
Universidade Estadual de Campinas
Faculdade de Engenharia Elétrica e de Computação

Departamento de Engenharia de Computação e Automação Industrial

Plano de Segurança para Autenticação de Dados em Redes
Orientadas à Informação

Tese de Doutorado apresentada à Faculdade de En-
genharia Elétrica e de Computação como parte dos
requisitos para obtenção do título de Doutor em En-
genharia Elétrica. Área de concentração: Engenha-
ria de Computação.

Autor: Walter Wong
Orientador: Maurício Ferreira Magalhães
Co-orientador: Jussi Kangasharju

Campinas, SP
2011



FICHA CATALOGRÁFICA ELABORADA PELA
BIBLIOTECA DA ÁREA DE ENGENHARIA E ARQUITETURA - BAE - UNICAMP

Wong, Walter
W846p Plano de segurança para autenticação de dados em

redes orientadas à informação / Walter Wong. – Campinas,
SP: [s.n.], 2011.

Orientadores: Maurício Ferreira Magalhães; Jussi
Kangasharju.

Tese de Doutorado - Universidade Estadual de
Campinas, Faculdade de Engenharia Elétrica e de
Computação.

1. Arquitetura de redes de computadores. 2. Internet.
3. Computadores - Controle de acesso. 4. Redes de
computação - Protocolos. I. Magalhães, Maurício
Ferreira. II. Kangasharju, Jussi. III. Universidade
Estadual de Campinas. Faculdade de Engenharia Elétrica e
de Computação. IV. Título

Título em Inglês: Security plane for data authentication in information-centric networks
Palavras-chave em Inglês: Architecture of computer networks, Internet, Computers -

Access control, Computer Networks - Protocols
Área de concentração: Engenharia de Computação
Titulação: Doutor em Engenharia Elétrica
Banca Examinadora: Luis Fernando Faina, Marcos Rogério Salvador, Ricardo Dahab,

Marco Aurélio Amaral Henriques
Data da defesa: 23-09-2011
Programa de Pós Graduação: Engenharia Elétrica

ii





iv



Resumo

A segurança da informação é responsável pela proteção das informações contra o acesso não-
autorizado, uso, modificação ou a sua destruição. Com o objetivo de proteger os dados contra esses
ataques de segurança, vários protocolos foram desenvolvidos, tais como o Internet Protocol Security

(IPSEC) e o Transport Layer Security (TLS), provendo mecanismos de autenticação, integridade e
confidencialidade dos dados para os usuários. Esses protocolos utilizam o endereço IP como iden-
tificador de hosts na Internet, tornando-o referência e identificador no estabelecimento de conexões
seguras para a troca de dados entre aplicações na rede.

Com o advento da Web e o aumento exponencial do consumo de conteúdos, como vídeos e áu-
dios, há indícios da migração gradual do uso predominante da Internet, passando da ênfase voltada
para a conexão entre hosts para uma ênfase voltada para a obtenção de conteúdo da rede, paradigma
esse conhecido como information-centric networking. Nesse paradigma, usuários buscam por do-
cumentos e recursos na Internet sem se importarem com o conhecimento explícito da localização do
conteúdo. Como consequência, o endereço IP que previamente era utilizado como ponto de referência
do provedor de dados, torna-se meramente um identificador efêmero do local onde o conteúdo está
armazenado, resultando em implicações para a autenticação correta dos dados. Nesse contexto, a sim-
ples autenticação de um endereço IP não garante a autenticidade dos dados, uma vez que o servidor
identificado por um dado endereço IP não é necessariamente o endereço do produtor do conteúdo.

No contexto de redes orientadas à informação, existem propostas na literatura que possibilitam
a autenticação dos dados utilizando somente o conteúdo propriamente dito, como a utilização de
assinaturas digitais por bloco de dado e a construção de árvores de hash sobre os blocos de dados.
A ideia principal dessas abordagens é atrelar uma informação do provedor original do conteúdo nos
blocos de dados transportados, por exemplo, uma assinatura digital, possibilitando a autenticação
direta dos dados com o provedor, independentemente do host onde o dado foi obtido. Apesar do
mecanismo citado anteriormente possibilitar tal verificação, esse procedimento é muito oneroso do
ponto de vista de processamento, especialmente quando o número de blocos é grande, tornando-o
inviável de ser utilizado na prática.

Este trabalho propõe um novo mecanismo de autenticação utilizando árvores de hash com o ob-
jetivo de prover a autenticação dos dados de forma eficiente e explícita com o provedor original e,
também, de forma independente do host onde os dados foram obtidos. Nesta tese, propomos duas
técnicas de autenticação de dados baseadas em árvores de hash, chamadas de skewed hash tree (SHT)
e composite hash tree (CHT), para a autenticação de dados em redes orientadas à informação. Uma
vez criadas, parte dos dados de autenticação é armazenada em um plano de segurança e uma outra
parte permanece acoplada ao dado propriamente dito, possibilitando a verificação baseada no con-
teúdo e não no host de origem. Além disso, essa tese apresenta o modelo formal, a especificação
e a implementação das duas técnicas de árvore de hash para autenticação dos dados em redes de
conteúdo através de um plano de segurança. Por fim, esta tese detalha a instanciação do modelo de
plano de segurança proposto em dois cenários de autenticação de dados: 1) redes Peer-to-Peer e 2)
autenticação paralela de dados sobre o HTTP.

Palavras-chave: Segurança, arquiteturas de nova geração, protocolos de rede.
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Abstract

Information security is responsible for protecting information against unauthorized access, use,
modification or destruction. In order to protect such data against security attacks, many security
protocols have been developed, for example, Internet Protocol Security (IPSec) and Transport Layer
Security (TLS), providing mechanisms for data authentication, integrity and confidentiality for users.
These protocols use the IP address as host identifier on the Internet, making it as a reference and
identifier during the establishment of secure connections for data exchange between applications on
the network.

With the advent of the Web and the exponential increase in content consumption (e.g., video
and audio), there is an evidence of a gradual migration of the predominant usage of the Internet,
moving the emphasis on the connection between hosts to the content retrieval from the network, which
paradigm is known as information-centric networking. In this paradigm, users look for documents and
resources on the Internet without caring about the explicit knowledge of the location of the content.
As a result, the IP address that was used previously as a reference point of a data provider, becomes
merely an ephemeral identifier of where the content is stored, resulting in implications for the correct
authentication data. In this context, the simple authentication of an IP address does not guarantee the
authenticity of the data, because a hosting server identified by a given IP address is not necessarily
the same one that is producing the requested content.

In the context of information-oriented networks, some proposals in the literature proposes authen-
tication mechanisms based on the content itself, for example, digital signatures over a data block or
the usage of hash trees over data blocks. The main idea of these approaches is to add some infor-
mation from the original provider in the transported data blocks, for example, a digital signature,
enabling data authentication directly with the original provider, regardless of the host where the data
was obtained. Although the mechanism mentioned previously allows for such verification, this pro-
cedure is very costly in terms of processing, especially when the number of blocks is large, making it
unfeasible in practice.

This thesis proposes a new authentication mechanism using hash trees in order to provide ef-
ficient data authentication and explicitly with the original provider, and also independently of the
host where the data were obtained. We propose two techniques for data authentication based on
hash trees, called skewed hash tree (SHT) and composite hash tree (CHT), for data authentication in
information-oriented networks. Once created, part of the authentication data is stored in a security

plane and another part remains attached to the data itself, allowing for the verification based on con-
tent and not on the source host. In addition, this thesis presents the formal model, specification and
implementation of two hash tree techniques for data authentication in information-centric networks
through a security plane. Finally, this thesis details the instantiation of the security plane model in
two scenarios of data authentication: 1) Peer-to-Peer and 2) parallel data authentication over HTTP.

Keywords: Security, clean slate architecture, network protocols.
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Capítulo 1

Introdução

A arquitetura original da Internet foi concebida com o objetivo de interligar computadores geo-
graficamente distantes para o compartilhamento de recursos e serviços, por exemplo, login remoto e
transferência de arquivos. A arquitetura foi construída sobre a tecnologia de comutação de pacotes
com o objetivo de aumentar a robustez da rede de comunicação, por exemplo, para ser robusta contra
catástrofes naturais ou mesmo um cenário de guerra. O modelo básico de comunicação utiliza o Inter-
net Protocol (IP) para troca de pacotes entre dois nós finais, onde a cada nó é atribuído um endereço IP
único e permanente. Sempre que um nó desejar enviar um pacote, ele cria um pacote com o endereço
IP de destino e roteadores ao longo do caminho realizam o roteamento até o destino desejado. Por
outro lado, o destino pode enviar o pacote de volta para o nó de origem apenas invertendo o endereço
IP de origem e de destino no cabeçalho IP, conforme o princípio da comunicação fim-a-fim [1].

O advento da World Wide Web (WWW) no início dos anos 90 fez com que a Internet se tor-
nasse popular fora da comunidade acadêmica, tornando a obtenção de documentos e serviços, tais
como páginas HTML e o comércio eletrônico, de fácil acesso aos usuários através de navegadores
e servidores Web. Concorrentemente, novos requisitos de segurança surgiram como a autenticação
de aplicativos e confidencialidade dos dados, especialmente com o surgimento de serviços bancá-
rios online. O esforço para prover mecanismos de segurança para aplicativos iniciou-se com o secure

network programming (SNP) [2] e o secure socket layer (SSL) [3], que eram parte integrante do nave-
gador Web da Netscape. O SSL evoluiria para um padrão conhecido como Transport Layer Security
(TLS) [4], que está na versão 1.2 no momento desta tese. Além disso, o Internet Security (IPSEC) [4]
foi proposto para fornecer segurança entre nós da rede, um modo de operação que o SSL não oferecia.
O IPSEC oferece segurança na camada de rede, tais como autenticação, integridade e confidenciali-
dade dos dados trocados entre dois nós. O TLS também provê mecanismos de segurança similares ao
IPSEC, porém ele opera na camada de transporte.

A introdução de novos cenários de uso, tais como as redes sem fio e redes orientadas à informação,
expôs algumas limitações da arquitetura da Internet atual. Uma dessas limitações é conhecida como
o problema da sobrecarga semântica do IP [5, 6, 7], que consiste no uso simultâneo do endereço IP
em ambas as camadas de rede e de transporte. Na camada de rede, o endereço IP é usado como
um identificador topológico, indicando um ponto geográfico na topologia da Internet. Na camada de
transporte, o endereço IP é usado como um identificador de nó, sendo utilizado como identificador
de nó final durante o estabelecimento de uma conexão entre dois nós1. Portanto, há um acoplamento

1Para estabelecer uma conexão utilizando a API de sockets de Berkeley, uma aplicação precisa de um transport level
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implícito entre os conceitos de identificação e localização2, onde a identificação de um nó é vinculada
a uma localização dentro de uma rede, impedindo cenários de mobilidade nativa sem modificações no
identificador de nó final. Do ponto de vista de segurança, a ausência de um identificador permanente
e seguro durante um evento de mobilidade do nó resulta em possívels ataques de segurança, como a
impersonificação e ataques man-in-the-middle [8].

Uma segunda limitação resultante da evolução da Internet se refere ao conflito gerado entre o uso
atual da Internet e seu design original [9]. Atualmente, a Internet é predominantemente utilizada para
o obtenção de conteúdo, como músicas e vídeos, independentemente do seu local de armazenamento
na rede3. Por exemplo, os usuários acessam a Internet para obter informações relevantes, tais como
previsões meteorológicas, notícias, etc, mas eles não estão interessados no endereço IP de onde o
conteúdo está sendo obtido. Na verdade, os usuários estão mais interessados na procedência4 do con-
teúdo em vez do local onde o conteúdo foi obtido. Estas redes são conhecidas como redes orientadas

à informação [10] ou, como cunhado por Van Jacobson, redes orientados a conteúdo e são divididas
em dois tipos básicos: arquiteturas de nova geração e aplicações legadas orientadas à informação. O
primeiro tipo representa novas abordagens de arquiteturas de nova geração que suportam por com-
pleto as funcionalidades das redes orientadas à informação, como as primitivas publish/subscribe[10]
e get/put[11] ao invés das primitivas tradicionais send/receive. O segundo tipo representa os apli-
cativos que já estão implantados na arquitetura atual da Internet e são conceitualmente orientados
à informação, porém são implementados sobre o paradigma send/receive. Alguns exemplos deste
grupo incluem redes de distribuição de conteúdo (CDN) [12] e redes Peer-to-peer (P2P)[13]. O foco
principal dessas redes é obter o conteúdo de forma eficiente sem o conhecimento prévio da fonte
do conteúdo. Por exemplo, as redes CDN realizam a resolução de nomes através do uso de DNS
dinâmico para o servidor de conteúdo mais próximo, enquanto as redes P2P realizam a resolução de
nomes para a localização do peer provedor do conteúdo através de consultas a uma distributed hash

table[14].
De acordo com [15], as principais características das redes orientadas a conteúdo são o desaco-

plamento espacial e temporal. O desacoplamento espacial refere-se ao desconhecimento prévio do
endereço do servidor que hospeda o conteúdo antes da conexão. O desacoplamento temporal refere-se
à ausência de uma sessão explícita entre clientes e servidores para se obter um bloco de conteúdo, por
exemplo, entre a geração e o consumo de um conteúdo como as notícias. Por outro lado, a arquitetura
original da Internet é orientada à conexão entre os nós finais, onde o conhecimento da localização de
um nó na rede é um pré-requisito para a obtenção dos dados de forma síncrona. Do ponto de vista de
segurança, a ausência de um identificador estável e uma sessão explícita entre dois nós representam
um desafio arquitetural e técnico para a segurança do conteúdo nestes novos cenários de uso.

Os protocolos de segurança em uso atualmente (por exemplo, IPSEC e TLS) são síncronos e usam
o endereço IP como identificador de nó durante o estabelecimento de uma conexão segura entre dois
nós finais. No entanto, nas redes orientadas à informação, não há conhecimento prévio da localização
da origem dos dados, levando a problemas de confiança da fonte. Por exemplo, a fonte de dados

identifier (TLI), que é composto de um par de endereços e portas de origem e de destino e a versão do protocolo de rede.
2O termo localização é utilizado como o ponto de ligação do nó à rede, representado pelo seu endereço IP na arquite-

tura da Internet.
3O termo armazenamento é utilizado com o sentido de localização na rede, ou seja, o endereço IP onde o servidor está

localizado.
4A origem dos dados do produtor, por exemplo, se um bloco de dados são originados de uma origem confiável.
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pode ser um Web cache ou um outro nó, mas não há nenhum mecanismo explícito para autenticar os
nós provedores de conteúdo. Neste cenário, os protocolos de segurança podem fornecer mecanismos
para a verificação da integridade do conteúdo em redes orientadas à informação, porém não provêem
a validação. A verificação fornece mecanismos para verificar se um determinado conjunto de dados
não foi alterado durante a transferência entre dois nós finais, enquanto a validação significa que o
conteúdo recuperado é o que o cliente havia solicitado originalmente. Por exemplo, se um usuário
busca por um conteúdo em uma rede P2P, mesmo que seja possível estabelecer uma conexão usando
IPSEC ou TLS, o usuário somente poderá verificar que o conteúdo foi obtido de um determinado
peer e que não foi modificado durante a transferência. No entanto, não há nenhum mecanismo para
validar se o conteúdo obtido é realmente o conteúdo que o usuário havia originalmente solicitado.

Esta tese propõe um novo mecanismo de autenticação usando árvores de hash, a fim de prover
autenticação eficiente dos dados e de forma explícita com o provedor original5, e também de forma
independente do nó de onde os dados foram obtidos. Propomos duas técnicas para a autenticação
de dados baseadas em árvores de hash, chamada de skewed hash tree (SHT) e composite hash tree

(CHT), para a autenticação de dados em redes orientadas à informação. Uma vez criada, parte dos
dados de autenticação é armazenada em um plano de segurança e a outra parte permanece junto com
os dados, possibilitando a verificação com base no conteúdo e não no nó de origem. Além disso,
esta tese apresenta o modelo formal, a especificação e a implementação das duas técnicas de árvore
hash para autenticação dos dados em redes orientadas à informação através do plano de segurança.
Finalmente, o trabalho propõe e detalha a instanciação do modelo do plano de segurança em dois
cenários de autenticação de dados: 1) Peer-to-peer e 2) autenticação paralela de dados sobre HTTP.

1.1 Contribuições do Trabalho

A contribuição principal desta tese é a proposta de um modelo de segurança para a autenticação
de dados em redes orientadas à informação, atendendo aos requisitos de desacoplamento espacial
e temporal. Iniciamos a proposta com um modelo de segurança visando prover o desacoplamento
espacial nos protocolos de segurança e, em seguida, generalizamos o modelo proposto para supor-
tar o desacoplamento temporal. A abordagem inicial visa atender ao requisito do desacoplamento
espacial utilizando identificadores livres de semântica de localidade. Logo, as associações de segu-
rança utilizariam esses identificadores em vez de endereços IP. A fim de aumentar a segurança desse
modelo, utilizamos identificadores criptográficos [7] para identificar as entidades e objetos na Inter-
net, proporcionando a identificação de dados de forma persistente, independentemente dos protocolos
utilizados, locais de armazenamento ou mecanismo de encaminhamento e roteamento. Esses identi-
ficadores criptográficos são gerados a partir da aplicação de uma função de hash criptográfico sobre
uma chave pública, possibilitando a identificação segura e permanente de entidades na Internet.

A fim de prover o desacoplamento total das camadas de transporte e de rede, propomos uma nova
camada entre as camadas de rede e de transporte chamada de camada de identificação [16]. A camada
de identificação fornece identificadores de criptografia para a camada de transporte permitindo a iden-
tificação permanente de entidades, o desacoplamento dos conceitos de identificação e localização, e
também possibilitando cenários de redes heterogêneas sem a interrupção da conectividade. A camada

5A autenticação explícita significa que a verificação dos parâmetros de segurança, por exemplo a assinatura digital, é
feita diretamente com o provedor do conteúdo, e não com o agente intermediário que está armazenando o dado
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de identificação permite o estabelecimento de uma relação de confiança explícita entre as entidades
que são independentes da localização na rede, permitindo a mobilidade em redes heterogêneas [17].
Como resultado desse trabalho de investigação, concluímos que a camada de identificação possibilita
a independência na camada de rede para cenários de mobilidade, resultando na separação espacial.

Com a evolução deste trabalho, notamos que o conceito de identificação poderia ser generalizado
para qualquer objeto na Internet, por exemplo, uma pessoa, um objeto, um bloco de dados ou um
serviço. Por exemplo, se uma entidade cria um vídeo e o envia para o YouTube, a entidade tem um
identificador, o vídeo tem um outro e o site do YouTube possui um terceiro identificador. Mas do
ponto de vista de segurança, há uma confiança implícita entre o provedor de conteúdo (vídeo) e o
consumidor, que é o estabelecido com o site do YouTube. Neste cenário, a limitação está no fato de
que a segurança não deve ser síncrona, pois a produção e o consumo do conteúdo não estão acopla-
dos no tempo. Como uma segunda contribuição deste trabalho, coletamos os requisitos e esboçamos
uma proposta inicial para autenticação de dados em redes orientadas à informação [18]. Embora o
modelo anterior possibilite o desacoplamento espacial, permitindo o estabelecimento da relação de
confiança fim-a-fim entre as entidades, ele é limitado para atender ao requisito de desacoplamento
temporal devido à camada de identificação exigir a interação síncrona entre as entidades para a ma-
nutenção das sessões seguras. Portanto, a fim de manter a confiança fim-a-fim explícita entre as
entidades, propomos um plano de segurança que fornece um ponto confiável de ligação entre os pro-
vedores de conteúdo e consumidores em ambientes temporais desacoplados. O plano de segurança
contém estruturas de metadados que armazenam informações sobre blocos de conteúdo, por exem-
plo, identificadores de blocos, hashes criptográficos de autenticação e a assinatura digital, permitindo
a autenticação direta com o provedor original do conteúdo, independentemente do servidor onde o
conteúdo foi obtido6.

A migração da confiança da conexão para o conteúdo exige uma nova abordagem, onde a segu-
rança não deve ser dependente de qualquer parâmetro externo, exceto o próprio conteúdo. Portanto, o
conteúdo necessita ter parâmetros de segurança embutidos que são independentes do local de armaze-
namento, conexão ou protocolo de transporte. Para alcançar isso, nós utilizamos a Merkle Tree [19]
como o modelo de autenticação inicial, pois esse mecanismo atende os requisitos de desacoplamento
temporal e espacial. Propomos duas novas técnicas, a skewed hash tree (SHT) e a composite hash

tree (CHT) [20] para prover autenticação dos dados de forma amortizada e atendendo aos requisitos
das redes desacopladas em tempo e espaço.

A SHT estende as Merkle trees regulares para suportar a autenticação de arquivos de tamanho
aleatório e também possibilitar a verificação dos dados em trânsito. A vantagem dessa abordagem
é permitir a autenticação dos dados por dispositivos intermediários, uma vez que esse modo não
é possível com protocolos tradicionais, pois os parâmetros de segurança são trocados entre os nós
finais e os dispositivos intermediários não possuem nenhum mecanismo para a verificação dos dados.
Uma limitação da SHT é a sobrecarga na autenticação associada à árvore de hash que aumenta com o
tamanho da árvore. O segundo esquema, a CHT, aborda a limitação da sobrecarga no SHT, e permite
a autenticação eficiente do conteúdo ao custo de uma hierarquia de verificação. A CHT possui dois
parâmetros, α e h, que possibilitam a configuração e a otimização da sobrecarga na verificação assim
como a configuração da hierarquia de autenticação, podendo ser aplicados em vários cenários de

6Neste caso, assumimos que um cliente pode obter uma cópia de diversas fontes, por exemplo, a partir de um cache,
um servidor de uma rede CDN ou até mesmo um nó peer-to-peer. No entanto, a autenticação é feita diretamente com o
fornecedor original.
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redes orientadas à informação.
Nós validamos essas duas técnicas baseadas na árvore de hash em diferentes cenários de redes

orientadas à informação, começando com a resolução de nomes no metadado [21, 22] por meio do
plano de segurança, seguido do mecanismo de detecção de poluição em redes P2P [20] e autenticação
paralela sobre o HTTP [23]. Finalmente, apresentamos o mecanismo de cacheamento seguro dos
dados em trânsito utilizando skewed hash trees a fim de prevenir o cacheamento de conteúdos falsos
[24, 25].

O procedimento de obtenção de conteúdo em redes orientadas à informação inicia com a resolu-
ção do nome no metadado correspondente. No entanto, o sistema de nomes baseado em DNS possui
várias vulnerabilidades de segurança, incluindo ataques de envenenamento de cache, negação de ser-
viço, entre outros. Uma das causas desses problemas é a confiança implícita dos clientes no sistema
de nomes, onde os clientes confiam que os servidores de nomes irão resolver adequadamente o ma-
peamento do nome para endereços IP corretos. A tese apresenta um novo modelo de resolução de
nomes onde a confiança é estabelecida diretamente entre o cliente e os provedores de conteúdo sem
qualquer passo intermediário através do plano de segurança. O plano de segurança permite a reso-
lução de nomes nos metadados, permitindo aos clientes utilizar as meta informações para recuperar
os blocos de dados. Nesse cenário, usamos SHT e CHT para proverem a transferência da confiança
explícita de um nome de conteúdo para a estrutura de metadados e também para cada bloco de dados.

Após a etapa de resolução do nome para o metadado, nós analisamos a aplicação dos mecanismos
de árvore de hash em dois cenários de recuperação de conteúdo autenticado: redes P2P e autenticação
paralela sobre HTTP. No primeiro cenário (redes P2P), propomos o emprego da CHT para detectar
ataques de poluição parcial [26] durante a recuperação de dados da rede. Este tipo de ataque im-
pede que os usuários recuperem corretamente o conteúdo da rede. Em poucas palavras, o ataque de
poluição parcial consiste em um atacante modificar alguns dos blocos de dados para inibir a recu-
peração de conteúdo devido a falhas no cálculo do checksum original. Nesse caso, podemos utilizar
a CHT para detectar blocos poluídos através do cálculo dos checksums criptográficos dos blocos de
dados assim que esses blocos são recebidos. Através desse mecanismo, as aplicações podem detectar
um bloco poluído e substituir apenas esse bloco ao invés de baixar o arquivo completo novamente.
Como resultado desse trabalho, apresentamos um mecanismo para detectar poluição com o objetivo
de reduzir o consumo de banda comparativamente aos repetidos downloads feitos na recuperação do
conteúdo na abordagem tradicional.

No segundo cenário de recuperação de conteúdo (autenticação paralela sobre HTTP), utilizamos
a CHT para fornecer autenticação de conteúdos provenientes de várias fontes, geralmente servidores
espelhos do provedor original. Neste cenário, os clientes implicitamente confiam nesses servidores
para obter os dados e, nestes casos, os clientes são capazes de apenas verificar os dados obtidos após

a sua recuperação. O principal problema é a granularidade de verificação, ou seja, os clientes são
capazes de verificar os dados logo depois de se obter o arquivo completo de todos os sítios, que
podem resultar em casos em que um único servidor falso pode levar os clientes a descartarem todas
os blocos de dados recolhidos a partir de diferentes sítios. Com o objetivo de fornecer um mecanismo
de autenticação mais eficientes, propomos um mecanismo de verificação paralela usando a CHT [23]
que permite a autenticação de dados no momento que são obtidos e solicitar somente aqueles que
estão corrompidos.

Além dos cenários anteriores, a tese também investiga a possibilidade de utilizar a técnica de
árvores de hash na autenticação de dados na camada de rede com o objetivo de viabilizar o cachea-
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mento seguro em dispositivos denomindos de roteadores de conteúdo (content routers). Essa proposta
é baseada no fato das árvores de hash suportarem mecanismos de autenticação de dados sem qual-
quer semântica de localidade e, além disso, de não serem fim-a-fim, ou seja, qualquer dispositivo
intermediário na rede é capaz de verificar os dados em trânsito desde que ele tenha as chaves corretas.
Portanto, uma proposta consiste na utilização de roteadores de conteúdo [24] para verificação dos
dados em trânsito [25] para prevenção de tráfego não autorizado na rede.

Organização do Texto

Além deste capítulo introdutório, a sequência do texto encontra-se organizada da seguinte forma:
o Capítulo 2 discute os trabalhos relacionados aos mecanismos de autenticação, aos protocolos de
segurança e às arquiteturas de nova geração. O capítulo inicia com a descrição do mecanismo de
assinatura de Lamport e as Merkle trees, cujo modelo é a base para esta tese. Em seguida, descre-
vemos os protocolos de segurança atuais, IPSEC e TLS, destacando suas principais características e
limitações para uso em redes orientadas à informação. Finalmente, apresentamos as arquiteturas de
nova geração relacionadas à redes orientadas à informação.

O Capítulo 3 propõe um novo modelo de segurança baseado em identificadores seguros e uma
nova camada denominada de camada de identificação. Os identificadores seguros permitem a identi-
ficação permanente dos nós finais separando os conceitos identificação e localização e possibilitando
o suporte nativo à mobilidade. Além disso, nós estendemos a camada de identificação para supor-
tar um protocolo de comunicação seguro chamado de IDSEC para a autenticação dos nós finais e
avaliamos o modelo proposto em diversos cenários de mobilidade.

O Capítulo 4 propõe um mecanismo de autenticação para redes orientadas à informação baseado
em um plano de segurança. Esse capítulo inicia com o levantamento dos principais requisitos de uma
rede orientada à informação, seguido de uma proposta de um mecanismo de autenticação baseado
em dois tipos de árvores de hash: skewed hash tree e composite hash tree. Além disso, propomos
uma estrutura de metadados como um mecanismo seguro de armazenamento de informações de se-
gurança no plano de segurança, e também como um ponto de ligação confiável entre os provedores
de conteúdo e consumidores.

O Capítulo 5 descreve os cenários de aplicação do plano de segurança e os mecanismos de auten-
ticação baseados em árvores de hash. Esse capítulo inicia com o mecanismo de resolução de nomes
em estruturas de metadados, seguido por dois cenários de aplicação das técnicas de autenticação ba-
seadas em árvores de hash: detecção de poluição em redes P2P e autenticação paralela de dados sobre
o HTTP. Por fim, iniciamos a discussão sobre outros cenários de aplicação, tais como autenticação
dos dados por dispositivos intermediários e também cacheamento seguro.

Finalmente, o Capítulo 6 apresenta as conclusões do trabalho, delineando as principais contribui-
ções e resultados obtidos, como também, abordando algumas questões em aberto para serem explo-
radas como trabalhos futuros.



Introduction

The original Internet architecture was designed to interconnect geographically distant computers
to share resources and services, for example, remote login and file transfer. The architecture was
constructed over the packet switching technology to improve the robustness of the communication
network, for example, to be robust against natural disasters or even a war. The basic communication
model uses the Internet Protocol (IP) to exchange packets between two end-hosts, where each host
is assigned a unique and permanent IP address. Whenever an end-host wants to send a packet, it
creates a packet with the destination IP address and routers along the path route to the destination.
Conversely, the destination could reach back the source just by inverting the source and destination
IP addresses in the header, according to the end-to-end principle [1].

The advent of the World Wide Web (WWW) in the early 90’ has made the Internet popular
outside the research community, making documents and services, such as HTML pages and electronic
commerce, easily accessible for users through Web-browsers and Web-servers. Meanwhile, new
security requirements appeared such as application authentication and data confidentiality, especially
with the emergence of online banking. Initial efforts to provide security mechanisms for applications
started with the secure network programming (SNP) [2] library and the secure sockets layer (SSL)
[3] that came with the Netscape Navigator Web-browser. SSL would evolve to a standard called
Transport Layer Security (TLS) [4], which is currently in version 1.2 by the time of this thesis.
Also, Internet Security (IPSEC) [4] was proposed to provide host-to-host security, a mode that SSL
could not provide. IPSEC provides security at the network layer, such as authentication, integrity and
confidentiality of the data exchanged between two end-hosts. TLS also provides security mechanisms
likewise IPSEC, but it operates at the transport layer.

The introduction of new usage scenarios, such as wireless networks and information-centric
networking, exposed some limitations of the current Internet architecture. One of these limitati-
ons is known as IP semantic overloading problem [5, 6, 7], which consists of the simultaneous usage
of the IP address in both network and transport layers. At the network layer, the IP address is used
as a topological identifier, indicating a geographical point on the Internet topology. At the transport
layer, the IP address is used as a host identifier, being used as end-host identifier during a connection
establishment between two end-hosts7. Hence, there is an implicit coupling between the concepts of
identification and location, where an end-host’s identification is bound to a network location, hinde-
ring native mobility scenarios without modifications on the end-host’s identifier. From the security
standpoint, the absence of a permanent and secure identifier during a host mobility event opens vul-
nerabilities for security attacks, such as impersonation and man-in-the-middle attacks [8].

7In order to establish a connection using Berkeley sockets API, an application needs a transport level identifier (TLI),
which is composed of the source and destination IP and port and the protocol version.

7
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A second limitation resulting from the evolution of the Internet refers to the conflict created
between the current use of the Internet and its original design [9]. Currently, the Internet is pre-
dominantly used to obtain content such as music and videos, independently of their storage location
in the network. For example, users access the Internet for relevant information, such as weather
forecasts, news, etc., but they are not interested in the IP address from which the content is being
fetched from. In fact, users are more interested in the provenance8 of the content rather than the
location where it was fetched from. These networks are known as information-centric networking

[10] or, as Van Jacobson has coined, content-centric networking, and are divided into two types:
clean slate information-centric architectures and legacy information-centric applications. The for-
mer group represents new architectural approaches to support fully information-centric features, such
as publish/subscribe [10] and get/put [11] primitives rather than regular send/receive. The latter group
represents applications that are already deployed in the current Internet architecture and are concep-

tually information-centric, but it is implemented over legacy send/receive paradigm. Some examples
in this group include content delivery networks (CDN) [12] and Peer-to-peer (P2P) [13]. The main
focus of these networks is to obtain the content efficiently without prior knowledge of the source of
the content. For example, the CDN networks perform host name resolution via dynamic DNS redi-
rection, while P2P networks perform name resolution to content through queries to a distributed hash
table (DHT) [14].

The main characteristics of these networks are the spatial and temporal decoupling. The spatial
decoupling refers to the lack of knowledge of the server’s address hosting the content. The temporal
decoupling refers to the absence of an explicit session between clients and servers to obtain a piece
of content. On the other hand, the original Internet architecture is connection-oriented between end-
hosts, where the knowledge of a location is a prerequisite for obtaining the data in a synchronous
way. From the security standpoint, the absence of a stable identifier and an explicit session between
two hosts represents an architectural and technical challenge to provide content security in these new
usage scenarios.

The security protocols in use today (e.g., IPSEC and TLS) are synchronous and use the IP address
as end-host’s identifier to establish a secure connection between two end-hosts. Nevertheless, in
information-centric networks, there is no prior knowledge of the data source location, leading to
trust problems of the source. For example, the data source can be a Web cache or a peer, but there
is no explicit mechanism for authenticating this source hosts. In this case, security protocols can
provide content verification in content-oriented networks, but not validation. Verification provides
mechanisms to check whether a particular set of data was not changed during the transfer between
two end-hosts, while validation means that the retrieved content is what the client requested for. For
instance, if a user requests for content in a P2P network, even if it is possible to establish a connection
using IPSEC or TLS, the user could check that the content was obtained from the source peer and it
was not modified during the transfer. However, there is no mechanism to validate that the obtained
content is actually the content that the user originally requested for.

This thesis proposes a new authentication mechanism using hash trees in order to provide efficient
data authentication and explicitly with the original provider, and also independently of the host where
the data were obtained. We propose two techniques for data authentication based on hash trees, called

8The origin of the data regarding of the producer, for example, whether a given piece of news comes from a trusted
source.
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skewed hash tree and composite hash tree, for data authentication in information-oriented networks.
Once created, part of the authentication data is stored in a security plane and another part remains
attached to the data itself, allowing for the verification based on content and not on the source host.
In addition, this thesis presents the formal model, specification and implementation of two hash tree
techniques for data authentication in information-centric networks through a security plane. Finally,
this thesis details the instantiation of the security plane model in two scenarios of data authentication:
1) Peer-to-Peer networks and 2) parallel data authentication over HTTP.

Contribution of this Thesis

The main contribution of this thesis is to propose a security model for data authentication in
information-centric networks satisfying the spatial and temporal decoupling requirements. We start
with a security model to provide spatial decoupling in the security protocols, and then, we generalize
the proposed model to support temporal decoupling as well. The initial approach aims to solve
the spatial decoupling requirement by using identifiers that do no contain any location semantics.
Therefore, security associations would be bound to these identifiers rather than IP addresses. In order
to add security in this model, we use cryptographic identifiers [7] to identify entities and objects on
the Internet, providing persistent data identification regardless of the protocols, storage or forwarding
mechanisms. These cryptographic identifiers result from the hash over a public key and allow for
secure and permanent identification of entities in the Internet.

In order to provide complete transport decoupling from the network layer, we propose a new
layer between the network and transport layers called identification layer [16]. The identification
layer provides cryptographic identifiers for the transport layer allowing for the permanent identifica-
tion of entities, while decoupling the entity identification from the network layer, and also enabling
heterogeneous networks without disrupting the connectivity. The identification layer allows for the
establishment of an explicit trust relationship between entities that are independent of location on
the network, enabling mobility in heterogeneous networks [17]. As result of this investigative work,
we found that the identification layer enables the independence on the network layer for end-host
mobility, resulting in the spatial decoupling.

As evolution of this work, we realized that the concept of identification could be generalized to
any object on the Internet, e.g., a person, an object, a piece of content or a service. For example, if
an entity creates a video and posts it on YouTube, the entity has an identifier, the video has another
one and the YouTube site has a third identifier. But from security standpoint, there is an implicit trust
between the content provider (video) and the consumer that is established with the YouTube site. In
this scenario, the limitation lies in the fact that security should not be synchronous, since the produc-
tion and consumption are not coupled in time. As another contribution of this work, we collected
the requirements and outlined an initial proposal for data authentication in content-oriented networks
[18]. Although the previous model met the spatial decoupling and provided directly end-to-end trust
between entities, it is limited to satisfy the temporal decoupling requirements, mainly because the
identification layer requires synchronous interaction between entities for the secure channels main-
tenance. Therefore, in order to keep the explicit end-to-end trust, we propose a security plane that
provides a trusted binding point between content providers and consumers in temporal decoupled en-
vironments. The security plane contains metadata structures that hold important information about a
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give piece of content, for example, block identifiers, authentication hashes and digital signature, and
allows for direct authentication with the content provider, regardless of the server where the content
was obtained9.

The trust migration from the connection to the content itself requires a new approach, where
security must not be dependent on any external parameter, except the content itself. Therefore, the
content needs to have its own built-in security that is independent of connection, local storage (server)
or transport protocol. In order to achieve this, we use the Merkle Tree [19] as the initial authentication
model, since this mechanism meets the spatial and temporal decoupling requirements. We propose
two new techniques, the Skewed Hash Tree (SHT) and the Composite Hash Tree (CHT) [20], to
provide amortized data authentication in spatial and temporal decoupled networks.

SHT extends regular Merkle Trees to support random size files authentication and allows for in-
transit data authentication. The benefit of this approach is to enable data authentication by intermedi-
ate hosts, which is not possible with traditional protocols because security parameters are exchanged
between end-hosts and intermediate devices do not have any mechanism to verify the data. One li-
mitation of the SHT is the authentication overhead associated to hash tree as the tree size grows.
The second scheme, CHT, addresses the overhead limitation in SHT, and allows for efficient content
authentication at the cost of some hierarchical verification scheme. CHT has two parameters, α and
h, that allows for the overhead and authentication hierarchy configuration, being able to be used in
many information-centric verification scenarios.

We validated these two hash tree techniques in different information-centric networking scena-
rios, starting with name to metadata resolution [21, 22] in the security plane, followed by pollution
detection in P2P networks [20] and parallel authentication over HTTP [23]. Finally, we apply the
skewed hash tree technique for secure content caching in the network[24, 25].

The content retrieval procedure in information-centric networks start with the name to metadata
resolution. However, the current naming system based on DNS has several security vulnerabilities,
including cache poisoning attacks, denial of service, among others. One of the causes of these pro-
blems is the implicit trust placed by customers in the naming system, where customers trust the name
servers that they will properly resolve the name mapping into IP addresses. We contribute with a
new name resolution model where the trust is directly established between client and content provi-
ders without any intermediate step through the security plane. The security plane allows for name
to metadata resolution, allowing clients to use the meta information to retrieve the data blocks. In
this scenario, we use SHT and CHT to provide the explicit trust transfer from a content name to the
metadata structure and also to each piece of data.

After the name to metadata resolution step, we go further and analyze the application of the
hash tree mechanisms in two authenticated content retrieval scenarios: P2P networks and parallel
authentication over HTTP. In the first scenario (P2P), we use CHT to detect partial pollution attacks
[26] during data retrieval from the network, which prevents users to correctly retrieve content from
the network. In a nutshell, the partial pollution attack consists of an attacker modifying some of the
data chunks to inhibit the recovery of content as the checksum will not match to the original. In
this case, we can use CHT to early detect polluted blocks by calculating a cryptographic checksum
over the data chunks as soon as it is received. Through this mechanism, applications can detect the

9In this case, we assume that a client can obtain a copy from many sources, e.g., from a cache, a CDN server or even
a peer node. However, the authentication is done directly with the original provider.
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polluted block and replace it rather than completely re-downloading the complete file. As a result of
this work, we present a mechanism for detecting pollution that can reduce bandwidth consumption
due to repeated re-downloads adopted in the traditional approach.

In the second content retrieval scenario (parallel authentication over HTTP), we use the CHT to
provide content authentication that comes from multiple sources, usually mirror servers of the original
provider. In this scenario, clients implicitly trust these servers to fetch data and they are just able to
verify the downloaded data after its retrieval. The main problem here is the verification granularity,
i.e., clients are able to verify data just after the file is completely downloaded from all sites, which
may lead to cases where one single fake server forces the clients to discard all pieces collected from
different sites. Aiming to provide a more efficient authentication mechanism, we propose a parallel
verification mechanism using CHT [23] that allows data authentication as content blocks are retrieved.

Additionally to the previous scenarios, we also investigate the possibility to use the hash tree
techniques in data authentication at the network level and also in content caching. The hash tree
techniques provide data authentication mechanisms without any location semantics. Additionally, the
security model is not end-to-end, i.e., any intermediate device in the network is able to verify the in-
transit data as long as it has the correct keys. Therefore, one possible application is to deploy content

routers [24] to provide secure content caching, preventing from fake content storage. The hash tree
mechanism can also be integrated in information-centric transport models [25], where the content
retrieval logic is bound together with verification mechanism. Another application is the usage of the
hash tree mechanism to authenticate data prior to its caching in the servers. Currently, Web caches do
not have any mechanism to validate the stored content because there is no explicit security mechanism
embedded in the data and the security parameters are exchanged between clients and servers, not with
the Web-cache.

1.2 Text Organization

In addition to this introductory chapter, this thesis is organized as follows: Chapter 2 presents the
background information about authentication schemes, security protocols and clean-slate architectu-
res. The chapter starts presenting the Lamport one-time signature scheme and Merkle Trees, which is
the basic authentication model for this thesis. Next, we describe the current security protocols, IPSEC
and TLS, outlining their main features and limitations for information-centric networking. Finally, we
present clean-slate architectures for background information about information-centric networking.

Chapter 3 proposes a new security model based on secure end-host identifiers and a new logical
layer called identification layer. These secure identifiers allow for the permanent end-host identifica-
tion, splitting the concepts of end-host identification and location, enabling native mobility support.
Additionally, we extend the identification layer to support a secure handshake protocol called IDSEC
for end-host authentication and evaluate the proposed model in mobility scenarios.

Chapter 4 proposes an authentication mechanism for information-centric networks based on a se-

curity plane. The chapter starts with the main requirements of an information-centric networking,
followed by the proposal of a data authentication mechanism based on skewed hash trees and com-

posite hash trees. Additionally, we also propose a metadata structure as a placeholder for security
information in the security plane, and also as a trusted binding point between content providers and
consumers.
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Chapter 5 describes the application scenarios for the security plane and hash tree-based authen-
tication mechanisms. This chapter starts with the name to metadata structure resolution, followed
by two application scenarios of the hash tree techniques: P2P pollution detection and parallel data
authentication over HTTP.

Finally, Chapter 6 presents the final conclusions of this thesis, outlining the main contributions
and obtained results. Lastly, we address some open issues to be explored as future work.



Capítulo 2

Related Work

This chapter presents the background information about security protocols and the related work
to this thesis. The chapter starts describing the authentication schemes, Lamport one-time signature
scheme and Merkle trees. Then, we describe the traditional protocols currently used and some new
protocols for data authentication. Later, we present the information-centric architectures that are
related to our work and, lastly, we summarize this chapter.

2.1 Authentication Schemes

2.1.1 Lamport-Diffie One-time Signature (1979)

The Lamport One-Time Signature Scheme (OTSS) [27] is a digital signature scheme used to
authenticate messages without using public key cryptography. The signature scheme relies on one-
way functions, such as cryptographic hash functions, to provide efficient signature schemes with
low cost. The OTSS is also capable of providing security even with the development of quantum
computers because its strength is based on the difficulty of reversing a cryptographic hash function
and not on the product of large prime numbers. Quantum computers are believed to factor large
numbers in polynomial time, becoming a threat to current public key cryptography that relies on the
product of large numbers or discrete logarithms.

The OTSS mechanism signs each bit of the message with the sender’s private key, requiring that
the private key has the same number of bits of the message to be signed. Any modification in the
message or in the signature can be detected when the signature is checked against the sender’s public
key. After using the private key to sign a given message, it must be discarded and a new one must be
generated to be used to sign another message.

The OTSS is divided in three phases: key generation, message signature and signature verifica-

tion. The key generation phase involves the generation of the public and private keys. The message
signature phase generates a signature with the private key over a single message. The signature veri-
fication phase authenticates a message with the sender’s public key and its signature.

The private key generation uses a Pseudo-Random Number Generator (PRNG) to produce m pairs
of random numbers (total of 2m numbers) each number with a k-bit length, as illustrated in Fig. 2.1.
The private key will be the array with 2m random numbers organized in two columns, resulting in a
total size of 2m∗k bit long private key. The public key is generated by applying a cryptographic hash

13
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function H over each element on the private key array, resulting in a new array with the same length
and number of elements.

Fig. 2.1: OTSS key generation phases. (a) Private key generation using a Pseudo-random Number
generator. (b) Public key generation from the private key.

The signature generation over a message using an OTSS private key starts with the message
passing though a cryptographic hash function, resulting in a k-bit output. Later, for the ith bit on the
message digest, the OTSS signature algorithm picks up the first element of the pair of the private key
if it is a 0-bit or the second element of the ith pair if it is a 1-bit, as illustrated in Fig. 2.2. The resulting
array of bits is the signature, which must be sent along with the message to the receiver.

Fig. 2.2: OTSS signature generation using the private key.

Finally, the OTSS verification procedure involves the sender’s public key retrieved from a public
directory and the hash of the message with the same cryptographic hash function H . For each bit
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in the message digest (signature), the algorithm selects the first or the second bit in the sender’s
public key. Finally, the receiver applies the cryptographic hash over all values in the signature and the
resulting values must match the same slots in the public key. This procedure is illustrated in Fig. 2.3.

Fig. 2.3: OTSS signature verification procedure.

The drawback of the mechanism is the size of the keys. Let H a cryptographic hash function that
accepts inputs of any size and generates a m-bit message digest. In this scenario the public and private
keys are 2mk-bit long and the resulting signature is mk-bit long. As an example, considering a SHA-
1 cryptographic hash function that outputs a message digest of 160 bits. Therefore, the required size
for the public/private keys and the signature are 320 bits and 160 bits respectively.

2.1.2 Merkle Hash Tree (1989)

The Merkle Hash Tree [19], also known as Merkle Tree (MT), was proposed as an optimization
mechanism for Lamport one-time signature scheme. As described previously, the OTSS requires one
pair of public and private keys to sign a message, and the key length must be the same size as the
hash of the message. The main limitation of the scheme is the one-time use of the key pair, requiring
constant publication of public keys by the sender. This major bottleneck has motivated Merkle to
investigate an alternative to reduce the number of keys in the signature mechanism, motivating his
work on reducing the number of public keys required in the verification scheme. The main idea is to
create a hash tree over a set of private keys and generate one public key over the set of private keys.
The benefit of such scheme is that a sender just needs to transmit a public key for a set of private keys,
reducing the number of unnecessary public key publications in the public directory.
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A Merkle Tree is a complete (or balanced) binary tree where each leaf node holds the hash of a
message or data block and each internal node holds the hash of the concatenation of its children’s
node, defined in the following equation:

nparent = hash( hash(nleft) || hash(nright) ) (2.1)

The first step to construct a Merkle Tree is to divide a file into smaller data blocks. Then a hash
function is applied over each data block and the resulted hash value is stored in each leaf. The second
step is to go up towards the root of the tree by hashing the concatenation of the hash value of two
children’s hash values and storing the result in the parent node, until reaching the top of the tree,
which hash value is also called the Root Hash.

The Root Hash is the compact representation or the signature of the set of messages or an entire
file. This hash value is used to authenticate each message or data block together with the Authentica-

tion Path, and any modification in the data set will result in a different signature. The Authentication

Path is the list of hash values needed by a message or data block to reach the Root Hash, allowing
the authentication procedure. The AP value on height h (APh) is the value of the sibling of the node
at height h from the path from the leaf towards the Root Hash. Fig. 2.4 shows an example of Merkle
Tree with height (H = 2) and the AP for each data block.

Fig. 2.4: (a) Merkle Tree of height H = 2 with 2H = 4 leaves. (b) Data blocks with their correspon-
ding Authentication Paths.

The authentication procedure of data block 0 (D0) is shown in Fig. 2.5. It is assumed that the
Root Hash is previously transmitted to the destination prior to the authentication procedure. Then,
for every data block that arrives (in this example, the first one to arrive is data block 0, even though
it could be anyone), it is authenticated using the AP in the data block. The authentication procedure
starts by applying a hash function over data block 0 and the resulting digest is concatenated with the
first AP element, which is H1. Then, the hash function is applied again over the concatenated value
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and the result is concatenated with H23. The resulted hash value must be equal to the Root Hash (H03)
transmitted previously and, if so, the data block is authenticated.

Fig. 2.5: Authentication of data block zero using Merkle Trees.

The Merkle Tree presents many appealing characteristics, such as the exclusive use of hash func-
tions in the authentication procedure and the independent and one-to-many authentication features.
As explained above, the Merkle Tree uses only hash functions to authenticate data, presenting an in-
teresting authentication mechanism for low processing devices, since Public Key Cryptography (PKI)
[28] processing is much slower than hash functions due to large prime number computations needed
to perform the cryptographic functions. The Merkle Tree technique also turns possible the out of
sequence or independent data block authentication, since there is no binding between the data blocks,
just between the data and their Root Hash. This feature is interesting in file-sharing systems, where
data blocks naturally come out of sequence and need immediate authentication. Lastly, the Merkle
Tree offers one-to-many authentication feature, which is interesting in the context of loosely coupled
systems, where one data block needs to be authenticated by many parties (e.g. file-sharing, pu-
blish/subscribe systems). Since there is not any establishment of secret between the parties (the Root

Hash is not a secret information, actually it is publicly known), any data block could be authenticated
by anyone that receives it.

Even though Merkle Trees present the previously mentioned advantages, the tree generation al-
gorithm requires a power of two number of leaves (2, 4, 8, ...2n) to work. However, in the context
of data authentication, the number of data blocks hardly is a power of two, since most of the files
have random size. Another problem regards the length of the Authentication Path due the number of
repeated hash values. These two problems will be addressed below.

Unbalanced Merkle Tree Problem

A Merkle Tree of height H requires a complete binary tree in order to work with the original al-
gorithms. As a consequence, the number of leaves must be equal to N = 2H . The original motivation
for the Merkle Tree was to aggregate a set of public keys together to reduce the number of public key
publications. In that context, the generation of private keys as a multiple of power of two was not
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a strong requirement since users could generate extra keys, for example 16 in a batch, and save the
unused keys for later use.

Although the number of keys generated in a batch was not an issue in the public/private key
context, this technique can not be directly applied over archives. Files have random sizes and there
are two simple approaches to make it fit in a regular Merkle Tree: (a) divide the file in a multiple of
power of two chunks, regardless of the size of each chunk, and (b) divide the file in pre-defined chunk
size and append zero leaves in the Merkle Tree to balance it. The first approach is not good because
the chunk size can be a restriction in many scenarios, for example, network and storage discs. In the
network scenario, packet sizes are usually limited by the Maximum Transmission Unit (MTU) of the
network, and if the goal is to provide authentication of the network data, then the limitation is usually
1500 bytes. Storage discs also have the minimum block size that are usually multiple of 4KB. In
this case, the best fit is the block size to be exactly the size of the minimum block size of the disc to
optimize the block usage.

The second approach is the naive zero leaves padding of the Merkle Tree. The basic idea is to add
chunks with zeros in the tree to make it balanced. This procedure is illustrated in Fig. 2.6.

Fig. 2.6: Unbalanced Merkle Tree (H = 4) with naive zero padding scheme.

Although the zero padding scheme solves the unbalanced tree problem, the number of zero leaves
grows exponentially depending on the chunk distribution. The worst case happens when a user has
a number of blocks that fits in a balanced tree plus one, requiring a binary tree that is the double of
the size. As the height of a MT grows, the number of required zero leaves increases proportionally,
resulting in 2(H−1) − 1 zero leaves, when the number of blocks is equal to N/2 + 1, and it requires
a tree with height H + 1 to hold the hash information of all data blocks. Hence, the number of hash
function calls in the zero padding scheme is the same as in the balanced tree since the zero leaves
are computed as a regular leaf. Thus, the total number of hash function calls is the sum of all hash
functions calls over the N data blocks, plus in the intermediate and top nodes.
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To illustrate the unbalanced Merkle Tree problem, Tab. 2.1 shows the Merkle Tree height and the
range of data blocks with the corresponding file size storage for 1KB data blocks. The table shows
that at height H = 17, the tree holds files from 64MB to 128MB, where files with size closer to 64MB
will have the highest number of zero leaves and files closer to 128MB will be almost balanced trees.

Tab. 2.1: Merkle Tree height vs. number of data blocks

Tree height (H) # of blocks File range (MB)
16 32,769-65,536 32-64
17 65,537-131,072 64-128
18 131,073-262,144 128-256
19 262,145-524,288 256-512
20 524,289-1,048,576 512-1024

The total number of hash functions calls using the original Merkle Tree and zero padding scheme
is the same as the balanced tree since the zero leaves are computed as a regular leaf. The number
of hash functions calls can be calculated by summing up all the hash functions applied over N data
blocks, plus in the intermediate and top nodes. Thus, we have:

H∑

i=0

2i = 2H+1 − 1 = 2N − 1 (2.2)

Therefore, a Merkle Tree with N leaves (where N = 2H) requires 2N − 1 hash function calls to
generate the Root Hash, regardless of the number of empty leaves in the tree.

Merkle Tree Overhead Problem

One of the main attractiveness of a Merkle Tree is the independent authentication of each data
block as it arrives in the destination. This is possible due to the Authentication Path (AP) embedded
on each data block, which is the list of hash values needed by the data block to reach the Root Hash.
The list of hash values needed is equal to the size of the height of the Merkle Tree, since the procedure
needs the sibling hash value of the data block at each height to reach the Root Hash. Therefore, the
number of hash values in the AP is H = log2 N , where N is the total number of data blocks and
N log2 N is the total overhead of the Merkle Tree during the file transfer.

However, a careful inspection in the Merkle Tree shows that the number of hash values available
in the tree of height H is 2H+1−1 (excluding the Root Hash), which are all the needed hash values to
reach Root Hash by all data blocks. Hence, we can conclude that N log2 N − (2H+1− 1) hash values
can be removed since they are repeated hash values in the AP, as shown in Fig. 2.7.

Based on Fig. 2.7, the total number of hash values in a Merkle Tree of height H can be expressed
on the number of input data blocks N :

H∑

i=1

2i =
a(rH+1 − r1)

r − 1
≈ 2H+1 = 2× 2H = 2N (2.3)

Hence, the number of repeated hash values in the Authentication Paths is:
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Fig. 2.7: (a) Regular Merkle Tree construction. (b) Authentication paths associated to each data
block. The repeated hash values are highlighted in red.

N log2 N − 2N = N(log2 N − 2) = N log2(
N

4
) (2.4)

Fig. 2.8 shows the percentage of repeated hash values versus the height of the Merkle Tree. For
Merkle Trees with height H ≥ 4, the number of repeated hash values in the Authentication Path is
more than 50% of the total hash values.

The hash values repetition in the AP is an important characteristic of the original Merkle Tree to
maintain the total independence between signed messages, since they may not be correlated. In the
context of data authentication, where the idea is to authenticate data blocks that are a subset of a large
file, we propose to weaken the independence requirement of each data block in the Merkle tree, since
there is already an intrinsic relation between all data blocks (they are part of the entire content). The
motivation for our work is to create an authentication data structure that presents similar properties
to the regular Merkle Tree but with lower authentication overhead. As described in the last section,
the Merkle Tree authentication overhead grows O(N log2 N) mainly due to the repetitions in the AP
values. This repetition is important to maintain the total independence between data blocks, allowing
any sequence reception and authentication.

Applications

Merkle trees have been employed in many different scenarios, such as HTTP authentication, P2P
networks and multicast. In [29], the authors use Merkle trees to authenticate HTTP responses. Each
HTTP response from a server has an AP attached, allowing clients to verify the response. However,
the proposed approach does not take into account responses that generate a skewed tree. ALPHA [30]
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Fig. 2.8: Percentage of repeated hash values in the AP versus the height of Merkle Tree.

uses Merkle Trees to create pre-signature data, reducing the total number of required signatures per
bulk of exchanged messages. However, it does not take into account the fact that Merkle Trees require
balanced trees in order to work properly. In [31], the authors propose an authentication mechanism to
validate streaming data retrieval. Each block has an AP, allowing for data verification an also for data
recovery in case of a missing block using erasure codes. However, they always use balanced Merkle
trees, which may be a constraint in case of data block fragmentation. In [32], the authors propose
a mechanism to authenticate peer-to-peer data using an authenticated DHT. The ADHT stores the
AP of all data blocks, allowing peers to retrieve and authenticate data chunks. Nevertheless, it still
require a balanced tree to create the APs, resulting in zero-padded trees.

There are also some optimization for the Merkle Tree traversal algorithms. In [33, 34, 35], the
authors optimize the authentication path generation, improving the overall time and storage para-
meters. In this work, we use the original algorithms proposed by Merkle due to its simplicity and
elegance. However, we can still support these extensions to optimize the signature and verification
procedures.

2.2 Standard Security Protocols

In this section we describe the main features of the Transport Layer Security (TLS) and Internet
Protocol Security (IPSEC) protocols.
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2.2.1 Secure Sockets Layer (1994)

Secure Sockets Layer1 was proposed as a security protocol to protect the transactions in the Web
and is the predecessor of the Transport Layer Security [36] (1999). The primary goal of TLS is to
provide privacy and reliability between two communicating applications. The protocol is divided into
two layers, where the lowest layer uses the SSL Record protocol and the upper layer uses the TLS
handshake protocol. The SSL Record protocol works over TCP and provides security mechanisms
to encapsulate upper layer protocols. The TLS handshake protocol allows for servers and clients
to authenticate each other and to negotiate encryption algorithms and cryptographic keys before the
application sends or receives any data. One benefit of TLS is that it works over the transport layer
(TCP) and supports any application in the upper layer. SSL has three basic properties:

• Authentication. Client and server can be authenticated using public key cryptography using
the digital certificates exchanged in the handshake;

• Integrity. Connection is reliable and tamper proof. Messages exchanged between client and
server uses keyed MAC and secure hash functions to provide data integrity.

• Confidentiality. Connection is private, i.e., encryption is used after the initial handshake to
exchange a secret key. Thus, further communication uses symmetric cryptography for data
protection;

TLS was designed to be transparent to applications and works directly over TCP, using the trans-
port level identifier (TLI)2 to identify each connection between applications, as illustrated in Fig.
2.9(a). Some benefits of the TLS include the transparent NAT traversal and widespread support by
the web-browsers, making it one of the most popular security protocols used nowadays.

Fig. 2.9: (a) TLS between the transport and application layer. (b) Multiple secure channels between
the same end-hosts.

On the other hand, some limitations of TLS include the need of multiple secure channels between
the same end-hosts, transport protocol dependence and TLS support by applications. As each secure

1Specification available online: http://www.mozilla.org/projects/security/pki/nss/ssl/draft302.txt
2A connection from an application using sockets requires a TLI to identify an end-host. A TLI is composed of a tuple

with source and destination IP addresses and ports and the protocol.
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channel is indexed by a TLI, it is required a new secure channel between applications even if they
are running on the same pair of end-hosts, as shown in Fig. 2.9(b). Another restriction of TLS is the
dependence on the TCP. As TLS do not work with unordered packets reception, which may happen
with UDP, the TLS rely on the TCP to deliver ordered segments of data. Finally, all applications
using TLS must support the protocol, leading to problems with legacy applications if the version is
unsupported. These limitations are actually consequence of the Internet architecture, for example,
TLS relies on TCP, which was constructed around end-points. Hence, it must be attached to IP
addresses and a requirement to use TCP as the transport layer.

2.2.2 Internet Protocol Security (1998)

The Internet Protocol Security (IPSEC) [37] is a suite of protocols that offers security services
for the IP layer, both IPv4 and IPv6, including access control, connectionless integrity, data source
authentication and limited traffic flow confidentiality. Most of the security services are provided by
two security modes, the transport mode with Authentication Header (AH) and the tunnel mode with
Encapsulating Security Payload (ESP), and also key management protocols. In the AH mode, IPSEC
protects all data above the network layer, providing end-host authentication and message integrity,
although the payload is not encrypted. From the network stack perspective, IPSEC inserts a new
header between the network and transport layers, as illustrated in Fig. 2.10(a). In the ESP mode, the
entire IP packet is encapsulated inside a new IP packet, provides authentication, message integrity
and data confidentiality, protecting the entire payload, as illustrated in Fig. 2.10(b). The transport
mode is mainly used in communications between end-hosts and the tunnel mode in Virtual Private
Networks (VPNs).

Fig. 2.10: (a) IPSEC transport mode. (b) IPSEC tunnel mode.

IPSEC operates in a host as a security gateway or as an independent device. The protection
levels offered by IPSEC are based on the policies stored in the Policy Database (SDP), which is
managed by a system administrator or application. There are three main policy modes that can be
applied to each packet: PROTECT, DISCARD and BYPASS. PROTECT protects all packets using
IPSEC; DISCARD rejects all packets from a range; and BYPASS allows the traffic to go through
the IPSEC node. Each protection policy is represents by a security association (SA), which is the
simplex connection that provides security services in one direction. To secure a typical bidirectional
communication, a pair of SA is required. The SA is stored into a SA Database (SAD) and it is indexed
by the IP address.
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Some benefits of the IPSEC include the support of security ignorant applications and single tunnel
between the same pair of end-hosts. On the other hand, it also has some drawbacks. One of them
is related to the incompatibility of the AH and Network Address Translator (NAT) [38], described in
[39]. The IPSEC AH uses the source and destination IP address to calculate the Keyed MAC [40]
of the protected message. Packets passing through a NAT will have their source IP address changed,
resulting in a different HMAC in the destination. Thus, packets are discarded and the communication
is not maintained between the parties.

2.3 New Security Protocols

This section presents some proposals of security protocols, outlining their main features. We
analyze the Packet Level Authentication (PLA) mechanism and the Host Identity Protocol (HIP). The
former model (PLA) proposes to sign each packet with a digital signature allowing for data chunk
verification in the network. The latter one (HIP) introduces a new security protocol to enable the
security communication between entities rather that end-hosts. We will describe each one below.

2.3.1 Packet Level Authentication (2005)

Packet Level Authentication (PLA) [41] proposes a mechanism to authenticate data using di-
gital signatures on each piece of data. The main idea is to provide a hop-by-hop and end-to-end
authentication mechanism, where each packet can be verified on each hop and also in the end-hosts,
protecting the network infrastructure and providing network availability. The technique resembles a
bank note, which contains built-in security mechanisms, such as watermarks, holograms, etc, but in
PLA, each packet contains the digital certificate from the issuer, timestamp and the digital signature.
PLA assumes that public key cryptography can be used to sign large data flows, allowing for invalid
or unwanted traffic detection in the next hop.

2.3.2 Host Identity Protocol (2006)

Host Identity Protocol (HIP) [42] introduces a new authentication and key exchange protocol with
protection capabilities against denial of service (DoS) attacks. The protocol introduces a new name
space located between the network and transport layers called host identity to solve the IP semantic
overload problem. The name space is compounded of host identities (HIs) which are the public keys
of a pair of asymmetric keys. Each end-host has one or more HIs associated, and, in order to limit
the size of the HI, HIP proposes the Host Identity Tag (HIT), a 128-bit identifier resulted from the
cryptographic hash of the HI. The HIT is a static identifier and dynamically binds to the network
layer, providing mobility and multi-homing support.

The authentication and key exchange protocol employs a puzzle mechanism to challenge the hosts
before the key exchange to avoid any denial of service attacks. In this case, the Initiator must compute
some resource-consuming problem before engaging in the key exchange procedure. After solving
correctly the puzzle, the hosts engage in a Diffie-Hellman key exchange procedure and establish a
secure key between the end-hosts.
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The HIP working group also proposed some extensions to support new features, such as data pro-
tection [43], mobility support [44] and name resolution [45]. The HIP data protection extension uses
the IPSEC Encapsulating Security Payload (ESP) to protect the underlying communication channel.
After HIP securely authenticates and establishes a symmetric key between the parties, the protocol
forwards the security parameters to the underlying IPSEC ESP to apply the selected security policies.

2.3.3 An adaptive and lightweight protocol for hop-by-hop authentication (2008)

An adaptive and lightweight protocol for hop-by-hop authentication (ALPHA) [30] combines a
set of security mechanisms to create an authentication protocol for wireless and sensor networks.
Wireless networks are susceptible to flooding and interception attacks and they are usually restricted
regarding CPU, memory and energy consumption. They combine hash chains techniques to provide
strong binding between sources and destinations after hash anchors have been securely exchanged. In
addition, ALPHA protects data traffic using HMAC, where the key is the corresponding hash chain
element. Finally, ALPHA uses Guy Fawkes protocol [46] to provide an interactive delayed secret dis-
closure for integrity protection and authentication for unicast streams. Guy Fawkes is an interlocking
scheme where a sender publishes an encrypted message, e.g., some event that may happen, and after
the event has happened, the sender discloses the secret key to claim the ownership of the event.

The ALPHA protocol works as follows: a sender and a destination securely exchange a pair of
hash chain anchors to be used one on each direction. Then, for each message that is going to be sent,
the sender gets the next element in the hash chain and use it as the HMAC key. But prior sending
the message to the next hop, the sender sends the MAC of the message and waits for the ACK from
the intermediate hop. Once the sender receives it, it sends the message and discloses the hash chain
element used in the HMAC. ALPHA uses Merkle Trees to reduce the verification overhead on each
hop by reducing the number of hash chains required on each hop. The main limitation regarding
ALPHA is the memory requirement since it needs to buffer messages in the interlocking protocol.
Another limitation is the bandwidth because each message passing through a hop needs three other
messages prior sending to the next hop.

2.4 Clean Slate Internet Architectures

2.4.1 A Data-oriented (and Beyond) Network Architecture (2007)

The Data-oriented (and Beyond) Network Architecture (DONA) [11] proposes a new clean-slate
architecture for the Internet aiming at the name persistence and content availability. The authors state
that the majority of the Internet usage is for data retrieval and service access, whereas the Internet
architecture was originally designed around host-to-host applications. Despite the fact that current
architecture can support data access, it has some limitations from the host-to-host model to support
all features. Some problems include the name persistence, content availability and data authenticity.
Current DNS names are built around hierarchical names that represent administrative domains, for
example, mail.acme.org, and whenever a piece of data is transferred from one server to another, its
name is also changed as consequence of the mobility event. Therefore, names are not persistent
through transfer between network locations. The second issue is the content availability, where the
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goal is to retrieve pieces of content from the closest available source. Finally, the third issue regards
the content authenticity. Since content can be retrieved from any source (e.g., network caches, peers
and servers), it is important to have security mechanisms to authenticate these data.

DONA proposes to replace the DNS names with a flat, self-certifying names to enable the name
persistence and authenticity, and the DNS resolution mechanism with a name-based anycast primitive
to handle content availability. The names work around principals (P) and labels (L) and have the
P:L format. Principals are the data owners and they are the only ones that can offer to serve and
provide access to the data. Labels are the tags given by the data owner to the content and owners are
responsible for the label’s uniqueness. Therefore, each datum comes with a metadata including the
principal’s public key and principal’s signature over the datum, and it is represented by a triplet data,
public key and signature.

DONA’s name resolution mechanism aims at high availability by finding close-by copies and also
avoiding faulty nodes. There are two basic primitives: FIND(P:L) and REGISTER (P:L), where find
retrieves a copy of the data using an anycast primitive, and register registers a data using the given
P:L. On each domain, there is a resolution handlers (RH) that maintains a registration table mapping
a name to both next-hop RH and the distance to the copy. The RH are configured similarly to the
current hierarchical topology in the Internet and FIND/REGISTER messages follow the same path
towards the core of the Internet. Any RH on the path having the requested object, or willing to store
it, answers with the requested data or saves it.

2.4.2 Publish-Subscribe Internet Routing Paradigm (2008)

The Publish-Subscribe Internet Routing Paradigm (PSIRP) [10]3 is a clean-slate approach to apply
pure publish/subscribe [15] paradigm in the entire communication system, from the simple link layer
node discovery to the application data delivery. Each data element in PSIRP is called a publication

and it has two identifiers associated: a scope Id (SId) and a rendezvous Id (RId). The SId defines
the access rules to the publication, similar to what virtual private networks (VPNs) represents today
but in the application level. The RId is a static and unique publication identifier, allowing its global
identification across the Internet. Both of them are free of location semantics, thus, they can co-
exist in many places in the network without conflict of location. Whenever a user wants to receive a
publication, and its update as well, it sends a SUBSCRIBE(SId, RId) to the network and publishers
can publish data using the PUBLISH(SId, RId, data) primitive to the network. The network works as
a blackboard and is able to store data within it. As a consequence, it is possible to reduce data transfer
by delivering closer copies of the same data to the subscribers.

There are three main roles associated in the publication and subscription matching and delivery:
forwarding layer, topology manager and rendezvous server. The forwarding layer uses a Bloom-filter
based source routing mechanism to deliver data from a publisher to any subscribers. The topology
manager is responsible for computing the bloom-filter containing the route from a publisher to a subs-
criber taking into account the closest possible source. In this scenario, only the topology manager has
the complete view of the topology, thus, it is able to compute the path between publishers and subs-
cribers. The rendezvous server is the entity responsible for receiving PUBLISH and SUBSCRIBE
messages and do the matching between them. The server stores a set of tables with the pending subs-

3The current continuation of this project is known as PURSUIT. Available online: http://www.fp7-pursuit.eu
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criptions and the incoming publications. Whenever there is a match, it generates an event that triggers
the topology manager to generate a bloom-filter with the path between publisher and subscribers. Fi-
nally, this bloom-filter is sent to the publisher which publishes the publication in the network, and the
network is responsible for the publication delivery to all subscribers.

From the security perspective, PSIRP uses the packet level authentication model as the default
security mechanism to provide data authentication. Prior to a packet delivery or reception, each pu-
blication chunk is digitally signed to provide content authentication and protect against unauthorized
modifications in the network.

2.4.3 4WARD Project (2008)

The 4WARD [47] project proposes a clean slate architecture based on the concept of Network
of information (NetInf). NetInf is a communication architecture for networking of information, hel-
ping users to manage information differently by classifying logical groups and making it available
anywhere in the Internet. Content in the NetInf are divided into three groups: bit-level objects (BO),
data objects (DO) and information-objects (IO). Bit-level objects are the representation of the raw
data in bits, i.e., a file, a data chunk. A data object is a set of bit-level objects. An information object
is a set of data objects combined with a metadata that describes the data objects.

Whenever a user wants to access an object, he performs a semantic search in the NetInf dictionary
to get a list of object descriptions that matches the user’s criteria. Each element in the list is associated
with a data object ID and users request for a data object ID to get a list of bit-level objects. The access
to information objects are controlled by access rights, which define the type of access, e.g., read/write
and execute, and who can access the data. In order to provide the object access, the metadata includes
a list of public keys of the entities that can access the resource. The access to the information objects
in the network is enforced by the security controller, who is in the border to the NetInf network.
Prior to the access to the information, users perform a public/private key challenge to verify whether
a given user has its public key in the metadata structure of the requested data. As an extension to
support application names [48], NetInf also uses a naming scheme based on DONA’s name, with
a principal and a label. In this case, they changed the label to point to the information object that
contains the metadata of the requested content. The metadata may not contain the owner’s public key,
but the public key of a proxy to preserve anonymity of the content publisher.

2.4.4 Content-centric Networking (2009)

Content Centric Network (CCNx) [49, 50] and the current continuation of the project, Named Data
Network (NDN)4, proposes a clean slate architecture for content-oriented communication driven by
consumers’ interests. The founding principle is that users should connect to pieces of content (look for
content) rather than to hosts. In addition, many of the popular content are produced once and copied
many times to the different clients. Requests for pieces of content are identified by hierarchical names,
similar to fully qualified domain names, where each name is composed of a high-level application
name, concatenated together with the version, segmentation index and the cryptographic hash of the
content to provide data integrity. These requests are routed directly on the names towards the server.

4Available online: http://named-data.net
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Network caches on the path are able to identify and respond with the cached data on behalf of the
server. NDN relies on application-level identifiers to identify pieces of content in the network, content
resolution and forwarding is bound to the hierarchical structure described in the URL.

From the security perspective, NDN uses packet level authentication to provide content authen-
tication, integrity and provenance using digital signature using public key cryptography and Merkle
trees to amortize the verification overhead. In addition, NDN uses content centric encapsulation to
provide request anonymity and privacy. The concentric encapsulation mechanism is the recursive
application of encapsulation technique using public key cryptography. Each NDN router advertises
its public key, so content providers can use it and use that key to encrypt the last part of the name.
For example, given a NDN URL /ndn/uc/alice/music/, the content provider can use the first NDN
router’s public key to encrypt music, resulting in /ndn/uc/alice/Ealice(music). This procedure can
be applied recursively using the public key at each hop on the path. As the data traverses the path, it
is decrypted and the signatures are switched to the correct ones. Also, publishers can use a symmetric
key prior encrypting the name, so they separate the symmetric encryption from the encapsulation me-
chanism. Another option is to use the full encryption mechanism, hiding the entire URL. For example,
given the URL above, a publisher could encrypt it to generate X = Ealice(/ndn/uc/alice/music, k).
The resulting encrypted URL could be re-encapsulated again to Y = EBob(/ndn/cs/bob/X, k′). Fi-
nally, the URL could be published as /ndn/usp/anonymous/Y.

2.5 Summary

The Chapter 2 described the related work for this thesis. We have presented the original proposals
for the Lamport One-time signature scheme and how it motivated the work on Merkle Hash Trees.
Then, we described the basis for the Merkle Tree and its limitations to support random file size
authentication and the growing overhead problem. Later, we described the current security protocols,
IPSEC and TLS, and explained their limitations to support mobility and content authentication. In
the last part, we described some clean slate information-centric architectures that support new content
retrieval procedures.



Capítulo 3

Towards Identity-centric Security

This chapter presents an identification-based security model to overcome the dependence on
network attachment locations of the current security protocols. We start with the motivation of our
work, outlining the main issues and consequences on the dependence of network location informa-
tion. Then, we present the identification layer approach as an architectural alternative to detach the
end-host identification from its underlying network location. Finally, we extend the identification
layer to support security mechanisms (e.g., authentication, data integrity and confidentially) adapted
to mobility scenarios.

3.1 Motivation

Two commonly used security protocol today are the Internet Protocol Security (IPSEC) [37] and
Transport Layer Security (TLS) [36], providing secure mechanisms to authenticate and protect sensi-
tive data exchange between hosts over the Internet. IPSEC operates on the network layer by extending
the IP packet header and employs IP addresses as end-host identifiers, protecting all upper layers and
also the network layer. TLS security protocol works on the application layer and establishes a secure
channel between end-hosts applications based on the end-host’s Transport Layer Identifier (TLI)1 to
identify the secure channel end-points. These two protocols attend most of the current demand for
secure communication over the Internet: Virtual Private Networks (VPNs) and electronic commerce
(e-commerce).

Despite the fact that these security protocols work properly in the commonly used scenarios, they
inherit an architectural limitation from the IP protocol called IP semantic overload problem [6] [51]
[42]. The IP semantic overload problem refers to the use of the IP address with two semantics,
identification and location, despite the fact that there is just one single field to store these information
(the IP address field). The IP address is used on both network and transport layers. In the network
layer, the IP address is used as topological identifier, representing a host’s location in the Internet
topology. In the transport layer, the IP address is also used as host identifier for all incoming and
outgoing connections2. For each new TLS connection, the security protocol creates a new TLI to be

1The TLI is composed of a tuple with the source and destination IP addresses, source and destination ports and the
protocol number.

2Both TCP and UDP use the source and destination IP addresses from the IP header to create a pseudo header used in

29



30 Towards Identity-centric Security

used as secure end-point identifier.
These two concepts, identification and location, may get into conflict because an end-host’s iden-

tification (who the end-host is) is attached to its current location in the network (where the end-host
is). If we bring this situation to the real world, and making an analogy between end-hosts and people,
then a similar situation would be naming each person based on her current location, for example, the
street where she is currently located. As a consequence, it is hard to permanently identify a person if
she moves to another location. In security scenarios, this issue is more critical because it is hard to
authenticate a person that moves frequently and certify if the corresponding person is the same one
in a previous location.

End-host identification using IP addresses were acceptable in the early ages of the computer ma-
chines, when the devices were large pieces of hardware that was almost impossible to move from one
place to another. However, due to the introduction of portable devices, such as PDAs and smartpho-
nes, the IP address became an ephemeral characteristic of a host as mobile devices could connect to
different network attachment points. Therefore, the original trust placed in the IP address is not valid
because end-hosts can no longer be identified by its previous IP address. In addition, as a conse-
quence of the IP semantic overload problem, ongoing connections could not be maintained because
of the network-level mobility. End-hosts need to change their IP address as they move to new network
attachment points (new IP address in the visited network), resulting in changes in the TLI that breaks
all connections3.

The IP semantic overload problem has consequences in the end-host trust establishment. Origi-
nally, the trust between end-hosts was established between the network attachment points represented
by their IP addresses. However, with the rise of mobility and private networks, the trust establishment
is not complete anymore, since we use an ephemeral end-host information to establish the relati-
onship, resulting in security vulnerabilities for both end-hosts. Another direct consequence of the
semantic overload issue is the lack of native mobility support. As we bind the end-host location with
its identification, it is not possible to change an end-host location due to a mobility event (change in
the underlying IP address) and keep the same end-host identifier (same IP address).

In order to tackle the IP semantic overload problem and also the lack of stable end-host identifiers,
we propose a new namespace to fill this gap called identification layer, described in the next section.

3.2 Identification Layer

As discussed previously, the absence of permanent identifiers for end-hosts introduces several
issues, for example, secure trust establishment and mobility. In order to deal with this limitation, we
propose a new namespace composed of permanent end-host identifiers called identification layer [16].
This namespace is composed of semantic-free identifiers and their main role is to provide permanent
and unique end-hosts identifiers over the Internet. The identification layer is placed between the
network and transport layers to fill the semantic gap of identification present in the current network
stack. The proposed layer aims to tackle the following issues:

• Lack of permanent identifiers. There is no permanent end-host identifier for applications,

the checksum computation, albeit in modern network stacks, the checksum is not verified.
3Actually, the operating system flushes all ongoing connections with the old IP address from the connection table.



3.2 Identification Layer 31

leading the transport level to borrow the network-level topological identifier (IP address).

• Secure end-host identification. Adding security semantics to the permanent end-host identifi-
ers.

In order to satisfy the first requirement, we propose the use of random length identifiers that may
be generated by any end-hosts. However, this mechanism alone is limited for providing security
because anyone could generate any random identifier and it would be hard to authenticate that. Thus,
in order to attend the second requirement, we propose the use of cryptographic identifiers [7] to
identify end-hosts due to its intrinsic security properties. Cryptographic identifiers are generated
using a strong cryptographic hash over an end-hosts public key, binding end-hosts identification with
an internal property of the end-host. Additionally, these identifiers allow for self-certification, which
is the process to certify if a given public key is bound to a certain end-hosts. This procedure is
important to transfer the trust from a public key certified by a trusted certificate to the network-level
end-host identifier, allowing end-hosts to authenticate other end-hosts identifiers.

The identification layer is located between the network and transport layers, thus, providing secure
identifiers for the transport layer while detaching the network level. Fig. 3.1(a) illustrates the standard
TCP/IP stack, where the socket bindings use the IP address in both network and transport layers. Fig.
3.1(b) illustrates the identification layer inserted between the network and transport layers, providing
stable identifiers for the upper layers while it dynamically binds to the network layer.

Fig. 3.1: (a) Standard TCP/IP protocol stack. (b) Protocol stack with the identification layer.

The main argument to use identification layer is to migrate the trust from the network-level iden-
tifier (IP address) to the end-host itself, represented by the cryptographic hash of its public key. As a
consequence, end-hosts can be identified independently of its current location, resulting in i) secure
end-hosts identification and ii) native mobility support [17]. The security of cryptographic identifiers
lies on the security of cryptographic hash functions and their resistance against pre-image attacks4.
Therefore, security level of cryptographic identifiers can be increased based on the cryptographic hash

4Pre-image attacks are attacks against the hash functions that aims at finding collisions in the hash namespace. They
are separated in two types: first pre-image and second pre-image attacks. The first pre-image attack consists of an attacker
that knows a hash digest h of a message M and trying to find its corresponding message that generated that hash digest.
The second pre-image attack consists of finding different messages that result in the same hash digest, for example, given
a message M1 and its hash digest h1, try to find a message M2 such that hash(M2) = h1.
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function that is used to generate these identifiers. Note here that only the cryptographic identifiers
are not enough to provide trust between end-hosts. It is necessary external mechanisms for the initial
trust establishment between identifiers, for example, a previous exchange of digital certificates that
are certified by a trusted third party. We are going to explore this issue in the next sections.

Another important issue regarding the identification layer is backwards compatibility. The iden-
tification layer provides secure identifiers for the transport layer, therefore, the length of these iden-
tifiers must be compatible with the parameters expected for the socket creation. We propose the use
of 128-bit long identifiers resulting from the SHA-1 cryptographic hash function that is truncate to
128-bit long5 to be compatible with IPv6 addresses.

In the next sections, we extend the identification layer to support other security mechanisms, such
as data authentication, integrity and confidentiality, and also secure mobility support.

3.3 Identification Layer Security Model

In this section, we propose a security model over the identification layer called identification layer

security (IDSEC) [16]. IDSEC proposes a set of secure routines to authenticate and protect the com-
munication channel through an authentication protocol with denial of service resistance capabilities
and security techniques to protect the integrity and confidentiality of the communication. The IDSEC
protocol works within the identification layer, providing security for all layers above the network
layer. Thus, the network layer is detached from the transport layer, becoming just a forwarding agent.
Some benefits of this approach include support to heterogeneous networking scenarios, such as IPv4
and IPv6 or bridging between IP world with flat routing schemes. The native data protection in the
identification layer allows the complete independence of the network layer, allowing complete com-
munication protection even in heterogeneous networks. The adoption of a security model embedded
in the identification layer presents some advantages, such as:

• Support of security ignorant applications. Legacy applications do not need any modification
in their source code to implement security mechanisms;

• Security associations based on the end-host identifiers rather than ephemeral identifiers.
Legacy applications bind to secure and permanent identifiers rather than transient IP addresses
(e.g. during mobility event or private network addresses), resulting in a better mobility support
by the identification layer;

• Heterogeneous network support. As the security mechanisms are embedded within the identi-
fication layer, the communication between end-hosts located in different network technologies,
e.g., different forwarding technologies of clean-slate architectures, is transparently supported.

3.3.1 Security Model Proposal

The IDSEC security model is composed of an authentication and key exchange protocol over the
identification layer. The authentication protocol is based on the Diffie-Hellman key exchange proce-

5Although the hash length is the same, the truncated SHA-1 digest with 128 bits is stronger than the pure 128-bit
resulted from the MD5 hash function.
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dure and IDSEC extends it to add some protection capabilities against denial-of-service attacks. The
end-host authentication procedure is based on the public key cryptography, where each end-host ge-
nerates a pair of asymmetric keys and signs the messages with their private keys to be checked against
their public keys. Thus, the true owner of the private key will be able to correctly sign the messages,
allowing the correct authentication of the peer’s identity. However, this approach is not completely
safe against man-in-the-middle attacks, where an attacker stays between the communication channel
of two real end-hosts, accessing and forwarding all data between them. One solution to prevent this
kind of attack is to use digital certificates issued by a trusted certificate authority (CA) to authenticate
the end-hosts identities. Another one is to use the concept of leap-of-faith [52], where users use a
weak authentication mechanism to establish an initial trust in the other peer.

IDSEC is also extendable to support data integrity and confidentiality through the deployment
of these new services in the identification layer. The advantage of such approach is that all security
parameters are based on the end-hosts cryptographic identifiers and not in the IP addresses, natively
enabling new scenarios such as mobility and heterogeneous networks. Based on the user preferences,
security mechanisms such as message authentication codes and symmetric key cryptography can be
integrated in the key exchange protocol, protecting against unauthorized access or modification of the
exchanged information. The trust model in IDSEC is explicit, i.e., it is directly established between
entities holding a public key. This is the main difference from the current trust model based on the
IP address. Whenever there is a change in the network attachment point (e.g., due to a mobility
event), the trust originally established between two cryptographic identifiers remain, regardless of the
location of the current end-hosts in the network. On the other hand, within the IP-based end-host
identification, there must be other external auxiliary mechanisms to restore the trust between these
end-hosts.

Fig. 3.2 presents the IDSEC 3-way handshake used to authenticate and exchange security parame-
ters between two entities. The handshake follows the principles described in [7, 53] to prevent against
security threats, including resource exhaustion attacks, eavesdropping and impersonation. We differ
slightly from their original proposal to reduce the original number of messages from four to three to
speed up the handshake protocol while satisfying the security requirements6. In the following steps,
Alice and Bob will be the entities in the key establishment protocol and Eve the malicious attacker.
Note here that we do not address end-hosts, but entities, meaning that entities can be at any end-hosts.

Fig. 3.2: Security association establishment protocol.

The authentication protocol uses three messages to establish a secure channel between the end-
hosts: init, challenge and response. Alice sends the init message to Bob containing her ID and Bob’s

6The original HIP base exchange is composed of four messages, where the last message is a ACK from the responser
acknowledging the reception of the message and indicating that the he has accepted the proposed cipher suit. Compared
to our approach, we do not have this acknowldge message, but after the base exchange, we directly start the connection.
If there is a lost in the third message, our protocol restarts the handshake after a time out period.
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ID, where ID represents the cryptographic hash over their public keys. When Bob receives the init
message, he stores Alice’s identifier for a period of time and sends the challenge message back to
Alice with a CPU-processing cost function. This function is used to check the commitment of the
peer entity to the key establishment protocol and prevent resource exhaustion attacks (e.g. denial-of-
service attacks). For a genuine entity engaged in the protocol it is reasonable to spend some CPU
processing before going through the handshake, but for a malicious attacker, it is quite hard to launch
a denial of service attack due to the asymmetric characteristic of the cost function. Fig. 3.3 shows an
example of cost function.

Fig. 3.3: Cost function example used to increase the costs of a denial-of-service attack.

The IDSEC proposal adopts the cost function concept proposed in Hashcash [54], where the
cost function consists of brute force computations involving cryptographic hashes to find a target
number of zeros to prevent resource exhaustion attacks, for example, TCP SYN attack [55]. This
security threat involves a malicious attacker sending a volume of connections that cannot be comple-
ted, exhausting the internal cache of uncompleted connections. In the previous scenario, Bob sends
a challenge message that Alice must solve through brute force computations as a proof-of-work and
also that Alice is committed to the connection. To solve the function, Alice must hash a substring
until it reaches a k number of zero bits, defined by Bob, which becomes the solution of the function.
As there is no solution other than the brute force tentative, Alice is forced to spend some CPU pro-
cessing to find some string matching the server’s conditions. In the case of an attacker (Eve), she will
need to spend much more CPU processing to solve the function than the targeted victim (Bob), who
can check with a single hash function. On the other hand, Bob can easily check the solution with just
one hash function. Thus, denial of service attacks launched against Bob can be repelled, even if many
attackers are involved as in the case of distributed denial of service attack. Note that the proposed
protocol can repel direct attacks against the end-host, but does not prevent the network flooding with
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undesirable traffic resulted from the denial of service attacks. The challenge message also contains
the security parameters, e.g. cipher suit proposal, used to establish the secure channel between the
end-hosts, Bob’s public key or his digital certificate and, optionally, the Diffie-Hellman parameters to
exchange security parameters with perfect forward secrecy properties. Bob signs the message with
his private key and sends the message back to Alice.

The hosts use the RSA public key algorithm to provide end-host authentication through a challenge-
response mechanism to prove the ownership of the correspondent private key. This procedure involves
a host challenging a peer host to decrypt a message encrypted with the peer’s public key. If the peer
host is able to decrypt the message and send the correct content back to the challenger, then it proved
that it has the ownership of the correspondent private key. During the challenge-response procedure,
the host may send the keying material encrypted with the destination public key.

One option to exchange keying material is through the Diffie-Hellman key exchange protocol
to provide the Perfect Forward Secrecy (PFS) characteristics to the communication. The PFS pro-
perty ensures that a session key derived from a key exchange protocol is not compromised, even
when the previous key used to establish the session key is compromised. In this scenario, where the
Diffie-Hellman algorithm is used to exchange the keying material for he secure channel, the previous
exchanged messages can not be decrypted, even if one or both private keys are compromised. This
measure is efficient against passive attackers that eavesdrop all messages exchanged and try to disco-
ver the private key to decrypt all messages. Once one of the private keys is compromised, they can
derive the other keys used to protect the messages.

The Diffie-Hellman parameters generation involves the computation of large prime numbers,
which may require some amount of time and CPU processing. In order to avoid any processing
cost on the destination side, we propose the adoption of the static Diffie-Hellman algorithm. The
static approach differs from the ephemeral Diffie-Hellman because the later one generates the Diffie-
Hellman parameters every time it starts the protocol, while the former one generates the parameters
just once and uses the same for all key exchanges. Although the host does not compromise any pro-
cessing before checking the challenge, the host will later need to compute the symmetric key, which
will result in some processing cost. One option to avoid such resource spending is the use of pu-
blic key cryptography to exchange the keying material. Even though it does not provide PFS, it has
lower processing costs and also may attend some specific scenarios such as the transactional ones
with timestamps, like the SSL protocol today.

After Alice solves the challenge, she sends a response message containing the solution of the
cost function, the raw keying material encrypted with Bob’s public key, the security parameters, the
Diffie-Hellman parameters (if requested by Bob) and Alice’s digital certificate. After Bob verifies the
correctness of the function, he computes the keying material and uses it to derive the keys needed
to provide the other security functionality deployed over the identification layer. All the following
traffic is protected with the security policies established by the handshake protocol.

The first benefit of embedding security on the identification layer is that all signaling is restricted
to, or above, the identification layer. As a consequence, the maintenance of a session is not dependent
on the forwarding network technology, but on the stable identifiers provided by the identification
layer. Therefore, the network layer is responsible for the packet forwarding and delivery and does not
need to identify the end-hosts. This property is interesting for heterogeneous networks, since network
domains with different technologies can be only bridged with network-level translator and without
interfering in the upper layers. This scenario is not possible in IP domain, since applications cannot
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bind to different versions of the protocol to communicate in the same network. The introduction of
the identification layer provides a homogeneous naming framework, allowing the natural connectivity
between hosts over heterogeneous networks since the identifiers are technology independent.

The formal security analysis of the IDSEC handshake is left as future work. The primary goal
of the IDSEC proposal is to validate the location decoupling model using the identification layer and
that security mechanisms can use the identification layer as the forwarding fabric for the security
parameters.

3.3.2 Protocol Implementation

In order to evaluate the IDSEC proposal, we instantiate the security model over the framework
proposed in [56, 57]. The framework is composed of a set of components that provide specific
services, for example, flat routing and identification header handling, and it is illustrated in Fig. 3.4.

Fig. 3.4: New Internet architecture framework.

The framework features are divided into external and internal modules. The external modules
are components of the architecture that provide services for the end-hosts. The internal modules are
components that provide services within each end-host divided in data and control planes. Data plane
modules are involved in the data delivery, identification management and flat routing. The control
plane is responsible for signaling messages exchanged between components of the architecture, such
as registry and redirect messages.
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The external modules provide services for the nodes of the architecture, such as legacy name reso-
lution, identifier to locator resolution and service discovery. The legacy name resolution is separated
in two steps: the resolution of a name (Fully Qualified Domain Names - FQDNs) into identifiers and
the resolution of an identifier into one or more locators. The service discovery mechanism is provided
by a DHCP server in each domain, which must be modified to return additional parameters, such as
the default router and the local RVS.

In order to fulfill the security requirements of IDSEC, three extra modules were added: Security,

Security Association Database and the Security Manager. The Security module is responsible for the
security policy enforcement, e.g. symmetric key cryptography for each packet sent or received by an
end-host. The Security Association Database is responsible for the storage of all policies negotiated
by the Security Manager, such as the algorithms used for each end-host, public key and expiration.
Finally, the Security Manager is responsible for the three way secure handshake previously descri-
bed, storing the security parameters in the Security Association Database to be used by the Security

component.
In order to protect the communications between end-hosts and the external modules such as Do-

main Name Service (DNS), we propose secure methods to add or modify entries in the DNS and
in the location manager named Rendezvous Server (RVS). The RVS is a database which holds in-
formation about mobile node’s current locator in order to keep the node reachable after a mobility
event. Secure insertion or modification in the DNS are provided by the adoption of the DNSSec [58]
extension. As DNS holds fairly static information about identity, nodes must authenticate themselves
before any modification in the DNS server, preventing attacks such as DNS cache poisoning. In the
RVS, all mobile nodes must establish security associations before any insertion or modification. This
association is negotiated during the bootstrap process or whenever a node arrives at a new domain.
Nodes send their public key or the digital certificates to peer nodes to verify the authenticity, and later
Diffie-Hellman parameters can be used to establish a symmetric session key, providing end-to-end
authentication and confidentiality.

Figure 3.5 shows the Identification Layer Security Header used in the framework. The header has
a 4-bit field for the version, 4-bit field for the message type, 8-bit reserved field for further use (e.g.
quality of service), 16-bit field for the payload length, 32-bit field for the security index, 32-bit field
for the sequence number, a variable size field for the authentication data (e.g. HMAC), four 128-bit
fields to store the source and destination pair of end-host identifiers and end-host gateway identifiers.
Finally, the legacy packet is carried in the data field. The security index field is used by the end-hosts
to identify the security policies used by the party and the sequence number prevents replay attacks.

The end-to-end communication is enabled by the use of source/destination identifiers, creating
a secure channel between the end-hosts. This approach is useful when we consider heterogeneous
networks, where the network does not deliver packets from the source end-host to the destination
end-host, but from the source end-host to the boundary of the network domain.

3.3.3 Experimental Evaluation

We evaluate IDSEC from two perspectives: protocol efficiency and functionality. From the pro-
tocol efficiency, we evaluate the overhead due to the introduction of a new layer in the network stack,
and from the functionality perspective, we evaluate whether IDSEC supports regular communication
and mobility scenarios.
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Fig. 3.5: Identification Layer Security Header.

For the protocol efficiency evaluation, we used three cipher suits to validate the IDSEC perfor-
mance. The selected cipher suits are described below7:

• IDSEC_RSA_WITH_NULL_SHA1 - This mode provides authentication through RSA public
key algorithm and message integrity with HMAC-MD5, but does not provide confidentiality.

• IDSEC_RSA_WITH_BLOW_SHA1 - Similar to the previous one, but with confidentiality pro-
vided by the symmetric key cryptography.

• IDSEC_DHE_RSA_WITH_BLOW_SHA1 - This mode provides authentication through RSA
public key algorithm and message, integrity with HMAC-MD5 and confidentiality with symme-
tric key cryptography using Blowfish algorithm. Note that the keying material for the message
digest and symmetric cryptography is generated by the Diffie-Hellman algorithm.

For the sake of simplicity, we call the first, second and third modes as level-1, level-2 and level-3

respectively. For the evaluation scenarios, we used the following hardware: two Pentium Core 2 Duo,
1.8 GHz Gb RAM, Linux Debian and NIC 100 Mb/s. For the throughput measurement, we used the
Distributed Internet Traffic Generator (D-ITG) [59] and collected the average values of 25 samples.

7Note that these cipher sets were chosen just for the prototype evaluation. Other cipher sets and security services can
also be deployed over the identification layer.
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The first experimental evaluation analyzed the overhead due to the identification layer together
with the security protocols overhead. We compared the total network throughput without any secu-
rity mechanism and all the three security levels described above. The evaluation set-up consisted of
starting the prototype without any security mechanism enabled and then, we added the security levels
1, 2 and 3 to compare the overhead of each level. These security levels are selected by the authentica-
tion protocol during the cipher suite selection, but the users can also select the desired security level.
Hence, the user has the control over the security levels for different communication channels based on
the trust on the peer. This feature also allows the introduction of control lists, such as white lists for
known identifiers, e.g., internal to an organization; and policies, such as lower security requirements
for frequently accessed hosts.

For this experiment, we set the constant packet rate transmission to 9140 packets/s and varied the
payload size against the IDSEC security levels to evaluate the security model behavior. The packet
transmission rate of 9140 packets/s was chosen because it was the maximum transmission rate with
packet size of 1350 bytes that did not have packet loss. Table 3.1 summarizes the maximum through-
put for each security mode considering a 95% confidence interval. As we expected, the increase of the
cryptographic functions reduces the total throughput due to the processing time and packet overhead.

Tab. 3.1: Security model overhead vs. IDSEC modes (95% Confidence Interval)
Mode Average (Mb/s) Min. (Mb/s) Max. (Mb/s)

Raw IP 90.72 89.11 92.34
Prototype 86.75 86.21 87.29

IDSEC - level 1 84.60 84.27 84.93
IDSEC - level 2 84.39 84.05 84.73
IDSEC - level 3 80.02 79.20 80.84

For the functionality perspective, we evaluated the prototype in mobility scenarios using legacy
applications with IDSEC. For this experiment, we set up a scenario with four Pentium Core 2 Duo,
1.8 GHz, 4 Gb RAM, Linux Debian, NIC 100 Mb/s and two access points IEEE 801.11g, shown in
Fig. 3.6. One machine had a Siemens IEEE 802.11g wireless interface attached to the USB interface
to act as the mobile node.

For the mobility support experiment, we configured the D-ITG traffic generator to send a UDP
constant bit rate of 20 Mb/s during 60 seconds between a static sender and a mobile receiver. For
each security mode, we ran the experiment 25 times and the average values and standard deviation
were computed. While the mobile node is receiving the traffic (Fig. 3.6 - step 1), the mobile node
moves to other subnet and attaches to the new subnet access point (Fig. 3.6 - step 2). The mobile
node receives new subnet parameters from the DHCP server, such as the new IP address and the
default gateway. The mobility event has basically two times associated: the layer-two association
time, related to the hardware association time, and the reconfiguration time, related to the time it
receives the DHCP parameters and reconfigure all network parameters. The transmission rate value
was chosen according to the maximum bandwidth of the wireless network with packet loss under
0.3%, in order to avoid interference in the handover time and packet loss measurement. Table 3.2
shows the prototype’s handover time involving different mechanisms, such as the layer-2 handover
time, layer-3 handover time (DHCP parameters retrieval), the prototype without IDSEC and level-3
IDSEC security model.
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Fig. 3.6: Mobility evaluation scenarios. In (1), node B is attached to the access point 1 to commu-
nicate with node A. In (2), node B moves and uses the access point 2 to communicate with node
A.

Tab. 3.2: Handover time vs. IDSEC security modes
Mode Average (std. dev.) Pkt loss (std. dev.)

(milliseconds) (percentage)
Layer-2 handover 32.64 (2.43) -
Layer-3 handover 35.75 (6.75) -

Prototype 77.04 (6.70) 0.81 (0.17)
IDSEC level-3 78.62 (7.72) 0.85 (0.22)

The results show the handover latency with the security model enabled in the prototype is slightly
higher than the prototype without the security model due to the secure handshake procedure and
cryptographic functions. As the bandwidth in wireless networks is lower than wired networks, the
impact of the security model is reduced in wireless networks compared to wired ones.

3.4 Summary

This chapter has presented the identification layer approach and how it can be an alternative to
solve the IP semantic overload problem. The identification layer uses cryptographic identifiers to
provide permanent and secure end-hosts identifiers in the Internet. These identifiers have intrin-
sic security properties that allow for end-host authentication regardless of its current location in the
network. Additionally, we have presented IDSEC, the identification layer security model to sup-
port security features within the identification layer. IDSEC provides a key exchange protocol with
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denial-of-service attacks capability resistance together with standard security protocols features, such
as authentication, integrity and data confidentiality.
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Capítulo 4

Data Authentication in Information-centric
Networks

Chapter 4 presents the data authentication mechanisms for information-centric networking. First,
we start with the motivation of the work, discussing the issues regarding the time and location de-
coupled systems. Then, we sketch the initial proposal of a security plane for data authentication in
information-centric networks, outlining main requirements for a separate plane. Finally, we propose
two authentication mechanisms, the skewed hash tree and the composite hash tree, that can be used
in information-centric networks.

4.1 Motivation

Despite the fact that the identification layer model could solve some of the problems in the current
Internet regarding security and mobility, it is limited to provide security in content-oriented network.
In the current Internet, there are already many applications that look for data rather than end-hosts,
for example, news feeds, videos, audios, social networks, etc, and the primary goal is to retrieve
data regardless of its location (e.g., if it is in a data-center, or a cache, a peer, a host, etc). Some
examples of these networks include peer-to-peer [13] networks and content delivery networks [12].
In these networks, the end-hosts are just simple data producers, consumers or holders (data storage),
and the concept of data security changes slightly. One main difference is that secure connections do
not guarantee that data is authentic because the trust is not transferred anymore from the end-hosts
to the data. The main reason for that is because the end-host storing the data may not be the sole
owner of the data anymore since it can be a simple data storage (cache) for some content provider.
As a consequence, the trust on the end-host cryptographic identifier is not explicit transferred to the
data within a connection because i) the end-host may not have produced the data and ii) there is no
binding between end-host’s identifier and the data itself. In this scenario, the end-host is a transient
data storage server that is providing data from a content provider and may not be responsible for the
data authenticity and integrity.

Therefore, we want to generalize the security model to provide data security rather than security
the connection since many applications use the content-oriented paradigm. In IDSEC, the motivation
to use cryptographic identifiers is to provide data security that is verifiable towards a trusted end-
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host, which is generally the data generator. In content-oriented networks, end-hosts are data source
or consumers, i.e., some end-hosts have applications that request for data and other end-hosts have
applications that consume data. Therefore, the main focus is on the content, and this is the motivation
for our work to generalize the concept of end-host identification to content identification. By iden-
tifying content, we are able to verify data towards the original producer rather than a local node that
is just a server, but it also presents other challenges.

Additionally to the security issues, the increasing demand for highly scalable infrastructure for
efficient content distribution has stimulated the research on new architectures and communication
paradigms, where the focus is on the efficient content delivery without explicit indication of the
resource location. One of this paradigms is known as information-centric networking (ICN) and its
main focus is on data retrieval regardless of the source at the network level. This scenario usually
happens when content providers (e.g. Warner Bros and BBC News) produce information (movies,
audios, news in a Web page, etc.) and hire delivery systems such as Akamai1 to deliver their content
to the customers. The main reason to outsource the delivery mechanism is that content providers
are not specialized in networking but on content generation, thus, it is more interesting to hire an
external company to provide the delivery solution. In this model, there is a decoupling between
content generation and the server storing the content itself (the actual machine serving the content to
clients). Originally, servers used to generate and deliver data to the clients, however, nowadays data
may be generated in specialized locations and placed in strategically placed servers in the network to
speed up the content delivery to content consumers.

From the security perspective, the decoupling of data production and data hosting opens up new
challenges to content authentication. One of the challenges regards the trust establishment for content
authentication and a second one is the time decoupling between content consumption and production.
Previously, data was generated in servers and the authentication of the server where the data was
fetched resulted into an implicit authentication of the data because the content producer is the same
as the content server. Nowadays, a common scenario is the separation between content generation
and delivery, breaking the previous trust relationship established between the serving host and the
content. Servers are deployed by content delivery companies to deliver data according to a contract,
thus, there might not be a correlation between serving host and the data itself.

The second issue regards the time decoupling between data consumption and production, which is
a direct consequence of content production and hosting separation. Content providers produce news
(e.g. news feeds) that may not be synchronously consumed, i.e., BBC News web-site produces news
every 5 minutes, but clients access the data after some period of time. As a consequence, content
providers and consumers are decoupled in time and synchronization, and there might not be any
interaction between clients and servers to ensure the content authenticity2. While in the send/receive
paradigm, the receiver firstly authenticates the sender before fetching the content, there may not be
any knowledge about providers in the information-centric systems. As a result, some threats such as
fake and unauthorized content publication or content data blocks corruption may appear. Therefore,
these systems require a new security model focused on the content itself rather than securing the
connection. We will discuss the information-centric paradigm and outline the main characteristics of
such systems below.

1http://www.akamai.com
2Sometimes the original content provider is not online to provide authentication data.
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4.2 Towards Information-centric Networking

According to [15, 60], content-oriented networks have three main characteristics: location de-

coupling, time decoupling and synchronization decoupling. Location decoupling refers to the fact
that providers and consumers are not directly connected; time decoupling refers to the fact that data
generation is not bound to data consumption (they are not time correlated); and synchronization de-
coupling refers to the fact that data consumption is not synchronized with the source3. Based on
these three requirements, we sketch an initial security model based on a new plane responsible for
providing security features in information-centric networks. Likewise control, data and management
planes, we aim to separate the security features in a separate plane to better handle the security servi-
ces called security plane, as illustrated in Fig. 4.1. This plane acts as a secure broker that separates the
authentication data from the forwarding functionality, allowing clients to retrieve pieces of content
from the closest server or network caches while they fetch the authentication data from the security
plane.

Fig. 4.1: Security plane overview.

The security plane works as a binding point between content providers and consumers. In scena-
rios where content providers just generate content to be consumed by clients, and there is no security
session between them, providers are able to place the security data in the plane to be consumed by
clients and satisfy the time decoupling characteristic of these networks. The plane contains metadata

structures that describe the content itself, together with security parameters needed to authenticate
and check the data integrity.

We use the security plane concept together with other information-centric authentication tech-
niques to provide signature amortization in order to efficiently authenticate content pieces and also
verify the integrity of the data blocks.

4.2.1 Security Model

The security model separates the content retrieval functionality from the authentication infor-
mation into different planes: the security plane, where the security messages flow and the content
descriptors are stored, and the data plane, where the data blocks that are part of the content are stored.
In order to protect the clients from retrieving fake or bogus content from the data plane, the security
plane provides a content descriptor called metadata, which contains authentication information about

3The main difference compared to time synchronization regards the fact that the data is produced and stored in some
mirror server to be asynchronously consumed.
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the content. Fig. 4.2 illustrates an example of metadata proposal to satisfy the basic security model.
Further fields can be added according to the application requirements.

Fig. 4.2: Metadata description.

The content ID field contains a randomly generated 256-bit identifier used to identify the metadata
in the security plane. The content name field contains the high-level content description, for example,
a URL for a content. The revision field is used to control the current content version for update
purposes, e.g., a client may want to receive updates about the content ID that she has subscribed for4.
Thus, the applications need to know how to address different versions of the same content. The block

ID list contains a sequence of chunks identifiers that will be used by the application to retrieve data
from the network.

The root hash field contains the root hash of a hash tree, either a skewed hash tree or a composite

hash tree, to be described in the next sections. The root hash is a fingerprint over a set of data
chunks and allows for data verification without a pre-established security session. The public key

field contains the public key of the content provider or of a proxy, in case the content provider wants
to have anonymicity. The signature field contains the provider’s signature over the metadata to protect
against unauthorized modifications on the content descriptor.

In order to insert a metadata in the security plane, content providers must first authenticate in the
security plane through public key challenge-response procedure similar to the one used in IDSEC
to verify the ownership of the correspondent private key and also a cost function to avoid denial-of-
service attacks. After successful authentication, the metadata is inserted in the security plane with a
lifetime associated. The security plane can be either public or private. In the first mode, registered
content providers can insert metadata in the plane, while in the private mode, clients must authenticate
in the plane prior to getting access to the content metadata.

The initial trust between content providers and consumers can be performed in different ways, for

4A common example is the case of a client that subscribes to a content, e.g., BBC News, and wants to receive further
news updates. However, the BBC News identifier can not be changed, otherwise the user will need to refresh the identifier
every time it receives an update. Moreover, the lack of permanent identifiers lead to broken links scenarios.
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example, local configuration based on administrative rules, integrated with name resolution system
or be a totally external entity, such as a distributed hash table.

In the first scenario, the bootstrapping procedure is done by an external administrator, so the local
host has the public key embedded in the system, for instance, a list of root certificates in a Web-
browser. The benefit of this approach is the pre-establishment of a trust relationship between the
software vendor (the entity that embedded the certificates) and the entities that may provide security
services (Web-sites that are trusted).

In the second scenario, clients rely on a trusted resolution infrastructure, e.g., DNSSEC. In this
approach, users query a distributed system to reach the authoritative server hosting a content pro-
vider’s name to public key mapping. The benefit of this approach is that key management is easier
from the infrastructure point of view, for example, key revocation or key rollover. However, the draw-
back is the unnecessary trust placed in the resolution infrastructure to resolve queries correctly. For
example, if a client trusts her bank (and its digital certificate), then the user does not need to trust in
the infrastructure (DNSSEC) to store the bank’s public key or resolve the mapping to the bank. The
client can spot any forgery because she has the bank’s identifier and can check the identity against the
bank’s certificate.

Finally, the third approach uses a distributed database to store the mappings, such as a DHT.
The DHT works as a distributed directory where entities post and request certificates in the Internet.
The benefit of this approach is that clients do not need to trust the infrastructure since it is a mere
placeholder for the certificates. The trust in the infrastructure is minimum because clients just need
to trust that the DHT will store and return the certificates, and clients are able to verify whether a
returned certificate is valid or not by checking its digital signature in the returned certificate. Hence,
clients do not need to trust the infrastructure to return the correcting mapping, but rather to just return
the content provider’s digital certificate.

The proposed mechanism is totally location, time and synchronization decoupled. Content pro-
viders produce data, generate metadata structures for the data and publish them in the security place.
Later, the content providers place copies of the data in strategic places in the network, for example,
mirror servers and caches. Clients requesting for the data will need to authenticate in the security
place prior to the metadata retrieval. In this scenario, the security plane’s server is always active,
thus, it is possible for clients to connect to it and authenticate using synchronous protocols, such as
IDSEC.

4.3 Information-centric Authentication Mechanisms

This section presents two techniques for data authentication in information-centric networks:
skewed hash tree and composite hash tree. The skewed hash tree is an extension of the Merkle Tree
to support random size file authentication, and the composite hash tree is a new hash tree algorithm
to authenticate data with configurable overhead.

4.3.1 Skewed Hash Tree

The skewed hash tree mechanism provides random size data authentication with one digital sig-
nature regardless of the number of data blocks. The skewed tree extends the original Merkle tree
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algorithms to allow data authentication in cases where the number of chunks (data fragments) is not
multiple of power of two. As present in Chapter 2, Merkle trees require balanced binary trees to work,
thus, it needs some extensions to the algorithms to support unbalanced trees. In order to achieve this
requirement, we separate the hash tree into two parts: one balanced tree and a second one with the
skewed leaves. A skewed leaf is a leaf that is going to be appended under a balanced leaf and it has a
special handling in the algorithm. The balanced tree is created over a partitioned content and later the
skewed leaves are added under the balanced tree, creating one extra height in the skewed hash tree.
The advantage of splitting the tree in balanced tree and skewed leaves is to maintain the compatibility
with the original Merkle tree algorithms for the balanced tree while handling correctly the skewed
leaves.

Fig. 4.3 illustrates an example of skewed hash tree, where the balanced tree comprehends the
leaves with hash values H01, H23, H4 and H5 and the skewed leaves contain the hash values H0, H1,
H2 and H3. The skewed tree construction starts with the computation of the smallest tree height that
can hold all data blocks minus one5, which in this case is h = 2 and results in four balanced leaves.
Next, the mechanism computes the number of balanced leaves that will receive the skewed leaves in
order to hold all data blocks. Finally, it computes the root hash over the data set.

Fig. 4.3: Skewed Merkle Tree with 6 data blocks and one appended level in the skewed hash tree with
height 2.

In order to differentiate the skewed leaves from the balanced ones, the skewed leaves are inserted
at the height h = −1, indicating that they are appended leaves and they should be handled as a special
case when using regular Merkle tree algorithms.

5The motivation to reduce the tree height in one is to avoid empty leaves, for example, if we choose a tree of height
h = 3 for this example, we would have 6 data blocks and two empty blocks.
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Fig. 4.4(a) illustrates another example of skewed hash tree. In this example, the algorithm com-
putes that there are 6 skewed leaves (H0..5) that will be used to generate the balanced leaves in the
next height, containing the hash values H01, H23 and H45.

Fig. 4.4: (a) Skewed Merkle Tree with 11 leaves and the inner balanced tree with 8 leaves. (b)
Authentication Path for each data block with different lengths.

The algorithm to calculate the root hash starts in the first leaf of the balanced tree, in this case,
H01. The first step of the algorithm is to check whether it has skewed leaves appended in that leaf
or not. In the example, the leaf H01 has appended the skewed leaves H0 and H1, thus the algorithm
must compute first these two leaves and later the algorithm returns again to the balanced tree. The
balanced tree algorithm now goes to the second leaf H23. It checks whether there are appended leaves
or not and treats the skewed leaves. From leaf H45 onwards, there is no more skewed leaves, thus, the
balanced Merkle tree algorithms can work normally.

Fig. 4.4(b) illustrates each data block with its corresponding AP in the skewed tree. Some data
blocks will have an AP of one hash value longer than others due to the skewed tree, but it does not
interfere in the verification procedure. The authentication path and verification algorithms also need
to be modified to support skewed leaves and they will be detailed in the next sections.

Skewed Merkle Tree Algorithms

The skewed hash tree computations are divided into three phases: root hash generation, AP ge-

neration and data blocks verification. The first phase generates the public signature of a target file,
the second phase generates the AP for each data block and the third phase authenticates each data
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block. In the following algorithms, we use the stack data structure to ease the algorithm description
and understanding. The decision to use a stack is because it can hold the last two values in the top of
the stack, easing the comparison process of the last two values. Also, we consider that the stack has
the pop and push(element) primitives, where pop removes the top element of the stack and push adds
an element in the top of the stack. Before starting the algorithm description itself, we provide some
definitions to clarify the operations in the skewed hash tree:

• Block. A block or data block is a fragment of a larger file and is considered as the smallest

unity of data used as input of the skewed hash tree algorithms.

• Leaf. A leaf is the bottom node of a binary tree. It contains the cryptographic hash value of a
data block.

• Balanced leaf. A balanced leaf is a leaf of a balanced binary tree. Even though they are leaves,
they may have some skewed leaves appended, but they are called balanced leaves to identify
the lowest level of a balanced tree. These leaves can be handled using regular Merkle tree
algorithms.

• Skewed leaf. A skewed leaf is the leaf that is appended under a balanced leaf. It needs special
handling in order to generate a coherent root hash value that can be used in the verification
process.

• Height. The height h is the total height of the entire skewed hash tree, which is the height of a
balanced tree if there is no skewed leaf, or the balanced tree plus one if there are skewed leaves.

• Root hash. The root hash is the top value in the skewed hash tree and it is used for the authen-
tication of all data blocks.

• Authentication path. The authentication path is a list of hash values that is used to verify
a given data block. Each element of the authentication path (APi) is the sibling value of the
computed hash in the skewed hash tree.

The number of skewed leaves in a skewed hash tree with height h is the number of current leaves
in the hash tree minus the number of data blocks of a balanced hash tree with height h− 1, multiplied
by two6. Therefore:

num_skewed_leaves = 2× (N − 2balanced_tree_height) (4.1)

where the balanced_tree_height is height of the balanced tree. The number of balanced leaves
with appended skewed leaves is:

num_balanced_leaves = N − 2balanced_tree_height (4.2)

We are going to use these numbers in the skewed hash tree algorithms, detailed in the next section.

6Because the next height of a binary tree has two times the number of leaves of the previous height.
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SHT Algorithms

There are three algorithms associated to SHT: skewed_treehash, skewed_ap and skewed_verify.
The skewed_treehash computes the root hash of a skewed hash tree; the skewed_ap computes the
authentication path for each data block; and skewed_verify checks whether a data block is consistent
with a given root hash or not. We are going to describe each one in detail.

Alg. 1 describes the root hash generation procedure in a skewed hash tree, which is based on the
original treehash Merkle tree algorithm presented in [19].

Algorithm 1 SHT treehash algorithm
Input: File, max_height, num_skewed_leaves
Output: Root hash
skewed_count = 0
height = 0
while height <= max_height do

if top 2 values have equal height then
hR ← pop()
hL ← pop()
height = hL.height
hx ← hash(hL || hR)
stack.push(hx, height+ 1)

else
if read_data NOT EOF then

data = read_data(file)
if skewed_count < num_skewed_leaves then

stack.push(hash(data), height=-1)
skewed_count = skewed_count + 1

else
stack.push(hash(data), height=0)

end if
end if

end if
height← stack[0].height

end while
Return stack[0]

The algorithm receives as input a file, the block size, the maximum height of the tree (which is
calculated dividing the file size by data block size and verifying the smallest height of a balanced
tree that can hold that number of leaves) and the number of skewed leaves computed with Eq. 4.1.
The algorithm starts reading the data blocks from the file passed as parameter and checks whether
the block will become a skewed leaf or a regular leaf in the balanced tree. In the former case, the
algorithm pushes the hash of the data block into the stack with height h = −1 to indicate that it
is a skewed leaf, while in the later case it will have height h = 0 to indicate that it is a balanced
leaf. Whenever there are two hash values with the same height, the algorithm pops those values,
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concatenates the popped values and pushes the hash of the concatenation into the stack, incrementing
the height of the pushed node. This procedure continues until it reaches the maximum height and the
stack will have the root hash value in the top of the stack.

The second phase corresponds to the AP generation for each data block and is divided into two
steps: (1) initial stack filling and (2) AP generation. The first step uses the skewed treehash algorithm
to store all hash values of the leftmost and rightmost leaves (hL ← pop() and hR ← pop() in Alg.
1) in the Sh and APh stacks respectively. The Sh stack contains the hash value to be used in the next
AP generation and the APh stack contains the AP value at the height h and it contains the authenti-
cation path of the first block. These stacks are used as temporary variables to store the previous hash
computed hash values to be used in the next AP computation.

The second step uses the pre-filled Sh and APh stacks to output each AP in sequence with one tree
traversal. Alg. 2 describes the skewed hash tree traversal algorithm. The algorithm receives as input
the file, the number of balanced leaves with appended skewed leaves and the height of the balanced
tree and outputs the AP for each data block in sequence.

Algorithm 2 SHT authentication path generation
Input: File, num_balanced_leaves, H
Output: Data blocks with Authentication Paths

leaf = 0
skewed_count = 0
if leaf < 2H − 1 then

if skewed_count < num_balanced_leaves then
data0 = read_block()
data1 = read_block()
Output data0, hash(data1), AP
Output data1, hash(data0), AP
skewed_count = skewed_count + 1

else
data = read_block()
Output data, AP

end if
for h = 0 to H do

if (leaf + 1) mod 2h == 0 then
APh = Stackh
startnode = (leaf + 1 + 2h) XOR 2h

Stackh = skewed_tree_hash(startnode, h)
end if

end for
leaf = leaf + 1

end if

Fig. 4.5 shows an example of the algorithm working on the skewed hash tree presented in Fig.
4.3.

In Fig. 4.5(a), a skewed hash tree is constructed over six data blocks, resulting in a balanced
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Fig. 4.5: (a) Skewed hash tree with h = 2. (b) Table containing the output on each round of the
algorithm.

Merkle Tree with h = 2 and four skewed leaves. Table 4.5(b) shows the output of the algorithm on
each round. The first step of the AP generation is performed in the round zero. Thus, we have the
APh and Sh stacks initially filled with AP0 = H23; AP1 = H45 and S0 = H01; S1 = H03 respectively
(all left node values in the Sh stack and all right node values in the APh stack). In the first round, the
algorithm verifies if there is any skewed leaf appended under the balanced leaves. In our example,
there are two skewed leaves, thus, the algorithm computes the hash values of each data block and
outputs the blocks D0 and D1 with their respective sibling hash values (H1 and H0 respectively) and
the APs in the AP stack (H23, H45). The algorithm fills the AP stack with new hash values and goes
to the second leaf of the balanced tree (H23), performing the same procedure as the first step. In the
third and forth leaves, the algorithm outputs one data block with their correspondent AP since there
is no more skewed leaves.

The third phase comprehends the data block verification procedure, described in Alg. 3, where
the receiver gets the data block with its corresponding AP and the block index. We assume the root
hash was previously transferred to the receiver in a secure way, for example, using the security plane
model. The algorithm starts reading the data block’s AP and appends each hash value in the correct
side to reach the root hash. One important notice is that the AP at each height should be appended in
the correct position (left or right) using the block index since during the creation they also follow a
correct order (hash(A || B) is different to hash(B || A) and will result in a different hash value.

The block index represents the path from the leaves up to the root of the skewed tree. For example,
in the Fig. 4.5, the block indexes for data blocks D0...5 are 0, 1, 2, 3, 3, 4 and they are used together
with the authentication path length to verify a data block. The block index does not represent the
sequence order of data blocks, but the topological location in the tree to perform the authentication
using the APs.
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Algorithm 3 SHT verification
Input: Root Hash, block index, data block, AP
Output: True or False
pos = index
digest = hash(data_block)
for each APi value in AP do

if (pos % 2 == 0) then
digest = hash(digest || APi)

else
digest = hash(APi || digest)
pos = ⌊pos/2⌋

end if
end for
if (digest == Root Hash) then

Return True
else

Return False
end if

4.3.2 Composite Hash Tree

This section presents the Composite Hash Tree (CHT), a data structure containing summary in-
formation of partitioned piece of data which can be authenticated with one digital signature. First,
we will introduce the CHT data structure and describe how CHT can be tuned using the h and α
parameters and also present some authentication example. Second, we will present the proof of the
authentication overhead complexity, discussing the advantages and limitations of the CHT approach
compared to SHT and Merkle trees. Third, we will present the algorithms used to construct and
authenticate the CHT.

CHT Overview

The Composite Hash Tree (CHT) is a data structure created over a set of data blocks belonging
to a complete file. The main idea is to create a set of small binary hash trees of fixed height over
a set of data blocks and recursively construct other binary hash tree over the previous hash trees in
the first level, until reaching one single hash tree in the top level. The motivation for this approach
is the high overhead present in the Merkle tree and also skewed hash tree, because the latter one
is mainly based on the original Merkle tree algorithms. In these approaches, each data block has
a list of cryptographic hash values (authentication path) that is the same length of the hash tree.
Therefore, each authentication path has log2N values and the sum of all authentication overhead
grows N × log2N , where N is the number of blocks. Thus, for large files, this overhead might be
considerable, especially in scenarios using low processing devices such as mobile phones.

In order to attack the authentication overhead problem, we propose CHT as an alternative to both
Merkle and skewed hash trees for authentication purposes with low overhead. The proposed mecha-
nism also provides signature amortization, allowing one piece of content to be authenticated with one
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digital signature regardless of the number of data blocks, requiring on average O(N) fingerprints to
authenticate N data blocks that are components of the original content for small composing Merkle
tree with height h. In order to better describe the CHT data structure and the verification procedures
associated to it, we start with some definitions used through the text to ease the comprehension of the
proposed mechanism. Although many of the concepts are similar to the ones presented in the skewed
hash tree section, we added them here to keep the section self-contained.

• Hash Tree (HT). A binary hash tree [19] is a complete binary tree with height h and 2h leaves.
Each leaf stores a cryptographic hash value of over a data block and each internal node stores
the hash of the concatenation of its children’s node

• Root Hash (RH). The Root Hash is the hash value in the top of an intermediate hash tree,
representing the signature over a set of data blocks. The RH algorithmically binds together all
data blocks, and any change in any data block will result in a different signature.

• Composite Root Hash (CH). The Composite Root Hash is the hash value in the top of a
composite hash tree used to authenticate the incoming Authentication Data Blocks. The CH
can be digitally signed to provide both content authentication and integrity regardless of the
number of data blocks.

• Authentication Data Block (AD). The Authentication Data Block contains intermediate RH
values of the hash trees used in the composition. It is used to authenticate the smaller trees and
data blocks as they arrive in the receiver side.

• Authentication Path (AP). The Authentication Path is the list of hash values needed to authen-
ticate a specific data block. The AP hash value in a given height h is the sibling hash in the hash
tree towards the root hash. The main difference between AP and AD is that the first one is used
to authenticate one data block and the second one is used to authenticate the RH of intermediate
hash trees.

A CHT(α, h) is a composite hash tree using smaller Merkle trees of height h (MT(h)) whose root
hash values are aggregated in blocks of α elements, where α ≥ 2 (The motivation for α ≥ 2 is
because for α = 1 the cryptographic hash function will be applied two times over the same data block
without any real security benefits. For α = 2, it works as a regular Merkle Tree). Fig. 4.6 illustrates
an example of CHT(2, 1) using internal hash tree value h = 1 and intermediate RH aggregation
of two blocks (α = 2). In this example, a file is divided in eight data blocks (D0 to D7) and an
intermediate hash tree of height h = 1 is constructed using the cryptographic hash of the data blocks
as input (H0 and H1), resulting in an intermediate Root Hash (H01). This intermediate RH is used
as the verification information for the data blocks D0 and D1, which later on will be aggregated in
Authentication Data Blocks.

The CHT has two configuration parameters: aggregation index (α) and internal hash tree height
(h). The α parameter is used to define the aggregation level of the intermediate RH values in the
binary hash tree in α values. The internal hash tree height (h) defines the height of the internal
hash trees used in the composition. These two parameters allow for the customization of the tree
behavior, for instance, the initial verification ordering and the verification overhead, according to the
application requirements. High h values provide smaller authentication hierarchy, meaning that data
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Fig. 4.6: (a) Composite Hash Tree with internal HT of height h = 1 and α = 2.

and authentication blocks have low interdependency at the cost of higher authentication overhead per
data block. On the other hand, small h values results in low authentication overhead, but longer data
block authentication hierarchies (thus, higher dependency between data and authentication blocks).
High h values result in fewer number of internal Merkle trees because a MT(h = 2) has the double
number of leaves than a MT(h = 1). However, the AP grows with the height of the Merkle Tree,
resulting in higher authentication overhead.

In this example of Fig. 4.6, intermediate RH values in the first level (H01 and H23) are aggrega-
ted together in blocks of two (α = 2), resulting in the Authentication Data Blocks with hash values
H01||H23 and H45||H67, where || represents the concatenation operation. In the second level, the
Authentication Data Blocks are considered as input data blocks. Hence, the CHT applies the crypto-
graphic hash over the ADs, resulting in the hash values H03 and H47 and another intermediate hash
tree of height h = 1 is constructed over these two data blocks, resulting in the Composite Root Hash

which will be used in the verification procedure. In case of larger files, this procedure is applied
recursively until reaching the Composite Root Hash.

In order to provide data verification, each data chunk carries a list of hash values represented by
the AP used to verify with the CH. The AP for each data block is the sibling hash value in the hash
tree, for instance, in the example described in Fig. 4.6, the AP for the D0 is H1, since this value is the
sibling value of H0. For larger hash trees, the AP is composed of the sibling hash value at each height
towards the RH7. Therefore, the overhead per data chunk is defined by the height of the internal hash
tree. In this approach, the CHT maintains just one hash value needed to authenticate a target data

7Recalling that the AP length is the height of the Merkle Tree, thus, this is the motivation to use really small Merkle
trees.
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block, discarding the repeated values of the regular Merkle Tree, as described in Chapter 2. On the
other hand, this mechanism introduces an authentication hierarchy between data and authentication
blocks, requiring that some blocks to be authenticated prior to the data blocks authentication.

As described in the examples above, the CHT mechanism trades authentication overhead (length
of the authentication path) with the size of the authentication hierarchy. In order to make the CHT
more flexible, we introduce the root hash aggregation index α. The index sets the number of root
hash values that must be aggregated together before sending it to the Merkle Tree of the next level.
Thus, rather than passing one root hash at a time to the next level, the mechanism aggregates α root
hashes to create the authentication data block (AD) to be passed to the next level. Hence, we can
transfer a bulk of root hash values and reduce the total height of the CHT. The α index reduces the
authentication hierarchy needed to authenticate all data blocks in an order of α elements. Thus, the
index reduces logα N authentication levels, where N is the number of partitioned data blocks.

Fig. 4.7 illustrates an example of authentication hierarchy using a sliding window for a CHT(2, 1).
The figure has two columns, the first one indicates the received data blocks in the receiver side and
the second column shows the next blocks window to be downloaded next. As authentication blocks
arrive, the next blocks to be downloaded slides to the next set of data block that can be downloaded
with the arrival of the new set of Root Hashes. For example, after the receiver authenticates the AD0

containing the hash values H01 || H23, the user can start downloading data blocks D0, D1, D2 and D3,
in any sequence.

Fig. 4.7: Authentication Window for CHT.
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The same procedure is taken when the AD with concatenated hash values H45 || H67 is received
in the destination, allowing the download and authentication of data blocks D4, D5, D6, D7 in any
sequence.

Fig. 4.8 shows a CHT(4, 1) with height H = 2 for 16 data blocks. The α index allowed the
construction of a CHT with the same data block authentication overhead of a CHT(X, 1) (one hash
value per data block and X represents any α value) while kept the same number of authentication
hierarchies as a CHT(2, 1) (one authentication hierarchy). Thus, higher α values minimizes the num-
ber of authentication hierarchies in the CHT and this option is interesting for applications that require
low verification overhead and they do not have problems with authentication dependency.

Fig. 4.8: CHT(4, 1) for 16 data blocks with H = 2.

CHT Overhead Complexity

The CHT overhead has two components associated, the Authentication Path (OAP ) overhead of
each data and Authentication Data Block (OAD) overhead, which are the aggregated Root Hash values
of the intermediate Merkle Trees. Thus, the total overhead is:

OT = OAP +OAD (4.3)

The OAP is the sum of the product between the number of data blocks on each height by the
size of the AP, which is defined by the height of the Merkle Tree used in the CHT. From the CHT
construction example above (Fig. 4.8), we can notice that the factor 2hα repeats recursively i times
to create the CHT over the data blocks. Note that the last MT created over the data blocks does not
follow the pattern because they are the data blocks on which the composite hash tree is being created
over. These data blocks add 2h leaves, thus we need to add it separately in the formula to compute the
overhead. Therefore, the OAP formula is the product of the i recursions plus 2h leaves over the data
blocks plus the AP length (which is the same as h).
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OAP =
H′∑

i=0

(2hα)i × 2h × (AP length = h) (4.4)

where H ′ represents the CHT height minus 18. The H ′ is the number of data blocks N minus the
MT(2h) over the data blocks that do not repeat. Therefore:

H ′ = ⌈log(2hα)(N/2h)⌉ (4.5)

The OAD is similar to the AP overhead formula and computes the sum of the product of the
intermediate Root Hash values that are aggregated into α hash values, excluding the MT(2h) over the
data blocks since it starts from the first level. Hence:

OAD =
H′∑

i=1

(2hα)i × (AP length = h) (4.6)

In order to calculate the overhead complexity with the input, we first calculate the total number of
data blocks of a CHT(α, h). From 4.5, we have that:

N = (2hα)H
′

× 2h (4.7)

From 4.4 and substituting with 4.7, we have:

OAP =
H′∑

i=0

(2hα)i × 2h × h ≈ (2hα)H
′

× 2h × h = N × h (4.8)

Therefore the OAP in the CHT is N × h and grows O(N) when N >> h and h is a constant that
does not change with the input size. The maximum value for h in a binary tree is log2 N , reducing
the CHT to a regular Merkle Tree with overhead complexity of O(N log2 N).

The Authentication Data Block overhead has similar proof to the previous one. Thus, substituting
in 4.6, we have:

OAD =
H′∑

i=1

(2hα)i × h ≈ (2hα)H
′

× h = (N × h)/2h (4.9)

Therefore, the OAD in the CHT is N × h/2h and grows O(N) when N >> h and h is a constant
parameter that does not change with the input size. The total CHT overhead (OT ) is:

OT = N × h+ (N × h)/2h = O(N) (4.10)

8It is not considered the Root Hash in the height computation (thus, H ′ = H − 1).
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Table 4.1 compares the overhead of a regular Merkle Tree and a CHT(1, 2):

Tab. 4.1: Merkle Tree vs. Composite Hash Tree Overhead Comparison
# of Merkle Composite Hash Overhead

blocks Tree Tree (1,2) Reduction(%)
8 24 12 50.00

32 160 48 70.00
128 896 192 78.57
512 4,608 768 83.34

2,048 22,528 3,072 86.36
8,192 106,496 12,288 88.46

32,768 491,520 49,152 90.00
131,072 2,228,224 196,608 91.18
524,288 9,961,472 786,432 92.10

The MT above presents an overhead of O(N log2 N) while the CHT(1, 2) has an overhead of
N × h+ (N × h)/2h = 2N +N = 3N = O(N). Thus, the difference between the Merkle Tree and
the Composite Merkle Tree grows O(log2 N) with the input. The reduction of the CHT authentication
overhead compared to a regular MT is due to the hierarchical verification procedure required in the
CHT.

CHT Algorithms

The CHT construction and verification has three phases: CHT root hash generation, authenti-

cation data generation and data blocks verification. The first phase comprehends the computation
of the root hash that will be used to authenticate the partitioned data by the receiver. The second
phase generates the authentication data including the authentication data blocks with the root hash
values of each smaller Merkle Tree and the AP for each data block. The third phase comprehends the
verification procedure of each data block, which requires a hierarchical authentication procedure.

Alg. 4 describes the CHT root hash computation algorithm. It uses a modified version of the
Merkle Tree treehash algorithm described in [19] and it is used to calculate intermediate root hash
values in Merkle Trees.

The algorithm receives as input the aggregation index α, the Merkle Tree internal height h used
in the composition, the input data file, and the maximum height of the tree, computed using the Eq.
4.59. All algorithms use a stack to store the intermediate values.

The CHT root hash generation procedure starts reading data blocks and storing the hash of the
blocks in the hash tree stack (Sht). The hash tree stack contains the hash values that need to be
aggregated by α values. Once upon there are α values in the Sht, the algorithm removes all the top α
values, aggregates them and applies a cryptographic hash over the set. Then, it pushes the resulting
hash value into the the Merkle tree stack (Smt). The Merkle tree stack contains all values that need to
be cryptographically hashed using the regular Merkle Tree algorithm, adding the resulting hash value
in the Sht. This process continues until the CHT root hash is obtained.

9The total height is H = H
′ + 1
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Algorithm 4 CHT root hash generation procedure
Input: α, h, File, max_height
Output: CHT root hash
height = 0
while height < max_height do

if top α values have equal height (ht_stack) then
cur_height = height
hi ← pop the last alpha values
local_ad_ap← AGGREGATE(hi)
mt_stack = add(local_ad_ap, cur_height+ 1)

else
if top h values have equal height (mt_stack) then

cur_height = height
startnode = len(mt_stack) - 2h

local_rh = treehash(startnode, h, mt_stack)
ht_stack = add(local_rh, cur_height+ 1)

else
local_rh = treehash(startnode, h, mt_stack)
ht_stack = add(local_rh, 0)

end if
end if

end while
Return ht_stack[0]

Algorithm 5 Auxiliary treehash algorithm
Input: startnode, max_height, data_source
Output: local root hash
height = 0
while height < max_height do

if top 2 values have equal height (stack) then
cur_height = height
hR ← pop()
hL ← pop()
local_rh← hash(hL||hR)
stack = add(local_rh, cur_height+ 1)

else
Read data_block
local_hash← hash(data)
ht_stack = add(local_hash, 0)

end if
end while
Return ht_stack[0]
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The algorithms use one auxiliary procedure named treehash, which calculates the root hash of
smaller hash trees (described in Alg. 5). It receives as parameters the starting node, i.e., the data block
index or the stack index, the height to which it should compute and the source of the data, represented
by a stack. In this case, if the function is called with treehash(0, 2,mt_stack), it will start reading the
node starting with index zero in the mt_stack and applying the Merkle tree algorithms until reaching
the height of h = 2. In this example, it will read four blocks (N = 4) because it reads from a binary
tree (2h, where h = 2, thus, 22 = 4).

The second CHT algorithm describes the tree traversal mechanism to generate the AP for each
data block together with the corresponding authentication data blocks. Alg. 6 works similarly to
the previous CHT root hash generation algorithm but it also stores the authentication path data. It
receives the α and h parameters, the input file and the maximum height for the tree. While the
algorithm calculates the root hash of the CHT tree, it stores the intermediate AD and the AD’s AP
blocks (or outputs for external storage) to be used by any receiver. For the data blocks, we use the
skewed hash tree authentication path generation, described in Alg. 2.

Algorithm 6 CHT root hash generation procedure
Input: α, h, File, max_height
Output: CHT root hash
height = 0
while height < max_height do

if top α values have equal height (ht_stack) then
cur_height = height
hi ← pop the last alpha values
Output hi outputs ADi *
local_ad_ap← AGGREGATE(hi)
Output ADlocal_ad_ap outputs the APi for ADi *
mt_stack = add(local_ad_ap, cur_height+ 1)

else
if top h values have equal height (mt_stack) then

cur_height = height
startnode = len(mt_stack) - 2h

local_rh = treehash(startnode, h, mt_stack)
ht_stack = add(local_rh, cur_height+ 1)

else
local_rh = treehash(startnode, h, mt_stack)
ht_stack = add(local_rh, 0)

end if
end if

end while
Return ht_stack[0]

The verification procedure algorithm is described in Alg. 7, which requires a hierarchical authen-
tication procedure. The tree at height H − 1 is required to authenticate the tree at height H − 2, until
it gets to the root hash of the tree just above the data block, as illustrated in Fig. 4.7. The algorithm



4.3 Information-centric Authentication Mechanisms 63

receives as input the CHT root hash and the authentication data blocks with their authentication paths.
It also uses two stacks, Sht and Smt, to store the intermediate hash values. The algorithm starts re-
ading the AD blocks together with their APs and inserts the resulting hash value into the Sht until
there are α values. Then, the algorithm removes the last α values and adds them in the Smt stack to
be added using the Merkle Tree algorithm, repeating until the CHT root hash is calculated. Then, the
algorithm compares the calculated root hash with the given one, returning when if they are equal or
not (true or false). For the data blocks, we use the data block verification mechanism described in
Alg. 3.

Algorithm 7 CHT Verification Procedure
Input: α, h, File, max_height, root_hash
Output: True or False
height = 0
while height < max_height do

if top α values have equal height (ht_stack) then
cur_height = height
hi ← pop the last alpha values
local_ad_ap← AGGREGATE(hi)
mt_stack = add(local_ad_ap, cur_height+ 1)

else
if top h values have equal height (mt_stack) then

cur_height = height
startnode = len(mt_stack) - 2h

local_rh = treehash(startnode, h, mt_stack)
ht_stack = add(local_rh, cur_height+ 1)

else
for i = 0 to h do
hi ← ad_listi

end for
h =

∑
hi

mt_stack = add(h, 0)
end if

end if
end while
if ht_stack == root_hash) then

Return True
else

Return False
end if

One scenario that is also considered is the unbalanced CHT, where the number of data blocks is not
multiple of 2h+1α. In this case, the CHT algorithms must have appended the skewed hash algorithms
to deal with this special case. Similar to the skewed tree case, the skewed leaves are appended under
the balanced CHT leaves and they are handled before going to the regular CHT algorithm.
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4.4 Summary

This chapter has presented content authentication mechanisms in information-centric networks.
We have described the initial proposal of a security plane to separate the data retrieval procedure from
the content authentication as a requirement for information-centric networking (ICN). Later, we have
proposed two authentication mechanisms for data verification using hash trees, named skewed hash
tree and composite hash tree. The proposed mechanism focus on content authentication regardless of
the data source, establishing explicit trust with the original content provider.



Capítulo 5

Application Scenarios for
Information-centric Data Authentication

This Chapter presents the application of the skewed and composite hash trees techniques in diffe-
rent scenarios. We start with the secure content name resolution to the metadata as the initial step for
the data retrieval process. Next, we present two application scenarios for the composite hash tree over
legacy information-centric applications, namely, pollution detection in Peer-to-peer networks and pa-
rallel authentication over HTTP. Finally, we propose the usage of hash tree mechanism for secure
content caching in the network.

5.1 Towards Secure Name Resolution

This section proposes an information-centric naming system to bind content names and data
blocks in a secure way [21, 22]. We start with the motivation of our work and describe how hash
tree techniques can provide secure name resolution, trust transfer and content integrity for application
data.

5.1.1 Motivation

The Domain Name System (DNS) was introduced in the Internet to overcome the administra-
tive burden caused by the growing number of hosts, mainly due to the manual configuration of the
/etc/hosts file1. As more and more computers were deployed around the world, the size of the
/etc/hosts file grew to unmanageable sizes, demanding a new resolution system that was at the
same time scalable, distributed, and administratively easy to manage. The basic functionality required
in that context was to resolve a hostname into an IP address, easing the access to remote computers
through names rather than memorizing the sequence of unfriendly numbers of an IP address.

Despite the success of the naming system, there are many security flaws in the resolution design,
mainly because it was not designed with security in mind. The naming system is prone to a number
of attacks, such as denial-of-service attacks, DNS cache poisoning, among others examples[61]. We

1This file contains a list of hosts and their corresponding mappings to IP addresses and it is present in many Linux
distributions.
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argue that one of the root causes lies in the implicit trust placed by clients on the resolution system.
Users trust that the resolution system will always return the correct IP address of the destination host
or resource. The motivation of our work is to provide a more flexible naming system that binds an
authority (content provider or owner) and a secure identifier to identify pieces of content in the In-
ternet, allowing for the content verification and directly trust establishment with the content provider
rather than placing trust in the resolution mechanism. Additionally, the proposed resolution mecha-
nism is an alternative to resolve high-level content names (e.g. URLs) into the content metadata,
which will be used in some application scenarios described in the next section.

5.1.2 Naming System Design

In order to tackle the security issues in the naming system, we propose a set of design goals with
simplicity, scalability, robustness and security in mind:

• Backwards compatibility. The new naming system should be backwards compatible and also
be incrementally deployable in the current Internet architecture, thus, allowing its usage in both
legacy and pure information-centric networks;

• Content authentication, identification and location splitting. Content authentication, iden-
tification and location splitting leverage content storage and retrieval from multiple locations,
content replication and mobility2;

• Secure content identification. Persistent content identification with security properties allows
for location-independent labels, making it suitable for caching and also as a homogeneous
namespace for content identification;

• Provenance. the naming system should provide mechanisms to verify and validate the content
pieces with the original provider. The main idea is to migrate the security from the storage
location (mirror server) to the content and the authority over the content.

Additionally to these design goals, we aim at providing the initial resolution step from a single
name or URL to a content metadata and later to the block identifiers. In that sense, we aim to transfer
the initial trust placed on the name to the metadata, and lastly to the data blocks, ensuring content
authentication and integrity, which will be discussed below.

Initial design

In order to design a secure naming scheme, we introduce three definitions, which represent the
main components of the naming scheme: authority, content and location.

• Authority. Authority is any entity who, in the first place, has the direct control over the data
stored and handled by the system. It can be either a content provider who generated the content
itself, thus, the content owner, or an appointed entity to act as a representative of the content
owner, e.g., a proxy.

2The location splitting requirement is important because content should not be bound to specific locations in
information-centric networks.
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• Content. Content is any resource or piece of information that is generated by an authority,
which can be stored in a location.

• Location. Location is a position in the memory, hard-disk or network where a piece of content
can be stored and located.

Large pieces of content can also be partitioned into smaller data chunks of fixed size to satisfy
external requirements, for instance, maximum transmission unit (MTU) in the network. In addition,
data can be fragmented due to system policies, e.g., Peer-to-peer networks require content to be
divided and exchanged in smaller chunks to increase the overall availability of the system. Therefore,
data chunks are smaller components of a large content and the sum of all parts forms a content.

The mapping of these concepts to the network level is represented by the authority, content and
location identifiers. The benefits of using these secure tokens in the network level are twofold: first,
we decouple the authority from any specific location in the network, leveraging a broader concept
of authority rather than a single administrative domain; second, we add security semantics within an
identifier, easing the authority authentication in the network. As a consequence, entities are able to
recognize a security token that has been confirmed (authenticated) before, regardless of the location,
and they are able to recreate an indicative relationship between a message and an already known
authority.

5.1.3 Implementation architecture

This section proposes an implementation architecture for an information-centric name resolution.
The section starts with the resolution procedures to resolve authority and content names into their
corresponding network-level identifiers, discussing the trust transfer on each step. Next, we present
the options to resolve the content identifier into its corresponding metadata and, lastly, we describe
the trust transition from the metadata to the data chunks using hash tree techniques.

Initial approach

We use Universal Resource Identifiers (URIs) [62] as the foundation for our naming scheme due
to its backwards compatibility with the current naming system. The URIs introduce a set of names
and addresses that is used to identify resources in the Internet, leveraging global search and retrieval
of documents across different operating systems and protocols. An URI is mainly composed of
three components: a scheme, an authority and a resource path, as illustrated in Fig. 5.1 (additional
components are described in [62]).

The scheme defines the protocol handler for the authority; the authority is the owner or the res-
ponsible for the resource and the resource path points to the resource in the authority namespace. In
the current naming system, an URI is actually mapped to an URL and the authority becomes the Fully
Qualified Domain Name (FQDN) of the network where the resource is located3. The domain name is
resolved into an IP address through DNS and clients are able to request the resource to the returned IP

3Of course, there may be additional fields within the authority field. However, as they are not commonly used and not
essential for the current discussion, we ignore them in this thesis.
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Fig. 5.1: URI naming scheme and resolution in the current DNS.

address. However, the main drawback is the binding between content and a specific, relatively stable
set of locations.

We take the stance that the authority field defines the content owner, or the immediate entity
responsible for the content, rather than defining just of a namespace authority. Hence, rather than
mapping an FQDN to a location-dependent identifier in the DNS, the resolution system maps the
authority field to the public key (or other secure identifier) of the authority over the data, providing a
data verification mechanism. In other words, we go from a scenario with coarse grained granularity,
e.g., the authority field representing a whole administrative domain, to a fine-grained scenario, where
the authority is used to denote the organization or person responsible for the content the name points
to.

Fig. 5.2 illustrates an example of an information-centric name resolution, where the authority and
the content names are resolved into an authority and content identifier in a directory service (step
2). We also map the resource path to a content identifier which is also location-independent, which
will be resolved to a content metadata. Later, the content identifier can be resolved into a metadata
structure that will be used by applications to retrieve the data blocks (step 3).

Fig. 5.3 illustrates the direct trust establishment between a client and a content provider. In this
scenario, a client wants to receive news from the BBC News web-site. Thus, it resolves the authority
name (e.g. bbc.co.uk) into its corresponding network-level identifier by retrieving BBC’s digital
certificate and the content identifier. After the digital certificate is validated, the authority identifier
can be obtained by applying a cryptographic hash over the public key. Therefore, we transfer the trust
from the signer of the digital certificate to the authority identifier because we trust the signer of the
digital certificate, e.g., VeriSign (we also discuss other alternatives to establish the initial trust). Later,
we resolve the content identifier into a corresponding metadata in a resolution service4 to obtain the
metadata. As the content provider signs the metadata, we are able to verify its integrity and also trust

that it is authentic, since we have verified the authority’s identifier. The dashed lines in the figure

4The decision to separate the content identifier resolution to the metadata in a separate step is to keep a permanent
identifier for applications. Otherwise, any change in the metadata structure would change the content identifier, resulting
in broken links.
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Fig. 5.2: Naming scheme and resolution to authority and metadata.

represent the trust establishment and transfer between the steps, while the solid lines represent the
interactions between the content consumer and the network.

Fig. 5.3: Trust establishment and transfer from the names to the data blocks.

In order to transfer the trust and the authentication parameters from the metadata to the data
blocks, we use hash trees to provide algorithmic binding between data blocks and the root hash in the
metadata. Fig. 5.4 illustrates a proposal of metadata with its corresponding fields for the name-to-
content resolution based on the original model proposed in Chapter 4.

As the metadata was authenticated in the previous step, the binding between authority identifier
is transferred to the root hash, which will be used to authenticate the data blocks retrieved from the
network. In order to provide data authentication from one cryptographic hash value (root hash) to a
set of data blocks, we use hash tree techniques, such as skewed hash trees or composite hash trees
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Fig. 5.4: Metadata fields used in the name resolution.

[23, 20]. Fig. 5.5 illustrates the creation of a skewed hash tree over a set of data blocks. In this
scenario, each data block contains an authentication path that can be used to authenticate a data block
with a root hash. If the computation of the authentication path of a data block results in the root hash
that is in the metadata, then the block is authentic and was not tampered.

Fig. 5.5: Skewed hash tree applied over a set of data blocks.

Another possibility is to use composite hash trees to authenticate the data blocks. The benefit
is the option to trade-off authentication overhead with authentication hierarchy, giving more options
for the applications, for example, if the number of blocks is large, then it might be interesting to use
composite hash trees.
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5.1.4 Security Analysis

We analyze the proposed naming system from the external and internal security perspective. From
the external point of view, we analyze the roles of the distributed directory based on the DHT and the
DNS infrastructure.

The distributed directory system plays a role as digital certificate storage of authority identities,
allowing clients to query for a digital certificate of a content provider. The trust placed in the directory
itself is limited, since a client needs to trust that it will behave accordingly with its pre-established
function, i.e., store digital certificates. One possible threat is the misbehaving of the directory system,
e.g., not replying a query, resulting in lack of availability due to a malfunctioning or corrupted node.
However, clients can notice such problem and try with another directory, preventing from any forgery
(man-in-the-middle) attack since the trust is directly established with the content provider and not
with the directory service.

Upon retrieving the content provider’s certificate, clients are able to verify the digital signature in
the certificate and check against the set of trusted keys in their key chain. We assume here that there
is at least a small set of trusted keys in order to bootstrap the authentication procedure. Such set of
trusted keys are installed by default in some Web-browsers and others can be added with the users
approval.

The second resolution step involves the resolution of content IDs to network identifiers. The trust
level is minimal since clients establish a direct chain of trust with the content provider. Therefore, the
infrastructure is used as a simple mapping service and the possible attacks that can be performed is
related to the denial of service to the clients.

From the internal point of view, we analyze the security aspects of the binding between content
identifier, hash tree identifier, and the carried data. Content identifiers are based on either cryptoIDs
or hash tree identifiers. In the former case (cryptoID), identifiers are generated from a strong cryp-
tographic hash function, binding the content identifier with the data that it carries. Therefore, it is
statistically impossible for an attacker to tamper a piece of data without modifying its identifier. In
the latter case (hash tree identifiers), identifiers are generated through the composition of crypto-
graphic hash functions. Similarly to the cryptoIDs, it is unfeasible for an attacker to tamper a data
chunk without modifying the root hash value.

5.1.5 Deployment Considerations

The proposed naming scheme can be gradually deployed in the current naming system. From the
resolution side, it required an external infrastructure acting as a placeholder for digital certificates,
which can be either a DHT, e.g. Pastry [63] or an underlay forwarding/storage mechanism, e.g.
PSIRP [10]. Currently, some deployed DHTs in the PlanetLab can be used for this purpose since
resolvers need to place a minimal trust in the infrastructure. The benefit of using such distributed
infrastructure is the resistance to some security attacks, such as denial-of-service attacks against the
storage and better resistance against node failures.

For the second resolution step, it is required to introduce a new DNS type TXT record in the ser-
vers containing the content metadata. This record type is already supported by DNS, thus, servers that
support the metadata scheme just need to insert a new type in the DNS to provide enough information
about the data chunks.
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The content servers should support both complete (or legacy request) and partial content retrieval,
when a client issues a request with the content header. In the latter case, the server should have
an internal mapping of the cryptoIDs to the data chunks in the complete file. For example, given a
cryptoID, the server needs to be able to calculate which position of the complete file it should return,
similar to the HTTP Range header. In this type of request, a client defines the byte range that she
wants to receive from the file. Another possible approach is to save all data chunks in the server to
prevent the mapping to the correct offset in the complete file.

In the client side, users need to install a plug-in in the Web-browsers to handle the new naming
scheme and the metadata structure. The plug-in can be easily integrated with Web-browsers, pro-
viding authority and resource metadata authentication, metadata parsing and multiple connection
management for data retrieval.

5.1.6 Summary

In this section, we have presented a secure naming system that aims at decoupling the content
authentication from its location in a network. The proposed mechanism allows for content authenti-
cation using cryptographic identifiers that are independent from the routing, forwarding, and storage
location. Therefore, content pieces can be authenticated with the original provider and data can
be retrieved from any location, e.g., a proxy or a network cache on the path. The naming system
uses a distributed directory service to store the authorities’ digital certificates, allowing for the direct
establishment of trust relations between clients and content providers through signed content meta-
data. Some benefits of the proposed naming system include the security mapping function between
high-level names and cryptographic identifiers in the network level, content authentication with the
provider regardless of the network location where it was retrieved, and migration of the trust from the
resolution infrastructure to the provider, reducing the number of possible threats during the resolution
procedure. The proposed resolution mechanism can be used as the initial name resolution to content
metadata step required in the next applications scenarios, namely Peer-to-peer pollution detection and
parallel authentication over HTTP.
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5.2 Peer-to-peer Pollution Detection

Peer-to-peer systems (P2P) [13] were introduced as an alternative to the problematic bandwidth
and processing bottlenecks in the regular client/server model. The P2P systems allowed for content
storage and distribution among a set of peer nodes in the network rather than storing data in a single
or a small number of servers. Therefore, a failure in one node does not compromise the system as
a whole. P2P systems have scalability, fault tolerance and self organization as common characte-
ristics and each implementation has its own topology organization, resource discovery and content
distribution protocols.

The success of P2P networks is undeniable and there are many free and commercial services alre-
ady deployed over their networks. Software vendors, such as Linux distributors, use P2P networks to
deliver software to clients at low cost and reducing the infrastructure investment in their main servers.
Despite the success, P2P systems suffer from several kinds of attacks, from resource depletion attacks
[64] to service disruption [65] and data pollution [66]. Some solutions have been proposed, such as
reputation systems [67], but they are limited to deal with specific problems mainly due to the open
nature of the P2P networks, i.e., there is no owner of a public P2P network that is able to enforce a
specific policy.

In this work, we analyze the pollution attacks in P2P networks and we propose a mechanism to
detect partial pollution attacks using composite hash trees. The proposal is to create a fingerprinting

mechanism over the data set and send it through the control plane along with the data to the peers in
the data plane. Hence, receiving peers are able to detect pollution in the early stages of the down-
load procedure, allowing them to discard and re-fetch just the part of the corrupted data rather than
discarding the entire content after downloading it. This section starts with the introduction of P2P
systems and their main characteristics, such as organization, content indexing and peer discovery.
Then, we describe the types of pollution attacks and how they affect P2P systems. Later, we propose
the fingerprinting mechanism based on composite hash trees [20] to enable the pollution detection in
data chunks and evaluate our proposed model.

5.2.1 Background

P2P networks arose as an alternative to the problems of a regular client-server model for content
distribution. In the client-server model, one or a small number of nodes concentrate the network
resources requiring to implement sophisticated load balancing and fault-tolerance mechanisms to
handle the increasing number of requests. As a consequence, the cost for content distribution has
increased considerably and the management as well. These limitations have motivated the develop-
ment of new systems that could share the processing loads and bandwidth consumption among a set
of cooperative nodes. These systems are much more flexible and do not have a strict role division
between clients and servers, where all nodes are considered peers and they can act both as clients and
servers at the same time. Each peer contributes with processing power, storage capacity, software and
file contents, resulting in a system with high scalability, fault tolerance and manageability. P2P archi-
tecture are composed of highly dynamic networks of peers that are organized in complex topologies
and implement a special look up mechanism to find content pieces in a set of peers.

There are three main concepts in P2P networks: resource sharing, decentralization and self or-

ganization. The resource sharing concept implies that nodes of the system share data among them.
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Thus, a resource is not strictly stored within one node, but among a set of nodes. Decentralization is
a consequence of resource sharing, meaning that a piece of data is not stored in a single server, but
distributed in the network. Lastly, self organization is reached when the P2P system is fully decen-
tralized, thus, there is no node that coordinate other nodes and their activities in a centralized way
nor have the knowledge of the whole system. Thus, nodes need to organize themselves based on the
information locally available to interact with their locally reachable neighbor nodes.

P2P networks are divided in pure or hybrid model. In pure P2P model, any node can be removed
from the system without any interference in the network itself. Pure P2P are inherently scalable and
they are usually restricted by the number of centralized services in the system. In addition, these
systems are natively fault-tolerant because there is no central point of failure and the loss of a peer
can be easily compensated by another one since no node holds any special feature. On the other
hand, these systems present slow information dissemination and discovery because there is no central
node with the global view at the system level to coordinate these procedures. Some examples of P2P
networks that fall into this category are Gnutella [68] and Freenet [69].

On the other side, the hybrid model has a central entity in the network responsible for offering
services in the network. Mainly, the server maintains directories of information about peer nodes and
the departure of this node affects the whole system. These systems are also differentiated by their
indexing mechanism, which can be either centralized or decentralized. In the former one (centrali-
zed), a central server maintains an index of files that are currently shared among a set of peers. The
benefit of such system is that peers can query the server for files, speeding up the content location and
retrieval procedures. However, they present the limitation of being a single point of failure. A famous
example of such system is Napster5. In the latter one (decentralized), a set of special nodes, known as
supernodes, are part of a decentralized indexing system and maintain the information of active peers
in the network. Thus, content queries are sent to these supernodes and they answer with a list of peers
that have the queried content. An example of decentralized indexing systems is Kazaa [70].

Peer-to-peer discovery mechanisms have three generations: a first generation based on centrali-
zed structures, a second generation based on flooding mechanisms and a third generation based on
distributed hash tables. In the centralized structure, peers query a centralized directory to retrieve
information about content location. Peers query a directory and it will match the requests with the
best available peer, where best can obey any criteria, such as fastest, nearest, most available, less loa-
ded peers. Later, the peer connects directly to the node to retrieve the content. In the flooding-based
model, P2P system does not maintain any central directory and each peer advertises their contents
in the network and also floods the network to query for content. These systems are built in an ad
hoc manner and peers have problems to accurately locate content in large networks. Finally, the last
model uses a distributed hash table to provide a directory service that is distributed among a set of
nodes. Each node holds a portion of the indexing table together with pointers to other nodes that have
the knowledge or parts of the indexing table.

The efficiency of the P2P networks comes from the file segmentation procedure, where peers can
redistribute small pieces of data as soon as they finish downloading them rather than waiting for the
complete file download. As more peers have more pieces, the download procedure is fastened to all
peers as result of multiple available sources for the same piece, allowing clients to open simultaneous
connections to retrieve different pieces. Files in P2P networks are segmented into a set of pieces to

5http://www.napster.com
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ease the redistribution process among peers. Each piece is also divided into several chunks or blocks
and a chunk is the smallest transmission unit in a P2P network, as illustrated in Fig. 5.6. Each file
has a metadata structure associated, containing the information about the file. The usual parameters
within a metadata are the content size, number of pieces, piece size, owner or provider, the server
where the metadata file is stored6 and a list of piece IDs. Each piece is identified by its piece ID,
which is generated from the cryptographic hash over the piece, usually the SHA-1 cryptographic
hash function. Each chunk is identified by the piece Id together with an offset or sequence value. The
offset is used for ordering purposes since chunks do not have their own identifier.

Fig. 5.6: Example of file fragmentation in P2P networks. The file is divided into a set of pieces and
each piece is divided into a set data chunks.

The choice of the piece size is vital for the P2P system because it directly impacts the download
time, initial content distribution and the metadata file size. The original data is sliced up into pieces
and users can download smaller portions of the data and redistribute among other peers, improving
the availability of that piece of content and also the overall download time for all peers. Whenever
each piece is fully downloaded, it will be checked against a cryptographic hash (currently they use
SHA-1 algorithm) against the metadata file. The protocol relies on tit-for-tat inspired protocol to
spread the pieces among a set of peers. This algorithm works fine when the peer nodes have already
some pieces, but there is a problem to spread the initial pieces of a content since peers do not have
something to exchange. Thus, the smaller the piece size, the faster peers can start exchanging pieces.

The decision criteria to choose the piece size includes the metadata size with the pieces IDs and
the total download time for a content. In the BitTorrent application, the metadata file is called torrent,
and it should contain around 1000-1500 piece IDs in order to keep the torrent as small as 30KB.
Tab. 5.1 describes the usual sizes for BitTorrent pieces7. Larger pieces, e.g., over 4MB can slow
down the piece distribution because each piece will have 256 or more data chunks. A side effect of
larger pieces is the transmission-in-progress state of unfinished pieces, which can’t be actually shared
among peers.

5.2.2 Attacks against P2P Systems

There are several attacks against P2P systems, such as free-riding [64], decreased availability [26],
Sybil [71], Eclipse [65] and pollution [66] attacks. Free-riding attacks consist of a malicious node

6In the BitTorrent network, the centralized indexing server storing content metadata is called tracker.
7http://wiki.vuze.com/w/Torrent_Piece_Size
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Tab. 5.1: Usual BitTorrent piece size
File size (MB) 350 350 350 700 1400
Piece size (KB) 64 256 512 64 1024

Number of pieces 5600 1400 700 11200 1400
Torrent size (KB) 120 30 15 240 30

consuming resource from the P2P network without contributing with any resource. As a consequence,
the overall content availability decreases in the network. The Sybil attack targets the control plane
of the P2P network. The idea behind this attack is that a single malicious peer presents multiple
identities in the network to control part of the network. Once accomplished, the malicious node can
abuse the network by corrupting a set of files and slowing down the network by rerouting all queries
to a wrong direction. The Eclipse attack consists of a malicious node that takes over a certain portion
of the network. Once he has achieved the goal, he can separate the network in different sub-networks
and also drop queries and responses passing through the connection point. Thus, the attacker eclipses

each sub-network from the other ones. In the pollution attack, polluters deliberately insert or replace
chunks or pieces that are part of larger files, making them available with the same metadata file as the
original one. This leads to receiving peer applications to discard an entire piece or content due to the
corruption of a smaller fraction of the file. We will analyze this kind of attack in details and propose
a mechanism to detect such attack in the next sections.

Pollution Attacks

A pollution attack in P2P networks consists of an attacker that deliberately tampers the internal
content of a file, rendering it unusable and making it available in the network with the same metadata
or identifier. The main problem is that polluted content can be only detected by later inspection,
usually after the file is downloaded, resulting in CPU and bandwidth consumption. The pollution
attack aims to undermine the credibility of the system by inserting or replacing the original searched
content with another version, hoping that users just stop using the application.

Another consequence of content pollution is the increased content download times. For example,
BitTorrent files are composed of pieces and each piece is composed of a set of chunks. The metainfo
file contains the SHA-1 hash of the pieces, but does not contain the hash of the data chunks due to the
limited size of the metainfo file. As a consequence, if there is a polluted chunk inside a large piece,
there is no way to detect which one is corrupted, requiring from the application to re-download the
entire piece again. For instance, in BitTorrent each piece contains 16 blocks, but the corruption of a
single chunk in a piece leads to the re-download of the complete piece, wasting the other 15 blocks
previously downloaded. Hence, the total download time is affected due to the repeated download of
corrupted pieces, resulting in additional bandwidth consumption. The fundamental issue is the lack
of binding between the original file with its data blocks, making it quite easy to corrupt any piece.

There are two main types of pollution attacks, the file pollution [72] and the index poisoning [73].
The file pollution can also be divided in two types: the complete file pollution and the partial file
pollution. In the first case, the attacker replaces the list of piece IDs in the metainfo file to point to an
older version of the file or to substitute to another file. In the second case, the attacker aims to insert
or replace some part of the content, e.g., insert white noise in an audio file or replace the data blocks



5.2 Peer-to-peer Pollution Detection 77

to delay the download time. In the index poisoning attack, the malicious node advertises wrong block
indexes, claiming that they own these indexes. However, these indexes do not exist, leading to fake
availability. Whenever a peer node tries to search for the specified identifier, it fails to find it, resulting
in the message "More sources needed".

There are many proposals based on reputation systems to tackle the file pollution problem using
positive feedback and blacklisting [67, 74]. They are efficient to spot polluted files in the system and
blacklist them through reputation analysis, but they provide coarse granularity in their classification
of the partial file pollution case.

In the total pollution attack, the polluter replaces the entire content8 and keeps the original me-
tadata, and it is illustrated in Fig. 5.7. In this scenario, the total pollution attack is effective because
there is no explicit trust establishment between content providers and consumers, thus, it is not possi-
ble to authenticate the metadata information retrieved from the directory server, which are almost all
the cases. In this case, it is necessary an external mechanism to provide some hint about the credibility
of that metadata, e.g., a reputation system.

Fig. 5.7: An example of total pollution attack in P2P networks.

In the partial pollution attack, the attacker just tampers a chunk of the metadata, thus, P2P ap-
plications need to re-download the entire piece again, as illustrated in Fig. 5.8. As P2P applications
just check the integrity after retrieving all chunks of the piece, there is no mechanism to detect the
polluted chunk, resulting in disposal of the entire piece.

The content pollution problem is related to two main problems: the trust establishment between
content produces and consumers and the trust transfer from the content provider down to the content
fragments. In this case, the problem is that the trust is not completely transferred from the metadata
down to the chunks due to a gap between content pieces and their inner chunks. In this work we
will attack the partial file pollution problem by using a composite hash tree mechanism to provide the
security binding between piece and chunks through cryptographic hash trees, to be presented in the
next section.

5.2.3 Piece Fingerprinting Design

In order to attack partial pollution attacks, we propose a fingerprinting mechanism using com-
posite hash trees to provide algorithmic binding between the file, its pieces and, for each piece, its

8A piece of content represents a file in a P2P network, and it is composed of a set of pieces and each piece is composed
of a set of chunks.
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Fig. 5.8: An example of partial pollution attack in P2P networks.

internal chunks. The main idea is to create a summary tree over all the chunks and aggregate the
tree information into authentication blocks. The root identifiers of these authentication blocks are
added in the original file metadata, allowing peers to download and verify each data chunk as soon
as they arrive. We assume that peers trust the metadata, i.e., the trust anchor is the metadata and it
comes from a trusted peer or it was selected based on a reputation system or also it may be resolved
in a name resolution mechanism previously presented in 5.1. Therefore, the root fingerprint of the
composite hash tree is also trusted since it is within the metadata and it can be transferred to the data
chunks.

In order to present the mechanism, we first describe the definitions used in the fingerprinting
procedure. Then, we describe the fingerprinting mechanism that is used to provide the verification
mechanism. Finally, we discuss the analytical evaluation of the proposed system.

Definitions

Fingerprint (FP). A fingerprint is the smallest authentication information required to check the
integrity of a data chunk. It is generated from a cryptographic hash over a data chunk, e.g. SHA-1,
and the fingerprint is strongly bound to the content. Any modification in the content carried by the
data chunk will result in a different fingerprint.

Root Fingerprint (RF). The root fingerprint is the hash value on the top of a hash tree, represen-
ting the fingerprint over a data set. It is mapped to the root hash in the composite hash tree.

Fingerprint List (FL). The fingerprint list is a list containing a set of root fingerprints that are
used to authenticate a set of data chunks from different hash trees. It is mapped to the authentication

data blocks in the composite hash tree.

Chunk Verification List (CVL). The chunk verification list is a list of fingerprints needed to
verify the integrity of a specific data chunk and grows linearly with the height of the tree. The CVL
fingerprint in a given height h is the sibling fingerprint in the hash tree towards the root fingerprint.
The main difference between a CVL and a FL is that the first one carries the verification information
of one data block while the second one carries the verification data from a list of hash trees.
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Initial Design

First, we provide a short review about CHT concepts and later we use the CHT technique applied
to pollution detection in P2P networks. We use the composite hash tree data structure to hold all the
fingerprint information required to authenticate the data and it is constructed over smaller hash trees
of height h. The root fingerprints of the smaller hash trees are aggregated together in α blocks to
be transferred together, minimizing the overhead of single root fingerprint transmission. Fig. 5.9(a)
illustrates an example of CHT(1, 2) using HT(h = 1) with root fingerprint aggregation of two blocks
(α = 2). These two CHT parameters, h and α, allow user to customize the data structure behavior
such as the data block dependency degree for the authentication sequence or the maximum overhead
desired, while providing efficient and amortized partitioned data authentication with one fingerprint
comparison, previously described in Chapter 4.

Fig. 5.9: (a) Example of a CHT(α = 2, h = 1). (b) Data chunks with their respective FVL.

The first level of the CHT(1, 2) is built over the data block fingerprints, represented in the figure
by HT1. The root fingerprint values in the first level hash tree (HT1) are aggregated together in blocks
of two, illustrated as the fingerprint lists H01||H23 and H45||H67. Later, these lists are used as input
data for the second level hash tree (HT2) and this procedure is recursively done until the structure
finishes with the root fingerprint value on the top of the tree.

Fig. 5.9(b) illustrates the FVL for each data block, containing one hash value since the hash tree
used in the composition was a HT(h = 1). In this approach, the CHT maintains just one hash value
needed to provide the membership test using one fingerprint. Fig. 5.10 shows the authentication
hierarchy for D0 corresponding to the CHT(1, 2), illustrated in Fig. 5.9. The authentication procedure
must start with the verification of the fingerprint lists H01||H23 and H45||H67 using the pre-verified
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root fingerprint through some external mechanism as previously discussed, then it can proceed with
the authentication of all data blocks. After the authentication of the fingerprint verification lists, they
can be used to authenticate the data blocks using the same verification procedure used in the hash
trees. For example, in order to authenticate D0, the fingerprint verification list containing H01 and
H23 must be first checked with the root fingerprint.

Fig. 5.10: Data chunk authentication hierarchy for CHT(1, 2).

5.2.4 Application in BitTorrent

The BitTorrent P2P application provides a metainfo file (.torrent) containing the URL of the
tracker, the number of pieces and the pieces IDs, which are generated from the SHA-1 cryptographic
hash over a piece. BitTorrent recommends the usage of torrent files with small size (around 30KB) to
reduce the load in the servers, resulting in a number of piece IDs around 1400 in the metadata. The
integration of the CHT mechanism in the BitTorrent requires minor changes in the application, and it
is also possible to implement the verification mechanism as an external application.

In this section we start describing how the fingerprinting mechanism can be integrated in BitTor-
rent to protect against malicious changes in the data blocks. We start discussing the mechanisms for
the fingerprint list distribution and torrent retrieval, then we present the CHT integration with the
torrent file.

Fingerprint distribution

In order to enable BitTorrent with native block verification, users first need to create a CHT
structure over the file to be shared, resulting in Fingerprint Lists (FL) and data blocks. The FL are
distributed in the control plane as regular blocks in the network and there are two options for data
block verification: hierarchical and opportunistic. In the former option (hierarchical), the FL is
downloaded before fetching the data blocks, allowing the verification of data blocks as they arrive.
In this option, users just store verified data blocks, but may have slower download rates until they
retrieve all the FLs. In the latter option (opportunistic), clients retrieve data blocks and cache them
until a FL is retrieved to start the block verification procedure. In this way, peers can start fetching
data blocks prior to the reception of a FL, resulting in increased download rate but with the chance to
store polluted data blocks.
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The CHT-enabled BitTorrent also allows for the separation between the FL and data blocks, since
there is a unique match between a fingerprint and the fingerprinted block. In this way, we open the
possibilities for increasing the security in peer-to-peer networks, allowing peers to retrieve data blocks
from any peers in the network while the verification information (FLs) comes from a trusted tracker
or a security plane described in Chapter 4.

CHT-enabled Torrent

The first step to use CHT with BitTorrent is to retrieve the metainfo file (torrent) from a reliable
source. In this case, we consider as reliable sources authenticated web-page of the content provider,
a tracker that uses some reputation system to rank the torrent file or a security plane. After retrieving
the torrent, users can query the tracker for a list of peers hosting the data blocks. Fig. 5.11 illustrates
how the torrent file could be integrated with the CHT structure. Instead of storing the hash of an entire
piece as in the regular BitTorrent, the torrent file stores the Root Fingerprint of the piece, making it
possible to authenticate each chunk that is part of a piece.

On the other hand, the limitation of the number of piece IDs requires larger piece sizes, increasing
the total download time [75]. For example, if a user wants to share a 350MB file, then she would
create pieces of 256KB (1400 × 256KB = 350MB) to be distributed among the peers, where the
value 1400 represents the maximum number of piece IDs that should be present in a torrent file to
keep it small, usually around 30KB. On the other hand, if she wants to distribute a file of 1.4GB, e.g.,
a movie, then she will need to create pieces of 1MB (1400 × 1MB = 1.4GB) to maintain the reduced
size of the torrent file. As peers need to download the entire piece before making it available to other
peers, the size of the piece directly impacts in the download time.

Fig. 5.11: A BitTorrent metadata file (.torrent) with a list of root fingerprints.

In the example, the ID in the torrent would contain the Root Fingerprint resulted from the hash
of the FLs H01..H67 concatenated with H8−15 and FLs H89..H14−15 concatenated with H17 (similar to
the hash tree procedure in Fig. 5.9). BitTorrent can verify the integrity of the FP by fingerprinting
the list, concatenating it with the piece fingerprint and comparing with the piece ID in the torrent file.
Any modifications in the list will result in a different fingerprint, making it easier for BitTorrent to
spot malicious changes in the list.
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Fig. 5.12 illustrates the integrity verification of data blocks using a FL. After retrieving a chunk,
the application calculates the resulting fingerprint and compares with the one in the FL. As the list was
verified with the torrent file in a previous step, the chunk is also checked using the same procedure,
but with higher granularity. If the fingerprint does not match, BitTorrent can discard and retrieve just
the corrupted block rather than the entire piece. Additionally, it can provide feedback for reputation
systems to include possible polluters in the system into a blacklist.

Fig. 5.12: Integrity verification of data blocks using a fingerprint list.

Fingerprinting Overhead

The fingerprinting mechanism has two overhead components associated, the chunk verification
list (OCV L) overhead on each chunk and fingerprint list (OFL) overhead, which are the aggregated
root fingerprint values of the intermediate hash trees. Thus, the total overhead is:

OT = OCV L +OFL (5.1)

The OCV L is the sum of the product between the number of data chunk on each height by the
size of the CVL, which is defined by the height of the hash tree used in the CHT. The factor 2hα
repeats recursively i times to create the CHT over the data chunks. Therefore, the OCV L formula is
the product of the i recursions plus 2h leaves over the data blocks plus the CVL length (which is the
same as h) and the last hash tree created over the data blocks does not follow the pattern and adds 2h

leaves over the data blocks, thus we need to add separately in the formula to compute the overhead.

OCV L =
H′∑

i=0

(2hα)i × 2h × (CV L length = h) (5.2)

where H ′ is the number of data blocks N minus the HT(2h) over the data chunks that do not
repeat. Therefore:

H ′ = ⌈log(2hα)(N/2h)⌉ (5.3)

The OFL computes the sum of the product of the intermediate root fingerprint values that are
aggregated into α hash values excluding the HT(2h) over the data blocks since it starts from the first
level. Hence:

OFL =
H′∑

i=1

(2hα)i × (AP length = h) (5.4)
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In order to calculate the overhead complexity with the input, first we calculate the total number of
data blocks of a CHT(h, α). From 5.3, we have that:

N = (2hα)H
′

× 2h (5.5)

From 5.2 and substituting with 5.5, we have:

OCV L =
H′∑

i=0

(2hα)i × 2h × h ≈ (2hα)H
′

× 2h × h = N × h (5.6)

Therefore the OCV L in the CHT is N × h and grows O(N) when N >> h since h is a constant
that does not change with the input size. The maximum value for h in a binary tree is log2 N , reducing
the CHT to a regular Merkle Hash Tree [19] with overhead complexity of O(N log2 N).

The fingerprint list overhead has similar proof to the previous one. Thus, substituting in 5.4, we
have:

OFL =
H′∑

i=1

(2hα)i × h ≈ (2hα)H
′

× h = (N × h)/2h (5.7)

Therefore, the OFL in the CHT is N × h/2h and grows O(N) since h is a constant parameter that
does not change with the input size. The total CHT overhead (OT ) is:

OT = N × h+ (N × h)/2h = O(N) (5.8)

The CHT fingerprinting mechanism can be used with many different configurations in BitTorrent.
We can optimize the data structure to reduce the total fingerprint overhead by selecting hash trees
with height h = 1 and the maximum α, which is limited by the piece length. In this case, the α index
will be:

α =
piece length

hash size
=

256KB

20B
≈ 13100 FPs (5.9)

In this scenario, there will be 13100 intermediate Root Fingerprints and the CHT height (H ′) will
be:

H ′ = ⌈log2hα(N/2h)⌉ = log26200 22400 ≈ 0.95 = 1 (5.10)

The total number of hierarchies is 1, meaning that if we choose the hierarchical verification pro-
cedure, there would be 1 verification procedure before verifying the data blocks themselves. The total
verification overhead for the example above is:

OT = N × h+ (N × h)/2h × hash size = 437.25KB (5.11)

Tab. 5.2 summarizes all the CHT overhead for different configurations. The first three options use
the maximum value for α because in all cases the piece was not completely full of Root Fingerprints.

We can see here that using either hash trees of height 1, 2 or 3 does not make much of a difference
since the file has relatively small number of blocks compared to the piece length, thus requiring one
hierarchical level of authentication. By hierarchical authentication we mean that the application needs
to retrieve one FL before starting downloading the pieces and blocks. In this case, the torrent file just
need to contain the piece ID of the FL and not all the piece IDs. The fourth case does not present any
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Tab. 5.2: CHT authentication overhead vs. required authentication hierarchies
CHT configuration Overhead (KB) Hierarchies
(h = 1, α = 13100) 437.25 1
(h = 2, α = 13100) 984.37 1
(h = 3, α = 13100) 1476.56 1
(h = 4, α = 1400) 1859.37 0

authentication hierarchy because we use larger hash trees, trading verification overhead in each data
block but with lower number of Root Fingerprints in the torrent file.

Fig. 5.13 illustrates an example of a CHT(α = 1400, h = 4) where each Root Fingerprint can
authenticate up to 16 blocks in a BitTorrent scenario. As a regular torrent carries about 1400 IDs, in
this scenario the mechanism is able to verify a file of 350MB (= 1400 IDs × 16 blocks 16KB block
size) without increasing the size of the torrent file.

The main benefit of this approach is that the BitTorrent can start downloading immediately the
blocks from the network at the cost of a verification overhead of approximately 1.82 MB (i.e., less than
1% of the file). In this case, we use a CHT(4, 1400) and each data block will carry four fingerprints to
authenticate the data block, presenting an overhead of 80 bytes out of 16KB data block size included
in the total overhead.

Fig. 5.13: (a) CHT (α = 1400, h = 4). (b) Each data block has four verification fingerprints and the
resulting Root Fingerprint of all blocks should be ID1 to pass the integrity check.
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the entire piece again. The breaking even point between using the CHT or the pure BitTorrent is
approximately 12 blocks out of 16 (thus, 75% of pollution in a block). Note here that we are assuming
that BitTorrent will successfully retrieve the second block from the network without any error, which
is not always true, since the second source may also send a polluted block as well.

Another benefit of the fingerprinting mechanism is the possibility to support smaller piece sizes
for large files, i.e., using 256KB pieces with files larger than 1 GB9. In the regular BitTorrent confi-
guration, the resulting length of the torrent file would be prohibitive because smaller pieces result in
a higher number of IDs. The usage of CHT allows users to trade-off in-packet verification overhead
(length of the fingerprint list) with the number of IDs that need to be stored in the torrent file. Ba-
sed on the previous figure, users could increase the height of the tree in order to maintain the same
number of IDs in the torrent file at the cost of verification overhead. In this scenario, we would
use a CHT(h = 7, α = 1400) for a 2.8 GB file (e.g. a FreeBSD ISO), divided in 1400 pieces and
128 blocks of 16KB each (=1400 pieces × 128 blocks × 16KB (block size) = 2.8 GB), resulting in
an overhead of 7 fingerprints per block. Therefore, the total overhead of approximately 23.93 MB
(=1400 (maximum number of piece IDs in the metadata)× 128 chunks× 7 (height of each hash tree)
× 20B (cryptographic hash length)).

Conversely, if users want to reduce the total verification overhead, they can use CHT with smaller
hash trees but with hierarchical authentication of the Fingerprint List prior to the data block authen-
tication. Considering the previous scenario with the same parameters, the total overhead would be
approximately 1.82 MB at the cost of one level of authentication. Therefore, the CHT offers a flexible
way for applications to select the structure parameters, allowing the trade-off between the authentica-
tion overhead and hierarchical authentication.

5.2.5 Summary

We have presented a pollution detection mechanism for P2P systems that can improve the de-
tection of corrupted chunks. The partial pollution problem involves tampering one chunk of a data
piece, making the whole piece invalid during the integrity check. As a result, an entire piece is
re-downloaded and may be discarded all over again if the peer gets the same polluted chunk. The
proposed fingerprinting mechanism allows for the detection of the corrupted chunk only, making it
possible to reuse the all other correct chunks. The analytical evaluation shows that the CHT has an
overhead lower than 1% of the total file size and can reduce the re-download procedure in BitTorrent
in many partial pollution scenarios.

9BitTorrent usually does not allow for such configuration because the metadata size is larger than 30KB, resulting in
slower chunk exchange in the network.
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5.3 Parallel Authentication over HTTP

The introduction of P2P systems has brought many innovations in the way content could be dis-
covered, shared and retrieved in the Internet. One of the major innovations lies on the parallel piece
retrieval from multiple sources, resulting in faster download times, reduced bottlenecks in the servers
and higher content availability, among other benefits. As a consequence, software vendors started to
look into alternatives to reduce the load on their main content servers and one of the popular options is
the metalink [76] proposal. Metalink is a metadata structure containing high-level information about
content pieces and a list of possible sources. Therefore, applications can have more than one option
to retrieve data chunks and, in case of a server failure, the application can redirect the download to
another server in the list. The metalink mechanism also allows for parallel content retrieval since it
also supports segmented download.

Despite the innovative approach for parallel content retrieval across heterogeneous application-
level protocols, metalink relies on traditional connection-based authentication mechanisms, such as
HTTPS. Hence, the security is enabled in the connection level and not in the content level, being prone
to tampering attacks. In this section, we propose a lightweight mechanism for parallel authentication
over HTTP using composite hash trees [23]. In the following sections, we introduce the parallel
content retrieval mechanism and analyze its deployment in the Web scenario. Then, perform an
analytic evaluation of the proposal and, lastly, we compare with other security proposals.

5.3.1 Background

The demand for more efficient content delivery mechanisms over the Internet has motivated the
research on different approaches to improve the delivery performance. One of these systems is the
content delivery networks (CDN) [12] (e.g. Akamai and Limelight) and it aims to maximize the
bandwidth and content availability by placing content servers close to the possible clients. Each
content server (also known as surrogate server) has a copy of the original content which can be
delivered to requesting clients close to it. The CDN network relies on DNS redirection to map a URL
to the best available surrogate servers in the network to reply to content requests. As a consequence,
the CDN infrastructure is transparent to the end-users, who are actually unaware about the redirection
mechanism. One downside of CDN networks is the cost associated to hire the service since CDN
owners need to buy and manage the CDN infrastructure.

A second type of system is based on data retrieval from multiple sources, where the idea is to trans-
fer the load on main servers to other sources to improve the availability and robustness in the content
retrieval process. Metalink [76] follows this principle and borrows some ideas from P2P networks
to propose a standard to implement content data retrieval from multiple sources. The Metalink me-
chanism is based on a metadata structure written in XML and it contains a list of addresses where
clients can connect and retrieve pieces of content. In case of a failure, the application can switch from
one source to another without external interference. A Metalink metadata may also contain a chunk
ID list, allowing clients to fetch data chunks across different application-level protocols, for instance,
HTTP, FTP and P2P protocols. In addition, there are already applications, such as MirrorBrain [77],
that stores location information about nearby servers that can generate customized metalink files to
clients based on their location.

Some software companies are already providing metalink files for users, such as Ubuntu and
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OpenOffice, so clients have more source options to download the packages. The benefit for the
vendors is the reduction on the load on their main servers since users can also use P2P protocols
to retrieve data. Apple also started to implement their own protocol for parallel content download,
known as apple streaming [78]. In this protocol, users receive a playlist file containing a list of URLs
from where a client can download the data. Each URL points to a segment of the original data, for
example, 10 seconds of a music, thus, users can fetch all segments in parallel, reducing the overall
download time.

Although these two solutions, CDNs and Metalink framework, improve the performance of con-
tent download, the security mechanisms are not explicitly addressed, and they are basically inherited
from the traditional security protocols. Both CDN and Metalink framework use the HTTPS as the de-
fault security mechanism to provide content authentication and integrity. For the former case (CDN),
it is not actually a problem since the owner of the CDN also owns the infrastructure. Thus, the sur-
rogate servers are considered secure servers and the owners are responsible for its maintenance and
protection against attacks. But if there is an attack on a surrogate server and a target content is tampe-
red, the HTTPS will not accuse any problem, since the end-points are authenticated. Unfortunately,
the authenticity of the data is inherited from the authenticity of the host, which is not always true10.
For the latter case (Metalink), as the content provider may not own the infrastructure that will deliver
the content, e.g., a P2P network, the security issues are more critical, as malicious node can tamper
the data, preventing users to correctly retrieve the content.

There is no native security mechanism to provide data authentication and integrity efficiently,
leaving the client unprotected against corrupted data. One naive approach is to establish SSL/TLS
tunnels with each server to authenticate the storage place. However, this approach has some draw-
backs: first, it is inefficient to open multiple SSL/TLS channels, since it consumes resources on both
sides, decreasing the scalability in the server; second, in this specific scenario, we are actually authen-
ticating the storage server and not the data itself. We argue that the trust relationship is misplaced
since we are placing the trust in the connection instead of the content itself.

Another approach adopted by content providers is to provide the hash digest (e.g. MD5 or SHA-
1) of the entire content to guarantee the content integrity. Although this approach works well for a
unicast communication scenario, where there is just one download channel, applications are only able
to verify the content integrity after the complete file download, making it hard to spot corrupted data
chunks in the middle of the transmission. Our goal is to increase the granularity of the verification
mechanism, by allowing user applications to check smaller pieces of data as they are retrieved from
the mirrors. In this case, applications can find out corrupted data faster and recover from the data
corruption by selecting another server from the list and also notifying the metadata file generator
about a malfunctioning/malicious node. Therefore, it is required a security mechanism to provide
content authentication solely on the content information rather than source authentication in these
systems.

This section has presented an amortized verification mechanism using composite hash trees [23],

10As an illustration of this scenario, consider two friends Alice and Bob. Alice trusts Bob and vice-versa and they know
that they will not harm each other. Alice needs to borrow some money from Bob and Bob acknowledges that. Despite the
fact that Alice knows Bob (authenticated him), there is no guarantee the bill that Bob will give to her is original or fake
one (content authentication). Bob is also honest and does not want to fool Alice, but if he has received a bill that is fake
and didn’t realize that, he will give to Alice as a original one. Therefore, the authentication of the source does not yield
to authentication of the content.
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allowing applications to efficiently verify data chunks as they arrive from multiple sources. The hash
tree mechanism allows for fast verification and requires just one hash computation per data segment in
the best case. The proposed mechanism can be tweaked to satisfy specific application requirements,
e.g., the total overhead and also the dependency between data chunks. The main difference of our
approach compared to the traditional SSL/TLS-based authentication is that we enforce the content
authentication and integrity based on the information that each data chunk carries instead of binding
the authentication procedure to one specific source. The proposed approach has the following bene-
fits: i) data can be more easily shared among users without requiring the verification of the serving
host since the authentication information is embedded in the data; ii) fast verification, we just need
one hash function per data block to check the integrity in the optimal case; iii) cheap authentication,
one digital signature regardless of the number of data chunks; and iv) higher granularity to detect
corrupted data chunks, making it possible to re-download it as soon as it is detected.

Metalink

The metalink [76] proposal aims to provide Web users with a metadata file containing information
about how multiple data chunks can be retrieved from a list of sources, the geographical location of the
servers and the preference level on each server. The main goal is to increase the content availability
and reliability with a list of possible servers in case of a host failure. In this case, the download could
be repaired and resumed using another server in the list without restarting the download from the
beginning. An example of a .metalink file is illustrated below:

<?xml version="1.0" encoding="UTF-8"?>

<metalink version="3.0"

xmlns="http://www.metalinker.org">

<files>

<file name="linux-kernel">

<verification>

<hash type="md5">0AF...</hash>

<hash type="sha1">38F...</hash>

</verification>

<resources>

<url type="http">

http://mirror1.com/linux-kernel</url>

<url type="http">

http://loc.cdn.net/linux-kernel</url>

<url type="ftp">

ftp://ftp.acme.com/linux-kernel</url>

</resources>

</file>

</files>

</metalink>

In the example above, users receive a list of possible sources and the protocols they use to deliver
the data. Additionally, the metadata also contains the hash digests of the entire content, enabling
the content verification just after the download is complete. However, our goal is to increase the
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verification granularity by being able to check each data chunk just after it is retrieved instead of
waiting for the complete file download.

5.3.2 Parallel Verification Proposal

We first start presenting the metrics and design goals for our parallel verification mechanism.
Then, we map these requirements on the composite hash tree data structure for authentication and
verification procedures. Lastly, we describe an application scenario for the composite hash tree in
the parallel content retrieval context and present an analytical evaluation of the proposed verification
mechanism.

Design & Rationale

In order to design a parallel verification mechanism, we considered three metrics for our model:
ordering, verification overhead and CPU processing cost.

• Ordering. This metric considers the degree of dependency between the data chunks during the
verification procedure. For example, hash chains [79] require strict ordering in the verification
procedure, while per packet signature [41] or Merkle Trees [19] can provide independent packet
verification (therefore, these mechanisms support true parallel verification).

• Verification information overhead. The verification information overhead, e.g., the amount
of data that a packet should carry in order to provide independent verification, should be as
small as possible.

• CPU processing cost. The verification should be fast and, preferably, at line speed.

Based on previous requirements, our goal is to have a mechanism that has none (or low) ordering
requirements, low verification information overhead and low CPU processing costs. In order to achi-
eve these requirements, we propose an authentication/verification data structure based on composite

hash trees since it provides an efficient data verification mechanism with low verification overhead

and CPU processing cost at the cost of an initial verification ordering requirement.

Parallel Verification Procedure

The parallel verification procedure uses the composite hash tree mechanism to provide parallel
verification information retrieval together with the data blocks. The goal is to retrieve data chunks
from the servers and simultaneously establish a verification relationship between the previously re-
ceived data authentication blocks with the incoming ones. Fig. 5.15 shows an example of parallel
data chunk retrieval and verification from multiple Web-servers.

In order to enable the parallel verification procedure in the Web, clients must first retrieve the
CHT from either a trusted source or embedded in a digital certificate, illustrated in the step 5.15(a).
After the verification procedure of the CHT, the client can initially open two parallel connections to
retrieve the two authentication data blocks (AD) that are direct children of the CHT in the tree. After
retrieving one AD, the client can verify it and open more connections to retrieve more data chunks in
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Fig. 5.15: Parallel data verification scenario. (a) First, the application retrieves the RH and verifies
the digital signature. (b) The application retrieves ADs and subsequent data blocks from multiple
sources. (c) Data blocks are verified using the previously received ADs.

parallel, as shown in step 5.15(b). The number of connections is limited to two in the beginning of the
procedure, increasing by a factor of α connections for every AD retrieved, as illustrated in Fig.5.16.
Finally, in step 5.15(c), the AD is used to verify the incoming data chunks.

Fig. 5.16 illustrates an example of data chunk verification in a client application. The figure has
two columns, the first one indicates the received data chunks and the second one shows the next chunk

window which could be downloaded next. As more ADs arrive in the client, there are more options
of data chunks to be downloaded since each AD contains a list of RH that can be used to authenticate
the data chunks in the hash tree leaves. Therefore, every time that an AD arrives in the left side, it
is expanded and the blocks that it can verify are placed in the right column. For example, after the
receiver authenticates the AD0 containing the hash values H01||H23, the user can start downloading
data blocks D0, D1, D2 and D3 in parallel and verify them as they arrive.

After the destination receives the AD with the concatenated hash values H01||H23, the receiver
can retrieve and authenticate the data blocks D0, D1, D2, D3 in whichever order. The same procedure
is taken when the AD with concatenated hash values H45||H67 is received in the destination, allowing
the parallel retrieval and authentication of data blocks D4, D5, D6 and D7.

5.3.3 Evaluation

In order to compare with other approaches, we perform an analytical evaluation of the CHT
overhead using different configurations. As demonstrated Chapter 4, the composite hash tree has two
overhead associated, the Authentication Path (OAP ) overhead and Authentication Data Block (OAD)
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Fig. 5.16: Example of authentication hierarchy for CHT(1, 2).

overhead. The OAP is the sum all AP in each intermediate hash tree, defined by the CHT height h
and the OAD computes the sum of the product of the intermediate RH values that are aggregated into
α hash values. The total CHT overhead of a CHT (OT ) with height h and aggregation index α is:

OT = N × h+ (N × h)/2h = O(N) (5.12)

The CHT parameters can be tuned to fit the overhead and dependency requirements specific to
applications, for instance, in delay sensitive applications, e.g., video streaming, it is interesting that
we start downloading the blocks with low latency between them. As applications can open multiple
channels, it can check the available bandwidth on each connection and select the one that is providing
higher throughput. On the other hand, applications that are not delay sensitive, e.g., file-sharing ap-
plications, we can use CHT with higher intermediate hash trees but with lower verification overhead.
In that case, smaller data blocks provide faster dissemination, and in our case, it allows us to switch
faster between sources after completing a chunk download

In order to analyze the performance of CHT with different parameters, we selected a file of 1
GB which we divided in blocks of 64KB, resulting in 16384 data blocks and we chose an AD with
size of 8KB. The decision to choose small data blocks is due to the possibility of switching between
sources faster since we can finish one download faster in order to start with another source with higher
throughput, similar to the way how P2P systems work. We first start computing the α value:

α =
block size

hash size
=

8KB

20B
= 400 (5.13)

Therefore, each AD will hold 400 intermediate Root Hashes. The hierarchy dependency will be:

H ′ = ⌈log2hα(N/2h)⌉ = log800 8192 ≈ 1.35 = 2 (5.14)
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And the total overhead will be (according to Eq. 5.12):

OT = N × h+ (N × h)/2h × 20(hash size) = 480KB (5.15)

Tab. 5.3 summarizes the overhead for different h values for a file of 1 GB divided in blocks of
64KB.

Tab. 5.3: CHT overhead vs. authentication hierarchies
CHT configuration h = 1 h = 2 h = 3 h = 4 h = 5

Overhead (KB) 480 800 1080 1360 1650

Hence, the total overhead for a CHT with h = 1 and α = 400 is 480KB in a file of 1GB, resulting
in less than 0.5% of total overhead at the cost of two verification steps before authenticating the data
blocks. Another benefit from the security point of view is the fact that all blocks are algorithmically
bound together, making it possible to clients to authenticate the authentication information. Compared
to a regular .torrent used in BitTorrent, the main benefit is that we provide a mechanism to authenticate
the partitioned authentication data, while the transfer of the .torrent file would require some other
mechanism, e.g., hash chains or a single cryptographic hash over the entire metadata, to authenticate
the structure containing all the piece IDs.

Fig. 5.17 summarizes the CHT overhead using different configurations of h and block sizes. Note
that the overhead does not grow linearly, but logarithmically with the height of the internal hash tree
(h), and the α parameter does not influence the overhead, but just the hierarchical dependency. Tab.
5.4 shows a comparison of the overhead with different file sizes and CHT configurations.

Tab. 5.4: CHT overhead (MB) vs. file size using data chunks of 64 KB.
CHT conf. 1 GB 2 GB 5 GB 10 GB 20 GB 32 GB

CHT(1, 400) 0.47 0.94 2.34 4.68 9.37 15
CHT(2, 400) 0.78 1.56 3.91 7.81 15.62 25
CHT(3, 400) 1.05 2.11 5.27 10.54 21.09 33.75
CHT(4, 400) 1.33 2.65 6.64 13.28 26.56 42.50
CHT(5, 400) 1.61 3.22 8.06 16.11 32.22 51.56
Merkle Tree 4.38 9.38 25.5 54.13 114.51 190

Fig. 5.18 shows the hierarchical dependency needed to authenticate data blocks with different h
and α parameters. For this analysis, we considered a file of 1 GB divided in blocks of 64KB, resulting
in 16384 data blocks. By using higher values of h, we are able to reduce the number of intermediate
AD that we need to authenticate before verifying the data blocks themselves.

The graphic illustrates that for a given α value, the selection of the internal hash tree height h
value does not interfere with the number of hierarchy dependencies but changes the overall overhead.
For instance, if we pick α = 400, it is equivalent to select h equal to 1, 2 or 3 since they will result
in the same hierarchical dependency between blocks. However, as Fig. 5.17 shows, higher h values
result in higher overhead. Therefore, the best option here is to select the smallest h = 1 to minimize
the overhead. On the other hand, if we consider α = 50, the value of h = 1, h = 2, 3, 4 and h = 5
have different hierarchical values and also overheads, being a choice of the application to select the
one that best fits the application’s requirements.
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Fig. 5.17: CHT Overhead comparison using different internal hash trees for a file of 1GB divided in
blocks of 32, 64, 128, 256, 512KB.

Fig. 5.18: Hierarchy dependency vs. aggregation index (α) using different internal hash tree heights.
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Legacy Data Support

The proposed parallel authentication mechanism also supports legacy data from content provi-
ders, meaning that providers do not need to introduce any modifications in the files, for instance, to
fragment the files into data chunks beforehand to insert the verification data (AP). As the verification
data is unique and it is generated from the data segment, it is possible to detach the verification infor-
mation from the data. Therefore, applications can retrieve data segments from possible sources and
the AP from an authentication server or a security plane.

The content retrieval procedure from different sources starts with the metadata file retrieval from
a trusted source, e.g. Metalink signed metadata or from a security plane. The metadata contains the
segment sizes and the corresponding authentication ID used to authenticate the data block. Then,
a client contacts a directory server to retrieve the authentication data blocks and the authentication

path for each segment. Next, the client starts the verification of the AD until reaching the AP of
each data block, discarding the intermediate values. In the next step, the client retrieves the metadata
containing the segment sizes in order to download the segments from multiple sources using multiple
protocols, e.g. HTTP and FTP. In HTTP, it is possible to use the HTTP Range Request header
to request a specific segment size, and in FTP we can use the seek directive to request a data range.
After retrieving the data segment, the application applies a cryptographic hash over the data segment
and computes the intermediate root hash using the previously retrieved AP for the data block.

Another extension supported by the parallel retrieval is the opportunistic verification. The idea
of the opportunistic authentication is that users start to retrieve both data and authentication data
simultaneously from multiple sources instead of downloading the verification information from the
authentication server. In this approach, applications do not need to wait for the AD retrieval before
the data. The application just places these unverified data blocks in an outstanding table and, as soon
as the verification data arrives, it checks the integrity and saves into the destination file. Fig. 5.19
illustrates the multiple source with legacy data support scenario.

5.3.4 Related Approaches

SINE [80] provides Web content integrity using a hash list scheme. The idea is to add the hash of
the following block in the previous block and digitally sign the first block sent to the client, which is
also known as chain anchor. Therefore, modifications in any of the following blocks can be spotted
by computing just one hash function over the next block. The main benefits of SINE is that it requires
just one digital signature to authenticate an entire piece of data regardless of the number of data blocks
and use one hash function to check the integrity, resulting in both low verification header and CPU
cost. The main drawback compared to CHT is the strict verification order of the pieces, therefore, not
supporting parallel verification of data chunks.

Regular Merkle Trees [19] create a hash tree over a set of data blocks and each piece of data
carries log2 N hash values allowing them to authenticate data blocks with the corresponding root
hash. The benefits is the independent data block verification and the low CPU processing costs. The
main drawback is the verification information that each data block must carry, resulting in a total
overhead of N × log2 N , being a considerable overhead for files with large number of blocks.

Packet Level Authentication (PLA) [41] is a security model focused on per packet authentication,
providing data authenticity and integrity in the network. Before a data block is sent to the destination,
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Fig. 5.19: Legacy application support using cross-application. (a) Applications can opportunistically

retrieve data blocks from different sources. (b) Applications retrieve the Authentication Paths from
an authentication server.

it is digitally signed by its provider, who is also endorsed by a trusted third party. The benefit is the
independent block authentication with constant verification information overhead. However, the main
drawback is the cost associated to the digital signature and verification, making it unfeasible to use
in low processing devices. Tab. 5.5 summarizes the comparison between these mechanisms with the
CHT approach. We took into account the ordering requirement, the verification data overhead and
the CPU cost associated with the verification.

Tab. 5.5: Comparison between verification techniques
Mechanism Block Association Verification data CPU cost
Hash chain strict ordering O(N) low
Merkle Tree independent O(N × log2N) low-medium

PLA independent O(N) high
CHT independent11 O(N) low

The CHT mechanism inherits the low verification data overhead and CPU cost from the hash tree
mechanism at the cost of an initial dependence between the first data block. After the second one, it
works similarly to the regular Merkle Tree, but with linear overhead instead of O(N × log2N).
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5.3.5 Summary

In this work, we have presented a parallel content verification mechanism based on composite
hash trees with low ordering requirements, verification overhead and CPU processing costs. The pro-
posed mechanism generates the security information from the data blocks, making it agnostic from
which container or mirror the data was retrieved, but just with the original source that digitally signed
the metadata. The composite hash tree mechanism also allows for fine tuning of the tree characte-
ristics, allowing the trade-off between the total verification overhead and the data block verification
hierarchy. The analytical evaluation shows that the proposed mechanism has an overhead lower than
1% of the total file size and it can also be supported by legacy data without explicit modifications in
the content or integrated in the metadata structure provider by content servers.
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5.4 Secure Content Caching

The fast growth on the number of broadband subscribers and the increase of user generated
content have put pressure on the Internet infrastructure, requiring higher bandwidth capacity and
lower latency to connect content providers and end-users. Commercial incentives have increased the
bandwidth availability in the last mile, connecting customers to the Internet, while content providers
have deployed data-centers in the Internet core to provide higher bandwidth and availability in the
first mile. However, the infrastructure connecting the residential subscribers to the content providers,
also known as the middle mile [81], has been forgotten in the upgrade process due to the lack of
incentives. Currently, the middle mile is the major bottleneck in the data transfer time between sites
due to the lack of incentives to upgrade the intermediate infrastructure mainly composed of transit
points.

In order to reduce the pressure on the infrastructure and also the inter-ISP traffic, ISPs have de-
ployed Web caches [82], to reduce the redundant traffic going through their networks. The placement
of the caches close to the consumers improves the overall user experience and also temporarily re-
duces the pressure on the middle mile. Content delivery networks (CDNs) [12] were proposed to
leverage the caching capabilities on the network and place the content closer to the clients. Peer-to-
peer caches [83] were also introduced to leverage the caching capabilities for peer-to-peer content.

On the other hand, storage prices have decreased substantially faster than bandwidth costs, indica-
ting that it might be interesting to cache all content within a network instead of re-fetching whenever
it is requested. According to [84], capacity of solid-state and magnetic storage have increased 100-
fold and the costs have decreased $50/GB and $0.50/GB respectively, while the connectivity costs
have decreased in a much slower pace [85]. In addition, recent surveys [86, 87, 88] show that a large
portion of the network traffic is redundant and has the opportunity to be cached, specially peer-to-
peer traffic. Despite these interesting findings, caching peer-to-peer traffic is not trivial due to the
heterogeneity of the applications and protocols [84], which evolve much faster than the caching devi-
ces. Moreover, peer-to-peer protocols lack documentation, resulting in an additional barrier to deploy
caches similar to Web-caches in the Internet for peer-to-peer traffic.

In this work we present an in-network caching architecture aiming at improving the overall traffic
efficiency by caching authenticated content in the edge network. The general idea is to provide a
forwarding fabric that forwards data requests along a set of content routers [24, 25] that may have
stored the requested piece of data without any explicit look-up procedure. Additionally, routers along
the path are able to verify whether a given piece of content is authentic, dropping the fake ones from
the network using hash tree techniques. The caching mechanism uses high-level content identifiers,
resulting in location-independent identifiers to represent content in the Internet. Content routers work
under the application layer, thus, supporting a broader range of applications, for instance, HTTP,
peer-to-peer, FTP, among others. In addition, the proposed mechanism allows for on path content
lookup by forwarding requests to nearby caches, removing the lookup latency associated to Web-
caches. The benefits of such approach include improved traffic efficiency by saving the amount of
traffic in the network, opportunistic multi-source content retrieval by redirecting requests to nearby
caches and security embedded in the content, allowing for authentication directly with the original
provider through a security plane.
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5.4.1 Network Caching Design

In this section, we present the in-network caching architecture, outlining the design goals for the
Content Router (CR), and discussing the content identification, discovery, forwarding and security
mechanisms.

Design Goals

The in-networking caching architecture aims at the following design goals:

• Protocol independence. The in-network caching mechanism must be independent of any spe-
cific protocol, for instance, peer-to-peer protocols or HTTP. This goal is mainly due to the fast
evolution of peer-to-peer protocols and lack of documentation of the API, making it hard to
follow and evolve together.

• Multi-source content retrieval. The forwarding mechanism should support multi-source con-
tent retrieval from multiple caches on the path towards the original provider.

• Cache-based forwarding. The delivery mechanism forwards data requests towards other in-
network caches that may have the content, thus, avoiding any lookup process and incurring into
a minimum latency towards the original content provider.

• Content authenticity. Clients should be able to verify the content integrity despite retrieving
data chunks from multiple sources.

• Authentication with original provider. Data must be always authenticated with the origi-
nal source or providers, regardless from which mirror (e.g., network cache, peer) that it was
retrieved from.

Content Router

The Content Router (CR) is a network element that acts as a regular router and also provides
content routing mechanisms. The main idea is that CRs inspect a CR header in all in-transit data
and store some of them with a certain caching probability. Thus, further requests can be served by
the cache data in the CR. In addition to the caching feature, CRs also store pointers to pieces of
data that passed through it, but it decided not to cache it due to space limits. Hence, incoming data
requests can be detoured to a neighbor CR which may have the requested piece of data, reducing
the overall bandwidth consumption and latency in the network that would result by forwarding the
request directly to the server. Requests can be detoured for a fixed amount of hops to prevent the
search to go further in the network without retrieving the content. Therefore, in order to be able to
cache data, CRs need to have a standardized content identification, discovery, forwarding and security
mechanisms, since CRs support multi-source content retrieval. We will discuss each of these issues
below.
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Content Identification

In order to address resources in the Internet and cache them in the CR, we use identifiers that
are simultaneously independent from the forwarding, routing, storage location and the underlying
transport protocol. Thus, we use content identifiers that are solely based on the content called cryp-
tographic identifiers (cryptoID) [7]. The benefit of using cryptoIDs are threefold: first, cryptoIDs
result from a strong cryptographic hash over a data block, strongly binding the content identifier with
the data that it carries; second, the cryptoID namespace is homogeneous since it results from a stan-
dard cryptographic hash function and does not need an external authority to manage the namespace;
third, cryptoIDs are not bound to any specific protocol, i.e., content identification is not an internal
parameter from a protocol but it exists by its own.

The basic unit of communication used in the in-network caching architecture is a data chunk.
A chunk is a piece of data that is identified by a cryptoID with variable length. Content providers
generate data chunks and use a cryptographic hash function to generate the chunks’ cryptoIDs. Then,
they aggregate the cryptoIDs together into meta information structure called metadata. The metadata
also contains additional information about the content, for example, version and validity, and the
chunk list is ordered to allow the correct reconstruction of the original content, as described in Chapter
4. Therefore, clients need to retrieve the content metadata prior to the data chunks download from a
trusted place, e.g., a security plane described previously. For legacy applications, we use CR-proxies
to perform the name to metadata resolution and the chunk retrieval (described below).

Content Discovery & Forwarding

Each CR holds an internal table called neighborhood table that holds information about incoming
and outgoing chunks. For each incoming chunk, the CR stores the incoming interface, chunk cryp-
toID, outgoing interface and timestamp. Fig. 5.20 illustrates an example a neighborhood table of a
CR.

Fig. 5.20: Content routers with internal neighborhood table.
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The incoming and outgoing interface information is used to forward chunk requests to the next
CR which may have the requested chunk. The design decision to include both incoming and outgoing
interface is to allow content lookup in different regions with pre-established precedence, for instance,
towards the network edge or the core. CRs receive chunks in the incoming interface and forwards
them through the outgoing interface, thus, caches can be configured to just forward requests to the
outgoing interface, not the incoming interface. As a consequence, chunk requests are forwarded
towards the network edge, reducing the load on the core CRs. The timestamp field contains the time
when the chunk was last seen, providing information for forwarding decision and neighborhood entry
eviction. In case there is more than one entry for the same cryptoID, the CR will use the most recently
one as the preferred destination. Also, whenever the neighborhood table gets full, the least recently
used entry will be purged from the table.

Whenever a CR receives a request for a data chunk, it checks whether its internal cache has the
chunk or not. In the former case (cache has the chunk), it will respond the request on the server’s
behalf and return the chunk. In the latter case (cache does not have the chunk), it will look for an
entry in the neighbor table to forward the request to the next content router. If there isn’t an entry
in the neighborhood table, it will forward the data using the underlying forwarding mechanism, e.g.,
IP-based routing, toward the destination. Any CR on the path is able to intercept chunk requests and
will perform the same procedure as described above.

The main idea of the neighbor zones is to allow CR to divert regular chunk request to CR that
might have the content for n hops before going directly to the server to reduce the traffic in the
middle mile and the load on the server. Fig. 5.21 illustrates an example of neighborhood table and
the neighbor zones around a CR.

Fig. 5.21: A content router with its neighbor zones used for the chunk discovery.

CRs can be configured to introduce a limited amount of delay in the request forwarding through
the neighbor zones by setting the number of neighbors that a request should visit. Thus, requests do
not need to wait for look up procedures like in Web-caches but they go within the network towards
other caches and, in the last case, to the server.



102 Application Scenarios for Information-centric Data Authentication

CR can find each other by inspecting the requests and responses in transit in the network. Each
message contains a header that contains the cryptoID of the last CR, thus, the next hop CR can know
its neighbors and forward requests to them. CR failures can be dealt with error messages provided
by the underlying forwarding mechanism, for instance, ICMP host unreachable messages sent by
routers. Whenever a router forwards a request towards a faulty router, the underlying IP network will
return an ICMP Host Unreachable from the IP routers on the path. Thus, content routers on the path
are able to receive the message and evict that mapping in their neighborhood table.

Neighborhood table are constantly updated with in-transit chunk to provide correct forwarding
information. Whenever a request arrives on a CR, it is preferably forwarded to the outgoing interface,
thus, reducing the load on the core routers. If the same request returns to the content router, it means
that the content router to where the request was previously forwarded does not contain a copy of the
chunk, thus, the content router removes that entry in the neighborhood table.

In order to support legacy applications, we introduce CR-proxies to bridge the legacy Internet
and the CR-aware network. The CR-proxy works transparently and whenever it receives a content
request, e.g., an HTTP GET, it diverts the original request to the CR-proxy and performs a name to
metadata resolution. An optimization for this case is to cache the metadata in the CR-proxy, reducing
the resolution step. Once the CR-proxy has the metadata, it sends multiple requests for the chunks
IDs listed in the data structure, and reassembles the chunks into the original content. Then, it returns
the complete content to the legacy application.

Content Security

We use the skewed hash tree (SHT) as the authentication data structure for the secure caching
model. As described in Chapter 4, a SHT is a hash tree constructed over a set of data blocks and
provide an algorithmic binding between the data blocks and the whole content. Fig. 5.22 illustrates a
workflow of the secure caching mechanism using hash trees.

Fig. 5.22: General view of the secure caching mechanism.

In the first step, a content provider generates a SHT over a piece of content and signs the root
hash of the tree over the content. Later, whenever a client request for that content, the provider sends
it together with the authentication path, allowing for intermediate CRs to verify the content integrity.
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CRs also need to have the provider’s public key in order to verify the signature on the root hash.
Therefore, we assume that CRs are managed by an ISP or a network administrator who has rights
to add or remove public keys in the CR. In this scenario, administrators can obtain the public key
directly from the content provider and insert into the CRs. Content providers can also publish their
public keys into a security plane and administrators can manually verify their digital signature and
insert them into the CRs.

5.4.2 Implementation

In this section we present the implementation of the CR mechanism. The CR is implemented
as a background service running in Linux machines, composed of a kernel module and a userspace
management unit, shown in Fig. 5.23.

Fig. 5.23: Internal modules of a content router.

The Netfilter module is located in the kernel space and it is responsible for intercepting chunk
request and response messages from the network, and delivering them to the Control module. This
module uses the kernel netlink interface to capture packets directly from the kernel space and divert
them to the user space in the Control module. The Control module handles the packet processing and
forwarding, receiving data from the kernel space, caching and forwarding based on the neighborhood

table. The Security module is responsible for hash tree mechanism verification using the appended
authentication path. The Cache Memory is responsible for storing the data itself and the initial version
is implemented as a hash table. The accounting module is responsible for collecting the statistics
about the data popularity based on the requests and responses passing through the router. These
statistics will be used by the cache memory to help the cache eviction policies. The Neighborhood

Table contains forwarding information collected from in-transit data messages in the network together
with the last-seen information. Finally, the Responder module is responsible for returning cached data
to clients on the server’s behalf.

The forwarding mechanism based on cryptoIDs between content routers use a special header
containing details about the carried data. Fig. 5.24 illustrates the packet header used for the content
discovery and forwarding mechanism based on cryptoIDs.
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Fig. 5.24: Caching control header

The type field has a 8-bit field describing the type of the message, for instance, chunk request
or response and signaling between CRs. The cryptoID is the permanent content identifier and it is
generated using a cryptographic hash function, e.g., SHA-1, over the data. The cache control field
has 8-bit length and provides signaling information for the routers, for example, whether a data chunk
has already been previously cached in the network. In this case, the cached flag has one bit and it
is stored within the cache control header. The neighbor zone field has 8-bit length and contains the
number of neighbors that a message should visit before going directly to the server.

At each router, the neighbor zone field is decreased in one and, when it reaches zero, the content
router forwards the data directly to the server. This field also avoids infinite loops in the network, wor-
king also as a time-to-live for a chunk message. The visited neighbor field has a 256-bit length bloom

filter [89] that contains all the CR IDs visited by a chunk request to prevent loops in the network.
Before forwarding a request, each CR inspects whether its cryptoID is in the visited neighbor field. If
it is not included, then it adds cryptoID and forwards the request to the next CR, otherwise, it might
be a loop or, less likely, a false positive. A false positive in an incorrect answer returned from a bloom
filter when it is almost full, for example, returning that the next hop is already visited despite of not
visiting it before. The false positive does not affect the CRs and the worse results is to forward the
request to the original provider. The visited neighbor field also allows CRs to decide where to forward
chunk requests, e.g., if a CR forwards a chunk request to an outgoing interface and the request returns
without any data response, the CR will forwarding to the incoming interface to search for the content
in the upper networks. In addition, the CR can purge that entry in the neighborhood table. The Auth.

Path field contains the variable length authentication path for data verification.
The current version of the CR is implemented over UDP datagram as the forwarding mechanism,

running on ports 22000 and 22001 in Linux OS machines. Clients send data requests to the servers
and intermediate CRs cache these information in the popularity table, as they will be used as input
parameter for caching policies. Whenever a CR intercepts a passing-by request or response, it may
cache it based on the caching policies, e.g., popularity of the requests and responses. If a CR does not
cache a data chunk, it adds a pointer in the neighborhood table, indicating possible destinations for
content lookup. Whenever there is a data chunk message, CRs have a probability to cache it in their
cache memory to serve for further requests.

5.4.3 Evaluation

In this section, we evaluate the CR proposal regarding the security mechanism based on the SHT.

Experimental Set-up

In order to evaluate the CR authentication mechanism and to compare with per packet signature
scheme, we implemented a CR prototype in C language. We used a Mac OSX 10.6, 2.16GHz, 2 GB
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RAM for the evaluation scenarios. In the first scenario, we evaluated the speed of the RSA public
key signature and verification times and the SHA-1 hash function using the OpenSSL cryptographic
library. The purpose of the evaluation is to establish the magnitude between a hash verification time
and a digital signature and verification times. For the second, third and forth evaluations, we used the
topology described in Fig. 5.25. The topology is composed of a client, a server that sends some data
to the client and a CR in the border of the network where the client is located. For each test case, we
collected 10 samples and considered the average value to plot the graphics.

Fig. 5.25: Evaluation topology with one CR.

5.4.4 Experimental Results & Analysis

Tab. 5.6 shows the experimental evaluation of different cryptographic algorithms for signature
and verification. For the SHA-1 verification speed, we considered a packet of 1024 bytes. As the
experimental results show, a digital signature costs roughly 388 times slower than a hash verification
and 18,51 times slower than a hash verification (SHA-1 vs. RSA 1024). The comparison is to show
that if we can reduce the number of digital signatures in a large file transfer, we can considerably
reduce the processing overhead resulted from the verification process. In addition, clients generating
data wouldn’t suffer from the delay due to the signature process.

Tab. 5.6: Signature and verification speeds with different cryptographic algorithms
Type Signatures/s Verification/s

SHA-1 - 222,402
SHA-256 - 96,759

RSA 1024 bits 573 12012
RSA 2048 bits 95 3601
ECC 160 bits 4830 1044
ECC 163 bits 1376 563

In the second evaluation scenario, we analyzed the root hash generation time using the SHT
algorithms with the SHA-256 cryptographic hash function. We selected files ranging from 10 to 50
MB and used block sizes of 1, 2 and 4KB in the algorithm. The results are summarized in Fig. 5.26.

The figure shows that the Root Hash computation grows linearly with the file size and the number
of data blocks. This result is predicted since the number of hash computations in the hash tree is linear
to the number of data blocks. Note that the root hash has an equivalent functionality as the public key
in the PKI, since it is used to verify the authenticity of a signature, but with much faster computation
time.
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Fig. 5.26: Skewed Hash Tree Root Hash Generation Times.

Fig. 5.27: Skewed Hash Tree AP generation times and 1024-bit RSA signature times comparison.

In the second evaluation, we compared the SHT authentication path generation time with a 1024-
bit RSA signature time, shown in Fig. 5.27. We implemented two applications for this evaluation:
the first one reads from an input file in blocks of 1, 2 and 4 Kbytes and apply the skewed hash tree
function, and the second one reads from an input file in blocks of 1, 2 and 4 Kbytes and digitally sign
each block with a 1024-bit RSA key. Both of them used the SHA-256 cryptographic hash algorithm
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Fig. 5.28: Skewed Hash Tree AP verification times and 1024-bit RSA signature verification times
comparison.

to produce the digest messages to be signed. We excluded the 1024-bit RSA key generation time
from the results, since we generated it once and used the same key in the evaluation.

The results show that SHT mechanism is on average 8 times faster than the per packet signature
approach. This result is expected since the digital signature computation uses large prime numbers,
requiring high processing in the CPU. One the other hand, hash functions rely on bit shifting to
generate the digests, resulting in lower power consumption and memory storage.

In the third evaluation, we compared the authentication path verification time in a CR with a 1024-
bit RSA verification time considering different file and block sizes. We used the same applications,
block size and cryptographic hash function as in the previous scenario. The experimental results from
both applications are summarized in Fig. 5.28. The verification times in the SHT is on average 3 times
faster than the per packet signature scheme, which are expected since the hash value computation is
much faster than the public key cryptography.

5.4.5 Summary

This section has presented a secure caching mechanism based on content routers and SHTs. Con-
tent routers allow for in-transit data caching, reducing the bandwidth consumption and network la-
tency in the content retrieval. The SHT mechanism allows for content authentication prior to the
caching event, preventing from the caching of bogus or polluted data. The SHT mechanism provides
a list of hash values that allows intermediate devices to verify the data independently from the source
where the data came at a low cost. As proof-of-concept, we implemented a library containing the
skewed hash functions to work in the CR and evaluated it in different scenarios. The experimental
evaluation showed that SHT is, on average, 8 and 3 times faster in the signature and verification times
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respectively, compared to per-packet signature scheme.
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5.5 Summary

Chapter 5 has presented the application scenarios for the skewed hash trees and composite hash
trees. The chapter started describing the name resolution mechanism to resolve content names into a
secure metadata structure. The name resolution mechanism maps an authority and a content identifier
into a metadata, which can be used to retrieve the network-level content chunks. Next, we present two
applications of the composite hash tree in the current Internet: pollution detection in P2P networks
and parallel authentication over HTTP. In the first application, a CHT is used as a piece fingerprint
mechanism, generating a fingerprint for each chunk within a content piece. Hence, receiving appli-
cations are able to detect polluted blocks and replace them without discarding the correct ones. In
the second application, we use the CHT mechanism to authenticate parallel HTTP connections. The
main idea is to provide data authentication regardless of which connection a data block as come from.
This is accomplished because CHT uses authentication information that is generated based on the
content rather than on the connection. Lastly, we have presented an application of the skewed hash
tree mechanism in secure content caching. The main goal is to provide data verification mechanism
prior to caching, preventing from the bogus or corrupted data caching.
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Capítulo 6

Conclusions

This work has presented new approaches for data authentication in information-centric networks.
The proposed model aims at efficient data authentication in scenarios where the network attachment
point is not previously known (spatial decoupling) and the content consumption time is not synch-
ronized with the production (time decoupling). The initial security model aimed at providing strong
cryptographic identifiers for end-hosts over the Internet and also solving the IP semantic overloading
problem. These identifiers result from a strong cryptographic hash function over the public key of an
end-host, strongly binding end-hosts identification and identifier. In order to generalize the idea of
identification, we introduce a new layer in the network stack called identification layer. This layer is
responsible for providing permanent and unique identifiers for the transport layer, leaving the network
layer with the unique role of locating an end-host in the Internet. In order to provide security mecha-
nisms, we have proposed IDSEC, an identification layer security that embeds a security protocol with
denial-of-service resistance capabilities. The IDSEC handshake contains a cost function mechanism
that allows for computational asymmetry between clients and servers. Hence, servers can increase the
cost to communicate with them by increasing the computational costs of these challenges. As a proof
of concept, IDSEC was implemented and evaluated in performance and mobility scenarios, showing
that the new identification can provide native mobility support with security embedded. We have
concluded that such mechanism can make end-hosts more robust against denial-of-service attacks.
However, this mechanism does not protect against unwanted traffic in the network.

In order to generalize the data authentication mechanism, we have extended the security from the
end-host to the content itself, mainly due to the fact that many servers just store content instead of
producing it in information-centric networking. In order to tackle this limitation, we have proposed to
separate the data from the security information into separate planes: a data plane and a security plane.
The security plane is responsible for the security data storage and authentication. Publishers store
authenticated metadata information in the plane and subscribers access the security plane to recover
the content metadata. Hence, the security plane works as a trusted binding point between content
providers and consumers, filling the communication gap due to the time decoupling characteristics of
these networks. In order to transfer the trust from the content provider to the data blocks, we proposed
two techniques to satisfy the security requirements in information-centric networks: skewed hash tree

(SHT) and the composite hash tree (CHT). SHT is an extension to the Merkle Tree and allows for
random file size authentication and out-of-order data verification. Additionally, SHT can be created
over a set of data blocks and requires one digital signature to authenticate all data blocks. CHT is
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a novel hash tree technique for data authentication with reduced authentication overhead compared
to SHT. CHT uses smaller Merkle Trees to reduce the overall authentication overhead at the cost of
some hierarchical authentication dependence. Once the content provider has chosen the technique, it
embeds the root hash value into the metadata, which is digitally signed by the provider. Therefore,
the trust is transferred from the digitally signed metadata to the data blocks.

In order to validate the security plane proposal, we implemented these two techniques in different
scenarios: name resolution, pollution detection in P2P networks, parallel authentication over HTTP
and secure content caching. In the first scenario (secure name resolution), we aimed at the correct
name to authority and content identifiers resolution. The name follows the scheme proposed by URI
and maps the authority section to the content publisher and the resource path to the metadata through
the DNS or a distributed directory system. Once the client has the metadata, he is able to recover
the data blocks from the data plane and authenticate them using the SHT technique. In the second
scenario (pollution detection in P2P networks), we have used the CHT mechanism to detect eventual
polluted blocks. For each data chunk that was generated, a providing peer also append a fingerprint to
allow data authentication. Upon receiving a data packet, peers could immediately verify the integrity
and reject any polluted data without discarding all pieces. The main appeal of this technique is the
possibility to integrate the mechanism to the BiTorrent application, since we could add the CHT root
hash in the .torrent file and the authentication path of data blocks into the BitTorrent pieces them-
selves. In the third scenario (parallel authentication over HTTP), we have applied CHT for parallel
content authentication in the Web to provide content authentication in content delivery networks. In
these networks, users can retrieve content from any mirror but they do not have any security infor-
mation to validate the content. Thus, CHT fills the security gap and provides authentication tokens
in the HTTP header to the clients, allowing them to authenticate the data segments regardless of the
data source. Finally, in the last evaluation scenario (secure content caching), SHT has been employed
to authenticate data blocks prior to the caching in network-level caches. As SHT authentication paths
can be read by intermediate devices, caches can check whether a given piece of data is authentic or
nor prior to the caching, preventing the caching of bogus content. In the SHT evaluation, we have
showed that that the signature and verification procedures are 8 and 3 times faster than regular public
key cryptography routines.

6.1 Future Work

This work has focused on the application of the hash tree techniques for data authentication in
many information-centric scenarios. One issue that we are going to investigate is new approaches
to provide content security. An initial design is to use convergent encryption [90, 91] to provide
confidentiality in some restricted scenarios. The convergent encryption technique uses the hash of
the content as the encryption key for a given piece of data. As a consequence, the security is solely
based on the content. However, the main drawback is the fact that pieces of content have permanent
encryption keys, resulting in a weak security and prone to plain text attacks. We plan to investigate
alternative mechanisms to provide content-based encryption, but without this limitation.

Another open issue regards the name resolution mechanism and the privacy concern. In information-
centric networks, users may connect to intermediate caches to retrieve data rather than servers, which
may leak information about their current interests to non-authorized third parties. Therefore, there
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must be a new model to prevent the information leakage to untrusted hosts.
A third approach is to investigate new caching strategies to improve the hit ratio in CRs. As we

have described in Chapter 5, CRs can use the in-network caching and reduce the bandwidth usage
and the network latency. In this initial evaluation, we have just used the least recently used (LRU)
algorithm as the replacement policy. However, there are more elaborate eviction policies that can
improve the hit ratio and the network efficiency as well.

Another topic of investigation of is spread functions. These functions have the property to re-
present a set of data blocks through a mathematical function, saving the amount of identifiers that
a metadata needs to carry. These functions are specially interesting in scenarios where the number
of data blocks is considerable, for instance, large data blocks that are needs to be transferred in Bit-
Torrent. In this scenario, the use of a simple mathematical function can reduce the overall size of
the torrent file. Additionally, the proposed mechanism can be used as security mechanism to prevent
unauthorized users to retrieve the content, where the function is the key to retrieve the block identifiers
in the network.
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Conclusões

Este trabalho apresentou novas abordagens para a autenticação de dados em redes orientadas à
informação. O modelo proposto visa a autenticação de dados eficiente em cenários onde o ponto de
ligação da rede não é previamente conhecido (desacoplamento espacial) e o consumo do conteúdo
não é sincronizado com a sua produção (desacoplamento temporal). O modelo de segurança inicial
busca fornecer identificadores criptograficamente seguros para os nós finais na Internet, assim como
a resolução do problema da sobrecarga semântica do IP. Estes identificadores são resultado o uso de
funções de hash criptográficos fortes sobre a chave pública de um nó final, vinculando o identificador
na camada de rede com a identificação do nó. Com a finalidade de generalizar o conceito de identifi-
cação, nós introduzimos uma nova camada na pilha pilha de protocolos de rede chamada de camada
de identificação. Esta camada é responsável por fornecer identificadores permanentes e únicos para
a camada de transporte, liberando a camada de rede com o papel de localizar um nó na Internet. A
fim de fornecer mecanismos de segurança, nós propuseram IDSEC, um mecanismo de segurança na
camada de identification que incorpora um protocolo de segurança com resistência à determinados
tipos de ataques de negação de serviço. O handshake do IDSEC contém uma função de custo que
permite prover a assimetria computacional entre clientes e servidores. Como resultado, os servidores
podem aumentar o custo computacional antes de estabelecer a comunicação com os clientes para re-
pelir ataques de negação de serviço. Como prova de conceito, o IDSEC foi implementado e avaliado
considerando cenários de desempenho e mobilidade, demonstrando que a nova identificação pode
fornecer suporte à mobilidade nativa com a segurança incorporada ao protocolo. Concluímos que tais
mecanismos pode tornar nós finais mais protegidos contra ataques de negação de serviço.

Com a finalidade de generalizar o mecanismo de autenticação de dados, nós estendemos a segu-
rança do nó final para o conteúdo propriamente dito, principalmente devido ao fato de que muitos
servidores apenas armazenam o conteúdo em vez de produzi-lo em rede orientadas à informação. A
fim de resolver esta limitação, propusemos a separação dos dados das informações de segurança em
planos separados: plano de dados e plano segurança. O plano de segurança é responsável pelo ar-
mazenamento de dados de segurança e autenticação. Provedores de conteúdo armazenam metadados
autenticados e assinantes acessam ao plano de segurança para recuperar os metadados de conteúdo.
Assim, o plano de segurança funciona como um confiável ponto de ligação entre os provedores de
conteúdo e consumidores, preenchendo o vão devido ao desacoplamento temporal na comunicação
nas redes orientadas à informação. A fim de transferir a confiança a partir do provedor de conteúdo
para os blocos de dados, propusemos duas técnicas para satisfazer as requisitos de segurança em redes
orientadas à informação: textit skewed hash tree (SHT) e textit composite hash tree (CHT). A SHT é
uma extensão da Merkle tree e ela permite a autenticação de arquivos de tamanho aleatório e também
a verificação fora de ordem dos dados. Além disso, a SHT pode ser criado sobre um conjunto de blo-
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cos de dados e requer apenas uma assinatura digital para autenticar todos os blocos de dados. A CHT
é uma proposta nova de árvore de hash para autenticação de dados com sobrecarga de autenticação
reduzida, comparado com a SHT. A CHT utiliza Merkle trees reduzidas com o objetivo de reduzir
a sobrecarga de autenticação ao custo de autenticação hierárquica. Após a escolha da técnica pelo
provedor, ele pode incorporar o root hash na raiz dos metadados, que é assinado digitalmente pelo
provedor. Consequentemente, a confiança é transferida do metadado assinado digitalmente para os
blocos de dados.

A fim de validar a proposta do plano de segurança, nós implementamos esses duas técnicas em
diferentes cenários: resolução de nomes seguro, detecção de poluição em redes P2P, autenticação
paralela sobre HTTP e cacheamento seguro de conteúdo. No primeiro cenário (resolução de nomes
seguro), buscamos na resolução correta do nome nos identificadores de autoridade e conteúdo de
forma segura. O nome segue o esquema proposto pela URI e mapeia a autoridade no provedor do
conteúdo e o caminoh do recurso para o metadado através do DNS ou de um sistema de diretórios dis-
tribuído. Após obter o metadado, o cliente é capaz de recuperar os blocos de dados do plano de dados
e autenticá-los utilizando a técnica de SHT. No segundo cenário (detecção de poluição em redes P2P),
utilizamos o mecanismo de CHT para detectar eventuais blocos poluídos. Para cada bloco de dados
gerado, um nó peer fornecedor também acrescenta uma impressão digital para permitir a autenticação
de dados. Ao receber um bloco de dados, os nós pares podem verificar imediatamente a integridade
dos dados e rejeitar quaisquer blocos poluídos sem descartar todas as peças. O principal atrativo desta
técnica é a possibilidade integrar o mecanismo proposto ao aplicativo BitTorrent porque pode-se adi-
cionar o root hash do CHT no arquivo .torrent e os authentication paths nos próprios blocos de dados.
No terceiro cenário (autenticação paralela sobre o HTTP), utilizamos o CHT para autenticação para-
lela de conteúdo na Web para prover autenticação em redes de entrega de conteúdo. Nessas redes, os
usuários podem recuperar o conteúdo de qualquer servidor, mas eles não têm qualquer informação de
segurança para validar o conteúdo recuperado. Dessa forma, a CHT preenche a lacuna de segurança
e fornece tokens de autenticação no cabeçalho HTTP para os clientes, permitindo-lhes autenticar os
segmentos de dados independentemente da origem dos dados. Finalmente, no último cenário de ava-
liação (cacheamento de dados seguro), a SHT é utilizada para autenticar os blocos de dados antes do
seu armazenamento nos cache no nível da rede. Como as authentication paths podem ser lidos por
dispositivos intermediários, caches podem verificar se um bloco de dados é autêntico antes do seu ca-
cheamento, prevenindo o cacheamento de conteúdo defeituoso. Como prova de conceito, avaliamos
os tempos dos procedimentos de assinatura e verificação e os valores experimentais mostraram que
as rotinas de assinatura e verificação são 8 e 3 vezes mais rápido que criptografia de chave pública.

Trabalhos Futuros

Este trabalho apresentou aplicações das técnicas de árvores de hash em redes orientadas à in-
formação. Uma questão em aberto é a investigação de novas abordagens para garantir a confiden-
cialidade dos dados. A proposta inicial é utilizar criptografia convergente [90, 91] para prover a
confidencialidade dos dados em alguns cenários restritos. A técnica utiliza o hash do conteúdo como
chave secreta para cifrar o conteúdo, provendo segurança totalmente baseada no conteúdo. A princi-
pal desvantagem desta abordagem é o fato do uso da mesma chave para cifrar os mesmos blocos de
dados, abrindo vulnerabilidades de segurança. Pretendemos investigar mecanismos alternativos para
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fornecer confidencialidade baseada no conteúdo, porém sem esta limitação.
Outra questão em aberto diz respeito ao mecanismo de resolução de nomes e a privacidade. Em

redes orientadas à informação, os usuários podem conectar-se a caches intermediários para obter
conteúdo ao invés de servidores, possibilitando o vazamento de informações sobre os interesses do
clientes para entidades não-autorizadas na rede. Dessa forma, deve haver um novo modelo de se-
gurança e privacidade com a finalidade de se evitar a divulgação dos interesses dos usuários sem a
prévia autorização.

Uma terceira abordagem é a investigação de novas estratégias de caching para aumentar a taxa de
acertos nos CRs. Como descrito previamente, os CRs podem usar a rede de cacheamento e reduzir o
uso de banda e a latência da rede. Nesta primeira avaliação, utilizamos o algoritmo least recently used

como política de substituição das entradas no cache. No entanto, existem políticas de substituição
mais elaboradas que podem aumentar a taxa de acertos das requisições, melhorando a eficiência da
rede como um todo.

Um outro tópico a ser investigado é o uso de funções de espalhamento. Essas funções possuem a
propriedade de representar uma list de blocks de dados através de uma função matemática, reduzindo
a quantidade de identificadores necessários em um metadado. Essas funções são especialmente inte-
ressantes in cenários onde o número de blocos de dados são grandes, por exemplo, arquivos grandes
que são transferidos no BitTorrent. Neste cenário, o uso de uma função matemática para representar
todos os blocos de dados pode reduzir o número de identificadores listados para apenas uma função
matemática. Além disso, o mecanismo proposto pode ser utilizado como um mecanismo de segu-
rança de controle de acesso, onde apenas os portadores da função matemática podem gerar a lista de
identificadores a serem recuperados da rede.
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