Universidade Estadual de Campinas Faculdade de Engenharia Elétrica e de Computação

Perdas Aparentes Série como Critério a Ser Minimizado no Fluxo de Potência Ótimo Reativo

Autor: Marcelo de Oliveira Gonçalves Orientador: Prof. Dr. Anésio dos Santos Júnior

Dissertação de Mestrado apresentada à Faculdade de Engenharia Elétrica e de Computação como parte dos requisitos para obtenção do título de Mestre em Engenharia Elétrica. Área de concentração: **Energia Elétrica**.

Banca Examinadora

Aurelio Ribeiro Leite de Oliveira, Dr	DMA/IMEEC/Unicamp
Marcos Trevisan Vasconcellos, Dr	PUC-Minas
Takaaki Ohishi, Dr.	DENSIS/FEEC/Unicamp

Campinas, SP

Junho/2006

FICHA CATALOGRÁFICA ELABORADA PELA BIBLIOTECA DA ÁREA DE ENGENHARIA - BAE - UNICAMP

G586p	Gonçalves, Marcelo de O. Perdas aparentes série como critério a ser minimizado no fluxo de potência ótimo reativo / Marcelo de Oliveira Gonçalves. – Campinas, SP: [s.n.], 2006.
	Orientador: Anésio dos Santos Júnior; Dissertação (Mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de Computação.
	1. Potência reativa (Engenharia Elétrica). 2. Energia elétrica - Transmissão. 3. Sistemas de energia elétrica. I. Santos Júnior, Anésio dos. II. Universidade Estadual de Campinas. Faculdade de Engenharia Elétrica e de Computação. III. Título
Título em Inglês:	Series apparent losses as a criterion to be minimized on reactive optimal power flow
Palavras-chave em Inglês:	Reactive power (Electrical Engineering), Electricity - Transmission, Electric power systems.
Área de concentração:	Energia Elétrica
Titulação:	Mestre em Engenharia Elétrica
Banca examinadora:	Aurélio Ribeiro Leite de Oliveira, Marcos Trevisan Vasconcello Takaaki Ohishi.
Data da defesa:	30/06/2006

Resumo

Os índices clássicos de desempenho, utilizados na análise do suporte de potência reativa série e perfil de tensão, são a soma das perdas de potência ativa e reativa série que ocorrem no sistema de transmissão, sob determinadas condições de carga. A minimização das perdas ativas, ou das perdas reativas, altera significantemente o suporte de potência reativa exigido pelo sistema de transmissão para o atendimento da carga.

Neste trabalho, é analisado o papel da minimização dos índices de desempenho e seus efeitos sobre o perfil das magnitudes de tensão e sobre o suporte de potência reativa correspondente. Também é proposto um índice alternativo, soma das potências aparentes nos circuitos série do sistema, cuja minimização apresenta um ponto de operação mais interessante em relação ao perfil das tensões e às perdas nos sistemas. Os pontos de operação, obtidos por meio da minimização das perdas de potência ativa, da minimização das perdas de potência reativa e da minimização das perdas de potência aparente, nos elementos série, são analisados e comparados. Esta análise é realizada tendo em perspectiva o suporte de potência reativa exigido pelo sistema nos pontos de operação obtidos com as respectivas minimizações. Além disto, também é analisada a aproximação quadrática das perdas de potência aparente série. Para as experimentações numéricas, que possibilitam o estudo deste trabalho, foi utilizado um algoritmo de Fluxo de Potência Ótimo Reativo, baseado no método do gradiente reduzido, com técnicas de projeção e busca unidimensional.

Palavras-chave: Minimização de Perdas de Potência, Índices de Desempenho, Fluxo de Potência Ótimo Reativo.

Abstract

The classic performance indexes, used on reactive power supply and voltage profile analysis, are the sum of active and series reactive power losses that occur on transmission systems, under determined load conditions. The minimization of active or reactive losses, changes significantly the reactive power supply required from the transmission system to support the load.

In this paper work it's analysed the role of performance indexes minimization and their effects on the voltage profile magnitude and on corresponding reactive power supplies. It is also proposed an alternative index, the sum of apparent power on series circuits of the system, which the minimization presents a more interesting operation point in relation to the voltage profile and system power losses. The operation points, gotten from active, reactive and apparent power losses minimization, on series elements, are analyzed and compared. This analysis is carried out aiming the reactive power supplies demanded from the system on the operation points obtained with the respective minimization. Besides it is also analyzed the square approximation of series apparent power losses. For the numeric experimentations, that made possible this study, it was used an optimum reactive power flow algorithm, based on reduced gradient method, with projection techniques and line search.

Keywords: Power Loss Minimization, Performance Indexes, Optimal Reactive Power Flow.

"Não é porque as coisas são difíceis que nós não ousamos; é porque nós não ousamos que elas são difíceis." (Sêneca)

Pense grande, mire a lua, se você a errar estará entre as estrelas!

É melhor atirar-se à luta em busca de dias melhores, mesmo correndo o risco de perder tudo, do que permanecer estático, como os pobres de espírito, que não lutam, mas também não vencem, que não conhecem a dor da derrota, nem a glória de ressugir dos escombros. Esses pobres de espírito, ao final de sua jornada na Terra não agradecem a Deus por terem vivido, mas desculpam-se perante Ele, por terem apenas passado pela vida. (Bob Marley)

Dedicatória

A dor da saudade faz com que pensemos em inúmeras pessoas que deixam de fazer parte de nosso dia a dia, e, que com certeza, seus nomes deveriam estar nesta página. Nada no mundo compensa a separação, nada no mundo compensa a ausência do sorriso de quem se ama. Dedico esta dissertação aos meus queridos pais e irmãos, e, especialmente, à minha amada noiva, Fernanda.

Agradecimentos

Ao meu orientador, Prof. Anésio dos Santos Júnior, sou grato pela orientação, apoio e amizade. Foram dois anos de convivência que deixaram marcados o valor da amizade dele.

Ao Prof. Marcos Trevisan Vasconcellos, pelos conselhos, ajuda e apoio. Mesmo após a graduação, trocamos várias idéias.

À minha família, pai, mãe e irmãos, pelo carinho. Apesar da distância, me apoiaram constantemente com tudo que necessitei.

À minha noiva Fernanda, pelo carinho e compreensão. Nosso amor foi tão forte que nos fez superar a distância.

Aos meus amigos do laboratório do DENSIS, Anibal, André, Gabriela, Léo, Chicão, Gerardo, Paulo, José, Vinícius, Mariela, Olinto, Elias, Róger, Marta ...

Ao meu grande amigo Francislei José da Silva, pela amizade e companheirismo.

Aos tios e primos do Francislei, em especial a tia dele, Isabel, que faz pastéis deliciosos.

Ao pessoal lá de casa, Felipe, Protásio, Junior, Bazinho, Diogo e Bruno, pela amizade.

À Laila, Ana, Tiago e Evandro pela companhia em alguns finais de semana na Kitchenette.

Ao Alex, pela motivação nos estudos, nas noites dos finais de semana e feriados.

Aos ladrões que, além de assaltarem nossa casa em um dia que eu não estava lá, me ensinaram a importância da atualização constante dos back-ups.

À CAPES, pelo apoio financeiro.

E a todos que, de alguma forma em especial, contribuíram para o desenvolvimento deste trabalho.

Sumário

Li	sta de	e Figuras	XV
Li	sta de	e Tabelas	xxi
Gl	lossár	io x	xiii
Li	sta de	e Símbolos x	xiii
Li	sta de	e Abreviaturas	XXV
1	Intr	odução	1
2	Min	imização de Perdas pelo Método do Gradiente Reduzido Projetado	5
	2.1	Representação das Equações do Fluxo de Carga	6
	2.2	FPOR em Magnitudes de Tensão Controladas e Taps de	
		Transformadores em Fase	7
		2.2.1 Desconsiderando os Limites em Variáveis de Controle	8
		2.2.2 Gradiente Reduzido	8
	2.3	Gradientes e Matrizes Jacobianas	10
	2.4	Projeção do Gradiente Reduzido e Direção Factível Normalizada	13
	2.5	Busca Unidimensional	15
	2.6	Algoritmo	18
3	Perf	il de Magnitudes de Tensão e Suporte de Potência Reativa Correspondentes a	
	Solu	ıções de Perdas Mínimas Ativa e Reativa	21

	3.1	Indicad	lores para Análise do Perfil de Tensão e Taps de Transformadores em Fase .	21
		3.1.1	Indicadores para as Variáveis Controladas	22
		3.1.2	Indicadores para as Magnitudes de Tensão das Barras de Carga	23
	3.2	Minim	ização das Perdas Ativa e Reativa nos Elementos Série / Exemplo	23
	3.3	Minim	izações das Perdas de Potência Ativa (RI^2) e Reativa Série (XI^2) e Indica-	
		dores p	para Suporte de Potência Reativa / Exemplo	31
	3.4	Estudo	dos Sistemas IEEE 30, 57 e 118 Barras	43
		3.4.1	Sistema IEEE 30 Barras	43
		3.4.2	Sistema IEEE 57 Barras	53
		3.4.3	Sistema IEEE 118 Barras	64
	3.5	Conclu	Isão	79
4	Perd	las Apa	rentes Série $(\sqrt{R^2+X^2}I^2)$ e Aproximação Quadrática como Índices de	;
	Dese	empenh	o para Suporte de Potência Reativa/Magnitudes de Tensão	81
	4.1	Perdas	de Potência Aparente nos Elementos Série dos Circuitos	81
		4.1.1	Análise das Diferenças entre $f_P(RI^2)$, $f_Q(XI^2)$ e $f_S(\sqrt{R^2 + X^2}I^2)$	83
	4.2	Aproxi	mação Quadrática das Perdas Aparentes Série	84
		4.2.1	Aproximação Quadrática das Perdas Aparentes Série	84
	4.3	Sistem	a IEEE 14 Barras	86
	4.4	Sistem	a IEEE 30 Barras	95
	4.5	Sistem	a IEEE 57 Barras	104
	4.6	Sistem	a IEEE 118 Barras	114
	4.7	Compo	ortamento das Magnitudes de Tensão de Barras Radiais Diante da Minimi-	
		zação d	le Perdas Ativa, Reativa Série, Aparente Série e sua Aproximação Quadrática	127
		4.7.1	Barra de Carga Radial Alimentada Através de Sistema de Nível de Tensão	
			Mais Alto - Sistema IEEE 30 barras	127
		4.7.2	Barra de Carga Radial Alimentada Através do Sistema de Mesmo Nível de	
			Tensão - Sistema IEEE 30 barras	128
		4.7.3	Barra Radial com Controle de Tensão	129
	4.8	Conclu	Isão	133
5	Con	clusões	e Trabalhos Futuros	139

OTTR 4	
N I N /	
	\mathbf{J}

Re	Referências Bibliográficas141		
A	Mod	elo da Rede, Equações do Fluxo de Carga e Método de Newton	143
	A.1	Injeções de Correntes / Modelo Linear	. 143
	A.2	Modelos π para Transformadores em Fase	. 144
		A.2.1 Primeiro Modelo - t_{km} :1	. 145
		A.2.2 Segundo Modelo - $1:t_{km}$. 147
		A.2.3 Terceiro Modelo - $\frac{1}{t_{km}}$:1	. 150
		A.2.4 Quarto Modelo - 1: $\frac{1}{t_{km}}$. 153
		A.2.5 Breve Resumo dos Transformadores	. 156
	A.3	Injeções de Potência / Modelo Não-Linear	. 157
	A.4	Tipos de Barras	. 159
	A.5	Perdas Ativa e Reativa Série nas Linhas de Transmissão e Transformadores em Fas	se 160
	A.6	Equações do Fluxo de Carga e Método de Newton	. 162
	A.7	Método de Newton para Solução do Fluxo de Carga	. 163
B	Dife	renciação dos Parâmetros dos Transformadores	169
С	Dad	os de Barras e Ramos dos Sistemas Estudados	175
C	Dade C.1	os de Barras e Ramos dos Sistemas Estudados Sistema de Três barras	175 . 175
С	Dado C.1	os de Barras e Ramos dos Sistemas Estudados Sistema de Três barras	175 . 175 . 175
C	Dade C.1 C.2	os de Barras e Ramos dos Sistemas Estudados Sistema de Três barras	175 . 175 . 175 . 178
C	Dade C.1 C.2	os de Barras e Ramos dos Sistemas Estudados Sistema de Três barras C.1.1 Principais Características do Sistema de Três Barras Sistema de Transmissão Interligado IEEE 14 Bus C.2.1 Dados do Sistema de IEEE 14 bus	175 . 175 . 175 . 178 . 178
С	Dade C.1 C.2 C.3	os de Barras e Ramos dos Sistemas Estudados Sistema de Três barras C.1.1 Principais Características do Sistema de Três Barras Sistema de Transmissão Interligado IEEE 14 Bus C.2.1 Dados do Sistema de IEEE 14 bus Sistema de Transmissão Interligado IEEE 30 Bus	175 . 175 . 175 . 178 . 178 . 178 . 179
C	Dade C.1 C.2 C.3	os de Barras e Ramos dos Sistemas Estudados Sistema de Três barras C.1.1 Principais Características do Sistema de Três Barras Sistema de Transmissão Interligado IEEE 14 Bus C.2.1 Dados do Sistema de IEEE 14 bus Sistema de Transmissão Interligado IEEE 30 Bus C.3.1 Características do Sistema IEEE 30 Bus	175 . 175 . 175 . 178 . 178 . 178 . 179 . 181
C	Dade C.1 C.2 C.3 C.4	os de Barras e Ramos dos Sistemas Estudados Sistema de Três barras	175 . 175 . 175 . 178 . 178 . 178 . 179 . 181 . 181
C	Dade C.1 C.2 C.3 C.4 C.5	os de Barras e Ramos dos Sistemas Estudados Sistema de Três barras	175 . 175 . 175 . 178 . 178 . 178 . 179 . 181 . 181 . 184
C	Dade C.1 C.2 C.3 C.4 C.5	os de Barras e Ramos dos Sistemas Estudados Sistema de Três barras	175 . 175 . 175 . 178 . 178 . 179 . 181 . 181 . 184 . 184
C	Dade C.1 C.2 C.3 C.4 C.5 C.6	bs de Barras e Ramos dos Sistemas Estudados Sistema de Três barras	 175 175 178 178 178 179 181 181 184 184 184 184

Lista de Figuras

2.1	Três pontos necessários para a aproximação quadrática.	16
2.2	Aproximação da forma quadrática necessária para encontrar o passo ótimo	16
2.3	Fluxograma de Cálculo do Fluxo de Potência Ótimo Reativo	20
3.1	Elevação das magnitudes de tensão e diminuição das aberturas angulares	25
3.2	Diagrama unifilar do sistema de três barras	26
3.3	Trajetória dos passos de otimização da função objetivo f_P	28
3.4	Comportamento da função objetivo f_P a cada iteração	28
3.5	Trajetória dos passos de otimização da função objetivo f_Q	30
3.6	Minimização da função objetivo de perdas reativas no sistema de três barras	30
3.7	Ilustração dos indicadores de potência reativa.	31
3.8	Diagrama unifilar do sistema IEEE 14 barras.	34
3.9	Comportamento das perdas ativas a cada iteração	37
3.10	Comportamento das perdas reativas série a cada iteração	37
3.11	Magnitudes de tensão nas barras SL e PV	38
3.12	Histograma das magnitudes de tensão nas barras $SL \in PV. \ldots \ldots \ldots$	38
3.13	Magnitudes de tensão nas barras PQ	39
3.14	Histograma das magnitudes de tensão nas barras PQ	39
3.15	Taps dos transformadores em fase.	40
3.16	Histograma dos taps dos transformadores em fase	40
3.17	Disribuição de Q_g nas barras SL e PV	41
3.18	Histograma da disribuição de Q_g nas barras SL e PV	41
3.19	Indicadores de qualidade de geração de reativos nas barras $SL \in PV$	42

3.20	Histograma dos indicadores de qualidade de geração de reativos nas barras SL e	
	<i>PV</i>	42
3.21	Comportamento da função objetivo f_P a cada iteração no sistema IEEE 30 barras	44
3.22	Comportamento da função objetivo f_Q a cada iteração no sistema IEEE 30 barras	46
3.23	Magnitudes de tensão nas barras SL e PV	47
3.24	Histograma das magnitudes de tensão das barras $SL e PV$	47
3.25	Magnitudes das tensões nas barras PQ	48
3.26	Histograma das magnitudes de tensões nas barras PQ	49
3.27	Taps dos transformadores em fase	49
3.28	Histograma dos taps dos transformadores em fase	50
3.29	Distribuição de Q_g nas barras SL e PV	50
3.30	Histogramas da distribuição de Q_g nas barras $SL \in PV$	51
3.31	Indicadores de qualidade na geração de reativos para as barras $SL e PV$	51
3.32	Histograma dos indicadores de qualidade na geração de reativos para as barras SL	
	e PV	52
3.33	Comportamento da função objetivo f_P a cada iteração no sistema IEEE 57 barras	55
3.34	Comportamento da função objetivo f_Q a cada iteração no sistema IEEE 57 barras	58
3.35	Magnitudes de tensão nas barras SL e PV	58
3.36	Histograma das magnitudes de tensão nas barras $SL e PV$	59
3.37	Magnitude das tensões nas barras PQ	59
3.38	Histograma das magnitudes das tensões nas barras $PQ. \ldots \ldots \ldots \ldots \ldots$	60
3.39	Taps dos transformadores em fase.	60
3.40	Histograma dos taps dos transformadores em fase	61
3.41	Distribuição de Q_g nas barras SL e PV	62
3.42	Histograma da distribuição de Q_g nas barras $SL \in PV$	62
3.43	Indicadores de qualidade de geração de reativos nas barras $SL e PV. \dots$	63
3.44	Histograma dos indicadores de qualidade de geração de reativos nas barras SL e	
	<i>PV</i>	63
3.45	Perdas de potência ativa a cada iteração no sistema IEEE 118 barras	71
3.46	Perdas de potência reativa a cada iteração no sistema IEEE 118 barras	71
3.47	Primeira parte das magnitudes de tensão nas barras $SL e PV. \dots \dots \dots$	72

3.48	Segunda parte das magnitudes de tensão das barras $SL e PV. \ldots \ldots$	72
3.49	Histograma das magnitudes de tensão das barras $SL e PV$	73
3.50	Primeira parte das magnitudes de tensão nas barras PQ	73
3.51	Segunda parte das magnitudes de tensão nas barras PQ	74
3.52	Histograma das magnitudes de tensão nas barras PQ	74
3.53	Taps dos transformadores em fase	75
3.54	Histograma dos taps dos transformadores em fase	75
3.55	Primeira parte da distribuição de Q_g nas barras $SL \in PV. \ldots \ldots \ldots \ldots$	76
3.56	Segunda parte da distribuição de Q_g nas barras SL e PV	76
3.57	Histograma da distribuição de Q_g nas barras SL e PV	77
3.58	Primeira parte dos indicadores de qualidade de geração de reativos	77
3.59	Segunda parte dos indicadores de qualidade de geração de reativos	78
3.60	Histograma dos indicadores de qualidade de geração de reativos	78
4 1	Sistema IEEE 14 homes subdividida nalos transformadores em fass	01
4.1	Sistema IEEE 14 barras subdividido pelos transformadores em fase	84 07
4.2	Comportamento da função objetivo f_S a cada iteração no sistema IEEE 14 barras.	8/
4.3	Comportamento da função objetivo f_S a cada iteração no sistema IEEE 14 barras	89
4.4	Magnitudes de tensão nas barras SL e PV	90
4.5	Histograma das magnitudes de tensão nas barras $SL \in PV$	90
4.6	Magnitudes das tensões nas barras PQ	91
4.7	Histograma das magnitudes das tensões nas barras $PQ. \ldots \ldots \ldots \ldots \ldots$	91
4.8	Taps dos transformadores em fase	92
4.9	Histograma dos taps dos transformadores em fase	92
4.10	Distribuição da geração de reativos nas barras $SL \in PV$	93
4.11	Histograma da distribuição da geração de reativos nas barras $SL e PV. \ldots$	93
4.12	Indicadores de qualidade de geração de reativos	94
4.13	Histograma dos indicadores de qualidade de geração de reativos	94
4.14	Comportamento da função objetivo f_S a cada iteração no sistema IEEE 30 barras.	96
4.15	Comportamento da função objetivo \tilde{f}_S a cada iteração no sistema IEEE 30 barras.	98
4.16	Magnitudes de tensão nas barras SL e PV.	98
4.17	Histograma das magnitudes de tensão nas barras SL e PV	99
4.18	Magnitudes de tensão nas barras PQ	99

4.19	Histograma das magnitudes de tensão nas barras PQ
4.20	Taps dos transformadores em fase
4.21	Histograma dos taps dos transformadores em fase
4.22	Distribuição da geração de reativos nas barras $SL e PV$
4.23	Histograma da distribuição da geração de reativos nas barras SL e PV 102
4.24	Indicadores de qualidade de geração de reativos nas barras SL e PV
4.25	Histograma dos indicadores de qualidade de geração de reativos nas barras SL e
	<i>PV</i>
4.26	Comportamento da função objetivo $f_{\rm S}$ a cada iteração no sistema IEEE 57 barras. . 106
4.27	Comportamento da função objetivo \tilde{f}_S a cada iteração no sistema IEEE 57 barras. . 108
4.28	Magnitudes de tensão nas barras SL e PV
4.29	Histograma das magnitudes de tensão nas barras SL e PV
4.30	Magnitudes de tensão nas barras PQ
4.31	Histograma das magnitudes de tensão nas barras PQ
4.32	Taps dos transformadores em fase
4.33	Histograma dos taps dos transformadores em fase
4.34	Distribuição da geração de reativos nas barras SL e PV
4.35	Histograma da distribuição da geração de reativos nas barras SL e PV
4.36	Indicadores de qualidade de geração de reativos nas barras SL e PV
4.37	Histograma dos indicadores de qualidade de geração de reativos nas barras SL e
	<i>PV</i>
4.38	Comportamento da função objetivo f_S a cada iteração no sistema IEEE 118 barras. 119
4.39	Comportamento da função objetivo \tilde{f}_S a cada iteração no sistema IEEE 118 barras. 119
4.40	Primeira parte das magnitudes de tensão das barras SL e PV
4.41	Segunda parte das magnitudes de tensão das barras SL e PV
4.42	Histograma das magnitudes de tensão das barras SL e PV
4.43	Primeira parte das magnitudes de tensão nas barras PQ
4.44	Segunda parte das magnitudes de tensão nas barras PQ 122
4.45	Histograma das magnitudes de tensão nas barras PQ
4.46	Taps dos transformadores em fase
4.47	Histograma dos taps dos transformadores em fase

Primeira parte da distribuição da geração de reativos nas barras $SL e PV$	124
Segunda parte da distribuição da geração de reativos nas barras $SL e PV$	124
Histograma da distribuição da geração de reativos nas barras $SL e PV. \ldots$	125
Primeira parte dos indicadores de qualidade de geração de reativos nas barras SL	
e PV	125
Segunda parte dos indicadores de qualidade de geração de reativos nas barras SL	
e PV	126
Histograma dos indicadores de qualidade de geração de reativos nas barras SL e	
<i>PV</i>	126
Simulação de contingência no ramo 25-27	128
Simulação de contingência nos ramos 28-6 e 28-8	131
Barra radial com controle de tensão no sistema IEEE 14 Barras	131
Barra radial com controle de tensão no sistema IEEE 30 Barras	132
Comportamento de f_P , f_Q e f_S ao se minimizar as perdas ativas no sistema IEEE	
30 barras	134
Comportamento de f_P , f_Q e f_S ao se minimizar as perdas reativas no sistema IEEE	
30 barras	134
Comportamento de f_P , f_Q e f_S ao se minimizar as perdas aparentes no sistema	
IEEE 30 barras.	135
Comportamento de f_P , f_Q e f_S ao se minimizar as perdas ativas no sistema IEEE	
57 barras	135
Comportamento de f_P , f_Q e f_S ao se minimizar as perdas reativas no sistema IEEE	
57 barras	136
Comportamento de f_P , f_Q e f_S ao se minimizar as perdas aparentes no sistema	
IEEE 57 barras	136
Comportamento de f_P , f_Q e f_S ao se minimizar as perdas ativas no sistema IEEE	
118 barras	137
Comportamento de f_P , f_Q e f_S ao se minimizar as perdas reativas no sistema IEEE	
118 barras	137
Comportamento de f_P , f_Q e f_S ao se minimizar as perdas aparentes no sistema	
	Primeira parte da distribuição da geração de reativos nas barras $SL e PV$ Segunda parte da distribuição da geração de reativos nas barras $SL e PV$ Primeira parte dos indicadores de qualidade de geração de reativos nas barras SL e PV

A.1	Modelo π de Linhas de Transmissão ou Transformadores em Fase $\ldots \ldots \ldots 144$
A.2	Primeiro modelo de transformador em fase - t_{km} :1
A.3	Modelo π de transformador
A.4	Segundo modelo de transformador em fase - $1:t_{km}$
A.5	Terceiro modelo de transformador em fase - $\frac{1}{t_{km}}$:1
A.6	Quarto modelo de transformador em fase - 1: $\frac{1}{t_{km}}$
A.7	Primeiro modelo padrão de transformador em fase
A.8	Segundo modelo padrão de transformador em fase
A.9	Terceiro modelo padrão de transformador em fase
A.10	Quarto modelo padrão de transformador em fase
A.11	Fluxograma do Fluxo de Carga Newton
B .1	Primeiro modelo - derivada do modelo padrão de transformador em fase
B.2	Segundo modelo - derivada do modelo padrão de transformador em fase
B.3	Terceiro modelo - derivada do modelo padrão de transformador em fase
B.4	Quarto modelo - derivada do modelo padrão de transformador em fase
C.1	Curvas de nível para a função objetivo f_P - Perdas Ativas
C.2	Curvas de nível para a função objetivo f_Q - Perdas Reativas
C.3	Curvas de nível para a função objetivo f_S - Perdas Aparentes
C.4	Curvas de nível para a função objetivo \tilde{f}_S - Perdas Aparentes Aproximadas 177
C.5	Diagrama unifilar do sistema de 30 barras
C.6	Diagrama unifilar do sistema de 57 barras
~ -	

Lista de Tabelas

3.1	Dados de barras para o sistema de três barras.	26
3.2	Dados de ramos para o sistema de três barras	26
3.3	Suporte de reativos no ponto inicial	27
3.4	Ponto de perdas mínimas ativas.	27
3.5	Suporte de reativos e ponto de perdas mínimas ativas	27
3.6	Ponto de perdas mínimas reativas série.	29
3.7	Suporte de reativos e ponto de perdas mínimas reativas série	29
3.8	Indicadores para o suporte de potência reativa	32
3.9	Suporte de reativos no ponto inicial para o sistema IEEE 14 barras	33
3.10	Perdas ativa e reativa série mínimas.	33
3.11	Suporte de reativos no ponto de perdas mínimas ativas	35
3.12	Suporte de reativos no ponto ótimo da minimização de perdas reativas série	36
3.13	Suporte de reativos no ponto inicial.	43
3.14	Perdas ativa e reativa série mínimas.	44
3.15	Suporte de reativos no ponto de perdas mínimas ativas	45
3.16	Suporte de reativos no ponto de perdas mínimas reativas	46
3.17	Suporte de reativos no ponto inicial	54
3.18	Perdas ativa e reativa série mínimas	54
3.19	Suporte de reativos no ponto de perdas mínimas ativas	56
3.20	Suporte de reativos no ponto de perdas mínimas reativas série	57
3.21	Suporte de reativos no ponto inicial para o sistema IEEE 118 barras	65
3.22	Perdas ativa e reativa série mínimas	66
3.23	Suporte de reativos no ponto de perdas mínimas ativas	68

3.24	Suporte de reativos no ponto ótimo para a minimização de perdas reativas série do
	sistema IEEE 118 barras
4.1	Perdas ativas, reativas, aparentes e aparentes aproximadas mínimas
4.2	Suporte de reativos no ponto de perdas mínimas aparentes série
4.3	Suporte de reativos no ponto de perdas mínimas aparentes série aproximadas 88
4.4	Perdas ativas, reativas, aparentes e aparentes aproximadas mínimas 95
4.5	Suporte de reativos no ponto de perdas mínimas aparentes série
4.6	Suporte de reativos no ponto de perdas mínimas aparentes série aproximadas 97
4.7	Perdas ativas, reativas, aparentes e aparentes aproximadas mínimas
4.8	Suporte de reativos no ponto de perdas mínimas aparentes série
4.9	Suporte de reativos no ponto de perdas mínimas aparentes série aproximadas 107
4.10	Perdas ativas, reativas, aparentes e aparentes aproximadas mínimas
4.11	Suporte de reativos no ponto de perdas mínimas aparentes série
4.12	Suporte de reativos no ponto de perdas mínimas aparentes série aproximadas 118
4.13	Tensão nas barras de carga radiais
4.14	Tensão nas barras de carga radiais
4.15	Tensão nas barras de carga radiais
4.16	Tensão nas barras de carga radiais
A.1	Definição dos parâmetros dos transformadores em fase
B .1	Definição da derivada dos parâmetros dos transformadores em fase
C .1	Dados de barras para o sistema de 14 barras
C.2	Dados de ramos para o sistema de 14 barras
C.3	Dados de barras para o sistema de 30 barras
C.4	Dados de ramos para o sistema de 30 barras
C.5	Dados de barras para o sistema de 57 barras
C.6	Dados de ramos para o sistema de 57 barras
C.7	Dados de barras para o sistema de 118 barras
C.8	Dados de ramos para o sistema de 118 barras

Lista de Símbolos

- V_k - magnitude da tensão na barra k; θ_k - ângulo da tensão na barra k; $heta_{km}$ - diferença angular entre as barras k e $m (\theta_{km} = \theta_k - \theta_m);$ fasor da tensão na barra $k (E_k = V_k e^{j\theta_i});$ E_k I_k injeção líquida de corrente na barra k; I^{sh}_{ν} injeção de corrente na barra k devido ao elemento shunt (banco de capacitores ou indutores); P_{c_i} potência de carga ativa na barra k; Q_{c_i} potência de carga reativa na barra k; P_{a_i} - potência ativa gerada na barra k; - potência reativa gerada na barra k; Q_{g_i} P_k^{esp} potência ativa especificada na barra $k (P_k^{esp} = P_{g_i} - P_{c_i});$ Q_k^{esp} potência reativa especificada na barra $k (Q_k^{esp} = Q_{g_i} - Q_{c_i});$ P_k^{calc} injeção líquida de potência ativa na barra $k (P_k^{calc} = P_k^{esp});$ Q_k^{calc} injeção líquida de potência reativa na barra $k (Q_k^{calc} = Q_k^{esp});$ P_k injeção líquida de potência ativa; Q_k injeção líquida de potência reativa; P_{km} - fluxo de potência ativa no ramo k - m; Q_{km} fluxo de potência reativa no ramo k - m; Q_k^{sh} componente de injeção de reativos na barra k devido ao elemento reativo shunt ligado à barra (banco de capacitores ou indutores, $Q_k^{sh} = b_k^{sh} V_k^2$);
- impedância do ramo k m; z_{km}

r_{km}	-	resistência do ramo $k - m$;
x_{km}	-	reatância do ramo $k - m$;
y_{km}	-	admitância do ramo $k-m$;
g_{km}	-	condutância do ramo $k-m$;
b_{km}	-	susceptância do ramo $k - m$;
t_{km}	-	tap do transformador em fase do ramo $k - m$;
b_k^{sh}	-	susceptância shunt ligada à barra k ;
b_{km}^{sh}	-	susceptância shunt do ramo $k - m$;
Ω_k	-	conjunto das barras vizinhas à barra k ;
${\cal K}$	-	conjunto das barras vizinhas à barra k mais a própria barra k ;
j	-	base dos números imaginários $(j = \sqrt{-1})$.

Lista de Abreviaturas

SL	-	barra de referência ou folga, Slack;
PQ	-	barra de carga;
PV	-	barra de geração;
NB	-	número de barras da rede;
FC	-	fluxo de carga;
FPOR	-	fluxo de potência ótimo reativo;
f_P	-	função objetivo de perdas de potência ativa;
f_Q	-	função objetivo de perdas de potência reativa;
f_S	-	função objetivo de perdas de potência aparente;
\tilde{f}_S	-	função objetivo de perdas aproximadas de potência aparente;
KKT	-	Karush-Kuhn-Tucker;
MVA	-	Mega Volt Ampere;
MVAr	-	Mega Volt Ampere Reativo;
MW	-	Mega Watt.

Capítulo 1

Introdução

Heurísticas para os ajustes de controle local de potência reativa, magnitudes de tensão e correntes, juntamente com ferramentas de cálculo de fluxo de carga, foram bastante utilizadas com o objetivo de minimização das perdas de potência ativa em sistemas de transmissão como relata Smith Jr. and Tong (1963). Por outro lado, as formulações que utilizam modelos de otimização para minimização de perdas de potências ativa e reativa, têm sido propostas e aplicadas sempre com a finalidade de melhoria da operação de sistemas de transmissão. Fernandes et al. (1980) apresenta uma estratégia que minimiza perdas de potência ativa e de potência reativa em momentos subseqüentes para a melhoria operacional. Chang et al. (1990) propõe uma estratégia para melhoria da operação com múltiplos objetivos, dentre os quais inclui a minimização das perdas ativas de transmissão dentro do processo de controle de tensão em tempo real.

De um modo geral, o gerenciamento de recursos para suporte de potência reativa e controle de tensão, tem sido uma preocupação constante na operação, segundo Nedwick et al. (1995) e Sharif et al. (1996), uma vez que ações nesse sentido podem melhorar a capacidade de transmissão dos sistemas com uma boa relação custo/benefício. Nedwick et al. (1995) apresentam uma estratégia que envolve a minimização de perdas de potência ativa e de circulação de potência reativa. Isto é conseguido por meio do despacho das variáveis controladas de fontes, de potência reativa, localizadas tão próximas dos centros de carga quanto possível. Sharif et al. (1996) propõe uma estratégia operacional para a otimização do suporte de potência reativa com base na minimização das perdas de energia.

As heurísticas do tipo proposto por Smith Jr. and Tong (1963) para as decisões sobre as variá-

veis relacionadas ao suporte de potência reativa baseadas em modelos de cálculo de fluxo de carga dados por Ward and Hale (1956), Tinney and Hart (1967), Stott (1972), Stott and Alsaç (1974) e Stott (1974) evoluíram para estratégias que usam cálculos com modelos de otimização dados por Fernandes et al. (1980), Chang et al. (1990), Nedwick et al. (1995) e Sharif et al. (1996). A formulação dos problemas de despacho econômico e de minimização de perdas como um modelo de otimização, que contemplam as equações do fluxo de carga como restrições, e resolvidos pelo método do gradiente reduzido com projeção é apresentada por Dommel and Tinney (1968). Happ (1974, 1977) expõe uma análise do problema do despacho econômico. Carpentier (1985) apresenta uma análise do problema geral do Fluxo de Potência Ótimo a mercê de possíveis aplicações, como minimização de perdas e despacho econômico e as principais técnicas de soluções aplicadas até então ao problema.

Os métodos de solução do problema não linear do Fluxo de Potência Ótimo são o método do gradiente reduzido de Dommel and Tinney (1968), o método de Newton proposto por Sun et al. (1984) e o método de pontos interiores, baseado no método de Newton, proposto por Granville (1994) e Wu et al. (1994).

O método de Newton de Sun et al. (1984), quando aplicado ao problema de perdas mínimas, exige algumas heurísticas adicionais para evitar a ocorrência de singularidade na matriz de coeficientes durante o processo iterativo, e, conseqüentemente, possibilitar a convergência dos algoritmos. No caso do método dos pontos interiores dado por Granville (1994) e Wu et al. (1994), o mesmo efeito é conseguido pelo uso de funções barreiras logarítmicas no tratamento das restrições de desigualdade. Em ambos os casos, como os métodos operam com acréscimos de termos funcionais (penalidades no caso do método clássico de Newton e funções logarítmicas no caso do método de pontos interiores) sobre a função Lagrangeana do problema, fica bastante difícil a obtenção do mínimo global das perdas do sistema, principalmente quando são relaxadas as restrições de limites em tensões de barras de carga e de injeção de potência reativa em barras com controle de tensão.

O propósito fundamental deste trabalho é o estudo do comportamento de índices de desempenho, sendo um deles as perdas de potência ativa do sistema, cuja minimização melhora a operação dos sistemas de transmissão do ponto de vista de suporte de potência reativa e perfil de magnitudes de tensão. Neste caso o uso de algoritmos baseados no método de Newton, propostos por Sun et al. (1984), Granville (1994) e Wu et al. (1994), fica praticamente proibitivo, principalmente quando as restrições de limites em tensões de barras de carga e de injeção de potência reativa em barras com controle de tensão são relaxadas para a análise do comportamento dos índices no maior espaço de decisão possível. Portanto, foi adotado para análise do comportamento dos índices estudados, e proposto neste trabalho, o método do gradiente reduzido com projeção dado por Dommel and Tinney (1968), tomando como variáveis de decisão as magnitudes de tensão em barras (com controle de tensão) e taps de transformadores em fase (com controle).

No Capítulo 2, são apresentadas as técnicas de otimização apresentadas em Luenberger (1973), Bazaraa and Shetty (1979) e Ferreira (2004) utilizadas para obtenção do ponto de perdas mínimas no sistema de transmissão, abrangendo a projeção do gradiente reduzido, a busca unidimensional e o algoritmo utilizado na implementação do FPOR.

No Capítulo 3, são apresentados os indicadores utilizados na análise do suporte de potência reativa e perfil de tensão no ponto de perdas mínimas do sistema, incluindo os sistemas de três barras, obtído em Dommel and Tinney (1968), IEEE 14, IEEE 30, IEEE 57 e IEEE 118 barras, extraídos de http://www.ee.washington.edu/research/pstca, a título de exemplo.

No Capítulo 4, são propostos outros índices de desempenho para suporte de potência reativa e magnitudes de tensão, com a visão de melhorar a geração e operação.

No Apêndice A, é apresentado o modelo de FC utilizado na implementação da rotina computacional de Monticelli (1983). Também são mostrados o modelo da rede, as equações do fluxo de carga e o método de Newton.

No Apêndice B, é apresentada a diferenciação dos parâmetros dos transformadores em fase utilizados na implementação do programa de *FPOR*.

Finalmente, no Apêndice C, são apresentados os dados de barras e de ramos, bem como o diagrama unifilar dos sistemas utilizados neste trabalho.

Todas as simulações, contidas neste trabalho, foram realizadas com o ambiente computacional do Matlab 6.0 R12. A precisão utilizada na convergência do método foi de 10^{-5} .

Capítulo 2

Minimização de Perdas pelo Método do Gradiente Reduzido Projetado

Neste capítulo, é apresentado um modelo de Fluxo de Potência Ótimo Reativo (FPOR), juntamente com o método do gradiente reduzido projetado, utilizado para obter a solução do problema. O algoritmo clássico baseado neste método foi utilizado nos testes dos índices de desempenho propostos e analisados.

No modelo adotado para os estudos neste trabalho, os limites de tensão, em barras de carga (PQ) e os limites de injeções de potência reativa, em barras com controle de tensão $(SL \ e \ PV)$, são relaxados.

Existem dois motivos para tal relaxação ter sido adotada. O primeiro, deve-se ao fato de que necessita-se da caracterização da função objetivo (considerada índice de desempenho) no espaço das variáveis de decisão, independentemente das necessidades extras de potência reativa para regular a tensão nas barras de carga. O segundo é que, tentar manter factibilidade das tensões, em barras PQ, e das injeções de potência reativa, nas barras de geração, sem recursos extras de potência reativa, introduz problemas de convergência nos algoritmos.

Ainda neste capítulo são apresentadas a montagem dos gradientes e matrizes jacobianas utilizadas na efetivação do método, a projeção do gradiente reduzido, a técnica de busca unidimensional e o algoritmo implementado.

2.1 Representação das Equações do Fluxo de Carga

Dentre as formas utilizadas para se representar as equações algébricas do fluxo de potência, a mais concisa é o vetor de equações dado por:

$$g(x,u) = 0 \tag{2.1}$$

A equação 2.1 representa as equações de desvios de potências ativa e reativa, apresentados no Apêndice A, página 143, onde x é o vetor de variáveis dependentes (ou variáveis de estado) e u é o vetor de variáveis independentes (ou variáveis de controle).

Os valores desconhecidos das potências ativa e reativa ($P_k \in Q_k$) são encontrados diretamente pelas equações A.64 e A.65, página 159, entretanto, o problema básico é encontrar as magnitudes de tensão V e os ângulos θ , ambos desconhecidos. Assim, define-se x como o vetor das variáveis desconhecidas, e u o vetor das variáveis especificadas, como apresentam as equações 2.2 e 2.3.

$$x = \begin{bmatrix} V_k & k \in \{PQ\}\\ \theta_k & k \in \{PQ, PV\} \end{bmatrix}$$
(2.2)

$$u = \begin{bmatrix} V_k & k \in \{SL, PV\} \\ t_{kl} & kl \in \{trafos\} \end{bmatrix}$$
(2.3)

As equações A.66 e A.67 podem, finalmente, ser escritas em termos das definições de x e u apresentadas pelas equações 2.2 e 2.3, conforme mostra a equação 2.4.

$$g(x,u) = \begin{bmatrix} P_k^{esp} - P_k^{calc}(V,t,\theta) & k \in \{PV,PQ\} \\ Q_k^{esp} - Q_k^{calc}(V,t,\theta) & k \in \{PQ\} \end{bmatrix}$$
(2.4)

onde V, $t \in \theta$ são vetores que contém as magnitudes das tensões, taps dos transformadores em fase e os ângulos de fase das tensões, respectivamente. Como já mencionado na lista de símbolos, P_k^{esp} representa a diferença entre as potências ativas gerada e consumida, sendo que a geração de ativos é fixa.

2.2 FPOR em Magnitudes de Tensão Controladas e Taps de Transformadores em Fase

Um dos mais importantes procedimentos computacionais, utilizados para análises e planejamento de operação de um sistema de potência, é o programa de Fluxo de Carga AC, ou ainda comumente conhecido como Fluxo de Potência AC. Este programa constitui-se de uma simulação, em estado estacionário, de fluxos de potência e tensão, e respeita as restrições de atendimento de toda carga imposta ao sistema.

Para que haja minimização de perdas de potência, o programa de Fluxo de Carga deve ser melhorado. Para isto, é necessário encontrar novos pontos de convergência, que façam as perdas nas linhas de transmissão serem reduzidas ao se redefinir a geração, identificando o ponto ótimo de operação. Soluções de Fluxo de Potência Ótimo podem ser usadas não somente no planejamento, mas também em operações dos sistemas. Em operação, este programa provê o ponto de operação de perdas mínimas de potência, reunindo todas as restrições de fluxos e tensões relacionadas à segurança e qualidade de serviço (QoS) do sistema de potência.

Em linhas gerais, o Fluxo de Potência Ótimo Reativo (FPOR) consiste de uma ferramenta matemática utilizada para encontrar valores de x e u que minimizam a função objetivo, sujeito às equações de Fluxo de Carga e restrições de desigualdade, encontrando factibilidade e segurança operacional. A formulação do problema FPOR é apresentado pelo sistema 2.5.

$$\begin{cases} \min f(x,u) \\ s.a \quad g(x,u) = 0 \\ u^{\min} \le u \le u^{\max} \end{cases}$$
(2.5)

onde f(x, u) são as perdas de potências ativa ou reativa na transmissão, apresentadas no Apêndice A; x é o vetor das variáveis de estado; e u é o vetor das variáveis de controle, conforme foram definidos nas equações 2.2 e 2.3, sendo que, os limites de tensões e taps dos transformadores estão definidos no Apêndice C.

2.2.1 Desconsiderando os Limites em Variáveis de Controle

Uma versão simplificada do problema do Fluxo de Potência Ótimo Reativo com minimização de perdas, tanto ativas quanto reativas, consiste basicamente no modelo não linear de otimização 2.6. Neste modelo são contemplados somente restrições de igualdade, ou seja, é um subproblema do modelo 2.5. Os limites em u serão tratados mais adiante.

$$\begin{cases} \min & f(x,u) \\ s.a & g(x,u) = 0 \end{cases}$$
(2.6)

Para a solução de otimização do problema apresentado pela equação 2.6, que satisfaz a restrição de igualdade, faz-se necessária a utilização da função Lagrangeana, que é facilmente obtida e apresentada pela equação 2.7.

$$\mathcal{L} = f(x, u) + \lambda^T g(x, u) \tag{2.7}$$

onde λ^T é o vetor transposto dos multiplicadores de Lagrange, e representa as componentes ativas e reativas, λ_p e λ_q , respectivamente.

As condições de primeira ordem de KKT para otimalidade são:

$$\begin{cases} \frac{\partial \mathcal{L}}{\partial x} = \frac{\partial f}{\partial x} + \left[\frac{\partial g}{\partial x}\right]^T \lambda = 0 \quad (a) \\ \frac{\partial \mathcal{L}}{\partial u} = \frac{\partial f}{\partial u} + \left[\frac{\partial g}{\partial u}\right]^T \lambda = 0 \quad (b) \\ \frac{\partial \mathcal{L}}{\partial \lambda} = g(x, u) = 0 \quad (c) \end{cases}$$
(2.8)

onde $\frac{\partial \mathcal{L}}{\partial x}$, $\frac{\partial \mathcal{L}}{\partial u}$ e $\frac{\partial \mathcal{L}}{\partial \lambda}$ são os gradientes da equação 2.7 relativos a $x, u \in \lambda$, respectivamente.

2.2.2 Gradiente Reduzido

Uma abordagem alternativa para se calcular o gradiente é por meio da matriz de sensibilidade, como informação intermediária, ao invés dos multiplicadores de Lagrange. Por definição, o gradiente da função objetivo pode ser escrito como na equação 2.9, com x em função de u.

$$f(x(u), u) = \phi(u) \longrightarrow \Delta f = \nabla_u \phi^T \cdot \Delta u$$
(2.9)

A equação 2.9 ainda pode ser escrita da seguinte forma:

$$\Delta f(x,u) = \frac{\partial f^{T}}{\partial x} \cdot \Delta x + \frac{\partial f^{T}}{\partial u} \cdot \Delta u$$
(2.10)

A restrição g(x, u), da equação 2.5, pode ser expandida em série de Taylor (engloba-se somente os termos de primeira ordem) da seguinte forma:

$$g(x,u) = g(x^k, u^k) + \left[\frac{\partial g}{\partial x}\right] \cdot \Delta x + \left[\frac{\partial g}{\partial u}\right] \cdot \Delta u + \dots = 0$$
(2.11)

Onde $g(x^k, u^k)$, na equação 2.11, é igual a zero, pois o ponto é factível por representar a solução do fluxo de carga. Ao se eliminar este termo, a equação pode ser reescrita como:

$$\left[\frac{\partial g}{\partial x}\right] \cdot \Delta x + \left[\frac{\partial g}{\partial u}\right] \cdot \Delta u = 0 \tag{2.12}$$

Ao se manipular os termos da equação 2.12, consegue-se isolar Δx , o que pode ser visualizado na equação 2.13.

$$\Delta x = \underbrace{-\left[\frac{\partial g}{\partial x}\right]^{-1} \cdot \left[\frac{\partial g}{\partial u}\right]}_{[S]} \cdot \Delta u \tag{2.13}$$

onde [S] é a matriz de sensibilidade citada no início desta seção.

Com o auxílio da equação 2.13, pode-se reescrever a equação 2.10 da seguinte forma:

$$\Delta f(x,u) = -\frac{\partial f}{\partial x}^{T} \cdot \left[\frac{\partial g}{\partial x}\right]^{-1} \cdot \left[\frac{\partial g}{\partial u}\right] \cdot \Delta u + \left[\frac{\partial f}{\partial u}\right]^{T} \cdot \Delta u$$
$$= \left\{\frac{\partial f}{\partial u}^{T} - \frac{\partial f}{\partial x}^{T} \cdot \left[\frac{\partial g}{\partial x}\right]^{-1} \cdot \left[\frac{\partial g}{\partial u}\right]\right\} \cdot \Delta u$$
$$= \left\{\frac{\partial f}{\partial u} - \left[\frac{\partial g}{\partial u}\right]^{T} \cdot \left[\frac{\partial g}{\partial x}\right]^{T-1} \cdot \frac{\partial f}{\partial x}\right\}^{T} \cdot \Delta u$$
(2.14)

Ao se comparar a equação 2.8a e a equação 2.14, pode-se definir que:

$$\nabla_u \phi = \frac{\partial f}{\partial u} - \left[\frac{\partial g}{\partial u}\right]^T \cdot \underbrace{\left[\frac{\partial g}{\partial x}\right]^{T^{-1}} \cdot \frac{\partial f}{\partial x}}_{-\lambda} \Rightarrow \lambda = -\left[\frac{\partial g}{\partial x}\right]^{T^{-1}} \cdot \frac{\partial f}{\partial x}$$

Finalmente, o gradiente reduzido é encontrado e apresentado pela equação 2.15.

$$\nabla_u \phi = \frac{\partial f}{\partial u} + \left[\frac{\partial g}{\partial u}\right]^T \cdot \lambda = \frac{\partial \mathcal{L}}{\partial u}$$
(2.15)

Note que 2.15 é idêntica à encontrada na equação 2.8b.

2.3 Gradientes e Matrizes Jacobianas

Os termos $\left[\frac{\partial g}{\partial x}\right]$ e $\left[\frac{\partial g}{\partial u}\right]$ das condições de otimalidade, apresentadas pelas equações 2.8a e 2.8b, representam os gradientes de *g* em relação a *x* e *u*, respectivamente. Retomando a equação 2.4,

$$g(x,u) = \begin{cases} P^{esp} - P^{calc}(x,u) = 0\\ Q^{esp} - Q^{calc}(x,u) = 0 \end{cases}$$

estes termos podem ser facilmente obtidos. Ao se diferenciar a equação 2.4 em relação à u e x, tem-se o primeiro passo para que as equações do sistema 2.8 sejam resolvidas. Tal diferenciação pode ser visualizada pelas equações 2.16 e 2.17.

$$\left[\frac{\partial g}{\partial u}\right] = -\left[\frac{\partial P^{calc}}{\partial u} \left|\frac{\partial Q^{calc}}{\partial u}\right]^T$$
(2.16)

$$\left[\frac{\partial g}{\partial x}\right] = -\left[\frac{\partial P^{calc}}{\partial x} \left|\frac{\partial Q^{calc}}{\partial x}\right]^T$$
(2.17)

A equação 2.4 apresenta termos constantes, P^{esp} e Q^{esp} , em relação às variáveis de derivação x e u. Desta forma, suas derivadas são iguais a zero, sendo eliminados das equações 2.16 e 2.17. Partindo-se do pressuposto que $u \in [V_{SL,PV}, Tap]$ e $x \in [V_{PQ}, \theta_{PQ,PV}]$, parte das equações 2.16 e 2.17 podem ser calculadas a partir da jacobiana apresentada na equação 2.18, que é a mesma jacobiana utilizada na solução do fluxo de carga.

$$J = -\begin{bmatrix} \frac{\partial P}{\partial \theta} & \frac{\partial P}{\partial V} \\ \frac{\partial Q}{\partial \theta} & \frac{\partial Q}{\partial V} \end{bmatrix}$$
(2.18)

O restante do gradiente $\begin{bmatrix} \frac{\partial g}{\partial u} \end{bmatrix}$, que não pode ser obtido pela equação 2.18, diz respeito aos taps dos transformadores em fase $\begin{bmatrix} \frac{\partial g}{\partial t} \end{bmatrix}$, e pode ser calculado a partir das mesmas equações utilizadas na construção da matriz jacobiana 2.18. Tais equações são utilizadas para os cálculos das injeções de potências ativa e reativa líqüídas nos nós do sistema de transmissão, apresentadas por 2.19 e 2.20.

$$P_k = V_k \sum_{l \in \mathcal{K}} V_l [G_{kl} \cos \theta_{kl} + B_{kl} \sin \theta_{kl}]$$
(2.19)

$$Q_k = V_k \sum_{l \in \mathcal{K}} V_l [G_{kl} \sin \theta_{kl} - B_{kl} \cos \theta_{kl}]$$
(2.20)

onde \mathcal{K} representa a vizinhança da barra k, inclusive a própria barra.

Para que a matriz $\begin{bmatrix} \frac{\partial g}{\partial t} \end{bmatrix}$ seja obtida de uma forma mais fácil e clara, algumas considerações serão feitas antes de se diferenciar as equações 2.19 e 2.20.

Nos transformadores em fase, a condutância G_{kl} é muito baixa, e pode ser desprezada, conforme mostram as equações 2.21 e 2.22.

$$P_k = V_k \sum_{l \in \mathcal{K}} V_l B_{kl} \operatorname{sen} \theta_{kl}$$
(2.21)

$$Q_k = -V_k \sum_{l \in \mathcal{K}} V_l B_{kl} \cos \theta_{kl}$$
(2.22)

O tap dos transformadores influenciam diretamente na montagem da matriz admitância Y, que, neste caso, é a própria matriz susceptância B por não apresentar perdas associadas.

Com estas considerações levantadas, o início do cálculo de $\left[\frac{\partial g}{\partial t}\right]$ é realizado a partir das equações 2.23 e 2.24, que apresentam os termos dependentes dos taps dos transformadores em fase.

$$P_k = V_k \sum_{l \in \mathcal{K}} V_l B_{kl}(t) \operatorname{sen} \theta_{kl}$$
(2.23)

$$Q_k = -V_k \sum_{l \in \mathcal{K}} V_l B_{kl}(t) \cos \theta_{kl}$$
(2.24)

As equações 2.23 e 2.24 podem ainda serem reescritas da seguinte forma:

$$P_k = V_k \sum_{l \in \Omega_k} V_l B_{kl}(t) \operatorname{sen} \theta_{kl}$$
(2.25)

$$Q_k = -V_k^2 B_{kk} - V_k \sum_{l \in \Omega_k} V_l B_{kl}(t) \cos \theta_{kl}$$
(2.26)

onde $B_{kl}(t)$ indica a dependência da susceptância em relação ao tap do tranformador em fase, e Ω_k representa a vizinhança da barra k.

Como $P \in Q$ devem ser calculados para todos os nós do sistema de transmissão, as injeções do lado l também podem ser escritas, como apresentam as equações 2.27 e 2.28.

$$P_l = -V_k \sum_{k \in \Omega_l} V_l B_{lk}(t) \operatorname{sen} \theta_{kl}$$
(2.27)

$$Q_k = -V_l^2 B_{ll} - V_k \sum_{k \in \Omega_l} V_l B_{lk}(t) \cos \theta_{kl}$$
(2.28)

Finalmente $\left[\frac{\partial g}{\partial t}\right]$ pode ser calculado, e as derivadas das equações 2.25, 2.26, 2.27 e 2.28 em relação ao tap são apresentadas abaixo.

$$\frac{\partial P_k}{\partial t_i} = V_k \sum_{l \in \Omega_k} V_l \frac{\partial B_{kl}(t)}{\partial t_i} \sin \theta_{kl}$$
(2.29)

$$\frac{\partial P_l}{\partial t_i} = -V_k \sum_{l \in \Omega_k} V_l \frac{\partial B_{lk}(t)}{\partial t_i} \operatorname{sen} \theta_{kl}$$
(2.30)

$$\frac{\partial Q_k}{\partial t_i} = -V_k^2 \frac{\partial B_{kk}(t)}{\partial t_i} - V_k \sum_{k \in \Omega_l} V_l \frac{\partial B_{kl}(t)}{\partial t_i} \cos \theta_{kl}$$
(2.31)

$$\frac{\partial Q_l}{\partial t_i} = -V_l^2 \frac{\partial B_{ll}(t)}{\partial t_i} - V_k \sum_{k \in \Omega_l} V_l \frac{\partial B_{lk}(t)}{\partial t_i} \cos \theta_{kl}$$
(2.32)

As equações 2.29, 2.30, 2.31 e 2.32 podem ser calculadas de uma forma mais simples ao se construir uma nova matriz $\begin{bmatrix} \frac{\partial B}{\partial t} \end{bmatrix}$, em que os modelos dos transformadores devem sofrer modificações para que a admitância série e as susceptâncias shunt sejam obtidas de forma correta, e, conseqüentemente, diminui-se o processamento. Detalhes a respeito destas alterações podem ser melhor compreendidas no Apêndice B.

A partir das informações obtidas pelas equações 2.29, 2.30, 2.31 e 2.32, uma nova matriz jacobiana pode ser construída (equação 2.33). Esta equação será usada para que as condições de otimalidade, descritas por 2.8b, sejam satisfeitas.

$$J = -\begin{bmatrix} \frac{\partial P}{\partial \theta} & \frac{\partial P}{\partial V} & \frac{\partial P}{\partial t} \\ \frac{\partial Q}{\partial \theta} & \frac{\partial Q}{\partial V} & \frac{\partial Q}{\partial t} \end{bmatrix}$$
(2.33)

2.4 Projeção do Gradiente Reduzido e Direção Factível Normalizada

A direção factível de uma função é a direção que satisfaça todas as restrições impostas pelo problema. Para o FPOR, esta direção é a que minimiza a função objetivo, respeitando os limites impostos pelo vetor u, sendo calculada da seguinte forma:

$$r_{j}^{k} = \begin{cases} 0, & \text{se} \quad \frac{\partial \mathcal{L}}{\partial u_{j}} < 0 \text{ e } u_{j}^{k} = u_{j}^{m \acute{a} x} \\ 0, & \text{se} \quad \frac{\partial \mathcal{L}}{\partial u_{j}} > 0 \text{ e } u_{j}^{k} = u_{j}^{m \acute{a} n} \\ -\frac{\partial \mathcal{L}}{\partial u_{j}}, & \text{se} \quad u_{j}^{m \acute{a} n} < u_{j}^{k} < u_{j}^{m \acute{a} x} \end{cases}$$
(2.34)

Quando uma restrição se torna ativa, r_j^k é igual a zero, caso contrário, é feita igual ao negativo do gradiente, e representa a direção de decrescimento da função objetivo.

A normalização da direção factível é obtida pelo quociente entre r_j^k e o módulo do vetor direção factível, como apresenta a equação 2.35.

$$d^{k} = \frac{r^{k}}{\|r^{k}\|}$$
(2.35)

Os limites das variáveis de controle, que foram ignoradas na seção 2.2.1, são levados em consideração no cálculo do passo máximo da direção factível. Desta forma, garante-se que as restrições das variáveis de controle sejam obedecidas. O vetor que contém os limites de u é criado a partir da equação 2.36.

$$u_{j}^{lim} = \begin{cases} u_{j}^{m\acute{a}x}, & \text{se} \quad d_{j} > 0\\ u_{j}^{m\acute{n}n}, & \text{se} \quad d_{j} < 0\\ 0, & \text{se} \quad d_{j} = 0 \end{cases}$$
(2.36)

Ao se considerar os limites impostos por u_j^{lim} , calcula-se um fator β , que nada mais é do que um vetor em que cada elemento determina o máximo que se pode caminhar em cada direção. A equação 2.37 demonstra como β é obtido.

$$\beta_j = \frac{u_j^{lim} - u_j^k}{d_j} > 0$$
 (2.37)

Para que as direções não se tornem infactíveis, o passo máximo é definido pelo argumento mínimo de β , como mostra a equação 2.38.

$$\alpha^{m\acute{a}x} = \min_{j} \beta_j \tag{2.38}$$

2.5 Busca Unidimensional

Um método mais conciso e rápido de se chegar ao valor mínimo da direção factível é encontrar o passo ótimo α^{*1} , ou seja, um valor que multiplique $-\frac{\partial \mathcal{L}}{\partial u}$ e que, em um número mínimo de passos, a direção seja minimizada.

O α^* é definido como:

$$\min_{\alpha} \varphi(\alpha) = f\left(x\left[u(\alpha)\right], u(\alpha)\right) \tag{2.39}$$

e está compreendido entre 0 (zero) e $\alpha^{máx}$, como mostra a equação 2.40.

$$0 \le \alpha^* \le \alpha^{max} \tag{2.40}$$

O problema como um todo é formulado no \mathbb{R}^n , portanto, uma busca por aproximação quadrática se faz necessária para que se estime α^* . Esta aproximação é feita com o auxílio de três pontos para que uma interpolação quadrática seja realizada, dados por $\varphi(0)$, o $\varphi(\alpha^{máx})$ e a derivada da função, como apresenta a figura 2.1.

Com estes três pontos é possível traçar a curva que possui, no valor mínimo, o ponto mais próximo do passo ótimo procurado. A figura 2.2 ilustra a curva traçada, juntamente com o passo ótimo α^* .

A equação que gera a aproximação da curva apresentada na figura 2.2 é ilustrada pela equação 2.41.

$$\varphi(\alpha) \cong A\alpha^2 + B\alpha + C \tag{2.41}$$

Para a interpolação dos pontos, os elementos A, $B \in C$ da equação 2.41 necessitam ser calculados. O elemento C é facilmente obtido, pois, quando α é igual a zero, a equação 2.41 retorna seu valor:

$$\varphi(0) = C \tag{2.42}$$

¹Outras metodologias podem ser utilizadas para o passo na direção factível, como por exemplo a busca Fibonacci e a busca linear por interpolações, mas que não possuem a mesma velocidade de convergência, pois geram um número maior de iterações.

Fig. 2.1: Três pontos necessários para a aproximação quadrática.

Fig. 2.2: Aproximação da forma quadrática necessária para encontrar o passo ótimo.

O elemento B é obtido também com α igual a zero, mas, desta vez, a equação utilizada é a derivada de 2.41 em relação à α :

$$\varphi'(0) = B \tag{2.43}$$

onde $\varphi'(0)$ pode ser encontrado a partir da definição da derivada direcional descrita abaixo:

$$\varphi(\alpha) = \Phi\left(\underbrace{u^k + \alpha \widehat{S}}_{u}, x\left(\underbrace{u^k + \alpha \widehat{S}}_{u}\right)\right) = \Phi(u)$$
(2.44)

onde \widehat{S} é a direção normalizada.

A derivada da equação 2.44, em relação à α , é apresentada pela equação 2.45.

$$\left. \frac{d\varphi}{d\alpha} \right|_{\alpha=0} = \varphi'(0) = \lim_{\chi \to 0} \left[\frac{\varphi(\chi) - \varphi(0)}{\chi} \right]$$
(2.45)

A equação 2.46 é equivalente à equação 2.45, e representa a derivada direcional.

$$\frac{\partial \Phi}{\partial \widehat{S}}\Big|_{u^k} = \lim_{\chi \to 0} \left[\frac{\Phi(u^k + \chi \widehat{S}) - \Phi(u^k)}{\chi} \right] = \nabla_u \Phi(u^k)^T \cdot \widehat{S}$$
(2.46)

Analogamente à definição da equação 2.46, pode-se escrever $\varphi'(0)$ como na equação 2.47.

$$\varphi'(0) = \nabla_u \Phi(u^k)^T \cdot d^k$$
$$= \frac{\partial \mathcal{L}}{\partial u} \Big|_{u^k}^T \cdot d^k$$
(2.47)

ou seja, o produto do gradiente reduzido pela direção factível resulta no elemento B da equação 2.41.

O elemento A é obtido ao se manipular a equação 2.41:

$$A = \frac{\varphi(\alpha) - B\alpha^{m\acute{a}x} - C}{\alpha^2} \tag{2.48}$$

Como $B \in C$ estão calculados, a equação 2.48 toma a seguinte forma:

$$A = \frac{\varphi(\alpha) - \varphi'(0)\alpha - \varphi(0)}{\alpha^2}$$
(2.49)

Agora o elemento A é função apenas de α , e, como o único valor conhecido de α , até o mo-

mento, é α^{max} , este será substituído na equação 2.49.

$$A = \frac{\varphi(\alpha^{m\acute{a}x}) - \varphi'(0)\alpha^{m\acute{a}x} - \varphi(0)}{(\alpha^{m\acute{a}x})^2}$$
(2.50)

Sabe-se que um ponto estacionário de uma função é dado pela inclinação nula da primeira derivada. Como a função é convexa, e, supostamente definida positiva, supõe-se que este ponto seja um ponto de mínimo global, e que satisfaz o valor ótimo de α , ou seja, α^* . O cálculo de α^* é descrito abaixo:

$$\varphi'(\alpha) = 2A\alpha^* + B = 0$$

$$\alpha^* = \frac{-B}{2A}$$
(2.51)

Com o passo ótimo calculado, o ponto de perdas mínimas é dado pela equação 2.52.

$$u^{k+1} = u^k + \alpha^* \cdot d^k \tag{2.52}$$

2.6 Algoritmo

A minimização do sistema é proporcionada pela solução da função Lagrangeana, equação 2.53. Para isto, as condições necessárias de primeira ordem de Karush-Kuhn-Tucker (KKT), sistema de equações 2.54, devem ser satisfeitas.

$$\mathcal{L} = f(x, u) + \lambda^T g(x, u) \tag{2.53}$$

$$\begin{cases} \frac{\partial \mathcal{L}}{\partial x} = \frac{\partial f}{\partial x} + \begin{bmatrix} \frac{\partial g}{\partial x} \end{bmatrix} \lambda = 0 \quad (a) \\ \frac{\partial \mathcal{L}}{\partial u} = \frac{\partial f}{\partial u} + \begin{bmatrix} \frac{\partial g}{\partial u} \end{bmatrix} \lambda = 0 \quad (b) \\ \frac{\partial \mathcal{L}}{\partial \lambda} = g(x, u) = 0 \quad (c) \end{cases}$$
(2.54)

Os passos para a solução das equações em 2.54 são apresentados abaixo:

- 1. Resolve-se a equação 2.54c pelo Método de Newton;
- 2. Estima-se λ de 2.54a a partir de $\left[\frac{\partial g}{\partial x}\right]^T \lambda = -\frac{\partial f}{\partial x}$;
- 3. Calcula-se o gradiente reduzido em 2.54b, conforme a equação 2.55:

$$\nabla_u = \frac{\partial \mathcal{L}}{\partial u} = \frac{\partial f}{\partial u} + \left[\frac{\partial g}{\partial u}\right] \lambda \longrightarrow d$$
(2.55)

- 4. Incrementa-se $u \longrightarrow u^{k+1} = u^k + \alpha^* \cdot d^k$
- 5. Volta-se ao segundo passo enquanto a função objetivo estiver diminuindo de valor, respeitando as restrições impostas.

O processo de minimização pode ser melhor interpretado por meio do fluxograma do programa implementado para o cálculo do FPOR (figura 2.3).

Fig. 2.3: Fluxograma de Cálculo do Fluxo de Potência Ótimo Reativo

Capítulo 3

Perfil de Magnitudes de Tensão e Suporte de Potência Reativa Correspondentes a Soluções de Perdas Mínimas Ativa e Reativa

Neste capítulo, é analisado o modo como a minimização das perdas ativa e reativa série influem no perfil de tensão e no suporte de potência reativa.

Para esta análise, a caracterização dos diversos índices de desempenho, utilizados na avaliação da solução obtida com a minimização, será facilitada por meio de indicadores. Tais indicadores serão definidos para análise do perfil de tensão, do suporte de potência reativa e dos taps dos transformadores em fase.

3.1 Indicadores para Análise do Perfil de Tensão e Taps de Transformadores em Fase

Na seção 3.1.1, serão definidos os indicadores para análise das tensões nas barras SL e PV e também nos taps dos transformadores em fase. Na seção 3.1.2, os mesmos indicadores serão utilizados na caracterização das tensões nas barras PQ.

3.1.1 Indicadores para as Variáveis Controladas

As variáveis controladas, isto é, as tensões nas barras "slack" e PV e os taps dos transformadores em fase, serão analisadas por meio de indicadores de valor médio e desvio padrão, e são apresentados pelas equações 3.1, 3.2, 3.3 e 3.4.

O valor médio das magnitudes de tensão será representado por $\overline{V}^{contr.}$, e é dado pela equação 3.1.

$$\overline{V}^{contr.} = \frac{1}{n_{PV} + 1} \sum_{j \in \{SL\} \cup \{PV\}} V_j \tag{3.1}$$

O desvio quadrático relativo ao valor médio das magnitudes de tensão (desvio padrão) será representado por $DQM\overline{V}^{contr.}$ e é definido na equação 3.2.

$$DQM\overline{V}^{contr.} = \sqrt{\frac{1}{n_{PV}+1} \sum_{j \in \{SL\} \cup \{PV\}} \left(V_j - \overline{V}^{contr.}\right)^2}$$
(3.2)

O valor médio dos taps de transformadores em fase será representado por $\overline{t}^{contr.}$, e é dado pela equação 3.3.

$$\bar{t}^{contr.} = \frac{1}{n_{tr}} \sum_{j \in \{tr\}} t_j \tag{3.3}$$

 $DQM\bar{t}^{contr.}$ representará o desvio quadrático relativo ao valor médio dos taps e é definido pela equação 3.4.

$$DQM\overline{t}^{contr.} = \sqrt{\frac{1}{n_{tr}} \sum_{j \in \{tr\}} \left(t_j - \overline{t}^{contr.}\right)^2}$$
(3.4)

3.1.2 Indicadores para as Magnitudes de Tensão das Barras de Carga

Como comentado no início deste capítulo, os indicadores para análise do perfil de tensão, nas barras de carga, serão definidos de modo análogo.

O indicador \overline{V}^{carga} representa o valor médio das tensões nas barras PQ, e é definido por 3.5.

$$\overline{V}^{carga} = \frac{1}{n_{PQ}} \sum_{j \in \{PQ\}} V_j \tag{3.5}$$

O desvio quadrático relativo ao valor médio das magnitudes de tensão será representado por $DQM\overline{V}^{carga}$, e é definido em 3.6.

$$DQM\overline{V}^{carga.} = \sqrt{\frac{1}{n_{PQ}} \sum_{j \in \{PQ\}} \left(V_j - \overline{V}^{carga}\right)^2}$$
(3.6)

3.2 Minimização das Perdas Ativa e Reativa nos Elementos Série / Exemplo

Nos estudos a respeito dos sistemas de transmissão, é bastante conhecido o fato que a sensibilidade, entre o fluxo de potência ativa P_{kl} e a abertura angular θ_{kl} , é bem mais significativa que a sensibilidade entre o fluxo P_{kl} e a queda de magnitudes de tensão $(V_k - V_l)$. O mesmo ocorre com a sensibilidade entre o fluxo de potência reativa série $Q_{kl}^{série}$ e a queda de magnitudes de tensão, que é bem mais significativa que a sensibilidade entre $Q_{kl}^{série}$ e θ_{kl} .

Os fluxos de potência ativa e reativa, nos elementos série das linhas de transmissão e transformadores em fase, são dados pelas equações 3.7 e 3.8.

$$P_{kl} = V_k^2 g_{kl} - V_k V_l g_{kl} \cos \theta_{kl} - V_k V_l b_{kl}(t_{kl}) \sin \theta_{kl}$$

$$(3.7)$$

$$Q_{kl}^{s\acute{e}rie} = -V_k^2 b_{kl} + V_k V_l b_{kl}(t_{kl}) \cos \theta_{kl} - V_k V_l g_{kl} \sin \theta_{kl}$$
(3.8)

Os fluxos no sentido oposto aos apresentados pelas equações 3.7 e 3.8 são dados pelas equações

3.9 3.10.

$$P_{lk} = V_l^2 g_{kl} - V_k V_l g_{kl} \cos \theta_{kl} + V_k V_l b_{kl}(t_{kl}) \sin \theta_{kl}$$
(3.9)

$$Q_{lk}^{s\acute{e}rie} = -V_l^2 b_{kl}(t_{kl}) + V_k V_l b_{kl}(t_{kl}) \cos \theta_{kl} + V_k V_l g_{kl} \sin \theta_{kl}$$
(3.10)

As propriedades das sensibilidades entre fluxos e aberturas angulares/queda de tensão podem ser melhor visualizadas ao se considerar o estado do sistema com aberturas angulares θ_{kl} muito pequenas, de modo que a seguinte aproximação possa ser levada em conta:

$$\begin{cases} \cos(\theta_{kl}) \approx 1.0\\ \sin(\theta_{kl}) \approx \theta_{kl} \end{cases}$$
(3.11)

As aproximações dadas pela equação 3.11 são substituídas em 3.7 e 3.8:

$$P_{kl} = g_{kl}V_k(V_k - V_l) - V_kV_lb_{kl}(t_{kl})\theta_{kl}$$
(3.12)

$$Q_{kl}^{s\acute{e}rie} = -b_{kl}(t_{kl})V_k(V_k - V_l) - V_kV_lg_{kl}\theta_{kl}$$
(3.13)

Nos sistemas de transmissão, os parâmetros série dos circuitos são tais que podemos admitir a seguinte hipótese:

$$-b_{kl}(t_{kl}) >> g_{kl} \tag{3.14}$$

A hipótese da equação 3.14, se considerada nas expressões 3.12 e 3.13, reforça o pressuposto acerca das sensibilidades entre fluxos e aberturas angulares/quedas de tensão.

As perdas ativa e reativa série são obtidas por meio da soma dos fluxos nos ramos, e são dadas por 3.15 e 3.16.

$$P_{kl} + P_{lk} = \sum_{kl\in\Gamma} g_{kl} \underbrace{\left[V_k^2 + V_l^2 - 2V_k V_l \cos\theta_{kl} \right]}_{|\hat{V}_k - \hat{V}_l|^2}$$
(3.15)

$$Q_{kl}^{s\acute{e}rie} + Q_{lk}^{s\acute{e}rie} = \sum_{kl\in\Gamma} -b_{kl}(t_{kl}) \underbrace{\left[V_k^2 + V_l^2 - 2V_kV_l\cos\theta_{kl}\right]}_{|\hat{V}_k - \hat{V}_l|^2}$$
(3.16)

onde Γ representa todos os ramos do sistema de transmissão.

A minimização das perdas ativas (RI^2) ou reativas série (XI^2) é decorrente da elevação das magnitudes de tensão, como mostrarão os resultados obtidos com as simulações. Como os fluxos de potência ativa (equação 3.12) transmitidos devem ser mantidos, a diminuição das aberturas angulares compensa este fato. A figura 3.1 ilustra esta propriedade.

Fig. 3.1: Elevação das magnitudes de tensão e diminuição das aberturas angulares.

Vale enfatizar que a minimização das perdas ativas não afeta os transformadores, pois estes não dependem da condutância g_{kl} . De um modo geral, este fato pode ser problemático, pois a minimização fica localizada nos subsistemas interconectados por transformadores. Este problema é solucionado com o uso da função objetivo de perdas reativas série, que leva em conta a susceptância (b_{kl}) e busca a minimização considerando o acoplamento entre os sub-sistemas separados por transformadores.

Exemplo: Sistema de Três Barras

O sistema de três barras, extraído do artigo de Dommel and Tinney (1968), será usado como exemplo para minimização de perdas ativa e reativa série. Este sistema possui duas linhas de transmissão, como apresenta a figura 3.2. Os dados deste sistema estão detalhados nas tabelas 3.1, para as barras, e 3.2, para os ramos.

Fig. 3.2: Diagrama unifilar do sistema de três barras.

Barra	Tipo	V	θ	P_c	Q_c	P_g	Q_g	$Q_g^{m\acute{a}x}$	Q_g^{min}	b_{sh}	V_{min}	$V_{m\acute{a}x}$
1	3	0,950	0,00	0,0	0,0	0,0	0,0	10	-10	0,00	0,80	1,20
2	2	0,950	0,00	0,0	0,0	170,0	0,0	0	-10	0,00	0,80	1,20
3	0	1,000	0,00	200,0	100,0	0,0	0,0	0	0	0,00	0,80	1,20

Tab. 3.1: Dados de barras para o sistema de três barras.

NI	NF	Tipo	r	Х	Y_{sh}
2	3	0	0,0345	0,0862	0,00
3	1	0	0,0975	0,1219	0,00

Tab. 3.2: Dados de ramos para o sistema de três barras.

A minimização das perdas ativa e reativa série é apresentada para exemplificar os seus efeitos sobre as magnitudes de tensão e injeções de potência reativa nas barras SL e PV.

Solução Inicial do Fluxo de Potência

A solução do fluxo de carga inicial é dada pela tabela 3.3. Neste ponto as perdas ativas são 20,206 MW e as reativas série são 42,342 MVAr.

Barra	Tipo	Tensão	Ângulo	Q_g
0001	SL	0,950	0,000	0,593
0002	PV	0,950	8,435	0,830
0003	PQ	0,822	-0,245	_

Tab. 3.3: Suporte de reativos no ponto inicial.

Solução de Perdas Mínimas Ativas (RI^2)

A tabela 3.4 resume os indicadores utilizados na análise da minimização de perdas de potência ativa.

Com o auxílio destes indicadores, é possível visualizar a redução na perda de potência ativa (redução de 45,8%), e também a queda do suporte de reativos (redução de 12,4%).

As tensões sobem consideravelmente, até que a barra 2 alcance o limite máximo permitido.

Solução	Perdas (MW)	$\overline{V}^{contr.}$	$DQM\overline{V}^{contr.}$	\overline{V}^{carga}	$DQM\overline{V}^{carga.}$	$\sum Q_g$ (MVAr)
FC	20,206	0,9500	0	0,8224	0	142,342
Perdas Mínimas	10,949	1,1818	0,0182	1,0917	0	124,683

Tab. 3.4: Ponto de perdas mínimas ativas.

O gráfico que contém as curvas de níveis e o diagrama de trajetória é dado pela figura 3.3, página 28 e apresenta cada passo de otimização do sistema.

A processo de otimização convergiu em sete passos, e é apresentado pela figura 3.4, página 28. A solução de perdas mínimas encontrada é detalhada na tabela 3.5.

Barra	Tipo	Tipo Tensão		Q_g	
0001	SL	1,164	0,000	0,360	
0002	PV	1,200	4,410	0,887	
0003	PQ	1,092	-0,667	_	

Tab. 3.5: Suporte de reativos e ponto de perdas mínimas ativas.

Fig. 3.3: Trajetória dos passos de otimização da função objetivo f_P .

Fig. 3.4: Comportamento da função objetivo f_P a cada iteração.

Solução de Perdas Mínimas Reativas Série (XI^2)

A tabela 3.6 apresenta os indicadores utilizados na análise da minimização de perdas de potência reativa série. Com o auxílio destes indicadores é possível verificar que este tipo de minimização apresenta desvios quadráticos das tensões nas barras PV e "slack" menor. Entretanto, a magnitude de tensão na barra de carga se elevou em relação ao ponto de perdas mínimas ativas.

Solução	Perdas (MVAr)	$\overline{V}^{contr.}$	$DQM\overline{V}^{contr.}$	$\overline{V}^{carga.}$	$DQM\overline{V}^{carga.}$	$\sum Q_g$ (MVAr)
FC	42,342	0,9500	0,0000	0,8224	0	142,342
Perdas Mínimas	24,197	1,1972	0,0028	1,1055	0	124,197

Tab. 3.6: Ponto de perdas mínimas reativas série.

A solução de perdas mínimas de potência reativa série é apresentada pela tabela 3.7.

Barra	Tipo	Tensão	Ângulo	Q_g
0001	SL	1,194	0,000	0,542
0002	PV	1,200	5,401	0,700
0003	PQ	1,106	0,108	_

Tab. 3.7: Suporte de reativos e ponto de perdas mínimas reativas série.

O gráfico de curvas de níveis que contém o diagrama de trajetória é dado pela figura 3.5, página 30, e apresenta cada passo da minimização.

A otimização foi obtida em nove passos, e reduziu-se as perdas em aproximadamente 43%. Os detalhes da minimização podem ser vistos na figura 3.6, página 30.

As perdas mínimas reativas também apresentam um perfil de tensão com valor médio elevado. Neste caso, todas as tensões apresentaram-se mais elevadas que no primeiro caso.

Fig. 3.5: Trajetória dos passos de otimização da função objetivo f_Q .

Fig. 3.6: Minimização da função objetivo de perdas reativas no sistema de três barras.

3.3 Minimizações das Perdas de Potência Ativa (RI^2) e Reativa Série (XI^2) e Indicadores para Suporte de Potência Reativa / Exemplo

De acordo com a tabela 3.8, é desejável que a geração de reativos seja positiva para tensões na barra k maiores que o valor médio das magnitudes das tensões controladas, ou ainda, que a geração de reativos seja negativa para tensões na barra k menores que o valor médio das mesmas tensões. Esta hipótese se baseia no fato que, em um ponto de operação com $Q_g > 0$, uma ação de controle para reduzir a tensão é mais segura do que uma ação de controle para elevá-la. Por outro lado, nas barras com $Q_g < 0$ uma ação de controle para elevar a magnitude de tensão é mais segura do que uma ação de controle para abaixá-la. A intenção implícita é evitar que a ação de controle atue no sentido de aproximar o valor de Q_g do limite da capacidade do dispositivo conectado a barra. A figura 3.7 ilustra estas situações.

Fig. 3.7: Ilustração dos indicadores de potência reativa.

O indicador de suporte de potência reativa, definido a seguir, dá uma idéia da qualidade do ponto de operação em meio às ações de controle necessárias para aproximar as magnitudes de tensão do valor médio associado à solução. Quanto menor for o indicador, melhor será este ponto em relação ao suporte de potência reativa garantido pelas barras com controle de magnitude de

	Desejável	Indesejável
k - Capacitiva	$Q_{g_k} > 0 \text{ e } V_k > \overline{V}^{contr.}$	$Q_{g_k} > 0 \text{ e } V_k < \overline{V}^{contr.}$
k - Indutiva	$Q_{g_k} < 0 \text{ e } V_k < \overline{V}^{contr.}$	$Q_{g_k} < 0 \text{ e } V_k > \overline{V}^{contr.}$

Tab. 3.8: Indicadores para o suporte de potência reativa.

tensão. O IQ_g é definido pela equação 3.17, e, segundo a tabela 3.8, é desejável que este indicador seja positivo.

$$IQ_g = Q_{g_k} \left(\frac{V_k}{\overline{V}^{contr.}} - 1 \right)$$
(3.17)

Exemplo: Sistema IEEE 14 Barras

O sistema de 14 barras¹ possui 20 linhas de transmissão, como apresenta a figura 3.8, página 34. Os dados deste sistema estão detalhados nas tabelas C.1, para os dados de barras, e C.2, para os dados de ramos, páginas 178 e 179, respectivamente.

A solução do fluxo de carga, dada pela tabela 3.9 na página 33, apresenta perdas ativas de 13,393 MW e reativas série de 56,392 MVAr. Este ponto foi adotado para inicialização dos processos de minimização das perdas ativa e reativa série.

Barra	Tipo	Tensão	Ângulo	Q_g	IQ_g
0001	SL	1,060	0,000	-0,165	-0,075
0002	PV	1,045	-4,983	0,436	-0,436
0003	PV	1,010	-12,725	0,251	-1,172
0004	PQ	1,018	-10,313	_	_
0005	PQ	1,020	-8,774	_	_
0006	PV	1,070	-14,221	0,127	0,099
0007	PQ	1,062	-13,360	_	_
0008	PV	1,090	-13,360	0,176	0,355
0009	PQ	1,056	-14,938	_	_

continua na próxima página

¹Esse sistema, com todos os seus detalhes, pode ser obtido no endereço eletrônico http://www.ee. washington.edu/research/pstca

Barra	Tipo	Tensão	Ângulo	Q_g	IQ_g
0010	PQ	1,051	-15,097	_	_
0011	PQ	1,057	-14,791	_	_
0012	PQ	1,055	-15,076	_	_
0013	PQ	1,050	-15,156	_	_
0014	PQ	1,036	-16,034	_	_

Tab. 3.9: Suporte de reativos no ponto inicial para o sistema IEEE 14 barras.

Minimização das Perdas Ativas (RI^2) e Reativas Série (XI^2)

Na tabela 3.10, é possível visualizar os indicadores relativos às tensões nas barras SL, PV e PQ, seus respectivos desvios quadráticos e os índices de desempenho. Com o auxílio destes indicadores, verifica-se que a tensão média em todos os tipos de barras subiu, enquanto que seus desvios diminuíram.

		Solução	
Indicador	FC	Perdas Mínimas	Perdas Mínimas
	FC	Ativas	Reativas
Perdas Ativas (MW)	13,393	12,401	12,547
Perdas Reativas Série (MVAr)	56,392	51,130	50,741
$\overline{V}^{contr.}$	1,0550	1,0868	1,0787
$DQM\overline{V}^{contr.}$	0,0268	0,0180	0,0143
$\overline{t}^{contr.}$	0,9758	0,9784	0,9827
$DQM\overline{t}^{contr.}$	0,0251	0,0253	0,0277
\overline{V}^{carga}	1,0448	1,0741	1,0585
$DQM\overline{V}^{carga}$	0,0251	0,0115	0,0069
$\sum Q_g (MVAr)$	82,437	75,382	77,316

Tab. 3.10: Perdas ativa e reativa série mínimas.

Perfil de Magnitudes de Tensão e Suporte de Potência Reativa Correspondentes a Soluções 34 de Perdas Mínimas Ativa e Reativa

Fig. 3.8: Diagrama unifilar do sistema IEEE 14 barras.

O processo de minimização das perdas ativas foi realizado em nove passos, e o valor obtido com a minimização foi de 12,401 MW, uma redução de 7,4%. O decrescimento pode ser visualizado no gráfico da figura 3.9.

Barra	Tipo	Tensão	Ângulo	Q_g	IQ_g
0001	SL	1,100	0,000	-0,158	-0,191
0002	PV	1,086	-4,610	0,460	-0,056
0003	PV	1,052	-11,784	0,275	-0,869
0004	PQ	1,055	-9,482	_	_
0005	PQ	1,057	-8,054	_	_
0006	PV	1,096	-13,178	0,070	0,061

A solução ótima para a minimização de perdas ativas é apresentada pela tabela 3.11, página 35.

continua na próxima página

Barra	Tipo	Tensão	Ângulo	Q_g	IQ_g
0007	PQ	1,087	-12,362	_	_
0008	PV	1,100	-12,362	0,107	0,130
0009	PQ	1,083	-13,865	_	_
0010	PQ	1,078	-14,016	—	_
0011	PQ	1,084	-13,723	-	_
0012	PQ	1,082	-13,992	_	_
0013	PQ	1,077	-14,069	_	_
0014	PQ	1,063	-14,904	_	_

Tab. 3.11: Suporte de reativos no ponto de perdas mínimas ativas.

A minimização das perdas reativas série ocorreu em sete passos, sendo que, o valor mínimo obtido foi de 50,741 MVAr, uma redução de 10% nas perdas. O processo de minimização pode ser visto no gráfico da figura 3.10, página 37.

A solução ótima para a minimização das perdas reativas série é apresentada pela tabela 3.12, página 36.

Barra	Tipo	Tensão	Ângulo	Q_g	IQ_g
0001	SL	1,100	0,000	-0,161	-0,317
0002	PV	1,087	-4,639	0,516	0,381
0003	PV	1,058	-11,870	0,347	-0,670
0004	PQ	1,053	-9,445	_	_
0005	PQ	1,053	-7,998	_	_
0006	PV	1,079	-13,235	-0,004	0,000
0007	PQ	1,065	-12,410	_	_
0008	PV	1,070	-12,410	0,075	-0,058
0009	PQ	1,064	-13,957	_	_
0010	PQ	1,059	-14,111	_	_
0011	PQ	1,065	-13,802	_	_

continua na próxima página

Barra	Tipo	Tensão	Ângulo	Q_g	IQ_g
0012	PQ	1,064	-14,078	_	_
0013	PQ	1,059	-14,157	_	_
0014	PQ	1,044	-15,029	_	_

Tab. 3.12: Suporte de reativos no ponto ótimo da minimização de perdas reativas série.

Como pode-se notar, nos gráficos das figuras 3.11 e 3.12 na página 38, as magnitudes de tensão nas barras SL e PV aumentaram com a minimização das perdas ativa e reativa série. Entretanto, no caso da solução de perdas mínimas reativas, este aumento é mais moderado.

Nota-se nos gráficos das figuras 3.13 e 3.14, página 39, que as magnitudes de tensão nas barras PQ elevam-se nos pontos de perdas mínimas. Entretanto estas magnitudes permanecem em valores menores no ponto de perdas mínimas reativas.

Nos gráficos das figuras 3.15 e 3.16, página 40, evidencia-se perfeitamente o pressuposto, mencionado anteriormente, em relação aos taps dos transformadores. Note que, com o uso da minimização de perdas ativas, os taps permanecem praticamente inalterados. Na minimização das perdas reativas, os taps reconfiguram-se de forma a balancear as tensões na rede.

Tanto a minimização de perdas ativas quanto a de perdas reativas série, provêem uma diminuição no balanço da geração de reativos Q_g ($\sum Q_g$). Entretanto, as perdas mínimas ativas obtém um ponto um pouco mais interessante se comparado ao segundo caso, o que pode ser confirmado na tabela 3.10, página 33, e visualizado nos gráficos das figuras 3.17 e 3.18, página 41.

A minimização de perdas reativas série apresenta pontos com perdas ativas competitivas. Além disto, o processo de otimização é mais eficiente, uma vez que o ponto foi obtido em sete iterações, contra nove das perdas ativas. As figuras 3.19 e 3.20, página 42, apresentam os gráficos para os indicadores de qualidade de geração de reativos.

Fig. 3.9: Comportamento das perdas ativas a cada iteração.

Fig. 3.10: Comportamento das perdas reativas série a cada iteração.

Fig. 3.11: Magnitudes de tensão nas barras SL e PV.

Fig. 3.12: Histograma das magnitudes de tensão nas barras SL e PV.

Fig. 3.13: Magnitudes de tensão nas barras PQ.

Fig. 3.14: Histograma das magnitudes de tensão nas barras PQ.

Fig. 3.15: Taps dos transformadores em fase.

Fig. 3.16: Histograma dos taps dos transformadores em fase.

Fig. 3.17: Disribuição de Q_g nas barras SL e PV.

Fig. 3.18: Histograma da disribuição de Q_g nas barras SL e PV.

Fig. 3.19: Indicadores de qualidade de geração de reativos nas barras SL e PV.

Fig. 3.20: Histograma dos indicadores de qualidade de geração de reativos nas barras SL e PV.

3.4 Estudo dos Sistemas IEEE 30, 57 e 118 Barras

3.4.1 Sistema IEEE 30 Barras

O sistema em questão, extraído de http://www.ee.washington.edu/research/ pstca, possui em sua estrutura 30 barras e 41 linhas de transmissão, como apresenta a figura C.5, página 180. Os dados deste sistema estão detalhados nas tabelas C.3, para os dados de barras, e C.4, para os dados de ramos, páginas 182 e 183, respectivamente.

Barra	Tipo	Tensão	Ângulo	Q_g	IQ_g	Barra	Tipo	Tensão	Ângulo	Q_g	IQ_g
0001	SL	1,060	-0,000	-0,165	-0,205	0016	PQ	1,044	-15,527	_	_
0002	PV	1,043	-5,350	0,496	-0,122	0017	PQ	1,040	-15,862	_	_
0003	PQ	1,021	-7,532	—	_	0018	PQ	1,028	-16,543	_	_
0004	PQ	1,012	-9,285	—	_	0019	PQ	1,026	-16,716	_	_
0005	PV	1,010	-14,167	0,369	-1,142	0020	PQ	1,030	-16,520	_	_
0006	PQ	1,010	-11,065	—	_	0021	PQ	1,033	-16,143	_	_
0007	PQ	1,002	-12,866	—	_	0022	PQ	1,033	-16,129	_	_
0008	PV	1,010	-11,815	0,372	-1,616	0023	PQ	1,027	-16,319	_	_
0009	PQ	1,051	-14,110	—	_	0024	PQ	1,022	-16,496	_	_
0010	PQ	1,045	-15,701	—	_	0025	PQ	1,017	-16,068	_	_
0011	PV	1,082	-14,110	0,162	0,381	0026	PQ	1,000	-16,487	_	_
0012	PQ	1,057	-14,944	—	_	0027	PQ	1,023	-15,543	_	_
0013	PV	1,071	-14,944	0,106	0,132	0028	PQ	1,007	-11,689	_	_
0014	PQ	1,042	-15,836	—	_	0029	PQ	1,003	-16,773	_	_
0015	PQ	1,038	-15,928	—	—	0030	PQ	0,992	-17,656	—	_

A solução do fluxo de carga, para o sistema IEEE 30 barras, é dada pela tabela 3.13.

Tab. 3.13: Suporte de reativos no ponto inicial.

Minimização das Perdas Ativas (RI^2) e Reativas Série (XI^2)

A tabela 3.14 apresenta os indicadores que serão utilizados na análise da minimização das perdas de potências ativa e reativa série.

	Solução						
Indicador	EC	Perdas Mínimas	Perdas Mínimas				
	ГĊ	Ativas	Reativas				
Perdas Ativas (MW)	17,752	16,141	16,315				
Perdas Reativas Série (MVAr)	69,128	62,610	62,391				
$\overline{V}^{contr.}$	1,0460	1,0802	1,0720				
$DQM\overline{V}^{contr.}$	0,0280	0,0202	0,0157				
$\overline{t}^{contr.}$	0,9781	0,9812	0,9784				
$DQM\overline{t}^{contr.}$	0,0231	0,0231	0,0240				
\overline{V}^{carga}	1,0251	1,0630	1,0547				
$DQM\overline{V}^{carga}$	0,0169	0,0129	0,0095				
$\sum Q_g (\mathrm{MVAr})$	134,003	124,025	125,671				

Tab. 3.14: Perdas ativa e reativa série mínimas.

O ponto de perdas mínimas de potência ativa foi alcançado em 13 passos, e proporciona uma redução de 8% nas perdas. A figura 3.21 contém os detalhes da minimização passo-a-passo.

Fig. 3.21: Comportamento da função objetivo f_P a cada iteração no sistema IEEE 30 barras.

Barra	Tipo	Tensão	Ângulo	Q_g	IQ_g	Barra	Tipo	Tensão	Ângulo	Q_g	IQ_g
0001	SL	1,100	0,000	-0,153	-0,280	0016	PQ	1,077	-14,388	_	_
0002	PV	1,082	-4,915	0,426	0,080	0017	PQ	1,074	-14,705	_	_
0003	PQ	1,063	-6,961	_	_	0018	PQ	1,062	-15,342	_	_
0004	PQ	1,054	-8,573	_	_	0019	PQ	1,060	-15,506	_	_
0005	PV	1,049	-13,039	0,332	-0,952	0020	PQ	1,064	-15,323	_	_
0006	PQ	1,054	-10,242	_	_	0021	PQ	1,068	-14,972	_	_
0007	PQ	1,044	-11,879	_	_	0022	PQ	1,068	-14,960	_	_
0008	PV	1,057	-10,984	0,470	-1,024	0023	PQ	1,062	-15,140	_	_
0009	PQ	1,083	-13,072	_	_	0024	PQ	1,059	-15,320	_	_
0010	PQ	1,079	-14,557	_	_	0025	PQ	1,059	-14,941	_	_
0011	PV	1,098	-13,072	0,111	0,187	0026	PQ	1,042	-15,328	_	_
0012	PQ	1,089	-13,829	_	_	0027	PQ	1,067	-14,464	—	_
0013	PV	1,095	-13,829	0,055	0,074	0028	PQ	1,051	-10,833	—	_
0014	PQ	1,075	-14,668	_	_	0029	PQ	1,048	-15,592	—	_
0015	PQ	1,071	-14,763	_	_	0030	PQ	1,037	-16,400	—	_

A solução ótima para a minimização de perdas de potência ativa é apresentada pela tabela 3.15, página 45.

Tab. 3.15: Suporte de reativos no ponto de perdas mínimas ativas.

O ponto de perdas mínimas reativas série foi obtido em sete iterações, e pode ser analisado na figura 3.22.

A solução ótima para a minimização de perdas reativas série é apresentada pela tabela 3.16.

Barra	Tipo	Tensão	Ângulo	Q_g	IQ_g	Barra	Tipo	Tensão	Ângulo	Q_g	IQ_g
0001	SL	1,100	0,000	-0,178	-0,464	0016	PQ	1,065	-14,395	_	_
0002	PV	1,084	-4,953	0,501	0,571	0017	PQ	1,062	-14,733	_	_
0003	PQ	1,060	-6,925	_	_	0018	PQ	1,050	-15,374	_	_
0004	PQ	1,051	-8,531	_	_	0019	PQ	1,048	-15,548	_	_
0005	PV	1,053	-13,082	0,364	-0,646	0020	PQ	1,052	-15,364	_	_
0006	PQ	1,053	-10,234	_	_	0021	PQ	1,056	-15,013	-	_

continua na próxima página

Perfil de Magnitudes de Tensão e Suporte de Potência Reativa Correspondentes a Soluções 46 de Perdas Mínimas Ativa e Reativa

Barra	Tipo	Tensão	Ângulo	Q_g	IQ_g	Barra	Tipo	Tensão	Ângulo	Q_g	IQ_g
0007	PQ	1,046	-11,890	_	_	0022	PQ	1,057	-15,000	_	_
0008	PV	1,061	-11,053	0,616	-0,637	0023	PQ	1,051	-15,171	_	_
0009	PQ	1,065	-13,084	_	_	0024	PQ	1,049	-15,372	_	_
0010	PQ	1,068	-14,589	_	_	0025	PQ	1,053	-15,028	_	_
0011	PV	1,064	-13,084	-0,003	0,002	0026	PQ	1,036	-15,419	_	_
0012	PQ	1,076	-13,801	—	_	0027	PQ	1,065	-14,566	_	_
0013	PV	1,070	-13,801	-0,043	0,009	0028	PQ	1,051	-10,843	_	_
0014	PQ	1,062	-14,663	_	-	0029	PQ	1,046	-15,700	-	_
0015	PQ	1,058	-14,772	_	_	0030	PQ	1,035	-16,513	-	_

Tab. 3.16: Suporte de reativos no ponto de perdas mínimas reati-

vas.

Fig. 3.22: Comportamento da função objetivo f_Q a cada iteração no sistema IEEE 30 barras.

As tensões nas barras SL e PV, em geral, aumentaram para ambos os casos, e fez com que a barra 1 operasse no limite máximo (figura 3.23). No ponto de perdas mínimas de potência ativa, as tensões possuem um perfil mais elevado, o que pode ser constatado pelos histogramas da figura 3.24, que também apresentam as diferenças na distribuição das tensões nos três casos.

Fig. 3.23: Magnitudes de tensão nas barras SL e PV.

Fig. 3.24: Histograma das magnitudes de tensão das barras SL e PV.

A minimização de perdas de potência reativa também obtém melhores resultados para as barras PQ, e é apresentada nos gráficos da figura 3.25. Note que, para ambas minimizações, os desvios quadráticos $(DQM\overline{V}^{carga})$ diminuem, como mostram os gráficos da figura 3.26.

Fig. 3.25: Magnitudes das tensões nas barras PQ.

No ponto de perdas mínimas, em relação ao caso base, não ocorrem mudanças significativas nos taps dos transformadores. A pequena mudança na distribuição, visualizada nos histogramas da figura 3.28, pode ser desprezada.

Uma forma mais concisa de saber se houve ou não melhora na geração de reativos, figura 3.29, é por meio da tabela 3.14, em que pode-se observar que o balanço de reativos é menor para a minimização de perdas ativas. Mesmo com este fato constatado, a utilização de f_Q é competitiva, pois o ponto de perdas mínimas reativas é atingido em sete passos, contra 13 do segundo caso.

Após analises dos indicadores de qualidade de geração de reativos, constata-se ainda que o uso de f_Q possui melhor eficácia. Com o auxílio do histograma de IQ_g da figura 3.32 verifica-se uma tendência a zero mais forte do que a do outro caso.

Fig. 3.26: Histograma das magnitudes de tensões nas barras PQ.

Fig. 3.27: Taps dos transformadores em fase.

Fig. 3.28: Histograma dos taps dos transformadores em fase.

Fig. 3.29: Distribuição de Q_g nas barras SL e PV.

Fig. 3.30: Histogramas da distribuição de Q_g nas barras SL e PV.

Fig. 3.31: Indicadores de qualidade na geração de reativos para as barras SL e PV.

Fig. 3.32: Histograma dos indicadores de qualidade na geração de reativos para as barras SL e PV.

3.4.2 Sistema IEEE 57 Barras

O diagrama unifilar do sistema IEEE 57 Barras é apresentado na figura C.6, página 186. Os dados deste sistema estão detalhados nas tabelas C.5, para os dados de barras, e C.6, para os dados de ramos, páginas 185 e 189, respectivamente.

Barra	Tipo	Tensão	Ângulo	Q_g	IQ_g	Barra	Tipo	Tensão	Ângulo	Q_g	IQ_g
0001	SL	1,040	-0,000	1,289	-0,786	0030	PQ	0,963	-18,723	_	_
0002	PV	1,010	-1,188	-0,008	0,715	0031	PQ	0,936	-19,388	_	_
0003	PV	0,985	-5,987	-0,009	-0,716	0032	PQ	0,950	-18,516	_	-
0004	PQ	0,981	-7,336	_	_	0033	PQ	0,947	-18,556	_	-
0005	PQ	0,977	-8,545	_	_	0034	PQ	0,959	-14,151	_	-
0006	PV	0,980	-8,673	0,009	-0,021	0035	PQ	0,966	-13,909	_	-
0007	PQ	0,984	-7,602	_	_	0036	PQ	0,976	-13,637	_	-
0008	PV	1,005	-4,478	0,621	0,119	0037	PQ	0,985	-13,448	_	-
0009	PV	0,980	-9,586	0,023	-1,205	0038	PQ	1,013	-12,737	_	-
0010	PQ	0,986	-11,451	_	_	0039	PQ	0,983	-13,493	_	-
0011	PQ	0,974	-10,194	_	_	0040	PQ	0,973	-13,661	_	-
0012	PV	1,015	-10,472	1,287	0,767	0041	PQ	0,996	-14,078	_	-
0013	PQ	0,979	-9,804	_	_	0042	PQ	0,966	-15,535	_	-
0014	PQ	0,970	-9,351	_	_	0043	PQ	1,010	-11,355	_	-
0015	PQ	0,988	-7,190	_	_	0044	PQ	1,017	-11,858	_	-
0016	PQ	1,013	-8,860	_	_	0045	PQ	1,036	-9,271	_	-
0017	PQ	1,017	-5,396	_	_	0046	PQ	1,060	-11,118	_	-
0018	PQ	0,997	-11,748	_	_	0047	PQ	1,033	-12,514	_	-
0019	PQ	0,968	-13,259	_	_	0048	PQ	1,027	-12,613	_	_
0020	PQ	0,962	-13,481	_	_	0049	PQ	1,036	-12,938	_	_
0021	PQ	1,008	-12,930	_	_	0050	PQ	1,023	-13,415	_	_
0022	PQ	1,010	-12,876	_	_	0051	PQ	1,052	-12,535	_	_
0023	PQ	1,008	-12,941	_	_	0052	PQ	0,980	-11,498	_	_
0024	PQ	0,999	-13,294	_	_	0053	PQ	0,971	-12,253	_	_
0025	PQ	0,982	-18,176	_	_	0054	PQ	0,996	-11,711	_	_

A solução do fluxo de carga é dada pela tabela 3.17.

Perfil de Magnitudes de Tensão e Suporte de Potência Reativa Correspondentes a Soluções 54 de Perdas Mínimas Ativa e Reativa

Barra	Tipo	Tensão	Ângulo	Q_g	IQ_g	Barra	Tipo	Tensão	Ângulo	Q_g	IQ_g
0026	PQ	0,959	-12,982	_	_	0055	PQ	1,031	-10,802	_	_
0027	PQ	0,981	-11,514	_	_	0056	PQ	0,968	-16,067	_	_
0028	PQ	0,997	-10,482	_	_	0057	PQ	0,965	-16,585	_	_
0029	PQ	1,010	-9,772	_	_						

Tab. 3.17: Suporte de reativos no ponto inicial.

Minimização das Perdas Ativas (RI^2) e Reativas Série (XI^2)

A tabela 3.18 apresenta os indicadores utilizados na análise da minimização de perdas de potências ativa e reativa série.

		Solução	
Indicador	EC	Perdas Mínimas	Perdas Mínimas
	гC	Ativas	Reativas
Perdas Ativas (MW)	27,868	22,464	22,579
Perdas Reativas Série (MVAr)	149,623	113,232	102,182
$\overline{V}^{contr.}$	1,0021	1,0904	1,0873
$DQM\overline{V}^{contr.}$	0,0205	0,0086	0,0103
$\overline{t}^{contr.}$	0,9679	0,9800	0,9744
$DQM\overline{t}^{contr.}$	0,0394	0,0338	0,0223
\overline{V}^{carga}	0,9914	1,0737	1,0622
$DQM\overline{V}^{carga}$	0,0277	0,0264	0,0237
$\sum Q_g$ (MVAr)	321,180	272,065	273,566

Tab. 3.18: Perdas ativa e reativa série mínimas.

O ponto de perdas mínimas ativas foi atingido em 28 passos, e favorece o sistema com uma redução de 19,4% das perdas ativas. O processo de minimização pode ser visualizado na figura 3.33, página 55.

A solução ótima para a minimização de perdas ativas é apresentada pela tabela 3.19.

Fig. 3.33: Comportamento da função objetivo f_P a cada iteração no sistema IEEE 57 barras.

Barra	Tipo	Tensão	Ângulo	Q_g	IQ_g	Barra	Tipo	Tensão	Ângulo	Q_g	IQ_g
0001	SL	1,100	-0,000	-0,208	-0,183	0030	PQ	1,030	-16,587	_	_
0002	PV	1,100	-1,474	0,912	0,799	0031	PQ	1,008	-17,162	_	_
0003	PV	1,088	-5,719	0,419	-0,080	0032	PQ	1,025	-16,412	_	_
0004	PQ	1,084	-6,848	_	_	0033	PQ	1,023	-16,446	_	_
0005	PQ	1,078	-7,841	_	_	0034	PQ	1,033	-12,524	_	_
0006	PV	1,081	-7,941	0,009	-0,008	0035	PQ	1,040	-12,313	_	_
0007	PQ	1,081	-7,079	_	_	0036	PQ	1,049	-12,078	_	_
0008	PV	1,100	-4,438	0,419	0,367	0037	PQ	1,057	-11,904	_	_
0009	PV	1,084	-8,707	0,573	-0,350	0038	PQ	1,081	-11,246	_	_
0010	PQ	1,068	-10,033	_	_	0039	PQ	1,056	-11,949	_	_
0011	PQ	1,070	-9,087	_	_	0040	PQ	1,047	-12,107	_	_
0012	PV	1,080	-8,996	0,598	-0,554	0041	PQ	1,092	-12,413	_	_
0013	PQ	1,069	-8,646	_	_	0042	PQ	1,062	-13,566	_	_
0014	PQ	1,064	-8,258	_	_	0043	PQ	1,109	-10,077	_	_
0015	PQ	1,077	-6,477	_		0044	PQ	1,091	-10,524	_	_
0016	PQ	1,079	-7,658		_	0045	PQ	1,122	-8,395	_	_

Barra	Tipo	Tensão	Ângulo	Q_g	IQ_g	Barra	Tipo	Tensão	Ângulo	Q_g	IQ_g
0017	PQ	1,081	-4,695	_	_	0046	PQ	1,108	-9,717	_	_
0018	PQ	1,105	-10,536	_	_	0047	PQ	1,090	-10,937	_	_
0019	PQ	1,063	-11,586	_	_	0048	PQ	1,088	-11,059	_	_
0020	PQ	1,048	-11,651	_	_	0049	PQ	1,091	-11,248	_	_
0021	PQ	1,082	-11,464	_	_	0050	PQ	1,082	-11,723	_	_
0022	PQ	1,081	-11,389	-	—	0051	PQ	1,114	-11,018	_	_
0023	PQ	1,081	-11,453	—	—	0052	PQ	1,086	-10,398	_	_
0024	PQ	1,089	-11,868	_	_	0053	PQ	1,078	-11,037	_	_
0025	PQ	1,047	-16,107	_	_	0054	PQ	1,100	-10,528	_	_
0026	PQ	1,044	-11,550	_	_	0055	PQ	1,129	-9,719	_	_
0027	PQ	1,078	-10,354	_	_	0056	PQ	1,060	-13,948	_	_
0028	PQ	1,096	-9,510	_	_	0057	PQ	1,054	-14,349	_	_
0029	PQ	1,112	-8,937	_	_						

Perfil de Magnitudes de Tensão e Suporte de Potência Reativa Correspondentes a Soluções 56 de Perdas Mínimas Ativa e Reativa

Tab. 3.19: Suporte de reativos no ponto de perdas mínimas ativas.

O ponto de perdas mínimas reativas série foi alcançado em 20 iterações, e proporciona uma redução de 31% nas perdas reativas. Os detalhes da minimização são apresentados na figura 3.34. A solução deste ponto pode ser visualizada na tabela 3.20.

Barra	Tipo	Tensão	Ângulo	Q_g	IQ_g	Barra	Tipo	Tensão	Ângulo	Q_g	IQ_g
0001	SL	1,100	-0,000	-0,128	-0,149	0030	PQ	1,061	-16,637	_	_
0002	PV	1,100	-1,481	0,928	1,081	0031	PQ	1,028	-17,115	_	_
0003	PV	1,087	-5,729	0,458	-0,012	0032	PQ	1,027	-16,262	_	_
0004	PQ	1,082	-6,855	_	_	0033	PQ	1,025	-16,296	_	_
0005	PQ	1,076	-7,836	_	_	0034	PQ	1,016	-12,806	_	_
0006	PV	1,077	-7,929	0,024	-0,022	0035	PQ	1,021	-12,569	_	_
0007	PQ	1,077	-7,049	_	_	0036	PQ	1,029	-12,305	_	_
0008	PV	1,095	-4,364	0,395	0,268	0037	PQ	1,036	-12,108	_	_
0009	PV	1,078	-8,663	0,564	-0,460	0038	PQ	1,057	-11,399	_	_
0010	PQ	1,064	-9,987	_	-	0039	PQ	1,035	-12,155	_	-
0011	PQ	1,065	-9,055	_	-	0040	PQ	1,027	-12,335	_	-

Barra	Tipo	Tensão	Ângulo	Q_g	IQ_g	Barra	Tipo	Tensão	Ângulo	Q_g	IQ_g
0012	PV	1,074	-8,936	0,495	-0,617	0041	PQ	1,081	-12,522	_	_
0013	PQ	1,064	-8,610	_	_	0042	PQ	1,049	-13,694	_	_
0014	PQ	1,062	-8,232	_	_	0043	PQ	1,098	-10,084	_	_
0015	PQ	1,074	-6,467	-	_	0044	PQ	1,070	-10,666	-	_
0016	PQ	1,074	-7,615	-	_	0045	PQ	1,107	-8,508	-	_
0017	PQ	1,079	-4,666	-	—	0046	PQ	1,072	-9,687	-	_
0018	PQ	1,104	-10,599	-	—	0047	PQ	1,060	-10,984	-	_
0019	PQ	1,053	-11,603	-	—	0048	PQ	1,060	-11,160	-	_
0020	PQ	1,033	-11,637	-	—	0049	PQ	1,067	-11,428	-	_
0021	PQ	1,058	-11,630	-	—	0050	PQ	1,054	-11,864	-	_
0022	PQ	1,056	-11,544	-	—	0051	PQ	1,081	-11,010	-	_
0023	PQ	1,055	-11,608	-	—	0052	PQ	1,077	-10,407	-	_
0024	PQ	1,056	-11,987	-	—	0053	PQ	1,068	-11,047	-	_
0025	PQ	1,083	-16,216	-	—	0054	PQ	1,087	-10,513	-	_
0026	PQ	1,040	-11,669	-	—	0055	PQ	1,115	-9,674	-	_
0027	PQ	1,072	-10,408	-	—	0056	PQ	1,045	-14,078	-	_
0028	PQ	1,090	-9,536	-	-	0057	PQ	1,038	-14,489	-	_
0029	PQ	1,105	-8,943	-	-						

Tab. 3.20: Suporte de reativos no ponto de perdas mínimas reativas série.

Tanto o ponto de perdas mínimas ativas quanto reativas, oferecem tensões, nas barras SL e PV, muito próximas umas das outras. Para o ponto de perdas mínimas ativas, as barras um, dois e oito operam no limite máximo. Para perdas mínimas reativas, apenas as barras um e dois operam neste ponto. As figuras 3.35 e 3.36 apresentam mais detalhes a respeito destas barras.

As tensões nas barras PQ aumentaram para ambos os casos, sendo maiores para o ponto de perdas mínimas ativas, como pode-se notar nas figuras 3.37 e 3.38.

Nesse sistema é possível ver com clareza que os taps dos transformadores alteram-se muito mais para perdas mínimas reativas, o que é constatado nas figuras 3.39 e 3.40.

Verifica-se a melhoria na geração de reativos mediante análise da tabela 3.18, página 54, em conjunto com os gráficos das figuras 3.41 e 3.42, página 62, respectivamente. Nota-se uma re-

Fig. 3.34: Comportamento da função objetivo f_Q a cada iteração no sistema IEEE 57 barras.

Fig. 3.35: Magnitudes de tensão nas barras SL e PV.

Fig. 3.36: Histograma das magnitudes de tensão nas barras SL e PV.

Fig. 3.37: Magnitude das tensões nas barras PQ.

Fig. 3.38: Histograma das magnitudes das tensões nas barras PQ.

Fig. 3.39: Taps dos transformadores em fase.

dução, no balanço de reativos, de 15,3% e 14,8% nas minimizações de perdas ativa e reativa, respectivamente. A quantidade de iterações necessárias para se obter o ponto de perdas mínimas, reforça ainda mais a opção por minimizar os reativos, pois, enquanto as perdas ativas demandaram 27 iterações, as reativas necessitaram apenas 20.

As diferenças nos indicadores de qualidade de geração, figura 3.43, página 63, são pouco perceptíveis, mas mesmo assim, a concentração em torno do zero é maior para perdas mínimas reativas.

Fig. 3.40: Histograma dos taps dos transformadores em fase.

Fig. 3.41: Distribuição de Q_g nas barras SL e PV.

Fig. 3.42: Histograma da distribuição de Q_g nas barras SL e PV.

Fig. 3.43: Indicadores de qualidade de geração de reativos nas barras SL e PV.

Fig. 3.44: Histograma dos indicadores de qualidade de geração de reativos nas barras SL e PV.

Sistema IEEE 118 Barras 3.4.3

O diagrama unifilar do sistema IEEE 118 Barras é apresentado na figura C.7, página 190. Os dados deste sistema estão detalhados nas tabelas C.7, para os dados de barras, e C.8, para os dados de ramos, páginas 193 e 200, respectivamente.

Barra	Tipo	Tensão	Ângulo	Q_g	IQ_g	Barra	Tipo	Tensão	Ângulo	Q_g	IQ_g
0001	PV	0.955	10.983	-0.031	-1.018	0060	PQ	0.993	23.234	_	_
0002	PQ	0.971	11.523	_	_	0061	PV	0.995	24.125	-0.404	-0.004
0003	PQ	0.968	11.866	_	_	0062	PV	0.998	23.509	0.013	0.102
0004	PV	0.998	15.583	-0.150	0.108	0063	PQ	0.969	22.831	_	_
0005	PQ	1.002	16.029	_	_	0064	PQ	0.984	24.597	_	_
0006	PV	0.990	13.302	0.159	0.005	0065	PV	1.005	27.722	0.808	3.082
0007	PQ	0.989	12.857	-	-	0066	PV	1.050	27.563	-0.020	-13.457
0008	PV	1.015	21.049	0.627	0.414	0067	PQ	1.020	24.923	_	_
0009	PQ	1.043	28.303	-	_	0068	PQ	1.003	27.601	-	-
0010	PV	1.050	35.884	-0.510	-7.025	0069	SL	1.035	30.000	-0.824	-9.437
0011	PQ	0.985	13.016	_	_	0070	PV	0.984	22.620	0.097	-0.079
0012	PV	0.990	12.499	0.913	0.008	0071	PQ	0.987	22.209	_	_
0013	PQ	0.968	11.641	-	-	0072	PV	0.980	21.112	-0.111	0.098
0014	PQ	0.984	11.783	_	_	0073	PV	0.991	21.998	0.097	-0.008
0015	PV	0.970	11.489	0.041	-0.270	0074	PV	0.958	21.671	-0.056	-0.617
0016	PQ	0.984	12.198	_	_	0075	PQ	0.967	22.933	_	-
0017	PQ	0.995	14.006	-	-	0076	PV	0.943	21.803	0.053	-2.196
0018	PV	0.973	11.793	0.264	-0.324	0077	PV	1.006	26.757	0.119	0.857
0019	PV	0.963	11.314	-0.102	-0.590	0078	PQ	1.003	26.453	-	-
0020	PQ	0.958	12.192	_	_	0079	PQ	1.009	26.752	_	-
0021	PQ	0.958	13.779	-	-	0080	PV	1.040	28.998	1.049	-2.861
0022	PQ	0.970	16.332	-	-	0081	PQ	0.997	28.149	-	-
0023	PQ	1.000	21.249	_	_	0082	PQ	0.989	27.276	_	-
0024	PV	0.992	21.118	-0.154	-0.015	0083	PQ	0.985	28.465	-	-
0025	PV	1.050	28.184	0.497	-8.490	0084	PQ	0.980	30.997	_	_
0026	PV	1.015	29.965	0.099	2.777	0085	PV	0.985	32.550	-0.058	-0.226
0027	PV	0.968	15.613	0.020	-0.582	0086	PQ	0.987	31.181	-	_
0028	PQ	0.962	13.889	-	_	0087	PV	1.015	31.440	0.110	-0.135
0029	PQ	0.963	12.897	_	_	0088	PQ	0.987	35.680	_	_

A solução do fluxo de carga é dada pela tabela 3.21.

3.4 Estudo dos Sistemas IEE	ZE 30, 5	57 e	118	Barras
-----------------------------	----------	------	-----	--------

Barra	Tipo	Tensão	Ângulo	Q_g	IQ_g	Barra	Tipo	Tensão	Ângulo	Q_g	IQ_g
0030	PQ	0.986	19.040	-	-	0089	PV	1.005	39.734	-0.137	-1.033
0031	PV	0.967	13.014	0.316	-0.479	0090	PV	0.985	33.331	0.593	-0.224
0032	PV	0.964	15.054	-0.123	-0.510	0091	PV	0.980	33.352	-0.154	0.037
0033	PQ	0.972	10.864	_	_	0092	PV	0.993	33.841	0.005	0.195
0034	PV	0.986	11.505	-0.068	0.066	0093	PQ	0.987	30.837	_	_
0035	PQ	0.981	11.080	_	_	0094	PQ	0.991	28.687	_	_
0036	PV	0.980	11.085	-0.019	-0.154	0095	PQ	0.981	27.716	_	-
0037	PQ	0.992	11.969	_	_	0096	PQ	0.993	27.549	_	_
0038	PQ	0.962	17.106	_	_	0097	PQ	1.011	27.923	_	_
0039	PQ	0.970	8.598	_	_	0098	PQ	1.024	27.446	_	_
0040	PV	0.970	7.525	0.268	-0.571	0099	PV	1.010	27.085	-0.175	-0.154
0041	PQ	0.967	7.079	_	_	0100	PV	1.017	28.081	1.089	1.269
0042	PV	0.985	8.674	0.410	-0.129	0101	PQ	0.993	29.650	_	_
0043	PQ	0.979	11.459	_	_	0102	PQ	0.992	32.341	_	_
0044	PQ	0.985	13.945	-	_	0103	PV	1.001	24.480	0.417	0.203
0045	PQ	0.987	15.776	_	_	0104	PV	0.971	21.742	0.080	-0.433
0046	PV	1.005	18.582	-0.052	-0.133	0105	PV	0.965	20.634	-0.129	-0.215
0047	PQ	1.017	20.805	_	_	0106	PQ	0.961	20.379	_	_
0048	PQ	1.021	20.025	-	_	0107	PV	0.952	17.576	0.066	-0.060
0049	PV	1.025	21.028	1.156	2.265	0108	PQ	0.966	19.434	_	_
0050	PQ	1.001	18.989	_	_	0109	PQ	0.967	18.982	_	_
0051	PQ	0.967	16.370	-	_	0110	PV	0.973	18.135	0.053	-0.353
0052	PQ	0.957	15.417	-	-	0111	PV	0.980	19.780	-0.018	0.046
0053	PQ	0.946	14.442	-	-	0112	PV	0.975	15.036	0.415	-0.139
0054	PV	0.955	15.353	0.039	-0.906	0113	PV	0.993	14.004	0.061	-0.074
0055	PV	0.952	15.063	0.047	-0.557	0114	PQ	0.961	14.727	_	-
0056	PV	0.954	15.250	-0.023	-0.836	0115	PQ	0.961	14.720	-	-
0057	PQ	0.971	16.455	-	-	0116	PV	1.005	27.166	0.513	1.321
0058	PQ	0.959	15.598	-	-	0117	PQ	0.974	10.958	-	_
0059	PV	0.985	19.452	0.768	-0.412	0118	PQ	0.949	21.945		_

Tab. 3.21: Suporte de reativos no ponto inicial para o sistema IEEE 118 barras.

Minimização das Perdas Ativas (RI^2) e Reativas Série (XI^2)

A tabela 3.22 apresenta os dados referentes aos indicadores utilizados na análise das minimizações das perdas de potências ativa e reativa série.

		Solução	
Indicador	EC	Perdas Mínimas	Perdas Mínimas
	FC	Ativas	Reativas
Perdas Ativas (MW)	132,478	106,947	117,187
Perdas Reativas Série (MVAr)	786,082	643,898	702,162
$\overline{V}^{contr.}$	0,9898	1,0777	1,0376
$DQM\overline{V}^{contr.}$	0,0260	0,0182	0,0277
$\overline{t}^{contr.}$	0,9544	0,9559	0,9393
$DQM\bar{t}^{contr.}$	0,0196	0,0198	0,0237
\overline{V}^{carga}	0,9826	1,0744	1,0339
$DQM\overline{V}^{carga}$	0,0194	0,0133	0,0201
$\sum Q_g$ (MVAr)	793,878	434,896	640,647

Tab. 3.22: Perdas ativa e reativa série mínimas.

O ponto de perdas mínimas ativas foi atingido em 144 passos, e proporciona uma redução de 19,3% nas perdas ativas. O processo de minimização pode ser visualizado no gráfico 3.45, página 71.

Barra	Tipo	Tensão	Ângulo	Q_g	IQ_g	Barra	Tipo	Tensão	Ângulo	Q_g	IQ_g
0001	PV	1.064	14.096	0.290	-0.376	0060	PQ	1.098	24.182	_	_
0002	PQ	1.065	14.731	_	_	0061	PV	1.100	24.915	-0.008	-0.016
0003	PQ	1.068	14.945	_	-	0062	PV	1.096	24.445	0.122	0.208
0004	PV	1.086	18.180	0.130	0.104	0063	PQ	1.073	23.840	-	-
0005	PQ	1.088	18.575	_	_	0064	PQ	1.083	25.359	_	-
0006	PV	1.077	16.298	0.191	-0.021	0065	PV	1.091	28.179	2.002	2.438
0007	PQ	1.075	15.941	_	_	0066	PV	1.100	28.313	-2.211	-4.570

0067

PQ

1.093

0008

PV

1.092

22.854

0.162

0.217

A solução ótima para a minimização de perdas ativas é apresentada pela tabela 3.23, página 68.

continua na próxima página

25.813

|--|

Barra	Tipo	Tensão	Ângulo	Q_g	IQ_g	Barra	Tipo	Tensão	Ângulo	Q_g	IQ_g
0009	PQ	1.109	29.235	_	_	0068	PQ	1.081	28.063	_	_
0010	PV	1.100	36.104	-1.154	-2.386	0069	SL	1.100	30.000	-2.064	-4.267
0011	PQ	1.072	16.067	_	-	0070	PV	1.071	23.536	0.136	-0.084
0012	PV	1.074	15.673	0.334	-0.118	0071	PQ	1.069	23.261	-	_
0013	PQ	1.060	14.857	-	-	0072	PV	1.068	22.354	-0.100	0.095
0014	PQ	1.073	14.996	-	-	0073	PV	1.066	23.150	-0.066	0.069
0015	PV	1.074	14.573	0.135	-0.053	0074	PV	1.063	22.507	0.192	-0.264
0016	PQ	1.072	15.354	_	-	0075	PQ	1.065	23.638	-	-
0017	PQ	1.090	16.748	-	-	0076	PV	1.062	22.484	0.465	-0.675
0018	PV	1.074	14.848	0.192	-0.061	0077	PV	1.086	27.151	0.523	0.419
0019	PV	1.072	14.353	0.218	-0.114	0078	PQ	1.082	26.927	-	-
0020	PQ	1.063	15.066	_	-	0079	PQ	1.084	27.243	_	-
0021	PQ	1.060	16.367	_	-	0080	PV	1.100	29.407	-0.564	-1.165
0022	PQ	1.065	18.482	_	-	0081	PQ	1.067	28.605	_	-
0023	PQ	1.082	22.647	_	-	0082	PQ	1.080	27.603	-	-
0024	PV	1.080	22.431	-0.068	-0.012	0083	PQ	1.084	28.539	-	-
0025	PV	1.100	28.975	-1.395	-2.883	0084	PQ	1.091	30.518	-	-
0026	PV	1.100	30.461	1.089	2.250	0085	PV	1.100	31.733	0.470	0.968
0027	PV	1.071	17.797	0.265	-0.153	0086	PQ	1.085	30.872	-	-
0028	PQ	1.064	16.437	_	-	0087	PV	1.080	31.315	-0.053	-0.013
0029	PQ	1.063	15.686	_	-	0088	PQ	1.092	34.435	-	-
0030	PQ	1.078	21.022	_	-	0089	PV	1.100	37.904	-0.671	-1.386
0031	PV	1.066	15.810	0.208	-0.234	0090	PV	1.083	32.604	0.466	0.212
0032	PV	1.070	17.329	0.196	-0.149	0091	PV	1.086	32.512	-0.038	-0.030
0033	PQ	1.076	14.041	-	-	0092	PV	1.096	32.975	0.597	1.019
0034	PV	1.090	14.545	-0.174	-0.200	0093	PQ	1.081	30.621	-	-
0035	PQ	1.088	14.164	-	-	0094	PQ	1.076	28.933	-	-
0036	PV	1.088	14.159	0.156	0.143	0095	PQ	1.066	28.112	-	-
0037	PQ	1.095	14.935	-	-	0096	PQ	1.076	27.975	-	-
0038	PQ	1.060	19.267	-	-	0097	PQ	1.084	28.375	-	-
0039	PQ	1.070	12.142	_	-	0098	PQ	1.088	28.031	-	-
0040	PV	1.067	11.247	0.286	-0.297	0099	PV	1.084	27.666	-0.075	-0.041
0041	PQ	1.060	10.873	_	-	0100	PV	1.087	28.605	0.461	0.382
0042	PV	1.067	12.218	0.268	-0.262	0101	PQ	1.079	29.747	-	-
0043	PQ	1.078	14.424	_	-	0102	PQ	1.089	31.823	-	-
0044	PQ	1.074	16.400	_	-	0103	PV	1.069	25.549	0.178	-0.139

Barra	Tipo	Tensão	Ângulo	Q_g	IQ_g	Barra	Tipo	Tensão	Ângulo	Q_g	IQ_g
0045	PQ	1.070	17.944	_	_	0104	PV	1.056	22.959	0.228	-0.458
0046	PV	1.081	20.373	-0.087	-0.026	0105	PV	1.050	22.012	0.086	-0.218
0047	PQ	1.089	22.288	-	-	0106	PQ	1.045	21.832	-	-
0048	PQ	1.093	21.656	_	_	0107	PV	1.035	19.489	0.016	-0.063
0049	PV	1.095	22.566	0.636	1.034	0108	PQ	1.044	21.118	-	-
0050	PQ	1.084	20.709	_	-	0109	PQ	1.041	20.781	_	_
0051	PQ	1.067	18.397	-	-	0110	PV	1.038	20.186	0.208	-0.777
0052	PQ	1.061	17.578	_	-	0111	PV	1.042	21.668	-0.046	0.153
0053	PQ	1.060	16.742	_	-	0112	PV	1.020	17.835	0.093	-0.500
0054	PV	1.073	17.451	0.258	-0.115	0113	PV	1.083	16.819	-0.226	-0.105
0055	PV	1.072	17.213	0.146	-0.079	0114	PQ	1.066	17.067	_	_
0056	PV	1.073	17.362	0.231	-0.108	0115	PQ	1.066	17.062	-	-
0057	PQ	1.075	18.437	_	-	0116	PV	1.084	27.682	0.858	0.474
0058	PQ	1.067	17.710	-	-	0117	PQ	1.059	14.362	_	_
0059	PV	1.098	20.990	0.856	1.572	0118	PQ	1.058	22.722	_	_

Perfil de Magnitudes de Tensão e Suporte de Potência Reativa Correspondentes a Soluções **68** de Perdas Mínimas Ativa e Reativa

Tab. 3.23: Suporte de reativos no ponto de perdas mínimas ativas.

O ponto de perdas mínimas reativas foi atingido em 42 passos, figura 3.46, página 71, e melhora a operação com uma redução de 10,6% nas perdas reativas.

Barra	Tipo	Tensão	Ângulo	Q_g	IQ_g	Barra	Tipo	Tensão	Ângulo	Q_g	IQ_g
0001	PV	1.038	13.039	0.157	0.011	0060	PQ	1.052	23.830	_	_
0002	PQ	1.041	13.667	-	-	0061	PV	1.054	24.622	0.068	0.111
0003	PQ	1.048	13.850	-	-	0062	PV	1.051	24.105	0.033	0.043
0004	PV	1.069	17.174	-1.572	-4.819	0063	PQ	1.023	23.502	_	_
0005	PQ	1.084	17.429	-	-	0064	PQ	1.043	25.098	-	-
0006	PV	1.055	15.274	-0.098	-0.167	0065	PV	1.065	27.999	2.995	7.920
0007	PQ	1.053	14.905	-	_	0066	PV	1.071	28.083	-1.816	-5.807
0008	PV	1.078	21.594	3.419	13.412	0067	PQ	1.056	25.498	_	-
0009	PQ	1.102	28.073	_	_	0068	PQ	1.055	27.913	_	_
0010	PV	1.100	34.957	-0.904	-5.442	0069	SL	1.066	30.000	-2.069	-5.647
0011	PQ	1.052	14.997	—	_	0070	PV	1.022	23.138	0.074	-0.114
0012	PV	1.050	14.630	0.146	0.174	0071	PQ	1.018	22.864	_	_
0013	PQ	1.036	13.731	-	-	0072	PV	1.017	21.861	-0.159	0.320

A solução do processo de otimização é detalhado na tabela 3.24.

	3.4	Estudo	dos Sistemas	IEEE 30,	57 e	e 118 Barra	as
--	-----	--------	--------------	-----------------	------	-------------	----

Barra	Tipo	Tensão	Ângulo	Q_g	IQ_g	Barra	Tipo	Tensão	Ângulo	Q_g	IQ_g
0014	PQ	1.045	13.906	-	-	0073	PV	1.012	22.768	-0.122	0.298
0015	PV	1.035	13.412	-0.048	0.012	0074	PV	1.011	22.033	0.138	-0.346
0016	PQ	1.046	14.246	_	-	0075	PQ	1.016	23.240	_	_
0017	PQ	1.060	15.605	_	_	0076	PV	1.009	21.992	0.392	-1.077
0018	PV	1.035	13.687	0.049	-0.014	0077	PV	1.040	26.973	0.539	0.146
0019	PV	1.031	13.172	0.167	-0.101	0078	PQ	1.036	26.729	-	_
0020	PQ	1.024	13.908	_	_	0079	PQ	1.037	27.073	_	_
0021	PQ	1.023	15.280	-	_	0080	PV	1.053	29.415	-0.745	-1.132
0022	PQ	1.030	17.513	-	-	0081	PQ	1.037	28.518	—	-
0023	PQ	1.053	21.885	-	-	0082	PQ	1.035	27.408	-	-
0024	PV	1.043	21.773	-0.102	-0.052	0083	PQ	1.040	28.391	-	_
0025	PV	1.088	28.264	-1.181	-5.755	0084	PQ	1.049	30.462	-	-
0026	PV	1.088	29.778	1.737	8.486	0085	PV	1.060	31.735	0.286	0.614
0027	PV	1.039	16.775	0.227	0.025	0086	PQ	1.039	30.875	_	_
0028	PQ	1.028	15.352	-	-	0087	PV	1.027	31.417	-0.087	0.085
0029	PQ	1.025	14.581	_	-	0088	PQ	1.065	34.475	_	_
0030	PQ	1.030	19.991	-	-	0089	PV	1.083	37.996	0.309	1.345
0031	PV	1.027	14.729	0.101	-0.105	0090	PV	1.050	32.629	0.326	0.400
0032	PV	1.034	16.304	0.168	-0.052	0091	PV	1.047	32.635	-0.177	-0.157
0033	PQ	1.034	12.797	-	-	0092	PV	1.063	33.006	0.448	1.102
0034	PV	1.040	13.353	-0.601	-0.114	0093	PQ	1.043	30.563	_	-
0035	PQ	1.037	12.930	-	-	0094	PQ	1.032	28.802	_	_
0036	PV	1.036	12.936	0.047	-0.006	0095	PQ	1.021	27.929	-	-
0037	PQ	1.049	13.716	-	-	0096	PQ	1.030	27.806	—	-
0038	PQ	0.994	18.289	-	-	0097	PQ	1.037	28.266	-	-
0039	PQ	1.019	10.720	-	-	0098	PQ	1.041	27.895	—	-
0040	PV	1.013	9.767	0.192	-0.453	0099	PV	1.033	27.509	-0.129	0.053
0041	PQ	1.007	9.342	-	-	0100	PV	1.040	28.484	0.462	0.109
0042	PV	1.017	10.788	0.277	-0.545	0101	PQ	1.037	29.650	—	-
0043	PQ	1.028	13.229	-	-	0102	PQ	1.053	31.813	—	-
0044	PQ	1.026	15.398	-	-	0103	PV	1.019	25.156	0.164	-0.286
0045	PQ	1.023	17.070	-	-	0104	PV	1.004	22.316	0.209	-0.673
0046	PV	1.036	19.702	-0.100	0.015	0105	PV	0.998	21.266	0.115	-0.434
0047	PQ	1.048	21.732	-	-	0106	PQ	0.992	21.069	-	-
0048	PQ	1.051	21.051	-	-	0107	PV	0.980	18.490	0.010	-0.057
0049	PV	1.055	22.005	0.770	1.280	0108	PQ	0.992	20.263	-	-

Perfil de Magnitudes de Tensão e Suporte de Potência Reativa Correspondentes a Soluções 70 de Perdas Mínimas Ativa e Reativa

Barra	Tipo	Tensão	Ângulo	Q_g	IQ_g	Barra	Tipo	Tensão	Ângulo	Q_g	IQ_g
0050	PQ	1.039	20.038	_	-	0109	PQ	0.989	19.884	_	_
0051	PQ	1.016	17.562	_	-	0110	PV	0.987	19.206	0.238	-1.171
0052	PQ	1.009	16.674	_	-	0111	PV	0.992	20.833	-0.037	0.164
0053	PQ	1.004	15.770	_	-	0112	PV	0.968	16.602	0.095	-0.639
0054	PV	1.017	16.565	0.258	-0.514	0113	PV	1.045	15.788	-0.460	-0.335
0055	PV	1.015	16.315	0.099	-0.220	0114	PQ	1.032	16.013	_	_
0056	PV	1.016	16.479	0.099	-0.207	0115	PQ	1.032	16.006	_	_
0057	PQ	1.023	17.621	_	-	0116	PV	1.061	27.502	1.628	3.704
0058	PQ	1.014	16.831	_	-	0117	PQ	1.035	13.259	_	_
0059	PV	1.043	20.428	0.371	0.196	0118	PQ	1.007	22.243	_	_

Tab. 3.24: Suporte de reativos no ponto ótimo para a minimização de perdas reativas série do sistema IEEE 118 barras.

As tensões nas barras SL e PV, nos pontos de perdas mínimas ativa e reativa (figuras 3.47 e 3.48), adquirem perfis superiores aos do caso básico. Nas perdas ativas, as barras 10, 25, 26, 61, 66, 69, 80, 85 e 89 operam com magnitude máxima permitida. Nas perdas reativas, o perfil de tensão médio é mais baixo (vide figura 3.49), e faz com que apenas a barra 10 atue no limite máximo.

A tensão nas barras PQ também se elevam, podendo ser visualizadas nas figuras 3.50 e 3.51. Novamente o perfil médio das tensões é menor para perdas mínimas reativas (figura 3.52).

Nota-se nas figuras 3.53 e 3.54, que os taps são reconfigurados apenas no caso de perdas mínimas reativas, como esperado.

Percebe-se uma melhora na geração de reativos ao se analisar os gráficos das figuras 3.57 e 3.60. Com o auxílio da tabela 3.22, constata-se uma redução de 45% na geração de reativos, com a utilização de perdas mínimas ativas, e 19% com o uso de perdas mínimas reativas. As diferenças ocorridas nas duas minimizações se devem ao fato da não-convexidade das funções objetivo, levando f_Q a convergir em um mínimo local diferente.

Fig. 3.45: Perdas de potência ativa a cada iteração no sistema IEEE 118 barras.

Fig. 3.46: Perdas de potência reativa a cada iteração no sistema IEEE 118 barras.

Perfil de Magnitudes de Tensão e Suporte de Potência Reativa Correspondentes a Soluções de Perdas Mínimas Ativa e Reativa

Fig. 3.47: Primeira parte das magnitudes de tensão nas barras SL e PV.

Fig. 3.48: Segunda parte das magnitudes de tensão das barras SL e PV.

72

Fig. 3.49: Histograma das magnitudes de tensão das barras SL e PV.

Fig. 3.50: Primeira parte das magnitudes de tensão nas barras PQ.

Perfil de Magnitudes de Tensão e Suporte de Potência Reativa Correspondentes a Soluções de Perdas Mínimas Ativa e Reativa

Fig. 3.51: Segunda parte das magnitudes de tensão nas barras PQ.

Fig. 3.52: Histograma das magnitudes de tensão nas barras PQ.

Fig. 3.53: Taps dos transformadores em fase.

Fig. 3.54: Histograma dos taps dos transformadores em fase.

Fig. 3.55: Primeira parte da distribuição de Q_g nas barras SL e PV.

Fig. 3.56: Segunda parte da distribuição de Q_g nas barras SL e PV.

Fig. 3.57: Histograma da distribuição de Q_g nas barras $SL \in PV$.

Fig. 3.58: Primeira parte dos indicadores de qualidade de geração de reativos.

Perfil de Magnitudes de Tensão e Suporte de Potência Reativa Correspondentes a Soluções de Perdas Mínimas Ativa e Reativa

Fig. 3.59: Segunda parte dos indicadores de qualidade de geração de reativos.

Fig. 3.60: Histograma dos indicadores de qualidade de geração de reativos.

3.5 Conclusão

O propósito deste capítulo foi estabelecer as correções entre soluções operativas, sob determinadas condições de carga, e suporte de potência reativa exigido pelo sistema. Estas soluções são associadas aos níveis de perdas de potências ativa e reativa no sistema de transmissão. Foram definidos indicadores para avaliação do perfil de magnitudes de tensão e das injeções de potência reativa exigidas. Estes indicadores foram utilizados para a comparação das soluções em pontos operativos básicos e correspondentes às perdas mínimas ativa e reativa. De um modo geral, observou-se, por meio de exemplos, que os pontos correspondentes às perdas mínimas ativas de transmissão exigem um suporte de potência reativa (injeções de potência reativas nas barras SL e PV) com indicadores um pouco mais amigáveis. Estes pontos exigem um perfil de tensão mais elevado se comparado aos pontos de perdas mínimas reativas.

Capítulo 4

Perdas Aparentes Série $(\sqrt{R^2 + X^2}I^2)$ e Aproximação Quadrática como Índices de Desempenho para Suporte de Potência Reativa/Magnitudes de Tensão

Neste capítulo, as perdas aparentes série $(\sqrt{R^2 + X^2}I^2)$ e a sua aproximação quadrática são propostas como índices de desempenho. Também são feitas análises comparativas dos resultados obtidos com estes índices e os demais por meio dos indicadores definidos no capítulo 3.

4.1 Perdas de Potência Aparente nos Elementos Série dos Circuitos

O novo indicador proposto será dado pelas perdas série de "potência aparente" (|S|), e será obtido a partir da soma de todas as potências que fluem pelos ramos, como é mostrado na equação 4.1.

$$\left|S_{kl}^{s\acute{e}rie} + S_{lk}^{s\acute{e}rie}\right| = \left|P_{kl} + P_{lk} + j\left(Q_{kl}^{s\acute{e}rie} + Q_{lk}^{s\acute{e}rie}\right)\right|$$
(4.1)

Parte da equação 4.1 foi obtida na equação A.70. O termo restante é obtido pelas equações 4.2

e 4.3.

$$Q_{kl}^{s\acute{e}rie} = -V_k^2 b_{kl}(t_{kl}) + V_k V_l b_{kl}(t_{kl}) \cos\theta_{kl} - V_k V_l g_{kl} \sin\theta_{kl}$$

$$\tag{4.2}$$

O fluxo contrário de potência reativa é dado pela equação 4.3:

$$Q_{lk}^{s\acute{e}rie} = -V_l^2 b_{kl}(t_{kl}) + V_k V_l b_{kl}(t_{kl}) \cos \theta_{kl} + V_k V_l g_{kl} \sin \theta_{kl}$$

$$\tag{4.3}$$

A soma dos fluxos em um determinado ramo (equações 4.2 e 4.3) resulta nas perdas de potência reativa série. Esta perda é apresentada pela equação 4.4.

$$Q_{kl}^{s\acute{e}rie} + Q_{lk}^{s\acute{e}rie} = -b_{kl}(t_{kl})(V_k^2 + V_l^2) + V_k V_l \left(-2b_{kl}(t_{kl})\cos\theta_{kl}\right)$$

= $-b_{kl}(t_{kl})(V_k^2 + V_l^2 - 2V_k V_l \cos\theta_{kl})$ (4.4)

Com as equações A.70 e 4.4, finalmente as perdas série de potência complexa podem ser calculadas. O resultado é mostrado na equação 4.5.

$$S_{kl}^{s\acute{e}rie} + S_{lk}^{s\acute{e}rie} = P_{kl} + P_{lk} + j(Q_{kl}^{s\acute{e}rie} + Q_{lk}^{s\acute{e}rie})$$

= $(g_{kl} - b_{kl}(t_{kl})) \underbrace{(V_k^2 + V_l^2 - 2V_k V_l \cos \theta_{kl})}_{|\hat{V}_k - \hat{V}_l|^2}$ (4.5)

A perda série de potência aparente é igual ao módulo da perda série de potência complexa. A equação 4.6 apresenta a nova função objetivo para Perdas Aparentes Série.

$$\begin{aligned} \left| S_{kl}^{s\acute{e}rie} + S_{lk}^{s\acute{e}rie} \right| &= \sqrt{g_{kl}^2 + b_{kl}^2(t_{kl})} \left| \hat{V}_k - \hat{V}_l \right|^2 \\ &= \sqrt{g_{kl}^2 + b_{kl}^2(t_{kl})} \left[V_k^2 + V_l^2 - 2V_k V_l \cos \theta_{kl} \right] \end{aligned}$$

$$f_S = \sum_{kl\in\Gamma} \sqrt{g_{kl}^2 + b_{kl}(t_{kl})^2} \left[V_k^2 + V_l^2 - 2V_k V_l \cos\theta_{kl} \right]$$
(4.6)

onde: $t_{kl} = 1$, para linhas de transmissão e $t_{kl} = t_{kl}$, para transformadores em fase.

Obs.: Para transformadores em fase, a susceptância $b_{kl}(t_{kl})$ depende do modelo do trafo [Apêndice B].

4.1.1 Análise das Diferenças entre $f_P(RI^2)$, $f_Q(XI^2)$ e $f_S(\sqrt{R^2 + X^2}I^2)$

A estrutura dos transformadores nos sistemas de transmissão, possui resistência série tão baixa que pode ser desprezada, resultando em uma impedância que envolve somente a susceptância série, como mostra a equação 4.7.

$$Z_{trafo} = \underbrace{\frac{-0}{r^{2} + x^{2}}}_{r^{2} + x^{2}} - j \underbrace{\frac{x}{r^{2} + x^{2}}}_{=0} + x^{2}$$
$$= -j \frac{1}{x}$$
$$= -jb$$
(4.7)

Portanto, a função objetivo $f_P(RI^2)$ não contém parcelas correspondentes aos ramos que conectam, por meio de transformadores, áreas com distintos níveis de tensão.

Os subsistemas de diferentes níveis de tensão têm suas parcelas de perdas $(f_P, f_Q e f_S)$ minimizadas juntamente com as perdas totais. Entretanto os ramos de conexão entre áreas (transformadores) contribuem na formação dos objetivos f_Q e f_S , mas não contribuem para f_P . Portanto, na composição dos objetivos f_Q e f_S aparecerão parcelas quadráticas nas magnitudes de tensão das barras terminais dos transformadores $(g_{kl}||\hat{V}_k - \hat{V}_l||^2)$. O objetivo f_P não contém estas parcelas. Nesse caso, o índice apresenta parcelas correspondente às áreas, com níveis de tensão diferentes, sem termos quadráticos que vinculem as magnitudes de tensão das barras terminais dos transformadores. A figura 4.1 ilustra esta idéia.

O uso das funções objetivo f_Q e f_S (perdas reativas e aparentes série), implicam em vantagens interessantes em relação à minimização de perdas ativas (f_P) , pois a susceptância está contida

Fig. 4.1: Sistema IEEE 14 barras subdividido pelos transformadores em fase.

nesta função.

Um exemplo para este fato é o que ocorre no sistema IEEE 14 barras. Nesse sistema a barra 8 é conectada à rede por meio de um transformador (veja a figura 3.8 na página 34). O uso de f_P faz com que a tensão nesta barra atue no limite máximo (definido no apêndice C.2), o que é totalmente diferente do que ocorre na minimização de reativos, em que a tensão nesta barra é 1,07 p.u..

4.2 Aproximação Quadrática das Perdas Aparentes Série

Nesta seção, é proposto um novo índice de desempenho para auxílio na minimização de perdas aparentes série. Este novo índice tem o papel fundamental de eliminar não-convexidades na função objetivo f_S , previamente proposta.

4.2.1 Aproximação Quadrática das Perdas Aparentes Série

Uma nova função objetivo pode ser obtida a partir da aproximação da equação 4.6. Esta aproximação é válida, pois a função objetivo f_S pode conter, ao longo da projeção, algumas particularidades que a torna não-convexa em determinados pontos, o que é indesejável.

A parte entre colchetes da equação 4.6, $V_k^2 + V_l^2 - 2V_kV_l \cos \theta_{kl}$, será simplificada com o intuito

de eliminar tais não-convexidades. Um termo $2V_kV_l$ será somado e subtraído nesta equação, para que o resultado não se altere.

$$E_{kl} = \underbrace{V_k^2 + V_l^2 - 2V_k V_l}_{(V_k - V_l)^2} + \underbrace{2V_k V_l - 2V_k V_l \cos \theta_{kl}}_{2V_k V_l (1 - \cos \theta_{kl})}$$

= $(V_k - V_l)^2 + 2V_k V_l (1 - \cos \theta_{kl})$ (4.8)

Como todos os ângulos são sempre muito pequenos, próximos de 0° , o $\cos \theta_{kl}$ pode ser desenvolvido em série de Taylor em torno de $\theta_{kl}^0 = 0^{\circ}$.

$$\cos\theta_{kl} = 1 - \frac{\theta_{kl}^2}{2} + \dots \tag{4.9}$$

Com a substituição da equação 4.9 em 4.8 obtém-se:

$$E_{kl} = (V_k - V_l)^2 + 2V_k V_l \left(1 - 1 + \frac{\theta_{kl}^2}{2}\right)$$

e, finalmente:

$$E_{kl} = (V_k - V_l)^2 + V_k V_l (\theta_k - \theta_l)^2$$
(4.10)

O termo $V_k V_l (\theta_k - \theta_l)^2$ da equação 4.10 possui componentes de quarta ordem em determinados pontos, portanto $V_k V_l$ será aproximado para 1 (um) para que a função torne-se quadrática. A nova função é apresentada pela equação 4.11.

$$E_{kl} = (V_k - V_l)^2 + (\theta_k - \theta_l)^2$$
(4.11)

Com a equação 4.11 pode-se escrever uma nova função objetivo, equação 4.12, que por conveniência, será chamada de \tilde{f}_S , pois é a aproximação de f_S .

$$\tilde{f}_{S} = \sum_{kl\in\Gamma} \sqrt{g_{kl}^{2} + b_{kl}^{2}} \left[(V_{k} - V_{l})^{2} + (\theta_{k} - \theta_{l})^{2} \right]$$
(4.12)

4.3 Sistema IEEE 14 Barras

Nesta seção o sistema exemplo IEEE 14 barras será minimizado com o auxílio dos novos índices f_S e \tilde{f}_S .

Perdas Aparentes Série f_S e sua Aproximação Quadrática \tilde{f}_S

		Solução							
Indicador	EC	Mín. Perdas	Mín. Perdas	Mín. Perdas	Mín. Perdas				
	FC	Ativas	Reativas	Aparentes	Aparentes Aprox.				
Perdas Ativas (MW)	13,393	12,401	12,547	12,380	12,501				
Perdas Reativas Série (MVAr)	56,392	51,130	50,741	50,099	50,460				
Perdas Aparentes Série (MVA)	58,369	52,962	52,599	51,933	52,312				
$\overline{V}^{contr.}$	1,0550	1,0868	1,0787	1,0839	1,0963				
$DQM\overline{V}^{contr.}$	0,0268	0,0180	0,0143	0,0128	0,0075				
$\overline{t}^{contr.}$	0,9758	0,9784	0,9827	0,9990	1,0064				
$DQM\overline{t}^{contr.}$	0,0251	0,0253	0,0277	0,0129	0,0117				
\overline{V}^{carga}	1,0448	1,0741	1,0585	1,0652	1,0792				
$DQM\overline{V}^{carga}$	0,0156	0,0115	0,0069	0,0070	0,0077				
$\sum Q_g$ (MVAr)	82,437	75,382	77,316	75,504	75,183				
Iterações FPO	-	9	7	14	15				
Iterações FC	-	54	44	81	85				

A tabela 4.1 resume os indicadores utilizados na análise do sitema IEEE 14 barras.

Tab. 4.1: Perdas ativas, reativas, aparentes e aparentes aproximadas mínimas.

O processo de otimização convergiu em 14 passos, e pode ser visto na figura 4.2. A solução de perdas mínimas aparentes série é apresentada pela tabela 4.2.

Barra	Tipo	Tensão	Ângulo	Q_g	IQ_g
0001	SL	1,100	0,000	-0,322	0,478
0002	PV	1,091	-4,674	0,485	0,338
0003	PV	1,062	-11,776	0,284	-0,572
0004	PQ	1,066	-9,536	_	_

Barra	Tipo	Tensão	Ângulo	Q_g	IQ_g
0005	PQ	1,069	-8,153	_	_
0006	PV	1,086	-13,521	0,212	0,044
0007	PQ	1,072	-12,495	_	_
0008	PV	1,080	-12,495	0,096	-0,036
0009	PQ	1,065	-14,048	_	_
0010	PQ	1,061	-14,230	_	_
0011	PQ	1,070	-13,998	_	_
0012	PQ	1,071	-14,344	_	_
0013	PQ	1,066	-14,403	_	_
0014	PQ	1,047	-15,180	_	_

Tab. 4.2: Suporte de reativos no ponto de perdas mínimas aparentes série.

Fig. 4.2: Comportamento da função objetivo f_S a cada iteração no sistema IEEE 14 barras.

O ponto de perdas mínimas aparentes série aproximadas foi obtido em 15 passos. A operação neste ponto proporciona perdas pouco maiores em relação ao uso de f_S , entretanto, o balanço de reativos é menor. A figura 4.3 apresenta os detalhes da minimização, e, o ponto de perdas mínimas, é dado pela tabela 4.3.

Barra	Tipo	Tensão	Ângulo	Q_g	IQ_g
0001	SL	1,100	0,000	-0,545	-0,185
0002	PV	1,100	-4,777	0,510	0,174
0003	PV	1,081	-11,846	0,361	-0,491
0004	PQ	1,082	-9,627	_	_
0005	PQ	1,083	-8,253	_	_
0006	PV	1,100	-13,555	0,272	0,093
0007	PQ	1,089	-12,521	_	_
0008	PV	1,100	-12,521	0,154	0,052
0009	PQ	1,077	-14,037	_	-
0010	PQ	1,074	-14,220	_	-
0011	PQ	1,083	-14,006	_	_
0012	PQ	1,085	-14,356	_	_
0013	PQ	1,080	-14,410	_	_
0014	PQ	1,061	-15,152	_	_

Tab. 4.3: Suporte de reativos no ponto de perdas mínimasaparentes série aproximadas.

Fig. 4.3: Comportamento da função objetivo f_S a cada iteração no sistema IEEE 14 barras.

O perfil das tensões na minimização de perdas aparentes, aproximadas ou não, são mais altos do que para as outras funções objetivo. Para o uso de f_S , a tensão na barra 1 opera no limite máximo. Com o uso de \tilde{f}_S , as barras 1, 2, 6 e 8 operam no máximo estipulado. As figuras 4.4 e 4.5 apresentam os detalhes.

Com o uso dos novos índices, o desvio das tensões diminui, o que pode ser visualizado nos gráficos das figuras 4.6 e 4.7.

A distribuição dos taps dos transformadores, figuras 4.8 e 4.9, melhora bastante. Apesar de f_S estar mais concentrada, f_S se mostra pouco melhor pela média estar mais próxima de 1,0 p.u..

A geração de reativos é minimizada nos pontos de perdas mínimas aparentes em 8,4%, e aproximadas em 8,8%. Os gráficos das figuras 4.10 e 4.11, páginas 93 e 93, apresentam os detalhes.

Além de ter sido obtido um ponto em que o balanço de reativos é menor, com o uso de f_S , a qualidade de geração também é melhorada, conforme apresentam as figuras 4.12 e 4.13.

É importante ressaltar que, em ambas minimizações, o IQ_g , além de se aproximar de zero, passa a ser positivo em mais barras, se comparado ao caso básico.

Fig. 4.4: Magnitudes de tensão nas barras SL e PV.

Fig. 4.5: Histograma das magnitudes de tensão nas barras SL e PV.

Fig. 4.6: Magnitudes das tensões nas barras PQ.

Fig. 4.7: Histograma das magnitudes das tensões nas barras PQ.

Fig. 4.8: Taps dos transformadores em fase.

Fig. 4.9: Histograma dos taps dos transformadores em fase.

Fig. 4.10: Distribuição da geração de reativos nas barras SL e PV.

Fig. 4.11: Histograma da distribuição da geração de reativos nas barras SL e PV.

Fig. 4.12: Indicadores de qualidade de geração de reativos.

Fig. 4.13: Histograma dos indicadores de qualidade de geração de reativos.

4.4 Sistema IEEE 30 Barras

A tabela 4.4 apresenta os indicadores utilizados na análise de desempenho dos índices contidos neste trabalho.

	Solução							
Indicador	EC	Mín. Perdas	Mín. Perdas	Mín. Perdas	Mín. Perdas			
	FC	Ativas	Reativas	Aparentes	Aparentes Aprox.			
Perdas Ativas (MW)	17,552	16,141	16,315	16,202	16,387			
Perdas Reativas Série (MVAr)	69,128	62,610	62,391	61,803	62,163			
Perdas Aparentes Série (MVA)	71,832	65,093	64,901	64,298	64,685			
$\overline{V}^{contr.}$	1,0460	1,0802	1,0720	1,0780	1,0950			
$DQM\overline{V}^{contr.}$	0,0280	0,0202	0,0157	0,0137	0,0067			
$\overline{t}^{contr.}$	0,9781	0,9812	0,9784	0,9875	0,9913			
$DQM\bar{t}^{contr.}$	0,0231	0,0231	0,0240	0,0155	0,0154			
\overline{V}^{carga}	1,0251	1,0630	1,0547	1,0548	1,0749			
$DQM\overline{V}^{carga}$	0,0169	0,0129	0,0095	0,0100	0,0094			
$\sum Q_g$ (MVAr)	134,003	124,025	125,671	124,279	122,484			
Iterações FPO	_	13	7	17	13			
Iterações FC	_	78	48	98	81			

Tab. 4.4: Perdas ativas, reativas, aparentes e aparentes aproximadas mínimas.

O ponto de perdas mínimas aparentes série foi obtido em 17 passos (figura 4.14). A solução de perdas mínimas aparentes série é apresentada pela tabela 4.5.

Barra	Tipo	Tensão	Ângulo	Q_g	IQ_g	Barra	Tipo	Tensão	Ângulo	Q_g	IQ_g
0001	SL	1.100	0.000	-0.301	-0.614	0016	PQ	1.063	-14.521	_	_
0002	PV	1.088	-4.998	0.518	0.498	0017	PQ	1.060	-14.835	_	_
0003	PQ	1.068	-6.993	_	-	0018	PQ	1.048	-15.498	_	_
0004	PQ	1.060	-8.607	_	-	0019	PQ	1.046	-15.662	_	_
0005	PV	1.059	-13.061	0.362	-0.643	0020	PQ	1.050	-15.472	_	_
0006	PQ	1.060	-10.274	_	-	0021	PQ	1.054	-15.105	_	_
0007	PQ	1.053	-11.899	_	-	0022	PQ	1.055	-15.092	-	_
0008	PV	1.067	-11.059	0.571	-0.587	0023	PQ	1.049	-15.293	_	_

Perdas Aparentes Série $(\sqrt{R^2 + X^2}I^2)$ e Aproximação Quadrática como Índices de Desempenho para Suporte de Potência Reativa/Magnitudes de Tensão

Barra	Tipo	Tensão	Ângulo	Q_g	IQ_g	Barra	Tipo	Tensão	Ângulo	Q_g	IQ_g
0009	PQ	1.068	-13.152	_	_	0024	PQ	1.046	-15.471	_	_
0010	PQ	1.065	-14.678	_	_	0025	PQ	1.051	-15.105	_	_
0011	PV	1.073	-13.152	0.030	-0.015	0026	PQ	1.034	-15.498	_	_
0012	PQ	1.074	-13.953	_	_	0027	PQ	1.062	-14.629	_	_
0013	PV	1.081	-13.953	0.062	0.018	0028	PQ	1.058	-10.873	_	_
0014	PQ	1.060	-14.810	_	_	0029	PQ	1.043	-15.768	_	_
0015	PQ	1.056	-14.910	_	_	0030	PQ	1.032	-16.584	_	_

Tab. 4.5: Suporte de reativos no ponto de perdas mínimas aparentes série.

Fig. 4.14: Comportamento da função objetivo f_S a cada iteração no sistema IEEE 30 barras.

O ponto de perdas mínimas aparentes série aproximadas foi obtido em 13 iterações, e propicia uma redução de 10% nas perdas aparentes. Este ponto é exibido na tabela 4.6. O gráfico da figura 4.15 ostenta o processo de minimização passo-a-passo de \tilde{f}_S em comparação com f_S .

Barra	Tipo	Tensão	Ângulo	Q_g	IQ_g	Barra	Tipo	Tensão	Ângulo	Q_g	IQ_g
0001	SL	1.100	0.000	-0.610	-0.277	0016	PQ	1.082	-14.493	_	_
0002	PV	1.100	-5.145	0.590	0.268	0017	PQ	1.080	-14.803	_	_
0003	PQ	1.082	-7.111	_	_	0018	PQ	1.067	-15.436	_	_
0004	PQ	1.077	-8.740	_	_	0019	PQ	1.065	-15.598	_	_
0005	PV	1.082	-13.107	0.435	-0.509	0020	PQ	1.070	-15.416	_	_
0006	PQ	1.081	-10.402	_	_	0021	PQ	1.074	-15.068	_	_
0007	PQ	1.075	-11.974	_	_	0022	PQ	1.075	-15.055	_	_
0008	PV	1.090	-11.195	0.646	-0.290	0023	PQ	1.068	-15.240	—	_
0009	PQ	1.091	-13.186	_	_	0024	PQ	1.067	-15.421	—	_
0010	PQ	1.086	-14.656	_	_	0025	PQ	1.072	-15.071	—	_
0011	PV	1.098	-13.186	0.078	0.020	0026	PQ	1.056	-15.448	_	_
0012	PQ	1.092	-13.931	_	_	0027	PQ	1.084	-14.613	_	_
0013	PV	1.100	-13.931	0.085	0.039	0028	PQ	1.079	-10.987	_	_
0014	PQ	1.079	-14.760	_	—	0029	PQ	1.065	-15.707	_	_
0015	PQ	1.075	-14.863	_	_	0030	PQ	1.054	-16.490	_	_

Tab. 4.6: Suporte de reativos no ponto de perdas mínimas aparentes série aproximadas.

O perfil das tensões é mais alto com o uso de \tilde{f}_S , o que pode ser comprovado nas figuras 4.16 e 4.18. Com o uso de f_S , para as barras SL e PV, a barra 1 opera no máximo tolerado. Para sua aproximação, as barras 1, 2 e 13 estão nesse ponto.

Os histogramas das figuras 4.17 e 4.19 mostram com maior clareza a elevação das tensões.

Os taps dos transformadores, figuras 4.20 e 4.21, têm um ligeiro aumento, passando a operar mais próximos de 1,0 p.u..

A geração de reativos é beneficiada na minimização das perdas aparentes. Desta forma, consegue-se valores mais baixos do que em f_P e em f_Q , sendo que \tilde{f}_S apresenta o menor valor entre eles.

A qualidade na geração de reativos é confirmada nos gráficos 4.24 e 4.25, nos quais podem-se notar indicadores mais próximos de zero e positivas em maior número.

Fig. 4.15: Comportamento da função objetivo \tilde{f}_S a cada iteração no sistema IEEE 30 barras.

Fig. 4.16: Magnitudes de tensão nas barras SL e PV.

Fig. 4.17: Histograma das magnitudes de tensão nas barras SL e PV.

Fig. 4.18: Magnitudes de tensão nas barras PQ.

Fig. 4.19: Histograma das magnitudes de tensão nas barras PQ.

Fig. 4.20: Taps dos transformadores em fase.

Fig. 4.21: Histograma dos taps dos transformadores em fase.

Fig. 4.22: Distribuição da geração de reativos nas barras SL e PV.

Fig. 4.23: Histograma da distribuição da geração de reativos nas barras SL e PV.

Fig. 4.24: Indicadores de qualidade de geração de reativos nas barras SL e PV.

Fig. 4.25: Histograma dos indicadores de qualidade de geração de reativos nas barras SL e PV.

4.5 Sistema IEEE 57 Barras

A tabela 4.7 apresenta os indicadores utilizados na análise de desempenho dos índices contidos neste trabalho.

			Soluçã	io	
Indicador	FC	Mín. Perdas	Mín. Perdas	Mín. Perdas	Mín. Perdas
	re	Ativas	Reativas	Aparentes	Aparentes Aprox.
Perdas Ativas (MW)	27,868	22,464	22,579	22,718	22,877
Perdas Reativas Série (MVAr)	149,623	113,232	102,182	99,546	99,830
Perdas Aparentes Série (MVA)	153,926	116,747	105,735	103,141	103,442
$\overline{V}^{contr.}$	1,0021	1,0904	1,0873	1,0918	1,0969
$DQM\overline{V}^{contr.}$	0,0205	0,0086	0,0103	0,0077	0,0036
$\overline{t}^{contr.}$	0,9679	0,9800	0,9744	0,9823	0,9830
$DQM\bar{t}^{contr.}$	0,0394	0,0338	0,0223	0,0211	0,0206
\overline{V}^{carga}	0,9914	1,0737	1,0622	1,0555	1,0620
$DQM\overline{V}^{carga}$	0,0277	0,0264	0,0237	0,0265	0,0272
$\sum Q_g$ (MVAr)	321,180	272,065	273,566	273,474	272,246
Iterações FPO	-	28	20	22	17
Iterações FC	_	173	130	136	106

Tab. 4.7: Perdas ativas, reativas, aparentes e aparentes aproximadas mínimas.

A tabela 4.8 expõe os dados do ponto de perdas mínimas aparentes série. Este ponto foi obtido em um total de 22 iterações, e proporciona uma redução de 33% nas perdas aparentes. A figura 4.26, página 106, mostra as perdas a cada iteração.

Barra	Tipo	Tensão	Ângulo	Q_g	IQ_g	Barra	Tipo	Tensão	Ângulo	Q_g	IQ_g
0001	SL	1.100	-0.000	-0.227	-0.171	0030	PQ	1.042	-16.889	_	_
0002	PV	1.100	-1.475	0.874	0.658	0031	PQ	1.010	-17.398	_	_
0003	PV	1.091	-5.767	0.481	-0.020	0032	PQ	1.011	-16.537	_	_
0004	PQ	1.087	-6.897	_	_	0033	PQ	1.009	-16.572	_	_
0005	PQ	1.083	-7.895	_	_	0034	PQ	1.007	-12.922	_	_
0006	PV	1.085	-8.000	0.086	-0.050	0035	PQ	1.012	-12.684	_	_
0007	PQ	1.084	-7.105	_	-	0036	PQ	1.020	-12.418	_	_

Barra	Tipo	Tensão	Ângulo	Q_g	IQ_g	Barra	Tipo	Tensão	Ângulo	Q_g	IQ_g
0008	PV	1.100	-4.456	0.319	0.240	0037	PQ	1.027	-12.216	_	_
0009	PV	1.085	-8.740	0.639	-0.373	0038	PQ	1.047	-11.485	_	_
0010	PQ	1.070	-10.054	_	_	0039	PQ	1.026	-12.265	—	_
0011	PQ	1.071	-9.110	_	_	0040	PQ	1.018	-12.454	_	_
0012	PV	1.080	-8.994	0.563	-0.591	0041	PQ	1.079	-12.629	_	_
0013	PQ	1.070	-8.653	_	_	0042	PQ	1.044	-13.783	_	_
0014	PQ	1.067	-8.263	—	_	0043	PQ	1.097	-10.152	_	_
0015	PQ	1.078	-6.491	—	_	0044	PQ	1.060	-10.740	_	_
0016	PQ	1.079	-7.658	_	_	0045	PQ	1.095	-8.540	_	_
0017	PQ	1.081	-4.695	_	_	0046	PQ	1.063	-9.744	_	_
0018	PQ	1.098	-10.684	_	_	0047	PQ	1.051	-11.063	_	_
0019	PQ	1.046	-11.684	_	_	0048	PQ	1.051	-11.242	_	_
0020	PQ	1.025	-11.708	_	_	0049	PQ	1.059	-11.508	_	_
0021	PQ	1.049	-11.724	—	—	0050	PQ	1.048	-11.956	_	_
0022	PQ	1.047	-11.635	—	_	0051	PQ	1.078	-11.105	_	_
0023	PQ	1.046	-11.701	—	_	0052	PQ	1.065	-10.519	_	_
0024	PQ	1.047	-12.099	—	_	0053	PQ	1.057	-11.171	_	_
0025	PQ	1.063	-16.448	—	_	0054	PQ	1.080	-10.641	_	_
0026	PQ	1.025	-11.775	—	_	0055	PQ	1.111	-9.800	_	_
0027	PQ	1.057	-10.509	_	_	0056	PQ	1.039	-14.144	_	_
0028	PQ	1.075	-9.624	_	_	0057	PQ	1.031	-14.551	_	_
0029	PQ	1.090	-9.022	—	—						

Tab. 4.8: Suporte de reativos no ponto de perdas mínimas aparentes série.

O ponto de perdas mínimas aparentes série aproximadas foi obtido em 17 iterações, e é favorecido com uma redução de 33% nas perdas aparentes. A tabela 4.9 apresenta o ponto de perdas mínimas. O gráfico da figura 4.27, página 108, mostra o processo de minimização passo-a-passo de \tilde{f}_S em comparação com f_S .

Fig. 4.26: Comportamento da função objetivo f_S a cada iteração no sistema IEEE 57 barras.

Barra	Tipo	Tensão	Ângulo	Q_g	IQ_g	Barra	Tipo	Tensão	Ângulo	Q_g	IQ_g
0001	SL	1.100	-0.000	-0.399	-0.112	0030	PQ	1.043	-16.834	_	_
0002	PV	1.100	-1.469	0.764	0.215	0031	PQ	1.012	-17.354	_	_
0003	PV	1.100	-5.864	0.642	0.181	0032	PQ	1.016	-16.521	_	_
0004	PQ	1.095	-6.970	_	_	0033	PQ	1.014	-16.556	_	_
0005	PQ	1.090	-7.937	_	_	0034	PQ	1.012	-12.901	_	_
0006	PV	1.093	-8.032	0.161	-0.061	0035	PQ	1.018	-12.668	_	_
0007	PQ	1.087	-7.102	_	_	0036	PQ	1.026	-12.408	_	_
0008	PV	1.100	-4.430	0.048	0.014	0037	PQ	1.033	-12.209	_	_
0009	PV	1.093	-8.764	0.773	-0.244	0038	PQ	1.053	-11.487	_	_
0010	PQ	1.080	-10.082	_	_	0039	PQ	1.032	-12.258	_	_
0011	PQ	1.079	-9.134	_	_	0040	PQ	1.024	-12.444	_	_
0012	PV	1.092	-9.064	0.734	-0.317	0041	PQ	1.086	-12.611	_	_
0013	PQ	1.079	-8.688	_	_	0042	PQ	1.052	-13.744	_	

Barra	Tipo	Tensão	Ângulo	Q_g	IQ_g	Barra	Tipo	Tensão	Ângulo	Q_g	IQ_g
0014	PQ	1.076	-8.294	_	_	0043	PQ	1.105	-10.163	_	_
0015	PQ	1.085	-6.535	_	_	0044	PQ	1.066	-10.750	_	_
0016	PQ	1.087	-7.709	—	_	0045	PQ	1.103	-8.577	_	_
0017	PQ	1.086	-4.733	_	_	0046	PQ	1.066	-9.741	—	_
0018	PQ	1.109	-10.696	—	_	0047	PQ	1.056	-11.051	_	_
0019	PQ	1.055	-11.656	—	_	0048	PQ	1.056	-11.239	_	_
0020	PQ	1.033	-11.666	—	_	0049	PQ	1.066	-11.532	_	_
0021	PQ	1.056	-11.725	—	_	0050	PQ	1.054	-11.969	_	_
0022	PQ	1.053	-11.634	—	_	0051	PQ	1.083	-11.119	_	_
0023	PQ	1.052	-11.697	—	_	0052	PQ	1.071	-10.488	_	_
0024	PQ	1.052	-12.071	—	_	0053	PQ	1.064	-11.140	_	_
0025	PQ	1.064	-16.388	—	_	0054	PQ	1.087	-10.629	_	_
0026	PQ	1.034	-11.756	—	_	0055	PQ	1.118	-9.809	_	_
0027	PQ	1.065	-10.480	_	_	0056	PQ	1.047	-14.095	—	_
0028	PQ	1.082	-9.595	_	_	0057	PQ	1.039	-14.493	—	_
0029	PQ	1.097	-8.993	_	—						

Tab. 4.9: Suporte de reativos no ponto de perdas mínimas aparentes série aproximadas.

Os gráficos das figuras 4.28 e 4.30, páginas 108 e 109, mostram o aumento expressivo das tensões. Os limites das barras SL e PV são alcançados pelas barras 1, 2 e 8, para f_S , e 1, 2, 3 e 8 para \tilde{f}_S . Os histogramas das figuras 4.29 e 4.31 confirmam este aumento.

Os taps dos transformadores têm uma pequena melhora na distribuição, mas ficam praticamente iguais nos pontos de perdas mínimas.

A geração de reativos cai em torno de 15% para ambas funções objetivo.

O uso de \tilde{f}_S se torna mais interessante ao se analisar os gráficos de IQ_g das figuras 4.36 e 4.37, nos quais os indicadores estão mais próximos de zero.

Fig. 4.27: Comportamento da função objetivo \tilde{f}_S a cada iteração no sistema IEEE 57 barras.

Fig. 4.28: Magnitudes de tensão nas barras SL e PV.

Fig. 4.29: Histograma das magnitudes de tensão nas barras SL e PV.

Fig. 4.30: Magnitudes de tensão nas barras PQ.

Fig. 4.31: Histograma das magnitudes de tensão nas barras PQ.

Fig. 4.32: Taps dos transformadores em fase.

Fig. 4.33: Histograma dos taps dos transformadores em fase.

Fig. 4.34: Distribuição da geração de reativos nas barras SL e PV.

Fig. 4.35: Histograma da distribuição da geração de reativos nas barras SL e PV.

Fig. 4.36: Indicadores de qualidade de geração de reativos nas barras SL e PV.

Fig. 4.37: Histograma dos indicadores de qualidade de geração de reativos nas barras SL e PV.

4.6 Sistema IEEE 118 Barras

A tabela 4.10 apresenta os indicadores utilizados na análise de desempenho dos índices contidos neste trabalho.

	Solução							
Indicador	FC	Mín. Perdas	Mín. Perdas	Mín. Perdas	Mín. Perdas			
	гс	Ativas	Reativas	Aparentes	Aparentes Aprox.			
Perdas Ativas (MW)	132,478	106,947	117,187	109,854	107,323			
Perdas Reativas Série (MVAr)	786,082	643,898	702,162	655,364	638,449			
Perdas Aparentes Série (MVA)	801,592	656,250	715,712	668,119	650,853			
$\overline{V}^{contr.}$	0,9898	1,0777	1,0376	1,0629	1,0814			
$DQM\overline{V}^{contr.}$	0,0260	0,0182	0,0277	0,0275	0,0225			
$\overline{t}^{contr.}$	0,9544	0,9559	0,9393	0,9904	0,9851			
$DQM\bar{t}^{contr.}$	0,0196	0,0198	0,0237	0,0411	0,0351			
\overline{V}^{carga}	0,9826	1,0744	1,0339	1,0627	1,0819			
$DQM\overline{V}^{carga}$	0,0194	0,0133	0,0201	0,0197	0,0159			
$\sum Q_g$ (MVAr)	793,878	434,896	640,647	456,319	405,306			
Iterações FPO	-	144	42	46	76			
Iterações FC	_	836	269	286	454			

Tab. 4.10: Perdas ativas, reativas, aparentes e aparentes aproximadas mínimas.

A tabela 4.11 apresenta os dados do ponto de perdas mínimas aparentes série. Este ponto foi obtido em um total de 46 iterações, e proporciona uma redução de 16,6% nas perdas aparentes. A figura 4.38, página 119, mostra as perdas a cada iteração.

Barra	Tipo	Tensão	Ângulo	Q_g	IQ_g	Barra	Tipo	Tensão	Ângulo	Q_g	IQ_g
0001	PV	1.067	13.566	0.371	0.140	0060	PQ	1.081	24.190	_	_
0002	PQ	1.068	14.208	_	_	0061	PV	1.084	24.943	-0.287	-0.557
0003	PQ	1.068	14.460	_	_	0062	PV	1.080	24.455	0.034	0.057
0004	PV	1.093	17.627	2.512	7.178	0063	PQ	1.077	23.891	-	-
0005	PQ	1.078	18.224	_	_	0064	PQ	1.083	25.398	-	_
0006	PV	1.081	15.756	0.522	0.905	0065	PV	1.093	28.161	1.522	4.310
0007	PQ	1.079	15.408	_	_	0066	PV	1.098	28.247	-1.902	-6.327
0008	PV	1.100	22.886	-3.009	-10.505	0067	PQ	1.084	25.784	-	-

Barra	Tipo	Tensão	Ângulo	Q_g	IQ_g	Barra	Tipo	Tensão	Ângulo	Q_g	IQ_g
0009	PQ	1.114	29.212	_	_	0068	PQ	1.086	28.042	_	_
0010	PV	1.100	36.073	-1.296	-4.526	0069	SL	1.092	30.000	-1.400	-3.896
0011	PQ	1.073	15.575	_	_	0070	PV	1.049	23.515	0.061	-0.077
0012	PV	1.077	15.153	0.538	0.704	0071	PQ	1.046	23.258	_	_
0013	PQ	1.059	14.396	_	_	0072	PV	1.046	22.321	-0.148	0.241
0014	PQ	1.073	14.520	_	_	0073	PV	1.040	23.169	-0.125	0.266
0015	PV	1.065	14.213	0.328	0.079	0074	PV	1.040	22.464	0.126	-0.276
0016	PQ	1.070	14.928	-	-	0075	PQ	1.045	23.603	-	-
0017	PQ	1.076	16.544	_	-	0076	PV	1.037	22.427	0.392	-0.944
0018	PV	1.066	14.510	0.357	0.105	0077	PV	1.067	27.159	0.513	0.202
0019	PV	1.063	14.014	0.195	-0.004	0078	PQ	1.063	26.927	-	-
0020	PQ	1.054	14.744	_	-	0079	PQ	1.064	27.253	-	-
0021	PQ	1.051	16.068	_	_	0080	PV	1.080	29.486	-0.716	-1.125
0022	PQ	1.057	18.219	_	-	0081	PQ	1.069	28.617	-	-
0023	PQ	1.076	22.444	_	_	0082	PQ	1.061	27.596	-	-
0024	PV	1.069	22.285	-0.063	-0.037	0083	PQ	1.066	28.543	-	_
0025	PV	1.100	28.761	-1.026	-3.583	0084	PQ	1.074	30.544	-	_
0026	PV	1.100	30.282	0.382	1.332	0085	PV	1.084	31.775	0.347	0.691
0027	PV	1.067	17.507	0.280	0.117	0086	PQ	1.063	30.961	-	-
0028	PQ	1.059	16.136	_	_	0087	PV	1.051	31.487	-0.094	0.109
0029	PQ	1.057	15.380	-	_	0088	PQ	1.085	34.443	-	_
0030	PQ	1.112	21.025	_	_	0089	PV	1.100	37.872	-0.094	-0.327
0031	PV	1.059	15.508	0.232	-0.093	0090	PV	1.077	32.599	0.435	0.595
0032	PV	1.064	17.037	0.211	0.025	0091	PV	1.077	32.553	-0.084	-0.110
0033	PQ	1.061	13.764	_	_	0092	PV	1.086	33.008	0.515	1.113
0034	PV	1.071	14.330	0.258	0.192	0093	PQ	1.066	30.656	-	-
0035	PQ	1.067	13.953	-	-	0094	PQ	1.057	28.964	-	-
0036	PV	1.068	13.940	0.202	0.093	0095	PQ	1.046	28.118	-	-
0037	PQ	1.072	14.792	-	-	0096	PQ	1.056	27.983	-	-
0038	PQ	1.106	19.385	-	-	0097	PQ	1.063	28.407	-	-
0039	PQ	1.047	11.860	-	-	0098	PQ	1.066	28.067	-	-
0040	PV	1.044	10.914	0.286	-0.507	0099	PV	1.058	27.721	-0.119	0.057
0041	PQ	1.038	10.515	-	_	0100	PV	1.062	28.684	0.451	-0.017
0042	PV	1.047	11.888	0.252	-0.384	0101	PQ	1.060	29.796	-	-
0043	PQ	1.060	14.192	-	_	0102	PQ	1.076	31.866	-	-
0044	PQ	1.057	16.213	_	—	0103	PV	1.040	25.537	0.156	-0.337

Perdas Aparentes Série ($\sqrt{R^2}$	$+ X^2 I^2)$ e Aproximação) Quadrática como	Índices de
Desempenho para	a Suporte de Potência R	eativa/Magnitudes	de Tensão

Barra	Tipo	Tensão	Ângulo	Q_g	IQ_g	Barra	Tipo	Tensão	Ângulo	Q_g	IQ_g
0045	PQ	1.053	17.791	_	_	0104	PV	1.024	22.815	0.201	-0.733
0046	PV	1.064	20.294	-0.124	-0.018	0105	PV	1.018	21.814	0.091	-0.387
0047	PQ	1.076	22.209	_	_	0106	PQ	1.013	21.617	_	_
0048	PQ	1.079	21.568	_	_	0107	PV	1.000	19.153	-0.001	0.007
0049	PV	1.082	22.481	0.662	1.216	0108	PQ	1.010	20.876	_	_
0050	PQ	1.068	20.606	_	_	0109	PQ	1.006	20.521	_	_
0051	PQ	1.046	18.251	_	_	0110	PV	1.002	19.897	0.210	-1.211
0052	PQ	1.039	17.410	_	_	0111	PV	1.006	21.503	-0.058	0.313
0053	PQ	1.035	16.553	-	_	0112	PV	0.982	17.396	0.076	-0.577
0054	PV	1.047	17.302	0.258	-0.377	0113	PV	1.075	16.505	0.027	0.032
0055	PV	1.045	17.063	0.108	-0.180	0114	PQ	1.061	16.771	-	_
0056	PV	1.046	17.220	0.090	-0.139	0115	PQ	1.061	16.766	-	_
0057	PQ	1.053	18.305	-	_	0116	PV	1.089	27.665	0.892	2.169
0058	PQ	1.044	17.557	_	_	0117	PQ	1.062	13.849	_	_
0059	PV	1.073	20.939	1.015	0.935	0118	PQ	1.035	22.661	-	_

Tab. 4.11: Suporte de reativos no ponto de perdas mínimas aparentes série.

O ponto de perdas mínimas aparentes série aproximadas foi obtido em 76 iterações, e é favorecido com uma redução de 18,8% nas perdas aparentes. Por se tratar de uma aproximação, o aumento do número de iterações nem sempre é esperado. Essa situação pode ocorrer devido às características da função objetivo, que influenciam o caminho percorrido.

A tabela 4.12 apresenta o ponto de perdas mínimas. O gráfico da figura 4.39, página 119, mostra o processo de minimização passo-a-passo de \tilde{f}_S em comparação com f_S .

Barra	Tipo	Tensão	Ângulo	Q_g	IQ_g	Barra	Tipo	Tensão	Ângulo	Q_g	IQ_g
0001	PV	1.085	13.996	0.439	0.150	0060	PQ	1.098	24.231	_	-
0002	PQ	1.085	14.641	-	-	0061	PV	1.100	24.967	-0.266	-0.458
0003	PQ	1.084	14.896	_	-	0062	PV	1.097	24.478	0.190	0.279
0004	PV	1.100	18.092	1.855	3.196	0063	PQ	1.093	23.919	-	-
0005	PQ	1.089	18.630	_	-	0064	PQ	1.097	25.414	_	_
0006	PV	1.095	16.182	0.547	0.695	0065	PV	1.100	28.195	1.186	2.044
0007	PQ	1.094	15.835	_	_	0066	PV	1.100	28.330	-2.595	-4.471
0008	PV	1.100	23.131	-2.809	-4.840	0067	PQ	1.093	25.837	—	-

continua na próxima página

116

Barra	Tipo	Tensão	Ângulo	Q_g	IQ_g	Barra	Tipo	Tensão	Ângulo	Q_g	IQ_g
0009	PQ	1.114	29.458	_	-	0068	PQ	1.095	28.061	_	_
0010	PV	1.100	36.318	-1.296	-2.234	0069	SL	1.100	30.000	-2.044	-3.523
0011	PQ	1.086	16.007	_	_	0070	PV	1.071	23.539	0.160	-0.154
0012	PV	1.092	15.572	0.606	0.619	0071	PQ	1.067	23.296	_	-
0013	PQ	1.076	14.840	_	_	0072	PV	1.065	22.425	-0.154	0.239
0014	PQ	1.091	14.941	_	_	0073	PV	1.062	23.208	-0.121	0.218
0015	PV	1.089	14.602	0.391	0.285	0074	PV	1.064	22.485	0.210	-0.335
0016	PQ	1.087	15.340	_	-	0075	PQ	1.066	23.617	-	-
0017	PQ	1.097	16.872	_	-	0076	PV	1.064	22.445	0.478	-0.779
0018	PV	1.090	14.889	0.392	0.316	0077	PV	1.087	27.103	0.713	0.388
0019	PV	1.087	14.404	0.239	0.135	0078	PQ	1.083	26.886	_	-
0020	PQ	1.076	15.118	_	-	0079	PQ	1.084	27.213	-	-
0021	PQ	1.072	16.403	_	-	0080	PV	1.097	29.413	-0.727	-1.068
0022	PQ	1.075	18.492	_	-	0081	PQ	1.082	28.595	-	-
0023	PQ	1.090	22.621	_	-	0082	PQ	1.079	27.583	-	-
0024	PV	1.086	22.413	-0.017	-0.007	0083	PQ	1.082	28.524	-	-
0025	PV	1.100	28.978	-1.413	-2.435	0084	PQ	1.087	30.520	-	-
0026	PV	1.100	30.481	0.362	0.625	0085	PV	1.096	31.746	0.443	0.600
0027	PV	1.089	17.753	0.396	0.271	0086	PQ	1.076	30.947	-	-
0028	PQ	1.081	16.435	-	—	0087	PV	1.063	31.459	-0.094	0.155
0029	PQ	1.080	15.708	_	-	0088	PQ	1.090	34.431	-	-
0030	PQ	1.118	21.215	-	—	0089	PV	1.100	37.884	-0.730	-1.258
0031	PV	1.082	15.829	0.256	0.009	0090	PV	1.087	32.541	0.567	0.295
0032	PV	1.086	17.298	0.283	0.125	0091	PV	1.088	32.477	-0.059	-0.039
0033	PQ	1.087	14.168	_	-	0092	PV	1.097	32.941	0.694	1.029
0034	PV	1.100	14.694	0.325	0.560	0093	PQ	1.081	30.603	-	-
0035	PQ	1.097	14.334	-	-	0094	PQ	1.074	28.925	-	-
0036	PV	1.098	14.318	0.242	0.363	0095	PQ	1.064	28.101	-	-
0037	PQ	1.101	15.144	-	-	0096	PQ	1.074	27.964	-	-
0038	PQ	1.118	19.546	-	-	0097	PQ	1.081	28.371	-	-
0039	PQ	1.081	12.309	-	-	0098	PQ	1.085	28.032	-	-
0040	PV	1.080	11.385	0.349	-0.059	0099	PV	1.080	27.677	-0.092	0.015
0041	PQ	1.074	11.009	-	-	0100	PV	1.084	28.614	0.500	0.103
0042	PV	1.083	12.283	0.365	0.050	0101	PQ	1.078	29.740	-	-
0043	PQ	1.088	14.543	-	-	0102	PQ	1.090	31.800	-	-
0044	PQ	1.084	16.441	-	-	0103	PV	1.064	25.569	0.201	-0.325

Perdas Aparentes Série $(\sqrt{R^2 + X^2}I^2)$	e Aproximação	Quadrática como	Índices de
Desempenho para Suport	e de Potência Ro	eativa/Magnitudes	de Tensão

Barra	Tipo	Tensão	Ângulo	Q_g	IQ_g	Barra	Tipo	Tensão	Ângulo	Q_g	IQ_g
0045	PQ	1.079	17.946	_	-	0104	PV	1.049	22.960	0.218	-0.651
0046	PV	1.091	20.299	-0.011	-0.010	0105	PV	1.043	22.006	0.107	-0.381
0047	PQ	1.095	22.257	_	-	0106	PQ	1.037	21.824	_	_
0048	PQ	1.099	21.629	_	-	0107	PV	1.024	19.485	-0.014	0.076
0049	PV	1.100	22.552	0.626	1.078	0108	PQ	1.034	21.129	_	_
0050	PQ	1.089	20.708	_	-	0109	PQ	1.030	20.798	_	_
0051	PQ	1.071	18.411	_	-	0110	PV	1.024	20.223	0.216	-1.145
0052	PQ	1.066	17.597	_	-	0111	PV	1.026	21.798	-0.088	0.453
0053	PQ	1.064	16.764	_	-	0112	PV	1.004	17.852	0.059	-0.420
0054	PV	1.078	17.463	0.325	-0.112	0113	PV	1.097	16.826	0.032	0.047
0055	PV	1.076	17.233	0.159	-0.076	0114	PQ	1.083	17.044	_	_
0056	PV	1.077	17.380	0.235	-0.093	0115	PQ	1.083	17.039	_	_
0057	PQ	1.080	18.449	_	-	0116	PV	1.099	27.687	1.106	1.826
0058	PQ	1.072	17.727	-	-	0117	PQ	1.078	14.304	_	_
0059	PV	1.097	21.045	1.112	1.608	0118	PQ	1.059	22.693	—	-

Tab. 4.12: Suporte de reativos no ponto de perdas mínimas aparentes série aproximadas.

Novamente constata-se um aumento maior das tensões com o uso de \tilde{f}_S (figuras 4.40, 4.41, 4.43 e 4.44). Para perdas aparentes série, cinco barras operam no limite máximo, enquanto que, para sua aproximação, este número atinge um total de 12.

Os histogramas das figuras 4.42 e 4.45, mostram perfeitamente o aumento das tensões. Nas barras SL e PV, nota-se o maior acúmulo em 1.1 p.u. com o uso de \tilde{f}_S .

Os taps dos transformadores aumentam para um valor médio próximo de 1,0 p.u., entretanto, os desvios pioram um pouco.

As funções objetivo f_S e \tilde{f}_S trazem benefícios à geração de reativos, como a redução de 42,4% a geração mediante o uso de f_S e 49% para o uso de sua aproximação.

A melhora na qualidade de geração fica evidenciada ao se analisar os gráficos de IQ_g nas figuras 4.51, 4.52 e 4.53, com destaque para \tilde{f}_S .

118

Fig. 4.38: Comportamento da função objetivo f_S a cada iteração no sistema IEEE 118 barras.

Fig. 4.39: Comportamento da função objetivo \tilde{f}_S a cada iteração no sistema IEEE 118 barras.

Fig. 4.40: Primeira parte das magnitudes de tensão das barras SL e PV.

Fig. 4.41: Segunda parte das magnitudes de tensão das barras SL e PV.

Fig. 4.42: Histograma das magnitudes de tensão das barras SL e PV.

Fig. 4.43: Primeira parte das magnitudes de tensão nas barras PQ.

Fig. 4.44: Segunda parte das magnitudes de tensão nas barras PQ.

Fig. 4.45: Histograma das magnitudes de tensão nas barras PQ.

Fig. 4.46: Taps dos transformadores em fase.

Fig. 4.47: Histograma dos taps dos transformadores em fase.

Fig. 4.48: Primeira parte da distribuição da geração de reativos nas barras SL e PV.

Fig. 4.49: Segunda parte da distribuição da geração de reativos nas barras SL e PV.

Fig. 4.50: Histograma da distribuição da geração de reativos nas barras SL e PV.

Fig. 4.51: Primeira parte dos indicadores de qualidade de geração de reativos nas barras SL e PV.

Fig. 4.52: Segunda parte dos indicadores de qualidade de geração de reativos nas barras SL e PV.

Fig. 4.53: Histograma dos indicadores de qualidade de geração de reativos nas barras SL e PV.

4.7 Comportamento das Magnitudes de Tensão de Barras Radiais Diante da Minimização de Perdas Ativa, Reativa Série, Aparente Série e sua Aproximação Quadrática

Nesta seção, são analisadas algumas particularidades dos circuitos radiais ao serem submetidos à minimização de perdas de potência. Para que análises em barras de cargas radiais fossem viáveis no sistema IEEE 30 Barras, foi necessária a simulação de contingências, tais como a saída do circuito 25-27 (seção 4.7.1) e a saída dos circuitos 28-6 e 28-8 (seção 4.7.2). Outras particularidades relacionadas às barras de geração radiais, analisadas na seção 4.7.3, se repetem no sistema IEEE 14 e IEEE 30 barras.

4.7.1 Barra de Carga Radial Alimentada Através de Sistema de Nível de Tensão Mais Alto - Sistema IEEE 30 barras

Considere o subconjunto de barras {29, 30, 27, 28}. As barras 29 e 30 comportam cargas alimentadas a partir do transformador 27-28 e do sistema em nível de tensão mais alta. O diagrama parcial do sistema, figura 4.54, ilustra as conexões das barras.

Este subconjunto de barras apresentou soluções de minimização de perdas (ativas, reativas série, aparente série e aproximação quadrática da aparente série) resumidas na tabela a seguir:

Critário Minimizado	Perdas Mínimas	Magnitudes de Tensão nas Barras			
	(MW)	V_{29}	V_{30}	V_{27}	V_{28}
FC	17,677	1,007	0,996	1,027	1,008
f_P - Ativas	16,261	1,056	1,045	1,074	1,052
f_Q - Reativas série	16,434	1,055	1,044	1,074	1,054
f_S - Aparentes	16,335	1,058	1,047	1,077	1,061
\tilde{f}_S - Aparentes Aproximadas	16,501	1,080	1,069	1,098	1,081

Tab. 4.13: Tensão nas barras de carga radiais.

Com a saída do ramo 25-27, a tensão nas barras 29, 30, 27 e 28 têm um ligeiro aumento, pois

Fig. 4.54: Simulação de contingência no ramo 25-27.

deixam de alimentar a barra 25 (vide figura C.5, página 180). A minimização de perdas propicia um acréscimo na magnitude das tensões, sendo que f_S e \tilde{f}_S são as que mais se acentuam.

Para este caso, o uso da minimização das perdas ativas é uma boa escolha. Sem se distanciar muito dos resultados, fica a função objetivo f_S , que convergiu em um ponto em que as tensões e as perdas ativas são igualmente interessantes.

4.7.2 Barra de Carga Radial Alimentada Através do Sistema de Mesmo Nível de Tensão - Sistema IEEE 30 barras

Considere agora o subconjunto de barras {29, 30, 27, 25, 28}. A barra 28 está conectada radialmente à barra 27, por meio de um transformador. As barras 29 e 30 comportam cargas alimentadas através das barras 27, 25, ... O diagrama parcial do sistema, figura 4.55, ilustra as conexões das barras.

Este subconjunto de barras apresentou soluções de minimização de perdas (ativas, reativas série, aparente série e aproximação quadrática da aparente série) resumidas na tabela a seguir:

4.7 Comportamento das Magnitudes de Tensão de Barras Radiais Diante da Minimiz	zação
de Perdas Ativa, Reativa Série, Aparente Série e sua Aproximação Quadrática	129

Critária Minimizada	Perdas Mínimas	Magnitudes de Tensão nas Barras				
	(MW)	V_{29}	V_{30}	V_{27}	V_{25}	V_{28}
FC	19,815	0,877	0,863	0,899	0,924	0,871
f_P - Ativas	18,135	0,922	0,909	0,943	0,967	0,913
f_Q - Reativas série	18,295	0,921	0,908	0,943	0,966	0,916
f_S - Aparentes	18,263	0,910	0,897	0,932	0,955	0,905
$ ilde{f}_S$ - Aparentes Aproximadas	18,384	0,929	0,917	0,951	0,974	0,924

Tab. 4.14: Tensão nas barras de carga radiais.

A simulação da contingência nos ramos 28-6 e 28-8 possibilita ao subsistema, formado pelas barras 27, 28, 29 e 30, ser alimentado pela baixa tensão. Ao se analisar os dados contidos na tabela 4.14, nota-se que estas barras operam com magnitudes de tensão muito baixas, e, as mais prejudicadas, são as que alimentam as cargas de 2,4 e 10,6 MW.

Ao se operar com tensões mais baixas, a perda é bem maior. Note que, mesmo com o uso de f_S , que proporciona uma das menores magnitudes de tensão, a perda de potência ativa é muito competitiva.

A minimização pode ser utilizada para efeito de recuperação de tensão no caso de contingências. A área afetada é favorecida com o aumento do perfil de tensão, e faz com que o sistema continue a operar, mesmo com limitações.

A minimização mais significativa, para esta contingência, foi realizada com o uso de \tilde{f}_S . Este índice introduziu tensões mais elevadas no sistema, garantindo a factibilidade.

4.7.3 Barra Radial com Controle de Tensão

Aqui são analisados as barras radiais com compensadores de reativos conectados em enrolamento terciário de transformadores.

Sistema IEEE 14 barras

Considere o subconjunto de barras {4, 7, 8, 9}. A barra 8, conectada radialmente à barra 7 de modo a representar o enrolamento terciário de um transformador entre as barras 9 e 4, tem

magnitude de tensão controlada (u) por meio de um compensador (síncrono ou estático). A figura 4.56 ilustra este fato.

Este subconjunto de barras apresentou soluções de minimização de perdas (ativas, reativas série, aparente série e aproximação quadrática da aparente série) resumidas na tabela a seguir:

		V	- x (dep	endentes)	V - <i>u</i>
Critério Minimizado	Perdas Mínimas (MW)	Cargas		Intermediário	Terciário
		V_4	V_9	V_7	V_8
FC	13,393	1,018	1,056	1,062	1,090
f_P - Ativas	12,401	1,055	1,083	1,087	1,100
f_Q - Reativas série	12,457	1,053	1,064	1,065	1,070
f_S - Aparentes	12,380	1,066	1,065	1,072	1,080
\tilde{f}_S - Aparentes Aproximadas	12,501	1,082	1,077	1,089	1,100

Tab. 4.15: Tensão nas barras de carga radiais.

A tensão na barra 8, quando o sistema é submetido à minimização de perdas ativas, opera no limite máximo estabelecido. Isto ocorre porque esta barra fica isolada das demais, fazendo com que a tensão suba, e que, pontualmente, as perdas se reduzam. Esta falha é corrigida com o uso da minimização de perdas aparentes, que reduz o desvio das tensões consideravelmente para estas quatro barras.

Além da função objetivo f_S retratar as menores perdas ativas, harmoniza também perfis de tensão quase iguais para as diferentes cargas nas barras 4 e 9.

Sistema IEEE 30 barras

130

Considere o subconjunto de barras $\{6, 9, 10, 11\}$. A barra 11, conectada radialmente à barra 9 de modo a representar o enrolamento terciário de um transformador entre as barras 6 e 10, tem magnitude de tensão controlada (u) por meio de um compensador (síncrono ou estático). A figura 4.57 ilustra este fato.

Este subconjunto de barras apresentou soluções de minimização de perdas (ativas, reativas série, aparente série e aproximação quadrática da aparente série) resumidas na tabela 4.16.

Como no caso anterior, a barra 11 fica isolada ao se submeter o sistema à minimização de

Fig. 4.55: Simulação de contingência nos ramos 28-6 e 28-8.

Fig. 4.56: Barra radial com controle de tensão no sistema IEEE 14 Barras.

Fig. 4.57: Barra radial com controle de tensão no sistema IEEE 30 Barras.

perdas ativas, e faz com que a tensão opere em níveis elevados em relação às demais.

O desvio quadrático das magnitudes de tensão é sensivelmente notado quando a minimização de perdas se dá pelas funções objetivo de perdas reativas ou aparentes série. Note que a que proporciona menores perdas é, com exceção de f_P , a minimização de perdas aparentes.

		V	- x (dep	V - <i>u</i>	
Critério Minimizado	Perdas Mínimas (MW)) Cargas		Intermediário	Terciário
		V_6	V_{10}	V_9	V11
FC	17,552	1,010	1,045	1,051	1,082
f_P - Ativas	16,141	1,054	1,079	1,083	1,098
f_Q - Reativas série	16,315	1,053	1,068	1,065	1,064
f_S - Aparentes	16,302	1,060	1,065	1,068	1,073
\tilde{f}_S - Aparentes Aproximadas	16,387	1,081	1,086	1,091	1,098

Tab. 4.16: Tensão nas barras de carga radiais.

4.8 Conclusão

O propósito deste capítulo foi apresentar métodos nos quais, os subsistemas de diferentes níveis de tensão, permaneçam conectados se submetidos às minimizações de perdas de potência. Com o auxílio dos indicadores, pôde-se perceber ganhos significativos de processamento com o aumento da dimensão dos sistemas, pois, apresentaram resultados muito próximos, se não, melhores do que as funções clássicas. Em todos os casos, ganhos expressivos foram alcançados em relação às perdas de potência, enfatizando melhoras na qualidade de geração.

É relevante ressaltar o comportamento das perdas de potências ativa, reativa e aparente quando as funções objetivo f_P , f_Q ou f_S são minimizadas. Para isso, os gráficos das figuras 4.58, 4.59 e 4.60 apresentam as minimizações destas respectivas perdas para o sistema IEEE 30 barras.

O gráfico da figura 4.58 mostra que as perdas de potência ativa atingem o valor mínimo quando f_P é minimizada. Já para o comportamento das perdas de potência reativa, figura 4.59, f_S é a que possui o menor valor ao final do processo iterativo. As perdas de potência aparente, gráfico da figura 4.60, são as menores, entre as três funções objetivo, quando a própria f_S é minimizada. Com estes três gráficos é possível afirmar que o uso de f_S é melhor em dois dos três objetivos, ficando muito próxima de ser melhor nos três.

Analogamente ao estudo feito nos gráficos das figuras 4.58, 4.59 e 4.60, as minimizações do sistema IEEE 57 barras são apresentadas nos gráficos das figuras 4.61, 4.62 e 4.63.

Novamente, pode-se concluir que f_S é melhor em dois dos três objetivos, pois, as perdas reativas e aparentes adquirem seus menores valores com a minimização de f_S . As perdas ativas, gráfico da figura 4.61, ficam muito competitivas, em relação às demais, quando f_S é utilizada.

As minimizações do sistema IEEE 118 barras estão detalhadas nos gráficos das figuras 4.64, 4.65 e 4.66, para o comportamento das perdas ativa, reativa e aparente, respectivamente. Nestes gráficos é possível visualizar o valor mínimo atingido nas três diferentes funções objetivo, para cada tipo de perda.

Nos três casos analisados, o uso de f_P é o que proporciona o menor valor, sendo seguido muito de perto por f_S , a qual ostenta a vantagem do número reduzido de iterações.

Fig. 4.58: Comportamento de f_P , f_Q e f_S ao se minimizar as perdas ativas no sistema IEEE 30 barras.

Fig. 4.59: Comportamento de f_P , f_Q e f_S ao se minimizar as perdas reativas no sistema IEEE 30 barras.

Fig. 4.60: Comportamento de f_P , f_Q e f_S ao se minimizar as perdas aparentes no sistema IEEE 30 barras.

Fig. 4.61: Comportamento de f_P , f_Q e f_S ao se minimizar as perdas ativas no sistema IEEE 57 barras.

Fig. 4.62: Comportamento de f_P , f_Q e f_S ao se minimizar as perdas reativas no sistema IEEE 57 barras.

Fig. 4.63: Comportamento de f_P , f_Q e f_S ao se minimizar as perdas aparentes no sistema IEEE 57 barras.

Fig. 4.64: Comportamento de f_P , f_Q e f_S ao se minimizar as perdas ativas no sistema IEEE 118 barras.

Fig. 4.65: Comportamento de f_P , f_Q e f_S ao se minimizar as perdas reativas no sistema IEEE 118 barras.

Fig. 4.66: Comportamento de f_P , f_Q e f_S ao se minimizar as perdas aparentes no sistema IEEE 118 barras.

Capítulo 5

Conclusões e Trabalhos Futuros

Um novo critério a ser otimizado $(\sqrt{R^2 + X^2}I^2)$ no fluxo de potência ótimo reativo foi proposto. Tal critério, quando minimizado, introduz ganhos significativos em relação à geração de reativos, e oferece valores intermediários para as magnitudes de tensão, entre as soluções de perdas mínimas ativa e reativa.

A minimização das funções objetivo f_S e \tilde{f}_S (perdas aparentes e sua aproximação quadrática) forçam as tensões vizinhas a serem mais próximas umas das outras, favorecendo os transformadores, pois estes passam a atuar em pontos com taps mais próximos a 1,0 p.u..

Ao se minimizar as perdas aparentes série aproximadas, obtém-se um balanço de reativos menor, porém, o custo para isto é a presença de barras com tensões mais elevadas. No entanto, a qualidade de geração de reativos é beneficiada.

Foi visto também que, barras radiais isoladas por transformadores, são fortemente favorecidas ao se minimizar as perdas aparentes série. Na ocasião, estas barras deixam de operar no limite máximo de tensão, e faz com que o desvio quadrático das tensões diminua nas barras vizinhas.

Por meio de exemplos numéricos, constatou-se que o perfil de magnitudes de tensão é prejudicado quando as perdas ativas são minimizadas, o que pode ser corrigido na minimização de reativos, e, com ganhos ainda maiores, na minimização das perdas aparentes série.

Para trabalhos futuros, fica a sugestão de expandir o estudo para sistemas de grande porte, para se analisar possíveis casos que podem não ter sido levados em consideração nos sistemas analisados.

Também é interessante incorporar restrições para as tensões nas barras de carga, pois o motivo

para não terem sido consideradas, foi reportado anteriormente.

É válida a análise da possibilidade do uso de outros métodos para se chegar ao ponto de perdas mínimas.

Influências de topologia, no processo de minimização dos critérios analisados neste trabalho, também podem ser discutidas e detalhadas em projetos futuros.

Referências Bibliográficas

- M. S. Bazaraa and C. M. Shetty. *Nonlinear Programming: Theory and Algorithms*. John Wiley & Sons, 1979.
- J. L. Carpentier. Optimal power flows: Uses, methods and developments. In *IFAC Symposium on Planning and Operation of Electric Energy Systems*, pages 11–21, Rio de Janeiro, Brasil, 22-25 Julho 1985.
- S. K. Chang, F. Albuyeh, M. L. Gilles, G. E. Marks, and K. Kato. Optimal real-time voltage control. *IEEE Transactions on Power Systems*, 5(3):750–758, August 1990.
- H. W. Dommel and W. F. Tinney. Optimal power flow solutions. *IEEE Transactions on Power Apparatus and Systems*, PAS-87(10):1866–1876, October 1968.
- R. A. Fernandes, H. H. Happ, and K. A. Wirgau. Optimal reactive power flow for improved system operations. *Eletrical Power & Energy System*, 2(3):133–139, July 1980.
- P. A. V. Ferreira. Ia543 otimização não-linear. Apostila na internet, Universidade Estadual de Campinas - UNICAMP, Agosto 2004. http://www.dt.fee.unicamp.br/~valente/ ia543.html.
- S. Granville. Optimal reactive dispatch through interior point methods. *IEEE Transactions on Power Systems*, 9(1):136–146, February 1994.
- H. H. Happ. Optimal power dispatch. *IEEE Transactions on Power Apparatus and Systems*, PAS-93(3):820–830, May/June 1974.
- H. H. Happ. Optimal power dispatch a comprehensive survey. *IEEE Transactions on Power Apparatus and Systems*, PAS-96(3):841–854, May/June 1977.

- D. G. Luenberger. *Introduction to Linear and Nonlinear Programming*. Addison-Wesley Publishing Company, 1973.
- A. Monticelli. Fluxo de Carga em Redes de Energia Elétrica. São Paulo: Edgard Blücher, 1983.
- P. Nedwick, A. F. Mistr Jr, and E. B. Croasdale. Reactive management a key to survival in the 1990's. *IEEE Transactions on Power Systems*, 10(2):1036–1043, May 1995.
- S. S. Sharif, J. H. Taylor, and E. F. Hill. On-line optimal reactive power flow by energy loss minimization. In *Proceedings of the* 35th Conference on Decision and Control, pages 3851– 3856, Kobe, Japan, December 1996.
- H. M. Smith Jr. and S. Y. Tong. Minimizing power transmission losses by reactive-volt-ampere control. *IEEE Transactions on Power Apparatus and Systems*, PAS-82:542–544, August 1963.
- B. Stott. Decoupled newton load flow. *IEEE Transactions on Power Apparatus and Systems*, PAS-91:1955–1959, September/October 1972.
- B. Stott. Review of load flow calculation methods. *Proceedings of the IEEE*, 62(7):916–929, July 1974.
- B. Stott and O. Alsaç. Fast decoupled load flow. *IEEE Transactions on Power Apparatus and Systems*, PAS-93:859–869, May/June 1974.
- D. I. Sun, B. Ashley, B. Brewer, and W. F. Tinney. Optimal power flow by newton approach. *IEEE Transactions on Power Systems*, 103(10):2864–2880, October 1984.
- W. F. Tinney and C. E. Hart. Power flow solution by newton's method. *IEEE Transactions on Power Apparatus and Systems*, PAS-86(11):1449–1456, November 1967.
- J. B. Ward and H. W. Hale. Digital computer solutions of power flow problems. *AIEE Transactions*, 75(2):398–404, June 1956.
- Y. C. Wu, A. S. Debs, and R. E. Marsten. A direct nonlinear predictor-corrector primal-dual interior point algorithm for optimal power flows. *IEEE Transactions on Power Systems*, 9(2):876–883, May 1994.

Apêndice A

Modelo da Rede, Equações do Fluxo de Carga e Método de Newton

A rede elétrica é modelada como um conjunto de barras (nós), que correspondem aos pontos de injeções de potência, conectadas por linhas de transmissão ou transformadores, ambos representados por um modelo π em Monticelli (1983). Para que o ponto de operação da rede seja encontrado, bem como estudos de contingência, ou demandas de carga ao longo de um determinado período sejam avaliados, um programa matemático chamado fluxo de carga deve ser executado.

Neste apêndice, tanto o modelo linear quanto o não-linear serão apresentados. Também serão vistos os tipos das barras, a modelagem dos transformadores, as equações do fluxo de carga e o Método de Newton para solução de sistemas não-lineares.

A.1 Injeções de Correntes / Modelo Linear

Cada linha de transmissão ou transformador em fase do circuito, podem ser representados por um modelo π , como mostra a figura A.1.

A matriz correspondente aos elementos do modelo π , para o sistema de transmissão, é conhecida como matriz Admitância Nodal. Os elementos da diagonal desta matriz são dados pela equação A.1.

$$Y_{kk} = \sum_{l \in \Omega_k} y_{kl} = G_{kk} + jB_{kk} \tag{A.1}$$

Fig. A.1: Modelo π de Linhas de Transmissão ou Transformadores em Fase

onde Ω_k representa a vizinhança da barra k.

Os elementos G e B da equação A.1 são dados pelas equações A.2 e A.3, respectivamente.

$$G = \frac{r}{r^2 + x^2} \tag{A.2}$$

$$B = -\frac{x}{r^2 + x^2}$$
(A.3)

Os elementos fora da diagonal principal são dados pela equação A.4.

$$Y_{kl} = -y_{kl} \tag{A.4}$$

O modelo linear de injeção de correntes é um modelo clássico, e pode ser escrito conforme a equação A.5.

$$I = [Y] \cdot E \tag{A.5}$$

A.2 Modelos π para Transformadores em Fase

Os transformadores em fase são usados para alterar a relação de tensão entre os terminais das barras. No entanto, a diferença angular da tensão é preservada.

Seus modelos são de uma admitância série y_{km} e um autotransformador ideal que pode ser de

quatro tipos diferentes, como mostrado abaixo:

A.2.1 Primeiro Modelo - t_{km} :1

Fig. A.2: Primeiro modelo de transformador em fase - t_{km} :1

Nesse modelo de transformador, pode-se considerar que:

$$\theta_k = \theta_p \tag{A.6}$$

pois a fase da tensão permanece inalterada entre os terminais do transformador, portanto:

$$\frac{E_p}{E_k} = \frac{V_p e^{j\theta_p}}{V_k e^{j\theta_k}} = \frac{1}{t_{km}}$$
(A.7)

Por se tratar de um transformador ideal, não há dissipação de potências ativa e reativa entre os nós $k \in p$. As equações A.8 e A.9 mostram os detalhes.

$$S_k + S_p = 0 \tag{A.8}$$

$$E_k I_{km}^* + E_p I_{mk}^* = 0 (A.9)$$

Com a substituição da equação A.7 na equação A.9, tem-se que:

$$\frac{E_p}{E_k} = -\frac{|I_{km}|}{|I_{mk}|} = -\frac{1}{t_{km}}$$
(A.10)

Ao se reunir as equações A.7 e A.10 e definir $-I_{mk} = I_{pm}$, pode-se escrever a equação A.11.

$$\frac{E_p}{E_k} = \frac{1}{t_{km}} = -\frac{I_{km}}{I_{mk}} = \frac{I_{km}}{I_{pm}}$$
(A.11)

A partir da equação A.11, pode-se encontrar as equações que determinam I_{km} e I_{mk} , dadas por A.12 e A.13, respectivamente.

$$I_{km} = \frac{I_{pm}}{t_{km}} = -\frac{I_{mk}}{t_{km}}$$

= $-\frac{1}{t_{km}} [(E_m - E_p)y_{km}]$
= $-\frac{1}{t_{km}} \left[\left(E_m - \frac{E_k}{t_{km}} \right) y_{km} \right]$
= $-\frac{y_{km}}{t_{km}} E_m + \frac{y_{km}}{t_{km}^2} E_k$ (A.12)

$$I_{mk} = -I_{pm}$$

$$= -(E_p - E_m)y_{km}$$

$$= -\left(\frac{E_k}{t_{km}} - E_m\right)y_{km}$$

$$= -\frac{y_{km}}{t_{km}}E_k + E_m y_{km}$$
(A.13)

Do modelo π , pode-se escrever as equações A.14 e A.15.

$$I_{km} = (A+B)E_k + (-A)E_m$$
 (A.14)

$$I_{mk} = (-A)E_k + (A+C)E_m$$
 (A.15)

A partir da analogia entre as equações A.14 e A.15 e as equações A.12 e A.13, pode-se definir os parâmetros A, B e C:

Fig. A.3: Modelo π de transformador

$$A + B = \frac{y_{km}}{t_{km}^2} \tag{A.16}$$

$$A = \frac{y_{km}}{t_{km}} \tag{A.17}$$

$$A + C = y_{km} \tag{A.18}$$

O parâmetro A está definido, e, ao se substituir A.17 em A.16 e em A.18, têm-se os parâmetros B e C, como mostram as equações A.19 e A.20.

$$B = \frac{y_{km}}{t_{km}^2} - \frac{y_{km}}{t_{km}} = \frac{y_{km}}{t_{km}} \left(\frac{1}{t_{km}} - 1\right)$$
(A.19)

$$C = y_{km} - \frac{y_{km}}{t_{km}} = y_{km} \left(1 - \frac{1}{t_{km}} \right)$$
(A.20)

A.2.2 Segundo Modelo - $1:t_{km}$

Da mesma forma como ocorre para o primeiro modelo, no segundo modelo, apresentado na figura A.4, tem-se que o ângulo não muda entre os pontos $k \in p$, portanto:

Fig. A.4: Segundo modelo de transformador em fase - $1:t_{km}$

$$\theta_k = \theta_p \tag{A.21}$$

Assim, a equação A.22 pode ser simplificada.

$$\frac{E_p}{E_k} = \frac{V_p e^{j\theta_p}}{V_k e^{j\theta_k}} = t_{km} \tag{A.22}$$

Novamente, como o modelo de transformador se trata de um modelo ideal, não há dissipações de potências ativa e reativa. A partir desta afirmação, tem-se que a soma das potências complexas entre $k \in p$ é nula:

$$S_k + S_p = 0 \tag{A.23}$$

$$E_k I_{km}^* + E_p I_{mk}^* = 0 (A.24)$$

Com a manipulação da equação A.24, e, após realizadas as devidas substituições, proporcionadas pelas informações obtidas previamente, tem-se que:

$$\frac{E_p}{E_k} = -\frac{|I_{km}|}{|I_{mk}|} = t_{km} = \frac{|I_{km}|}{|I_{pm}|}$$
(A.25)

Da equação A.25 pode-se tirar as equações de I_{km} e I_{mk} , como apresentadas abaixo pelas equações A.26 e A.27.

$$I_{km} = t_{km}I_{pm} = -t_{km}I_{mk}$$

= $-t_{km}[(E_m - E_p)y_{km}]$
= $-t_{km}[(E_m - E_kt_{km})y_{km}]$
= $-E_mt_{km}y_{km} + E_kt_{km}^2y_{km}$ (A.26)

$$I_{mk} = -I_{pm}$$

= -[(E_p - E_m)y_{km}]
= -[(E_k t_{km} - E_m)y_{km}]
= E_m y_{km} - E_k t_{km} y_{km} (A.27)

De forma análoga ao primeiro modelo, é possível identificar os parâmetros das equações obtidas no circuito da figura A.3, equações A.14 e A.15, para o segundo modelo de transformador, a partir das equações A.26 e A.27. Os parâmetros encontrados são apresentados pelas equações A.29, A.31 e A.32.

$$A + B = t_{km}^2 y_{km} \tag{A.28}$$

$$A = t_{km} y_{km} \tag{A.29}$$

$$A + C = y_{km} \tag{A.30}$$

A equação A.29 apresenta, sem necessidade de cálculos, o parâmetro A. Com a equação A.29 substituída em A.28, é possível encontrar o parâmetro B, mostrado na equação A.31.

$$t_{km}y_{km} + B = t_{km}^2 y_{km}$$

$$B = t_{km}^2 y_{km} - t_{km}y_{km}$$

$$B = t_{km}y_{km}(t_{km} - 1)$$
(A.31)

O parâmetro *C*, dado pela equação A.32, é encontrado com a substituição da equação A.29 na equação A.30.

$$t_{km}y_{km} + C = y_{km}$$

$$C = y_{km} - t_{km}y_{km}$$

$$C = y_{km}(1 - t_{km})$$
(A.32)

A.2.3 Terceiro Modelo - $\frac{1}{t_{km}}$:1

Fig. A.5: Terceiro modelo de transformador em fase - $\frac{1}{t_{km}}$:1

Este modelo possui o transformador do lado m, ao invés do lado k, como nos casos anteriores. A figura A.5 apresenta os detalhes.

Novamente, como se trata de um transformador em fase, o ângulo da tensão na saída do transformador permanece inalterado em relação à entrada, como mostra a equação A.33.

$$\theta_p = \theta_m \tag{A.33}$$

A partir da relação de espiras do transformador, e, com o auxílio da equação A.33, obtém-se a equação A.34.

$$\frac{E_p}{E_m} = \frac{V_p e^{j\theta_p}}{V_m e^{j\theta_m}} = \frac{1}{t_{km}}$$
(A.34)

Como este modelo também se trata de um transformador ideal, as potências de entrada e saída permanecem inalteradas. A partir desta afirmação é possível escrever a equação A.35.

$$S_p + S_m = 0 \tag{A.35}$$

A potência complexa é dada pela equação A.36, que, ao ser substituída em A.35, e, após agrupar-se às informações obtidas anteriormente, obtém-se a equação A.38.

$$S = EI^* \tag{A.36}$$

$$E_p I_{km}^* + E_m I_{km}^* = 0 (A.37)$$

$$\frac{E_p}{E_m} = -\frac{|I_{mk}|}{|I_{km}|} = \frac{1}{t_{km}} = \frac{|I_{mk}|}{I_{pk}}$$
(A.38)

A partir da equação A.38, as equações para I_{km} e I_{mk} são obtidas, como mostram as equações A.39 e A.40, respectivamente.

$$I_{km} = -I_{pk} = -[(E_p - E_k)y_{km}] = -\left[\left(\frac{E_m}{t_{km}} - E_k\right)y_{km}\right] = y_{km}E_k = -\frac{y_{km}}{t_{km}}E_m$$
(A.39)

$$I_{mk} = -\frac{I_{km}}{t_{km}} = -\frac{1}{t_{km}} [(E_k - E_p)y_{km}] = -\frac{1}{t_{km}} \left[\left(E_k - \frac{E_m}{t_{km}} \right) y_{km} \right] = \frac{y_{km}}{t_{km}^2} E_m - \frac{y_{km}}{t_{km}} E_k$$
(A.40)

Com o auxílio das equações A.14 e A.15, é possível representar o terceiro modelo de transformador em fase pelo modelo π . Com as equações A.39 e A.40, os parâmetros A, B e C são identificados, como apresentado nas equações A.42, A.44 e A.45.

$$A + B = y_{km} \tag{A.41}$$

$$A = \frac{y_{km}}{t_{km}} \tag{A.42}$$

$$A + C = \frac{y_k m}{t_{km}^2} \tag{A.43}$$

Como o parâmetro A está determinado, pode-se substituí-lo na equação A.41, e encontrar, desta maneira, o parâmetro B, apresentado pela equação A.44.

$$\frac{y_{km}}{t_{km}} + B = y_{km}$$

$$B = y_{km} - \frac{y_{km}}{t_{km}}$$

$$B = y_{km} \left(1 - \frac{1}{t_{km}}\right)$$
(A.44)

Finalmente, para se determinar o parâmetro C, é necessário que se substitua a equação A.42 em A.43, como indicado abaixo:

$$\frac{y_{km}}{t_{km}} + C = \frac{y_{km}}{t_{km}^2}
C = \frac{y_{km}}{t_{km}^2} - \frac{y_{km}}{t_{km}}
C = \frac{y_{km}}{t_{km}} \left(\frac{1}{t_{km}} - 1\right)$$
(A.45)

A.2.4 Quarto Modelo - 1: $\frac{1}{t_{km}}$

O último modelo também apresenta o transformador do lado m, como exposto no terceiro modelo, só que a relação de espiras do transformador é invertida, como mostra a figura A.6.

Fig. A.6: Quarto modelo de transformador em fase - $1:\frac{1}{t_{km}}$

Novamente, como se trata de um transformador em fase, o ângulo no ponto p permanece igual

ao ângulo no ponto m. A equação A.46 apresenta os detalhes.

$$\theta_m = \theta_p \tag{A.46}$$

Assim, com o uso da equação A.46, simplificações são feitas para chegar a uma relação de transformação, como mostra a equação A.47.

$$\frac{E_p}{E_m} = \frac{V_p e^{j\theta_p}}{V_m e^{j\theta_m}} = t_{km} \tag{A.47}$$

Por também se tratar de um transformador ideal, a potência de saída permanece inalterada em relação à de entrada. Portanto, como mencionado nos outros modelos, a relação abaixo é válida:

$$S_p + S_m = 0 \tag{A.48}$$

Com a substituição da equação A.36 na equação A.48, tem-se a relação dada pela equação A.49.

$$E_p I_{km}^* + E_m I_{mk}^* = 0 (A.49)$$

Ao se rearranjar a equação A.49 e agrupar as informações obtidas anteriormente, chega-se a equação A.50.

$$\frac{E_p}{E_m} = -\frac{|I_{mk}|}{|I_{km}|} = t_{km} = \frac{|I_{mk}|}{|I_{pk}|}$$
(A.50)

Da equação A.50 é possível formular as equações para I_{km} e I_{mk} , como mostram as equações A.51 e A.52, respectivamente.

$$I_{km} = -I_{pk}$$

= -[(E_p - E_k)y_{km}]
= -[(E_m t_{km} - E_k)y_{km}]
= y_{km}E_k - t_{km}y_{km}E_m (A.51)

$$I_{mk} = -I_{km}t_{km}$$

= $-t_{km}[(E_k - E_p)y_{km}]$
= $-t_{km}[(E_k - E_m t_{km})y_{km}$
= $t_{km}^2 y_{km} E_m - t_{km} y_{km} E_k$ (A.52)

Analogamente ao primeiro, segundo e terceiro modelos, é necessário relacionar os parâmetros das equações da figura A.3 com as equações A.51 e A.52. Os parâmetros relacionados são os seguintes:

$$A + B = y_{km} \tag{A.53}$$

$$A = t_{km} y_{km} \tag{A.54}$$

$$A + C = t_{km}^2 y_{km} (A.55)$$

O parâmetro A está automaticamente dado pela equação A.54. Para o cálculo do parâmetro B, substitui-se a equação A.54 na equação A.53. O resultado é apresentado na equação A.56.

$$t_{km}y_{km} + B = y_{km}$$

$$B = y_{km} - t_{km}y_{km}$$

$$B = y_{km}(1 - t_{km})$$
(A.56)

Para se determinar o parâmetro C, substitui-se a equação A.54 na equação A.55. O resultado é dado pela equação A.57.

$$t_{km}y_{km} + C = t_{km}^{2}y_{km}$$

$$C = t_{km}^{2}y_{km} - t_{km}y_{km}$$

$$C = t_{km}y_{km}(t_{km} - 1)$$
(A.57)

A.2.5 Breve Resumo dos Transformadores

Os modelos padrões dos transformadores podem ser vistos de uma forma simplificada nas figuras de A.7 à A.10.

Ao se analisar os modelos, pode-se notar que o primeiro e quarto transformadores (figuras A.7 e A.10 respectivamente) possuem a mesma estrutura, porém invertida. O mesmo ocorre para o segundo e terceiro transformadores (figuras A.8 e A.9 respectivamente).

A tabela A.1 identifica os elementos dos transformadores indexados por A, B, C e D.

Índice	Valor
A	yt^{-1}
В	yt
C	$t^{-1} - 1$
D	t-1

Tab. A.1: Definição dos parâmetros dos transformadores em fase

Fig. A.7: Primeiro modelo padrão de transformador em fase

Fig. A.8: Segundo modelo padrão de transformador em fase

Fig. A.9: Terceiro modelo padrão de transformador em fase

Fig. A.10: Quarto modelo padrão de transformador em fase

A.3 Injeções de Potência / Modelo Não-Linear

O método de injeções de correntes, como visto anteriormente, pode ser melhorado. Para se passar deste modelo para um modelo de injeções de potência, é necessário que se multiplique cada equação de nós pela tensão correspondente. A equação A.58 apresenta o resultado desta multiplicação.

$$S_k^* = E_k^* I_k = P_k - jQ_k \tag{A.58}$$

onde S_k é a injeção de potência complexa; E_k é a tensão nodal; I_k é a injeção de corrente nodal; P_k e Q_k são, respectivamente, as potências líqüidas ativa e reativa injetadas na barra k.

A equação A.59 é a equação geral do cálculo de S_k^* .

$$S_k^* = \sum_{l \in \mathcal{K}} Y_{kl}(t_{kl}) E_k^* E_l \tag{A.59}$$

onde \mathcal{K} significa a vizinhança da barra k, inclusive a própria barra.

Como a tensão é uma grandeza complexa, poderá ser escrita em forma polar, como mostra a

equação A.60.

$$E_{k} = V_{k} \angle \theta_{k}$$

= $V_{k} e^{j\theta_{k}}$
= $V_{k} (\cos \theta_{k} + j \sin \theta_{k})$ (A.60)

onde V_k é a magnitude de tensão e θ_k é o ângulo da tensão na barra k.

Ao se substituir a equação A.60 em A.59, obtém-se:

$$S_{k}^{*} = \sum_{l \in \mathcal{K}} Y_{kl}(t_{kl}) V_{k} e^{-j\theta_{k}} V_{l} e^{j\theta_{l}}$$
$$= \sum_{l \in \mathcal{K}} Y_{kl}(t_{kl}) V_{k} V_{l} e^{-j\theta_{kl}}$$
(A.61)

A equação A.61 ainda pode ser reescrita como:

$$S_k^* = \sum_{l \in \mathcal{K}} V_k V_l (G_{kl} + j B_{kl}(t_{kl})) (\cos \theta_{kl} - \sin \theta_{kl})$$
(A.62)

onde G_{kl} e B_{kl} são as matrizes condutância e susceptância - $Y_{kl}(t_{kl}) = G_{kl} + jB_{kl}(t_{kl})$.

A partir da equação A.62, pode-se escrever a injeção de potência da seguinte forma:

$$S_k^* = V_k \sum_{l \in \mathcal{K}} V_l \left[(G_{kl} \cos \theta_{kl} + B_{kl}(t_{kl}) \sin \theta_{kl}) - j(G_{kl} \sin \theta_{kl} - B_{kl}(t_{kl}) \cos \theta_{kl}) \right]$$
(A.63)

Com o auxílio da equação A.58, identifica-se as partes real e imaginária da equação A.63, relativas às potências ativa e reativa injetadas na barra k. Tais equações são apresentadas por A.64 e A.65.

$$P_k = V_k \sum_{l \in \mathcal{K}} V_l(G_{kl} \cos \theta_{kl} + B_{kl}(t_{kl}) \sin \theta_{kl})$$
(A.64)

$$Q_k = V_k \sum_{l \in \mathcal{K}} V_l(G_{kl} \sin \theta_{kl} - B_{kl}(t_{kl}) \cos \theta_{kl})$$
(A.65)

onde θ_k e V_k são componentes dos vetores θ e V.

Assim como descrevem as leis de Kirchhoff, para cada nó, o fluxo de potência que chega deve ser igual ao fluxo de potência que o deixa, e resulta em um balanço nulo, como mostram as equações A.66 e A.67 para potências ativa e reativa, respectivamente.

$$\underline{P_k^G - P_k^L} - \underline{P_k^{esp}} = 0 \tag{A.66}$$

$$\underbrace{Q_k^G - Q_k^L}_{Q_c^{calc}} - Q_k^{esp} = 0 \tag{A.67}$$

onde o índice G intende-se como geração (do inglês, *generation*), e o índice L como carga (do inglês, *load*). As equações A.66 e A.67 representam, respectivamente, as restrições de carga ativa e reativa no estado estacionário do modelo de injeção de potência.

 P_{i}^{calc}

A.4 Tipos de Barras

Em um sistema de potência, todos os pontos que conectam duas ou mais linhas de transmissão são conhecidos como barras (nós). Estes nós podem ser tanto pontos consumidores quanto pontos de geração de energia.

Algumas grandezas associadas à estas barras são de grande importância para que o fluxo de carga possa ser calculado, tais como:

- Magnitude da tensão na barra $k(V_k)$;
- Ângulo de fase da tensão na barra $k(\theta_k)$;
- Potência ativa líqüida injetada na barra $k(P_k)$ e

• Potência reativa líquida injetada na barra $k(Q_k)$.

Para que o sistema possa ser resolvido, duas das quatro variáveis devem ser especificadas. Desta forma, tem-se o mesmo número de incógnitas e equações.

Dependendo do modo como estas variáveis são conhecidas, as barras são classificadas de uma maneira diferente, conforme apresentado a seguir:

- SL é a barra de folga (do inglês, slack), cuja magnitude de tensão (V) e ângulo (θ) são conhecidos, e P_k e Q_k calculados. A barra slack fornece a referência angular e fecha o balanço de potência, incorporando as perdas de transmissão do sistema;
- PV é a barra de geração, em que a magnitude de tensão (V) e a potência líqüida injetada (P_k) são conhecidas. A injeção de potência reativa (Q_k) e o ângulo (θ_k) são desconhecidos e calculados ao final do processo iterativo de resolução do fluxo de carga;
- PQ é a barra de carga, em que as potências demandadas pelas cargas são conhecidas, sendo necessário apenas o cálculo de V_k e θ_k.

A.5 Perdas Ativa e Reativa Série nas Linhas de Transmissão e Transformadores em Fase

A minimização de perdas de potência ativa/reativa, em um sistema de transmissão, é comumente confundida com o Despacho Econômico, ou ainda Despacho Ótimo, por levar o sistema a operar em pontos de custos mais baixos. O Despacho Econômico, além de minimizar as perdas, também leva em conta aspectos políticos e geográficos para que o custo realmente seja o mínimo possível. O FPOR consiste de um processo computacional, em que a carga total do sistema, inclusive as perdas nas linhas de transmissão, é alocada dentre as unidades de geração disponíveis, obedecendo uma série de restrições impostas.

O problema de Despacho Econômico data de antes de 1920 quando engenheiros tinham problemas de alocação econômica, isto é, como propriamente dividir a carga entre as unidades geradoras com o menor custo possível. Desde então, vários métodos foram utilizados, como o "método de carga base"¹ e o "método incremental"².

¹Nesse método as unidades mais eficientes são sucessivamente carregadas, até que se chegue a de menor eficiência. ²A carga é alocada na unidade em que o custo incremental seja o mais baixo.
A.5 Perdas Ativa e Reativa Série nas Linhas de Transmissão e Transformadores em Fase161

A função objetivo deve ser escolhida de forma que, não só a perda seja minimizada, mas também o perfil de tensão seja mantido no melhor valor possível. Para tanto, pode-se usar, por exemplo, funções objetivo de perdas de energia, ou ainda de perdas de potência. Neste apêndice apenas as perdas de potências ativa e reativa série são evidenciadas.

O fluxo P_{kl} é calculado conforme a equação A.68, e representa o quanto de potência ativa é transferida da barra k para a barra l.

O fluxo de potência ativa no sentido contrário, ou seja, fluindo da barra l para a barra k, também deve ser contabilizado. Nesse sentido, a equação A.68 toma a forma da equação A.69.

$$P_{kl} = V_k^2 g_{kl} - V_k V_l g_{kl} \cos \theta_{kl} - V_k V_l b_{kl} \sin \theta_{kl}$$
(A.68)

$$P_{lk} = V_l^2 g_{kl} - V_k V_l g_{kl} \cos \theta_{kl} + V_k V_l b_{kl} \sin \theta_{kl}$$
(A.69)

A perda ativa em um ramo pode ser calculada a partir da soma de potência ativa que flui da barra k para l, e da barra l para k, ou seja, $P_{kl} + P_{lk}$. Tal soma é detalhada pela equação A.70.

$$P_{kl} + P_{lk} = g_{kl}(V_k^2 + V_l^2) - 2V_k V_l g_{kl} \cos(\theta_{kl})$$

= $g_{kl} \left[V_k^2 + V_l^2 - 2V_k V_l \cos(\theta_{kl}) \right]$ (A.70)

A função objetivo para perda ativa é composta pelo somatório das perdas em todos os ramos do sistema de transmissão, e pode ser escrita como apresenta a equação A.71.

$$f_P = \sum_{kl\in\Gamma} g_{kl} \left(V_k^2 + V_l^2 - 2V_k V_l \cos\theta_{kl} \right)$$
(A.71)

onde Γ é o conjunto formado por todos os ramos do sistema.

Os fluxos de potência reativa série, Q_{kl} e Q_{lk} , são calculados conforme as equações A.72 e A.73.

$$Q_{kl} = -V_k^2 b_{kl} + V_k V_l b_{kl} \cos \theta_{kl} - V_k V_l g_{kl} \sin \theta kl$$
(A.72)

$$Q_{lk} = -V_l^2 b_{kl} + V_k V_l b_{kl} \cos \theta_{kl} + V_k V_l g_{kl} \sin \theta kl$$
(A.73)

As perdas reativas série são calculadas a partir da soma da potência que flui da barra k para barra l e da barra l para barra k, ou seja, $Q_{kl} + Q_{lk}$. Tal soma é contemplada pela equação A.74.

$$Q_{kl} + Q_{lk} = -b_{kl}(V_k^2 + V_l^2 - 2V_k V_l \cos \theta_{kl})$$
(A.74)

A função objetivo para perdas reativas série, f_Q , é composta pelo somatório das perdas em todos os ramos do sistema de transmissão, e é apresentada pela equação A.75.

$$f_Q = \sum_{kl\in\Gamma} -b_{kl} (V_k^2 + V_l^2 - 2V_k V_l \cos\theta_{kl})$$
(A.75)

A.6 Equações do Fluxo de Carga e Método de Newton

As equações A.64 e A.65, definidas na seção A.3, são o resultado da aplicação das leis de Kirchhoff em todas as NB barras da rede elétrica.

O problema a ser formulado consiste em obter o estado do sistema, ou seja, determinar V e θ . Ao se substituir as equações A.64 e A.65 em A.66 e A.67, tal problema pode ser colocado na seguinte forma:

$$P_k - V_k \sum_{l \in \mathcal{K}} V_l(G_{kl} \cos \theta_{kl} + B_{kl}(t_{kl}) \sin \theta_{kl}) = 0$$
(A.76)

$$Q_k - V_k \sum_{l \in \mathcal{K}} V_l(G_{kl} \operatorname{sen} \theta_{kl} - B_{kl}(t_{kl}) \cos \theta_{kl}) = 0$$
(A.77)

 $\operatorname{com} k = 1, 2, \dots NB.$

Como estas duas equações são aplicadas para cada barra da rede, tem-se um sistema com $2 \cdot NB$ equações. Como, para cada barra, sempre duas variáveis são especificadas e duas calculadas, têm-se também $2 \cdot NB$ incógnitas, portanto, trata-se de um sistema determinado.

Em função da existência destes dois tipos de incógnitas, o problema do fluxo de carga pode ser decomposto em dois subsistemas de equações algébricas.

O subsistema um consiste em determinar as variáveis de estado desconhecidas, $V \in \theta$, para as barras $PQ \in \theta$ para as barras PV, o que resulta em um sistema de $(2 \cdot NPQ + NPV)$ incógnitas. Ao se tratar as potências, são especificadas $P \in Q$, para as barras $PQ \in P$ para as barras PV. Para cada potência especificada, pode-se escrever uma equação de fluxo de carga:

$$P_k - V_k \sum_{l \in \mathcal{K}} V_l(G_{kl} \cos \theta_{kl} + B_{kl}(t_{kl}) \sin \theta_{kl}) = 0 \quad k \in PQ, PV$$
(A.78)

$$Q_k - V_k \sum_{l \in \mathcal{K}} V_l(G_{kl} \operatorname{sen} \theta_{kl} - B_{kl}(t_{kl}) \cos \theta_{kl}) = 0 \qquad k \in PQ$$
(A.79)

o que resulta em um sistema de $(2 \cdot NPQ + NPV)$ equações.

Para que o sistema seja resolvido, deve-se obter V e θ tais que as potências nodais calculadas se igualem às respectivas potências especificadas.

O subsistema dois consiste em se determinar as potências nodais desconhecidas após as equações do subsistema um terem sido resolvidas. As incógnitas restantes são P, para a barra SL, e Qpara as barras PV e SL, o que resulta em (NPV + 2) incógnitas a serem determinadas.

Como o estado da rede é agora conhecido, basta aplicar a equação A.64 para a barra SL e A.65 para as barras SL e PV para se obter as potências restantes.

A.7 Método de Newton para Solução do Fluxo de Carga

O método de Newton é um método clássico na solução das equações de fluxo de carga. Para que este método seja utilizado, é necessário que haja a linearização da função vetorial dada pelos dois primeiros termos da série de Taylor, como mostra a equação A.80.

$$g(x^{\nu} + \Delta x^{\nu}) \cong g(x^{\nu}) + J(x^{\nu})\Delta x^{\nu}$$
(A.80)

onde:

$$x = \left[\begin{array}{c} V_{PQ} \\ \theta_{PQ,PV} \end{array} \right]$$

O elemento J da equação A.80 representa a matriz Jacobiana, que é detalhada na equação A.81.

$$J = \frac{\partial \overline{g}}{\partial \overline{x}} = \begin{bmatrix} \frac{\partial g_1}{\partial x_1} & \frac{\partial g_1}{\partial x_2} & \cdots & \frac{\partial g_1}{\partial x_n} \\ \frac{\partial g_2}{\partial x_1} & \frac{\partial g_2}{\partial x_2} & \cdots & \frac{\partial g_2}{\partial x_n} \\ \vdots & \vdots & \vdots & \vdots \\ \frac{\partial g_n}{\partial x_1} & \frac{\partial g_n}{\partial x_2} & \cdots & \frac{\partial g_n}{\partial x_n} \end{bmatrix}$$
(A.81)

Por ser um processo iterativo, a menos que o Método de Newton seja inicializado no ponto de convergência, um erro é gerado à cada iteração. O vetor de correção é calculado impondo-se:

$$g(x^{\nu}) + J(x^{\nu})\Delta x^{\nu} = 0 \tag{A.82}$$

que é a maneira linearizada de se resolver o problema, onde:

$$g(x^{v}) = \begin{bmatrix} \Delta P^{v} \\ \Delta Q^{v} \end{bmatrix}$$
(A.83)

$$\Delta x^{v} = \begin{bmatrix} \Delta \theta^{v} \\ \Delta V^{v} \end{bmatrix}$$
(A.84)

Os mismatches $\Delta \theta$ e ΔV são calculados e substituídos em $g(x + \Delta x) = 0$ até que a expressão se torne nula.

Reorganizando a equação A.81, obtém-se a equação A.85.

$$J(x^{v}) = \begin{bmatrix} \frac{\partial(\Delta P)}{\partial \theta} & \frac{\partial(\Delta P)}{\partial V} \\ \frac{\partial(\Delta Q)}{\partial \theta} & \frac{\partial(\Delta Q)}{\partial V} \end{bmatrix}$$
(A.85)

Os mismatches de potência, na formulação do fluxo de carga, são iguais a potência especificada menos a potência calculada, conforme apresentam as equações A.86 e A.87. Com a substituição destas equações em A.85 obtém-se a equação A.88.

$$\Delta P = P^{esp} - P(V, \theta) \tag{A.86}$$

$$\Delta Q = Q^{esp} - Q(V,\theta) \tag{A.87}$$

$$J(x^{v}) = \begin{bmatrix} \frac{\partial (P^{esp} - P(V,\theta))}{\partial \theta} & \frac{\partial (P^{esp} - P(V,\theta))}{\partial V} \\ \frac{\partial (Q^{esp} - Q(V,\theta))}{\partial \theta} & \frac{\partial (Q^{esp} - Q(V,\theta))}{\partial V} \end{bmatrix}$$
(A.88)

Por P^{esp} e Q^{esp} serem constantes, e dados pela potência gerada menos a potência consumida, um sinal negativo surge com a derivada dos elementos da equação A.88, que pode ser reescrita novamente:

$$J(x^{v}) = -\begin{bmatrix} \frac{\partial P}{\partial \theta} & \frac{\partial P}{\partial V} \\ \frac{\partial Q}{\partial \theta} & \frac{\partial Q}{\partial V} \end{bmatrix}$$
(A.89)

Para que as equações sejam colocadas de uma forma mais clara, as seguintes atribuições serão consideradas:

$$H = \frac{\partial P}{\partial \theta} \tag{A.90}$$

$$N = \frac{\partial P}{\partial V} \tag{A.91}$$

$$M = \frac{\partial Q}{\partial \theta} \tag{A.92}$$

$$L = \frac{\partial Q}{\partial V} \tag{A.93}$$

Com as substituições realizadas, a equação A.94 é obtida.

$$\begin{bmatrix} \Delta P^{v} \\ \Delta Q^{v} \end{bmatrix} = \begin{bmatrix} H & N \\ M & L \end{bmatrix} \times \begin{bmatrix} \Delta \theta^{v} \\ \Delta V^{v} \end{bmatrix}$$
(A.94)

 $H, N, M \in L$ são obtidas após se derivar as equações A.64 e A.65. O resultado é apresentado pelas equações expostas em A.95.

$$H \begin{cases} H_{km} = \frac{\partial P_{k}}{\partial \theta_{m}} = V_{k}V_{m}(G_{km} \operatorname{sen} \theta_{km} - B_{km} \cos \theta_{km}) \\ H_{kk} = \frac{\partial P_{k}}{\partial \theta_{m}} = -V_{k}^{2}B_{kk} - V_{k}\sum_{m \in \mathcal{K}} V_{m}(G_{km} \operatorname{sen} \theta_{km} - B_{km} \cos \theta_{km}) \\ N \begin{cases} N_{km} = \frac{\partial P_{k}}{\partial V_{m}} = V_{k}(G_{km} \cos \theta_{km} + B_{km} \operatorname{sen} \theta_{km}) \\ N_{kk} = \frac{\partial P_{k}}{\partial V_{k}} = V_{k}G_{kk} + \sum_{m \in \mathcal{K}} V_{m}(G_{km} \cos \theta_{km} + B_{km} \operatorname{sen} \theta_{km}) \\ M \begin{cases} M_{km} = \frac{\partial Q_{k}}{\partial \theta_{m}} = -V_{k}V_{m}(G_{km} \cos \theta_{km} + B_{km} \operatorname{sen} \theta_{km}) \\ M_{kk} = \frac{\partial Q_{k}}{\partial \theta_{k}} = -V_{k}^{2}G_{kk} + V_{k}\sum_{m \in \mathcal{K}} V_{m}(G_{km} \cos \theta_{km} + B_{km} \operatorname{sen} \theta_{km}) \\ M_{kk} = \frac{\partial Q_{k}}{\partial \theta_{k}} = -V_{k}^{2}G_{kk} + V_{k}\sum_{m \in \mathcal{K}} V_{m}(G_{km} \cos \theta_{km} + B_{km} \operatorname{sen} \theta_{km}) \\ L_{kk} = \frac{\partial Q_{k}}{\partial V_{k}} = -V_{k}B_{kk} + \sum_{m \in \mathcal{K}} V_{m}(G_{km} \operatorname{sen} \theta_{km} - B_{km} \cos \theta_{km}) \end{cases} \end{cases}$$

Para que a equação A.94 possa ser resolvida, o método de Gauss pode ser aplicado na inversão da matriz jacobiana para que os mismatches $\Delta \theta \in \Delta V$ possam ser calculados.

O algoritmo para resolução do sistema de equações dado em A.94, pelo Método de Newton, segundo Monticelli (1983), é dado por:

- 1. Fazer v = 0 e escolher uma solução inicial $\overline{x} = \overline{x}^{(v)} = \overline{x}^{(0)}$;
- 2. Calcular $\overline{g}(\overline{x}^v)$;
- 3. Testar se \overline{x}^v convergiu. caso contrário, passar para o quarto passo;
- 4. Calcular a matriz Jacobiana $J(\overline{x}^v)$;
- 5. Determinar nova solução $\overline{x}^{(v+1)}$:

$$\overline{x}^{(v+1)} = \overline{x}^v + \Delta \overline{x}^v$$

$$\Delta \overline{x}^v = -\left[J(\overline{x}^v)\right]^{-1} \overline{g}(\overline{x}^v)$$

6. Fazer $v + 1 \rightarrow v$ e voltar para o passo 2.

O fluxograma do programa de Fluxo de Carga pelo Método de Newton, desenvolvido para este trabalho, pode ser visualizado na figura A.11.

Fig. A.11: Fluxograma do Fluxo de Carga Newton

Apêndice B

Diferenciação dos Parâmetros dos Transformadores

O propósito deste apêndice é apresentar uma forma facilitada de obter parte dos elementos da matriz $\begin{bmatrix} \frac{\partial g}{\partial u} \end{bmatrix}$ apresentada no capítulo 2. A partir das definições obtidas aqui, é possível construir uma nova matriz susceptância B', que auxiliará no cálculo das equações 2.29, 2.30, 2.29 e 2.29, página 13, e que representa a derivada dos elementos de circuito em relação ao tap.

O elemento série do primeiro modelo de transformador em fase, figura A.7, representado pela letra *A* na tabela A.1, é dado pela equação B.1.

$$A = \frac{y}{t} \tag{B.1}$$

A derivada da equação B.1 em relação ao tap é apresentada pela equação B.2.

$$\frac{dA}{dt} = -\frac{y}{t^2} \tag{B.2}$$

A susceptância shunt do lado k, dada pelo produto $A \cdot C$ da tabela A.1, é mostrada pela equação B.3.

$$A \cdot C = \frac{y}{t} \left(\frac{1}{t} - 1 \right)$$
$$= \frac{y}{t^2} - \frac{y}{t}$$
(B.3)

A derivada da equação B.3 é dada pela equação B.4.

$$\frac{dA \cdot C}{dt} = -\frac{2y}{t^3} + \frac{y}{t^2}$$
$$= \frac{y}{t^2} \left(-\frac{2}{t} + 1\right)$$
(B.4)

A susceptância shunt do lado l do transformador em fase, representada pela multiplicação dos elementos A e D da tabela A.1, é mostrada pela equação B.5.

$$A \cdot D = \frac{y}{t}(t-1)$$

= $y - \frac{y}{t}$ (B.5)

A derivada da equação B.5 é dada pela equação B.6.

$$\frac{dA \cdot D}{dt} = \frac{y}{t^2} \tag{B.6}$$

O quarto modelo de transformador em fase, figura A.6, é o espelho do primeiro modelo, isto é, o lado k do primeiro modelo é idêntico ao lado l do quarto modelo, e vice-versa. Portanto, seus parâmetros estão calculados pelas equações B.2, B.4 e B.6.

O segundo modelo de transformador em fase, figura A.4, possui admitância série representada pela letra B, tabela A.1, e é apresentada pela equação B.7.

$$B = yt \tag{B.7}$$

A derivada do parâmetro B, apresentado na equação B.7, é dado pela equação B.8.

$$\frac{dB}{dt} = y \tag{B.8}$$

A susceptância shunt do lado k, representada pelo produto dos elementos $B \in C$ da tabela A.1, é dada abaixo pela equação B.9.

$$B \cdot C = yt\left(\frac{1}{t} - 1\right)$$
$$= y - yt$$
(B.9)

A derivada da equação B.9 é apresentada pela equação B.10.

$$\frac{dB \cdot C}{dt} = -y \tag{B.10}$$

A susceptância shunt do lado l é dada pela equação B.11.

$$B \cdot D = yt(t-1)$$

= $yt^2 - yt$ (B.11)

A derivada da equação B.11 é apresentada pela equação B.12.

$$\frac{dB \cdot D}{dt} = 2yt - y$$
$$= y(2t - 1)$$
(B.12)

Da mesma forma como ocorreu para o primeiro e segundo modelos, ocorre também para o segundo e terceiro modelos (figura A.5), pois estes também são o espelho um do outro.

A título de simplificação, a tabela B.1 foi construída para que a derivada dos elementos série e shunt dos transformadores possam ser calculados. O produto das variáveis contidas na tabela B.1, como apresentam as figuras B.1, B.2, B.3 e B.4, resultam na derivada dos elementos para cada modelo de transformador.

Índice	Valor
A'	yt^{-2}
B'	y
C'	$-2t^{-1}+1$
D'	2t - 1

Tab. B.1: Definição da derivada dos parâmetros dos transformadores em fase.

Fig. B.1: Primeiro modelo - derivada do modelo padrão de transformador em fase.

Fig. B.2: Segundo modelo - derivada do modelo padrão de transformador em fase.

Fig. B.3: Terceiro modelo - derivada do modelo padrão de transformador em fase.

Fig. B.4: Quarto modelo - derivada do modelo padrão de transformador em fase.

Apêndice C

Dados de Barras e Ramos dos Sistemas Estudados

C.1 Sistema de Três barras

O sistema de três barras, extraído do artigo de Dommel and Tinney (1968), possui em sua estrutura duas linhas de transmissão, como apresenta a figura 3.2, página 26. Os dados deste sistema estão detalhados nas tabelas 3.1, para os dados de barras, e 3.2, para os de ramos, ambos na página 26.

C.1.1 Principais Características do Sistema de Três Barras

A principal característica a ser ressaltada é a presença de duas barras de geração, sendo este o motivo por ter sido escolhido para simulação. Com apenas duas variáveis de controle, é possível traçar um gráfico com a tensão V_1 no eixo das absissas e V_2 no eixo das ordenadas, como mostram as figuras C.1, C.2, C.3 e C.4.

Vale lembrar que o sistema não possui transformadores em fase ou defasadores, bancos shunts de capacitores/reatores, nem compensadores séries.

Para que cada gráfico fosse traçado, foi necessário simular 1600 fluxos de carga resolvendo a equação referente a cada função objetivo, ou seja, a de perdas ativas (MW), figura C.1; perdas reativas (MVAr), figura C.2; perdas aparentes (MVA), C.3; e perdas aparentes aproximadas (MVA), C.4.

Fig. C.1: Curvas de nível para a função objetivo f_P - Perdas Ativas.

Fig. C.2: Curvas de nível para a função objetivo f_{Q} - Perdas Reativas.

Fig. C.3: Curvas de nível para a função objetivo f_S - Perdas Aparentes.

Fig. C.4: Curvas de nível para a função objetivo \tilde{f}_S - Perdas Aparentes Aproximadas.

C.2 Sistema de Transmissão Interligado IEEE 14 Bus

O sistema em questão, extraído de http://www.ee.washington.edu/research/ pstca, possui em sua estrutura 20 linhas de transmissão, como apresenta a figura 3.8. Os dados deste sistema estão detalhados nas tabelas C.1, para os dados de barras, e C.2, para os de ramos.

Barra	Tipo	V	θ	P_c	Q_c	P_g	Q_g	$Q_g^{m\acute{a}x}$	Q_g^{min}	b_{sh}	V_{min}	$V_{m\acute{a}x}$
1	3	1,060	0,00	0,0	0,0	232,4	-16,9	0	0	0,00	0,95	1,10
2	2	1,045	-4,98	21,7	12,7	40,0	42,4	50	-40	0,00	0,95	1,10
3	2	1,010	-12,72	94,2	19,0	0,0	23,4	40	0	0,00	0,95	1,10
4	0	1,019	-10,33	47,8	-3,9	0,0	0,0	0	0	0,00	0,95	1,10
5	0	1,020	-8,78	7,6	1,6	0,0	0,0	0	0	0,00	0,95	1,10
6	2	1,070	-14,22	11,2	7,5	0,0	12,2	24	-6	0,00	0,95	1,10
7	0	1,062	-13,37	0,0	0,0	0,0	0,0	0	0	0,00	0,95	1,10
8	2	1,090	-13,36	0,0	0,0	0,0	17,4	24	-6	0,00	0,05	1,10
9	0	1,056	-14,94	29,5	16,6	0,0	0,0	0	0	0,19	0,95	1,10
10	0	1,051	-15,10	9,0	5,8	0,0	0,0	0	0	0,00	0,95	1,10
11	0	1,057	-14,79	3,5	1,8	0,0	0,0	0	0	0,00	0,95	1,10
12	0	1,055	-15,07	6,1	1,6	0,0	0,0	0	0	0,00	0,95	1,10
13	0	1,050	-15,16	13,5	5,8	0,0	0,0	0	0	0,00	0,95	1,10
14	0	1,036	-16,04	14,9	5,0	0,0	0,0	0	0	0,00	0,95	1,10

C.2.1 Dados do Sistema de IEEE 14 bus

Tab. C.1: Dados de barras para o sistema de 14 barras.

NI	NF	Tipo	r	Х	Y_{sh}	Тар	Tap_{min}	$Tap_{m\acute{a}x}$
1	2	0	0,01938	0,05917	0,0528	0,0	0,90	1,05
1	5	0	0,05403	0,22304	0,0492	0,0	0,90	1,05
2	3	0	0,04699	0,19797	0,0438	0,0	0,90	1,05
2	4	0	0,05811	0,17632	0,0340	0,0	0,90	1,05

NI	NF	Tipo	r	Х	Y_{sh}	Тар	Tap_{min}	$Tap_{m\acute{a}x}$
2	5	0	0,05695	0,17388	0,0346	0,0	0,90	1,05
3	4	0	0,06701	0,17103	0,0128	0,0	0,90	1,05
4	5	0	0,01335	0,04211	0,0	0,0	0,90	1,05
4	7	1	0,00000	0,20912	0,0	0,978	0,90	1,05
4	9	1	0,00000	0,55618	0,0	0,969	0,90	1,05
5	6	1	0,00000	0,25202	0,0	0,932	0,90	1,05
6	11	0	0,09498	0,19890	0,0	0,0	0,90	1,05
6	12	0	0,12291	0,25581	0,0	0,0	0,90	1,05
6	13	0	0,06615	0,13027	0,0	0,0	0,90	1,05
7	8	1	0,00000	0,17615	0,0	1,0	0,90	1,05
7	9	1	0,00000	0,11001	0,0	1,0	0,90	1,05
9	10	0	0,03181	0,08450	0,0	0,0	0,90	1,05
9	14	0	0,12711	0,27038	0,0	0,0	0,90	1,05
10	11	0	0,08205	0,19207	0,0	0,0	0,90	1,05
12	13	0	0,22092	0,19988	0,0	0,0	0,90	1,05
13	14	0	0,17093	0,34802	0,0	0,0	0,90	1,05

Tab. C.2: Dados de ramos para o sistema de 14 barras.

C.3 Sistema de Transmissão Interligado IEEE 30 Bus

O sistema, extraído de http://www.ee.washington.edu/research/pstca, constitui-se de uma estrutura de 30 barras e 41 linhas de transmissão. Os dados deste sistema estão detalhados nas tabelas C.3, para os dados de barras, e C.4, para os de ramos.

Fig. C.5: Diagrama unifilar do sistema de 30 barras.

C.3.1 Características do Sistema IEEE 30 Bus

As principais características a serem ressaltadas são a existência de:

- Seis barras com controle de tensão;
- Quatro ramos com transformadores em fase e
- Duas barras com bancos de capacitores shunt acoplados.

Ressalta-se ainda que esta rede não possui transformadores defasadores, bancos shunt de reatores, nem compensadores séries.

C.4 Dados do Sistema de 30 Barras

Barra	Tipo	V	heta	P_c	Q_c	P_g	Q_g	$Q_g^{m\acute{a}x}$	$Q_g^{m\acute{i}n}$	b_{sh}	V_{min}	$V_{m\acute{a}x}$
1	3	1,060	00,0	0,0	0,0	260,2	-16,1	0,0	0,0	0,0	0,95	1,10
2	2	1,043	-5,48	21,7	12,7	40,0	50,0	50,0	-40,0	0,0	0,95	1,10
3	0	1,021	-7,96	2,4	1,2	0,0	0,0	0,0	0,0	0,0	0,95	1,10
4	0	1,012	-9,62	7,6	1,6	0,0	0,0	0,0	0,0	0,0	0,95	1,10
5	2	1,010	-14,37	94,2	19,0	0,0	37,0	40,0	-40,0	0,0	0,95	1,10
6	0	1,010	-11,34	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,95	1,10
7	0	1,002	-13,12	22,8	10,9	0,0	0,0	0,0	0,0	0,0	0,95	1,10
8	2	1,010	-12,10	30,0	30,0	0,0	37,3	40,0	-10,0	0,0	0,95	1,10
9	0	1,051	-14,38	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,95	1,10
10	0	1,045	-15,97	5,8	2,0	0,0	0,0	0,0	0,0	0,19	0,95	1,10
11	2	1,082	-14,39	0,0	0,0	0,0	16,2	24,0	-6,0	0,0	0,95	1,10
12	0	1,057	-15,24	11,2	7,5	0,0	0,0	0,0	0,0	0,0	0,95	1,10
13	2	1,071	-15,24	0,0	0,0	0,0	10,6	24,0	-6,0	0,0	0,95	1,10
14	0	1,042	-16,13	6,2	1,6	0,0	0,0	0,0	0,0	0,0	0,95	1,10
15	0	1,038	-16,22	8,2	2,5	0,0	0,0	0,0	0,0	0,0	0,95	1,10
16	0	1,045	-15,83	3,5	1,8	0,0	0,0	0,0	0,0	0,0	0,95	1,10
17	0	1,040	-16,14	9,0	5,8	0,0	0,0	0,0	0,0	0,0	0,95	1,10
18	0	1,028	-16,82	3,2	0,9	0,0	0,0	0,0	0,0	0,0	0,95	1,10
19	0	1,026	-17,00	9,5	3,4	0,0	0,0	0,0	0,0	0,0	0,95	1,10
20	0	1,030	-16,80	2,2	0,7	0,0	0,0	0,0	0,0	0,0	0,95	1,10

Dados de Barras e Ramos dos Sistemas Estudados

Barra	Tipo	V	θ	P_c	Q_c	P_g	Q_g	$Q_g^{m\acute{a}x}$	Q_g^{min}	b_{sh}	V_{min}	$V_{m\acute{a}x}$
21	0	1,033	-16,42	17,5	11,2	0,0	0,0	0,0	0,0	0,0	0,95	1,10
22	0	1,033	-16,41	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,95	1,10
23	0	1,027	-16,61	3,2	1,6	0,0	0,0	0,0	0,0	0,0	0,95	1,10
24	0	1,021	-16,78	8,7	6,7	0,0	0,0	0,0	0,0	0,043	0,95	1,10
25	0	1,017	-16,35	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,95	1,10
26	0	1,000	-16,77	3,5	2,3	0,0	0,0	0,0	0,0	0,0	0,95	1,10
27	0	1,023	-15,82	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,95	1,10
28	0	1,007	-11,97	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,95	1,10
29	0	1,003	-17,06	2,4	0,9	0,0	0,0	0,0	0,0	0,0	0,95	1,10
30	0	0,992	-17,94	10,6	1,9	0,0	0,0	0,0	0,0	0,0	0,95	1,10

Tab. C.3: Dados de barras para o sistema de 30 barras.

NI	NF	Tipo	r	Х	Y_{sh}	Тар	Tap_{min}	$Tap_{m\acute{a}x}$
1	2	0	0,0192	0,0575	0,0528	0,0	0,0	0,0
1	3	0	0,0452	0,1652	0,0408	0,0	0,0	0,0
2	4	0	0,0570	0,1737	0,0368	0,0	0,0	0,0
3	4	0	0,0132	0,0379	0,0084	0,0	0,0	0,0
2	5	0	0,0472	0,1983	0,0418	0,0	0,0	0,0
2	6	0	0,0581	0,1763	0,0374	0,0	0,0	0,0
4	6	0	0,0119	0,0414	0,0090	0,0	0,0	0,0
5	7	0	0,0460	0,1160	0,0204	0,0	0,0	0,0
6	7	0	0,0267	0,0820	0,0170	0,0	0,0	0,0
6	8	0	0,0120	0,0420	0,0090	0,0	0,0	0,0
6	9	1	0,0000	0,2080	0,0000	0,978	0,95	1,1
6	10	1	0,0000	0,5560	0,0000	0,969	0,95	1,1
9	11	1	0,0000	0,2080	0,0000	1,0	0,95	1,1
9	10	1	0,0000	0,1100	0,0000	1,0	0,95	1,1
4	12	1	0,0000	0,2560	0,0000	0,932	0,95	1,1
12	13	1	0,0000	0,1400	0,0000	1,0	0,95	1,1
12	14	0	0,1231	0,2559	0,0000	0,0	0,0	0,0
12	15	0	0,0662	0,1304	0,0000	0,0	0,0	0,0

NI	NF	Tipo	r	Х	Y_{sh}	Тар	Tap_{min}	$Tap_{m\acute{a}x}$
12	16	0	0,0945	0,1987	0,0000	0,0	0,0	0,0
14	15	0	0,2210	0,1997	0,0000	0,0	0,0	0,0
16	17	0	0,0524	0,1923	0,0000	0,0	0,0	0,0
15	18	0	0,1073	0,2185	0,0000	0,0	0,0	0,0
18	19	0	0,0639	0,1292	0,0000	0,0	0,0	0,0
19	20	0	0,0340	0,0680	0,0000	0,0	0,0	0,0
10	20	0	0,0936	0,2090	0,0000	0,0	0,0	0,0
10	17	0	0,0324	0,0845	0,0000	0,0	0,0	0,0
10	21	0	0,0348	0,0749	0,0000	0,0	0,0	0,0
10	22	0	0,0727	0,1499	0,0000	0,0	0,0	0,0
21	22	0	0,0116	0,0236	0,0000	0,0	0,0	0,0
15	23	0	0,1000	0,2020	0,0000	0,0	0,0	0,0
22	24	0	0,1150	0,1790	0,0000	0,0	0,0	0,0
23	24	0	0,1320	0,2700	0,0000	0,0	0,0	0,0
24	25	0	0,1885	0,3292	0,0000	0,0	0,0	0,0
25	26	0	0,2544	0,3800	0,0000	0,0	0,0	0,0
25	27	0	0,1093	0,2087	0,0000	0,0	0,0	0,0
28	27	1	0,0000	0,3960	0,0000	0,968	0,95	1,1
27	29	0	0,2198	0,4153	0,0000	0,0	0,0	0,0
27	30	0	0,3202	0,6027	0,0000	0,0	0,0	0,0
29	30	0	0,2399	0,4533	0,0000	0,0	0,0	0,0
8	28	0	0,0636	0,2000	0,0428	0,0	0,0	0,0
6	28	0	0,0169	0,0599	0,0130	0,0	0,0	0,0

Tab. C.4: Dados de ramos para o sistema de 30 barras.

C.5 Sistema de Transmissão Interligado IEEE 57 Bus

O sistema de 57 barras¹, possui em sua estrutura 80 linhas de transmissão, como apresenta a figura C.6. Os dados deste sistema estão detalhados nas tabelas C.5, para os dados de barras, e C.6, para os de ramos.

Barra	Tipo	V	θ	P_c	Q_c	P_g	Q_g	$Q_g^{m\acute{a}x}$	Q_g^{min}	b_{sh}	V_{min}	$V_{m\acute{a}x}$
1	3	1,040	0,0	55,0	17,0	128,9	-16,1	0,0	0,0	0,0	0,95	1,10
2	2	1,010	-1,18	3,0	88,0	0,0	-0,8	50,0	-17,0	0,0	0,95	1,10
3	2	0,985	-5,97	41,0	21,0	40,0	-1,0	60,0	-10,0	0,0	0,95	1,10
4	0	0,981	-7,32	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,95	1,10
5	0	0,976	-8,52	13,0	4,0	0,0	0,0	0,0	0,0	0,0	0,95	1,10
6	2	0,980	-8,65	75,0	2,0	0,0	0,8	25,0	-8,0	0,0	0,95	1,10
7	0	0,984	-7,58	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,95	1,10
8	2	1,005	-4,45	150,0	22,0	450,0	62,1	200,0	-140,0	0,0	0,95	1,10
9	2	0,980	-9,56	121,0	26,0	0,0	2,2	9,0	-3,0	0,0	0,95	1,10
10	0	0,986	-11,43	5,0	2,0	0,0	0,0	0,0	0,0	0,0	0,95	1,10
11	0	0,974	-10,17	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,95	1,10
12	2	1,015	-10,46	377,0	24,0	310,0	128,5	155,0	-150,0	0,0	0,95	1,10
13	0	0,979	-9,79	18,0	2,3	0,0	0,0	0,0	0,0	0,0	0,95	1,10
14	0	0,970	-9,33	10,5	5,3	0,0	0,0	0,0	0,0	0,0	0,95	1,10
15	0	0,988	-7,18	22,0	5,0	0,0	0,0	0,0	0,0	0,0	0,95	1,10
16	0	1,013	-8,85	43,0	3,0	0,0	0,0	0,0	0,0	0,0	0,95	1,10
17	0	1,017	-5,39	42,0	8,0	0,0	0,0	0,0	0,0	0,0	0,95	1,10
18	0	1,001	-11,71	27,2	9,8	0,0	0,0	0,0	0,0	0,10	0,95	1,10
19	0	0,970	-13,20	3,3	0,6	0,0	0,0	0,0	0,0	0,0	0,95	1,10
20	0	0,964	-13,41	2,3	1,0	0,0	0,0	0,0	0,0	0,0	0,95	1,10
21	0	1,008	-12,89	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,95	1,10
22	0	1,010	-12,84	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,95	1,10
23	0	1,008	-12,91	6,3	2,1	0,0	0,0	0,0	0,0	0,0	0,95	1,10
24	0	0,999	-13,25	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,95	1,10
25	0	0,982	-18,13	6,3	3,2	0,0	0,0	0,0	0,0	0,059	0,95	1,10

C.5.1 Dados do Sistema de 57 Barras

continua na próxima página

¹O dados do sistema IEEE 57 barras podem ser obtidos no site http://www.ee.washington.edu/ research/pstca.

C.5 Sistema de Transmissão Interligado IEEE 57 Bus

Barra	Tipo	V	θ	P_c	Q_c	P_g	Q_g	$Q_g^{m\acute{a}x}$	Q_g^{min}	b_{sh}	V_{min}	$V_{m\acute{a}x}$
26	0	0,959	-12,95	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,95	1,10
27	0	0,982	-11,48	9,3	0,5	0,0	0,0	0,0	0,0	0,0	0,95	1,10
28	0	0,997	-10,45	4,6	2,3	0,0	0,0	0,0	0,0	0,0	0,95	1,10
29	0	1,010	-9,75	17,0	2,6	0,0	0,0	0,0	0,0	0,0	0,95	1,10
30	0	0,962	-18,68	3,6	1,8	0,0	0,0	0,0	0,0	0,0	0,95	1,10
31	0	0,936	-19,34	5,8	2,9	0,0	0,0	0,0	0,0	0,0	0,95	1,10
32	0	0,949	-18,46	1,6	0,8	0,0	0,0	0,0	0,0	0,0	0,95	1,10
33	0	0,947	-18,50	3,8	1,9	0,0	0,0	0,0	0,0	0,0	0,95	1,10
34	0	0,959	-14,10	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,95	1,10
35	0	0,966	-13,86	6,0	3,0	0,0	0,0	0,0	0,0	0,0	0,95	1,10
36	0	0,976	-13,59	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,95	1,10
37	0	0,985	-13,41	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,95	1,10
38	0	1,013	-12,71	14,0	7,0	0,0	0,0	0,0	0,0	0,0	0,95	1,10
39	0	0,983	-13,46	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,95	1,10
40	0	0,973	-13,62	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,95	1,10
41	0	0,996	-14,05	6,3	3,0	0,0	0,0	0,0	0,0	0,0	0,95	1,10
42	0	0,966	-15,50	7,1	4,4	0,0	0,0	0,0	0,0	0,0	0,95	1,10
43	0	1,010	-11,33	2,0	1,0	0,0	0,0	0,0	0,0	0,0	0,95	1,10
44	0	1,017	-11,86	12,0	1,8	0,0	0,0	0,0	0,0	0,0	0,95	1,10
45	0	1,036	-9,25	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,95	1,10
46	0	1,050	-11,89	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,95	1,10
47	0	1,033	-12,49	29,7	11,6	0,0	0,0	0,0	0,0	0,0	0,95	1,10
48	0	1,027	-12,59	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,95	1,10
49	0	1,036	-12,92	18,0	8,5	0,0	0,0	0,0	0,0	0,0	0,95	1,10
50	0	1,023	-13,39	21,0	10,5	0,0	0,0	0,0	0,0	0,0	0,95	1,10
51	0	1,052	-12,52	18,0	5,3	0,0	0,0	0,0	0,0	0,0	0,95	1,10
52	0	0,980	-11,47	4,9	2,2	0,0	0,0	0,0	0,0	0,0	0,95	1,10
53	0	0,971	-12,23	20,0	10,0	0,0	0,0	0,0	0,0	0,063	0,95	1,10
54	0	0,996	-11,69	4,1	1,4	0,0	0,0	0,0	0,0	0,0	0,95	1,10
55	0	1,031	-10,78	6,8	3,4	0,0	0,0	0,0	0,0	0,0	0,95	1,10
56	0	0,968	-16,04	7,6	2,2	0,0	0,0	0,0	0,0	0,0	0,95	1,10
57	0	0,965	-16,56	6,7	2,0	0,0	0,0	0,0	0,0	0,0	0,95	1,10

Tab. C.5: Dados de barras para o sistema de 57 barras.

Fig. C.6: Diagrama unifilar do sistema de 57 barras.

NI	NF	Tipo	r	Х	Y_{sh}	Тар	Tap_{min}	$Tap_{m\acute{a}x}$
1	2	0	0,0083	0,0280	0,1290	0,0	0,95	1,10
2	3	0	0,0298	0,0850	0,0818	0,0	0,95	1,10
3	4	0	0,0112	0,0366	0,0380	0,0	0,95	1,10
4	5	0	0,0625	0,1320	0,0258	0,0	0,95	1,10
4	6	0	0,0430	0,1480	0,0348	0,0	0,95	1,10
6	7	0	0,0200	0,1020	0,0276	0,0	0,95	1,10
6	8	0	0,0339	0,1730	0,0470	0,0	0,95	1,10
8	9	0	0,0099	0,0505	0,0548	0,0	0,95	1,10
9	10	0	0,0369	0,1679	0,0440	0,0	0,95	1,10
9	11	0	0,0258	0,0848	0,0218	0,0	0,95	1,10
9	12	0	0,0648	0,2950	0,0772	0,0	0,95	1,10
9	13	0	0,0481	0,1580	0,0406	0,0	0,95	1,10
13	14	0	0,0132	0,0434	0,0110	0,0	0,95	1,10
13	15	0	0,0269	0,0869	0,0230	0,0	0,95	1,10
1	15	0	0,0178	0,0910	0,0988	0,0	0,95	1,10
1	16	0	0,0454	0,2060	0,0546	0,0	0,95	1,10
1	17	0	0,0238	0,1080	0,0286	0,0	0,95	1,10
3	15	0	0,0162	0,0530	0,0544	0,0	0,95	1,10
4	18	1	0,0	0,5550	0,0	0,978	0,95	1,10
4	18	1	0,0	0,4300	0,0	0,978	0,95	1,10
5	6	0	0,0302	0,0641	0,0124	0,0	0,95	1,10
7	8	0	0,0139	0,0712	0,0194	0,0	0,95	1,10
10	12	0	0,0277	0,1262	0,0328	0,0	0,95	1,10
11	13	0	0,0223	0,0732	0,0188	0,0	0,95	1,10
12	13	0	0,0178	0,0580	0,0604	0,0	0,95	1,10
12	16	0	0,0180	0,0813	0,0216	0,0	0,95	1,10
12	17	0	0,0397	0,1790	0,0476	0,0	0,95	1,10
14	15	0	0,0171	0,0547	0,0148	0,0	0,95	1,10
18	19	0	0,4610	0,6850	0,0	0,0	0,95	1,10

Dados de Barras e Ramos dos Sistemas Estudados

NI	NF	Tipo	r	Х	Y_{sh}	Тар	Tap_{min}	$Tap_{m\acute{a}x}$
19	20	0	0,2830	0,4340	0,0	0,0	0,95	1,10
21	20	1	0,0	0,7767	0,0	1,043	0,95	1,10
21	22	0	0,0736	0,1170	0,0	0,0	0,95	1,10
22	23	0	0,0099	0,0152	0,0	0,0	0,95	1,10
23	24	0	0,1660	0,2560	0,0084	0,0	0,95	1,10
24	25	1	0,0	1,1820	0,0	1,000	0,95	1,10
24	25	1	0,0	1,2300	0,0	1,000	0,95	1,10
24	26	1	0,0	0,0473	0,0	1,043	0,95	1,10
26	27	0	0,1650	0,2540	0,0	0,0	0,95	1,10
27	28	0	0,0618	0,0954	0,0	0,0	0,95	1,10
28	29	0	0,0418	0,0587	0,0	0,0	0,95	1,10
7	29	1	0,0	0,0648	0,0	0,967	0,95	1,10
25	30	0	0,1350	0,2020	0,0	0,0	0,95	1,10
30	31	0	0,3260	0,4970	0,0	0,0	0,95	1,10
31	32	0	0,5070	0,7550	0,0	0,0	0,95	1,10
32	33	0	0,0392	0,0360	0,0	0,0	0,95	1,10
34	32	1	0,0	0,9530	0,0	0,975	0,95	1,10
34	35	0	0,0520	0,0780	0,0032	0,0	0,95	1,10
35	36	0	0,0430	0,0537	0,0016	0,0	0,95	1,10
36	37	0	0,0290	0,0366	0,0	0,0	0,95	1,10
37	38	0	0,0651	0,1009	0,0020	0,0	0,95	1,10
37	39	0	0,0239	0,0379	0,0	0,0	0,95	1,10
36	40	0	0,0300	0,0466	0,0	0,0	0,95	1,10
22	38	0	0,0192	0,0295	0,0	0,0	0,95	1,10
11	41	1	0,0	0,7490	0,0	0,955	0,95	1,10
41	42	0	0,2070	0,3520	0,0	0,0	0,95	1,10
41	43	0	0,0	0,4120	0,0	0,0	0,95	1,10
38	44	0	0,0289	0,0585	0,0020	0,0	0,95	1,10
15	45	1	0,0	0,1042	0,0	0,955	0,95	1,10

C.6 Sistema de Transmissão Interligado IEEE 118 Bus

NI	NF	Tipo	r	Х	Y_{sh}	Тар	Tap_{min}	$Tap_{m\acute{a}x}$
14	46	1	0,0	0,0735	0,0	0,900	0,95	1,10
46	47	0	0,0230	0,0680	0,0032	0,0	0,95	1,10
47	48	0	0,0182	0,0233	0,0	0,0	0,95	1,10
48	49	0	0,0834	0,1290	0,0048	0,0	0,95	1,10
49	50	0	0,0801	0,1280	0,0	0,0	0,95	1,10
50	51	0	0,1386	0,2200	0,0	0,0	0,95	1,10
10	51	1	0,0	0,0712	0,0	0,930	0,95	1,10
13	49	1	0,0	0,1910	0,0	0,895	0,95	1,10
29	52	0	0,1442	0,1870	0,0	0,0	0,95	1,10
52	53	0	0,0762	0,0984	0,0	0,0	0,95	1,10
53	54	0	0,1878	0,2320	0,0	0,0	0,95	1,10
54	55	0	0,1732	0,2265	0,0	0,0	0,95	1,10
11	43	1	0,0	0,1530	0,0	0,958	0,95	1,10
44	45	0	0,0624	0,1242	0,0040	0,0	0,95	1,10
40	56	1	0,0	1,1950	0,0	0,958	0,95	1,10
56	41	0	0,5530	0,5490	0,0	0,0	0,95	1,10
56	42	0	0,2125	0,3540	0,0	0,0	0,95	1,10
39	57	1	0,0	1,3550	0,0	0,980	0,95	1,10
57	56	0	0,1740	0,2600	0,0	0,0	0,95	1,10
38	49	0	0,1150	0,1770	0,0030	0,0	0,95	1,10
38	48	0	0,0312	0,0482	0,0	0,0	0,95	1,10
9	55	1	0,0	0,1205	0,0	0,940	0,95	1,10

Tab. C.6: Dados de ramos para	a o sistema de 57 barras
-------------------------------	--------------------------

C.6 Sistema de Transmissão Interligado IEEE 118 Bus

O sistema de 118 barras, extraído de http://www.ee.washington.edu/research/ pstca, é apresentado na figura C.7. Os dados deste sistema estão detalhados nas tabelas C.7, para os dados de barras, e C.8, para os de ramos.

Fig. C.7: Diagrama unifilar do sistema de 118 barras.

Barra	Tipo	V	θ	P_c	Q_c	P_g	Q_g	$Q_g^{m \acute{a} x}$	Q_g^{min}	b_{sh}	V_{min}	Vmáx
1	2	0,955	10,670	51,00	27,00	0,00	0,00	15,00	-5,00	0,000	0,900	1,100
2	0	0,971	11,220	20,00	9,00	0,00	0,00	0,00	0,00	0,000	0,900	1,100
3	0	0,968	11,560	39,00	10,00	0,00	0,00	0,00	0,00	0,000	0,900	1,100
4	2	0,998	15,280	30,00	12,00	-9,00	0,00	300,00	-300,00	0,000	0,900	1,100
5	0	1,002	15,730	0,00	0,00	0,00	0,00	0,00	0,00	-0,400	0,900	1,100
6	2	0,990	13,000	52,00	22,00	0,00	0,00	50,00	-13,00	0,000	0,900	1,100
7	0	0,989	12,560	19,00	2,00	0,00	0,00	0,00	0,00	0,000	0,900	1,100
8	2	1,015	20,770	0,00	0,00	-28,00	0,00	300,00	-300,00	0,000	0,900	1,100
9	0	1,043	28,020	0,00	0,00	0,00	0,00	0,00	0,00	0,000	0,900	1,100
10	2	1,050	35,610	0,00	0,00	450,00	0,00	200,00	-147,00	0,000	0,900	1,100
11	0	0,985	12,720	70,00	23,00	0,00	0,00	0,00	0,00	0,000	0,900	1,100
12	2	0,990	12,200	47,00	10,00	85,00	0,00	120,00	-35,00	0,000	0,900	1,100
13	0	0,968	11,350	34,00	16,00	0,00	0,00	0,00	0,00	0,000	0,900	1,100
14	0	0,984	11,500	14,00	1,00	0,00	0,00	0,00	0,00	0,000	0,900	1,100
15	2	0,970	11,230	90,00	30,00	0,00	0,00	30,00	-10,00	0,000	0,900	1,100
16	0	0,984	11,910	25,00	10,00	0,00	0,00	0,00	0,00	0,000	0,900	1,100
17	0	0,995	13,740	11,00	3,00	0,00	0,00	0,00	0,00	0,000	0,900	1,100
18	2	0,973	11,530	60,00	34,00	0,00	0,00	50,00	-16,00	0,000	0,900	1,100
19	2	0,963	11,050	45,00	25,00	0,00	0,00	24,00	-8,00	0,000	0,900	1,100
20	0	0,958	11,930	18,00	3,00	0,00	0,00	0,00	0,00	0,000	0,900	1,100
21	0	0,959	13,520	14,00	8,00	0,00	0,00	0,00	0,00	0,000	0,900	1,100
22	0	0,970	16,080	10,00	5,00	0,00	0,00	0,00	0,00	0,000	0,900	1,100
23	0	1,000	21,000	7,00	3,00	0,00	0,00	0,00	0,00	0,000	0,900	1,100
24	2	0,992	20,890	0,00	0,00	-13,00	0,00	300,00	-300,00	0,000	0,900	1,100
25	2	1,050	27,930	0,00	0,00	220,00	0,00	140,00	-47,00	0,000	0,900	1,100
26	2	1,015	29,710	0,00	0,00	314,00	0,00	1000,00	-1000,00	0,000	0,900	1,100
27	2	0,968	15,350	62,00	13,00	-9,00	0,00	300,00	-300,00	0,000	0,900	1,100
28	0	0,962	13,620	17,00	7,00	0,00	0,00	0,00	0,00	0,000	0,900	1,100
29	0	0,963	12,630	24,00	4,00	0,00	0,00	0,00	0,00	0,000	0,900	1,100
30	0	0,968	18,790	0,00	0,00	0,00	0,00	0,00	0,00	0,000	0,900	1,100
31	2	0,967	12,750	43,00	27,00	7,00	0,00	300,00	-300,00	0,000	0,900	1,100
32	2	0,964	14,800	59,00	23,00	0,00	0,00	42,00	-14,00	0,000	0,900	1,100
33	0	0,972	10,630	23,00	9,00	0,00	0,00	0,00	0,00	0,000	0,900	1,100
34	2	0,986	11,300	59,00	26,00	0,00	0,00	24,00	-8,00	0,140	0,900	1,100
35	0	0,981	10,870	33,00	9,00	0,00	0,00	0,00	0,00	0,000	0,900	1,100
36	2	0,980	10,870	31,00	17,00	0,00	0,00	24,00	-8,00	0,000	0,900	1,100
37	0	0,992	11,770	0,00	0,00	0,00	0,00	0,00	0,00	-0,250	0,900	1,100
38	0	0,962	16,910	0,00	0,00	0,00	0,00	0,00	0,00	0,000	0,900	1,100
39	0	0,970	8,410	27,00	11,00	0,00	0,00	0,00	0,00	0,000	0,900	1,100
40	2	0,970	7,350	20,00	23,00	-46,00	0,00	300,00	-300,00	0,000	0,900	1,100
41	0	0,967	6,920	37,00	10,00	0,00	0,00	0,00	0,00	0,000	0,900	1,100
42	2	0,985	8,530	37,00	23,00	-59,00	0,00	300,00	-300,00	0,000	0,900	1,100
43	0	0,978	11,280	18,00	7,00	0,00	0,00	0,00	0,00	0,000	0,900	1,100

C.6.1 Dados do Sistema de 118 Barras

Barra	Tipo	V	θ	P_c	Q_c	P_g	Q_g	$Q_g^{m\acute{a}x}$	Q_g^{min}	b_{sh}	V_{min}	$V_{m\acute{a}x}$
44	0	0,985	13,820	16,00	8,00	0,00	0,00	0,00	0,00	0,100	0,900	1,100
45	0	0,987	15,670	53,00	22,00	0,00	0,00	0,00	0,00	0,100	0,900	1,100
46	2	1,005	18,490	28,00	10,00	19,00	0,00	100,00	-100,00	0,100	0,900	1,100
47	0	1,017	20,730	34,00	0,00	0,00	0,00	0,00	0,00	0,000	0,900	1,100
48	0	1,021	19,930	20,00	11,00	0,00	0,00	0,00	0,00	0,150	0,900	1,100
49	2	1,025	20,940	87,00	30,00	204,00	0,00	210,00	-85,00	0,000	0,900	1,100
50	0	1,001	18,900	17,00	4,00	0,00	0,00	0,00	0,00	0,000	0,900	1,100
51	0	0,967	16,280	17,00	8,00	0,00	0,00	0,00	0,00	0,000	0,900	1,100
52	0	0,957	15,320	18,00	5,00	0,00	0,00	0,00	0,00	0,000	0,900	1,100
53	0	0,946	14,350	23,00	11,00	0,00	0,00	0,00	0,00	0,000	0,900	1,100
54	2	0,955	15,260	113,00	32,00	48,00	0,00	300,00	-300,00	0,000	0,900	1,100
55	2	0,952	14,970	63,00	22,00	0,00	0,00	23,00	-8,00	0,000	0,900	1,100
56	2	0,954	15,160	84,00	18,00	0,00	0,00	15,00	-8,00	0,000	0,900	1,100
57	0	0,971	16,360	12,00	3,00	0,00	0,00	0,00	0,00	0,000	0,900	1,100
58	0	0,959	15,510	12,00	3,00	0,00	0,00	0,00	0,00	0,000	0,900	1,100
59	2	0,985	19,370	277,00	113,00	155,00	0,00	180,00	-60,00	0,000	0,900	1,100
60	0	0,993	23,150	78,00	3,00	0,00	0,00	0,00	0,00	0,000	0,900	1,100
61	2	0,995	24,040	0,00	0,00	160,00	0,00	300,00	-100,00	0,000	0,900	1,100
62	2	0,998	23,430	77,00	14,00	0,00	0,00	20,00	-20,00	0,000	0,900	1,100
63	0	0,969	22,750	0,00	0,00	0,00	0,00	0,00	0,00	0,000	0,900	1,100
64	0	0,984	24,520	0,00	0,00	0,00	0,00	0,00	0,00	0,000	0,900	1,100
65	2	1,005	27,650	0,00	0,00	391,00	0,00	200,00	-67,00	0,000	0,900	1,100
66	2	1,050	27,480	39,00	18,00	392,00	0,00	200,00	-67,00	0,000	0,900	1,100
67	0	1,020	24,840	28,00	7,00	0,00	0,00	0,00	0,00	0,000	0,900	1,100
68	0	1,003	27,550	0,00	0,00	0,00	0,00	0,00	0,00	0,000	0,900	1,100
69	3	1,035	30,000	0,00	0,00	516,40	0,00	300,00	-300,00	0,000	0,900	1,100
70	2	0,984	22,580	66,00	20,00	0,00	0,00	32,00	-10,00	0,000	0,900	1,100
71	0	0,987	22,150	0,00	0,00	0,00	0,00	0,00	0,00	0,000	0,900	1,100
72	2	0,980	20,980	0,00	0,00	-12,00	0,00	100,00	-100,00	0,000	0,900	1,100
73	2	0,991	21,940	0,00	0,00	-6,00	0,00	100,00	-100,00	0,000	0,900	1,100
74	2	0,958	21,640	68,00	27,00	0,00	0,00	9,00	-6,00	0,120	0,900	1,100
75	0	0,967	22,910	47,00	11,00	0,00	0,00	0,00	0,00	0,000	0,900	1,100
76	2	0,943	21,770	68,00	36,00	0,00	0,00	23,00	-8,00	0,000	0,900	1,100
77	2	1,006	26,720	61,00	28,00	0,00	0,00	70,00	-20,00	0,000	0,900	1,100
78	0	1,003	26,420	71,00	26,00	0,00	0,00	0,00	0,00	0,000	0,900	1,100
79	0	1,009	26,720	39,00	32,00	0,00	0,00	0,00	0,00	0,200	0,900	1,100
80	2	1,040	28,960	130,00	26,00	477,00	0,00	280,00	-165,00	0,000	0,900	1,100
81	0	0,997	28,100	0,00	0,00	0,00	0,00	0,00	0,00	0,000	0,900	1,100
82	0	0,989	27,240	54,00	27,00	0,00	0,00	0,00	0,00	0,200	0,900	1,100
83	0	0,985	28,420	20,00	10,00	0,00	0,00	0,00	0,00	0,100	0,900	1,100
84	0	0,980	30,950	11,00	7,00	0,00	0,00	0,00	0,00	0,000	0,900	1,100
85	2	0,985	32,510	24,00	15,00	0,00	0,00	23,00	-8,00	0,000	0,900	1,100
86	0	0,987	31,140	21,00	10,00	0,00	0,00	0,00	0,00	0,000	0,900	1,100
87	2	1,015	31,400	0,00	0,00	4,00	0,00	1000,00	-100,00	0,000	0,900	1,100
88	0	0,987	35,640	48,00	10,00	0,00	0,00	0,00	0,00	0,000	0,900	1,100
89	2	1,005	39,690	0,00	0,00	607,00	0,00	300,00	-210,00	0,000	0,900	1,100
L					1	1		1	conti	nua na p	róxima	página

C.6 Sistema de Transmissão Interligado IEEE 118 Bus

Barra	Tipo	V	θ	P_c	Q_c	P_g	Q_g	$Q_g^{m\acute{a}x}$	Q_g^{min}	b_{sh}	V_{min}	$V_{m\acute{a}x}$
90	2	0,985	33,290	78,00	42,00	-85,00	0,00	300,00	-300,00	0,000	0,900	1,100
91	2	0,980	33,310	0,00	0,00	-10,00	0,00	100,00	-100,00	0,000	0,900	1,100
92	2	0,993	33,800	65,00	10,00	0,00	0,00	9,00	-3,00	0,000	0,900	1,100
93	0	0,987	30,790	12,00	7,00	0,00	0,00	0,00	0,00	0,000	0,900	1,100
94	0	0,991	28,640	30,00	16,00	0,00	0,00	0,00	0,00	0,000	0,900	1,100
95	0	0,981	27,670	42,00	31,00	0,00	0,00	0,00	0,00	0,000	0,900	1,100
96	0	0,993	27,510	38,00	15,00	0,00	0,00	0,00	0,00	0,000	0,900	1,100
97	0	1,011	27,880	15,00	9,00	0,00	0,00	0,00	0,00	0,000	0,900	1,100
98	0	1,024	27,400	34,00	8,00	0,00	0,00	0,00	0,00	0,000	0,900	1,100
99	2	1,010	27,040	0,00	0,00	-42,00	0,00	100,00	-100,00	0,000	0,900	1,100
100	2	1,017	28,030	37,00	18,00	252,00	0,00	155,00	-50,00	0,000	0,900	1,100
101	0	0,993	29,610	22,00	15,00	0,00	0,00	0,00	0,00	0,000	0,900	1,100
102	0	0,991	32,300	5,00	3,00	0,00	0,00	0,00	0,00	0,000	0,900	1,100
103	2	1,001	24,440	23,00	16,00	40,00	0,00	40,00	-15,00	0,000	0,900	1,100
104	2	0,971	21,690	38,00	25,00	0,00	0,00	23,00	-8,00	0,000	0,900	1,100
105	2	0,965	20,570	31,00	26,00	0,00	0,00	23,00	-8,00	0,200	0,900	1,100
106	0	0,962	20,320	43,00	16,00	0,00	0,00	0,00	0,00	0,000	0,900	1,100
107	2	0,952	17,530	28,00	12,00	-22,00	0,00	200,00	-200,00	0,060	0,900	1,100
108	0	0,967	19,380	2,00	1,00	0,00	0,00	0,00	0,00	0,000	0,900	1,100
109	0	0,967	18,930	8,00	3,00	0,00	0,00	0,00	0,00	0,000	0,900	1,100
110	2	0,973	18,090	39,00	30,00	0,00	0,00	23,00	-8,00	0,060	0,900	1,100
111	2	0,980	19,740	0,00	0,00	36,00	0,00	1000,00	-100,00	0,000	0,900	1,100
112	2	0,975	14,990	25,00	13,00	-43,00	0,00	1000,00	-100,00	0,000	0,900	1,100
113	2	0,993	13,740	0,00	0,00	-6,00	0,00	200,00	-100,00	0,000	0,900	1,100
114	0	0,960	14,460	8,00	3,00	0,00	0,00	0,00	0,00	0,000	0,900	1,100
115	0	0,960	14,460	22,00	7,00	0,00	0,00	0,00	0,00	0,000	0,900	1,100
116	2	1,005	27,120	0,00	0,00	-184,00	0,00	1000,00	-1000,00	0,000	0,900	1,100
117	0	0,974	10,670	20,00	8,00	0,00	0,00	0,00	0,00	0,000	0,900	1,100
118	0	0,949	21,920	33,00	15,00	0,00	0,00	0,00	0,00	0,000	0,900	1,100

Tab. C.7: Dados de barras para o sistema de 118 barras.

NI	NF	Tipo	r	X	Y_{sh}	Тар	Tap_{min}	$Tap_{m\acute{a}x}$
1	2	0	0,030	0,100	0,025	0,000	0,000	0,000
1	3	0	0,013	0,042	0,011	0,000	0,000	0,000
4	5	0	0,002	0,008	0,002	0,000	0,000	0,000
3	5	0	0,024	0,108	0,028	0,000	0,000	0,000
5	6	0	0,012	0,054	0,014	0,000	0,000	0,000
6	7	0	0,005	0,021	0,005	0,000	0,000	0,000
8	9	0	0,002	0,030	1,162	0,000	0,000	0,000

Dados de Barras e Ramos dos Sistemas Estudados

NI	NF	Tipo	r	X	Y_{sh}	Тар	Tap_{min}	$Tap_{m\acute{a}x}$
8	5	1	0,000	0,027	0,000	0,985	0,900	1,100
9	10	0	0,003	0,032	1,230	0,000	0,000	0,000
4	11	0	0,021	0,069	0,017	0,000	0,000	0,000
5	11	0	0,020	0,068	0,017	0,000	0,000	0,000
11	12	0	0,006	0,020	0,005	0,000	0,000	0,000
2	12	0	0,019	0,062	0,016	0,000	0,000	0,000
3	12	0	0,048	0,160	0,041	0,000	0,000	0,000
7	12	0	0,009	0,034	0,009	0,000	0,000	0,000
11	13	0	0,022	0,073	0,019	0,000	0,000	0,000
12	14	0	0,021	0,071	0,018	0,000	0,000	0,000
13	15	0	0,074	0,244	0,063	0,000	0,000	0,000
14	15	0	0,059	0,195	0,050	0,000	0,000	0,000
12	16	0	0,021	0,083	0,021	0,000	0,000	0,000
15	17	0	0,013	0,044	0,044	0,000	0,000	0,000
16	17	0	0,045	0,180	0,047	0,000	0,000	0,000
17	18	0	0,012	0,051	0,013	0,000	0,000	0,000
18	19	0	0,011	0,049	0,011	0,000	0,000	0,000
19	20	0	0,025	0,117	0,030	0,000	0,000	0,000
15	19	0	0,012	0,039	0,010	0,000	0,000	0,000
20	21	0	0,018	0,085	0,022	0,000	0,000	0,000
21	22	0	0,021	0,097	0,025	0,000	0,000	0,000
22	23	0	0,034	0,159	0,040	0,000	0,000	0,000
23	24	0	0,014	0,049	0,050	0,000	0,000	0,000
23	25	0	0,016	0,080	0,086	0,000	0,000	0,000
26	25	1	0,000	0,038	0,000	0,960	0,900	1,100
25	27	0	0,032	0,163	0,176	0,000	0,000	0,000
27	28	0	0,019	0,086	0,022	0,000	0,000	0,000
28	29	0	0,024	0,094	0,024	0,000	0,000	0,000
30	17	1	0,000	0,039	0,000	0,960	0,900	1,100

C.6 Sistema de Transmissão Interligado IEEE 118 Bus

NI	NF	Tipo	r	X	Y_{sh}	Тар	Tap_{min}	$Tap_{m\acute{a}x}$
8	30	0	0,004	0,050	0,514	0,000	0,000	0,000
26	30	0	0,008	0,086	0,908	0,000	0,000	0,000
17	31	0	0,047	0,156	0,040	0,000	0,000	0,000
29	31	0	0,011	0,033	0,008	0,000	0,000	0,000
23	32	0	0,032	0,115	0,117	0,000	0,000	0,000
31	32	0	0,030	0,099	0,025	0,000	0,000	0,000
27	32	0	0,023	0,075	0,019	0,000	0,000	0,000
15	33	0	0,038	0,124	0,032	0,000	0,000	0,000
19	34	0	0,075	0,247	0,063	0,000	0,000	0,000
35	36	0	0,002	0,010	0,003	0,000	0,000	0,000
35	37	0	0,011	0,050	0,013	0,000	0,000	0,000
33	37	0	0,042	0,142	0,037	0,000	0,000	0,000
34	36	0	0,009	0,027	0,006	0,000	0,000	0,000
34	37	0	0,003	0,009	0,010	0,000	0,000	0,000
38	37	1	0,000	0,037	0,000	0,935	0,900	1,100
37	39	0	0,032	0,106	0,027	0,000	0,000	0,000
37	40	0	0,059	0,168	0,042	0,000	0,000	0,000
30	38	0	0,005	0,054	0,422	0,000	0,000	0,000
39	40	0	0,018	0,060	0,016	0,000	0,000	0,000
40	41	0	0,015	0,049	0,012	0,000	0,000	0,000
40	42	0	0,056	0,183	0,047	0,000	0,000	0,000
41	42	0	0,041	0,135	0,034	0,000	0,000	0,000
43	44	0	0,061	0,245	0,061	0,000	0,000	0,000
34	43	0	0,041	0,168	0,042	0,000	0,000	0,000
44	45	0	0,022	0,090	0,022	0,000	0,000	0,000
45	46	0	0,040	0,136	0,033	0,000	0,000	0,000
46	47	0	0,038	0,127	0,032	0,000	0,000	0,000
46	48	0	0,060	0,189	0,047	0,000	0,000	0,000
47	49	0	0,019	0,063	0,016	0,000	0,000	0,000

Dados de Barras e Ramos dos Sistemas Estudados

NI	NF	Tipo	r	X	Y_{sh}	Тар	Tap_{min}	$Tap_{m\acute{a}x}$
42	49	0	0,071	0,323	0,086	0,000	0,000	0,000
42	49	0	0,071	0,323	0,086	0,000	0,000	0,000
45	49	0	0,068	0,186	0,044	0,000	0,000	0,000
48	49	0	0,018	0,051	0,013	0,000	0,000	0,000
49	50	0	0,027	0,075	0,019	0,000	0,000	0,000
49	51	0	0,049	0,137	0,034	0,000	0,000	0,000
51	52	0	0,020	0,059	0,014	0,000	0,000	0,000
52	53	0	0,041	0,164	0,041	0,000	0,000	0,000
53	54	0	0,026	0,122	0,031	0,000	0,000	0,000
49	54	0	0,073	0,289	0,074	0,000	0,000	0,000
49	54	0	0,087	0,291	0,073	0,000	0,000	0,000
54	55	0	0,017	0,071	0,020	0,000	0,000	0,000
54	56	0	0,003	0,010	0,007	0,000	0,000	0,000
55	56	0	0,005	0,015	0,004	0,000	0,000	0,000
56	57	0	0,034	0,097	0,024	0,000	0,000	0,000
50	57	0	0,047	0,134	0,033	0,000	0,000	0,000
56	58	0	0,034	0,097	0,024	0,000	0,000	0,000
51	58	0	0,025	0,072	0,018	0,000	0,000	0,000
54	59	0	0,050	0,229	0,060	0,000	0,000	0,000
56	59	0	0,083	0,251	0,057	0,000	0,000	0,000
56	59	0	0,080	0,239	0,054	0,000	0,000	0,000
55	59	0	0,047	0,216	0,056	0,000	0,000	0,000
59	60	0	0,032	0,145	0,038	0,000	0,000	0,000
59	61	0	0,033	0,150	0,039	0,000	0,000	0,000
60	61	0	0,003	0,014	0,015	0,000	0,000	0,000
60	62	0	0,012	0,056	0,015	0,000	0,000	0,000
61	62	0	0,008	0,038	0,010	0,000	0,000	0,000
63	59	1	0,000	0,039	0,000	0,960	0,900	1,100
63	64	0	0,002	0,020	0,216	0,000	0,000	0,000

C.6 Sistema de Transmissão Interligado IEEE 118 Bus

NI	NF	Tipo	r	X	Y_{sh}	Тар	Tap_{min}	$Tap_{m\acute{a}x}$
64	61	1	0,000	0,027	0,000	0,985	0,900	1,100
38	65	0	0,009	0,099	1,046	0,000	0,000	0,000
64	65	0	0,003	0,030	0,380	0,000	0,000	0,000
49	66	0	0,018	0,092	0,025	0,000	0,000	0,000
49	66	0	0,018	0,092	0,025	0,000	0,000	0,000
62	66	0	0,048	0,218	0,058	0,000	0,000	0,000
62	67	0	0,026	0,117	0,031	0,000	0,000	0,000
65	66	1	0,000	0,037	0,000	0,935	0,900	1,100
66	67	0	0,022	0,102	0,027	0,000	0,000	0,000
65	68	0	0,001	0,016	0,638	0,000	0,000	0,000
47	69	0	0,084	0,278	0,071	0,000	0,000	0,000
49	69	0	0,099	0,324	0,083	0,000	0,000	0,000
68	69	1	0,000	0,037	0,000	0,935	0,900	1,100
69	70	0	0,030	0,127	0,122	0,000	0,000	0,000
24	70	0	0,002	0,411	0,102	0,000	0,000	0,000
70	71	0	0,009	0,035	0,009	0,000	0,000	0,000
24	72	0	0,049	0,196	0,049	0,000	0,000	0,000
71	72	0	0,045	0,180	0,044	0,000	0,000	0,000
71	73	0	0,009	0,045	0,012	0,000	0,000	0,000
70	74	0	0,040	0,132	0,034	0,000	0,000	0,000
70	75	0	0,043	0,141	0,036	0,000	0,000	0,000
69	75	0	0,041	0,122	0,124	0,000	0,000	0,000
74	75	0	0,012	0,041	0,010	0,000	0,000	0,000
76	77	0	0,044	0,148	0,037	0,000	0,000	0,000
69	77	0	0,031	0,101	0,104	0,000	0,000	0,000
75	77	0	0,060	0,200	0,050	0,000	0,000	0,000
77	78	0	0,004	0,012	0,013	0,000	0,000	0,000
78	79	0	0,005	0,024	0,006	0,000	0,000	0,000
77	80	0	0,017	0,049	0,047	0,000	0,000	0,000
Dados de Barras e Ramos dos Sistemas Estudados

NI	NF	Tipo	r	X	Y_{sh}	Тар	Tap_{min}	$Tap_{m\acute{a}x}$
77	80	0	0,029	0,105	0,023	0,000	0,000	0,000
79	80	0	0,016	0,070	0,019	0,000	0,000	0,000
68	81	0	0,002	0,020	0,808	0,000	0,000	0,000
81	80	1	0,000	0,037	0,000	0,935	0,900	1,100
77	82	0	0,030	0,085	0,082	0,000	0,000	0,000
82	83	0	0,011	0,037	0,038	0,000	0,000	0,000
83	84	0	0,063	0,132	0,026	0,000	0,000	0,000
83	85	0	0,043	0,148	0,035	0,000	0,000	0,000
84	85	0	0,030	0,064	0,012	0,000	0,000	0,000
85	86	0	0,035	0,123	0,028	0,000	0,000	0,000
86	87	0	0,028	0,207	0,044	0,000	0,000	0,000
85	88	0	0,020	0,102	0,028	0,000	0,000	0,000
85	89	0	0,024	0,173	0,047	0,000	0,000	0,000
88	89	0	0,014	0,071	0,019	0,000	0,000	0,000
89	90	0	0,052	0,188	0,053	0,000	0,000	0,000
89	90	0	0,024	0,100	0,106	0,000	0,000	0,000
90	91	0	0,025	0,084	0,021	0,000	0,000	0,000
89	92	0	0,010	0,051	0,055	0,000	0,000	0,000
89	92	0	0,039	0,158	0,041	0,000	0,000	0,000
91	92	0	0,039	0,127	0,033	0,000	0,000	0,000
92	93	0	0,026	0,085	0,022	0,000	0,000	0,000
92	94	0	0,048	0,158	0,041	0,000	0,000	0,000
93	94	0	0,022	0,073	0,019	0,000	0,000	0,000
94	95	0	0,013	0,043	0,011	0,000	0,000	0,000
80	96	0	0,036	0,182	0,049	0,000	0,000	0,000
82	96	0	0,016	0,053	0,054	0,000	0,000	0,000
94	96	0	0,027	0,087	0,023	0,000	0,000	0,000
80	97	0	0,018	0,093	0,025	0,000	0,000	0,000
80	98	0	0,024	0,108	0,029	0,000	0,000	0,000

continua na próxima página

C.6 Sistema de Transmissão Interligado IEEE 118 Bus

NI	NF	Tipo	r	Х	Y_{sh}	Тар	Tap_{min}	$Tap_{m\acute{a}x}$
80	99	0	0,045	0,206	0,055	0,000	0,000	0,000
92	100	0	0,065	0,295	0,047	0,000	0,000	0,000
94	100	0	0,018	0,058	0,060	0,000	0,000	0,000
95	96	0	0,017	0,055	0,015	0,000	0,000	0,000
96	97	0	0,017	0,088	0,024	0,000	0,000	0,000
98	100	0	0,040	0,179	0,048	0,000	0,000	0,000
99	100	0	0,018	0,081	0,022	0,000	0,000	0,000
100	101	0	0,028	0,126	0,033	0,000	0,000	0,000
92	102	0	0,012	0,056	0,015	0,000	0,000	0,000
101	102	0	0,025	0,112	0,029	0,000	0,000	0,000
100	103	0	0,016	0,052	0,054	0,000	0,000	0,000
100	104	0	0,045	0,204	0,054	0,000	0,000	0,000
103	104	0	0,047	0,158	0,041	0,000	0,000	0,000
103	105	0	0,053	0,163	0,041	0,000	0,000	0,000
100	106	0	0,060	0,229	0,062	0,000	0,000	0,000
104	105	0	0,010	0,038	0,010	0,000	0,000	0,000
105	106	0	0,014	0,055	0,014	0,000	0,000	0,000
105	107	0	0,053	0,183	0,047	0,000	0,000	0,000
105	108	0	0,026	0,070	0,018	0,000	0,000	0,000
106	107	0	0,053	0,183	0,047	0,000	0,000	0,000
108	109	0	0,011	0,029	0,008	0,000	0,000	0,000
103	110	0	0,039	0,181	0,046	0,000	0,000	0,000
109	110	0	0,028	0,076	0,020	0,000	0,000	0,000
110	111	0	0,022	0,075	0,020	0,000	0,000	0,000
110	112	0	0,025	0,064	0,062	0,000	0,000	0,000
17	113	0	0,009	0,030	0,008	0,000	0,000	0,000
32	113	0	0,061	0,203	0,052	0,000	0,000	0,000
32	114	0	0,014	0,061	0,016	0,000	0,000	0,000
27	115	0	0,016	0,074	0,020	0,000	0,000	0,000

continua na próxima página

Dados de Barras e Ramos dos Sistemas Estudados

NI	NF	Tipo	r	X	Y_{sh}	Тар	Tap_{min}	$Tap_{m\acute{a}x}$
114	115	0	0,002	0,010	0,003	0,000	0,000	0,000
68	116	0	0,000	0,004	0,164	0,000	0,000	0,000
12	117	0	0,033	0,140	0,036	0,000	0,000	0,000
75	118	0	0,015	0,048	0,012	0,000	0,000	0,000
76	118	0	0,016	0,054	0,014	0,000	0,000	0,000

Tab. C.8: Dados de ramos para o sistema de 118 barras.