UNIVERSIDADE ESTADUAL DE CAMPINAS

FACULDADE DE ENGENHARIA ELETRICA

DEPARTAMENTO DE ENGENHARIA DE

COMPUTAÇÃO E AUTOMAÇÃO INDUSTRIAL.

Este værnglen einegonde å motorer find der ten ægendide for jose polaste Condencier o openier pre Common Juegula em 02/06/87

DECISÕES INTERATIVAS EM SISTEMAS DE GRANDE PORTE COM MÜLTIPLOS OBJETIVOS: UMA APLICAÇÃO A SISTEMAS DE POTÊNCIA

Por : José Roberto Cardarelli

Orientador: Prof. Dr. Fernando Antonio Campos Gomide

Tese apresentada à Faculdade de Engenharia Elétrica da Universidade Estadual de Campinas - UNICAMP - como parte dos requisitos para a obtenção do título de Mestre em Engenharia Elétrica.

- JUNHO 1987 -

UNICAMP BIBLIOTECA CENTRAL "A arte de descobrir a verdade é mais preciosa que a maioria das verdades que se descobrem".

(Fontenelle)

"Todos os procedimentos são sagrados quando interiormente necessários".

(Wassily Kandinsky)
Do espiritual na Arte

Aos meus Pais e a minha Irmã.

AGRADECIMENTOS

- . Ao Prof. Dr. Fernando A.C. Gomide pelo tema, orientação, apoio, estimulo e amizade.
- . A Capes Coordenadoria de Aperfeiçoamento de Pessoal de Nivel Superior, pelo apoio financeiro.
- . A VILLARES DIVISÃO SIDERŪRGICA, na pessoa do Sr. Mário Sampaio e Sr. Carlos Alberto Viceconti por ter possibilitado a conclusão deste trabalho.
- . A UNICAMP, com especial dedicação aos meus amigos da Faculdade de Engenharia Eletrica pelo companheirismo e co laboração.
- . Aos meus familiares pelo incentivo.
- . A Silvia pela montagem final deste trabalho.
- . À todos os amigos que direta ou indiretamente contribuiram para a realização deste trabalho.

RESUMO

Neste trabalho é apresentado um Procedimento Interativo de Negociação para sistemas de grande porte com multiplos objetivos. A classe de problemas bem como as hipóteses necessárias para a aplicação do procedimento são discutidas e analisadas.

A base teorica necessária ao entendimento do Procedimento Interativo de Negociação: a teoria clássica da programação matemática não-linear, a teoria multiobjetiva, a teoria da decomposição hierár quica e a teoria da decisão são abordadas visando caracterizar um enfoque o mais auto contido quanto possivel.

Duas aplicações do Procedimento Interativo de Negociação a problemas distintos são consideradas. A primeira aplicação é feita a um problema teórico, com o intuito de estudar e discutir as argumentações básicas do procedimento, bem como analisar todo o processo envolvido na sua solução. A segunda aplicação é feita a um problema de Planejamento para Geração de Sistemas de Geração de Energia Elétrica por Usinas Hidrelétricas, pela administração dos recursos hídricos envolvidos. Toda discussão desta aplicação e também a análise dos resultados estão presentes neste trabalho.

O problema de Planejamento para Geração de Sistemas de Geração de Energia Elétrica é tambem resolvido por outro método, o SEMOPS (Sequential Multiobjective Problem Solving Technique).

O Procedimento Interativo de Negociação aqui proposto é comparado com o SEMOPS sob o aspecto metodológico, da aplicação prática, do espaço computacional dentre outros.

Finalmente, são apresentadas as conclusões.

INDICE

CAPITUL	0 1 - INTRODUÇÃO	01
CAPITUL	O 2 - TEORIA BÁSICA DE DESENVOLVIMENTO	05
		06
	Convexidade	06
		80
	Hiperplano	09
2.1.4.	Gradiente e Hessiana de uma Função	10
2.1.5.	Matriz Definida Positiva	10
2.2.	Condições de Otimalidade	11
		11
		12
2.3.	Lagrangeano Aumentado	24
	O Mētodo	24
	Convergência do Método	33
2.3.3.	Algoritmo Associado ao Método	34
	Aplicações a Problemas com Restrições de .	
	Desigualdade	36
2.4.	Sistemas Hierārquicos - Teoria e Metodologia	38
	Metodo Factivel ou de Coordenação Primal	40
2.4.2.		42
2.5.	Conclusão	44
2.0.		
CAPITU	LO 3 - OTIMIZAÇÃO MULTIOBJETIVA	45
3.1.	Introdução	46
	Conceito de Ponto Não-Inferior	47
3.2.	·	
3.3.	Classificação dos Métodos de Programação	49
	Multiobjetiva	, 5
3.3.1.	Método de Geração do Conjunto de Soluções Não-Inferiores	50
		56
3.4.	O Compromisso ("Trade-Off")	J 0
3.5.	Solução de Melhor Compromisso ou Solução	F 0.
	Preferida	58

3 6.1.	Função Utilidade	ì
3.6.2. 3.7.	Condições de Kuhn-Tucker para Soluções Não-Inferiores	
3.8.	Caracterização de Soluções Não-Inferior atraves de Solução de Problemas dos ε-Restritos 69	5
	"Trade-Off" e Multiplicadores de Kuhn-Tucker 6. Relação entre as Condições de Não-Inferioridade	
3.10.	de (PMO) e as Soluções de $P_k(\varepsilon)$ e $P(w)$	9 1
	ILO 4 - DECISÕES INTERATIVAS EM SISTEMAS DE GRANDE PORTE COM MÜLTIPLOS OBJETIVOS	2
4.1.	Introdução	3
4.2.	Formulação Matemática do Problema	4
4.3.		76
4.4.		7 9
4.5.	Anālise do Mētodo e sua Convergēncia	31
4.6.		36
CAPIT	ULO 5 - APLICAÇÕES DO PROCEDIMENTO INTERATIVO DE NEGOCIAÇÃO	88
5.1.	A Aplicação do Procedimento Interativo de / Negociação á um Problema Teórico	89
5.2.	Aplicação do Procedimento Interativo de Negociação a um Problema Real	
5.3.	Conclusão	14
CAPIT	ULO 6 - ESTUDO COMPARATIVO ENTRE O METODO INTERATIVO DE NEGOCIAÇÃO E O SEMOPS	15
6.1.	Aplicação do SEMOPS ao Problema de Planejamento de Geração de Energia pela Administração dos Recursos Hidricos Envolvidos	

6.2.	Anālise Comparativa entre os Mētodos
6.3.	Conclusão
CAPITU	LO 7 - CONCLUSÃO
REFERE	NCIAS
APĒND:	ICE A - FUNÇÃO GERAÇÃO DE ENERGIA
APĒND:	ICE B - SEMOPS : UM METODO SEQUENCIAL DE SE RESOLVER PROBLEMAS MULTIOBJETIVO
APĒND	ICE C - RESULTADO DA SIMULAÇÃO DO PROCEDIMENTO INTERATIVO DE NEGOCIAÇÃO PARA VÁRIOS PERÍODOS DE PLANEJAMENTO - VARIAVEIS
	DE ESTADO E DECISÃO POR PASSO/INTERAÇÃO A
APEND	ICE D - RESULTADO DA SIMULAÇÃO DO SEMOPS PARA O PMOR

FIGURAS:

		06
2.1.	Conjunto Convexo	06
2.2.	Conjunto Não Convexo	07
2.3.	Função Convexa	08
2.4.	Cone	09
2.5.	Cone Não Convexo	16
2.6.	Exemplo de um Ponto de Minimo	18
2.7.	Cone Complementar	22
2.8.	Relação entre as Condições	28
2.9.	Conjunto R Não Convexo - "GAP"	
2.10.	Hipersuperficie - Paraboloide Eliptico	28
2 11	Função de Penalidade para o Problema PP3	38
2 12	Fluvo de Informação do Metodo de Coordenação Primal	42
2.13.	Fluxo de Informação do Metodo de Coordenação Dual	43
3.1.	Região Convexa no Espaço das Funções	53
3.2.	Região Não Convexa no Espaço das Funções	53
3.3.	Região Factivel no Espaço de Funções	55
3.4.	Diagrama de Implicações da Teoria Multiobjetiva	70
4.1.	Exemplo de um Sistema Composto de Vārios	
	Subsistemas Interconectados	76
4.2.	Variāveis Relacionadas a um Subsistema	76
4.3.	Procedimento de Negociação Interativa	78
4.4.	Grāfico Representativo da Convergência do Método	85
7,,,,		
5.1.	Sistema	89
5.2.	Sistema Hidreletrico	100
5.3.	Subsistemas que compõem o Sistema Hidreletrico	101
5.4.	Turbinagem (10 ⁹ m³) e Aportes Independentes (10 ⁹ m³)	
5.4.	por Periodo de Planejamento no Ponto de Melhor	
	Compromisso - · · · · · · · · · · · · · · · · · ·	111
	Comprom 1330 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
5.5.	por Periodo de Planejamento no Ponto de Melhor	
		112
. -	Compromisso	
5.6.	de Grupo por Passos das Interações	113
	de Grupo por rassos das interavoes	

QUADROS

3.1.	Caracterização de Soluções	•	•	•	48
5.1.	Parâmetros do Problema Definido	•	•	•	94
5.2.	Resultado da Simulação do Procedimento de			•	
	Negociação-Problema Teórico	•	•	•	95
5.3.	Novos Parametros das Funções Objetivos	•	•	•	96
5.4.	Resultados da Simulação	•	•	•	97
5.5.	Limites de Vazão e (10 ⁹ m³) Volume (10 ⁹ m³) e				
3.5.	Rendimentos	•			106
	Aportes Independentes Médios de cada Usina (10 m³)			•	107
5.6.	Volume Inicial de Água Turbinada (10 m³)				108
5.7.	Coeficientes do Polinomio Quota-Volume				109
5.8.	Coeficientes do Polithomio quota-volume	•			109
5.9.	Evolução do Procedimento Interativo de Negociação	•	•	•	103
	Resultado da Primeira Iteração do Problema (PMOR).		•		119
6.1.					121
6.2.	Resultado da Segunda Iteração do Problema (PMOR)				124
6.3.	Resultado da Terceira Iteração do Problema (PMOR)	•	•	•	•
6.4.	Resultado da Quarta Iteração do Problema (PMOR) .	•	•	•	125

CAPITULO 1 - INTRODUÇÃO

CAPITULO 1 - INTRODUÇÃO

A Matemática é uma ciência que não nasceu sozinha, mas surgiu dentro de uma visão universalista das ciências. Ela muito contribuiu e foi auxiliada por outras ciências, onde a Fisica, a Química e a Economia tiveram importante participação neste contexto. A matemática forneceu e tem fornecido meios de análise e quantificação dos problemas, fenômenos e processos.

Muitas foram as areas que surgiram com o seu desenvolvimento. A programação matemática ganhou força na II Guerra Mundial com o nascimento da Pesquisa Operacional. Vários trabalhos foram realizados neste período embasados em teorias desenvolvidas no final do século XVII.

A Programação Linear, a Não Linear, a Inteira, a Dinâmica, apresentam-se como teorias chave à solução de muitos problemas. Grande contribuição elas nos têm dado em prol do desenvolvimento ecnológico. O desenvolvimento dos computadores digitais vem sendo um fator importante no desenvolvimento de novas têcnicas e metodologias para solução numérica de muitos problemas. Entretanto, o contexto em que os problemas reais se situam, apresenta-se de maneira complexa e de difícil modelagem, não sendo muitas vezes suficientes as teorias clássicas para a obtenção de soluções realistas.

Inserido na complexidade dos problemas reais está a multiplicidade de soluções alternativas, as quais necessitam algo mais que a objetividade equacionada ou modelada do problema para a obtenção da solução final.

Dada a realidade diversa e não bem comportada, propiciou-se o surgimento de novas teorias como a multiobjetiva, a da tomada de decisão na qual se encontra a teoria da utilidade e a teoria hierarquica ansiando buscar recursos para obtenção de soluções de problemas até então de difícil solução e também almejando uma maior aderência das soluções à realidade.

Procurou-se, assim, maior representatividade pelo modelo dos problemas complexos (teoria multiobjetiva e hierarquica) e subsidios para uma analise e seleção de alternativas de solução (teoria da tomada de decisão) conciliando a objetividade e subjetividade as sociados aos problemas reais.

A Matemática, a Economia e as Ciências Sociais têm interagido entre si, dando campo ao surgimento destas teorias multidiscipl<u>i</u> nares.

Os problemas não são mais vistos isoladamente, mas inseridos numa visão no qual existem elementos que agem e reagem consecutivamente as soluções dos problemas. A subjetividade e o fator humano estão presentes na pessoa do tomador de decisão.

A teoria da tomada de decisão, em sua visão clássica, teve origem como uma teoria do comportamento econômico e administrativo, que postula a inegável racionalidade dos importantes tomadores de decisão. De acordo com este fato, todas as alternativas, e consequências possíveis dessas alternativas, são examinadas e colocadas numa hierarquia racional de preferência, onde finalmente escolhem a "melhor" linha de ação. A tomada de decisão é um processo que resulta na seleção de uma alternativa, onde se pretende provocar um estado de coisas específico, previsto pelos tomadores de decisão, a partir de um número limitado de alternativas problemáticas definidas [40]. O objetivo fundamental da teoria da tomada de decisão é criar uma taxinomia, da qual podemos derivar, cientificamente hipóteses válidas, destinadas a se integrarem numa teoria geral.

Neste trabalho é apresentado um procedimento de negociação que procura interativamente uma solução realista concernente a problemas caracterizados por utilização de recursos comuns. O procedimento se baseia na teoria multiobjetiva e de utilidade, através do qual analista e tomadores de decisão intercambiam informações, bus cando uma melhor solução de compromisso. A teoria de decomposição hierárquica associada a uma das hipóteses sobre a função utilidade, possibilita que os tomadores de decisão trabalhem, num passo do procedimento, a nível do seu domínio (subsistema), proporcionando com isso maior independência entre os tomadores de decisão. A coesão

das informações e feita pela fixação dos recursos (acoplamento) que são, em outro passo do procedimento, negociados.

O procedimento procura de maneira interativa, proporcionar troca de informações entre o analista e os tomadores de decisão na busca de uma melhor solução de compromisso, conciliando a objetividade das informações do analista com a subjetividade das informações do tomador de decisão.

A aplicação desse método, se faz tanto a nivel de taticos como estrategicos. O problema estrategico mais tipico qualquer organização talvez seja o do planejamento a longo prazo. O planejamento, sobre esta temática, pode ser vislumbrado como uma to mada de decisão antecipada, ou seja, requer um intervalo de entre as tomadas de decisão e a sua colocação em prática. Da necessidade de reconsideração de decisões feitas no planejamento, a seguinte característica: planejamento implica num sistema de cisões. Isto é, abrange um conjunto de duas ou mais decisões, uma das quais depende, pelo menos, de uma outra decisão. Uma são depende de outra se o efeito do sistema e afetado pela segunda decisão, donde se conclui que o planejamento consiste de um conjunto de decisões acopladas. Outra característica de um problema planejamento, é o fato de que ele ocorre dentro de um contexto dinâmico.

Tendo em vista as colocações associadas ao procedimento de negociação e as características dos problemas de planejamento, nota-se uma grande relação entre o procedimento e sua aplicação a tais problemas.

Neste trabalho aplica-se o procedimento de negociação interativa à um problema de planejamento de recursos hídricos. O parque hidrelétrico brasileiro é constituído de usinas, onde muitas delas são fisicamente dependentes e administradas por empresas diferentes. Como consequência destes vínculos, fica difícil de se decidir a carga hidrelétrica gerada e a carga hídrica consumida, com o intuito de suprir demandas de energia e melhorias de produtividade energética, sem se considerar as dependências físicas e as negociações entre as empresas hidrelétricas envolvidas.

Discute-se aqui um exemplo prático, onde os tomadores de decisão são representados por funções utilidades. Tanto os resultados como o comportamento esperado do sistema são discutidos e analisados.

Este enfoque dado ao problema se constitui no vertice deste trabalho, sendo realista e de visão prática, o que lhe confere a singularidade almejada. É possível, por exemplo, desenvolver um sistema "ON-LINE", onde os tomadores de decisão, através de informações geradas com base em conhecimentos objetivos (topologia, afluen tes pluviais, limites operacionais das hidreletricas, vazão e volume inicial das hidreletricas, etc.) possam optar pelas melhores soluções, fazendo uso de seus critérios.

Em suma, o trabalho pode ser assim resumido: no segundo capitulo e apresentada a teoria básica da programação matemática e as condições necessárias e sufícientes para problemas. Algumas técnicas de transformação de problemas restritos em problemas irrestritos são comentadas com particular atenção do Lagrangeano Aumentado. Inserido neste capitulo se encontra, tambem, a teoria da decomposição hierárquica com a classificação algumas técnicas importantes de decomposição. No terceiro capitulo, a teoria multiobjetiva. São colocados os conceitos solução não-inferior, melhor solução de compromisso, trade-off, fun ção utilidade e as relações de soluções de alguns problemas monobjetivos panticulares com as soluções não-inferiores. No quarto pitulo é apresentado e analisado o procedimento de negociação interativa, sendo analisados os passos que compõem o procedimento algumas hipoteses sobre sua convergência. No quinto capitulo, discutidos alguns exemplos de aplicação do metodo, com principal interesse ao problema de planejamento hidrico de um conglomerado comparação sexto capitulo realizado ē drelētrico. No do procedimento aqui proposto, com o metodo SEMOPS [44]. no sétimo capitulo é apresentado uma nova proposta para uma aplica ção do procedimento e também a conclusão geral deste trabalho.

CAPITULO 2 - TEORIA BASICA DE DESENVOLVIMENTO

CAPITULO 2 - TEORIA BÁSICA DE DESENVOLVIMENTO

Este capitulo tem por objetivo apresentar a base teórica deste trabalho. Aqui são colocadas definições, conceitos e discussões que servirão posteriormente para um melhor entendimento da metodol<u>o</u> gia a ser apresentada.

Muitos dos teoremas e proposições aqui apresentados não serão demonstrados por não ser este o objetivo principal deste trabalho e por estarem, na maioria, disponíveis na literatura.

2.1. Conceitos Iniciais

2.1.1. Convexidade

Conjunto Convexo

Um conjunto é dito convexo (figura 2.1) se todos pontos interiores a um segmento de reta que une dois pontos quaisquer pertencentes ao conjunto, também pertencerem a este conjunto. Caso contrário diz-se ser o conjunto não convexo (figura 2.2).

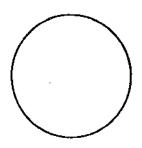


Fig. 2.1 : Conjunto Convexo

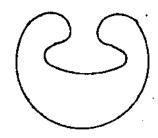


Fig. 2.2 : Conjunto não Convexo

Função Convexa

Uma função f, f: $S \longrightarrow R$, S conjunto convexo \tilde{e} dita convexa (figura 2.3) se para todo x' e x'' ϵ S, com $S \subseteq R^N$ e todo α , escalar, $0 \le \alpha \le 1$, ela satisfaz a seguinte desigualdade:

$$\{(\alpha x' + (1-\alpha) x'') \le \alpha \{(x') + (1-\alpha) \{(x'')\}.$$

Se a desigualdade for estrita diz-se que a função é estritamente convexa.



Fig. 2.3 : Função Convexa

Combinação de Funções Convexas

Proposição: Sejam \mathfrak{f}^1 e \mathfrak{f}^2 duas funções convexas definidas sobre um conjunto S em R^n também convexo.

Sejam α e β escalares não-negativos pertencentes a R tal que α + β \neq 0.

Com isto podemos afirmar que a função:

ē uma função convexa sobre S.

Proposição: Seja \S uma função convexa definida sobre um conjunto convexo $\mathcal{S} \subseteq \mathcal{R}^n$

O conjunto:

$$T_c = \{ x / x \in S, \{ (x) \le c, c \in R \}$$

ē convexo para todo c ε R.

Teorema: A interseção de dois conjuntos convexos e também um conjunto convexo.

Os conceitos de convexidade tem notável importáncia nos estudos teóricos de otimização, pois embora muitos dos problemas reais se distanciam destas condições, simplificações e conclusões podem ser feitas aplicando-se tais conceitos.

2.1.2. Cone

Definição: Um conjunto S \tilde{e} chamado de Cone com origem em O (figura 2.4) se para qualquer x ϵS implicar na pertinência de αx também ao conjunto S, sendo α um escalar não-negativo.

Fig. 2.4 : Cone

Se um certo conjunto \bar{e} um cone e também um conjunto convexo ele \bar{e} chamado de cone convexo. Como propriedade do cone temos que se um ponto x pertencer a um cone, então a semi-reta (da origem ao ponto x) também deve pertencer ao cone. Na figura 2.5 \bar{e} apresentado um exemplo de cone não convexo.

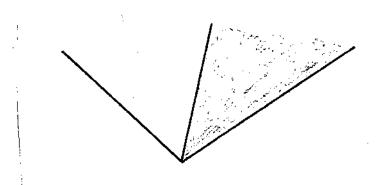


Fig. 2.5 : Cone não Convexo

2.1.3. Hiperplano

Definição: Hiperplano no R^n é o conjunto de pontos que satisfazem a equação c^{t} x=z, ou melhor:

$$H = \{ x \in \mathbb{R}^n / c^t x = z \},$$

com c \neq 0, vetor de n componente e z um escalar fixo.

Um hiperplano divide um espaço em dois semi-espaços fechados de finidos por:

$$X^{1} = \{ x \in \mathbb{R}^{n} / c^{t} x \ge z \}$$

$$X^{2} = \{ x \in \mathbb{R}^{n} / c^{t} x \le z \}$$

No caso das inequações serem estritas teremos semi-espaços abe \underline{r} tos.

Pode-se verificar facilmente que todo hiperplano é um conjunto convexo.

2.1.4. Gradiente e Hessiana de uma Função

Seja $e \in C^1$, isto $e \in P$ pertencer a classe de funções diferenciaveis, $e \in R^n \longrightarrow R$. Define-se gradiente de $e \in P$ como sendo o vetor:

$$\nabla_{\xi}^{t}(x) = \begin{bmatrix} \frac{\partial f}{\partial x_{1}} & (x), & \frac{\partial f}{\partial x_{2}} & (x), & \dots, & \frac{\partial f}{\partial x_{n}} & (x) \end{bmatrix}$$

Para (& C², isto e (pertencer a classe de funções duas vezes diferenciaveis, define-se a matriz hessiana de (num ponto x sendo:

$$H \left\{ \begin{array}{c} x \\ \end{array} \right\} = \left\{ \begin{array}{c} \partial^2 \int_{\Omega} \left(x \right) \\ \partial x_{i} \partial x_{j} \end{array} \right\} \qquad i, \ j = 1, \ldots, n$$

2.1.5. Matriz Definida Positiva

Diz-se que uma matriz e positiva definida se todos os autovalores da matriz forem estritamente positivos.

Uma matriz definida positiva possui todos os determinantes de ordens inferiores positivos.

Se pelo menos um autovalor for nulo, então diz-se ser esta ma triz positiva semi-definida.

Se os autovalores foram tanto positivos como negativos, então esta matriz é dita indefinida.

Estes conceitos poderão ser similarmente aplicados as matrizes ditas negativa definida e negativa semi-definida.

Algebricamente pode-se expressar os conceitos acima como:

 d^t H (x) d > 0 positiva definida, d^t H (x) $d \ge 0$ positiva semi-definida, d^t H (x) d < 0 negativa definida, d^t H (x) $d \le 0$ negativa semi-definida, para todo $d \in \mathbb{R}^n$ e H(x) uma matriz n x n. Se não existir d que satisfaça qualquer uma das condições acima diz-se ser a matriz indefinida. Para funções continuas e duas vezes diferenciaveis a matriz he<u>s</u> siana e simetrica.

2.2. Condições de Otimalidade

2.2.1. Problemas sem Restrições

Consideramos o seguinte problema

PP1: min
$$f(x)$$

x

onde: $f(x)$: $R^n \longrightarrow R$
 $f(x)$

Mínimo Local ou Ponto de Mínimo Relativo

Um ponto x^* e dito mínimo local ou ponto de mínimo relativo do problema PP1 se existir δ , um escalar positivo arbitrariamente peque no, tal que:

$$\{(x^*) \leq \{(x),$$

para qualquer x , tal que $||x - x^*|| < \delta$

Caso a desigualdade seja estrita, x^* $\tilde{\mathrm{e}}$ dito ser um minimo local estrito da função $\{.$

Minimo Global

Um ponto x^* \in dito ser um ponto de minimo global de PP1 se $\{(x^*) \leq \{(x), \text{ para qualquer } x^* \text{ pertencente a } \mathbb{R}^n$.

Se a desigualdade for estrita, x^* \tilde{e} dito ser o minimo global estrito da função δ .

Condições Necessárias e Suficientes de Otimalidade para o Problema PP1

Para um dado ponto x* ser uma solução ótima do problema PP1 devemos ter, como condição necessária [2]:

$$\nabla f(x^*) = 0$$

. $d^t H(x^*) d \ge 0$, onde $d \in qualquer$ vetor do R^n e $H(x^*) \in a$ matriz hessiana no ponto.

A visualização deste teorema fica clara se tomarmos o ponto $x^* + \alpha d$, com $\alpha \in R$, positivo e pequeno e expandirmos $\{(x^* + \alpha d)\}$ em serie de Taylor.

Como resultado imediato podemos concluir também que:

$$\nabla \delta^{\mathcal{L}} (x^*) d \geq 0$$

$$d \in \mathbb{R}^n$$
, $d \neq 0$

A condição de suficiência para x^* ser solução otima de PP1 \tilde{e} dada por:

.
$$\nabla \{ (x^*) = 0$$

.
$$d^{t} H(x^{*}) d > 0$$

2.2.2. Problemas com Restrições de Igualdade

Seja o seguinte problema:

s.a.

$$h(x) = 0$$

com:

6 (x):
$$R^n \longrightarrow R$$

h (x): $R^n \longrightarrow R^\ell$
x $\in R^n$

Ponto Factivel

Diz-se ser um ponto x, de um problema restrito, factivel se este ponto pertence ao conjunto de restrições do problema. O conjunto dos pontos factiveis $\tilde{\mathbf{e}}$ chamado de região factivel.

Com isto a região factível do problema PP2 pode ser escrita como:

$$S = \{ x \in \mathbb{R}^n / h (x) = 0 \}$$

Ponto Regular

Um ponto x^* \tilde{e} dito ser um ponto regular da restrição h(x) = 0 se $h(x^*) = 0$ e $\forall h_{\hat{e}}(x^*)$ forem linearmente independentes, $\hat{e} = 1, \ldots, \ell$.

Função Lagrangeana

Define-se a função Lagrangeana associada ao problema PP2 como sendo a função [1]:

$$L(x, \lambda) = \{(x) + \lambda^{t} h(x)\}$$

onde λ é o vetor multiplicador de Lagrange. Podemos notar que se x^* é um ponto factivel de PP2 isto é, h $(x^*) = 0$, teremos $L(x^*,\lambda) = \{(x^*)\}$ que nos dá a igualdade da função objetivo com a função Lagrangeana nes te ponto.

A função Lagrangeana é utilizada para transformar problemas com restrição em problemas irrestritos.

Como condição necessária de minimo ao problema PP2, temos

$$\frac{\partial L(x^*, \lambda^*)}{\partial x} = 0 \tag{2.0 a}$$

$$\frac{\partial L(x^*, \lambda^*)}{\partial \lambda} = 0 \tag{2.0 b}$$

Estas expressões são obtidas a partir do fato de que o difere<u>n</u> cial da função Lagrangeana no ponto ótimo deve ser nulo.

$$dL = \frac{\partial L^{t}}{\partial x}(x, \lambda) \quad \Delta x + h^{t}(x) \quad \Delta \lambda$$

Pela condição de factibilidade vemos que a equação $(2.0\,\mathrm{b})$ deve ser satisfeita. Por conseguinte, para dL ser nulo $(2.0\,\mathrm{a})$ deve também se anular.

Ainda devemos, como condição necessária de minimo, ter que a Hessiana do Lagrangeano no ponto x^* deva ser positiva semi-definida, no plano tangente, isto $\tilde{\mathbf{e}}$:

$$d^{t}$$
 $H(x^*, \lambda^*)$ $d \ge 0$

onde: $H(x^*, \lambda^*)$ \tilde{e} dada por

$$H (x^*, \lambda^*) = \begin{vmatrix} H (x^*, \lambda^*) & \nabla h (x^*) \\ ----- & ---- \\ \nabla h^{t}(x^*) & 0 \end{vmatrix}$$

com

$$H\left\{x^{*},\ \lambda^{*}\right\} = F\left\{x^{*}\right\} + \sum_{i \neq 1} \lambda_{i}^{*} H_{i}\left\{x^{*}\right\}$$

F {x} : Hessiana da função objetivo

 $H_{i}(x)$: Hessiana da restrição $h_{i}(x)$, com $i=1, \ldots, \ell$.

Associados a estas duas condições deve-se ter o ponto x^* como um ponto regular, isto \tilde{e} , os vetores gradientes das restrições neste ponto devem ser linearmente independentes, permitindo assim definir, hiperplanos tangentes [2].

Para que as condições necessárias sejam suficientes, asseguran do ser o ponto x^* mínimo de PP2, basta ser a Hessiana do Lagrangea-no definida positiva no plano tangente.

2.2.3. Problemas com Restrições de Desigualdade

Define-se o problema PP3 como:

PP3 min
$$f(x)$$

x

s.a. $g(x) \le 0$

com

 $f: R^n \longrightarrow R$
 $g: R^n \longrightarrow R^m$
 $x \in R^n$

Sobre este problema podemos apresentar algumas definições.

Definição de Restrição Ativa

Seja x* uma solução factível de PP3. Uma restrição $g_{\hat{L}}(x)$ é dita ativa em x* se $g_{\hat{L}}(x^*) = 0$.

O conjunto de indices das restrições ativas em um ponto x^* é denotado por

$$I(x^*) = \{i/g_i(x^*) = 0\}$$

Definição de Direção Viável

Seja x* uma solução factivel de PP3. Uma direção d \tilde{e} dita vi \tilde{a} vel a partir de x* se existir σ > 0 escalar tal que para todo α com $0 \le \alpha \le \sigma$ o ponto x* + αd for um ponto factivel de PP3.

Ao conjunto:

$$C_d = \{ d/d \neq 0 \text{ com } x^* + \alpha d \text{ ponto factivel } \}$$

da-se o nome de Cone de Factibilidade ou de direções viaveis.

Condição Necessária e Suficiente de Minimo Local para PP3

Seja x^* um ponto de minimo local de PP3. Então para toda a direção viavel d a partir deste ponto não devemos ter nenhuma melhora da função objetivo ou,

$$\{ (x^* + \alpha d) \geq \{ (x^*) \}$$

ainda, não deve existir nenhum produto escalar não negativo entre qualquer direção viável d e o gradiente, (figura 2.6).

$$\nabla \delta^{t} \{x^*\} \quad d \geq 0$$

Isto equivale dizer que a derivada direcional de 6 em qualquer direção viável deve ser não negativa [2].

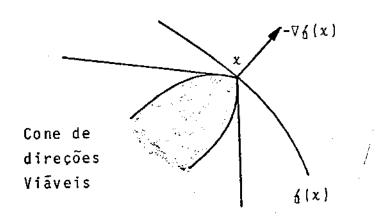


fig. 2.6. : Exemplo de um Ponto de Minimo

Seja agora λ as restrições ativas do problema PP3 num ponto x^* factivel, $\lambda \in I(x^*)$. Seja d uma direção viavel qualquer a partir de x^* .

Para $\alpha > 0$ escalar e suficientemente pequeno, expandindo g_j (x* + αd) em série de Taylor podemos ter:

$$g_{i}(x^{*} + \alpha d) = g_{i}(x^{*}) + \alpha \nabla g_{i}(x^{*})^{t} \cdot d + \alpha^{2} \Theta^{2} \leq 0$$

como

$$g_{i}(x^{*}) = 0$$

$$\alpha \nabla g_{i}(x^{*})^{t} d + \alpha^{2} \Theta^{2} \leq 0$$

dividindo por α e passando o limite temos

$$\nabla g_{i}(x^{*})^{t} d \leq 0$$

o que nos mostra a necessidade de, sendo d direção viãvel, haver uma projeção não positiva sobre $\nabla g_{i}(x^*)$.

Lema de Farkas

Seja { $a_{\hat{i}}$ } $i=1,\ldots,m$ um conjunto de vetores linear mente independentes do R^n . Se para todo $y \in R^n$ com $a_{\hat{i}}^{\hat{t}} y \leq 0$, $i=1,\ldots,m$ tivermos $b^{\hat{t}} y \leq 0$ com $b \in R^n$ então existe $\alpha_{\hat{i}} \geq 0$ escalar tal que

$$b = \sum_{i=1}^{m} \alpha_i \quad a_i$$

O lema [1] nos diz que b pertence ao cone convexo formado pelos elementos a_i se e somente se existir um elemento $y \in R^n$ satisfazendo as duas desigualdades acima.

Isto equivale a dizer que se para todo y pertencente ao cone complementar formado pelos elementos $a_{\dot{L}}$ tivermos um elemento b talque $b^{\dot{L}}$ $y \leq 0$ com $b \in \mathbb{R}^{N}$ então b pertence ao cone formado pelos $a_{\dot{L}}$ (figura 2.7)

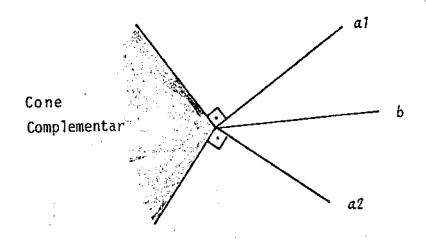


Fig. 2.7 : Cone Complementar

Problema Dual

Seja PP3 e a função Lagrangeana associada

$$L(x, \lambda) = \int_{0}^{\infty} (x) + \lambda^{t} g(x)$$
, com $\lambda \ge 0$.

Seja x^* a solução de PP3. Assumamos ser este ponto um ponto regular e que a Hessiana do Lagrangeano neste ponto seja positiva definida.

Então o problema dual associado a PP3 é definido por [2]:

$$\max_{\lambda} \psi(\lambda)$$

$$\lambda$$

$$\lambda \geq 0 \quad e \quad \lambda \in \mathcal{D}$$

$$\min_{\mathcal{D} = \{\lambda / x, \lambda\} \text{ existe }\}$$

 ψ (λ) \bar{e} chamada de função dual e \bar{e} expressa como

$$\psi (\lambda) = \min_{x} \{ \{ \{ (x) + \lambda^{t} g(x) \} \}$$

Podemos apresentar uma interpretação intuitiva à formulação. No problema PP3 as restrições $g_{\hat{\mathcal{L}}}(x) \leq 0$ podem se referir à disponibilidade do recurso escasso $\hat{\mathcal{L}}$, numa situação em que a função objetivo contabiliza o custo total de outros recursos livres necessários para a operação das atividades ao nível x. Neste contexto, para evitar as dificuldades impostas pelas restrições $g_{\hat{\mathcal{L}}}(x) \leq 0$ associa-se prejectiva de su contexto.

ços $\lambda_i \geq 0$ ā não satisfação dessas restrições (de recursos escas sos), incorporando à função objetivo o termo λ^t g(x) onde λ \tilde{e} um vetor não negativo de preços ou também chamado de variáveis duais.

Ponto de Sela

Um par $\{x^*, \lambda^*\}$, x^* factivel e $\lambda^* \ge 0$ ē um ponto de sela (PS) da função Lagrangeana se e somente se

- $L(x^*, \lambda^*) \le L(x, \lambda^*)$ para qualquer x
- $L(x^*, \lambda^*) \ge L(x^*, \lambda)$ para qualquer $\lambda \ge 0$

Teorema de Kuhn-Tucker

Seja PP3 com g, g ϵ C^1 . Sejam também as seguintes restrições, ditas restrições de qualificação (ponto regular)

- 1. $\nabla g_{i}(x^{*})$, is I (x^{*}) sejam linearmente independentes;
- 2. $g_{i}(x^{*})$, i=1, ...,m sejam lineares ou convexas com ponto interior, $g_{i}(x^{*}) < 0$.

Uma condição necessária para que x^* seja minimo local de (PP3) \bar{e} que exista λ^* tal que:

- 1. λ* ≥ 0
- 2. $g(x^*) \leq 0$
- 3. $\lambda^{*t} g(x^*) = 0$
- 4. $\nabla f(x^*) + \Sigma \lambda_{\mathcal{L}}^* \nabla g_{\mathcal{L}}(x^*) = 0$

Pela condição necessária de PP3 apresentada anteriormente e com o lema de Farkas não é difícil visualizar as condições 1 e 4.

A condição 2 sai da propria restrição. A condição 3 mostra que se uma restrição $g_{\hat{\mathcal{L}}}$ (x*) esta ativa o respectivo multiplicador de Lagrange associado a ela deverá ser não negativo. Caso a restrição não esteja ativa o multiplicador associado a ela será nulo.

A condição 4 anterior é uma condição necessária para que x* se-

ja minimo local. Se este minimo existir, a otimalidade do ponto esta garantida. Com isto podemos definir como condição de otimalidade:

- 1. λ* ≥ 0
- $2. \quad g(x^*) \leq 0$
- 3. $\lambda^* g(x^*) = 0$
- 4. $L(x^*, \lambda^*) = \delta(x^*) + {\lambda^*}^t g(x^*) = x^* \text{ minimiza } L(x, x^*)$

A condição enunciada, \tilde{e} de suficiência [33] para a otimalidade, podendo não ser condição necessária, no sentido de que se x^* \tilde{e} ponto de \tilde{o} timo do problema PP3, pode não haver $\lambda^* \geq 0$ tal que $(x^*$, λ^*) satisfaça 3 e 4. Estas condições poderiam vir a ser necessárias se condi - ções de convexidade sobre PP3 existissem.

Desta forma, em conjunto, as condições de Kuhn-Tucker são necessãrias para a satisfação das condições de otimalidade que por sua vez são suficientes para garantir a existência de um ótimo global no problema PP3.

Relação entre a Condição de Kuhn-Tucker - Otimalidade - Ponto de Sela e Dualidade

Para que tenhamos uma visão mais global dos problemas definire - mos:

pp4 min
$$f(x)$$

x

s.a. $h(x) = 0$
 $g(x) \le 0$

com

 $f: R^n \longrightarrow R$
 $h: R^n \longrightarrow R^n$
 $g: R^n \longrightarrow R^m$
 $g: R^n \longrightarrow R^m$

Para este problema iremos apresentar as implicações que estabel<u>e</u> cem as relações entre ponto de õtimo global, as condições de Kuhn-Tuc-ker (KT), as condições de otimalidade (CO), as condições de ponto de sela (PS), e as condições de dualidade (CDU).

As condições de otimalidade, de ponto de sela, e de dualidade são condições de suficiência [23] podendo ser demonstrada serem equivalentes para o problema PP4.

As condições de Kuhn-Tucker tidas como necessárias para a otima lidade não garantem por si sõ a existência de um ponto de mínimo global. Para que, mediante a satisfação das condições necessárias de Kuhn-Tucker, se diga que o ponto é mínimo global, devemos ter a condição de convexidade (CC) de PP4, isto é, g_i , $i=1,\ldots,m$ funções convexas e h_i , $j=1,\ldots,\ell$ lineares.

As condições de otimalidade são suficientes para assegurar que x^* seja solução ótima global se a solução de mín $\{\{x\}+\lambda^*$ $\{g\{x\}+\mu^*$ $\{x\}$ for global, isto \tilde{e} , se existir a condição de convexidade.

Para que se estabeleça uma relação entre a condição necessária de Kuhn-Tucker e a existência de um ponto de ótimo global algumas condições devem ser acrescidas à de Kuhn-Tucker. São elas:

- . Restrições de qualificação (Q);
- . Diferenciabilidade (CDI) de

6,
$$g_{i}$$
, $i=1$, ..., $m \in h_{j}$, $j=1$, ..., ℓ

Assim existindo essas restrições associadas a Kuhn-Tucker pode mos dizer que se um ponto as satisfaz então ele e um ponto de otimo global.

É interessante notar que existem três formas distintas, todas equivalentes, de se enunciar condições de suficiência; nenhuma dessas formas exige o conceito de convexidade e nem mesmo de diferenciabilida de. Por outro lado, existe apenas uma forma de se enunciar condições de necessidade (Kuhn-Tucker), e para tal há necessidade de se usar diferenciabilidade, além das restrições de qualificação. Finalmente é importante notar que com convexidade as condições necessárias são também suficientes para a ocorrência de ótimo. Assim, as condições de necessidade de Kuhn-Tucker passam a ser também de suficiência.

A figura 2.8 mostra as diversas condições comentadas e suas relações.

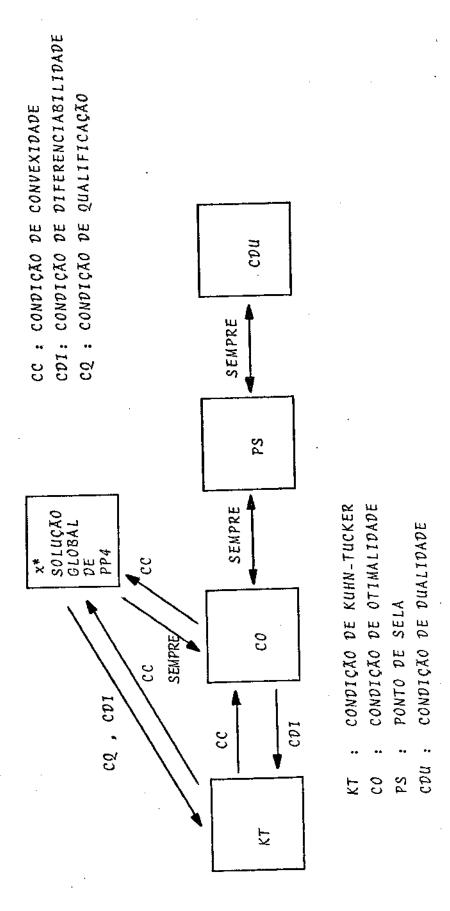


Fig. 2.8 : Relação entre as Condições

Ela resume os principais resultados aqui apresentados, relacionando as condições de suficiência e de necessidade para a exis tência de ótimo global no problema de programação matemática.

De maneira sintētica podemos apresentar, para o problema PP4, todas as condições aqui analisadas como:

Condições Necessárias de Kuhn-Tucker

2.
$$g(x^*) \le 0$$

 $h(x^*) = 0$

3.
$$\lambda^{*t} g(x^*) = 0$$

4.
$$\nabla f(x^*) + \sum_{i=1}^{m} \lambda_i \nabla g_i(x^*) + \sum_{j=1}^{\ell} \mu_j \nabla h_j(x^*) = 0$$

Condições Suficientes de Otimalidade

1.
$$x^*$$
 minimiza $L(x, \lambda^*, \mu)$

2.
$$g(x^*) \le 0$$

 $h(x^*) = 0$

3.
$$\lambda^{*t} g(x^*) = 0$$

Condições Suficientes de Ponto de Sela

Para
$$L(x, \lambda, \mu) = \delta(x) + \lambda^{t} g(x) + \mu^{t} h(x)$$

com $x \in \lambda \ge 0$

devemos ter

$$L (x^*, \lambda^*, \mu^*) \leq L (x, \lambda^*, \mu^*)$$

$$L (x^*, \lambda^*, \mu^*) \geq L (x^*, \lambda, \mu)$$

Condições Suficientes de Dualidade

1.
$$\lambda^* \geq 0$$

2.
$$g(x^*) \le 0$$

 $h(x^*) = 0$

3.
$$\lambda^{*t} g(x^*) = 0$$

4.
$$\{(x^*) = \psi(\lambda^*)$$

2.3. Lagrangeano Aumentado

2.3.1. 0 Método

Considere o problema PP2 definido anteriormente

PP2: min
$$f(x)$$

x

s.a. $h(x) = 0$
 $f: \mathbb{R}^n \longrightarrow \mathbb{R}$
 $h: \mathbb{R}^n \longrightarrow \mathbb{R}^\ell$
 $x \in \mathbb{R}^n$

Assuma que g e toda componente $h_{\hat{\mathcal{L}}}$ de h sejam duas vezes diferenciaveis, isto $\tilde{\mathbf{e}}$, pertençam a classe C^2 . Assuma também que os $\nabla h_{\hat{\mathcal{L}}}$ são linearmente independentes e não nulos em qualquer \mathbf{x} \in \mathbb{R}^n tal que $h(\mathbf{x}) = 0$ (ponto regular)

Para solução de tais problemas são comumente usadas técnicas que reduzem estes problemas a uma sequência de problemas de otimização irrestrita. Estas técnicas são chamadas de técnicas de transformação.

Uma das classes de métodos mais importantes entre os de transformação usadas na solução de problemas do tipo PP2 e baseada na minimização sequencial da função Lagrangeana.

$$L(x, \lambda) = \int_{0}^{\infty} (x) + \lambda^{t} h(x)$$
 (2.1)

sendo a sequência de multiplicadores de Lagrange gerada, por exem-

plo, pela expressão:

$$\lambda^{k+1} = \lambda^{k} + \alpha^{k} h \left(x^{k} \right) \tag{2.2}$$

onde x^k ē o ponto de minimo de $L(x, \lambda^k)$, α^k ē um parâmetro escalar [15], e k o passo da sequência.

Este método apresenta sérias desvantagens. Usualmente o problema PP2 é exigido ter estrutura convexa. É necessário também minimizar a função Lagrangeana um grande número de vezes, uma vez que a convergência é relativamente lenta.

Este método tem sido aplicado a uma limitada classe de probl<u>e</u> mas, nos quais a minimização do Lagrangeano pode ser executada eficientemente devido a uma estrutura especial.

O Método de Penalidade é também um método de transformação bas tante utilizado. Este método é um dos mais populares métodos de transformação e tem sido aplicado a uma larga variedade de proble mas devido a sua simplicidade.

Este metodo, a exemplo de Lagrange, incorpora a função objetivo um termo que atribui a nova função uma penalidade devido a violação das restrições. Esta nova função pode ser escrita como:

$$\{(x) + c \phi [h(x)]$$
 (2.3)

onde:

O procedimento para se resolver PP2 pelo metodo da função penalidade \vec{e} : partindo de um valor do parâmetro de penalidade (c), \vec{m} nimiza-se o problema irrestrito. Do valor da variavel x^k , calcula-se $\left|x^k-x^{k-1}\right|$ compara-se com um fator δ de convergência. Caso esta diferença seja menor que δ da-se x^k como solução, caso contrário atua

liza-se c^k e repete-se o processo.

Como vantagem do método temos a sua simplicidade e a possibilidade de se manipular problemas sem requerer programas computacionais sofisticados.

Por outro lado o método das Penalidades sofre de taxa de convergencia e instabilidade numérica associadas às más condições no problema induzido por altos valores assumidos pelo parâmetro de penalidade.

A convergência para a solução do problema se dã com a necessidade de se tender o multiplicador de penalidade a infinito [15].

No final da década de 60 Hestenes [16] propôs um novo método de transformação, batizado como Método do Lagrangeano Aumentado, que mostrou melhores características em relação aos métodos de Penalidade e do Lagrangeano.

Cabe salientar que nenhuma suposição serã feita com respeito a convexidade de ℓ e a linearidade dos componentes h_{j} .

O metodo proposto por Hestenes tem o intuito de acoplar ao tão conhecido Lagrangeano o metodo das Penalidades. Neste metodo, a pe-nalidade e adicionada não a função, mas ao Lagrangeano da função formando o Lagrangeano Aumentado.

Genericamente pode-se escrever o Lagrangeano Aumentado de PP2 como:

$$\mathcal{L}(x, \lambda, c) = \delta(x) + \lambda^{t} h(x) + c \phi[h(x)] \qquad (2.4)$$

onde ϕ [h {x}] \tilde{e} uma função penalidade qualquer, com as seguintes caracteristicas:

$$\phi [h \{x\}] = 0 \qquad \text{se e somente se } h \{x\} = 0$$

$$\phi [h \{x\}] > 0 \qquad \text{para} \qquad h \{x\} \neq 0$$

Para uma melhor visualização da função Lagrangeana Aumentada e também da função φ são apresentadas a seguir algumas características geo métricas do método que auxiliarão seu atendimento.

Foi visto numa seção 2.2 deste capítulo a relação de ponto de sela, ponto ótimo, condição de Kuhn-Tucker e condição de otima lidade.

Então para o Lagrangeano escrito como

$$L \{x, \lambda\} = \{(x) + \lambda^{t} h(x),$$

sob a hipotese de convexidade pode-se estabelecer a seguinte equivalência

$$\{x^*, \lambda^*\}$$
 ponto de sela, para $L(x, \lambda)$
 $x^* \stackrel{min}{x} L(x, \lambda^*)$ com $h(x^*) = 0$ (2.5)

x* é o ponto ótimo do problema primal e

 $\lambda*$ \tilde{e} o ponto \tilde{o} timo do problema dual

Considere o conjunto R definido como

$$R = \{ (y^0, y) / y^0 = \{ (x), y = h(x) \}$$
 (2.6)

e a função

$$fm(y) = \{ \min_{x} f(x), h(x) = y \}$$
 (2.7)

Sobre este conjunto R e a função δm $\{y\}$ pode-se notar que a minimização de L $\{x, \lambda^*\}$ associado ao problema PP2 e equivalente a encontrar um hiperplano,

$$y^0 = -\lambda *^t y + K$$

suporte no ponto $(6(x^*), 0)$

Se R for um conjunto convexo tal hiperplano sempre existirã, e serã bem conhecido $(\frac{\partial \oint m}{\partial y} = -\lambda^*)$. Caso o conjunto R não seja convexo nada se pode garantir com relação a existência do hiperplano, or je ginando os tão conhecidos "GAP" de dualidade. (figura 2.9) [14].

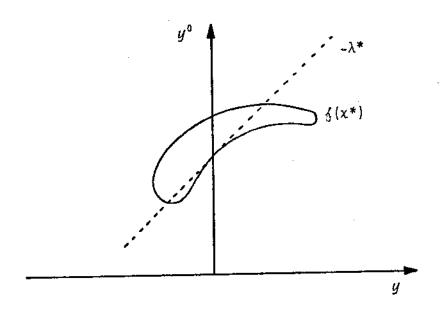


Fig. 2.9 : Conjunto R não Convexo - "GAP"

Afim de que mesmos os casos de conjuntos não convexos possuam suporte, foi proposto que em lugar de um hiperplano, usar-se uma hi - persuperfície.

Esta hipersuperficie se apresenta em sua forma mais comum como a de uma elípse paraboloide, sendo esta então a forma do Lagrangeano Aumentado.

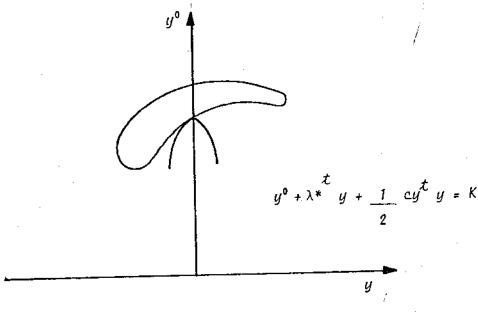


Fig. 2.10 : Hipersuperficie - Paraboloide Elíptico

Com isto podemos apresentar um teorema importante:

Teorema : Suponha que a elípse paraboloide $y^0 + \lambda^{*t}y + \frac{1}{2}cy^ty = K$ suporte localmente o conjunto R no ponto $\{\{(x^*), 0\}\}$ isto \tilde{e} ,

$$\frac{\partial^2 \oint m (0)}{\partial y^2} > -c II_m = K = \oint (x^*) com II_m$$
 representando a matriz

identidade m-dimensional. Se x^* e o correspondente λ^* satisfazem a condição de normalidade então x^* , minimiza o Lagrangeano Aumentado [14]:

$$\mathcal{L}(x, \lambda, c) = \int_{0}^{\infty} (x) + \lambda^{*t} h(x) + \frac{1}{2} c h^{t}(x) h(x)$$
 (2.8)
Demonstração:

Por R^n ser um conjunto aberto pode-se escrever:

$$\frac{\partial L(x^*, \lambda^*)}{\partial x} = L_{\chi}(x^*, \lambda^*) = 0 \qquad (2.9)$$

Pelo Lagrangeano Aumentado:

$$\mathcal{L}(x, \lambda, c) = L(x, \lambda) + \frac{1}{2} c h^{t}(x) h(x)$$
 (2.10)

$$\frac{\partial \mathcal{L}(x, \lambda^*, c) = L_{\chi}(x^*, \lambda^*) + c \sum_{i=1}^{\ell} h_i(x) \nabla h_i(x) \qquad (2.11)}{i=1}$$

Então no ponto x^* , $h_{\dot{\mathcal{L}}}\{x\} = 0$ para todo $\dot{\mathcal{L}}=1,\ldots,\ell$, implicando em:

$$\mathcal{L}_{x}(x^{*}, \lambda^{*}, c) = \mathcal{L}_{x}(x^{*}, \lambda^{*})$$
 (2.12)

A Hessiana de $\mathcal{L}(x, \lambda^*, c)$ serã:

$$\mathcal{L}_{xx}(x, \lambda^*, c) = L_{xx}(x, \lambda^*) + c \sum_{i=1}^{\ell} \nabla h_i(x) \nabla h_i^{t}(x) + c \sum_{i=1}^{\ell} h_i(x) H_{h_i}(x)$$
 (2.13)

onde $H_{h_{\hat{\mathcal{L}}}}$ (x) representa a Hessiana da restrição $h_{\hat{\mathcal{L}}}$ (x).

No ponto x*:

$$L_{\chi\chi}(x^*, \lambda^*, c) = L_{\chi\chi}(x^*, \lambda^*) + c \sum_{i=1}^{L} \nabla h_i(x^*) \nabla h_i(x^*)$$
 (2.14)

O diferencial dL_{χ} (x, λ^*) \bar{e} dado por:

$$dL_{\chi}(x, \lambda^*) = L_{\chi\chi}(x, \lambda^*) dx + L_{\chi\chi}(x, \lambda^*) d\lambda \qquad (2.15)$$

No ponto x*:

$$dL_{\chi}\{x^{*}, \lambda^{*}\} = L_{\chi\chi}\{x^{*}, \lambda^{*}\} dx + \sum_{i=1}^{L} \nabla h_{i}\{x^{*}\} d\lambda_{i} = 0$$
 (2.16)

Alem disto, pela definição de R e 🛭 🔞 😭 :

$$dy_i = dh_i = \nabla h_i^t$$
 (x) dx para todo $i=1,...,\ell$ (2.17)

Se $h_{x}(x)$ denotar a matriz:

$$h_{\chi}(x) = \begin{bmatrix} \nabla^{t}h_{1}(x) \\ \nabla^{t}h_{2}(x) \\ \vdots \\ \nabla^{t}h_{\ell}(x) \end{bmatrix} \ell \times n$$

$$d\lambda = \begin{bmatrix} d\lambda_{\dot{i}} \\ d\lambda_{2} \\ d\dot{\lambda}_{\dot{\ell}} \end{bmatrix} \qquad dy = \begin{bmatrix} dy_{1} \\ dy_{\dot{2}} \\ d\dot{y}_{\dot{\ell}} \end{bmatrix}$$

pode-se escrever:

$$n\begin{bmatrix} L_{\chi\chi}\{\chi, \lambda^*\} & h_{\chi}^{\dagger}(\chi) \\ h_{\chi}(\chi) & 0 \end{bmatrix} \begin{bmatrix} d\chi \\ d\lambda \end{bmatrix} = \begin{bmatrix} 0 \\ dy \end{bmatrix}$$

$$n = n+\ell$$
(2.18)

Para a condição de normalidade, isto \tilde{e} , de não singularidade do ponto x^* , deve-se ter :

A inversa existe e serã dada por:

dx = B dy e assim:

$$\frac{1}{2} dx L_{xx} \{x^*, \lambda^*\} dx = \frac{1}{2} dy B L_{xx} \{x^*, \lambda^*\} B dy \qquad (2.19)$$

com L_{xx} $\{x^*, \lambda^*\} \neq \emptyset$

Agora seja a seguinte relação:

$$\begin{cases} \{x\} = L(x, \lambda) - \lambda^{t} h(x) \\ \text{Avaliando } df(x) \text{ em } \lambda = \lambda^{*} : \end{cases}$$

$$df(x) = L_{x}^{t}(x, \lambda^{*}) dx + \frac{1}{2} dx^{t} L_{xx}(x, \lambda^{*}) dx - \lambda^{*t} dh - h^{t}(x) d\lambda$$

$$(2.20)$$

$$dh = \begin{bmatrix} dh_1 \\ dh_2 \\ \vdots \\ dh_p \end{bmatrix}$$

No ponto x* ela serã:

$$d_{0}^{t}(x^{*}) = L_{x}^{t}(x^{*}, \lambda^{*}) dx + \frac{1}{2} dx^{t} L_{xx}(x^{*}, \lambda^{*}) dx - \lambda^{*t} dh \qquad (2.22)$$

Pela igualdade (2.19):

$$d \{ (x^*) = L_{\chi}^{t} (x^*, \lambda^*) dx + \frac{1}{2} dy^{t} B^{t} L_{\chi \chi} (x^*, \lambda^*) B dy - {\lambda^*}^{t} dh$$
(2.23)

οu

$$df(x^*) = L_X(x^*, \lambda^*) dx + \frac{1}{2} dy^t B^t L_{XX}(x^*, \lambda^*) B dy - {\lambda^*}^t dy$$
(2.24)

Consequentemente pode-se daqui obter a matriz:

$$\frac{\partial^2 \delta m(0)}{\partial y^2} = B^{t} L_{xx}(x^*, \lambda^*) B \qquad (2.25)$$

Pelo teorema da matriz inversa no ponto x^* , λ^* tem-se:

$$B = L_{\chi\chi}^{-1} \{x^*, \lambda^*\} h_{\chi}^{t} \{x^*\} [h_{\chi} \{x^*\} L_{\chi\chi}^{-1} \{x^*, \lambda^*\} h_{\chi}^{t} \{x^*\}]$$
(2.26)

Então:

$$\frac{\partial^{2} \delta m \{0\}}{\partial u} = \left[h_{\chi} \{x^{*}\} L_{\chi\chi}^{-1} \{x^{*}, \lambda^{*}\} h_{\chi}^{t} \{x^{*}\} \right]^{-1}$$
(2.27)

Considerando a elipse paraboloide $y^0 + \lambda^{*t} y + \frac{1}{2} c y^t y = K$ \tilde{e} possível visualizar que se c > 0 com valor tal que $\frac{\partial^2 fm}{\partial y^2} > -c$ IIm, (2.28) então a elipse paraboloide pode supor

tar R em $(6(x^*), 0)$ localmente.

Pela equação (2.25) e (2.28) podemos escrever:

$$B^{t} L_{xx} (x^{*}, \lambda^{*}) B > -c IIm$$
 (2.29)

ou

Equivalentemente:

$$d_{x}^{t} [L_{xx}(x^{*}, \lambda^{*}) + c h_{x}^{t}(x^{*}) h(x^{*})] dx > 0$$
 (2.31)

Pela equação (2.14):

$$dx^{t} L_{xx}(x^{*}, \lambda^{*}) dx > 0$$

que e a segunda condição de suficiência para x* ser ponto de ótimo

Usando esta nova função Lagrangeana podemos apresentar uma relação equivalente a (2.5) para problemas não convexos.

$$(x^*, \lambda^*)$$
 \in o ponto de sela local de $\mathcal{L}(x, \lambda, c)$
 x^* minimiza $\mathcal{L}(x, \lambda^*, c)$ localmente com $h(x^*) = 0$ (2.33)
 x^* \in o timo local do problema primal e

λ* ē otimo local do problema dual.

Como visto, o hiperplano definido pelo tradicional Lagrangea - no pode não ser suporte de um conjunto R não convexo no ponto $\{\delta(x^*),0\}$ devido a curvatura de $\delta_m(y)$ não ser considerada. Contraria mente o método das Penalidades, onde a curvatura de $\delta_m(y)$ é levada em conta, pode suportar o conjunto R mesmo sendo este não convexo . Entretanto a não consideração da condição de tangência $\delta_m(0) = -\lambda^*$

representada pela parcela λ^t h (x) torna necessaria o aumento do parametro de penalidade, c, para infinito afim de suportar R em $\{f(x^*), 0\}$. [14].

2.3.2 Convergência do Método

Seja a expressão Lagrangeano. Pelo teorema de Kuhn-Tucker sabemos que:

$$L_{\chi}(x, \lambda) = \nabla f(x) + \sum_{i=1}^{\ell} \lambda_{i} \nabla h_{i}(x) = 0$$
 (2.34)

Assume-se que a função Penalidade $\phi[\cdot]$ (2.4) seja duas vezes diferenciável em um intervalo aberto contendo o zero e ϕ " [0] = 1. Pela característica de $\phi[\cdot]$ presente em (2.8), ve-se que a forma $\phi[t] = \frac{1t}{2}$

é a mais simples e se adequa às condições.

Com isto pode-se tomar a expressão (2.11) reescrevendo-a de maneira mais genérica como:

$$\mathcal{L}_{\mathbf{x}}(\mathbf{x},\lambda) = \nabla f(\mathbf{x}) + \sum_{i=1}^{\ell} \lambda_{i} \nabla h_{i}(\mathbf{x}) + c \sum_{i=1}^{\ell} \phi'[h_{i}(\mathbf{x})] \nabla h_{i}(\mathbf{x}) = 0$$

$$(2.35)$$

Esta expressão pode ser reescrita como:

$$\nabla \delta(x) + \sum_{i=1}^{\ell} \{ [\lambda_i + c \, \phi'[h_i(x)]] \, \nabla h_i(x) \} = 0$$
(2.36)

Comparando (2.34) com (2.36) pode-se tirar a seguinte relação:

$$\lambda_{i}^{k+1} = \lambda_{i}^{k} + c^{k} \phi'[h_{i}(x^{k})]$$

que é a expressão de atualização na estimativa do multiplicador de Lagrange definida por Hestenes onde o indice superior & representa a iteração.

Esta expressão iterativa constitui um forte resultado de con - vergência para problemas não convexos.

2.3.3 Algoritmo Associado ao Método

Neste algoritmo são tomados como pontos de partida as restri - ções, as estimativas iniciais do multiplicador de Lagrange e do multiplicador de penalidade e também um ponto inicial.

Com isto o procedimento deve ser o seguinte:

Passo 1 - Dado λ^k , c^k , k indicando a iteração, resolve-se o sub-problema:

Min
$$L(x, \lambda^k, c^k)$$

Passo 2 - Verifica-se as condições de finalização que são:

$$|h(x^{k})| \leq \varepsilon$$

$$|\mathcal{L}(x^{k-1}, \lambda^{k-1}, c^{k-1}) - \mathcal{L}(x^{k}, \lambda^{k}, c^{k})| \leq \varepsilon$$

onde ε ē um numero positivo e suficientemente pequeno.

Passo 3 - Se nenhuma das condições acima foi satisfeita, então atualiza-se os multiplicadores de Lagrange e o de penalidade por:

$$\lambda^{k+1} = \lambda^k + c^k h(x^k)$$
 $c^{k+1} = \beta c^k$ onde $\beta \in \text{um}$ escalar major que 1.

Fazer $k = k+1$, retornando para o primeiro passo.

Sobre este metodo algumas considerações importantes podem ser levantadas.

Uma das grandes vantagens deste método, sobre o das penalida - des é não haver necessidade de se aumentar c para infinito. Para o método das penalidades tal exigência pode ocasionar mal condiciona - mento numérico do problema, o qual pode ser eliminado ou ao menos moderado no Lagrangeano Aumentado. Um dos pontos problemáticos deste método é como determinar o valor de c que leve o método a uma rápida convergência. Esta situação na verdade não se apresenta como um grande problema se for adotado um esquema de atualização do parâme tro de penalidade de tal forma que c seja monotomicamente incrementado. Pode-se, por exemplo ajustar c pela seguinte expressão:

$$c^{k+1} = \beta c^k, \beta > 1$$
 fator constante (2.38)

E notório, que altos valores de c induz a um mal condicionamen to numérico, tornando o problema mín $\pounds(x, \lambda^k, c^k)$ mais difícil de se resolver. Por outro lado valores altos deste parâmetro tornam a convergência mais rápida. No balanço destas condições Bertsekas [15] recomenda:

. O parâmetro de penalidade não deve ser aumentado rapidamente;

β não deve ser muito maior que 1.

. O ponto $x(\lambda^k, c^k)$ relativo \tilde{a} (k)-esima minimização deve ser utilizado como ponto de calculo para a iteração (k+1)-esima. Esta política tende a reduzir o efeito de ma-condição, uma vez que $x(\lambda^k, c^k)$ e $x(\lambda^{k+1}, c^{k+1})$ tendem a se aproximarem.

Outro esquema recomendado por Powell [42] \tilde{e} o de se incrementar c^k pela expressão anteriormente citada, somente se a violação da restrição medida por ||h(x)|| não for diminuida de um certo fator , isto \tilde{e} :

Se
$$||h(x(\lambda^k, c^k))|| > \gamma ||h(x(\lambda^{k-1}, c^{k-1}))||$$

Então
$$c^{k+1} = \beta c^k$$

Senão
$$c^{k+1} = c^k$$

onde $\beta > 1$ e $\gamma < 1$ são escalares.

Este esquema é considerado um bom procedimento.

2.3.4 Aplicações a Problemas com Restrições de Desigualdade

Os trabalhos originais sobre Lagrangeano Aumentado não trataram da restrição de desigualdade. Entretanto, ela pode ser considerada con vertendo-se, por exemplo, tais restrições em restrições de igualdade acrescentando variáveis de folga, sem que isto reflita numa perda de eficiência computacional pelo aumento da dimensionalidade [2].

Reconsidere o problema PP3 envolvendo restrições de desigualdade.

PP3 min
$$f(x)$$
 x
 $g(x) \leq 0$
 $com \quad f: R^n \longrightarrow R$
 $g: R^n \longrightarrow R^m \quad x \in R^n$

O problema acima é equivalente ao seguinte problema.

PP3:
$$\min_{\mathbf{x}} \{(\mathbf{x})\}$$

$$g_{i}(\mathbf{x}) + v_{i} = 0 \quad i = 1, ..., m$$

$$com_{i} : \mathbb{R}^{n} \longrightarrow \mathbb{R}$$

$$g_{i} : \mathbb{R}^{n} \longrightarrow \mathbb{R}$$

 $v_{\acute{\ell}} \in R, \ \acute{\iota} = 1, \ \ldots, m$ onde $v_{\acute{\ell}}$ e uma das variaveis de folga do problema original.

Com isto, se o problema original possui solução, pode-se aplicar o método do Lagrangeano Aumentado sobre o problema modificado.

$$\mathcal{L}(x, \lambda, \nu, c) = \mathcal{L}(x) + \sum_{i=1}^{m} \lambda_{i} [g_{i}(x) + \nu_{i}] + c \sum_{i=1}^{m} \phi[g_{i}(x) + \nu_{i}]$$

$$(2.39)$$

com φ [·] tendo as seguintes propriedades:

.
$$\phi [0] = 0$$

. $\phi'[0] = 0$
. $\lim \phi [t] = -\infty$
 $t \longrightarrow -\infty$
. $\lim \phi [t] = +\infty$

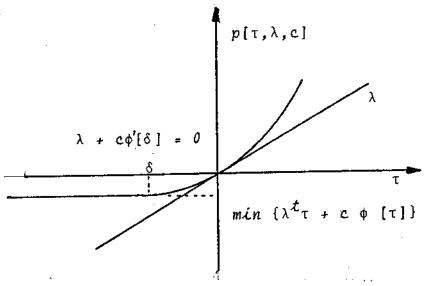
Então a minimização de $\mathscr{L}(x,\lambda,\nu,c)$ pode ser primeiramente executada com respeito a $\nu_{\dot{\mathcal{L}}},\ \ldots \nu_m$ produzindo:

$$L(x, \lambda, c) = v L(x, \lambda, v, c) = f(x) + \sum_{i=1}^{m} p[g_{i}(x), \lambda_{i}, c]$$
(2.40)

onde p[.] ē definido por:

$$p[.] = \begin{cases} \lambda_{i} g_{i}(x) + c\phi[g_{i}(x)] & \text{se } \lambda_{i} + c\phi'[g_{i}(x)] \geq 0 \\ \min_{\zeta \in R} \{\lambda_{i}\zeta + c\phi[\zeta]\} & \text{se } \lambda_{i} + c\phi'[g_{i}(x)] < 0 \end{cases}$$

$$(2.41)$$


No processo iterativo a expressão de atualização do multiplica dor de Lagrange ficara [15]:

$$\lambda^{k+1} = \max \{0, \lambda^{k} + c^{k} \phi'[g_{i}(x(\lambda_{i}^{k}, c^{k}))]\}$$

$$= \max \{0, \lambda^{k} + \phi'[c^{k} g_{i}(x(\lambda_{i}^{k}, c^{k}))]\}$$
(2.42)

onde $x(\lambda^k, c^k)$ minimiza localmente $\mathcal{L}(., \lambda^k, c^k)$ (expressão 2.39).

Mesmo tendo usado variaveis de folga para transformar o problema PP3 no PP3' o multiplicador acima não envolve em sua expressão tal variaveis.

.Fig. 2.11 : Função de Penalidade para o Problema PP3

2.4. Sistemas Hierárquicos - Teoría e Metodología

A teoria hierarquica de sistemas é ainda uma área relativamente nova e promissora. Esta teoria baseia-se na decomposição de um sistema em vários subsistemas formando uma estrutura hierarquica. Implícita a toda a teoria hierarquica de sistemas está a ideia que nos mos tra ser geralmente mais fácil se trabalhar com vários sistemas sim ples do que com um sistema complexo. Portanto, a base desta ideia se resume em decompor um sistema grande e complexo em subsistemas e en tão manipulá-los de forma que o resultado do sistema original seja encontrado.

Antes de mais nada, vale aqui ressaltar que não é sempre verdade dizer que "decompor" um sistema é necessário para se obter uma solução para o mesmo. Não devemos esquecer que as técnicas de decomposição envolvem custo associado ao desempenho, dado o alto fluxo de informação envolvido. Em contrapartida a decomposição de sistemas pode melhorar os problemas de ocupação de memória no processamento de modelos devido a estrutura modular fornecido pela decomposição.

Os computadores tiveram grande influência no desenvolvimento da otimização hierárquica. Inicialmente o poder de manipular dados pelos computadores, levou a se idealizar sistemas integrados baseados em computadores centrais. Entretanto para os sistemas complexos e de grande porte, isto é uma característica que torna esta solução muitas vezes difícil. Com isto verificou-se a necessidade de se decompor as varias tarefas centralizadas em varias subtarefas manipulaveis, controladas por uma estrutura computacional que seja equivalente ou aproxime à estrutura de controle centralizada correspondente.

Independentemente de como um sistema seja decomposto, as soluções dos subsistemas gerados, por si sõ, não são bastante para se apresentarem como solução do sistema original. Isto nos faz ver a necessidade de acoplamento ou interligação seja considerada pela estrutura de decomposição adotada.

Quanto à convergência dos métodos de otimização hierárquica, podemos dizer que sofrem dificuldades com a escolha do esquema de de composição ou do princípio de coordenação. A descentralização pela otimização hierárquica pode ser feita efetivamente se os sistemas são compostos de fracos acoplamentos entre os subsistemas ou se uma de composição é usada para enfraquecer o acoplamento.

A menos que os subsistemas sejam fracamente acoplados ou ade - quadamente decompostos, a otimização local do subsistema poderá es - tar em conflito com cada uma outra, produzindo uma solução global inaceitável.

A utilização de técnicas de otimização, ditas multinível, pela simplificação que trazem, possibilitam tratamento matemático para muitos problemas, mas contudo não se deve esquecer dos custos que se incorre devido as várias iterações estabelecidas entre os diversos níveis do sistema.

É conveniente, para que se possa explanar e comentar alguns tipos de métodos de decomposição e coordenação, definir um problema de otimização que represente um sistema genérico. Portanto, assume - se que o comportamento de um sistema possa ser representado pelo seguin te problema:

$$P: Max \sum_{i=1}^{n} \delta_{i}(x_{i}, m_{i}, y_{i})$$

 x_i, m_i, y_i

s.a.
$$g_{i}(x_{i}, m_{i}, y_{i}) \leq 0$$
 (2.43)

$$y_{\dot{i}} = H_{\dot{i}}(x_{\dot{i}}, m_{\dot{i}}) \tag{2.44}$$

$$x_{i} = \sum_{j=1}^{n} c_{ij} y_{j}$$
 (2.45)

onde $i = 1, \ldots, n$ com:

 $x_i = \text{vetor de entrada}$

m; = vetor de decisão

y; = vetor de saida

n = número de subsistemas

C = matriz de acoplamento

Classicamente podemos distinguir os metodos de otimização hie rārquica em duas classes distintas:

2.4.1 Metodo Factivel ou de Coordenação Primal

Este metodo [30, 31] gera, subproblemas independentes pela fi xação de variáveis de acoplamento para cada subsistema.

A coordenação dos subsistemas $\tilde{\mathbf{e}}$ tida por conta do vetor de $\mathbf{e}\underline{\mathbf{n}}$ trada e saida transferido entre os subsistemas pelo coordenador. Em particular, o metodo factivel será representado por:

$$P_{\delta}(i) : Max \qquad \delta_{i}(\tilde{x}_{i}, m_{i}, \tilde{y}_{i})$$

$$m_{i}$$

$$s.a.$$

$$g_{i}(\tilde{x}_{i}, m_{i}, \tilde{y}_{i}) \leq 0 \qquad (2.46)$$

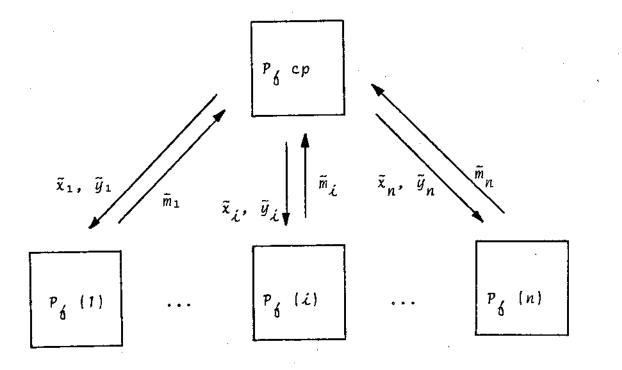
$$\tilde{y}_{i} = H_{i}(\tilde{x}_{i}, m_{i}) \qquad (2.47)$$

onde \tilde{x}_{λ} , \tilde{y}_{λ} são variãveis de acoplamento dos subsistemas consider<u>a</u> dos fixas neste nível. Seja \widetilde{m}_{i} a variável de controle solução $P_{\vec{h}}(\vec{x})$. O problema de coordenação primal serā dado por:

$$P_{j}cp : \max_{\substack{i=1 \\ x_{i}, y_{i} \\ s.a.}} \sum_{i=1}^{n} f_{i}(x_{i}, \overline{m}_{i}, y_{i})$$

$$x_{i} = \sum_{j=1}^{n} C_{ij} y_{j} \qquad (x, y) \in V$$

$$(2.48)$$


onde V é um conjunto definido para assegurar a existência de soluções para o problema $P_{f}(\lambda)$. Ele é definido como:

 $V = \{ (x,y) / \text{ existe } m_i \text{ satisfazendo}(2.46) \in \{2.47\} \text{ para todo o } i \}$

Os problemas $P_{i}(\lambda)$ e P_{j} cp são totalmente interdependentes. Nu ma iteração de algoritmo, o problema $P_{j}(\lambda)$ com valores de (x,y) fixados, fornecidos pelo problema P_{j} cp \tilde{e} manipulado na busca de um valor de m_{i} otimo. O problema P_{j} cp se utiliza deste valor otimo para estabelecer novos valores factiveis de (x,y) que melhoram a função objetivo $\sum_{i}^{n} \delta_{i}(x_{i}, \tilde{m}_{i}, y_{i})$ e envia estes valores para os subproblemas da proxima iteração.

Pode-se notar que por causa dos problemas serem restritos a valores factiveis de acoplamento e decisão, o problema mantém as interconexões em balanço. Este método pode ser usado em situações "on-line".

E importante notar que este metodo não introduz qualquer outra variavel auxiliar ao problema, conservando estes, as dimensões originais. Entretanto este ponto levanta uma dificuldade no metodo. Quando se trabalha com um número pequeno de variaveis o algoritmo pode não fornecer suficiente grau de liberdade para permitir solu - ções nos subsistemas. Isto é possível ocorrer em subsistemas que tem mais variaveis de entrada e saídas do que variaveis de decisão, tornando assim difícil a existência de valores factíveis de $m_{\hat{i}}$ $\hat{i}=1$, ..., n que satisfaçam as restrições localmente [30].

- Fig. 2.12 : Fluxo de Informação no Método de Coordenação Primal

Em parte as dificuldades destes métodos origina-se da inflexibilidade das equações de acoplamento. Na prática esta dificuldade é superada pela relaxação das interconexões, quando possível e aceitável.

2.4.2 Metodo Infactivel ou de Coordenação Dual

Este metodo e baseado na teoria do Lagrangeano. A restrição de acoplamento e associada a função objetivo pela função Lagrangeana.

Os subproblemas independentes gerados pelo metodo infactivel são:

$$P_{I}(i) : \max_{\substack{i \in X_{i}, m_{i}, y_{i} \\ x_{i}, m_{i}, y_{i} \\ s.a.}} f_{i}(x_{i}, m_{i}, y_{i}) + \sum_{\substack{i \in \Sigma \\ j=1}}^{n} C_{ij} y_{j} - x_{i}]$$

$$x_{i}, m_{i}, y_{i}$$

$$s.a.$$

$$g_{i}(x_{i}, m_{i}, y_{i}) \leq 0$$

$$y_{i} = H_{i}(x_{i}, m_{i})$$

onde $\tilde{\lambda}_{i}^{t}$ $\tilde{\mathbf{e}}$ o vetor multiplicador de Lagrange de dimens $\tilde{\mathbf{a}}$ o igual a x_{i} .

Se for possibilitado que cada subsistema escolha seus proprios valores de entrada e saída e decisão de tal forma que maximize a função objetivo, limitados somente à restrições locais, ter-se-a formul<u>a</u>

do o subproblema deste metodo.

As variaveis de entrada (x_i) dos subsistemas $\mathcal{P}_{\mathcal{I}}(i)$ são tratadas como se elas pudessem ser manipuladas livremente.

Os subsistemas são aqui coordenados via multiplicadores de La - grange. Pelo problema dual (página 42) podemos definir o problema de coordenação dual como:

$$P_{I}cd: \quad \underset{\lambda}{\text{Min}} \quad \sum_{i=1}^{n} \left\{ \{ i_{i}(\tilde{x}_{i}, \tilde{m}_{i}, \tilde{y}_{i}) + \lambda_{i}^{t} [\sum_{i=1}^{n} c_{ij} \tilde{y}_{j} - \tilde{x}_{i}] \right\}$$

Analiticamente pode-se concluir que o metodo de coordenação dual apresenta-se em determinadas situações mais atrativo que o de coordenação primal por ser menos restritivo as aplicações, sendo as condicões exigidas mais fracas que o metodo factivel. Por esta razão mais algoritmos podem ser usados na busca de soluções aos problemas. Uma limitação do metodo é que soluções intermediárias geralmente não satisfazem as restrições de interconexão. Como consequência temos a inconveniência de se usar este metodo em sistemas "on-line."

Esquematicamente podemos ter o fluxo de informação para este $m \underline{\tilde{e}}$ todo na figura 2.13.

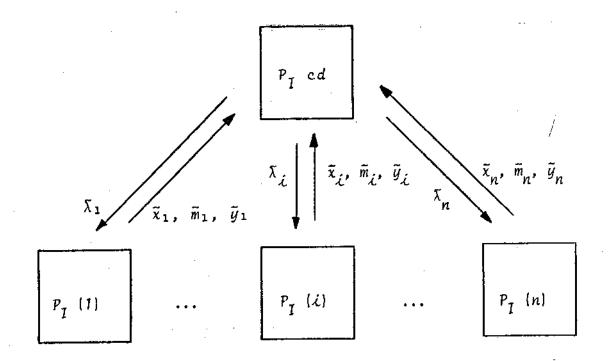


Fig. 2.13 : Fluxo de Informação do Metodo de Coordenação Dual

2.5 Conclusão

Procurou-se neste capítulo apresentar os conceitos básicos da programação matemática. Diversos problemas e as condições de otimalidade a eles associadas foram apresentadas. As técnicas de transformação de problemas restritos em problemas irrestritos foram comentadas. Em particular, a do Lagrangeano Aumentado foi aqui discutida e analisada.

Como uma ferramenta de auxílio à solução de problemas grandes e complexos foram discutidas algumas técnicas de decomposição hierárquica.

Todos esses conceitos e ideias estão intimamente relacionadas. Eles, juntamente com os que serão introduzidos no capitulo seguinte, formam uma base de conhecimento conveniente à compreensão do Procedimento de Negociação proposto no capitulo 4.

CAPÍTULO 3 - OTIMIZAÇÃO MULTIOBJETIVA

CAPÍTULO 3 - OTIMIZAÇÃO MULTIOBJETIVA

Neste capítulo é apresentada a formulação de problemas de otimização com mais de um objetivo, suas características e as têc nicas usadas na obtenção de soluções. Definições e conceitos associados a este tipo de problema são também consideradas. Relações de equivalência entre soluções de problemas monobjetivo e multiobjetivos são estabelecidas. As condições necessárias e suficientes para solução de problemas multiobjetivos são aqui também apresentadas.

3.1. Introdução

Até agora foi estudado modelos de programação matemática monobjetivo. Nos problemas reais que se depara, a grande maioria deles não são problemas monobjetivos. O que geralmente se faz é transformá-los ou simplificá-los para que se possa vê-lo como problemas monobjetivos.

A realidade dos problemas práticos, via de regra, é outra. Muitos conflitos existem e a decisão por uma solução é requerida. A programação multiobjetiva origina-se aí, nos problemas de tomadas de decisão onde existem várias funções objetivos conflitantes.

A programação multiobjetiva compreende três grandes contribuições na busca de solução de problemas de tomada de decisão:

- . Oferece técnicas apropriadas para o planejamento e para o processo de tomada de decisão;
- . Um grande conjunto de alternativas e identificado quando metodos multiobjetivos são aplicados;
- . Modelos de problemas serão mais realistas se vários objetivos forem considerados.

Neste trabalho, identificam-se dois tipos de elementos ativos no processo de tomada de decisão. Os analistas (ou planejador) e os tomadores de decisão. Os analistas são tecnicos que fornecem informações sobre o problema para os tomadores de decisão que decidem pela melhor ação a tomar.

Com isto pode-se dizer que técnicas de programação são ferramentas que os analistas fazem uso na geração de informações utilizaveis pelo tomador de decisão.

Os esquemas multiobjetivos possuem um importante resultado para tomada de decisão que é a explícita comparação entre alternativas. Para uma investigação sistemática das alternativas, o conjunto de opções, a relação entre elas e entre os objetivos são identificados. Desta maneira a responsabilidade de escolha pertencerá a quem é de direito, o tomador de decisão.

Afim de iniciar a apresentação de importantes definições e conceitos, define-se o seguinte problema multiobjetivo

PMO:
$$\min_{x} \{ \delta_{1}(x), \delta_{2}(x), \dots, \delta_{q}(x) \}$$
s.a.
$$x \in S$$
com
$$\delta_{i} \colon \mathbb{R}^{n} \longrightarrow \mathbb{R}$$
 $i = 1, \dots, q$

S: um conjunto de restrições qualquer

3.2. Conceito de Ponto Não-Inferior

Nos problemas monocritério apresentados anteriormente a meta diante do problema era a identificação da solução ótima, isto é, a solução factivel que apresentava o melhor, no caso menor, valor da função objetivo. Mesmo quando havia soluções alternativas o valor da função objetivo para estas soluções era única.

Esta noção de otimalidade será aqui revista para problemas multiobjetivos porque, em geral, uma solução que minimiza uma função objetivo, não necessariamente minimizará outra qualquer. O que é otimo, em termos de uma das q funções objetivos não é, usualmente, otimo para as (q-1) outras funções.

Portanto entre os pontos pertencentes a região de factibilidade existirã pontos que apresentam tais características. Estes po<u>n</u> tos são vistos como não-dominantes ou não-inferiores.

A ideia de não-inferioridade e tirada do conceito de não-dominância.

Para melhor entender tal conceito, considere um problema bicritério. Supo \tilde{e} -se três soluções apresentadas na tabela (3.1) a seguir:

SOLUÇÃO	61	62
Α	11	12
В	15	10
С	16	18

Tabela 3.1 Caracterização de soluções

Seja a tabela 3.1. A alternativa C apresenta seus valores de funções (δ_1, δ_2) superiores tanto aos valores de funções do ponto A quanto o B. A este ponto chama-se inferior, nome este originário de um problema de maximização.

Veja as alternativas A e B. Em relação a 6_1 , A domina B e em relação a 6_2 B domina A. Tanto A como B são ditos pontos não-inferiores, neste caso.

Ponto não-inferior é conhecido também como ponto de não-dom<u>i</u> nância, ponto de eficiência ou ponto de Pareto.

Formalmente pode-se definir não-inferioridade: uma solução factível de um problema de otimização multiobjetiva \bar{e} não-inferior se não existe outra solução factível que apresente uma melhora em uma função objetivo sem causar uma degradação em pelo menos uma das outras funções objetivos. Matematicamente, [9, 26], diz-se ser o ponto factível x' uma solução não-inferior se não existir outro ponto x", factível tal que:

•
$$\delta_i$$
 $\{x''\} \le \delta_i$ $\{x'\}$ para todo $i = 1, \ldots, q$
• δ_i $\{x''\} < \delta_i$ $\{x'\}$ para pelo menos um $i = 1, \ldots, q$

Soluções não-inferiores de PMO não são geralmente unicas. En tão pode-se obter o conjunto $F(x) = \{(f_1(x), f_2(x), f_3(x), \dots, f_q(x)\}$ dos valores assumidos pelas funções no ponto não-inferior x para um de terminado $x \in X$. Mas qualquer das soluções não-inferiores, \tilde{e} pela definição, tão boa quanto outra. Portanto \tilde{e} desejavel determinar o conjunto X de todas as soluções não-inferiores e o conjunto F de todos os valores das funções nesses pontos.

O problema \tilde{e} , então, como determinar o conjunto X e o conjunto f(x) sobre os pontos de X de um PMO.

O Método dos Pesos é um dos usualmente utilizado para se determinar o conjunto X. A utilização deste método, para uma aplicação qualquer é um tanto limitado, uma vez que é baseado em suposições de convexidade que, nem sempre são satisfeitas.

Outro metodo utilizado na busca de soluções não-inferiores é o Método dos e-Restritos que não necessita de tais suposições, como será visto a seguir. Talvez seja o mais intuitivo dos métodos. Ele opera sobre a otimização de uma função objetivo, enquanto as outras são restritas por valores apropriados.

Tanto o método dos Pesos quanto o método dos ε -Restritos são capazes de gerar apenas subconjuntos de X (em geral).

3.3. Classificação dos Métodos de Programação Multiobjetiva

As características dos procedimentos de tomada de decisão que são usadas para classificar os metodos de programação multiobjetiva são: o fluxo de informação no procedimento e o contexto da tomada de decisão.

O fluxo de informação e importante porque ele determina a regra a ser usada pelo analista no planejamento do procedimento. O contexto da tomada de decisão define a meta a ser alcançada pelo analista.

Basicamente existem duas categorias de problemas de otimizacão multicritério [4]:

- . Método de geração ("Generating Methods");
 - . Métodos que incorporam preferências ("Preference Oriented Methods").

Na primeira categoria temos aqueles metodos onde o analista simplesmente gera soluções não-inferiores alternativas sem se preocupar com preferências e utilidades. Depois disto, os tomadores de decisão concordarão sobre uma solução de compromisso, por exemplo, votando. Neste caso, as preferências não precisam ser explicitamente articuladas pelo tomador de decisão, embora no processo de escolha da melhor solução de compromisso a participação do tomador de decisão seja requerida.

Na segunda categoria, tem-se os metodos que incorporam preferências. Estes metodos requerem que o tomador de decisão articule suas preferências e passe as informações para o analista.

A articulação da preferência pode ser feita de vārias maneiras. Conforme sua característica, ela pode ser inserida numa das duas classes: técnicas não-interativas e interativas. As não-interativas requerem que o tomador de decisão articule suas preferências antes da participação do analista. Alternativamente o analista pode fazer suposições sobre a forma de preferência a ser estipulada.

As técnicas interativas que incorporam preferências, operam com preferências locais feitas pelo tomador de decisão. Estas preferências locais fornecidas pelo tomador de decisão é feita em resposta a informações locais sobre o conjunto de soluções não-inferio res gerado pelo analista.

A informação de preferência é usada pelo analista para encontrar um novo e melhor conjunto de soluções que, utilizado novamente pelo tomador de decisão, gera um procedimento interativo na busca de uma solução. O metodo que este trabalho se propõe estudar pode ser aqui classificado.

3.3.1. Métodos de Geração do Conjunto de Soluções Não-Inferiores

Serão aqui apresentados dois métodos bastante usados na geração de soluções não-inferiores.

Mētodo dos Pesos

Este metodo, que não incorpora preferência [4], é o mais antigo dos metodos de solução de problemas multiobjetivo.

Tanto o metodo dos Pesos como o ϵ -restrito, que será visto a seguir, transformam um problema multiobjetivo num problema monobjetivo com parametros incorporados ao novo problema.

O método dos Pesos procura definir uma única função objetivo através de soma de todas as funções objetivos, cada qual tendo associado a ela um fator, aqui chamado de Peso.

Generalizando, a partir do problema PMO, define-se:

$$P(w): \min_{x} w_{1} \delta_{1}(x) + w_{2} \delta_{2}(x) + \dots + w_{q} \delta_{q}(x)$$

s.a.
 $x \in S$

O problema P(w) \tilde{e} então um problema monobjetivo, estudado no capitulo 2.

A solução ôtima do problema para um conjunto dado de valores w_i , i=1, ..., q, \bar{e} uma solução não-inferior do problema multiobjetivo sempre que os pesos forem não-negativos. Se escolhidos todos pesos negativos, isto se equivalera a transformar o problema original de minimização em um de maximização.

Este metodo não é eficiente quando se requer uma representação exata do conjunto de soluções não-inferiores. Um número de diferentes conjuntos de pesos são usados até que uma representação adequada do conjunto de soluções não-inferiores seja obtida. Qualquer conjunto de pesos positivos podem ser usados neste metodo, mas, faz sentido se seguir um procedimento ordenado para, de maneira mais razoavel, se atingir o conjunto de soluções desejavel.

Quando todas as funções não tem propriedades especiais, além de serem convexas, propõe-se [27] uma maneira natural de se atacar problemas convexos genéricos sob esta metodologia. Os passos essenciais que são aplicados a um problema convexo geral são: Passo 1 - Para cada função (z) $i=1, \ldots, q$ seleciona-se valores discretos de peso entre 0 e 1.

$$w_i = \{w_i^0, w_i^1, \ldots, w_i^{ki}\}$$

onde 🖟

$$w_{i}^{0} = 0$$
 e $w_{i}^{ki} = 1$

Então define-se o conjunto $w = w_1 \times w_2 \times \ldots \times w_q$, que \tilde{e} o produto cartesiano dos possíveis valores de peso de cada função.

Passo 2 - Para cada elemento de W resolve-se o problema P(w)

- Passo 3 Verifica-se a não-inferioridade das soluções geradas. A seguinte estratégia pode ser usada:
 - a) Se cada peso selecionado for estritamente positivo $\{w_i > 0\}$, a solução é não-inferior, caso contrário (b);
 - b) Usa-se uma estratégia, a mais simples possível, se existir, para verificar se a solução é unica.
 Se a solução for unica, pode-se concluir ser es te ponto de Pareto, caso contrário (c);
 - c) Usa-se o teste numérico de não-inferioridade pe la formulação e solução do seguinte problema:

$$\delta_{i}(x) + \varepsilon_{i} = \delta_{i}(x^{*})$$
 $i=1, \ldots, q \quad \varepsilon_{i} \geq 0$

onde $\alpha_i > 0$ para cada i=1, ..., q(por exemplo, pode-se ajustar $\alpha_i = 1$ para cada i).

Se $\delta \neq 0$ consolidamos a não-inferioridade de x^* . Se por outro lado $\delta > 0$, x^* pode ser descartado, sendo considerado uma solução inferior. Se, entretanto, $\alpha > \delta > 0$ a solução otima de P^* , digamos x^0 , \tilde{e} uma solução não-inferior de PMO. E por fim, se $\delta = \infty$ e se o conjunto:

{ $\frac{1}{6}$ / $\frac{1}{6}$ < $\frac{1}{6}$ (x) para algum x factivel } com $\frac{1}{6}$ \in R, for fechado, o PMO não terā nenhum ponto não inferior [28].

Relembrando, o método dos pesos não é adequado a aplicações de problemas não convexos, (figura 3.2), onde algumas das soluções não-inferiores (aquelas com "GAP" de dualidade), podem não ser encontradas pela solução de $P(\omega)$ para qualquer $\omega \in \omega$. Isso é devido ao fato de não haver um hiperplano suporte no ponto. O método dos pesos se adequa mais a problemas definidos sobre um espaço de funções convexo (figura 3.1).

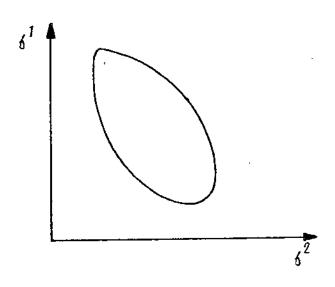


Figura 3.1 Região Convexa no Espaço das Funções

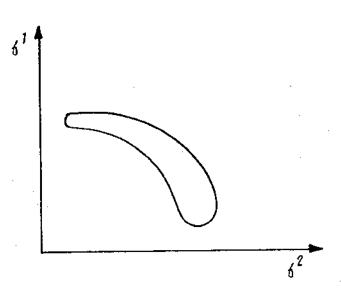


Figura 3.2 Região não Convexa no Espaço das Funções

Metodo dos ε-Restritos

O método que a seguir será apresentado [4] talvez seja um dos mais intuitivos entre os métodos de geração de soluções não-inferiores. Ele procura otimizar uma função objetivo, mantendo todas as outras restritas a algum valor. O método do ε -restrito possibilita gerar o conjunto de soluções não-inferiores para problemas convexos e não-convexos.

O metodo e caracterizado pela seguinte formulação:

$$P_{k}(\varepsilon)$$
: min $\delta_{k}(x)$
s.a.
$$\delta_{i}(x) \leq \varepsilon_{i} \qquad i = 1, ..., q$$

$$x \in S \qquad i \neq k$$

$$S \subseteq \mathbb{R}^{n}$$

Suponha ser ε^* , um vetor para o qual $P_k(\varepsilon^*)$ seja factível e x^* seja solução ótima do problema $P_k(\varepsilon^*)$. Então x^* é uma solução não-inferior de (PMO) se é uma solução única de $P_k(\varepsilon^*)$ para algum k com $1 \le k \le q$ ou se ela solucionar $P_k(\varepsilon^*)$ para todo $k=1,\ldots,q$.

Isso significa que, pelo menos alguma solução não-inferior de PMO pode ser sempre encontrada pela solução de $P_k(\epsilon)$.

Por outro lado, para qualquer x solução não-inferior, pode-se sempre encontrar um vetor ε^0 tal que x seja também solução de $P_k(\varepsilon)$ para todo $k=1,\ldots,q$. O vetor ε^0 é definido por $(\varepsilon_1^0, \varepsilon_2^0, \ldots, \varepsilon_{k-1}^0, \varepsilon_{k+1}^0, \ldots, \varepsilon_q^0)$ onde $\varepsilon_j^0 = \{(x) \text{ para todo } j=1,\ldots,q \text{ com } j\neq k.$

A solução ótima deste problema é uma solução não-inferior do problema de otimização multiobjetiva se uma das afirmações acima forem satisfeitas.

Estas condições são referentes aos valores de ϵ_j que são usados como limitantes das restrições. Os valores de ϵ_j devem ser escolhidos tal que soluções factiveis para o problema monobjetivo existam.

Outra condição que está vinculada a escolha de ϵ_j e a de que todas as funções objetivos restritas por este valor podem estar detendo a solução ótima do problema. Se este não é o caso e se há alternativa ótima para o problema restrito então pode ocorrer de alguma destas soluções ser não-inferior para o problema original.

Uma vez que convexidade não $\bar{\rm e}$ requerida, conclui-se que toda solução não-inferior pode sempre ser encontrada pela solução de $P_k(\varepsilon)$ para qualquer k.

Esse metodo não é prejudicado pela presença de "GAP's" causada pela não convexidade do problema. Essa característica favorece sua aplicação a uma classe maior de problemas do que os metodos dos pesos.

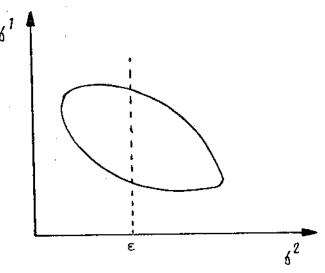


Figura 3.3 Região Factivel no Espaço de Funções

. Uma estratégia que usa $P_k(\varepsilon)$ para gerar o conjunto de soluções não-inferiores pode ser assim esquematizado [27]:

Passo 1 - Escolhe-se uma das q funções objetivos, digamos a k-esima, como função objetivo primāria.

Passo 2 - Para cada $j=1,\ldots,q$ encontrar $\delta_j^*=\min_{\chi} \delta_j(\chi)$, $\chi \in S$. Então, selecionar um certo valor de incremento $\Delta \varepsilon_j > 0$ e um número α_j , tal que um valor discreto: $\varepsilon_j^{h} = \delta_j^* + h \Delta \varepsilon_j, h = 0, \ldots, \alpha_j$

cobrira toda a faixa de valores de interesse de 6j, $j \neq k$

- Passo 3 Soluciona-se $P_k(\varepsilon)$ para cada possível combinação de valores discretos dos ε_1 ε_2 , ε_3 ,..., ε_i ,..., ε_q , $i\neq k$ selecionados.
- Passo 4 Verifica-se a inferioridade da solução pelo exame da unicidade da solução ou pelo problema (P*)
 verificando se o valor da solução otima e nulo.
 Se assim for, conclui-se que a solução e não-inferior, caso contrário, descarta-se o ponto.
- Passo 5 Se um subconjunto de X jā foi encontrado, podemos então, parar, ou, se desejável, partir para a construção da hipersuperfície para encontrar x* como função de e aproximar X se necessārio.

3.4. O Compromisso ("Trade-off")

Vimos que as soluções de interesse serão aquelas contidas no conjunto de soluções não-inferiores. Este conjunto contém pontos que não são dominados por qualquer outro ponto factivel do pro blema.

Para um determinado ponto não-inferior x^* teremos um conjunto de valores de função objetivo $F(x^*)$. A cada ponto não-inferior, teremos um conjunto de valores da função objetivo. Analisando os conjuntos F(x) com x não-inferior nota-se que quando uma solução ganha em relação a um objetivo necessariamente estará perdendo em pelo menos uma outra. Portanto haverá um ganho perante uma perda. Esta relação ganho/perda e chamada de compromisso ou trade-off.

Este novo conceito possue um significado, sendo extremamente importante para os tomadores de decisão. Trade-off e provavelmente o conceito mais aceitável e utilizado diariamente nos problemas de tomada de decisão. Em outras palavras, podemos dizer que ele possui o potencial de prover uma sistemática tributação comparativa entre objetivos.

Quando o número de objetivos envolvidos no problema é maior que dois é usual se fazer distinção entre trade-off total e tradeoff parcial.

Seja x' e x'' dois pontos não-inferiores do problema PMO com seus respectivos conjunto de valores de funções F(x') e F(x''). Seja a seguinte relação:

$$T_{kj}(x', x'') = \frac{\delta_k(x') - \delta_k(x'')}{\delta_j(x') - \delta_j(x'')}$$

Se $\delta_i(x') = \delta_i(x'')$ para todo $i=1, \ldots, q \text{ com } i \neq k \neq j \text{ diz-se ser}$ $T_{kj}(x', x'')$ o trade-off parcial entre $\delta_k(x) = \delta_j(x)$.

Por outro lado, se $\int_{\hat{L}}(x') \neq \int_{\hat{L}}(x'')$ para pelo menos um $i=1,\ldots,q$ com $i\neq k\neq j$ então $T_{kj}(x',x'')$ e chamado de trade-off to tal entre $\int_{k}(x)$ e $\int_{i}(x)$.

O termo parcial e total é usado analogamente as derivadas.

O principal valor deste conceito está em possibilitar o tomador de decisão comparar mudanças em dois objetivos, num certo ins tante, facilitando assim a busca por uma solução preferida.

Normalmente, na determinação de soluções de compromisso o conceito de trade-off e envolvido, considerando que alguma coisa e perdida a fim de se obter algo em troca. Sobre isto a seguinte afi<u>r</u> mação pode ser estabelecida:

x' e x" são não-inferior do conjunto X se e somente se existir pelo menos um par $(\{k,j\})$ de funções tal que $T_{kj}(x',x'')$ seja negativo.

Outra classificação importante que se pode lançar mão é em termos da objetividade do trade-off. Se um trade-off é calculado usando puramente a estrutura interna do sistema em estudo, ele então é chamado de trade-off objetivo. Se, por outro lado, ele é determinado ignorando-se o comportamento interno do sistema ele é chamado de trade-off subjetivo.

Trade-off subjetivo é usado frequentemente em tomadas de de cisões que são baseadas nos conceitos de função utilidade. O termo subjetividade está sendo usado para refletir o grande envolvimento do elemento humano.

Em complexos problemas de decisão em que o efeito da estrutura interna do sistema na tomada de decisão é significativa, se o trade-off objetivo pode ser obtido de maneira sistemática ele é preferível ao subjetivo. O valor do trade-off determinado objetiva mente é mais realista e, mais ainda, garantidamente factível uma vez que leva-se em conta na sua obtenção características do sistema.

3.5. Solução de Melhor Compromisso ou Solução Preferida

O conjunto de soluções não-inferiores geralmente inclui muitas alternativas. A solução não-inferior que e selecionada como a preferida e chamada de solução de melhor compromisso. Alguns autores a chamam ainda de solução otima, mas este termo não e muito adequa do pois a solução selecionada e otima baseada num conjunto de preferências.

O termo otimalidade é reservado, geralmente, para soluções que é a melhor de uma maneira mais direta, isto é, sem a necessid<u>a</u> de de lançar mão de preferências explicitas.

Um ponto não-inferior é um ponto de preferência ou de melhor compromisso se ele melhor satisfaz as preferências do tomador de decisão. Uma questão que nos surge e: como e, então, escolhida a solução de melhor compromisso?

Uma maneira e simplesmente considerar graficamente o conjunto de soluções não-inferiores, escolhendo uma solução com base nas possibilidades e no trade-off. Uma outra baseada na curva de preferência, que e a representação matemática das preferências e utilida des, como ver-se-a a seguir:

3.6. Função Utilidade

Implicita a qualquer processo de tomada de decisão está a ne cessidade de se construir, direta ou indiretamente uma ordem de preferência de tal forma que alternativas possam ser ordenadas e uma alternativa final possa ser selecionada.

Em geral, a geração de pontos não-inferiores serve, somente como ponto inicial de um processo de análise de decisões multiobjetivas. A proxima etapa é selecionar a melhor alternativa entre as não-inferiores geradas. Esta tarefa não é trivial. Ela se baseia em encontrar maneiras de ordenar soluções não-inferiores numa ordem com pleta. A relação de ordenação natural no espaço Euclidiano n-dimensional é uma ordem parcial, e portanto inadequada para este proposito. Por definição, duas soluções não-inferiores são incomparaveis pela ordem natural [23].

Assim, para ordenar-se o conjunto de soluções não-inferiores completamente, é preciso invocar uma nova relação de ordem, a relação de preferência, que reflete a estrutura de preferência do tomador de decisão.

Em algumas situações esta ordenação requerida faz com que a estrutura de decisão do tomador de decisão seja explorada de tal mo do que se construa uma ordem de preferência. Uma importante classe de técnicas de tomadas de decisão que visa construir uma ordem de preferência por uma busca direta e decorrente da Teoria da Utilidade [23]. Ela estã baseada na premissa que a estrutura de preferência

de um tomador de decisão pode ser representada por uma função real chamada função utilidade.

Função Utilidade é uma relação matemática que associa uma utilidade, um benefício, uma vantagem a cada alternativa existente, tal que elas possam ser comparadas.

A função utilidade pode ser vista como um instrumento matemático através do qual modelamos a preferência de um tomador de decisão.

As funções utilidades podem ser:

Ordinal: São funções que fornecem uma ordem entre as alternativas (pontos não-inferiores) mas não indica o nível de preferência de uma em relação as outras, isto é, a relação entre elas é qualitativa.

Cardinal: São funções que indicam uma ordem e um nivel de preferência entre as alternativas existentes. Assim, a função utilidade cardinal nos possibilita ordenar duas ou mais alternativas, e sabermos quantitativamente o nivel de preferência de uma com relação a outra.

Por ser mais rica em informação, as funções utilidades cardinais são mais usadas.

Quando existem vários atributos ou objetivos associados a uma alternativa a função utilidade terá multiplos argumentos e será referida como função utilidade multiatributo.

De agora em diante neste trabalho quando nos referirmos a uma função utilidade estaremos nos referindo a uma função utilidade cardinal multiatributo.

Esta função utilidade, que associa um escalar a cada alternativa, para o PMO pode ser definida como:

$$u \in \delta_1(x), \delta_2(x), \ldots, \delta_q(x)$$

Esta função dever ter as seguintes propriedades [27]:

- Se $\delta_{\lambda}(x') < \delta(x'')$ para todo $i=1,\ldots,q$ então $U \left[\delta_{1}(x''), \delta_{2}(x'',\ldots,\delta_{q}(x''))\right] \leq U \left[\delta_{1}(x'), \delta_{2}(x'),\ldots,\delta_{q}(x')\right]$ Isto assegura que pontos não-inferiores possuam valores de função utilidade maior que pontos inferiores;
- . $u[\delta_1(x'), \delta_2(x'), \dots, \delta_q(x')] > u[\delta_1(x''), \delta_2(x''), \dots, \delta_q(x'')]$ implica que a alternativa x' é preferida a x''.
- . Se $u[\delta_1(x'), \delta_2(x'), \dots, \delta_q(x')] = u[\delta_1(x''), \delta_2(x''), \dots, \delta_q(x'')]$ então o tomador de decisão se apresenta indiferente ãs alternativas x' e x".

A curva dada por $u[\delta_1(x), \delta_2(x), \dots, \delta_q(x)] = c$ com c escalar \tilde{e} chamada de curva de indiferença devido ao fato de o tomador de decisão ser indiferente a qualquer ponto não-inferior da curva. Entretanto se c' > c'' então todo ponto ao longo da curva $u[\delta_1(x'), \delta_2(x'), \dots, \delta_q(x')] = c'$ serã preferido a qualquer ponto da curva $u[\delta_1(x''), \delta_2(x''), \dots, \delta_q(x'')] = c''$ $u[\delta_1(x''), \delta_2(x''), \dots, \delta_q(x'')] = c''$

Pode-se dizer que surge um novo problema. O objetivo, tendo em vista o PMO, passa agora a ser:

max
$$u [f_1(x), f_2(x), \dots, f_q(x)]$$

 $x \in X$

3.6.1. A Existência de uma Função Utilidade

Para o desenvolvimento da Teoria de Utilidade ē necessário primeiramente discutir os conceitos primitivos que são envolvidos. Nes ta seção usaremos o símbolo > para denotar a ordem escrita de preferência, "é preferêvel a", o símbolo ∿ para denotar a indiferença,

"e indiferente a", e o símbolo \(\) que denota indiferença-preferência, "e ao menos tão preferível quanto". Este último e tido como conceito primitivo. Os outros dois podem ser definidos a partir deste. Por exemplo, Fishburn [24] considera \(\) como conceito primitivo e define as outras duas relações em função desta.

Definição: Se uma relação, digamos ≥, e reflexiva e completa diz-se ser esta uma relação de ordem fraca [23].

Seja F o conjunto dos valores de funções das alternativas não-inferiores de um PMO para todo $x \in X$. Sobre esse conjunto pode-se definir o conjunto F_R , subconjunto de F_R , formado por valores de funções de elementos indiferentes ao tomador de decisão sobre uma relação. Assumindo que F_R seja um conjunto contável, pode-se mostrar que os elementos de F_R podem ser colocados em uma correspondência um a um com o conjunto dos números naturais [23].

Teorema: Seja Σ uma relação de ordem fraca em F, e o conjunto $F_{\mathcal{R}}$ de elementos indiferentes de F contavel. Então existe uma função real denotada por u, definida em F tal que para qualquer

f(x'), $f(x'') \in F$ temos:

 $\{(x') \geq \{(x'') \text{ se e somente se } U[\{(x')\} \geq U[\{(x'')\}] \}$ ou mais precisamente:

 $\delta(x') > \delta(x'')$ se e somente se $U[(\delta x')] > U[\delta(x'')]$

 $\delta(x') \sim \delta(x'') \text{ se e somente se } U[\delta(x')] = U[\delta(x'')]$

A prova deste teorema encontra-se em [24].

3.6.2. Função Utilidade Aditiva

Uma das dificuldades envolvidas na construção da função utilidade reside na quantidade de valores, necessária ao processo de busca de informação pelo questionamento do tomador de decisão, resultan do na multidimensionalidade do problema.

Uma obvia e efetiva saida a este problema é a redução das dimensões do problema, se possível. Isto envolve agrupar multiplos atri
butos em menores subgrupos, cada qual podendo ser considerado independente um do outro. Com isto a função de cada subgrupo pode ser
construida, uma a uma, possibilitando que elas sejam aditivamente
combinadas. Quando isto é feito, diz-se que temos uma estrutura de
preferência aditiva.

Seja F_1 , F_2 , ..., F_q os conjuntos dos possíveis valores dos q atributos para todos os $x \in X$ e seja o conjunto F o conjunto $F = \{F_1 \times F_2 \times F_3 \times \ldots \times F_q\}$. Este conjunto define a região factivel do espaço de funções. Definindo a q-upla com $f(x) = \{f_1(x), f_2(x), \ldots f_q(x)\}$, F pode ser redefinido como:

$$F = \{\{(x) \mid para \text{ todo } x \in X\}$$

Uma alternativa particular no espaço de funções f(x) pode ser representada por uma função u que será aditiva se e somente se ela puder ser escrita como:

$$u[\{(x)\}] = \lambda_1 u_1 [\{(x)\}] + \lambda_2 u_2 [\{(x)\}] + \cdots + \lambda_q u_q [\{(x)\}]$$

onde u_i $i=1,\ldots,q$ ē a função utilidade de grupo correspondente ao i-ēsimo atributo e $\sum_{i=1}^{q} \lambda_i = 1$ (combinação convexa).

Intuitivamente pode-se perceber que as relações anteriores se rão verdadeiras se cada $\ell_{\hat{\mathcal{L}}}$ for independente do restante do grupo.

Condição de independência: Seja Ω um subconjunto dos q atributos (objetivos) e $\bar{\Omega}$ seu complemento. O conjunto dos valores alternativos de atributos pode ser descrito por:

$$F = \{(\delta_1(x), \delta_2(x), \dots, \delta_q(x)) \text{ para todo } x \in X\}$$

Seja F $_\Omega$ e F $_\Omega^-$ o conjunto dos produtos cartesianos dos atributos de Ω e Ω respectivamente. Para qualquer q-upla

$$\delta(x) = \{\delta_1(x), \delta_2(x), \dots, \delta_q(x)\} \in F$$

existirão componentes de f(x) em F_{Ω} e em F_{Ω} . Se $f_{\Omega}(x)$ e $f_{\Omega}(x)$ designam componentes de F_{Ω} e F_{Ω} respectivamente para uma alternativa qualquer $x \in X$. Consequentemente um valor alternativo de atributo f(x) pode ser representada pelo par $(f_{\Omega}(x), f_{\Omega}(x))$.

Definição: Um subconjunto de atributo Ω ē dito ser preferencialmente independente de seu complemento $\bar{\Omega}$ se e somente se para um particular valor de atributo factivel (no espaço de funções) $\delta_{\Omega}(x^0)$ existir a relação:

$$\begin{array}{l} (\delta_\Omega(\mathbf{x}'),\ \delta_\Omega^-(\mathbf{x}^0)) \succcurlyeq \ (\delta_\Omega(\mathbf{x}''),\ \delta_\Omega^-(\mathbf{x}^0)) \\ \\ \text{e isto implicar em:} \\ (\delta_\Omega(\mathbf{x}'),\ \delta_\Omega^-(\mathbf{x})) \succcurlyeq \ (\delta_\Omega(\mathbf{x}''),\ \delta_\Omega^-(\mathbf{x})) \\ \\ \text{para todo } \mathbf{x} \in X \\ \end{array}$$

Definição: Um conjunto de atributos \tilde{e} dito mutuo-preferencial mente independente se todo subconjunto Ω não vazio \tilde{e} preferencialmente independente de seus complementares.

Teorema da Aditividade: Para um problema multiobjetivo qualquer q atributo onde $q \ge 3$, seja uma função $U[\delta_1(x), \delta_2(x), \ldots, \delta_q(x)]$ definida sobre o espaço de funções. Para quaisquer $\{(x')e\ \{(x'')\ com\ \{\epsilon\ Fe\ x',\ x''\ \epsilon\ X.\ A\ relação\ \{(x')\ \>\ \{(x'')\ existe\ se\ e\ somente se\ U[\{(x'')\}\ \\ge\ U[\{(x'')\}\ \$

Então existem funções reais $u_1,\ u_2,\ldots,\ u_q$ definidas sobre $F_1,\ F_2,\ldots,\ F_q$ tal que as relações:

existirão se e somente se a condição de mútuo-preferencial independência existir. A prova deste teorema pode ser encontrada em Debreu [43].

3.7. Condições de Kuhn-Tucker para Soluções Não-Inferiores

As condições de Kuhn-Tucker para soluções não-inferiores de problemas multiobjetivos difere das condições de problemas monobjetivo somente nas parcelas

$$\sum_{i=1}^{q} w_i \nabla \delta_i(x)$$

que $\tilde{\mathbf{e}}$ a combinação linear não negativa dos gradientes das q funções objetivos.

Assim sendo, se para um problema multiobjetivo tivermos o mes mo conjunto de restrições que o problema PP4 do capitulo 2, as condições de Kuhn-Tucker se diferenciaria pela condição 4 (capitulo 2) a qual ficaria:

onde $w_{i} \ge 0$ $i=1,\ldots,q$ com a desigualdade estrita sendo mantida para, pelo menos, um i.

Estas condições são necessárias para a não-inferioridade da solução [4].

3.8. Caracterização de Soluções Não-Inferior através de Solução de Problemas dos ϵ -Restritos

O metodo dos e-restritos e bastante comum e utilizado. Sua grande vantagem está na transformação dos PMO em problemas monobjetivos surgindo como subproduto os multiplicadores de Kuhn-Tucker que são interpretados como trade-off locais.

Para melhor se compreender as relações entre PMO, $P_k(\varepsilon)$ e trade-off são apresentados alguns teoremas e suas implicações:

Teorema (3.1): O ponto x^* serā uma solução não-inferior de PMO se e somente se x^* for solução de $P_k(\varepsilon^*)$ para todo $K=1,\ldots,q$ com $e^*=0$ f^*

Demonstração:

a) x* solução PMO - x* solução Pk(e*)

Assumamos que x^* não soluciona $P_k(\epsilon^*)$ para algum k. Então existe x factivel tal que $\delta_k(x) < \delta_k(x^*)$ e $\delta_k(x) \le \delta_k(x^*)$, implicando que $x^* \notin X$.

b) x^* solução de $P_k(\varepsilon^*) \longrightarrow x^*$ solução não-inferior de PMO.

Uma vez que x^* soluciona $P_k(\varepsilon^*)$ para qualquer $k=1,\ldots,q$ então não existe x factivel tal que $\delta_j(x) \leq \delta_j(x^*)$, $j=1,\ldots,q$ com desigualdade estrita sendo mantida ao menos para um j. Isto implica que x^* ε X com X conjunto das soluções não-inferiores de PMO

A implicação imediata deste teorema estã na busca das soluções não-inferiores de PMO, através das soluções de $P_k(\varepsilon)$ para qualquer k. Para um dado ε nem toda solução $\tilde{\epsilon}$ otima de $P_k(\varepsilon)$ para um particular k, k=1, ..., q $\tilde{\epsilon}$ não inferior, exceto aquelas que solucionam $P_k(\varepsilon)$ para todo k=1, ..., q.

Este teorema não apresenta praticidade. Portanto para que pos samos utilizã-lo, outro teorema se faz necessãrio.

Teorema (3.2): Se x^* ē solução unica de $P_k(\varepsilon^*)$ para algum k, então x^* ē uma solução não-inferior de PMO, com $\varepsilon^* = f(x^*)$, $j \neq k$.

Demonstração:

Uma vez que x^* é solução unica de $P_k(\varepsilon^*)$ para algum $k=1,\ldots,q$ então para todo x que satisfaça $f_j(x) \leq f_j(x^*)$, $f^{\neq k}$, teremos: $f_k(x) > f_k(x^*)$. Portanto nenhum dos $f_j(x)$ $f^{\neq k}$ pode ser decrementado sem incrementar $f_k(x)$, de onde concluimos que x^* é uma solução não-inferior de PMO [23]

Nota-se que a condição de unicidade da solução de $P_k(\varepsilon)$ é uma condição necessaria. Se existir uma solução de $P_k(\varepsilon)$ que não seja unica, esta solução poderá não ser um ponto não-inferior, pois neste caso pode existir algum \hat{x} factivel tal que $\delta_k(\hat{x}) = \delta_k(x^*)$ e $\delta_j(\hat{x}) \le \delta_j(x^*)$

j=1, ..., q $j\neq k$ onde a desigualdade estrita existe para ao menos um $j\neq k$, implicando que x^* \tilde{e} inferior ao ponto particular \hat{x} .

Um corolario que é util na geração de pontos não-inferiores é o seguinte:

Corolario (3.3): Para qualquer ε , tal que o conjunto $\{x/f_j^{(x)}\}$ $\leq \varepsilon_j$, $j\neq k$, $x\in X$ seja não vazio, uma solução otima de $P_k(\varepsilon)$ e não-inferior se ela for unica.

Existem ainda condições necessárias e suficientes que deverão ser satisfeitas para que soluções não-inferiores de PMO sejam expressas em termo de solução de $P_k(\varepsilon)$.

Sejam os conjuntos:

$$Q_k(\varepsilon) = \inf \{ \delta_k(x) / x \text{ factivel, } \delta_i(x) \le \varepsilon_i \}$$

 $i = 1, ..., q \text{ com } i \ne k \}$

e $\hat{\mathbf{y}}_k = \{ \varepsilon / \text{ exista solução não vazia para } \{x / \{j^{(x)} \le \varepsilon_j \} \neq k \ x \in X \} \in \mathbb{Q}_k \{\varepsilon\} > -\infty$, e também exista x^* factivel tal que $\{k^{(x^*)} = Q_k(\varepsilon)\}$

Observe que para um dado ε , se $P_k(\varepsilon)$ tem solução ōtima, digamos x^* , então o minimo será $Q_k(\varepsilon)$ que é o valor ōtimo de $\delta_k(x^*)$. Note também que \hat{Y}_k é o conjunto dos valores de ε tal que $P_k(\varepsilon)$ possui soluções ōtimas finitas. Com isto outro teorema pode ser enunciado.

Teorema (3.4): Seja x^* solução de $P_k(\varepsilon^*)$ com $\varepsilon_{\lambda}^* = \delta_{\lambda}(x^*)$ $i \neq k$. Então x^* é uma solução não-inferior de PMO se e somente se $Q_k(\varepsilon) > Q_k(\varepsilon^*)$ para todo ε pertence a \widehat{Y}_k tal que $\varepsilon \leq \varepsilon^*$.

Este resultado pode ser usado tanto para gerar soluções não-inferiores pela solução de $P_k(\varepsilon)$ para alguns ε e k como para testar a não-inferioridade de um determinado ponto x^* .

Para gerar soluções não-inferiores simplesmente deve-se escolher um valor de ε , resolver $P_k\{\varepsilon\}$ encontrando x^* e testar a existência de uma das seguintes condições:

- . x* $\tilde{\epsilon}$ solução unica de $P_k(\epsilon)$
- . o valor $\tilde{\text{o}}$ timo de $P_k(\varepsilon)$ $\tilde{\epsilon}$ estritamente maior que $\delta_k(x^*)$ para qualquer $\varepsilon < \varepsilon^*.$
- . x^* solutiona $P_b(\varepsilon)$, para todo $k = 1, \ldots, q$.

3.9. "Trade-off" e Multiplicadores de Kuhn-Tucker

Para solução dos PMO atraves dos $P_k(\epsilon)$ nos e fornecido como subproduto deste último uma informação importante no auxilio ao tomador de decisão na busca pela solução de preferência entre as soluções não-inferiores. Esta informação é o trade-off.

Afim de se expressar matematicamente os conceitos que possibilitarão conclusões importantes, seja λ_{ki} o multiplicador de Kuhn-Tucker associado a $\beta_i(x) \leq \varepsilon_i$, com $\beta_k(x)$ sendo a função primâria a ser minimizada.

Teorema da Sensibilidade (3.4): Dado ε^0 pertencente ao conjunto dos ε com x satisfazendo $\delta_j(x) \leq \varepsilon_j$ $j \neq k$, $x \in X$, seja x^* solução de $P_k(\varepsilon^0)$ com $\lambda_{k\ell}$, $\ell \neq k$ sendo o correspondente multiplicador de Kuhn-Tucker associado à restrição $\delta_{\ell}(x) \leq \varepsilon_{\ell}^0$ $\ell \neq k$. Se:

- a) x^* \bar{e} ponto regular de $P_k(\varepsilon^0)$;
- b) A condição de suficiência de segunda ordem e satisfeita
 em x*;
- c) Não hā restrição não degenerada no ponto x^* .

Então:
$$\lambda^*_{ki} = \frac{\partial \delta_k(x^*)}{\partial \epsilon_i} = \frac{\partial \delta_k(x^*)}{\partial \delta_i(x^*)}$$
 para todo $i \neq k$

Corolario (3.5): Se x^* e solução de $P_k(\varepsilon)$ e satisfaz (a)-(c) então existe uma vizinhança $N(\varepsilon^0)$ de ε^0 tal que para todo ε pertencente a $N(\varepsilon)$ existe $x(\varepsilon)$ que resolve unicamente $P_k(\varepsilon)$ e que $\widetilde{\varepsilon}$ continuamente diferenciavel em ε com $x(\varepsilon) = x^*$.

Corolario (3.6): Com todas as hipóteses do teorema (3.4) sendo satisfeitas existira uma vizinhança $N(\varepsilon)$ de ε tal que para cada i e $\lambda_{ki} > 0$, ha igualdade $\delta_{i}(x(\varepsilon)) = \varepsilon_{i}$, para todo ε pertencente a $N(\varepsilon^{0})$

Estes teoremas e corolarios apresentados buscam trazer maior compreensão a respeito do Procedimento de Negociação a ser apresentado no capitulo seguinte. Não foi nosso objetivo aqui esgotar completamente o estudo da teoria envolvida, mas sim, apresentar os elementos que, complementada com as referências citadas, possam trazer um melhor entendimento.

3.10. Relação entre as Condições de Não-Inferioridade de (PMO) e as Soluções de $P_k(\varepsilon)$ e P(w)

Pelos teoremas apresentados no îtem anterior \tilde{e} possível est<u>a</u> belecer as condições para que haja equivalência entre as soluções dos problemas monobjetivos $P_k(\varepsilon)$ e P(w) e os pontos não - inferiores de PMO.

Seja a figura 3.4. A implicação A \longrightarrow B \bar{e} sempre verdadeira para a igualdade $\ell_j(x) = \varepsilon_j$ para todo $j = 1, \ldots, n$ $i \neq k$

A implicação B --- A ē dada pelo teorema (3.1) e (3.4).

A relação entre A e C e estabelecida pelas seguintes condições:

A → C : Condição de Convexidade

C--A: Unicidade da solução ou existência somente de pesos estritamente positivos [23]

A relação A e D, existem mediante a existência das seguintes condições:

A D: Condições de Diferenciabilidade da função e de Regularid<u>a</u> de do ponto

D -- A : Condição de Diferenciabilidade, de Convexidade e de Unicidade da solução cu : O respectivo problema deve ter solução unica;

CE : Todos os pesos associados a função no $P(\omega)$ devem ser estritamente positivos;

c1: $x^* \in \text{solução de } P_k(\varepsilon^*) \text{ onde } \varepsilon_j^* = \{j(x^*) | j \neq k \text{ para todo } k;$

CK: Todos os multiplicadores de Kuhn-Tucker associados \bar{a} $\delta_j(x^*) \le \varepsilon_j^*, \quad j \ne K$ são estritamente positivos;

cc . Condição de convexidade.

CDI: Condição de Diferenciabilidade

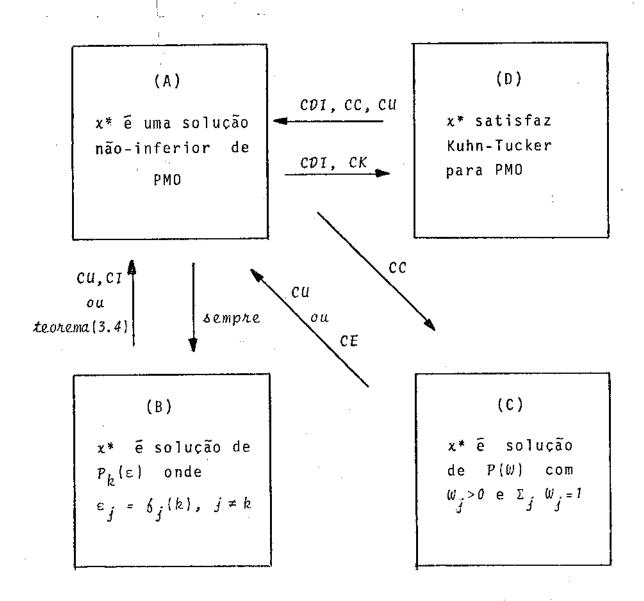


Figura 3.4 Diagrama de Implicações da Teoria Multiobjetiva

3.11. Conclusão

Procurou-se aqui apresentar os conceitos e algumas técnicas da teoria multiobjetiva. As relações de soluções de alguns problemas monobjetivos P(w) e $P_k(\varepsilon)$ com as soluções não-inferiores de PMO foram comentadas e analisadas. Introduziu-se, também, através deste capítulo, a ideia de representar matematicamente as preferências e utilidades do tomador de decisão através da Teoria da Utilidade. Uma abordagem particular foi dada as funções utilidades aditivas.

Em geral, as tecnicas existentes para se manipular problemas multiobjetivos, apresentam varias formas de dialogo entre o analista e o tomador de decisão. Os Métodos de Geração ("Generating Methods") representam uma forma reduzida de se gerar soluções alternativas finais, pois depende de uma seleção feita pelo tomador de decisão.

Como outra forma, apresentou-se a ideia das técnicas que incorporam preferências. No capítulo 4 será mostrado e discutido um procedimento aqui classificado.

CAPITULO 4 - DECISÕES INTERATIVAS EM SISTEMAS

DE GRANDE PORTE COM MÜLTIPLOS

OBJETIVOS

CAPITULO 4 - DECISOES INTERATIVAS EM SISTEMAS DE GRANDE PORTE COM MOLTIPLOS OBJETIVOS

É desenvolvido neste capítulo um procedimento de negociação iterativo-interativo para multiplos tomadores de decisão que defrontam com multiplos objetivos que são dependentes uns dos outros devido, principalmente, à presença de recursos comuns. O procedimento inclui basicamente dois passos: a otimização pelo tomador de decisão do seu subsistema e a negociação entre os mesmos. Considerações são feitas sobre a convergência do método.

4.1. Introdução

Como ja foi visto, a grande maioria dos problemas reais de tomada de decisão envolvem multiplos objetivos. Boa parte dos métodos de programação matemática existentes, ignoram a participação do tomador de decisão como agente fornecedor de informação.

O metodo que se apresenta procura incorporar o tomador de decisão, interativamente, num processo repetitivo buscando com isto soluções mais realistas e também maior eficiência na sua obtenção.

Esse metodo busca auxiliar tomadores de decisão de forma a solucionar problemas caracterizados pela utilização de recursos comuns tendo cada tomador de decisão seus proprios objetivos.

O metodo está baseado na decomposição do sistema em subsistemas. Esta decomposição pode ser natural, pela caracteristica do problema ou pode ser uma decomposição articulada devido a complexidade do problema.

Existindo tal decomposição surge o conceito de variáveis de acoplamento para designar o elemento de interconexão entre os $v\bar{a}$ -rios subsistemas.

Basicamente podemos ver o metodo como sendo composto dos se guintes passos:

- . A otimização dos subsistemas pelos respectivos tomadores de decisão;
- . A negociação através do trade-off entre os multiplos tomadores de decisão.

No procedimento gerado pela metodologia, podemos identificar como agentes ativos no processo o tomador de decisão e o analista.

O papel do tomador de decisão, como o proprio nome já diz, é o de optar por alternativas tendo por base critérios implícitos ou explicitos. O analista por sua vez é responsável pela geração de informações que auxiliam o tomador de decisão.

O método e o procedimento de utilização é aqui apresentado. A equivalência entre a solução por ele gerada, a solução do problema original e sua convergência são também considerados.

4.2. Formulação Matemática do Problema

Para conseguir maior generalização se usará a palavra sistema quando se quiser referir ao problema como um todo, e subsistema quando esta referência é feita ao dominio de um tomador de decisão especificamente.

Sobre este ponto de vista, pode-se dizer que muitos sistemas podem ser vistos como um conjunto de subsistemas interagindo entre si.

A seguir e apresentado um problema de programação matemática que generaliza um grande número de problemas reais. Este modelo sera base para o tratamento matemático do procedimento aqui sugerido.

Supõe-se um sistema contendo subsistemas, com seus respectivos objetivos (figura 4.1) que são conectados entre si. As interconexões são dependentes da estrutura interna a cada sistema, isto $\tilde{\mathbf{e}}$, do relacionamento de dependência de um subsistema em relação aos de mais.

Como meta dos subsistemas pode-se matematicamente apresentar

TD_i: min
$$\begin{bmatrix} \delta_{1}^{i} (x_{i}, m_{i}, y_{i}) \\ \delta_{2}^{i} (x_{i}, m_{i}, y_{i}) \\ \delta_{n_{i}}^{i} (x_{i}, m_{i}, y_{i}) \end{bmatrix}$$
 (4.1)

onde n_i : numero de objetivos do subsistema i, com i=1, ..., n.

Um subsistema pode ser entendido como um meio de transformação pelo qual um conjunto de variáveis, aqui ditos de entrada $\{x_{\dot{\iota}}\}$ influenciados pelas variáveis de decisão $(m_{\dot{\iota}})$ ou de controle produz elementos de saída $(y_{\dot{\iota}})$ que poderão vir a ser variáveis de entrada de outro subsistema (figura 4.2).

O comportamento esperado de cada um dos subsistemas pode ser descrito algebricamente por

$$y_i = H_i(x_i, m_i), i=1, ..., n$$
 (4.2)

A região de operação factivel dos subsistemas pode ser expressa matematicamente como:

$$g_{i}(x_{i}, m_{i}, y_{i}) \leq 0, \quad i=1, \ldots, n$$
 (4.3)

representando as restrições local ao subsistema.

Pela generalização das possíveis interconexões entre os subsistemas, podendo apresentar vários perfis topológicos, tem-se como expressão de acoplamento,

$$x_{i} = \sum_{j=1}^{n} c_{ij} y_{j}$$
 $i=1, ..., n$ (4.4)

onde c_{ij} e uma matriz de 0 e 1 geralmente esparsa e não quadrada, onde x_i e y_j são, respectivamente, os vetores associados as variaveis de entrada e saída dos subsistemas i e j.

A restrição de recursos comuns pode ser expressa também por

$$\sum_{i=1}^{n} q_{i}(x_{i}, m_{i}, y_{i}) \leq b \tag{4.5}$$

Para sistemas compostos por dois subsistemas, onde a relação entre eles é biunivoca ter-se-ã uma matriz de acoplamento quadrada e simétrica.

Para sistemas genericos nada se pode previamente afirmar sobre a forma desta matriz.

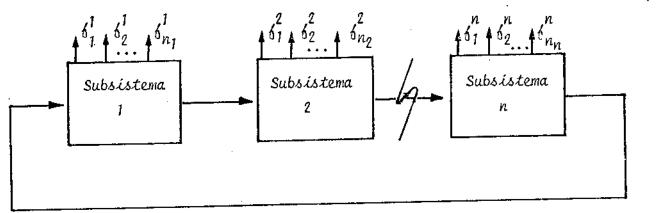


Figura 4.1 Exemplo de um sistema composto de vários subsistemas Interconectados

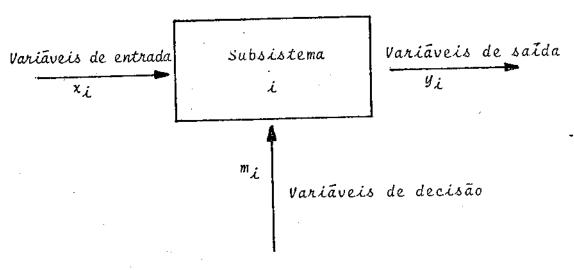
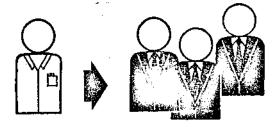


Figura 4.2 Variáveis relacionadas a um subsistema

4.3. Procedimento Interativo de Negociação

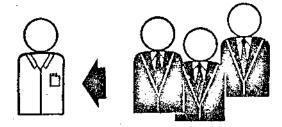
A seguir é apresentado o procedimento Interativo de Negocia cão para um PMO com restrição de acoplamento [18]. É discutido um caso com dois tomadores de decisão. Em seguida são estabelecidas algumas hipóteses e a convergência é estudada.

O procedimento baseia-se em três etapas. A primeira possibilita que os tomadores de decisão, a partir da fixação das variáveis de acoplamento, otimize seus subsistemas independentemente uns dos outros. Com isto, cada tomador de decisão terá total dominio sobre seu subsistema, respeitando as variáveis de acoplamento fixadas. A segunda etapa está na negociação dos valores das funções objetivos representativas dos subsistemas baseadas no trade-off entre elas. Desta negociação, entre tomadores de decisão, retornarão novos valores de funções objetivos e/ou variáveis de decisão. Por fim, a terceira etapa, tida por conta do analista, compreende a fixação de novos valores para a variável de acoplamento dos subsistemas baseado nos resultados da negociação feita pelos tomadores de decisão.

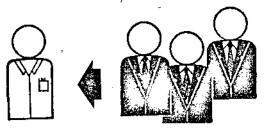

Assim pode-se representar o procedimento de negociação interativa (figura 4.3), como:

Repetir (atē nenhuma mudança significativa ocorrer)

- Passo 1 O analista fixa, em algum valor apropriado, as variāveis de acoplamento;
- Passo 2 Os tomadores de decisão otimizam seus respectivos subsistemas;
- Passo 3 O analista calcula o trade-off dos subsistemas, baseado nos valores das funções objetivos e variáveis de decisão fornecidas pelos tomadores de decisão;
- Passo 4 Baseado no trade-off entre subsistemas os tomadores de decisão negociam a direção e a quantidade a ser alterada nas funções objetivos;
- Passo 5 O analista calcula os correspondentes novos valores para as variáveis de acoplamento, com os novos valores das funções objetivos e variáveis de decisão negociados.

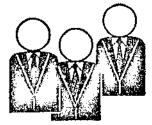

Continua

valores variaveis de acoplamento



valores das funções objetivos e variáveis de decisão

novos valores de funções objetivos e variáveis de decisão




trade-off entre subsistemas

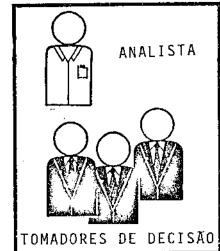


Fig. 4.3 : Procedimento Interativo de Negociação

4.4. O Cálculo do"Trade-off"

Neste método de negociação, as informações relativas à cada tomador de decisão são matematicamente transformadas pelo analista em trade-offs entre objetivos.

Afim de se ter uma relação entre os subsistemas escolhe-se um dos $n_{\hat{\lambda}}$ objetivos que estão presentes no subsistema $\hat{\lambda}$, como elemento de comparação e avaliação das mudanças e impactos.

Se para os subsistemas (i) e (j) se tomar os objetivos

$$\delta_{k}^{i}(x, m, y) = \delta_{\ell}^{j}(m, x, y)$$

o "trade-off"entre dois pontos não-inferiores será:

$$T_{P_{k\ell}}^{ij} \left\{ x', m', y', x'', m'', y'' \right\} = \frac{\delta_k^i(x', m', y') - \delta_k^i(x'', m'', y'')}{\delta_\ell^j(x', m', y') - \delta_\ell^j(x'', m'', y'')}$$

onde: $T_{P_{k\ell}}^{ij}$ Trade-off objetivo parcial.

Esta razão representa a relação de perda e ganho de um su \underline{b} sistema (\dot{z}) em relação ao outro (\dot{j}).

Em alguns casos, os objetivos são acoplados de tal maneira que, não é possível obter o trade-off parcial entre os subsistemas, isto é, a razão entre dois objetivos, com os demais mantendo-se constantes.

Para casos como este, onde a mudança de $f_k^i(x,m,y)$ acarretar mudança em dois ou mais objetivos o trade-off objetivo devera ser o total dado pelo vetor de objetivos alterados.

Sem perda de generalidade considera-se para estudo um sistema constituído de dois subsistemas, $\dot{\iota}$ e $\dot{\jmath}$ respectivamente.

Em toda fase de negociação do metodo, o que interessa são as alternativas que não são inferiores. Alternativas que apresen - tem conflitos entre objetivos.

Algumas técnicas podem ser utilizadas. Como comentado no capitulo anterior a do ε -Restrito não requer a hipótese de convexidade e o trade-off pode ser obtido diretamente.

Supõe-se estarmos interessados na taxa de "trade-off" entre os objetivos

$$\delta_{k}^{i}(x, m, y) \in \delta_{\ell}^{j}(x, m, y)$$

Matematicamente a otimização do subsistema í pelo tomador de decisão (Passo 2) pode ser definida por:

min
$$\begin{cases} i_k (x_i, m_i, y_i) \\ x_i, m_i, y_i \\ s.a. \end{cases}$$

$$\begin{cases} i_k (x_i, m_i, y_i) \leq \epsilon_p^i \\ p \end{cases} \qquad p = 1, \dots, n_i \qquad p \neq k \end{cases}$$

$$\begin{cases} i_k (x_j, m_j, y_j) \leq \epsilon_p^j \\ i_k (x_j, m_j, y_j) \leq \epsilon_m^j \end{cases} \qquad m = 1, \dots, n_j \qquad m \neq k \end{cases}$$

$$\begin{cases} i_k (x_j, m_j, y_j) \leq \epsilon_m^j \\ i_k (x_i, m_i) \leq \epsilon_m^j \end{cases} \qquad i_k = 1, \dots, n_k \end{cases}$$

$$\begin{cases} i_k (x_i, m_i) \leq \epsilon_m^j \\ i_k (x_i, m_i) \leq \epsilon_m^j \end{cases} \qquad i_k = 1, \dots, n_k \end{cases}$$

$$\begin{cases} i_k (x_i, m_i, y_i) \leq \epsilon_m^j \\ i_k (x_i, m_i) \leq \epsilon_m^j \end{cases} \qquad i_k = 1, \dots, n_k \end{cases}$$

$$\begin{cases} i_k (x_i, m_i, y_i) \leq \epsilon_m^j \\ i_k (x_i, m_i) \leq \epsilon_m^j \end{cases} \qquad i_k = 1, \dots, n_k \end{cases}$$

$$\begin{cases} i_k (x_i, m_i, y_i) \leq \epsilon_m^j \\ i_k (x_i, m_i, y_i) \leq \epsilon_m^j \end{cases} \qquad i_k = 1, \dots, n_k \end{cases}$$

$$\begin{cases} i_k (x_i, m_i, y_i) \leq \epsilon_m^j \\ i_k (x_i, m_i, y_i) \leq \epsilon_m^j \end{cases} \qquad i_k = 1, \dots, n_k \end{cases}$$

$$\begin{cases} i_k (x_i, m_i, y_i) \leq \epsilon_m^j \\ i_k (x_i, m_i, y_i) \leq \epsilon_m^j \end{cases} \qquad i_k = 1, \dots, n_k \end{cases}$$

$$\begin{cases} i_k (x_i, m_i, y_i) \leq \epsilon_m^j \\ i_k (x_i, m_i, y_i) \leq \epsilon_m^j \end{cases} \qquad i_k = 1, \dots, n_k \end{cases}$$

$$\begin{cases} i_k (x_i, m_i, y_i) \leq \epsilon_m^j \\ i_k (x_i, m_i, y_i) \leq \epsilon_m^j \end{cases} \qquad i_k = 1, \dots, n_k \end{cases}$$

$$\begin{cases} i_k (x_i, m_i, y_i) \leq \epsilon_m^j \\ i_k (x_i, m_i, y_i) \leq \epsilon_m^j \end{cases} \qquad i_k = 1, \dots, n_k \end{cases}$$

$$\begin{cases} i_k (x_i, m_i, y_i) \leq \epsilon_m^j \\ i_k (x_i, m_i, y_i) \leq \epsilon_m^j \end{cases} \qquad i_k = 1, \dots, n_k \end{cases}$$

$$\begin{cases} i_k (x_i, m_i, y_i) \leq \epsilon_m^j \\ i_k (x_i, m_i, y_i) \leq \epsilon_m^j \end{cases} \qquad i_k = 1, \dots, n_k \end{cases}$$

Se para uma solução única do problema definido tivermos:

$$\delta_p^i \left(x_i, m_i, y_i \right) = \varepsilon_p^i , p = 1, \dots, n_i \in \delta_m^j \left(x_j, m_j, y_j \right) = \varepsilon_m^j , m = 1, \dots, n_j$$

este ponto é um ponto não-inferior. Em consequência o multiplicador de Lagrange associado a estas restrições, se estritamente positivo, são interpretados como a taxa de "trade-off" entre os objetivos.

Para que se possa obter tal resultado usa-se os metodos de Lagrange ou o Lagrangeano Aumentado, por exemplo.

4.5. Análise do Método e sua Convergência

O metodo de negociação interativa e um metodo aplicado a problemas com multiplos objetivos, enfatizando a presença de multiplos tomadores de decisão. As decisões a nível de subsistema e interpreta da como feita por um unico tomador de decisão. Mas contudo, o metodo pode ser extendido para subsistemas que tenham dois ou mais tomadores de decisão, aplicando-se aí, novamente técnicas de negociação.

Afim de se estudar o método, far-se-á aqui uso de uma função que represente a preferência dos tomadores de decisão no processo de negociação. A utilização desta função, chamada de função utilidade, é invocada somente por razões teóricas. Esta função nos auxiliará en tender passo a passo a busca pela solução de compromisso.

Com o auxilio da função preferência (utilidade) dos tomadores de decisão pode-se redefinir um problema equivalente ao problema $TD_{\hat{\lambda}}$, como:

max
$$U_{i} [f_{1}^{i} (x_{i}, m_{i}, y_{i}), \dots, f_{n_{i}}^{i} (x_{i}, m_{i}, y_{i})]$$
 x_{i}, m_{i}, y_{i} s.a. $(4.2) (4.3), (4.4) e (4.5), i = 1, \dots, n$

Como solução deste problema obtêm-se pontos não-inferiores correspondentes ao subsistema \emph{i} .

Como meta do sistema tem-se encontrar uma solução do com promisso entre os interesses dos tomadores de decisão, tal que seja ótima para seus subsistemas e, que satisfaça as restrições do sistema.

O problema para o qual o ponto descrito acima é solução pode ser definido matematicamente como:

max.
$$u [\delta^1(x_1, m_1, y_1), \dots, \delta^n(x_n, m_n, y_n)]$$

 x, m, y
s.a. $\{x, m, y\} \in X$ $i = 1, \dots, n$
 $\delta^i(x_i, m_i, y_i)$: vetor função objetivo do subsistema i .

O conjunto X e o conjunto dos pontos não-inferiores do problema e U é a função utilidade de grupo.

Este problema representa a negociação entre os tomadores de decisão. Neste passo do processo deve existir um ponto de compromis so entre os tomadores de decisão. Com isto surge uma primeira hipótese para aplicação do método.

H1 - Uma solução de compromisso existe.

Esta hipótese matematicamente \tilde{e} representada pela existência de uma solução $\{x^*,m^*,y^*\}$ do problema acima exposto.

Seja este problema e os passos do procedimento interativo. Como resultado do passo 2 do método obtém-se os conjuntos x^1 , x^2 , ... x^n que são os conjuntos de soluções não-inferiores dos respectivos subsistemas. Estes pontos foram gerados tendo cada tomador de decisão respeitado os acoplamentos e visando a melhor obtenção de seus objetivos.

Na etapa de negociação, o que se procura fazer é encontrar um ponto tal que exista uma mutuo-preferência para com ele. Para que se garanta a existência deste ponto, isto é, um ponto entre todos os pontos não-inferiores gerados que seja preferido pelos tomadores de decisão a condição de mutuo-preferencial independência entre os sub sistemas é requerida. Isto equivale dizer que uma solução local pode vir a ser uma solução global.

Pelo teorema da aditividade da função utilidade (3.6.2), ē possível reescrever U (.) como:

$$u \ [6^1, \dots, 6^n] = \sum_{i=1}^n u_i \ [6^i_1, \dots, 6^i_{n_i}]$$

Se X e tido como o conjunto de soluções não-inferiores do sistema ele pode ser escrito como:

$$x \equiv x^1 \cup x^2 \cup x^3 \dots \cup x^n$$

A existencia de uma função utilidade aditiva é condição importante para a decomposição do sistema assegurando que entre as so luções obtidas pelos tomadores de decisão acerca da otimização de seu subsistema esteja a solução de compromisso do sistema.

Formalmente esta hipotese pode ser escrita como:

H2 - Uma função utilidade de grupo, diferenciável, aditiva e não necessariamente conhecida, existe.

Na negociação, isto é, na busca de um ponto de compromisso entre os pontos não-inferiores gerados por cada tomador de decisão faz-se uso do trade-off que é fornecido pelo analista aos tomado-res de decisão. Outra condição necessária ao método é a existência do trade-off.

O trade-off entre todos os objetivos devem existir pois atra ves dele os tomadores de decisão podem otimizar seus subsistema e negociar.

Como a otimização dos subsistemas pode ser feita por metodos que não se utilizem do trade-off, a condição mais forte é a existência do trade-off entre os subsistemas, pois é ele que garantirã a negociação entre os tomadores de decisão.

A terceira hipotese pode ser enunciada como:

H3 - Trade-off entre as funções objetivos e entre os subsistemas existem.

Os trade-off entre os subsistemas nada mais são que tradeoff entre objetivos que representam os susbsistemas. Não hã, entretanto, a necessidade de existir o trade-off entre todas as funções objetivos. Poderão existir funções não conflitantes no sis tema. Entretanto, aquelas escolhidas para representar o subsistema na negociação deverão, necessariamente, possuir trade-off.

Se for assumido que a negociação pelos tomadores de decisão não se basearã no trade-off tal hipótese é descartada. Ela existe como complementação teórica da hipótese (H2). Seja a função utilidade de grupo, aditiva e diferenciável:

$$u: R^n \longrightarrow R$$

O trade-off indiferente, que representa a opinião dos tomadores de decisão sobre um ponto não-inferior em relação a uma função objetivo $\binom{\dot{k}}{k}(x_{\dot{k}},m_{\dot{k}},y_{\dot{k}})$ e $\binom{\dot{j}}{k}(x_{\dot{j}},m_{\dot{j}},y_{\dot{j}})$ pode ser definido como:

$$T_{1k\ell}^{ij} (x_i, m_i, y_i, x_j, m_j, y_j) = \frac{\partial U(.) / \partial \delta_k^i (x_i, m_i, y_i)}{\partial U(.) / \partial \delta_\ell^j (x_j, m_j, y_j)}$$

onde:

O metodo de negociação pode ser visto como a procura de um pon to tal que o trade-off parcial objetivo seja igual ao trade-off subjetivo indiferente.

Com isto outra hipotese pode ser apresentada:

H4 - A melhor solução de compromisso é o ponto onde o trade-off (parcial ou total) é igual ao trade-off indiferente da função utilidade de grupo.

Isto assegura que uma solução local pertencente a X^i $\{i=1,\ldots,n\}$ ē uma solução global.

Pode-se dizer que o esquema de negociação interativa converge se a igualdade acima for satisfeita para um ponto não-inferior de X. Isto equivale dizer que as funções objetivos convergem para algum limite quando o processo interativo é executado por tomadores de decisão consistentes. Isto, por sua vez, equivale a afirmação de que a função utilidade converge para algum valor no processo repetitivo de negociação.

Durante o processo interativo para a obtenção de uma melhor so lução de compromisso é possível ter a seguinte relação: u^{k+1} $[6^1, 6^2, \ldots, 6^n] \ge u^k$ $[6^1, 6^2, \ldots, 6^n]$, com k indicando a iteração.

A cada interação nos é possível caminhar em direção ao ponto limite da função utilidade.

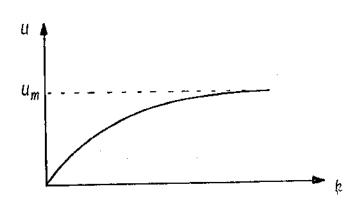


Figura 4.4 Gráfico representativo da convergência do método

Numa interação, a partir de um ponto de concordancia entre os tomadores de decisão, o analista fixa novo valor da variável de acoplamento. Este novo valor é tal que possibilita a melhoria dos objetivos nas próximas etapas do esquema de negociação.

No fim do processo iterativo-interativo, o trade-off entre $\begin{pmatrix} i \\ k \end{pmatrix} \begin{pmatrix} x_i, m_i, y_i \end{pmatrix}$ e $\begin{pmatrix} j \\ k \end{pmatrix} \begin{pmatrix} x_j, m_j, y_j \end{pmatrix}$ e igual ao trade-off subjetivo indiferente da função utilidade de grupo. O trade-off usado na otimização do subsistema também corresponde ao trade-off subjetivo indiferente.

Entretanto, nota-se que na otimização dos subsistemas a variavel de acoplamento se manteve constante. Isto significa que os trade-off obtidos na otimização dos subsistemas não são necessariamente trade-off para todo o sistema.

Outra hipótese simples garantirá que trade-off associados a otimização dos subsistemas sejam trade-off do sistema:

H5 - Quando determinamos qualquer trade-off entre objetivos de algum subsistema, o objetivo fixado, fixam também as variáveis de acoplamento associado com o particular subsistema.

Uma outra interpretação pode ser dada à hipótese anterior:

H5' - Fixando-se os niveis das funções objetivos dos n-1 subsistemas as variáveis de acoplamento do subsistema restante são fixadas:

A hipotese (H5) é uma complementação da condição de independência do método, significando que quando os níveis das funções objetivos dos n-1 subsistemas são fixados, as variáveis de decisão des ses n-1 subsistemas não afeta o trade-off do restante dos subsistemas, pela mudança da variável de acoplamento deste particular subsistema.

Esta hipótese é usualmente assegurada na classe de sistemas onde o acoplamento entre subsistemas é devido somente a utilização de recursos comuns. Fixando-se os níveis dos objetivos dos n-1 subsistemas, fixa-se a quantidade de recursos que esses subsistemas requerem. Assim, a quantidade de recurso que resta é fixada.

É claro que, neste esquema proposto, a suposição (H5) é a mais crucial. A hipótese (H3) pode ser relaxada, não sendo necessário existir o trade-off entre todos os objetivos.

4.6. Conclusão

O metodo de negociação apresentado assume primordial atuação do tomador de decisão no processo de busca de alternativas. Ele gera informações, dentro de um procedimento estruturado, de forma que o tomador possa optar pela alternativa que melhor atender suas preferências (utilidade).

As informações são geradas interativamente tal que no processo iterativo elas são melhoradas e caminham para a solução de compromisso.

A aplicabilidade e eficiência do metodo esta diretamente liga da a característica do problema. A sua utilização pode ser feita em problemas com restrições e funções objetivos não lineares, lineares, inteira, etc.. A metodologia, é extensivel a grande número de problemas reais. A filosofia do método pode ser aplicada a muitos problemas, dependendo, obviamente, das devidas adaptações para se passar de um problema a outro.

O metodo interativo de negociação é um metodo natural, no se<u>n</u> tido de se caminhar na busca de uma solução de compromisso sem que se tenha que assumir valores ou níveis de variaveis e funções. Esta característica é importante em termos de comparação a outros metodos.

Uma outra caracteristica importante deste metodo e a preserva ção da individualidade dos tomadores de decisão na otimização de seus respectivos subsistemas.

CAPÍTULO 5 - APLICAÇÕES DO PROCEDIMENTO INTERATIVO DE NEGOCIAÇÃO São apresentadas neste capitulo duas aplicações do Procedimento Interativo de Negociação. Primeiramente e analisado um problema teorico, aqui colocado para auxiliar o entendimento do procedimento atraves da argumentação sobre as hipóteses e conclusões apresentadas no capitulo anterior. Em seguida e formulado um problema real de planejamento de produção de energia eletrica, por usinas hidreletricas, sendo estas interdependentes entre si pelas coneções físicas e pelas empresas que as operam e administram. Resultados de simulação para vários períodos do horizonte de planejamento são apresentados e analisados. Uma discussão do comportamento dos dados levantados e a sua coerência são consideradas. Finalmente são apresentadas as conclusões.

A Aplicação do Procedimento Interativo de Negociação à um Problema Teórico.

Considere os seguintes subsistemas interconectados abaixo:

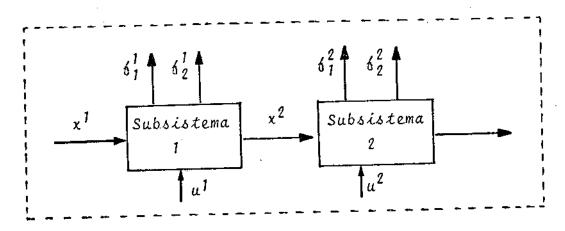


Figura 5.1: Sistema

$$TD_{1}: \max \left\{ \delta_{1}^{1}\{x_{1}^{1}, u_{1}^{1}\}, \delta_{2}^{1}\{x_{2}^{1}, u_{2}^{1}\} \right\}$$

$$\delta.a$$

$$x_{1}^{1} = \alpha_{1} - u_{1}^{1}$$

$$x_{2}^{1} = \alpha_{2} - u_{2}^{1} + u_{1}^{1}$$

$$0 \leq x_{j}^{1} \leq x_{jM}^{1}$$

$$0 \leq u_{j}^{1} \leq u_{jM}^{1}$$

$$\int_{0}^{\pi} e^{-\frac{\pi}{2}} \left\{ \delta_{1}^{2}\{x_{1}^{2}, u_{1}^{2}\}, \delta_{2}^{2}\{x_{2}^{2}, u_{2}^{2}\} \right\}$$

$$\delta.a$$

$$x_{1}^{2} = \alpha_{3} - u_{1}^{2} + u_{1}^{2}$$

$$x_{2}^{2} = \alpha_{4} - u_{2}^{2} + u_{1}^{2}$$

$$0 \leq x_{j}^{2} < x_{jM}^{2}$$

$$0 \leq u_{j}^{2} \leq u_{jM}^{2}$$

$$j = 1, 2$$

com α_i i=1,...,4 constantes reais quaisquer onde x_{j}^{ℓ} representa

variavel de estado j do subsistema i, u_{j}^{i} a variavel de decisão j do subsistema i.

As funções objetivos δ_1^1 , δ_2^1 , δ_2^2 , δ_2^2 possuem a seguinte forma:

$$\begin{aligned} &\delta_{1}^{1}(x_{1}^{1}, u_{1}^{1}) = K_{1} - (u_{1}^{1} - n_{1})^{2} - (x_{1}^{1} - n_{2})^{2} \\ &\delta_{2}^{1}(x_{2}^{1}, u_{2}^{1}) = K_{2} - (u_{2}^{1} - n_{3})^{2} - (x_{2}^{1} - n_{4})^{2} \\ &\delta_{1}^{2}(x_{1}^{2}, u_{2}^{1}) = K_{3} - (u_{1}^{2} - n_{5})^{2} - (x_{1}^{2} - n_{6})^{2} \\ &\delta_{2}^{2}(x_{2}^{2}, u_{2}^{2}) = K_{4} - (u_{2}^{2} - n_{7})^{2} - (x_{2}^{2} - n_{8})^{2} \end{aligned}$$

com K_{ℓ} , $\ell=1,\ldots,4$ π_{m} , $m=1,\ldots,8$ constantes reais quaisquer.

Supõe-se que cada subsistema possua um tomador de decisão responsável cujo objetivo $\tilde{\mathbf{e}}$ negociar e definir valores das variáveis de decisão u_j^i de modo a obter um melhor resultado de seu subsistema e do sistema como um todo.

Pode-se notar ser este um problema de utilização de recursos comum sendo a variável $u_2^{\ 1}$ a que estabelece o vínculo entre os dois subsistemas. Ela será aqui chamada de variável de acoplamento.

Para a aplicação do procedimento interativo de negociação (figura 4.3) passo a passo, assume-se aqui, com o propósito de simular a negociação pelos tomadores de decisão, a seguinte função utilidade de grupo aditiva:

$$u[\delta_1^1, \delta_2^1, \delta_1^2, \delta_2^2] = 0.2 \delta_1^1 + 0.2 \delta_2^1 + 0.4 \delta_1^2 + 0.2 \delta_2^2$$

Pela hipótese H2 vemos que a preferência dos tomadores devem estar por u representadas e ela deve ser coerente com as preferências de cada tomador de decisão quando da otimização de seu subsistema (passo 2). Pela expressão (4.6) podemos escrever:

$$u[\delta_{1}^{1}, \delta_{2}^{1}, \delta_{1}^{2}, \delta_{2}^{2}] = u_{1}[\delta_{1}^{1}, \delta_{2}^{1}] + u_{2}[\delta_{1}^{2}, \delta_{2}^{2}]$$

com:

$$u_{1}[\delta_{1}^{1}, \delta_{2}^{1}] = 0.2 \delta_{1}^{1} + 0.2 \delta_{1}^{2}$$

e

$$u_{2}[\delta_{1}^{2}, \delta_{2}^{2}] = 0.4 \delta_{1}^{2} + 0.2 \delta_{2}^{2}$$

Isto nos garantira que soluções obtidas na otimização dos sub sistemas (induzidos pelos respectivos tomadores de decisão) podem ser uma solução global do sistema.

Neste exemplo, com duas funções objetivos associadas a cada subsistema, para que se assegure que o "trade-off" dos subsistemas sejam "trade-offs" do sistema global basta fixar a variável de acoplamento (hipótese 5).

O procedimento de negociação aplicado ao problema definido anteriormente gera 3 subproblemas aqui definidos:

Subproblema 1

$$\max u_{1}[\delta_{1}^{1}, \delta_{2}^{1}]$$

s.a

$$x_{1}^{1} = \alpha_{1} - u_{1}^{1}$$

$$x_{2}^{1} = \alpha_{2} - u_{2}^{1} + u_{1}^{1}$$

$$u_{2}^{1} = 6ixo$$

$$0 \leq x_{j}^{1} \leq x_{jM}^{1}$$

$$0 \leq u_{j}^{1} \leq u_{jM}^{1}$$

$$j = 1, 2$$

Subproblema 2

$$\max u_{2}[\delta_{1}^{2}, \delta_{2}^{2}]$$

s.a

$$x_{1}^{2} = \alpha_{3} - u_{1}^{2} + u_{2}^{1}$$

$$x_{2}^{2} = \alpha_{4} - u_{2}^{2} + u_{1}^{2}$$

$$u_{2}^{1} \quad \text{fixo}$$

$$0 \leq x_{j}^{2} \leq x_{jM}^{2}$$

$$j = 1, 2$$

$$0 \leq u_{i}^{2} \leq u_{jM}^{2}$$

Subproblema 3

max
$$u_{1}\delta_{1}^{1}, \delta_{2}^{1}, \delta_{1}^{2}, \delta_{2}^{2}$$

s.a

$$x_{1}^{1} = \alpha_{1} - u_{1}^{1}$$

$$x_{2}^{1} = \alpha_{2} - u_{2}^{1} + u_{1}^{1}$$

$$x_{1}^{2} = \alpha_{3} - u_{1}^{2} + u_{2}^{1}$$

$$x_{2}^{2} = \alpha_{4} - u_{2}^{2} + u_{1}^{2}$$

$$x_{2}^{1} = \alpha_{5} - u_{2}^{2} + u_{1}^{2}$$

$$x_{2}^{1} = \alpha_{5} - u_{2}^{2} + u_{1}^{2}$$

$$x_{3}^{1} = x_{3}^{2} - u_{1}^{2} + u_{2}^{2}$$

$$x_{4}^{2} = x_{4}^{2} - u_{2}^{2} + u_{1}^{2}$$

$$x_{5}^{1} = x_{5}^{2} + x_{5}^{2}$$

$$0 \le u_{5}^{2} \le u_{5}^{2}$$

$$i = 1, 2 \quad e \quad j = 1, 2$$

$$0 \le u_{5}^{2} \le u_{5}^{2}$$

$$i = 1, 2 \quad e \quad j = 1, 2$$

O subproblema 1 corresponde a simulação da otimização das funções δ_1^1 e δ_2^1 do subsistema 1 pelo tomador de decisão onde sua preferência está representada pela função utilidade $u^1(\delta_1^1, \delta_2^1)$. O subproblema 2 corresponde a simulação da otimização das funções δ_1^2 e δ_2^2 do subsistema 2 pelo seu tomador de decisão onde sua preferência está representada pela função utilidade $u^2(\delta_1^2, \delta_2^2)$.

Ambos subproblemas estão restritos a variavel de acoplamento fixa. O subproblema 3 corresponde a simulação da negociação entre os tomadores de decisão.

A negociação, neste caso, estã sendo feita pelas funções objetivos δ_2^1 e δ_1^2 sendo as demais mantidas fixas.

O exemplo aqui tratado pode ser, em termos do procedimento de negociação colocado como:

- Passo 1: O analista fixa a variavel de acoplamento num certo valor factivel;
- Passo 2: Resolve-se os subproblema 1 e 2 mantendo-se fixa a variável de acoplamento no mesmo nivel ja estipula-do;
- Passo 3,4 e 5: Resolve-se o subproblema 3 mantendo-se fixa as funções objetivos δ_1^1 e δ_2^2 nos níveis alcançados nos passos anteriores;

Este procedimento deve ser repetido até que não haja mudança significativa nos valores das funções objetivos ou, equivalentemente, da função utilidade.

No quadro 5.2 apresentamos os resultados da simulação.

Fez-se uso para solução dos subproblemas de uma rotina da biblioteca NAG (Numerical Algorithm Group) que se utiliza do méto-do Lagrangeano Aumentado. A implementação foi feita no sistema VAX/UNICAMP em Fortran.

Os seguintes valores de parametros foram usados:

к ₁	100.0	^α 1	10.0	r ₁	2.0	r ₅	2.0
К ₂	100.0	^α 2	6.0	r ₂	8.0	r ₆	6.0
К ₃	100.0	α3	5.0	r ₃	3.0	r ₇	3.0
K ₄	100.0	α ₄	7.0	r ₄	5.0	r ₈	6.0

Quadro 5.1: Parâmetros do Problema Definido

Analisemos em detalhe os quadro 5.2

Para estes valores de parâmetros vemos não haver conflitos entre as funções pois o ponto de compromisso, guardadas as devidas diferenças por aproximação numérica, nada mais é que o ponto de mã ximo de cada função objetivo se vista independentemente.

Pode-se notar também que os valores de função objetivos de δ_1^2 e δ_2^2 , no subproblema 2, e δ_2^1 e δ_1^2 no subproblema 3 e δ_1^1 e δ_2^1 no problema 1 apresentam, ambas, um acréscimo em relação as mesmas funções no passo anterior para todas as interações.

E ainda possível pela análise do quadro 5.2 notar que o valor da função utilidade num certo passo de uma iteração é sempre maior que o passo anterior. Esta é a visualização da convergência do método.

A precisão requerida para o problema cujos dados são aprese<u>n</u> tados no quadro 5.2 e de 10⁻². O tempo de CPU foi de 5.04 segundos.

PROB	ITER	61	62	62	62	x1	u1	x ₂ ¹	u2	x ₁ ²	u2 1	x ₂ ²	<i>μ</i> ² ₂	FÇ_UTIL
1	1	98.00	87.00	95.00	90.00	9.00	1.00	7.00	0.00	5.00	0.00	7.00	0.00	93.00°
2	1	98.00	87.00	95.45	99.11	9.00	1.00	7.00	0.00	4.33	0.67	5.33	2.33	95.00
3	1	98.00	99.44	99.94	99.11	9.00	1.00	4.33	2.67	5.83	1.83	6.58	2.26	99.29
1	2	99.98	99.84	99.94	99.11	8.11	1.89	5.22	2.67	5.83	1.83	6.58	2.26	99.76
2	2	99.98	99.84	99.94	99.99	8.11	1.89	5.22	2.67	5.82	1.85.	5.93	2.93	99.94
3	2	99.98	100.00	100.00	99.99	8.11	1.89	4.93	2.96	5.98	1.98.	5.92	3,06	99.99
1	3	100.00	100.00	100.00	99.99	8.01	1.99	5.03	2.96	5.98	1.98	5.92	3.06	100.00
2	3	100.00	100.00	100:00	100.00	8.01	1.99	5.03	2.96	5.98	1.98	5.99	3.00	100.00
3	3	00.00	100.00	100.00	100.00	8.01	1.99	4.99	3.00	6.00	2.00	6.00	3.00	100.00

Quadro 5.2 : Resultado da Simulação do Procedimento de Negociação-Problema Teórico

Portanto, e possível concluir a viabilidade de se aplicar também este procedimento à problemas que não envolvam objetivos co<u>n</u> flitantes, embora não seja este um caso muito comum.

Para que se possa avaliar a aplicação do procedimento a um problema com objetivos conflitantes define-se então novos valores dos parâmetros do problema. Os novos parâmetros n_i , $i=1,\ldots,8$ são:

r	3.0	r ₅	1.0
r ₂	8.0	r ₆	6.0
r ₃	4.0	r ₇	2.0
r ₄	5.0	r ₈	6.0

Quadro 5.3: Novos Parâmetros das Funções Objetivos

Os novos resultados são apresentados no quadro 5.4. Atendo-se aos valores de funções modificados a cada passo notamos que, nem sem pre ela sofre uma melhora(acrescimo) no seu valor. Isto e um indicador de conflita.

Por exemplo, na segunda iteração no subproblema 1 vê-se que o valor da segunda função objetivo sofre um pequeno decréscimo no seu valor enquanto que a primeira é sensivelmente melho rada. No subproblema 2 desta mesma iteração vê-se que enquanto δ_1^2 sofre um ligeiro decréscimo no seu valor a δ_2^2 é aumenta da contribuindo também para o aumento do valor da função utilidade de grupo. Isto evidencia o conflito dentro de um subsistema. Ainda na iteração 2, subproblema 3 o mesmo comportamento é verificado com relação as funções δ_2^1 e δ_1^2 . Isto evidencia o conflito entre subsistemas.

Embora tenha-se tido perdas e ganhos em diferentes funções objetivos nos diversos passos nota-se que a função utilidade sempre cresceu convergindo a um valor limite.

PROB	ITER	61	62	61	62	x ₁	u_1^{\dagger}	x ₂ ¹	u ₂ 1	x ₁ ² '	u ₁ ²	x22	u ₂	FÇ.UTIL.
1	1	96.78	78.56	98.00	95.00	8.67	1.33	7.33	0.00	5.00	0.00	7.00	0.00	93.27
2	1	96.78	78.56	97.98	99.61	8.67	1.33	7.33	0.00	4.89	0.11	5.56	1.56	94.18
3	1	96.78	98.31	99.70	99.61	8.67	1.33	4.56	2.78	6.39	1.39	5.8.0	2.60	98.82
1	2	99.38	98.27	99.7.0	99.61	7.74	2.26	5.48	2.78	6.39	1.39	5.80	2.60	99.33
2	2	99.38	98.27	99.69	99.94	7.74	2.26	5.48	2.78	6.43	1.35	6.17	2.17	99.40
3	2	99.38	98.91	99.47	99.94	7.74	2.26	5.27	2.99	6.64	1.35	6.17	2.17	99.43
1	3	99.44	98.86	99.47	99.94	7.67	2.33	5.34	2.99	6.64	1.35	6.17	2.17	99.44
2	3	99.44	98.86.	99.51	99. 90	7.67	2.33	5.34	2.99	6.55	1.44	6.22	2.22	99.44
3	3	99.44	99.06	99.43	99.90	7.67	2.33	5.28	3.05	6.61	1.44	6.22	2.22	99.45
1	4	99.46	99.01	99.43	99.90	7.65	2.35	5.30	3.05	6.61	1.44	6.22	2.22	99.45
2	4	99.46	99.01	99.44	99.89	7.65	2.35	5.30	3.05	6.59	1.47	6.23	2.23	99.45
3	4	99.46	99.06	99.42	99.89	7.65	2.35	5.28	3.07	6.60	1.47	6.23	2.23	99.45

Quadro 5.4: Resultados da Simulação

O tempo de CPU deste caso foi de 5.34 segundos.

Para este exemplo a hipotese 4 do capitulo anterior não pode ser usada para avaliação da convergência uma vez que os fatores multiplicativos das funções objetivos na função utilidade são constantes acarretando a igualdade do "trade-off" entre funções do sistema e o "trade-off" indiferente para todo passo do procedimento de negociação.

5.2. Aplicação do Procedimento Interativo de Negociação a um Probl<u>e</u> ma Real.

É apresentado aqui um problema de planejamento de produção energética por hidrelétricas que fazem parte de duas empresas distintas e que possuem conexões físicas. Muitos são os trabalhos desenvolvidos nesta área de planejamento de produção de energia hidre létrica. Entretanto nenhum ou poucos procuram levar em conta a negociação entre as empresas que as administram possibilitando com is to que os tomadores de decisão considerem também fatores, que não somente os operacionais.

Seja um subsistema i qualquer, designado aqui para representar uma empresa que detenha poderes administrativos e operacionais sobre um conjunto de hidrelétricas. Seja, j uma hidrelétrica com reservatorio de regularização pertencente ao subsistema i. Para esta dada hidrelétrica temos as seguintes variaveis no problema:

- $x_j^{(k)}$: variavel de estado. É o volume no reservatorio de regularização da hidrelétrica no período de tempo k.
- $u_j^{\dot{k}}(k)$: variavel de decisão. È o volume turbinado no periodo de tempo k pela hidreletrica.

Para cada hidreletrica pode-se definir uma relação de balanceamento de massa dada por:

$$x_{j}^{i}(k+1) = x_{j}^{i}(k) + y_{j}^{i}(k) - u_{j}^{i}(k) + \sum_{(\ell,m) \in \Omega_{j}^{i}} u_{m}^{\ell}(k)$$

O volume do reservatorio de uma hidreletrica j de um subsistema i num certo estagio de tempo posterior $\{k+1\}$ sera dado pelo volume do estagio atual $\{k\}$ menos o volume turbinado por esta hidreletrica mais o volume turbinado por hidreletricas a seu montante neste estagio. Acrescido a isto temos aportes independentes (chuva, efluentes secundarios, etc.), cuja natureza \bar{e} estocastica, mas que para efeito de aplicação serão aqui representadas por seus valores medios. O conjunto Ω_j^i representa os subsistemas $\{\ell\}$ e suas hidreletricas $\{m\}$ que estão a montante e utilizam o mesmo recurso hidrico que a hidreletrica f do subsistema f.

A função geração de energia, da hidreletrica j do subsistema i e dada por:

$$\delta_{j}^{i}(x_{j}^{i}, u^{i}, k) = K_{T_{j}}^{i} x_{j}^{i}(T) + \sum_{k=0}^{T-1} \psi_{j}^{i}(x_{j}^{i}, u_{j}^{i}, k)$$

com x_j^i e u_j^i representando estado e decisão respectivamente que são dependentes do estágio de planejamento.

A função $\psi_j^i(x_j^i, u_j^i, k)$ (apêndice A) ê diferenciavel em relação a seus argumentos. A parcela K_{Tj}^i $x_j^i(T)$ representa uma função que pondera o seu estado final e T representa o horizonte de tempo final de interesse.

Esta função de geração de energia não e bem comportada tornando o problema de dificil solução. A grande dimensão que normalmente estes problemas assumem e outro fator de mau condicionamento.

Para cada subsistema podemos então, formular o seguinte proble

TD_i: max {
$$\delta_{1}^{i}(x_{1}^{i}, u_{1}^{i}, k), ..., \delta_{n_{i}}^{i}(x_{n_{i}}^{i}, u_{n_{i}}^{i}, k)$$
}

s.a

$$x_{j}^{i}(k+1) = x_{j}^{i}(k) + y_{j}^{i}(k) - u_{j}^{i}(k) + \sum_{(\ell, m) \in \Omega_{j}^{i}} u_{m}^{\ell}(k)$$

$$j = 1, ..., n_{i}$$

$$x_{jm}^{i} \leq x_{j}^{i}(k) \leq x_{jM}^{i} \qquad k = 0, ..., T$$

$$u_{jm}^{i} \leq u_{j}^{i}(k) \leq u_{jM}^{i} \qquad k = 0, ..., T-1$$

com $n_{\hat{L}}$ representando o número de funções objetivos do subsistema \hat{L} e Ω $\stackrel{i}{j}$ o conjunto representando hidreletricas de subsistemas a montante e que interfere sobre esta.

Os tomadores de decisão responsáveis por cada subsistema têm por objetivo um ponto de compromisso que os levem a um melhor nível de geração de energia de seus subsistemas e do sistema fazendo com isto um melhor uso do recurso comum, no caso, hídrico.

Seja a seguinte topologia de um sistema hidreletrico (figura 5.2):

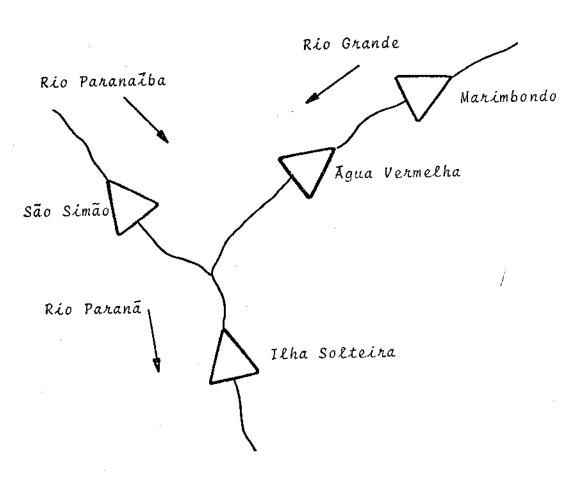


Figura 5.2: Sistema Hidreletrico

Supõe-se que as hidreletricas Marimbondo e Água Vermelha sejam administradas e operadas por uma empresa e a São Simão e Ilha Vermelha por outra (figura 5.3).

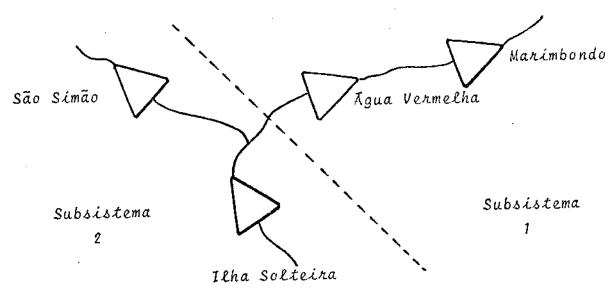


Figura 5.3: Subsistemas que compõem o Sistema Hidreletrico

O tomador de decisão responsavel pelo primeiro subsistema t $\underline{\mathbf{e}}$ rã como objetivo:

TD₁:
$$\max \{ \delta_1^1(x_1^1, u_1^1, k), \delta_2^1(x_2^1, u_2^1, k) \}$$

s.a

$$x_1^1(k+1) = x_1^1(k) + y_1^1(k) - u_1^1(k)$$

$$x_2^1(k+1) = x_2^1(k) + y_2^1(k) - u_2^1(k) + u_1^1(k)$$

$$x_{jm}^1 \le x_{j}^1(k) \le x_{jM}^1 \qquad k=0,\dots,T$$

$$j=1,2$$

$$u_{jm}^1 \le u_{j}^1(k) \le u_{jM}^1 \qquad k=0,\dots,T-1$$

$$u_{2}^1 \quad \delta ixo$$

O tomador de decisão responsável pelo segundo subsistema terá

como objetivo:

$$TD_{2}: \max \left\{ \int_{1}^{2} \{x_{1}^{2}, u_{1}^{2}, k\}, \int_{2}^{2} \{x_{2}^{2}, u_{2}^{2}, k\} \right\}$$

$$5.a$$

$$x_{1}^{2}(k+1) = x_{1}^{2}(k) + y_{1}^{2}(k) - u_{1}^{2}(k)$$

$$K = 0, \dots, T-1$$

$$x_{2}^{2}(k+1) = x_{2}^{2}(k) + y_{2}^{2}(k) - u_{2}^{2}(k) + u_{1}^{2}(k) + u_{1}^{2}(k)$$

$$x_{jm}^{2} \leq x_{j}^{2}(k) \leq x_{jM}^{2}$$

$$k = 0, \dots, T$$

$$j = 1, 2$$

$$u_{jm}^{2} \leq u_{j}^{2}(k) \leq u_{jM}^{2}$$

$$k = 0, \dots, T-1$$

O procedimento Interativo de Negociação é aplicado ao problema com o intuito de possibilitar a negociação entre os tomadores de decisão buscando com isto, uma solução de compromisso que satisfaça ambas as partes interessadas (subsistemas) dando ao sistema um melhor nível de energia gerada.

Afim de simular a negociação entre os tomadores de decisão define-se a seguinte a função utilidade de grupo do sistema hidrele-trico:

$$u_{16_{1}}^{1}, 6_{2}^{1}, 6_{1}^{2}, 6_{2}^{2}] = 0.2 6_{1}^{1} + 0.2 6_{2}^{1} + 0.4 6_{1}^{2} + 0.2 6_{2}^{2}$$

Pela hipótese H2 do capítulo 4 podemos escrever:

$$u_{[6]}, \delta_{1}^{1}, \delta_{2}^{2}, \delta_{1}^{2}, \delta_{2}^{2}] = u_{1}[\delta_{1}^{1}, \delta_{2}^{1}] + u_{2}[\delta_{1}^{2}, \delta_{2}^{2}]$$

O Procedimento Interativo de Negociação procura, numa fase, possibilitar aos tomadores de decisão a otimização de seu subsistema considerando cada um, restrições internas (operativas) e externas (manutenção dos níveis das variáveis de acoplamento).

Define-se como variavel de acoplamento a variavel de decisão: u_2^1 (volume turbinado pela hidrelétrica 2 do subsistema 1) que \tilde{e} o elo físico entre os subsistemas.

A hipótese 5 colocada no capítulo 4 é aqui garantida simples mente pela fixação da variável de acoplamento uma vez que a negocia ção se faz sobre os dois únicos objetivos do subsistema garantindo com isto que o "trade-off" do subsistema pode ser considerado "trade-off" do sistema.

Com a definição das funções utilidade representativa das preferências dos tomadores de decisão e com o estabelecimento da variavel de acoplamento dos subsistemas pode-se definir o Procedimento Interativo de Negociação através dos seguintes subproblemas:

Subproblema 1

max
$$u_{1}[i_{1}^{1}(x_{1}^{1}, u_{1}^{1}, k), i_{2}^{1}(x_{2}^{1}, u_{2}^{1}, k)]$$

s.a

$$x_{1}^{1}(k+1) = x_{1}^{1}(k) + y_{1}^{1}(k) - u_{1}^{1}(k)$$

$$x_{2}^{1}(k+1) = x_{2}^{1}(k) + y_{2}^{1}(k) - u_{2}^{1}(k) + u_{1}^{1}(k)$$

$$u_{2}^{1}(k) = 6ixo \qquad k = 0, ..., T-1$$

$$x_{jm}^{1} \leq x_{j}^{1}(k) \leq x_{jM}^{1} \qquad k = 0, ..., T$$

$$j = 1, 2$$

$$u_{jm}^{1} \leq u_{j}^{1}(k) \leq u_{jM}^{1} \qquad k = 0, ..., T-1$$

Subproblema 2

max
$$u_2 [6_1^2 \{x_1^2, u_1^2, k\}, 6_2^2 \{x_2^2, u_2^2, k\}]$$
s.a
$$x_1^2 \{k+1\} = x_1^2 \{k\} + y_1^2 \{k\} - u_1^2 \{k\}$$
 $k = 0, \dots, T-1$

$$x_{2}^{2}(k+1) = x_{2}^{2}(k) + y_{2}^{2}(k) - u_{2}^{2}(k) + u_{1}^{2}(k) + u_{2}^{1}(k)$$

$$k = 0, \dots, T-1$$

$$u_{2}^{1}(k) = 6ixo \qquad k = 0, \dots, T-1$$

$$x_{jm}^{2} \leq x_{j}^{2}(k) \leq x_{jM}^{2} \qquad k = 0, \dots, T$$

$$j = 1, 2$$

$$u_{jm}^{2} \leq u_{j}^{2}(k) \leq u_{jM}^{2} \qquad k = 0, \dots, T-1$$

Subproblema 3

max
$$U[\delta_{1}^{1}\{x_{1}^{1},u_{1}^{1},k\}, \delta_{2}^{1}\{x_{2}^{1},u_{2}^{1},k\}, \delta_{1}^{2}\{x_{1}^{2},u_{1}^{2},k\}, \delta_{2}^{2}\{x_{2}^{2},u_{2}^{2},k\}]$$

5.a

$$\delta_{1}^{1} = c^{1} \quad \{6ixa\}$$

$$\delta_{1}^{2} = c^{2} \quad \{6ixa\}$$

$$x_{1}^{1}\{k+1\} = x_{1}^{1}\{k\} + y_{1}^{1}\{k\} - u_{1}^{1}\{k\}$$

$$x_{2}^{1}\{k+1\} = x_{2}^{1}\{k\} + y_{2}^{1}\{k\} - u_{2}^{1}\{k\}$$

$$x_{1}^{2}\{k+1\} = x_{2}^{2}\{k\} + y_{2}^{2}\{k\} - u_{2}^{2}\{k\}$$

$$x_{2}^{2}\{k+1\} = x_{2}^{2}\{k\} + y_{2}^{2}\{k\} - u_{2}^{2}\{k\} + u_{2}^{1}\{k\} + u_{1}^{2}\{k\}$$

$$x_{2}^{2}\{k+1\} = x_{2}^{2}\{k\} + y_{2}^{2}\{k\} - u_{2}^{2}\{k\} + u_{2}^{1}\{k\} + u_{1}^{2}\{k\}$$

$$x_{2m}^{1} \leq x_{2}^{1}\{k\} \leq x_{2M}^{2}$$

$$u_{2m}^{1} \leq u_{1}^{2}\{k\} \leq u_{2M}^{2}$$

$$u_{2m}^{2} \leq u_{2}^{2}\{k\} \leq u_{2M}^{2}$$

O subproblema 1 representa a otimização pelo tomador de decisão do subsistema 1 mantendo-se fixa a variável de acoplamento num valor factivel estipulado pelo analista.

O subproblema 2 equivalentemente ao primeiro, representa a otimização pelo segundo tomador de decisão do seu subsistema manten do fixa a variavel de acoplamento no mesmo nível anteriormente fixa do.

O subproblema 3 simula a negociação pelos dois tomadores de decisão onde, para a negociação, são escolhidos um objetivo representante de cada subsistema, mantendo constante os demais. Conside rou-se neste exemplo para efeito de negociação as funções $\frac{1}{2}$ e $\frac{2}{2}$ mantendo-se $\frac{1}{1}$ e $\frac{2}{1}$ constantes.

Para as funções $6\frac{1}{1}$ e $6\frac{2}{1}$ ve-se que fixando as respectivas variaveis de decisão, que são os volumes turbinados, fixa-se os niveis das funções. Com isto as igualdades $6\frac{1}{1} = c'$ e $6^2 = c^2$ pode ser substituida por $u_1^1(k) = d^1(k)$ e $u_1^2(k) = d^2(k)$, com $d^2(k)$, i = 1, 2 representando constantes para $k = 0, \ldots, T-1$.

Pela característica das funções objetivos é possível existir mais de um ponto que detenha a função num certo valor fixado.

Mantendo a vazão constante ao inves da função objetivo estaremos escolhendo um entre os possíveis pontos que possuem mesmo valor de função objetivo. Isto significa dizer que pode haver mais de uma trajetória ótima que nos leve ao objetivo final. Entretanto o que nos interessa é que qualquer trajetória conseguida terá o mesmo valor de função utilidade refletindo a mesma preferência dos tomado res de decisão. O "trade-off" neste caso, será o parcial visto que os níveis das funções não negociadas são mantidos fixos.

Com relação aos passos definidos no capitulo 4 podemos recolocar o Procedimento Interativo de Negociação para este exemplo com base nos subproblemas definidos anteriormente:

> Passo 1: O analista fixa o volume turbinado pela hidreletr<u>i</u> ca 2 do subsistema 1 que e a variável de acoplamento;

Passo 2: Soluciona-se o subproblema 1 e o subproblema 2.

Passo 3,4,5: Soluciona-se o subproblema 3.

O Passo 2 refere-se à otimização pelos tomadores de decisão de seus subsistemas. Os passos 3,4 e 5 referem-se à negociação entre os tomadores de decisão, através da qual se conseguirá um novo nivel de variável de acoplamento a ser fixada na interação seguinte.

A seguir e apresentado o resultado do planejamento simulado utilizando-se o Procedimento Interativo de Negociação.

Os limites de vazão e volume bem como os rendimentos das hidreletricas são apresentados no quadro 5.5.

Os aportes independentes se encontram no quadro 5.6. Como pontos iniciais das variaveis de decisão requeridas pela rotina do Lagrangeano aumentado na solução dos subproblemas utilizam-se os valores presentes no quadro 5.7. Os polinômios quota-volume são apresentados no quadro 5.8. Os volumes dos reservatórios das hidrelêtricas tomadas como iniciais foram:

$$x_1^1(0) = 9.75 \quad x_2^1(0) = 3.52 \quad x_1^2(0) = 5.80 \quad x_2^2(0) = 16.90$$

EMPRESA	HIDRELÉT.	VOLUME MINIMO	VOLUME VOLUME	TURBINAGEM MINIMA	TURBINAGEM . MAXIMA.	RENDIMENTO
1	1	0.9	6.15	1.18	6.84	0.88
1	2	4.4	11.0	1.25	7.57	0.88
2	1	7.0	12.5	1.79	6.63	0.89
2	2	12.74	21.16	3.63	20.71	0.89

Quadro 5.5: Limites de vazão e (10⁹m³) Volume (10⁹m³) e Rendimentos

ESTĀGIO	y 1	y 1 2	y 2 1	y 2 2
0	5.13	0.42	6.30	1.10
1	6.38	0.76	5.76	1.53
2	4.00	0.45	5.06	1.27
3	3.47	0.38	5.58	1.59
4	1.79	0.41	5.17	0.66
5	3.87	0.31	4.50	1.81
6	3.90	0.23	4.18	1.47
7	3.79	0.19	4.13	1.58
8	3.42	0.16	3.99	1.41
9	3.17	0.19	3.61	1.25
10	1.97	0.21	4.34	0.46
11	2.98	0.32	5.93	0.31
				0

Quadro 5.6: Aportes Independentes Medios de cada Usina (10⁹m³)

ESTĀG10	πu_1^1	u 2	u 1 2	μ ² 2
0	5.13	5.14	6.30	12.53
1	6.38	6.39	5.76	13.67
2	4.00	4.01	5.06	10.33
3	3.47	3.48	5.58	10.64
4	1.79	1.80	5.17	7.62
5	3.87	3.88	4.50	10.18
6	3.90	3.91	4.18	9.55
7	3.79	3.80	4.13	9.50
8	3.42	3.43	3.99	8.82
9	3.17	3.18	3.65	8.63
10	1.97	1.98	4.34	9.01
11	5.60	5.44	5.93	10.77

Quadro 5.7: Volume Inicial de Água Turbinada (10⁹m³)

SUBSIS- TEMA	HIDRELE	a io	a £1 ·	a i 2	a i3	a i4
1	1	33.060	11.671	-2.1615	0.21912	-0.00824
1	2	17.770	8.2191	-0.9230	0.06241	-0.00169
2	1	30.03	8.4567	-0.90713	0.06007	-0.00161
2	2	13.25	3.2762	-015157	0.00448	-0.00005

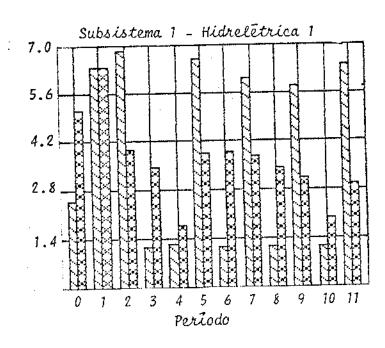
Quadro 5.8: Coeficientes do Polinômio Cota-Volume.

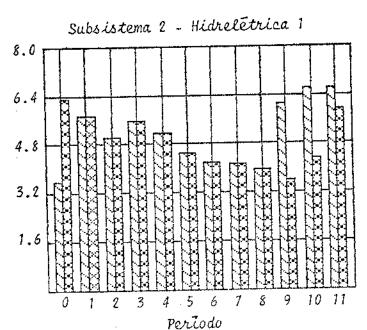
No Apêndice C apresenta-se resultados de simulação para o Procedimento Interativo de Negociação com periodo de simulação que vai de 6 meses até um ano. No quadro 5.9 é apresentado a relação periodo de simulação por tempo de CPU e número de interações.

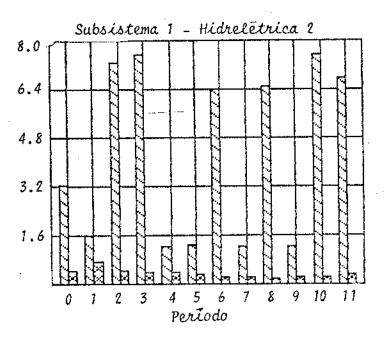
NÚM.DE PERÍODOS DE PLANEJAMENTO	NÚM. DE INTERAÇÕES	VALOR DA FUNÇÃO UTILIDADE	TEMPO DE CPU (seg)
6	3	7.95	15.56
7	. 3	9.13	29.86
8	3	10.14	43.10
9	3	11.14	65.31
10	3	12.04	119.11
11	3	12.92	118.24
12	3	13.95	162.24

Quadro 5.9: Evolução do Procedimento Interativo de Negociação

No quadro acima nota-se uma tendência do crescimento do tem po de CPU com o aumento do período de planejamento. A grande dependência dos pontos iniciais, do fator de penalidade e da precisão requerida tida pela rotina de minimização que usa o método do Lagrangeano Aumentado bem como a característica do problema são as causas das variações do tempo de CPU.


Um comportamento esperado e que pode ser constatado pelos resultados obtidos $\tilde{\mathbf{e}}$, o volume minimo para o periodo final de plane jamento para todas as simulações. Isto se deve ao valor nulo do fator que pondera o periodo final na função geração de energia (Apêndice A).


Pelo quadro 5.9 vê-se também que o método requereu poucas i<u>n</u> terações para convergência.


Na figura 5.4 e figura 5.5 se encontram os gráficos aprese<u>n</u> tativos dos níveis de turbinagem e volume respectivamente das hidr<u>e</u> letricas no ponto de melhor compromisso para um período de planejamento de 12 meses. Os dados detalhados se encontram no apêndice C.

Na figura 5.6 é mostrado a relação entre os níveis das 4 funções objetivos para as três interações. Vê-se pelo Apêndice C que na interação 2 subproblema 1 há uma diminuição na energia gerada pela segunda hidrelétrica do primeiro subsistema contrapondo-se a um acréscimo na energia gerada pela primeira hidrelétrica desse mesmo subsistema. Pode-se ver que mesmo neste caso, houve um acréscimo na função utilidade de grupo (2 nível nos gráficos). pela análise dos gráficos que compõem a figura 5.6, vê-se pelas barras do segundo nível, que representam a função utilidade a convergência do méto do pelo crescimento e estabilização da função utilidade de grupo.

Figura 5.4 - Turbinagem (10⁹m³) ZZZ e Aportes Independentes (10⁹m³) ZZZ por Periodo de Planejamento no Ponto de Melhor Compromisso.

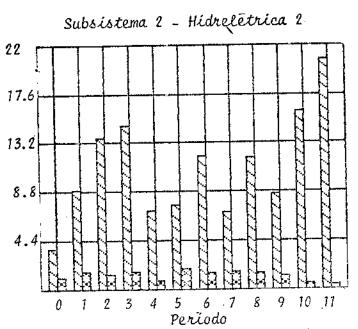
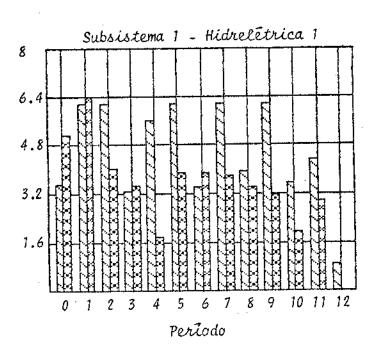
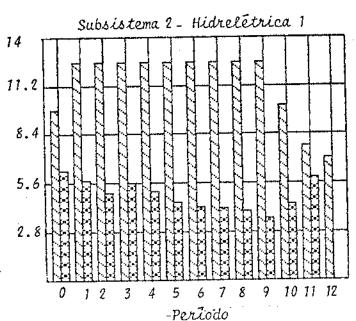
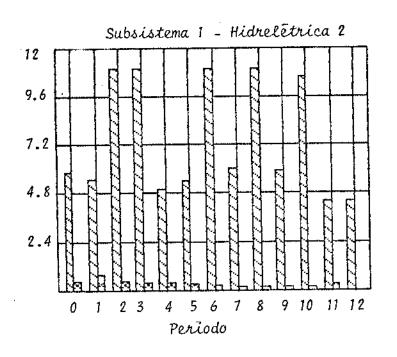





Figura 5.5 - Volume (10⁹m³) ZZZ e Aportes Independentes (10⁹m³) ZXX por Periodo de Planejamento no Ponto de Melhor Compromisso.

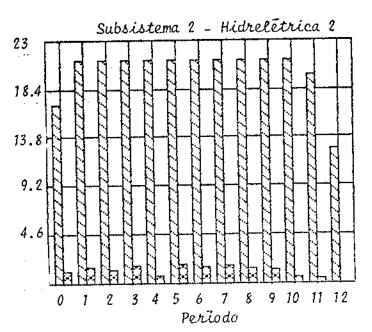
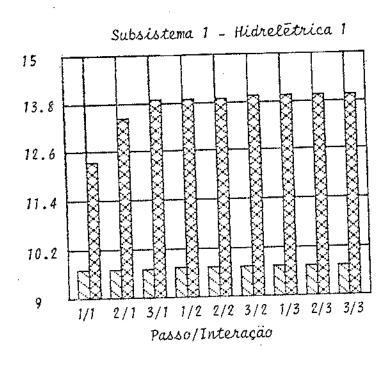
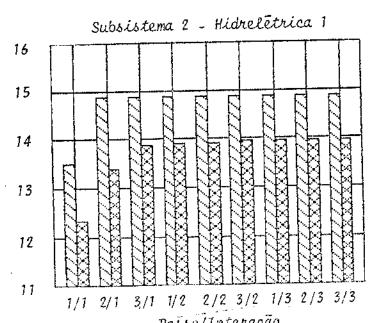
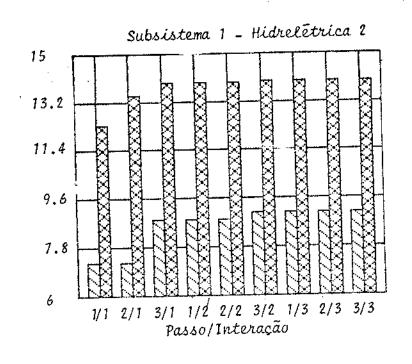
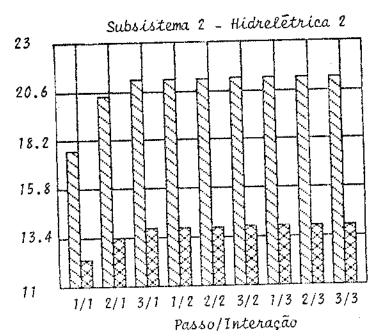






Figura 5.6 - Niveis das Funções Objetivos ZZZ e Função Utilidade 🖎 de Grupo por Passos das Interações

5.3. Conclusão

Apresentou-se aqui duas aplicações do Procedimento Interativo de Negociação através dos quais mostrou-se o método, seu comportamento e resultados.

O problema hidreletrico tratado, embora tendo linearizado o polinômio cota-volume, não apresentou função objetivo bem comportada, dificultando em muito, a solução dos subproblemas gerados. Este problema não é trivial, por esta caracteristica e por sua dimensão (96 variáveis e 144 restrições).

O metodo aplicado possui vantagens relevantes. Ele não requer que se estipule niveis ou metas de objetivos ou qualquer outro parâmetro que exija um previo conhecimento do problema. É um metodo interativo e, como tal, possibilita, a cada interação, negociar e fixar niveis de objetivos mantendo um relativo grau de liberdade aos tomadores de decisão. É um metodo de rapida convergência requerendo poucas interações. Os tempos de CPU demandados foram relativamente baixos dada o número de variaveis e restrições.

Outra vantagem também expressiva deste método é a decomposição do problema original em subproblemas. Isto é característica fundamental na escolha de um método para solução de problemas de grande porte e complexos.

No capitulo seguinte o metodo apresentado neste trabalho e comparado ao SEMOPS, outro metodo interativo apresentado no apendice B.

O metodo SEMOPS e aplicado ao problema de planejamento de recursos hidricos aqui definido. Uma análise comparativa entre os dois metodos e realizada e uma conclusão geral e apresentada.

CAPÍTULO 6 - ESTUDO COMPARATIVO ENTRE O
MÉTODO INTERATIVO DE NEGOCIAÇÃO
E O SEMOPS

CAPÍTULO 6 - ESTUDO COMPARATIVO ENTRE O METODO INTERATIVO DE NEGO-CIAÇÃO E O SEMOPS

Neste capitulo o Método Interativo de Negociação, proposta deste trabalho, é comparado com outro método interativo, o SEMOPS. Para tal, se aplica o Método SEMOPS ao mesmo problema de planejamento de geração de energia, abordado no capitulo anterior. Assim sendo é possível analisar as vantagens e desvantagens de cada método. Finalmente, algumas conclusões são apresentadas.

6.1. Aplicação do SEMOPS ao Problema de Planejamento de Geração de Energia pela Administração dos Recursos Hidricos Envolvidos

Seja o problema de planejamento de geração de energia pela administração dos recursos hidricos aplicado a um sistema hidrelētrico redefinido aqui como:

PMOR: $\{\delta_{1}^{1}(x_{1}^{1},u_{1}^{1},k), \delta_{2}^{1}(x_{2}^{1},u_{2}^{1},k), \delta_{2}^{2}(x_{2}^{2},u_{2}^{2},k), \delta_{2}^{2}(x_{2}^{2},u_{2}^{2},k)\}$ s.a.

$$x_{1}^{1}(k+1) = x_{1}^{1}(k) + y_{1}^{1}(k) - u_{1}^{1}(k)$$

$$x_{2}^{1}(k+1) = x_{1}^{1}(k) + y_{1}^{1}(k) - u_{1}^{1}(k) + u_{1}^{1}(k)$$

$$x_{2}^{2}(k+1) = x_{2}^{2}(k) + y_{2}^{2}(k) - u_{2}^{2}(k)$$

$$x_{1}^{2}(k+1) = x_{2}^{2}(k) + y_{2}^{2}(k) - u_{2}^{2}(k) + u_{1}^{1}(k) + u_{2}^{2}(k)$$

$$x_{2}^{2}(k+1) = x_{2}^{2}(k) + y_{2}^{2}(k) - u_{2}^{2}(k) + u_{1}^{1}(k) + u_{2}^{2}(k)$$

$$k = 0, \dots, T-1$$

$$x_{jm}^{i} \leq x_{jm}^{i}(k) \leq x_{jm}^{i}$$

$$i, j = 1, 2$$

$$u_{im}^{i} \leq u_{i}^{i}(k) \leq u_{im}^{i}$$

$$k = 0, \dots, T-1$$

O conjunto de restrições deste problema será, neste capítulo, referido como S.

Para a obtenção de uma solução para o problema (PMOR) aplicar-se-ã agora o Método Sequencial de Solução de Problemas Multiobjetivo - SEMOPS (apêndice B).

Como o objetivo desta aplicação é a comparação entre os dois metodos, tomar-se-a aqui como meta e aspirações os níveis das funções objetivo alcançadas pelo Método Interativo de Negociação na aplicação do capitulo anterior. O relevante aqui é conhecer o método, suas características e a aplicação ao problema.

As metas fixadas para as funções geração de energia serão

$$\delta_{1}^{1} \geq 9.7$$
 $\delta_{2}^{1} \geq 9.0$
 $\delta_{1}^{2} \geq 14.8$
 $\delta_{2}^{2} \geq 21.2$

Os niveis de aspirações iniciais dos tomadores de decisão são os mesmos niveis das metas, que são:

$$AL_{1}^{1} = 9.7$$
 $AL_{2}^{1} = 9.0$
 $AL_{2}^{2} = 14.8$
 $AL_{2}^{2} = 21.2$

Os objetivos e os correspondentes indicadores de atendimento das funções (funções substitutas) são:

$$\begin{pmatrix} 1 \\ 1 \end{pmatrix} (x^{1}, u^{1}, k) \ge AL^{\frac{1}{1}}; \quad d^{\frac{1}{1}} = \frac{AL^{\frac{1}{1}}}{6^{\frac{1}{1}} (x^{1}, u^{1}, k)}$$

$$\{\frac{1}{2}(x_2^1, u_2^1, k) \ge AL_2^1; d_2^1 = \frac{AL_2^1}{\{\frac{1}{2}(x_2^1, u_2^1, k)\}}$$

$$6^{2}(x^{2}, u^{2}, k) \ge AL^{2}; \quad d^{2} = \frac{AL^{2}}{6^{2}(x^{2}, u^{2}, k)}$$

$$\delta_{2}^{2}(x_{2}^{2}, u_{2}^{2}, k) \ge AL_{2}^{2}; \quad d_{2}^{2} = \frac{AL_{2}^{2}}{\delta_{2}^{2}(x_{2}^{2}, u_{2}^{2}, k)}$$

Iteração nº 1

O problema principal ē:

min
$$S_1 = \sum_{i=1}^{2} \sum_{j=1}^{2} d^i$$

s.a. $(x^i, u^i, k) \in S$ para $i, j = 1, 2$

Os quatro problemas auxiliares são definidos como:

$$\{\ell = 1, 2 \in m = 1, 2\}$$

$$min \quad S_{1m}^{\ell} = \sum_{i=1}^{2} \sum_{\substack{j=1 \ i \neq \ell \ j \neq m}}^{2} d_{j}^{i}$$

$$s.a. \quad \{x_{j}^{i}, u_{j}^{i}, k\} \in S \quad para \quad i, j = 1, 2$$

$$\delta_{m}^{\ell} \geq AL_{m}^{\ell} \qquad \qquad i \neq \ell, j \neq m$$

Os resultados destes subproblemas são apresentados no quadro 6.1.

Quadro 6.1 : Resultado da Primeira Iteração do Problema (PMOR)

 $AL = \{9.7, 9.0, 14.8, 21.2\}$

61	62	61	62	d ₁	d ₂	d ₃	d ₄	4 Σ d _i	função utili- dade	tempo CPU (seg)
9.80	9.34	14.5	21.15	0.99	0.964	1.02	1.00	3.97	13.9	578.42
9.7	8.75	14.24	19.34	1.0	1.03	1.04	1.10	3.16	13.26	603.46
9.147	9.00	14.27	18.92	1.06	1.00	1.04	1.12	3.22	13.12	569.60
9.52	9.26	14.80	20.00	1.02	0.972	1.00	1.06	3.05	13.68	596.28
9.245	8.615	14.40	21.20	1.05	1.045	1.03	1.0	3.12	13.57	620.64

Com base nestes dados os tomadores de decisão optam pela função objetivo a ser restrita e o novo nível de aspiração para esta mesma função.

Por ser a hidrelétrica 1 do subsistema 1 operativamente menos dependente das outras hidrelétricas, optou-se aqui por incorporar às restrições a função de geração desta hidrelétrica, mantendo o mesmo nível de aspiração fixado anteriormente como meta.

Iteração nº 2

Para esta iteração o problema principal ē:

min
$$S_2 = \sum_{i=1}^{2} \sum_{j=1}^{\infty} d_j^i$$

 $i \neq 1, j \neq 1$
 $(x_j^i, u_j^i, k) \in S$ para $i, j = 1, 2$
 $(x_j^1, u_j^1, u_j^1, k) \ge AL_1^1$

Os três problemas auxiliares são definidos como: $\{\ell=1 \ m=2, \ \ell=2 \ m=1,2\}$

min
$$S_{2m}^{\ell} = \sum_{i=1}^{2} \sum_{j=1}^{2} d_{j}^{\ell}$$

 $i \neq 1, j \neq 1$
 $i \neq \ell, m \neq \ell$
 $(x_{j}^{\ell}, u_{j}^{\ell}, k) \in S$
 $\delta_{1}^{1}(x_{1}^{1}, u_{1}^{1}, k) \geq AL_{1}^{1}$
 $\delta_{m}^{\ell}(x_{m}^{\ell}, u_{m}^{\ell}, k) \geq AL_{m}^{\ell}$

Os resultados desta iteração são apresentados no quadro 6.2.

Quadro 6.2 : Resultado da Segunda Iteração do Problema (PMOR)

AL = (9.7, 9.0, 14.8, 21.2)

61	62	61	62	d ₁	d _{.2}	d ₃	d ₄	4 Σ d i	função utili- dade	tempo CPU (seg)
9.7	8.75	14.24	19.34	1.0	1.03	1.04	1.10	3.164	13.255	603.46
9.7	9.0	13.85	19.81	1.0	1.0	1.07	1.07	2.14	13.24	662.44
9.72	7.43	14.84	17.37	1.00	1.21	1.00	1.221	2.431	12.84	931.48
9.82	9.16	14.17	21.20	1.00	0.98	1.04	1.00	2.03	13.71	667.61

Pela topologia do sistema hidreletrico em estudo ve-se também que a primeira hidreletrica do segundo subsistema também é operativamente independente das demais. Portanto, para a iteração seguinte incorpora-se a função geração de energia $\begin{pmatrix} 2 \\ 1 \end{pmatrix} \begin{pmatrix} x_1^2 \end{pmatrix} \hat{a}$ restrição mantendo-se o mesmo nível de aspiração anterior.

Iteração nº 3

O problema principal agora será redefinido como:

min
$$S_3 = \sum_{i=1}^{2} \sum_{j=1}^{2} d_j^i$$

s.a. $i \neq 1, j \neq 1$
 $i \neq 2, j \neq 1$
 $\{x_j^i, u_j^i, k\} \in S$ para $i, j = 1, 2$
 $\{x_j^1, u_j^1, k\} \in S$ para $i, j = 1, 2$
 $\{x_j^1, u_j^1, k\} \in S$ para $\{x_j^1, u_j^1, k\} \in AL_1^1$

Os dois problemas auxiliares são definidos como: $(\ell=1,\ m=2,\ \ell=2\ m=2)$

min
$$S_{3m}^{\ell} = \sum_{i=1}^{2} \sum_{j=1}^{2} d_{j}^{i}$$

 $i \neq 1, j \neq 1$
 $i \neq 2, j \neq 1$
8.a. $\{x_{j}^{i}, u_{j}^{i}, k\} \in S$ para $i, j = 1, 2$
 $\{x_{j}^{1}, u_{j}^{1}, k\} \in S$ para $i, j = 1, 2$
 $\{x_{j}^{1}, u_{j}^{1}, k\} \in S$ para $\{x_{j}^{1}, u_{j}^{1}, k\} \in AL_{1}^{1}$
 $\{x_{j}^{2}, u_{j}^{2}, k\} \in AL_{1}^{2}$
 $\{x_{j}^{2}, u_{j}^{2}, k\} \in AL_{1}^{2}$
 $\{x_{j}^{2}, u_{j}^{2}, k\} \in AL_{1}^{2}$

Os resultados desta iteração são apresentados no quadro 6.3.

Nesta iteração pelos resultados do quadro 6.3 decidiu-se fixar a função geração de energia da segunda hidreletrica do segundo subsistema. O nível de aspiração para esta função também foi mantido inalterado.

Iteração nº 4

O problema principal para esta iteração serã:

min
$$S_4 = d_j^i$$
 $i=1$; $j=2$
s.a. $(x_j^i, u_j^i, k) \in S$ para $i, j = 1, 2$
 $\delta_1^1(x_1^1, u_1^1, k) \ge AL_1^1$
 $\delta_1^2(x_1^2, u_1^2, k) \ge AL_1^2$
 $\delta_2^2(x_2^2, u_2^2, k) \ge AL_2^2$

O auxiliar serã:

min
$$S_{42}^{1}$$

8.a. $\{x_{j}^{i}, u_{j}^{i}, k\} \in S$ para $i, j = 1, 2$
 $\{x_{j}^{1}, u_{j}^{1}, k\} \in S$ para $i, j = 1, 2$
 $\{x_{j}^{1}, u_{j}^{1}, k\} \geq AL_{1}^{1}$
 $\{x_{1}^{2}, u_{1}^{2}, k\} \geq AL_{1}^{2}$
 $\{x_{2}^{2}, u_{2}^{2}, k\} \geq AL_{2}^{2}$
 $\{x_{2}^{2}, u_{2}^{2}, k\} \geq AL_{2}^{2}$

O resultado desta iteração se encontra no quadro 6.4. Os valores de volume e turbinagem para a iteração final são apresenta - dos no apendice C.

Quadro 6.3 : Resultado da Terceira Iteração do Problema (PMOR)

AL = (9.7, 9.0, 14.8, 21.2)

61	62	62	62	d ₁	d ₂	d ₃	d ₄	4 Σ d _i	função utili- dade	tempo CPU (seg)
9.72	7.43	14.84	17.37	1.00	1.21	1.00	1.22	2.43	13.71	931.48
9.7	9.12	14.80	18.92	1.0	0.99	1.0	1.12	1.12	13.47	601.76
9.7	8.5	14.8	21.2	1.0	1.06	1.0	1.0	1.06	13.80	655.08

Quadro 6.4 : Resultado da Quarta Iteração do Problema (PMOR)

$$AL = (9.7, 9.0, 14.8, 21.20)$$

61	62	62	6 ²	d ₁	d ₂	d ₃	d ₄	4 Σ d _i	função identi- dade	tempo CPU (seg)
9.7	8.5	14.8	21.2	1.0	1.06	1.0	1.0	1.059	13.8	655.08
9.7	9.0	14.8	21.2	1.0	1.0	1.0	1.0	0.0	13.9	854.24

Para a aplicação do método SEMOPS ao problema de planejamento de geração de energia, pela administração dos recursos hidricos foram tomados como meta os niveis alcançados pelas funções objetivos no ponto de melhor compromisso da aplicação do método interativo de negociação. A escolha, a cada iteração, da função objetivo a ser restrita foi feita tendo como base caracteristicas do problema (topologia), niveis das funções substitutas (d_j^{L}) e subjetivamente o nivel da função utilidade.

Optou-se, por ter esta aplicação fins comparativos, não se mudar as aspirações a cada iteração. Isto na verdade significa não possibilitar que os tomadores de decisão interajam. Este procedimento foi adotado devido ao fato de tal interação envolver um alto grau de subjetividade do tomador de decisão. Entretanto, nada disto invalida o método e sua aplicação. Procedeu-se desta forma para que houvesse uma maior proximidade entre as soluções alcançadas pelos dois métodos, e também para simplificar a aplicação do SEMOPS.

O problema principal e auxiliares definidos a cada iteração são todos não lineares. Para sua solução foi aplicado o mesmo metodo utilizado na solução dos subproblemas pelo Metodo Interativo de Negociação - Metodo do Lagrangeano Aumentado.

6.2. Análise Comparativa entre os Métodos

Os metodos aqui em estudo, apresentam cada qual, caracteristicas intrinsicas que independem da aplicação.

O Metodo Interativo de Negociação mantem as formas originais das funções objetivos. No caso da aplicação ao problema de planejamento de geração de energia com a simulação dos tomadores de decisão pela função utilidade fez-se uma combinação convexa das funções. Mas isto não ocorreria se houvessem tomadores de decisão para assumir seus devidos papeis.

O metodo SEMOPS, a menos que alguma simplificação matemática seja feita, converte problemas lineares em não-lineares (veja apêndice B). Como consequência temos um aumento da complexidade de uma grande classe de problemas.

O Procedimento Interativo de Negociação não requer que se estipule níveis ou metas de objetivos ou qualquer outro parâmetro que exija previo conhecimento do problema. Esta é uma grande vantagem pois em muitos problemas é difícil, a priori, estabelecer metas de objetivos.

Tal vantagem não está presente no SEMOPS. A necessidade de se conhecer metas é básica para este método.

Uma das características mais importantes do Procedimento Interativo de Negociação é a decomposição do problema original em vários subproblemas. Isto tem como consequência sua simplificação, facilitando a solução pela geração de subproblemas mais simples.

No SEMOPS os problemas gerados guardam sempre as mesmas dime<u>n</u> sões do problema original, a menos do acréscimo das funções objetivos como restrições nas iterações seguintes.

Os programas computacionais para solução dos problemas - principal e auxiliares - para o método SEMOPS requer muito tempo de processamento (veja os quadros apresentados no item 6.1). No exemplo de geração de energia considerado no capitulo anterior (para um horizon te de 12 meses) os tempos de CPU obtidos foram:

Metodo de Negociação Interativo: 162,24 segundos Metodo SEMOPS : 10.186,11 segundos

Os subproblemas para o Metodo Interativo de Negociação apresentam 48 variáveis e 72 restrições. Cada problema - principal ou auxiliar, no SEMOPS, possui 86 variáveis e 144 restrições fixas (conjunto S) mais as funções objetivos restritas a cada iteração.

Vale lembrar que cada iteração no SEMOPS se resolve um problema principal e, no minimo, mais um auxiliar. E importante salientar também que, no Método Interativo de Negociação, o terceiro subproblema gerado existe para simular a negociação pelos tomadores de decisão. Na realidade se houvesse a participação real de tomadores de decisão na negociação tal subproblema não existiria. Na aplicação do SEMOPS ao problema de planejamento de geração de energia o processo interativo não é representado pela solução de nenhum problema. Como ilustração adicional pode-se ainda citar um programa com putacional feito por Monarchi [45]. Neste trabalho para se resolver um problema linear com 104 variáveis, 80 restrições e 4 objetivos foi necessário mais de 600 seg de tempo de processamento num IBM 370/158 para o programa principal da primeira iteração, conseguindo uma solução somente na terceira iteração.

Como outra vantagem do Mētodo de Negociação na aplicação a classe de problemas que se utilizam de recursos comuns tem-se a rã-pida convergência requerendo poucas iterações.

Um aspecto indesejavel do metodo SEMOPS e a possibilidade de encontrar restrições inconsistentes quando da solução de problemas au xiliares. Nesta situação, a determinação de um valor consistente de niveis de aspirações torna-se não sistemática e por vezes randônica [44].

Ching-Lai Hwang e Abu Syed Md. Masud [44] citam como vanta - gens do metodo SEMOPS: a possibilidade de ser usado para se resolver problemas não-lineares e a possibilidade dos tomadores de decisão rea valiar os níveis de objetivos encontrados a cada iteração.

Estas vantagens podem ser colocadas também para o Procedimento Interativo de Negociação proposto neste trabalho. Este se aplica a qualquer tipo de problema e, por ser um procedimento interativo, possibilita que a cada iteração se negocie novos valores de funções, respeitando e claro, as restrições.

6.3. Conclusão

O Mētodo SEMOPS, proposto por Monarchi, Kisiel e Duckstein por volta de 1972 ē um mētodo utilizāvel, mas apresenta algumas dificuldades na sua aplicação prātica.

Foi possível notar pelas argumentações apresentadas, a dominância quanto a aplicabilidade, simplicidade e eficiência, do Método de Negociação em relação ao SEMOPS. O Método de Negociação, tido aqui como um Método Natural pois não precisa de informações complementares nem artifícios para sua ut<u>i</u> lização, foi aqui aplicado e comparado apresentando bons resultados.

A unica limitação significativa do Metodo de Negociação, no momento, e sua aplicação ser restrita a classe de problemas que utilizam de recursos comuns.

Todos os resultados computacionais apresentados neste trabalho foram obtidos do sistema VAX/UNICAMP. A rotina de minimização utilizada para solução dos subproblemas - Procedimento Interativo de Negociação - e problemas principais e secundários - SEMOPS - foi a da NAG (NUMERICAL ALGORITHMS GROUP) implementada com base na técnica de transformação do Lagrangeano Aumentado.

O resultado do Ponto de melhor compromisso para o PMOR na apl \underline{i} cação do SEMOPS \bar{e} apresentado no Apendice D.

CAPITULO 7 - CONCLUSÃO

Foi proposto neste trabalho um Metodo Interativo de Negociação juntamente com sua base teórica, a aplicação deste metodo à um problema de planejamento de geração de energia pela administração de recursos hidricos e a comparação deste metodo com outro metodo interativo de grande aplicação, de acordo com a literatura [44].

Procurou-se evidenciar as argumentações teóricas necessárias ao entendimento do procedimento de negociação colocando as hipóteses e os passos necessários para a procura de uma melhor solução de compromisso.

Foi possivel particularmente atraves da comparação do método aqui proposto com o SEMOPS, levantar algumas de suas principais características:

- . É um metodo natural, não requer informações complementares a sua aplicação, não exigindo metas ou qualquer outro parametro que necessite previo conhecimento do problema;
- E um metodo interativo que mantem um certo grau de liberda de aos tomadores de decisão para agirem sobre seus respectivos subsistemas;
- . É um método que utiliza da decomposição do problema original em subproblemas. Esta característica é muitas vezes mar cante na escolha de um método para solução de problemas com plexos;
- . È um metodo de rapida convergência;
- . Não introduz nenhuma complexidade ao problema original.

Quanto à aplicação do Procedimento Interativo de Negociação ao problema energetico brasileiro, cabe aqui algumas considerações.

O parque hidrelétrico e termoelétrico brasileiro é muito vas to. Ele é composto por varias empresas as quais tem compromissos regionais de abastecimento energético.

Estas empresas responsaveis pela geração e transmissão de energia elétrica possuem fortes vinculos, tanto a nivel de geração como de transmissão.

Esses vinculos criam uma certa dependência entre elas que, por muitas vezes não são consideradas, ocasionando um mau aproveita mento de recursos, refletindo num baixo ganho a nível de conjunto. Normalmente isto se dã pela falta de negociação entre as empresas nos dois níveis citados.

Neste trabalho tivemos contato com uma aplicação do Procedimen to Interativo de Negociação ao problema de planejamento para operação de hidrelétricas para duas empresas, que se utilizam de recursos hidricos comuns, buscando com isto, também, a aplicação prática do esquema proposto.

Algumas considerações adicionais podem ser estabelecidas nes te caso. Aparentemente é possível propor um modelo, sobre o ponto de vista desta metodologia de negociação, que, além de considerar o acoplamento hídrico considerasse o fornecimento de energia, bem como o possível intercâmbio entre empresas.

Em outras palavras, poderia se associar aos objetivos jā apresentados no exemplo, objetivos de atendimento da demanda.

min
$$(d^{i} - \sum_{j=1}^{n} f_{j}^{i} (x_{j}^{i}, u_{j}^{i}, k))^{2}$$

 $x_{j}^{i}, u_{j}^{i} \in X$

 d^{i} = demanda energetica de um subsistema i (empresa i)

 f_j^{ℓ} = função geração da hidrelétrica f do subsistema ℓ .

Como um outro objetivo poder-se-ia ter o intercâmbio de ene<u>r</u> gia por subsistemas, possibilitada ou pelo não suprimento da demanda (compra para implementação) ou pela diferença dos custos marginais de produção.

No caso do intercambio pode-se também considerar como objetivo de uma empresa o menor custo da energia comprada, visto que ela é dependente da quantidade de energia e da potência.

Como é possível perceber, o problema energético, acrescido da complexa topologia hídrica e da rede de transmissão, é um problema extremamente complexo, a nível matemático, técnico, adminis trativo e político.

Espera-se, com este trabalho, ter contribuido ao estudo de problemas de programação matemática multiobjetiva e, em adição, com a aplicação ao problema de planejamento de geração de energia, pela administração de recursos hídricos, ter dispertado o interêsse e a importância pelo planejamento e operação em conjunto das empresas hidrelétricas, minimizando com isto os problemas energicos através de um planejamento que considere os objetivos envolvidos de uma forma mais completa.

Finalmente, espera-se que a visão matemática e social deste trabalho possibilite ao homem interagir com a máquina buscando me-lhor se utilizar da natureza em prol do seu desenvolvimento tecnológico, científico, social e espiritual.

REFERENCIAS

REFERÊNCIAS

- [1] Luenberger, D. D.; <u>Introduction to Linear and Nonlinear Programming</u>; Addison-Wesley Publishing Company, 1972.
- [2] Bazarra, M.; Schetty, C.M.; Nonlinear Programming Theory and Algorithms; John Wiley & Sons, 1979.
- [3] Lasdon, L.S.; Optimization Theory for Large Systems; The Macmillan Company, 1970.
- [4] Cohon, J.L.; Multiobjective Programming and Planning; Academic Press, 1978.
- [5] Haimes, Y.Y.; Hall, W.A.; Fredman, H.T.; Multiobjective
 Optimization in Water Resources Systems the Surrogate Worth
 Trade-off Method; Elsevier Scientific Publishing Company,
 1975.
- [6] Haimes, Y.Y.; <u>Hierarchical Analyses of Water Resources Systems-Modeling and Optimization of Large-Scale Systems</u>; McGraw-Hill, 1977.
- [7] Haimes, Y.Y.; Chankong, V.; Kuhn Tucker Multipliers as Tradeoff in Multiobjective Decision-Making Analysis; <u>Automatica</u>, Vol.15. pp 59-72; 1978.
- [8] Haimes, Y.Y.; Chankong, V.; Multiple Criteria Optimization Journal On Large Scale Systems: Theory and Application, 1983.
- [9] Lin, J.G.; Multiple Objective Problems: Pareto-Optimal Solutions by Methods od Proper Equality Constrainsts; <u>IEEE Transactions on Automatic Control</u>, Vol. AC 21, no 5, October 1976.
- [10] Singh, M.G.; Drew, S.A.W.; Coales, J.F.; Comparisons of Practical Hierarchical Control Methods of Interconnected; Dynamical Systems; <u>Automatica</u>, Vol. 11, pp 331-350; 1975.

- [11] Tamura, H.; Descentralized Optimization for Distributed-Lag Models of Discrete Systems; Automatica, Vol.11,pp593-602;1975.
- [12] Smith, N.J.; Sage, A.P.; An Introduction to Hierarchical Systems Theory, Comput & Elect. Engng. Vol.1, pp 55-71; 1973.
- [13] Siljak, D.D.; Sundareshan, M.R.; A Multilevel Optimization of Large-Scale Dynamic Systems. <u>IEEE Trans. on Automatic</u> Control; Vol.AC20, 1, Aug. 1975; pp 546-548.
- [14] Nakayama, H.; Sayama, H.; Sawaragi, Y.; Multiplier Method and Optimal Control Problems with Terminal State Constrainsts; Int. J. Systems, Vol. 6; no 5, 465-477; 1975.
- [15] Bertsekas, D. P.; Multiplier Methods: A Survey; <u>Automatica</u>, Vol. 12, pp 133-145; 1976.
- [16] Hestenes, M. R.; Multiplier and Gradients Methods; <u>Journal of</u>
 Optimization Theory and Applications, Vol. 4, no 5; 1969.
- [17] Rockafellar, R. T.; Aumented Lagrange Multiplier Functions and Duality in Nonconvex Programming; Siam J. Control, Vol.12, no. 2; May, 1974.
- [18] Gomide, F. A. C.; Tarvainen, K.; Haimes, Y. Y.; Iterative Negotiations on Multiple Objectives in Larger Scale Systems-9th Wald Congress of IFAC; Budapest, Hungria, 1984.
- [19] Gomide, F.A.C.; A Multiobjective, Hierarchical Optimization Method for Multistage Systems, Progress Report no 2, Systems Engineering Department Case Western University, 1981.
- [20] Camino, F. M.; Luna, H.P.L.; De coligny, M.; Optimisation Multicritere de Systems Socio-Economiques de Grande Dimensions 4 TH IFAC.
- [21] Gill, P.E.; Murray, W.; Saunders, N.A.; Wrizht, M. H.; Trends in Nonlinear Programming Software; European Journal of Operational Research, Vol. 17, 1984, pp 141-149.

- [22] Canon, M.; Cullum Jr. C.D.; Polak, E.; Theory of Optimal Control and Mathematical Programming, McGraw-Hill, 1970.
- [23] Chankong, V.; Haimes Y.Y.; Multiobjective Decision Making Theory and Methodology; North-Holland, 1983.
- [24] Fishburn, P.C.; <u>Utility Theory for Decision Making</u>; Wiley New York; 1970.
- [25] Rosenthal, R.E.; Principles of Multiobjective Optimization; A Special Energy Management Course on Schedulines Release for Optimal Poower Generation.
 University of Tennessee, June 1982.
- [26] Gomide, F.A.C.; Haimes, Y.Y.; The Multiobjective Multistage Impact Analysis Method: Theoretical Basis; IEEE Transactions on Systems, Man and Cybernetics, Vol. SMC-14, no 1; Jan.Feb.; 1984.
- [27] Haimes, Y.Y.; Chankong, V.; Optimization-Based Methods for Multiobjective Decision-Making: Overview; Large Scale Systems 1-33; 1983.
- [28] Gill, P.; Murray, W.; Wright, H.H.; Practical Optimization, Academic Press, 1981.
- [29] Geoffrion, A.M.; Elements of Large-Scale Mathematical Programming Part I; Management Science; Vol. 16, no 11; July; 1970.
- [30] White, G.W.T.; Simmons, M.D.; Analys of Complex Systems; Phil. Trans. R. Soc. Lond. A. 287, 405-423, 1977.
- [31] Haimes, Y.Y.; Macko, D.; Hierarchical Structure on Water Resources Systems Management; IEEE Trans. on Systems, Man Cyber.; July, 1973.
- [32] Clarke, F.H.; A New Approach to Lagrange Multipliers; Mathematics of Operations Research, Vol. 1, no 2, May 1976.

- [33] Mateus, G.R.; Luna, H.P.L.; <u>Programação não Linear</u>; V Escola de Computação, B.H.; 1986.
- [34] Wallenius, J.; Comparative Evaluation of Some Interactive Approaches to Multicriterion Optimization; Management Science, Vol. 21, no 12, August 1975.
- [35] Monarchi, D.E.; Kisiel, C.C.; Duckstein, L.; Interactive Multiobjetive Programming in Water Resources: A Case Study; Water Resources, Vol. 9, no 4; August 1973.
- [36] Fishburn, P.C.; Methods of Estimating Additive Utilities; Management Science, Vol. 13, no 7; March 1967.
- [37] Mahmoud, M.S.; Multilevel Systems Control and Applications;
 A Survey; IEEE Transaction on Systems, Man, and Cybernetics,
 Vol. SMC 7, no 3; March 1977.
- [38] Haimes, Y.Y.; Tarvainen, K.; Coordination of Hierarchical Multiobjective Systems; Theory and Methodology; <u>IEEE Trans.on Systems</u>, Man and Cybernetics, Vol. SMC 12, no 6; Nov/Dec. 1982.
- [39] Ulvila, J.W.; On the Value of Assessing Preferences Explicity for Bargaining, <u>IEEE Transaction on Systems</u>, <u>Man and</u> Cybernetics, Vol. SMC 13, no 3; March/April 1983.
- [40] Gorman, R.A.; A Visão Dual; Zahar Editores, 1977.
- [41] Pareto Y.; Manual de Economia Política, Vol. I e II; Abril Cultural; 1984.
- [42] Powell, M.J.D.; A Method for Nonlinear Constraints in Minimization Problems; In Optimization (R. Fletcher ed) pp 283-298, Academic Press; New York; 1969.
- [43] Debreu, G.: Topological Methods in Cardinal utility theory:

 Mathematical Methods in the Social Science (K. J. Arrow, S. Karlein, and P. Suppes, eds.) Stanford University Press,

 Stanford; pp 16-26.

- [44] Ching L.H.; Masud A.S.M.; <u>Multiple Objective Decision Making-Methods and Applications</u>; Apringer-Verlag; 1979.
- [45] Monarchi, D.E.; Interactive Algorithm for Multiple Objective Decision Making; Technical Reports on Hidrology and Water Resources (nº 6) University of Arizona, 1972.
- [46] Ferreira; P.A.; Um Metodo Primal para Problemas de Controle Otimo de Sistemas Dinâmicos de Grande Porte - Tese Mestrado, FEC-UNICAMP, 1983.

APÉNDICE A

APENDICE A - FUNÇÃO GERAÇÃO DE ENERGIA

A função geração de energia Ψ_j^i $\{x_j^i,u_j^i,k\}$ de uma hidrelétrica \tilde{e} em suma, dada pela energia potencial de queda d'agua com certo fator de rendimento de transformação. A energia gerada por uma hidrelétrica j do subsistema i pode ser expressa por:

$$\Psi_{j}^{i}(x_{j}^{i}, u_{j}^{i}, k) = \pi_{j}^{i} \cdot \rho \cdot u_{j}^{i}(k) \cdot g \cdot h_{j}^{i}(x_{j}^{i}(k))$$
 (A.1)

Rendimento de transformação de energia potencial de queda d'āgua em energia hidrelētrica;

p : Peso especifico da agua;

 u_j^i (k) : Quantidade turbinada de agua pela hidreletrica j do subsistema i. È a vazao da respectiva hidreletrica;

g : Aceleração da gravidade;

 $h_j^i(x_j^i(k))$: E a queda liquida (diferença entre o nivel de agua do reservatório e o nivel de agua do canal de fuga, dedu zidas as perdas hidraulicas;

Esta função de geração de energia não é bem comportada visto que ela é função de $h_j^{\hat{\lambda}}(x_j^{\hat{\lambda}}(k))$, a qual é representada por um polinomio de quarta ordem (polinomio cota-volume) com coeficientes reais, da forma:

$$h_{j}^{i}(x_{j}^{i}(k)) = a_{j0}^{i} + a_{j1}^{i}x_{j}^{i}(k) + a_{j2}^{i}x_{j}^{i}(k)^{2} + a_{j3}^{i}x_{j}^{i}(k)^{3} + a_{j4}^{i}x_{j}^{i}(k)^{4}$$
(A.2)

Este polinômio traz más influencias à função geração torna<u>n</u> do o problema de difícil tratamento. Afim de simplificarmos a expressão de $\Psi_j^i(x_j^i, u_j^i, k)$ aproximou-se $h_j^i(x_j^i(k))$ por uma função polinomial de primeira ordem através de regressão linear. Assim a função geração poderia ser recolocada como:

$$\Psi_{j}^{i}(x_{j}^{i}, u_{j}^{i}, k) = \pi_{j}^{i} \cdot \rho \cdot u_{j}^{i}(k) \cdot g \cdot (a_{j}^{i_{0}} + a_{j}^{i_{1}} x_{j}^{i}(k))$$

que e a expressão utilizada neste trabalho.

Em verdade, para uma maior aderência deste modelo à realidade, algumas considerações podem ser feitas quanto a forma final do polinômio cota-volume de quarta ordem.

No parque hidrel \bar{e} trico brasileiro pode-se distinguir dois t \underline{i} pos de hidrel \bar{e} tricas:

- . Com reservatório de regularização;
- . Sem reservatório de regularização ou fio d'água.

As hidreletricas consideradas com reservatorio são aquelas que se prestam a regularização das vazões. As chamadas de fio d'agua são aquelas com nenhuma ou muito pouca capacidade de regularização.

Para que se possa levar em consideração a participação das hidreletricas de fio d'agua na geração de energia, pode-se considerar uma hidreletrica de regularização equivalente. Seja a seguinte topologia (figura A.1):

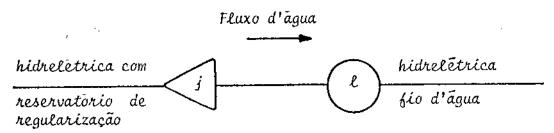


Figura A.1 : Hidreletricas com reservatório e de fio d'agua acopladas.

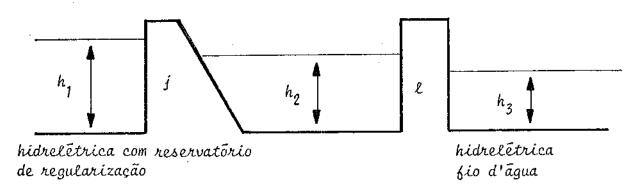


Figura A.2 : Relação de nivel d'água das hidreletricas com reservatórios e de fio d'água.

A função geração de energia das duas hidreletricas podem ser dadas por:

 Ψ_j^i, Ψ_ℓ^i : Energia gerada pelas hidreletricas com reservatorio de regularização e de fio d'agua respectivamente;

 π_{j}^{i} , π_{j}^{i} : Rendimento das respectivas hidreletricas;

 u_i^i , u_ℓ^i : Vazão das respectivas hidreletricas;

 h_1 : Nivel d'agua a montante da hidrelétrica j, dependente do volume;

 h_2 : Nivel d'agua a jusante da hidreletrica j e a montante da hidreletrica ℓ . Dependente do volume;

 h_3 : Nivel d'agua a jusante da hidreletrica ℓ . Dependente do volume.

Devido a não existência de regularização na hidreletrica ℓ a vazão da hidreletrica ℓ deve ser igual a da hidreletrica f.

Chamando as vazões comuns simplesmente de μ , a energia gerada pelas duas hidrelētricas seria:

$$\begin{split} & \psi_{j}^{i} + \psi_{\ell}^{i} = \pi_{j}^{i} u (h_{1} - h_{2}) + \pi_{\ell}^{i} u (h_{2} - h_{3}) \\ & \psi_{j}^{i} + \psi_{\ell}^{i} = [\pi_{j}^{i} (h_{1} - h_{2}) + \pi_{\ell}^{i} (h_{2} - h_{3})] u \end{split}$$

Para que se faça uma equivalência com a equação A.1, pode --se estipular um rendimento equivalente das duas hidrelétricas como:

$$\pi = \frac{\pi_j^i + \pi_\ell^i}{j} \quad \text{ou} \quad \pi = \min \left(\pi_j^i, \pi_\ell^i \right)$$

Com isto a expressão de geração de energia equivalente para as duas hidrelétricas ficaria:

$$\Psi_{j}^{i} + \Psi_{\ell}^{i} = [\pi (h_{1} - h_{2}) + \pi (h_{2} - h_{3})]u$$

Se chamarmos $\Psi_j^i + \Psi_L^i = \Psi$, teremos: $\Psi(x,u) = \pi u (h_1 - h_3)$ que \bar{e} a expressão de geração de energia para o sistema apresentado (figura A1 e A2). Não se deve esquecer da dependência das alturas (h_1, h_2, h_3) com os volumes (equação A.2).

APENDICE B

APÉNDICE B - SEMOPS : UM MÉTODO SEQUENCIAL DE SE RESOLVER PROBLE-MAS MULTIOBJETIVO

Como o Método Interativo de Negociação, o Método SEMOPS permite ao tamodor de decisão estabelecer relações entre objetivos, de maneira interativa. Este processo interativo e dinâmico envolve o tomador de decisão numa busca por uma trajetória satisfatória culminando num ponto de preferência [44].

Esta técnica, por não conhecer explicitamente os objetivos do tomador de decisão, se utiliza de uma função substituta, baseada nas metas e nas aspirações das metas. Deve-se entender aqui por metas as condições impostas externamente ao problema. As aspirações devem ser entendidas como níveis dos objetivos que o tomador de decisão deseja alcançar. Com isto notamos que as metas são fixas e as aspirações são, normalmente, mudadas a cada iteração.

O algoritmo

Seja AL = $(AL_1, AL_2, \ldots AL_n)$ os nīveis dos objetivos aspirado pelo tomador de decisão e $\delta(x) = (\delta_1(x), \delta_2(x), \ldots \delta_n(x))$ as funções objetivos. Os relevantes valores da função objetivo devem estar contidos no intervalo $(\delta_{iL}, \delta_{iU})$ onde δ_{iL} e δ_{iU} são respectivamente delimitadores mīnimos e māximos da função objetivo i sobre o conjunto das restrições.

Com o intervalo de relevância de $\ell_{\hat{\mathcal{L}}}(x)$, podemos definir uma função de transformação normalizadora.

$$\Psi_0$$
, $\delta_i(x) \longrightarrow Y_i(x)$

onde: y(x) pertence a [0, 1]

$$y_{i}(x) = \frac{\delta_{i}(x) - \delta_{il}}{\delta_{il}} + \varepsilon$$

De maneira equivalente podemos definir uma função transforma ção normalizadora para os níveis de aspirações do tomador de decisão.

$$Y_a : A_{Li} \qquad A_{i}$$

$$A_{Li} - B_{iL} + \varepsilon$$

$$\delta_{iU} - B_{iL}$$

onde A, pertence a [o, 1].

O parametro ε ē um numero suficientemente pequeno, acrescido para evitar a divisão por zero na definição da função objetivo substituta.

Os objetivos de um problema visto por esta metodologia pode ser classificada em cinco tipos [44]:

1) Com delimitador superior (no maximo...)

$$\delta_{\lambda}(x) \leq A_{L_{\lambda}}$$
, $d_{\lambda} = \frac{\delta_{\lambda}(x)}{A_{L_{\lambda}}} = \frac{y_{\lambda}(x)}{A_{\lambda}}$

2) Com delimitador inferior (no minimo...)

$$\delta_{i}(x) \ge AL_{i}$$
, $d_{i} = \frac{AL_{i}}{\delta_{i}(x)} = \frac{A_{i}}{Y_{i}(x)}$

3) Com fixação da função (igual a ...)

$$\delta_{i}(x) = AL_{i}$$
, $d_{i} = \frac{1}{2} \left(\frac{AL_{i}}{\delta_{i}(x)} + \frac{\delta_{i}(x)}{AL_{i}} \right) =$

$$= \frac{1}{2} \left(\frac{A_{i}}{y_{i}(x)} + \frac{y_{i}(x)}{A_{i}} \right)$$

 Com delimitador inferior e superior (entre os delimitado res)

$$AL_{iL} \leq \delta_{i}(x) \leq AL_{iU}$$

$$d_{i} = \left(\frac{AL_{iU}}{AL_{iL} + AL_{iU}}\right) \left(\frac{AL_{iL}}{\delta_{i}(x)} + \frac{\delta_{i}(x)}{AL_{iU}}\right) = \left(\frac{A_{iU}}{AL_{iU} + A_{iU}}\right) \left(\frac{A_{iL}}{A_{iU}} + \frac{A_{iU}}{A_{iU}}\right)$$

5) Com delimitador inferior e superior (fora dos delimitado - res)

$$\delta_{\lambda}(x) \leq AL_{\lambda L}$$
 ou $\delta_{\lambda}(x) \geq AL_{\lambda U}$

$$d_{\hat{i}} = (\frac{AL_{\hat{i}L} + AL_{\hat{i}U}}{AL_{\hat{i}U}}) (\frac{1}{\frac{AL_{\hat{i}L}}{\delta_{\hat{i}}(x)}} + \frac{\delta_{\hat{i}}(x)}{AL_{\hat{i}U}}) = (\frac{A_{\hat{i}L} + A_{\hat{i}U}}{A_{\hat{i}U}}) (\frac{1}{\frac{A_{\hat{i}L}}{V_{\hat{i}}(x)}} + \frac{V_{\hat{i}}(x)}{A_{\hat{i}U}})$$

As funções (1), (2) e (4) são as mais comuns.

Para qualquer problema, valores de $d_{\hat{\mathcal{L}}} < 1$ implica que o objetivo $d_{\hat{\mathcal{L}}}(x)$ é satisfeito. Exceto para (1), as demais funções $d_{\hat{\mathcal{L}}}$ são todas não lineares da função objetivo.

O algoritmo tem por fim gerar informações através das quais o tomador de decisão se guiarã no processo de busca pela solução sa tisfatória.

As informações referentes a inter-relação entre objetivos — é fornecida em termos de quão satisfatoriamente ou não um objetivo a<u>f</u>e ta os niveis de aspiração dos outros objetivos.

A otimização iterativa de uma função substituta e o mecanismo

pelo qual informações são geradas para o tomador de decisão.

Seja T' o subconjunto do conjunto T dos n objetivos, que com - põem a função S, a uma dada iteração.

$$S = \sum_{t \in T'} d_t$$

onde d_{\pm} ē uma das 5 funções descritas anteriormente.

O método consiste de se resolver a cada iteração uma sequência de problemas. Nesta seguência temos um problema o qual denomina-se principal e os outros, auxiliares, ou secundários.

A primeira iteração resolve o problema principal e um conjunto de и problemas auxiliares.

Os problemas podem ser formalizados como:

Principal:

min
$$S_1 = \sum_{t=1}^{T} d_t$$

 $x \in X$

Auxiliares (Secundários): $\ell = 1, ..., n$

min
$$S_{1\ell} = \sum_{x=1}^{T} d_x$$
 $t \neq \ell$
 $x \in X$
 $\delta \ell^{(x)} \ge A \ell$
ou
 $\delta \ell^{(x)} \le A \ell$

O vetor solução e os valores das funções objetivos do problema principal e dos auxiliares são apresentados ao tomador de decisão para sua avaliação. De acordo com algum critério, o tomador de decisão escolherá uma das funções, digamos a l-esima para entrar como restrição às próximas iterações. Seja $\beta_1^p(x)$, $\beta_2^p(x)$,... $\beta_n^p(x)$ os niveis das funções objetivos conseguidos pela solução do problema principal. Seja $\beta_2^s(x)$,... $\beta_n^s(x)$ os niveis do problema secundário cuja função foi escolhida para entrar como restrição nas próximas iterações.

Pode-se acessar o impacto de se optar por restringir a lesima função objetivo no atendimento dos outros objetivos, calculando:

$$\alpha = \frac{A_{\ell}^{i} - \delta_{\ell}^{\delta}(x)}{\delta_{\ell}^{p}(x) - \delta_{\ell}^{\delta}(x)}$$

onde: A' sera o novo nivel de aspiração da ℓ -esima função. O parametro α e considerado de avaliação de impacto sobre as outras fun - ções.

A estimativa dos novos valores de função objetivo do problema principal da próxima iteração poderá ser feita como segue:

$$\delta_{i}(x) = \alpha \left(\delta_{i}^{p}(x) - \delta_{i}^{\delta}(x) \right) + \delta_{i}^{\delta}(x), i=1, ..., n$$

O tomador de decisão poderã tentar vários valores de A'_ℓ até que a estimativa dos objetivos seja aceitável. Em geral a ℓ -esima itera - ção é constituída dos seguintes problemas:

Principal:

min
$$S_i = \sum_{t \in T'} d_t$$

s.a.

$$\delta_{j}(x) \ge AL_{j}$$
 $j \in (T - T')$
 $x \in X$

Secundário:

$$S_{i\ell} = \sum_{\substack{t \in T' \\ t \neq \ell}} d_t$$

$$\delta_j(x) \ge AL_j \qquad j \in (T - T')$$

$$\delta_\ell(x) \ge AL_\ell \qquad \ell \in T'$$

APÊNDICE C

Resultado da Simulação do Problema Real (Passo/Interação) - Periodo de Planejamento: 6 meses.

РВ	INT	61	62	62	62	P	x ₁ ¹	u1 1	x ₂ ¹	u_2^1	x ₁ ²	u_1^2	x ₂ ²	u_2^2	FC.UT
		5.35	3.86	7.47	9.55	a	3.52	6.84	5.88	5.13	9.75	6,39	16.90	12.53	6.74
1	1	3.33	2.00	7 - 31	7133	í	1.81	2.09	7.93	6.38	9.75	5.76	16.90	13.67	<u></u>
						2	6.10	6.24	4.40	4.00	9.75	5.06	16.90	10.33	•
						3	3.86	1.18	7.09	3.47	9.75	5,58	16.90	10.64	
						4	6.15	3.92	5.18	1.79	9.75	5.17	16.90	7.62	1
				<u> </u> 		5	4.02	6.84	7.72	3.87	9.75	4.50	16.90	10.18	-
				1		6	1.05		11.00		9.75		16.90	<u></u>	
2	í	5.35	3.86	8.38	10.21	0	3.52	6.84	5.89	5.13	9.75	3,55	16.90	5.52	7.23
<u></u>	<u>l</u>	<u> </u>	<u> </u>			i	1.81	2.09	7.93	6.38	12.50	6.63	21.16	14.54	<u> </u>
						2	6.10	6.24	4.40	4,60	11.63	5.05	21.16	10.32	-
						3	3.86	1.18	7.09	3.47	11.64	6.63	21.16	11.69	
			. ,			4	6.15	3.92	5.18	1.79	10.59	6.63	21.16	9,08	
						5	4.02	6.84	7.72	3.87	9.13	6,63	21.16	12,31	
						6	1.05		11.00		7.00		21.16		
	1	5.35	5.22	8.38	12.37	9	3.52	6.84	5.80	2.06	9.75	3.55	16.99	3.63	7.94
<u>. </u>			<u>_l · · </u>	<u>.</u> !	<u> </u>	1	1.81	2.09	11.00	7.57	12.50	6.63	19.98	14.55	_
					. •	2	6.10	6.24	6.28	1.97	11.63	5.05	21.16	8,29	_
						3	3.86	1.18	11.00	4.92	11.64	6.63	21.16	13.14	_
						4	6.15	3.92	7.64	7.57	10.59	6.63	21.16	18.16	-
			-			5	4.02	6.84	4.40	7.15	9.13	6.63	17.86	20.71	1
						6	1.05		4,40		7.00		12.74	<u>-</u>	
	i 2	5.35	5.22	8.38	12.37	9	3.52	5.84	5.80	2.06	9.75	3.55	16.90	3.63	7.94
			;			1	1.81	2.04	11.00	7.57	12.50	6.63	19.98	14.55	_
						5	6.15	6.29	6.23	1.97	11.63	5.05	21.16	8.29	_
						3	3.86	1.18	11.00	4.92	11.64	6,63	21.16	13.14	_

A.11		-													
	,														
	18.16	21.16	6.63	10.57	7.57	7.64	3.92	6.15	4	ſ					
	20.71	17.86	6.63	9.13	7.15	4.49	6.84	4.62	5	1					
	1	12.74		7.60		4.49		1.05	6						
7.95	3.63	16.90	3,55	9.75	2.06	5.80	6.84	3.52	9	12.37	8.41	5.22	5.35	2 2	
	13.68	19.98	5.76	12.50	7.57	11.00	2.04	1.81	i		!				<u> </u>
	9.16	21.16	5.92	12.50	1.97	6.23	6.29	6.15	2	ļ					
	13.14	21.16	6.63	11.64	4,92	11.00	1.18	3.86	3						
	18.16	21.16	6.63	19.59	7.57	7.64	3,92	6.15	4						
	20.71	17.86	6,63	9.13	7.15	4.40	6.84	4.02	5						
<u></u>		12.74		7.40		4.40		1.05	6						
7.95	3.63	16.90	3,55	9.75	2.06	5.80	6.84	3.52	0	12.37	8.41	5.22	5,35	3 2	
_	13.68	19.98	5.76	12.50	7.57	11.00	2.04	i.8i	1						_
<u> </u>	9,16	21.16	5.92	12.50	1.97	6.23	6.29	6.15	2						
	13.14	21.16	6 .6 3	11.64	4.92	11.00	1.18	3.86	3						
	18.16	21.16	6,63	10.59	7,57	7.64	3.92	6.15	4						۲.
	20.71	17.86	6.63	9.13	7.15	4.40	6.84	4.02	5						
<u> </u>		12.74	· . -	7.00		4.40		1.05	6						
7.95	3.63	14.90	3,55	9.75	2.06	5.80	6.84	3.52	Ø	12.37	8.41	5.22	5.35	1 3	
	13,68	19.98	5. 76	12.50	7.57	11.00	2.04	1.81	í			<u> </u>	- 		! —
<u> </u>	9.16	21.16	5.92	12.50	1.97	6.23	6.29	6.15	2	,					
	13.14	21,16	6.63	11.64	4.92	11.00	1.18	3.86	3						
	18.16	21.16	6.63	10.59	7.57	7.64	3.92	6.15	4						
	26.71	17,86	6.63	9.13	7.15	4.40	6.84	4.02	5						
	<u> </u>	12.74		7.00		4.48		1.05	6		. <u> </u>				
7.95	ļ. —. ——	16.90	3,55	9.75	2.06	5.80	6.84	3,52	0	12.37	8,41	5,22	5.35	2 3	[
_	13.68	19.78	5.76	12.59	7.57	11.00	2,84	1.81	1						-
_	9.16	21.16	5.92	12.50	1.97	6.23	6,29	6.15	2						

	3	3.86	1.18	11.00	4.92	11.64	6.63	21.16	13,14	
	4	6.15	3.92	7.64	7.57	10.59	6.63	21.16	18.16]
	5	4.02	6.84	4.40	7.15	9.13	6.63	17.86	20.71	
	6	1.05		4.40		7.80		12.74		
3 3 5.35 5.22 8.41 12.37	0	3.52	6.84	5.86	2.06	9.75	3.55	16.90	3.63	7,95
	í	i.8i	2.04	11.00	7.57	12.50	5.76	19.98	13.68	
	2	6.15	6.29	6.23	1.97	12.50	5.92	21.16	9.16	
	3	3.86	1.18	11.00	4.92	11.64	6.63	21.16	13.14	
	4	6.15	3.92	7.64	7.57	10.59	6.63	21.16	18.16	
	5	4.02	6.84	4.40	7.15	9.13	6.63	17.86	20.71	
	6	1.05		4.48		7.00		12.74		

Resultado da Simulação do Problema Real (Passo/Interação) - Periodo de Planejamento 7 meses.

PE		INT	61	62	62	62	Р	x 1	u 1	x ₂ ¹	u 1	x ₁ ²	u2	x22	u 2	FC.UT
	1	í	6.27	4.42	8.43	10.95	Ø	3.52	3.31	5.80	5.13	9.75	6.30	16.99	12.53	7.70
		<u> </u>		<u>. </u>			í	5.34	5.62	4.40	6.38	9.75	5.76	16.90	13.67	
							5	6.10	6.24	4.40	4.00	9.75	5.06	16.99	10.33	
							3	3.86	i.18	7.09	3.47	9.75	5.58	16.90	19.64	
							4	6.15	6.41	5.18	1.79	9,75	5.17	16.90	7.62	
							5	1.53	1.18	10.21	3,87	9.75	4.50	16.90	19.18	
					¦ !		6	4.22	6.84	7.83	3.90	9.75	4.18	16.90	9.55	
					:		7	1.28		11.00		9.75		16.90		
	2	i	6.27	4.42	9.54	13.12	0	3.52	3.31	5.80	5.13	9.75	3.55	16.90	5.52	8.58
L	i		,	<u> </u>			í	5.34	5.62	4.48	6.38	12.50	5.76	21.16	13.67	
							5	6.10	6.24	4.40	4.00	12.50	5.06	21.16	10.33	
				:			3	3,86	1.18	7.69	3.47	12.59	5.58	21.16	10.64	
							4	6.15	6.41	5.18	1.79	12.50	6.09	21.16	8.54	
	į						5	1.53	1.18	10.21	3.87	11.58	6.63	21.16	12.31	
							6	4,22	6.84	7.83	3.90	9.45	6.63	21.16	20.42	
			•	•			7	1.28		11.00		7.00		12.74		
	3	i	5.27	6.03	9.54	14.01	0	3,52	3.31	5.8∜	3.24	9.75	3,55	15.90	3.63	7.93
.		Ŀ		1 - ·	<u> </u>	<u> </u>	í	5.34	5.62	6.29	1.67	12.50	5.76	21.16	8.97	
					•		2	6.10	6.24	11.00	6.69	12.50	5.06	21.16	13.02	
							3	3.86	1.18	11.00	7.57	12.50	5.58	21.16	14.74	
		٠.					4	6.15	6.41	4.99	1.25	12.50	6.09	21.16	6.00	_
							5	1.53	1.18	10.56	7.57	11.58	6.63	21.16	18.97	
							6	4.22	6,84	4.48	7.15	9.45	6.63	18.20	20.71	
							7	1.28		4.40		7.00		12.74		ļ
	i	2	6.40	6.07	9.54	14.01	0	3.52	2.50	5.80	3.24	9.75	3,55	16.90	3.63	9.11

																ļ
						}	i	6.15	6.38	5.49	1.67	12.50	5.76	21.16	8.96	
						1	2	6,15	6.28	10.96	6.69	12.50	5.06	21.16	13.02	
						1	3	3.87	1,20	11.00	7.57	12,50	5.58	21.16	14.74	
						-	4	6.15	6.83	5.01	1.25	12.50	6.09	21.16	8.00	
							5	i.ii	1.18	11.00	7.57	11.58	6.63	21.16	18.97	
						ļ	6	3.80	6.81	4.92	7.15	9.45	6,63	18.21	20.71	
							7	0.70		4.81		7.00		12.74		
	2	2	6.40	6.07	9.54	14.01	Ģ	3.52	2.50	5.80	3.24	9.75	3.55	16.90	3,63	9.11
š					A		i	6.15	6.38	5,48	1.67	12.50	5.76	21.16	8.96	
							5	6.15	6.29	19.95	6.69	12.50	5.06	21.16	13.02	
							3	3.87	1.18	11.00	7,57	12.50	5.58	21.16	14.74	
							4	6.15	6.84	4.99	1,25	12.50	6.69	21.16	8.00	
						,	5	1.11	1.18	10.99	7.57	11.58	6.63	21.16	18.97	
							6	3.79	6.79	4.91	7.15	9.45	6.63	18.20	20.71	
١.							7	0.90		4.78		7.00		12.74		
	3	2	6.40	6.12	9.54	14.94	9	3,52	2.50	5.8%	3.24	9.75	3.55	16.90	3.63	9.13
ļ				<u> </u>	<u>.J</u>		1	6.15	6.38	5.48	1.62	12.50	5.76	21.16	8.91	
						!	2	6,15	6,29	11.00	6.74	12.50	5.06	21.16	13.07	
						!	3	3.86	1.18	11.00	7.57	12.50	5.58	21.16	14.74]
							4	6.15	6.84	4.99	1,25	12.50	6.09	21.16	8.00	
						1	5	1.10	1.18	10.99	7.57	11.58	6.63	21.16	19.35	
						!	6	3.79	6,79	4,91	7,53	9.45	6.63	17.82	20.71	1
							7	0.99		4.40	<u> </u>	7.00	<u> </u>	12.74		1
	1	3	6.40	6.12	9.54	14.04	9	3.52	2.50	5,86	3.24	9.75	3.55	16.90	3.63	9.13
_	•						í	6.15	6.38	5.48	1.62	12.50	5.76	21.16	8.91	,
							2	6.15	6,29	11,00	6.74	12.50	5.06	21.16	13.07	
						!	3	3.86	1.18	11.00	7.57	12.50	5.58	21.16	14.74]

					,		·	T	,						t
						4	6.15	6.84	4.99	1.25	12.50	6.09	21.16	8,00	
						5	1.10	1.18	10.99	7.57	11.58	6.63	21.16	19.35	
						6	3,79	6.79	4.91	7,53	9.45	6.63	17.82	20.71	
						7	0.90		4,48		7.00		12.74		
	2 3	6.40	6.12	9.54	14.04	9	3.52	2.50	5.80	3.24	9.75	3.55	16.70	3.63	9,13
		•				i	6.15	6.38	5,48	1.62	12.50	5.76	21.16	8.91	
						2	6.15	6.29	11.00	6.74	12.50	5.06	21.16	13.07	
						3	3.87	1.18	11.00	7.57	12,50	5.58	21.16	14.74	
				!		4	6.15	6.84	4.99	1.25	12.50	6.99	21.16	8.00	
				ļ		5	1.10	1.18	10.99	7.57	11.58	6.63	21.16	19.35	
				;		4	3.79	6.79	4.91	7.53	7.45	6.63	17.82	20.71	[
						7	0.99		4.40		7.90		12,74		
	3 3	6.40	6.12	9.54	14.04	0	3.52	2.59	5,80	3.24	9.75	3.55	16.90	3.63	9,13
 -			1.,	J		1	6.15	6.38	5.48	1.62	12.50	5.76	21.16	8.91	
				:		2	6.15	6.29	11.00	6.74	12,50	5.06	21.16	13.07	
						3	3.86	1.18	11.00	7.57	12.50	5,58	21.16	14.74	
						4	6.15	6.84	4.99	1,25	12.50	6.09	21.16	8.00	}
						5	1.10	1.18	10.99	7.57	11.58	6.63	21.16	19.35	
		•	•			6	3.79	6.79	4.91	7.53	9.45	6.63	17.82	20,71	
					- '	7.	8.98		4.40		7.00		12.74		
															-

Resultado da Simulação do Problema Real (Passo/Interação) - Periodo de Planejamento: 8 meses.

PB	INT	61	62	δ ₁ ²	62	р	x1	u 1	x ₂ ¹	1 2	x ₁ ²	u 2	x22	u 2 2	FC.UT
í	1	7.03	4.97	9.38	12.35	0	3.52	3.31	5.89	5.13	9.75	6.30	16.90	12.53	8.62
L	Ll					í	5.34	5.62	4.40	6.38	9.75	5,74	16.70	13.67	
						2	6.10	6.84	4.40	4.00	9.75	5.06	16.90	10.33	
						3	3.26	1.18	7.69	3.47	·, 9.75	5.58	16.90	10.64	
						4	5.55	1.19	5.78	1.79	9.75	5.17	16.90	7.62	-
						5	6.15	6.84	5.59	3.87	9.75	4.50	16.96	10.18	
						6	3.18	2.56	8.87	3.90	9.75	4.18	16.90	9,55	
				!		7	4.52	6.84	7.76	3.79	9.75	4.13	16.90	9.50	
						8	1.47		11.00		9.75		16.90		
2	í	7.03	4.97	10.59	14.67	0	3.52	3.31	5.80	5.13	9.75	3.55	16.90	5,52	9.57
	1		3	• · • · • · • · • · • · • · • · • · • ·		i	5.34	5.62	4,40	6.38	12.50	5.76	21.16	13.67	
					,	2	6.19	6.84	4.40	4.00	12.50	5.06	21.16	10.33	
						3	3.26	1.18	7.69	3.47	12.50	5,58	21.16	19.64	
		•				4	5,55	1,19	5.78	1.79	12.50	5.17	21.16	7,62	-i
						5	6.15	6.84	5.59	3.87	12.50	5.05	21.16	10.73	
						6	3.18	2.56	8.87	3.90	11.95	6.63	21.16	12.00	
					, .	7	4.52	6.84	7.76	3.79	9.50	6.63	21.16	20.42	_
						8	1.47		11.00		7.00		12.74	<u></u>	<u> </u>
3	i	7.03	6.77	10.59	15.44	0	3.52	3.31	5.80	1.25	9.75	3.55	16.90	3.63	10.08
•						í	5.34	5.62	8.28	3.66	12.50	5.76	19.17	8.96	1
						2	6.10	6.84	11.00	7.29	12.50	5.06	21.16	13.62	
						3	3.26	1.18	11.09	1.56	12,50	5.58	21.16	8.73	-
						4	5.55	1.19	11.00	2.46	12.50	5.17	21.16	8.29	-
		•			•	5	6,15	6,84	19.14	7.57	12.50	5.05	21.16	14.43	-
						6	3.18	2.56	9.72	7.57	11.95	6.63	21.16	19,16	_

				_						_
	7	4.52	6.84	4.94	7.57	9.50	6.63	17.67	20.71	
	8	1.47		4.40		7.00		12.74	<u>-</u> ·	
i 2 7.10 6.87 10.59 15.44	0	3,52	2.50	5.80	1.25	9.75	3.55	16.90	3.63	10.12
	i	6.15	6.43	7.47	3.66	12.50	5.76	19.17	8.96	
	2	6.10	6.84	11.00	7.29	12.50	5.96	21.16	13.62	1
	3	3.26	1.18	11.00	1,56	12.50	5.58	21.16	8.73	
	4	5.55	2.05	11.00	2.46	12.5 0	5.17	21.16	8.29	
	5	5.29	6.84	11.00	7.57	12.50	5.05	21.16	14,43	
	6	2.32	2.27	10.58	7.57	11.95	6.63	21.16	19.16	
	7	3,95	6.84	5.51	7.57	9.50	6.63	17.67	20.71	
	8	0.90		4.97		7.00		12.74		
2 2 7.10 6.87 10.59 15.44	0	3.52	2.50	5.80	1.25	9.75	3.55	16.90	3.63	10.12
	í	6.15	6.43	7.47	3.66	12.50	5.76	19.17	8.96	
	2	6.10	6.84	11.00	7.29	12.50	5.06	21.16	13.62]
	3	3.26	1.18	11.00	1.56	12,50	5.58	21.16	8.73	
	4	5.55	2.05	11.00	2.46	12.50	5.17	21.16	8.29	
	5	5.29	6.84	11.00	7. 57	12.50	5.05	21.16	14.43	
	6	2.32	2.27	10.58	7.57	11.95	6.63	21,16	19.16	
	7	3.95	6.84	5 . 5i	7.57	9.50	6.63	17.67	20.71	
	8	0.90		4.97		7.00		12.74		
3 2 7.10 6.89 10.59 15.53	0	3.52	2.50	5.89	1.25	9,75	3.55	16.98	3.63	10.14
	í	6.15	6.43	7.47	3.66	12.50	5.76	19.17	8.96	
	2	6.10	6.84	11.00	7.29	12.50	5.06	21.16	13.62	
	3	3,26	i.i8	11.00	1.56	12.50	5.58	21.16	8.73	
	4	5.55	2.05	11.00	3.03	12.50	5.17	21.16	8.86	
	5	5.29	6.84	10.43	7.57	12.50	5.05	21.16	14.43	
	6	2,32	2,27	10.01	7.57	11.95	6.63	21.16	19.16	

											•			
					7	3,95	6.84	4.94	7.57	9,50	6.63	17.67	20.71	
					8	0.90		4.40		7.00		12.74		
i 3	7.06	6.95	10.59	15.53	0	3.52	2.50	5.80	1.25	9.75	3,55	16.90	3.63	10.14
					i	4.15	6.43	7.47	3.66	12.50	5.76	19.17	8.96	
					2	5.10	6.84	11.00	7.29	12.50	5.06	21.16	13.62	
					3	3.26	1.18	11.00	1.56	12.50	5.58	21.16	8.73	
					4	5.55	2.62	11.00	3.03	12.50	5.17	21.16	8.86	
					5	4.72	6.84	11.00	7.57	12.50	5.05	21.16	14.43	
					6	1.75	1.70	10.58	7.57	i1.9 5	6.63	21.16	19.16	
					7	3.95	6.84	4.94	7.57	9.50	6.63	17.67	20.71	
					8	0.90		4.40		7.00		12.74		
2 3	7.06	6.95	10.59	15.53	0	3.52	2.50	5.80	1.25	9.75	3.55	16.90	3.63	18.14
		·•			i	6,15	6.430	7.47	3.66	12.50	5.76	19.17	B.96	
					2	6.10	6.84	11.00	7.29	12.50	5.06	21.16	13.62	
				-1	3	3.26	1.18	11.00	1.56	12.50	5.58	21.16	6.73	
				• •	4	5.55	2.62	11.00	3.03	12.50	5.17	21.16	8.86	
				•	5	4.72	6.84	11.00	7.57	12.50	5.05	21.16	14.43	
				•	6	i.75	1.70	10.58	7.57	11.95	6.63	21.16	19.16	
		•	,		7	3.95	6.84	4.94	7.57	9.50	6,63	17.67	20.71	<u> </u>
					8	0.90		4.49		7.00		12.74		
3 3	7.06	6.95	10.59	15.53	6	3.52	2.50	5.80	1.25	9.75	3.55	16.90	3.63	10.14
<u> </u>	<u> </u>				1	6.15	6.43	7.47	3.66	12.50	5.76	19.17	8.96	
				_	2	6.10	6.84	11.00	7.29	12.50	5.06	21.16	13.62	
					3	3.26	1.18	11.00	1.56	12.50	5.58	21.16	8,73	
				,	4	5.55	2.62	11.00	3.03	12.50	5.17	21.16	8.86	
					5	4.72	6.84	11.00	7.57	12.50	5.05	21.16	14.43	
					6	1.75	1.70	10.58	7.57	11.95	6.63	21.16	19.16	
					7	3.95	6.84	4.94	7.57	9.50	6.63	17.67	20.71	

					,, .,	
1			•		l i	1 1
-1	۱ ه	A QA	i :	A AA	l 17.00	1 1 10 74
	0	V.70		4.40	1 / • • •	1 124/7
-1					1	\$l

Resultado da Simulação do Problema Real (Passo/Interação)- Período de Planejamento: 9 meses

РБ	INT	61	62	61	δ ²	Р	x ₁ ¹	u 1	x_2^1	u 1 2	x_1^2	u 2	x_2^2	u 2	FC.UT
\vdash			5.59	19.31	13.65	. 0	3.52	3.3i	5.80	5.13	9.75	6.30	16.90	12.53	9.52
	1	7.73	3,07	10.31	13,03				4.40	6.38	9.75	5.76	16.98	13.67	
						í	5.34	5.62			9.75		16.90	10.33	1
						2	6.10	6.24	4.40	4.00		5.96			-
						3	3.86	1.18	7.09	3.47	9.75	5.58	16.90	10.64	-
						4	6.15	5,25	5.18	1.79	9.75	5.17	16.90	7.62	
						5	2.69	1.18	9.05	3.87	9.75	4,50	16.90	10.18	
						6	5.38	6.84	6.67	3.90	9.75	4.18	16.90	9.55	
						7	2.44	1.18	9.84	3.79	9.75	4.13	16.9 0	9.50	
						8	5.05	6.84	7.42	3.42	9.75	3.99	16.98	8.82	
•						9	1.63	-	11.00		9.75		16.90		
2	í	7.73	5.59	11.60	16.10	0	3.52	3.31	5,80	5.13	9.75	3.55	- 16.90	5.52	10.52
	•		<u>*</u>	.1		í	5.34	5.62	4.40	6.38	12.50	5.76	21.16	13.67	
						2	6.10	6.24	4.40	4.00	12.50	5.06	21.16	10.33	
						3	3.86	1,18	7.09	3.47	12.50	5.58	21.16	10.64]
						4	6.15	5.25	5.18	1.79	12.50	5.17	21.16	7.62]
						5	2,69	1.18	9.05	3.87	12.50	4.50	21.16	10.18	
						6	5.38	6.84	6.67	3.98	12.50	4.54	21.16	9.91	
						7	2.44	1.18	9.84	3.79	12.14	6.63	21.16	12.00	
٠						8	5.05	6.84	7.42	3.42	9.64	6.63	21.16	19.88	
						9	1.63		11.00		7.00		12.74		1
3	1	7.73	7.45	11.60	17.00	0	3.52	3.31	5.80	3.24	9.75	3.55	16.90	3.63	11.07
-	 -	<u> </u>		-	4	í	5.34	5.62	6.29	1.67	12.50	5.76	21.16	8.97	
•						2	6.10	6.24	11.00	6.69	12.50	5.06	21.16	13.02	
						3	3.86	1.18	11.00	1.56	12.50	5.58	21.16	8.73	
						4	6.15	5.25	11.00	5.66	12.50	5.17	21.16	11.49	
							T								

_									. ,
5	2.69	1.18	11.00	1.49	12.50	4.50	21.16	7.80	
6	5.38	6.84	11.00	7.47	12.50	4.54	21.16	13.49	
7	2.44	1.18	10.60	7.57	12.14	6.63	21.16	18.53	
8	5.05	6.84	4.40	7.00	9.64	6.63	18.41	20.71	
9	1.63		4.40	-	7.00		12.74		
0	3,52	2.50	5.80	3.24	9.75	3.55	16.90	3.63	11.11
1	6.15	6.38	5,48	1.67	12.50	5.76	21.16	8.97	
2	6.15	6.29	18.95	6.69	12.50	5.06	21.16	13.02	:
3	3.86	1.18	11.00	1.56	12.50	5.58	21.16	8.73	
4	6.15	5.25	ii.00	5.66	12.50	5.17	21.16	11.49	
5	2.69	1.18	11.00	1.49	12.50	4,50	21.16	7.80	
6	5.38	6.84	11.00	7.47	12.50	4.54	21.16	13.49	
7	2.44	1.91	10.60	7.57	12.14	6.63	21.16	18.53	
8	4.32	6.84	5.13	7.00	9.64	6.63	18.41	20.71	
9	0.98		5.17		7.00		12.74		
0	3.52	2.50	5.80	3.24	9.75	3.55	16.90	3.63	11.11
i	6.15	6.38	5.48	1,67	12.50	5.76	21.16	8.96	
2	6.15	6.29	10.95	6.69	12.50	5.06	21.16	13.02	
3	3.86	1.18	11.00	1.56	12.50	5. 58	21.16	8.73	
4	6.15	5,25	11.00	5.66	12.50	5.17	21.16	11.49	
5	2.69	1.18	11.00	. 1,49	12.50	4.50	21.16	7.80	
6	5.38	6.84	11.00	7.47	12.50	4.54	21.16	13.48	
7	2.44	1.91	10.60	7.57	12.14	6.63	21.16	18.53	
8	4.32	6.84	5.13	7.00	9.64	6.63	18.41	20.71	
Ģ	0.90		5.13		7.00		12.74		
0	3,52	2.50	5.80	3.24	9.75	3.55	16.90	3.63	11.14
í	6.15	6.38	5.48	1.62	12.50	5,76	21.16	8.91	
	6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9	6 5.38 7 2.44 8 5.05 9 1.63 0 3.52 1 6.15 2 6.15 3 3.86 4 6.15 5 2.69 6 5.38 7 2.44 8 4.32 9 0.90 0 3.52 1 6.15 2 6.15 3 3.86 4 6.15 7 2.44 8 4.32 9 0.90 6 5.38 7 2.44 8 4.32 9 0.90 6 5.38	6 5.38 6.84 7 2.44 1.18 8 5.05 6.84 9 1.63	6 5.38 6.84 11.00 7 2.44 1.18 10.60 8 5.05 6.84 4.40 9 1.63 4.40 0 3.52 2.50 5.80 1 6.15 6.38 5.48 2 6.15 6.29 10.95 3 3.86 1.18 11.00 4 6.15 5.25 11.00 4 6.15 5.25 11.00 5 2.69 1.18 11.00 6 5.38 6.84 11.00 7 2.44 1.91 10.60 8 4.32 6.84 5.13 9 0.90 5.48 2 6.15 6.29 10.95 3 3.86 1.18 11.00 4 6.15 6.29 10.95 3 3.86 1.18 11.00 4 6.15 5.25 11.00 5 2.69 1.18 11.00 6 5.38 <td>6 5.38 6.84 11.00 7.47 7 2.44 1.18 10.60 7.57 8 5.05 6.84 4.40 7.00 9 1.63 4.40 </td> <td>6 5.38 6.84 11.00 7.47 12.50 7 2.44 1.18 10.60 7.57 12.14 8 5.05 6.84 4.40 7.00 9.64 9 1.63 4.40 7.00 9.64 9 1.63 4.40 7.00 9.64 1 6.15 6.38 5.80 3.24 9.75 1 6.15 6.38 5.48 1.67 12.50 2 6.15 6.29 10.95 6.69 12.50 3 3.86 1.18 11.00 1.56 12.50 4 6.15 5.25 11.00 5.66 12.50 5 2.69 1.18 11.00 7.47 12.50 6 5.38 6.84 11.00 7.57 12.14 8 4.32 6.84 5.13 7.00 9.64 9 0.90 5.17 7.00 9.64 1<</td> <td>6 5.38 6.84 11.00 7.47 12.50 4.54 7 2.44 1.18 10.60 7.57 12.14 6.63 8 5.05 6.84 4.40 7.00 9.64 6.63 9 1.63 4.40 7.00 7.00 7.00 7.00 0 3.52 2.50 5.80 3.24 9.75 3.55 1 6.15 6.38 5.48 1.67 12.50 5.76 2 6.15 6.29 10.95 6.69 12.50 5.06 3 3.86 1.18 11.00 1.56 12.50 5.38 4 6.15 5.25 11.00 5.66 12.50 5.17 5 2.69 1.18 11.00 7.47 12.50 4.54 7 2.44 1.91 10.60 7.57 12.14 6.63 8 4.32 6.84 5.13 7.00 9.64 6.63</td> <td>6 5.38 6.84 11.00 7.47 12.50 4.54 21.16 7 2.44 1.18 10.60 7.57 12.14 6.63 21.16 8 5.05 6.84 4.40 7.00 9.64 6.63 18.41 9 1.63 4.40 7.00 9.64 6.63 18.41 9 1.63 4.40 7.00 9.64 6.63 18.41 9 1.63 4.40 7.00 9.64 6.63 18.41 9 1.63 4.40 7.00 9.64 6.63 18.41 1 6.15 6.38 5.48 1.67 12.50 5.76 21.16 2 6.15 6.29 10.95 6.69 12.50 5.58 21.16 4 6.15 5.25 11.00 1.47 12.50 5.58 21.16 5 2.69 1.18 11.00 7.47 12.50 5.47 21.16 <td>6 5.38 6.84 11.09 7.47 12.50 4.54 21.16 13.47 7 2.44 1.18 10.69 7.57 12.14 6.63 21.16 18.53 8 5.05 6.84 4.40 7.00 9.64 6.63 18.41 20.71 9 1.63 4.40 7.00 9.64 6.63 18.41 20.71 9 1.63 4.40 7.00 9.64 6.63 18.41 20.71 9 1.63 4.40 7.00 9.64 6.63 18.41 20.71 9 1.63 5.88 1.67 12.50 5.76 21.16 8.97 2 6.15 6.29 10.95 6.69 12.50 5.06 21.16 13.62 3 3.86 1.18 11.00 1.56 12.50 5.58 21.16 8.73 4 6.15 5.25 11.00 5.66 12.50 5.17 21.16<!--</td--></td></td>	6 5.38 6.84 11.00 7.47 7 2.44 1.18 10.60 7.57 8 5.05 6.84 4.40 7.00 9 1.63 4.40	6 5.38 6.84 11.00 7.47 12.50 7 2.44 1.18 10.60 7.57 12.14 8 5.05 6.84 4.40 7.00 9.64 9 1.63 4.40 7.00 9.64 9 1.63 4.40 7.00 9.64 1 6.15 6.38 5.80 3.24 9.75 1 6.15 6.38 5.48 1.67 12.50 2 6.15 6.29 10.95 6.69 12.50 3 3.86 1.18 11.00 1.56 12.50 4 6.15 5.25 11.00 5.66 12.50 5 2.69 1.18 11.00 7.47 12.50 6 5.38 6.84 11.00 7.57 12.14 8 4.32 6.84 5.13 7.00 9.64 9 0.90 5.17 7.00 9.64 1<	6 5.38 6.84 11.00 7.47 12.50 4.54 7 2.44 1.18 10.60 7.57 12.14 6.63 8 5.05 6.84 4.40 7.00 9.64 6.63 9 1.63 4.40 7.00 7.00 7.00 7.00 0 3.52 2.50 5.80 3.24 9.75 3.55 1 6.15 6.38 5.48 1.67 12.50 5.76 2 6.15 6.29 10.95 6.69 12.50 5.06 3 3.86 1.18 11.00 1.56 12.50 5.38 4 6.15 5.25 11.00 5.66 12.50 5.17 5 2.69 1.18 11.00 7.47 12.50 4.54 7 2.44 1.91 10.60 7.57 12.14 6.63 8 4.32 6.84 5.13 7.00 9.64 6.63	6 5.38 6.84 11.00 7.47 12.50 4.54 21.16 7 2.44 1.18 10.60 7.57 12.14 6.63 21.16 8 5.05 6.84 4.40 7.00 9.64 6.63 18.41 9 1.63 4.40 7.00 9.64 6.63 18.41 9 1.63 4.40 7.00 9.64 6.63 18.41 9 1.63 4.40 7.00 9.64 6.63 18.41 9 1.63 4.40 7.00 9.64 6.63 18.41 1 6.15 6.38 5.48 1.67 12.50 5.76 21.16 2 6.15 6.29 10.95 6.69 12.50 5.58 21.16 4 6.15 5.25 11.00 1.47 12.50 5.58 21.16 5 2.69 1.18 11.00 7.47 12.50 5.47 21.16 <td>6 5.38 6.84 11.09 7.47 12.50 4.54 21.16 13.47 7 2.44 1.18 10.69 7.57 12.14 6.63 21.16 18.53 8 5.05 6.84 4.40 7.00 9.64 6.63 18.41 20.71 9 1.63 4.40 7.00 9.64 6.63 18.41 20.71 9 1.63 4.40 7.00 9.64 6.63 18.41 20.71 9 1.63 4.40 7.00 9.64 6.63 18.41 20.71 9 1.63 5.88 1.67 12.50 5.76 21.16 8.97 2 6.15 6.29 10.95 6.69 12.50 5.06 21.16 13.62 3 3.86 1.18 11.00 1.56 12.50 5.58 21.16 8.73 4 6.15 5.25 11.00 5.66 12.50 5.17 21.16<!--</td--></td>	6 5.38 6.84 11.09 7.47 12.50 4.54 21.16 13.47 7 2.44 1.18 10.69 7.57 12.14 6.63 21.16 18.53 8 5.05 6.84 4.40 7.00 9.64 6.63 18.41 20.71 9 1.63 4.40 7.00 9.64 6.63 18.41 20.71 9 1.63 4.40 7.00 9.64 6.63 18.41 20.71 9 1.63 4.40 7.00 9.64 6.63 18.41 20.71 9 1.63 5.88 1.67 12.50 5.76 21.16 8.97 2 6.15 6.29 10.95 6.69 12.50 5.06 21.16 13.62 3 3.86 1.18 11.00 1.56 12.50 5.58 21.16 8.73 4 6.15 5.25 11.00 5.66 12.50 5.17 21.16 </td

•										
	2	6.15	6.29	11.00	6.74	12.50	5.06	21.16	13.07	
	3	3.86	1.18	11.00	1.56	12.50	5.58	21.16	8.73	
	4	6.15	5.25	11.00	5.66	12.50	5.17	21.16	11.49	
	5	2.69	1.18	11.00	1.55	12.50	4.50	21,16	7.86	
	6	5.38	6.84	10.74	7.57	12.50	4.54	21.16	13.58	·
	7	2.44	1.91	10.44	7.57	12.14	6.63	21.16	19.10	l
·	8	4.32	6.84	4,97	7.57	9.64	6.63	17.84	20.71	i
	9	0.90		4.48		7.00		12.74		
i 3 7.88 7.57 ii.59 i7.07	Ø	3,52	2.50	5.80	3.24	9.75	3,55	16.90	3.63	11.14
	i	6.15	6.38	5.48	1.62	12.50	5.76	21.16	8.91	
	2	6.15	6.29	11.00	6.74	12.50	5.86	21,16	13.07	
	3	3.86	1.18	11.00	1,56	12.50	5.58	21.16	8.73	
-	4	6.15	5,25	11.00	5.66	12.50	5.17	21.16	11.49	
	5	2.69	1.20	11.60	1.55	12.50	4.50	21.16	7.86	
·	6	5.36	6.84	10.96	7.57	12.50	4.54	21.16	13.58	
	7	2,42	1.89	10.46	7.57	12.14	6.63	21.16	19.10	
	8	4.32	6.84	4.97	7.57	9.64	6.63	17.84	20.71	
	۶	0.90		4.49		7.00		12.74		
2 3 7.88 7.57 11.59 17.07	9	3.52	2.50	5.80	3.24	9.75	3,55	16.90	3.63	11.14
	1	6.15	6.38	5.48	1.62	12.50	5.76	21.16	8.91	
	2	6.15	6.29	11.00	6.74	12.50	5.06	21.16	13.07	
	3	3.86	1.18	11.00	1.56	12.50	5,58	21.16	8.73]
	4	6.15	5.25	11.00	5.66	12.50	5.17	21.16	11.49	
	5	2.69	1.20	11.00	1.55	12.58	4.50	21.16	7.85	
	6	5.36	6.84	10.96	7,57	12.50	4.54	21.16	13.58	
	7	2.42	1.89	10.46	7.57	12.14	6.63	21.16	19.10	
•	В	4.32	6.84	4.97	7.57	9.64	6.63	17.84	20.71	
	9	0.90		4.40		7.00		12.74		ļ

A.23										•				
		•												
11.14	3.63	16.90	3.55	9.75	3.24	5.80	2.50	3.52	87 8	11.59 17.07	7.57 1	7.88	3	3
	8.91	21.16	5.76	12.50	1.62	5.48	6.38	6.15	i	<u> </u>	4	 	· · · ·	·
] .	13.07	21.16	5.06	12.50	6.74	11.00	6.29	6.15	2					
	8,73	21.16	5.58	12.50	1.56	11.00	1.18	3.86	3				٠	
	11.49	21.16	5.17	12.50	5.66	11.00	5.25	6.15	4					
	7.86	21.16	4.50	12.50	1.55	11.00	1.20	2.69	5					
	13.58	21.16	4.54	12.50	7.57	10.96	6.84	5.36	6					
	19.10	21.16	6.63	12.14	7.57	10.46	1.89	2.42	7					
	20.71	17.84	6.63	9.64	7.57	4.97	6.84	4.32	8					
7		12.74		7.00		4.40		0.90	9					

Resultado da Simulação do Problema Real (Passo/Interação)- Periodo de Planejamento: 10 meses

				-								,		
INT	61	62	61	δ ₂	Р	x1	u j	x ₂	u 2	x1	u_1^2	x ₂	μ <u>2</u>	FC.UT
1	8.49	6.03	11.15	14.92	0	3.52	3.31	5.80	5.13	9.75	6.30	16.90	12.53	10.34
., .	<u> </u>	,			1	5.34	5,62	4.40	6.38	9.75	5.76	16.90	13.67	
					2	6.10	6.84	4.40	4.90	9.75	5.06	16.90	10.33]
					3	3.26	1,18	7.69	3.47	9,75	5.58	16.99	10.64	
				.•	4	5.55	1.19	5.78	1.79	9.75	5.17	16.90	7.62]
					5	6.15	6.59	5.59	3.87	9.75	4.50	16.98	10.18	
		·			6	3.43	1.18	8.62	3.90	9.75	4.18	16.90	9.55	
					7	6.15	6.69	6.13	3.79	9.75	4.13	16.98	9.50	
				,	8	3,25	1.18	9.22	3.42	9.75	3.99	16.90	8.82	
					9	5.49	6.84	7.14	3.17	9.75	3.65	16.90	8.63	
					10	1.82		11.00		9.71		16.34		
i	8.49	6.03	12.53	17.40	9	3,52	3.31	5.80	5.13	9.75	3.55	16.90	5.52	11.39
<u> </u>	1	<u>L</u>	J	<u> </u>	i	5.34	5.62	4.48	6.38	12.50	5,76	21.16	13.67	_
					2	6.10	6.84	4.40	4.00	12.50	5.66	21.16	10.33	_
					3	3.26	1.18	7.69	3.47	12.50	5.58	21.16	10.64	
					4	5.55	1,19	5.78	1.79	12.50	5.17	21.16	7.62	
					5	6.15	6.59	5,59	3.87	12.50	4.50	21.16	10.18	
					6	3,43	1.18	8.62	3.90	12.50	4.18	21.16	9.55	
					7	6.15	6.69	6.13	3.79	12.50	4.13	21.16	9.50	
					8	3.25	1.18	9.22	3.42	12,50	6.47	21.16	11.30	_
					9	5.49	6.84	7.14	3.17	10.02	6.63	21.16	19.47	_
					10	1.82		11.00		7.90		12.74		
í	8,49	7.63	12.53	18.30	8	3.52	3.31	5.80	3.38	9.75	3.55	16.90	3.77	11.89
	<u>. l </u>	_!		.,	1	5.34	5.62	6.15	7.57	12,50	5.76	21.16	14.86	_
					2	6.10	6.84	4.96	1.25	12.50	5.06	21.16	7.58	
	i	1 8.49 i 8.49	i 8.49 6.03	i 8.49 6.03 12.53	1 8.49 6.03 11.15 14.92	1 8.49 6.03 11.15 14.92 0 2 3 3 4 5 6 7 8 9 1 8.49 6.03 12.53 17.40 0 1 2 3 4 5 6 7 6	1 8.49 6.03 11.15 14.92 0 3.52 2 6.10 3 3.26 4 5.55 5 6.15 6 3.43 7 6.15 8 3.25 9 5.34 1 8.49 6.03 12.53 17.40 0 3.52 2 6.10 3 3.26 4 5.53 5 6.15 6 3.43 7 6.15 8 3.25 9 5.34 2 6.10 3 3.26 4 5.55 5 6.15 6 3.43 7 6.15 6 3.43 7 6.15 6 3.43 7 6.15 6 3.43 7 6.15 6 3.43 7 6.15 6 3.43 <td>1 8.49 6.63 11.15 14.92 0 3.52 3.31 2 6.10 6.84 3 3.26 1.18 4 5.55 1.19 5 6.15 6.59 6 3.43 1.18 7 6.15 6.60 10 1.82 10 8.49 6.03 12.53 17.40 0 3.52 3.31 10 5.34 5.62 2 6.10 6.84 3 3.25 1.18 9 5.49 6.84 10 1.82 2 6.10 6.84 3 3.25 1.18 9 5.49 6.84 10 1.82 11 8.49 7.63 12.53 18.36 0 3.52 3.31 1 8.49 7.63 12.53 18.36 0 3.52 3.31 1 8.49 7.63 12.53 18.36 0 3.52 3.31</td> <td> 1</td> <td>1 8.47 6.03 11.15 14.72 0 3.52 3.31 5.60 5.13 1 5.34 5.62 4.40 6.38 2 6.10 6.84 4.40 4.00 3 3.26 1.18 7.69 3.47 4 5.55 1.19 5.78 1.79 5 6.15 6.59 5.57 3.67 6 3.43 1.18 8.62 3.90 7 6.15 6.69 6.13 3.79 8 3.25 1.18 9.22 3.42 9 5.49 6.84 7.14 3.17 10 1.82 11.00 11.00 1 8.49 6.03 12.53 17.40 0 3.52 3.31 5.80 5.13 1 5.34 5.62 4.40 6.38 2 6.10 6.84 4.40 4.00 3.32 1.18 7.67 3.47 4 5.55 1.19 5.78 1.79 5.61 6.59 5.59 3.87</td> <td> 1</td> <td> 1</td> <td> 1</td> <td> 1</td>	1 8.49 6.63 11.15 14.92 0 3.52 3.31 2 6.10 6.84 3 3.26 1.18 4 5.55 1.19 5 6.15 6.59 6 3.43 1.18 7 6.15 6.60 10 1.82 10 8.49 6.03 12.53 17.40 0 3.52 3.31 10 5.34 5.62 2 6.10 6.84 3 3.25 1.18 9 5.49 6.84 10 1.82 2 6.10 6.84 3 3.25 1.18 9 5.49 6.84 10 1.82 11 8.49 7.63 12.53 18.36 0 3.52 3.31 1 8.49 7.63 12.53 18.36 0 3.52 3.31 1 8.49 7.63 12.53 18.36 0 3.52 3.31	1	1 8.47 6.03 11.15 14.72 0 3.52 3.31 5.60 5.13 1 5.34 5.62 4.40 6.38 2 6.10 6.84 4.40 4.00 3 3.26 1.18 7.69 3.47 4 5.55 1.19 5.78 1.79 5 6.15 6.59 5.57 3.67 6 3.43 1.18 8.62 3.90 7 6.15 6.69 6.13 3.79 8 3.25 1.18 9.22 3.42 9 5.49 6.84 7.14 3.17 10 1.82 11.00 11.00 1 8.49 6.03 12.53 17.40 0 3.52 3.31 5.80 5.13 1 5.34 5.62 4.40 6.38 2 6.10 6.84 4.40 4.00 3.32 1.18 7.67 3.47 4 5.55 1.19 5.78 1.79 5.61 6.59 5.59 3.87	1	1	1	1

														
					3	3.26	1,18	11.00	7.56	12.50	5.58	21.16	14.73	
				-	4	5,55	1.19	5.00	1.25	12.50	5.17	21.16	7.08	
				·	5	6.15	6.59	5.35	1.25	12,50	4.50	21.16	7.56	•
					6	3.43	1.18	ii.00	7.41	12.50	4,18	21.16	13.06	
					7	6.15	6.69	5.00	1.25	12.50	4,13	21.16	6.96	
				-	8	3.25	1.18	10.63	7.57	12,50	6.47	21.16	18.07	
	-		-		9	5.49	6.84	4.40	7.03	10.02	6.63	18.54	20.71	
					10	1.82		4.46		7.00		12.74		
1 2 8	.66	7.63	12,53	18.30	9	3.52	2.50	5.80	3,38	9.75	3.55	16.90	3.77	11.93
<u> </u>		1_	<u>_</u>		i	6.15	6.38	5.34	7,57	12.50	5.76	21.16	14.86	
			; !		2	6.15	6.84	4.91	1.25	12.50	5.06	21.16	7.58	
					3	3.31	1.18	10.95	7.56	12.50	5.58	21.16	14.73	
					4	5.60	1.24	4.95	1.25	12.50	5.17	21.16	7.48	
					5	6.15	6.59	5.35	1.25	12.50	4.50	21.16	7.56	
		,	٠.		6	3.43	1.18	11.00	7.41	12.50	4.18	21.16	13.06	
					7	6.15	6.84	5.00	1.25	12,50	4.13	21.16	6.96	
					8	3.19	1.95	10.78	7.57	12.50	6.47	21.16	18.07	
					9	4.57	6.84	5,32	7.03	10.02	6.63	18.54	20.71	
s.					10	0.90		5,32		7.00		12.74		
2 2	8.66	7.63	12.52	18.30	0	3.52	2.59	5.80	3.38	9.75	3.55	16.90	3.77	11.93
<u> </u>		<u> </u>	<u> </u>	<u> </u>	i	6.15	6.38	5.34	7.57	12.50	5.76	21.16	14.86	1
					2	6.15	6.84	4.91	1.25	12.50	5.06	21.16	7.58	_
		-			3	3.31	1.18	10.95	7.56	12.50	5.58	21.16	14.73	_ -}
					4	5.60	1.24	4.95	1,25	12.50	5.17	21.16	7.98	
					5	6.15	4.59	5.35	1.25	12,50	4,50	21.16	7.56	_
					6	3.43	1.18	11.00	7,41	12.50	4.18	21.16	13.06	1
					7	6.15	6.84	5.99	1.25	12.50	4.13	21.16	6.96	_
					8	3.10	1.95	10.78	7.57	12.50	6.47	21.16	18.07	

7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7	7.03	5.32	6.84	4.57	9						
5.32 7.00 12.74		5.32	-	0.90	10	Ī					
2 2.50 5.80 3.24 9.75 3.55 16.90 3.63 12.04	3.24	5.80	2.50	3.52	0	18.41	12.52	8.07	8.66	2	3
5 6.38 5.48 1.62 12.50 5.76 21.16 8.91	1.62	5.48	6.38	6.15	1			<u> </u>	<u> </u>		
5 6.84 11.00 7.29 12.50 5.06 21.16 13.62	7.29	11.00	6.84	6.15	2	Ì					•
1 1.18 11.00 7.57 12.50 5.58 21.16 14.74	7.57	11.00	1.18	3.31	3						
0 1.24 4.99 1.25 12.50 5.17 21.16 7.98	1.25	4.99	1.24	5.60	4						
5 6.59 5.39 1.29 12.50 4.50 21.16 7.60	1.29	5.39	6.59	6.15	5		-				
3 1.18 11.00 1.47 12.50 4.18 21.16 7.12	1.47	11.00	i.18	3.43	6						
5 6.84 10.94 7.57 12.50 4.13 21.16 13.28	7.57	10.94	6.84	6.15	7		ļ !				
0 1.95 10.40 7.57 12.50 6.47 21.16 18.61	7,57	10.40	1.95	3.10	8		:	•			
57 6.84 4.94 7.57 10.02 6.63 18.00 20.71	7.57	4.94	6.84	4.57	9		·				
7.00 12.74		4.40		0.98	10	,					
52 2.50 5.80 3.24 9.75 3.55 16.90 3.63 12.0	3.24	5.80	2.50	3.52	0	18.41	12.52	8.10	8.66	3	1
15 6.38 5.48 1.62 12.50 5.76 21.16 8.91	1.62	5.48	6.38	6.15	í	<u> </u>	:	<u></u>	_}	J	ļ
15 6.84 11.00 7.29 12.50 5.06 21.16 13.62	7.29	11.00	6.84	6.15	2						
31 1.18 11.00 7.57 12.50 5.58 21.16 14.74	7.57	11.00	1.18	3.31	3						
60 1.24 4.99 1.25 12.50 5.17 21.16 7.08	1.25	4.99	1.24	5.60	4						
15 6.59 5.39 1.29 12.50 4.50 21.16 7.60	1.29	5.39	6.59	6.15	5						
43 1.24 11.00 1.47 12.50 4.18 21.16 7.12	1.47	11.00	1.24	3.43	6						
09 6.84 ii.00 7.57 i2.50 4.13 21.16 i3.28	7.57	11.00	6.84	6.09	7						
84 1.89 10.46 7.57 12.50 6.47 21.16 18.61	7.57	10.46	1.89	3.04	8						
57 6.84 4.94 7.57 10.02 6.63 18.00 20.71	7.57	4.94	6.84	4.57	9						
90 4.40 7.00 12.74		4.40		0.90	10						
.52 2.50 5.80 3.24 9.75 3.55 16.90 3.63 12.6	3.24	5.80	2.50	3.52	0	18.42	12.52	8.10	8.66	2 3	1
.15 6.38 5.48 1.62 12.50 5.76 21.16 8.91	1.62	5.48	6.38	6.15	í	_1	<u> </u>		<u>, </u>	_1	!
.15 6.84 11.00 7.29 12.50 5.06 21.16 13.62	7.29	11.00	6.84	6.15	2						

14.74	21.16	5.58	12.50	1		+	 		1					
			12.30	7.57	11.00	1,18	3.31	3						
7.08	21.16	5.17	12.50	1.25	4.99	1.24	5.60	4						
7.60	21.16	4.50	12.50	1.29	5.39	6.59	6.15	5				-		
7.12	21.16	4.18	12.50	1.47	11.00	1.24	3.43	6	•					
13.28	21.16	4.13	12.50	7.57	11.00	6.84	6.09	7						
18.61	21.16	6.63	12.50	7.57	10.46	1.89	3.04	8	ļ					
20.71	18.16	6.47	9.86	7.57	4.94	6.84	4.57	9	•					
	12.74		7.00	-	4.40		0.90	10						
3.63	16.90	3.55	9.75	3.24	5.80	2.50	3.52	0	18.42	12.52	8.10	8.66	3	3
8.91	21.16	5.76	12.50	1.62	5.49	6.38	6.15	1	l	l	<u> </u>	<u> </u>	<u>.</u>	
13.62	21.16	5.06	12.50	7.29	11.00	6.84	6.15	2						
14.74	21.16	5.58	12.50	7.57	11.00	1.18	3.31	3						
7.08	21.16	5.17	12.50	1.25	4.99	1.24	5.60	4						
7.60	21.16	4.50	12.50	1.29	5.39	6.59	6.15	5						
7.12	21.16	4.18	12.50	1.47	11.00	1.24	3.43	6						
13.28	21.16	4.13	12.50	7.57	11.00	6.84	6.09	7						
18.61	21.16	6.63	12.50	7.57	10.46	1.89	3.04	8						
20.71	18.16	6.47	9.86	7.57	4.94	6.84	4.57	9						
	12.74		7.00		4.40		0.90	10						
28 61 71 63 91 62 74 68 69 12 28 61	13. 18. 20. 3. 8. 13. 14. 7. 7. 13. 18.	21.16 13. 21.16 18. 18.16 20. 12.74 16.90 3. 21.16 13. 21.16 14. 21.16 7. 21.16 7. 21.16 13. 21.16 13. 21.16 13. 21.16 18. 18.16 20.	4.13 21.16 13. 6.63 21.16 18. 6.47 18.16 20. 12.74	12.50 4.13 21.16 13. 12.59 6.63 21.16 18. 9.86 6.47 18.16 20. 7.00 12.74	7.57 12.50 4.13 21.16 13. 7.57 12.50 6.63 21.16 18. 7.57 9.86 6.47 18.16 20. 7.00 12.74 12.74 3.24 9.75 3.55 16.90 3. 1.62 12.50 5.76 21.16 8. 7.29 12.50 5.06 21.16 13. 7.57 12.50 5.58 21.16 14. 1.25 12.50 5.17 21.16 7. 1.29 12.50 4.50 21.16 7. 1.47 12.50 4.18 21.16 7. 7.57 12.50 4.13 21.16 13. 7.57 12.50 6.63 21.16 18. 7.57 9.86 6.47 18.16 20.	11.00 7.57 12.50 4.13 21.16 13. 10.46 7.57 12.50 6.63 21.16 18. 4.94 7.57 9.86 6.47 18.16 20. 4.40 7.00 12.74 12.74 12.74 5.80 3.24 9.75 3.55 16.90 3. 5.48 1.62 12.50 5.76 21.16 8. 11.00 7.29 12.50 5.06 21.16 13. 11.00 7.57 12.50 5.58 21.16 14. 4.99 1.25 12.50 5.17 21.16 7. 5.39 1.29 12.50 4.50 21.16 7. 11.00 1.47 12.50 4.18 21.16 7. 11.00 7.57 12.50 4.13 21.16 13. 10.46 7.57 12.50 6.63 21.16 18. 4.94 7.57 9.86 6.47 18.16 20.	6.84 11.00 7.57 12.50 4.13 21.16 13. 1.89 10.46 7.57 12.50 6.63 21.16 18. 6.84 4.94 7.57 9.86 6.47 18.16 20. 2.50 5.80 3.24 9.75 3.55 16.90 3. 6.38 5.48 1.62 12.50 5.76 21.16 8. 6.84 11.00 7.29 12.50 5.06 21.16 13. 1.18 11.00 7.57 12.50 5.58 21.16 14. 1.24 4.99 1.25 12.50 5.17 21.16 7. 6.59 5.39 1.29 12.50 4.50 21.16 7. 6.84 11.00 7.57 12.50 4.18 21.16 7. 6.84 11.00 7.57 12.50 4.13 21.16 13. 1.89 10.46 7.57 12.50 4.63 21.16 18. 6.84 4.94 7.57 9.86 6.47	3.43 1.24 11.00 1.47 12.50 4.18 21.16 7. 6.09 6.84 11.00 7.57 12.50 4.13 21.16 13. 3.04 1.89 10.46 7.57 12.50 6.63 21.16 18. 4.57 6.84 4.94 7.57 9.86 6.47 18.16 20. 0.90 4.40 7.00 12.74 12.74 3.52 2.50 5.80 3.24 9.75 3.55 16.90 3. 6.15 6.38 5.49 1.62 12.50 5.76 21.16 8. 6.15 6.84 11.00 7.29 12.50 5.06 21.16 13. 3.31 1.18 11.00 7.57 12.50 5.58 21.16 14. 5.60 1.24 4.99 1.25 12.50 5.17 21.16 7. 6.15 6.59 5.39 1.29 12.50 4.50 21.16 7. 6.09 6.84 11.00 7.57 12.50	6 3.43 1.24 11.00 1.47 12.50 4.18 21.16 7.7 7 6.09 6.84 11.00 7.57 12.50 4.13 21.16 13. 8 3.04 1.89 10.46 7.57 12.50 6.63 21.16 18. 9 4.57 6.84 4.94 7.57 9.86 6.47 18.16 20. 10 0.90 4.40 7.57 9.86 6.47 18.16 20. 1 0.52 2.50 5.80 3.24 9.75 3.55 16.90 3. 1 6.15 6.38 5.48 1.62 12.50 5.76 21.16 8. 2 6.15 6.84 11.00 7.29 12.50 5.06 21.16 13. 3 3.31 1.18 11.00 7.57 12.50 5.58 21.16 14. 4 5.60 1.24 4.99 1.25 12.50 5.17 21.16 7. 5 6.15 6.59 5.39 <td>6 3.43 1.24 11.00 1.47 12.50 4.18 21.16 7.7 7 6.09 6.84 11.00 7.57 12.50 4.13 21.16 13. 8 3.04 1.89 10.46 7.57 12.50 6.63 21.16 18. 9 4.57 6.84 4.94 7.57 9.86 6.47 18.16 20. 10 0.90 4.40 7.00 12.74 12.74 18.42 0 3.52 2.50 5.80 3.24 9.75 3.55 16.90 3. 1 6.15 6.38 5.48 1.62 12.50 5.76 21.16 8. 2 6.15 6.84 11.00 7.29 12.50 5.06 21.16 13. 3 3.31 1.18 11.00 7.57 12.50 5.58 21.16 14. 4 5.60 1.24 4.99 1.25 12.50 5.17 21.16 7. 5 6.15 6.59 5.39 1.29<</td> <td>6 3.43 1.24 11.00 1.47 12.50 4.18 21.16 7.7 7 6.09 6.84 11.00 7.57 12.50 4.13 21.16 13. 8 3.04 1.89 10.46 7.57 12.50 6.63 21.16 18. 9 4.57 6.84 4.94 7.57 9.86 6.47 18.16 20. 10 0.90 4.40 7.57 9.86 6.47 18.16 20. 12.52 18.42 0 3.52 2.50 5.80 3.24 9.75 3.55 16.90 3. 1 6.15 6.38 5.49 1.62 12.50 5.76 21.16 8. 2 6.15 6.84 11.00 7.29 12.50 5.06 21.16 13. 3 3.31 1.18 11.00 7.57 12.50 5.58 21.16 14. 4 5.60 1.24 4.99 1.25 12.50 5.17 21.16 7. 5 6.15<!--</td--><td>6 3.43 1.24 11.00 1.47 12.50 4.18 21.16 7.7 7 6.09 6.84 11.00 7.57 12.50 4.13 21.16 13. 8 3.04 1.89 10.46 7.57 12.50 6.63 21.16 18. 9 4.57 6.84 4.94 7.57 9.86 6.47 18.16 20. 10 0.90 4.40 7.57 9.86 6.47 18.16 20. 11 6.15 6.38 5.80 3.24 9.75 3.55 16.90 3. 1 6.15 6.38 5.49 1.62 12.50 5.76 21.16 8. 2 6.15 6.84 11.00 7.29 12.50 5.06 21.16 13. 3 3.31 1.18 11.00 7.57 12.50 5.58 21.16 14. 4 5.60 1.24 4.99 1.25 12.50 5.17 21.16 7. 5 6.15 6.59 5.39<td>6 3.43 1.24 11.00 1.47 12.50 4.18 21.16 7.7 7 6.09 6.84 11.00 7.57 12.50 4.13 21.16 13. 8 3.04 1.89 10.46 7.57 12.50 6.63 21.16 18. 9 4.57 6.84 4.94 7.57 9.86 6.47 18.16 20. 10 0.90 4.40 7.00 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74</td><td>3.43 1.24 11.00 1.47 12.50 4.18 21.16 7. 7 6.09 6.84 11.00 7.57 12.50 4.13 21.16 13. 8 3.04 1.89 10.46 7.57 12.50 6.63 21.16 18. 9 4.57 6.84 4.94 7.57 9.86 6.47 18.16 20. 10 0.90 4.40 7.09 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.50</td></td></td>	6 3.43 1.24 11.00 1.47 12.50 4.18 21.16 7.7 7 6.09 6.84 11.00 7.57 12.50 4.13 21.16 13. 8 3.04 1.89 10.46 7.57 12.50 6.63 21.16 18. 9 4.57 6.84 4.94 7.57 9.86 6.47 18.16 20. 10 0.90 4.40 7.00 12.74 12.74 18.42 0 3.52 2.50 5.80 3.24 9.75 3.55 16.90 3. 1 6.15 6.38 5.48 1.62 12.50 5.76 21.16 8. 2 6.15 6.84 11.00 7.29 12.50 5.06 21.16 13. 3 3.31 1.18 11.00 7.57 12.50 5.58 21.16 14. 4 5.60 1.24 4.99 1.25 12.50 5.17 21.16 7. 5 6.15 6.59 5.39 1.29<	6 3.43 1.24 11.00 1.47 12.50 4.18 21.16 7.7 7 6.09 6.84 11.00 7.57 12.50 4.13 21.16 13. 8 3.04 1.89 10.46 7.57 12.50 6.63 21.16 18. 9 4.57 6.84 4.94 7.57 9.86 6.47 18.16 20. 10 0.90 4.40 7.57 9.86 6.47 18.16 20. 12.52 18.42 0 3.52 2.50 5.80 3.24 9.75 3.55 16.90 3. 1 6.15 6.38 5.49 1.62 12.50 5.76 21.16 8. 2 6.15 6.84 11.00 7.29 12.50 5.06 21.16 13. 3 3.31 1.18 11.00 7.57 12.50 5.58 21.16 14. 4 5.60 1.24 4.99 1.25 12.50 5.17 21.16 7. 5 6.15 </td <td>6 3.43 1.24 11.00 1.47 12.50 4.18 21.16 7.7 7 6.09 6.84 11.00 7.57 12.50 4.13 21.16 13. 8 3.04 1.89 10.46 7.57 12.50 6.63 21.16 18. 9 4.57 6.84 4.94 7.57 9.86 6.47 18.16 20. 10 0.90 4.40 7.57 9.86 6.47 18.16 20. 11 6.15 6.38 5.80 3.24 9.75 3.55 16.90 3. 1 6.15 6.38 5.49 1.62 12.50 5.76 21.16 8. 2 6.15 6.84 11.00 7.29 12.50 5.06 21.16 13. 3 3.31 1.18 11.00 7.57 12.50 5.58 21.16 14. 4 5.60 1.24 4.99 1.25 12.50 5.17 21.16 7. 5 6.15 6.59 5.39<td>6 3.43 1.24 11.00 1.47 12.50 4.18 21.16 7.7 7 6.09 6.84 11.00 7.57 12.50 4.13 21.16 13. 8 3.04 1.89 10.46 7.57 12.50 6.63 21.16 18. 9 4.57 6.84 4.94 7.57 9.86 6.47 18.16 20. 10 0.90 4.40 7.00 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74</td><td>3.43 1.24 11.00 1.47 12.50 4.18 21.16 7. 7 6.09 6.84 11.00 7.57 12.50 4.13 21.16 13. 8 3.04 1.89 10.46 7.57 12.50 6.63 21.16 18. 9 4.57 6.84 4.94 7.57 9.86 6.47 18.16 20. 10 0.90 4.40 7.09 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.50</td></td>	6 3.43 1.24 11.00 1.47 12.50 4.18 21.16 7.7 7 6.09 6.84 11.00 7.57 12.50 4.13 21.16 13. 8 3.04 1.89 10.46 7.57 12.50 6.63 21.16 18. 9 4.57 6.84 4.94 7.57 9.86 6.47 18.16 20. 10 0.90 4.40 7.57 9.86 6.47 18.16 20. 11 6.15 6.38 5.80 3.24 9.75 3.55 16.90 3. 1 6.15 6.38 5.49 1.62 12.50 5.76 21.16 8. 2 6.15 6.84 11.00 7.29 12.50 5.06 21.16 13. 3 3.31 1.18 11.00 7.57 12.50 5.58 21.16 14. 4 5.60 1.24 4.99 1.25 12.50 5.17 21.16 7. 5 6.15 6.59 5.39 <td>6 3.43 1.24 11.00 1.47 12.50 4.18 21.16 7.7 7 6.09 6.84 11.00 7.57 12.50 4.13 21.16 13. 8 3.04 1.89 10.46 7.57 12.50 6.63 21.16 18. 9 4.57 6.84 4.94 7.57 9.86 6.47 18.16 20. 10 0.90 4.40 7.00 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74</td> <td>3.43 1.24 11.00 1.47 12.50 4.18 21.16 7. 7 6.09 6.84 11.00 7.57 12.50 4.13 21.16 13. 8 3.04 1.89 10.46 7.57 12.50 6.63 21.16 18. 9 4.57 6.84 4.94 7.57 9.86 6.47 18.16 20. 10 0.90 4.40 7.09 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.50</td>	6 3.43 1.24 11.00 1.47 12.50 4.18 21.16 7.7 7 6.09 6.84 11.00 7.57 12.50 4.13 21.16 13. 8 3.04 1.89 10.46 7.57 12.50 6.63 21.16 18. 9 4.57 6.84 4.94 7.57 9.86 6.47 18.16 20. 10 0.90 4.40 7.00 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74	3.43 1.24 11.00 1.47 12.50 4.18 21.16 7. 7 6.09 6.84 11.00 7.57 12.50 4.13 21.16 13. 8 3.04 1.89 10.46 7.57 12.50 6.63 21.16 18. 9 4.57 6.84 4.94 7.57 9.86 6.47 18.16 20. 10 0.90 4.40 7.09 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.74 12.50

Resultado da Simulação do Problema Real (Passo/Interação)- Periodo de Planejamento: 11 meses

		,	, , , , , , , , , , , , , , , , , , , 	1 1	· a · · ·			1 1		7 1	1 1	2	2	2	u 2	FC.UT
	PB	INT	61	62	61	62	P	x ₁	uή	x ₂	u_2^1	x ₁ ²	u 2 1	x2		
	1	1	8.92	6.34	12.15	16.22	0	3.52	3.31	5.80	5.13	9.75	6.30	16.90	12.53	11.16
							i	5.34	5.62	4.40	6.38	9.75	5.76	16.90	13.67	_
							2	6.10	6.24	4.40	4.00	9.75	5.06	16.90	10.33	_
							3	3.84	1.18	7.89	3.47	9.75	5.58	16.90	10.64	
							4	6.15	4.48	5.18	1.79	9.75	5.17	16.90	7.62	_
							5	3.46	1.18	8.28	3.87	9,75	4.50	16.90	10.18	
							6	6.15	6.51	5.90	3.98	9.75	4.18	16.90	9.55	_
							7	3.54	1.18	8.74	3.79	9.75	4.13	16.90	9,50	
							8	6.15	5.41	6.32	3.42	9.75	3.99	16.90	8.82	
							9	4.16	1.18	8.47	3.17	9.75	3.65	16.90	8.63	
							10	6.15	6.09	6.67	1.97	9.71	4.34	16.34	9.01	
						•	11	2.03		11.00		9.71		14.10		
	2	i	8.92	6.34	13.57	18.50	0	3.52	3.31	5.80	5.13	9.75	3.55	16.98	5.52	12.18
- 1	!	1	1	<u></u>	J	<u></u>	1	5.34	5.62	4.40	6.38	12.50	5.76	21.16	13.67	
							2	6.10	6.24	4.48	4.00	12.50	5.06	21.16	10.33	
							3	3.86	1.18	7.09	3.47	12.50	5,58	21.16	10.64	
				•			4	6.15	4.48	5.18	1.79	12.50	5.17	21.16	7.62	
							5	3,46	1.18	6.28	3.87	12.50	4.50	21.16	10.18	
							6	6.15	6.51	5.90	3.90	12.50	4.18	21.16	9.55	
							7	3.54	1.18	8.74	3.79	12.50	4.13	21,16	9.50	
							8	6.15	5.41	6.32	3.42	12.50	4.18	21.16	9.01	
					•		9	4.16	1.18	8.47	3.17	12.31	6.63	21.16	11.05	
							10	6.15	6.07	6.67	1.97	9.29	6.63	21.16	17,48	
							11	2.03		11.00		7.00		12.74		
		3 i	8.92	8.45	13.57	19.51	0	3,52	3.31	5.80	3.24	9.75	3.55	16.90	3.63	12.80
	i_				_ 											

															•
			•			1	5.34	5,62	6.29	1.67	12.50	5.76	21.16	8.96	
					ļ	2	6.10	6.24	11.00	6.69	12.50	5.06	21.16	13.02	
					ľ	3	3.86	1.18	11.00	1,56	12.50	5.58	21.16	8.73	
					ļ	4	6.15	4.48	11.00	4.89	12.50	5.17	21.16	10.72	
					ļ	5	3.46	1.18	11.00	1.49	12.50	4.50	21.16	7.80	
						6	6.15	6.51	11.00	6.74	12.50	4.18	21.16	12.39	
					Ì	7	3.54	1.18	11.00	1,37	12.50	4.13	21.16	7.08	
					ļ	8	6.15	5.41	11.00	5.97	12.50	4.18	21.16	11.56	
					Ì	9	4.16	91.1	10.60	7.57	12.31	6.63	21.16	16.55	
						10	6.15	6.09	4.40	6.30	9.29	6.63	20.06	20.71	i I
						ii	2.03		4.40		7.00		12.74		ļ ₁
í	2	9.21	8.48	13.57	19.51	0	3.52	2.50	5.80	3.24	9.75	3.55	16.90	3.63	12.87
L	<u> </u>		<u> </u>	L	1	i	6.15	6.38	5.48	1.67	12.50	5.76	21.16	8.96	
						2	6.15	6.29	10.95	6.69	12.50	5.06	21.16	13.02	
					•	3	3.86	1.18	11.00	1.56	12.50	5.58	21.16	8.73	
						4	6.15	4.48	11.00	4.89	12.50	5.17	21.16	10.72	
						5	3.46	1.18	11.00	1.49	12.50	4.50	21.16	7.80	
						6	6.15	6.51	11.60	6.74	12.50	4.18	21.16	12.39	
						7	3.54	1.18	11.00	1.37	12.50	4.13	21.16	7.08	<u> </u>
						E	6.15	5.81	11.00	5.97	12.50	4.18	21.16	11.56	
					•	9	3.76	1.18	11.00	7.57	12.31	6.63	21.16	16.55	4
						10	5.75	6.82	4.80	6.30	9.29	6.63	20.06	20.71	_
						ii	0.96		5.53	<u> </u>	7.00		12.74	<u> </u>	
2	2	9.21	8.48	13.56	19.51	0	3,52	2.50	5.80	3.24	9.75	3,55	16.90	3.63	12.87
				~~~ ,		i	6.15	6.38	5.48	1.67	12.50	5.76	21.16	8.96	
						2	6.15	6.29	10.95	6.69	12.50	5.06	21.16	13.62	
						3	3.86	1.18	ii.00	1.56	12.50	5.58	21.16	8.73	-
						4	6.15	4.48	11.00	4.89	12.50	5.17	21.16	10.72	ا

						[5	3.46	i.i8	11.00	1,49	12,50	4.50	21.16	7.80	
							6	6.15	6.51	11.00	6.74	12.50	4.18	21.16	12.39	
		,					7	3.54	1.18	11.00	1.37	12.50	4.13	21.16	7.08	
							8	6.15	5,81	11.00	5.97	12.50	4.18	21.16	11.56	
							9	3.76	1.18	11.00	7.57	12.31	6.63	21.16	16.55	
					. •		í₿	5.75	6.82	4.80	6.30	9.29	6.63	20.06	20.71	
							ii	0.90		5.53		7.00		12.74		
Γ	3	2	9.21	8.62	13.56	19.64	ě	3.52	2.50	5.80	3.24	9.75	3,55	16.90	3.63	12.92
_		<u></u>	1	<u> </u>	<u> </u>		i	6.15	6.38	5.48	1.62	12.50	5.76	21.16	8.91	
		-					2	6.15	6.29	11.00	6.74	12.50	5.06	21.16	13.07	
		•		•		i	3	3.86	1.18	11.00	1.56	12.50	5.58	21.16	8.73	
							4	6.15	4.48	11.00	4.89	12.50	5.17	21.16	10.72	
							5	3.46	1.18	11.00	1.49	12.50	4.50	21.16	7.80	
							6	6.15	6.51	11.00	6.74	12.50	4.18	21.16	12.39	
							7	3.54	1.18	11.00	1.37	i2.50	4.13	21.16	7.08	
1							8	6.15	5.81	11.00	6.37	12.50	4.18	21.16	11.96	
							9	3.76	1.18	10.60	7,57	12.31	6.63	21.16	17.28	
							10	5.75	6.82	4.48	7.03	9.29	6.63	19.33	20.71	
			÷ .	•			11	0.90	<u> </u>	4.40		7.00		12.74		
	í	3	9.18	8.66	13.56	19.64	0	3.52	2.50	5.80	3.24	9.75	3.55	16.90	3.63	12.92
_		- -	1.7.7		1		í	6.15	6.38	5,48	1.62	12.50	5.76	21.16	8.91	
							2	6.15	6.29	11.00	6.74	12.50	5.06	21.16	13.07	
							3	3.86	1.18	11.00	1.56	12.50	5.58	21.16	8.73	
							4	6.15	4.48	11.00	4.89	12.50	5.17	21.16	10.72	
							5	3.46	1.18	11.00	1.49	12.50	4.50	21.16	7.80	
							6	6.15	6.51	11.00	6.74	12.50	4.18	21.16	12.39	
							7	3.54	1.18	11.00	1.37	12.50	4.13	21.16	7.08]

													_		
					[8	6.15	6.21	11.00	6.37	12.50	4.18	21.16	11.96	
						9	3.36	1.18	11.00	7.57	12.31	6.63	21.16	17.28	
						10	5.35	6.42	4.80	7.03	9.29	6.63	19.33	20.71	
					ļ	11	0.90		4.40		7.00		12.74		
2	3	9,18	8.66	13.56	19.64	0	3.52	2.50	5.80	3.24	9.75	3.55	16.90	3.63	12.92
<u> </u>				<u></u> .	-	1	6.15	6.38	5.48	1.62	12.50	5.76	21.16	8.91	
						2	6.15	6.29	11.00	6.74	12.50	5.06	21.16	13.07	-
						3	3.86	1.18	11.00	1.56	12.50	5.58	21.16	8.73	
				:		4	6.15	4.48	11.00	4.89	12.50	5.17	21.16	10.72	
						5	3.46	1.18	11.00	1.49	12.50	4.50	21.16	7.80	
						6	6.15	6.5i	11.00	6.74	12.50	4.18	21.16	12.39	
						7	3.54	1.18	11.00	1.37	12.50	4.13	21.16	7.08	
						8	6,15	6.21	11.00	6.37	12.50	4.18	21.16	11.96	
						9	3.36	1.18	11.60	7.57	12.31	6.63	21.16	17.28	
						ie	5.35	6.42	4,80	7.03	9,29	6.63	19.33	20.71	
		•				íí	0.90		4.46		7.00		12.74		
3	3	9,18	8.64	13.56	19.67	8	3.52	2.50	5.80	3.24	9.75	3.55	16.90	3.63	12.92
<u> </u>		<u> </u>	1	<u></u>	.d	1	6.15	6.38	5,48	1.62	12.50	5,76	21.16	8.91	
						2	6.15	6.29	ii.00	6.74	12.50	5.06	21.16	13.07	
						3	3.86	1.18	11.00	1.56	12.50	5.58	21.16	8.73	_
					•	4	6.15	4.48	11.00	4.69	12.50	5.17	21.16	10.72	
						5	3.46	1.18	11.00	1.49	12.50	4.50	21.16	7.89	
						6	6.15	6.51	11.00	6.74	12.50	4.18	21.16	12.39	
						7	3.54	1.18	11.00	1.37	12.50	4.13	21.16	7.08	j
		•				8	6,15	6.21	11.00	6.77	12.50	4.18	21.16	12.36	
						9	3136	1.18	10.60	7.57	12.31	6.63	21.16	16.88	_
						16	5.35	6.42	4,40	6.63	9.29	6.63	19.73	20.71	4
						11	0.90		4.40		7.00		12.74		1

Resultado da Simulação do Problema Real (Passo/Interação)- Periodo de Planejamento: 12 meses

PB	INT	61	62	61	62	Р	x 1	u J	x ₂	u 1 2	x 2	u ·2	x2/2	μ <mark>2</mark>	FC.UT
i	i	9.68	7.25	13.51	17.70	0	3.52	3,31	5,80	5.13	9.75	6.30	16.90	12.53	12.33
			-			í	5.34	5.62	4.48	6.36	9.75	5.76	16.90	13.67	
						2	6.10	6.84	4.40	4.00	9.75	5.06	16.90	10.33]
					:	3	3.26	1.18	7.69	3.47	9 . 75	5.58	16.90	10.64	
						4	5.55	1.19	5.7B	1.79	9.75	5.17	16.98	7.62	} .
						5	6.15	6.59	5.59	3.87	9 . 75	4.50	16.90	10.18	
				j i		6	3.43	1.18	8.62	3.90	9.75	4.18	16.90	9.55	
				i		7	6.15	6.03	6.13	3.79	9.75	4.13	16.90	9.50	
				,		В	3.91	1.18	8.56	3,42	9.75	3.99	16.90	8.82	
				•		9	6.15	5.35	6.48	3.17	9.75	3,65	16.90	8.63	
						10	3.97	1.18	8.85	1.97	9.71	4.34	16.34	9.01	
					:	ii	4.76	6.84	8.27	5.43	9.71	5.93	14.10	10.77	
	_				•	12	0.90		16.00		9.71		15.00		
2	1	9.68	7.25	14.87	20.38	0	3.52	3.31	5.80	5.13	9.75	3.55	16.90	5.52	13.41
				•		í	5.34	5.62	4.40	6.38	12.50	5.76	21.16	13.67	
						2	6.10	6.84	4.40	4.00	12.50	5.06	21.16	10.33	
		•			·	3	3,26	i.18	7.69	3.47	12.50	5.58	21,16	10.64	
						4	5.55	1.19	5 . 78	1.79	12.50	5.17	21.16	7.62	
						5	6.15	6.59	5.59	3,87	12.50	4.50	21.16	10.18	_
						6	3.43	1.18	8.62	3.90	12.50	4.18	21.16	9.55	
			,			7	6.15	6.03	6.13	3,79	12.50	4.13	21,16	9.50	4
					•	8	3.91	i.18	8.56	3.42	12.50	3.99	21.16	8.82	-
						9	6.15	5,35	6.48	3.17	12.50	6.12	21.16	10.54	
						10	3.97	1.18	8.95	1.97	9.99	6.63	21.16	9.14	
						ii	4.76	6.84	8.27	5.43	7.70	6.63	21.08	20.71	

						_		·			·			· 1		
_							12	0.90		10.00		7.00		12.74		
	3	1	9.68	8.88	14.87	21.19	0	3.52	3.31	5.80	3.24	9.75	3.55	16.99	3.63	13.88
•		•					i	5.34	5.62	6.29	7.57	12.50	5.76	21.16	14.86	
							2	6.10	6.84	5.10	1.39	12.50	5.06	21.16	7.72	
							3	3.26	i.18	11.00	7.56	12.50	5.58	21.16	14.73	
							4	5.55	1,19	5.00	1.25	12.50	5.17	21.16	7.08	
							5	6.15	6.59	5.35	1.25	12.50	4.50	21.16	7.56	
							6	3.43	1.18	11.00	6.38	12.50	4.18	21.16	12.03	
					i		7	6.15	6.03	6.03	1.25	12.50	4.13	21.16	6.96	
							8	3.91	1.18	11.00	6.05	12.50	3.99	21.16	11.45	
					!		9	6.15	5.35	6.29	1.25	12.50	6.12	21.16	8.62	
					:		i0	3.97	1.18	10.58	7.57	9.99	6.63	21.16	16.47	
							ii	4.76	6.84	4.48	7.16	7.70	6.63	19.35	20,71	
							12	0.90		4.46		7.00		12.74		,
ſ	1	2	9.73	8.79	14.87	21.19	0	3.52	2.50	5.80	3.24	9.75	3.55	16.90	3.63	13.89
1			<u> </u>	<u> </u>		<u> </u>	1	6.15	6.38	5.48	7.57	12.50	5.76	21.16	14.86	
							2	6.15	6.84	5.05	1.39	12.50	5.06	21.16	7.72	
			-				3	3.31	1.18	10.95	7.56	12.50	5.58	21.16	14.73	
			. •			ļ	4	5.69	1.24	4.95	1.25	12.50	5.17	21.16	7.08	_
							. 5	6.15	6.59	5.35	1.25	12.50	4.50	21.16	7.56	
						. •	6	3.43	1.1B	11.00	6.38	12.50	4.18	21.16	12.03	
							7	6.15	6.63	6.03	1.25	12.50	4.13	21.16	6.96	,
							8	3.91	1.18	11.00	6.05	12.50	3.99	21.16	11.45	
			:				9	6.15	5.77	6.29	1.25	12.50	6.12	21.16	8.62	_
							10	3,55	1.18	11.00	7.57	9.99	6.63	21.16	16.47	
							ii	4.34	6.42	4.82	7.16	7.70	6.63	19,35	20.71	
							12	0.90		4,40		7.00		12.74		
	2	2	9.73	8.79	14.87	21.19	0	3,52	2.50	5.86	3.24	9.75	3.55	16.90	3.63	13.89

							í	6.15	6.38	5.48	7.57	12.50	5.76	21.16	14.86	
							2	6.15	6.84	5.0 5	1.39	12.50	5.96	21.16	7.72	
							3	3.31	1.18	10.95	7.56	12.50	5.58	21.16	14.73	
							4	5.60	1.24	4.95	1.25	12.50	5.17	21.16	7.08	
							5	6.15	6.59	5.35	1.25	12.50	4.50	21.16	7.56	
							6	3.43	1.18	11.00	6.38	12.50	4.18	21.16	12.03	
							7	6.15	6.03	6.03	1.25	12.50	4.13	21.16	6.96	
						•	В	3.91	1.18	11.00	6.05	12.50	3.99	21.16	11.45	
							9	6.15	5.77	6.29	1.25	12.50	6.12	21.16	8.62	
							10	3.55	1.18	11.00	7.57	9.99	6.63	21.16	16.47	
							ii	4,34	6.42	4.82	7.16	7.79	6.63	19.35	20.71	
							12	0.90		4,40		7.00		12.74		
-	3	2	9.73	9.06	14.87	21.22	0	3.52	2.50	5.80	3.24	9.75	3.55	16.90	3.63	13.95
	<u></u>		\$	l			i	6.15	6.38	5.48	1.62	12.50	5.76	21.16	8.91	
						•	2	6.15	6.84	11.00	7.29	12.50	5.06	21.16	13.62	
							3	3.31	1.18	11.00	7.57	12.50	5.58	21.16	14.74	
						-	4	5.60	1.24	4.99	1.25	12.50	5.17	21.16	7.08	
							5	6.15	6.59	5.39	1.29	12.50	4.50	21.16	7.60	
		2					6	3.43	1.18	11.00	6.38	12.50	4.18	21.16	12.03	
							7	6.15	6.03	6.03	1.25	12.50	4.13	21.16	6.96	
							8	3.91	1.18	11.00	6.47	12.50	3.99	21.16	11.87	1
							9	6.15	5.77	5.87	1.25	12.50	6.12	21.16	8.62	
							10	3.55	1.18	10.58	7.57	9.99	6.63	21.16	16.05	
							ii	4.34	6.42	4.40	6.74	7.78	6.63	19.77	20.71]
							12	0.90		4.40		7.00		12.74		
	i	3	9.74	9.06	14.87	21.22	0	3.52	2.50	5.80	3.24	9.75	3.55	16.90	3.63	13.95
			J	•		 	1	6.15	6.38	5.48	1.62	12.50	5.76	21.16	8.91	

				;	2	6.15	6,84	11.00	7,29	12.50	5.06	21.16	13.62	
					3	3.31	1.18	11.00	7.57	12.50	5.58	21.16	14.74	
					4	5.60	1.24	4.99	1.25	12.50	5.17	21.16	7.08	
				,	5	6.15	6.59	5.39	1.29	12.50	4.50	21.16	7.60	
					6	3,43	1.18	11.00	6.38	12.50	4.18	21.16	12.03	:
			•	-	7	6.15	6.03	6.03	1.25	12.50	4.13	21.16	6.96	
					8	3.91	i.18	11.00	6.47	12,50	3.99	21.16	11.87	
					9	6.15	5.77	5.87	i.25	12.50	6.12	21.16	8.62	
-					10	3.55	1.18	10.58	7.57	9.99	6.63	21.16	16.05	
					ii	4,34	6.42	4.40	6.74	7.70	6.63	19.77	20.71	
					12	0.90		4.40		7.00		12.74		
2 3	9.74	9.06	14.87	21.22	0	3.52	2.50	5.80	3.24	9.75	3.55	16,90	3.63	13.95
L			<u> </u>	<u> </u>	i	6.15	6.38	5.48	1.62	12.50	5.76	21.16	8.71	
†p					2	6.15	6.84	11.00	7.29	12.50	5.06	21.16	13.62]
					3	3,31	1.18	11.00	7.57	12.50	5.58	21.16	14.74	
					4	5.60	1,24	4.99	1.25	12.50	5.17	21.16	7.08	
					5	6.15	6.59	5.39	1.29	12.50	4.50	21.16	7.60	
					6	3.43	1.18	11.00	6.38	12.50	4.18	21.16	12.03]
					7	6.15	6.03	6.03	1.25	12.50	4,13	21.16	6.96	
-					8	3.91	1.18	11.00	6.47	12.50	3.99	21,16	11.87	
				- 1	9	6.15	5.77	5.87	1.25	12.50	6,12	21.16	8.62	}
				•	10	3.55	1.18	10.58	7.57	9.99	6.63	21.16	16.05	
					ii	4.34	6.42	4.40	6.74	7.70	6.63	19.77	20.71	.]
					12,	0.90		4.40		7.00		12.74		
3 3	9.74	9.06	14.87	21.22	0	3,52	2.50	5.80	3,24	9.75	3.55	16.90	3,63	13.95
					1	6.15	6.38	5.48	1.62	12.50	5.76	21.16	8.91	
					2	6.15	6.84	11.00	7.29	12.50	5.06	21.16	13.62	
					3	3.31	1.18	11.00	7.57	12.50	5.58	21.16	14.74	

4	5.60	1.24	4.99	i.25	12.50	5.17	21.16	7.08
5	6.15	6.59	5.39	1.29	12.50	4.50	21,16	7.60
6	3,43	1.18	11.00	6.38	12.50	4.18	21.16	12.03
7	6.15	6.03	6.03	1.25	12.50	4.13	21.16	6.96
8	3.91	1.18	11.00	6.47	12.50	3.99	21.16	11.87
9	6.15	5.77	5.87	1.25	12.50	6.12	21.16	8.62
19	3.55	1,18	10.58	7.57	9.99	6.63	21.16	16.05
ii	4.34	6.42	4.40	6.74	7.78	6.63	19.77	20.71
12	0.90	 	4.48	1	7.00		12,74	

APENDICE D

APENDICE D

Resultado da Simulação do SEMOPS para o PMOR

			T 7	_ 	1 (2		1		71	u_2^1	x2	u_1^2	x_2^2	u_2^2	FC.U
РБ	IT	61	52	61	62	P	x 1	αή 2.50	x ₂ 5.80	2.39	9.75	4.35	16.90	3.63	i3.
5	4	9.70	7.00	14.80	21,20	0 '	3,52			7.57	11.70	4.96	21.11	14.01	-
	 -					1	6.15	6.38	6.33					7.58	1
						2	6.15	5.90	5.90	1.25	12.50	5.06	21.16	<u> </u>	_
						3	4.25	1.57	11.00	1.95	12.50	5.58	21.16	9.12	_
						4	6.15	4.48	11.00	4.89	12.50	5.17	21.16	10.72	
		•				5	3.46	i.18	11.00	1.49	12.50	4.50	21.16	7.80	
						6	6.15	6.51	11.00	6.74	12,50	4.18	21.16	12.39	_
						7	3.51	1.18	11.00	1.37	12.50	4.13	21.16	7.00	
						1	6.15	3.42	11.00	6.49	12.50	3.99	21.16	28.31	_
						5	6.15	6.47	8.09	4.17	12.50	6.63	12.74	3.63	
						11	2.85	1.18	10.58	7.57	7.48	6.63	21.16	14.84	
						1	1 3.64	5.72	1.48	6.01	7.19	6.12	20.98	20.71	
						1	2 0.90	-	4.40		7.00		12.74		

FUNÇÃO SUBST. DO SISTEMA 1 SUBSIS. 1: 1.00

FUNÇÃO SUBST. DO SISTEMA 1 SUBSIS. 2: 1.00

UNÇÃO SUBST. DO SISTEMA 2 SUBSIS. 1: 1.00

FUNÇÃO SUBST. DO SISTEMA 2 SUBSIS. 2: 1.00