante o período de duração do pulso, estes dados são adquiridos com seis dígitos de precisão e são armazenados em uma folha de cálculo. Após estudar os dados obtidos, foi decidido que se escolheria o terceiro dado de tensão medido durante o pulso, pois, para alguns casos, era possível que o primeiro dado ou os últimos tivessem algum erro representativo.

5.2.1.2 Resultados

Uma vez organizados os dados adquiridos em uma folha de cálculo, foi possível obter as curvas características de tensão vs. temperatura de junção para baixas correntes (figura 5.7) e para altas correntes (figura 5.8) nas quais, para cada nível de corrente, tem-se ao redor de 400 a 600 dados. Estes dados encontram-se no anexoB.

É possível detalhar que a tensão diminui linearmente com o incremento da temperatura. Em baixas correntes os declives em diferentes correntes para os dois LEDs são muito próximos mas para altas correntes esses declives divergem consideravelmente, tendo como consequência que as curvas de tensão em relação à temperatura não são as mesmas para dois LEDs assim sejam da mesma referência.

Figura 5.6: Rotina do LABview[™] para a medição da tensão do LED energizado por pulsos de corrente.

5.2.2 Medição de densidade de tensão de ruído branco do LED

5.2.2.1 Implementação

Para obter as medições de densidade de tensão de ruído do LED, foi projetada uma fonte de corrente de baixo ruído, mostrada na figura 5.9. Visando evitar a entrada de fontes externas de ruído, todos os elementos do circuito são de baixo ruído, assim, as fontes de tensão V1 e V2 são baterias de 7Ah@12V e duas pilhas alcalinas de 1.5V respectivamente, o amplificador é de alta precisão e de baixo ruído $(3nV/\sqrt{Hz})$, da referência OPA227 da Texas Instruments [44] e o transistor utilizado é um MOSFET de canal P com ultra baixa resistência entre o dreno e o source quando se encontra em operação $(0, 08\Omega)$, da referência IRLML6402 da International Rectifier [45].

O circuito foi isolado em uma caixa metálica com conectores BNC que permitiam a passagem do sinal através de cabos coaxiais primeiramente até o pré-amplificador de baixo ruído (SR560) com ganho de 100 vezes e depois até o analisador dinâmico de sinais (3561A), também utilizados em 4.4. O sistema é mostrado na figura 5.10.

Para adquirir os dados de densidade de tensão de ruído, o analisador dinâmico de sinais foi controlado por uma rotina do LABviewTM, mostrada na figura 5.11. Foi escolhida a faixa de 14KHZ até 24KHz, utilizando um *span* de 10KHz, para realizar as medições de tensão de ruído do LED, pois como se observa na figura 5.11, nessa faixa é observável uma clara representação do ruído branco

Figura 5.7: Curva característica de tensão em relação à temperatura para baixas correntes

Figura 5.8: Curva característica de tensão em relação à temperatura para altas correntes

que se deseja medir. Cada dado adquirido pela rotina é o valor médio de 10 medições, visando obter maior precisão nos dados.

Com o objetivo de adquirir unicamente o ruído do LED seguindo a proposta descrita em 4.4,

Figura 5.9: Fonte de corrente de baixo ruído utilizada nos experimentos.

projetou-se outra rotina do LABview[™] (figura 5.12) que baseando-se na equação 4.9, vai oferecer o valor da densidade de tensão de ruído do LED obtido a partir da medida feita pelo analisador dinâmico de sinais do ruído da fonte de corrente e do circuito operando junto com o LED a os mesmos níveis de correntes especificados em 5.2.1.1. Essa rotina lê os dados de ruído total e de ruído da fonte separadamente e multiplica cada um consigo mesmo para obter o valor quadrático de cada dado. Seguido a isso, os dados de ruído total são restados do ruído da fonte um a um para cada ponto no domínio da frequência, e os resultados que forem negativos serão omitidos. Depois, é calculada a raiz quadrada para cada dado aceito e esses são divididos pelo valor do ganho do amplificador de baixo ruído. Finalmente é calculado o valor quadrático médio desses dados para obter um só valor de densidade de tensão de ruído para uma medição. A rotina também mostra a porcentagem de dados aceitos ao fazer a subtração.

5.2.2.2 Resultados

Durante diversos dias, foram realizadas medições de densidade de tensão de ruído com todos os níveis de corrente, sendo observado que a tensão do LED pode variar alguns volts em cada medição implicando uma mudança na temperatura de junção para uma mesma corrente. Assim, foi possível conseguir diferentes valores de tensão de de ruído para cada medida que posteriormente foram relacionados com os correspondentes dados de temperatura obtidos, realizando as curvas características descritas nas figuras 5.13 e 5.14 para o LED1 e o LED2 respectivamente. Os dados correspondentes

Figura 5.11: Rotina do LABviewTM para a aquisição de dados de ruído

às curvas se encontram no anexo B.

5.3 Análises de dados

Os dados de densidade de tensão de ruído obtidos dos LEDs mostram um excesso de ruído elétrico acima do esperado para um diodo comum. Assim, foram realizados testes para observar o comportamento do LED ao ser alimentado com uma corrente baixa de modo que o dispositivo se comportasse

Figura 5.12: Rotina do LABview[™] para calcular o valor do ruído RMS do LED

como um diodo e depois com correntes um pouco maiores apenas para garantir que o LED já estivesse aceso. Desse modo, foi determinado que a corrente de limiar para acender o LED de alta eficiência com a fonte de corrente de baixo ruído é de $20\mu A$ e foram obtidos os dados da figura 5.15, que mostram que a tensão de ruído do LED tem um comportamento semelhante ao que tem um diodo comum quando a corrente que o polariza está abaixo do limiar de acendimento e que aumenta, evidenciando um desvio crescente em relação ao diodo comum quando passa a emitir luz.

Portanto, para analisar os valores de densidade de tensão de ruído obtidos dos LEDs mostrados nas figuras 5.13 e 5.14, foram realizados alguns cálculos seguindo as definições da teoria de ruído, sendo que ao medir o ruído branco dos LED temos envolvidos na medição as componentes de ruído térmico e de ruído *shot*.

Primeiramente, o resultado de ruído obtido em V/\sqrt{Hz} é a soma destas duas classes de ruídos. Portanto, ao estudar as equações 4.1 e 4.4 sabe-se que o único termo incógnito é a resistência R que está relacionada com as características dos LEDs. Assim, para calcular a resistência desconhecida, é utilizado o modelo da figura 5.16 na qual se mostra a conversão do modelo Norton do ruído shot ao equivalente Thevenin e o resultado final da soma dos ruídos térmico e *shot*, que encontram-se também expressos na equação 5.1 e, por último, o cálculo da resistência na equação 5.2.

$$v_{LED}^2 = 4KTR + \frac{2K^2T^2}{qI_{dc}}$$
(5.1)

$$R = \frac{v_{LED}^2 - \frac{2K^2T^2}{qI_{dc}}}{4KT}$$
(5.2)

Figura 5.13: Curva característica densidade de tensão de ruído em relação à temperatura para o LED1

Figura 5.14: Curva característica de densidade de tensão de ruído em relação à temperatura para o LED2

Figura 5.15: Curva de densidade de tensão de ruído em relação à corrente para um diodo comum e um LED de alta eficiência

Deste modo, foi possível calcular R para cada valor de corrente com suas respectivas temperaturas. Na figura 5.17, onde se encontram os valores de R calculados para os diversos níveis de corrente, pode-se observar que para as correntes mais altas o valor calculado da resistência tende a ser mais uniforme. Assim, foi calculado o valor médio da resistência para o LED1, o LED2 e para todos os valores mostrados na tabela 5.1.

Os dados obtidos da densidade de potência do ruído térmico em função da temperatura de cada LED foram aproximados à reta que passa pela origem, no caso a temperatura de zero Kelvin, buscandose com isto determinar que resistência (R) produz tal ruído. Assim, o cálculo destes dados seguem a equação 5.3, os quais estão representados nas figuras 5.18, 5.19 e 5.20 em unidades de Femto Volts quadrados por Hertz para o LED1, LED2 e a combinação dos dados dos dois LEDs, respectivamente.

$$v_{termico}^2 = v_{LED}^2 - v_{shot}^2 \tag{5.3}$$

Cada linearização indica um declive na curva característica que pode ser relacionado com a teoria, como é mostrado na equação 5.4, pois, para o ruído térmico, o termo 4KR pode representar uma constante para cada LED.

$$v_{termico}^{2} = 4KR(T) \rightarrow v_{termico}^{2} = m(T)$$
(5.4)

Figura 5.16: Modelos de suma de ruídos térmico e shot

Assim, os dados de resistência calculados pelo declive que tem ponto de interseção em 0°K foram obtidos seguindo a equação 5.5 e após foram comparados com os dados de resistência obtidos no análise anterior, na tabela 5.1.

$$R = \frac{m}{4K} \tag{5.5}$$

	LED1	LED2	LED1 e LED2
Resistência Média	13,259	13,396	13,327
Calculada ($K\Omega$)			
Resistência calculada			
por declive	13,327	13,435	13,381
$(K\Omega)$			

Tabela 5.1: Comparação entre as resistências médias calculadas e as resistências calculadas por declive.

A linearização mostrada na figura 5.20, é considerada como uma reta representativa do valor esperado para todos os dados obtidos com os LEDs de teste, assim, a partir desse resultado é possível calcular o erro de cada uma das medidas com respeito à mesma, obtendo o erro absoluto na figura 5.21. O erro relativo foi calculado para cada dado seguindo a equação 5.6

$$ErroRelativo = \frac{|valorverdadeiro - valorexperimental|}{valorverdadeiro} \times 100\%$$
(5.6)

sendo que o valor verdadeiro é o dado da linearização correspondente a temperatura medida e o valor experimental é o valor quadrático do ruído RMS medido. Assim, foi possível obter que o maior

Figura 5.17: Resistência Calculada em relação à Corrente para os LEDs 1 e 2

erro obtido foi de 6,04%.

5.4 Conclusões

Os dados obtidos nas figuras 5.13 e 5.14 mostram que existe uma forte dependência do ruído branco com a temperatura, que, neste caso, variou com a variação da corrente de alimentação dos LEDs.

Para analisar essa dependência, a qual possui um comportamento diretamente proporcional, foi conveniente calcular o ruído térmico, subtraindo do valor total de ruído medido o valor correspondente ao ruído *shot* (dependente unicamente das flutuações de corrente), para logo realizar uma linearização destes, forçando a interseção por $0^{\circ}K$, cuja temperatura exibe uma atividade de ruído nula. O declive dessa reta (5.20) significa que para uma mudança na temperatura de junção do dispositivo, existe uma variação na densidade de potência de ruído do mesmo; Assim, esse valor pode ser comparado com os valores obtidos pela equação de ruído térmico, assumindo que o comportamento da densidade de tensão de ruído medida pode ser modelado por uma resistência calculada para cada um dos LED que é da ordem de 13.381 $K\Omega$.

Com a curva característica de densidade de potência em relação à temperatura dos LEDs, também foi possível calcular os desvios dos dados obtidos em comparação com a linearização realizada. O desvio máximo obtido foi de 6,04%.

Figura 5.18: Linearização do ruído térmico em relação à temperatura para o LED1 com ponto de interseção em $0^{\circ}K$

Figura 5.19: Linearização do ruído térmico em relação à temperatura para o LED2 com ponto de interseção em $0^{\circ}K$

Figura 5.20: Linearização do ruído térmico em relação à temperatura para os LEDs 1 e 2 com ponto de interseção em $0^{\circ}K$

Figura 5.21: Erro absoluto de experimentação

Capítulo 6

Conclusões

Os diodos emissores de luz (LEDs), que ao surgirem encontraram aplicações na simples sinalização de instrumentos, evoluíram tornando viáveis os indicadores alfanuméricos em painéis e relógios bem como um grande número de outras aplicações. Mais recentemente, impulsionados pela alta eficiência energética e perspectivas de longa vida útil, tornam-se a causa de uma verdadeira revolução na indústria da iluminação, substituindo com vantagens as lâmpadas de filamento e fluorescentes. No entanto, estes dispositivos ainda mostram fragilidades que precisam ser sanadas para atingir o domínio absoluto do mercado da iluminação. Uma destas fragilidades reside na redução do tempo de vida com o aumento da temperatura da junção que é uma variável difícil de ser medida com o LED em funcionamento ininterrupto.

Conforme relatado neste trabalho, os métodos hoje conhecidos que permitem determinar a temperatura de um LED não têm a precisão necessária que um sistema de acionamento e controle mais eficiente requer, nem são suficientemente práticos para que sejam incorporados aos circuitos de acionamento a custos aceitáveis.

Neste trabalho foi feita uma avaliação experimental da viabilidade de se usar a amplitude do ruído produzido por um LED como estimativa da temperatura da sua junção, buscando nas medições da tensão de ruído nos seus terminais, sob diferentes condições de corrente de polarização, uma possível correlação com a temperatura - esta sendo conhecida através de métodos já consagrados. Diferente de outras variáveis, que são sensíveis às intempéries ambientais, formas de construção, variações do encapsulamento, etc, o ruído é um fenômeno intrínseco ao dispositivo e insensível a variações de forma e de clima local.

O trabalho realizado permitiu constatar que o ruído produzido por um LED diverge do ruído produzido por um diodo comum, que é essencialmente do tipo *Shot*, a partir do momento em que se inicia a emissão de luz. Em operação, o LED apresenta um ruído de excesso sobreposto à parcela *Shot*, que tem um comportamento monotônico crescente com a temperatura da junção e que pode ser

tratado como sendo de natureza térmica. Ou seja, que é possível associar ao LED uma resistência equivalente térmica a partir da qual se possa, então, estimar a temperatura.

No escopo deste trabalho, todos os experimentos foram realizados com duas amostras de LEDs brancos de alta eficiência, da marca Phillips tipo Lumiled em encapsulamento SMD, montados sobre um substrato cerâmico e excitados com corrente constante. Para estes dispositivos, seguindo os procedimentos descritos, foi determinada uma resistência equivalente térmica de 13, $381K\Omega$. O maior desvio entre as medições e as expectativas teóricas foi de 6,04%

Referências Bibliográficas

- [1] E.F. Schubert. *Light-emitting diodes*. Cambridge University Press, 2006.
- [2] Philips, lumileds. Technical Datasheet DS64, LXML-PWC1-0090.
- [3] U.S. Department of Energy. Building Technologies Program. *Lifetime of White LEDs*, pnnl-sa-50957 edition, April 2007.
- [4] Qnuru, light years ahead, www.cree.com/products/. *LED Junction Temperature and Lifetime*, technical white paper version 1.0 edition.
- [5] U.S. Department of Energy. Building Technologies Program. *LED Luminaire Reliability*, pnnl-sa-61137 edition, October 2009.
- [6] S. Chhajed, Y. Xi, Y.-L. Li, Th. Gessmann, and E. F. Schubert. Influence of junction temperature on chromaticity and color-rendering properties of trichromatic white-light sources based on light-emitting diodes. *Journal of Applied Physics*, 97(5):054506, 2005.
- [7] Y. Xi and E. F. Schubert. Junction-temperature measurements in gan uv light-emitting diodes using the diode forward voltage. In *Proc. IEEE Lester Eastman Conf. High Performance Devices*, pages 84–89, 2004.
- [8] Varshni Y. P. Temperature dependence of the energy gap in semiconductors. *Physica*, 34:149, 1967.
- [9] Y. Xi, J.-Q. Xi, Th. Gessmann, J. M. Shah, J. K. Kim, E. F. Schubert, A. J. Fischer, M. H. Crawford, K. H. A. Bogart, and A. A. Allerman. Junction and carrier temperature measurements in deep-ultraviolet light-emitting diodes using three different methods. *Applied Physics Letters*, 86(3):031907, 2005.
- [10] G. Farkas, S. Haque, F. Wall, P. S. Martin, A. Poppe, Q. van Voorst Vader, and G. Bognar. Electric and thermal transient effects in high power optical devices. In *Proc. Twentieth Annual IEEE Semiconductor Thermal Measurement and Management Symp*, pages 168–176, 2004.

- [11] Noise analysis in operational amplifier circuits. Digital Signal Processing Solutions SLVA043B, Texas Instruments Incorporated, 2007.
- [12] Masataka Hasegawa Satoshi Koizumi, Kenji Watanabe and Hisao Kanda. Ultraviolet emission from a diamond pn junction. *Science*, 292 (5523):1899–1901, 2001.
- [13] Osamu Tsuda Yoichi Kubota, Kenji Watanabe and Takashi Taniguchi. Deep ultraviolet lightemitting hexagonal boron nitride synthesized at atmospheric pressure. *Science*, 317 (5840):932– 934, 2007.
- [14] Y. Taniyasu, M. Kasu, and T. Makimoto. An aluminium nitride light-emitting diode with a wavelength of 210 nanometres. *Nature*, 441:325–328, May 2006.
- [15] Ivan Moreno and Ulises Contreras. Color distribution from multicolor led arrays. Optics Express, 15:3607–3618, 2007.
- [16] Tsunemasa Taguchi Ian E. Ashdown Ian T. Ferguson, John C. Carrano. Yag glass-ceramic phosphor for white led (ii): luminescence characteristics. *Fifth International Conference on Solid State Lighting. Proc of SPIE*, 5941:594112, 2005.
- [17] A. R. Brown, D. D. C. Bradley, J. H. Burroughes, R. H. Friend, N. C. Greenham, P. L. Burn, A. B. Holmes, and A. M. Kraft. Light-emitting diodes based on conjugated polymers. In *Proc. IEE Colloquium Conducting Polymers and Their Applications*, 1992.
- [18] J.N. Bardsley. International oled technology roadmap. Selected Topics in Quantum Electronics, IEEE Journal of, 10(1):3 – 9, jan.-feb. 2004.
- [19] H. J. Round. A note on carborundum. *Electrical World*, 19:309, 1907.
- [20] O. V. Losev. Luminous carborundum [[silicon carbide]] detector and detection with crystals. Wireless Telegraphy and Telephony, 44:485–494, 1927.
- [21] N. Zheludev. The life and times of the led a 100-year history. *Nature Photonics*, 1:189–192, April 2007.
- [22] B.G. Lipták. Process control and optimization. Instrument engineers' handbook / ISA, the Instrumentation, Systems, and Automation Society. Béla G. Lipták, ed.-in-chief. CRC, Taylor & Francis, 2006.
- [23] Michael Mauk Peter Capper. *Liquid phase epitaxy of electronic, optical, and optoelectronic materials.* John Wiley & Sons, Ltd, 2007.

- [24] R.C. Dorf and J.A. Svoboda. Introduction to Electric Circuits. John Wiley & Sons, 2010.
- [25] U.S. Department of Energy. Energy Efficiency and Renewable Energy., www.ssl.energy.gov. *Energy Efficiency of White LEDs*, pnnl-sa-50462 edition, June 2009.
- [26] Jason Chonko. Using Forward Voltage to Measure Semiconductor Junction Temperature. Keithley Instruments, INC., www.keithley.com, 2681 edition, 2006.
- [27] Satoru Todoroki, Masaaki Sawai, and Kunio Aiki. Temperature distribution along the striped active region in high-power gaalas visible lasers. *Journal of Applied Physics*, 58(3):1124–1128, 1985.
- [28] H. I. Abdelkader, H. H. Hausien, and J. D. Martin. Temperature rise and thermal rise-time measurements of a semiconductor laser diode. *Review of Scientific Instruments*, 63(3):2004– 2007, 1992.
- [29] P. W. Epperlein. Reflectance modulation a novel approach to laser mirror characterization. Proceedings of 17th International Symposium of Gallium Arsenide and Related Compounds, IOP Conference Series, 112:633, 1990.
- [30] P. W. Epperlein and G. L. Bona. Influence of the vertical structure on the mirror facet temperatures of visible gainp quantum well lasers. *Applied Physics Letters*, 62(24):3074–3076, 1993.
- [31] D. C. Hall, L. Goldberg, and D. Mehuys. Technique for lateral temperature profiling in optoelectronic devices using a photoluminescence microprobe. *Applied Physics Letters*, 61(4):384–386, 1992.
- [32] Gu Y. and Narendran N. A non-contact method for determining junction temperature of phosphorconverted white leds. *Third International Conference on Solid State Lighting, Proceedings of SPIE*, 2003.
- [33] A. Poppe, G. Molnar, and T. Temesvolgyi. Temperature dependent thermal resistance in power led assemblies and a way to cope with it. In *Proc. 26th Annual IEEE Semiconductor Thermal Measurement and Management Symp. SEMI-THERM 2010*, pages 283–288, 2010.
- [34] J. B. Johnson. Thermal agitation of electricity in conductors. *Phys. Rev.*, 32:97–109, Jul 1928.
- [35] LLC Books. Physical Constants: Dimensionless Quantity, Avogadro Constant, Physical Constant, Gas Constant, Stefan-boltzmann Constant, Boltzmann Constant. General Books LLC, 2010.
- [36] H. Nyquist. Thermal agitation of electric charge in conductors. *Phys. Rev.*, 32:110–113, Jul 1928.
- [37] David M.Pozar. *Microwave Engineering*. Addison -Wesley publishing Company, 1993.
- [38] Tobias Delbruck Rahul Sarpeshkar and Carver A. Mead. White noise in mos transistors and resistors. *IEEE*, 8755-3096, 1993.
- [39] Barrie Gilbert. Noise figure and logarithmic amplifiers. Analog Dialogue, June:42-06, 2008.
- [40] B. Razavi. Design of Analog Cmos Integrated Circuits. McGraw-Hill series in electrical and computer engineering. McGraw-Hill, 2001.
- [41] B. S. Everitt and A. Skrondal. *The Cambridge Dictionary of Statistics*. Cambridge University Press, 2010.
- [42] W.R. Bennett. *Electrical noise*. McGraw-Hill, 1960.
- [43] Yoshihisa Yamamoto. Fundamentals of Noise Processes. 2004.
- [44] Texas Instruments Incorporated, Texas Instruments Post Office Box 655303 Dallas, Texas 75265. OPA227 High Precision, Low Noise Operational Amplifiers, 2007.
- [45] International Rectifier, IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA. *IRLML6402 Power MOSFET*, 2003.

Anexo A

Rotinas de medições elaboradas no LABviewTM

Figura A.1: Fluxograma para a leitura de dados de temperatura da RTD conectada a um multímetro digital HP34401A no software LABviewTM

Control do Gerador de Pulsos Hewlett-Packard 8116A	
VISA session GPIB0::16: Largura de tempo unit Periodo 100 Unit 230,00	
error in (no error) status code source UNICAMP. 20	a Buitrago 12

(a) Rotina de usuário

(b) Controle do gerador de pulsos

(a) Rotina de usuário

Controle Conversor AD NI MIO-16E SERIES

(b) Controle do conversor ADC

Figura A.3: Fluxograma para o controle do conversor ADC de 16 bits no software LABviewTM.

(a) Rotina de usuário

(b) Controle de geração de pulsos e medição de tensão

Figura A.4: Fluxograma para o controle do sistema integrado de geração de pulsos, medição de tensão e medição de temperatura no software LABviewTM Parte 1.

(a) Controle de medição de temperatura

(b) Controle de armazenamento de dados

Figura A.5: Fluxograma para o controle do sistema integrado de geração de pulsos, medição de tensão e medição de temperatura no software LABviewTM Parte 2.

(a) Rotina de usuário

(b) Leitura de range e freqüência

Figura A.6: Fluxograma para o controle de medição de ruído do HP3561A no software LABviewTM Parte 1.

(a) Estabelecimento do range

(b) Envio de comandos

(a) Espera para envio de endereço

(b) Finalização de leitura de dados

Figura A.8: Fluxograma para o controle de medição de ruído do HP3561A no software LABviewTM Parte 3.

(a) Enviar o comando para armazenar ou descartar dados

(b) Armazenamento de dados

Figura A.9: Fluxograma para o controle de medição de ruído do HP3561A no software LABviewTM Parte 4.

(a) Rotina de usuário

(b) Controle do cálculo do ruído do LED

Figura A.10: Fluxograma para o cálculo do ruído do LED no software LABviewTM.

Anexo B

Tabelas de dados

		Frequência	Ruído Experimental nV/Hz^1/2
		2	930
		10	915
		20	803,5
Freguência Hz	Ruído Teórico nV/Hz^1/2	30	763
2	899.59	40	633,75
6	893.9	50	579
10	882.76	60	550
20	835.7	70	479
30	772 33	80	444,5
40	703 53	90	403,2
50	637.18	100	413
60	577.14	120	358,5
70	524.33	140	307,5
80	478 31	160	265
90	438.3	180	251,5
100	403.99	200	233,5
120	347 59	230	187
280	158 77	270	164
400	112.02	300	159,5
500	89.86	330	134,5
600	75.11	370	132,5
700	64.52	400	110,5
800	56.35	450	101,5
900	50,11	500	95,5
1000	45.17	550	89,5
1200	37.65	600	79,5
1500	30,13	700	73,5
2000	22,57	800	65
3000	15.07	900	62,5
5000	9.03	1000	58,5
7000	6.45	1500	44
10000	4.52	2000	43,5
	.,	2500	39,5
		3000	36,5
		4000	34,5
		5000	35,5
		7000	36

Figura B.1: Dados teóricos e experimentais obtidos para o Lock-In Amplifier SR530c

10000

35,5

						17.					
LED 1						LED	2				
70mA	LED1	107mA	LED1	175mA	LED1	70mA	LED2	107mA	LED2	175mA	LED2
Tensão	Temp										
2,949321	24,8214	3,024089	25,2404	3,114183	31,3666	2,973667	23,1081	3,048570	24,9082	3,140021	27,9078
2,948676	24,9431	3,023512	25,3997	3,099874	34,0660	2,971869	23,2702	3,047248	23,9388	3,137919	28,9388
2,948439	25,0520	3,022902	25,2570	3,082988	36,8627	2,971632	23,1198	3,047146	23,9983	3,135647	29,9094
2,948371	24,8536	3,022630	25,3491	3,078918	39,5290	2,971632	23,1306	3,046434	25,1959	3,134257	31,4223
2,948337	25,0570	3,022461	25,3174	3,072476	42,0063	2,971598	23,3536	3,046299	24,5644	3,133714	30,7421
2,948269	24,8949	3,022461	25,6512	3,063761	44,3038	2,971361	23,8596	3,046129	24,9549	3,132324	32,8648
2,948201	24,8203	3,022223	25,2265	3,058065	46,4481	2,971361	23,9480	3,046095	24,9098	3,131985	32,8685
2,948201	25,7571	3,022156	25,2402	3,056268	48,4663	2,971259	23,0885	3,046027	24,9105	3,131917	33,2924
2,948134	25,3800	3,021884	25,4172	3,057827	50,3815	2,971056	23,3083	3,045756	24,9059	3,131850	32,9266
2,948066	24,8902	3,021817	25,7415	3,044230	52,2121	2,971022	23,1912	3,045519	24,1430	3,131510	32,8883
2,947998	24,7631	3,021647	25,2789	3,041450	53,9710	2,970988	23,6523	3,045485	26,0667	3,131341	33,0753
2,947930	24,7859	3,021613	25,5786	3,037652	55,6691	2,970954	23,2517	3,045281	25,0813	3,131307	31,9617
2,947930	25,1749	3,021444	25,5425	3,031854	57,3134	2,970852	23,0885	3,045247	25,3084	3,130629	33,2993
2,947896	24,9709	3,021410	25,3656	3,027547	58,9089	2,970852	23,2988	3,045213	25,4969	3,130527	33,1919
2,947896	25,2635	3,021342	25,7235	3,027785	60,4600	2,970819	23,3627	3,045146	25,6426	3,130324	33,2386
2,947862	24,7722	3,021342	25,8766	3,019375	61,9691	2,970784	23,1720	3,045112	25,0537	3,130290	32,8994
2,947761	24,7759	3,021240	25,2742	3,018833	63,4378	2,970784	23,2250	3,044874	25,6098	3,130222	33,2908
2,947591	24,8425	3,021173	26,2593	3,017375	64,8678	2,970784	23,4039	3,044705	24,9060	3,130052	33,1358
2,947523	24,9442	3,021037	25,2295	3,010220	66,2607	2,970751	23,3823	3,044705	25,3854	3,129951	33,2735
2,947523	25,1156	3,021003	25,8446	3,008389	67,6172	2,970751	23,3928	3,044705	25,9161	3,129883	33,0141
2,947388	24,8025	3,021003	26,1317	3,002387	68,9373	2,970751	23,5063	3,044603	25,1669	3,129849	32,6947
2,947286	24,9993	3,020901	25,3824	3,003879	70,2222	2,970751	23,6167	3,044569	25,6584	3,129815	32,9534
2,947184	25,2045	3,020901	25,6873	2,997708	71,4731	2.970717	23,4843	3.044332	25,4323	3.129679	32.9361
2,947049	24,8656	3,020867	25,7942	2,994622	72,6913	2.970581	23,4730	3,044298	25,8527	3,129544	34,3883
2,947049	25,1453	3,020766	25,2243	2,991808	73,8774	2.970581	23,9679	3.044196	25,9535	3,129510	33.0899
2,947015	24,7549	3,020766	25,2879	2,987908	75,0323	2,970513	23,1554	3,044162	24,9198	3,129476	33,4188
2,946811	24,7946	3,020732	25,2616	2,983805	76,1577	2,970513	23,6348	3,044128	25,2248	3,128967	33,5454
2,946777	24,7519	3,020596	25,2503	2,984009	77,2556	2,970479	23,6769	3,044095	25,7031	3,128798	34,2409
2,946777	25,8071	3,020596	25,6693	2,981296	78,3271	2,970445	23,2338	3,044061	24,6627	3,128628	33,8145
2,946743	24,7518	3,020528	25,2236	2,977871	79,3726	2,970378	23,4953	3,044027	25,8268	3,128560	33,0899
2,946710	24,7554	3,020494	25,9950	2,977193	80,3927	2,970344	23,4386	3,043993	24,8744	3,128459	33,9545
2,946710	24,7618	3,020325	26,0773	2,972412	81,3885	2,970310	23,1403	3.043959	25,9035	3.128391	32,3792
2,946642	24,9993	3,020053	25,6329	2.970140	82,3612	2.970310	23,1484	3.043925	24,4431	3.128391	33.0046
2,946438	25,5470	3,020053	26,4678	2,967767	83,3123	2,970310	23,1994	3,043925	24,9357	3.128052	33,1891
2.946303	25,0280	3.020020	25,8113	2.967190	84,2431	2,970276	23,1840	3.043925	25,0012	3,127882	33,1979
2,946065	25,2340	3,019986	25,4705	2,966885	85,1533	2.970242	23,6076	3,043857	25,7452	3.127374	33,2617
2,946065	25,6540	3.019986	25,9367	2.961561	86.0428	2.970174	23,4153	3.043688	24,9770	3.126560	34,7236
2,945964	24,9161	3,019986	26,4187	2,959798	86,9116	2,970073	23.0969	3.043654	25,4759	3.126458	33.6777
2,945930	25,4369	3.019850	25,3023	2,959323	87,7601	2,970073	23.2426	3.043654	25.5372	3.124932	34.0973
2.945692	25,4648	3.019850	25,4348	2,954305	88,5884	2,969971	23,1668	3.043654	26.6429	3,124830	35,1140
2.945624	25,7060	3.019850	25,4527	2.949795	89.3973	2,969903	23,1775	3.043620	25,2812	3,124559	34,5485
2,945557	25,0861	3,019647	26,6894	2.948846	90,1866	2,969869	23,7706	3,043620	25,8398	3.124186	34,9130
2,945557	25,4925	3,019579	25,6148	2,948947	90,9570	2,969869	24,2846	3,043552	25,5928	3,121846	35,5439
2,945523	25,6007	3,019579	25,9513	2,948642	91,7094	2,969835	23,3355	3,043552	25,6887	3,121779	35,3252
2,945489	25,2928	3,019545	25,5605	2,948100	92,4448	2,969835	23,6437	3,043484	25,3349	3,121338	35,9968
2,945421	25,9736	3,019545	26,2049	2,945896	93,1642	2,969733	23,8293	3.043450	24,2996	3.120253	36,4613

Figura B.2: Primeiros 50 dados obtidos pelo pulso de corrente a baixascorrentes

		LED	i					LED 2	2		
215mA	LED1	272mA I	ED1	326mA	ED1	215mA	215mA LED2 27		LED2	326mA LED2	
Tensão	Temp	Tensão	Temp	Tensão	Temp	Tensão	Tensão	Tensão	Temp	Tensão	Temp
3,1906470	23,4128	3,2922360	25,6690	3,3335030	22,8226	3,2271320	24,6512	3,292474	23,6351	3,3474390	22,9341
3,1902060	23,4118	3.2915920	25,4535	3,3329600	23,5142	3,2266570	24,8117	3,292101	22,0124	3,3474390	23,1225
3,1899010	23,4220	3,2898630	25,4799	3,3327570	23,7455	3,2263860	25,1110	3,291117	22,0658	3,3467950	24,2832
3.1895950	23,7226	3.2882010	26,0303	3,3316720	22.8867	3,2262510	24,5750	3,290982	21,9187	3,3449640	23,9539
3.1893920	23,4655	3.2878620	25,8237	3.3313330	24.0114	3,2257420	24,8900	3,290473	21,9632	3,3444550	23,6561
3.1893240	23,8291	3.2876930	25,9251	3.3301800	23,2063	3,2257420	25,5721	3,290371	21,8788	3,3442860	23,1798
3.1889510	23.6719	3.2876930	26,2153	3.3294340	22,3188	3,2257080	25,7523	3,289829	24,2591	3,3438110	23,3708
3.1888840	23,5773	3.2876250	25,7910	3.3285520	22,6342	3,2255050	25,3822	3,289524	21,7777	3,3430310	23,0207
3.1887140	23,9943	3.2874550	25,7280	3.3280440	22,2199	3,2252330	24,7315	3,289117	23,3169	3,3429970	24,7098
3.1880020	24,1053	3.2874210	26,4926	3,3280440	24.0612	3,2244530	25,1808	3,288913	22,4909	3,3423870	23,5105
3.1878320	23,7751	3.2873540	25,5433	3.3279760	23.0154	3,2244530	26,8751	3,288100	22,3675	3,3421830	23,8052
3.1874250	23,4399	3.2871840	25,7591	3.3278400	22,2334	3,2242840	25,2494	3,287896	22,5532	3,3419800	22,8173
3.1873920	24,5933	3.2866410	25,5016	3.3273650	22.2544	3,2239790	24,9658	3,287659	21,8415	3,3411320	23,4397
3.1873580	23,5352	3,2865740	25,6150	3.3271280	24,9268	3,2239110	26,0809	3,286472	24,0010	3,3407250	25,7230
3.1872220	24,4356	3,2864720	26,7467	3,3268230	22,2830	3,2238090	25,9222	3,286404	24,1290	3,3404540	22,9758
3.1871200	23,4976	3,2863360	26.8166	3.3262470	22,2105	3,2236390	25,3164	3,286370	24,5221	3,3400130	24,5030
3.1871200	23.6232	3,2862350	25 5915	3.3261110	24,7287	3,2235040	25,5100	3,286099	22,1821	3,3398780	24,7904
3.1868490	23,9389	3,2859630	25,8909	3,3260430	24.6343	3,2234020	26,0292	3,286099	22,2435	3,3398100	25,9437
3.1861030	24,1605	3,2859630	25,9950	3,3258730	23,8005	3,2233000	25,6932	3,285183	22,3057	3,3397760	22,8959
3.1860010	26.0241	3,2859630	26.5735	3,3257040	25,2360	3,2233000	25,8101	3,284810	22,7400	3,3397080	23,3043
3,1859330	23,4151	3,2858950	26,8909	3,3253650	24.3167	3,2232670	26,4876	3,284302	22,4290	3,3390980	22,8354
3.1858320	24,3814	3,2857600	25,3870	3.3252630	24,1103	3,2228600	25,0392	3,283488	22,6777	3,3383520	24,3397
3.1855600	25,0458	3.2856580	27,2136	3,3249580	24,5447	3,2223850	25,6332	3,283217	22,6154	3,3381480	23,2404
3.1852890	24,2159	3.2855900	25.5553	3,3248900	23,3925	3,2216730	25,4467	3,283183	22,8024	3,3379790	24,5657
3.1849160	24,0498	3.2855560	25.5195	3,3240080	25.8617	3,2215710	26,4240	3,283149	22,1227	3,3376740	23,5827
3.1846450	24,6945	3.2853870	25,6980	3.3239410	24,4609	3,2215030	26,1323	3,283013	22,9276	3,3376400	25,3851
3,1845090	24.3265	3,2853530	26,2543	3,3238050	25,3398	3,2215030	26,3004	3,282505	22,8649	3,3374020	23,0695
3.1841700	24,8580	3,2852510	26,9685	3,3236360	24,2064	3,2214690	26,1856	3,282199	21,8058	3,3355040	23,8800
3.1841020	24,2713	3,2852170	25,5332	3,3232970	23,6893	3,2213340	26,3614	3,281826	22,9932	3,3345540	22,8624
3.1840010	24,4890	3,2850480	26,5310	3.3227540	22,9510	3,2212660	26,7465	3,281759	23,8754	3,3345540	24,8770
3.1836960	24,8003	3,2849120	25.8570	3.3223810	22,3603	3,2209610	26,2416	3,281691	23,0644	3,3341470	24,6348
3.1835260	25,6444	3.2849120	26.3346	3.3219740	22,5736	3,2209270	25,9764	3,280063	25,1723	3,3340450	24,0259
3.1834920	23,8838	3.2848440	26.4539	3.3219400	24.1586	3,2204520	26,6169	3,278944	25,4222	3,3340120	23,7304
3,1834920	25,1779	3,2845390	25,9599	3,3210920	22,4592	3,2203840	25,8669	3,278470	25,9021	3,3329940	24,1609
3.1832210	24,5416	3,2845050	26,6819	3,3210920	23,2687	3,2203840	27,3009	3,278436	23,4161	3,3324860	24,3936
3,1828480	25,3117	3,2841660	25,6411	3,3210590	22.6961	3,2195370	26,5520	3,278232	23,5224	3,3323500	27,5275
3.1827460	25,9629	3,2839970	25.4222	3.3207870	25,7543	3,2195030	26,6819	3,277995	23,7533	3,3321810	26,6259
3.1825090	24,6444	3.2839970	26,6239	3,3203800	22,5150	3,2193330	26,8109	3,277859	24,9156	3,3321470	25,4968
3.1824750	25,2447	3,2839970	27.8784	3,3203800	22,7591	3,2191980	27,0721	3,277690	23,1414	3,3321130	26,2530
3.1824750	25,7096	3,2837590	25,5714	3,3201090	23.0794	3,2191980	27,1450	3,277622	25,0447	3,3320110	26,5365
3,1823390	24,7459	3,2834200	27,1304	3,3193970	23,1431	3,2184180	27,4673	3,277181	25,6656	3,3320110	27,7942
3.1822710	24,9183	3,2832510	26.4146	3,3193630	24.3845	3,2182140	27,0035	3,275553	23,2254	3,3319090	25,1696
3.1822040	25,1116	3,2832170	27,3817	3,3193290	25,1322	3,2181800	27,6393	3,275418	26,4597	3,3316040	25,0672
3.1821700	24,9813	3,2831150	28.3422	3.3186170	23,4537	3,2178410	27,3830	3,275350	26,1309	3,3310950	25,2759
3.1821700	25,8380	3,2830810	27,4659	3.3174640	22,4074	3,2169940	28,7787	3,275079	24,7851	3,3309600	27,9320
3.1820340	25,4462	3,2829450	27.5496	3.3173960	23,3309	3,2169600	26,9388	3,274875	24,3903	3,3308920	24,9695
The second se	and the second s										

Figura B.3: Primeiros 50 dados obtidos pelo pulso de corrente a altas correntes

		1501			1500	
	p. (1	LEDI	De la Martine	Deside and the sector	LED2	D - 11 K - 1
Corrente ma	Ruido nV/HZ^1/2	1emp *C	10 7070	Ruido nV/HZ^1/2	1emp *C	12 9517
	14,0475	31,8309	12,7373	14,0725	30,1080	12,8517
	14,5913	30,0957	12,0877	15,0013	59,3040	13,0305
	14,0003	29,8012	12,7513	13,0703	24,3723	13,3801
	14,0900	31,3923	12,8221	14,0300	29,3304	12,8127
	14,6525	30,9713	12,7828	15,0100	40,5640	13,0041
	14,0338	30,4327	12,7727	13,3088	20,7944	13,2020
70	14,0725	30,4310	12,8405	14,0875	29,3302	12,9130
	14,6788	30,9713	12,8287	15,0413	41,0370	13,0138
/0	14,6013	29,8509	12,7405	15,4688	51,9251	13,3285
107	14,8100	39,1429	12,7174	14,6775	30,7013	12,8379
107	14,7788	37,8130	12,7180	15,0763	43,7106	12,9888
107	15,1075	39,2574	13,2287	15,4963	52,9745	13,3329
107	14,9675	40,2800	12,9423	14,6400	30,5015	12,7808
107	14,8013	38,6466	12,7226	15,0788	40,3613	13,1320
107	14,8575	40,3795	12,7487	15,5463	53,6383	13,3918
107	14,7063	38,2657	12,5752	14,6688	30,0280	12,8510
107	14,9513	39,3834	12,9512	15,1400	47,9918	12,9243
107	14,9725	40,2800	12,9509	15,5063	52,3990	13,3/3/
1/5	15,3813	59,9706	12,8598	14,6363	29,3304	12,8237
1/5	15,3638	50,0034	13,2263	14,9063	40,5842	12,8241
1/5	15,3850	53,9710	13,1021	15,4706	52,3990	13,3123
1/5	15,3875	52,2121	13,17/2	14,6463	30,5015	12,/91/
1/5	15,2588	51,6646	12,9794	15,0450	41,6370	13,0203
1/5	15,1538	50,0034	12,8672	15,7888	56,0099	13,/133
1/5	15,5238	55,6691	13,2706	14,6925	31,0280	12,8503
1/5	15,2775	50,0034	13,0782	15,0063	40,5640	12,9976
1/5	15,3413	52,2121	13,0981	15,7088	56,8832	13,5388
215	15,7413	66,2195	13,2209	15,8288	69,9231	13,2239
215	15,8225	/0,5832	13,1881	16,2325	69,6729	13,91/3
	15,5850	59,8569	13,2073	16,9438	93,9509	14,1608
215	15,7013	67,2155	13,1153	16,2125	/5,45/5	13,6527
215	15,8875	67,7854	13,4058	16,0513	63,5829	13,8544
215	15,6825	62,3350	13,2743	16,8138	102,2023	13,6378
215	15,8888	59,8569	13,7272	15,9275	/0,6450	13,3613
215	15,8650	70,5832	13,2591	16,1263	69,6838	13,7353
215	15,7750	67,7854	13,2166	16,6388	93,8879	13,6579
272	16,8175	95,2573	13,9011	16,1113	67,8565	13,7832
272	16,8263	100,2125	13,7309	16,1063	67,8150	13,7763
272	16,6450	92,6432	13,7147	16,9125	95,8200	14,0372
272	16,6213	94,4800	13,6073	16,0713	68,0105	13,7087
272	16,5263	95,8202	13,4033	16,1450	69,0504	13,7927
272	16,6975	91,9045	13,8293	16,8888	101,4901	13,7859
272	16,7288	91,9045	13,8811	16,0425	69,1842	13,6128
272	16,7075	90,8818	13,8848	16,0813	69,5561	13,6638
272	16,7663	92,2573	13,9299	16,8088	97,6191	13,7982
326	16,9563	102,5318	13,8578	16,1425	69,5402	13,7687
326	17,1350	104,8621	14,0643	15,9975	69,0504	13,5419
326	16,7875	100,5545	13,6552	16,8438	99,6848	13,7789
326	16,8138	104,1754	13,5665	15,8125	70,6450	13,1691
326	16,9775	102,3133	13,9006	16,0013	67,1512	13,6238
326	17,0413	105,1064	13,9018	16,8875	101,1892	13,7950
326	17,0638	105,0550	13,9404	16,0550	68,3923	13,6656
326	16,9350	104,8621	13,7379	16,1900	69,6838	13,8441
326	16,9063	105,0550	13,6843	16,8588	99,6848	13,8035

Figura B.4: Dados de ruído para cada corrente, temperatura e resistência calculada