
Universidade Estadual de Campinas

Faculdade de Engenharia Elétrica e de Computação

FÁBIO LUIZ USBERTI

“Métodos Heuŕısticos e Exatos para o Problema

de Roteamento em Arcos Capacitado e Aberto”

“Heuristic and Exact Approaches for the Open

Capacitated Arc Routing Problem”

Tese de doutorado apresentada ao Programa de Pós-Graduação em Engenharia

Elétrica e de Computação da Faculdade de Engenharia Elétrica e de Computação da Universi-

dade Estadual de Campinas para obtenção do t́ıtulo de Doutor em Engenharia Elétrica, na área

de concentração Automação.

Doctorate thesis presented to the Electrical and Computer Engineering Post-

graduation Programm of the School of Electrical and Computer Engineering of the University of

Campinas to obtain the Ph.D. grade in Electrical Engineering, with specialization in Automa-

tion.

Orientador: Prof. Dr. André Luiz Morelato França.

Co-Orientador: Prof. Dr. Paulo Morelato França.

ESTE EXEMPLAR CORRESPONDE À VERSÃO FINAL DA TESE.

CAMPINAS

2012

ii

iii

iv

This work was supported by CNPq (Brazilian Research Agency)

v

vi

Essa obra é dedicada aos meus pais,

Roberto e Maria Helena.

vii

viii

Perfection is achieved not when there

is nothing else to be included, but when

there is nothing left to be removed.

Antoine de Saint-Exupéry (1900 – 1944)

ix

x

Agradecimentos

A Deus por um universo sujeito à otimização.

Papai e mamãe minha eterna gratidão.

Fran todo meu amor.

André, Christiano, Celso e Paulo minha admiração.

Meus irmãos, Rô e Bea total confiança.

Daniel, Amanda, Betinho e Gú muita alegria.

José grande amizade.

Baca, Cris, Hugo, Laura, Lú e Spock muitos cafés com “menossuns”.

LABORE trabalho e bem-estar em harmonia.

FEEC segundo lar.

FEAGRI e IC boas lembranças.

UNICAMP uma vida.

CNPq um suporte.

xi

xii

Abstract

The Open Capacitated Arc Routing Problem (OCARP) is an NP-hard combinatorial opti-

mization problem where, given an undirected graph, the objective is to find a minimum cost set

of tours that services a subset of edges with positive demand under capacity constraints. This

problem is related to the Capacitated Arc Routing Problem (CARP) but differs from it since

OCARP does not consider a depot, and tours are not constrained to form cycles. Applications

to OCARP from literature are discussed. An integer linear programming formulation is given,

followed by some properties of the problem. A Greedy Randomized Adaptive Search Proce-

dure (GRASP) with path-relinking (PR) solution method is proposed and compared with other

successful metaheuristics. Some features of this GRASP with PR are (i) reactive parameter

tuning, where the metaheuristic parameters values are stochastically selected biased in favor of

those values which produced the best solutions in average; (ii) a statistical filter, which discards

initial solutions if they are unlikely to improve the incumbent best solution; (iii) infeasible local

search, where high-quality solutions, though infeasible, are used to explore the feasible/infeasible

boundaries of the solution space; (iv) evolutionary PR, a recent trend in which a pool of elite

solutions is progressively improved by relinking pairs of elite solutions. Computational tests

were conducted for both CARP and OCARP instances, and results reveal that the GRASP

with PR is very competitive, achieving the best overall deviation from lower bounds. This work

also proposes an exact algorithm for OCARP, based on the branch-and-bound paradigm. Three

lower bounds are proposed, one of them uses a subgradient method to solve a Lagrangian relax-

ation. The computational tests compared the proposed branch-and-bound with a commercial

state-of-the-art ILP solver. Results reveal that the branch-and-bound outperformed CPLEX in

the overall average deviation from lower bounds.

Keywords: arc routing, path-scanning heuristic, greedy randomized adaptive search pro-

cedure, path-relinking, branch-and-bound, Lagrangian relaxation, subgradient method.

xiii

xiv

Resumo

O problema de roteamento em arcos capacitado e aberto (open capacitated arc routing pro-

blem, OCARP) é um problema de otimização combinatorial NP-dif́ıcil em que, dado um grafo

não-direcionado, o objetivo consiste em encontrar um conjunto de rotas de custo mı́nimo para

véıculos com capacidade restrita que atendam a demanda de um subconjunto de arestas. O

OCARP está relacionado com o problema de roteamento em arcos capacitado (capacitated arc

routing problem, CARP), mas difere deste pois o OCARP não possui um nó depósito e as rotas

não estão restritas a ciclos. Aplicações da literatura para o OCARP são discutidas. Uma for-

mulação de programação linear inteira é fornecida junto com propriedades do problema. Uma

metaheuŕıstica GRASP (greedy randomized adaptive search procedure) com reconexão por ca-

minhos (path-relinking) é proposta e comparada com outras metaheuŕısticas bem-sucedidas da

literatura. Algumas caracteŕısticas do GRASP são: (i) ajuste reativo de parâmetros, cujos va-

lores são estocasticamente selecionados com viés àqueles valores que produziram, em média,

as melhores soluções; (ii) um filtro estat́ıstico que descarta soluções iniciais caso estas tenham

baixa probabilidade de superar a melhor solução incumbente; (iii) uma busca local infact́ıvel que

gera soluções de baixo custo utilizadas para explorar fronteiras fact́ıveis/infact́ıveis do espaço

de soluções; (iv) a reconexão por caminhos evolutiva aprimora progressivamente um conjunto

de soluções de elevada qualidade (soluções elites). Testes computacionais foram conduzidos com

instâncias CARP e OCARP e os resultados mostram que o GRASP é bastante competitivo,

atingindo os melhores desvios entre os custos das soluções e limitantes inferiores conhecidos.

Este trabalho também propõe um algoritmo exato para o OCARP que se baseia no paradigma

branch-and-bound. Três limitantes inferiores são propostos e um deles utiliza o método dos

subgradientes para resolver uma relaxação lagrangeana. Testes computacionais comparam o

algoritmo branch-and-bound com o CPLEX resolvendo um modelo reduzido OCARP de pro-

gramação linear inteira. Os resultados revelam que o algoritmo branch-and-bound apresentou

resultados melhores que o CPLEX no que diz respeito aos desvios entre limitantes e ao número

de melhores soluções.

Palavras-chave: roteamento em arcos, heuŕıstica de varredura de caminhos, GRASP, re-

conexão por caminhos, branch-and-bound, relaxação lagrangeana, métodos dos subgradientes.

xv

xvi

Contents

Agradecimentos xi

Abstract xiii

Resumo xv

List of Publications xxi

List of Tables xxiii

List of Figures xxv

List of Abbreviations xxvii

List of Symbols xxix

Introduction 1

Introdução 3

1 Arc Routing Problems 5

1.1 Chinese Postman Problem . 5

1.2 Rural Postman Problem . 6

1.3 Capacitated Arc Routing Problem . 6

1.3.1 Heuristics and Metaheuristics . 7

1.3.2 Approximation Algorithms . 7

1.3.3 Lower Bounds . 8

1.3.4 Exact Algorithms . 8

2 Open Capacitated Arc Routing Problem 9

2.1 Problem Statement . 9

2.2 Applications . 10

xvii

2.2.1 Meter Reader Routing Problem . 10

2.2.2 Cutting Path Determination Problem . 11

2.3 ILP Model . 12

2.3.1 OCARP properties . 16

2.4 Complexity Study . 18

2.5 Solution Strategy . 20

2.6 Final Remarks . 21

3 Heuristics Approaches 23

3.1 Introduction . 23

3.2 Greedy Randomized Adaptive Search Procedure 23

3.2.1 Constructive Phase . 24

3.2.2 Local Search Phase . 30

3.2.3 Statistical Filter . 33

3.3 Path-Relinking . 35

3.3.1 Solution distance metric . 35

3.3.2 Relinking of Solutions . 36

3.3.3 Elite solutions pool . 37

3.3.4 GRASP and Path-relinking coupling . 38

3.3.5 GRASP with Path-relinking pseudo-code 41

3.4 Computational Experiments . 41

3.4.1 OCARP case study . 43

3.4.2 CARP case study . 46

3.5 Final Remarks . 52

4 Exact Approaches 57

4.1 Introduction . 57

4.2 Motivation . 57

4.3 Branch-and-Bound General Concepts . 59

4.4 Branch-and-Bound for the CDCMSFP . 60

4.4.1 Implementation Decisions . 60

4.4.2 Lower Bounds . 62

4.4.3 Lower Bounds Tightness . 67

4.4.4 Lower Bounds Composition . 67

4.4.5 Upper Bounds . 67

4.4.6 Problem Reduction . 68

4.4.7 Branch-and-Bound Pseudo-Code . 68

4.4.8 Complexity Study . 68

4.5 Alternative Lower Bounds . 70

xviii

4.6 Computational Experiments . 71

4.7 Final Remarks . 73

Conclusions 77

Conclusões 80

References 85

xix

xx

List of Publications

Journals

Usberti, F. L., França, P. M. and França, A. L. M.: 2011a, Grasp with evolutionary path-

relinking for the capacitated arc routing problem, Computers and Operations Research .

doi: 10.1016/j.cor.2011.10.014.

Usberti, F. L., França, P. M. and França, A. L. M.: 2011b, The open capacitated arc routing

problem, Computers and Operations Research 38(11), 1543 – 1555.

Conferences

Assis, L. S., França, P. M. and Usberti, F. L.: 2009, Reagrupamento Capacitado: Problema

de Redistritamento de Lotes de Faturamento (in portuguese). In: XLI SBPO Brazilian

Symposium of Operational Research, Annals XLI SBPO, Porto Seguro.

Assis, L. S., França, P. M. and Usberti, F. L.: 2011, Multicriteria Capacitated Districting

Problem: Study Case on Power Distribution Companies In: IFORS 2011, IFORS 2011,

Melbourne.

Bacalhau, E. T., Usberti, F. L. and Filho, C. L.: 2011, Dynamic Programming for Optimal

Allocation of Maintenance Resources on Power Distribution Networks In: IFORS 2011,

IFORS 2011, Melbourne.

França, P. M., Assis, L. S. and Usberti, F. L.: 2009, Metaheuŕıstica GRASP para o Problema

de Agrupamento (in portuguese). In: XXXII CNMAC Congresso Nacional de Matemática

Aplicada e Computacional, Annals XXXII CNMAC, Cuiabá.

França, P. M., Assis, L. S., Usberti, F. L. and Garcia, V. J.: 2009, Multicriteria Capacitated

Redistricting Problem. In: 23rd EURO European Conference on Operational Research 2009,

Annals 23rd EURO, Bonn.

França, P. M., Garcia, V. J., França, A. L. M. and Usberti, F. L.: 2007a, Algoritmos para Rotea-

mento de Leituristas (in portuguese). In: XXX CNMAC Congresso Nacional de Matemática

Aplicada e Computacional, Annals XXX CNMAC, Florianópolis.

França, P. M., Garcia, V. J., França, A. L. M. and Usberti, F. L.: 2007b, Enfoque Multicritério

xxi

para o Problema de Redistritamento Capacitado (in portuguese). In: XXXIX SBPO Brazil-

ian Symposium of Operational Research, Annals XXXIX SBPO, Fortaleza.

Reis, P. A., Lyra, C., Cavellucci, C., Zuben, F. J. V., Usberti, F. L., Gonzalez, J. F. V., Coelho,

G. P. and Ferreira, H. M.: 2008, Problema de Alocação Ótima de Recursos de Manutenção:

Formulação e Estudos de Caso (in portuguese). In: XL SBPO Brazilian Symposium of

Operational Research, Annals XL SBPO, João Pessoa.

Usberti, F. L.: 2007, SIMANFIS: Simplificação da Arquitetura Neuro-Fuzzy ANFIS (in por-

tuguese). In: XXXIX SBPO Brazilian Symposium of Operational Research, Annals XXXIX

SBPO, Fortaleza.

Usberti, F. L., França, P. M. and França, A. L. M.: 2008a, Heuristics for the Capacitated Rural

Postman Problem. In: 18th IFORS Triennial Conference of the International Federation

of Operational Research Societies, Annals 18th IFORS, Sandton.

Usberti, F. L., França, P. M. and França, A. L. M.: 2008b, Roteamento de Leituristas: Um

Problema NP-Dif́ıcil (in portuguese). In: XL SBPO Brazilian Symposium of Operational

Research, Annals XL SBPO, João Pessoa.

Usberti, F. L., França, P. M. and França, A. L. M.: 2009, The Open Capacitated Arc Routing

Problem. In: 8th CTW Cologne-Twente Workshop on Graphs and Combinatorial Optimiza-

tion, Annals 8th CTW, Paris.

Usberti, F. L., França, P. M. and França, A. L. M.: 2010, GRASP-Tabu Search for the Open Ca-

pacitated Arc Routing Problem. In: ALIO-INFORMS Joint International Meeting, Annals

of ALIO-INFORMS, Buenos Aires.

Usberti, F. L., França, P. M. and França, A. L. M.: 2011a, GRASP with Path-Relinking for two

Arc Routing Problems In: IFORS 2011, Annals IFORS 2011, Melbourne.

Usberti, F. L., França, P. M. and França, A. L. M.: 2011b, New Lower and Upper Bounds for

the Open Capacitated Arc Routing Problem In: Optimization 2011, Annals Optimization

2011, Lisboa.

Usberti, F. L., França, P. M. and França, A. L. M.: 2011c, On the complexity and heuristic

methods for a new arc routing problem In: ORP3 2011, Annals ORP3 2011, Cádiz.

Usberti, F. L., Gonzalez, J. F. V., Lyra, C. and Cavellucci, C.: 2009, Maintenance resources

allocation on power distribution networks with a multi-objective framework. In: 8th Cologne-

Twente Workshop on Graphs and Combinatorial Optimization, Annals 8th CTW, Paris.

Usberti, F. L., Lyra, C., Cavellucci, C. and Gonzalez, J. F. V.: 2010, Two-level multicriteria

optimization of maintenance activities on power distribution networks. In: XLII SBPO

Brazilian Symposium of Operational Research, Annals XLII SBPO, Bento Gonçalves.

xxii

List of Tables

3.1 Tuning scheme for the parameters γ and g. 29
3.2 GRASP parameters. 43
3.3 Comparison results between path-scanning heuristics. 45
3.4 GRASP with PR results for ogdb instances. 46
3.5 GRASP with PR results for oval instances. 47
3.6 GRASP with PR results for oegl instances. 48
3.7 Comparison of constructive heuristics. 49
3.8 GRASP results for gdb instances . 52
3.9 GRASP results for val instances . 53
3.10 GRASP results for egl instances . 54
3.11 Summary results for CARP metaheuristics. 55

4.1 Branch-and-bound parameters. 71
4.2 Branch-and-bound overall results. 73
4.3 Branch-and-bound results for ogdb instances. 74
4.4 Branch-and-bound results for oval instances. 75
4.5 Branch-and-bound results for oegl instances. 76

xxiii

xxiv

List of Figures

2.1 An OCARP instance and a corresponding feasible solution. 10
2.2 Transforming a CPDP instance into an OCARP instance. 12
2.3 OCARP illegal subcycle. 14
2.4 CARP graph G transformed into OCARP graph G1. 18
2.5 OCARP graph G transformed into CARP graph G1. 20

3.1 Evolution of the parameter γ for instance oegl-s4-C. 27
3.2 Neighborhood moves with possible reversals (in red). 31
3.3 Distribution of the ratio cini/cls for instance oegl-e1-A. 34
3.4 Relinking two solutions. 37
3.5 Evolution of the parameter γ for instance oegl-e4-C. 44
3.6 Run time distributions for GRASP with (Gf) and without (Gnf) filtering

on instance egl-s4-C. 50
3.7 Run time distributions for GRASP with (EvPR) and without (PR) evolu-

tionary path-relinking on instance egl-s4-C. 51

4.1 Transforming OCARP graph G(V,E) into the augmented graph G̃(Ṽ , Ẽ). . 58
4.2 Example of the branch-and-bound search tree expansion. 61
4.3 Branch-and-bound search tree for OCARP. 62

xxv

xxvi

List of Abbreviations

ACO ant colony optimization.

CARP capacitated arc routing problem.

CARP-TW CARP with time windows.

CCPP capacitated CPP.

CDCMSFP capacity and degree constrained minimum spanning forest problem.

CPDP cutting path determination problem.

CPLEX solver for linear programming problems.

CPP chinese postman problem.

CVRP capacitated vehicle routing problem.

DCARP directed CARP.

DCMSTP degree constrained minimum spanning tree problem.

egl set of CARP instances (Li and Eglese 1996).

EvPR evolutionary path-relinking.

FFD first-fit-decreasing.

GCH greedy constructive heuristic.

gdb set of CARP instances (Golden, DeArmon and Baker 1983).

Gf GRASP with filtering.

Gnf GRASP without filtering.

xxvii

GRASP greedy randomized adaptive search procedure.

ILP integer linear programming.

LB0 trivial CARP and OCARP lower bound.

LB1 minimum cost edges lower bound.

LB2 minimum cost spanning forest lower bound.

LB3 degree constrained minimum cost spanning forest lower bound.

MCARP mixed CARP.

MRRP meter reader routing problem.

OCARP open CARP.

oegl set of OCARP instances based the egl instances.

ogdb set of OCARP instances based the gdb instances.

oval set of OCARP instances based the val instances.

PR path-relinking.

PS ER path-scanning with ellipse rule.

RCL restricted candidate list.

RPP rural postman problem.

TS tabu-search.

TTT time-to-target plots.

val set of CARP instance (Benavent, Campos, Corberán and Mota 1992).

VNS variable neighborhood search.

xxviii

List of Symbols

αk
i binary decision variable; αk

i = 1 if node i is the source of tour k, αk
i = 0

otherwise.

α(.) inverse Ackermann function.

α restricted candidate list parameter.

β ellipse rule parameter.

δ arbitrary positive demand (δ > 0).

δij broken pairs distance between two solutions Si and Sj .

δmin minimum distance between solutions belonging to the pool.

∆LB deviation from lower bound ∆LB = (UB − LB)/LB.

∆LBmax maximum average deviation from lower bound.

γ cost-demand edge-selection rule parameter.

λ Lagrangian multiplier.

6p polynomial reduction, e.g., PA 6p PB denotes that problem PA can be

polynomially reduced in problem PB .

µ average value of the ratio cini/cls.

Π set of values for a generic parameter π.

ψ path-scanning heuristic edge-selection rule.

ψ̃ path-scanning heuristic cost-demand edge-selection rule.

ψ̃max maximum evaluation of the cost-demand edge-selection rule.

xxix

ψ̃min minimum evaluation of the cost-demand edge-selection rule.

σ standard deviation of the ratio cini/cls.

τ parameter that prevents the step size becoming to small in the subgra-

dient method.

θ parameter that adjusts the step size in the subgradient method.

A possible values for α.

B possible values for β.

cbest incumbent best solution cost.

cini initial solution cost.

cls local search solution cost.

c(e) = cij cost of edge e = (i, j).

ci average cost of the solutions obtained by using π = πi.

cmax maximum average cost (cmax = max
i

ci).

cmin minimum average cost (cmin = min
i
ci).

C arbitrary high cost (C ≫ SPmax).

CPU average execution time.

dmax maximum edge demand (dmax = max
e∈ER

d(e)).

d(e) = dij demand of edge e = (i, j).

D vehicle capacity.

e = [vi, vj] = (i, j) representations for edges linking nodes vi = i and vj = j of graph

G(V,E).

ER0 set of dummy required edges connecting a dummy node v ∈ V0 with the

depot v0.

E0 set of dummy non-required edges linking v0 to every node in G.

E1 set of edges resulting from the addition of the dummy edges.

ER set of required edges ((i, j) ∈ ER|(i, j) ∈ E and dij > 0).

xxx

ẼNR set of non-required edges from ẼS .

ẼR set of required edges from ẼS .

ẼS set of edges from F̃ .

F̃ (Ṽ , ẼS) spanning forest in G̃, representing an OCARP solution.

Feas ratio of feasible solutions obtained by a heuristic compared to the whole

number of solutions generated.

G1(V1, E1) graph resulting from the addition of the dummy nodes and edges.

G(V,E) undirected graph with a set of vertices V and a set of edges E.

G̃(Ṽ , Ẽ) augmented complete graph with a set of vertices Ṽ and a set of edges

Ẽ.

g cost-demand edge-selection rule metaparameter.

IL list of the indices for each edge in L (IL[ei] = i).

kend maximum number of GRASP iterations.

keps number of GRASP iterations between evolutionary path-relinking exe-

cutions.

kfilter number of iterations to calibrate the filter threshold.

lkij binary decision variable; lkij = 1 if tour k services arc (i, j), lkij = 0

otherwise.

L sorted list of all non-required edges Ẽ \ ẼR in increasing order of cost.

LBbb lower bound obtained with the proposed branch-and-bound algorithm.

LBbest best lower bound between the branch-and-bound and CPLEX (LBbest =

max {LBcplex, LBbb}).

LBcplex lower bound obtained with CPLEX.

LB0 trivial CARP and OCARP lower bounds (LB0 =
∑

e∈ER

c(e)).

LB lower bound.

m number of possible values for a generic parameter π (m = |Π|).

M number of vehicles available.

xxxi

M∗ minimum number of vehicles necessary for a feasible solution.

nbest number of best solutions obtained by a heuristic.

ninf maximum number of infeasible moves to execute with the infeasible local

search.

nme number of missing edges to complete an OCARP solution.

ned number of required edges (ned = |ER|).

N(i) set of adjacent nodes of node i (j ∈ N(i)|j ∈ V and (i, j) ∈ E).

Ntree total amount of nodes in the branch-and-bound search tree.

pi probability of choosing the value πi for a generic parameter π.

pmax probability associated to the generic parameter value πi with the lowest

average solution cost (ci = cmin).

pmin probability associated to the generic parameter value πi with the highest

average solution cost (ci = cmax).

Pcarp(G) induced graph by a CARP solution in G.

Pocarp(G) induced graph by an OCARP solution in G.

P ∗carp(G) induced graph by a CARP optimal solution in G.

P ∗ocarp(G) induced graph by an OCARP optimal solution in G.

qi variable inversely proportional to ci, and which is used to determine pi.

S CARP or OCARP solution.

SPmax cost of the greatest minimum shortest path between any two nodes

(SPmax = max
i,j∈V

SP (i, j)).

SP (i, j) shortest path cost between nodes i and j.

tc total cost from required edges (tc =
∑

e∈ER
c(e)).

td total demand to be serviced (td =
∑

e∈ER
d(e)).

T̃ tree in G̃, representing an OCARP tour.

ukS binary auxiliary variable; if ukS = 0 then tour k does not have a sufficient

number of arcs to form a cycle in S (S ⊆ V).

xxxii

UB upper bound.

vkS binary auxiliary variable; if vkS = 0 then tour k traverses the cut-set

(S, S̃) (S ⊆ V, S̃ = V \ S).

v0 depot node.

vi = i representations for nodes of graph G(V,E).

V0 set of dummy nodes.

V1 set of nodes resulted from the union with the dummy nodes set.

vl last node visited by a tour.

wk
S binary auxiliary variable; if wk

S = 0 then tour k contains a source node

in S (S ⊆ V).

xkij binary decision variable; xkij = 1 if tour k traverses arc (i, j), xkij = 0

otherwise.

xxxiii

Introduction

The Capacitated Arc Routing Problem (CARP), proposed by Golden and Wong (1981), is

a combinatorial optimization problem defined in a connected undirected graph G(V,E) with

non-negative costs and demands on its edges. There is a fleet of identical vehicles with limited

capacity that must service all edges with positive demand (required edges). The objective is

to search for a set of minimum cost tours that start and finish in a distinguished node, called

depot.

Many real world applications have been related to arc routing problems, such as street

sweeping, garbage collection, mail delivery, school bus routing, meter reading etc, and estimates

on the expenditure involved in these services reach billions of dollars annually in the US, thus

revealing a substantial savings potential (Dror 2001).

This work objective is to study the Open Capacitated Arc Routing Problem (OCARP)

(Usberti, França and França 2011b). The OCARP is similar to CARP but in the first problem

tours are not constrained to form cycles. Therefore both open and closed tours are permitted.

In both problems there are required edges, which must be serviced, and non-required edges,

used within shortcut paths from one required edge to another. Considering that a tour start

at node vs and finish at node vt, in CARP vs = vt = v0 for all tours, being a particular case

of OCARP. Consequently, the OCARP can be seen as a CARP generalization, and to the best

of our knowledge this problem has never been formally reported in the literature, in spite of

important practical problems be easily modeled as an OCARP.

This thesis is organized in four chapters. Chapter 1 gives a background in arc routing

problem, describing three well-known examples such as the Chinese Postman Problem (CPP),

the Rural Postman Problem (RPP), and the CARP. A more detailed presentation is given for

the later, including a formulation, heuristics, lower bounding procedures and exact algorithms.

Chapter 2 formally introduces the OCARP. For this problem real-life applications are pre-

sented, such as the Meter Reader Routing Problem and the Cutting Path Determination Prob-

lem. The OCARP is formulated as an integer linear programming problem, and properties are

given. A complexity study reveals that OCARP is NP-hard. A polynomial reduction is proposed

allowing, under certain conditions, CARP methods to be applied to OCARP instances.

A heuristic approach to solve OCARP is presented in Chapter 3. This heuristic is based on

1

2

the greedy randomized adaptive search procedure (GRASP) with evolutionary path-relinking

(PR), and it was developed to solve both CARP and OCARP. Some features of this GRASP

with PR are (i) reactive parameter tuning, where the parameters values are tuned based on

those values which historically produced the best solutions in average; (ii) a statistical filter,

which discards initial solutions if they are unlikely to improve the incumbent best solution;

(iii) infeasible local search, where high-quality solutions, though infeasible, are used to explore

the feasible/infeasible boundaries of the solution space; (iv) evolutionary PR, a recent trend

in which a pool of elite solutions is progressively improved by relinking pairs of elite solutions.

Computational tests were conducted for both CARP and OCARP instances, and results reveal

that the GRASP is very competitive compared to other metaheuristics from the literature,

achieving the best overall deviation from lower bounds.

Chapter 4 shows an exact branch-and-bound algorithm proposed to solve OCARP. The

algorithm is motivated by the similarity between OCARP and a spanning tree problem. Three

lower bounds are proposed with distinct trade-offs between computational effort and bound

tightness. One of the lower bounds is based on Lagrangian relaxation solved by a subgradient

method. Computational experiments are conducted in a set of literature instances, where the

branch-and-bound results are compared with CPLEX.

Finally, the section Conclusions highlights the contributions of this work and points out

future lines of investigation.

Introdução

O problema de roteamento em arcos capacitado (capacitated arc routing problem, CARP),

proposto por Golden and Wong (1981), é um problema de otimização combinatória definido em

um grafo conexo não-direcionado G(V,E) com custos e demandas não-negativas nas arestas.

Uma frota de véıculos idênticos com capacidade limitada precisa atender todas as arestas com

demanda positiva (arestas requeridas). O objetivo do CARP consiste em encontrar um conjunto

de rotas de custo mı́nimo que se iniciem e terminem em um nó distinto, denominado depósito.

Muitas aplicações reais estão relacionadas com problemas de roteamento em arcos, como

varrição de ruas, coleta de reśıduos, entrega de correios, roteamento de ônibus escolares, leitura

de medidores de energia, água e gás. Estimativas sobre os custos envolvidos nesses serviços

atingem bilhões de dólares anualmente nos Estados Unidos, revelando um enorme potencial

para economia de recursos via otimização (Dror 2001).

Este trabalho tem por objetivo o estudo do problema de roteamento em arcos capacitado

e aberto (open capacitated arc routing problem, OCARP) (Usberti et al. 2011b). O OCARP é

similar ao CARP, porém, no primeiro problema, as rotas não estão restritas a ciclos. Logo tanto

rotas abertas quanto fechadas são permitidas. Nos dois problemas existem as arestas requeridas,

que devem ser atendidas, e as arestas não-requeridas, que são utilizadas como atalhos entre uma

aresta requerida e outra. Considerando que uma rota se inicia em um nó vs e termina em um

nó vt, no CARP tem-se que vs = vt = v0 para todas as rotas, sendo assim um caso particular do

OCARP. Consequentemente, o OCARP pode ser enxergado como uma generalização do CARP

e, após uma exaustiva busca, constatou-se que esse problema nunca foi formalmente reportado

na literatura, apesar de relevantes problemas práticos poderem ser modelados como um OCARP.

Este trabalho está organizado em quatro caṕıtulos. O Caṕıtulo 1 fornece um histórico de

problemas de roteamento em arcos, descrevendo três exemplos conhecidos da literatura como o

problema do carteiro chinês (chinese postman problem, CPP), o problema do carteiro rural (rural

postman problem, RPP), e o CARP. Uma descrição mais detalhada deste último é fornecida,

incluindo formulação, heuŕısticas, algoritmos para geração de limitantes inferiores e algoritmos

exatos.

O Caṕıtulo 2 introduz formalmente o OCARP. Para esse problema, são apresentadas aplicações

reais, como o problema de roteamento de leituristas e o problema de determinar o caminho de

3

4

corte. O OCARP é formulado como um problema de programação linear inteira e algumas

propriedades interessantes são fornecidas. Um estudo de complexidade revela que o OCARP

é NP-dif́ıcil. Uma redução polinomial é proposta permitindo, sob certas condições, aplicar

métodos do CARP para instâncias do OCARP.

Um método heuŕıstico para resolver o OCARP é apresentado no Caṕıtulo 3. Essa heuŕıstica

é baseada na metaheuŕıstica GRASP (greedy randomized adaptive search procedure) com re-

conexão por caminhos evolutiva (evolutionary path-relinking), concebida para resolver ambos

CARP e OCARP. Algumas caracteŕısticas desse GRASP são: (i) ajuste reativo de parâmetros,

onde os valores dos parâmetros são selecionados com base naqueles valores que, em média,

produzem as melhores soluções; (ii) um filtro estat́ıstico que descarta soluções iniciais se estas

provavelmente não conseguiriam aprimorar a melhor solução incumbente; (iii) uma busca local

infact́ıvel, capaz de produzir soluções de baixo custo, contudo infact́ıveis, que são utilizadas

na exploração das fronteiras fact́ıvel/infact́ıvel do espaço de soluções; (iv) reconexão por cami-

nhos evolutiva, considerada uma nova tendência em otimização, aperfeiçoa continuamente um

conjunto de soluções de elite a partir de sucessivas reconexões de pares de soluções de elevada

qualidade. Testes computacionais foram conduzidos com instâncias CARP e OCARP, e os re-

sultados mostram que o GRASP é muito competitivo se comparado a outras metaheuŕısticas

da literatura, atingindo os menores desvios entre os custos das soluções e limitantes inferiores

conhecidos.

O Caṕıtulo 4 mostra um algoritmo branch-and-bound proposto para resolver de forma exata

o OCARP. O algoritmo é motivado pela similaridade entre o OCARP e um problema de árvore

geradora. Três limitantes inferiores são propostos, e cada um possui uma relação distinta en-

tre o custo computacional de obtê-lo e a qualidade do limitante produzido. Um dos limitantes

inferiores é baseado em relaxação lagrangeana e calculado a partir do método de subgradien-

tes. Experimentos computacionais são conduzidos com instâncias da literatura, e os resultados

obtidos com o algoritmo branch-and-bound proposto são comparados com um solver comercial

estado-da-arte para problemas de programação linear inteira.

O caṕıtulo de conclusões destaca as contribuições deste trabalho e aponta para futuras linhas

de investigação.

Chapter 1

Arc Routing Problems

The objective of arc routing problems, according to Eiselt, Gendreau and Laporte (1995a),

consists in determining the least cost traversal of a given subset of edges in a graph, with one or

more collateral constraints. Three important arc routing problems described in this chapter are

the Chinese Postman Problem (CPP), the Rural Postman Problem (RPP), and the Capacitated

Arc Routing Problem (CARP).

1.1 Chinese Postman Problem

The Chinese Postman Problem (CPP) was introduced by Mei-ko (1962) and its objective

is to find a minimum cost tour for a connected graph G(V,E) with non-negative costs on the

edges, and the tour must visit all the graph edges at least once.

A polynomial exact algorithm to solve the CPP is described by Eiselt et al. (1995a), and it

can be divided in two phases. The first is to determine a minimum cost graph augmentation

duplicating a sufficient number of edges so that the graph becomes Eulerian, i.e., all nodes

having an even degree.

Edmonds and Johnson (1973) revealed an efficient polynomial algorithm to accomplish the

first phase for directed and undirected graphs by solving a minimum cost matching problem.

The second phase constructs a traversal of this augmented graph, which is an easy task for

Eulerian graphs. When the graph is mixed (containing both directed and undirected edges),

Papadimitriou (1976) shows that solving the first phase becomes an NP-hard problem. Negreiros,

Coelho Júnior, Palhano, Coutinho, de Castro, Gomes, Barcellos, Rezende and Pereira (2009)

developed efficient implementations for the CPP on symmetric, directed and mixed graphs,

which solve real-life instances (up to |V | = 1383 and |E| = 2486).

5

6 Chapter 1. Arc Routing Problems

1.2 Rural Postman Problem

In many real-life problems, only a subset of edges in the graph G(V,E) requires some kind

of service. That is the case in the Rural Postman Problem (RPP), whose objective is to find

a minimum cost tour that traverses a subset of edges (required edges, ER ⊆ E). This problem

is NP-hard for undirected, directed and mixed graphs (Eiselt, Gendreau and Laporte 1995b).

An approximation algorithm proposed by Frederickson (1979) is based on the CPP exact algo-

rithm. This approximation algorithm tries to find a low cost graph augmentation to make the

graph Eulerian, and then it traces a tour that covers all required edges. To perform the graph

augmentation, the minimum cost matching and the minimum cost spanning tree algorithms are

used.

1.3 Capacitated Arc Routing Problem

The Undirected Capacitated Arc Routing Problem (CARP or UCARP), proposed by Golden

and Wong (Golden and Wong 1981), is a combinatorial optimization problem defined in a

connected undirected graph G(V,E) where non-negative costs cij and demands dij are assigned

to each edge e = [vi, vj]. All edges with positive demand (required edges, ER ⊆ E) must be

serviced by a fleet of identical vehicles with limited capacity D. While traversing the graph,

a vehicle might (i) service an edge, which deducts the demand from the vehicle capacity and

increases the solution cost, or (ii) deadhead an edge (traverse an edge without servicing it),

which only increases the solution cost. A tour is defined feasible when it starts and ends at a

distinguished node v0, called depot, and the sum of the demands serviced by that vehicle is less

than or equal to D. A feasible solution is formed by a family of feasible tours, which services all

required edges. The CARP objective is to search for a minimum cost feasible solution.

Other problems related to CARP are the Directed CARP or DCARP (directed graph), the

Mixed CARP or MCARP (mixed graph), the Capacitated Chinese Postman Problem or CCPP

(ER = E), the CARP with Time Windows or CARP-TW (required edges must be serviced

within a given time interval).

Many real world applications have been related to CARP, such as street sweeping, garbage

collection, mail delivery, school bus routing, meter reading etc. Estimates on the expenditure

involved in these services reaches billions of dollars annually only in the United States, thus

revealing a substantial savings potential. Details on these applications are provided in Eiselt

et al. (1995b), Assad and Golden (1995) and Dror (2001).

As Dror (2001) observed, there are two CARP versions with respect to the number of vehicles.

In the first one, which corresponds to the original CARP conception, the number of vehicles is

a fixed parameter. The second version considers the number of vehicles as a decision variable

which means that, in this version, CARP algorithms account for an unlimited fleet of vehicles.

1.3. Capacitated Arc Routing Problem 7

Welz (1994) observed that determining whether a feasible solution exists for a given number

of tours is already NP-hard, since it requires solving a bin-packing problem. This may be the

reason why most state-of-the-art heuristics deal with the second CARP version.

An integer linear programming (ILP) model for CARP, proposed by Golden and Wong

(1981), is described in Chapter 2 since it will be used to derive a valid ILP model for the

OCARP.

A more detailed overview on the CARP complexity, polyhedral results, exact, approximate

and heuristic algorithms can be found in the references Eiselt et al. (1995b), Dror (2001), Hertz

(2005), Wøhlk (2008b), and Corberán and Prins (2010).

1.3.1 Heuristics and Metaheuristics

Due to the CARP complexity, many real world instances are intractable for exact algorithms,

hence opening research for heuristics which, despite being unable to guarantee optimality, per-

form well in most cases, providing high-quality solutions on average. Examples of constructive

heuristics for the CARP are path-scanning (Golden et al. 1983; Santos, Coutinho-Rodrigues

and Current 2009), augment-merge (Golden and Wong 1981), and augment-insert (Pearn 1991).

Better CARP solutions were obtained through metaheuristics such as tabu search (Eglese

and Li 1996; Hertz, Laporte and Mittaz 2000; Brandão and Eglese 2008), genetic algorithm

(Lacomme, Prins and Ramdane-Chérif 2004), hybrid tabu-scatter search (Greistorfer 2003),

guided local search (Beullens, Muyldermans, Cattrysse and Oudheusden 2003), variable neigh-

borhood search (Hertz and Mittaz 2001; Polacek, Doerner, Hartl and Maniezzo 2008; Maniezzo

and Roffilli 2008), and ant colony optimization (Santos, Coutinho-Rodrigues and Current 2010).

Two GRASPs with path-relinking (Prins and Calvo 2005; Labadi, Prins and Reghioui 2008)

were developed for the CARP (and CARP-TW in the case of Labadi et al. (2008)). The so-

lution quality of these two GRASPs, however, were outperformed by the three most recent

metaheuristics (Brandão and Eglese 2008; Polacek et al. 2008; Santos et al. 2010).

1.3.2 Approximation Algorithms

In terms of approximation algorithms, it has been shown that even the 3
2 -approximation

for the CARP is already NP-hard (Golden and Wong 1981). The current best approximation

factor is 7
2 −

3
D

(Wøhlk 2008a), where D is the vehicle capacity. This algorithm assumes that

the matrix of edges costs satisfies the triangle inequality, otherwise, finding an α-approximation

for the CARP would be NP-hard for any α > 0. The idea of this approximation algorithm is

to construct a single tour servicing all required edges, and then using dynamic programming to

optimally partition the tour into smaller tours that respect the vehicle capacity.

8 Chapter 1. Arc Routing Problems

1.3.3 Lower Bounds

Lower bounding schemes for CARP, such as Capacity constraints, Odd Edge Cutset con-

straints, Disjoint Paths (Belenguer and Benavent 2003), and Multiple Cuts Node Duplication

Lower Bound (Wøhlk 2006) affirm that, for a subset S ⊆ V \ {v0}, some edges must be dead-

headed depending on the total demand to be serviced in S, the number of required edges in

the cutset (S, S \ V), and possibly some additional demand on the path from v0 to S. There

are some additional references concerning lower bounding procedures for the CCPP (Assad,

Pearn and Golden 1987), DCARP (Mourão and Almeida 2000), CARP (Pearn 1988; Benavent

et al. 1992), and MCARP (Belenguer, Benavent, Lacomme and Prins 2006; Gouveia, Mourão

and Pinto 2010).

1.3.4 Exact Algorithms

Despite CARP being NP-hard, attempts were made towards solving CARP to optimality,

including a branch-and-bound algorithm (Hirabayashi, Saruwatari and Nishida 1992), and a

CARP reduction into the capacitated vehicle routing problem (CVRP), which is then solved by

a branch-and-cut-and-price algorithm (Longo, de Aragão and Uchoa 2006). This reduction to

the CVRP augments the original graph into a complete graph with 2|ER| + 1 vertices, where

ER is the number of required edges. Augmenting the graph reflects negatively on the size of the

instances the branch-and-cut-and-price algorithm can manage. The largest instance solved to

optimality by this method contains 77 nodes and 87 required edges.

Chapter 2

Open Capacitated Arc Routing

Problem

This chapter gives a formal description to OCARP in Section 2.1, followed by some ap-

plications in Section 2.2. An integer linear programming (ILP) is formulated in Section 2.3,

deriving also some interesting properties. The OCARP complexity is analyzed in Section 2.4

and a solving strategy is given in Section 2.5. Section 2.6 presents the final remarks which closes

this chapter.

2.1 Problem Statement

Let G(V,E) be an undirected connected graph where non-negative costs cij and demands

dij are assigned to each edge e = [vi, vj]. All edges with positive demands, called required edges

(ER ⊆ E), must be serviced once by a single vehicle. Nonetheless, all edges may be traversed

multiple times, by one or more vehicles. A fleet of M identical vehicles with limited capacity

D is available. While traversing the graph, a vehicle might (i) service an edge, which deducts

the demand from the vehicle capacity and increases the solution cost, or (ii) deadhead an edge,

same as traverse an edge without servicing it, which only increases the solution cost.

Despite graph G being undirected, it is convenient to represent OCARP solutions with

directed arcs. These arcs gives orientation and order in which the edges of graph G are traversed.

Throughout the text, undirected edges are referring to the OCARP instance, and directed arcs

are referring to the OCARP solution (see example in Figure 2.1).

The OCARP considers both open and closed tours. An open tour uses distinct nodes to

start (source node) and end (sink node) the tour, while in a closed tour the source and sink

nodes are the same. A feasible OCARP solution is formed by a family of feasible tours, which

services all required edges and does not violate any vehicle capacity. The objective of OCARP

is to find the minimum cost family of tours (Usberti et al. 2011b).

9

10 Chapter 2. Open Capacitated Arc Routing Problem

Figure 2.1: An OCARP instance and a corresponding feasible solution.

2.2 Applications

Many combinatorial optimization problems can be represented as an OCARP instance. For

the sake of simplicity this section selects only two problems from literature which revealed

themselves as interesting applications for the OCARP.

2.2.1 Meter Reader Routing Problem

The Meter Reader Routing Problem (MRRP) interests major electric, water and gas distri-

bution companies which periodically needs to meter read their clients. Like the OCARP, the

MRRP does not consider a depot since the employees responsible for metering, called meter

readers, are taken by auto from the office to the address of their first card, and after completing

their routes, they take public transportation to return home. The objective is to find a set of

tours for meter readers, with limited amount of working time, that visit every street segment

containing clients in a minimum traversal time. Service time is incurred whenever an employee

meter reads, while a shorter deadheading time is computed when the employee is not reading.

All street segments have positive deadhead time, however some may have zero service time,

which means there are no clients on that segment.

Stern and Dror (1979) routed meter readers for the state power company from Beersheva,

Israel, and developed a route first, cluster second heuristic, where initially the problem is treated

as non-capacitated, and a single route covers all required edges. This single route is partitioned

into segments, each designated to a meter reader.

Wunderlich, Collette, Levy and Bodin (1992) routed meter readers for the Southern Califor-

nia Gas Company (SOCAL) from Los Angeles, USA, using an adapted arc partitioning algorithm

developed and further improved by Bodin and Levy (1989) and Bodin and Levy (1991). In their

algorithm, the graph is partitioned into meter readers territories, followed by tour construction

2.2. Applications 11

inside each territory. This algorithm represents a reverse strategy compared to Stern and Dror

proposition, i.e., a cluster first, route second heuristic.

The transformation from MRRP to OCARP comes naturally:

1. Vehicles correspond to meter readers, with capacity equal to their working time.

2. Vertices correspond to street intersections.

3. Edges correspond to street segments.

4. Edge cost represents deadheading time.

5. Edge demand represents servicing time.

A singularity of the MRRP is that even when the reader is not servicing an edge, he is using

part of his working time by deadheading. Therefore the corresponding OCARP vehicle should

have its remaining capacity decreased not only when servicing, but also when deadheading.

2.2.2 Cutting Path Determination Problem

In the Cutting Path Determination Problem (CPDP) the trajectories of a set of blowtorches

must be determined for a cut pattern on a quadrilateral steel plate in order to produce a

predefined set of polygonal pieces in minimum time. A piece is produced when its shape is

fully traversed by one or more blowtorches. These blowtorches have a limited amount of energy

to spend and must not traverse the interior of any shape, but they may dislocate above the

plate level, reflecting additional elevating and lowering maneuvers times. Moreira, Oliveira,

Gomes and Ferreira (2007) investigated a version of CPDP using the concept of a dynamic

rural postman problem. In their dynamic version, the related graph changes during the cutting

process because when a piece is produced it falls off into a special container, therefore giving

new possible paths for the blowtorches to take.

The CPDP may also be modeled as an OCARP through the following transformation:

1. Graph vertices correspond to polygons vertices. A vertex can be removed if only two

non-required edges incides on it, and a single non-required edge replaces both inciding

edges. The cost of the new edge is made equal to the sum of the costs of the previous

ones.

2. Graph edges correspond to polygons edges.

3. Non-required edges are formed by the set of rectilinear trajectories between all pairs of

vertices. This set of non-required edges is partitioned into upper and lower non-required

edges. The lower edges are those which do not overrun the interior of any polygon. The

upper edges represent a blowtorch dislocation above the plate level.

12 Chapter 2. Open Capacitated Arc Routing Problem

4. Edge cost corresponds to traversal time, reminding that non-required upper edges imply

additional times due to elevating and lowering maneuvers. Moreover, cutting an edge is a

slower process than to only traversing it, thus required edges have higher costs compared

to non-required edges.

5. Demand represents the energy spent to cut through the plate (while traversing required

and lower non-required edges). It is assumed that energy is spent only when the blowtorchs

are cutting.

6. Vehicles correspond to blowtorches, with capacity equivalent to the amount of energy they

are allowed to spend.

7. The objective function seeks the minimum makespan.

Figure 2.2: Transforming a CPDP instance into an OCARP instance.

This transformation has polynomial complexity bounded by O(n2), where n is the number

of vertices. Figure 2.2 shows an example of a cutting pattern (plate with the shapes to be

produced) and the equivalent OCARP graph. Required edges are represented by continuous

lines, and non-required by dotted lines. Given the large amount of upper non-required edges,

these were omitted.

2.3 ILP Model

In this section an integer linear programming model for OCARP is proposed, starting with

the following CARP model from Golden and Wong (1981) and then discussing the differences.

This model considers only directed edges, hence each edge (i, j) ∈ E from the undirected CARP

graph G(V,E) is treated as two arcs (i, j) and (j, i). It is assumed that node v0 is the depot,

2.3. ILP Model 13

and that the number of vehicles M is a fixed parameter. N(i) denotes the nodes adjacent to

node i in G.

Two sets of decision variables are defined: xkij = 1 if tour k traverses arc (i, j), xkij = 0

otherwise; lkij = 1 if tour k services arc (i, j), lkij = 0 otherwise. There are the auxiliary variables

ukS and vkS (S ⊆ V, S̃ = V \ S): if ukS = 0 then tour k does not have a sufficient number of arcs

to form an illegal subcycle in S; if vkS = 0 then tour k traverses the cut-set (S, S̃). It is worth

mentioning that the converse for these two conditional statements does not hold true, meaning

that it is not possible to predict the values of ukS and vkS given the arcs of tour k S and (S, S̃).

(CARP)

Minimize

M
∑

k=1

∑

(i,j)∈E

cijx
k
ij (2.1)

s.t.
∑

j∈N(i)

(xkji − x
k
ij) = 0 (i ∈ V, k ∈ {1, . . . ,M}) (2.2)

xkij > lkij ((i, j) ∈ ER, k ∈ {1, . . . ,M}) (2.3)

M
∑

k=1

(lkij + lkji) = 1 ((i, j) ∈ ER) (2.4)

∑

(i,j)∈ER

dij l
k
ij 6 D (k ∈ {1, . . . ,M}) (2.5)

∑

(i,j)∈(S,S)

xkij − |S|
2ukS 6 |S| − 1

∑

(i,j)∈(S,S̃)

xkij + vkS > 1

ukS + vkS 6 1



























(S ⊆ V \ {v0} , S̃ = V \ S, k ∈ {1, . . . ,M}) (2.6)

xkij ∈ {0, 1} ((i, j) ∈ E, k ∈ {1, . . . ,M}) (2.7)

lkij ∈ {0, 1} ((i, j) ∈ ER, k ∈ {1, . . . ,M}) (2.8)

ukS , v
k
S ∈ {0, 1} (k ∈ {1, . . . ,M}, S ⊆ V \ {v0}) (2.9)

The objective function (2.1) minimizes the solution total cost. Constraints (2.2) maintain

routes continuity (every node must have equal indegree and outdegree). Constraints (2.3) state

that serviced arcs must also be traversed; (2.4) force each required edge (represented by two arcs)

to be serviced in a unique direction and by a single vehicle; (2.5) are the capacity constraints;

and (2.6) eliminate illegal subcycles.

For a CARP illegal subcycle to occur, referring to some tour k, two necessary conditions must

be satisfied under subset S, strictly containing the nodes of the subcycle (except the depot):

14 Chapter 2. Open Capacitated Arc Routing Problem

1. The number of tour arcs in S is at least |S|, otherwise there would not be enough arcs to

form the subcycle.
∑

(i,j)∈(S,S)

xkij > |S| (2.10)

2. There are no arcs in the cut (S, S̃), meaning that the subcycle is disconnected from the

tour.
∑

(i,j)∈(S,S̃)

xkij = 0 (2.11)

Constraints (2.6), by using the auxiliary variables ukS and vkS, state that at most one of the

two conditions (2.10,2.11) can be satisfied for any S ⊆ V \ {v0}.

Constraints (2.2) are not valid for OCARP since open tours are feasible. Each directed open

tour contains a source and a sink node, which can be detected by the difference between their

indegree and outdegree (if the tour is closed (cycle), then any node can be the source and the

sink). That said, valid continuity constraints for the OCARP are represented by (2.12,2.13,2.14).

∑

j∈N(i)

(xkij − x
k
ji) 6 αk

i (i ∈ V, k ∈ {1, . . . ,M}) (2.12)

∑

i∈V

αk
i 6 1 (k ∈ {1, . . . ,M}) (2.13)

αk
i ∈ {0, 1} (i ∈ V, k ∈ {1, . . . ,M}) (2.14)

The auxiliary variable αk
i = 1 if node i is the source of tour k, αk

i = 0 otherwise. While

constraints (2.12) detect which nodes are sources, constraints (2.13) declare that each tour may

contain at most one source. It should be noticed that there is no need to restrain the number

of sink nodes, since this number is implicitly restricted by the graph degree balance.

Figure 2.3: OCARP illegal subcycle.

Constraints (2.6) are based on the fact that a cycle is illegal for CARP if it is disconnected

from the tour origin, the depot. This is not valid for OCARP, since any node can be the

2.3. ILP Model 15

origin. The OCARP subcycle in Figure 2.3, for example, is illegal because it is disconnected

from the tour source. Surely, a disconnected cycle in any subset S ⊆ V is valid for OCARP if

S contains the tour source. Therefore, it is possible to extend CARP illegal subcycle necessary

conditions (2.10,2.11) to OCARP, under subset S strictly containing the nodes of the subcycle,

by comprising a third condition (2.15).

3. There is no source node in S.

∑

i∈S

αk
i = 0 (2.15)

With this third condition, an OCARP adaptation of the subcycle elimination constraints is

given in (2.16,2.17). The auxiliary variable wk
S = 0 if tour k contains a source node in S (S ⊆ V).

These constraints work by allowing at most two of three necessary conditions (2.10,2.11,2.15)

to form an illegal OCARP subcycle on any subset S ⊆ V .

∑

(i,j)∈(S,S)

xkij − |S|
2ukS 6 |S| − 1

∑

(i,j)∈(S,S̃)

xkij + vkS > 1

∑

i∈S

αk
i + wk

S > 1

ukS + vkS +wk
S 6 2











































(S ⊆ V, S̃ = V \ S, k ∈ {1, . . . ,M}) (2.16)

ukS , v
k
S , w

k
S ∈ {0, 1} (k ∈ {1, . . . ,M}, S ⊆ V) (2.17)

Replacing constraints (2.2,2.6,2.9) by (2.12,2.13,2.14,2.16,2.17) in the CARP model, leads to

the following valid OCARP integer linear programming model.

16 Chapter 2. Open Capacitated Arc Routing Problem

(OCARP)

MIN

M
∑

k=1

∑

(i,j)∈E

cijx
k
ij

s.t.
∑

j∈N(i)

(xkij − x
k
ji) 6 αk

i (i ∈ V, k ∈ {1, . . . ,M})

∑

i∈V

αk
i 6 1 (k ∈ {1, . . . ,M})

xkij > lkij ((i, j) ∈ ER, k ∈ {1, . . . ,M})

M
∑

k=1

(lkij + lkji) = 1 ((i, j) ∈ ER)

∑

(i,j)∈ER

dij l
k
ij 6 D (k ∈ {1, . . . ,M})

∑

(i,j)∈(S,S)

xkij − |S|
2ukS 6 |S| − 1

∑

(i,j)∈(S,S̃)

xkij + vkS > 1

∑

i∈S

αk
i + wk

S > 1

ukS + vkS + wk
S 6 2











































(S ⊆ V, S̃ = V \ S, k ∈ {1, . . . ,M})

xkij ∈ {0, 1} ((i, j) ∈ E, k ∈ {1, . . . ,M})

lkij ∈ {0, 1} ((i, j) ∈ ER, k ∈ {1, . . . ,M})

αk
i ∈ {0, 1} (i ∈ V, k ∈ {1, . . . ,M})

ukS , v
k
S , w

k
S ∈ {0, 1} (k ∈ {1, . . . ,M}, S ⊆ V)

The binary constraints (2.7) under the decision variables xkij may induce that an OCARP

tour could traverse an arc only once, which is not true. However, in the next section, Property

4 shows that there always exists an optimal OCARP solution in which all arcs are traversed at

most once.

2.3.1 OCARP properties

Some interesting OCARP properties are:

Property 1 Given any OCARP instance with M vehicles and at least M required edges, there

exists an optimal solution which uses all vehicles.

2.3. ILP Model 17

Proof: Consider an optimal solution which uses less than M vehicles. Since there are more

than (M − 1) required edges, at least one vehicle is traversing two or more required edges. In

this case, we can split this vehicle tour into two, leaving at least one required edge in each tour,

and the solution cost would remain the same. This procedure can be repeated until all vehicles

attend a required edge, giving the property correctness.

A consequence of this property is that instances where M > |ER| are trivially solvable by

assigning one vehicle per required edge. Therefore, unlike CARP which admits M being a

decision variable, OCARP has only meaning if M is a fixed parameter.

Property 2 Given any OCARP instance, there exists an optimal solution in which all tours

start and finish with required edges.

Proof: Consider an optimal tour with a terminal non-required edge. If this edge is simply

removed from the tour, feasibility is maintained. This process can be iterated until there are no

longer any terminal non-required edges, giving the property correctness.

A consequence of this property is that if there is a closed tour belonging to an optimal solu-

tion, then all of its edges are required (excluding non-required edges with zero cost). Otherwise,

it would be possible to reduce the solution cost by removing one of the non-required edges from

the closed tour, turning it into an open tour, still feasible.

Property 3 Given any OCARP instance, there exists an optimal solution in which all tours

are formed by alternating required edges with shortest paths linking one required edge to another.

Proof: In the case where a solution is formed by two adjacent required edges, it can be consid-

ered that there is an empty path between these edges, which configures their shortest path. If

there is a tour with two required edges connected by a path of length greater than the shortest

path, then it would be possible to simply replace this suboptimal path by the shortest one,

without loss of feasibility.

Property 4 There is an optimal OCARP solution which does not traverse an edge twice in the

same direction by the same vehicle.

Proof: Welz (1994) demonstrated this same property for CARP within a two-step proof. First,

he has shown that the inequality xkij+x
k
ji 6 2 (k ∈ {1, . . . ,M}, (i, j) ∈ E) is valid for an optimal

CARP solution, otherwise there would exist a deadheading cycle that could be removed without

loss of feasibility. For the same reasons, this inequality remains valid for OCARP. The second

step was to show that the CARP solution induced graph is Eulerian, since all nodes have even

degree. This imply the existence of an Eulerian tour, which traverses each edge exactly once. As

for OCARP, only the source and sink nodes may have odd degrees, meaning that the OCARP

solution induced graph is either Eulerian or semi-Eulerian. This last case implies the existence

of an Eulerian path which also traverses each edge exactly once.

18 Chapter 2. Open Capacitated Arc Routing Problem

2.4 Complexity Study

Through a polynomial reduction CARP 6p OCARP, this section intends to prove that the

latter is at least as hard as the former. Furthermore, knowing if a problem, such as OCARP,

is NP-hard, justifies the employment of heuristics to find good quality solutions, since exact

methods are likely inadequate to solve realistic sized instances.

Theorem 1 CARP can be polynomially reduced into OCARP.

Starting from any CARP instance G(V,E), with M vehicles and a depot node v0, add 2M

dummy nodes (V0) and 2M dummy required edges (ER0), with relatively high costs for any

e ∈ ER0, c(e) = C ≫ SPmax (where SPmax is the cost of the maximum shortest path between

any two nodes of G), and demands for any e ∈ ER0, d(e) = δ > 0 (any positive value suffices),

linking the dummy nodes to v0. High costs are attributed to dummy required edges so that an

optimal solution traverses each one of them a single time. Finally, the vehicles capacities should

be increased to D + 2δ.

A new graph G1(V1, E1) is then formed, where V1 = V ∪ V0 and E1 = E ∪ ER0. This

transformation has complexity O(M), and assuming M < |ER| (Property 1), the reduction at

hand is linear with respect to the size of G. Figure 2.4 shows an example of the reduction just

described.

Figure 2.4: CARP graph G transformed into OCARP graph G1.

Consider P ∗carp(G) and P
∗
ocarp(G1) the induced graphs by CARP and OCARP optimal solu-

tions in G and G1, respectively. The relationship between them are described in the following:

1. P ∗carp(G) = P ∗ocarp(G1 \ V0), i.e., for every OCARP optimal solution in G1, there is a

corresponding CARP solution in G that can be obtained by removing the set of dummy

nodes and edges.

2.4. Complexity Study 19

2. c(P ∗carp(G)) = c(P ∗ocarp(G1))− 2MC, i.e., the CARP optimal solution cost is equal to the

corresponding OCARP optimal solution cost subtracting the costs of the dummy edges.

To prove Theorem 1 it will be demonstrated that in an OCARP optimal solution all tours

traverse exactly two dummy edges by starting and ending at distinct dummy nodes (Lemma

1.1), and after extracting all dummy edges from this solution, a feasible CARP solution emerge

(Corollary 1.1), i.e., a solution which traverses all required edges, attends the vehicles capacities

(Lemma 1.2), and is formed by closed tours which visit the depot (Lemma 1.3). The proof

is complete when, beyond feasibility, optimality is also verified (Lemma 1.4). For the follow-

ing, consider Pocarp(G) as the induced graph from an OCARP optimal solution after removing

dummy nodes and edges, i.e., Pocarp(G) = P ∗ocarp(G1 \ V0).

Lemma 1.1 All tours from P ∗ocarp(G1) traverse exactly two distinct dummy edges.

Proof: Since the transformed OCARP instance has M vehicles and 2M dummy edges, then

two possibilities arise: (1) all tours traverse exactly two dummy edges or (2) at least one tour

traverses more than two dummy edges. In the first case, two dummy edges can be traversed by

a single tour without the requirement of revisiting any dummy edge. This can be accomplished

if and only if the tour starts at a dummy node and ends at another dummy node. In the

second case, if a tour visits more than two dummy edges, at least one of them will necessarily

be revisited, which would result in a needless cost increase, given the high cost of traversing a

dummy edge. Therefore the second possibility could not occur in an optimal solution.

Lemma 1.2 All required edges from G are serviced in Pocarp(G) without overloading any vehicle

capacity.

Proof: Since Pocarp(G) is formed by extracting two dummy edges with demand δ from each

P ∗ocarp(G1) tour, then naturally Pocarp(G) traverses all required edges from G. It should be

noticed that the vehicles remaining capacities are exactly the same for both solutions, since the

original vehicles have 2δ less capacity than the upgraded vehicles.

Lemma 1.3 Pocarp(G) is formed by a set of closed tours that visit the depot v0.

Proof: It was claimed by the proof of Lemma 1.1 that all P ∗ocarp(G1) tours have two distinct

dummy edges as terminals. Since all dummy edges are linked to G by the depot v0, removing

them transforms the OCARP tours into cycles that visit v0.

Corollary 1.1 Pocarp(G) is feasible for the CARP.

Note: As an immediate consequence of the previous lemmas, Pocarp(G) does not overload any

vehicle capacity, traverses all the required edges, and it is formed by closed tours that visit the

depot v0.

20 Chapter 2. Open Capacitated Arc Routing Problem

Lemma 1.4 Pocarp(G) represents an optimal CARP solution.

Proof: The OCARP optimal solution cost for G1 can be decomposed as c(P ∗ocarp(G1)) =

c(P ∗ocarp(G1 \ V0)) + 2MC, where 2MC is a lower bound from Lemma 1.1. It follows that

c(P ∗ocarp(G1\V0)) must be minimum, and so is c(Pocarp(G)), according to the hypothesis Pocarp(G) =

P ∗ocarp(G1 \ V0).

Corollary 1.2 OCARP is NP-hard.

Note: CARP is an NP-hard problem (Golden and Wong 1981) which is polynomially reducible

to OCARP.

2.5 Solution Strategy

This section reveals an inverse polynomial reduction of the one proposed in Section 2.4, i.e.,

OCARP 6p CARP. This is relevant, once it admits solving OCARP through CARP algorithms.

Theorem 2 The OCARP can be polynomially reduced into CARP.

Consider an OCARP instance G(V,E) with M vehicles. Add a dummy depot v0 and a set of

dummy non-required edges (E0), with relatively high costs for any e ∈ E0, c(e) = C ≫ SPmax,

and demands for any e ∈ E0, d(e) = 0, linking v0 to every node in G. The costs of the dummy

non-required edges are made high so that an optimal solution traverses these edges strictly when

the vehicle is leaving and returning to the depot. A new graph G1(V1, E1) is then formed, where

V1 = V ∪ {v0} and E1 = E ∪E0. This reduction has linear complexity O(|V |). Figure 2.5 gives

an example of the proposed reduction.

Figure 2.5: OCARP graph G transformed into CARP graph G1.

Consider P ∗ocarp(G) and P
∗
carp(G1) the induced graphs by OCARP and CARP optimal solu-

tions in G and G1, respectively. The relationship between them are described in the following:

2.6. Final Remarks 21

1. P ∗ocarp(G) = P ∗carp(G1) \ {v0}, i.e., for every CARP optimal solution in G1, there is a

corresponding OCARP solution in G that can be obtained by removing the dummy depot.

2. c(P ∗ocarp(G)) = c(P ∗carp(G1)) − 2MC, i.e., the OCARP optimal solution cost is equal to

the corresponding CARP optimal solution cost subtracting twice the number of vehicles

times the cost of a dummy edge.

Proof: Consider Pcarp(G) as the induced graph from a CARP optimal solution after removing

the dummy depot, i.e., Pcarp(G) = P ∗carp(G1 \{v0}). Given the simplicity of this transformation,

it will be demonstrated that Pcarp(G) represents a feasible OCARP solution and concluded that

it is also optimal.

An OCARP solution is considered feasible if it is formed by tours (open or not) that traverse

all required edges without overloading the capacity of any vehicle. The induced graph Pcarp(G)

is formed by extracting only dummy edges from P ∗carp(G1), therefore Pcarp(G) tours still traverse

all the original required edges while respecting the capacity constraints. In addition, since the

depot is linked to V only through dummy edges, then every P ∗carp(G1) tour contains exactly

two dummy edges, and not more given their high costs. If two adjacent edges are extracted

from a cycle, as in every P ∗carp(G1) tour to generate Pcarp(G), the result will be an OCARP

tour. This concludes Pcarp(G) feasibility. Now about Pcarp(G) being optimal, suppose there

exists P ∗ocarp(G), such that c(P ∗ocarp(G)) < c(Pcarp(G)). Then by simply adding two dummy

edges, with cost C, at both the beginning and the end of each tour, it would be possible to

transform P ∗ocarp(G) into an induced CARP solution graph, Pcarp(G1), with cost c(Pcarp(G1)) =

c(P ∗ocarp(G)) + 2MC < c(Pcarp(G)) + 2MC = c(P ∗carp(G1)), which would be a contradiction.

From Property 2, Theorem 2 remains valid even if the set E0 is the set of dummy edges

linking v0 with only the nodes incident to required edges. This gives a simplification for the

proposed reduction.

Corollary 2.1 OCARP and CARP are polynomially equivalent.

Note: Since both polynomial reductions OCARP 6p CARP and CARP 6p OCARP exist, then

the complexity of solving these problems differs from a polynomial function.

2.6 Final Remarks

This chapter has introduced the open capacitated arc routing problem (OCARP), a combi-

natorial optimization problem of theoretical and practical interest belonging to the family of arc

routing problems. At least two applications from literature can be modeled as an OCARP, the

Meter Reader Routing Problem and the Cutting Path Determination Problem. An integer linear

programming model was proposed, followed by some interesting properties of the problem. The

22 Chapter 2. Open Capacitated Arc Routing Problem

OCARP complexity has been proven NP-hard through a polynomial reduction of the CARP.

A reverse reduction was also proposed, showing that algorithms for the CARP could also be

suitable for the OCARP, as long as they assume a fixed number of vehicles.

Chapter 3

Heuristics Approaches

3.1 Introduction

This chapter describes a GRASP with path-relinking (PR) developed to solve both the

capacitated arc routing problem (CARP) and the Open CARP (OCARP). Section 3.2 reviews

the general structure of a Greedy Randomized Adaptive Search Procedure (GRASP) and gives

a thorough description of the proposed GRASP to solve the CARP, including the constructive

phase, cost-demand edge-selection rule, reactive adjustment, local search, and the statistical

solution filtering. To strengthen the search for high-quality solutions, a path-relinking was

coupled to the GRASP, mirroring several successful experiences in literature, which are referred

to in Section 3.3. Still on this section, the detailed modus operandi of the proposed path-

relinking is provided, with special attention to the metric used to measure the distance between

a pair of solutions, the operator used to progressively transform an initial solution towards a

guiding solution, the admission policy for the elite solutions pool, and the way how GRASP

and path-relinking were jointed. Computational experiments were conducted for both OCARP

and CARP instances and the results are presented in Section 3.4. The final remarks close this

chapter in Section 3.5.

3.2 Greedy Randomized Adaptive Search Procedure

A Greedy Randomized Adaptive Search Procedure (GRASP) (Feo and Resende 1995) is a

memoryless multi-start metaheuristic, where each iteration consists of two phases:

• construction phase: initial solutions are built, one element at a time, with a greedy ran-

domized heuristic. At each construction iteration, the next element to be added is deter-

mined by ordering all elements in a candidate list with respect to a greedy function that

estimates the benefit of selecting each element. The probabilistic component of a GRASP

23

24 Chapter 3. Heuristics Approaches

is characterized by randomly choosing one of the best candidates in the list, not always

the top best.

• local search: the neighborhood of the initial solutions is explored. The solutions generated

by a GRASP construction are not guaranteed to be locally optimal. Hence, it is almost

always beneficial to apply a local search to attempt to improve each constructed solution.

A local search algorithm works in an iterative fashion by successively replacing the current

solution by a better one from its neighborhood. It terminates when there is no better

solution in the neighborhood.

The best solution over all GRASP iterations is returned as the result. Success for a local

search algorithm depends on an efficient neighborhood search technique and a good starting

solution provided by the construction phase. A GRASP can be seen as a metaheuristic which

captures good features of pure greedy algorithms (intensification) and also of random construc-

tion procedures (diversification).

Competitive results have been reported in literature using GRASP-based metaheuristics

in different routing problems such as the vehicle routing problem (Prins 2009), the truck and

trailer routing problem (Villegas, Prins, Prodhon, Medaglia and Velasco 2011), and the CARP-

TW (Labadi et al. 2008). According to Resende and Ribeiro (2005), the performance of GRASP

can be enhanced by using reactive parameter tuning mechanisms, multiple neighborhoods, and

path-relinking. These features were incorporated in the proposed GRASP, whose components

and the general structure follows.

3.2.1 Constructive Phase

The GRASP constructive phase was developed based on Santos et al. (2009) path-scanning

heuristic with ellipse rule. This heuristic was adapted to include a restricted candidate list,

responsible for holding a set of good and diversified elements to embody the solution under

construction. The parameters which control the balance of goodness and diversity have their

values reactively adjusted according to the average solution cost these values provide.

3.2.1.1 Path-Scanning Heuristics

The path-scanning heuristics developed for CARP construct each solution by adding to a

path starting at the depot, one required edge at a time. To determine the next edge to add, an

edge-selection rule ψ(vl, e) is used (3.1), where e = [vi, vj] is a candidate for the next required

edge to be visited starting from vi to vj , vl is the last node visited by the tour, and SP represents

the shortest path cost between two nodes. Every unserviced required edge e whose demand dij

is less than the vehicle remaining capacity is a possible candidate, and the heuristic will select

the one which minimizes ψ(vl, e).

3.2. Greedy Randomized Adaptive Search Procedure 25

ψ(vl, e) = min(SP (vl, vi), SP (vl, vj)) (3.1)

There are cases where more than one candidate edge minimizes ψ(vl, e), specially when they

are incident to vl. In these situations, a tie breaking rule is considered, and this rule represents

the major difference between CARP path-scanning heuristics. Golden and Wong (1981) have

used five criteria to break ties:

1. minimize
cij
dij

.

2. maximize
cij
dij

.

3. minimize the cost back to depot.

4. maximize the cost back to depot.

5. criterion 3 if the vehicle has used more than half of its capacity; criterion 4, otherwise.

A problem instance is solved five times, using a different criterion each time, and the best

of the five solutions is taken. Pearn (1989) modified this approach by selecting one of the

five criteria at random, with equal probability, whenever a tie occurs. Belenguer et al. (2006)

simplified the tie breaking rule by randomly selecting one tied edge. This was adopted by

Santos et al. (2009), in their path-scanning heuristic with ellipse rule, explained in the following

paragraphs.

Recently, Santos et al. (2009) developed a path-scanning heuristic which makes use of an

ellipse rule. When a vehicle is near its full capacity, this rule enforces the vehicle to service

only edges inside an ellipse containing the shortest path between the last serviced edge and the

depot, following the rationale that a heavily loaded vehicle should stay closer to the depot in

order to reduce its returning cost. These authors define ned = |ER|, td the total demand to be

serviced, tc the total cost from edges with positive demand, v0 the depot node, [vh, vl] the last

serviced edge on the tour, and β a real parameter. If the remaining vehicle capacity is less than

or equal to β (td/ned), then the next edge to be serviced [vi, vj] must be the nearest edge to

[vh, vl] (vl = vi, if the edges are adjacent) satisfying the condition:

SP (vl, vi) + cij + SP (vj , v0) 6
tc

ned
+ SP (vl, v0) (3.2)

If no candidate edge satisfies (3.2) then the vehicle returns to the depot. Through the ellipse

rule, the authors obtained 44% reduction in overall average deviation from lower bounds with

little or no increase in solution time, compared to previous path-scanning heuristics.

Solving OCARP using the path-scanning heuristic with ellipse rule was attempted. This

however was not successful given that this heuristic was developed for the CARP version where

26 Chapter 3. Heuristics Approaches

the number of vehicles is a decision variable (Section 1.3), and in OCARP the number of vehicles

is a fixed parameter (Property 1). In fact, the OCARP computational experiments (Section

3.4.1) reveal that this heuristic has failed to find even a single feasible solution for some instances.

This can be explained by the fact that underneath the tour cost optimization problem relies a bin-

packing subproblem of assigning the required edges to the vehicles, given their limited amount

and capacity. By relaxing the number of vehicles available, common procedure among the latest

CARP algorithms, this subproblem cease to exist. As for the OCARP, the problem of finding

a feasible solution is already NP-Hard. Therefore, efficient OCARP heuristics should take both

of these optimization problems into consideration, and for this reason a reactive path-scanning

heuristic with ellipse rule is proposed.

3.2.1.2 Cost-demand edge-selection rule

One well-known bin-packing algorithm (Martello and Toth 1990) is the first fit decreasing

(FFD) that operates by sorting the elements in a decreasing order of their demands, and then

inserting each element into the first bin with sufficient remaining capacity. This concept of prior-

itizing the elements of higher demands inspired a new edge-selection rule ψ̃(e) (3.3), redesigned

in order to consider not only the shortest path cost, but also the demands to be collected from

the candidate edges. These two objectives are weighted through parameter γ ∈ [0, 1], e = [vi, vj]

is a candidate edge, vl is the last node visited by the tour, SPmax is the length of the maximum

shortest path between any two nodes of the graph and dmax is the maximum edge demand.

ψ̃(e) = γ
min(SP (vl, vi), SP (vl, vj))

SPmax
+ (1− γ)(1−

dij
dmax

) (3.3)

It should be noticed that if γ = 1, then this edge-selection rule becomes equivalent to (3.1)

(except by the normalization factor SPmax). When γ = 0, the edge-selection rule works as

the FFD heuristic, in an attempt to use the vehicle capacity more efficiently. The parameter γ

is self-tuned through a metaparameter g ∈ [0.5, 1), according to the feasibility of the previous

solutions obtained by the heuristic.

Let γk and gk be the values of these parameters at iteration k. Table 3.1 gives the tuning

mechanism for these parameters. The values of γ and g are set so that initially ψ̃(e) works such

as in the original heuristic. When infeasible solutions are obtained in sequel, an exponentially

fast adjustment of γ is performed by successive multiplications with g. During this adjustment,

when a feasible solution appears, γ is readjusted in favor of solution cost and g is taken closer

to 1 making future adjustments increasingly smoother (Figure 3.1).

3.2. Greedy Randomized Adaptive Search Procedure 27

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100 1000 10000 100000

P
a
r
a
m
e
t
e
r

V
a
l
u
e

Iterations

gamma
g

Figure 3.1: Evolution of the parameter γ for instance oegl-s4-C.

3.2.1.3 Constructive Heuristic

The path-scanning heuristic with ellipse rule was adapted into a GRASP constructive heuris-

tic by replacing the edge-selection rule with the restricted candidate list (RCL) (3.4), which is

filled with the best candidate edges according to the cost-demand edge-selection rule (3.3),

limited by a threshold parameter α.

e ∈ RCL⇒ ψ̃(vl, e) ≤ α(ψ̃max − ψ̃min) + ψ̃min (3.4)

where ψ̃min = min
e
ψ̃(vl, e) and ψ̃max = max

e
ψ̃(vl, e).

The constructive heuristic pseudo-code is presented in Algorithm 1. The computational

complexity of this heuristic in a worst-case scenario is bounded by O(|ER|
2), since the main loop

(line 7) iterates |ER| times and at each iteration the heuristic tries to find the best among |ER|

positions for a required edge. Also, the evaluation of the edge-selection rule ψ̃ is pre-computed

for all required edges (O(|ER|
2)).

28 Chapter 3. Heuristics Approaches

Algorithm 1 constructivePhase(G,D, α, β, γ)

Input: G – instance graph, D – vehicle capacity, α – RCL parameter, β – ellipse rule parameter, γ –
cost-demand edge-selection rule parameter

Output: S – feasible CARP solution

1: td =
∑

e∈ER

d(e), ned = |ER|

2: S ← ∅

3: t← 1 // tour index
4: tourt ← ∅ // ordered set of edges representing a tour
5: rvc← D // remaining vehicle capacity
6: vl = 0 // starting tour on depot (node 0)
7: for (i = 1 to ned) do
8: RCL← ∅

9: ψ̃min ← min
e∈ER\S

ψ̃(vl, e), ψ̃max ← max
e∈ER\S

ψ̃(vl, e)

10: for (∀e ∈ ER \ S) do
11: if ψ̃(vl, e) ≤ α(ψ̃max − ψ̃min) + ψ̃min then

12: RCL← RCL ∪ {e}
13: end if

14: end for

15: if rvc 6 β
td

ned
then

16: RCL← RCL \ {edges violating ellipse rule (3.2)}
17: end if

18: if RCL = ∅ then

19: // starting new tour
20: S ← S ∪ {tourt}
21: t← t+ 1
22: tourt ← ∅

23: rvc← D
24: vl = 0
25: else

26: e = [vi, vj]← randomEdge(RCL) // randomly selects an edge from set RCL
27: tourt ← tourt ∪ {e}
28: rvc← rvc− d(e)
29: vl ← vj
30: end if

31: end for

32: return S

3.2. Greedy Randomized Adaptive Search Procedure 29

Table 3.1: Tuning scheme for the parameters γ and g.

Initial values Feasible solution at iteration k Infeasible solution at iteration k

γ1 = 1 γ(k+1) =
2γk+1

3 γ(k+1) = gkγk

g1 = 0.5 g(k+1) =
9gk+1

10 g(k+1) = gk

3.2.1.4 Reactive Parameters

The proposed constructive heuristic has two parameters, α and β, that directly affect the

heuristic performance and ergo must be properly adjusted. The RCL parameter α controls the

greediness of the candidate edge selection (α = 0 pure greedy; α = 1 pure random). The ellipse

rule parameter β is responsible for controlling the ellipse shape, or in other words, how active

is this rule (β = 0, inactive; 0 < β < D(ned/td), it depends on the vehicle remaining capacity;

β > D(ned/td), always active).

A reactive parameter adjustment, based on the work of Prais and Ribeiro (2000), was im-

plemented to select the values for α and β at each iteration of the constructive heuristic from

a discrete set of possible values. Let Π = {π1, . . . , πm} be the set of possible values for a given

parameter π. The probabilities associated with the choice of each value are all initially made

equal to pi = 1/m, (i = 1, . . . ,m). Furthermore, let cbest be the cost of the incumbent best

solution and ci the average cost of all solutions obtained by using π = πi. In Prais and Ribeiro

(2000), the selection probabilities are periodically reevaluated through (3.5).

pi =
qi
n
∑

j=1

qj

qi =
cbest
ci

(i = 1, . . . ,m) (3.5)

It is intended that the values of πi producing good solutions on average will generate larger

qi, which in turn increases the probabilities pi associated to them. However, it turned out that

through equation (3.5), the probabilities are not expressing well the relative differences between

their associated average costs. For most CARP instances, these probabilities would hardly differ

in more than one percent. An alternative reactive scheme is proposed (3.6), which preserves the

main idea of the previous one, but amplifies the effect of the average costs in their associated

probabilities.

qi = 1−

(

m− 1

m

)(

ci − cmin

cmax − cmin

)

(i = 1, . . . ,m) (3.6)

where cmin and cmax are the minimum and maximum average costs, and pi is calculated the

same way as before (3.5).

Let pmax and pmin be the probabilities associated to the best (ci = cmin) and worst (ci = cmax)

parameters, respectively. Then, by means of equation (3.6), pmax = mpmin, giving a much better

30 Chapter 3. Heuristics Approaches

probability distribution, in the sense that the best parameter will have m times better chance

to be chosen than the worst parameter.

Algorithm 2 describes the pseudo-code for the reactive parameter adjustment. The main

loop (2) iterates m times, where m is a constant referring to the number of possible values each

parameter has. This leads to a computational complexity bounded by a constant O(1).

Algorithm 2 reactiveChoice(C,N)

Input: C = {c1, . . . , cm} - average solution costs for each parameter value
N = {n1, . . . , nm} - number of solutions obtained for each parameter value

Output: i ∈ {1, . . . ,m} - index of the parameter value
1: qsum ← 0, cmin ← min

i
ci, cmax ← max

i
ci

2: for (i = 1 to m) do
3: qi ← 1
4: if ni > 0 and cmin 6= cmax then

5: qi ← qi −

(

m− 1

m

)(

ci − cmin

cmax − cmin

)

6: end if

7: qsum ← qsum + qi
8: end for

9: nrand ← randomNumber(0, 1) // real random number between [0, 1]
10: psum ← 0
11: for (i = 1 to m) do

12: psum ← psum +
qi
qsum

13: if nrand 6 psum then

14: break for

15: end if

16: end for

17: return i

3.2.2 Local Search Phase

After an initial solution is generated by the constructive phase, the local search tries to

improve it by exploring neighbor solutions defined by a set of moves which operate on the

required edges order and orientation. The solutions are encoded as a list of required edges with

implicit shortest paths between them, following the ideas in Lacomme et al. (2004) and Beullens

et al. (2003).

3.2.2.1 Neighborhood Moves

Four types of moves, used by the most successful CARP metaheuristics, were considered.

These neighborhood moves have a good trade-off between solution improvement and compu-

tational effort. Also, they are applicable for inter-routes and intra-routes, as shown by the

examples of Figure 3.2.

3.2. Greedy Randomized Adaptive Search Procedure 31

• single-insertion + reversal : a required edge is removed from its current position and

placed in another one, reversed or not (Figure 3.2(b)). A reversal means that the edge

will be traversed in the opposite direction as from before.

• double-insertion + reversal : two adjacent required edges are removed from their current

positions and placed in another ones, possibly reversing both of them (Figure 3.2(c)).

• swap + reversal : two required edges switch their current positions, possibly reversing one

or both required edges (Figure 3.2(d)).

• block-insertion: a block of adjacent required edges are removed from its current position

and placed in another one (Figure 3.2(e)).

(a) Original tours.

(b) Single-insertion: edge (i2, j2) is placed be-
tween edges (u2, v2) and (u3, v3).

(c) Double-insertion: edges (i2, j2) and (i3, j3)
are placed between edges (u2, v2) and (u3, v3).

(d) Swap: edges (i2, j2) and (u2, v2) switch posi-
tions.

(e) Block-insertion: edges (i2, j2), (i3, j3), . . . ,
(ik, jk) are placed between edges (u2, v2) and
(u3, v3).

Figure 3.2: Neighborhood moves with possible reversals (in red).

The local search phase uses the first three moves, while block-insertion is used as the path-

relinking operator (Section 3.3.2). To achieve a local optimal solution, the best improvement

scheme was adopted, where the selected move in each local search iteration is the one which

achieves the greatest reduction in solution cost, preserving feasibility, i.e., the vehicle capacity

constraints (Algorithm 3).

The local search complexity is defined by the size of the neighborhood and the complexity of

evaluating each possible move. The size of all four neighborhoods is O(|ER|
2), because they can

be seen as selecting the best possible 2-combination of required edges. To evaluate a move from

32 Chapter 3. Heuristics Approaches

any of the four proposed neighborhoods requires a constant computational effort O(1), because

all shortest paths between required edges are previously computed in a preprocessing phase.

Therefore, the best-improvement move can be determined for any solution with a computational

complexity of O(|ER|
2).

Algorithm 3 localSearch(S)

Input: S - CARP solution
Output: Sls - locally optimal CARP solution
1: clast ←∞, Sls ← S
2: while (cost(Sls) < clast) do
3: clast ← cost(Sls)
4: Ssi ← applyBestSingleInsert(Sls)
5: Sdi ← applyBestDoubleInsert(Sls)
6: Ssw ← applyBestSwap(Sls)
7: if cost(Ssi) < cost(Sls) then
8: Sls ← Ssi

9: end if

10: if cost(Sdi) < cost(Sls) then
11: Sls ← Sdi

12: end if

13: if cost(Ssw) < cost(Sls) then
14: Sls ← Ssw

15: end if

16: end while

17: return Sls

3.2.2.2 Infeasible Local Search

A diversification strategy was incorporated into local search by allowing capacity infeasi-

ble moves. Since an integer linear programming problem optimal solution must reside on the

boundary of the feasible convex hull, then this optimal solution is adjacent to the infeasible

space, making search techniques which explore the infeasible solution space an interesting field

of investigation.

Glover (2007) draws some light on the importance of exploring feasible/infeasible boundaries

in the solution space of combinatorial optimization problems. This work proposes an infeasible

local search, which receives as input a feasible solution, and probably returns a better cost

solution, infeasible with respect to the vehicles capacities (Algorithm 4). It works mostly like

the normal local search, except for two differences: (i) at each iteration, the search ignores if a

move violates a vehicle capacity; (ii) the search is interrupted after a given number of infeasible

moves, preventing the solution going too deep in the infeasible space, and possibly harming its

way back.

The infeasible local search provides these infeasible solutions as initial solutions to the path-

relinking, with means to explore paths traversing the infeasible/feasible boundaries of the so-

3.2. Greedy Randomized Adaptive Search Procedure 33

lution space. The computational complexity of the infeasible local search uses the same neigh-

borhoods from the regular local search, therefore the computational complexity of these two

heuristics are the same (O(|ER|
2)).

Algorithm 4 infeasibleLocalSearch(S, ninf)

Input: S - CARP solution
Output: Sils - CARP solution, likely infeasible
1: clast ←∞, Sls ←localSearch(S), Sils ← Sls

2: for (i = 1 to ninf) do
3: clast ← cost(Sils)
4: Sisi ← applyBestInfeasibleSingleInsert(Sils)
5: Sidi ← applyBestInfeasibleDoubleInsert(Sils)
6: Sisw ← applyBestInfeasibleSwap(Sils)
7: if cost(Sisi) < cost(Sils) then
8: Sils ← Sisi

9: end if

10: if cost(Sidi) < cost(Sils) then
11: Sils ← Sidi

12: end if

13: if cost(Sisw) < cost(Sils) then
14: Sils ← Sisw

15: end if

16: if (cost(Sils) > clast) then
17: break

18: end if

19: end for

20: return Sils

3.2.3 Statistical Filter

In general, good solutions uncovered by local search comes from good initial solutions found

in the constructive phase. In addition, local search is often the most demanding phase of a

GRASP in terms of computational effort. Therefore, it seems unwise and computationally

expensive to explore the neighborhood of all initial solutions, including low-quality ones. Instead,

poor quality initial solutions should be rather discarded, and with the computational time saved,

other more promising solution space regions can be explored. This strategy is called GRASP

filtering (Feo, Resende and Smith 1994). Prais and Ribeiro (2000) propose a filtering by storing

the average value (µ) of the ratio between initial (cini) and local search (cls) solutions costs.

After the first 100 iterations, they use this information to decide whether each constructed

solution will be submitted to local search or not. Their idea is based on the rationale that if

some reasonable threshold applied to the cost of the constructed solution leads to a value much

higher than the cost of the best solution already found, it is unlikely that local search could

produce a better solution than the current best. Their threshold is determined by (3.7), where

34 Chapter 3. Heuristics Approaches

an initial solution passes through the filter only if 90% of the ratio cini/cbest is less than or equal

to the average ratio (µ).

0.9cini 6 µcbest (3.7)

This work addresses GRASP filtering with a different approach, where a statistically mean-

ingful filter is proposed. This filter is able to classify bad solutions within a certain confidence

interval. For this, an additional variable is needed to determine the threshold, the standard de-

viation (σ) of the ratio between initial and local search solutions costs. A solution is considered

good, and passes through the filter, when it satisfies the following condition:

cini 6 (µ+ 2σ)cbest (3.8)

The filter accepts an initial solution to undergo local search when the ratio cini/cbest is less

than the average ratio plus two times its standard deviation, which gives a confidence interval

of slightly more than 95% probability that a rejected solution could not be improved by local

search further than cbest, assuming of course that cini/cls is an independent random variable

with normal distribution. Figure 3.3 clearly illustrates the normal distribution of 10000 samples

of the ratio cini/cls randomly generated by solving instance oegl-e1-A (see Section 3.4) with the

constructive heuristic (Algorithm 1), to obtain cini, and with the local search (Algorithm 3), to

obtain cls.

 0

 5

 10

 15

 20

 25

(1.0,1.05]

(1.05,1.10]

(1.10,1.15]

(1.15,1.20]

(1.20,1.25]

(1.25,1.30]

(1.30,1.35]

(1.35,1.40]

(1.40,1.45]

(1.45,1.50]

[1.50,1.55)

[1.55,1.60)

[1.60,1.65)

[1.65,∞
)

P
er

ce
n

ta
g

e
o

f
sa

m
p

le
s

cini/cls

Figure 3.3: Distribution of the ratio cini/cls for instance oegl-e1-A.

3.3. Path-Relinking 35

3.3 Path-Relinking

Path-relinking (PR) was introduced by Glover (1996), in the context of tabu and scatter

searches, as a mechanism to combine intensification and diversification by exploring trajectories

connecting high-quality (elite) solutions previously produced during the search. These elite

solutions often share a significant portion of their attributes, for example the nodes and edges of

a graph. Paths between a pair of solutions (S1, S2) in the search space traverse other solutions

that share these attributes contained in S1 and S2. Such paths may be generated by applying

neighborhood moves to the initial solution S1, which progressively introduces attributes from

the guiding solution S2. This generates a sequence of intermediate solutions, often not locally

optimal, however improvable by local search and possibly better than S1 and S2.

Labadi et al. (2008) observed that, despite GRASP simplicity and speed, it is often less

effective than its counterpart metaheuristics, like tabu search, and they explain this may be

due to the independent (memoryless) GRASP iterations, using no information to sample good

regions of the solution space. This may be remedied hybridizing PR with GRASP, as Resende

and Ribeiro (2005) suggest, in order to improve the performance of the latter by tackling the

memoryless criticism faced by the basic GRASP scheme.

The use of path-relinking within a GRASP procedure can be done as an intensification strat-

egy to each local optimum obtained after the local search phase, and/or as a post-optimization

strategy to all pairs of elite solutions. Labadi et al. (2008) uses both strategies separately to

solve the CARP-TW, and conclude that the intensification strategy provided a better average

deviation from lower bound in exchange for a higher computational time.

A relatively recent trend in literature is the evolutionary PR, where pairs of elite set solutions

are continuously relinked while improvements in quality are observed on the elite set (Villegas

et al. 2011; Resende and Werneck 2004), with a close relation to the evolutionary behaviour of a

genetic algorithm population. This work uses the evolutionary PR as an intensification strategy,

following some ideas of Resende, Mart́ı, Gallego and Duarte (2010).

Details on the path-relinking distance metric, neighborhood operator, management of the

elite solutions pool, and the PR implementation are in the remainder of this section.

3.3.1 Solution distance metric

The distance between two solutions is a measure that reflects how these solutions differ from

one another. For example, the Hamming distance is a straightforward metric for a problem

whose solutions are represented by binary strings. This distance corresponds to the number of

positions in the string in which both solutions have different values.

For other representations of solutions, a suitable distance metric could be the minimum

number of moves of a given neighborhood operator to transform an initial solution Si into a

guiding solution Sj. However, a minimum number of moves also implies shorter trajectories to

36 Chapter 3. Heuristics Approaches

explore. Thus, the minimum number of moves may not be the best option of choice if a more

explorative path-relinking is intended.

This work have used the broken pairs distance δij as the metric adopted in the proposed

path-relinking. This distance, following the ideas of Labadi et al. (2008), is measured by the

relative position of each required edge in a given solution Si compared to a second solution Sj.

The relative position of a required edge is defined by its predecessor required edge. It is worth

reminding that an OCARP solution is formed by family of tours, represented as a sequence of

required edges with shortest paths of non-required edges linking one required edge to another

(see Figure 3.2).

The distance δij refers to the number of required edges whose predecessors are different in

two solutions Si and Sj (see example in Figure 3.4). It should be easy to realize that this metric

always satisfies the inequality 0 6 δij 6 |ER|.

3.3.2 Relinking of Solutions

Block-insertion was the neighborhood move used to generate the path between the initial

and guiding solutions (see Section 3.2.2.1). Through block-insertion it is easy to generate a series

of moves which monotonically decreases the distance from the initial to the guiding solution.

To achieve this, instead of moving only one misplaced required edge, a whole block of adjacent

edges is moved altogether. This block is formed by a starting misplaced edge and a following

sequence of edges, already on their correct relative position. This guarantees that on each move,

the resulting solution will be closer to the guiding solution by one or two units of distance.

An example of the relinking process is given in Figure 3.4, where each capital letter represents

a required edge, written in italics when its relative position is incorrect, and in bold when it

has been moved to the correct position. A block of required edges moved by a block insertion is

represented by a rectangle.

It is not an easy task to assure feasibility of intermediate solutions obtained through block

insertion, given that it would lead to a bin packing problem of arranging these blocks among

the vehicles, regarding capacity constraints. However, in an attempt to preserve feasibility, the

decision on the next moving block is made by taking the lightest displaced block from the fullest

vehicle.

To explore these intermediate solutions, the local search phase is repeatedly applied once

the current solution is four units closer to the guiding solution. The four units of distance is not

arbitrary, but recommended by Ribeiro and Resende (2011) as the minimum number of differing

components between a pair of solutions to find a better local minimum.

Algorithm 5 gives the pseudo-code for relinking a pair of solutions. This algorithm has a

main loop 4 that repeatedly applies block insertions to an initial solution until this solution

is sufficiently close to the guiding solution. Theoretically, the maximum distance between two

3.3. Path-Relinking 37

Figure 3.4: Relinking two solutions.

solutions can be at most ER, and each block insertion reduces this distance in one or two units.

Every time the initial solution is four units closer to the guiding solution, local search is applied

to the initial solution in search of a better one. Since the local search computational complexity

is bounded by O(|ER|
2), then the relinking algorithm has a worst-case complexity of O(|ER|

3).

3.3.3 Elite solutions pool

The elite solutions pool represents a set of the best solutions found by the metaheuristic

that still preserve some diversity among them. An invariant of this pool P = {S1, S2, . . . , Sn}

is that for all pairs (i, j) with i 6= j, then δij > δmin, where δmin is a diversity parameter which

sets the minimum distance between solutions belonging to the pool.

In order for a candidate solution (Sk) to be considered entering the pool, it must satisfy one

of the following conditions:

• pool is not full, and there are no elite solutions Si such that cost(Si) 6 cost(Sk) and

δik < δmin.

• pool is full, there are no elite solutions Si such that cost(Si) 6 cost(Sk) and δik < δmin,

and there are at least one elite solution Sj such that cost(Sj) > cost(Sk).

Once the candidate solution Sk is admitted in the pool, every elite solution Si (i 6= k) with

δik < δmin, if any, are excluded from the pool. If still the pool size remains above its capacity,

then the worst elite solution is excluded from the pool (Algorithm 6).

38 Chapter 3. Heuristics Approaches

Algorithm 5 solutionRelinking(Si, Sj, cfilter)

Input: Si, Sj - pair of initial-guiding solutions, cfilter - local search filter threshold
Output: Sbest is the lowest cost solution obtained on the path between Si and Sj

1: Sbest ← Si

2: δij ← distance(Si, Sj) // distance between solutions, see Section 3.3.1
3: δnext ← δij − 4
4: while (δij > 1) do
5: tour← most loaded tour in Si containing a required edge on an incorrect relative position
6: [eini, eend]← less demanding incorrectly positioned block of required edges from tour
7: epred ← predecessor edge of eini in Sj

8: Si ← blockInsert(Si, epred, [eini, eend]) // move block to its correct relative position
9: δij ← distance(Si, Sj)
10: if δij 6 δnext then
11: if (isFeasible(Si)) and (cost(Si) < cfilter) then
12: Sls ← localSearch(Si)
13: if (cost(Sls) < cost(Sbest)) then
14: Sbest ← Sls

15: end if

16: end if

17: δnext ← δij − 4
18: end if

19: end while

20: return Sbest

3.3.4 GRASP and Path-relinking coupling

The path-relinking proposed in this work was implemented as an intensification strategy

for the GRASP, combined with the concepts of evolutionary path-relinking. At every GRASP

iteration, the solution generated after the local search phase is tested for membership of the elite

pool, and relinked with the five best elite solutions (iterative PR). The best solution obtained

from each path is tested for membership of the elite pool. At every 100 iterations, an evolutionary

PR is executed, where each solution from the pool is relinked with the five best solutions from

the same pool. The rationale of this strategy is to initially fill the elite pool with high-quality and

diverse solutions generated by the iterative PR. The quality of the pool is then improved with

the evolutionary PR, and in order to maintain diversity, another 100 iterations of the GRASP

with iterative PR are executed. This is repeated for 10000 iterations or while the average cost

of the elite solutions is improved.

The path between two solutions is always explored in both directions, i.e., each solution

acts as initial and guiding. To sum up some diversity in the path-relinking, the solution space

exploration is not restrained to the feasible space between two solutions, but also to promising

unfeasible regions. Given a pair of solutions, one of them acts as initial PR solution, after going

through the infeasible local search (Section 3.2.2), while the other acts as the guiding solution,

unchanged. This strategy leads to an alternative path traversing the feasible-infeasible boundary

between the initial and guiding solutions.

3.3. Path-Relinking 39

Algorithm 6 insertPool(P, S, δmin)

Input: P - pool of elite solutions, S - solution, δmin - minimum distance between solutions in the pool.
Output: true if solution was inserted in pool, false otherwise.
1: insert← false

2: n← lastIndex(P) // index of the last solution in the pool
3: Sworst ← Pn // worst solution in the pool
4: for (i = 1 to n) do
5: if ((distance(S, Pi) < δmin) and (cost(S) > cost(Pi))) then
6: return insert
7: end if

8: end for

9: if (cost(S) < cost(Sworst)) then
10: insert← true

11: for (i = 1 to n) do
12: if (distance(S, Pi) < δmin) then
13: Pi ← ∅ // remove solution of index i from the pool
14: end if

15: end for

16: resortPool(P) // resort solutions of the pool in increasing order of cost
17: n← lastIndex(P) // index of the last solution in the pool

// if pool is not full
18: if (n < poolSize(P)) then
19: Pn+1 ← S
20: else

21: Pn ← S
22: end if

23: end if

24: return insert

40 Chapter 3. Heuristics Approaches

Algorithms 7 and 8 give the pseudo-code for the iterative PR and evolutionary PR. For

simplicity, it is considered that the elite solutions in the pool are sorted by costs in increas-

ing order. Both path-relinking strategies use the solution relinking operator (Algorithm 5) a

constant number of times, thus following the worst-case computational complexity of O(|ER|
3).

The management of the elite pool involves sorting the solutions by their cost and keeping the list

sorted when a new solution is inserted. Considering the constant size of the pool, its manage-

ment is computationally bounded by O(1), thus not adding complexity to both path-relinking

strategies.

Algorithm 7 iterativePR(P, S, cfilter)

Input: P - pool of elite solutions, S - solution, cfilter - local search filter threshold
1: Sbest ← S
2: ninf ← 4 // number of moves to execute with the infeasible local search
3: insertPool(P, S)
4: Sinf ← infeasibleLocalSearch(S, ninf) // relink the five best elite solutions with S and Sinf

5: for (i = 1 to 5) do
6: Spool ← Pi

7: Spr1 ← solutionRelinking(Spool, S, cfilter)
8: Spr2 ← solutionRelinking(S, Spool, cfilter)
9: Spr3 ← solutionRelinking(Sinf , S, cfilter)
10: insertPool(P, Spr1), insertPool(P, Spr2), insertPool(P, Spr3)
11: end for

Algorithm 8 evolutionaryPR(P, cfilter)

Input: P - pool of elite solutions, cfilter - local search filter threshold
1: poolSize← 100, δmin ← 0.4|ER|
2: Pnew ← newPool(poolSize, δmin)
3: ninf ← 4 // number of moves to execute with the infeasible local search
4: for (i = 1 to poolSize) do
5: S1 ← Pi

6: insertPool(Pnew, S1)
7: Sils ← infeasibleLocalSearch(S1, ninf)

// relink the five best solutions with all solutions from the pool
8: for (j = 1 to 5) do
9: S2 ← Pj

10: Spr1 ← solutionRelinking(S1, S2, cfilter)
11: Spr2 ← solutionRelinking(S2, S1, cfilter)
12: Spr3 ← solutionRelinking(Sils, S2, cfilter)
13: insertPool(Pnew, Spr1), insertPool(Pnew, Spr2), insertPool(Pnew, Spr3)
14: end for

15: end for

16: P ← Pnew

3.4. Computational Experiments 41

3.3.5 GRASP with Path-relinking pseudo-code

Algorithm 9 shows the pseudo-code for the proposed GRASP with path-relinking. This

metaheuristic has a main loop starting in line 13. Inside the loop, the values of parameters α

and β are reactively selected, followed by the construction of an initial solution. This solution

may be infeasible if the heuristic is solving an instance with a limited number of vehicles.

Thus the feasibility is verified, and the cost-demand edge-selection rule parameter γ adjusted

accordingly. If the solution is feasible and has a sufficiently low cost to pass the filter threshold,

local search is performed, followed by an iterative path-relinking. Also, at every kpr iterations

the evolutive path-relinking is executed. The heuristic halts when a given number of iterations

kend is performed, or when the average cost of the elite solutions pool does not improve after an

evolutive path-relinking.

This metaheuristic was developed to solve CARP instances (Usberti, França and França

2011a), but it can solve the OCARP as well. If the number of vehicles is finite, as in OCARP

instances, the contructive heuristic may not deliver a feasible solution. However, the meta-

heuristic addresses the vehicles limitation by adjusting the cost-demand edge-selection into a

more conservative use of the vehicles capacities, therefore reducing the number of vehicles used

by a solution.

The computational complexity of the metaheuristic is mainly attributed to both path-

relinking strategies (lines 35 and 38), which are executed a constant number of times inside

the main loop. As a consequence, the worst-case complexity of the metaheuristic is bounded by

O(|ER|
3).

3.4 Computational Experiments

This section reveals the computational experiments using the GRASP with PR to solve

both OCARP (Section 3.4.1) and CARP (Section 3.4.2) instances. The standard set of CARP

instances1 was referred to, which includes 23 gdb (7-27 nodes, 11-55 edges) (Golden et al. 1983),

34 val (24-50 nodes, 34-97 edges) (Benavent et al. 1992), and 24 egl (77-140 nodes, 98-190 edges)

(Li and Eglese 1996), totaling 81 instances.

Algorithms were implemented in C language, and compiled using the GNU compiler collec-

tion (gcc). Tests were executed in a Intel Core 2 Quad 3.0 GHz with 4 GB of RAM, using Linux

64 bits as the operating system.

Table 3.2 lists the GRASP parameters and their values used in the computational experi-

ments.

1http://www.uv.es/˜belengue/carp.html

42 Chapter 3. Heuristics Approaches

Algorithm 9 GRASP with evolutionary PR
Input: G(V, E) - instance graph, D - vehicle capacity
Output: Sbest is the lowest cost feasible solution obtained

1: cfilter ← clsBest ← 2|ER|
∑

e∈E

c(e) // trivial upper bound

2: cworst ←
∑

e∈ER
c(e) // trivial lower bound

3: A← {α1, α2, α3, α4, α5} ← {0.0, 0.5, 1.0, 1.5, 2.0} // possible values for α

4: B ← {β1, β2, β3, β4, β5} ← {1.0, 1.25, 1.5, 1.75, 2.0} // possible values for β

5: Nα ← {nα1
, nα2

, nα3
, nα4

, nα5
} ← {0, 0, 0, 0, 0} // number of solutions for each α

6: Nβ ←
{

nβ1
, nβ2

, nβ3
, nβ4

, nβ5

}

← {0, 0, 0, 0, 0} // number of solutions for each β

7: Cα ← {cα1
, cα2

, cα3
, cα4

, cα5
} ← {0.0, 0.0, 0.0, 0.0, 0.0} // average solution cost for each α

8: Cβ ←
{

cβ1
, cβ2

, cβ3
, cβ4

, cβ5

}

← {0.0, 0.0, 0.0, 0.0, 0.0} // average solution cost for each β

9: γ ← 1.0, g ← 0.5
10: poolSize← 100, δmin ← 0.4|ER| // defining pool size and minimum solution distance
11: P ← newPool(poolSize, δmin)
12: kend ← 10000, kfilter ← kpr ← 100, caver ←∞
13: for k = 1 to kend do

14: i← reactiveChoice(Cα, Nα), j ← reactiveChoice(Cβ , Nβ)
15: α← αi, β ← βj

16: S ← constructionPhase(G,D,α, β, γ) // see Algorithm 2
17: if (feasible(S) = true) then

18: γ ←
2γ + 1

3
, g ←

9g + 1

10
19: cini ← cost(S)
20: if (cini > cworst) then

21: cworst ← cini

22: end if

23: if (cini 6 cfilter) then

24: Sls ← localSearch(S)
25: cls ← cost(Sls)
26: if (cls < clsBest) then

27: clsBest ← cls
28: end if

29: if (k 6 kfilter) then

30: (µ, σ)← update average and standard deviation of ratio cini
cls

31: else

32: // update filter threshold
33: cfilter ← (µ+ 2σ)clsBest

34: end if

35: iterativePR(P,Sls, cfilter)
36: if (k ≡ 0 (mod kfilter)) then

37: // apply evolutionary PR once every kfilter iterations
38: evolutionaryPR(P, cfilter)
39: if (averageCost(P) > caver) then

40: break for // no pool improvement, stop
41: end if

42: caver ← averageCost(P)
43: end if

44: end if

45: else

46: γ ← gγ

47: cini ← cworst // penalizing cost of infeasible solutions
48: end if

49: nαi
← nαi

+ 1, nβj
← nβj

+ 1

50: cαi
← cαi

+
cini − cαi

nαi

, cβi
← cβi

+
cini − cβi

nβi

// updating the average solution cost

51: end for

52: return Sbest ← P1

3.4. Computational Experiments 43

Table 3.2: GRASP parameters.

kend = 10000 maximum number of GRASP iterations.

kfilter = 100 number of iterations to calibrate the filter threshold.

keps = 100 number of GRASP iterations between evolutionary path-relinking executions.

A = {0.0, 0.5, 1.0, 1.5, 2.0} possible values for the RCL parameter α.

B = {1.0, 1.25, 1.5, 1.75, 2.0} possible values for ellipse rule parameter β.

γ = 1 initial value for the cost-demand edge selection rule paramenter.

g = 0.5 metaparameter value for adjusment of parameter γ.

ninf = 4 maximum number of infeasible moves to execute with the infeasible local search.

poolSize = 100 size of the elite solutions pool.

δmin = 0.4|ER| minimum distance between solutions in the elite solutions pool.

3.4.1 OCARP case study

Having in mind that OCARP is a new NP-hard combinatorial optimization problem, the

objective of these experiments consisted in forming a benchmark set of instances and conferring

the first upper bounds to the optimal costs. The depot in the standard CARP set of instances

was considered a common node while the rest of the data left intact, leading to three groups of

instances referred as ogdb, oval, and oegl. The solutions costs for these instances were compared

with trivial lower bounds (LB0 =
∑

e∈ER

c(e)), in lack of a better alternative.

Algorithm 9 was engineered to build tours starting and ending at a depot node. Knowing that

OCARP does not concern a depot, this issue was addressed by transforming the OCARP graphs

using the reduction described in Section 2.5, where a dummy depot connecting all required edges

is included. From this virtual depot all vehicles start and end their tours.

Property 1, in Section 2.3, has shown that OCARP is only an interesting problem when a

fixed number of vehicles M is considered. For this reason, the OCARP computational tests has

considered three classes of parameterization: M = M∗, M = M∗ + 1 and M = M∗ + 2, where

M∗ represents the minimum number of vehicles necessary to find a feasible solution, which is

known for all instances. Consequently, from each of the 81 instances, three different numbers of

vehicles are considered, thus deriving 243 OCARP instances, divided into three groups (ogdb,

oval, and oegl), and three classes (M∗, M∗ + 1, M∗ + 2).

3.4.1.1 Parameter γ behavior

Figure 3.5 reveals the behavior of the cost-demand edge-selection rule parameter γ (Section

3.2.1.2) for instance oegl-e4-C. The intricacy of seeking for a feasible solution which uses at most

M∗ vehicles led to the prompt adjustment of γ towards edge demand. As more vehicles are

allowed in the solution (M∗+1 andM∗+2), less active is the fitting of γ. It can be noticed that

all three curves have a long-term ascendant tendency, which is a consequence of metaparameter

44 Chapter 3. Heuristics Approaches

g, which is asymptotically driven towards 1 for every feasible solution found (represented by a

peak). The rationale of these adjustments is that, as soon as a feasible solution emerges, the

heuristic should invest more iterations biasing the edge-selection rule in the direction of the

shortest path cost, thus giving the opportunity for better solutions to arise.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100 1000 10000 100000

P
a

ra
m

e
te

r
V

a
lu

e

Iterations

M*
M*+1
M*+2

Figure 3.5: Evolution of the parameter γ for instance oegl-e4-C.

3.4.1.2 Constructive heuristic results to OCARP

The GRASP constructive heuristic (GCH, Algorithm 1) was compared with the path-

scanning heuristics from Belenguer et al. (2006) (PS) and Santos et al. (2009) (PS ER) (de-

scribed in Section 3.2.1), the last one considering three configurations for the ellipse rule pa-

rameter β (Table 3.3). The methods execution times were very alike, so only the GCH times

were reported. When considering each group-class of instances, the GCH heuristic achieved

the smallest ∆LB = (UB − LB)/LB for all but one group-class, namely ogdb-(M∗ + 2). In

addition, GCH has also achieved the lowest ∆LBmax for six group-classes, which is at least two

times better than the other heuristics. In the overall comparison, GCH outperformed its siblings

in both average and maximum deviations with ∆LB = 12.24% and ∆LBmax = 115.77%.

As mentioned in Section 3.2.1, heuristic PS ER was unable to find feasible solutions for

some instances of several group-classes (represented by a dash ‘-’ in Table 3.3). This effect is

3.4. Computational Experiments 45

amplified for higher values of β, since it shortens the tours more prematurely. Nevertheless,

the looser instances for which PS ER did find feasible solutions had their ∆LB decreased as

β increased, meaning that the ellipse rule behaves more effectively for these group-classes. A

glimpse on the hardness to attain a feasible solution for each instance group-class is given by

Feas, which represents the percentage of feasible solutions obtained compared to the total

number of iterations.

Table 3.3: Comparison results between path-scanning heuristics.

PS PS ER GCH

β = 0.5 β = 1.0 β = 1.5

group class ∆LB ∆LBmax Feas ∆LB ∆LBmax Feas ∆LB ∆LBmax Feas ∆LB ∆LBmax Feas ∆LB ∆LBmax Feas CPU

ogdb M∗ 0.50 5.48 94.96 0.38 3.33 90.34 0.29 2.74 77.82 1.90 17.29 62.01 0.29 2.38 77.43 0.17

M∗ + 1 0.48 5.02 100.00 0.36 3.81 100.00 0.22 1.9 100.00 0.2 1.9 99.00 0.2 2.25 98.44 0.16

M∗ + 2 0.48 5.02 100.00 0.36 3.81 100.00 0.22 1.90 100.00 0.13 1.69 100.00 0.20 2.25 99.95 0.17

overall 0.49 5.48 98.32 0.37 3.81 96.78 0.24 2.74 92.61 0.74 17.29 87.00 0.23 2.38 91.94 0.17

oval M∗ 5.12 13.7 94.36 4.91 29.45 91.42 - - 84.48 - - 77.40 4.22 18.49 83.65 1.59

M∗ + 1 5.93 9.71 100.00 5.32 9.71 100.00 4.50 9.35 99.91 4.43 9.35 97.39 4.21 8.27 97.96 1.64

M∗ + 2 6.46 10.07 100.00 5.85 10.07 100.00 5.01 9.35 100.00 4.91 9.35 100.00 4.67 9.23 99.70 1.57

overall 5.84 13.7 98.12 5.36 29.45 97.14 - - 94.80 - - 91.60 4.36 18.49 93.77 1.60

oegl M∗ 53.24 132.85 82.87 - - 69.58 - - 34.99 - - 9.66 42.76 115.77 49.07 17.03

M∗ + 1 48.18 71.95 98.69 34.77 58.32 95.05 30.99 83.80 81.88 - - 61.80 28.41 40.82 80.65 6.98

M∗ + 2 47.08 71.95 100.00 34.33 58.32 99.88 27.73 48.64 95.32 25.38 36.48 83.45 25.21 39.60 90.73 7.34

overall 49.50 132.85 93.85 - - 88.17 - - 70.73 - - 51.64 32.12 115.77 73.48 10.45

overall M∗ 19.62 132.85 90.73 - - 83.78 - - 65.76 - - 49.69 15.75 115.77 70.05 5.76

M∗ + 1 18.20 71.95 99.56 13.48 58.32 98.35 11.90 83.80 93.93 - - 86.06 10.94 40.82 92.35 2.80

M∗ + 2 18.01 71.95 100.00 13.51 58.32 99.96 10.99 48.64 98.44 10.14 36.48 94.48 10.02 39.60 96.79 2.88

overall 18.61 132.85 96.76 - - 94.03 - - 86.04 - - 76.75 12.24 115.77 86.40 3.82

PS - Path-Scanning Heuristic with Random Selection of Tied Edges (Belenguer et al. 2006). PS ER - Path-Scanning Heuristic with Ellipse Rule (Santos et al. 2009).

GCH - GRASP Constructive Heuristic. β - ellipse rule parameter. M∗ - maximum number of vehicles. CPU - running time (s)

∆LB: average deviation from lower bound (%). ∆LBmax: maximum average deviation from lower bound (%). Feas: feasible solutions against all solutions (%).

3.4.1.3 Metaheuristic results to OCARP

Tables 3.4-3.6 show the individual results for all instances after executing a single time the

GRASP with PR metaheuristic detailed in Algorithm 9. From the set of 243 instances, 87

solutions (35, 80%) were proven to be optimal (LB = UB). Average deviations from lower

bound (∆LB) were 7.53%, 3.74%, and 2.66%, for groups M∗, M∗+1, and M∗+2, respectively.

The overall average deviation was 4.64%, against the GCH overall average deviation of 12.24%,

representing more than 62% reduction.

The CPU time was 8.47 minutes on average per instance, with less than one-fourth of

instances above this average. The field Feas on Tables 3.4-3.6 gives the percentage of feasible

solutions compared to the number of executed iterations for each instance, thus showing those

instances with a difficult bin-packing subproblem. For example, instance oegl-s4-C, class M∗,

is certainly the hardest instance to find a feasible solution, and this is confirmed by the ratio

0.59% of feasible solutions against iterations.

46 Chapter 3. Heuristics Approaches

Table 3.4: GRASP with PR results for ogdb instances.

M =M∗ M =M∗ + 1 M =M∗ + 2

M∗ LB0 UB ∆LB0 CPU Feas UB ∆LB0 CPU Feas UB ∆LB0 CPU Feas

ogdb1 5 252 252 0.00 0.00 100.00 252 0.00 0.00 100.00 252 0.00 0.00 100.00

ogdb2 6 291 291 0.00 0.00 100.00 291 0.00 0.00 100.00 291 0.00 0.00 100.00

ogdb3 5 233 233 0.00 0.00 100.00 233 0.00 0.00 100.00 233 0.00 0.00 100.00

ogdb4 4 238 238 0.00 0.01 100.00 238 0.00 0.00 100.00 238 0.00 0.00 100.00

ogdb5 6 316 316 0.00 0.01 100.00 316 0.00 0.00 100.00 316 0.00 0.00 100.00

ogdb6 5 260 260 0.00 0.00 100.00 260 0.00 0.00 100.00 260 0.00 0.00 100.00

ogdb7 5 262 262 0.00 0.00 100.00 262 0.00 0.00 100.00 262 0.00 0.00 100.00

ogdb8 10 210 210 0.00 0.30 100.00 210 0.00 0.03 100.00 210 0.00 0.00 100.00

ogdb9 10 219 219 0.00 1.24 96.67 219 0.00 0.09 100.00 219 0.00 0.02 100.00

ogdb10 4 252 252 0.00 0.02 100.00 252 0.00 0.01 100.00 252 0.00 0.01 100.00

ogdb11 5 356 362 1.69 40.93 100.00 360 1.12 62.44 100.00 358 0.56 65.37 100.00

ogdb12 7 336 336 0.00 0.00 100.00 336 0.00 0.00 100.00 336 0.00 0.00 100.00

ogdb13 6 509 509 0.00 0.14 17.82 509 0.00 0.00 100.00 509 0.00 0.00 100.00

ogdb14 5 96 96 0.00 0.00 100.00 96 0.00 0.00 100.00 96 0.00 0.00 100.00

ogdb15 4 56 56 0.00 0.00 100.00 56 0.00 0.00 100.00 56 0.00 0.00 100.00

ogdb16 5 119 119 0.00 0.01 100.00 119 0.00 0.00 100.00 119 0.00 0.00 100.00

ogdb17 5 84 84 0.00 0.01 100.00 84 0.00 0.00 100.00 84 0.00 0.00 100.00

ogdb18 5 158 158 0.00 0.00 100.00 158 0.00 0.01 100.00 158 0.00 0.00 100.00

ogdb19 3 45 45 0.00 0.00 100.00 45 0.00 0.00 100.00 45 0.00 0.00 100.00

ogdb20 4 105 105 0.00 0.02 77.78 105 0.00 0.00 100.00 105 0.00 0.00 100.00

ogdb21 6 149 149 0.00 0.02 100.00 149 0.00 0.00 100.00 149 0.00 0.00 100.00

ogdb22 8 191 191 0.00 0.05 100.00 191 0.00 0.00 100.00 191 0.00 0.00 100.00

ogdb23 10 223 223 0.00 0.01 75.00 223 0.00 0.00 100.00 223 0.00 0.01 100.00

M∗: minimum number of vehicles to attain a feasible solution. LB0: trivial lower bound.

UB: solution obtained by the GRASP with PR. ∆LB0: average deviation from lower bound (%).

CPU : running time (s) to attain UB. Feas: feasible solutions against all solutions (%).

3.4.2 CARP case study

Considering that the main ideas of the GRASP with PR are perfectly suitable for CARP

instances as well as OCARP instances, this work has verified the efficiency of the proposed

metaheuristic against the latest metaheuristics developed for CARP. As usual for this problem,

the number of vehicles available is infinite, without any costs related to using them. In addition,

the lower bounds identified by Longo et al. (2006) are used to identify the gaps for the costs of

the solutions obtained.

3.4.2.1 Constructive heuristic results to CARP

In order to show the effectiveness of the reactive parameter tuning scheme, described in

Section 3.2.1, the path-scanning heuristic with ellipse rule (PS ER) (Santos et al. 2009) was

implemented with a fixed β = 1.5, and compared with the proposed GRASP constructive

heuristic (GCH). Fifteen runs of the PS ER and GCH with 10000 iterations were executed for

each of the 81 instances.

Table 3.7 shows that practically with the same computational effort, GCH was able to

reduce the average deviation from lower bound from every instance set, and all but one (val set)

maximum average deviation from lower bound. In addition, due to the restricted candidate list,

3.4. Computational Experiments 47

Table 3.5: GRASP with PR results for oval instances.

M =M∗ M =M∗ + 1 M =M∗ + 2

M∗ LB0 UB ∆LB0 CPU Feas UB ∆LB0 CPU Feas UB ∆LB0 CPU Feas

oval1A 2 146 154 5.48 49.48 100.00 151 3.42 43.11 100.00 149 2.05 41.04 100.00

oval1B 3 146 151 3.42 16.21 69.97 149 2.05 35.61 100.00 147 0.68 35.13 100.00

oval1C 8 146 159 8.90 20.19 3.55 146 0.00 0.01 100.00 146 0.00 0.01 100.00

oval2A 2 185 195 5.41 27.20 100.00 192 3.78 26.65 100.00 189 2.16 22.34 100.00

oval2B 3 185 192 3.78 17.31 100.00 189 2.16 19.02 100.00 186 0.54 31.42 100.00

oval2C 8 185 185 0.00 0.49 52.94 185 0.00 0.01 100.00 185 0.00 0.01 100.00

oval3A 2 65 71 9.23 23.07 100.00 69 6.15 24.84 100.00 67 3.08 33.79 100.00

oval3B 3 65 69 6.15 16.14 100.00 67 3.08 27.47 100.00 66 1.54 23.92 100.00

oval3C 7 65 66 1.54 9.85 73.17 65 0.00 0.01 100.00 65 0.00 0.02 100.00

oval4A 3 343 358 4.37 363.86 100.00 354 3.21 435.68 100.00 350 2.04 680.68 100.00

oval4B 4 343 354 3.21 344.86 100.00 350 2.04 489.60 100.00 347 1.17 734.55 100.00

oval4C 5 343 350 2.04 165.61 100.00 347 1.17 517.90 100.00 345 0.58 641.61 100.00

oval4D 9 343 343 0.00 83.54 100.00 343 0.00 8.56 100.00 343 0.00 2.00 100.00

oval5A 3 367 383 4.36 284.83 100.00 378 3.00 386.42 100.00 374 1.91 447.48 100.00

oval5B 4 367 378 3.00 223.11 100.00 374 1.91 382.62 100.00 371 1.09 479.20 100.00

oval5C 5 367 374 1.91 142.02 100.00 371 1.09 335.60 100.00 368 0.27 528.59 100.00

oval5D 9 367 367 0.00 2.35 100.00 367 0.00 2.77 100.00 367 0.00 0.66 100.00

oval6A 3 190 195 2.63 105.99 100.00 193 1.58 217.72 100.00 192 1.05 193.11 100.00

oval6B 4 190 194 2.11 65.63 100.00 192 1.05 147.72 100.00 191 0.53 188.99 100.00

oval6C 10 190 190 0.00 0.39 100.00 190 0.00 0.12 100.00 190 0.00 0.02 100.00

oval7A 3 249 263 5.62 284.33 100.00 259 4.02 459.07 100.00 256 2.81 553.60 100.00

oval7B 4 249 259 4.02 258.32 100.00 256 2.81 398.66 100.00 253 1.61 479.44 100.00

oval7C 9 249 250 0.40 49.31 99.92 249 0.00 8.43 100.00 249 0.00 1.11 100.00

oval8A 3 347 364 4.90 223.38 100.00 359 3.46 305.47 100.00 354 2.02 330.93 100.00

oval8B 4 347 359 3.46 163.73 100.00 354 2.02 226.39 100.00 351 1.15 377.57 100.00

oval8C 9 347 347 0.00 26.29 97.29 347 0.00 0.26 100.00 347 0.00 0.14 100.00

oval9A 3 278 298 7.19 1080.65 100.00 294 5.76 1194.49 100.00 292 5.04 1227.03 100.00

oval9B 4 278 294 5.76 802.44 100.00 292 5.04 1184.15 100.00 290 4.32 1339.11 100.00

oval9C 5 278 292 5.04 644.09 100.00 290 4.32 1155.24 100.00 288 3.60 1360.46 100.00

oval9D 10 278 283 1.80 409.27 100.00 281 1.08 1126.40 100.00 280 0.72 1308.58 100.00

oval10A 3 376 402 6.91 1052.22 100.00 396 5.32 1267.92 100.00 391 3.99 1586.57 100.00

oval10B 4 376 396 5.32 1176.71 100.00 391 3.99 1331.65 100.00 388 3.19 1798.88 100.00

oval10C 5 376 391 3.99 888.24 100.00 388 3.19 1421.52 100.00 385 2.39 1749.59 100.00

oval10D 10 376 379 0.80 400.95 100.00 378 0.53 1059.55 100.00 377 0.27 1430.68 100.00

M∗: minimum number of vehicles to attain a feasible solution. LB0: trivial lower bound.

UB: solution obtained by the GRASP with PR. ∆LB0: average deviation from lower bound (%).

CPU : running time (s) to attain UB. Feas: feasible solutions against all solutions (%).

GCH provides a much more diverse set of initial solutions, which is an important diversification

ingredient for the local search and path-relinking.

3.4.2.2 Time-to-target plots

Run time distributions or time-to-target (TTT) plots display the probability that an algo-

rithm will find a solution at least as good as a given target value within a given running time.

Time-to-target plots were first used by Feo et al. (1994), and give subsidy to characterize the

running times of stochastic algorithms for combinatorial optimization problems. Such plots are

very useful in the comparison of different algorithms for solving a given problem.

To plot the empirical runtime distribution of a given stochastic algorithm, a solution target

value is fixed and each algorithm is executed N times, recording the instant ti when a solution

48 Chapter 3. Heuristics Approaches

Table 3.6: GRASP with PR results for oegl instances.

M =M∗ M =M∗ + 1 M =M∗ + 2

M∗ LB0 UB ∆LB0 CPU Feas UB ∆LB0 CPU Feas UB ∆LB0 CPU Feas

oegl-e1-A 5 1468 1775 20.91 76.12 99.95 1708 16.35 217.04 100.00 1659 13.01 287.82 100.00

oegl-e1-B 7 1468 1749 19.14 44.31 99.80 1639 11.65 149.34 100.00 1589 8.24 272.82 100.00

oegl-e1-C 10 1468 1652 12.53 44.41 99.55 1576 7.36 57.39 100.00 1542 5.04 91.36 100.00

oegl-e2-A 7 1879 2177 15.86 262.75 100.00 2072 10.27 441.48 100.00 2043 8.73 760.54 100.00

oegl-e2-B 10 1879 2080 10.70 97.65 99.93 1997 6.28 233.64 100.00 1971 4.90 505.74 100.00

oegl-e2-C 14 1879 2084 10.91 68.20 76.61 1997 6.28 94.88 99.75 1964 4.52 148.59 100.00

oegl-e3-A 8 2188 2526 15.45 185.72 98.16 2410 10.15 430.75 100.00 2372 8.41 1256.29 100.00

oegl-e3-B 12 2188 2411 10.19 157.45 98.83 2359 7.82 314.28 100.00 2321 6.08 647.77 100.00

oegl-e3-C 17 2188 2364 8.04 135.03 78.64 2308 5.48 142.48 99.67 2270 3.75 298.89 100.00

oegl-e4-A 9 2453 2693 9.78 234.87 99.70 2582 5.26 960.25 100.00 2556 4.20 2358.99 100.00

oegl-e4-B 14 2453 2786 13.58 296.66 87.58 2567 4.65 276.93 100.00 2517 2.61 595.38 100.00

oegl-e4-C 19 2453 3383 37.91 135.64 1.03 2515 2.53 155.93 80.21 2497 1.79 194.91 98.58

oegl-s1-A 7 1394 1799 29.05 132.72 100.00 1683 20.73 475.12 100.00 1604 15.06 710.46 100.00

oegl-s1-B 10 1394 1745 25.18 97.67 100.00 1659 19.01 323.03 100.00 1579 13.27 466.02 100.00

oegl-s1-C 14 1394 1876 34.58 102.41 85.99 1633 17.14 94.15 100.00 1512 8.46 147.65 100.00

oegl-s2-A 14 3174 3697 16.48 504.32 100.00 3621 14.08 1998.68 100.00 3561 12.19 4928.34 100.00

oegl-s2-B 20 3174 4309 35.76 806.30 7.62 3498 10.21 737.66 99.90 3427 7.97 1080.76 100.00

oegl-s2-C 27 3174 3928 23.76 1051.34 18.29 3414 7.56 537.12 98.75 3342 5.29 526.80 100.00

oegl-s3-A 15 3379 3828 13.29 1785.78 100.00 3764 11.39 5247.81 100.00 3734 10.51 6809.36 100.00

oegl-s3-B 22 3379 3680 8.91 1039.18 97.90 3588 6.19 853.82 100.00 3564 5.47 2444.62 100.00

oegl-s3-C 29 3379 3814 12.87 1606.15 55.96 3625 7.28 560.43 99.80 3495 3.43 807.41 100.00

oegl-s4-A 19 4186 4500 7.50 3899.02 100.00 4421 5.61 4382.59 100.00 4405 5.23 12448.65 100.00

oegl-s4-B 27 4186 4469 6.76 2040.83 92.27 4360 4.16 2834.19 100.00 4328 3.39 2662.37 100.00

oegl-s4-C 35 4186 7789 86.07 249.51 0.59 4502 7.55 2243.15 66.66 4320 3.20 2707.30 98.80

M∗: minimum number of vehicles to attain a feasible solution. LB0: trivial lower bound.

UB: solution obtained by the GRASP with PR. ∆LB0: average deviation from lower bound (%).

CPU : running time (s) to attain UB. Feas: feasible solutions against all solutions (%).

with cost at least as good as the target value is found. For each algorithm, the i-th sorted

running time ti is associated with probability pi = (i− 1/2)/N . Determining these probabilities

are explained by Aiex, Resende, Ribeiro, Celso and Ribeiro (2000). The TTT plot represents

the points (ti, pi), for i = 1, . . . , N . In this work, a sample of N = 200 runs were collected for

each evaluated algorithm.

3.4.2.3 GRASP filtering effect on runtime

To establish the effect of filtering in the GRASP runtime, TTTs were drawn (Figure 3.6)

for two basic GRASP heuristics, with (Gf) and without (Gnf) filtering, applied to the hardest

instance (egl− s4−C). Three targets were selected, in order that the heuristics would not take

too long to hit. Still, when the heuristics reached a limit of 2000 seconds, they were interrupted.

Figure 3.6 reveals that for all three targets Gf has improved runtime, which is minor for the

highest target, but increases substantially for harder ones. For instance, with 50% probability,

Gf hits the 21500 target in less than 500 seconds, while Gnf takes almost 900 seconds. Lower

targets reflect better the filter effect on the TTTs, once high-quality solutions require many

GRASP iterations to appear, and the filter safely eliminates unpromising initial solutions, which

in turn saves plenty of the heuristic computational time.

3.4. Computational Experiments 49

Table 3.7: Comparison of constructive heuristics.

gdb val egl overall

PS ER ∆LB 1.99 5.01 9.23 5.40

∆LBmax 9.81 12.24 13.35 13.35

CPU 0.15 0.61 1.70 0.80

GCH ∆LB 1.82 4.98 8.32 5.07

∆LBmax 9.37 12.62 11.60 12.62

CPU 0.15 0.62 1.71 0.81

Reported results were obtained after fifteen runs of 10000 iterations.

PS ER - Path-Scanning with Ellipse Rule (Santos et al. 2009).

GCH - GRASP Constructive Heuristic.

∆LB - average deviation from lower bound (%).

∆LBmax - maximum average deviation from lower bound (%).

CPU - average execution time per run in seconds.

3.4.2.4 Evolutionary PR effect on runtime

To quantify the evolutionary path-relinking contribution on the solution space search, two

GRASP heuristics were compared using TTTs (Figure 3.7). The first one (EvPR) is the complete

proposed GRASP, as described in Algorithm 9, while the second (PR) is the same heuristic

except by the evolutionary PR (step 29), which was removed, and only the iterative PR is

executed. Hence, this comparison tries to verify if the additional computational effort of EvPR

is only an extra weight for the metaheuristic, or it effectively helps finding better solutions in

reduced execution times.

Figure 3.7 clearly shows that EvPR is very effective in finding high-quality solutions in less

time. For example, it has 50% chance to hit the 20900 target, for instance egl-s4-c, in less than

500 seconds. With the same probability, it requires 30% additional time in average (650 seconds

or less) to hit the same target without EvPR. Nonetheless, EvPR loses its relative efficiency for

targets that are not difficult to reach only with PR (e.g., 21100 target).

3.4.2.5 Metaheuristic results to CARP

The GRASP with EvPR was compared to three high-performance metaheuristics (Usberti

et al. 2011b), based on their average deviation from lower bounds reported in literature, which

are:

• TS - Tabu Search proposed by Brandão and Eglese (2008), which executed a single run

for each instance on a Pentium Mobile at 1.4 GHz.

• VNS - Variable Neighborhood Search proposed by Polacek et al. (2008), which executed

ten runs for each instance (except for the gdb set) on a Pentium IV at 3.6 GHz.

50 Chapter 3. Heuristics Approaches

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

c
u

m
u

la
ti
v
e

 p
ro

b
a

b
ili

ty

time to target in seconds

Gf - target 21700
Gnf - target 21700
Gf - target 21600

Gnf - target 21600
Gf - target 21500

Gnf - target 21500

Figure 3.6: Run time distributions for GRASP with (Gf) and without (Gnf) filtering on instance
egl-s4-C.

• ACO - Ant Colony Optimization proposed by Santos et al. (2010), which executed fifteen

runs for each instance on a Pentium III at 1.0 GHz.

Tables 3.8, 3.9, and 3.10 report the results for sets gdb, val, and egl after fifteen runs of the

GRASP with EvPR (Algorithm 9), and compare the best solutions obtained by each metaheuris-

tic. The best lower bounds (LB) (Longo et al. 2006) and upper bounds (UB) (Santos et al. 2010)

for each instance were also reproduced. It should be noticed that UB can be lower than the best

solution reported for some instances (e.g., val10D). The values of UB were generated after ad-

ditional experiments with CARP metaheuristics, for example, by particular parameter tunning

for each instance. Thus UB values are used only as an information of the current best known

solution cost for each instance, and are not comparable with the metaheuristics best results.

A similar study was made with the GRASP, and through it five new best upper bounds (in

italics) were discovered for instances egl-e4-C (UB = 11559), egl-s2-B (UB = 13088), egl-s3-C

(UB = 17189), egl-s4-B (UB = 16267), and egl-s4-C (UB = 20484).

Table 3.11 summarizes CARP metaheuristics results on computational effort and solution

quality. The average execution times reported are multiples of the metaheuristics original times,

where the factor was determined by the processor frequency ratio between the original machine

and the machine used in this work. The intention was to make a reasonably fair execution time

3.4. Computational Experiments 51

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

c
u

m
u

la
ti
v
e

 p
ro

b
a

b
ili

ty

time to target in seconds

EvPR - target 21100
PR - target 21100

EvPR - target 21000
PR - target 21000

EvPR - target 20900
PR - target 20900

Figure 3.7: Run time distributions for GRASP with (EvPR) and without (PR) evolutionary
path-relinking on instance egl-s4-C.

comparison, despite distinct programming languages, operating systems, and other particular

configurations of each machine.

On the one hand, the GRASP is the most computer demanding metaheuristic, reaching over

four minutes of CPU time per instance, on average. On the other hand, this additional time is

highly compensated by presenting the best overall results in both average deviation from lower

bounds (∆LB = 0.33%) and number of best solutions (nbest = 72). In addition, GRASP was

the only metaheuristic to achieve the optimal solution for every gdb instance. It is also worth

noticing the GRASP excellent performance in the hardest set egl where, compared to the ACO,

it reduced ∆LB from 0.9% to 0.79% and found five additional best solutions.

52 Chapter 3. Heuristics Approaches

Table 3.8: GRASP results for gdb instances

GRASP

mean median best cost

instance LB UB cost CPU iter cost CPU iter TS ACO GRASP

gdb1 316 316 316.0 0.01 2.40 316 0.01 2 316 316 316

gdb2 339 339 339.0 0.25 16.13 339 0.05 13 339 339 339

gdb3 275 275 275.0 0.02 3.67 275 0.03 3 275 275 275

gdb4 287 287 287.0 0.00 2.47 287 0.00 2 287 287 287

gdb5 377 377 377.0 0.13 10.27 377 0.14 10 377 377 377

gdb6 298 298 298.0 0.03 5.13 298 0.01 5 298 298 298

gdb7 325 325 325.0 0.00 1.80 325 0.01 1 325 325 325

gdb8 348 348 349.5 31.96 648.80 350 42.16 800 348 348 348

gdb9 303 303 303.6 38.43 752.20 303 6.49 755 303 303 303

gdb10 275 275 275.0 0.02 3.53 275 0.00 4 275 275 275

gdb11 395 395 395.0 0.87 9.53 395 0.58 9 395 395 395

gdb12 458 458 458.0 0.19 24.40 458 0.20 13 458 458 458

gdb13 536 536 542.6 6.86 490.20 544 6.46 500 540 536 536

gdb14 100 100 100.0 0.01 2.87 100 0.02 2 100 100 100

gdb15 58 58 58.0 0.00 1.67 58 0.00 2 58 58 58

gdb16 127 127 127.0 0.10 7.67 127 0.07 7 127 127 127

gdb17 91 91 91.0 0.00 1.40 91 0.00 1 91 91 91

gdb18 164 164 164.0 0.08 2.80 164 0.14 3 164 164 164

gdb19 55 55 55.0 0.00 3.20 55 0.00 3 55 55 55

gdb20 121 121 121.0 0.71 54.33 121 0.10 46 121 121 121

gdb21 156 156 156.0 0.42 15.93 156 0.15 13 156 156 156

gdb22 200 200 200.0 0.69 19.27 200 0.03 15 200 200 200

gdb23 233 233 234.7 36.78 1119.93 235 35.40 1100 235 235 233

Reported GRASP results were obtained with fifteen runs. LB - best known lower bound. UB - best known feasible solution cost.

CPU - execution time in seconds. Median CPU refers to the execution time for the median cost solution.

iter - number of GRASP iterations executed. Best solutions between metaheuristics in bold.

3.5 Final Remarks

This chapter has shown a high-end metaheuristic to solve the capacitated arc routing prob-

lem (CARP) and the Open CARP (OCARP), based on a greedy randomized adaptive search

procedure (GRASP) with evolutionary path-relinking.

The GRASP constructive heuristic (GCH) was based on Santos et al. (2009) path-scanning

heuristic with ellipse rule with many original additions which improved overall performance,

such as: (i) a cost-demand edge-selection rule, self-tuned according to the instance hardness to

achieve feasible solutions; (ii) a restricted candidate list containing the best candidate edges to

be included in the solution; (iii) an ellipse rule, which shortens the tours in favor of solution

cost; (iv) reactive parameters α and β, where the restricted candidate list parameter α and the

ellipse rule parameter β had their values selected from a set of possible values based on the

average solution cost induced by each of them.

In the GRASP local search phase, not all initial solutions had their neighborhood explored. A

filter prevents low-quality solutions going through local search by defining a statistical threshold,

which gives more than 95% probability of not throwing away an initial solution that would

otherwise outperform the incumbent best. The proposed filter was demonstrated by time-to-

target plots (TTT) to improve GRASP average runtime.

3.5. Final Remarks 53

Table 3.9: GRASP results for val instances

GRASP

mean median best cost

instance LB UB cost CPU iter cost CPU iter TS VNS ACO GRASP

val1A 173 173 173.0 0.12 3.07 173 0.29 3 173 173 173 173

val1B 173 173 173.0 19.80 227.07 173 40.89 100 173 173 173 173

val1C 245 245 245.0 0.49 21.87 245 0.75 21 245 245 245 245

val2A 227 227 227.0 0.08 2.87 227 0.14 3 227 227 227 227

val2B 259 259 259.0 0.43 9.53 259 0.22 7 259 259 259 259

val2C 457 457 457.3 3.96 205.87 457 4.30 100 457 457 457 457

val3A 81 81 81.0 0.12 3.27 81 0.10 3 81 81 81 81

val3B 87 87 87.0 0.36 8.07 87 0.83 7 87 87 87 87

val3C 138 138 138.0 0.50 27.53 138 0.89 27 138 138 138 138

val4A 400 400 400.0 4.98 8.40 400 3.73 7 400 400 400 400

val4B 412 412 412.0 11.97 21.67 412 7.70 16 412 412 412 412

val4C 428 428 430.3 98.02 774.53 428 72.76 1000 428 428 428 428

val4D 526 530 531.0 136.58 1580.00 530 159.32 1500 530 530 530 530

val5A 423 423 423.0 4.72 8.80 423 8.21 8 423 423 423 423

val5B 446 446 446.0 3.03 8.13 446 4.39 7 446 446 446 446

val5C 470 474 474.0 98.33 1353.33 474 99.92 1400 474 474 474 474

val5D 573 575 584.5 120.90 2246.67 583 115.55 2200 583 575 577 581

val6A 223 223 223.0 0.53 4.33 223 0.27 4 223 223 223 223

val6B 231 233 233.0 50.72 846.67 233 45.88 800 233 233 233 233

val6C 313 317 317.0 52.86 906.67 317 50.26 900 317 317 317 317

val7A 279 279 279.0 3.56 8.67 279 4.11 7 279 279 279 279

val7B 283 283 283.0 1.31 6.00 283 0.60 6 283 283 283 283

val7C 334 334 334.0 34.37 219.47 334 19.89 200 334 334 334 334

val8A 386 386 386.0 2.04 5.67 386 1.23 5 386 386 386 386

val8B 395 395 395.0 10.69 30.07 395 5.50 15 395 395 395 395

val8C 518 521 526.5 115.43 1906.67 527 101.91 1900 529 521 521 522

val9A 323 323 323.0 65.91 30.53 323 161.37 23 323 323 323 323

val9B 326 326 326.0 52.50 31.60 326 30.00 25 326 326 326 326

val9C 332 332 332.0 139.90 91.40 332 89.11 100 332 332 332 332

val9D 385 389 392.1 246.30 1833.33 391 255.74 1800 391 389 391 391

val10A 428 428 428.0 73.04 26.00 428 30.48 14 428 428 428 428

val10B 436 436 436.0 211.84 86.87 436 24.54 67 436 436 436 436

val10C 446 446 446.2 211.37 333.33 446 327.91 69 446 446 446 446

val10D 525 525 530.6 314.67 2093.33 531 293.83 1800 530 526 526 527

Reported GRASP results were obtained with fifteen runs. LB - best known lower bound. UB - best known feasible solution cost.

CPU - execution time in seconds. Median CPU refers to the execution time for the median cost solution.

iter - number of GRASP iterations executed. Best solutions between metaheuristics in bold.

A path-relinking, whose elite solution pool progressively improves itself (evolutionary), was

proposed based on the work of Resende et al. (2010). The proposed metaheuristic alternates

GRASP iterations with the evolutionary path-relinking, in an attempt to intensify the search,

while preserving some diversity. As recommended by Glover (1996), this work does not constrain

the search in the feasible solution space, but also explores paths traversing the feasible/infeasible

boundaries. This is accomplished by an infeasible local search, which reduces the cost of a locally

optimum feasible solution through capacity infeasible moves. The resulting solutions are then

used as initial solutions for the path-relinking. The effectiveness of evolutionary path-relinking

in the metaheuristic runtime was demonstrated by TTT plots.

The computational experiments were divided into two case studies, one for the CARP and

the other for OCARP. Three groups of CARP instances were used (gdb (Golden et al. 1983),

54 Chapter 3. Heuristics Approaches

Table 3.10: GRASP results for egl instances

GRASP

mean median best cost

instance LB UB cost CPU iter cost CPU iter TS VNS ACO GRASP

egl-e1-A 3548 3548 3548.0 0.91 22.27 3548 0.70 21 3548 3548 3548 3548

egl-e1-B 4468 4498 4508.6 72.16 1286.67 4498 68.31 1300 4533 4498 4498 4498

egl-e1-C 5542 5595 5615.3 91.19 14.53 5615 80.80 1400 5595 5595 5595 5595

egl-e2-A 5011 5018 5018.0 137.02 920.00 5018 129.09 900 5018 5018 5018 5018

egl-e2-B 6280 6317 6330.7 184.26 1646.67 6334 221.54 1600 6343 6321 6317 6317

egl-e2-C 8234 8335 8335.8 181.53 1626.67 8335 169.50 1600 8347 8335 8335 8335

egl-e3-A 5898 5898 5898.0 63.37 378.00 5898 30.56 370 5902 5898 5898 5898

egl-e3-B 7697 7775 7787.3 261.09 1686.67 7787 266.53 1600 7816 7775 7777 7777

egl-e3-C 10163 10292 10296.5 273.30 1733.33 10292 266.80 1700 10309 10292 10292 10292

egl-e4-A 6395 6444 6461.1 321.18 1700.00 6464 272.68 1700 6473 6446 6456 6444

egl-e4-B 8884 8983 9037.1 348.97 2180.00 9038 355.22 2100 9063 9004 8990 9002

egl-e4-C 11427 11559 11670.0 439.83 1886.67 11629 431.63 2000 11627 11652 11624 11626

egl-s1-A 5014 5018 5038.9 65.46 706.67 5019 25.73 400 5072 5018 5018 5018

egl-s1-B 6379 6388 6388.4 218.12 2060.00 6388 252.94 1900 6388 6388 6388 6388

egl-s1-C 8480 8518 8521.5 187.70 1753.33 8518 171.86 1700 8535 8518 8518 8518

egl-s2-A 9824 9884 9980.5 1193.05 2493.33 9983 1038.93 2500 10038 9944 9895 9903

egl-s2-B 12968 13088 13240.6 1250.71 2680.00 13232 1071.18 2700 13178 13167 13194 13169

egl-s2-C 16353 16425 16539.9 1633.59 2793.33 16525 1220.26 2700 16505 16491 16461 16442

egl-s3-A 10143 10220 10276.1 1583.73 2166.67 10280 1928.24 2200 10451 10259 10249 10221

egl-s3-B 13616 13682 13860.7 1317.04 2420.00 13852 1377.34 2300 13981 13751 13786 13694

egl-s3-C 17100 17189 17277.7 2081.06 2733.33 17265 1759.64 2600 17346 17299 17269 17221

egl-s4-A 12143 12268 12406.5 1741.85 2566.67 12416 1637.19 2400 12462 12375 12324 12297

egl-s4-B 16093 16267 16432.0 2207.21 3400.00 16441 2023.98 3300 16490 16353 16428 16333

egl-s4-C 20375 20484 20660.5 3311.59 3433.33 20646 2819.00 3300 20733 20640 20595 20563

Reported GRASP results were obtained with fifteen runs. LB - best known lower bound. UB - best known feasible solution cost.

CPU - execution time in seconds. Median CPU refers to the execution time for the median cost solution.

iter - number of GRASP iterations executed. Best solutions between metaheuristics in bold.

val (Benavent et al. 1992), and egl (Li and Eglese 1996)), 81 in total. For the OCARP case

study, the original depot was considered a common node, and the group of instances renamed

as ogdb, oval, and oegl. In addition, each group was divided into three classes, according to the

number of vehicles available, M = M∗, M = M∗ + 1 and M = M∗ + 2, where M∗ represents

the minimum number of vehicles for a feasible solution. The number of OCARP instances is

therefore three times greater than those of CARP, totalling 243 instances.

In the OCARP case study, the proposed GRASP constructive heuristic outperformed two

other path-scanning heuristics from literature (Belenguer et al. 2006; Santos et al. 2009) with

respect to the overall average and maximum deviations from lower bound. Next, the complete

metaheuristic solved the OCARP instances, providing optimal solutions for more than 35% of

them, and reducing the overall average deviation from lower bound in more than 62%, compared

to the proposed constructive heuristic.

In the CARP case study, the GCH has been shown successful to reduce the initial solutions

average and maximum deviations from lower bounds with almost none additional computa-

tional effort, compared with the path-scanning with ellipse rule heuristic (Santos et al. 2009).

The GRASP with PR was compared with a tabu search (Brandão and Eglese 2008), variable

neighborhood search (Polacek et al. 2008), and ant colony optimization (Santos et al. 2010)

metaheuristics. Results show that the GRASP outperformed all other metaheuristics with re-

3.5. Final Remarks 55

Table 3.11: Summary results for CARP metaheuristics.

TS VNS ACO GRASP

CPU factor 1.4/3.0 3.6/3.0 1.0/3.0 1.0

CPU gdb 1.2 - 1.1 5.1

val 9.4 52.7 8.4 61.5

egl 136.0 603.8 167.7 798.6

overall 44.6 - 53.5 264.0

∆LB gdb 0.07 - 0.04 0.00

val 0.30 0.17 0.20 0.23

egl 2.18 0.94 0.90 0.79

overall 0.56 - 0.40 0.33

nbest gdb 22 - 22 23

val 30 34 32 30

egl 4 12 14 19

overall 56 - 68 72

CPU factor - used to scale execution times.

CPU - average execution time per run in seconds.

∆LB - average deviation from lower bound (%).

nbest - number of best solutions.

spect to the overall average deviation from lower bounds and number of best solutions found,

in spite of additional execution time.

56

Chapter 4

Exact Approaches

4.1 Introduction

This chapter describes an exact algorithm to solve the open capacitated arc routing prob-

lem (OCARP). The proposed algorithm is motivated by the similarity between OCARP and

a tree problem, namely the capacity and degree constrained minimum spanning forest problem

(CDCMSFP) (Section 4.2). The branch-and-bound paradigm is used as background to guaran-

tee optimality (Section 4.3). Three lower bounding schemes are proposed with distinct trade-offs

between computational effort and bound tightness (Section 4.4). Lower bounds for CARP are

discussed and also the possibility of extending them to OCARP (Section 4.5). Computational

experiments are conducted on a set of literature instances, where the branch-and-bound results

are compared with the ones provided by a state-of-the-art integer linear programming (ILP)

solver (Section 4.6). Section 4.7 ends this chapter with the final remarks.

4.2 Motivation

In Chapter 2 the OCARP has been shown to be NP-hard. This is a negative result since

it means that the complexity of an exact algorithm will not be polynomial, unless P = NP .

Nonetheless, the extent by which OCARP instances can be optimally solved is an interesting

investigation. This chapter describes an algorithm that finds an optimal solution to any OCARP

instance. It will be shown that the complexity of this exact algorithm is exponential, however

it performs better than solving the OCARP model using CPLEX as an ILP solver.

The branch-and-bound algorithm is based on a transformation performed on the original

graphG(V,E). This graph can be transformed into an equivalent full graph G̃(Ṽ , Ẽ) by replacing

all non-required edges of G with minimum shortest paths between required edges. Figure 4.1

shows an example of this transformation with an OCARP instance containing 24 edges, six of

57

58 Chapter 4. Exact Approaches

Figure 4.1: Transforming OCARP graph G(V,E) into the augmented graph G̃(Ṽ , Ẽ).

them required. In the example, the augmented graph has 66 edges, six required (unchanged

from the original graph), and 60 non-required edges connecting every pair of required edges.

The costs of required edges remain the same in the augmented graph. As for the non-required

edges, their costs are shortest path costs to traverse the original graph from one node to another,

both nodes belonging to required edges. In case of two adjacent required edges, there will be a

zero cost non-required edge connecting them in the augmented graph.

The augmented graph G̃ is frequently used in literature to solve the CARP (Lacomme

et al. 2004; Beullens et al. 2003) since two required edges are always connected by a shortest

path in an optimal solution (Property 3).

An optimal OCARP solution in G, when migrated to the augmented graph G̃, will represent

a spanning forest F̃ (Ṽ , ẼS). The set of edges ẼS represents the OCARP tours and it is formed by

the union of required edges (ẼR) and a subset of non-required edges (ẼNR) from the augmented

graph (ẼS = ẼR ∪ ẼNR). A spanning forest F̃ is considered a feasible OCARP solution when

it has the following properties:

4.3. Branch-and-Bound General Concepts 59

• F̃ =
{

T̃1, T̃2, . . . , T̃M

}

– one tree per OCARP vehicle.

• |ẼS | = |Ṽ | −M ⇒ |ẼNR| = |ẼR| −M – the number of non-required edges is equal to

|ẼR| −M .

• 1 6 δ(v) 6 2 (v ∈ Ṽ , δ(v) = degree of v) – all nodes have degree of 1 or 2.

•
∑

(i,j)∈T̃k

dij 6 D (k ∈ {1, 2, . . . ,M}) – tree demand will satisfy capacity D.

One advantage in solving the OCARP using the augmented graph G̃ is that the problem

becomes equivalent to that of finding a minimum cost spanning forest withM trees, constrained

by tree capacity and node degree. In other words, the combinatorics of the problem resides in

finding the best |R|−M non-required edges of minimum cost, attending these constraints. In the

following, this problem is addressed as the capacity and degree constrained minimum spanning

forest problem (CDCMSFP).

A second advantage in solving the OCARP as a minimum spanning forest is that there are

easily computable lower bounds. These lower bounds will be useful within the branch-and-bound

framework to solve OCARP, topic of the following section.

4.3 Branch-and-Bound General Concepts

According to Papadimitriou and Steiglitz (1982), the branch-and-bound method is based on

the idea of efficiently enumerating all feasible points of the solution space of a combinatorial

optimization problem. The enumeration however is implicit, since it is impracticable to evaluate

all feasible solutions. One way of describing the branch-and-bound is to say that this algorithm

tries to construct a proof that a solution is optimal, based on successive partitioning of the solu-

tion space. The branch in branch-and-bound refers to this partitioning process; the bound refers

to lower bounds (for minimization problems) that are used to construct a proof of optimality

without exhaustive search.

The search tree exploration in the branch and bound algorithm involves at least two phases:

(i) Branching – a set of solutions, represented by a node, is partitioned into mutually exclusive

subsets. Each partition subset is represented by a child node. (ii) Lower bounding – an algorithm

is available for calculating a lower bound on the cost of any solution in a given subset.

It is possible to formulate the branch-and-bound method for any optimization problem in

which (i) and (ii) are available, whether or not the objective function or constraints are linear.

Papadimitriou and Steiglitz (1982) mention there are at least three implementation aspects that

should be addressed beforehand:

1. Branching scheme – or how to partition the solution space.

60 Chapter 4. Exact Approaches

2. Node selection – at each main iteration of the algorithm, a node must be chosen to branch

from. The usual alternatives are least-lower-bound, depth-first search, or breadth-first

search.

3. Lower bound calculation – in many occasions there are several lower bounding procedures

with different trade-offs between bounds that are relatively tight but require relatively

large computation time, and bounds that are not so tight but can be computed fast.

If an initial upper bound UB is known to the problem, it can be used to prune many nodes

from the search tree, and save computational effort. A good initial upper bound can also be

used to reduce the search space by removing, for example, candidate edges from the graph that

could not belong to an optimal solution. An upper bound can be determined by any heuristic

capable of generating a feasible solution. Again, the trade-off between the time required for the

heuristic against the upper bound quality should be taken into consideration.

Depending on the problem, the branch-and-bound algorithm might have an exponential

worst-case complexity, thus it is often terminated before optimality is reached, either by design

or necessity. In such a case, taking the best feasible solution cost UB, and the lowest lower bound

LB of the set of active node provides a ratio of (UB−LB)/LB from the optimal solution cost.

Figure 4.2 shows an example of the branch-and-bound search tree expansion for a general

problem starting with given LB = 5 and UB = 15. This example uses the least-lower-bound as

the node selection criteria, and the order by which the nodes are visited is a-b-d-h. The search

tree in this example has been developed until optimality was attained by branching the node

with LB = 10 and UB = 12. After this branch, the active nodes are all checked and the global

bounds updated with the smallest lower and upper bounds. In this case they are both equal

(LB = UB = 11). This means optimality has been attained and the search stops.

4.4 Branch-and-Bound for the CDCMSFP

4.4.1 Implementation Decisions

The branch-and-bound implementation decisions regarding the branching scheme, node se-

lection and lower bound calculations are described.

First of all, a solution of the CDCMSFP, partial or complete, is represented by the set of

required and non-required edges of G̃ the solution contains.

With respect to the branching scheme, Figure 4.3 assists the comprehension of how the

solution space is partitioned. Consider that all non-required edges Ẽ \ ẼR are sorted in a list

L = {e1, e2, . . . , en} by increasing order of cost. In each level of the search tree, a non-required

edge is included into the partial solution from the level above. Thus each search tree node

containing a subset of non-required edges is branched to include one additional non-required

4.4. Branch-and-Bound for the CDCMSFP 61

Figure 4.2: Example of the branch-and-bound search tree expansion.

edge. The branching scheme takes the highest index i from the most costly edge ei in the

current search tree node, as long as i < n, and divides the solution space into n − i mutually

exclusive partitions. In each partition, an edge ej (∀j ∈ [i+1, n]) is included in the corresponding

partial solution.

The node selection scheme adopted in the proposed branch-and-bound algorithm is the least-

lower-bound. One advantage of this scheme is that the current node lower bound is also a global

lower bound, since it is, by definition, the smallest lower bound among all active nodes. In

addition, if the current node represents a complete feasible solution, then it must be optimal.

Another advantage relies on the fact that this scheme favors the improvement of the global

lower bound against the global upper bound. This may be viewed as negative as well, because

complete solutions are discovered less often than using, for example, the depth-first search.

As for the lower bound calculation, the proposed algorithm uses three procedures detailed

in the following section.

62 Chapter 4. Exact Approaches

Figure 4.3: Branch-and-bound search tree for OCARP.

4.4.2 Lower Bounds

In the developed branch-and-bound algorithm, three lower bounds were tested, with different

trade-offs of complexity and computational effort, and this section shows how these lower bounds

were combined with the algorithm. Assume that ẼPS is the subset of edges representing a given

partial CDCMSFP solution, L = {e1, e2, . . . , en} is a sorted list of all non-required edges Ẽ \ ẼR

in increasing order of cost, and IL is the list of the indices for each edge in L (IL[ei] = i). The

following describes three proposed lower bounds.

LB1 – minimum cost edges

Lower bound LB1 is computed by relaxing the illegal subcycle, degree and capacity con-

straints of the CDCMSFP. Supposing emax is the maximum cost edge in ẼPS, then LB1 can be

calculated by adding to the cost of the partial solution, the cost of the cheapest nme edges in L

starting from index IL[emax] + 1, where nme = |ẼR| −M − |ẼPS| is the number of missing edges

to complete the solution.

Lower bound LB1 can be computed in O(1), by simply fetching the missing edges cost from

a matrix Cm×n (m = |Ẽ|, n = |ẼR| −M). The pre-processing phase of constructing matrix C

requires O(|Ẽ||ẼR|) of computational effort, however the pre-processing is performed only once,

while LB1 is calculated numerous times during execution. The row index of matrix C represents

the edge index in list L from which to start the sum of the missing edges costs, and this index

should be the highest cost edge index from the partial solution plus one (IL[emax] + 1). The

column index of matrix C represents the number of missing edges (nme). Equation 4.1 shows

how to fill matrix C for any OCARP instance.

4.4. Branch-and-Bound for the CDCMSFP 63

C[i, j] =



















i+j−1
∑

k=i

cost(L[k]) if i+ j − 1 6 |Ẽ|

∞ otherwise

(4.1)

Algorithm 10 shows how to determine LB1 for a given partial solution ẼPS .

Algorithm 10 LB1 – minimum cost edges lower bound

Input: ẼPS – set of non-required edges from the partial solution
Output: LB1 – minimum cost edges lower bound
1: emax ← getMaxCostEdge(ẼPS) – returning the highest cost edge in ẼPS

2: nme ← |Ṽ | −M − |ẼPS | – returning the number of missing edges in ẼPS

3: i← IL[e
max] + 1 – determining the row of matrix C

4: j ← nme – determining the column of matrix C
5: LB1 ← cost(Ẽps) + C[i, j]
6: return LB1

LB2 – minimum cost spanning forest

Lower bound LB2 is computed by relaxing the degree and capacity constraints of the

CDCMSFP. In other words, lower bound LB2 computes the minimum cost spanning forest that

completes the partial solution, and this is done by adding the cheapest nme = |ER| −M − |Ẽps|

edges which do not form a cycle in the solution (Algorithm 11). This is done within almost-linear

time O(|Ẽ|α(Ṽ)) with Kruskal algorithm implemented using disjoint-set-forest and union-by-

rank (Cormen, Stein, Rivest and Leiserson 2001). For all practical purposes, the inverse Acker-

mann function regards the inequality α(.) 6 5. The algorithm halts once the solution complies

|ER| −M non-required edges (or equivalently M trees).

Algorithm 11 LB2 – minimum cost spanning forest lower bound

Input: ẼPS – set of non-required edges from the partial solution
Output: S – optimal spanning forest
1: emax ← getMaxCostEdge(ẼPS) – returning the highest cost edge in ẼPS

2: nme ← |Ṽ | −M − |ẼPS | – returning the number of missing edges in ẼPS

3: S ← ẼPS

4: i← IL[e
max] + 1

5: while (nme > 0) do
6: e← L[i]
7: if (containsCycle(S ∪ {e}) = false) then
8: S ← S ∪ {e}
9: nme ← nme − 1
10: end if

11: i← i + 1
12: end while

13: return S

64 Chapter 4. Exact Approaches

LB3 – degree constrained minimum cost spanning forest

Lower bound LB3 is computed by relaxing only the capacity constraints of the CDCMSFP.

This lower bound is based on a heuristic for the degree constrained minimum spanning tree

problem (DCMSTP), by Andrade, Lucena and Maculan (2006), which uses Lagrangian dual

information to derive the lower bounds. Let E(S) = {(i, j) ∈ E|i ∈ S, j ∈ S} be the set of edges

contained in the node set S, and N(i) = {j ∈ V |(i, j) ∈ E} the set of nodes adjacent to node i.

Consider the following ILP model for the DCMSTP.

(DCMSTP)

MIN Z =
∑

(i,j)∈E

cijxij (4.2)

st
∑

(i,j)∈E

xij = |V | − 1 (4.3)

∑

(i,j)∈E(S)

xij 6 |S| − 1 ∀S ⊂ V (4.4)

∑

j∈N(i)

xij 6 di ∀i ∈ V (4.5)

xij ∈ {0, 1} ∀(i, j) ∈ E (4.6)

The objective function (4.2) minimizes the solution total cost; constraint (4.3) forces |V |− 1

edges in the solution; constraints (4.4) are for illegal subcycle elimination; constraints (4.5) limit

the degrees of the nodes. If the problem is to generate a forest (more than one tree), then

the right-hand side of constraint (4.3) should be replaced by |V | − t, where t is the number of

desired trees (t = M in this work). The Lagrangian relaxation used by Andrade et al. (2006)

and equally in this work, is obtained by relaxing contraints (4.5), which turns into the following

relaxed λ-DCMSTP formulation.

4.4. Branch-and-Bound for the CDCMSFP 65

(λ-DCMSTP)

MIN Zλ =
∑

(i,j)∈E

cijxij −
∑

i∈V

λi



di −
∑

j∈N(i)

xij



 (4.7)

st
∑

(i,j)∈E

xij = |V | − 1 (4.8)

∑

(i,j)∈E(S)

xij 6 |S| − 1 ∀S ⊂ V (4.9)

xij ∈ {0, 1} ∀(i, j) ∈ E (4.10)

Equation 4.11 is obtained by algebrically manipulating the objective function 4.7.

Zλ =
∑

(i,j)∈E

cijxij −
∑

i∈V

λi



di −
∑

j∈N(i)

xij





=
∑

(i,j)∈E

cijxij +
∑

i∈V

λi





∑

j∈N(i)

xij



−
∑

i∈V

λidi

=
∑

(i,j)∈E

cijxij +
∑

(i,j)∈E

(λi + λj)xij −
∑

i∈V

λidi

=
∑

(i,j)∈E

(cij + λi + λj)xij −
∑

i∈V

λidi (4.11)

This way, the relaxed problem is to find the minimum spanning tree with Lagrangian costs

lij = cij + λi + λj. From the Lagrangian duality theory, it is straightforward to establish that

the optimal cost Z∗λ is a lower bound for the optimal cost Z∗ for any given set of multipliers

λ. There is also the Lagrangian dual problem, which is to find the set of multipliers λ∗ which

maximizes Z∗λ, in other words, finds the maximum lower bound for Z∗. To solve the Lagrangian

dual the subgradient method (Beasley 1993), which generates a sequence of multipliers which

converge to λ∗, is employed.

Algorithm 12 computes lower bound LB3 by solving several times a minimum cost spanning

forest with Lagrangian costs on the edges using Algorithm 11. Both of the parameters θ and τ

regarding the step size have been set with the values suggested by Beasley (1993) (lines 1 and

2). The Lagrangian multipliers are initially set with zeros (line 5) so that in the first iteration

the Lagrangian costs are equal to the original costs. In line 9, the costs of the edges are updated

by the Lagrangian costs (lij = cij + λi + λj). The extents of node degree infeasibilities of the

spanning forest Sλ generated in line 10 is measured by the subgradients (line 15), which are

used to determine the step size (line 18) for the Lagrangian multipliers adjustment (line 23).

66 Chapter 4. Exact Approaches

Algorithm 12

LB3 – degree constrained minimum cost spanning forest lower bound

Input: ẼPS – set of non-required edges from the partial solution, UB – an upper bound for the DCMSTP,
obtained heuristically, maxIter – maximum number of iterations, used as stopping criterion

Output: LB3 – the best lower bound obtained by solving the dual Lagrangian problem
1: θ ← 2.0 – adjusts the step size depending on how tight is the GAP between LB and UB bounds
2: τ ← 1.05 – prevents the step size from becoming to small when the same happens with the GAP
3: iter← 0
4: for ((∀i ∈ V)) do
5: λi ← 0
6: end for

7: LB3 ← −∞
8: while ((iter 6 maxIter) and (UB > LB3)) do
9: updateEdgeCosts(ẼPS, λ) – apply Lagrangian costs to the edges
10: Sλ ← LB2(ẼPS) – solve the (λ-DCMSTP) with Kruskal
11: if (cost(Sλ) > LB3) then
12: LB3 ← cost(Sλ)
13: end if

14: for (∀i ∈ V) do
15: Gi ← di− nodeDegree(Sλ, i)
16: end for

17: if (
∑

i∈V

Gi > 0) then

18: t←
θ(τUB − LB3)

∑

i∈V

G2
i

19: else

20: return LB3 – optimal solution cost
21: end if

22: for (∀i ∈ V) do
23: λi ← max (0, λi + tGi)
24: end for

25: iter← iter + 1
26: end while

27: return LB3

4.4. Branch-and-Bound for the CDCMSFP 67

4.4.3 Lower Bounds Tightness

A trivial lower bound LB0 for an optimal OCARP solution cost may be computed by sum-

ming all required edges costs (LB0 =
∑

e∈ER
ce). This however can be very loose when optimal

solutions require deadheading. The following paragraphs will show that LB3 > LB2 > LB1 >

LB0.

1. LB1 > LB0: Lower bound LB1 considers the cost of the partial solution (ẼPS), which in

turn contains all required edges (ER ⊆ ẼPS).

2. LB2 > LB1: Both lower bounds LB1 and LB2 are formed by adding the same number of

edges (nme) to the partial solution. However, LB1 always adds the least cost edges.

3. LB3 > LB2: The Lagrangian multipliers in Algorithm 12 are initially set with zeros,

meaning that the first minimum cost spanning forest obtained in line 10 will have cost

equal to LB2.

4.4.4 Lower Bounds Composition

Empirical studies have revealed that the branch-and-bound algorithm performs better when

the lower bounds are combined, rather than used individually. This is because there are moments

during the search tree exploration when a fast computable lower bound is preferred instead of a

costly one, despite this last being a tighter bound.

As explained in Section 4.4.1, for every child node generated in the branching phase a non-

required edge is added to the corresponding partial solution. In the proposed branch-and-bound,

these child nodes are formed in an orderly manner of decreasing costs, starting with a child node

that receives the highest cost non-required edge. This denotes that the first child nodes should

likely contain a relatively high cost partial solutions. Thus lower bounds for these solutions do

not need to be tight, and fast lower bounds would save substantial amounts of execution time.

Let LB and UB be the incumbent best lower and upper bounds at a given branch-and-bound

iteration. At the start of a branching phase, the lower bounding procedure of choice is LB1, the

fastest one. If a child node results in a lower bound LB1 such that LB1 < LB+(UB−LB)/10,

then the lower bounding procedure is replaced by LB2. This test is repeated for every generated

child node, and if LB2 also fails to pass the test, it is replaced by LB3, which assumes the job of

deriving lower bounds until the last child node is created in the course of that branching phase.

The choice of using the relative value (UB − LB)/10 was made after several empirical tests.

4.4.5 Upper Bounds

Considering the quality of the GRASP with path-relinking described in Chapter 3, this same

metaheuristic was used to provide the branch-and-bound algorithm with a high-quality starting

68 Chapter 4. Exact Approaches

upper bound.

It was considered during the implementation of the branch-and-bound algorithm to develop

a constructive heuristic which takes a partial solution, complete a feasible solution, and then

improve it with some local search procedure. This idea was rejected afterwards, once it has

been verified that the quality of the proposed GRASP with path-relinking was a good enough

metaheuristic, and that it would be a waste of effort to dedicate the branch-and-bound time to

pursue better upper bounds.

4.4.6 Problem Reduction

In order to save computational effort, a problem reduction is performed so that non-required

edges, with sufficiently high costs, can be eliminated from the instance graph without loss of

optimality. For each non-required edge e ∈ Ẽ, a lower bound LBe is computed by forcing edge

e into the solution. If LBe > UB then edge e cannot take part in any optimal solution, thus

can be removed from the instance graph.

The problem reduction method uses all three lower bounds, and start with the weakest lower

bound LB1, which is computed for each edge in decreasing order of cost. It continues using LB1

while it keeps removing the edges from the graph instance (LB1 > UB). When LB1 6 UB,

lower bound LB2 is activated and it is used as the lower bounding procedure until LB2 6 UB,

when it is replaced by LB3 which is used until all edges are considered.

4.4.7 Branch-and-Bound Pseudo-Code

Algorithm 13 shows the proposed exact algorithm to solve the CDCMSFP, and begins by

creating a node representing the partial solution containing all and only the required edges.

This first node is then added to the heap (line 3). Before starting the search, a reduction of

the problem is attempted by eliminating some candidate non-required edges (line 4). The main

loop of the algorithm is located in line 5, and it halts when the algorithm finds the optimal

solution or a sufficient amount of time has ellapsed or the heap size exceeds a given threshold.

The search commences by extracting a heap node (line 6). The lower bound is updated (line 7),

and tests are performed to verify if optimality has been attained (lines 8 and 12). The branching

phase begins in the loop of line 16. If the partial solution remains feasible after the addition

of a non-required edge (line 17), it then goes through one or more lower bounding procedures

(lines 19, 21, and 23), according to the strategy described in Section 4.4.4.

4.4.8 Complexity Study

The computational complexity of Algorithm 13 can be bounded by the number of nodes in

the tree. This can be quantified with support of Figure 4.3. Each i-th level of this tree contains

4.4. Branch-and-Bound for the CDCMSFP 69

Algorithm 13 Branch-and-Bound for the CDCMSFP

Input: G(V,E) – undirected complete graph, UB – an upper bound for the DCMSTP, obtained heuris-
tically, timeLimit – execution time limit, used as stopping criterion, heapSize – memory usage limit,
used as stopping criterion.

1: ẼPS ← ER – setting an initial solution containing only the required edges
2: z0 ← cost(ẼPS) – trivial lower bound for the empty solution
3: insertHeap(activeNodes, ẼPS, z0) – inserting partial solution ẼPS with key z0 in the heap
activeNodes

4: problemReduction(G(V,E), UB) – reducing the number of candidate edges
5: while ((activeSet 6= ∅) and (time 6 timeLimit) and (activeSet.size 6 heapSize)) do
6: (ẼPS , z)← extractMinHeap(activeNodes)
7: LB ← z
8: if (UB − LB < 1) then
9: LB ← UB
10: exit while

11: end if

12: if (completeSolution(ẼPS) = true) then
13: UB ← LB
14: exit while

15: end if

16: for (∀e ∈ ẼPS \ ER) do
17: Schild ← ẼPS ∪ {e}
18: if (feasible(Schild) = true) then
19: zchild ← LB1(Schild)

20: if (zchild 6 LB +
UB − LB

10
) then

21: zchild ← LB2(Schild)

22: if (zchild 6 LB +
UB − LB

10
) then

23: zchild ← LB3(Schild)
24: end if

25: end if

26: if (zchild 6 UB) then
27: insertHeap(activeNodes, Schild, zchild)
28: end if

29: end if

30: end for

31: end while

32: return (LB,UB)

70 Chapter 4. Exact Approaches

all possible solutions (not necessarily feasible) with i non-required edges. Therefore, the total

amount of nodes in the search tree (Ntree) corresponds to the sum of nodes in all its |ER| −M

levels (Equation (4.12)).

Ntree =

|ER|−M
∑

i=0

(

|Ẽ|

i

)

<

|Ẽ|
∑

i=0

(

|Ẽ|

i

)

= 2|Ẽ| (4.12)

Each node in the search tree goes through a heap insertion, a heap deletion, and possi-

bly the calculation of all three lower bounds LB1, LB2, and LB3. Thus the computational

effort performed on each node is bounded by O(|Ẽ|α(Ṽ)). These calculations are performed

Ntree times, making the computational complexity of the proposed method to be bounded by

O(|Ẽ|α(Ṽ)2|Ẽ|).

4.5 Alternative Lower Bounds

Welz (1994) has observed that the linear relaxation of the CARP model which excludes the

subtour elimination constraints (2.6), always provides a lower bound equal to LB0. This is

extendable to OCARP, i.e., the linear relaxation of the OCARP model, excluding the subtour

elimination constraints (2.16), generates a lower bound equal to LB0 (the proof is equivalent to

the one given for CARP (Welz 1994)).

Lower bounding schemes for CARP, such as Capacity constraints, Odd Edge Cutset con-

straints, Disjoint Paths (Belenguer and Benavent 2003), and Multiple Cuts Node Duplication

Lower Bound (Wøhlk 2006) affirm that, for a subset S ⊆ V \ {v0}, some edges must be dead-

headed depending on the total demand to be serviced in S, the number of required edges in the

cutset (S, S \ V), and possibly some additional demand on the path from v0 to S. However,

these constraints are valid based on the fact that every CARP vehicle which enters subset S

must exit from it to return to the depot. Since OCARP tours may start and end at any node,

these inequalities are not valid for OCARP.

Two attempts were made to improve LB0 using the optimization software CPLEX 12. The

first one was by solving OCARP linear relaxation model including only part (S ⊆ V, |S| 6 3)

of the subtour elimination constraints (2.16). This strategy however did not improve LB0.

The second approach consisted in solving the integer reduced OCARP model, neglecting all

subtour elimination constraints. The stopping criteria were defined by execution time (one

hour), memory usage (2.5 GB) or optimality. When one of these criteria was reached, the best

lower bound obtained in the process (LBcplex) was stored.

4.6. Computational Experiments 71

4.6 Computational Experiments

The branch-and-bound algorithm was tested with the same instances used in the GRASP

with PR computational tests (Section 3.4). The standard set of CARP instances1 was referred

to, which includes 23 gdb (7-27 nodes, 11-55 edges) (Golden et al. 1983), 34 val (24-50 nodes,

34-97 edges) (Benavent et al. 1992), 24 egl (77-140 nodes, 98-190 edges) (Li and Eglese 1996),

totaling 81 instances. The depot was considered a common node while the rest of the data left

intact, leading to three groups of instances referred as ogdb, oval, and oegl.

Since OCARP is only meaningful with a fixedM (Property 1), the computational tests have

considered three classes of parameterization: M = M∗, M = M∗ + 1 and M = M∗ + 2, where

M∗ represents the minimum number of vehicles necessary for a feasible solution. Consequently,

from each of the 81 CARP instances, three different numbers of vehicles are considered, thus

deriving 243 OCARP instances.

Table 4.1 lists the branch-and-bound parameters and their values used in the computational

experiments. The same time limit was adopted to CPLEX. The branch-and-bound algorithm

was implemented in C programming language, and all tests were executed in a Intel Core 2

Quad 3.0 GHz with 4 Gb of RAM.

The computational experiments use as the starting upper bound (UB) the best solution

obtained by the GRASP with PR, presented in Tables 3.4-3.6.

Table 4.1: Branch-and-bound parameters.

timeLimit = 3600 execution time limit in seconds.

heapSize = 2× 107 heap size limit in number of nodes.

λ0 = [0, 0, . . . , 0] initial Lagrangian multipliers for the subgradient method.

θ = 2.0 adjusts the step size depending on the GAP in the subgradient method.

τ = 1.05 prevents the step size from becoming too small in the subgradient method.

Table 4.2 reveals the overall results of the branch-and-bound algorithm for each group-class

of instances. These results inform on the quality of the branch-and-bound lower bounds (LBbb),

which are compared with the integer reduced model lower bounds obtained by CPLEX (LBcplex).

The trivial lower bounds (LB0) and the best lower bounds (LBbest = max {LBcplex, LBbb}) are

also discriminated for a thorough comparison analysis.

Considering the average deviation from lower bound (∆LB = UB−LB
LB

) in Table 4.2, both

LBbb and LBcplex performed equally to group of instances ogdb, not improving the trivial bounds.

However, this group has only three instances yet to attain optimality, leaving a small margin

for improvements. Considering group oval, the branch-and-bound yielded minor improvements

to the trivial lower bounds, with a gap reduction from 2.45% to 2.37%. On the one hand,

CPLEX performed much better for this group, significantly reducing the deviation to 1.62%,

1http://www.uv.es/˜belengue/carp.html

72 Chapter 4. Exact Approaches

and matching the best lower bounds deviation (LBcplex = LBbest) for all instances in this group.

On the other hand, the branch-and-bound reduced the trivial lower bound deviation from 12.15%

to 9.88%, outperforming CPLEX that handed a 11.63% gap. Moreover, the branch-and-bound

had the best performance in the overall comparison, achieving an average deviation of 3.94%,

while CPLEX yielded an average deviation of 4.14%, and the trivial deviation was 4.64%.

Table 4.2 also shows the number of best lower bounds (nbest) for each group-class of instances.

These numbers draw practically the same conclusions as the average deviations from lower

bounds. That is, for group ogdb, methods branch-and-bound and CPLEX performed equally;

for group oval, CPLEX yielded 102 best lower bounds against the branch-and-bound 77 best

lower bounds; for group oegl, the branch-and-bound outperformed CPLEX with 72 to 33 best

lower bounds; lastly, for the overall comparison, the branch-and-bound delivered the highest

number of best lower bounds 218, while CPLEX provided only 204.

The performance complementarity between both algorithms has been registered by the over-

all best lower bounds deviations (3.62%) and number of best lower bounds (243), which are

significantly better than the results presented by each algorithm alone. One cause of this com-

plementarity could be the absense of capacity lower bounding schemes in the branch-and-bound

algorithm. It may happen that the oval instances are more susceptible to capacity constraints

than node degree constraints. If this is the case, the OCARP model capacity constraints should

have benefited CPLEX. Still, the reduced integer linear model was too onerous to solve the oegl

instances, which explains CPLEX poor performance to this group.

Tables 4.3-4.5 shows the branch-and-bound results for all instances individually. The memory

stopping criterion was not triggered for any instance. From the set of 243 instances, 92 solutions

(37.86%) were proven optimal (UB = LBbest).

The only way the branch-and-bound algorithm could improve the initial upper bounds was

by fetching a complete solution from the heap, and this solution would already be optimal for the

reasons given in Section 4.3. This event only happened during the experiments when the initial

upper bound was already optimal. Therefore, the branch-and-bound has not improved any of

the initial upper bounds, and this is likely due to the already high-quality bounds provided

by the GRASP with PR metaheuristic. Besides, the branch-and-bound was engineered with a

least-lower-bound branching scheme that favors the search for higher lower bounds over lower

cost feasible solutions, which in turn is supported by other approaches, for example, a depth-first

search.

4.7. Final Remarks 73

Table 4.2: Branch-and-bound overall results.

∆LB nbest

group class ∆LB0 ∆LBcplex ∆LBbb ∆LBbest LB0 LBcplex LBbb LBbest

ogdb M∗ 0.07 0.07 0.07 0.07 23 23 23 23

M∗ + 1 0.05 0.05 0.05 0.05 23 23 23 23

M∗ + 2 0.02 0.02 0.02 0.02 23 23 23 23

overall 0.05 0.05 0.05 0.05 69 69 69 69

oval M∗ 3.61 1.66 3.41 1.66 16 34 16 34

M∗ + 1 2.27 1.75 2.24 1.75 28 34 28 34

M∗ + 2 1.46 1.46 1.46 1.46 33 34 33 34

overall 2.45 1.62 2.37 1.62 77 102 77 102

oegl M∗ 20.22 19.09 17.13 17.13 10 10 24 24

M∗ + 1 9.37 9.08 7.17 7.17 11 11 24 24

M∗ + 2 6.87 6.73 5.34 5.34 12 12 24 24

overall 12.15 11.63 9.88 9.88 33 33 72 72

overall M∗ 7.53 6.37 6.53 5.79 49 67 63 81

M∗ + 1 3.74 3.44 3.08 2.87 62 68 75 81

M∗ + 2 2.66 2.61 2.21 2.20 68 69 80 81

overall 4.64 4.14 3.94 3.62 179 204 218 243

LB0 =
∑

e∈R ce: trivial lower bound. LBcplex: cplex lower bounds.

LBbb: branch-and-bound lower bounds. ∆LBbest = min {∆LBcplex,∆LBbb}: best lower bound.

∆LB: average deviation from lower bound (%). nbest: number of best lower bounds.

M∗: minimum number of vehicles to attain a feasible solution.

4.7 Final Remarks

An algorithm based on the branch-and-bound paradigm was developed to solve OCARP

optimally. Three lower bounding schemes were derived, regarding the number of edges (LB1), the

absense of cycles (LB2) and the node degree constraints (LB3). The computational complexity

of the algorithm is exponential, meaning that the execution time may be too high for realistic

size instances. Nonetheless, computational experiments were performed halting the algorithm

after a given execution time. The best bounds encountered in the process are returned as result.

These bounds were compared with the bounds generated by solving OCARP model with a high-

end ILP solver. The results show that the branch-and-bound algorithm outperformed CPLEX

in the overall comparison.

74 Chapter 4. Exact Approaches

Table 4.3: Branch-and-bound results for ogdb instances.

M =M∗ M =M∗ + 1 M =M∗ + 2

M∗ LB0 UB LB ∆LB CPU UB LB ∆LB CPU UB LB ∆LB CPU

ogdb1 5 252 252 252 0.00 0.00 252 252 0.00 0.00 252 252 0.00 0.01

ogdb2 6 291 291 291 0.00 0.00 291 291 0.00 0.00 291 291 0.00 0.00

ogdb3 5 233 233 233 0.00 0.00 233 233 0.00 0.00 233 233 0.00 0.00

ogdb4 4 238 238 238 0.00 0.00 238 238 0.00 0.00 238 238 0.00 0.00

ogdb5 6 316 316 316 0.00 0.00 316 316 0.00 0.00 316 316 0.00 0.00

ogdb6 5 260 260 260 0.00 0.00 260 260 0.00 0.00 260 260 0.00 0.00

ogdb7 5 262 262 262 0.00 0.00 262 262 0.00 0.00 262 262 0.00 0.00

ogdb8 10 210 210 210 0.00 0.00 210 210 0.00 0.00 210 210 0.00 0.00

ogdb9 10 219 219 219 0.00 0.00 219 219 0.00 0.00 219 219 0.00 0.00

ogdb10 4 252 252 252 0.00 0.00 252 252 0.00 0.00 252 252 0.00 0.00

ogdb11 5 356 362 356 1.69 3600.50 360 356 1.12 3600.53 358 356 0.56 3600.43

ogdb12 7 336 336 336 0.00 0.01 336 336 0.00 0.01 336 336 0.00 0.01

ogdb13 6 509 509 509 0.00 0.00 509 509 0.00 0.00 509 509 0.00 0.00

ogdb14 5 96 96 96 0.00 0.00 96 96 0.00 0.00 96 96 0.00 0.00

ogdb15 4 56 56 56 0.00 0.00 56 56 0.00 0.00 56 56 0.00 0.00

ogdb16 5 119 119 119 0.00 0.00 119 119 0.00 0.00 119 119 0.00 0.00

ogdb17 5 84 84 84 0.00 0.00 84 84 0.00 0.00 84 84 0.00 0.00

ogdb18 5 158 158 158 0.00 0.00 158 158 0.00 0.00 158 158 0.00 0.00

ogdb19 3 45 45 45 0.00 0.00 45 45 0.00 0.00 45 45 0.00 0.00

ogdb20 4 105 105 105 0.00 0.00 105 105 0.00 0.00 105 105 0.00 0.00

ogdb21 6 149 149 149 0.00 0.00 149 149 0.00 0.00 149 149 0.00 0.00

ogdb22 8 191 191 191 0.00 0.00 191 191 0.00 0.00 191 191 0.00 0.00

ogdb23 10 223 223 223 0.00 0.00 223 223 0.00 0.00 223 223 0.00 0.00

M∗: minimum number of vehicles to attain a feasible solution. LB0: trivial lower bound.

UB: solution obtained by the GRASP with PR. LB: best lower bound provided by the branch-and-bound algorithm.

∆LB: average deviation from lower bound (%). CPU : running time (s) of the branch-and-bound algorithm.

4.7. Final Remarks 75

Table 4.4: Branch-and-bound results for oval instances.

M =M∗ M =M∗ + 1 M =M∗ + 2

M∗ LB0 UB LB ∆LB CPU UB LB ∆LB CPU UB LB ∆LB CPU

oval1A 2 146 154 147 4.76 3600.66 151 146 3.42 3600.72 149 146 2.05 3600.77

oval1B 3 146 151 146 3.42 3600.77 149 146 2.05 3600.84 147 146 0.68 3600.99

oval1C 8 146 159 146 8.90 3600.63 146 146 0.00 3600.48 146 146 0.00 3600.63

oval2A 2 185 195 191 2.09 3602.13 192 187 2.67 3601.19 189 185 2.16 3601.01

oval2B 3 185 192 187 2.67 3601.62 189 185 2.16 3601.21 186 185 0.54 3601.85

oval2C 8 185 185 185 0.00 0.01 185 185 0.00 0.00 185 185 0.00 0.01

oval3A 2 65 71 66 7.58 3600.67 69 65 6.15 3600.62 67 65 3.08 3600.67

oval3B 3 65 69 65 6.15 3600.62 67 65 3.08 3600.64 66 65 1.54 3600.72

oval3C 7 65 66 65 1.54 3601.32 65 65 0.00 562.71 65 65 0.00 546.19

oval4A 3 343 358 343 4.37 3600.71 354 343 3.21 3600.36 350 343 2.04 3600.29

oval4B 4 343 354 343 3.21 3600.31 350 343 2.04 3600.31 347 343 1.17 3600.31

oval4C 5 343 350 343 2.04 3600.46 347 343 1.17 3600.45 345 343 0.58 3600.46

oval4D 9 343 343 343 0.00 3600.59 343 343 0.00 3600.75 343 343 0.00 3600.64

oval5A 3 367 383 367 4.36 3600.34 378 367 3.00 3600.32 374 367 1.91 3600.29

oval5B 4 367 378 367 3.00 3600.32 374 367 1.91 3600.28 371 367 1.09 3600.32

oval5C 5 367 374 367 1.91 3600.28 371 367 1.09 3600.25 368 367 0.27 3600.26

oval5D 9 367 367 367 0.00 0.00 367 367 0.00 0.01 367 367 0.00 0.00

oval6A 3 190 195 190 2.63 3600.57 193 190 1.58 3600.62 192 190 1.05 3600.53

oval6B 4 190 194 190 2.11 3600.53 192 190 1.05 3600.65 191 190 0.53 3600.73

oval6C 10 190 190 190 0.00 0.00 190 190 0.00 0.00 190 190 0.00 0.00

oval7A 3 249 263 249 5.62 3600.24 259 249 4.02 3600.15 256 249 2.81 3600.20

oval7B 4 249 259 249 4.02 3600.20 256 249 2.81 3600.19 253 249 1.61 3600.24

oval7C 9 249 250 249 0.40 3601.51 249 249 0.00 3601.41 249 249 0.00 3601.34

oval8A 3 347 364 347 4.90 3600.34 359 347 3.46 3600.22 354 347 2.02 3600.24

oval8B 4 347 359 347 3.46 3600.22 354 347 2.02 3600.25 351 347 1.15 3600.21

oval8C 9 347 347 347 0.00 0.01 347 347 0.00 0.00 347 347 0.00 0.00

oval9A 3 278 298 278 7.19 3600.15 294 278 5.76 3600.17 292 278 5.04 3600.24

oval9B 4 278 294 278 5.76 3600.21 292 278 5.04 3600.30 290 278 4.32 3600.24

oval9C 5 278 292 278 5.04 3600.21 290 278 4.32 3600.24 288 278 3.60 3600.26

oval9D 10 278 283 278 1.80 3600.26 281 278 1.08 3600.14 280 278 0.72 3600.16

oval10A 3 376 402 376 6.91 3600.15 396 376 5.32 3600.18 391 376 3.99 3600.14

oval10B 4 376 396 376 5.32 3600.17 391 376 3.99 3600.19 388 376 3.19 3600.22

oval10C 5 376 391 376 3.99 3600.24 388 376 3.19 3600.23 385 376 2.39 3600.20

oval10D 10 376 379 376 0.80 3600.18 378 376 0.53 3600.14 377 376 0.27 3600.15

M∗: minimum number of vehicles to attain a feasible solution. LB0: trivial lower bound.

UB: solution obtained by the GRASP with PR. LB: best lower bound provided by the branch-and-bound algorithm.

∆LB: average deviation from lower bound (%). CPU : running time (s) of the branch-and-bound algorithm.

76 Chapter 4. Exact Approaches

Table 4.5: Branch-and-bound results for oegl instances.

M =M∗ M =M∗ + 1 M =M∗ + 2

M∗ LB0 UB LB ∆LB CPU UB LB ∆LB CPU UB LB ∆LB CPU

oegl-e1-A 5 1468 1775 1673 6.10 3600.28 1708 1629 4.85 3600.22 1659 1590 4.34 3600.21

oegl-e1-B 7 1468 1749 1591 9.93 3600.22 1639 1556 5.33 3600.25 1589 1524 4.27 3600.34

oegl-e1-C 10 1468 1652 1523 8.47 3600.27 1576 1504 4.79 3600.32 1542 1490 3.49 3600.34

oegl-e2-A 7 1879 2177 2019 7.83 3600.17 2072 1990 4.12 3600.12 2043 1965 3.97 3600.12

oegl-e2-B 10 1879 2080 1944 7.00 3600.17 1997 1927 3.63 3600.23 1971 1912 3.09 3600.30

oegl-e2-C 14 1879 2084 1900 9.68 3600.20 1997 1889 5.72 3600.27 1964 1879 4.52 3600.29

oegl-e3-A 8 2188 2526 2277 10.94 3600.14 2410 2260 6.64 3600.15 2372 2245 5.66 3600.32

oegl-e3-B 12 2188 2411 2221 8.55 3600.29 2359 2212 6.65 3600.18 2321 2203 5.36 3600.23

oegl-e3-C 17 2188 2364 2188 8.04 3600.17 2308 2188 5.48 3600.25 2270 2188 3.75 3600.25

oegl-e4-A 9 2453 2693 2453 9.78 3600.39 2582 2453 5.26 3600.29 2556 2453 4.20 3600.33

oegl-e4-B 14 2453 2786 2453 13.58 3600.37 2567 2453 4.65 3600.18 2517 2453 2.61 3600.34

oegl-e4-C 19 2453 3383 2453 37.91 3600.25 2515 2453 2.53 3600.21 2497 2453 1.79 3600.25

oegl-s1-A 7 1394 1799 1584 13.57 3600.20 1683 1541 9.21 3600.28 1604 1503 6.72 3600.34

oegl-s1-B 10 1394 1745 1475 18.31 3600.20 1659 1447 14.65 3600.23 1579 1426 10.73 3600.20

oegl-s1-C 14 1394 1876 1415 32.58 3600.30 1633 1403 16.39 3600.28 1512 1397 8.23 3600.30

oegl-s2-A 14 3174 3697 3228 14.53 3600.11 3621 3217 12.56 3600.40 3561 3205 11.11 3600.17

oegl-s2-B 20 3174 4309 3176 35.67 3600.32 3498 3174 10.21 3600.26 3427 3174 7.97 3600.21

oegl-s2-C 27 3174 3928 3174 23.76 3600.16 3414 3174 7.56 3600.21 3342 3174 5.29 3600.20

oegl-s3-A 15 3379 3828 3393 12.82 3600.30 3764 3386 11.16 3600.32 3734 3381 10.44 3600.30

oegl-s3-B 22 3379 3680 3379 8.91 3600.32 3588 3379 6.19 3600.14 3564 3379 5.47 3600.10

oegl-s3-C 29 3379 3814 3379 12.87 3600.15 3625 3379 7.28 3600.37 3495 3379 3.43 3600.20

oegl-s4-A 19 4186 4500 4186 7.50 3600.25 4421 4186 5.61 3600.15 4405 4186 5.23 3600.24

oegl-s4-B 27 4186 4469 4186 6.76 3600.13 4360 4186 4.16 3600.42 4328 4186 3.39 3600.22

oegl-s4-C 35 4186 7789 4186 86.07 3600.29 4502 4186 7.55 3600.32 4320 4186 3.20 3600.15

M∗: minimum number of vehicles to attain a feasible solution. LB0: trivial lower bound.

UB: solution obtained by the GRASP with PR. LB: best lower bound provided by the branch-and-bound algorithm.

∆LB: average deviation from lower bound (%). CPU : running time (s) of the branch-and-bound algorithm.

Conclusions

On the problem.

This work introduced the open capacitated arc routing problem (OCARP), a NP-hard com-

binatorial optimization problem of theoretical and practical interest belonging to the family of

arc routing problems. At least two real-life applications can be modeled as an OCARP, the

Meter Reader Routing Problem (Stern and Dror 1979) and the Cutting Path Determination

Problem (Moreira et al. 2007).

The OCARP has been formulated as an integer linear programming problem, with an expo-

nential number of variables and constraints. It is unknown if there is a compact formulation to

OCARP, and if there is any polynomial algorithm to separate the illegal subcycle elimination

constraints. Some interesting properties has been derived to OCARP, regarding the number of

vehicles a solution would use, characterization of the beginning and end of each vehicle tour,

and attributes of a cyclic tour.

Through a polynomial reduction of the CARP to the OCARP, it was possible to prove

that the later is NP-hard. Also, it was possible to demonstrate the backward reduction of the

OCARP to the CARP. This reduction can be used by CARP algorithms to also solve OCARP.

However, the latest CARP exact algorithms and heuristics assume the number of vehicles as a

decision variable, making them unsuitable for OCARP, where the number of vehicles is fixed.

On the heuristic approach.

Based on a greedy randomized adaptive search procedure (GRASP) with evolutionary path-

relinking (PR), a high-end metaheuristic was developed to solve both CARP and OCARP.

The GRASP constructive phase (GCH) was based on an efficient CARP path-scanning

heuristic (Santos et al. 2009). This heuristic uses an ellipse rule that is triggered when the

vehicle capacity is below a given threshold relying on a parameter β. Once active, the ellipse

rule directs the tour to the depot, potentially reducing the cost of the way back. Despite OCARP

not having a depot, it has empirically been verified that the ellipse rule, by shortening the tours,

reduces the solutions cost on average. Other features of the GCH are (i) a cost-demand edge-

selection rule, self-tuned according with the instance hardness to achieve feasible solutions; (ii)

a restricted candidate list (RCL) containing candidate edges to enter the solution that are at

77

78 Chapter 4. Exact Approaches

most α (%) distant from the best candidate; (iii) reactive parameters α and β, meaning that

their values are selected from a set of possible values once every iteration, based on the average

solution cost induced by each value.

After the GCH has created an initial feasible solution, the local search tries to explore the

solution neighborhood in search for a better solution. Four types of neighborhoods moves are

defined single-insert, double-insert, swap, and block-insert. The best-improve scheme is used

to select the next move to execute. In addition, a filter was created to prevent low-quality

solutions going through local search. This filter uses a statistical threshold that gives more

than 95% probability of not discarding an initial solution that would otherwise outperform the

incumbent best. The proposed filter was demonstrated by time-to-target plots (TTT) to improve

GRASP runtime on average.

Another trend included in the metaheuristic is evolutionary path-relinking, which uses a

pool of high-quality solutions (elite solutions) stored along execution. The main idea of path-

relinking is to explore the solution space surrounding the path connecting a pair of initial and

guiding solutions, one of them from the elite pool. These paths does not need to be constrained

in the feasible solution space. This work also explores paths traversing the feasible/infeasible

boundaries. This is accomplished by an infeasible local search, which produces low cost infeasible

solutions, using them as initial solutions to the path-relinking. The effectiveness of evolutionary

path-relinking in the metaheuristic runtime was also shown by TTT plots.

The OCARP computational experiments used 81 CARP instances (23 gdb (Golden et al.

1983), 34 val (Benavent et al. 1992), and 24 egl (Li and Eglese 1996)). The original depot was

considered a common node, and each group renamed as ogdb, oval, and oegl. These groups

of instances were also divided into three classes, according to the number of vehicles available,

M =M∗, M =M∗+1 andM =M∗+2, whereM∗ represents the minimum number of vehicles

for a feasible solution. Results showed that GCH performed much better than two other path-

scanning heuristics, mostly because these last two heuristics were developed for CARP, without

concern of the number of vehicles limitation. The complete metaheuristic was also tested and

its results reduced the average deviation from lower bounds to 4.64%, starting from the average

deviation of 12.24% from the GCH initial solutions.

Additional experiments revealed the metaheuristic performance for the CARP. First, the

GCH was tested against two other path-scanning heuristics from literature (Belenguer et al.

2006; Santos et al. 2009), outperforming them with respect to the overall average and maxi-

mum deviations from lower bound. Next, the full GRASP with PR was compared with three

other metaheuristics: a tabu search (Brandão and Eglese 2008), a variable neighborhood search

(Polacek et al. 2008), and an ant colony optimization (Santos et al. 2010). The GRASP out-

performed these metaheuristics with respect to the overall average deviation from lower bound

and number of best solutions, in spite of additional execution time.

4.7. Final Remarks 79

On the exact approach.

An exact approach has also been atempted to solve OCARP, despite it being NP-hard. The

proposed algorithm used an equivalence between the OCARP and a problem related to minimum

spanning tree, called capacity and degree constrained minimum spanning forest (CDCMSF).

Deriving lower bounds to the CDCMSF seemed more intuitive, and this motivated the approach.

To guarantee optimality, the algorithm relied on the branch-and-bound paradigm. As expected,

the complexity of the proposed branch-and-bound turned out to be exponential. Nonetheless,

if not to solve all instances to optimality, the method at least improved the known trivial lower

bounds, thus reducing the gaps in average.

Three lower bounding procedures to the CDCMSF were implemented: the minimum cost

edges (LB1) relied on the number of missing edges to fulfill a solution; the minimum cost span-

ning forest (LB2) computed adapting the Kruskal’s algorithm; and the degree constrained mini-

mum spanning forest (LB3), which is NP-hard itself, but has a Lagrangian relaxation/subgradient

method that efficiently computes good lower bounds. Each of these three lower bounds has a

trade-off between the tightness of the bound and the computational effort to obtain it. The

branch-and-bound stopping criterion is defined by three conditions: optimality, execution time,

and memory use. After meeting with one of these criteria, the algorithm returns the best lower

bound encountered in the process.

Computational experiments with the exact algorithm were conducted using the same OCARP

instances tested in the GRASP with PR study cases. The lower bounds obtained by the method

proposed in this work were compared with the bounds generated solving an OCARP model with

a high-end ILP solver, both equally time limited. The results showed that the branch-and-bound

algorithm outperformed CPLEX in the overall average deviation from lower bounds and in the

number of best lower bounds.

On the future.

The methods proposed to solve OCARP, heuristic and exact both, have contributed to

improve the upper and lower bounds for the instances tested in the computational experiments.

The OCARP average gap is 3.94% using the GRASP with PR upper bounds and the branch-

and-bound lower bounds. This is relatively high comparing to the CARP average gap of 0.79%.

Therefore, a large room for improvements is still available, leaving for future researches to focus

on the design of algorithms that can tighten the bounds here introduced, especially the lower

bounds. Two interesting fields that should be investigated are exact algorithms using column

generation and cutting planes approaches.

Conclusões

Sobre o problema.

Este trabalho introduziu o problema de roteamento em arcos capacitado e aberto (OCARP),

um problema de otimização combinatorial NP-dif́ıcil de interesse teórico e prático, pertencente

à famı́lia de problemas de roteamento em arcos. Pelo menos duas aplicações reais podem ser

modeladas como um OCARP, o problema de roteamento de leituristas (Stern and Dror 1979) e

o problema de determinação do caminho de corte (Moreira et al. 2007).

O OCARP pode ser formulado como um problema de programação linear inteira, com um

número exponencial de variáveis e restrições. Ainda é incerto se há uma formulação compacta

para o OCARP, ou se há algum algoritmo polinomial para separar as restrições de eliminação

de subciclos ilegais. Algumas propriedades interessantes podem ser derivadas para o OCARP,

no que se referem ao número de véıculos requeridos para uma solução, a localização do ińıcio e

o fim de cada rota, e as caracteŕısticas de uma rota ćıclica.

Através de uma redução polinomial do CARP para o OCARP, foi posśıvel demonstrar que

o último é NP-d́ıficil. Também foi posśıvel demonstrar a redução reversa do OCARP para o

CARP. Essa redução pode ser utilizada por algoritmos desenvolvidos para o CARP de modo

que também resolvam o OCARP. Contudo, os mais recentes algoritmos e heuŕısticas CARP da

literatura supõem que o número de véıculos é uma variável de decisão, tornando-os inapropria-

dos para o OCARP, que considera um número fixo de véıculos.

Sobre o método heuŕıstico.

Uma metaheuŕıstica de alto desempenho, baseada no método GRASP (greedy randomized

adaptive search procedure) com reconexão por caminhos evolutiva (evolutionary path-relinking),

foi concebida para tratar tanto CARP quanto OCARP.

A heuŕıstica construtiva GRASP (GCH) foi baseada em uma eficiente heuŕıstica de varredura

de caminhos (path-scanning) para o CARP (Santos et al. 2009). Essa heuŕıstica utiliza uma regra

da elipse que é acionada quando a capacidade do véıculo se encontra abaixo de um certo limiar

definido por um parâmetro β. Uma vez ativa, a regra da elipse encaminha a rota em direção

ao depósito, reduzindo o potencial custo de retorno. Apesar de o OCARP não possuir um

depósito, verificou-se empiricamente que a regra da elipse, ao encurtar as rotas, reduz os custos

80

4.7. Final Remarks 81

das soluções, em média. Outras caracteŕısticas da GCH são: (i) uma regra de seleção de arestas

baseada em custo-demanda, que se auto-regula de acordo com a dificuldade em obter soluções

fact́ıveis para a instância; (ii) uma lista restrita de candidatos (restricted candidate list, RCL),

contendo as arestas candidatas a entrar na solução que não sejam α(%) mais custosas do que

a aresta mais econômica; (iii) ajustes reativos dos parâmetros α e β, o que significa que seus

valores são selecionados de um conjunto pré-definido a cada iteração, com viés aos valores que

induziram às melhores soluções em média.

Após uma solução fact́ıvel inicial ser criada pela GCH, uma busca local explora soluções

vizinhas em busca de uma solução de menor custo. Quatro tipos de vizinhanças são definidas:

inserção única, dupla inserção, dupla-troca e inserção em bloco. A estratégia de melhor vizinho

é adotada para selecionar o próximo movimento de busca local a ser executado. Um filtro foi

concebido com a função de prevenir que soluções de baixa-qualidade passem pela busca local.

Esse filtro utiliza um limiar estat́ıstico com alta probabilidade de não descartar uma solução que

de outra maneira superaria a melhor solução incumbente. Foi mostrado a partir de gráficos de

distribuição de tempos (time-to-target plots) que o filtro proposto reduz, em média, as durações

de execução do GRASP.

Outro atributo incorporado à metaheuŕıstica consiste na reconexão por caminhos evolutiva,

que utiliza um conjunto de soluções de alta-qualidade (soluções de elite), armazenadas ao longo

da execução. A ideia por detrás da reconexão por caminhos é a de explorar regiões do espaço

de soluções circundando a trajetória que liga um par de soluções, inicial e guia, uma delas

pertencente ao conjunto elite. Essa trajetória não precisa estar restrita ao espaço fact́ıvel de

soluções. Foram incorporadas, neste trabalho, trajetórias alternativas que percorrem as frontei-

ras fact́ıveis/infact́ıveis do espaço de soluções. Isso se concretizou por via de uma busca local

infact́ıvel, que produz soluções infact́ıveis de baixo custo e que são oportunamente utilizadas na

reconexão por caminhos como soluções iniciais. A eficácia da reconexão por caminhos evolutiva

na redução do tempo de execução também foi atestada por gráficos de distribuição de tempos.

Os experimentos computacionais voltados ao OCARP utilizaram 81 instâncias do CARP

(23 instâncias gdb (Golden et al. 1983), 34 instâncias val (Benavent et al. 1992), e 24 instâncias

egl (Li and Eglese 1996)). O depósito original foi considerado como um nó comum, e os grupos

de instâncias renomeados para ogdb, oval, e oegl. Esses grupos de instâncias foram também

divididos em três classes de acordo com o número de véıculos dispońıveis,M =M∗,M =M∗+1

e M = M∗ + 2, tal que M∗ representa o número mı́nimo de véıculos necessário para obter

uma solução fact́ıvel da instância em estudo. Resultados mostraram que a GCH obteve um

desempenho superior ao de outras duas heuŕısticas de varredura de caminhos da literatura.

Justifica-se a boa performance da GCH pelo fato dela construir rotas com atenção ao número

limitado de véıculos, aspecto este não considerado pelas heuŕısticas da literatura.

Experimentos adicionais revelaram a performance da metaheuŕıstica na solução do CARP.

A GCH foi comparada com outras duas heuŕısticas de varredura de caminhos da literatura

82 Chapter 4. Exact Approaches

(Belenguer et al. 2006; Santos et al. 2009). Revelou-se que a primeira superou as heuŕısticas

concorrentes em dois aspectos, desvios médios e máximos entre limitantes. A metaheuŕıstica

GRASP completa foi comparada com três metaheuŕısticas: uma busca tabu (Brandão and

Eglese 2008), uma busca em vizinhança variável (Polacek et al. 2008), e otimização em colônia

de formigas (Santos et al. 2010). O GRASP obteve um desempenho superior ao das três me-

taheuŕısticas com respeito aos desvios médios entre limitantes e quanto ao número de melhores

soluções. Esse bom desempenho do GRASP foi, contudo, às custas de um tempo de execução

superior ao das demais metaheuŕısticas.

Sobre o método exato.

Um algoritmo exato foi elaborado na tentativa de obter a solução ótima para o OCARP,

apesar deste ser um problema NP-dif́ıcil. O algoritmo proposto utilizou-se da equivalência entre

o OCARP e um problema relacionado com árvore geradora mı́nima, denominado problema da

floresta geradora mı́nima com restrições de grau e capacidade (capacity and degree constrained

minimum spanning forest, CDCMSF). A concepção do método exato foi motivado pela facilidade

em derivar limitantes inferiores para o CDCMSF. A garantia de otimalidade do método se

fundamentou no paradigma branch-and-bound. Como esperado, a complexidade do branch-and-

bound proposto mostrou-se exponencial no pior caso. Entretanto, se não para resolver instâncias

até a otimalidade, ao menos o método pôde aperfeiçoar os limitantes inferiores conhecidos,

reduzindo dessa forma os desvios médios.

Três procedimentos para a obtenção de limitantes inferiores foram implementados para o

CDCMSF: o limitante de custo mı́nimo de arestas (LB1), que se baseia no número de arestas

faltantes para completar uma solução; o limitante de floresta geradora de custo mı́nimo (LB2),

que é computado por uma adaptação do algoritmo Kruskal; o limitante de floresta geradora de

custo mı́nimo com restrição de grau (LB3), obtido resolvendo-se um problema que, apesar de

NP-dif́ıcil, pode ser resolvido eficientemente pelo uso da relaxação lagrangeana e método dos

subgradientes para a obtenção de bons limitantes inferiores. Cada um desses três limitantes

inferiores apresenta uma relação de compromisso entre a qualidade do limitante e o esforço

computacional para obtê-lo. O critério de parada do algoritmo branch-and-bound é definido

por três condições: otimalidade, tempo de execução e uso de memória. Ao atingir um desses

critérios, o algoritmo retorna o melhor limitante inferior encontrado ao longo da execução.

Experimentos computacionais com o algoritmo exato foram conduzidos utilizando as mes-

mas instâncias OCARP dos estudos de casos da metaheuŕıstica GRASP. Os limitantes inferiores

obtidos pelo método proposto neste trabalho foram comparados com os limitantes gerados pelo

solver comercial CPLEX, após solução do modelo OCARP. Os resultados mostraram que o al-

goritmo branch-and-bound superou o CPLEX no desvio médio entre limitantes e no número de

melhores desvios.

4.7. Final Remarks 83

Sobre o futuro.

Os métodos propostos para resolver o OCARP, tanto heuŕıstico quanto exato, contribúıram

na melhoria dos limitantes superiores e inferiores das instâncias utilizadas nos experimentos

computacionais. O desvio médio para o OCARP resultou em 3, 94% utilizando os limitantes

superiores da metaheuŕıstica GRASP e os limitantes inferiores do algoritmo branch-and-bound.

Esse desvio ainda está relativamente alto comparado com o desvio de 0, 79% do CARP. Portanto,

ainda há uma ampla margem de aperfeiçoamentos à disposição, deixando para futuras pesquisas

a possibilidade de estreitar os limitantes aqui introduzidos, especialmente os inferiores, por meio

da idealização de novos algoritmos. Dois novos campos que devem ser investigados são algoritmos

exatos utilizando técnicas de geração de colunas e de planos de corte.

84

REFERENCES 85

References

Aiex, R. M., Resende, M. G. C., Ribeiro, C. C., Celso and Ribeiro, C.: 2000, Probability

distribution of solution time in grasp: An experimental investigation, Journal of Heuristics

8(3), 200–2.

Andrade, R., Lucena, A. and Maculan, N.: 2006, Using Lagrangian dual information to generate

degree constrained spanning trees, Discrete Applied Mathematics 154, 703–717.

Assad, A. A. and Golden, B. L.: 1995, Arc routing methods and applications, in C. M. M.O. Ball,

T.L. Magnanti and G. Nemhauser (eds), Network routing, Vol. 8, Elsevier, pp. 375 – 483.

Assad, A., Pearn, W. L. and Golden, B. L.: 1987, The capacitated chinese postman problem:

lower bounds and solvable cases, American Journal of Mathematical and Management Sci-

ence 7, 63–88.

Beasley, J. E.: 1993, Lagrangian relaxation, John Wiley & Sons, Inc., New York, NY, USA,

pp. 243–303.

Belenguer, J. M. and Benavent, E.: 2003, A cutting plane algorithm for the capacitated arc

routing problem, Computers and Operations Research 30, 705–728.

Belenguer, J. M., Benavent, E., Lacomme, P. and Prins, C.: 2006, Lower and upper bounds for

the mixed capacitated arc routing problem, Computers and Operations Research 33, 3363–

3383.

Benavent, E., Campos, V., Corberán, A. and Mota, E.: 1992, The capacitated arc routing

problem: lower bounds, Networks 22, 669–690.

Beullens, P., Muyldermans, L., Cattrysse, D. and Oudheusden, D. V.: 2003, A guided local

search heuristic for the capacitated arc routing problem, European Journal of Operational

Research 147, 629–643.

Bodin, L. and Levy, L.: 1989, The arc oriented location routing problem, INFOR 27, 74–94.

Bodin, L. and Levy, L.: 1991, The arc partitioning problem, European Journal of Operational

Research 53, 393–401.

Brandão, J. and Eglese, R.: 2008, A deterministic tabu search algorithm for the capacitated arc

routing problem, Computers and Operations Research 35(4), 1112–1126.

Corberán, A. and Prins, C.: 2010, Recent results on arc routing problems: An annotated

bibliography, Networks 56(1), 50–69.

Cormen, T. H., Stein, C., Rivest, R. L. and Leiserson, C. E.: 2001, Introduction to Algorithms,

2nd edn, McGraw-Hill Higher Education.

Dror, M.: 2001, Arc routing: theory, solutions and applications, 1st edn, Kluwer Academic

Press.

Edmonds, J. and Johnson, E. L.: 1973, Matching, Euler tours and the Chinese postman, Math-

ematical Programming 5, 88–124.

Eglese, R. W. and Li, L. Y. O.: 1996, A tabu search based heuristic for arc routing with a

86 REFERENCES

capacity constraint and time deadline. In Osman I. H., Kelly J. P., Metaheuristics: theory

and applications, Kluwer.

Eiselt, H. A., Gendreau, M. and Laporte, G.: 1995a, Arc Routing Problems, Part I: The Chinese

Postman Problem, Operations Research 43(2), 231–242.

Eiselt, H. A., Gendreau, M. and Laporte, G.: 1995b, Arc routing problems, part II: the rural

postman problem, Operations Research 43(3), 399–414.

Feo, T. A. and Resende, M. G. C.: 1995, Greedy randomized adaptive search procedures, Journal

of Global Optimization 6, 109–133.

Feo, T. A., Resende, M. G. C. and Smith, S. H.: 1994, A greedy randomized adaptive search

procedure for maximum independent set, Operations Research 42(5), 860–878.

Frederickson, G. N.: 1979, Approximation algorithms for some postman problems, J. ACM

26, 538–554.

Glover, F.: 1996, Tabu search and adaptive memory programming - advances, applications and

challenges, Interfaces in computer science and operations research, Kluwer, pp. 1–75.

Glover, F.: 2007, Infeasible/feasible search trajectories and directional rounding in integer pro-

gramming, Journal of Heuristics 13, 505–541.

Golden, B. L., DeArmon, J. S. and Baker, E. K.: 1983, Computational experiments with algo-

rithms for a class of routing problems, Computers and Operations Research 10(1), 47–59.

Golden, B. L. and Wong, R. T.: 1981, Capacitated arc routing problems, Networks 11(3), 305–

315.

Gouveia, L., Mourão, M. C. and Pinto, L. S.: 2010, Lower bounds for the mixed capacitated

arc routing problem, Computers and Operations Research 37(4), 692–699.

Greistorfer, P.: 2003, A tabu scatter search metaheuristic for the arc routing problem, Computers

and Industrial Engineering 44, 249–266.

Hertz, A.: 2005, Recent trends in arc routing. In Sharda R., Voß S., Golumbic M. C., Hartman

I. B. A., Graph theory, combinatorics and algorithms, Springer US.

Hertz, A., Laporte, G. and Mittaz, M.: 2000, A tabu search heuristic for the capacitated arc

routing problem, Operations Research 48(1), 129–135.

Hertz, A. and Mittaz, M.: 2001, A variable neighborhood descent algorithm for the undirected

capacitated arc routing problem, Transportation Science 35(4), 425–434.

Hirabayashi, R., Saruwatari, Y. and Nishida, N.: 1992, Tour construction algorithm for the

capacitated arc routing problem, Asia-Pacific Journal of Operational Research 9, 155–175.

Labadi, N., Prins, C. and Reghioui, M.: 2008, GRASP with path relinking for the capacitated

arc routing problem with time windows, in A. Fink and F. Rothlauf (eds), Advances in

computational intelligence in transport, logistics, and supply chain management, Vol. 144,

Springer Berlin / Heidelberg, pp. 111–135.

Lacomme, P., Prins, C. and Ramdane-Chérif, W.: 2004, Competitive memetic algorithms for

arc routing problems, Annals of Operations Research 131(1), 159–185.

REFERENCES 87

Li, L. Y. O. and Eglese, R. W.: 1996, An interactive algorithm for vehicle routing for winter-

gritting, Journal of the Operational Research Society 47(2), 217–228.

Longo, H., de Aragão, M. P. and Uchoa, E.: 2006, Solving capacitated arc routing problems using

a transformation to the CVRP, Computers and Operations Research 33(6), 1823–1837.

Maniezzo, V. and Roffilli, M.: 2008, Algorithms for Large Directed Capacitated Arc Routing

Problem Instances, Vol. 153, Springer Berlin / Heidelberg.

Martello, S. and Toth, P.: 1990, Knapsack Problems: Algorithms and Computer Implementa-

tions, John Wiley & Sons.

Mei-ko, K.: 1962, Graphic programming using odd or even points, Chinese Mathematics 1, 273–

277.

Moreira, L. M., Oliveira, J. F., Gomes, A. M. and Ferreira, J. S.: 2007, Heuristics for a dynamic

rural postman problem, Computers and Operations Research 34(11), 3281–3294.

Mourão, M. C. and Almeida, M. T.: 2000, Lower-bounding and heuristic methods for a refuse

collection vehicle routing problem, European Journal of Operational Research 121(2), 420

– 434.

Negreiros, M., Coelho Júnior, W. R., Palhano, A. W. d. C., Coutinho, E. F., de Castro, G. A.,

Gomes, F. J. N., Barcellos, G. C., Rezende, B. F. and Pereira, L. W. L.: 2009, O problema

do carteiro chinês, algoritmos exatos e um ambiente MVI para análise de suas instâncias:

sistema XNÊS (in portuguese), Pesquisa Operacional 29, 323 – 363.

Papadimitriou, C. H.: 1976, On the complexity of edge traversing, Journal of the ACM

23(3), 544–554.

Papadimitriou, C. H. and Steiglitz, K.: 1982, Combinatorial optimization: algorithms and com-

plexity, Prentice-Hall, Inc., Upper Saddle River, NJ, USA.

Pearn, W. L.: 1988, New lower bounds for the capacitated arc routing problems, Networks

18, 181–191.

Pearn, W. L.: 1989, Approximate solutions for the capacitated arc routing problem, Computers

and Operations Research 16(6), 589–600.

Pearn, W. L.: 1991, Augment-insert algorithms for the capacitated arc routing problem, Com-

puters and Operations Research 18(2), 189–198.

Polacek, M., Doerner, K., Hartl, R. and Maniezzo, V.: 2008, A variable neighborhood search

for the capacitated arc routing problem with intermediate facilities, Journal of Heuristics

14, 405–423.

Prais, M. and Ribeiro, C. C.: 2000, Reactive GRASP: An application to a matrix decomposition

problem in TDMA traffic assignment, INFORMS Journal on Computing 12, 164–176.

Prins, C.: 2009, A GRASP x evolutionary local search hybrid for the vehicle routing problem,

in F. Pereira and J. Tavares (eds), Bio-inspired algorithms for the vehicle routing problem,

Vol. 161, Springer Berlin / Heidelberg, pp. 35–53.

Prins, C. and Calvo, R. W.: 2005, A fast GRASP with path relinking for the Capacitated

88 REFERENCES

Arc Routing Problem, Proceeding of INOC 2005 (3rd International Network Optimization

Conference), University of Lisbon, pp. 289–295.

Resende, M. G. C., Mart́ı, R., Gallego, M. and Duarte, A.: 2010, GRASP and path relinking

for the max-min diversity problem, Computers and Operations Research 37(3), 498 – 508.

Hybrid Metaheuristics.

Resende, M. G. C. and Ribeiro, C. C.: 2005, GRASP with path-relinking: Recent advances and

applications, Metaheuristics: Progress as Real Problem Solvers, Springer, pp. 29–63.

Resende, M. G. C. and Werneck, R. F.: 2004, A hybrid heuristic for the p-median problem,

Journal of Heuristics 10(1), 59–88.

Ribeiro, C. C. and Resende, M. G. C.: 2011, Path-relinking intensification methods for stochastic

local search algorithms, Journal of Heuristics 18(2), 193–214.

Santos, L., Coutinho-Rodrigues, J. and Current, J. R.: 2009, An improved heuristic for the

capacitated arc routing problem, Computers and Operations Research 36(9), 2632–2637.

Santos, L., Coutinho-Rodrigues, J. and Current, J. R.: 2010, An improved ant colony optimiza-

tion based algorithm for the capacitated arc routing problem, Transportation Research Part

B: Methodological 44(2), 246 – 266.

Stern, H. I. and Dror, M.: 1979, Routing electric meter readers, Computers and Operations

Research 6(4), 209–223.

Usberti, F. L., França, P. M. and França, A. L. M.: 2011a, Grasp with evolutionary path-

relinking for the capacitated arc routing problem, Computers and Operations Research .

doi: 10.1016/j.cor.2011.10.014.

Usberti, F. L., França, P. M. and França, A. L. M.: 2011b, The open capacitated arc routing

problem, Computers and Operations Research 38(11), 1543 – 1555.

Villegas, J. G., Prins, C., Prodhon, C., Medaglia, A. L. and Velasco, N.: 2011, A GRASP

with evolutionary path relinking for the truck and trailer routing problem, Computers and

Operations Research 38(9), 1319–1334.

Welz, S. A.: 1994, Optimal solutions for the capacitated arc routing problem using integer pro-

gramming, PhD thesis, University of Cincinnati, United States.

Wøhlk, S.: 2006, New lower bound for the capacitated arc routing problem, Computers and

Operations Research 33(12), 3458–3472.

Wøhlk, S.: 2008a, An approximation algorithm for the capacitated arc routing problem, The

Open Operational Research Journal 2, 8–12.

Wøhlk, S.: 2008b, A decade of capacitated arc routing, in R. Sharda, S. Voß, B. Golden,

S. Raghavan and E. Wasil (eds), The vehicle routing problem: latest advances and new

challenges, Vol. 43, Springer US, pp. 29–48.

Wunderlich, J., Collette, M., Levy, L. and Bodin, L.: 1992, Scheduling meter readers for southern

california gas company, Interfaces 22(3), 22–30.

