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Abstract

The Component Tree is a data structure that represents an image through the hierarchi-

cal relationship of its connected components. It is an adequate structure to implement

connected filters, and it has been successfully used in many applications. The Max-Tree

is a compact structure for the Component Tree representation.

The main contribution of this work is the proposal of the Maximal Max-Tree Simplifi-

cation (MMS) filter with two possible criteria to compute the filter: a normalized threshold

criterion (MMS-T) and a Maximally Stable Extremal Regions (MSER) criterion (MMS-

MSER). A methodology to apply the MMS filter in association to the Extinction filter,

which is formally defined in this work, is presented. It is shown that after applying our

simplification methodology, which sets the number of relevant maxima in the image to be

kept, the number of nodes in the simplified Max-Tree is at most twice this number. In

order to define the MMS filter, new concepts, such as composite node and sub-branch are

introduced. These concepts are important to define many Max-Tree algorithms, and they

have interesting interpretations in terms of image processing. Possible applications of the

methodology proposed, such as text location, object recognition, and image simplifica-

tion/segmentation are illustrated to demonstrate the potential of this methodology. Also,

exploratory studies, such as detection of distinguished regions in the image, and analysis

of the robustness of the Max-Tree topology are presented.

Keywords: Max-Tree; Component Tree; Composite node, Sub-branch; Extinction Filter;

MSER; Maximal Max-Tree Simplification.

vii





Resumo

A Árvore de Componentes é uma estrutura de dados que representa uma imagem através

da relação de hierarquia de seus componentes conexos. Ela é uma estrutura adequada para

a implementação de filtros conexos e que foi utilizada com sucesso em muitas aplicações.

A Árvore Máxima é uma estrutura compacta para a representação da Árvore de Compo-

nentes.

A principal contribuição deste trabalho é a proposta do filtro de Simplificação Maxi-

mal da Árvore Máxima (MMS) com dois posśıveis critérios para efetuar o seu cálculo: um

critério de limiarização normalizada (MMS-T) e um critério de Regiões Extremais Maxi-

mamente Estáveis (MMS-MSER). Uma metodologia para aplicar o filtro MMS em asso-

ciação com o filtro de Extinção, que é formalmente definido nesse trabalho, é apresentada.

É mostrado que após a aplicação da metodologia de simplificação, a qual escolhe o número

de máximos relevantes a serem mantidos na imagem, o número de nós da Árvore Máxima

simplificada é no máximo duas vezes o número de máximos mantidos. Para definir o filtro

MMS, novos conceitos, como nó composto e sub-ramo são apresentados. Esses conceitos

são importantes para definir muitos algoritmos da Árvore Máxima, e eles possuem inter-

pretações interessantes em termos de processamento de imagem. Posśıveis aplicações da

metodologia proposta, tais como localização de texto, simplificação/segmentação de ima-

gens e reconhecimento de objetos são ilustrados para mostrar o potencial da metodologia.

Também, estudos explortatórios de detecção de regiões salientes em imagens e análise da

robustez da topologia da Árvore Máxima são apresentados.

Palavras-chave: Árvore Máxima; Árvore de Componentes; Nó composto; Sub-ramo; Filtro

de extinção; MSER; Simplificação Maximal da Árvore Máxima.
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Chapter 1

Introduction

The Max-Tree is a data structure proposed by Salembier et al. (1998). It represents

an image through the hierarchical relationship of its connected components. In fact,

each node of the Max-Tree stores a set of flat zones of the image, but its corresponding

connected component can be recovered by aggregating the pixels the node stores with the

pixels its descendants store. There are algorithms to build the Max-Tree in quasi-linear

time (Najman and Couprie, 2004, 2006; Carlinet and Géraud, 2012), and filtering the

image consists simply in contracting some of the Max-Tree nodes, which is equivalent

to merging sets of flat zones. Salembier et al. (1998) proved that contracting nodes of

the Max-Tree is a connected filter, i.e. a filter that simplifies the image while preserving

its contour information (Salembier and Serra, 1995), which for many applications is a

desirable property.

Building and filtering the Max-Tree are fast operations suitable for real time appli-

cations. In fact, many morphological filters can be more efficiently implemented in the

Max-Tree data structure. For instance, Fabrizio and Marcotegui (2009) proposed an al-

gorithm to perform the ultimate opening using the Max-Tree, which runs much faster

than the usual implementation that uses a sequence of openings with increasing structur-

ing elements. The Max-Tree is also a very adequate structure for computing Maximally

Stable Extremal Regions (MSER), which are a set of distinguished regions proposed by

Matas et al. (2002, 2004). MSER regions are used in many applications, such as stereo

matching (Matas et al., 2002, 2004), tracking of objects (Bischof, 2006), computation of

shape descriptors for object recognition (Forssen and Lowe, 2007), among others.

Vachier (1995a) proposed the concept of Extinction values, which can be seen as an

extension of the concept of dynamics (Grimaud, 1992). Extinction values are a powerful

tool to measure the persistence of a crescent attribute, and are useful to discern relevant

from irrelevant extrema, usually noise. The most common extinction values attributes

used are the height, area and volume, and they can be efficiently computed in the Max-
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Tree structure. Silva and Lotufo (2008) proposed new crescent attributes that can have

their extinction values computed in the Max-Tree. These attributes are the number of

descendants, the sub-tree height, and the height and width of the connected component

bounding box. These new attributes were used to count objects in images and perform

quality inspection.

Other applications that the Max-Tree was successfully used were detection, tracking

and recognition of license plates (Donoser et al., 2007), recognition of text in natural scenes

(Merino-Gracia et al., 2012), 3D Segmentation (Donoser and Bischof, 2006), interactive

filtering and visualization of 3D medical images (Westenberg et al., 2007).

The Max-Tree is many times treated as a synonym of the Component Tree (Jones,

1999), but in fact they are distinct structures. The Max-Tree is a compact structure

for the Component Tree representation, and because of that, the implementation of the

same filters in these structures are different, which may cause confusion for unsuspecting

readers.

The literature presents two groups of strategies for filtering the Max-Tree: pruning

strategies and non-pruning strategies. In the pruning strategy, if a Max-Tree node is to be

contracted, all its descendants will also be contracted. Filters based on increasing criteria,

such as the hmax (Salembier and Oliveras, 1996) and area opening and closings (Vincent,

1994) can be efficiently implemented through pruning strategies on the Max-Tree.

In the non-pruning strategy, if a Max-Tree node is to be contracted, its descendants

do not necessarily have to be contracted. Filters based on non-increasing criteria usually

lead to non-pruning strategies. This kind of filter strategy is not much explored in the

literature, since many authors do not consider it robust (Salembier et al., 1998). Therefore,

most authors try to circumvent this problem by transforming the non-pruning strategy

into a pruning strategy filter. In order to do that, Salembier et al. (1998) proposed the

min, the max, and the Viterbi rules.

Non-pruning strategies are implemented through the direct rule for node contraction

(Salembier et al., 1998) or the subtractive rule for node contraction (Urbach and Wilkin-

son, 2002). To the best of our knowledge, applications of filters based on non-pruning

strategies are not explored by the scientific community, because, as mentioned before,

many authors do not consider them robust. The Maximal Max-Tree Simplification filter

proposed in this work is based on a non-pruning strategy.

1.1 Motivation

The motivation for this work is the fact that we believe that the Max-Tree is a very

powerful data structure, which has the potential for solving many practical problems,

such as image segmentation, detection of distinguished regions, iterative visualization,
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object recognition, tracking and many others. Although its great potential, the Max-Tree

is still not much explored by the scientific community. Our motivation is to investigate

further the Max-Tree, and introduce new concepts, filters, and explore possible applica-

tions, where it can achieve competitive results, when compared to other methods in the

literature.

1.2 Objectives

The main objective of this work is to define the Maximal Max-Tree Simplification (MMS)

filter, which is based on a non-pruning strategy, with two possible criteria to compute

it: a normalized threshold criterion (MMS-T) and a Maximally Stable Extremal Regions

(MSER) criterion (MMS-MSER). Other objectives are the formalization of the Extinction

filter, which is a simplification filter based on a pruning strategy that keeps only the

persistent extrema of the image, and preserves their height, and the development of a

simplification methodology that applies the MMS filter in association to the the Extinction

filter. It is shown that after applying the simplification methodology, which sets the

number of most relevant maxima to be preserved, the number of nodes in the simplified

Max-Tree is at most twice this number. One last objective is to show the potential

of the methodology proposed to solve real problems, such as object recognition, image

segmentation/simplification, text location, and detection of robust image distinguished

regions. In order to define the MMS filter, it is presented the Max-Tree and its relation to

the Component Tree with a clear notation. New concepts, such as composite node, and

sub-branches are introduced. They are important to establish the relationship between

these data structures, and are useful to define many Max-Tree algorithms.

1.3 Contributions

The contributions of this dissertation are listed below:

• Formal definition of the Extinction filter, and analysis of its effects on the image

and the Max-Tree;

• Proposal of the MMS filter with a normalized threshold criterion (MMS-T) and a

Maximally Stable Extremal Regions (MSER) criterion (MMS-MSER), along with a

methodology to apply it;

• Proof that the number of nodes in the Max-Tree after applying the methodology

proposed is at most twice the number of leaves;

3



• Illustration of the potential of the methodology proposed by indication of possible

applications, such as text location, object recognition and image segmentation;

• Exploratory studies concerning the robustness of the Max-Tree topology and detec-

tion of image distinguished regions using the methodology proposed.

1.4 Organization of the Thesis

This thesis is organized as follows: Chapter 2 presents a minimal theoretical background

about graphs and image processing necessary to understand the Max-Tree, the Component

Tree and the tools that will be developed in this work. Chapter 3 presents the Max-Tree,

and the Component Tree with a consistent notation, and their differences and similarities

are analyzed. Also, the composite node and sub-branch concepts are introduced. Chapter

4 formalizes the Extinction filter, and compares it with the usual simplification filters.

Chapter 5 defines the MMS filter, and presents a methodology to apply it. Chapter 6

illustrates applications and exploratory studies of the methodology proposed. Chapter 7

states our conclusions, and future works.

4



Chapter 2

Theoretical Background

In this chapter, it is presented a theoretical background about graph theory and basic

image processing concepts necessary to explain the Max-Tree, the Component Tree, and

the tools that will be developed in the subsequent chapters.

2.1 Graph Theory basic Definitions

Definition 2.1 Undirected Graph: An undirected graph can be seen as a set of nodes,

V , and a set of edges, E, represented by non-ordered pairs of nodes. Usually a graph G

is denoted by G(V,E).

Definition 2.2 Path: A path between nodes i and j is a sequence of edges connecting

these two nodes.

Definition 2.3 Simple path: A path with no repeated nodes is called a simple path.

Definition 2.4 Cycle: A cycle is defined as being a path that starts and ends at the

same node.

Definition 2.5 Connected Component: A connected component of an undirected

graph is a maximal set of nodes in which any two nodes are connected to each other

by paths.

Definition 2.6 Connected Graph: A graph is said connected if there is a path from

any node to any other node in the graph.

Definition 2.7 Tree: A tree is an undirected graph G that is connected and has no

cycles.
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An undirected graphG with V = {0, 1, 2, 3, 4, 5} andE = {(1, 2), (1, 3), (2, 3), (3, 4), (3, 5)}

is illustrated in Figure 2.1. The graph is not connected, since node 0 is not connected

to anyone, and the path joining nodes 1, 2, and 3 form a cycle. A tree is illustrated in

Figure 2.2.

Figure 2.1: Illustration of a graphG with V = {0, 1, 2, 3, 4, 5} and E = {(1, 2), (1, 3), (2, 3),
(3, 4), (3, 5)}.

Figure 2.2: Illustration of a tree.

Definition 2.8 Rooted Tree: A rooted tree, T , is a tree in which one of its nodes has

been designated the root, therefore its edges have a natural orientation, i.e. it is a directed

graph. It has a partial ordering of its nodes. We say that i ≤ j, if and only if the path

from the root to i passes through j.

Definition 2.9 Parent: The parent of a node is the node connected to it on the path to

the root.
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Definition 2.10 Child: A child of a node i is a node of which i is the parent.

Definition 2.11 Root: It is the only node in the rooted tree that does not have a parent.

Definition 2.12 Leaf: It is a node in the tree that does not have children.

Definition 2.13 Ramification: It is a node with more than one child.

Definition 2.14 Internal: It is any node that is neither a leaf or the root of the tree.

Definition 2.15 Sibling: Two nodes are said to be siblings if they have the same parent.

Definition 2.16 Descendant: A descendant node i of a node j is a node such that j

is in the path from i to the root of the tree.

Definition 2.17 Ancestor: An ancestor node of i is any node in the path from i to the

root of the tree.

Definition 2.18 Branch: A branch is a set of nodes that join a leaf to the root node.

A rooted tree is illustrated in Figure 2.3. The arrows point towards the parents. Node

0 is the root. Nodes 6 and 7 are leaves, nodes 3 and 4 are siblings. Node 2 is a ramification.

The sequence 0 − 1 − 2 − 3 − 5 − 6 constitutes a branch of the tree.

Definition 2.19 Binary Tree: A binary tree is a rooted tree in which each of its nodes

has at most two children. A binary tree is said to be full if each of its nodes is either a

leaf or possesses exactly two child nodes. A full binary tree has 2n− 1 nodes, where n is

the number of leaves in the tree.

A full binary tree is illustrated in Figure 2.4.

2.2 Image Processing Definitions

Definition 2.20 Grey-scale image: It is a function I(z) : E → k, E ∈ N 2 and

k ∈ Z. p is an ordered pair (zlin, zcol) that represents a pixel of the image, and I(z) is its

luminosity intensity, usually I(z) ∈ [0, L− 1], L > 1. If L = 2, the image is said to be a

binary image, the pixels with intensity equal 1 compose the foreground and the pixels with

intensity equal 0 compose the background of the binary image.

Definition 2.21 Negative of an image:

Neg(I)(z) = (L− 1) − I(z), ∀z ∈ E (2.1)

7



Figure 2.3: Illustration of a rooted tree. The arrows point towards the parents.

Figure 2.4: Illustration of a full binary tree. It has 4 leaves, therefore the tree has 7 nodes.

Definition 2.22 Image Thresholding: The image thresholding is a procedure that

given a threshold h, it transforms an image into a binary image. There are two cases

the upper and the lower thresholding. They are expressed, respectively by the following

8



(a) C4 (b) C8

Figure 2.5: Illustration of the neighborhoods C4 (a) and C8 (b) of a pixel. The blue
pixels are the neighbors of the red pixels.

equations:

X ≥
h (z) =





1 if I(z) ≥ h

0 otherwise
, (2.2)

X ≤
h (z) =





1 if I(z) ≤ h

0 otherwise
. (2.3)

Definition 2.23 Neighborhood of a pixel: The neighborhood of a pixel z corresponds

to a set of coordinates C(p) ⊂ E defined in relation to z in the image domain E. The

most common pixel neighborhoods used are the neighborhoods C4 and C8 defined below:

C4(z) = {z + (−1, 0), z + (0,−1), z + (0, 1), z + (1, 0)} ∩ E (2.4)

C8(z) = C4(z) ∪ {z + (−1,−1), z + (−1, 1), z + (1,−1), z + (1, 1)} ∩ E (2.5)

The neighborhoods C4 and C8 of a pixel are illustrated in Figure 2.5.

Definition 2.24 Connectivity: An image can be seen as a graph, where the pixels

correspond to the nodes. Two pixels are connected, i.e. there is an edge joining them, if

they are neighbors, according to the neighborhood used, that share a common property that

defines a component. The property may be color, brightness, range of brightness values,

or anything else of interest.

Definition 2.25 Adjacency: Two pixels z1 and z2 are adjacent, if they are connected.

Definition 2.26 Upper threshold set: The upper threshold set is the set of connected

components {Ch,1, Ch,2, ..., Ch,nCC
} that compose the foreground of the binary image re-

sulting of the upper threshold X ≥
h (I). The similarity criterion to define the connectivity

is that the pixels have the same grey-level.
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An important property of level sets is that for each connected component Ch+1,m resulting

of the upper threshold X ≥
h+1(I) there is a connected component Ch,n resulting of the upper

threshold X ≥
h (I), such that Ch+1,m ⊆ Ch,n.

Definition 2.27 Flat zone: Flat zones are connected components in which the similar-

ity criteria used to define connectivity is that the pixels have the same grey-level.

Definition 2.28 Regional Maximum: A regional maximum of an image I is a flat

zone M , if I(z) > I(q), ∀z ∈ M and q is any neighboring pixel of M .

Definition 2.29 Partition A partition P of a set X is a set of nonempty subsets of X

such that every element x in X is in exactly one of these subsets.

P(X) = {X0, X1, ...Xn−1}, Xi ∩Xj = ∅, for i 6= j (2.6)

X = X0 ∪X1... ∪Xn−1 (2.7)

Definition 2.30 Grey-scale Image Ordering: A grey-scale image f is said to be

contained in a grey-scale image I of the same dimensions, f ≤ I, if and only if:

f [z] ≤ I[z], ∀z. (2.8)

Definition 2.31 Anti-extensive Filter: An anti-extensive filter ψ is a filter such that:

ψ(I) ≤ I, ∀I. (2.9)

Definition 2.32 Connected Filter: is a filter in which the partition composed of the

input image flat zones is always finer than the partition of the filtered image flat zones.

The mathematical definition of a connected filter ψ is given by:

PI ⊆ Pψ(I), ∀I. (2.10)

Connected filters do not create new contours in the image and they do not modify the

position of the existing contours.

Definition 2.33 Extinction value: Consider M a regional maximum of an image

I, and Ψ = (ψλ)λ is a family of decreasing connected anti-extensive transformations.

The extinction value corresponding to M with respect to Ψ and denoted by εΨ(M) is the

maximal λ value, such that M still is a regional maxima of ψλ(I). This definition can be

expressed through the following equation:

εΨ(M) = sup{λ ≥ 0|∀µ ≤ λ,M ⊂ Max(ψµ(I))}, (2.11)

10



where Max(ψµ(I)) is the set containing all the regional maxima of ψµ(I). Extinction

values of regional minima can be defined similarly.

Definition 2.34 Image Region: A region Q is a set of pixels, where each pixel has at

least one neighbor pixel that belongs to the region.

Definition 2.35 Boundary of a Region: The boundary ∂Qi of a region Qi is the set

of pixels that are neighbors to at least one element of the region, but do not belong to the

region.

Definition 2.36 Extremal Region: A extremal region Q ⊂ E is a region such that

either for all z ∈ Q, q ∈ ∂Q: I(z) > I(q) (maximum intensity region) or for all z ∈ Q,

q ∈ ∂Q: I(z) < I(q) (minimum intensity region).

Definition 2.37 Maximally Stable Extremal Region: Let Q1,..,Qi−1,Qi be a se-

quence of nested extremal regions, Qi ⊂ Qi+1. Extremal region Qj is maximally stable if

and only if j is a minimum of the following expression:

q(j) =
| Qj+∆ \Qj−∆ |

| Qj |
. (2.12)

MSER regions corresponding to a sequence of upper thresholds and lower thresholds

are denominated MSER+ and MSER−, respectively. According to Matas et al. (2002,

2004), MSER regions are invariant to affine intensity transformations, they preserve the

adjacency when submitted to continuous transformations, and they perform multi-scale

detection, since the detected regions may be either large or small.

Definition 2.38 Structural Similarity index (SSIM) : The SSIM index proposed

by Wang et al. (2011) measures the structural similarity between images. It is defined by

the following expression:

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
, (2.13)

where x and y are images of the same dimensions µx, µy, σ
2
x, σ

2
y, and σxy represent the

means, the variances and the covariance of images x and y. C1 and C2 are constants and

their default values are 0.01 and 0.03, respectively.

2.3 Conclusions

This chapter presented an overview of basic image processing and graph concepts that

will be used as a basis to explain the tools that will be developed in the remaining of this

work.
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Chapter 3

Structures for Image Representation:

Component Tree and Max-Tree

The Component Tree was proposed by Jones (1999). It is a data structure that represents

an image through the hierarchical relationship of its connected components. It separates

the image filtering procedure on three steps: tree construction, filtering, and image resti-

tution. The Max-Tree was proposed by Salembier et al. (1998). It is a compact structure

for the Component Tree representation. Most filters are designed thinking in terms of the

Component Tree, but they are usually more efficiently implemented in the Max-Tree.

This chapter starts by presenting the Component Tree data structure, and the notion

of attribute signature. Then, the Max-tree is introduced, along with the concept of

composite node, which helps defining Max-Tree based algorithms, and establishing the

relationship between the Max-Tree and the Component Tree. The filtering procedure on

the Max-Tree is explained, and its meaning on the Component Tree is analyzed. The

sub-branch concept is presented. The chapter concludes by summarizing the differences

between the Max-Tree and the Component Tree.

3.1 Component Tree

The Component Tree was proposed as a structure for image representation that repre-

sents all connected components resulting of all possible thresholds of the image, and that

provides an attribute signature as means of discriminating features in the image. It is

efficient to implement connected anti-extensive filters, and by duality extensive filters.
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3.1.1 Component Tree Representation

The Component Tree, TCT , is a rooted tree in which each node stores a set of attributes.

It is completely defined by its set of nodes N (TCT ):

N (TCT ) = {0, 1, ..,m− 1}, (3.1)

and parents P(TCT ):

P(TCT ) = {pi|i ∈ (N \ 0)}, (3.2)

where \ is the set minus operand, and pi is the parent of node i. Our convention is that

node 0 is the root.

Suppose that the grey-levels of an image I are bounded between Imin and Imax. The

upper threshold sets {Ch,1, Ch,2, ..., Ch,nCC
} resulting of every upper threshold X ≥

h (I) for

h varying between Imin and Imax can be computed, and we know that threshold sets have

the following property:

∀Ch+1,m, ∃Ch,n : Ch+1,m ⊆ Ch,n. (3.3)

This hierarchy property allows a tree representation. For each connected component Ch,n
resulting of all threshold sets, there is a Component Tree node i with attributes hi = h

and Ci = Ch,n. hi and Ci are the basic attributes stored in the Component Tree nodes

necessary to recover the image from the tree. Other attributes, such as height, area and

volume can be computed and stored in the nodes during the tree construction or they can

be computed just when required.

Node i is a parent of node j if Ci contains Cj, and hi = hj − 1. Note that the

Component Tree may represent a pixel in more than one node, therefore it has some

redundancy. The leaves of the Component Tree correspond to regional maxima in the

image and the root represents the whole domain of the image.

The restitution of the image corresponding to a given Component Tree, is given by

the following equation:

I(z) = max{hi|z ∈ Ci}. (3.4)

The construction of the Component Tree corresponding to the 1D image I = [0, 5, 2, 4,

1, 1, 4, 4, 1, 0] is illustrated in Figure 3.1. This illustration is meant just to explain the

Component Tree structure and construction, it does not correspond to the most efficient

way to build it, for that, there are algorithms that run in quasi-linear time (Najman and

Couprie, 2004, 2006).
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(a) Mona Lisa Painting

(b) Area signature (c) Gradient of the area signature

(d) Reconstruction at h = 75 (e) Reconstruction at h = 76

Figure 3.2: Mona Lisa painting, the red dot corresponds to a regional maxima (a). Area
signature (b), and its gradient (c). Reconstruction of the connected component at level
75 (d) and 76 (e).
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3.2 Max-Tree

The Max-Tree can be seen as a compact structure for the Component Tree representation.

Every operation that can be done in the Component Tree can be done in the Max-Tree

and vice-versa.

3.2.1 Max-Tree Representation

The Max-Tree, TMT , is a rooted tree in which each node stores a set of attributes. It is

completely defined by its set of nodes N (TMT ):

N (TMT ) = {0, 1, ..,m′ − 1}, (3.5)

and parents P(TMT ):

P(TMT ) = {pi|i ∈ (N \ 0)}. (3.6)

Ĉh,n is defined by:

Ĉh,n = {z ∈ Ch,n|I(z) = h}, (3.7)

it represents a set of flat zones (Serra and Salembier, 1993). For each non-empty Ĉh,n,

there is a Max-Tree node i with hi = h and Ĉi = Ĉh,n. The pixels represented by Ĉi and

their level hi are the minimum set of attributes that a node i has to store in order to be

able to recover the image from the Max-Tree. Note that storing Ĉi is much more memory

efficient than storing Ci, there is no redundancy in the pixels stored. The connected

component Ci can be recovered by:

Ci = Ĉi ∪
⋃

∀j∈D(i)

Ĉj, (3.8)

where D(i) is the set containing all the descendants of i. Node i is a parent of node j if

Ci is the smallest connected component that contains Cj.

The number of connected components nlevels that a Max-tree node i represents is

given by:

nlevels(i) = hi − hpi
. (3.9)

If nlevels(i) > 1, this node is a composite node, i.e. a node that represents a connected

component that remained unchanged for a sequence of threshold values. This notion of

composite node is useful to implement the Max-Tree based algorithms.

The restitution of the image corresponding to a given Max-Tree, is an inverse mapping

of the pixels stored in the nodes to the image coordinates system, and is expressed by the
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Node Contraction by Direct Rule

In the full node contraction by direct rule, the node selected contracts with its parent,

and its pixels are also merged with it. The children of the node being contracted become

children of its parent. The full contraction by direct rule procedure of a node i with its

parent pi is given by:

pj = pi, ∀j ∈ children(i), (3.11)

Ĉpi
= Ĉpi

∪ Ĉi, (3.12)

N = N \ i, (3.13)

where children(i) is the set containing all the children of node i. The full node contraction

decreases the number of Max-Tree nodes by 1.

In the partial node contraction by direct rule, the composite node is contracted by

decreasing its nlevels attribute. The composite node partial contraction by direct rule of

a node i by x is given by:

hi = hi − x, 1 ≤ x ≤ nlevels(i) − 1. (3.14)

The parameter x defines how many levels the composite node will contract. The partial

node contraction does not alter the number of Max-Tree nodes.

Note that by contracting a node j in the Max-tree, the attribute nlevels of its children

is being increased. In the full contraction, it is increased by nlevels(j), and in the partial

contraction it is increased by x.

It is important to mention that contracting a node of the Max-Tree is a connected

filter, and after choosing which nodes will be fully contracted, partially contracted and

the parameter x, the order of the contractions is irrelevant, the result will always be the

same.

The Max-Tree node being contracted may be a leaf, a ramification, or a node with one

child, and depending on the node it has a different effect on the equivalent Component

Tree. These three cases are analyzed.

The Max-Tree of the image I = [0, 4, 2, 4, 5, 0], and its corresponding Component Tree

are illustrated in Figure 3.4. The result of a full contraction and a partial contraction with

x = 1 of the ramification node in Figure 3.4(a), which is a composite node with nlevels =

2, and its meaning on the Component Tree is illustrated in Figure 3.5. The full contraction

operation reduced the number of Max-Tree nodes by 1, and increased the number of nodes

in the Component Tree from 8 to 10. The full contraction of the ramification node in the

Max-Tree is equivalent to replacing the Component Tree connected components at levels

h = 1 and h = 2, by the two connected components of their descendants at level h = 3.

The partial contraction did not change the number of Max-Tree nodes as expected. The
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Figure 3.10: Illustration of the sub-branch tree corresponding to the tree in Figure 3.9.

plus one, if the root is not a ramification. Its minimum value is equal n + 1. It happens

when all leaves are connected directly to the root. Its maximum value happens when

the sub-branch tree is almost a full binary tree, except for the root that has only one

child. From the theory, the number of nodes in a full binary tree is 2n − 1, since in the

sub-branch tree, the root may have only one child, the maximum number of nodes of the

sub-branch tree is 2n. Therefore,

n+ 1 ≤ Number of sub-branch tree nodes ≤ 2n. (3.18)

The case where the number of nodes in the sub-branch tree is equal to the lower bound

n+ 1 is illustrated in Figure 3.11(a), and the case where the number of nodes in the tree

is equal to the upper bound 2n is illustrated in Figure 3.11(b) .

(a) n + 1 (b) 2n

Figure 3.11: Illustration of the cases where the number of nodes in the sub-branch tree
are equal to n+ 1 (a) and 2n (b).
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The concept of sub-branch will be useful to define the MMS filter in Chapter 5.

3.4 Conclusions

In this chapter, the Component Tree and the Max-Tree structures were reviewed. The

composite node and the sub-branch concepts were introduced, along with their interpre-

tation on the Max-Tree. The filtering procedure on the Max-Tree and its meaning on the

Component Tree were analyzed. The main differences between the Component Tree and

the Max-Tree are summarized below:

• The Max-Tree represents a connected component that remained unchanged for a

sequence of threshold values in a single node called composite node, therefore the

number of Max-Tree nodes is always less than or equal to the number of Component

Tree nodes. The equality happens when the Max-Tree does not have any composite

nodes.

• The number of Component Tree nodes is equal to the sum of the attribute nlevels

of each Max-Tree node;

• The Max-Tree nodes store Ĉi while the Component Tree nodes store Ci;

• After filtering the Max-Tree, the number of nodes is always less than or equal to

the number of nodes of the original Max-Tree, while the filtering procedure of the

Component Tree may increase, decrease or not alter the number of Component Tree

nodes, see Table 3.1 for a summary.

The main advantage of the Max-Tree in relation to the Component Tree is its com-

pactness, which is one of the goals of the MMS filter that will be defined in Chapter 5.

For that reason, from now on, all operations will be defined in terms of the Max-Tree,

even though sometimes we will go back to the Component Tree attribute signature for

aid in some decision making steps.
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Chapter 4

Extinction Filter

In this chapter, it is defined the Extinction Filter (EF), which is a connected filter that

preserves the relevant extrema of the image. Extinction filters are closely related to

dynamic openings (Salembier and Wilkinson, 2009), and unlike the usual contrast and

size filters, the heights of the remaining maxima in the image are completely preserved. It

is shown that applying the EF reduces the number of Max-Tree nodes and sub-branches,

and that the average length of the remaining sub-branches in the tree increases. The

relationship between Extinction filters and the hmax (Salembier and Oliveras, 1996),

vmax (Vachier, 1995b) and area opening (Vincent, 1994) attribute filters is analyzed.

This chapter starts by presenting an algorithm to compute height, area, and volume

extinction values from the Max-Tree. This algorithm can be easily extended to compute

extinction values of any crescent attribute. Then, the EF is defined and analysed. After

that, the EF is compared to the hmax, vmax and area opening attribute filters. Finally,

the conclusions about this chapter are presented.

4.1 Computing Extinction Values from the Max-Tree

Extinction values are a measure of persistence from the attribute being analyzed proposed

by Vachier (1995a). They are a powerful tool to measure the persistence of a crescent

attribute, and are useful to discern relevant from irrelevant extrema, usually noise. The

most usual extinction attributes are height, area, and volume. They can be efficiently

computed from the Max-Tree structure. The height, area, and volume corresponding to

the level component Ci of node i are given, respectively, by the following equations:

µh(Ci) = max{hk − hi}
∀k∈descendants(i)

, (4.1)

25



µa(Ci) =
∑

∀z∈Ci

1, (4.2)

µv(Ci) = µa(Ci) +
∑

k∈descendants(i)

nlevels(k)µa(Ck), (4.3)

where descendants(i) is a set containing all the descendants of node i.

An algorithm to compute height, area, and volume extinction values from the Max-

Tree is illustrated in the Code Fragment 4.1. The algorithm is similar to the one presented

in Silva and Lotufo (2008), but with a modification (lines 6 to 8) to account for the

composite nodes. The algorithm is described using a Python-NumPy syntax, which has

high level commands similar to a pseudo-code, and are easy to understand. The function

receives 5 arrays and a string. The string corresponds to the attribute being analyzed

“height”, “area”, or “volume”. nlevels, area, parents, nchild, attr are arrays storing the

nlevels, the area, the parent ID, the number of children, and the attribute being analyzed,

respectively. They are indexed by the nodes IDs. Line 4 generates a boolean mask (cn)

set with true for the composite nodes. Lines 6 through 8 update the attribute depending

of the option received in the string. This has to be done since for the height and volume

attributes of composite nodes, we need to analyze the attribute value, which corresponds

to the level component hidden in the lower connected component of the composite node.

Lines 10 through 16 store for each node the highest attribute value among their children

in the array achmax, and the corresponding node ID in the array ichmax.

Lines 18 to 29 compute the extinction values of the regional maxima, i.e. the leaves

of the tree. Initially, all extinction values are set as 0. Then, a loop is performed. For

each tree leaf, a path towards the root is initiated. When a node with more than one

child appears in the path, a verification is done on each children of this node. If the node

in the leaf path being analysed has a sibling with higher attribute, then the attribute of

this node in the leaf path is defined as the extinction value of the leaf being analyzed and

another iteration of the loop is performed, else we continue the path until the next node

with more than one child. Finally, if the path reaches the root, then its extinction value

is set as the attribute value of the first node in the path before arriving at the root,which

is the maximum image extinction value. Line 30 returns an array with all the extinction

values. Nodes that are not leaves have their extinction value set to 0
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Code Fragment 4.1: Python-NumPy code to compute height, area, and volume extinction

values from the Max-Tree.

1 def getExt inc t i onVa lues ( n l e v e l s , area , parents , nchi ld , at tr , opt = ” area ” ) :

N = len ( area )

3 root = 0

cn = n l e v e l s > 1

5

i f opt == ” area ” : pass

7 e l i f opt == ” he ight ” : a t t r [ cn ] = a t t r [ cn ] + ( n l e v e l s [ cn ] − 1)

e l i f opt == ”volume” : a t t r [ cn ] = a t t r [ cn ] + ( n l e v e l s [ cn ] − 1)∗ area [ cn ]

9

ichmax = ze ro s (N)

11 achmax = ze ro s (N)

for node in arange (1 ,N) [ : : − 1 ] :

13 nparent = parents [ node ]

i f a t t r [ node ] > achmax [ nparent ] :

15 achmax [ nparent ] = a t t r [ node ]

ichmax [ nparent ] = node

17

e x t v a l u e s = ze ro s (N)

19 for nd in nonzero ( nch i ld == 0 ) [ 0 ] :

node = nd

21 while parents [ node ] != root :

vv = a t t r [ node ]

23 big = ichmax [ parents [ node ] ]

i f node != big :

25 e x t v a l u e s [ nd ] = vv

break

27 node = parents [ node ]

i f parents [ node ] == root :

29 e x t v a l u e s [ nd ] = achmax [ node ]

return e x t v a l u e s

4.2 Extinction Filter

The Extinction Filter (EF) is a connected filter that preserves the relevant maxima of

the image, while reducing the tree complexity, i.e. the number of tree nodes. Most

natural images are contaminated by noise, therefore they probably contain many irrelevant

extrema with low extinction values. For instance, the famous Lena image with dimensions

554×507 pixels is shown in Figure 4.1(a). Its corresponding Max-Tree using connectivity
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C8 1 has 37689 nodes of which 14780 are leaves, i.e. maxima. The height, area and

volume normalized extinction histograms, respectively are shown in Figure 4.1(b)-(d).

Only the lower extinction values are displayed for better visualization. It is clear that the

histograms are highly concentrated on the lower extinction values, and probably most of

these maxima in the image correspond to noise or irrelevant artifacts.

(a) Lena (b) Height extinction histogram

(c) Area extinction histogram (d) Volume extinction histogram

Figure 4.1: Lena image (a), and its height (b), area (c), and volume (d) normalized
extinction histograms.

The EF operation is very simple. The n leaves with highest extinction values concern-

ing the crescent attribute being analyzed are chosen. The nodes in the paths from these

leaves to the the root are marked as to be kept. All the other nodes are fully contracted.

Since the contraction of Max-Tree nodes is a connected filter, the EF is also a connected

filter. The EF procedure is illustrated in Figure 4.2. Suppose that n = 3 and nodes 7,

14 and 15 (the yellow nodes) of Figure 4.2(a) are the leaves with highest extinction value

according to the attribute being analyzed. The nodes in the paths from these leaves to the

the root are marked in red, Figure 4.2(b), the remaining nodes are pruned. The resulting

tree is illustrated in Figure 4.2(c).

1From now on we assume that all Max-Trees are built considering a connectivity C8, unless explicitly
said otherwise.
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(a) MRI (b) CT (c) Cameraman

(d) Objects (e) Text

Figure 4.3: Sample images.

(a) 13287 nodes, SSIM = 0.998 (b) 3313 nodes, SSIM = 0.998 (c) 2218 nodes, SSIM = 0.995

(d) 2946 nodes, SSIM = 0.943 (e) 2067 nodes, SSIM = 0.997

Figure 4.4: Illustration of the Area EF applied to the sample images. The parameter n
was equal to 1% of the number of maxima in the corresponding original image.
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the original images and the filtered images, except for the Objects image, in which a

considerable part of the black texture in the bottom of the original image disappeared

in the filtered image. These results support the hypothesis that in general most of the

extrema in natural images correspond to noise.

The variation of the number of nodes, sub-branches and the average sub-branch length

according to the parameter n used in the Area EF are illustrated in Figure 4.5. The

abscissas of the plots represent the percentage of maxima with lower extinction values that

were chosen to be removed, i.e. 1− n
nb. of leaves

. The ordinate of Figure 4.5(a) represents the

ratio between the number of nodes of the original Max-Tree and the number of nodes after

the EF. The ordinate of Figure 4.5(b) represents one minus the ratio between the number

of sub-branches in the filtered Max-Tree and the number of sub-branches of the original

Max-Tree. Finally, the ordinate of Figure 4.5(c) represents the average sub-branch length.

The nodes reduction rate in Figure 4.5(a) is smaller than 2 until the percentage of

leaves removed is equal 0.7, probably because most leaves correspond to irrelevant max-

ima, and they are contained in sub-branches of small length. The sub-branches reduction

rate has practically a linear behavior for all sample images. Also, as expected the average

sub-branch length becomes greater with the increase in the percentage of maxima being

filtered.
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(a) Nodes reduction rate

(b) Sub-branches reduction rate

(c) Average sub-branch length

Figure 4.5: Illustration of the variation of the number of nodes (a), sub-branches (b) and
the average sub-branch length (c) according to the parameter n used in the Area EF.
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4.3 Relationship between Extinction Filters and At-

tribute Filters

Attribute filters, such as the hmax, vmax, and the area opening may also be used to set

the number of extrema to be preserved in an image. The procedure is simple. First, the

extinction values of the crescent attribute being analyzed have to be calculated. Then,

the extinction histogram is computed. The relationship between the number of extrema

in the image and the parameter of the attribute filter is given by the curve attribute

value versus the number of maxima minus the cumulative distribution of the extinction

histogram. This curve may have discontinuities, since there may be leaves with the same

extinction value, therefore when using attribute filters often it is not possible to set the

exact number of extrema to be preserved. This case is illustrated in Figure 4.6. The

height extinction histogram of the Cameraman sample image is shown in Figure 4.6(a).

The curve height versus number of extrema is shown in Figure 4.6(b). The zoom in the

plot highlights the discontinuities in this curve. For instance, if the image is filtered with

the hmax filter with h = 50 the number of maxima in the resulting image will be 101, but

if it is filtered with h = 51 the number of maxima in the resulting image will be 99, it is

not possible to obtain exactly 100 maxima using the hmax filter, while with the Height

EF it is possible. The EF can use a second criteria to choose between the maxima that

have a extinction tie. The results of the Height EF with n = 100 and the hmax filter with

h = 50 are illustrated in Figure 4.6(c) and Figure 4.6(d), respectively. In order to solve

the extinction tie problem, the maxima to be preserved were randomly chosen between

the maxima with the same height extinction values.

The fact that the EF can set exactly the number of maxima to be preserved in the

image may be an advantage, since in many segmentation problems we are looking for

a specific number of regions in the image, and many segmentation techniques use the

maxima in the image as seeds to the segmentation process.

The result of applying the Volume EF and the vmax filter are illustrated in Figure

4.7. The parameter n was set as being 0.25% of the number of maxima in the original

images, and the parameter v was set in order to preserve the same number of maxima or

at least the closest value possible. The images obtained using the Volume EF obtained a

SSIM index slightly higher than the SSIM index obtained using the vmax filter, but this

difference is practically negligible. The vmax filter obtained better simplification results

in terms of flat zones, and number of Max-Tree nodes than the Volume EF, these results

are summarized in Table 4.2.

Attribute filters usually achieve better simplification results, this happens due the fact

that this kind of filter only preserves the extrema, but not their original height. The EF

preserves perfectly the heights of the extrema chosen to be kept. When set to preserve the
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(a) (b)

(c) (d)

Figure 4.6: Comparison of the height EF and the hmax filter. The number of maxima
in image (c) is 100, while the number of maxima in image (d) is 101. This may happen
when there are ties between extrema extinction values.

Original Image Volume EF vmax

Nodes Flat zones Nodes Flat zones Nodes Flat zones

MRI 197203 761080 7328 471797 3688 449234
CT 44829 169318 1900 108433 990 106092

Cameraman 11123 43268 1118 26010 527 22184
Objects 8398 55834 563 43412 371 41913

Text 28132 133907 988 83490 391 77248

Table 4.2: Summary of the results obtained by the Volume EF and the vmax filter.

34



(a) SSIM = 0.998 (b) SSIM = 0.997 (c) SSIM = 0.997 (d) SSIM = 0.996

(e) SSIM = 0.984 (f) SSIM = 0.974 (g) SSIM = 0.998 (h) SSIM = 0.996

(i) SSIM = 0.983 (j) SSIM = 0.973

Figure 4.7: Comparison of the results obtained by the volume EF and the vmax filter.

35



same number of extrema, the resulting Max-Trees of the EF filter and the attribute filter

have the same number of sub-branches, except possibly in cases where there are extinction

ties. Their main difference is that the sub-branches that contain the leaves preserved by

the EF are usually longer than the sub-branches that contain the leaves preserved by the

attribute filter.

4.4 Conclusions

In this chapter, Extinction filters were defined in terms of the Max-Tree. It was seen that

the smaller the parameter n of the EF, the larger is the nodes reduction rate, and the

average sub-branch length increases. Also, the illustrations indicated an almost linear rela-

tionship between the parameter n and the reduction rate in the number of sub-branches.

The relationship between Extinction filters and attribute filters was analyzed, and the

main differences are:

• Extinction filters perfectly preserve the height of the extrema to be kept, while

attribute filters erode the height of the extrema. This means that attribute filters

usually have a greater simplification power. One or other property may be more

desirable depending of the problem.

• It is not always possible to set an exact number of extrema in the image when using

attribute filters, this happens due to extinction ties. This problem does not occur

with Extinction filters, since they can use a second criterion to decide among the

extrema with extinction ties.

Although attribute filters usually achieve greater Max-Tree simplification results than

Extinction filters, we will see in Chapter 5 that this brings no advantage for the method-

ology we propose, since the number of sub-branches in the tree obtained by the attribute

filter and the EF are the same, and the methodology proposed preserves only one Max-

Tree node per sub-branch, therefore the number of nodes after the MMS filter will be the

same either using attribute filters or the EF. For that reason, we argue that the EF filter

is more adequate, to our methodology, because it perfectly preserves the height of the

extrema kept in the image.
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Chapter 5

Maximal Max-Tree Simplification

This chapter presents the Maximal Max-Tree Simplification (MMS) filter, which is a filter

that maximally reduces the number of Max-Tree nodes, while preserving the sub-branches

structure of the tree. Two possible criteria to compute the MMS filter are proposed. The

first is a normalized threshold criterion (MMS-T) and the second is a Maximally Stable

Extremal Regions (MSER) (Matas et al., 2002, 2004) criterion (MMS-MSER). The filter

is analyzed along with its sensible cases, and a methodology to apply it in association

with Extinction filters is proposed.

5.1 MMS Filter

Definition 5.1 The Maximal Max-Tree Simplification (MMS) is a filter that selects one

node in each sub-branch of the Max-Tree, and fully contracts all other nodes, i.e. all

sub-branches become trivial, therefore the resulting tree is the minimal tree that preserves

the same ramifications with the same degrees and ordering as the sub-branches tree.

The MMS filter is a connected filter, since its operation consists in contracting Max-

Tree nodes. It greatly reduces the number of Max-Tree nodes. Since every sub-branch is

now a trivial sub-branch, the number of Max-Tree nodes is bounded between n + 1 and

2n, where n is the number of Max-Tree leaves, as explained in Section 3.3.

Notice that the MMS filter removes intermediary nodes, i.e., it is not a pruning, which

many authors consider an operation that is not robust (Salembier et al., 1998). We believe

that with the right criterion it provides robust results. We propose two criteria to choose

the sub-branch node to be preserved, the first is a normalized threshold criterion and will

be called MMS-T and the second uses the MSER stability criterion and will be called

MMS-MSER.
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5.1.1 MMS-T

The MMS-T uses a normalized threshold criterion to select the node to be preserved. A

threshold value t between 0 and 1 is chosen, and this threshold value is mapped into a

node in the sub-branch. The procedure is the following: suppose we are analyzing SBj,

the grey-level h of the node to be preserved in this sub-branch is given by the following

equation:

h = hsn − nlevels(sn) + 1 + t[ntlevels(SBj) − 1], (5.1)

where hsn is the grey-level of the sub-branch node closer to the root. The node to be

preserved is:

i = {i ∈ SBj|hi − nlevels(i) < h ≤ hi}. (5.2)

After choosing the node to be preserved in each sub-branch, all other nodes are fully

contracted. For each node i to be preserved, if hi−h ≥ 1, the node is partially contracted

by x = hi − h. Setting t = 0 corresponds to choose the sub-branch node closest to the

root, which is the connected component with highest area in the sub-branch. Setting

t = 1 corresponds to choose the sub-branch node further away from the root, which is the

connected component with smallest area in the sub-branch.

5.1.2 MMS-MSER

The MMS-MSER chooses to preserve the node in the sub-branch with the highest stability

measure given by a slightly modified formulation of the MSER stability criterion given

by:

Ψ∆(i) =
A(Ci) − A(Cj)

A(Cj)
, (5.3)

where A() represents the area of the connected component in the argument, and j is the

first ancestor of i, where hj ≤ hi − ∆ . The region Ci represented by node i is said a

MSER region if Ψ∆(i) is a local maximum.

The stability measures of the connected components hidden in the composite nodes

do not have to be considered, since the connected component in the highest level of the

composite node will always have the highest stability measure according to this slightly

modified MSER formulation. This happens because its area remains constant for nlevels,

and the components hidden below it will vary sooner.

The node k to be preserved in the sub-branch SBj using the MMS-MSER is given by

the following equation:

k = argmax
∀i∈SBj

{Ψ∆(i)}. (5.4)

After choosing the node to be preserved in each sub-branch, all other nodes are fully
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contracted.

5.2 Analysis of the MMS Filter

It was seen in Section 4.2 that the average sub-branch length of a natural image is around

2, therefore applying the MMS filter with no pre-processing will reduce the number of

Max-Tree nodes on average by a factor of 2. The direct application of the MMS-T filter

with t = 0, t = 0.5, t = 1, and the MMS-MSER filter to the sample images presented

in Figure 4.3 are illustrated in Figure 5.1. Since, the average sub-branch length of the

original images is around 2, basically the MMS filter is choosing one among two nodes

to preserve in the Max-Tree, and regardless of the criterion used the filtering results are

expected to be similar. The smallest SSIM index obtained was of 0.971 at the CT image

with the MMS-T filter and t = 0. We will see that the methodology proposed in Section

5.3 simplifies much more the Max-Tree structure, while trying to preserve the necessary

information to solve image analysis and recognition problems.

A sensible case of the MMS filter occurs when the sub-branches in the image are long

and represent a great variation in size and/or shape of a connected component. When this

happens, the filter may lose important image information. For instance, a synthetic image

that contains a rectangle inside a circle, which is inside a triangle, each shape darker than

the object that it contains, is illustrated in Figure 5.2(a). These shapes constitute a sub-

branch (the only sub-branch) of this image. The results of the direct application of the

MMS-T filter, with t = 0.5, 0.75, and 1 are illustrated in Figure 5.2(b)-(d) , respectively.

In each filtered image only one of the shapes in the original image is preserved, if more

than one shape was important to the problem the method would fail, fortunately this case

does not occur in many problems.

5.3 Methodology

The filtering methodology proposed consists of applying the EF, the attribute used by the

EF vary according to the problem, followed by the MMS filter. The EF sets the number

n of leaves in the Max-Tree, and the MMS filter transforms each sub-branch in a trivial

sub-branch, therefore the number of nodes in the resulting tree will be bounded between

n+ 1 and 2n.

The criteria to be used depends on the problem. If we are interested in detecting

distinguished regions, the MSER criterion is best, but if we are just looking to simplify

the image, the normalized threshold criterion with t = 0.5 usually yields good results and

it is faster than the MSER criterion.
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(a) SSIM = 0.997 (b) SSIM = 0.999 (c) SSIM = 0.997 (d) SSIM = 0.998

(e) SSIM = 0.971 (f) SSIM = 0.993 (g) SSIM = 0.978 (h) SSIM = 0.997

(i) SSIM = 0.995 (j) SSIM = 0.998 (k) SSIM = 0.997 (l) SSIM = 0.998

(m) SSIM = 0.993 (n) SSIM = 0.998 (o) SSIM = 0.994 (p) SSIM = 0.996

(q) SSIM = 0.987 (r) SSIM = 0.996 (s) SSIM = 0.988 (t) SSIM = 0.994

Figure 5.1: Illustration of the direct application of the MMS-T filter with t = 0, (first
column), t = 0.5 (second column), t = 1 (third column), and the MMS-MSER filter
(fourth column).
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(a) SSIM = 0.992 (b) SSIM = 0.994 (c) SSIM = 0.990 (d) SSIM = 0.991

(e) SSIM = 0.944 (f) SSIM = 0.976 (g) SSIM = 0.990 (h) SSIM = 0.984

(i) SSIM = 0.967 (j) SSIM = 0.979 (k) SSIM = 0.978 (l) SSIM = 0.972

(m) SSIM = 0.665 (n) SSIM = 0.823 (o) SSIM = 0.808 (p) SSIM = 0.775

(q) SSIM = 0.864 (r) SSIM = 0.939 (s) SSIM = 0.911 (t) SSIM = 0.836

Figure 5.3: Illustration of the Area EF followed by the MMS filter with t = 0.3, (first
column), t = 0.5 (second column), t = 0.8 (third column), and MSER (fourth column)
applied to the sample images.
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Figure 5.5: Curve percentage of relevant maxima preserved versus the nodes reduction
rate after applying the methodology proposed.

The methodology presented that associates the EF to the the MMS filter has great

potential to simplify the Max-Tree structure. First, it removes the irrelevant extrema,

making the sub-branches average length higher, then it selects one node per sub-branch

to be kept. The number of nodes in the resulting Max-Tree is bounded between n + 1

and 2n, therefore by setting the parameter n of the EF, we have an estimate of the

number of nodes of the resulting Max-Tree after applying the methodology proposed.

The considerable reduction of Max-Tree nodes makes viable the extraction of invariant

descriptors, such as the one proposed in (Forssen and Lowe, 2007), to be used by a

classifier, in order to detect and recognize structures of interest in the image.
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Chapter 6

Applications and Exploratory

Studies

This chapter presents applications and exploratory studies of the methodology proposed

in Section 5.3. The applications described are meant to illustrate the potential of the

methodology to solve real problems, a discussion in depth is not intended. Three applica-

tions are illustrated: text location and recognition in natural scenes, object recognition,

and image segmentation. The exploratory studies refer to the detection of image distin-

guished regions, and analysis of the robustness of the Max-Tree topology.

6.1 Applications

6.1.1 Text Location and Recognition in Natural Scenes

In this section, it is illustrated the procedure to perform text location and recognition in

natural scenes using the EF associated to the MMS filter methodology. Two examples

are analyzed. The first example requires a dual processing, because the text is either

dark (minima) or bright (maxima). The second example is a license plate location and

recognition example, which is a sub-problem of text location.

Text Location and Recognition: Dual Processing

A natural image which contains text written both in black and white is depicted in

Figure 6.1(a). In order to locate all the text, it is necessary to perform the dual Max-Tree

processing, since we are interested in both maxima and minima. The image is 384 × 512

pixels, and its corresponding Max-Tree has 13054 nodes of which 8249 are leaves. The

characters in the image are expected to have high volume attribute values, therefore the
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first step is to apply the Volume EF with n set to 0.5% of the number of Max-Tree leaves.

The Max-Tree resulting of the filtering has 2419 nodes and a SSIM index of 0.999. The

filtered image is depicted in Figure 6.1(b), and it is clear that all white characters were

preserved. Then, the MMS-T filter with t = 0.5 is applied, the resulting Max-Tree has 76

nodes, that is a reduction factor of around 172, when compared to the number of nodes of

the initial Max-Tree, and the SSIM index is of 0.921. The image resulting of the MMS-T

filter is shown in Figure 6.1(c).

The next step is to perform the dual processing with the negative of the original image,

which is illustrated in Figure 6.1(d). The Max-Tree corresponding to the negative of the

image has 13144 nodes of which 8416 are leaves. The Volume EF is applied. The Max-Tree

resulting of the filtering has 1923 nodes and a SSIM index of 0.999. The corresponding

image is depicted in Figure 6.1(e), and it is clear that all black characters were preserved.

Finally, the MMS-T filter with t = 0.5 is applied, and the resulting Max-Tree has 75

nodes, that is a reduction factor of around 175, when compared to the number of nodes

of the initial Max-Tree. The SSIM index of the filtered image is of 0.940. The image

resulting of the MMS-T filter is illustrated Figure 6.1(f).

(a) Original Image (b) Volume EF (c) MMS-T

(d) Negative of the Origi-
nal Image

(e) Volume EF (f) MMS-T

Figure 6.1: Illustration of the procedure to locate text in natural scenes. Original image
(a), result of the Volume EF (b), result of the MMS-T filter (c). Negative of the original
image (d), result of the Volume EF (e), result of the MMS-T filter (f).

The graphs corresponding to the Max-Tree resulting of the processing, and the dual

processing are illustrated in Figure 6.2. Notice that all characters are present in the

reconstruction of the Max-Tree nodes. The great reduction in the number of Max-Tree
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nodes allows the extraction of descriptors of the Max-Tree nodes that can be used as

input to a classifier to locate and recognize the characters in the image. Usually it is

not necessary to extract descriptors of all the remaining nodes, for instance the nodes

that have an area value too high, such as the root, or an area value too low, such as

some of the remaining leaves, can be filtered by some threshold criteria before extracting

their descriptors. The reconstruction of the nodes that contain the text in the image is

illustrated in Figure 6.3. The text in red was obtained from the Max-Tree processing of

the image, and the text in green was obtained from the dual processing.

License Plate Location and Recognition

The same procedure used to locate and recognize text can be used to locate and recognize

license plates, but with one advantage, most countries have plates with its characters either

black or white, therefore the dual processing is not necessary. For instance, most Brazilian

license plates contains 7 black characters. Therefore, we can build the Max-Tree of the

negative of the image, since we want to analyze minima, and apply the Extinction filter.

The plate characters in the negated image are expected to have high volume attribute

values, but they are not necessarily the 7 extrema with highest extinction values in the

negated image. For this reason, we choose a value for n greater than 7. We applied the

Volume EF with n = 15, followed by the MMS-T filter with t = 0.5. We could have used

a higher n value to ensure the characters information will not be lost. There is a trade-off,

since we know the number of nodes in the resulting tree will be bounded between n + 1

and 2n, the value of n should be chosen in a manner that the necessary information will

be preserved, and the processing time will attend the application needs.

The results of the filtering are depicted in Figure 6.4. The Max-Tree of the original

image has 24310 nodes of which 6031 are leaves. After the EF, it has 1202 nodes and

a SSIM index of 0.9923. After the MMS-T filter, the number of nodes reduces to 28, a

reduction rate of around 868, and the SSIM index of the image is of 0.970. The volume

signature of the branches that contain the plate characters are illustrated in Figure 6.5.

Note that there is a range of values where the volume values are very close and they do

not vary much. The Max-Tree reconstruction of the portion corresponding to this range

where the volumes are all close and vary little is illustrated in Figure 6.6. Note that

the characters are recognizable in most of the nodes. The graph after the MMS-T filter

is illustrated in Figure 6.7. The seven plate characters were preserved and they can be

described and applied to a classifier to locate and recognize the license plate.
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Figure 6.3: Reconstruction of the Max-Tree nodes corresponding to the characters. The
red characters come from the original image processing, and the green characters come
from the dual processing.

(a) Original Image (b) Volume EF (c) MMS-T

Figure 6.4: Original image (a), result of the Volume EF (b), result of the MMS-T filter
(c).

Figure 6.5: Volume signatures of the branches that contain the plate characters.
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6.1.2 Object Recognition

The EF associated to the MMS filter methodology may also be used for object recognition.

An image with many objects is depicted in Figure 6.8(a). We have to process the Max-

Tree of the negative of the image, since the objects are dark. The Max-Tree has 12627

nodes, of which 2949 are leaves. The resulting image after applying the Volume Extinction

filter with n = 20 is shown in Figure 6.8(b). After the EF, the number of Max-Tree nodes

reduced to 2614. After the MMS-MSER filter, the number of Max-Tree nodes is 36,

and the resulting image is displayed in Figure 6.8(c). We can see that the shapes of all

relevant objects were preserved, therefore it is possible to extract descriptors from the

connected components of the Max-Tree nodes, to recognize the objects in the image. We

believe that the association of the Extinction filter to the MMS-MSER detects more robust

distinguished regions, since the regions detected attend the MSER stability criterion and

they are also on the path of the most persistent extrema in the image.

The Max-Tree graph after the EF, and the MMS-MSER filter is illustrated in Figure

6.9, and the graph with its edges length proportional to the attribute nlevels of the nodes

is shown in Figure 6.10. The shape of all objects of the image were preserved in the

Max-Tree nodes. The reconstruction of the nodes that represent the interest objects of

the original image is shown in Figure 6.11.

(a) (b) (c)

Figure 6.8: Illustration of the object recognition procedure. Original image (a), result of
the Volume EF (b), result of the MMS-T filter (c).

6.1.3 Segmentation

The methodology proposed may also be used to perform image segmentation. A lung

CT image is shown in Figure 6.12(a). Since we are interested in segmenting the lungs,

which represent dark structures in the image, we build the Max-Tree corresponding to the

negative of the original image. The original Max-Tree has 43585 nodes of which 20975
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Figure 6.9: Graph corresponding to the Max-Tree after the EF and the MMS filter. The
connected components were interpolated for better visualization, they are not in scale.The
objects are marked in red.
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6.2 Exploratory Studies

In this section, it is presented some exploratory studies concerning the robustness of the

Max-Tree topology for an image that has suffered different types of transformations. Also,

we compare the performance of the methodology proposed and EF as a pre-processing

step of the MSER method against the usual MSER to detect image distinguished regions.

6.2.1 Analysis of the Max-Tree Topology Robustness

In this section, it is investigated the robustness of the Max-Tree topology through an ex-

ample. We will use the Objects image, Figure 6.8(a). The same image JPEG compressed,

rotated, scaled, and blurred with a Gaussian filter are shown in Figure 6.15. The Volume

EF with n = 20 followed by the MMS-MSER is applied to the negative of all images.

(a) JPEG Compressed (b) Rotated (c) Blurred (d) Scaled

Figure 6.15: Objects image after several different types of transformations.

The Max-Tree graph of the original image after filtering is illustrated in Figure 6.10.

The Max-Tree graphs corresponding to the degraded images after filtering are illustrated

in Figure 6.16 and Figure 6.17. We can see that the topology of the Max-Trees changed in

all cases. The most extreme case was the JPEG compressed image case, where most leaves

of the resulting Max-Tree are connected directly to the first ramification node, whcih in

this example is the result closer to the expected topology since tha image is constituted

of many disjoint objects on a background. Although the topology varied, we can see that

the main differences of the topology are due to the internal nodes, but the graphs shows

that these internal nodes have a small persistence, i.e. low value of the nlevels attribute,

therefore an alternative is to filter these nodes, in order to achieve a tree with a topology

more similar to the topology we would expect. Also, the hierarchy between the objects

is always preserved and all objects are still detectable in all cases. This simple example
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6.2.2 Detection of Distinguished Regions

In this section, it is evaluated the performance of the methodology proposed applied to the

detection of distinguished regions. The methodology proposed is compared to the MSER

method, which is one of the detectors with highest repeatability rates (Mikolajczyk et al.,

2005). Also, we analyze the use of EF as a pre-processing step before the extraction of

MSER regions. This gives us an insight on how much information is lost when using EF

with different values of n.

In the simulations, it was used the benchmark dataset and the protocol intended to

evaluate affine region detectors proposed by Mikolajczyk et al. (2005). The dataset is

composed of structured and textured scenes divided in eight groups, where each group

suffered a different type of image transformation. One sample image of each group is

depicted in Figure 6.18. The ground truth of all image groups is provided by mapping the

regions detected to a reference image of each group using homographies. The matching

between two regions is based on the amount of overlap between the detected region in the

reference image and the detected region in the other image, projected onto the reference

image using the homography relating them. In order to compute this overlap, every region

size is normalized to a radius of 30 pixels, and if the overlap error is smaller than 40%, it

is considered a match.

(a) Graffiti (b) Boat (c) Leuven (d) UBC

(e) Bike (f) Wall (g) Bark (h) Trees

Figure 6.18: Sample images of the benchmark dataset for comparing affine region detec-
tors.

The MSER regions where computed using the binary file provided in the paper (Miko-

lajczyk et al., 2005). It uses connectivity C4, therefore the Max-Tree used in these exper-

iments also uses connectivity C4. In the first round of experiments, it was analyzed the
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use of EF as a pre-processing step before the extraction of MSER regions. The image was

filtered using the EF and the MSER+ regions were computed. Then, the negative of the

image was filtered and the MSER− regions were computed. The results were compared

to the usual MSER method. The parameter n of the EF was tested with 15%, 10%, 5%,

and 1%. The results of the group Bike of the dataset using Height, Area, and Volume EF

are depicted in Figure 6.19, Figure 6.20 and Figure 6.21, respectively. The results for all

groups in the dataset are illustrated in Appendix A.

We can see that either using the Height or Area or Volume EF the repeatability

scores using n equal 15%, 10% and 5% are very similar to the MSER results. This is

also another strong evidence that most of the image information is contained at the most

relevant extrema. The repeatability results only have a more accentuated drop for n equal

1%.

Figure 6.19: Repeatability results of the group of images Bike using Height EF as MSER
pre-processing.

Figure 6.20: Repeatability results of the group of images Bike using Area EF as MSER
pre-processing.
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Figure 6.21: Repeatability results of the group of images Bike using Volume EF as MSER
pre-processing.

In the second round of experiments, the MMS methodology was tested using the

Volume EF and the MMS-T filter with t = 0.5. The parameter n of the EF was set as

1%, 3%, 5%, and 10% of the number of Max-Tree leaves. It was considered a distinguished

region, all the remaining Max-Tree nodes with area higher than 30 pixels and smaller than

1% of the total image area, and that have a diversity higher than 20%, i.e. at least 20%

of the pixels in the region detected differ from any other region detected. For every region

found, an ellipse having the first and second moments as the detected region is fitted. This

is an affine covariant construction method. The absolute and relative repeatability results

are depicted in Figure 6.22 and Figure 6.23. In most cases the MSER relative repeatability

was higher than our method, but by setting the parameter n, we were able to obtain higher

absolute repeatability rates, which is a desirable property, since the MSER detector has

the problem of detecting fewer regions than other methods (Mikolajczyk et al., 2005).
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(a) Graffiti

(b) Boat

(c) Leuven

(d) UBC

Figure 6.22: MMS methodology repeatability results, part 1.
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(a) Bike

(b) Wall

(c) Bark

(d) Trees

Figure 6.23: MMS methodology repeatability results, part 2.
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6.3 Conclusions

This chapter presented possible applications of the methodology that associates the EF

and the MMS filter proposed in Section 5.3. It was seen that this combination greatly

simplifies the number of Max-Tree nodes, and it is usually able to keep the necessary

information to solve the problem at hand. The considerable reduction of Max-Tree nodes

makes viable the extraction of invariant descriptors to be used by a classifier, in order to

solve image analysis and recognition problems. One of the disadvantages of the method-

ology is that when looking for structures that may be either bright or dark, it is necessary

to perform a dual processing with the original image and its negative.

It was shown through a simple example that the Max-Tree topology is not robust,

but the hierarchical relationship always holds. The repeatability scores showed that the

MMS methodology has the advantage of controlling the number of detected regions. We

also saw that the EF as a pre-processing step before detecting the MSER regions using n

values as low as 5% obtains repeatability scores similar to the ones obtained by the usual

MSER method. The conclusion is that most of the image robust information is located

on the path of the most persistent extrema in the Max-Tree.
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Chapter 7

Conclusions

7.1 Conclusions

This work formalized the definition of Extinction filters, and defined the Maximal Max-

Tree Simplification filter. In order to do that, new Max-Tree concepts were introduced,

such as composite nodes, and sub-branches. Their interpretation in terms of image pro-

cessing were explained. It was seen that the methodology proposed greatly simplifies the

Max-Tree structure. The EF removes irrelevant extrema from the image, and its effect

on the Max-Tree is to reduce its number of nodes and sub-branches. Also, it increases

the average sub-branch length. It was shown that the number of Max-Tree nodes after

applying the EF followed by the MMS filter is bounded between n+ 1 and 2n, where n is

the number of tree leaves kept by the EF. The relationship between Extinction filters and

attribute filters was also analyzed, and we explained why use Extinction filters instead of

attribute filters in our methodology.

The potential of the methodology was illustrated through applications involving text

location and recognition, object recognition, and image segmentation. Exploratory stud-

ies showed that the methodology has potential to be used as a detector of distinguished

regions, and that the EF set with low values of n still preserves most of the image in-

formation. Also, the Max-Tree topology is not very robust, when analyzing the same

image that suffered different transformations, but the hierarchical relationship is always

preserved. The overall conclusion is that the methodology proposed greatly simplifies the

Max-Tree structure, while preserving the necessary information to solve image analysis

and pattern recognition problems.
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7.2 Future works

The considerable reduction of the nodes in the Max-Tree resulting of the simplification

methodology proposed makes viable the extraction of invariant descriptors to be used by

a classifier. An immediate continuation of this work is to continue the exploratory studies

presented in this work by investigating ways to better characterize the Max-Tree nodes,

and apply it to the detection of more robust distinguished regions that profit from the

tree hierarchy information, which many descriptors do not consider, and compare it with

popular detectors/descriptors, such as SIFT (Lowe, 2004), SURF (Bay et al., 2006) and

MSER (Matas et al., 2002).

Other interesting continuation would be the extension of the maximal simplification

filter to other image representing structures, such as the Tree of Shapes (Monasse and

Guichard, 1998), which is a contrast independent and non-redundant representation of

the image, and the proposal of other criteria, such as a shape criterion, to compute the

filter.

Furthermore, another possible continuation is to compare our methodology results

with state-of-the-art methods in the literature, in this work possible applications were

illustrated, but they were not investigated in depth.

7.3 Publications

As a result of this work, it was published a paper entitled “Maximal Max-Tree Simplifi-

cation” (Souza et al., 2014) to the 22nd International Conference on Pattern Recognition.

The paper defines the EF and the MMS filter. Also, it introduces the simplification

methodology, and illustrates the text location and recognition, and the object recognition

applications.
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Appendix A

Repeatability Results

This appendix illustrates all the results of using the EF as a pre-processing step before

the extraction of MSER regions that were initially presented in Section 6.2.2 of this

dissertation. The results using the Height EF are depicted in Figure A.1 and Figure A.2.

The results using the Area EF are depicted in Figure A.3 and Figure A.4, and the results

using the Volume EF are depicted in Figure A.5 and Figure A.6.
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(a) Graffiti

(b) Boat

(c) Leuven

(d) UBC

Figure A.1: Repeatability results using Height EF as MSER pre-processing, part 1.70



(a) Bike

(b) Wall

(c) Bark

(d) Trees

Figure A.2: Repeatability results using Height EF as MSER pre-processing, part 2.71



(a) Graffiti

(b) Boat

(c) Leuven

(d) UBC

Figure A.3: Repeatability results using Area EF as MSER pre-processing, part 1.
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(a) Bike

(b) Wall

(c) Bark

(d) Trees

Figure A.4: Repeatability results using Area EF as MSER pre-processing, part 2.
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(a) Graffiti

(b) Boat

(c) Leuven

(d) UBC

Figure A.5: Repeatability results using Volume EF as MSER pre-processing, part 1.74



(a) Bike

(b) Wall

(c) Bark

(d) Trees

Figure A.6: Repeatability results using Volume EF as MSER pre-processing, part 2.
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Appendix B

Processing Time

The average processing time curve of the methodology proposed englobing the Max-Tree

construction, the EF and the MMS filter application for the cameraman image (Figure

B.1) using different values of n is depicted in Figure B.2. The simulations were made at the

Adessowiki platform. The number of repetitions to compute the average processing time

was of 10 and the parameter t of the MMS-T was set as 0.5, and the ∆ used to compute

the MSER stability was set as 5. The Max-Tree construction code was developed using the

language C/C++ and the filters were programmed in Python, which is a slow interpreted

language. Although the complexity and time analysis of the algorithms was not the main

focus of this dissertation, we believe that an optimized code would allow the methodology

proposed to be employed in real time applications.

Figure B.1: Cameraman image. Dimensions: 256 × 256 pixels.
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Figure B.2: Average processing time englobing the Max-Tree construction, the EF and
the MMS filter.
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