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The art of living is to enjoy what we can

see and not complain about what remains

in the dark. When we are able to take the

next step with the trust that we will have

enough light for the step that follows, we

can walk through life with joy and be

surprised at how far we go.

Henri J. M. Nouwen "Bread for the
Journey: A Daybook of Wisdom and

Faith"
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Resumo

Nesse trabalho, considera-se a simulação em múltiplas escalas concorrentes, usando a

teoria peridinâmica e a elasticidade clássica, para a simulação de problemas de engenharia.

Primeiramente a teoria peridinâmica em uma dimensão é estudada em detalhes com o foco

na aplicação de condições de contorno de Dirichlet. Problemas de estado plano de tensão em

chapas com e sem furo são considerados. É proposto um método de pós-processamento dos

resultados de peridinâmica para o cálculo das tensões no material. Em seguida, a peridinâmica

discretizada é acoplada ao método dos elementos finitos por meio de dois diferentes programas

de computador, um especializado em peridinâmica e o outro em elementos finitos. A modelagem

acoplada é usada para prever a formação e a propagação de uma trinca em uma chapa com furo.

O fenômeno macroscópico de formação e propagação de trincas é resultado de processos físicos

com origem na escala atomística. No entanto, as simulações existentes deste tipo problema são

normalmente feitas com abordagens baseadas na teoria do contínuo, como a mecânica da fratura

e o dano contínuo, que não consideram aspectos atomísticos do problema. A teoria peridinâmica

é uma formulação da mecânica do contínuo em termos de equações integrais, permitindo a

solução de problemas que apresentam descontinuidades. Na peridinâmica, trincas se propagam

autonomamente como componentes naturais da deformação do material. Há um paralelo entre a

formulação peridinâmica e a dinâmica molecular, um método atomístico. Em ambas as abordagens

o movimento de uma partícula é encontrado através de um processo de somatório de forças

devido às partículas vizinhas. No esquema de simulação em múltiplas escalas concorrentes aqui

proposto, a peridinâmica é usada em pequenas porções do domínio onde a falha do material é

esperada e a elasticidade clássica, usando o método dos elementos finitos, é utilizada no restante

do domínio do problema. Os resultados mostram que a metodologia proposta para cálculo de

tensões é satisfatória. A importância da correta imposição de condições de contorno de Dirichlet

no domínio de peridinâmica também é destacado (este aspecto é de fundamental relevância para

a abordagem acoplada, peridinâmica/elementos finitos). Finalmente, o padrão de propagação da

trinca está de acordo com os resultados esperados.

Palavras-chave: Teoria Peridinâmica, Método dos Elementos Finitos, Mecânica da Fratura,

Simulação em Múltiplas Escalas.
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Abstract

We consider the peridynamic theory and the theory of classical elasticity for concurrent

multiscale simulation of engineering problems. First the peridynamic theory in one dimension is

studied in details focusing on the application of Dirichlet boundary conditions. Two-dimensional

plane stress problems in plates with or without hole are considered. We propose a methodology

to post-processing the peridynamics results in order to estimate stresses in the material. Then,

the discretized peridynamics is coupled to finite elements by two different computer programs,

one specialized in peridynamics and the other in finite elements. The coupled approach is used to

estimate the crack formation and propagation in a plate with hole. The macroscopic phenomenon

of crack formation and propagation is a result of physical processes with their origin in the

atomistic scale. However, computer simulations of this type of problem are usually performed with

continuum based approaches, such as fracture mechanics and continuum damage, which do not

consider atomistic aspects of the problem. The peridynamic theory is a formulation of continuum

mechanics in terms of integral equations allowing the solution of problems with discontinuities. In

peridynamics cracks progress autonomously as natural consequence of the material deformation.

There is a parallel between the peridynamic formulation and molecular dynamics, an atomistic

method. In both approaches the motion of a particle is found by a process of summation of

forces due to neighboring particles. In our concurrent multiscale scheme, peridynamics is used

in small portions of the domain where material failure is expected and classical elasticity is used

for modeling the rest of the problem domain. The results show that the proposed methodology

for computing stresses is satisfactory. The importance of correctly imposing Dirichlet boundary

conditions in the peridynamic domain is also highlighted (this aspect is of fundamental relevance

for the coupled peridynamics/finite element approach). Finally, the pattern of the cracking agrees

with the expected results.

Keywords: Peridynamic Theory, Finite Element Method, Fracture Mechanics, Multiscale Simula-

tion.
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1 INTRODUCTION

The knowledge about the behavior of materials in extreme loading conditions is critical to the

advancements of a variety of applications in science and engineering. In the context of engineering,

an ordinary practice is to design components and structures to certain limit of stresses. Occasionally,

however, due to operating conditions and performance requirements, stresses and strains can reach

values higher than the expected ones. For that reason, understanding material failure, mostly crack

formation and propagation, is of great interest.

In terms of materials science and engineering, fracture is a macroscopic phenomenon with

its origin in the atomistic scale. In general, crack formation and propagation in ductile and brit-

tle materials also lie on small length scale phenomena, such as dislocations and voids formation.

Mechanisms and features in materials that control their deformation behavior and their strength

limit have been subject to studies in a variety of scientific and engineering disciplines. Physicists

often consider the smallest lengthscales, featuring a few atoms and below. On the other hand,

chemists considered the bonding between different atoms or the interactions of different chemi-

cal compounds and molecules. Engineers have mainly used continuum descriptions of materials,

which is totally acceptable when dealing with larger structures that feature characteristic geometric

dimensions much larger than the inhomogeneities of the material (BUEHLER, 2008).

Continuum and atomistic viewpoints provide two fundamentally different approaches in trea-

ting materials, with different appeal and significance for specific applications. For many applica-

tions, the two views are complementary and the joint use of both approaches can provide much

insight into the behavior of materials. The atomistic models provide a fundamental description

of material properties and processes resulting in a general description of matter, since the same

atomistic model of a material may be suitable to study elasticity problems, as well as dissipative

materials failure such as fracture (BUEHLER, 2008). On the other hand, the finite element method

(FEM), is the most indicated when dealing with larger structures that feature characteristic geome-
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tric dimensions much larger than the inhomogeneities of the material.

In the context of engineering applications, problems involving fracture have been traditio-

nally modeled using tools based on continuum mechanics. Among different reasons, two should be

pointed out. First, continuum based techniques such as the FEM are widely used in engineering,

both in academia and industry (the FEM is highly robust in particular for determining stress fields

and very suitable for modeling structures possessing complex geometries). And second, the ato-

mistic based approaches are computationally expensive and extremely limited in time and length

scales.

Fracture mechanics is the field in continuum mechanics that deals with the behavior of cra-

cked bodies subjected to stresses and strains. Linear elastic fracture mechanics (LEFM) has been

developed using a stress intensity factor, evaluated by the stress analysis, and expressed as a func-

tion of stress and crack size (ERDOGAN, 2000). Numerical techniques for modeling these problems

have been proposed. The extended finite element method (XFEM), also known as the generalized

finite element method (GFEM), is a technique that extends the classical FEM approach by enri-

ching the solution space for approximations to differential equations with discontinuous functions

(BELYTSCHKO et al., 2009). Other techniques, such as the moving FEM, are also found in the lite-

rature (HAWKEN et al., 1991). However, these special treatments are not always satisfactory, either

physically or mathematically, in part because of the need for supplemental expressions to control

crack growth.

Atomistic and molecular simulation is becoming increasingly important because these me-

thods can overcome the difficulties encountered in the methods utilizing the classical continuum

mechanics. Molecular dynamics (MD) is a computer technique that tracks the trajectories of mole-

cules and atoms by numerically solving the Newton’s equations of motion for a system of interac-

ting particles, where forces between the particles, and potential energy, are defined. MD simulations

may also be used to determine macroscopic thermodynamic properties of the system. By calcula-

ting the free energy density of an atomistic system for various deformation states one can estimate
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Figura 1.1: The plot shows simple, schematic stress-strain diagrams characteristic for a brittle and
a ductile material. Similar curves are found for other materials, including polymers or rubber-like
materials. The cross symbol ("x") indicates the point of material failure (BUEHLER, 2008).

the stress as well as the Young’s modulus (GRIEBEL et al., 2007). However, as pointed out before,

time and length scales of this kind of approach are limited, usually in the order of picoseconds

(10−12s) and a few micrometers (10−6m).

The link between atomistic models and the classical concept of elasticity used in continuum

mechanics theories can be directly established by considering thermodynamics. In this sense, ther-

modynamics is the glue between atomistic methods - statistical mechanics - and continuum theo-

ries, linking microscopic states with a macroscale system (BUEHLER, 2008). In terms of thermo-

dynamics, elastic regime is characterized by a reversible process. That is, all mechanical work done

on the system is fully recoverable. In contrast, materials failure represents an irreversible process

where only part of the mechanical work done on the system can be recovered, as energy was dis-

sipated during processes associated with permanent deformation. Many investigations have been

performed to explain fracture processes. Materials can fail in many ways. Brittle materials like

glass shatters and quickly breaks into many small pieces. Ductile metals can be deformed perma-

nently without breaking, with moderate resistance against the forces. Many biological tissues such

as skin, or polymers and rubber are capable to sustain quite large deformation before they suddenly

break. Figure 1.1 shows a schematic stress-strain curve, comparing a brittle and a ductile material.
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As stated by Buehler (2008), research carried out over the last few decades revealed that the

integration of different viewpoints of the matter, that is, those of physics, chemistry, and engineering

is critical to make important breakthroughs to understand and improve the mechanical properties

of materials.

Multiscale simulation is an approach that tries to take into account information at multiple

spatial and (or) temporal scales. Traditional formulations couple MD based models to FE simula-

tion. Problems with this kind of coupling stem from the fact that the wavelength emitted by the

MD region is much smaller than what can be captured by the FE region. Since energy conserva-

tion is enforced, the wave is reflected back into the MD region leading to oscillatory solutions.

When reducing the FE mesh to atomic dimensions, it is assumed that the FE mesh would be able

to capture these high-frequency waves and allow them to pass through unimpeded, although other

effects, such as differences in compliance between the two regions, will still cause some wave re-

flection. Different techniques have been proposed in order to mitigate this problem (WERNIK AND

MEGUID, 2009).

Askari et al. (2008) claim that the onerous practical limitations of MD and the limited vali-

dity of classical elasticity have led to generalized continuum theories purporting to supply a single

multiscale material model. Such theories are motivated by introducing a length-scale absent in clas-

sical elasticity. Recently, the peridynamic (PD) theory has been applied to multiscale simulation.

The PD theory is a continuum mechanics formulation developed in terms of a integral operator that

is not a function of the deformation gradient. It results in a more general notion of deformation and

allows modeling problems involving discontinuities, such as cracking (SILLING, 2000).

An important work by Seleson et al. (2009) demonstrated that the PD model can be cast as

an upscaling of MD. They showed that the solutions of MD simulations can be recovered by PD

models. Thus, the PD model preserves characteristic properties of MD models lost by classical

continuum mechanics. Furthemore, the resulting PD models can be solved more cheaply than the

corresponding MD models because the PD models can be discretized on a mesh that is coarse with
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respect to the atomistic lattice.

It is evident that PD theory is promising for linking different length scales. Furthermore, da-

mage prediction in peridynamic theory is more realistic than the methods utilizing the classical

continuum theory since the PD theory considers material failure as a part of the material response

without resorting to any external damage criterion (KILIC, 2008). However, the PD theory is rela-

tively new and requires more investigations.

The PD theory, and its application to multiscale simulation and its coupling with the FEM,

will be discussed in Chapter 2.

1.1 Objectives and contributions

The general objective of this work is to develop concurrent multiscale simulations, using the

PD theory and the FEM, focusing on the study of cracking formation and propagation.

We couple the open-source MD program LAMMPS to a FE library. The problem domain is

divided into two subdomains. One part is modeled via classical elasticity and resolved using the

FEM and the other part is discretized into PD points. Displacements (Dirichlet boundary condi-

tions) are used for coupling the two parts of the domain. The communication between the two

programs is performed via a wrapper program written in C++. This program is responsible to feed

the two programs with boundary conditions during the simulation time. The FE input file indicates

the overlapping region and routines in the wrapper code identify the PD nodes in this region.

In order to reach the general objective of this work, we systematically study some aspects of

the PD theory, such as boundary conditions application, that are important when the discretized PD

is coupled to the FEM.
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Following are the points we consider to be the contributions of this work:

• Present a study of the one-dimensional PD stiffness matrix;

• Provide a discussion on nonlocal application of essential boundary conditions in PD;

• Study two-dimensional plane stress problems using PD in order to understand its convergence

behavior before coupling PD-to-classical continuum;

• Propose a practical methodology for computing stresses in PD simulations;

• Develop a wrapper program for coupling two different programs for multiscale simulation.

The developed codes permit new boundaries conditions for the overlapping layer (PD/FE) to

be tested.

1.2 Organization of the text

Chapter 2 provides a brief review of the literature on multiscale modeling and explains the

main approaches. A detailed review of the PD theory is also provided and different aspects of the

theory are covered, such as mathematical development, material models and its application to real

problems.

Chapter 3 provides the fundamentals of the bond-based PD theory and discuss the applica-

tion of Dirichlet boundary conditions in an one-dimensional problem. The properties of the one-

dimensional PD stiffness matrix is also discussed.

Chapter 4 focuses on the numerical solution of the PD equations using a dynamic relaxation

technique with kinetic damping. Two-dimensional plates with or without hole are considered and

the displacement fields are compared against FE results. Furthermore, a methodology for compu-

ting stresses for the PD solution is proposed.
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Although the PD theory is promising for damage prediction, it is computationally more de-

manding than the FEM. Furthermore, the FEM is highly effective for modeling problems without

damage and complex geometries. Hence, Chapter 5 presents the coupling between the discretized

PD theory and the FEM to combine the advantages of both methods. The region involving failure

is modeled using the PD theory while classical elasticity is applied to the regions without failure.

The coupling introduces an overlap region in which both PD and classical elasticity equations are

used. Using the displacements, a wrapper program links the two different programs used to solve

the PD and the FE domains. Finally, we present the final remarks and suggestions for future work

related to the PD theory in Chapter 6.
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2 LITERATURE REVIEW

In the following, we provide a brief discussion on multiscale simulation. After that, we consi-

der the PD theory, presenting some of its applications, and we also discuss some of the recent

approaches for coupling peridynamics and classical elasticity.

2.1 Multiscale modeling

Multiscale modeling and simulation is the field of solving physical problems that have im-

portant features on multiple spatial and (or) temporal scales. Multiscale modeling can be broadly

classified into two categories as sequential and concurrent multiscale methods. In sequential mul-

tiscale (or up-scaling procedure) macroscopic models are derived from the microscopic ones by

averaging fine scale information and introducing it into coarse scale models in the form of constitu-

tive relations (i.e., a homogenization approach). In concurrent methods (hybrid multi-scale models),

two or more scales are combined in one model, making a microscopic zoom inside the macroscopic

model (FISH et al., 2007).

Disparity in the lengthscales between such coarse scale and fine scale phenomena can exceed

1010. It is prohibitive in terms of computational cost to model coarse scale phenomena from fine

scale models alone. Concurrent multiscale methods are an effective tool to handle such situations

because, many times, localized areas of a problem domain need fine scale models to resolve the

complicated fine scale processes while the rest of the problem domain can be modeled with a coarse

scale model (FISH et al., 2007).

Most of the work in concurrent modeling techniques is based on coupling molecular statics or

molecular dynamics to a continuum model. In this case, a transition region is introduced to couple

the different lengthscales associated with MD and the continuum as well as allow two way trans-
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fer of the field variables of interest between these two regions. The literature contains numerous

methods of concurrent coupling. Combined FE and atomistic models to study crack propagation

in crystals (MULLINS AND DOKAINISH, 1982; KOHLHOFF et al., 1991) are some of the earliest

works of atomistic/continuum coupling. Fracture in nanomaterials by coupling quantum mecha-

nics and continuum mechanics can be cited as one of the recent studies of concurrent multiscale

modeling (XU et al., 2012).

Pioneering approaches for multiscale methods are the quasi-continuum (QC) method

(TADMOR et al., 1996; MILLER AND TADMOR, 2002) and macroscopic, atomistic, ab initio dy-

namics (MAAD) (ABRAHAM et al., 1998). Based on these techniques, various methods for mul-

tiscale modeling have been proposed such as coarse-grained molecular dynamics (CGMD) (RUDD

AND BROUGHTON, 1998), bridging domain method (BDM) (XIAO AND BELYTSCHKO, 2004),

and bridging scale method (BSM) (WAGNER AND LIU, 2003; PARK AND LIU, 2004).

Multiscale simulations considering PD for solving finer scales are recent, and will be presen-

ted later. As stated before, there is no limitation on time and length scales in PD, which makes the

wave reflection phenomena less significative when using PD coupled to classical continuum theory

for concurrent multiscale simulation. However, multiscale simulation is still an open problem, to

which this project aims to contribute.

In the following section a brief review of multiscale modeling techniques is presented.

2.1.1 Macroscopic, Atomistic, Ab Initio Dynamics (MAAD)

A frequently cited reference in multiscale modeling is the Macroscopic, Atomistic, Ab-initio

Dynamics (ABRAHAM et al., 1998; BROUGHTON et al., 1999) where crack propagation in silicon

was simulated. The idea of this approach is to link three scales in a concurrent manner: Tight-

binding (TB) quantum mechanics model to represent bond breaking at the crack tip, MD around
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the crack tip to model processes such as dislocation loop formation and FE model farther away from

the crack to capture macroscopic deformation. The interactions among three scales are taken into

account by the total Hamiltonian of the system. A very thin "handshake" region is used to couple

domains with each other. FE mesh is graded down to the atomic size for the reduction of wave

reflection between MD and FE. However, this attempt of connecting MD and continuum mechanics

using the atomic scale mesh size for FE has two problems: one numerical and one physical. The

numerical issue is that simulation time of FE slows down to picosecond because the time step is

governed by the element size (BATHE, 1996). The physical issue is that atomic scale FE simulation

is physically unreasonable because constitutive equation of FE is based on continuum mechanics.

Due to the assumption of a continuous and differentiable mass density, the atomic scale FE mesh

makes this assumption invalid. Moreover, although (Abraham et al. (1998)) mentioned that there is

no visible reflection at the FE-MD handshake region, they did not discuss the high frequency wave

in the MD region. The reflection of high frequency wave at the interface between the MD and FE

region still exists because atoms on the FE mesh side are stationary while atoms on the MD side

are mobile (XIAO AND BELYTSCHKO, 2004).

2.1.2 Quasi-Continuum (QC) Method

The quasi-continuum method (TADMOR et al., 1996; MILLER AND TADMOR, 2002) is ba-

sed on an entirely atomistic description of the material. The method resolves the regions close to

defects, such as dislocations, grain boundary, etc. with MD, while farther away from the defect re-

gion atoms are constrained to move in groups by the FE shape functions and mesh, thereby greatly

reducing the degrees of freedom in the problem (FISH et al., 2007). Finite-temperature quasicon-

tinuum (DUPUY et al., 2005) is developed as a coarse-grained alternative to MD for crystalline

solids at constant temperature by using a combination of statistical mechanics and FE interpolation

functions.

Although QC method suggested new approaches for a multiscale modeling, this method suf-

11



fers from the same issues of MAAD, i.e., elastic wave reflection in MD region and the total si-

mulation time limit, dominated by the time step of MD, which is very short for any engineering

application.

2.1.3 Coarse-Grained Molecular Dynamics (CGMD)

Coarse-grained molecular dynamics (RUDD AND BROUGHTON, 1998) uses a coarse graining

procedure based on statistical mechanics to derive equations of motion for a FE mesh from the

equations of motion of MD. A key idea of the method is that degrees of freedom are eliminated by

using the coarse-graining approximation, that converges to the exact atomic energy, to reduce the

computational cost.

Similar to MAAD, mesh size of CGMD is graded down to atomic scale in the MD region,

and coarsened far from the MD region. Thus, CGMD also experiences the same issues as MAAD,

such as time step limitation, the wave reflection, and the total simulation time. Additional terms

are introduced in the equation of motion to reduce spurious wave reflection. It leads to additional

force calculations in MD simulation which already suffers from the limited simulation time due

to the computational cost. Considering that the most expensive part of MD simulation is force

calculations, it is the critical limitation of the method.

2.1.4 Bridging Domain Method (BDM)

The bridging domain method (XIAO AND BELYTSCHKO, 2004) has been used to couple

continuum to atomistics through an overlap region and study shock wave propagation from mo-

lecular region to the continuum region. In this approach, the system consists of three domains:

molecular dynamics, continuum mechanics, and handshake region. The main idea of the model
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is using a linear combination of the Hamiltonian on the handshake region. Lagrange multipliers

method is applied to enforce displacement compatibility in the overlapping region between MD

and continuum regions. The energy within the overlapping region goes from entirely atomistic at

MD boundary to entirely continuum at FE boundary. The effect of this energy transition is that

high-frequency atomic scale energy is filtered. The idea of spatial filtering is proven by the nume-

rical examples in (XIAO AND BELYTSCHKO, 2004). A minimum overlapping distance is required

for the method to eliminate high-frequency waves effectively. The minimum overlapping distance

makes drawbacks such as increasing the computational cost and decreasing the MD area.

2.1.5 Bridging Scale Method (BSM)

The bridging scale method was developed by Wagner and Liu (2003) and Park and Liu (2004)

where the solution is decomposed into fine and coarse scale parts and a projection operator is used

to decouple the kinetic energy of the atomistic and the continuum sub-domains. BSM starts from

an entire molecular system. To save computational time the system area of MD is reduced from the

entire region to a small area of interest.

This approach does not grade down to the FE mesh size to the atomic size, and provides

different simulation time scales on both MD and FE. Comparing the BSM to the other multi-

scale methods (CGMD, MAAD), one clear advantage of this approach is that FE models the entire

domain, and is not graded down to the atomic scale. The result is that larger time step used in

FE is not restricted by the atomic sized elements in the mesh allowing time-staggered integration

schemes to be used (SYMEONIDIS AND KARNIADAKIS, 2006). Thus, the coarse scale variables

can evolve on an appropriate time scale, while the fine scale variables can evolve (appropriately)

on a much smaller time scale. However, additional force term is introduced to the MD model.

When the computational limitation of MD is considered, the calculation of additional force can be

a significant disadvantage on multiscale modeling.
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2.2 The peridynamic theory

The PD theory is a promising formulation of continuum mechanics introduced in

(SILLING, 2000). As opposed to classical elasticity, PD is a nonlocal theory (BAŽANT AND JIRÁ-

SEK, 2002) where particles interact with each other across a finite distance, as in molecular dyna-

mics. It is assumed that the interaction between particles vanishes whenever the particles are sepa-

rated by a distance (in the undeformed configuration) larger than a certain defined value called ho-

rizon. In PD, cracks initiate and propagate naturally based on the deformation of the material. This

is opposed to classical continuum based techniques, such as LEFM (linear elastic fracture mecha-

nics), where the initial position of the crack is required to be known in advance (ERDOGAN, 2000).

Peridynamics is an alternative theory of solid mechanics which formulates problems in terms

of integral equations rather than partial differential equations. Damage is incorporated at the level

of the two-particle interactions, so crack localization and fracture occur as a natural outgrowth

of the equation of motion and constitutive models (SILLING AND ASKARI, 2005). There is no

supplemental relation that dictates crack growth. In particular, the stress intensity factor is not used

(SILLING AND LEHOUCQ, 2010). In addition, the PD approach is a continuum theory. This means

that individual atoms need not be modeled, and that a true, physically correct, interatomic potential

need not be known (SILLING, 2000). It is possible to show that the PD theory converges to the

classical elasticity at the limit of small horizons (SILLING AND LEHOUCQ, 2008).

In addition, there is an obvious parallel between the PD theory and MD computations, since

in both approaches the motion of any particle is found by a process of summation of forces due

to neighboring particles (SILLING, 2000). Seleson et al. (2009) considered the PD theory as an

upscaling of MD showing that the same dynamics of a MD simulation for a Lennard-Jones potential

was recovered by a PD model. Despite this, an important difference is that MD particles have no

memory of their position in any reference configuration whereas PD ones can have.

14



2.2.1 Theoretical foundation

The term peridynamic was proposed in (SILLING, 2000) from the Greek roots for near and

force. Nowadays the initially proposed theory is known as bond-based because it uses a two-particle

force function (bond) to describe the interaction between material particles. In the bond-based

theory, the pairwise force function contains all the constitutive information about the material. One

of the difficulties that occurs with this approach is that, in many cases, it is an oversimplification

to assume that any pair of particles interacts only through a central potential that is totally inde-

pendent of all other local conditions. This assumption implies (for an isotropic, linear, microelastic

material) in an effective Poisson’s ratio of 1/4 for three-dimensional simulations (and 1/3 for two-

dimensional).

This difficulty motivated a rethinking of the whole PD theory resulting in a generalization of

the original theoretical framework (SILLING et al., 2007). The outcome was a concept which pre-

serves the idea of bonds carrying forces between pairs of particles. However, in the new approach,

the forces within each bond are not determined independently of each other. This generalization

permits the response of a material at a point to depend collectively on the deformation (and possi-

bly the rate of deformation and history) of all bonds connected to the point. The material-dependent

part of the PD model was rewritten by introducing a mathematical object called force state that is

in some ways similar to the traditional stress tensor of the classical continuum mechanics. It was

shown that by using this concept, the basic PD theory can be generalized to include materials

with any Poisson’s ratio. Also, because of the similarity to stress tensors, it is possible to apply

constitutive models in the classical theory directly in the PD theory. This generalized version of the

peridynamics is called state-based theory, as opposed to the bond-based.

Peridynamics reformulates the basic equations of motion in such a way that the internal forces

are evaluated through an integral formulation that does not require the evaluation of a stress tensor

field or its spatial derivatives. In (LEHOUCQ AND SILLING, 2008), a notion of a PD stress tensor,
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derived from nonlocal interactions, is defined via an abstract variational formulation. At any point

in the body, this stress tensor is obtained from the forces within PD bonds that go geometrically

through the point. The PD equation of motion can be expressed in terms of this stress tensor re-

sulting in a partial differential equation (PDE) that is formally identical to the classical equation of

motion.

The recent survey (SILLING AND LEHOUCQ, 2010) considers the mechanical aspects of

the PD continuum theory. This includes proposing the PD balance of energy and thermodynamic

restrictions so that the second law of thermodynamics is not violated. Lehoucq and Sears (2011)

provide a statistical mechanical foundation for PD deriving the energy and momentum balance laws

for the PD formulation. The nonlocality of force interaction is intrinsic and originates in molecular

force interaction that is nonlocal.

More recently, rigorous mathematical analysis of the PD models has also received much

attention. Emmrich and Weckner (2007a), Emmrich and Weckner (2007b), Zhou and Du (2010) and

Du and Zhou (2011) establish various existence and uniqueness results for the linear PD balance of

momentum. These papers also draw equivalences with the weak solution of the classical equations

of linear elasticity, and show well-posedness of the PD equations in the limit as the nonlocality

vanishes. In particular, the limiting solution for both stationary and time-dependent PD models

coincides with the conventional weak solution given sufficient regularity of the boundary data and

material properties (SILLING, 2000).

2.2.2 Material models

The prototype microelastic brittle (PMB) material model is the constitutive model that natu-

rally results from the initially proposed PD theory when the breakage of bonds stretched beyond a

certain limit is allowed (SILLING, 2000). This is a typical behavior of brittle fracture in which no

apparent plastic deformation takes place before fracture. After breakage, the bond is unable to bear
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loading and remains broken. The elastic properties of the PMB model are determined by the bulk

modulus and the horizon.

Silling and Bobaru (2005) introduced a new constitutive model for modeling tearing and

stretching of rubber materials. Problems such as bursting of a balloon and large deformation of

a network of fibers were studied with the new material model. An oscillatory crack path, when a

blunt tool was forced through a membrane, was also predicted.

Within the context of the state-based theory the linear peridynamic solid (LPS) was defined.

This model is a nonlocal analogue to a classical linear elastic isotropic material. The elastic proper-

ties of a classical linear elastic isotropic material are characterized by two properties, the bulk and

shear moduli. For the LPS model, the elastic properties are analogously determined by the bulk and

shear moduli, along with the horizon (SILLING et al., 2007). It can be shown that the PMB model

is a special case of the LPS model (SELESON AND PARKS, 2011).

Kilic (2008) introduced a new PD material model to include thermo-mechanical loadings.

The derivation of the material model is based on equating the strain energy density of the classi-

cal continuum theory to its corresponding energy in PD theory under thermo-mechanical loading.

Various benchmark problems subjected to mechanical loadings were analyzed. The validity of the

predictions using the new PD material model is established with the comparison against FE results

for both small and large deformations.

In (FOSTER et al., 2010), a rate-dependent plastic material model within the state-based PD

framework was proposed. To validate the numerical implementation of the constitutive model, a set

of impact tests were conducted. Numerical results for Taylor impact (normal impact of a cylindrical

rod against a smooth flat rigid target) match the experimental data. The results suggest the viability

of using PD to model materials that exhibit viscoplasticity with hardening.

However, as pointed in (SILLING, 2000), not all conventional elastic materials can be mode-
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led with the PD approach. But for those that can, there may be an infinite number of PD materials

corresponding to the same conventional material. All the existing PD microelastic materials have a

corresponding conventional elastic material (in the sense of homogeneous deformations). There is a

connection between the macroelastic energy density and strain energy density of conventional elas-

ticity. The connection is that they both represent stored energy accumulated through deformation,

and this energy is recoverable by reversing the deformation.

The number of PD material models already proposed is limited, as the PD theory is a recent

formulation that needs more development.

2.2.3 Applications

The PD theory has been successfully applied to damage prediction of many practical pro-

blems. Damage is incorporated into PD by causing the bonds between interacting nodes to break

irreversibly. Although this breakage occurs independently among all bonds, their failure tends to

organize itself along two dimensional surfaces that are interpreted as cracks. Cracks progress au-

tonomously, their advance is determined only by the field equations and constitutive model at the

bond level.

Silling (2003) considered the Kalthoff-Winkler experiment in which a plate having two pa-

rallel notches is hit by an impactor. PD simulations successfully captured the angle of crack growth

that is observed in the experiments. In (SILLING AND ASKARI, 2005), a numerical method for

solving dynamic problems within the PD theory was described and a plate with a center crack was

considered in order to discuss numerical convergence, accuracy and stability.

Force interactions resulting from discretizing PD are similar to traditional MD forces. Thus,

with minor modifications, a MD code can perform PD calculations. Parks et al. (2008b) imple-

mented PD within the MD code LAMMPS (PLIMPTON, 1995), an open-source, general purpose,
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massively parallel MD simulator. The PD extensions made to the LAMMPS MD package are avai-

lable for download from the LAMMPS WWW Site (http://lammps.sandia.gov). Askari et al. (2008)

reviewed some multiscale applications of PD within engineering analyses, such as trans-granular

and inter-granular crack propagation in polycrystalline ceramics, obtained with the PD module in

LAMMPS.

In (BOBARU AND DUANGPANYA, 2012), the PD formulation for heat transfer in one-

dimension, presented in (BOBARU AND DUANGPANYA, 2010), is extended for multiple dimen-

sions. The PD heat flux is defined and it is proposed how to connect the micro-level PD parameters

to the thermal conductivity of the material. The formulation is applied to transient heat conduction

in bodies with evolving discontinuities, such as insulated cracks. Heat flow problems in a body in

which insulated cracks dynamically grow, intersect, and thus alter the heat flow patterns was solved

with the new formulation.

2.2.4 Coupling peridynamics/classical elasticity

As solving the discretized PD equation is computationally expensive compared to FE, concur-

rent coupling methods between PD and classical local models have appeared in the literature. Ma-

cek and Silling (2007) used standard truss elements available in the ABAQUS (commercial FE

software) to represent PD bonds. These PD elements were applied in part of the problem domain

and a FE mesh with standard elements in the remainder. The conventional FE mesh is coupled with

the PD truss mesh using the embedded element feature also available in ABAQUS. The resulting

FE model of the PD equations was applied to penetration problems. The FE implementation of PD

is especially useful in penetration modeling because it avoids many of the difficulties in describing

the interface between a penetrator and a target when using conventional FE.

Agwai et al. (2009) and Oterkus (2010) employed the submodeling approach to couple clas-

sical elasticity with PD. In their approach, the global analysis by means of FE is performed first,
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and then PD is used for submodeling. In (AGWAI et al., 2009), damage prediction and failure pro-

pagation for an electronic package drop test was performed. The global model, in which failure

is not monitored, is simulated using FE. The submodel is created using the PD theory, damage

initiation and propagation are monitored. The PD submodel simulation predicts failure initiation

and growth in the expected region. The formulation in (OTERKUS, 2010) was used for modeling

three-dimensional damage growth in composite structures. The methodology was capable of asses-

sing the durability of complex composite structures and, when compared against the experimental

observations, it captured the correct failure behavior.

Liu and Hong (2012) introduced a coupling approach of the discretized PD with FE. Different

from the approach in (AGWAI et al., 2009) and (OTERKUS, 2010), implementing a PD model in

the framework of submodeling approach, the PD subregion is directly coupled to the FE subregion

in this approach. An interface element is introduced to calculate coupling forces instead of using

overlapping regions to couple PD and FE subregions. The scheme is used to simulate mixed mode

fracture in a concrete specimen subjected to quasi-static loading. The region where failure is expec-

ted is modeled using PD, and the remaining region is modeled using conventional FE. Numerical

predictions of crack patterns are close to the experimental observations.

A one-dimensional continuum formulation is proposed in (SELESON et al., 2012) for the

coupled system, PD-classical elasticity. They derive a coupling starting from a single framework

and derive a blended model at the level of the equations of motion, avoiding undesired spurious

effects on the boundaries. The novel result is that, in contrast to classical blending methods where

two or more models are joined together, they derive a coupled nonlocal/local scheme from a single

framework. It is shown that the error can be controlled by the sizes of the nonlocal region and the

transition region.

Works on multiscale simulations considering PD for solving finer scales are recent and testing

different techniques for coupling is of fundamental importance. However, multiscale simulation is

still an open problem, to which this work aims to contribute. For example, the computational tools
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developed during this work will allow us to test new boundary conditions on the interface PD/FE.

Domain decomposition techniques such as Dirichlet-Neumann, Neumann-Neumann and the Robin

mixed condition method (that has been successfully applied to fluid structure interaction problems

BADIA et al., 2008) can be tested.
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3 PERIDYNAMIC MODEL

The proposed PD continuum theory (SILLING, 2000) makes minimal regularity assumptions

on the deformation. Instead of spatial differential operators, integration over differences of the dis-

placement field is used to describe the existing, possibly nonlinear, forces between particles of the

solid body. As it was presented in the Chapter 2, the theoretical foundation of the PD was esta-

blished in (SILLING, 2000 and SILLING et al., 2007). Partially following the notation in (ASKARI

et al., 2008), the resulting derivative-free nonlocal PD equation of motion reads

ρ(x)ü(x, t) =

∫

Hx

f(u(x′, t)− u(x, t),x′ − x)dV
x
′ + b(x, t), (3.1)

where Hx is a spherical neighborhood of x ∈ R with radius δ called peridynamic horizon (Figure

3.1), u is the displacement vector field, b is the prescribed body force density field, ρ is the mass

density in the reference configuration, and the integral, in the right hand side, expresses that the

internal force density at x is the summation of forces over all vectors x′ − x (f will be latter

discussed). Beyond the PD horizon δ we have

f(u(x′, t)− u(x, t),x′ − x) = 0, x′ /∈ Hx. (3.2)

The spatial point y (in the deformed configuration) is related to the material point x (in the reference

configuration) via y(x, t) = x + u(x, t) where u(x, t) is the displacement of x ∈ R ⊂ R
3.

Deformation represents the mechanism through which continuum mechanics relates strain to the

internal forces of a body. Classical elasticity assumes that the displacement field is continuously

differentiable at every x ∈ R so that

u(x′, t)− u(x, t) = ∇
x
u(x, t)(x′ − x) +O(‖x′ − x‖2), (3.3)
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where ∇
x

denotes the gradient operator with respect to the material point x. If

F := I+∇
x
u(x, t) (3.4)

denotes the deformation gradient tensor, then

y(x′, t)− y(x, t) ≈ F(x, t)(x′ − x). (3.5)

In words, the body deformation y(x′, t)−y(x, t) can be approximated by the deformation gradient❜ ❝ ❞ ❡
❢ ❣ ❤❣ ✐ ❥ ❦ ❧ ♠ ❥ ♥♦ ♣ q r ♣ s t ✉ ✈

Figura 3.1: Each point x in the body interacts directly with points in the sphere Hx through bonds.

tensor acting on the bond x′ − x. By relying on the true deformation y(x′, t)− y(x, t) (and not on

the deformation gradient), PD avoids assumptions on the smoothness of the displacement field, in

contrast to the classical elasticity.

This chapter is organized as follows. First, a bond-based model is demonstrated in Section

3.1, where the focus lies on the pairwise force function f . Afterwards, we describe the numeri-

cal discretization of the PD equation for a two-dimensional domain in Section 3.2 and obtain the

stiffness matrix for a PD discretization in Section 3.3. Finally, in Section 3.4, we solve a one-

dimensional static problem and discuss the nonlocal application of Dirichlet boundary conditions

in PD.
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③ ④

Figura 3.2: Notation for the bond-based model.

3.1 Bond-based model

In the bond-based model, the kernel f of equation (3.1) is a pairwise force function whose

value is the force vector (per unit volume squared) that the particle x′ exerts on the particle x. The

relative position of these two particles in the reference configuration is given by ξ and their relative

displacement by η:

ξ = x′ − x, η = u(x′, t)− u(x, t), (3.6)

Using these definitions, ξ + η represents the current relative position vector between the particles

(Figure 3.2). The direct physical interaction between the particles, defined by the pairwise force

function, is called bond.

A material is called microelastic if there exists a so-called pairwise scalar micropotential w

such that

f(η, ξ) =
∂w

∂η
(η, ξ), ∀η, ξ. (3.7)

The micropotential is the strain energy in a single bond and has dimensions of energy per unit

volume squared. One of the simplest models that has been suggested is the proportional microelastic
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material model with

f(η, ξ) = cd,δs(η, ξ)
ξ + η

‖ξ + η‖
, (3.8)

where

s(η, ξ) =
‖ξ + η‖ − ‖ξ‖

‖ξ‖
, (3.9)

denotes the bond stretch, that is the relative change of the length of a bond 1. The subscript d is

the dimension of the problem domain and by ‖ · ‖ we denote the Euclidean norm. The constants

of proportionality cd,δ, computed using the elastic energy density of classical theory (see BOBARU

et al., 2009 for other examples), are (SELESON AND PARKS, 2011)

c1,δ =
18K

5δ2
, c2,δ =

72K

5πδ3
, c3,δ =

18K

πδ4
, (3.10)

with the bulk modulus K, the Young’s modulus E and the Poisson’s ratio ν related by

K =
E

3(1− 2ν)
. (3.11)

The term cd,δ/‖ξ + η‖ > 0 is the stiffness per unit volume squared. For such a material, the

magnitude of the force in a bond varies linearly with its bond stretch.

In the case of the pairwise force function defined by equation (3.8), the related micropotential

is given by

w(η, ξ) =
cd,δs

2(η, ξ)

2
, (3.12)

where the micropotential was chosen such that w(0, ξ) = 0.

In order to model cracks and simulate fracture, damage is incorporated into a PD constitutive

model by allowing the bonds for solid interactions to break irreversibly. The simplest assumption

1Equations (3.8) and (3.9) are frequently represented in terms of the spatial y and material x coordinates

f(y′ − y,x′ − x) = cs
y′ − y

‖y′ − y‖
, s =

‖y′ − y‖ − ‖x′ − x‖

‖x′ − x‖
.
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is that this breakage occurs when a bond is extended beyond some predetermined critical bond

deformed length. This is realized by multiplying the pairwise force function (3.8) by the function

µ(ξ,η, t) =







1 if s(ξ,u(x′, τ)− u(x, τ)) ≤ s0 ∀τ ≤ t

0 otherwise,
(3.13)

for some critical bond stretch s0 for breakage. Note that the resulting pairwise force function now

explicitly depends on time t.

3.2 Numerical method

The region is discretized into nodes, each with a known volume in the reference configuration.

Taken together, the nodes form a grid (Figure 3.3). Let x1, . . . ,xn be distinct points in R, where

R =
⋃n

i=1 Ωi and xi ∈ Ωi ⊂ H(xi). The spatial discretization of (3.1) results in

ρ(xi)ü(xi, t) =
∑

j 6=i

f(u(xj, t)− u(xi, t),xj − xi)Vj + b(xi, t), i = 1, . . . , n, (3.14)

where Vj is the volume of Ωj . Note that the sum is not over n − 1 but rather over the number of

xj ∈ H(xi).

Figura 3.3: Two-dimensional diagram showing particles on a mesh (grid) with neighborhood Hx defined
by the circular region with radius δ (horizon). The straight vertical and horizontal lines define the boundaries
of each particle. The two highlighted particles, with its volume shaded by gray, are used to show that the
volume associated with particles near the boundary of the horizon is not completely contained within the
horizon.
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Integration of the interaction force term is still an open question. It may play an important

role in the numerical implementation of the PD theory as it is discussed in (YU, 2011).

3.3 One-dimensional peridynamic stiffness matrix

In this section we explicitly show that the discretization of the PD equation results in a linear

system in the form [K]{u} = {f}, where [K] is the PD stiffness matrix, {u} the displacement

vector and {f} the load term. Let us consider a domain Ω = (0, L) divided into Nx− 1 uniform in-

tervals of size ∆x, so that we obtain a uniform mesh with Nx evenly-spaced nodes. We then assume

that each node represents a "cell" of length ∆x. Given the node distribution xi, i = 1, 2, ..., Nx over

the length of a one-dimensional bar, we discretize Equation (3.1) at all points xi.

⑤⑥ ⑦ ⑧ ⑨ ⑩ ❶ ❷❸
Figura 3.4: The peridynamic discrete form of a finite length one-dimensional bar.

In this particular case we use seven nodes to discretize the bar with the PD horizon δ = 2∆x

(Figure 3.4) (note that the horizons of nodes away from the ends cover exactly five nodes). For

K = 5δ2/18 the constant of proportionality is c1,δ = 1 (Equation 3.10). Thus, the resulting system
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of equations for a static example (considering b = 0)

− 1
‖x2−x1‖

V (u2 − u1)−
1

‖x3−x1‖
V
2
(u3 − u1) = 0

− 1
‖x1−x2‖

V (u1 − u2)−
1

‖x3−x2‖
V (u3 − u2)−

1
‖x4−x2‖

V
2
(u4 − u2) = 0

− 1
‖x1−x3‖

V
2
(u1 − u3)−

1
‖x2−x3‖

V (u2 − u3)−
1

‖x4−x3‖
V (u4 − u3)−

1
‖x5−x3‖

V
2
(u5 − u3) = 0

− 1
‖x2−x4‖

V
2
(u2 − u4)−

1
‖x3−x4‖

V (u3 − u4)−
1

‖x5−x4‖
V (u5 − u4)−

1
‖x6−x4‖

V
2
(u6 − u4) = 0

− 1
‖x3−x5‖

V
2
(u3 − u5)−

1
‖x4−x5‖

V (u4 − u5)−
1

‖x6−x5‖
V (u6 − u5)−

1
‖x6−x5‖

V
2
(u6 − u5) = 0

− 1
‖x4−x6‖

V
2
(u4 − u6)−

1
‖x5−x6‖

V (u5 − u6)−
1

‖x7−x6‖
V (u7 − u6) = 0

− 1
‖x6−x7‖

V (u6 − u7)−
1

‖x5−x7‖
V
2
(u5 − u7) = 0

,

using ∆x = 1 and the "volume" V = 1 we obtain

−u2 + u1 −
1
4
(u3 − u1) = 0

−u1 + 2u2 − u3 −
1
4
(u4 − u2) = 0

−1
4
(u1 − u3)− u2 − 2u3 − u4 −

1
4
(u5 − u3) = 0

−1
4
(u2 − u4)− u3 − 2u4 − u5 −

1
4
(u6 − u4) = 0

−1
4
(u3 − u5)− u4 − 2u5 − u6 −

1
4
(u6 − u5) = 0

−1
4
(u4 − u6)− u5 − 2u6 − u7 = 0

−u6 + u7 −
1
4
(u5 − u7) = 0

. (3.15)

Rewriting the above equations in matrix-vector form
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Note that the PD stiffness matrix [K] is a band matrix with number of non-zero sub-diagonals

given by the horizon δ. The row sums are all zero showing that the matrix is singular (rigid body

mode), which is correct in the absence of boundary conditions. Also note that the stiffness matrix

is symmetric positive semidefinite. If a prescribed displacement is imposed to system, we can solve

for the nodal displacements of the unconstrained points. The boundary conditions are non-locally

applied on a layer of size 2∆x, which is the same size of the PD horizon δ, at the ends of the bar.

For this example, the prescribed displacements are u1 = 0.0, u2 = 0.1, u3 = 0.5 and u4 = 0.0.

After applying the boundary conditions, the PD stiffness matrix become positive definite and the

system of equations to be solved is given by



































1

1

5
2

−1 −1
4

−1 5
2

−1

−1
4

−1 5
2

1

1





































































































u1 = 0.0

u2 = 0.1

u3

u4

u5

u6 = 0.5

u7 = 0.6



































































=



































































0.00

0.10

0.10

0.15

0.65

0.50

0.60



































































(3.17)

resulting in following displacement vector

u =
{

0.0 0.1 0.2 0.3 0.4 0.5 0.6
}T

. (3.18)

3.4 One-dimensional static problem with no external load

In the following, we consider a one-dimensional case without external load with Dirichlet

boundary conditions u(0) = 0 and u(1) = 1. The main purpose of this experiment is to demonstrate

the importance of correctly imposing the boundary conditions nonlocally in the PD model. The PD

solution will be compared with the classical elasticity solution using linear FE. We consider a one-
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dimensional domain Ω = (0, 1) divided into 50 uniform intervals ∆x. The Dirichlet boundary

conditions are imposed on u(0) = 0 and u(1) = 1 for the FE model. For the PD model, the

boundary of the domain is extended to a nonlocal boundary layer, so that additional nodes are

added to the left and to the right sides of the domain. We use a fixed horizon of δ = 4∆x and vary

the size of the boundary layer when imposing boundary conditions.

In Figure 3.5 we present the displacement profile for the FE and PD models. We observe

that the profiles produced by the PD model is highly influenced by the size of the boundary layer.

Observe that, in order to have a linear displacement profile the size of the boundary layer has to be

at least of the same size of the horizon, in this case δ = 4∆x. It is know that in PD the boundary

conditions should be imposed over a boundary layer, since PD is a nonlocal theory. The size of this

layer is not easily found in the literature, however.
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(a) PD solution
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(b) Zoom in the boundary layer

Figura 3.5: Displacement profile comparison for the a one-dimensional case with no external load with
Dirichlet boundary conditions u(0) = 0 and u(1) = 1; The extended layers (Ωt) for imposing boundary
conditions in the PD model are shaded by gray. The same horizon (δ = ∆x) was used in all PD simulations
but we vary the size of the boundary layers from 1 to 4. Note that a linear profile is produced only when the
boundary layer is of the same size of the horizon (4∆x).
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4 NUMERICAL SOLUTION METHOD

In this chapter, we solve two-dimensional plane stress problems using the PD theory. We use

the dynamic relaxation method (DRM) with kinetic damping to obtain the steady-state solutions to

the system of ordinary differential equations resulting from the discretization of the PD equation

and then we compare the results against FE results. We propose a methodology to compute the

stresses from the PD solution as a post-processing step of the simulation. Since PD is entirely

based on the relative displacements among particles the concept of stress is not necessary. However,

engineering failure criteria are usually based on stresses distribution. As cited before, in (LEHOUCQ

AND SILLING, 2008) a notion of a PD stress tensor is defined via a variational formulation derived

from nonlocal interactions. We intend to estimate stresses in a more practical manner focusing

on engineering applications. We propose a simple methodology in which we generate a Delaunay

triangulation on the PD grid and then compute stresses in the same manner as in the FE. The stress

is evaluated at the integration point of the triangular element and then it is transferred to the PD

nodes by a smoothing scheme in which the stress at the nodes is weighted by the element area.

In the following, we first introduce the dynamic relaxation method (DRM) with kinetic dam-

ping in Section 4.1. Then we study plates with and without hole with prescribed displacements

in one and two directions. Finally, we consider the problem of coupling PD and FE for concurrent

multiscale simulations in two-dimensional domains. A plate with hole at its center is used to display

damage prediction capabilities of the coupled scheme.

4.1 The dynamic relaxation method (DRM)

We briefly introduce the simple and effective dynamic relaxation method (DRM) with ki-

netic damping that is used in this study. A more detailed description of the method is found in

(BARNES, 1988; WAKEFIELD, 1999; WOOD, 2002; HAN AND LEE, 2003; LEE et al., 2011).
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We adopted the DRM to simulate the quasi-static loading condition of the two-dimensional

problems. The method is based on the fact that the static solution is the steady-state part of the

transient response of the system. An artificial damping is introduced to guide the solution into the

steady-state regime as fast as possible. The dynamic equilibrium equation can be written as follows

pn = Man +Cvn +Kdn. (4.1)

where pn it the load, M, C and K are mass, viscous damping and stiffness terms, respectively. an,

vn and dn are the acceleration, velocity and displacement vectors at time step n.

We use a velocity-Verlet scheme when discretizing time in LAMMPS. The velocity-Verlet

scheme is generally expressed in three steps

vi
n+1/2 = vi

n +
∆t

2mi

fi
n, (4.2)

yi
n+1 = yi

n + (∆t)vi
n+1/2, (4.3)

vi
n+1 = vi

n+1/2 +
∆t

2mi

fi
n+1, (4.4)

where mi denotes the mass of a particle and fni denotes the net force density on particle i at timestep

n (the LAMMPS command fix nve performs a velocity-Verlet integration).

By considering the DRM without viscous damping (C = 0), the number of parameters is

reduced and the analysis becomes simpler. The numerical analysis in the DRM is controlled only

by time increments and nodal mass terms. In the kinetic damping process, the behavior of the

structure can be re-established by setting the nodal velocity to zero at the kinetic energy peak state.

The iterative procedures are repeated until the appropriate convergence criterion is satisfied.

The mass matrix is the most important and unique term that is used to control the convergence

process of the DRM with the kinetic damping technique. To determine the static equilibrium with
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the DRM, the mass terms do not need to be the true structural mass (it can be chosen to obtain faster

convergence). Let the mass matrix M be replaced by a fictitious diagonal mass matrix Λ. There are

many different methods for choosing the fictitious mass term Λ. One of the most common choice

is to take Λ proportional to stiffness of the system (KILIC, 2008)

λii ≥ α
1

4
∆t2

∑

j

|Kij|, (4.5)

in which Kij are the terms of the stiffness matrix of the system of equations under consideration.

Following (KILIC, 2008; LEE et al., 2011), we take the time step size of 1 (∆t = 1), the

constant α = 2 and the fictitious mass terms as

λii =
1

2

∑

j

|Kij|. (4.6)

4.2 Benchmark solutions - two-dimensional problems

The effectiveness of the PD solutions are demonstrated by considering basic structural com-

ponents subjected to prescribed loads. The components considered are plates with or without a

circular hole. The effects of grid refinement and the PD horizon are analyzed. In the Appendix A

we provide the LAMMPS input files used in this section.

The PD solution for the two-dimensional problems was obtained using the PD module in

LAMMPS that allows only structured (evenly-spaced) grids in both x- and y-direction. We vanish

the forces in the orthogonal direction (z) to the plane xy, that is equivalent to a plane stress problem

in classical continuum mechanics. Since the symmetry of the problems is evident, in the FE simu-

lations we model just one-quarter of the domain. However, to avoid introducing boundary errors in

the areas that we want to estimate stresses, we modeled the entire plate in the PD simulation.
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Five evenly-spaced grids were used in the PD simulations (Table 4.1). The same discretization

is used in both x- and y-direction. We vary the value of the horizon from δ = 3∆ to δ = 6∆,

where ∆ is the grid spacing. In the PD simulations, the boundaries of the domain are extended to

a nonlocal boundary layer of 10mm for all grids (the boundary layers adds more points). We show

the PD results just for one-quarter of the domain even though we have solved the entire plate.

Poisson’s ratio ν = 1/3 and Young’s modulus (elastic modulus) E = 72 GPa where used in
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Tabela 4.1: Features of the two-dimensional PD grids used in the simulation.

To evaluate the PD solutions we use the FE results as the reference values. For the plate

without hole we use a FE mesh of 400 quadrilateral elements and 441 nodes (evenly-spaced in both

x- and y-direction). In addition, for the plate with hole, the reference FE solution was obtained with

a mesh with 861 quadrilateral elements and 927 nodes.

We have chosen, due to the large amount of data that was generated, to show the PD results for

two grids, 1 (61x61) and 4 (481x481), only. The results for the other cases are shown in Appendix

B.
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4.2.1 Plate with prescribed displacements in x

Consider the plate without external load shown in Figure 4.1 with Dirichlet boundary condi-

tions and prescribed displacements

u(−50, y) = −5.0× 10−3mm and

u(50, y) = 5.0× 10−3mm.

Observe that the prescribed displacements on the PD boundaries must have a linear gradient profile

(i.e., proportional to the point position x)

u(−60 ≤ x ≤ −50, y) = x× 10−4mm and

u(50 ≤ x ≤ 60, y) = x× 10−4mm.

The prescribed displacements are applied on the boundaries of the PD domain at time step

zero and the change in displacement at a given point x = y = 20 mm is shown in Figure 4.2. As

shown in Figure 4.2, the displacement in the x-direction converges faster than the one in y. We also

note that as the grid gets finer the number of iterations required to reach convergence increases.

While for grid 1 (61x61), the displacement in x converges with approximately 100 iterations, grid

4 (481x481) it is requires about 500 iterations. Another important comment from Figure 4.2 is that

convergence is not very dependent on horizon size.

In Figure 4.3, we present the numerical results for the displacement field. The steady state

displacements are compared against the FE solution. We observe that linear profiles are produced

overall, as expected. Figures 4.3(a) and 4.3(c) show that the displacements in the x-direction for

the two PD grids are close to the FE solution for all values of the horizon. On the other hand, the

displacements for the y direction are usually slight different from the FE solution for all grids and

values of the horizon (Figures 4.3(b) and 4.3(d)). From the the same figures, we also note that the

PD solution for the values of horizon δ = 3 and δ = 4 are closer to the FE solution for both PD

37



îïð ð
ñ ò ò ó ó

ôõõ öö
(a) Plate with prescribed displacement u in
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(b) FE numerical model.

Figura 4.1: Plate with prescribed displacements in x-direction and the model used in the FE simulation.
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Figura 4.2: Displacements at the point x = y = 20 mm for the case of the plate without hole and prescribed
displacements in x-direction. For all grids we vary the horizon from δ = 3∆ to δ = 6∆.
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grids.
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Figura 4.3: Displacement profiles comparison for the case of the plate without hole and prescribed displa-
cements in the x-direction for the grids: 61x61 and 481x481. The extended layers for imposing boundary
conditions in the PD model are fixed in 10 mm at each boundary (not shown in the figure). We vary the
horizon from δ = 3∆ to δ = 6∆.

Free surface effect is possibly the main reason for the differences in the y-displacement-

direction. Material points near a free surface have some of their interactions lost as compared

to those points which are completely surrounded by other material points. Hence, these points

experience stiffness loss (KILIC, 2008). Because of this effect, the deformation in the y-direction is

not completely uniform and the effective Poisson’s ratio for points near the free surfaces is slightly
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different from the theoretical predicted value of 1/3.

The methodology proposed in the beginning of this chapter was used to compute the stress

field for the PD simulation. In Figure 4.4, we present stresses for both FE and PD simulations.

Figures 4.4(a) and 4.4(c) show that the stresses are more dependent on the horizon size than the

displacements in the x-direction. Since the differences in the y-displacement are more pronounced,

we observe that the differences in σyy are also larger (Figures 4.4(b) and 4.4(d)). Free surface effects

also justify the fact that for small horizons the PD stress curves get closer to the FE one (Figure

4.4). As the horizon size gets smaller, the number of points that is not completely surrounded by

other material points gets lower. Thus, the solution for small values of horizon is closer to the FE

result. Furthermore, by Figure 4.4(c), for the best case (δ = 3∆) the difference in the mean stress

values between PD and FE is less than 0.5% and for the worst case the difference is not larger than

1.0%.

Besides free surface effects, other sources of inaccuracy should be pointed out. The values of

the displacement used to post-process the PD stress field were read from the LAMMPS dump file.

The data were recorded in short format (4 digits after the decimal point). We consider that using

displacements values in long format (14 to 15 digits after the decimal point) might make the stress

distribution a bit more uniform.
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(d) Grid: 481x481 (y = 0)

Figura 4.4: Stresses comparison for the case of the plate without hole and prescribed displacements in the
x-direction for the grids: 61x61 and 481x481. The extended layers for imposing boundary conditions in the
PD model are fixed in 10 mm at each boundary (not shown in the figure). We vary the horizon from δ = 3∆
to δ = 6∆.
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4.2.2 Plate with prescribed displacements in x and y

Consider the plate without external load shown in Figure 4.5 with Dirichlet boundary condi-

tions and prescribed displacements

u(−50, y) = −5.0× 10−3mm,

u(50, y) = 5.0× 10−3mm,

u(x,−50) = −5.0× 10−3mm and

u(x, 50) = 5.0× 10−3mm.

The prescribed displacements on the PD boundaries are as follows

u(−60 ≤ x ≤ −50, y) = x× 10−4mm,

u(50 ≤ x ≤ 60, y) = x× 10−4mm,

u(x,−60 ≤ y ≤ −50) = y × 10−4mm and

u(x, 50 ≤ y ≤ 60) = y × 10−4mm.

The change in displacement at the point x = y = 20 mm is shown in Figure 4.6. As shown

in Figure 4.6, for this case, it takes the same number of iterations to x- and y-direction to reach

converged results. As we note for the case of Section 4.2.1, the number of iterations required to

convergence also increases as the grid is refined. Another comment is that, for this case, with

prescribed displacements in both directions, fewer iterations are required to reach converged results

when compared to the case of Section 4.2.1.

The main reason to run this case, with prescribed displacements in both directions, is to eva-

luate the influence of free the surface in the PD simulations. The steady state displacements are
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(a) Plate with prescribed displacement u in x

and y.
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(b) FE numerical model

Figura 4.5: Plate with prescribed displacements in both x- and y-direction and the model used in the FE
simulation.
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Figura 4.6: Displacements at the point x = y = 20 mm for the case of the plate without hole and prescribed
displacements in both x- and y-direction. For all grids we vary the horizon from δ = 3∆ to δ = 6∆.
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compared against the FE solution. In Figure 4.7, we present the numerical results for the displa-

cement field. We observe that linear profiles are produced in both directions (Figures 4.7(a) and

4.7(c)). The displacements in both x- and y-direction agree very well with the FE solution for all

PD grids and values of the horizon. The difference in both displacements and stresses is less than

0.1%. Thus, there is no visible difference between PD and FE solutions (Figures 4.7 and 4.8).
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Figura 4.7: Displacement profiles comparison for the case of the plate without hole and prescribed dis-
placements in both x- and y-direction for the grids: 61x61 and 481x481. The extended layers for imposing
boundary conditions in the PD model are fixed in 10 mm at each boundary (not shown in the figure). We
vary the horizon from δ = 3∆ to δ = 6∆.
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(d) Grid: 481x481 (y = 0)

Figura 4.8: Stresses comparison for the case of the plate without hole and prescribed displacements in both
x- and y-direction for the grids: 61x61 and 481x481. The extended layers for imposing boundary conditions
in the PD model are fixed in 10 mm at each boundary (not shown in the figure). We vary the horizon from
δ = 3∆ to δ = 6∆.
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(b) FE numerical model.

Figura 4.9: Plate with hole and prescribed displacements in x-direction and the model used in the FE
simulation.

4.2.3 Plate with hole and prescribed displacements in x

Consider the plate with hole without external load shown in Figure 4.9 with Dirichlet boun-

dary conditions and prescribed displacements

u(−50, y) = −5.0× 10−3mm and

u(50, y) = 5.0× 10−3mm.

The prescribed displacements on the PD boundaries are as follows

u(−60 ≤ x ≤ −50, y) = x× 10−4mm and

u(50 ≤ x ≤ 60, y) = x× 10−4mm.

The change in displacement at the point x = y = 20 mm is shown in Figure 4.10. We note the

same behavior of the previous cases where the number of iterations increases as the grid gets finer.

We also note that there is no significant difference in the number of iterations required in this case

to reach convergence when compared to the case without hole.
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(d) grid: 481x481

Figura 4.10: Displacements at the point x = y = 20 mm for the case of the plate with hole and prescribed
displacements in x-direction. For all grids we vary the horizon from δ = 3∆ to δ = 6∆.

The main objective of this case is to check if the PD solution is able to capture the non-linear

displacement and stress profiles. The solution for this problem using the FEM is presented in Figure

4.11.

In Figures 4.12 and 4.13, we present the displacement field in the x- and y-direction for the

PD simulation computed with the two PD grids. Serving as a reference to the PD solutions, the

FE solution is also plotted in the figures. Overall the displacement fields shown in Figures 4.12(a)

to 4.12(h) and 4.13(a) to 4.13(h) qualitatively follow the FE solution. We observe that, as for the

plate without hole, the displacement profiles for x-direction are quite close to the FE solution.

Furthermore, some results in the y-direction follow very close the FE solution

In order to check the accuracy of the methodology used to compute the PD stresses, we ap-

plied the same scheme to the FE solution of this problem, i.e., we perform a Delaunay triangulation

on the quadrilateral mesh and compute stresses using the triangle shape functions. The result is
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Figura 4.11: Displacement profile for the plate with prescribed displacements in x-direction obtained with
the FE approximation.

shown in the Appendix C. According to the results shown in Figure C.1, the triangular mesh reco-

vers quite well the stress field with no significant difference. However, the number of elements of

the triangular mesh is twice the number of quadrilateral elements. As explained in the introduction

of this chapter, the stress is computed at the integration point of the triangular element and then

the nodal values are evaluated by a smoothing procedure. Since the smoothing procedure using the

triangular mesh involves twice the number of operations, the result for triangles is a bit less accu-

rate when compared to the stress values computed with quadrilaterals. This fact explains the small

differences observed between the two curves in the graphs shown in Figures C.1(e) and C.1(f).

At this point some technical limitations should be highlighted. As commented before, only

structured (evenly-spaced) grids in both directions (x and y) can be used in the PD implementation

in LAMMPS. For a structured grid, hole cannot be accurately represented. It means that the geo-

metric models for FE and discretized PD are slightly different. hole become square shaped as the

grid gets coarser. Because of this, it is difficult to discuss convergence, since it is not possible to

identify whether the PD solution gets close to the FE solution, because the mesh is finer or because

the geometry is better represented. More importantly, this is not a limitation of the PD theory, but a

problem with the manner in which the PD equation was discretized.

Another source of errors in the stress estimation is due to the triangulation itself. The trian-
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Figura 4.12: Displacement distribution for the case of the plate with hole and prescribed displacements in
x-direction computed with the 61x61 grid. The extended layers for imposing boundary conditions in the PD
model are fixed in 10 mm at each boundary (not shown in the figure). We vary the horizon from δ = 3∆ to
δ = 6∆. In (i) and (j) the displacements in x and y are compared with the FE solution.
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Figura 4.13: Displacement distribution for the case of the plate with hole and prescribed displacements in
x-direction computed with the 481x481 grid. The extended layers for imposing boundary conditions in the
PD model are fixed in 10 mm at each boundary (not shown in the figure). We vary the horizon from δ = 3∆
to δ = 6∆. In (i) and (j) the displacements in x and y are compared with the FE solution.
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gulation follows the evenly-spaced PD nodes and not the geometry. A triangular mesh following

the geometry might be more efficient. However, we are focused on estimating the stresses only. As

mentioned before, the stress field is not required in the PD theory since cracks propagate autono-

mously with the breakage of the bonds between material points.

Figures 4.14 and 4.15 show the stresses computed for the PD simulations. We can note that as

the grid is refined the PD model is able to capture quite well the increase in tension at the boundary

of the hole. Moreover, note that, even thought the PD model is able to capture the stress field near

the hole, near the boundaries of the PD domain the difference, when compared to the FE solution, is

higher. We shall point out two reasons. The first is the free surface effect that was already covered.

And the second is the fact that for this problem under consideration the displacement profile on the

boundaries is not completely uniform as it was imposed.
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Figura 4.14: PD stresses for the case of the plate with hole and prescribed displacements in x-direction
computed with the 61x61 grid. The extended layers for imposing boundary conditions in the PD model are
fixed in 10 mm at each boundary (not shown in the figure). We vary the horizon from δ = 3∆ to δ = 6∆. In
(i) and (j) σxx and σyy are compared with the FE solution.
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Figura 4.15: PD stresses for the case of the plate with hole and prescribed displacements in x-direction
computed with the 481x481 grid. The extended layers for imposing boundary conditions in the PD model
are fixed in 10 mm at each boundary (not shown in the figure). We vary the horizon from δ = 3∆ to δ = 6∆.
In (i) and (j) σxx and σyy are compared with the FE solution.
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(b) FE numerical model.

Figura 4.16: Plate with hole and prescribed displacements in both x- and y-direction and the model used in
the FE simulation.

4.2.4 Plate with hole and prescribed displacements in x and y

Consider the plate with hole without external load shown in Figure 4.16 with Dirichlet boun-

dary conditions and prescribed displacements

u(−50, y) = −5.0 ×10−3mm,

u(50, y) = 5.0 ×10−3mm,

u(x,−50) = −5.0 ×10−3mm and

u(x, 50) = 5.0 ×10−3mm.

The prescribed displacements on the PD boundaries are as follows

u(−60 ≤ x ≤ −50, y) = x× 10−4mm,

u(50 ≤ x ≤ 60, y) = x× 10−4mm,

u(x,−60 ≤ y ≤ −50) = y × 10−4mm and

u(x, 50 ≤ y ≤ 60) = y × 10−4mm.
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The changes in displacement at the point x = y = 20 mm is shown in Figure 4.17. We note

the same behavior of the previous cases in the number of iterations according to the grid, i.e., more

iterations is required for finer grids. Again, as it was observed for the case without hole, the problem

with prescribed displacements in two directions converges much faster than when displacement is

prescribed just in x-direction.
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Figura 4.17: Displacements at the point x = y = 20 mm for the case of the plate with hole and prescribed
displacements in both x- and y-direction. For all grids we vary the horizon from δ = 3∆ to δ = 6∆.

The main objective for solving this problem is to study the PD solution for non-linear displa-

cement profiles in the absence of errors on the boundaries. Figure 4.18 shows the solution for this

problem using the FEM.

In Figures 4.19 and 4.20, we show the displacement field in x- and y-direction for both PD

and FE simulations. The PD displacement fields shown in Figures 4.19(a) to 4.19(h) and 4.20(a) to

4.20(h) are in good agreement with those obtained with FE simulation. Overall the PD simulations

were able to very successfully capture the non-linear behavior of the displacement of the problem.
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Figura 4.18: Displacement profile for the plate with hole and prescribed displacements in both x- and
y-direction obtained with the FE approximation.

Figures 4.21 and 4.22 show the PD stress fields. In Figures 4.21(i) and 4.22(i), the PD solution

is compared against the FE solution. The results for the stress field confirms the good agreement

already observed for the displacements. note that there is no differences in the solution for σxx and

σyy.
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Figura 4.19: Displacement distribution for the case of the plate with hole and prescribed displacements in
both x- and y-direction computed with the 61x61 grid. The extended layers for imposing boundary conditions
in the PD model are fixed in 10 mm at each boundary (not shown in the figure). We vary the horizon from
δ = 3∆ to δ = 6∆. In (i) and (j) the displacements in x and y are compared with the FE solution.

57



➢ ➤ ➥ ➦ ➧ ➨ ➩ ➫ ➭ ➫ ➯ ➲ ➳ ➵ ➸ ➺ ➭ ➭ ➻
➼ ➽➾➚➪➶➹ ➽ ➼ ➘ ➴

(a) δ = 3

➢ ➤ ➥ ➦ ➧ ➨ ➩ ➫ ➭ ➫ ➯ ➲ ➳ ➵ ➸ ➺ ➭ ➭ ➻
➼ ➽➾➚➪➶➹ ➽ ➼ ➘ ➴

(b) δ = 4

➢ ➤ ➥ ➦ ➧ ➨ ➩ ➫ ➭ ➫ ➯ ➲ ➳ ➵ ➸ ➺ ➭ ➭ ➻
➼ ➽➾➚➪➶➹ ➽ ➼ ➘ ➴

(c) δ = 5

➢ ➤ ➥ ➦ ➧ ➨ ➩ ➫ ➭ ➫ ➯ ➲ ➳ ➵ ➸ ➺ ➭ ➭ ➻
➼ ➽➾➚➪➶➹ ➽ ➼ ➘ ➴

(d) δ = 6➢ ➤ ➥ ➦ ➧ ➨ ➩ ➫ ➭ ➫ ➯ ➲ ➳ ➷ ➸ ➺ ➭ ➭ ➻
➼ ➽➾➚➪➶➹ ➽ ➼ ➘ ➴

(e) δ = 3

➢ ➤ ➥ ➦ ➧ ➨ ➩ ➫ ➭ ➫ ➯ ➲ ➳ ➷ ➸ ➺ ➭ ➭ ➻
➼ ➽➾➚➪➶➹ ➽ ➼ ➘ ➴

(f) δ = 4

➢ ➤ ➥ ➦ ➧ ➨ ➩ ➫ ➭ ➫ ➯ ➲ ➳ ➷ ➸ ➺ ➭ ➭ ➻
➼ ➽➾➚➪➶➹ ➽ ➼ ➘ ➴

(g) δ = 5

➢ ➤ ➥ ➦ ➧ ➨ ➩ ➫ ➭ ➫ ➯ ➲ ➳ ➷ ➸ ➺ ➭ ➭ ➻
➼ ➽➾➚➪➶➹ ➽ ➼ ➘ ➴

(h) δ = 6

☎ ✆ ✝ ✆ ✞ ✆ ✟ ✆ ✄ ✆✝ ➬ ✄✞✞ ➬ ✄✟✟ ➬ ✄✄ ✫ ☎ ✆ ➮ ➱

✫ ✍ ✬ ✬ ✒✃❐ ❒❮❰ ✰ÏÐ☛ÐÑÒÓ ÔÕ✡ ☛☛☞ ✓ ✔✏ ✤ ✕
δ ✥ ✞ ✣✏ ✤ ✕
δ ✥ ✟ ✣✏ ✤ ✕
δ ✥ ✄ ✣✏ ✤ ✕
δ ✥ ✦ ✣

✧★
(i) y = 0

☎ ✆ ✝ ✆ ✞ ✆ ✟ ✆ ✄ ✆✝ ➬ ✄✞✞ ➬ ✄✟✟ ➬ ✄✄ ✫ ☎ ✆ ➮ ➱

Ö ✍ ✬ ✬ ✒✃❐ ❒❮❰ ✰ÏÐ☛ÐÑÒÓ ✠Õ✡ ☛☛☞ ✓ ✔✏ ✤ ✕
δ ✥ ✞ ✣✏ ✤ ✕
δ ✥ ✟ ✣✏ ✤ ✕
δ ✥ ✄ ✣✏ ✤ ✕
δ ✥ ✦ ✣

✧★
(j) x = 0

Figura 4.20: Displacement distribution for the case of the plate with hole and prescribed displacements
in both x- and y-direction computed with the 481x481 grid. The extended layers for imposing boundary
conditions in the PD model are fixed in 10 mm at each boundary (not shown in the figure). We vary the
horizon from δ = 3∆ to δ = 6∆. In (i) and (j) the displacements in x and y are compared with the FE
solution.
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Figura 4.21: PD stresses for the case of the plate with hole and prescribed displacements in both x- and
y-direction computed with the 61x61 grid. The extended layers for imposing boundary conditions in the PD
model are fixed in 10 mm at each boundary (not shown in the figure). We vary the horizon from δ = 3∆ to
δ = 6∆. In (i) and (j) σxx and σyy are compared with the FE solution.
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Figura 4.22: PD stresses for the case of the plate with hole and prescribed displacements in both x- and
y-direction computed with the 481x481 grid. The extended layers for imposing boundary conditions in the
PD model are fixed in 10 mm at each boundary (not shown in the figure). We vary the horizon from δ = 3∆
to δ = 6∆. In (i) and (j) σxx and σyy are compared with the FE solution.
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4.3 Remarks

In this chapter, we solved two-dimensional plane stress problems using the PD theory. We

adopted the DRM with kinetic damping to simulate the quasi-static loading condition of the pro-

blems. The static solution, which is the steady-state part of the transient response of the system,

was compared against the FE results. We proposed a methodology to compute the stresses from the

PD results and compared with the FE solution. We considered plates with or without hole and pres-

cribed displacements in one and two directions. The effects of grid refinement and the PD horizon

were analyzed.

According to the Figures 4.2, 4.6, 4.10 and 4.17, the number of iterations for the DRM to

reach converged results increases as the grid gets finer. We also note that the number of iterations

did not significantly changed for the cases with or without hole. Regarding to the influence of the

horizon size, we did not note a very pronounced difference for small and large values. However,

solving for large horizons is more computationally expensive.

The results for both plates with or without hole and prescribed displacements in x- and y-

direction are in very good agreement with the FE solution. The models were able to capture the

displacement and stress fields with no visible differences when compared to the results from the

FEM. The differences between PD and FE are smaller than 0.5%. However, we noted more pro-

nounced differences for the cases with prescribed displacements in only one-direction. As explained

in Sections 4.2.1 and 4.2.3, the loss of stiffness of the points near the boundaries is possibly the

main reason.

Finally, we shall highlight the importance of correctly applying prescribed displacements in

the PD simulations. As it was explained in Chapter 3, Section 3.4, the boundary conditions must

be non-locally applied and the size of the extended boundary layers must be at least of one horizon

size. In this chapter, this condition is ensured for all horizons that we run by using extended layers
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of size 10 mm.
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5 COUPLING PERIDYNAMICS AND CLASSICAL ELASTICITY

In this chapter, we present the methodology used for coupling the PD theory and classical

continuum mechanics. We propose a scheme via two independent programs. We use LAMMPS for

solving the discretized PD domain and a generic FE code for the classical elasticity part. The formu-

lation proposed in (PARKS et al., 2008a), for connecting one-dimensional atomistic-to-continuum,

was extended to the PD-to-classical elasticity case in two-dimensions. In the iterative process of the

coupled simulation, updated coordinates from one domain are used as boundary conditions to the

other. At each FE step, we use the DRM with kinetic damping to obtain the steady-state solution

to the PD equations. A wrapper program that links both programs was developed. This approach

takes advantage of the fact that LAMMPS provides access to its internal variables without having to

change the code (FRANTZDALE et al., 2010). Even though this kind of implementation can cause

an overhead in terms of the simulation time, it avoids changes in the existing codes. The output files

containing the simulation results are written in .vtk format that can be visualized on open-source

visualization applications such as PARAVIEW (www.paraview.org).

In Section 5.1 we introduce the equations of the isoparametric mapping. Then, the alternating

Schwarz method and the multiscale wrapper program are presented in Section 5.2. Finally, two

numerical experiments are performed in Sections 5.3 and 5.4. In the first experiment, a plate in

tension is used to show the convergence of the coupled scheme. In the second, a plate with hole

is used to show the promising capabilities of the coupled PD-FE system for predicting damage

formation and crack propagation.

5.1 Isoparametric mapping

In this work we consider FE meshes of linear quadrilateral elements. The same type of iso-

parametric mapping can be applied to any kind of elements in one, two or three dimensions.
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The coupling is based on domain decomposition techniques with an overlapping region where

both PD and classical continuum subregions coexist. To couple those subregions, the Cartesian

coordinates of the PD points embedded in the finite element are mapped onto the standard element.

Since the PD grid is generally desired to be finer than the FE one, in the overlapping region it

is necessary to interpolate the displacements of the vertices of the finite element to PD points

embedded in the element.

The quadrilateral element is defined over the standard domain Γ (Figure 5.1). The mapping

is done by the shape functions of the element which are defined in the standard element Γ. The

functions x(ξ) that maps Γ onto Ω(e), for the 4-node quadrilateral element, are given by

x(ξ) =
4

∑

i=1

Ni(ξ)x
i, (5.1)

or, in component form,

x(ξ, η) =
4

∑

i=1

Ni(ξ, η)x
i, (5.2)

y(ξ, η) =
4

∑

i=1

Ni(ξ, η)y
i, (5.3)

where xi = (xi, yi) are the vertex coordinates.

The bi-linear quadrilateral element has the following shape functions:

N1(ξ, η) = 1
4
(1− ξ)(1− η),

N2(ξ, η) = 1
4
(1 + ξ)(1− η),

N3(ξ, η) = 1
4
(1 + ξ)(1 + η),

N4(ξ, η) = 1
4
(1 + ξ)(1 + η).

(5.4)

The embedded PD points for all elements in the overlapping region are determined when

the simulation is set. We than solve the FE problem and use the updated coordinates of the nodes
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Figura 5.1: Bi-linear quadrilateral (DE SOUZA NETO et al., 2011).

as prescribed positions to the PD points. When the PD grid is finer than the FE one, the FE shape

functions are used to interpolate the displacements of the four nodes of the element to the embedded

PD points.

5.2 Coupling LAMMPS to a finite element code

The simplest way to simulate a multiscale model using single-scale components is to invoke

them independently as stand-alone applications from a multiscale wrapper program (FRANTZDALE

et al., 2010). LAMMPS is designed to allow it to be coupled to other codes. Once LAMMPS is

built as a library, the interface with LAMMPS can be done either via C, C++, Fortran, or Python.

The run command in LAMMPS has options that allow it to be invoked with minimal overhead

(no setup or clean-up) if multiple short runs is required (PLIMPTON, 1995, PLIMPTON, 2013).

This is our case where LAMMPS is driven by another program and it is called several times until
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convergence is reached. LAMMPS provides a package to facilitate the interfacing process with

examples of wrapper programs in C and C++. We chose C++ because it is the language that our FE

library is implemented in.

5.2.1 Alternating Schwarz method and the multiscale wrapper program

The developed wrapper program to link and call both LAMMPS and the FE library is based

on the templates available in the package "couple" provided with LAMMPS. At the moment we

have the serial version of the wrapper program only. This fact reduces our computational capabili-

ties to simulating large problems. Yet it is enough for studying different coupling approaches.

We apply the alternating Schwarz method for connecting PD and FE. In (PARKS

et al., 2008a), the authors applied the same technique for coupling FE and MD. The main limitation

of this approach is that its convergence is usually slow. However, the computational infrastructure

developed during this work make it possible that other strategies to be implemented with a few

changes in the codes. The alternating Schwarz algorithm reads:

1. Initialize PD and FE grids.

2. while not converged do

3. Fix positions of FE nodes according to positions of PD points.

4. Solve for displacements of unconstrained FE nodes (static problem).

5. Fix positions of PD points according to positions of FE nodes.

6. Solve for displacements of unconstrained PD points (using DRM).

7. end while
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As explained before the coupling procedure is straightforward. First the wrapper program

initializes an instance of LAMMPS given the input file. The coordinates of the PD points are then

used by the FE library to identify the points in the overlapping zone. For each element belonging

to the overlapping zone the embedded PD points are stored. There is no limitation in the number

of PD points embedded in an element. A mapping function in the FE library maps the coordinates

of each embedded PD point in the global reference system to the standard element domain (Figure

5.1). Thus, for each element in the overlapping region, the program searches for the PD points

inside that element and maps those points to the standard element, as explained in the Section 5.1.

The wrapper program uses the PD points positions as boundary conditions on the FE nodes.

The red squares in Figure 5.2(b) indicate the FE nodes that have prescribed displacement depending

on the position of the PD points. At the first time step the prescribed displacement on those nodes

is zero and we solve the FE problem. The wrapper program uses the updated coordinates of the FE

nodes in the overlapping region to computed the new coordinates of the PD points in that region.

The PD points with blue circles in Figure 5.2(b) are the points where the updated coordinates are

prescribed. Those points are fixed in the new position and LAMMPS then is called to solve for

the unconstrained PD points. The multiscale wrapper wait for the LAMMPS job to complete and

continue on with the acquired displacements. This process is repeated until convergence is reached.

5.3 Test problem 1 - plate under uniaxial tension

The problem shown in Figure 5.2(a) was used to test the implementation. The plate was

discretized in such a way that we have a PD region in the center of the domain and a FE mesh

surrounding it. There is an overlapping zone where both PD and classical elasticity equations are

solved. Figure 5.2(b) shows the plate discretized into FE elements and PD points.

Figure 5.2(b) also highlights the PD points that receive the displacements from the FE solu-

tion (blue circles) and the FE nodes that receive the displacements from the PD solver (red squares).
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(a) Plate loaded in tension
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(b) Numerical model

Figura 5.2: Plate under uniaxial tension with Dirichlet boundary conditions and the numerical model used
in the coupled FE/PD simulation. In (a) we detail the FE, PD and the region of overlapping between the two
regions. In (b) the problem is discretized into quadrilateral elements and PD nodes. The nodes that exchange
boundary conditions are also shown in (b).

5.3.1 Numerical experiments

Numerical experiments were performed to study the convergence of the coupled scheme.

Three FE meshes with overlapping regions of three different sizes were used. Table 5.1 gives the

details of the FE meshes used. We refer to the size of overlapping region according to the number

of element layers beginning from the inner part of the domain. The number of layers used was four,

five and six. Figure 5.3 shows all meshes with all three different sizes of the overlapping region.

For the PD part we consider three different cases. According to the way that the PD region

is discretized we have 4, 9 and 36 PD embedded points in each element of the overlapping region.

The cases are shown in Figure 5.4. The PD horizon used is δ = 3.

We have 27 experiments in total. Table 5.2 summarizes the parameters for all tested cases.

The table details the number of PD points in the overlapping region for all tested cases.

Material properties for both FE and PD domains are: elastic modulus 72.0 GPa and Poisson’s
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✖ ✗ ✘ ✘ ✙
✚ ✛ ✜ ✢ ✣ ✤ ✥ ✦ ✢ ✧ ★ ✩ ✪ ✪ ✫ ✬ ✭ ✮ ✢ ✭ ✫ ✯ ✬

(f) Mesh 2 (6 layers).

✎ ✏ ✑ ✑ ✏ ✑✎ ✏ ✑✑
✏ ✑✒✓ ✔✔✕

✖ ✗ ✘ ✘ ✙
✚ ✛ ✜ ✢ ✣ ✤ ✥ ✦ ✢ ✧ ★ ✩ ✪ ✪ ✫ ✬ ✭ ✮ ✢ ✭ ✫ ✯ ✬

(g) Mesh 3 (4 layers).

✎ ✏ ✑ ✑ ✏ ✑✎ ✏ ✑✑
✏ ✑✒✓ ✔✔✕

✖ ✗ ✘ ✘ ✙
✚ ✛ ✜ ✢ ✣ ✤ ✥ ✦ ✢ ✧ ★ ✩ ✪ ✪ ✫ ✬ ✭ ✮ ✢ ✭ ✫ ✯ ✬

(h) Mesh 3 (5 layers).

✎ ✏ ✑ ✑ ✏ ✑✎ ✏ ✑✑
✏ ✑✒✓ ✔✔✕

✖ ✗ ✘ ✘ ✙
✚ ✛ ✜ ✢ ✣ ✤ ✥ ✦ ✢ ✧ ★ ✩ ✪ ✪ ✫ ✬ ✭ ✮ ✢ ✭ ✫ ✯ ✬

(i) Mesh 3 (6 layers).

Figura 5.3: FE meshes used in the coupled PD/FE simulations. The colored elements represent the overlap-
ping region (Table 5.1 details the number of elements in each mesh).
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Tabela 5.1: Parameters of the FE meshes for the numerical experiments of the coupled FE/PD simulation.
The table shows the number of elements in the overlapping region according to the size of the region.✰ ✱ ✲ ✳ ✴ ✵ ✶ ✷ ✸ ✷ ✹✺ ✻ ✼ ✽ ✼ ✾ ✿ ❀ ✶ ✷ ✸ ✷ ✹✶ ✷ ❁ ✼ ❀ ❂ ❃ ❄ ✼ ✷ ✹ ✿ ❅ ✼ ❆ ❇ ✼ ❈ ✻ ❉ ❊ ❊ ❃ ✾ ❋● ✼ ❋ ❃ ✷ ✾ ❍ ■ ❉ ❏ ✼ ❈ ❀ ❑ ✶ ✷ ✸ ✷ ✹ ✺ ✻ ✼ ✽ ✼ ✾ ✿ ❀ ❃ ✾ ✿ ❅ ✼❆ ❇ ✼ ❈ ✻ ❉ ❊ ❊ ❃ ✾ ❋ ● ✼ ❋ ❃ ✷ ✾▲ ▲ ▼ ◆ ❖ ▲ ▲ P ◆ ❖ ❖ ❖ ◗P P ◗ ▼❘ ❙ ◆ ▼◆ ▲ ◆ ▼ ▼ ▲ ❚ ◆ ▼ ❖ ❚ ◗ ❖P P ▼ ▼❘ ❘ ◆ ❖❚ ▲ ❚ ❖ ❖ ▲ ❖ P ❘ ❖ ❚ ◆ ▼P ❖ ◆ ▼❘ P ◆ ◗

❯ ❱ ❲ ❳ ❲ ❨ ❩ ❬ ❭ ❬ ❪ ❫ ❨ ❩ ❴
(a) 4 embedded points.

❯ ❱ ❲ ❳ ❲ ❨ ❩ ❬ ❭ ❬ ❪ ❫ ❨ ❩ ❴
(b) 9 embedded points.

❯ ❱ ❲ ❳ ❲ ❨ ❩ ❬ ❭ ❬ ❪ ❫ ❨ ❩ ❴
(c) 36 embedded points.

Figura 5.4: Detail of the PD embedded nodes in the element for the three considered schemes.

70



Tabela 5.2: Parameters of the PD grids for the numerical experiments of the coupled PD/FE simulation (for
each FE mesh shown in Table 5.1 and Figure 5.3).❵ ✺ ❛ ✼ ❀ ❅ ❂ ❃ ❄ ✼ ✷ ✹❆ ❇ ✼ ❈ ✻ ❉ ❊ ❊ ❃ ✾ ❋● ✼ ❋ ❃ ✷ ✾ ❍ ✶ ✷ ✸✷ ✹ ✺ ✻ ✼ ✽ ✼ ✾ ✿✻ ❉ ❏ ✼ ❈ ❀ ❑ ❜ ❝ ● ✼ ❋ ❃ ✷ ✾❞ ✽ ✽ ❡ ✶ ✷ ✸ ❜ ❝❜ ✷ ❃ ✾ ✿ ❀ ❃ ✾✼ ❉ ❢ ❅❁ ❃ ❈ ✼ ❢ ✿ ❃ ✷ ✾ ✶ ✷ ✸ ❜ ❝❜ ✷ ❃ ✾ ✿ ❀❍ ❣ ✷ ✿ ❉ ✻ ❑ ✶ ✷ ✸ ❜ ❝❜ ✷ ❃ ✾ ✿ ❀❍ ❆ ❇ ✼ ❈ ❤✻ ❉ ❊ ❊ ❃ ✾ ❋● ✼ ❋ ❃ ✷ ✾ ❑ ✶ ✷ ✸ ❜ ❝❜ ✷ ❃ ✾ ✿ ❀❍ ❵ ✺ ✿ ✷ ❜ ❝● ✼ ❋ ❃ ✷ ✾ ❑ ✶ ✷ ✸ ❜ ❝❜ ✷ ❃ ✾ ✿ ❀❍ ❜ ❝ ✿ ✷ ❵ ✺● ✼ ❋ ❃ ✷ ✾ ❑ ✶ ✷ ✸ ❜ ❝✺ ✽ ✐ ✼ ❁ ❁ ✼ ❁❜ ✷ ❃ ✾ ✿ ❀

❛ ✼ ❀ ❅ ▲❍ ▲ ▼ ◆ ❖✺ ✻ ✼ ✽ ✼ ✾ ✿ ❀ ❑ ❖ ❞ ❤ ❖ ▼ ✸ ▼ ❖ ▼ ✸ ▼ ❡ ❚ ❚ ❥ ❚ ❚ ▲ ❦ ▼ ◗ ❧ P ❘ ▼ ❚ ❘ ▼ ❧ ❘ ❖❘ P ❥ ❘ P ❖ ❦ ◆ ◆ P ◆ ❦ ▼ ▲ ❘ ▲ ❦ ◆ ▼ ▼ ▲ ❧ ◆ ❧♠ ♥ ♠ ♦ ♠ ♥ ♠ ♣ q r s ♣ ♠ ♠ ♠ r t ♥ ✉ ♥ r ♥ ✉ ✉ ✈ ✇ ✉ ① ♥P ❞ ❤ ❖ ◆ ✸ P ❖ ◆ ✸ P ❡ ❚ P ❥ ❚ P ▲ ❦ ◆ ◆ P ❘ ❧ ❘ ❚ ◗ ❖ ❧ ❘ ❖❘ ❧ ❥ ❘ ❧ ❖ ❦ ❙ ❘ ▲ ◆ ❦ P P ◆ ▲ ❦ ◆ ◗ ▼ ▲ ❧ ◆ ❧▲ ❙ ▲ ❥ ▲ ❙ ▲ ◆ ❧ ❦ ◆ ❖ ▲ ▲ P ❦ ▼ ◗ ▼ ❙ ❦ ▼ ❖ ▼ ❖ ◗ ▼ ❚ ❘❘ ❞ ❤ ❖ P ✸ ▼ ❖ P ✸ ▼ ❡ ❚ ❙ ❥ ❚ ❙ ▲ ❦ ❚ ❘ ❧ ◗ ❖ ▼ ❖ ▼ ◗ ❧ ❘ ❖❙ ❚ ❥ ❙ ❚ P ❦ ❚ ◆ ❧ ❚ ❦ ▲ ◆ ▼ ▲ ❦ ❚ ❘ ▼ ▲ ❧ ◆ ❧▲ ◗ ▲ ❥ ▲ ◗ ▲ ❚ ◆ ❦ ❙ ❘ ▲ ▲ ◗ ❦ ❘ ▼ ▼ ❙ ❦ ❖ ◗ ▼ ❖ ◗ ▼ ❚ ❘
❛ ✼ ❀ ❅ ◆❍ ▲ ◆ ▼ ▼✺ ✻ ✼ ✽ ✼ ✾ ✿ ❀ ❑

♣ s ♦ ♣ s ✇ ✈ ♠ ✈ ✇ ✉ ① ♠ ♣ ✇ ✉ ✈❖ ❞ ❤ ❚ P ✸ ▼ ❚ P ✸ ▼ ❡ P ❙ ❥ P ❙ ❚ ❦ ◆ ❖ ❧ ▲ ❦ ❙ ◆ ◗ ▲ ❦ ▼ ❖ ▼ ▲ ❘ ▼ ❧▲ ❖ ▲ ❥ ▲ ❖ ▲ ▲ ❧ ❦ ◗ ◗ ▲ ▲ ▼ ❦ ▼ ◗ ▼ P ❦ ❙ ◆ ▼ ❖ ▼ ▼ ❚ ❘❚ ▲ ❥ ❚ ▲ ❧ ❘ ▲ ❘ ▼ ▼ ❚ ❚ ❘ ◗ ▼ ❖P ❞ ❤ ❚ ❙ ✸ P ❚ ❙ ✸ P ❡ ❘ ▲ ❥ ❘ ▲ ❚ ❦ ❙ ◆ ▲ ◆ ❦ ◆ ▼ ▼ ▲ ❦ ▲ ◆ ▼ ▲ ❘ ▼ ❧▲ P ▲ ❥ ▲ P ▲ ◆ ◆ ❦ ◗ ▼ ▲ ▲ ❚ ❦ ▼ ▼ ▼ ❘ ❦ ▲ ❘ ▼ ❖ ▼ ▼ ❚ ❘❚ ❚ ❥ ❚ ❚ ▲ ❦ ▼ ◗ ❧ ❙ ◆ ◗ ❚ ❘ ▼ ◗ ▼ ❖♥ ② ③ ✈ ✉ ④ ✉ ✈ ✉ ④ ✉ ⑤ ♥ q ♦ ♥ q ✈ r ♣ ♣ q ♣ r t ✉ ✈ ♠ r ♣ ✉ ✉ ♠ ♥ ✉ s▲ ❘ ▲ ❥ ▲ ❘ ▲ ◆ P ❦ ❧ ◆ ▲ ▲ ❘ ❦ ▲ ◆ ▼ ❘ ❦ ❘ ▼ ▼ ❖ ▼ ▼ ❚ ❘
❛ ✼ ❀ ❅ ❚❍ ▲ ❚ ❖ ❖✺ ✻ ✼ ✽ ✼ ✾ ✿ ❀ ❑ ❖ ◆ P ❥ ◆ P ❘ ◆ P ❖ ▼ ▼ ◆ ❘ ❖ ❘ ❖ ❖❞ ❤ ❚ ▼ ✸ ▼ ❚ ▼ ✸ ▼ ❡ ❖ ❧ ❥ ❖ ❧ ◆ ❦ ❖ ▼ ▲ ▲ ❦ ❖ ❖ ▼ ◗ ◗ ▼ ▲ ◆ ◗ ❧▲ ◆ ▲ ❥ ▲ ◆ ▲ ▲ ❖ ❦ ❘ ❖ ▲ ◗ ❦ ❖ ▼ ▼ ❖ ❦ ◗ ❖ ▼ ❚ ◆ ▼ ❚ ❘P ◆ ❙ ❥ ◆ ❙ ❙ ◆ ❧ P ▼ ❖ ◆ ◗ ◗ ❘ ❖ ❖❞ ❤ ❚ ◆ ✸ P ❚ ◆ ✸ P ❡ P ❚ ❥ P ❚ ◆ ❦ ◗ ▼ ❧ ▲ ❦ ◗ ❖ ◗ ❧ ❘ ▼ ▲ ◆ ◗ ❧♠ ① ♠ ♦ ♠ ① ♠ ♠ t r ♠ ♥ ♠ ♠ ✉ r s ♣ ✉ q r ♣ ✇ ✉ ① ♣ ✉ ① ♥❘ ◆ ❧ ❥ ◆ ❧ ◗ ❖ ▲ ❘ ▲ ❘ ❚ ▲ ◆ ❘ ❖ ❖❞ ❤ ❚ P ✸ ▼ ❚ P ✸ ▼ ❡ P ❙ ❥ P ❙ ❚ ❦ ◆ ❖ ❧ ◆ ❦ ◆ ◗ ◗ ▲ ❦ ▼ ❖ ▼ ▲ ◆ ◗ ❧▲ ❖ ▲ ❥ ▲ ❖ ▲ ▲ ❧ ❦ ◗ ◗ ▲ ▲ ❚ ❦ ❘ ❖ ▼ P ❦ ❙ ◆ ▼ ❚ ◆ ▼ ❚ ❘
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ratio 1/3. As it was explained in Section 5.2.1, we solve a FE static problem and then call LAMMPS

to solve the PD problem using DRM. Based on the results from Chapter 4, after each solution of

the FE static problem, we call LAMMPS to solve the PD problem and use 100 dynamic relaxation

steps before apply the updated coordinates of the PD points to the FE nodes. In the following, we

solve the FE static problem 100 times which results in 10,000 dynamic relaxation steps.

5.3.2 Results

In Figure 5.5 we show the displacement profile for the case with FE mesh 2 (1200 elements),

with overlapping region of 5 layers and PD grid 61x61 for different iteration steps. This case results

in 9 embedded PD points in each element (see Table 5.2). The displacement profiles are linear as

expected (we observed a similar behavior for all 27 cases and based on that the other displacement

profiles are not show). In the overlapping region the displacement from FE and PD matches well,

in other words, there is no discontinuity in the displacement field between the domains.

No convergence criterion was implemented for this example. As it was said before, we ran

100 FE steps and for each step we let the PD solver to iterate 100 times. For each PD step we

computed the Euclidean norm of the displacement vector. In Figure 5.6 we show the difference in

the norms between two consecutive time steps.

From Figure 5.6 the worst case is the one having the smallest overlapping region with the

lowest number of finite elements. On the other hand, the convergence gets better as the FE mesh as

well as the size of the overlapping region increase. We can also notice that the convergence ratio

is influenced by two different situations: the size of the overlapping region and the number of PD

points in the finite element.
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⑥ ⑦ ⑧ ⑨ ⑩ ❶ ❷ ❸ ❹ ❸ ❺ ❻ ❼ ❽ ❾ ❿ ❹ ❹ ➀
➁➁ ➂ ➃➄➄ ➂ ➃➅➅ ➂ ➃➆➇ ➄ ➁ ➈ ➉

(a) FE step 1

⑥ ⑦ ⑧ ⑨ ⑩ ❶ ❷ ❸ ❹ ❸ ❺ ❻ ❼ ➊ ❾ ❿ ❹ ❹ ➀
➋ ➄ ➂ ➌➋ ➄ ➂ ➍➋ ➄ ➂ ➅➋ ➄➋ ➁ ➂ ➎➋ ➁ ➂ ➌➋ ➁ ➂ ➍➋ ➁ ➂ ➅➁➇ ➄ ➁ ➈ ➉

(b) FE step 1⑥ ⑦ ⑧ ⑨ ⑩ ❶ ❷ ❸ ❹ ❸ ❺ ❻ ❼ ❽ ❾ ❿ ❹ ❹ ➀
➁➁ ➂ ➃➄➄ ➂ ➃➅➅ ➂ ➃➆➇ ➄ ➁ ➈ ➉

(c) FE step 15

⑥ ⑦ ⑧ ⑨ ⑩ ❶ ❷ ❸ ❹ ❸ ❺ ❻ ❼ ➊ ❾ ❿ ❹ ❹ ➀
➋ ➄ ➂ ➌➋ ➄ ➂ ➍➋ ➄ ➂ ➅➋ ➄➋ ➁ ➂ ➎➋ ➁ ➂ ➌➋ ➁ ➂ ➍➋ ➁ ➂ ➅➁➇ ➄ ➁ ➈ ➉

(d) FE step 15⑥ ⑦ ⑧ ⑨ ⑩ ❶ ❷ ❸ ❹ ❸ ❺ ❻ ❼ ❽ ❾ ❿ ❹ ❹ ➀
➁➁ ➂ ➃➄➄ ➂ ➃➅➅ ➂ ➃➆➇ ➄ ➁ ➈ ➉

(e) FE step 35

⑥ ⑦ ⑧ ⑨ ⑩ ❶ ❷ ❸ ❹ ❸ ❺ ❻ ❼ ➊ ❾ ❿ ❹ ❹ ➀
➋ ➄ ➂ ➌➋ ➄ ➂ ➍➋ ➄ ➂ ➅➋ ➄➋ ➁ ➂ ➎➋ ➁ ➂ ➌➋ ➁ ➂ ➍➋ ➁ ➂ ➅➁➇ ➄ ➁ ➈ ➉

(f) FE step 35⑥ ⑦ ⑧ ⑨ ⑩ ❶ ❷ ❸ ❹ ❸ ❺ ❻ ❼ ❽ ❾ ❿ ❹ ❹ ➀
➁➁ ➂ ➃➄➄ ➂ ➃➅➅ ➂ ➃➆➇ ➄ ➁ ➈ ➉

(g) FE step 75

⑥ ⑦ ⑧ ⑨ ⑩ ❶ ❷ ❸ ❹ ❸ ❺ ❻ ❼ ➊ ❾ ❿ ❹ ❹ ➀
➋ ➄ ➂ ➌➋ ➄ ➂ ➍➋ ➄ ➂ ➅➋ ➄➋ ➁ ➂ ➎➋ ➁ ➂ ➌➋ ➁ ➂ ➍➋ ➁ ➂ ➅➁➇ ➄ ➁ ➈ ➉

(h) FE step 75

Figura 5.5: Displacement distribution for the case of the plate under uniaxial tension using FE Mesh 2 (1200
elements) with a overlapping region of 5 layers using PD grid (61 x 61); see Table 5.2.
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➏ ➐ ➑ ➏ ➏ ➏ ➒ ➏ ➑ ➏ ➏ ➏➒ ➏ ➓ ➔ →➒ ➏ ➓ ➣➒ ➏ ➓ ↔➒ ➏ ➓ ↕
➙ ➛ ➜ ➝ ➞ ➟ ➠ ➡ ➢ ➤ ➞ ➟ ➥ ➤ ➢ ➠ ➦ ➧➨➩➫➭➯ ➲ ➳➵➸➺ ➻➨➩➫➭➯ ➲ ➳➺ ➼ ➽ ➾ ➚ ➪ ➶ ➶ ➪ ➶ ➹ ➘ ➴ ➷ ➬ ➮➱ ➽ ➾ ➚ ➪ ➶ ➶ ➪ ➶ ➹ ➘ ➴ ➷ ➬ ➮✃ ❐ ➽ ➾ ➚ ➪ ➶ ➶ ➪ ➶ ➹ ➘ ➴ ➷ ➬ ➮

(a) Mesh 1: 4 FE layers.

➏ ➐ ➑ ➏ ➏ ➏ ➒ ➏ ➑ ➏ ➏ ➏➒ ➏ ➓ ➔ →➒ ➏ ➓ ➣➒ ➏ ➓ ↔➒ ➏ ➓ ↕
➙ ➛ ➜ ➝ ➞ ➟ ➠ ➡ ➢ ➤ ➞ ➟ ➥ ➤ ➢ ➠ ➦ ➧➨➩➫➭➯ ➲ ➳➵➸➺ ➻➨➩➫➭➯ ➲ ➳➺ ➼ ➽ ➾ ➚ ➪ ➶ ➶ ➪ ➶ ➹ ➘ ➴ ➷ ➬ ➮➱ ➽ ➾ ➚ ➪ ➶ ➶ ➪ ➶ ➹ ➘ ➴ ➷ ➬ ➮✃ ❐ ➽ ➾ ➚ ➪ ➶ ➶ ➪ ➶ ➹ ➘ ➴ ➷ ➬ ➮

(b) Mesh 1: 5 FE layers.

➏ ➐ ➑ ➏ ➏ ➏ ➒ ➏ ➑ ➏ ➏ ➏➒ ➏ ➓ ➔ →➒ ➏ ➓ ➣➒ ➏ ➓ ↔➒ ➏ ➓ ↕
➙ ➛ ➜ ➝ ➞ ➟ ➠ ➡ ➢ ➤ ➞ ➟ ➥ ➤ ➢ ➠ ➦ ➧➨➩➫➭➯ ➲ ➳➵➸➺ ➻➨➩➫➭➯ ➲ ➳➺ ➼ ➽ ➾ ➚ ➪ ➶ ➶ ➪ ➶ ➹ ➘ ➴ ➷ ➬ ➮➱ ➽ ➾ ➚ ➪ ➶ ➶ ➪ ➶ ➹ ➘ ➴ ➷ ➬ ➮✃ ❐ ➽ ➾ ➚ ➪ ➶ ➶ ➪ ➶ ➹ ➘ ➴ ➷ ➬ ➮

(c) Mesh 1: 6 FE layers.

➏ ➐ ➑ ➏ ➏ ➏ ➒ ➏ ➑ ➏ ➏ ➏➒ ➏ ➓ ➔ →➒ ➏ ➓ ➣➒ ➏ ➓ ↔➒ ➏ ➓ ↕
➙ ➛ ➜ ➝ ➞ ➟ ➠ ➡ ➢ ➤ ➞ ➟ ➥ ➤ ➢ ➠ ➦ ➧➨➩➫➭➯ ➲ ➳➵➸➺ ➻➨➩➫➭➯ ➲ ➳➺ ➼ ➽ ➾ ➚ ➪ ➶ ➶ ➪ ➶ ➹ ➘ ➴ ➷ ➬ ➮➱ ➽ ➾ ➚ ➪ ➶ ➶ ➪ ➶ ➹ ➘ ➴ ➷ ➬ ➮✃ ❐ ➽ ➾ ➚ ➪ ➶ ➶ ➪ ➶ ➹ ➘ ➴ ➷ ➬ ➮

(d) Mesh 2: 4 FE layers.

➏ ➐ ➑ ➏ ➏ ➏ ➒ ➏ ➑ ➏ ➏ ➏➒ ➏ ➓ ➔ →➒ ➏ ➓ ➣➒ ➏ ➓ ↔➒ ➏ ➓ ↕
➙ ➛ ➜ ➝ ➞ ➟ ➠ ➡ ➢ ➤ ➞ ➟ ➥ ➤ ➢ ➠ ➦ ➧➨➩➫➭➯ ➲ ➳➵➸➺ ➻➨➩➫➭➯ ➲ ➳➺ ➼ ➽ ➾ ➚ ➪ ➶ ➶ ➪ ➶ ➹ ➘ ➴ ➷ ➬ ➮➱ ➽ ➾ ➚ ➪ ➶ ➶ ➪ ➶ ➹ ➘ ➴ ➷ ➬ ➮✃ ❐ ➽ ➾ ➚ ➪ ➶ ➶ ➪ ➶ ➹ ➘ ➴ ➷ ➬ ➮

(e) Mesh 2: 5 FE layers.

➏ ➐ ➑ ➏ ➏ ➏ ➒ ➏ ➑ ➏ ➏ ➏➒ ➏ ➓ ➔ →➒ ➏ ➓ ➣➒ ➏ ➓ ↔➒ ➏ ➓ ↕
➙ ➛ ➜ ➝ ➞ ➟ ➠ ➡ ➢ ➤ ➞ ➟ ➥ ➤ ➢ ➠ ➦ ➧➨➩➫➭➯ ➲ ➳➵➸➺ ➻➨➩➫➭➯ ➲ ➳➺ ➼ ➽ ➾ ➚ ➪ ➶ ➶ ➪ ➶ ➹ ➘ ➴ ➷ ➬ ➮➱ ➽ ➾ ➚ ➪ ➶ ➶ ➪ ➶ ➹ ➘ ➴ ➷ ➬ ➮✃ ❐ ➽ ➾ ➚ ➪ ➶ ➶ ➪ ➶ ➹ ➘ ➴ ➷ ➬ ➮

(f) Mesh 2: 6 FE layers.

➏ ➐ ➑ ➏ ➏ ➏ ➒ ➏ ➑ ➏ ➏ ➏➒ ➏ ➓ ➔ →➒ ➏ ➓ ➣➒ ➏ ➓ ↔➒ ➏ ➓ ↕
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(g) Mesh 3: 4 FE layers.

➏ ➐ ➑ ➏ ➏ ➏ ➒ ➏ ➑ ➏ ➏ ➏➒ ➏ ➓ ➔ →➒ ➏ ➓ ➣➒ ➏ ➓ ↔➒ ➏ ➓ ↕
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(h) Mesh 3: 5 FE layers.
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(i) Mesh 3: 6 FE layers.

Figura 5.6: Difference in the Euclidean norm between two consecutive steps for the PD domain in the
PD/FE solution of the plate under uniaxial tension.
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5.4 Test problem 2 - Brittle fracture in a plate loaded in tension

Consider the plate with hole shown in Figure 5.7 loaded in tension by a traction σ whithout

any displacement constraints. We define a PD region in the center of the domain and a FE mesh

surrounding it. In the overlapping zone, both PD and classical elasticity equations are solved. In

order to circumvent premature failure due to high local displacement gradients, damage is allowed

only in the PD region of size 25mmx25mm delimited by the dashed line. We use the FE Mesh 1

(1024 elements) with five layers of overlapping (Figure 5.3(b)). The PD grids were chosen such

that 9 and 36 points were embedded in the elements; see Table 5.2 for more details.

❒ ❮ ❮ ❰ ❰
ÏÐÐÑÑÒ Ó Ô Ô Õ

Ö× ØÙ Ú Û Ü Ý Þ ß ß à á â ã ä å æ ç è éê ë
ì í î ï ð ñ ò ó í ô í õ ö ÷ ö î í ï ø ö ù ù ð ò í õ

Figura 5.7: Plate with hole under uniaxial tension used in the coupled FE/PD simulation with damage. It is
shown the details of the FE, PD and the region of overlapping between the two regions. Damage is allowed
in the PD region delimited by the dashed line.

In Chapter 4, the validity of the PD predictions for a plate with hole were established in the

absence of failure and the steady-state displacements were compared against the FE solutions. In

this section, the plate with hole is investigated for failure prediction. Most experiments involving

failure are performed under quasi-static conditions (KILIC, 2008). The loading rate might signi-

ficantly affect the failure patterns since the dynamic problems locally reach higher displacement

gradients than under quasi-static conditions because of the traveling elastic waves.
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As it is shown in (SILLING AND ASKARI, 2005), the critical stretch for bond failure, s0, can

be related to the energy release rate G0 and is given by

s0 =

√

10G0

πc2,δδ5
, (5.5)

where δ is the horizon and the constant c2,δ is defined in Equation (3.10) by c2,δ =
72K
5πδ3

. The energy

release rate is the work required to completely separate the two halves of a body across the fracture

surface. For this, it is necessary breaking all the bonds that are initially connected in the opposite

halves. The parameters used in the simulation were: elastic modulus = 72.0 GPa, Poisson’s ratio =

1/3 and G0 = 135.0 J/m2.

Figures 5.8 and 5.9 show the displacement profiles and the resulting damage pattern for the

two simulations performed in this section. As expected, the cracks initiate at the hole near high

deformation areas. The cracks then propagate towards the edges of the plate as shown in Figures

5.8(g) to 5.8(i) and 5.9(g) to 5.9(i).

We note that the damage patterns for the two tested cases in this section are slightly different.

While for the case with 9 embedded PD points we observe a straight line from the hole towards the

edge of the domain, for the case with 36 embedded points there are two parallel lines towards the

edge. A reason for this result is possibility the difference in the geometry representation of the two

PD grids. Figure 5.10 shows a zoom in the region of the hole for the two grids. For some reason, the

small difference in the geometry of the hole resulting from the two grids might make the damage

patterns a bit different.

5.5 Remarks

In this chapter, we presented the methodology used for coupling the PD theory and continuum

mechanics. The MD program LAMMPS from Sandia National Laboratories was used for solving

76



ú û ü ý þ ÿ � ✁ ✂ ✁ ✄ ☎ ✆ ✝ ✞ ✟ ✂ ✂ ✠
✡ ☛☞☛✌ ✍ ☞ ✎ ✏

(a) FE step 16.

ú û ü ý þ ÿ � ✁ ✂ ✁ ✄ ☎ ✆ ✝ ✞ ✟ ✂ ✂ ✠
✡ ☛☞☛✌ ✍ ☞ ✎ ✏

(b) FE step 17.

ú û ü ý þ ÿ � ✁ ✂ ✁ ✄ ☎ ✆ ✝ ✞ ✟ ✂ ✂ ✠
✡ ☛☞☛✌ ✍ ☞ ✎ ✏

(c) FE step 24.ú û ü ý þ ÿ � ✁ ✂ ✁ ✄ ☎ ✆ ✑ ✞ ✟ ✂ ✂ ✠
✡ ✒✡ ✍ ✓ ☛✡ ✍✡ ☞ ✓ ☛☞☞ ✓ ☛✍✍ ✓ ☛✒✌ ✍ ☞ ✎ ✏

(d) FE step 16.

ú û ü ý þ ÿ � ✁ ✂ ✁ ✄ ☎ ✆ ✑ ✞ ✟ ✂ ✂ ✠
✡ ✒✡ ✍ ✓ ☛✡ ✍✡ ☞ ✓ ☛☞☞ ✓ ☛✍✍ ✓ ☛✒✌ ✍ ☞ ✎ ✏

(e) FE step 17.

ú û ü ý þ ÿ � ✁ ✂ ✁ ✄ ☎ ✆ ✑ ✞ ✟ ✂ ✂ ✠
✡ ✒✡ ✍ ✓ ☛✡ ✍✡ ☞ ✓ ☛☞☞ ✓ ☛✍✍ ✓ ☛✒✌ ✍ ☞ ✎ ✏

(f) FE step 24.✔ ✕ ✖ ✕ ✗ ✘
✙✙ ✚ ✛✙ ✚ ✜✙ ✚ ✢✙ ✚ ✣✙ ✚ ✤✙ ✚ ✥✙ ✚ ✦✙ ✚ ✧

(g) FE step 16.

✔ ✕ ✖ ✕ ✗ ✘
✙✙ ✚ ✛✙ ✚ ✜✙ ✚ ✢✙ ✚ ✣✙ ✚ ✤✙ ✚ ✥✙ ✚ ✦✙ ✚ ✧

(h) FE step 17.

✔ ✕ ✖ ✕ ✗ ✘
✙✙ ✚ ✛✙ ✚ ✜✙ ✚ ✢✙ ✚ ✣✙ ✚ ✤✙ ✚ ✥✙ ✚ ✦✙ ✚ ✧

(i) FE step 24.

Figura 5.8: Results for the plate with hole with damage allowed in the PD region. FE Mesh 1 (1024 ele-
ments) with a overlapping region of 5 layers was used. The PD discretization results in 9 points embedded
in the FE elements of the overlapping region. In (a) to (f) are shown the displacements in x- and y-direction.
The damage maps are shown in (g) to (i).
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ú û ü ý þ ÿ � ✁ ✂ ✁ ✄ ☎ ✆ ✝ ✞ ✟ ✂ ✂ ✠
✡ ☛☞☛✌ ✍ ☞ ✎ ✏

(a) FE step 38.

ú û ü ý þ ÿ � ✁ ✂ ✁ ✄ ☎ ✆ ✝ ✞ ✟ ✂ ✂ ✠
✡ ☛☞☛✌ ✍ ☞ ✎ ✏

(b) FE step 39.

ú û ü ý þ ÿ � ✁ ✂ ✁ ✄ ☎ ✆ ✝ ✞ ✟ ✂ ✂ ✠
✡ ☛☞☛✌ ✍ ☞ ✎ ✏

(c) FE step 41.ú û ü ý þ ÿ � ✁ ✂ ✁ ✄ ☎ ✆ ✑ ✞ ✟ ✂ ✂ ✠
✡ ✒✡ ✍ ✓ ☛✡ ✍✡ ☞ ✓ ☛☞☞ ✓ ☛✍✍ ✓ ☛✒✌ ✍ ☞ ✎ ✏

(d) FE step 38.

ú û ü ý þ ÿ � ✁ ✂ ✁ ✄ ☎ ✆ ✑ ✞ ✟ ✂ ✂ ✠
✡ ✒✡ ✍ ✓ ☛✡ ✍✡ ☞ ✓ ☛☞☞ ✓ ☛✍✍ ✓ ☛✒✌ ✍ ☞ ✎ ✏

(e) FE step 39.

ú û ü ý þ ÿ � ✁ ✂ ✁ ✄ ☎ ✆ ✑ ✞ ✟ ✂ ✂ ✠
✡ ✒✡ ✍ ✓ ☛✡ ✍✡ ☞ ✓ ☛☞☞ ✓ ☛✍✍ ✓ ☛✒✌ ✍ ☞ ✎ ✏

(f) FE step 41.✔ ✕ ✖ ✕ ✗ ✘
✙✙ ✚ ✛✙ ✚ ✜✙ ✚ ✢✙ ✚ ✣✙ ✚ ✤✙ ✚ ✥✙ ✚ ✦✙ ✚ ✧

(g) FE step 38.

✔ ✕ ✖ ✕ ✗ ✘
✙✙ ✚ ✛✙ ✚ ✜✙ ✚ ✢✙ ✚ ✣✙ ✚ ✤✙ ✚ ✥✙ ✚ ✦✙ ✚ ✧

(h) FE step 39.

✔ ✕ ✖ ✕ ✗ ✘
✙✙ ✚ ✛✙ ✚ ✜✙ ✚ ✢✙ ✚ ✣✙ ✚ ✤✙ ✚ ✥✙ ✚ ✦✙ ✚ ✧

(i) FE step 41.

Figura 5.9: Results for the plate with hole with damage allowed in the PD region. FE Mesh 1 (1024 ele-
ments) with a overlapping region of 5 layers was used. The PD discretization results in 36 points embedded
in the FE elements of the overlapping region. In (a) to (f) are shown the displacements in x- and y-direction.
The damage maps are shown in (g) to (i).
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★ ✩ ✪ ✩ ✫ ✬
✭✭ ✮ ✯✭ ✮ ✰✭ ✮ ✱✭ ✮ ✲✭ ✮ ✳✭ ✮ ✴✭ ✮ ✵✭ ✮ ✶

(a) 9 embedded PD points.

★ ✩ ✪ ✩ ✫ ✬
✭✭ ✮ ✯✭ ✮ ✰✭ ✮ ✱✭ ✮ ✲✭ ✮ ✳✭ ✮ ✴✭ ✮ ✵✭ ✮ ✶

(b) 36 embedded PD points.

Figura 5.10: Zoom in the region surrounding the hole.

the discretized PD domain and a generic FE code for the continuum part. A wrapper program that

links both programs was developed. A plate was used to test the implementation and brittle fracture

was predicted using a plate with hole was used.

Different FE meshes and PD grids were used resulting in schemes with 4, 9 and 36 PD

embedded points in each element of the overlapping region. We observed that the convergence gets

better as the FE mesh as well as the size of the overlapping region increase. We also noted that the

number of PD points embedded in the finite element also plays a role in the convergence process.

However, this is possibly an effect of grid refinement which increases the number of iterations to

reach convergence, and not the fact of having more nodes inside the element.

Finally, a plate with hole was used for failure prediction using the coupled approach PD/FE.

As expected, the cracks initiate near the hole in the high deformation areas.
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6 FINAL REMARKS AND FUTURE WORK

We presented a study of some aspects of the discretized peridynamic theory focusing on

the details that we consider important for multiscale simulation of engineering problems using

peridynamics and finite elements.

First the peridynamic theory in one dimension was studied in details focusing on the applica-

tion of Dirichlet boundary conditions. Then, two-dimensional plane stress problems in plates with

and without hole were considered. We proposed a methodology to post-processing the peridynamic

results in order to estimate stresses in the material. Moreover, the dynamic relaxation method with

kinetic damping was used to obtain the steady-state solutions of the peridynamic equations. The

simulations indicated good agreement between the peridynamic and finite element static solutions.

Although the peridynamic theory is effective for damage prediction, it is computationally

more expensive to solve the discretized peridynamic equations than the finite element ones. Hence,

we coupled these methods aiming to using peridynamics where damage is expected and the classi-

cal continuum mechanics in the remaining areas. We developed a wrapper program to couple the

molecular dynamics program LAMMPS to a finite element library. We used the expression in terms

of the critical energy release rate, derived in (SILLING AND ASKARI, 2005), for determining the

critical bond stretch. Thus, the coupled scheme peridynamics/finite element was used to predict da-

mage in a plate with hole under tension load. The pattern of the cracking agreed with the expected

results.

Peridynamics is a very active research area which still requires more development. One of

the limitations is the number of materials models available. However, different models have re-

cently been proposed in the literature such as a new constitutive model for a linearly elastic mate-

rial (AGUIAR AND FOSDICK, 2013) and a also viscoelastic models (WECKNER et al., 2013). The

coupling of the theory to other traditional numerical methods has also been theme of recent publi-
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cations (WILDMAN AND GAZONAS, 2013a; WILDMAN AND GAZONAS, 2013b). Sandia National

Laboratories developed, and released in the end of last year, a new peridynamic software capable of

using finite element meshes for generating peridynamic models (PARKS et al., 2012). Our research

group at Unicamp has interest in different aspects of the theory including:

• Development of new peridynamic material models especially hyperelastic materials capable

to reproduce the mechanical behavior of traditional models of classical continuum mecha-

nics;

• Application of different techniques to the coupling of the peridynamics to traditional nume-

rical methods such as the finite element methods;

• High performance computing applied to peridynamics and finite elements;

• Application of the peridynamics to the study of cracking in brittle and ductile materials as

well as tearing of hyperelastic materials.

Finally, peridynamics is a promising theory that is formulated using integral equations and

the derivatives of the displacements do not appear in the formulation. Hence, the peridynamic

equations are valid even in regions of displacement discontinuities. In contrast to material response

in the classical continuum mechanics, the response function may also includes material failure.

Thus, the cracks can initiate and propagate at multiple regions with arbitrary paths. However, the

theory is recent and requires more development.
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A APPENDIX A. LAMMPS INPUT FILES
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➠ ➡➠ ➢➠ ➤➠ ➥➠ ➦➧ ➨➠ ➠➠ ➩➠ ➫➠ ➭➩ ➡➩ ➢➩ ➤➩ ➥➩ ➦➩ ➯➲ ➧➩ ➩➩ ➫➩ ➭➫ ➡➫ ➢➫ ➤➫ ➥➫ ➦

➳ ➵ ➸ ➺ ➻ ➼ ➽ ➾ ➚ ➪ ➪ ➶ ➼ ➪ ➽ ➹ ➵ ➘ ➴ ➹ ➷ ➬ ➼ ➪ ➽ ➹ ➵ ➮➱ ✃ ❐ ❒ ❮ ❰ ❐ Ï Ð Ñ ❮ ❰ ✃ ❐ Ò Ó Ô ➚ Õ ➵ ➸ Ö ➵ × ➵ Ø ➸ ➸ Ù ➼ ➪ Ú × ➵ ➳ ➼ Û Û Û ➼ ➻ ➸ Ö ➵ Ü ➚ ➳ ➵ Ù Ú ➸ Ö ➼ ➽ ➸ ➸ Ö ➵ Ö ➼ ➪ ➵ Ý➻ ➵ ➺ Ú ➼ × Ü ➷ ➪ Þ ß Ú × Ü ➷ ➪ Ú × Þ ➵ ➻ à ➡ ➡ ➡ á ➡ ➭ ➫ ➡ ➡ ➽ × Ú ➸ ➳ â ➼ ØÞ ➵ ➪ ➵ ➸ ➵ ß ➚ ➸ ➼ ➹ ➳ ➻ ➵ ➺ Ú ➼ × Ü ➷ ➪ Þ ß Ú × Ü ➼ ➹ ➾ ➻ ➵ ➳ ➳ × ➼➱ Ô ❮ ã ❐ ❮ ❰ Ô ❐ ä Ò å Ô ❮ æ ❰ç è é ê ë ì í î ï ï ë ì í ð ñ ò➶ ➚ ➻ Ú ➚ â ➪ ➵ ➹ ➷ ➳ ➸ ➵ ➾ Ú × Þ ➵ Ø ➢ á ➡➸ Ú ➹ ➵ ➳ ➸ ➵ ➾ ➘ ➴ ➹ ➷ ➳ ➸ ➵ ➾ ➮➱ ✃ ❐ ❒ ❮ ❰ ❐ Ï æ ã ó ô Ô ❐ õÜ ➼ ➹ ➾ ➽ ➸ ➵ Ï ➤ ➚ ➪ ➪ Þ Ú ➳ ➾ ➪ ➚ Ü ➵ ö ➚ ➸ ➼ ➹ ➱ Ï ➼ ➹ ➾ ➽ ➸ ➵ Þ Ú ➳ ➾ ➪ ➚ Ü ➵ ➹ ➵ × ➸ Û ➼ ➻ ➵ ➚ Ü Ö ➾ ➚ ➻ ➸ Ú Ü ➪ ➵➱ Ò ❐ õ ô Ñ Ô õ➸ Ö ➵ ➻ ➹ ➼ ➢ ➡Þ ➽ ➹ ➾ ➢ ➚ ➪ ➪ Ü ➽ ➳ ➸ ➼ ➹ ➢ ➡ Þ ➽ ➹ ➾ ß Û Ú ➪ ➵ Ú Þ ➸ ➷ ➾ ➵ Ø ➷ à Ü ß Ï ➤ ÷ ➢ ø Ü ß Ï ➤ ÷ ➤ ø➻ ➽ × ➢➱ ó Ò ❐ õ Ï Ò ❮ ù ❐ ✃ ✃ ❮ õ ó Ñ å Ï ❐ ã ❐ ❰ Ô õ➶ ➚ ➻ Ú ➚ â ➪ ➵ ✃ Ú ➳ ➾ ã Ú × ➵ ú ➽ ➚ ➪ Ó û ➘ ➴ ü ➢ ➮ ý ➡ á ➡ ➡ ➡ ➢ ➡ ➡ Ýì î ò è î þ ï í ÿ è � ✁ ✂ î é í ✄ ☎ î ï ✆ ✝ ✞ ✟ ✠ ✡ ☛ ☞ ✌ ☞ ☞ ☞ ✍ ☞ ☞ ✎Þ Ú ➳ ➾ ➪ ➚ Ü ➵ ß ➚ ➸ ➼ ➹ ➳ ä ➻ ù Ï Ò ➻ ➚ ➹ ➾ Ø ➘ ➴ ✃ Ú ➳ ➾ ã Ú × ➮ ➘ ➴ ✃ Ú ➳ ➾ ã ➚ Ø ➮ Ø û ➘ ➴ ü ➢ ➮ ➘ ➴ ü ➤ ➮ ➽ × Ú ➸ ➳ â ➼ ØÞ Ú ➳ ➾ ➪ ➚ Ü ➵ ß ➚ ➸ ➼ ➹ ➳ ä ➻ ù Ï Ñ ➻ ➚ ➹ ➾ Ø ➘ ➴ ✃ Ú ➳ ➾ ã Ú × ➮ ➘ ➴ ✃ Ú ➳ ➾ ã ➚ Ø ➮ Ø û ➘ ➴ ü ➢ ➮ ➘ ➴ ü ➤ ➮ ➽ × Ú ➸ ➳ â ➼ ØÞ Ú ➳ ➾ ➪ ➚ Ü ➵ ß ➚ ➸ ➼ ➹ ➳ ➚ ➪ ➪ ➹ ➼ ➶ ➵ ❰ ô Ñ Ñ ❰ ô Ñ Ñ ➡ á ➡ ➽ × Ú ➸ ➳ â ➼ Ø➱ õ ❐ Ô ❒ æ Ò Ï ❐ Ô æ ✏ ❐ Ò æÛ Ú Ø ❒ Ø å ➪ ➪ ➚ ➪ ➪ ➳ ➵ ➸ Û ➼ ➻ Ü ➵ ❰ ô Ñ Ñ ❰ ô Ñ Ñ ➡ á ➡Û Ú Ø ❒ Ø ù Ï ➢ ä ➻ ù Ï Ò ➳ ➵ ➸ Û ➼ ➻ Ü ➵ ➡ á ➡ ❰ ô Ñ Ñ ➡ á ➡Û Ú Ø ❒ Ø ù Ï ➤ ä ➻ ù Ï Ñ ➳ ➵ ➸ Û ➼ ➻ Ü ➵ ➡ á ➡ ❰ ô Ñ Ñ ➡ á ➡➻ ➽ × ➢ ➡ ➡ ➡
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A.2 Plates with prescribed displacements in x and y✑✒✓✔✕ ✖✗✘ ✙✑ ✚✑ ✑✑ ✒✑ ✓✑ ✔✑ ✕✑ ✛✜ ✢✑ ✘✑ ✙✒ ✚✒ ✑✒ ✒✒ ✓✒ ✔✒ ✕✒ ✛✒ ✗✒ ✘✒ ✙✓ ✚✓ ✑✓ ✒✓ ✓✓ ✔✓ ✕✓ ✛✓ ✗✓ ✘✓ ✙✣ ✤✔ ✑✔ ✒✔ ✓✔ ✔✔ ✕✔ ✛✔ ✗✔ ✘✔ ✙✕ ✚✥ ✜✕ ✒✕ ✓✕ ✔✕ ✕✕ ✛✕ ✗✕ ✘✕ ✙

✦ ✦ ✧ ★ ✩ ✪ ✫ ✬ ✭ ✮ ✯ ✰ ✬ ✩ ✯ ✱ ✲ ✳ ✴ ✭ ✩ ✫ ✮ ✲ ✵ ✶ ✲ ✱ ✷ ✮ ★ ✬ ✷ ✸ ✶ ✹ ✮ ✰ ✺ ✹ ✬ ✻ ✮ ✫ ✫ ✬ ✰ ✶ ✲ ✱ ✺ ✮ ✭ ✮ ✯ ✷ ✬ ✯ ✼ ✱ ✯ ✫ ✽✦ ✾ ✿ ✧ ❀ ❁ ❂ ✿ ❃ ✳ ❁ ❄ ✳ ❀ ❁ ✧ ❂ ❀ ❅❆ ✱ ✹ ✬ ✱ ✻ ✲ ✮ ✭ ✽ ✴ ✮ ✯ ✰ ✬ ✷ ✽ ✮ ❇ ❈ ✱ ✲ ❉ ✔ ✔ ✚ ✦ ✴ ✮ ✯ ✰ ✬ ✷ ✽ ✩ ❊ ✷ ✸ ✮ ✾ ✱ ✷ ✮ ✹ ✬ ✱ ✲❆ ✱ ✹ ✬ ✱ ✻ ✲ ✮ ✭ ✽ ❀ ✮ ❇ ❈ ✱ ✲ ✗ ❉ ✮ ✙ ✦ ❀ ✲ ✱ ✰ ✷ ✬ ✺ ✭ ✩ ✫ ❈ ✲ ❈ ✰❆ ✱ ✹ ✬ ✱ ✻ ✲ ✮ ✭ ✽ ✳ ✮ ❇ ❈ ✱ ✲ ❋ ● ❍ ✚ ■ ✓ ❍ ✚ ❏ ✦ ✳ ✩ ✬ ✰ ✰ ✩ ✯ ❑ ✰ ✹ ✱ ✷ ✬ ✩▲ ▼ ◆ ❖ ▼ P ◗ ❘ ❙ ❚ ❯ ❘ ❱ ❲ ▼ ◗ ❳ ❨ ❙ ❚ ❩ ❬ ❭ ❪ ❫ ❴ ❪ ✜ ❵ ❛ ❴ ❳ ❨ ❙ ❚ ❜ ❬ ❝ ❝ ❞ ❡ ❲ ◗ ❢ ❙ ❣ ❤ ❲ ◗ ❲ ✐❆ ✱ ✹ ✬ ✱ ✻ ✲ ✮ ✶ ✬ ✮ ❇ ❈ ✱ ✲ ✓ ❍ ● ✔ ● ✕ ✙ ❉ ✛ ✕ ✓ ✕ ✘ ✙ ✗ ✙ ✓ ❉ ✓ ✘ ✔ ✛ ✦ ✺ ✩ ✯ ✰ ✷ ✱ ✯ ✷ ❥ ✻ ❈ ✷ ✫ ✮ ❊ ✬ ✯ ✮ ✬ ✷ ✱ ✰ ✱ ❆ ✱ ✹ ✬ ✱ ✻ ✲ ✮ ✸ ✮ ✹ ✮✦ ✾ ❀ ❅ ❦ ❋ ❧ ❁ ❂ ✴ ❏❆ ✱ ✹ ✬ ✱ ✻ ✲ ✮ ✯ ✶ ✷ ✰ ✮ ❇ ❈ ✱ ✲ ✕ ✚ ✦ ✳ ✴ ♠ ✩ ❍ ✩ ❊ ✶ ✩ ✬ ✯ ✷ ✰ ✬ ✯ ✮ ✱ ✺ ✸ ✫ ✬ ✹ ✮ ✺ ✷ ✬ ✩ ✯❆ ✱ ✹ ✬ ✱ ✻ ✲ ✮ ✸ ✮ ❇ ❈ ✱ ✲ ❋ ● ❍ ✚ ■ ♥ ♦ ✯ ✶ ✷ ✰ ♣ ❏ ✦ ✳ ✴ q ✹ ✬ ✫ ✰ ✶ ✱ ✺ ✬ ✯ q❆ ✱ ✹ ✬ ✱ ✻ ✲ ✮ ✫ ✮ ✲ ✷ ✱ ✮ ❇ ❈ ✱ ✲ ✓ ❍ ✚ ✕ r ♥ ♦ ✸ ♣ ✦ ✳ ✮ ✹ ✬ ✫ ✽ ✯ ✱ ✭ ✬ ✺ ✸ ✩ ✹ ✬ s ✩ ✯✦ ❃ ✿ ✾ ✾ ✳ ❅ ✳ ✿ ❁ ✿ ✾ ❀ ✧ ❀ ❁ ❅✫ ✬ ✭ ✮ ✯ ✰ ✬ ✩ ✯ ❉ ✫❈ ✯ ✬ ✷ ✰ ✰ ✬✻ ✩ ❈ ✯ ✫ ✱ ✹ ✽ ✰ ✰ ✶✱ ✷ ✩ ✭ t ✰ ✷ ✽ ✲ ✮ ✶ ✮ ✹ ✬▼ ✉ ❣ ❙ ✈ ❙ ❣ ❤ ❖ ✇ ❚ ❙ ▼ ① ▼ ◆ ◆ ▼ ❚❆ ✱ ✹ ✬ ✱ ✻ ✲ ✮ ✭ ✽ ✰ ② ✬ ✯ ✮ ❇ ❈ ✱ ✲ ❉ ❍ ✚ r ♥ ♦ ✸ ♣✯ ✮ ✬ q ✸ ✻ ✩ ✹ ♥ ♦ ✭ ✽ ✰ ② ✬ ✯ ♣ ✻ ✬ ✯✲ ✱ ✷ ✷ ✬ ✺ ✮ ✰ ❇ ♥ ♦ ✸ ♣✦ ❧ ❀ ❄ ✾ ❀ ✧ ❁ ③ ✴ ❀ ④ ❂ ♠ ❂ ✧ ❂ ❄ ♠❆ ✱ ✹ ✬ ✱ ✻ ✲ ✮ ⑤ ● ✮ ❇ ❈ ✱ ✲ ✚ ❍ ✛ ✚ ●❆ ✱ ✹ ✬ ✱ ✻ ✲ ✮ ⑤ ❉ ✮ ❇ ❈ ✱ ✲ ✚ ❍ ✛ ✚ ●❆ ✱ ✹ ✬ ✱ ✻ ✲ ✮ ⑤ ✓ ✮ ❇ ❈ ✱ ✲ ♥ ♦ ✸ ♣❆ ✱ ✹ ✬ ✱ ✻ ✲ ✮ ✭ ✽ ✼ ✭ ✬ ✯ ✮ ❇ ❈ ✱ ✲ ✪ ♥ ♦ ⑤ ● ♣❆ ✱ ✹ ✬ ✱ ✻ ✲ ✮ ✭ ✽ ✼ ✭ ✱ ✼ ✮ ❇ ❈ ✱ ✲ ♥ ♦ ⑤ ❉ ♣❆ ✱ ✹ ✬ ✱ ✻ ✲ ✮ ✭ ✽ ✽ ✭ ✬ ✯ ✮ ❇ ❈ ✱ ✲ ✪ ♥ ♦ ⑤ ● ♣❆ ✱ ✹ ✬ ✱ ✻ ✲ ✮ ✭ ✽ ✽ ✭ ✱ ✼ ✮ ❇ ❈ ✱ ✲ ♥ ♦ ⑤ ❉ ♣❆ ✱ ✹ ✬ ✱ ✻ ✲ ✮ ✭ ✽ s ✭ ✬ ✯ ✮ ❇ ❈ ✱ ✲ ✚ ❍ ✚❆ ✱ ✹ ✬ ✱ ✻ ✲ ✮ ✭ ✽ s ✭ ✱ ✼ ✮ ❇ ❈ ✱ ✲ ♥ ♦ ⑤ ✓ ♣✹ ✮ q ✬ ✩ ✯ ✳ ✲ ✱ ✷ ✮ ✻ ✲ ✩ ✺ ② ⑥♥ ♦ ✭ ✽ ✼ ✭ ✬ ✯ ♣ ♥ ♦ ✭ ✽ ✼ ✭ ✱ ✼ ♣ ♥ ♦ ✭ ✽ ✽ ✭ ✬ ✯ ♣ ♥ ♦ ✭ ✽ ✽ ✭ ✱ ✼ ♣ ♥ ♦ ✭ ✽ s ✭ ✬ ✯ ♣ ♥ ♦ ✭ ✽ s ✭ ✱ ✼ ♣ ⑥❈ ✯ ✬ ✷ ✰ ✻ ✩ ✼✺ ✹ ✮ ✱ ✷ ✮ t ✻ ✩ ✼ ✕ ✳ ✲ ✱ ✷ ✮✦ ⑦ ❁ ❀ ✿ ✧ ❀ ✿ ✧ ❄ ✾ ❅✺ ✹ ✮ ✱ ✷ ✮ t ✱ ✷ ✩ ✭ ✰ ● ✹ ✮ q ✬ ✩ ✯ ✳ ✲ ✱ ✷ ✮✦ ✴ ❀ ④ ❂ ♠ ❀ ❁ ❀ ❧ ❂ ❄ ♠ ❅ ④ ❄ ❁ ❂ ✾ ✳ ❄ ❅ ❂ ♠ ❧ ⑧ ⑦❆ ✱ ✹ ✬ ✱ ✻ ✲ ✮ ✷ ● ● ✼ ✮ ❇ ❈ ✱ ✲ ❋ ♥ ♦ ✭ ✽ ✼ ✭ ✱ ✼ ♣ ✪ ❋ ● ⑨ ❋ ✚ ❍ ● ■ ♥ ♦ ✸ ♣ ❏ ❏ r ♥ ♦ ✸ ♣ ❏✹ ✮ q ✬ ✩ ✯ ❁ q ⑧ ⑦ ❁ ✻ ✲ ✩ ✺ ② ⑥❳ ❨ ✉ ✜ ✜ ⑩ ❬ ❳ ❨ ❙ ❚ ⑩ ❙ ▼ ⑩ ❬ ❵ ❶ ❷ ❸ ❶ ❷ ❸ ❵ ❶ ❷ ❸ ❶ ❷ ❸ ❹❈ ✯ ✬ ✷ ✰ ✻ ✩ ✼✹ ✮ q ✬ ✩ ✯ ❁ q ⑧ ⑦ ❃ ✻ ✲ ✩ ✺ ② ⑥✪ ♥ ♦ ✭ ✽ ✼ ✭ ✱ ✼ ♣ ✪ ♥ ♦ ✷ ● ● ✼ ♣ ✪ ❂ ♠ ④ ❂ ♠ ④ ✪ ❂ ♠ ④ ❂ ♠ ④ ⑥❈ ✯ ✬ ✷ ✰ ✻ ✩ ✼✹ ✮ q ✬ ✩ ✯ ❁ q ⑧ ⑦ ❺ ✻ ✲ ✩ ✺ ② ⑥✪ ❂ ♠ ④ ❂ ♠ ④ ♥ ♦ ✷ ● ● ✼ ♣ ♥ ♦ ✭ ✽ ✽ ✭ ✱ ✼ ♣ ✪ ❂ ♠ ④ ❂ ♠ ④ ⑥❈ ✯ ✬ ✷ ✰ ✻ ✩ ✼✹ ✮ q ✬ ✩ ✯ ❁ q ⑧ ⑦ ⑧ ✻ ✲ ✩ ✺ ② ⑥✪ ❂ ♠ ④ ❂ ♠ ④ ✪ ♥ ♦ ✭ ✽ ✽ ✭ ✱ ✼ ♣ ✪ ♥ ♦ ✷ ● ● ✼ ♣ ✪ ❂ ♠ ④ ❂ ♠ ④ ⑥❈ ✯ ✬ ✷ ✰ ✻ ✩ ✼✐ ❘ ✉ ◆ ❘ ❻ ❖ ❣ ❼ ❽ ❻ ❡ ❾ ❽ ✉ ❚ ① ❘ ❛✰ ✮ ✷ ✹ ✮ q ✬ ✩ ✯ ❁ q ⑧ ⑦ ❃ ✷ ✽ ✶ ✮ ✓✰ ✮ ✷ ✹ ✮ q ✬ ✩ ✯ ❁ q ⑧ ⑦ ❺ ✷ ✽ ✶ ✮ ✔✰ ✮ ✷ ✹ ✮ q ✬ ✩ ✯ ❁ q ⑧ ⑦ ⑧ ✷ ✽ ✶ ✮ ✕✦ ✳ ❀ ❁ ❂ ✴ ③ ♠ ✿ ✾ ❂ ⑦ ❅✶ ✱ ✬ ✹ t ✰ ✷ ✽ ✲ ✮ ✶ ✮ ✹ ✬ ■ ✶ ✭ ✻ t ✫ ✹❆ ✱ ✹ ✬ ✱ ✻ ✲ ✮ ✭ ✽ ✫ ✮ ✲ ✷ ✱ ✮ ❇ ❈ ✱ ✲ ❋ ♥ ♦ ✫ ✮ ✲ ✷ ✱ ♣ ⑨ ❋ ♥ ♦ ✫ ✮ ✲ ✷ ✱ ♣ ■ ● ✚ ✚ ✚ ❍ ✚ ❏ ❏❆ ✱ ✹ ✬ ✱ ✻ ✲ ✮ ✭ ✽ ✺ ✮ ❇ ❈ ✱ ✲ ❋ ❋ ✗ ❉ ❍ ✚ r ♥ ♦ ✭ ✽ ❿ ♣ ❏ ■ ❋ ✕ ❍ ✚ r ♥ ♦ ✶ ✬ ♣ r ❋ ♥ ♦ ✫ ✮ ✲ ✷ ✱ ♣ ➀ ✓ ❏ ❏ ❏✶ ✱ ✬ ✹ t ✺ ✩ ✮ ❊ ❊ r r ♥ ♦ ✭ ✽ ✺ ♣ ♥ ♦ ✭ ✽ ✫ ✮ ✲ ✷ ✱ ♣ ● ✚ ✚ ✚ ✚ ❍ ❉ ✕ ✚
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B APPENDIX B. NUMERICAL SOLUTION METHOD

B.1 Plate with prescribed displacements in x

Figures B.1 and B.3 show the displacements and stresses for the plate with Dirichlet boundary

conditions and prescribed displacements in the x-direction for the PD grids: 121x121, 241x241 and

601x601.
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Figura B.1: Displacements at the point x = y = 20 mm for the case of the plate without hole and prescribed
displacements in x-direction. For all grids we vary the horizon from δ = 3∆ to δ = 6∆.
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Figura B.2: Displacement profiles comparison for the case of the plate without hole and prescribed displa-
cements in the x-direction for the grids: 121x121, 241x241 and 601x601. The extended layers for imposing
boundary conditions in the PD model are fixed in 10 mm at each boundary (not shown in the figure). We
vary the horizon from δ = 3∆ to δ = 6∆.
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Figura B.3: Stresses comparison for the case of the plate without hole and prescribed displacements in
the x-direction for the grids: 121x121, 241x241 and 601x601. The extended layers for imposing boundary
conditions in the PD model are fixed in 10 mm at each boundary (not shown in the figure). We vary the
horizon from δ = 3∆ to δ = 6∆.
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B.2 Plate with prescribed displacements in x and y

Figures B.4 and B.6 show the displacements and stresses for the plate with Dirichlet boundary

conditions and prescribed displacements in both x- and y-direction for the PD grids: 121x121,

241x241 and 601x601.
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Figura B.4: Displacements at the point x = y = 20 mm for the case of the plate without hole and prescribed
displacements in both x- and y-direction. For all grids we vary the horizon from δ = 3∆ to δ = 6∆.
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Figura B.5: Displacement profiles comparison for the case of the plate without hole and prescribed dis-
placements in both x- and y-direction for the grids: 121x121, 241x241 and 601x601. The extended layers
for imposing boundary conditions in the PD model are fixed in 10 mm at each boundary (not shown in the
figure). We vary the horizon from δ = 3∆ to δ = 6∆.
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Figura B.6: Stresses comparison for the case of the plate without hole and prescribed displacements in
both x- and y-direction for the grids: 121x121, 241x241 and 601x601. The extended layers for imposing
boundary conditions in the PD model are fixed in 10 mm at each boundary (not shown in the figure). We
vary the horizon from δ = 3∆ to δ = 6∆.
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B.3 Plate with hole with prescribed displacements in x

Figures B.7 to B.13 show the displacements and stresses for the plate with hole with Dirichlet

boundary conditions and prescribed displacements in the x-direction for the PD grids: 121x121,

241x241 and 601x601.
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Figura B.7: Displacements at the point x = y = 20 mm for the case of the plate with the hole with prescribed
displacements in x-direction. For all grids we vary the horizon from δ = 3∆ to δ = 6∆.
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Figura B.8: Displacement distribution for the case of the plate with hole with prescribed displacements in
x-direction computed with the 121x121 grid; The extended layers for imposing boundary conditions in the
PD model are fixed in 10 mm at each boundary (not shown in the figure). We vary the horizon from δ = 3∆
to δ = 6∆. In (i) and (j) the displacements in x and y are compared with the FE solution.
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Figura B.9: Displacement distribution for the case of the plate with hole with prescribed displacements in
x-direction computed with the 241x241 grid; The extended layers for imposing boundary conditions in the
PD model are fixed in 10 mm at each boundary (not shown in the figure). We vary the horizon from δ = 3∆
to δ = 6∆. In (i) and (j) the displacements in x and y are compared with the FE solution.
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Figura B.10: Displacement distribution for the case of the plate with hole with prescribed displacements in
x-direction computed with the 601x601 grid; The extended layers for imposing boundary conditions in the
PD model are fixed in 10 mm at each boundary (not shown in the figure). We vary the horizon from δ = 3∆
to δ = 6∆. In (i) and (j) the displacements in x and y are compared with the FE solution.
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Figura B.11: PD stresses for the case of the plate with hole with prescribed displacements in x-direction
computed with the 121x121 grid; The extended layers for imposing boundary conditions in the PD model
are fixed in 10 mm at each boundary (not shown in the figure). We vary the horizon from δ = 3∆ to δ = 6∆.
In (i) and (j) σxx and σyy are compared with the FE solution.
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Figura B.12: PD stresses for the case of the plate with hole with prescribed displacements in x-direction
computed with the 241x241 grid; The extended layers for imposing boundary conditions in the PD model
are fixed in 10 mm at each boundary (not shown in the figure). We vary the horizon from δ = 3∆ to δ = 6∆.
In (i) and (j) σxx and σyy are compared with the FE solution.
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Figura B.13: PD stresses for the case of the plate with hole with prescribed displacements in x-direction
computed with the 601x601 grid; The extended layers for imposing boundary conditions in the PD model
are fixed in 10 mm at each boundary (not shown in the figure). We vary the horizon from δ = 3∆ to δ = 6∆.
In (i) and (j) σxx and σyy are compared with the FE solution.
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B.4 Plate with hole with prescribed displacements in x and y

Figures B.14 to B.20 show the displacements and stresses for the plate with hole with Diri-

chlet boundary conditions and prescribed displacements in both x- and y-direction for the PD grids:

121x121, 241x241 and 601x601.
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Figura B.14: Displacements at the point x = y = 20 mm for the case of the plate with the hole with prescribed
displacements in both x- and y-direction. For all grids we vary the horizon from δ = 3∆ to δ = 6∆.
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Figura B.15: Displacement distribution for the case of the plate with hole with prescribed displacements
in both x- and y-direction computed with the 121x121 grid; The extended layers for imposing boundary
conditions in the PD model are fixed in 10 mm at each boundary (not shown in the figure). We vary the
horizon from δ = 3∆ to δ = 6∆. In (i) and (j) the displacements in x and y are compared with the FE
solution.
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Figura B.16: Displacement distribution for the case of the plate with hole with prescribed displacements
in both x- and y-direction computed with the 241x241 grid; The extended layers for imposing boundary
conditions in the PD model are fixed in 10 mm at each boundary (not shown in the figure). We vary the
horizon from δ = 3∆ to δ = 6∆. In (i) and (j) the displacements in x and y are compared with the FE
solution.
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Figura B.17: Displacement distribution for the case of the plate with hole with prescribed displacements
in both x- and y-direction computed with the 601x601 grid; The extended layers for imposing boundary
conditions in the PD model are fixed in 10 mm at each boundary (not shown in the figure). We vary the
horizon from δ = 3∆ to δ = 6∆. In (i) and (j) the displacements in x and y are compared with the FE
solution.
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Figura B.18: PD stresses for the case of the plate with hole with prescribed displacements in both x- and
y-direction computed with the 121x121 grid; The extended layers for imposing boundary conditions in the
PD model are fixed in 10 mm at each boundary (not shown in the figure). We vary the horizon from δ = 3∆
to δ = 6∆. In (i) and (j) σxx and σyy are compared with the FE solution.
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Figura B.19: PD stresses for the case of the plate with hole with prescribed displacements in both x- and
y-direction computed with the 241x241 grid; The extended layers for imposing boundary conditions in the
PD model are fixed in 10 mm at each boundary (not shown in the figure). We vary the horizon from δ = 3∆
to δ = 6∆. In (i) and (j) σxx and σyy are compared with the FE solution.
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Figura B.20: PD stresses for the case of the plate with hole with prescribed displacements in both x- and
y-direction computed with the 601x601 grid; The extended layers for imposing boundary conditions in the
PD model are fixed in 10 mm at each boundary (not shown in the figure). We vary the horizon from δ = 3∆
to δ = 6∆. In (i) and (j) σxx and σyy are compared with the FE solution.
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C APPENDIX C. POST-PROCESSING THE FE SOLUTION

We calculate the stresses for the FE solution of the problem of Section 4.2.3 using a triangular

mesh obtained by a Delaunay triangulation on the FE quadrilateral mesh. This procedure results in

a triangular mesh with 1722 elements and 927 nodes. In Figure C.1 we notice that the computed

stresses using quadrilateral and triangular meshes agrees quite well.
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Figura C.1: Stress field using two different meshes for post-processing. The solution was obtained using
the quadrilateral mesh shown. Using this quadrilateral mesh, a mesh of triangles was generated and used to
compute the stress field. The two plotted curves show that the stress field computed with the triangular mesh
is very close to the one using the quadrilateral (the same mesh used for resolving the problem).
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