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Abstract

Storage management of Wireless Sensor Networks (WSN) is a very critical issue in terms of
system’s lifetime. While WSNs host a vast storage capacity on the aggregate, that capacity cannot
be used entirely. Eventually, the entire network may fail when the first sensor has its own storage
capacity depleted, leaving behind a large amount of unutilized storage capacity. We suggest that
sensors should be able to detect unutilized storage capacity in order to prolong their functionality.
However, for large scale WSNs this can be a difficult task, since sensors may not be aware of the
existence of others. This work has two main contributions: an optimization of the overall storage
capacity for large scale WSNs and a novel routing approach of deterministic "random" walk. We
present a new storage model by building “on - demand” Distributed Storage Chains (DSC). These
chains represent partnership between sensors that share their storage capacity. As a result, sensors
are no longer subjected to their own storage limitations but to the total amount of available storage in
the WSN. We construct these chains via deterministic walks over our suggested topology. However,
we show that these walks resemble the behavior of random walks and are therefore highly efficient in
terms of locating available storage.

Keywords: Telecommunication systems, Many - to - Many WSN, Distributed Algorithms, Ex-
pander Graphs, Geographical Routing, Random Walk, Resource Aggregation.

Resumo

Gerência de armazenamento em Redes de Sensores Sem Fio (RSSF) é uma questão muito crítica.
Além da RSSFs conter uma vasta quantidade de armazenamento agregada, ela não pode ser usada
inteiramente. Portanto, o sistema inteiro falha quando o primeiro sensor tem sua capacidade de ar-
mazenamento esgotada, deixando uma grande capacidade de armazenamento inutilizada. Sugere-se
que os sensores devem-se ser capazes de detectar as capacidades de armazenamentos inutilizadas,
para prolongar as suas funcionalidades. Entretanto, em RSSF de larga escala isso pode ser muito
difícil uma vez que os sensores podem não ter conhecimento da existência dos outros. Neste trabalho
apresenta-se duas principais contribuições: otimização da capacidade total de armazenamento para
RSSF em grande escala e uma nova abordagem de roteamento - Deterministic “Random” Walk (Pas-

seio “Aleatório” Determinístico). Apresenta-se um novo modelo de armazenamento via construção
“sob demanda” de Cadeias de Armazenamento Distribuídas ( Distributed Storage Chains (DSC)).
Estas cadeias representam parcerias entrem os sensores que podem compartilhar suas capacidades de
armazenamento. Resultando, os sensores não estão sujeitos às suas limitações de armazenamento,
mas para à capacidade total de armazenamento disponível no sistema. Constrói-se estas cadeia via
passeio determinístico sobre a topologia sugerida. Todavia, mostra-se que estes passeios apresen-
tam um comportamento aleatório que é muito eficiente em termos de localização de capacidade de
armazenamento disponível.

Palavras-chave: Sistemas de telecomunicações, RSSF Many - to - Many, Algoritmos distribuí-
dos, Grafos tipo Expander, Roteamento Geográfico, Passeio Aleatório, Agregação de Recursos.
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Chapter 1

Introduction

“...The problem in the world today is commu-
nication. Too much communication...”

Homer Simpson

1.1 Scope

Wireless Sensor Networks (WSNs or SensorNets) are distributed sensing systems. They are used

to visualize, through numerical measurements, physical or environmental phenomena that cannot

be observed through conventional images from cameras and satellites e.g.,. WSNs are comprised

of large numbers of small autonomous sensing devices that are densely deployed over a target area

(Akyildiz et al., 2002). These devices observe and collect measurements from different regions. Then,

all measurements are processed in order to study and analyze the monitored phenomena on the target

area. WSN is an evolving and increasing trend on science today, producing a high volume of scientific

papers and investigating various aspects (Culler, Estrin, & Srivastava, 2004).

Following the Moore’s law, the number of transistors on a minimum component cost chip doubles

every year or two (Culler et al., 2004). Thus, on every passing year, WSN technology is powered

by smaller, cheaper and more intelligent sensors. Moreover, researchers are now applying WSN

technology in ways that enable a new role for computing in science. WSN technology can provide

the state of the art solutions for monitoring extensive observations such as seismographic activity,

weather, surveillance, radioactivity, habitat monitoring, etc.

WSNs are distinguished from other ad-hoc networks because of their limitations in resource ca-

pacities: they have limited processing speed, energy, memory and communications. Since a WSN

may contain millions of sensors (Akyildiz et al., 2002), the cost of a single sensor becomes a very

1
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critical factor. In addition, a sensor size can vary from the size of a shoe box to the size of a grain of

dust. Therefore, size and cost constraints of sensor nodes result in limitations on their available re-

source capacities. In other words, reduction in cost and size result in reduction of resource capacities

such as: energy, storage, computational capacity and communication range. These limitations have

serious implications on the design of application and protocols.

WSNs are classified into real-time and non-real-time networks, depending on their application

and the type of the monitored phenomena. Real-time applications (e.g. surveillance) require that the

observed event be immediately transmitted to an end user. On the other hand, significant numbers

of applications that do not require real-time information, allow the measurements to be stored within

the sensors (Luo, Huang, Abdelzaher, & Stankovic, 2007). Therefore, information can be collected

after a defined period of time, when the experiment is over or even by mobile base station (data mules

(Luo et al., 2007)) while visiting the target area. WSN in general and especially non-real-time WSN

architecture must take under serious considerations the storage aspect i.e., how the events should be

stored, when and where do events should be processed into observations and how observations are

retrieved.

In this work, we propose a Distributed Model for Storage Aggregation in Wireless Sensor Net-

works. Basically, our model addresses a non-real-time WSN architecture and deal with its storage

and retrieval aspects. In brief, we wish to maximize the storage utilization on WSN by allowing each

sensor to access the entire wsn’s aggregated storage capacity. In other words, our model suggests that

sensors who had their own local storage capacity depleted can use unutilized reserves from sensors

that are located on low activity regions.

1.2 Problem Statement

The problem with WSN lies within the limitations in local resource capacities of each individual

sensor. While WSNs host vast resource capacities on the aggregate, each sensor is subjected to its own

poor local resource limitations. Therefore, the entire system is subjected to local resource constraints,

derived from every individual sensor, rather than being subjected to its global aggregated resource

capacities.

In this work, we focus into the WSN resource capacity problem and handle only the limitations

on the storage capacity resource. We consider a non-real-time WSN that is uniformly deployed over

a target area of interest. Sensor nodes are static and communicate between themselves in a multi-hop

fashion. Each sensor periodically sense different events that occur on its own region and stores their

measurements. When a sensor node had its storage capacity depleted, it transmits its additional events

to some other sensor with available storage capacity. In addition, sensors should be able to retrieve
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all the events that they have sensed.

In this work, our problem is how to maximize the storage utilization of the entire WSN. We

increase the WSN storage limitations by allowing sensors to share their storage capacities. We do so,

by designing a distributed network protocol for WSN.

1.3 Approach

We address the problem of overflowed events, which cannot be locally stored within those sensors

who had their storage capacity depleted. Generally, our model aim to enable sensors, which deplete

their storage capacity, to store their overflowed events on available host-sensors. As a result, sensors

that produce more data than they can store locally, have a global storage solution. Moreover, sensors

that produce less data than their storage capacity can maximize their storage utilization by hosting

overflowed events. As a result, the WSN becomes more robust as we maximize its overall storage

utilization. Our approach towards designing our model in this work is built of four phases: network

topology design, discovery algorithms on sensor networks, modeling events generation on the target

area and protocol design.

Network topology design. Our main motivation for designing this model began with a work on

the field of expander graphs (Gabber & Galil, 1979). These kinds of graphs are mainly character-

ized by strong connectivity, while maintaining a low number of edges. Therefore, expander graphs

suggest a very efficient network topology for communication. In this work, we study an expander

graph implementation for a random deployment of points on a geographical target area. Particularly,

although that geographic routing and expander graphs already exist, the construction that we suggest

for a geographic expander graph is a new concept. One of the main challenges of this work is to prove

that our suggested construction is indeed an expander graph.

Discovery algorithm. One of the most critical issues on large scale WSN is the communication

scheme. Normally, on large scale sensor network it is impossible for each sensor to know all the other

participants. Logically, every two sensors must “know” each other in order to communicate. Our new

construction allows a fast discovery of the network from every sensor location. In other words, each

sensor who implements a simple walk over the suggested topology, discovers new sensors at each

step with high probability. With this fast discovery, we allow localization of sensors with available

storage capacity. Therefore, sensors can use that capacity in order to host overflowed events.

Modeling event generation on the target area. When a WSN is deployed over a target area

that is perfectly balanced, events occur uniformly on all regions. Moreover, all sensors observe the

same amount of events at any given time. Therefore, all sensors have their storage capacity depleted

together. Naturally, the WSN maximizes its storage utilization up to its global limit. However, in
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real WSN environment, this may not be practical. A target field that is not balanced contains re-

gions that generate more events than others. Sensors that are deployed on those regions may rapidly

deplete their storage capacity and form coverage holes on the target area. In order to evaluate our

storage aggregation model, we had to develop a traffic model that represent a non-balanced target

area. Eventually, we used this traffic model as a control group for our storage aggregation model.

Protocol Design. The product of our work is a distributed protocol for WSN. We use our non-

uniform event generation model in order to evaluate protocol performances. We evaluated the perfor-

mance of our protocol according to the maximization of the storage utilization within the WSN.

1.4 Contributions

To summarize, we have succeeded to maximize the storage utilization on WSNs. Moreover, we

will demonstrate that our model maintains fairness conditions within the WSN. In other words, all

sensors participate with (more or less) the same intensity. While developing our solution we came

upon three main contributions and innovations:

First. We developed a distributed geographic expander overlay network for sensors that are

uniformly distributed over a target area. We evaluated the network performances through extensive

simulations and found that its behavior is similar to that of an expander graph. Thus, we have estab-

lished a geographic expander network topology for sensor network, which can be constructed on a

distributed manner. Our next contribution is based on this topology.

Second. We developed a geographical Deterministic "Random" Walk. This walk is consisted of

a deterministic sequence of routing instructions that “randomly samples” the geographic target area.

This novel geographic walk allows sensors to select partners from the WSN network and share their

resources. We show that this selection have the same probability as a uniform selection of sensors

from the WSN. However, that selection is, definitely, a deterministic selection that depends only

on the location of the sensor. This walk gains its uniqueness for the ability to generate "random"

partnerships that can both be predicted and reconstructed.

Third. We developed a traffic model for non-uniform event generation on WSN. Very little is

mentioned on the literature about non-uniform generation models. Most works in the literature as-

sumes a uniform event distribution (Heinzelman et al., 2000; Ratnasamy et al., 2003; Silberstein &

Yang, 2007) although the reality is different (Hung-Yu, Gwo-Jong, & Jang-Ping, 2005). Our model

is more oriented towards real sensor networks, where different regions have different rates for gener-

ation of events.

Forth. We developed a WSN protocol that maximizes the overall storage utilization of the WSN.

This protocol uses the geographical walk, described on the second achievement, for generating inte-
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ractions between sensors. Sensors use the Deterministic "Random" walk to share their storage capac-

ities. This walk is of great impact, because no information needs to be kept in order to reconstruct

it. In other words, no routing tables or any kind of instructions are needed to be maintained in order

to retrieve data. Moreover, the effectiveness of these walks is derived from the uniform "sampling"

characteristic. Hence, when conducted from different sensors (different locations) it would not cause

starvation on specific regions.

1.5 Outline

This work suggests a novel WSN application for the former Gabber-Galil expander graph (Gabber

& Galil, 1979). We have developed a search function based on this graph that can be used by WSN.

Moreover, although the original graph was designed for a discrete grid network, we implemented it

for non-grid WSNs. Also, based on that implementation, we suggest a distributed WSN protocol for

storage management and analyze its performance. We organize this work as follows.

In Chapter 3 We begin with a brief summary on WSN and their applications. We give some

important details about different WSN architectures and explain the question of energy consumption

on WSN. We conclude this chapter with a scenario example for WSN. That scenario is an example

that can be very helpful in understanding the need in our distributed storage aggregation model.

In Chapter 4 we supply some background about expander graphs and introduce the original

Gabber-Galil expander graph for a discrete grid network. Then, we develop our continuous expander

graph above a deployment of sensors in field. We define a 2-D continuous discrete approach (Naor

& Wieder, 2007) that relates sensor nodes with our continuous expander graph.

In Chapter 5 we begin by defining our network layer (GPSR - Greedy Perimeter Stateless Rout-

ing protocol) (Karp & Kung, 2000) and the continuous geographical address space (Voronoi diagrams

(Berg, 2000)). Then, we define the main innovation of our work, a Deterministic "Random" Walk,

which is based on the geographic expander graph (Chapter 4), GPSR and the Voronoi diagrams. We

use our walk as a network discovery algorithm that allows individual sensors to interact with others.

In Chapter 6 we deal with non-uniform traffic model for WSN. We explain the importance of

this model for the performance analysis of our Distributed Storage Chains (DSC). We define the

term WSN lifetime with respect to the data generated on the target area. We develop the probability

function that predict the expected lifetime of a WSN, based on the traffic model that we suggest.

In Chapter 7 we formulate a distributed protocol for storage management on WSN. That is, a

protocol that maximizes the storage utilization on WSNs that are deployed over non-uniform envi-

ronments (Chapter 6) and , therefore, prolong the WSN lifetime. Our protocol makes use of our

Distributed Storage Chains (DSC) (Chapter 5) in order to locate sensors with available storage capac-
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ity.

Chapter 8 Throughout this work we show specific simulations results that concerns the topic of

each chapter. However, in Chapter 8 we include the major part of our simulations as we estimate the

performances of our protocol. Finally in Chapter 9 we provide our conclusions and discuss about

potential future work.



Chapter 2

Introdução

“As coisas valem pelas idéias que nos sugerem”

Machado de Assis (1839 - 1908)

2.1 Escopo

Rede de Sensores Sem Fio (RSSF), em inglês Wireless Sensor Networks (WSNs), são sistemas

sensoriais distribuídos. Eles visualizam, através de medidas numéricas, fenômenos físicos ou ambien-

tais que não podem ser observados em imagens convencionais de câmeras ou satélites por exemplo.

RSSF são sistemas que são compostos de um grande número de pequenos dispositivos sensoriais

autônomos, que são densamente implantados numa área - (Akyildiz et al., 2002). Estes dispositivos

observam e coletam medições de diferentes regiões. Assim, todas as medições são processadas para

que os fenômenos monitorados na área - alvos possam ser estudados e analisados. RSSF é uma

tendência crescente e em constante aprimoramento na ciência atual.

De acordo com a Lei do Moore, a quantidade de transistores em um chip, de custo mínimo,

dobraria a cada um ano ou dois (Culler et al., 2004). Assim, a cada ano que passa, a tecnologia

da RSSF é incrementada por sensores cada vez mais inteligentes, menores e mais baratos. Isso

tem levado a pesquisas em diferentes campos de aplicação para a RSSF permitindo a ciência da

computação chaga a níveis cada vez mais altos. A tecnologia RSSF fornece soluções de estados da

arte para monitoramento extensivo de observações como: atividade sísmica, climáticas, vigilância,

radioatividade, monitoramento de habitat, etc.

As RSSF são diferenciadas de outras redes ad-hoc por causa de suas limitações de recursos. Dado

que o tamanho de uma RSSF varie de centenas até milhões de sensores, o custo de cada sensor torna-

7
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se um fator crítico. Adicionalmente, o tamanho de cada sensor pode variar entre o tamanho de uma

caixa de sapato a um grão de poeira. Assim, as restrições de tamanho e custo de um sensor influenciam

correspondentemente em suas limitações de recursos. A fim de terem seus custos reduzidos, os

sensores sem fio sofrem limitações em recursos como: energia, memória, comunicações, etc... Estas

restrições trazem sérias implicações no design de aplicações e de protocolos.

As RSSF são classificadas em sistemas de tempo-real (real-time) e sistemas de tempo-não-real

(non-real- time) conforme sua aplicação, ou conforme o tipo de fenômeno monitorado. As aplicações

de tempo real (por exemplo, vigilância) requerem que os eventos observados sejam imediatamente

transmitidos para um usuário final. Por outro lado, um número significativo de aplicações que não re-

querem informações em tempo real permite que as medições sejam armazenadas pelos sensores (Luo

et al., 2007). Assim, a informação pode ser coletada após um período predefinido de tempo ou ate

mesmo após o término do experimento. A arquitetura de RSSF de tempo não real precisa considerar

seriamente os aspectos de armazenamento. Em outras palavras, onde e quando os eventos observados

devem ser armazenados, onde e quando os eventos devem ser processados para observações e onde e

como as observações devem ser recuperadas.

Neste trabalho é sugerido um Modelo Distribuído para Agregação do Armazenamento em RSSF.

Este modelo propõe uma arquitetura da RSSF de tempo não real para gerenciar seu armazenamento

e a recuperação de eventos. Em resumo, maximiza-se a utilização de armazenamento na RSSF,

possibilitando que cada sensor use a capacidade total disponível do sistema. De acordo com este

modelo, quando os sensores têm suas capacidades de armazenamento local esgotadas, eles podem

usar armazenamento dos outros sensores com capacidade livre.

2.2 Definição do Problema

Um dos problemas com os sistemas RSSF encontra-se nas limitações locais de recursos de cada

sensor. Enquanto o sistema RSSF conteria uma vasta capacidade dos recursos, caso fossem agre-

gados, cada sensor do sistema, por sua vez, estaria sujeito às limitações locais dos recursos. Desta

forma, o sistema inteiro estaria sujeito às restrições locais dos recursos de cada sensor, ao invés de

estar sujeito aos recursos globais agregados.

Neste trabalho, pretende-se focar na capacidade de armazenamento do sistema e em suas limi-

tações, como um exemplo para os recursos que podem ser agregados. Considera-se um sistema RSSF

de tempo não real distribuído sobre um campo alvo de interesse. Os nós de sensores são estáticos

e comunicam-se entre si atraves do modo salto múltiplo (multi - hop). Periodicamente, cada sen-

sor percebe atividades em sua região e precisa armazenar suas medições. Quando possível o sensor

armazena as medições localmente. No caso do sensor já tem sua capacidade de armazenamento es-



2.3 Abordagem adotada 9

gotada, ele fará o armazenamento de forma global. Ou seja, ele pode usar os sensores disponíveis

que ainda têm capacidade de armazenamento disponível. Adicionalmente, as atividades que têm sido

armazenadas globalmente precisam ser recuperadas pela sistema quando for necessário.

Este trabalho confronta-se com o problema de maximização de utilização de armazenamento

total dA RSSF. Em outras palavras, pretende-se incrementar as limitações locais de armazenamento

habilitando os sensores para compartilhamento de suas capacidades de armazenamento. Para atingir

este objetivo foi desenvolvido um novo protocolo distribuído para RSSF.

2.3 Abordagem adotada

Considera-se o problema das atividades sobrecarregadas, que não podem ser armazenadas local-

mente num sensor que já tem a sua capacidade de armazenamento esgotada. De forma geral, os

sensores que já têm suas capacidades locais de armazenamento esgotadas, devem transferir seus reg-

istros de atividades para os sensores que ainda têm capacidade de armazenamento disponível. Assim,

sensores que produzem mais dados do que conseguem armazenar, passam a ter uma nova solução

de armazenamento global. Além disso, sensores que produzem quantidade de dados menor de que

suas capacidades de armazenamento podem maximizar a utilização de armazenamento do sistema

enquanto hospedam as atividades excessivas de outros sensores. Como resultado, o sistema torna-se

mais robusto e sua eficácia será prolongada através da maximização de sua utilização de armazena-

mento global. Neste trabalho, o modelo sugerido se constitui por quatro etapas correspondentes:

Definição da topologia da rede, algoritmos de descoberta em RSSF, modelagem de geração de even-

tos num campo alvo e desenvolvimento de protocolo.

Definição da topologia da rede. A maior motivação para a topologia da rede sugerida nesse

trabalho partiu de uma pesquisa no campo de grafos tipo expander. Estes tipos de grafos são carac-

terizados principalmente por manter uma alta conectividade apesar de terem poucos enlaces. Assim,

grafos tipo expander sugerem uma topologia de rede muito eficiente para comunicações. Neste tra-

balho, estuda-se a implementação do grafo tipo expander em cima de uma implantação aleatória dos

pontos num campo alvo geográfico. Reforçando, apesar de já existir grafos geográficos e grafos tipo

expander, a apresentação de uma topologia de rede que envolve os dois juntos é um conceito ino-

vador. Um dos objetivos deste trabalho é provar que esta nova topologia geográfica é realmente um

grafo tipo expander.

Algoritmos de descoberta em uma RSSF. Um dos tópicos mais críticos no desenvolvimento da

RSSF em larga escala, é a forma de comunicações entre sensores. Normalmente, em redes de larga

escala, é impossível requerer que os sensores identifiquem todos os demais sensores da rede. De

forma simples, para dois sensores se comunicarem é necessário que um “conheça” o outro. Esta nova
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topologia apresentada neste trabalho possibilita uma descoberta rápida da rede a partir da localização

de cada sensor. Em outras palavras, cada sensor que realiza um passeio simples em cima da topolo-

gia sugerida, consegue descobrir com probabilidade alta novos sensores em cada roteamento. Com

esta descoberta rápida, possibilita-se a localização de sensores com capacidade de armazenamento

disponível. Assim, quando necessário, sensores podem explorar esta capacidade de armazenamento

e armazenar sua sobrecarga de dados.

Modelagem de geração de eventos num campo alvo. Quando uma RSSF é implantada sobre

um campo alvo que é perfeitamente balanceado, as atividades ocorrem uniformemente nas diferentes

regiões. Assim, todos os sensores observam a mesma quantidade de atividades. Em função disso,

todos os sensores juntos têm suas capacidades de armazenamento esgotadas. Naturalmente, o sis-

tema maximiza sua utilização de armazenamento até seu limite global. Entretanto, se o campo não

for balanceado ele terá algumas regiões que geram mais atividades que outros. Sensores que são

implantados nestas regiões hiperativas tenham suas capacidades de armazenamento esgotadas mais

rapidamente que os outros. Assim, eles formam buracos de cobertura no campo alvo. A fim de avaliar

este novo modelo de agregação de armazenamento, desenvolveu-se um modelo de tráfego que simula

um campo alvo não balanceado que é mais realista. Eventualmente, usa-se este modelo de tráfego

como um grupo de controle para o modelo de agregação de armazenamento proposto.

Desenvolvimento de protocolo. O produto deste trabalho é entregue na forma de um protocolo

distribuído para a RSSF. O desempenho deste protocolo é avaliado com simulações que implementam

o modelo de geração de eventos acima citado. O sucesso deste protocolo é medido de acordo com a

otimização da utilização da capacidade de armazenamento do sistema.

2.4 Contribuições do Autor

Em resumo, este trabalho foi concluído com sucesso. Em particular, obteve-se a maximização

da utilização do armazenamento para RSSF escalável. Tudo isso foi possível ainda mantendo custo

baixo dos enlaces e balanceamento de carga estável entre os sensores. Além disso, durante o desen-

volvimento desta solução chegou-se a três contribuições importantes e realmente inovadoras:

Primeiro. Desenvolveu-se uma rede overlay geográfica distribuída tipo expander para sensores,

que são uniformemente distribuídos sobre uma área alvo. Os desempenhos da rede foram medidos

através de simulações extensivas. Assim, descobriu-se que seu comportamento é similar a um grafo

tipo expander. Desta forma, estabeleceu-se uma topologia de rede geográfica tipo expander para

rede de sensores. Além disso, esta rede poderia ser construída de maneira distribuída. A próxima

contribuição que será apresentada é baseada nesta topologia

Segundo. Desenvolveu-se um Passeio "Aleatório" Determinístico que consegue amostrar uni-
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formemente o campo alvo geográfico. Este novo passeio geográfico permite que os sensores sele-

cionem uniformemente seus parceiros da mesma rede (assim como em uma seleção aleatória), para

compartilhar suas reservas. Entretanto, esta seleção é definitivamente uma seleção determinística

que depende apenas da localização do sensor. Este passeio ganha seu caráter exclusivo devido à sua

habilidade de gerar parceiros aleatórios que podem ser pré-definidos e recuperados.

Terceiro. Modelos de geração não uniforme são pouco mencionados na literatura. Neste trabalho

desenvolveu-se um modelo de tráfego para geração não uniforme de eventos para RSSF many - to -

many. O modelo desenvolvido é mais orientado para redes reais de sensores, onde regiões diferentes

apresentam diferentes níveis de geração de atividades.

2.5 Outline

Neste trabalho, será proposta uma nova aplicação RSSF para o já existente grafo expander (Gabber

& Galil, 1979). Conseguiu-se desenvolver uma implementação distribuída para este tipo de grafo que

poderá ser usada numa RSSF. Além disso, apesar do grafo original ter sido desenhado para uma rede

grid discreta, conseguiu-se implementá-la numa rede RSSF que é contínua e não é discreta. Com base

nesta implementação, sugera-se um protocolo para gerenciamento de armazenamento. Este trabalho

é organizado da seguinte forma:

O Capítulo 3 inicia com um breve resumo das aplicações em RSSF. Apresentam-se detalhes

importantes de diferentes arquiteturas de RSSF e explicam-se as questões de consumo de energia nas

RSSF. Este capítulo é concluído com um exemplo de cenário para RSSF. Este exemplo é importante

para a compreensão das necessidades do modelo de agregação sugerido neste trabalho.

O Capítulo 4 fornece embasamento sobre grafos expander e introduz-se o grafo original do Gab-

ber e Galil, que foi desenhado para uma rede grid que é discreta. A seguir, desenvolveu-se o grafo

tipo expander contínuo para a implantação geográfica de sensores. Definiu-se uma abordagem con-

tínua discreta 2-D (Naor & Wieder, 2007) que relaciona os nós de sensores com o grafo contínuos

tipo expander.

O Capítulo 5 inicia com a definção da camada da rede (protocolo GPSR - Greedy Perimeter

Stateless Routing (Karp & Kung, 2000)) e o espaço contínuo dos endereços geográficos (diagramas

de Voronoi (Berg, 2000)). A seguir, definiu-se a maior inovação deste trabalho, um Passeio De-

terminístico “Aleatório” (Deterministic "Random" Walk) que se baseia neste grafo geográfico tipo

expander sugerido (Chapter 4), o protocolo GPSR e os diagramas de Voronoi. Este passeio é usado

como um algoritmo que descobre a RSSF, e que possibilita com que sensores individuais interajam

com outros.

Capítulo 6 lida com modelos de tráfego para RSSF que não são uniformes. Explica-se aqui, a



12 Introdução

importância de um modelo como este para a análise de desempenho da Cadeia de Armazenamento

distribuído (Distributed Storage Chain DSC) sugerida neste trabalho. Definiu-se o termo lifetime da

RSSF considerando aos números dos eventos gerados no campo alvo. Desenvolveu-se a função de

probabilidade que prediz a vida útil de uma RSSF, baseado no modelo de tráfego sugerido.

No Capítulo 7 formulou-se o protocolo distribuído para otimização de armazenamento em RSSF.

Isso é, um protocolo que consegue maximizar a utilização do armazenamento total da RSSF que

implantada no ambiente que gera as atividades na forma não-uniforme (Capitulo 6). A ideia é usar

Cadeias de Armazenamento Distribuídas (Distributed Storage Chains (DSC)) para localizar sensores

com capacidades de armazenamento disponíveis.

Capítulo 8. Através deste trabalho são apresentadas os resultados de nossas simulações. Em cada

capítulo, são demonstrados os resultados específicos sobre os seus tópicos. Entretanto, no Capítulo

8 foram incluídas a maior parte de nossos resultados enquanto foram estimados os desempenhos dos

nossos protocolo. Finalmente, no Capítulo 9 são apresentadas nossas conclusões e trabalhos futuros

em potencial.



Chapter 3

Wireless Sensor Networks

“Any fool can make things bigger, more complex,
and more violent. It takes a touch of genius - and a
lot of courage - to move in the opposite direction”

Albert Einstein (1879 - 1955)

3.1 Introduction to WSN

Today we have the telescope, which enables a deeper understanding of astronomy, the microscope,

which brings bacteria into view, and the satellites that survey the Earth’s surface, expanding what we

can perceive and measure (Culler et al., 2004). Wireless Sensor Networks (WSNs) have made a

major breakthrough on the concept of visualization. Instead of simply observing some phenomena

through an unique source (e.g., telescope, satellite etc.), sensory data is combined from disparate

sources and processed into richer and more accurate report for the monitored phenomenon. WSN

are composed of small computing devices, which collect numerical measurements, in order to map

physical phenomena that cannot be observed through trivial means. In other words, WSNs use sensors

measurement to produce a richer and more enhanced picture that is invisible to the “naked eye”.

WSN have been intensively studied on the last decade and became an active research topic (Jardak,

Riihijärvi, & Mähönen, 2010). Advances in hardware technology have led to a dramatic reduction in

size, power consumption and cost of WSN technology. The goal is to make sensor nodes as small,

inexpensive and easy to deploy as possible. Good examples, that may also spark the imagination, are

Berkeley’s “Smart Dust” and “Micromechanical Flying Insect” (MFI) projects, led by Professors

Pister and Kahn (Kahn, Katz, & Pister, 1999). It is easy to understand by their titles that these

projects explore the limits on size and power consumption (Figure 3.1 (A)) for autonomous sensor

13
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and they are dependent on various parameters. We list the most important parameters bellow:

Large Scale and Low-cost. Large scale WSNs consist of thousands sensor nodes. Therefore,

reducing the cost of each sensor node to the minimum is very important. Due to their large scale, the

reduction of every cent on the cost of a single sensor has a significant implication on the price of the

entire WSN.

Small Size node. Sensor nodes are generally small in size. The idea is to enable them to merge

with the monitored environment. There are some applications (e.g., military) that even demand that

the WSN be camouflaged (Michael Winkler & Barclay, 2008). Due to their low cost and small size,

the resources of sensor nodes are very limited i.e., the quality and the size of their components suffer

from their restrictions in size and cost.

Energy efficiency. Energy is probably the scarcest resource for sensor nodes. This resource

must be utilized properly in order to allow the functionality of sensors for long period of time. For

that reason, sensor nodes are designed to be able to sleep and awake independently (Lewis, 2005;

Ajay Jangra & Priyanka, 2010). Moreover, depending on their application and costs, sensor nodes

can even be self-powered (solar cells) (Kahn et al., 1999). Even in that case, sensors should efficiently

use their energy, consuming only a limited volume of energy during a day cycle (estimated by an order

of 1 Joule or power consumption of less than 10µW (Kahn et al., 1999)).

Distributed Components. Since each sensor is in charge of an autonomous region, the WSN can

be thought as a distributed sensing mechanism. On large scale WSN it is very important that sensors

could work distributedly in order to reduce the communication volume. Therefore, network algo-

rithms should be designed on a completely distributed manner, without counting on any central node

or server. Moreover, on large scale networks it is inefficient and unnecessary that all sensors be famil-

iar with each other (infrastructureless networks). In order to route data on infrastructure-less WSN,

sensors discover their neighbors by exchanging information. Then, using distributed algorithms (e.g.,

GPSR (Karp & Kung, 2000) ) they can determine how to route the data.

Wireless and Multi-Hop. Sensor node radio consumption is about 20 mW on average and their

range typically is measured in tens of meters (Culler et al., 2004). Sensor nodes can route data to

wider ranges using a multi-hop routing. Moreover, it is not feasible for each node to reach an end

user or a base station (sink). There are several different approaches for delivering packets to a base

station (Hung-Yu et al., 2005; Wu et al., 2008; Heinzelman et al., 2000).

3.2.2 Classification of WSN by the Volume of their Traffic

Depending on the type of events that sensor nodes sense and measure (hardware), WSN can

be used to monitor almost every possible desired phenomena. Generally, sensor configurations are

defined by the application, implemented by the WSN. These configurations should be designed care-
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fully, since each parameter has its implications on a large scale. Generally, one have to consider that

all sensor nodes are subjected to the tradeoff between their size and cost. We begin by categorizing

WSNs into three groups of applications according to their traffic scale (Jardak et al., 2010):

• Vehicular Sensor Networks. Vehicular sensors will be used in the future to collect real-time

data on road conditions. Their applications would be safety, collision detection, traffic control

(reduce traffic jams), etc. Generally, vehicular sensors are located inside the car, enjoying an

(almost) unlimited energy supply. Their data packets are estimated to be routed through three

hops before reaching a sink station that is located on the side of the highway. In order to

calculate the potential traffic load of such WSNs, we use the following estimations. The total

number of vehicles in 2009 was estimated as 744× 106 vehicles. In the literature, a node traffic

volume is estimated to be 524 b/s. Therefore, the overall potential traffic of vehicular sensor

networks is estimated to be 390Gb/s.

• Patient Monitoring.: This kind of networks is based on sensor devices that are planted inside

patients and measure his/ her health condition (for example heart bit, body temperature etc.).

The design of such sensors should take under series considerations the energy consumption

since recharging these sensors may be extremely difficult. However, transmission to a sink sta-

tion is estimated to be one hop. Therefore, the tradeoff in this case is in a higher number of sink

stations. We estimate the traffic load of such WSN as follows. According to the world popu-

lation (2009) the number of patient that may benefit from that kind of monitoring is estimated

by 32.3× 106 patients. Each patient is estimated to have a traffic volume of 23 b/s with a total

WSN traffic volume of 750 Mb/s.

• Environmental and Wildlife Monitoring. Maybe the most famous environmental monitor-

ing example is the one of storm chasing. In this case, sensors are dropped into a hurricane

(for example) and record its characteristics by means of thermal, humidity wind and speed.

When information is sent to the sink station we may study and analyze that meteorological

phenomenon.

The most critical problem on environmental monitoring is the size of the target area that we

wish to monitor. On contrast to vehicular sensor networks that are deployed within narrow

highways and on contrast to patient monitoring that is deployed on urban regions, the most

complicated problem on environmental monitoring is the deployment of sink station. On en-

vironmental monitoring we deploy sensors on environments that it is difficult or impossible to

reach. Therefore, environmental monitoring WSN suffers both from the lack in sink stations

and from the distance between the sink station and the sensors. In addition sensor nodes have

limited battery sources and suffer both from the limit in energy and a long multi-hop routing.
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We roughly estimate the traffic volume as follows. In total, land covers 149 × 1012 m2 from

the total surface of the earth. If we roughly assume coverage range of 200 m in radius for each

sensor node, we get a total number of 596 × 106 sensor nodes. We assume the presence of an

access point for a region 2.6 × 103 m in size. Therefore, we can estimate the number of hops

that a packet has to travel before it reaches the sink station as 13 hops. In addition, we consider

two different sampling frequencies: a quick sampling reading happens every 5 sec with rate

13.4 b/s per sensor node and a slow sampling rate of a single reading in every 15 minutes with

rate 0.07 b/s per sensor node. Therefore, we obtain total traffic volume of 8 Gb/s and 42 Mb/s

respectively.

Environmental and wildlife monitoring WSN design is of the higher complexity because of

the limitations described above. In the literature, a common solution for large scale WSN is

using distributed algorithms in order to coordinate sensor nodes and allow them to share their

resources. Environmental and wildlife monitoring applications are varied. Since our work is

classified in this category, we will describe it more into details. In the next section we will

present some specific applications for environmental and wildlife monitoring. At the end of

this chapter we will describe a specific scenario where storage aggregation solution is needed.

This is very useful for the understanding of this work and our proposed protocol.

3.2.3 Generations of Sensor Nodes

One area, commonly cited as a primary use of sensor networks, is for military benefits (Michael Win-

kler & Barclay, 2008). Like other scientific areas, WSN was funded and motivated by the military

research. Military applications such as detection, identification, analysis of enemy movements, are

the basis for the academic research that enables civil applications. Similarly to the evolution of mobile

cellular technologies, we describe the evolution of military sensor devices in terms of generations:

First generation WSN (1GSN) consist of individual sensor devices. Deployment is via manual

placement. First generation networks are fully pre-configured, which means zero tolerance to envi-

ronment changes after deployment. Access to information is via manual retrieval of the device itself,

or long-range point-to-point communication links. Industrial manufacture of 1GSN is available by

companies such as SenTech, Textron and Lockheed Martin (Michael Winkler & Barclay, 2008). They

have systems with variety of sensors (including seismic, acoustic, infrared) which transfer their data

directly to a sink station.

Second generation WSN (2GSN). On 2GSN sensors work in collaboration to cover an area. That

is, in contrast to 1GSN, where sensors are individual components. Typically, the network contains a

small number of sensors (3 or 4), communicating with a sink station. Most 2GSN are manually de-
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ployed and are strongly dependent on pre-configuration. Generally, there are very few 2GSN systems

on the market. WSNs, up to second generation, do not truly implement multi-hop routing in nature

and cannot be deployed on a large scale.

Third generation sensor networks (3GSN). These networks are the subject of our work. These

networks are distributed, flexible and scalable. Sensors communicate between themselves for two

main reasons: communications with a user or base station and multi-hop routing and in-network

processing (data aggregation data fusion and multi-hop routing (Ratnasamy et al., 2003)). 3GSN may

contain as many as tens, hundreds or even thousands of sensor nodes (depending on the application,

the number may reach an extreme value of millions (Akyildiz et al., 2002)). Deployment can be hand-

emplaced (like previous generations) or remotely air-dropped (generally, on a uniform distribution).

Also, since these networks are designed to be deployed on a large target area, 3GSN sensors are

usually equipped with GPS or utilize some kind of localization technique (Khan, Kar, & Moura,

2009). Therefore, a sensor node can associate its events with a geographic location. As we will

demonstrate in this work, on large scale WSN even the sensor ID is dependent on its geographic

location (geographical routing (Karp & Kung, 2000)).

Although the literature (including this work) intensively deal with different aspects of 3GSN,

there are only few known networks and many of them appear to be immature (Michael Winkler &

Barclay, 2008). As to military applications, we speculate that large sensor network may already exist

and remain confidential for different reasons (types of applications, high costs etc.). On the next

section we will describe some known application.

3.2.4 Examples for Environmental and Wildlife monitoring

Sensors are being integrated into structures, machinery, environment, wildlife research and mili-

tary. WSN could provide tremendous benefit to society (Lewis, 2005). Their goal is to improve our

lives by trying to predict some phenomena that could have been handled better when we are pre-

pared (e.g., volcanic activity) or when we can interfere (the condition of a bridge). Their advantages

include: reduce environmental catastrophes, conservation of natural resources, wildlife research, ve-

hicular monitoring, improved manufacturing productivity, pollution monitoring en enforcement, im-

proved emergency response, and enhanced homeland security. On this section we give some specific

examples of WSN (generally 3GSN) with environmental and wildlife applications.

Agriculture. WSN can be involved on the agriculture: sensing of pesticide, soil moisture, PH

levels, temperature and humidity measurement, etc. Thus, agriculture WSN may offer habitat explo-

ration of animals and insects, forest fire and flood detection. Marine WSN includes monitoring of fish

for agriculture. AgroSens (http://agrosense.org/) is an example for a WSN that monitors agriculture

using ZigBee (Lewis, 2005) based sensors. Sensors collect information about changes in whether,
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disease, insects and optimize irrigation based on soli conditions.

Seismological and geophysics activities. Maybe one of the most famous application of sensor

networks in in seismological activities. Sensors are used to measure and monitor seismic noise in

order to predict earthquakes or volcanic eruption on known regions (regularly wired sensors). In the

industry WSN can be deployed over a target area in order to monitor controlled seismical noises and

map the geophysics layers of the earth for the exploration of minerals.

Heavy industrial monitoring. Industrial applications require highly reliable operation in harsh

environment, in warehousing, industrial applications, manufacturing monitoring, industrial automa-

tion and factory process control (Ajay Jangra & Priyanka, 2010). WSN may monitor structural

changes for large industrial factories, temperature changes for heavy machines and industrial sys-

tems, pollution monitoring for chemical factories, nuclear activities (also for military services), etc.

Wildlife monitoring - Combination of acoustic, thermal, mechanical and motion sensors can map

animal activity on bushy or deserted environments where human interference is difficult, impossible

or unwanted. Moreover, WSN can be used constantly, continuously and simultaneously on many

different location, resulting in a substantial data collection, which can be processed to monitor wildlife

activities.

Fig. 3.2: ZebraNet project (Image taken from the ZebraNet project on Princeton University).

An example for wildlife monitoring WSN is the ZebraNet project (Luo et al., 2007) conducted

by Princeton University in Kenya. This project implemented many algorithms and techniques that

exist in the literature such as multi-hop routing, data fusion, power management, GPS (or localization

such as (Khan et al., 2009)) etc. Their goal (apart of the engineering challenge) was to study about

the migration and lifestyle of zebras. Previously, scientists were using a transmission collar (Figure
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3.2). Then, data was sent to a flying sink station that was traveling above the zebra territories. In this

project, intelligent tracking collars, equipped with GPS, solar cell and short range transceivers, where

were placed on a sampled set of zebras. These collars where capable of recording GPS position every

3 minutes, with information about speed and Sun/ Shade details.

The main contribution of this project was in the area of Telecommunications. These short range

transceivers where not designed to send information to a sink link. Instead, they were designed to

communicate between themselves. Whenever two zebras where encountered, data was exchanged

between their collars (sensors) and processed into events. Then, data was gathered by data mules

(mobile devices that come in contact with the sensor - with the zebras). Notice that since data is

simply fused and exchanged between sensor nodes, information about all zebras can be withdraw

from a single (or only few) ZebraNet collars.

3.3 Network Architecture

Wireless networks in general are divided into infrastructured and infrastructure-less networks. An

infrastructured network consists of wireless nodes with a network backbone (e.g., cellular networks).

An infrastructure-less network consist of independent wireless nodes, which distributedly manage to

establish a dynamic topology (Ajay Jangra & Priyanka, 2010). Due to their infrastructure-less nature

and due to the limitations in resources of each sensor, WSN architecture is very complex. In this

section we will describe the most important aspects of the architectural design of WSNs.

Homogeneous Vs. Heterogeneous WSN. As we mentioned, sensor nodes differentiate from each

other by the type of events that they can sense. Heterogeneous WSNs consist of the same sensor types

but with different resource capacities. For example, heterogeneous WSN may contain sensors with

different energy levels and battery supply. Therefore, sensors with higher energy levels could be used

within the WSN as routers or data aggregations (Dietrich & Dressler, 2009). Logically, the tradeoff

for developing sensors with higher resource capacity is between their size and costs. Thus, if we fix

the resource capacities, the smaller the sensor node the more expensive it will be. Homogeneous WSN

are networks in which all nodes are identical and have same resource capacities. Their challenge is to

resolve resource capacity limitations via distributed algorithms, for example (Ratnasamy et al., 2003;

Heinzelman et al., 2000; Luo et al., 2007) and as we describe in this work.

Many-to-Many Vs. Many-to-One. A wireless sensor network is composed of a few sink stations

and a large number of sensor nodes that are densely deployed in a sensing environment (Liao & Wu,

2008). In the literature we distinguish between many-to-may and many-to-one network architectures.

Many-to-one WSN describe a paradigm where sensors communicate with a single sink station (Hung-

Yu et al., 2005). Generally, the idea is that events that are observed by sensor regions are immediately
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transmitted to the sink station and processed by it. Their advantage is in real-time monitoring (e. g.,

sensitive military application). On many-to-many WSN, sensors communicate between themselves

in order to allow data fusion (Akyildiz et al., 2002; Ratnasamy et al., 2003) within the network.

Therefore, the data is stored and processed within sensor nodes and then, accessed by end users.

Since the data is fused and processed within the WSN, an end user receives smaller data packets,

which contain processed information (in terms of bits). Therefore, each retrieval is cheaper (in terms

of energy) than on the many-to-one paradigm where every piece of information is sent back to the

sink station (Luo et al., 2007; Kahn et al., 1999).

Distributed Algorithms. Since the sensor nodes themselves are physically distributed, it is not

unnatural to design the WSN with distributed algorithms (Estrin, Govindan, & Heidemann, 1999).

On many-to-many WSN we economize energy by processing and keeping the information inside the

WSNs. However, it is very difficult for a single (or few) sensor nodes to administrate the network.

In particular, in homogenous and large scale WSN it is even more difficult for a single sensor admin-

istrate and take decisions in the network. Therefore, the common solution is to use distributed algo-

rithms that runs simultaneously on every sensor node. For example, LEACH (Low-Energy Adaptive

Clustering Hierarchy) (Heinzelman et al., 2000) protocol define clusters of sensor nodes (similarly to

a distributed leader selection) in order to solve the energy problem. In this work we solve the storage

problem by a distributed algorithm.

Geographic. Large scales WSNs face the challenge of handling large number of sensor nodes

and coordinating among them. Therefore, sensor nodes may not have global identifications (ID) be-

cause of the large amount of overhead (Akyildiz et al., 2002) (e.g., Smart Dust (Kahn et al., 1999)). A

more practical solution is to use the geographical addresses (x, y coordinates) of sensor nodes as their

identifiers. Accordingly, on a geographic oriented network sensors do not have to be aware of the ex-

istence of all sensor locations (or identifiers). Geographical routing techniques such as GPSR (Karp

& Kung, 2000) enable routing packets between sensor nodes using a distributed protocol. Moreover,

it is possible to exploit the geographical addresses for applications such as: geographical hash ta-

ble (Karp & Kung, 2000), energy management and clustering (Heinzelman et al., 2000), resource

allocation (Liao & Wu, 2008) and in our case, distributed storage.

3.3.1 Deployment of Sensors

An important architectural aspect of WSN is the way that sensor nodes are deployed. Sensor

nodes are deployed either inside a monitored phenomenon or very close to it. Regularly, they are

deployed on places, where human interference is difficult. They can be either thrown as a mass or

placed one by one in the sensor field. Once the WSN is deployed, sensor nodes communicate among

themselves and with an end user or a sink station. During a communication session sensors can also
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study about the aggregated resources conditions of the WSN. Therefore, sensor nodes can indicate

regions that may become coverage holes. Coverage holes are regions whose sensors have reached

to their resource limits and, therefore, can not continue monitoring their regions. Akyildiz et al.

differentiate three deployment phases (Akyildiz et al., 2002):

Pre-deployment and deployment. Sensor nodes can be either thrown in as a mass or placed one

by one in the sensor field. They can be deployed by dropping from a plane, delivered in an artillery

shell, rocket, or missile, and placed one by one by either a human or a robot. Heterogenous WSN can

be implemented by deploying two (or more) sensor types uniformly over the same target area. Either

way, in the design of WSN, the position of sensor nodes need not to be engineered or predetermined

(Culler et al., 2004).

Post-deployment. After deployment, topology changes are due to change in sensor nodes posi-

tion, reachability (due to jamming, noise, moving obstacles, etc.), available energy, malfunctioning,

and task details (Hung-Yu et al., 2005).

Redeployment. Additional sensor nodes can be redeployed at any time to replace sensors that

malfunctioning energy, malfunctioning, and task details (Sheng, Li, & Mao, 2006).

Large scale WSN are composed of large number of sensor nodes that are densely deployed. In

this section we would like to define the density of a WSN. On the literature, the number of sensor

nodes, their transmission radius and the size of the target area are variables that change from one work

to another (see Table 3.1) based on WSN application. Moreover, large scale WSN are not common

today and the majority of work in the literature is based on simulations for future use. Therefore, WSN

parameters also differentiate since on many cases we compare with systems that we know today and

try to estimate the future capacities and needs (for example, comparing radio range with Bluetooth

standards (Culler et al., 2004; Lewis, 2005; Akyildiz et al., 2002; Heinzelman et al., 2000)).

3.3.2 The Density of a WSN

In the last section we discussed the deployment of sensors over the target field. However, in order

to characterize WSN one should consider more parameters. As we will demonstrate in this section,

a uniform deployment of sensors is the base assumption for more comprehensive measure, the WSN

density.

In the literature, we find many WSN configurations that assumes uniform distribution of sensors

over the target field. However, since both the number of sensors, the target area size and the radio

range are parameters that vary, it becomes very difficult to compare between different WSN. Akyildiz

et al. (Akyildiz et al., 2002) defines the density measure µ(r) for WSN. Basically, µ(r) denotes the

number of sensor nodes that falls within the transmission radius of every single sensor in average.

Let n be the number of sensors in the WSN, let r denote the transmission range of every sensor node
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and let A denote the size of the target area (on our case A = 1), the density measure µ(r) is given be

Equation 3.1:

µ(r) = (nπr2)/A (3.1)

Note that the measure A/n is the node density, which represents the average region size (1 Node

/ (A/n) meter). We consider Equation 3.1 as the ratio between the transmission area and the node

density (πr2/(A/n)). On Table 3.1 we present different WSN configurations from the literature. We

calculate their density µ(r) in order to demonstrate that even when the WSN parameters seems to

be different, it is possible to compare between them. For example, GHT (Geographical Hash Table)

(Ratnasamy et al., 2003) and GPSR (Greedy Perimeter Stateless Routing) (Karp & Kung, 2000) are

two related works. Although their configurations seems to be different (radio ranges of 50 and 250

m), their WSN densities that we have calculated demonstrate that they are similar. In other word,

they both represent an average of ∼ 20 sensor nodes within a sensor radio range.

Notice that network density µ(r) takes under considerations all the parameters. Therefore, al-

though the GHT and GPSR examples seems to be different in terms of radio size and Node density,

these simulations consider the same network density (of ∼ 20 sensor nodes within radio range).

Paper Node Density (A/n) Radio µ(r)
Mang. Sch. (Liao & Wu, 2008) 1 Node / 83 m2 50 m 94.6
Many Agg.(Silberstein & Yang, 2007) 1 Node / 316 m2 50 m 25
GPSR (Karp & Kung, 2000) 1 Node / 9000 m2 250 m 21.8
GHT (Ratnasamy et al., 2003) 1 Node / 256 m2 40 m 19.6
Energy hole (Hung-Yu et al., 2005) 1 Node / 200 - 100 m2 20 m 6.3 - 12.6

Tab. 3.1: Examples of different WSN densities from the literature.

To conclude, we encourage using the WSN density measure that is ignored in the literature in

order to compare between different simulation results. On Table 3.1 we give few examples of some

WSN configurations that we will describe in this work. We calculate their densities and demonstrate

how it can be used as a common language between different simulations. As we will show on the next

section, the radio range of a sensor node can vary with respect to the transmission technique that it

chooses (long range or short range for a multi hop routing). Therefore, the transmission technique is

another consideration that we need to take under consideration while designing or comparing between

WSNs.
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3.4 Energy Consumption on WSN

The energy required for a sensor node to operate, usually come from a limited battery power. This

limited power source should support the transceiver, GPS, CPU and the sensing unit modules (Note

that GPS can be replaced by localization algorithms such as (Khan et al., 2009)). If sensor nodes run

out of their energy, they could become inactive and create coverage holes in the WSN. Therefore,

energy management is an important research topic in wireless sensor networks. Since our work deals

with routing algorithms and since most energy consumption is due to the transceiver, we dedicate

this section to the analysis of energy consumption in WSN. Later (on Chapter 8.9.2) we will use the

equations we present on this section to estimate the actual energy consumption of our protocol. Note

that our goal is to estimate the energy consumption derived by multi-hop

As we mentioned in Section 3.2.1, sensor nodes on large scale WSN have to communicate in

a multi-hop routing manner in order to deliver packets to long distances. Moreover, if we think

about the overall energy consumption of the WSN, sometimes it is more efficient to route a packet

on a multi-hop manner. That way several messages can be compressed along the route into a single

packet.

3.4.1 Transmission Costs

As we already mentioned, energy is a limited resource on WSN, which should be used wisely.

Actually, every action in WSN has its costs, from CPU usage to the transmission of data packets. In

this section we study and define the energy cost for the transmission of data packet on WSN. We use

the simple first order radio model (Liao & Wu, 2008; Heinzelman et al., 2000) to describe the network

energy cost for the delivery of data packets. While keeping the radio model as simple as possible,

one has to bear in mind that a packet transmitted from sensor A to sensor B (or from some sensor

to a sink station) is usually transmitted in a multi-hop fashion. We are interested both in the overall

energy consumed by the WSN and in the average case (the reason will be explained into details in

Section 5.5, when we will describe how we route messages).

Let Eelec [J/bit] be the radio dissipate parameter (Heinzelman et al., 2000) of the transceiver. We

use Eelec to estimates the energy cost for the usage of the transceivers per transmission/ reception of

one data bit (transmit and receive blocks respectively in Figure 3.3). εamp [J/bit/m
2] represents the

energy required by the transmission amplifier for the propagation of one bit to a radius of one meter.

That cost ([J/bit/m2]) considers a reasonable SNR (assuming an r2 energy loss on transmission).

Figure 3.3 illustrates the radio model transmitting and receiving k data bits to the distance of d meters:

According to Figure 3.3 we can formulate the energy cost for the transmission ETx of k bit packet

from a source to a receiver node that is placed d meters from the source. Equation 3.2 defines the
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Fig. 3.3: Blocks Diagram for the Radio Model (Image taken from (Heinzelman et al., 2000)).

transmission cost ETx:

ETx(k, d) = Eelec · k + εamp · k · d2 (3.2)

and Equation 3.3 defines the receive cost ERx:

ERx(k) = Eelec · k (3.3)

Notice that both transmitting and receiving operation have their costs, given by Equations 3.2 and

3.3 respectively. Therefore, WSN models, in general, should reduce the number of data packets as

much as possible. Also, multi-hop transmission has even higher received costs since the packet is

repeated on several sensor nodes. However, multi-hop routing drastically reduce energy consumption

in the transmitter since amplification is of order d2. Importantly, protocol and communication design

should take under considerations the tradeoff between direct and multi-hop transmissions.

Our objective is to estimate the communications energy costs in many-to-many WSN. Therefore,

we present a different analysis from (Heinzelman et al., 2000) where sensors communicate with a base

station. However, as we will demonstrate, we get the same conclusion. Figure 3.4 shows a simple

linear network where the distance between every two sensors is r. Sensor A transmits a packet of

size k bits to sensor B. Notice that the distance between these two sensors is n ∗ r (we located n+ 1

sensors). Therefore, if sensor A transmits a packet directly to sensor B, the total energy cost Edirect
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Fig. 3.4: Multi-hop routing in a simple linear network (Image taken from (Heinzelman et al., 2000)).

will be:

Edirect = ETx(k, d = n · r) + ERx(k) =

Eelec · k + εamp · k · (nr)2 + Eelec · k = (3.4)

k(2Eelec + εampn
2r2)

Note that on Equation 3.4 the parameter 2Eelec refers to one transmission (sensor node A) and

one receive (sensor node B). If we chose to transmit the same packet on a multi-routing manner, the

packet would be transmitted once by node A and be retransmitted n− 1 times before being received

by sensor node B. On multi-hop routing, every sensor transmit the message to its closest neighbor

on the direction of the target (sensor B). In the this case, the Multi Hop energy EMH is calculated as

follows. The message would require n transmits and n receives to a distance r (where the last receive

is on sensor node B):

EMH = n · ETx(k, d = r) + n · ERx(k) =

n(Eelec · k + εamp · k · r2) + n · Eelec · k = (3.5)

k(2n · Eelec + εampnr
2)

As described by (Heinzelman et al., 2000), there is no clear answer to which communication

model is better (direct Vs. multi-hop). Moreover, they demonstrate that in some configurations the
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directed model requires less energy while in others, multi-hop model is more efficient. Therefore, we

intend to compare between direct transmission (Equations 3.4) and multi-hop routing (3.5) in order

to study the tradeoff between these two methods. Our goal is to analyze the energy consumption

on WSNs that use multi-hop routing. On Equation 3.6 we declare the condition on which direct

communication consume more energy than multi-hop routing:

Edirect > EMH

2Eelec + εampn
2r2 > 2n ∗ Eelec + εampnr

2 (3.6)

r2n

2
>

Eelec

εamp

As we can see in Equation 3.6, the packet size does not affect the tradeoff between these two

methods. Therefore, the tradeoff is affected by the relations between the parameters: Eelec, εamp, n

and r. Notice that Eelec and εamp are constants that derived from the WSN configurations, while n

and r are parameters that we should consider for each specific routing. In other words, for each route

we should check the relation described in Equation 3.6 in order to decide the best routing method,

then calculate the energy consumption. However, if we would like to change the WSN configuration

(the relation between Eelec and εamp) we would have to repeat the simulation and select all the routing

methods all over again. Therefore, the solution is to find some upper bound for communication costs.

In Section 8.9 we will estimate communications cost of our protocol, using the direct model

energy consumption. However, while we will be using the direct model for energy estimation, many

of our communication sessions are conducted via the multi-hop model. Similarly to (Heinzelman et

al., 2000), we can vary the parameters Eelec and εamp in order to obtain a relation, for which all direct

transmission consume more energy than multi-hop routing. In other words, we will exploit Equation

3.6, in order to estimate an upper limit on the energy consumptions (Liao & Wu, 2008).

3.5 Scenario

In this work, we deal storage capacity of sensor nodes. A sensor that had its storage capacity

depleted should look for some other sensor in the WSN who has available storage capacity. In this

section we present a scenario where sensor nodes should look for available storage in order to avoid

coverage holes.
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Fig. 3.5: Animal sighting scenario (Background is taken from google maps).

We consider a wildlife habitat monitoring WSN that is uniformly distributed over a large wild

terrain (e.g., pre-deployed by an airplane). Sensors observe and record detailed measurements such

as: temperature, acoustic, humidity and pressure measurements. A particular combination of several

measurements might define some animal sighting, e.g. kangaroo-sighting, as shown by Figure 3.5.

We describe a scenario of monitoring the kangaroo wildlife habits on an exotic environment. We

use sensors that can detect and record combinations of measurements, referring to kangaroo-sighting.

End user could then, send queries to some region on the target area and discover where and when

kangaroo events were recorded. Sensors on this network communicate among themselves in order

to achieve the higher level task (Culler et al., 2004) of wildlife monitoring. For example, multi-hop

transmission (Hung-Yu et al., 2005; Karp & Kung, 2000), data fusion (Silberstein & Yang, 2007;

Ratnasamy et al., 2003) etc. Similarly, our work is based on communication between sensor nodes in

order to share their resources.

Figure 3.5 presents sensors that are uniformly deployed over a monitored environment. In other

words, sensors are responsible for regions of more or less same sizes. We demonstrated a scenario,

where most events were recorded by the main river. On Figure 3.5, we painted each sensor with a color

that represents its storage consumption. Note that sensors, located by river, are painted red in order to

demonstrate that they are about to deplete their storage capacity. Other sensors that had their storage

capacity depleted are marked as out of use (exploded) since they cannot store additional events. Our

conflict is that although the WSN as has a great amount of available storage (blue sensors), it contain

a coverage hole on the main river. Moreover, this coverage hole is located on the most critical location

(where kangaroo activity is high). Note that we use this figure as a scenario that gives motivation for
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our work, this figure does not imply that we plan to compare our model with some existing wildlife

monitoring model (nor that we know about a comparable model).

On this work we will consider the WSN storage capacity as a global resource that can be accessed

by all sensors. Therefore, sensors that had their storage capacity depleted would have to communicate

within the WSN in order to find available storage capacity (blue sensors). We will present a distributed

protocol that defines by simple instructions how each sensor should search for available storage. This

imaginary scenario could help to give the reader practical tools to understand our theory.
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Chapter 4

Geographic Expander Graph

“...The blood, the sweat, the tears. Attribute
to the strength, built through the years...”

Robert Flynn (Machine Head)

As we described in Chapter 1, in this work we develop a WSN protocol that is based on an

expander graph topology. In this chapter we discuss expander graphs in theory and define a static

expander topology for WSN. Later, on Chapter 5 we will use the definitions from this chapter to

develop a dynamic expander topology that is the basis of our protocol.

4.1 Introduction to Expander Graphs

Expander graphs are graphs with a strong connectivity property, although their total amount of

edges is small. Every set of vertices on an expander graph has a large boundary of neighbors. There-

fore, in order to disconnect a large part of the graph, one has to sever many edges. In this work, we

will demonstrate how a simple walk, or a simple sequence of links, over expander graphs rapidly visit

most of their vertices. Since expander graphs are known to offer a good deterministic emulation of

random behavior (Hoory, Linial, Wigderson, & Overview, 2006), we will compare our walk with a

random selection of vertices from the graph. Due to their deterministic emulation of random behav-

ior, expander graphs have application in cryptography, error corrections, combinatory, mathematics,

computer science and obviously telecommunication.

Expander graphs are a growing study in science today (Naor & Wieder, 2007; Hoory et al., 2006;

Alon et al., 2008; Camtepe, Yener, & Yung, 2006). In the past four decades, a great amount of

research has been done in various fields to study this family of graphs (Hoory et al., 2006). Expander

31
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graphs were first established on the early ’70s (Bassalygo and Pinsker). The first construction of an

explicit expander graph was published by G. A. Mergulus in 1973 on the Russian journal "Problems

Information Transmission". However, his work did not contain a complete analysis. On 1979, Gabber

and Galil (Gabber & Galil, 1979) presented an explicit construction of their expander graph. Their

construction contained a complete analysis of its performances. Finally, in 1987, S. Jimbo and A.

Maruoka used the Fourier theory in order to improve the former analysis.

Naor et al. (Naor & Wieder, 2007) present a novel approach for constructing a P2P (Peer To Peer)

network topology, based on a Distributed Hash Table. Generally, their model divides the continuous

1-D interval I = [0, 1) into non-overlapping subintervals, where each sub interval represents a process

job. Then, they used a Hash function that relates between points in I . A link between two subintervals

exists iff at least one pair of points between them are connected. These links between sub intervals

are an analogy to the relation between processes. They regulate the job load between processors by

transferring process jobs from heavy loaded processors to others, based on these links.

In this chapter, we present our overlay network that is based only on the geographical locations

of sensors. We implement a two dimensional P2P network, as suggested by Naor et al. (Naor &

Wieder, 2007). On our network, we have a link between two sensors iff at least one pair of points

between their regions are connected. In this section, we will define an expander graph (Sec. 4.3) and

demonstrate that it can be implemented geographically over the target area (Sec. 4.4). Accordingly,

we will define our P2P Wireless Sensor Network (Sec. 4.5).

4.2 Definition of an Expander Graph

As we mentioned, expander graphs are graphs with a high connectivity, despite their low number

of edges per vertex. Formally, we define an (n, k, d) expander graph, as a graph G(V,E) that has

|V | = n vertices, at the most |E| = k · n edges and an expansion rate d. An expansion rate d is the

ability for a vertex set S ⊆ V to rapidly magnify itself to a larger set via their neighbors. Definition

1 (Hoory et al., 2006) specifies the expansion rate measure:

Definition 1 Let G(V,E) be an (n, k, d) expander graph and let S be a subset of vertices in V . We

denote the set of edges that emanate from S to its complement S = V \ S as ∂(S) = E(S, S). We

define the expansion rate d of graph G as:

d = min
0<|S|≤n

2

|∂(S)|
|S| (4.1)

Notice that there is a restriction on S, 0 < |S| ≤ n
2
. According to Definition 1 any subset of

vertices S (|S| ≤ n
2
) can magnify (or expand) itself, based only on the edges that emanates from it
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(close neighbors of every vertex in S). In other words, there would simply be links between S and S.

Moreover, it is guaranteed that S has a large neighborhood. According to the expansion rate d, the

size of that neighborhood is at least a portion of size d from itself. Therefore, an (n, k, d) expander

graph guarantees a fast expansion rate (d) for any subset S : S ≤ 1
2
.

4.3 Gabber-Galil Expander Graph

In this section we will describe a specific expander graph that is called Gabber-Galil expander

graph (Gabber & Galil, 1979). We begin by describing this graph, as described in their paper, for a

grid network application where vertices are located on all the intersection of the grid. Then we will

describe a continuous representation of their graph, which they used for their mathematical model.

Later, we will use this continuous representation for our WSN application.

4.3.1 Expander Graph for a Grid Network

"Explicit constructions for linear sized super-concentrators" (Gabber & Galil, 1979) is a study,

published in 1979 by Ofer Gabber and Zvi Galil of the Tel-Aviv University, Israel. Gabber and Galil

describe an explicit construction for an expander graph Gn that is an (n, 5, d0) expander graph on

a grid topology, where n denotes the number of nodes, 5 denotes degree of each node and d0 =

(2 −
√
3)/2 is the expansion rate. The degree of a node, refers to the number of edges that emerge

from it (Diestel, 2006).

Let n = m2 (n is a natural number) and let An = {0, 1, . . . ,m− 1}× {0, 1, . . . ,m− 1} be a grid

network of size n. An may be thought of as a combinatorial square torus (Figure 4.1), where each

vertex is connected with its grid neighbors and whose edges are connected. In Definition 2 we define

the Gabber Galil expander, for a set of n vertices that are placed on a m×m grid.

Definition 2 A Gabber-Galil expander graph (Gabber & Galil, 1979) is defined as a bipartite Graph

G(Un, Vn;En), where the relation between the sets of vertices Un, Vn and the set of edges En are

defined as follows:

• Un = Vn = An

• {En = (u, σ(u)) : u ∈ Un, σ ∈ {σi}}
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• And the permutations σi’s are given as:

σ0(x, y) = (x, y)

σ1(x, y) = (x, x+ y)

σ2(x, y) = (x, x+ y + 1)

σ3(x, y) = (x+ y, y)

σ4(x, y) = (x+ y + 1, y)

where the + operator is modulo m.

The most significant contribution of Gabber and Galil (Gabber & Galil, 1979) was their analysis

of this graph. They have managed to prove and calculate the lower bound on the expansion rate d. In

the next section we describe our overlay network construction, which is based on Definition 2.

4.3.2 Expander Over the Unit Square

On their work (Gabber & Galil, 1979), Gabber and Galil used a continuous graph representation,

which is defined over the unit square [0, 1)2. In other words, instead of the m×m grid, the continuous

graph is defined for all the points in [0, 1)2. We will demonstrate how a distributed sensor network

can implement the Gabber-Galil expander graph as its network topology. However, since sensors are

deployed on specific locations, our topology implements a discretization of this continuous graph.

We now introduce the Gabber-Galil expander graph: Let G(V , E) be a continuous graph that is

defined over the unit square V = [0, 1)2 and E ⊂ V × V denotes the set of edges in G. E is defined

Fig. 4.1: Square torus whose edges are connected.
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by the Gabber-Galil transform (Gabber & Galil, 1979) that relates each point in V with two outgoing

links. With respect to their directions, we name those links East link and North link.

Definition 3 The Gabber-Galil transform for a point {x, y} in [0, 1)2 defines the following two links:

GG(x, y) =







East : {x+ y, y} (mod 1)

North : {x, x+ y} (mod 1)
(4.2)

After a modulo 1 operation (remainder from 1), all destination vertices remain within the unit

square. We may consider the unit square as a square torus whose edges are connected (Figure 4.1).

Therefore, an edge that exceeds out of the square’s margins, spins from the other side of the unit

square. An edge ({xs, ys} → {xt, yt}) is in E , iff {xt, yt} is one of the two transformations of

GG(xs, ys).

Gabber and Galil were the first to provide a specific bound for the expansion rate d. Theorem 1

(Gabber & Galil, 1979) describes the basic motivation for using expander graph as a network topology

for WSN:

Theorem 1 For every measurable A ⊂ V = [0, 1)2 such that µ(A) ≤ 1
2
, where µ(A) is the Lebesgue

measure of A, it holds that:

µ((GGEast(A) ∪GGNorth(A)) \ A) ≥
(2−

√
3)

2
µ(A) (4.3)

According to Theorem 1, the Gabber-Galil expander graph has an expansion rate d = (2−
√
3)

2
.

In other words, the two transformations of A (East and North) simply contain a new set of points

(disjoined from A) that is proportional to A. Therefore, A has a relatively large neighborhood with

respect to the expansion rate. We posit that a sensor network that construct its links between sensors

according to the these two transformations (Definition 3) can also be an expander graph topology.

Thus, such topology can be very efficient in terms of discovering new areas. As we mentioned, in

many cases sensors are not aware of the existence of others. Therefore, that kind of topology could

be used by sensors in order to discover partner sensors that can share their resources.

The continuous graph G(V , E) is defined over an infinite set of vertices V = [0, 1)2, and therefore

it also has an infinite set of edges E . In fact, each point in V is associated with two edges from E .

We would like to relate the continuous set of edges E , with a discrete and finite set of vertices S

that represent sensor locations. Our idea is to design an expander graph topology over the actual

geographical target area. Formally, we decompose the continuous [0, 1)2 space into regions. Then,

we define a discrete set of edges E ⊂ E between sensor regions (based on the locations of sensors). In
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Fig. 4.2: Two dimensional Continuous Discrete Approach.

the next section, we will give a mathematical definition to sensor regions and define a 2-D continuous

discrete approach (Figure 4.2) that relate those regions by the discrete set of edges E.

4.4 Continuous Discrete Approach for a Geographical Target Area

We model our wireless sensor network as a set S of n sensors: S = {s1, s2, . . . , sn}, located inside

the unit square [0, 1)2. Let {x(si), y(si)} denote the coordinates of sensor si and we assume that

each sensor is aware of its own locations (either using GPS or some kind of localization technique).

Moreover, we assume that there are no two identical geographic locations for any pair of sensors.

These are reasonable assumptions on sensor networks, because events are associated with the location

where they were observed.

We divide the unit square into n non-overlapping regions that are based on the location of n

sensors in field. Therefore, each point p ∈ [0, 1)2 is associated with its closest sensor s ∈ S. In

other words, the region of each sensor si ∈ S contains all the points in [0, 1)2 that are closer to s

than to any other sensor in S. This kind of division that we described, is a well known concept from

computational geometry (Berg, 2000) called Voronoi Diagrams. Each region is known as a Voronoi

Cell. Formally, a Voronoi cell Vor(s) is defined as follows:

Definition 4 Let S be a set of n sensors on [0, 1)2. Vor(s) denotes the Voronoi cell of a sensor

s ∈ S. This region consists of all points p ∈ [0, 1)2 that satisfy the minimum Euclidean distance

minsi∈S(|si − p|) for sensor s.

We define our two dimensional continuous discrete approach as an approach that maps the con-

tinuous set of links E (between points p ∈ [0, 1)2) into a discrete set E that connects between vertices
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si ∈ S. In Figure 4.2 we show the continuous layer that contains the continuous set of points in [0, 1)2

that are divided in regions. Since we defined two links for each point (Definition 3), there are infinite

number of links on the continuous layer. On the discrete layer, we show only the discrete (finite) set

of links that connect between two vertices (or sensor regions).

Accordingly, our continuous discrete approach associates the infinite (continuous) geographical

address set (al possible x, y coordinates within the target area) with a finite (discrete) set of sensors

(x, y coordinates of sensor nodes). The continuous layer [0, 1)2 represents our continuous graph

G(V , E). According to Definition 3 this graph contains an infinite number of vertices and edges.

We define E ⊂ E to be the set of edges on the discrete graph G(V,E). In other words, links in

E connect two sensor nodes iff at least one pair of points between their regions are connected

by one of the transformations (Definition 3). Notice that we partitioned the continuous layer into

Voronoi cells (Definition 4) in order to demonstrate the region of each sensor. On the discrete layer

we demonstrate only the links E that connect sensor regions. Therefore, the discrete layer actually

represents the discrete graph G(V,E) whose edges are the discretization of E . We use the coordinates

of edges in E to relate a continuous edge with their discrete form, with respect to the sensor region

V or(s) that they connect. On computational geometry, the problem of finding the Voronoi cell of

some coordinate{x, y} is also known as the post - office search problem, or Nearest Neighbor search

(Berg, 2000). Notice that we have only a finite number of edges on the discrete layer, that is due to

the fact that there is only a finite number of sensors. Formally, define the discrete graph G(V,E) as a

sub - graph of G(V , E):

Definition 5 Let S = V ⊂ V denote a set of sensors and let E ⊂ E represent a discrete set of edges

between vertices in V . An undirected edge (si ↔ sj) is in E if:

∃p, p′ s.t (p, p′) ∈ E ∧ Vor(p) = si ∧ Vor(p′) = sj

where ∧ refers to the logical AND.

In other words, two sensors are linked together if their corresponding Voronoi cells contain at least

one adjacent edge in the continuous graph G(V , E). Our goal is to construct a network topology for

WSN that enjoys the attractive characteristics of an expander graph (Definition 1). We wish to allow a

fast interaction between sensor nodes, with respect to the expansion rate d (Definition 1). In the next

section, we use a continuous discrete approach to describe our overlay network topology for WSNs.

Since the original expander graph (Gabber & Galil, 1979) was designed for a very specific network

where all vertex locations where fixed on a grid, our implementation for a random deployment of

sensors is not trivial. That is, since the deployment of sensors over the target area is very different

from the deployment of a fixed on a grid, our construction is not guaranteed to produce an expander
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graph topology. In the following sections we demonstrate, via simulations, that our implementation

has indeed the expander graph characteristics.

4.5 Static Overlay Network

As we mentioned in Section 4.3, an (n, k, d) expander graph is known for its expansion rate d,

although it has only a linear n · k number of links. Another attractive characteristic of expander

graphs is their relatively low diameter. Expanders are known to have a logarithmic log(n) diameter

size (Hoory et al., 2006), where n is the number of vertices in the graph. Diameter is defined as the

maximal distance (in hops) between any two vertices in the graph (Diestel, 2006), where the measure

distance refers to the minimum number of hops between a pair of vertices.

In this section we analyze the diameter of our overlay network construction. We distinguish

between a static network that is built entirely before any event has occurred and a dynamic network

that is built “on demand” only when a sensor node has its storage capacity depleted. We analyze

the diameter by simulating a static overlay network. Later, in Chapter 5 we will demonstrate the

expansion rate d for a dynamic overlay network.

Let S be a set of n sensors si ∈ S and let {x(si), y(si)} denote the coordinates of each sensor

si ∈ S. We define a static network by constructing four links emerging from every sensor location

{x(si), y(si)}. We define immediate links and expander as follows:

Fig. 4.3: Immediate and Expander links.

1. Immediate links are links between sensors that are geographically close to each other. In other

words, every pair of sensors whose Voronoi cells are adjacent to each other, share an immediate

link. These links are also known as the Delaunay triangulation (Berg, 2000). We use immediate
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links in order to avoid isolated components within the overlay network. These links connected

the whole network as Manhattan street network (Greenberg & Goodman, 1993). Note that

the diameter for a Manhattan street network is of order O(
√
n) where n is the number of

sensor nodes. In our case, we only use two immediate links. We connect each sensor with its

immediate neighbors on the East and North directions. In Figure 4.3, edges I1 and I2 connect

sensor s with its immediate links.

2. Expander links are links (or edges - E) from the expander graph G(V,E). We use the two

transformations from Definition 3 in order to construct two expander links for every sensor

si ∈ S. These expander links connect each sensor si with two members from S whose Voronoi

regions satisfies the two transformations E1 and E2. In Figure 4.3, edges E1 = {x, x+y}, E2 =

{x+ y, y} connect sensor s with its expander links.

Note that although each sensor construct the four links described above, it does not significate that

its degree is four. Since these edges are undirected, sensor nodes also “gain” edges that are directed

into their region. Also, there is the possibility that two sensors would be connected by more than one

link (multiple edges (Diestel, 2006)). In the rest of this section we analyze the resulted static topology

in terms of diameter and number of links per sensor node.
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Fig. 4.4: (A) Diameter that scales with the network size. (B) Mean number of links.

Figure 4.4 demonstrates the simulation results for network sizes 50 ≤ n ≤ 6400 where sensors are

deployed uniformly over the unit surface. First, we establish a static overlay network by constructing

the immediate and expander links from each sensor location. Then, we measured the diameter of

the resulting topology using the Breadth First Search algorithm (Berg, 2000). Finally, we analyze

the number of links per sensor node. As we mentioned, the immediate links guarantee both that the

network is connected and that its diameter is of order O(
√
n). However, we expect an improvement

in network diameter, since we have also added the expander links.

In Figure 4.4 (A), we show that only by adding the two expander links (E1 = {x, x + y} and

E2 = {x + y, y}), we achieve an improvement of the diameter size from a O(
√
n) to a O(Log(n)).
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Fig. 4.5: Relation between region sizes and number of links for a 6400 sensor network.

Therefore, we have achieved an overlay network construction whose diameter scales with the net-

work size, although every sensor constructs only four links. In practice, a sensor that had its storage

capacity depleted can rapidly detect a sensor with available storage capacity within the network. For

example, on a 6400 sensor network, a sensor that broadcasts its message along its 19 hops diameter

can reach every sensor node.

Our overlay network contains 4n links in total that are directed into sensor regions. Note that

the existence of multi-links (two or more links that connect the same pair of sensors) means that a

multiple copies of the same message may be routed between pairs of sensors. In WSN, that means a

waste of essential energy. Therefore, we would like to measure the number of links that are actually

used in our construction. In Figure 4.4 (B) we measure the average number of links that are directed

to every sensor node. Four links that are directed to sensor regions on average significate that there

are no multiple links. In this figure, we can see that as the network size grows, the number of multi

links decreases. The reason for that behavior is the size of sensor regions. For a small n, two links

that are directed into close locations are a multi link with a high probability. In other words, they are

directed into the same sensor region. As n grows, that region is divided into smaller regions. As a

result, these two close link locations are directed into two regions of smaller size.

In order to complete our analysis we would like to verify that there are no bottleneck sensors

within our construction. We give the star topology as a simple example that describes the problem of

bottleneck sensors. According to a star topology we can achieve a constant diameter (of two hops)

while every sensor constructs one link only. That is, all sensors select the same location (e.g. the

region that contains for example the coordinate {0.5, 0.5}). Although that the resulted topology has

a scalable diameter while having a constant number of edges, this topology is not an expander. In

this case, the sensor whose region contain the coordinate {0.5, 0.5} “observes” n links, and therefore

forms a bottleneck in the network.

In Figure 4.5 we show the simulation results for a WSN of size n = 6400 sensors, on which
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all sensors are uniformly distributed over the [0, 1)2 target area (X, Y = U(0, 1)). We simulated 120

different deployment and constructed a static overlay network for each deployment. As we mentioned

there is a relation between a sensor region size and the number of links that are directed to it. In order

to demonstrate that relation, we measured both the sizes of all sensor regions and the number of edges

that are directed to each sensor region. We have plotted the results in the form of histograms.

In Figure 4.5, we show two measures on the x-axis: number of links and area classes. The bars

in that figure represent the distribution of links that are directed into sensor regions. For example,

the forth bar (from the left) means that ∼ 23% of the sensors from S are located in regions that are

directed by 3 links. We can see that the number of links that a sensor node observe vary between 0 and

14. Also, the majority of senors regions are directed by 2 − 5 links. Moreover, the maximal number

of links that are directed into some region is 14 which is a small number considering the network size.

Therefore, our topology is free of bottleneck sensors.

In order to demonstrate the distribution of area on the same graph, we plotted an histogram of

sensor region sizes on top of the linkage histogram (the dots curve). Notice that the number of bars

on that histogram matches the maximal number of links (that we described above). Therefore, we

measured the area of all sensor regions and categorized them into 15 groups: 0 - the smallest regions

and 14 - the largest regions (according to the number of links 0 − 14). In Figure 4.5, the relation

between the number of directed links and sensor region size is very clear. In other words, the greater

the region the more links that are directed to it. In the next section we will demonstrate that this

behavior results directly from the transform (Definition 3).
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Chapter 5

Distributed Storage Chains (DSC)

“All truths are easy to understand once they
are discovered, the point is to discover them”

Galileo Galilei (1564 - 1642)

In this work we present a new approach for sharing the storage capacity of sensors in a WSN. We

do so, by constructing links between sensor nodes in the form of an ordered list of sensors. We call

that list a storage chain. A sensor si, who had its storage capacity depleted, initiates a storage chain

Ci to the first link in its ordered list. That first link (a sensor node) will share its storage with si until

its storage capacity is depleted also. Only then, si will address the next link on its ordered chain. In

this chapter, we will explain how exactly a sensor selects its storage chain (or its ordered list).

In the last chapter we have shown how to construct a static network layer for WSN with a low

diameter that is based on an expander graph (see the diameter definition in Section 4.5). That network

layer was static in the sense that we systematically constructed links for all the sensors. In this

chapter we will describe a dynamic network layer for WSN, which is the base of our new approach

for storage aggregation in WSN. Instead of constructing links for each sensor, we will construct links

by demand. In other words, a link is constructed between two sensors in the WSN, only when a

sensor has its storage capacity depleted. This dynamic network layer can be seen as “subgraphs” of

the Expander graph that we described in Chapter 4. We say that our storage chains are distributed

(Distributed Storage Chains - DSC), since sensors generates them individually and independently. In

other words, in contrast to a centralized approach that can map sensors that can share their storage

capacity and construct storage chains accordingly, in our model each sensor construct its storage chain

in a distributed manner.

43
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To summarize, our DSC are characterized by the following characteristics:

• Local: Sensors should be familiar only with their immediate (local) neighborhood. DSC are

implemented distributedly based only on local decisions.

• Deterministic: We say that DSCs are deterministic since they are based on the explicit Gabber-

Galil construction (Section 4.3). Therefore, DSC can be easily reconstructed without maintain-

ing routing tables.

• Individual: As we mentioned, DSCs are based on an explicit formula. That formula is based

on the location of the sensor that initiates the chain. Therefore, different sensors construct

different sequences of links.

• Uniform: We wish to maintain the WSN balanced in the sense that sensors who share their

storage capacity are not concentrated in specific geographical regions. Each individual DSC

“samples” the target area uniformly and avoid “attacking” specific regions.

Our storage aggregation model is designed for large scale networks, on which it is extremely inef-

ficient for a sensor to study the whole network topology for a storage solution. Therefore, we suggest

a distributed model, on which sensors take only local decisions that are based on their immediate

environment only. Geographical location can be obtained by a GPS device or by some approximation

localization technique (Khan et al., 2009). Moreover, we would also like to be able to reconstruct

these chains easily without maintaining any information about their structure. Our model should

avoid starvation i.e., there are no sensor groups that share their storage capacity more than others.

A non-individual solution that directs all chains to the same geographical regions might constitute

starvation. In order to prevent starvation, each individual chain should also select sensors within the

network uniformly.

In this Chapter we begin by introducing the network layer that sensors use for communication

(GPSR protocol). This introduction is an essential layer for understanding the relation between the

storage chains and our expander graph (Chapter 4). Then, we explain the construction of chains that

is based on our expander graph. Finally, we present general and experimental evaluations of these

chains (Sec. 5.4 and Sec. 5.5 respectively).

5.1 Network layer - Geographical Routing

We model the communication network as a unit disk graph (Clark, Colbourn, & Johnson, 1991),

on which two sensors can wirelessly communicate with each other if their distance is less than the
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(A) (B) (C)

Fig. 5.1: GPSR Protocol (A) Greedy forwarding: x forwards to y, which denotes the minimal distance
towards D. (B) Void example: x has no neighbor nearer to D. (C) Right-hand-rule: packets travel
around the enclosed region. These images where taken from (Karp & Kung, 2000).

transmission range r. Furthermore, we assume that the network is connected, i.e. that r is large

enough to guarantee that there are no isolated sensor components within [0, 1)2.

Since not every two sensors in the network lie within the mutual radio range r, we must specify

a network layer protocol that supplies routing instructions between every pair of sensors. For this

purpose, we use a geographical routing protocol, which is based only on the geographical locations

of sensors in field. As we already showed, the continuous nature of G(E ,V) requires that a message

could be routed to a point within some sensor region. When a message is addressed to some desti-

nation that is not a specific sensor location, we say that the message was routed to the region of a

particular sensor. We will define how a sensor can know that this message was directed to it.

We use the Greedy Perimeter Stateless Routing (GPSR) (Karp & Kung, 2000) geographical rout-

ing protocol as our network layer. This protocol can route a packet to any connected destination

based on its geographical address. According to that protocol, each sensor must know its own loca-

tion and the locations of its nearest neighbors (local information that is obtained by beaming (Karp

& Kung, 2000)). This protocol operates on two routing modes, greedy forwarding and perimeter for-

warding. In greedy forwarding mode, packets are progressively routed closer to their destinations. In

other words, when a sensor receives a packet it forwards that packet to its neighbor with the minimal

distance towards the destination (Figure 5.1 (B)). 5.1 (A)). Greedy forwarding mode fails when the

packet can not be forward closer to the destination. We call this scenario a void or a local minima.

For example, on Figure 5.1 (B), sensor x cannot forward the packet closer to D. The only sensors

within the radio range of sensor x are sensors w and y. Notice that these sensors are more distant

from the target D than sensor x. In that case, we call that radio range that cannot forward us closer to

the target a void. Therefore, the solution is to use the perimeter forwarding mode, in order to escape

from that void. On perimeter forwarding mode we use the right hand rule (Fig. 5.1 (C)) to route a

packet along the faces of the void region (the polygon x, w, v,D, z, y in Figure 5.1 (B). Notice that
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in this case, sensor node x would route the packet to sensor w although w’s distance towards D is

longer than x. On perimeter routing, sensors around the void send their distances from the target

with for comparison. When the packet reaches a sensor that is closer to the destination (closer than

the sensor that initiated the perimeter forwarding mode - x), GPSR returns to the greedy forwarding

mode. In this case, routing can succeed, i.e. the packet reaches its destination, or fail, i.e. the packet

has completed rotating along the void and did not find a sensor that is closer than x. In that case,

GPSR dropped the packet.

An important property of GPSR is that if the packet has failed to reach its destination d = {x, y},

it either means that the destination sensor is disconnected from the source, or that no sensor is located

at {x, y}. Ratnasamy et al. (Ratnasamy et al., 2003) reached the following conclusion: if the routing

fails, it must fail (stop) at a sensor s that is the Home-Node (Corollary 1) for the geographical desti-

nation address. In Section 4.4 we defined the Voronoi region of sensor si to contain all the points p

that are closer to si than any other sensor in S (Definition 4). Accordingly, we define a Home-Node

of some point p as follows.

Corollary 1 Let p ∈ [0, 1)2 and a set of sensors S located in [0, 1)2. Home(p) denotes the unique

sensor si ∈ S for which p ∈ Vor(si). In that case we say that si is the Home node of p.

In particular, when the protocol fails (stops), it must be on its perimeter forwarding mode. In that

case, since that packet has already completes a full encirclement around the destination address, the

destination address must be located within the Voronoi cell of sensor one of the sensors of the last

encirclement. We say that each sensor is a Home node for all points on its Voronoi region. Therefore,

the closest sensor to the target on the last perimeter mode must be the Home node for that destination.

Since our model is dependent on multiple routings of packets towards geographical addresses that

are located within sensors regions, it is important to characterize the costs of that last encirclement.

If those encirclement tend to be very large, that means a waste of important energy. On the next

section we demonstrate that due to the characteristics of Voronoi diagrams, the last encirclement has

a constant size with an average of six routings. We will demonstrate that characteristic by analyzing

the average number of neighbors per sensor node.

5.2 Voronoi Diagrams - Six Neighbors per Sensor Node

On this section we give a brief description of the Voronoi diagrams which is oriented towards

WSNs. Voronoi diagram is a special kind of decomposition of the metric space into to regions. It

is determined by the distance measures within a specific set of points. A stronger definition of the

Voronoi diagrams from computational geometry (Berg, 2000) can be given as: Let si, sj be two points
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on the plane. We denote the open half plane that contain the vertex si by h(si, sj), and the other half

plane that contain the vertex sj by h(sj, si). Notice that a single point p ∈ h(si, sj) if and only if

dist(r, si) < dist(r, sj).

Definition 6 Vor(si) is the intersection of n-1 half planes and, hence, convex polygonal region (inter-

section of convex sets (Berg, 2000)). Notice that some polygonal regions might be unbounded since

half plane lines are infinite and beaming to infinity. To get more insight how does a complete Voronoi

diagram looks like we will make one more assumption: all infinite lines, beaming to infinity are meet

together. Imagine the Voronoi diagram lies on the top of a sphere and all infinite lines meet on its

bottom (Figure 5.2).

Fig. 5.2: Complete Voronoi Diagram.

Theorem 2 Let G be a connected plane graph with n vertices, m edges, and F faces (regions). Eu-

ler’s formula defines the following relation (Diestel, 2006):

n−m+ F = 2

Corollary 2 Every sensor has six close neighbors in average. We fix VV∞ to a Voronoi diagram in

order to obtain a closed plane graph (Figure 5.2). According to Euler’s formula, we have n = v + 1

(the extra vertices VV∞) (Berg, 2000):

v −m+ F = 1 or v = m− F + 1

Also, if we count the degree of every Voronoi edge we have:

∑

vi∈v deg(vi) + deg(VV∞) = 2m
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Fig. 5.3: Average number of faces per WSN size.

Explanation: we count each Voronoi edge twice. Moreover, since the degree of every edge is at

least 3 we have:

2m ≥ 3(v + 1)

Substituting v we get:

2m ≥ 3(m− F + 2) or 3F − 6 ≥ m

When we consider the number of Voronoi edges that encircle a node on the Voronoi diagram we count

each Voronoi edges twice. Therefore, we have:

6F − 12 ≥ 2m

Therefore, in average if we divide the total number of Voronoi edges by the number of faces (nodes)

we get:

O(6) ≥ 2m
F

Therefore, an interesting observation is that the number of Voronoi edges per faces is constant

(O(1)), independent of the network size. In other words, every node shares its Voronoi edges with

a constant 6 number of other nodes. In Figure 5.3 we show our analysis for number of neighbors

per sensor node on a uniform distributed WSN. The configurations that we analyze in this figure are

the same configurations that we will use later for network (Section 5.5) and protocol (Chapter 8)

simulations. We can see that the number of faces (and therefore number of close neighbors) reaches

the value of 7 sensors as the network size grows. Moreover, it seems that the graph reaches a constant

value which matches our observations.

In Section 4.5 we constructed a static network. We did so, by calculating the two expander links

of each sensor. Actually, we connected each sensor si ∈ S with the two sensors that are Home nodes

Home(GG(si)) for the two transformations of si (Definition 3). On the next section we formally

define our storage chains and reinforce the relations between the Home node and our expander graph.
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5.3 Construction of DSC

In the beginning of this section, we mentioned that our storage aggregation solution is imple-

mented distributedly. We define the Distributed Storage Chain (DSC) as an ordered list of links that

is initiated by a sensor si who had it storage capacity depleted. The sensors of that list share their

storage capacity with si. We construct these chains via a deterministic walk over the expander graph

that we described in Chapter 4. In this section we will define what is a deterministic walk, how do

DSC are constructed and what is their relation with the expander graph. Later, we will formally define

the construction of DSC by a distributed protocol.

We define a walk over some graph G(V,E) as a sequence of vertices from V that are connected

by links from E (Diestel, 2006). For example, if {(v1, v2), (v2, v3)} ∈ E are two links in E then

we can say that w = {v1, v2, v3} is a walk of size |w| = 3. That walk begins at vertex v1 and on

each hop we visit a new vertex. We distinguish between random and deterministic walks by the

way that w is constructed. On Definition 7 below, we describe the deterministic construction of our

DSC. According to this construction, these chains can be calculated and deterministically predicted

for every sensor in our WSN.

Definition 7 A Distributed Storage Chain (DSC) Ck(s) is a deterministic walk of k+1 geographical

addresses over the continuous graph G(V , E). This walk is initiated by sensor s = g0, located at

{xs, ys} and denoted by: Ck(s) = (g0, g1, g2, ..., gk) where every consecutive vertices are a link in E .

The ith link (gi−1, gi) is given by:

gi(x, y) =







East : {x+ y, y} (mod 1) for i even

North : {x, x+ y} (mod 1) for i odd
(5.1)

note that due to the cyclic behavior of the (mod 1) (modulo 1) operator, the east links might spin

from the west also (and the north from the south). That is, depending on the values of the x, y

coordinates.

When a sensor s had its storage capacity depleted it initiates a DSC (s = g0 = {xs, ys}) and

searches for new available sensors that can share their storage capacities. Notice that the DSC is

dependent only on the location of the sensor who initiated it. We calculate the vertices C(s) =

(g0, g1, g2, ..., gk) ∈ V according to the Definition 7. In other words, every consecutive vertices

(gi−1, gi) are connected by alternatively taking the East and North links of the Gabber-Galil trans-

form (Definition 3). Since the sequence of vertices Ck(s) is deterministic, it neither has to be main-

tained as a routing table nor retrieved in order to be reconstructed. Therefore, in terms of energy, no
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transmission is required for obtaining these sequences.

As we mentioned, we may think about this definition as a continuous layer construction (Figure

4.2). Therefore, a continuous DSC as we described above, specifies geographic locations rather

than the location of sensors. As we described, the GPSR protocol can deliver packet to geographic

locations within sensor regions. Formally, we define the Distributed Storage Chain (DSC) DSCk(s)

as the discrete form of Definition 7. According to Corollary 1, we obtain a chain of sensor nodes by

a discretization of Ck(s):

DSCk(s) = Home(Ck(s)) = (s,Home(g1), Home(g2), ..., Home(gk)).

5.4 The Smoothness Factor of a DSC

We began this chapter with a definition that a DSC should be local, deterministic, individual and

uniform. On the rest of this chapter we demonstrate how DSCs are uniformly distributed over the

target area. As we described on Definition 7, a DSC is an ordered list of geographical addresses.

We can think about that ordered list as a “search-function” that a sensor node uses in order to locate

available sensors, who can share their storage capacities with it. We will demonstrate that these

ordered lists, or “search-functions”, are uniformly distributed over the target field in the sense that

they do not “attack” in specific geographical regions. Actually, the best way to do so is to prove

mathematically that a DSC that begins on any given point {x, y} results in an ordered list of points,

that are uniformly distributed in [0, 1)2. However, we could not offer such a theoretical proof. Instead,

in Appendix C we give the work that we only did so far, in formulating the theoretical problem we

wished to prove. In this work, we will characterize the properties of DSC by simulations, instead of

proving them theoretically.

In this section, we will study how these chains divide the unit surface. We make a general analysis

that is not restricted to a specific WSN topology (or sensors deployment). We begin by separating the

DSC from within the WSN. We select a single location (of sensor) in order to generate a DSC and

analyze the distribution of its coordinates. We will show that with time, the way that DSC divides the

unit surface converges to a constant ratio between regions on the unit surface (do not confuse with

sensor regions). Then, we return to a WSN application, where sensors are deployed over the unit

surface, and deduce that a DSC can serve as a uniform selection of sensors from the WSN. In other

words, since we consider a uniform deployment of sensors, we can say that a DSC that uniformly

selects geographical location, also selects their Home nodes uniformly.

We begin by selecting a sensor location s = {x, y} and calculate its DSC Ck(s) of length k

according to Definition 7. Then we calculate the Voronoi diagram of Ck(s) (see Figure 5.4). This

diagram shows the way the Continuous DSC divides the unit surface. We can think about this kind of
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(A) (B)

Fig. 5.4: Voronoi diagram for a Continuous DSC Ck(s) of size (A) k = 9 (B) k = 11.

division as the regions that the DSC visits. Notice that these are not sensors regions. We consider the

ratio between the size of the largest and the smallest Voronoi cells as the smoothness factor (Naor &

Wieder, 2007) of Ck(s). Formally, we define the smoothness factor as follows.

Definition 8 Let C(s) = (g0, g1, g2, . . . , gk) denote a set of vertices on [0, 1)2, we define its smooth-

ness factor to be ρ(C(s)), which is given by:

ρ(C(s)) = Max|Vor(g
i)

Vor(gj)
|, ∀i, j; gi, gj ∈ C (5.2)

where |Vor(gi)| is the area of the Voronoi cell of point gi ∈ C(s).

Figure 5.4 illustrates a DSC that begins on a sensor location s = g0 = {0.5176, 0.6296} that we

chose randomly from [0, 1)2. We demonstrate Ck(s) for k = 9 (A) and k = 11 (B). We calculate the

smoothness factor for each k by dividing the greatest Voronoi area by the smallest.

We may say that a continuous DSC Ck(s) that tend to a constant value of the smoothness factor,

divides the unit surface uniformly. A constant smoothness factor ρ describes the bound 1
ρ·k for the

smallest region visited by the DSC. In other words, the smallest region visited by Ck(s) is at least of

size 1
ρ·k . Therefore, a continuous DSC Ck(s) that tend to some constant smoothness factor ρ, implies

on the ability of sensor s to rapidly interact with new sensors from S. By rapidly, we mean that every

hop in Ck(s) would visit a new sensor with high probability if |S| ≥ ρ · k.
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Fig. 5.5: Smoothness factors for: (A) irrational numbers {π, π} and {
√
2, π} (modulo 1) and (B)

{0.01, 0.01}.

Figure 5.5 demonstrates the smoothness factor results for three points that we chose on the unit

square. On the right (B), we demonstrate the smoothness factors for a chain that begins with point

g0 = {0.01, 0.01}. However, this chain begins to repeat itself for k ≥ 296 (due to the coordinates of

g0). On the left (A), we present two examples of sensors that are located at coordinates of irrational

numbers ({π, π} and {
√
2, π} - modulo 1). These chains do not repeat themselves due to the spacial

characteristics of the irrational numbers (infinite numbers after the decimal point). However, their

smoothness factors only converge for larger k values than the analysis in (B).

The convergence of the smoothness factors, as shown in Figure 5.5, have repeated for any g0 that

we chose. We gave these two examples (rational and irrational) in order to show that the smoothness

factors converge to a constant value, regardless the size of the DSC (for example, irrational numbers

are more likely to produce infinite chains). While for rational numbers the convergence is fast (∼ k =

100), their smoothness factors vary between 0 and 800 (compared with 0 and 300 for irrational).

In this section we analyzed the DSC generally. Our analysis was based on the distribution of

vertices v ∈ V that DSC produces. On the next section our analysis will be based on a discretization

of CW i(s) (Home nodes of v ∈ V). We will analyze the number of sensor nodes that where visited

by DSC. Note that rather than the general results we have presented, a specific analysis would have

be based on specific simulations.

5.5 DSC as a Deterministic “Random” Walk

While DSCs allow sensors accesses to a greater storage capacity, they increase the costs of storage

and retrieval. In other words, as the number of DSC links increases, so does the number of packets that

travel along them. Also, sometimes a DSC cannot locate a sensor with an available storage capacity on
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its first hop. Therefore, as the majority of sensor nodes get their storage capacity depleted, it becomes

more and more difficult to locate sensors with available storage capacity. Intuitively, we would like

to allow a fast allocation of sensors with available storage capacity, in order to reduce storage costs.

In the following simulation, we aim to evaluate the expansion rate of DSC and compare it with some

intuitive bounds. We define the expansion rate of a WSN as the rate that a DSC visit sensor nodes in

S. In other words, we measure the portion of sensors from the WSN that are covered (%Cov) by the

DSCs. As far as we know there are no similar researches with whom we can compare our results.

As we mentioned, not all sensors on the WSN are familiar with each other. Therefore, a sensor

that had its storage capacity depleted should begin exploring the WSN and “search” for other sensors

that can share their storage capacities with it. When the DSC “selects” a sensor that already had its

capacity depleted, we calculate the next link of that chain. In Chapter 4 we discussed the Gabber-

Galil expander graph and the possibilities of implementing it over a geographical target area. In this

section, we describe three different discovery algorithms that we developed, based on that expander

graph. We will demonstrate their performances by simulations. Our goal is to analyze the expansion

rate of these algorithms and integrate the algorithm with the best expansion rate within our storage

management protocol. One of these algorithms is the DSC, given by Definition 7.

As we mentioned in Section 4.3.1, the original Gabber-Galil expander was designed for a discrete

grid network. This graph defines 5 permutations between vertices that represent links (Definition 2)

between sensor nodes. Our idea, for a geographical implementation of the expander graph is based

on these links. Basically we used combinations of these permutations alternately and evaluated the

performance for each combination. One combination that we have already described is DSC, which

uses permutations σ1 and σ3 alternately, or:

α0 = (x, y) → α1 = CW 1(α0) = (x, x+ y) → CW 2(α1) = (2x+ y, x+ y) · · ·

where CW i(x, y) is given by Definition 7. The two other combinations that we will describe contain

the immediate neighbors of a sensor node. Notice that permutations σ2 = (x, x + y + 1) and σ4 =

(x + y + 1, y) (for a discrete M × M grid, Section 4.3.1) refer to the closest vertices in the east

and north directions (from Definition 2). We implemented these close neighbors simply by choosing

the closest sensors on the north and east directions. In other words, these are sensors that shares a

Voronoi edge with the Home Node. We define the sequence 04, as the following four links:

α0 = (x, y) → α1 = CW 1(α0) → α2 = North(α1) → α3 = CW 2(α2) → α4 = East(α3) · · ·
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Notice that just like on DSC, we use these sequence recursively. Therefore, it repeats in a loop:

α4 → α5 = CW 1(α4) → α6 = North(α5) → α7 = CW 2(α6) → α8 = East(α7) · · ·

The difference between sequence 04 and 06 is that we also use close neighbors:

α0 = (x, y) → α1 = CW 1(α0) → α2 = North(α1) → α3 = East(α2) →

→ α4 = CW 2(α3) → α5 = South(α4) → α6 = West(α5) → · · ·

In order to evaluate these sequences, we have developed a simulation on which sets of sensor

nodes explore the WSN by either of these sequences. Sensors create links according to the definitions

above and increment the number of sensors that are connected. We begin our simulation with a

primary component S0 ⊂ S of size |S0| sensor nodes selected uniformly from S. On the beginning

of the simulation (k = 0), each sensor s ∈ S0 initiates its own chain. Then, for 1 ≤ k ≤ 200, each

sensor s ∈ S0 expands its chain by adding one link, according to the sequence that we define: either

04, 06 or DSC. Therefore, on each index k we expand Sk by adding exactly |S0| links (the size of the

primary group S0). However, it is not guaranteed that every link would simply discover new sensors.

As we can see in Figure 5.6, the greater k the more difficult it is to discover new sensors. In Figure

5.6 and 5.7 we show simulation results of different sets of S0 that expand for 1 ≤ k < 200. The

measure Cov reffers to the coverage of sensors (in percents from the WSN) that the group of sensors

S0 archives at every step k. Actually, that is the expansion rate, or the number of sensors that the

“search-functions” discovered in every step k.

Figure 5.6 demonstrate the comparison between the three sequences that we described above

(DSC, 04, 06). Each curve in Figure 5.6 represents a different simulation on which we tested different

sequences. In this figure, we show the expansion rate results for a WSN of size 6400 sensor nodes,

where the size of the primary group S0 is 320 sensor nodes, or 5% of the WSN. We selected a primary

group of 0.05 · n that we choose randomly from the WSN. The idea is to simulate 5% sensors that

discover the rest of the WSN. On Appendix A, Figures A.2 - A.5 we give more simulation results for

various sizes of |S0|.

The OPT curve, in Figure 5.6, refers to a theoretical upper bound for which sensors on S0 discover

exactly |S0| a new sensors at each step k. Therefore, in Figure 5.6, the group S0 discover 320 (Which

are 5%) new sensor nodes at every expansion 0 ≤ k ≤ 200. However, after 20 expansions (5× 20 =

100) we already discover 100% of the sensor nodes (that’s way the curves maintains the value 100

after k = 20 expansions).
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As we mentioned, our DSC is deterministic by definition. Moreover, since our DSC is based

on an expander graph, and since expander graphs are said to offer a good deterministic emulation

of random behavior (Hoory et al., 2006), it is more than expected that we compare our sequences

with the expansion rate of a random model such as random walk. A random walk is defined as a

stochastic process that starts at one node of a graph, and at each step moves from the current node to

an adjacent node that is chosen randomly and uniformly from the neighbors of the current node (Alon

et al., 2008). We define a random walk over the complete graph as a walk (or sequence of vertices

5.3) where we choose each vertex randomly from the complete graph. we define two types of walks:

rID, whose complete graph is the list of all sensor nodes (S) and rXY , whose complete graph is all

the vertices in [0, 1)2.

Both these walks randomly select sensor nodes (or Home-Nodes) at each step k. rID is a walk

that uniformly selects sensors from S. On each step k we choose |S0| sensors from S with a uniform

probability. In other words, each sensor in S0 uniformity selects one sensor from S. Alternatively,

we can view the rID as a coupon collector problem, for each k we select |S0| random IDs, until we

collect all IDs in S. That selection is optimal in term of graph coverage since all sensors have the

same probability to be chosen. Our second walk, rXY uniformly selects points (or locations) from

the unit square. Then we calculate their Home-Nodes (Corollary 1) in order to obtain the selected

sensors. Notice that in this case, sensors do not have the same probability to be visited. Since the

selection is uniform over the unit square, the probability to select some sensor s is proportional to its

region Vor(s). The greater the Voronoi region the higher its probability to be selected. The problem

of different Voronoi cell sizes was also discussed in (Dimakis et al., 2006; Naor & Wieder, 2007).

Both rXY and rID are known to be an efficient “search-functions” on P2P networks (Gkantsidis,

Mihail, & Saberi, 2006). However, since sensors are not aware of the existence of all others, the

implementation of rID in real WSN is impossible. In other words, rID require that all sensors

should be familiar with each other. Thus, the best expansion rate that we may offer is that of rXY .

Recall that since both rXY and rID walks are random, retrievals or reconstructions of these chains

cannot be performed without maintaining path structure. However, as we demonstrate, they serve as

good comparison to DSC.

In Figure 5.6 we compare between all the walks described above for a WSN of size 6400 sensor

nodes, where every walk represents the mean of 200 iterations. Also, we confirmed these results by

simulating different topologies (or uniform deployments of sensor nodes X, Y = U(0, 1)). The first

and maybe the most noticeable observation in Figure 5.6 is that the greater the k the more difficult

it is to find new sensors. All curves begin with a fast expansion rate and as k grows the expansion

rate decreases. We can think about the decreasing rate as the distance from the OPT curve. An

interesting observation is that both 04 and 05 sequences are far from a 100% coverage. They achieve
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Fig. 5.6: Expanding sets simulation for different sequences. Simulations are conducted on a WSN of
size 6400 sensor nodes, where the primary component S0 is of size 320 (or 5%) sensor nodes.

lower expansion rates than the rate of DSC although their sequences make use of more links. That

shows that the close neighbors that we added breaks the expander sequence. We can also observe that

a random selection of sensor nodes rID achieves better results than selecting random geographical

locations rXY . However the most important and remarkable observation is that the DSC and rXY

curves demonstrate the same expansion rate and almost converge. Therefore, this figure confirms the

claim that expander graphs offer a good deterministic emulation of random behavior (Hoory et al.,

2006).
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Fig. 5.7: Expanding sets results: (A) 6400 sensor network (two experiments) for |S0| = 320 and 12
sensors (B) Varied network size.

Figure 5.7 presents the growth rate of |Sj| for different primary group S0 sizes and for different

WSN sizes. We simulated various WSN that are uniformly deployed over the unit square for various
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network sizes n. On the left side (A), we present two experiments WSN of size n = 6400 sensor

nodes. In this figure, there are two groups of curves, the upper group referees to an experiment where

the size of S0 is 5% of the WSN size (|S0| = 5%n = 320). The lower group of curves refer to an

experiment where the size of S0 is ∼ Log2(n) (|S0| = Log2(n) ⋍ 12).

On Figure 5.7 we compare the random models only with our DSC. Notice that the OPT curve

for S0 = 12 sensors, in this figure, does not reach a 100% coverage. That can be explained as the

maximal number of sensors that can be selected for k = 200 steps is 12 · 200 = 2400 = 37.5%. That

explains why all the curves for the Log2(n) experiments are below. An important observation is that

as the WSN coverage is low, or when there are large amount of sensors that where not discovered,

the efficiency of DSC is very similar to that of the random models rXY and rID. That observation

can be seen on the beginning of the 5% curve, and even better, along the Log2(n) curve. From the

5% curve we can learn that up to ∼ 80% of the WSN coverage, the expansion rate has an almost

linear growth. The remaining 20% are characterized by a much slower rate. On Appendix A, Figures

A.2-A.5 we can see that this characteristic repeats for different WSN sizes.

On Figure 5.7 (B), we fixed |S0| = Log2(n) and plotted all the results from Appendix A on a

single graph. In this graph we compare only between rXY and DSC for a variable network size n

(50-6400 sensors). We can see that these two curves converge for every n value. Therefore, we may

say that DSC scale with the network size.

Figure 5.7 clearly shows that the results of the DSC deterministic routing algorithm is close to

those of rXY . Moreover, our experiment shows that the same DCS behavior repeats for varied

h = |S0| and varied network sizes. Note that the great advantage of a deterministic walk is that it

can be predicted. Therefore, sensors do not have to maintain or retrieve chain structures in order to

retrieve all their events along the DSC. We title our DSC as a Deterministic “Random” Walk since it

visits sensor nodes like a random walk over the geographic target area, while having a deterministic

and explicit construction. Therefore, we claim that DSC may be considered to have an efficient

deterministic expansion rate. The property of imitating a random behavior by a deterministic process

(walk) is one of the main impacts of our work.
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Chapter 6

Traffic Model

“Whenever a system becomes completely defined,
some damn fool discovers something which either
abolishes the system or expands it beyond recognition”

Edward A. Murphy (1918 - 1990)

Many research papers in the field of WSN assume that events are generated uniformly on the

target area (Heinzelman et al., 2000; Ratnasamy et al., 2003; Silberstein & Yang, 2007). In other

words, they assume that the probability for some sensor to sense events is equal in all regions at any

given time. Therefore, energy, storage and communication resources (Heinzelman et al., 2000) are

consumed equally by all the sensors while the WSN is deployed. However, in real WSN environment

this may not be practical (Hung-Yu et al., 2005). One example, that we have already demonstrated

(Section 3.5), is a WSN application for wildlife detection. In that example, sensors are deployed

in field and monitor the habits of animals. As we showed, some regions (e.g., rivers) attract more

animal than others. Therefore, sensors were deployed in these regions are subjected to more events

than others. We call these regions, hot-spot regions and we call the sensors that are located in these

regions, hot-spot sensors. Therefore, hot-spot sensors are expected to work more intensively than

others. Their consumptions of energy, storage and communication are of higher levels.

In this section, we develop a traffic model for WSN that considers the heavy load from hot-spot

regions. We analyze and study an event generation model that considers the traffic load from hot-spot

regions. Later in Chapter 8, we will use this model for simulations and analysis.
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6.1 Lifetime of a WSNs

Network lifetime is a critical key characteristic in the evaluation of every WSN (Dietrich &

Dressler, 2009). Sensor nodes are placed out in the field and might be left unattended for months

or years. On the design of WSN, it is very important to define the period of time that sensors may

be left unattended. Then, the resource capacities of every sensor node should be designed to meet

the needs of the WSN. Generally, the lifetime of a WSN is the period of time on which it can oper-

ate, while achieving its goals. Maybe the most important factor for the evaluation of WSN lifetime

is the energy supply. Each node must be designed to manage its local supply of energy as efficient

as possible in order to maximize the total network lifetime (Dietrich & Dressler, 2009). However,

sometimes it is more efficient to adopt a global management, where sensors share their resources in

order to achieve a network optimization. Accordingly, a great number of algorithms and methods

were proposed to increase the lifetime of WSNs in terms of energy (e.g., (Hung-Yu et al., 2005; Wu

et al., 2008; Silberstein & Yang, 2007; Heinzelman et al., 2000), etc.).

There are many ways to define the network lifetime, or the time that a WSN can operate. Basically,

the definition is dependent on the WSN application and the way it is used. In this section, we will

show the most common definitions for the lifetime of a WSN (Dietrich & Dressler, 2009):

Number of alive sensor nodes. This definition is the most common on the literature. According

to this definition, the network lifetime last until the first sensor node fails. This definition is very

critical for real time application. For example on cross border detection, if a cross border occurred

on a region of the unique sensor who failed, the entire WSN fails to its mission. However, most

cases allow several sensors to be malfunctioned due to multiple region coverage. The number of

malfunctioned sensor should be defined carefully as we will show on the next definitions.

Sensor coverage. Suppose that only a finite set of target points on the target area are essential

for monitoring goals, the corresponding coverage problem is called target coverage. There are two

approaches for the target coverage problem. The first requires that only a percentage α of the region

should be covered by at least one sensor (α-coverage). The second approach requires that regions of

interest should be fully covered by at least k sensors (k-coverage).

Connectivity. This definition regards the ability of sensors to communicate between themselves

within the WSN. That could be measured by the size of the connected component of sensors (per-

centage of the entire WSN). For example, on many-to-one WSN, we may define connectivity as the

total number of packets that could be transmitted to the sink station. In that case, a sensor that cannot

transmit to the sink station does not fulfilled the WSN goals.

In this work we investigate the ability of a WSN to store events. We assume many-to-many WSN

configuration (see Section 3.3) where communication costs between sensor nodes are lower than

the communication with the sink station (Hung-Yu et al., 2005; Heinzelman et al., 2000). Therefore,
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sensors that are located on hot-spot regions and have their storage capacity depleted, can communicate

with their neighbors (or initiate a multi-hop session to a distant sensor) in order to share their storage

capacity. Therefore, we define the lifetime of our WSN to last as long as sensor nodes can store events

within the WSN.

Notice that we have not yet discussed the retrieval of events. Since we defined the WSN lifetime

to last as long as sensor nodes can store events, an important information that is still missing regards

the method that those events can be restored. We consider following three cases. First, an end user

can send a data request from a specific sensor’s region. On that case, the responsible sensor initiates

a GET message that travels along the DSC, collects all the events that were stored by the sensor and

transmit them to the end user. Second, events can be retrieved by data mules (Luo et al., 2007).

Basically, data mules are a sort of a mobile sink station that reaches the target field and communicate

very close to the sensor nodes. They wirelessly collect data from encountered nodes and dump these

data later to the base station. The third method is physically, collecting the sensors.

6.2 Model Description and Parameters

Let S be a set of sensors where n is the size of the WSN (|S| = n is the number of sensors).

We select a set of sensors HS ⊂ S where |HS| < n to be hot-spot sensors (see Section 8.8 for

more information about methods to select the locations of HS sensors). By definition, these sensors

generate more events than they can store. In other words, let M be the storage capacity of a sensor

node (number of events that it can store), a hot-spot sensor s ∈ HS is a sensor that sense, with a high

probability, more than M .

Since every sensor has a storage capacity M , the overall WSN capacity is defined as n ·M i.e., the

maximum number of events that all the sensors can store together in total. We define a discrete time

Ti that represents the generation of events. Therefore, given n sensors, each with M storage capacity

units, Ti is defined as: 0 ≤ Ti ≤ n · M (generation of all possible events that the WSN can store).

At every time Ti, one event exactly is sensed by a unique sensor node and stored immediately. We

set the probability for an event to be sensed by a HS sensor as p and to be sensed by a regular sensor

(non HS) as (1− p).

Figure 6.1 presents the discrete time-line 0 ≤ Ti ≤ n · M . At every discrete time Ti, an event

can occur on the region of a HS or regular sensor. Notice that within these two groups we select the

sensor that actually sense and store the event, with a uniform probability. We use the parameter γ

(0 ≤ γ ≤ 1) to represent the percentage of total storage that was consumed by the entire WSN on

the discrete time TγnM . For example, γ = .8 refers to the discrete time Ti where 0.8 · nM events

occurred, or 80% of the WSN storage capacity should be occupied. We observe the WSN on different
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Fig. 6.1: Generation of events.

time clocks TγnM in order to study its statistics. In Table 6.1 we present all the parameters that are

used to describe our traffic model in this section. We also show the values that we will use in Chapter

8 for simulations.

Parameter Meaning Used Values
n Network Size 50 ≤ n ≤ 6400
M Memory Units 100
HS HS sensors 1, Log(n), 5%, 10%
p HS prob. 0.6 ≤ p ≤ 0.85
γ Overall consum. 0 ≤ i ≤ 1

Tab. 6.1: Parameters for the traffic model.

We uniformity select |HS| sensors from |S| to be hot-spot sensors (non-uniform selection will be

discussed in Section 8.8). However, we must guarantee that these sensors would generate more events

than non-hot-spot sensors at each observation time TγnM . Equation 6.1 describes the condition on p

that guarantees for HS sensors to generate more events than regular sensors. We compare between

the average number of events that each group of sensors detect until some discrete time TγnM , when

γ · nM events have already occurred. This equation shows that the relation between the size of the

hot-spot group and the total size of the WSN should be lower than the parameter p:

γ · n ·M · p
|HS| >

γ · n ·M · (1− p)

n− |HS|

p(n− |HS|) > |HS|(1− p) (6.1)

p >
|HS|
n
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We chose to represent the occurrence of events on a discrete time from considerations of simpli-

city. However, notice that by applying any kind of distribution to the interval between two events, we

change the characteristic of the traffic. For example, if we choose a negative exponential distribution

between every two discrete time clocks on, we get a Poisson process for the arrival time of events

(Papoulis & Pillai, 2002). However, in this work we aim to investigate the WSN lifetime in terms of

storage, or the ability of the WSN to sense and store events. Therefore, we consider our time-line as

the current amount of storage used by the WSN.

6.3 A Stochastic Problem

We intend to relate the WSN lifetime with the storage consumption. To do that, we need to

calculate the discrete clock Ti where the first sensor gets its storage capacity depleted. Actually, in

order to find Ti we need to calculate the expected time, on which the first sensor s generated exactly

M events. In this section we will give a general solution for the case where every sensor has a different

probability to sense an event. In order to make the problem more intuitive, we make an analogy to a

game of cards with n players.

We consider a simple game of cards with n players. On each round i each player has its own

probability to win. The probabilities for players to win a round are p1, p2, p3, . . . , pn. Moreover, it is

guaranteed that exactly one victory occurs on each round since p1 + p2 + p3 + · · ·+ pn = 1. The first

player who manages to accumulate M victories wins the game.

Observation: The player who wins the game should accumulate M − 1 victories until round

i − 1. The order for these M − 1 victories is not important. Also, this player must win the last

round. Let p1, p2, p3, . . . , pn represent the victory probability for every player respectively and let

k1, k2, k3, . . . , kn represent the number of victories each player has accumulated. The probability for

a player to win (M − 1) rounds form (i− 1) rounds in total is a Multinomial probability (Papoulis &

Pillai, 2002). For this multinomial probability, we consider the following:

1. p1 + p2 + p3 + . . . pn = 1 - A complete probability (valid for all multinomials).

2. k1 = (M − 1) - We fix the first player (for example) to be the winner. Therefore, this player

should accumulate exactly (M − 1) victories until round (i − 1). Its coefficient k1 should be

set to k1 = (M − 1).

3. k1 + k2 + k3 + . . . kn = (i − 1) - The sum of all the coefficients k1, k2, k3, . . . , kn should be

equal to (i− 1). Remember that we calculate the multinomial distribution until round (i− 1).

4. k1, k2, k3, . . . , kn ≤ M − 1 - This constrain is important to guarantee that no player wins until

round (i − 1). Note that we assume that the first player (with probability p1) wins at the last

round (round i).
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We want to calculate the probability for player 1 to win the game on round i. The binomial that we

described above gives the probability for this player to accumulate M − 1 victories while no player

wins. Therefore, we should multiply that probability with p1 on the last round in order to obtain the

probability for that player to win. In other words, we calculate the multinomial probability of that

player to win in M − 1 rounds until round i− 1 and multiply the result by the probability for him to

also win the last round (round i):

p(Player1 wins on round i)=

∑

M−1+k2+k3+k4+···+kn=i−1
k2,k3,k4,...≤M−1

(

i− 1

(M − 1)!k2!k3k4! · · · kn!

)

p1
M∗ · p2k2 · p3k3 · p4k4 · · · pnkn (6.2)

M∗ Explenation. Actually, we should put pM−1 inside the multinomial, because the multinomial

represents the probability of player 1 to accumulate M − 1 victories. However, as we mentioned we

should multiply the result by the probability of player 1 to win the last round. Therefore, we can put

the constant p1 inside the multinomial as in Equation 6.2: p1M∗ = p1
M−1 · p1 = p1

M

To validate our calculations we give an example of four card players that have the following

round-victory probabilities: p1 = 0.4, p2 = 0.4, p3 = 0.1, p4 = 0.1. Also, we fix M = 40 as

the condition to win the game. First, we calculate the multinomial distribution for player number 1

(Equation 6.2) to win on round Ti, M ≤ i ≤ nM − n + 1. Explanation, before i = M no player

can accumulate M victories (i < M ). Also, nM − n is the last round on which it is possible for all

players to accumulate M − 1 victories (no one wins). Therefore, on round nM − n + 1 one player

must win. In Figure 6.2 we compare simulation results with Equation 6.2.

If we think in terms of sensor nodes again, our question is: what is the probability for sensor s1 to

accumulate M events on the discrete clock i. Therefore, Equation 6.2 solves the probabilities for s1 to

get its storage capacity depleted on every round i. However, if we like to calculate the probability of

sensor s2, we can simply switch between the probabilities p1 and p2 of sensors s1 and s2 respectively.

6.4 Expected Number of Event Sensed by Regular Sensors

As we will show later, there is a significant importance to the number of events that are sensed by

non-hot-spot sensors. Generally, we defined hot-spot sensors as sensors that are located on hot-spot

regions, which generate more events than a single sensor can store. Accordingly, sensors that are

located on non-hot-spot (or regular) regions are subjected to fewer events than their capacity. In other

words, their storage is not utilized entirely. We would like to maximize the utilization of their storage
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Fig. 6.2: Simulation results versus lifetime PDF (Equation 6.2) for a {0.4, 0.4, 0.1, 0.1} configuration.
The points represent probability from simulations and the curve is calculated analytically (Equation
6.2).

by allowing them to share their storage capacity. However, it is important to define the amount of

storage that every sensor may share. For example, if a sensor shares its entire storage capacity, that

sensor takes the chance of getting its entire storage capacity depleted before it generate a single event.

Moreover, since sensors cannot know if they are located on hot-spot regions before they have their

storage capacity depleted, it is extremely important to define how many storage units a sensor may

share, before its is deployed on the target area.

In this section we will give a simple analysis that can help to determine the amount of storage that

a sensor should share. Let Ti be a discrete time on which we observe the WSN, where i = γ · n ·M
events were already generated. We may deduce that on the average case:

• γnM · p - events were generated by hot-spot sensors.

• γnM · (1− p) - events that generated by non-hot-spot sensors.

In order to obtain the mean number of events sensed by regular and hot-spot sensors at the discrete

time Ti, we can simply divide the values that we calculated above by the number of regular and hot-

spot sensors respectively. However, as we will show in this section, it is important to analyze the

distribution of events that are sensed by non-hot-spot sensors. That way, we can study the behavior

of these sets of sensors and set our decision, based on the entire set.

We need to construct the probability function for the number of events sensed by a regular sensor

node. Let p be the probability that a hot-spot sensor senses an event, let n denote the total number
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of sensors and HS be the number of hot-spot sensors. Also, remember that once a regular event

was sensed, it is distributed uniformly between all regular sensors. Therefore, we can calculate the

probability pR for a regular sensor to sense an event at any time Ti as:

pR =
1− p

n− |HS| (6.3)

We may think about the process of generating events as a binomial distribution. A sensor may

generate an event with probability pB, or not generate an event with probability (1− pB). Therefore,

the probability for some regular sensor s to sense exactly k events for some discrete time Ti can be

calculated according to the binomial distribution B(k; i, pR). Let i = γ ·nM be the number of events

that occurred until discrete time i and let pR according to Equation 6.3, the probability for a regular

sensor to sense k events exactly is given by Equation 6.4:

B(k; γ · nM, pR) =

(

γ · nM
k

)

(
1− p

n− |HS|)
k · (1− 1− p

n− |HS|)
γ·nM−k (6.4)
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Fig. 6.3: Comparing event generation of regular sensors with the binomial distribution.

In order to demonstrate this equation we conducted a simulation on which n = 50, |HS| = 5,

p = 0.8, M = 100 and γ = 0.8. We generated γnM = 4000 events and distributed them between the

sensors according to our traffic model. Then, based on the results, we calculated a histogram for the

probability of regular sensors to generate k events. We repeated this simulation 1000 times. In Figure

6.3, we compare between the simulation results and Equation 6.4. It is very clear that the binomial
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distribution represent our results. Moreover, this figure depicts that the mean number of events a

regular sensor generates matches the mean that we demonstrated above γnM ·(1−p)
n−|HS| = 17.8. However,

we can also observe that many regular sensors generate more events than their mean values. Some

regular sensors even generate more than 33 events. According to Figure 6.3, we should consider the

binomial distribution (its mean, variance and standard division) in order to define how much storage

capacity a sensor may share.

HS=13

HS=9

HS=5

HS=1

10 20 30 40
k

0.02

0.04

0.06

0.08

0.10

BHk;4000,0.8L

p=0.8
p=0.65

p=0.7

p=0.75

10 20 30 40
k

0.02

0.04

0.06

0.08

0.10

BHk;4000,pL

(A) (B)

Fig. 6.4: Binomial distribution of events by regular sensors (Equation 6.4). Varying the number of
HS sensors and the probability p.

In Figure 6.4 we vary the parameters HS and p from Equation 6.4 in order to study how they

affect the distribution of events per regular sensor. As we can see, incrementing the HS probability

p results in a shift of the mean to the left and reduction in the variance (the gaussian shape becomes

more narrow). Reduction in the number of HS sensors, results also in shift of the mean to the left and

reduction in the variance. In Equation 6.5 we give the mean and variance values of events generated

by non-hot-spot sensors according to the binomial distribution:

E[B(k; γ · nM, pR)] = γ · nM · 1− p

n− |HS|

V AR[B(k; γ · nM, pR)] = γ · nM · 1− p

n− |HS|(1−
1− p

n− |HS|) (6.5)

According to these equations we can explain the behavior of the graphs in Figure 6.4. As we

increment the probability p, the expected value of events decreases (shifted left). Incrementing the

number of hot-spot sensors reduce the denominator (expected value) and causes a right-shift. Also,

from the Variance equation we can study how the Gaussian bell becomes narrow as we increment the

value of p.
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6.5 Number of Hot-Spot Events and Expected Lifetime

Equation 6.4 describes the binomial probability for a regular sensor to sense exactly k events from

γ · nM (the total amount of events on time of observation γ). In the same way we can develop the

binomial probability for a hot-spot sensor to sense k events on a γ observation time as:

B(k; γ · nM, pHS) =

(

γ · nM
k

)

(
p

|HS|)
k · (1− p

|HS|)
γ·nM−k (6.6)

In this section we will develop an expression for the expected time, on which a HS sensor senses

exactly M data units. In order to calculate the probability of a hot-spot sensor to sense exactly M

events, we need to change the parameter k in equation 6.6 to M :

B(k; γ · nM, pHS) =

(

γ · nM
M

)

(
p

|HS|)
M · (1− p

|HS|)
γ·nM−M (6.7)

Note that Equation 6.7 calculates the probability of a hot-spot sensor to sense M events on a discrete

time γ · nM . Also, notice that our variable in that equation is γ (and not M ). Therefore, similar to

Section 6.3 we can vary the discrete time and find a γ that maximizes the probability for a hot-spot

sensor to generate M events. Actually, what we want to do is to shift the Gaussian bell (Figure 6.4) to

a position where its mean value (which is the maximum probability) receives the value of M events.

E[B(k; γ · nM, pHS)] = γ ·Mn · p

|HS| (6.8)

That is, by changing the coefficient of the binomial γ ·nM . Equation 6.8 describes the mean value

for the binomial (and therefore for all values of k). Our goal is to compare the expected value with a

value of M events:

γ ·Mn · p

|HS| = M

γ · n · p

|HS| = 1 (6.9)

γ =
|HS|
p · n
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Therefore, the discrete time where the first hot-spot sensor depletes its storage (or sense exactly M

events) is γ = |HS|
p·n . This discrete time Ti is for i = γnM or i = |HS|·M

p
. Two important observations

should be put in place here:

1. Since we deal only with two probabilities and since pR < pHS, it is more likely that a hot-spot

sensor would be the first who depletes its storage capacity. Therefore it is enough to calculate

only the expected time of an hot-spot to generate M events.

2. After the discrete time i = |HS|·M
p

the entire system changes. That is due to the fact that the hot-

spot sensor, who had its storage capacity depleted, contributes its probability to store an event

to a sensor with available storage capacity. In other words, the probabilities p1, p2, p3, . . . , pn

(Section 6.3) are changed (two probabilities merge together).

6.6 On the Lifetime of a WSN in the Literature

WSN’s lifetime is usually mentioned in the literature in the scene of energy consumption. For ex-

ample, Wu et al. (Wu et al., 2008) estimate the expected lifetime when coverage holes begins to form,

due to energy exhaustion. Similarly, (Hung-Yu et al., 2005) define the WSN lifetime according to

coverage holes and prolong the WSN lifetime by deploying more sensors over this regions. However,

in our work the WSN lifetime is considered in the scene of storage. In other words, our protocol begin

to construct DSC from the discrete time Ti where the first sensor had its storage capacity depleted

(Section 6.5). Therefore, our goal is to prolong the WSN lifetime up to the discrete time where it

is impossible to store farther events. Notice that although we define the WSN lifetime as due to the

storage resource, other resources may affect the WSN lifetime as well.

As we mentioned in Section 6.1 there are many ways to define the WSN lifetime (number of alive

nodes, sensor coverage, connectivity, etc.) (Dietrich & Dressler, 2009). Moreover, the WSN lifetime

depends on all the available resources and not only on the resource that we try to optimize (storage

in our case). Therefore, depending on the WSN configurations, lifetime might be affected by other

resources. For example, while we simulate storage consumption in WSN, its lifetime might also be

affected by the energy consumption. In other words, the WSN might create coverage holes or have

connectivity problems even before the entire storage capacity was depleted.

Our work defines the WSN lifetime as function of storage consumption from 0 to nM events.

In other words, we analyze the storage consumption and its implications, based on the limits of

the storage resource. Energy constrains can be considered on top of our storage analysis. Thus,

our analysis can be used to define the battery capacity that is needed in order to maintain the WSN

effective up to a given lifetime (discrete time Ti). Alternatively, given a specific battery configurations,
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we can use our analysis in order to calculate the expected WSN lifetime. Liao et al. (Liao & Wu,

2008) analyze their WSN protocol similarly. They define a storage management sachem for WSN

and simulate the utilization of storage up to an energy limit in magnitude of 1000 ·106nJ (Liao & Wu,

2008). In other words, they fix the battery configuration and analyze their protocol performances up

to that point. Our analysis is more general, in the scenes that it can be interpret for any given energy

limit.



Chapter 7

DSC Protocol

“If I have seen further it is only by
standing on the shoulders of giants”

Isaac Newton (1643 - 1727)

In this section we describe our distributed protocol for storage management in WSN. Our protocol

optimizes the utilization of the network’s overall storage capacity. Although we achieve an overall

optimization, our protocol is designed to run locally on each individual sensor node. By locally, we

mean that a sensor node should only be aware of its location and the length of its own DSC. Moreover,

a sensor that is asked to store an event from another region should be able to calculate the next DSC

link, if necessary.

Generally, our protocol can be thought as a simple abstraction that runs at each sensor node: If

possible store locally else store forward. Our protocol implements the store forward abstraction both

for events recorded by the sensor node and events that were directed to it. We begin with a high-level

description of the two basic sessions, STORE and RETRIEVE, in order to demonstrate the distributed

nature of our protocol. Later, in Section 7.4, we discuss low-level mechanisms, which drastically

improve the performances of our protocol.

7.1 STORE

Whenever a sensor that already had its storage capacity depleted wishes to store an event, it

addresses the last link of its own DSC chain (EOC - End Of Chain). Note that every sensor in its

preliminary state begins with a zero length chain who’s EOC is the sensor itself. If the sensor that is

located at EOC have also depleted its storage capacity, we add a new link to the DSC that replaces the
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Fig. 7.1: PUT message searching for available storage capacity.

former EOC. The STORE session consists of two types of messages: PUT messages that seek for a

sensor with available storage capacity and ACK messages that are sent back in the end of a successful

STORE session.

Algorithm 1 PUT(gk, k, gen, data)
If FreeStorage(data) Then

StoreLocally(data)

send ACK(gen,k)

Else send PUT(CW k+1(gk), k + 1, gen, data)

The pseudo code in Algorithm 1 describes a PUT message that was received by sensor s. This

message contains the geographical address (x, y coordinates) gk that is located within the region of

sensor s (s = HomeNode(gk)). k is the link index of the DSC Ck(s) (Definition 7). It also contains

the geographical address gen of the sensor that is responsible for the overflowed events data (the

sensor who initiated that chain is responsible for the gen address). Whenever a sensor that had its

storage capacity depleted has to store data, it issues a PUT message to its EOC. The sensor that

receives a PUT message can either store it locally or store forward:

• If s has already depleted its storage capacity, it will increment the DSC by sending the same

PUT message to the next link. Note that although the DSC was initiated by gen, s can easily

calculate gk+1 locally, without consulting gen.

• If s can store the data, it sends an acknowledgment to gen that contains the chain length k.

Notice that k is updated recursively. Therefore, gen can update its chain size k and EOC

address. When a new data is sensed, the gen sensor would address it directly to its new EOC.

Notice that the last line Algorithm 1 is recursive. Therefore, each time that the PUT message is

reissued, the parameters gk and k are recursively incremented. Figure 7.1 demonstrate a PUTmessage
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Fig. 7.2: The Voronoi diagram for a set of sensor nodes, DSC starting at s, C3(s) = (s33 =
g0, g1, g2, g3) and the DCS (s33, s7, s25, s27).

that is sent from the EOC to other sensors and increments the DSC length. This figure shows how the

parameter gk is incremented until the data is stored and an ACK message is sent back.

7.2 RETRIEVE

As we mentioned in Chapter 3, sometimes on many-to-many WSN an end user wishes to retrieve

some information from within the WSN. When a user wants to RETRIEVE all the events from a

specific sensor gen, we route GET messages along its DSC. Sensors that are included on that chain

and contain data that was originally sensed by gen, retrieve that data back to the user.

Algorithm 2 GET(k, gk, EOC, user)
If DataExist(gen) Then

Send data to user

If (gk 6= EOC) Then

send GET(k + 1, CW k+1(gk), EOC, user)

Algorithm 2 describes a GET message, received by sensor s. This message contains the current

k index of the chain, where gk is a geographical address that is located within the region of sensor
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s (s = HomeNode(gk)). It contains the EOC address, where the RETRIEVE session stops. It also

contains the user’s address for retrieval. A sensor that previously stored data, originally sensed

by gen, would retrieve that data to the user. In addition, if the current gk geographical address is

different from the EOC, another GET message is recursively sent to the next DSC link.

Note that our protocol does not require any initialization or change in hardware. Moreover, since

DSC is deterministic, it is used both for tracking available sensors and for retrieving the distributed

data, by reconstructing those chains. Fig. 7.2 illustrates a DSC of length 4, starting at s. Note

that {g1, g2, g3, g4} and {s1, s2, s3, s4} suites the link CW i(s) and its discretization Home(CW i(s))

respectively. Let C3(s) = (s, g1, g2, g3) where g1 = CW 0(s), and g2 = CW 1(g1) = CW 1(CW 0(s)),

etc. DSC denotes the discrete set of sensors for this walk is (s, s1, s2, s3) where Home(gi) = (si)

(Corollary 1, GPSR protocol Section 5.1).

7.3 Examples for STORE and RETRIEVE Sessions

In Figure 7.3 we demonstrate the STORE and RETRIEVE sessions, using practical examples. In

Figure 7.3 (A) we describe a STORE session, where data cannot be stored by the sensor who sensed

it. Specifically, we describe an event A that was sensed by sensor s1 that already knows g1 (its EOC

points on g1). Therefore, s1 sends its data to its EOC. Notice that sensor s4 is Home-Node for

the geographic location g1. In this scenario, since s4 has already got its storage capacity depleted, it

continuous and sends the packet to the next link on the DSC (of s1). s4 can obtain the last geographical

address and the number of link from the packet it received (g2 and 2). Therefore, it calculates localy

the point g2 = CW 2(g1) (Definition 7). Since the Home-Node for s5 = HomeNode(g2) has an

available storage capacity, it stores the data for sensor s1. Moreover, s5 sends acknowledge to s1

indicating that the current length of the chain is now 2 links. Therefore, s1 would send its upcoming

events directly to its EOC = g2.

In Figure 7.3 (B) we describe a retrieval session. On this session, an end user accesses a specific

region (the region of sensor s1) in order to study all the events that took place there. Since not all

events sensed by s1 are stored on its local memory, it initiates a RETRIEVE session which passes

through all the sensors with the data that was previously sensed by s1. s1 has its current chain of

length (2) links and the last geographical address (EOC = g2). These details are added to the get

packet. Sensor s4 who is Home-Node to the first link, understands that there is another link in that

chain (the chain ends on g2). Therefore, it continuous the retrieve session by re-sending the GET

packet to the next link on the DSC. Finally, the packet reached the EOC (s5) who responds directly

to the end user. Since an end user is not involved in the retrieve session, these GET messages are

transparent to him.
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(A) (B)

Fig. 7.3: (A) STORE Session. (B) RETRIEVE Session.

7.4 Protocol Extensions

We began this chapter with a high level description of our protocol in order to allow the reader an

intuitive understanding of our distributed storage model. In this section we discuss some additional

low-level mechanisms that were not covered in the previous sections. These mechanisms can be used

to reduce DSC costs and enhance our protocol performances:

Local Storage Consumption (LSC): A WSN contains sensors that produce more data than they

can store locally. Since these sensors would have their storage capacity depleted at an early stage (see

Section 6.1), they would have to construct DSC in order to store their overflowed events. As a result,

these sensors will occupy the storage capacities of regular sensors. That may lead to a situation, in

which a regular sensor would have its storage capacity depleted even before it has sensed any event.

In order to prevent from regular sensors to also construct DSC, we assigned a fraction of the sensor’s

storage capacity only for a Local Storage Consumption (LSC). LSC is reserved only for local events

and can’t be used by any other sensors. As we will show in the next chapter, the size of that parameter

plays a major role in our simulations.

Inactive Links: Each time that a DSC link addresses a sensor that already had its storage capacity

depleted, our protocol waste important energy. Although we cannot prevent energy waste during the

construction of DSCs (PUT messages), we can skip those links when a GET query is issued. To do

this, a sensor that had its storage capacity depleted may keep a binary vector b = {0, 0, 1, 0, 1, ...}
of length k where the zeros represent inactive links. We use this extension to differentiate between

the STORE and RETRIEVE sessions (Section 8). In other words, while the cost of a STORE session

takes under considerations links that connect with unavailable sensors, the RETRIEVE session may

consider only the link to sensors that really stored events (successful PUT messages).

Early notice: Let st be the EOC of some sensor si and suppose, that st has only one data unit left
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in its storage capacity. When si sends an event to be stored in st, st would have its storage capacity

depleted immediately after it stores the event from si. Therefore, st can send its ACK to si with a new

chain length k + 1. Thus, si will not address st anymore. Instead it will send its additional events to

the next link of its DSC.

Familiarity with the region: Note that packets are sent to a geographical address that lies on a

Home-Node regions. Therefore, a packet would have to encircle the Home-Node region in order to

determine which sensor is the closest to the destination address (see Section 5.1). Also, according

to our protocol a sensor that had its storage capacity depleted will continuous sending its overflowed

events to the same sensor. We suggest a mechanism that reduces the transmit costs for encircling the

Home Node region. Note that according to Corollary 2 this operation has a constant cost, since the

packet travels six hops in average (there are six neighbors in average to each sensor node). According

to our suggestion, the first packet that encircles a Home-Node region could inform it with the locations

of its close neighbors (some close neighbors can be out of the Home-Node’s communication range).

A Home-Node, who received the first packet which was directed to its regions, can study all its close

neighbor locations. Therefore, when it receives a new packet, the home node can calculate if the

geographical address is within its region or not. That way we can save a lot of energy.
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Simulations

Deep thought: “. . . a computer of such infinite
and subtle complexity that organic life itself
shall form part of its operational matrix . . . ”

Douglas Adams (1952 - 2001)

In this chapter we describe a set of experiments that we have conducted in order to evaluate the

efficiency of our protocol (Chapter 7). Earlier, in Section 5.5 we have shown, through specific simu-

lations, the performances of our Deterministic “Random” Walk. We showed that we have developed

a walk (Section 5.3) that can be used in order to “sample” the unit square, or to locate sensor nodes,

with the same efficiency as a random selection of geographical locations x, y = U(0, 1) with a uni-

form distribution. Since the core of our protocol is the deterministic “random” walk, our analysis,

presented in this chapter, is oriented towards the performances of that walk. We set out to evaluate

two basic metrics, STORE and RETRIEVE. The metric STORE refers to the number of PUT messages

that are sent by the protocol in order to store overflowed events from sensors that had their storage

capacity depleted. Note that without the use of our protocol, the WSN would have a much shorter

lifetime (Section 6.1). In other words, overflowed events would have been dropped and their data

was lost. RETRIEVE is the number of hops that a GET message has to travel in order to collect all

the events that were sensed by a specific sensor. For a more profound understanding of the difference

between STORE and RETRIEVE costs, see Section 7.3. The simulations described in this section are

based on the traffic model that we have developed in Chapter 6.

77



78 Simulations

8.1 Motivation and Related Works

As we mentioned on the introduction, there are numerous works in the area of resource aggrega-

tion (Silberstein & Yang, 2007; Dimakis et al., 2006; Hung-Yu et al., 2005; Ratnasamy et al., 2003).

However, very little is known about pure resource aggregation. By pure, we mean that the suggested

scheme should allow a general aggregation model, rather than a solution for a specific case. The prob-

lem with specific cases is that they cannot consider all the possible scenarios. Therefore, there would

simply be some scenarios, for which the resource aggregation model cannot support. In this work

we suggest a novel storage aggregation model that aggregates the entire storage capacity on WSNs

in a more pure way. In this section we will describe some related works that implement resource

aggregations. We will demonstrate their differences on the design level from our work and give some

motivation to our work.

Various works concern energy optimization. They consider the power consumption either as a

local problem (within individual sensor - e.g. when it is active) or as a global optimization problem

within the whole network. An example to the last is the work on energy holes (Wu et al., 2008).

This work tries to solve the problem of high energy consumption on sensors that suffers high traffic

load. They call those sensors that had their energy capacity depleted “energy holes” because they

form coverage holes that cannot be tolerated on WSN applications. Their work is based on many-

to-one WSN, where sensors communicates with a base station (sink). Therefore, sensors that are

closer to that sink station observe a heavier load towards it and, therefore, are at risk of having their

energy capacity depleted earlier than more distant sensors. However, thier research does not provide

a solution to random energy holes that may be far from the sink station.

Ratnasamy et al. (Ratnasamy et al., 2003) suggest a data centric model that allows data aggrega-

tion on WSN. Generally, their work implements a distributed data structure within the WSN, which

is used to aggregate both communications and data resources. Data with the same general name (e.g.,

elephant sighting) is stored on a specific sensor. They use a Geographic Hash Table (GHT) to hash

events names into a geographical addresses. Similarly to our Continuous Discrete Approach (Sec-

tion 4.4), they associate the continuous geographical address space with sensor locations. Therefore,

queries for a specific information are sent directly to a hosting sensor without flooding the WSN. On

their model, sensors are communicating within themselves in order to deliver events to their hashed

locations. Unlike storage aggregation, data aggregation is based on the type of events that would be

sensed. However, they do not pay attention to hot-spot environments and their implications on GHT.

Finally, Liao et al., (Liao & Wu, 2008) developed a storage management model for WSN which

is oriented towards the GHT protocol that we described above. Since GHT direct events of the same

type to a hash location within the region of a sensor node, there is a risk that hot-spot events would

cause sensor nodes to get their storage capacity depleted. Their solution is that a sensor, which had
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its storage capacity depleted, should set its location to {∞,∞}. That way, events are directed to the

available sensors that are close to the hash location. The problem with their model is that although it

provides a solution to the storage problem, creates coverage holes close to the hash locations. Note

that the sensors that share their storage in that case are inside the hot-spot region or very close to it.

An interesting contribution of their work is the multiple threshold mechanism that is different from

our LSC (Local Storage Consumption) approach. According to their mechanism, a sensor that had

its first storage threshold depleted should direct its events to its neighbors. When the majority of

sensors had their storage threshold depleted, they decide together to use the next threshold level.

8.2 Configurations

In order to simulate our protocol, we have developed a WSN simulator under the Wolfram Math-

ematica 7 environment. For technical information about our simulator see Appendix B. We simulated

WSNs of sizes n = 50, 100, 200, 400, 800, 1600, 3200 and 6400 sensor nodes. For each network

size we simulated different WSN topologies, which are based on the uniform deployment of sensors

(x, y = U(0, 1)) over the unit square [0, 1)2. This chapter describes a set of simulations, on which we

aim to evaluate the efficiency of our protocol (Section 7) with respect to its “search-function” (Section

5.5) that locates available sensor nodes. In this section, we describe the general configuration that are

used for all simulations in this chapter. We will describe the constants, variables and parameters that

we used for configurations. Moreover, in each section we will provide a specific configuration table

for specific simulations.

Constants. We set a storage capacity of M = 100 data units. The idea of setting M = 100 is to

be able to represent storage usage between 0 and 100 percents. Note that as we increment parameter

M , simulation running time is incremented as factor of n. Each of these units can be used to store

a single event either by the proper sensor or be shared with the rest of the sensors on the WSN. To

prevent the possibility of endless re-transmissions, due to PUT messages that cannot find sensors

with available storage capacity, we fix a TTL (Time To Live) of 16 hops for PUT packets. In other

words, if a STORE session has failed to store an event within 16 consecutive DSC links, that event is

dropped. However, as we will show on our results, less than 0.05% of total messages are dropped.

Each simulation that we conducted was repeated 100 times. Therefore, the results presented in this

chapter represent the mean value of 100 simulations.

Variables. To evaluate our protocol, we wish to study the implications of different environment

on the WSN. To do this, we vary both the environment and the protocol configurations. As we

mentioned, we vary the size n of the WSN 50 ≤ n ≤ 6400. Let Ti be a discrete time, where on

every index i only a unique event may occur on a single sensor region (see Section 6.2). We set i to
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vary 0 ≤ i ≤ nM according to the traffic model (Chapter 6). We define our simulation to last for

time indexes 0 ≤ i ≤ γ · nM , where γ < 1 in order to reduce running time. We will show that for

γ = 0.8 the STORE and RETRIEVE costs are still reasonable. However, the question of maximal γ is

behind our scope since it involves much more factors (sensor size and cost of flash memory Vs. cost

of power supply) as we show in Section 9.2. We set a Local Storage Consumption (LSC) constant

(see Section 7.4) for all sensors that is initialized on the deployment of the WSN (it is constant during

a simulation). LSC refers to a fraction of the storage that is restricted only for local usage. On

our simulations we vary the LSC parameter in order to study its implications on the STORE and

RETRIEVE costs.

For environment configurations, we vary both the number of HS sensors and the way they are

deployed over the target area. As we showed in Section 6.2 Equation 6.1, the size of the WSN, the

number of HS sensors and the probability p are related together. We vary the number of HS sensors

1 ≤ |HS| < np (see Equation 6.1). On the following experiments we vary the probability for hot-

spot events to occure 0.6 ≤ p ≤ 0.85 and the number of sensors that are located on hot-spot regions

1 ≤ n ≤ 20% of n. Also, we will test several configurations of hot-spot regions, where hot-spot

sensors are uniformly distributed within the target area or concentrated on specific regions.

An important measure on our simulations is the average number of links obtained by the DSC

protocol. During a simulation, every sensor who had its storage capacity depleted, constructs a DSC.

The total number of links obtained by these DSC grows with Ti, since more and more sensors have

their storage capacity depleted. We consider the cost of our protocol as number of links that it creates.

However, since the load is divided over the WSN, our interest is in the average number of links, or

number of links per sensor node. We note the measure Links (y-axis in the graphs on the following

sections) as the cost of our DSC protocol in links per sensor node.

8.3 STORE and RETRIEVE Analysis

In this first set of simulations, we would like to evaluate the two fundamental metrics of our pro-

tocol: STORE and RETRIEVE (Sections 7.1 and 7.2). As we mentioned in Chapter 6, we suspect that

the Local Storage Consumption (LSC) parameter serves a key role in the evaluation of these two

metrics. In other words, in this section we aim to investigate how does the number of storage units,

that a sensor node can share, affects the performances of our protocol. To do so, we fixed the proba-

bility p, for an event to be sensed by a hot-spot sensor, to be p = 0.8. That value of p guarantees that

at any discrete time of a simulation, 80% of all events are generated by hot-spot sensors. Therefore,

these sensors rapidly get their storage capacity depleted (see Section 6.5), allowing our protocol to

distribute their overflowed events.
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Table 8.1 describe the configurations for the simulations described in this section. We chose to

present the results for a relatively large sensor network with 1600 sensor nodes. Note that there is a

relation between the storage capacity of a sensor node (M = 100) and its Local Storage Consumption

0 ≤ LSC ≤ M . However, as we will demonstrate in this section, LSC values of 0 ≤ LSC ≤ 40 are

enough to understand the behavior of the WSN.

8.3.1 Simulation Description

In this section we demonstrate a specific simulation where all of the parameters that we describe

above are constants. We demonstrate a simulation on which 80 hot-spot sensors are responsible for

80% of the events sensed by the WSN. Therefore, this group of hot-spot sensors gets their storage

capacity depleted in the beginning of the simulation. These sensors use our protocol in order to

discover available sensors that can store over loaded events. Therefore, throughout the simulation

we construct DSC links that (basically) connect between hot-spot sensors and sensors that can share

their storage. The x-axis in Figure 8.1 expresses the discrete time Ti in terms of percentage from the

total storage capacity of the WSN 0 ≤ i ≤ 0.8 · nM . In other words, this figure demonstrates the

generation of events up to 80% of the total WSN capacity. The y-axis measures the number of DSC

links that were created in average. Notice that we distinguish between the STORE and RETRIEVE

sessions (Section 7.4) according to the number of links that are used for each of these sessions.

Figure 8.1 shows the costs of storing and retrieving events over DSCs for each percentage from

the total WSN capacity (or, for every discrete time clock i). For example, in order to utilize 70% of

the WSN capacity we have to pay ∼ 1.5 links per sensor node. Recall that these links are used for

storing the overflowed events. Also, we pay ∼ 0.7 links per sensor node in order to retrieve these

events (on retrieval we access only sensors that actually contain data - Section 7.4). The reason for

these costs is a high generation of events by hot-spot regions (5% of the sensors are responsible for

80% of the events).

Parameter Values
n 1600
M 100
HS 1, 9, 80, 160 or (1, Log(n), 5%, 10%)
p 0.8
γ 0 ≤ γ ≤ 0.8
LSC 0− 40
Environment HS sensors are uniformly deployed

Tab. 8.1: Configuration for the STORE and RETRIEVE analysis.
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Fig. 8.1: Simulation of STORE and RETRIEVE for |HS| = 80 sensor nodes and LSC = 23. Average
number of links with respect to the percentage from used System Memory (SM).

We may notice that up to 6.2% of the total WSN capacity (or discrete time Ti : i =∽ 9800) there

are no costs for storing and retrieving events. In other words, the first time that a sensor cannot store

the events that it sensed occurs on i =∽ 9800. Note that in Section 6.1 we defined this discrete time

clock as the WSN lifetime. This discrete time is consistent with the γ value that we have calculated

in Section 6.5 (γ = HS/(pn)).

For a low event level (up to 40% of the total storage), we can see that the difference between

STORE and RETRIEVE is relatively small. That observation suites the results presented in Section

5.5 - at the beginning it is “easy” for DSC to locate available sensors for storage. However, as SM

grows towards 80% the storage cost increments exponentially. Notice that even for 40% (where costs

are very low) we have managed to increment WSN lifetime ∼ 8 times more than it could be without

the usage of our protocol.

8.3.2 STORE and RETRIEVE Vs. LSC Configuration

On the last section we demonstrate a single simulation where the LSC configuration was fixed to

LSC = 23. In this section, we demonstrate simulation results for various values of LSC. Similarly

to the last section, we demonstrate the STORE and RETRIEVE costs (equivalent to the two curves in

Figure 8.1). However in this section we use different LSC values and four different sizes of hot-spot

sets (including the 80 hot-spot configuration that we used in the last section). A quick look in Figure

8.2 reveals the reason for selecting LSC = 23 for the last section. We can see that this LSC value



8.3 STORE and RETRIEVE Analysis 83

produce the best results for the storage session.
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Fig. 8.2: Average number of links for the STORE and RETRIEVE sessions (see parameters in Table
8.1).

The x-axis in Figure 8.2 represents 35 different simulations that we conducted for variable LSC

configurations. The y-axis measures the STORE and RETRIEVE costs in terms of DSC links (simi-

larly to the y-axis from Figure 8.1). Note that retrieval costs are higher than those of storage, since

PUT messages may also be routed to sensors that already had their storage capacity depleted. Also

note that we observe the WSN on γ = 0.8, when the majority of the sensors in the network had their

storage capacity depleted. Therefore, it is more difficult to track available sensors. Few observations

are in place here:

1. Clearly, the STORE and RETRIEVE costs have an optimum point for each LSC configuration.

Hence, if we can characterize that optimum point, we can optimize the chains lengths.

2. In Figure 8.2 we show an approximate costs of 3 links for storage and 1 link for retrieval.

Notice that these costs are relatively low for the benefit of utilizing 80% from the entire storage

capacity of the WSN. Or in other words, incrementing the WSN lifetime in an order of almost

a whole magnitude.

3. An interesting observation is the RETRIEVE cost for a single hot-spot sensor (Figure (B)).

Notice that RETRIEVE cost is only a little more than 0.8 links (LSC ∼ 23). In other words,

with a single sensor that generates 80% of the total capacity of the WSN we manage to store

all events. Moreover, according to the retrieval costs, ∼ 80% of the sensors in the WSN share

their storage capacity with that single hot-spot sensor. We can think of this result as a long DSC

chain that connects 80% of the sensor. Note that 80% of the sensors are the minimum number

of sensors for the storage of the overflowed events.
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4. As we increase the size of the hot-spot sensor group, the cost of RETRIEVE grows as well. The

reason is that on several occasions, a regular sensor shares its storage capacity with more than

one hot-spot sensor. Therefore, the storage and retrieval curves are shifted up for larger hot-spot

groups.

5. Varying the LSC parameter demonstrates an important behavior. As we increment the LSC,

the STORE and RETRIEVE costs decrease until an optimum point. If we pass the optimum

point, these costs become growing exponentially. In Section 8.4 we will carefully study this

behavior.

8.3.3 DSC Vs. Random Selection

In Chapter 5 we described the Distributed Storage Chains (DSC) as a deterministic “random”

walk. We named that walk after the expanding sets simulation (Section 5.5) where we compared

the efficiency of our DSC with a random selection of geographical locations from the unit square.

Notice that the principal innovation of our protocol (Chapter 7) is the usage of deterministic DSC.

Similarly to the evaluation in Section 5.5, in this chapter we compare between the performance of

our deterministic protocol with a random selection of geographical locations. In other words, we

compare the way our protocol distribute overflowed events with the random selection of sensors by

those who had their storage capacity depleted. We have repeated the simulation from Section 8.3.2

while changing the way DSC selects its links. Instead of calculating the DSC (Definition 7), we chose

a random location (x, y) where x, y = U(0, 1) (uniformly chosen from the interval [0, 1)).

We wish to show that our protocol can be used in order to select sensors in the target field as

efficiently as a random selection of geographical locations from the target area. However, we must

remember that a random model has to consider the question of maintaining the structure of the chains.

Therefore, a random model is a good reference, but it has additional costs.

Parameter Values
n 1600
M 100
HS 1, 9, 80, 160 or (1, Log(n), 5%, 10%)
p 0.8
γ 0 ≤ γ ≤ 0.8
LSC 0− 40
Environment HS sensors are uniformly deployed
Storage Model DSC Vs. Random selection

Tab. 8.2: Configuration for the DSC Vs. Random analysis.
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In Figure 8.3 we demonstrate the differences between DSC and a random protocol (rXY from

Sec. 5.5). It is very clear that the difference between the deterministic DSC and the random model

is very small for every value of LSC. However, the difference becomes even smaller for the optimal

LSC. In other words, if the LSC parameter can be chosen wisely, the cost of DSC and a random walk

are the same. However, as we mentioned, there are additional costs for a random model. Therefore,

although the results for the random selection of sensors seem a little better, they require from the chain

structure to be maintained within the WSN. The great advantage of DSC is that the chain structure can

be predicted based on sensors locations. As we showed in Section 5.5, the expansion rate of a rXY ,

or random selection of geographical locations, is the best we can get for the configuration of our

WSN. Therefore, Figure 8.3 clearly demonstrate the efficiency of our protocol in locating available

sensors and in maximizing the storage utilization of the WSN.
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Fig. 8.3: Comparison between DSC and random selection of sensors at 80% consumption of total
storage capacity.

An important issue on the analysis of our protocol is the LSC parameter. For example, in Figure

8.3 (A) we demonstrate that if LSC parameter is not chosen wisely (e.g., 5 ≤ LSC ≤ 12) the

difference between our protocol and a random selection of sensors can be significant (∼ 0.8 links

per sensor node). Moreover, as we showed in Section 8.3 and also in this section, as we increment

the LSC above its optimum value, the STORE and RETRIEVE costs increment exponentially. On

the next section we will show how the variables of the traffic model (Chapter 6) are expressed in the

calculation of LSC and how to optimize the STORE and RETRIEVE costs by choosing the appropriate

LSC value.
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Fig. 8.4: Three possible cases for LSC values.

8.4 Optimal LSC analysis

As we mentioned in Section 6.4, there is a significant importance to the number of events that are

generated by non-hot-spot regions. In order for the WSN to be efficient, a non-hot-spot sensor needs

to know how many data units it may share. In other words, if a non-hot-spot sensor could have known

how many events it would sense, it could have contributed the rest of its storage capacity to hot-spot

sensors. However, since it is impossible to know the exact number of data units that every sensor

would sense, we have to estimate a value to be used as Local Storage Consumption by all the sensors

(regardless if they are hot-spots or not). In Section 8.3.2 we discussed the importance of LSC value

by demonstrating the behavior of STORE and RETRIEVE costs for different LSC values. Moreover,

we showed that for each configuration exist a LSC value that can minimize the link costs. Since LSC

values must be set for all sensors before their deployment in field, there is a significant importance

to the value that we chose. The reason is that we do not know (and cannot estimate) which sensors

would eventually be deployed on hot-spot regions. Note that the design of WSN cannot assume the

structure of the target area. If we could do that, we would have deployed on hot-spot regions sensors

with larger storage capacities.

In Figure 8.4 we give an intuitive explanation to the behavior of the STORE and RETRIEVE curves

(from Figures 8.2 and 8.3) around their optimum point. We may think about the rectangles in Fi-

gure 8.4 as if they represent the storage capacities of sensor nodes and the designation for each

part of the storage. The figure in the middle demonstrates a situation, on which the LSC value

is optimal. Therefore, this figure describes a non-hot-spot sensor that makes use of its entire local

storage capacity and shares the rest with hot-spot sensors. On the right, we demonstrate a LSC that

was chosen below its optimal value. On that case, non-hot-spot sensors share more storage capacity

than they should have. Therefore, they are left with less storage capacity than they need. A non-hot-

spot sensor that is included on a DSC of some hot-spot sensor would lose the entire storage capacity

that it shares. In that case, a non-hot-spot sensor would also suffer from overflowed events. It would
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have to use our protocol to store its additional events. Therefore, although hot-spot sensors could use

less links, the STORE and RETRIEVE costs would be increased due to many non-hot-spot sensors that

had their storage capacity depleted. Finally, on the left side of Figure 8.4 we demonstrate a non-hot-

spot sensor that sets its LSC to a higher value than the number of events that it actually sense. In that

case, a high LSC value generates difficulties for hot-spot sensors. The reason is, that non-hot-spot

sensors share less storage capacity. Therefore, hot-spot sensors would have to generate more links

(address more non-hot-spot sensors). Moreover, the storage capacity that is not utilized would get

wasted (labeled as “Wasted in Figure 8.4), since hot-spot sensors cannot access it.

Parameter Values
n 1600
M 100
HS 1, 9, 80, 160
p 0.6− 0.85
γ 0.8
LSC 0− 70
Environment HS sensors are uniformly deployed

Tab. 8.3: Configuration for the varied p simulations.

In order to study the optimal values of the Local Storage Consumption (LSC), we repeat the

simulation that we described in Section 8.3.2 with the configurations listed in Table 8.3. We use

different p values in order to study their effect both on the curves and on the optimal LSC values.

Figure 8.5 demonstrates three groups of curves that are similar to those describes in Sections 8.3.2

and 8.3.3. However, each of these groups describes simulation results for a specific p value, p =

0.65, 0.75, 0.85 (more results can be found in Appendix A Figure A.6). According to this figure,

as we increment the values of p, the entire RETRIEVE curves are shifted to the left. Moreover, the

retrieve costs in terms of links remain the same regardless the values of p (only for different LSC

values).

Our explanation to the way that the curves are left-shifted (as p grows) is very simple. For exam-

ple, in Figure 8.5 we observe the curve that represents p = 0.65 and |HS| = 160. As we can see, that

curve has a minimum point at LSC = 36 data units. That minimum point refers to the the case in

Figure 8.4 (middle), where non-hot-spot sensors consume 36 data units and share 64. If we increment

the parameter p, non-hot-spot sensors will consume less than 36 data units. Therefore, maintaining

the same LSC = 36, means that some of the Local Storage Consumption would get wasted (Figure

8.4 left). Moreover, incrementing the parameter p means that hot-spot sensors generate more events.

Therefore, although they would need more shared storage capacity, the LSC parameter would not

permit. In order to optimize our storage utilization, we will have to reduce the number of data units
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that can be used exclusively by non-hot-spot sensors and increment the amount of storage units that

they share. In order to maintain optimization, the optimum points are shifted to the left (reducing the

LSC value) while incrementing the probability p.
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In Section 6.4 we discussed the expected number of events that a non-hot-spot sensor generates

during a simulation. We demonstrated (Figure 6.3) that non-hot-spot events have a binomial distri-

bution. We discussed the importance of the mean and variance of this binomial and developed their

formulas (Equation 6.5). In this section we would like to connect these theoretical formulas with

the simulation results and the optimal values of the LSC. In Figure 8.5 we marked for every curve

its optimal LSC value, which minimizes the RETRIEVE costs. We use these measures in order to

construct a graph that relates between the hot-spot probability p and the LSC value that minimizes

the RETRIEVE costs.
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In Figure 8.6 we present only the LSC values that minimizes the RETRIEVE costs. The continu-

ous curves represents the minimum points for every p value from our simulations. The dashed curves

represents theatrical LSC values that we have calculated. In Figure 8.6 (A) we use only the mean

number of events that a non-hot-spot sensor sense. In other words, if we use these values of LSC

we refer to the average case. However, we can see that the distance between the theoretical values

that we calculated and the actual values, obtained by simulations, are very long. If we think about

the binomial distribution and its Gaussian bell, there are a lot of sensors that produce more than the

mean value. Actually, if we consider the standard division, at least 34.1% of the non-hot-spot sensors

would sense more events than the expected value. In Figure 8.6 (B) we consider the theoretical LSC

values as the sum of the mean and standard divisions (Equation 6.5). As we can see these values are

much more adequate to the values that we received in our simulations. The results for hot-spot sets

of sizes |HS| = 9 and 160 can be found in Appendix A (Figure A.7).

8.5 Number of Dropped Packets

In the beginning of this chapter, when we defined the configurations (Section 8.2), we defined a

TTL for DSC packets that are sent as PUT messages. We wanted to avoid packets that are routed

constantly in the WSN without finding a sensor with available storage capacity. We defined TTL =

16 which drops the packet after 16 consecutive PUT messages. Note that dropped packets mean that

our protocol has failed to store overflowed events. In other words, a packet will be dropped when a

DSC calculate 16 consecutive links to sensors who had their storage capacity depleted. Therefore,
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Fig. 8.8: Number of dropped packets Vs. LSC (800 sensor nodes, γ = 0.8).

the most important evaluation is estimating how many packets where dropped by the protocol. In this

section we demonstrate the behavior of our WSN as we vary the parameters n, p and LSC (see Table

8.3). We will show that the number of dropped packets is negligible.

Parameter Values
n 800, 1600
M 100
HS 1, 8, 9, 80, 160
p 0.6− 0.85
γ 0.8
LSC 0− 70
Environment HS sensors are uniformly deployed

Tab. 8.4: Configuration for the evaluation of dropped messages.

Figure 8.7 describes the number of dropped during a simulation for a WSN of size 800 sensor

nodes with a LSC that is fixed to be 27 data units. Note that the LSC value that we chose is the

optimal value (Section 8.4). Therefore, for this configuration, we expect to get the least number

of dropped packets. The x-axis in Figure 8.7 refers to the discrete time on which the simulation is

running (or to the percentage of the total System Memory that was consumed). As we can observe,

no packets are dropped before ∽ 60% of the WSN’s storage was consumed. Note that for these

configurations our protocol begins to distribute data units on 0.15% (for 1 HS) ≤ γ ≤ 12.5% (for 80

HS). Still, no packet is dropped before 60% of the WSN storage capacity was consumed. Also, we

may observe that as we increment the size of the HS set, the number of dropped packets increases.

This is easy to explain since more DSCs are searching for sensors with available storage capacity.

Therefore, the probability of a packet to be dropped increases with the number of chains.
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In Figure 8.8 we show the number of dropped packets in the end of a simulation (γ = 0.8). We

vary the LSC around its optimal value and demonstrate the simulation results for two values of p

(0.6 and 0.85). As we can see, the behavior of these curves is very similar to the behavior of the

STORE and RETRIEVE costs. The minimum number of dropped packets is achieved at the optimal

LSC value.

An important observation is that for low LSC values, the number of dropped packets is reason-

able. Five dropped packets and twenty dropped packets are equal to 0.006% and 0.025% of the total

storage capacity. Moreover, as we show in Appendix A (Figure A.9) the percentage and the behav-

iors of dropped packets for a 1600 sensor networks are with the same proportions. However, for the

optimal LSC value, we get a constant number of dropped packets that is lower than 2 packets (ever

for a |HS| = 0.1n).

We conclude that the number of dropped packets by the protocol is very low and negligible.

Moreover, we can implement a specific solutions for packets that are routed more than 16 consecutive

hops. An example for a specific solution can be greedy routing towards the closest sensor with

available storage capacity. However, since the number of dropped packets is very low, we will not

develop a solution in this work.

8.6 Load Balancing evaluation

As the total WSN storage consumption grows, the STORE session becomes much more expen-

sive. Since more and more sensors have their storage capacity depleted, it becomes more difficult to

find sensors with available storage capacity. Therefore, more DSC links are constructed in order to

find available sensors. In this section, we would like to verify that the WSN maintain steady load

balancing. Formally, we would like to show that the load, or the number of times regions are visited

by DSC, is balanced over the unit square. To demonstrate the WSN load balancing, we present the

load results of a 1600 sensor network. In Figure 8.9, each cell represent the Voronoi cell of a sen-

sor. Its hue is set with respect to the number of times it was visited by any DSC chain. This figure

demonstrate that there is a clear correlation between the size of a Voronoi cell and the number of

times it was visited, the larger the cell the brighter it appears. That correlation reinforces the results

that we received on the static construction (Sec.4.5 and fig. 4.5). Therefore, we may say that the links

CW i(s) (Definition 7) are uniformly distributed over the unit surface. Moreover, the more smooth

the deployment of sensors in field, the better the load balancing of the WSN. Note that the average

number of calls to a sensor is 2.7.
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Fig. 8.9: Load Balancing Analysis for a 1600 WSN where p = 0.8 and LSC = 23. Number of visits
(0-11) that each sensor region receives from DSCs. The darker the region color, the less it is visited.

8.7 Varying the Number of Hot-Spots

In the previous simulations we varied the HS component for specific hot-spot sets of sizes

1, Log(n), 5%, 10%. Accordingly, we demonstrated how the WSN performances respond to the

change in HS. However, since we only used four sizes of hot-spot sets, we had to imagine the

gaps between all |HS| values, in order to understand the behavior. In this section we show more

values of HS set sizes in order to understand more deeply how does the number of hot-spot sensors

affect the performances of our protocol. The configuration for these simulation is given in table 8.5.

Parameter Values
n 800
M 100
HS 1− 400
p 0.6− 0.85
γ 0.6− 0.8
LSC 0− 70
Environment HS sensors are uniformly deployed

Tab. 8.5: Configuration for the evaluation of dropped messages.

In Figure 8.10 we use p = 0.8 and vary the number of hot-spot sensors 0 ≤ |HS| ≤ 400 Notice

that our restriction on |HS| according to Equation 6.1 is |HS| < pn. Also notice that 400 sensor
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Fig. 8.10: Varying the number of hot-spots. n = 800 p = 0.8.

nodes sustain this relation. In Figure 8.10, the x-axis describes the number of hot-spot sensors, the y-

axis describes the LSC value and the z-axis describes the average number of links for RETRIEVE. For

low values of |HS| we can observe the behavior that we saw in the previous chapters. The WSN has

its optimum point for LSC, around the sum of mean and standard division (µ+ σ). As we increment

the number of hot-spot, the LSC optimum point raises and, therefore, the number of links. However,

beyond some |HS| value, surface becomes more strait. This can be explained by the restriction that

we defined on Equation 6.1. In other words, for these values, no exists significant difference between

hot-spots and non-hot-spot sensors since they generate events with (almost) the same probability.

In Figure 8.11 we demonstrate three surfaces that represent different p configurations. It is clear

that the characteristics of all surfaces are the same. However an interesting observation that we can

see here is that as we reduce the p value, its cost for higher LSC value becomes less extreme as we

increase the hot-spot set (the right “wings” of the surfaces become smaller as we reduce the parameter

p. On Appendix A we demonstrate more angles of these three surfaces in Figure A.10.

8.8 Deployment of Hot-Spot sensors

In the previous sections we presented simulation results for uniform deployments of Host-Spot

sensors (Figure 8.12-C) over the unit surface. In this section we would like to discuss the implication
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(A) (B) (C) (D)

Fig. 8.12: Examples for deployment of hot-spot that cannot be predicted: (A) River of 60 hot-spot
sensors. (B) Valley of 33 hot-spot sensors located in the bottom left. (C) Valley of 26 hot-spot sensors
located in the center. (D) Random deployment of 80 sensors.
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Fig. 8.13: Simulation results for the river deployments of hot-spot sensors (Figure 8.12 (A)).

be next to the axes origins. Since DSC select its links by summing the x and y coordinates, it should

begin with a slow progress due to low values of x and y. However, based on the curves we can say

that, eventually, a slow progress does not have a great effect on the total WSN costs. The results for

the other two valley configurations can be found on Appendix A, Figure A.8.

8.9 Estimating the Energy Consumption

Throughout this chapter, we pointed out that the essence of our distributed storage model is in

its ability to deterministically enable “random” interactions between sensor nodes. Our goal was to

evaluate the performances of DSC, (overlay network) rather than the performances of the network

layer (GPSR). However, one must bear in mind that each DSC link has its energy costs, due to

transmission and re-transmissions between sensor nodes (see Section 5.1). Moreover, in Chapter 3 we
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discussed different WSN architectures and their implication on energy costs. Specifically, in Section

3.4 we have developed equations to calculate the energy consumption in a WSN. We demonstrated

the relation between direct and multi-hop transmissions. However, there is no clear conclusion, to

which is the best transmission method at each hop. We demonstrated how the proportion between

the transceiver and amplification energies (Eelec and εamp in Equation 3.6) can be used to determine

which is the best transmission method. In this chapter, similarly to Liao et al. (Liao & Wu, 2008),

we estimate the energy costs of our protocol, based on the direct transmission method. This type of

calculation provides a good upper bound for the actual energy cost. As we will show later, we can

use the results of direct transmission and modify the proportions between Eelec and εamp in order to

control the upper bound of energy cost. We list the variables for our energy simulations in Table 8.6.

Parameter Values
n 800− 3200
M 100
HS 1, Log(n), 5%, 10%
p 0.6− 0.85
γ 0.6− 0.8
LSC 0− 70
Environment HS sensors are uniformly deployed
Energy constants Eelec = 50 [nJ/bit] and εamp = 100 [pJ/bit/m2]
WSN density trans. radius r = 50m ; 1 Node/ 83 m2

Tab. 8.6: Configuration for the evaluation of dropped messages.

8.9.1 Lengths of DSC Links

Logically, the most important measure for energy evaluation is the distances that packets have

traveled due to our protocol. As we will show, the distance that packets travel contributes its square

value to the total energy consumption. In this section, we will evaluate the distribution of distances

that are derived by the definition of DSC (Definition 7). Remember that DSC routs PUT messages

in strait lines (see an example on Figure 5.4). In other words, the packets are routed between points

with similar x or y cordinates. Therefore, the largest distance that a packet may travel is 1. In order to

study the distribution of distances d, we conducted the following simulation. We selected a random

point p = (x, y) where x, y = U(0, 1) are selected uniformity, on the same way that we have selected

the sensor locations. Then, we initiate a DSC from that point p. The resulted DSC contained a

sequence of links DSC(p) = p → l1 → l2 → l3 · · · → lk. We measured the Euclidean distance

between every consecutive links li−1, li. In Figure 8.14 we demonstrate the distance distribution for
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Fig. 8.14: Distance distribution for 100 DSCs, each of size |DSCi| = 100 that begins on random
locations.

100 random points pi that generates DSCs of size |DSCi| = 100 links each.

An interesting observation is that the exact distribution can be archives by combining two uniform

variables. Let X, Y be two uniform variables X, Y = U(0, 1). The distributions of Z = |X − Y | or

Z = |X + Y − 1| describes the distribution of our link distances perfectly. Note that in our case, the

only random variables are the location p = (x, y) of the point that initiates the DSC. Therefore, the

rest of the chain is deterministic. Our explanation for these similar behaviors is due to the modulo 1

operator.

We can see that the probability for having long range links decreases with their length. In other

words, short range transmissions are of the highest probability, while transmissions to the maximum

distance 1 are of low probability. This observation is very important in the analysis of our protocol.

It demonstrates that our protocol consumes most of its energy on short range transmission. However,

even the length of short distance transmissions is dependent on the target field size, as we demonstrate

on the next section.

8.9.2 Calculating the Energy Consumption

Equation 3.4 (Section 3.4.1) gives the energy consumption for a single packet of size k bits, which

is transmitted to the distance nr = d. Notice that the notation n on that equation, represents number

of hops (do not confuse with our network size n). Since we deal with direct transmission, we will

use the notation d for the transmission distance. In this section we will explain how we measure the

energy, consumed by our protocol for some discrete time Tt. To do so, we calculate the total energy

that was consumed by the protocol during 0 ≤ i ≤ t for every value of t:
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Edirect(t) =
t

∑

i=0

k(2EelecRi + εampdi
2)

Edirect(t) = 2kEelec

t
∑

i=0

Ri + kεamp

t
∑

i=0

di
2 (8.1)

where the parameter Ri refers to the number of packets, produced by the protocol for storing an

event on the discrete time i (number of PUT messages). Also, di refer to the sum of distances that

same PUT message has passed until it was stored (or dropped). During a simulation we can sum

these two vectors for every discrete time Ti. Notice that if have used a multi-hop fashion, Ri and di

would have to be dependent also on the relation between Eelec and εamp (Equation 3.6). Therefore,

our results would have been valid only for one configuration (of Eelec and εamp). Moreover, we can

use Equation 8.1 and manipulate the proportion between Eelec and εamp (increase or decrease the

direct transmission cost) according to Equation 3.6 and, therefore, provide a tighter upper bound to

the energy cost.

As we mentioned, our WSN is deployed within the unit square. In order to scale our transmission

results to a real target area we have to demonstrate how does the parameter di scales with target area.

In Figure 8.15 we show, by simple geometry, how some distance d on the unit square, scales to the

distance αd on a target area of size α2.

(A) Unit Square (B) α2 target area

Fig. 8.15: Scaling the distance that a packet travels.

We can use the description in Figure 8.15 to scale all the distances di. However, in order to

compare between different configurations of WSN, scaling the size of the target area alone is not
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enough. As we demonstrate in Section 3.3.1 (Table 3.1), there is a significant importance to the

WSN density µ(r) = (nπr2)/A measure. This measure considers both the size n of the WSN, the

transmission radius r, and the size of the target area A. In order to compare energy consumption

results between different WSN configurations, one has to consider the measure µ(r).

In this section we use the density configuration from the work of Liao et al., (Liao & Wu, 2008)

in order to give our energy results some real values. We begin by explaining how we calculate the

parameter α (Figure 8.15). In order to obtain the same WSN density we have calculate the proportion

between our density µ(r) and the density that we compare with µ(rc). Since we chose the same

transmission radius r = 50 m, we get:

α2 =
µ(r)

µ(rc)
=

nπr2

1
· Ac

ncπr2
= n · 500

2

3000
≃ 83n

In other words, since we use the same transmission range, we got α2 = 83n which is the WSN

density (1 Node / 83m2). Multiplying the WSN size by the node density α would yield an equivalent

WSN to the one described in (Liao & Wu, 2008). Also, we use the same energy constants Eelec = 50

[nJ/bit] and εamp = 100 [pJ/bit/m2]. These parameters are slightly better than the current state-of-

the-art Bluetooth specifications (700 Kbps radio that operate at 2.7 [V ] and 30 [mA], or 115 [nJ/bit]

(Heinzelman et al., 2000)). Finally, we assume packet size of 8 bytes (similar to the store packets in

(Liao & Wu, 2008)). Applying these constrains into Equation 8.1, we get:

Edirect(t) = 2kEelec

t
∑

i=0

Ri + kεamp

t
∑

i=0

di
2α2

Edirect(t) = 2kEelec

t
∑

i=0

Ri + kεamp

Ac

nc

· n ·
t

∑

i=0

di
2 (8.2)

where the relation Ac

nc

= 83 and the parameter n is the network size that we simulate.

8.9.3 Total Energy Consumption

In this section we calculate the energy consumption for two network sizes (n = 800, 1600). We

will preserve the same network density (see Section 3.3.2). In other words, we maintain the same

number of sensor nodes within the transmission range, as described in Equation 3.1. We use the same

node density (Liao & Wu, 2008) (1 Node / 9× 9 m2).
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Figure 8.16 shows simulation results in terms of total energy consumption for 1600 sensors that

are depleted over 365 × 365 m2 target area (node density µ = 1 Node / 9 × 9 m2). The x-axis

describes the discrete time Ti in percentage from the total storage consumption of the WSN (SM -

System Memory). The- y-axis describes the total energy consumption in Joules. In other words, the

total energy consumption in order to utilize x percents of the total storage capacity. Note that this

figure shows the total energy consumption for 0 ≤ LSC ≤ 40 (same LSC range that we used on the

previous sections). Therefore the total energy consumption vary between the optimal and worst LSC

values. The curve in this figure represents the mean total energy consumption (mean among all LSC

values) and the markers represent energy range (between different LSC values).

10 20 30 40 50 60 70
SM

5

10

15

20

25

J

Fig. 8.16: Energy Analysis for a 1600 WSN where |HS| = 160 sensors. The WSN is deployed over
a 365× 365 m2 target area. p = 0.8 and 0 ≤ LSC ≤ 40.

Similarly to Figure 8.1, we can notice that on the first 5% of the simulation there is no energy

consumption. Accordingly, that can be explained, since in the beginning of the simulation all sensor

nodes have available storage capacity. Therefore, no transmission is needed and all of the events

are stored locally. However, as the simulation continues, we may notice that energy consumption

increase (almost) linearly. We note that for the utilization of 80% from the total storage capacity the

total energy consumption value is ∼ 27 [Joule]. This value meets the average values of 16.9 · 10−3
[Joule] per sensor node. We consider this energy cost as reasonable cost according to (Kahn et al.,

1999) that suggests a daily energy consumption of 1 [Joule/day] per sensor node. Moreover, note

that this coast extends the WSN lifetime from 8% to 80% storage consumption. In other words, we

prolong the WSN lifetime by a hole magnitude with an energy cost of 16.9 · 10−3 [Joule] per sensor.

The most interesting observation in Figure 8.16 is that the energy consumption is hardly affected

when we change the LSC values. Notice that we have conducted simulation for LSC values of 0 ≤
LSC ≤ 40. The range markers in this figure represent the minimum and maximum energy costs. We
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can see that the amplitude of these curves (as we modify LSC) are small in the end of the simulations

and invisible on the beginning. We explain this behavior as follows. In Section 8.3.2, we demonstrated

the STORE costs while varying the LSC parameter. The results in that section demonstrated that

the differences between the optimal LSC and the worst case LSC were 3 ≤ links ≤ 6 per sensor

node. This means 1600 · 3 = 4800 links. However if we consider Equation 8.2 for 80% of the WSN

storage capacity, the total number of overflowed events are 0.8 · pnM − |HS| ·M , or 94, 400 events

for the 1600 sensor network. As we can see, the proportions between these numbers are very small.

Therefore, the majority of the consumed energy is invested in the actual transmission of events to be

stored in available sensors.

In Figure 8.17 we show the total energy consumption for 800 and 1600 WSN and compare its

performances between our DSC protocol and a random walk rXY as described in Section 5.5. We

maintain density factor of µ = 1 Node / 9 × 9 m2 (deployments over 258 × 258 and 365 × 365 m2

target areas). Also, both hot-spot sets are both of 0.1 · n.
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Fig. 8.17: Energy Analysis for DSC Vs. Random walk rXY , where |HS| = 80 and 160 sensors
respectively. The WSN is deployed over a 258× 258 and 365× 365m2 target areas respectively and
p = 0.8.

Note that the results in Figure 8.17 refers to the optimal LSC parameter from Section 8.3.2

(LSC = 23) that results in minimum energy consumption. It is very clear that energy consumption

of DSC is lower than rXY . We explain this observation by the fact that rXY has longer transmission

ranges. Note that while DSC transmit packets only horizontally and vertically, rXY can transmit

diagonally. Therefore, rXY transmission range, within the unit surface, is of 0 ≤ range ≤
√
2 while

DSC transmission range is 0 ≤ range ≤ 1. However, the energy cost of both methods is on the

same magnitude in terms of average energy consumption per sensor node. In order to make a more

fare compression between DSC and a random walk, we simulated a random walk that progresses

only horizontally and vertically. In other words, it selects random coordinates on the x and y axis

alternately (similarily to the DSC, Definition 7). Accordingly, the results are compared with DSC
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results in Figure 8.18.
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Fig. 8.18: Energy Analysis for DSC Vs. Random walk, where |HS| = 80 and 160 sensors respec-
tively. WSN deployed over a 258× 258 and 365× 365 m2 target areas respectively and p = 0.8.

Figure 8.18 clearly demonstrate that the energy costs for a random algorithm are equal to those of

DSC. Moreover, if we compare between the results from the two WSN sizes we can observe that while

these two curves have the same behavior, their scales (y-axis) are different. Thus, even if we consider

the average energy consumption, the 800 sensor network performances (with maximal energy con-

sumption of 8.75 · 10−3 Joule) and the 1600 sensor network (with maximal energy consumption of

16.9 · 10−3 Joule) are of different magnitudes. Therefore, the size of the target area has a great im-

pact on our protocol’s transmission costs. This can be explained both intuitively and mathematically.

Intuitively, as the target area grows, long distance routs become more and more expensive, since the

distances between sensor nodes become greater. Mathematically, we can notice that the parameter d,

in Equation 8.2, is calculated in the energy cost, using its square value.

8.9.4 Number of Events

Although the difference between our model and the model suggested by Liao et al., (Liao &

Wu, 2008) are immense (see Section 8.1), a compartment between these results can be very helpful.

However, it is important to put in mind that these two methods are different, in order to understand

the relation between these results. We begin this section by dryly describing the results of these two

methods. Then, we will compare between them and explain their differences.

On their paper (Liao & Wu, 2008), they simulate the distribution of 3, 000 data packets and re-

ceived a maximum total energy consumption of 600 and 800 [106nJ ] for two of their methods. In

Figure 8.19 we present the energy costs for 800, 1600 and 3200 WSN sizes that we have normalized

to the same network density as in (Liao & Wu, 2008). We have scaled the y-axis to match the [106nJ ]

measure as described by (Liao & Wu, 2008). For explanations on the [106nJ ] measure, please see
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Section 6.6. Notice that on the x-axis we measure events (instead of the percent from the total stor-

age). As we can see, as the network size grows, it takes more time for it to consume energy. This can

be explained, because the WSN lifetime depends on the WSN size n. The greater the n, it takes more

time for hot-spot sensors to get their storage capacity depleted.
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5000 10 000 15 000 20 000 25 000
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200

400
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1000
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Fig. 8.19: Total energy consumption up to 1000 [106 nJ].

We can notice that as the network size grows, these curves become steeper. Since we chose to

compare with the same network density, as the network size grow, so as the target area and, therefore,

the energy costs grow as well. Notice that if we presented these simulations on for an average energy

cost, the slops would become more equal. In order to compare between the energy costs, we fix

the energy cost 600 [106nJ ] and observe the number of overflowed events that were routed by the

protocol. The simulation conducted by Liao et al., have managed to route 2500 events while 100

were dropped, we have managed to store 5400 (n = 800), 3800 (n = 1600) and 1700 (n = 3200)

events while less than 2 packets where dropped.

Important observations should be put in place for this compartment: In this section we used the

parameters of (Liao & Wu, 2008) more for getting real data rather than comparing. Our storage

schemas is very different:

1. The main difference between these two models is that we distribute the load uniformly over

the WSN target area. On the other hand Liao et al., directs overflowed events to close neigh-

bors. Therefore, while they economize energy due to the short distances, they create coverage

holes within the WSN. Thus, if we have measured the load balancing of their simulation as we

measured in Section 8.6 we could have seen dark rings that encircle each hot-spot sensor.



104 Simulations

2. Accordingly there is a difference in the energy costs between our configuration where n = 3200

sensors and their configuration with 3000 senors. The differences could be explained, because

our packets travel to a longer distances (uniform distribution Vs. coverage holes). However,

they do not specify how many overflowed data packets where actually stored. They specify 4%

of dropped packets while we present ∽ 0 (less than two packets). They stop the simulation

after 0.003% of the total WSN capacity.

3. An important aspect of our work was analyzing the traffic model that we used for simulations.

However, Liao et al., did not define how data is generated on their model. Moreover, it seem that

the only sensor that generate events are the HS sensors. Therefore, that model do not consider

the interference from non to spot sensors, which is an important parameter that affected our

results a lot.

4. Liao et al., considers two types of packets for storing and retrieval of data. We considered only

one packet.

5. They only considered one case, where |HS| = 4. They do not show the WSN behavior for

different HS or fordifferent n values.



Chapter 9

Conclusions

“Wenn ihr wollt, ist es kein Märchen” (German)
“Im TirtZu, Ein Zo Agada” (Hebrew)
“If you will it, it is no dream. (English)”
“Se quiseres, não será um sonho (Português)”

Benjamin Theodor Ze’ev Herzl (1860 - 1904)

In this work we have presented a distributed protocol for storage aggregation on WSN. We began

with an implementation of a static expander graph that is based on the work of Gabber and Galil

(Gabber & Galil, 1979). We described the theory underlying that motivated us to use this kind of

graph. We continued and developed a Distributed Storage Chain (DSC) mechanism, which is ac-

tually a dynamic implementation of sub graphs from the complete expander. We showed through

experimental design that those sub graphs are also expanders. We established a storage aggregation

protocol that is based on these dynamic expanders. Finally, we formulated a traffic model for hot-spot

environment and evaluated the performances of our protocol via simulations that consider that kind

environment.

We evaluated the performances of our protocol by simulating sensor networks of up to 6400 sen-

sor nodes. We demonstrate that DSC can be used as an efficient deterministic “search-function” that

can cover the entire WSN with the same efficiency as random selection of geographical locations.

Sensor networks that implement our protocol may operate under unfairness conditions between sen-

sors (or between sensor regions). Moreover, since our protocol is an application layer protocol, no

hardware modifications are needed. In this work we simulated various configurations of hot-spot

regions. We varied the probability of hot-spot regions to generate events, their number and the way

they are distributed over the target field. Also, we varied the WSN size, the number of events that

sensor may store locally (LSC) and the percentage of total WSN storage that is consumed. Our sim-

105
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ulations showed that DSC may tolerate up to a single sensor that may generate alone 80% of the total

network’s events. In this work, we described three main contributions and innovations:

First. We developed a distributed geographic expander overlay network for WSNs that are uni-

formly distributed over a target area. We measured the network performances through extensive

simulations and found that its behavior is similar to that of an expander graph. In other words, we

have managed to construct a WSN whose diameter scales with its size, while the number of links

per sensor node remains constant (as we increment the network size). Moreover, we have managed

to take the discrete expander graph and implement it over a continuous geographical region. Thus,

we have established a geographic expander network topology for WSN, which can be constructed

distributedly. Our next contribution is based on that topology.

Second. We developed a Deterministic Geographic “Random” Walk that uniformly “samples”

the target area. This walk gains its uniqueness for its ability to generate “random” partnerships

between sensor nodes. However, those partnerships are deterministic, by definition (Corollary 1)

and can be calculated by a specific formula (Definition 7). We have shown that our Deterministic

Geographic “Random” Walk is smooth, in the scenes that when it is repeated, it divides the unit

surface uniformly. Our main innovation in this work is that our deterministic Geographic “Random”

Walk allows sensors to select partners uniformly from the network as if they select random locations

of a Home Nodes. We use this walk in order to select sensor groups that can share their resources.

Moreover, its effectiveness derived from its uniform “sampling” characteristic. Hence, if conducted

from different sensors locations it would not cause starvation on specific regions.

Third. We developed a distributed WSN protocol that can optimize the storage utilization of

WSNs in order to prolong its lifetime. This protocol defines a Deterministic Geographic “Random”

Walk (Section 5.5) and enable sensors to share their storage capacities. For WSN applications, our

walk is of great impact, because it can both be implemented locally and no information needs to be

kept in order to reconstruct it. Thus, no routing tables or instructions are maintained for the retrieval

of data by the protocol (only local data). Even if a sensor dies, its storage chain can be reconstructed,

based only on its location (or its region). We have demonstrated how to optimize our protocol, based

on the traffic model that we have developed. We showed how its performances change with the

number of hot-spot events that are generated on the target field. If we could characterize the target

field according to our traffic model, it is possible to optimize the costs of our protocol. However, as

we showed, even when nothing is known on the target area, our protocol still drastically improve the

WSN lifetime.
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9.1 More Applications

We began this work by saying that we use the storage problem as an example of resource aggre-

gation. Actually, as we demonstrated throughout this work, the essence of our model is in its ability

to deterministically enable “random” interactions between sensor nodes. In this section we describe

more applications that can make use of this interesting property by adjusting our protocol platform.

1. On Many-to-One WSN architecture there is tremendous importance to the way data is transmit-

ted to the sink station. Generally, we assume that the sink station is far from all sensor nodes, in

the sense that transmission to the sink station consume more energy than transmission between

sensor nodes. When sensors transmit in a multi-hop fashion, there is a risk that sensors that

are closer to the sink station would carry the load of the whole WSN (Hung-Yu et al., 2005).

Therefore, those sensors would rapidly get their energy capacity depleted and die. Heinzelman

et al., (Heinzelman et al., 2000) suggest a clustering method on which the WSN is divided to

clusters. Every cluster selects a cluster-head which transmit all the data towards the sink station.

That way, they are able to process all the data on the cluster and, therefore, send less data to the

sink station. Also, since cluster-heads are re-selected every defined time period, they achieve a

more balanced energy consumption.

We believe that our deterministic “random” walk can be used as an efficient method both for

selecting the clusters and for selecting the cluster-heads. Since the success of their algorithm

depends in the distribution of the cluster-heads over the target area, and since our method of-

fers a uniform distribution, we believe that our method can contribute a lot to that clustering

technique.

2. Sensor nodes may be requested to backup their data. Creating a backup on a nearby sensor

might be an energy efficient solution, but sometimes backup is required due to environment

concerns such as fire, flood, strong winds, etc. Therefore, we might need to make a backup of

the data far from the sensor node. Moreover, we would like to avoid specific regions, to which

most of the WSN data is sent. In other words, we would need a more uniform solution, such as

our distributed storage model offer.

Aly et al. (Aly, Kong, & Soljanin, 2008) describes the scenario where k events are very critical

for the WSN. These events where discovered by k sensors, and are spreaded over the WSN in

order to increment the probability of them to be found. Their basic idea is that every set of

(1 + ǫ)k sensors would contain these k events with a high probability. To do so, (Aly et al.,

2008) uses a random walk to that disseminates these events over the WSN. Also, the number of

events k and the WSN size n plays an important role, whether they are given to all the sensors
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or being estimated by them. Our DSC protocol can be used for the same objective, without the

knowledge of these parameters while using our deterministic “random” walk (Section 5.5).

3. Some non-real-time WSN uses data mule devices (Luo et al., 2007) in order to collect data

from encountered locations. On that case, sensors should direct their data to regions where it

might be encountered by a data mule. Since data mules may visit (or sample) the target area in

a uniform manner, we can exploiting the deterministic “random” nature of the DSC. In other

words, a sensor node can raise the probability for gathering its data by data mules by sending

its information over a DSC.

4. Naor et al., (Naor & Wieder, 2007) suggested distributing process jobs between multiple pro-

cessors. They used a distributed hash table that creates links between different processes. When

some processor gets its CPU congested, processes can transfer themselves from one processor

to another, based on those links. Their hash table was designed for 1-D interval where processes

where “Home-Node” to sub-intervals. However, if we think about their problem in 2-D, our

DSC can offer a 2-D distributed hash table that matches their needs.

9.2 Future Work

Throughout this work, and especially in the Simulations Chapter (Chapter 8) we demonstrated

interesting observations both for our protocol and for our deterministic “random” walk. Our obser-

vations are based on various simulations, on which we varied most of the WSN variables in order to

study our problem on different levels. In this section we will demonstrate some ideas that we have

for future work:

1. In this work we deal with Homogenous WSN where all sensors have the same resource capac-

ities. As we already mentioned, if we knew which regions are hot-spot regions in the scene

that they generate more events than others we could deploy there sensors with higher storage

capacities. However, we can think about this problem a little bit differently. Suppose that we

have deployed a heterogeneous WSN, where some sensors have more resources than others.

Suppose that sensors with large capacities are deployed uniformly and suppose that the target

area has hot-spot regions. Therefore, our problem is how to transmit the overflowed events from

hot-spot regions to sensors with large storage capacity. Since these sensors are deployed uni-

formly over the target area, we can easily use DSC to distribute data uniformly over the target

field. Therefore, these chains would discover the large capacity sensors with high probability.

We suggest exploring the implication of a heterogenous WSN on the performances of our pro-

tocol. Also we suggest exploring the proportion between high capacity and regular sensors in
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order to find the combination that optimizes the WSN performances in terms of lifetime.

2. In this work we repeated and demonstrated by different types of simulations that our DSC

can be used efficiently for creating interactions between sensors. In other words, DSC can

be used as efficiently as random walk over the target area. Moreover, we showed that these

chains uniformly “select” geographical locations (or Home-Nodes) in [0, 1)2. In Theory 1 we

referred to the work of Gabber and Galil (Gabber & Galil, 1979) that justifies the use of their

transform for our static network (see Section 4.5). However we could not analytically prove

that DSC (which select the two transformations alternatively) actually selects points in [0, 1)2

on a uniform manner. In Appendix C we formulate the problem that we have tried to proof.

3. Liao et al., (Liao & Wu, 2008) suggest a multiple threshold mechanism for storage management

in WSN. They define TL storage threshold levels for all the sensors in the WSN. According to

their model, the storage capacities of all sensor nodes are divided into TL sub-capacities. Then,

the WSN synchronizes the threshold level that is used currently. A sensor that had current

storage threshold level depleted, would “direct” its events to one of its close neighbors. It

would direct it to the closest neighbor that has available storage capacity (within the current

trashily). In other words, according to their model, although that the sensor still has available

storage capacity, it would utilize it only when the WSN gets the decision to move to the next

threshold.

We believe that the multi-threshold mechanism may be useful in our protocol. That is, our DSC

would not enforce sensor nodes to completely get their storage capacity depleted. We believe

that there could be much more future work in the area of multi-threshold. For example, let

LSC be set to LSC = 20%, suppose that a sensor had its current threshold capacity depleted,

although it only utilized its LSC = 20% (from the current threshold capacity). We can say

that this sensor is not a hot-spot sensor. Moreover, this sensor can determine locally that it is

not a hot-spot sensor. Therefore, based on that information, it may use its next threshold level

instead of constructing more DSC links. A sensor that consumed its entire threshold and was

not directed by any other sensor, can deduce that it is a hot-spot sensor. We also believe that

the number of thresholds and their sizes (e.g., they may divide the local storage capacity to TL

non-equal sub-capacities) are interesting design questions.

4. A fundamental issue that was repeated throughout our work is that sensor nodes should know

their locations. Furthermore, we have discussed this issue and mentioned that location can be

obtained either by a GPS or by some kind of localization technique (Section 4.4 and (Khan et

al., 2009)). In our work, location is important for three main reasons:
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(a) Events are associated with the locations where they were observed.

(b) GPSR (Karp & Kung, 2000) uses sensor locations to advance packets to their destination.

(c) DSC uses sensor locations in order to calculate links (Definition 7)

Since energy consumption by GPS is very high, it is recommended to reduce the use of GPS in

WSN applications. An alternative is to use the triangulations between sensor nodes (Delaunay

triangulation (Berg, 2000)) in order to estimate their locations. Khan et al. (Khan et al., 2009)

suggest a localization technique for the 2-D unit surface that requires only 3 anchor sensors.

These anchor sensors are either fixed sensors or high energy sensors with GPS that know their

exact location. Moreover, these devices should anchor the WSN in a way that all sensors lie in

the convex hull of the 3 anchors.

Depending on the WSN application, if the location of the observed events is not important we

can use virtual coordinates. In other words, DSC can be implemented regardless of GPS. It

is possible to use a distributed protocol to select anchors within the WSN. These anchors will

define the unit square (which is essential for the modulo 1 operator). Based on the triangula-

tions, each sensor could define its distance from the anchor sensors. Then, these distances can

be converted to sensor’s virtual coordinates.



Chapter 10

Conclusões

“No que diz respeito ao empenho, ao compromisso,
ao esforço, à dedicação, não existe meio termo. Ou
você faz uma coisa bem feita ou não faz”

Ayrton Senna (1960 - 1994)

Neste trabalho apresentou-se um protocolo distribuído para agregação de armazenamento em Re-

des de Sensores Sem Fio (RSSF). Começa-se pela implementação de um grafo estático tipo expander

que é baseado no trabalho de Gabber-Galil (Gabber & Galil, 1979). Descreve-se a teoria basilar que

motiva o uso deste tipo de grafo. Assim, desenvolveu-se uma cadeia de armazenamento distribuído

(Distributed Storage Chain - DSC). Efetivamente, estas cadeias de armazenamento são uma imple-

mentação dinâmica de sub-grafos do grafo tipo expander. Mostrou-se nesse trabalho através de um

projeto experimental, que estes sub-grafos são também do tipo expender. Finalmente, estabeleceu-se

um protocolo de armazenamento agregado baseado nestes expanders dinâmicos.

Avaliou-se o desempenho deste protocolo através de RSSF de até 6400 nós de sensores. Demonstrou-

se que o protocolo DSC pode ser usado como uma função de busca determinística, que consegue

cobrir a rede inteira com eficiência de um passeio aleatório. Redes de sensores que implementarem

este protocolo podem operar em condições de desigualdade dentre os sensores (ou dentre as regiões).

Além disso, desde que este protocolo possa ser implementado na camada de aplicação, nenhuma al-

teração no hardware será necessária. Neste trabalho simula-se um grupo relativamente pequeno de

sensores que geram 80% de atividades. Estas simulações mostram que a DSC pode tolerar até um

único sensor que gera por si mesmo até 80% das atividades da RSSF. Também mostramos simulações

de cenários específicos onde a sequência das regiões de sensores causam desigualdades dentro do

campo alvo.

As três maiores contribuições e inovações desse trabalho são: Primeiro. Desenvolveu-se um

111
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expander geográfico distribuído - rede overlay para RSSF que é distribuído uniformemente acima de

um campo alvo. Mediu-se os desempenhos da rede através de várias simulações e descobriu-se que

seu comportamento é similar a um grafo tipo expander. Em outras palavras, quando se aumenta o

tamanho da rede, seu diâmetro não muda sua escala e o grau dos nós (numero dos enlaces por nó)

mantêm-se constante. Portanto, estabiliza-se uma topologia RSSF geográfica que pode ser construída

distributivamente. A próxima contribuição é baseada nesta topologia.

Segundo. Desenvolveu-se um Passeio Determinístico “Aleatório” Geográfico que consegue “mostrar”

o campo alvo na forma unitária. Esse passeio ganhou sua singularidade por sua habilidade de gerar

parcerias aleatórias dentre os sensores. Também, estas parcerias podem ser previstas e reconstruí-

das. Porém, estas parcerias são definitivamente determinísticas e dependem somente das locações

dos sensores no campo alvo. Este novo passeio determinístico “aleatório” geográfico habilita os

sensores a selecionarem uniformemente parceiros na rede como se tivessem selecionados locações

aleatórias dentre as regiões dos Home Nodes. Usa-se este passeio para selecionar grupos de sensores

que possam compartilhar suas reservas de armazenamento. Além disso, sua eficiência deriva de sua

característica “uniforme” de amostragem. Por isso, quando conduzido de diferentes localizações dos

sensores, não geraria “starvation” em regiões especificas.

Terceira. Desenvolveu-se um protocolo que otimiza a utilização da capacidade do armazena-

mento do RSSF. Este protocolo usa o passeio determinístico “aleatório” geográfico para possibilitar

que os sensores possam compartilhar suas capacidades de armazenamento. Este passeio apresenta

um grande impacto, pois nenhuma informação precisa ser mantida para os passeios poderem ser

reconstruídos. Em outras palavras, nenhuma tabela de roteamento e nenhum tipo de instrução são

necessários para retirar dados hospedados em algum sensor. Como resultado, mesmo que um sensor

morra, a sua cadeia de armazenamento pode ser reconstruída a partir de apenas sua localização. Além

disso, mais aplicações podem ser desenvolvidas usando esta plataforma de protocolo. Um exemplo

é RSSF que usa “data mule devices” (Luo et al., 2007) para coletar dados das regiões encontradas.

Um sensor pode aumentar a probabilidade para que seus dados sejam recuperados, através da geração

de múltiplas copias de segurança de seus dados numa cadeia DSC. Assim, explora-se a característica

determinística “aleatória” do DSC, e a sua implementação distribuída.

10.1 Mais Aplicações

Começa-se este trabalho dizendo-se que o problema do armazenamento é um exemplo da agre-

gação de recursos. Na verdade, como foi demonstrado através deste trabalho, a essência do modelo

aqui apresentado é a sua aptidão de deterministicamente habilitar interações “aleatórias” entre nós

de sensores. Nesta seção, descreve-se mais aplicações que podem se valer desta propriedade tão
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interessante, através do ajuste desta plataforma de protocolo apresentada

1. Na arquitetura de Many-to-One RSSF há uma enorme importância à forma com que os dados

são transmitidos para a estação Sink. Geralmente, assume-se que a estação Sink fica longe de

todos os nós de sensores, no sentido de que a transmissão para a estação Sink consome mais

energia do que a transmissão entre os nós de sensores. Quando sensores transmitem em uma

maneira multi-hop há o risco de que os sensores próximos à estação Sink acabem por carregar a

carga de toda a RSSF (Hung-Yu et al., 2005). Desta forma, os sensores rapidamente esgotariam

sua energia e morreriam. Heinzelman et al., (Heinzelman et al., 2000) sugere um método de

clustering no qual a RSSF é dividida em clusters. Cada cluster seleciona seu cluster-head que

transmite todos os dados para a estação Sink. Deste modo, os sensores tornam-se capazes de

processar todos os dados no próprio cluster e assim enviam menos dados para a estação Sink.

Além disso, como os cluster-heads são re-selecionados a cada período definido, eles atingem

um consumo de energia mais balanceado.

Acredita-se que o passeio determinístico “aleatório” sugerido, possa ser usado como um método

muito eficiente tanto para seleção de clusters como para a seleção de cluster-heads. Uma vez

que o sucesso de seus algoritmos dependem da distribuição de cluster-heads sobre um campo-

alvo, e considerando que este método oferece uma distribuição uniforme, acredita-se que este

trabalho sugerido aqui realmente possa contribuir para esta técnica de clustering.

2. Os nós de sensores podem precisar fazer copia de segurança de seus dados. Criar uma copia

de segurança num sensor próximo pode ser uma solução eficiente para consumo de energia,

mas muitas vezes a copia de segurança é requerida devido às questões do ambiente, como fogo,

vendavais, etc. Assim, pode-se desejar fazer a copia de segurança de um sensor distante. Além

disso, pode-se evitar algumas regiões específicas, para as quais a maioria dos dados da RSSF

são enviados. Em outras palavras, necessita-se de uma solução uniforme, exatamente como o

que este protocolo distribuído para agregação de armazenamento em RSSF, aqui apresentado,

oferece.

Aly et al. (Aly et al., 2008) descreve o cenário onde k eventos são muito críticos para a RSSF.

Estes eventos foram indetificados por k sensores, e estão espalhados ao longo das RSSF para

incrementar a probabilidade de que eles sejam encontrados. O princípio ideia é que cada con-

junto de (1 + ǫ)k sensores possua esses k eventos com alta probabilidade. Para isso, (Aly et

al., 2008) utiliza um passeio aleatório que espalha estes eventos. Além disso, o número k de

eventos e o tamanho n da RSSF são parâmetros importantes neste artigo (Aly et al., 2008), que

são dados a todos os sensores ou estimados por eles. O protocolo DSC pode ser usado sem

o conhecimento destes parâmetros e pode usar o Passeio "Aleatório" determinístico proposto
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(Section 5.5).

3. Algumas RSSF de tempo não-real usam mule devices (Luo et al., 2007) para coletarem dados

das regiões encontradas. Nesse caso, sensores deveriam enviar seus dados para regiões onde

os data-mules pudessem ser encontrados. Uma vez que o data-mule possa visitar(ou amostrar)

o campo-alvo de maneira uniforme, pode-se explorar a característica do passeio determinístico

“aleatório” da DSC. Ou seja, um nó de sensor pode levantar sua probabilidade de reunir dados

através de data mules, enviando sua informação sobre a DSC.

4. Naor et al., (Naor & Wieder, 2007) sugeriu a distribuição de tarefas de processamento en-

tre múltiplos processadores. Eles usaram uma hash table distribuída que cria ligações entre

diferentes processos. Quando um processador fica com a sua CPU congestionada, tarefas de

processamento podem ser transferidas de um processador para outro, baseado nestas ligações.

Suas hash tables foram desenhadas para intervalo 1-D, onde os processos eram os “Home-

Nodes” dos subintervalos. Entretanto, se pensarmos neste problema em 2-D, nossa DSC pode

oferecer uma hash-table distribuída 2-D que atende estas necessidades.

10.2 Trabalho futuro

Através deste trabalho, e especialmente no Capítulo de Simulações (Capítulo 8) demonstrou-se

observações muito interessantes tanto sobre este novo protocolo como para o novo passeio determinís-

tico “aleatório”. Estas observações baseiam-se em diversas simulações, nas quais foram variadas a

grande maioria dos parâmetros da RSSF, para poder estudar o problema em diferentes níveis. Nesta

seção, apresentam-se as idéias que podem ser desenvolvidas em trabalhos futuros.

1. Neste trabalho, lida-se com as RSSF homogêneas, onde todos os sensores possuem a mesma

capacidade de recursos. Como anteriormente mencionado, caso se saiba quais regiões são

os hot-spots do cenário, que geram muito mais atividades que as demais, poderia se implan-

tar ali sensores com mais capacidade de armazenamento. Entretanto, pode se pensar sobre

esta questão de forma um pouco diferente. Suponha que se tenha implantado uma RSSF het-

erogênea (onde alguns sensores tenham mais recursos que outros). Suponha que aqueles sen-

sores com maior capacidade de armazenamento sejam implantados uniformemente e que o

campo-alvo possua regiões hot-spots. Assim, o problema será como transmitir as atividades de

sobrecarga de regiões hot-spots aos sensores com maior capacidade de armazenamento. Desde

que estes sensores tenham sido implantados uniformemente sobre um campo-alvo, pode-se

facilmente usar a DSC para distribuir os dados uniformemente sobre este campo-alvo. Desta
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forma, as cadeias teriam uma probabilidade muito alta de descobrir os sensores com maiores

capacidades de armazenamento.

Sugere-se aqui que se explore a implicação de RSSF heterogêneas e os desempenhos do pro-

tocolo sugerido aqui. Sugere-se também, que se explore a proporção entre os números dos

sensores com alta capacidade e os números sensores regulares, para que se encontre a combi-

nação ideal que otimize as desempenhos das RSSF em termos de tempo de vida.

2. Neste trabalho, repetiu-se e demonstrou-se , através de diferentes tipos de simulações, que nossa

DSC pode ser usada eficientemente para criar interações entre sensores. Em outras palavras,

a DSC pode ser usada com eficácia como um passeio aleatório sobre um campo-alvo. Além

disso, mostrou-se que estas cadeias selecionam uniformemente as localizações geográficas (ou

Home-Nodes) em [0, 1)2.

No Teorema 1 faz-se referência ao trabalho de Gabber e Galil (Gabber & Galil, 1979) que jus-

tifica o uso da sua transformada para a rede estática que foi sugerida na Seção 4.5. Entretanto,

não se pode dar uma prova matemática de que a DSC, a qual seleciona das duas transformadas

alternativamente, realmente selecione pontos em [0, 1)2 de modo uniforme. No Apêndice C

formulou-se esse problema, para poder prová-lo.

3. Liao et al., (Liao & Wu, 2008) sugeriu um mecanismo de limiar múltiplo (multiple thresh-

old mechanism) para armazenamento em RSSF. Eles definiram TL níveis de limiares de ar-

mazenamento para todos os sensores da RSSF. De acordo com este modelo, a capacidade de

armazenamento de todos os nós de sensores são divididos em TL sub-capacidades. Assim, a

RSSF sincroniza os níveis dos limiares que são usados naquele momento. Um sensor que tenha

tido seu limiar de armazenamento regular esgotado, “direcionaria” seus eventos para seu viz-

inho mais próximo que tenha capacidade disponível de armazenamento (dentro do limiar atual).

Em outras palavras, de acordo com este modelo, apesar dos sensores ainda terem espaço de ar-

mazenamentos disponíveis, eles o utilizariam apenas se a RSSF decidisse alcançar o próximo

limiar.

Acredita-se que os mecanismos de limiares múltiplos podem ser úteis no protocolo sugerido

aqui. Ou seja, a RSSF não forçaria os sensores a esgotaram suas capacidades totalmente.

Acredita-se que podem haver muitos trabalhos futuros sobre este tema de multi-limiares. Por

exemplo, seja LSC a capacidade local quando LSC = 20% e supondo-se que um sensor tenha

tido seu limiar atual esgotado apesar de ter utilizado somente seu LSC = 20% (da então atual

capacidade limiar). Pode-se afirmar que este sensor não era um sensor hot-spot. Além disso,

este sensor pode determinar localmente que ele não é um hot-spot. Desta forma e baseado

nesta informação, o sensor pode usar o limiar seguinte em vez de construir novos enlaces de
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DSC. Similarmente, pode-se deduzir que um sensor que tenha consumido completamente o

seu limiar e que não tenha direcionado sua sobrecarga para outro sensor, seja um sensor hot-

spot. Acredita-se também que o número de limiares e seus tamanhos (por exemplo, eles podem

dividir sua capacidade de armazenamento local para sub-capacidades que não são iguais) são

questões interessantes de modelagem.

4. Uma questão, repetida ao longo deste trabalho, é que os nós de sensores devem conhecer suas

próprias localizações. também foi discutido este assunto e mencionado que a localização pode

ser obtida por um GPS ou por algums técnicas de localização (Seção 4.4 e (Khan et al., 2009)).

Neste trabalho, as três razões principais pela quais a localização é importante são:

(a) Os eventos estão associados os locais que onde foram observados;

(b) O protocolo GPSR (Karp & Kung, 2000) utiliza os locais dos sensores para enviar os

pacotes aos seus destinos;

(c) DSC usa as localizações dos sensores para calcular seus enlaces (Definição 7).

Como o consumo de energia do GPS é muito alto, recomenda-se reduzir o seu uso em apli-

cações de RSSF. Um solução é usar triangulações entre os nós de sensores (por exemplo tri-

angulação de Delaunay (Berg, 2000)) para estimar suas localizações. Khan et al. (Khan et

al., 2009) sugere uma técnica de localização para o quadrado unitário 2-D que requer apenas 3

sensores de âncora (anchor sensors). Estes sensores podem ser estações fixas, ou sensores de

alta energia com dispositivo de GPS que sabem a sua localização exata. Além disso, estes sen-

sores devem âncorar a RSSF de uma forma que todos os outros sensores estejam na envoltória

convexa (convex hull) destes três.

Dependendo da aplicação da RSSF, se o local dos eventos observados não for importante, pode-

se usar coordenadas virtuais. Em outras palavras, o protocolo DSC pode ser implementado de

forma totalmente independente do GPS. Deste modo, sensores âncoras podem ser definidos por

um protocolo distribuído. Estas âncoras vão definir o quadrado unitário (o que é essencial para o

operador de módulo 1), e, com base nas triangulações, cada sensor pode definir a distância entre

ele e os sensores âncora. Finalmente, estas distâncias podem ser convertidas para coordenadas

virtuais dos sensores.
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Appendix A

Extension for Our Results

Throughout this work we demonstrate various performance results from different simulations that

we have conducted. Since we have varied multiple parameters (n, p, γ,HS, |S0|, etc.) there are

obviously a lot of simulation results. In this Appendix, we demonstrate some simulation results that

could not fit inside the text. We begin with the results for the comparison between sensors region

sizes and the number of static links that “selects” them (Section 4.5). We demonstrate this relation

for various network sizes, and show that the same behavior repeats for different n (WSN size) values.

Figures A.2 - A.5 demonstrate the deterministic “random ” walk that we have presented in Section

5.5 for WSN of sizes 50− 6400 sensors with a varied size of primary group S0. These results are the

main impacts of our work since they demonstrate the behavior of our DSC algorithm are as efficient

as a random selection of geographical locations in [0, 1)2, or as a random walk over the target field.

The rest of the figures in this section refer to the simulations consucted in Chapter 8. Figure A.6

demonstrate that the characteristics of the LSC curves maintain for different sizes of HS sets and

different p values. Moreover, we demonstrate how the optimal LSC value changes almost together

for all the curves as we modify the p parameter. On Figure A.7 we show only the optimal points form

Figure A.6 and compare them with the mean and variance values. This figure extend the simulation

results from Figure 8.6 for different HS sizes. Figure 8.12 extend the simulation results from Sec-

tion 8.8, for the two valley deployments (Figure 8.12). Figure A.9 demonstrate the drooped packets

analysis for more p values (Section 8.5). Figures A.11 and A.10 demonstrate the simulation results

for varied sizes of HS sets from Section 8.7.
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Fig. A.1: Area Vs. Number of Links for various network sizes. Note that for all n (WSN size) the
number of links is distributed over the mean of 3 links.

Fig. A.2: Sets simulation for 1 sensor primary group.
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Fig. A.3: Sets simulation for Log(n) primary group.

Fig. A.4: Sets simulation for 5% sensors primary group.



124 Extension for Our Results

Fig. A.5: Sets simulation for 20% sensors primary group.
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Appendix B

WSN Simulator

Although there are many published researches in the field of WSN, there is still a lot of work

ahead. Winkler et al. (Michael Winkler & Barclay, 2008), describes the 3GSN (see Section 3.2.3) as

immature systems that are still at the proof-of-concept stage. Moreover, Handziski et al. (Andreas et

al., n.d.), titles the WSN research as heavily fragmented. “It seems that independent developments

take place on both sides of the Atlantic without using common standards”. Thus, there is not yet

a common “lingua franca” as in some other fields of networking research. Mostly, the absent in

common standards is mostly reflected in the field of simulations. This observation is very important,

since almost all works in the field of WSN are based on simulations.

Different research groups use different simulation environments for performance evaluation. The

most popular simulation environments in the literature include (Andreas et al., n.d.): NS-2, Opnet,

GlomoSim, Qualnet and Om-NET++, etc. However, none of these simulation tools satisfy all WSN

demands. For example, the wireless channel model is too simplistic and not easily changed (NS-2),

not all relevant protocols are easily available (Omnet) and some are commercial (Opnet, Qualnet).

Moreover, as we described on Chapter 6, most WSN research assume that events are uniformly gen-

erated in target area. Respectively, the most important problem is that there is no simulation tool

that implements a convincing model for sensor excitations. Therefore, since the core of our work

is based on non-uniform traffic model, we had to implement an environment that can supports such

kind of traffic. In other words, our simulator implements a sensor excitation model that is based on

non-uniform event generation on the target area.

In terms of running time, the bottleneck for our simulations is in the point location algorithm.

In other words, when a sensor wishes to “store forward” its events, it direct them to a geographical

address that is obtained by the DSC. In order to determine the specific sensor that receives those

events, our simulator should retrieve the Home-Node for that specific geographical address. Since

almost 80% of the events are “stored forward” this problem is of a large scale.

127



128 WSN Simulator

A naive algorithm that solves the point location problem can be comparing the distances of the

geographical address with all the sensors in S. That algorithm would have the cost of O(n), where n

is the number of sensors in the WSN. If p ·Mn events are to be stored forward, the simulator running

time has a O(n2) complexity. That factor makes computation time very expensive. Therefore, our

major challenge was in implementing a heavy computational geometry data structure that supports

the point location search (see the slabs data structure in (Berg, 2000), Chapter 6) in order to reduce

the computational complexity. The data structure that we used, reduced the simulator complexity

from O(n2) to O(nLog(n)).

B.1 Development

We have implemented our simulator over two different platforms. Our first code was written in

C++ and contained a full implementation of the slabs data structure ((Berg, 2000), Chapter 6). The

slabs structure reduces the cost for every point location search to O(Log(n)). Therefore we achieved a

O(nLog(n)) running time. Notice that the open source Computational Geometry Algorithms Library

(CGAL, http://www.cgal.org) contains the Doubly-Connected Edge List (DCEL) data structure that

implements the very same slabs structure. However, at the time we did not know about the existence

of that library. Our C++ code was very large and complex, it contained more than 5000 lines of code.

Therefore, it was difficult for modifications and debuging. However our code was independent and

implemented the whole simulator without relying on existing codes.

Wolfram mathematica has a Kd-Tree (Berg, 2000) data stricture that also implements the point

location problem for (Log(n)) complexity. With Wolfram Mathematica we have managed to reduce

the lines of code from 5000 to 700 while implementing more options. Moreover, the advantage of

implementing the simulation code in Wolfram Mathematica is that it allows programming, plotting

and script writing with the same kernel. Therefore, the develop time was reduced drastically. In

the next section we will give a general description of the simulator, we will demonstrate how to run

simulations and how to modify the code.

B.2 DSC Simulator V1.3

The latest version of our Mathematica simulator is V1.3. The folder DSC V1x3 is our main sim-

ulations folder. It contains two Mathematica (*.nb) notebook files, a data file (*.m) with specific

simulation configurations and the NBD folder. The NBD folder contains six library files that im-

plement all the functions that are used by our simulator. The main notebook file, “simulation.nb”,

begins by loading all these libraries. It loads the parameters from the “config.m” file and executes the
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simulation.

Apart of the simulator folder, we maintain different WSN topologies of different sizes on the

DataBase folder. We use that folder for simulations I O. Our simulator reads sensors locations from

the desired topology folder and writes the results back to that folder.

B.2.1 Configurations

The specific configurations for a simulation are defined in the “config.m” file. We can design a

new simulation, simply by modifying the parameters in this file. We use the “config.nb” file in order

to change these parameters manually and write them into “config.m”. In Table B.1 we describe all

the parameters that can be changed for simulations.

Parameter Explenation
Nx Network Size. The simulator will access this network size in

the DataBase and execute the same simulation for every
network topology in that folder

HsList Number of hot-spots to select uniformly. Notice that this
parameter is a vector. The simulator will perform new
simulation for each entery of that vector.

p hot-spot probability
LocalStorageV ector Number of LSC units Notice that this parameter is a vector.

The simulator will perform new simulation for each entery
of that vector.

sampleRpeatMax Number of iterations that each simulation should be repeated
γ Maximum storage consumption (of the entire WSN)
SimulationName Result files will begin with this prefix.
SimulationPurpose The header of the results will contain this string. This string

will explain what we tried to simulate in that specific simulation.

Tab. B.1: Simulation parameters, stored in the “config.m” file.

In Section B.2.2 we will demonstrate how to design a set of simulations with different parameters

that can be executed in parallel.

B.2.2 Parallel Simulations

The Wolfram Mathematica 7 can accelerate processes by using multiple cores. However, its

ComputationalGeometry library (which implements the K-d tree) does not makes use of the multi-

threading operations. In order to reduce simulation time we process several simulations in parallel.
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In other words, we divide our main simulation into several “sub-simulations”. We run each “sub-

simulations” on different core.

For example, if we would like to conduct a simulation for some WSN topology and examine dif-

ferent LSC values where LSC = 0−41, we could divide that simulation to several “sub-simulations”.

If we wish to utilize six different cores in our machine, we will divide the main simulation to six differ-

ent simulations, where the LSC parameter for these simulations varies: [0, 7), [7, 14), [14, 21), [21, 28), [28, 35), [35

On the Scripts folder, Scripts 2−3 makes it easier to design a simulation and divide it to several cores

automatically. Actually, these scripts create a simulation folder for each core we wish to utilize and

write the specific parameters to “config.m” (instead of writing them manually). In other words, we

create 6 different simulation folders, each with a different LSC vector. Unfortunately, in order to run

these folders simultaneously, one has to open a Mathematica session (manually) for each folder and

execute its “Simulation.nb” file. We did not managed create a script (in Mathematica or any other

language) that can execute these “Simulation.nb” files automatically. Scripts 4− 5 makes it easier to

collect all the results into the same I O folder.



Appendix C

DSC - Analytical Formulation

In Chapter 5 we discussed the possibility of alternatively using the Gabber-Galil transform to

generate a DSC sequence (Defenition 7) that can be used as a “search-function”. In section 5.5

we simulated this sequence and demonstrated that it has the same characteristics as a random walk,

or as a random selection of Home-Nodes. In Chapter 8 we have demonstrated the motivation for

applying this sequence within our protocol and evaluated its performances via simulations. However,

throughout this work we could not analytically prove that our sequence simply select points in [0, 1)2

uniformly. In this appendix we give our preliminary work for showing that our sequence is indeed a

deterministic “random” walk.

C.1 Objective

Our objective in this section is to define the characteristics of a deterministic “random” walk as a

part of a sketch for the analytical analysis of DSC.

C.2 Definitions

C.2.1 General

Definition C.1. Unit Square. We define the unit square as the surface I = [0, 1) × [0, 1).

Therefore, we work above all points (x, y) in I . In other words, all points (x, y) that satisfy: 0 ≤
x, y < 1

Definition C.2. Planar Voronoi diagram. Let S be a set S = s1, s2, s3, . . . , sn of n ≥ 2

distinct points (si = (x, y)) that represent sensor locations on the unit square. We say that the planar

Voronoi diagram for these sensors is a partition of I into n non-overlapping regions. Each point in
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I is associated with its closest member from S. That is, if a point p is located in the region of some

sensor si ∈ S, it has to satisfy Min(|si − p|) among all points si ∈ S. We ignore the measure zero

set of points that falls on the border between two Voronoi cells.

Corollary C.1. Home-Node. We say that a sensor si is a Home-Node for some point p ∈ [0, 1)2

iff that point is included inside the Voronoi region of sensor si p ∈ Vor(si). In other words, among

all generators sj , the Euclidean minimum Min(|sj − p|) is achieved only for sensor si.

Definition C.3. Link. A link (pi, pj) is an attribute that represent communication and which

associate point pi with point pj . Our links are directed links i.e., by noting (pi, pj) we mean that the

link’s direction is from pi to pj . Or in other words, communication flows from pi to pj .

Definition C.4. Chain. A chain C of size k+1 is an ordered set of points C = (p0, p1, p2, . . . , pk),

where exists a link between every two consecutive points. By definition, p0 ∈ S must be a sensor.

We call that sensor p0 a generator, since it literally generates the chain. The discretization of C is an

ordered set of sensors which is based on the Home-Nodes of each point pi.

C.2.2 Specific Definitions

Definition C.5. Distributed Storage Chain (DSC). DSC is a chain Ck(s) (Definition C4) that

is used by some sensor s for storage allocation. Generally, Ck(s) is an ordered set of points that

visits sensors in S for storage allocation purpose. Ck(s) is a deterministic chain of length k + 1,

which is initiated by some sensor s = p0 = (xs, ys). We define the sequence of vertices Ck(s) =

(p0, p1, p2, . . . , pk) according to the following recursive rule:

s = p0 and for 1 ≤ i ≤ k, pi = CW i(pi−1)

where the ith link (gi−1, gi) is given by::

CW i(x, y) =







East : {x+ y, y} (mod 1) for i even

North : {x, x+ y} (mod 1) for i odd

Notice that the east and west links are the same links as represented by the Gabber-Galil expander

graph (Gabber & Galil, 1979).

Observation. Unit tours. In Definition C.1. we specified that we work above all points (x, y) in

I . Actually, according to the (mod 1) operator, we work above the unit torus. Note that links that

exceed the unit square’s margins, spins from the other side.

Definition C.6. Uniform sampling. We say that a chain forms a uniform sampling of I if it obeys

both the characteristics of spatial and temporal uniform distributions:
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• Spatial uniform distribution. For every chain large enough (n → ∞) and any area A bounded

by any type of polygon, A ⊆ [0, 1)2, the number of point from the chain inside A is proportional

to A. In other words, if there are x points within A, we expect to find (1− A) · x points out of

that polygon.

• Temporal uniform distribution. For every interval k and a partial chain C ′ = (pi, pi+1, pi+2, · · · , pi+k)

within a given chain, we obtain a spatial uniform distribution.

Definition C.7. Smoothness. Smooth. We apply the one dimensional measure smooth (Naor &

Wieder, 2007) for two dimensions. The smoothness of S is denoted by ρ(S) and is defined to be:

∀i, j max|V or(si)

V or(sj)
|

where V or(s) represents the total area of the region of sensor s. If it is guaranteed that the

smoothness of S is bounded by some constant, independent of n, we say that S is smooth.

Definition C.8. Accurate Points. Accurate points are points with coordinates which are long

enough (many digits after the decimal point). In order to define the term “long enough” we use one

of the following two definitions:

1. p = (x, y) : x, y ∈ Set of Irrational numbers

2. p = (x, y) : x, y = m
n
, n → ∞

In other words accurate points use coordinates with a large number of digits after the decimal

point. The problem with coordinates that contain a small number of digits after the decimal point is

that they may cause repetitions. An example for a repetition: (0.5, 0.5) → (0.5, 0) → (0.5, 0) →
(0.5, 0.5)

C.3 Formulation

1. We begin with a set S of n sensors that are distributed uniformly over the two dimensional

unit torus [0, 1)× [0, 1). We assume that sensors coordinates (x, y) are represented by accurate

points (Definition C.8). Moreover, we assume that the distribution of region sizes is smooth.

2. We divide the unit torus into n regions according to the Voronoi diagram of sensors locations.

Notice that every sensor s ∈ S is Home-Node for all the points p ∈ V or(s) inside its Voronoi

region.
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3. We construct a DSC for some sensor s walk according to Definition C.5.by alternatively using

the two Gabber-Galil transformations.

4. We would like to show that the sequence DSC(s) = (p0, p1, p2, · · · , pn) for some sensor s and

some large length n is a uniform sampling of the unit torus. Notice that here we talk about

the Voronoi diagram and the smoothness of a chain. The smoothness of DSC(s) is, therefore,

denoted by ρ(DSC(s)) and is defined to be:

∀i, j max|V or(pi)

V or(pj)
|
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