

Cristiano Akamine

Análise de desempenho do sistema de TV digital DVB-T com entrelaçador temporal em canais com ruído impulsivo

Dissertação submetida à Faculdade de Engenharia Elétrica e de Computação da Universidade Estadual de Campinas como requisito parcial para a obtenção do título de Mestre em Engenharia Elétrica

Orientador: Prof. Dr. Yuzo Iano

Banca Examinadora:

Prof. Dr. Fernando Toshinori Sakane ITA/ São José dos Campos

Prof. Dr. Fujio Yamada UPM/ São Paulo

Prof. Dr. José Antônio Siqueira Dias Feec/Unicamp

Campinas 2004

FICHA CATALOGRÁFICA ELABORADA PELA BIBLIOTECA DA ÁREA DE ENGENHARIA - BAE - UNICAMP

Akamine, Cristiano

AK14a

Análise de desempenho do sistema de TV digital DVB-T com entrelaçador temporal em canais com ruído impulsivo / Cristiano Akamine. --Campinas, SP: [s.n.], 2004.

Orientador: Yuzo Iano Dissertação (Mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de Computação.

1. Televisão digital. 2. Ruído. 3. Telecomunicações. 4. Televisão – Receptores e recepção. 5. Televisão – Transmissores e transmissão. 6. Processamento de sinais – Técnicas de sinais. I. Iano, Yuzo. II. Universidade Estadual de Campinas. Faculdade de Engenharia Elétrica e de Computação. III. Título.

Agradecimentos

A Deus, acima de tudo.

A meus pais, Kasuiyoshi Akamine em memória e Maria de Lourdes Silva Akamine, por sua lição de vida, amor, trabalho e dedicação.

Ao meu orientador, Professor Yuzo Iano pelas suas importantes contribuições, dedicação, paciência e ajuda.

A todos os meus amigos e colegas da Unicamp especialmente para o Rangel Arthur que me ajudaram, incentivaram e partilharam continuamente desta conquista.

Ao corpo docente da Feec, pelo aprendizado.

À Fundação de Amparo à Pesquisa do Estado de São Paulo (Fapesp).

Ao Conselho Nacional de Desenvolvimento Cientifico e Tecnológico (CNpQ).

À Universidade Presbiteriana Mackenzie e Instituto Presbiteriano Mackenzie pelos auxílios concedidos.

Aos professores e colaboradores do Laboratório de Rádio e TV Digital da Escola de Engenharia Mackenzie, em especial aos professores Carlos Eduardo da Silva Dantas, Fujio Yamada, Francisco Sukys, Gunnar Bedicks Jr., Luís Tadeu Mendes Raunheitte, Maria das Dores Miranda e colaboradores Eng. João Vandoros e Jorge Aparecido Costa que sempre me incentivaram e me apoiaram.

Aos amigos e colegas do Centro de Rádio e TV Mackenzie, especialmente ao Eng. Agenor Braga Nascimento e Claudinei Foganholi que me permitiram galgar degraus tão elevados.

Resumo

O objetivo deste trabalho é estudar o desempenho do sistema europeu de televisão digital terrestre DVB-T, quando implementado com um entrelaçador temporal semelhante ao utilizado no sistema japonês de televisão digital terrestre ISDB-T. Contribui-se com o desenvolvimento de um simulador denominado de DVB-T Modificado (DVBM-T). Para avaliar o desempenho do sistema DVBM-T, duas propostas de estimadores de canal (2D combinado com *Cubic-Spline* e 1D com *Piecewice*) foram testados. As simulações ocorreram em canais com ruído impulsivo, multipercurso, *doppler*, ruído gaussiano Branco e outros canais típicos de radiodifusão utilizados no Brasil para testes de sistemas de TV Digital Terrestre. Neste trabalho, ainda foram realizadas comparações entre resultados obtidos em receptores domésticos dos sistemas DVB-T e ISDB-T com a versão modificada do sistema DVB-T. Os resultados obtidos são apresentados e discutidos.

Abstract

The aim of this work is to study the performance of the European Terrestrial Digital TV system DVB-T, when improved with Time Interleaver similar to Japanese Terrestrial Digital TV System. We contribute with the development of a simulator named (DVBM-T) DVB Modified -T. To test the DVBM-T, two proposals of Channel Estimators (2D jointed with Cubic-Spline and 1D with Piecewice) were tested. The simulation tests were made in Channels with Impulsive Noise, Multipath, Doppler, White Gaussian Noise and others typical broadcast channels for Digital TV tests in Brazil. In this work, comparation between domestic receivers DVB-T and ISDB-T with the Modified DVB-T is also showed. The results achieved are presented and discussed.

Sumário

Lista de Figuras	X
Lista de Tabelas	xvi
Lista de Abreviaturas	xviii
Lista de Símbolos	XX
1. Introdução	1
1.1 Introdução	1
1.2 Motivações e Objetivos	2
1.3 Organização da Tese	3
1.4 Resumo das Contribuições	5
2. OFDM	7
2.1 Introdução	
2.2 Geração do sistema OFDM	8
2.2.1 Modelo contínuo no tempo	
2.2.2 Modelo discreto usando IDFT/DFT	
2.3 Ortogonalidade	
2.4 Intervalo de guarda	
2.5 Janelamento (Formatador de pulsos)	20
2.6 Sincronismo.	23
2.6.1 Sincronismo Temporal	23
2.6.2 Sincronismo de Freqüência	24
3. Sistema DVB-T	25
3.1 Introdução	25
3.2 Diagrama de blocos	25
3.3 Codificação de Canal	
3.3.1 Dispersor de Energia (Energy Dispersal)	
3.3.2 Codificação externa (<i>Reed Solomon</i>)	
3.3.3 Entrelaçador externo (<i>Outer interleaver</i>)	
3.3.4 Codificação Interna (<i>Inner Coding</i>)	
3.3.5 Entrelaçador Interno (<i>Inner Interleaver</i>)	
3.4 Modulação	

3.4.1 Mapeamento e Constelação	39
3.4.2 Estrutura de quadro do OFDM	43
3.4.3 Sinais de Referência	45
3.5 Taxa de Transmissão	49
4. Sistema ISDB – T	
4.1 Introdução	51
4.2 Re-multiplexação	
4.3 Codificação de canal	
4.3.1 Codificação externa (Reed Solomon)	
4.3.2 Separação do TS (Splitter)	55
4.3.3 Dispersor de energia	56
4.3.4 Ajuste de Atraso	56
4.3.5 Entrelaçador de bytes (Entrelaçador Externo)	57
4.3.6 Codificador Convolucional (Codificação Interna)	58
4.4 Modulação	60
4.4.1 Ajuste de atraso	60
4.4.2 Entrelaçamento de bits e mapeamento	61
4.4.3 Fator de Normalização	65
4.5 Segmento de dados	65
4.6 Síntese das camadas de dados	67
4.7 Entrelaçador temporal	67
4.8 Entrelaçamento em freqüência	70
4.8.1 Entrelaçamento entre-segmentos	71
4.9 Estrutura do quadro OFDM	
4.9.1 Estrutura de quadro OFDM para Modulação Diferenci	al77
4.9.2 Estrutura de quadro OFDM para modulação coerente.	81
4.9.3 Sinais de referência	
4.10 Sinal de RF	85
4.11 Taxa de Transmissão	86
5. Estimadores de Canal	80
5.1 Introdução	
5.2 Estimação em uma dimensão	
5.3 Estimação em Duas Dimensões	
5.4 Algoritmos estimadores de Canal	
5.5 Simulação de desempenho	
5.5.1 Testes com espalhamento temporal	
5.5.2 Testes com efeito <i>doppler</i>	
5.6 Considerações finais	
2.0 Considerações imais	100

6.1 Introdução	Ω
6.2.1. Entrelaçador clássico LR/TB	·UY
	10
6.2.2 Entralagador alággico LD/DT	
0.2.2. Entrefaçador classico LK/BT	10
6.2.3. Entrelaçador clássico RL/TB	
6.2.4. Entrelaçador clássico RL/BT	11
6.2.5. Entrelaçador/ Desentrelaçador de blocos	12
6.3 Entrelaçador convolucional	12
6.4 Parâmetros1	13
6.4.1 Causalidade1	14
6.4.2 Atraso e latência1	14
6.4.3 Memória1	16
6.4.4 Espalhamento1	16
6.5 Implementação prática de entrelaçadores	18
6.5.1 Entrelaçador de blocos LR/TB	18
6.5.2 Entrelaçador Berrou-Glavieux	20
6.5.3 Entrelaçador JPL (Jet Propulsion Laboratory)12	21
6.5.4 Entrelaçador ISDB-T12	22
6.6 Resultado de simulações	23
	26
6.7 Considerações finais	20
7. Sistema DVBM-T1	27
7. Sistema DVBM-T1 7.1 Introdução1	2 7 27
7. Sistema DVBM-T	27 27 31
7. Sistema DVBM-T	27 27 31 31
7. Sistema DVBM-T 1 7.1 Introdução 1 7.2 Transmissor 1 7.2.1 Gerador de dados (<i>Random integer</i>) 1 7.2.2 Embaralhador de dados (<i>Energy dispersal</i>) 1	27 27 31 31 31
7. Sistema DVBM-T 1 7.1 Introdução 1 7.2 Transmissor 1 7.2.1 Gerador de dados (Random integer) 1 7.2.2 Embaralhador de dados (Energy dispersal) 1 7.2.3 Codificador externo RS (Codificador RS) 1	27 27 31 31 31 31
7. Sistema DVBM-T	27 27 31 31 31 31
7. Sistema DVBM-T	27 27 31 31 31 31 31
7. Sistema DVBM-T	27 27 31 31 31 31 31 31 32
7. Sistema DVBM-T	27 27 31 31 31 31 31 32 32
7. Sistema DVBM-T	27 27 31 31 31 31 31 32 32 32
7. Sistema DVBM-T	27 27 31 31 31 31 31 32 32 32
7. Sistema DVBM-T 1 7.1 Introdução 1 7.2 Transmissor 1 7.2.1 Gerador de dados (Random integer) 1 7.2.2 Embaralhador de dados (Energy dispersal) 1 7.2.3 Codificador externo RS (Codificador RS) 1 7.2.4 Entrelaçador externo (Convolutional interleaver) 1 7.2.5 Codificador interno (Punctured convolutional code) 1 7.2.6 Entrelaçador interno (Inner interleaver) 1 7.2.7 Mapeamento (QAM mapper) 1 7.2.8 Entrelaçador temporal (Time interleaver) 1 7.2.9 Adaptação de quadro (Frame adaptation) 1 7.2.10 Modulador OFDM (OFDM transmitter) 1	127 27 31 31 31 31 32 32 32 33 33
7. Sistema DVBM-T 1 7.1 Introdução 1 7.2 Transmissor 1 7.2.1 Gerador de dados (Random integer) 1 7.2.2 Embaralhador de dados (Energy dispersal) 1 7.2.3 Codificador externo RS (Codificador RS) 1 7.2.4 Entrelaçador externo (Convolutional interleaver) 1 7.2.5 Codificador interno (Punctured convolutional code) 1 7.2.6 Entrelaçador interno (Inner interleaver) 1 7.2.7 Mapeamento (QAM mapper) 1 7.2.8 Entrelaçador temporal (Time interleaver) 1 7.2.9 Adaptação de quadro (Frame adaptation) 1 7.2.10 Modulador OFDM (OFDM transmitter) 1 7.2.11 Inserção do intervalo de guarda (Guard interval insertion) 1	27 27 31 31 31 31 32 32 32 33 33 34
7. Sistema DVBM-T	27 31 31 31 31 32 32 32 33 33 34
7. Sistema DVBM-T 1 7.1 Introdução 1 7.2 Transmissor 1 7.2.1 Gerador de dados (Random integer) 1 7.2.2 Embaralhador de dados (Energy dispersal) 1 7.2.3 Codificador externo RS (Codificador RS) 1 7.2.4 Entrelaçador externo (Convolutional interleaver) 1 7.2.5 Codificador interno (Punctured convolutional code) 1 7.2.6 Entrelaçador interno (Inner interleaver) 1 7.2.7 Mapeamento (QAM mapper) 1 7.2.8 Entrelaçador temporal (Time interleaver) 1 7.2.9 Adaptação de quadro (Frame adaptation) 1 7.2.10 Modulador OFDM (OFDM transmitter) 1 7.2.11 Inserção do intervalo de guarda (Guard interval insertion) 1 7.3 Etapa de canal (Channel) 1 7.3.1 Multipercurso 1	127 27 31 31 31 31 32 32 32 33 33 34 34 34
7. Sistema DVBM-T	127 227 31 31 31 31 32 32 32 33 34 34 34 34
7. Sistema DVBM-T 1 7.1 Introdução 1 7.2 Transmissor 1 7.2.1 Gerador de dados (Random integer) 1 7.2.2 Embaralhador de dados (Energy dispersal) 1 7.2.3 Codificador externo RS (Codificador RS) 1 7.2.4 Entrelaçador externo (Convolutional interleaver) 1 7.2.5 Codificador interno (Punctured convolutional code) 1 7.2.6 Entrelaçador interno (Inner interleaver) 1 7.2.7 Mapeamento (QAM mapper) 1 7.2.8 Entrelaçador temporal (Time interleaver) 1 7.2.9 Adaptação de quadro (Frame adaptation) 1 7.2.10 Modulador OFDM (OFDM transmitter) 1 7.2.11 Inserção do intervalo de guarda (Guard interval insertion) 1 7.3 Etapa de canal (Channel) 1 7.3.1 Multipercurso 1 7.3.2 Gerador de ruído gaussiano branco 1 7.3.3 Gerador de ruído impulsivo 1	27 27 31 31 31 31 32 32 32 33 34 34 34 34 35
7. Sistema DVBM-T	27 27 31 31 31 31 32 32 32 33 34 34 34 35 35

7.4.3 Estimador de canal (<i>Channel estimator</i>)	135
7.4.4 Desentrelaçador temporal (<i>Time de-interleaver</i>)	136
7.4.5 Demodulação QAM (QAM demodulator)	136
7.4.6 Desentrelaçador interno (<i>Inner de-interleaver</i>)	
7.4.7 Decodificador Viterbi (Viterbi decoder)	
7.4.8 Desentrelaçador externo (Convolutional de-interleaver)	136
7.4.9 Decodificador RS (RS decoder)	
7.4.10 Desembaralhador de dados (Energy dispersal)	137
7.4.11 Medidor de taxa de erros	
7.5 Considerações finais	137
8. Resultados de simulações	139
8.1 Introdução	
8.2 Medição da taxa de erro de bits em função da variação da relação s	inal-ruído 140
8.2.1 Objetivo	
8.2.2 Descrição geral da medida	140
8.2.3 Resultados	140
8.3 Robustez do sistema DVBM-T perante o ruído impulsivo	142
8.3.1 Objetivo	
8.3.2 Descrição Geral da Medida	144
8.3.3 Resultados	144
8.4 Interferências por multipercurso (eco ou fantasma) sem a presença	de ruído
gaussiano branco	147
8.4.1 Objetivo	147
8.4.2 Descrição geral da medida	147
8.4.3 Resultados	147
8.5 Interferência por multipercurso (eco ou fantasma) com a presença d	le ruído
interferente	
8.5.1 Objetivo	
8.5.2 Descrição geral da medida	
8.5.3 Resultados	
8.6 Interferência por multipercurso (eco ou fantasma) com a presença d	
impulsivo	
8.6.1 Objetivo	
8.6.2 Descrição geral da medida	
8.6.3 Resultados	
8.7 Interferências por multipercurso - Simulação de canais com múltipl	
8.7.1 Objetivo	
8.7.2 Descrição geral da medida	
8.7.3 Resultados	
8.8 Característica do sistema DVBM-T para recepção móvel (Efeito do	:
8.8.1 Objetivo	
8.8.2 Descrição geral da medida	171

8.8.3 Resultados	171
9. Conclusões	175
9.1 Sugestões para trabalhos futuros	
Referências Bibliográficas	179

Lista de Figuras

Figura 2.1 Diagrama de blocos de um transmissor OFDM em banda base	9
Figura 2.2 Diagrama de blocos de um sistema OFDM em tempo discreto	11
Figura 2.3 Sinal OFDM de 4 subportadoras. (a) Domínio do tempo (b) Domínio da	
freqüência	13
Figura 2.4 Intervalo de guarda formado por uma cópia (prefixo cíclico) da parte final	do
símbolo OFDM	15
Figura 2.5 Sinal OFDM de 4 subportadoras com intervalo de guarda utilizando	
espaçamento nulo em um canal dispersivo. (a) Domínio do tempo (b) Domínio d	la
freqüência	16
Figura 2.6 Sinal OFDM de 4 subportadoras com intervalo de guarda utilizando prefix	.0
cíclico	
Figura 2.7 Análise de uma portadora do sinal OFDM após o canal com espalhamento	
temporal. O espalhamento temporal é menor do que o intervalo de guarda. (a)	
Resposta impulsiva do canal (b) Sinal OFDM com intervalo de guarda	18
Figura 2.8 Análise de uma portadora do sinal OFDM após o canal com espalhamento	
temporal. O espalhamento temporal é maior do que o intervalo de guarda. (a)	
Resposta impulsiva do canal (b) Sinal OFDM com intervalo de guarda	19
Figura 2.9 Constelação 64-QAM do sistema DVBM-T 8k, 3/4, 1/16. (a) Espalhament	O
temporal menor do que o intervalo de guarda. (b) Espalhamento temporal 1% ma	aior
do que o intervalo de guarda. (c) Espalhamento temporal 10% maior do que o	
intervalo de guarda.	
Figura 2.10 Espectro do sistema DVB-T 64-QAM, 3/4, 1/16 no modo 2k e 8k	21
Figura 2.11 Símbolo OFDM com intervalo de guarda e janelamento cos-seno levanta	do.
Tu é a parte útil do símbolo OFDM. Δ é o intervalo de guarda	21
Figura 2.12 Espectro do sistema DVB-T 8k 64-QAM, 3/4, 1/16 com janelamento de o	cos-
seno levantado para os valores de <i>roll-off</i> de 0 (janela retangular), 0.025, 0.05 e 0	0.1.22
Figura 2.13 Símbolo OFDM interferido por um canal de 2 multipercurso com	
espalhamento temporal inferior a duração do intervalo de guarda. A parte cinza i	lustra
a ICI e ISI	22
Figura 2.14 Desvio de freqüência ΔF na amplitude do sinal e inserção de interferência	a de
outras subportadoras	24
Figura 3.1 Diagrama de blocos funcional do sistema DVB-T [19]	26
Figura 3.2 Pacote de dados na saída do codificador MPEG-2	27
Figura 3.3 Aleatorizador/desaleatorizador de dados	27
Figura 3.4 Pacotes de dados aleatorizados	28
Figura 3.5 Pacote com Reed-Solomon RS(204,188,8)	
Figura 3.6 Diagrama do entrelaçador/desentrelaçador	29
Figura 3.7 Pacote de dados na saída do entrelaçador de <i>bytes</i>	

LISTA DE FIGURAS

Figura 3.8. Codificador convolucional (2,1,6) de taxa 1/2	30
Figura 3.9 Puncionamento do código convolucional	31
Figura 3.10 Entrelaçador Interno. Mapeamento dos bits em símbolos para modulação nã	io
hierárquica	35
Figura 3.11 Entrelaçador interno. Mapeamento dos bits em símbolos para a modulação	
hierárquica	
Figura 3.12 Constelação QPSK	39
Figura 3.13 Constelação 16-QAM	40
Figura 3.14 Constelação 64-QAM	40
Figura 3.15 Constelação 16-QAM com α=2	41
Figura 3.16 Constelação 64-QAM com α=2	41
Figura 3.17 Constelação 16-QAM com α=4	42
Figura 3.18 Constelação 64-QAM com α=4	
Figura 3.19 Gerador PRBS dos pilotos	
Figura 3.20. Estrutura do Quadro OFDM	
Figura 3.21 Quadro de sinalização	
Figura 4.1 Espectro do canal de RF segmentado	
Figura 4.2 Diagrama básico do modulador ISDB-T	
Figura 4.3 Exemplo da re-multiplexação do transport stream	
Figura 4.4 Diagrama do codificador de canal	
Figura 4.5 Pacote de dados na saída do codificador MPEG-2	54
Figura 4.6 Pacote com Reed-Solomon RS(204,188,8)	54
Figura 4.7 Processo de divisão do TS	55
Figura 4.8. Aleatorizador/desaleatorizador de dados	
Figura 4.9 Diagrama do entrelaçador/desentrelaçador	
Figura 4.10 Pacote de dados na saída do entrelaçador de bytes	58
Figura 4.11 Codificador convolucional (2,1,6) de taxa 1/2	
Figura 4.12 Puncionamento do código convolucinal	59
Figura 4.13 Diagrama em blocos do modulador [22, 23]	60
Figura 4.14 Modulador DQPSK	
Figura 4.15 Constelação DQPSK	61
Figura 4.16 Modulador QPSK	
Figura 4.17 Constelação QPSK	
Figura 4.18 Modulador 16-QAM	
Figura 4.19 Constelação 16-QAM	
Figura 4.20 Modulador 64-QAM	
Figura 4.21 Constelação 64-QAM	
Figura 4.22 Estrutura de segmentos de dados. (a) Modo 2k, (b) Modo 4k e (c) Modo 8k.	
Figura 4.23. Combinador de segmento de dados	
Figura 4.24. Espalhamento do entrelaçador temporal no modo 2k	
Figura 4.25. Espalhamento do entrelaçador temporal no modo 4k	
Figura 4.26. Gráfico de dispersão do entrelaçador temporal no modo 8k	
Figura 4 27 Configuração do entrelacamento de frequência	70

Figura 4.28 Entrelaçamento entre segmentos. Entrelaçamento entre segmentos. (a) Mod	lo
2k, (b) Modo 4k e (c) Modo 8k	71
Figura 4.29 Rotação de fase das portadoras. (a) Modo 2k. (b) Modo 4k. (c) Modo 8k	72
Figura 4.30 Gráfico de dispersão do aleatorizador de portadoras dentro de segmentos no	
modo 2k	73
Figura 4.31 Gráfico de dispersão do aleatorizador de portadoras dentro de segmentos no)
modo 4k	74
Figura 4.32 Gráfico de dispersão do aleatorizador de portadoras dentro de segmentos no)
modo 8k	76
Figura 4.33 Estrutura de quadro OFDM para a modulação diferencial	78
Figura 4.34. Estrutura de quadro OFDM para a modulação coerente	81
Figura 4.35 Gerador PRBS das portadoras pilotos	84
Figura 4.36 Quadro TMCC	85
Figura 4.37 Símbolo OFDM com extensão cíclica	86
Figura 5.1 Função de transferência ideal. O canal consiste em 2 multipercursos com	
relação D/E = 0dB e espalhamento temporal de 1µs de pós-eco com espalhamento	
doppler de 20Hz.	91
Figura 5.2 Espalhamento de pilotos utilizada na estimação em 1D	91
Figura 5.3 Função de transferência ideal. O canal consiste em 2 multipercursos com	
relação D/E = 0dB e espalhamento temporal de 1µs de pós-eco	92
Figura 5.4 Sobreposição dos pilotos em quatro símbolos OFDM	93
Figura 5.5 Sistema de transmissão/recepção OFDM	94
Figura 5.6 Resposta do canal com a estimação piecewice	96
Figura 5.7 Constelação 64-QAM do sistema DVB-T, 8K, 3/4, 1/16 sem estimação de	
canal. O canal consiste em 2 multipercursos com relação D/E = 6dB e espalhamen	to
temporal de 32µs de pós-eco	97
Figura 5.8 Constelação 64-QAM do sistema DVB-T, 8K, 3/4, 1/16 com estimação de ca	anal
Piecewise. O canal consiste em 2 multipercursos com relação D/E=6dB e	
espalhamento temporal de 32µs de pós-eco	98
Figura 5.9 Resposta do canal com a estimação gaussiana	99
Figura 5.10 Constelação 64-QAM do sistema DVB-T, 8K, 3/4, 1/16 com estimação de	
canal Gaussiana. O canal consiste em 2 multipercursos com relação D/E=6dB e	
espalhamento temporal de 32µs de pós-eco	100
Figura 5.11 Resposta do canal com a estimação cubic-spline	
Figura 5.12 Constelação 64-QAM do sistema DVB-T, 8K, 3/4, 1/16 com estimação de	
canal Cubic-Spline. O canal consiste em 2 multipercursos com relação D/E=6dB e	
espalhamento temporal de 32µs de pós-eco	102
Figura 5.13 Estimação de canal usando a estimação 2D com <i>cubic-spline</i>	
Figura 5.14 Constelação 64-QAM do sistema DVB-T, 8K, 3/4, 1/16 com estimação de	
canal 2D combinada co <i>Cubic-Spline</i> . O canal consiste em 2 multipercursos com	
relação D/E=6dB e espalhamento temporal de 32µs de pós-eco	104
Figura 5.15 Variação do Espalhamento Temporal em Relação à potência do eco E/	
potência do sinal principal D	105

Figura 5.16 Variação da frequência doppler em Relação a potência do sinal principal (I	
em relação a potência (E) do sinal com pós-eco de 1µs	.107
Figura 6.1 Entrelaçador LR/TB. (a) Matriz de dados. (b) Representação do entrelaçame	nto
i=entrada e π(i)=saída	.110
Figura 6.2 Entrelaçador LR/BT. Entrelaçador LR/BT. (a) Matriz de dados. (b)	
Representação do entrelaçamento i=entrada e π(i)=saída	.111
Figura 6.3 Entrelaçador RL/TB. (a) Matriz de dados. (b) Representação do entrelaçamen	nto
i=entrada e π(i)=saída	.111
Figura 6.4 Entrelaçador LR/TB. (a) Matriz de dados. (b) Representação do entrelaçame	nto
i=entrada e π(i)=saída	.112
Figura 6.5 Representação matricial do entrelaçamento/desentrelaçamento. (a)	
Entrelaçamento de bits. (b) Desentrelaçamento de bits. (c) Representação do	
entrelaçamento	
Figura 6.6 Entrelaçador convolucional	.113
Figura 6.7 Representação do entrelaçador	
Figura 6.8. Exemplo de entrelaçador. (a) Causal. (b) Não causal	
Figura 6.9 Entrelaçador e desentrelaçador	.115
Figura 6.10 Gráfico de dispersão de entrada e saída do entrelaçador <i>LR/TB</i> . Fator de	
espalhamento (s=3, t=4).	.117
Figura 6.11 Gráfico de dispersão de entrada e saída do entrelaçador <i>LR/BT</i> . Fator de	440
espalhamento (s=4,t=4).	
Figura 6.12 Gráfico de dispersão do entrelaçador de blocos LR/TB em 1 símbolo OFDI	
[N=6048, M=80 e T=483840]	
Figura 6.13 Gráfico de dispersão do entrelaçador Berrou-Glavieux	
Figura 6.14 Gráfico de dispersão do entrelaçador JPL	
Figura 6.15 Gráfico de dispersão do entrelaçador temporal ISDB-T	
Figura 6.16 Diagrama de blocos do sistema DVBM-T.	.124
Figura 6.17 Comparação de desempenho de entrelaçadores para o DVBM-T. Robustez perante ruído impulsivo. Configuração utilizada 8k, 64-QAM, FEC 3/4, IG=1/16	125
Figura 6.18 Comparação de desempenho de entrelaçadores para o DVBM-T. Interferên	
por multipercurso (eco ou fantasma) com a presença de ruído impulsivo.	Cia
Configuração utilizada 8k, 64-QAM, FEC 3/4, IG=1/16. Espalhamento temporal d	le.
64µs e largura do pulso de 100µs	
Figura 7.1 Modelo do simulador DVBM-T 2k/8k Transmissão Não Hierárquica	
Figura 7.2 Modelo do simulador DVBM-T 2k/8k Transmissão Hierárquica	
Figura 7.3 Preenchimento de símbolos nulos. (a) Modo 2k. (b) Modo 8k	
Figura 7.4 Diagrama de blocos do canal	
Figura 8.1 Relação sinal-ruído em função da taxa de erro de bits em três configurações	
entrelaçador temporal: 0ms (desligado), 100ms e 200ms	
Figura 8.2 Pulsos de chaveamento do simulador de ruído impulsivo	
Figura 8.3 Saída do simulador de ruído impulsivo	
Figura 8.4 Resultados de simulações. Robustez do sistema DVBM-T perante o ruído	
	.145

Figura 8.5 Comparação entre sistemas. Robustez do sistema DVBM-T, DVB-T e ISDB-T	
perante o ruído impulsivo.	
Figura 8.6 Comparação entre sistemas. Robustez do sistema DVBM-T e DVB-T perante o	
ruído impulsivo na modulação hierárquica α=2 LP146	6
Figura 8.7 Comparação entre sistemas. Robustez do sistema DVBM-T e DVB-T perante o	
ruído impulsivo na modulação hierárquica α =2 HP140	6
Figura 8.8 Resultados de simulações. Interferências por multipercurso (eco ou fantasma)	
sem a presença de ruído gaussiano branco	9
Figura 8.9 Comparação entre sistemas DVBM-T, DVB-T e ISDB-T. Interferências por	
multipercurso (eco ou fantasma) sem a presença de ruído gaussiano branco 149	9
Figura 8.10 Comparação entre sistemas DVBM-T e DVB-T. Interferências por	
multipercurso (eco ou fantasma) sem a presença de ruído gaussiano branco na	
modulação hierárquica α =2 LP	0
Figura 8.11 Comparação entre sistemas DVBM-T e DVB-T. Interferências por	
multipercurso (eco ou fantasma) sem a presença de ruído gaussiano branco na	
modulação hierárquica α =2 HP150	0
Figura 8.12 Resultados de simulações. Espalhamento temporal de 32µs. Interferências por	
multipercurso (eco ou fantasma) com a presença de ruído gaussiano branco 153	3
Figura 8.13 Comparação entre sistemas DVB-T, ISDB-T e DVBM-T. Espalhamento	
temporal de 32µs. Interferências por multipercurso (eco ou fantasma) com a presença	
de ruído gaussiano branco	3
Figura 8.14 Comparação entre sistemas DVB-T e DVBM-T. Espalhamento temporal de	
32µs. Interferências por multipercurso (eco ou fantasma) com a presença de ruído	
gaussiano branco na modulação hierárquica α=2 HP	4
Figura 8.15Comparação entre sistemas DVB-T e DVBM-T. Espalhamento temporal de	
32µs. Interferências por multipercurso (eco ou fantasma) com a presença de ruído	
gaussiano branco na modulação hierárquica α=2 LP	4
Figura 8.16 Resultado de simulações. Interferência por multipercurso (eco ou fantasma)	
com a presença de ruído impulsivo. Pw=100µs e espalhamento temporal=32µs 150	6
Figura 8.17 Comparação entre sistemas DVB-T, ISDB-T e DVBM-T na modulação não	
hierárquica. Interferência por multipercurso (eco ou fantasma) com a presença de	
ruído impulsivo. Pw=100µs e espalhamento temporal=32us	7
Figura 8.18 Comparação entre sistemas DVB-T e DVBM-T na modulação hierárquica α=2	2
HP. Interferência por multipercurso (eco ou fantasma) com a presença de ruído	
impulsivo. Pw=100μs e espalhamento temporal=32μs	7
Figura 8.19 Comparação entre sistemas DVB-T e DVBM-T na modulação hierárquica α=2	
LP. Interferência por multipercurso (eco ou fantasma) com a presença de ruído	
impulsivo. Pw=100μs e espalhamento temporal=32μs	8
Figura 8.20 Resultado de simulações na modulação não hierárquica. Interferência por	
multipercurso - Simulação de canais com múltiplos ecos. Taxa de corte: Relação	
sinal-ruído em função da taxa de erro de bits.	1

LISTA DE FIGURAS

Figura 8.21 Resultado de simulações na modulação hierárquica LP. Interferências por
multipercurso - Simulação de canais com múltiplos ecos. Taxa de corte: Relação
sinal-ruído em função da taxa de erro de bits
Figura 8.22 Resultado de simulações na modulação hierárquica HP. Interferências por
multipercurso - Simulação de canais com múltiplos ecos. Taxa de corte: Relação
sinal-ruído em função da taxa de erro de bits
Figura 8.23 Espectro do canal Brasil A
Figura 8.24 Constelação 64-QAM do canal Brasil A. (a) Antes do estimador de canal. (b)
Depois do estimador de canal
Figura 8.25 Espectro do canal Brasil B
Figura 8.26 Constelação 64-QAM do canal Brasil B. (a) Antes do estimador de canal. (b)
Depois do estimador de canal
Figura 8.27 Espectro do canal Brasil C
Figura 8.138 Constelação 64-QAM do canal Brasil C. (a) Antes do estimador de canal. (b)
Depois do estimador de canal
Figura 8.29 Espectro do canal Brasil D
Figura 8.30 Constelação 64-QAM do canal Brasil D. (a) Antes do estimador de canal. (b)
Depois do estimador de canal
Figura 8.31 Espectro do canal Brasil E
Figura 8.32 Constelação 64-QAM do canal Brasil E. (a) Antes do estimador de canal. (b)
Depois do estimador de canal
Figura 8.33 Resultado de simulações. Espalhamento temporal de 1µs. Recepção móvel
(Efeito <i>doppler</i>)172
Figura 8.34 Comparação entre sistemas DVB-T, ISDB-T e DVBM-T. Espalhamento
temporal de 1µs. Recepção móvel (Efeito doppler) na modulação não hierárquica .172
Figura 8.35 Comparação entre sistemas DVB-T e DVBM-T. Espalhamento temporal de
1μs. Recepção móvel (Efeito <i>doppler</i>) na modulação hierárquica α=2 LP173
Figura 8.36 Comparação entre sistemas DVB-T e DVBM-T. Espalhamento temporal de
1μs. Recepção móvel (Efeito <i>doppler</i>) na modulação hierárquica α=2 HP173

Lista de Tabelas

TABELA 3.1. CARACTERÍSTICA DO PUNCIONAMENTO	31
TABELA 3.2. DIVISÃO DO NÚMERO DE FEIXES PARA CADA MODULAÇÃO	32
TABELA 3.3. DEMULTIPLEXADOR DE BIT NÃO HIERÁRQUICO	33
TABELA 3.4. DEMULTIPLEXADOR DE BIT HIERÁRQUICO	33
TABELA 3.5. EXEMPLO DA SAÍDA DO DEMULTIPLEXADOR NÃO	
HIERÁRQUICO 8K 64-QAM	34
HIERÁRQUICO 8K 64-QAMTABELA 3.6. EXEMPLO DA SAÍDA DO DEMULTIPLEXADOR HIERÁRQUICO 8	K
64-QAM	34
TABELA 3.7. EXEMPLO DA SAÍDA DO ENTRELAÇADOR DE BITS NÃO	
	36
TABELA 3.8. EXEMPLO DA SAÍDA DO ENTRELAÇADOR DE BITS	
	37
TABELA 3.9. PERMUTAÇÃO DE BITS NO MODO 2K	
TABELA 3.10. PERMUTAÇÃO DE BIS NO MODO 8K	38
TABELA 3.11. EXEMPLO DO ENTRELAÇAMENTO DE SÍMBOLOS NA	
,	38
TABELA 3.12. EXEMPLO DO ENTRELAÇAMENTO DE SÍMBOLOS NA	
MODULAÇÃO NÃO HIERÁRQUICO 8K 64-QAM	
TABELA 3.13. VALORES NÚMERICOS DO OFDM PARA 6MHZ	
TABELA 3.14. CANAL DE 6MHZ	
TABELA 3.15. FATOR DE NORMALIZAÇÃO	
TABELA 3.16. POSIÇÃO DOS PILOTOS CONTÍNUOS	
TABELA 3.17. POSIÇÃO DAS PORTADORAS PILOTOS DE SINALIZAÇÃO	48
TABELA 3.18. TAXA DE BITS PARA CANAL DE 6MHZ NA MODULAÇÃO NÃO	
	50
TABELA 3.19. TAXA DE BITS PARA CANAL DE 6MHZ NA MODULAÇÃO	
HIERÁRQUICA	
TABELA 4.1. CONFIGURAÇÃO DO QUADRO RE-MULTIPLEXADO	
TABELA 4.2. AJUSTE DE ATRASO DO ENTRELAÇADOR DE <i>BYTES</i>	
TABELA 4.3. CARACTERÍSTICA DO PUNCIONAMENTO	
TABELA 4.4. AJUSTE DO ATRASO DO BIT INTERLEAVER	
TABELA 4.5. FATOR DE NORMALIZAÇÃO	
TABELA 4.6 ATRASOS GERADOS PELO ENTRELAÇADOR TEMPORAL	68
TABELA 4.7. ALEATORIZADOR DE PORTADORAS DENTRO DE SEGMENTOS	
	73
TABELA 4.8. ALEATORIZADOR DE PORTADORAS DENTRO DE SEGMENTOS	
NO MODO 4K	/4

LISTA DE TABELAS

TABELA 4.9. ALEATORIZADOR DE PORTADORAS DENTRO DE SEGMENTOS	5
NO MODO 8K	75
TABELA 4.10. PARÂMETROS DE UM SEGMENTO DO QUADRO OFDM	77
TABELA 4.11. ARRANJO DE PILOTOS (CP, AC E TMCC) PARA A MODULAÇÃ	O
DIFERENCIAL NO MODO 2K	78
TABELA 4.12. ARRANJO DE PILOTOS (CP, AC E TMCC) PARA A MODULAÇÃ	O
DIFERENCIAL NO MODO 4K	79
TABELA 4.13. ARRANJO DE PILOTOS (CP, AC E TMCC) PARA A MODULAÇÃ	O
DIFERENCIAL NO MODO 8K	80
TABELA 4.14. ARRANJO DE PILOTOS AC E TMCC PARA A MODULAÇÃO	
COERENTE	82
TABELA 4.15. VALORES DE INICIALIZAÇÃO DO GERADOR PRBS	
TABELA 4.16. TAXA DE BITS ÚTIL PARA UM SEGMENTO	
TABELA 4.17. TAXA DE BITS ÚTIL PARA TREZE SEGMENTOS	88
TABELA 5.1. MÁXIMO PÓS-ECO TOLERADO PELO ESTIMADOR PARA A	
RELAÇÃO E/D=0	.106
TABELA 5.2. MÍNIMO E MÁXIMO VALOR DA VARIAÇÃO DE FREQÜÊNCIA	
DOPPLER PARA PÓS-ECO DE 1μs	.107
TABELA 6.1. PROCESSAMENTO DO ENTRELAÇADOR CONVOLUCIONAL	.113
TABELA 6.2. LATÊNCIA DE ENTRELAÇADORES	.115
TABELA 6.3. CÁLCULO DE MEMÓRIA	.116
TABELA 6.4. CÁLCULO DO FATOR DE ESPALHAMENTO	.117
TABELA 6.5. PARÂMETRO DO ENTRELAÇADOR TEMPORAL UTILIZADO NO)
SISTEMA DVBM-T	.124
TABELA 7.1. CONFIGURAÇÃO DO ENTRELAÇADOR TEMPORAL	133
TABELA 8.1. COMPARAÇÃO DE RESULTADOS DE SIMULAÇÃO E	
LABORATÓRIO	.142
TABELA 8.2. COMPOSIÇÃO DO SINAL	.159
TABELA 8.3. RELAÇÃO SINAL-RUÍDO DE LIMIAR	.164

Lista de Abreviaturas

1D - One Dimension (frequency)

2D - Two Dimensions (time x frequency)

AC - Auxiliary Channel

ASI - Asynchronous Serial Interface

ATSC - Advanced Television System Committee

AWGN - Additive Gaussian White Noise

BER - Bit Error Rate

BPSK - Binary Phase Shift Keying

COFDM - Coded Orthogonal Frequency Division Multiplex

CP - Continual Pilot

CPqD - Centro de Pesquisas e Desenvolvimento em Telecomunicações

DBPSK - Diferential Binary Phase Shift Keying

DFT - Discrete Fourier Transform

DQPSK - Differential Quadrature Phase Shift Keying

DVBM-T - Digital Video Broadcasting Modified Terrestrial

DVB-T - Digital Video Broadcasting Terrestrial

FDM - Frequency Division Multiplex

FEC - Forward Error Correction

FFT - Fast Fourier Transformer

FINEP - Financiadora de Estudos e Projetos

GA – Grand Alliance

HD-MAC – High Definition Multiplexed Analog Components

HDTV - High Definition Television

HP - High Priority

Hz - Hertz

I,Q - In Phase, Quadrature

ICI - Inter Carrier Interference

IDFT - Inverse Discrete Fourier Transform

IDTV - Improved Definition Television

IFFT - Inverse Fast Fourier Transformer

ISDB-T - Integrated Services Digital Broadcasting - Terrestrial

ISI - Inter Symbol Interference

JPL - Jet Propulsion Laboratory

LP - Low Priority

MPEG - Moving Picture Experts Group

MUSE – Multiple Sub-Nyquist Sampling Encoding

OFDM - Orthogonal Frequency Division Multiplex

PRBS - Pseudo Random Binary Sequence

LISTA DE ABREVIATURAS

PSAM - Pilot-Symbol Assisted Modulation

QAM - Quadrature Amplitude Modulation

QPSK - Quadrature Phase Shift Keying

RF - Radio Frequency

RS - Reed Solomon

SBTVD - Sistema Brasileiro de TV Digital

SDTV - Standard Definition Television

SFN - Single Frequency Network

SP -Scattered Pilot

SPI - Synchronous Parallel Interface

TMCC - Transmission and Multiplexing Configuration Control

TS - Transport Stream

TSP - Transport Stream Packet

Lista de Símbolos

 $\pi(i)$ saída do entrelaçador temporal

 β roll-off

H estimação do canal

Hp função de transferência da piloto

 E/D_{dB} relação entre a potência do sinal refletido (em dB) e a potência do

sinal direto (em dBm)

 Δf espalhamento *doppler* medido em Hz

 A_{TI} atraso do entrelaçador temporal

C potência do sinal total (sinal principal + sinais de eco)

C coeficientes independentes de três sucessivos sinais de referência

C/N relação sinal-ruído

C/Neq relação sinal (sinal principal + sinal eco)-ruído equivalente

 $c_{m,l,k}$ dado a ser transmitido representado por um símbolo complexo que

modulará uma portadora k no símbolo OFDM l e no quadro OFDM m

D/E relação sinal principal-eco D/N relação sinal principal-ruído D potência do sinal principal

distância livre do codificador convolucional

E potência do sinal eco

 f_c frequência central do canal de RF

g(x) gerador polinomial do codificador *Reed Solomon* G_1, G_2 gerador polinomial do codificador convolucional

h(n) resposta impulsiva do canal

i índice de prioridade

I ajuste do tamanho do entrelaçador i entrada do entrelaçador temporal 10,11,12,13,14,15 entrada do entrelaçador interno

 $I\pi$ entrelaçador

k número da portadora

K número de portadoras ativas

k razão do intervalo de guarda = 1/4, 1/8, 1/16 ou 1/32 k' índice da portadora relativo ao centro da freqüência

1 número do símbolo OFDM

l distância entre o piloto de referência e a k_n subportadora.

LISTA DE SÍMBOLOS

L espaçamento entre pilotos m número do quadro OFDM

m posição do piloto

 M_d tamanho da IFFT = 2048 para 2k e 8192 para 8k

N potência do ruído branco gaussiano na entrada do receptor

Nc número de portadoras

Neg PA potência do ruído branco gaussiano equivalente

N_F número de quadros OFDM atrasados N_{SA} número de símbolos para ajuste p índice do piloto espalhado

Pw largura de pulso do ruído impulsivo R_b taxa de bits efetiva transmitida

 R_{cc} razão do codificador convolucional = 1/2, 2/3, 3/4, 5/6 ou 7/8

 R_{rs} razão do codificador $Reed\ Solomon = 188/204$

Sim número de símbolos atrasados

T período elementar

T período dos pulsos do simulador de ruído impulsivo

T_F duração do quadro OFDM

 T_S duração do símbolo OFDM com intervalo de guarda T_{su} tamanho do símbolo útil = 1512 para 2k e 6048 para 8k

 T_u tempo útil do símbolo OFDM em μ s

v número de bits utilizado para cada modulação

V matriz derivativa de segunda ordem

w k valor de referência da seqüência PRBS que irá modular o piloto k

w(n) ruído branco AWGN. *Xi* següência de entrada

 X_p piloto contínuo ou espalhado de referência

 Y_p informação do piloto contínuo ou espalhado recebido

 Δ/Tu valor do intervalo de guarda Δ duração do intervalo de guarda

α fator de correção da constelação QAM na modulação hierárquica

Capítulo 1

Introdução

1.1 Introdução

No início da década de 80, era remota a possibilidade de se transmitir imagens totalmente digitais. Um dos motivos para impossibilitar as transmissões digitais era que um sinal de vídeo digitalizado de 525 ou 625 linhas necessitava de aproximadamente 270Mbps de taxa para que pudesse ser transmitido com uma qualidade de imagem adequada. Com o objetivo de se melhorar a definição dos sistemas analógicos, o Japão, a Europa e os Estados Unidos desenvolveram sistemas analógicos/digitais com resolução vertical de 750 linhas para o modo de definição intermediária IDTV "Improved Definition Television" e 1125 ou 1250 linhas para o modo de alta definição HDTV "High Definition Television".

As primeiras propostas de HDTV no mundo operavam com imagens HDTV digitalizadas e requeriam taxas em torno de 1.5Gbps, o que resultou nos sistemas mistos: (MUSE "Multiple Sub-Nyquist Sampling Encoding" no Japão, HD-MAC "High Definition - Multiplexed Analog Components" na Europa e GA "Grand Alliance" nos Estados Unidos), os quais operavam em sistemas analógicos com assistência digital.

Entretanto na década de 90, a situação mudou completamente com o desenvolvimento de algoritmos de compressão de vídeo como o MPEG-2 "Moving Pictures Expert Group-2" que possibilitaram comprimir vídeos em HDTV com taxas de 1.5Gbps para 20Mbps. Dessa forma, os sistemas analógicos que estavam sendo desenvolvidos no mundo foram abandonados e substituídos pelos sistemas: americano ATSC "Advantage Television System Committee", europeu DVB-T "Digital Vídeo Broadcasting -Terrestrial" e japonês ISDB-T "Integrated Systems Digital Broadcasting - Terrestrial".

As transmissões comerciais de televisão digital terrestre se iniciaram em 1998 na Europa (sistema DVB-T) e nos Estados Unidos (sistema ATSC). Em 2003 tiveram início as transmissões comerciais no Japão (sistema ISDB-T). Como premissa dos sistemas, eles estão substituindo os atuais sistemas analógicos em seus respectivos países e foram projetados para operar em suas respectivas condições de canal.

Ambos os sistemas de TV Digital utilizam como base de compressão de sinais fonte o MPEG-2 e permitem transmitir aproximadamente 19Mbps. Ao contrário dos sistemas analógicos, os sistemas de TV Digital funcionam perfeitamente até o seu limiar de taxa de erro.

No Brasil, vários estudos estão sendo realizados com os sistemas existentes e em breve será constituída uma proposta para o Sistema Brasileiro de TV Digital (SBTVD).

1.2 Motivações e Objetivos

Os sistemas DVB-T e ISDB-T utilizam a modulação OFDM e possuem um estágio de codificação de canal bem parecido. O sistema de modulação japonês é também conhecido por BST-OFDM "Band Segmented Transmission — OFDM". Em 2000, os resultados dos testes de TV Digital no Brasil [1, 2], provaram que o sistema europeu de TV Digital não possui robustez quando interferido por ruído impulsivo. Nos testes de campo realizados na cidade de São Paulo foram detectados que a presença de reflexões (multipercurso) ocorreram em todos os pontos de medidas. Simultaneamente com o multipercurso, em 23% dos pontos testados, a interferência por ruído impulsivo era intensa. O sistema DVB-T alcançou ótimos resultados quando submetidos a reflexões, mas teve o pior desempenho quando submetido ao ruído impulsivo.

Este trabalho tem como objetivo estudar duas tecnologias de TV Digital (DVB-T e ISDB-T) e implementar alterações no estágio de codificação do sistema DVB-T para tornálo mais robusto quando interferido por ruído impulsivo. A proposta consiste em implementar um entrelaçador temporal no sistema DVB-T, chamado de DVBM-T (*Digital Vídeo Broadcasting Terrestrial*) realizando simulações e comparando os resultados com os testes realizados em laboratório em receptores comerciais dos sistemas DVB-T e ISDB-T.

Para efeito de comparação as simulações ocorreram com os mesmos modelos de canais utilizados em laboratório. As simulações apresentadas foram realizadas no sistema DVB-T e versão modificada do sistema DVB-T que foi chamada de DVBM-T "Digital Vídeo Broadcasting Modified - Terrestrial".

1.3 Organização da Tese

No capítulo dois, conceitos fundamentais da modulação OFDM que é utilizada nos sistemas DVB-T e ISDB-T são apresentados. As principais técnicas de implementação e o uso do intervalo de guarda como proteção natural do sistema contra *interferência intersimbólica* e interferência entre portadoras são apresentadas.

Nos capítulos três e quatro, os sistemas DVB-T e ISDB-T são apresentados com detalhamento dos blocos funcionais. O DVB-T utiliza um codificador de canal formado por um aleatorizador de dados, codificador Reed Solomon com entrelaçador de bytes, codificador convolucional de taxa mãe 1/2 com ajuste de puncionamento e entrelaçamento de bits e símbolos. O estágio de modulação é formado pelo mapeamento das modulações QPSK, 16-QAM ou 64-QAM e OFDM que opera com IFFT de tamanho 2k ou 8k. Uma estrutura de sincronismo é adicionada com a inserção de pilotos e prefixo cíclico que garante a robustez do sistema contra interferência intersimbólica. O ISDB-T divide o canal de RF em 13 bandas de frequência das quais três feixes de dados denominados de camadas A, B e C podem ser associados aos segmentos. O estágio de codificação é formado por um aleatorizador de dados, codificador Reed Solomon com entrelaçador de bytes, codificador convolucional de taxa mãe 1/2 com ajuste de puncionamento e entrelaçamento de bits e símbolos. O estágio de modulação é formado pelo mapeamento das modulações DQPSK, QPSK, 16-QAM ou 64-QAM. As camadas A, B e C são combinadas e entrelaçadas no tempo (100, 200 ou 400ms) e freqüência por um algoritmo aleatorizador. Uma estrutura de sincronismo é adicionada com a inserção de pilotos de referência, sinalização e controle. O modulador OFDM opera com IFFT de tamanho 2k, 4k ou 8k e prefixo cíclico que garante a robustez do sistema contra interferência intersimbólica.

No capítulo cinco, dois métodos de estimação de canal para o sistema OFDM baseados na estimação em uma dimensão 1D (freqüência) e duas dimensões 2D (tempo x freqüência) são apresentados. A estimação de canal é feita após a demodulação do sinal OFDM sendo que o receptor utiliza a informação dos pilotos de referência para corrigir a constelação das subportadoras de dados através de interpolações. Os resultados de simulação dos estimadores em canais com variação do espalhamento temporal e espalhamento *doppler* são apresentados.

No capítulo seis, propostas de entrelaçadores para tornar o sistema DVBM-T imune a erros causados por ruído impulsivo são apresentados. O entrelaçador dispersa as seqüências de bits com o objetivo de minimizar o efeito de erros de bloco no meio de uma transmissão de dados. Esses erros de bloco são criados a partir do ruído impulsivo de alguns equipamentos e do *fading* seletivo no canal de comunicação. Os códigos corretores de erros não conseguem corrigir erros concentrados em uma seqüência. Usando-se os entrelaçadores, a sequência de bits transmitida é embaralhada e no momento em que ocorre uma concentração de erros no canal de comunicação, o decodificador desembaralha a sequência espalhando os erros. Nesse momento os códigos corretores de erros conseguem detectar e corrigir erros com grande eficiência. Os resultados de simulação de entrelaçadores em canais com ruído impulsivo são apresentados.

No capítulo sete, o simulador desenvolvido na plataforma Matlab/Simulink é apresentado abordando-se os principais blocos que foram implementados no sistema DVBM-T e que já foram explicados em capítulos anteriores. Considerando que uma simulação composta com apenas alguns blocos não seria fiel ao sistema foi estudada uma maneira de se realizar uma simulação completa com todos os blocos que compõem o sistema DVB-T e DVBM-T. Para testar a eficiência do simulador, alguns resultados de simulação, foram comparados com resultados de laboratório.

No capítulo oito, resultados de simulações com o sistema DVBM-T e testes de laboratório nos sistemas DVB-T e ISDB-T são apresentados. As simulações foram realizadas nas configurações não hierárquica 8k, 64-QAM, FEC=3/4, I.G.=1/16 e hierárquica com α = 2 LP 64-QAM, FEC=3/4, I.G.=1/16 e HP 64-QAM, FEC=1//2, I.G.=1/16 com entrelaçamento de 0 ms, 100ms e 200ms. Os testes de laboratório foram

realizados com vários receptores domésticos até encontrar o limiar de funcionamento (aparecimento de artefatos na imagem). Para o DVB-T foram utilizadas as configurações não hierárquica 8k, 64-QAM, FEC=3/4, I.G.=1/16 e hierárquica com α = 2 LP 64-QAM, FEC=3/4, I.G.=1/16 e HP 64-QAM, FEC=1//2, I.G.=1/16. No ISDB-T apenas a configuração 8k, 64-QAM, FEC=3/4, I.G.=1/16, 200ms e 13 segmentos foi utilizada.

No capítulo nove são apresentadas as conclusões e sugestões para trabalhos futuros.

1.4 Resumo das Contribuições

As seguintes contribuições foram feitas nesta tese:

- Detalhamento do funcionamento dos blocos funcionais dos sistemas de TV Digital DVB-T e ISDB-T;
- Implementação de duas técnicas de estimação de canal para o sistema DVB-T: Uma dimensão *piecewice* para recepção móvel e em duas dimensões combinada com *cubic-spline* para recepção fixa.
- Proposta de um entrelaçador temporal de símbolos complexos dentro de símbolos OFDM mais eficiente quando comparada com o sistema ISDB-T.
- Resultados de simulações e testes de laboratório dos sistemas DVBM-T, DVB-T e ISDB-T.
 - Desenvolvimento do simulador do sistema DVBM-T.
- Submissão do artigo "*Improving DVB-T for Brazilian Environments*" para a revista IEEE Transactions On Broadcasting Technology Society.

CAPÍTULO 1. INTRODUÇÃO

Capítulo 2

OFDM

2.1 Introdução

O sistema OFDM surgiu por volta dos anos 60, quando Chang publicou seu artigo sobre síntese de transmissão com vários canais limitados em banda [3]. Ele apresentou o princípio de transmissão de mensagens em vários canais limitados em banda sem causar interferência entre portadoras (ICI) *Inter Carrier Interference* e interferência entre símbolos (ISI) *Inter Symbol Interference*. Em 1971 Weinstein e Ebert [4] usaram a transformada discreta de Fourier (DFT) para melhorar o desempenho da modulação e demodulação. Para combater a ISI e a ICI eles utilizaram um espaço vazio de guarda entre os símbolos e um janelamento com o co-seno levantado no domínio do tempo. O sistema proposto por eles não obtinha uma perfeita ortogonalidade entre as subportadoras sobre um canal dispersivo, mas isso foi a maior contribuição do OFDM [5]. Uma outra contribuição importante foi a de Peled e Ruiz em 1980 [6], que introduziram o prefixo cíclico ou extensão cíclica, resolvendo o problema de ortogonalidade. Em vez de utilizar um espaço de guarda vazio, eles preencheram esse espaço com uma extensão cíclica do símbolo OFDM.

O sistema OFDM consiste em uma técnica de transmissão com múltiplas portadoras, na qual divide-se o espectro disponível em muitas subportadoras, cada uma sendo modulada por um feixe de baixa taxa de dados. A multiplexação ortogonal por divisão de freqüência codificada COFDM "Coded Orthogonal Frequency Division Multiplexing" é a mesma do OFDM exceto pela codificação de canal que é aplicada antes do sinal a ser transmitido. O OFDM é muito semelhante à técnica de multiplexação por divisão de freqüência FDM

"Frequency Division Multiplexing", entretanto o OFDM utiliza o espectro de frequência de forma mais eficiente com o espaçamento de frequência muito menor. Isso ocorre porque as portadoras são ortogonais entre si eliminando a interferência entre portadoras.

Essa tecnologia permite uma recepção de sinais afetados por multipercurso e desvanecimento do canal e está sendo adotada nos sistemas de TV Digital DVB-T "Digital Vídeo Broadcasting - Terrestrial", ISDB-T "Integrated System Digital Broadcasting - Terrestrial", DMB-T "Digital Multimídia Broadcasting - Terrestrial" e em outras aplicações como o DAB "Digital Audio Broadcasting", ADSL "Asymmetric Digital Subscriber Line" e redes de dados sem fio (IEEE802.11).

2.2 Geração do sistema OFDM

2.2.1 Modelo contínuo no tempo

O primeiro sistema OFDM não utilizava modulação e demodulação digital. A Figura 2.1 ilustra o diagrama de blocos de um transmissor OFDM em um modelo contínuo no tempo. Ele é composto por um conjunto de L símbolos OFDM que é gerado pela soma de N subportadoras em uma banda de W Hz e com duração total de $T_s = T_u + \Delta$ segundos, na qual T_u e Δ representam a duração útil do símbolo e o intervalo de guarda, respectivamente. Cada subportadora k é modulada por um sinal k que pode ser representada por um símbolo PSK, QAM, etc e transporta um pequeno feixe de dados k0 (símbolos) que varia com o próprio método empregado. Esses feixes de dados são gerados a partir da conversão serial paralela da fonte de sinal antes da modulação em quadratura. Nessa conversão, a parte real k0 e imaginária k1 devem ser multiplicadas por um cosseno ou seno na freqüência central de sua respectiva subportadora a ser transmitida (2.1) que correspondem às partes em fase k1 e em quadratura k3 do sinal OFDM. Um pulso retangular k4 modulado na freqüência k5 modula cada subportadora (2.2) [5].

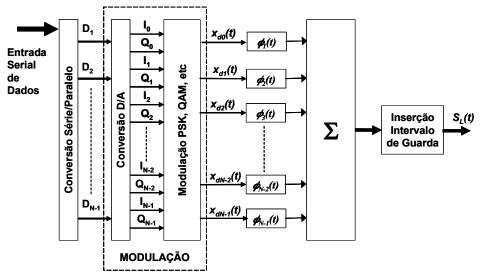


Figura 2.1 Diagrama de blocos de um transmissor OFDM em banda base

$$x_{k,L} = a_{k,L} \cos(Wt) + b_{k,L} \sin(Wt),$$
 (2.1)

$$\phi_{k}(t) = \begin{cases} \frac{1}{\sqrt{Ts - \Delta}} e^{j2\pi \frac{W}{N}k(t - \Delta)} & t \in [0, Ts] \\ 0 & Caso \cdot contrário \end{cases}, \tag{2.2}$$

Considerando que o modulador da Figura 2.1 está gerando um símbolo OFDM L, pode-se escrevê-lo em (2.3) usando-se (2.1) e (2.2).

$$s_L(t) = \sum_{k=0}^{N-1} x_{k,L} \cdot \phi_k(t - LTs), \qquad (2.3)$$

Um sinal real com infinitos símbolos OFDM pode ser representado por (2.4):

$$s(t) = \sum_{L=-\infty}^{\infty} \sum_{k=0}^{N-1} x_{k,L} \cdot \phi_k (t - LTs),$$
(2.4)

2.2.2 Modelo discreto usando IDFT/DFT

A Transformada Discreta de Fourier (DFT) é considerada uma das mais importantes e poderosas ferramentas para uso em processamento digital de sinais. A DFT habilita

analisar, manipular e sintetizar sinais de forma abrangente em relação ao tratamento analógico de sinais. A DFT é um procedimento matemático usado para se determinar harmônicos ou frequências em uma sequência discreta do sinal. Entretanto por outros motivos a sequência discreta do sinal é composta por valores obtidos pela amostragem periódica de um sinal contínuo no domínio do tempo. A DFT é originária da transformada contínua de Fourier definida como (2.5), onde x(t) representa um sinal contínuo no domínio do tempo e X(f) um sinal contínuo no domínio da frequência [7].

$$X(f) = \int_{-\infty}^{\infty} x(t) \cdot e^{-j2\pi ft} dt, \qquad (2.5)$$

Pode-se reescrever a equação (2.5) no domínio discreto em (2.6):

$$X(m) = \sum_{n=0}^{N-1} x(n) \cdot e^{-j2\pi nm/N}, \qquad (2.6)$$

Um modelo discreto do sistema OFDM pode ser visto na Figura 2.2, onde a modulação e demodulação são representadas pelas transformadas IDFT e DFT e o canal como uma convolução discreta no tempo.

Considerando a sequência $x_{k,l}$ como visto em (2.1) aplicada na transformada IDFT de (2.7), tem-se:

$$s_L(t) = \sum_{k=0}^{N-1} x_{k,L} \cdot e^{j2\pi \frac{W}{N}kt}$$
 (2.7)

$$s_L(nT) = \frac{1}{\sqrt{Ts}} \sum_{k=0}^{N-1} x_{k,L} \cdot \phi_{k,L}(nT)$$
(2.8)

$$\phi_{k,L}(nT) = \begin{cases} e^{j2\pi \frac{k}{Tu}(nT - \Delta - LTs)} & 0 \le nT \le LTs \\ 0 & caso \ contrário \end{cases}$$
(2.9)

Sendo T o período de amostragem e $\phi_{k,L}$ a k-ésima subportadora ortogonal do L-ésimo símbolo OFDM. Cabe observar que $S_L(nt)$ é a própria IDFT de $x_{k,L}$ para Δ =0.

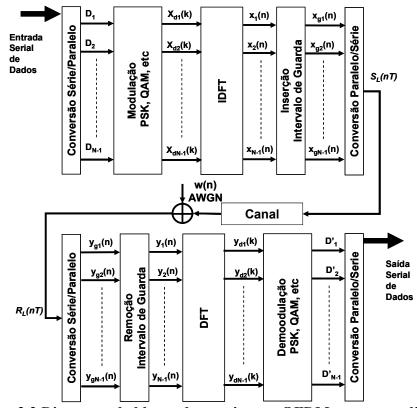


Figura 2.2 Diagrama de blocos de um sistema OFDM em tempo discreto

Considerando um canal invariante no tempo h(iT), portanto com resposta impulsiva constante para todo símbolo L e o ruído branco gaussiano W(nT) amostrado, o sinal recebido pode ser visto em (2.10).

$$r_L(nT) = \sum_i h(iT) \cdot S[(n-i)T] + w(nT),$$
 (2.10)

Então a informação útil $y_{k,L}$ recebida que contém a informação $x_{k,L}$ transmitida com a resposta impulsiva do canal h(iT) e o ruído gaussiano do canal $w_{k,L}$ pode ser escrita em

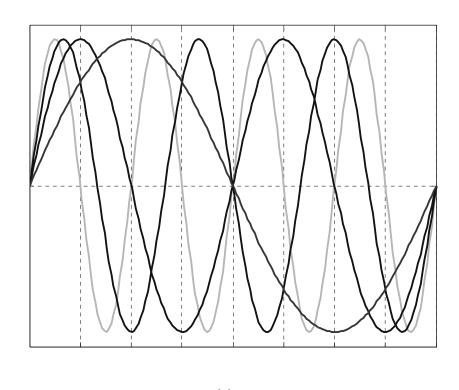
(2.11) [5]. Assumindo que o ruído é branco gaussiano, o termo $DFT(w_{k,L})$ é igual a $w_{k,L}$ onde representa o ruído gaussiano sem correlação.

$$y_{k,L} = DFT(IDFT(x_{k,L}) \otimes h_{k,l}) + w_{k,l}, \qquad (2.11)$$

$$y_{k,L} = DFT(IDFT(x_{k,L}) \otimes h_{k,l} + w_{k,l}), \qquad (2.12)$$

Entretanto a DFT de dois sinais ciclicamente convolucionados equivalem ao produto individual de suas DFTs (2.13).

$$y_{k,L} = x_{k,L} \cdot DFT(h_{k,L}) + w_{k,l},$$
 (2.13)


onde, $DFT(h_{k,L})$ equivale à resposta em frequência do canal.

2.3 Ortogonalidade

Ortogonalidade, neste caso significa uma relação entre as frequências de todas as portadoras. Essa ortogonalidade garante que cada portadora possua um número inteiro de períodos dentro do símbolo OFDM como pode ser visto na Figura 2.3(a). Em um sistema OFDM as portadoras são arranjadas de tal forma que as bandas laterais de cada subportadora individual não sobreponham a subportadora adjacente sem causar ICI, assim o espectro possui um nulo no centro da freqüência de cada uma das subportadoras do sistema. como pode ser visto na Figura 2.3(b).

2.4 Intervalo de guarda

Para eliminar a ISI entre símbolos OFDM completamente, um tempo de guarda é adicionado em cada símbolo OFDM. O tempo de guarda é escolhido de maneira a tolerar o máximo espalhamento temporal, na qual componentes de um símbolo OFDM não

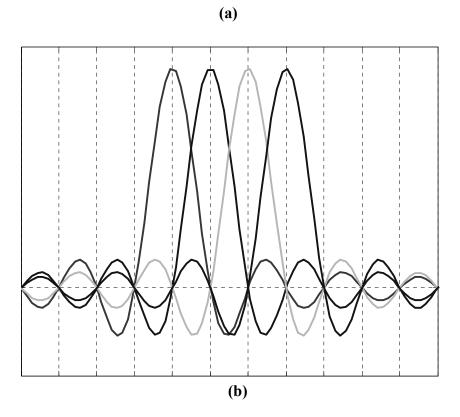


Figura 2.3 Sinal OFDM de 4 subportadoras. (a) Domínio do tempo (b) Domínio da freqüência

interfiram no outro. O tamanho do intervalo de guarda deve ser escolhido com valor superior ao esperado do espalhamento temporal.

O intervalo de guarda pode ser constituído por um espaço vazio [5], mas em canais dispersivos os atrasos de cada subportadora podem ser diferentes, devido a vários caminhos de propagação, ocorrendo uma ICI dentro do símbolo OFDM fazendo com que as subportadoras deixem de ser totalmente ortogonais. A Figura 2.5 ilustra a interferência entre portadoras causada pela inserção do intervalo de guarda nulo em um canal dispersivo no domínio do tempo e freqüência. No domínio do tempo as subportadoras deixam de ser ortogonais pois não possuem um número inteiro de ciclos dentro da parte útil do símbolo OFDM. No domínio da freqüência a ICI está cruzada com várias subportadoras [8].

Para eliminar a ICI, o símbolo OFDM é estendido ciclicamente para dentro do intervalo de guarda [6] como pode ser visto pela equação (2.14) e Figura 2.4.

Isso garante que as subportadoras atrasadas do símbolo OFDM sempre terão um número inteiro de ciclos na parte útil do símbolo OFDM como pode ser visto na Figura 2.6.

$$x_{g}(n) = \begin{cases} x(N+n), & n = -Ng, -Ng+1, \dots, -1 \\ x(n), & n = 0, 1, \dots, N-1 \end{cases},$$
 (2.14)

onde:

 $x_g(n)$ = Número de amostras do Símbolo OFDM T_s com intervalo de guarda,

N = Número de subportadoras

 N_g = Número de amostras do intervalo de guarda Δ

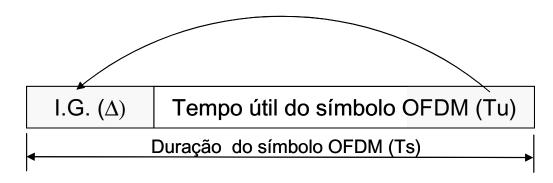


Figura 2.4 Intervalo de guarda formado por uma cópia (prefixo cíclico) da parte final do símbolo OFDM

Agora para demonstrar como o multipercurso afeta o sistema OFDM, a Figura 2.7(a) ilustra a resposta impulsiva de um canal com multipercurso, onde CP é o sinal principal e MC1, MC2 e MC3 os caminhos indiretos. Para esse exemplo o intervalo de guarda possui duração maior do que o espalhamento temporal. A Figura 2.7(b) ilustra o sinal recebido de uma subportadora nesse canal, onde R corresponde a soma dos sinais atrasados (sinal resultante). Pode-se observar que a soma dos sinais R continua ortogonal dentro da parte útil do símbolo OFDM não existindo *interferência intersimbólica*. Se o espalhamento de atraso for menor do que o intervalo de guarda não existe ISI. O sinal resultante está com amplitude e fase diferente em relação ao sinal principal. Nesse ponto o sinal deve ser equalizado utilizando-se uma das técnicas de estimação de canal que será visto no capítulo 5.

A Figura 2.8(a) ilustra a resposta impulsiva de um canal com multipercurso onde se nota que o espalhamento temporal é maior do que o intervalo de guarda. Nota-se também na Figura 2.8(b) que existe uma *interferência intersimbólica* dentro da parte útil do símbolo OFDM. Para se ter uma idéia desse tipo de interferência, a Figura 2.9 ilustra três constelações derivadas da simulação do sistema DVBM-T que será apresentado no capítulo 7. Para esse exemplo foi utilizado um estimador de canal ideal (dentro do intervalo de guarda) e a configuração DVBM-T no modo 8k, modulação 64-QAM, FEC de 3/4 e intervalo de guarda de 1/16 que corresponde ao tempo de guarda de 74.667µs. A

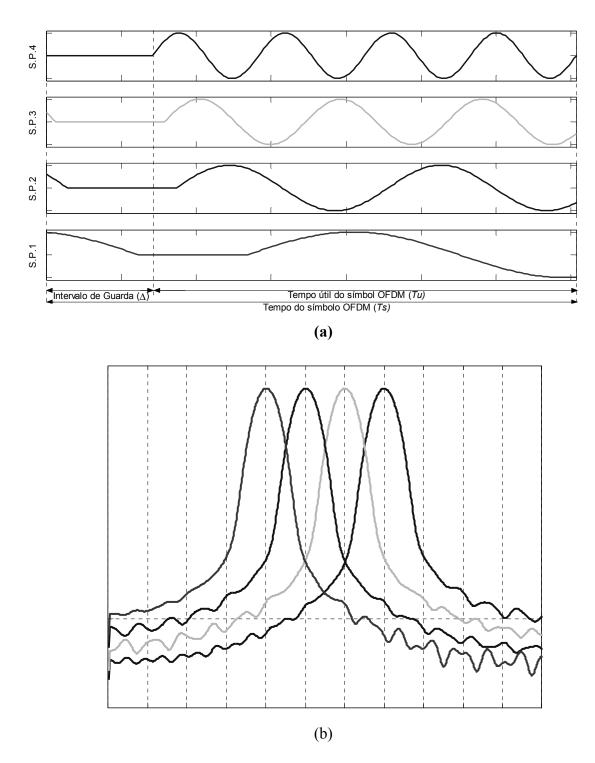
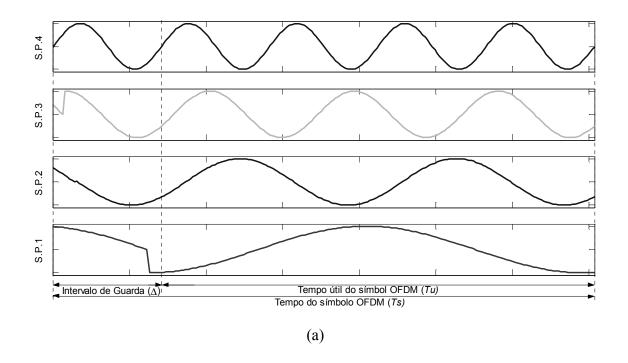



Figura 2.5 Sinal OFDM de 4 subportadoras com intervalo de guarda utilizando espaçamento nulo em um canal dispersivo. (a) Domínio do tempo (b) Domínio da freqüência

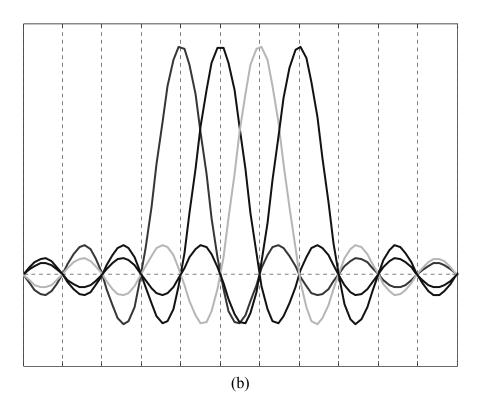
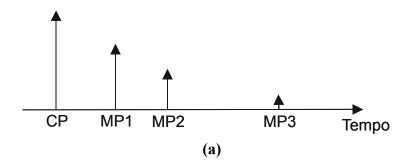



Figura 2.6 Sinal OFDM de 4 subportadoras com intervalo de guarda utilizando prefixo cíclico

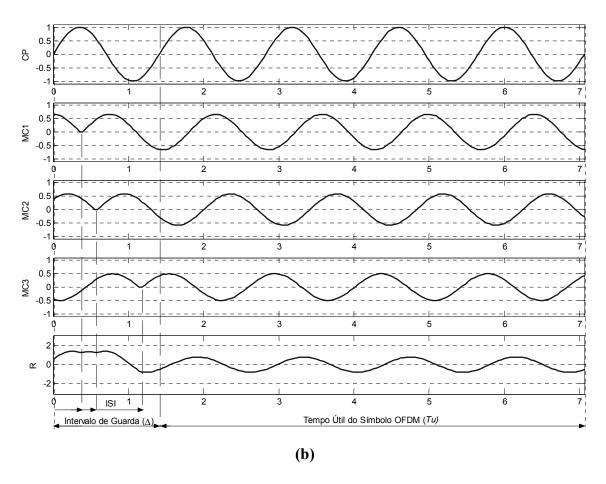
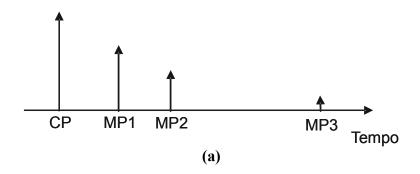



Figura 2.7 Análise de uma portadora do sinal OFDM após o canal com espalhamento temporal. O espalhamento temporal é menor do que o intervalo de guarda. (a) Resposta impulsiva do canal (b) Sinal OFDM com intervalo de guarda

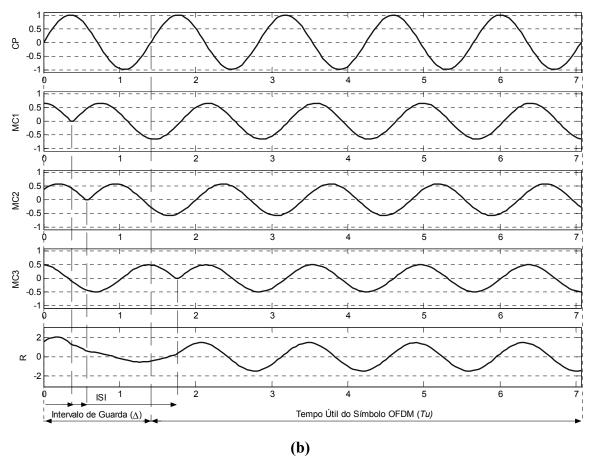


Figura 2.8 Análise de uma portadora do sinal OFDM após o canal com espalhamento temporal. O espalhamento temporal é maior do que o intervalo de guarda. (a) Resposta impulsiva do canal (b) Sinal OFDM com intervalo de guarda

Figura 2.9(a) mostra a constelação 64-QAM observada quando o atraso do multipercurso é menor do que o intervalo de guarda: 74.521μs. Na Figura 2.9(b), o espalhamento temporal do multipercurso excede 1% do intervalo de guarda: 75.396μs. Nesse ponto as subportadoras deixam de ser ortogonais e a interferência intersimbólica não é muito grande. Na Figura 2.9(c), o espalhamento temporal do multipercurso excede 10% do intervalo de guarda: 82.104μs.

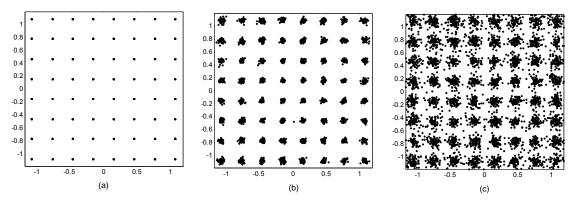


Figura 2.9 Constelação 64-QAM do sistema DVBM-T 8k, 3/4, 1/16. (a) Espalhamento temporal menor do que o intervalo de guarda. (b) Espalhamento temporal 1% maior do que o intervalo de guarda. (c) Espalhamento temporal 10% maior do que o intervalo de guarda.

2.5 Janelamento (Formatador de pulsos)

Como visto na seção anterior, os símbolos OFDM podem ser formados pela IDFT e com uma extensão cíclica para o intervalo de guarda. No exemplo da Figura 2.6(a), podese visualizar bruscas variações de fase causadas pela modulação QAM. Como o sistema OFDM é gerado a partir de várias subportadoras QAM sem filtro, o espectro decai lentamente de acordo com a função sinc. Com o aumento de subportadoras o espectro cai mais rápido causado pelos lóbulos que estão mais pertos. Como exemplo, a Figura 2.10 ilustra o espectro do sinal DVB-T em banda base no modo 2k e 8k. Para que o espectro decaia rapidamente, um janelamento do tipo cos-seno levantado com roll-off β é aplicado a cada símbolo OFDM. O janelamento reduz a amplitude do símbolo em seus limites como pode ser visto em (2.15) e na Figura 2.11.

$$w(t) = \begin{cases} 0.5 + 0.5\cos(\pi + t\pi/(\beta Ts)) & 0 \le t \le \beta Ts \\ 1 & \beta Ts \le t \le Ts \\ 0.5 + 0.5\cos(\pi + t\pi/(\beta Ts)) & Ts \le t \le (1 + \beta)Ts \end{cases}$$
(2.15)

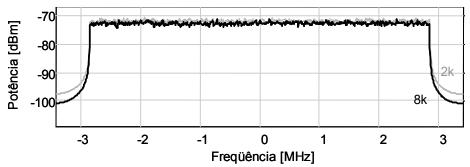


Figura 2.10 Espectro do sistema DVB-T 64-QAM, 3/4, 1/16 no modo 2k e 8k

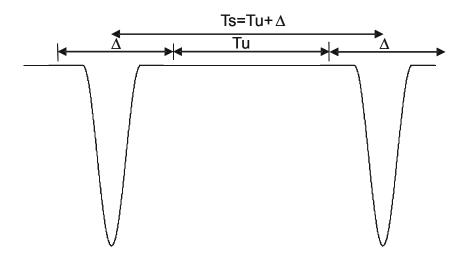


Figura 2.11 Símbolo OFDM com intervalo de guarda e janelamento cos-seno levantado. Tu é a parte útil do símbolo OFDM. Δ é o intervalo de guarda.

A Figura 2.12 ilustra o espectro do sistema DVB-T no modo 8k, IG=1/4 com vários valores de *roll-off*. Pode-se observar que para o fator *roll-off* de 0.025, apenas 2.5% do intervalo do símbolo OFDM é utilizado com um grande ganho. Valores maiores de *roll-off*

melhoram o espectro, mas reduzem a tolerância do espalhamento temporal do símbolo OFDM [8]. Esse efeito pode ser visualizado na Figura 2.13, onde o sinal é recebido por um multipercurso de 2 caminhos com espalhamento temporal menor do que o intervalo de guarda. O receptor demodula todas as subportadoras no intervalo Tu, mas devido à modulação em amplitude na parte cinza do símbolo OFDM, é possível notar a ocorrência de ICI e ISI. Dessa forma, conclui-se que a proteção do intervalo de guarda é reduzida com o fator *roll-off* β.

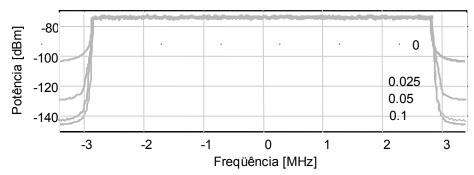


Figura 2.12 Espectro do sistema DVB-T 8k 64-QAM, 3/4, 1/16 com janelamento de cos-seno levantado para os valores de *roll-off* de 0 (janela retangular), 0.025, 0.05 e 0.1.

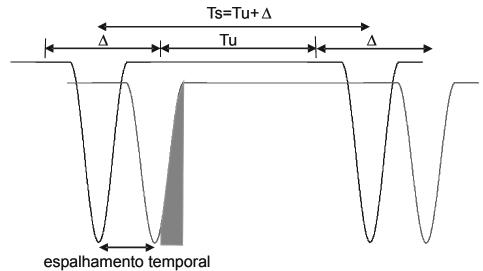


Figura 2.13 Símbolo OFDM interferido por um canal de 2 multipercurso com espalhamento temporal inferior a duração do intervalo de guarda. A parte cinza ilustra a ICI e ISI.

2.6 Sincronismo

Antes do receptor OFDM demodular as subportadoras, ele deve realizar duas rotinas de sincronização [9]. A primeira, é encontrar os limites do símbolo OFDM (sincronismo temporal) que irão minimizar os efeitos de ISI e ICI. A segunda é estimar a correta variação de freqüência (sincronismo de freqüência) das subportadora para que não ocorra ICI.

Em um sistema OFDM as subportadoras são totalmente ortogonais somente se o transmissor e receptor estiverem sincronizados em freqüência. Qualquer variação de freqüência resulta em ICI. Esse problema pode ser gerado pelo ruído de fase dos osciladores do transmissor e receptor. Esse ruído modula aleatoriamente a fase do oscilador resultando em uma variação de freqüência (*jitter*) que causa ICI e ISI no receptor OFDM. Para os sistemas de portadora única, o ruído de fase apenas degrada a relação sinal-ruído do receptor, pois as constelações perdem o foco. O sistema OFDM é altamente sensível aos erros de sincronização e por isso esse sistema, perante o ruído de fase, vem demonstrando desvantagens em relação aos sistemas de portadora única.

2.6.1 Sincronismo Temporal

A sincronização temporal entre símbolos OFDM é de vital importância para minimizar os erros de canal. Entretanto com o uso do intervalo de guarda, a precisão crítica do sincronismo temporal diminui. Dessa forma, com o uso do intervalo de guarda é possível determinar quando o símbolo OFDM se inicia. O impacto da análise da sincronização temporal foi analisado em [10, 11]. A variação no tempo de sincronismo aumenta a rotação de fase das subportadoras. Se a rotação de fase é maior do que o centro da freqüência da banda, o erro de sincronização temporal é muito menor do que a resposta impulsiva do canal com o intervalo de guarda e a ortogonalidade é mantida. Nesse caso o tempo de símbolo pode ser visto como a introdução de uma variação de fase que pode ser recuperada pelo estimador de canal. Existem dois métodos para a sincronização temporal [5]: baseada em pilotos ou no intervalo de guarda.

2.6.2 Sincronismo de Frequência

Variações de freqüência são criadas pela diferença de osciladores do transmissor e receptor, efeito *doppler*, ou o ruído de fase introduzido por canais não lineares. O efeito desse tipo de canal é totalmente destrutivo causando variações de freqüência nas subportadoras do sistema OFDM. Uma das causas é a redução da amplitude do sinal (as funções *sinc* são desviadas e a amostragem é realizada fora do pico) e em outras causando ICI e ISI. A Figura 2.14 ilustra o efeito do desvio de freqüência ΔF na amostragem de uma subportadora. Pode-se notar que no ponto de amostragem, a amplitude do sinal não é máxima e foi somada com a interferência de outras subportadoras. Existem vários métodos de sincronização em freqüência [12, 13, 14, 15, 16, 17, 18]. Alguns são baseados na sincronização de pilotos e o outro na sincronização do intervalo de guarda.

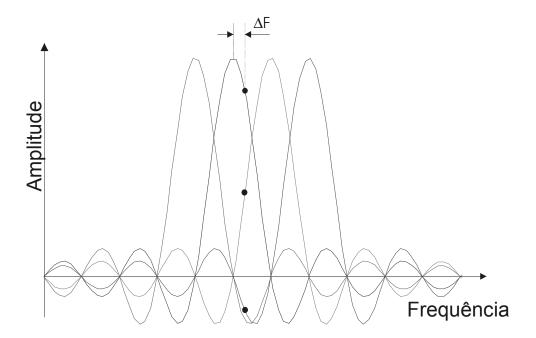


Figura 2.14 Desvio de freqüência ΔF na amplitude do sinal e inserção de interferência de outras subportadoras

Capítulo 3

Sistema DVB-T "Digital Video Broadcasting — Terrestrial"

3.1 Introdução

Este capítulo descreve as características do sistema europeu de televisão digital. As informações foram baseadas na norma ETS 300744 V1.4.1 de abril de 2001 [19] e serviram como referência para construção do simulador DVBM-T que será descrito no capítulo 7. O DVB não possui uma norma específica para o projeto de receptores, apenas recomendações de valores característicos que devem ser obedecidos.

O projeto DVB foi fundado em setembro de 1993 e é formado por um consórcio de organizações públicas e privadas do setor da indústria e televisão. Utiliza como base de compressão o MPEG-2 e foi adotado em 11 de junho de 1999.

O sistema europeu foi projetado inicialmente para operar em um canal de 8MHz de largura de banda e posteriormente adaptado para operar em 7 e 6 MHz.

3.2 Diagrama de blocos

O diagrama de blocos do modulador do sistema DVB-T pode ser visto na Figura 3.1. O modulador recebe uma seqüência de pacotes de dados chamada de "*Transport Stream*" que contém informação multiplexada comprimida de vídeo, áudio e dados. O sistema DVB-T possui duas interfaces de entrada, a DVB-SPI "*Digital Video Broadcasting - Synchronous Parallel Interface*" e a ASI "*Asynchronous Serial Interface*" [20]. As entradas são

denominadas de alta prioridade, HP "*High Priority*" e baixa prioridade LP "*Low Priority*". A entrada de baixa prioridade é opcional e é utilizada na modulação hierárquica.

O Modulador é dividido em um bloco de codificação externa e interna de canal e outro de modulação. O estágio de codificação externa é fixo formado por um aleatorizador de dados e um codificador *Reed Solomon* com entrelaçador de *bytes*. O estágio de codificação interna é flexível, formado pelo codificador convolucional de taxa mãe 1/2 com ajuste de puncionamento com entrelaçamento de bits e símbolos. O primeiro estágio de modulação é formado por uma modulação primária que pode ser escolhida entre QPSK, 16-QAM ou 64-QAM. Uma estrutura de sincronismo é adicionada com a inserção de pilotos. O segundo estágio de modulação é formado por um modulador OFDM que opera com IFFT de tamanho 2k ou 8k. Na saída do modulador OFDM é adicionado um prefixo cíclico que garante a robustez do sistema contra *interferência intersimbólica*. Os sinais são convertidos para analógico em banda básica de 6MHz na freqüência central de 36,85MHz.

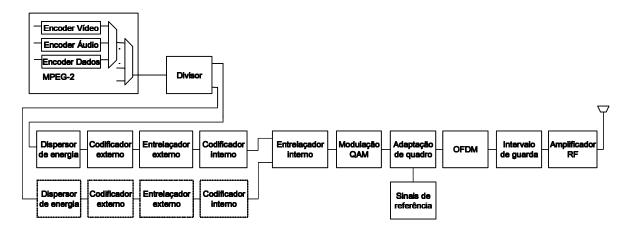


Figura 3.1 Diagrama de blocos funcional do sistema DVB-T [19]

3.3 Codificação de Canal

A entrada de dados do modulador DVB-T deve ser compatível com as especificações do MPEG-2-TS [43] que é formado por pacotes de 188 *bytes*. Cada pacote possui 1 *byte* de sincronismo (47_{HEX}) e 187 *bytes* de informação útil. A Figura 3.2 ilustra um pacote de dados originado na saída do codificador MPEG-2.

1 Byte	187 Bytes
Sincronismo	Informação útil

Figura 3.2 Pacote de dados na saída do codificador MPEG-2

3.3.1 Dispersor de Energia (Energy Dispersal)

Com objetivo de espalhar os dados entrantes do codificador MPEG-2 e eliminar sequências repetidas de zeros e uns que poderiam gerar um nível DC causando uma *interferência intersimbólica*, os dados são serializados e somados a uma sequência binária pseudo aleatória PRBS formada pelo gerador polinomial $1 + x^{14} + x^{15}$.

Os registradores de deslocamento desse gerador PRBS são carregados com uma sequência inicial "100101010000000". O tamanho da sequência do aleatorizador de dados é de $2^{15} - 1 = 32767$.

A Figura 3.3 ilustra o esquema do aleatorizador/desaleatorizador de dados utilizado.

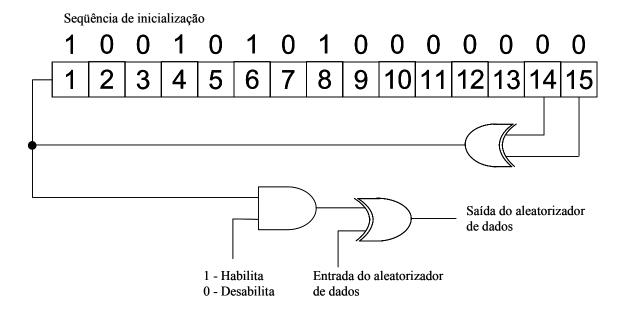


Figura 3.3 Aleatorizador/desaleatorizador de dados

A saída do aleatorizador de dados será somada a 8 pacotes MPEG-2, sendo que o primeiro *byte* será formado pelo pulso de sincronismo invertido /SYNC B8_{HEX}. Para que isso ocorra durante os 8 primeiros bits de entrada de dados do MPEG-2, o gerador PRBS será desabilitado.

A cada 8 pacotes MPEG-2, é utilizado 1 *byte* de sincronismo (B8_{HEX}) e 1503 *byte*s de dados somados ao aleatorizador como pode ser visto na Figura 3.4.

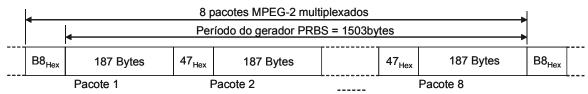


Figura 3.4 Pacotes de dados aleatorizados

3.3.2 Codificação externa (Reed Solomon)

O outer coder e interleaver compõem a estrutura de pacotes de entrada do modulador.

O *outer coder* é constituído por um código de bloco do tipo *Reed-Solomon R-S*_(n,k,t), onde k é a entrada, n é a saída e t é a capacidade de correção de erros. No DVB-T é utilizado como entrada k=188 e n=204 de saída. A distância mínima pode ser calculada por $d_{min}=n-k+1$. Esse código possui 16 símbolos de *paridade* = n-k e capacidade de correção $t=(d_{min}-1)/2$.

Onde cada símbolo possui m = 8 bits.

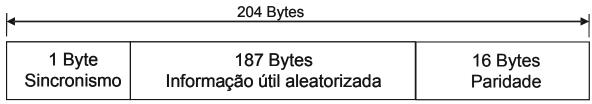


Figura 3.5 Pacote com Reed-Solomon RS(204,188,8)

Esse codificador pode ser implementado através do código polinomial gerador:

$$g(x) = x^0 + x^1 + x^2 + x^{15}$$

sendo o polinômio gerador de campo:

$$p(x) = x^0 + x^2 + x^3 + x^4 + x^8$$

Uma implementação curta desse código pode ser realizada acrescentando-se 51 *bytes* preenchidos com zeros antes da entrada do codificador. Após a saída do codificador *esses bytes* são descartados. Dessa forma, o codificador *Reed-Solomon* utiliza a configuração RS(255, 239, t=8).

3.3.3 Entrelaçador externo (Outer interleaver)

O entrelaçador externo tem como objetivo espalhar os pacotes provenientes do *Reed-Solomon* para aumentar sua eficiência perante erros de bloco. Como pode ser visto na Figura 3.6, ele é constituído por um entrelaçador convolucional com I=12 ramos e J=17 *bytes* de memória (registradores de deslocamento). Cada ramo possui (I-1) x 17 registradores e cada símbolo tem tamanho de 8 bits. Os 12 ramos estão conectados ciclicamente na saída do *Reed-Solomon* e transferem 1 símbolo de cada vez em cada ramo.

O ramo I=0 não possui memória e os símbolos são transferidos imediatamente na saída. Dessa forma, os símbolos de sincronismo são enviados no ramo I=0. A Figura 3.7 ilustra um pacote proveniente da saída do entrelaçador de *bytes*.

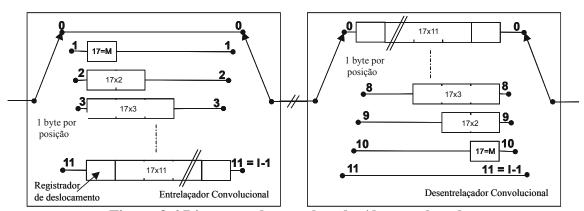


Figura 3.6 Diagrama do entrelaçador/desentrelaçador

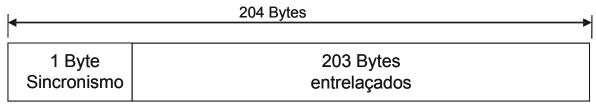


Figura 3.7 Pacote de dados na saída do entrelaçador de bytes

3.3.4 Codificação Interna (*Inner Coding*)

A codificação interna é formada por um codificador convolucional com puncionamento. Tem a função de acrescentar bits para aumentar a capacidade de correção de bits. Ele é constituído por um código convolucional de taxa mãe R=1/2 e 64 estados. O código convolucional gerado para saída X é $G_1=171_{\rm OCT}$ e para a saída Y é $G_2=133_{\rm OCT}$.

A Figura 3.8 ilustra o diagrama deste codificador convolucional.

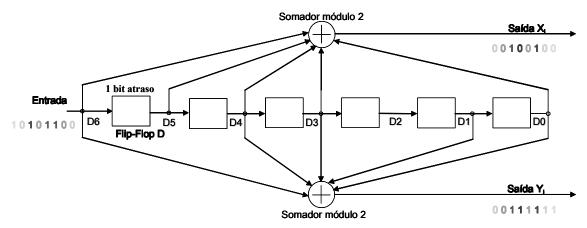


Figura 3.8. Codificador convolucional (2,1,6) de taxa 1/2

Codificador Convolucional (n,k,m)

onde,

$$G_1 = 1 \ 1 \ 1 \ 1 \ 0 \ 0 \ 1 = 1 + D + D^2 + D^3 + D^6$$

$$G_2 = 1 \ 0 \ 1 \ 1 \ 0 \ 1 \ 1 = 1 + D^2 + D^3 + D^5 + D^6$$

n = saída (número de somadores modulo 2)

k = entrada

m = memória (número de registradores de deslocamento)

O Código convolucional descrito anteriormente possui taxa mãe 1/2. Para alterar essa taxa é utilizado um puncionamento para conseguir as taxas 2/3, 3/4, 5/6 e 7/8 como pode ser visto na Figura 3.9 e Tabela 3.1.

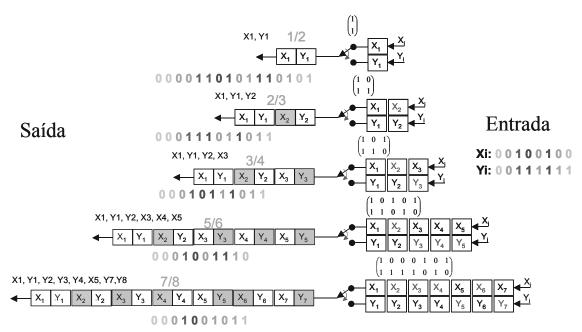


Figura 3.9 Puncionamento do código convolucional

TABELA 3.1. CARACTERÍSTICA DO PUNCIONAMENTO

	Códi	g0		Taxa do Código										
K				1/2		3	3/4		5/6		7/8			
V	G_1	G_2	G_2	G_2	P	$\mathbf{d}_{\mathrm{free}}$	P	\mathbf{d}_{free}	P	\mathbf{d}_{free}	P	\mathbf{d}_{free}	P	\mathbf{d}_{free}
7	171 _{oct}	133 _{oct}	X=1 Y=1	10	X=10 Y=11	6	X=101 Y=110	5	X=10101 Y=11010	4	X=1000101 T=1111010	3		

P= puncionamento d_{free}= distância livre

3.3.5 Entrelaçador Interno (Inner Interleaver)

O entrelaçador interno é formado por um demultiplexador, entrelaçador de blocos e entrelaçador de símbolos.

3.3.5.1 Demultiplexador

A saída do demultiplexador é dividida em feixes que variam com o método de modulação utilizado. A Tabela 3.2 ilustra o número de feixes utilizado para cada método de modulação.

TABELA 3.2. DIVISÃO DO NÚMERO DE FEIXES PARA CADA MODULAÇÃO

Modulação	Número de
	feixes v
QPSK	2
16QAM	4
64QAM	6

Para a modulação não hierárquica, é utilizada a demultiplexação representada pela equação 3.1.

$$x_{di} = b_{\left[floor\left(\frac{\text{mod}(di,v)}{(v/2) + 2 \cdot \text{mod}(di,v/2)}\right), floor\left(\frac{di}{v}\right)\right]},$$
(3.1)

Para a modulação hierárquica, é utilizada a demultiplexação vista nas equações 3.2 e 3.3.

$$x'_{di} = b_{\left[\text{mod}(di,2), floor\left(\frac{di}{2}\right) \right]},$$
(3.2)

$$x''_{di} = b_{\left[floor\left(\frac{\operatorname{mod}(di,(v-2))}{((v-2)/2)+2\cdot\operatorname{mod}(di,(v-2)/2)}\right),floor\left(\frac{di}{v-2}\right)\right]},$$
(3.3)

onde:

$$x_{di} = b_{e,do} ,$$

 x_{di} é a entrada do demultiplexador para a modulação não hierárquica;

 x'_{di} é a entrada do demultiplexador de alta prioridade;

 x''_{di} é a entrada do demultiplexador de baixa prioridade;

 $b_{e,do}$ é a saída do demultiplexador;

- $_{e}$ é o número do bit-stream demultiplexado número $0 \le_{e} < v$;
- $_{do}$ é o número de saída demultiplexado do bit-stream que contém informação útil;
- $_{di}$ é o número de entrada do bit-stream que contém informação útil;
- v é o número de bits de entrada (2 para QPSK, 4 para 16-QAM e 6 para 64-QAM).

A saída resultante do demultiplexador no modo não hierárquico e hierárquico pode ser vista pelo mapeamento das Tabelas 3.3 e 3.4.

TABELA 3.3. DEMULTIPLEXADOR DE BIT NÃO HIERÁRQUICO

Modulação	Entrada	Saída
QPSK	\mathbf{x}_0	$I_{0:} b_{0,0}$
QLSK	\mathbf{x}_1	$I_{1:} b_{1,0}$
	\mathbf{x}_0	$I_{0:} b_{2,0}$
16-QAM	\mathbf{x}_1	$I_{1:} b_{1,0}$
10-QAW	\mathbf{x}_2	$I_{2:} b_{0,0}$
	X 3	$I_{3:} b_{3,0}$
	\mathbf{x}_0	$I_{0:} b_{0,0}$
	\mathbf{x}_1	$I_{1:} b_{2,0}$
64-QAM	\mathbf{x}_2	$I_{2:} b_{4,0}$
04-QAM	X 3	$I_{3:} b_{1,0}$
	X4	$I_{4:} b_{3,0}$
	X 5	$I_{5:} b_{5,0}$

TABELA 3.4. DEMULTIPLEXADOR DE BIT HIERÁRQUICO

Modulação	Entrada	Saída
16 OAM	X' ₀	$I_{0:} b_{2,0}$
16-QAM (QPSK/	X' ₁	$I_{1:}b_{1,0}$
QPSK)	X'' ₀	$I_{2:} b_{0,0}$
QI SIC)	X'' ₁	$I_{3:} b_{3,0}$
	X' ₀	$I_{0:} b_{0,0}$
64 OAM	X' ₁	$I_{1:} b_{2,0}$
64-QAM (QPSK/	X'' ₀	$I_{2:} b_{4,0}$
16-QAM)	X''1	$I_{3:} b_{1,0}$
10-QAWI)	X'' ₂	I _{4:} b _{3,0}
	X'' ₃	$I_{5:}b_{5.0}$

A Tabela 3.5 ilustra um exemplo da saída do demultiplexador para a modulação 64QAM não hierárquica e a Tabela 3.6 um exemplo da saída do demultiplexador para a modulação 64 QAM hierárquica.

TABELA 3.5. EXEMPLO DA SAÍDA DO DEMULTIPLEXADOR NÃO HIERÁRQUICO 8K 64-QAM

	\mathbf{K}_{0}	K ₁	K ₂	K ₃	K ₄	K ₅	•••	K ₆₀₄₇
$\mathbf{b_0}$	1	7	13	19	25	31	•••	36288
$\mathbf{b_1}$	4	10	16	22	28	34	•••	36144
$\mathbf{b_2}$	2	8	14	20	26	32	•••	36240
$\mathbf{b_3}$	5	11	17	23	29	35	•••	36096
$\mathbf{b_4}$	3	9	15	21	27	33	•••	36192
b ₅	6	12	18	24	30	36	•••	36288

TABELA 3.6. EXEMPLO DA SAÍDA DO DEMULTIPLEXADOR HIERÁRQUICO 8K 64-QAM

	K ₀	K ₁	K ₂	K ₃	K ₄	K ₅	•••	K ₆₀₄₇
$\mathbf{b_0}$	1	3	5	7	9	11		12048
$\mathbf{b_1}$	2	4	6	8	10	12		12096
$\mathbf{b_2}$	253	257	261	265	269	273		36144
b ₃	255	259	263	267	271	275		36240
b ₄	254	258	262	266	270	274	•••	36192
b ₅	256	260	264	268	272	276	•••	36288

3.3.5.2 Entrelaçador de Bits

Cada saída do demultiplexador **I** é processada separadamente pelo entrelaçador de bits como pode ser visto na Figura 3.10 e Figura 3.11. Os entrelaçadores são enumerados de I₀ à I₅ dependendo do método de modulação. I₀ e I₁ para QPSK, I₀ até I₃ para 16-QAM e I₀ até I₅ para 64-QAM.

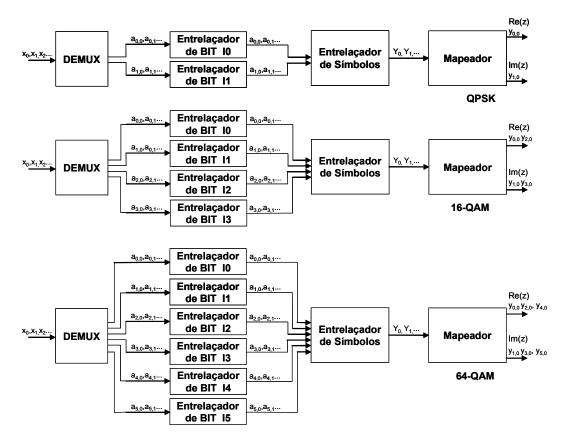


Figura 3.10 Entrelaçador Interno. Mapeamento dos bits em símbolos para modulação não hierárquica

Os entrelaçadores possuem o mesmo tamanho de bloco (126 bits), mas com seqüências diferentes para cada ramo.

A entrada desse entrelaçador pode ser representada por:

$$B_{(e)} = (b_{e,0}, b_{e,1}, b_{e,2}, \dots, b_{e,125}), (3.4)$$

onde e varia de 0 até v-1

A saída desse entrelaçador pode ser representada por:

$$a_{(e,w)} = b_{e,He(w)},$$
 (3.5)

onde w varia de 0 até 125 e He(w) é definido por:

I0: $H \circ (w) = w$

I1: H 1 (w) = $(w + 63) \mod 126$

I2: H 2 (w) = $(w + 105) \mod 126$

I3: H 3 (w) = $(w + 42) \mod 126$

I4: H 4 (w) = $(w + 21) \mod 126$

I5: H 5 (w) = $(w + 84) \mod 126$

As Tabelas 3.7 e 3.8 exemplificam, o resultado de entrelaçamento de bits para a modulação hierárquica e não hierárquica, respectivamente.

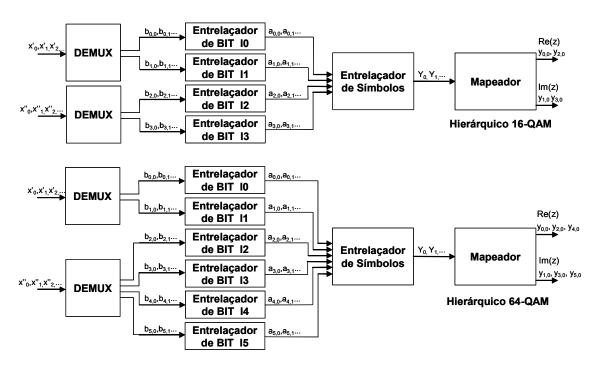


Figura 3.11 Entrelaçador interno. Mapeamento dos bits em símbolos para a modulação hierárquica

TABELA 3.7. EXEMPLO DA SAÍDA DO ENTRELAÇADOR DE BITS NÃO HIERÁRQUICO 8K 64-QAM

	\mathbf{K}_{0}	K_1	K ₂	K ₃	K_4	K_5	•••	K_{6047}
\mathbf{a}_0	1	7	13	19	25	31		36048
\mathbf{a}_1	381	387	393	399	405	411		18000
$\mathbf{a_2}$	635	641	647	653	659	665	•••	30192
a ₃	254	260	266	272	278	284	•••	11904
$\mathbf{a_4}$	130	136	142	148	154	160	•••	5952
a ₅	510	516	522	528	534	540	•••	24192

TABELA 3.8. EXEMPLO DA SAÍ	DA DO ENTRELAÇADOR DE BITS
	CO 8K 64-QAM

	\mathbf{K}_{0}	$\mathbf{K_1}$	$\mathbf{K_2}$	K_3	K_4	K_5	•••	K_{6047}
\mathbf{a}_0	1	3	5	7	9	11		12048
\mathbf{a}_1	128	130	132	134	136	138		6048
a ₂	673	677	681	685	689	693		32112
a ₃	423	427	431	435	439	443		20112
a ₄	338	342	346	350	354	358		16032
a ₅	592	596	600	604	608	612		28224

3.3.5.3 Entrelaçador de Símbolos

O objetivo do entrelaçador de símbolos é mapear os *v* bits em palavras de tamanho de 1512 símbolos para o modo 2k ou 6048 símbolos para o modo 8k que representam o número real de subportadoras que transmitem informação útil no símbolo OFDM.

Para o modo 2k, 12 grupos de 126 palavras de dados proveniente do entrelaçador de bits são lidas seqüencialmente em um vetor Y'=(y'0, y'1, y'2,..., y'1512). Similarmente para o modo 8k, um vetor Y'=(y'0, y'1, y'2,..., y'6047) é agrupado em 48 grupos de 126 palavras de dados.

O vetor entrelaçado Y= $(y_0, y_1, y_2, ..., y_{Nmax-1})$ é definido por:

 $Y_{H(q)}=Y'_q$ para símbolos pares q=0,...,Nmax-1;

 $Y_q \!\!=\!\! Y'_{H(q)} \qquad \qquad \text{para simbolos impares} \qquad q \!\!=\!\! 0, \! \dots, \! N \text{max-1};$

onde: $N_{max} = 1512$ para o modo 2k ou 6048 para o modo 8k.

H_(q) é a função de permutação definida por uma palavra binária R'i:

An(Nr-1)

 $Nr = log_2(M_{max})$

M_{max} = 2048 para o modo 2k ou 8192 para o modo 8k

R'i assume os valores:

i =0,1: R'i [N r -2, N r -3,...,1,0]=0,0,...,0,0

i =2: R'i [N r -2, N r -3,...,1,0]=0,0,...,0,1

 $2 \le i \le M_{max}$: {R'i [N r -3, N r -4,...,1,0]=R' i-1 [N r -2, N r -3, ..., 2, 1];

para o modo 2k: R'i [9] = R'i-1 [0] \oplus R'i-1 [3]

para o modo 8k: R'i [11] = R'i-1 [0] \oplus R'i-1 [1] \oplus R'i-1 [4] \oplus R'i-1 [6]

O vetor Ri é derivado do vetor R'i pela permutação das Tabelas 3.9 e 3.10.

TABELA 3.9. PERMUTAÇÃO DE BITS NO MODO 2K

R' i posição do bit	9	8	7	6	5	4	3	2	1	0
R i posição do bit	0	7	5	1	8	2	6	9	3	4

TABELA 3.10. PERMUTAÇÃO DE BIS NO MODO 8K

R' i posição do bit	11	10	9	8	7	6	5	4	3	2	1	0
R i posição do bit	5	11	3	0	10	8	6	9	2	4	1	7

As Tabelas 3.11 e 3.12 ilustram o entrelaçamento de símbolos para a modulação não hierárquica e hierárquica, respectivamente na configuração 64-QAM 8k.

TABELA 3.11. EXEMPLO DO ENTRELAÇAMENTO DE SÍMBOLOS NA MODULAÇÃO NÃO HIERÁRQUICO 8K 64-QAM

	, , , , , , , , , , , , , , , , , , , ,							
	K_0	$\mathbf{K_1}$	K_2	K_3	K_4	K ₅	•••	K_{6047}
y _{0q} ,	1	24577	1537	30721	769	24673		1254000
y _{1q} ,	2	24578	1538	30722	770	24674		1254048
y _{2q} ,	3	24579	1539	30723	771	24675		1254096
y _{3q} ,	4	24580	1540	30724	772	24676		1254144
y _{4q} ,	5	24581	1541	30725	773	24677		1254192
y _{5q} ,	6	24582	1542	30726	774	24678		1254240

TABELA 3.12. EXEMPLO DO ENTRELAÇAMENTO DE SÍMBOLOS NA MODULAÇÃO NÃO HIERÁRQUICO 8K 64-QAM

	$\mathbf{K_0}$	$\mathbf{K_1}$	$\mathbf{K_2}$	K_3	K_4	K_5	•••	K_{6047}
$\mathbf{y_0}$	1	8193	513	10241	257	48	•••	418032
\mathbf{y}_1	2	8194	514	10242	258	96	•••	418080
y ₂	3	24579	1539	30723	771	24675		1254096
у 3	4	24580	1540	30724	772	24676		1254144
y 4	5	24581	1541	30725	773	24677		1254192
y 5	6	24582	1542	30726	774	24678	•••	1254240

3.4 Modulação

3.4.1 Mapeamento e Constelação

O mapeamento utilizado na modulação não hierárquica utiliza a codificação *Gray* como pode ser visto nas Figuras 3.12, 3.13 e 3.14.

Na modulação hierárquica, dois feixes de dados são transmitidos simultaneamente. A camada de alta prioridade utiliza a modulação QPSK e a camada de baixa prioridade utiliza a modulação QPSK ou 16-QAM. Nesse método de codificação, a distância entre as constelações de alta e baixa prioridade são corrigidas por um fator α. As Figuras 3.15 e 3.17 ilustram a constelação 16-QAM com fator de espaçamento α =2 e 4, respectivamente. Pode-se observar que a constelação 16-QAM esta duplamente codificada em QPSK e QPSK. As Figuras 3.16 e 3.18 ilustram a constelação 64-QAM com fator de espaçamento α =2 e 4, respectivamente. Pode-se observar que a constelação 64-QAM está duplamente codificada em QPSK e 16-QAM.

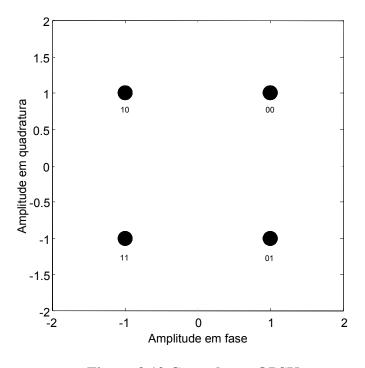


Figura 3.12 Constelação QPSK

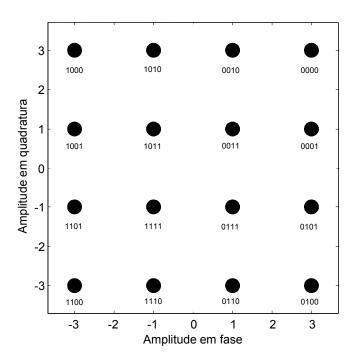


Figura 3.13 Constelação 16-QAM

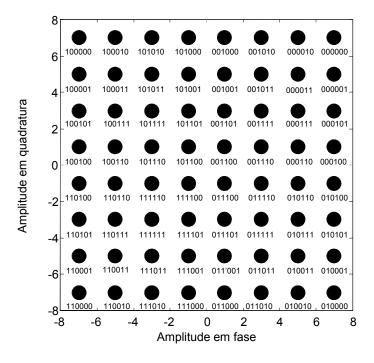


Figura 3.14 Constelação 64-QAM

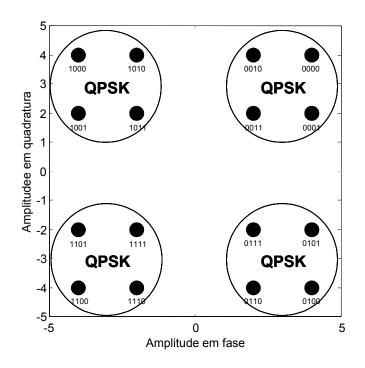


Figura 3.15 Constelação 16-QAM com α=2

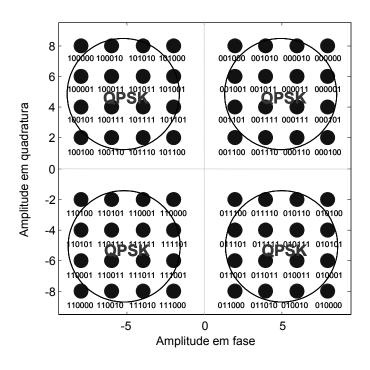


Figura 3.16 Constelação 64-QAM com α=2

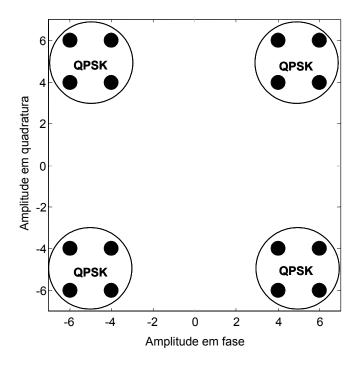


Figura 3.17 Constelação 16-QAM com α=4

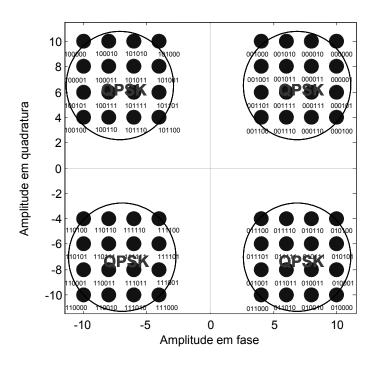


Figura 3.18 Constelação 64-QAM com α=4

3.4.2 Estrutura de quadro do OFDM

A transmissão do sinal é organizada em quadros. Cada quadro possui duração T_F , e consiste em 68 símbolos OFDM. Quatro quadros constituem um super-quadro. Cada símbolo é constituído por um número K=6817 portadoras para o modo 8k e K=1705 portadoras para o modo 2k que são transmitidas com a duração T_S . Ts é composto por duas partes, T_U que é a duração de tempo das portadoras e o intervalo de guarda com duração Δ . O intervalo de guarda consiste em uma extensão cíclica de T_U que é inserida ao seu término. Um símbolo OFDM ocupa a banda de 5.71MHz. As Tabelas 3.13 e 3.14 ilustram valores numéricos para o canal de 6MHz.

TABELA 3.13. VALORES NÚMERICOS DO OFDM PARA 6MHZ

Parâmetro	Modo 8k	Modo 2k
Número de portadoras K	6817	1705
Número da portadora inferior Kmin	0	0
Número da portadora superior Kmax	6816	1704
Duração de Tu	1194.667us	298.6667us
Espaçamento de portadoras 1/Tu	0.837054KHz	3.348214KHz
Espaçamento entre a portadora inferior a superior	5.71MHz	5.71MHz

TABELA 3.14. CANAL DE 6MHZ

Modo	Modo 8k				Modo 2k			
Intervalo de guarda ∆/Tu	1/4	1/8	1/16	1/32	1/4	1/8	1/16	1/32
Duração do símbolo Tu (µS)			2 ·T 4,667		2048 ·T 298,667			
Duração do intervalo de guarda Δ (μS)	2 048 ·T 298,67	1 024 ·T 149,33	512 ·T 74,66	256 ·T 37,333	512 ·T 74,667	256 ·T 37,333	128 ·T 18,667	64 ·T 9,333
Duração do símbolo Ts=Tu+ Δ (μ s)	10 240 ·T 1493,3	9 216 ·T <i>1344</i>	8 704 ·T 1269,3	8 448 ·T 1232	2 560 ·T 373,3	2 304 ·T 336	2 176 ·T 317,3	2 112 ·T 308

Os símbolos do OFDM são numerados de 0 a 67. Todos os símbolos possuem informação de dados e referência.

Em resumo, além das portadoras de dados, um quadro OFDM também possui subportadoras pilotos:

- Espalhadas;
- Contínuas;
- Parâmetros de transmissão e sinalização (TPS);

Os pilotos são utilizados para a sincronização de quadro, sincronização de frequência, sincronização de tempo, estimação de canal, identificação do modo de transmissão e correção de ruído de fase.

Como o sinal OFDM é constituído de várias portadoras ortogonais moduladas, cada símbolo pode ser considerado como uma única portadora com duração T_U.

$$s(t) = \text{Re}\left\{e^{j \cdot 2 \cdot \pi \cdot fc \cdot t} \sum_{m=0}^{\infty} \sum_{l=0}^{67} \sum_{k=K \text{ min}}^{K \text{ max}} Cm, l, k \cdot \Psi m, l, k(t)\right\},$$
(3.6)

$$\Psi m, l, k(t) = \begin{cases} e^{j \cdot 2 \cdot \pi \cdot \frac{k'}{TU} (t - \Delta - l \cdot Ts - 68 \cdot m \cdot Ts)} & (l + 68 \cdot m) \cdot Ts \leq t \leq (l + 68 \cdot m + 1) \cdot Ts \\ 0 & Caso & Contrário \end{cases}, (3.7)$$

onde,

k Número da portadora;

l Número do símbolo OFDM;

m Número do quadro OFDM;

K Número de portadoras transmitidas 2k ou 8k;

 T_S Duração do símbolo OFDM com intervalo de guarda;

 T_U Duração do símbolo OFDM sem intervalo de guarda;

Δ Duração do intervalo de guarda;

fc Frequência central do canal de RF;

k' Índice da portadora relativo ao centro da frequência,

$$k' = k - (K_{max} + K_{min}) / 2;$$

- $c_{m,0,k}$ Dado a ser transmitido representado por um símbolo complexo que modulará uma portadora **k** no símbolo 1 do quadro OFDM;
- $c_{m,l,k}$ Dado a ser transmitido representado por um símbolo complexo que modulará uma portadora **k** no símbolo 2 do quadro OFDM;

...

 $c_{m,67,k}$ Dado a ser transmitido representado por um símbolo complexo que modulará uma portadora **k** no símbolo 68 do quadro OFDM;

Os valores dos símbolos $c_{m,l,k}$ são normalizados por um fator Z de acordo com o esquema de modulação utilizado. A Tabela 3.15 ilustra os fatores de normalização

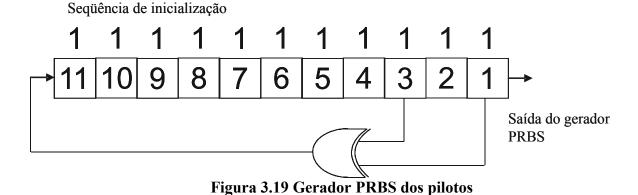
TABELA 3.15. FATOR DE NORMALIZAÇÃO

Esquema de modulação	α	Fator de normalização
QPSK	-	$c = z / \sqrt{2}$
	1	$c = z / \sqrt{10}$
16-QAM	2	$c = z / \sqrt{20}$
	4	$c = z / \sqrt{52}$
	1	$c = z / \sqrt{42}$
64-QAM	2	$c = z / \sqrt{60}$
	4	$c = z / \sqrt{108}$

3.4.3 Sinais de Referência

Várias portadoras do quadro OFDM são moduladas com informações de referência que são conhecidas pelo receptor. Essas portadoras são transmitidas com uma potência superior às portadoras de dados. As informações transmitidas nessas portadoras são chamadas de pilotos contínuos ou espalhados.

Cada piloto contínuo coincide com os pilotos espalhados a cada quatro símbolos. O número de portadoras usadas para dados é constante para cada símbolo: 1512 para o modo 2k e 6048 para o modo 8k.


A informação modulante para as subportadoras pilotos contínuas ou espalhadas é originada por um polinômio PRBS $X^{11} + X^2 + 1$ como pode ser visto na Figura 3.20.

3.4.3.1 Definição da Sequência de Referência

As portadoras pilotos contínuas e espalhadas são moduladas de acordo com a sequência PRBS W_k, correspondente ao seu respectivo índice k.

W_k assume valores 1 ou 0.

A sequência PRBS é inicializada com a primeira portadora e incrementada a cada portadora transmitida (piloto ou não).

3.4.3.2 Localização dos pilotos espalhados

As portadoras pilotos com informações de referência espalhadas são transmitidas com uma potência superior do que as portadoras de dados. A modulação utilizada pelos pilotos é a BPSK e pode ser representada por:

Re(C_{m,l,k}) =
$$4/3 \times 2(1/2 - W_k)$$

Im(C_{m,l,k}) = 0

W_k assume valores 0 ou 1 provenientes do gerador PRBS.

A posição de cada uma das portadoras pilotos, espalhadas dentro de um quadro OFDM, pode ser calculada utilizando-se a equação 3.8.

$$k=K_{min}+3mod(1,4)+12p$$
 (3.8)

Onde l representa o número do símbolo OFDM, p o número de pilotos adicionados, $p\ge 0$ e k deve ficar entre os valores K_{min} e K_{max} .

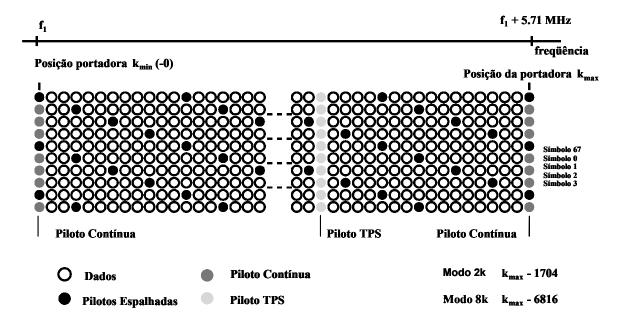


Figura 3.20. Estrutura do Quadro OFDM

3.4.3.3 Pilotos com localização contínua

As subportadoras pilotos contínuas são moduladas em BPSK com uma potência unitária de 4/3. Essas subportadoras estão fixas dentro de cada símbolo OFDM como pode ser visto na Tabela 3.16.

TABELA 3.16. POSIÇÃO DOS PILOTOS CONTÍNUOS

Modo 2k	Modo 8k
0 48 54 87 141 156 192 201 255 279 282 333 432 450	0 48 54 87 141 156 192 201 255 279 282 333 432 450
483 525 531 618 636 714 759 765 780 804 873 888 918	483 525 531 618 636 714 759 765 780 804 873 888 918
939 942 969 984 1050 1101 1107 1110 1137 1140 1146	939 942 969 984 1050 1101 1107 1110 1137 1140 1146
1206 1269 1323 1377 1491 1683 1704	1206 1269 1323 1377 1491 1683 1704 1752 1758 1791
	1845 1860 1896 1905 1959 1983 1986 2037 2136 2154
	2187 2229 2235 2322 2340 2418 2463 2469 2484 2508
	2577 2592 2622 2643 2646 2673 2688 2754 2805 2811
	2814 2841 2844 2850 2910 2973 3027 3081 3195 3387
	3408 3456 3462 3495 3549 3564 3600 3609 3663 3687
	3690 3741 3840 3858 3891 3933 3939 4026 4044 4122
	4167 4173 4188 4212 4281 4296 4326 4347 4350 4377
	4392 4458 4509 4515 4518 4545 4548 4554 4614 4677
	4731 4785 4899 5091 5112 5160 5166 5199 5253 5268
	5304 5313 5367 5391 5394 5445 5544 5562 5595 5637
	5643 5730 5748 5826 5871 5877 5892 5916 5985 6000
	6030 6051 6054 6081 6096 6162 6213 6219 6222 6249
	6252 6258 6318 6381 6435 6489 6603 6795 6816

3.4.3.4 Pilotos com Parâmetros de Sinalização

As portadoras pilotos de sinalização são moduladas em BPSK com uma potência unitária igual a 1. Cada símbolo OFDM possui 17 subportadoras de sinalização para o modo 2k e 68 subportadoras de sinalização para o modo 8k. A mesma informação é transmitida em todas as portadoras pilotos de sinalização dentro de cada símbolo OFDM. Essas subportadoras estão fixas dentro de cada símbolo OFDM como pode ser visto na Tabela 3.17 e carregam informação de 68 bits de informação para sinalização como pode ser visto na Figura 3.21.

TABELA 3.17. POSIÇÃO DAS PORTADORAS PILOTOS DE SINALIZAÇÃO

Modo 2k	Modo 8k					
34 50 209 346 413 569 595 688 790 901 1073 1219	34 50 209 346 413 569 595 688 790 901 1073 1219					
1262 1286 1469 1594 1687	1262 1286 1469 1594 1687 1738 1754 1913 2050					
	2117 2273 2299 2392 2494 2605 2777 2923 2966					
	2990 3173 3298 3391 3442 3458 3617 3754 3821					
	3977 4003 4096 4198 4309 4481 4627 4670 4694					
	4877 5002 5095 5146 5162 5321 5458 5525 5681					
	5707 5800 5902 6013 6185 6331 6374 6398 6581					
	6706 6799					

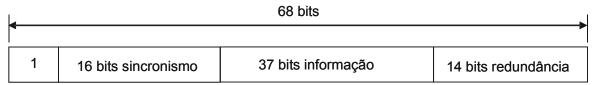


Figura 3.21 Quadro de sinalização

3.5 Taxa de Transmissão

A taxa útil de bits transmitida no sistema DVB-T pode ser calculada usando-se a equação (3.9). Pode-se observar que o tamanho da FFT não altera a taxa de bits na saída. A Tabela 3.18 ilustra as possíveis taxas de transmissão para a modulação hierárquica e não hierárquica.

$$R_b = \frac{1}{Tu} \cdot T_{Su} \cdot Md \cdot R_{cc} \cdot R_{rs} \cdot k , \qquad (3.9)$$

$$Tu = \frac{7}{48} \cdot Md \,, \tag{3.10}$$

$$k = \frac{1}{\frac{\Delta}{Tu} + 1},\tag{3.11}$$

onde,

 R_b = Taxa de bits efetiva transmitida

 T_u = Tempo útil do símbolo OFDM em μ s

 M_d = Tamanho da IFFT = 2048 para 2k e 8192 para 8k

 T_{su} = Tamanho do símbolo útil = 1512 para 2k e 6048 para 8k

 R_{cc} =Razão do codificador convolucional = 1/2, 2/3, 3/4, 5/6 ou 7/8

R_{rs}= Razão do codificador *Reed Solomon*= 188/204

k=Razão do intervalo de guarda = 1/4, 1/8, 1/16 ou 1/32

 Δ/Tu =Valor do intervalo de guarda

TABELA 3.18. TAXA DE BITS PARA CANAL DE 6MHZ NA MODULAÇÃO NÃO HIERÁRQUICA

Modulosão	Toylo		Intervalo	de guarda	
Modulação	Taxa	1/4	1/8	1/16	1/32
	1/2	3,7324Mbps	4,1471Mbps	4,391Mbps	4,5241Mbps
	2/3	4,9765Mbps	5,5294Mbps	5,8547Mbps	6,0321Mbps
QPSK	3/4	5,5985Mbps	6,2206Mbps	6,5865Mbps	6,7861Mbps
	5/6	6,2206Mbps	6,9118Mbps	7,3183Mbps	7,5401Mbps
	7/8	6,5316Mbps	7,2574Mbps	7,6843Mbps	7,9171Mbps
	1/2	7,4647Mbps	8,2941Mbps	8,782Mbps	9,0481Mbps
	2/3	9,9529Mbps	11,059Mbps	11,709Mbps	12,064Mbps
16-QAM	3/4	11,197Mbps	12,441Mbps	13,173Mbps	13,572Mbps
	5/6	12,441Mbps	13,824Mbps	14,637Mbps	15,08Mbps
	7/8	13,063Mbps	14,515Mbps	15,369Mbps	15,834Mbps
	1/2	11,197Mbps	12,441Mbps	13,173Mbps	13,572Mbps
	2/3	14,929Mbps	16,588Mbps	17,564Mbps	18,096Mbps
64-QAM	3/4	16,796Mbps	18,662Mbps	19,76Mbps	20,358Mbps
	5/6	18,662Mbps	20,735Mbps	21,955Mbps	22,62Mbps
	7/8	19,595Mbps	21,772Mbps	23,053Mbps	23,751Mbps

TABELA 3.19. TAXA DE BITS PARA CANAL DE 6MHZ NA MODULAÇÃO HIERÁRQUICA

Modulação	Taxa	Intervalo de guarda					
Modulação	Taxa	1/4	1/8	1/16	1/32		
	1/2	3,7324Mbps	4,1471Mbps	4,391Mbps	4,5241Mbps		
IID/I D	2/3	4,9765Mbps	5,5294Mbps	5,8547Mbps	6,0321Mbps		
HP/LP	3/4	5,5985Mbps	6,2206Mbps	6,5865Mbps	6,7861Mbps		
QPSK	5/6	6,2206Mbps	6,9118Mbps	7,3183Mbps	7,5401Mbps		
	7/8	6,5316Mbps	7,2574Mbps	7,6843Mbps	7,9171Mbps		
	1/2	7,4647Mbps	8,2941Mbps	8,782Mbps	9,0481Mbps		
T D	2/3	9,9529Mbps	11,059Mbps	11,709Mbps	12,064Mbps		
LP	3/4	11,197Mbps	12,441Mbps	13,173Mbps	13,572Mbps		
16-QAM	5/6	12,441Mbps	13,824Mbps	14,637Mbps	15,08Mbps		
	7/8	13,063Mbps	14,515Mbps	15,369Mbps	15,834Mbps		

Capítulo 4

Sistema ISDB – T Integrated Services Digital Broadcasting – Terrestrial

4.1 Introdução

O Sistema ISDB-T [22, 23] é considerado como meio de radiodifusão multimídia. Ele integra sistematicamente vários modos de transmissão digital na qual pode suportar uma variedade de serviços digitais incluindo HDTV, SDTV, Recepção móvel e portátil.

O sistema ISDB-T é caracterizado pela segmentação de banda, compatibilidade com o MPEG-TS "MPEG -*Transport Stream*", codificação de canal e total flexibilidade nos parâmetros de modulação.

A Figura 4.1 ilustra a segmentação do canal de RF em 13 segmentos de banda.

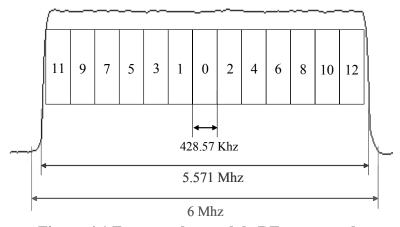


Figura 4.1 Espectro do canal de RF segmentado

Pode-se dividir o sistema ISDB-T em três blocos: re-multiplexação, codificação de canal e modulação. A Figura 4.2 ilustra um diagrama básico do sistema ISDB-T.

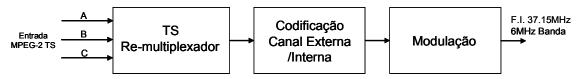


Figura 4.2 Diagrama básico do modulador ISDB-T

O modulador recebe três seqüências de pacotes de dados chamados de *Transport Stream*, TS que contém informação multiplexada comprimida de vídeo, áudio e dados. O sistema ISDB-T possui duas interfaces de entrada, a DVB-SPI *Digital Vídeo Broadcasting Synchronous Parallel Interface* e a ASI *Asynchronous Serial Interface* [20]. As entradas são denominadas de camadas A, B e C. Na transmissão hierárquica, essas camadas são utilizadas realizando atribuições aos 13 segmentos de RF para cada feixe de dados das camadas.

O estágio de codificação é dividido por um bloco de codificação externa e interna. O estágio de codificação externa é fixo formado por um aleatorizador de dados e um codificador *Reed Solomon* com entrelaçador de *bytes*. O estágio de codificação interna é flexível, formado pelo codificador convolucional de taxa mãe 1/2 com ajuste de puncionamento para 1/2, 2/3, 3/4, 5/6, 7/8 com entrelaçamento de bits e símbolos. O primeiro estágio de modulação é formado por uma modulação primária que pode ser escolhida entre QPSK, 16-QAM ou 64-QAM. As camadas A, B e C são combinadas e entrelaçadas no tempo (100, 200 ou 400ms) e em freqüência por um algoritmo aleatorizador. Uma estrutura de sincronismo é adicionada com a inserção de pilotos de referência, sinalização e controle. O segundo estágio de modulação é formado por um modulador OFDM que opera com IFFT de tamanho 2k, 4k ou 8k. Na saída do modulador OFDM é adicionada um prefixo cíclico que garante a robustez do sistema contra *interferência intersimbólica*. Os sinais são convertidos para analógico em banda básica de 6MHz na freqüência central de 37,15MHz.

4.2 Re-multiplexação

O re-multiplexador recebe três TS MPEG-2 e agrupa-os em um único TS MPEG-2. O agrupamento é realizado em pacotes MPEG-2 TS (TSP) como pode ser visto na Figura 4.3. O tamanho do TS re-multiplexado varia com o intervalo de guarda utilizado, como pode ser visto na Tabela 4.1. A re-multiplexação ainda tem a função de mapear os pacotes de dados de entrada para suas respectivas camadas no estágio de codificação de canal. Para isso um sinal de controle é enviado do re-multiplexador até o bloco de codificação de canal.

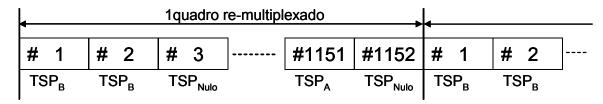


Figura 4.3 Exemplo da re-multiplexação do *transport stream* (Modo 2k, intervalo de guarda = 1/8)

IDEEL IVI	: COM TOCK	AÇAO DO QU	TIDIO RE III	CETTI EEZWAE
Modo		Intervalo	de guarda	
MIOUO	1/4	1/8	1/16	1/32
2k	1280	1152	1088	1056
4k	2560	2304	2176	2112
8k	5120	4608	4352	4224

TABELA 4.1. CONFIGURAÇÃO DO QUADRO RE-MULTIPLEXADO

4.3 Codificação de canal

A Figura 4.4 ilustra o diagrama de blocos do estágio de codificação do sistema ISDB-T. A saída do re-multiplexador é formada por pacotes de 188 *bytes*. Cada pacote possui 1 *byte* de sincronismo (47_{HEX}) e 187 *bytes* de informação útil. A Figura 4.5 ilustra um pacote de dados originado na saída multiplexador.

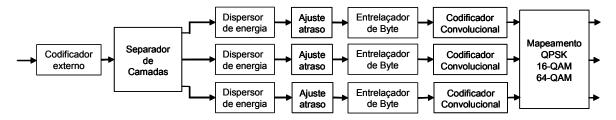


Figura 4.4 Diagrama do codificador de canal

1 Byte	187 Bytes
Sincronismo	Informação útil

Figura 4.5 Pacote de dados na saída do codificador MPEG-2

4.3.1 Codificação externa (Reed Solomon)

A codificação externa é constituída por um código de bloco do tipo *Reed Solomon* $RS_{(n,k,t)}$, onde k é a entrada, n é a saída e t é a capacidade de correção de erros. No ISDB-T é utilizado como entrada k=188 e n=204 de saída. A distância mínima pode ser calculada por $d_{min}=n-k+1$. Esse código possui 16 símbolos de *paridade* = n-k e capacidade de correção $t=(d_{min}-1)/2$. A Figura 4.6 ilustra um pacote de dados originado na saída do codificador Reed-Solomon, onde cada símbolo possuí m=8 bits.

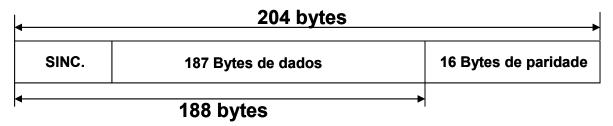


Figura 4.6 Pacote com *Reed-Solomon* RS(204,188,8)

Código polinomial gerador: $g(x) = x^0 + x^1 + x^2 + x^{15}$

Polinômio gerador de campo: $p(x) = x^0 + x^2 + x^3 + x^4 + x^8$

Para realizar a implementação desse código, foi necessário acrescentar 51 *bytes* e preenchê-los com zeros. O codificador possui a configuração RS(255, 239, t=8).

4.3.2 Separação do TS (Splitter)

O TS na saída do codificador *Reed Solomon* é dividido em 204 *bytes* e ordenado em três camadas de acordo com a re-multiplexação. Nesse processo cada TS é direcionado para sua respectiva camada A, B ou C. Se a transmissão hierárquica não é utilizada todo TS é direcionado para uma única camada.

A Figura 4.7 ilustra o processo de divisão do TS.

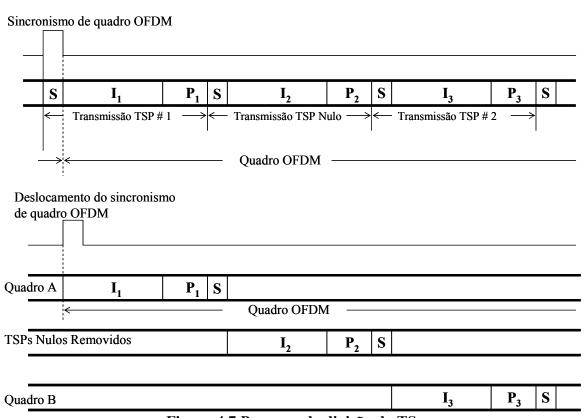


Figura 4.7 Processo de divisão do TS

4.3.3 Dispersor de energia

Com objetivo de espalhar os dados entrantes do codificador MPEG-2 e eliminar seqüências repetidas de zeros e uns que poderiam gerar um nível DC causando uma *interferência intersimbólica*, os dados são serializados e somados a uma seqüência binária pseudo aleatória PRBS formada pelo gerador polinomial $1 + x^{14} + x^{15}$.

Os registradores de deslocamento desse gerador PRBS são carregados com uma sequência inicial "100101010000000". O tamanho da sequência do aleatorizador de dados é de $2^{15} - 1 = 32767$.

A Figura 4.8 ilustra o esquema do aleatorizador/desaleatorizador de dados utilizado.

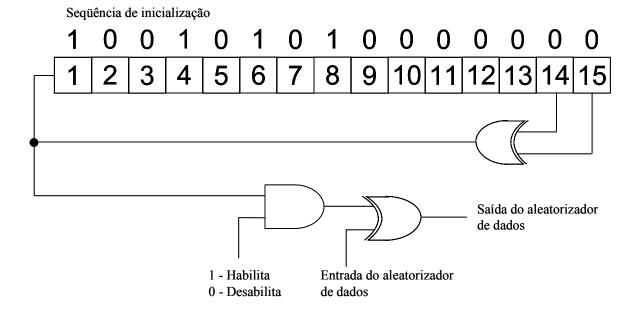


Figura 4.8. Aleatorizador/desaleatorizador de dados

4.3.4 Ajuste de Atraso

O entrelaçador de *byte* tem como objetivo realizar a compensação de atraso das três camadas de dados. A Tabela 4.2 ilustra os valores de atraso para as configurações possíveis no sistema.

TABELA 4.2. AJUSTE DE ATRASO DO ENTRELAÇADOR DE BYTES

Modulação	Tovo	Ajuste de atras	so (número de TS	SPs transmitidos)
Modulação	1 axa	Modo 2k	Modo 4k	Mode 8k
	1/2	12 x N-11	24 x N-11	48 x N-11
DODGIZ	2/3	16 x N-11	32 x N-11	64 x N-11
DQPSK QPSK	3/4	18 x N-11	36 x N-11	72 x N-11
QISK	5/6	20 x N-11	40 x N-11	80 x N-11
	7/8	21 x N-11	42 x N-11	84 x N-11
	1/2	24 x N-11	48 x N-11	96 x N-11
	2/3	32 x N-11	64 x N-11	128 x N-11
16QAM	3/4	36 x N-11	72 x N-11	144 x N-11
	5/6	40 x N-11	80 x N-11	160 x N-11
	7/8	42 x N-11	84 x N-11	168 x N-11
	1/2	36 x N-11	72 x N-11	144 x N-11
	2/3	48 x N-11	96 x N-11	192 x N-11
640AM	3/4	54 x N-11	108 x N-11	216 x N-11
64QAM	5/6	60 x N-11	120 x N-11	240 x N-11
	7/8	63 x N-11	126 x N-11	252 x N-11

N = número de segmentos utilizado.

4.3.5 Entrelaçador de bytes (Entrelaçador Externo)

O entrelaçador de *bytes* tem como objetivo espalhar os pacotes provenientes do *Reed Solomon* e do aleatorizador (dispersor de energia) para aumentar sua eficiência perante erros de bloco. Como pode ser visto na Figura 4.9 ele é constituído por um entrelaçador convolucional com I=12 ramos e registradores de deslocamento com tamanho M=17 *bytes*. Cada ramo possui (I-1) x 17 registradores e cada símbolo tem tamanho de 8 bits. Os 12 ramos estão conectatos ciclicamente na saída do *Reed-Solomon* e transferem 1 símbolo de cada vez em cada ramo.

O ramo I=0 não possui memória e os símbolos são transferidos imediatamente para a saída. Dessa forma, os símbolos de sincronismo são enviados no ramo I=0. A Figura 4.10 ilustra um pacote proveniente da saída do entrelaçador de *bytes*.

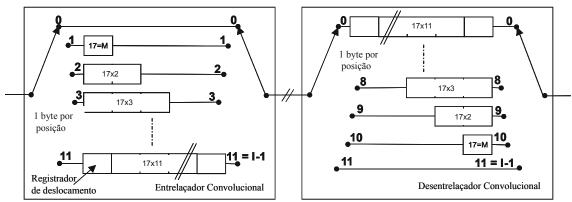


Figura 4.9 Diagrama do entrelaçador/desentrelaçador

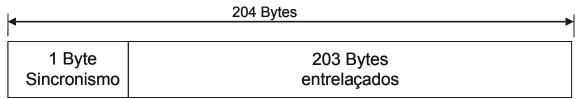


Figura 4.10 Pacote de dados na saída do entrelaçador de bytes

4.3.6 Codificador Convolucional (Codificação Interna)

A codificação é formada por um codificador convolucional com puncionamento. Tem a função de acrescentar bits para aumentar a capacidade de correção de bits. Ele é constituído por um código convolucional de taxa mãe R=1/2 e 64 estados. O código convolucional gerado para saída X é $G_1=171_{\rm OCT}$ e para a saída Y é $G_2=133_{\rm OCT}$.

A Figura 4.11 ilustra o diagrama desse codificador convolucional.

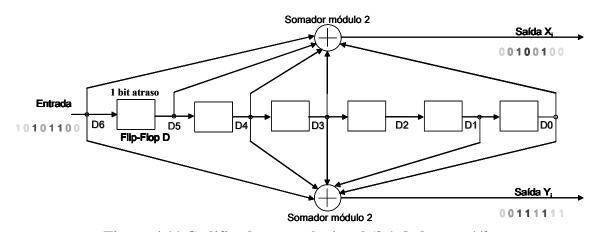


Figura 4.11 Codificador convolucional (2,1,6) de taxa 1/2

Codificador Convolucional (n,k,m)

onde:

$$G_1 = 1 \ 1 \ 1 \ 1 \ 0 \ 0 \ 1 = 1 + D + D^2 + D^3 + D^6$$

$$G_2 = 1 \ 0 \ 1 \ 1 \ 0 \ 1 \ 1 = 1 + D^2 + D^3 + D^5 + D^6$$

n = saída (número de somadores modulo 2)

k = entrada

m = memória (número de registradores de deslocamento)

O Código convolucional descrito anteriormente, possui taxa mãe 1/2. Para se alterar essa taxa é utilizado um puncionamento e consegue-se as taxas de 2/3, 3/4, 5/6 e 7/8 como pode ser visto na Figura 4.12 e Tabela 4.3.

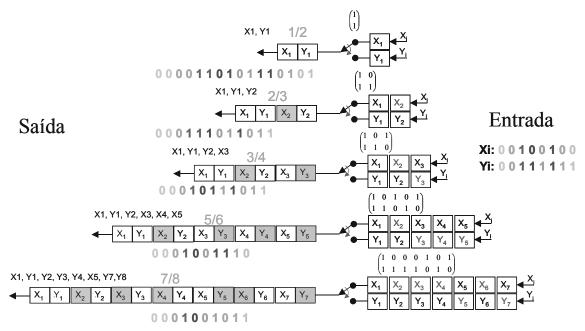


Figura 4.12 Puncionamento do código convolucinal

TABELA 4.3. CARACTERÍSTICA DO PUNCIONAMENTO

	Códig	go					Taxa	do (Código			
K	G₁	G	1/	2	2/:	3	3/4		5/6		7/8	
,	5	G ₂	Р	d_{free}	Р	d_{free}	Р	d_{free}	Р	d_{free}	Р	d_{free}
7	171 _{oc}	133 _{oc}	X=1 Y=1	10	X=10 Y=11	6	X=101 Y=110	5	X=10101 Y=11010	4	X=100010 1 T=1111010	3

P= puncionamento

d_{free}= distância livre

4.4 Modulação

A Figura 4.13 ilustra o diagrama de blocos do estágio de modulação do sistema ISDB-T.

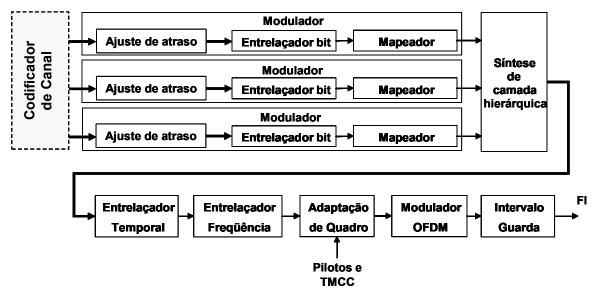


Figura 4.13 Diagrama em blocos do modulador [22, 23]

4.4.1 Ajuste de atraso

O entrelaçador de bits tem como função realizar um entrelaçamento com atraso de 120 símbolos complexos (I+jQ) com tamanho fixo para cada configuração de modulação como pode ser visto na Tabela 4.4, onde N representa o número de segmentos usados em cada camada.

TABELA 4.4. AJUSTE DO ATRASO DO BIT INTERLEAVER

Modulooão	Qua	intidade de bits atrasa	ndos
Modulação	Modo 2k	Modo 4k	Modo 8k
DQPSK/QPSK	384xN-240	768xN-240	1536xN-240
16QAM	768xN-480	1536xN-240	3072xN-240
64QAM	1152xN-720	2304xN-720	4608xN-720

4.4.2 Entrelaçamento de bits e mapeamento

O entrelaçamento de bits é constituído por um conversor serial/paralelo de tamanho variável de acordo com o método de modulação acrescido de um atraso de bit.

4.4.2.1 DQPSK

As Figuras 4.14 e 4.15 ilustram o diagrama de blocos do modulador e sua respectiva constelação.

Figura 4.14 Modulador DQPSK

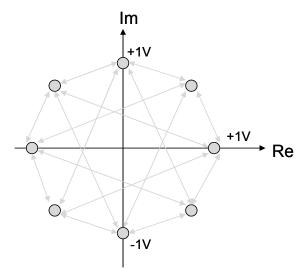


Figura 4.15 Constelação DQPSK

4.4.2.2 **QPSK**

As Figuras 4.16 e 4.17 ilustram o diagrama de blocos do modulador e sua respectiva constelação.

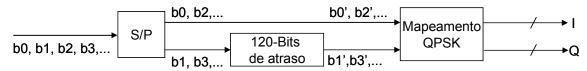


Figura 4.16 Modulador QPSK

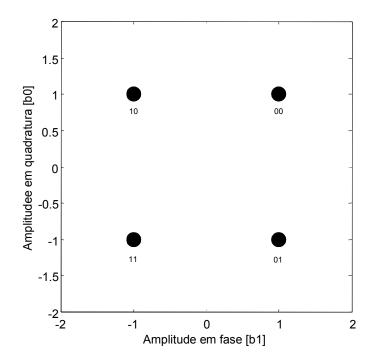


Figura 4.17 Constelação QPSK

4.4.2.3 16-QAM

As Figuras 4.18 e 4.19 ilustram o diagrama de blocos do modulador e sua respectiva constelação.

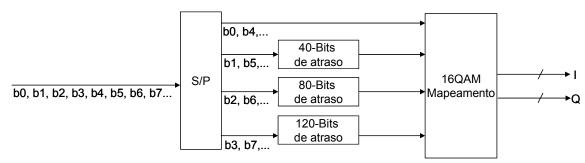


Figura 4.18 Modulador 16-QAM

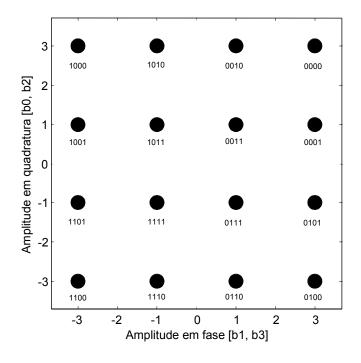


Figura 4.19 Constelação 16-QAM

4.4.2.4 64-QAM

As Figuras 4.20 e 4.21 ilustram o diagrama de blocos do modulador e sua respectiva constelação.

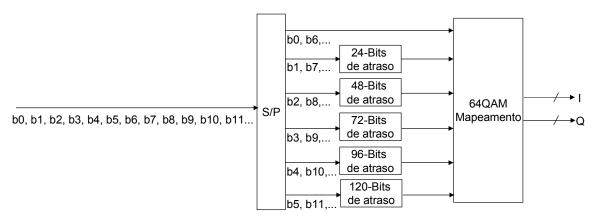


Figura 4.20 Modulador 64-QAM

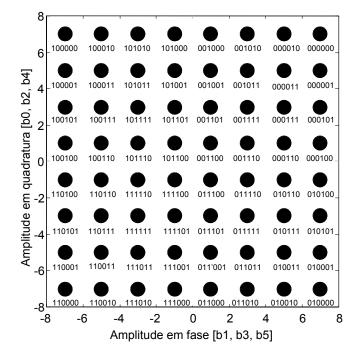


Figura 4.21 Constelação 64-QAM

4.4.3 Fator de Normalização

Com o objetivo de se manter a potência média constante em todas as modulações utilizadas, usa-se um fator de normalização na constelação como pode ser visto na Tabela 4.5.

TABELA 4.5. FATOR DE NORMALIZAÇÃO

Esquema de	Fator de
modulação	normalização
DQPSK	$c = z / \sqrt{2}$
QPSK	$c = z / \sqrt{2}$
16-QAM	$c = z / \sqrt{10}$
64-QAM	$c = z / \sqrt{42}$

4.5 Segmento de dados

Como pode ser visto na Figura 4.22, os segmentos de dados são formados por um conjunto de símbolos complexos provenientes do estágio de mapeamento. O conjunto de 96 símbolos complexos em 204 símbolos OFDM forma um segmento de dados no modo 2k, O conjunto de 192 símbolos complexos em 204 símbolos OFDM forma um segmento de dados no modo 4k, O conjunto de 384 símbolos complexos em 204 símbolos OFDM forma um segmento de dados no modo 8k.

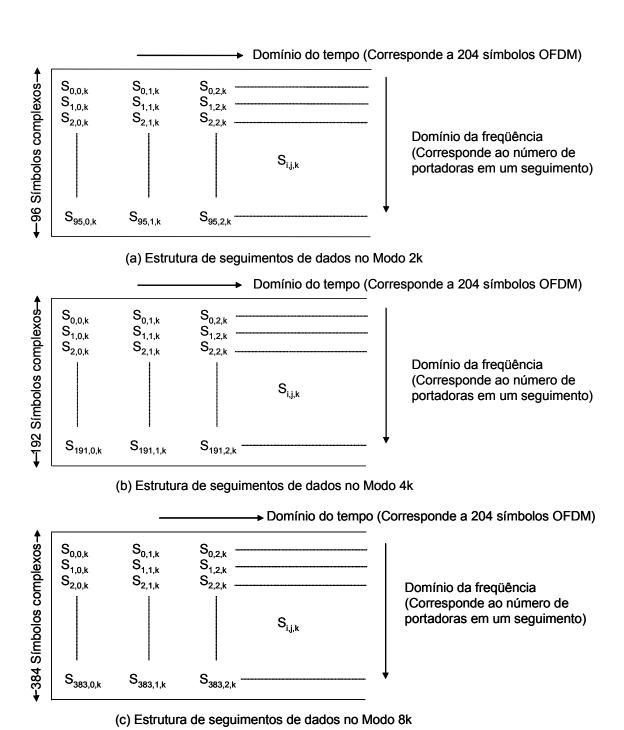


Figura 4.22 Estrutura de segmentos de dados. (a) Modo 2k, (b) Modo 4k e (c) Modo 8k.

4.6 Síntese das camadas de dados

Depois da codificação de canal e mapeamento os segmentos de dados são combinados formando um único segmento de dados como pode ser visto na Figura 4.23.

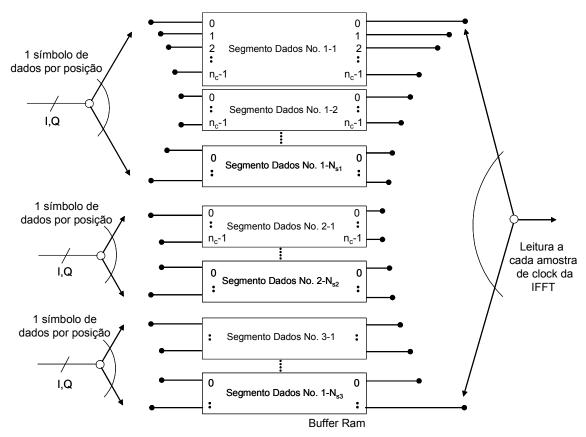


Figura 4.23. Combinador de segmento de dados

4.7 Entrelaçador temporal

Depois do sintetizador de camadas, o sinal é entrelaçado. O entrelaçador temporal é formado por um entrelaçador de blocos que tem como objetivo entrelaçar as subportadoras dentro de vários símbolos OFDM. O entrelaçador temporal atua separadamente em cada segmento OFDM de dados e é combinado ciclicamente na saída. O tamanho do entrelaçamento pode ser ajustado variando-se o parâmetro I como pode ser visto na equação 4.1.

$$\pi(i) = I \cdot \text{mod}(5 \cdot i, Nc), \tag{4.1}$$

onde:

I = Ajuste do tamanho do entrelaçador

i = Entrada do entrelaçador temporal

 $\pi(i)$ = Saída do entrelaçador temporal

Nc = Número de portadoras. Nc=96, 192 ou 384 para os modos 2k, 4k e 8k, respectivamente.

O Atraso gerado pelo entrelaçador temporal pode ser calculado usando-se a equação 4.2:

$$A_{TI}=T_F(204*N_F-N_{SA})$$
 (4.2)

A_{TI}= Atraso do entrelaçador temporal

T_F= Duração do símbolo OFDM

N_F=Número de quadros OFDM atrasados

N_{SA}=Número de símbolos para ajuste

As Figuras 4.21, 4.22 e 4.23 ilustram gráficos de dispersão do entrelaçador temporal nos modos 2k, 4k e 8k, respectivamente. Os valores típicos de atraso para esse entrelaçador podem ser visualizados na Tabela 4.6.

TABELA 4.6 ATRASOS GERADOS PELO ENTRELAÇADOR TEMPORAL

,	Modo 2k		I	Modo 4k		Modo 8k						
Tamanho (I)	Número de símbolos OFDM atrasados		Tamanho (I)	Número de símbolos OFDM atrasados	Atraso (ms)	Tamanho (I)	Número de símbolos OFDM atrasados	Atraso (ms)				
0	0	0	0	0	0	0	0	0				
4	380	95.76	2	190	95.76	1	95	95.76				
8	760	191.52	4	380	191.52	2	190	191.52				
16	1504	379.00	8	760	379.00	4	380	379.00				

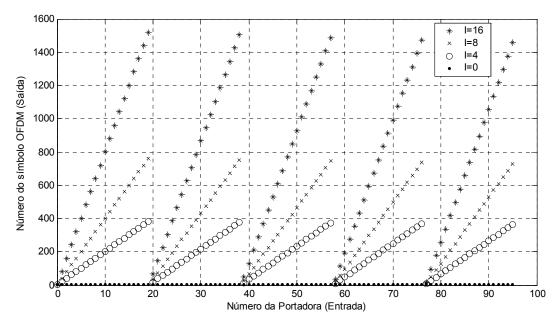


Figura 4.24. Espalhamento do entrelaçador temporal no modo 2k

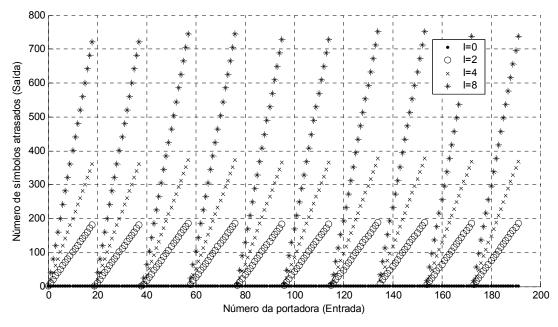


Figura 4.25. Espalhamento do entrelaçador temporal no modo 4k

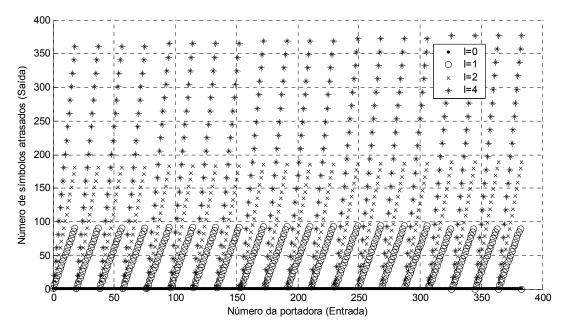


Figura 4.26. Gráfico de dispersão do entrelaçador temporal no modo 8k

4.8 Entrelaçamento em freqüência

Durante a divisão do TS, os segmentos de dados são direcionados para suas respectivas camadas (parcial, diferencial ou coerente) de modulação para serem entrelaçados.

O entrelaçamento entre segmentos somente é utilizado quando se utiliza dois os mais segmentos dentro de uma mesma camada e é utilizado para maximizar os efeitos do entrelaçamento em frequência. A Figura 4.27 ilustra o diagrama de blocos do entrelaçamento de frequência.

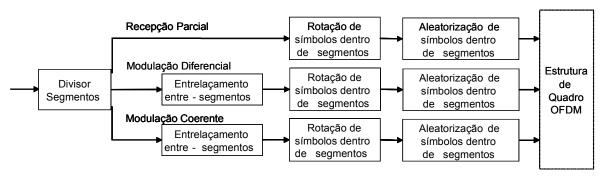


Figura 4.27 Configuração do entrelaçamento de frequência

4.8.1 Entrelaçamento entre-segmentos

O entrelaçamento entre segmentos é utilizado para espalhar os símbolos complexos provenientes da modulação diferencial (DQPSK) ou coerente (QPSK, 16-QAM e 64-QAM) entre segmentos como pode ser visto na Figura 4.28.

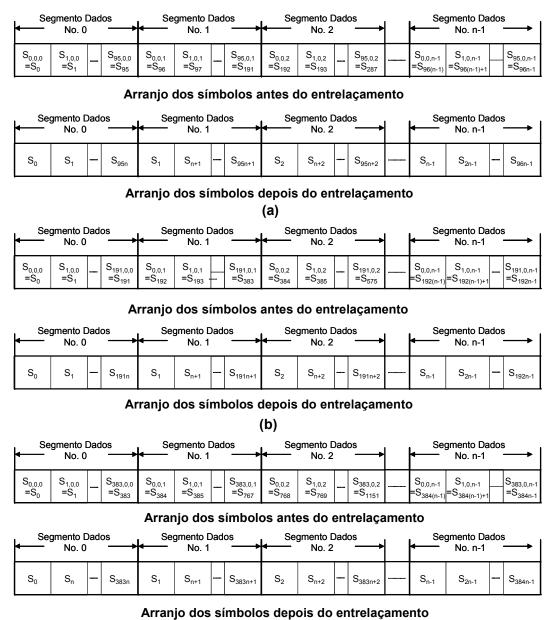


Figura 4.28 Entrelaçamento entre segmentos. Entrelaçamento entre segmentos. (a) Modo 2k, (b) Modo 4k e (c) Modo 8k

(c)

4.7.2 Entrelaçamento dentro de segmentos

O entrelaçamento dentro de segmentos ocorre em dois passos: rotação de fase e aleatorização de portadoras.

A Figura 4.29 ilustra a rotação de fase realizada nos modos 2k, 4k e 8k. Depois a aleatorização é realizada de acordo com as Tabelas 4.7, 4.8 e 4.9 e Figuras 4.30, 4.31 e 4.32 para os modos 2k, 4k e 8k, respectivamente.

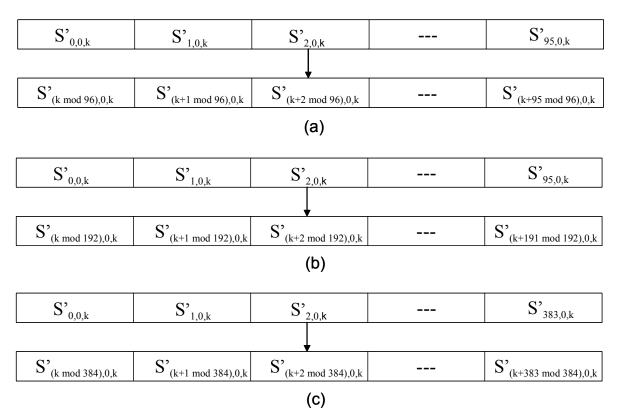


Figura 4.29 Rotação de fase das portadoras. (a) Modo 2k. (b) Modo 4k. (c) Modo 8k.

TABELA 4.7. ALEATORIZADOR DE PORTADORAS DENTRO DE SEGMENTOS NO MODO 2K

Entrada	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
Saída	80	93	63	92	94	55	17	81	6	51	9	85	89	65	52	15	73	66	46	71	12	70	18	13
Entrada	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47
Saída	95	34	1	38	78	59	91	64	0	28	11	4	45	35	16	7	48	22	23	77	56	19	8	36
Entrada	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
Saída	39	61	21	3	26	69	67	20	74	86	72	25	31	5	49	42	54	87	43	60	29	2	76	84
Entrada	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95
Saída	83	40	14	79	27	57	44	37	30	68	47	88	75	41	90	10	33	32	62	50	58	82	53	24

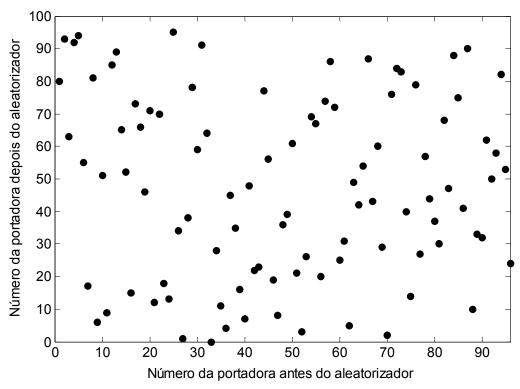


Figura 4.30 Gráfico de dispersão do aleatorizador de portadoras dentro de segmentos no modo 2k

TABELA 4.8. ALEATORIZADOR DE PORTADORAS DENTRO DE SEGMENTOS NO MODO 4K

Entrada	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
Saída	98	35	67	116	135	17	5	93	73	168	54	143	43	74	165	48	37	69	154	150	107	76	176	79
Entrada	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47
Saída	175	36	28	78	47	128	94	163	184	72	142	2	86	14	130	151	114	68	46	183	122	112	180	42
Entrada	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
Saída	105	97	33	134	177	84	170	45	187	38	167	10	189	51	117	156	161	25	89	125	139	24	19	57
Entrada	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95
Saída	71	39	77	191	88	85	0	162	181	113	140	61	75	82	101	174	118	20	136	3	121	190	120	92
Entrada	96	97	98	99	100	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119
Saída	160	52	153	127	65	60	133	147	131	87	22	58	100	111	141	83	49	132	12	155	146	102	164	66
Entrada	120	121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143
Saída	1	62	178	15	182	96	80	119	23	6	166	56	99	123	138	137	21	145	185	18	70	129	95	90
Entrada	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160	161	162	163	164	165	166	167
Saída	149	109	124	50	11	152	4	31	172	40	13	32	55	159	41	8	7	144	16	26	173	81	44	103
Entrada	168	169	170	171	172	173	174	175	176	177	178	179	180	181	182	183	184	185	186	187	188	189	190	191
Saída	64	9	30	157	126	179	148	63	188	171	106	104	158	115	34	186	29	108	53	91	169	110	27	59

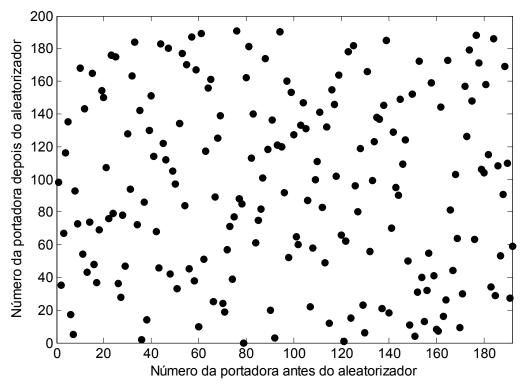


Figura 4.31 Gráfico de dispersão do aleatorizador de portadoras dentro de segmentos no modo 4k

TABELA 4.9. ALEATORIZADOR DE PORTADORAS DENTRO DE SEGMENTOS NO MODO 8K

Fortunal a	_	_	_	_		5120	14112		991	•	40	700		40		45	40	4-	40
Entrada	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Saída	62	13	371	11	285	336	365	220	226	92	56	46	120	175	298	352	172	235	53
Entrada	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37
Saída	164	368	187	125	82	5	45	173	258	135	182	141	273	126	264	286	88	233	61
Entrada	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56
Saída	249	367	310	179	155	57	123	208	14	227	100	311	205	79	184	185	328	77	115
Entrada	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75
Saída	277	112	20	199	178	143	152	215	204	139	234	358	192	309	183	81	129	256	314
Entrada	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91	92	93	94
Saída	101	43	97	324	142	157	90	214	102	29	303	363	261	31	22	52	305	301	293
Entrada	95	96	97	98	99	100	101	102	103	104	105	106	107	108	109	110	111	112	113
Saída	177	116	296	85	196	191	114	58	198	16	167	145	119	245	113	295	193	232	17
Entrada	114	115	116	117	118	119	120	121	122	123	124	125	126	127	128	129	130	131	132
Saída	108	283	246	64	237	189	128	373	302	320	239	335	356	39	347	351	73	158	276
Entrada	133	134	135	136	137	138	139	140	141	142	143	144	145	146	147	148	149	150	151
Saída	243	99	38	287	3	330	153	315	117	289	213	210	149	383	337	339	151	241	321
Entrada	152	153	154	155	156	157	158	159	160	161	162	163	164	165	166	167	168	169	170
Saída	217	30	334	161	322	49	176	359	12	346	60	28	229	265	288	225	382	59	181
Entrada	171	172	173	174	175	176	177	178	179	180	181	182	183	184	185	186	187	188	189
Saída	170	319	341	86	251	133	344	361	109	44	369	268	257	323	55	317	381	121	360
Entrada	190	191	192	193	194	195	196	197	198	199	200	201	202	203	204	205	206	207	208
Saída	260	275	190	19	63	18	248	9	240	211	150	230	332	231	71	255	350	355	83
Entrada	209	210	211	212	213	214	215	216	217	218	219	220	221	222	223	224	225	226	227
Saída	87	154	218	138	269	348	130	160	278	377	216	236	308	223	254	25	98	300	201
Entrada	228	229	230	231	232	233	234	235	236	237	238	239	240	241	242	243	244	245	246
Saída	137	219	36	325	124	66	353	169	21	35	107	50	106	333	326	262	252	271	263
Entrada	247	248	249	250	251	252	253	254	255	256	257	258	259	260	261	262	263	264	265
Saída	372	136	0	366	206	159	122	188	6	284	96	26	200	197	186	345	340	349	103
Entrada	266	267	268	269	270	271	272	273	274	275	276	277	278	279	280	281	282	283	284
Saída	84	228	212	2	67	318	1	74	342	166	194	33	68	267	111	118	140	195	105
Entrada	285	286	287	288	289	290	291	292	293	294	295	296	297	298	299	300	301	302	303
Saída	202	291	259	23	171	65	281	24	165	8	94	222	331	34	238	364	376	266	89
Entrada	304	305	306	307	308	309	310	311	312	313	314	315	316	317	318	319	320	321	322
Saída	80	253	163	280	247	4	362	379	290	279	54	78	180	72	316	282	131	207	343
Entrada	323	324	325	326	327	328	329	330	331	332	333	334	335	336	337	338	339	340	341
Saída	370	306	221	132	7	148	299	168	224	48	47	357	313	75	104	70	147	40	110
Entrada	342	343	344	345	346	347	348	349	350	351	352	353	354	355	356	357	358	359	360
Saída	374	69	146	37	375	354	174	41	32	304	307	312	15	272	134	242	203	209	380
Entrada	361	362	363	364	365	366	367	368	369	370	371	372	373	374	375	376	377	378	379
Saída	162	297	327	10	93	42	250	156	338	292	144	378	294	329	127	270	76	95	91
Entrada	380	381	382	383		<u> </u>					l						<u> </u>		
Saída	244	274	27	51															
Juliuu								ı		1	ı	ı	ı			ı	1	ı	

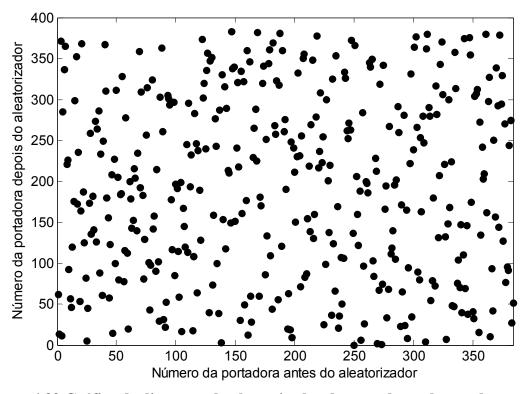


Figura 4.32 Gráfico de dispersão do aleatorizador de portadoras dentro de segmentos no modo 8k

4.9 Estrutura do quadro OFDM

A transmissão do sinal é organizada em quadros. Cada quadro possui duração **T**_F, e consiste em 204 símbolo OFDM como pode ser visto nas Figuras 4.30 e 4.31. Cada símbolo OFDM com 13 segmentos de banda é constituído por um número K=1405 portadoras modo 1 (2k), K=2809 portadoras modo 2 (4k) e K=5617 portadoras modo 3 (8k) na qual são transmitidas com a duração **T**_S. Ts é composto por duas partes, T_U que é a duração de tempo das portadoras e o intervalo de guarda com duração Δ. O intervalo de guarda consiste em uma continuação cíclica de T_U que é inserida ao seu término.Um símbolo OFDM com 13 segmentos ocupa a banda de 5.571MHz. A Tabela 4.10 ilustra informações de um quadro OFDM.

TABELA 4.10. PARÂMETROS DE UM SEGMENTO DO QUADRO OFDM

Mode			lo 2k		lo 4k		lo 8k		
Largura de	banda			3000/7=42	8.57kHz				
Espaçam entre porta		250/63=3.	968 kHz	125/63=19	9841 kHz		0.99206 Hz		
	Total	108	108	216	264	432	432		
	Dados	96	96	192	192	384	384		
Número	SP	9	0	18	0	36	0		
de	CP	0	1	0	1	0	1		
portadoras	TMCC	1	5	2	10	4	20		
	AC1	2	2	4	4	8	8		
	AC2	0	4	0	9	0	19		
Modula	ção	QPSK 16QAM 64QAM	DQPSK	QPSK 16QAM 64QAM	DQPSK	QPSK 16QAM 64QAM	DQPSK		
Símbolos po	r quadro	_		20	04				
Tamanho s	ímbolo	252	2μs	50-	4μs	100	/8μs		
Intervalo de	e guarda	31.5 μ 15.75 μ 7.875 μ	(1/4) s (1/8) s (1/16) s (1/32)	63 μs 31.5 μs 15.75 μ	s (1/4) s (1/8) s (1/16) ss (1/32)	126μs 63 μs 31.5 μs	s (1/4) s (1/8) (1/16) s (1/32)		
Tamanho o	quadro	57.834 n 54.621 n	ns (1/4) ms (1/8) ns (1/16) ms (1/32)	115.668 109.242	ms (1/4) ms (1/8) ms (1/16) ms (1/32)	231.336 218.484	ms (1/4) ms (1/8) ms (1/16) ms (1/32)		
Freqüênc amostrager				512/63 = 8.1	2698 MHz		- (-,)		
Codificação		Codificador convolucional (1/2, 2/3,3/4, 5/6, 7/8)							
Codificação	externa	RS (204, 188)							

4.9.1 Estrutura de quadro OFDM para Modulação Diferencial

A estrutura de quadro para modulação diferencial é constituída de 108 portadoras para o modo 2k, 216 e 432 para os modos 4k e 8k, respectivamente.

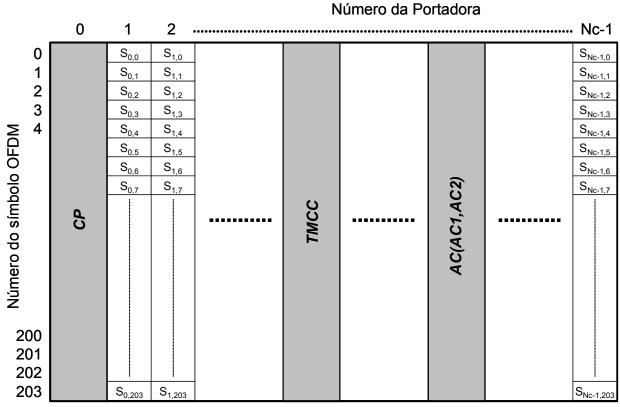


Figura 4.33 Estrutura de quadro OFDM para a modulação diferencial

TABELA 4.11. ARRANJO DE PILOTOS (CP, AC E TMCC) PARA A MODULAÇÃO DIFERENCIAL NO MODO 2K

Segmento No.	11	9	7	5	3	1	0	2	4	6	8	10	12
CP	0	0	0	0	0	0	0	0	0	0	0	0	0
AC1_1	10	53	61	11	20	74	35	76	4	40	8	7	98
AC1_2	28	83	100	101	40	100	79	97	89	89	64	89	101
AC2_1	3	3	29	28	23	30	3	5	13	72	36	25	10
AC2_2	45	15	41	45	63	81	72	18	93	95	48	30	30
AC2_3	59	40	84	81	85	92	85	57	98	100	52	42	55
AC2_4	77	58	93	91	105	103	89	92	102	105	74	104	81
TMCC 1	13	25	4	36	10	7	49	31	16	5	78	34	23
TMCC 2	50	63	7	48	28	25	61	39	30	10	82	48	37
TMCC 3	70	73	17	55	44	47	96	47	37	21	85	54	51
TMCC 4	83	80	51	59	47	60	99	65	74	44	98	70	68
TMCC 5	87	93	71	86	54	87	104	72	83	61	102	101	105

TABELA 4.12. ARRANJO DE PILOTOS (CP, AC E TMCC) PARA A MODULAÇÃO DIFERENCIAL NO MODO 4K

Segmento No.	11	9	7	5	3	1	0	2	4	6	8	10	12
CP	0	0	0	0	0	0	0	0	0	0	0	0	0
AC1_1	10	61	20	35	4	8	98	53	11	74	76	40	7
AC1_2	28	100	40	79	89	64	101	83	101	100	97	89	89
AC1_3	161	119	182	184	148	115	118	169	128	143	112	116	206
AC1_ 4	191	209	208	205	197	197	136	208	148	187	197	172	209
AC2_1	3	29	23	3	13	36	10	3	28	30	5	72	25
AC2_ 2	45	41	63	72	93	48	30	15	45	81	18	95	30
AC2_3	59	84	85	85	98	52	55	40	81	92	57	100	42
AC2_4	77		105				81	58					104
AC2_5	108										108	108	108
AC2_6	111	136	138	113	180	133	111	137	131	111	121	144	118
AC2_7	123	153	189	126	203	138	153	149	171	180	201	156	138
AC2_8	148	189	200	165	208	150	167	192	193	193	206	160	163
AC2_9	166	199	211	200	213	212	185	201	213	197	210	182	189
TMCC 1	13	4	10	49	16	78	23	25	36	7	31	5	34
TMCC 2	50	7	28	61	30	82	37	63	48	25	39	10	48
TMCC 3	70	17	44	96	37	85	51	73	55	47	47	21	54
TMCC 4	83	51	47	99	74	98	68	80	59	60	65	44	70
TMCC 5	87	71	_	104			105		86	87	72	61	101
TMCC 6	133	144	115	139	113	142	121	112	118	157	124	186	131
TMCC 7	171	156	133	147	118	156	158	115	136	169	138	190	145
TMCC 8	181	163	155	155	129	162	178	125	152	204	145	193	159
TMCC 9	188	167	168	173	152	178	191	159	155	207	182	206	176
TMCC 10	201	194	195	180	169	209	195	179	162	212	191	210	213

TABELA 4.13. ARRANJO DE PILOTOS (CP, AC E TMCC) PARA A MODULAÇÃO DIFERENCIAL NO MODO 8K

	MOD	ULA	ŧÇА	U D	IFE	CEN	CIA	LNU) IVIC	טענ	δK		
Segmento No.	11	9	7	5	3	1	0	2	4	6	8	10	12
CP	0	0	0	0	0	0	0	0	0	0	0	0	0
AC1_1	10	20	4	98	11	76	7	61	35	8	53	74	40
AC1_ 2	28	40	89	101	101	97	89	100	79	64	83	100	89
AC1_3	161	182	148	118	128	112	206	119	184	115	169	143	116
AC1_4	191	208	197	136	148	197	209	209	205	197	208	187	172
AC1 5	277	251	224	269	290	256	226	236	220	314	227	292	223
AC1_ 6	316	295	280	299	316	305	244	256	305	317	317	313	305
AC1_ 7	335	400	331	385	359	332	377	398	364	334	344	328	422
AC1_8	425	421	413	424	403	388	407	424	413	352	364	413	425
AC2_1	3	23	13	10	28	5	25	29	3	36	3	30	72
AC2_2	45	63	93	30	45	18	30	41	72	48	15	81	95
AC2_3	59	85	98	55	81	57	42	84	85	52	40	92	100
AC2_4	77	105	102	81	91	92	104	93	89	74	58	103	105
AC2_5	108	108	108	108	108	108	108	108	108	108	108	108	108
AC2_6	111	138	180	111	131	121	118	136	113	133	137	111	144
AC2_7	123	189	203	153	171	201	138	153	126	138	149	180	156
AC2_8	148	200	208	167	193	206	163	189	165	150	192	193	160
AC2_9	166	211	213	185	213	210	189	199	200	212	201	197	182
AC2_10	216	216	216	216	216	216	216	216	216	216	216	216	216
AC2_11	245	219	252	219	246	288	219	239	229	226	244	221	241
AC2_12	257	288	264	231	297	311	261	279	309	246	261	234	246
AC2_13	300	301	268	256	308	316	275	301	314	271	297	273	258
AC2_14	309	305	290	274	319	321	293	321	318	297	307	308	320
AC2_15	324	324	324	324	324	324	324	324	324	324	324	324	324
AC2_16	352	329	349 354	353	327	360	327	354	396	327	347	337	334
AC2_17 AC2_18	369 405	342 381	366	365 408	396 409	372 376	339 364	405 416	419 424	369 383	387 409	417	354 379
	415	416	428	417	413	398	382	427	424	401	409	426	405
AC2_19 TMCC 1				23	36			427		78	25	7	5
TMCC 1	13 50	10 28	16 30	37	48	31	34 48	7	49 61	82	63	25	10
TMCC 2	70	44	37	51	55	47	54	17	96	85	73	47	21
TMCC 4	83	47	74	68	59	65	70	51	99	98	80	60	44
TMCC 5	87	54	83	105	86	72	101	71	104	102	93	87	61
TMCC 6	133	115	113	121	118	124	131	144	139	142	112	157	186
TMCC 7	171	133	118	158	136	138	145	156	147	156	115	169	190
TMCC 8	181	155	129	178	152	145	159	163	155	162	125	204	193
TMCC 9	188	168	152	191	155	182	176	167	173	178	159	207	206
TMCC 10	201	195	169	195	162	191	213	194	180	209	179	212	210
TMCC 11	220	265	294	241	223	221	229	226	232	239	252	247	250
TMCC 12	223	277	298	279	241	226	266	244	246	253	264	255	264
TMCC 13	233	312	301	289	263	237	286	260	253	267	271	263	270
TMCC 14	267	315	314	296	276	260	299	263	290	284	275	281	286
TMCC 15	287	320	318	309	303	277	303	270	299	321	302	288	317
TMCC 16	360	355	358	328	373	402	349	331	329	337	334	340	347
TMCC 17	372	363	372	331	385	406	387	349	334	374	352	354	361
TMCC 18	379	371	378	341	420	409	397	371	345	394	368	361	375
TMCC 19	383	389	394	375	423	422	404	384	368	407	371	398	392
TMCC 20	410	396	425	395	428	426	417	411	385	411	378	407	429

4.9.2 Estrutura de quadro OFDM para modulação coerente

Para a modulação coerente é necessário transmitir pilotos de referência espalhados como pode ser visto na Figura 4.34.

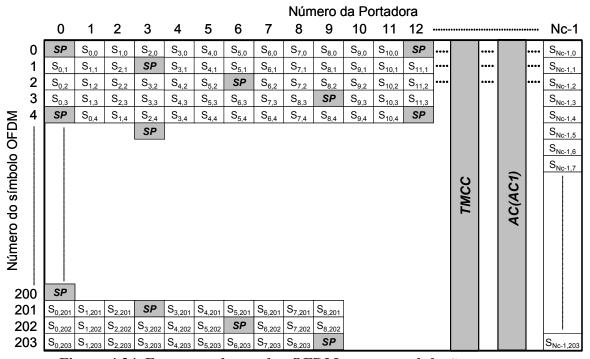


Figura 4.34. Estrutura de quadro OFDM para a modulação coerente

TABELA 4.14. ARRANJO DE PILOTOS AC E TMCC PARA A MODULAÇÃO COERENTE

	Modo 2k												
Segmento No.	11	9	7	5	3	1	0	2	4	6	8	10	12
AC1_ 1	10	53	61	11	20	74	35	76	4	40	8	7	98
AC1_ 2	28	83	100	101	40	100	79	97	89	89	64	89	101
TMCC 1	70	25	17	86	44	47	49	31	83	61	85	101	23
				M	odo	4k							
Segmento No.	11	9	7	5	3	1	0	2	4	6	8	10	12
AC1_ 1	10	61	20	35	4	8	98	53	11	74	76	40	7
AC1_ 2	28	100	40	79	89	64	101	83	101	100	97	89	89
AC1_ 3	161	119	182	184	148	115	118	169	128	143	112	116	206
AC1_ 4	191	209	208	205	197	197	136	208	148	187	197	172	209
TMCC 1	70	17	44	49	83	85	23	25	86	47	31	61	101
TMCC 2	133	194	155	139	169	209	178	125	152	157	191	193	131
				M	odo	8k							
Segmento No.	11	9	7	5	3	1	0	2	4	6	8	10	12
AC1_ 1	10	20	4	98	11	76	7	61	35	8	53	74	40
AC1_ 2	28	40	89	101	101	97	89	100	79	64	83	100	89
AC1_ 3	161	182	148	118	128	112	206	119	184	115	169	143	116
AC1_ 4	191	208	197	136	148	197	209	209	205	197	208	187	172
AC1_ 5	277	251	224	269	290	256	226	236	220	314	227	292	223
AC1_ 6	316	295	280	299	316	305	244	256	305	317	317	313	305
AC1_ 7				385									
AC1_ 8	425	421	413	424	403	388	407	424	413	352	364	413	425
TMCC 1	70	44	83	23	86	31	101	17	49	85	25	47	61
TMCC 2	133	155	169	178	152	191	131	194	139	209	125	157	193
TMCC 3	233	265	301	241	263	277	286	260	299	239	302	247	317
TMCC 4	410	355	425	341	373	409	349	371	385	394	368	407	347

4.9.3 Sinais de referência

Várias portadoras do quadro OFDM são moduladas com informações de referência que são conhecidas pelo receptor. Essas portadoras são transmitidas com uma potência superior a das portadoras de dados. As informações transmitidas nessas portadoras são chamadas de pilotos contínuas ou espalhadas.

Cada piloto contínuo, coincide com as portadoras pilotos espalhadas a cada quatro símbolos. O número de portadoras usadas para dados é constante para cada segmento: 96 para o modo 2k, 192 para o modo 4k e 384 para o modo 8k.

A informação modulante para as portadoras pilotos contínuas ou espalhadas são originadas por um polinômio PRBS $X^{11} + X^2 + 1$ como pode ser visto na Figura 4.35.

Cada símbolo OFDM possui informação de dados e referência.

Em resumo, além das portadoras de dados um quadro OFDM também possui portadoras pilotos:

- Espalhadas (SP);
- Contínuas (CP);
- Parâmetros auxiliares (AC);
- Parâmetros de transmissão, multiplexação, controle e configuração (TMCC);

As portadoras pilotos são utilizadas para a sincronização de quadro, sincronização de freqüência, sincronização de tempo, estimação de canal, identificação do modo de transmissão e correção de ruído de fase da mesma forma que no sistema europeu.

4.9.3.1 Localização das portadoras pilotos espalhadas

As portadoras pilotos com informações de referência espalhadas são transmitidas com uma potência superior a das portadoras de dados. A modulação utilizada pelas portadoras pilotos é a BPSK e pode ser representada por:

$$Re(C_{m,l,k}) = 4/3 \times 2(1/2 - W_k)$$

 $Im(C_{m,l,k}) = 0$

W_k assume valores 0 ou 1 provenientes do gerador PRBS.

A posição de cada piloto espalhado dentro de um quadro OFDM pode ser calculada utilizando-se a equação 4.3:

$$k=K_{min} + 3mod(1,4) + 12p$$
 (4.3)

Onde p representa o número de pilotos adicionado, p \ge 0 e k deve ficar entre K_{min} e K_{max} .

4.8.3.2 Definição da sequência de referência

As portadoras pilotos contínuas e espalhadas são moduladas de acordo com a sequência $PRBS\ W_k$, correspondente ao seu respectivo índice k.

 W_k assume valores 1 ou 0.

A sequência PRBS é inicializada com a primeira portadora e incrementada a cada portadora transmitida (piloto ou não). O gerador PRBS é iniciado com valor de acordo com a Tabela 4.15



Figura 4.35 Gerador PRBS das portadoras pilotos

TABELA 4.	15. VALORES	DE INICIAI	JIZAÇAO DO	GERADOR PRBS

Segmento No.	Valor inicial modo 2k	Valor inicial modo 4k	Valor inicial modo 8k
11	11111111111	11111111111	11111111111
9	11011001111	01101011110	1 1 0 1 1 1 0 0 1 0 1
7	01101011110	11011100101	10010100000
5	01000101110	11001000010	01110001001
3	11011100101	10010100000	00100011001
1	00101111010	00001011000	11100110110
0	11001000010	01110001001	00100001011
2	00010000100	00000100100	11100111101
4	10010100000	00100011001	01101010011
6	11110110000	01100111001	10111010010
8	00001011000	11100110110	01100010010
10	10100100111	00101010001	11110100101
12	01110001001	00100001011	00010011100

4.8.3.3 Formatação da TMCC

As TMCC "Transmission and Multiplexing Configuration Control", SP "Scattered Pilot" e AC "Auxiliary Channel" são transmitidas em DBPSK junto com a informação de dados e tem como objetivo informar ao receptor os parâmetros de transmissão e

informações auxiliares. As TMCC, SP e AC também são transmitidas com uma potência superior (+4/3, 0) e (-4/3,0) para as informações 0 e 1, respectivamente. A Figura 4.36 detalha os 204 bits utilizados na TMCC.

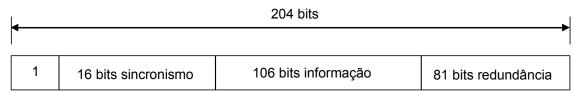


Figura 4.36 Quadro TMCC

4.10 Sinal de RF

Como o sinal OFDM é constituído de várias portadoras ortogonais moduladas, cada símbolo pode ser considerado como uma única portadora com duração T_U.

$$s(t) = \operatorname{Re}\left\{e^{j\cdot 2\cdot \pi \cdot fc \cdot t} \sum_{n=0}^{\infty} \sum_{k=0}^{K-1} Cn, k \cdot \Psi n, k(t)\right\},\tag{4.4}$$

$$\Psi n, k(t) = \begin{cases} e^{j \cdot 2 \cdot \pi \cdot \frac{k - kc}{TU} (t - \Delta - n \cdot Ts)} & (n \cdot Ts \le t \le (n+1) \cdot Ts) \\ 0 & t < n \cdot Ts, (n+1) \cdot Ts \le t \end{cases}, \tag{4.5}$$

Onde:

k número de portadoras;

n número do símbolo OFDM;

K número de portadoras transmitidas no modo 1, 2 e 3;

 T_S duração do símbolo OFDM com intervalo de guarda;

 T_U duração do símbolo OFDM sem intervalo de guarda;

 Δ duração do intervalo de guarda;

fc frequência central do canal de RF;

Kc índice da portadora relativo ao centro da frequência,

 $c_{n,k}$ dado a ser transmitido representado por um número complexo que modulará uma portadora **k** no símbolo n do quadro OFDM;

s(t) sinal de RF

4.9.1 Intervalo de guarda

O intervalo de guarda é inserido após a modulação OFDM e consiste em uma extensão cíclica do símbolo OFDM. O tamanho da réplica Tu equivale à duração do intervalo de guarda. A Figura 4.37 ilustra um símbolo OFDM com intervalo de guarda.

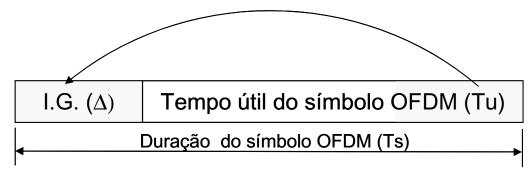


Figura 4.37 Símbolo OFDM com extensão cíclica

4.11 Taxa de Transmissão

A taxa útil de bits transmitida no sistema ISDB-T pode ser calculada usando-se a equação (4.6). Pode-se observar que o tamanho da FFT não altera a taxa de bits na saída. As Tabelas 4.16 e 4.17 ilustram as possíveis taxas de transmissão para a modulação parcial ou total com 13 segmentos.

$$R_b = \frac{1}{Tu} \cdot Nc \cdot Md \cdot R_{cc} \cdot R_{rs} \cdot k' \cdot Ns , \qquad (4.6)$$

$$k' = \frac{1}{k+1},\tag{4.7}$$

onde.

 R_b = Taxa de bits efetiva transmitida

Ns=Número de segmentos

 T_u = Tempo útil do símbolo OFDM: 63/250 para 2k, 63/125 para 4k e 126/125 para 8k

M_d=Método de modulação: QPSK= 2, 16-QAM=4, e 64-QAM=6

Nc= Número de portadoras úteis = 96 para 2k, 192 para 4k e 384 para 8k

 R_{cc} =Razão do codificador convolucional = 1/2, 2/3, 3/4, 5/6 ou 7/8

 R_{RS} = Razão do codificador $Reed\ Solomon$ = 188/204 k=Razão do intervalo de guarda = 1/4, 1/8, 1/16 ou 1/32

TABELA 4.16. TAXA DE BITS ÚTIL PARA UM SEGMENTO

		NI/	Taxa de Dados (kbps)					
Modulação	Taxa	Número de TSPs	Intervalo de guarda					
		Transmitidos (Mode 1/2/3)	1/4	1/8	1/16	1/32		
	1/2	12/24/48	280.85	312.06	330.42	340.43		
DODGIZ	2/3	16/32/64	374.47	416.08	440.56	453.91		
DQPSK QPSK	3/4	18/36/72	421.28	468.09	495.63	510.65		
QISK	5/6	20/40/80	468.09	520.10	550.70	567.39		
	7/8	21/42/84	491.50	546.11	578.23	595.76		
	1/2	24/48/96	561.71	624.13	660.84	680.87		
	2/3	32/64/128	748.95	832.17	881.12	907.82		
16QAM	3/4	36/72/144	842.57	936.19	991.26	1021.30		
	5/6	40/80/160	936.19	1040.21	1101.40	1134.78		
	7/8	42/84/168	983.00	1092.22	1156.47	1191.52		
	1/2	36/72/144	842.57	936.19	991.26	1021.30		
64QAM	2/3	48/96/192	1123.43	1248.26	1321.68	1361.74		
	3/4	54/108/216	1263.86	1404.29	1486.90	1531.95		
	5/6	60/120/240	1404.29	1560.32	1652.11	1702.17		
	7/8	63/126/252	1474.50	1638.34	1734.71	1787.28		

TABE<u>LA 4.17. TAXA DE BITS ÚTIL PARA TREZE SEGME</u>NTOS

		Número de	Taxa de Dados (Mbps)				
Modulação	Taxa	TSPs	Intervalo de guarda				
, , , , , ,		Transmitidos (Mode 1/2/3)	1/4	1/8	1/16	1/32	
	1/2	156/312/624	3.651	4.056	4.295	4.425	
DODGIZ	2/3	208/216/832	4.868	5.409	5.727	5.900	
DQPSK QPSK	3/4	234/468/936	5.476	6.085	6.443	6.638	
VISK	5/6	260/520/1040	6.085	6.761	7.159	7.376	
	7/8	273/546/1092	6.389	7.099	7.517	7.744	
	1/2	312/624/1248	7.302	8.113	8.590	8.851	
	2/3	416/832/1664	9.736	10.818	11.454	11.801	
16QAM	3/4	468/936/1872	10.953	12.170	12.886	13.276	
	5/6	520/1040/2080	12.170	13.522	14.318	14.752	
	7/8	546/1092/2184	12.779	14.198	15.034	15.489	
	1/2	468/936/1872	10.953	12.170	12.886	13.276	
64QAM	2/3	624/1248/2496	14.604	16.227	17.181	17.702	
	3/4	702/1404/2808	16.430	18.255	19.329	19.915	
	5/6	780/1560/3120	18.255	20.284	21.477	22.128	
	7/8	819/1638/3276	19.168	21.298	22.551	23.234	

Capítulo 5

Estimadores de Canal

5.1 Introdução

Neste capítulo, dois métodos de estimação de canal para o sistema OFDM baseados na estimação em uma dimensão 1D (freqüência) e em duas dimensões 2D (tempo x freqüência) são apresentados. A estimação de canal é feita após a demodulação do sinal OFDM sendo que o receptor utiliza a informação dos pilotos de referência para corrigir a constelação das subportadoras de dados através de interpolações. A estimação de canal também é chamada de modulação assistida por símbolo piloto (PSAM) "*Pilot-Symbol Assisted Modulation*" e foi introduzida inicialmente para sistemas com portadora única por Moher e Lodge [24].

Como visto nos capítulos 3 e 4, os sistemas DVB-T e ISDB-T utilizam pilotos de referência que são transmitidos junto com as subportadoras de dados dentro dos símbolos OFDM. Como a informação das portadoras pilotos de referência são conhecidas pelo receptor, o uso dessas portadoras pilotos poderá ajudar na estimação e equalização do canal. O estimador de canal, estima a variação de amplitude e fase em todas as subportadoras de um ou quatro símbolos OFDM.

As duas classes de estimação propostas serão comparadas avaliando-se a taxa de erro de bits BER em canais com variação do espalhamento temporal e espalhamento *doppler*.

5.2 Estimação em uma dimensão

Na estimação de canal em 1D, apenas as portadoras pilotos de cada símbolo OFDM são utilizadas. Dessa forma,, considera-se que a variação tempo x freqüência do canal é muito rápida e por isso apenas cada símbolo OFDM é utilizado [25]. Esse método é utilizado em canais dinâmicos que sofrem o efeito *doppler*. O efeito *doppler* é uma variação aleatória de freqüência devido às variações na velocidade relativa entre o transmissor e receptor. Essas variações em um canal com multipercurso criam um ruído de freqüência aleatório e um deslocamento lateral do espectro [26] ocasionando ICI como pode ser visto na Figura 5.1. Para minimizar a interferência do efeito *doppler* é realizada uma combinação das portadoras pilotos espalhadas e contínuas dentro do quadro OFDM. Esse conceito é demonstrado na Figura 5.2, onde utilizou-se um quadro de 9 símbolos OFDM x 48 subportadoras.

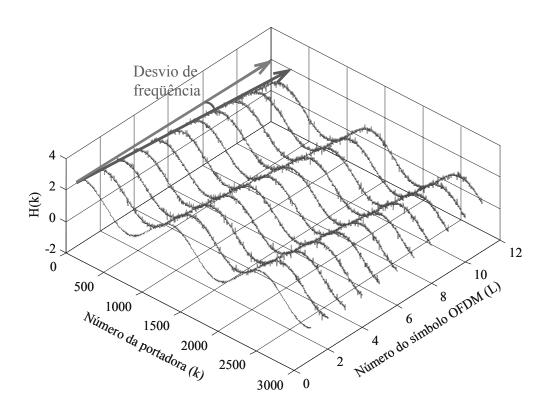


Figura 5.1 Função de transferência ideal. O canal consiste em 2 multipercursos com relação D/E = 0dB e espalhamento temporal de 1μs de pós-eco com espalhamento doppler de 20Hz.

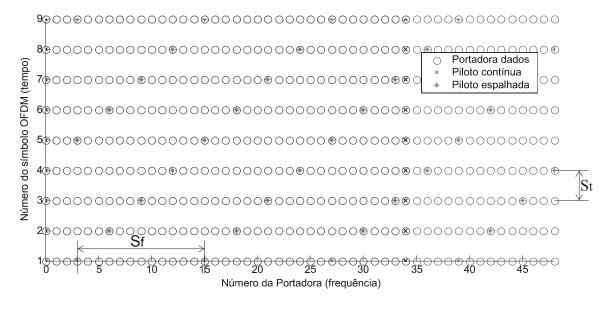


Figura 5.2 Espalhamento de pilotos utilizada na estimação em 1D

5.3 Estimação em Duas Dimensões

Na estimação de canal em duas dimensões 2D (tempo x frequência), as portadoras pilotos de quatro símbolos OFDM são utilizadas e considera-se que o canal possui variação lenta, comportamento característico para recepção fixa [25]. Nesse caso, o uso dessa estimação está relacionada com o espalhamento temporal do canal onde várias cópias do sinal chegam atrasadas até o receptor. O espalhamento temporal causa variações de amplitude e fase no sinal recebido como pode ser visto na Figura 5.3.

Esse método tem como objetivo garantir uma melhor resolução no domínio da freqüência, com a sobreposição das portadoras pilotos espalhadas em símbolos anteriores com o símbolo atual como pode ser visto na Figura 5.4.

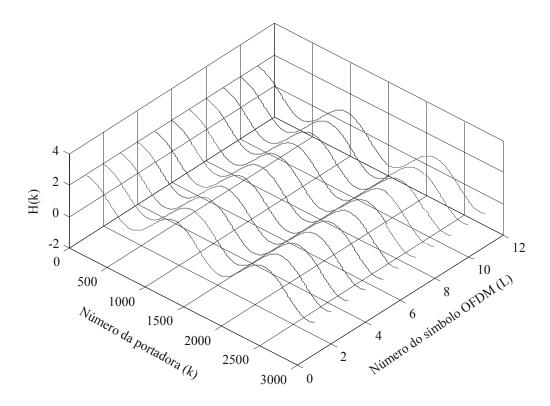


Figura 5.3 Função de transferência ideal. O canal consiste em 2 multipercursos com relação D/E = 0dB e espalhamento temporal de 1μs de pós-eco

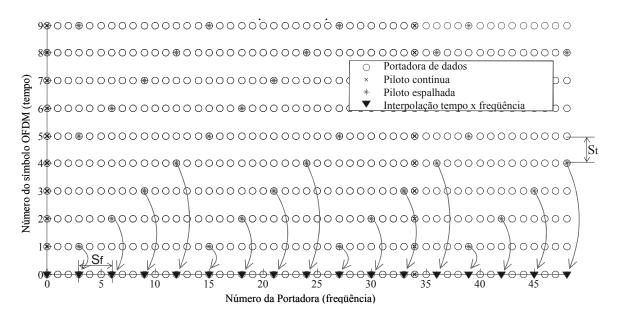


Figura 5.4 Sobreposição dos pilotos em quatro símbolos OFDM

5.4 Algoritmos estimadores de Canal

Vários algoritmos estimadores de canal com referência periódica de sinal têm sido propostos para compensar a deteriorização do efeito de canal com desvanecimento por multipercurso. *piecewice linear*, *gaussian*, *cubic-spline* [27], e combinados com interpolações em 2D. A Figura 5.5 ilustra um diagrama típico de um sistema OFDM com pilotos de referência [21].

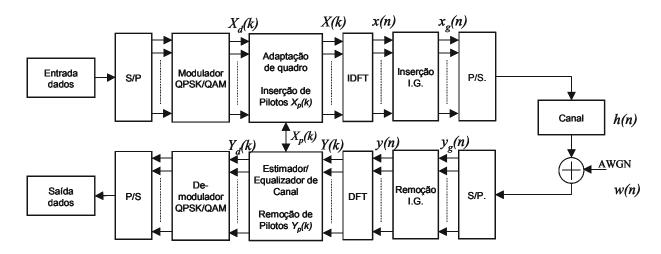


Figura 5.5 Sistema de transmissão/recepção OFDM

A informação de dados é agrupada em um conjunto de bits e modulada em QPSK ou QAM. O sinal de dados modulado $X_d(k)$ é somado às portadoras pilotos $X_p(k)$ resultando no sinal X(k). O sinal X(k) é enviado ao bloco da transformada IDFT resultando no sinal x(n) como pode ser visto em (5.1)

$$x(n) = IDFT\{X(k)\} = \sum_{k=0}^{N-1} X(k)e^{j2\pi kn/N}$$
(5.1)

onde, N representa o número de portadoras e k o índice das portadoras.

Então, o intervalo de guarda é inserido com N_g subportadoras resultando no sinal x_g

$$x_{g}(n) = \begin{cases} x(N+n), n = -Ng, Ng+1, ..., -1 \\ x(n), n = 0, 1, ..., N-1 \end{cases}$$
 (5.2)

onde.

 N_g =Número de amostras do intervalo de guarda que depende da razão de guarda k do DVB-T ou ISDB-T.

A seguir, o sinal X_g é transmitido passando por um canal com desvanecimento por multipercurso e ruído gaussiano.

O sinal recebido pode ser representado por:

$$y_{\sigma}(n) = x_{\sigma}(n) \otimes h(n) + w(n) \tag{5.3}$$

onde:

h(n) é a resposta impulsiva do canal

w(n) é o ruído branco AWGN.

Depois de remover o intervalo de guarda de $y_g(n)$, as amostras de y(n) são enviadas para o bloco da DFT

$$Y(k) = DFT\{y(n)\} = \frac{1}{N} \sum_{k=0}^{N-1} y(n) e^{-j2\pi kn/N}$$
(5.4)

Considerando que o intervalo de guarda é maior do que o tamanho da resposta impulsiva do canal, a equação 5.5 será válida.

$$Y(k) = X(k)H(k) + W(k)$$
 (5.5)

Depois de receber o sinal dos pilotos Yp(k) que é extraído de Y(k), a função de transferência H(k) pode ser obtida através da informação dos pilotos Hp(k). Como a informação do canal é conhecida por H(k), as amostras do sinal transmitido X(K) podem ser recuperadas pela simples divisão do sinal recebido pela resposta do canal.

5.4.1 Estimação linear piecewice

Nesse esquema o resultado do canal é obtido pela aproximação linear entre sinais adjacentes de referência. Como a função de transferência das portadoras pilotos são conhecidas pelo vetor \hat{Hp} (5.7), então a estimação de cada piloto é determinada pela equação (5.6) [21, 27, 28]. A Figura 5.6 ilustra a resposta do canal utilizando-se a estimação linear *piecewise* entre as portadoras pilotos de referência em um canal com espalhamento temporal de 32µs e relação da potência do sinal direto D [dB]/potência do

sinal eco E [dB] = 6 dB. A Figura 5.7 ilustra a constelação do sinal 64-QAM sem estimação de canal e a Figura 5.8 com a estimação de canal *piecewice*.

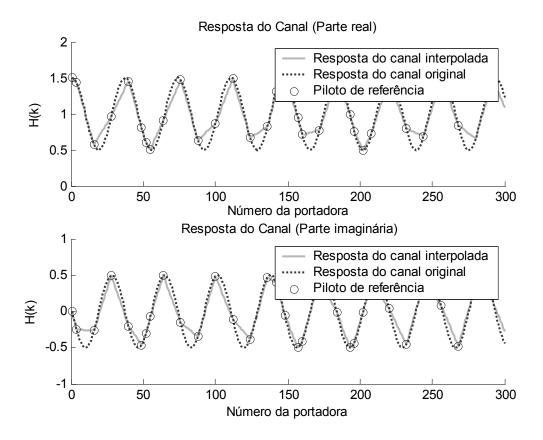


Figura 5.6 Resposta do canal com a estimação piecewice

$$\hat{H}(k) = (1 - a) \cdot \hat{H}_{p}(m) + a \cdot \hat{H}_{p}(m+1), \qquad (5.6)$$

onde,

$$\hat{Hp}(m) = \frac{Y_p(m)}{X_p(m)},$$
 (5.7)

$$a = \frac{l}{L}$$

 X_p é a informação do piloto contínuo ou espalhado de referência

 Y_p é a informação do piloto contínuo ou espalhado recebida

Hp é a função de transferência do piloto

l é a distância entre o piloto de referência e a kn subportadora.

L é o espaçamento entre pilotos

m denota a posição do piloto

H é a estimação do canal

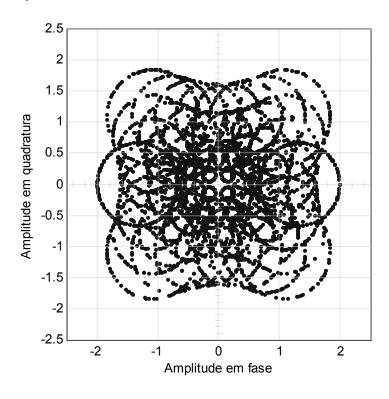


Figura 5.7 Constelação 64-QAM do sistema DVB-T, 8K, 3/4, 1/16 sem estimação de canal. O canal consiste em 2 multipercursos com relação D/E = 6dB e espalhamento temporal de 32µs de pós-eco

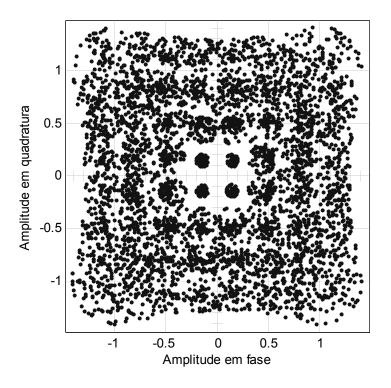


Figura 5.8 Constelação 64-QAM do sistema DVB-T, 8K, 3/4, 1/16 com estimação de canal *Piecewise*. O canal consiste em 2 multipercursos com relação D/E=6dB e espalhamento temporal de 32µs de pós-eco

5.4.2 Estimação gaussiana

Também é chamado de estimador gaussiano de ordem n. Nesse esquema, cada subportadora é estimada e é dada como uma solução para o polinômio de ordem n com o respectivo *l*/L usando (n+1) sinais de referência. Um esquema de estimação de baixa ordem é genericamente usado para economizar o tempo computacional. Por exemplo, o estimador de kn subportadoras em um estimador gaussiano de segunda ordem é obtido usando-se três sucessivos sinais de referências como pode ser visto na equação 5.8 [21, 27, 29]. A Figura 5.9 ilustra a resposta do canal utilizando-se a estimação Gaussiana entre os pilotos de referência e a Figura 5.10 mostra a constelação resultante após a estimação.

$$\hat{H}(k) = C_{-1}(a) \cdot \hat{H}p(m-1) + C_0(a) \cdot \hat{H}p(m) + C_1(a) \cdot \hat{H}p(m+1), \qquad (5.8)$$

onde,

$$C_{-1}(a) = a(a-1)/2$$

$$C_0(a) = -(a-1)\cdot(a+1)$$

$$C_1(a) = a(a+1)/2$$

são coeficientes independentes de três sucessivos sinais de referência [27], e determinados pela distância entre a localização do sinal de referência e uma subportadora estimada.

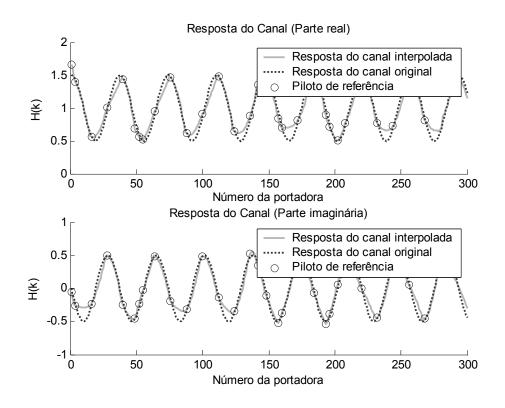


Figura 5.9 Resposta do canal com a estimação gaussiana

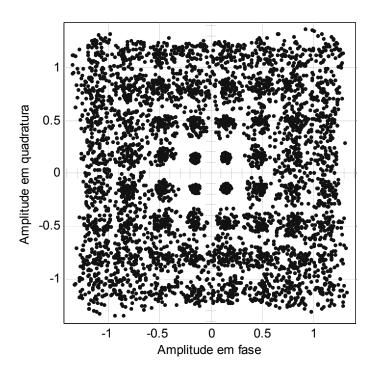


Figura 5.10 Constelação 64-QAM do sistema DVB-T, 8K, 3/4, 1/16 com estimação de canal Gaussiana. O canal consiste em 2 multipercursos com relação D/E=6dB e espalhamento temporal de 32μs de pós-eco

5.4.3 Estimação cubic-spline

A função de transferência de cada subportadora é aproximada aos polinômios de terceira ordem com o respectivo l/L. A estimação é feita obtendo-se os coeficientes dos polinômios pela média de quatro sinais de referências e da sua derivação de segunda ordem. Por essa razão, o estimador pode ser visto pela equação 5.9 [27].

$$\hat{H}(k) = A(a) \cdot \hat{H}p(m) + B(a) \cdot \hat{H}p(m+1) + C(a) \cdot z(m) + D(a) \cdot z(m+1), \qquad (5.9)$$
onde,

A(a), B(a), C(a) e D(a) são constantes determinadas por a.

 $z(m) = \hat{u}"r(m)$ é a derivada de segunda ordem da função de transferência do sinal de referência m.

Se k sinais de referência são usados, então todas as derivadas de segunda ordem são dadas pela equação 5.10.

$$Z=X^{1}V, (5.10)$$

onde:

$$Z=[(m-(K/2)+1),...,z(m),...,z(m-(K/2))]$$
 [27]

X é o numerador e

V é o denominador da matriz derivativa de segunda ordem

Portanto, para se encontrar as derivadas de segunda ordem da função de transferência requerida é necessário um tempo computacional adicional, mas com ganhos significativos como pode ser visto na Figura 5.11 e na Figura 5.12.

Diferente de outros algoritmos, as derivadas de segunda ordem para os limites do símbolo OFDM deveriam ser especificadas na estimação *cubic-spline*, na qual as condições limitantes são conhecidas. Existem duas maneiras de se fazer isso. Uma delas é colocar zeros, chamada de estimação natural *cubic-spline*. A outra é colocando os valores específicos computados a priori [30].

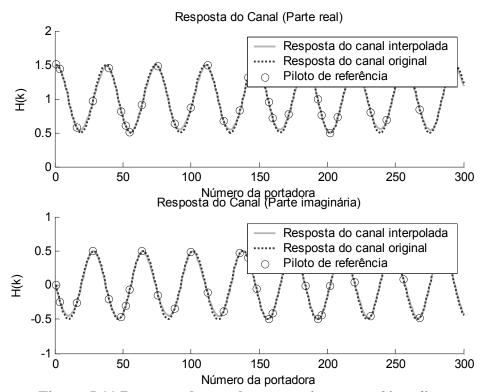


Figura 5.11 Resposta do canal com a estimação cubic-spline

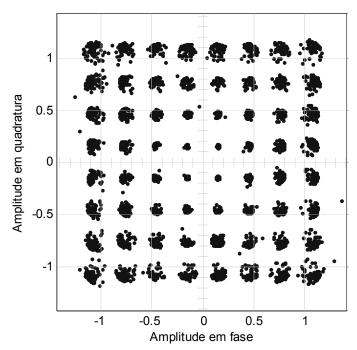


Figura 5.12 Constelação 64-QAM do sistema DVB-T, 8K, 3/4, 1/16 com estimação de canal *Cubic-Spline*. O canal consiste em 2 multipercursos com relação D/E=6dB e espalhamento temporal de 32µs de pós-eco

5.4.4 Estimação 2D combinada com cubic-spline

Esse método tem sido proposto para maximizar a robustez do receptor quando interferido por desvanecimento de canal causado por reflexões em objetos estáticos (multipercurso). A estimação 2D (tempo x freqüência) quando combinada com a estimação de 1D *cubic-spline* demonstra uma ótima estimação de canal como pode ser visto nas Figuras 5.13 e 5.14.

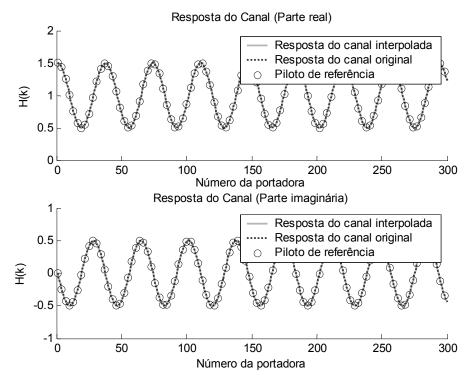


Figura 5.13 Estimação de canal usando a estimação 2D com cubic-spline

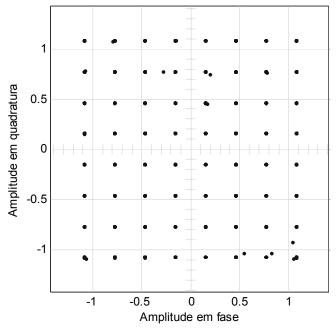


Figura 5.14 Constelação 64-QAM do sistema DVB-T, 8K, 3/4, 1/16 com estimação de canal 2D combinada co *Cubic-Spline*. O canal consiste em 2 multipercursos com relação D/E=6dB e espalhamento temporal de 32µs de pós-eco

5.5 Simulação de desempenho

Os algoritmos propostos foram avaliados usando-se um simulador DVBM-T que será apresentado no capítulo 7. As simulações foram realizadas, considerando-se uma recuperação de sincronismo e relógio ideais, relação sinal-ruído de 50dB e ruído de fase de -100dBc/Hz em 10kHz de desvio de frequência. Os valores da relação sinal-ruído e ruído de fase foram escolhidos para determinar condições semelhantes às utilizadas em laboratório. Todas as simulações foram realizadas com o objetivo de se encontrar o limiar de taxa de erro BER=3x10⁻⁶ após o decodificador RS. A configuração utilizada foi a do DVB-T 64-QAM 8K 3/4 1/16. Para realizar uma comparação do desempenho dos estimadores, foi utilizado o resultado de um receptor doméstico de TV digital disponível no mercado Europeu e testado em laboratório.

5.5.1 Testes com espalhamento temporal

Nesse teste [1, 2, 31], a potência do sinal principal foi fixa e variou-se a potência eco para vários valores de atraso. Caso a medida de taxa de erro na saída do decodificar RS seja superior a $3x10^{-6}$, a potência do eco é atenuada até se obter a taxa de limiar.

Como pode ser visto na Figura 5.15, nota-se que o melhor desempenho foi alcançado com o estimador 2D (tempo x freqüência) combinado com o estimador *cubic-spline*. Os outros estimadores tiveram um desempenho bem inferior. Pode-se observar que o desempenho do receptor RX1 testado em laboratório está próximo ao resultado do estimador 2D com *cubic-spline*. A Tabela 5.1 ilustra valores colhidos da Figura 5.15 na qual os estimadores funcionaram com a mesma intensidade de potência de eco em relação ao canal principal E/D=0dB.

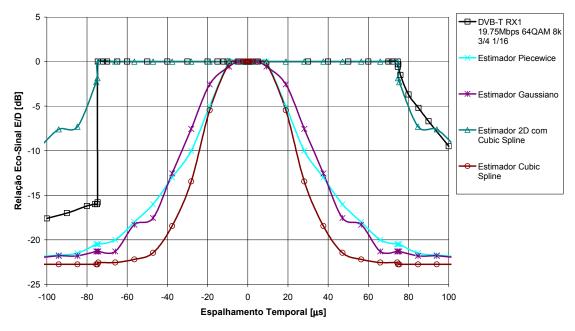


Figura 5.15 Variação do Espalhamento Temporal em Relação à potência do eco E/potência do sinal principal D

TABELA 5.1. MÁXIMO PÓS-ECO TOLERADO PELO ESTIMADOR PARA A RELAÇÃO E/D=0

Estimador	Max. Pós-Eco (μs)
RX1	74.6
Piecewise	9.33
Cubic-Spline	27.63
Gaussiano	5.97
2D com Cubic-Spline	74.81

5.5.2 Testes com efeito doppler

Nesse teste [1, 2, 31] o espalhamento temporal foi ajustado para 1μ s e fixou-se a potência do sinal principal e variou-se a potência do eco para vários valores do espalhamento *doppler* Caso a medida de taxa de erro na saída do decodificar RS seja superior a $3x10^{-6}$, a potência do eco é atenuada até se obter a taxa de limiar.

Pode-se observar na Figura 5.16 que o melhor desempenho foi obtido com o estimador 1D *piecewise*. Nota-se que o resultado simulado está 3Hz pior quando comparado com os resultados do receptor RX1. Como esperado, o pior desempenho foi encontrado com o estimador 2D combinado com *cubic-spline*. De fato, nesse caso o estimador utiliza três símbolos anteriores diferentes além do atual e portanto o erro de freqüência aumenta piorando o desempenho. Nesse método, referências de símbolos anteriores são computadas no cálculo da função de transferência do canal. Como o canal sofre uma variação dinâmica causada pelo efeito *doppler*, as referências geram erro de estimação.

A Tabela 5.2 ilustra valores colhidos da Figura 5.16 sendo que os estimadores funcionaram com a mesma intensidade de potência em relação ao canal principal D/E=0dB.

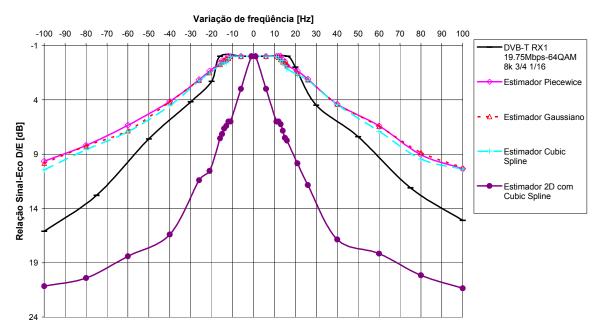


Figura 5.16 Variação da freqüência *doppler* em Relação a potência do sinal principal (D) em relação a potência (E) do sinal com pós-eco de 1µs

TABELA 5.2. MÍNIMO E MÁXIMO VALOR DA VARIAÇÃO DE FREQÜÊNCIA DOPPLER PARA PÓS-ECO DE 1μs

Estimador	Min. freqüência doppler	Max. freqüência doppler
RX1	-16	16
Piecewise	-12	13
Gaussiano	-11	11
Cubic-Spline	-11	11
2D com Cubic-Spline	-1	1

5.6 Considerações finais

Neste capítulo a comparação de desempenho entre algoritmos de estimação de canal para o sistema DVB-T foi analisada, onde utilizou-se dois métodos de avaliação de desempenho [1, 2, 31] baseados na taxa de erro de bits: 1)Testes com espalhamento temporal e; 2)Testes com espalhamento doppler. Foram apresentados resultados comparativos de diversos métodos de estimação que indicam que os resultados obtidos na simulação estão próximos ao desempenho de estimadores utilizados em receptores comerciais. Dessa forma, o estimador de canal 2D com cubic-spline foi utilizado em canais com espalhamento temporal e o estimador piecewise em canais com espalhamento doppler.

Capítulo 6

Entrelaçadores

6.1 Introdução

Entrelaçadores são utilizados em uma grande variedade de meios de comunicação e são implementados a partir de processamento digital de sinais. Um entrelaçador $I\pi$ é um dispositivo que recebe símbolos de um alfabeto e produz idênticos símbolos na saída com uma ordem diferente sem aumentar a taxa de bits. O entrelaçador dispersa as sequências de bits com o objetivo de minimizar o efeito de erros de bloco no meio de uma transmissão de dados.

Esses erros de bloco são criados a partir do ruído impulsivo de alguns equipamentos e do *fading* seletivo no canal de comunicação. Os códigos corretores de erros não conseguem corrigir erros concentrados em uma sequência. Usando-se os entrelaçadores a sequência de bits transmitida é embaralhada e no momento em que ocorre uma concentração de erros no canal de comunicação, o decodificador desembaralha a sequência espalhando os erros. Nesse momento os códigos corretores de erros conseguem detectar e corrigir erros.

Existem dois tipos clássicos de entrelaçadores comumente referenciados como os de blocos e convolucionais. Nos entrelaçadores de blocos, os dados são escritos nas linhas de uma memória configurada como matriz e lidas em suas colunas. Nos entrelaçadores convolucionais [32] os dados são multiplexados com uma sequência pseudoaleatória distribuída de registradores de deslocamento.

6.2 Entrelaçadores de blocos

Um entrelaçador de blocos é caracterizado por sua permutação finita. Um entrelaçador de blocos pode ser descrito em termos de uma matriz N x M. O período de um entrelaçador de blocos pode ser calculado com a expressão T=N x M.

Existem 4 variações clássicas de entrelaçadores de blocos que são esquematizadas de acordo com a ordem de escrita/leitura de suas linhas e colunas.

6.2.1. Entrelaçador clássico LR/TB

Nesse entrelaçador, a escrita é feita nas linhas da esquerda para direita (LR: *left to right*) e a leitura nas colunas de cima para baixo (TB: *top to bottom*). A Figura 6.1 ilustra a permutação do entrelaçador LR/TB.

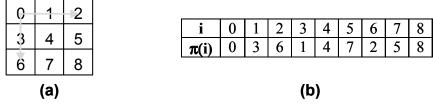


Figura 6.1 Entrelaçador LR/TB. (a) Matriz de dados. (b) Representação do entrelaçamento i=entrada e π(i)=saída

6.2.2. Entrelaçador clássico LR/BT

Nesse entrelaçador, a escrita é feita nas linhas da esquerda para direita (LR:*left to right*) e a leitura nas colunas de baixo para cima (BT *bottom to top*). A Figura 6.2 ilustra a permutação do entrelaçador LR/BT.

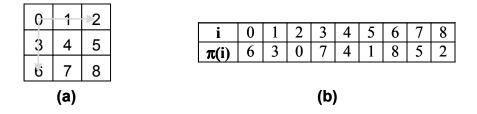


Figura 6.2 Entrelaçador LR/BT. Entrelaçador LR/BT. (a) Matriz de dados. (b) Representação do entrelaçamento i=entrada e π(i)=saída

6.2.3. Entrelaçador clássico RL/TB

Nesse entrelaçador, a escrita é feita nas linhas da direita para esquerda (RL: right to left) e a leitura nas colunas de cima para baixo (TB: top to bottom). A Figura 6.3 ilustra a permutação do entrelaçador *RL/TB*.

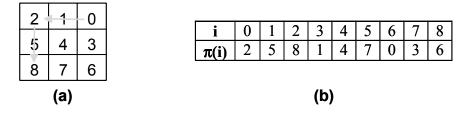


Figura 6.3 Entrelaçador *RL/TB*. (a) Matriz de dados. (b) Representação do entrelaçamento i=entrada e π(i)=saída

6.2.4. Entrelaçador clássico RL/BT

Nesse entrelaçador, a escrita é feita nas linhas da direita para esquerda (RL: right to left) e a leitura nas colunas de baixo para cima (BT: bottom to top). A Figura 6.4 ilustra a permutação do entrelaçador RL/BT.

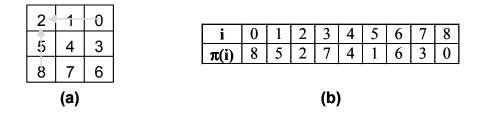


Figura 6.4 Entrelaçador LR/TB. (a) Matriz de dados. (b) Representação do entrelaçamento i=entrada e π(i)=saída

6.2.5. Entrelaçador/ Desentrelaçador de blocos

Suponha uma sequência 100110111, escrita em um entrelaçador de blocos *LR/TB*. A sequência entrelaçada 111011001 pode ser lida nas colunas de cima para baixo. Pode-se recuperar a sequência original escrevendo-se a sequência 111011001 no entrelaçador *LR/TB* e então pode-se recuperar a sequência original nas colunas. A Figura 6.5 ilustra um exemplo de entrelaçamento e desentrelaçamento.

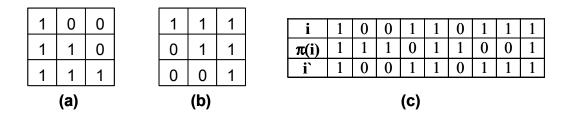


Figura 6.5 Representação matricial do entrelaçamento/desentrelaçamento. (a) Entrelaçamento de bits. (b) Desentrelaçamento de bits. (c) Representação do entrelaçamento

6.3 Entrelaçador convolucional

Utiliza a multiplexação em tempo e registradores de deslocamento. Cada entrada do multiplexador possui um registrador de deslocamento D. Os registradores atrasam a seqüência de bits e são agrupados novamente como pode ser visto na Figura 6.6. A Tabela

6.1 ilustra o exemplo de entrelaçamento realizado por um entrelaçador convolucional com período T=3 e espalhamento Δ =1.

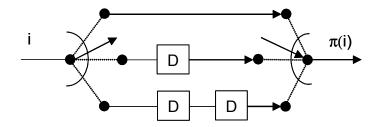


Figura 6.6 Entrelaçador convolucional

TABELA 6.1. PROCESSAMENTO DO ENTRELAÇADOR CONVOLUCIONAL

i	0	1	2	3	4	5	6	7	8
π(i)	0	-2	-4	3	1	-1	6	4	2

6.4 Parâmetros

Um entrelaçador $I\pi$ consiste em um dispositivo com uma entrada e uma saída. Nesse dispositivo realiza-se o embaralhamento das seqüências de bits de entrada sem alterar sua taxa de bits na saída. Cada entrelaçador $I\pi$ possui seu respectivo desentrelaçador $I\pi^{-1}$ que reconstrói a seqüência original com um possível atraso. A permutação dos bits de entrada com os bits de saída pode ser representada como $\pi: Z \to Z$ [33]como pode ser visto na Figura 6.7.

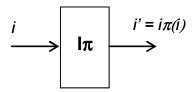


Figura 6.7 Representação do entrelaçador

onde: Xi = i: seqüência de entrada

 $Yi = Xi \pi(i)$: seqüência de saída embaralhada

 $I\pi$: entrelaçador

A permutação ocorre bit a bit em um período p que deve ser ≥ 1 e deve obedecer a equação (6.1) [33].

$$\pi(i+p) = \pi(i)+p \tag{6.1}$$

6.4.1 Causalidade

Um entrelaçador $\mathbf{I}\boldsymbol{\pi}$ é causal quando no instante i sua saída $\pi(i)$ depende apenas de sua entrada atual ou anterior. Para que isso ocorra é necessário que $\pi(i) \le i$ para todos valores de i [34]. A Figura 6.8 ilustra um exemplo de um entrelaçador causal e não causal. Entrelaçadores de blocos não são causais e os convolucionais geralmente são causais. Um entrelaçador não causal pode se tornar causal introduzindo um atraso. O entrelaçador é causal se $dmin \ge 0$ e tem mínima causalidade se dmin = 0, onde:

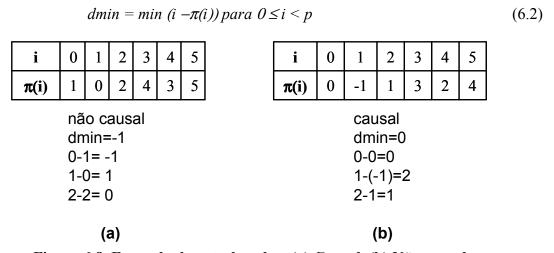


Figura 6.8. Exemplo de entrelaçador. (a) Causal. (b) Não causal

6.4.2 Atraso e latência

Uma sequência de dados i após ser processada por um entrelaçador $\mathbf{I}\boldsymbol{\pi}$ gera uma saída correspondente $\pi(i)$. Aplicando-se o processo inverso $\mathbf{I}\boldsymbol{\pi}^{-1}$ pode-se recuperar a sequência original i atrasada em relação a sequência original i como pode ser visto na Figura 6.9.

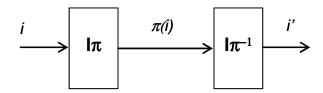


Figura 6.9 Entrelaçador e desentrelaçador

Como os atrasos máximo e mínimo de um entrelaçador $I\pi$ e desentrelaçador $I\pi^{-1}$ podem ser calculados com a expressão $\delta max \ e \ \delta min \ (6.3)$ que correspondem ao intervalo de tempo de entrada e saída de um símbolo, a latência de um sistema de entrelaçamento pode ser definida por (6.4) [34]:

$$\begin{cases} \delta \min(I\pi) = \delta \max(I\pi^{-1}) = \min(i - \pi(i)) \\ \delta \max(I\pi) = \delta \min(I\pi^{-1}) = \max(i - \pi(i)) \end{cases}$$
(6.3)

$$L_I = \delta max - \delta min$$
 (6.4)

O atraso mínimo de um sistema de entrelaçamento pode ser calculado como sendo a soma dos atrasos mínimos do entrelaçador e desentrelaçador, o que equivale ao mesmo valor da latência. As latências de alguns entrelaçadores clássicos podem ser calculadas conforme a Tabela 6.2:

TABELA 6.2. LATÊNCIA DE ENTRELAÇADORES

Entrelaçador	Latência
Bloco LR/TB	2(N-1)(M-1)
Bloco LR/BT	2(N-1)M
Bloco RL/TB	2N(M-1)
Bloco RL/BT	2NM-2
Convolucional	$\Delta T(T-1)$,

T representa o número de registradores de deslocamento.

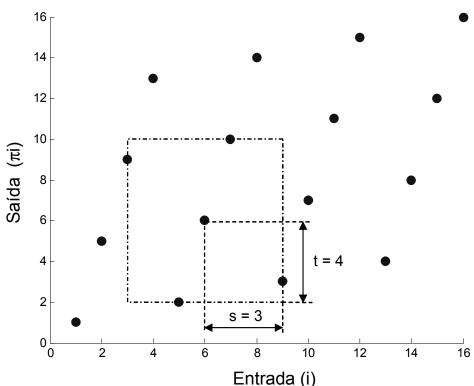
6.4.3 Memória

A quantidade máxima de memória requerida por um entrelaçador causal depende do número máximo de símbolos de entrada (6.5) [33].

$$\left| \{ x | x < i \quad e \quad \pi(x) \ge i \right| \tag{6.5}$$

Pode-se descrever que a memória de um entrelaçador, funciona como um bloco de transferência e pode ser calculada como sendo a soma dos expoentes da função de transferência G(D). Para os entrelaçadores clássicos, o uso de memória é simétrico e as quantidades correspondentes podem ser calculadas conforme a Tabela 6.3.

TABELA 6.3. CÁLCULO DE MEMÓRIA


Entrelaçador	Memória
Bloco LR/TB	(N-1)(M-1),
Bloco LR/BT	(N-1)M
Bloco RL/TB	N(M-1)
Bloco RL/BT	NM-1
Convolucional	ΔT(T-1)/2

6.4.4 Espalhamento

Um entrelaçador $I\pi$ possui fator de espalhamento (s,t) se |i-j| < s e $|\pi(i) - \pi(j)| \ge t$. Como a definição de espalhamento é simétrica sempre que $|\pi(i) - \pi(j)| < t$ então $|i-j| \ge s$ [33]. Se um entrelaçador possui fator de espalhamento (s,t), seu correspondente desentrelaçador possui fator de espalhamento (t,s) [34]. As Figuras 6.10 e 6.11 ilustram gráficos de dispersão do entrelaçadores de blocos LR/TB e LR/BT, respectivamente. Utilizando-se o quadrado com linha pontilhada como referência, nota-se que cada ponto está espalhado em relação aos outros com o fator (s=3,t=4) para o entrelaçador LR/TB e (s=4,t=4) para o entrelaçador LR/BT. Esses entrelaçadores possuem apenas um fator de espalhamento, mas é muito comum se encontrar vários fatores de espalhamento para um entrelaçador/desentrelaçador. A Tabela 6.4 ilustra os parâmetros dos principais entrelaçadores de blocos e convolucionais.

TABELA 6.4. CÁLCULO DO FATOR DE ESPALHAMENTO

Entrelaçador	Fator de espalhamento
Bloco LR/TB	s = N-1, t=M
Bloco LR/BT	s = N, t=M
Bloco RL/TB	s = N, t=M
Bloco RL/BT	s = N-1, t=M
Convolucional	$(s=T+1, t=T-1)$ para $(\Delta=1)$
	$(s=T, t=T*\Delta-1), (s=t*(\Delta-1)+1), t=T), para$
	(Δ>1)

Entrada (i)
Figura 6.10 Gráfico de dispersão de entrada e saída do entrelaçador *LR/TB*. Fator de espalhamento (s=3, t=4).

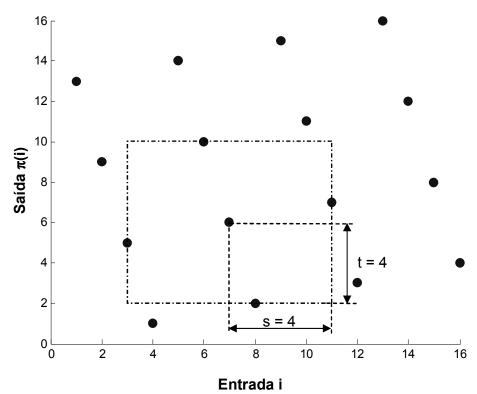


Figura 6.11 Gráfico de dispersão de entrada e saída do entrelaçador *LR/BT*. Fator de espalhamento (s=4,t=4).

6.5 Implementação prática de entrelaçadores

A escolha adequada de um entrelaçador é um fator fundamental para um bom desempenho de um sistema de telecomunicações. Neste tópico serão apresentados outros tipos de algoritmos que foram adaptados para operar com atrasos aproximados de 100ms e 200ms nos modos 2k e 8k do sistema DVBM-T que será apresentado no capítulo 7.

6.5.1 Entrelaçador de blocos LR/TB

Um entrelaçador de blocos, também pode ser implementado usando-se a expressão a seguir (6.6) [35]. A Figura 6.12 ilustra o gráfico de dispersão do entrelaçador LR/TB. Os valores de M e N foram escolhidos para o período de 483340, o que equivale ao atraso aproximado de 100ms no sistema DVBM-T no modo 8k.

$$\pi(i) = T \cdot \operatorname{int}\left(\frac{i}{T}\right) + N[\operatorname{mod}(i, M)] + \frac{\operatorname{mod}(i, T)}{M}, \tag{6.6}$$

onde:

T = M x N = período

int = função de arredondamento para inteiro

 $mod = função \ modulo \ mod(x,y) = x-y \ floor(x/y)$

i = seqüência de entrada

 $\pi(i)$ = seqüência de saída do entrelaçador de blocos

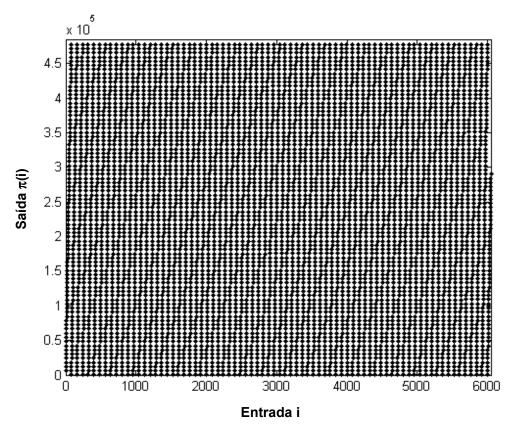


Figura 6.12 Gráfico de dispersão do entrelaçador de blocos LR/TB em 1 símbolo OFDM [N=6048, M=80 e T=483840]

6.5.2 Entrelaçador Berrou-Glavieux

Esse entrelaçador foi usado por Berrou e Glavieux no primeiro código turbo [36]. É baseado em um entrelaçador de blocos e utiliza um vetor **p** com oito números primos para leitura pseudo-aleatória. A Figura 6.14 ilustra o gráfico de dispersão do entrelaçador de Berrou-Glavieux para N=128 e M=128. Como pode-se observar, o período desse entrelaçador está relacionado aos valores de n e m. Dessa forma, a implementação desse entrelaçador com período igual a T=483840 não é possível e por isso não será utilizado no sistema DVBM-T.

$$\pi(i) = ci + M \cdot ri \,, \tag{6.7}$$

onde,

 $N = 2^n$ linhas $e M = 2^n$ colunas

T = N x M

ri = mod(p(L + 1) (c0+1), N);

ci = mod (M/2+1) (r0+c0), M;

c0 = (i-r0)/M;

L = mod (r0+c0), 87;

p=[17 37 19 29 41 23 13 7]

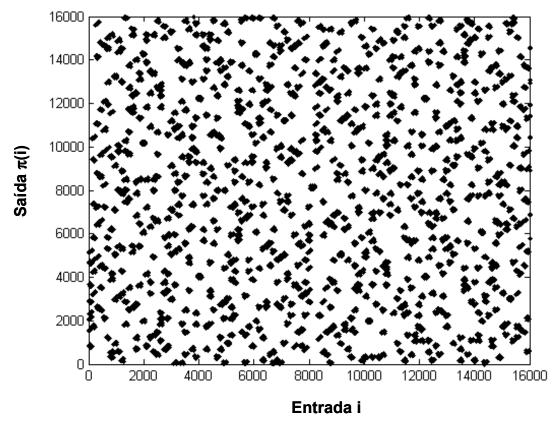


Figura 6.13 Gráfico de dispersão do entrelaçador Berrou-Glavieux [N=128, M=128 e T=16384]

6.5.3 Entrelaçador JPL (Jet Propulsion Laboratory)

Esse entrelaçador também utiliza um vetor **p** com oito números primos. Ele foi sugerido por [37]. A Figura 6.14 ilustra um gráfico de dispersão do entrelaçador JPL para N=6048 e M=80 que equivale ao atraso aproximado de 100ms no sistema DVBM-T no modo 8k.

$$\pi(i) = 2 \cdot ri + N \cdot c(i) - m(i) + 1,$$
(6.8)

onde,

N = linhas (par) e M = colunas

m(i) = mod(i,2);

 $r(i) = mod[(19 \ r0 + 1), N/2)];$

```
c(i) = mod[p(L+1) \ c0+21 \ m(i), M];

c0 = mod[(i-m)/2-c0]/M;

L = mod(R(i),8);

p=[31 \ 37 \ 43 \ 47 \ 53 \ 59 \ 61 \ 67]
```

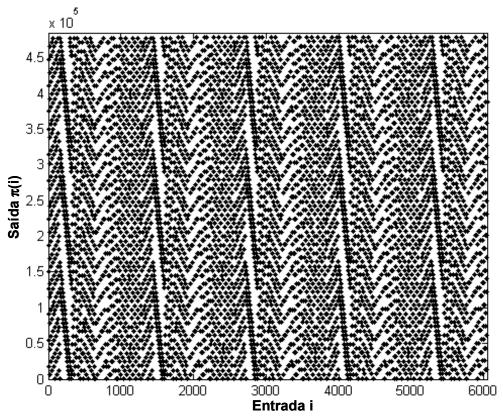


Figura 6.14 Gráfico de dispersão do entrelaçador JPL [N=6048, M=80 e T=483840]

6.5.4 Entrelaçador ISDB-T

Esse entrelaçador é utilizado no sistema de TV digital japonês (ISDB-T) *Integrated Service Digital Broadcasting- Terrestrial* [23] e seu período pode ser ajustado com o valor da variável I como visto no capítulo 3. A Figura 6.15 ilustra o entrelaçamento de 6048 subportadoras em 80 símbolos OFDM que equivale ao atraso aproximado de 100ms no sistema DVBM-T no modo 8k.

$$\pi(i) = I \cdot \text{mod}(5 \cdot i, Nc), \tag{6.9}$$

onde,

I = Ajuste do tamanho do entrelaçador

i = Entrada do entrelaçador temporal

 $\pi(i) = Saida do entrelaçador temporal$

Nc = Número de portadoras. Nc=1512, ou 6048 para os modos 2k e 8k respectivamente

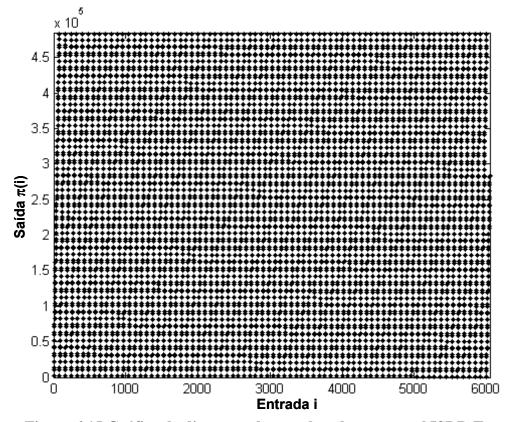


Figura 6.15 Gráfico de dispersão do entrelaçador temporal ISDB-T [N=6048, I=1 e T=483840]

6.6 Resultado de simulações

Neste tópico serão apresentados os resultados de simulações de três entrelaçadores (ISDB-T, JPL e Bloco LR/TB) implementados no sistema DVBM-T. O entrelaçador temporal foi implementado na saída do estágio de mapeamento como pode ser visto na

Figura 6.16. A Tabela 6.5 ilustra os atrasos gerados pelo entrelaçador temporal. Cabe lembrar que para o modo I=0 o simulador equivale ao sistema DVB-T. Os entrelaçadores foram testados na configuração DVBM-T 64-QAM 8K, 3/4, 1/16 em canais com ruído impulsivo e multipercurso combinado com ruído impulsivo. O detalhamento desse teste será apresentado no capítulo 8.

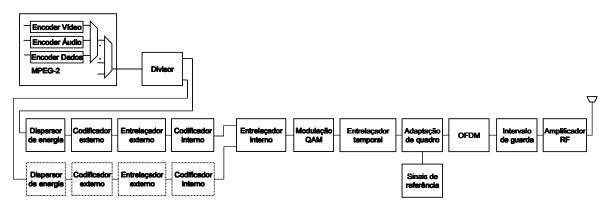


Figura 6.16 Diagrama de blocos do sistema DVBM-T

TABELA 6.5. PARÂMETRO DO ENTRELAÇADOR TEMPORAL UTILIZADO NO SISTEMA DVBM-T

2k				8k			
Modo	Atraso (ms)	Número símbolos atrasados	Período Entrelaçador	Modo	Atraso (ms)	Número Símbolos atrasados	Período Entrelaçador
0	0	0	0	0	0	0	0
1	95,87	80	120960	1	100	80	483840
2	191,74	160	241920	2	200	160	967680

Os entrelaçadores foram escolhidos e projetados para o mesmo período e atraso. A Figura 6.17 ilustra os resultados obtidos em um canal com ruído impulsivo e entrelaçamento de 100ms e 200ms, respectivamente. Pode-se notar que o desempenho dos entrelaçadores JPL e Bloco LR/TB são praticamente iguais. Na Figura 6.18 é possível visualizar os resultados obtidos em um canal com multipercurso combinado com ruído

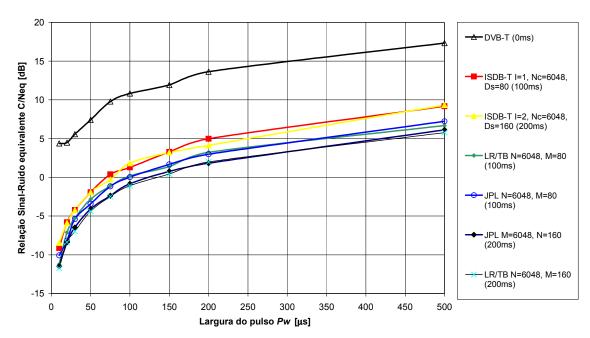


Figura 6.17 Comparação de desempenho de entrelaçadores para o DVBM-T. Robustez perante ruído impulsivo. Configuração utilizada 8k, 64-QAM, FEC 3/4, IG=1/16

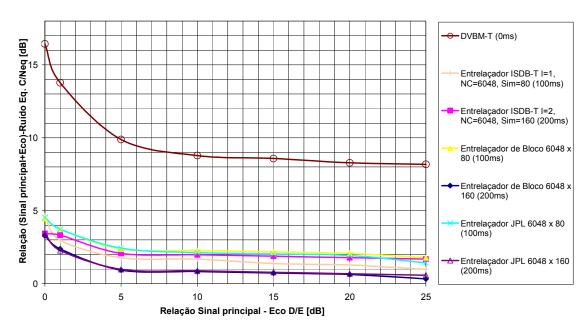


Figura 6.18 Comparação de desempenho de entrelaçadores para o DVBM-T. Interferência por multipercurso (eco ou fantasma) com a presença de ruído impulsivo. Configuração utilizada 8k, 64-QAM, FEC 3/4, IG=1/16. Espalhamento temporal de 64µs e largura do pulso de 100µs

impulsivo. Nesse teste, o melhor desempenho foi alcançado pelo entrelaçador JPL com atraso de 100ms e JPL e Bloco para atraso de 200ms.

6.7 Considerações finais

Neste capítulo, várias técnicas de entrelaçamento foram estudadas para serem implementadas no simulador DVBM-T. Foi mostrado que os entrelaçadores não aumentam a taxa de bits na saída, mas acrescentam atrasos significativos. Praticamente as implementações dos entrelaçadores/desentrelaçadores não exigem processamento computacional, mas necessitam de memória adicional.

O uso do entrelaçador temporal na saída do estágio de mapeamento do sistema DVBM-T demonstrou ser uma solução interessante devido aos ganhos significativos de robustez. Por exemplo, a Figura 6.17 mostra que para a largura do pulso *PW*=100µs, o uso de entrelaçador tem um ganho aproximado de 12dB. Uma reação contrária a se implementar essa tecnologia no sistema DVB-T está relacionada com o tempo de espera na mudança de canal. Ao contrário do sistema ISDB-T que possui quatro configurações de ajuste (0, 100, 200 e 400ms) pode-se notar que mesmo com ajuste de 100ms de entrelaçamento do sistema DVBM-T obteve-se resultados superiores do que o do ISDB-T.

Dessa forma, o uso do entrelaçador temporal do sistema DVBM-T mostra ser mais eficiente com menor atraso.

Capítulo 7

Sistema DVBM-T Digital Video Broadcasting Modified — Terrestrial

7.1 Introdução

Com o objetivo de se implementar um entrelaçador de símbolos OFDM no sistema DVB-T, as pesquisas tiveram início com o desenvolvimento de um simulador na linguagem de programação em *script* do MatLab [38]. Considerando-se que uma simulação composta com apenas alguns blocos não seria fiel ao sistema, foi estudada uma maneira de se realizar uma simulação completa com todos os blocos que compõem o sistema DVB-T. A partir da versão 4.0 do Simulink, a MathWorks disponibilizou um modelo básico do sistema DVB-T no qual inúmeros blocos foram omitidos. Estudos com essa ferramenta indicaram que programas em *script* do MatLab ou na linguagem C/C++ poderiam ser adaptados dentro de funções especiais (S-Functions) e funcionariam dentro de blocos no Simulink.

Vários programas que já tinham sido escritos em MatLab foram modificados para serem executados dentro de blocos no ambiente do Simulink. O Simulink ainda apresentou uma grande vantagem, como a simulação dinâmica, tendo sido possível monitorar simultaneamente todos os blocos que compunham o sistema DVB-T. Para testar a eficiência do simulador, alguns resultados de simulação foram comparados com resultados de laboratório.

A fim de minimizar a complexidade de simulação foram implementadas duas versões do simulador. A primeira consiste em um simulador DVBM-T no modo 2k/8k com modulação não hierárquica. A segunda versão consiste em um simulador DVBM-T no modo 2k/8k com modulação hierárquica.

A Figura 7.1 ilustra o modelo do Simulink para a modulação não hierárquica e a Figura 7.2 o modelo do DVBM-T para a modulação hierárquica.

Este capítulo aborda os principais blocos que foram desenvolvidos para a implementação do simulador DVBM-T e que já foram explicados em capítulos anteriores.

Digital Video Broadcasting Modified - Terrestrial

Modo 2k/8k, Intervalo de Guarda: 1/4, 1/8, 1/16, 1/32, 0 , FEC: 1/2, 2/3, 3/4, 5/6, 7/8 Modulação.: QPSK, 16-QAM, 64QAM, Entrelaçador temporal.: 0, 100ms e 200ms, BW=6MHz, Transmissão: Não Hierárquica

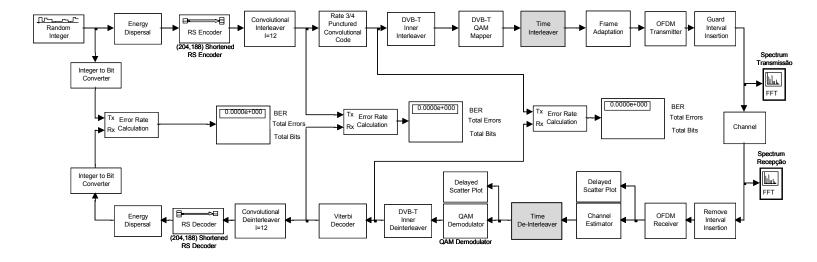


Figura 7.1 Modelo do simulador DVBM-T 2k/8k Transmissão Não Hierárquica

Digital Video Broadcasting Modified - Terrestrial

Modo 2k/8k, Intervalo de Guarda: 1/4, 1/8, 1/16, 1/32, 0 , FEC: 1/2, 2/3, 3/4, 5/6, 7/8 Modulação.: QPSK, 16-QAM, 64QAM, Entrelaçador temporal.: 0, 100ms e 200ms, BW=6MHz, Transmissão: Hierárquica

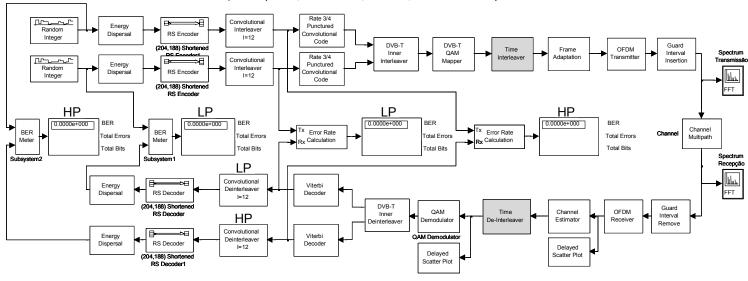


Figura 7.2 Modelo do simulador DVBM-T 2k/8k Transmissão Hierárquica

7.2 Transmissor

7.2.1 Gerador de dados (Random integer)

Utiliza um gerador de números aleatórios com período 2¹⁵-1 para gerar pacotes com 188 *bytes*. O primeiro *byte* é fixo, correspondendo ao *byte* de sincronismo (0x47) definido na Recomendação ITU-T H.262 [39].

7.2.2 Embaralhador de dados (Energy dispersal)

Implementa o embaralhamento de dados conforme a especificação DVB-T [19] que emprega um polinômio de ordem 15.

7.2.3 Codificador externo RS (Codificador RS)

Implementa a codificação de *Reed-Solomon* (RS) (204,188,t=16), conforme a especificação DVB-T [19]. O vetor de informação considerado corresponde aos 187 *bytes* de dados de cada pacote. O *byte* de sincronismo é preservado nessa etapa.

7.2.4 Entrelaçador externo (Convolutional interleaver)

Implementa o entrelaçamento convolucional de 12 ramos e 17 *bytes* de memória conforme a especificação DVB-T [19]. O *byte* de sincronismo de cada pacote é sempre dirigido ao primeiro ramo do referido entrelaçador.

7.2.5 Codificador interno (*Punctured convolutional code*)

Implementa a codificação convolucional de taxa mãe R = 1/2 e 64 estados com puncionamento para as taxas 2/3, 3/4, 5/6 e 7/8 segundo especificações do DVB-T [19].

7.2.6 Entrelaçador interno (*Inner interleaver*)

Esse bloco pode ser implementado para operar na modulação hierárquica ou não hierárquica e é formado por três estágios segundo especificações do DVB-T [19]:

- Demultiplexador

Implementa um demultiplexador que divide os feixes de dados conforme o método de modulação utilizado.

- Entrelaçador de bits

Implementa um entrelaçador de blocos com período 126 que entrelaça os bits da saída do demultiplexador.

- Entrelaçador de símbolos

Implementa um entrelaçador de símbolos complexos dentro de símbolo OFDM.

7.2.7 Mapeamento (QAM mapper)

Esse bloco pode ser implementado para operar na modulação hierárquica ou não hierárquica e utiliza a modulação primária QPSK, 16-QAM, 64-QAM com ajuste de distância α segundo especificações do DVB-T [19].

7.2.8 Entrelaçador temporal (*Time interleaver*)

Implementa um entrelaçador JPL de símbolos complexos dentro de um conjunto de símbolos OFDM segundo especificação do capítulo. 6.5.3. O período do entrelaçador é ajustado para valores aproximados de 0, 100ms e 200ms. Nesse caso, o ajuste é realizado com a variação do número de símbolos OFDM que sofrerá o entrelaçamento. A Tabela 7.1 ilustra as configurações possíveis para esse entrelaçador.

	~		
TADELA 71	CONFICIONACAO	DO EXITED A	CADOD TEMPODAI
IABRIA /.I.	CUNFICELIKACAU	IJUJ BIN I KBI A	CADOR TEMPORAL

2k				8k			
Modo	Atraso (ms)	Número símbolos atrasados	Período Entrelaçador	Modo	Atraso (ms)	Número Símbolos atrasados	Período Entrelaçador
0	0	0	0	0	0	0	0
1	95,87	321	485352	1	95,57	80	483840
2	191,74	642	970704	2	191,14	160	967680

Para o entrelaçamento de 0ms, o entrelaçador é desligado tornando-se totalmente compatível com o sistema DVB-T [19].

7.2.9 Adaptação de quadro (Frame adaptation)

Esse módulo é responsável pela inserção dos pilotos de sincronismo e sinalização, de acordo com a especificação DVB-T [19].

7.2.10 Modulador OFDM (OFDM transmitter)

Implementa a modulação discreta OFDM usando algoritmo IFFT de tamanho 2048 e 8192 para os modos 2k e 8k, respectivamente. Símbolos nulos sem informação útil foram somados aos símbolos de informação útil para tornar possível a utilização de algoritmos IFFT. A Figura 7.3 ilustra a posição atribuída aos símbolos nulos.

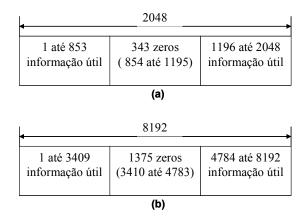


Figura 7.3 Preenchimento de símbolos nulos. (a) Modo 2k. (b) Modo 8k

7.2.11 Inserção do intervalo de guarda (*Guard interval insertion*)

Implementa uma extensão cíclica do símbolo OFDM, de acordo com a especificação DVB-T [19].

7.3 Etapa de canal (Channel)

Para a realização dos testes no simulador foi implementado um canal que simulasse o ruído branco gaussiano, o ruído impulsivo e o multipercurso como pode ser visto na Figura 7.4.

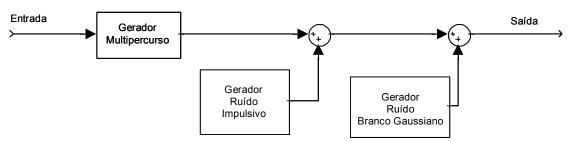


Figura 7.4 Diagrama de blocos do canal

7.3.1 Multipercurso

Implementa a convolução entre o sinal discreto gerado pela etapa de transmissão e a resposta impulsiva do canal (normalmente, envolvendo multipercurso) conforme especificações de [1, 2].

7.3.2 Gerador de ruído gaussiano branco

Implementa a geração de uma seqüência discreta do tipo ruído gaussiano branco na taxa de Ts Msímbolos (complexos)/s.

7.3.3 Gerador de ruído impulsivo

Implementa a geração de uma sequência discreta do tipo ruído gaussiano branco na taxa de Ts Msímbolos (complexos)/s chaveada por um pulso conforme especificações de [1, 2].

7.4 Etapa de recepção

Nesse módulo assume-se uma demodulação coerente (ou seja, supõe-se perfeita recuperação de relógio e sincronismo no receptor).

7.4.1 Remoção de intervalo de guarda (Guard interval removal)

Remove a extensão cíclica do símbolo OFDM, de acordo com a especificação DVB-T [19].

7.4.2 Demodulador OFDM (OFDM receiver)

Implementa a demodulação discreta OFDM usando algoritmo FFT de tamanho 2048 e 8192 para os modos 2k e 8k, respectivamente. Os símbolos nulos sem informação útil são extraídos como visto na Figura 7.3.

7.4.3 Estimador de canal (*Channel estimator*)

Implementa a estimação de canal usando o estimador 2D combinado com o "cubic-spline" de acordo com a seção 5.2. Para os testes com doppler foi utilizado o estimador "piecewice" Realiza a extração dos dados úteis, através da eliminação de símbolos de sincronismo e de sinalização.

7.4.4 Desentrelaçador temporal (*Time de-interleaver*)

Implementa um desentrelaçador de símbolos complexos dentro de um conjunto de símbolos OFDM segundo especificação do Cap. 6.4 e especificações da Tabela 7.1.

7.4.5 Demodulação QAM (QAM demodulator)

Implementa a demodulação coerente QPSK, 16-QAM e 64-QAM através de algoritmos tradicionais.

7.4.6 Desentrelaçador interno (*Inner de-interleaver*)

Implementa o desentrelaçamento segundo especificações do DVB-T [19].

7.4.7 Decodificador Viterbi (Viterbi decoder)

Implementa o decodificador Viterbi segundo especificações do DVB-T [19].

7.4.8 Desentrelaçador externo (*Convolutional de-interleaver*)

Implementa o desentrelaçamento externo, com profundidade = 52 e atraso = 4, conforme a especificação DVB-T [19].

7.4.9 Decodificador RS (RS decoder)

Implementa a decodificação de *Reed-Solomon* (RS) (204,188,t=8) através de algoritmos tradicionais.

7.4.10 Desembaralhador de dados (Energy dispersal)

Implementa o desembaralhamento de dados conforme a especificação DVB-T [19].

7.4.11 Medidor de taxa de erros

Esse módulo implementa as seguintes medidas:

- Taxa de erro de bits após a decodificação de Viterbi;
- Taxa de erro de bits após a decodificação de RS.

7.5 Considerações finais

Neste capítulo, o simulador DVBM-T implementado na plataforma Matlab/Simulink foi apresentado. A maioria dos blocos foi desenvolvida a partir dos estudos realizados nos capítulos anteriores.

Nos capítulos 3 e 4 foram realizados estudos nos sistemas DVB-T e ISDB-T, respectivamente. Pode-se observar que os sistemas são semelhantes na maioria dos blocos funcionais, mas se distinguem basicamente no método de modulação hierárquica (Proteção desigual de erros para o DVB-T e segmentação do espectro de RF para o ISDB-T) e entrelaçamento de símbolos complexos (saída do modulador QAM).

O entrelaçamento de símbolos no sistema DVB-T é extremamente curto e é realizado apenas dentro de 1 símbolo OFDM. No ISDB-T o entrelaçamento é ajustável podendo ser realizado em até 1520, 760 ou 380 símbolos OFDM para os modos 2k, 4k e 8k, respectivamente. Devido às características do sistema ISDB-T esses símbolos são entrelaçados no tempo dentro de segmentos e por isso um entrelaçamento no domínio da freqüência é utilizado para entrelaçar símbolos complexos entre segmentos.

Como o sistema DVB-T não segmenta o espectro, foi utilizado um único entrelaçador ajustável (capítulo 6) podendo ser implementado em três configurações conforme a Tabela 7.1. Vários algoritmos de entrelaçamento foram estudados, mas somente os entrelaçadores JPL, ISDB-T e Bloco LR/TB foram implementados. O desempenho dos entrelaçadores

JPL e Bloco LR/TB apresentaram resultados semelhantes, mas o entrelaçador JPL foi o escolhido.

O entrelaçador temporal foi inserido na saída do modulador QAM (*QAM mapper*) e o desentrelaçador na saída do demodulador QAM (*QAM demodulator*). Para o ajuste de atraso de 0ms, o sistema DVBM-T é totalmente compatível com o sistema DVB-T [19] e para os outros valores, apenas ajustes no decodificador de canal e a transmissão de sinalização do tamanho do entrelaçador temporal foram requeridas. Como desvantagens do uso do entrelaçador temporal, pode-se notar o atraso gerado para o recebimento da informação e o uso de memória para implementação.

A ferramenta de simulação do sistema DVBM-T foi de vital importância, pois os blocos operaram simultaneamente e todos os atrasos foram computados e sincronizados para o perfeito funcionamento.

Capítulo 8

Resultados de simulações

8.1 Introdução

Neste capítulo, serão apresentados os resultados de simulações com o sistema DVBM-T e testes de laboratório nos sistemas DVB-T e ISDB-T. As simulações foram realizadas nas configurações não hierárquica 8k, 64-QAM, FEC=3/4, I.G.=1/16 e hierárquica com α = 2 LP 64-QAM, FEC=3/4, I.G.=1/16 e HP 64-QAM, FEC=1//2, I.G.=1/16 com entrelaçamento de 0 ms, 100ms e 200ms. Cabe lembrar que a configuração com 0ms de entrelaçamento do sistema DVBM-T equivale ao sistema DVB-T.

Os testes de laboratório foram realizados com vários receptores domésticos até se encontrar o limiar de funcionamento (aparecimento de artefatos na imagem). Para o DVB-T foram utilizadas as configurações não hierárquica 8k, 64-QAM, FEC=3/4, I.G.=1/16 e hierárquica com α = 2 LP 64-QAM, FEC=3/4, I.G.=1/16 e HP 64-QAM, FEC=1//2, I.G.=1/16. No ISDB-T apenas a configuração 8k, 64-QAM, FEC=3/4, I.G.=1/16, 200ms e 13 segmentos foi utilizada.

Somente os melhores resultados de laboratório foram apresentados para comparar o desempenho do simulador DVBM-T. A metodologia desses testes foi extraída de [1, 2, 31].

Nota: O receptor DVB-T RX1 possui tecnologia denominada de segunda geração, o receptor DVB-T RX2 tecnologia de quarta geração e o receptor DVB-T RX5 tecnologia de quinta geração.

Os receptores ISDB-RX1 e RX2 possuem tecnologia denominada de segunda geração.

8.2 Medição da taxa de erro de bits em função da variação da relação sinal-ruído

8.2.1 Objetivo

Esse teste tem por objetivo avaliar o desempenho do sistema DVBM-T quando interferido por ruído gaussiano branco. Esse desempenho será avaliado pela medida da "taxa de erro" versus a "relação sinal-ruído existente na entrada do receptor".

onde,

C: Potência do sinal útil na entrada do receptor;

N: Potência do ruído branco gaussiano na entrada do receptor;

BER: Taxa de erro de bits.

8.2.2 Descrição geral da medida

Consiste em variar a potência do ruído (relação C/N) até obter no medidor de taxa de erro o valor $3x10^{-6}$ (Limiar da taxa de erro).

8.2.3 Resultados

A Figura 8.1 ilustra os resultados obtidos nesse teste. Para as três configurações testadas é possível observar que o uso do entrelaçador temporal não possui impacto significante no desempenho do sistema. Pode-se notar que para vários valores de entrelaçamento o comportamento das curvas não é alterado. Os receptores do sistema DVB-T e ISDB-T foram avaliados até encontrar o limiar de funcionamento (aparecimento de artefatos na imagem). A Tabela 8.1 ilustra os valores de limiar obtidos nas simulações e em receptores domésticos testados em laboratório. Para esse teste, o desempenho do receptor simulado está relacionado ao estimador e decodificador de canal utilizado. Conclui-se que o uso do

entrelaçador temporal no sistema não altera a relação sinal-ruído e que os receptores testados em laboratório apresentaram resultados diferentes devido ao uso de outros algoritmos de estimação e decodificação de canal. Cabe lembrar que os receptores testados em laboratório sofrem de outras degradações que não foram consideradas na simulação como por exemplo, a degradação introduzida pelos amplificadores de RF, figura de ruído, ruído de fase, etc.

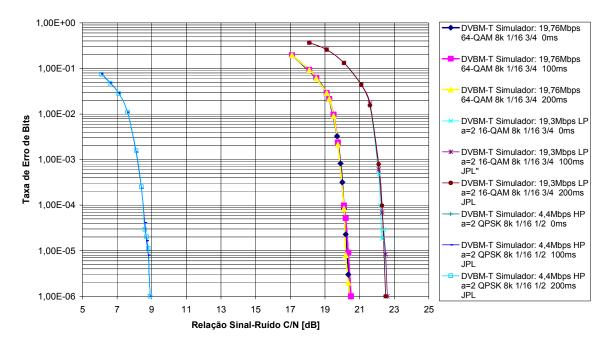


Figura 8.1 Relação sinal-ruído em função da taxa de erro de bits em três configurações do entrelaçador temporal: 0ms (desligado), 100ms e 200ms

TABELA 8.1. COMPARAÇÃO DE RESULTADOS DE SIMULAÇÃO E LABORATÓRIO

Modu	ulação	64-QAM	16-QAM	QPSK
Número de	Portadoras	8k	8k	8k
F	EC	3/4	3/4	1/2
	GI	1/16	1/16	1/16
	α	-	2	2
Prio	ridade	ı	LP	HP
Taxa	(Mbps)	19,8	13,2	4,4
	DVB-T RX1	19,5	25,1	8
Relação	DVB-T RX5	18,1	23,8	5,4
Sinal-ruído de Limiar C/N [dB]	DVBM-T 0ms	20,35	22,5	9,1
	DVBM-T 100ms JPL	20,5	22,6	8,9
	DVBM-T 200ms JPL	20,35	22,5	8,9

8.3 Robustez do sistema DVBM-T perante o ruído impulsivo

8.3.1 Objetivo

Esse método de medida tem por objetivo avaliar a degradação de desempenho provocada pela presença de rajadas de ruído branco gaussiano no canal de comunicação.

O ruído impulsivo (ou interferência impulsiva) é geralmente descrito na literatura como um processo caracterizado por rajadas de um ou vários pequenos pulsos sendo que a amplitude, a duração e o intervalo de tempo ocorrem aleatoriamente [40].

Existem várias fontes geradoras de ruído impulsivo. Uma delas são os eletrodomésticos em geral (máquinas de lavar, liquidificadores, batedeiras, secadores de cabelo, furadeiras, etc). Vários modelos de geradores de ruído impulsivo foram propostos [1, 2, 31, 41, 42,]. O modelo de ruído impulsivo (rajadas de ruído gaussiano branco) usado possui três variáveis: *PA, PW* e *T*. O ruído impulsivo consiste em um trem de impulsos, onde a amplitude e

ocorrência de pulsos são aleatórias. As Figuras 8.2 e 8.3 ilustram os parâmetros utilizados no simulador de ruído impulsivo.

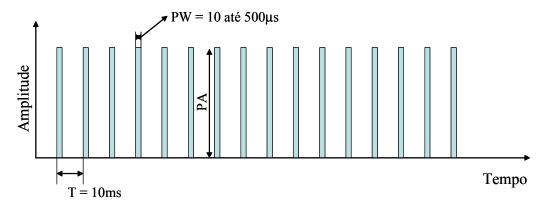


Figura 8.2 Pulsos de chaveamento do simulador de ruído impulsivo

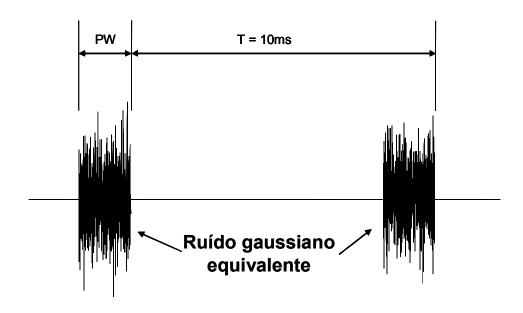


Figura 8.3 Saída do simulador de ruído impulsivo

Tem-se:

C: Potência do sinal útil na entrada do receptor;

Neq = PA: Potência do ruído branco gaussiano equivalente;

Pw: Largura do Pulso (variável entre 10 até 500µs);

CAPÍTULO 8. RESULTADO DE SIMULAÇÕES

T: Período dos pulsos (10ms);

BER: Taxa de erro de bits.

8.3.2 Descrição Geral da Medida

Utilizando o simulador de ruído impulsivo, deve-se manter o nível do sinal digital C constante. Para diversos valores do pulso de chaveamento Pw deve-se variar o nível de ruído injetado até obter, no medidor de taxa de erro, o valor do limiar $3x10^{-6}$ para a taxa de

erro.

8.3.3 Resultados

As Figuras 8.4, 8.5, 8.6, 8.7 ilustram as curvas de corte obtidas nos testes com ruído impulsivo. Os parâmetros utilizados do ruído impulsivo foram: *Ts*=10ms e *Pw*=10, 20, 30, 50, 75, 100, 150, 200 e 500μs. Nas três configurações testadas, o sistema DVBM-T com ajuste do entrelaçador temporal igual a 200ms obteve o melhor desempenho como pode ser visto na Figura 8.4. Pode-se verificar que para o valor típico de *Pw*=200μs, o desempenho

do sistema DVBM-T está diretamente relacionado ao tamanho do entrelaçador.

A Figura 8.5 ilustra a comparação entre os sistemas DVB-T, ISDB-T e DVBM-T na modulação não hierárquica. Comparando a configuração DVBM-T com ajuste do entrelaçador temporal igual a 0ms (DVB-T) com os receptores RX1 e RX5 do sistema DVB-T testados em laboratório, pode-se observar que o pior desempenho está para o sistema DVBM-T 0ms. Comparando-se o sistema DVBM-T com ajuste do entrelaçador temporal igual a 100 e 200ms com os resultados obtidos em laboratório dos sistemas DVB-T e ISDB-T, nota-se que o desempenho do DVBM-T é superior ao do DVB-T e do ISDB-T. As Figuras 8.6 e 8.7 apresentam os resultados obtidos nos testes com modulação hierárquica em baixa (LP) e alta prioridade (HP), respectivamente. Nessa configuração, a comparação ocorre com apenas o sistema DVB-T, pois o sistema ISDB-T utiliza outro tipo de modulação hierárquica. Pode-se concluir que o sistema DVBM-T com entrelaçamento é

apropriado para canais com ruído impulsivo.

144

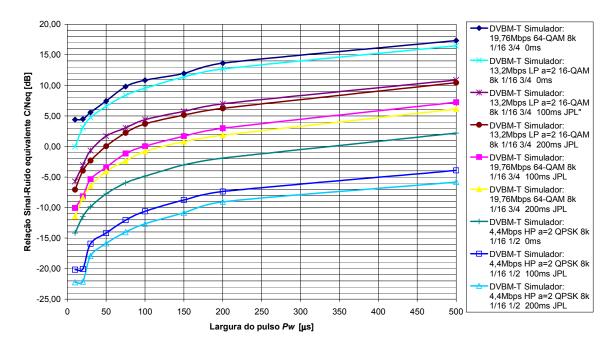


Figura 8.4 Resultados de simulações. Robustez do sistema DVBM-T perante o ruído impulsivo

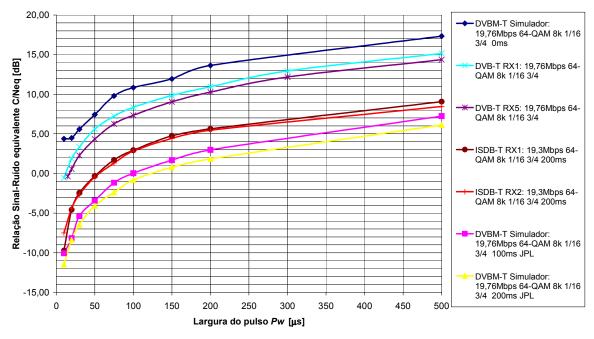


Figura 8.5 Comparação entre sistemas. Robustez do sistema DVBM-T, DVB-T e ISDB-T perante o ruído impulsivo.

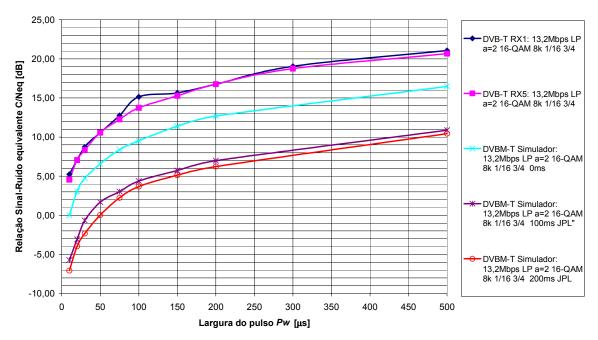


Figura 8.6 Comparação entre sistemas. Robustez do sistema DVBM-T e DVB-T perante o ruído impulsivo na modulação hierárquica α=2 LP

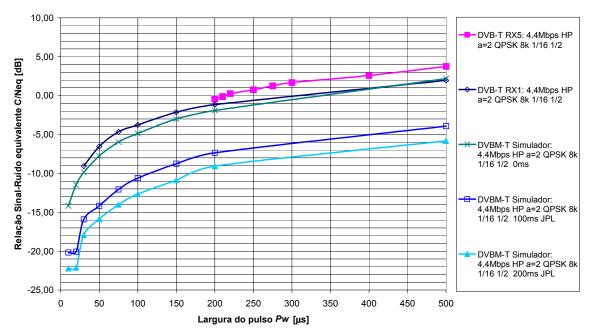


Figura 8.7 Comparação entre sistemas. Robustez do sistema DVBM-T e DVB-T perante o ruído impulsivo na modulação hierárquica α = 2 HP

8.4 Interferências por multipercurso (eco ou fantasma) sem a presença de ruído gaussiano branco

8.4.1 Objetivo

Eco ou fantasma é um sinal proveniente do transmissor que chega ao receptor através de reflexões em prédios, morros, etc., e se superpõe ao sinal principal. Podem ocorrer dois tipos de eco: pós-eco e pré-eco. No pós-eco, o sinal que chega atrasado é o mais fraco. No pré-eco, o sinal que chega adiantado é o mais fraco.

O objetivo desse teste é avaliar o grau de tolerância do sistema DVBM-T à presença de ecos interferentes.

onde,

D: Potência do sinal principal;

E: Potência do sinal eco:

D/E: Relação sinal principal-eco;

Espalhamento temporal do sinal refletido em µs;

BER: Taxa de erro de bits.

8.4.2 Descrição geral da medida

Mantendo o nível do sinal principal D constante, para o valor de espalhamento temporal de 32 μ s, variar a potência do eco (D/E) até encontrar no medidor de taxa de erro o valor do limiar $3x10^{-6}$.

8.4.3 Resultados

As Figuras 8.8, 8.9, 8.10 e 8.11 ilustram resultados de simulações do sistema DVBM-T com entrelaçamento de 0ms, 100ms e 200ms. É possível observar na Figura 8.8 que a

configuração hierárquica em alta prioridade (HP) é a mais robusta devido ao método de modulação QPSK e a taxa do codificador convolucional = 1/2. Uma comparação entre os sistemas DVB-T, ISDB-T e DVBM-T pode ser vista na Figura 8.9. Pode-se observar que o sistema ISDB-T obteve o pior desempenho e os sistemas DVB-T e DVBM-T obtiveram resultados semelhantes. Para ambos os sistemas, os resultados obtidos estão próximos dos limites teóricos da duração do intervalo de guarda (52µs para o ISDB-T e 74µs para o DVB-T).

As Figuras 8.10 e 8.11 ilustram resultados comparativos entre os sistemas DVBM-T e DVB-T na modulação hierárquica LP e HP, respectivamente. No modo hierárquico de baixa prioridade (LP), o desempenho do simulador apresenta resultados próximos ao melhor receptor DVB-T testado. No modo hierárquico de alta prioridade (HP), o desempenho do simulador apresenta resultados próximos ao receptor RX1, mas está distante dos resultados obtidos no receptor RX5. Pode-se observar que o receptor RX5 foi implementado para funcionar no modo HP, pois os resultados obtidos no modo LP tiveram um péssimo desempenho. Pode-se concluir que o estimador em duas dimensões combinado com *cubic-spline* teve um bom desempenho nesse teste.

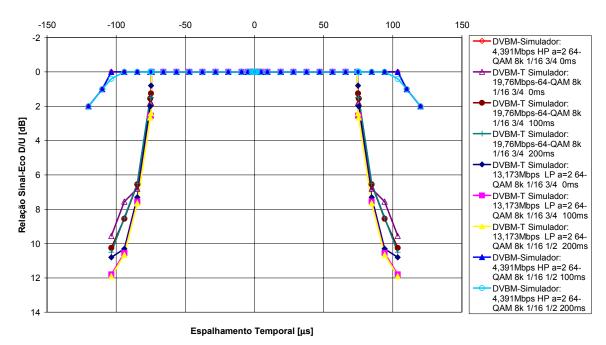


Figura 8.8 Resultados de simulações. Interferências por multipercurso (eco ou fantasma) sem a presença de ruído gaussiano branco

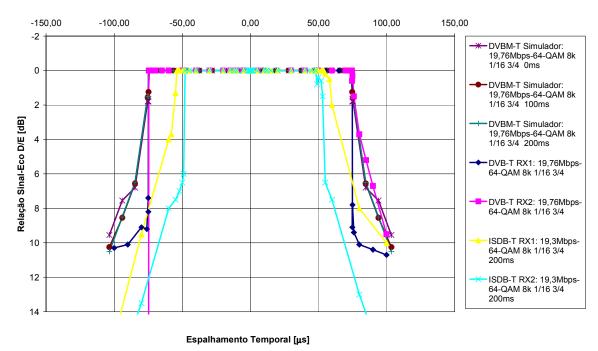


Figura 8.9 Comparação entre sistemas DVBM-T, DVB-T e ISDB-T. Interferências por multipercurso (eco ou fantasma) sem a presença de ruído gaussiano branco

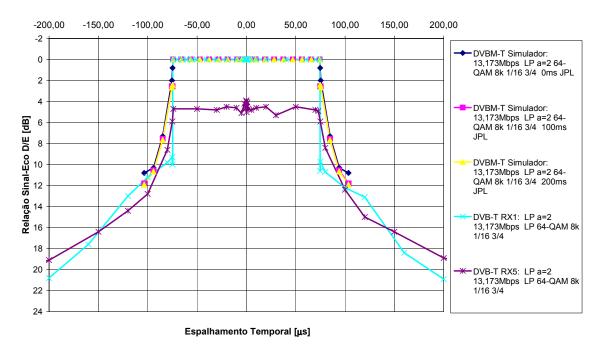


Figura 8.10 Comparação entre sistemas DVBM-T e DVB-T. Interferências por multipercurso (eco ou fantasma) sem a presença de ruído gaussiano branco na modulação hierárquica α = 2 LP

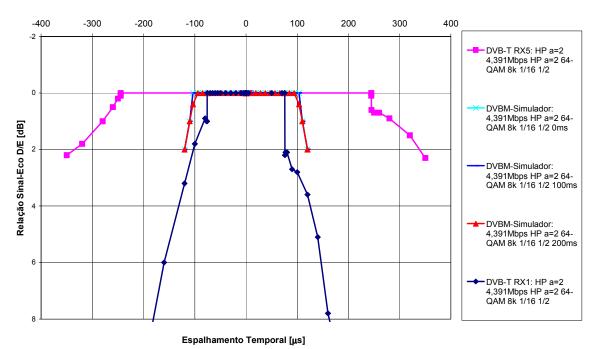


Figura 8.11 Comparação entre sistemas DVBM-T e DVB-T. Interferências por multipercurso (eco ou fantasma) sem a presença de ruído gaussiano branco na modulação hierárquica α = 2 HP

8.5 Interferência por multipercurso (eco ou fantasma) com a presença de ruído interferente

8.5.1 Objetivo

O teste descrito no item 8.4 representa o comportamento do receptor digital para sinais com eco na ausência de ruído (C/N = 100dB).

O objetivo desse teste é verificar o comportamento do sistema DVBM-T com eco interferente, quando se reduz a relação sinal-ruído C/N. onde,

D: Potência do sinal principal;

E: Potência do sinal eco;

D/E: Relação sinal principal-eco;

Espalhamento temporal do sinal refletido em us;

N: Potência do ruído branco gaussiano na entrada do receptor;

D/N: Relação sinal principal-ruído;

C/N: Relação sinal (sinal principal + sinal eco)-ruído;

BER: Taxa de erro de bits.

8.5.2 Descrição geral da medida

Mantendo fixa a potência do sinal principal, aumentar o nível do eco até obter, no medidor de taxa de erro, o valor de limiar de taxa de erro.

Atenuar o eco em degraus consecutivos e para cada operação de atenuação do eco, aumentar o nível de ruído até que a leitura do medidor de taxa de erro fique igual ao limiar de taxa de erro.

8.5.3 Resultados

A Figura 8.12 ilustra resultados de simulações do sistema DVBM-T. Pode-se verificar que o desempenho do sistema não se altera para vários valores de entrelaçamento. O maior impacto desse teste está relacionado com as técnicas de estimação de canal. À medida que a potência do ruído gaussiano branco aumenta, menor é a robustez do sistema perante o multipercurso.

Comparando-se os resultados obtidos em laboratório dos sistemas DVB-T e ISDB-T, com as simulações (Figura 8.13) é possível notar que o desempenho do sistema DVBM-T é bem diferente ao do DVBT e do ISDB-T. Isso ocorre devido à interferência do ruído gaussiano na estimação do canal. Ainda na Figura 8.13 pode-se observar que o desempenho dos receptores DVB-T são bem diferentes (ordem de 2dB) e além de outros fatores, o estimador de canal é um dos elementos degradantes. O ISDB-T obteve um resultado intermediário entre os receptores DVB-T RX1 e DVB-T RX5. As Figuras 8.14 e 8.15 ilustram resultados comparativos entre os sistemas DVBM-T e DVB-T na modulação hierárquica HP e LP, respectivamente. Para a configuração em HP o desempenho do receptor DVB-T RX5 é superior aos outros resultados obtidos. Para a configuração LP, os receptores DVB-T RX1 e RX5 tiveram desempenhos semelhantes.

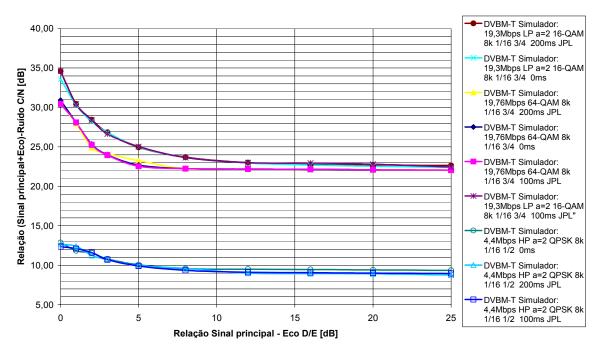


Figura 8.12 Resultados de simulações. Espalhamento temporal de 32μs. Interferências por multipercurso (eco ou fantasma) com a presença de ruído gaussiano branco

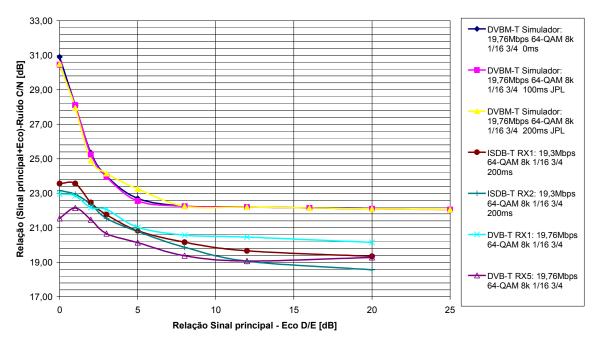


Figura 8.13 Comparação entre sistemas DVB-T, ISDB-T e DVBM-T. Espalhamento temporal de 32μs. Interferências por multipercurso (eco ou fantasma) com a presença de ruído gaussiano branco

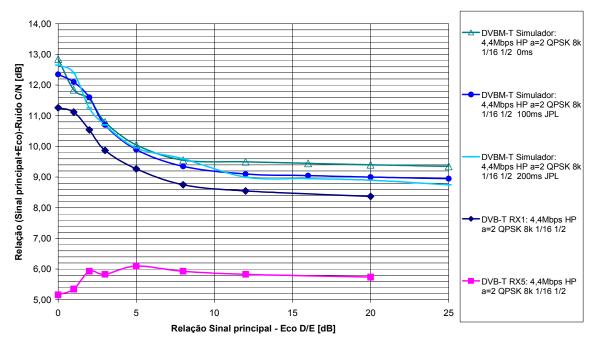


Figura 8.14 Comparação entre sistemas DVB-T e DVBM-T. Espalhamento temporal de 32μs. Interferências por multipercurso (eco ou fantasma) com a presença de ruído gaussiano branco na modulação hierárquica α=2 HP

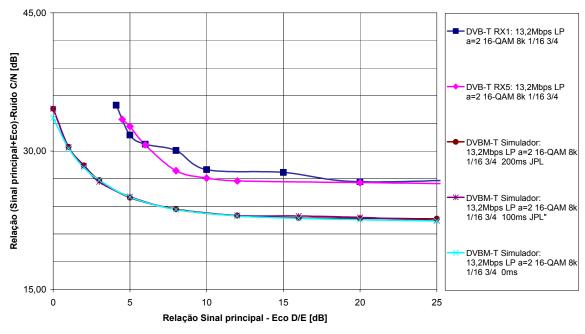


Figura 8.15 Comparação entre sistemas DVB-T e DVBM-T. Espalhamento temporal de 32μs. Interferências por multipercurso (eco ou fantasma) com a presença de ruído gaussiano branco na modulação hierárquica α=2 LP

8.6 Interferência por multipercurso (eco ou fantasma) com a presença de ruído impulsivo

8.6.1 Objetivo

Esse teste resulta na combinação do teste 8.3 e 8.4. O teste descrito no item 8.5 representa o comportamento do receptor digital para sinais com eco e ruído gaussiano branco.

O objetivo desse teste é verificar o comportamento do sistema DVBM-T com eco interferente e ruído impulsivo.

D: Potência do sinal principal;

E: Potência do sinal eco;

D/E: Relação sinal principal-eco;

Espalhamento temporal do sinal refletido = $32\mu s$;

Neg: Potência do ruído branco gaussiano equivalente;

Pw: Largura do pulso = $100\mu s$;

Ts: Período dos pulsos (10ms);

D/N: Relação sinal principal-ruído;

C/Neq: Relação sinal (sinal principal + sinal eco)- ruído equivalente;

BER: Taxa de erro de bits.

8.6.2 Descrição geral da medida

Mantendo fixa a potência do sinal principal, aumentar o nível do eco até obter, no medidor de taxa de erro, o valor de limiar de taxa de erro.

Atenuar o eco em degraus consecutivos e para cada operação de atenuação do eco, aumentar a potência do ruído equivalente Neq. até que a leitura do medidor de taxa de erro fique igual ao limiar de taxa de erro.

8.6.3 Resultados

A Figura 8.16 ilustra os resultados de simulações obtidos. Pode-se observar que a configuração DVBM-T HP 200ms com α =2 é a mais robusta e a configuração DVBM-T LP 0ms com α =2 é a menos robusta.

A comparação entre sistemas pode ser vista na Figura 8.17, onde os piores resultados foram alcançados com os receptores do sistema DVB-T e DVBM-T com entrelaçamento = 0ms. Com o entrelaçador ligado para 100 ou 200ms, o desempenho do sistema DVBM-T aumenta significativamente, tornando-se melhor do que os receptores do sistema ISDB-T.

As Figuras 8.18 e 8.19 ilustram curvas de desempenho do sistema DVB-T e DVBM-T na modulação hierárquica. Pode-se observar que nesse modo, o desempenho do sistema DVBM-T é superior em relação aos receptores DVB-T RX1 e RX5.

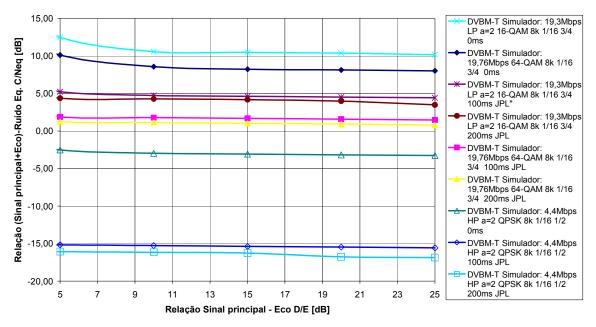


Figura 8.16 Resultado de simulações. Interferência por multipercurso (eco ou fantasma) com a presença de ruído impulsivo. Pw=100µs e espalhamento temporal=32µs

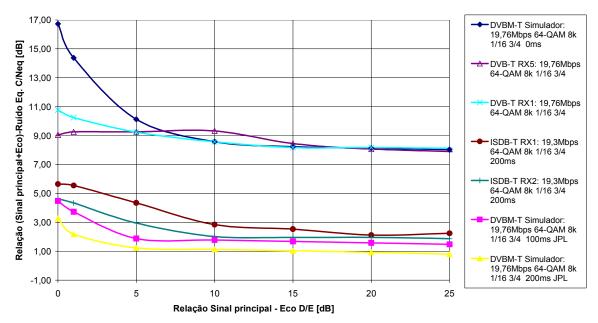


Figura 8.17 Comparação entre sistemas DVB-T, ISDB-T e DVBM-T na modulação não hierárquica. Interferência por multipercurso (eco ou fantasma) com a presença de ruído impulsivo. Pw=100µs e espalhamento temporal=32us

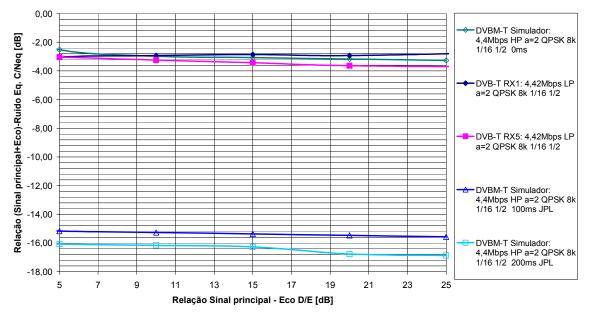


Figura 8.18 Comparação entre sistemas DVB-T e DVBM-T na modulação hierárquica α=2 HP. Interferência por multipercurso (eco ou fantasma) com a presença de ruído impulsivo. Pw=100μs e espalhamento temporal=32μs

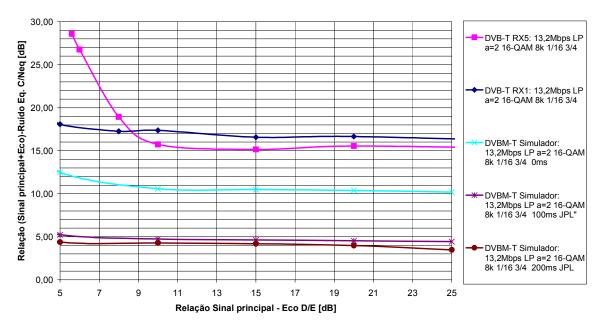


Figura 8.19 Comparação entre sistemas DVB-T e DVBM-T na modulação hierárquica α=2 LP. Interferência por multipercurso (eco ou fantasma) com a presença de ruído impulsivo. Pw=100μs e espalhamento temporal=32μs

8.7 Interferências por multipercurso - Simulação de canais com múltiplos ecos

8.7.1 Objetivo

Os testes descritos nos itens 8.4, 8.5 e 8.6 representam o comportamento de um receptor digital na presença de um único sinal de eco. O objetivo desse método de ensaio é verificar o comportamento do sistema DVBM-T na presença de diversos sinais de eco (até 5).

C = Potência do sinal total (sinal principal + sinais de eco);

N= Potência do ruído branco gaussiano na entrada do receptor;

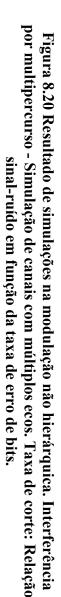
C/N = Relação sinal-ruído;

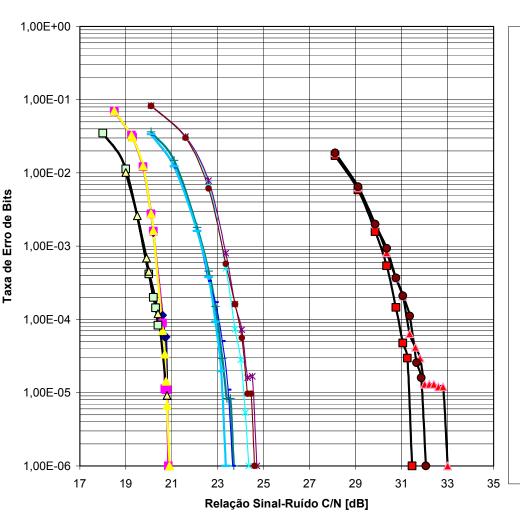
BER = Taxa de erro de bits.

A Tabela 8.3 ilustra o perfil de atraso e potência dos canais utilizados nos testes. Pode se visualizar nas Figuras 8.20, 8.21, 8.22, 8.23 e 8.25 o espectro dos canais Brazil A, B, C, D e E respectivamente.

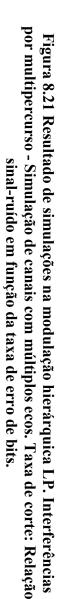
TABELA 8.2. COMPOSIÇÃO DO SINAL

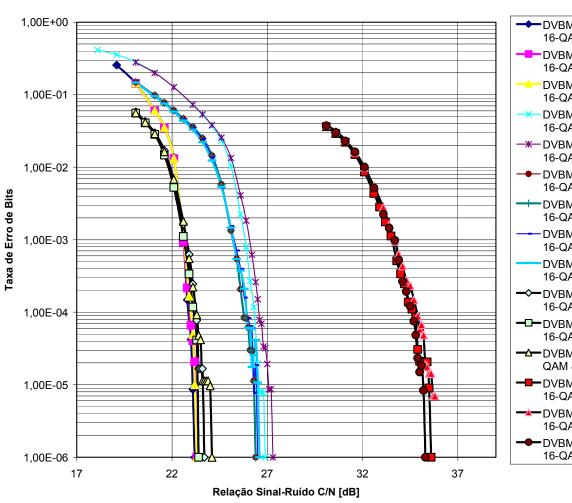
Nome	Descrição	Percurso 1	Percurso 2	Percurso 3	Percurso 4	Percurso 5	Percurso 6
Brasil A	Atraso (µs)	0	0.15	2.22	3.05	5.86	5.93
	Atenuação (dB)	0	13.8	16.2	14.9	13.6	16.4
Brasil B	Atraso (µs)	0	0.3	3.5	4.4	9.5	12.7
	Atenuação (dB)	0	12	4	7	15	22
Brasil C	Atraso (µs)	0	0.089	0.419	1.506	2.322	2.799
	Atenuação (dB)	2,8	0	3.8	0.1	2.5	1.3
Brasil D	Atraso (µs)	0.15	0.63	2.22	3.05	5.86	5.93
	Atenuação (dB)	0.1	3.8	2.6	1.3	0	2.8
Brasil E	Atraso (µs)	0	1	2	-	-	-
	Atenuação (dB)	0	0	0	-	-	-

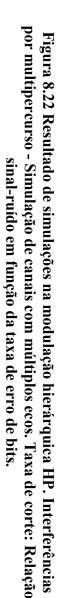

8.7.2 Descrição geral da medida


Ajustando a relação C/N = 100 dB e fixando-se a potência do sinal C total com -39,69 dBm, medir a correspondente taxa de erro. Se a taxa de erro estiver abaixo da taxa de erro de limiar, injetar ruído até a taxa de erro atingir o valor $3x10^{-6}$. Em torno do ponto de taxa de erro de limiar, aumentar e diminuir o ruído, traçando uma curva de taxa de erro (BER) em função da relação sinal-ruído (C/N).

8.7.3 Resultados


As Figuras 8.20, 8.21 e 8.22 ilustram curvas de taxa de corte do sistema DVBM-T nas configurações não hierárquica e hierárquica LP e HP, respectivamente. Pode-se observar que o uso do entrelaçador temporal não altera significantemente a relação sinal-ruído. A Tabela 8.3 ilustra o limiar da relação sinal-ruído para a taxa de 3x10⁻⁶ no sistema DVBM-T


e o limiar de funcionamento (aparecimento de artefatos na imagem) em receptores domésticos. Pode-se observar que os resultados obtidos no sistema DVBM-T estão próximos aos resultados medidos em laboratório. Nesse teste, o impacto das medidas está relacionado ao estimador e decodificador de canal utilizado.



- DVBM-T Simulador: 19,76Mbps 64-QAM 8K 1/16 3/4 0ms BRA
- DVBM-T Simulador: 19,76Mbps 64-QAM 8K 1/16 3/4 JPL 100ms BRA
- DVBM-T Simulador: 19,76Mbps 64-QAM 8K 1/16 3/4 JPL 200ms BRA
- DVBM-T Simulador: 19,76Mbps 64-QAM 8K 1/16 3/4 0ms BRB
- —* DVBM-T Simulador: 19,76Mbps 64-QAM 8K 1/16 3/4 JPL 100ms BRB
- DVBM-T Simulador: 19,76Mbps 64-QAM 8K 1/16 3/4 JPL 200ms BRB
- DVBM-T Simulador: 19,76Mbps 64-QAM 8K 1/16 3/4 JPL 0ms BRC
- DVBM-T Simulador: 19,76Mbps 64-QAM 8K 1/16 3/4 JPL 100ms BRC
- DVBM-T Simulador: 19,76Mbps 64-QAM 8K 1/16 3/4 JPL 200ms BRC
- DVBM-T Simulador: 19,76Mbps 64-QAM 8K 1/16 3/4 0ms BRD
- —□—DVBM-T Simulador: 19,76Mbps 64-QAM 8K 1/16 3/4 JPL 100ms BRD
- → DVBM-T Simulador: 19,76Mbps 64-QAM 8K 1/16 3/4 JPL 200ms BRD
- DVBM-T Simulador: 19,76Mbps 64-QAM 8K 1/16 3/4 0ms BRE
- DVBM-T Simulador: 19,76Mbps 64-QAM 8K 1/16 3/4 JPL 100ms BRE
- DVBM-T Simulador: 19,76Mbps 64-QAM 8K 1/16 3/4 JPL 200ms BRE

- → DVBM-T Simulador: 13,2Mbps LP a=2 16-QAM 8K 1/16 3/4 0ms BRA
- DVBM-T Simulador: 13,2Mbps LP a=2 16-QAM 8K 1/16 3/4 JPL 100ms BRA
- DVBM-T Simulador: 13,2Mbps LP a=2 16-QAM 8K 1/16 3/4 JPL 200ms BRA
- DVBM-T Simulador: 13,2Mbps LP a=2 16-QAM 8K 1/16 3/4 0ms BRB
- ** DVBM-T Simulador: 13,2Mbps LP a=2 16-QAM 8K 1/16 3/4 JPL 100ms BRB
- DVBM-T Simulador: 13,2Mbps LP a=2 16-QAM 8K 1/16 3/4 JPL 200ms BRB
- DVBM-T Simulador: 13,2Mbps LP a=2 16-QAM 8K 1/16 3/4 JPL 0ms BRC
- DVBM-T Simulador: 13,2Mbps LP a=2 16-QAM 8K 1/16 3/4 JPL 100ms BRC
- DVBM-T Simulador: 13,2Mbps LP a=2 16-QAM 8K 1/16 3/4 JPL 200ms BRC
- DVBM-T Simulador: 13,2Mbps LP a=2 16-QAM 8K 1/16 3/4 0ms BRD
- → DVBM-T Simulador :13,2Mbps LP a=2 16-QAM 8K 1/16 3/4 JPL 100ms BRD
- ──DVBM-T Simulador: 19,76Mbps 64-QAM 8K 1/16 3/4 JPL 200ms BRD
- DVBM-T Simulador: 13,2Mbps LP a=2 16-QAM 8K 1/16 3/4 0ms BRE
- DVBM-T Simulador: 13,2Mbps LP a=2 16-QAM 8K 1/16 3/4 JPL 100ms BRE
- DVBM-T Simulador: 13,2Mbps LP a=2 16-QAM 8K 1/16 3/4 JPL 200ms BRE

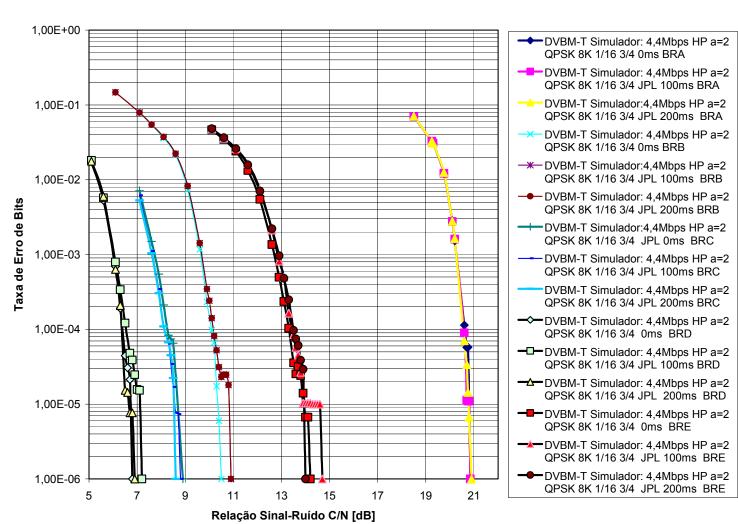


TABELA 8.3. RELAÇÃO SINAL-RUÍDO DE LIMIAR

	dulação	64-QAM	16-QAM	QPSK
Número	de Portadoras	8k	8k	8k
	3/4	3/4	1/2	
	1/16	1/16	1/16	
	•	2	2	
Pri	-	LP	HP	
Tax	19,8	13,2	4,4	
BRAZIL A	DVB-T RX1	22,7	27,0	9,2
	DVB-T RX5	20,7	NF	8,2
Relação Sinal-	DVBM-T 0ms	20,9	23,2	9,1
ruído de Limiar	DVBM-T 100ms JPL	20,9	23,3	9,1
C/N [dB]	DVBM-T 200ms JPL	20,95	23,3	9,0
BRAZIL B	DVB-T RX1	24,6	29,4	11,8
	DVB-T RX5	22,8	NF	9,6
Relação Sinal-	DVBM-T 0ms	24,4	26,9	10,5
ruído de Limiar	DVBM-T 100ms JPL	24,7	27,3	10,5
C/N [dB]	DVBM-T 200ms JPL	24,6	27,1	10,9
BRAZIL C	DVB-T RX1	22,6	25,5	11,8
	DVB-T RX5	21,2	NF	8,8
Relação sinal-	DVBM-T 0ms	23,7	26,4	8,9
ruído de Limiar	DVBM-T 100ms JPL	23,7	26,5	8,8
C/N [dB]	DVBM-T 200ms JPL	23,4	26,6	8,6
BRAZIL D	DVB-T RX1	24,8	28,5	11,7
	DVB-T RX5	22,5	NF	9,3
Relação sinal-	DVBM-T 0ms	20,7	23,7	6,8
ruído de Limiar	DVBM-T 100ms JPL	20,7	23,4	7,2
C/N [dB]	DVBM-T 200ms JPL	21,0	24,1	6,9
BRAZIL E	DVB-T RX1	32,3	29,0	16,9
	DVB-T RX5	27,5	NF	11,5
Relação sinal-	DVBM-T 0ms	32,5	35,6	14,2
ruído de Limiar	DVBM-T 100ms JPL	33,0	35,8	14,7
C/N [dB]	DVBM-T 200ms JPL	32,1	35,3	14,1

NF: Não Funciona

O canal Brasil A representa uma recepção típica usando antena externa. Pode-se observar que todas as configurações utilizadas funcionaram e a relação sinal-ruído para a modulação não hierárquica ficou próxima de 21.0dB. A Figura 8.23 ilustra o espectro do canal Brasil A e a Figura 8.24 a constelação 64-QAM antes e depois do estimador de canal.

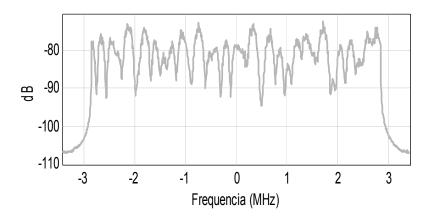


Figura 8.23 Espectro do canal Brasil A

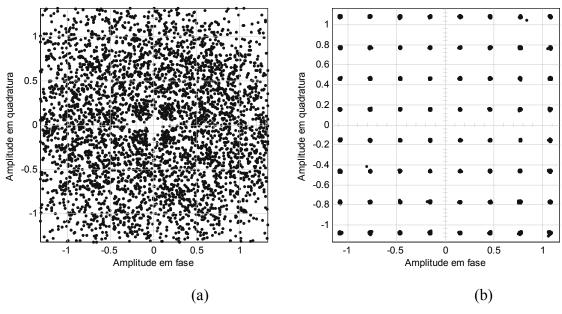


Figura 8.24 Constelação 64-QAM do canal Brasil A. (a) Antes do estimador de canal. (b) Depois do estimador de canal

O canal Brasil B representa uma recepção típica usando-se antena interna em um apartamento. Pode-se observar que todas as configurações utilizadas funcionaram e a relação sinal-ruído para a modulação não hierárquica ficou próxima de 24.7dB. A Figura 8.25 ilustra o espectro do canal Brasil B e a Figura 8.26 a constelação 64-QAM antes e depois do estimador de canal.

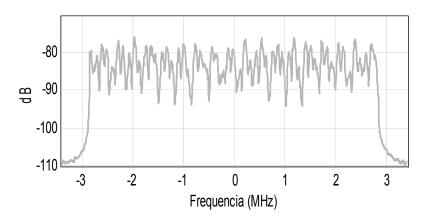


Figura 8.25 Espectro do canal Brasil B

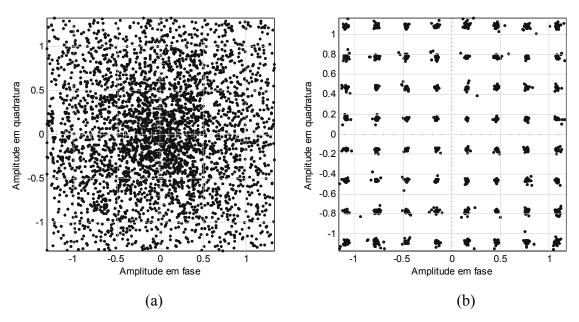


Figura 8.26 Constelação 64-QAM do canal Brasil B. (a) Antes do estimador de canal. (b) Depois do estimador de canal

O canal Brasil C representa uma recepção intermediária entre antena interna e externa. Pode-se observar que todas as configurações utilizadas funcionaram e a relação sinal-ruído para a modulação não hierárquica ficou próxima de 23.7dB. A Figura 8.27 ilustra o espectro do canal Brasil C e a Figura 8.28 a constelação 64-QAM antes e depois do estimador de canal.

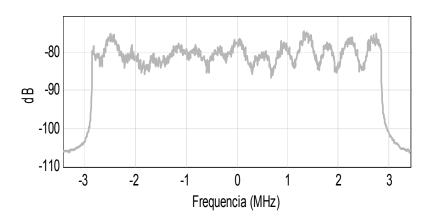


Figura 8.27 Espectro do canal Brasil C

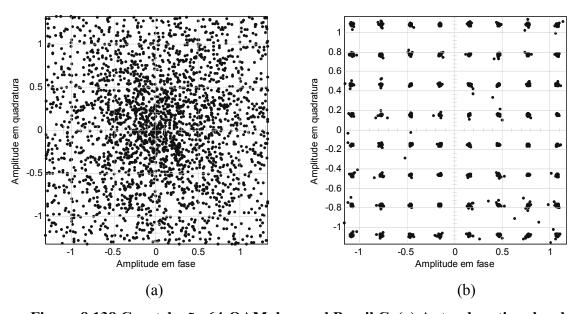


Figura 8.138 Constelação 64-QAM do canal Brasil C. (a) Antes do estimador de canal. (b) Depois do estimador de canal

O canal Brasil D representa uma recepção típica usando antena interna. Pode-se observar que todas as configurações utilizadas funcionaram e a relação sinal-ruído para a modulação não hierárquica ficou próxima de 21.0dB. A Figura 8.29 ilustra o espectro do canal Brasil D e a Figura 8.30 a constelação 64-QAM antes e depois do estimador de canal.

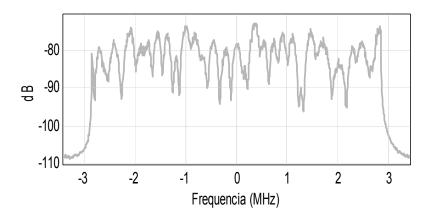


Figura 8.29 Espectro do canal Brasil D

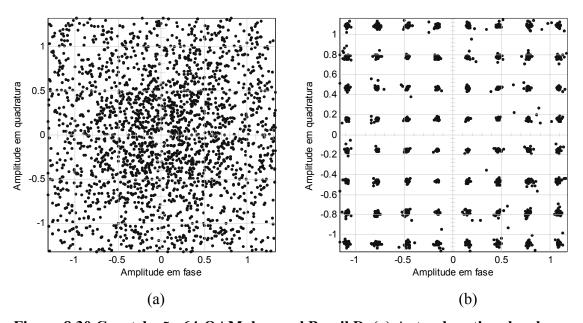


Figura 8.30 Constelação 64-QAM do canal Brasil D. (a) Antes do estimador de canal. (b) Depois do estimador de canal

O canal Brasil E representa uma recepção típica de uma rede de frequência única. Podese observar que todas as configurações utilizadas funcionaram e a relação sinal-ruído para a modulação não hierárquica ficou próxima de 33.0dB. A Figura 8.31 ilustra o espectro do canal Brasil E e a Figura 8.32 a constelação 64-QAM antes e depois do estimador de canal.

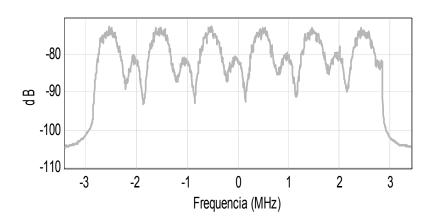


Figura 8.31 Espectro do canal Brasil E

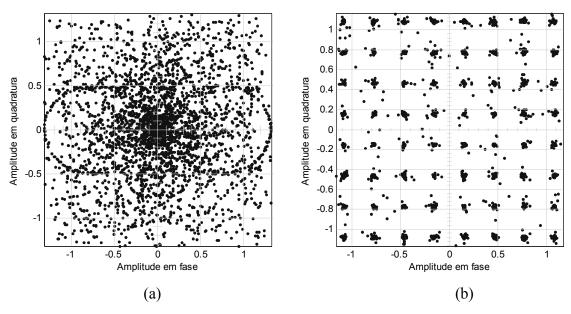


Figura 8.32 Constelação 64-QAM do canal Brasil E. (a) Antes do estimador de canal. (b) Depois do estimador de canal

Pode-se concluir que o desempenho do simulador DVBM-T nesse teste está relacionado ao estimador de canal utilizado (2D combinado com *cubic spline*) e que o entrelaçador temporal no sistema não altera a relação sinal-ruído.

8.8 Característica do sistema DVBM-T para recepção móvel (Efeito *doppler*)

8.8.1 Objetivo

Avaliar a degradação na recepção do sinal digital proveniente de reflexão em objetos móveis.

Essa degradação pode ser provocada por:

- Atraso (pós-eco) com deslocamento de frequência dos componentes espectrais do sinal digital refletido.
- Avanço (pré-eco) com deslocamento de frequência dos componentes espectrais do sinal digital refletido.

Na 1^a condição, ou seja pós-eco, o sinal que chega atrasado é o mais fraco.

Na 2^a condição ou seja, pré-eco, o sinal que chega adiantado é o mais fraco.

Em ambos os casos, serão estudados os deslocamentos de frequência positivos e negativos gerados por reflexão em objetos móveis.

onde,

 Δf : Espalhamento *doppler* medido em Hz;

Espalhamento temporal do sinal refletido = 1µs;

 $(E/D)_{dB}$: Relação entre a potência do sinal refletido (em dB) e a potência do sinal direto (em dBm);

BER: Taxa de erro de bits.

8.8.2 Descrição geral da medida

Para um dado valor de atraso ou avanço, deve-se ajustar a relação (E/D) _{dB}, em função de cada um dos valores do deslocamento de freqüência, para se obter o limiar de taxa de erro.

8.8.3 Resultados

A Figura 8.33 ilustra os resultados simulados obtidos nesse teste. Para as três configurações testadas pode-se observar que o uso do entrelaçador temporal degrada suavemente o desempenho do sistema. Os receptores do sistema DVB-T e ISDB-T foram avaliados até se encontrar o limiar de funcionamento (aparecimento de artefatos na imagem) como pode ser visto na Figura 8.34. Pode-se observar que o melhor desempenho está para os receptores ISDB-T RX1 e RX2. Isso ocorre devido ao espaçamento entre subportadoras do sistema ISDB-T (992,06Hz) que é ligeiramente maior do que o do sistema DVB-T (837,054Hz).

As Figuras 8.35 e 8.36 ilustram resultados comparativos entre os sistemas DVBM-T e DVB-T na modulação hierárquica nos modos LP e HP, respectivamente. O receptor DVB-T RX5 (quinta geração) obteve um ótimo desempenho quando comparado com os resultados do receptor DVB-T RX1 e DVBM-T. Isso ocorre devido à combinação de algoritmos estimadores de canal com técnicas adaptativas.

Nesse teste, o sistema DVBM-T obteve um dos piores resultados devido ao estimador de canal utilizado (1D *piecewice*) e ao entrelaçador temporal.

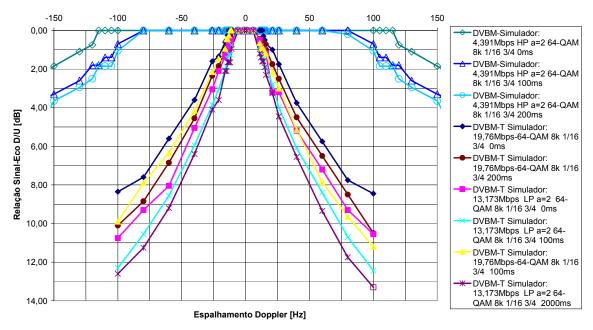


Figura 8.33 Resultado de simulações. Espalhamento temporal de 1µs. Recepção móvel (Efeito doppler)

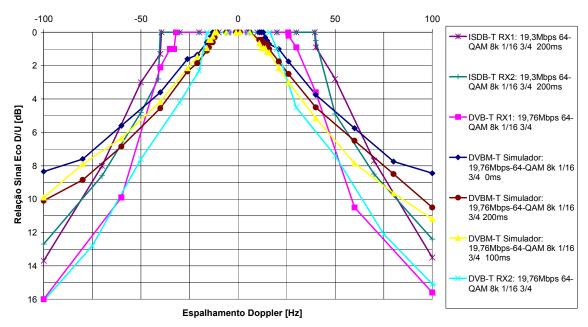


Figura 8.34 Comparação entre sistemas DVB-T, ISDB-T e DVBM-T. Espalhamento temporal de 1µs. Recepção móvel (Efeito *doppler*) na modulação não hierárquica

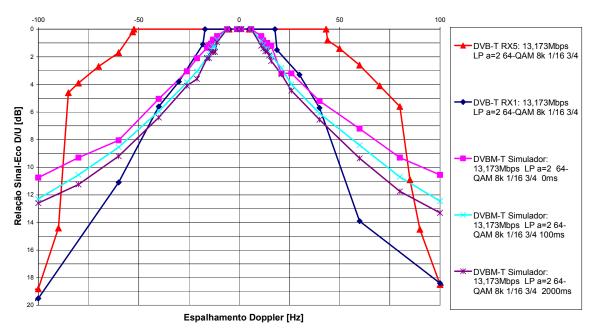


Figura 8.35 Comparação entre sistemas DVB-T e DVBM-T. Espalhamento temporal de 1μs. Recepção móvel (Efeito *doppler*) na modulação hierárquica α=2 LP

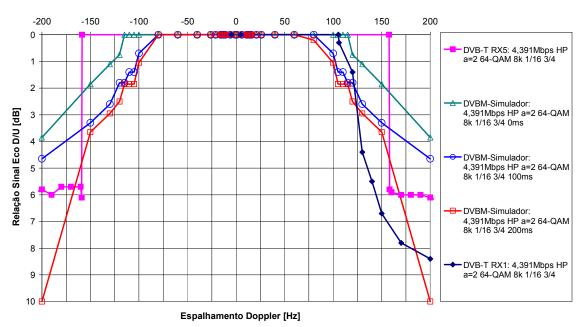


Figura 8.36 Comparação entre sistemas DVB-T e DVBM-T. Espalhamento temporal de 1μs. Recepção móvel (Efeito *doppler*) na modulação hierárquica α=2 HP

CAPÍTULO 8. RESULTADO DE SIMULAÇÕES

Capítulo 9

Conclusões

Este trabalho baseou-se no estudo dos sistemas de TV Digital DVB-T e ISDB-T e na modificação do sistema europeu inserindo-se um bloco de entrelaçamento similar ao do sistema japonês. Inicialmente foi criado um simulador para o sistema DVB-T, cujo desempenho foi comparado com resultados de testes de laboratório. Quando o desempenho do simulador tornou-se satisfatório, com a utilização dos algoritmos de estimação de canal, a proposta de melhoria foi inserida. Vários algoritmos de entrelaçamento foram avaliados e comparados em canais com ruído impulsivo. Após as implementações, o simulador foi testado nos mesmos modelos de canais para os quais os receptores do sistema DVB-T tinham sido avaliados.

Os estudos mostraram que além da modulação COFDM e o MPEG-TS, os sistemas DVB-T e ISDB-T possuem outros blocos em comum como o codificador *Reed Solomon*, codificador convolucional com puncionamento para as taxas 1/2, 2/3, 3/4. 5/6 e 7/8, método de modulação (QPSK, 16-QAM e 64-QAM) e valores selecionados do intervalo de guarda (1/4, 1/8, 1/16 e 1/32).

A diferença básica entre os sistemas está no método de modulação utilizado para se obter proteção desigual de erros em transmissões simultâneas. O DVB-T utiliza uma constelação que permite transmitir dois feixes de dados com diferentes prioridades (HP e LP) usando toda a banda do canal disponível. O ISDB-T divide a banda do canal disponível em 13 segmentos de freqüência e permite transmitir até três feixes de dados simultaneamente associando o número do segmento para o feixe de dados. Além disso, foi implementado no ISDB-T a modulação DQPSK, OFDM no modo 4k, entrelaçador de símbolos entre segmentos (freqüência) e entrelaçamento de símbolos complexos entre símbolos OFDM (tempo). O entrelaçamento em freqüência é utilizado para espalhar informações de um único segmento quando se utiliza mais de um segmento na mesma

camada. O entrelaçador temporal foi utilizado para minimizar efeitos que causam perda de dados como ruído impulsivo e desvanecimento do canal. Cabe lembrar que a duração do símbolo OFDM de cada sistema é diferente e por isso comportamentos desiguais são esperados.

Devido à diferença de desempenho dos sistemas, foi considerada que apenas a implementação de um entrelaçador temporal no sistema DVB-T poderia torná-lo robusto contra interferência por ruído impulsivo. Dessa forma, o entrelaçamento em freqüência, a modulação OFDM no modo 4k, a modulação DQPSK e a segmentação de banda não foram implementadas no simulador.

A modulação OFDM e os respectivos blocos funcionais dos sistemas DVB-T e ISDB-T foram analisados. Este estudo inicial contribuiu com o desenvolvimento do estágio de transmissão do simulador DVBM-T e na proposta de acréscimo do entrelaçador temporal no sistema DVB-T.

Várias técnicas de estimação de canal para o sistema DVB-T foram analisadas. Como resultado dos estudos realizados, duas técnicas eficientes para canais com espalhamento temporal (estimação 2D combinada com *cubic-spline*) e espalhamento *doppler* (estimação 1D *piecewice*) foram propostas. A estimação de canal implementada no simulador DVBM-T foi de vital importância, pois permitiu a simulação combinada de multipercurso com ruído impulsivo.

A proposta de inovação baseou-se nos algoritmos de entrelaçamento sendo que três entrelaçadores: JPL, ISDB-T e Bloco LR/TB foram analisados. Os entrelaçadores foram projetados para o mesmo período, atraso e uso de memória. Dessa forma, os entrelaçadores JPL e bloco LR/TB obtiveram desempenhos semelhantes.

Os resultados de simulações do sistema DVBM-T em três configurações não hierárquica, 8k, 3/4, 1/16, 64-QAM e hierárquica : LP, α =2, 3/4, 1/16, 16-QAM e HP, α =2, 1/2, 1/16, QPSK foram apresentados. As propostas foram analisadas em canais com ruído impulsivo, ruído branco gaussiano, multipercurso, *doppler* e combinados com multipercurso + ruído impulsivo e multipercurso + ruído branco. Os resultados obtidos em

simulações foram comparados com resultados disponíveis de laboratório de testes de receptores domésticos dos sistemas DVB-T e ISDB-T.

Pode-se concluir que o acréscimo do entrelaçador temporal não altera a relação sinalruído e a robustez perante multipercurso. Entretanto, ganhos significativos foram obtidos
quando o sistema foi submetido a canais com ruído impulsivo. Como desvantagem, o
entrelaçador temporal não obteve bom desempenho quando avaliado em canais com
deslocamento de freqüência (efeito *doppler*). Considerando que o resultado desse teste está
relacionado com as técnicas de estimação de canal, outros algoritmos poderiam ser
avaliados para compensar o erro gerado pelo entrelaçamento.

Os resultados obtidos a partir das modificações realizadas e dos estimadores implementados neste trabalho foram satisfatórios e poderão servir como referência para as pesquisas do Sistema Brasileiro de TV Digital (SBTVD) que está sendo coordenada pela Financiadora de Estudos e Projetos (FINEP) e Centro de Pesquisas e Desenvolvimento em Telecomunicações (CPqD). O Ministério das Telecomunicações já liberou recursos do Funttel para essa pesquisa e em até 10 de março de 2005 propostas das Universidades Brasileiras habilitadas devem ser implementadas.

9.1 Sugestões para trabalhos futuros

Neste trabalho, assumiu-se que o estágio de recepção estaria utilizando uma perfeita recuperação de relógio e sincronismo. Dessa forma, estudos em técnicas de sincronização para o sistema DVB-T poderiam ser realizados e implementados no simulador.

Devido ao baixo desempenho obtido no estimador 1D *piecewise* (freqüência) em canais com deslocamento de freqüência *doppler*, novos estudos poderiam ser realizados para melhorar o desempenho do sistema na recepção móvel (efeito *doppler*).

Como os sistemas DVB-T e ISDB-T possuem vários blocos em comum, modificações no simulador DVBM-T poderiam ser realizadas para implementar o simulador ISDB-T. Como ainda não existem comparações de desempenho entre os métodos de modulação

hierárquica utilizada nos sistemas DVB-T e ISDB-T em canais com ruído impulsivo, multipercurso e *doppler*, essa pesquisa também poderia ser realizada.

Vários receptores domésticos do sistema DVB-T estão utilizando diversidade de antenas. Esses dispositivos estão sendo utilizados em veículos automotivos e em recepção por antena interna. Além de ganhos significativos da relação sinal-ruído, testes de desempenho poderiam ser realizados com algumas modificações no demodulador do sistema DVBM-T.

A utilização de equalizadores adaptativos em receptores do sistema DVB-T e ISDB-T poderiam aumentar a imunidade à interferência por multipercurso (além do valor do intervalo de guarda). Uma outra vantagem está relacionada com a redução do intervalo de guarda (aumento da taxa de bits) mantendo-se a imunidade ao ruído.

Referências Bibliográficas

- [1] SET/ABERT "Digital Television Systems Brazilian tests Final Report Part 1," ANATEL SP March 2000.
- [2] SET/ABERT "Digital Television Systems Brazilian tests Final Report Part 2," ANATEL SP May 2000.
- [3] Chang, R. W., "Synthesis of band-limited orthogonal signals for multichannel data transmission," Bell System Tech. J., 45:1775-1796, Dec. 1996.
- [4] Weinstein, S. B. and Ebert, P. M. "Data transmission by frequency-division multiplexing using the discrete Fourier transform," IEEE Trans. Commun., COM-19(5):628-634, Oct. 1971.
- [5] Edfors, O., Sandell, M., Beek, J. J. V., Landstrom, D. and Sjoberg, F., "An Introduction to orthogonal frequency-division multiplexing" Lulea University of Technology, September, 1996.
- [6] Peled, A. and Ruiz, A., "Frequency domain data transmission using reduced computation complexity algorithms," In Proc. IEEE Int. Conf. Acoustic., Speech, Signal Processing, pages 964-967, Denver, CO, 1980.
- [7] Lyons, R. G., "Understanding Digital Signal Processing," Addison-Wesley, 1997.
- [8] Nee, R. V. and Prasad, R., "OFDM for Wirelles Multimídia Communications," Norwood, MA: Artech House Universal Personal Communication Library, 2000.
- [9] Sandell, M. van de Beek, J. J. and Borjesson, P. O. "Timing and frequency synchronization in OFDM system using the cyclic prefix," In Intern. Symp. Synch., pages 16-19, Essen, Germany, Dec. 1995.
- [10] Polled, T. and Moeneclaey, M. "Synchronizability of OFDM signal," In Proc. Globecom, volume 3, pages 2054-2058, Singapore, Nov. 1995.
- [11] Wei, L. and Schlegel, C., "Synchronization requirements for multi-user OFDM on satellite mobile and two-path Rayleigh-fading channels," IEEE Trans. Commun., vol. 43, pp. 887-895, Feb/Mar/Apr 1995.

- [12] Classen, F. and Meyr, H., "Frequency synchronization algorithms for OFDM systems suitable for communication over frequency-selective fading channels," In Proc. IEEE Vehic. Technol. Conf., volume 3, pages 1655-1659, Stockholm, Sweden, June 1994.
- [13] Hanzo, L., Webb, W. and Keller, T., "Single-and Multi-carrier Quadrature Amplitude Modulation," IEEE Press, John Wiley & Sons, Ltd New York, 2000.
- [14] Heiskala, J. and Terry, J. "OFDM Wireless Lans: A Theoretical and Practical Guide," Indianopolis, Indiana, SAMS, 2002.
- [15] Schmidl, T. M., and D. C. Cox, "Robust Frequency and Timing Synchronization for OFDM", IEEE Trans. On Comm., Vol 45, No. 12, pp. 1613-1621, Dec. 1997.
- [16] Lambrette, U., M. Speth, and H. Meyr, "OFDM Burst Frequency Synchronization by Single Carrier Training Data", IEEE Communications Letters, Vol. 1, No. 2, pp. 46-48, March, 1997.
- [17] Li, M. and Zhang, W., "A Novel Method of Carrier Frequency Offset Estimation for OFDM Systems," IEEE Trans. On Consumer Electronics, vol. 49, no. 4, pp. 965–972, September 2003.
- [18] Wang, X., Wu, Y., Chouinard, J. Y., Lu, S. and Caron, B. "A Channel Characterization Technique Using Frequency Domain Pilot Time Domain Correlation Method for DVB-T Systems," IEEE Trans. On Consumer Electronics, vol. 49, no. 4, pp. 949–957, September 2003.[19] ETSI (European Telecommunications Standards Institute) "Digital Video Broadcasting (DVB); Framing structure, channel coding and modulation for digital Terrestrial television (DVB-T)," ETS 300744 V1.4.1 April 2001.
- [20] EN (European Standard) "Cable networks for television signals, sound signals and interactive services Part 9: Interfaces for CATV/SMATV headends and similar professional equipment for DVB/MPEG-2 transport streams," EN 50083-9 June 1998.
- [21] Hsieh, M. H. and Wei, C. H., "Channel estimation for OFDM systems based on combtype pilot arrangement in frequency selective fading channels," IEEE Trans. On Consumer Electronics, Vol. 44, no.1, pp.217-225, February 1998.
- [22] ARIB STD-B31 V. 1.2 "Transmission System for Digital Terrestrial Television Broadcasting ARIB Standard," Association of Radio Industries and Businesses, January 24, 2002;
- [23] ITU-R WP 11A/59, "Channel coding, frame struture and modulation scheme for terrestrial integrate service digital broadcasting (ISDB-T)", ITU-R WP 11A/59-E, May 17, 1999.

- [24] Moher, M. L. and Lodge, J. H., "TCMP A modulation and coding strategy for Rician-fading channels," IEEE J. Select. Areas Commun., 7(9):1347-1355, December 1989.
- [25] Frescura, F., Pielmeire, S., Reali, G., Baruffa and G., Cacopardi, S., "DSP based OFDM Demodulator and Equalizer for professional DVB-T Receivers," IEEE Trans. On Broadcasting., vol. 49, no. 4, pp. 949–957, November 2003.
- [26] Yacoub, M. D., "Foundations of Mobile Radio Engineering,". CRC Press, New York, 1993.
- [27] Kang, S. G. Ha, Y. M., and Joo, E. K., "A comparative Investigation on Channel Estimation Algoritms for OFDM in Mobile Communications," IEEE Trans. On Broadcasting, Vol. 49, no.2, pp.142-149, June 2003.
- [28] Rinne, J. and Renfors, M., "Pilot spacing in orthogonal frequency division multiplexing systems on practical channels," IEEE Trans. Consumer Electron., vol. 42, no. 4, pp. 959–962, Nov. 1996.
- [29] Sampei, S. and Sunaga, T., "Rayleigh fading compensation for QAM in land mobile radio communications," IEEE Trans. Veh. Technol., vol. 42, no. 2, pp. 137–147, May 1993.
- [30] Press, W. H., Teukolsky, S. A., Vetterling, W. T. and Flannery, B. P., "Numerical Recipes in C: The Art of Scinctifc Compting," 2nd ed. New York, NY: Cambridge University Press, 1992.
- [31] ITU-R 31/6 6E/303, "Guidelines and Techniques for the Evaluation of DTTB Systems," ITU-R 31/6 6E/303, March 19, 2003.
- [32] Forney, G. D., "Burst-Correction Codes for the Classic Bursty Channel," IEEE Transactions Communication. Technology., vol. COM-19, October 1971, pp 772-781.
- [33] Andrews, K. SW., Heegard, C., and Kozen, D. "A theory of interleavers," Techical Report TR97-1634, Department of Computer Science, June 1997.
- [34] Heegard, C., and Wicker, S. B., "Turbo Coding" Kluver Academic Publishers. Boston, 1999.
- [35] Hall, E. K., and Wilson, S. G., "Stream-Oriented Turbo Codes" Transactions on Informations Theory, IEEE, vol. 47, No. 5, pp. 1813-1831, July 2001.
- [36] Berrou, C. and Glavieux, A., "Near optimum error correction coding and decoding: Turbo Codes," IEEE Transactions on Communications, COM-44 (6.10):1261-1271, October 1996.

- [37] Dolinar, S., Divsalar, D. and Pollara, F., "Code performance as a function of block size," TMO Progress Report 42-133, JPL, May 1998.
- [38] Acosta, G., "OFDM Simulation Using MatLab" Smart Antenna Research Laboratory, August 2000.
- [39] ITU-T Recommendation H.262, "Information Technology Generic Coding of Moving Pictures and Associated Audio Information: Video", 1995.
- [40] Shukla, A., Radiocommunications Agency Feasibility study into the measurement of man-made noise. DERA/KIS;COM/CR10470, March 2001.
- [41] "Results of the Laboratory Evaluation of Linx ATSC Prototype Receiver with 8-VSB Modulation for Terrestrial Broadcasting," Final Report (Version 1.4), Communications Research Centre Canada, April 2003.
- [42] Lago-Fernández, J. and Salter, J., "Modelling impulsive interference in DVB-T Statistical analysis, test waveforms and receiver performance," BBC EBU Technical Review, July 2004.
- [43] MPEG-2 Transport Stream (TS) ISO/IEC 13813.